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Preface to the second edition

In this revised edition of our book we retained its concept: The main empha-
sis is placed on the fundamental principles of heat and mass transfer and their
application to practical problems of process modelling and the apparatus design.

Like the first edition, the second edition contains five chapters and several
appendices, particularly a compilation of thermophysical property data needed
for the solution of problems. Changes are made in those chapters presenting
heat and mass transfer correlations based on theoretical results or experimental
findings. They were adapted to the most recent state of our knowledge. Some of
the worked examples, which should help to deepen the comprehension of the text,
were revised or updated as well. The compilation of the thermophysical property
data was revised and adapted to the present knowledge.

Solving problems is essential for a sound understanding and for relating prin-
ciples to real engineering situations. Numerical answers and hints to the solution
of problems are given in the final appendix.

The new edition also enabled us to correct printing errors and mistakes.
In preparing the new edition we were assisted by Jens Körber, who helped

us to submit a printable version of the manuscript to the publisher. We owe him
sincere thanks.

We also appreciate the efforts of friends and colleagues who provided their
good advice with constructive suggestions.

Bochum and Stuttgart, H.D. Baehr
March 2006 K. Stephan



Preface to the first edition

This book is the English translation of our German publication, which appeared in
1994 with the title “Wärme und Stoffübertragung” (2nd edition Berlin: Springer
Verlag 1996). The German version originated from lecture courses in heat and
mass transfer which we have held for many years at the Universities of Hannover
and Stuttgart, respectively. Our book is intended for students of mechanical
and chemical engineering at universities and engineering schools, but will also be
of use to students of other subjects such as electrical engineering, physics and
chemistry. Firstly our book should be used as a textbook alongside the lecture
course. Its intention is to make the student familiar with the fundamentals of
heat and mass transfer, and enable him to solve practical problems. On the other
hand we placed special emphasis on a systematic development of the theory of
heat and mass transfer and gave extensive discussions of the essential solution
methods for heat and mass transfer problems. Therefore the book will also serve
in the advanced training of practising engineers and scientists and as a reference
work for the solution of their tasks. The material is explained with the assistance
of a large number of calculated examples, and at the end of each chapter a series
of exercises is given. This should also make self study easier.

Many heat and mass transfer problems can be solved using the balance equa-
tions and the heat and mass transfer coefficients, without requiring too deep a
knowledge of the theory of heat and mass transfer. Such problems are dealt with
in the first chapter, which contains the basic concepts and fundamental laws of
heat and mass transfer. The student obtains an overview of the different modes
of heat and mass transfer, and learns at an early stage how to solve practical
problems and to design heat and mass transfer apparatus. This increases the mo-
tivation to study the theory more closely, which is the object of the subsequent
chapters.

In the second chapter we consider steady-state and transient heat conduction
and mass diffusion in quiescent media. The fundamental differential equations for
the calculation of temperature fields are derived here. We show how analytical
and numerical methods are used in the solution of practical cases. Alongside the
Laplace transformation and the classical method of separating the variables, we
have also presented an extensive discussion of finite difference methods which are
very important in practice. Many of the results found for heat conduction can be
transferred to the analogous process of mass diffusion. The mathematical solution
formulations are the same for both fields.



viii Preface

The third chapter covers convective heat and mass transfer. The derivation
of the mass, momentum and energy balance equations for pure fluids and multi-
component mixtures are treated first, before the material laws are introduced and
the partial differential equations for the velocity, temperature and concentration
fields are derived. As typical applications we consider heat and mass transfer in
flow over bodies and through channels, in packed and fluidised beds as well as
free convection and the superposition of free and forced convection. Finally an
introduction to heat transfer in compressible fluids is presented.

In the fourth chapter the heat and mass transfer in condensation and boil-
ing with free and forced flows is dealt with. The presentation follows the book,
“Heat Transfer in Condensation and Boiling” (Berlin: Springer-Verlag 1992) by
K. Stephan. Here, we consider not only pure substances; condensation and boiling
in mixtures of substances are also explained to an adequate extent.

Thermal radiation is the subject of the fifth chapter. It differs from many
other presentations in so far as the physical quantities needed for the quantita-
tive description of the directional and wavelength dependency of radiation are
extensively presented first. Only after a strict formulation of Kirchhoff’s law, the
ideal radiator, the black body, is introduced. After this follows a discussion of the
material laws of real radiators. Solar radiation and heat transfer by radiation are
considered as the main applications. An introduction to gas radiation, important
technically for combustion chambers and furnaces, is the final part of this chapter.

As heat and mass transfer is a subject taught at a level where students have
already had courses in calculus, we have presumed a knowledge of this field. Those
readers who only wish to understand the basic concepts and become familiar
with simple technical applications of heat and mass transfer need only study the
first chapter. More extensive knowledge of the subject is expected of graduate
mechanical and chemical engineers. The mechanical engineer should be familiar
with the fundamentals of heat conduction, convective heat transfer and radiative
transfer, as well as having a basic knowledge of mass transfer. Chemical engineers
also require, in addition to a sound knowledge of these areas, a good understanding
of heat and mass transfer in multiphase flows. The time set aside for lectures is
generally insufficient for the treatment of all the material in this book. However, it
is important that the student acquires a broad understanding of the fundamentals
and methods. Then it is sufficient to deepen this knowledge with selected examples
and thereby improve problem solving skills.

In the preparation of the manuscript we were assisted by a number of our
colleagues, above all by Nicola Jane Park, MEng., University of London, Imperial
College of Science, Technology and Medicine. We owe her sincere thanks for
the translation of our German publication into English, and for the excellent
cooperation.

Hannover and Stuttgart, H.D. Baehr
Spring 1998 K. Stephan
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Nomenclature

Symbol Meaning SI units

A area m2

Am average area m2

Aq cross sectional area m2

Af fin surface area m2

a thermal diffusivity m2/s

a hemispherical total absorptivity —

aλ spectral absorptivity —

a′

λ directional spectral absorptivity —

at turbulent thermal diffusivity m2/s

a∗ specific surface area m2/m3

b thermal penetration coefficient, b =
√

λc� W s1/2/(m2 K)

b Laplace constant, b =
√

2σ/g (�L − �G) m

C circumference, perimeter m

C heat capacity flow ratio —

c specific heat capacity J/(kg K)

c concentration mol/m3

c propagation velocity of electromagnetic waves m/s

c0 velocity of light in a vacuum m/s

cf friction factor —

cp specific heat capacity at constant pressure J/(kg K)

cR resistance factor —

D binary diffusion coefficient m2/s

Dt turbulent diffusion coefficient m2/s

d diameter m

dA departure diameter of vapour bubbles m

dh hydraulic diameter m

E irradiance W/m2

E0 solar constant W/m2

Eλ spectral irradiance W/(m2 µm)

e unit vector —

F force N



Nomenclature xvii

FB buoyancy force N

Ff friction force N

FR resistance force N

Fij view factor between surfaces i and j —

F (0, λT ) fraction function of black radiation —

f frequency of vapour bubbles 1/s

fj force per unit volume N/m3

g acceleration due to gravity m/s2

H height m

H radiosity W/m2

H enthalpy J

Ḣ enthalpy flow J/s

h Planck constant J s

h specific enthalpy J/kg

htot specific total enthalpy, htot = h + w2/2 J/kg

hi partial specific enthalpy J/kg

∆hv specific enthalpy of vaporization J/kg

∆h̃v molar enthalpy of vaporization J/mol

I momentum kg m/s

I directional emissive power W/(m2 sr)

j diffusional flux mol/(m2 s)

j∗ diffusional flux in a centre of gravity system kg/(m2 s)

uj diffusional flux in a particle based system mol/(m2 s)

K incident intensity W/(m2 sr)

Kλ incident spectral intensity W/(m2 µm)

k overall heat transfer coefficient W/(m2 K)

k extinction coefficient —

k Boltzmann constant J/K

kG spectral absorption coefficient 1/m

kH Henry coefficient N/m2

kj force per unit mass N/kg

k1 rate constant for a homogeneous
first order reaction 1/s

k′

1, k
′′

1 rate constant for a homogeneous (heterogeneous)
first order reaction m/s

k′′

n rate constant for a heterogeneous mol/(m2s)

n-th order reaction (mol/m3)n

L length m

L total intensity W/(m2 sr)

Lλ spectral intensity W/(m2 µm sr)

L0 reference length m

LS solubility mol/(m3 Pa)



xviii Nomenclature

l length, mixing length m

M mass kg

M modulus, M = a∆t/∆x2 —

M (hemispherical total) emissive power W/m2

Mλ spectral emissive power W/(m2 µm)

Ṁ mass flow rate kg/s

M̃ molecular mass, molar mass kg/mol

m optical mass kg/m2

mr relative optical mass —

ṁ mass flux kg/(m2 s)

N amount of substance mol

Ni dimensionless transfer capability (number of
transfer units) of the material stream i —

Ṅ molar flow rate mol/s

n refractive index —

n normal vector —

ṅ molar flux mol/(m2 s)

P power W

Pdiss dissipated power W

p pressure Pa

p+ dimensionless pressure —

Q heat J

Q̇ heat flow W

q̇ heat flux W/m2

R radius m

Rcond resistance to thermal conduction K/W

Rm molar (universal) gas constant J/(mol K)

r radial coordinate m

r hemispherical total reflectivity —

rλ spectral reflectivity —

r′λ directional spectral reflectivity —

re electrical resistivity Ω m

r+ dimensionless radial coordinate —

ṙ reaction rate mol/(m3 s)

S suppression factor in convective boiling —

S entropy J/K

s specific entropy J/(kg K)

s Laplace transformation parameter 1/s

s beam length m

s slip factor, s = wG/wL —

sl longitudinal pitch m



Nomenclature xix

sq transverse pitch m

T thermodynamic temperature K

Te eigentemperature K

TSt stagnation point temperature K

t time s

t+ dimensionless time —

tk cooling time s

tj stress vector N/m2

tR relaxation time, tR = 1/k1 s

tD relaxation time of diffusion, tD = L2/D s

U internal energy J

u average molar velocity m/s

u specific internal energy J/kg

u Laplace transformed temperature K

V volume m3

VA departure volume of a vapour bubble m3

v specific volume m3/kg

W work J

Ẇ power density W/m3

Ẇi heat capacity flow rate of a fluid i W/K

w velocity m/s

w0 reference velocity m/s

wS velocity of sound m/s

wτ shear stress velocity, wτ =
√

τ0/� m/s

w′ fluctuation velocity m/s

w+ dimensionless velocity —

X moisture content; Lockhart-Martinelli parameter —

X̃ molar content in the liquid phase —

x coordinate m

x̃ mole fraction in the liquid —

x+ dimensionless x-coordinate —

x∗ quality, x∗ = ṀG/ṀL —

x∗

th thermodynamic quality —

Ỹ molar content in the gas phase —

y coordinate m

ỹ mole fraction in the gas phase —

y+ dimensionless y-coordinate —

z number —

z axial coordinate m

z+ dimensionless z-coordinate —

zR number of tube rows —



xx Nomenclature

Greek letters

Symbol Meaning SI units

α heat transfer coefficient W/(m2 K)

αm mean heat transfer coefficient W/(m2 K)

β mass transfer coefficient m/s

βm mean mass transfer coefficient m/s

β thermal expansion coefficient 1/K

β polar angle, zenith angle rad

β0 base angle rad

Γ̇ mass production rate kg/(m3 s)

γ̇ molar production rate mol/(m3 s)

∆ difference —

δ thickness; boundary layer thickness m

δij Kronecker symbol —

ε volumetric vapour content —

ε∗ volumetric quality —

ε hemispherical total emissivity —

ελ hemispherical spectral emissivity —

ε′λ directional spectral emissivity —

εD turbulent diffusion coefficient m2/s

εi dimensionless temperature change of the material stream i —

ε̇ii dilatation 1/s

ε̇ji strain tensor 1/s

εp void fraction —

εt turbulent viscosity m2/s

ζ resistance factor —

ζ bulk viscosity kg/(m s)

η dynamic viscosity kg/(m s)

ηf fin efficiency —

Θ overtemperature K

ϑ temperature K

ϑ+ dimensionless temperature —

κ isentropic exponent —

κG optical thickness of a gas beam —

Λ wave length of an oscillation m

λ wave length m

λ thermal conductivity W/(K m)

λt turbulent thermal conductivity W/(K m)

µ diffusion resistance factor —

ν kinematic viscosity m2/s



Nomenclature xxi

ν frequency 1/s

� density kg/m3

σ Stefan-Boltzmann constant W/(m2 K4)

σ interfacial tension N/m

ξ mass fraction —

τ transmissivity —

τλ spectral transmissivity —

τ shear stress N/m2

τji shear stress tensor N/m2

Φ radiative power, radiation flow W

Φ viscous dissipation W/m3

ϕ angle, circumferential angle rad

Ψ stream function m2/s

ω solid angle sr

ω reference velocity m/s

ω̇ power density W/m2

Subscripts

Symbol Meaning

A air, substance A

abs absorbed

B substance B

C condensate, cooling medium

diss dissipated

E excess, product, solidification

e exit, outlet

eff effective

eq equilibrium

F fluid, feed

f fin, friction

G gas

g geodetic, base material

I at the phase interface

i inner, inlet

id ideal

in incident radiation, irradiation

K substance K

L liquid

lam laminar

m mean, molar (based on the amount of substance)

max maximum

min minimum



xxii Nomenclature

n normal direction

o outer, outside

P particle

ref reflected, reference state

S solid, bottom product, sun, surroundings

s black body, saturation

tot total

trans transmitted

turb turbulent

u in particle reference system

V boiler

W wall, water

α start

δ at the point y = δ

λ spectral

ω end

0 reference state; at the point y = 0

∞ at a great distance; in infinity

Dimensionless numbers

Ar = [(�S − �F)/�F]
(
d3
Pg/ν2

)
Archimedes number

Bi = αL/λ Biot number

BiD = βL/D Biot number for mass transfer

Bo = q̇/ (ṁ∆hv) boiling number

Da = k′′

1L/D Damköhler number (for 1st order heterogeneous reaction)

Ec = w2/ (cp∆ϑ) Eckert number

Fo = at/L2 Fourier number

Fr = w2/ (gx) Froude number

Ga = gL3/ν2 Galilei number

Gr = gβ∆ϑL3/ν2 Grashof number

Ha =
(
k1L

2/D
)2

Hatta number

Le = a/D Lewis number

Ma = w/wS Mach number

Nu = αL/λ Nusselt number

Pe = wL/a Péclet number

Ph = hE/ [c (ϑE − ϑ0)] phase change number

Pr = ν/a Prandtl number

Ra = GrPr Rayleigh number

Re = wL/ν Reynolds number

Sc = ν/D Schmidt number

Sh = βL/D Sherwood number

St = α/ (w�cp) Stanton number

St = 1/Ph Stefan number



1 Introduction. Technical Applications

In this chapter the basic definitions and physical quantities needed to describe
heat and mass transfer will be introduced, along with the fundamental laws of
these processes. They can already be used to solve technical problems, such as
the transfer of heat between two fluids separated by a wall, or the sizing of appa-
ratus used in heat and mass transfer. The calculation methods presented in this
introductory chapter will be relatively simple, whilst a more detailed presentation
of complex problems will appear in the following chapters.

1.1 The different types of heat transfer

In thermodynamics, heat is defined as the energy that crosses the boundary of a
system when this energy transport occurs due to a temperature difference between
the system and its surroundings, cf. [1.1], [1.2]. The second law of thermodynamics
states that heat always flows over the boundary of the system in the direction of
falling temperature.

However, thermodynamics does not state how the heat transferred depends on
this temperature driving force, or how fast or intensive this irreversible process
is. It is the task of the science of heat transfer to clarify the laws of this process.
Three modes of heat transfer can be distinguished: conduction, convection, and
radiation. The following sections deal with their basic laws, more in depth in-
formation is given in chapter 2 for conduction, 3 and 4 for convection and 5 for
radiation. We limit ourselves to a phenomenological description of heat transfer
processes, using the thermodynamic concepts of temperature, heat, heat flow and
heat flux. In contrast to thermodynamics, which mainly deals with homogeneous
systems, the so-called phases, heat transfer is a continuum theory which deals
with fields extended in space and also dependent on time.

This has consequences for the concept of heat, which in thermodynamics is
defined as energy which crosses the system boundary. In heat transfer one speaks
of a heat flow also within the body. This contradiction with thermodynamic
terminology can be resolved by considering that in a continuum theory the mass
and volume elements of the body are taken to be small systems, between which
energy can be transferred as heat. Therefore, when one speaks of heat flow within
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a solid body or fluid, or of the heat flux vector field in conjunction with the
temperature field, the thermodynamic theory is not violated.

As in thermodynamics, the thermodynamic temperature T is used in heat
transfer. However with the exception of radiative heat transfer the zero point
of the thermodynamic temperature scale is not needed, usually only temperature
differences are important. For this reason a thermodynamic temperature with an
adjusted zero point, an example being the Celsius temperature, is used. These
thermodynamic temperature differences are indicated by the symbol ϑ, defined as

ϑ := T − T0 (1.1)

where T0 can be chosen arbitrarily and is usually set at a temperature that best
fits the problem that requires solving. When T0 = 273.15 K then ϑ will be the
Celsius temperature. The value for T0 does not normally need to be specified as
temperature differences are independent of T0.

1.1.1 Heat conduction

Heat conduction is the transfer of energy between neighbouring molecules in a
substance due to a temperature gradient. In metals also the free electrons transfer
energy. In solids which do not transmit radiation, heat conduction is the only
process for energy transfer. In gases and liquids heat conduction is superimposed
by an energy transport due to convection and radiation.

The mechanism of heat conduction in solids and fluids is difficult to understand
theoretically. We do not need to look closely at this theory; it is principally
used in the calculation of thermal conductivity, a material property. We will
limit ourselves to the phenomenological discussion of heat conduction, using the
thermodynamic quantities of temperature, heat flow and heat flux, which are
sufficient to deal with most technically interesting conduction problems.

The transport of energy in a conductive material is described by the vector
field of heat flux

q̇ = q̇(x, t) . (1.2)

In terms of a continuum theory the heat flux vector represents the direction and
magnitude of the energy flow at a position indicated by the vector x. It can also
be dependent on time t. The heat flux q̇ is defined in such a way that the heat
flow dQ̇ through a surface element dA is

dQ̇ = q̇(x, t)n dA = |q̇| cos β dA . (1.3)

Here n is the unit vector normal (outwards) to the surface, which with q̇ forms
the angle β, Fig. 1.1. The heat flow dQ̇ is greatest when q̇ is perpendicular to dA
making β = 0. The dimension of heat flow is energy/time (thermal power), with
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Fig. 1.1: Surface element with normal vector n
and heat flux vector q̇

SI unit J/s = W. Heat flux is the heat flow per surface area with units J/s m2 =
W/m2.

The transport of energy by heat conduction is due to a temperature gradient
in the substance. The temperature ϑ changes with both position and time. All
temperatures form a temperature field

ϑ = ϑ(x, t) .

Steady temperature fields are not dependent on the time t. One speaks of unsteady
or transient temperature fields when the changes with time are important. All
points of a body that are at the same temperature ϑ, at the same moment in time,
can be thought of as joined by a surface. This isothermal surface or isotherm
separates the parts of the body which have a higher temperature than ϑ, from
those with a lower temperature than ϑ. The greatest temperature change occurs
normal to the isotherm, and is given by the temperature gradient

grad ϑ =
∂ϑ

∂x
ex +

∂ϑ

∂y
ey +

∂ϑ

∂z
ez (1.4)

where ex, ey and ez represent the unit vectors in the three coordinate directions.
The gradient vector is perpendicular to the isotherm which goes through the point
being considered and points to the direction of the greatest temperature increase.

Fig. 1.2: Point P on the isotherm
ϑ = const with the temperature gra-
dient grad ϑ from (1.4) and the heat
flux vector q̇ from (1.5)

Considering the temperature gradients as the cause of heat flow in a conductive
material, it suggests that a simple proportionality between cause and effect may
be assumed, allowing the heat flux to be written as

q̇ = −λ grad ϑ . (1.5)
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This is J. B. Fourier’s1 basic law for the conduction of heat, from 1822. The minus
sign in this equation is accounting for the 2nd law of thermodynamics: heat flows
in the direction of falling temperature, Fig. 1.2. The constant of proportion in
(1.5) is a property of the material, the thermal conductivity

λ = λ(ϑ, p) .

It is dependent on both the temperature ϑ and pressure p, and in mixtures on
the composition. The thermal conductivity λ is a scalar as long as the material is
isotropic, which means that the ability of the material to conduct heat depends
on position within the material, but for a given position not on the direction.
All materials will be assumed to be isotropic, apart from a few special examples
in Chapter 3, even though several materials do have thermal conductivities that
depend on direction. This can be seen in wood, which conducts heat across its
fibres significantly better than along them. In such non-isotropic medium λ is a
tensor of second order, and the vectors q̇ and grad ϑ form an angle in contrast to
Fig. 1.2. In isotropic substances the heat flux vector is always perpendicular to
the isothermal surface. From (1.3) and (1.5) the heat flow dQ̇ through a surface
element dA oriented in any direction is

dQ̇ = −λ ( grad ϑ)n dA = −λ
∂ϑ

∂n
dA . (1.6)

Here ∂ϑ/∂n is the derivative of ϑ with respect to the normal (outwards) direction
to the surface element.

Table 1.1: Thermal conductivity of selected substances at 20 ◦C and 100 kPa

Substance λ in W/K m Substance λ in W/K m

Silver 427 Water 0.598
Copper 399 Hydrocarbons 0.10 . . . 0.15
Aluminium 99.2 % 209 CO2 0.0162
Iron 81 Air 0.0257
Steel Alloys 13 . . . 48 Hydrogen 0.179
Brickwork 0.5 . . . 1.3 Krypton 0.0093
Foam Sheets 0.02 . . . 0.09 R 123 0.0090

The thermal conductivity, with SI units of W/Km, is one of the most impor-
tant properties in heat transfer. Its pressure dependence must only be considered
for gases and liquids. Its temperature dependence is often not very significant and
can then be neglected. More extensive tables of λ are available in Appendix B,

1Jean Baptiste Fourier (1768–1830) was Professor for Analysis at the Ecole Polytechnique
in Paris and from 1807 a member of the French Academy of Science. His most important work
“Théorie analytique de la chaleur” appeared in 1822. It is the first comprehensive mathematical
theory of conduction and cointains the “Fourier Series” for solving boundary value problems in
transient heat conduction.
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Tables B1 to B8, B10 and B11. As shown in the short Table 1.1, metals have very
high thermal conductivities, solids which do not conduct electricity have much
lower values. One can also see that liquids and gases have especially small values
for λ. The low value for foamed insulating material is because of its structure. It
contains numerous small, gas-filled spaces surrounded by a solid that also has low
thermal conductivity.

1.1.2 Steady, one-dimensional conduction of heat

As a simple, but practically important application, the conduction of heat inde-
pendent of time, so called steady conduction, in a flat plate, in a hollow cylinder
and in a hollow sphere will be considered in this section. The assumption is made
that heat flows in only one direction, perpendicular to the plate surface, and ra-
dially in the cylinder and sphere, Fig. 1.3. The temperature field is then only
dependent on one geometrical coordinate. This is known as one-dimensional heat
conduction.

Fig. 1.3: Steady, one dimensional conduction. a Temperature profile in a flat plate of
thickness δ = r2 − r1, b Temperature profile in a hollow cylinder (tube wall) or hollow
sphere of inner radius r1 and outer radius r2

The position coordinate in all three cases is designated by r. The surfaces
r = const are isothermal surfaces; and therefore ϑ = ϑ(r). We assume that ϑ has
the constant values ϑ = ϑW1, when r = r1, and ϑ = ϑW2, when r = r2. These
two surface temperatures shall be given. A relationship between the heat flow
Q̇ through the flat or curved walls, and the temperature difference ϑW1 − ϑW2,
must be found. For illustration we assume ϑW1 > ϑW2, without loss of generality.
Therefore heat flows in the direction of increasing r. The heat flow Q̇ has a certain
value, which on the inner and outer surfaces, and on each isotherm r = const is
the same, as in steady conditions no energy can be stored in the wall.

Fourier’s law gives the following for the heat flow

Q̇ = q̇(r)A(r) = −λ(ϑ)
dϑ

dr
A(r) . (1.7)

In the flat wall A is not dependent on r: A = A1 = A2. If the thermal conductivity
is constant, then the temperature gradient dϑ/dr will also be constant. The steady
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temperature profile in a plane wall with constant λ is linear. This is not true in the
case of both the cylinder and the sphere, and also if λ changes with temperature.
In these more general cases (1.7) becomes

−λ(ϑ) dϑ = Q̇
dr

A(r)

and after integrating over the wall thickness δ = r2 − r1

−
ϑW2∫

ϑW1

λ(ϑ) dϑ = Q̇

r2∫
r1

dr

A(r)
.

From the mean value theorem for integration comes

−λm (ϑW2 − ϑW1) = Q̇
δ

Am

or

Q̇ =
λm

δ
Am (ϑW1 − ϑW2) . (1.8)

The heat flow is directly proportional to the difference in temperature between
the two surfaces. The driving force of temperature difference is analogous to the
potential difference (voltage) in an electric circuit and so λmAm/δ is the thermal
conductance and its inverse

Rcond :=
δ

λmAm

(1.9)

the thermal resistance. In analogy to electric circuits we get

Q̇ = (ϑW1 − ϑW2) /Rcond . (1.10)

The average thermal conductivity can easily be calculated using

λm :=
1

(ϑW2 − ϑW1)

ϑW2∫
ϑW1

λ(ϑ) dϑ . (1.11)

In many cases the temperature dependence of λ can be neglected, giving λm = λ.
If λ changes linearly with ϑ then

λm =
1

2

[
λ (ϑW1) + λ (ϑW2)

]
. (1.12)

This assumption is generally sufficient for the region ϑW1 ≤ ϑ ≤ ϑW2 as λ can
rarely be measured with a relative error smaller than 1 to 2%.

The average area Am in (1.8) is defined by

1

Am

:=
1

r2 − r1

r2∫
r1

dr

A(r)
(1.13)
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We have

A(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A1 = A2 for a flat plate

2πLr for a cylinder of length L

4πr2 for a sphere.

(1.14)

From (1.13) we get

Am =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
A1 = A2 = 1

2 (A1 + A2) flat plate

(A2 − A1) / ln (A2/A1) cylinder

√
A1A2 sphere .

(1.15)

The average area Am is given by the average of both surface areas A1 = A(r1)
and A2 = A(r2). One gets the arithmetic mean for the flat plate, the logarithmic
mean for the cylinder and the geometric mean for the sphere. It is known that√

A1A2 ≤
A2 − A1

ln (A2/A1)
≤ 1

2
(A1 + A2) .

For the thermal resistance to conduction it follows

Rcond =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
λmA

flat plate

ln (d2/d1)
2πLλm

cylinder

(d2/d1) − 1
2πd2λm

sphere

(1.16)

The wall thickness for the cylinder (tube wall) and sphere is

δ = r2 − r1 =
1

2
(d2 − d1)

so that Rcond can be expressed in terms of both diameters d1 and d2.
The temperature profile in each case shall also be determined. We limit our-

selves to the case λ = const. With A(r) from (1.14) and integrating

− dϑ =
Q̇

λ

dr

A(r)

the dimensionless temperature ratio is

ϑ(r) − ϑW2

ϑW1 − ϑW2

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2 − r
r2 − r1

flat plate

ln (r2/r)
ln (r2/r1)

cylinder

1/r − 1/r2

1/r1 − 1/r2

sphere

(1.17)
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Fig. 1.4: Steady temperature profile from
(1.17) in a flat, cylindrical and spherical wall
of the same thickness δ and with r2/r1 = 3

As already mentioned the temperature change is linear in the flat plate. The
cylinder has a logarithmic, and the sphere a hyperbolic temperature dependence
on the radial coordinates.

Fig. 1.4 shows the temperature profile according to (1.17) in walls of equal
thickness. The largest deviation from the straight line by the logarithmic and
hyperbolic temperature profiles appears at the point r = rm, where the cross
sectional area A(r) assumes the value A (rm) = Am according to (1.15).

Example 1.1: A flat wall of thickness δ = 0.48 m, is made out of fireproof stone whose
thermal conductivity changes with temperature. With the Celsius temperature ϑ, between
0 ◦C and 800 ◦C it holds that

λ(ϑ) =
λ0

1 − bϑ
(1.18)

where λ0 = 0.237 W/K m and b = 4.41 · 10−4 K−1. The surface temperatures are ϑW1 =
750 ◦C and ϑW2 = 150 ◦C. The heat flux q̇ = Q̇/A and the temperature profile in the wall
need to be calculated.
From (1.8) the heat flux is

q̇ =
λm

δ
(ϑW1 − ϑW2) (1.19)

with the average thermal conductivity

λm =
1

ϑW2 − ϑW1

ϑW2∫
ϑW1

λ(ϑ) dϑ =
λ0

b (ϑW1 − ϑW2)
ln

1 − bϑW2

1 − bϑW1
.

Putting as an abbreviation λ(ϑWi) = λi (i = 1, 2) we get

λm =
ln(λ1/λ2)
1

λ2
− 1

λ1

=
ln(λ1/λ2)

λ1 − λ2
λ1λ2 . (1.20)

The average thermal conductivity λm can be calculated using the λ values for both surfaces.
It is the square of the geometric mean divided by the logarithmic mean of the two values
λ1 and λ2. This yields from (1.18)

λ1 = λ(ϑW1) = 0.354W/K m , λ2 = λ(ϑW2) = 0.254W/K m ,
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and from that λm = 0.298 W/K m. The heat flux follows from (1.19) as q̇ = 373W/m2.
Under the rather inaccurate assumption that λ varies linearly with the temperature, it
would follow that

λm =
1

2
(λ1 + λ2) = 0.304W/K m

Although this value is 1.9% too large it is still a useful approximation, as its deviation
from the exact value is within the bounds of uncertainty associated with the measurement
of thermal conductivity.
To calculate the temperature profile in the wall we will use (1.7) as the starting point,

−λ(ϑ) dϑ = q̇ dr ,

and with x = r − r1 this gives

−λ0

ϑ∫
ϑW1

dϑ

1 − bϑ
=

λ0

b
ln

1 − bϑ

1 − bϑW1
= q̇x .

With q̇ from (1.19) and λm from (1.20) it follows that

ln
1 − bϑ

1 − bϑW1
=

x

δ
ln

1 − bϑW2

1 − bϑW1

or
1 − bϑ

1 − bϑW1
=

(
1 − bϑW2

1 − bϑW1

)x/δ

.

Finally using (1.18) we get

ϑ(x) =
1

b

[
1 − λ0

λ1

(
λ1

λ2

)x/δ
]

(1.21)

for the equation to calculate the temperature profile in the wall.

Fig. 1.5: Steady temperature profile
ϑ = ϑ (x/δ) from (1.21) in a flat wall
with temperature dependent thermal
conductivity according to (1.18). ∆ϑ is
the deviation of the temperature profile
from the straight line which is valid for
a constant value of λ, right hand scale.

Fig. 1.5 shows ϑ(x) and the deviation ∆ϑ(x) from the linear temperature profile between
ϑW1 and ϑW2. At high temperatures, where the thermal conductivity is large, the temper-
ature gradient is smaller than at lower temperatures, where λ(ϑ) is smaller. At each point
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in the wall the product

q̇ = −λ(ϑ)
dϑ

dx

has to be the same. Smaller values of the thermal conductivity are “compensated” by
larger temperature gradients.

1.1.3 Convective heat transfer. Heat transfer coefficient

In a flowing fluid, energy is transferred not only through heat conduction but also
by the macroscopic movement of the fluid. When we imagine an area located at a
given position within the fluid, heat flows through this area by conduction due to
the temperature gradient and in addition energy as enthalpy and kinetic energy of
the fluid which crosses the area. This is known as convective heat transfer which
can be described as the superposition of thermal conduction and energy transfer
by the flowing fluid.

Heat transfer between a solid wall and a fluid, e.g. in a heated tube with a
cold gas flowing inside it, is of special technical interest. The fluid layer close to
the wall has the greatest effect on the amount of heat transferred. It is known
as the boundary layer and boundary layer theory founded by L. Prandtl2 in 1904
is the area of fluid dynamics that is most important for heat and mass transfer.
In the boundary layer the velocity component parallel to the wall changes, over a
small distance, from zero at the wall to almost the maximum value occurring in
the core fluid, Fig. 1.6. The temperature in the boundary layer also changes from
that at the wall ϑW to ϑF at some distance from the wall.

Heat will flow from the wall into the fluid as a result of the temperature
difference ϑW −ϑF, but if the fluid is hotter than the wall, ϑF > ϑW, the fluid will
be cooled as heat flows into the wall. The heat flux at the wall q̇W depends on
the temperature and velocity fields in the fluid; their evaluation is quite complex
and can lead to considerable problems in calculation. One puts therefore

q̇W = α (ϑW − ϑF) (1.22)

with a new quantity, the local heat transfer coefficient, defined by

α :=
q̇W

ϑW − ϑF

. (1.23)

This definition replaces the unknown heat flux q̇W, with the heat transfer coef-
ficient, which is also unknown. This is the reason why many researchers see the
introduction of α as unnecessary and superfluous. Nevertheless the use of heat

2Ludwig Prandtl (1875–1953) was Professor for Applied Mechanics at the University of
Göttingen from 1904 until his death. He was also Director of the Kaiser-Wilhelm-Institut for
Fluid Mechanics from 1925. His boundary layer theory, and work on turbulent flow, wing theory
and supersonic flow are fundamental contributions to modern fluid mechanics.
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Fig. 1.6: Velocity w (left) and temperature ϑ (right) profiles in a fluid as a function
of distance from the wall y. δ and δt represent the velocity and temperature boundary
layer thicknesses.

transfer coefficients seems to be reasonable, because when α is known both the
basic questions in convective heat transfer can be easily answered: What is the
heat flux q̇W for a given temperature difference ϑW − ϑF, and what difference in
temperature ϑW −ϑF causes a given heat flux q̇W between the wall and the fluid?

In order to see how the heat transfer coefficient and the temperature field
in the fluid are related, the immediate neighbourhood of the wall (y → 0) is
considered. Here the fluid adheres to the wall, except in the case of very dilute
gases. Its velocity is zero, and energy can only be transported by heat conduction.
So instead of (1.22) the physically based relationship (Fourier’s law) is valid:

q̇W = −λ

(
∂ϑ

∂y

)
W

, (1.24)

where λ, or to be more exact λ(ϑW), is the thermal conductivity of the fluid at the
wall temperature. The heat flux q̇W is found from the gradient of the temperature
profile of the fluid at the wall, Fig. 1.7. From the definition (1.23), it follows for
the heat transfer coefficient

α = −λ

(
∂ϑ

∂y

)
W

ϑW − ϑF

. (1.25)

From this it is clear that α is determined by the gradient of the temperature profile
at the wall and the difference between the wall and fluid temperatures. Therefore,

Fig. 1.7: Fluid temperature ϑ = ϑ (y)
as a function of distance from the wall
y and illustration of the ratio λ/α as a
subtangent
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to calculate the heat transfer coefficient, knowledge of the temperature field in the
fluid is required. This is, in turn, influenced by the velocity field within the fluid.
So, in addition to the energy balances from thermodynamics, the equations of
fluid motion from fluid mechanics furnish the fundamental relationships in the
theory of convective heat transfer.

A simple graphical illustration of α follows from (1.25). As shown in Fig. 1.7
the ratio λ/α is the distance from the wall at which the tangent to the temperature
profile crosses the ϑ = ϑF line. The length of λ/α is of the magnitude of the
(thermal) boundary layer thickness which will be calculated in sections 3.5 and
3.7.1 and which is normally a bit larger than λ/α. A thin boundary layer indicates
good heat transfer whilst a thick layer leads to small values of α.

The temperature of the fluid ϑF far away from the wall, appears in (1.23), the
definition of the local heat transfer coefficient. If a fluid flows around a body, so
called external flow, the temperature ϑF is taken to be that of the fluid so far away
from the surface of the body that it is hardly influenced by heat transfer. ϑF is
called the free flow temperature, and is often written as ϑ∞. However, when a fluid
flows in a channel, (internal flow), e.g. in a heated tube, the fluid temperature at
each point in a cross-section of the channel will be influenced by the heat transfer
from the wall. The temperature profile for this case is shown in Figure 1.8. ϑF is
defined here as a cross sectional average temperature in such a way that ϑF is also
a characteristic temperature for energy transport in the fluid along the channel
axis. This definition of ϑF links the heat flow from the wall characterised by α
and the energy transported by the flowing fluid.

Fig. 1.8: Temperature profile in a chan-
nel cross section. Wall temperature ϑW

and average fluid temperature ϑF

To define ϑF we will take a small section of the channel, Fig. 1.9. The heat flow from the
wall area dA to the fluid is

dQ̇ = α (ϑW − ϑF) dA . (1.26)

From the first law of thermodynamics, neglecting the change in kinetic energy, we have

dQ̇ =
(
Ḣ + dḢ

)
− Ḣ = dḢ . (1.27)

The flow of heat causes a change in the enthalpy flow Ḣ of the fluid. The cross sectional average
fluid temperature ϑF is now defined such that the enthalpy flow can be written as

Ḣ =

∫
(Aq)

�w h(ϑ) dAq = Ṁh(ϑF) (1.28)
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Fig. 1.9: Energy balance for a channel section (left); fluid velocity w and temperature
ϑ profiles in channel cross section (right)

as the product of the mass flow rate

Ṁ =

∫
(Aq)

�w dAq

and the specific enthalpy h(ϑF) at the average temperature ϑF.
ϑF is also called the adiabatic mixing temperature. This is the average temperature of the

fluid when all elements in a cross section are mixed adiabatically in a container leaving it with
the constant temperature ϑF. According to the first law, the enthalpy flow Ḣ with which the
unmixed fluid enters the adiabatic container must be equal to the enthalpy flow Ṁh(ϑF) of the
fluid as it leaves the container. This is implied by (1.28) where ϑF has been implicitly defined.

To calculate the adiabatic mixing temperature ϑF the pressure dependence of the specific
enthalpy is neglected. Then setting

h(ϑ) = h0 + [cp]
ϑ
ϑ0

(ϑ − ϑ0)

and
h(ϑF) = h0 + [cp]

ϑF

ϑ0
(ϑF − ϑ0)

with [cp]
ϑ
ϑ0

as the average specific heat capacity of the fluid between ϑ and the reference tem-
perature ϑ0 at which h(ϑ0) = h0, we get from (1.28)

ϑF = ϑ0 +
1

Ṁ [cp]
ϑF

ϑ0

∫
(Aq)

�w [cp]
ϑ
ϑ0

(ϑ − ϑ0) dAq . (1.29)

For practical calculations a constant specific heat capacity cp is assumed, giving

ϑF =
1

Ṁ

∫
(Aq)

�w ϑdAq (1.30)

as well as
dḢ = Ṁcp dϑF . (1.31)

The adiabatic mixing temperature from (1.30) is the link between the local heat transfer coef-
ficient α from (1.23) and the enthalpy flow for every cross section, because from (1.26), (1.27)
and (1.31) follows

dQ̇ = α (ϑW − ϑF) dA = Ṁcp dϑF . (1.32)

The adiabatic mixing temperature ϑF is different from the integrated average of the cross sec-
tional temperature

ϑm =
1

Aq

∫
(Aq)

ϑdAq .
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Fig. 1.10: Average fluid temperature ϑF, wall
temperature ϑW and local heat transfer coeffi-
cient as functions of the axial distance z, when
heating a fluid in a tube of length L

Both temperatures are only equal if the velocity at each point in the cross section is the same,
i.e. in plug flow with w = const.

So far we have considered the local heat transfer coefficient, which can be
different at every point of the wall. In practice generally only an average heat
transfer coefficient αm is required in order to evaluate the flow of heat Q̇ from an
area A into the fluid:

Q̇ = αmA∆ϑ

or

αm :=
Q̇

A∆ϑ
. (1.33)

In this definition for αm the temperature difference ∆ϑ can still be chosen at will;
a reasonable choice will be discussed later on.

If the local heat transfer coefficient α is known, αm can be found by integration.
This gives for the flow of heat transferred

Q̇ =
∫

(A)

q̇(A) dA =
∫

(A)

α (ϑW − ϑF) dA . (1.34)

The three quantities — α, ϑW and ϑF — all change over the area. Fig. 1.10 shows
this behaviour for a fluid being heated in a tube. It is assumed that all three
quantities change with the axial coordinate z, but not radially. From equations
(1.33) and (1.34), the average heat transfer coefficient is then

αm =
1

A∆ϑ

∫
(A)

α (ϑW − ϑF) dA .

In external flow the free flow temperature ϑF = ϑ∞ is normally constant.
Therefore ∆ϑ will be defined using ϑ∞ and the characteristic wall temperature
ϑ�

W: ∆ϑ = ϑ�
W − ϑ∞. If the wall temperature of the body around which the fluid

is flowing is constant, then ∆ϑ = ϑW−ϑ∞ gives the following for the average heat
transfer coefficient:

αm =
1

A

∫
(A)

α dA .
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In channel flow, Q̇ can either be calculated by integration over the heat transfer
area A, or more simply, by using (1.32):

Q̇ = Ṁcp (ϑFa − ϑFe) .

From this and (1.33)

αm =
Ṁcp

A∆ϑ
(ϑFa − ϑFe) ,

where ϑFa and ϑFe are the mean fluid temperatures at the channel entrance and
exit. Certain means of the temperature difference ϑW − ϑF at entrance and exit
are used for ∆ϑ; the main one is the logarithmic mean

∆ϑlog =
(ϑW − ϑF)e − (ϑW − ϑF)a

ln
(ϑW − ϑF)e

(ϑW − ϑF)a

=
ϑFa − ϑFe

ln
(ϑW − ϑF)e
(ϑW − ϑF)a

(1.35)

With ∆ϑ = ∆ϑlog we get

αm =
Ṁ

A
cp ln

(ϑW − ϑF)e

(ϑW − ϑF)a
. (1.36)

To determine αm experimentally only Ṁ , the wall temperature and average fluid temper-
ature at entry and exit need to be measured. The use of the logarithmic mean value is also
suggested by the following: when both the wall temperature ϑW and the local heat transfer
coefficient α are constant, then αm = α is only true when ∆ϑlog is used in the definition for αm.
Then from (1.32) it follows that

dϑF

ϑW − ϑF
=

αdA

Ṁcp

.

Integration at constant α and wall temperature ϑW gives

ln
(ϑW − ϑF)e
(ϑW − ϑF)a

=
αA

Ṁcp

.

Putting this into (1.36), it follows that αm = α.

1.1.4 Determining heat transfer coefficients. Dimension-
less numbers

Knowledge of the temperature field in the fluid is a prerequisite for the calculation
of the heat transfer coefficient using (1.25). This, in turn, can only be determined
when the velocity field is known. Only in relatively simple cases, exact values
for the heat transfer coefficient can be found by solving the fundamental partial
differential equations for the temperature and velocity. Examples of this include
heat transfer in fully developed, laminar flow in tubes and parallel flow over a flat
plate with a laminar boundary layer. Simplified models are required for turbulent
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flow, and the more complex problems such as nucleate boiling cannot be handled
theoretically at all.

An important method for finding heat transfer coefficients was and still is
the experiment. By measuring the heat flow or flux, as well as the wall and
fluid temperatures the local or mean heat transfer coefficient can be found using
(1.25) and (1.33). To completely solve the heat transfer problem all the quantities
which influence the heat transfer must be varied when these measurements are
taken. These quantities include the geometric dimensions (e.g. tube length and
diameter), the characteristic flow velocity and the properties of the fluid, namely
density, viscosity, thermal conductivity and specific heat capacity.

The number of these variables is generally between five and ten. To quantify
the effect of one particular property, experiments must be done with at least n
(e.g. n = 5) different values whilst keeping all other variables constant. With m
different variables to consider in all, the number of individual experiments required
will be nm. With six variables and n = 5 then 56 = 15625 experimental runs will
have to be done. Obviously this demands a great deal of time and expense.

The use of similarity or model theory, cf. [1.19],[1.20], can reduce the number
of experiments significantly. Similarity theory utilises the principle that the tem-
perature and velocity fields (like other physical correlations) can be described by
dimensionless quantities, namely dimensionless variables and dimensionless groups
of physical quantities. This fact is a consequence of the general principle that the
solution of a physical problem has to be independent of any system of units and
can therefore be represented by dimensionless variables. This is done by dividing
the position coordinate by a characteristic length, the velocity component by a
constant reference velocity and the temperature by a characteristic temperature
difference. Temperature and velocity fields corresponding in their dimensionless
coordinates are known as similar fields. They can be transformed into each other
by a change in scale, namely a change in the reference quantities.

Velocity and temperature fields are therefore only similar when also the dimen-
sionless groups or numbers concur. These numbers contain geometric quantities,
the decisive temperature differences and velocities and also the properties of the
heat transfer fluid. The number of dimensionless quantities is notably smaller
than the total number of all the relevant physical quantities. The number of
experiments is significantly reduced because only the functional relationship be-
tween the dimensionless numbers needs to be investigated. Primarily, the values of
the dimensionless numbers are varied rather than the individual quantities which
make up the dimensionless numbers.

The theoretical solution of a heat transfer problem is structured more clearly
when dimensionless variables are used. It is therefore recommended that dimen-
sionless variables should be introduced at the beginning of the problem solving
process. The evaluation and representation of the solution will also be simplified
by keeping the number of independent variables as small as possible through the
use of dimensionless variables and groups.



1.1 The different types of heat transfer 17

The partial differential equations for the velocity and temperature are the
starting point for finding the characteristic quantities of heat transfer. The vari-
ables which appear, space coordinates, velocity components and temperature, are
made dimensionless by dividing respectively by a characteristic length, velocity
and temperature. The original partial differential equations are then transformed
into partial differential equations with dimensionless variables and groups which
consist of dimensionless power products of the characteristic quantities (length,
velocity and temperature), and the fluid properties such as density, viscosity and
thermal conductivity.

This procedure can be explained by using (1.25), which links the local heat
transfer coefficient α to the temperature field, as an example. With L0 as the
characteristic length e.g. the tube diameter, the dimensionless distance from the
wall is

y+ := y/L0 .

The temperature ϑ is made dimensionless by dividing by a characteristic temper-
ature difference ∆ϑ0. As only temperature differences or derivatives are present,
by subtracting a reference temperature ϑ0 from ϑ one gets

ϑ+ :=
ϑ − ϑ0

∆ϑ0

. (1.37)

The choice of ϑ0 is adapted to the problem and fixes the zero point of the dimen-
sionless temperature ϑ+. Then (1.25) gives

α = − λ

L0

(∂ϑ+/∂y+)W

ϑ+
W − ϑ+

F

or
αL0

λ
= −(∂ϑ+/∂y+)W

ϑ+
W − ϑ+

F

. (1.38)

The right hand side of (1.38) is a dimensionless expression, this also holds for
the left hand side. The power product of the heat transfer coefficient α, the
characteristic length of the particular problem L0 and the thermal conductivity λ
of the fluid is known as the Nusselt number

Nu := αL0/λ . (1.39)

This number and those that follow were named after eminent researchers — in this
case W. Nusselt3 — and are abbreviated to the first two letters of their surnames
when given as symbols in formulae.

3Wilhelm Nusselt (1882–1957) was nominated Professor of Theoretical Mechanical Engineer-
ing at the Technische Hochschule, Karlsruhe in 1920. Between 1925 and 1952 he taught at the
Technische Hochschule, Munich. In 1915 he published his fundamental work “The Fundamental
Laws of Heat Transfer”, in which he introduced dimensionless groups for the first time. Further
important investigations included heat transfer in film condensation, cross current heat transfer
and the analogy between heat and mass transfer in evaporation.
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The calculation of α leads back to the determination of the Nusselt number.
According to (1.38) Nu is dependent on the dimensionless temperature field, and
therefore it must be clarified which dimensionless numbers determine the dimen-
sionless temperature ϑ+. To this end, instead of using the fundamental differential
equations — this will be done in chapter 3 — we establish a list of the physical
quantities and then use this to derive the dimensionless numbers.

The dimensionless temperature ϑ+ from (1.37) depends on the dimensionless
space coordinates

x+ := x/L0, y+ := y/L0, z+ := z/L0

and a series of other dimensionless numbers Ki :

ϑ+ = ϑ+
(
x+, y+, z+,K1,K2, . . .

)
. (1.40)

Some of these dimensionless numbers are purely geometric parameters. In heat
transfer between a flowing fluid and the inner wall of a tube with diameter d and
length L one of these numbers is the ratio L/d (or its inverse d/L). Only tubes with
the same value of L/d can be said to be geometrically similar. These geometry
based dimensionless numbers will not be explicitly considered here, but those
which independently of the geometry, determine the velocity and temperature
fields, will be derived.

The velocity field is determined by the characteristic length L0, and velocity
w0 e.g. the entry velocity in a tube or the undisturbed velocity of a fluid flowing
around a body, along with the density � and viscosity η of the fluid. While density
already plays a role in frictionless flow, the viscosity is the fluid property which
is characteristic in friction flow and in the development of the boundary layer.
The two material properties, thermal conductivity λ and specific heat capacity
cp, of the fluid are important for the determination of the temperature field in
conjunction with the characteristic temperature difference ∆ϑ0. The specific heat
capacity links the enthalpy of the fluid to its temperature.

With this we have seven quantities, namely

L0, w0, �, η, ∆ϑ0, λ and cp ,

on which the temperature field and therefore, according to (1.38), the heat trans-
fer coefficient and its dimensionless counterpart the Nusselt number depend. The
dimensionless groups Ki will be made up of power products of these seven quan-
tities. With suitable chosen exponents from a to g it follows that

Ki = La
0 · wb

0 · �c · ηd · ∆ϑe
0 · λf · cg

p , i = 1, 2, . . . (1.41)

The dimension of any of these seven quantities can be written as a power product
of the four fundamental dimensions length L, time Z, mass M and temperature T,
which are sufficient for describing thermodynamics and heat transfer by physical
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quantities. For example, density is defined as the quotient of mass and volume,
with dimensions mass divided by length cubed:

dim � = M/L3 .

Expressing the other six quantities in the same manner gives the following for the
dimension of Ki from (1.41)

dim Ki = L
a
(
L

b · Z−b
)(

M
c
L
−3c

)(
M

d
L
−d

Z
−d
)
T

e
(
M

f
L

f
Z
−3f

T
−f
)(

L
2g

Z
−2g

T
−g
)
.

For Ki to be a dimensionless number

dim Ki = 1

must hold. In order to fulfill this condition the exponents of the fundamental di-
mensions L, Z, M and T must be zero. This produces four homogeneous equations
for the seven exponents as shown below

dim L = 1 : a + b − 3c − d + f + 2g = 0
dim Z = 1 : − b − d − 3f − 2g = 0
dimM = 1 : c + d + f = 0
dimT = 1 : e − f − g = 0 .

(1.42)

Four homogeneous equations for the exponents of the seven quantities give 7−
4 = 3 independent dimensionless numbers, which are found by choosing arbitrary
values for three exponents. This can be done in an infinite number of ways leading
to an infinite amount of dimensionless numbers, but only three are independent
of each other, the rest are all products of these three and will not give any new
description of the temperature field. The three most used characteristic numbers
are found by taking the values for the exponents a, e and f from Table 1.2 and
then calculating the values for b, c, d and g from (1.42). From (1.41) one gets the
values for K1, K2, and K3 given in Table 1.2.

Table 1.2: Values for the exponents a, e and f in (1.41) and (1.42) and the resulting charac-
teristic numbers Ki.

i a e f Ki

1 1 0 0 w0�L0η
−1

2 0 0 −1 ηcpλ
−1

3 0 −1 0 w2
0c

−1
p ∆ϑ−1

0

The number K1 is well known in fluid dynamics and is called the Reynolds4

number

Re :=
w0�L0

η
=

w0L0

ν
. (1.43)

4Osborne Reynolds (1842–1912) was Professor of Engineering in Manchester, England, from
1868 until 1905. He was well known for his fundamental work in fluid mechanics especially
his investigation of the transition between laminar and turbulent flow. He also developed the
mathematical basis for the description of turbulent flow.
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In place of η the kinematic viscosity

ν := η/�

with SI units m2/s, is introduced. The Reynolds number characterises the influ-
ence of the frictional and inertial forces on the flow field. The second number K2

contains only properties of the fluid. It is called the Prandtl number

Pr :=
η cp

λ
=

ν

a
, (1.44)

where
a := λ/cp�

is the thermal diffusivity of the fluid. The Prandtl number links the temperature
field to the velocity field.

The third characteristic number K3 is known as the Eckert5 number:

Ec :=
w2

0

cp∆ϑ0

. (1.45)

It only affects the temperature field and only has to be taken into account when
friction gives rise to a noticeable warming of the fluid. This only occurs at high
velocities, of the order of the speed of sound, and with large velocity gradients,
such as those that appear in flow through narrow slots.

The dimensionless temperature field depends on the dimensionless coordinates
and these three numbers Re, Pr and Ec, as well as the numbers which are neces-
sary for describing the geometry of the heat transfer problem. The dimensionless
numbers for the geometry are represented by the abbreviation Kgeom giving

ϑ+ = ϑ+
(
x+, y+, z+, Re, Pr,Ec,Kgeom

)
.

The local Nusselt number is yielded from ϑ+ with (1.38). It is not dependent
on y+, when y+ is interpreted as the dimensionless distance from the wall, so that
the temperature gradient at the wall is calculated at y+ = 0. Therefore

Nu = f
(
x+, z+, Re, Pr,Ec,Kgeom

)
. (1.46)

The mean heat transfer coefficient αm from (1.33) is also independent of x+ and
z+. The mean Nusselt number Num, which contains αm, is only a function of
characteristic numbers:

Num =
αmL0

λ
= F

(
Re, Pr,Ec,Kgeom

)
. (1.47)

5Ernst Rudolph Georg Eckert (1904-2004) investigated the radiation properties of solid bod-
ies and the gases CO2 and H2O between 1935 and 1938. In 1938 he became a lecturer at
the Technische Hochschule in Braunschweig, Germany, and he also worked at the Aeronautics
Research Institute there on heat transfer at high velocities. He left for the USA in 1945 and be-
came a Professor at the University of Minnesota in 1951. He and his students explored numerous
problems of heat transfer.
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As already mentioned the influence of the Eckert number only has to be considered
in exceptional cases. Therefore Ec can normally be left out of (1.46) and (1.47).
This will be done throughout what follows.

The type of relationship between the Nusselt number and the other charac-
teristic numbers, or the form of the functions in (1.46) and (1.47), has to be
determined either through theory, the development of a suitable model or on the
basis of experiments. It must also be noted that it varies from problem to problem.
In the case of flow in a tube, with L0 = d, the tube diameter we get

αmd

λ
= Ftube

(
w0d

ν
,
ν

a
,
L

d

)
or

Num = Ftube (Re, Pr, L/d) .

For heat transfer between a sphere and the fluid flowing around it it follows that

αmd

λ
= Fsphere

(
w0d

ν
,
ν

a

)
or

Num = Fsphere (Re, Pr) .

A geometric dimensionless number does not appear here, as a sphere is already
geometrically characterised by its diameter d. The functions Ftube and Fsphere have
different forms because flow fields and heat transfer conditions in flow through a
tube differ from those in a fluid flowing around a sphere.

The geometric and flow conditions are not the only parameters which have a
considerable influence on the relationship between the Nusselt number and the
other dimensionless numbers. The thermal boundary conditions also affect heat
transfer. An example of this is, with the same values of Re and Pr in parallel
flow over a plate, we have different Nusselt numbers for a plate kept at constant
wall temperature ϑW, and for a plate with a constant heat flux q̇W at the wall,
where the surface temperature adjusts itself accordingly.

As already mentioned, Nu, Re, Pr and Ec can be replaced by other dimensionless numbers
which are power products of these four numbers. The Péclet6 number can be used in place of
the Reynolds number,

Pe :=
w0L0

a
=

w0�cpL0

λ
= RePr , (1.48)

and can be written as the product of the Reynolds and Prandtl numbers. In american literature
the Nusselt number is often replaced by the Stanton7 number

St :=
α

w0�cp
=

Nu

RePr
. (1.49)

6Jean Claude Eugene Péclet (1793–1857) became Professor of Physics in Marseille in 1816.
He moved to Paris in 1827 to take up a professorship. His famous book “Traité de la chaleur et
de ses applications aux arts et aux manufactures” (1829) dealt with heat transfer problems and
was translated into many different languages.

7Thomas Edward Stanton (1865–1931) was a student of Reynolds in Manchester. In 1899 he
became a Professor for Engineering at the University of Bristol. Stanton researched momentum
and heat transport in friction flow. He also worked in aerodynamics and aeroplane construction.
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The Stanton number is useful for describing heat transfer in channels, and can be interpreted
in a plausible way. This is demonstrated by using a Stanton number which contains the mean
heat transfer coefficient

Stm := αm/w0�cp ,

in which
w0 = Ṁ/Aq�

is the mean flow velocity in a channel with constant cross sectional area Aq. The heat transferred
between the channel wall (area A) and the fluid is

Q̇ = αmA∆ϑ = Ṁcp (ϑFa − ϑFe) ,

from which the Stanton number

Stm =
Aq

A

ϑFa − ϑFe

∆ϑ
is obtained. This gives (multiplied by the ratio of areas Aq/A) the change in temperature
between entry and exit divided by the “driving” temperature difference ∆ϑ used in the definition
of αm. If the logarithmic temperature difference from (1.35) is used it follows that

Stm =
Aq

A
ln

(ϑW − ϑF)e
(ϑW − ϑF)a

.

The ratio of areas for a tube with circular cross section (diameter d) is Aq/A = d/4L. It is
clear from this relationship that Stm is directly linked to the data required in the design of heat
exchangers.

Up until now the material properties �, η, λ and cp have been taken to be
constant. This is an approximation which can only be made with small changes
in the fluid temperature. Although the pressure dependence of these quantities
can be neglected, they vary noticeably with temperature. In order to account
for this temperature dependence, further characteristic numbers must be intro-
duced. These appear often in the form of ratios of the material properties, e.g.
η(ϑF)/η(ϑW). This can be avoided by the use of a suitable mean temperature for
calculating the values of the material properties.

The temperature dependence of the fluid density is especially important in
heat transfer caused by natural or free convection. In contrast to the previous
case of forced convection, where the fluid is forced at speed by a blower or pump,
free convective flow exists due to density changes in the earth’s gravitational field,
which originate from the variation in temperature. This is how, for example, a
quiescent fluid next to a hot wall is heated. The density of the fluid adjacent to
the wall is lowered, causing an upward flow in the gravitational field to develop.

In free convection, the characteristic (forced) velocity w0 does not apply. The
new physical quantity is the acceleration due to gravity g. The Reynolds number
Re, which contains the reference velocity w0, is replaced by a new group, the
dimensionless acceleration due to gravity

Ga :=
gL3

0

ν2
0

=
g�2

0L
3
0

η2
, (1.50)

known as the Galilei number. As the density changes with temperature ν = η/�
must be calculated with a constant density �0 = � (ϑ0) using a fixed reference
temperature ϑ0. All other fluid properties are assumed to be constant.
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At least one new characteristic number K� is required to describe the density
changes with temperature. This gives the following for the average Nusselt number

Num = f
(
Ga,K�, Pr,Kgeom

)
. (1.51)

The density based characteristic number K� and other such numbers K�1,K�2, . . .
characterise the dimensionless temperature dependence of the density:

�(ϑ+)/�0 = f�

(
ϑ+,K�1,K�2, . . .

)
.

Here, ϑ+ is the dimensionless temperature introduced by (1.37). With relatively
small temperature differences a Taylor series

�(ϑ) = �0

[
1 +

1

�0

(
∂�

∂ϑ

)
ϑ0

(ϑ − ϑ0) + . . .

]
(1.52)

requiring only the linear term with the expansion coefficient

β0 = β(ϑ0) := − 1

�0

(
∂�

∂ϑ

)
ϑ0

(1.53)

can be used. Then with ϑ+ from (1.37), it follows that

�
(
ϑ+

)
/�0 = 1 − β0∆ϑ0 ϑ+ . (1.54)

Provided that the temperature differences are not too large the temperature de-
pendence of the density can be determined by the product of the expansion co-
efficient β0 and a characteristic temperature difference ∆ϑ0. One density based
characteristic group is sufficient for this case, namely

K� = β0∆ϑ0 .

If the temperature difference is large further terms in (1.52) have to be considered.
Instead of the one characteristic number K�, two or more are needed.

The density variation due to the temperature generates a buoyancy force in the
gravitational field. However, this has little influence on the other forces, including
inertia and friction, which affect the fluid particles. As a good approximation it is
sufficient to consider the temperature dependence of the density in buoyancy alone.
This assumption is known as the Boussinesq-Approximation8 . A characteristic
(volume related) lift force is

g [� (ϑW) − � (ϑF)] = g (�W − �F) .

8Joseph Valentin Boussinesq (1842–1929) gained his PhD in 1867 with a thesis on heat
propagation, even though he was never a student and had taught himself science. In 1873
he became a Professor in Lille, later moving to Paris. He published over 100 scientific works,
including two volumes entitled “Théorie analytique de la chaleur”, which appeared in Paris in
1901 and 1903.
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Dividing this expression by �F and putting it into the Galilei number in place of
g produces a new number

Gr :=
gL3

0

ν2
F

�W − �F

�F

, (1.55)

called the Grashof 9 number. This combines the Galilei number and the charac-
teristic quantity (�W − �F) /�F for the temperature dependence of the density, in
one number. When the Boussinesq-Approximation is valid the Nusselt number
can be written as

Num = f
(
Gr, Pr,Kgeom

)
. (1.56)

The change of density with temperature can be found using (1.54), as long as
the temperature difference between wall and fluid further away from the wall is
not too great. With ϑ0 = ϑF and ∆ϑ0 = (ϑW − ϑF) one obtains

�W − �F

�F

= βF (ϑW − ϑF) .

The Grashof number then becomes

Gr = Ga βF (ϑW − ϑF) =
g βF (ϑW − ϑF)L3

0

ν2
. (1.57)

The expansion coefficient β has to be calculated at the fluid temperature ϑF. In
order to account for the temperature dependence of ν, it must be determined at
an average temperature between ϑW and ϑF.

According to (1.56) and (1.57) the Nusselt number depends on the temperature
difference (ϑW − ϑF). Although the heat transfer coefficient α is found by dividing
the heat flux q̇W by this temperature difference, cf. (1.24), in free convection α
is not independent of (ϑW − ϑF). In other words the transferred heat flux, q̇W,
does not increase proportionally to ϑW − ϑF. This is because ϑW − ϑF is not
only the “driving force” for the heat flow but also for the buoyancy, and therefore
the velocity field in free convection. In contrast, the heat transfer coefficient for
forced convection is not expected to show any dependence on the temperature
difference.

9Franz Grashof (1826–1893) taught from 1863 until 1891 as Professor of Theoretical Me-
chanical Engineering at the Technische Hochschule in Karlsruhe, Germany. His work written
with mathematical rigor, especially dealt with mechanics and technical thermodynamics. His
major publication “Theoretische Maschinenlehre”, consisted of three volumes and appeared be-
tween 1875 and 1890. It is a comprehensive, expert portrayal of mechanical engineering. In 1856
Grashof founded the “Verein Deutscher Ingenieure” (VDI), the association of German Engineers
along with 22 other young engineers. He was its first director and for many years also the editor
of the association’s technical magazine in which he published 42 papers in total.
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1.1.5 Thermal radiation

All forms of matter emit energy to their surroundings through electromagnetic
waves. This already happens because the matter has a positive thermodynamic
temperature. This type of energy release is known as thermal radiation or heat
radiation. The emission of radiation is due to the conversion of the body’s in-
ternal energy into energy which is transported by electromagnetic waves. When
electromagnetic waves hit any matter, part of the energy is absorbed, the rest is
then either reflected or transmitted. The radiation energy which is absorbed by
the body is converted into internal energy. Thermal radiation causes a special
type of heat transfer which is known as radiative exchange. The transport of
radiation does not require any matter as electromagnetic waves can also travel
through a vacuum. This allows heat to be transferred between two bodies over
great distances. In this way the earth receives a large energy flow from the sun.

Gases and liquids are partly transparent to thermal radiation. Therefore emis-
sion and absorption of radiation takes place inside the gas or liquid space. In gases
and liquids emission and absorption are volumetric effects. In contrast, on the
surface of a solid object, radiation is completely absorbed within a very thin layer
(a few micrometres). Radiation from the interior of a solid body does not pene-
trate the surface, emission is limited to a thin surface layer. It can therefore be
said that emission and absorption of radiation by a solid body are surface effects.
This means that it is allowed to speak of radiating and absorbing surfaces rather
than correctly of radiating solid bodies.

There is an upper limit for the emission of heat radiation, which only depends
on the thermodynamic temperature T of the radiating body. The maximum heat
flux from the surface of a radiating body is given by

q̇s = σT 4 . (1.58)

This law was found 1879 by J. Stefan10 as a result of many experiments and was
derived in 1884 by L. Boltzmann11 from the electromagnetic theory of radiation
using the second law of thermodynamics. It contains an universal constant, known
as the Stefan-Boltzmann constant σ, which has a value of

σ = (5.67040 ± 0.00004)10−8 W/m2 K4 .

10Josef Stefan (1835–1893) became Professor of Physics at the University of Vienna in 1863. He
was an excellent researcher and published numerous papers on heat conduction and diffusion in
fluids, ice formation, and the connection between surface tension and evaporation. He suggested
the T 4-law after careful evaluation of lots of earlier experiments on the emission of heat from
hot bodies.

11Ludwig Boltzmann (1844–1906) gained his PhD in 1867 as a scholar of J. Stefan in Vienna.
He was a physics professor in Graz, Munich, Leipzig and Vienna. His main area of work was
the kinetic theory of gases and its relationship with the second law of thermodynamics. In 1877
he found the fundamental relation between the entropy of a system and the logarithm of the
number of possible molecular distributions which make up the macroscopic state of the system.
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An emitter, whose emissive power, or heat flux emitted by radiation, reaches
the maximum value q̇s in (1.58), is called a black body. This is an ideal emitter
whose emissive power cannot be surpassed by any other body at the same tem-
perature. On the other hand, a black body absorbs all incident radiation, and is,
therefore, an ideal absorber. The emissive power of real radiators can be described
by using a correction factor in (1.58). By putting

q̇ = ε(T )σT 4 , (1.59)

the emissivity ε(T ) ≤ 1 of the radiator is defined. This material property, emis-
sivity, does not only depend on the material concerned but also on the condition
of the surface, for example its roughness. Some values for ε are compiled in Table
1.3.

Table 1.3: Emissivity ε(T ) of some materials

Material T in K ε Material T in K ε

Concrete, rough 293 0.94 Nickel, polished 373 0.053
Wood, oak 293 0.90 Iron, shiny corroded 423 0.158
Brick, red 293 0.93 Copper, oxidised 403 0.725
Aluminium, rolled 443 0.049

When radiation hits a body, some of it will be reflected, some absorbed and
some transmitted. These portions are represented by the reflectivity r, the ab-
sorptivity a, and the transmissivity τ . These three dimensionless quantities are
not purely properties of the irradiated material, they also depend on the kind of
radiation which strikes the body. Of main influence is the distribution of radia-
tion over the wave length spectrum of the electromagnetic waves incident on the
material. However it can always be said that

r + a + τ = 1 . (1.60)

Most solid bodies are opaque, they do not allow any radiation to be transmitted,
so with τ = 0 the absorptivity from (1.60) is a = 1 − r.

The absorption of thermal radiation will be treated in more depth in chapter 5.
The connection between emission and absorption will also be looked at; this is
known as Kirchhoff’s law, see section 5.1.6. It basically says that a good emitter
of radiation is also a good absorber. For the ideal radiator, the black body, both
absorptivity a and emissivity ε are equal to the maximum value of one. The black
body, which absorbs all incident radiation (a = 1), also emits more than any other
radiator, agreeing with (1.58), the law from Stefan and Boltzmann.
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1.1.6 Radiative exchange

In heat transfer, the heat transmitted by radiation between two bodies at different
temperatures is very important. It is not only the hotter body that radiates heat to
warm the body at the lower temperature, the colder one also emits electromagnetic
waves which transfer energy to the body at the higher temperature. It is therefore
applicable here to talk of an exchange of radiation. Finally the net heat flow
from the body at the higher temperature to that at the lower temperature is of
interest. The evaluation of the heat flow is difficult for a number of reasons. In
general, other bodies will also play a part in radiative exchange. A body may
not absorb all the radiation that hits it, part of it may be reflected and could hit
the original emitter. This complicated interplay between two radiators becomes
even more complex when the medium between the two bodies absorbs part of the
radiation passing through it and emits energy itself. This is the case in so called
gas radiation and must be considered, for example, in heat transfer in a furnace.

Fig. 1.11: Radiative exchange be-
tween a body at temperature T and
black surroundings at temperature
TS

As an introduction, a simple case of radiative exchange will be looked at. A
radiator with area A, and at temperature T , is located in surroundings which are
at temperature TS, see Fig. 1.11. The medium between the two shall have no
effect on the radiation transfer; it shall be completely transparent for radiation,
which is a very good approximation for atmospheric air. The surroundings shall
behave like a black body, absorbing all radiation, aS = 1.

The heat flow emitted by the radiator

Q̇em = A ε σ T 4

reaches the black surroundings and is completely absorbed. The black radiation
emitted by the surroundings will be partly absorbed by the radiator at tempera-
ture T , the rest will be reflected back to, and absorbed by the surroundings. The
heat absorbed by the radiator is

Q̇ab = A aσ T 4
S ,

where a is the absorptivity of the radiator at temperature T , for the black body
radiation of temperature TS. The absorptivity a is not a property of the material
alone, as it is not only dependent on the properties of the absorbing surface, but
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also on the source and type of incident radiation. In the example, this is the black
body radiation coming from the surroundings which is completely characterised
by the temperature TS.

The net flow of heat Q̇, from the radiator to the surroundings enclosing it is

Q̇ = Q̇em − Q̇ab = Aσ
(
εT 4 − aT 4

S

)
. (1.61)

In many cases a simple assumption is made about the radiator: it is treated as a
grey radiator. This is only an approximation but it simplifies matters greatly. The
absorptivity of a grey radiator does not depend on the type of incident radiation,
and it always agrees with the emissivity, such that a = ε.

For a grey radiator in black surroundings (1.61) simplifies to

Q̇ = Aσε
(
T 4 − T 4

S

)
. (1.62)

The difference between the fourth power of the temperature of the emitter and that
of the body which receives the radiation, is characteristic of radiative exchange.
This temperature dependence is found in numerous radiative heat transfer prob-
lems involving grey radiators.

In many applications heat transfer by convection must be considered in ad-
dition to radiative heat transfer. This is, for example, the case where a radiator
releases heat to a room which is at a lower temperature. Radiative heat exchange
takes place between the radiator and the walls of the room, whilst at the same
time heat is transferred to the air by convection. These two kinds of heat transfer
are parallel to each other and so the heat flow by convection and that by radiation
are added together in order to find the total heat exchanged. The heat flux then
becomes

q̇ = q̇conv + q̇rad

or
q̇ = α (T − TA) + εσ

(
T 4 − T 4

S

)
. (1.63)

Here, α is the heat transfer coefficient for the convective heat transfer to air at
temperature TA. Equation (1.62) was used to evaluate q̇rad.

Normally TA ≈ TS, allowing the convective and radiative parts of heat transfer
to be put together. This gives

q̇ = (α + αrad) (T − TS) . (1.64)

The radiative heat transfer coefficient defined above, becomes from (1.63)

αrad = εσ
T 4 − T 4

S

T − TS

= εσ (T 2 + T 2
S ) (T + TS) . (1.65)

This quantity is dependent on the emissivity ε, and both temperatures T and
TS. The introduction of αrad allows the influence of radiation to be compared to
convection. As ε ≤ 1 is always true, it is immediately obvious that an upper limit
for the radiative part of heat transfer exists.
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Example 1.2: A poorly insulated horizontal pipe (outer diameter d = 0.100m), with a
surface temperature ϑW = 44 ◦C, runs through a large room of quiescent air at ϑA = 18 ◦C.
The heat loss per length L of the pipe, Q̇/L has to be determined. The pipe is taken to
behave as a grey radiator with emissivity ε = 0.87. The walls of the room are treated as
black surroundings which are at temperature ϑS = ϑA = 18 ◦C.
The tube gives off heat to the air by free convection and to the surrounding walls by
radiation. Then from (1.64) with ϑS = ϑA comes

Q̇/L = πd (q̇conv + q̇rad) = πd (αm + αrad) (ϑW − ϑA) , (1.66)

where αm is the mean heat transfer coefficient for free convection. The heat transfer
coefficient for radiation, using the data given and (1.65) is

αrad = εσ
T 4

W − T 4
A

TW − TA
= 0.87 · 5.67 · 10−8 W

m2K4

3174 − 2914

317 − 291
K3 = 5.55

W

m2K
.

For heat transfer by free convection from a horizontal pipe S.W. Churchill and H.H.S. Chu
[1.3] give the dimensionless relationship

Num =
αmd

λ
=

{
0.60 +

0.387(GrPr)1/6[
1 + (0.559/Pr)9/16

]8/27

}2

(1.67)

which has the same form as Eq. (1.56), that of Num = f(Gr,Pr). According to (1.57) the
Grashof number is

Gr =
gβ (ϑW − ϑL) d3

ν2
.

The expansion coefficient β has to be calculated for the air temperature ϑA. As air can
be treated as an ideal gas, therefore β = 1/TA = 0.00344K−1. To take the temperature
dependence of the material properties into account, ν, λ and Pr all have to be calculated
at the mean temperature ϑm = 1

2 (ϑW + ϑA). For air at ϑm = 31 ◦C, ν = 16.40·10−6 m2/s,
λ = 0.0265W/Km and Pr = 0.713. This gives

Gr =
9.81

(
m/s2

)
0.00344K−1 (44 − 18) K · 0.1003 m3

16.402 · 10−12 m4/s2
= 3.26 · 106 .

Using (1.67) the Nusselt number is Num = 18.48, out of which comes the heat transfer
coefficient

αm = Num
λ

d
= 18.48

0.0265W/Km

0.100m
= 4.90

W

m2K
.

Eq.(1.66) gives the heat loss as Q̇/L = 85.4W/m.
The heat transfer coefficients αm and αrad are approximately equal. This infers that free
convection to the air and radiative exchange transport almost the same amount of heat.
This is not true for forced convection, where αm, depending on the flow velocity, is one to
two powers of ten larger than the value calculated here. However, αrad remains unaffected
and when compared to αm can generally be neglected.
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1.2 Overall heat transfer

In many applications of heat transfer two fluids at different temperatures are sep-
arated by a solid wall. Heat is transferred from the fluid at the higher temperature
to the wall, conducted through the wall, and then finally transferred from the cold
side of the wall into the fluid at the lower temperature. This series of convective
and conductive heat transfer processes is known as overall heat transfer.

Overall heat transfer takes place, above all in heat exchangers, which will be
dealt with in section 1.3. Here, for example, a hot fluid flowing in a tube gives
heat up, via the wall, to the colder fluid flowing around the outside of the tube.
House walls are also an example for overall heat transfer. They separate the warm
air inside from the colder air outside. The resistance to heat transfer should be as
large as possible, so that despite the temperature difference between inside and
outside, only a small amount of heat will be lost through the walls. In contrast to
this case, the heat transfer resistances present in a heat exchanger should be kept
as small as possible; here a great amount of heat shall be transferred with a small
temperature difference between the two fluids in order to keep thermodynamic
(exergy) losses as small as possible.

As these examples show, the calculation of the overall heat transfer is of sig-
nificant technical importance. This problem is dealt with in the next sections.

1.2.1 The overall heat transfer coefficient

The following analysis is based on the situation shown in Fig. 1.12: A flat or
curved wall separates a fluid at temperature ϑ1 from another with a temperature
ϑ2 < ϑ1. At steady state heat Q̇, flows from fluid 1 through the wall to fluid 2,
as a result of the temperature difference ϑ1 − ϑ2. The heat flow Q̇ is transferred
from fluid 1 to the wall which has an area A1 and is at temperature ϑW1. With
α1 as the heat transfer coefficient, it follows from section 1.1.3 that

Q̇ = α1A1 (ϑ1 − ϑW1) . (1.68)

For the conduction through the wall, according to section 1.1.2

Q̇ =
λm

δ
Am (ϑW1 − ϑW2) . (1.69)

Here λm is the mean thermal conductivity of the wall according to (1.11), δ its
thickness and Am the average area calculated from (1.15). Finally an analogous
relationship to (1.68) exists for the heat transfer from the wall to fluid 2

Q̇ = α2A2 (ϑW2 − ϑ2) . (1.70)
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Fig. 1.12: Temperature profile for
heat transfer through a tube wall
bounded by two fluids with temper-
atures ϑ1 and ϑ2 < ϑ1

The unknown wall temperatures ϑW1 and ϑW2, can be eliminated from the
three equations for Q̇. This means that Q̇ can be calculated by knowing only the
fluid temperatures ϑ1 and ϑ2. This results in

Q̇ = kA (ϑ1 − ϑ2) (1.71)

where
1

kA
=

1

α1A1

+
δ

λmAm

+
1

α2A2

(1.72)

is valid. The overall heat transfer coefficient k, for the area A is defined in (1.71),
where A is the size of any reference area. Equation (1.72) shows that kA can
be calculated using the quantities already introduced for convective heat transfer
and conduction.

As shown by Eqs. (1.71) and (1.72), only the product kA is used. Giving k alone, without
stating anything about the size of the area A is meaningless. As A can be chosen to be any
area, k takes on the value associated with the choice of A. In practice values for k are often
given and used. This can be seen for example in German building regulations (Norm DIN 4108)
where a minimum value for k is set for house walls. This is to guarantee a sufficient degree of
insulation in each house that is built. This sort of statement of k is tacitly related to a certain
area. For flat walls this is the area of the wall A1 = A2 = Am; for tubes mostly the outer surface
A2, which does not normally differ greatly from A1 or Am. In what follows, only the product
kA will be used so that A will not need to be specified. In exceptional cases a value for k will
be given along with a value for the related area.

In (1.72), (1/kA) represents the resistance to overall heat transfer. It is made
up of the single resistances of each transfer process in the series; the resistance
to convective transfer between fluid 1 and the wall, (1/α1A1), the conduction
resistance in the wall, (δ/λmAm) and the resistance to convective transfer between
the wall and fluid 2, (1/α2A2). This series approach for overall heat transfer
resistance is analogous to that in electrical circuits, where the total resistance to
the current is found by the addition of all the single resistances in series. Therefore,
the three resistances which the heat flow Q̇ must pass through, are added together.
These three are the resistance due to the boundary layer in fluid 1, the conduction
resistance in the wall and the resistance to transfer associated with the boundary
layer in fluid 2.
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The temperature drop due to these thermal resistances behaves in exactly
the same manner as the voltage drop in an electrical resistor, it increases as the
resistance goes up and as the current becomes stronger. From (1.68) to (1.72) it
follows that

Q̇ =
ϑ1 − ϑW1

1

α1A1

=
ϑW1 − ϑW2

δ

λmAm

=
ϑW2 − ϑ2

1

α2A2

=
ϑ1 − ϑ2

1

kA

. (1.73)

From this the temperature drop in the wall and the boundary layers on both sides
can be calculated. To find the wall temperatures the equations

ϑW1 = ϑ1 −
kA

α1A1

(ϑ1 − ϑ2) = ϑ1 −
Q̇

α1A1

(1.74)

and

ϑW2 = ϑ2 +
kA

α2A2

(ϑ1 − ϑ2) = ϑ2 +
Q̇

α2A2

(1.75)

are used.
For the overall heat transfer through a pipe, (1.72) can be applied, when it is

taken into account that a pipe of diameter d and length L has a surface area of
A = πdL. Then from (1.72) it follows with Am from (1.15) that

1

kA
=

1

πL

(
1

α1d1

+
ln d2/d1

2λm

+
1

α2d2

)
(1.76)

where d1 is the inner and d2 the outer diameter of the pipe.

1.2.2 Multi-layer walls

The analogy to electrical circuits is also used to extend the relationships derived
in section 1.2.1 for overall heat transfer, to walls with several layers. Walls with
two or more layers are often used in technical practice. A good example of these
multi-layer walls is the addition of an insulating layer made from a material with
low thermal conductivity λis. Fig. 1.13 shows a temperature profile for a wall that
consists of a number of layers. The resistance to heat transfer for each layer in
series is added together and this gives the overall heat transfer resistance for the
wall as

1

kA
=

1

α1A1

+
∑

i

δi

λmiAmi

+
1

α2A2

. (1.77)

In curved walls the average area of a layer Ami is calculated using the inner and
outer areas of the section using (1.15). Applying (1.77), for the overall resistance
to heat transfer, it is assumed that each layer touches its neighbour so closely that
there is no noticeable temperature difference between the layers. If this was not
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Fig. 1.13: Temperature profile for overall heat
transfer through a flat wall of three layers of dif-
ferent materials

true a thermal contact resistance, similar to the contact resistance that appears
in electric circuits, would have to be considered.

The temperature drop ϑi − ϑi+1 in the i-th layer is proportional to the heat
flow and the resistance to conduction. This is analogous to a voltage drop across
a resistor in an electric circuit. It follows that

ϑi − ϑi+1 =
δi

λmiAmi

Q̇ . (1.78)

Using Q̇ from (1.71) and (1.77), ϑi−ϑi+1 is fairly simple to calculate. The surface
temperatures ϑW1 and ϑW2 are calculated in exactly the same way as before using
(1.74) and (1.75)

In tubes which consist of several layers e.g. the actual tube plus its insulation,
(1.77) is extended to

1

kA
=

1

πL

(
1

α1d1

+
1

2

n∑
i=1

1

λmi

ln
di+1

di

+
1

α2dn+1

)
. (1.79)

The i-th layer is bounded by the diameters di and di+1. The first and last layers,
which are in contact with the fluid, can also be layers of dirt or scale which develop
during lengthy operation and represent an additional conductive resistance to the
transfer of heat.

1.2.3 Overall heat transfer through walls with extended
surfaces

The overall resistance to heat transfer (1/kA) is found by adding all the resistances
to convective heat transfer and conduction, as shown in (1.72). Therefore the
largest single resistance determines the value for (1/kA). This is especially distinct
when the other resistances are very small. It is therefore possible to significantly
improve the insulation of a wall by adding a layer which has high resistance to
conduction δ/λmAm, or in other words a thick layer of a material with low thermal
conductivity.
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If, however, the heat transfer must be as good as possible, a good example
being a heat exchanger, a high convective resistance (1/αA) can be an impedi-
ment. The main cause of a large resistance is a small heat transfer coefficient α.
Unfortunately even with significant increases in flow velocity, α barely increases.
This leaves only one option for reducing (1/αA), which is to increase the area A
available for heat transfer by the addition of fins, rods, or pins on the side where
heat transfer is “bad”. Examples of these extended surfaces are shown in Fig.
1.14. Surface extension will lead to a remarkable increase of the original area, in
some cases by 10-100 times.

Fig. 1.14: Examples of extended surface, a straight fins, b pins, c circular fins

The overall heat transfer resistance is not reduced by the same degree. The
increased heat transfer area brings with it an additional conduction resistance.
The heat which is absorbed by the fluid from an area near the fin tip, has to be
transported to the vicinity of the tip by conduction. This requires a temperature
difference between the fin base and its tip as a driving force. As a consequence of
this the fins (or any other forms of extended surface) have an average temperature
below that of the finless base material. Therefore the fins are not completely
effective, because the heat transfer between fin and fluid takes place with a smaller
temperature difference than that between the base material and the fluid.

To calculate the effectiveness of extended surfaces we consider Fig. 1.15. The

Fig. 1.15: Temperature in a finned wall
along the line AB. ϑf is the average tem-
perature of the fin.
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heat flow Q̇ into Fluid 2 is made up of two parts:

Q̇ = Q̇g + Q̇f .

The heat flow Q̇g removed from the surface Ag of the finless base material (ground
material) is

Q̇g = αgAg (ϑW2 − ϑ2) , (1.80)

where αg is the associated heat transfer coefficient. The temperature in the fin
falls from ϑ0 at the base of the fin (x = 0) to ϑh at its tip (x = h). With ϑf as
the average fin temperature the heat flow Q̇f transferred to the fluid from the fin
surface area Af will be

Q̇f = αfAf (ϑf − ϑ2) ,

where αf is the (average) heat transfer coefficient between fin and fluid.
If the fin was at the same temperature all over as at its base ϑ0, then the heat

flow would be given as
Q̇f0 = αfAf (ϑ0 − ϑ2) .

The effectiveness of the fin is described by the fin efficiency

ηf :=
Q̇f

Q̇f0

=
ϑf − ϑ2

ϑ0 − ϑ2

(1.81)

and it then follows that
Q̇f = αfηfAf (ϑ0 − ϑ2) . (1.82)

The fin efficiency is always less than one. It depends on both the conduction
processes in the fin and the convective heat transfer, which influence each other.
Therefore, the geometry of the fin, the thermal conductivity λf , and the heat
transfer coefficient αf play a role in the calculation of the fin efficiency. This will
be discussed in detail in 2.2.4.

The temperature of the fin base ϑ0 is different from that of the surface where no
fins are present, ϑW2. The heat flux through the fin base into the fin is significantly
higher than the flux from the base material, i.e. the wall, into the fluid. The
temperature drop which appears underneath the fin causes a periodic temperature
profile to develop in the base material. This is shown schematically in Fig. 1.16.
As a simplification this complicated temperature change is neglected, such that

ϑ0 = ϑW2 , (1.83)

Fig. 1.16: Periodic temperature profile along the
line CD. ϑ0 average temperature of the fin base,
ϑW2 average temperature of the surface of the base
material between the fins



36 1 Introduction. Technical Applications

thereby assuming an isothermal temperature distribution under the fins and on
the surface between the fins. This simplification leads to an overestimation of the
heat flow which is transferred. The heat flow calculated can be as much as 25%
bigger than it actually is, as shown first by O. Krischer and W. Kast [1.4], and
later by E.M. Sparrow and D.K. Hennecke [1.5] as well as E.M. Sparrow and
L. Lee [1.6]. In many cases this error will be less than 5%, particularly if the fins
are thick and placed very close together. We assume (1.83) to be valid and from
(1.80) and (1.82), using this simplification, we obtain

Q̇ = Q̇g + Q̇f =
(
αgAg + αfηfAf

)
(ϑ0 − ϑ2) . (1.84)

The fin is not effective over its total surface area Af , only over the smaller surface
area ηfAf , reduced with the fin efficiency. Normally we have Af � Ag, so in the
first bracket of (1.84) the second term is the most important, despite ηf < 1. It is
therefore possible to set αg ≈ αf without incurring large errors. This then gives

Q̇ = αf

(
Ag + ηfAf

)
(ϑ0 − ϑ2) . (1.85)

The overall resistance of a finned wall, taking into account (1.68), (1.69) and
(1.71), is given by

1

kA
=

1

α1A1

+
δ

λmAm

+
1

αf

(
Ag + ηfAf

) . (1.86)

Here δ is the thickness, λm the average thermal conductivity, and Am the average
area of the wall without fins. Overall heat transfer for finned walls can be calcu-
lated using the same relationships as for an unfinned wall. The only change being
that the fin area multiplied by the fin efficiency replaces the surface area of the
fins in the equations.

Example 1.3: A pipe made from an aluminium alloy (λm = 205W/K m) has an inner
diameter of d1 = 22mm and an outer diameter d2 = 25mm. Water at ϑ1 = 60 ◦C flows
inside the pipe, whilst air at ϑ2 = 25 ◦C flows around the outside of the pipe perpendicular
to its axis. Typical heat transfer coefficients are α1 = 6150W/m

2
K and α2 = 95W/m

2
K.

The heat flow per length of the pipe Q̇/L is to be calculated.
From (1.76)

1

kA
=

1

πL

(
1

α1d1
+

1

2λm
ln

d2

d1
+

1

α2d2

)
=

1

πL
(0.0074 + 0.0003 + 0.4211)

K m

W
=

0.1365

L

K m

W

and from (1.71)

Q̇/L = (kA/L) (ϑ1 − ϑ2) = 256W/m .

The overall heat transfer resistance (1/kA) is determined by the convection resistance on
the outside of the pipe as this is the largest value. This resistance can be reduced by
attaching fins.
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Fins in the form of annular discs with outer diameter df = 60mm, thickness δf = 1mm and
a separation of tf = 6mm have been chosen for this case. The number of fins is n = L/tf .
The finless outer surface of the tube is

Ag = π d2 (L − nδf) = π d2L (1 − δf/tf)

and the surface area of the fins is

Af = 2n
π

4

(
d2
f − d2

2

)
=

π

2

L

tf

(
d2
f − d2

2

)
.

The narrow surface of width δf at the top of the fin has been neglected because it is
only slightly hotter than the air and therefore its contribution to the heat transfer is
insignificant. The surface area of the finned tube in comparison to that without fins
A0 = πd2L, is increased by a factor of (Ag + Af)/A0 = 10.75.
The fin surfaces are not completely effective for heat transfer. Taking αf = α2 and a fin
efficiency of ηf = 0.55 gives according to (1.86)

1

kA
=

1

πL

(
1

α1d1
+

1

2λm
ln

d2

d1
+

πL

αf (Ag + ηfAf)

)
=

1

πL
(0.0074 + 0.0003 + 0.0670)

K m

W
=

0.0238

L

K m

W
.

The resistance to heat transfer on the outside of the tube is still the greatest resistance,
but with the attachment of the fins it has been significantly reduced. The heat flow is
Q̇/L = 1472W/m. The surface area enlargement by a factor of 10.75 has increased the
heat flow by a factor of 5.75.

1.2.4 Heating and cooling of thin walled vessels

The relationships for steady heat flow can also be applied to the solution of a
transient heat transfer problem, namely to the calculation of the temperature
change with time during the heating and cooling of a thin walled vessel filled with
a liquid. Two simplifications have to be made:

1. The temperature of the liquid inside the vessel is the same throughout, it
only changes with time: ϑF = ϑF (t).

2. The heat stored in the vessel wall, or more precisely the change in its
internal energy, can be neglected.

The first assumption is true for most cases, as free or forced convection due
to an agitator in the vessel, lead to almost the same temperature throughout the
liquid. The second is only correct when the heat capacity of the contents is much
larger than the heat capacity of the vessel wall. This happens in the heating
and cooling of liquids in thin walled vessels, but may not be applied to vessels
containing gases, which have either thick or well insulated walls.

When both these assumptions are valid, at every point in time the temperature
of the fluid is spatially uniform, and the wall temperature will be predicted by
the equations valid for steady state. In a flat vessel wall the temperature changes
linearly, however the straight line moves according to time.
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Fig. 1.17: Temperature profile
for the cooling of a thin walled
vessel

The process of cooling, as in Fig. 1.17, will now be considered. The heat flow
Q̇(t) transferred from the liquid at temperature ϑF(t), through the vessel wall, to
the surroundings which are at a constant temperature ϑS, is given by

Q̇(t) = kA [ϑF(t) − ϑS] (1.87)

The overall heat transfer coefficient k can be calculated using (1.72). According
to the first law, the heat Q̇ flowing out of the liquid causes a reduction of the
internal energy UF of the fluid in the vessel:

Q̇(t) = −dUF

dt
= −MFcF

dϑF

dt
. (1.88)

Here, MF is the mass and cF is the specific heat capacity of the liquid, which is
assumed to be constant.

The ordinary differential equation for the liquid temperature follows on from
(1.87) and (1.88):

dϑF

dt
+

kA

MFcF

(ϑF − ϑS) = 0 .

The solution with the initial conditions

ϑF = ϑF0 at time t = 0

becomes, in dimensionless form

ϑ+
F :=

ϑF − ϑS

ϑF0 − ϑS

= exp

(
− kA

MFcF

t

)
. (1.89)

The liquid temperature falls exponentially from its initial value ϑF0 to the temper-
ature of the surroundings ϑS. Fig. 1.18 shows temperature plots for different values
of the decay time

t0 := MFcF/kA . (1.90)

This decay time appears in Fig. 1.18 as the subtangent to the curve at any time,
in particular at the time t = 0.
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Fig. 1.18: Liquid temperature ϑ+
F variation over time according to (1.89)

with t0 from (1.90) during the cooling of a vessel

The heating of the vessel contents shall begin at time t = 0, when the whole
container is at the same temperature as the surroundings:

ϑF = ϑS for t = 0 . (1.91)

A heat flow Q̇H = Q̇H(t), that can be an arbitrary function of time, shall be added
to the liquid for all t ≥ 0. The heat flow Q̇(t) lost through the thin vessel walls is
found using (1.87). These two quantities enter the balance equation

dUF

dt
= −Q̇(t) + Q̇H(t) ,

from which the differential equation follows as

dϑF

dt
+

kA

MFcF

(ϑF − ϑS) =
Q̇H(t)

MFcF

.

Its general solution, with the initial condition from (1.91), is

ϑF = ϑS + exp(−t/t0)

t∫
0

Q̇H(t)

MFcF

exp(t/t0) dt (1.92)

with t0 from (1.90).
If the heat load Q̇H is assumed to be constant, it follows from (1.92) that

ϑF = ϑS +
Q̇H

kA

[
1 − exp (−t/t0)

]
.

After a long period of time has elapsed (t → ∞), the temperature of the liquid
reaches the value

ϑF∞ = ϑS +
Q̇H

kA
.

Then the heat flow added just counterbalances the heat loss through the wall Q̇
from (1.87): a steady state is reached.
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1.3 Heat exchangers

When energy, as heat, has to be transferred from one stream of fluid to another
both fluids are directed through an apparatus known as a heat exchanger. The
two streams are separated by a barrier, normally the wall of a tube or pipe,
through which heat is transferred from the fluid at the higher temperature to the
colder one. Calculations involving heat exchangers use the equations derived in
section 1.2 for overall heat transfer. In addition to these relationships, the energy
balances of the first law of thermodynamics link the heat transferred with the
enthalpy changes and therefore the temperature changes in both the fluids.

Heat exchangers exist in many different forms, and can normally be differenti-
ated by the flow regimes of the two fluids. These different types will be discussed
in the first part of this section. This will be followed by a section on the equations
used in heat exchanger design. These equations can be formulated in a favourable
manner using dimensionless groups. The calculation of countercurrent, cocurrent
and cross current exchangers will then be explained. The final section contains
information on combinations of these three basic flow regimes which are used in
practice.

The calculation, design and application of heat exchangers is covered com-
prehensively in other books, in particular the publications from H. Hausen [1.7],
H. Martin [1.8] as well as W. Roetzel [1.9] should be noted. The following sec-
tions serve only as an introduction to this extensive area of study, and particular
emphasis has been placed on the thermal engineering calculation methods.

1.3.1 Types of heat exchanger and flow configurations

One of the simplest designs for a heat exchanger is the double pipe heat exchanger
which is schematically illustrated in Fig. 1.19. It consists of two concentric tubes,
where fluid 1 flows through the inner pipe and fluid 2 flows in the annular space
between the two tubes. Two different flow regimes are possible, either counter-
current where the two fluids flow in opposite directions, Fig. 1.19a, or cocurrent
as in Fig. 1.19b.

Fig. 1.19 also shows the cross-sectional mean values of the fluid temperatures
ϑ1 and ϑ2 over the whole length of the heat exchanger. The entry temperatures
are indicated by one dash, and the exit temperature by two dashes. At every
cross-section ϑ1 > ϑ2, when fluid 1 is the hotter of the two. In countercurrent
flow the two fluids leave the tube at opposite ends, and so the exit temperature of
the hot fluid can be lower than the exit temperature of the colder fluid (ϑ′′

1 < ϑ′′
2),

because only the conditions ϑ′′
1 > ϑ′

2 and ϑ′
1 > ϑ′′

2 must be met. A marked cooling
of fluid 1 or a considerable temperature rise in fluid 2 is not possible with cocurrent
flow. In this case the exit temperatures of both fluids occur at the same end of the
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Fig. 1.19: Fluid temperatures ϑ1 and ϑ2 in a double-pipe heat exchanger. a countercurrent
flow, b cocurrent flow

exchanger and so ϑ′′
1 > ϑ′′

2 is always the case, no matter how long the exchanger
is. This is the first indication that countercurrent flow is superior to cocurrent
flow: not all heat transfer tasks carried out in countercurrent flow can be realised
in cocurrent flow. In addition to this fact, it will be shown in section 1.3.3, that
for the transfer of the same heat flow, a countercurrent heat exchanger always has
a smaller area than a cocurrent exchanger, assuming of course, that the both flow
regimes are suitable to fulfill the task. Therefore, cocurrent flow is seldom used
in practice.

In practical applications the shell-and-tube heat exchanger, as shown in Fig.
1.20 is the most commonly used design. One of the fluids flows in the many
parallel tubes which make up a tube bundle. The tube bundle is surrounded

Fig. 1.20: Shell-and-tube heat exchanger (schematic)

Fig. 1.21: Shell-and-tube heat exchanger
with baffles
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Fig. 1.22: Scheme of a plate exchanger
with crossflow

by a shell. The second fluid flows around the outside of the tubes within this
shell. Countercurrent flow can be realised here except at the ends at of the heat
exchanger where the shell side fluid enters or leaves the exchanger. The addition
of baffles, as in Fig. 1.21, forces the shell side fluid to flow perpendicular to the
tube bundle, which leads to higher heat transfer coefficients than those found in
flow along the tubes. In the sections between the baffles the fluid is neither in
counter or cocurrent flow but in crossflow.

Pure crossflow is found in flat plate heat exchangers, as indicated by Fig. 1.22.
The temperatures of both fluids also change perpendicular to the flow direction.
This is schematically shown in Fig. 1.23. Each fluid element that flows in a
crossflow heat exchanger experiences its own temperature change, from the entry
temperature ϑ′

i which is the same for all particles to its individual exit tempera-
ture. Crossflow is often applied in a shell-and-tube heat exchanger when one of
the fluids is gaseous. The gas flows around the rows of tubes crosswise to the tube
axis. The other fluid, normally a liquid, flows inside the tubes. The addition of

Fig. 1.23: Fluid temperatures
ϑ1 = ϑ1 (x, y) and ϑ2 = ϑ2 (x, y)
in crossflow
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Fig. 1.24: Coiled tube heat
exchanger (schematic)

Fig. 1.25: Regenerators for
the periodic heat transfer be-
tween the gases, air and nitro-
gen (schematic)

fins to the outer tube walls, cf. 1.2.3 and 2.2.3, increases the area available for
heat transfer on the gas side, thereby compensating for the lower heat transfer
coefficient.

Fig. 1.24 shows a particularly simple heat exchanger design, a coiled tube inside
a vessel, for example a boiler. One fluid flows through the tube, the other one is
in the vessel and can either flow through the vessel or stay there while it is being
heated up or cooled down. The vessel is usually equipped with a stirrer that mixes
the fluid, improving the heat transfer to the coiled tube.

There are also numerous other special designs for heat exchangers which will
not be discussed here. It is possible to combine the three basic flow regimes of
countercurrent, cocurrent and crossflow in a number of different ways, which leads
to complex calculation procedures.
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The heat exchangers dealt with so far have had two fluids flowing steadily through the
apparatus at the same time. They are always separated by a wall through which heat flows from
the hotter to the colder fluid. These types of heat exchangers are also known as recuperators,
which are different from regenerators. They contain a packing material, for example a lattice of
bricks with channels for the gas or a packed bed of stone or metal strips, that will allow gases to
pass through it. The gases flow alternately through the regenerator. The hot gas transfers heat
to the packing material, where it is stored as internal energy. Then the cold gas flows through
the regenerator, removes heat from the packing and leaves at a higher temperature. Continuous
operation requires at least two regenerators, so that one gas can be heated whilst the other one
is being cooled, Fig. 1.25. Each of the regenerators will be periodically heated and cooled by
switching the gas flows around. This produces a periodic change in the exit temperatures of the
gases.

Regenerators are used as air preheaters in blast furnaces and as heat exchangers in low
temperature gas liquefaction plants. A special design, the Ljungström preheater, equipped with
a rotating packing material serves as a preheater for air in firing equipment and gas turbine
plants.The warm gas in this case is the exhaust gas from combustion which should be cooled as
much as possible for energy recovery.

The regenerator theory was mainly developed by H. Hausen [1.10]. As it includes a number of
complicated calculations of processes that are time dependent no further study of the theory will
be made here. The summary by H. Hausen [1.7] and the VDI-Wärmeatlas [1.11] are suggested
for further study on this topic.

1.3.2 General design equations. Dimensionless groups

Fig. 1.26 is a scheme for a heat exchanger. The temperatures of the two fluids are
denoted by ϑ1 and ϑ2, as in section 1.3.1, and it will be assumed that ϑ1 > ϑ2.
Heat will therefore be transferred from fluid 1 to fluid 2. Entry temperatures are
indicated by one dash, exit temperatures by two dashes.

The first law of thermodynamics is applied to for both fluids. The heat trans-
ferred causes an enthalpy increase in the cold fluid 2 and a decrease in the warm
fluid 1. This gives

Q̇ = Ṁ1(h
′
1 − h′′

1) = Ṁ2(h
′′
2 − h′

2) , (1.93)

where Ṁi is the mass flow rate of fluid i. The specific enthalpies are calculated

Fig. 1.26: Heat exchanger scheme, with the mass
flow rate Ṁi, entry temperatures ϑ′

i, exit temper-
atures ϑ′′

i , entry enthalpy h′

i and exit enthalpy h′′

i

of both fluids (i = 1, 2)
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at the entry and exit temperatures ϑ′
i and ϑ′′

i respectively. These temperatures
are averaged over the relevant tube cross section, and can be determined using
the explanation in section 1.1.3 for calculating adiabatic mixing temperatures.
Equation (1.93) is only valid for heat exchangers which are adiabatic with respect
to their environment, and this will always be assumed to be the case.

The two fluids flow through the heat exchanger without undergoing a phase
change, i.e. they do not boil or condense. The small change in specific enthalpy
with pressure is neglected. Therefore only the temperature dependence is impor-
tant, and with

cpi :=
h′

i − h′′
i

ϑ′
i − ϑ′′

i

, i = 1, 2 (1.94)

the mean specific heat capacity between ϑ′
i and ϑ′′

i it follows from (1.93) that

Q̇ = Ṁ1cp1(ϑ
′
1 − ϑ′′

1) = Ṁ2cp2(ϑ
′′
2 − ϑ′

2) .

As an abbreviation the heat capacity flow rate is introduced by

Ẇi := Ṁicpi , i = 1, 2 (1.95)

which then gives
Q̇ = Ẇ1(ϑ

′
1 − ϑ′′

1) = Ẇ2(ϑ
′′
2 − ϑ′

2) . (1.96)

The temperature changes in both fluids are linked to each other due to the first law
of thermodynamics. They are related inversely to the ratio of the heat capacity
flow rates.

The heat flow Q̇ is transferred from fluid 1 to fluid 2 because of the temperature
difference ϑ1−ϑ2 inside the heat exchanger. This means that the heat flow Q̇ has to
overcome the overall resistance to heat transfer 1/kA according to section 1.2.1.
The quantity kA will from now on be called the transfer capability of the heat
exchanger, and is a characteristic quantity of the apparatus. It is calculated using
(1.72) from the transfer resistances in the fluids and the resistance to conduction
in the wall between them. The value for kA is usually taken to be an apparatus
constant, where the overall heat transfer coefficient k is assumed to have the same
value throughout the heat exchanger. However this may not always happen, the
fluid heat transfer coefficient can change due to the temperature dependence of
some of the fluid properties or by a variation in the flow conditions. In cases such
as these, k and kA must be calculated for various points in the heat exchanger
and a suitable mean value can be found, cf. W. Roetzel and B. Spang [1.12], to
represent the characteristic transfer capability kA of the heat exchanger.

Before beginning calculations for heat exchanger design, it is useful to get
an overview of the quantities which have an effect on them. Then the number
of these quantities will be reduced by the introduction of dimensionless groups.
Finally the relevant relationships for the design will be determined. Fig. 1.27
contains the seven quantities that influence the design of a heat exchanger. The
effectiveness of the heat exchanger is characterised by its transfer capability kA,
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Fig. 1.27: Heat exchanger with the
seven quantities which affect its design

Fig. 1.28: The three decisive
temperature differences (ar-
rows) in a heat exchanger

the two fluid flows by their heat capacity flow rates Ẇi, entry temperatures ϑ′
i and

exit temperatures ϑ′′
i . As the temperature level is not important only the three

temperature differences (ϑ′
1 − ϑ′′

1), (ϑ′′
2 − ϑ′

2) and (ϑ′
1 − ϑ′

2), as shown in Fig. 1.28,
are of influence. This reduces the number of quantities that have any effect by
one so that six quantities remain:

kA, (ϑ′
1 − ϑ′′

1), Ẇ1, (ϑ′′
2 − ϑ′

2), Ẇ2 and (ϑ′
1 − ϑ′

2) .

These belong to only two types of quantity either temperature (unit K) or heat
capacity flow rate (units W/K). According to section 1.1.4, that leaves four (= 6−
2) characteristic quantities to be defined. These are the dimensionless temperature
changes in both fluids

ε1 :=
ϑ′

1 − ϑ′′
1

ϑ′
1 − ϑ′

2

and ε2 :=
ϑ′′

2 − ϑ′
2

ϑ′
1 − ϑ′

2

, (1.97)

see Fig. 1.29, and the ratios

N1 :=
kA

Ẇ1

and N2 :=
kA

Ẇ2

. (1.98)

These are also known as the Number of Transfer Units or NTU for short. We
suggest Ni be characterised as the dimensionless transfer capability of the heat
exchanger. Instead of N2 the ratio of the two heat capacity flow rates

C1 :=
Ẇ1

Ẇ2

=
N2

N1

(1.99)

Fig. 1.29: Plot of the dimensionless fluid tempera-
tures ϑ+

i = (ϑi − ϑ′

2) / (ϑ′

1 − ϑ′

2) over the area and il-
lustration of ε1 and ε2 according to (1.97)
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or its inverse

C2 :=
Ẇ2

Ẇ1

=
1

C1

(1.100)

is often used.
The four groups in (1.97) and (1.98), are not independent of each other, be-

cause applying the first law of thermodynamics gives

ε1

N1

=
ε2

N2

or ε2 = C1ε1 . (1.101)

The relationship which exists between the three remaining characteristic quanti-
ties

F (ε1, N1, N2) = 0 or F (ε1, N1, C1) = 0 (1.102)

is the operating characteristic of the heat exchanger. It depends on the flow
configuration and is found from the temperature pattern of both fluids, that will
be discussed in detail in the following sections.

Heat exchanger design mainly consists of two tasks:
1. Calculating the heat flow transferred in a given heat exchanger.
2. Design of a heat exchanger for a prescribed performance.

In the first case (ϑ′
1 − ϑ′

2), Ẇ1, Ẇ2 and kA will all be given. The temperature
changes in both fluids have to be found so that Q̇, the heat flow transferred, can be
determined from (1.96). As the characteristic numbers, N1 and N2 or N1 and C1

are given this problem can be solved immediately, if the operating characteristic
in (1.102) can be explicitly resolved for ε1:

ε1 = ε1(N1, C1) .

The dimensionless temperature change ε2 of the other fluid follows from (1.101).
In the calculations for the design of a heat exchanger kA has to be found.

Either the temperature changes in both fluids or the two values for the heat
capacity flow and the temperature change in one of the fluids must be known, in
order to determine kA. An operating characteristic which can be explicitly solved
for N1 or N2 is desired:

N1 = N1(ε1, C1) .

This gives for the transfer capability

kA = N1Ẇ1 = N2Ẇ2 .

In Fig. 1.30 an operating characteristic for a heat exchanger with given flow
configuration is shown. The solutions to both tasks, heat transfer calculation and
design calculation are indicated. In many cases the explicit solution of the oper-
ating characteristic for ε1 and N1 is not possible, even if an analytical expression
is available. If this arises a diagram similar to Fig. 1.30 should be used. Further
details are given in section 1.3.5.
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Fig. 1.30: Schematic representation of the operating characteristic for a heat ex-
changer with Ci = const. N is the assumed operating point for the heat trans-
fer calculations: εi = εi (Ni, Ci), A is the assumed operating point for the design:
Ni = Ni (εi, Ci). The determination of the mean temperature difference Θ for point
A is also shown.

When the heat capacity flow rate Ẇi was introduced in (1.95) boiling and con-
densing fluids were not considered. At constant pressure a pure substance which
is boiling or condensing does not undergo a change in temperature, but cpi → ∞.

This leads to εi = 0, whilst Ẇi → ∞ resulting in Ni = 0 and Ci → ∞. This
simplifies the calculations for the heat exchanger, as the operating characteristic
is now a relationship between only two rather than three quantities, namely ε and
N of the other fluid, which is neither boiling nor condensing.

In heat exchanger calculations another quantity alongside those already introduced is often
used, namely the mean temperature difference ∆ϑm. This is found by integrating the local
temperature difference (ϑ1 − ϑ2) between the two fluids over the whole transfer area.

∆ϑm =
1

A

∫
(A)

(ϑ1 − ϑ2) dA . (1.103)

In analogy to (1.71) the heat flow transferred is

Q̇ = kA∆ϑm . (1.104)

This equation can only strictly be used if the heat transfer coefficient k is the same at each point
on A. If this is not true then (1.104) can be considered to be a definition for a mean value of k.

The introduction of ∆ϑm in conjunction with (1.104), gives a relationship between the
heat flow transferred and the transfer capability kA, and therefore with the area A of the heat
exchanger. This produces the following equations

Q̇ = kA∆ϑm = Ẇ1(ϑ
′

1 − ϑ′′

1) = Ẇ2(ϑ
′′

2 − ϑ′

2) .

With the dimensionless mean temperature difference

Θ =
∆ϑm

ϑ′

1 − ϑ′

2

(1.105)

the following relationship between the dimensionless groups is found:

Θ =
ε1

N1
=

ε2

N2
. (1.106)
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The mean temperature ∆ϑm and its associated dimensionless quantity Θ can be calculated
using the dimensionless numbers that have already been discussed. The introduction of the
mean temperature difference does not provide any information that cannot be found from the
operating characteristic. This is also illustrated in Fig. 1.30, where Θ is the gradient of the
straight line that joins the operating point and the origin of the graph.

1.3.3 Countercurrent and cocurrent heat exchangers

The operating characteristic F (εi, Ni, Ci) = 0, for a countercurrent heat exchanger
is found by analysing the temperature distribution in both fluids. The results can
easily be transferred for use with the practically less important case of a cocurrent
exchanger.

We will consider the temperature changes, shown in Fig. 1.31, in a countercur-
rent heat exchanger. The temperatures ϑ1 and ϑ2 depend on the z coordinate in
the direction of flow of fluid 1. By applying the first law to a section of length dz
the rate of heat transfer, dQ̇, from fluid 1 to fluid 2 through the surface element
dA is found to be

dQ̇ = −Ṁ1cp1 dϑ1 = −Ẇ1 dϑ1 (1.107)

and
dQ̇ = −Ṁ2cp2 dϑ2 = −Ẇ2 dϑ2 . (1.108)

Now dQ̇ is eliminated by using the equation for overall heat transfer

dQ̇ = k (ϑ1 − ϑ2) dA = kA (ϑ1 − ϑ2)
dz

L
(1.109)

from (1.107) and (1.108) giving

dϑ1 = −(ϑ1 − ϑ2)
kA

Ẇ1

dz

L
= −(ϑ1 − ϑ2)N1

dz

L
(1.110)

Fig. 1.31: Temperature pattern in a
countercurrent heat exchanger
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Table 1.4: Equations for the calculation of the normalised temperature variation εi , the
dimensionless transfer capability Ni and the mean temperature difference Θ in counter and
cocurrent heat exchangers

Flow
regime

εi = εi (Ni, Ci) Ni = Ni (εi, Ci) Θ = Θ (ε1, ε2)

counter
current

Ci �= 1
i = 1, 2

εi =
1 − exp [(Ci − 1)Ni]

1 − Ci exp [(Ci − 1) Ni]
Ni =

1

1 − Ci
ln

1 − Ciεi

1 − εi
Θ =

ε1 − ε2

ln
1 − ε2

1 − ε1

C = 1 ε =
N

1 + N
N =

ε

1 − ε
Θ = 1 − ε

co-
current

i = 1, 2 εi =
1 − exp [− (1 + Ci)Ni]

1 + Ci
Ni = − ln [1 − εi (1 + Ci)]

1 + Ci
Θ =

− (ε1 + ε2)

ln [1 − (ε1 + ε2)]

Meaning of the characteristic numbers: ε1 =
ϑ

′

1 − ϑ
′′

1

ϑ
′

1 − ϑ
′

2

, ε2 =
ϑ

′′

2 − ϑ
′

2

ϑ
′

1 − ϑ
′

2

Ni = kA/Ẇi , Θ =
∆ϑm

ϑ
′

1 − ϑ
′

2

=
εi

Ni
, C1 =

Ẇ1

Ẇ2

=
ε2

ε1
=

N2

N1
, C2 =

1

C1

and

dϑ2 = −(ϑ1 − ϑ2)
kA

Ẇ2

dz

L
= −(ϑ1 − ϑ2)N2

dz

L
(1.111)

for the temperature changes in both fluids.
The temperatures ϑ1 = ϑ1(z) and ϑ2 = ϑ2(z) will not be calculated from

the two differential equations, instead the variation in the difference between the
temperature of the two fluids ϑ1 − ϑ2 will be determined. By subtracting (1.111)
from (1.110) and dividing by (ϑ1 − ϑ2) it follows that

d(ϑ1 − ϑ2)

ϑ1 − ϑ2

= (N2 − N1)
dz

L
. (1.112)

Integrating this differential equation between z = 0 and z = L leads to

ln
(ϑ1 − ϑ2)L

(ϑ1 − ϑ2)0
= ln

ϑ′′
1 − ϑ′

2

ϑ′
1 − ϑ′′

2

= N2 − N1 . (1.113)

Now, we have
ϑ′′

1 − ϑ′
2

ϑ′
1 − ϑ′′

2

=
ϑ′

1 − ϑ′
2 − (ϑ′

1 − ϑ′′
1)

ϑ′
1 − ϑ′

2 − (ϑ′′
2 − ϑ′

2)
=

1 − ε1

1 − ε2

,
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Fig. 1.32: Operating characteristic εi = εi (Ni, Ci) for countercurrent flow from Tab. 1.4

which gives

ln
1 − ε1

1 − ε2

= N2 − N1 (1.114)

as the implicit form of the operating characteristic of a countercurrent heat ex-
changer. It is invariant with respect to an exchange of the indices 1 and 2. Using
the ratios of C1 and C2 = 1/C1 from (1.99) and (1.100), explicit equations are
obtained,

εi = f(Ni, Ci) and Ni = f(εi, Ci) , i = 1, 2

which have the same form for both fluids. These explicit formulae for the operating
characteristics are shown in Table 1.4. If the heat capacity flow rates are equal,
Ẇ1 = Ẇ2, and because C1 = C2 = 1, it follows that

ε1 = ε2 = ε and N1 = N2 = N ,

and with a series development of the equations valid for Ci �= 1 towards the limit
of Ci → 1, the simple relationships given in Table 1.4 are obtained.

Fig. 1.32 shows the operating characteristic εi = f(Ni, Ci) as a function of Ni

with Ci as a parameter. As expected the normalised temperature change εi grows
monotonically with increasing Ni, and therefore increasing transfer capability kA.
For Ni → ∞ the limiting value is

lim
Ni→∞

εi =

{
1 for Ci ≤ 1

1/Ci for Ci > 1
.

If Ci ≤ 1, then εi takes on the character of an efficiency. The normalised tem-
perature change of the fluid with the smaller heat capacity flow is known as the
efficiency or effectiveness of the heat exchanger. With an enlargement of the heat
transfer area A the temperature difference between the two fluids can be made as
small as desired, but only at one end of the countercurrent exchanger. Only for
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Ẇ1 = Ẇ2, which means C1 = C2 = 1, can an infinitely small temperature differ-
ence at at both ends, and therefore throughout the heat exchanger, be achieved
by an enlargement of the surface area. The ideal case of reversible heat transfer
between two fluids, often considered in thermodynamics, is thus only attainable
when Ẇ1 = Ẇ2 in a heat exchanger with very high transfer capability.

As already mentioned in section 1.3.2, the function εi = f(Ni, Ci) is used
to calculate the outlet temperature and the transfer capability of a given heat
exchanger. For the sizing of a heat exchanger for a required temperature change
in the fluid, the other form of the operating characteristic, Ni = Ni(εi, Ci), is
used. This is also given in Table 1.4.

In a cocurrent heat exchanger the direction of flow is opposite to that in Fig.
1.31, cf. also Fig. 1.20b. In place of (1.108) the energy balance is

dQ̇ = Ṁ2cp2 dϑ2 = Ẇ2 dϑ2 ,

which gives the relationship

d(ϑ1 − ϑ2)

ϑ1 − ϑ2

= −(N1 + N2)
dz

L
(1.115)

instead of (1.112). According to (1.114) the temperature difference between the
two fluids in the direction of flow is always decreasing. Integration of (1.115)
between z = 0 and z = L yields

ln
ϑ′′

1 − ϑ′′
2

ϑ′
1 − ϑ′

2

= −(N1 + N2) ,

from which follows

ln [1 − (ε1 + ε2)] = −(N1 + N2) = −ε1 + ε2

Θ
(1.116)

as the implicit form of the operating characteristic. This can be solved for εi

and Ni giving the functions noted in Table 1.4. For Ni → ∞ the normalised
temperature variation reaches the limiting value of

lim
Ni→∞

εi =
1

1 + Ci

, i = 1, 2 .

With cocurrent flow the limiting value of εi = 1 is never reached except when
Ci = 0, as will soon be explained.

The calculations for performance and sizing of a heat exchanger can also be carried out
using a mean temperature difference Θ from (1.105) in section 1.3.2. In countercurrent flow, the
difference N2 − N1 in (1.113) is replaced by Θ, ε1 and ε2 giving the expression Θ = Θ(ε1, ε2)
which appears in Table 1.4. Introducing

N2 − N1 =
ε2 − ε1

Θ
=

ϑ′′

2 − ϑ′

2 − (ϑ′

1 − ϑ′′

1)

∆ϑm
=

ϑ′′

1 − ϑ′

2 − (ϑ′

1 − ϑ′′

2)

∆ϑm



1.3 Heat exchangers 53

Fig. 1.33: Temperature in a condenser with cooling of superheated steam,
condensation and subcooling of the condensate (fluid 1) by cooling water
(fluid 2)

into (1.113) , gives

∆ϑm =
ϑ′′

1 − ϑ′

2 − (ϑ′

1 − ϑ′′

2)

ln
ϑ′′

1 − ϑ′

2

ϑ′

1 − ϑ′′

2

(1.117)

for the mean temperature difference in a countercurrent heat exchanger. It is the logarithmic

mean of the temperature difference between the two fluids at both ends of the apparatus.
The expression, from (1.116), for the normalised mean temperature difference Θ, in cocur-

rent flow is given in Table 1.4. Putting in (1.117) the defining equations for ε1 and ε2 yields

∆ϑm =
ϑ′

1 − ϑ′

2 − (ϑ′′

1 − ϑ′′

2)

ln
ϑ′

1 − ϑ′

2

ϑ′′

1 − ϑ′′

2

. (1.118)

So ∆ϑm is also the logarithmic mean temperature difference at both ends of the heat exchanger
in cocurrent flow.

We will now compare the two flow configurations. For Ci = 0 the normalised
temperature variation in Table 1.4 is

εi = 1 − exp(−Ni)

and the dimensionless transfer capability

Ni = − ln(1 − εi)

both of which are independent of whether countercurrent or cocurrent flow is
used. Therefore when one of the substances boils or condenses in the exchanger
it is immaterial which flow configuration is chosen. However, if in a condenser,
superheated steam is first cooled from ϑ′

1 to the condensation temperature of
ϑ1s, then completely condensed, after which the condensate is cooled from ϑ1s

to ϑ′′
1, more complex circumstances develop. In these cases it is not permissible

to treat the equipment as simply one heat exchanger, using the equations that
have already been defined, where only the inlet and outlet temperatures ϑ′

i and
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Fig. 1.34: Ratio (kA)co / (kA)cc = N co
i /N cc

i of the transfer capabilities in cocur-
rent (index co) and countercurrent (index cc) flows as a function of εi and Ci

ϑ′′
i (i = 1, 2) are important, cf. Fig. 1.33. The values for the heat capacity flow

rate Ẇ1 change significantly: During the cooling of the steam and the condensate
Ẇ1 has a finite value, whereas in the process of condensation Ẇ1 is infinite. The
exchanger has to be imaginarily split, and then be treated as three units in series.
Energy balances provide the two unknown temperatures, ϑ2a between the cooling
and condensation section, and ϑ2b, between the condensation and sub-cooling
part. These in turn yield the dimensionless temperature differences εia, εib and
εic for the three sections cooler a, condenser b and sub-cooler c (i = 1, 2). The
dimensionless transfer capabilities Nia, Nib and Nic of the three equipment sections
can then be calculated according to the relationships in Table 1.4. From Nij the
values for (kA)j can be found. Then using the relevant overall heat transfer
coefficients kj, we obtain the areas of the three sections Aj (j = a, b, c), which
together make up the total transfer area of the exchanger.

For Ci > 0 the countercurrent configuration is always superior to the cocurrent.
A disadvantage of the cocurrent flow exists in that not all heat transfer tasks can
be solved in such a system. A given temperature change εi is only realisable if
the argument of the logarithmic term in

N co
i = − 1

1 + Ci

ln [1 − εi(1 + Ci)]

is positive. This is only the case for

εi <
1

1 + Ci

. (1.119)

Larger normalised temperature changes cannot be achieved in cocurrent heat ex-
changers even in those with very large values for the transfer capability kA. In
countercurrent exchangers this limitation does not exist. All values for εi are ba-
sically attainable and therefore all required heat loads can be transferred as long
as the area available for heat transfer is made large enough.
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A further disadvantage of cocurrent flow is that a higher transfer capability
kA is required to fulfill the same task (same εi and Ci) when compared with a
countercurrent system. This is shown in Fig. 1.34 in which the ratio

(kA)co/(kA)cc = N co
i /N cc

i

based on the equations in Table 1.4 is represented. This ratio grows sharply when
εi approaches the limiting value according to (1.119). Even when a cocurrent
exchanger is capable of fulfilling the requirements of the task, the countercurrent
exchanger will be chosen as its dimensions are smaller. Only in a combination of
small enough values of Ci and εi the necessary increase in the area of a cocurrent
exchanger is kept within narrow limits.

Example 1.4: Ammonia, at a pressure of 1.40 MPa, is to be cooled in a countercurrent
heat exchanger from ϑ′

1 = 150.0 ◦C to the saturation temperature ϑ′

1s = 36.3 ◦C, and
then completely condensed. Its mass flow rate is Ṁ1 = 0.200kg/s. Specific enthalpies of
h(ϑ′

1) = 1797.1kJ/kg, hg(ϑ1s) = 1488.8kJ/kg, and hfl(ϑ1s) = 372.2kJ/kg are taken from
the property tables for ammonia, [1.13]. Cooling water with a temperature of ϑ′

2 = 12.0 ◦C
is available, and this can be heated to ϑ′′

2 = 28.5 ◦C. Its mean specific heat capacity is
cp2 = 4.184kJ/kgK. The required transfer capabilities for the cooling (kA)cooling and
(kA)cond for the condensation of the ammonia have to be determined.
At first the heat flow transferred Q̇, and the required mass flow rate Ṁ2 of water have to
be found. The heat flow removed from the ammonia is

Q̇ = Ṁ1

[
h(ϑ′

1) − hfl(ϑ1s)
]

= 0.200
kg

s
(1797.1 − 372.2)

kJ

kg
= 285.0kW .

From that the mass flow rate of water is found to be

Ṁ2 =
Q̇

cp2 (ϑ′′

2 − ϑ′

1)
=

285.0kW

4.184 (kJ/kgK) (28.5 − 12.0) K
= 4.128

kg

s
.

The temperature ϑ2a of the cooling water in the cross section between the cooling and
condensation sections, cf. Fig. 1.35, is required to calculate the transfer capability.

Fig. 1.35: Temperatures of
ammonia and cooling water
in a countercurrent heat ex-
changer (schematic)

From the energy balance for the condensor section

Ṁ2cp2 (ϑa − ϑ′

2) = Ṁ1

[
hg(ϑ1s) − hfl(ϑ1s)

]
,

it follows that

ϑ2a = ϑ′

2 +
Ṁ1

Ṁ2cp2

[
hg(ϑ1s) − hfl(ϑ1s)

]
= 24.9 ◦C .
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The transfer capability for the ammonia cooling section, using Table 1.4, is

(kA)cooling

Ẇ1

= N1 =
1

1 − C1
ln

1 − C1ε1

1 − ε1
. (1.120)

The ratio of the heat capacity flow rates is found with

Ẇ1 = Ṁ1cp1 = Ṁ1
h(ϑ′

1) − hg(ϑs)

ϑ′

1 − ϑs
= 0.200

kg

s

1797.1 − 1488.8

150.0 − 36.3

kJ

kgK
= 0.5423

kW

K

and with Ẇ2 = Ṁ2cp2 = 17.272kW/K giving C1 = 0.0314. The dimensionless temperature
variation of ammonia is

ε1 =
ϑ′

1 − ϑs

ϑ′

1 − ϑ2a
=

150.0 − 36.3

150.0 − 24.9
= 0.9089.

Then (1.120) yields N1 = 2.443 and finally

(kA)cooling = N1Ẇ1 = 1.325kW/K .

For the condensation section of the heat exchanger ε1 = 0, and because Ẇ1 → ∞ this
means C2 = Ẇ2/Ẇ1 = 0. From Table 1.4 it follows that

(kA)cond/Ẇ2 = N2 = − ln (1 − ε2) .

With the normalised temperature change of the cooling water

ε2 =
ϑ2a − ϑ′

2

ϑ1s − ϑ′

2

=
24.9 − 12.0

36.3 − 12.0
= 0.5309 ,

yielding N2 = 0.7569, which then gives

(kA)cond = N2Ẇ2 = 13.07kW/K .

In order to find the required area A = Acooling + Acond for the countercurrent exchanger,
from the values for (kA)cooling and (kA)cond, the overall heat transfer coefficients for each
part must be calculated. They will be different as the resistance to heat transfer in the
cooling section is greatest on the gaseous ammonia side, whereas in the condensation
section the greatest resistance to heat transfer is experienced on the cooling water side.
The calculations for the overall heat transfer coefficients will not be done here as the design
of the heat exchanger and the flow conditions have to be known for this purpose.

1.3.4 Crossflow heat exchangers

Before discussing pure crossflow as shown in Fig. 1.23, the operating characteristic
for the simple case of crossflow where only the fluid on one side is laterally mixed
will be calculated. In this flow configuration the temperature of one of the two
fluids is only dependent on one position coordinate, e.g. x, while the temperature
of the other fluid changes with both x and y. In Fig. 1.36 the laterally mixed fluid
is indicated by the index 1. Its temperature ϑ1 changes only in the direction of
flow, ϑ1 = ϑ1(x). Ideal lateral mixing is assumed so that ϑ1does not vary with y.
This assumption is closely met when fluid 1 flows through a single row of tubes
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Fig. 1.37: Crossflow with one tube
row as a realisation of the one side
laterally mixed crossflow

Fig. 1.36: Temperature variations in a one side laterally mixed crossflow. ϑ1 = ϑ1 (x) temper-
ature of the laterally mixed fluid, ϑ2 = ϑ2 (x, y) temperature of the other fluid

and fluid 2 flows perpendicular to them, Fig. 1.37. This crossflow with a single
row of tubes corresponds to one side laterally mixed crossflow. The mixed fluid
1 in the tubes does not have to be the fluid with the higher temperature, as was
assumed before.

To determine the temperatures ϑ1 = ϑ1(x) and ϑ2 = ϑ2(x, y) of both fluids, the surface
element, dA = dxdy picked out in Fig. 1.36 will be considered. The heat flow transferred from
fluid 1 to fluid 2 is given as

dQ̇ = [ϑ1(x) − ϑ2(x, y)] k dxdy .

The total heat transfer area is A = L1L2, see Fig. 1.36. With the dimensionless coordinates

x+ := x/L1 and y+ := y/L2 (1.121)

it follows that
dQ̇ =

[
ϑ1(x

+) − ϑ2(x
+, y+)

]
kAdx+ dy+ . (1.122)

A second relationship for dQ̇ is yielded from the application of the first law on fluid 2, which
flows over the surface element dA. Its mass flow rate is

dṀ2 = Ṁ2 dx/L1 = Ṁ2 dx+ ,

which gives

dQ̇ = Ṁ2 dx+cp2

(
ϑ2 +

∂ϑ2

∂y+
dy+ + . . . − ϑ2

)
= Ṁ2cp2

(
∂ϑ2

∂y+
dy+ + . . .

)
dx+

or

dQ̇ = Ẇ2
∂ϑ2

∂y+
dx+ dy+ . (1.123)

The differential equation
∂ϑ2

∂y+
= N2(ϑ1 − ϑ2) (1.124)
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Fig. 1.38: Temperature changes
in a strip of size L2 dx, in one side
laterally mixed crossflow. ϑm2(x)
is the y direction average temper-
ature of fluid 2.

is found from the relationships (1.122) and (1.123). The solution

ϑ2(x
+, y+) = ϑ1(x

+) − [
ϑ1(x

+) − ϑ′

2

]
e−N2y+

(1.125)

still contains the unknown temperature ϑ1(x
+) of the laterally mixed fluid.

In order to find ϑ1(x
+) the first law has to be applied to fluid 1. As it flows through the

strip with width dx it gives up a heat flow dQ̇∗, to fluid 2, which does not agree with dQ̇, cf.
Fig. 1.38. For dQ̇∗ the following is valid

−dQ̇∗ = Ṁ1cp1

[
ϑ1 +

dϑ1

dx
dx + . . . − ϑ1

]
.

With x+ from (1.121) it follows that

−dQ̇∗ = Ẇ1
dϑ1

dx+
dx+ . (1.126)

A second relationship for dQ̇∗ is the equation for the overall heat transfer:

dQ̇∗ =
[
ϑ1

(
x+
)− ϑm2

(
x+
)]

kL2 dx =
[
ϑ1

(
x+
)− ϑm2

(
x+
)]

kAdx+ . (1.127)

In which

ϑm2(x
+) =

1∫
y+=0

ϑ2(x
+, y+) dy+ (1.128)

is the temperature of fluid 2 averaged in the y direction, which is decisive for the overall heat
transfer through the strip area L2 dx. From (1.127) and (1.128) follows the ordinary differential
equation

dϑ1

dx+
= −N1(ϑ1 − ϑm2) (1.129)

for the determination of ϑ1(x
+).
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Using (1.125) and (1.128) the average temperature of fluid 2 can be calculated, giving

ϑm2(x
+) = ϑ1(x

+) − 1

N2

[
ϑ1(x

+) − ϑ′

2

] (
1 − e−N2

)
. (1.130)

Which then yields from (1.129) the differential equation

dϑ1

dx+
= −N1

N2

(
1 − e−N2

)
(ϑ1 − ϑ′

2) .

Integration between x+ = 0 and x+ = 1 delivers

ϑ′′

1 − ϑ′

2

ϑ′

1 − ϑ′

2

= exp

[
−N1

N2

(
1 − e−N2

)]
= exp

[
− 1

C1

(
1 − e−C1N1

)]
.

The temperature ratio on the left hand side agrees with (1− ε1).

The operating characteristic for one side laterally mixed crossflow is

ε1 = 1 − exp

[
− 1

C1

(1 − e−C1N1)

]
. (1.131)

It gives the temperature change in the fluid which is laterally mixed as a function
of C1 from (1.99) and the dimensionless transfer capability N1 from (1.98). The
operating characteristic (1.131) can be explicitly resolved for N1. This gives

N1 = − 1

C1

ln [1 + C1 ln(1 − ε1)] , (1.132)

out of which the required value for kA can be immediately calculated. The tem-
perature variation in the fluid which flows perpendicular to the tube row is found
using (1.101) to be

ε2 =
ϑ′′

m2 − ϑ′
2

ϑ′
1 − ϑ′

2

= C1ε1 . (1.133)

Here ϑ′′
m2 is the mean outlet temperature, which could also be found by integrating

(1.130) over x+.
Crossflow with a single row of tubes was dealt with by D. M. Smith [1.14] in

1934. The extension of this work to n rows of tubes was first carried out by H.
Schedwill [1.15] in 1968. This produced significantly more complex equations than
those used in the case n = 1 handled here. The temperature change ε1, with an
outlet temperature averaged over all n rows of tubes, increases with the number
of tube rows. The relevant equations can be found in [1.8] and [1.16].

An increase in the number n of tube rows in series approaches the case of pure
crossflow, in which the temperatures of both fluids change in x and y or rather
the dimensionless coordinates x+ and y+, from (1.121), cf. Fig. 1.23. The heat
transferred, through a surface element of dimensions

dA = dx dy = A dx+ dy+ ,

from fluid 1 to fluid 2, is found by the same reasoning which led to (1.123), giving
the following equations:

dQ̇ = −Ẇ1

∂ϑ1

∂x+
dx+ dy+
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(1st law applied to fluid 1),

dQ̇ = Ẇ2

∂ϑ2

∂y+
dx+ dy+

(1st law applied to fluid 2), and overall heat transfer

dQ̇ = kA (ϑ1 − ϑ2) dx+ dy+ .

Elimination of dQ̇ yields the two coupled differential equations

∂ϑ1

∂x+
= −N1 (ϑ1 − ϑ2) (1.134a)

and
∂ϑ2

∂y+
= N2 (ϑ1 − ϑ2) (1.134b)

for the temperatures ϑ1 = ϑ1(x
+, y+) and ϑ2 = ϑ2(x

+, y+). These have to fulfill
the boundary conditions

ϑ1(0, y
+) = ϑ′

1 and ϑ2(x
+, 0) = ϑ′

2 . (1.135)

W. Nusselt [1.17] used a power series to solve this problem. With

ξ := N1x
+ = (kA/Ẇ1)(x/L1) (1.136a)

and
η := N2y

+ = (kA/Ẇ2)(y/L2) (1.136b)

the solution has the form

ϑ1 (ξ, η) =

⎛⎝ ∞∑
m=0

ηm

m!

m∑
j=0

ξj

j!

⎞⎠ e−(ξ+η) , (1.137a)

ϑ2 (ξ, η) = 1 −
⎛⎝ ∞∑

m=0

ξm

m!

m∑
j=0

ηj

j!

⎞⎠ e−(ξ+η) . (1.137b)

With the mean values

ϑ′′
m1 =

1

N2

N2∫
η=0

ϑ1(N1, η) dη

and

ϑ′′
m2 =

1

N1

N1∫
ξ=0

ϑ2(ξ,N2) dξ

the dimensionless temperature changes of both fluids are given by

εi =
1

CiNi

∞∑
m=0

⎧⎨⎩
⎡⎣1 − e−Ni

m∑
j=0

N j
i

j!

⎤⎦ ⎡⎣1 − e−CiNi

m∑
j=0

(CiNi)
j

j!

⎤⎦⎫⎬⎭ , (1.138)
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Fig. 1.39: Comparison of differ-
ent flow configurations in a ε1,Θ-
diagram. a countercurrent, b pure
crossflow, c one side laterally mixed
crossflow, d cocurrent

where due to the symmetry of the problem for i = 1 and i = 2, the same rela-
tionship is valid. It is not possible to solve this equation explicitly for Ni. H.
Martin [1.8] gives a surprisingly short computer program which calculates the
mean temperature difference Θ = εi/Ni and therefore εi.

For Ni → ∞, pure crossflow delivers the limits

lim
Ni→∞

εi =

{
1 for Ci ≤ 1
1/Ci for Ci > 1 ,

(1.139)

which are the same as those for countercurrent flow. The limit for Ci = 0 is

εi = 1 − e−Ni , (Ci = 0) (1.140)

which also agrees with the result derived in section 1.3.3. This means that when
one of the fluids is boiling or condensing the temperature change of the other one is
not dependent on the flow configuration (cocurrent, countercurrent or crossflow).

For Ci �= 0 and finite values of Ni the temperature changes attainable with
crossflow are still significantly below those in countercurrent exchangers but are
better than those in cocurrent flow. The comparison of the three cases of simple
flow configurations is shown in Fig. 1.39. This diagram shows the dimension-
less temperature change ε1 against the dimensionless mean temperature difference
Θ = ε1/N1 for the constant ratio C1 = 0.5. Lines of N1 = const appear as straight
lines all of which go through the origin. A prescribed temperature difference ε1,
for example ε1 = 0.65, requires the following values for the dimensionless transfer
capability: countercurrent (curve a) N1 = 1.30, crossflow (curve b) N1 = 1.50,
cocurrent (curve d) N1 = 2.44. For a heat exchanger with N1 = 3.0 the dimension-
less temperature change ε1 reached in countercurrent flow has the highest value
of 0.874, with crossflow it is 0.816 and it goes down to 0.660 in cocurrent heat
exchangers.
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Example 1.5: The cooler in a motor vehicle is a crossflow heat exchanger, with the cooling
medium flowing through a row of parallel finned tubes. Air flows perpendicular to the
tubes. At a certain state the volumetric flow rate of the cooling medium is V̇1 = 1.25dm3/s;
its density is ρ1 = 1.015kg/dm3 and the mean specific heat capacity is cp1 = 3.80kJ/kgK.
The air enters the cooler at ϑ′

2 = 20.0 ◦C with V̇2 = 1.100m3/s, ρ2 = 1.188kg/m3 and
cp2 = 1.007kJ/kgK. The transfer capability of the cooler is kA = 0.550kW/K. A heat flow
of Q̇ = 28.5kW has to be transferred to the air. Determine the temperatures ϑ′

1 and ϑ′′

1 of
the motor cooling medium, and what is the temperature ϑ′′

2 of the air leaving the cooler?
From the energy balance equation (1.96), namely from

Q̇ = Ẇ1 (ϑ′

1 − ϑ′′

1) = Ẇ2 (ϑ′′

2 − ϑ′

2)

the exit temperature of the air
ϑ′′

2 = ϑ′

2 + Q̇/Ẇ2 (1.141)

and the temperature change in the cooling medium

ϑ′

1 − ϑ′′

1 = Q̇/Ẇ1

can be obtained. Then from the defining equation (1.97) for the normalised temperature
change ε1 the entry temperature of the cooling medium is found to be

ϑ′

1 = ϑ′

2 +
ϑ′

1 − ϑ′′

1

ε1
= ϑ′

2 +
Q̇

Ẇ1ε1

, (1.142)

from which follows the cooling medium outlet temperature

ϑ′′

1 = ϑ′

1 − Q̇/Ẇ1 . (1.143)

The operating characteristic for this case of crossflow with a single row of tubes (one side
laterally mixed crossflow) according to (1.131), gives the value of ε1 required in (1.142):

ε1 = 1 − exp

[
− 1

C1

(
1 − e−C1N1

)]
. (1.144)

To evaluate the equations, the heat capacity flow rates are calculated using the given data
for the cooling medium,

Ẇ1 = V̇1ρ1cp1 = 1.25
dm3

s
· 1.015 kg

dm3
· 3.80 kJ

kgK
= 4.821

kW

K
,

and the air,

Ẇ2 = V̇2ρ2cp2 = 1.100
m3

s
· 1.188 kg

m3
· 1.007 kJ

kgK
= 1.316

kW

K
.

From which the dimensionless numbers

C1 = Ẇ1/Ẇ2 = 3.664

and
C1N1 = N2 = kA/Ẇ2 = 0.418

are found. From the operating characteristic according to (1.144) ε1 = 0.0890 follows.
This then yields the values for the temperatures of the cooling medium from (1.142) and
(1.143) to be

ϑ′

1 = 86.4 ◦C and ϑ′′

1 = 80.5 ◦C .

A relatively high temperature level of the cooling medium favourable for the working of
the motor, is achieved. The exit temperature of the air, from (1.141) is ϑ′′

2 = 41.7 ◦C.
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1.3.5 Operating characteristics of further flow configura-
tions. Diagrams

In addition to the cases of countercurrent, cocurrent and crossflow, further flow
configurations are possible. These are also applied in industry and have been
investigated by many different authors, cf. the compilation of W. Roetzel and
B. Spang [1.16]. The operating characteristics F (εi, Ni, Ci) = 0 are often com-
plex mathematical expressions, so it seems reasonable to represent the results
graphically.

W. Roetzel and B. Spang [1.18] discussed the possibility of representing the
operating characteristics in a graph, and came up with a clearly arranged diagram
which can be found in the VDI-Wärmeatlas [1.16]. This square shaped graph con-
sists of two parts which are separated by the diagonal running from the bottom left
to the top right hand corner, Fig. 1.40. The axes of the graph are the two dimen-
sionless temperature changes ε1 and ε2 from (1.97). The area above the diagonal
contains lines of constant dimensionless transfer capability N1 = kA/Ẇ1 = const
as well as a host of straight lines that run through the origin, according to

C1 =
Ẇ1

Ẇ2

=
ε2

ε1

=
N2

N1

= const . (1.145)

These lines are not drawn on the graph, to prevent it from looking too crowded,
only the end points are marked around the edges of the figure. Each point in
the triangle above the diagonal corresponds to an operating state, for which the
values for ε1, N1 and C1 can be read off the graph. The accompanying value for
ε2 can be found from the point on the abscissa.

In the triangle below the diagonal, the operating characteristic is represented
in the form of F (ε2, N2, C2) = 0. The lines of equal transfer capability N1 = N2

meet at the diagonal C1 = C2 = 1 with a kink. This is due to (1.145). Only
the line N1 = N2 → ∞ does not have a kink at this point. In symmetrical flow

Fig. 1.40: Scheme for a ε1, ε2-diagram ac-
cording to W. Roetzel and B. Spang [1.16]
with lines of N1 = const and N2 = const
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configurations, e.g. counter or crosscurrent flow, the operating characteristics for
i = 1 and i = 2 agree, so the two halves of the graph are symmetric about the
diagonal. However in asymmetric flow, for example in one side laterally mixed
crossflow, this is not the case. The indices for each fluid must be carefully checked
so that the results from the graph are not mixed up. A comprehensive collection
of these graphs for the design and construction of heat exchangers is available in
the VDI-Wärmeatlas [1.16].

1.4 The different types of mass transfer

Mass transfer is the transport of one or more components of a mixture, of fluid
or solid material, within a phase12 or over the phase boundary. Mass transport
within a phase up to the phase boundary is called mass transfer. When this
occurs over the phase boundary into another phase, it is then known as overall
mass transfer. These terms correspond to those in heat transfer.

The driving forces for mass transfer are concentration, temperature or pres-
sure gradients. We will explore the most common of these three, namely mass
transfer due to a concentration gradient. As experience tells us, the components
of a mixture move from regions of higher concentration to those with lower con-
centration. Equilibrium with respect to mass transfer is realised when the driving
force, in this case the concentration difference, has disappeared.

Mass transfer processes can be found in various ways in both nature and tech-
nology. Highly developed plants and animals have circulatory systems which serve
the supply of nutrition and energy, where processes of mass transfer are decisive.
In plants the water taken up from the soil carries the products of photosynthesis,
above all glucose, to the places where they are used or stored. Red blood cor-
puscles release carbon dioxide in the lungs, and take up oxygen which is needed
by all cells in the body. Separation processes in chemical engineering such as the
drying of solid materials, distillation, extraction and sorption are all affected by
the processes of mass transfer. They also play a role in the production of materi-
als in order to obtain the desired properties of a substance. Chemical reactions,
including combustion processes, are often decisively determined by mass transfer.

As a simple example of mass transfer we will consider a glass filled with water in
a room of dry air. Immediately above the liquid surface there is a large amount of
water vapour, whilst further away there is far less. As a result of this concentration
drop the air enriches itself with water vapour. This flows in the direction of the
concentration or partial pressure drop. In a volume element above the surface of
the water, the velocity of the water molecules perpendicular to the liquid surface

12The phase is understood here to be the area of the system, in which each volume element
has values for the thermodynamic variables of pressure, temperature and concentration, among
others. Only steady, rather than irregular changes in these quantities are permitted within a
phase. In thermodynamics a phase is a homogeneous region in a system. In a phase in the sense
of thermodynamics all the defined intensive variables of state are spatially constant.
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is greater than that of the air molecules. This leads to a perceptible, macroscopic
relative movement between water vapour and air.

This sort of macroscopic relative movement of a single substance in a phase is
known as diffusion. There are two different forms of diffusion. In quiescent fluids
or solid bodies which are made up of different components, one substance can
only be transferred if the average molecular velocities of some components in the
mixture are different from each other. This is known as molecular diffusion. It also
occurs in laminar flow, as the volume elements of the fluid move along defined flow
paths and mass transfer between volume elements can only happen if the average
molecular velocities of the components are different. In contrast, a turbulent flow
is indicated by the irregular, random movements of the fluid elements, which can
be different for each component. This overlaps the whole flow and therefore also
the mass transport through molecular diffusion. The irregular fluid motion is often
an order of magnitude greater than the molecular diffusion. Mass transfer due to
irregular fluctuations in the fluid is known as turbulent diffusion. This can also be
applied to the situation of the water in the glass, by inducing a significantly high
flow velocity above the surface of the water by blowing or mixing. The amount of
water vapour transferred to the air in a certain period of time will be far greater
than that transferred in the same time interval in quiescent air.

In order to understand mass transfer due to molecular diffusion we will study
the process in a vessel filled with a coloured solution, for example iodine solution.
Water is carefully poured over the iodine solution, to avoid as far as possible
convection currents. The coloured solution and the water are noticeably separate
at the beginning of the experiment. After some time the upper layer becomes
coloured, while the layer beneath it is clear enough to see through. Eventually,
after long enough time has passed, the solution is the same colour throughout. So
quite obviously despite there being no convection currents iodine molecules were
transported from the lower to the upper part of the vessel. This can be explained
by the diffusion of iodine molecules in water.

During the process the single iodine molecules penetrate partly into areas
of higher and partly into areas of lower concentration, with out any preferred
direction. Despite this transport of iodine molecules from regions of high to regions
of low concentration take place. To help with understanding this concept, one
should think of two thin, equally sized volume elements cut out from both sides of
a horizontal cross section. Although the movements of a single iodine molecule in
one of these volume elements cannot be predicted, we can say that after a certain
time, on average a finite number of molecules from the lower element will pass
through the cross section and penetrate the upper element. In the same manner
a certain number of molecules will move in the opposite direction, from the upper
to the lower element. As there were more iodine molecules in the element below
the cross section, more molecules were going to move into the upper layer due to
the random molecular motion. A balancing out of the concentration takes place,
until enough time has passed and the concentration differences within the solution
have been dismantled.
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From a macroscopic standpoint molecular diffusion is mass transfer due to a
concentration difference. Other types of diffusion, namely diffusion due to pressure
differences (pressure diffusion) or temperature differences (thermal diffusion) will
not be discussed here. The mechanism of molecular diffusion corresponds to that
of heat conduction, whilst mass transfer in a flowing fluid, known for short as
convective mass transfer corresponds to convective mass transfer. Mass transfer
by diffusion and convection are the only sorts of mass transfer. Radiative heat
transfer has no corresponding mass transfer process.

1.4.1 Diffusion

The calculation of mass transfer by diffusion requires several definitions and rela-
tionships which will be outlined in the following.

1.4.1.1 Composition of mixtures

The composition of mixtures can be characterised in different ways. For a quan-
titative description the following quantities have to be introduced.

The mass fraction ξA is the mass MA of component A over the total mass M
in a volume element within a phase13:

ξA :=
MA

M
=

MA∑
K

MK

. (1.146)

The sum of all the mass fractions is∑
K

ξK = 1 . (1.146a)

The mole fraction x̃A is the number of moles NA of component A over the
total number of moles N in the mixture in a given phase:

x̃A :=
NA

N
=

NA∑
K

NK

. (1.147)

The sum of all the mole fractions is∑
K

x̃K = 1 . (1.147a)

The molar concentration of substance A is defined by

cA := NA/V . (1.148)

13The letter K under the summation sign means that the sum is taken over all the components
K.
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The molar concentration of the mixture is

c := N/V =
∑
K

cK ,

which gives for the mole fraction of component A

x̃A = cA/c .

For ideal gases cA = pA/RmT and c = p/RmT , is valid, where pA = x̃Ap is the
partial pressure of component A and Rm = 8.31451 J/(molK) is the molar gas
constant.

These quantities in a composition are not independent from each other. To
find a relationship between the mass and mole fractions, we multiply (1.147) by
the molar mass M̃A = MA/NA of component A. This gives

x̃AM̃A = MA/N .

Summation over all the components yields the average molar mass M̃ = M/N :∑
K

x̃KM̃K =
∑
K

MK/N = M/N = M̃ . (1.149)

This then gives the following relationship between the mole and mass fractions

ξA =
MA

M
=

MA

NA

NA

N

N

M
=

M̃A

M̃
x̃A . (1.150)

In the reverse case, when the mass fractions are known, the mole fractions come
from

x̃A =
M̃

M̃A

ξA , (1.151)

in which the average molar mass is found from the mass fractions and the molar
masses of the components as

1

M̃
=

N

M
=
∑
K

NK

M
=
∑
K

MK

M

NK

MK

or
1

M̃
=
∑
K

ξK

1

M̃K

. (1.152)

1.4.1.2 Diffusive fluxes

In each volume element the average particle velocities of each substance can be
different, so that the convection of the volume elements overlaps the relative move-
ment of the particles of different substances. This macroscopic relative movement
is known as diffusion. The average velocity of the particles of substance A is
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denoted by the vector wA. To describe diffusion we will introduce the relative
velocity wA − ω, where ω is a reference velocity which is yet to be defined. As
the diffusional flux (SI unit mol/m2s) of substance A, the quantity

jA := cA(wA − ω) (1.153)

is defined.
The reference velocity ω can be chosen to be the velocity w at the centre of

gravity of the mass. This is defined as the average mass velocity of a volume
element:

�w :=
∑
K

�KwK or w =
∑
K

ξKwK . (1.154)

The diffusional flux is then

jA = cA(wA − w) .

Multiplication with the molar mass M̃A yields with cAM̃A = �A

jAM̃A = j∗
A = �A(wA − w) , (1.155)

where j∗
A is the mass based diffusional flux of component A (SI unit kg/m2s).

From (1.154) and (1.155) it follows that

∑
K

j∗
K = 0 . (1.156)

The reference system using the average mass velocity w from (1.154) is called the
centre of gravity system. The momentum and energy balances for this system are
easily formulated.

The average molar velocity u can also be used as a further reference velocity.
It is defined by

u :=
∑
K

x̃KwK . (1.157)

The associated diffusional flux (SI units mol/m2s) is

ujA := cA(wA − u) . (1.158)

Taking into account cA = x̃Ac and
∑
K

cK = c it follows from (1.157) and (1.158)

that ∑
K

ujK = 0 .

A reference system with the average molar velocity is called the particle reference
system. Other reference systems and velocities are available in the literature [1.21].
The diffusional flux in one system can be transferred to any other system, as is
shown in the example which follows.
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Example 1.6: The diffusional flux of component A in a ’-reference system j
′

A = cA(wA −
ω

′

) is given for a reference velocity ω
′

=
∑
K

ζ
′

KwK , where for the “weighting factors” ζ
′

K ,∑
K

ζ
′

K = 1 is valid.

The diffusional flux of component A j
′′

A = cA(wA − ω
′′

) in ′′-reference system with a
reference velocity

ω
′′

=
∑
K

ζ
′′

KwK with
∑
K

ζ
′′

K = 1

has to be calculated. The general relationship between the diffusional fluxes jA and ujA

has to be derived.
It is j′′

A−j′

A = cA (ω′−ω′′) = cA

∑
K

(ζ ′K−ζ ′′K)wK . It follows further from j′

A = cA (wA−ω′)

that the velocity is wA = j′

A/cA + ω′. Therefore

j′′

A − j′

A = cA

∑
K

(ζ ′K − ζ ′′K)

(
j′

K

cK
+ ω′

)
= cA

∑
K

ζ ′K
j′

K

cK
+ cA ω′

∑
K

ζ ′K − cA

∑
K

ζ ′′K
j′

K

cK
− cA ω′

∑
K

ζ ′′K ,

from which, accounting for
∑
K

ζ ′K = 1 and
∑
K

ζ ′′K = 1 and because
∑
K

ζ ′K j′

K/cK = 0 the

relationship

j′′

A − j′

A = −cA

∑
K

ζ ′′K
j′

K

cK

is yielded. To change from the particle to the gravitational system we put in j ′′

A = jA,
ζ ′′A = ξA and j′

A = ujA which give

jA − ujA = −cA

∑
K

ξK
ujK

cK
.

Correspondingly the conversion of the diffusional flux from the gravitational to the particle
system gives

ujA − jA = −cA

∑
K

x̃K
jK

cK
.

In a mixture of two substances, components A and B, these relationships are

jA − ujA = −cA

(
ξA

cA
ujA +

ξB

cB
ujB

)
.

With ujA = −ujB and ξA/cA − ξB/cB = (V/M )(M̃A − M̃B) it follows that

jA − ujA = −cA
V

M
ujA (M̃A − M̃B)

and therefore with cA V/M = x̃A/M̃

jA = ujA

[
1 − x̃A

M̃
(M̃A − M̃B)

]
= ujA

M̃ − x̃A M̃A + x̃A M̃B

M̃
.

Then because M̃ = x̃A M̃A + x̃B M̃B the equation given above simplifies to

jA = ujA

M̃B

M̃
.

And correspondingly for component B

jB = ujB

M̃A

M̃
.
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1.4.1.3 Fick’s law

The diffusional flux of component A is proportional to the concentration gradient
grad cA. For the time being we will limit ourselves to a mixture of two components
A and B. We will also assume that diffusion only takes place along one coordinate
axis, for example the y-axis. The diffusional flux can be described by an empirical
statement corresponding to Fourier’s law

ujA = −DAB

dcA

dy
, (1.159)

which was first formulated by A. Fick14 and is called Fick’s first law after him.
The proportionality factor DAB (SI units m2/s) is the diffusion coefficient in a
mixture of two components A and B. Eq. (1.159) is valid when it is assumed that
the molar concentration c of the mixture is constant. This condition is fulfilled in
constant pressure, isothermal mixtures of ideal gases due to c = N/V = p/RmT .
Disregarding this assumption of c = const, the general equation for mixtures of
two substances is

ujA = −cDAB

dx̃A

dy
, (1.160)

as proved by de Groot [1.22]. In the gravitational system, the equivalent relation-
ship to Eq. (1.160), for the diffusional flux in the y direction is

j∗A = −�DAB

dξA

dy
. (1.161)

In a multicomponent mixture consisting of N components the diffusional flux j∗
A

of component A is given by [1.23]

j∗
A = �

N∑
K=1

K �=A

M̃AM̃K

M̃2
DAK grad x̃K . (1.162)

From this equation (1.161) is obtained for the special case of N = 2.

Example 1.7: It has to be shown that (1.161) is equivalent to (1.160).
The diffusional fluxes ujA and j∗A in the y-direction are linked by

j∗A = jA M̃A = ujA

M̃B M̃A

M̃

(see the solution to example 1.6). And with that

j∗A = −cDAB
∂x̃A

∂y

M̃B M̃A

M̃
.

Where c = N/V = �/M̃ , and by differentiation of x̃A = M̃ ξA/M̃A with M̃ = x̃A M̃A +
(1 − x̃A) M̃B it follows that

dx̃A =
M̃2

M̃AM̃B

dξA .

14Adolph Fick (1829–1901), Professor of Physiology in Zürich and Würzburg, discovered the
fundamental laws of diffusion.
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Then from the equation given above

j∗A = −�DAB
∂ξA

∂y

is obtained.

By exchanging the indices A and B in (1.161) the diffusional flux for component
B in the binary mixture can be found. As the sum of the two diffusional fluxes
disappears, according to (1.156), it follows that

j∗A + j∗B = −�DAB

dξA

dy
− �DBA

dξB

dy
= 0 .

Here dξA/dy = −dξB/dy, because ξA + ξB = 1, and therefore DAB = DBA. The
coefficient of diffusion of component A through component B is the same as the
diffusion coefficient of component B through component A. Therefore the indices
will no longer be used, and we will simply write D instead of DAB = DBA.

Typical values for the diffusion coefficient are 5 · 10−6 to 10−5 m2/s in gases,
10−10 to 10−9 m2/s in liquids and 10−14 to 10−10 m2/s in solid bodies. In gases the
molecules can move about more easily and therefore the diffusion coefficients are
greater than those for liquids, which in turn are larger than those in solid bodies.
Diffusion in solids is several magnitudes slower than in liquids, whilst in gases it
is fastest.

The diffusional flux can be calculated with the help of Fick’s law provided the
concentrations are known. If however the flux is known the concentration field
can be found by integration of Fick’s law. As a simple example we will take a
solid material, from which component A should be removed using a liquid solvent
B, Fig. 1.41.

Fig. 1.41: Diffusion through a
quiescent liquid film

The concentration of component A at the surface between the solid and the
liquid film is given by cA0, whilst the concentration of A in the bulk flow is
represented by cAδ. We will presume c = N/V = const . As the material only
moves in the y-direction, there is no need to note the mass transfer direction
in terms of vectors. The molar flux from the solid into the liquid, according to
(1.158), is

ṅA = cAwA = ujA + cAu

with ujA = −D dcA/dy and u = xAwA + xBwB. The velocity wB of the solvent in
the y-direction is zero. With a small reference velocity u, and if the concentration
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cA of substance A in the solvent is very low, the term cAu is negligible and so

ṅA = ujA = −D
dcA

dy
. (1.163)

At steady state, the same amount of A which flows into the liquid film also
flows out of the film, which means ṅA = const. Under the assumption that the
diffusion coefficient D is constant, by integrating the equation given above, it
follows that

ṅA = −D
cA0 − cAδ

δ
.

In a solid sphere of radius r0, which is surrounded by a liquid film of thickness
δ, the diffusional flux in the radial direction, according to (1.163), is

ṅA = ujA = −D
dcA

dr
. (1.164)

At steady state the molar flow which diffuses through the spherical shell is con-
stant,

ṄA = ṅA4πr2 = −D
dcA

dr
4πr2 , (1.165)

and with that
dṄA

dr
= 0 =

d

dr

(
−D

dcA

dr
r2

)
.

Assuming D = const and taking into account the boundary conditions cA(r =
r0) = cA0 and cA(r = r0 + δ) = cAδ the concentration profile

cA − cA0

cAδ − cA0

=
1/r − 1/r0

1/(r0 + δ) − 1/r0

(1.166)

can be found by integration. It corresponds to the temperature profile for steady
conduction in a hollow sphere according to (1.17). The diffusional flow, eq. (1.165),
found by differentiation is

ṄA = D
cA0 − cAδ

1/r0 − 1/(r0 + δ)
4π . (1.167)

1.4.2 Diffusion through a semipermeable plane. Equimo-
lar diffusion

In the previous example of the diffusion of component A from a solid substance
into a solvent we presumed a low convection velocity u and a low concentration
cA of A in the solvent. As a result a negligible convection flow cAu was found.
This supposition is not normally fulfilled. As a typical example we will consider a
liquid A in a cylindrical vessel which is evaporating in a quiescent gas B, Fig. 1.42.
The liquid level is kept at y = y1, or it changes so slowly that we can take it
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to be quiescent. At the surface of the liquid cA(y = y1) = cA1. At moderate
total pressure, cA1 can be found from the thermal equation of state for ideal
gases, as cA1 = pA1/RmT , where pA1 is the saturation partial pressure of A at
temperature T of the liquid. The solubility of gas B in liquid A is negligible. This
is a good approximation for water as the liquid A and air as gas B. A gaseous
mixture of A and B flows over the top of the cylinder y = y2, with a concentration
cA(y = y2) = cA2. The molar flux of component A in the direction of the y-axis
is, as before

ṅA = cAwA = ujA + cAu

with u = x̃AwA+x̃BwB. As gas B is stagnant in the cylinder, wB = 0, and therefore
u = x̃AwA. This is called diffusion through a semipermeable plane. The plane in
this case is the surface of the water which evaporates into the adjoining air. Only
water passes through, the surface is, therefore, semipermeable. The last equation
gives the relationship

ṅA = cAwA =
1

1 − x̃A
ujA , (1.168)

which replaces eq. (1.163) for small mole fractions x̃A of the dissolved substance.
In steady conditions dṅA/dy = 0, and with Fick’s law (1.160), it follows that

d

dy

(
cD

1 − x̃A

dx̃A

dy

)
= 0 . (1.169)

Here D = DAB is the binary diffusion coefficient. For mixtures of ideal gases
at constant pressure and temperature c = N/V = p/RmT is constant. The
diffusion coefficient only changes slightly with the composition of the mixture and
can therefore be presumed to be constant. This gives the following differential
equation for the concentration profile

d

dy

(
1

1 − x̃A

dx̃A

dy

)
= 0 ,

which because x̃B = 1 − x̃A can also be written as

d

dy

(
1

x̃B

dx̃B

dy

)
= 0

Fig. 1.42: Diffusion of component A in
a gas mixture of components A and B
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or
d

dy

dlnx̃B

dy
=

d2lnx̃B

dy2
= 0 (1.170)

It has to be solved under the boundary conditions

x̃B(y = y1) = x̃B1 = 1 − x̃A1 and

x̃B(y = y2) = x̃B2 = 1 − x̃A2 .

The solution is

x̃B

x̃B1

=

(
x̃B2

x̃B1

) y − y1

y2 − y1 . (1.171)

It is easy to check that the solution is correct: Taking logarithms of (1.171), gives
the following expression

ln
x̃B

x̃B1

=
y − y1

y2 − y1

ln
x̃B2

x̃B1

,

which disappears by differentiating twice with respect to y. Differentiation of
(1.171) gives the diffusional flux

ujA = −cD
dx̃A

dy
= cD

dx̃B

dy
= cD

x̃B

y2 − y1

ln
x̃B2

x̃B1

.

The associated molar flux is found from (1.168),

ṅA =
1

1 − x̃A
ujA =

1

x̃B
ujA

to be

ṅA =
cD

y2 − y1

ln
x̃B2

x̃B1

=
cD

y2 − y1

ln
1 − x̃A2

1 − x̃A1

. (1.172)

The average mole fraction of component B between y = y1 and y = y2 is

x̃Bm =
1

y2 − y1

y2∫
y1

x̃Bdy .

After insertion of x̃B from (1.171) and integration this yields

x̃Bm =
x̃B2 − x̃B1

ln(x̃B2/x̃B1)
. (1.173)

The average mole fraction is the logarithmic mean of the two values x̃B1 and x̃B2.
It is therefore possible to write (1.172) as

ṅA =
cD

x̃Bm

x̃B2 − x̃B1

y2 − y1

=
cD

(1 − x̃Am)

x̃A1 − x̃A2

y2 − y1

. (1.174)



1.4 The different types of mass transfer 75

Fig. 1.43: Mass transfer
in distillation

Fig. 1.44: Equimolar diffusion
between two containers

For ideal gases (1.173) and (1.174) can be still be written with partial pressures
pB and the total pressure p,

ṅA =
pD/RmT

y2 − y1

ln
pB2

pB1

=
pD/RmT

(y2 − y1) pBm

(pB2 − pB1) , (1.175)

where pBm is the logarithmic mean partial pressure

pBm =
pB2 − pB1

ln (pB2/pB1)
.

Equimolar counter diffusion appears in the distillation of binary mixtures. In
a distillation column the liquid falls downwards, and the vapour flows upwards,
Fig. 1.43. As the liquid flowing down the column is colder than the vapour flowing
upwards, chiefly the component with the higher boiling point, the so called least
volatile component condenses, whilst the vapour from the boiling liquid mainly
consists of the components with the lower boiling points, the more volatile com-
ponents. The molar enthalpy of vaporization is, according to Trouton’s rule, ap-
proximately constant for all components. If a certain amount of the least volatile
component condenses out from the vapour, then the same number of moles of the
more volatile substance will be evaporated out of the liquid. At the phase bound-
ary between liquid and vapour we have cAwA = −cBwB. The reference velocity
u is zero because cu = cAwA + cBwB. The molar flux transported to the phase
boundary from (1.158) and (1.160) is

ṅA = cAwA = ujA = −cD
dx̃A

dy
. (1.176)

Convective and diffusive flows are in agreement with each other.
Let us assume that two containers, each containing a different gas are linked

by a thin pipe between them, Fig. 1.44. Equimolar counter diffusion will also take
place in this case, if the pressure and temperature of both the gases are the same
and obey the thermal equation of state for ideal gases.
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We consider a volume of gas V in the pipe between the two containers. The
thermal equation of state for this volume is

p = (NA + NB)RmT/V .

At steady state the total pressure is invariant with time. Therefore

dp

dt
= (ṄA + ṄB)RmT/V = 0

which means that ṄA = −ṄB.

1.4.3 Convective mass transfer

Mass transfer from a flowing fluid to the surface of another substance, or between
two substances that are barely miscible, depends on the properties of the materials
involved and the type of flow. As in the case of convective heat transfer the flow
can be forced from outside through, for example, a compressor or a pump. This
is known as mass transfer in forced convection. If however mass transfer is caused
by a change in the density due to pressure or temperature variations, then we
would speak of mass transfer in free convection.

Following on from the definition equation (1.23) for the heat transfer coeffi-
cient, the molar flow transferred to the surface (index 0) is described by

ṄA0 := βcA∆cA (1.177)

and the molar flux is given by

ṅA0 = ṄA0/A = βc∆cA . (1.178)

The mass transfer coefficient βc with SI units of m/s or m3/(sm2) is defined
using these equations. It is a measure of the volumetric flow transferred per
area. The concentration difference ∆cA defines the mass transfer coefficient. A
useful choice of the decisive concentration difference for mass transfer has to be
made. A good example of this is for mass transfer in a liquid film, see Fig. 1.41
where the concentration difference cA0 − cAδ between the wall and the surface of
the film would be a a suitable choice. The mass transfer coefficient is generally
dependent on the type of flow, whether it is laminar or turbulent, the physical
properties of the material, the geometry of the system and also fairly often the
concentration difference ∆cA. When a fluid flows over a quiescent surface, with
which a substance will be exchanged, a thin layer develops close to the surface. In
this layer the flow velocity is small and drops to zero at the surface. Therefore close
to the surface the convective part of mass transfer is very low and the diffusive
part, which is often decisive in mass transfer, dominates.
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Fig. 1.45: Mass transfer from a
porous body into a gas flow

As the diffusive part is, according to Fick’s law (1.159), proportional to the
concentration gradient at the quiescent surface and therefore approximately pro-
portional to the concentration difference ∆cA, the mass transfer coefficient can be
usefully defined by

ujA0 := −
(
cD

dx̃A

dy

)
0

= β∆cA . (1.179)

The diffusional flux ujA0 is that at the surface (index 0). Therefore

β =
−(cD dx̃A/dy)0

∆cA

. (1.180)

The relationship between the molar flux according to (1.178) and the diffusional
flux from (1.179) is appropriately defined as

cA0wA0 = ṅA0 = ujA0 + cA0u0 = ujA0 + x̃A0ṅ0 . (1.181)

For a vanishing convective flow ṅ0 → 0 we have

cA0wA0 = ṅA0 = ujA0, (valid for ṅ0 → 0)

so that with help from the mass transfer coefficient from (1.179) the molar flux

ṅA0
= β∆cA (valid for ṅ0 → 0) (1.182)

can also be calculated.

In reality the concentration profile and the molar flux will differ from the values
calculated for ṅ0 → 0. As an example we will look at the scenario illustrated
in Fig. 1.45 where a porous body submerged in liquid A, for example water,
has a gas B e.g. an alcohol flowing over it. Liquid A evaporates in gas B, and
in reverse gas B mixes with liquid A in the porous body. The convective flux
cA0wA0 + cB0wB0 = c0u0 = ṅ0 does not completely disappear at the surface of the
porous body, so that the molar flux of A at the surface is given by the familiar
equation

ṅA0 = ujA0 + cA0u0 = ujA0 + x̃A0ṅ0 ,

where cA0u0 = x̃A0c0u0 = x̃A0ṅ0.
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Fig. 1.46: Concentration profile cA(y)
in mass transfer with a vanishing con-
vective flow (ṅ0 → 0) and with fi-
nite convection flows (ṅ0 > 0) .
Mass transfer into the (gaseous) phase

Fig. 1.47: Concentration profile cA(y)
for vanishing convective flow (ṅ0 →
0) and for finite convective flows
(ṅ0 < 0) . Mass transfer out of
the (gaseous) phase

The concentration profile is different as a result of the finite convective flux
when compared to the profile produced for vanishing convective flux ṅ0 → 0. The
greater the convective flux the larger the deviation in the concentration profile.
When the convection flux is in the direction of the wall, ṅ0 < 0, such as when a
vapour is condensing out of a mixture, the concentration profile will be steeper
as a result of the convective flux, Fig. 1.47. In conjunction with this the material
transported out of the phase by diffusion will increase, whilst in the case of mass
transport into the phase, Fig. 1.46, the diffusional transport decreases. The mass
transfer coefficient for vanishing convection flux (ṅ0 → 0), defined in (1.180) is
therefore different from that with finite convection flux, and so it is valid that

β(ṅ0 > 0) < β(ṅ0 → 0) ,

as can be seen recognised from Fig. 1.46, and

β(ṅ0 < 0) > β(ṅ0 → 0) ,

as is shown in Fig. 1.47. As an abbreviation

β(ṅ0 �= 0) = β• and β(ṅ0 = 0) = β

can be written. The superscript dot on mass transfer coefficients should indicate
that the convection flow ṅ0 is different from zero. Then the molar flux, according
to (1.182) can be calculated to be

ṅA0 = β•∆cA + x̃A0ṅ0 . (1.183)
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At the limit ṅ0 → 0, of vanishing convective flow or by equimolar diffusion, we
obtain β• = β = βc, as shown by comparing (1.181) and (1.178).

The easiest of all the different mass transfer coefficients to investigate is the
one for vanishing convective flows. It depends on the flow velocity, for example the
speed at which gas B in Fig. 1.45 flows over the porous body, the physical prop-
erties of the gas and the geometric form of the porous body. These quantities can
be combined,as will be shown later on, for certain geometries into dimensionless
numbers,

βL

D
= f

(
wL

ν
,

ν

D

)
(1.184)

or
Sh = f(Re, Sc) . (1.185)

The quantity βL/D, in which β is the mass transfer coefficient, L is a characteristic
length, for example the the length of the plate that the gas is flowing over in Fig.
1.45, and D is the diffusion coefficient, is called the Sherwood15 number Sh. ν/D
is the Schmidt16 number Sc and wL/ν is the Reynolds number Re defined with
the average velocity w and the kinematic viscosity ν of the gas. Relationships of
the type shown in (1.185) are found either by experiments or in simple cases by
solving the associated partial differential equations. This is the main subject of
the theory of mass transfer yet to be discussed. The relationships like those in
(1.185) for important practical geometries and flow regimes are available in the
relevant literature [1.23] to [1.26]. As the convective flux is often small the mass
transfer coefficient β• can be calculated by multiplying β by a correction factor
ζ = β•/β, which in most practical applications is only a marginally different from
1.

15Thomas Kilgore Sherwood (1903–1976) completed his PhD under the supervision of Warren
K. Lewis, after whom the Lewis number was named, in 1929 at the Massachussetts Institute of
Technology (MIT), Boston, USA. The subject of his thesis was “The Mechanism of the Drying
of Solids”. He was a professor at MIT from 1930 until 1969. His fundamental work on mass
transfer in fluid flow and his book “Absorption and Extraction” which appeared in 1937 made
him famous worldwide.

16Ernst Schmidt (1892–1975) first studied civil engineering in Dresden and Munich, and then
changed to electrical engineering. After working as an assistant to O. Knoblauch at the lab-
oratory for applied physics at the Technische Hochschule in Munich he became a professor at
the Technische Hochschule in Danzig (now Gdansk, Poland) in 1925. Following on from this, in
1937 he became the director of the Institute for Engine Research in the Aeronautics Research
Establishment at Braunschweig, and later was made a professor at the Technische Hochschule
in Braunschweig. In 1952 he took over from W. Nusselt the chair for Thermodynamics at the
Technische Hochschule, Munich. His scientific works includes solutions of the unsteady heat
conduction equation, the investigation of temperature fields in natural convection and methods
to make the thermal boundary layer visible. He first used the number, which is now named after
him, in a paper on the analogy between heat and mass transfer.
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1.5 Mass transfer theories

The calculation of the mass transfer coefficient can be carried out in different ways.
Therefore a decision has to be made as to the type of problem, and which mass
transfer theory is applicable to the solution of this problem, and therefore the
determination of the mass transfer coefficient. The most important are the film,
boundary layer and penetration theories. The essentials of these three theories
will be introduced here.

1.5.1 Film theory

Film theory goes back to work by Lewis and Whitman [1.27] from 1924. In order
to explain the principles we will assume that a substance A is transferred from
a quiescent solid or liquid surface, shown as a flat plate in Fig. 1.48, to flowing
fluid B. The concentration of A drops from cA0 at the plate surface to cAδ in the
fluid. Film theory comes from the assumption that mass transfer takes place in a
thin film of thickness δ near the wall, hence the name. Concentration and velocity
should only change in the y direction, but not, as is further assumed, with time
or in any other coordinate direction. In steady flow this results in a constant
molar flux ṅA = cAwA of A being transferred in the y direction. If this were not
the case, more A would flow into a volume element of the fluid than out of it,
and therefore the concentration of substance A would change with the time, or
material A could also be flowing in the x direction which would therefore cause a
concentration difference in another coordinate direction. However neither of these
scenarios are admissible in terms of the prerequisites for the application of film
theory. Therefore according to film theory

dṅA

dy
= 0 . (1.186)

Then for vanishing convective flux ṅ = ṅA + ṅB = 0 in the y direction, because of

ṅA = ujA + x̃Aṅ = ujA = −cD dx̃A/dy

we also get

d2x̃A

dy2
= 0 ,

if constant values for cD are presupposed. The concentration profile in the film
is a straight line

x̃A − x̃A0

x̃Aδ − x̃A0

=
y

δ
. (1.187)
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Fig. 1.48: Concentration profile at the
surface over which a fluid is flowing

On the other hand for vanishing convection at the wall, ṅ0 → 0, according to
(1.181)

ṅA0 = β(cA0 − cAδ) = −cD

(
dx̃A

dy

)
0

. (1.188)

Then from (1.187)

−cD

(
dx̃A

dy

)
0

= −c
D

δ
(x̃Aδ − x̃A0) =

D

δ
(cA0 − cAδ)

and therefore

β =
D

δ
. (1.189)

As the film thickness δ is not normally known, the mass transfer coefficient β,
cannot be calculated from this equation. However the values for the cases used
most often in practice can be found from the relevant literature (i.e. [1.23] to
[1.26]) which then allows the film thickness to be approximated using (1.189). In
film theory the mass transfer coefficient β for vanishing convection flux ṅ0 → 0 is
proportional to the diffusion coefficient D.

A different result is obtained when a finite convective flux ṅ is permitted. As
before

dṅA

dy
= 0 .

Then with the molar flux being

ṅA = ujA + x̃Aṅ = −cD dx̃A/dy + x̃Aṅ

we then, using the assumption that cD = constant, get a second order differential
equation

−cD
d2x̃A

dy2
+ ṅ

dx̃A

dy
= 0 ,

which has to be solved under the boundary conditions x̃A(y = 0) = x̃A0 and
x̃A(y = δ) = x̃Aδ. We can then rearrange the equation into

dlnx̃′
A

dy
=

ṅ

cD

with x̃′
A = dx̃A/dy. Integration taking account of the boundary conditions gives

the concentration profile x̃A(y) as

x̃A − x̃A0

x̃Aδ − x̃A0

=
exp(

ṅ

cD
y) − 1

exp(
ṅ

cD
δ) − 1

. (1.190)
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Fig. 1.49: Stefan correction factor
ζ = β•/β from film theory

The concentration profile for vanishing convection ṅ → 0 as given in (1.187) is
obtained from (1.190). A Taylor series of the exponential function at ṅ = 0 can
be developed to indicate this. The material flux transferred to the surface y = 0
(index 0 = wall) in the y-direction is

ṅA = −
(
cD

dx̃A

dy

)
0

+ x̃A0ṅ . (1.191)

According to film theory this is constant and equal to the value at the wall, where
ṅA = ṅA0 and ṅ = ṅ0. Differentiating (1.190) and introducing the result into
(1.191) yields

ṅA = −(x̃Aδ − x̃A0)
ṅ

exp(
ṅδ

cD
) − 1

+ x̃A0ṅ . (1.192)

When this is compared to (1.183), we get

β• =
ṅ/c

exp(
ṅδ

cD
) − 1

. (1.193)

Putting in the mass transfer coefficient β = D/δ for negligible convection from
(1.189), and using the principles of film theory the following relationship between
the mass transfer coefficients β• and β, as shown in Fig. 1.49, can be found:

β•

β
= ζ =

ṅ/cβ

exp(
ṅ

cβ
) − 1

. (1.194)

The factor ζ is known as the “Stefan correction factor”, [1.28]. In order to calculate
the mass transferred using film theory, the mass transfer coefficient β has to be
found. In cases where convection is negligible the mass transferred is calculated
from equation (1.181), whilst where convection is significant the mass transferred
is given by (1.183).
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As a special case (1.192) is also used for the situation of single side mass
transfer where ṅA = ṅ and ṅB = 0. It then follows from (1.192) that

x̃A0 − x̃Aδ

1 − x̃A0

= exp

(
ṅAδ

cD

)
− 1

or when solved for ṅA,

ṅA =
cD

δ
ln

1 − x̃Aδ

1 − x̃A0

=
cD

δ
ln

x̃Bδ

x̃B0

= cβ ln
x̃Bδ

x̃B0

(1.195)

it is in complete agreement with equation (1.172), which was found earlier.
In drying a wet material with air, the moisture content is calculated rather

than the mole fraction. We will consider, as an example, a solid material, which
contains water, that is to be dried by air. The equations and relationships already
derived can be used: we give the water index A and the air index B. As the water
content in moist air is very low, meaning ln(1 − x̃A) ≈ −x̃A, (1.195) can be also
be written as

ṅA = cβ (x̃A0 − x̃Aδ) .

We then want to introduce the specific humidity or moisture content, which is
defined by

XA := MA/MB ,

where MA is the mass of the water and MB is the mass of the dry air, and therefore
using the molar mass M̃ = M/N we can also write

XA =
M̃A

M̃B

NA

NB

=
M̃A

M̃B

x̃A

x̃B

=
M̃A

M̃B

x̃A

1 − x̃A

.

Solving for the mole fraction for water gives

x̃A =
XAM̃B/M̃A

1 + XAM̃B/M̃A

.

The water content at ambient pressure is of the order 20·10−3 kg/kg, which makes
the term XA M̃B/M̃A ≈ 0.03 	 1. The approximation

x̃A = XAM̃B/M̃A

is then valid. The transferred molar flux of water will be

ṅA = cβ
M̃B

M̃A

(XA0 − XAδ)

with the mass flux as

ṁA = ṅAM̃A = cβM̃B(XA0 − XAδ) .

Using c = p/RmT and the gas constant for air RB = Rm/M̃B, we get

ṁA =
p

RBT
β (XA0 − XAδ) (1.195a)

for the mass flux of water.
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1.5.2 Boundary layer theory

Boundary layer theory, just like film theory, is also based on the concept that mass
transfer takes place in a thin film next to the wall as shown in Fig. 1.48. It differs
from the film theory in that the concentration and velocity can vary not only in the
y-direction but also along the other coordinate axes. However, as the change in the
concentration profile in this thin film is larger in the y-direction than any of the
other coordinates, it is sufficient to just consider diffusion in the direction of the
y-axis. This simplifies the differential equations for the concentration significantly.
The concentration profile is obtained as a result of this simplification, and from
this the mass transfer coefficient β can be calculated according to the definition in
(1.179). In practice it is normally enough to use the mean mass transfer coefficient

βm =
1

L

L∫
x=0

β dx .

This can be found, for forced flow from equations of the form

Shm = f(Re, Sc)

with the mean Sherwood number Shm = βmL/D. The function for the mean
Sherwood number is practically identical to that for the average Nusselt number

Num = f(Re, Pr)

and is well known for surfaces over which the fluid flows. For example they can
be taken from the [1.29], where the Nusselt number has to be replaced by the
Sherwood number and the Prandtl number by the Schmidt number.

The determination of heat transfer coefficients with the assistance of dimen-
sionless numbers has already been explained in section 1.1.4. This method can
also be used for mass transfer, and as an example we will take the mean Nusselt
number Num = αmL/λ in forced flow, which can be represented by an expression
of the form

Num = c Ren Prm (1.196)

In (1.196) the quantities c, n,m still depend on the type of flow, laminar or turbu-
lent, and the shape of the surface or the channel over or through which the fluid
flows. Correspondingly, the mean Sherwood number can be written as

Shm = c Ren Scm . (1.197)

The average mass transfer coefficient can be calculated from (1.197). It can also
be found by following the procedure outlined for average heat transfer coefficients,
and dividing (1.197) by (1.196). This then gives a relationship between the heat
and mass transfer coefficients,

Shm

Num

=
βm

D

λ

αm

(
Sc

Pr

)m

=
(

a

D

)m

= Lem
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Fig. 1.50: Stefan correction ζ = β•

m/βm

for film, boundary layer and penetration
theory, from [1.30]

or
βm =

αm

� cp

Lem−1 . (1.198)

Here m ≈ 1/3 and the dimensionless quantity Le = a/D is called the Lewis17

number, and for ideal gases is of the order of 1, so a general approximation

βm = αm/� cp (1.199)

is valid. Some values for the Lewis number are given in Table 1.5.

Table 1.5: Lewis numbers of some gas mixtures at 0 ◦C and 100hPa

in air in hydrogen in carbon dioxide

Water vapour 0.87 1.84 0.627
Carbon dioxide 1.33 2.34 —
Methanol 1.41 2.68 1.03
Ethanol 1.79 3.57 1.33
Benzene 2.40 4.24 1.74

Equations (1.198) and (1.199) are also known as Lewis’ equations. The mass
transfer coefficients βm calculated using this equation are only valid, according
to the definition, for insignificant convective currents. In the event of convection
being important they must be corrected. The correction factors ζ = β•

m/βm for
transverse flow over a plate, under the boundary layer theory assumptions are
shown in Fig. 1.50. They are larger than those in film theory for a convective flow
out of the phase, but smaller for a convective flow into the phase.

17Warren Kendall Lewis (1882–1978) studied chemical engineering at the Massachussetts In-
stitute of Technology (MIT) and gained his chemistry PhD in 1908 at the University of Breslau.
Between 1910 and 1948 he was a professor at MIT. His research topics were filtration, distilla-
tion and absorption. In his paper “The evaporation of a liquid into a gas”, Mech. Engineering
44 (1922) 445–448, he considered simultaneous heat and mass transfer during evaporation and
showed how heat and mass transfer influence each other.
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1.5.3 Penetration and surface renewal theories

The film and boundary layer theories presuppose steady transport, and can there-
fore not be used in situations where material collects in a volume element, thus
leading to a change in the concentration with time. In many mass transfer appa-
ratus fluids come into contact with each other or with a solid material for such a
short period of time that a steady state cannot be reached. When air bubbles, for
example, rise in water, the water will only evaporate into the bubbles where it is
contact with them. The contact time with water which surrounds the bubble is
roughly the same as that required for the bubble to move one diameter further.
Therefore at a certain position mass is transferred momentarily. The penetration
theory was developed by Higbie in 1935 [1.31] for the scenario described here of
momentary mass transfer. He showed that the mass transfer coefficient is inversely
proportional to the square root of the contact (residence) time and is given by

βm =
2√
π

√
D

t
. (1.200)

Here βm is the mean mass transfer coefficient from time t = 0 to time t. Experience
tells us that useful values for the mass transfer coefficient can be obtained when
the contact time is calculated from t = d/w, where d is the diameter of the bubbles
or droplets which are rising or falling, and w is the mean rise or fall velocity. It is
more difficult to determine the contact time of a liquid falling through a packing
material with a gas flowing through it.

Dankwerts’ surface renewal theory from 1951 [1.32], represents an extension
to penetration theory. Higbie always presupposed that the contact time between
the phases was the same at all positions in the apparatus. Dankwerts went on to
suggest that fluid elements which come into contact with each other, have different
residence times which can be described by a residence time spectrum. One has
to imagine that mass exchange between two different materials in the fluid phase
takes place in individual fluid cells as indicated in Fig. 1.51. The contact time
between the individual fluid elements obeys a distribution function, and after a
certain amount of time an element can be dislodged from the contact area and be
replaced by another one. It is for this reason that we speak of a surface renewal
theory. It has been successfully applied in the absorption of gases from agitated
liquids. However the fraction of time for surface renewal is equally as unknown
as the contact times in penetration theory, so while both theories are useful for

Fig. 1.51: Surface renewal theory.
Possible flow patterns for contact be-
tween two liquids or between a liquid
and a gas
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the understanding of mass transfer processes, often neither is applicable for the
calculation of the quantities involved in mass transfer.

1.5.4 Application of film theory to evaporative cooling

We will look at evaporative cooling as an application of film theory. A solid,
adiabatic, insulated wall is covered by a film of water, over which unsaturated
humid air flows, as shown in Fig. 1.52.

The humid air takes water vapour from the film, by which the film of water
and the air are cooled, until a time and position constant temperature is reached.
It will be constant over the whole film because the adjoining wall is adiabatic and
therefore no heat can be added to it. This adiabatic permanent temperature is
called the wet bulb temperature The resistance to mass transfer is only on the gas
side. Once the permanent temperature has been reached water still evaporates
in the unsaturated air flowing over it. As the temperature of the water film is
constant, the enthalpy of vaporization required for the evaporation will be removed
as heat from the air. Fig. 1.52 indicates how the temperature and partial pressure
of the water vapour in the air changes at this permanent state. The wet bulb
temperature is lower than the temperature of the humid air flowing over the
water surface. Therefore a wet substance can be cooled down to its wet bulb
temperature by evaporation.

We wish to find out the magnitude of the wet bulb temperature. It is deter-
mined by the amount of water transferred from the water surface into the humid
air. As this is diffusion through a semipermeable plane the amount of water (sub-
stance A) being transferred to the air at the phase boundary I between the water
and the air, according to (1.195) is given by

ṁA = M̃Acβ ln
1 − x̃Aδ

1 − x̃AI

, (1.201)

when x̃AI is the mole fraction of water vapour in air at the surface of the water
and x̃Aδ is the mole fraction at a large distance away from the water surface. As

Fig. 1.52: Adiabatic evapora-
tive cooling. Temperature ϑ and
partial pressure pA of the water
in the air
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the amount of dry air (substance B) does not change it is useful to introduce the
moisture content XA = MA/MB. It is

x̃A =
NA

N
=

NA

NA + NB

=
XAM̃B/M̃A

1 + XAM̃B/M̃A

.

Then (1.201) can also be written as

ṁA = M̃Acβ ln
1 + XAIM̃B/M̃A

1 + XAδM̃B/M̃A

. (1.202)

Here both the moisture content XAI at the water surface and the mass flux ṁA

of the water being transferred are still unknowns. At the surface of the water
saturation prevails and so the moisture content XAI, as taught by thermodynamics
[1.33], is given by

XAI = 0.622
ps(ϑI)

p − ps(ϑI)
(1.203)

where ps is the saturation pressure of the water vapour at temperature ϑI at the
surface.

The energy balance is available as a further equation. In order to set this up
we will consider a balance region on the gas side, depicted by the dotted lines in
Fig. 1.53, from the gas at the surface of the film to a point y. The energy balance

Fig. 1.53: Energy balance for
evaporative cooling

for a steady-state flow is

q̇I + ṁAhI = q̇ + ṁAh = const .

In this equation the heat fluxes q̇I and q̇ are in the opposite direction to the y axis
and therefore negative. From differentiation we get

d

dy
(q̇ + ṁAh) = 0 .

This result and the introduction of q̇ = −λdϑ/dy and dh = cpAdϑ for the tem-
perature pattern ϑ(y) produces the ordinary differential equation

−λ
d2ϑ

dy2
+ ṁAcpA

dϑ

dy
= 0 , (1.204)
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which has to be solved for the boundary conditions

ϑ(y = 0) = ϑI and q̇I = −λ

(
dϑ

dy

)
y=0

,

which gives

ϑ − ϑI = − q̇I

ṁAcpA

[
exp

(
ṁAcpA

λ
y

)
− 1

]
. (1.205)

The temperature ϑδ at a large distance y = δ away from the surface is therefore

ϑδ − ϑI = − q̇I

ṁAcpA

[
exp

(
ṁAcpA

λ
δ

)
− 1

]
. (1.206)

If the rate of evaporation is very small ṁA → 0, heat will only be transferred by
conduction perpendicular to the flow direction of the humid air. The heat flux at
the water surface will then be

q̇I = α(ϑI − ϑδ) (ṁA → 0) . (1.207)

The heat transfer coefficient α is defined, just as in section 1.1.3, by this equation.
On the other hand with the limit ṁA → 0 we obtain, from (1.206):

ϑδ − ϑI = − q̇I

ṁAcpA

[
1 +

ṁAcpA

λ
δ + . . . − 1

]
(1.208)

or

q̇I =
λ

δ
(ϑI − ϑδ) (ṁA → 0) .

As the comparison with (1.207) shows, α = λ/δ. We put this into (1.206) and
further note that the heat flow to the water surface is used for evaporation. It
can then be said that

q̇I = −ṁA∆hv ,

where ∆hv is the enthalpy of vaporization of the water at temperature ϑI. Eq.
(1.206) is then rearranged to form

ṁAcpA

α
= ln

[
1 +

cpA

∆hv

(ϑδ − ϑI)

]
. (1.209)

The quantities ṁA and ϑI are unknowns, so by introducing the mass balance
from eq. (1.202) we have a second equation which can be used to find these two
unknowns. The mass flux, ṁA, can be eliminated from (1.209) with the help of
(1.202), leaving the following relationship for the wet bulb temperature ϑI

ϑδ − ϑI =
∆hv

cpA

⎡⎢⎢⎣
(

1 + XAIM̃B/M̃A

1 + XAδM̃B/M̃A

)(M̃AcβcpA/α)

− 1

⎤⎥⎥⎦ . (1.210)
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In cases of small evaporation rates ṁA → 0 this can be simplified even more. We
can then write (1.202) as

1 + XAIM̃B/M̃A

1 + XAδM̃B/M̃A

= exp
ṁA

M̃Acβ
= 1 +

ṁA

M̃Acβ
+ . . . .

Therefore when the evaporation rate is small, we get

ṁA = M̃B cβ
XAI − XAδ

1 + XAδM̃B/M̃A

.

With this, equation (1.208) and q̇I = −ṁA∆hv, we get the following relationship
for small evaporation rates ṁA → 0

ϑδ − ϑI = M̃B

cβ

α
∆hv

XAI − XAδ

1 + XAδM̃B/M̃A

. (1.211)

The wet bulb temperature ϑI, can be obtained from (1.210) or (1.211), and then
the moisture content XAI, which is determined by the temperature ϑI , can be
found by using (1.203).

In reverse, by measuring the wet bulb temperature the moisture content XAδ

of the humid air can be calculated using the two equations. The wet bulb
hygrometer, sometimes called Assmann’s Aspiration Psychrometer works by this
method. It consists of two thermometers, one of which is covered by a porous
textile, the lower part of which is dipped into a container full of water, so that the
bulb of the thermometer is always wet. Air is blown over the thermometer and
after some time it reaches the wet bulb temperature ϑI. Meanwhile the second,
so called dry thermometer, indicates the temperature ϑδ of the air flowing around
it. With these measured values the moisture content XAδ of the humid air can be
found using equation (1.210) or (1.211).

Example 1.8: The dry thermometer of a wet bulb hygrometer shows a temperature ϑδ of
30 ◦C, whilst the wet thermometer indicates a temperature ϑI = 15 ◦C. The total pressure
is p = 1000 mbar. The moisture content XAδ and the relative humidity of the air have to be
calculated. For humid air, Lewis’ equation (1.198) yields a value of M̃AcβmcpA/αm = 1.30,
the enthalpy of vaporization of water at 15 ◦C is ∆hv = 2466.1kJ/kg, the specific heat
capacity cpA = 1.907kJ/kgK and the molar mass of water is M̃A = 18.015kg/kmol, that
of the dry air is M̃B = 28.953kg/kmol.
According to (1.203) with pS(15

◦C) = 17.039mbar,XAI = 0.622·17.039/(1000−17.039) =
1.078 · 10−2. It then follows from (1.210) that

(30 − 15)oC =
2466.1 · 103

1907

[(
1 + 1.078 · 10−2 · 28.953/18.015

1 + XAδ · 28.953/18.015
)1.3

− 1

]
oC .

This gives XAδ = 5.189 · 10−3. Almost exactly the same value is obtained using (1.211),
where XAδ = 5.182 · 10−3. The relative humidity is

ϕ =
pA

pAs
=

XAδ

0.622 + XAδ
· p

ps(30
◦C)

=
5.189 · 10−3

0.622 + 5.189 · 10−3

1000

42.41
= 0.195 = 19.5% .

(This value can also be found from a Mollier’s h1+X ,X-diagram).
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1.6 Overall mass transfer

Whilst heat is often transferred from one fluid to another via a solid wall between
them, in mass transfer one or more components in a phase are transferred to
another that is in direct contact with it, and not separated by a solid wall. In
fluid flow, the phase boundary has an irregular shape due to the forces acting at
the interface between the two phases. As an example we will study the transfer of
component A, from a binary gaseous mixture of A and B, into a liquid C in which
only A dissolves. The mole fractions of A in the gas phase ỹA and in the liquid
phase x̃A are shown in Fig. 1.54. The integral mean values for the mole fractions
in each phase are indicated by ỹAm and x̃Am. Component A has to overcome three
mass transfer resistances on its way from the gas to the liquid phase: the resistance
in the gas phase itself, that at the interface between the two phases and finally
the resistance within the liquid phase. However, mass transfer between the liquid
and gas interface is very fast when compared to the much slower speed of the
component within either the gas or liquid phases. The resistance at the interface
can therefore be neglected, and it can also be assumed that an equilibrium state
in terms of mass transfer exists at the interface. As mass transfer is determined
by diffusion in the two phases, one speaks of a two film theory of mass transfer.
Its fundamental assumption of equilibrium at the interface is no longer valid if a
chemical reaction is taking place there or if traces of a surfactant have collected at
the interface. In addition to this, equilibrium at the interface cannot be presumed
if very large mass flow rates are to be transferred, as here the mass exchange in
the phases is very quick.

In the case of equilibrium at the phase boundary, which we want to discuss
here, with given values for pressure and temperature, the mole fractions ỹAI and
x̃AI at the phase boundary are linked by the relationship

pAI = ỹAI p = f(x̃AI) (1.212)

as taught in equilibrium thermodynamics. In the following it will be presumed
that, close to the phase boundary, mass transfer is only due to diffusion and
the convective flows are very small. This allows the use of eq. (1.181), for mass
transfer at the phase boundary, for each of the two phases. Taking into account the

Fig. 1.54: Mole fractions during mass
transfer from a gas to a liquid phase
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relationship between the mole fraction and the molar concentration, (cA/c)G = ỹA

and (cA/c)L = x̃A (G = gas, L = liquid), it follows that the mass flux in the gas
phase is

ṅAI = (βc)G (ỹAm − ỹAI) (1.213)

and in the liquid phase

ṅAI = (βc)L (x̃AI − x̃Am) . (1.214)

Which then gives

ỹAm − ỹAI =
ṅAI

(βc)G

(1.215)

and

x̃AI − x̃Am =
ṅAI

(βc)L

. (1.216)

The mole fractions ỹAI and x̃AI at the interface are dependent on each other ac-
cording to the thermodynamic relationship given in (1.212). As gases are only
slightly soluble in liquids the mole fraction x̃AI is normally very small. Then be-
cause of Henry’s18 law eq. (1.212) can be approximated by the linear relationship

ỹAI = kHx̃AI/p (1.217)

in which the Henry coefficient for binary mixtures is only dependent on the tem-
perature, kH(ϑ). The mole fraction x̃Am in the liquid can, with the help of Henry’s
law, be related to a mole fraction ỹAeq in the gas phase, such that,

ỹAeq = kHx̃Am/p , (1.218)

where ỹAeq is the mole fraction of A in the gas which is in equilibrium with the
liquid mole fraction x̃Am. With (1.217) and (1.218), (1.216) is transformed into

ỹAI − ỹAeq =
ṅAIkH

(βc)L p
. (1.219)

Adding (1.215) and (1.219) gives

ỹAm − ỹAeq = ṅAI

[
1

(βc)G

+
kH

(βc)L p

]
.

This will then be written as

ṅAI = kG (ỹAm − ỹAeq) , (1.220)

with the gas phase overall mass transfer coefficient

1

kG

=
1

(βc)G

+
kH

(βc)L p
. (1.221)

18Named after William Henry (1775–1836), a factory owner from Manchester, who first put
forward this law in 1803.
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Eliminating the mole fraction ỹAm from (1.215) by ỹAm = kHx̃Aeq and the mole
fraction ỹAI by (1.217), gives, with (1.216), a equivalent relationship equivalent to
eq. (1.220)

ṅAI = kL (x̃Aeq − x̃Am) (1.222)

with the liquid phase overall mass transfer coefficient

1

kL

=
p

kH(βc)G

+
1

(βc)L

. (1.223)

The resistance to mass transfer according to (1.221) and (1.223) is made up of the
individual resistances of the gas and liquid phases. Both equations show how the
resistance is distributed among the phases. This can be used to decide whether
one of the resistances in comparison to the others can be neglected, so that it is
only necessary to investigate mass transfer in one of the phases. Overall mass
transfer coefficients can only be developed from the mass transfer coefficients if
the phase equilibrium can be described by a linear function of the type shown
in eq. (1.217). This is normally only relevant to processes of absorption of gases
by liquids, because the solubility of gases in liquids is generally low and can be
described by Henry’s law (1.217). So called ideal liquid mixtures can also be
described by the linear expression, known as Raoult’s law. However these seldom
appear in practice. As a result of all this, the calculation of overall mass transfer
coefficients in mass transfer play a far smaller role than their equivalent overall
heat transfer coefficients in the study of heat transfer.

1.7 Mass transfer apparatus

In mass transfer apparatus one of two processes can take place. Multicomponent
mixtures can either be separated into their individual substances or in reverse can
be produced from these individual components. This happens in mass transfer
apparatus by bringing the components into contact with each other and using
the different solubilities of the individual components in the phases to separate
or bind them together. An example, which we have already discussed, was the
transfer of a component from a liquid mixture into a gas by evaporation. In the
following section we will limit ourselves to mass transfer devices in which physical
processes take place. Apparatus where a chemical reaction also influences the
mass transfer will be discussed in section 2.5. Mass will be transferred between
two phases which are in direct contact with each other and are not separated
by a membrane which is only permeable for certain components. The individual
phases will mostly flow countercurrent to each other, in order to get the best mass
transfer. The separation processes most frequently implemented are absorption,
extraction and rectification.

In absorption one or more components from a gaseous mixture are absorbed
by either a liquid or a solid. In extraction individual components of a mixture
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of solids or liquids are dissolved in another liquid. Finally, rectification is used
to separate a liquid mixture into individual components or mixtures, so-called
fractions. In this case the liquid flows down the column where it is in contact
with the vapour rising up the column and individual components are exchanged
between the vapour and liquid.

Mass transfer apparatus are normally columns where one phase, generally the
gas is introduced at the base of the column, whilst the other phase, usually a
liquid, is fed in at the top. In order to intensify the mass transfer the internal
surface area of the column should be as large as possible. This can be done by
collecting the liquid on internals in the column and bubbling the gas through
it. Distillation trays are such internals. A distillation tray is a plate inside the
column that holds a pool of the downflowing liquid, usually a few centimetres
deep, through which the upwards flowing vapour passes. An alternative is the
addition of packing in the column which also hold a pool of the downflowing
liquid which the rising vapour passes through, thereby encouraging good mixing
between the two phases. The most frequently used packing include spheres, rings
with flat or grooved surfaces, cross-partition rings, saddle packings, wire gauze or
wire helices. Information on the different designs for mass transfer devices can be
found in the literature [1.34]. The various types of mass transfer apparatus will
not be discussed in this book as we are only interested in determining the size of
the apparatus needed for a given separation process.

1.7.1 Material balances

A material balance is always required to determine the size of mass transfer appa-
ratus, irrespective of the design. So as the energy balance links the temperatures
of the fluid flows in a heat exchanger, the mass balance delivers the concentrations
of the fluids.

As a typical example of an application we will look at an absorption column,
Fig. 1.55, in which component A in a gas mixture flowing up the column is dis-
solved in a liquid flowing countercurrent to it.

We will presume that contact between two immiscible phases occurs, so that
the following balance equations are valid, independent of whether a packed, falling
film or plate column is being investigated. The raw gas consists of a carrier gas
G and the component A which will be absorbed. The liquid is made up of the
solvent L and the absorbed component A. The molar flow rate, in a cross section,
of the rising gas is therefore ṄG + ṄGA, and that of the liquid flowing downwards
is ṄL + ṄLA. As the molar flow rates ṄG and ṄL do not change through the
column the composition of the streams can be described by the mole ratios of the
component to the solvent or the carrier gas

X̃ = ṄLA/ṄL and Ỹ = ṄGA/ṄG ,
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Fig. 1.55: Countercurrent ab-
sorber

where X̃ is the average mole ratio of component A in the liquid and Ỹ is the
average mole ratio of A in the gas phase. The material balance over the total
column between the inlet i and the outlet (exit) e of the liquid is

ṄLX̃i − ṄGỸi − ṄLX̃e + ṄGỸe = 0

or
ṄL

ṄG

=
Ỹe − Ỹi

X̃e − X̃i

. (1.224)

The changes in the gas and liquid compositions are determined by the ratio of
the molar flow rates of the gas and liquid streams. The corresponding material
balance for a control volume between stage e and any other stage b inside the
column is,

ṄLX̃i − ṄGỸi − ṄLX̃ + ṄGỸ = 0

or

Ỹ =
ṄL

ṄG

X̃ +

(
Ỹi −

ṄL

ṄG

X̃i

)
. (1.225)

Therefore at any stage in the column the average liquid mole ratio X̃ has an
associated value for the average gas mole ratio Ỹ . Equation (1.225) is represented
by a straight line in a Ỹ , X̃-diagram.

In a similar manner to that for the absorption column a linear relationship
between the compositions of the two phases can be found for extraction and recti-
fication. To illustrate this we will look at a rectification column. The basic process
of rectification is when boiling a multicomponent mixture the vapour generated
flows upwards countercurrent to the condensate which falls down the column. As
the condensate is colder than the vapour, the components with higher boiling
points, the least volatile, condense. They release their enthalpy of condensation
to the components with the lower boiling points, the so called more volatile com-
ponents, which are vaporized. This causes the vapour to become rich in the more
volatile components while the less volatile components make up the liquid. The
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Fig. 1.56: Continuous rectification. Rectifying column R, condenser C and boiler V

basic concept of a rectification column is shown in Fig. 1.56. The liquid mixture
which is to be separated, called the feed, flows into a still or boiler V with a molar
flow rate ṄF. In the boiler, heat Q̇V is added to generate vapour which then flows
towards the top of the column. After the vapour leaves the top of the column it
is fed to a condensor C where heat Q̇C is removed and hence the vapour is totally
condensed. Part of the condensate is fed back into the top of the column as reflux
and flows countercurrent back down the column, all the while undergoing heat
and mass transfer with the rising vapour. The rest of the condensate, known as
the distillate, is taken away as the product stream ṄD. To ensure that the com-
position in the still is constant a further stream of flowrate ṄB must constantly
be removed from the bottom of the column. This stream is called the bottom
product. The material balance over the whole column is

ṄF = ṄD + ṄB

ṄFx̃F = ṄDx̃D + ṄBx̃B .

From which follows
ṄD

ṄF

=
x̃F − x̃B

x̃D − x̃B

. (1.226)

The mole fractions of the feed, bottom product and the distillate determine the
ratio of feed to product flow rates. In a control volume from the top of the
column to any cross section b, as shown in the right hand picture in Fig. 1.56, the
material balance is as follows, when the mole fraction of the volatile components
in the vapour is represented by ỹ, and the fraction in the liquid is indicated by x̃,

ṄG = ṄL + ṄD

and

ṄGỹ = ṄLx̃ + ṄDx̃D .
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As shown previously both equations yield a linear relationship between ỹ and x̃:

ỹ =
ṄL

ṄL + ṄD

x̃ +
ṄD

ṄL + ṄD

x̃D . (1.227)

1.7.2 Concentration profiles and heights of mass transfer
columns

The global mass balance allows the average composition in a phase to be associ-
ated with that of the other phase. However, the local composition changes are still
not known. In order to find this out a similar balance to that around a differential
element in a heat exchanger, in this case a mass balance must be completed. Inte-
gration then gives the composition pattern along the whole exchanger. Once the
concentration changes in the column are determined, the height of the column for
a required outlet concentration of one of the components, can be calculated. The
procedure for completing this task will be shown using, once again, the examples
of a absorber and a packed rectification column.

This type of calculation does not have to be carried out for a plate column
because the two phases are well mixed on each plate. This means that on each
individual plate a state of equilibrium can be presumed. Therefore a volume el-
ement is identical to an equilibrium stage, and the height of the column can be
obtained from the number of equilibrium stages required for a particular separa-
tion. This is a thermodynamic rather then mass transfer problem. This explains
why a mass transfer device, such as a distillation column can be sized without
any knowledge of the laws of mass transfer.

A packed column is filled with a packing material. The complex shape of the
packing makes it difficult to ascertain the area of the phase interface where mass
transfer takes place. Therefore only the product of the mass transfer coefficients
and the interface area will be determined. The area of the interface AI is related
to the volume of the empty column VK, and the interface area per volume a∗ is
defined by

a∗ := AI/VK

with the volume VK = AKZ, where AK is the cross sectional area of the empty
column and Z is its height.

Fig. 1.57: Mass transfer in an
absorber
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We will first consider a control volume between two cross sections in an ab-
sorber, separated by a distance dz, Fig. 1.57. The amount of material transferred
to the liquid over the interface area dAI

ṅAI dAI = ṅAI a
∗AK dz

is given up by the gas which effectively reduces the amount of component A in the
gas phase by ṄGdỸ . Simultaneously the amount of component A in the liquid
increases by −ṄGdỸ = ṄLdX̃ . It is therefore valid that

ṅAI a
∗AK dz = −ṄG dỸ . (1.228)

The molar flux ṅAI is given by (1.220), under the assumption that the amount of
component A in the liquid and vapour phases is small, and so the values for the
mole fractions ỹAm = Ỹ and ỹAeq = Ỹeq can be replaced by mole ratios. It then
follows from (1.228) that

kG(Ỹ − Ỹeq) a∗AK dz = −ṄG dỸ

and

dz =
−ṄG

(kGa∗)AK

dỸ

Ỹ − Ỹeq

(1.229)

which is comparable to the relationship for heat transfer in countercurrent flow,
eq. (1.112). When integrating, the change in the mole ratio Ỹeq at the phase
boundary along the length of the column, and therefore that of the average mole
ratio Ỹ must be considered. The balance equation (1.225) gives

X̃ =
ṄG

ṄL

(Ỹ − Ỹi) + X̃i .

Then using Henry’s law, Ỹeq = k+
HX̃ with k+

H = kH/p it follows that

Ỹeq = k+
H

ṄG

ṄL

(Ỹ − Ỹi) + k+
H X̃i . (1.230)

This allows Ỹ − Ỹeq to be expressed as a linear function of the mole ratio Ỹ such
that

Ỹ − Ỹeq =

(
1 − k+

H

ṄG

ṄL

)
Ỹ − k+

H

(
X̃i −

ṄG

ṄL

Ỹi

)
= aỸ − b . (1.231)

Equation (1.229) can then be transformed into

dz =
−ṄG

(kGa∗)AK

dỸ

aỸ − b
. (1.232)

The variation of the mole ratio Ỹ (z) over the height of the column can be found
by integration. Using (1.225), the equation for the straight line from the material
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balance, the value for X̃ , the mole ratio in the liquid, which corresponds to each
Ỹ , the mole ratio in the gas, can be calculated. It then follows from (1.232) that

z =
−ṄG

(kGa∗)AK

Ỹ∫
Ỹe

dỸ

aỸ − b
=

−ṄG

(kGa∗)AKa
ln

aỸ − b

aỸe − b

or with (1.231) we get

z =
ṄG

(kGa∗)AK

(
1 − k+

HṄG/ṄL

) ln
(Ỹ − Ỹeq)o

Ỹ − Ỹeq

. (1.233)

The necessary column height Z can be found from this equation, when proceeding
to the liquid inlet cross section i at the top of the column

Z =
ṄG

(kGa∗)AK(1 − k+
HṄG/ṄL)

ln
(Ỹ − Ỹeq)e

(Ỹ − Ỹeq)i
. (1.234)

The meaning of the mole ratio variations (Ỹ − Ỹeq)e and (Ỹ − Ỹeq)i are shown in
Fig. 1.58.

Fig. 1.58: Equilibrium and balance lines for an absorber

The material balance from (1.228) is once again the starting point for investi-
gating the concentration profile in a packed column being used to rectify a gaseous
mixture. In this case the mole fractions will be used instead of the mole ratios.
The amount transferred from the gas to the liquid phase is −ṄGdỹ, wherein ṄG

is now the molar flow rate of the gas mixture rather than that of the carrier gas
as in (1.228). Equation (1.228) is therefore replaced by

ṅAI a
∗AK dz = −ṄG dỹ . (1.235)
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Taking the molar flux from equation (1.220), in which we put the abbreviations
ỹAm = ỹ and ỹAeq = ỹeq, we get

dz =
−ṄG

(kGa∗)AK

dỹ

ỹ − ỹeq

, (1.236)

which corresponds to equation (1.229). Integration yields the concentration profile
ỹ(z) over the height z to be

z =
−ṄG

(ka∗)AK

ỹ∫
ỹe

dỹ

ỹ − ỹeq

. (1.237)

The required height Z for the column can be calculated by integrating to the
point ỹ = ỹe. The evaluation of this integral is often only possible numerically as
the mole fraction ỹeq is normally a complex function of the mole fraction x̃ of the
liquid, and therefore according to the balance equation (1.227) is still dependent
on the mole fraction ỹ. How the mole fractions at equilibrium are ascertained is
dealt with in the thermodynamics of phase equilibria.

Example 1.9: A washing solution consisting of a mixture of high boiling hydrocarbons is
fed into the top of a packed column. It is envisaged that it will remove benzene contained
in the air that is rising up the column. The molar content of benzene at the base of the
column (cross section a) is 3 %, and by the time the air reaches the top of the column (cross
section e) 90 % of its benzene content must have been removed. The washing solution is
fed into the column with a molar benzene ratio of 0,3 %.
Raoult’s law ỹA = (pAs/p)x̃A is valid for the solubility of benzene (substance A) in the
washing solution, with pAs(ϑ) as the saturation pressure of pure benzene, which at the
prevailing temperature of 30 ◦C, has a value of pAs = 159.1 mbar. The total pressure is
p = 1 bar. The benzene free washing solution is fed to the column at a rate of ṄL = 2.5
mol/s, with a flow rate of ṄG = 7.5 mol/s for the benzene free air. The inner diameter
of the column is dK = 0.5 m. The mass transfer coefficients are (βc)Ga∗ = 139.3 mol/m3s
and (βc)La∗ = 3.139 mol/m3s.
How high does the column have to be to meet the desired air purity conditions?
As the benzene content is very low, in Raoult’s law the mole fractions can be replaced by
the mole ratios and can be written as ỸA = k+

H X̃A, with k+
H = pAs/p = 0.1591. According

to equation (1.221) we get

1

kG a∗
=

1

(β c)G a∗
+

k+
H

(β c)L a∗
=

(
1

139.3
+

0.1591

3.139

)
m3 s

mol

kG a∗ = 17.28mol/(m3s). The benzene content of the washing solution leaving the column,
from (1.224) is

X̃e =
ṄG

ṄL

(Ỹe − Ỹi) + X̃i =
7.5

2.5
(0.03 − 0.003) + 0.003 = 0.084.

Furthermore
Ỹeqi = k+

H X̃i = 0.1591 · 0.003 = 4.773 · 10−3

Ỹeqe = k+
H X̃e = 0.1591 · 0.084 = 1.336 · 10−2 .

The required column height according to (1.234)is calculated to be

Z =
7.5

17.28 · 0.196 (1 − 0.1591 · 3) ln
0.03 − 0.001336

0.03 − 0.000473
m = 10.28m.
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1.8 Exercises

1.1: The outer wall of a room is made of brickwork with λ = 0.75W/K m. It has a
thickness of δ = 0.36m and a surface area of A = 15.0m2. Its surface temperatures are
ϑ1 = 18.0 ◦C and ϑ2 = 2.5 ◦C. The heat loss Q̇ through the wall is to be calculated. How
would the value for Q̇ change if the wall was made of concrete blocks with λ = 0.29W/K m
and a wall thickness of δ = 0.25 ?

1.2: The thermal conductivity is linearly dependent on the temperature, λ = a + b ϑ.
Prove equation (1.12) for the mean thermal conductivity λm.

1.3: The steady temperature profile ϑ = ϑ(x) in a flat wall has a second derivative
d2ϑ/dx2 > 0. Does the thermal conductivity λ = λ(ϑ) of the wall material increase or
decrease with rising temperature?

1.4: A copper wire with diameter d = 1.4mm and specific electrical resistance of rel =
0.020 · 10−6 Ωm is surrounded by a plastic insulation of thickness δ = 1.0mm, which has
a thermal conductivity of λ = 0.15W/K m. The outer surface of the insulation will be
maintained at a temperature of ϑW2 = 20 ◦C. What is the largest current which can be
applied to the wire if the inner temperature of the insulation is not allowed to rise above
30 ◦C?

1.5: A heat flow Q̇ = 17.5W is generated inside a hollow sphere of dimensions d1 = 0.15m,
d2 = 0.25m and thermal conductivity λ = 0.68W/K m. The outer surface of the sphere
has a temperature of ϑW2 = 28 ◦C. What will the temperature of the inner surface be?

1.6: A flat body of thickness h and thermal conductivity λ has the shape of a right angled
triangle whose short sides are of length l. The plane temperature profile of this body is
given as ϑ(x, y) = ϑ0 + ϑ1

[
(y/l)2 − (x/l)2

]
; 0 ≤ x ≤ l, 0 ≤ y ≤ x.

a) Where do the highest and lowest temperatures ϑmax and ϑmin appear? How are they
related to the given temperatures ϑ0 and ϑ1? 0 < ϑ1 < ϑ0 can be assumed to be valid.

b) The values for grad ϑ and the vector q̇ for the heat flux have to be calculated. At
which point is |q̇| largest?

c) Calculate the heat flow through the three boundary surfaces indicated by y = 0, x = l
and y = x, and show that as much heat flows into the triangle as flows out.

1.7: A saucepan contains water which boils at ϑs = 100.3 ◦C. The base of the saucepan
(diameter d = 18 cm) is electrically heated. It reaches a temperature of ϑW = 108.8 ◦C
with a thermal power input of 1.35kW. How big is the heat transfer coefficient of the
boiling water, based on the temperature difference (ϑW − ϑs) ?

1.8: The temperature profile ϑ = ϑ(y) in the thermal boundary layer (0 ≤ y ≤ δt) can be
approximated to be a parabola

ϑ(y) = a + by + cy2

whose apex lies at the point y = δt. What is the value of the local heat transfer coefficient,
α, if δt = 11mm and λ = 0.0275W/K m (air)?
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1.9: In heat transfer in forced turbulent fluid flow through a tube, the approximation
equation

Nu = C Re4/5Pr1/3 .

can be applied. The characteristic length in the Nu and Re numbers is the inner diameter
of the tube d. Calculate the ratio αW/αA of the heat transfer coefficients for water and
air for the same flow velocity w and inner tube diameter d at the same mean temperature
ϑ = 40 ◦C. The material properties required to solve this exercise are available in Table
B1 for water and B2 for air in the appendix.

1.10: Heat is generated inside a very long hollow cylinder of length L due to radioactive
decay. This heat flow per length of the cylinder, has a value of Q̇/L = 550W/m. The
hollow cylinder is made of a steel alloy (λ = 15W/K m), with inner diameter di = 20mm
and wall thickness δ = 10mm. Heat is only given up from its outer surface into space
(T = 0K) by radiation. The emissivity of the cylinder surface is ε = 0.17. Calculate the
Celsius temperatures ϑi of the inner and ϑo of the outer surfaces. What is the value for
the radiative heat transfer coefficient αrad?

1.11: A house wall is made up of three layers with the following properties (inside to
outside): inner plaster δ1 = 1.5 cm, λ1 = 0.87W/K m; wall of perforated bricks δ2 =
17.5 cm, λ2 = 0.68W/K m; outer plaster δ3 = 2.0 cm, λ3 = 0.87W/K m. The heat transfer
coefficients are α1 = 7.7W/m2K inside and α2 = 25W/m2K outside. Calculate the heat
flux, q̇, through the wall, from inside at ϑ1 = 22.0 ◦C to the air outside at ϑ2 = −12.0 ◦C.
What are the temperatures ϑW1 and ϑW2 of the two wall surfaces?

1.12: In order to reduce the heat loss through the house wall in exercise 1.11, an insulating
board with δ3 = 6.5 cm and λ3 = 0.040W/K m along with a facing of δ4 = 11.5 cm and
λ4 = 0.79W/K m will replace the outer plaster wall. Calculate the heat flux q̇ and the
surface temperature ϑW1 of the inner wall.

1.13: Steam at a temperature of ϑi = 600 ◦C flows in a tube of inner diameter d1 = 0.25m
and outer diameter d2 = 0.27m made of a steel alloy (λ1 = 16W/K m). The heat transfer
coefficient is αi = 425W/m2K. The tube is insulated with a rock wool layer of thickness
δ2 = 0.05m, on whose outer surface a hull of mineral fibres of thickness δ3 = 0.02m
is attached. The heat transfer coefficient between the hull and the air at temperature
ϑo = 25 ◦C is αo = 30W/m2K. The thermal conductivity of the rock wool varies according
to the temperature:

λ2(ϑ)

W/K m
= 0.040 − 0.0005

ϑ

100 ◦C
+ 0.0025

(
ϑ

100 ◦C

)2

.

The mean thermal conductivity of the mineral fibre hull is λm3 = 0.055W/K m. Calculate
the heat lost per length L of the tube Q̇/L and check whether the temperature of the
mineral fibre hull is below the maximum permissible value of ϑmax = 250 ◦C.

1.14: A cylindrical drink can (d = 64mm, h = 103mm) is taken out of a fridge at
ϑF0 = 6 ◦C and placed in a room where the air temperature is ϑA = 24 ◦C. Calculate the
temperature ϑF of the can after it has been there for 2 hours. In addition to this find the
time, t∗, it takes for the temperature of the can to reach ϑF = 20 ◦C. The only meaningful
resistance to the overall heat transfer between the air and the contents of the can is that
on the outside of the can which is given by αo = 7.5W/m2K. The material properties of
the drink are �F = 1.0 · 103 kg/m3 and cF = 4.1 · 103 J/kgK.
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1.15: Derive the equations for the profile of the fluid temperatures ϑ1 = ϑ1(z) and ϑ2 =
ϑ2(z) in a countercurrent heat exchanger, cf. section 1.3.3.

1.16: In a heat pump plant air from outside serves as the heat source, where it is cooled
from ϑ′

2 = 10.0 ◦C to ϑ′′

2 = 5.0 ◦C, thereby giving heat to a fluid which will be heated from
ϑ′

1 = −5.0 ◦C to ϑ′′

1 = 3.0 ◦C. Its mass flow rate is Ṁ1 = 0.125kg/s, with a mean specific
heat capacity cp1 = 3.6kJ/kgK. For this heat transfer task three flow configurations will
be compared: countercurrent, crossflow with one row of tubes and counter crossflow with
two rows of tubes and two passageways (running in opposite directions), see Fig. 1.59. The
operating characteristic of these configurations can be described by the following cf. [1.16]

1

1 − ε1
=

f

2
+

(
1 − f

2

)
exp(2f/C1) with f = 1 − exp(−C1N1/2) .

Determine the required heat transfer capability kA for the heat exchangers with these
three flow configurations.

Fig. 1.59: Counter crossflow heat exchanger
with two rows of tubes and two passageways

1.17: A component A is to be dissolved out of a cylindrical rod of length L and radius r0.
It diffuses through a quiescent liquid film of thickness δ which surrounds the rod. Show
that the diffusional flux is given by

ṄA = D
cA0 − cAδ

ln(r0 + δ)/r0
2πL ,

when D = const and a low concentration of the dissolved component in the liquid film is
assumed.

1.18: Ethanol (component A, molar mass M̃A = 46.07 kg/kmol) is present in a cylinder.
The liquid level is, according to Fig. 1.42 at y2 − y1 = δ1 = 1cm below the top of the
cylinder. Dry air (component B) at a pressure of p = 1bar and temperature T = 298K
flows across the top of the cylinder.

a) Calculate the molar flux ṅA at the beginning of the diffusion process.

b) After what period of time has the liquid level fallen by δ2 = 1cm?

As the diffusion is very slow this part of the exercise can be solved by presuming that
each change in the liquid level caused by the diffusion can be found using the solution
for steady flow. The diffusion coefficient for ethanol in air is D = 1.19 · 10−5 m2/s, the
density of liquid ethanol is �L = 875kg/m3 and the saturation pressure at T = 298K is
pAs = 0.077bar.
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1.19: Ammonia, at 25 ◦C, flows through a pipe at a rate of V̇ = 10 m3/h. In order
to maintain the pressure in the tube at 1bar, a small tube of inner diameter 3mm, has
been welded onto the pipe, providing a link to the surrounding air, Fig. 1.60. This tube
is spiral wound and 20m long, so that the loss of ammonia by diffusion is very low. How
much ammonia in m3/h is lost and what is the mole fraction of air in the large pipe? The
density of ammonia is 0.687kg/m3 , the diffusion coefficient of ammonia in air at 25 ◦C is
D = 0.28 · 10−4 m2/s

Fig. 1.60: Pressure mainte-
nance in a pipe

1.20: Moist wood at 20 ◦C is to be dried by air at 0.1 MPa and the same temperature
flowing over it. The mass transfer coefficient at the surface of the wood over which the air
is flowing is β = 2 · 10−3 m/s, and the mole fraction of water vapour at the wood surface
is x̃A0 = 0.024. How big is the mass flux ṁA of the water into the air in kg/m2s?

1.21: Dry air at 15 ◦C flows over a water surface. Calculate the wet bulb temperature.
Use the material properties given in example 1.8.

1.22: A hot, dry combustion gas at 600 ◦C and 1bar flows over the wall of a combustion
chamber. To prevent the wall temperature from rising too much, water is blown through
the porous wall of the chamber, Fig. 1.61, and then evaporates, which reduces the wall

Fig. 1.61: Cooling of a hot, porous
wall by blowing water through it

temperature. How low can the temperature of the wall become and how much water ṁA

in kg/m2s has to be fed into the chamber to achieve this temperature reduction?
Given: M̃AcβmcpA/αm = 1.3, M̃B = 28.953kg/kmol, M̃A = 18.015kg/kmol and ∆hv =
2346kJ/kg, cpA = 1.907kJ/kgK. The heat transfer coefficient between the combustion gas
and the water surface is αm = 120W/m2K.

1.23: Air with a flow rate of ṄG = 250kmol/h which contains a molar ratio of benzene of
Ỹe = 0.05 is fed into an absorption column to remove the benzene from the air. A benzene
free washing solution with a molar flow rate of ṄL = 55kmol/h should remove 95% of the
benzene.
What are the molar ratios of the washing solution and the air at the absorber outlet?



2 Heat conduction and mass diffusion

In this chapter we will deal with steady-state and transient (or non steady-state)
heat conduction in quiescent media, which occurs mostly in solid bodies. In
the first section the basic differential equations for the temperature field will be
derived, by combining the law of energy conservation with Fourier’s law. The
subsequent sections deal with steady-state and transient temperature fields with
many practical applications as well as the numerical methods for solving heat
conduction problems, which through the use of computers have been made easier
to apply and more widespread.

In conjunction with heat conduction we will also investigate mass diffusion.
As a result of the analogy between these two molecular transport processes many
results from heat conduction can be applied to mass diffusion. In particular the
mathematical methods for the evaluation of concentration fields agree to a large
extent with the solution methods for heat conduction problems.

2.1 The heat conduction equation

The basis of the solution of complex heat conduction problems, which go beyond
the simple case of steady-state, one-dimensional conduction first mentioned in
section 1.1.2, is the differential equation for the temperature field in a quiescent
medium. It is known as the equation of conduction of heat or the heat conduction
equation. In the following section we will explain how it is derived taking into
account the temperature dependence of the material properties and the influence
of heat sources. The assumption of constant material properties leads to linear
partial differential equations, which will be obtained for different geometries. After
an extensive discussion of the boundary conditions, which have to be set and
fulfilled in order to solve the heat conduction equation, we will investigate the
possibilities for solving the equation with material properties that change with
temperature. In the last section we will turn our attention to dimensional analysis
or similarity theory, which leads to the definition of the dimensionless numbers
relevant for heat conduction.
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2.1.1 Derivation of the differential equation for the tem-
perature field

Solving a heat conduction problem requires that the spatial and time dependence
of the temperature field

ϑ = ϑ(x, t)

is determined. Once this is known the associated vector field of the heat flux q̇
can, as a result of Fourier’s law, be calculated by

q̇(x, t) = −λ grad ϑ(x, t) , (2.1)

which then means that the heat flux at any point in the body can be determined.
The temperature field can be obtained by solving a partial differential equa-

tion, the so called heat conduction equation, which will be derived now. This
requires the application of the first law of thermodynamics to a closed system,
namely a coherent region of any size, imaginarily taken from the conductive body,
Fig. 2.1. The volume of this region is V and it has a surface area A. The first law
produces the following power balance for the region:

dU

dt
= Q̇(t) + P (t) . (2.2)

The change with time of the internal energy U is caused by two different influences:
the heat flow Q̇ and the (mechanical or electrical) power P , which cross the surface
of the region.

Fig. 2.1: Region of volume V in a thermal
conductive body. Surface element dA of the
region with the outward normal n

As the heat conduction is being studied in a solid body, the small change in the
density as a result of the temperature and pressure variations can be neglected.
The model of an incompressible body � = const is therefore used. Under this
assumption

dU

dt
=

d

dt

∫
(V )

� u dV = �
∫

(V )

du

dt
dV (2.3)

can be set, where the integral extends over the volume of the region. The spe-
cific internal energy u, introduced here, is dependent on the temperature of the
incompressible body. So with c(ϑ) as the specific heat capacity

du = c(ϑ) dϑ
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is valid. From (2.3), we obtain

dU

dt
= �

∫
(V )

c(ϑ)
∂ϑ

∂t
dV (2.4)

for the change with time of the internal energy in the region under consideration.
In order to calculate the heat flow Q̇ over the surface of the region, we will

take a surface element dA, which has a normal, n, outward facing vector, Fig.
2.1. The heat flow through dA, into the region is

dQ̇ = −q̇ n dA . (2.5)

The heat flow according to (2.2) is positive when the flow is into the body. In
the equation given above the heat flux vector q̇ is positive because its direction
is into the region. In contrast the normal vector n is outward facing and so the
scalar product is negative. Therefore a minus sign has to be introduced, thereby
fulfilling the prerequisite for positive heat flow into the region. By integrating all
the heat flow rates dQ̇ from (2.5) the total heat flow Q̇ is found to be

Q̇ = −
∫

(A)

q̇ n dA = −
∫

(V )

div q̇ dV . (2.6)

The integral which extends over the area of the region has been converted to the
volume integral of the divergence of q̇ according to Gauss’ integral theorem.

The power P put into the region is made up of two distinct parts, firstly the
power PV which causes a change in the volume, and secondly the power Pdiss

dissipated inside the region. In an incompressible body PV ≡ 0. Pdiss is partly
made up of the electrical power put into the body, which in a heat and electricity
conducting material will be dissipated as a result of the body’s electrical resistance.
This is the so-called ohmic or resistance heating. Energy rich radiation, e.g. γ-rays,
which penetrate a solid body from outside will also be absorbed, their energy will
be dissipated, thereby contributing to an increase in the internal energy.

The power of this dissipative and therefore irreversible energy conversion inside
the region is given by

P = Pdiss =
∫

(V )

Ẇ (ϑ,x, t) dV , (2.7)

where Ẇ is the power per volume, the so-called power density. In a body, with a
specific electrical resistance re = re(ϑ), which has a current flowing through it,

Ẇ (ϑ,x, t) = re(ϑ) i2e

is obtained for the power density, where ie is the electrical flux. Its SI units are
A/m2, so that with Ω m as the SI units for the specific electrical resistance, we
obtain units of ΩmA2/m4=VA/m3=W/m3 for Ẇ .
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The dissipative and irreversible energy conversion inside the body releases
thermal energy, in principle acting like an internal heat source. Similarly to the
external heat Q̇, this internal heat source also contributes to an increase in the
internal energy of the body according to (2.6). The same effect is created when
chemical or nuclear reactions take place inside a body. These reactions are ac-
companied by the production of heat generated by the irreversible conversion of
chemical or nuclear energy into thermal (internal) energy. With the exception of
the less proliferous endothermic chemical reactions, they act as heat sources in
solids. Although the chemical composition of the body is changed by a reaction,
this will be neglected in the calculation of material properties, and the effect of
the reaction is covered only as an internal heat source, which makes a contribution
to the power density Ẇ . Therefore we will consider chemical or nuclear reactions
only in (2.7), and by neglecting the changes in the composition we can assume
that the material properties λ and c only change with temperature ϑ and not with
the composition of the solid.

Now taking the results for dU/dt from (2.4), Q̇ from (2.6) and P from (2.7)
and putting them into the power balance equation (2.2) of the first law, and
combining all the volume integrals, gives∫

(V )

[
�c(ϑ)

∂ϑ

∂t
+ div q̇ − Ẇ (ϑ,x, t)

]
dV = 0 .

This volume integral only disappears for any chosen balance region if the integrand
is equal to zero. This then produces

�c(ϑ)
∂ϑ

∂t
= − div q̇ + Ẇ (ϑ,x, t) .

In the last step of the derivation we make use of Fourier’s law and link the heat
flux q̇ according to (2.1) with the temperature gradient. This gives us

�c(ϑ)
∂ϑ

∂t
= div [λ(ϑ) grad ϑ] + Ẇ (ϑ,x, t) , (2.8)

the differential equation for the temperature field in a quiescent, isotropic and
incompressible material with temperature dependent material properties c(ϑ) and
λ(ϑ). The heat sources within the thermally conductive body are accounted for
by the power density Ẇ .

In the application of the heat conduction equation in its general form (2.8)
a series of simplifying assumptions are made, through which a number of special
differential equations, tailor made for certain problems, are obtained. A significant
simplification is the assumption of constant material properties λ and c. The linear
partial differential equations which emerge in this case are discussed in the next
section. Further simple cases are

– no heat sources: Ẇ ≡ 0,
– steady-state temperature fields: ∂ϑ/∂t ≡ 0,
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– geometric one-dimensional heat flow, e.g. only in the x-direction in carte-
sian coordinates or only in the radial direction with cylindrical and spher-
ical geometries.

2.1.2 The heat conduction equation for bodies with con-
stant material properties

In the derivation of the heat conduction equation in (2.8) we presumed an in-
compressible body, � = const. The temperature dependence of both the thermal
conductivity λ and the specific heat capacity c was also neglected. These assump-
tions have to be made if a mathematical solution to the heat conduction equation
is to be obtained. This type of closed solution is commonly known as the “ex-
act” solution. The solution possibilities for a material which has temperature
dependent properties will be discussed in section 2.1.4.

With constant thermal conductivity the differential operator div [λ(ϑ) gradϑ]
in (2.8) becomes the Laplace operator

λ div grad ϑ = λ∇2ϑ ,

and the heat conduction equation assumes the form

∂ϑ

∂t
= a∇2ϑ +

Ẇ

c�
. (2.9)

The constant which appears here is the thermal diffusivity

a := λ/c� (2.10)

of the material, with SI units m2/s.
In the two most important coordinate systems, cartesian coordinates x, y, z,

and cylindrical coordinates r, ϕ, z the heat conduction equation takes the form

∂ϑ

∂t
= a

(
∂2ϑ

∂x2
+

∂2ϑ

∂y2
+

∂2ϑ

∂z2

)
+

Ẇ

c�
(2.11)

or
∂ϑ

∂t
= a

(
∂2ϑ

∂r2
+

1

r

∂ϑ

∂r
+

1

r2

∂2ϑ

∂ϕ2
+

∂2ϑ

∂z2

)
+

Ẇ

c�
(2.12)

respectively. With spherical coordinates we will limit ourselves to a discussion of
heat flow only in the radial direction. For this case we get from (2.9)

∂ϑ

∂t
= a

(
∂2ϑ

∂r2
+

2

r

∂ϑ

∂r

)
+

Ẇ

c�
. (2.13)

The simplest problem in transient thermal conduction is the calculation of a
temperature field ϑ = ϑ(x, t), which changes with time and only in the x-direction.
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A further requirement is that there are no sources of heat, i.e. Ẇ ≡ 0. This is
known as linear heat flow, governed by the partial differential equation

∂ϑ

∂t
= a

∂2ϑ

∂x2
. (2.14)

This equation offers a clear interpretation of the thermal diffusivity a and the heat
conduction equation itself. According to (2.14) the change in the temperature with
time ∂ϑ/∂t at each point in the conductive body is proportional to the thermal
diffusivity. This material property, therefore, has an effect on how quickly the
temperature changes. As Table 2.1 shows, metals do not only have high thermal
conductivities, but also high values for the thermal diffusivity, which imply that
temperatures change quickly in metals.

Table 2.1: Material properties of some solids at 20 ◦C

λ c � 106a
Material

W/K m kJ/kg K kg/m3 m2/s

Silver 408 0.234 10497 166
Copper 372 0.419 8300 107
Aluminium 238 0.945 2700 93.4
Brass (MS 60) 113 0.376 8400 35.8
Cr-Ni-Steel 14.7 0.502 7800 3.75

Granite 2.9 0.890 2750 1.2
Concrete gravel 1.28 0.879 2200 0.662
Cork sheets 0.041 1.880 190 0.11
Fat 0.17 1.930 910 0.097

The differential equation (2.14) connects the temperature change with time at
a certain point with the curvature of the temperature for the region surrounding
this point. It is therefore possible to differentiate between the three cases shown
in Fig 2.2. If ∂2ϑ/∂x2 > 0, the temperature rises (heating); more heat flows in
from the “right” than flows out to the “left”. This means that energy has to be
stored, and so the temperature rises with time. With an opposite sign for the
curvature, ∂2ϑ/∂x2 < 0 the temperature falls with time, whilst if ∂2ϑ/∂x2 = 0
the temperature remains constant (steady-state limiting case).

If the thermal power Ẇ is linearly dependent or independent of the temper-
ature ϑ, the heat conduction equation, (2.9), is a second order linear, partial
differential equation of parabolic type. The mathematical theory of this class
of equations was discussed and extensively researched in the 19th and 20th cen-
turies. Therefore tried and tested solution methods are available for use, these
will be discussed in 2.3.1. A large number of closed mathematical solutions are
known. These can be found in the mathematically orientated standard work by
H.S. Carslaw and J.C. Jaeger [2.1].

Steady-state temperature fields are independent of time, and are the end state
of a transient cooling or heating process. It is then valid that ∂ϑ/∂t = 0, from
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Fig. 2.2: Importance of the curvature for the temperature change with time according to
(2.14)

which

∇2ϑ + (Ẇ/λ) = 0 (2.15)

is obtained as the differential equation for a steady-state temperature field with
heat sources. The thermal conductivity is the only material property which in-
fluences the temperature field. Eq. (2.15) is known as the Poisson differential
equation. It passes for temperature fields without heat sources (Ẇ ≡ 0) into the
potential equation or Laplace differential equation

∇2ϑ = 0 . (2.16)

The Laplace operator ∇2 takes the form given in equations (2.11), (2.12) and
(2.13) for the different coordinate systems. The differential equations (2.15) and
(2.16) for steady-state temperature fields, are linear and elliptical, as long as Ẇ
is independent of, or changes linearly with ϑ. This leads to different methods of
solution than those used in transient conduction where the differential equations
are parabolic.

2.1.3 Boundary conditions

The heat conduction equation only determines the temperature inside the body.
To completely establish the temperature field several boundary conditions must
be introduced and fulfilled by the solution of the differential equation. These
boundary conditions include an initial-value condition with respect to time and
different local conditions, which are to be obeyed at the surfaces of the body. The
temperature field is determined by the differential equation and the boundary
conditions.

The initial-value conditions set, for a particular time, a temperature for each
position in the body. Timekeeping generally starts at this moment, fulfilling the
condition

ϑ(x, y, z, t = 0) = ϑ0(x, y, z) . (2.17)

The initial temperature profile ϑ0(x, y, z), given in the problem, for example a
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constant initial temperature throughout a body that is to be cooled, changes
during the transient conduction process.

The local boundary conditions can be divided into three different groups. At
the surface of the body

1. the temperature can be given as a function of time and position on the
surface, the so-called 1st type of boundary condition,

2. the heat flux normal to the surface can be given as a function of time and
position, the 2nd type of boundary condition, or

3. contact with another medium can exist.
A given surface temperature is the most simple case to consider, especially

when the surface temperature is constant. In the case of a prescribed heat flux q̇,
the condition

q̇ = −λ
∂ϑ

∂n
(2.18)

must be fulfilled at every point on the surface, where the derivative for the outward
normal direction is taken and λ is the value of the conductivity at the surface
temperature. Adiabatic surfaces frequently appear, and because q̇ = 0, we get

∂ϑ/∂n = 0 . (2.19)

This simple condition must also be fulfilled at planes of symmetry inside the body.
Therefore, when formulating a conduction problem, it is often advantageous to
only consider a section of the body that is bounded by one or more adiabatic
planes of symmetry.

If the thermally conductive body is in contact with another medium, several
different boundary conditions can apply, each depending on whether the other
medium is a solid or fluid, and its respective material properties. When the other
medium is another solid, the heat flux at the interface of body 1 to body 2 is the
same for both bodies. According to (2.18), at the interface, index I, it is valid
that

λ(1)

(
∂ϑ(1)

∂n

)
I

= λ(2)

(
∂ϑ(2)

∂n

)
I

(2.20)

and also
ϑ

(1)
I = ϑ

(2)
I . (2.21)

The temperature curve has a kink at the interface. The temperature gradient in
the body with the lower thermal conductivity is larger, Fig. 2.3 a. Equation (2.21)
is only valid if the two bodies are firmly joined. If this is not the case a contact
resistance occurs, which results in a small temperature jump, Fig. 2.3 b. This
resistance can be described by a contact heat transfer coefficient αct. In place of
equation (2.21),

−λ(1)

(
∂ϑ(1)

∂n

)
I

= αct

(
ϑ

(1)
I − ϑ

(2)
I

)
, (2.22)

is valid. With constant αct the temperature drop at the interface is proportional
to the heat flux.
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Fig. 2.3: Temperature at the interface between two bodies 1 and 2 in contact with
each other. a no contact resistance, b contact resistance according to (2.22)

If the thermally conductive body is bounded by a fluid, a boundary layer
develops in the fluid. The heat flux into the fluid, with α as the heat transfer
coefficient is

q̇ = α (ϑW − ϑF) ,

see Fig. 2.4 and section 1.1.3. As this heat flux must be transported to the surface
of the body by conduction, the following boundary condition is obtained

−λ

(
∂ϑ

∂n

)
W

= α (ϑW − ϑF) . (2.23)

Here λ is the thermal conductivity of the solid (not the fluid!) at the wall. Eq.
(2.23) stipulates a linear relationship between the temperature ϑW and the slope
of the temperature profile at the surface, this is also known as the 3rd type of
boundary condition. As in (2.18), ∂ϑ/∂n is the derivative in the normal direc-
tion outward from the surface. The fluid temperature ϑF, which can change with
time, and the heat transfer coefficient α must be given for the solution of the heat
conduction problem. If α is very large, the temperature difference (ϑW − ϑF) will
be very small and the boundary condition (2.23) can be replaced by the simpler
boundary condition of a prescribed temperature (ϑW = ϑF). The boundary con-
dition in (2.23) is only linear as long as α is independent of ϑW or (ϑW − ϑF),
this factor is very important for the mathematical solution of heat conduction
problems. In a series of heat transfer problems, for example in free convection, α
changes with (ϑW − ϑF), thereby destroying the linearity of the boundary condi-
tion. The same occurs when heat transfer by radiation is considered, as in this

Fig. 2.4: Temperature profile for the boundary
condition (2.23). The tangent to the tempera-
ture curve at the solid surface meets the guide-
point R at the fluid temperature ϑF at a distance
away from the surface s = λ/α = L0/Bi. The
subtangent of the temperature profile in the fluid
boundary layer is su = λF/α = L0/Nu.
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case q̇ is dependent on T 4
W, see section 1.1.5. A closed solution for the thermal

conduction problem is not possible in cases such as these, so numerical methods
have to be applied and this will be discussed in 2.4.

In the cooling or heating of a vessel which contains a fluid, the temperature ϑF of this fluid
can often be taken as spatially constant, as the temperatures in each individual part of the fluid
will be equalized either by convection or mixing. The change in the temperature ϑF = ϑF(t) over
time depends on the manner in which heat is transferred from the vessel wall (the conductive
body) to the fluid. This causes a change in the internal energy of the fluid and a corresponding
variation in ϑF. The heat flux is then

q̇ = −λ

(
∂ϑ

∂n

)
W

(thermal conduction in the vessel wall) and also

q̇ = cF
MF

A

dϑF

dt

(heating the fluid) with cF as the specific heat capacity of the fluid and MF as the mass of the
fluid, which is in contact with the vessel wall (area A). We then have the boundary condition

cF
MF

A

dϑF

dt
+ λ

(
∂ϑ

∂n

)
W

= 0 . (2.24)

This is to be supplemented by a heat transfer condition according to (2.23), or if a large heat
transfer coefficient exists by the simplified boundary condition ϑW = ϑF.

2.1.4 Temperature dependent material properties

If the temperature dependence of the material properties λ = λ(ϑ) and c = c(ϑ)
cannot be neglected then the heat conduction equation (2.8) must be the starting
point for the solution of a conduction problem. We have a non-linear problem,
that can only be solved mathematically in exceptional cases. With

div [λ(ϑ) grad ϑ] = λ(ϑ) div grad ϑ +
dλ

dϑ
grad2ϑ

we obtain from (2.8)

c(ϑ)�
∂ϑ

∂t
= λ(ϑ)∇2ϑ +

dλ

dϑ
grad2ϑ + Ẇ (2.25)

as the heat conduction equation. The non-linearity is clearly shown in the first
two terms on the right hand side.

Equations (2.8) and (2.25) assume a simpler form when a new variable, the
transformed temperature

Θ = Θ0 +
1

λ0

ϑ∫
ϑ0

λ(ϑ) dϑ (2.26)
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is introduced. Here λ0 is the value for the thermal conductivity at the reference
temperature ϑ0 assigned to the transformed temperature Θ0. From (2.26) we get

∂Θ

∂t
=

λ

λ0

∂ϑ

∂t
and grad Θ =

λ

λ0

grad ϑ .

Following on from (2.8), we obtain

c(ϑ)�
λ0

λ(ϑ)

∂Θ

∂t
= λ0∇2Θ + Ẇ

or
1

a(ϑ)

∂Θ

∂t
= ∇2Θ +

Ẇ

λ0

, (2.27)

an equation which formally agrees with the heat conduction equation (2.9) for
constant material properties. The thermal diffusivity a however depends on ϑ or
Θ. Experience tells us that a varies less with temperature than λ, so a(ϑ) in (2.27)
can be assumed to be approximately constant. A solution of the heat conduction
equation for constant material properties can be applied to the case of temperature
dependent properties by replacing ϑ by Θ. There is however, one important
limitation: only boundary conditions with given temperature or heat flux (2.18)
can be stipulated, as the heat transfer condition (2.23) is not retained by the
transformation (2.26). The transformation (2.26) is used particularly in steady-
state heat conduction problems, because the term which contains the temperature
dependent a disappears due to ∂Θ/∂t = 0. Solving of the Poisson, or in the case
of Ẇ = 0 the Laplace equation can immediately be undertaken, provided that
the boundary conditions of a given temperature or heat flux, and not the heat
transfer condition according to (2.23), exist.

In most temperature dependent material property cases a closed solution can
not be obtained. A numerical solution is the only answer in such cases and we
will look more closely at this type of solution in section 2.4.

2.1.5 Similar temperature fields

The advantage of introducing dimensionless variables has already been shown in
section 1.1.4. The dimensionless numbers obtained in that section provide a clear
and concise representation of the physical relationships, due to the significant
reduction in the influencing variables. The dimensionless variables for thermal
conduction are easy to find because the differential equations and boundary con-
ditions are given in an explicit form.

The starting point for the derivation of the dimensionless numbers in thermal
conduction is the differential equation

∂ϑ

∂t
= a

∂2ϑ

∂x2
+

Ẇ

c�
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which contains all the significant terms, time dependence, local variations of the
temperature field as well as the power density Ẇ of heat sources. Introducing a
dimensionless position coordinate and a dimensionless time gives

x+ := x/L0 , t+ := t/t0 .

Here, L0 is a characteristic length of the conductive body and t0 is a characteristic
time (interval) which still has to be determined. We choose

ϑ+ := (ϑ − ϑ0) /∆ϑ0 , (2.28)

as a dimensionless temperature, wherein ϑ0 is a reference temperature (zero point
of ϑ+) and ∆ϑ0 is a characteristic temperature difference of the problem.

The heat conduction equation takes the dimensionless form of

∂ϑ+

∂t+
=

at0
L2

0

∂2ϑ+

∂x+2 +
t0

∆ϑ0

Ẇ

c�
. (2.29)

The characteristic time is chosen to be

t0 = L2
0/a .

The dimensionless time is then

t+ = at/L2
0 . (2.30a)

This dimensionless time t+ is often called the Fourier number

Fo := at/L2
0 = t+ . (2.30b)

However the Fourier number is not a dimensionless number in the usual sense,
that it has a fixed value for a given problem, instead it is a dimensionless time
variable which only has fixed values for fixed times.

Now introducing the characteristic power density

Ẇ0 = ∆ϑ0c�/t0 = λ∆ϑ0/L
2
0 (2.31a)

as a reference quantity, and with

Ẇ+ = Ẇ/Ẇ0 = ẆL2
0/λ∆ϑ0 (2.31b)

as the dimensionless heat source function, we obtain from (2.28)

∂ϑ+

∂t+
=

∂2ϑ+

∂x+2 + Ẇ+ . (2.32)

The heat conduction equation (2.32) does not contain any factors different from
one when we use the dimensionless heat source function Ẇ+ from (2.31b), and so
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does not immediately force us to introduce dimensionless numbers. Only the di-
mensionless parameters, which specify the position, time and temperature depen-
dence of Ẇ+, take over the role of dimensionless numbers. Further dimensionless
numbers are expected when the boundary conditions are also made dimensionless.

The initial condition (2.17) and the boundary condition for a prescribed tem-
perature are homogeneous in ϑ. They do not automatically lead to dimensionless
numbers. However these boundary conditions should be observed for the choice
of ϑ0 and ∆ϑ0 in (2.28), in order to obtain the most favourable dimensionless
temperature ϑ+, for example in the interval 0 ≤ ϑ+ ≤ 1. If the heat flux q̇W is
stipulated as a boundary condition, we get from (2.18) the following dimensionless
relationship

q̇+
W = −

(
∂ϑ+

∂x+

)
W

(2.33a)

with
q̇+
W := q̇W/q̇W0

= q̇WL0/λ∆ϑ0 . (2.33b)

The dimensionless function q̇+
W contains one or more parameters which describe the

position and time dependence of the heat flux q̇W, if the special case of q̇W = 0
is disregarded. These dimensionless parameters enter, in the same way as the
parameters in the heat source function Ẇ+ from (2.31b), as dimensionless numbers
into the solution of heat conduction problems.

Finally making the heat transfer condition (2.23) dimensionless, gives

∂ϑ+

∂x+
=

αL0

λ

(
ϑ+

W − ϑ+
F

)
. (2.34)

A new dimensionless number appears here and it is known as the Biot1 number

Bi := αL0/λ . (2.35)

The temperature field is dependent on this number when heat transfer takes place
into a fluid. The Biot number has the same form as the Nusselt number defined
by (1.36). There is however one very significant difference, λ in the Biot number
is the thermal conductivity of the solid whilst in the Nusselt number λ is the
thermal conductivity of the fluid. The Nusselt number serves as a dimensionless
representation of the heat transfer coefficient α useful for its evaluation, whereas
the Biot number describes the boundary condition for thermal conduction in a
solid body. It is the ratio of L0 to the subtangent to the temperature curve within
the solid body, cf. Fig. 2.4, whilst the Nusselt number is the ratio of a (possibly
different choice of) characteristic length L0 to the subtangent to the temperature
profile in the boundary layer of the fluid.

1Jean Baptiste Biot (1774–1862) became Professor of Physics at the Collège de France, Paris
in 1800. From 1804 onwards he investigated the cooling of heated rods and in 1816 published
the differential equation for the temperature profile, without giving a clear derivation of the
equation. In 1820 he discovered along with F. Savart, the Biot-Savart law for the strength of
the magnetic field around a conductor with an electrical current passing through it.
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Fig. 2.5: Influence of the Biot number Bi = αL0/λ on the temperature profile near
to the surface. a small Biot number, b large Biot number

Interpreting L0/λ as the specific thermal conduction resistance of the solid and 1/α as the
specific heat transfer resistance at its surface also allows the Biot number to be interpreted as
the ratio of the two resistances

Bi =
L0/λ

1/α
.

A small Biot number means that the resistance to thermal conduction in the body, for example
due to its high thermal conductivity, is significantly smaller than the heat transfer resistance
at its boundary. With small Biot numbers the temperature difference in the body is small in
comparison to the difference (ϑW − ϑF) between the wall and fluid temperatures. The reverse
is valid for large Biot numbers. Examples of these two scenarios are shown for a cooling process
in Fig. 2.5. Very large Biot numbers lead to very small values of

(
ϑ+

W − ϑ+
F

)
, and for Bi → ∞,

according to (2.34) we get
(
ϑ+

W − ϑ+
F

) → 0. The heat transfer condition (2.34) can be replaced
by the simpler boundary condition ϑ+

W = ϑ+
F .

Temperature fields in quiescent solid bodies can be represented in dimension-
less form by

ϑ+ = ϑ+
(
x+, y+, z+, t+, Ẇ+, q̇+

W, Bi,NGeom

)
. (2.36)

Here the dimensionless variables and numbers already discussed will be supple-
mented by dimensionless geometric numbers, which are indicated by the abbre-
viation NGeom. Characteristic geometric numbers are for example the height to
diameter H/D ratio of a thermally conductive cylinder or the ratios L2/L1 and
L3/L1 of the edge lengths L1 to L3 of a rectangular body. The shape of the
function in (2.36) depends on the geometry and the other conditions of the heat
conduction problem. In general the dimensionless variables in (2.36) will not all
appear at the same time. In steady-state heat conduction t+ disappears; in bod-
ies without any heat sources Ẇ+ ≡ 0; and when only prescribed temperatures as
boundary conditions are given q̇+

W and Bi in (2.36) are not present.
Finally, it should also be pointed out that in heat conduction problems the

dimensionless representation and the combination of the influencing quantities
into dimensionless numbers are not as significant as in the representation and
determination of heat transfer coefficients in 1.1.4. In the following sections we
will frequently refrain from making the heat conduction problem dimensionless
and will only present the solution of a problem in a dimensionless form by a
suitable combination of variables and influencing quantities.
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2.2 Steady-state heat conduction

We speak of steady-state heat conduction when the temperature at every point
in a thermally conductive body does not change with time. Some simple cases,
which are of practical importance, have already been discussed in the introduc-
tory chapter, namely one dimensional heat flow in flat and curved walls, cf. section
1.1.2. In the following sections we will extend these considerations to geometric
one-dimensional temperature distributions with internal heat sources. Thereafter
we will discuss the temperature profiles and heat release of fins and we will also
determine the fin efficiency first introduced in section 1.2.3. We will also investi-
gate two- and three-dimensional temperature fields, which demand more complex
mathematical methods in order to solve them, so that we are often compelled to
make use of numerical methods, which will be introduced in section 2.4.6.

2.2.1 Geometric one-dimensional heat conduction with
heat sources

In section 1.2.1 we dealt with geometric one-dimensional heat conduction without
internal heat sources. The temperature in these cases was only dependent on
one spatial coordinate. The equations for steady heat flow through a flat wall
(plate), a hollow cylinder (tube wall) and a hollow sphere were obtained. In the
following we will extend these considerations to thermally conductive materials
with heat sources. Examples of this include an electrical conductor, through which
a current is flowing, where the electrical energy is dissipated, and the cylindrical
or spherical fuel elements in a nuclear reactor, in which the energy released during
nuclear fission will be conducted as heat to the surface of the fuel elements.

As the heat conduction equation derived in 2.1.1 shows, the only material
property which has an effect on the steady state temperature field, ∂ϑ/∂t ≡ 0, is
the thermal conductivity λ = λ(ϑ). Assuming that λ is constant,

∇2ϑ + (Ẇ/λ) = 0 (2.37)

is the differential equation for the steady temperature field, in which Ẇ is the
source term, namely the thermal power generated per volume. The function Ẇ
can depend on either the temperature ϑ or the position coordinate. We will
limit ourselves to one-dimensional heat flow. The temperature changes only with
respect to the position coordinate which is indicated by r, even in cartesian co-
ordinates. The Laplace operator is different for the three coordinate systems,
cartesian, cylindrical and spherical. Combining the three cases gives from (2.37)

d2ϑ

dr2
+

n

r

dϑ

dr
+

Ẇ (r, ϑ)

λ
= 0 (2.38)
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as the decisive differential equation with n = 0 for linear heat flow (plate), n = 1
for the cylinder and n = 2 for the sphere.

Solving the ordinary differential equation (2.38) for constant power density
Ẇ = Ẇ0, gives the solution

ϑ(r) =

⎧⎪⎨⎪⎩
c0 + c1 (r − r0)
c0 + c1 ln (r/r0)
c0 + c1 (1/r − 1/r0)

⎫⎪⎬⎪⎭− Ẇ0r
2

2 (1 + n)λ
(2.39)

for the three cases, plate (n = 0), cylinder (n = 1) and sphere (n = 2). Here
c0 and c1 are constants, which have to be adjusted to the boundary conditions.
As an example we will look at the simple case of heat transfer to a fluid with a
temperature of ϑ = ϑF taking place at the surface r = ±R. We then have

−λ

(
dϑ

dr

)
r=R

= α [ϑ(R) − ϑF] (2.40)

and due to symmetry (
dϑ

dr

)
r=0

= 0 . (2.41)

The condition (2.41) requires that c1 = 0. Then from (2.40) the constant c0

can be found, so that the solution to the boundary value problem is

ϑ(r) = ϑF +
Ẇ0R

2

2λ (1 + n)

(
1 − r2

R2
+

2λ

αR

)
.

With the dimensionless temperature

ϑ+ :=
ϑ − ϑF

Ẇ0R
2/λ

, (2.42)

the dimensionless distance
r+ = r/R (2.43)

from the central plane or point and with the Biot number

Bi := αR/λ (2.44)

we obtain

ϑ+ =
1

2 (1 + n)

[
1 − r+2

+
2

Bi

]
. (2.45)

In the bodies a parabolic temperature profile exists, with the highest temperature
at r+ = 0, Fig. 2.6.

If the heat flux q̇W at the surface (r = R) of the three bodies is given instead
of the power density Ẇ0, then from the energy balance,

Ẇ0V = q̇WA
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Fig. 2.6: Dimensionless temperature
profile ϑ+ according to (2.45) in a plate
(n = 0), a cylinder (n = 1) and a sphere
(n = 2) for Bi = αR/λ = 4.0

with V as the volume and A as the surface area, we obtain the simple relationship

q̇W = Ẇ0

V

A
= Ẇ0

R

1 + n
. (2.46)

Equation (2.45) for the temperature profile then has a form independent of the
shape of the body:

ϑ(r) = ϑF +
q̇WR

2λ

(
1 − r+2

+
2

Bi

)
. (2.47)

The considerations above can also be applied to the case of temperature dependent thermal
conductivity λ = λ(ϑ). When Ẇ0 and the shape of the body are given, the heat flux q̇W at the
wall (r = R) has to be calculated according to (2.46). The surface temperature ϑW is obtained
from

ϑW = ϑF + q̇W/α .

According to section 2.1.4 we introduce the transformed temperature

Θ = ΘW +
1

λ(ϑW)

ϑ∫
ϑW

λ(ϑ) dϑ (2.48)

to account for the variations in λ. From (2.27) the following differential equation for Θ is
obtained

d2Θ

dr2
+

n

r

dΘ

dr
+

Ẇ0

λ (ϑW)
= 0 ,

whose form agrees with (2.38). This is solved under the boundary conditions

r = 0 : dΘ/dr = 0 ,
r = R : Θ = ΘW (corresponding to ϑ = ϑW) .

The solution is the parabola

Θ − ΘW =
Ẇ0R

2

2(1 + n)λ(ϑW)

[
1 − (r/R)2

]
=

q̇WR

2λ(ϑW)

[
1 − (r/R)2

]
. (2.49)

For the calculation of the highest temperature ϑmax in the centre of the body, with r = 0 we
obtain

Θmax − ΘW =
Ẇ0R

2

2(1 + n)λ(ϑW)
=

q̇WR

2λ(ϑW)
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and then with (2.48) for ϑmax the equation

ϑmax∫
ϑW

λ(ϑ) dϑ = λ (ϑW) (Θmax − ΘW) =
Ẇ0R

2

2 (1 + n)
. (2.50)

M. Jakob [2.2] dropped the presumption that Ẇ = Ẇ0 = const and considered heat development
rising or falling linearly with the temperature. The first case occurs during the heating of a
metallic electrical conductor whose electrical resistance increases with temperature.

Example 2.1: A cylindrical fuel rod of radius r = 0.011m is made of uranium diox-
ide (UO2). At a certain cross section in the element the power density is Ẇ0 = 1.80 ·
105 kW/m3; the surface temperature has a value of ϑW = 340 ◦C. The maximum temper-
ature ϑmax in the centre of the element is to be calculated. The thermal conductivity of
UO2, according to J. Höchel [2.3], is given by

λ(T )

W/K m
=

3540 K

T + 57 K
+ 0.0747

(
T

1000 K

)3

,

which is valid in the region 300 K < T < 3073 K.
The maximum (thermodynamic) temperature Tmax is obtained from (2.50) with n = 1 and
ϑ = T :

Tmax∫
TW

λ(T ) dT =
Ẇ0R

2

4
= 5445 W/m .

With the surface temperature TW = ϑW + 273 K = 613 K this yields

Tmax∫
TW

λ(T ) dT =

{
3540 ln

Tmax + 57 K

670 K
+ 18.675

[(
Tmax

1000 K

)4

− 0.1412

]}
W

m
.

From which the transcendental equation

ln
Tmax + 57 K

670 K
= 1.5381 − 0.005275

[(
Tmax

1000 K

)4

− 0.1412

]

is obtained, with the solution Tmax = 2491 K, and correspondingly ϑmax = 2281 ◦C. This
temperature lies well below the temperature at which UO2 melts, which is around 2800 ◦C.

2.2.2 Longitudinal heat conduction in a rod

When a rod shaped object, for example a bolt or a pillar, is heated at one end heat
flows along the axial direction and is transferred to the environment through the
outer surface of the object. The heat release from fins is a similar heat conduction
problem, which we will look at in the next section. Finally there are a number of
measuring procedures for the determination of the thermal conductivity which are
based on the comparison of temperature drops in rods made of different materials,
see [2.2].
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Fig. 2.7: Temperature profile in
a rod of constant cross sectional
area Aq

We will consider a rod of length L with constant cross sectional area Aq and
constant circumference U . One end of the rod is kept at constant temperature
ϑ0 by the input of heat. Heat flows along the direction of the rod axis, and will
be transferred to the surroundings via the outer surface of the rod, Fig. 2.7. The
cross sectional area of the rod is so small that the temperature across the whole
cross section can be assumed to be constant, it only changes in the x-coordinate
direction. In a rod element with volume ∆V = Aq∆x, the heat flow through
the outer surface of the rod released to the surroundings which have a constant
temperature ϑS is

∆Q̇ = α
[
ϑ(x + ε∆x) − ϑS

]
U∆x , 0 ≤ ε ≤ 1 .

This release of heat has the same effect as a heat sink in the rod material with
the power density

Ẇ = − lim
∆x→0

∆Q̇

∆V
= −αU

Aq

[
ϑ(x) − ϑS

]
.

Putting this into the differential equation (2.38) for linear heat flow with a heat
source (n = 0) we obtain, with x instead of r

d2ϑ

dx2
− αU

λAq

(ϑ − ϑS) = 0 (2.51)

as the differential equation which determines the temperature profile along the
rod.

Assuming a constant heat transfer coefficient α and putting as an abbreviation

m2 = αU/λAq , (2.52)

gives the general solution of (2.51) as

ϑ(x) = ϑS + c1 exp(−mx) + c2 exp(mx)

= ϑS + C1 cosh(mx) + C2 sinh(mx) .
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The constants of integration c1, c2, C1 and C2 are determined from the boundary
conditions.

At the left hand end (x = 0) of the rod the temperature is always assumed
to be ϑ = ϑ0, whilst at the other end (x = L) different boundary conditions are
considered. The condition

ϑ = ϑ0 for x = 0

suggest that the dimensionless temperature

ϑ+ :=
ϑ − ϑS

ϑ0 − ϑS

(2.53)

should be used. We then have 0 ≤ ϑ+ ≤ 1.
We will now consider a rod which stretches into the surroundings Fig. 2.7, and

releases heat through its end surface (x = L). Here

Q̇L = −λAq

dϑ

dx
= αLAq (ϑ − ϑS) for x = L (2.54)

is valid. The heat transfer coefficient αL at the end surface does not have to be the
same as α at the outer surface of the rod. After some calculations the temperature
profile in the rod is found to be

ϑ+(x) =
cosh[m(L − x)] + (αL/mλ) sinh[m(L − x)]

cosh[mL] + (αL/mλ) sinh[mL]
. (2.55)

The heat flow Q̇ released to the environment is equal to the heat flow through the
rod cross section at x = 0:

Q̇ = Q̇0 = −λAq

(
dϑ

dx

)
x=0

.

By differentiating (2.55) we obtain

Q̇0 =
√

αλAqU (ϑ0 − ϑS)
tanh(mL) + (αL/mλ)

1 + (αL/mλ) tanh(mL)
. (2.56)

If αL = α then

αL

mλ
=

α

mλ
=

√
αAq

λU
.

A notable simplification of the equations is obtained when αL = 0. This is
valid if the end of the rod is insulated or when the heat release through the small
cross sectional area Aq can be neglected. Then for the temperature profile, we get

ϑ+(x) =
cosh[m(L − x)]

cosh(mL)
. (2.57)



2.2 Steady-state heat conduction 125

The temperature at the free end falls to

ϑ+(L) =
ϑL − ϑS

ϑ0 − ϑS

=
1

cosh(mL)
. (2.58)

The heat released is yielded from (2.56) to be

Q̇0 =
√

αUλAq (ϑ0 − ϑS) tanh(mL) . (2.59)

The functions (cosh mL)−1 and tanh mL are represented in Fig. 2.8.
If the simple equations (2.57) to (2.59) are also to be used for αL �= 0, then

the rod of length L, with heat release at x = L has to be imaginarily replaced
by a rod of length L + ∆L which is insulated at x = L + ∆L. The extra length
∆L is determined such, that the heat flow Q̇L released via the end surface is now
released via the additional circumferential area U∆L. For small values of ∆L it
is approximately valid that

Q̇L = αLAq (ϑL − ϑS) = αU∆L (ϑL − ϑS) .

From which the corrected length LC of the replacement rod is obtained as

LC = L + ∆L = L +
αL

α

Aq

U
. (2.60)

This value is to be used in place of L in equations (2.57) to (2.59).

We will now look at the case where the end of the rod x = L has a given temperature ϑL,
Fig. 2.9. After several calculations the temperature profile is found to be

ϑ+(x) =
sinh[m(L − x)]

sinh(mL)
+ ϑ+(L)

sinh(mx)

sinh(mL)
. (2.61)

In order to calculate the heat released by the rod between x = 0 and x = L, the heat flow in
the x-direction through the two cross sections x = 0 and x = L has to be determined. For any
cross section we obtain

Q̇(x) = −λAq
dϑ

dx
=

λAqm (ϑ0 − ϑS)

sinh(mL)

[
cosh[m(L − x)] − ϑ+(L) cosh(mx)

]
.

Fig. 2.8: Characteristic functions for calcu-
lation of the overtemperature at the free end
of the rod according to (2.58) and of the heat
flow released according to (2.59)
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Fig. 2.9: Temperature profile for a rod, whose ends are maintained at the given temperatures
ϑ0 and ϑL. a at x = L heat flows out (Q̇L > 0), b at x = L heat flows in (Q̇L < 0)

From which we obtain, with m according to (2.52)

Q̇0 =
√

αλAqU
(ϑ0 − ϑS)

sinh(mL)

[
cosh(mL) − ϑ+(L)

]
and

Q̇L =
√

αλAqU
(ϑ0 − ϑS)

sinh(mL)

[
1 − ϑ+(L) cosh(mL)

]
.

The heat released between the two ends via the outer surface is then

Q̇ = Q̇0 − Q̇L =
√

αλAqU (ϑ0 − ϑS)
[
1 + ϑ+(L)

] cosh(mL) − 1

sinh(mL)
. (2.62)

Example 2.2: A cylindrical steel bolt (λ = 52.5W/K m) with diameter d = 0.060m and
length L = 0.200m protrudes from a plate, which has a temperature of ϑ0 = 60.0 ◦C.
Heat is transferred to the air at temperature ϑS = 12.5 ◦C, via the outer surface and the
free end of the bolt. The heat transfer coefficient for the two surfaces is α = 8.0W/m2K.
The heat flow, Q̇0, transferred to the air, and the temperature ϑL of the free end shall be
calculated.
For the heat flow from (2.56) with U = πd and Aq = πd2/4, we obtain

Q̇0 =
π

2
d
√

αλd (ϑ0 − ϑS)
tanh (mL) + (α/mλ)

1 + (α/mλ) tanh (mL)
.

Thereby according to (2.52)

mL = 2

√
α

λd
L = 0.6375

and
α

mλ
=

1

2

√
αd

λ
= 0.0478 .

This gives Q̇0 = 13.3 W. The temperature of the free bolt end is yielded from (2.55) with
x = L to be

ϑ+ =
1

cosh(mL) + (α/mL) sinh(mL)
= 0.8047

which produces
ϑL = ϑS + (ϑ0 − ϑS) ϑ+

L = 50.7 ◦C .
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If the heat released via the free end of the bolt is neglected the value for the heat flow
Q̇0 = 12.7 W obtained from (2.59) is too low. The temperature ϑL is found to have the
larger value ϑL = 51.8 ◦C. Using the corrected bolt length

LC = L +
d

4
= 0.215m

according to (2.60) we find that the values for Q̇0 from (2.59) and ϑL from (2.57) agree
with the exact values to three significant figures.

2.2.3 The temperature distribution in fins and pins

As already shown in section 1.2.3, heat transfer between two fluids can be im-
proved if the surface area available for heat transfer, on the side with the fluid
which has the lower heat transfer coefficient, is increased by the addition of fins
or pins. However this enlargement of the area is only partly effective, due to the
existence of a temperature gradient in the fins without which heat could not be
conducted from the fin base. Therefore the average overtemperature decisive for
the heat transfer to the fluid is smaller than the overtemperature at the fin base.
In order to describe this effect quantitatively, the fin efficiency was introduced in
section 1.2.3. Its calculation is only possible if the temperature distribution in the
fin is known, which we will cover in the following. Results for the fin efficiencies
for different fin and pin shapes are given in the next section.

In order to calculate the temperature distribution some limiting assumptions
have to be made:

1. The fin (or pin) is so thin that the temperature only changes in the direction
from fin base to fin tip.

2. The fin material is homogeneous with constant thermal conductivity λf .
3. The heat transfer at the fin surface will be described by a constant heat

transfer coefficient αf .
4. The temperature ϑS of the fluid surrounding the fin is constant.
5. The heat flow at the tip of the fin can be neglected in comparison to that

from its sides.
These assumptions are generally true with the exception of the constant αf over
the surface of the fin. The influence of a varying heat transfer coefficient has been
investigated by S.-Y. Chen and G.L. Zyskowski [2.4], L.S. Han and S.G. Lefkowitz
[2.5] and also H.C. Ünal [2.6].

Under the assumptions given above, the temperature distribution in fins can be described
by a second order differential equation, which we will now derive. We cut a volume element,
from any fin or pin as shown in Fig. 2.10, which has a thickness of ∆x. The energy balance for
this element is

Q̇(x) = Q̇(x + ∆x) + ∆Q̇S , (2.63)

because the heat flowing, by conduction, into the element at point x, has to deliver the heat
conducted further to x + ∆x and the heat flow ∆Q̇S, which is transferred via the surface ∆Af
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of the element to the fluid surrounding it which has the temperature ϑS. Introducing the
overtemperature as

Θ(x) = ϑ(x) − ϑS (2.64)

and taking ∆Af as the surface area through which heat is released from the fin element, we
obtain the following expression for ∆Q̇S

∆Q̇S = αf ∆Af Θ(x + ε∆x) , 0 ≤ ε ≤ 1 .

According to Fourier’s law, the heat flow through the cross sectional area Aq(x)

Q̇(x) = −λfAq(x)
dΘ

dx
(2.65)

is transported by conduction. From this we obtain (Taylor series at point x)

Q̇(x + ∆x) = Q̇(x) +
dQ̇

dx
∆x + O(∆x2)

= Q̇(x) − λf
d

dx

[
Aq(x)

dΘ

dx

]
∆x + O(∆x2) ,

where O(∆x2) indicates that the rest of the terms is of the order of ∆x2. Putting these rela-
tionships for the three heat flows into the balance equation (2.63) gives

0 = −λf
d

dx

[
Aq(x)

dΘ

dx

]
∆x + O(∆x2) + αf ∆Af Θ(x + ε∆x) .

Division by ∆x, yields for the limit ∆x → 0

d

dx

[
Aq(x)

dΘ

dx

]
− αf

λf

dAf

dx
Θ = 0 (2.66)

as the desired differential equation for the overtemperature Θ(x).
This differential equation covers all forms of extended surfaces, as long as the aforementioned

assumptions are met. The different fin or pin shapes are expressed by the terms Aq = Aq(x) for
the cross sectional area and Af = Af(x) for the fin surface area over which the heat is released.
So for a straight fin of width b perpendicular to the drawing plane in Fig. 2.11, with a profile
function y = y(x) we obtain the following for the two areas

Aq(x) = 2y(x)b and Af(x) = 2bx .

Fig. 2.10: Energy balance for a volume element of thickness ∆x and surface area ∆Af of any
shape of fin or pin with a cross sectional area Aq(x)
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Fig. 2.11: Straight fin of width b (per-
pendicular to drawing plane) with any
profile function y = y(x)

Fig. 2.12: Annular fin on a tube (outer ra-
dius r0) with profile function y = y(r)

The narrow sides of the fin are not considered in Af . In addition to this the difference between
Af and its projection on the plane formed by the fin width b and the x-axis will also be neglected.
A thin fin is presumed. This leads to the differential equation

d2Θ

dx2
+

1

y

dy

dx

dΘ

dx
− αf

λfy
Θ = 0 . (2.67)

This has to be solved for a given fin profile y = y(x) under consideration of the boundary
conditions at the fin base,

Θ = Θ0 = ϑ0 − ϑS for x = 0 , (2.68)

and the condition
dΘ

dx
= 0 for x = h . (2.69)

This corresponds to the fifth assumption, the neglection of the heat released at the tip of the
fin.

For thin annular fins, as in Fig. 2.12, with r as the radial coordinate we obtain

Aq(r) = 4πry(r) and Af(r) = 2π(r2 − r2
0) ,

where y = y(r) describes the fin profile. The differential equation for annular fins is found from
(2.66) to be

y
d2Θ

dr2
+

(
y

r
+

dy

dr

)
dΘ

dr
− αf

λf
Θ = 0 . (2.70)

The solution has to fulfill the boundary conditions

Θ = Θ0 = ϑ0 − ϑS for r = r0

at the fin base and

dΘ/dr = 0 for r = r0 + h

at the tip of the fin.
Solutions to these differential equations, (2.67) and (2.70), for different profile functions

y = y(x) and y = y(r) were first given by D.R. Harper and W.B. Brown [2.7] in 1922 and also
by E. Schmidt [2.8] in 1926 respectively. In 1945 an extensive investigation of all profiles which
lead to differential equations with solutions that are generalised Bessel functions was carried out
by K.A. Gardner [2.9]. The differential equation derived from equation (2.66) for cone-shaped
pins with various profiles was first given and then solved by R. Focke [2.10] in 1942. A summary
of the temperature distributions in various elements of extended heat transfer surfaces can be
found in the book by D.Q. Kern and A.D. Kraus [2.11].
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Fig. 2.13: Temperature distribution in a straight fin with a rectangular profile
(fin thickness δf) as a function of x/h with mh as a parameter according to
(2.72)

In the following we will deal with a straight fin with a rectangular profile. Its
thickness will be indicated by δf , so that the profile function y(x) = δf/2 in Fig.
2.11 is valid. From (2.67) follows the simple differential equation

d2Θ

dx2
− 2αf

λfδf

Θ = 0 .

It has the same form as equation (2.51) from section 2.2.2, which is valid for heat
conduction in the axial direction of a rod. Using the abbreviation

m =

√
2αf

λfδf

(2.71)

we obtain the solution already known from section 2.2.2

Θ = Θ0

cosh [m(h − x)]

cosh(mh)
, (2.72)

which fulfills the boundary conditions (2.68) and (2.69). If the heat release at
the tip of the fin, neglected in (2.69), is to be considered, a corrected fin height,
corresponding to (2.60), can be introduced, by which h will be replaced by hC =
h + ∆h = h + δf/2. Eq. (2.72) is also valid for a pin with constant cross sectional
area Aq. This only requires that δf = Aq/2U with U as the circumference of the
cross sectional area be put into (2.71).

Fig. 2.13 shows the temperature profile as a function of the dimensionless
coordinate x/h for different values of the parameter mh, in which the dimensions
of the fin, its thermal conductivity and the heat transfer coefficient are combined.
Values in the region 0.7 < mh < 2 should be chosen for practical applications. In
long fins with mh > 2 the temperature quickly falls, and a significant portion of
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the fin transfers only a small amount of heat due to a too small overtemperature.
Values of mh < 0.7 indicate that by lengthening the fin, a significantly larger heat
flow could have been transferred.

An optimal value for mh can be found under the condition that the heat
flow Q̇f released from the fin should be as large as possible, provided that the
material usage, i.e. the volume of the fin is constant. We obtain Q̇f as the heat
flow conducted through the fin base (x = 0) to be

Q̇f = −λfb δf

(
dΘ

dx

)
x=0

. (2.73)

Out of (2.72) comes

Q̇f =
√

2αfλfδf b Θ0 tanh (mh) . (2.74)

With the fin volume
Vf = δfhb

we get

Q̇f =
√

2αfλfVfb
Θ0√

h
tanh

(√
2αfb

λfVf

h3/2

)
.

In general, the fin width b is set by the dimensions of the apparatus which is to
be cooled. Q̇f therefore depends on h and the condition dQ̇f/dh = 0 leads to the
equation

tanh(mh) =
3mh

cosh2(mh)
= 3mh

(
1 − tanh2(mh)

)
with the solution

mh =

√
2αf

λfδf

h = 1.4192 .

The chosen height h of the fin using this condition gives the maximum heat flow
for a set fin volume Vf . A similar calculation for annular fins with different profile
functions is available in A. Ullmann and H. Kalman [2.12].

E. Schmidt [2.8] determined the fin shape, which for a specific thermal power,
required the least material. The profile of these fins is a parabola, with its vertex
at the tip of the fin. These types of pointed fins are difficult to produce, which is
why fins used in practice have either rectangular, trapezoidal or triangular cross
sections.

2.2.4 Fin efficiency

The fin efficiency

ηf :=
Q̇f

Q̇f0

=
ϑf − ϑS

ϑ0 − ϑS

=
Θf

Θ0

(2.75)
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Fig. 2.14: Efficiency ηf of a straight fin with a rectangular profile according to
(2.77) and with a triangular profile according to (2.79) as a function of mh from
(2.78)

was introduced in section 1.2.3, as the ratio of the actual heat flow Q̇f released by
the fin to the heat flow

Q̇f0 = αfAf (ϑ0 − ϑS) = αfAfΘ0 ,

which would be released, if the temperature throughout the fin was the same as
at its base ϑ0, rather than the lower mean temperature ϑf . Here ϑS is the fluid
temperature which was indicated by ϑ2 in section 1.2.3. The heat flow released
from the fin agrees with the heat flow Q̇(x = 0), which is conducted at the fin
base into the fin itself:

Q̇f = Q̇(x = 0) = −λfAq0 (dΘ/dx)x=0 . (2.76)

Here Aq0 is the cross sectional area at the fin base.

The heat flow Q̇f for a straight fin with a rectangular profile was calculated in
the last section. Using (2.74) and Aq0 = b δf it follows from (2.76) that

ηf =
tanh(mh)

mh
. (2.77)

The efficiency of a straight rectangular fin only depends on the dimensionless
group

mh =

√
2αf

λfδf

h (2.78)

Fig. 2.14 shows ηf according to (2.77). For the optimal value determined in 2.2.3
of mh = 1.4192 for the fin with the largest heat release at a given volume the
efficiency is ηf = 0.627.

The efficiencies of other fin shapes can be found in the same manner from the
temperature distribution in the fins. Fig. 2.14 shows ηf as a function of mh for a
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straight fin with a triangular profile. In this case δf is the thickness of the fin at
its base. The plot of the efficiency ηf is similar to the plot of the fin efficiency for
a straight rectangular fin. It is therefore possible to replace the expression for ηf

containing Bessel functions with a similar function to that in equation (2.77):

ηf =
tanh (ϕmh)

ϕmh
. (2.79)

The correction factor ϕ is given by

ϕ = 0.99101 + 0.31484
tanh (0.74485mh)

mh
, (2.80)

from which we obtain a reproduction of the exact result, which for values of
mh < 5 has an accuracy better than 0.05%.

For the frequently used annular fins of constant thickness δf , y(r) = δf/2 has to
be put into (2.70) for the profile function. The fin efficiency ηf is dependent on two
dimensionless groups: mh according to (2.78) and the radius ratio (r0+h)/r0 = 1+
h/r0, cf. Fig. 2.12. This yields a complicated expression containing modified Bessel
functions. F. Brandt [2.13] found the rather accurate approximation equation

ηf =
2r0

2r0 + h

tanh(mh)

mh

[
1 +

tanh(mh)

2mr0

− C
[tanh(mh)]p

(mr0)
n

]
(2.81)

with C = 0.071882, p = 3.7482, n = 1.4810. It has a maximum error of 0.6% for
all values of mh and for mr0 ≥ 0.2. A more simple approximation equation was
found by Th.E. Schmidt [2.14]:

ηf =
tanh (mhϕ)

mhϕ
(2.82)

with
ϕ = 1 + 0.35 ln (1 + h/r0) . (2.82a)

For ηf > 0.5 it deviates by no more than ±1% from the exact values.

Frequently square, rectangular or hexagonal disk fins are attached to tubes, whereby several
tubes can also be joined together by the use of sheets of fins through which the tubes pass, Fig.
2.15. In these fins the temperature does not only depend on one coordinate, but two-dimensional
temperature fields must be reckoned with. As a first approach, the efficiency ηf of these disk
fins can be calculated from (2.81) or (2.82) for an annular fin with the same surface area. Then
for a rectangular fin as in Fig. 2.15 we get

h =
√

s1s2/π − r0 = 0.564
√

s1s2 − r0 (2.83)

and for the hexagonal fin with side length s

h =

√
3
√

3

2π
s − r0 = 1.211s − r0 (2.84)

to put into the equations. Somewhat more accurate values have been found by Th.E. Schmidt
[2.14] with

h = 0.64
√

s2 (s1 − 0.2s2) − r0 (2.85)
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Fig. 2.15: Disk fins. a rectangular disks on a tube, b tube arrangement with disk fins (rectan-
gular and hexagonal)

for the rectangular fin with s1 taken as the larger side of the rectangle. E.M. Sparrow and
S.H. Lin [2.15] provided analytical approximations for square (s1 = s2) fins and for the hexagonal
shaped fins, which with more extensive calculations produce any exact value for ηf . After that
the simple equations (2.83) with s1 = s2 = s are sufficiently exact, as long as h/r0 ≥ 0.5.
H.D. Baehr and F. Schubert [2.16] have experimentally determined the efficiency of a square
disk fin with an electrical analogy method and have confirmed that the approximation equations
(2.82) and (2.85) are in the main correct.

2.2.5 Geometric multi-dimensional heat flow

Plane and spatial steady temperature fields, which appear in geometric multi-
dimensional heat flow, are significantly more difficult to calculate than the cases
considered up until now, in which ϑ only changed in one coordinate direction.
Solutions to the Laplace equation for plane temperature fields without heat sources

∇2ϑ =
∂2ϑ

∂x2
+

∂2ϑ

∂y2
= 0 , (2.86)

can be obtained by applying different mathematical methods. The product or
separation formula

ϑ(x, y) = f1(x) · f2(y)

yields two easy to solve ordinary differential equations from (2.86). The fulfillment
of the boundary conditions is only possible in an easy way if the temperature field
is sought in a rectangle with edges which run parallel with the x and y directions
respectively. Examples of this method can be found in the book by S. Kakaç and
Y. Yener [2.17].

A further solution method is conformal mapping. Its application has been
described by H.S. Carslaw and J.C. Jaeger [2.1], as well as by U. Grigull and H.
Sandner [2.18]. Regions with complex geometry can also be treated using this
method. However, simple solutions are only obtained when as boundary condi-
tions constant temperatures or adiabatic edges are prescribed. In general a heat
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transfer condition can only be considered approximately. As an example for this
an investigation by K. Elgeti [2.19] should be mentioned, where he calculated the
heat released from a pipe embedded in a wall. Finally the method of superposition
of heat sources and sinks should be mentioned. This method also allows complex
temperature fields between isothermally bounded bodies to be calculated. It cor-
responds to the singularity method which is used in fluid mechanics for calculating
the potential flows around bodies with any given contour, cf. for example [2.20].
An application of this method will be shown in the next section.

2.2.5.1 Superposition of heat sources and heat sinks

In section 1.1.2 we calculated the temperature distribution ϑ = ϑ(r) in a hollow
cylinder of length L. The heat flow in the radial direction is

Q̇ = 2πLλ (ϑ − ϑ0) / ln (r0/r) ,

where ϑ is the temperature at distance r from the cylinder axis and ϑ0 is the
temperature at the radius r0. The heat flow Q̇ can be perceived as the strength
of a linear heat source at r = 0, which runs parallel to the z-axis. This generates
the temperature field which is only dependent on r,

ϑ(r) = ϑ0 +
Q̇

2πLλ
ln (r0/r) , (2.87)

with temperatures which approach infinity for r → 0.

Fig. 2.16: Superposition of a linear heat
source at point Q and a linear heat sink at
point S

Such a linear or cylindrical heat source may lie on the x-axis at point Q at
a distance h from the origin, Fig. 2.16. A heat sink of strength (−Q̇) is located
at point S at a distance (−h) from the origin. We wish to determine the plane
temperature field which is generated by the superposition of the source and the
sink in the thermally conductive material.

At any particular point P in Fig. 2.16, the temperature is

ϑ = ϑ0Q +
Q̇

2πLλ
ln

r0

rQ
+ ϑ0S − Q̇

2πLλ
ln

r0

rS
,
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from which, with ϑ0 = ϑ0Q + ϑ0S

ϑ = ϑ0 +
Q̇

2πLλ
ln

rS

rQ
(2.88)

is obtained. Here rQ and rS represent the distance of point P from the source or the sink
respectively. An isotherm ϑ = const is, according to this equation, a line on which the distance
ratio

k = rS/rQ (2.89)

has a constant value. At all points on the y-axis, we have rS = rQ, and therefore the y-axis is
the isotherm with k = 1, where ϑ = ϑ0. All points to the right of the y-axis (x > 0) have a
distance ratio k > 1 and temperatures ϑ > ϑ0. For the points where x < 0, 0 ≤ k < 1 and
ϑ < ϑ0 are valid.

We will now show that all isotherms ϑ �= ϑ0 form a set of circles with centres which all lie
on the x-axis. According to Fig. 2.16

k2 =
r2
S

r2
Q

=
(x + h)2 + y2

(x − h)2 + y2
,

is valid and from that follows(
x − k2 + 1

k2 − 1
h

)2

+ y2 =
4k2

(k2 − 1)2
h2 . (2.90)

This is the equation for a circle with radius

R =
2k

k2 − 1
h , (2.91)

whose centre M lies on the x-axis and at a distance

m =
k2 + 1

k2 − 1
h (2.92)

from the origin. The isotherms ϑ > ϑ0 lie to the right of the y-axis, because k > 1. As the
temperature rises (increasing k) the circle radii get smaller, and the centre of the circle moves
closer to the source point Q, Fig. 2.17. Isotherms with ϑ < ϑ0 are circles which lie to the left of
the y-axis. With falling temperatures the circles are drawn closer around sink S.

From (2.91) and (2.92) the following is obtained by squaring:

h2 = m2 − R2 . (2.93)

By forming the ratio m/R, a quadratic equation for k with the solutions

k =
m

R
±
√(m

R

)2

− 1 (2.94)

results. The positive root delivers distance ratios k > 1, and is therefore to be applied to circles
to the right of the y-axis. The other root yields values of k < 1, which correspond to circles to
the left of the y-axis.

The isotherms given by (2.88), (2.89) and (2.90) and represented in Fig. 2.17 allow the
steady-state heat conduction in the medium between two isothermal circles, e.g. between two
tubes with constant surface temperatures ϑ1 and ϑ2 to be calculated. This gives

ϑ1 − ϑ2 =
Q̇

2πLλ
(ln k1 − ln k2)

or

Q̇ =
2πLλ

ln (k1/k2)
(ϑ1 − ϑ2) =

ϑ1 − ϑ2

Rcond
. (2.95)
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Fig. 2.17: Net of isotherms from (2.88) and (2.90) for different distance ratios k according to
(2.89); Q heat source, S heat sink

This is the heat flow between the isotherms ϑ = ϑ1 and ϑ = ϑ2. It is inversely proportional to
the resistance to heat conduction (cf. 1.2.2)

Rcond =
ln (k1/k2)

2πLλ
(2.96)

which depends on the position of the two isothermal circles (tubes). Thereby three cases must
be distinguished:

1. k1 > k2 > 1. Two eccentric tubes, in Fig. 2.18 a, with axes a distance e away from each
other. The larger tube 2 with surface temperature ϑ2 surrounds tube 1 with ϑ1 > ϑ2.

2. k1 > 1; k2 = 1. A tube with radius R, lying at a depth m under an isothermal plane e.g.
under the earth’s surface Fig. 2.18 b.

3. k1 > 1; k2 < 1. Two tubes with radii R1 and R2, whose axes have the separation s > R1+R2.
They both lie in an extensive medium, Fig. 2.18 c.

It is rather simple to calculate the resistance to heat conduction between a tube and an
isothermal plane as shown in Fig. 2.18 b. With k2 = 1 and k1 according to (2.94) we obtain
from (2.96)

Rcond =
1

2πLλ
ln

(
m

R
+

√(m

R

)2

− 1

)
=

1

2πLλ
arcosh (m/R) . (2.97)

If at the plane surface heat transfer to a fluid with temperature ϑ2 is to be considered, this can
be approximated by calculating Rcond with the enlarged distance

m∗ = m + λ/α .

The actual surface at a depth λ/α is not isothermal, but shows a weak temperature maximum
directly above the tube, as would be expected from a physical point of view. K. Elgeti [2.21]
found an exact solution to this problem. The approximation is surprisingly accurate. Notable
deviations from the exact solution only appear for αR/λ < 0.5 and only with values of m/R < 2.
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Fig. 2.18: Three arrangements of tubes with isothermal surfaces. a two eccentric tubes, one
inside the other, b a tube and an isothermal plane, c two tubes with distance between their
centres s > R1 + R2

The calculation of the conduction resistance between two eccentric tubes, as in Fig. 2.18 a,
can only be carried out if both tube radii R1 and R2 and the distance between their two centres
(eccentricity)

e = m2 − m1 (2.98)

are given. The distances m1 and m2 are expressed using these three quantities. According to
(2.93)

m2
2 − m2

1 = R2
2 − R2

1 (2.99)

and from (2.98) it follows that
(m2 − m1)

2
= e2 .

From these two equations we obtain

m1 =
R2

2 − R2
1 − e2

2e
and m2 =

R2
2 − R2

1 + e2

2e
.

This gives the thermal conduction resistance as

Rcond =
1

2πLλ
(ln k1 − ln k2) =

1

2πLλ

[
arcosh

R2
2 − R2

1 − e2

2eR1
− arcosh

R2
2 − R2

1 + e2

2eR2

]
or with the use of the addition theorem for inverse hyperbolic cosine functions

Rcond =
1

2πLλ
arcosh

R2
1 + R2

2 − e2

2R1R2
. (2.100)

In the special case of concentric circles (e = 0) the result

Rcond =
1

2πLλ
ln (R2/R1)

already known from 1.1.2 will be obtained.
For the third case, two tubes in an extended medium as in Fig. 2.18 c, we express m1 and

m2 through the tube radii R1 and R2 as well as the distance

s = m1 + m2 .

This gives, with (2.99)

m1 =
s2 − (

R2
2 − R2

1

)
2s

and m2 =
s2 + R2

2 − R2
1

2s
.

The resistance to heat conduction, with

ln k2 = ln

⎛⎝m2

R2
−
√(

m2

R2

)2

− 1

⎞⎠ = −arcosh
m2

R2
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is found to be

Rcond =
1

2πLλ

[
arcosh

s2 − (
R2

2 − R2
1

)
2sR1

+ arcosh
s2 + R2

2 − R2
1

2sR2

]
(2.101)

and finally

Rcond =
1

2πLλ
arcosh

s2 − R2
1 − R2

2

2R1R2
. (2.102)

If the tubes have equal radii R1 = R2 = R, we obtain from (2.101)

Rcond =
1

πLλ
arcosh

s

2R
. (2.103)

The superposition of several heat sources and sinks allows to calculate more complex tem-
perature fields. W. Nusselt [2.22] replaced the tubes of a radiation heating system embedded in
a ceiling by linear heat sources and so calculated the temperature distribution in the ceiling.

2.2.5.2 Shape factors

The heat flow Q̇, from one isothermal surface at temperature ϑ1 to another isother-
mal surface at temperature ϑ2, can be calculated according to the simple relation-
ship

Q̇ = (ϑ1 − ϑ2) /Rcond

if the resistance to conduction Rcond is known. Thereby Rcond is inversely propor-
tional to the thermal conductivity λ of the material between the two isothermal
surfaces. It is reasonable to define

Rcond = (λS)−1 (2.104)

or to put
Q̇ = λS (ϑ1 − ϑ2) (2.105)

and thereby introduce the shape coefficient S. The shape coefficient only depends
on the geometrical arrangement of the two isothermal surfaces between which Q̇
is transferred by conduction. It has the dimensions of length.

For bodies with two-dimensional (plane) temperature distributions, which have
length L perpendicular to the plane of coordinates on which the temperature ϑ
depends, a dimensionless shape coefficient SL := S/L can be defined. This dimen-
sionless number is known as shape factor. Examples of these plane temperature
fields were dealt with in the last section. The shape factor for a tube of radius R
and length L, as in Fig. 2.18 b, lying at a depth of m under an isothermal surface
is found, according to (2.97) and (2.104), to be

SL =
S

L
=

2π

arcosh (m/R)
. (2.106)

The shape factors for the tube arrangements shown in Figs. 2.18 a and 2.18 c can
be found in the same manner from equations (2.100) and (2.102) respectively.
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In order to calculate the shape coefficient S in general, the heat flow Q̇ has to
be determined by integration of the local heat flux

q̇ = −λ
∂ϑ

∂n

on the isothermal surfaces A1 and A2. The heat flow from A1 to A2 is given by

Q̇ = −λ
∫

(A1)

∂ϑ

∂n1

dA1 = λ
∫

(A2)

∂ϑ

∂n2

dA2 . (2.107)

In which the surface normals n1 and n2 are directed into the conductive medium.
Equation (2.105) gives the shape coefficient as

S =
Q̇

λ (ϑ1 − ϑ2)
= − 1

ϑ1 − ϑ2

∫
(A1)

∂ϑ

∂n1

dA1 =
1

ϑ1 − ϑ2

∫
(A2)

∂ϑ

∂n2

dA2 . (2.108)

This relationship enables S to be calculated from the known temperature field.
E. Hahne and U. Grigull [2.23] have compiled shape coefficients and shape

factors for a large number of different geometrical arrangements and organised
them systematically. A similar, extensive collection of shape factors for 45 different
geometries is available in the VDI-Wärmeatlas [2.24].

In the definition of the shape coefficient in (2.105) and its calculation according to (2.107)
and (2.108), constant thermal conductivity λ was presumed. The temperature dependence of
λ = λ(ϑ) is accounted for by the transformed temperature Θ from (2.26), which was introduced
in section 2.1.4. It is found that a shape coefficient S calculated for constant λ can be used
unaltered, for cases in which λ = λ(ϑ), thereby allowing the heat flow between two isothermal
surfaces to be calculated. Equation (2.105) can be used for this, provided that λ is replaced by
the integral mean value

λm =
1

ϑ1 − ϑ2

ϑ1∫
ϑ2

λ(ϑ) dϑ . (2.109)

This result is a generalisation of equations (1.8) to (1.11) exhibited in section 1.1.2 for geometric
one-dimensional heat conduction between the two isothermal surfaces of flat and curved walls.

2.3 Transient heat conduction

Time dependent or transient temperature fields appear when the thermal condi-
tions at the boundaries of the body change. If, for example, a body that initially
has a constant temperature is placed in an environment at a different temper-
ature then heat will flow over the surface of the body and its temperature will
change over time. At the end of this time dependent process a new steady-state
temperature distribution will develop.
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In the following sections we will discuss simple solutions, which are also im-
portant for practical applications, of the transient heat conduction equation. The
problems in the foreground of our considerations will be those where the temper-
ature field depends on time and only one geometrical coordinate. We will discuss
the most important mathematical methods for the solution of the equation. The
solution of transient heat conduction problems using numerical methods will be
dealt with in section 2.4.

2.3.1 Solution methods

The solution of a transient heat conduction problem can be found in three different
ways:

1. by a closed solution of the heat conduction equation, fulfilling all the bound-
ary conditions,

2. by a numerical solution of the differential equation (with boundary condi-
tions) using either a finite difference or finite element method.

3. by an experimental method implementing an analogy process.
In order to find a closed solution by mathematical functions the material prop-

erties must be assumed to be temperature independent, which according to section
2.1.2 leads to the partial differential equation

∂ϑ

∂t
= a∇2ϑ +

Ẇ

c �
. (2.110)

So that a linear differential equation is produced, the problem is limited to either
conduction without internal heat sources (Ẇ ≡ 0), or the power density Ẇ is
presupposed to be independent of or only linearly dependent on ϑ. In addition
the boundary conditions must also be linear, which for the heat transfer condition
(2.23) requires a constant or time dependent, but non-temperature dependent
heat transfer coefficient α.

The linear initial and boundary condition problems outlined here were solved
for numerous cases in the 19th and 20th centuries. The classical solution meth-
ods of separating the variables, the superimposing of heat sources and sinks and
Green’s theorem were all used. In more recent times the Laplace transformation
has become the more important solution method for transient heat conduction
problems. The classical separation of the variables theory will be applied in sec-
tions 2.3.4 to 2.3.6. As the Laplace transformation is not very well known among
engineers, a short introduction will be made in the following section. In section
2.3.3 we will show the applications of the Laplace transformation to problems
which can easily be solved using this method. A more extensive exposition of the
mathematical solution methods and a whole host of results can be found in the
standard work by H.S. Carslaw and J.C. Jaeger [2.1].

The numerical solution of a transient heat conduction problem is of particu-
lar importance when temperature dependent material properties or bodies with
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irregular shapes or complex boundary conditions, for example a temperature de-
pendent α, are present. In these cases a numerical solution is generally the only
choice to solve the problem. The application possibilities for numerical solutions
have considerably increased with the introduction of computers. These numerical
methods will be discussed in section 2.4.

Experimental analogy procedures are based on the fact that different transient
transport processes, in particular electrical conduction, lead to partial differential
equations which have the same form as the heat conduction equation. We speak
of analogous processes and use a model of such a process which is analogous to
heat conduction, in order to transfer the results gained from the model to the
thermal conduction process. A short description of this type of analogy model
can be found in U. Grigull and H. Sandner [2.18]. As a result of the extensive
progress in computer technology, this method has very little practical importance
today and for this reason we will not look any further into analogy methods.

2.3.2 The Laplace transformation

The Laplace transformation has proved an effective tool for the solution of the
linear heat conduction equation (2.110) with linear boundary conditions. It follows
a prescribed solution path and makes it possible to obtain special solutions, for
example for small times or at a certain position in the thermally conductive body,
without having to determine the complete time and spatial dependence of its
temperature field. An introductory illustration of the Laplace transformation and
its application to heat conduction problems has been given by H.D. Baehr [2.25].
An extensive representation is offered in the book by H. Tautz [2.26]. The Laplace
transformation has a special importance for one-dimensional heat flow, as in this
case the solution of the partial differential equation leads back to the solution of
a linear ordinary differential equation. In the following introduction we will limit
ourselves to this case.

ϑ = ϑ (x, t) is the temperature distribution that has to be calculated. Multi-
plying ϑ with the factor e−st, in which s is a (complex) quantity with the same
dimensions as frequency, and integrating the product from t = 0 to t → ∞,
produces a new function

u (x, s) = L{ϑ(x, t)} =

∞∫
0

ϑ(x, t) e−st dt . (2.111)

This is known as the Laplace transform2 of the temperature ϑ and depends on
s and x. We use the symbol L{ϑ} when we are stating theorems, while u is an
abbreviation for L{ϑ} in the solution of concrete problems. Often ϑ will be called

2In some books the Laplace parameter s is denoted by p, as in H.S. Carslaw and J.C. Jaeger
[2.1] and in H. Tautz [2.26].
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Table 2.2: Some general relationships for the Laplace transform L{ϑ} = u

1. L{ϑ1 + ϑ2} = L{ϑ1} + L{ϑ2}

2. L
{

∂ϑ

∂t

}
= sL{ϑ} − ϑ0 = s u − ϑ0(x)

with ϑ0(x) = lim
t→+0

ϑ(x, t), ( Initial temperature profile)

3. L
{

∂nϑ

∂xn

}
=

∂nu

∂xn

4. L
{∫ t

0
ϑ(t′) dt′

}
=

1

s
L{ϑ}

5. If L{ϑ(t)} = u(s) and k is a positive constant, then

L{ϑ(kt)} =
1

k
u
(

s

k

)

6. L
{∫ t

0
f1(τ) f2(t − τ) dτ

}
= L

{∫ t

0
f2(τ) f1(t − τ) dτ

}
= L{f1(t)} · L {f2(t)} ,

so-called convolution theorem, which is applied, in particular, to time
dependent boundary conditions.

the object function with L{ϑ} as the subfunction or transformed function. As s
has the dimensions of frequency, it is said that through the Laplace transformation
ϑ is transformed from the time region to the frequency region.

To apply the Laplace transformation several theorems are required, which have
been put together, without proofs, in Table 2.2. In addition a table of functions
of ϑ with their Laplace transforms u is also needed. This correspondence table is
generated by the evaluation of the defining equation (2.111).

So for example, we obtain for
ϑ(x, t) = f(x) e−ct

the Laplace transform

u(x, s) =

∞∫
0

f(x) e−cte−st dt = f(x)

∞∫
0

e−(s+c)t dt

= −f(x)

[
e−(s+c)t

s + c

]∞
0

=
f(x)

s + c
.

We have therefore the general correspondence

u(x, s) •−◦ ϑ(x, t)
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and in our example
f(x)

s + c
•−◦ f(x) e−ct ,

where for the special case of f (x) ≡ 1 and c = 0

1

s
•−◦ 1

is valid.

Further correspondences of this type, which are important for the solution of
the heat conduction equation are contained in Table 2.3. More extensive tables
of correspondences can be found in the literature, e.g. [2.1], [2.26] to [2.28].

In order to explain the solution process we will limit ourselves to linear heat
flow in the x-direction and write the heat conduction equation as

∂2ϑ

∂x2
− 1

a

∂ϑ

∂t
= 0 . (2.112)

Applying the Laplace transformation gives, according to Table 2.2, the ordinary
differential equation

d2u

dx2
− s

a
u = −1

a
ϑ0(x) , (2.113)

in which ϑ0 (x) = ϑ (x, t = 0) represents the given initial temperature distribution
at time t = 0. If ϑ0 (x) = 0 a homogeneous linear differential equation is produced,
whose solution can immediately be formulated:

u(x, s) = c1 exp
(
−
√

s
a x

)
+ c2 exp

(√
s
a x

)
= C1 cosh

(√
s
a x

)
+ C2 sinh

(√
s
a x

)
.

(2.114)

The two integration constants c1, c2 or C1, C2 are found by fitting u to the
boundary conditions, which are also subjected to a Laplace transform. If an
initial condition of ϑ0 �= 0 has to be accounted for, the solution given in (2.114)
for the homogeneous differential equation has to be supplemented by a particular
solution of the inhomogeneous equation.

Once the Laplace transform u (x, s) of the temperature ϑ (x, t) which fits the
initial and boundary conditions has been found, the back-transformation or so-
called inverse transformation must be carried out. The easiest method for this is
to use a table of correspondences, for example Table 2.3, from which the desired
temperature distribution can be simply read off. However frequently u (x, s) is
not present in such a table. In these cases the Laplace transformation theory
gives an inversion theorem which can be used to find the required solution. The
temperature distribution appears as a complex integral which can be evaluated
using Cauchy’s theorem. The required temperature distribution is yielded as an
infinite series of exponential functions fading with time. We will not deal with
the application of the inversion theorem, and so limit ourselves to cases where the
inverse transformation is possible using the correspondence tables. Applications of
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Table 2.3: Table of some correspondences. u(s, x) is the Laplace transform of ϑ(t, x). The
abbreviations p =

√
s/a and ξ = x/2

√
at should be recognised.

u(s, x) ϑ(t, x)

1.
c

s
c

2.
1

sν+1
, ν > −1

tν

Γ(ν + 1)
, Γ this is the Gamma function, see below

3.
1

s + c
e−ct

4. e−px ξ√
πt

e−ξ2

5.
e−px

p

√
a

πt
e−ξ2

6.
e−px

s
erfc ξ, complementary error function , see below

7.
e−px

sp
2
√

at

(
e−ξ2

√
π

− ξ erfc ξ

)
= 2

√
at ierfc ξ

8.
e−px

s2
t

[(
1 + 2ξ2

)
erfc ξ − 2√

π
ξ e−ξ2

]

9.
e−px

p + h

√
a

πt
e−ξ2 − haehx+ah2t erfc

(
ξ + h

√
at
)

10.
e−px

p (p + h)
aehx+ah2t erfc

(
ξ + h

√
at
)

11.
e−px

s (p + h)

1

h

[
erfc ξ − ehx+ah2t erfc

(
ξ + h

√
at
)]

Special values of the Gamma function:

Γ(1) = 1 ; Γ(n) = (n − 1)! = 1 · 2 · 3 · . . . (n − 1) , (n = 2, 3, . . .)

Γ( 1
2) =

√
π ; Γ(n + 1

2 ) =
√

π
1 · 3 · 5 · . . . (2n − 1)

2n
, (n = 1, 2, 3, . . .)

Values for the complementary error functions erfc ξ and ierfc ξ can be found in Table 2.5 in
section 2.3.3.1. A plot of these functions is shown in Fig. 2.22.



146 2 Heat conduction and mass diffusion

the inversion theorem are explained in the literature in [2.1], [2.25] and [2.26]. In
addition to this method it is also possible to carry out the inverse transformation
numerically using different algorithms, see [2.29].

The solution of transient heat conduction problems using the Laplace trans-
formation consists of three steps:

1. Transformation of the differential equation with the initial and boundary
conditions into the frequency region (ϑ → u, t → s) .

2. Solution of the differential equation for the Laplace transform u considering
the (transformed) boundary conditions.

3. Inverse transformation to the time region (u → ϑ, s → t) using a correspon-
dence table (u •−◦ ϑ) or the general inversion theorem.

Two advantageous properties of the Laplace transformation should be mentioned.
If only the temperature change with time at a particular point in the thermally
conductive body is required, rather than the temperature distribution for the
whole body, then the total Laplace transform u(s, x) does not have to be back-
transformed. It is sufficient to just set the position variable in u as constant and
then back-transform the simplified function u(s) in ϑ(t). Besides this simplifica-
tion for calculating only the required part of the temperature distribution, the
possibility of obtaining solutions for small values of time also exists. This can be
applied to the beginning of a heat conduction process, and the results assume an
especially simple form. The Laplace transform u has to be developed into a series
which converges for large values of s. A term by term back-transformation using
a correspondence table gives a series for ϑ which converges for small values of t.
These particular features and an illustration of the solution procedure are given
in the following example.

Example 2.3: A flat wall of thickness δ has a constant temperature ϑ0. At time t = 0 the
temperature of the surface x = δ jumps to ϑS, whilst the other surface x = 0 is adiabatic,
Fig. 2.19. Heat flows from the right hand surface into the wall. The temperature rises with
time, whereby the temperature of the left hand surface of the wall rises at the slowest rate.
The temperature increase at this point, i.e. the temperature ϑ(x = 0, t) is to be calculated.

Fig. 2.19: Heating one side of a flat wall, by a
sharp rise in the surface temperature at x = δ
from ϑ0 to ϑS

This transient heat conduction problem can be used as a model for the following real
process. A fire resistant wall is rapidly heated on its outer side (x = δ) as a result of a fire.
We are interested in the temperature rise over time of the other side of the wall at x = 0.
The assumption of an adiabatic surface at x = 0 results in a faster temperature rise than
would be expected in reality. This assumption therefore leaves us on the safe side.
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For the solution of this problem we will assume that heat only flows in the x-direction and
that the thermal diffusivity a of the wall is constant. Introducing the overtemperature

Θ(x, t) := ϑ(x, t) − ϑ0

and leaving the use of dimensionless quantities until the results are presented gives us a
clearer picture of the procedure. The heat conduction equation (2.112) takes the form

∂2Θ

∂x2
− 1

a

∂Θ

∂t
= 0

with initial conditions
Θ0(x) = Θ(x, 0) = 0 .

The boundary conditions are
∂Θ

∂x
= 0 at x = 0

(adiabatic surface) and

Θ(δ, t) = ΘS = ϑS − ϑ0 at x = δ .

Applying the Laplace transformation leads to the ordinary differential equation which
corresponds to (2.113)

d2u

dx2
− s

a
u = 0 (2.115)

for the Laplace transform u = u(x, s) of the overtemperature Θ(x, t). The initial conditions
have already been accounted for. Laplace transformation of the two boundary conditions
yields

du

dx
= 0 for x = 0 (2.116)

and

u(δ, s) =
ΘS

s
for x = δ . (2.117)

The general solution of the differential equation (2.115) is

u(x, s) = C1 cosh px + C2 sinh px ,

where the abbreviation p =
√

s/a has been used. From the boundary condition (2.116) it
follows that C2 = 0 and (2.117) gives

C1 cosh pδ =
ΘS

s
.

The required Laplace transform is therefore

u(x, s) =
ΘS

s

cosh px

cosh pδ
.

The inverse transformation can be achieved using the inversion theorem, which we do not
need here, as we are only interested in the temperature at the point x = 0. For this we
find

u(0, s) =
ΘS

s cosh pδ
=

2ΘS

s (epδ + e−pδ)
=

2ΘSe−pδ

s (1 + e−2pδ)
.

In order to carry out the inverse transformation with the aid of correspondence tables, the
numerator has to be expanded into a binomial series, giving

u(0, s) =
2ΘSe

−pδ

s

[
1 − e−2pδ + e−4pδ − e−6pδ + · · ·]
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and finally
u(0, s)

ΘS
= 2

[
e−pδ

s
− e−3pδ

s
+

e−5pδ

s
− · · ·

]
.

This is a series development which for large values of s or p =
√

s/a rapidly converges.
The inverse transformation using correspondence tables (No. 6 from Table 2.3 with x = δ,
3δ, 5δ, . . .) yields a series that is particularly suitable for small times t. This gives

Θ(0, t)

ΘS
= 2 [erfc ξ − erfc 3ξ + erfc 5ξ − · · ·] ,

in which the abbreviation

ξ =
δ

2
√

at

is utilised.
The function erfc ξ that appears here is the error function complement, which will be
discussed in section 2.3.3.1 and is also shown in Table 2.4. This transcendental function
rapidly approaches zero for increasingly large arguments. This provides us with a series for
large values of ξ, correspondingly small values of t, which converges very well. Introducing
the dimensionless time

t+ :=
at

δ2
= (2ξ)−2

produces, for the dimensionless temperature at x = 0, the series

ϑ+(t+) :=
ϑ (0, t+) − ϑ0

ϑS − ϑ0
=

Θ(0, t)

ΘS

= 2

(
erfc

1

2
√

t+
− erfc

3

2
√

t+
+ erfc

5

2
√

t+
− · · ·

)
.

(2.118)

Fig. 2.20 shows the pattern of ϑ+(t+). Only a few terms are required to give the tempera-
ture even at rather large times t+ accurately. The behaviour of ϑ+(t+) at very small times

Fig. 2.20: Plot of the dimensionless temperature ϑ+(0, t+) over time at the adiabatic
surface (x = 0) of the wall from Fig. 2.19. Curve 1: first term, Curve 2: Sum of the
first two terms in (2.118), Curve a: asymptotic development according to (2.119) for
very small times
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is described by the first term of the asymptotic development of erfc(1/2
√

t+). According
to (2.127) from section 2.3.3.1 we obtain for this

ϑ+
(
t+
) ≈ 2 erfc

1

2
√

t+

 4√

π

√
t+ exp

(−1/4t+
)

. (2.119)

This function is represented by curve a in Fig. 2.20.
As an example, a concrete wall with a = 3.75 · 10−6 m2/s and thickness δ = 0.50m will be
considered. For the “real” time t we get

t =
(
δ2/a

)
t+ = 18.5h t+ .

The additional scale in Fig. 2.20 is drawn from this relationship. As an example, after 2.41
h we reach ϑ+(t+) = 0.1, i.e. the temperature at x = 0 will rise by 10% of the temperature
increase (ϑS − ϑ0) assumed at the other wall surface.

2.3.3 The semi-infinite solid

We will consider transient conduction in a very thick plate, whose free surface
x = 0, cf. Fig. 2.21, is bounded by the surroundings and in all other directions
is considered to be infinite. The ground at the earth’s surface bordering the
atmosphere is a good example of a semi-infinite solid. Bodies of finite thickness
can also be treated as infinitely wide at the beginning of a heating or cooling
process which occurs at the surface x = 0, thereby allowing the relatively simple
results that follow to be applied to these cases.

2.3.3.1 Heating and cooling with different boundary conditions

The desired temperature distribution ϑ = ϑ(x, t) has to fulfill the differential
equation

∂ϑ

∂t
= a

∂2ϑ

∂x2
, t ≥ 0, x ≥ 0, (2.120)

and the simple initial condition

ϑ(x, t = 0) = ϑ0 = const .

In addition ϑ for x → ∞ has to be bounded. At the surface x = 0 different
boundary conditions are possible. These are shown in Fig. 2.21:

– a jump in the surface temperature to the value ϑS, which should remain
constant for t > 0, Fig. 2.21a;

– a constant heat flux q̇0, Fig. 2.21b;
– a jump in the temperature of the surroundings to the constant value ϑS �=

ϑ0 for t > 0, so that heat transfer with a heat transfer coefficient of α takes
place, Fig. 2.21c.
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Fig. 2.21: Heating of a semi-infinite body with different boundary conditions at the surface
(x = 0). a jump in the surface temperature to ϑS, b constant heat flux q̇0, c heat transfer from
a fluid at ϑ = ϑS

For the calculation of the temperature distribution in all three cases we intro-
duce the overtemperature

Θ := ϑ − ϑ0

as a new dependent variable. Then instead of (2.120) we have

∂2Θ

∂x2
− 1

a

∂Θ

∂t
= 0 (2.121)

with the initial condition

Θ(x, t = 0) = 0 . (2.122)

We apply the Laplace transformation to these equations and obtain the ordinary
differential equation already discussed in section 2.3.2

d2u

dx2
− s

a
u = 0

for the Laplace transform u of Θ with the solution

u(x, s) = C exp
(
−
√

s

a
x
)

= C exp (−px) . (2.123)

As Θ and therefore u must be bounded for x → ∞ the second exponential term
exp(+px) in (2.114) disappears.

Table 2.4 contains the boundary conditions at x = 0 for the three cases in
Fig. 2.21, the Laplace transforms of the boundary conditions and the expressions
yielded for the constant C. The inverse transformation of the Laplace transform
u according to (2.123) with C from Table 2.4 succeeds without complication by
finding the relevant correspondences in Table 2.3. We will now discuss successively
the different temperature distributions.

With a jump in the surface temperature from ϑ0 to ϑS (Case a) the temperature
distribution looks like (No. 6 from Table 2.3)

Θ

ΘS

=
ϑ − ϑ0

ϑS − ϑ0

= erfc
x

2
√

at
= erfc ξ . (2.124)
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Table 2.4: Boundary conditions at the free surface x = 0 of a semi-infinite solid as in Fig. 2.21
with their Laplace transforms and the constants C yielded from Eq. (2.123)

Boundary condition Transformed ConstantC
Case

atx = 0 boundary condition in Eq. (2.123)

a Θ = ϑS − ϑ0 = ΘS u =
ΘS

s
C =

ΘS

s

b −λ
∂Θ

∂x
= q̇0 −λ

du

dx
=

q̇0

s
C =

q̇0

λ s p

c −λ
∂Θ

∂x
= α(ΘS − Θ) −λ

du

dx
= α

(
ΘS

s
− u

)
C =

αΘS

λs (p + α/λ)

It is dependent on the dimensionless variable combination

ξ =
x

2
√

at
. (2.125)

Here

erfc ξ = 1 − erf ξ = 1 − 2√
π

ξ∫
0

e−w2

dw (2.126)

is the error function complement, whilst erf ξ is called the error function. Table 2.5
gives values of erfc ξ. More extensive tables are available in [2.30] to [2.32]. Series
developments and equations for erf ξ and erfc ξ can be found in J. Spanier and
K.B. Oldham [2.28]. For larger arguments (ξ > 2.6) the asymptotic development

erfc ξ =
exp(−ξ2)√

πξ

(
1 − 1

2ξ2
+

3

4ξ4
− 15

8ξ6
+ · · ·

)
(2.127)

holds. The functions erf ξ and erfc ξ are represented in Fig. 2.22. The limit
erfc(ξ = 0) = 1 corresponds to the temperature ϑ = ϑS. It will be reached for
x = 0, according to the stipulated boundary condition, and also within the body
for very large times (t → ∞). The limit erfc(∞) = 0 corresponds to ϑ = ϑ0, and
consequently to the initial condition for t = 0.

The heat flux at depth x at time t is obtained from (2.124) to be

q̇(x, t) = −λ
∂ϑ

∂x
=

λ (ϑS − ϑ0)√
πat

exp
(
−x2/4at

)
.

It is usual here to introduce the material dependent thermal penetration coefficient

b :=
√

λc� = λ/
√

a , (2.128)
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Fig. 2.22: Error functions erf ξ and erfc ξ from (2.126) along with inte-
grated error function ierfc ξ according to (2.134)

which gives

q̇(x, t) =
b (ϑS − ϑ0)√

πt
exp

(
−x2/4at

)
. (2.129)

At the surface x = 0

q̇0 = q̇(0, t) = b (ϑS − ϑ0)/
√

πt . (2.130)

The entering heat flux is proportional to the material property b and decays with
time as t−1/2. During the time interval t = 0 to t = t∗ heat

Q(t∗) = A

t∗∫
0

q̇(0, t) dt = A
2√
π

b (ϑS − ϑ0)
√

t∗ (2.131)

flows through the surface A.
The equations found here are equally valid, without any alteration, for cool-

ing. In this case ϑS < ϑ0, and in (2.129) to (2.131) the sign is changed. The
temperature distribution can, by rearrangement of (2.124), be written as

ϑ − ϑS

ϑ0 − ϑS

= erf ξ =
2√
π

ξ∫
0

e−w2

dw . (2.132)

If the surface of the semi-infinite solid is heated with constant heat flux q̇0

(Case b), the temperature distribution, from No. 7 in Table 2.3 is found to be

Θ(x, t) = ϑ(x, t) − ϑ0 =
q̇0

λ
2
√

at ierfc ξ = 2
q̇0

b

√
t ierfc ξ . (2.133)

The function

ierfc ξ =
1√
π

e−ξ2 − ξ erfc ξ (2.134)
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Table 2.5: Values of the error function complement erfc ξ from (2.126) and the integrated error

function ierfc ξ in the form
√

π ierfc ξ = e−ξ2 −√
π ξ erfc ξ

ξ erfc ξ
√

π ierfc ξ ξ erfc ξ
√

π ierfc ξ ξ erfc ξ
√

π ierfc ξ

0 1.00000 1.00000 0.75 0.28884 0.18581 1.5 0.03389 0.01528
0.05 0.94363 0.91388 0.80 0.25790 0.16160 1.6 0.02365 0.01023
0.10 0.88754 0.83274 0.85 0.22933 0.14003 1.7 0.01621 0.00673
0.15 0.83200 0.75655 0.90 0.20309 0.12088 1.8 0.01091 0.00436
0.20 0.77730 0.68525 0.95 0.17911 0.10396 1.9 0.00721 0.00277

0.25 0.72367 0.61874 1.00 0.15730 0.08907 2.0 0.00468 0.00173
0.30 0.67137 0.55694 1.05 0.13756 0.07602 2.1 0.00298 0.00107
0.35 0.62062 0.49970 1.10 0.11980 0.06463 2.2 0.00186 0.00064
0.40 0.57161 0.44688 1.15 0.10388 0.05474 2.3 0.00114 0.00038
0.45 0.52452 0.39833 1.20 0.08969 0.04617 2.4 0.00069 0.00022

0.50 0.47950 0.35386 1.25 0.07710 0.03879 2.5 0.00041 0.00013
0.55 0.43668 0.31327 1.30 0.06599 0.03246 2.6 0.00024 0.00007
0.60 0.39614 0.27639 1.35 0.05624 0.02705 2.7 0.00013 0.00004
0.65 0.35797 0.24299 1.40 0.04771 0.02246 2.8 0.00008 0.00002
0.70 0.32220 0.21287 1.45 0.04031 0.01856 2.9 0.00004 0.00001

is also called the integrated error function. It is shown in Fig. 2.22 and in Table
2.5. With ierfc(0) = π−1/2 the surface temperature is obtained as

ϑ(0, t) = ϑ0 +
q̇0

b

2√
π

√
t . (2.135)

It increases quickly at first and then slower as time t goes on. With large thermal
penetration coefficients b the material can “swallow” large heat flows, so that the
surface temperature increases more slowly than in a body with small b.

If heat transfer from a fluid at ϑ = ϑS to the free surface, takes place at x = 0,
Case c from Table 2.4, the temperature is also obtained from a correspondence
table (No. 11 in Table 2.3). The solution is written in dimensionless form with
the variables

ϑ+ :=
ϑ − ϑ0

ϑS − ϑ0

(2.136)

and

x+ :=
x

λ/α
, t+ :=

at

(λ/α)2
(2.137)

giving

ϑ+
(
x+, t+

)
= erfc

x+

2
√

t+
− exp

(
x+ + t+

)
erfc

(
x+

2
√

t+
+
√

t+
)

. (2.138)

This temperature distribution is illustrated in Fig. 2.23. The heat fluxes at the
surface and within the body are easily calculated by differentiating (2.138). The



154 2 Heat conduction and mass diffusion

Fig. 2.23: Temperature field ϑ+(x+, t+) from (2.138) in a semi-infinite solid with heat transfer
from a fluid to the free surface x+ = 0. a ϑ+ as a function of x+ with t+ as a parameter, b ϑ+

as a function of t+ with x+ as a parameter

temperature distribution for cooling, ϑS < ϑ0, is found to be

ϑ − ϑS

ϑ0 − ϑS

= 1 − ϑ+
(
x+, t+

)
,

where ϑ+(x+, t+) is calculated according to (2.138).

2.3.3.2 Two semi-infinite bodies in contact with each other

We will consider the two semi-infinite bodies shown in Fig. 2.24, which have
different, but constant, initial temperatures ϑ01 and ϑ02. Their material properties
λ1, a1 and λ2, a2 are also different. At time t = 0 both bodies are brought into
(thermal) contact with each other along the plane indicated by x = 0. After a
very short period of time an average temperature ϑm is reached along the plane.
Heat flows from body 1 with the higher initial temperature to body 2 which has
a lower temperature. The transient conduction process described here serves as
a model for the description of short-time contact between two (finite) bodies at
different temperatures. Examples of this include the touching of different objects
with a hand or foot and the short-time interaction of a heated metal body with a
cooled object in reforming processes.

The heat conduction equation holds for both bodies and is

∂ϑ1

∂t
= a1

∂2ϑ1

∂x2
, x ≥ 0 ,

as well as
∂ϑ2

∂t
= a2

∂2ϑ2

∂x2
, x ≤ 0 .

At the interface the conditions, according to section 2.1.3

(ϑ1)+0 = (ϑ2)−0 = ϑm
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Fig. 2.24: Temperature pattern in two
semi-infinite bodies with initial temper-
atures ϑ01 and ϑ02 in contact with each
other along the plane x = 0

and

λ1

(
∂ϑ1

∂x

)
+0

= λ2

(
∂ϑ2

∂x

)
−0

(2.139)

must be fulfilled. In addition to this the initial conditions already mentioned are valid
For the solution, we assume the contact temperature ϑm at x = 0 to be independent of t.

As will be shown this assumption is valid and enables a simple solution to the problem to be
found. The problem is split into two parts whose solutions have already been discussed in section
2.3.3.1: A temperature distribution appears in each body, which develops beginning with the
constant initial temperatures ϑ01 and ϑ02, respectively, when the surface temperature jumps to
the constant value ϑm.

For body 1, with the following variable combination

ξ1 = x/
√

4a1t (2.140)

we obtain, according to (2.132), the temperature

ϑ1 = ϑm + (ϑ01 − ϑm) erf ξ1 , x ≥ 0 , (2.141)

with a derivative at x = +0 of (
∂ϑ1

∂x

)
+0

=
ϑ01 − ϑm√

πa1t
. (2.142)

Analogous to this, with
ξ2 = x/

√
4a2t (2.143)

it holds for body 2 according to (2.124)

ϑ2 = ϑ02 + (ϑm − ϑ02) erfc(−ξ2) , x ≤ 0 , (2.144)

and at the boundary (
∂ϑ2

∂x

)
−0

=
ϑm − ϑ02√

πa2t
. (2.145)

Putting (2.142) and (2.145) in the boundary condition (2.139), a relationship independent

of t follows:
λ1√
a1

(ϑ01 − ϑm) =
λ2√
a2

(ϑm − ϑ02)

or
b1 (ϑ01 − ϑm) = b2 (ϑm − ϑ02) . (2.146)

The assumption of a time independent contact temperature ϑm was therefore appropriate. Its
position depends on the thermal penetration coefficients

b1 =
√

λ1c1�1 and b2 =
√

λ2c2�2



156 2 Heat conduction and mass diffusion

of the two bodies. It follows from (2.146) that

ϑm = ϑ02 +
b1

b1 + b2
(ϑ01 − ϑ02) . (2.147)

The time independent contact temperature lies in the vicinity of the initial temperature of the
body with the larger thermal penetration coefficient. Equation (2.147) explains why different
solids at the same temperature feel as if they were warmed to differing degrees when touched
by the hand or foot.

2.3.3.3 Periodic temperature variations

Periodic temperature variations frequently appear in both nature and technology.
These include the daily temperature changes which occur in building walls and
the daily or seasonal temperature variations in the earth’s crust. The cylinders
in combustion engines undergo large and high frequency temperature changes,
which penetrate the inner walls of the cylinders and can have some influence on
the strength of the material. In the following we will consider a simple model that
reproduces these temperature variations in an approximate manner and indicates
their most significant properties.

We will look at a semi-infinite solid with constant material properties λ and
a. It is bounded by a fluid at the free surface x = 0, which has a temperature ϑF,
which changes according to the time law

ϑF(t) = ϑm + ∆ϑ cos ωt = ϑm + ∆ϑ cos

(
2π

t

t0

)
. (2.148)

This temperature oscillation is harmonic with a periodic time of t0 and an am-
plitude of ∆ϑ around the mean value ϑm. At the surface x = 0 the heat transfer
condition is

−λ

(
∂ϑ

∂x

)
x=0

= α [ϑF − ϑ(0, t)] (2.149)

with a constant value for α stipulated. We are looking for the temperature field
ϑ = ϑ (x, t), which appears after a long period of time as a quasi-steady end state
in the body, when the disturbances caused by the initial temperature distribution
have faded away.

A solution to this heat conduction problem is once again possible applying
the Laplace transformation, cf. [2.18], [2.26] or [2.1], p. 317–319, where the part
originating from a constant initial temperature was calculated, which fades away
to zero after a sufficiently long time interval. As this solution method is fairly
complicated we will choose an alternative. It can be expected that the temperature
in the interior of the body also undergoes an harmonic oscillation, which with
increasing depth x will be damped more and more, and in addition it will show a
phase shift. The corresponding formulation for this

ϑ(x, t) = ϑm + ∆ϑ η e−mx cos (ωt − mx − ε) (2.150)
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Fig. 2.25: Fluid temperature over time ϑF from (2.148) and surface temperature
ϑ(0, t) from (2.153) with k = (b/α)

√
π/t0 = 1.0

satisfies the heat conduction equation (2.120), when

m2 =
ω

2a
=

π

at0
. (2.151)

The constants η and ε are yielded from the boundary condition (2.149) to

1

η
=

√
1 + 2k + 2k2 (2.152a)

and

ε = arctan
k

1 + k
(2.152b)

with

k =
mλ

α
=

λ

α

√
π

at0
=

b

α

√
π

t0
. (2.152c)

Their meaning is recognised when the surface temperature is calculated. From
(2.150) with x = 0 it follows that

ϑ(0, t) = ϑm + ∆ϑ η cos (ωt − ε) . (2.153)

The amplitude of this oscillation is reduced by the factor η < 1 against the
oscillation amplitude of the fluid temperature. In addition the surface temperature
has a phase shift of ε against the fluid temperature, Fig. 2.25.

The temperature at any particular depth x behaves in the same manner as the
surface temperature. It oscillates harmonically with the same angular frequency
ω, an increasingly damped amplitude at greater depths and a phase shift that
grows with x. At each point in time (2.150) represents a temperature wave which
is rapidly fading away with increasing depth inside the body, Fig. 2.26. Its wave-
length is the distance between two points whose phase angles differ by 2π. If x1

and x2 are such points then from

ωt − mx1 − ε = ωt − mx2 − ε + 2π
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Fig. 2.26: Temperature waves according to (2.155) in a semi-infinite solid with harmonic oscil-
lation of the surface temperature with η = 1 and ε = 0

the wavelength follows as

Λ = x2 − x1 =
2π

m
= 2

√
πat0 . (2.154)

This gives for the temperature distribution

ϑ(x, t) = ϑm + ∆ϑ η e−2πx/Λ cos

[
2π

(
t

t0
− x

Λ

)
− ε

]
. (2.155)

In order to find the penetration depth of the temperature fluctuation we cal-
culate the depth xn, at which the amplitude has fallen to an n-th part of its value
at the surface x = 0. From

e−2πxn/Λ = 1/n

we find

xn =
Λ

2π
ln n =

√
at0
π

ln n . (2.156)

Penetration depth and wavelength increase with the thermal diffusivity of the
body and the periodic time. High frequency oscillations, which appear in fast
running combustion engines, have a much lower penetration depth in the cylinder



2.3 Transient heat conduction 159

wall than that in the ground caused by the daily or even seasonal temperature
variations in the air temperature. A reduction in the amplitude to only 1% of
the value at the surface (n = 100), takes place, according to (2.156) at a depth
of x100 = 0.733Λ. Already at this depth the temperature oscillations are of little
practical importance.

2.3.4 Cooling or heating of simple bodies in one-dimen-
sional heat flow

The time dependent temperature field ϑ = ϑ(r, t) in a body is described by the
differential equation

∂ϑ

∂t
= a

(
∂2ϑ

∂r2
+

n

r

∂ϑ

∂r

)
(2.157)

with n = 0, 1 and 2 for a plate, a cylinder and a sphere, when geometrical one-
dimensional heat flow, i.e. heat flow in only the r-direction is assumed. In a
cylinder or sphere r is the radial coordinate. The cylinder must be very long com-
pared to its diameter so that the heat flow in the axial direction can be neglected.
In addition the temperature ϑ must not depend on the angular coordinates, this
condition is also prescribed for the sphere. For a plate, as already done in section
1.1.2, the x-coordinate is indicated by r. It is the coordinate perpendicular to the
two very large boundary planes, and is taken from the middle of the plate.

2.3.4.1 Formulation of the problem

The three bodies — plate, very long cylinder and sphere — shall have a constant
initial temperature ϑ0 at time t = 0. For t > 0 the surface of the body is brought
into contact with a fluid whose temperature ϑS �= ϑ0 is constant with time. Heat
is then transferred between the body and the fluid. If ϑS < ϑ0, the body is cooled
and if ϑS > ϑ0 it is heated. This transient heat conduction process runs until the
body assumes the temperature ϑS of the fluid. This is the steady end-state. The
heat transfer coefficient α is assumed to be equal on both sides of the plate, and
for the cylinder or sphere it is constant over the whole of the surface in contact
with the fluid. It is independent of time for all three cases. If only half of the
plate is considered, the heat conduction problem corresponds to the unidirectional
heating or cooling of a plate whose other surface is insulated (adiabatic).

Under the assumptions mentioned, we obtain the boundary conditions

r = 0 :
∂ϑ

∂r
= 0

due to symmetry and

r = R : −λ
∂ϑ

∂r
= α (ϑ − ϑS) .
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Fig. 2.27: Diagram explaining the initial
and boundary conditions for the cooling of
a plate of thickness 2R, a long cylinder and
a sphere, each of radius R

Additionally the initial condition

t = 0 : ϑ(r) = ϑ0, 0 ≤ r ≤ R ,

is valid, cf. Fig. 2.27. It is useful to introduce dimensionless variables. We put

r+ := r/R and t+ := at/R2 (2.158)

with R as half the thickness of the plate or cylinder or sphere radius, along with

ϑ+ :=
ϑ − ϑS

ϑ0 − ϑS

. (2.159)

With these quantities the differential equation (2.157) is transformed into

∂ϑ+

∂t+
=

∂2ϑ+

∂r+2 +
n

r+

∂ϑ+

∂r+
. (2.160)

The boundary conditions are

∂ϑ+

∂r+
= 0 for r+ = 0 (2.161)

and

−∂ϑ+

∂r+
= Bi ϑ+ for r+ = 1 (2.162)

with the Biot number
Bi = αR/λ ,

cf. section 2.1.5. The initial condition is

ϑ+ = 1 for t+ = 0 . (2.163)

The desired dimensionless temperature profile in the three bodies has the form

ϑ+ = fn

(
r+, t+, Bi

)
,

where different functions fn are yielded for the plate (n = 0), the cylinder (n = 1)
and the sphere (n = 2), because in each case the differential equation is different.
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Fig. 2.28: Temperature ratio ϑ+ = (ϑ−ϑS)/(ϑ0−ϑS). a in cooling and b in heating

The dimensionless temperature can only assume values between ϑ+ = 0 (for t+ →
∞) and ϑ+ = 1 (for t+ = 0). The temperature variations during cooling and
heating are described in the same manner by ϑ+, cf. Fig. 2.28. In cooling (ϑS < ϑ0)
according to (2.159)

ϑ(x, t) = ϑS + (ϑ0 − ϑS) ϑ+
(
r+, t+

)
holds, and for heating (ϑS > ϑ0) it follows that

ϑ(x, t) = ϑ0 + (ϑS − ϑ0)
[
1 − ϑ+

(
r+, t+

)]
.

For Bi → ∞ we obtain the special case of the surface of the bodies being kept at
the constant temperature ϑS of the fluid, correspondingly ϑ+ = 0. This gives for
the same temperature difference ϑ0 − ϑS the fastest possible cooling or heating
rate (α → ∞).

2.3.4.2 Separating the variables

In order to find a solution to the differential equation (2.160) whilst accounting
for the initial and boundary conditions, the method of separating the variables or
product solution is used3

ϑ+(r+, t+) = F (r+) · G(t+) .

The functions F and G each depend on only one variable, and satisfy the following
differential equation from (2.160)

F (r+)
dG

dt+
=

(
d2F

dr+2 +
n

r+

dF

dr+

)
G(t+)

or
1

G(t+)

dG

dt+
=

1

F (r+)

(
d2F

dr+2 +
n

r+

dF

dr+

)
. (2.164)

3The application of the Laplace transformation delivers the same result. The inverse trans-
formation from the frequency to the time region requires the use of the inversion theorem, see
2.3.2. In order to avoid this in this case the simple, classical product solution is applied.
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The left hand side of (2.164) depends on the (dimensionless) time t+, the right
hand side on the position coordinate r+: the variables are separated. The equality
demanded by (2.164) is only possible if both sides of (2.164) are equal to a constant
−µ2. This constant µ is known as the separation parameter. With this the
following ordinary differential equations are produced from (2.164)

dG

dt+
+ µ2G = 0 (2.165)

and
d2F

dr+2 +
n

r+

dF

dr+
+ µ2F = 0 . (2.166)

Products of their solutions with the same value of the separation parameter µ give
solutions to the heat conduction equation (2.160).

The solution of the differential equation (2.165) for the time function G(t+) is
the decaying exponential function

G(t+) = C exp
(
−µ2t+

)
. (2.167)

This is true for all three bodies. The position function F is different for plates,
cylinders and spheres. However, the solution functions F have to satisfy the same
boundary conditions in all three cases. It follows from (2.161) and (2.162) that

dF

dr+
= 0 for r+ = 0 (2.168)

and

− dF

dr+
= Bi F for r+ = 1 . (2.169)

The boundary value problem posed by the differential equation (2.166) and the
two boundary conditions (2.168) and (2.169) leads to the class of Sturm-Liouville
eigenvalue problems for which a series of general theorems are valid. As we will
soon show the solution function F only satisfies the boundary conditions with
certain discrete values µi of the separation parameter. These special values µi are
called eigenvalues of the boundary value problem, and the accompanying solution
functions Fi are known as eigenfunctions. The most important rules from the
theory of Sturm-Liouville eigenvalue problems are, cf. e.g. K. Jänich [2.33]:

1. All eigenvalues are real.
2. The eigenvalues form a monotonically increasing infinite series

µ1 < µ2 < µ3 . . . with lim
i→∞

µi = +∞ .

3. The associated eigenfunctions F1, F2, . . . are orthogonal, i.e. it holds that

b∫
a

FiFj dr+ =

{
0 for i �= j
Ai for i = j

with Ai as a positive constant. Here a and b are the two points at which
the boundary conditions are stipulated. In our problem a = 0 and b = 1.
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4. The eigenfunction Fi associated with the eigenvalue µi has exactly (i − 1)
zero points between the boundaries, or in other words in the interval (a, b).

These properties will now be used in the following solutions of the boundary value
problems for a plate, a cylinder and a sphere.

2.3.4.3 Results for the plate

The function F (r+) satisfies the differential equation (2.166) for the plate with
n = 0, which is known as the differential equation governing harmonic oscillations.
It has the general solution

F = c1 cos
(
µr+

)
+ c2 sin

(
µr+

)
.

It follows from the boundary condition (2.168) that c2 = 0. The heat transfer
condition (2.169) leads to a transcendental equation for the separation parameter
µ, namely

tan µ = Bi/µ . (2.170)

The roots µ = µi of this equation are the eigenvalues of the problem, which depend
on the Biot number. As Fig. 2.29 shows, there is an infinite series of eigenvalues
µ1 < µ2 < µ3 . . . which is in full agreement with the Sturm-Liouville theory. Only
the following eigenfunctions

Fi = cos
(
µir

+
)

associated with the eigenvalues µi satisfy both the boundary conditions (2.168)
and (2.169). Therefore, the infinite series shown below, made up of the infinite
number of eigenfunctions and the time dependent function G(t+) according to
(2.167),

ϑ+(r+, t+) =
∞∑
i=1

Ci cos
(
µir

+
)

exp(−µ2
i t

+) (2.171)

Fig. 2.29: Graphical determination of the eigenvalues according to (2.170)
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is the general solution to the heat conduction problem in a plate. It still has to
fit the initial condition (2.163). It must therefore hold that

1 =
∞∑
i=1

Ci cos
(
µir

+
)

, 0 ≤ r+ ≤ 1 .

A given function, in this case the number 1, is to be represented by the infinite
sum of eigenfunctions in the interval [0, 1].

The coefficient Ci is obtained by multiplying with an eigenfunction cos
(
µjr

+
)

and integrating from r+ = 0 to r+ = 1. As the eigenfunctions are orthogonal all
the terms in which j �= i vanish. The only term which remains is that with j = i,
so that

1∫
0

cos
(
µir

+
)

dr+ = Ci

1∫
0

cos2
(
µir

+
)

dr+

delivers the coefficient Ci with the result

Ci =
2 sin µi

µi + sin µi cos µi

=
2Bi

Bi2 + Bi + µ2
i

1

cos µi

. (2.172)

With this the desired temperature distribution for cooling or heating a plate is
found.

The eigenvalues µi and the coefficients Ci are dependent on the Biot number.
Table 2.6 contains values for µ1 and C1. Values of the first six eigenvalues are given
in [2.1]. For Bi → ∞ the boundary condition ϑ+(1, t+) = 0, corresponding to
ϑ(R) = ϑS, is obtained with eigenvalues µ1 = π/2, µ2 = 3π/2, µ3 = 5π/2, . . . For
Bi = 0, the limiting case of an insulated wall with finite thermal conductivity λ,
but with α = 0, we obtain µ1 = 0, µ2 = π, µ3 = 2π, . . . The temperature profile
is given by ϑ+ = 1 independent of t+, which is plausible for physical reasons.

In addition to the temperatures calculated according to (2.171) the energy, which the plate
absorbs or releases as heat during a specific time interval, is often of interest. If a plate of
volume V is cooled from its initial temperature ϑ0 to the temperature of the surroundings ϑS

(for t → ∞), it releases the energy

Q0 = �V c (ϑ0 − ϑS)

as heat to the surroundings. After a certain time t has passed the plate has released

Q(t) = �V c [ϑ0 − ϑm(t)]

as heat to the environment. In which

ϑm(t) =
1

R

R∫
0

ϑ(r, t) dr

is the average temperature of the plate at time t. The ratio

Q(t)

Q0
=

ϑ0 − ϑm(t)

ϑ0 − ϑS
= 1 − ϑ+

m(t+) (2.173)
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Table 2.6: Smallest eigenvalue µ1 from (2.170), (2.177) or (2.182), associated expansion coef-
ficient C1 in the series for the temperature distribution ϑ+(r+, t+) as well as coefficient D1 in
the series for the average temperature ϑ+

m(t+) of a plate, a very long cylinder and a sphere, cf.
also (2.185) and (2.188) in section 2.3.4.5

Plate Cylinder Sphere
Bi µ1 C1 D1 µ1 C1 D1 µ1 C1 D1

0.01 0.09983 1.0017 1.0000 0.14124 1.0025 1.0000 0.17303 1.0030 1.0000
0.02 0.14095 1.0033 1.0000 0.19950 1.0050 1.0000 0.24446 1.0060 1.0000
0.03 0.17234 1.0049 1.0000 0.24403 1.0075 1.0000 0.29910 1.0090 1.0000
0.04 0.19868 1.0066 1.0000 0.28143 1.0099 1.0000 0.34503 1.0120 1.0000
0.05 0.22176 1.0082 0.9999 0.31426 1.0124 0.9999 0.38537 1.0150 1.0000

0.06 0.24253 1.0098 0.9999 0.34383 1.0148 0.9999 0.42173 1.0179 0.9999
0.07 0.26153 1.0114 0.9999 0.37092 1.0173 0.9999 0.45506 1.0209 0.9999
0.08 0.27913 1.0130 0.9999 0.39603 1.0197 0.9999 0.48600 1.0239 0.9999
0.09 0.29557 1.0145 0.9998 0.41954 1.0222 0.9998 0.51497 1.0268 0.9999
0.10 0.31105 1.0161 0.9998 0.44168 1.0246 0.9998 0.54228 1.0298 0.9998

0.15 0.37788 1.0237 0.9995 0.53761 1.0365 0.9995 0.66086 1.0445 0.9996
0.20 0.43284 1.0311 0.9992 0.61697 1.0483 0.9992 0.75931 1.0592 0.9993
0.25 0.48009 1.0382 0.9988 0.68559 1.0598 0.9988 0.84473 1.0737 0.9990
0.30 0.52179 1.0450 0.9983 0.74646 1.0712 0.9983 0.92079 1.0880 0.9985
0.40 0.59324 1.0580 0.9971 0.85158 1.0931 0.9970 1.05279 1.1164 0.9974

0.50 0.65327 1.0701 0.9956 0.94077 1.1143 0.9954 1.16556 1.1441 0.9960
0.60 0.70507 1.0814 0.9940 1.01844 1.1345 0.9936 1.26440 1.1713 0.9944
0.70 0.75056 1.0918 0.9922 1.08725 1.1539 0.9916 1.35252 1.1978 0.9925
0.80 0.79103 1.1016 0.9903 1.14897 1.1724 0.9893 1.43203 1.2236 0.9904
0.90 0.82740 1.1107 0.9882 1.20484 1.1902 0.9869 1.50442 1.2488 0.9880

1.00 0.86033 1.1191 0.9861 1.25578 1.2071 0.9843 1.57080 1.2732 0.9855
1.10 0.89035 1.1270 0.9839 1.30251 1.2232 0.9815 1.63199 1.2970 0.9828
1.20 0.91785 1.1344 0.9817 1.34558 1.2387 0.9787 1.68868 1.3201 0.9800
1.30 0.94316 1.1412 0.9794 1.38543 1.2533 0.9757 1.74140 1.3424 0.9770
1.40 0.96655 1.1477 0.9771 1.42246 1.2673 0.9727 1.79058 1.3640 0.9739

1.50 0.98824 1.1537 0.9748 1.45695 1.2807 0.9696 1.83660 1.3850 0.9707
1.60 1.00842 1.1593 0.9726 1.48917 1.2934 0.9665 1.87976 1.4052 0.9674
1.70 1.02725 1.1645 0.9703 1.51936 1.3055 0.9633 1.92035 1.4247 0.9640
1.80 1.04486 1.1695 0.9680 1.54769 1.3170 0.9601 1.95857 1.4436 0.9605
1.90 1.06136 1.1741 0.9658 1.57434 1.3279 0.9569 1.99465 1.4618 0.9570

2.00 1.07687 1.1785 0.9635 1.59945 1.3384 0.9537 2.02876 1.4793 0.9534
2.20 1.10524 1.1864 0.9592 1.64557 1.3578 0.9472 2.09166 1.5125 0.9462
2.40 1.13056 1.1934 0.9549 1.68691 1.3754 0.9408 2.14834 1.5433 0.9389
2.60 1.15330 1.1997 0.9509 1.72418 1.3914 0.9345 2.19967 1.5718 0.9316
2.80 1.17383 1.2052 0.9469 1.75794 1.4059 0.9284 2.24633 1.5982 0.9243

3.00 1.19246 1.2102 0.9431 1.78866 1.4191 0.9224 2.28893 1.6227 0.9171
3.50 1.23227 1.2206 0.9343 1.85449 1.4473 0.9081 2.38064 1.6761 0.8995
4.00 1.26459 1.2287 0.9264 1.90808 1.4698 0.8950 2.45564 1.7202 0.8830
4.50 1.29134 1.2351 0.9193 1.95248 1.4880 0.8830 2.51795 1.7567 0.8675
5.00 1.31384 1.2402 0.9130 1.98981 1.5029 0.8721 2.57043 1.7870 0.8533



166 2 Heat conduction and mass diffusion

Table 2.6: continued

Plate Cylinder Sphere
Bi µ1 C1 D1 µ1 C1 D1 µ1 C1 D1

6.00 1.34955 1.2479 0.9021 2.04901 1.5253 0.8532 2.65366 1.8338 0.8281
7.00 1.37662 1.2532 0.8932 2.09373 1.5411 0.8375 2.71646 1.8673 0.8069
8.00 1.39782 1.2570 0.8858 2.12864 1.5526 0.8244 2.76536 1.8920 0.7889
9.00 1.41487 1.2598 0.8796 2.15661 1.5611 0.8133 2.80443 1.9106 0.7737

10.00 1.42887 1.2620 0.8743 2.17950 1.5677 0.8039 2.83630 1.9249 0.7607

12.00 1.45050 1.2650 0.8658 2.21468 1.5769 0.7887 2.88509 1.9450 0.7397
14.00 1.46643 1.2669 0.8592 2.24044 1.5828 0.7770 2.92060 1.9581 0.7236
16.00 1.47864 1.2683 0.8541 2.26008 1.5869 0.7678 2.94756 1.9670 0.7109
18.00 1.48830 1.2692 0.8499 2.27555 1.5898 0.7603 2.96871 1.9734 0.7007
20.00 1.49613 1.2699 0.8464 2.28805 1.5919 0.7542 2.98572 1.9781 0.6922

25.00 1.51045 1.2710 0.8400 2.31080 1.5954 0.7427 3.01656 1.9856 0.6766
30.00 1.52017 1.2717 0.8355 2.32614 1.5973 0.7348 3.03724 1.9898 0.6658
35.00 1.52719 1.2721 0.8322 2.33719 1.5985 0.7290 3.05207 1.9924 0.6579
40.00 1.53250 1.2723 0.8296 2.34552 1.5993 0.7246 3.06321 1.9942 0.6519
50.00 1.54001 1.2727 0.8260 2.35724 1.6002 0.7183 3.07884 1.9962 0.6434

60.00 1.54505 1.2728 0.8235 2.36510 1.6007 0.7140 3.08928 1.9974 0.6376
80.00 1.55141 1.2730 0.8204 2.37496 1.6013 0.7085 3.10234 1.9985 0.6303

100.00 1.55525 1.2731 0.8185 2.38090 1.6015 0.7052 3.11019 1.9990 0.6259
200.00 1.56298 1.2732 0.8146 2.39283 1.6019 0.6985 3.12589 1.9998 0.6170
∞ 1.57080 1.2732 0.8106 2.40483 1.6020 0.6917 3.14159 2.0000 0.6079

is determined by the dimensionless average temperature ϑ+
m(t+). This is found by integrating

(2.171)

ϑ+
m(t+) =

∞∑
i=1

Ci
sin µi

µi
exp

(−µ2
i t

+
)

= 2Bi2
∞∑

i=1

exp
(−µ2

i t
+
)

µ2
i (Bi2 + Bi + µ2

i )
. (2.174)

The equations, (2.171) for the temperature distribution in the plate as well
as (2.173) and (2.174) for the released heat have been repeatedly evaluated and
illustrated in diagrams, cf. [2.34] and [2.35]. In view of the computing tech-
nology available today the direct evaluation of the relationships given above is
advantageous, particularly in simulation programs in which these transient heat
conduction processes appear. The applications of the relationships developed here
is made easier, as for large values of t+ only the first term of the infinite series is
required, cf. section 2.3.4.5. Special equations for very small t+ will be derived in
section 2.3.4.6. In addition to these there are also approximation equations which
are numerically more simple than the relationships derived here, see [2.74].

Example 2.4: In example 2.3 of section 2.3.2, the temperature ϑ (0, t+) at x = 0 of the
adiabatic surface of a flat wall (plate) was calculated. ϑ (0, t+) changed, as a result of the
stepwise increase in the temperature from ϑ0 to ϑS at the other wall surface. For ϑ (0, t+)
in example 2.3 we found

ϑ (0, t+) − ϑ0

ϑS − ϑ0
= 2 erfc

(
1

2
√

t+

)
− 2 erfc

(
3

2
√

t+

)
+ 2 erfc

(
5

2
√

t+

)
− . . . (2.175)
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This equation will now be confronted with the relationships from (2.171).
The rapid change in the surface temperature at r = R (corresponding to x = δ in example
2.3) means that α → ∞, and therefore Bi → ∞. This gives, from (2.170), the eigenvalues

µ1 =
π

2
, µ2 =

3π

2
, µ3 =

5π

2
, . . .

and from (2.172) the coefficients

C1 =
4

π
, C2 = − 4

3π
, C3 =

4

5π
, . . .

Then from (2.171) it follows that

ϑ (0, t+) − ϑS

ϑ0 − ϑS
=

4

π

∞∑
i=1

(−1)i+1

2i − 1
exp

[
−π2

4
(2i − 1)

2
t+
]

.

The corresponding equation to (2.175) is found to be

ϑ (0, t+) − ϑ0

ϑS − ϑ0
= 1 − 4

π
exp

(
−π2

4
t+
)

+
4

3π
exp

(
−9π2

4
t+
)
−

− 4

5π
exp

(
−25π2

4
t+
)

+ . . .

(2.176)

The equations (2.175) and (2.176) describe the same temperature change. While (2.175)
rapidly converges for small times t+, (2.176) is particularly well suited to large times t+.
This is shown by the following comparison of two times t+ = 0.1 and t+ = 1.0. For
t+ = 0.1 we obtain with only the first term from (2.175) the value 0.05070 to five decimal
places. In (2.176), however, it is necessary to use three terms of the infinite series

1 − 0.99484 + 0.04607 − 0.00053 + . . . = 0.05070 .

For the time t+ = 1.0 the first term in the series in (2.176) is sufficient to give

1 − 0.10798 + . . . = 0.89202 .

This result is only possible with the first three terms when (2.175) is used

0.95900 − 0.06779 + 0.00081 − . . . = 0.89202 .

2.3.4.4 Results for the cylinder and the sphere

For an infinitely long cylinder the function F (r+) is determined by (2.166) with n = 1. This is
the zero-order Bessel differential equation and its solutions are the Bessel function J0 and the
Neumann function N0 both of zero-order:

F
(
r+
)

= c1J0

(
µr+

)
+ c2N0

(
µr+

)
.

The symmetry condition (2.168) rules N0 out (c2 = 0). In the same manner as for the plate the
heat transfer condition (2.169) delivers a defining equation for the eigenvalues µi:

−dJ0(µr+)

dr+
= BiJ0

(
µr+

)
for r+ = 1
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or
µJ1(µ) = BiJ0(µ) (2.177)

with J1 as the first-order Bessel function. Tables of the Bessel functions J0 and J1 can be found
in [2.30] and [2.32]; information about their properties and equations used in their calculation
are available in [2.28].

Once again an infinite number of eigenvalues µi is obtained as a solution of (2.177), which
the eigenfunctions Fi = J0(µir

+) belong to. The sum

ϑ+
(
r+, t+

)
=

∞∑
i=1

Ci J0

(
µir

+
)
exp

(−µ2
i t

+
)

(2.178)

is a solution of the heat conduction equation for the cylinder which satisfies the boundary
conditions. The initial condition (2.163), namely ϑ+(r+, 0) = 1, provides us with the expansion
coefficients

Ci =
2J1(µi)

µi [J2
0 (µi) + J2

1 (µi)]
=

2Bi

(Bi2 + µ2
i ) J0(µi)

. (2.179)

Table 2.6 gives the first eigenvalue µ1 and the associated C1 as functions of the Biot number.
Values for the first six eigenvalues can be found in [2.1].

The ratio of the heat Q(t) released in time t to the maximum value Q0 for t → ∞ is given
by (2.173). The dimensionless average temperature ϑ+

m is calculated for the cylinder from

ϑ+
m = 2

1∫
0

ϑ+
(
r+, t+

)
r+ dr+ .

Integration of (2.178) yields

ϑ+
m

(
t+
)

= 4Bi2
∞∑

i=1

exp
(−µ2

i t
+
)

µ2
i (Bi2 + µ2

i )
. (2.180)

The temperature distribution in the sphere is obtained in the same manner, such that

ϑ+
(
r+, t+

)
=

∞∑
i=1

Ci
sin (µir

+)

µir+
exp

(−µ2
i t

+
)

. (2.181)

The eigenvalues are the roots of the transcendental equation

µ cot µ = 1 − Bi . (2.182)

The coefficients Ci are found to be

Ci = 2
sin µi − µi cosµi

µi − sin µi cosµi
= 2Bi

µ2
i + (Bi − 1)2

µ2
i + Bi (Bi − 1)

sin µi

µi
. (2.183)

This then gives the dimensionless average temperature

ϑ+
m

(
t+
)

= 3

1∫
0

ϑ+
(
r+, t+

)
r+2 dr+

for a sphere, as the series

ϑ+
m

(
t+
)

= 6Bi2
∞∑

i=1

exp
(−µ2

i t
+
)

µ2
i [µ2

i + Bi (Bi − 1)]
. (2.184)

This then leaves the heat Q(t+) relative to the maximum value Q0 to be calculated according
to (2.173).
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Fig. 2.30: Temperature change with time ϑ+(t+) in the centre (r+ = 0) of a plate, a very long
cylinder and a sphere for Bi = αR/λ = 1.0

Table 2.6 contains the first eigenvalue µ1 as the solution of (2.182) and the accompanying
coefficients C1 from (2.183) as functions of Bi. Values for the first six eigenvalues are available
in [2.1]. Graphical representations of the temperature profiles in very long cylinders and spheres
can be found in the publications [2.34] and [2.35] which have already been mentioned in this
chapter, and the associated approximation equations are available in [2.74]. The change in the
dimensionless temperature ϑ+(0, t+) in the centre r+ = 0 of the three bodies, plate (centre
plane), very long cylinder (axis) and the sphere (centre) is shown in Fig. 2.30.

2.3.4.5 Approximation for large times: Restriction to the first term
in the series

For sufficiently large times t+ the first term of the series (2.171), (2.178) and
(2.181), is sufficient to calculate the temperature profile for a plate, an infinitely
long cylinder and a sphere. The simple result

ϑ+
1

(
r+, t+

)
= C exp

(
−µ2t+

)⎧⎪⎪⎨⎪⎪⎩
cos (µr+) plate

J0(µr+) cylinder

sin (µr+) / (µr+) sphere

(2.185)

is obtained. The first eigenvalue µ = µ1 and its associated expansion coefficient
C = C1 depend on the Biot number Bi = αR/λ. They have different values for
the plate, cylinder and sphere. These values are displayed in Table 2.6.

U. Grigull and others [2.36] have investigated the errors which develop when
the higher terms in the series are neglected. If a certain deviation

∆ϑ+ := ϑ+
1

(
r+, t+

)
− ϑ+

(
r+, t+

)
(2.186)

is allowed, where ϑ+
1 is the first term from (2.185) and ϑ+ the complete series, a

dimensionless time t+min can be calculated for which this error just appears. t+min
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Fig. 2.31: Minimum time t+min for which the error is less than ∆ϑ+ = 0.001, according to
(2.186), neglecting the higher series terms at r+ = 0. P plate, C very long cylinder, S sphere

depends on r+ and the Biot number. For all times t+ > t+min the first term ϑ+
1

from (2.185) can be used without an error greater than ∆ϑ+ being incurred. Fig.
2.31 shows the results found by U. Grigull [2.36] for r+ = 0 (central plane, central
axis or centre) and ∆ϑ+ = 0.001 as a function of Bi. At small Bi numbers the
first term is already sufficient for rather small times t+ > t+min.

Equation (2.185) enables an explicit calculation for the heating or cooling time
to be carried out. This time tk is defined such that once the time has passed a
given temperature ϑk is reached in the centre of the thermally conductive body
(r+ = 0). This temperature ϑk corresponds to a particular value

ϑ+
k = (ϑk − ϑS) / (ϑ0 − ϑS) .

With r+ = 0 we obtain from (2.185)

ϑ+
k = C exp

(
−µ2t+k

)
and from that we get

t+k =
atk
R2

=
1

µ2

(
ln C − ln ϑ+

k

)
. (2.187)

Therefore t+k increases, because of ϑ+
k < 1, the smaller the value of ϑ+

k that is
chosen. Equation (2.187) can be easily evaluated with the assistance of Table 2.6.

The dimensionless average temperature ϑ+
m, which is required for the calcula-

tion of the heat absorbed or released by the body according to (2.173), can also
be easily calculated when only the first term of the series is used. From (2.174),
(2.180) and (2.184) we obtain

ϑ+
m = D exp

(
−µ2t+

)
. (2.188)

The coefficient D = D1, which is dependent on the Biot number is given in Table
2.6.
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2.3.4.6 A solution for small times

At the beginning of a heating or cooling process (t+ small) many terms of the
infinite series (2.171), (2.178) or (2.181), are required to calculate the temperature
profile in a plate, cylinder or sphere exactly. This implies that an alternative
solution method for these types of thermal conduction problems needs to be found
which converges well for small times. We find it with the aid of the Laplace
transformation, where the Laplace transform of the temperature is expanded into
a series which converges for large values of s, cf. section 2.3.2. Term by term back
transformation using the correspondence table, produces expressions which are
particularly suitable for the calculation of the temperature fields at small times.
This method was first applied by S. Goldstein [2.37], cf. also [2.36]. We will restrict
ourselves to the results for the plate. The solutions for cylinders and spheres lead
to more complicated relationships. These can be found in [2.36] and [2.37].

For the heating or cooling of a plate dealt with in section 2.3.4.3 and written
in dimensionless variables according to (2.158) and (2.159), we obtain

ϑ+ (r+, t+) = 1−
{
erfc 1+r+

2
√

t+
− exp [Bi (1 + r+) + Bi2t+] erfc

(
1+r+

2
√

t+
+ Bi

√
t+
)}

−
{
erfc 1−r+

2
√

t+
+ exp [Bi (1 − r+) + Bi2t+] erfc

(
1−r+

2
√

t+
+ Bi

√
t+
)}

+ . . .
(2.189)

This solution allows for a clear interpretation. The terms in the curly brackets
correspond to the temperature pattern in a semi-infinite solid. Its surface lies at
r+ = −1 for the first term, and it stretches itself out in the positive r+-direction.
The second term belongs to a semi-infinite body which stretches out from its
surface at r+ = +1 in the negative r+-direction. The subtraction of these two
temperature profiles from the initial temperature ϑ+ = 1 yields the symmetrical
temperature profile for the plate shown in Fig. 2.32, which satisfies the condition
∂ϑ+/∂r+ = 0 at r+ = 0.

Fig. 2.32: Temperature profile in a
plate from (2.189) for Bi = 2.0 and
t+ = 0.25. The dotted lines a and b
correspond to the terms in the curly
brackets of (2.189)
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The solution (2.189) is only valid for times, for which the contribution of the first curly
bracket to the surface temperature at r+ = +1 is negligibly small. Therefore

∆ϑ+
(
r+ = 1, t+

)
= erfc

1√
t+

− exp
(
2Bi + Bi2t+

)
erfc

(
1√
t+

+ Bi
√

t+
)

has to be sufficiently small. An asymptotic expansion of this expression for t+ → 0 gives

∆ϑ+
(
1, t+

)
=

e−1/t+
√

t+√
π

[
(1 − y) − t+

2

(
1 − y3

)
+

3

4
t+2

(
1 − y5

)− . . .

]
with y = (1 + t+Bi)−1. The worst case corresponds to Bi → ∞, therefore y = 0. This yields,
for various values of the dimensionless time, the following values for ∆ϑ+:

t+ = 0.05 0.10 0.15 0.20 0.25
∆ϑ+ = 2.5 · 10−10 7.7 · 10−6 2.6 · 10−4 1.6 · 10−3 4.6 · 10−3

This means that the solution given in (2.189) is generally applicable to situations where t+ < 0.2.

2.3.5 Cooling and heating in multi-dimensional heat flow

In geometric multi-dimensional heat flow the temperature fields that have to be
calculated depend on two or three spatial coordinates and must satisfy the heat
conduction equation

∂ϑ

∂t
= a∇2ϑ . (2.190)

Here the Laplace operator ∇2ϑ has the form given in 2.1.2 for cartesian and cylin-
drical coordinate systems. We will once again consider the transient heat conduc-
tion problem solved for the plate, the infinitely long cylinder and the sphere in
section 2.3.4: A body with a constant initial temperature ϑ0 is brought into con-
tact with a fluid of constant temperature ϑS �= ϑ0, so that heat transfer takes place
between the fluid and the body, whereby the constant heat transfer coefficient α
is decisive.

In the following section we will consider two solution procedures:
– an analytical solution for special body shapes, which is a product of the

temperature distributions already calculated in 2.3.4.
– an approximation method for any body shape, which is only adequate for

small Biot numbers.
The latter of the two methods offers a practical, simple applicable solution to
transient heat conduction problems and should always be applied for sufficiently
small Biot numbers.

2.3.5.1 Product solutions

A cylinder of a finite length is formed by the perpendicular penetration of an
infinitely long cylinder with a plate. In the same manner, a very long prism
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Fig. 2.33: Dimensions of a parallelepiped and a fi-
nite cylinder, with the positions of the coordinate
systems for the equations (2.191) and (2.192)

Fig. 2.34: Parallelepiped with adi-
abatic surface at y = 0 (hatched).
On the opposite surface heat trans-
fer with α′

with a rectangular cross section can be formed by the penetration of two plates
and a rectangular parallelepiped, by the penetration of three orthogonal plates.
The spatial temperature distributions, for heating and cooling of bodies of this
type, are products of the geometric one-dimensional temperature distributions
in the simple bodies which penetrate perpendicular to each other. So for the
parallelepiped with side lengths 2X, 2Y and 2Z, see Fig. 2.33,

ϑ+ =
ϑ − ϑS

ϑ0 − ϑS

= ϑ+
Pl

(
x

X
,

at

X2
,
αX

λ

)
· ϑ+

Pl

(
y

Y
,

at

Y 2
,
α′Y
λ

)
· ϑ+

Pl

(
z

Z
,
at

Z2
,
α′′Z
λ

)
.

(2.191)
The solution for the plate ϑ+

Pl is given by (2.171). Here r+ is replaced by x/X,
y/Y or z/Z and equally t+ by at/X2, at/Y 2 and at/Z2 respectively. The Biot
number αR/λ has the significance as indicated in (2.191). It should be noted that
the heat transfer coefficient only has to have the same value on the two surfaces
which lie opposite each other. It can therefore assume different values α, α′ and α′′

on the pairs of surfaces perpendicular to the x-, y- or z-directions. The last factor
in (2.191) has to be omitted for a prism, which is very long in the z-direction. The
temperature distribution for a cylinder of height 2Z is yielded from the products

ϑ+ = ϑ+
Cy

(
r

R
,

at

R2
,
αR

λ

)
· ϑ+

Pl

(
z

Z
,
at

Z2
,
α′Z
λ

)
, (2.192)

where the temperature ϑ+
Cy of the infinitely long cylinder is given by (2.178). The

heat transfer coefficient α at the shell can also be different from the heat transfer
coefficient α′ on the two ends.

If one or two of the parallel flat surfaces of the parallelepiped, prism or cylinder
are adiabatically insulated, whilst at the other heat is transferred, the equations
given above can also be applied. This entails halving the dimension perpendicular
to the adiabatic surface, therefore putting the zero point of the coordinate system
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into the adiabatic surface. An example of this for a parallelepiped is illustrated
in Fig. 2.34.

The proof of the correctness of the relationships (2.191) and (2.192) can be
found in the book by H.S. Carslaw and J.C. Jaeger [2.1], pp. 33–35. Other product
solutions for multi-dimensional temperature fields using the solutions for the semi-
infinite solid are possible. References [2.1] and [2.18] give further details.

The heat released in multi-dimensional heat conduction can also be determined from of the
product solutions. According to section 2.3.4

Q(t)

Q0
=

ϑ0 − ϑm(t)

ϑ0 − ϑS
= 1 − ϑ+

m(t+) , (2.193)

holds for the heat released up until time t, cf. (2.173). The dimensionless average temperature
ϑ+

m is yielded as the product of the average temperatures calculated in 2.3.4.3 for the plate and
the infinitely long cylinder. For the parallelepiped we obtain

ϑ+
m = ϑ+

mPl

(
at

X2
,
αX

λ

)
· ϑ+

mPl

(
at

Y 2
,
α′Y

λ

)
· ϑ+

mPl

(
at

Z2
,
α′′Z

λ

)
(2.194)

with ϑ+
mPl from (2.174). In the same way we have for the cylinder of finite length

ϑ+
m = ϑ+

mCy

(
at

R2
,
αR

λ

)
· ϑ+

mPl

(
at

Z2
,
α′Z

λ

)
, (2.195)

where ϑ+
mCy is given by (2.180).

The equations given here for the temperature distribution and the average
temperature are especially easy to evaluate if the dimensionless time t+ is so large,
that the solution can be restricted to the first term in the infinite series, which
represent the temperature profile ϑ+

Pl in the plate and ϑ+
Cy in the long cylinder.

The equations introduced in section 2.3.4.5 and Table 2.6 can then be used. The
heating or cooling times required to reach a preset temperature ϑk in the centre
of the thermally conductive solids handled here can be explicitly calculated when
the series are restricted to their first terms. Further information is available in
[2.37].

Example 2.5: A cylinder of Chromium-Nickel Steel (λ = 15.0W/K m , c = 510J/kgK ,
� = 7800kg/m3) with diameter d = 60mm and length L = 100mm, whose initial temper-
ature is ϑ0 = 320 ◦C, is submerged in an oil bath at temperature ϑS = 30 ◦C. The heat
transfer coefficient is α = 450W/m2K. How long must the cylinder remain in the oil bath
for the temperature at its centre to reach the value ϑk = 70 ◦C? At this time what is the
highest surface temperature of the cylinder?
The temperature distribution in a cylinder of finite length is given by (2.192). In order
to explicitly calculate the cooling time tk, we will limit ourselves to the first term in each
infinite series and then later we will check whether this simplification was correct. We
therefore put

ϑ+ = CCyJ0(µCyr/R) exp
(−µ2

Cyat/R2
) · CPl cos (µPlz/Z) exp

(−µ2
Plat/Z2

)
(2.196)

with R = d/2 = 30mm and Z = L/2 = 50mm. The eigenvalues µCy, µPl and the
coefficients CCy, CPl are dependent on the Biot number. It holds for the cylinder that

BiCy = αR/λ = 0.900 ,
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out of which we obtain from Table 2.6 (page 165) µCy = 1.20484 and CCy = 1.1902. For
the plate

BiPl = αZ/λ = 1.500

is obtained and from Table 2.6 µPl = 0.98824 and CPl = 1.1537.
The temperature at the centre (r = 0, z = 0) of the cylinder follows from (2.196) as

ϑ+
k = CCyCPl exp

{
−
[
(µCy/R)

2
+ (µPl/Z)

2
]
a tk

}
, (2.197)

where ϑ+
k can be calculated from the given temperatures:

ϑ+
k =

ϑk − ϑS

ϑ0 − ϑS
=

70 ◦C − 30 ◦C

320 ◦C − 30 ◦C
= 0.1379 .

The cooling time tk we are looking for is found from (2.197) to be

tk =
1

a

ln CCy + ln CPl − ln ϑ+
k

(µCy/R)
2

+ (µPl/Z)
2 .

With the thermal diffusivity a = λ/c� = 3.77 · 10−6 m2/s this yields

tk = 304 s = 5.07min .

In order to check whether it is permissible to truncate the series after the first term, we
calculate the Fourier numbers using this value of tk:(

t+k
)
Cy

= a tk/R
2 = 1.274

and (
t+k
)
Pl

= a tk/Z
2 = 0.459 .

According to Fig. 2.31 these dimensionless times are so large that the error caused by
neglecting the higher terms in the series is insignificant.
The highest surface temperatures appear either at the cylindrical surface (r = R) for z = 0
or in the middle of the circular end surfaces, i.e. at z = Z and r = 0. For the middle of
the cylindrical surface, we get from (2.196) and (2.197)

ϑ+(r = R , z = 0 , t = tk) = J0(µCy)ϑ+
k = 0.6687 · 0.1379 = 0.0922 ,

which gives ϑ (r = R , z = 0 , t = tk) = 56.7 ◦C. It holds for the middle of the end surfaces
that

ϑ+(r = 0 , z = Z , t = tk) = cos (µPl)ϑ+
k = 0.5502 · 0.1379 = 0.0759 ,

from which we obtain ϑ (r = 0 , z = Z , t = tk) = 52.0 ◦C. The highest surface temperature
therefore appears on the cylindrical surface at z = 0.

2.3.5.2 Approximation for small Biot numbers

A simple calculation for the heating or cooling of a body of any shape is possible
for the limiting case of small Biot numbers (Bi → 0). This condition is satisfied
when the resistance to heat conduction in the body is much smaller then the
heat transfer resistance at its surface, cf. section 2.1.5. At a fixed time, only
small temperature differences appear inside the thermally conductive body, whilst
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between the surface temperature and that of the surroundings a much larger
difference exists, cf. Fig. 2.5.

We simply assume that the temperature of the body is only dependant on
time and not on the spatial coordinates. This assumption corresponds to Bi = 0
because λ → ∞, whilst the heat transfer coefficient α �= 0. We apply the first
law of thermodynamics to the body being considered in order to determine the
variation of temperature with time. The change in its internal energy is equal to
the heat flow across its surface

dU

dt
= Q̇ . (2.198)

If a body of volume V has constant material properties � and c, then it holds that

dU

dt
= V �

du

dt
= V � c

dϑ

dt
.

With A as the surface area of the body we obtain

Q̇ = αA (ϑ − ϑS)

for the heat flow. The differential equation now follows from (2.198) as

dϑ

dt
=

αA

c�V
(ϑ − ϑS) ,

with the solution

ϑ+ =
ϑ − ϑS

ϑ0 − ϑS

= exp

(
− αA

c�V
t

)
(2.199)

which satisfies the initial condition ϑ(t = 0) = ϑ0. This relationship for the
temperature change with time is far easier to handle than a series expansion. All
the influencing quantities, such as the heat transfer coefficient, material properties
and geometry of the body are combined in one single quantity, the decay time

t0 =
c�

α

V

A
.

For the example of the plate we show that (2.199) corresponds to the exact
solution for Bi = 0 with α �= 0. We investigate further, for which Biot numbers
not equal to zero this simplified calculation of the temperature change according
to (2.199) can be applied to, whilst still obtaining sufficiently high accuracy.

The temperature distribution in a plate is given by (2.171). For Bi = 0 we obtain, from
(2.170), the eigenvalues µ1 = 0, µ2 = π, µ3 = 2π, . . . Thereby for the first eigenvalue it holds
that

µ2
1 = Bi − Bi2/3 + . . . , (2.200)

which can easily be confirmed by series expansion of tan µ. According to (2.172) all expansion
coefficients Ci with i ≥ 2 will be equal to zero, and it holds that C1 = 1. As cos(µ1r

+) ≡ 1,
under consideration of (2.200), we obtain, for the only non-zero term in the infinite series (2.171)

ϑ+ =
ϑ − ϑS

ϑ0 − ϑS
= exp

(−Bi t+
)

= exp

(
− αt

c�R

)
.
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This agrees with (2.199), because for the plate of thickness 2R, V/A = R. The same method
can be used to show that for other shapes of solids (2.199) agrees with the exact solution for
Bi = 0, corresponding to λ → ∞, with α �= 0. If however, with a finite value for λ the Biot
number would be zero when α = 0, it follows from (2.171) that ϑ+ = 1. The insulated plate
keeps its initial temperature ϑ0, or in other words no equalization of the temperatures ϑ0 and
ϑS takes place.

The accuracy of the approximation equation (2.199) can be evaluated by comparison with
the exact solution for parallelepipeds and prisms with different side to length ratios, for the
cylinder with various diameter to height ratios as well as for a sphere. Here we can compare the
true average temperature ϑ+

m with the temperature ϑ+ from (2.199). The difference

∆ϑ+ := ϑ+
m − ϑ+ (2.201)

still depends on the time t or t+. It is however, always positive; due to the assumption of
a spatially constant temperature ϑ+ we obtain too high a value for the surface temperature
which is decisive for heat transfer. This then causes the calculated heat flow released to the
surroundings to be too high and then ϑ+, the average temperature from the approximate solution
(2.199), is less than the true average temperature ϑ+

m for all times.

The time dependent difference ∆ϑ+ from (2.201) assumes a maximum value ∆ϑ+
max for each

body for a given Biot number, and this maximum appears at a certain time. This maximum
deviation of the approximate solution has been calculated for different solid shapes. For Bi = 0.1
the maximum difference lies without exception at less than 2% of the characteristic temperature
difference ϑ0−ϑS. The Biot number in this case was evaluated with the cylinder or sphere radius
R as its characteristic length (Bi = αR/λ). In parallelepipeds and prisms the characteristic
length was taken to be half of the smallest side length 2X. In bodies whose dimensions X,Y,Z
or R and Z do not differ greatly, the maximum error from the approximation solution lies around
1% of ϑ0 − ϑS. The error increases rapidly with larger Biot numbers. The error of less than 2%
of ϑ0 − ϑS calculated for Bi = 0.10 could presumedly be tolerated.

The approximate solution from (2.199) offers a simple and recommended pro-
cedure for the calculation of the heating or cooling processes in any solid shape.
However it is only sufficiently accurate for Biot numbers Bi < 0.1. This condition
should be checked while choosing the characteristic length for the Biot number to
be that of half the shortest length dimension of the body under consideration.

2.3.6 Solidification of geometrically simple bodies

Pure substances and eutectic mixtures solidify and melt at definite temperatures
ϑE, which differ from substance to substance and are barely dependent on the
pressure. The best known example of this is water which at atmospheric pressure,
freezes at ϑE = 0 ◦C. This releases the fusion enthalpy of hE = 333 kJ/kg. When
a solid body melts the enthalpy of fusion must be supplied to the solid as heat.

Solidifying processes are important in cryogenics, food and process industries
and also in metallurgy. A main point of interest is the speed at which the boundary
between the solid and the liquid phase moves. From this the time required for
solidifying layers of a given thickness can be calculated. The modelling of these
processes belongs to the field of transient heat conduction, as the enthalpy of



178 2 Heat conduction and mass diffusion

fusion released at the phase boundary has to be conducted as heat through the
solid.

A general mathematical solution for this type of thermal conduction problems
does not exist. Special explicit solutions have been found by F. Neumann4 in
1865 and J. Stefan in 1891 [2.39]. In the first section we will discuss the solution
given by J. Stefan. Quasi-steady solutions will be derived in the section following
that. These solutions assume that any heat storage in the solidified body can be
neglected. In the final section we will look at the improvements for this quasi-
steady solution in which the heat stored in the body is considered approximately.

2.3.6.1 The solidification of flat layers (Stefan problem)

A solidified body is maintained by cooling at x = 0 at the constant temperature
ϑ0, which is lower than the solidification temperature ϑE, Fig. 2.35. Only one-
dimensional heat conduction in the x-direction will be assumed. At the phase
boundary x = s, which is moving to the right, the solid is touching the liquid
which has already been cooled to the solidification temperature. By advance of
the phase boundary, or in other words by solidifying a layer of thickness ds, the
enthalpy of fusion is released and must be conducted as heat to the cooled surface
of the solid at x = 0.

Fig. 2.35: Temperature profile (for t = const) for
the solidifying of a plane solid. s is the distance
between the phase boundary and the cooled sur-
face x = 0

The temperature ϑ = ϑ(x, t) in the solidified body satisfies the heat conduction
equation

∂ϑ

∂t
= a

∂2ϑ

∂x2
(2.202)

with the boundary conditions

ϑ = ϑ0 for x = 0 , t > 0 , (2.203)

4F. Neumann presented this solution in his lectures at the University of Königsberg. The first
time it was published was in a German book: Die partiellen Differentialgleichungen der Physik,
Editors: B. Riemann and H. Weber, Vol.2, pp. 117–121. Braunschweig: F. Vieweg 1912.
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and
ϑ = ϑE for x = s , t > 0 , (2.204)

as well as the initial condition

s = 0 for t = 0 . (2.205)

At the phase interface, the energy balance

λ
∂ϑ

∂x
dt = hE� ds

has to be satisfied, in which hE is the specific enthalpy of fusion. From this we
obtain the advance of the phase boundary with time (solidification speed)

ds

dt
=

λ

hE�

(
∂ϑ

∂x

)
x=s

. (2.206)

A solution of the heat conduction equation (2.202) is the error function

ϑ = ϑ0 + C erf

(
x

2
√

at

)
,

cf. 2.3.3.1; it satisfies the boundary condition (2.203). The condition (2.204)
requires that

ϑE = ϑ0 + C erf

(
s

2
√

at

)
.

The argument of the error function must therefore be a constant γ independent
of t. The thickness of the solidified layer increases proportionally with

√
t,

s = γ 2
√

at , (2.207)

by which the initial condition (2.205) is also satisfied. We obtain with

ϑE − ϑ0 = C erf γ

the temperature profile in the solidified layer (x ≤ s) as

ϑ+ :=
ϑ − ϑ0

ϑE − ϑ0

=
erf

(
x/

√
4at

)
erf γ

=
erf (γx/s)

erf γ
. (2.208)

The still unknown constant γ is yielded from the condition (2.206) for the
solidification speed. It follows from (2.207) that

ds

dt
= γ

√
a

t

and from (2.206) and (2.208)

ds

dt
=

λ

hE�

ϑE − ϑ0

erf γ

e−γ2

√
π
√

at
.
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This gives us the transcendental equation independent of t

√
πγeγ2

erf γ =
c (ϑE − ϑ0)

hE

=
1

Ph
(2.209)

for the determination of γ. This constant is only dependent on the phase transition
number

Ph :=
hE

c (ϑE − ϑ0)
=

1

St
, (2.210)

which is the ratio of two specific energies, the specific enthalpy of fusion hE and the
difference between the internal energy of the solid at ϑE and at ϑ0. The reciprocal
of Ph is also known as the Stefan number St.

Using a series expansion of the error function, see, for example [2.28], [2.30],
enables us to expand the left hand side of (2.209) into a series which rapidly
converges for small values of γ:

∞∑
n=0

(2γ2)
n+1

1 · 3 · 5 · . . . (2n + 1)
=

1

Ph
. (2.211)

From this equation we get the series

γ2 =
1

2
Ph−1 − 1

6
Ph−2 +

7

90
Ph−3 − 79

1890
Ph−4 + . . . , (2.212)

which for large values of the phase transition number allows us to directly calculate
γ. Finally the time t required to solidify a plane layer of thickness s is yielded
from (2.207) and (2.212) as

t =
s2

4aγ2
=

hE�s2

2λ (ϑE − ϑ0)

(
1 +

1

3
Ph−1 − 2

45
Ph−2 +

16

945
Ph−3 − . . .

)
. (2.213)

The solidification time increases with the square of the layer thickness and is larger
the smaller the phase transition number Ph.

Neglecting the heat stored in the solidified body corresponds, due to c = 0, to
the limiting case of Ph → ∞. This is the so-called quasi-steady approximation,
which gives from (2.213), a solidification time

t∗ =
hE�s2

2λ (ϑE − ϑ0)
(2.214)

which is always too small. The relative error

t − t∗

t
= 1 − 2Phγ2 =

1

3
Ph−1 − 7

45
Ph−2 +

79

945
Ph−3 . . . (2.215)

is shown in Fig. 2.36. For Ph > 6.2 the error is less than 5%. It increases strongly
for smaller phase transition numbers.

The problem discussed here was first solved by J. Stefan [2.39] in 1891. The
solution of the more general problem first given by F. Neumann has been discussed
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Fig. 2.36: Relative error of the solidification time t∗ calculated with the quasi-
steady approximation (2.214)

at some length by U. Grigull and H. Sandner [2.18]. An initial temperature in
the liquid ϑ0F > ϑE is assumed in this case, so that the heat conduction equation
must also be solved for the liquid temperature ϑF (x, t). It is assumed that no
convection takes place. The solution also contains error functions, whereby the
material properties λF, cF and �F of the liquid have to be considered. Further
analytical solutions of variations of the Stefan-Neumann Problem can be found in
H.S. Carslaw and J.C. Jaeger [2.1]. Generalised mathematical formulations and
a discussion of further solution methods are contained in the contributions from
A.B. Tayler and J.R. Ockendon in [2.40], cf. also [2.41].

2.3.6.2 The quasi-steady approximation

For sufficiently large values of the phase transition number Ph defined by (2.210),
approximately for Ph > 7, it is permissible to neglect the storage capability of the
solidified layer. A temperature profile similar to one that would appear in steady-
state heat conduction is assumed to exist. This quasi-steady approximation allows
boundary conditions different from those of the exact solution from F. Neumann
and J. Stefan to be assumed at the cooled end of the solid layer. In addition
this approach also allows us to investigate solidifying processes in cylindrical and
spherical geometries, for which no exact analytical solutions exist. The equations
which follow for the solidification-times using the quasi-steady approximation were
derived by R. Plank [2.42] and K. Nesselmann [2.43], [2.44]. They are valid due to
the large phase transition number for the freezing of ice, and substances containing
water, because hE is particularly large for water.

We will first look at the solidifying process on a flat, cooled wall, as shown
in Fig. 2.37. The wall, with thickness δW and thermal conductivity λW will be
cooled by a fluid having a temperature ϑ0, whereby the heat transfer coefficient
α is decisive. On the other side of the wall a solidified layer develops, which at
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Fig. 2.37: Temperature profile in the solidifi-
cation of a flat layer under the assumption of
the quasi-steady approximation

time t has a thickness of s. The liquid is assumed to already be at the solidifying
temperature ϑE.

During the time interval dt the phase interface moves a distance of ds. This
releases the fusion enthalpy

dQ = hE�A ds

which must be transferred as heat through the layer that is already solidified. In
the sense of the quasi-steady approximation, at each time overall heat transfer
between the interface (ϑ = ϑE) and the cooling medium (ϑ = ϑ0) takes place.
Then according to section 1.2.1 it holds that

dQ = Q̇ dt =
(ϑE − ϑ0)A
s

λ
+

δW

λW

+
1

α

dt ,

where λ is the thermal conductivity of the solidified body. It follows from both
equations for dQ that

dt =
hE�

λ (ϑE − ϑ0)

(
s +

λ

k

)
ds (2.216)

with
1

k
=

δW

λW

+
1

α
. (2.217)

The solidification-time for a flat layer of thickness s is found by integrating
(2.216) to be

t =
hE�s2

2λ (ϑE − ϑ0)

(
1 + 2

λ

ks

)
. (2.218)

For k → ∞ the temperature at x = 0 has the value ϑ = ϑ0. This is the boundary
condition in the Stefan problem discussed in 2.3.6.1. From (2.218) we obtain the
first term of the exact solution (2.213), corresponding to Ph → ∞, and therefore
the time t∗ according to (2.214). With finite heat transfer resistance (1/k) the
solidification-time is greater than t∗; it no longer increases proportionally to s2.

In the same manner the solidification-times for layers on cylindrical (tubes) and spherical
surfaces can be calculated. We will derive the result for a layer which develops on the outside
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Fig. 2.38: Solidification on the out-
side of a tube cooled from the inside,
which has an outer radius R (quasi-
steady approximation)

of a tube of outer radius R being cooled from the inside, Fig. 2.38. By solidifying a layer of
thickness ds, heat

dQ = hE�2π(R + s)Lds

is released. In this equation L is the length of the tube. For the overall heat transfer

dQ = Q̇ dt =
ϑE − ϑ0

1

2πLλ
ln

R + s

R
+

1

kA

dt

is valid with
1

kA
=

1

2πLλW
ln

R

R − ∆R
+

1

2πL(R − ∆R)α
,

where ∆R is the thickness of the tube wall. It follows that

dt =
hE�

λ (ϑE − ϑ0)

[
(R + s) ln

R + s

R
+ (R + s)β

]
ds (2.219)

with the abbreviation

β =
λ

λW
ln

R

R − ∆R
+

λ

(R − ∆R)α
. (2.220)

Integration of (2.219) taking account of the initial condition s = 0 for t = 0 yields with

s+ = s/R

the solidification-time

t =
hE�s2

2λ (ϑE − ϑ0)

[(
1 +

1

s+

)2

ln(1 + s+) −
(

1 +
2

s+

)(
1

2
− β

)]
. (2.221)

The relationships in Table 2.7 were found in the same manner. It should be noted here that
R is the radius of the cylindrical or spherical surface on which the solidifying layer develops, cf.
Fig. 2.39. At β = 0 the functions f(s+, β) from Table 2.7 for s+ → 0 assume the limiting value
of one. With small layer thicknesses and β = 0 the solidification-time increases proportionally
to s2, irrespective of the geometrical shape, which according to (2.218) also holds for a flat layer.

Fig. 2.39: Dimensions for solidifi-
cation on the outside (left hand sec-
tion) and inside (right hand section)
of a tube or a hollow sphere
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Table 2.7: Equations for the calculation of the solidifying time t for cylindrical and spherical
layers of thickness s, see Fig. 2.39. R always indicates the radius of the cylinder or sphere at
the side where the solidified layer develops. ∆R is the thickness of the wall of the cylinder or
sphere.

Solid-
Solidifying time t =

hE�s2

2λ(ϑE − ϑ0)
f(s+, β) with s+ = s/R and

ified
Layer f(s+, β) = β =

Cylinder
outside

(
1 +

1

s+

)2

ln(1 + s+) −
(

1 +
2

s+

)(
1

2
− β

)
λ

λW
ln

R

R − ∆R
+

λ

α(R − ∆R)

Cylinder
inside

(
1 − 1

s+

)2

ln(1 − s+) −
(

1 − 2

s+

)(
1

2
+ β

)
λ

λW
ln

R + ∆R

R
+

λ

α(R + ∆R)

Sphere
outside

1 +
2

3
s+ +

2β

s+

(
1 + s+ +

s+2

3

)
λ

λW

∆R

R − ∆R
+

λ

α(R − ∆R)

R

R − ∆R

Sphere
inside

1 − 2

3
s+ +

2β

s+

(
1 − s+ +

s+2

3

)
λ

λW

∆R

R + ∆R
+

λ

α(R + ∆R)

R

R + ∆R

2.3.6.3 Improved approximations

As a comparison with the exact solution of the Stefan problem shows, the quasi-
steady approximation discussed in the last section only holds for sufficiently large
values of the phase transition number, around Ph > 7. There are no exact so-
lutions for solidification problems with finite overall heat transfer resistances to
the cooling liquid or for problems involving cylindrical or spherical geometry, and
therefore we have to rely on the quasi-steady approximation. An improvement to
this approach in which the heat stored in the solidified layer is at least approxi-
mately considered, is desired and was given in different investigations.

In many cases the temperature profile is replaced by an approximate function, e.g. a second
or third degree polynomial. The time dependent coefficient functions of these types of expressions
are then fitted to the boundary conditions. The heat conduction equation cannot be exactly,
merely approximately satisfied. This can occur, according to T.R. Goodman [2.45], by using
a heat-balance integral, see also with reference to this subject [2.46] and [2.47]. F. Megerlin
[2.48] however recommends that the heat conduction equation be satisfied pointwise, namely
at the interface x = s. This produces fairly complicated equations for the solidification speed
ds/dt, the integration of which delivers the solidification-time. This integration can often only
be carried out numerically, cf. [2.48] and [2.49].

In the procedure of asymptotic approximation no arbitrary approximation functions are
used, instead a series of functions

ϑ(x, t) = ϑ0(x, t) + ϑ1(x, t)Ph−1 + ϑ2(x, t)Ph−2 + . . .

is introduced for the temperature in the solidified layer. This series converges all the better the
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larger the phase transition number Ph. A similar series is used for the solidification speed:

ds

dt
= s0(t) + s1(t)Ph−1 + s2(t)Ph−2 + . . .

The functions ϑi(x, t) and si(t) can be recursively determined from the exact formulation of the
problem with the heat conduction equation and its associated boundary conditions. Thereby
ϑ0(x, t) and s0(t) correspond to the quasi-steady approximation with Ph → ∞.

K. Stephan and B. Holzknecht [2.50] have solved the solidification problems dealt with
in 2.3.6.2 in this way. Unfortunately the expressions yielded for terms with i ≥ 1 were very
complex and this made it very difficult to calculate the solidification-time explicitly. K. Stephan
and B. Holzknecht therefore derived simpler and rather accurate approximation equations for
the solidification speed.

Finally the numerical solution of solidification problems should be mentioned, which due
to the moving phase boundary contains additional difficulties. As we will not be looking at
these solutions in section 2.4, at this point we would suggest the work by K. Stephan and B.
Holzknecht [2.51] as well as the contributions from D.R. Atthey, J. Crank and L. Fox in [2.40]
as further reading.

2.3.7 Heat sources

Heat sources appear within a heat conducting body as a result of dissipative
processes and chemical or nuclear reactions. According to 2.1.2 the differential
equation

∂ϑ

∂t
= a∇2ϑ +

Ẇ (x, t, ϑ)

c�
(2.222)

is valid for the temperature field under the assumption that the material properties
are independent of both temperature and concentration. The function Ẇ (x, t, ϑ)
introduced in section 2.1.1 is the thermal power per volume, originating inside the
body due to the processes mentioned above. The solution of the heat conduction
equation (2.222) is, in general, possible if Ẇ is either independent or only linearly
dependent on the temperature ϑ. The Laplace transformation is the preferred
solution method for this linear problem. Alternative methods are given in [2.1],
where a large number of solutions for different geometries and boundary conditions
will be found. In addition the book by H. Tautz [2.26] contains several cases in
which the Laplace transformation is used to solve the problem.

In the following section we will deal with an example of homogeneous heat
sources. The internal heat development is continuously distributed over the whole
body. In the section after that we will discuss local heat sources where the heat
development is concentrated at a point or a line in the heat conducting body.
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2.3.7.1 Homogeneous heat sources

Assuming geometric one-dimensional heat flow in the x-direction and a power
density Ẇ which is independent of temperature, the heat conduction equation is
then

∂ϑ

∂t
= a

∂2ϑ

∂x2
+

Ẇ (x, t)

c�
. (2.223)

This linear non-homogeneous differential equation can easily be solved using the
Laplace transformation. The steps for the solution of such a problem are shown
in the following example.

In a semi-infinite body (x ≥ 0), a spatially constant, but time dependent power density is
supposed to exist:

Ẇ (t) = Ẇ0

√
t0/t , t > 0 . (2.224)

Here Ẇ0 represents the power density at time t0. By using (2.224), a heat release is modelled
as it occurs, for example when concrete sets. Then we have an initial large release of heat which
rapidly decreases with advancing time. The semi-infinite body initially has the constant (over)
temperature

ϑ = 0 for t = 0 (2.225)

at which the surface x = 0 should always be kept:

ϑ(0, t) = 0 for x = 0 . (2.226)

By applying the Laplace transformation to (2.223) and (2.224) we obtain the non-homoge-
neous ordinary differential equation

d2u

dx2
− p2u = −Ẇ0

λ

√
πt0√
s

with p2 = s/a under consideration of the initial condition (2.225). The solution of the homoge-
neous differential equation limited for x → ∞ is uhom = C exp(−px). A particular solution for
the non-homogeneous equation is

uinh =
Ẇ0

λ

√
πt0√
sp2

=
Ẇ0

c�

√
πt0

s3/2
.

The transformed function composed of these two parts

u(x, s) = Ce−px +
Ẇ0

√
πt0

c�s3/2

still has to be fitted to the boundary condition (2.226). This gives

u(x, s) =
Ẇ0

c�

√
πt0

(
1

s3/2
− 1√

a

e−px

sp

)
.

The reverse transformation, with the assistance of a correspondence table, Table 2.3, pro-
vides us with

ϑ(x, t) =
Ẇ0

√
t0

c�
2
√

t

(
1 −√

π ierfc
x

2
√

at

)
(2.227)

with the integrated error function from section 2.3.3.1. Introducing into (2.227) the following
dimensionless variables

t+ := t/t0, x+ := x/
√

at0, ϑ+ := ϑc�/(Ẇ0t0) ,
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Fig. 2.40: Temperature field ϑ+(x+, t+) according to (2.228) in a semi-infinite
body with time dependent homogeneous heat sources according to (2.224)

yields

ϑ+
(
x+, t+

)
= 2

√
t+
(

1 −√
π ierfc

x+

2
√

t+

)
. (2.228)

This temperature distribution is illustrated in Fig. 2.40. For very small values of x+/(2
√

t+) it
holds that √

π ierfc
[
x+/

(
2
√

t+
)]

= 1 −√
πx+/

(
2
√

t+
)

+ · · · .

Therefore we obtain for t+ → ∞ the straight line

ϑ+
∞

=
√

πx+

as the steady end temperature. This straight line is simultaneously the tangent to all temper-
ature curves t+ = const at the free surface x+ = 0. This is where the heat flux, constant with
respect to time

q̇0 = −λ

(
∂ϑ

∂x

)
x=0

= −Ẇ0

√
at0

(
∂ϑ+

∂x+

)
x+=0

= −Ẇ0

√
πat0

has to be removed in order to maintain the temperature at the value ϑ+ = 0.

Solutions of (2.223) for other power densities Ẇ (x, t) and boundary conditions
can be found in the same way. However, for bodies of finite thickness, the inverse
transformation of u(x, s) can normally only be carried out using the inversion
theorem mentioned in section 2.3.2. For cases such as these see [2.1] and the
detailed examples discussed in [2.26].

2.3.7.2 Point and linear heat sources

If the generation of heat is concentrated in a small, limited space we speak of
local heat sources, which can be idealised as point, line or sheet singularities.
For example, an electrically heated thin wire can be treated as a linear heat
source. Alongside such technical applications these singularities have significant
theoretical importance in the calculation of temperature fields, cf. [2.1].
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The calculation of the temperature field produced when a point heat source
exists will now be explained. We will consider a body which extends infinitely in
all directions, with a spherical hollow space of radius R inside it, Fig. 2.41. At
the surface of the sphere the boundary condition of a spatially constant heat flux
q̇0 = q̇0(t) is stipulated. This corresponds to a heat source within the hollow space
with a thermal power (yield) of

Q̇ = 4πR2q̇0 .

The limit R → 0 at a given time t, keeping Q̇ constant, leads to a point heat source
of strength Q̇(t), which is located at the centre of the sphere which is taken to be
the origin r = 0 of the radial (spherical) coordinate.

Fig. 2.41: Infinite body with respect to all
dimensions with a spherical hollow space at
whose surface the heat flux q̇0 is prescribed

The temperature field outside the spherical hollow satisfies the differential equation

∂ϑ

∂t
= a

(
∂2ϑ

∂r2
+

2

r

∂ϑ

∂r

)
with boundary conditions

−λ
∂ϑ

∂r
= q̇0 =

Q̇(t)

4πR2
for r = R

and
ϑ = 0 for r → ∞ ,

if we assume the initial temperature to be ϑ = 0. Applying the Laplace transformation leads to

d2u

dr2
+

2

r

du

dr
− p2u = 0

with p2 = s/a. The boundary conditions are

du

dr
= − 1

4πR2λ
L
{

Q̇(t)
}

for r = R (2.229)

and u → 0 for r → ∞. A solution which satisfies the last condition is

u =
B

r
e−pr .

The constant B is obtained from (2.229), so that

u =
L
{

Q̇(t)
}

4πλr

e−p(r−R)

1 + pR
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is the desired transformed function. Letting R → 0 we obtain for the point heat source at r = 0

u =
L
{

Q̇(t)
}

4πλr
e−pr .

From No. 4 in Table 2.3 on page 145

e−pr = L
{

r

2
√

aπt3/2
e−r2/4at

}
,

such that u is obtained as the product of two Laplace transforms

u =
1

4πλ
L
{

Q̇(t)
}
· L

{
e−r2/4at

2
√

aπt2/3

}
.

Which, according to the convolution theorem, No. 6 in Table 2.2 (page 143), is

u =
1

4πλ
L
⎧⎨⎩

τ=t∫
τ=0

Q̇(τ)
exp

(−r2/4a(t − τ)
)

2
√

aπ(t − τ)3/2
dτ

⎫⎬⎭ .

So the temperature distribution around a point heat source at r = 0, which,
at time t = 0 is “switched on” with a thermal power of Q̇(t), is yielded to be

ϑ(r, t) =
1

(4πa)3/2c�

t∫
0

Q̇(τ) exp

( −r2

4a (t − τ)

)
dτ

(t − τ)3/2
. (2.230)

This general solution for any time function Q̇(t) contains special simple cases.
The temperature field for a source of constant thermal power Q̇(t) = Q̇0 is found
to be

ϑ(r, t) =
Q̇0

4πλr
erfc

r√
4at

. (2.231)

For t → ∞ we obtain, with erfc(0) = 1, the steady-state temperature field around
a point heat source as

ϑ(r) =
Q̇0

4πλr
.

A very fast reaction or an electrical short can cause a sudden release of energy
Q0 at time t = 0 in a small space at r = 0. For this “heat explosion” the limit in
(2.230) is set as τ → 0 and the heat released is given by

Q0 = lim
τ→0

τ∫
0

Q̇(τ) dτ .

This then gives

ϑ(r, t) =
Q0

(4πat)3/2c�
exp

(
− r2

4at

)
(2.232)

as the temperature distribution. It has the boundary value of ϑ → ∞ for t = 0
and r = 0. At a fixed point r = const, where r �= 0 the temperature change with
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Fig. 2.42: Temperature field from (2.232) in an infinite body after a “heat ex-
plosion” at r = 0. The reference temperature is ϑ0 = Q0/(c�r3

0) with r0 as an
arbitrarily selected distance from r = 0

time begins with ϑ = 0, goes through a maximum at time tmax = r2/(6a) and falls
once again back to ϑ = 0. The temperature profile over time for different ratios
of r/r0, according to (2.232) is shown in Fig. 2.42

We will also start from this “heat explosion” for the calculation of the temper-
ature field around a linear heat source at r = 0. At time t = 0, heat Q0 is released
by a linear heat source of length L (perpendicular to the r, ϕ–plane of the polar
coordinate system). As no other heat sources are present, at every later time the
heat Q0 has to be found as an increase in the internal energy of the environment
of the heat source. Therefore the balance

Q0 =

∞∫
0

2πrLc� ϑ(r, t) dr = 2πLc�

∞∫
0

rϑ(r, t) dr

holds, independent of time t. The desired temperature distribution ϑ(r, t), must
satisfy this equation.

In analogy to the point “heat explosion” we introduce the function

ϑ(r, t) = f(t) exp

(
− r2

4at

)

corresponding to (2.232) and obtain

Q0 = 2πLc�f(t)

∞∫
0

r exp

(
− r2

4at

)
dr .
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With ξ = r/
√

4at this becomes

Q0 = 2πLc�f(t)4at

∞∫
0

ξe−ξ2

dξ .

The definite integral which appears here has the value of 1/2, such that the time
function f(t) is yielded to be

f(t) =
Q0/L

4πc�at
=

Q0/L

4πλt
.

From this we obtain the desired temperature distribution

ϑ(r, t) =
Q0/L

4πλt
exp

(
− r2

4at

)
. (2.233)

It is easy to prove that this satisfies the heat conduction equation (2.157) with
n = 1 (cylindrical coordinates).

This result can then be generalised for a linear source at r = 0 with time
dependent thermal power Q̇(t). During the time interval from t = τ to t = τ + dτ
it releases heat Q̇(τ) dτ thereby generating a temperature field corresponding to
(2.233). By superimposing these small “heat explosions” over time the following
temperature field, analogous to (2.230), is obtained:

ϑ(r, t) =
1

4πλL

τ=t∫
τ=0

Q̇(τ) exp

(
− r2

4a(t − τ)

)
dτ

t − τ
. (2.234)

For the special case of constant thermal power Q̇0 this becomes

ϑ(r, t) = − Q̇0

4πλL
Ei

(
− r2

4at

)
. (2.235)

The function which is present here is known as the exponential integral

Ei(−ξ) =

∞∫
ξ

e−u

u
du

with the series expansion

Ei(−ξ) = 0.577216 + ln ξ +
∞∑

n=1

(−1)n ξn

n · n!

and the asymptotic expansion (ξ � 1)

Ei(−ξ) =
e−ξ

−ξ

(
1 − 1!

ξ
+

2!

ξ2
− 3!

ξ3
+ · · ·

)
,

cf. [2.28] and [2.30]. Some values of Ei(−ξ), which is always negative, are given
in Table 2.8.
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Table 2.8: Values of the exponential integral Ei(−ξ)

ξ −Ei(−ξ) ξ −Ei(−ξ) ξ −Ei(−ξ) ξ −Ei(−ξ) ξ −Ei(−ξ)

0 ∞ 0.15 1.4645 0.4 0.7024 0.9 0.2602 3.0 0.01305
0.01 4.0379 0.20 1.2227 0.5 0.5598 1.0 0.2194 3.5 0.00697
0.02 3.3547 0.25 1.0443 0.6 0.4544 1.5 0.1000 4.0 0.00378
0.05 2.4679 0.30 0.9057 0.7 0.3738 2.0 0.0489 5.0 0.00115
0.10 1.8229 0.35 0.7942 0.8 0.3106 2.5 0.0249 6.0 0.00036

2.4 Numerical solutions to heat conduction

problems

Complicated heat conduction problems, for which no explicit solutions exist or
can only be obtained with great effort, are preferentially solved using numerical
methods. Problems with temperature dependent material properties, complex ge-
ometrical forms and those with particular boundary conditions, for example tem-
perature dependent heat transfer coefficients, all belong in this group. However,
despite the use of computers, numerical solution methods often demand a great
deal of programming, memory and computing time which should not be underes-
timated. The decision to use a numerical solution procedure should therefore be
carefully considered, particularly if simplifications of the problem are acceptable,
which would then lead to an analytical solution.

Two methods are available for the numerical solution of initial-boundary-value
problems, the finite difference method and the finite element method. Finite dif-
ference methods are easy to handle and require little mathematical effort. In con-
trast the finite element method, which is principally applied in solid and structure
mechanics, has much higher mathematical demands, it is however very flexible.
In particular, for complicated geometries it can be well suited to the problem,
and for such cases should always be used in preference to the finite difference
method. We will limit ourselves to an introductory illustration of the difference
method, which can be recommended even to beginners as a good tool for solving
heat conduction problems. The application of the finite element method to these
problems has been described in detail by G.E. Myers [2.52]. Further information
can be found in D. Marsal [2.53] and in the standard works [2.54] to [2.56].
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2.4.1 The simple, explicit difference method for transient
heat conduction problems

In the finite difference method, the derivatives ∂ϑ/∂t, ∂ϑ/∂x and ∂2ϑ/∂x2, which
appear in the heat conduction equation and the boundary conditions, are replaced
by difference quotients. This discretisation transforms the differential equation
into a finite difference equation whose solution approximates the solution of the
differential equation at discrete points which form a grid in space and time. A
reduction in the mesh size increases the number of grid points and therefore the
accuracy of the approximation, although this does of course increase the compu-
tation demands. Applying a finite difference method one has therefore to make a
compromise between accuracy and computation time.

2.4.1.1 The finite difference equation

For the introduction and explanation of the method we will discuss the case
of transient, geometric one-dimensional heat conduction with constant material
properties. In the region x0 ≤ x ≤ xn the heat conduction equation

∂ϑ

∂t
= a

∂2ϑ

∂x2
(2.236)

has to be solved for times t ≥ t0, whilst considering the boundary conditions at
x0 and xn. The initial temperature distribution ϑ0 (x) for t = t0 is given.

A grid is established along the strip x0 ≤ x ≤ xn, t ≥ t0, with mesh size ∆x
in the x-direction and ∆t in the t-direction, Fig. 2.43. A grid point (i, k) has the
coordinates

xi = x0 + i∆x with i = 0, 1, 2, . . .

and
tk = t0 + k∆t with k = 0, 1, 2, . . .

The approximation value of ϑ at grid point (i, k) is indicated by

ϑk
i = ϑ(xi, tk) . (2.237)

Fig. 2.43: Grid for the discretisation of
the heat conduction equation (2.236) and
to illustrate the finite difference equation
(2.240)
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We refrain from indicating the approximation value of the temperature by a dif-
ferent symbol to the exact temperature, e.g. Θ instead of ϑ, as is usually the case
in mathematics literature. The time level tk is indicated by the superscript k
without brackets because there is no danger of it being confused with the k-th
power of ϑ.

The derivatives which appear in (2.236) are replaced by difference quotients,
whereby a discretisation error has to be taken into account

derivative = difference quotient + discretisation error .

The discretisation error goes to zero with a reduction in the mesh size ∆x or ∆t.
The second derivative in the x-direction at position xi at time tk is replaced

by the central second difference quotient(
∂2ϑ

∂x2

)k

i

=
ϑk

i−1 − 2ϑk
i + ϑk

i+1

∆x2
+ O

(
∆x2

)
. (2.238)

The writing of O (∆x2) indicates that the discretisation error is proportional to
∆x2 and therefore by reducing the mesh size the error approaches zero with the
square of the mesh size. The first derivative with respect to time is replaced by
the relatively inaccurate forward difference quotient(

∂ϑ

∂t

)k

i

=
ϑk+1

i − ϑk
i

∆t
+ O(∆t) . (2.239)

Its discretisation error only approaches zero proportionally to ∆t. However with
(2.239) a numerically simple, explicit finite difference formula is obtained. Putting
(2.238) and (2.239) into the differential equation (2.236) gives, after a simple
rearrangement, the finite difference equation

ϑk+1
i = Mϑk

i−1 + (1 − 2M) ϑk
i + Mϑk

i+1 (2.240)

with
M := a∆t/∆x2 (2.241)

as the modulus or Fourier number of the difference method. The discretisation
error of the difference equation is, due to ∆t = M∆x2/a, of order O(∆x2).

Equation (2.240) is an explicit difference formula; it allows, from three known
temperatures of the time level t = tk the temperatures ϑk+1

i of the next time
level tk+1 = tk + ∆t to be explicitly calculated, cf. Figure 2.43. For k = 0,
and therefore t = t0, all the temperatures ϑ0

i are known from the given initial
temperature profile. Equation (2.240) enables all ϑ1

i at time t1 to be calculated
and from these the values for ϑ2

i at time t2, etc.

The equations (2.238) and (2.239) for the replacement of the derivatives with difference
quotients can be derived using a Taylor series expansion of the temperature field around the point
(xi, tk), cf. [2.53] and [2.57]. It is also possible to derive the finite difference formula(2.240) from
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an energy balance in conjunction with Fourier’s law, cf. [2.58]. This requires the introduction
of the heat conduction resistances ∆x/λ between the grid points and the consideration of the
energy storage in a “block” around the position xi. A further development of this method is
the Volume Integral Method, with which various finite difference equations can be derived, cf.
[2.59].

2.4.1.2 The stability condition

Many finite difference formulae have the undesirable property that small initial
and rounding errors become larger as the calculation proceeds, which in the end
produces a false result. This phenomenon is called (numerical) instability. In
contrast a difference formula is stable when the errors become smaller during the
calculation run and therefore their effect on the result declines. Most difference
equations are only conditionally stable, that is they are stable for certain step or
mesh sizes. The explicit equation (2.240) belongs to this group, as it is only stable
when the modulus M satisfies the condition

M = a∆t/∆x2 ≤ 1

2
. (2.242)

When ∆x is given, the size of the time step ∆t cannot be chosen at will, because
violation of (2.242) will not just make the process inaccurate, it will be rendered
completely useless.

The stability condition (2.242) can be derived in a number of ways; cf. the extensive discus-
sion in [2.57]. A general condition for stability of explicit difference formulae is the requirement
that no coefficient in such an equation is negative, cf. [2.60]. This means for (2.240)

1 − 2M ≥ 0 ,

from which (2.242) immediately follows. The so-called ε-scheme is used to clarify stability
behaviour. For t = t0 we set all ϑ0

i = 0 except for one value which is set to ε �= 0. The
error propagation is followed by applying the difference formula for further time steps with
k = 1, 2, . . . The ε-scheme for the difference equation (2.240) has the following appearance for
M = 1/2 (stability limit):

ε-scheme for M = 1/2

k = 0 : 0 0 0 0 ε 0 0 0 0
k = 1 : 0 0 0 0.5ε 0 0.5ε 0 0 0
k = 2 : 0 0 0.25ε 0 0.5ε 0 0.25ε 0 0
k = 3 : 0 0.125ε 0 0.375ε 0 0.375ε 0 0.125ε 0
k = 4 : 0.0625ε 0 0.25ε 0 0.375ε 0 0.25ε 0 0.0625ε

The finite difference formula with M = 1/2 is just about stable, the error is shared between
two neighbouring points and slowly declines. In addition the grid divides into two grid sections
which are not connected, as in the difference formula

ϑk+1
i =

1

2

(
ϑk

i−1 + ϑk
i+1

)
,

(
M =

1

2

)
, (2.243)
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only two temperatures at time tk, determine the new temperature ϑk+1
i ; ϑk

i has no influence on
ϑk+1

i . A loose connection of the two grid sections exists only because the temperatures at the
boundaries are given. Therefore, it is not recommended that (2.240) is used with M = 1/2, even
though this allows the largest time step ∆t. The difference equation (2.243) is the basis for the
previously most frequently used graphical methods from L. Binder [2.61] and E. Schmidt [2.62].
As a result of the advances in computer technology, these clear but somewhat inaccurate and
time-consuming graphical procedures have lost their former importance. We will not discuss
these graphical methods any further, information is available in [2.63] and [2.64].

The instability of the finite difference formula (2.240) for M > 1/2 is illustrated by the
ε-scheme for M = 1:

ε-scheme for M = 1

k = 0 : 0 0 0 0 ε 0 0 0 0
k = 1 : 0 0 0 ε −ε ε 0 0 0
k = 2 : 0 0 ε −2ε 3ε −2ε ε 0 0
k = 3 : 0 ε −3ε 6ε −7ε 6ε −3ε ε 0
k = 4 : ε −4ε 7ε −16ε 19ε −16ε 7ε −4ε ε

An error becomes greater with every time step, such that the solution of the difference equation
does not correspond to the solution of the differential equation as the stability condition has
been violated.

2.4.1.3 Heat sources

The finite difference equation (2.240) can easily be extended to cases where heat
sources are present. The differential equation from 2.1.2 is valid:

∂ϑ

∂t
= a

∂2ϑ

∂x2
+

Ẇ (x, t, ϑ)

c�
. (2.244)

Its discretisation with the difference quotients according to (2.238) and (2.239)
leads to the explicit finite difference formula

ϑk+1
i = Mϑk

i−1 + (1 − 2M) ϑk
i + Mϑk

i+1 +
(
M∆x2/λ

)
Ẇ k

i . (2.245)

Here

Ẇ k
i = Ẇ

(
xi, tk, ϑ

k
i

)
(2.246)

indicates the value of the power density at xi at time tk.

Equation (2.245) can also be used when the power density depends on the
temperature. The temperature ϑk

i which appears in (2.246) is known from the
calculation of the temperature field at time tk. A strong temperature dependence
of Ẇ can fundamentally influence the stability behaviour. Reference [2.57] shows
that the stability condition (2.242) holds unaltered if Ẇ depends linearly on the
temperature ϑ.
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2.4.2 Discretisation of the boundary conditions

Considering the boundary conditions in finite difference methods we will distin-
guish three different cases:

– prescribed boundary temperatures
– preset heat flux at the boundary and
– the heat transfer condition, cf. section 2.1.3.

If the temperature at the boundary x = xR is given, then the grid divisions
should be chosen such that the boundary coincides with a grid line xi = const. The
left hand boundary is then xR = x0 with the right hand boundary xR = xn+1 =
x0+(n + 1) ∆x. The given temperature ϑ (xR, tk) is used as the temperature value
ϑk

0 or ϑk
n+1 in the difference equation (2.240).

With given heat flux q̇(t) the condition

−λ

(
∂ϑ

∂n

)
x=xR

= q̇(t) (2.247)

has to be satisfied at the boundary. The derivative must be formed in the outward
normal direction, and the heat flux q̇ is positive if it flows in this direction. The
grid will now be established such that the boundary lies between two grid lines.
This gives, for the left hand boundary xR = x0 +∆x/2, see Fig. 2.44. This means
that grid points (0, k) are introduced outside the thermally conductive body. The
temperatures ϑk

0 which are present here serve only as calculated values to fulfill
the boundary condition (2.247).

Fig. 2.44: Consideration of the boundary
conditions (2.247) at xR = x0 + ∆x/2 by
means of the introduction of temperatures
ϑk

0 outside the body

The local derivative which appears in (2.247) is replaced by the rather exact
central difference quotient. It holds at the left hand boundary that

−
(

∂ϑ

∂n

)
x0+∆x/2

=

(
∂ϑ

∂x

)k

1
2

=
ϑk

1 − ϑk
0

∆x
+ O

(
∆x2

)
. (2.248)

Then from (2.247) we obtain

ϑk
0 = ϑk

1 −
∆x

λ
q̇(tk) . (2.249)
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At x = x1 the difference equation (2.240) with i = 1 holds:

ϑk+1
1 = Mϑk

0 + (1 − 2M)ϑk
1 + Mϑk

2 . (2.250)

Elimination of ϑk
0 from both these equations yields

ϑk+1
1 = (1 − M)ϑk

1 + Mϑk
2 − M

∆x

λ
q̇(tk) . (2.251)

This equation replaces (2.250), when the boundary condition (2.247) is to be
satisfied at the left hand boundary.

If (2.247) is to be satisfied at the right hand boundary, then the grid is chosen
such that xR = xn + ∆x/2 is valid. The elimination of ϑk

n+1 from the difference
equation which holds for xn, and from the boundary condition, yields

ϑk+1
n = Mϑk

n−1 + (1 − M)ϑk
n + M

∆x

λ
q̇(tk) . (2.252)

As in (2.251), q̇(tk) will also be positive when the heat flux is out of the body.

The difference equations (2.251) and (2.252) are valid, with q̇ ≡ 0, for an
adiabatic boundary. Adiabatic boundaries are also the planes of symmetry inside
the body. In this case the grid is chosen such that the adiabatic plane of symmetry
lies between two neighbouring grid lines. The calculation of the temperatures can
then be limited to one half of the body.

If heat is transferred at the boundary to a fluid at temperature ϑS, where the
heat transfer coefficient α is given, then the heat transfer condition is valid

−λ
∂ϑ

∂n
= α (ϑ − ϑS) for x = xR . (2.253)

The derivative is formed in the outward normal direction, and α and ϑS can
be dependent on time. For the discretisation of (2.253) it is most convenient if
the boundary coincides with a grid line, Fig. 2.45, as the boundary temperature
which appears in (2.253) can immediately be used in the difference formula. The
replacement of the derivative ∂ϑ/∂n by the central difference quotient requires
grid points outside the body, namely the temperatures ϑk

0 or ϑk
n+1, which, in

conjunction with the boundary condition, can be eliminated from the difference
equations.

At the left hand boundary (xR = x1) the outward normal to the surface points
in the negative x-direction. Therefore from (2.253) it follows that

∂ϑ

∂x
=

α

λ
(ϑ − ϑS) for x = x1 .
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Fig. 2.45: Consideration of the heat transfer condition (2.253), a

at the left hand boundary xR = x1, b at the right hand boundary
xR = xn

Replacing with the central difference quotient,(
∂ϑ

∂x

)k

1

=
ϑk

2 − ϑk
0

2∆x
+ O

(
∆x2

)
,

gives
ϑk

0 = ϑk
2 − 2Bi∗

(
ϑk

1 − ϑk
S

)
(2.254)

with
Bi∗ = α∆x/λ (2.255)

as the Biot number of the finite difference method. Using (2.254), the temperature
ϑk

0 is eliminated from the difference equation (2.250), which assumes the form

ϑk+1
1 = [1 − 2M (1 + Bi∗)]ϑk

1 + 2Mϑk
2 + 2MBi∗ϑk

S . (2.256)

At the right hand boundary (xR = xn), we obtain from (2.253) the boundary
condition

−∂ϑ

∂x
=

α

λ
(ϑ − ϑS) .

Its discretisation leads to an equation analogous to (2.254)

ϑk
n+1 = ϑk

n−1 − 2Bi∗
(
ϑk

n − ϑk
S

)
. (2.257)

This is then used to eliminate ϑk
n+1 from the difference equation valid for xn, which

then has the form

ϑk+1
n = 2Mϑk

n−1 + [1 − 2M (1 + Bi∗)]ϑk
n + 2MBi∗ϑk

S . (2.258)

The consideration of the heat transfer condition (2.253) detoriates the stability
behaviour of the explicit difference formula. As the coefficients of the explicit
difference equations (2.256) and (2.258) must be positive in order to guarantee
stability, we obtain the stability condition

M ≤ 1

2 (1 + Bi∗)
. (2.259)

This tightens the condition (2.242) and leads to even smaller time steps ∆t.
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In the consideration of the heat transfer condition (2.253) a choice of grid different to that
shown in Fig. 2.45 is frequently made. The grid is laid out according to Fig. 2.44 with the
derivative ∂ϑ/∂x at xR = x0 + ∆x/2 being replaced by the central difference quotient from
(2.248). The boundary temperature ϑ (xR, tk) is found using the approximation

ϑ (xR, tk) = ϑk
1/2 =

1

2

(
ϑk

0 + ϑk
1

)
. (2.260)

This then gives us the relationship from (2.253)

ϑk
0 =

2 − Bi∗

2 + Bi∗
ϑk

1 +
2Bi∗

2 + Bi∗
ϑk

S , (2.261)

which, with (2.250), leads to the difference formula

ϑk+1
1 =

(
1 − M

2 + 3Bi∗

2 + Bi∗

)
ϑk

1 + Mϑk
2 +

2MBi∗

2 + Bi∗
ϑk

S . (2.262)

The discretisation error of this equation is O(∆x) and not O(∆x2) as for (2.256), because the
approximation (2.260) was used. The use of (2.262) therefore leads us to expect larger errors
than those with (2.256). On the other hand, the stability behaviour is better. Instead of (2.259)
the condition

M ≤ 2 + Bi∗

2 + 3Bi∗
(2.263)

is valid, which for large values of Bi∗ delivers the limiting value M = 1/3, against which (2.259)
leads to M → 0.

If the larger discretisation error of (2.262) is to be avoided, the boundary temperature ϑk
1/2

has to be replaced by a more accurate expression than the simple arithmetic mean according to
(2.260). A parabolic curve through the three temperatures ϑk

0 , ϑk
1 and ϑk

2 gives

ϑk
1/2 =

1

8

(
3ϑk

0 + 6ϑk
1 − ϑk

2

)
.

From which, instead of (2.261) we get

ϑk
0 =

8 − 6Bi∗

8 + 3Bi∗
ϑk

1 +
Bi∗

8 + 3Bi∗
ϑk

2 +
8Bi∗

8 + 3Bi∗
ϑk

S

and from (2.250) the difference equation

ϑk+1
1 =

(
1 − 4M

2 + 3Bi∗

8 + 3Bi∗

)
ϑk

1 + M
8 + 4Bi∗

8 + 3Bi∗
ϑk

2 +
8MBi∗

8 + 3Bi∗
ϑk

S (2.264)

is obtained. Although this equation for the consideration of the boundary condition (2.250) is
numerically more complex it is also more exact than (2.262), because its discretisation error is
O(∆x2). The resulting stability condition is

M ≤ 1

4

8 + 3Bi∗

2 + 3Bi∗
. (2.265)

This only leads to a tightening of the stability condition (2.242) for Bi∗ ≥ 4/3 and for very large
Bi∗ yields the limiting value M ≤ 1/4.

With small values of Bi∗ the simple relationship (2.256) with a grid laid out according to
Fig. 2.45 a delivers very accurate results. In contrast for large Bi∗ values, (2.264) should be
used with a grid according to that in Fig. 2.44, where the stability condition (2.265) has to be
observed.
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Example 2.6: A steel plate with the material properties λ = 15.0W/K m and a =
3.75 · 10−6 m2/s is 2δ = 270mm thick and has a constant initial temperature ϑ0. At time
t0 the plate is brought into contact with a fluid which has a temperature ϑS < ϑ0 that is
constant with respect to time. The heat transfer coefficient at both surfaces of the plate is
α = 75W/m

2
K. The temperatures during the cooling of the plate are to be numerically

determined. Simple initial and boundary conditions were intentionally chosen, so that the
accuracy of the finite difference method could be checked when compared to the explicit
solution of the case dealt with in section 2.3.3.
Due to symmetry, it is sufficient to consider only one half of the plate which is δ = 135mm
thick. Its left hand surface can be taken to be adiabatic, whilst heat is transferred to the
fluid at its right hand surface. We choose the grid from Fig. 2.46 with a mesh size of
∆x = 30mm. The left boundary of the plate lies in the middle of the two grid lines x0 and

Fig. 2.46: Grid division for
the calculation of the cooling
of a plate of thickness 2δ

x1 = x0 + ∆x; the right boundary coincides with x5. The Biot number of the difference
method is

Bi∗ =
α∆x

λ
=

75
(
W/m

2
K
)

0.030m

15.0W/K m
= 0.15 .

For the modulus we choose

M = a∆t/∆x2 = 1/3 ,

which satisfies the stability condition (2.259). The time step will be

∆t =
∆x2

a
M = 80 s .

We set ϑS = 0 and ϑ0 = 1.0000. The temperatures ϑk
i calculated agree with the dimen-

sionless temperatures ϑ+(xi, tk) in the explicit solution from (2.171).
With these arrangements the five following difference equations are valid:

ϑk+1
1 =

2

3
ϑk

1 +
1

3
ϑk

2

according to (2.251) with q̇(tk) = 0,

ϑk+1
i =

1

3

(
ϑk

i−1 + ϑk
i + ϑk

i+1

)
for i = 2, 3, 4 according to (2.240) as well as

ϑk+1
5 =

2

3
ϑk

4 + 0.2333ϑk
5

from (2.258).
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The results for the first 12 time steps are shown in Table 2.9. In Table 2.10 the surface
temperatures ϑk

5 and the temperature profile at time t12 = 960 s are compared with the
exact solution.

Table 2.9: Temperatures in the cooling of a steel plate, calculated with the explicit
difference method.

k tk/s ϑk
1 ϑk

2 ϑk
3 ϑk

4 ϑk
5

0 0 1.0000 1.0000 1.0000 1.0000 1.0000
1 80 1.0000 1.0000 1.0000 1.0000 0.9000
2 160 1.0000 1.0000 1.0000 0.9667 0.8767
3 240 1.0000 1.0000 0.9889 0.9478 0.8490
4 320 1.0000 0.9963 0.9789 0.9286 0.8300
5 400 0.9988 0.9917 0.9679 0.9125 0.8127
6 480 0.9964 0.9861 0.9574 0.8977 0.7980
7 560 0.9930 0.9800 0.9471 0.8844 0.7847
8 640 0.9887 0.9734 0.9372 0.8721 0.7727
9 720 0.9836 0.9664 0.9276 0.8607 0.7617

10 800 0.9779 0.9592 0.9182 0.8500 0.7515
11 880 0.9717 0.9518 0.9091 0.8399 0.7420
12 960 0.9651 0.9442 0.9003 0.8303 0.7331

Table 2.10: Comparison of the surface temperature ϑk
5 and the temperatures ϑ12

i

calculated using the difference method with the values of ϑ+ from the exact solution
according to (2.171).

k ϑk
5 ϑ+(x5, tk) k ϑk

5 ϑ+(x5, tk) k ϑk
5 ϑ+(x5, tk)

1 0.9000 0.9093 5 0.8127 0.8142 9 0.7617 0.7631
2 0.8767 0.8755 6 0.7980 0.7994 10 0.7515 0.7529
3 0.8490 0.8509 7 0.7847 0.7861 11 0.7420 0.7433
4 0.8300 0.8311 8 0.7727 0.7741 12 0.7331 0.7343

i 1 2 3 4 5

ϑ12
i 0.9651 0.9442 0.9003 0.8303 0.7331

ϑ+(xi, t12) 0.9629 0.9427 0.8998 0.8309 0.7343

Although the grid chosen was coarse the agreement with the explicit solution from (2.171)
is satisfactory. However the first 12 time steps record only a small part of the cooling
process. This is due to the restriction of the time step ∆t in the stability condition. This
can only be overcome by transferring to an implicit difference method.
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2.4.3 The implicit difference method from J. Crank and
P. Nicolson

The explicit difference method discussed in 2.4.1 has the disadvantage that the
time step ∆t is limited by the stability conditions (2.242) and (2.259). Therefore
obtaining a temperature profile at a given time usually requires a lot of time
steps. This step size restriction can be avoided by choosing an implicit difference
method. It requires a system of linear equations to be solved for each time step.
This system has a very simple form, it is a tridiagonal system whose coefficient
matrix is only occupied along the main diagonal and both its neighbours. Simple
solution algorithms for tridiagonal systems can be found in D. Marsal [2.53] and
also in the standard works on numerical mathematics, e.g. [2.66] and [2.67].

A particularly accurate implicit difference method, which is always stable, has
been presented by J. Crank and P. Nicolson [2.65]. In this method the temper-
atures at the time levels tk and tk+1 are used. However the differential equation
(2.236) is discretised for the time lying between these two levels: tk + ∆t/2. This

makes it possible to approximate the derivative (∂ϑ/∂t)
k+1/2
i by means of the

accurate central difference quotient(
∂ϑ

∂t

)k+ 1
2

i

=
ϑk+1

i − ϑk
i

∆t
+ O

(
∆t2

)
. (2.266)

This is advantageous because the choice of an implicit difference method allows
larger time steps to be used and therefore requires a more exact approximation of
the derivative with respect of time.

The second derivative (∂2ϑ/∂x2)
k+1/2
i at time tk + ∆t/2 is replaced by the

arithmetic mean of the second central difference quotients at times tk and tk+1.
This produces(

∂2ϑ

∂x2

)k+ 1
2

i

=
1

2

(
ϑk+1

i−1 − 2ϑk+1
i + ϑk+1

i+1

∆x2
+

ϑk
i−1 − 2ϑk

i + ϑk
i+1

∆x2

)
+ O

(
∆x2

)
.

(2.267)
With (2.266) and (2.267) the implicit difference equation is obtained

−Mϑk+1
i−1 + (2 + 2M)ϑk+1

i − Mϑk+1
i+1 = Mϑk

i−1 + (2 − 2M)ϑk
i + Mϑk

i+1 (2.268)

with M = a∆t/∆x2.
The temperatures at time tk on the right hand side of (2.268) are known;

the three unknown temperatures at time tk+1 on the left hand side have to be
calculated. The difference equation (2.268) yields a system of linear equations
with i = 1, 2, . . . n. The main diagonal of the coefficient matrix contains the
elements (2 + 2M); the sub- and superdiagonals are made up of the elements
(−M); all other coefficients are zero. In this tridiagonal system, the first equation
(i = 1) cannot contain the term −Mϑk+1

0 and likewise, in the last equation (i = n)
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the term −Mϑk+1
n+1 may not appear. These terms are eliminated by taking the

boundary conditions into consideration.

If the temperatures at the boundaries are given, the grid is chosen such that
x = x0 and x = xn+1 coincide with the two boundaries. This means that ϑk

0, ϑk+1
0

and ϑk
n+1, ϑk+1

n+1 are always known, and the first equation of the tridiagonal system
looks like

(2 + 2M)ϑk+1
1 − Mϑk+1

2 = M
(
ϑk

0 + ϑk+1
0

)
+ (2 − 2M)ϑk

1 + Mϑk
2 , (2.269)

whilst the last equation will be

−Mϑk+1
n−1 +(2+2M)ϑk+1

n = Mϑk
n−1 +(2− 2M)ϑk

n +M
(
ϑk

n+1 + ϑk+1
n+1

)
. (2.270)

If the heat flux q̇(t) at the left boundary is given, cf. (2.247), the grid is chosen
to be the same as in Fig. 2.44, so that the boundary lies in the middle between
x0 and x1. ϑk

0 and ϑk+1
0 will be eliminated using (2.249). The first equation now

looks like this

(2+M)ϑk+1
1 −Mϑk+1

2 = (2−M)ϑk
1 +Mϑk

2 +M
∆x

λ

[
q̇ (tk) + q̇

(
tk+1

)]
. (2.271)

The adiabatic wall is a special case with q̇ ≡ 0. When the heat flux at the right
edge is given, ϑk

n+1 and ϑk+1
n+1 are eliminated in the same manner as above.

When considering the heat transfer condition (2.253) we lay the grid out as in
Fig. 2.45, namely so that the boundary coincides with x1 or xn, when (2.253) is
stipulated at the left or right boundary. Once again ϑk

0 and ϑk+1
0 are eliminated

from the first equation of the tridiagonal system (2.268), this time using (2.254).
This yields

[1 + M (1 + Bi∗)] ϑk+1
1 − Mϑk+1

2 = [1 − M (1 + Bi∗)] ϑk
1

+Mϑk
2 + MBi∗

(
ϑk

S + ϑk+1
S

) (2.272)

for the first equation. We eliminate ϑk
n+1 and ϑk+1

n+1 using (2.257) giving us as the
last equation

−Mϑk+1
n−1 + [1 + M (1 + Bi∗)] ϑk+1

n = Mϑk
n−1 + [1 − M (1 + Bi∗)]ϑk

n

+MBi∗
(
ϑk

S + ϑk+1
S

)
.

(2.273)

The difference method of Crank-Nicolson is stable for all M . The size of the
time steps is limited by the accuracy requirements. Very large values of M lead to
finite oscillations in the numerical solution which only slowly decay with increasing
k, cf. [2.57].
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Example 2.7: The cooling problem discussed in Example 2.6 will now be solved using
the Crank-Nicolson implicit difference method. The grid divisions will be kept as that in
Fig. 2.46.
The tridiagonal system for each time step, which has to be solved consists of five equations
and has the form

Aϑk+1 = b

with the coefficient matrix

A =

⎡⎢⎢⎢⎢⎣
2 + M −M 0 0 0
−M 2 + 2M −M 0 0

0 −M 2 + 2M −M 0
0 0 −M 2 + 2M −M
0 0 0 −M 1 + 1.15M

⎤⎥⎥⎥⎥⎦ ,

the solution vector

ϑk+1 =
[
ϑk+1

1 , ϑk+1
2 , ϑk+1

3 , ϑk+1
4 , ϑk+1

5

]T
and the right side

b =

⎡⎢⎢⎢⎢⎢⎢⎣
(2 − M )ϑk

1 + Mϑk
2

Mϑk
1 + (2 − 2M )ϑk

2 + Mϑk
3

Mϑk
2 + (2 − 2M )ϑk

3 + Mϑk
4

Mϑk
3 + (2 − 2M )ϑk

4 + Mϑk
5

Mϑk
4 + (1 − 1.15M )ϑk

5

⎤⎥⎥⎥⎥⎥⎥⎦ .

In the first step of the process (k = 0) all temperatures are set to ϑ0
i = 1.000, corresponding

to the initial condition ϑ(xi, t0) = 1.
We chose M = 1, a time step three times larger than that in the explicit method from
Example 2.6, namely ∆t = 240 s = 4.0min. The temperatures for the first 10 time steps
are given in Table 2.11.

Table 2.11: Temperatures in the cooling of a steel plate, calculated using
the Crank-Nicolson method with M = a∆t/∆x2 = 1.

tk/s ϑk
1 ϑk

2 ϑk
3 ϑk

4 ϑk
5

240 0.9990 0.9969 0.9885 0.9573 0.8406
480 0.9937 0.9851 0.9594 0.8982 0.8044
720 0.9815 0.9657 0.9282 0.8639 0.7635
960 0.9636 0.9437 0.9013 0.8322 0.7356

1200 0.9427 0.9208 0.8756 0.8058 0.7105

1440 0.9203 0.8975 0.8514 0.7816 0.6887
1680 0.8974 0.8743 0.8282 0.7592 0.6686
1920 0.8744 0.8514 0.8058 0.7381 0.6498
2160 0.8516 0.8289 0.7841 0.7179 0.6318
2400 0.8292 0.8070 0.7630 0.6984 0.6146

A comparison of the temperatures at time t4 = 960 s with the values shown in Table 2.10,
indicates that the Crank-Nicolson method delivers better results than the explicit method,
despite the time step being three times larger.
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In order to investigate the influence of the size of the time step on the accuracy we also used
alongside M = 1, M = 2, 5 and 10. The temperature distributions for t = 9600 s = 160min
are shown in Table 2.12.

Table 2.12: Comparison of the temperatures for t = 9600 s, calculated
with different modulus values M .

M ϑ1 ϑ2 ϑ3 ϑ4 ϑ5

1 0.3684 0.3584 0.3388 0.3099 0.2727
2 0.3683 0.3584 0.3387 0.3099 0.2727
5 0.3677 0.3584 0.3386 0.3051 0.2801

10 0.3683 0.3532 0.3259 0.2995 0.3180

Analyt.
Solution

0.3684 0.3584 0.3389 0.3101 0.2730

This time is reached after 40 steps with M = 1, 20 steps for M = 2, 8 steps for M =
5 and finally 4 steps for M = 10. The temperatures for M = 1 and M = 2 agree
very well with each other and with the analytical solution. The values for M = 5 yield
somewhat larger deviations, while the result for M = 10 is useless. This large step produces
temperature oscillations which are physically impossible. In [2.57], p. 122, a condition
for the restriction of the step size, so that oscillations can be avoided, is given for a
transient heat conduction problem with boundary conditions different from our example.
The transfer of this condition to the present task delivers the limit

M <
2

π

δ

∆x
= 5.7 .

It confirms the result of our numerical test calculations.

2.4.4 Noncartesian coordinates. Temperature dependent
material properties

In the following we will discuss the difference method with consideration for tem-
perature dependent material properties as well as for cylindrical and spherical
coordinates, whereby geometric one-dimensional heat flow is assumed in the ra-
dial direction. The decisive differential equation for the temperature field is then

c�
∂ϑ

∂t
=

1

rm

∂

∂r

(
rmλ

∂ϑ

∂r

)
(2.274)

with the exponents

m =

⎧⎪⎨⎪⎩
0 for the plate (r = x),
1 for the cylinder,
2 for the sphere.
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The establishment of difference equations is based on the discretisation of the
self-adjoint differential operator

D :=
∂

∂r

(
f

∂ϑ

∂r

)
(2.275)

with
f := rmλ(ϑ) , m = 0, 1, 2 . (2.276)

We will now discuss this and derive the difference equations for different coordi-
nates systems with and without consideration of the temperature dependence of
the properties of the material.

2.4.4.1 The discretisation of the self-adjoint differential operator

It is often advantageous to use a grid which does not have regular divisions in
the r-direction for the discretisation of the operator D from (2.275). The use
of smaller separations between the grid lines allows the stronger curvature of the
temperature profile for small r-values to be more accurately considered. Therefore
we will implement the use of a so-called centred grid with any (dependent on i)
mesh size ∆ri for the discretisation of D, as shown in Fig. 2.47. Using central
difference quotients we then obtain

Dk
i =

1

∆ri

⎡⎣(f
∂ϑ

∂r

)k

i+ 1
2

−
(
f

∂ϑ

∂r

)k

i− 1
2

⎤⎦ .

Replacing the first derivatives with central difference quotients gives

Dk
i =

1

∆ri

[
2 fk

i+1/2

∆ri + ∆ri+1

(
ϑk

i+1 − ϑk
i

)
− 2 fi−1/2

∆ri + ∆ri−1

(
ϑk

i − ϑk
i−1

)]
. (2.277)

According to (2.276)

fk
i± 1

2

=
(
ri ±

∆ri

2

)m

λ
(
ϑi± 1

2

)
, m = 0, 1, 2 , (2.278)

is valid. The thermal conductivities which appear here at the temperatures ϑk
i+ 1

2

or ϑk
i− 1

2

have to be calculated by a suitable mean value formulation of the thermal

conductivities at the known temperatures ϑk
i , ϑk

i+1, ϑk
i−1 at the grid points. We

will come back to this in 2.4.4.3. Next we wish to concentrate on the simple case
of constant properties.

Fig. 2.47: Centred grid for the discretisation of the self-adjoint differential
operator D according to (2.275)
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2.4.4.2 Constant material properties. Cylindrical coordinates

Equation (2.278) simplifies to

fi± 1
2

= λ
(
ri ±

∆ri

2

)m

(2.279)

for constant thermal conductivity. Using this assumption the difference equation
for the cylinder (m = 1) will now be derived. The case for the sphere m = 2 is
left to the reader to solve. The simple difference equations for a plate (m = 0)
are available in 2.4.1 and 2.4.3, when a constant mesh size ∆ri = ∆x is assumed.

For a cylinder with λ = const we obtain, from (2.277) and (2.279), the expres-
sion

Dk
i = λ

ri

∆r2
i

[
g+

i

(
ϑk

i+1 − ϑk
i

)
− g−

i

(
ϑk

i − ϑk
i−1

)]
, (2.280)

where we have introduced the abbreviations

g+
i :=

2 + ∆ri/ri

1 + ∆ri+1/∆ri

and g−
i :=

2 − ∆ri/ri

1 + ∆ri−1/∆ri

. (2.281)

A further simplification is possible if the grid spacing ∆r is assumed to be constant.
With

g+
i = 1 +

∆r

2ri

and g−
i = 1 − ∆r

2ri

(2.282)

we then obtain from (2.280)

Dk
i = λ

ri

∆r2

[(
1 +

∆r

2ri

)
ϑk

i+1 − 2ϑk
i +

(
1 − ∆r

2ri

)
ϑk

i−1

]
. (2.283)

If an explicit difference equation is desired, then the time based derivative in(
∂ϑ

∂t

)k

i

=
a

ri

∂

∂r

(
r

∂ϑ

∂r

)k

i

=
1

c�ri

Dk
i

has to be replaced according to (2.239). This produces the explicit difference
equation

ϑk+1
i = M

(
1 − ∆r

2ri

)
ϑk

i−1 + (1 − 2M)ϑk
i + M

(
1 +

∆r

2ri

)
ϑk

i+1 , (2.284)

whose modulus M has to satisfy the stability criterion mentioned in 2.4.1.2

M = a∆t/∆r2 ≤ 1

2
. (2.285)

The boundary conditions are treated in the same manner as in section 2.4.2.
To transfer the Crank-Nicolson [2.65] implicit difference method, which is al-

ways stable, over to cylindrical coordinates requires the discretisation of the equa-
tion (

∂ϑ

∂t

)k+ 1
2

i

=
a

ri

∂

∂r

(
r

∂ϑ

∂r

)k+ 1
2

i

≈ 1

c�ri

1

2

(
Dk+1

i + Dk
i

)
.
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With the time derivative from (2.266) and Dk
i or Dk+1

i according to (2.283) we
obtain the following difference equation

−M

(
1 − ∆r

2ri

)
ϑk+1

i−1 + (2 + 2M)ϑk+1
i − M

(
1 +

∆r

2ri

)
ϑk+1

i+1 = Ck
i , (2.286)

whose right hand side

Ck
i = M

(
1 − ∆r

2ri

)
ϑk

i−1 + (2 − 2M)ϑk
i + M

(
1 +

∆r

2ri

)
ϑk

i+1 (2.287)

contains the known temperatures at time tk. This equation leads to a tridiagonal
system of linear equations which have to be solved for each time step, cf. 2.4.3.
The temperatures ϑk

0 and ϑk+1
0 which appear in the first equation and those from

the last equation ϑk
n+1 and ϑk+1

n+1, can be eliminated with the help of the boundary
conditions, which was extensively discussed in 2.4.3.

A non-equidistant grid, cf. Fig. 2.47, requires the use of the discretised differential operator
Dk

i from (2.280) with the functions g+
i and g−i according to (2.281). The explicit differential

equation analogous to (2.284) has the form

ϑk+1
i = Mig

−

i ϑk
i−1 +

[
1 − Mi

(
g+

i + g−i
)]

ϑk
i + Mig

+
i ϑk

i+1 (2.288)

with the i-dependent modulus
Mi = a∆t/∆r2

i . (2.289)

The difference method is only stable if none of the coefficients in (2.288) is negative. This leads
to the stability condition Mi ≤ (g+

i + g−i )−1, and therefore

∆t ≤ min

{
1

a

∆r2
i

g+
i + g−i

}
. (2.290)

The stable, implicit method from Crank and Nicolson can be used without this restriction.
A generalisation of (2.286) delivers the tridiagonal linear equation system

−Mig
−

i ϑk+1
i−1 +

[
2 + Mi

(
g+

i + g−i
)]

ϑk+1
i − Mig

+
i ϑk+1

i = Ck
i (2.291)

with the right hand side

Ck
i = Mig

−

i ϑk
i−1 +

[
2 − Mi

(
g+

i + g−i
)]

ϑk
i + Mig

+
i ϑk

i+1 , (2.292)

which has to be solved for each time step. The modulus Mi is given by (2.289).

2.4.4.3 Temperature dependent material properties

If λ and c� change with temperature, cf. section 2.1.4, a closed solution to the heat
conduction equation cannot generally be found, which only leaves the possibility
of using a numerical solution method. We will show how temperature dependent
properties are accounted for by using the example of the plate, m = 0 in (2.274).
The transfer of the solution to a cylinder or sphere (m = 1 or 2 respectively) is



210 2 Heat conduction and mass diffusion

left to the reader. It is fairly simple to carry out with the help of the general
discretisation equation (2.277) for the differential operator D from (2.275).

Using an equidistant grid with spacing ∆x, with ∆ri = ∆ri+1 = ∆ri−1 = ∆x
and m = 0 we obtain from (2.277) and (2.278)

Dk
i =

1

∆x2

[
λk

i+ 1
2

(
ϑk

i+1 − ϑk
i

)
− λk

i− 1
2

(
ϑk

i − ϑk
i−1

)]
. (2.293)

In which λk
i±1/2 is the thermal conductivity at temperature ϑk

i±1/2. This requires a
suitable mean value to be chosen, the arithmetic, geometric or harmonic mean of
the thermal conductivities at the known temperatures ϑk

i and ϑk
i+1 or ϑk

i nd ϑk
i−1.

The type of mean value formation does not play a decisive role if λ is only weakly
dependent on ϑ or if the step size ∆x is chosen to be very small. D. Marsal [2.53]
recommends the use of the harmonic mean, so

λk
i± 1

2

=
2λk

i λ
k
i±1

λk
i + λk

i±1

, (2.294)

where λk
i = λ(ϑk

i ) = λ[ϑ(xi, tk)]. Using the harmonic mean we obtain, from
(2.294),

Dk
i =

2λk
i

∆x2

(
ϑk

i+1 − ϑk
i

1 + λk
i /λ

k
i+1

− ϑk
i − ϑk

i−1

1 + λk
i /λ

k
i−1

)
. (2.295)

In order to avoid complicated iterations it is recommended that an explicit
difference method is applied to this case. We replace the time derivative with the
first difference quotient according to (2.239) and obtain from (2.274) with (2.295)
the difference equation

ϑk+1
i = ϑk

i +
2ak

i ∆t

∆x2

(
ϑk

i+1 − ϑk
i

1 + λk
i /λ

k
i+1

− ϑk
i − ϑk

i−1

1 + λk
i /λ

k
i−1

)
. (2.296)

Here ak
i = a(ϑk

i ) is the thermal diffusivity at the temperature ϑk
i .

The stability of the difference method is guaranteed by choosing a small enough
time step ∆t such that the coefficient of ϑk

i in (2.296) is positive. Therefore it
always has to be

1 − 2ak
i ∆t

∆x2

(
1

1 + λk
i /λ

k
i+1

+
1

1 + λk
i /λ

k
i−1

)
> 0 . (2.297)

As a and λ change with each time step, a control for this inequality should be built
into the computer program and should the situation arise ∆t should be reduced
stepwise.

The temperature dependence of λ must also be considered in the heat transfer
condition (2.253) and for the boundary condition of prescribed heat flux. The
Biot number Bi∗ will be temperature dependent and this must be noted in the
elimination of the temperatures ϑk

0 and ϑk
n+1 from (2.254) and (2.257) respectively

and in (2.297) with i = 1 or i = n.
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2.4.5 Transient two- and three-dimensional temperature
fields

If planar or spatial temperature fields are to be determined the computation time
and storage capacity increase significantly in comparison to geometrically one-
dimensional problems. In the following we will restrict ourselves to rectangular
regions (cartesian coordinates); cylindrical and spherical problems can be solved
by discretisation of the corresponding differential equations. The finite difference
method is not well suited to complicated geometries, especially when boundary
conditions of the second or third type are stipulated at boundaries of any partic-
ular shape. In these cases it is more convenient to use a finite element method.

We will assume that the material properties are constant. The heat conduction
equation for planar, transient temperature fields with heat sources has the form

∂ϑ

∂t
= a

(
∂2ϑ

∂x2
+

∂2ϑ

∂y2

)
+

Ẇ (x, y, t, ϑ)

c�
. (2.298)

The temperature ϑ = ϑ(x, y, t) is to be determined in a rectangle parallel to the
x- and y-axes. We discretise the coordinates by

xi = x0 + i∆x , yj = y0 + j∆y and tk = t0 + k∆t .

The temperature at an intersection point of the planar grid in Fig. 2.48 will be
indicated by

ϑk
i,j = ϑ

(
xi, yj , tk

)
.

The corresponding equation for the thermal power density is

Ẇ k
i,j = Ẇ

(
xi, yj , tk

)
or W k

i,j = Ẇ
(
ϑk

i,j

)
,

Fig. 2.48: Planar grid for the discretisation of the heat conduction equation (2.298)
in the rectangular region x0 ≤ x ≤ xn, y0 ≤ y ≤ yl
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in the case where Ẇ is only dependent on the temperature
The two second derivatives in the x- or y-directions are approximated by the

central difference quotient, so that(
∂2ϑ

∂x2

)k

i,j

=
1

∆x2

(
ϑk

i−1,j − 2ϑk
i,j + ϑi+1,j

)
+ O

(
∆x2

)
(2.299)

and (
∂2ϑ

∂y2

)k

i,j

=
1

∆y2

(
ϑk

i,j−1 − 2ϑi,j + ϑi,j+1

)
+ O

(
∆y2

)
(2.300)

are valid. In order to obtain an explicit difference equation, we use the forward
difference quotient for the time derivative(

∂ϑ

∂t

)k

i,j

=
1

∆t

(
ϑk+1

i,j − ϑk
i,j

)
+ O(∆t) (2.301)

Using these difference quotients, we obtain, from (2.298), the explicit finite differ-
ence formula

ϑk+1
i,j =

(
1 − 2Mx − 2My

)
ϑk

i,j + Mx

(
ϑk

i−1,j + ϑk
i+1,j

)
+My

(
ϑk

i,j−1 + ϑk
i,j+1

)
+

∆t

c�
Ẇ k

i,j .
(2.302)

Two moduli appear here

Mx :=
a∆t

∆x2
and My :=

a∆t

∆y2
.

For a square grid (∆x = ∆y) we obtain Mx = My = M = a∆t/∆x2, and (2.302)
is simplified to

ϑk+1
i,j = (1 − 4M) ϑk

i,j + M
(
ϑk

i−1,j + ϑk
i+1,j + ϑk

i,j−1 + ϑk
i,j+1

)
+

∆t

c�
Ẇ k

i,j . (2.303)

Equations (2.302) and (2.303) enable us to explicitly calculate the tempera-
tures ϑ1

i,j at time t1 = t0 +∆t from the initial temperature distribution ϑ0
i,j. These

can then be used to calculate the temperature ϑ2
i,j of the next time level etc. This

difference method is relatively simple to program. It is also suitable for a tem-
perature dependent thermal power density Ẇ (ϑ), because Ẇ k

i,j is calculated for
the already known temperature ϑk

i,j. The disadvantage of this explicit difference
method lies in its limited stability, cf. 2.4.1.2. The stability condition, from which
none of the coefficients on the right hand side of (2.302) are allowed to be negative,
limits the time step

∆t ≤ ∆x2

2a
[
1 + (∆x/∆y)2

] . (2.304)
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This leads to an even smaller time step than in the condition (2.242) for geomet-
rical one-dimensional heat conduction.

The restriction on the step size (2.304) due to the stability condition for the
explicit difference method can be avoided by using an implicit method. This means
that (2.298) is discretised at time tk+1 and the backward difference quotient is used
to replace the time derivative. With(

∂ϑ

∂t

)k+1

i,j

=
1

∆t

(
ϑk+1

i,j − ϑk
i,j

)
+ O(∆t)

and the difference quotients (2.299) and (2.300) formulated for tk+1 we obtain
from (2.298), with the simplification that Ẇ ≡ 0, the implicit difference equation

a

∆x2

(
ϑk+1

i−1,j − 2ϑk+1
i,j + ϑk+1

i+1,j

)
+

a

∆y2

(
ϑk+1

i,j−1 − 2ϑk+1
i,j + ϑk+1

i,j+1

)
=

1

∆t

(
ϑk+1

i,j − ϑk
i,j

)
.

(2.305)
This equation is to be formulated for all grid points (i, j). A system of linear

equations for the unknown temperatures at time tk+1, that has to be solved for
every time step, is obtained. Each equation contains five unknowns, only the
temperature ϑk

i,j at the previous time tk is known. A good solution method has
been presented by P.W. Peaceman and H.H. Rachford [2.69]. It is known as the
“alternating-direction implicit procedure” (ADIP). Here, instead of the equation
system (2.305) two tridiagonal systems are solved, through which the computation
time is reduced, see also [2.53].

The boundary conditions for two dimensional temperature fields are easily fulfilled as long as
the boundaries run parallel to the coordinate axes. In addition to the grid points inside the region
a series of points outside the region are used. These extra grid points enable the three types
of boundary condition from section 2.4.2 to be considered without any difficulties. Significant
complications can appear for boundaries which do not run parallel with the coordinate axes.
The simplest condition to satisfy in this case is the prescribed temperature. Here it is sufficient
to approximate the curved wall with straight lines parallel to x and y, with suitably small grid
spacing ∆x and ∆y. However the discretisation of the derivative ∂ϑ/∂n in the normal direction
to the edges leads to complicated expressions which are difficult to use.

The discretisation of the heat conduction equation can also be undertaken for three-dimensi-
onal temperature fields, and this is left to the reader to attempt. The stability condition (2.304)
is tightened for the explicit difference formula which means time steps even smaller than those
for planar problems. The system of equations of the implicit difference method cannot be solved
by applying the ADIP-method, because it is unstable in three dimensions. Instead a similar
method introduced by J. Douglas and H.H. Rachford [2.71], [2.72], is used, that is stable and
still leads to tridiagonal systems. Unfortunately the discretisation error using this method is
greater than that from ADIP, see also [2.53].
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2.4.6 Steady-state temperature fields

The application of the difference method to steady-state heat conduction problems
involves the discretisation of the two- or three-dimensional region, in which the
temperature field has to be determined, by the choice of a suitable grid. The tem-
peratures at the grid points are determined by difference equations which link each
temperature to the temperatures at the neighbouring grid points. The difference
equations form a system of linear equations which replaces the heat conduction
equation with its associated boundary conditions, and whose solution delivers
approximate values for the temperatures at each grid point. Reducing the grid
spacing (mesh size) increases the number of grid points and linear difference equa-
tions, from which the temperatures calculated are better approximations to the
true values. We will limit ourselves to planar temperature fields; three-dimensional
fields are calculated in a similar manner. Some well suited methods and formu-
lated algorithms for these temperature fields can be found, in particular, in the
work by D. Marsal [2.53]. This also includes methods which go beyond the simple
difference method which we will discuss in the following.

2.4.6.1 A simple finite difference method for plane, steady-state tem-
perature fields

Plane, steady-state temperature fields ϑ = ϑ(x, y) with heat sources of thermal
power density Ẇ are described by the differential equation

∂2ϑ

∂x2
+

∂2ϑ

∂y2
+

Ẇ (x, y, ϑ)

λ
= 0 . (2.306)

A square grid with mesh size ∆x = ∆y is chosen for the discretisation, such that

xi = x0 + i∆x , i = 0, 1, 2, . . .

and
yj = y0 + j∆x , j = 0, 1, 2, . . .

are valid. The temperature at grid point (xi, yj) is indicated by ϑi,j = ϑ(xi, yj),

and equally the thermal power density by Ẇi,j = Ẇ (xi, yj , ϑi,j).
In contrast to the previous sections, we will now derive the difference equation

associated with (2.306) through an energy balance in an illustrative manner. To
do this we interpret each grid point as the centre of a small block, which is cut
out of the thermally conductive material, Fig. 2.49. The block has a square base
of side length ∆x and a height b perpendicular to the x,y-plane. The temperature
ϑi,j at the grid point (i, j) is taken to be the characteristic mean temperature of the
entire block. Heat is conducted to the block from its four immediate neighbours
with the mean temperatures ϑi+1,j, ϑi,j+1, ϑi−1,j and ϑi,j−1. Therefore, the energy
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Fig. 2.49: Block with square cross
section around the point (i, j) for
the derivation of the energy balance
(2.307)

balance for this block contains the four heat flows from Fig. 2.49 and the thermal
power arising from the internal heat sources Ẇi,j∆V , in which ∆V = ∆x2b is the
volume of the block :

Q̇i+1 + Q̇j+1 + Q̇i−1 + Q̇j−1 + Ẇi,j∆V = 0 . (2.307)

The heat flow Q̇i+1, from block (i + 1, j) to block (i, j) is given by

Q̇i+1 = q̇i+1∆x b =
λ

∆x

(
ϑi+1,j − ϑi,j

)
∆x b = λ

(
ϑi+1,j − ϑi,j

)
b .

Correspondingly we get

Q̇j+1 = λ
(
ϑi,j+1 − ϑi,j

)
b ,

Q̇i−1 = λ
(
ϑi−1,j − ϑi,j

)
b

and
Q̇j−1 = λ

(
ϑi,j−1 − ϑi,j

)
b .

In the sense of the sign agreement in thermodynamics, the four heat flows will be
taken as positive quantities if they flow into the block (i, j). With that we obtain
from the energy balance (2.307) the desired difference equation

ϑi+1,j + ϑi,j+1 + ϑi−1,j + ϑi,j−1 − 4ϑi,j = −Ẇi,j∆x2/λ . (2.308)

This is an approximate equation as each small, but finite block has only one
discrete temperature associated with it and because only the heat conduction
between immediate neighbours has been considered. As we can show with the use
of the discretisation equations (2.299) and (2.300) for the second derivatives, we
also obtain (2.308) by the usual discretisation of the differential equation (2.306).
The discretisation error in this case is O(∆x2); it decreases to zero with the square
of the mesh size (=block width).
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The difference equation (2.308) has to be formulated for each grid point inside
the region. The corresponding difference equations for the points on the edges will
be derived in the next section. A linear equation system is obtained which, with
fine grid division, has many equations. Numerical mathematics offers methods
which can be used to solve very large systems of equations [2.66], [2.67]. Advan-
tages and disadvantages of these solution methods are discussed by D. Marsal
[2.53] and G.D. Smith [2.57]. In general iterative methods, described in detail
by D.M. Young [2.73], are used, in particular the Gauss-Seidel-method and the
method of successive over-relaxation (SOR-method).

Example 2.8: A wall of thickness δ surrounds a room with a square base; the length
of the internal side of the square is 2.5 δ. The wall has constant surface temperatures ϑi

and ϑo < ϑi respectively. Calculate the heat flow out of the room due to the temperature
difference ϑi − ϑo.

Fig. 2.50: Wall of a room with square base. a Dimensions, b Coarse grid (∆x = δ/2)
with four unknown (normalised) temperatures ϑ+

1 to ϑ+
4

For reasons of symmetry it is sufficient to deal with only an eighth of the base, Fig. 2.50a.
The desired heat flow rate lies between two limits. They can be calculated, with the inner
wall surface to be

Q̇i = 8 · 1.25 · δ · b λ

δ
(ϑi − ϑo) = 10 bλ (ϑi − ϑo)

and with the outer surface of the wall

Q̇o = 8 · 2.25 · δ · b λ

δ
(ϑi − ϑo) = 18 bλ (ϑi − ϑo)

where b is the dimension of the wall perpendicular to the drawing plane in Fig. 2.50a. The
correct value between 10 and 18 for the shape factor

Sb =
Q̇

λb (ϑi − ϑo)
,

see section 2.2.5.2, is obtained by calculating the temperature field in the wall.
We use the dimensionless temperature ϑ+ = (ϑ − ϑo)/(ϑi − ϑo), which lies in the region
0 ≤ ϑ+ ≤ 1. A very coarse grid with ∆x = δ/2 delivers four grid points with the unknown
temperatures ϑ+

1 to ϑ+
4 , cf. Fig. 2.50b. They are calculated using the difference equations
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according to (2.308) with Ẇi,j ≡ 0

ϑ+
2 + 0 + ϑ+

1 + 1 − 4ϑ+
1 = 0 ,

ϑ+
3 + 0 + ϑ+

1 + 1 − 4ϑ+
2 = 0 ,

ϑ+
4 + 0 + ϑ+

2 + 1 − 4ϑ+
3 = 0 ,

0 + 0 + ϑ+
3 + ϑ+

3 − 4ϑ+
4 = 0 .

The first and fourth equations concern the symmetry of the temperature field along the
dotted line of symmetry in Fig. 2.50b.
The solution of the four equations yields the temperatures

ϑ+
1 = 0.4930, ϑ+

2 = 0.4789, ϑ+
3 = 0.4225, ϑ+

4 = 0.2113 .

With these results the heat flow conducted to the outer surface of the wall is determined
to be

Q̇ = 8 bλ (ϑi − ϑo)
(
ϑ+

1 + ϑ+
2 + ϑ+

3 + ϑ+
4

)
= 12.85 bλ (ϑi − ϑo) .

The shape factor has a value of Sb = 12.85. The corners increase the heat flow by 28.5%
compared with Q̇i, the heat flow calculated with the internal wall area. These are inaccu-
rate approximations due to the coarseness of the grid. A refined grid would deliver more
accurate temperatures, but increase the number of difference equations. Halving the mesh
size (∆x = δ/4) already leads to a system of 24 linear equations.

2.4.6.2 Consideration of the boundary conditions

The system of linear equations originating from the difference equation (2.308)
has to be supplemented by the difference equations for the points around the
boundaries where the decisive boundary conditions are taken into account. As a
simplification we will assume that the boundaries run parallel to the x- and y-
directions. Curved boundaries can be replaced by a series of straight lines parallel
to the x- and y-axes. However a sufficient degree of accuracy can only be reached
in this case by having a very small mesh size ∆x. If the boundaries are coordinate
lines of a polar coordinate system (r, ϕ), it is recommended that the differential
equation and its boundary conditions are formulated in polar coordinates and
then the corresponding finite difference equations are derived.

The simplest case to consider is the first kind of boundary condition. For this
the boundaries must coincide with grid lines, as in Example 2.8, and the stipulated
temperatures must be used in the difference equation (2.308) for the grid points
lying on the boundaries. This is achieved for boundaries which run parallel to
the x- and y-axes, by the suitable choice of mesh size ∆x. If necessary the square
grid used up until now must be replaced by a rectangular grid with different grid
spacings ∆x and ∆y. The difference equation (2.308) has to be altered, which
can be carried out without difficulties using the explanations in 2.4.6.1.

The boundary condition of a given temperature can also be satisfied in a good
approximation for curved boundaries. Fig. 2.51 shows a grid point (i, j) close to
the boundary. The straight lines x = xi and y = yj running through the point cut
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Fig. 2.51: Grid point (i, j) near the
curved boundary R, at which the tem-
perature ϑR is prescribed

the curved boundary, where the temperatures ϑR,n and ϑR,n+1 at the intersections
are given. Instead of (2.308) the difference equation for grid point (i, j) is

2

εn (1 + εn)
ϑR,n +

2

εn+1

(
1 + εn+1

) ϑR,n+1 +
2

1 + εn

ϑi−1,j

+
2

1 + εn+1

ϑi,j−1 − 2

(
1

εn

+
1

εn+1

)
ϑi,j = −∆x2

λ
Ẇi,j .

(2.309)
Its derivation can be found in G.D. Smith [2.57].

The heat transfer condition can only be satisfied simply if the boundary con-
sists of straight lines which run parallel to the x- and y-axes. The boundary has
to coincide with a grid line, and the difference equation for this sort of boundary
point is acquired from an energy balance. This is shown for a grid point on a
boundary which coincides with the grid line y = yj , Fig. 2.52. The heat flows
transferred by conduction from the neighbouring blocks into the shaded block are

Q̇i−1 =
λ

∆x

(
ϑi−1,j − ϑi,j

) ∆x

2
b =

λ

2

(
ϑi−1,j − ϑi,j

)
b ,

Q̇j−1 =
λ

∆x

(
ϑi,j−1 − ϑi,j

)
∆x b = λ

(
ϑi,j−1 − ϑi,j

)
b

and

Q̇i+1 =
λ

∆x

(
ϑi+1,j − ϑi,j

) ∆x

2
b =

λ

2

(
ϑi+1,j − ϑi,j

)
b .

Fig. 2.52: Derivation of the finite difference
equation for the boundary point (xi, yj) with
heat transfer to a fluid at temperature ϑS
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Fig. 2.53: Explanation of the difference equation for the boundary point a in
the reflex corner, b at the outer corner with heat transfer to a fluid at temper-
ature ϑS

The heat flow transferred from the fluid at temperature ϑS is

Q̇S = αi

(
ϑS − ϑi,j

)
∆x b

where αi is the local heat transfer coefficient at the point xi. Putting the four
heat flows into the balance equation

Q̇i−1 + Q̇j−1 + Q̇i+1 + Q̇S + Ẇi,j∆x2b/2 = 0

produces the difference equation

ϑi,j−1 +
1

2

(
ϑi−1,j + ϑi+1,j

)
+ Bi∗i ϑS − (2 + Bi∗i ) ϑi,j = −Ẇi,j∆x2/2λ (2.310)

with Bi∗i = αi∆x/λ as the local Biot number. This number allows us to easily
account for changes in the heat transfer coefficient along the boundary.

The difference equations which hold for heat transfer at the internal (reflex)
corner according to Fig. 2.53a, and at the outer corner according to Fig. 2.53b,
are found in the same manner. We obtain for the internal corner

ϑi,j+1 + ϑi−1,j +
1

2

(
ϑi,j−1 + ϑi+1,j

)
+ Bi∗i ϑS − (3 + Bi∗i )ϑi,j = −3Ẇi,j∆x2/4λ

(2.311)
and for the corner in Fig. 2.53b

1

2

(
ϑi−1,j + ϑi,j−1

)
+ Bi∗i ϑS − (1 + Bi∗i ) ϑi,j = −Ẇi,j∆x2/4λ . (2.312)

If no internal heat sources are present, Ẇi,j = 0 has to be put into the relationships
(2.309) to (2.312).

Putting, Bi∗i = 0, therefore αi = 0, into (2.310) to (2.312), makes these
relationships valid for an adiabatic surface. This corresponds to the special case
q̇ = 0, of the boundary condition of prescribed heat flux q̇. According to section
2.4.2 this boundary condition is more accurately accounted for when the grid is
laid out such that the boundary with stipulated heat flux has a distance of ∆x/2
from the grid line, see Fig. 2.54. The energy balance for the block highlighted in
Fig. 2.54 which has a temperature ϑi,j yields

Q̇i+1 + Q̇i−1 + Q̇j−1 + q̇i∆x b + Ẇi,j∆x2b = 0 ,
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Fig. 2.54: Derivation of the difference equa-
tion (2.313) with given heat flux q̇i at the
boundary

where q̇i = q̇(xi) is the given heat flux at x = xi. The difference equation follows
on from the energy balance:

ϑi+1,j + ϑi−1,j + ϑi,j−1 − 3ϑi,j = −q̇i

∆x

λ
− Ẇi,j

∆x2

λ
. (2.313)

Similar difference equations are obtained when the heat flux is stipulated on a
boundary which runs parallel to the y-axis.

Example 2.9: The shaped brick shown in Fig. 2.55a of an oven wall (λ = 0.80W/K m)
with trapezoidal cross section (δ = 0.30m) is insulated on the perpendicular surfaces. At
the upper surface heat is transferred to the air which is at constant temperature ϑS; the
heat transfer coefficient is α = 10W/m

2
K. The lower surface has a constant temperature

ϑR > ϑS. The heat transferred through the brick to the air is to be calculated along with
the temperatures of the surface which releases the heat.

Fig. 2.55: Heat conduction in a shaped brick. a Dimensions and given tempera-
tures, b square grid for the calculation of the temperatures ϑ+

1 to ϑ+
8

In order to approximately determine the temperature field we will use the grid illustrated
in Fig. 2.55b with the coarse mesh size ∆x = ∆y = δ/3 = 0.10 m. As in the last example,
we introduce the dimensionless temperature

ϑ+ =
ϑ − ϑS

ϑR − ϑS
, 0 ≤ ϑ+ ≤ 1

and compile the difference equations for the eight unknown temperatures ϑ+
1 to ϑ+

8 . Equa-
tion (2.310) with Ẇi,j ≡ 0 is decisive for the three surface temperatures, which results in
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the three equations

ϑ+
4 + 1

2

(
ϑ+

1 + ϑ+
2

)− (2 + Bi∗) ϑ+
1 = 0 ,

ϑ+
5 + 1

2

(
ϑ+

1 + ϑ+
3

)− (2 + Bi∗) ϑ+
2 = 0 ,

ϑ+
6 + 1

2

(
ϑ+

2 + ϑ+
3

)− (2 + Bi∗) ϑ+
3 = 0 .

It should be noted here that ϑ+
S = 0. The perpendicular adiabatic walls are considered to

be planes of symmetry with a reflection of the temperatures ϑ+
1 and ϑ+

3 in the first and
last equations, respectively.
For the two inner grid points with temperatures ϑ+

4 and ϑ+
5 the difference equation (2.308)

is applied:
ϑ+

5 + ϑ+
1 + ϑ+

4 + ϑ+
7 − 4ϑ+

4 = 0 ,

ϑ+
6 + ϑ+

2 + ϑ+
4 + ϑ+

8 − 4ϑ+
5 = 0 .

The grid points close to the lower boundary, with ϑ+
6 to ϑ+

8 have “arms”, which are
intersected by the oblique boundary along which ϑ+

R = 1. Here we use (2.309) and imagine
that Fig. 2.55b is rotated anticlockwise by 90◦, such that agreement with Fig. 2.51 exists.
It follows for point 6 with εn = 0.75 and εn+1 = 1 as well as ϑR,n = ϑ+

R and ϑR,n+1 = ϑ+
6

that
2

0.75 (1 + 0.75)
ϑ+

R + ϑ+
6 +

2

1 + 0.75
ϑ+

3 + ϑ+
5 − 2

(
1

0.75
+ 1

)
ϑ+

6 = 0 .

The result for the grid point ϑ+
7 with ϑR,n = ϑ+

R and ϑR,n+1 = ϑ+
8 is analogous, i.e.

2

0.75 (1 + 0.75)
ϑ+

R + ϑ+
8 +

2

1 + 0.75
ϑ+

4 + ϑ+
7 − 2

(
1

0.75
+ 1

)
ϑ+

7 = 0 .

The difference equation for the last, closest to the boundary grid point 8 with εn = 0.25,
εn+1 = 0.50, ϑR,n = ϑ+

R and ϑR,n+1 = ϑ+
R looks like

2

0.25(1+0.25)
ϑ+

R +
2

0.50(1+0.50)
ϑ+

R +
2

1+0.25
ϑ+

5 +
2

1+0.50
ϑ+

7 −2

(
1

0.25
+

1

0.50

)
ϑ+

8 = 0 .

With Bi∗ = α∆x/λ = 10 (W/m2K) 0.10m/0.80 (W/Km) = 1.25 and ϑ+
R = 1 we obtain

from these equations the system

ϑ+
1 = 0.1818ϑ+

2 + 0.3636ϑ+
4 , ϑ+

5 = 0.2500
(
ϑ+

2 + ϑ+
4 + ϑ+

6 + ϑ+
8

)
,

ϑ+
2 = 0.1538

(
ϑ+

1 + ϑ+
3

)
+ 0.3077ϑ+

5 , ϑ+
6 = 0.3117ϑ+

3 + 0.2727ϑ+
5 + 0.4156 ,

ϑ+
3 = 0.1818ϑ+

2 + 0.3636ϑ+
6 , ϑ+

7 = 0.3117ϑ+
4 + 0.2727ϑ+

8 + 0.4156 ,

ϑ+
4 = 0.2500

(
ϑ+

1 + ϑ+
4 + ϑ+

5 + ϑ+
7

)
, ϑ+

8 = 0.1333ϑ+
5 + 0.1111ϑ+

7 + 0.7556 .

Its solution, found according to the iteration method of Gauss-Seidel, delivers the temper-
atures

ϑ+
1 = 0.258 , ϑ+

2 = 0.274 , ϑ+
3 = 0.295 , ϑ+

4 = 0.573 ,

ϑ+
5 = 0.613 , ϑ+

6 = 0.675 , ϑ+
7 = 0.848 , ϑ+

8 = 0.932 .

The temperature of the surface bounded by air is not constant; it increases from the left
hand corner where the brick is thickest to the right hand corner. Its mean value is

ϑ+
m =

1

3

(
ϑ+

1 + ϑ+
2 + ϑ+

3

)
= 0.276 .

This allows the heat flow transferred to the air to be calculated as

Q̇ = α δb (ϑm − ϑS) = αδb ϑ+
m (ϑR − ϑS)

where b is the brick dimension perpendicular to the drawing plane of Fig. 2.55a. We obtain

Q̇/b (ϑR − ϑS) = 0.828W/K m .
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2.5 Mass diffusion

The basis for the solution of mass diffusion problems, which go beyond the simple
case of steady-state and one-dimensional diffusion, sections 1.4.1 and 1.4.2, is the
differential equation for the concentration field in a quiescent medium. It is known
as the mass diffusion equation. As mass diffusion means the movement of particles,
a quiescent medium may only be presumed for special cases which we will discuss
first in the following sections. In a similar way to the heat conduction in section
2.1, we will discuss the derivation of the mass diffusion equation in general terms
in which the concentration dependence of the material properties and chemical
reactions will be considered. This will show that a large number of mass diffusion
problems can be described by differential equations and boundary conditions,
just like in heat conduction. Therefore, we do not need to solve many new mass
diffusion problems, we can merely transfer the results from heat conduction to
the analogue mass diffusion problem. This means that mass diffusion problem
solutions can be illustrated in a short section. At the end of the section a more
detailed discussion of steady-state and transient mass diffusion with chemical
reactions is included.

2.5.1 Remarks on quiescent systems

The following observations show that in contrast with heat conduction, mass
diffusion processes seldom occur in quiescent systems. Therefore mass diffusion
in quiescent systems has less practical meaning compared to heat conduction.
We understand mass diffusion to be mass transport as a result of the natural
movement of molecules from one region of a system to another. Correspondingly,
heat conduction can be described as the energy transport due to the statistical
movement of elementary particles caused by an irregular temperature distribution.
In this respect a close relationship between mass diffusion and heat conduction
exists.

In contrast to heat conduction, in mass diffusion the average velocity of the
particles of the individual materials in a volume element can be different from
each other, so that a relative movement of the individual particles to each other is
macroscopically perceptible. In general this results in a macroscopic movement of
all particles in a volume element and therefore convection. As these considerations
show, in contrast to heat conduction quiescent systems cannot always be assumed
for mass diffusion. This can only be assumed under certain conditions, which we
will now discuss.

We will limit ourselves to a discussion of systems where the reference velocity
for the determination of the mass diffusional flux disappears, cf. (1.153). As a
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reference velocity we chose the gravitational velocity according to (1.154),

� w =
∑
K

�KwK , (2.314)

and the average molar velocity u according to (1.157), which we will write in the
following form

c u =
∑
K

cKwK . (2.315)

Vanishing gravitational velocity w = 0 at every position has∑
K

�KwK = 0 (2.316)

as a result overall in the observed system. The mass flow into the volume element
has to be exactly the same size as the flow rate out of the element, so that (2.316)
is satisfied. The mass in the volume element, therefore remains unchanged. The
density � of a volume element in a particular position is also constant. It can,
however, be different for an element in a different position x. This means that
∂�/∂x �= 0 is possible but ∂�/∂t = 0. Vanishing gravitational velocity w = 0
merely has the result ∂�/∂t = 0, but not ∂�/∂x = 0.

The model considered here is that of an incompressible body. This is defined
by the fact that the density of a volume element in the material does not change
during its movement, i.e. � = �(x, t) = const and therefore d�/dt = 0, which is
fulfilled in our case, because due to w = 0 and ∂�/∂t = 0

d�

dt
=

∂�

∂t
+ w

∂�

∂x
= 0 .

As an example we will take a porous body into which hydrogen diffuses. A volume element
in the porous body has a certain mass and therefore a certain density, e.g. � = 7.8 · 103 kg/m3.
According to this a volume element of 1 mm3 has a mass of 7.8 · 10−3 g. We assume that the
volume element is at the ambient temperature 298 K with a partial pressure of hydrogen of
p = 1hPa. The equation of state for ideal gases is used to find the hydrogen absorbed by the
volume element, which is

MH2
=

pH2
V

RH2
T

=
102Pa · 10−9 m3

4.1245 (J/gK) · 298K

MH2
= 8.136 · 10−11 g .

The mass of the element is hardly changed due to the added hydrogen, and so any mass change
can be neglected. The centre of mass remains in the same position in space, a good approxima-
tion is dx/dt = w = 0.

Similar results are obtained for mass diffusion in very dilute solutions, for example the
absorption of a gas in a liquid. The density of the liquid, away from the critical region, is much
larger than that of the gas, and the mass of the gas is extraordinarily low. This means that the
mass of a volume element is practically unchanged by the absorption of gas. Once again, a good
approximation is dx/dt = w = 0.
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Vanishing gravitational velocity and therefore a medium, quiescent relative to
the gravitational velocity, can be presumed for the diffusion of gases into solids or
diffusion in very dilute solutions.

We will now look at a system, in which the average molar velocity u according
to (2.315) disappears. This gives

∑
K

cKwK = 0 . (2.317)

The sum of all the molar flows into a volume element is equal to the sum of all the
flows out of the element. The diffusion is equimolar. The number of moles N in the
volume element remains unchanged. Therefore the molar density lim

V →0
N/V = c at

a fixed position is constant. It can change with position x but ∂c/∂t = 0.

We will consider the vessel in Fig. 2.56, as an example. The left hand side contains 0.5
mol He (M̃ = 4 kg/kmol), whilst the right half contains 0.5 mol Ar (M̃ = 40 kg/kmol), at
p = 0.1MPa and T = 298 K. When the separating wall is removed the gases diffuse into each
other. The pressure and temperature remain constant. The ideal gas equation holds for every
volume element,

p

RmT
=

N

V
= c = const .

Therefore
∂c

∂t
= 0 ,

which is only possible if the amount of material flowing into each volume element is equal to
the amount of the other material flowing out of the element:

(cw)He = −(cw)Ar .

The average molar velocity, according to (2.315) is u = 0. As the pressure, temperature and

Fig. 2.56: Equimolar diffusion of two
gases, a centre of mass before, and b

after mixing

number of moles for each gas were the same before mixing, both gases filled the same volume.
Before mixing the centre of mass lay on the side of the heavier argon, point a in Fig. 2.56. A
homogeneous distribution develops after mixing has taken place, causing the centre of mass to
move to the middle of the vessel, point b in Fig. 2.56, and the gravitational velocity is different
from zero. In the example considered here the average molar velocity is u = 0, on the other
hand the gravitational velocity is w �= 0.

Vanishing average molar velocity and a system quiescent relative to the average
molar velocity can be presumed, as the example indicates for the mass diffusion
of ideal gases at constant pressure and temperature.
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2.5.2 Derivation of the differential equation for the con-
centration field

The solving of a diffusion problem involves the determination of the composition
of a body in terms of time and space. If the composition is indicated by the mass
fraction and we wish to investigate the mass fraction ξA = MA/M of material A,
we are looking for

ξA = ξA(x, t) .

With this equation and Fick’s law the diffusional flux can be discovered. For a
binary mixture of components A and B, (1.161) this is

j∗
A = −� D grad ξA (2.318)

and for a multi-component mixture, (1.162):

j∗
A = �

N∑
K=1

K �=A

M̃AM̃K

M̃2
DAK grad x̃K (2.319)

with the mole fraction x̃A = M̃ξA/M̃A according to (1.151) and the average molar
mass according to M̃ from (1.154).

Fig. 2.57: Input of substance A by diffusion and production by a chemical reaction in
volume V . a for the mass balance, b for the molar balance

The mass fraction ξA is obtained as the solution to a partial differential equa-
tion, which comes from the mass balance. In order to derive this we will consider
a coherent region of any size, out of which we will imaginarily cut a body in which
diffusion takes place, Fig. 2.57a. The volume of the region is V , and its surface
area A. A surface element dA, whose normal n is directed outwards as in Fig.
2.57a, has a mass flow

dṀA = −�A wA n dA (2.320)

fed into it. The minus sign is used as a mass flow is deemed to be positive when
it flows into the region. The velocity vector wA of substance A points inwards in
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the region, whilst the normal vector n points outwards, so the scalar product will
be negative. The diffusional flux, according to (1.155), is defined by

j∗
A = �A(wA − w) .

We will deal with a quiescent medium relative to the gravitational velocity, w = 0,
so that the diffusional flux is

j∗
A = �A wA . (2.321)

It follows from (2.320) and (2.321) that

dṀA = −j∗
A n dA .

Integration gives the total inlet mass flow of the component

ṀA = −
∫

(A)

j∗
A n dA = −

∫
(V )

div j∗
A dV (2.322)

This will then be converted from the integral over the whole surface area of the
region to the volume integral of the divergence j∗

A according to Gauss’ integral
theorem.

At the same time a certain amount of substance A is generated or absorbed by
a chemical reaction inside the region. The production rate in a volume element is
indicated by Γ̇A (SI units kg/m3s). It is positive when substance A is generated,
and negative when it is consumed. The mass flow

∫
(V )

Γ̇A dV (2.323)

of substance A is generated inside the region. The mass flow over the surface area
of the region due to diffusion and the flow generated by the chemical reaction
cause an increase over time of the mass stored inside the region by

d

dt

∫
(V )

�A dV =
∫

(V )

∂�A

∂t
dV . (2.324)

Taking into account (2.322) and (2.323) the mass balance for substance A is

∫
(V )

∂�A

∂t
dV = −

∫
(V )

div j∗
A dV +

∫
(V )

Γ̇A dV .

As the balance region can be infinitely small, it holds that

∂�A

∂t
= −div j∗

A + Γ̇A . (2.325)
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A mass balance of this type is valid for each component in the mixture. Therefore,
there are as many mass balances as substances. Addition of all the components
leads to

N∑
K=1

∂�K

∂t
= −div

N∑
K=1

j∗
K +

N∑
K=1

Γ̇K . (2.326)

In which
N∑

K=1
�K = � is the density of a mixture of N substances. The sum of all

the diffusional fluxes is given by (1.156), i.e.
N∑

K=1
j∗

K = 0. As the mass of a certain

substance generated per unit time in the chemical reaction can only be as much
as is consumed of another substance, it follows that

N∑
K=1

Γ̇K = 0 .

The summation over all substances, according to (2.326), leads to

∂�

∂t
= 0 .

The density at a given position does not change with time. This is stipulated
because we have presumed a quiescent medium w = 0. However the density
is only constant at a fixed position. It can change locally due to a different
composition, � = �(x).

As the density � is independent of time, (2.325) may, because �A = � ξA, also
be written as

�
∂ξA

∂t
= −div j∗

A + Γ̇A . (2.327)

Introducing Fick’s law (2.318) gives

�
∂ξA

∂t
= div(� D grad ξA) + Γ̇A (2.328)

as the desired differential equation for the mass fraction ξA(x, t) in a quiescent,
relative to the gravitational velocity, isotropic binary mixture of substances A and
B. A corresponding equation also exists for B. However this does not need to be
solved, because when the mass fraction ξA is known, the other mass fraction in a
binary mixture is ξB = 1 − ξA.

Putting Fick’s law (2.319) into (2.327) provides us with the corresponding
equation to (2.328) for a mixture of N components

�
∂ξA

∂t
= −div(�

N∑
K=1

K �=A

M̃AM̃K

M̃2
DAK grad x̃K) + Γ̇A . (2.329)

As we have presumed a quiescent body relative to the gravitational velocity, w = 0
and therefore ∂�/∂t = 0, the quantities D and Γ̇A in (2.328) depend on the density
�(x), the temperature ϑ and the composition ξA. In (2.329) these quantities
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do not only depend on the mass fraction ξA of component A, but also on the
mass fractions of the other substances. In addition grad x̃A also depends on
the gradients of the mass fractions of the other substances, which follow from
x̃A = M̃ξA/M̃A with 1/M̃ =

∑
K

ξK/M̃K .

Therefore the diffusion equations (2.328) and (2.329) are, in general, non-
linear. The general equation (2.329), contains (2.328) as a special case with N = 2,
which can be easily checked.

We will now presuppose a quiescent system relative to the average molar veloc-
ity u, with constant temperature and pressure, and derive the diffusion equation.
The molar flow of component A into the surface element dA, as in Fig. 2.57b is

dṄA = −cA wA n dA . (2.330)

The minus sign appears because the normal vector n points outwards from the
area dA, and the molar flow into the area should be positive. The diffusional flux
is defined by (1.158) as

ujA = cA(wA − u)

and is equal to the molar flux

ujA = cAwA , (2.331)

because we have presumed a vanishing average molar velocity u. The molar flow
into the total area is

ṄA = −
∫

(A)

cA wA n dA = −
∫

(A)

ujA n dA = −
∫

(V )

div ujA dV . (2.332)

The amount of substance A generated by chemical reaction in the region is indi-
cated by the molar production flux γ̇A (SI units mol/m3s). It is∫

(V )

γ̇A dV . (2.333)

The molar flow into the region due to diffusion and that generated by the chemical
reaction cause an increase over time in the amount of substance stored in the region
of

d

dt

∫
(V )

cA dV =
∫

(V )

∂cA

∂t
dV . (2.334)

The material balance for substance A is then∫
(V )

∂cA

∂t
dV = −

∫
(V )

div ujA dV +
∫

(V )

γ̇A dV .

As the balance region can be chosen to be infinitely small, it holds that

∂cA

∂t
= −div ujA + γ̇A . (2.335)
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A balance of this type exists for all the substances involved in the diffusion, so
they can be added together giving

N∑
K=1

∂cK

∂t
= −div

N∑
K=1

ujK +
N∑

K=1

γ̇K . (2.336)

Here
N∑

K=1
cK = c is the molar density of a mixture consisting of N substances.

Furthermore if
N∑

K=1
ujK = 0, cf. section 1.4.1, page 72, (2.336) is transformed into

the following equation valid for the sum over all components

∂c

∂t
=

N∑
K=1

γ̇K . (2.337)

As the sum of the number of moles does not generally remain the same in a
chemical reaction, the right hand side of (2.337) does not disappear unless exactly
the same number of moles are generated as disappear. Inserting Fick’s law (1.160),
in which DAB is replaced by D, we obtain from (2.335)

∂cA

∂t
= div(c D grad x̃A) + γ̇A (2.338)

as the differential equation for the molar concentration cA(x, t) in a quiescent,
relative to the average molar velocity u, binary mixture of components A and
B. A corresponding equation exists for substance B. It is also possible to solve
(2.338) and then determine cB, because cB = c − cA.

For a multicomponent mixture of ideal gases at constant temperature and
pressure, Fick’s law in the particle reference system [2.75], can be written as

ujA =
N∑

K=1

K �=A

DAK grad cK . (2.339)

Putting this into (2.335) we obtain for a multicomponent mixture at constant
pressure and temperature, the diffusion equation

∂cA

∂t
= −div(

N∑
K=1

K �=A

DAK grad cK) + γ̇A . (2.340)

In (2.338) D = D(p, ϑ, x̃A) is the diffusion coefficient and the molar production
density is γ̇A = γ̇A(p, ϑ, x̃A) with x̃A = cA/c. In (2.340) these quantities depend
not only on the mole fraction x̃A, but also on the mole fractions of the other
substances.
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2.5.3 Simplifications

We will still only deal with binary mixtures in the following, as the diffusion
coefficients DAK of mixtures of more than two components are often unknown, and
therefore the diffusion in these mixtures cannot be quantitatively calculated. The
diffusion equations (2.328) and (2.338) for binary mixtures can often be simplified
considerably.

We have already ascertained that in the diffusion of a gas A into a solid or
liquid B, the density of a volume element is practically unchanged, ∂�/∂t = 0,
because the mass of the gas absorbed is low in comparison with the mass of the
volume element. If substance B was initially homogeneous, � = �(x) = const, the
density will also be unchanged locally during the diffusion process. We can there-
fore say a good approximation is that the density is constant, independently of
position and time. Furthermore, measurements [2.76] have shown that the diffu-
sion coefficient in dilute liquid solutions at constant temperature may be taken as
approximately constant. Equally in diffusion of a gas into a homogeneous, porous
solid at constant temperature, the diffusion coefficient is taken to be approxi-
mately constant, as the concentration only changes within very narrow limits. In
these cases, in which � = const and DAB = D = const can be assumed, (2.328)
simplifies to

∂ξA

∂t
= D∇2ξA + Γ̇A/� (2.341)

with Γ̇A = Γ̇A(ϑ, ξA).
The equation (2.338) for vanishing average molar velocity u = 0, can also be

simplified, when it is applied to binary mixtures of ideal gases. As a good approx-
imation, at low pressures generally up to about 10 bar, the diffusion coefficient
is independent of the composition. It increases with temperature and is inversely
proportional to pressure. The diffusion coefficients in isobaric, isothermal mix-
tures are constant. In this case (2.338) is transformed into the equation for c =
const

∂cA

∂t
= D∇2cA + γ̇A (2.342)

with γ̇A = γ̇A(ϑ, x̃A).
The equations (2.341) and (2.342) are equivalent to each other, because putting

cA = �A/M̃A into (2.342) results in

∂�A

∂t
= D∇2�A + γ̇AM̃A .

On the other hand, because � = const we can also write

∂�A

∂t
= D∇2�A + Γ̇A .

By definition γ̇AM̃A = Γ̇A, which shows that the two equations are equivalent. For
the case where no chemical reaction occurs, γ̇A = 0, (2.342) was first presented
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by A. Fick in 1855 [2.76], and

∂cA

∂t
= D∇2cA (2.343)

is therefore known as Fick’s second law.

2.5.4 Boundary conditions

The equations (2.342) and (2.341) are of the same type as the heat conduction
equation (2.11). The following correspondences hold

cA=̂ϑ , D=̂a and γ̇A=̂Ẇ/c� .

As a result of this many solutions to the heat conduction equation can be trans-
ferred to the analogous mass diffusion problems, provided that not only the dif-
ferential equations but also the initial and boundary conditions agree. Numerous
solutions of the differential equation (2.342) can be found in Crank’s book [2.78].
Analogous to heat conduction, the initial condition prescribes a concentration at
every position in the body at a certain time. Timekeeping begins with this time,
such that

cA(x, y, z, t = 0) = cAα(x, y, z) . (2.344)

The local boundary conditions can be split into three groups, just as in heat
conduction processes.

1. The concentration can be set as a function of time and the position x0, y0, z0

on the surface of the body (boundary condition of the 1st kind)

cA(x0, y0, z0, t) = cA0(t) . (2.345)

Examples of this are the drying of porous substances in the first drying
period, when the surface is covered by a liquid film, or the evaporation of
water in dry air. In both cases the saturation pressure pAS(ϑ), associated
with the temperature ϑ, becomes apparent at the interface between the
liquid and gas. This then gives cA0 = pAS(ϑ)/RmT .
The solubility of a gas A in an adjacent liquid or solid B is also often of
interest. If the gas is only weakly soluble in the liquid, the mole fraction
x̃A of the dissolved gas is obtained from Henry’s law (1.217) as

x̃A0 = pAS(ϑ)/kH ,

where kH is the Henry coefficient. It is a function of temperature and
pressure in binary mixtures. The pressure dependence can, however, be
neglected if the total pressure of the gas is so low that it can be considered
to be ideal. Numerical values of kH(ϑ) for this case can be found in the
tables from Landolt-Börnstein [2.79].
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2. The diffusional flux normal to the surface can be prescribed as a function
of time and position (boundary condition of the 2nd kind)

ujA = −c D
∂x̃A

∂n
, (2.346)

whereby for surfaces impermeable to the material we get

∂x̃A/∂n = 0 . (2.347)

3. Contact between two quiescent bodies (1) and (2) at the interface can exist
(boundary condition of the 3rd kind)

(c D)
(1)
0

(∂x̃A

∂n

)(1)

0
= (c D)

(2)
0

(∂x̃A

∂n

)(2)

0
. (2.348)

If a quiescent body (1) is bounded by a moving fluid (2) a diffusion bound-
ary layer develops in the fluid. Instead of (2.348), the boundary condition

−(c D)
(1)
0

(∂x̃A

∂n

)(1)

0
= β ∆ c

(2)
A (2.349)

is used, with concentration difference in the fluid ∆c
(2)
A = c

(2)
A0−c

(2)
Aδ between

the interface 0 and the edge δ of the boundary layer of the fluid. The
mole fraction x̃A and concentration cA are transferable into each other by
cA = x̃A c. The concentration c = N/V is given by c = p/RmT for ideal
gases, whilst for real gases it has to be taken from the thermal equation of
state.

If heat is transferred by conduction between two bodies (1) and (2) which are
in contact with each other (boundary condition of the 3rd kind), then not only

the heat fluxes, but also the temperatures ϑ
(1)
0 = ϑ

(2)
0 will be equal. In contrast

to this, in diffusion at the phase interface, a concentration jump almost always
develops. This is yielded from the equilibrium conditions with regard to mass
transfer (equality of the chemical potential of each component in each phase). A
relationship of the form below exists for given values of temperature and pressure

x̃
(1)
A0 = f(x̃

(2)
A0) , (2.350)

which is provided by the thermodynamics of phase equilibria. An equation of this
type is the definition equation for the equilibrium constant

K := x̃
(1)
A0/x̃

(2)
A0 . (2.351)

For the solubility of gases in liquids

K = kH(ϑ)/p ,
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where kH(ϑ) is the Henry coefficient. As already mentioned in chapter 1 further
information about the equilibrium constant and Henry coefficients can be found in
text books on the thermodynamics of mixtures, for example [1.1]. The solubility
of a gas A in a solid phase is calculated from

cA0 = LS pA0 (2.352)

with the solubility LS (SI units mol/m3bar). Numerical values can be found in
the tables from Landolt-Börnstein [2.79] among others.

Example 2.10: In a spherical vessel of internal diameter 1450 mm and wall thickness 4
mm made of chromium-nickel-steel, a gas containing hydrogen is stored at 85 ◦C under
high pressure. The hydrogen has an initial partial pressure of 1 MPa. As a result of
diffusion through the vessel wall, some of the hydrogen is lost into the air surrounding the
container, such that the pressure in the vessel falls over time. We wish to calculate the
time taken for the pressure in the vessel to fall by 10−3 MPa, and how much hydrogen is
lost in this time interval. Hint: As the pressure in the vessel falls very slowly the change
over time of the hydrogen content in the wall can be neglected, i.e. we assume steady-
state diffusion. Equation (2.352) holds for the amount of hydrogen dissolved at the wall
surface, with the experimentally determined solubility coefficient LS = 9.01 mol/m3bar.
The diffusion coefficient for hydrogen into the vessel wall at 85 ◦C is D = 1.05 ·10−13 m2/s.
The gaseous mixture in the vessel satisfies the thermal equation of state for ideal gases.
The hydrogen content in the surrounding air may be neglected.
The amount of hydrogen (substance A is hydrogen) which diffuses through the vessel wall
is equal to the reduction in the amount stored:

jAA = − dN

dt
= − dNA

dt
.

Furthermore

jAA =
D

δ
Am(cAi − cAa)

with wall thickness δ and the geometric mean Am =
√

Ai Ao
∼= Ai of the internal and

external surface areas. With cAo = 0 and cAi = LSpA we obtain

jAA =
D

δ
Am LS pA .

On the other hand, for the amount of hydrogen inside the vessel we have NA = pA V/RmT .
This then gives

− V

RmT

dpA

dt
=

D

δ
Am LS pA

or

d ln pA = −D

δ
Am LS

RmT

V
dt .

Integration yields

pA(t) = pA(t = 0) exp
(
−D

δ
Am LS

RmT

V
t
)

Putting in the numerical values we obtain

pA(t1) = 1MPa · exp (−2.915 · 10−11 t1/s)

from which we get

t1 =
1

−2.915 · 10−11
ln

(1 − 10−3)MPa

1MPa
s = 3.432 · 107 s = 9534h = 397days .
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The loss of hydrogen follows from the equation of state for ideal gases

MA

MA(t = 0)
=

∆pA

pA(t = 0)
=

10−3 MPa

1MPa
.

This is 0.1% of the initial amount of hydrogen present, which was

MA(t = 0) = M̃A NA(t = 0) = M̃A pA(t = 0)V/RmT = 1.072kg .

2.5.5 Steady-state mass diffusion with catalytic surface
reaction

We have already considered steady-state one-dimensional diffusion in the intro-
ductory sections 1.4.1 and 1.4.2. Chemical reactions were excluded from these
discussions. We now want to consider the effect of chemical reactions, firstly
the reactions that occur in a catalytic reactor. These are heterogeneous reac-
tions, which we understand to be reactions at the contact area between a reacting
medium and the catalyst. It takes place at the surface, and can therefore be
formulated as a boundary condition for a mass transfer problem. In contrast
homogeneous reactions take place inside the medium. Inside each volume ele-
ment, depending on the temperature, composition and pressure, new chemical
compounds are generated from those already present. Each volume element can
therefore be seen to be a source for the production of material, corresponding to
a heat source in heat conduction processes.

As an example we will consider a catalytic reactor, Fig. 2.58, in which by a
chemical reaction between a gas A and its reaction partner R, a new reaction
product P is formed. The reaction partner R and the gas A are fed into the
reactor, excess gas A and reaction product P are removed from the reactor. The
reaction is filled with spheres, whose surfaces are covered with a catalytic material.
The reaction between gas A and reactant R occurs at the catalyst surface and is
accelerated due to the presence of the catalyst. In most cases the complex reaction
mechanisms at the catalyst surface are not known completely, which suggests the
use of very simplified models. For this we will consider a section of the catalyst
surface, Fig. 2.59. On the catalyst surface x = 0 at steady-state, the same amount
of gas as is generated will be transported away by diffusion. The reaction rate
is equal to the diffusive flux. In general the reaction rate ṅA0 of a catalytic
reaction depends on the concentration of the reaction partner. In the present
case we assume that the reaction rate will be predominantly determined by the
concentration cA(x = 0) = cA0 of gas A at the surface. For a first order reaction
it is given by

ṅA0 = −k′′
1 cA0 . (2.353)

For an n-th order reaction we have

ṅA0 = −k′′
n cn

A0 . (2.354)
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Fig. 2.58: Catalytic reactor Fig. 2.59: Uni-directional diffusion with
reaction at the catalyst surface

Here k′′
n is the rate constant with SI units (mol / m2s) / (mol / m3)n. The rate

constant k′′
1 for a first order reaction has SI units m/s. The superscript indices ′′

indicate that the reaction takes place at the surface. The minus sign makes ṅA0

negative, as substance A is consumed in the chemical reaction. If substance A
had been generated (2.353) would have a positive sign.

Presuming that the reaction is first order, at the catalyst surface it holds that

ṅA0 = −
(
c D

∂x̃A

∂x

)
x=0

= −k′′
1 cA0 . (2.355)

Above the catalyst surface, substance A will be transported by diffusion, mainly
in the x-direction. In a thin layer close to the wall, the diffusion boundary layer,
mass transport by convection is negligible, and from (2.338) we obtain the diffusion
equation valid for steady one-dimensional diffusion without chemical reaction

d

dx

(
c D

dx̃A

dx

)
= 0 . (2.356)

Its solution must not only satisfy the boundary condition (2.355) but also

x̃A(x = L) = x̃AL (2.357)

where L is the thickness of the diffusion boundary layer. Under the assumption
of c D = const we obtain the solution

x̃A − x̃AL =
k′′

1 cA0

c D
(x − L) . (2.358)

The mole fraction at the wall x = 0 is found to be

x̃A0 = −k′′
1 cA0

c D
L + x̃AL = −k′′

1 x̃A0L

D
+ x̃AL

or

x̃A0 =
x̃AL

1 + k′′
1 L/D

. (2.359)
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Furthermore, if we take c = const as an assumption, due to cA = x̃Ac, we get

cA0 =
cAL

1 + k′′
1 L/D

(2.360)

and therefore the reaction rate with (2.355)

ṅA0 = − k′′
1 cAL

1 + (k′′
1L/D)

. (2.361)

In the case of convective mass transfer at the catalyst surface, the mass transfer
coefficient β appears in this equation in place of D/L, β = D/L. This can be
easily checked because (2.355) can be replaced by

ṅA0 = −k′′
1 cA0 = β (cA0 − cAL) ,

which after elimination of cA0, yields the relationship

ṅA0 = − k′′
1 cAL

1 + (k′′
1/β)

. (2.362)

The negative sign in (2.361) and (2.362) indicates that the mass flow of A is
towards the catalyst surface.

The dimensionless quantity

Da1 = k′′
1L/D (2.363)

is called the Damköhler5 number for a heterogeneous first order reaction (there
are further Damköhler numbers). It is the ratio of the reaction rate k′′

1 to the
diffusion rate D/L.

In (2.361) or (2.362) two limiting case are of interest:
a) Da1 = k′′

1L/D or k′′
1/β are very small, because k′′

1 	 D/L or k′′
1 	 β. Then

ṅA0 = −k′′
1 cAL . (2.364)

The material conversion will be determined by the reaction rate. It is
“reaction controlled”. According to (2.360) the concentration of substance
A perpendicular to the catalyst surface is constant, i.e. cA0 = cAL.

b) Da1 = k′′
1L/D or k′′

1/β is very large because k1 � D/L or k1 � β. Then
we get

ṅA0 = −D

L
cAL or ṅA0 = −β cAL . (2.365)

The material conversion is determined by diffusion. It is “diffusion con-
trolled”. So according to (2.360), cA0 = 0. Substance A will be completely
converted in a rapid reaction at the catalyst surface.

5Gerhard Damköhler (1908–1944) was the first to develop a similarity theory for chemical
processes with consideration of both heat and mass transfer. With his work “Einfluß von
Diffusion, Strömung und Wärmetransport auf die Ausbeute von chemischen Reaktionen” (Der
Chemie-Ingenieur, Leipzig, 1937, 359–485), in English, “The influence of diffusion, flow and heat
transport on the yield of a chemical reaction”, he paved the way for further investigation into
chemical reaction technology.
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Example 2.11: In the catalytic converter of a car, nitrogen oxide is reduced at the catalyst
surface, according to the following reaction

NO + CO → 1

2
N2 + CO2 .

The NO-reduction (substance A) is approximately a first order reaction ṅA0 = −k′′

1cA0.
The exhaust flow of a 75 kW engine is Ṁ = 350kg/h, the molar mass of the exhaust gases
is M̃ = 32kg/kmol and can be approximated as constant. The exhaust gases are at 480 ◦C
and 0.12 MPa and contain NO with a mole fraction of x̃AL = 10−3. 80 % of this has to be
removed. The mass transfer coefficient β = 0.1 m/s and the rate constant k′′

1 = 0.05 m/s
are given. How large a catalyst surface is required?
The molar flow rate of the exhaust is

Ṅ = Ṁ/M̃ =
350kg/h

3600 s/h · 32kg/kmol
= 3.038 · 10−3 kmol/s .

The material balance around the dotted balance region, Fig. 2.60, yields

Fig. 2.60: For the material
balance of an exhaust catalytic
converter

(Ṅ x̃AL)z = (Ṅ x̃AL)z+dz + ṅAL dA

or, because Ṅ = const
Ṅ dx̃AL = −ṅAL dA .

Here ṅAL = β c (x̃AL − x̃A0), if we presume a low mass flow rate normal to the wall and
we neglect the Stefan correction factor for the mass transfer coefficients. With c = N/V =
p/RmT we get

Ṅ dx̃AL =
−βp

RmT
x̃AL

(
1 − x̃A0

x̃AL

)
dA .

Putting in (2.359) yields, whilst accounting for β = D/L

Ṅ dx̃AL =
−p

RmT
x̃AL

k′′

1

1 + k′′

1 /β
dA

or
1

x̃AL
dx̃AL =

−p

ṄRmT

k′′

1

1 + k′′

1/β
dA .

Integration between the inlet cross section i and the exit cross section e of the catalytic
converter of area A yields

ln
(x̃AL)e
(x̃AL)i

= − p

ṄRmT

k′′

1

1 + k′′

1 /β
A ,

and therefore

A =
Ṅ RmT (1 + k′′

1/β)

p k′′

1

ln
(x̃AL)i
(x̃AL)e

.
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This then becomes

A =
3.038mol/s · 8.31451Nm/molK · 753.15K(1 + 0.05m/s

/
0.1m/s)

0.12 · 106 N/m
2 · 0.05m/s

ln(10−3/2 · 10−4)

A = 7.65m2 .

2.5.6 Steady-state mass diffusion with homogeneous
chemical reaction

We will consider the case of a substance A which diffuses into a porous or paste
type solid or a quiescent fluid B, as shown in Fig. 2.61, where it reacts chemically
with other reaction partners. A good example of this is the biological treatment of
waste water. Here oxygen diffuses out of air or oxygen bubbles into the waste water
that surrounds them, where it is converted along with the organic pollutants, e.g.
hydrocarbons, into carbon dioxide and water by microorganisms. Substance B can
also be a catalyst. Catalysts frequently consist of spherical or cylindrical pellets
with have fine capillaries running through them. The porous internal surface area
is determined by the fine capillaries and is many times greater than the outer
surface area. Chemical conversion can therefore be accelerated both at the outer
and inner surfaces.

Fig. 2.61: Unidirectional mass diffusion
with homogeneous reaction

According to (2.338), for steady-state, geometric one-dimensional diffusion
with chemical reaction we have

d

dx

(
c D

dx̃A

dx

)
+ γ̇A = 0 . (2.366)

We will now assume that substance A and the products created by the chemi-
cal reaction are only present in very small amounts in substance B. So, this is
approximately c = N/V = const. In addition we will set D = const.

If substance B is a porous solid the molecular diffusion coefficient D has to
be replaced by the effective diffusion coefficient Deff . This is smaller than the
molecular diffusion coefficient because the movement of the molecules is impeded
by the pores. It is common practice to define a diffusion resistance factor

µ :=
D

Deff

.
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A porous solid of volume V consists of the volume VS of the solid material and
VG = V − VS the volume of the solid-free spaces. We call εp := VG/V the void
fraction. The resistance factor depends on the voidage of the porous body and on
a diversion or winding factor µp such that the relationships

µ = µp/εp ,

and

Deff =
1

µ
D =

εp

µp

D .

hold.
The following table contains several values for the void fraction and the diver-

sion factor.

Table 2.13: Void fraction εp and diversion factor µp of some dry materials

Material Density � kg/m3 Void fraction εp Diversion factor µp

Wall bricks 1360 0.49 3.3 to 3.4
Clinker bricks 2050 0.19 73.0 to 89.0
Lime sandstone 900 0.63 5.4 to 5.9
Pumice concrete 840 0.62 4.3 to 5.5
Wood fibre 300 0.81 2.0 to 2.6
Molecular sieve 4 Å 1100 0.45 10.3
Molecular sieve 10 Å 1180 0.57 8.0
Silica gel 1090 0.46 3.6
Activated carbon 760 0.56 7.0

Substance A is converted in a first order reaction

γ̇A = −k1 cA , (2.367)

where k1 is the rate constant of the chemical reaction (SI unit s−1). The subscript
index 1 indicates that it concerns a first order reaction. The reaction rate γ̇A is
negative, because substance A is consumed in the reaction. If A was generated, a
positive sign would be present in (2.367). In porous solids the reaction is quicker
the larger the inner and outer surface areas. The rate constant k1 is therefore
split into two factors

k1 = aP k′
1 , (2.368)

in which aP is the specific area (SI units m2/m3). It is the area available for
reaction divided by the volume of the porous solid. The rate constant k′

1 has SI
units of m/s.

With x̃A = cA/c, (2.366) and (2.367) are transformed, under the assumptions
already given into

d2cA

dx2
− k1

D
cA = 0 . (2.369)
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This has to be solved under the boundary conditions shown in Fig. 2.61

cA(x = 0) = cA0 (2.370)

and (d cA

dx

)
x=L

= 0 . (2.371)

D is replaced by Deff for porous solids. Equation (2.369) agrees in terms of its form
with (2.53) for heat conduction in a rod. In this case the temperature profile was
calculated with the boundary conditions of constant temperature at the beginning
of the rod and vanishing heat flow at the end of the rod. In the current problem
these correspond to the boundary conditions (2.370) and (2.371). The solution
of (2.369) to (2.371) therefore corresponds to the relationship (2.59) found earlier
for heat conduction in rods. The solution is

cA

cA0

=
cosh[m(L − x)]

cosh(m L)
(2.372)

with
m =

√
k1/D . (2.373)

The amount of substance transferred is

ṄA0 = A ṅA0 = −A D
(dcA

dx

)
x=0

= A D cA0 m tanh(mL) . (2.374)

The dimensionless quantity

m L =
√

k1L
2/D := Ha (2.375)

is known as the Hatta6 number Ha. The square of Ha is equal to the ratio of the
so-called relaxation time of the reaction

tR = 1/k1

and the relaxation time of diffusion

tD := L2/D ,

which is then
Ha2 = tD/tR .

A large value for the Hatta number means that the chemical reaction is rapid in
comparison with diffusion. Substance A cannot penetrate very far into substance
B by diffusion, but will be converted by chemical reaction in a layer close to the
surface.

6Shironji Hatta (1895–1973) was a professor at the Tohoku Imperial University, now the
Tohoku University, in Tokyo, Japan. He undertook a number of fundamental studies about the
absorption of gases in liquids, in particular absorption with simultaneous chemical reaction.
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We introduce another factor for porous bodies, it is called the pore effectiveness
factor ηP. This is understood to be the ratio of the actual amount of substance
transferred ṄA0 to the amount which would be transferred ṄA, if the concentration
cA0 prevailed throughout the porous body. This basically means, if the effective
diffusion coefficient Deff , which is used in place of the molecular diffusion coefficient
D, was very large Deff → ∞, then Ha → 0. Then according to (2.367) the reaction
rate of substance A

γ̇A = −k1 cA0

disappears and the total amount delivered would be

ṄA = k1 cA0 A L . (2.376)

The pore effectiveness factor would then be

ηP =
ṄA0

ṄA

=
Deff

k1L
m tanh (mL)

or

ηP =
tanh (mL)

mL
(2.377)

with m =
√

k1/Deff =
√

k′
1ap/Deff .

The pore effectiveness factor is valid for pores with constant cross sectional
area. It corresponds to the fin efficiency for a straight, rectangular fin, eq. (2.79).
The pore effectiveness factor for pores of any cross sectional shape, can also be
calculated, as a fairly good approximation using (2.377), as shown by Aris [2.81],
if the length L is formed as a characteristic length

L = V/A (2.378)

with the volume V of the porous body and its outer surface area A. A spherical
pellet of radius R would, for example, have L = (4/3)πR3/ 4πR2 = R/3.

For small values mL < 0.3 in (2.377) we obtain ηp > 0.97, which lies close to 1.
This implies that the composition of the reaction partner A hardly changes over
the length of the pore. The resistance to diffusion is negligible in comparison to

the other resistances. A small value of mL =
√

k1/Deff L indicates a small pore,
a slow reaction or rapid diffusion.

Example 2.12: In order to reduce the CO content in the waste gas from a furnace, the
exhaust gas is passed over the porous CuO particles (pellets) of a catalytic reactor in the
exhaust pipe. The CO (substance A) is oxidised with O2 to CO2 inside and at the surface
of the pellets, according to the reaction

CO +
1

2
O2 = CO2 .

This can be approximately taken to be a first order reaction, so

ṅA = −k′

1 aP cA .
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a) Find the pore effectiveness factor. b) How many kg CuO are required if the mole fraction
of CO has to be reduced to 1/10 of its initial value x̃A = 0.04? The molar flow rate Ṅ of
the exhaust gas can be assumed to be constant.
Given: Molar flow rate of the exhaust gas Ṅ = 3 mol/s, mole fraction of CO in the
exhaust gas x̃A = 0.04, exhaust temperature 480 ◦C, pressure 0.12 MPa, diameter of
the spherical pellets 5 mm, specific area aP = 5 · 106 m2/m3, effective diffusion coefficient
Deff = 5·10−5 m2/s, reaction rate constant k′

1 = 10−3 m/s, density of CuO: �CuO = 8.9·103

kg/m3.

a) We have mL = (k′

1aP/Deff )1/2L with L = R/3. Which gives

mL = (10−3m/s · 5 · 106 m2/m3/5 · 10−5 m2/s)1/2 (2.5 · 10−3 m/3) = 8.33

and therefore
ηp = tanh(mL)/(mL) = 0.12 .

b) The CO flowing outside the pores in the gas space is decomposed by a chemical reaction.
Along an element dz the amount of CO changes by d(Ṅ x̃A0). This amount is converted
by chemical reaction in the pores

dṄA0 = γ̇A dVP = −k′

1 aP cA0
ηp dVP = −k′

1 aP cx̃A0 ηp dVP .

VP is the volume of the pellets. With that we get

d(Ṅx̃A0) = −k′

1 ap c x̃A0 ηp dVP .

From which, with Ṅ = const and c = p/RmT it follows that

dx̃A0

x̃A0
= −k′

1appηp

ṄRmT
dVP .

After integration between mole fraction x̃Ai at the inlet and x̃Ao at the outlet of the reactor
we obtain the volume VP of the pellets

VP =
ṄRmT

k′

1aPp ηp
ln

x̃Ai

x̃Ao
,

VP =
3mol/s · 8.31451Nm/mol K · 753.15K

10−3 m/s · 5 · 106 m2/m3 · 1.2 · 105 N/m2 · 0.12 ln 10 = 6.008 · 10−4 m3 .

Therefore we need

M = �VP = 8.9 · 103 kg/m3 · 6.008 · 10−4 m3 = 5.35kg CuO .

2.5.7 Transient mass diffusion

In section 2.5.3 it was shown that the differential equation for transient mass
diffusion is of the same type as the heat conduction equation, a result of which is
that many mass diffusion problems can be traced back to the corresponding heat
conduction problem. We wish to discuss this in detail for transient diffusion in a
semi-infinite solid and in the simple bodies like plates, cylinders and spheres.
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2.5.7.1 Transient mass diffusion in a semi-infinite solid

We will consider transient diffusion of a substance in a semi-infinite body B. At
time t = 0, substance A is stored in the body at a concentration cAα. The desired
concentration profile cA = cA(x, t) satisfies the following differential equation,
under the assumption cD = const

∂cA

∂t
= D

∂2cA

∂x2
, t ≥ 0, x ≥ 0 (2.379)

and should fulfill the initial condition

cA(t = 0, x) = cAα = const .

In analogy to the heat conduction problem, the following conditions are possible
at the surface of the body:

– a stepwise change in the surface concentration to the value cA0, which
should remain constant for t > 0,

– input of a constant molar flux ṅA0,
– a stepwise change in the concentration in the surroundings to cAU �= cA0,

so that mass transfer takes place with a mass transfer coefficient β.

As we already know, the solutions for the heat conduction problems in section
2.3.3 can be transferred to the mass diffusion problem, due to the similarity of
the differential equations, initial and boundary conditions. The corresponding
quantities to heat conduction for mass diffusion are shown in the following table.

Table 2.14: Corresponding relationships between quantities in heat conduction and diffusion

Heat conduction Diffusion

ϑ cA

a D

t+ = at/L2 t+D = Dt/L2

Bi = αL/λ BiD = βL/D

x/2
√

at x/2
√

Dt

b =
√

λc� bD =
√

D

Using these correspondences allows us to write up the solutions to the diffusion
problem from the solutions already discussed for heat conduction.

In transient diffusion in a semi-infinite solid with stepwise change in the surface
concentration, we find from (2.126)

cA − cAα

cA0 − cAα

= erfc
x

2
√

Dt
(2.380)
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and with (2.131) the transferred molar flux

ṅA(t, x) =

√
D√
πt

(cA0 − cAα) exp
(
− x2

4Dt

)
. (2.381)

The molar flux transferred at the surface x = 0 is

ṅA(t, x = 0) =

√
D√
πt

(cA0 − cAα) . (2.382)

Corresponding solutions are found from (2.135), when a constant molar flux ṅA0

is fed in at the surface. In the same way the solution for mass transfer from the
surface to another fluid is obtained from (2.140).

2.5.7.2 Transient mass diffusion in bodies of simple geometry with
one-dimensional mass flow

The time dependent concentration field cA(x, t) in a body is determined by the
diffusion equation which corresponds to the heat conduction equation (2.157).
With cD = const this equation is as follows

∂cA

∂t
= D

(∂2cA

∂r2
+

n

r

∂cA

∂r

)
(2.383)

with n = 0 for a plate, n = 1 for a cylinder and n = 2 for a sphere, when geometric
one-dimensional flow in the r-direction is assumed. As in heat conduction, r is
the radial coordinate for cylinders and spheres. The cylinder should be very long
in comparison to its diameter. The concentrations cA in the cylinder and sphere
cannot be dependent on the angular coordinate.

With a plate the x-coordinate will, for now, be indicated by r. It goes from
the centre of the plate outwards. With the initial condition

t = 0 : cA(r) = cAα, 0 ≤ r ≤ R

and the boundary conditions

r = 0 : ∂cA/∂r = 0

r = R : −D∂cA/∂r = β(cA − cAS)

we obtain the results by applying the basics of the solution to the corresponding
heat conduction problem. We put in

c+
A =

cA − cAS

cAα − cAS

.

For the flat plate, from (2.171) and (2.172), as well as with BiD and t+D according
to Tab. 2.14 and r+ = r/R, it follows that:

c+
A(r+, t+D) =

∞∑
i=1

2BiD
Bi2D + BiD + µ2

i

1

cos µi

cos(µir
+) exp(−µ2

i t
+
D) (2.384)
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with the eigenvalues µi from

tan µ = BiD/µ . (2.385)

The average concentration c+
Am follows from (2.174)

c+
Am(t+D) = 2Bi2D

∞∑
i=1

exp(−µ2
iDt+D)

µ2
i (Bi2D + BiD + µ2

i )
. (2.386)

Analogous results are yielded with the equations from section 2.3.4.4, page 168,
for the cylinder and the sphere.

Example 2.13: What is the equation for the average concentration c+
Am(t+D) of a sphere,

if the concentration jumps from its initial value cA(r, t = 0) = cAα to a value of cA(r =
R, t) = cA0?
The jump in the surface concentration at r = R is only possible if the resistance to mass
transfer 1/βA between the surface area A and the surroundings is small enough to be
neglected. This means that β → ∞, giving BiD = βR/DAB → ∞ and cA0 = cAS, and also
c+
Am = (cAm − cA0)

/
(cAα − cA0). For a sphere we obtain, from (2.183) and (2.185)

c+
A(r+, t+D) =

∞∑
i=1

2BiD
µ2

i + (BiD − 1)2

µ2
i + BiD(BiD − 1)

sin µi

µi

sin(µir
+)

µir+
exp(−µ2

i t
+
D) (2.387)

with the eigenvalues µi from
µ cot µ = 1 − BiD . (2.388)

The average concentration is, in accordance with (2.184),

c+
Am(t+D) = 6Bi2D

∞∑
i=1

exp(−µ2
i t

+
D)

µ2
i [µ

2
i + BiD(BiD − 1)]

. (2.389)

For BiD → ∞ we obtain, from (2.388), the eigenvalues µ1 = π, µ2 = 2π, µ3 = 3π . . . and
as the average concentration from (2.389)

c+
Am(t+D) = 6

∞∑
i=1

exp(−µ2
i t

+
D)

µ2
i

.

With the eigenvalues µi = iπ, i = 1, 2, 3 . . . we can also write

c+
Am(t+D) =

6

π2

∞∑
i=1

exp(−i2π2t+D)

i2
. (2.390)
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2.6 Exercises

2.1: Derive the differential equation for the temperature field ϑ = ϑ(r, t), that appears in
a cylinder in transient, geometric one-dimensional heat conduction in the radial direction.
Start with the energy balance for a hollow cylinder of internal radius r and thickness ∆r
and execute this to the limit ∆r → 0. The material properties λ and c depend on ϑ;
internal heat sources are not present.

2.2: One surface (x = 0) of a cooled plate, which has thickness δ, is insulated, whilst at the
other surface heat is transferred to a fluid at a temperature of ϑF. Sketch the temperature
profile ϑ = ϑ(x, t∗) in the plate for a fixed time t∗. Which conditions must the curve
satisfy close to the two surfaces x = 0 and x = δ, if the Biot number is Bi = αδ/λ = 1.5?
In addition sketch the temperature profile of the fluid temperature in the boundary layer
on the surface of the plate, taking account of the condition Nu = αδ/λF = 10; λF is the
thermal conductivity of the fluid.

2.3: The temperature profile in a steel plate of thickness δ = 60mm and constant thermal
diffusivity a = 12.6 · 10−6 m2/s, at a fixed time t0 is given by

ϑ+ :=
ϑ − ϑ1

ϑ2 − ϑ1
= x+ − B(t0) cos

(
π(x+ − 1

2
)

)
, 0 ≤ x+ ≤ 1 ,

with B(t0) = 0.850. Here x+ = x/δ; ϑ1 = 100 ◦C and ϑ2 = 250 ◦C are the constant
surface temperatures of the plate at x+ = 0 and x+ = 1.

a) Draw the temperature distribution ϑ = ϑ(x, t0). Is the plate heated or cooled?

b) At which position x+
T does the temperature change the fastest with time? How big is

∂ϑ/∂t there?

c) Does x+
T agree with the position x+

min at which the temperature profile at time t0 has
its minimum?

d) Determine the time function B(t) whilst accounting for the initial condition B(t0) =
0.850. Which steady temperature pattern is yielded for t → ∞?

2.4: Heat is released due to a reaction in a very long cylinder of radius R. The thermal
power density increases with distance r from the cylinder axis:

Ẇ (r) = ẆR (r/R)m , m ≥ 0 .

a) How big is the heat flux q̇(R) released from the cylinder? How large does ẆR have
to be so that q̇(R) agrees with the heat flux released from a cylinder of the same
dimensions with a spatially constant thermal power density Ẇ0?

b) For a cylinder with constant λ calculate the overtemperature Θ(r) = ϑ(r)−ϑ(R) using
the formulation

Θ(r) = A
[
1 − (r/R)k

]
,

which satisfies the boundary conditions

r = 0 : dΘ/dr = 0 and r = R : Θ = 0 .
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c) Compare the maximum overtemperature Θmax with the maximum overtemperature
Θ0

max of a cylinder with constant thermal power density Ẇ0. How big is the ratio
Θmax/Θ

0
max, if both cylinders release the same amount of heat? Calculate Θmax/Θ

0
max

for m = 0, 1, 2 and 3.

2.5: A steel bolt (d = 20mm, λ = 52.0W/K m) protrudes from an insulation layer, cf.
Fig. 2.62. Its left hand end is kept at the constant temperature ϑ∗ = 75.0 ◦C. The bolt is
completely insulated over the length Lis = 100mm. The piece sticking out, L = 200mm,
releases heat to the surroundings, which are at ϑS = 15.0 ◦C, where the heat transfer
coefficient is α = 8.85W/m2K at the outside of the bolt and the free head surface.

Fig. 2.62: Steel bolt
sticking out of an in-
sulation layer

a) Find the temperatures ϑ0 and ϑL.

b) How large is the heat flow released by the bolt to its surroundings? Determine the heat
flow Q̇L out of the free head end.

c) Compare the results obtained from the temperature profile according to (2.55), with
the values yielded for a replacement bolt of length LC with an adiabatic head end,
according to (2.60).

2.6: The efficiency ηf of a straight fin with a rectangular cross section is determined by
measuring three temperatures: the temperature ϑ0 at the fin base, the temperature ϑh at
the top of the fin and the temperature ϑS of the fluid which surrounds the fin. Calculate
ηf for ϑ0 = 75.0 ◦C, ϑh = 40.5 ◦C and ϑS = 15.0 ◦C.

2.7: A brass tube with outer diameter d = 25mm is exposed to an air stream flowing across
it perpendicular to its axis, the heat transfer coefficient is α = 90W/m2K. The tube has
annular fins made of brass (λf = 126W/K m) attached to it, which have a thickness of
δf = 1.5mm and are h = 20mm high. The surface temperature of the tube and the air
temperature can be taken to be constant.

a) How many fins per metre must be fixed to the tube for the heat flow released to the
air to be six times larger? αf = α can be used.

b) The height of the fins is increased to h = 30mm. By what factor does the heat flow
increase in comparison to the finned tube in a)?

2.8: A tube of diameter d = 0.30m and surface temperature ϑR = 60 ◦C is placed in
the ground (λ = 1.20W/K m) such that its axis lies 0.80m below the surface. The air
temperature is ϑA = 10 ◦C; the heat transfer coefficient between the air and the earth’s
surface is α = 8.5W/m2K. How large is the heat loss Q̇/L per length L of the tube?
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2.9: An asphalt road coating (λ = 0.65W/K m, � = 2120kg/m3, c = 920J/kg K) has
reached the temperature ϑ0 = 55 ◦C, not only at its surface but in a layer several centime-
tres below the surface, due to a long period of sunshine. A sudden rainstorm reduces the
surface temperature over 10 min to ϑS = 22 ◦C. Find

a) the heat released per unit area by the asphalt during the rainstorm, and

b) the temperature at a depth of 3.0 cm at the end of the rain shower.

2.10: A very thick concrete wall (λ = 0.80W/K m, � = 1950kg/m3, c = 880J/kg K)
initially has as temperature throughout the wall of ϑ0 = 20 ◦C. It is heated at its surface
with a constant heat flux q̇0 = 650W/m2 (sunshine). What temperature has the surface
reached after 2.0h? How high is the temperature at this time at a depth of 10 cm?

2.11: Solve exercise 2.10 with the additional condition that the concrete wall releases
heat to air at a temperature ϑS = ϑ0 = 20 ◦C, whereby the heat transfer coefficient
α = 15.0W/m

2
K is decisive.

2.12: The penetration of the daily and seasonal temperature fluctuations in the ground
(a = 0.35 · 10−6 m2/s) is to be investigated. For this it is assumed that the surface
temperature follows an harmonic oscillation

ϑ0(t) = 10.0 ◦C + ∆ϑ cos(2π t/t0)

with periodic time t0.

a) Show that the amplitude of the daily temperature fluctuations (∆ϑ = 10 ◦C, t0 = 24h)
is already small enough to be neglected at a depth of 1 m.

b) Find, for the seasonal temperature fluctuation (∆ϑ = 25 ◦C, t0 = 365d), the temper-
ature profile at a depth of 2 m. What are the highest and lowest temperatures at this
depth, and on which day of the year do they appear, in each case using the assumption
that the maximum surface temperature is achieved on 1st August.

2.13: A flat wall of firestone has thickness δ = 0.325m and material properties λ =
1.15W/K m, a = 0.613 · 10−6 m2/s. One of its surfaces is insulated, whilst heat is trans-
ferred to the surroundings (ϑS = 20.0 ◦C) at the other. The wall has an initial temperature
ϑ0 = 180.0 ◦C. At time t1 the temperature of the non-insulated surface is ϑW1 = 50.0 ◦C;
at time t2 = t1 + 8.50h the surface temperature has fallen to ϑW2 = 41.9 ◦C.

a) What value has the heat transfer coefficient α decisive for the cooling?

b) Find the temperatures of the insulated surface at times t1 and t2.

2.14: A sphere made of plastic (λ = 0.35W/K m, c = 2300J/kg K, � = 950kg/m
3
) of

diameter d = 20mm, which was heated to ϑ0 = 110.0 ◦C, is cooled in air at ϑS = 15.0 ◦C;
the heat transfer coefficient is α = 8.75W/m

2
K .

a) What temperature has the sphere reached after 20 min? Use the approximation equa-
tion for small Biot numbers, cf. section 2.3.5.2.

b) Compare the result from a) with the exact solution by calculating the mean temperature
ϑm and the temperatures at the surface and the centre of the sphere.
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2.15: A very long steel tape with rectangular cross section (h = 15mm, b = 50mm) and
thermal diffusivity a = 3.8 · 10−6 m2/s is pulled through an oil bath of length L = 4.0m.
The oil bath is at the constant temperature ϑF = 50 ◦C; the steel tape has a temperature
of ϑ0 = 375 ◦C as it enters the oil bath. The heat transfer coefficient between the steel
tape and the oil is so large that the surface of the steel tape assumes the temperature ϑF.
With what speed w does the steel tape have to pulled through the oil for it to leave the
oil bath with a temperature at its central axis of ϑk = 65 ◦C? The axial heat conduction
may be neglected.

2.16: A cast-iron pipe (λ = 51.0W/K m) with internal diameter di = 40mm and wall
thickness δ = 7.5mm is filled with water which is at a temperature of ϑE = 0.0 ◦C. The
external air is at ϑ0 = −8.0 ◦C; the heat transfer coefficient between the pipe and air is
α = 25W/m2K. How long does it take for an ice layer of thickness s = 15mm to form in
the pipe, such that the increase in the volume of the ice compared to the water can lead to
a burst pipe? How long will it take before the contents of the pipe are completely frozen?
Properties of ice at 0 ◦C: � = 917kg/m3, λ = 2.25W/K m, hE = 333kJ/kg.

2.17: A very thin platinum wire of length L is mounted into the centre of a very large,
normally cylindrical sample of the material whose thermal conductivity is to be measured.
Good contact between the wire and the material surrounding it can be assumed. Until
time t = 0 this arrangement is at a constant temperature ϑ0. The wire is then heated
electrically with a constant power Q̇0. The temperatures ϑ1 and ϑ2 of the platinum wire
are determined, (for example by the change in its resistance), at times t1 and t2. According
to [2.82], p. 442, the thermal conductivity of the material surrounding the wire is obtained
from

λ =
Q̇0/L

4π(ϑ2 − ϑ1)
ln

t2
t1

.

Derive this relationship from eq. (2.235) from section 2.3.7.2.

2.18: A very thick wall with constant thermal diffusivity a and a constant initial temper-
ature ϑ0 is heated at its surface. The temperature rises there, between t = 0 and t = t∗

linearly with time t, to the value ϑ1 > ϑ0, which remains constant for t > t∗. The temper-
ature profile in the wall at times t = t∗ and t = 2 t∗ is to be calculated numerically. The
simple explicit difference method is to be used, with ∆t = t∗/6 and M = 1/3, and the
normalised temperature ϑ+ = (ϑ − ϑ0)/(ϑ1 − ϑ0) is to be used. Compare the numerically
calculated values with the exact solution

ϑ+(x, t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

t∗
F

(
x

2
√

at

)
for 0 ≤ t ≤ t∗ ,

t

t∗
F

(
x

2
√

at

)
− t − t∗

t∗
F

(
x

2
√

a(t − t∗)

)
for t ≥ t∗ ,

where

F (ξ) = (1 + 2 ξ2) erfc ξ − 2√
π

ξ exp(−ξ2) .

2.19: A long hollow plastic cylinder (λ = 0.23W/K m, c = 1045J/kg K, � = 2200kg/m3)
with diameters di = 60mm and da = 100mm initially has a temperature of ϑ0 = 20 ◦C,
which is the same as that of the surroundings (air). At time t = 0 the hollow cylinder is
filled with a hot liquid and is heated such that the inner wall assumes a temperature of
ϑi = 80 ◦C for t ≥ 0. At the outer wall, heat is transferred to the air with a heat transfer
coefficient of α = 12.0W/m

2
K.
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a) Using the explicit difference method with ∆r = 4.0mm, show that the step size ∆t =
60 s is permissible and go on to calculate the temperature profile at time t∗ = 15min.

b) How large is the difference between the steady temperature profile and the temperatures
calculated for time t∗?

2.20: The efficiency of a square sheet fin which sits on a tube of radius r0 is to be
determined approximately using a difference method. The fin has side length s = 4 r0,
a constant thickness δf and thermal conductivity λf . The heat transfer coefficient αf is
constant over the surface area of the fin. The temperature at the fin base is ϑ0, the
ambient temperature is ϑS. The difference method for the calculation of the dimensionless
temperature field ϑ+ = (ϑ − ϑS)/(ϑ0 − ϑS) will be based on the square grid with ∆x =
0.40 r0, illustrated in Fig. 2.63. Due to symmetry it is sufficient to determine the 12
temperatures ϑ+

1 to ϑ+
12.

Fig. 2.63: Square sheet fin on a circular pipe, with square grid of mesh size
∆x = 0.40 r0. The dotted lines bound the areas associated with the tempera-
tures ϑ+

i .

a) Set up the linear equations for the temperatures ϑ+
1 to ϑ+

12, using as an abbreviation
the quantity m =

√
2αf/λfδf according to (2.71). Note that the grid points 5, 9 and

12 are only associated with the area ∆x2/2. In addition points 10 and 11 have another
part of the area ∆x2 associated with heat transfer that has to be calculated.

b) Find, for m∆x = 0.40, ϑ+
1 to ϑ+

12 and determine an approximate value for ηf . Compare
this value with the result yielded from the approximation equations (2.82) and (2.83).
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2.21: A 75 mm thick wooden plate contains 2.8 % by mass water, relative to dry wood,
which corresponds to a mass fraction of ξAα

= 0.218. At equilibrium with the environment
the mass fraction is reduced to ξAS

= 0.065.
How long does it take for the mass fraction of water in the middle of the plate to fall to
ξA(x = 0) = 0.08? The diffusion coefficient of water in wood is D = 1.2 · 10−9 m2/s.

2.22: Instead of the 75 mm thick wooden plate in the previous exercise, a very long, square
wooden trunk, with a side length of 75 mm is to be dried. The mass fraction of water
and the diffusion coefficient are the same as in the previous question: ξAα

= 0.218, ξAS
=

0.065,D = 1.2 · 10−9 m2/s. How long will it take for the mass fraction of water in the core
of the trunk to fall to ξA(x = 0, y = 0) = 0.08?

2.23: In a spray absorber, a waste gas containing ammonia will be purified with water.
The waste gas and water droplets flow countercurrent to each other as shown in Fig. 2.64.
The saturated concentration of ammonia (substance A) for a temperature of 10 ◦C of the
spray water and a pressure of 0.11 MPa appears at the surface of the falling water droplets.
The mass fraction of ammonia at saturation is ξA0

= 0.4. The following mass flow rates
and mass fractions are given: water feed ṀW = 2.3 kg/s, waste gas feed ṀGi = 4.4 kg/s,
mass fraction of ammonia in the waste gas feed ξG

Ai = 0.12; this should be reduced to a
value of ξG

Ao = 0.006 in the waste gas exit stream; the mass fraction of ammonia in the
water outlet is allowed to reach ξL

Ao = 0.24. The fraction of water in the waste gas is
negligible.

Fig. 2.64: Treating a gas in a
spray absorber

a) What are the mass flow rates ṀGo of the waste gas, ṀLo of the waste water and what
mass flow rate of water ṀW has to be fed into the absorber?

b) After what period of time has the average mass fraction of NH3 in the water outlet
stream increased to ξL

Ao = 0.24? The diameter of the water droplets is 3 mm and the
diffusion coefficient of NH3 in H2O is D = 1.5 · 10−9 m2/s.

c) How high is the spray absorber if the water droplets are to fall through the rising waste
gas with a velocity of w = 0.1 m/s?

2.24: Dry polystyrene balls of diameter 60 mm are sprayed with water for 1 h. How
much water does each ball take up if the diffusion coefficient for water (substance A) in
polystyrene (substance B) is D = 1.8 · 10−8 m2/s?



3 Convective heat and mass transfer.
Single phase flow

In the first chapter the heat transfer coefficient was defined by

q̇ = α ∆ϑ

and the mass transfer coefficient for a substance A by

ṅA = β ∆cA

This mass transfer coefficient was valid for vanishing convective flows and had
to be corrected for finite convective flows. These equations describe convective
heat and mass transfer, but they are nothing more than definition equations for
the heat transfer coefficient α and the mass transfer coefficient β, and should in
no way be seen as laws for heat and mass transfer. Rather the laws of nature
for the course of processes of heat and mass transfer are hidden in the heat and
mass transfer coefficients. Generally both are not constant, but locally variable
and in transient processes they also change with time. In addition they depend
on the flow, the properties of the fluid and the geometry of the heat or mass
transfer surfaces. Therefore, the definition equations for heat and mass transfer
coefficients given above are not suitable for describing the mechanisms of heat
and mass transfer. This is only possible with an in depth study of flow and will
be the subject of the following exposition.

Basically we differentiate between forced and free flow. A forced flow is pro-
duced by external forces, for example when a flow is caused by a pump or blower.
A free flow, on the other hand, is due to changes in density which are caused by
temperature, pressure and concentration fields. We will discuss heat and mass
transfer in forced flow first, moving onto free flow at the end of the section.

3.1 Preliminary remarks: Longitudinal, friction-

less flow over a flat plate

In order to discover how heat and mass transfer coefficients change according to
the flow we will first consider the longitudinal flow over a flat plate. We assume



254 3 Convective heat and mass transfer. Single phase flow

that the flow over the plate is at a constant average velocity wm. Synonymous
with that is the assumption that the viscosity of the fluid is vanishingly small.
Real flows adhere to the wall such that the flow velocity increases asymptotically
from zero at the wall to the velocity at the centre of the flow. A fluid with neg-
ligible viscosity will not adhere to the wall. These types of fluids do not exist in
practice, but their introduction enables us to calculate crude local temperature
and concentration fields and from them the local heat and mass transfer coeffi-
cients using the methods we already know. Through this the understanding of
the general considerations with the decisive partial differential equations, which
follow later, will be made easier.

A fluid at temperature ϑα flows along a flat plate with a constant average
velocity wm, Fig. 3.1. The surface temperature of the plate is constant and equal
to ϑ0. If the plate is hotter than the fluid ϑ0 > ϑα a temperature profile develops,
as shown in the left hand diagram in Fig. 3.1a. If however the plate is colder
than the fluid, ϑ0 < ϑα, the temperature profile shown on the right in Fig. 3.1a, is
formed. The temperature changes are limited to a thin layer close to the wall which
increases along the flow, because the temperature variation always propagates into
the fluid. The layer close to the wall of thickness δT (x), in which this temperature
variation exists, is known as the thermal boundary layer, Fig. 3.1b. It stretches
asymptotically into space, so a definition of its thickness has to be ascertained.
For example, the boundary could be at the point where the temperature only very
slightly deviates, by say 1%, from the temperature of the core fluid.

In the thermal boundary the heat fed into a fluid element by conduction is
stored as internal energy and leaves with the fluid element. This is ϑ = ϑ(x, y).
Outside the thermal boundary layer a constant temperature ϑα prevails in the
outer flow. An observer moving with a fluid element, at a distance y from the
wall finds himself, after time t at the position x = wmt. For him the temperature
ϑ(x, y) = ϑ(wmt, y) is only a function of time and the distance from the wall y, as
the velocity wm should be constant. The temperature ϑ(t, y) of the observer can
therefore be described by Fourier’s equation (2.14) for transient heat conduction,

∂ϑ

∂t
= a

∂2ϑ

∂y2
, (3.1)

if we assume the thermal conductivity λ to be independent of temperature. At po-
sition x = 0 or at time t = 0 the initial temperature ϑα prevails. The temperature
at the wall ϑ0 is given. The boundary conditions are

ϑ(t = 0, y) = ϑα (3.2)

ϑ(t, y = 0) = ϑ0 . (3.3)

Together with (3.1) these boundary conditions also describe the temperature field
in a semi-infinite body with the initial temperature ϑα, if the surface temperature
suddenly assumes the constant value ϑ0 �= ϑα. This problem has already been
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Fig. 3.1: a Temperature profile and b Thermal boundary layer in flow along a flat plate

discussed in section 2.3.3.1. The solution is, cf. (2.124),

ϑ − ϑα = (ϑ0 − ϑα) erfc
y

2
√

at
. (3.4)

The local heat transfer coefficient α is obtained from the energy balance at the
wall

q̇ = α(ϑ0 − ϑα) = −λ

(
∂ϑ

∂y

)
y=0

. (3.5)

The gradient present at the wall is yielded by differentiation of (3.4) to be(
∂ϑ

∂y

)
y=0

= −(ϑ0 − ϑα)
1√
πat

.

Which then gives the heat transfer coefficient as

α =
λ√
πat

or with t = x/wm

α =
1√
π

λ

√
wm

ax
. (3.6)

The mean heat transfer coefficient αm is the integral mean value over the plate
length L

αm =
1

L

L∫
x=0

α dx = 2
1√
π

λ

√
wm

aL
= 2α(x = L) . (3.7)

It is twice as big as the local heat transfer coefficient at the position L. As (3.6)
indicates, the local heat transfer coefficient falls along the length by α ∼ x−1/2.
At the start of the plate x → 0 the heat transfer coefficient is extremely large,
α → ∞, and accordingly the transferred heat flux will also be very big, q̇ → ∞. As
the length x → ∞, the heat transfer coefficient becomes negligibly small α → 0.

An approximation of the thickness δT of the thermal boundary layer is obtained
by linearising the temperature increase(

∂ϑ

∂y

)
y=0

≈ ϑα − ϑ0

δT

.
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Then from (3.5)

α ≈ λ

δT

.

The heat transfer coefficient is inversely proportional to the thickness of the ther-
mal boundary layer. The resistance to heat transfer

1

α
≈ δT

λ

is therefore proportional to the thermal boundary layer thickness. It is very small
at the start of the plate (δT → 0, α → ∞) and increases beyond all measure if the
plate were infinitely long (δT → ∞, α → 0). Using (3.6) we find that the thermal
boundary layer

δT ≈ λ

α
=

√
π

√
ax

wm

(3.8)

increases with the square root of the length x.
The investigation of the problem in terms of mass transfer follows along the

same lines. We will consider a flat plate coated with a substance A, for example
naphthalene, that diffuses into a fluid, for example air, which is flowing along the
plate. So that our precondition for the flow velocity wm of the fluid along the
plate is not altered, we have to assume that the amount of material transferred by
diffusion is negligible when compared to the amount of material flowing over the
plate. The convection normal to the wall does not play a role. The concentration
cA0 of substance A on the surface of the plate is constant, and the concentration
of the fluid arriving at the surface is cAα < cA0. In the case of an ideal gas we get
cA = NA/V = pA/RmT , where cA0 is formed with the saturation pressure pA(ϑ0)
at the plate surface, and cAα is formed with the partial pressure of substance
A in the fluid. A concentration profile develops. In exactly the same way as
the temperature variation from before, the concentration changes are limited to
within a thin layer of thickness δc(x) close to the wall, that grows in the direction
of flow. This layer is called the concentration boundary layer. Once again for an
observer moving in a volume element, it is a function of time and position, which
is described by (2.343), known to us for transient diffusion, where we presume
that the diffusion coefficient is independent of concentration

∂cA

∂t
= D

∂2cA

∂y2
. (3.9)

The boundary conditions are

cA(t = 0, y) = cAα (3.10)

cA(t, y = 0) = cA0 . (3.11)

The analogous problem for heat conduction was given by (3.1) to (3.3). Corre-
spondingly we obtain the solution related to (3.4)

cA − cAα = (cA0 − cAα) erfc
y

2
√

Dt
. (3.12)
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As cA = x̃Ac, the concentration cA may be replaced here by the mole fraction x̃A.
The local heat transfer coefficient is obtained from a material balance at the wall

ṅA0 = β(cA0 − cAα) = −cD

(
∂x̃A

∂y

)
y=0

. (3.13)

The gradient at the wall is found by differentiating (3.12) to be(
∂cA

∂y

)
y=0

= −(cA0 − cAα)
1√
πDt

.

Which means the mass transfer coefficient is

β =
D√
πDt

or with t = x/wm

β =
1√
π

√
Dwm

x
. (3.14)

The mean mass transfer coefficient βm over the plate length L

βm =
1

L

L∫
x=0

β dx = 2β(x = L)

is twice as big as the local value at point L, just like for the mean heat transfer
coefficient. An approximation of the thickness δc of the concentration boundary
layer follows from (3.13) by linearising the concentration profile,

c
∂x̃A

∂y
≈ c

x̃Aα − x̃A0

δc

=
cAα − cA0

δc

,

and leads to the expression corresponding to (3.8)

δc ≈
D

β
=

√
π

√
Dx

wm

, (3.15)

according to which the thickness of the concentration boundary layer increases
with the square root of the length x.

It follows from (3.8) and (3.15) that the ratio between the thicknesses of the
thermal and concentration boundary layers is given approximately by the Lewis
number Le = a/D, which has already been introduced, see Table 1.5

δT

δc

≈
√

Le .

The heat and mass transfer coefficients are also linked by the Lewis number due
to (3.6) and (3.14)

α

� cp β
=

√
a

D
=

√
Le .

As the Lewis number is of order one for ideal gases, the relationship (1.199):
β = α/� cp, discussed earlier, holds.
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3.2 The balance equations

Real flows are not frictionless. As a result of friction, a flow field is formed with
local and time related changes in the velocity. The temperature and concentration
fields will not only be determined by conduction and diffusion but also by the
flow itself. The form and profiles of flow, temperature and concentration fields
are found by solving the mass, momentum and energy balances, which are the
subject of the next section.

3.2.1 Reynolds’ transport theorem

The derivation of the balance equations is simplified by using Reynolds’ transport
theorem. In order to derive it, we will observe a particular, infinitesimally small
fluid mass dM and follow its movements in a flow field. The fluid mass should
always consist of the same parts; is occupies a certain volume and has a certain
surface area. As the form of the fluid volume generally changes during the course
of its motion, its volume and the surface area can also change with time.

The mass M of the bounded fluid volume is found from the sum of all the
mass elements dM

M =
∫

(M)

dM ,

which, with the density

� = lim
∆V →0

∆M

∆V
=

dM

dV
,

as a steady function of time and the position coordinate in a continuum, can also
be written as

M =
∫

V (t)

� dV .

Correspondingly each of the other quantities of state Z, such as internal en-
ergy, enthalpy, and entropy among others, can be formed by integration of the
associated specific state quantity. For the specific quantity of state z it holds that

z = lim
∆M→0

∆Z

∆M
=

dZ

dM
,

which results in

Z =
∫
M

z dM =
∫

V (t)

z� dV .

The specific quantity of state z can be a scalar, a vector or also a tensor of any
rank. Just like the density, it is time and position dependent, whilst the extensive
quantity of state Z is only time dependent.
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Fig. 3.2: Deformation of a closed system
of volume V (t) in a flow

The time derivative of Z will now be formed

dZ

dt
=

d

dt

∫
V (t)

z� dV .

As an abbreviation for the quantity of state per volume we will write z� = ZV

from now on. This depends on both time and position. Then by definition it is

dZ

dt
= lim

∆t→0

Z(t + ∆t) − Z(t)

∆t

= lim
∆t→0

1

∆t

⎡⎢⎣ ∫
V (t+∆t)

ZV (t + ∆t) dV −
∫

V (t)

ZV (t) dV

⎤⎥⎦ ,

in which the position dependence of ZV has not been written to prevent the
expression becoming too confusing. The derivative can also be written as

dZ

dt
= lim

∆t→0

1

∆t

⎡⎢⎣ ∫
V (t+∆t)

(ZV (t + ∆t) − ZV (t)) dV +
∫

V (t+∆t)

ZV (t) dV −
∫

V (t)

ZV (t) dV

⎤⎥⎦
or

dZ

dt
=

∫
V (t)

lim
∆t→0

ZV (t + ∆t) − ZV (t)

∆t
dV + lim

∆t→0

1

∆t

∫
∆V (t)

ZV (t) dV . (3.16)

The volume increase with time ∆t is indicated here by ∆V (t) = V (t+∆t)−V (t).
According to Fig. 3.2 the volume element is given by dV = wi dAi∆t.1 Which
transforms the second integral into a surface integral,

1

∆t

∫
A(t)

ZV (t)wi dAi∆t =
∫

A(t)

ZV (t)wi dAi ,

and the formation of limits is superfluous, as the time interval ∆t is no longer
present. The integrand of the first integral goes to ∂ZV /∂t according to the limits.

1In this and the following sections 3.3 and 3.4 as well as 3.6 and 3.9 we will use the tensor
notation, because it allows the balance equations to be written very clearly. An overview of
tensor notations can be found in Appendix A1.
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Therefore, the Reynolds transport theorem is obtained from (3.16) for volumina,
in which we put once again ZV = z�

dZ

dt
=

∫
V (t)

∂(z�)

∂t
dV +

∫
A(t)

z�wi dAi . (3.17)

The first term on the right hand side of this equation shows how much the observed
quantity of state Z has increased by in the volume V , at time t. The second term
indicates which part of the state quantity flows out with the material. The surface
element dAi is, as shown in Fig. 3.2, by definition in the outward direction so that
positive wi dAi indicates a flow out of the volume. Clearly, according to (3.17),
the change in the extensive quantity of state Z of a substance amount M with
a volume V (t) that changes with time, is equal to the increase in the extensive
quantity of state inside the volume V at time t and the fraction of the quantity
of state that flows out of the volume with the material at the same time.

With the help of Gauss’ theorem the surface integral can be converted into a
volume integral, giving

dZ

dt
=

∫
V (t)

∂(z�)

∂t
dV +

∫
V (t)

∂(z�wi)

∂xi

dV . (3.18)

3.2.2 The mass balance

3.2.2.1 Pure substances

We will now apply (3.18) to the mass as an extensive quantity of state, i.e. Z = M
and z = M/M = 1. Equation (3.18) then becomes

dM

dt
=

∫
V (t)

∂�

∂t
dV +

∫
V (t)

∂�wi

∂xi

dV . (3.19)

As by definition the mass dM of the infinitesimally small subsystem being ob-
served is constant, the mass of the whole system must also be constant, within
the volume V (t) which changes with time. We are therefore considering a closed
system, with dM/dt = 0. Due to the precondition of constant mass of the in-
finitesimally small subsystem, (3.19) also holds for V (t) → 0. Therefore the sum
of the two integrands must disappear. Which means we obtain

∂�

∂t
+

∂(�wi)

∂xi

= 0 . (3.20)

By differentiation
∂�

∂t
+ wi

∂�

∂xi

+ �
∂wi

∂xi

= 0
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the relationship equivalent to equation (3.20) is found to be

d�

dt
+ �

∂wi

∂xi

= 0 , (3.21)

because we have
d�

dt
=

∂�

∂t
+ wi

∂�

∂xi

.

The equations (3.20) and (3.21) say that the mass is conserved in an infinitesimally
small volume element, and they are called continuity equations.

In an incompressible fluid the density remains constant, � = const. The con-
tinuity equation is simplified to

∂wi

∂xi

= 0 .

Example 3.1: Show, with help from (3.18) and (3.20), that the following equation is
valid:

dZ

dt
=

d

dt

∫
V (t)

z�dV =

∫
V (t)

�
dz

dt
dV .

Differentiation of the integrands on the right hand side also allows (3.18) to be written

dZ

dt
=

d

dt

∫
V (t)

z�dV =

∫
V (t)

(
z

∂�

∂t
+ �

∂z

∂t

)
dV +

∫
V (t)

(
z

∂(�wi)

∂xi
+ �wi

∂z

∂xi

)
dV

=

∫
V (t)

z

(
∂�

∂t
+

∂(�wi)

∂xi

)
dV +

∫
V (t)

�

(
∂z

∂t
+ wi

∂z

∂xi

)
dV .

The use of the continuity equation (3.20) makes the first integral on the right hand side
disappear. The integrand in the brackets of the second integral is equal to the total
differential

dz

dt
=

∂z

∂t
+ wi

∂z

∂xi
.

Whereby the relationship

dZ

dt
=

d

dt

∫
V (t)

z�dV =

∫
V (t)

�
dz

dt
dV

is proved.

3.2.2.2 Multicomponent mixtures

The continuity equation for any component A of a mixture consisting of N com-
ponents will now be set up. We will only consider substance A. At time t it will
enter the volume V (t) and have a surface area A(t). The discharge of substance
A enlarges the volume represented in Fig. 3.2 by dV = wAi dAi∆t, where wAi is
the flow velocity of substance A. Transferring (3.16) to (3.17) and (3.18) means
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the gravitational velocity wi is replaced by the velocity wAi of substance A. Fur-
thermore, for the extensive quantity of state Z in (3.17) we put the mass MA,
z = MA/M = ξA and z� = MA/V = �A and with that we obtain

dMA

dt
=

∫
V (t)

∂�A

∂t
dV +

∫
A(t)

�AwAi dAi . (3.22)

According to this equation the increase in substance A is made up of two parts:
from the increase inside the system and from the amount of substance A which
flows out of the system.

Γ̇A is the production density (SI-units kg/m3s) of component A in a volume
element, so

dMA

dt
=

∫
V (t)

Γ̇A dV .

The production density Γ̇A changes, in general, with time and position. It is
determined by the course of the chemical reaction in the system, and it is a task
of reaction kinetics to investigate it. Converting the surface integral in (3.22) to
a volume integral, using Gauss’ theorem, gives∫

V (t)

Γ̇A dV =
∫

V (t)

∂�A

∂t
dV +

∫
V (t)

∂�AwAi

∂xi

dV .

As this relationship also holds for V (t) → 0, the integrands have to agree. There-
fore we obtain

Γ̇A =
∂�A

∂t
+

∂(�AwAi)

∂xi

. (3.23)

This type of mass balance is known as a component continuity equation. It can
be set up for each component. This means that there are as many of these
equations as there are components. The summation over all the components
leads to a continuity equation for the total mass, due to

∑
Γ̇K = 0,

∑
�K = �

and
∑

�KwKi = �wi. In place of the N component continuity equations for a
system of N components, N − 1 component continuity equations along with the
continuity equation for the total mass can be used.

The mass flux �AwAi in (3.23) can be found from the diffusional flux j∗Ai

�AwAi = j∗Ai + �Awi .

This transforms (3.23) into

Γ̇A =
∂�A

∂t
+

∂

∂xi

(j∗Ai + �Awi) (3.24)

or
∂�A

∂t
+

∂

∂xi

(�Awi) = −∂j∗Ai

∂xi

+ Γ̇A .
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Here the partial density �A can be expressed in terms of the mass fraction ξA and
the density �A = ξA�, so that the left hand side of the equation is rearranged into

∂(ξA�)

∂t
+

∂

∂xi

(ξA�wi) = ξA

[
∂�

∂t
+

∂(�wi)

∂xi

]
+ �

∂ξA

∂t
+ �wi

∂ξA

∂xi

.

The term in the square brackets disappears due to the continuity equation (3.20)
for the total mass. The component continuity equation is then

�
∂ξA

∂t
+ �wi

∂ξA

∂xi

= −∂j∗Ai

∂xi

+ Γ̇A

or

�
dξA

dt
= −∂j∗Ai

∂xi

+ Γ̇A . (3.25)

For a binary mixture, with the introduction of the diffusional flow j∗Ai according
to (1.161) with DAB = DBA = D, this is transformed into

�
∂ξA

∂t
+ �wi

∂ξA

∂xi

=
∂

∂xi

(
�D

∂ξA

∂xi

)
+ Γ̇A . (3.26)

In the case of quiescent systems, wi = 0, this yields the relationship already known
for transient diffusion, (2.341). If constant density is presumed, it follows from
(3.26) that

∂ξA

∂t
+ wi

∂ξA

∂xi

=
∂

∂xi

(
D

∂ξA

∂xi

)
+ Γ̇A/� (3.27)

or with ξA = M̃AcA/�, in which cA is the molar concentration cA = NA/V ,

∂cA

∂t
+ wi

∂cA

∂xi

=
∂

∂xi

(
D

∂cA

∂xi

)
+ ṙA (3.28)

with the reaction rate ṙA = Γ̇A/M̃A (SI-units kmol/m3s), the amount of substance
A generated by chemical reaction.

Example 3.2: Show that, under the presumption of film theory — steady-state mass
transfer only in the direction of the coordinate axis adjacent to the wall, vanishing pro-
duction density — that the component continuity equation (3.25) transforms into (1.186)
of film theory.
Indicating the coordinate adjacent to the wall with y, under the given preconditions, (3.25)
is transformed into

�w
∂ξA

∂y
= −∂j∗A

∂y
,

wherein j∗A is the diffusional flow and w is the velocity in the y-direction. On the other
hand, as a result of the continuity equation (3.20)

∂(�w)

∂y
= 0 .

With that �w = const, and (3.25) can also be written as

∂

∂y
(j∗A + �w ξA) =

∂

∂y
(j∗A + �Aw) = 0 .

Now, by definition from (1.155) j∗A = �A (wA − w), and therefore j∗A + �A w = �A wA

which means that ∂(�A wA)/∂y = 0 or dṀA/dy = 0, from which, because ṀA = M̃A ṄA,
eq. (1.186) dṄA/dy = 0 follows. This result can be found directly from (3.23), if Γ̇A = 0,
d�A/dt = 0 are put in, and one-dimensional mass flow is assumed.
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3.2.3 The momentum balance

The mass elements of a flowing fluid transfer momentum. This is understood to
be the product of the mass and velocity. A mass element dM , which flows at a
velocity of wj transports a momentum wj dM = wj� dV . The total momentum
Ij transported in a fluid of volume V (t) is therefore

Ij =
∫

V (t)

� wj dV . (3.29)

According to Newton’s second law of mechanics the change in momentum of a
body with time is equal to the resultant of all the forces acting on the body

dIj

dt
= Fj (3.30)

and therefore
d

dt

∫
V (t)

�wj dV = Fj . (3.31)

Applying the transport theorem gives, if we put z = wj into (3.17),

∫
V (t)

∂(�wj)

∂t
dV +

∫
A(t)

�wjwi dAi = Fj (3.32)

or taking into account the continuity equation (3.20) (see also example 3.1)∫
V (t)

�
dwj

dt
dV = Fj (3.33)

with
dwj

dt
=

∂wj

∂t
+ wi

∂wj

∂xi

. (3.34)

The forces Fj attacking the body can be split into two classes: in body forces
which are proportional to the mass and in surface forces which are proportional
to the surface area.

The body forces have an effect on all the particles in the body. They are far
ranging forces and are caused by force fields. An example is the earth’s gravita-
tional field. The acceleration due to gravity gj acts on each molecule, so that the
force of gravity on a fluid element of mass ∆M is

∆Fj = gj∆M .

It is proportional to the mass of the fluid element. The body force is defined by

kj := lim
∆M→0

∆Fj

∆M
=

dFj

dM
(3.35)
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Fig. 3.3: Surface force ∆Fj on a surface
element ∆A

Fig. 3.4: Dependence of the surface
forces on the orientation of the surface
element ∆A

and the surface force by

fj := lim
∆V →0

∆Fj

∆V
=

dFj

dV
. (3.36)

In the case of gravitational force with kj = gj and fj = �gj, in general it holds
that fj = �kj. Other body forces are centrifugal forces or forces created by
electromagnetic fields.

In the case of a multicomponent mixture, the different effects of the body forces on the
individual components must also be considered. The body force kAj acting on component A
will be defined by

kAj := lim
∆MA→0

∆FAj

∆MA
=

dFAj

dMA
.

Then dFAj = kAj dMA = kAj�A dV and dFj =
∑

dFKj = dV
∑

kKj�K, where the summation
is formed over all the substances K. On the other hand, due to (3.35), dFj = kj dM = kj�dV
is valid and therefore

kj� =
∑

kKj�K . (3.37)

If the gravitational force is the only mass force acting on the body then gj = kj = kKj and
� =

∑
�K.

The surface forces are short-range forces. They exist in the area immediately
adjacent to the fluid being considered and act on its surface. If ∆A is a surface
element of a body with a force ∆Fj acting on it, Fig. 3.3, then

tj := lim
∆A→0

∆Fj

∆A
=

dFj

dA
(3.38)

is called the stress vector. It is not only dependent on the position and time but
also on the orientation, and is therefore dependent on the normal vector to the
surface element. In order to see this dependence we will consider a flow along a
flat plate, Fig. 3.4. A normal force acts on a surface element ∆A perpendicular to
the plate. If we imagine that the surface element is rotated at the same place to
a position parallel to the wall, the element is only subjected to shear stress. The
two forces are, in general, of different magnitude.
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The total force acting at time t on a fluid of volume V (t) and surface area
A(t) is found by integrating the body and surface forces to be

Fj =
∫

V (t)

�kj dV +
∫

A(t)

tj dA . (3.39)

With this the momentum equation (3.33) can be written as∫
V (t)

�
dwj

dt
dV =

∫
V (t)

�kj dV +
∫

A(t)

tj dA . (3.40)

It means that the change in momentum over time of a fluid of volume V at time
t is effected by the body and the surface forces.

3.2.3.1 The stress tensor

For the calculation of the stress vector tj we will consider a fluid element in the
shape of an infinitesimally small tetrahedron, Fig. 3.5, which has one surface in
any direction whilst the others stretch along the coordinate axes. The oblique
surface has a normal unit vector ni in the outward direction and an area dA.
The stress vector t acts on this area. Correspondingly, the stress vector t1 acts at
the surface dA1, perpendicular to the x-axis, and on the other two areas dA2 and
dA3 we have the stress vectors t2 and t3. The forces acting on the four surface
elements must be in equilibrium with each other independent of the momentary
movement of the fluid element. This immediately follows from the momentum
equation (3.40), when it is applied to an infinitesimally small volume element. At
the limit V → 0 the volume integral disappears more rapidly than the surface
integral, and therefore the surface forces are in equilibrium locally. Applying this
to the tetrahedron gives

t dA = t1 dA1 + t2 dA2 + t3 dA3 .

The surface elements can be still be eliminated with the relationships from Fig.
3.6 of

dA =
1

2
AD · BC , dA1 =

1

2
OD · BC

Fig. 3.5: Equilibrium of surface
forces
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Fig. 3.6: Relationship between the areas Fig. 3.7: Stress components
on the surface dA1

and therefore

dA1 = dA
OD

AD
= dA cos α .

Then, because cos α = n1/n = n1, we can also write dA1 = dA n1. Correspond-
ingly, it holds that dA2 = dA n2, dA3 = dA n3.

The following relationship exists between the stress vectors

t = t1n1 + t2n2 + t3n3 . (3.41)

Each of the stress vectors t1, t2 and t3 can be represented by the three com-
ponents of stress, which are in any case forces over the unit area. Two indices
are required to indicate the components of stress. By agreement the first index
relates to the area or surface on which the stress acts, and is identical to the index
of the coordinate axis normal to this surface. The second index indicates in which
direction the stress component is acting. As an example, Fig. 3.7 shows the three
components of stress over an area dA1 perpendicular to the x-axis. This is

t1 = τ11e1 + τ12e2 + τ13e3

and correspondingly
t2 = τ21e1 + τ22e2 + τ23e3 , (3.42)

t3 = τ31e1 + τ32e2 + τ33e3 .

The stress components form a tensor which is made up of nine components:

τij =

⎛⎜⎜⎜⎜⎝
τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎞⎟⎟⎟⎟⎠ .

The stresses acting normal to the surface τ11,τ22, τ33 or τij with i = j are known
as normal stresses, the stresses tangential to the surface τij with i �= j are called
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tangential or shear stresses. Due to the rule that shear stresses associated with
each other are equal we can write τij = τji: the stress tensor is symmetrical.
Putting the stress vectors from (3.42) into (3.41), gives

t = (τ11e1 + τ12e2 + τ13e3)n1

+ (τ21e1 + τ22e2 + τ23e3)n2

+ (τ31e1 + τ32e2 + τ33e3)n3 .

On the other hand the stress vector t acting on the oblique surface of the
tetrahedron in Fig. 3.5, can be split into its three components t1, t2, t3 in the
direction of the coordinate axes

t = t1e1 + t2e2 + t3e3 .

As the comparison with the previous relationship shows, the following holds for
the components of the stress vector

t1 = τ11n1 + τ21n2 + τ31n3

t2 = τ12n1 + τ22n2 + τ32n3

t3 = τ13n1 + τ23n2 + τ33n3

or
tj = τjini (i, j = 1, 2, 3) . (3.43)

Theoretically the stress tensor τji can be written as the sum of two tensors

τji =

⎛⎜⎜⎜⎜⎜⎜⎝
τ11 −

1

3
τkk τ12 τ13

τ21 τ22 −
1

3
τkk τ23

τ31 τ32 τ33 −
1

3
τkk

⎞⎟⎟⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎜⎜⎝

1

3
τkk 0 0

0
1

3
τkk 0

0 0
1

3
τkk

⎞⎟⎟⎟⎟⎟⎟⎠
or

τji = τ̂ji +
1

3
δjiτkk (3.44)

with the unit tensor δji, also called the Kronecker-δ,

δji =

⎧⎨⎩ 1 for i = j

0 for i �= j
i.e. δji =

⎛⎜⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎟⎠ . (3.45)

From this definition it immediately follows that δji = δ11 + δ22 + δ33 = 3.
We call τ̂ji the deviator of the tensor τji. It is thereby characterised such that

the diagonal elements, the so-called trace of the tensor, disappear, which then
gives

(τ11 −
1

3
τkk) + (τ22 −

1

3
τkk) + (τ33 −

1

3
τkk) = τkk − 3 · 1

3
τkk = 0 .
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In general a deviator is a tensor with a zero trace.
As the diagonal elements characterise a normal stress and cancel each other

out, the deviator is decisive for the shearing of a fluid element, whilst the term
1/3 δijτkk contains normal stresses equal in all directions, or so-called hydrostatic
stresses. The arithmetic mean value of the three normal stresses τkk are known
as the average pressure

−p̄ =
1

3
τkk .

The minus sign stems from the fact that liquids can take practically no tensile
stresses in, and therefore τkk is generally negative, whereas the average pressure
is positive. With this (3.44) can also be written as

τji = τ̂ji − δjip̄ . (3.46)

The average pressure p̄ is not identical to the thermodynamic pressure, which is
obtained, for quiescent fluids, from the thermal equation of state p = p(v, T ).
However, we can show, see Appendix A2, that for fairly slow changes in volume
the average and thermodynamic pressures are linked by

p̄ − p := −ζ
∂wk

∂xk

, (3.47)

in which, the factor ζ > 0, defined in this equation, is the so-called bulk viscosity
(SI units kg/sm; 0.1 kg/sm = 1 Poise). Methods of statistical mechanics have
shown that this bulk viscosity disappears in low density gases, and that it is
very small in dense gases and liquids. Therefore in fluid mechanics and heat and
mass transfer we always presume ζ = 0, thereby setting the average pressure
equal to the thermodynamic pressure. Furthermore in an incompressible fluid,
because ∂wk/∂xk = 0, the average pressure is always equal to the thermodynamic
pressure.

3.2.3.2 Cauchy’s equation of motion

By introducing the stress vector tj according to (3.43) into the momentum equa-
tion (3.40) we obtain∫

V (t)

�
dwj

dt
dV =

∫
V (t)

�kj dV +
∫

A(t)

τjini dA .

With the help of Gauss’ law we rearrange the surface integral∫
A(t)

τjini dA =
∫

V (t)

∂τji

∂xi

dV ,

and obtain ∫
V (t)

�
dwj

dt
dV =

∫
V (t)

�kj dV +
∫

V (t)

∂τji

∂xi

dV .
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This equation holds for any volume V (t) and therefore also in the limiting case of
V (t) → 0. From this follows Cauchy’s equation of motion2:

�
dwj

dt
= �kj +

∂τji

∂xi

(i, j = 1, 2, 3) . (3.48)

It is valid for each continuum independent of the individual material properties
and is therefore one of the fundamental equations in fluid mechanics and subse-
quently also in heat and mass transfer. The movement of a particular substance
can only be described by introducing a so-called constitutive equation which links
the stress tensor with the movement of a substance. Generally speaking, consti-
tutive equations relate stresses, heat fluxes and diffusion velocities to macroscopic
variables such as density, velocity and temperature. These equations also depend
on the properties of the substances under consideration. For example, Fourier’s
law of heat conduction is invoked to relate the heat flux to the temperature gra-
dient using the thermal conductivity. An understanding of the strain tensor is
useful for the derivation of the consitutive law for the shear stress. This strain
tensor is introduced in the next section.

3.2.3.3 The strain tensor

The individual fluid elements of a flowing fluid are not only displaced in terms
of their position but are also deformed under the influence of the normal stresses
τii and the shear stresses τij(i �= j). The deformation velocity depends on the
relative movement of the individual points of mass to each other. It is only in the
case when the points of mass in a fluid element do not move relatively to each
other that the fluid element behaves like a rigid solid and will not be deformed.
Therefore a relationship between the velocity field and the deformation, and with
that also between the velocity field and the stress tensor τij must exist. This
relationship is required if we wish to express the stress tensor in terms of the
velocities in Cauchy’s equation of motion.

Normal stresses change the magnitude of a fluid element of given mass. If they
are different, for example τ11 �= τ22, the shape of the fluid element will also be
altered. As we can see in Fig. 3.8, a rectangle would be transformed into a prism,
a spherical fluid element could be deformed into an ellipsoid. Fig. 3.9 shows the
front view of a cube which will be stretched by a normal stress τ11. We recognise

2Auguste-Louis Cauchy (1789–1857) was, as a contemporary of Leonhard Euler and Carl-
Friedrich Gauss, one of the most important mathematicians of the first half of the 19th century.
His most famous publications are “Traité des Fonctions” and “ Méchanique Analytique”. As he
refused to take the oath to the new regime after the revolution in 1830, his positions as professor
at the Ecole Polytechnique and at the Collège de France were removed and he was dismissed
from the Académie Française. He spent several years in exile in Switzerland, Turin and Prague.
He was permitted to return to France in 1838, and it was there that he was reinstated as a
professor at the Sorbonne after the revolution in 1848.
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Fig. 3.8: Deformation of a fluid element
due to normal stress

Fig. 3.9: For the relationship between
deformation and velocity

that the volume increases by

∂w1

∂x1

dx1 dt dx2 dx3 =
∂w1

∂x1

dt dV .

Corresponding expressions for the volume increase due to normal stresses τ22 and
τ33 can be obtained, so that the total volumetric increase is given by(

∂w1

∂x1

+
∂w2

∂x2

+
∂w3

∂x3

)
dt dV .

The volume increase at each unit of time relative to the original volume is known
as the dilatation. It is

∂w1

∂x1

+
∂w2

∂x2

+
∂w3

∂x3

=
∂wi

∂xi

= ε̇ii . (3.49)

In an incompressible fluid, � = const, there is no dilatation, as we have seen from
the continuity equation. The volume of a fluid element of a given mass remains
constant.

The shear stresses τij(i �= j) cause an originally cubic volume element to be
deformed into a rhomboid, as shown in the view in Fig. 3.10. The original right
angle at A changes by the angle

dγ12 =
∂w1

∂x2

dt and dγ21 =
∂w2

∂x1

dt .

Fig. 3.10: The deformation of a cubic
volume element into a rhomboid
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The arithmetic mean of both angular velocities is called the strain tensor, often
also called the deformation velocity tensor

ε̇12 :=
1

2

(
∂w1

∂x2

+
∂w2

∂x1

)

or in general

ε̇ji :=
1

2

(
∂wj

∂xi

+
∂wi

∂xj

)
. (3.50)

It is a symmetrical tensor, as ε̇ji = ε̇ij, and transforms for i = j back to the
dilatation. The elements ε̇ii form in this case the diagonal of the strain tensor. If
the sum of these terms disappears, the volume of a fluid element of given mass
does not change, as already mentioned. If the tensor is split into two parts, from
which the sum of the diagonal of one of the tensors, the deviator, disappears, this
describes the change in shape at constant volume. The shape change at constant
volume will, thus, be described by the deviator of the strain tensor. In order to
split up the deviator we can form

ε̇ji = ˆ̇εji +
1

3
δjiε̇kk . (3.51)

As follows with (3.49) and (3.50), we have

ˆ̇εji =
1

2

[(
∂wj

∂xi

+
∂wi

∂xj

)
− 2

3
δji

∂wk

∂xk

]
. (3.52)

When written out, (3.51) means

ε̇ji =

⎛⎜⎜⎜⎜⎜⎜⎝
ε̇11 −

1

3
ε̇kk ε̇12 ε̇13

ε̇21 ε̇22 −
1

3
ε̇kk ε̇23

ε̇31 ε̇32 ε̇33 −
1

3
ε̇kk

⎞⎟⎟⎟⎟⎟⎟⎠ +

⎛⎜⎜⎜⎜⎜⎜⎝

1

3
ε̇kk 0 0

0
1

3
ε̇kk 0

0 0
1

3
ε̇kk

⎞⎟⎟⎟⎟⎟⎟⎠ .

The first term is already the desired deviator, as its trace disappears, this is then(
ε̇11 −

1

3
ε̇kk

)
+
(
ε̇22 −

1

3
ε̇kk

)
+
(
ε̇33 −

1

3
ε̇kk

)
= ε̇kk − 3

1

3
ε̇kk = 0 .

Whilst the deviator describes the change in shape at constant volume, the (iso-
tropic) tensor 1/3 δij ε̇kk = 1/3 δij∂wk/∂xk is decisive for the volume change for a
constant shape. This follows from the fact that it only contains equal diagonals,
so that the deformation in all coordinate directions is the same.

3.2.3.4 Constitutive equations for the solution of the momentum
equation

In order to solve Cauchy’s equation of motion, which is valid for any substance,
a further relationship between the stress and strain tensors, or between the stress
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tensor and the velocity field is required. This type of equation, a so-called con-
stitutive equation, is material specific and similar to the equations of state in
thermodynamic characteristics for a certain substance. As a result of (3.46) and
(3.47) it still generally holds that

τji = τ̂ji − δji

(
p − ζ

∂wk

∂xk

)
. (3.53)

The elements present in the deviator τ̂ji of the stress tensor cause the stretching

described by the elements in the deviator ˆ̇εji of the stress tensor, which can be seen
by a comparison of the two deviators. Therefore a substance specific relationship

τ̂ji := f(ˆ̇εji)

must exist.
For low strain velocities a linear approach suggests itself

τ̂ji = η 2 ˆ̇εji . (3.54)

The factor of 2 is introduced, so that, for a one-dimensional incompressible flow
(j = 1, i = 2; ∂wk/∂xk = 0) with ˆ̇ε = (1/2) ∂w1/∂x2 from (3.52), Newton’s law
τ12 = η ∂w1/∂x2 is obtained.

A fluid in which the shear stress is proportional to the shear velocity, corre-
sponding to this law, is called an ideal viscous or Newtonian fluid. Many gases
and liquids follow this law so exactly that they can be called Newtonian fluids.
They correspond to ideal Hookeian bodies in elastomechanics, in which the shear
strain is proportional to the shear. A series of materials cannot be described ac-
curately by either Newtonian or Hookeian behaviour. The relationship between
shear stress and strain can no longer be described by the simple linear rule given
above. The study of these types of material is a subject of rheology.

After introducing ˆ̇εji according to (3.52), (3.54) is transformed into

τ̂ji = η

[(
∂wj

∂xi

+
∂wi

∂xj

)
− 2

3
δji

∂wk

∂xk

]
. (3.55)

The factor η defined in (3.54) and (3.55) is the dynamic viscosity (SI units kg/sm =
1 Pa · s; 0.1 kg/sm = 1 Poise). With the help of (3.53) we obtain, for the stress
tensor

τji = η

[(
∂wj

∂xi

+
∂wi

∂xj

)
− 2

3
δji

∂wk

∂xk

]
− δji

(
p − ζ

∂wk

∂xk

)
. (3.56)

3.2.3.5 The Navier-Stokes equations

We will presume a Newtonian fluid and neglect the normally very small bulk
viscosity. The statement (3.56) for the stress tensor is then transformed into
Stokes’ formulation, the so-called Stokes hypothesis:

τji = η

[(
∂wj

∂xi

+
∂wi

∂xj

)
− 2

3
δji

∂wk

∂xk

]
− δjip . (3.57)
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Putting this expression into Cauchy’s equation of motion, (3.48), yields the so-
called Navier-Stokes equation

�
dwj

dt
= �kj −

∂p

∂xj

+
∂

∂xi

η

[(
∂wj

∂xi

+
∂wi

∂xj

)
− 2

3
δji

∂wk

∂xk

]
. (3.58)

For an incompressible fluid we have ∂wk/∂xk = ∂wi/∂xi = 0. Furthermore, if we
presume a constant viscosity, the equation is simplified to

�
dwj

dt
= �kj −

∂p

∂xj

+ η
∂2wj

∂xi
2

. (3.59)

The equation clearly shows that the forces acting on a fluid element are made up
of body, pressure and viscosity forces. A momentum balance exists for each of the
three coordinate directions j = 1, 2, 3, so that (3.58) and (3.59) each represent
three equations independent of each other. (3.59) can be seen written out in
Appendix A3. Its formulation for cylindrical coordinates is also given there.

3.2.4 The energy balance

Pure substances
According to the first law of thermodynamics, the internal energy U of a closed
system changes due to the addition of heat Q12 and work W12 into the system

U2 − U1 = Q12 + W12

or in differential form

dU = dQ + dW (3.60)

or
dU

dt
=

dQ

dt
+

dW

dt
= Q̇ + P . (3.61)

We will apply these equations to a fluid element of given mass. As this will be
considered to be a closed system we can immediately exclude mass transport over
the system boundary and with that diffusion.

With the help of the transport theorem (3.17), by putting in z = u, we obtain
the following temporal change in the internal energy of a flowing fluid

dU

dt
=

d

dt

∫
V (t)

u� dV =
∫

V (t)

∂u�

∂t
dV +

∫
A(t)

u�wi dAi . (3.62)

According to this, the change in internal energy over time in a flowing fluid is
equal to internal energy stored inside the fluid volume V (t) at time t, and the
internal energy flowing out over the surface A(t) of the fluid volume.
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Heat is transferred, by definition, between a system and its surroundings, and
therefore the heat fed into the system via its surface is

Q̇ =
∫

A(t)

q̇ dA , (3.63)

in which q̇ is the heat flux. It is a scalar. (3.63), with the normal vector n, which
indicates the orientation of the surface elements in space, can also be written as

Q̇ =
∫

A(t)

(q̇ ni)( dA ni)

because nini = 1. The products obtained

dA ni = dAi (i = 1, 2, 3)

are, as shown in section 3.2.3.1, the projections of the surface dA on the plane
formed by the coordinate axes. It is known that dAi are the components of the
surface vector n dA. Correspondingly,

q̇ ni = −q̇i (3.64)

can be interpreted as the components of a vector q̇ of the heat flux. q̇1 is the heat
flux over the area dA1, q̇2 is that over dA2 and q̇3 that over dA3. The minus
sign in (3.64) stems from the fact that a heat flux fed into a system is counted as
positive, but the normal vector ni of a closed area points outwards. With that we
get

Q̇ = −
∫

A(t)

q̇ini dA . (3.65)

The work done to change the internal energy of a system is exchanged between
the system and its surroundings and “flows” over the surface of the system. The
body forces displace each element as a whole, and therefore also contribute to the
change in the kinetic and potential energy, but not to the change in the internal
energy, as long as the mass of the fluid element is not altered by mass exchange
with its neighbours. In this case the individual particles will move at different
speeds and the body forces acting on them will contribute to the total power.
This contribution plays an important role in multicomponent mixtures and must
be taken into account there.

In addition the surface forces contain parts which cause a change in the internal
energy, and some that displace the fluid element as a whole without changing its
internal energy. The fraction of the power, which contributes to a change in the
internal energy, fed into the system via its surface can also be written as

P :=
∫

A(t)

ω̇ dA . (3.66)
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The power density ω̇ (SI units W/m2) is defined by this equation. We choose
the letter ω̇ for the power density, rather than ẇ, otherwise it would be easy to
confuse it with velocity w. Similar to the considerations for heat flux, (3.66) can
be rearranged into

P =
∫

A(t)

(ω̇ni)( dAni)

and here the quantities
ω̇ni = −ω̇i (3.67)

can be interpreted as the components of the vector ω̇ of the power density; ω̇1 is
the power density across the area dA1, ω̇2 that across the area dA2 and ω̇3 that
across the area dA3. The minus sign appears once more because the power being
fed into the system is taken to be positive. It holds, therefore, that

P = −
∫

A(t)

ω̇ini dA . (3.68)

The first law (3.61), in conjunction with the expressions for internal energy
(3.62), the heat flow (3.65) and the power (3.68), can also be written as∫

V (t)

∂(u�)

∂t
dV +

∫
A(t)

u�wi dAi = −
∫

A(t)

q̇ini dA −
∫

A(t)

ω̇ini dA .

Converting the surface into the volume integral using Gauss’ law and then trans-
ferring to a small volume element V (t) → 0 yields

∂(u�)

∂t
+

∂(u�wi)

∂xi

= −∂q̇i

∂xi

− ∂ω̇i

∂xi

.

The left hand side can also be written as

�
∂u

∂t
+ u

∂�

∂t
+ u

∂(�wi)

∂xi

+ �wi

∂u

∂xi

.

By taking into account the continuity equation (3.20), the equation above is sim-
plified to

�
∂u

∂t
+ �wi

∂u

∂xi

= �
du

dt
.

Which then gives the energy equation

�
du

dt
= −∂q̇i

∂xi

− ∂ω̇i

∂xi

. (3.69)

In order to calculate the power density ω̇i, we will now consider the total power
Ptot produced by the surface forces and separate from that the part known as the
drag, which causes a displacement of the fluid element. This then leaves only the
power which contributes to a change in the internal energy.
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Using the stress tensor ti = τjinj the total power from the surface forces is
obtained as

Ptot =
∫

A(t)

witi dA =
∫

A(t)

wiτjinj dA =
∫

V (t)

∂(wiτji)

∂xj

dV .

On the other hand, the surface forces acting on the volume element

Fi =
∫

A(t)

ti dA =
∫

A(t)

τjinj dA =
∫

V (t)

∂τji

∂xj

dV

cause a movement of the system. The force acting on a volume element dV

dFi =
∂τji

∂xj

dV

displaces it during a short time dt along a path dxi, such that the drag is

dFi

dxi

dt
=

∂τji

∂xj

dV
dxi

dt
=

∂τji

∂xj

dV wi .

The total drag is therefore

PS =
∫

V (t)

∂τji

∂xj

wi dV ,

and the part of the surface forces contributing to the change in internal energy
will be

P = Ptot − PS =
∫

V (t)

(
∂(wiτji)

∂xj

− ∂τji

∂xj

wi

)
dV ,

out of which

P =
∫

V (t)

τji

∂wi

∂xj

dV

follows. As (3.68) can be rearranged using Gauss’ law into

P = −
∫

V (t)

∂ω̇i

∂xi

dV

then

−∂ω̇i

∂xi

= τji

∂wi

∂xj

. (3.70)

The energy balance (3.69) is given by

�
du

dt
= −∂q̇i

∂xi

+ τji

∂wi

∂xj

. (3.71)

As we have taken the fluid element to be a closed system, this equation is not
valid for multicomponent mixtures and diffusion.
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Multicomponent mixtures

Diffusion appears in multicomponent mixtures when they are not at equilibrium. Individual ma-
terial flows cross over the system boundaries. Therefore a closed system cannot be presupposed.
The first law now becomes [3.1]

dU = dQ + dW +
∑
K

hK d(eMK)

or
dU

dt
= Q̇ + P +

∑
K

hKeṀK . (3.72)

Here, for a particular substance A, the quantity hA = (∂H/∂MA)T, p, MK �=A
is the partial specific

enthalpy and eṀA is the mass flow rate of component A fed into the system from outside. The
sum is made over all the material flows. The heat flow Q̇ and the power P are calculated in the
same way as before from

Q̇ = −
∫

A(t)

q̇ini dA = −
∫

V (t)

∂q̇i

∂xi
dV

and

P = −
∫

A(t)

ω̇ini dA = −
∫

V (t)

∂ω̇i

∂xi
dV .

Substance A flowing at a velocity wAi across the surface element is an energy carrier. It
increases the internal energy of a fluid element moving with the centre of mass velocity wi by

−hA�A(wAi
− wi)ni dA = −hAj∗Aini dA .

Once again the minus sign is necessary because energy flowing into a system is counted as
positive, but the surface vector has the opposite sign. The energy from all the feed streams
flowing over the total surface is∑

K

hKeṀK = −
∑
K

∫
A(t)

hKj∗Kini dA = −
∑
K

∫
V (t)

∂(hKj∗Ki)

∂xi
dV .

When this is applied to a fluid element, the energy equation (3.72) for a multicomponent mixture
can be written as

�
du

dt
= − ∂q̇i

∂xi
− ∂ω̇i

∂xi
−
∑
K

∂(hKj∗Ki)

∂xi
. (3.73)

The power density ω̇i which appears here consists of the power from the surface forces minus
the drag forces, which displace the fluid element as a whole and therefore do not contribute
to a change in the internal energy. In contrast to the equation for pure substances this also
contains an additional term because the different particle types move with different velocities
wAi

, such that the associated body forces kAi
on substance A in a volume element dV deliver

a contribution of
�A(wAi − wi)kAi dV = j∗AikAi dV .

For all the substances, the contribution on a system of volume V (t) would be∑
K

∫
V (t)

j∗KikKi dV .

The total power P for the change in the internal energy is made up of the power of the surface
forces ∫

A(t)

witi dA =

∫
A(t)

wiτjinj dA =

∫
V (t)

∂(wiτji)

∂xi
dV
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and the body forces ∑
K

∫
V (t)

j∗KikKi dV

minus the drag force ∫
V (t)

∂τji

∂xj
wi dV .

P =

∫
V (t)

(
τji

∂wi

∂xj
+
∑
K

j∗KikKi

)
dV .

Then for the power density, it follows, due to

P = −
∫

A(t)

ω̇ini dA = −
∫

V (t)

∂ω̇i

∂xi
dV ,

that

−∂ω̇i

∂xi
= τji

∂wi

∂xj
+
∑
K

j∗KikKi . (3.74)

It is different to the power density (3.70) for pure substances due to the presence of the term∑
K

j∗KikKi for the power exerted by the body forces on the individual substances. The energy

equation (3.73) is transformed to the following for multicomponent mixtures

�
du

dt
= − ∂q̇′i

∂xi
+ τji

∂wi

∂xj
+
∑
K

j∗KikKi (3.75)

with
q̇′i = q̇i +

∑
K

hKj∗Ki , (3.76)

which is transformed into the energy balance (3.71) for pure substances when a vanishing diffu-
sion flow j∗Ki = 0 exists.

3.2.4.1 Dissipated energy and entropy

The energy equation (3.71), clearly shows that the internal energy in a fluid element is changed
by the influx of heat and the performance of work. In the case of multicomponent mixtures, as
shown in (3.75), a further term for the energy fed into the system with the material is added.

The work done consists of the reversible part and the dissipated work. We want to calculate
these contributions individually with the help of an entropy balance. For the sake of simplicity
we will only consider pure substances. According to Gibbs’ fundamental equation, we have

T
ds

dt
=

du

dt
+ p

dv

dt
=

du

dt
− p

�2

d�

dt
. (3.77)

Inserting the energy equation (3.71) and the continuity equation (3.21) yields

T
ds

dt
= −1

�

∂q̇i

∂xi
+

1

�
τji

∂wi

∂xj
+

p

�

∂wi

∂xi
.

Now we use
∂(q̇i/T )

∂xi
=

1

T

∂q̇i

∂xi
− q̇i

T 2

∂T

∂xi
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or
∂q̇i

∂xi
= T

∂(q̇i/T )

∂xi
+

q̇i

T

∂T

∂xi

and according to (3.53)
τji = τ̂ji − δjip ,

if we presume that the bulk viscosity disappears. With that we can write the entropy balance
(3.77) as

�
ds

dt
= −∂(q̇i/T )

∂xi
− q̇i

T 2

∂T

∂xi
+

1

T
τ̂ji

∂wi

∂xj
+

1

T

(
−δjip

∂wi

∂xj

)
+

p

T

∂wi

∂xi
.

Because δji∂wi/∂xj = ∂wj/∂xj = ∂wi/∂xi this equation simplifies to

�
ds

dt
= −∂(q̇i/T )

∂xi
− q̇i

T 2

∂T

∂xi
+

1

T
τ̂ji

∂wi

∂xj
. (3.78)

The first term on the right hand side of (3.78) represents the entropy fed in with the heat.
This is known as the entropy flux. The two remaining terms represent the production of entropy.
The second term stems from the finite temperature differences in thermal conduction, the third
from the mechanical energy. We call

φ := τ̂ji
∂wi

∂xj
(3.79)

the viscous dissipation. This is the mechanically dissipated energy (SI units W/m3) per unit
volume. Taking (3.53) into consideration

τji = τ̂ji − δjip

the first law (3.71) can also be written

�
du

dt
= − ∂q̇i

∂xi
− p

∂wi

∂xi
+ φ . (3.80)

Vanishing bulk viscosity is also presupposed here. Introducing the viscous dissipation into the
energy equation (3.75) for multicomponent mixtures, gives

�
du

dt
= − ∂q̇′i

∂xi
− p

∂wi

∂xi
+ φ +

∑
K

j∗KikKi . (3.81)

Likewise (3.81) presupposes vanishing bulk viscosity. The derivation of the entropy balance for
mixtures can be found in Appendix A 5.

Example 3.3: Calculate the viscous dissipation for a Newtonian fluid. How large is the
viscous dissipation for the special case of one dimensional flow w1 = w1(x2)?
For a Newtonian fluid, according to (3.55) we have

τ̂ji = η

[(
∂wj

∂xi
+

∂wi

∂xj

)
− 2

3
δji

∂wk

∂xk

]
and therefore

φ = τ̂ji
∂wi

∂xj
= η

∂wi

∂xj

[(
∂wj

∂xi
+

∂wi

∂xj

)
− 2

3
δji

∂wk

∂xk

]
.

In the case of w1 = w1(x2) the expression is reduced to

φ = η
∂w1

∂x2

∂w1

∂x2
= η

(
∂w1

∂x2

)2

.
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3.2.4.2 Constitutive equations for the solution of the energy equation

In order to be able to solve the energy equation (3.71) or (3.75), some constitutive
equations are required. We will now consider equation (3.71) for pure substances.
This necessitates the introduction of the caloric equation of state u = u(ϑ, v). By
differentiation we obtain

du =

(
∂u

∂ϑ

)
v

dϑ +

(
∂u

∂v

)
ϑ

dv = cv dϑ +

(
∂u

∂v

)
ϑ

dv

In thermodynamics, as shown, for example, in [3.2],(
∂u

∂v

)
ϑ

= T

(
∂p

∂ϑ

)
v

− p .

Furthermore dv = − d�/�2. This leads to

�
du

dt
= � cv

dϑ

dt
−
[
T

(
∂p

∂ϑ

)
v

− p

]
1

�

d�

dt
. (3.82)

With the continuity equation (3.21) we obtain for this

�
du

dt
= � cv

dϑ

dt
+

[
T

(
∂p

∂ϑ

)
v

− p

]
∂wi

∂xi

.

The expression in the square brackets disappears for ideal gases. For incompress-
ible fluids, � = const, d�/dt = 0 and ∂wi/∂xi = 0. The expression is simplified in
both cases to

�
du

dt
= � cv

dϑ

dt
.

In incompressible fluids it is not necessary to differentiate between cp and cv,
cp = cv = c. While in an isotropic body, the heat flux is given by Fourier’s law

q̇i = −λ
∂ϑ

∂xi

,

in nonisotropic materials, for example in crystals, there are preferred directions for
heat flow. The heat flux q̇i is no longer dependent on just the gradients ∂ϑ/∂xi

but also in the most general case on all three components of the temperature
gradients. For example, for the heat flux q̇1 in the direction of the x-axis, it holds
that

−q̇1 = λ11

∂ϑ

∂x1

+ λ21

∂ϑ

∂x2

+ λ31

∂ϑ

∂x3

= λi1

∂ϑ

∂xi

.

There are corresponding expressions for the other two heat fluxes, so that in
general, we can write

q̇i = −λji

∂ϑ

∂xi

(i, j = 1, 2, 3)
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The heat flux in the direction of a coordinate axis depends on the temperature
gradients in the direction of all the coordinate axes. The thermal conductivity λji

in Fourier’s law is a tensor. As we can prove with methods of thermodynamics
for irreversible processes [3.3], the thermal conductivity tensor is symmetrical
λij = λji. It consists of six components. Out of these, for certain crystals a few
or several agree with each other or disappear.

Example 3.4: Quartz crystals have different thermal conductivities along the directions
of the individual coordinate axes. The thermal conductivity tensor is given by

λji =

⎛⎝ λ11 0 0
0 λ22 0
0 0 λ33

⎞⎠ .

What is the differential equation for steady-state heat conduction, if λii is presumed to be
independent of temperature?
What is the ratio of heat flows by conduction in a cube of side length a in the three
coordinate directions? As an approximate solution of this part of the question, presume
that the heat flows in the three coordinate directions are independent of each other.
As no flow is present, the term τji ∂wi/∂xj vanishes from the energy equation (3.71).
Steady-state conduction is presumed, du/dt = 0, which means the energy equation is
simplified to

∂q̇i

∂xi
= 0 =

∂q̇1

∂x1
+

∂q̇2

∂x2
+

∂q̇3

∂x3
.

For the Quartz crystal q̇1 = −λ11 ∂ϑ/∂x1, q̇2 = −λ22 ∂ϑ/∂x2, q̇3 = −λ33 ∂ϑ/∂x3. The
energy equation is thereby transformed into

0 = λ11
∂2ϑ

∂x1
2

+ λ22
∂2ϑ

∂x2
2

+ λ33
∂2ϑ

∂x3
2

.

Under the assumption that the heat flows in the three coordinate directions are independent
of each other, we have

0 = λ11
∂2ϑ1

∂x1
2

= λ22
∂2ϑ2

∂x2
2

= λ33
∂2ϑ3

∂x3
2

.

The temperature profile between the cube surfaces opposite each other is linear. The heat
fluxes are then q̇1 = λ11 ∆ϑ1/a, q̇2 = λ22 ∆ϑ2/a, q̇3 = λ33 ∆ϑ3/a, and

q̇1 : q̇2 : q̇3 = λ11 ∆ϑ1 : λ22 ∆ϑ2 : λ33 ∆ϑ3 .

In the case of equal temperature differences we get

q̇1 : q̇2 : q̇3 = λ11 : λ22 : λ33 .

3.2.4.3 Some other formulations of the energy equation

For practical calculations it is often advantageous to use other dependent variables
instead of the internal energy in the energy equation. Especially useful are the
“enthalpy” and the “temperature form” of the energy equation.



3.2 The balance equations 283

The enthalpy form is obtained, due to h = u+pv, by the addition of �d(pv)/dt
to both sides of the energy equation (3.80), giving

�
dh

dt
= −∂q̇i

∂xi

− p
∂wi

∂xi

+ �
d(pv)

dt
+ φ .

The third term on the right hand side is

�
d(pv)

dt
= �v

dp

dt
+ �p

dv

dt
=

dp

dt
− 1

�
p

d�

dt

from which, using the continuity equation (3.21)

�
d(pv)

dt
=

dp

dt
+ p

∂wi

∂xi

is obtained. This yields a form of the energy equation valid for both compressible
and incompressible flow

�
dh

dt
= −∂q̇i

∂xi

+
dp

dt
+ φ . (3.83)

Correspondingly, for multicomponent mixtures, we find from (3.81)

�
dh

dt
= −∂q̇′i

∂xi

+
dp

dt
+
∑
K

j∗KikKi + φ (3.84)

with q̇′i = q̇i +
∑
K

hKj∗Ki.

The temperature form of the energy equation is especially important, as its
solution describes the temperature field in terms of time and space. For pure
substances, this equation is obtained, if we make use of the well known relationship
from thermodynamics [3.2]

dh = cp dϑ −
⎡⎣T

(
∂v

∂ϑ

)
p

− v

⎤⎦ dp .

and with that eliminate the enthalpy differential in (3.83). In addition q̇i =
−λ∂ϑ/∂xi. This yields

� cp

dϑ

dt
=

∂

∂xi

(
λ

∂ϑ

∂xi

)
+

T

v

(
∂v

∂ϑ

)
p

dp

dt
+ φ . (3.85)

For ideal gases, because of pv = RT , the expression will be

T

v

(
∂v

∂ϑ

)
p

=
T

v

(
∂v

∂T

)
p

= 1 .
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The enthalpy of mixtures is dependent on temperature, pressure and composition. Its dif-
ferential is given by

dh = cp dϑ −
[
T

(
∂v

∂ϑ

)
p

− v

]
dp +

∑
K

hK dξK , (3.86)

when hA is the partial specific enthalpy of substance A, defined by

hA =

(
∂H

∂MA

)
T,p,MK �=A

.

Therefore, taking into consideration the continuity equation (3.25), this becomes

�
dh

dt
= � cp

dϑ

dt
+

[
1 − T

v

(
∂v

∂ϑ

)
p

]
dp

dt
−
∑
K

hK
∂j∗Ki

∂xi
+
∑
K

hK Γ̇K .

After inserting this expression into the energy equation (3.84), and some rearranging, we get

� cp
dϑ

dt
=

∂

∂xi

(
λ

∂ϑ

∂xi

)
+

T

v

(
∂v

∂T

)
p

dp

dt
+ φ

+
∑
K

j∗Ki

(
kKi − ∂hK

∂xi

)
−
∑
K

hK Γ̇K

As shown in Appendix A5, the partial specific enthalpy hK in the penultimate sum can be
eliminated and replaced by the specific enthalpy h of the mixture, because

N∑
K=1

j∗Ki

∂hK

∂xi
=

N−1∑
K=1

j∗Ki

∂

∂xi

(
∂h

∂ξK

)
holds, where the derivative ∂h/∂ξK is formed at fixed temperature, pressure and all mass frac-
tions except ξK .

The temperature form of the energy equation for mixtures is now

� cp
dϑ

dt
=

∂

∂xi

(
λ

∂ϑ

∂xi

)
+

T

v

(
∂v

∂ϑ

)
p

dp

dt
+ φ

+
N−1∑
K=1

j∗Ki

[
kKi − ∂

∂xi

(
∂h

∂ξK

)]
−
∑
K

hK Γ̇K . (3.87)

Equations (3.85) and (3.87) are valid irrespective of whether the fluid is compressible or incom-
pressible.

It is known that incompressible fluids represent a useful model for real fluids
in fluid mechanics and heat and mass transfer. Their thermal equation of state is
v = v0 = const. For pure substances and also for mixtures, isobaric and isochoric
specific heat capacities agree with each other, cp = cv = c.

The temperature form of the energy equation for incompressible pure substances
is yielded from (3.85) under the assumption of constant thermal conductivity

� c
dϑ

dt
= λ

∂2ϑ

∂xi
2

+ φ . (3.88)

If the flow is isobaric, the second term on the right hand side of (3.85) disappears.
In the case of an ideal gas (T/v)(∂v/∂ϑ)p = 1 has to be put into (3.85).
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In incompressible mixtures we find from (3.87), presuming constant thermal conductivity,

� c
dϑ

dt
= λ

∂2ϑ

∂xi
2

+ φ +
∑
K

j∗Ki

[
kKi − ∂

∂xi

(
∂h

∂ξK

)]
−
∑
K

hK Γ̇K . (3.89)

The energy balance for mixtures is different from that for pure substances as it contains two
additional expressions, one for the energy transport by mass diffusion and one for the enthalpy
or temperature changes produced by chemical reactions.

3.2.5 Summary

The most important balance equations derived in this chapter shall be summarised
here. In this summary we will use the abbreviation

d

dt
=

∂

∂t
+ wi

∂

∂xi

.

The following balance equations are valid for pure substances:

d�

dt
= −�

∂wi

∂xi

, (3.90)

�
dwj

dt
= � kj +

∂τji

∂xi

, (3.91)

�
du

dt
= −∂q̇i

∂xi

+ τji

∂wi

∂xj

. (3.92)

Equation (3.90) is the mass balance or continuity equation, (3.91) the momentum
balance or Cauchy’s equation of motion and (3.92) is the energy balance. As a
momentum balance exists for each of the three coordinate directions, j = 1, 2, 3,
there are five balance equations in total. The enthalpy form (3.83) is equivalent
to the energy balance (3.92).

In multicomponent mixtures N − 1 mass balances for the components have
to be added to the continuity equation, see (3.25), whilst the energy balance is
replaced by (3.81) or (3.87).

The system of equations still has to be supplemented by the so-called consti-
tutive equations or material laws which describe the behaviour of the materials
being investigated.

If the frequently used case of an incompressible Newtonian fluid, � = const,
d�/dt = 0, of constant viscosity is presumed, the continuity equation, momentum
and energy balances are transformed into

∂wi

∂xi

= 0 , (3.93)

�
dwj

dt
= � kj −

∂p

∂xj

+ η
∂2wj

∂xi
2

, (3.94)
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� c
dϑ

dt
= λ

∂2ϑ

∂xi
2

+ φ (3.95)

with

φ = η
∂wi

∂xj

(
∂wj

∂xi

+
∂wi

∂xj

)
Equation (3.94) is the Navier-Stokes equation for an incompressible fluid.

For multicomponent mixtures of N components, in addition to the continuity
equations for the total mass (3.93), we also need continuity equations for N − 1
components

d�A

dt
= −∂j∗Ai

∂xi

Γ̇A . (3.96)

The momentum balance (3.94) remains unchanged, whilst for the energy equation
we obtain (3.89):

� c
dϑ

dt
= λ

∂2ϑ

∂xi
2

+ φ +
N−1∑
K=1

j∗Ki

[
kKi −

∂

∂xi

(
∂h

∂ξK

)]
−∑

K

hKΓ̇K . (3.97)

Example 3.5: A so-called Couette flow consists of a fluid between two parallel, infinitely
large plates, where one plate — the top one in Fig. 3.11 — moves with constant velocity
wL whilst the other plate is kept still.

Fig. 3.11: Couette flow

A good example of this type of flow is oil in a friction bearing. Here we will consider an
incompressible steady-state flow, whose velocity profile is given by w1(x2). Furthermore
∂/∂t = 0, w2 = w3 = 0.
Find the velocity profile w1(x2).
The temperature of the upper plate is ϑL, and that of the lower is ϑ0 < ϑL. Calculate
and discuss the pattern of the temperature profile ϑ(x2), under the assumption that the
viscous dissipation cannot be neglected.
Velocities are only present along the x1-axis. This means that only the momentum equation
(3.94), for j = 1 has to be considered. In this equation the left hand side disappears, as
∂/∂t = 0, ∂w/∂x1 = 0, w2 = w3 = 0. Futhermore the mass force is k1 = 0, and also
∂p/∂x1 = 0, as the flow is caused by the movement of the upper plate and not because of
a pressure difference. The momentum equation is reduced to

0 = η
∂2w1

∂x2
2

, and therefore w1 =
x2

L
wL .
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Likewise, in the energy equation (3.95), all the terms on the left hand side disappear
because ∂/∂t = 0, ∂ϑ/∂x1 = 0, w2 = 0. This then becomes

λ
∂2ϑ

∂x2
2

+ φ = with φ = η

(
∂w1

∂x2

)2

= η
(wL

L

)2

.

Integration of the energy equation yields a parabolic temperature profile in x2

ϑ(x2) = − η

2λ

(wL

L

)2

x2
2 + a1 x2 + a0 .

The constants a0 and a1 follow out of the boundary conditions

ϑ(x2 = 0) = ϑ0 and ϑ(x2 = L) = ϑL .

With this the temperature profile is found to be

ϑ = ϑ0 +
η w2

L

2λ

[
x2

L
−
(x2

L

)2
]

+ (ϑL − ϑ0)
x2

L
.

The pattern of the temperature profile over x2 is shown on the right in Fig. 3.11. If the
upper plate does not move, wL = 0, the temperature profile is the same as that for pure
heat conduction between two flat plates.
For sufficiently large values of wL the temperature profile has a maximum, the position of
which is calculated from dϑ/dx2 = 0 to be

(x2)max =

[
λ

η w2
L

(ϑL − ϑ0) +
1

2

]
L .

It has to be that (x2)max ≤ L. This criterium is met, if

wL ≥
[
2λ

η
(ϑL − ϑ0)

]1/2

= w∗

L .

At velocities less than w∗

L very little energy will be dissipated, the maximum temperature
will coincide with the temperature of the upper plate. At velocities greater than w∗

L, so
much energy will be dissipated that at a certain region between the plates the fluid will be
heated to a temperature above that of the upper plate.

3.3 Influence of the Reynolds number on the

flow

A general solution of the Navier-Stokes equations has not been possible until now.
The main cause of these difficulties is the non-linear character of the differential
equations by the product of the inertia terms

�
dwj

dt
= �

∂wj

∂t
+ �wi

∂wj

∂xi

on the left hand side of the Navier-Stokes equation. Solutions are only known for
certain special cases. These are yielded because it is possible to determine under
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what conditions individual terms in the equation can be neglected compared to
others, thereby allowing the equation to be simplified to some degree. In order
to assess the magnitude of individual terms, the differential equation is sensibly
rearranged so that it contains dimensionless quantities. This means that the mag-
nitude of the terms is then independent of the measurement system chosen. This
type of presentation of the equation by dimensionless groups is always possible,
and is an expression of the general principle that the description and solution of
a physical problem have to be independent of the measurement system. The use
of problem orientated standard measures of the quantities is equivalent to the
introduction of dimensionless groups. We will consider here the Navier-Stokes
equation for incompressible flow (3.94) without body forces

�
dwj

dt
= �

∂wj

∂t
+ �wi

∂wj

∂xi

= − ∂p

∂xj

+ η
∂2wj

∂xi
2

. (3.98)

All velocities are divided by a reference velocity wα given for the problem, for
example the upstream velocity of a body in crossflow. In the same way all lengths
are divided by a reference length L given for the problem, an example of this is
the length over which the fluid flows across a body. With this we can then form
dimensionless quantities

w+
i = wi/wα , p+ = p/�w2

α

x+
i = xi/L , t+ = t wα/L

and then introduce them into the Navier-Stokes equation (3.98). The viscosity η
will be replaced by the kinematic viscosity ν according to η = ν�. This then gives

∂w+
j

∂t+
+ w+

i

∂w+
j

∂x+
i

= −∂p+

∂x+
j

+
1

Re

∂2w+
j

∂x+
i

2 (3.99)

with the already well known Reynolds number

Re =
wαL

ν
.

In addition we have the dimensionless form of the continuity equation for incom-
pressible flow

∂w+
i

∂x+
i

= 0 , (3.100)

which emerges from (3.93) after the introduction of the dimensionless groups
together with the boundary conditions, (3.99) and (3.100) completely describe
the flow. As a solution we obtain the velocity field w+

j (t+, x+
i ) and the pressure

field p+(t+, x+
i ).

Obviously the solution still depends on the Reynolds number. This can be
interpreted as the ratio of the inertia to friction forces. The inertia force �dw1/dt
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is of magnitude �wα/t, in which the time t is of magnitude L/wα and therefore,
the inertia force is of magnitude

�w2
α/L

The friction force η ∂2w1/∂x2
1 is of magnitude

ηwα/L2 .

The ratio of the two terms is of the magnitude of

�w2
α/L

ηwα/L2
=

�wαL

η
=

wαL

ν
= Re

and will just be described by the Reynolds number Re.
As we can see the inertia forces increase with the square of the velocity. They

increase far more rapidly with the velocity than the friction forces which are only
linearly dependent on the velocity. At large Reynolds numbers the disturbances
to the velocity that are always present cannot be dampened by the comparatively
small friction forces. This manifests itself in the fact that flows at a certain
Reynolds number, the so-called critical Reynolds number, change their pattern.

Whilst below the critical Reynolds number the fluid particles move along dis-
tinct stream lines and disturbances in the velocity rapidly disappear again, above
this critical Reynolds number disturbances in the velocity are no longer damp-
ened but intensified. This type of flow is called turbulent. The flow along distinct
streamlines is known as laminar. Turbulent flow is always three-dimensional, un-
steady and exhibits an irregular vortex pattern. The velocity at a fixed point
fluctuates irregularly around a mean value. The momentary values of velocity,
pressure, temperature and concentration are random quantities.

Solutions of the Navier-Stokes equations for laminar flows at large Reynolds
numbers only describe real flows if the solutions are stable against small distur-
bances. A momentarily small disturbance has to disappear again. This is no
longer the case above the critical Reynolds number. A momentarily small distur-
bance does not disappear, rather it grows. The flow form changes from laminar
to turbulent flow.

These occurences were first observed by Osborne Reynolds (1842–1912), when
he added a dye to the flow along the axis of a glass tube. In laminar flow a
thin thread of colour forms in the axis of the tube, which, due to the low rate of
molecular diffusion, hardly gets wider. Increasing the velocity so that the critical
Reynolds number is sufficiently surpassed, means that the thread is rapidly mixed
up into the flow. In tube flow it can be shown that at Reynolds numbers

Recrit = wmd/ν ≤ 2300 ,

formed with the velocity wm averaged over the cross section and the tube diameter
d, even in highly disturbed inlet flow, the flow always remains laminar. With a
flow that is especially free of disturbances critical Reynolds numbers have been
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measured up to 40 000. However because in most technical applications it is
impossible to have a flow completely free of disturbances, flow is only laminar
below Recrit = 2 300. At Reynolds numbers up to about 2 600 the flow has an
intermittent character. It varies periodically with time, partly laminar, partly
turbulent. Above Re = 2 600 flow is completely turbulent.

In transverse flow along a flat plate the transition from laminar to turbulent
flow occurs at Reynolds numbers wαL/ν between 3 · 105 and 5 · 105; wα is the
initial flow velocity, L is the length of the plate over which the fluid is flowing.
The heat and mass transfer in turbulent flows is more intensive than in laminar.
In general, at the same time there is also an increase in the pressure drop.

3.4 Simplifications to the Navier-Stokes equa-

tions

Simplifications to the Navier-Stokes equations are produced when the Reynolds
number is very small or very large, Re → 0 or Re → ∞. These limiting cases are
never reached in reality but they represent asymptotic solutions and are better
approximations the larger or smaller the Reynolds number is. We will investigate
these limiting cases in the following.

3.4.1 Creeping flows

The limiting case Re → 0 is known as creeping flow. It can be realised if the
velocity wα is very small, the density � is very low, for example in very dilute
gases, and the viscosity η is very large, i.e. in highly viscous fluids, or if the
typical body dimension L is very small as in flow around dust particles or fog
droplets. The viscous forces are far greater than the inertia, so the left hand side
of (3.99) is negligible in comparison to the term (1/Re)(∂2w+

j /∂x+2
i ). In contrast

to this the pressure gradient ∂p+/∂x+
j cannot be neglected, it is of magnitude

∆p

�w2
α

=
∆p/L

�w2
α/L

,

and contains the inertia forces as the small quantity in the denominator. The
pressure term can only be neglected if the pressure drop is significantly smaller
than the inertia forces. We can decide whether this applies, by first solving the
momentum and continuity equation. By neglecting the inertia forces in (3.99)
the non-linear terms drop out, and after transforming the equation back into
dimensioned quantities we are left with the linear differential equation

∂p

∂xj

= η
∂2wj

∂xi
2

. (3.101)
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A further differentiation provides

∂2p

∂xj
2

= η
∂

∂xj

∂2wj

∂xi
2

= η
∂2

∂xi
2

(
∂wj

∂xj

)
= 0 . (3.102)

As the flow was presumed to be incompressible, as a result of the continuity equa-
tion, ∂wj/∂xj = 0 holds. The pressure satisfies the potential equation. Equations
(3.101) and (3.102) are the basis of the hydrodynamic theory of lubrication, which
encompasses, among others, the oil flow in bearings.

3.4.2 Frictionless flows

If we presume that the flow is completely free of friction η = 0, then 1/Re = 0. The
friction term on the right hand side of (3.99) disappears and after transformation
to dimensioned quantities, we obtain

�
∂wj

∂t
+ �wi

∂wj

∂xi

= − ∂p

∂xj

. (3.103)

This is Euler’s equation. It contains, in the special case of one-dimensional steady-
state flow, the relationship

�w1

dw1

dx1

= − dp

dx1

which when integrated

�
w2

1

2
+ p = const

is known as Bernoulli’s equation. The influence of gravity here is neglected.
Whilst the Navier-Stokes equation (3.98) is of second order, Euler’s equation

(3.103) only contains first order terms. As its order is one lower than the Navier-
Stokes equation, after integration one less boundary condition can be satisfied.
As a result of this, the no-slip condition, zero velocity at the wall, cannot be
satisfied. Rather a finite velocity at the wall is obtained, as the absence of friction
was presumed, whilst in real flows the velocity is zero at the wall.

3.4.3 Boundary layer flows

As we have seen in the previous sections, the friction term in the Navier-Stokes
equation (3.98) may not be neglected for large Reynolds numbers Re → ∞, if
we wish to correctly describe the flow close to the wall, and satisfy the no-slip
condition. The region in which the friction forces may not be neglected compared
to the inertia forces is generally bounded by a very thin zone close to the wall, as
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Fig. 3.12: Velocities in a boun-
dary layer

the velocity increase and therefore also the shear stress are very large, as is clearly
illustrated in Fig. 3.12. The shear stress

τ21 = η
∂w1

∂x2

is especially large close to the wall. In contrast to this it is negligible a large
distance away from the wall. The layer close to the wall, in which the inertia and
friction forces are of the same magnitude, is called the velocity boundary layer
or simply the boundary layer. The calculation of the momentum, heat and mass
transfer in these types of flows is the object of boundary layer theory and will be
dealt with in the following section. The thickness of the boundary layer δ(x1) will
merely be guessed at here. This will only involve consideration of the inertia and
friction force acting in the direction of the x1-axis. The characteristic inertia term
is of the magnitude

�w2
α/x1 ,

if we replace the characteristic length by the distance from the leading edge. In
the x1-direction, the following friction terms appear in (3.98) for the flow being
considered here, which has a velocity w1(x1, x2)

η
∂2w1

∂xi
2

= η
∂2w1

∂x1
2

+ η
∂2w1

∂x2
2

.

Whilst the first term on the right hand side is of magnitude ηwα/x2
1 , the order of

magnitude of the second term is ηwα/δ2.
As the boundary layer is a great deal thinner when compared to the plate

length, at a sufficient distance from the front of the plate, δ 	 x1, the second
term for the friction inside the boundary layer is decisive.

Equating the orders of magnitude of the inertia and friction forces yields

�w2
α

x1

≈ ηwα

δ2

or
δ ≈ x1/

√
Rex1

(3.104)

with Rex1
= wαx1/ν. The boundary layer increases with

√
x1. It is thinner the

higher the Reynolds number. Within the narrow region of the boundary layer the
friction forces can clearly not be neglected, whilst outside the boundary layer they
have little significance, so that Euler’s equation holds for the external region.
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3.5 The boundary layer equations

3.5.1 The velocity boundary layer

At large Reynolds numbers, as has already been discussed, the flow area can be
split into two regions, the outer, frictionless flow which is described by Euler’s
equation, and the flow inside the boundary layer, which is characterised by the
fact that the friction forces are no longer negligible when compared to the inertia
forces. From Euler’s equation, for a particular pressure field, we obtain a velocity
profile in the outer space. However we are still not in a position to investigate
the resistances to flow. To do this we also need to know the velocity profile in the
boundary layer. Inside the boundary layer the velocity profile changes from a value
of zero at the wall to the asymptotic value of the velocity in the outer, frictionless
region. In the same way the values for the temperature and concentration change
from the values at the wall to the asymptotic values of the outer region.

In the following we will assume the velocities, temperatures and concentrations
in the outer region to be known, and consider a steady-state, two-dimensional flow.
The body forces are negligible. Flow along a curved wall can be taken to be two-
dimensional as long as the radius of curvature of the wall is much bigger compared
to the thickness of the boundary layer. The curvature is then insignificant for the
thin boundary layer, and it develops just as if it was on a flat wall. The curvature
of the wall is merely of influence on the outer flow and its pressure distribution.

We will introduce so-called boundary layer coordinates, Fig. 3.13, in which the
coordinate x1 = x is chosen to be along the surface of the body and x2 = y as
perpendicular to it. We will presume an initial velocity wα(y); its integral mean
value will be wm.

Density changes in flowing liquids are very small, if we disregard the extreme
cases, for example density changes caused by the very fast opening and closing of
valves in piping systems. So, in general, for flowing liquids, d�/dt → 0 holds, and
we can apply the continuity and momentum equations for incompressible flow.
The density changes in gases are also small, if the velocities ar so low that the
Mach number formed with the velocity of sound is Ma = wm/wS 	 1. We will
illustrate this for the example of a reversible, adiabatic flow. It follows from the

Fig. 3.13: Boundary layer in trans-
verse flow along a body
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equation of state p = p(�, s) that

dp =

(
∂p

∂�

)
s

d� .

The derivative here is (
∂p

∂�

)
s

:= w2
S

where wS is the velocity of sound. So, for a reversible, adiabatic flow, it holds that

dp = w2
S d� .

As no technical work is executed, we have

dwt = 0 = v dp + d

(
w2

2

)
,

when we neglect changes in the potential energy. With that it follows that

v dp = vw2
S d� = w2

S d�/�

and
d�

�
=

1

w2
S

v dp = − 1

w2
S

d

(
w2

2

)
= − w

w2
S

dw

or
d�

�
= −Ma2 dw

w
.

dw/w ≤ 1 is valid for the relative velocity change. The relative density variation
d�/� is small for Ma < 1, e.g. for Ma = 0.3, which corresponds to a velocity of
100m/s of air at ambient state, we obtain

d�

�
≤ 0.09 .

Therefore, gases at moderate velocities, without large changes in their tempera-
ture, may be assumed to be incompressible, d�/dt → 0, and their flow can be
approximately described by the continuity and momentum equations for incom-
pressible flow.

Under these presumptions, the continuity and Navier-Stokes equations (3.93)
and (3.94), with w1 = wx and w2 = wy, i.e. leaving the tensor system out, may
be written as

∂wx

∂x
+

∂wy

∂y
= 0 (3.105)

�wx

∂wx

∂x
+ �wy

∂wx

∂y
= −∂p

∂x
+ η

(
∂2wx

∂x2
+

∂2wx

∂y2

)
(3.106)

�wx

∂wy

∂y
+ �wy

∂wy

∂y
= −∂p

∂y
+ η

(
∂2wy

∂x2
+

∂2wy

∂y2

)
. (3.107)
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In order to estimate the order of magnitude of the individual terms in these
equations, dimensionless quantities are introduced. It is useful to measure the
distance y from the wall relative to a “mean boundary layer thickness”

δm ∼ L/Re1/2

with Re = wmL/ν, whilst the length L is chosen as the length scale for the flow
direction x, and the velocity wx is divided by the mean velocity wm in the initial
flow direction. Out of the continuity equation follows

wy ∼ wm

L
δm

and therefore
wy ∼ wm/Re1/2 .

As a standard for the velocity wy, wm/Re1/2 is introduced. In this manner the
following dimensionless quantities are yielded:

wx
+ =

wx

wm

, wy
+ =

wy

wm

Re1/2 , x+ =
x

L
, y+ =

y

δm

=
y

L
Re1/2 , p+ =

p

�w2
m

.

With these quantities (3.105) to (3.107) assume the following forms:

∂w+
x

∂x+
+

∂w+
y

∂y+
= 0 ,

w+
x

∂w+
x

∂x+
+ w+

y

∂w+
x

∂y+
= −∂p+

∂x+
+

1

Re

∂2w+
x

∂x+2 +
∂2w+

x

∂y+2 ,

1

Re

(
w+

x

∂w+
y

∂x+
+ w+

y

∂w+
y

∂y+

)
= −∂p+

∂y+
+

1

Re2

∂2w+
y

∂x+2 +
1

Re

∂2w+
y

∂y+2 .

For large Reynolds numbers Re → ∞ all terms with the factor 1/Re and even
more those with 1/Re2 will be vanishingly small. After neglecting these terms and
returning to equations with dimensions, we obtain the boundary layer equations,
which were first given in this form by L. Prandtl (1875–1953) [3.4] in 1904:

∂wx

∂x
+

∂wy

∂y
= 0 , (3.108)

�wx

∂wx

∂x
+ �wy

∂wx

∂y
= −∂p

∂x
+ η

∂2wx

∂y2
, (3.109)

∂p

∂y
= 0 . (3.110)

The two unknown velocities wx and wy are obtained from (3.108) and (3.109). The
pressure is no longer an unknown, as according to (3.110) the pressure p = p(x)
is not a function of the coordinate y normal to the wall. It is determined by the
outer flow region, that is the shape of the body around which the fluid is flowing
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or the channel through which the fluid flows. The pressure has the same value in
the boundary layer for any position x as in the outer flow region and can, with
the assistance of Euler’s equation (3.103), be replaced by the velocity wδ(x) of the
outer flow region:

�wδ

∂wδ

∂x
= −dp

dx
. (3.111)

The following boundary conditions are available for the solution of this system of
equations:
The zero velocity condition at the wall

y = 0 : wx = wy = 0 , (3.112)

the condition at the outer edge of the boundary layer, according to which the
velocity wy changes asymptotically to that of the outer flow region,

y → ∞ : wx = wδ (3.113)

and the initial condition is

x = 0 : wx = wα(y) . (3.114)

The boundary layer equations are non-linear and with the exception of a few
special cases, cannot be solved analytically.

3.5.2 The thermal boundary layer

In a similar way to the simplification of the Navier-Stokes equation for the calcula-
tions in the velocity boundary layer, the energy equation can also be simplified to
allow calculation of the temperatures in the thermal boundary layer. To explain
this further we we once again consider a body, as in Fig. 3.12, whose surface has
a certain wall temperature ϑ0, which is different from the fluid temperature ϑα

at the leading edge. As before we have presumed steady-state, two-dimensional
flow. Large temperature and pressure changes are to be excluded, so that we can
assume constant thermal conductivity. Liquids are, as already mentioned, on the
whole incompressible, d�/dt = 0, whilst for gases, the contribution to the energy
balance from the density changes, even if they are small, still has to be estimated.
Therefore we will use the temperature form (3.85) of the energy equation, which
is valid for both incompressible and compressible flow

� cp

(
wx

∂ϑ

∂x
+ wy

∂ϑ

∂y

)
= λ

(
∂2ϑ

∂x2
+

∂2ϑ

∂y2

)
+

T

v

(
∂v

∂ϑ

)
p

dp

dt
+ φ (3.115)

and estimate the magnitude of the individual terms as before, in which we will
use some of the dimensionless quantities that have already been defined:

w+
x =

wx

wm

; w+
y =

wy

wm

Re1/2 ; x+ =
x

L
; p+ =

p

�w2
m

.
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As a standard for the y coordinate the mean thickness of the thermal boundary
layer is introduced. An approximation of the thermal boundary layer has already
been given in (3.8)

δT ∼ x

(
a

wmx

)1/2

where wm was presumed to be a constant velocity.
The thermal diffusivity is defined here by a := λ/�cp. The mean thickness δTm

of the thermal boundary layer

δTm ∼ L

(
a

wmL

)1/2

,

is determined by this equation, except for the still unknown proportionality factor.
The quantity which exists here

wmL

a
is the already well known Péclet number Pe. It is linked with the Reynolds number
by

Pe =
wmL

a
=

wmL

ν

ν

a
= Re Pr .

Pr = ν/a is the Prandtl number. With δTm we form the dimensionless coordinate

y+ =
y

δTm

=
y

L
Pe1/2 .

In addition a dimensionless time is introduced

t+ =
t

L
wm

and as the dimensionless temperature we have

ϑ+ =
ϑ − ϑ0

ϑα − ϑ0

.

By this normalisation the temperature in the thermal boundary layer varies be-
tween the values 0 ≤ ϑ+ ≤ 1. With these dimensionless quantities the energy
equation (3.115) can be rearranged into

w+
x

∂ϑ+

∂x+
+ Pr1/2w+

y

∂ϑ+

∂y+
=

1

Pe

∂2ϑ+

∂x+2 +
∂2ϑ+

∂y+2

+
w2

m

cp∆ϑ

T

v

(
∂v

∂ϑ

)
p

dp+

dt+
+

φL

wm�cp∆ϑ
(3.116)

with ∆ϑ = ϑα − ϑ0. The viscous dissipation φ which appears in this is of the
magnitude (see also Example 3.3)

φ ∼ η

(
∂wx

∂y

)2

∼ η
w2

m

δ2
m

or with δm ∼ L/Re1/2
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φ ∼ η
w2

m

L2
Re = η

w2
m

L2

wmL�

η
=

w3
m�

L
.

With that the magnitude of the last term in (3.116) is

φL

wm�cp∆ϑ
∼ w2

m

cp∆ϑ
.

The quantity
w2

m

cp∆ϑ
= Ec

is the already well known Eckert number. It is the ratio of the average kinetic
energy to the average internal energy in the boundary layer. In heat and mass
transfer problems it is very small, except when the flow is at high velocity or above
the velocity of sound. These types of flows were however discounted here. This
means that the contribution of the viscous dissipation to the energy equation can
be neglected. In the penultimate expression of (3.116)

w2
m

cp∆ϑ

T

v

(
∂v

∂ϑ

)
p

dp+

dt+
= Ec

T

v

(
∂v

∂ϑ

)
p

dp+

dt+

for ideal gases we have
T

v

(
∂v

∂ϑ

)
p

= 1 ,

whilst for liquids, because v = v0 = const the expression disappears. As the
Eckert number Ec is very small, the penultimate expression can also be neglected
for gases. We have presumed large Reynolds numbers Re → ∞, and the Prandtl
number is of order 1, and so the first term on the left hand side of (3.116) can
also be neglected. The heat conduction in the direction of flow x is negligible in
comparison with that through the thin boundary layer. After transforming this all
back into dimensioned coordinates we get the following equation for the thermal
boundary layer

�cpwx

∂ϑ

∂x
+ �cpwy

∂ϑ

∂y
= λ

∂2ϑ

∂y2
. (3.117)

Corresponding considerations are also valid for the thermal boundary layer in multicompo-

nent mixtures. The energy transport through conduction and diffusion in the direction of the
transverse coordinate x is negligible in comparison to that through the boundary layer. The en-
ergy equation for the boundary layer follows from (3.97), in which we will presuppose vanishing
mass forces kKi:

�cpwx
∂ϑ

∂x
+ �cpwy

∂ϑ

∂y
= λ

∂2ϑ

∂y2
−

N−1∑
K=1

j∗Ky

∂

∂y

(
∂h

∂ξK

)
−
∑
K

hK Γ̇K . (3.118)

Equation (3.118) also holds in this form for multicomponent mixtures consisting of more than
two components.
For a binary mixture of components A and B, the enthalpy of the mixture is

h = h0AξA + h0B(1 − ξA) + ∆h ,
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when ∆h is the mixing enthalpy and h0A, h0B are the enthalpies of the pure substances A and
B. The enthalpy of mixing can be neglected for gases far away from the critical state, and by
definition it disappears for ideal liquid mixtures. Then

∂h

∂ξA
= h0A − h0B .

Furthermore for an incompressible pure fluid, due to v = v0 =const

dh = cp dϑ + v0 dp

and
∂h

∂y
= cp

∂ϑ

∂y

as ∂p/∂y = 0 in the boundary layer. With this we obtain

∂

∂y

∂h

∂ξA
= (cpA − cpB)

∂ϑ

∂y

where cpA and cpB are the specific heat capacities of the pure substances A and B. The energy
equation of the boundary layer of an incompressible binary mixture then reads

�cpwx
∂ϑ

∂x
+ �cpwy

∂ϑ

∂y
= λ

∂2ϑ

∂y2
− j∗Ay(cpA − cpB)

∂ϑ

∂y
− (hA − hB) Γ̇A (3.119)

with

j∗Ay = −�D
∂ξA

∂y
.

If both the substances have the same specific heat capacities, the term for mass transfer drops out
of the equation. However in all other cases it does not assume a negligible value. In particular for
substances such as water vapour and air, the specific heat capacities are so different that the mass
transfer term cannot be removed. In addition it should be recognised that the energy equation
agrees with that for pure substances when the specific heat capacities of the two components
are equal and when no chemical reactions occur.

Example 3.6: In the energy equation (3.119) for a binary mixture consisting of water
vapour and air at 100 ◦C estimate the magnitude of the individual terms. Chemical reac-
tions are excluded. The specific heat capacity of the water vapour is cpA = 1.8477kJ/kgK,
and that of the air cpB = 1.00258kJ/kgK. In addition the Lewis number is Le = a/D = 1.
Introducing the dimensionless quantities which will be used for the derivation of the energy
equation for the boundary layer for pure substances, gives

w+
x =

wx

wm
; w+

y =
wy

wm
Re1/2; x+ =

x

L
; y+ =

y

L
Pe1/2 ;

ϑ+ =
ϑ − ϑ0

ϑα − ϑ0
and additionally ξ+

A =
ξA − ξA0

ξAα − ξA0
.

With that, (3.119) is transformed into

w+
x

∂ϑ+

∂x+
+ Pr1/2 w+

y

∂ϑ+

∂y+
=

∂2ϑ+

∂y+2 +
(ξAα − ξA0) �D (cpA − cpB)L

wm � cp L2
Pe

∂ξ+
A

∂y+

∂ϑ+

∂y+
.

Due to the fact that Pe = wm L/a we can then write for this

w+
x

∂ϑ+

∂x+
+ Pr1/2 w+

y

∂ϑ+

∂y+
=

∂2ϑ+

∂y+2 +
(ξAα − ξA0) (cpA − cpB)

cp

D

a

∂ξ+
A

∂y+

∂ϑ+

∂y+
.
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The magnitude of the last term is determined by its coefficient. This is yielded by setting
for cp, a mean value (cpA + cpB)/2 = 1.42514kJ/kgK and putting ξAα − ξA0 = 1, that
means that we assume the mass fraction of water vapour to be low ξAα = 0 in the core
flow, and large ξA0 = 1 at the wall, because this is where the water vapour condenses.
With a/D = 1 the magnitude of the coefficient is 0.593. As all the other expressions are
of order 1 the mass transfer term cannot be neglected. This would only be possible if
ξAα − ξA0 was very small and of the order 10−2.

3.5.3 The concentration boundary layer

The same reasoning as before, whereby the mass transfer in the direction of flow
is negligible in comparison to that through the boundary layer, leads to the equa-
tions for the concentration boundary layer. These are found from the component
continuity equations (3.25) by neglecting the relevant expressions, to be

�wx

∂ξA

∂x
+ �wy

∂ξA

∂y
= −∂j∗Ay

∂y
+ Γ̇A , (3.120)

with j∗Ay = −�D ∂ξA/∂y for a binary mixture.

3.5.4 General comments on the solution of boundary layer
equations

The equations (3.109), (3.117) or (3.118) and (3.120) for the velocity, thermal and
concentration boundary layers show some noticeable similarities. On the left hand
side they contain “convective terms”, which describe the momentum, heat or mass
exchange by convection, whilst on the right hand side a “diffusive term” for the
momentum, heat and mass exchange exists. In addition to this the energy equa-
tion for multicomponent mixtures (3.118) and the component continuity equation
(3.25) also contain terms for the influence of chemical reactions. The remaining
expressions for pressure drop in the momentum equation and mass transport in
the energy equation for multicomponent mixtures cannot be compared with each
other because they describe two completely different physical phenomena.

The equations are the basis for many technical applications. However, before
we investigate particular solutions, it would be sensible to make some general
remarks on the solution of these equations.

To this effect, the equations will once again be brought into a dimensionless
form. As we are only interested in discussing the characteristic features of the
solution, and not as in the derivation of the boundary layer equations, where an
estimation of the magnitude of the individual terms in a particular equation was
required, all the quantities in the equations will be made dimensionless in the
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same way. We will now introduce the following dimensionless quantities

x+ =
x

L
; y+ =

y

L
; w+

x =
wx

wm

; w+
y =

wy

wm

;

ϑ+ =
ϑ − ϑ0

ϑα − ϑ0

; ξ+
A =

ξA − ξA0

ξAα − ξA0

; p+ =
p

�w2
m

.

Chemical reactions will not play any role in this discussion. The considerations
here will be restricted to pure substances or binary mixtures which have com-
ponents of approximately the same specific heat capacity. The energy equation
(3.119) then agrees with that for pure substances (3.117). After introduction of
the dimensionless quantities the continuity equation is

∂w+
x

∂x+
+

∂w+
y

∂y+
= 0 , (3.121)

whilst the momentum equation becomes

w+
x

∂w+
x

∂x+
+ w+

y

∂w+
x

∂y+
= −∂p+

∂x+
+

1

Re

∂2w+
x

∂y+2 , (3.122)

the energy equation reads

w+
x

∂ϑ+

∂x+
+ w+

y

∂ϑ+

∂y+
=

1

RePr

∂2ϑ+

∂y+2 (3.123)

and the continuity equation for component A is

w+
x

∂ξ+
A

∂x+
+ w+

y

∂ξ+
A

∂y+
=

1

ReSc

∂2ξ+
A

∂y+2 (3.124)

with the Reynolds number Re = wmL/ν, the Prandtl number Pr = ν/a and the
Schmidt number Sc = ν/D.

As solutions to the continuity and momentum equations, for a given flow and
thereby a given pressure drop ∂p+/∂x+, we obtain

w+
x = f(x+, y+, Re) and w+

y = f(x+, y+, Re) .

Out of this the shear stress at the wall is found to be

τ0 = η

(
∂wx

∂y

)
y=0

= η

(
∂w+

x

∂y+

)
y+=0

wm

L

and the friction factor

cf =
τ0

�w2
m/2

=
2

Re

(
∂w+

x

∂y+

)
y+=0

=
2

Re
f(x+, Re) . (3.125)
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For a given shape of the body, the friction factor only depends on the coordi-
nate x+ and the Reynolds number, not on the type of fluid.

The solution to the energy equation is of the form

ϑ+ = f(x+, y+, Re, Pr) .

This yields the heat flux transferred to be

q̇ = −λ

(
∂ϑ

∂y

)
y=0

= −λ

(
∂ϑ+

∂y+

)
y+=0

ϑα − ϑ0

L
.

On the other hand the heat transfer coefficient is defined by

q̇ = α(ϑ0 − ϑα) .

Setting these expressions equal to each other gives

αL

λ
= Nu =

(
∂ϑ+

∂y+

)
y+=0

= f(x+, Re, Pr) . (3.126)

The Nusselt number is equal to the dimensionless temperature gradient at the
wall. It is a universal function of x+, Re and Pr for every fluid with a body of a
given shape. The mean Nusselt number is independent of x+, as it is the integral
mean value over the heat transfer surface

Num =
αmL

λ
= f(Re, Pr) . (3.127)

Taking into consideration the velocity field w+
x (x+, Re) and w+

y (y+, Re), we obtain,
from the component continuity equation (3.124), as a general solution

ξ+
A = f(x+, y+, Re, Sc) .

The mass flux transferred is

j∗A = −�D

(
∂ξA

∂y

)
y=0

= −�D

(
∂ξ+

A

∂y+

)
y+=0

ξAα − ξA0

L
.

For a vanishing convective flow across the boundary layer the mass transfer coef-
ficient is defined by

j∗A = β� (ξA0 − ξAα) .

It follows from the two equations that

βL

D
= Sh =

(
∂ξ+

A

∂y+

)
y+=0

= f(x+, Re, Sc) . (3.128)

The Sherwood number is equal to the dimensionless gradient of the concentration
profile at the wall. It is a universal function of x+, Re and Sc independent of the
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type of fluid for a body of a certain shape. The mean Sherwood number, as the
integral mean value over the mass transfer surface, is independent of x+:

Shm =
βmL

D
= f(Re, Sc) . (3.129)

As soon as the functional relationships between the Nusselt, Reynolds and Prandtl
numbers or the Sherwood, Reynolds and Schmidt numbers have been found, be
it by measurement or calculation, the heat and mass transfer laws worked out
from this hold for all fluids, velocities and length scales. It is also valid for all
geometrically similar bodies. This is presuming that the assumptions which lead
to the boundary layer equations apply, namely negligible viscous dissipation and
body forces and no chemical reactions. As the differential equations (3.123) and
(3.124) basically agree with each other, the solutions must also be in agreement,
presuming that the boundary conditions are of the same kind. The functions
(3.126) and (3.128) as well as (3.127) and (3.129) are therefore of the same type.
So, it holds that

Shm

Num

=
f(Re, Sc)

f(Re, Pr)
.

As already explained, section 1.5, these types of function can frequently be ap-
proximated by power products over a wide range of states

Num = c Ren Prm and Shm = c Ren Scm .

Out of this follows
Shm

Num

=
λβm

αmD
=
(

Sc

Pr

)m

=
(

a

D

)m

or
βm

αm

=
D

λ

(
a

D

)m

=
1

� cp

Lem−1

the well known Lewis relationship, see also (1.198), with the Lewis number Le =
a/D, from which the mass transfer coefficient βm can be calculated, if the heat
transfer coefficient is known. A good approximation is m = 1/3.

The equations (3.123) and (3.124) agree for Pr = Sc = 1, as well as with the
momentum equation (3.122), if we presuppose vanishing pressure drop. Under
the assumption of the same boundary conditions, the velocity profile agrees with
the temperature and the concentration profile. Therefore(

∂w+
x

∂y+

)
y+=0

=
τ0

ηwm

=

(
∂ϑ+

∂y+

)
y+=0

= Nu =

(
∂ξ+

A

∂y+

)
y+=0

= Sh

or after introduction of the friction factor cf = τ0/(�w2
m/2) and the Reynolds

number Re = wmL/ν

Nu

Re
=

Sh

Re
=

cf

2
for Pr = Sc = 1 . (3.130)
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In this the Nusselt number Nu = αL/λ and the Sherwood number Sh = βL/D
are formed with the local heat and mass transfer coefficients. The ratio Nu/Re
and Sh/Re is independent of the characteristic length as this is also contained
in the Reynolds number Re = wmL/ν. The equation (3.130) is known as the
Reynolds analogy. The heat and mass transfer coefficients can be calculated with
this as long as the friction factor is known.

3.6 Influence of turbulence on heat and mass

transfer

A turbulent flow is characterised by velocity fluctuations which overlap the main
flow. The disturbed flow is basically three-dimensional and unsteady. At suf-
ficiently high Reynolds numbers, the boundary layer is also no longer laminar
but turbulent, such that the velocities, temperatures and concentrations all vary
locally at a fixed position, as Fig. 3.14 shows for a velocity component wi. At
every position it can be formed as the sum of a time-mean value (T here is the
integration time)

w̄i = lim
T→∞

1

T

T∫
0

wi(xj , t) dt = w̄i(xj) (3.131)

and a fluctuating component w′
i:

wi = w̄i + w′
i .

Fig. 3.14 shows a flow with a statistically steady time-mean velocity because the
velocity at a fixed point is independent of time after a sufficiently long time has
passed. It is obtained by the formation of a mean value as defined in (3.131). A
flow can also be unsteady with respect to its time-mean velocity, for example if a
fluid flows through a pulsating plastic duct. Then w̄i(xj , t), and the centre line in
Fig. 3.14 would still change with time.

Fig. 3.14: Velocity fluctuations at a
fixed position in a statistically steady
flow

Only flows steady with respect to the time-mean properties will be considered
here. The time-mean value of the fluctuation velocity is, by definition, equal to
zero, w̄′

i = 0. Correspondingly, pressure, temperature and concentration can also
be split into mean and fluctuating values

p = p̄ + p′ , ϑ = ϑ̄ + ϑ′ , ξA = ξ̄A + ξ′A .
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Incompressible flow will be presumed, so the splitting of the density into these
two values is not required.

Measurements have shown that fluid particles of different sizes cause turbulent
fluctuations and that they simultaneously rotate on their axes. This produces
a spectrum of eddies of different size and frequency. The smallest eddies are
of a magnitude from 0.1 to 1mm, still far greater than the mean free path of
molecules, 10−14 mm. The eddy consists of a sufficiently large number of molecules,
such that the balance equations are still valid. Velocity, pressure, temperature
and concentration are momentary values at each point and can be found using
numerical methods from the equations for three-dimensional transient flow. In
order to carry this out the time step is chosen to be exceptionally small due to
the high frequency of the turbulent fluctuations of 104 s−1 to 1 s−1. Even with
the most powerful computers now available this would lead to a calculation time
that cannot be accomplished. Anyway in heat and mass transfer the interest
does not lie in the fluctuations with time, rather the mean values. However
these are also not particularly easy to determine because of the non-linearity
of the convective terms in the balance equations, fluctuations in the velocity,
temperature and concentration also have an influence on the mean values. The
balance equations formed with these terms contain additional expressions which
are not yielded from the equations themselves. Phenomenological statements or
statistical turbulence models have to be developed for this. In order to show this
we will consider a boundary layer flow. Chemical reactions are excluded from this
discussion. In addition we will only consider pure substances or binary mixtures
with components that have approximately the same specific heat capacity, so that
the energy equation agrees with that for pure substances.

Splitting the velocity into a mean value and a fluctuation velocity, wi = w̄i+w′
i,

in the continuity equation (3.93) leads to

∂

∂xi

(w̄i + w′
i) =

∂w̄i

∂xi

+
∂w′

i

∂xi

= 0 .

After averaging this over time remains

∂w̄i

∂xi

= 0 . (3.132)

The convective term in the momentum equation (3.94) can, under consideration
of the continuity equation ∂wi/∂xi = 0, also be written as

wi

∂wj

∂xi

=
∂

∂xi

(wiwj) .

From which we get

∂

∂xi

[(w̄i + w′
i)(w̄j + w′

j)] =
∂

∂xi

[
w̄iw̄j + w̄iw

′
j + w̄′

iw̄j + w′
iw

′
j

]
.



306 3 Convective heat and mass transfer. Single phase flow

After time averaging, all the terms linear in w′
j and w′

i disappear, and with (3.132),
this leaves

wi

∂wj

∂xi

= w̄i

∂w̄j

∂xi

+
∂

∂xi

(w′
iw

′
j) .

Correspondingly, for the convective term in the energy equation (3.95), we obtain

wi

∂ϑ

∂xi

= w̄i

∂ϑ̄

∂xi

+
∂

∂xi

(w′
iϑ

′)

and for the convective term in the component continuity equation

wi

∂ξA

∂xi

= w̄i

∂ξ̄A

∂xi

+
∂

∂xi

(w′
iϑ

′) .

Therefore, the boundary layer equations (3.108), (3.109), (3.117) and (3.120) have
the following form for turbulent flow under the assumptions mentioned above, if
we ignore the tensor notation and put w1 = wx, w2 = wy, x1 = y and x2 = y:

∂w̄x

∂x
+

∂w̄y

∂y
= 0 (3.133)

�

(
w̄x

∂w̄x

∂x
+ w̄y

∂w̄x

∂y

)
= −∂p̄

∂x
+

∂

∂y

(
η

∂w̄x

∂y
− �w′

xw
′
y

)
(3.134)

�cp

(
w̄x

∂ϑ̄

∂x
+ w̄y

∂ϑ̄

∂y

)
=

∂

∂y

(
λ

∂ϑ̄

∂y
− �cpw

′
yϑ

′
)

(3.135)

�

(
w̄x

∂ξ̄A

∂x
+ w̄y

∂ξ̄A

∂y

)
=

∂

∂y

(
�D

∂ξ̄A

∂y
− �w′

yξ
′
A

)
. (3.136)

The equations are the same as those for laminar flow, except for the terms of the
form a′b′. They account for the effect of the turbulent fluctuations on momentum,
heat and mass transfer.

The expression −�w′
xw

′
y (SI units N/m2) is an averaged momentum flow per

unit area, and so comparable to a shear stress: A force in the direction of the y-axis
acts at a surface perpendicular to the x-axis. Terms of the general form −�w′

iw
′
j

are called Reynolds’ stresses or turbulent stresses. They are symmetrical tensors.
In a corresponding manner, the energy equation (3.135), contains a “turbulent
heat flux” of the form

q̇i = −�cpw
′
iϑ

′

and in the component continuity equation a “turbulent diffusional flux” of the
form

j∗Ai = −�w′
iξ

′
A

appears.
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As a result of these equations, a total shear stress can also be defined

(τxy)tot = η
∂wx

∂y
− �w′

xw
′
y (3.137)

and correspondingly a total heat flux

(q̇y)tot = −
(
λ

∂ϑ

∂y
− �cpw

′
yϑ

′
)

= −�cp

(
a

∂ϑ

∂y
− w′

yϑ
′
)

(3.138)

and a total diffusional flux

(j∗Ay)tot = −�

(
D

∂ξA

∂y
− w′

yξ
′
A

)
. (3.139)

They each consist of a molecular and a turbulent contribution. Momentum, heat
and mass transfer are increased by the turbulent contribution.

The equations do not make any statement as to how the turbulent contribu-
tions are calculated. An additional assumption has to be made for this. A partic-
ularly simple rule was made by J.V. Boussinesq (1842–1929), who suggested the
following for the Reynolds’ stress

−� w′
xw

′
y := εt

∂w̄x

∂y
. (3.140)

In which εt is the “turbulent viscosity” or “eddy diffusivity for momentum transfer”
(SI units m2/s). This then allows the total shear stress to be expressed by

(τxy)tot = � (ν + εt)
∂w̄x

∂y
. (3.141)

As the Reynolds stress has to disappear approaching the wall, the turbulent vis-
cosity cannot be constant. Flows adjacent to the wall cannot be described by
Boussinesq’s rule, when εt = const is presumed. However for flows like those
which occur in turbulent free jets, the assumption of constant turbulent viscos-
ity is highly suitable. Corresponding to the Boussinesq rule a “turbulent thermal
diffusivity” at (SI units m2/s) is introduced, through

at

∂ϑ̄

∂y
:= −w′

yϑ
′ . (3.142)

It is at = λt/�cp with the “turbulent thermal conductivity” or “eddy diffusivity for
heat transfer” λt (SI units W/K m). The total heat flux is

(q̇y)tot = −�cp (a + at)
∂ϑ̄

∂y
. (3.143)

In addition to this a “turbulent diffusion coefficient” or “eddy diffusivity for mass
transfer” Dt (SI units m2/s) is defined by

Dt

∂ξ̄A

∂y
:= w′

yξ
′
A . (3.144)
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Fig. 3.15: Laminar and turbulent
velocity profile in flow over a body

With that the total mass flux is

(j∗Ay)tot = −� (D + Dt)
∂ξ̄A

∂y
. (3.145)

Just like the turbulent viscosity, the turbulent fractions of the thermal dif-
fusivity, thermal conductivity and the diffusion coefficient have to disappear at
the solid wall. In contrast, at some distance away from the wall the turbulent
exchange is far more intensive than the molecular motion. This leads to good
mixing of the fluid particles. The result of this is that the velocity, temperature
and concentration profiles are more uniform in the core than those in laminar
flows, as shown in Fig. 3.15 for the velocity profiles in flow over a body.

The velocity at the wall increases more steeply in turbulent flow than in lami-
nar. The shear stress and with that the resistances to flow are larger in turbulent
flows than in laminar. Likewise the temperature and concentration gradients at
the surface and therefore the heat and mass transfer rates are larger for turbulent
flows than in laminar ones. Therefore turbulent flows are to be strived for in heat
and mass transfer and for this reason they are present in most technical applica-
tions. However better heat and mass transfer has to be paid for by the increased
power required for a pump or blower to overcome the resistances to flow.

3.6.1 Turbulent flows near solid walls

In many technical applications, for example flows in channels, the velocity profile
close to the wall is only dependent on the distance from the wall. Indicating the
velocity parallel to the wall with wx and the coordinate normal to the wall by
y, then wx(y), whilst the other velocity components disappear, wy = wz = 0.
This type of flow is known as stratified flow. In steady-state, laminar flows with
vanishing pressure gradients, the momentum equation (3.98) is simplified to

∂

∂y

(
η

∂wx

∂y

)
= 0 or

∂τxy

∂y
= 0 ,

which yields a linear velocity profile wx(y) and a constant shear stress τxy, that is
τxy = τ0 = const.
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In the case of steady-state, turbulent, stratified flows with vanishing pressure
gradients according to (3.134) we obtain

∂

∂y

(
η

∂w̄x

∂y
− �w′

xw
′
y

)
= 0 ,

from which, by integration

η
∂w̄x

∂xy

− �w′
xw

′
y = const = τ0 (3.146)

follows. The constant of integration is equal to the shear stress, as at the wall,
y = 0, the Reynolds’ stresses disappear, �w′

xw
′
y = 0. In contrast to laminar flow,

the velocity w̄x(y) is no longer a linear function of y.
Equation (3.146) can be rearranged into

τ0

�
= ν

∂w̄x

∂y
− w′

xw
′
y . (3.147)

As we can see τ0/� has the dimensions of the square of the velocity. So

wτ :=
√

τ0/� (3.148)

is known as the friction velocity. With this (3.147) can also be written as the
differential equation

1 =
d(w̄x/wτ )

d(wτy/ν)
− w′

xw
′
y

w2
τ

. (3.149)

The velocity profile obeys a function of the form

w̄x

wτ

= w̄+
x = f

(
wτy

ν

)
= f(y+) , (3.150)

and in addition we have

w′
xw

′
y

w2
τ

= g
(

wτy

ν

)
= g(y+) . (3.151)

Eq. (3.150) represents the wall law for turbulent flow, first formulated by Prandtl
in 1925. The functions f(y+) and g(y+) are of a universal nature, because they
are independent of external dimensions such as the height of a channel and are
valid for all stratified flows independent of the boundary layer thickness.

In order to calculate w̄x/wτ by solving the differential equation (3.149), the
Reynolds stress w′

xw
′
y has to be known. The hypothesis introduced by Boussinesq

(3.140) is unsuitable for this, as according to it, the Reynolds stress does not
disappear at the wall. However, the condition w′

xw
′
y = 0 at the wall is satisfied

by Prandtl’s mixing length theory, which will now be explained. In order to do
this we will consider a fluid element in a turbulent boundary layer, at a distance
y from the wall, Fig. 3.16. It has, at a distance y, the mean velocity w̄x(y) and
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Fig. 3.16: For Prandtl’s mixing
length theory

may approach the wall over a small length l′ with the velocity w′
y < 0. If, during

this, the fluid element maintains its original velocity, at the new position it will
have a velocity that is greater by ∆w̄x than that of its surroundings. The velocity
difference

∆w̄x = w̄x(y) − w̄x(y − l′) = l′
∂w̄x

∂y

is a measure of the fluctuation velocity w′
x. The fluid element displaces another

at this new position, thereby generating a cross velocity w′
y, which with the as-

sumption of small fluctuation velocities, is proportional to the fluctuation velocity.
Therefore w′

x and w′
y are proportional to l′∂w̄x/∂y and so

τt = −�w′
xw

′
y = �kl′2

∣∣∣∣∂w̄x

∂y

∣∣∣∣ ∂w̄x

∂y

or with kl′2 = l2

τt = −�w′
xw

′
y = �l2

∣∣∣∣∂w̄x

∂y

∣∣∣∣ ∂w̄x

∂y
. (3.152)

Using the notation with the absolute lines ensures that, corresponding to Newton’s
law for laminar flow

τxy = η
∂wx

∂y
,

the turbulent shear stress τt has the same sign as the velocity gradient ∂w̄x/∂y.
According to (3.152), the turbulent viscosity is

εt = l2
∣∣∣∣∂w̄x

∂y

∣∣∣∣ . (3.153)

The quantity l is known as the mixing length. As the Reynolds’ stresses disappear
at the wall, Prandtl chose the simple hypothesis

l = κy . (3.154)

This means

τt = −�w′
xw

′
y = �κ2y2

∣∣∣∣∂w̄x

∂y

∣∣∣∣ ∂wx

∂y
. (3.155)

Equation (3.149), for stratified flow, is transformed into

1 =
d(w̄x/wτ )

d(wτy/ν)
+ κ2y2

(
dw̄x

dy

)2
1

w2
τ

. (3.156)
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As (dw̄x/dy) > 0, here |dw̄x/dy|(dw̄x/dy) is written as (dwx/dy)2. With the
abbreviations

w̄+
x =

w̄x

wτ

and y+ =
wτy

ν

we obtain

1 =
dw̄+

x

dy+
+ κ2y+2

(
dw̄+

x

dy+

)2

. (3.157)

The following solutions are yielded by integration
a) In the laminar sublayer, y → 0 and therefore y+ → 0, the second term is

negligible, giving
w̄+

x = y+ (3.158)

or taking into account the definitions for w̄+
x , y+ and wτ

√
τ0/�:

τ0 = η
w̄x

y
.

The velocity profile is replaced by a straight line in the laminar sublayer.
b) In the completely turbulent region, a long distance away from the wall,

y → ∞ and therefore y+ → ∞, the second term outweighs the first, and it
holds that

1 = κ2y+2

(
dw̄+

x

dy+

)2

or

dw̄+
x =

1

κ

dy+

y+
.

Integration yields a logarithmic velocity profile

w̄+
x =

w̄x

wτ

=
1

κ
ln y+ + c . (3.159)

The constants κ and c have to be found by experiment. Values for them
have been found to be κ ≈ 0.4 and c ≈ 5.

In reality the laminar sublayer is continuously transformed into the fully turbu-
lent region. A transition region exists between the two, known as the buffer layer,
so that the wall law of velocity can be split into three areas, whose boundaries
are set by experimentation. The laminar sublayer extends over the region

0 < y+ < 5 ,

the buffer-layer region over
5 < y+ < 60

and the fully turbulent core over

y+ > 60 .

Fig. 3.17 shows the complete pattern for the velocity profile w̄+
x as a function of

y+.
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Fig. 3.17: Universal velocity distri-
bution law in the turbulent boundary
layer a: Eq. (3.158) b: Eq. (3.159).
The abcissa is logarithmic.

3.7 External forced flow

In this section we will focus on the heat and mass transfer from or to the surface of
a body with external flow. Neighbouring bodies should not be present or should
be so far away that the boundary layers on the bodies over which the fluid is
flowing can develop freely. Velocities, temperatures and concentrations shall only
change in the boundary layer and be constant in the flow outside of the boundary
layer. A forced flow, which we will consider here, is obtained from a pump or
blower. Local heat and mass transfer coefficients are yielded from equations of
the form

Nu = f(x+, Re, Pr) , Sh = f(x+, Re, Sc) ,

whilst their mean values are given by

Num = f(Re, Pr) , Shm = f(Re, Sc) .

In many cases the shape of the body over which the fluid is flowing and with
that the flow pattern are so involved that the functional relationship between the
quantities can only be found experimentally. This requires the measurement of the
heat and mass flows transferred at the body or a geometrically similar model and
also the associated temperature and concentration differences. This then allows
the calculation of the heat and mass transfer coefficients as

α =
Q̇

A∆ϑ
and β =

Ṁ

A�∆ξ

and the representation of the Nusselt and Sherwood numbers as functions of the
other dimensionless numbers Re, Pr and Re, Sc respectively. The power product
rules already mentioned are most suitable for the representation of these as equa-
tions. The heat and mass transfer coefficients for simple bodies can be calculated
by solving the boundary layer equations. This will be discussed in the following
sections by means of several characteristic examples.
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3.7.1 Parallel flow along a flat plate

Flat plates with parallel flow exist, for example in plate heat exchangers. The fins
on a finned tube are exposed to parallel flows. Curved surfaces like aerofoils or
turbine blades can often be considered, with reference to the boundary layer, to be
flat plates, because their boundary layers are almost always small in comparison
with the radius of curvature. A laminar boundary layer develops right from the
front of the plate, Fig. 3.18. It becomes unstable for a certain length, more exactly
from a certain Reynolds number Re = wmxl/ν

>∼ 6 ·104 formed with the length xl

onwards. Whilst below this Reynolds number — we talk of the indifference point
of the flow — the flow is always laminar, the small disturbances in flow above
this Reynolds number no longer die out. However, disturbances of very large and
also those of very small wave lengths will be dampened as before. This was first
proved by Tollmien [3.5]. The flow does not immediately become fully turbulent,
instead a transition region, which is partly laminar and partly turbulent, follows
the laminar region from the indifference point onwards. It first becomes fully
turbulent flow when a sufficiently large Reynolds number Recr = wmxcr/ν of

Recr = 3 · 105 to 5 · 105

has been attained. The transition region strongly depends on the surface rough-
ness of the plate and the inlet flow at its front. When all disturbances are kept
very small the flow will be laminar up to Reynolds numbers of 106. The state
is then metastable and the smallest disturbance leads to a transition into fully
turbulent flow.

Fig. 3.18: Parallel flow on
a flat plate

In the immediate vicinity of the solid wall, the turbulent fluctuations will be
damped even in fully turbulent flow. In this thin layer adjacent to the wall, also
known as the viscous sublayer, the viscous effect of the fluid outweighs that of its
turbulent viscosity.

3.7.1.1 Laminar boundary layer

We will now focus on heat and mass transfer in the laminar boundary layer of
parallel flow on a plate. The flow is steady, dissipation is negligible and we will
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presume constant material properties. Chemical reactions shall not occur. The
boundary layer equations consist of the continuity equation

∂wx

∂x
+

∂wy

∂y
= 0 , (3.160)

the momentum equation

wx

∂wx

∂x
+ wy

∂wx

∂y
= ν

∂2wx

∂y2
(3.161)

and the energy equation

wx

∂ϑ

∂x
+ wy

∂ϑ

∂y
= a

∂2ϑ

∂y2
. (3.162)

With regard to mass transfer we will restrict ourselves to a binary mixture
with components that have approximately the same specific heat capacities, so
that the energy equation remains valid in the form given above. In addition the
continuity equation for a component holds

wx

∂ξA

∂x
+ wy

∂ξA

∂y
= D

∂2ξA

∂y2
. (3.163)

As the material properties have been presumed to be independent of the temper-
ature and composition, the velocity field is independent of the temperature and
concentration fields, so the continuity and momentum equations can be solved
independently of the energy and component continuity equations.

Integral methods
We will first study a solution of the system of equations using an integral method,
which leads to a simple and closed approximate solution. Integral methods are
applied to many other boundary layer problems, in particular those involving
compressible flows. However, with the introduction of electronic computers they
have lost their importance. The basic idea behind the integral methods is that we
do not need a complete solution of the boundary layer equation and are content
instead with a solution that satisfies the equations in an integral (average) fashion
over the entire boundary.

By integrating the continuity equation (3.160) over the thickness of the bound-
ary layer δ we obtain

δ∫
0

∂wx

∂x
dy +

δ∫
0

∂wy

∂y
dy = 0

or with wy(y = 0) = 0:

wy(δ) = −
δ∫

0

∂wx

∂x
dy . (3.164)
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The momentum equation (3.161) can, taking into account the continuity equation
(3.160), also be written in the following form

∂w2
x

∂x
+

∂(wxwy)

∂y
= ν

∂2wx

∂y2
.

Integration between the limits y = 0 and y = δ gives, under consideration of

δ∫
0

∂(wxwy)

∂y
dy = wx(δ)wy(δ) = −wδ

δ∫
0

∂wx

∂x
dy ,

the integral condition for momentum

d

dx

δ∫
0

wx(wδ − wx) dy = ν

(
∂wx

∂y

)
y=0

. (3.165)

The energy equation (3.162), taking into account the continuity equation (3.160),
may be written as follows

∂(wxϑ)

∂x
+

∂(wyϑ)

∂y
= a

∂2ϑ

∂y2
.

Integration between the limits y = 0 and y = δT yields, with consideration of

δT∫
δ

∂(wyϑ)

∂y
dy = wy(δT )ϑ(δT ) = −ϑ(δT)

δT∫
0

∂wx

∂x
dy

the integral condition for energy

d

dx

δT∫
0

wx(ϑ(δT) − ϑ) dy = a

(
∂ϑ

∂y

)
y=0

. (3.166)

After a corresponding integration between the limits y = 0 and y = δc, the
continuity equation (3.162) for a component A is transformed into the integral
condition for mass transfer

d

dx

δc∫
0

wx(ξAδc
− ξA) dy = D

(
∂ξA

∂y

)
y=0

. (3.167)

In the integral condition (3.165) for momentum the velocity profile is approx-
imated by a polynomial first suggested by Pohlhausen [3.6], such that

wx

wδ

= a0 + a1

(
y

δ

)
+ a2

(
y

δ

)2

+ a3

(
y

δ

)3

, (3.168)

in which the free coefficients are determined, so that the boundary conditions

wx(y = 0) = 0 , wx(y = δ) = wδ ,

(
∂wx

∂y

)
y=δ

= 0
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and the wall condition from the momentum equation (3.161)(
∂2wx

∂y2

)
y=0

= 0 ,

according to which the curvature of the velocity profile at the wall is zero, are
satisfied.

We find a0 = a2 = 0, a1 = 3/2 and a2 = −1/2 and with this

wx

wδ

=
3

2

y

δ
− 1

2

(
y

δ

)3

. (3.169)

This velocity profile transforms the integral condition (3.165) for momentum
into an ordinary differential equation for the still unknown boundary layer thick-
ness δ

d

dx

(
39

280
w2

δδ
)

= ν
3

2

wδ

δ
or

d(δ2/2)

dx
=

140

13

ν

wδ

.

Through integration, with δ(x = 0) = 0 follows

δ = 4.64

(
νx

wδ

)1/2

= 4.64
x

Re
1/2
x

(3.170)

with Rex = wδx/ν. The boundary layer increases with the square root of the
length x. The gradient of the velocity profile at the wall, according to (3.169), is(

∂wx

∂y

)
y=0

=
3

2

wδ

δ
.

With the introduction of the boundary layer thickness, this yields the wall shear
stress to be

τ0 = η

(
∂wx

∂y

)
y=0

= �w2
δ

0.323

(wδx/ν)1/2
.

The friction factor is
τ0

�w2
δ/2

=
0.646

Re
1/2
x

. (3.171)

Likewise, a polynomial is introduced for the temperature profile

ϑ+ =
ϑ − ϑ0

ϑδT
− ϑ0

= b0 + b1

y

δT

+ b2

(
y

δT

)2

+ b3

(
y

δT

)3

,

which should satisfy both the boundary conditions

ϑ+(y = 0) = 0 ; ϑ+(y = δT ) = 1 ;

(
∂ϑ+

∂y

)
y=δT

= 0
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and the wall condition that follows from the energy equation (3.162)(
∂2ϑ+

∂y2

)
y=0

= 0 .

The same constants as those for the velocity profile (3.169) are found with this.
They are

ϑ+ =
2

3

y

δT

− 1

2

(
y

δT

)3

. (3.172)

Once the temperature and velocity profile (3.169) have been substituted into the
integral condition for energy (3.166), the integration yields a differential equation
for the boundary layer thickness δT

d

dx

[
δ

(
1

10

δ2
T

δ2
− 1

140

δ4
T

δ4

)]
=

a

wδ

1

δT

.

We will now consider flows where δT /δ < 1. This allows us to neglect the second
term in the square brackets in comparison to the first term, thereby simplifying
the equation to

d

dx

(
δ2
T

δ

)
=

10a

wδ

1

δT

.

By abbreviating k = δT /δ and writing equation (3.170) as δ = c0x
1/2 with c0 =

(280/13)1/2 (ν/wδ)
1/2, the differential equation given above is transformed into

kx1/2 d

dx
(k2x1/2) =

10a

wδc
2
0

=
13

28Pr
.

The substitution of z = k3 converts this equation into the ordinary differential
equation

z1/3x1/2 d

dx
(z2/3x1/2) =

13

28Pr

or differentiated out
4

3
x

dz

dx
+ z =

13

14Pr
. (3.173)

A particular solution is

z =
13

14Pr
,

and as the solution of the homogeneous equation, with z = xm we find the value
m = −3/4. The complete solution is

z =
13

14Pr
+ cx−3/4 .



318 3 Convective heat and mass transfer. Single phase flow

The remaining free constant c is yielded from the condition that the plate is first
heated from a position x0; so z(x0) = 0 and

c = − 13

14Pr
x0

3/4 .

From this follows

k = 3
√

z =
δT

δ
=
(

13

14Pr

)1/3
[
1 −

(
x0

x

)3/4
]1/3

. (3.174)

If the plate is heated over its entire length, then x0 = 0 and the ratio of thermal
to velocity boundary layer is simply a function of the Prandtl number

δT

δ
=
(

13

14Pr

)1/3

=
0.976

Pr1/3
. (3.175)

The Prandtl numbers of ideal gases lie between around 0.6 and 0.9, so that
their thermal boundary layer is only slightly thicker than their velocity boundary
layer. Liquids have Prandtl numbers above one and viscous oils greater than 1000.
The thermal boundary layer is therefore thinner than the velocity boundary layer.
By the presumptions made, the solution is only valid if δT /δ < 1. This means
that the solution is good for liquids, approximate for gases but cannot be applied
to fluids with Prandtl numbers Pr 	 1, such as appear in liquid metals.

Heat transfer coefficients are calculated from the transferred heat flux to be

q̇ = −λ

(
∂ϑ

∂y

)
y=0

= α(ϑ0 − ϑ(δT)) .

In which, according to (3.172),(
∂ϑ

∂y

)
y=0

=
3

2δT

(ϑ(δT) − ϑ0)

and therefore

α =
3

2

λ

δT

.

The heat transfer coefficient is inversely proportional to the thickness of the ther-
mal boundary layer. As this increases with x1/2, α ∼ x−1/2.

Putting the thickness of the thermal boundary layer according to (3.175), along
with that of the velocity boundary layer (3.170) yields, after a slight rearrange-
ment, the Nusselt number

Nux =
αx

λ
= 0.331Re1/2

x Pr1/3 . (3.176)

It will further be shown that the exact solution of the boundary layer equation
yields a value of 0.332 which is only very slightly different from the value 0.331
obtained here.
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The concentration boundary layer and the mass transfer coefficient can im-
mediately be found from the equations given previously, as the integral condition
(3.167) for mass transfer corresponds to that for heat transfer. The temperature
ϑ is replaced by the mass fraction ξA, the thermal diffusivity a by the diffusion
coefficient D, and instead of the thermal boundary layer δT the concentration
boundary layer δc is used. This then gives us the concentration profile corre-
sponding to (3.172):

ξA − ξA0

ξAδ − ξA0

=
3

2

y

δc

− 1

2

(
y

δc

)3

. (3.177)

The thickness of the boundary layer corresponding to (3.175), under the prerequi-
site that the flow and concentration boundary layers begin at the same position,

δc

δ
=

0.976

Sc1/3
, (3.178)

is valid for Sc ≥ 0.6, and in place of (3.176) we have the equation for mass transfer

Shx =
βx

D
= 0.331Re1/2

x Sc1/3 . (3.179)

Example 3.7: Based on the solution (3.174) calculate the Nusselt number for parallel
flow on a flat plate, if the thermal and velocity boundary layers are separated by x0, see
Fig. 3.19. Find the Sherwood number for the case of x0 �= 0.

Fig. 3.19: Flow and thermal
boundary layer in a laminar
parallel flow on a flat plate

We have α = (3/2)λ/δT. Introducing δT according to (3.174), under consideration of the
expression (3.170) for the velocity boundary layer, yields

Nux =
α x

λ
= 0.331Re1/2

x Pr1/3

[
1 −

(x0

x

)3/4
]
−1/3

,

from which, for x0 = 0, the known equation (3.176) follows. Correspondingly for the
Sherwood number we obtain

Sh =
β x

D
= 0.331Re1/2

x Sc1/3

[
1 −

(x0

x

)3/4
]
−1/3

.



320 3 Convective heat and mass transfer. Single phase flow

Exact solution of the boundary layer equations
We presume the outer flow to be an undisturbed parallel flow of velocity w∞. The calculation
of the velocities wx and wy follows from the solution of the continuity equation (3.160) and the
momentum equation (3.161) under the boundary conditions

y = 0 , x > 0 : wx = wy = 0

y → ∞ : wx = w∞

and the initial condition
x = 0 , y > 0 : wx = w∞ .

Blasius [3.6] introduced in his thesis at the University of Göttingen in 1908 a stream function
ψ(x, y) for the solution, which has the property that

wx =
∂ψ

∂y
and wy = −∂ψ

∂x
. (3.180)

Through this the continuity equation will be identically satisfied. The momentum equation is
transformed into a partial differential equation

∂ψ

∂y

∂2ψ

∂y∂x
− ∂ψ

∂x

∂2ψ

∂y2
= ν

∂3ψ

∂y3
. (3.181)

As according to (3.170), δ ∼ (νx/w∞)1/2 holds for the velocity boundary layer, the distance
y from the wall can usefully be related to the boundary layer thickness δ, so introducing a
dimensionless variable

η+ := y
(w∞

νx

)1/2

= g(x, y) .

The earlier considerations have already shown that the velocity profile can be approximately
represented by statements of the form

wx

wδ
= ϕ

(y

δ

)
.

It is therefore appropriate to assume that the velocity profile can be represented by the variable
η+ alone. We choose the statement

wx

w∞

= ϕ(η+) with η+ = y
(w∞

νx

)1/2

.

A solution exists when the differential equation (3.181) and its associated boundary condi-
tions can be fulfilled with this statement. In order to show that this is applicable, we will form
a stream function

ψ =

y∫
0

wx dy = w∞δ

y∫
0

ϕ(η+) d
(y

δ

)
= w∞

(
νx

w∞

)1/2
η+∫
0

ϕ(η+) dη+

or
ψ = (w∞νx)1/2f(η+) .

The normalisation of the stream function and the coordinate y normal to the wall strongly
follows from the fact that (3.181) is invariant in a transformation

ψ̃(x̃, ỹ) = cψ(x, y)

with x̃ = c2x and ỹ = cy. This can be checked by putting this into (3.181). The variables ψ, x, y
can therefore only appear in the solution in certain combinations that do not contain the factor
c. These types of combinations are

ψ

y
= f

(
x

y2

)
, from which follows

ψ̃

ỹ
= f

(
x̃

ỹ2

)
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or
ψ√
x

= f

(
y√
x

)
, from which follows

ψ̃√
x̃

= f

(
ỹ√
x̃

)
.

The stream function given above is just of the form ψ/
√

x = f(y/
√

x). With the stream function
we obtain the derivatives which appear in (3.181)

∂ψ

∂y
= wx = w∞f ′ ;

∂ψ

∂x
= −wy =

1

2

√
w∞ν

x
(f − η+f ′) ;

∂2ψ

∂y2
= w∞

√
w∞

νx
f ′′ ;

∂3ψ

∂y3
=

w2
∞

νx
f ′′′ and

∂2ψ

∂y∂x
= −1

2

w∞

x
η+f ′′ . (3.182)

Putting these derivatives into (3.181), leaves the ordinary non-linear differential equation

f ′′′ +
1

2
ff ′′ = 0 (3.183)

for the function f(η+). The boundary conditions are

y = 0 or η+ = 0 : f = f ′ = 0

y → ∞ or η+ → ∞ : f ′ = 1 . (3.184)

The initial condition x = 0, y > 0 : wx = w∞ is already contained in the boundary condition
f ′(η+ → ∞) = 1. Equation (3.183) was first solved numerically by Blasius [3.6] through power
series laws, and later by many other authors (e.g. [3.7], [3.8]).

In the numerical integration, instead of the boundary condition f ′(η+ → ∞) = 1 a further
initial condition f ′′(η+ = 0) = const = c0 could be introduced. However this would require
multiple estimations of c0, until the condition f ′(η+ → ∞) = 1 is satisfied. The multiple
numerical solutions can be avoided if the boundary value problem is traced back to an initial
value problem. This is possible in a simple manner, as (3.183) remains invariant through the
transformation f̃(η̃+) = cf(η+) with η̃+ = η+/c. This means it is transformed into an equation

f̃ ′′′ +
1

2
f̃ f̃ ′′ = 0

which is independent of the constants c. The boundary conditions

f(η+ = 0) = f ′(η+ = 0) = 0

also remain independent of the choice of c

f̃(η̃+ = 0) = f̃ ′(η̃+ = 0) = 0 .

The equation above is solved with the initial conditions f̃(η̃+ = 0) = f̃ ′(η̃+ = 0) = 0 and
f̃ ′′(η̃+ = 0) = 1 and then the constants c are determined from f̃ ′(η̃+→ ∞) = c2f ′(η+→ ∞) = c2.

Fig. 3.20 illustrates the velocity profile wx/w∞ = f ′(η+). In the region close to the wall
f(η+) = 0.332 057 η+2/2 + O(η+5) is valid.

The coordinate transformation makes all the velocities coincide. The boundary layer ap-
proaches the core flow asymptotically and in principle stretches into infinity. The deviation of
the velocity wx from that of the core flow is, however, negligibly small at a finite distance from
the wall. Therefore the boundary layer thickness can be defined as the distance from the wall
at which wx/w∞ is slightly different from one. As an example, if we choose the value of 0.99 for
wx/w∞, the numerical calculation yields that this value will be reached at the point η+ ≈ 4.910.
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Fig. 3.20: Velocity profile on a
flat plate

The boundary layer thickness defined by this is then

δ = 4.910
x

Re
1/2
x

(3.185)

which is in good agreement with the approximation (3.170). The wall shear stress is

τ0 = η

(
∂wx

∂xy

)
y=0

= η

(
∂wx

∂η+

)
η+=0

(
∂η+

∂y

)
y=0

= ηw∞f ′′(η+ = 0)
(w∞

νx

)1/2

.

The numerical solution delivers f ′′(η+ = 0) = 0.3321. The friction factor is found to be

τ0

�w2
∞

/2
=

0.664

Re
1/2
x

, (3.186)

which only varies slightly from the approximate value in (3.171).

In the calculation of the temperature and concentration fields the velocities are
replaced by the stream function in the energy equation (3.162) and the component
continuity equation (3.163). In addition a dimensionless temperature

ϑ+ =
ϑ − ϑ0

ϑ∞ − ϑ0

and a dimensionless mass fraction

ξ+
A =

ξA − ξA0

ξA∞ − ξA0

are introduced. The temperature will be represented by ϑ(η+) and the concentra-
tion profile by ϕ(η+). With that, the energy equation (3.162), taking into account
(3.180), is transformed into

∂ψ

∂y

∂ϑ+

∂η+

∂η+

∂x
− ∂ψ

∂x

∂ϑ+

∂η+

∂η+

∂y
= a

∂2ϑ+

∂η+2

(
∂η+

∂y

)2

(3.187)

and the continuity equation (3.163) into

∂ψ

∂y

∂ξ+
A

∂η+

∂η+

∂x
− ∂ψ

∂x

∂ξ+
A

∂η+

∂η+

∂y
= D

∂2ξ+
A

∂η+2

(
∂η+

∂y

)2

. (3.188)
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Using the derivatives (3.182) of the stream function these equations can be rearranged into
ordinary differential equations

ϑ+′′ +
1

2
Pr f ϑ+′ = 0 (3.189)

ξ+′′

A +
1

2
Sc f ξ+′

A = 0 . (3.190)

The boundary conditions are

η+ = 0 : ϑ+ = ξ+
A = 0

η+ → ∞ : ϑ+ = ξ+
A = 1 .

Integrating (3.189) once gives

ϑ+′ = ϑ+′(η+ = 0) exp

η+∫
0

(
−1

2
Pr f

)
dη+ . (3.191)

On the other hand (3.183) can also be written as

d ln f ′′

dη+
= −1

2
f ,

from which

f ′′ = f ′′(η+ = 0) exp

η+∫
0

(
−1

2
f dη+

)
follows. This allows us to eliminate the exponential function in (3.191), producing

ϑ+′ = ϑ+′(η+ = 0)

[
f ′′

f ′′(η+ = 0)

]Pr

.

After integration, and by taking the boundary conditions ϑ+(η+ = 0) = 0 and
ϑ+(η+ → ∞) = 1 into account, the temperature profile follows as

ϑ+ =
ϑ − ϑ0

ϑ∞ − ϑ0

=

η+∫
0

(f ′′)Pr dη+

∞∫
0
(f ′′)Pr dη+

. (3.192)

Correspondingly the concentration profile is yielded as

ξ+
A =

ξA − ξA0

ξA∞ − ξA0

=

η+∫
0

(f ′′)Sc dη+

∞∫
0
(f ′′)Sc dη+

. (3.193)

The heat flux transferred is

q̇ = −λ

(
∂ϑ

∂y

)
y=0

= −λ

(
∂ϑ+

∂η+

)
η+=0

∂η+

∂y
(ϑ∞ − ϑ0)
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with
∂η+

∂y
=
(

w∞
νx

)1/2

.

On the other hand the heat transfer coefficient α is defined by q̇ = α(ϑ0 −ϑ∞)
and with this we obtain

αx

λ
=
(

w∞x

ν

)1/2 [f ′′(η+ = 0)]Pr

∞∫
0
(f ′′)Pr dη+

with f ′′(η+ = 0) = 0.332. This can also be written as

Nux =
αx

λ
= Re1/2

x F (Pr) . (3.194)

Once again a corresponding equation exists for mass transfer

Shx =
βx

D
= Re1/2

x F (Sc) . (3.195)

The functions F (Pr) and F (Sc) are identical and are found from a numerical
solution. The following relationships are good approximations

Nux = 0.564Re1/2
x Pr1/2 for Pr → 0

Nux = 0.500Re1/2
x Pr1/2 for 0.005 < Pr < 0.05

Nux = 0.332Re1/2
x Pr1/3 for 0.6 < Pr < 10

Nux = 0.339Re1/2
x Pr1/3 for Pr ≥ 10 . (3.196)

An equation valid for all Prandtl-numbers 0 ≤ Pr ≤ ∞ is

Nux =
1√
π

Re1/2
x ϕ1(Pr) (3.196a)

with ϕ1(Pr) =
Pr1/2

(1 + 1.973Pr0.272 + 21.29Pr)1/6

In the range 0.05 ≤ Pr ≤ ∞ the error in Nux is below 0.3%. In the range
0 ≤ Pr < 0.05 the error does not exceed 1.5%. A similar equation holds for
constant heat flux q̇ =const at the wall:

Nux =

√
π

2
Re1/2

x ϕ2(Pr) (3.196b)

with ϕ2(Pr) =
Pr1/2

(1 + 2.55Pr1/4 + 48.66Pr)1/6

In the range 0.2 ≤ Pr ≤ ∞ the error in Nux is below 0.13%, and in the range
0 ≤ Pr < 0.2 it does not exceed 2.4%.

Corresponding equations also hold for mass transfer. The Sherwood number
Shx appears in place of the Nusselt number Nux, and in the same way the Prandtl
number Pr number is replaced by the Schmidt number Sc. In the region 0.6 <
Pr < 10 the agreement with the approximation equations (3.176) is excellent.
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Example 3.8: Derive from the local Nusselt number (3.196), equations for the mean
Nusselt numbers Num = αmL/λ with

αm =
1

L

L∫
0

α(x) dx .

For a given Prandtl number, according to (3.196), α = c x−1/2. With that we have

αm =
1

L
c

L∫
0

x−1/2 dx = 2 cL−1/2 = 2α(x = L) .

In addition the following is valid

Num =
αm L

λ
= 2Nu(x = L) .

Then with Re = (w∞ L)/ν

Num = 1.128Re1/2 Pr1/2 for Pr → 0

Num = 1.000Re1/2 Pr1/2 for 0.005 < Pr < 0.05

Num = 0.664Re1/2 Pr1/3 for 0.6 < Pr < 10

Num = 0.678Re1/2 Pr1/3 for Pr ≥ 10 .

3.7.1.2 Turbulent flow

The Reynolds analogy, which links the heat and mass transfer coefficients to the
friction factor, according to

Nux

Rex

=
Shx

Rex

=
cf

2
for Pr = Sc = 1 ,

already delivers a simple relationship for the heat and mass transfer coefficients,
as the friction factor is known from measurements [3.9]:

cf = 0.0592Re−1/5
x for 5 · 105 < Re < 107

with Rex = wmx/ν. With that we get

Nux

Rex

=
Shx

Rex

= 0.0296Re−1/5
x for Pr = Sc = 1

in the same range of Reynolds numbers.
According to Chilton and Colburn [3.10], [3.11] the effect of the Prandtl num-

ber on the heat transfer can be described by the empirical statement

Nux = 0.0296Re4/5
x Pr1/3 , (3.197)
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Fig. 3.21: The two layer model
of the Prandtl analogy

which is valid for 0.6 < Pr < 60 and 5 · 105 < Rex < 107. Correspondingly for
the mass transfer coefficients

Shx = 0.0296Re4/5
x Sc1/3 , (3.198)

valid for 0.6 < Sc < 3 000 and 5 · 105 < Rex < 107. Colburn has introduced the
Stanton number

St =
Nux

RexPr
= 0.0296Re−1/5

x Pr−2/3 =
cf

2
Pr−2/3 (3.199)

instead of the Nusselt number in (3.197), cf. section 1.1.4.
A better analytically based equation which is valid over a wide range of Prandtl

or Schmidt numbers is obtained if we presume a turbulent parallel flow, i.e. a
steady-state turbulent flow with vanishing pressure gradient, and velocity, tem-
perature and concentration profiles which are only dependent on the coordinate
y normal to the wall. Then, as follows from (3.134) to (3.139),

∂(τxy)tot
∂y

=
∂(q̇y)tot

∂y
=

∂(j∗Ay)tot
∂y

= 0 .

The total values for the shear stress, heat and diffusional fluxes are independent
of the coordinate normal to the wall and therefore equal to the values at the wall.
In the laminar sublayer we have

τxy = �ν
∂wx

∂y
= τ0 , q̇y = −�cpa

∂ϑ

∂y
= q̇0

and

j∗Ay = −�D
∂ξA

∂y
= j∗A0 .

Out of these we obtain
τ0

q̇0

= − 1

cp

Pr
∂wx

∂ϑ

and after integrating from the wall to the boundary (index r) of the laminar
sublayer, Fig. 3.21

ϑr − ϑ0 = − q̇0 Pr

τ0cp

wr . (3.200)
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Correspondingly

ξr − ξ0 = −j∗A0

τ0

Sc wr . (3.201)

We will now assume that the fully turbulent core adjoins directly the laminar
sublayer, as in Fig. 3.21, and that Boussinesq’s laws (3.141), (3.143) and (3.145)
are valid, which accordingly give

(τxy)tot = � (ν + εt)
∂w̄x

∂y
,

(q̇y)tot = −� cp (a + at)
∂ϑ̄

∂y
and

(j∗Ay)tot = −� (D + Dt)
∂ξ̄A

∂y
.

In the turbulent core ν 	 εt, a 	 at and D 	 Dt. Therefore

(τxy)tot
(q̇y)tot

=
τ0

q̇0

=
1

cp

Prt

∂w̄x

∂ϑ̄

with the “turbulent Prandtl number” Prt = εt/at. Integration from the bound-
ary r of the laminar sublayer to the turbulent core (index ∞) yields, with the
assumption that the turbulent Prandtl number Prt is constant,

ϑ̄∞ − ϑr = − q̇0

τ0cp

Prt (w̄∞ − wr) . (3.202)

The corresponding equation for mass transfer is

ξ̄A∞ − ξAr = −j∗A0

τ0

Sct (w̄∞ − wr) . (3.203)

By adding (3.200) and (3.202) together, and under the assumption Prt = 1, we
obtain

ϑ̄∞ − ϑ0 = − q̇0

τ0cp

[w̄∞ + (Pr − 1)wr] .

Then, because q̇0 = α(ϑ0 − ϑ∞) the following relationship for the heat transfer
coefficient α is obtained

α =
τ0cp

w̄∞

1

1 + (Pr − 1)wr/w̄∞
.

With cf = τ0/(�w̄2
∞/2) as the friction factor the equation given above can be

written as
α

�cpw̄∞
= Stx =

cf

2

1

1 + (Pr − 1)wr/w̄∞
. (3.204)

The expression α/(�cpw̄∞) is equal to the Stanton number,

St =
Nux

RexPr
=

αx/λ
w̄∞
ν

ν�cp

λ

=
α

�cpw̄∞
.
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The velocity ratio wr/w̄∞ can be eliminated from (3.204), because in the laminar
sublayer it holds that

τ0 = η
wr

δr

,

where δr is its thickness. As explained in 3.6.1, the laminar sublayer extends to

the point y+ = wτδr/ν ≈ 5. Therefore, because wτ =
√

τ0/�√
τ0/� δr

ν
≈ 5 .

Eliminating δr from the previous equation with this, and taking into consideration
η = ν�, we obtain

τ0

�
=

w2
x

25
.

It follows from this that
τ0

�w̄2∞/2
= cf =

w2
r

w̄2∞

2

25
or

wr

w̄∞
= 5

√
cf

2
.

With this the relationship in (3.204) is transformed into

St =
cf

2

1

1 + (Pr − 1) 5
√

cf/2
. (3.205)

A corresponding calculation for mass transfer, under the assumption of a “tur-
bulent Schmidt number” Sct = εt/Dt = 1, leads to the analogous expression

St′ =
cf

2

1

1 + (Sc − 1) 5
√

cf/2
(3.206)

with the Stanton number St′ for mass transfer St′ = Shx/RexSc. Equations
(3.205) and (3.206) for the local heat and mass transfer coefficients represent the
Prandtl analogy. In the limiting case of Pr = Sc = 1 they are transformed into
the Reynolds analogy (3.130).

In practical terms the mean Stanton number is of greatest interest. It is
obtained, after introduction of the friction factor cf(Rex), by integrating (3.205)
or (3.206). However the agreement with measured values is still unsatisfactory
because the splitting of the boundary layer into a laminar sublayer which adjoins
a fully turbulent layer based on the Prandtl analogy is too coarse, and in addition
to this the determination of the thickness of the laminar sublayer with y+ = 5
is only an approximation. However the Prandtl analogy was the basis for the
establishment of empirical equations which agree better with measured values.
An example of this is the equation derived by Gnielinski [3.13] from a relationship
given by Petukhov and Popov [3.12] for the mean Nusselt number

Num =
0.037Re0.8Pr

1 + 2.443Re−0.1(Pr2/3 − 1)
(3.207)
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with Num = αmL/λ, Re = w̄∞L/ν. It is valid for 5 · 105 < Re < 107 and
0.6 < Pr < 2 000. The material properties are calculated at the average fluid tem-
perature ϑm, defined as the arithmetic mean of the inlet and outlet temperatures.
In the transition region between laminar and turbulent flow, good agreement is
obtained through a quadratic superposition

Num =
√

Nu2
m, lam + Nu2

m, turb , (3.208)

in which Num, lam is the mean Nusselt number for laminar flow Num, lam = 2Nux

with Nux according to (3.196) and Num, turb is that of the turbulent flow according
to (3.207). In (3.208), at low Reynolds numbers the turbulent contribution will
be small and conversely at large Reynolds numbers the laminar contribution will
be small. It can therefore be used over the total range of Reynolds numbers

10 < Re < 107 .

Naturally a corresponding equation for mass transfer exists for the same range of
Reynolds numbers and for 0.7 < Sc < 70 000. In this case the Nusselt number
is replaced by the Sherwood number and likewise the Prandtl by the Schmidt
number.

Example 3.9: Derive a relationship for the mean heat transfer coefficient for parallel flow
on a plate from the local heat transfer equations (3.196) for 0.6 < Pr < 10 and (3.197).
Within this you should take into account that the boundary layer flow is laminar to begin
with and becomes turbulent above a critical Reynolds number (Rex)cr = 5 · 105.
We have

αm =
1

L

⎡⎣ xcr∫
x=0

αlam dx +

L∫
x=xcr

αturb dx

⎤⎦ .

With (3.196) and (3.197) we get

αm =
λ

L

⎡⎣0.332
(w∞

ν

)1/2
xcr∫

x=0

dx

dx1/2
+ 0.0296

(w∞

ν

)4/5
L∫

x=xcr

dx

dx1/5

⎤⎦ Pr1/3

Num =
αm L

λ
=
[
0.664

(
Rex

1/2
)

cr
+ 0.037

(
Re4/5 −

(
Rex

4/5
)

cr

)]
Pr1/3 .

From this, with (Rex)cr = 5 · 105, follows

Num = (0.037Re4/5 − 871)Pr1/3 ,

which holds for Re = w0L/ν ≥ 5 · 105.
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3.7.2 The cylinder in crossflow

The boundary layer for a cylinder in crossflow already has a finite thickness at the
forward stagnation point, x = 0 in Fig. 3.22, whilst in parallel flow along a plate its
initial thickness is zero. At the forward stagnation point the kinetic energy of the
fluid in an adiabatic flow is completely converted into enthalpy, h+w2/2 = h0. A
fluid element possesses a higher enthalpy at the stagnation point than upstream of
it. If the flow is considered as reversible this leads to an increase in the pressure at
the stagnation point because h = h(s, p) with s = const. The pressure decreases
from the stagnation point onwards. A fluid element on a streamline close to the
surface of the body, accelerates again and so moves into the area of decreasing
pressure. Beyond the thickest part of the body, the pressure increases again and
the fluid element will be slowed down.

However real flows are not reversible, some of the kinetic energy will be dis-
sipated and converted into internal energy due to friction in the boundary layer.
The kinetic energy gained in the acceleration phase is therefore lower than in
reversible flow. As a result of this the total kinetic energy of the fluid element
will have been converted into enthalpy whilst it is still in the region of increas-
ing pressure. At this point, known as the separation point, the fluid near the
surface lacks sufficient momentum to overcome the pressure gradient. Under the
influence of this pressure increase the element moves against the direction of flow.
The boundary layer detaches from the surface and a wake is formed in the down-
stream region. The core flow is pushed away from the surface of the body. Beyond
this separation point the pressure is practically constant, the flow is irregular and
characterised by vortex formations. In this region, known as dead water, heat and
mass transfer come to a virtual stand still.

In boundary layers with a pressure increase in the direction of flow, the flow
can become detached. This can be seen in the momentum equation (3.109), which
due to wx = wy = 0 is transformed into

η

(
∂2wx

∂y2

)
y=0

=
dp

dx
(3.209)

at the wall. According to this the pressure drop in the outer flow determines the
curvature of the velocity profile at the wall. When the core flow is at constant

Fig. 3.22: Flow boundary layer around
a cylindrical solid. S stagnation point,
A detachment point of the boundary
layer
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Fig. 3.23: Flow across a circular cylinder at
different Reynolds numbers

Fig. 3.24: Local heat transfer coeffi-
cients in flow across a circular cylinder,
according to Giedt [3.14]

pressure the curvature is zero, and the velocity profile ajacent to the wall can be
replaced by a straight line. In regions where the pressure is increasing, dp/dx > 0
and η(∂2wx/∂y2)y=0 > 0. This corresponds to a velocity profile like that drawn
on the right in Fig. 3.22. According to Bernoulli’s equation

�wδ

dwδ

dx
= −dp

dx

the core flow decelerates. Detachment of the boundary layer is only possible in a
decelerating core flow.

In turbulent flow, momentum is constantly fed into the layer adjacent to the
wall because of the momentum transfer between layers at different velocities. The
kinetic energy of the fluid elements close to the wall does not decrease as rapidly
as in laminar flow. This means that turbulent boundary layers do not become
detached as quickly as laminar boundary layers. Heat and mass transfer close
to the wall is not only promoted by turbulence, the fluid also flows over a larger
surface area without detachment. At the same time the pressure resistance is
lower because the fluid flow does not separate from the surface for a longer flow
path.

The flow pattern around a cylinder in crossflow is heavily dependent on the
Reynolds number, as Fig. 3.23 clearly shows for a circular cylinder. At low
Reynolds numbers Re = w∞d/ν < 5, Fig. 3.23a, the flow surrounds the cylin-
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der; between 5 and up to 15 ≤ Re ≤ 40, Fig. 3.23b, it already becomes de-
tached, and vortices form. At higher Reynolds numbers 40 ≤ Re ≤ 150, Fig.
3.23c, the vortices are periodically carried away forming a vortex pattern in which
the flow is still laminar. This becomes turbulent at Reynolds numbers between
150 ≤ Re ≤ 300, and is fully turbulent in the range 300 < Re < 3 · 105, Fig.
3.23d. Above Re = 3 · 105 the boundary layer downstream of the cylinder is also
turbulent. The wake is concentrated in a narrow region, is fully turbulent, Fig.
3.23e, and does not contains any large eddies. A narrow, fully turbulent vortex
pattern first reforms above Re ≈ 3.5 · 106, Fig. 3.23 f.

The flow influences the heat and mass transfer in a complex way, as Fig. 3.24
shows, in which the local Nusselt number is plotted against the angular coordi-
nate starting from the forward stagnation point. The Nusselt number decreases
from the stagnation point onwards as the boundary layer develops. It reaches a
minimum at an angle of around 80◦. The flow begins to detach itself at this point,
and the heat transfer increases along the perimeter where the fluid is well mixed
due to the vortices. At high Reynolds numbers above 105 two minima in the local
Nusselt number appear. The stark increase between an angle of 80◦ and 100◦ is
caused by the transition between the initially laminar into a turbulent boundary
layer. This increases downstream, inhibiting the heat transfer, until an angle of
around 140◦ is reached. At this point the heat transfer once more improves as a
result of better mixing of fluid in the wake.

In practice, the mean heat transfer coefficient is of greatest interest. It can be
described by empirical correlations of the form

Num = c Rem Prn

(
Pr

Pr0

)p

, (3.210)

in which the mean Nusselt and the Reynolds number are formed with the tube
diameter. All material properties should be calculated at the free stream temper-
ature ϑ∞, except the Prandtl number Pr0, that should be taken at the wall tem-
perature ϑ0. The coefficients c, m, n, and p are taken from a paper by Žukauskas
[3.15] and are exhibited in Table 3.1.

Table 3.1: Constants and exponents in equation (3.210)

Re c m n

1 to 40 0.76 0.4 0.37

40 to 103 0.52 0.5 0.37

103 to 2 · 105 0.26 0.6 0.37

2 · 105 to 107 0.023 0.8 0.4

Heating the fluid: p=0.25

Cooling the fluid: p=0.20
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A single, empirical equation for all Reynolds numbers 1 ≤ Re ≤ 105 and for
Prandtl numbers 0.7 < Pr < 600 has been communicated by Gnielinski [3.13]. It
is

Num = 0.3 +
√

Nu2
m, lam + Nu2

m, turb (3.211)

with Num, lam = 2Nux(x = L) according to (3.196) and Num, turb from (3.207).
The length L in these equations is taken to be the circumference over which the
fluid flows L = dπ/2. In the case of mass transfer the Nusselt number has to be
replaced by the Sherwood number, and accordingly the Prandtl by the Schmidt
number. The equation is valid for 1 ≤ Re ≤ 105 and for 0.7 < Sc < 7 · 104.

Quite recently Sparrow et al. [3.16] communicated an equation valid for
Prandtl numbers of the order of 1 for gases and the higher Prandtl numbers
for liquids. It is

Num = 0.25 + (0.4Re1/2 + 0.06Re2/3)Pr0.37

(
η

ηW

)1/4

, (3.212)

in which the mean Nusselt and the Reynolds number are formed with the tube
diameter. All of the fluid properties except ηW are to be evaluated with the free
stream temperature ϑ∞; ηW is to be evaluated with the wall temperature. Heat
transfer correlations for non-circular cylinders and spheres in crossflow are dealt
with by Sparrow et al. [3.16].

Example 3.10: A copper cylinder of diameter 10 mm and 1 m length has an initial tem-
perature of ϑα = 423.15K = 150 ◦C. Air at ϑ∞ = 298.15K = 25 ◦C then flows with
velocity w∞ = 10 m/s across the cylinder. After what period of time has the cylinder been
cooled to ϑω = 308.15K = 35 ◦C?
Given properties: thermal conductivity of the cylinder λc = 399W/Km, density � =
8933 kg/m3, specific heat capacity cA = 0.387kJ/kgK, thermal conductivity of the air
λA = 26.02 · 10−3 W/Km, Prandtl number PrA(25 ◦C) = 0.714, PrA(35 ◦C) = 0.713,
PrA(92.5 ◦C) = 0.707, kinematic viscosity νA(25 ◦C) = 158.2 · 10−7 m2/s, νA(35 ◦C) =
167.8 · 10−7 m2/s.
In the solution of this problem we first have to show that the thermal resistance of the
cylinder is negligible compared to that of the air, and therefore that the temperature of
the cylinder is only a function of time.
The thermal resistance of the air is yielded from the heat transfer coefficients. These are
found from (3.210). The Reynolds number of the air flowing over the cylinder is

Re =
w∞ d

ν
=

10m/s · 10 · 10−3 m

158.2 · 10−7 m2/s
= 6321

With the values from Table 3.1, the average Nusselt number is

Num = 0.26Re0.6 Pr0.37

(
Pr

Pr0

)0.25

with

Pr0 = Pr

(
150 + 35

2
◦C

)
= Pr(92.5 ◦C) = 0.707 .
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This gives

Num = 0.26 · 63210.6 · 0.7410.37

(
0.741

0.707

)0.25

= 44.91

αm = Num
λ

d
= 44.91

26.02 · 10−3 W/Km

10 · 10−3 m
= 116.9W/m2K

The Biot number is decisive for the ratio of the thermal resistance of the cylinder to that
of the air

Bi =
αm d

λc
=

116.9W/m2K · 10 · 10−3 m

399W/Km
= 2.92 · 10−3 .

This is well below the limit of Bi = 0.1 given in section 2.3.5.2. So the thermal resistance
of the cylinder is negligible compared to that of the air. This allows us to associate a single
temperature that only changes with time to the cylinder. The cooling time of the cylinder
is yielded from (2.199) to be

t =
� c V

αm A
ln

ϑα − ϑA

ϑω − ϑA
with

V

A
=

d2 π

4
L

1

dπ L
=

d

4

t =
8933kg/m3 · 387 J/kgK · 10 · 10−3 m

116.9W/m2K · 4 ln
150 − 25

35 − 25
= 186.7 s = 3.1min .

With (3.211) we find αm = 128 W/m2K and t = 2.84 min; (3.212) delivers almost the
same values αm = 126.5 W/m2K and t = 2.87 min.

3.7.3 Tube bundles in crossflow

In the following, the heat transfer and pressure drop in a tube bundle in crossflow
will be investigated. The individual tubes in the bundle are either in alignment
with each other or in a staggered arrangement, according to Fig. 3.25.

Fig. 3.25: Tube bundle in crossflow. a aligned tube arrangement; b staggered tube arrangement
with the smallest cross section perpendicular to the initial flow direction; c staggered tube
arrangement with the smallest cross section in the diagonal

The heat transfer is greater in a staggered arrangement at the same Reynolds
number. However this is paid for with a larger pressure drop. With reference to
Fig. 3.25a to c, the separation between the tube centres perpendicular to the flow
direction is known as transverse pitch sq, tube separation in the flow direction as
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Fig. 3.26: Influence of the tube row number
zR on the heat transfer in bundles of smooth
tubes from [3.17]. a) aligned, b) staggered
tube arrangement. The broken lines for
Re > 103, full lines for 102 < Re < 103

longitudinal pitch sl and the tube separation in the diagonal direction as stagger
sv. The quotient sq/d is called the transverse pitch ratio, sl/d the longitudinal
pitch ratio, and sv/d the staggered pitch.

The flow around and therefore the heat transfer around an individual tube
within the bundle is influenced by the detachment of the boundary layer and the
vortices from the previous tubes. The heat transfer on a tube in the first row is
roughly the same as that on a single cylinder with a fluid in crossflow, provided
the transverse pitch between the tubes is not too narrow. Further downstream
the heat transfer coefficient increases because the previous tubes act as turbulence
generators for those which follow. From the fourth or fifth row onwards the flow
pattern hardly changes and the mean heat transfer coefficient of the tubes ap-
proach a constant end value. As a result of this the mean heat transfer coefficient
over all the tubes reaches for an end value independent of the row number. It is
roughly constant from about the tenth row onwards. This is illustrated in Fig.
3.26, in which the ratio F of the mean heat transfer coefficient αm(zR) up to row
zR with the end value αm(zR → ∞) = αm∞ is plotted against the row number zR.

The results for the mean heat transfer coefficients published up until now
have been described by various authors [3.17] to [3.22] through correlations. A
simple equation, which represents the results for a row of single tubes and for
tube bundles stems from Gnielinski [3.19]. According to this we first determine
the heat transfer coefficient of a single tube in crossflow from (3.211) together
with (3.196) and (3.207). In these equations the Reynolds number is formed with
the average velocity wm = w/ε, Re = wml/ν, l = dπ/2. w is the velocity over the
entire cross section, ε is the void fraction. It depends on the transverse pitch ratio
a = sq/d and the longitudinal pitch ratio b = sl/d according to ε = 1−π/(4a) for
b ≥ 1 and ε = 1 − π/(4ab) for b < 1.

The Nusselt number Num from (3.211) is to be multiplied with a geometric
factor fA. With this we obtain the Nusselt number

NuB =
αBl

λ
= fANum (3.213)

with l = dπ/2, valid in the range 10 < Re < 106 and 0.6 < Pr < 103. For tube
rows aligned in the direction of flow we have

fA = 1 +
0.7

ε3/2

(b/a − 0.3)

(b/a + 0.7)2
(3.214)
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and for staggered tube rows

fA = 1 +
2

3 b
. (3.215)

Equation (3.214) is experimentally confirmed for b ≥ 1.2; for b < 1.2 the experi-
ments lead to b/a ≥ 1.

The Nusselt number NuB of bundles with less than ten rows is to be multiplied
with a factor

1 + (zR − 1) fA

zR

taking into account the increase of the heat transfer coefficient with the number
zR of rows according to Fig. 3.26.

The heat transfer in a finned tube bundle is calculated using similar equations.
For this we suggest [3.23] in the literature.

In the calculation of the heat transferred in a tube bundle, we have to consider
that the fluid temperature between the inlet and outlet can significantly change.
The heat flow from a tube surface element dA to the fluid amounts to

dQ̇ = α dA(ϑ0 − ϑF) = Ṁcp dϑF ,

where ϑF is the mean fluid temperature in a cross section between the tubes. This
then gives

α

Ṁcp

dA =
dϑF

ϑ0 − ϑF

.

By integrating between the inlet cross section i, where the mean fluid temperature
is ϑi, and the outlet (exit) cross section e with a mean fluid temperature ϑe we
obtain

1

Ṁcp

e∫
i

α dA =
αmA0

ċp

= ln
ϑ0 − ϑi

ϑ0 − ϑe

.

Here αm is the mean heat transfer coefficient and A0 is the total tube surface area.
With that the heat flow amounts to

Q̇ = Ṁcp(ϑe − ϑi) = αmA0(ϑi − ϑe)/ ln
ϑ0 − ϑi

ϑ0 − ϑe

or

Q̇ = αmA0∆ϑlog (3.216)

with the logarithmic mean temperature difference

∆ϑlog = (ϑe − ϑi)/ ln
ϑ0 − ϑi

ϑ0 − ϑe

. (3.217)
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Example 3.11: Atmospheric air (p = 0.1MPa) is to be heated in a tube bundle heat
exchanger from 10 ◦C to 30 ◦C. The exchanger consists of 4 neighbouring rows and zR

rows of tubes aligned one behind the other. The outer diameter of the tubes is 25mm, their
length 1.5m, the longitudinal pitch is the same as the transverse pitch: sl/d = sq/d = 2.
The wall temperature of the tubes is 80 ◦C with an initial velocity of the air of 4 m/s.
Calculate the required number zR of tube rows.
The following properties are given: Air at ϑm = 20 ◦C: viscosity ν = 15.11 · 10−6 m2/s,
thermal conductivity λ = 0.0257W/Km, density � = 1.293kg/m3 , specific heat capacity
cp = 1.007kJ/kgK, Prandtl number Pr = 0.715. Further for air Pr(10 ◦C) = 0.716,
Pr(80 ◦C) = 0.708.
The velocity wn in the narrowest cross section is yielded from the mass balance

w∞ 4 sq = wn (4 sq − 4d) to wn = w∞

sq

sq − d
= 4

m

s

2d

2d − d
= 8m/s ;

Because of a = b = 2 the void fraction is

ε = 1 − π (4 · 2) = 0.607

and the average velocity

wm = w/ε = 4(m/s)/0.607 = 6.587m/s .

With this we obtain the Reynolds number

Re = w (dπ/2)/ν = 1.71 · 104 .

The mean Nusselt number Num,lam follows from (3.196a)

Num,lam = 77.18 ,

and for turbulent flow we obtain from (3.207)

Num,turb = 80.42 .

The geometric factor (3.214) is

fA = 1 +
0.7

0.6073/2

(1 − 0.3)

(1 + 0.7)2
= 1.359 .

With this we obtain the Nusselt number of the bundle from (3.213)

NuB = 1.359 · 111.76 = 151.83 ,

and the mean heat transfer coefficient of the bundle αB = 99.34W/(m2K). The heat
flow is

Q̇ = Ṁcp (ϑi − ϑe) = �w∞ 4 sq dL cp (ϑi − ϑe) = 31.25kW .

According to (3.213) we have Q̇ = αB 4 zR dπ L∆ϑm, with ∆ϑm = ∆ϑlog from (3.217).
We have ∆ϑm = 59.44K, and hence

zR = Q̇/(αB4dπL∆ϑm) = 11.2 .

The chosen number of tube rows is zR = 12.
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3.7.4 Some empirical equations for heat and mass transfer
in external forced flow

As the previous illustrations showed, the heat and mass transfer coefficients for
simple flows over a body, such as those over flat or slightly curved plates, can be
calculated exactly using the boundary layer equations. In flows where detachment
occurs, for example around cylinders, spheres or other bodies, the heat and mass
transfer coefficients are very difficult if not impossible to calculate and so can only
be determined by experiments. In terms of practical applications the calculated or
measured results have been described by empirical correlations of the type Nu =
f(Re, Pr), some of which have already been discussed. These are summarised in
the following along with some of the more frequently used correlations. All the
correlations are also valid for mass transfer. This merely requires the Nusselt to
be replaced by the Sherwood number and the Prandtl by the Schmidt number.

1. Longitudinal flow along a flat plate, heated or cooled from the
leading edge onwards

Correlation Range of validity

Nux = 1√
π

(RexPr)1/2 Pr → ∞ lam. flow

Nux = 0.332Re1/2
x Pr1/3 0.5 ≤ Pr ≤ 1000 Rex ≤ 5 · 105

Nux = 0.339Re1/2
x Pr1/3 Pr → ∞

Num = 0.664Re1/2Pr1/3 0.5 ≤ Pr ≤ 1000

Num =
0.037Re0.8Pr

1 + 2.443Re−0.1(Pr2/3 − 1)
0.6 ≤ Pr ≤ 2000 turb. flow:

5 · 105 < Re < 107

Fig. 3.27: Longitudinal flow over a flat
plate, heated from its leading edge

2. Longitudinal flow over a flat plate, heated or cooled from the
point x0

Nux =
0.332Re1/2

x Pr1/3[
1 − (x0/x)3/4

]1/3
, 0.5 ≤ Pr ≤ 1000 , Rex ≤ 5 · 105
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Fig. 3.28: Longitudinal flow over a flat plate,
heated or cooled from the point x0

3. Cylinder in crossflow

Num = 0.3 + (Num, lam
2 + Num, turb

2)1/2

with
Num, lam = 0.664Re1/2Pr1/3

and

Num, turb =
0.037Re0.8Pr

1 + 2.443Re−0.1(Pr2/3 − 1)

10 < Re < 107 , 0.6 < Pr < 1 000 .

Nusselt and Reynolds number are formed with the length L = dπ/2 over which
the fluid flows. All fluid properties are to be evaluated at the arithmetic mean
between inlet and outlet temperature.

Fig. 3.29: Cylinder in crossflow

4. Cylinder of arbitrary profile in crossflow
The equation is the same as that for a cylinder in crossflow, the Nusselt and
Reynolds numbers are formed with the length over which the fluid flows, in the
example below L = a + b.

Fig. 3.30: Cylinder of arbitrary profile
in crossflow

5. Flow over a sphere
The terms are the same as for a cylinder in crossflow

Num = 2 +
(
Nu2

m, lam + Nu2
m, turb

)1/2
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Num, lam = 0.664Re1/2Pr1/3

Num, turb =
0.037Re0.8Pr

1 + 2.443Re−0.1(Pr2/3 − 1)

Num =
αmd

λ
; Re =

w∞d

ν

0.7 < Pr < 600 1 ≤ Re ≤ 106

In the case of mass transfer, Num is replaced by Shm and Pr by Sc, this is
valid for the range 0.7 < Sc < 70000.

6. Free falling liquid droplets

Num = 2 + 0.6Re1/2Pr1/3

[
25

(
x

d

)−0.7
]

.

The Nusselt and Reynolds numbers are formed with the droplet diameter d; x
is the distance over which the droplet falls. With 10 ≤ x/d ≤ 600 and 3 mm
≤ d ≤ 6 mm.

7. Bundles of smooth tubes
We first determine from (3.211) with (3.196a) for Num,lam and (3.207) for
Num,turb the mean Nusselt number Num of a single tube in crossflow. The
Reynolds number being Re = wml/ν, l = dπ/2 and wm = w/ε. w is the initial
velocity and ε the void fraction ε = 1 − π/(4a) for b ≥ 1 and ε = 1 − π/(4ab)
for b < 1. a = sq/d is the transverse pitch ratio and b = sl/d the longitudinal
pitch ratio. The mean Nusselt number of the bundle is

NuB =
αBl

λ
= fANum

with the geometric factor of tube rows aligned in flow direction

fA = 1 +
0.7

ε3/2

(b/a − 0.3)

(b/a + 0.7)2

and

fA = 1 +
2

3 b

for staggered tube rows. The equation for NuB is valid in the range 10 < Re <
106 and 0.6 < Pr < 103. For bundles with less than ten rows NuB is to be
multiplied with a factor 1 + (zR − 1) fA/zR, where zR is the number of rows in
staggered arrangement.
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3.8 Internal forced flow

Heat and mass transfer apparatus normally consist of channels, frequently tubes,
in which a fluid is heated, cooled or changes its composition. While the boundary
layers in flow over bodies, for example over a flat plate, can develop freely without
influence from neighbouring restrictions, in channels it is completely enclosed and
so the boundary layer cannot develop freely. In the following the flow, and then
the heat and mass transfer in tubes will be discussed. After this we will study
flow through packed and fluidised beds.

3.8.1 Laminar flow in circular tubes

We will consider a fluid in laminar flow that enters a circular tube with constant
velocity, Fig. 3.31. Friction causes the liquid adjacent to the wall to decelerate. A
boundary layer develops downstream. As the same amount flows through every
cross section, the core flow must accelerate in the flow direction. The driving force
is the pressure drop in the flow direction. As the boundary layer grows asymp-
totically to the axis of the tube, the velocity profile asymptotically approaches a
parabolic end profile, the so-called Poiseuille parabola. The deviation from this
is already negligible after a finite distance. The type of flow where the velocity
profile no longer changes is known as hydrodynamic, fully developed flow. The
distance from the inlet until the deviation from the asymptotic end value is neg-
ligible is known as the hydrodynamic entry-length. It can be calculated exactly
[3.24] for the laminar tubular flow sketched in Fig. 3.31 and is

xe ≈ 0.056Re d , (3.218)

when the velocity at the tube axis has a deviation of 1% from the value for
Poiseuille flow.

Just as for a flat plate, whether the flow is laminar or turbulent is determined
by the Reynolds number. As we have already explained, a flow with a Reynolds

Fig. 3.31: Velocity profile and boundary layer in laminar, tubular flow
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number below Re = wmd/ν = 2300 is always laminar and above Re = 4000 it
is turbulent. Turbulent flows are hydrodynamically fully developed after a short
distance. The entry-length lies in the range [3.25]

10
<∼ xe

d
<∼ 60 . (3.219)

For calculation of the heat and mass transfer it is sufficient to consider turbulent
flow to be hydrodynamically fully developed after an entry-length of xe/d ≈ 10.
Then the small deviations from the end value of the velocity profile hardly affect
the heat and mass transfer coefficients.

3.8.1.1 Hydrodynamic, fully developed, laminar flow

In the calculation of the velocity profile of a hydrodynamic, fully developed, lam-
inar flow we will presume the flow to be incompressible and all properties to be
constant. The velocity profile of a fully developed, tubular flow is only dependent
on the radius r, wx = wx(r) and wy = 0. Therefore the acceleration term �dwj/dt
in the Navier-Stokes equation (3.59) disappears; body forces are not present, so
kj = 0. An equilibrium develops between the pressure and friction forces. Bal-
ancing the forces on an annular fluid element, Fig. 3.32, gives

−τr 2rπ dx + τ
r+dr

2(r + dr)π dx + p 2rπ dr −
(
p +

dp

dx

)
2rπ dr = 0 .

This simplifies, with τr+dr = τr + ( dτr/ dr) dr to

τr + r
dτr

dr
− r

dp

dx
= 0

or
1

r

d

dr
(rτr) =

dp

dx
.

With Newton’s law

τr = η
dwx

dr

Fig. 3.32: Force balance on a ring element in hydrodynamic, fully devel-
oped, laminar flow
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and under the assumption of constant viscosity, we obtain

η

r

d

dr

(
r

dwx

dr

)
=

dp

dx
. (3.220)

The axial pressure drop dp/dx is independent of the radial coordinate r; it can
also not be a function of the length x, as the left hand side of (3.220) only depends
on the coordinate r. So that both sides agree, each must be constant. This means
that the pressure can only change proportionally to the length x. Taking into
account (dwx/dr)r=0 = 0 integration yields

r
dwx

dr
=

1

η

dp

dx

r2

2
,

from which, under consideration of wx(r = R) = 0, and a further integration we
obtain the velocity profile

wx(r) = − 1

4η

dp

dx
R2

[
1 −

(
r

R

)2
]

. (3.221)

The mean velocity over a cross section is found from this to be

wm =
1

R2π

R∫
0

wx(r) 2rπ dr = −R2

8η

dp

dx
. (3.222)

The velocity profile of a fully developed flow is therefore

wx(r)

wm

= 2

[
1 −

(
r

R

)2
]

. (3.223)

Hydrodynamic, fully developed, tubular flows were first studied by Hagen and
Poiseuille. The flow is therefore also called Hagen-Poiseuille flow. We can see
from (3.223), that the velocity at the tube axis is twice the mean velocity, wx(r =
0) = 2wm. From (3.222) we get the following for the pressure drop

−dp

dx
=

8ηwm

R2
,

from which, after introduction of the Reynolds number Re = wmd/ν and with
−dp/dx = const = ∆p/L, we obtain the friction factor

ζ =
∆p

(L/d)�w2
m/2

=
64

Re
. (3.224)
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3.8.1.2 Thermal, fully developed, laminar flow

When a fluid at constant temperature ϑα enters, for example, a circular tube
with an inner wall temperature ϑ0 �= ϑα, it will be either heated up or cooled
down. A thermal boundary layer develops, which increases downstream possibly
up to the tube axis. The thickness of the thermal boundary layer grows to d/2.
The heat transfer coefficient reaches it lowest value at this point α ∼ λ/(d/2),
or expressing it in a different manner Nu = αd/λ ∼ 2: The downstream Nusselt
number approaches a final value, which according to our rough estimations has a
magnitude of 2. A corresponding value exists for the Sherwood number in mass
transfer. The following explanations for heat transfer can be applied accordingly
to mass transfer. A flow is thermally fully developed when the Nusselt number has
reached a value within a deviation of say 1% of the end value.

The local heat transfer coefficient is defined by

α :=
q̇0

ϑ0 − ϑF

, (3.225)

where ϑF is the adiabatic mixing temperature according to (1.30), in the case
being considered

ϑF =
1

Ṁ

∫
Aq

� wx ϑ dAq .

In tubular flow, Ṁ = �wmR2π, dAq = 2rπ dr and therefore the adiabatic mixing
temperature, under the assumption � = const, is

ϑF =
2

wmR2

R∫
0

wxϑ dr . (3.226)

For the temperature profile for a thermal fully developed flow, from

Nu = const =
αd

λ
=

q̇0

ϑ0 − ϑF

d

λ
=

−λ(∂ϑ/∂r)R

ϑ0 − ϑF

d

λ

follows the relationship
(∂ϑ/∂r)R

ϑ0 − ϑF

= const . (3.227)

This says that the temperature increase at the wall in a thermal fully developed
flow changes with the length x in the same way as the difference between the wall
and the adiabatic mixing temperature. The temperature profile that satisfies this
condition is of the general form

ϑ(x, r/R) = (ϑ0 − ϑF) f1(r/R) + f2(x) ,

which can be ascertained by inserting it into (3.227). At the wall

ϑ(x, 1) = ϑ0 = (ϑ0 − ϑF) f1(1) + f2(x) .
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Subtraction of both equations yields with the abbreviation r+ = r/R:

ϑ0 − ϑ(x, r+) = (ϑ0 − ϑF) [f1(1) − f1(r
+)]

or
ϑ0 − ϑ(x, r+) = (ϑ0 − ϑF) f(r+) . (3.228)

This relationship serves in many publications as the definition of a thermally fully
developed flow. It is, as we have already seen, a result of the fact that the heat
transfer coefficient reaches its asymptotic, constant end value downstream.

We will now look at examples of two particular thermally, fully developed
flows, namely that at constant heat flux q̇0 = const at the wall, and that at
constant wall temperature ϑ0 = const.

a) In the case of constant heat flux, it follows with

ϑ0 − ϑF =
q̇0

α

from (3.228) that

ϑ0 − ϑ(x, r+) =
q̇0

α
f(r+) .

Here, the left hand side is independent of the length x, and so it holds that

dϑ0

dx
=

∂ϑ(x, r+)

∂x
.

The temperature at any arbitrary point r+ changes in the same way with
the length x as the wall temperature.
Furthermore, in (3.227) because of q̇0 = const, we also have (∂ϑ/∂r)R =
const and therefore ϑ0−ϑF = const. It follows from this that the adiabatic
mixing temperature changes in the same way as the wall temperature with
the length

dϑ0

dx
=

dϑF

dx
.

Therefore we have

∂ϑ(x, r+)

∂x
=

dϑ0

dx
=

dϑF

dx
=

q̇0 2Rπ

Ṁcp

= const . (3.229)

At a sufficient distance downstream all the temperatures change linearly
with the length, Fig. 3.33a.

b) In the case of constant wall temperature, the energy balance

α 2Rπ dx [ϑ0 − ϑF(x)] = Ṁcp dϑF

yields the relationship

dϑF

ϑ0 − ϑF(x)
=

αdπ

Ṁcp

dx
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Fig. 3.33: Dependence of the wall tem-
perature ϑ0(x1) and adiabatic mixing
temperature ϑF(x1) on the length x in
laminar tubular flow, a q̇0 = const;
b ϑ0 = const

which can be integrated as the wall temperature is constant.
With ϑF(x = 0) = ϑα we obtain

ϑ0 − ϑF(x)

ϑ0 − ϑα

= exp

⎛⎝−αmdπ

Ṁcp

x

⎞⎠ , (3.230)

where αm is the mean heat transfer coefficient over the length x. The differ-
ence between the wall temperature and the adiabatic mixing temperature
decreases exponentially with the length x, Fig. 3.33b. According to (3.228)

∂ϑ(x, r+)

∂x
=

dϑF

dx
f(r+) (3.231)

with

f(r+) =
ϑ0 − ϑ

ϑ0 − ϑF

.

The temperature change in the direction of flow now depends on the radial
coordinate as well.

3.8.1.3 Heat transfer coefficients in thermally fully developed, laminar
flow

In the following we will show how heat transfer coefficients are calculated for
thermally fully developed, laminar flow. In a corresponding manner the mass
transfer coefficients with regard to fully developed concentration profile can be
obtained. In order to show this fundamentally we will consider tubular flow. The
explanations can easily be transferred to cover other types of channel flow.

When we neglect the dissipation and the thermal conduction in the direc-
tion x of flow and under the assumption that the properties of the materials are
temperature independent, the energy balance in cylindrical coordinates x, r is

wx

∂ϑ

∂x
+ wr

∂ϑ

∂r
= a

1

r

∂

∂r

(
r

∂ϑ

∂r

)
. (3.232)

In fully developed flow we have wr = 0, so that the second term on the left
hand side drops out. The velocity profile wx(r) is given by the Hagen-Poiseuille
parabola (3.223).
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a) We will discuss the case of constant heat flux at the wall first. Then,
according to (3.229)

∂ϑ

∂x
=

∂ϑF

∂x
= const ,

and the energy equation is transformed into

2wm

[
1 −

(
r

R

)2
]

dϑF

dx
= a

1

r

d

dr

(
r

dϑ

dr

)
.

Separating the variables gives, after integration, the general solution of the
differential equation

ϑ(x, r) =
2wm

a

dϑF

dx

(
r2

4
− r4

16R2

)
+ c1 ln r + c2 .

This still has to satisfy the boundary conditions

ϑ(x, r = R) = ϑ0(x) .

In addition, the temperature in the tube axis ϑ(x, r = 0) has to be finite,
which is only possible if c1 = 0. This gives a temperature profile

ϑ(x, r) = ϑ0(x) − 2wmR2

a

dϑF

dx

[
3

16
+

1

16

(
r

R

)4

− 1

4

(
r

R

)2
]

. (3.233)

The adiabatic mixing temperature (3.226) is found by inserting the tem-
perature profile into

ϑF(x) =
2

wmR2

R∫
r=0

2wm

[
1 −

(
r

R

)2
]
ϑ(x, r) r dr

to give

ϑF(x) = ϑ0(x) − 11

48

wmR2

a

dϑF

dx
.

So, with (3.229)

ϑ0(x) − ϑF(x) =
11

48

q̇0d

λ
.

On the other hand the heat transfer coefficient is defined by q̇0 = α(ϑ0(x)
−ϑF(x)) and therefore

αd

λ
= Nu =

48

11
= 4.3636 . (3.234)

b) In the case of constant wall temperature the energy balance (3.232) is once
again valid, into which wr = 0 for fully developed flow has to be in-
serted. With the velocity profile (3.223) for Hagen-Poiseuille flow, and
taking (3.231) into account, we obtain

2wm

[
1 −

(
r

R

)2
]

dϑF

dx

ϑ0 − ϑ

ϑ0 − ϑF

= a
1

r

∂

∂r

(
r

∂ϑ

∂r

)
. (3.235)
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This equation can be further simplified with the dimensionless temperature

ϑ+ :=
ϑ0 − ϑ

ϑ0 − ϑF

,
dϑ+

dr
= − 1

ϑ0 − ϑF

∂ϑ

∂r

and with the energy balance

αdπ dx (ϑ0 − ϑF) = Ṁcp dϑF

which provides us with the following relationship

αdπ

Ṁcp

=
4α

wmd�cp

=
1

ϑ0 − ϑF

dϑF

dx
.

With this (3.235) is transformed into

−2Nu (1 − r+2)ϑ+ =
1

r+

d

dr+

(
r+ dϑ+

dr+

)
(3.236)

with the Nusselt number Nu = αd/λ and r+ := r/R. The solution has
to satisfy the boundary conditions ϑ+(r+ = 1) = 0. The equation (3.236)
cannot be solved analytically. It is solved using a series expansion

ϑ+ =
∞∑

n=0

C2nr+2n .

By inserting this into (3.236) and comparing terms of equal powers in r+

we find that the coefficients are given by

C2

C0

= −Nu

2
and

C2n

C0

=
Nu

2n2

(
C2n−4

C0

− C2n−2

C0

)
n ≥ 2 .

This means that all coefficients can be expressed in terms of the Nusselt
number. In order to fulfill the boundary condition ϑ+(r+ = 1) = 0, the
following equation has to be fulfilled

∞∑
n=0

C2n

C0

= 0 , (3.237)

and this is only possible for certain values of the Nusselt number. These
values can be found, for example, by estimating the Nusselt number, then
calculating the coefficients with the recursive formula given above and then
checking whether the condition (3.237) has been satisfied. In this way we
find that

Nu = 3.6568 .

A corresponding calculation for channels with different cross sections leads to the
values presented in Table 3.2. These represent the lower limits for the Nusselt
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Table 3.2: Nusselt numbers Nu = αdh/λ in thermal, fully developed, laminar flow and re-
sistance factors ζ = ∆p/(L/dh �/2 w2

m) in channels with different cross sections. NuT is the
Nusselt number at constant wall temperature, Nuq that at constant heat flux at the wall and
Re = wmdh/ν is the Reynolds number.

Channel dh NuT Nuq ζRe

Circular tube
Diameter d d 3.657 4.364 64

Parallel plates
Plate distance 2b 4b 7.541 8.235 96

Square
Side length a a 2.976 3.091 56.91

Rectangle
Side ratio
b/a = 1/2 4b/3 3.391 3.017 62.19

Equilateral triangle

Side length a a/
√

3 2.49 1.892 53.33

Ellipse
Large semiaxis a
Small semiaxis b
b/a = 1/2 πb/1.2111 3.742 3.804 84.11

number and it cannot fall below these values even in a flow that is not thermally
fully developed. The resistance factors are also exhibited in Table 3.2

ζ = ∆p/

(
L

dh

�
w2

m

2

)
, (3.238)

and these are formed with the hydraulic diameter

dh = 4A/U , (3.239)

where A is the cross sectional area of the channel and U is its perimeter. Further
end values of the Nusselt number can be found in Kakač [3.26] among others.

3.8.1.4 The thermal entry flow with fully developed velocity profile

In a laminar tubular flow the velocity profile shall be fully developed and can
therefore be described by Hagen-Poiseuille’s law (3.223). In contrast the temper-
ature profile is not fully developed. This could be imagined as a heated tube that
has an unheated length, long enough to allow the velocity profile to become fully
developed before the fluid enters the heated section. The velocity profile forms
much faster then the temperature profile if the Prandtl number of the fluid is very
large, Pr → ∞, as in the case of highly viscous oils. The high viscosity means that
the friction in the fluid propagates fast, whilst the low thermal diffusivity only
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permits a slow change in the temperature, so the velocity profile rapidly reaches
its end value in comparison with the temperature profile that only changes slowly
along the flow path.

We presume negligible axial heat conduction, constant wall temperature ϑ0

and a constant temperature ϑα of the fluid at the inlet of the tube. All material
properties are temperature independent.

This problem was first dealt with by Graetz (1850–1891) in 1883 [3.27], later
in 1910 by Nusselt (1882–1957) [3.28] and by many other authors. It is also
known as a Graetz or Graetz-Nusselt problem. It is described by the energy
equation (3.232), in which, according to the suppositions made, the radial velocity
component disappears, wr = 0, and the axial velocity is that of a Hagen-Poiseuille
flow (3.223). With that the energy equation becomes

2wm

[
1 −

(
r

R

)2
]

∂ϑ

∂x
= a

1

r

∂

∂r

(
r

∂ϑ

∂r

)
(3.240)

or after the introduction of dimensionless quantities

r+ :=
r

R
, x+ :=

x

d Pe
with Pe = RePr =

wmd

a

and

ϑ+ :=
ϑ − ϑ0

ϑα − ϑ0

:

1

2

(
1 − r+2

) ∂ϑ+

∂x+
=

1

r+

∂

∂r+

(
r+ ∂ϑ+

∂r+

)
. (3.241)

The temperature profile should satisfy the following boundary conditions

ϑ+(x+, r+ = 1) = 0 (3.242)

and
ϑ+(x+ = 0, r+) = 1 . (3.243)

To allow for solution, the temperature profile ϑ+(x+, r+) is written as the product
of two functions

ϑ+(x+, r+) = ϕ(x+)ψ(r+) ,

of which one only depends on the length x+ and the other only depends on the
radial coordinate r+. With this statement, the partial differential equation (3.241)
can be converted into two ordinary differential equations

ϕ′ + 2β2ϕ = 0 (3.244)

and

ψ′′ +
1

r+
ψ′ + β2(1 − r+2

)ψ = 0 . (3.245)

The general solution of (3.244) is

ϕ = c exp{−2β2x+} ,
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where c and β2 are arbitrary constants. Equation (3.245) cannot be solved explic-
itly. A particular solution can be found using the series

ψ =
∞∑

n=0

C2nr+2n
.

Inserting this into (3.245) and comparing the coefficients of equal powers of r+

yields
C2

C0

= −β2

22

and for n ≥ 2 the recursive formula for the coefficients

C2n

C0

=
β2

(2n)2

(
C2n−4

C0

− C2n−2

C0

)
.

According to this the coefficients C2n/C0 are still dependent on the quantity β.
This has to be determined such that the boundary condition

ψ(r+ = 1) = 0

or

1 +
∞∑

n=1

C2n

C0

= 0

is satisfied. In this way we obtain a power series for β, the solution of which
delivers an infinite number of values, the so-called eigenvalues βi, i = 1, 2, . . .∞.
There are therefore an infinite number of particular solutions

ψi(r
+) = f(βi, r

+) =
∞∑

n=0

C2n(βi) r+2n
,

and the general solution is of the form

ϑ+ =
∞∑

n=0

an exp{−2β2
nx+}ψn(r+) . (3.246)

It still has to satisfy the boundary condition ϑ+(x+ = 0, r+) = 1

1 =
∞∑

n=0

anψn(r
+) . (3.247)

The constants an are obtained, see also Appendix A 7 for this, as

an =

1∫
0

ψn(r
+)(1 − r+2

) r+ dr+

1∫
0

ψ2
n(r

+)(1 − r+2
) r+ dr+

. (3.248)
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The adiabatic mixing temperature follows from

ϑF − ϑ0

ϑα − ϑ0

= ϑ+
F = 2

1∫
0

wx

wm

ϑ+r+ dr+ = 4

1∫
0

(1 − r+2
)ϑ+r+ dr+ ,

which produces, after inserting the temperature profile (3.246) and integrating,

ϑ+
F =

∞∑
n=0

Bn exp{−2β2
nx+} . (3.249)

The constants Bn and the eigenvalues βn of the first five terms of the series are
presented in the following Table 3.3, according to calculations by [3.29].

Table 3.3: Eigenvalues βn and constants Bn according to Brown [3.29]

n βn Bn

0 2.70436 0.81905

1 6.67903 0.09753

2 10.67338 0.03250

3 14.67108 0.01544

4 18.66987 0.00879

The local Nusselt number is obtained from the adiabatic mixing temperature
with the help of the energy balance

α2Rπ dx(ϑ0 − ϑF) = Ṁcp dϑF = wmR2π�cp dϑF

to be

α =
wmdcp

4

1

ϑ0 − ϑF

dϑF

dx
or

Nu =
αd

λ
= −1

4

d ln ϑ+
F

dx+
. (3.250)

The mean Nusselt number comes from the mean heat transfer coefficient

αm =
1

L

L∫
0

α dx

as

Num =
αmd

λ
=

1

X+

X+∫
0

Nu dx+

and with X+ := L/(d Pe)

Num = − 1

4X+
ln ϑ+

F (X+) . (3.251)
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A plot of the mean Nusselt number is shown in Fig. 3.35; it is identical to the
curve for Pr → ∞

For sufficiently large values of the length X+ → ∞ the adiabatic mixing
temperature (3.249) may be calculated using only the first term of the series. The
mean Nusselt number according to (3.251) is then transformed into

Num = − 1

4X+
ln
(
B0 exp{−2β2

0X
+}
)

=
2β2

0

4
− 1

4X+
ln B0 .

With the values in Table 3.3 we obtain

Num = 3.6568 +
0.0499

X+
, valid for X+ ≥ 0.05 . (3.252)

For X+ → ∞, the known end value of 3.6568 for the Nusselt number for thermal
fully developed flow is obtained. The calculation of the Nusselt number for small
values of the length X+ = L/(d Pe) requires many terms of the series for the
adiabatic mixing temperature (3.249). Therefore the exact solution has been
approximated by empirical equations. According to Stephan [3.30] through

Num =
3.657

tanh(2.264X+1/3 + 1.7X+2/3)
+

0.0499

X+
tanh X+ (3.253)

the exact values in the total region 0 ≤ X+ ≤ ∞ will be reproduced with the
largest error of 1%. For large values X+ ≥ 0.05 the equation is transformed into
the asymptotic solution (3.252), whilst for small values X+ ≤ 5 · 10−6 we obtain
the so-called Lévêque solution [3.31] which is valid for short lengths

Num = 1.615 (X+)−1/3 . (3.254)

As we have already explained, in the calculation of the heat flow, the temperature
change in the fluid between inlet and outlet has to taken into account. According
to the previous explanations, (3.216), the heat flow is

Q̇ = αmA0∆ϑlog , (3.255)

where A0 is the surface of the tube over which heat is released and ∆ϑlog is the
logarithmic mean temperature difference, cf. (3.217),

∆ϑlog = (ϑF − ϑα)/ ln
ϑ0 − ϑα

ϑ0 − ϑF

. (3.256)
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3.8.1.5 Thermally and hydrodynamically developing flow

In flow that is neither hydrodynamically nor thermally fully developed the velocity
and temperature profiles change along the flow path. Fig. 3.34 shows qualitatively
some velocity and temperature profiles, under the assumption that the fluid flows
into the tube at constant velocity and temperature. The wall temperature of the
tube is lower than the inlet temperature of the fluid.

The calculation of the velocities and temperatures requires the solution of the
continuity, momentum and energy equations. An explicit solution of the system
of equations is not possible. A numerical solution has been communicated by
Stephan [3.24] and later by several other authors see [3.26]. As a result the
pressure drop ∆p = pi − p between the pressure pi at the inlet and the pressure
p at any tube cross section is obtained. It can be approximated by an empirical
correlation [3.30]

∆p

�w2
m/2

= (1.25 + 64X) tanh(11.016X1/2) (3.257)

with X := L/(d Re) and Re := wmd/ν. The pressure drops calculated using
this method deviate by less than 1.65% from the values given by the numerical
solution for the entire region 0 ≤ X ≤ ∞.

In the same way as shown in the previous section, the heat transfer coefficient
and from that the mean Nusselt number Nume = αmed/λ (the index e stands for
entry flow) can be obtained from the temperature profile. The Nusselt number
can be calculated from an empirical equation of the form

Nume

Num

=
1

tanh(2.432Pr1/6X+1/6)
, (3.258)

where Num is the mean Nusselt number according to (3.253) for hydrodynamically
fully developed flow. Equation (3.258) is valid for 0.1 ≤ Pr ≤ ∞ and 0 ≤
X+ ≤ ∞. The deviation from the numerically calculated mean Nusselt numbers
amounts to less than 5% for 1 ≤ Pr ≤ ∞, and increases for small Prandtl numbers
0.1 ≤ Pr < 1 to around 10%.

Fig. 3.35 illustrates the pattern of the mean Nusselt number over the dimen-
sionless length X+ = L/(d Pe). All the lines are arranged between those for

Fig. 3.34: Velocity and temperature
profiles of a hydrodynamically and
thermally developing flow
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Fig. 3.35: Mean Nusselt numbers in laminar tubular flow

Pr = 0 and Pr → ∞. Pr = 0 in this case means that the viscosity vanishes, but
the thermal conductivity is finite. As no friction forces act in the fluid, the veloc-
ity at the inlet remains constant. This type of flow is known as plug flow. In the
limiting case Pr → ∞, because the viscosity is large in comparison to the thermal
diffusivity, the flow is hydrodynamically but not thermally fully developed. At
the limit Pr → ∞ equation (3.258) yields Nume/Num = 1.

Vanishing Prandtl numbers Pr = 0 can also mean that the thermal dif-
fusivity is approaching infinity, whilst the viscosity remains finite. Then the
flow is already thermally fully developed at the inlet but not yet hydrodynam-
ically fully developed. As the Péclet number disappears, Pe = wm d/a = 0,
X+ = L/(d Pe) = ∞. The Nusselt number is equal to that for thermal fully
developed flow Num = 3.6568.

3.8.2 Turbulent flow in circular tubes

An exclusively analytical treatment of heat and mass transfer in turbulent flow
in pipes fails because to date the turbulent shear stress τij = −�w′

iw
′
j, heat flux

q̇i = −�cpw
′
iT

′ and also the turbulent diffusional flux j∗Ai = −�w′
iξ

′
A cannot be in-

vestigated in a purely theoretical manner. Rather, we have to rely on experiments.
In contrast to laminar flow, turbulent flow in pipes is both hydrodynamically and
thermally fully developed after only a short distance x/d ≥ 10 to 60, due to the
intensive momentum exchange. This simplifies the representation of the heat and
mass transfer coefficients by equations. Simple correlations, which are sufficiently
accurate for the description of fully developed turbulent flow, can be found by
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using the analogy between momentum and heat or mass transfer, (3.199),

StPr2/3 =
cf

2
(3.259)

with St = α/(�cpwm). The friction factor cf is linked to the resistance factor ζ
because

τ0 dπL = ∆p (d2π/4) ,

from which
τ0 = ∆p (d/4L)

follows and

cf =
τ0

� (w2
m/2)

=
∆p

(L/d)� (w2
m/2)

1

4
=

ζ

4
. (3.260)

Therefore

StPr2/3 =
ζ

8
. (3.261)

With the resistance factor [3.32]

ζ = 0.184Re−1/5 valid for Re ≥ 104

for turbulent tubular flow, we obtain the following for the Nusselt number

Nu = 0.023Re4/5Pr1/3 . (3.262)

A relationship that approximately agrees with equation (3.262) was recommended
by Kraussold [3.33] in 1933, based upon his own experiments and those of others.
The equation was first communicated in the form presented here by McAdams
[3.34] in 1942. It presumes small temperature differences between the wall and
the fluid, and is valid in the region

0.7 ≤ Pr ≤ 160 , Re = wmd/ν ≥ 104 and L/d ≥ 100 .

All the material properties are taken at the adiabatic mixing temperature. With
large differences in the temperature of the fluid and the wall, the influence of
the viscosity that changes markedly with the temperature has to be taken into
consideration. Hufschmidt and Burck [3.35] found, based on experiments by Sieder
and Tate [3.36], that it is sufficient to multiply the right hand side of (3.262) with
the factor

(Pr/Pr0)
0.11 ,

where the Prandtl number Pr is that at the mean temperature ϑm = (ϑi + ϑe)/2
and Pr0 is that at the wall temperature ϑ0.

An equation that is also valid for large Reynolds numbers, was developed by
Petukhov and Kirilov [3.37]. It has been modified by Gnielinski [3.38] so that in
addition the region below Re = 104 is correctly described. It reads

Nu =
(ζ/8)RePr

1 + 12.7
√

ζ/8 (Pr2/3 − 1)

⎡⎣1 +

(
d

L

)2/3
⎤⎦ (3.263)



3.8 Internal forced flow 357

with the resistance factor

ζ =
∆p

(L/d) � (w2
m/2)

=
1

(0.78 ln Re − 1.5)2
. (3.264)

It is valid in the region

104 ≤ Re ≤ 106 , 0.6 ≤ Pr ≤ 1000 and L/d > 1 .

All material properties are formed with the mean temperature ϑm = (ϑi + ϑe)/2.
The influence of a viscosity that changes starkly with temperature is once again
accounted for by the factor (Pr/Pr0)

0.11 on the right hand side of (3.263), where
Pr is at the mean temperature ϑm, and Pr0 is formed at the wall temperature.

The equations (3.262) and (3.263) can also be used for the calculation of mass
transfer coefficients. As has already been explained, this merely requires the
replacement of the Nusselt with the Sherwood number and the Prandtl with the
Schmidt number.

3.8.3 Packed beds

A packed bed is understood to be the ordered or irregular arrangement of indi-
vidual bodies of different shapes. As an example of this Fig. 3.36 shows a packed
bed of particles of different sizes. A pipe register is also a packed bed in the sense
of this definition.

In fluidised beds the particles are mixed up by a flowing fluid and kept in sus-
pension. They then have properties similar to that of a fluid. Chemical reactions,
drying or other mass transfer processes take place rapidly in fluidised beds as a
result of the brisk movement of the particles.

Packed beds serve as regenerators in heat transfer. As so-called packed columns
they are frequently implemented as mass transfer apparatus. This normally in-
volves the introduction of a liquid mixture at the top of a column with a gas of
different composition flowing in the opposite direction, as illustrated in Fig. 3.37.
Through mass transfer one or more components of the gas are transferred into the

Fig. 3.36: Packed bed of
particles of different sizes

Fig. 3.37: Packed column in
countercurrent operation
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liquid phase and the same occurs in reverse. In this way, toxic substances can be
taken from the gas into a washing liquid falling down the column. The sizing of
this type of apparatus is the object of thermal process engineering. This requires
knowledge of the basics of heat and mass transfer which will be explained in the
following.

In order to characterise the flow space within filling we will consider packing
of equally sized spheres of diameter dP. A suitable parameter for the description
of packing is the void fraction

ε := VG/V , (3.265)

formed with the void space space filled with gas VG and the total volume of the
bed

V = VG + VS .

In this the volume VS of the solids is found from the volume VP of the individual
particles and the number n of them, VS = nVP. Therefore

VS

V
=

nVP

V
= 1 − ε

or for the number of particles per unit volume

nV :=
n

V
=

1 − ε

VP

. (3.266)

This is ascertained when the void fraction and the volume of the particles are
known.

The two quantities, void fraction ε and particle diameter dP, are not sufficient
to clearly describe the flow and with that also the heat and mass transfer. Imagine
a cubic packing of equally sized spheres placed one behind the other, as shown in
Fig. 3.38a. This arrangement allows the fluid to flow along the gaps between the
spheres. In an irregular packing, with the same void fraction, made up of spheres
of the same diameter, the spaces between the spheres can become partially blocked
and the throughflow will be more strongly hindered at some points than at others,
as we can see in Fig. 3.38b. Despite having the same void fraction and particle
diameter the flow pattern can still be different. Nevertheless the flow, heat and
mass transfer can still be described by the two parameters ε and dP, but only
because in sufficiently large packings these differences are balanced out in the
statistical average.

The specific surface area aP of particles of any shape is defined by

aP := nAP/V (3.267)

(SI units m2/m3), in which AP is the surface area of an individual particle. The
specific surface area aP is a characteristic property of the packing. For packings of
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Fig. 3.38: Packing of spheres of the same size
and void fraction a cubic packing b irregular
packing

different forms and shapes nAP is the sum of the individual particle surface areas
put into the volume V . Further, with (3.266)

aP =
nAP

V
=

AP

VP

(1 − ε) , (3.268)

where AP/VP is the specific surface area of an individual particle. For spherical
particles it is equal to 6/d, so that for this

aP =
6

d
(1 − ε) (3.269)

is valid.

An example: A cubic packing of spheres, Fig. 3.38a, with z spheres per row and r rows
behind and above each other has a volume V = (zd)(rd)(rd) = zr2d3. The volume of all the
spheres is VS = nd3π/6 = zr2d3π/6, and the void fraction is

ε = 1 − VS

V
= 1 − π

6
= 0.476 .

An irregular packing of spheres has a void fraction of ε ≈ 0.4. Its specific surface area is,
according to (3.269), aP ≈ 3.6/d. Spheres of 1 cm diameter in an irregular arrangement already
have a specific surface area aP ≈ 360m2/m3. According to (3.266) the number of particles per
unit volume is yielded to be nV ≈ 1.15 · 106/m3. A powder of spherical particles of 100 µm
yields aP ≈ 3.6 · 104m2/m3 and nV ≈ 1.15 · 1012/m3. These numbers clearly show that the
surface area available for heat and mass transfer in packings can be extraordinarily large.

When a fluid flows through a packing the heat transfer coefficients increase
rapidly in the first few rows and then reach fixed values, as Gillespie et al. [3.39]
indicated for the example of heat transfer in an irregular packing of spheres. The
end values for the Nusselt number are significantly larger in packing than for
flow around a single sphere. This is due to the frequent eddies and changes in
direction of the fluid. The corresponding findings would be expected for mass
transfer. The end values of the mean Nusselt number Num in a packed bed of
spherical particles and of the mean Nusselt number NumS in flow around a single
sphere have a certain relationship with each other that is only dependent on the
void fraction. This has been shown by experimentation. This relationship is

Num = fεNumS , (3.270)

where fε is an arrangement factor that is only dependent on the void fraction. The
mean Nusselt number for flow over a sphere is given in 3.7.4, No.5. The Reynolds



360 3 Convective heat and mass transfer. Single phase flow

Table 3.4: Arrangement factor fε for packings of non-spherical particles

Particle fε checked for

Cylinder,
Length L, Diameter d 1.6 0.24 < L/d < 1.2

Cube 1.6 0.6 ≤ Pr, Sc ≤ 1300

Raschig rings 2.1 Pr = 0.7, Sc = 0.6

Berl saddle 2.3 Sc = 2.25

number used there was formed with the mean effective velocity weff = wm/ε. This
is found from the material balance wmA0 = weffAG to be weff = wm A0/AG =
wm/ε, where A0 is the cross sectional area of the empty column and AG is the
void cross sectional area through which the gas flows.

The factor fε can be calculated with sufficient accuracy for the range 0.26 <
ε < 1 according to Schlünder [3.40], from the simple formula

fε = 1 + 1.5 (1 − ε) . (3.271)

Eq. (3.270) also holds for packings with non-spherical particles. Values giving
some idea of the arrangement factor fε are contained in Table 3.4. The values
hold over the range 102 < Re < 104, if the Reynolds number is formed with the
effective mean velocity weff = wm/ε and an equivalent sphere diameter dP. This
is calculated from the mean particle surface area

AmP = aP/nV (3.272)

with the specific surface area aP from (3.267) and the number nV of particles per
unit volume according to (3.266), by comparison with a sphere of the same surface
area, to be

dP =
√

AmP/π . (3.273)

The heat flow is calculated using the method already known with

Q̇ = αmnAP∆ϑlog

and the logarithmic mean temperature difference (3.217)

∆ϑlog = (ϑe − ϑi)/ ln
ϑ0 − ϑi

ϑ0 − ϑe

,

where ϑi is the inlet, ϑe the outlet (exit) temperature of the fluid and ϑ0 is the
surface temperature of the particle.

The equations also hold in a corresponding manner for mass transfer. This
merely requires the Nusselt number to be replaced by the Sherwood number and
the Prandtl by the Schmidt number. Prerequisite for the validity of the equations
is however, a sufficiently large value for the Péclet number Pe = RePr

>∼ 500
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to 1000, because otherwise the flow and therefore the heat and mass transfer
are distributed unequally over the cross section. It may also be possible for flow
reversal to occur, such that the mean heat and mass transfer coefficients could be
smaller than those for flow over a single body.

3.8.4 Fluidised beds

Fluidised beds consist of solid particles which are maintained in a suspension by
a fluid flowing upwards through them. They were first used in the Winkler pro-
cess (German patent DRP 437 970 from 28th Sept. 1922) for carbon gasification.
Nowadays fluidised beds are used in a variety of ways; for chemical reactions and
among others for the mixing, agglomeration or drying of solids. Fig. 3.39 shows
schematically a gas-solid fluidised bed.

In order to generate a fluidised bed, the velocity of the fluid flowing upwards
must be just great enough, so that a balance between the forces exerted by the
fluid and the weight of the particles exists. Then

∆p = �gH =
[
�S (1 − ε) + �Fε

]
gH , (3.274)

where H is the height of the solid particles in the column, �S the density of the
solid material and �F that of the fluid.

As the mass of the solid remains constant, independent of how high the solid
particles are forced upwards by the fluid, it holds that

MS = �S (1 − ε)A0H = const

and in a column with a constant cross section

�S (1 − ε)H = const .

Fig. 3.39: Fluidised bed
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As we can see the void fraction increases with the height of the fluidised bed.
On the other hand in gas-solid fluidised beds it is almost always the case that
�F 	 �S and therefore also

∆p ∼= �S (1 − ε) gH = const .

The pressure drop in a fluidised bed is independent of its height in good approxi-
mation constant.

In order to bring the solid particles into suspension, the fluid has to exceed
a certain minimum velocity, the so-called minimum fluidisation velocity wmf , so
wG ≥ wmf . This is yielded, with the help of the approximation equation from the
VDI-Wärmeatlas [3.41], from

Remf =
wmfdP

ν
∼= 42.9

(1 − εmf)

ϕS

[(
1 + 3.11 · 10−4 ϕ3

S ε3
mf

(1 − εmf)
2
Ar

)1/2 − 1

]
(3.275)

with the Archimedes number Ar as the ratio of the lift to the frictional forces

Ar :=
�S − �F

�F

d3
Pg

ν2

and the sphericity defined as

ϕS :=
Surface area of a sphere of the same volume as a particle

Particle surface area
.

Numerical values for the sphericity are contained in the VDI-Wärmeatlas
[3.41]; for example, fire-blasted sand has ϕS = 0.86. εmf is the void fraction
at the fluidisation point.

At velocities above the minimum fluidisation velocity the fluidised bed ex-
pands. Its height and void fraction increase. Solid-liquid systems expand contin-
uously with increasing liquid velocity, and the solid particles are homogeneously
distributed. In solid-gas systems gas bubbles form inside the fluidised bed, so that
a heterogeneous system exists.

The fluid velocity or the Reynolds number of the fluid and the void fraction
are not independent of each other in fluidised beds as they are in packed beds.
Rather the void fraction increases with the Reynolds number, from the value of
ε ∼= 0.4 for a packed bed to a value of ε → 1, which will then be approximately
reached, if only one particle is located in a large volume.

Heat and mass transfer coefficients in a fluidised bed lie between the values
for a packed bed and those for a single particle. The fundamental pattern of the
Nusselt or Sherwood number as functions of the Reynolds number is illustrated
in Fig. 3.40. In this the Nusselt number Nu = αdP/λ or the Sherwood number
Sh = βdP/η and the Reynolds number Re = wmdP/ν are all formed with the
particle diameter, which for non-spherical particles is the same as the equivalent
sphere diameter according to (3.273). In the Reynolds number wm is the mean
velocity in the imaginary empty packing.
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Fig. 3.40: Heat and mass transfer at
the transition from packed to fluidised
bed

If the Reynolds number is increased in a packed bed, the Nusselt and Sherwood
numbers increase corresponding to the left branch of the curve in Fig. 3.40.

Once the upward flowing fluid has reached the minimum fluidisation velocity
wmf and with that the Reynolds number the value Remf = wmfdP/ν, point a
in Fig. 3.40, a fluidised bed is formed. The heat and mass transfer coefficients
hardly change with increasing fluid velocity: The Nusselt and Sherwood numbers
are only weakly dependent on the Reynolds number, corresponding to the slightly
upwardly arched line a b in Fig. 3.40. After a certain fluid velocity has been
reached, indicated here by point b in Fig. 3.40, the particles are carried upwards.
At point b the heat and mass transfer coefficients are about the same as those for
flow around a single sphere of diameter dP.

In an homogeneous (bubble free) fluidised bed the velocity with which the
particles are just carried at point b is equal to the fluid velocity. Points on the
rising branch of the line for flow around a single sphere to the right of point b are
attributed to a fluid velocity greater than the particle velocity. They lie in the
region of pneumatic transport.

An observer moving with the fluid would, upon reaching point b, have the
impression that the particle was about to start falling. The particle velocity in
a homogeneous fluidised bed at point b is the same as the falling velocity wS of
a particle in a quiescent fluid. This can be calculated from the balance of the
buoyancy FB and resistances forces FR. This is

FB = (�S − �F)
d3

Pπ

6
g = FR = cR

d2
Pπ

4
�F

w2
S

2
. (3.276)

The resistance factor follows as

cR =
4

3

(�S − �F) dP g

�F w2
S

. (3.277)

With the Reynolds number ReS = wSdP/ν and the previously defined Archimedes
number, the resistance factor can also be written as

cR =
4

3

Ar

Re2
S

. (3.278)
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As the resistance factor cR in flow around a sphere is dependent on the Reynolds
number, according to (3.278), a relationship between the Reynolds number formed
with the falling velocity wS and the Archimedes number can be derived, ReS =
f(Ar).

In process engineering the main interest lies in the region ReS ≤ 104. The area
above ReS = 105, in which the transition from laminar to turbulent boundary layer
occurs, can generally be disregarded for chemical engineering tasks. By solving
the Navier-Stokes equation up to Re = 80 and comparing this with experiments
enabled Brauer and co-workers [3.42] to find a very accurate empirical law, for
values up to Re = 104, for the resistance factor

cR =
24

Re
+

5.48

Re0.573
+ 0.36 . (3.279)

Our case with Re = wSdP/ν = ReS has to be put into this. It includes Stokes’ law
cR = 24/Re which is valid for low Reynolds numbers 0 ≤ Re ≤ 0.1, and reaches,
at the limit of validity Re = 104, the value cR = 0.39. Now, putting (3.279) into
(3.278), gives a transcendental equation of the form Ar(ReS), from which, at a
given Archimedes number Ar , the Reynolds number ReS can be developed by
iteration. In order to reduce the computation time, without a significant loss in
accuracy, (3.279) is replaced by the following approximation, which is valid for
the range 0 ≤ Re ≤ 104,

cR
∼= 0.36

[
1 +

(
24

0.36Re

)1/1.8
]1.8

. (3.280)

Then, inserting this into (3.278), taking into account Re = ReS, we obtain an
explicit expression for the Reynolds number

ReS
∼= 19.14

⎡⎣(1 +
Ar1/1.8

12.84

)1/2

− 1

⎤⎦1.8

, (3.281)

valid for homogeneous fluidised beds over the range 0 ≤ ReS ≤ 104 or 0 ≤ Ar ≤
2.9 · 107.

In heterogeneous fluidised beds, like those where gas flows through the bed,
(3.281) is likewise valid for 0 ≤ ReS ≤ 1.2·102 or 0 ≤ Ar ≤ 104. In regions beyond
this, i.e. ReS ≥ 1.2 · 102 or Ar ≥ 104, according to Reh [3.44], the following holds
for heterogeneous fluidised beds

ReS
∼=
(

4

3
Ar

)1/2

. (3.282)

The Reynolds numbers calculated according to (3.281) barely deviate from
those calculated using a different equation communicated by Martin [3.43], but
reproduce the relationship ReS(Ar), which is gained by inserting the accurate
resistance law (3.279) from Brauer into (3.278), somewhat better. The maximum
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Fig. 3.41: Heat and mass transfer fluid/particle in the fluidised bed, according
to Martin [3.43]

error in the Reynolds number from the approximation equation (3.281) is around
3.5%. With assistance from (3.281) or (3.282), the Reynolds number ReS at the
point b, for stipulated Archimedes numbers, can be calculated. Fig. 3.41 shows
the plot of the heat and mass transfer coefficients in fluidised beds for different
Archimedes numbers. After a suggestion by Martin [3.43] the slightly curved
lines for the heat and mass transfer in a fluidised bed are replaced by the dotted
horizontal lines, Fig. 3.40 and 3.41. The heat and mass transfer coefficients are
the same there as those for flow around a single sphere, point b in Fig. 3.40. The
equation valid for this is taken from section 3.7.4, No.5, in which ReS is used for
the Reynolds number.

Finally, some observations on the energy balance for a fluidised bed reactor. The
temperature pattern in solid particles is, as explained for transient heat conduction
in solids, determined decisively by the Biot number Bi = αdP/λs. It is the ratio of
the thermal resistance in the solid to that in the gas. Due to the small dimensions
of the particle and the good thermal conductivity of the solid in comparison to
that of the gas, the thermal resistance of the particle can usually be neglected
compared to that of the gas. This means that the Biot numbers in fluidised
beds are very small. Local temperature variations in the particle can therefore be
neglected. On the other hand, if the particles are well mixed in the fluidised bed,
the initial temperature changes will rapidly disappear. This therefore allows us
to assign a unified temperature to the particles in a fluidised bed, through which
the energy balance is significantly simplified.

If we consider a volume element dV = A0 dx, of height dx, where A0 is the
free cross section of a fluidised bed, see Fig. 3.39, the fluid temperature changes
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as follows, due to the heat transfer from fluid to solid

−ṀF cpF dϑF = αn dAp (ϑF − ϑS) (3.283)

with n dAP = aPA0 dx. Then, because ṀF = wmA0�F,

− dϑF

ϑF − ϑS

=
α ap

�FwmcpF

dx .

Integration between the inlet cross section i and the exit cross section e of a
fluidised bed of height H yields

ln
ϑFi − ϑS

ϑFe − ϑS

=
αmap

�FwmcpF

H

or with (3.269), when the equivalent sphere diameter dP according to (3.273), and
the mean Nusselt number Num = αmdP/λ, the Reynolds number Re = wmdP/λ
and the Prandtl number Pr = ν/a of the fluid are used,

ln
ϑFi − ϑS

ϑFe − ϑS

=
Num

RePr

6 (1 − ε)H

dP

. (3.284)

Corresponding considerations also hold for mass transfer. The diffusion re-
sistance of the particle can be neglected when compared to that of the gas, and
so a unified composition can be assigned to the particle. When only one compo-
nent A is transferred between a fluid, consisting of components A and B, and the
solid S, the calculation can be usefully made using the mass content of the fluid
XF = (ṀA/ṀB)F. Then, under the assumption of a not too large mass content
of component A in the solid, see equation (1.195a)

−ṀB dXF = β
p

RBT
dAp (XF − XS) = β�BaPA0 dx (XF − XS) .

Here XS = (ṀA/ṀB)S is the mass content of the fluid on the solid surface. After
integration between the inlet cross section i and the outlet cross section e of a
fluidised bed of height H we obtain, with ṀB = wmA0�B, under consideration of
(3.269) and the definitions Shm = βmdP/D, Re = wmdP/ν, Sc = ν/D:

ln
XFi − XS

XFe − XS

=
Shm

ReSc

6 (1 − ε)H

dP

. (3.285)

Example 3.12: In a fluidised bed, wet sand is to be dried by air which has a lower moisture
content but is at the same temperature as the sand. During this the water vapour content
of the air increases from the initial value XFi to the value XFe. At the surface of the sand
the air is saturated with water. Its water content there is XS, so that the driving content
difference XS − XFi falls to the end value XS − XFe. How high must the fluidised bed be,
such that the driving difference XS − XFe at the outlet cross section is only 5 % of the
driving difference XS − XFi at the inlet cross section?
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The velocity wm at the free cross section is 10 times the fluidisation velocity wL. Given
are: particle diameter dP = 0.5mm, density of the sand �S = 1500kg/m3 , density of the
air �F = 0.8kg/m3, kinematic viscosity of the air ν = 3 · 10−5 m2/s, Schmidt number
Sc = 0.7, sphericity of sand ϕS = 0.86, void fraction εS = 0.73, void fraction at minimum
fluidisation point εmf = 0.4.
We have XS − XFe = 0.05 (XS − XFi) and therefore in (3.285)

ln
XFi − XS

XFe − XS
= ln20 = 2.996 =

Shm

ReSc

6 (1 − ε)H

dP
.

For all values
H

dP
∼ 0.5

ReSc

Shm (1 − ε)

the driving difference at the outlet cross section is reduced to less than 5 % of the value at
the inlet cross section.
The calculation of the Sherwood number necessitates investigation of the Archimedes num-
ber

Ar =
(�S − �F) d3

P g

�F ν2
=

(1500 − 0.8) kg/m3 · (0.5 · 10−3)3 m · 9.81m/s2

0.8kg/m3 (3 · 10−5)2 m4/s2
= 2553 .

According to (3.281)

ReS ≈ 19.14

⎡⎣(1 + Ar1/1.8

12.84

)1/2

− 1

⎤⎦1.8

= 19.14

[(
1 + 25531/1.8

12.84

)1/2

− 1

]1.8

= 47.75 .

According to section 3.7.4, No. 5,

Shm, lam = 0.664Re
1/2
S Sc1/3 = 0.664 · 47.751/2 · 0.71/3 = 4.07

Shm, turb =
0.037Re0.8

S Sc

1 + 2.443Re−0.1
S (Sc2/3 − 1)

=
0.037 · 47.750.8 · 0.7

1 + 2.443 · 47.75−0.1 · (0.72/3 − 1)
= 0.88

Shm = 2 +
(
Sh2

m, lam + Sh2
m, turb

)1/2

= 2 + (4.072 + 0.882)1/2 = 6.16 .

According to (3.275) the minimum fluidisation velocity follows from

Remf =
wmf dP

ν
= 42.9

1 − εmf

ϕS

[(
1 + 3.11 · 10−4 ϕ3

s ε3
mf

(1 − εmf)2
Ar

)1/2

− 1

]

Remf = 42.9
1 − 0.4

0.86

[(
1 + 3.11 · 10−4 0.863 · 0.43

(1 − 0.4)2
2553

)1/2

− 1

]
= 1.31 .

Due to Re = 10Remf = 13.1 we have

wm = Re
ν

dP
= 13.1

3 · 10−5 m2/s

0.5 · 10−3 m
= 0.786m/s .

With that we get

H

dP
≈ 0.5

13.1 · 0.7
6.16 (1 − 0.73)

= 2.73 and H ≈ 1.38 · 10−3 m .

It can be seen from this that the driving difference in content drop is starkly reduced. The
minimum required height of the fluidised bed is accordingly very small.
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Example 3.13: Calculate the actual height of the fluidised bed from example 3.12, when
the fill height is 1 m and show how far the driving content difference between inlet and exit
cross sections is really reduced.
The mass of the solid is the same at the fluidisation point as the operating point. It follows
from this that

A0 Hmf �S (1 − εmf) = A0 H �S (1 − εS)

or
H

Hmf
=

1 − εmf

1 − εS
=

1 − 0.4

1 − 0.73
= 2.22 .

The fill height is the same as the height at the minimum fluidisation point Hmf = 1m,
from which H = 2.22m. With (3.285) we then have

ln
XFi − XS

XFe − XS
=

6.16

13.1 · 0.7
6 (1 − 0.73) · 2.22m

0.5 · 10−3 m
= 4831

XFe − XS ≈ 0 or XFe ≈ XS .

By the exit cross section the driving mass content difference has completely vanished.

Example 3.14: Coffee beans that have been heated to 300 ◦C by roasting are to be
cooled, in a fluidised bed with ambient air at a temperature of 20 ◦C, to a temperature of
30 ◦C. Calculate the time required for this to happen.
The following values are given: For the coffee beans: density �S = 630kg/m3 , specific heat
capacity cS = 1.70kJ/kgK, equivalent particle diameter dP = 6mm, thermal conductivity
λS = 0.6W/Km, mass of beans MS = 100kg, void fraction of the fluidised bed ε =
0.7. For the air the following values are given: mass flow rate ṀG = 5kg/s, density
�G = 1.188kg/m3 , specific heat capacity cpG = 1.007kJ/kgK, thermal conductivity λG =
0.0257W/Km, kinematic viscosity νG = 15.3 · 10−6 m2/s, Prandtl number Pr = 0.715,
cross section of the column 1.4m2.
Hints for the solution: The temperatures ϑFe = ϑGe of the gas and ϑS of the surface of the
particle in (3.284) are functions of time and the energy balance

MScS
dϑmS

dt
= ṀGcpG (ϑGi − ϑG)

is available as a further equation for these two temperatures. The violent motion of the
solid means that its mean temperature ϑmS is only a function of time and not position, so
that both the left and right hand sides are independent of position. This means that the
gas temperature ϑG on the right hand side can be replaced by the value ϑGe at the exit
cross section. MS is the total amount of solid.
The Archimedes number has to be found before we can calculate the Nusselt number Num

according to (3.284):

Ar =
�S − �F

�F

d3
Pg

ν2
.

Here, �F = �G and ν = νG. Which gives

Ar =
(630 − 1.188) kg/m3

1.188kg/m3

(6 · 10−3)3 m3 · 9.81m/s2

(15.3 · 10−6)2 m4/s2
= 4.79 · 106 .

It then follows from (3.282) that

ReS = (
4

3
Ar)1/2 = (

4

3
· 4.79 · 106)1/2 = 2.527 · 103 .
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According to section 3.7.4, No. 5,

Num, lam = 0.664Re
1/2
S Pr1/3 = 0.664 (2.527 · 103)1/2 (0, 715)1/3 = 29.85

Num, turb =
0.037Re0.8

S Pr

1 + 2.443Re−0.1
S (Pr2/3 − 1)

=
0.037 · (2.527 · 103)0.8 · 0.715

1 + 2.443 · (2.527 · 103)−0.1 · (0.7152/3 − 1)
= 17.97

Num = 2 +
(
Nu2

m, lam + Nu2
m, turb

)1/2

= 2 + (29.852 + 17.972)1/2 = 36.84 .

The velocity in the empty column is

wm =
ṀG

�G A0
=

5kg/s

1.188kg/m3 · 1.4m2
= 3m/s .

With that we have

Re =
wm dP

νG
=

3m/s · 6 · 10−3 m

15.3 · 10−6 m/s2
= 1.176 · 103 .

In (3.284), with ϑF = ϑG

ln
ϑGi − ϑS

ϑGe − ϑS
=

36.84

1.176 · 103 · 0.715
6(1 − 0.7)H

6 · 10−3 m
.

The height H of the fluidised bed is yielded from the mass of the coffee beans MS =
(1 − ε)A0 �S H to be

H =
MS

(1 − ε)A0 �S
=

100kg

(1 − 0.7) · 1.4m2 · 630kg/m3
= 0.378m .

With this we obtain
ϑGi − ϑS

ϑGe − ϑS
= 143.8 = c0 (3.286)

with ϑGi = 293.15K. The equation still contains the unknown temperatures ϑGe(t) at the
exit cross section and the temperature ϑS(t) of the solid. As a further balance equation

MS cS
dϑmS

dt
= ṀG cpG (ϑGi − ϑGe) (3.287)

is still available. Here, ϑmS(t) is the mean temperature of the solid. It is related to the
surface temperature ϑS(t) as follows

αmS (ϑmS − ϑS) = αmG (ϑS − ϑGe)

ϑmS =
αmG

αmS
(ϑS − ϑGe) + ϑS .

With αmS ≈ λS/(dP/2) and Bi = αmG dP/λS we have

ϑmS ≈ Bi

2
(ϑS − ϑGe) + ϑS . (3.288)

From (3.286) and (3.288), by eliminating ϑS, we obtain

ϑGi − ϑGe =
(ϑGi − ϑmS) (c0 − 1)

c0 + Bi/2
.
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Eq. (3.288) is transformed into

1

ϑGi − ϑmS

dϑmS

dt
=

ṀG cpG

MS cS

c0 − 1

c0 + Bi/2
.

Integration between t = 0 and t = t1 yields

ln
ϑGi − ϑmS(t = 0)

ϑGe − ϑmS(t = t1)
=

ṀG cpG

MS cS

c0 − 1

c0 + Bi/2
t1 .

Here

Bi =
αmGdP

λS
=

αmG dP

λG

λG

λS
= Num

λG

λS
= 36.84

0.0257W/Km

0.6W/Km
= 1.58 .

With that we get

ln
293.15 − 673.15

293.15 − 303.15
=

5kg/s · 1.007kJ/kgK · (143.8 − 1)

100kg · 1.70kJ/kgK · (143.8 + 1.58/2)
t1 ,

and so
t1 = 124.4 s ≈ 2.1min .

3.8.5 Some empirical equations for heat and mass transfer
in flow through channels, packed and fluidised beds

What follows is a summary of the previous equations and some supplementary
equations.

1. Flow inside a tube
a) Turbulent flow:

Num = 0.023Re0.8Pr0.4 (η/η0)
0.14 ,

valid for 0.5 < Pr < 120, 104 < Re < 105, L/d ∼ 60.

Num = 0.037 (Re0.75 − 180)Pr0.42
[
1 + (d/L)2/3

]
(η/η0)

0.14 ,

valid for 2300 < Re < 105, 0.5 < Pr < 500, L/d ∼ 10.
Over a wide range of characteristic numbers it holds that

Num =
(ζ/8)RePr

1 + 12.7
√

ζ/8 (Pr2/3 − 1)

⎡⎣1 +

(
d

L

)2/3
⎤⎦

with the resistance factor

ζ =
∆p

(L/d) � (w2
m/2)

=
1

(0.78 ln Re − 1.5)2
,
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valid for 104 ≤ Re ≤ 106, 0.6 ≤ Pr ≤ 1000, L/d > 1.
All material properties are based on the arithmetic mean (ϑi + ϑe)/2 of
the mean inlet temperature ϑi and the mean exit temperature ϑe, only η0

is based on the wall temperature. The Nusselt and Reynolds numbers are
formed with the tube diameter.
b) Laminar flow:
Hydrodynamically fully developed laminar flow, constant wall temperature:

Num =
3.657

tanh(2.264X+1/3 + 1.7X+2/3)
+

0.0499

X+
tanh X+ ,

valid for 0 ≤ X+ = L/(dPe) ≤ ∞, Re ≤ 2300.
Laminar flow that is developing hydrodynamically or thermally, (entry
flow) constant wall temperature:

Nume

Num

=
1

tanh(2.432Pr1/6)X+1/6
,

valid for 0 < X+ ≤ ∞, 0 < Pr ≤ ∞, Re ≤ 2300.
Nume is the Nusselt number for developing flow, Num is that for hydrody-
namically fully developed laminar flow.

2. Non-circular tubes
The previous equations still hold; we merely have to replace the tube diam-
eter d in the Nusselt and Reynolds numbers with the hydraulic diameter

dh = 4A/C

with the cross sectional area A through which the fluid flows and the wetted
perimeter C.

3. Annular space between two concentric tubes
With a concentric annular space there are three cases of heat transfer which
have to be differentiated:
3.1: Heat is transferred at the inner tube. The outer tube is insulated.
3.2: Heat is transferred at the outer tube. The inner tube is insulated.
3.3: Heat is transferred at both the inner and outer tubes.
The fluid flows in the axial direction in the annular space between the two
tubes. The external diameter of the inner tube is di, the internal diameter
of the outer tube is do. The hydraulic diameter is dh = do − di.
Turbulent flow:
The mean Nusselt Num is based on (Num)tube of the circular tube through
which the turbulent fluid flows according to No. 1a. Both Nusselt numbers
are formed with the hydraulic diameter, Num = αmdh/λ. The Reynolds
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number is Re = wmdh/ν. It holds for the case above

3.1 :
Num

(Num)tube
= 0.86

(
di

do

)−0.16

3.2 :
Num

(Num)tube
= 1 − 0.14

(
di

do

)0.6

3.3 :
Num

(Num)tube
=

0.86 (di/do) +
[
1 − 0.14 (di/do)

0.6
]

1 + (di/do)
.

The equations are valid over the same range as for (Num)tube from No. 1a
and for 0 ≤ di/do ≤ 1.
Laminar, hydrodynamically fully developed flow:
We have

Num − Nu∞
(Num)tube − 3.657

= f

(
di

do

)
.

In the equation for laminar pipe flow from Nr. 1b, the quantity X+ is now
formed with the hydraulic diameter, X+ = L/(dhPe) with Pe = wmdh/a.
It holds for the case given above that

3.1 : Nu∞ = 3.657 + 1.2 (di/do)
−0.8 ,

f(di/do) = 1 + 0.14 (di/do)
−1/2 .

3.2 : Nu∞ = 3.657 + 1.2 (di/do)
1/2 ,

f(di/do) = 1 + 0.14 (di/do)
1/3 .

3.3 : Nu∞ = 3.657 +

(
4 − 0.102

0.02 + (di/do)

)(
di

do

)0.04

,

f(di/do) = 1 + 0.14 (di/do)
0.1 .

The equations are valid for 0 ≤ X+ ≤ ∞, Re ≤ 2300 and 0 ≤ di/do ≤ 1.

4. Flow through packed beds of spherical particles or other packing

Num = fεNumS .

The mean Nusselt number Num can be traced back to the Nusselt number
NumS for flow around a single sphere (see 3.7.4). The factor fε is dependent
on the void fraction ε = VG/V , so

fε = 1 + 1.5 (1 − ε) in the region 0.26 < ε < 1 .

For packed beds of spheres of different diameters or of non-spherical parti-
cles, and equivalent diameter has to be formed

dP =
√

AmP/π
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with average particle surface area

AmP = aP/nV , with aP = 6(1 − ε)/dP ,

where aP is the specific surface area of the particle (SI units m2/m3) and
nV is the number of particles per unit volume (SI units 1/m3). With that
the Nusselt number can be calculated as NumS. Data on the factor fε can
be found in Table 3.4.

5. Fluidised beds
The Nusselt number is the same as that for flow around a single sphere
NumS, section 3.7.4, No.5. The Reynolds number used there is yielded
from (3.281)

ReP
∼= 19.14

⎡⎣(1 +
Ar1/1.8

12.84

)1/2

− 1

⎤⎦1.8

with the Archimedes number

Ar =
�S − �F

�F

d3
Pg

ν2
,

valid for homogeneous fluidised beds for

0 ≤ ReS ≤ 104 or 0 ≤ Ar ≤ 2.9 · 107 .

The range over which this is valid for heterogeneous fluidised beds is

0 ≤ ReS
<∼ 1.2 · 102 or 0 ≤ Ar

<∼ 104 .

Over the range ReS > 1.2 · 102 or Ar ≥ 104 we have

ReS
∼= (4Ar/3)1/2 .

3.9 Free flow

Whilst forced flow is caused by external forces, for example the pressure from a
pump or blower, free flows occur because of body forces in a fluid in which density
gradients are present. As an example of this we will consider a vertical wall with
a higher temperature than the fluid adjacent to it. The fluid which is heated at
the wall will be specifically lighter and experiences, in comparison to the fluid
surrounding it, a lift in the gravity field. A free flow originates. In this case the
density gradients and the body force created by the gravity field are perpendicular
to each other. Another example of free flow is shown in Fig. 3.42, a flow of hot air
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Fig. 3.42: Deflection of a hot air
stream by lift forces

is discharged as a horizontal jet which enters colder infinitely extended quiescent
fluid. The jet moves upwards due to the buoyancy forces.

The necessary prerequisites for the existence of free flow are body forces and
density gradients that are not directed parallel to each other. This holds for a
fluid flowing over a heated horizontal plate.

In order to see that a free flow can only exist if the density gradient and body forces are
not parallel to each other, we will discuss a fluid that is initially at rest, wj = 0. According to
the momentum equation (3.48) it holds for this that

0 = � kj +
∂τji

∂xi
,

where because wj = 0, according to (3.46) and (3.47), τji = −p δji. For a quiescent fluid, the
hydrostatic equilibrium equation follows from this as

∂p

∂xj
= � kj . (3.289)

The body forces kj generate a pressure gradient. By differentiation it follows that

∂p

∂xi ∂xj
=

∂�

∂xi
kj + �

∂kj

∂xi
.

As the pressure in a quiescent fluid is a quantity of state, this expression can be equally repre-
sented by

∂p

∂xj ∂xi
=

∂�

∂xj
ki + �

∂ki

∂xj
.

Therefore

�

(
∂kj

∂xi
− ∂ki

∂xj

)
+

∂�

∂xi
kj − ∂�

∂xj
ki = 0 .

This equation is satisfied, if the body force possesses a potential φ, kj = −∂φ/∂xj , as the
expression in the brackets disappears, and so in addition it holds that

∂�

∂xi
kj − ∂�

∂xj
ki = ∇� × k = 0 . (3.290)

A necessary and sufficient condition for this is either the density is spatially constant or the
body forces disappear or the density gradient and body forces are parallel to each other. If this
is not the case, the density gradient and body forces are not in equilibrium according to (3.289).
It then holds that

∂p

∂xj
�= � kj .
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Fig. 3.43: Reversible adiabatic expansion of hot
air from p1 and initial temperature Tα1 or Tα1′ , to
the ambient pressure pS. a Temperature difference
Tα1−TS is large; �2 < �S, a ball of air rises further. b

Temperature difference Tα1′ − TS is small, �2′ > �S,
a ball of air sinks again.

From the Navier-Stokes equation (3.59)

�
dwj

dt
= − ∂p

∂xj
+ η

∂2wj

∂xi
2

+ � kj ,

but also from Cauchy’s equation of motion (3.48) together with (3.46) it follows that at least
one of the expressions which contain the velocity does not vanish. A flow is inevitably initiated
because the condition (3.289) of hydrostatic equilibrium has been violated.

It can be simultaneously recognised that free flow cannot exist in an incompressible fluid
because density gradients do not exist.

Density gradients are normally caused by temperature gradients, less often
by concentration or pressure gradients. However in multicomponent mixtures the
concentration differences can also create notable density gradients, so that under
the preconditions named before, a free flow can also develop. The body force is
frequently gravity, and less often centrifugal or electromagnetic forces.

The hydrostatic equilibrium in a fluid does not have to be stable. As an ex-
ample of this we will now consider initially quiescent, cold air over a horizontal
heated plate. The condition for hydrostatic equilibrium is satisfied as the density
gradient is parallel to the gravity force. If, as a result of a disturbance, a ball
of warm air rises from the plate, it will quickly assume the pressure of its sur-
roundings. The density of the ball of air reduces approximately adiabatically and
reversibly, in accordance with p/�κ = p0/�

κ
0 .

If the density of the ball of air is lower than that of its surroundings, or,
synonymous with that, the ball is hotter than its surroundings, then it will rise
even further, see for this the plot T2 > TS in Fig. 3.43. The arrangement is
unstable, as a small disturbance, introduced by the rising ball of air, does not die
away by itself.

If, in contrast, the density of the ball of air is greater than that of its surround-
ings after the expansion, corresponding to the plot T2′ < TS in Fig. 3.43, then it
will once again sink. The stratification is stable.

This type of stable stratification can also occur when warmer and thereby
lighter air masses move over cold ground air. The heavier and often exhause
gas polluted air can no longer exchange with the lighter air above it. This type
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of layering is known as a temperature inversion. A stable layer settles over the
area being considered and effectively restricts the removal and dispersion of the
pollutants. There is a risk of smog.

3.9.1 The momentum equation

The momentum equation for a Newtonian fluid is yielded from Navier-Stokes
equation (3.59)

�
dwj

dt
= � kj −

∂p

∂xj

+ η
∂2wj

∂xi
2

. (3.291)

As free flow occurs because of density gradients, we will assume a variable density
whilst all other material properties shall be taken as constant. Gravity will act
as the body force kj = gj. In areas where the density is constant, for example far
away from a heated wall, hydrostatic equilibrium is reached. Here it holds that

∂p∞
∂xj

= �∞ gj , (3.292)

where p∞ is the hydrostatic pressure and �∞ is the associated density. Heat or
mass transfer cause temperature or concentration gradients and therefore also
density gradients to develop, so that the local values of pressure and density
deviate from the values at hydrostatic equilibrium

p = p∞ + ∆p , � = �∞ + ∆� . (3.293)

We assume that the deviations ∆p and ∆� are small in comparison to the values
at hydrostatic equilibrium p∞ and �∞.

As an example we will consider the vertical heated wall in Fig. 3.44, at a
temperature ϑ0, in front of which there is a fluid that before heating was in
hydrostatic equilibrium and had a temperature ϑ∞ throughout. After a short
time steady temperature and velocity profiles develop. These are sketched in Fig.
3.44. With (3.293), the momentum equation (3.291) is transformed into

(�∞ + ∆�)
dwj

dt
= (�∞ + ∆�) gj −

∂(p∞ + ∆p)

∂xj

+ η
∂2wj

∂xi
2

. (3.294)

Considering that on the left hand side ∆� 	 �∞ and on the right hand side
according to (3.292) ∂p∞/∂xj = �∞gj is valid, we obtain

�∞
dwj

dt
= ∆� gj −

∂∆p

∂xj

+ η
∂2wj

∂xi
2

. (3.295)

In steady-state flow, which we want to presume, we can write the term

dwj

dt
= wi

∂wj

∂xi

.
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In (3.295) we estimate the magnitude of the individual terms. To this we
consider the buoyancy flow on a flat plate which is sloped at an angle ϕ to vertical.
The inertia forces are of the order

FI ∼ �∞
w2

ref

L
, (3.296)

where wref is a characteristic velocity, for example the maximum velocity in
Fig. 3.44. It develops purely due to the buoyancy and is not prescribed as in
the case of longitudinal flow on a flat plate. Its magnitude still has to be esti-
mated. With the reference velocity the magnitude of the friction forces is yielded
as

FF ∼ η
wref

δ2
. (3.297)

The buoyancy forces FB have magnitude of

FB ∼ −(�0 − �∞) g cos ϕ . (3.298)

In the case of a heated, vertical plate according to Fig. 3.44, the density gradient
and gravity are perpendicular to each other, cos ϕ = cos 0 = 1; in contrast,
on a horizontal plate the two gradients are parallel to each other and we have
cos ϕ = cos π/2 = 0. The negative sign in (3.298) stems from the fact that in
heating �0 − �∞ is negative, but the buoyancy force in Fig. 3.44 points in the
direction of the x-coordinate.

In the layer adjacent to the wall, the inertia forces are of the same magnitude
as the friction forces and therefore

w2
ref

L
∼ ν

wref

δ2
or

δ

L
∼
(

ν

wrefL

)1/2

. (3.299)

Fig. 3.44: Temperature and velocity profile
in free flow on a heated, vertical wall
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In addition the buoyancy forces are also of the same magnitude as the inertia
forces

−(�0 − �∞) g cos ϕ ∼ �∞
w2

ref

L
.

It follows from this that

wref ∼
(−(�0 − �∞) g cos ϕ L

�∞

)1/2

. (3.300)

This means that we can eliminate the reference velocity in (3.299), giving

δ

L
∼
(

ν2

(1 − �0/�∞) g cos ϕ L3

)1/4

. (3.301)

If the density change is only caused by temperature changes, under the as-
sumption that the temperature change is sufficiently small, it holds that

�0 = �∞ +

(
∂�

∂ϑ

)
p

(ϑ0 − ϑ∞) . (3.302)

The quantity
1

v

(
∂v

∂ϑ

)
p

= −1

�

(
∂�

∂ϑ

)
p

= β

is the thermal expansion coefficient (SI units 1/K). It has to be put into (3.302)
for the temperature ϑ∞. We then obtain

�0 − �∞ = −�∞β∞ (ϑ0 − ϑ∞) . (3.303)

With ideal gases, because v = R T/p, the thermal expansion coefficient is

β =
1

v

R

p
=

1

T

and β∞ = 1/T∞.
Then with (3.303), we obtain from (3.301)

δ

L
∼
(

ν2

β∞ (ϑ0 − ϑ∞) g L3

)1/4
1

(cos ϕ)1/4
. (3.304)

Here, the dimensionless quantity

β∞ (ϑ0 − ϑ∞) g L3

ν2
:= Gr (3.305)

is the Grashof number Gr. For a vertical plate ϕ = 0, so

δ

L
∼ Gr−1/4 . (3.306)
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For large Grashof numbers Gr � 1, we get δ/L 	 1: A boundary layer flow
exists. The boundary layer thickness grows according to

δ ∼ L1/4 .

A sloped plate requires the introduction of a modified Grashof number

Grϕ =
β∞ (ϑ0 − ϑ∞) g L3 cos ϕ

ν2
.

This gives
δ

L
∼ Gr−1/4

ϕ . (3.307)

If the plate is sloped at an angle ϕ to the vertical, a boundary layer forms once
again, if Grϕ � 1, whilst on a horizontal plate, ϕ = π/2, a boundary layer cannot
exist.

As we can see from (3.296) and (3.298), the inertia and buoyancy forces are
of equal magnitude, if

−(�0 − �∞) g cos ϕ

�∞ w2
ref/L

∼ 1

is valid. With (3.303) and the Reynolds number wref L/ν, we can also write this
as

β∞ (ϑ0 − ϑ∞) g L3 cos ϕ

(wref L/ν)2 ν2
=

Grϕ

Re2
∼ 1 . (3.308)

Therefore the following approximation is valid: If Grϕ/Re2 	 1, then the buoy-
ancy forces will be much smaller then the inertia forces. The flow will be de-
termined by the inertia and friction forces. If, however, Grϕ/Re2 � 1, then
the buoyancy forces will be much larger than the inertia force. The flow will be
determined by the buoyancy and friction forces.

3.9.2 Heat transfer in laminar flow on a vertical wall

We will now deal with free flow on a vertical, flat wall whose temperature ϑ0 is
constant and larger than the temperature in the semi-infinite space. The coordi-
nate origin lies, in accordance with Fig. 3.43, on the lower edge, the coordinate x
runs along the wall, with y normal to it. Steady flow will be presumed. All ma-
terial properties are constant. The density will only be assumed as temperature
dependent in the buoyancy term, responsible for the free flow, in the momentum
equation, in all other terms it is assumed to be constant. These assumptions
from Oberbeck (1879) and Boussinesq (1903), [3.45], [3.46] are also known as the
Boussinesq approximation; although it would be more correct to speak of the
Oberbeck-Boussinesq approximation. It takes into account that the locally vari-
able density is a prerequisite for free flow. The momentum equation (3.294) in
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the x-direction, taking into consideration that on the left hand side ∆� 	 �∞, on
the right hand side p∞ + ∆p = p, �∞ + ∆� = � and gj = −g, is now

�∞wx

∂wx

∂x
+ �∞wy

∂wx

∂y
= −� g − ∂p

∂x
+ η

∂2wx

∂y2
. (3.309)

The momentum equation in the direction of the y-axis is reduced to

∂p

∂y
= 0 , (3.310)

as already shown in the boundary layer simplifications in section 3.5, because the
pressure at a point x is constant perpendicular to the wall. As the core flow is
quiescent, the condition (3.289) for hydrostatic equilibrium is valid there

−∂p

∂x
= �∞ g , (3.311)

and with that the momentum equation (3.309) simplifies to

wx

∂wx

∂x
+ wy

∂wx

∂y
=

�∞ − �

�∞
g + ν

∂2wx

∂y2
. (3.312)

As we have presumed small density changes, we have

� = �∞ +

(
∂�

∂ϑ

)
p

(ϑ − ϑ∞) = �∞ − �∞ β∞ (ϑ − ϑ∞)

with the thermal expansion coefficient

1

v

(
∂v

∂ϑ

)
p

= −1

�

(
∂�

∂ϑ

)
p

= β ,

that has to be put in at the temperature ϑ∞. With this we get the following term
in the momentum equation (3.312)

�∞ − �

�∞
= β∞ (ϑ − ϑ∞) .

This leaves the following system of equations to solve:
The continuity equation

∂wx

∂x
+

∂wy

∂y
= 0 , (3.313)

the momentum equation

wx

∂wx

∂x
+ wy

∂wx

∂y
= g β∞ (ϑ − ϑ∞) + ν

∂2wx

∂y2
(3.314)

and the energy equation

wx

∂ϑ

∂x
+ wy

∂ϑ

∂y
= a

∂2ϑ

∂y2
. (3.315)
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The dissipated energy is neglected here. The boundary conditions are

y = 0 : wx = wy = 0 ; ϑ = ϑ0

y → ∞ : wx = 0 ; ϑ = ϑ∞ . (3.316)

In order to solve this, we introduce a stream function ψ(x, y), cf. (3.180):

wx =
∂ψ

∂y
and wy = −∂ψ

∂x
,

through which the continuity equation (3.313) is satisfied identically. The momentum equation
(3.314) is transformed into

∂ψ

∂y

∂2ψ

∂y ∂x
− ∂ψ

∂x

∂2ψ

∂y2
= g β∞ (ϑ− ϑ∞) + ν

∂3ψ

∂y3
. (3.317)

As the boundary layer thickness according to (3.306) at a point x is given by

δ ∼ x/Gr1/4
x with Grx =

β∞ (ϑ0 − ϑ∞) g x3

ν2
,

the y coordinate is normalised with the local boundary layer thickness, just as for flow along a
flat plate, introducing a dimensionless coordinate normal to the wall

η+ :=
y

δ
=

y

x

(
Grx

4

)1/4

= g(x, y) . (3.318)

The factor of 4 is introduced in agreement with the similarity solution from Ostrach [3.47],
because through this, no fractions will appear as factors in the following equations.

A characteristic velocity wref is found from (3.300) and (3.303) for the vertical wall (ϕ = π/2)
to be

wref = 2
[
β∞ (ϑ0 − ϑ∞) g x

]1/2
= 2

(
Grx

ν2

x2

)1/2

. (3.319)

The factor of 2 is once again chosen in agreement with Ostrach. With this we obtain for the
stream function

ψ =

y∫
0

wx dy = wref δ

y∫
0

wx

wref
d
(y

δ

)
(3.320)

or

ψ = 2

(
Grx

ν2

x2

)1/2
x

(Grx/4)1/4

η+∫
0

w+
x dη+ . (3.321)

Therefore we now have

ψ = 4 ν

(
Grx

4

)1/4
η+∫
0

w+
x dη+ = 4 ν

(
Grx

4

)1/4

f(η+) . (3.322)

It is also assumed here that the velocity profile w+
x = wx/wref can be represented as a

function of the boundary layer coordinate η+. The velocities are yielded from this as

wx =
∂ψ

∂y
=

2ν

x
Gr1/2

x f ′(η+)
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Fig. 3.45: Velocities in free flow on a vertical
wall, according to [3.47]

Fig. 3.46: Temperatures in free flow on a
vertical wall, according to [3.47]

and

wy = −∂ψ

∂x
=

ν

x

(
Grx

4

)1/4 [
η+ f ′(η+) − 3 f(η+)

]
. (3.323)

In a corresponding way we introduce a normalised temperature

ϑ+ :=
ϑ − ϑ∞

ϑ0 − ϑ∞

= ϑ+(η+) . (3.324)

Using these equations the momentum equation (3.317) can be transformed into

f ′′′ + 3 f f ′′ − 2 (f ′)2 + ϑ+ = 0 (3.325)

and the energy equation (3.315) into

ϑ+′′

+ 3Pr f ϑ+′

= 0 . (3.326)

In place of the partial differential equations (3.313) to (3.315), two ordinary non-linear differ-
ential equations appear. The continuity equation is no longer required because it is fulfilled by
the stream function. The solution has to satisfy the following boundary conditions:

η+ = 0 : f = f ′ = 0 ; ϑ+ = 1

η+ → ∞ : f ′ = 0 ; ϑ+ → 0 .

These equations were first solved by Pohlhausen [3.48] for air with a Prandtl
number Pr = 0.733 by series expansion and later numerically by Ostrach [3.47]
for a wide range of Prandtl numbers, 0.008 35 ≤ Pr ≤ 1 000. Fig. 3.45 illustrates
the normalised velocities in the form

wx x

ν

1

2Gr
1/2
x

= f ′(η+)

and Fig. 3.46 the normalised temperatures ϑ+(η+) based on the calculations by
Ostrach [3.47]. The heat transfer coefficients are yielded in the usual manner from
the temperature profiles

α (ϑ0 − ϑ∞) = q̇ = −λ

(
∂ϑ

∂y

)
y=0

.
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In which (
∂ϑ

∂y

)
y=0

= (ϑ0 − ϑ∞)

(
dϑ+

dη+

∂η+

∂y

)
y=0

= (ϑ0 − ϑ∞)
1

x

(
Grx

4

)1/4
(

dϑ+

dη+

)
η+=0

(3.327)

and therefore

Nux =
αx

λ
=
(

Grx

4

)1/4
(

dϑ+

dη+

)
η+=0

=
(

Grx

4

)1/4

ϕ(Pr) . (3.328)

The temperature increase (dϑ+/dη+)η+=0 is, as Fig. 3.46 also shows, a function
ϕ of the Prandtl number Pr. The numerical results from Ostrach have been
reproduced by Le Fèvre [3.49] through an interpolation equation of the following
form, which deviates from the exact numerical solution by no more than 0.5%:

ϕ(Pr) =
0.849Pr1/2

(1 + 2.006Pr1/2 + 2.034Pr)
1/4

. (3.329)

The solution includes the following special cases:
In the limiting case Pr → 0 we get ϕ(Pr) = 0.849Pr1/2 and with that

Nux = 0.600
(
Grx Pr2

)1/4
.

In this case the friction forces are negligible compared to the inertia and buoyancy
forces, so the heat transfer coefficient is independent of the viscosity of the fluid.
In the limiting case of Pr → ∞, we get ϕ(Pr) = 0.7109Pr1/4 and with that

Nux = 0.5027 (Grx Pr)1/4 .

The inertia forces are negligible in comparison to the friction and buoyancy forces.
The mean heat transfer coefficient αm is yielded by integration of (3.328) to

be

αm =
1

L

L∫
0

α dx =
λ

L

[
β∞ (ϑ0 − ϑ∞) g

4 ν2

]1/4

ϕ(Pr)

L∫
0

dx

x1/4
.

The mean Nusselt number is

Num =
αm L

λ
=

4

3

(
Gr

4

)1/4

ϕ(Pr) =
4

3
Nux(x = L) . (3.330)

Here the Grashof number is formed with the length L of the vertical wall. The
equation holds, like (3.328), only for laminar flow. This develops, as experiments
have shown, for Rayleigh numbers Gr Pr ≤ 109.

An equation which reproduces measured and calculated values in laminar and
turbulent flow on vertical plates and cylinders for all Rayleigh and Prandtl numbers
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has been communicated by Churchill and Chu [3.50]. In the region of laminar
flow Gr Pr ≤ 109 it is certainly less accurate than the equation from Le Fèvre we
discussed earlier, and it reads

Num =

⎧⎨⎩0.825 +
0.387Ra1/6

[1 + (0.492/Pr)9/16 ]
8/27

⎫⎬⎭
2

. (3.331)

Here the mean Nusselt and Rayleigh numbers are formed with the height of the
plate L:

Num =
αm L

λ
, Ra = Gr Pr =

β∞ (ϑ0 − ϑ∞) g L3

ν2
Pr .

The equation also holds for vertical cylinders, if d/L ≥ 35Gr−1/4. It is also
valid for constant heat flux, this merely requires that the factor of 0.492 in the
denominator of (3.331) be replaced by 0.437.

3.9.3 Some empirical equations for heat transfer in free
flow

In the following some further empirical correlations, besides the relationships
(3.328) and (3.331) for a vertical plate which we have already discussed, for heat
transfer in free flow will be communicated.

1. Horizontal plate
The characteristic length in the mean Nusselt and the Rayleigh number is
an equivalent length L = A/U made up of the heat transfer area A and
the perimeter U of the external edges of the plate. We can differentiate
between the following cases: Upper side of the plate is heated or underside
is cooled in accordance with Figs. 3.47 and 3.48:

Num = 0.54Ra1/4 valid for 104 ≤ Ra ≤ 107

Num = 0.15Ra1/3 valid for 107 ≤ Ra ≤ 1011 .

Fig. 3.47: Flat plate. Upper
side heated

Fig. 3.48: Flat plate. Under-
side cooled
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Upper side of the plate cooled or underside heated in accordance with Figs.
3.49 and 3.50:

Num = 0.27Ra1/4 valid for 105 ≤ Ra ≤ 1010 .

Fig. 3.49: Flat plate. Upper
side cooled

Fig. 3.50: Flat plate. Under-
side heated

2. Inclined plate
Equation (3.331) holds for laminar and turbulent flow. The acceleration
due to gravity g has to be replaced by its component parallel to the wall
g cos ϕ, in which ϕ is the angle of incline to the vertical. The equation is
now valid for inclined plates, as long as ϕ ≤ π/3 = 60◦.

3. Horizontal cylinder
of diameter d and length L � d:

Num =

⎧⎨⎩0.60 +
0.387Ra1/6

[1 + (0.559/Pr)9/16 ]
8/27

⎫⎬⎭
2

,

valid for 0 ≤ Ra ≤ ∞. It means that:

Num =
αm d

λ
; Ra = Gr Pr =

β∞ (ϑ0 − ϑ∞) g d3

ν2
Pr .

4. Sphere
of diameter d:

Num = 2 +
0.589Ra1/4

[1 + (0.469/Pr)9/16 ]
4/9

,

valid for Pr ≥ 0.7 and Ra ≤ 1011.
This means that:

Num =
αm d

λ
; Ra = Gr Pr =

β∞ (ϑ0 − ϑ∞) g d3

ν2
Pr .

5. Vertical plate
being heated with constant heat flux:

Nux = 0.616Ra1/5
x

(
Pr

0.8 + Pr

)1/5

,

valid for 0.1 ≤ Pr ≤ ∞; Rax ≤ 109.
This means that:

Nux =
αx

λ
; Rax = Grx Pr =

β∞ q̇ g x4

ν2 λ
Pr .
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3.9.4 Mass transfer in free flow

In multicomponent mixtures density gradients can exist not only due to temper-
ature and pressure gradients but also because of gradients in the composition.
As long as the density gradient and body forces are not parallel to each other, a
free flow develops which causes mass transfer. The mass transfer coefficients can
be calculated from the equations given earlier. The only change is replacing the
Nusselt number by the Sherwood number. The Grashof number is formed with
the density difference

Gr =
(�∞ − �0) g L3

�∞ ν2
. (3.332)

In binary mixtures, when the density gradient is created by the concentration
gradient alone, it follows from � = �(p, T, ξ) that

�0 = �∞ +

(
∂�

∂ξ

)
p,T

(ξ0 − ξ∞) . (3.333)

We call
1

v

(
∂v

∂ξ

)
T,p

= −1

�

(
∂�

∂ξ

)
T,p

:= γ

the mass expansion coefficient. With this we get

�0 = �∞ − �∞ γ∞ (ξ0 − ξ∞) .

The Grashof number (3.332) is transformed into

Gr′ =
γ∞ (ξ0 − ξ∞) g L3

ν2
. (3.334)

With mixtures of ideal gases the mass expansion coefficient can be found from the
thermal equation of state

pv = RT

with the specific gas constant of a binary mixture

R = R1 ξ + R2 (1 − ξ)

to be

γ = (R1 − R2)/R ,

from which, with the universal gas constant Rm = M̃iRi, the simple relationships

γ =
M̃2 − M̃1

M̃2 ξ + M̃1 (1 − ξ)
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and

γ∞ =
M̃2 − M̃1

M̃2 ξ∞ + M̃1 (1 − ξ∞)
(3.335)

follow.
In simultaneous heat and mass transfer in binary mixtures, mean mass transfer

coefficients can likewise be found using the equations from the previous sections.
Once again this requires that the mean Nusselt number Num is replaced by the
mean Sherwood number Shm, and instead of the Grashof number a modified
Grashof number is introduced, in which the density �(p, T, ξ) is developed into a
Taylor series,

�0 = �∞ +

(
∂�

∂T

)
p,ξ

(ϑ0 − ϑ∞) +

(
∂�

∂ξ

)
p,T

(ξ0 − ξ∞) ,

so
�0 = �∞ − �∞ β∞ (ϑ0 − ϑ∞) − �∞ γ∞ (ξ0 − ξ∞)

is put into the Grashof number (3.332). The modified Grashof number obtained
is

Gr =
β∞ (ϑ0 − ϑ∞) g L3

ν2
+

γ∞ (ξ0 − ξ∞) g L3

ν2
. (3.336)

As Saville and Churchill [3.51] showed, the results obtained with this method are
only sufficiently accurate if the Schmidt and Prandtl numbers of the mixtures are
the same. In any other case the mutual influence of the mass transfer and the
flow field will not be sufficiently taken into account.

3.10 Overlapping of free and forced flow

In the discussion of forced flow we neglected the influence of free flow and in reverse
the effect of forced flow was neglected in our handling of free flow. However,
frequently a free flow will overlap a forced flow as a result of density gradients.
As we have already seen in 3.9.1, eq. (3.308), the decisive quantity for this is
Gr/Re2. If it is of the order 1, the buoyancy and inertia forces are equal, whilst
for Gr/Re2 	 1 the forced, and for Gr/Re2 � 1, the free flow predominates.

Forced and free flow can, depending on the direction of the inertia and buoy-
ancy forces, either mutually stimulate or dampen each other. In a forced flow
overlapping a free flow, the heat and mass transfer can either be improved or
inhibited. As an example of this we will look at a heated plate, Fig. 3.51. A free
flow in the upwards direction develops, which can be strengthened Fig. 3.51a, or
weakened, Fig. 3.51b, by a forced flow generated by a blower. Experiments have
shown that the heat transfer coefficient can be calculated well by using equations
of the form

Nun = |Nun
C ± Nun

F | , (3.337)
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Fig. 3.51: Overlapping of free and forced flow.
a Strengthening b Weakening of the free flow by
the forced flow

where NuC is the Nusselt number of the forced convection and NuF is that of the
free flow. The positive sign is valid when the two flows are in the same direction.
This is replaced by a negative sign if they are flowing countercurrent to each
other. The exponent n is generally n = 3. For longitudinal flow over horizontal
plates, cylinders or spheres n = 4 is used. A corresponding relationship to (3.337)
holds for mass transfer; this merely means replacing the Nusselt by the Sherwood
number.

Example 3.15: A vertical metal plate of 0.5 m height and 1 m depth has a temperature
of 170 ◦C. Calculate the heat flow by free flow to the surrounding air, which is at a
temperature of 90 ◦C. In the solution the material properties should all be based on the
mean boundary layer temperature (170 ◦C + 90 ◦C)/2 = 130 ◦C.
The following material properties are given: thermal conductivity λ = 0.0336W/Km,
kinematic viscosity ν = 2.639 · 10−5 m2/s, Prandtl number Pr = 0.697. Furthermore
β∞ = 1/T∞ = 2.754 · 10−3 K−1.
We have

Gr =
β∞ (ϑ0 − ϑ∞) g L3

ν2
=

2.754 · 10−3 1/K · (170 − 90)K · 9.81m/s2 · 0.53 m3

(2.639 · 10−5)2 m4/s2
,

and so

Gr = 3.879 · 108 and GrPr = 2.704 · 108 .

The flow is laminar, so (3.330) is valid, with ϕ(Pr) according to (3.329)

Num =
4

3
Nu(x = L) =

4

3

(
Gr

4

)1/4

ϕ(Pr)

=
4

3

(
3.879 · 108

4

)1/4
0.849 · 0.6791/2

(1 + 2.006 · 0.6971/2 + 2.034 · 0.697)1/4
= 65.08

αm = Num
λ

L
= 65.08

0.0336W/Km

0.5
= 4.37W/m2K

Q̇ = αm A (ϑ0 − ϑ∞) = 4.37W/m2K · 0.5m · 1m · (170 − 90)K = 175W .
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3.11 Compressible flows

In free flow the buoyancy is caused by a density change together with a body
force, whilst forced laminar and turbulent flows have, up until now, been dealt
with under the assumption of constant density. In liquids, this assumption of
constant density is only in good approximation satisfied when the liquid is not
close to its critical state. In the case of gases a moderate velocity with Mach
number Ma = w/wS 	 1 has to be additionally presumed. If the velocity of
the gas is large, or the fluid is close to its critical state, the density of a volume
element of the material changes in the course of its motion. This is described by
d�/dt �= 0. Therefore, in steady flow the density is locally variable.

As a result of heating through dissipation of kinetic energy, local temperature
and therefore local density changes can exist in adiabatic flows. A flow, in which
the density of a volume element of the material changes in the course of its mo-
tion is known as compressible. In the following we will discuss of heat transfer
phenomena in these compressible flows. We will restrict ourselves to steady flows.

As the thermodynamic temperature T dependent velocity of sound wS plays
a role in this section, it is reasonable to use the thermodynamic temperature T
rather than the temperature ϑ in calculations.

3.11.1 The temperature field in a compressible flow

In order to explain the basic properties of compressible flow, we will look at a
two-dimensional, steady, boundary layer flow of a pure fluid. In a change from
the previous discussion, in addition to the density, the viscosity and thermal
conductivity will also be locally variable. The continuity equation is

∂(� wx)

∂x
+

∂(� wy)

∂y
= 0 . (3.338)

The momentum equation (3.58), with the boundary layer simplifications explained
in section 3.5, is transformed into

�
dwx

dt
= −∂p

∂x
+

∂τxy

∂y
,

∂p

∂y
= 0 (3.339)

with
dwx

dt
= wx

∂wx

∂x
+ wy

∂wx

∂y
and τxy = η

∂wx

∂y
.

With the boundary layer simplifications from section 3.5, the enthalpy form of
the energy equation (3.83) becomes

�
dh

dt
= −∂q̇

∂y
+

dp

dt
+ φ (3.340)
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with dp/dt = wx ∂p/∂x, q̇ = q̇y and the viscous dissipation φ = η (∂wx/∂y)2 =
τxy ∂wx/∂y. Multiplication of the momentum equation (3.339) with wx and addi-
tion to the energy equation (3.340) yields, after introduction of the so-called total
enthalpy,

htot := h +
w2

x

2
, (3.341)

the relationship

�
dhtot

dt
=

∂

∂y

(
wx τxy − q̇

)
. (3.342)

Here it is possible to replace the heat flux by the enthalpy h = h(p, T ), then
taking ∂p/∂y = 0 and q̇ = −λ ∂T/∂y into account, it holds that

∂h

∂y
= cp

∂T

∂y
= −cp

q̇

λ
. (3.343)

Then, together with (3.341) and with λ/cp = η/Pr it follows that

q̇ = − λ

cp

∂h

∂y
= − η

Pr

∂htot

∂y
+

η

Pr
wx

∂wx

∂y

or

q̇ = − η

Pr

∂htot

∂y
+

1

Pr
wx τxy . (3.344)

With that, the energy balance (3.342) becomes

�
dhtot

dt
=

Pr − 1

Pr

∂(wx τxy)

∂y
+

1

Pr

∂

∂y

(
η

∂htot

∂y

)
, (3.345)

when we presume constant laminar or turbulent Prandtl numbers. Equation
(3.345) is suggested, for reasons of simplicity, for the investigation of laminar and
turbulent flows of air or other gases, because they have Prandtl numbers Pr ≈ 1.
Then the first term on the right hand side, which describes the influence of the
work done by the shear stress, disappears. With this equation (3.345) simplifies
to

�
dhtot

dt
=

∂

∂y

(
η

∂htot

∂y

)
. (3.346)

This equation has two important particular solutions:

a) Adiabatic flow on a solid wall

For this q̇(y = 0) = 0, and as follows from (3.343) and (3.341) we also have(
∂htot

∂y

)
y=0

= 0 . (3.347)

Further, at the edge of the boundary layer

htot = htotδ = const . (3.348)
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At the leading edge of the plate

htot(x = 0, y) = const . (3.349)

A solution of (3.346) which satisfies these boundary conditions is

htot(x, y) = const . (3.350)

Therefore

htot = h +
w2

x

2
= hδ +

w2
δ

2
. (3.351)

From this, with h − hδ = cp(T − Tδ) we obtain

T

Tδ

= 1 +
1

cp Tδ

w2
δ

2

⎡⎣1 −
(

wx

wδ

)2
⎤⎦ . (3.352)

The temperature profile in the boundary layer of an adiabatic flow, un-
der the assumption that Pr = 1, is linked with the velocity profile. The
relationship is valid independent of the pressure drop ∂p/∂x. It can be
rearranged for ideal gases, as the associated velocity of sound at the tem-
perature Tδ for these gases is

wSδ =
√

κ R Tδ =
√

cp (κ − 1)Tδ

and therefore

cp Tδ =
w2

Sδ

κ − 1
. (3.353)

This means that for ideal gases, (3.352) is transformed into

T

Tδ

= 1 +
κ − 1

2
Ma2

δ

⎡⎣1 −
(

wx

wδ

)2
⎤⎦ (3.354)

with the Mach number Maδ = wδ/wSδ. Fig. 3.52 illustrates the depen-
dence of the temperature profile T/Tδ on the velocities wx/wδ according to
(3.354). If the velocity profile wx/wδ of incompressible flow in (3.354) is ap-
proximated by Blasius’ solution of the plate boundary layer, section 3.7.1.1,
we obtain the temperatures shown in Fig. 3.53. The diagram only repre-
sents the approximate temperature pattern. As we can see from (3.354),
at the wall y = 0, because wx = 0, the temperature is T0 = Te, which is
also known as the adiabatic wall temperature or the eigentemperature Te:

Te

Tδ

= 1 +
κ − 1

2
Ma2

δ . (3.355)

It is the one temperature attained at the surface of an adiabatic, insulated
body in a flow. Through the relationship (3.355) the strong heating of the
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Table 3.5: Eigentemperatures of an air flow of Tδ = 300K, κ = 1.4

Maδ 0 1 2 3 5

Te/K 300 360 540 840 1800

boundary layer at large Mach numbers becomes evident. Some eigentem-
peratures Te are reproduced in Table 3.5.
The eigentemperature is identical to the temperature at the stagnation
point in a flow at velocity wδ on a body. It holds for this, that

hSt = hδ +
w2

δ

2
,

from which, with
hSt − hδ = cp (TSt − Tδ)

the relationship

TSt

Tδ

= 1 +
w2

δ

2 cpTδ

= 1 +
κ − 1

2
Ma2

δ (3.356)

which agrees with (3.355), follows.
The result (3.355) was only valid under the precondition that the Prandtl
number of a gas which is presumed to be ideal is Pr = 1. In the general
case of flow of an ideal gas with a Prandtl number Pr �= 1, a different
eigentemperature is present which is still dependent on the Prandtl number.
In order to calculate this the so-called “Recovery Factor” r is introduced.
It is defined by

Te − Tδ

TSt − Tδ

=
Te − Tδ

w2
δ/2 cp

= r , (3.357)

which is still dependent on the Prandtl number. By definition, r = 1 for
Pr = 1. A solution of the boundary layer equations by Eckert and Drake

Fig. 3.52: Temperature and velocity
profile in a compressible flow of ideal
gases, according to (3.354)

Fig. 3.53: Temperature profiles in com-
pressible flow of ideal gases. Adiabatic
wall
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[3.52], for longitudinal flow along a plate, yielded, for laminar flow in the
region

0.6 < Pr < 15 ,

the recovery factor can be approximated well by

r ∼=
√

Pr , (3.358)

and for turbulent flow in the region

0.25 < Pr < 10

by

r ∼= 3
√

Pr . (3.359)

b) Flow with vanishing pressure drop ∂p/∂x = 0

In a flow with a vanishing pressure drop ∂p/∂x the momentum equation
(3.339) simplifies to

�
dwx

dy
=

∂τxy

∂y
=

∂

∂y

(
η

∂wx

∂y

)
. (3.360)

Its form agrees with the energy equation (3.345) for a fluid with Pr = 1

�
dhtot

dt
=

∂

∂y

(
η

∂htot

∂y

)
.

Therefore a particular solution

htot = a0 wx + a1 , (3.361)

exists, as wx(x, y) is a solution of the momentum equation, then htot(x, y)
is a solution of the energy equation. The constants a0 and a1 have to be
determined from the following boundary conditions:

htot(y = 0) = h0

htot(y = δ) = htotδ . (3.362)

With these the solution of (3.361) becomes

htot − h0 =
wx

wδ

(htotδ − h0) (3.363)

or with htot = h + w2
x/2:

cp (T − T0) +
w2

x

2
=

wx

wδ

[
cp (Tδ − T0) +

w2
δ

2

]
,
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where T0 is the wall temperature. Together with (3.353) and the Mach
number Maδ = wδ/wSδ, this yields the relationship valid for ideal gases
with a Prandtl number Pr = 1

T

Tδ

=
T0

Tδ

+
Tδ − T0

Tδ

wx

wδ

+
κ − 1

2
Ma2

δ

wx

wδ

(
1 − wx

wδ

)
. (3.364)

Again in this case the temperature profile is clearly linked to the velocity
profile. In the event of very low Mach numbers Ma → 0, i.e. incompressible
flow of an ideal gas, this yields

T = T0 + (Tδ − T0)
wx

wδ

. (3.365)

From that follows the heat flux

q̇ = α (T0 − Tδ) = −λ

(
∂T

∂y

)
y=0

.

With this we obtain

α =
λ

wδ

(
∂wx

∂y

)
y=0

=
λ

η wδ

τ0 .

Still taking into account the definition of the friction factor cf :=τ0/(� w2
δ/2)

and introducing the Reynolds number Re = wδ x/ν, provides us with the
already well known analogy between heat and momentum exchange

αx

λ
= Nux = Re

cf

2
, valid for Pr = 1 . (3.366)

As a special case, (3.364) also includes the solution for an adiabatic, insu-
lated flat wall. This is(

∂T

∂y

)
y=0

=

(
∂T

∂wx

)
y=0

(
∂wx

∂y

)
y=0

= 0 .

As the velocity gradient (∂wx/∂y)y=0 at the wall is not zero, (∂T/∂wx)y=0

has to disappear. By differentiating (3.364) we find(
∂T

∂wx

)
y=0

= 0 =
Tδ − T0

Tδ

1

wδ

+
κ − 1

2
Ma2

δ

1

wδ

. (3.367)

From which we obtain the wall temperature

T0

Tδ

= 1 +
κ − 1

2
Ma2

δ .

As a comparison with (3.355) shows, it is equal to the eigentemperature Te.
Fig. 3.54 illustrates the dependence of the temperatures T/Tδ according to
(3.364), on the velocities wx/wδ.
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Fig. 3.54: Temperature and
velocity profiles in compressible
flow of an ideal gas; ∂p/∂x1 = 0;
according to (3.364)

The temperature profile q̇ = 0, T0 = Te is the bold line in Fig. 3.54. If heat
flows from the wall to the fluid, the wall temperature T0 has to lie above
the eigentemperature Te, so

T0

Tδ

> 1 +
κ − 1

2
Ma2

δ (heating the fluid)

whilst in cooling the wall temperature T0 has to be lower than the eigen-
temperature Te, and so it holds that

T0

Tδ

< 1 +
κ − 1

2
Ma2

δ (cooling the fluid) .

The curve T0 = Te for adiabatic flow separates the line T0 > Te for heating
the fluid from that T0 < Te for cooling. In the limiting case of Maδ = 0,
(3.364) is transformed into the straight dotted line.
In order to differentiate the three cases — heating, cooling or an adiabatic
wall — a heat transfer parameter is introduced into (3.364)

ϑ+ :=
Te − T0

Te − Tδ

. (3.368)

Its sign tells us whether the wall is adiabatically insulated, or if the fluid
is being heated or cooled. In heating we have T0 > Te and ϑ+ < 0, for the
adiabatic, insulated wall T0 = Te and ϑ+ = 0 and in cooling T0 < Te and
ϑ+ > 0.
A simple relationship exists between the wall temperature T0 and the heat
transfer parameter, because it follows from (3.368) that

T0

Tδ

=
Te

Tδ

− ϑ+ Te

Tδ

+ ϑ+ = 1 +

(
Te

Tδ

− 1

)
(1 − ϑ+) .

With the eigentemperature according to (3.355) we can write for this

T0

Tδ

= 1 +
κ − 1

2
Ma2

δ (1 − ϑ+) . (3.369)

Inserting (3.369) into (3.364) yields an alternative form of (3.364), which
now contains the heat transfer parameter:

T

Tδ

= 1 +
κ − 1

2
Ma2

δ

(
1 − wx

wδ

) (
1 − ϑ+ +

wx

wδ

)
. (3.370)
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Fig. 3.55: Temperature profile in a com-
pressible flow of ideal gas. Curve parameter
ϑ+ = (Te−T0)/(Te−Tδ). In heating T0 > Te

and ϑ+ < 0, in cooling T0 < Te and ϑ+ > 0

According to these equations, which are valid for Pr = 1 and ideal gases,
the temperature profile can be described by the velocity profile and the
parameter ϑ+. If we put in Blasius’ solution from section 3.7.1.1, as an
approximation for the velocity profile we obtain, for example, the tempera-
ture profile in Fig. 3.55 for Maδ = 2, as a function of the distance from the
wall η+. This only reproduces an approximate temperature profile because
of the simplifications made.

3.11.2 Calculation of heat transfer

The heat flux transferred from a surface at a given temperature ϑ0 �= ϑe is obtained
by solving the momentum and energy equations, taking into account the dissipa-
tion. This requires the introduction of boundary layer coordinates, as explained
in section 3.1.1 about the solution of boundary layer equations. In addition to
this the partial differential equations are transformed into ordinary differential
equations, which can, however, be solved numerically. A solution of this type
has been given by Eckert and Drake [3.52], for the incompressible flow of a fluid
along a plate with a constant wall temperature. According to this the heat flux
transferred locally from the plate can be described in good approximation by

q̇(x) = 0.332Re1/2
x Pr1/3 λ

x
(T0 − Te) valid for 0.6 ≤ Pr ≤ 10 . (3.371)

This result suggests the heat transfer coefficient α can be defined by

q̇ = α (T0 − Te) . (3.372)

The local Nusselt number formed with this heat transfer coefficient

Nux =
α x

λ
= 0.332Re1/2

x Pr1/3 (3.373)

agrees with that found for incompressible flow, (3.196), for 0.6 < Pr < 10.
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To calculate the heat transferred, the heat transfer coefficient is found, accord-
ing to a suggestion from Eckert and Drake [3.52], from the Nusselt relationships
and then multiplied by the difference between the wall temperature and the eigen-
temperature. As the Nusselt relationships were derived under the assumption of
constant material properties, but in reality the density, viscosity and thermal con-
ductivity of a compressible flow will change strongly due to the large temperature
variation, the material properties should be those based on a reference tempera-
ture Tref . Eckert [3.53] suggested the following empirical equation which is based
on numerical calculations

Tref = T∞ + 0.5 (T0 − T∞) + 0.22 (Te − T∞) , (3.374)

where T∞ is the temperature at a great distance from the wall. In boundary layer
flow it is equal to the temperature Tδ at the edge of the boundary layer. The
eigentemperature is obtained from (3.357), with the recovery factor according to
(3.358) or (3.359). In this way the heat transfer in laminar or turbulent flow can
be calculated.

Example 3.16: Air at pressure 0.1 MPa and temperature 20 ◦C flows at a velocity of
600 m/s over a 1 m long and 1 m wide, flat plate whose temperature is maintained at
60 ◦C. Calculate the heat transferred.
The following properties for air are given: kinematic viscosity ν(40 ◦C) = 17.26·10−6 m2/s,
ν(73 ◦C) = 20.6·10−6 m2/s, ν(74.9 ◦C) = 20.82·10−6 m2/s, Prandtl number Pr(74.9 ◦C) =
0.709, thermal conductivity λ(73 ◦C) = 0.0295W/Km, λ(74.9 ◦C) = 0.0297W/Km, adia-
batic exponent κ = 1.4, gas constant R = 0.2872kJ/kgK.
First of all we calculate the Reynolds number at the end of the plate, to ascertain whether
the flow there is laminar or turbulent. The reference temperature for the material proper-
ties is (ϑ0 + ϑδ)/2 = (60 + 20) ◦C/2 = 40 ◦C. With that

Re =
wm L

ν
=

600m/s · 1m

17.26 · 10−6 m2/s
= 3.476 · 107 .

The flow at the end of the plate is turbulent, at the start of the plate it is laminar.
Furthermore

wSδ
=
√

κRTδ =
√

1.4 · 0.2872 · 103 Nm/kgK · 293.15K = 343.3m/s

and

Maδ =
wδ

wSδ

=
600m/s

343.3m/s
= 1.748 .

The stagnation point temperature, according to (3.356), is

TSt = Tδ

[
1 +

κ − 1

2
Ma2

δ

]
= 293.15K

[
1 +

1.4 − 1

2
1.7482

]
= 472.2K .

The eigentemperature follows from (3.357) with the recovery factor according to (3.358)
in the region of laminar flow with the estimated value Pr ≈ 0.7:

Te =
√

Pr (TSt − Tδ) + Tδ =
√

0.7 · (472.2 − 293.15)K + 293.15K = 443K .

For this the Prandtl number is Pr = 0.705; the assumption Pr ≈ 0.7 does not have to be
corrected. The reference temperature Tref for the material properties, according to (3.374),
is

Tref = 293.15K + 0.5 · (333.15 − 293.15)K + 0.22 · (443 − 293.15)K = 346.12K = 73 ◦C .
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The critical Reynolds number for the laminar-turbulent transition is

Recr =
wδ xcr

ν
= 5 · 105 ,

from which

xcr =
5 · 105 · 20.6 · 10−6 m2/s

600m/s
= 0.0172m .

The mean Nusselt number, the mean heat transfer coefficient and the mean heat flow in
the laminar region according to section 3.7.4, No. 1, are

Num, lam = 0.664 · Re
1/2
cr Pr1/3 = 0.664 · (5 · 105)1/2 · 0.7091/3 = 418.7

αm, lam = Num, lam
λ

xcr
= 418.7 · 0.0295W/Km

0.0172m
= 718W/m2K .

Q̇lam = αm, lam A (ϑ0 − ϑe)

= 718W/m2K · 0.0172m · 1m · (333.15 − 443)K = −1.357kW .

In the turbulent section we will once again estimate Pr ≈ 0.7. The recovery factor is then
r = 3

√
Pr = 3

√
0.7 = 0.8879. The eigentemperature follows from (3.357) with (3.359) as

Te =
3
√

Pr (TSt − Tδ) + Tδ = 0.8879 · (472.2 − 293.15)K + 293.15K = 452K = 179 ◦C .

The Prandtl number for this is Pr = 0.705; the original guess does not have to be corrected.
The reference temperature for the material properties, according to (3.374), is

Tref = 293.15K + 0.5 · (333.15 − 293.15)K + 0.22 · (452 − 293.15)K = 348.1K = 74.9 ◦C .

The Reynolds number in the turbulent region is

Re =
600m/s · (1 − 0.0172)m

20.82 · 10−6 m2/s
= 2.833 · 107 .

The quantities we are looking for in the turbulent region are, according to section 3.7.4,
No. 1,

Num, turb =
0.037Re0.8 Pr

1 + 2.443Re−0.1 (Pr2/3 − 1)

=
0.037 · (2.883 · 107

)0.8 · 0.709
1 + 2.443 · (2.833 · 107)−0.1 · (0.7092/3 − 1)

= 2.68 · 104

αm, turb = Num, turb λ/L = 2.68 · 104 · 0.0297W/Km

(1 − 0.0172)m
= 810W/m2K .

Q̇turb = αm, turb A (T0 − Te)

= 810W/m2K · (1 − 0.0172)m · 1m · (333.15 − 452)K = −94.6kW .

The total heat fed to the plate is Q̇ = Q̇lam + Q̇turb = −95.96kW. In order to keep the
plate temperature constant this heat flow has to be removed.
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3.12 Exercises

3.1: Plaster and sugar crystals conduct heat differently along the direction of the coordi-
nate axes. Their thermal conductivity is given by the following tensor

λii =

⎛⎝ λ11 λ12 0
λ21 λ22 0
0 0 λ33

⎞⎠ .

How large are the heat fluxes in the direction of the individual coordinate axes, and what
is the differential equation for steady-state conduction through a thin, flat plate parallel
to the x2-direction?

3.2: The mean heat transfer coefficient on a small sphere of diameter d0 with chloroform
flowing over it is to be determined. This involves a number of experiments with water on
a sphere with a diameter ten times larger.

a) At what temperature do the experiments have to be run, if the mean temperature of
the chloroform is T0 = 293K?

b) The main interest is in heat transfer coefficients in the chloroform for flow velocities
in the region 0.2m/s ≤ wα ≤ 2m/s. Over what range of velocities do the experiments
with water have to be carried out?

c) In the model experiments a mean heat transfer coefficient of αM = 250W/m2K is found
for a certain state. How big is the mean heat transfer coefficient on the sphere with
the chloroform flowing over it for the same Reynolds and Prandtl numbers?

The following material data for chloroform at T0 = 293K are known: ν = 0.383·10−6 m2/s,
λ = 0.121W/Km, Pr = 4.5. The properties for water can be read off the graph, Fig. 3.56.

Fig. 3.56: Material properties
of water
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3.3: The heat loss from a valve due to laminar free flow to the surrounding air is to be
determined from experiments using a reduced scale 1 : 2 model. On the model, with a
temperature difference ∆ϑM = 20K between the model surface and the surrounding air, a
heat loss of Q̇M = 200W is discovered. How large is the heat loss Q̇O of the original if the
temperature difference between the surface and the surrounding air is ∆ϑO = 15K? The
relevant thermophysical properties of the air can be assumed to be constant.

3.4: From measurements of the heat transfer in flow over a body it is known that the
mean heat transfer coefficient αm is dependent on the following quantities

αm = f(L, wm, �, λ, ν, c) .

Using similarity theory show that the mean heat transfer coefficient can be represented as
a function of three variables

Nu = f(Re, Pr)

with Nu = αmL/λ, Re = wmL/ν and Pr = ν/a.

3.5: The investigation of gas bubbles rising in vertical, cylindrical tubes filled with liquid is
of technical interest, for example for the design of air-lift pumps and circulation evaporators
among others. However the calculation of this process is difficult, even when it is highly
idealised.
With the help of dimensional analysis, a number of far-reaching statements can be made
about the form of the solution in this case. The problem will be idealised as follows:

– It will be based on a very large air bubble in water, which virtually fills the entire cross
section of the tube, see Fig. 3.57.

Fig. 3.57: Air bubble in water

– Air and water will be taken as frictionless and incompressible.

– Capillary forces will be neglected.

– The bubble moves at a steady velocity w up the tube.

Under these preconditions the physical process can be described by the following influencing
quantities:

w, g, d, �W, �A .

g is the acceleration due to gravity, d the tube diameter, �A the density of air, �W the
density of water.

a) Determine the dimensionless groups which describe the process π1, π2, . . ., πn.

b) What statements can be made from the relationship π1 = f(π2, π3, . . . , πn) between
the dimensionless groups, about the form of the equation w = f(g, d, �W, �A)?
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3.6: The velocity profile in the boundary layer can be approximately described by the
statement

wx

wδ
= sin

(π

2

y

δ

)
,

which likewise satisfies the boundary conditions

wx(y = 0) = 0; wx(y = δ) = wδ; (∂wx/∂y)y=0 = 0 and (∂2wx/∂y2)y=0 = 0 .

Calculate the thickness of the boundary layer δ(x).

3.7: Hot air at 300 ◦C and a pressure of 0.01MPa flows at a velocity of 10m/s over a 1 m
long, flat plate. What heat flow must be removed per m2 of the plate surface area if we
want to maintain the plate temperature at 25 ◦C?
Given are kinematic viscosity ν1(p1 = 0.1MPa, ϑm = 162.5 ◦C) = 30.84 · 10−6 m2/s,
the Prandtl number Pr(ϑm = 162.5 ◦C) = 0.687 and the thermal conductivity of air
λ(ϑ = 162.5 ◦C) = 3.64 · 10−2 W/Km.

3.8: Humid air at 20 ◦C and a relative humidity ϕ = 0.5 flows over a lake which is also
at 20 ◦C. The lake is 200m · 50m big and the air flows over the longitudinal area with a
velocity of 2 m/s. How much water evaporates per hour?
Given are the viscosity of air ν(20 ◦C) = 1.535 · 10−5 m2/s, the Schmidt number for wa-
ter vapour-air Sc = ν/D = 0.6, the saturation pressure of water pWS(20 ◦C) = 2.337 ·
10−3 MPa and the saturation density �′′(20 ◦C) = 0.01729kg/m3 .

3.9: A thin walled, steel pipe of 6 cm length and 50 mm internal diameter is heated by
condensing steam from the outside, which maintains the internal wall temperature at
100 ◦C. The tube has V̇ = 2.5 · 10−4 m3/s of water flowing through it, that is heated from
20 ◦C to 60 ◦C. How large is the mean heat transfer coefficient over the pipe length?
Properties of water at 20 ◦C: density � = 998.3kg/m3 , specific heat capacity cp =
4.178kJ/kgK.

3.10: A solar collector, see Fig. 3.58, consists of a parabolic reflector and an absorber pipe
whose axis is located at the focusing point of the reflector. The reflector concentrates the
solar radiation received onto the absorber pipe which has water running through it at a
velocity of 0.03m/s which is heated up. How long do the reflector and pipe have to be if
the water is to be heated from ϑi = 20 ◦C to ϑe = 80 ◦C and the solar radiation amounts
to q̇S = 800W/m2? How high is the internal temperature of the pipe wall at the outlet?

Fig. 3.58: Solar collector with
reflector and absorber

The reflector has side length s = 2m, the internal diameter of the tube is di = 60mm, the
outer diameter do = 65mm.
Further, the following properties for water are given: density at 20 ◦C: � = 998.3kg/m3 ,
specific heat capacity cp = 4.181kJ/kgK. The local heat transfer coefficient at the outlet
will be α = 264W/m2K.
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3.11: 0.2kg/s of superheated steam at a pressure 0.1MPa flow through a non-insulated
steel pipe of inner diameter 25 mm and 5 m length. The steam enters the pipe at a tem-
perature of ϑi = 150 ◦C and is cooled to ϑe = 120 ◦C by the time it reaches the outlet.
The pipe is surrounded by cold air at a temperature of ϑ0 = 0 ◦C; the mean heat transfer
coefficient from the pipe surface to the air is αe = 15W/m2K. Calculate the heat lost
to the surroundings and the surface temperature of the pipe at the outlet. The thermal
resistances are negligible.
The following properties for steam are given: Prandtl number Pr(135 ◦C) = 0.986,
specific heat capacity cp(135

◦C) = 1.995kJ/kgK, thermal conductivity λ(135 ◦C) =
0.0276W/Km, dynamic viscosity η(135 ◦C) = 13.62 · 10−6 kg/sm.

3.12: Air at ϑL = 40 ◦C and relative humidity ϕ = 0.2 flows over an irregular packing of
spheres whose surface temperature is kept constant at the wet bulb temperature 21.5 ◦C
by evaporating water. The air becomes loaded with water vapour.
Calculate

a) the heat transferred and

b) the amount of water transferred.

The following values are given: sphere diameter d = 0.02m, channel cross section without
the spheres A0 = 1m2, air velocity over A0: wm = 2m/s, void fraction ε = 0.4, packing
height H = 0.65m, saturation pressure of water vapour pWS(40 ◦C) = 73.75mbar, thermal
conductivity of air at (ϑA + ϑ0)/2 = 30.75 ◦C : λ = 0.0262W/Km, Prandtl number
Pr = 0.72, kinematic viscosity ν = 1.64 · 10−5 m2/s, Enthalpy of evaporation of water at
21.5 ◦C: ∆hv = 2450.8kJ/kg.

3.13: In a fluidised bed, hot sand at 850 ◦C serves as the heating medium for atmospheric
air at a pressure of 0.1 MPa, from its initial temperature 20 ◦C to practically 850 ◦C. The
hot air is then fed to a furnace. Calculate the blower power and the heat fed to the air.
Given: inner diameter of the fluidising chamber 3 m, kinematic viscosity of air ν(850 ◦C) =
1.513 · 10−4 m2/s, gas constant for air 0.2872kJ/kgK, mean specific heat capacity between
30 ◦C and 850 ◦C: cp = 1.163kJ/kgK, specific heat capacity cp(20

◦C) = 1.007kJ/kgK,
density of sand �S = 2500kg/m3 , particle diameter dP = 0.5mm, sphericity ϕS = 0.86,
height H0 of the quiescent sand layer H0 = 0.5m, void fraction of the quiescent sand layer
εS = 0.36, void fraction at the minimum fluidising point εnf = 0.44, void fraction at 10
times the minimum fluidisation velocity ε = 0.55, blower efficiency ηv = 0.7.

3.14: The temperature of a layer of air close to the ground is constant at 15 ◦C up to
a height of 100 m. Exhaust gas from a chimney containing mainly CO2 has an initial
temperature of 170 ◦C. Check if this exhaust gas can rise to a height greater than 100 m.
Given are: gas constant for air RA = 0.2872kJ/kgK, gas constant the exhaust gas RG =
0.1889kJ/kgK, adiabatic exponent of the exhaust gas κ = 1.3, air pressure at the ground
p1 = 0.1MPa.

3.15: A 60 ◦C hot, vertically standing, square plate of dimensions L = b = 1m has air at
a pressure of 0.1MPa and a temperature of 20 ◦C flowing over it from top to bottom at a
velocity of 1 m/s. How much heat does the plate release?
The following properties of air at the mean boundary layer temperature of 40 ◦C are
given: thermal conductivity λ = 0.02716W/Km, kinematic viscosity ν = 17.26·10−6 m2/s,
Prandtl number Pr = 0.7122. Further, the thermal expansion coefficient at 20 ◦C is
β∞ = 1/T∞ = 3.411 · 10−3 K−1.
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3.16: A 0.4m high, vertical plate being heated electrically with q̇ = 15W/m2 has atmo-
spheric air at a pressure of 0.1MPa and a temperature of 10 ◦C flowing over it.
Calculate the plate temperature over its height.
As the mean boundary layer temperature is unknown, calculate approximately with the
material properties of air at 10 ◦C. These are: thermal conductivity λ = 0.02494W/Km,
kinematic viscosity ν = 14.42 · 10−6 m2/s, Prandtl number Pr = 0.716, thermal expansion
coefficient β∞ = 1/T∞ = 3.532 · 10−3 K−1.

3.17: Beer in cylindrical cans of 150 mm height and 60 mm diameter has a temperature of
27 ◦C and shall be cooled in a refrigerator which has an air temperature of 4 ◦C.
When does the beer cool more quickly: if the cans are laid down in the refrigerator, or if
they are standing?
Calculate approximately with the properties of air at the initial mean temperature (27 +
4) ◦C/2 = 15.5 ◦C. For this the thermal conductivity is λ = 0.0235W/Km, the kinematic
viscosity is ν = 14.93 · 10−6 m2/s, the Prandtl number is Pr = 0.715, further, the thermal
expansion coefficient is β∞ = 1/T∞ = 3.608 · 10−3 K−1.

3.18: Calculate the temperature of the external skin of an aeroplane surface. The aeroplane
is flying at a height of 10 000 m with a velocity of 700 km/h. The air temperature at 10 000 m
height is −50 ◦C.
What heat flow per m2 aeroplane surface area is fed from the air conditioning to maintain
the internal temperature Ti at 20 ◦C?
Given are the following properties for air: adiabatic exponent κ = 1.4, gas constant
R = 0.2872kJ/kgK. Furthermore, the thermal resistance of the aeroplane skin is λ/δ =
5m2K/W and the heat transfer coefficient inside is αi = 10W/m2K.

3.19: Air flows over a wing at supersonic velocity. The Mach number Maδ is 2, the
temperature of the external skin of the wing should not rise above 300 ◦C.
From what air temperature onwards does the wing have to be cooled?



4 Convective heat and mass transfer.
Flows with phase change

Some of the convective heat and mass transfer processes with phase change that
we will deal with in the following have already been explained in the previous
chapters. This includes the evaporation of a liquid at the interface between a gas
and a liquid or the sublimation at a gas-solid interface. They can be described
using the methods for convective heat and mass transfer.

However in many heat and mass transfer processes in fluids, condensing or
boiling at a solid surface play a decisive role. In thermal power plants water at
high pressure is vaporized in the boiler and the steam produced is expanded in
a turbine, and then liquified again in a condenser. In compression or absorption
plants and heat pumps, boilers and condensers are important pieces of equipment
in the plant. In the separation of mixtures, the different composition of vapours
in equilibrium with their liquids is used. Boiling and condensing are, therefore,
characteristic for many separation processes in chemical engineering. As examples
of these types of processes, the evaporation, condensation, distillation, rectification
and absorption of a fluid should all be mentioned.

In order to vaporize a liquid or condense a vapour, the enthalpy of vaporization
has to either be added to or removed from it. Under the precondition of thermo-
dynamic equilibrium, the phase change demands that there is no difference in the
temperatures of the two phases. However, in reality an imbalance is necessary for
the phase change to occur, even if it is only a small temperature difference.

Heat transfer coefficients in condensation and boiling are, in general, much
larger than those for convective heat transfer without a phase change. In addition
the difference in density of the vapour and the liquid is large, as long as the phase
change takes place far away from the critical region. This causes strong buoyancy
forces (�L − �G) g to appear, so that heat and mass transfer is supported by free
flow. In the following sections we will study these processes.

4.1 Heat transfer in condensation

When vapour comes into contact with a wall, which is at a lower temperature
than the saturation temperature of the vapour, the vapour will be liquified at the
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surface of the wall. A condensate is formed, which is subcooled as a result of its
contact with the surface of the wall. This then induces further vapour to condense
on the previously formed condensate. So, condensation of vapours is always linked
to a mass transport, in which the vapour flows to the phase interface and is then
transformed into the liquid phase.

The course of this process can be subdivided into several steps, in which a series
of resistances have to be overcome. The fraction of these individual resistances
in the total resistance can be very different. First, as a result of flow (convective
transport) and molecular motion (diffusion transport), the vapour reaches the
phase interface. In the next step the vapour condenses at the phase interface, and
finally the enthalpy of condensation released at the interface is transported to the
cooled wall by conduction and convection. Accordingly, three resistances in series
have to be overcome: the thermal resistance in the vapour phase, the thermal
resistance during the conversion of the vapour into the liquid phase, and finally
the resistance to heat transport in the liquid phase.

Of these resistances, the thermal resistance in the liquid phase is generally
decisive. The thermal resistance in the vapour is often low due to good mixing,
but in the event of the vapour being superheated, this resistance has to be consid-
ered. This is also the case in the condensation of vapour mixtures or of mixtures
containing inert gases because of the inhibitive effect of the diffusion. The conver-
sion of vapour to liquid phase requires a temperature drop at the phase interface
between vapour and liquid. However this is very small, normally only a few hun-
dredths of a Kelvin, discounting very low pressures, which for water lie below 0.01
bar [4.1]. Correspondingly, the associated “molecular kinetic” resistance at the
phase interface of vapour to liquid is almost always negligible.

4.1.1 The different types of condensation

Actual condensation can take place in many different ways. If the condensate
forms a continuous film, Fig. 4.1, we speak of film condensation. The condensate
film can be quiescent, or be in laminar or turbulent flow. The thermal resistance
is decisive for the condensation rate, if the molecular kinetic resistance can be
neglected. In calculations it is sufficient to just investigate this resistance, as
Nusselt [4.2] first did for a flowing laminar film.

Instead of a film the condensate can also exist in the form of droplets, as
shown in Fig. 4.2. This type of condensation is called drop condensation. Whether
film or drop condensation prevails depends on whether the wall is completely or
incompletely wetted. The decisive factor for this are the forces acting on a liquid
droplet, which are illustrated in Fig. 4.3. σLG is the interfacial tension (SI units
N/m) of the liquid (index L) against its own vapour (index G), σSL is the tension of
the solid wall (index S) against the liquid and σSG is the interfacial tension of the
wall with the vapour, so at equilibrium the contact angle β0 is formed according



4.1 Heat transfer in condensation 407

Fig. 4.1: Film condensation Fig. 4.2: Drop condensation

to the equation
σSG − σSL = σLG cos β0 . (4.1)

Finite values of this contact angle imply incomplete wetting and droplet formation.
If, on the other hand, β0 = 0, the droplets spread out over the entire wall. If the
so-called wetting tension is σSG − σSL > σLG, an equilibrium according to that in
(4.1), can no longer occur. Complete wetting takes place and a film develops.

Fig. 4.3: Interfacial tension at the droplet edge in in-
complete wetting. The indices S, L, G represent the solid,
liquid and gaseous phases, β0 is the contact angle.

In practice, mixtures of vapours whose liquid phases are immiscible often have
to be condensed. This results in the formation of a mix of drop and film con-
densation, Fig. 4.4. In an extended liquid film of one phase, large drops of the
other phase develop, some of which reach the wall whilst others are enclosed by
the liquid film or float on top of it.

Fig. 4.4: Condensation of vapours
of immiscible liquids

Fig. 4.5: Condensate formation
as a droplet mist
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Finally, by sufficient subcooling of a vapour and the presence of “condensation
nuclei”, that is tiny particles on which condensate can be deposited, a mist forms,
as Fig. 4.5 shows schematically.

4.1.2 Nusselt’s film condensation theory

When a vapour condenses on a vertical or inclined surface a liquid film develops,
which flows downwards under the influence of gravity. When the vapour velocity
is low and the liquid film is very thin, a laminar flow is created in the conden-
sate. The heat will mainly be transferred by conduction from the surface of the
condensate to the wall. The heat transferred by convection in the liquid film is
negligibly small.

In 1916, Nusselt [4.2] had already put forward a simple theory for the cal-
culation of heat transfer in laminar film condensation in tubes and on vertical
or inclined walls. This theory is known in technical literature as Nusselt’s film
condensation theory. It shall be explained in the following, using the example of
condensation on a vertical wall.

As Fig. 4.6 shows, saturated steam at a temperature ϑs is condensing on
a vertical wall whose temperature ϑ0 is constant and lower than the saturation
temperature. A continuous condensate film develops which flows downwards under
the influence of gravity, and has a thickness δ(x) that constantly increases. The
velocity profile w(y), with w for wx, is obtained from a force balance. Under the
assumption of steady flow, the force exerted by the shear stress are in equilibrium
with the force of gravity, corresponding to the sketch on the right hand side of
Fig. 4.6

�Lg dV + τ(y + dy) dx dy + p(x) dy dz = τ(y) dx dz + p(x + dx) dy dz . (4.2)

With
τ(y + dy) − τ(y) = (∂τ/∂y) dy ,

p(x) dy dz − p(x + dx) dy dz = −(dp/dx) dx dy dz

and
dV = dx dy dz

we obtain
∂τ

∂y
= −�Lg +

dp

dx
.

Considering only the vapour space, it is valid there that

dp

dx
= �Gg .

With that, the force balance is

∂τ

∂y
= −(�L − �G)g . (4.3)
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Fig. 4.6: Laminar condensate film on a vertical wall. Velocity and temperature
profiles. Force balance

If the condensate is a Newtonian fluid, it holds that

τ = ηL

∂w

∂y
. (4.4)

Under the assumption of temperature independent dynamic viscosity, (4.3) is
transformed into

ηL

∂2w

∂y2
= −(�L − �G)g , (4.5)

from which, after integration, assuming constant density, the velocity profile
parabolic in coordinate y

w = −(�L − �G)g

2 ηL

y2 + c1y + c0 (4.6)

is obtained. The coefficients c1 and c0 can still depend on the coordinate x. Two
boundary conditions are available for their determination:

At the wall, y = 0, the velocity is w = 0, and if we further assume that the
vapour velocity is not very large, and as a result of this that the shear stress
exerted by the vapour on the condensate film is low, then at the surface of the
condensate y = δ

∂w/∂y = 0 .

With these two boundary conditions we have

c0 = 0 and c1 = (�L − �G)gδ/ηL ,

so that we obtain the following for the velocity profile

w =
(�L − �G)g

ηL

δ2

(
y

δ
− y2

2δ2

)
. (4.7)

The mean velocity, wm(x), over the thickness of the film, δ(x), is found by inte-
gration to be

wm =
1

δ

δ∫
0

w dy =
(�L − �G) g

3ηL

δ2 . (4.8)
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The mass flow rate of the condensate film follows as

Ṁ = wm�Lb δ =
�L(�L − �G)g b

3ηL

δ3 , (4.9)

and the change in the mass flow rate with the film thickness is

dṀ

dδ
=

�L(�L − �G)g b

ηL

δ2 . (4.10)

The formation of the condensate flow dṀ , requires a heat flow dQ̇ = ∆hv dṀ
to be removed, where ∆hv is the enthalpy of vaporization. This heat will, by
presumption, be transferred purely by heat conduction through the condensate
film. The heat transferred through the condensate film by convection can be
neglected. If, in addition to this, we presume constant thermal conductivity of
the condensate and with that a linear temperature profile, like that in Fig. 4.6,
then along surface segment b dx the heat flow will be

dQ̇ = λL

ϑs − ϑ0

δ
b dx .

On the other hand, because of dQ̇ = ∆hv dṀ , with the condensate mass flow
rate dṀ given by (4.10), the last equation is transformed into

λL

ϑs − ϑ0

δ
b dx = ∆hv dṀ = ∆hv

�L(�L − �G)g b

ηL

δ2 dδ ,

or

δ3 dδ

dx
=

λLηL

�L(�L − �G)g∆hv

(ϑs − ϑ0) ,

from which, taking δ(x = 0) = 0 into account, the film thickness

δ =

[
4λLηL(ϑs − ϑ0)

�L(�L − �G)g∆hv

x

]1/4

(4.11)

is found by integration. The film thickness grows with the fourth root of the
length x.

As the temperature profile has been assumed to be linear, the local heat trans-
fer coefficient α is given by

α =
λL

δ
=

[
�L(�L − �G)g∆hvλ

3
L

4ηL(ϑs − ϑ0)

1

x

]1/4

, (4.12)

and the mean heat transfer coefficient for a wall of height H is

αm =
1

H

H∫
0

α dx =
4

3
α(x = H) = 0.943

[
�L(�L − �G)g∆hvλ

3
L

ηL(ϑs − ϑ0)

1

H

]1/4

. (4.13)
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All material properties are based on those for the condensate, and are best eval-
uated at the mean temperature ϑm = (ϑ0 + ϑs)/2.

Using the energy balance for the condensate mass flow along the height H,

Ṁ∆hv = αm(ϑs − ϑ0)bH ,

allows the temperature difference ϑs − ϑ0 to be eliminated. A relationship equiv-
alent ot that in equation (4.13) is obtained

αm

λL

(
η2

L

�L(�L − �G)g

)1/3

= 0.925

(
Ṁ/b

ηL

)−1/3

. (4.13a)

As we can see from the equations given above, large heat transfer coefficients are
achieved when the temperature difference ϑs − ϑ0 and the height of the wall are
small. In both cases the condensate film is thin and so the resistances to heat
transfer are low. The results from above are also valid for condensation of vapours
on the internal and external walls of vertical tubes, if the tube diameter is large
in comparison to the film thickness. The width b = πd has to be inserted into
(4.13a).

The previous derivations apply to a vertical wall or tube with a large enough
diameter. If the wall is inclined at an angle γ to the vertical, the acceleration due
to gravity g, in the earlier equations, has to be replaced by its component g cos γ
parallel to the wall. The heat transfer coefficient αγ is then related to that for the
vertical wall from (4.12), by the following

αγ = α(cos γ)1/4 and correspondingly αmγ
= αm(cos γ)1/4 . (4.14)

These results cannot be applied to inclined tubes because the liquid flow is not
evenly distributed over the circumference of the tube.

Nusselt also calculated the heat transfer in laminar film condensation for hor-
izontal tubes. A differential equation is then obtained for the film thickness. This
can be solved numerically. If the outer diameter of the tube is indicated by d,
the result found for the heat transfer coefficient averaged over the circumference
αm,hor of a horizontal tube can be represented by

αm,hor = 0.728

[
�L(�L − �G)g∆hvλ

3
L

ηL(ϑs − ϑ0)

1

d

]1/4

= 0.864αm(H = πd/2) , (4.15)

where αm is the mean heat transfer coefficient on a vertical wall according to
(4.13).1 With the help of the energy balance for the condensate formed

Ṁ∆hv = αm,hor(ϑs − ϑ0)π d L

1Nusselt found, by graphical integration in eq. (4.15) instead of the value 0.728, the slightly
less accurate value of 0.725, which was used by all later authors.



412 4 Convective heat and mass transfer. Flows with phase change

the temperature difference can be eliminated from the previous equation, and
can be replaced by the condensate mass flow rate. This produces a relationship
equivalent ot the one in (4.15)

αm,hor

λL

(
η2

L

�L(�L − �G)g

)1/3

= 0.959

(
Ṁ/L

ηL

)−1/3

. (4.15a)

A comparison of (4.15) and (4.13) shows that the mean heat transfer coefficient
on a tube in a horizontal position is related to that for a vertical tube by

αm,hor/αm = 0.772 (L/d)1/4 . (4.16)

So, if a tube of length 3 m and diameter 0.029 m was chosen, then αm,hor = 2.46αm.
Around 2.5 times more vapour condenses on a tube positioned vertically compared
to on the same tube lying horizontally.

If n tubes lie one underneath the other in a horizontal tube bank, the conden-
sate film in the lower tubes thickens because of the condensate coming from above,
thereby reducing the heat transfer coefficient. On the other hand, the condensate
falling from above improves the convection in the liquid film thereby improving the
heat transfer. As the mean value for the heat transfer coefficients αmn for n tubes
lying on top of each other, we obtain, according to Nusselt, αmn/αm1 = n−1/4,
where αm1 is the mean heat transfer coefficient for the uppermost tube according
to (4.15). However, the improved heat transfer caused by the stronger convec-
tion due to the falling condensate is not considered in this hypothesis. The heat
transfer coefficient αmn calculated in this way is a little too small.

More exact values can be obtained, according to Chen [4.3], if we additionally
take into account that the liquid film mixes with the condensate falling from above
and is subcooled because of this, so that new vapour can condense. The result of
this is

αmn =

[
1 + 0.2

cpL(ϑs − ϑ0)

∆hv

(n − 1)

]
n−1/4αm1 , (4.17)

where αm1 is once again the mean heat transfer coefficient for the uppermost tube
from (4.15). This relationship reproduces very well measured values on tubes
arranged vertically in line, in the region cpL

(ϑs − ϑ0)(n − 1)/∆hv < 2.

4.1.3 Deviations from Nusselt’s film condensation theory

Experiments on film condensation of saturated vapour on vertical walls yield de-
viations by as much as +25% from the heat transfer coefficients according to
Nusselt’s film condensation theory. There are different reasons that are decisive
for this.
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a) Wave formation on the film surface

Nusselt’s film condensation theory presumes an even increase in the thickness of the film due to
further condensation. However experiments, among others [4.4] to [4.6], have shown that even
in a flow that is clearly laminar, waves can develop at the film surface. These types of waves
were not only observed on rough but also on polished surfaces. Obviously this means that the
disturbances in the velocity that are always present in a stream are not damped under certain
conditions, and so waves form. They lead to an improvement in the heat transfer of 10 to 25
% compared to the predictions from Nusselt’s theory. According to Grimley [4.7], waves and
ripples appear above a critical Reynolds number

Re =
wmδ

νL
=

Ṁ/b

ηL
= 0.392

[(
σ

�Lg

)1/2 (
g

ν2
L

)1/3
]3/4

, (4.18)

where σ is the surface tension and νL = ηL/�L is the kinematic viscosity of the liquid. Based on a
calculation of the disturbances van der Walt and Kröger [4.8] have proved that this relationship
represents a good approximation of the point at which waves appear in water and some other
fluids, such as the refrigerant R12. However in liquid sodium waves first develop at critical
Reynolds numbers that are around five times larger than those calculated according to (4.18).
If the formation of waves is ignored and the calculations are done according to Nusselt’s film
condensation theory, then the heat transfer coefficients obtained are too small, meaning that
the condenser would be too big. Unfortunately at the moment there is no reliable theory for
calculating the influence of wave formation on the heat transfer. In practical applications, the
heat transfer coefficient α according to Nusselt’s film condensation theory is multiplied by a
correction factor f ,

αwaves = fα , (4.19)

which accounts for the influence of wave formation. As the waves lead to a smaller film thickness,
in terms of the statistical mean, the heat transfer is improved by wave formation. The correction
factor above is therefore larger than one, and according to experiments by van der Walt and
Kröger [4.8] is independent to a large degree of the amount of condensate. A good mean value
is f = 1.15.

b) Temperature dependent properties

In (4.12) and (4.13) of Nusselt’s film condensation theory the material properties of the con-
densate are presumed to be independent of temperature. This assumption is well met if the
temperature drop ϑs − ϑ0 in the condensate film is sufficiently small. In any other case the
change in the dynamic viscosity, the thermal conductivity, and on a lower scale the density of
the condensate film with the temperature has to be considered. In place of (4.5) the momentum
balance appears

∂

∂y

[
ηL(ϑ)

∂w

∂y

]
= − [�L(ϑ) − �G] g , (4.20)

and in the condensate film, under the assumption that heat is only transferred by conduction
in the condensate film, the temperature profile is yielded from the energy balance

∂

∂y

[
λL(ϑ)

∂ϑ

∂y

]
= 0 . (4.21)

These equations are to be solved under the boundary conditions

w(y = 0) = 0 ,
∂w(y = δ)

∂y
= 0 ,

ϑ(y = 0) = ϑ0 and ϑ(y = δ) = ϑs .
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The heat transfer coefficient follows, by definition, from

dQ̇ = αb dx (ϑs − ϑ0) = −λ0

(
∂ϑ

∂y

)
y=0

b dx = ∆hv dṀ . (4.22)

The detailed solution of (4.20) and (4.21) under the given boundary conditions shall not be
presented here. Information can be found for this in a paper by Voskresenskij [4.9].

With the additional assumption that the density of the liquid film only slightly depends
on the temperature, and that it is much larger than that of the vapour, �L  �G, we obtain
the result that the relationship between the heat transfer coefficient α, and the heat transfer
coefficient αNu, according to Nusselt’s film condensation theory, can be represented by

α

αNu
= f

(
λs

λ0
;

ηs

η0

)
. (4.23)

The index s signifies the material properties of the condensate film at the saturation temperature,
whilst index 0, indicates those properties that are formed at the wall temperature. The heat
transfer coefficient αNu according to Nusselt’s film condensation theory, (4.12), is calculated
with the mean material properties

ηL =
1

2
(ηs + η0) and λL =

1

2
(λs + λ0) .

With the abbreviations
η∗ = ηs/η0 and λ∗ = λs/λ0

(4.23) in its complete form is

α

αNu
=

{
1 + η∗

10 (1 + λ∗)3

[
5 + λ∗(14 + 11λ∗) +

λ∗

η∗
(1 + 4λ∗ + 5λ∗2)

]}1/4

. (4.24)

In the limiting case λ∗ = η∗ = 1 we obtain α = αNu.
Fig. 4.7 illustrates (4.24). As we can see from the graph, the temperature dependence

of the dynamic viscosity and the thermal conductivity can have a marked influence on the
heat transfer, as far as they change starkly with the temperature. In condensing steam, for a
temperature difference between the saturation and wall temperatures of ϑs − ϑ0 ≤ 50K, the
material properties vary for λs/λ0 between 0.6 and 1.2 and for ηs/η0 between 1 and 1.3. This
region is hatched in Fig. 4.7. It is clear that within this region the deviations from Nusselt’s
film condensation theory are less than 3%.

c) Subcooling the condensate and superheating the vapour

As the wall temperature is lower than the saturation temperature, not only the condensation
enthalpy will be released at the wall, another heat flow from the subcooling of the condensate
exists. In a cross section at point x the enthalpy flow of the falling condensate is

Ṁ(h′′ − hL) = Ṁ∆hv +

δ∫
0

�Lw b cpL(ϑs − ϑ) dy , (4.25)

where hL is the mean specific enthalpy of the liquid. If the liquid over a cross section was at
the saturation temperature ϑ − ϑs, then we would have h′′ − hL = h′′ − h′. Presuming again a
linear temperature profile

ϑs − ϑ = (ϑs − ϑ0)
(
1 − y

δ

)
, (4.26)

and assuming the properties of the condensate are independent of temperature, after inserting
the temperature from (4.26) and the velocity from (4.7) into (4.25), we obtain as a result of the
integration

(h′′ − hL) = ∆hv +
3

8
cpL(ϑs − ϑ0) = ∆h∗

v . (4.27)
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Fig. 4.7: Influence of tempera-
ture dependent material proper-
ties on heat transfer in film con-
densation [4.9]

It follows from this that, under the assumptions made, the specific enthalpy hL of the flowing
condensate is independent of the film thickness. The equation further shows that the enthalpy
of vaporization ∆hv in the equations for Nusselt’s film condensation theory has to be replaced
by the enthalpy difference ∆h∗

v. If we additionally consider that the temperature profile in
the condensate film is slightly curved, then according to Rohsenow [4.10] in place of (4.27), we
obtain for ∆h∗

v the more exact value

∆h∗

v = ∆hv + 0.68 cpL(ϑs − ϑ0) . (4.28)

This relationship holds for Prandtl numbers Pr > 0.5 and cpL(ϑs − ϑ0)/∆hv ≤ 1. The best
agreement with experiments is yielded when the material properties, in particular the dynamic
viscosity ηL, are evaluated at a temperature ϑL = ϑ0 + 1/4(ϑs − ϑ0).

A further, and likewise small, deviation from Nusselt’s film condensation theory is found
for superheated vapour. In addition to the enthalpy of vaporization, the superheat enthalpy
cpG(ϑG − ϑs) has to be removed in order to cool the superheated vapour from a temperature
ϑG to the saturation temperature ϑs at the phase interface. Instead of the enthalpy difference
∆hv according to (4.28), the enthalpy difference

∆h∗

vs = cpG(ϑG − ϑs) + ∆hv + 0.68 cpL(ϑs − ϑ0) (4.29)
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is used in (4.13). Furthermore, as the temperature difference in the condensate film is ϑs−ϑ0, the
heat flux is found from q̇ = α(ϑs−ϑ0) and the mass flux of the condensate from Ṁ/A = q̇/∆h∗

vs.

However in practice the subcooling of the condensate, the buoyancy forces and the super-
heating of the vapour seldom reach such values that the improved equations (4.28) or (4.29)
have to be used.

4.1.4 Influence of non-condensable gases

If a vapour condenses in the presence of a non-condensable gas it has to diffuse
through this gas to the phase interface. This means that a drop in the partial
pressure to the phase interface is required. As can be seen in Fig. 4.8, the partial
pressure p1 of the vapour drops from a constant value p1G away from the phase in-
terface to a lower value p1I at the phase interface. Correspondingly, the associated
saturation temperature ϑs(p1) also falls to the value ϑI at the phase interface. The
pressure p0 of the inert gas rises towards the phase interface, so the sum p1 + p0

always yields a constant total pressure p.

The saturation temperature ϑI at the phase interface can, depending on the gas
content, lie considerably below the saturation temperature ϑs(p) associated with
the pressure p, which would occur if no inert gas was present. The temperature
difference between the phase interface and the wall is lowered because of the inert
gas and with that the heat transfer is also reduced. In order to avoid or prevent
this, it should be possible to remove the inert gas through valves. Large condensers
are fitted with steam-jet apparatus which suck the inert gas away. In other cases,
for example the condensation of water out of a mixture of steam and air or in the
condensation of ammonia from a mixture with air, it is inevitable that inert gases
are always present. Therefore their influence on heat transfer has to be taken into
account.

The influence of the inert gases on heat transfer can be determined with the

Fig. 4.8: Influence of the inert gas on the partial
pressure and temperature profiles. ϑG vapour tem-
perature, ϑs saturation temperature, p1 partial pres-
sure of the condensing vapour, p0 partial pressure of
the inert gas, p = p1 + p0 total pressure
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aid of the energy balance

Q̇ = αLA (ϑI − ϑ0) = Ṁ∆hv + α•
GA (ϑG − ϑI) . (4.30)

The heat transfer coefficient α•
G signifies the heat flow transferred from the vapour-

gas mixture to the phase interface. The superscript point indicates that the heat
is not only transferred by conduction but also by a material flow normal to the
wall. In a flowing gas, the size of α•

G is determined from the material properties
of the gas and the flow velocity.

The mass flow rate Ṁ of the vapour transported at the condensate surface
increases with the difference in the partial pressure p1G = y1Gp in the vapour
space and p1I at the phase interface.

According to the laws of mass transfer, see (1.195),

Ṁ = �GβGA ln
p − p1I

p − p1G

, (4.31)

where �G is the density of the gas-vapour mixture at pressure p and temperature
ϑG. Strictly speaking this relationship is only valid if the temperature up to the
phase interface is constant. Disregarding low temperatures, this assumption of
constant temperature rarely causes an error in the quantity Ṁ . Further, p1I is
the partial pressure of the condensing gas at the phase interface and p1G is that
in the core of the gas-vapour flow.

The Lewis relationship (1.198), which we have already discussed, allows us to
relate the mass transfer coefficient βG approximately to the heat transfer coeffi-
cient

βG =
αG

�GcpG

Le−2/3 .

The values βG and αG are, as already explained, mass and heat transfer coefficients
for a vapour flow, in which the condensate surface is seen as a quiescent, solid
wall. Inserting the following into (4.30)

α•
G = αG ζ , (4.32)

where the correction factor ζ, the so-called “Ackermann correction” [4.11] takes
into account that, in reality, vapour does not flow along a solid wall, rather part
of the flow vanishes at the phase interface. The Ackermann correction is obtained
in a similar manner to the Stefan correction (1.194) for mass transfer, in which
the film theory from section 1.5.1 is applied to the processes of heat transfer in
the condensation or sucking being considered here, to

ζ =
−φ

exp(−φ) − 1
with φ =

|Ṁ | cpG

A αG

. (4.33)

Using (4.31), we obtain from the energy balance (4.30)

ϑI − ϑ0 =
αG

αL

[
∆hv

cpG

Le−2/3 ln
p − p1I

p − p1G

+ ζ (ϑG − ϑI)

]
(4.34)



418 4 Convective heat and mass transfer. Flows with phase change

Fig. 4.9: Influence of inert gas on the
heat transfer in condensation of a forced
flow of steam and air; q̇G heat flux with,
q̇ without inert gas

Fig. 4.10: Influence of inert gas on the
heat transfer in condensation of a free
flow of steam and air [4.12]; q̇G heat flux
with, q̇ without inert gas

as a determination equation for the unknown temperature ϑI at the phase inter-
face. This equation can only be solved iteratively. For small inert gas contents
p0 	 p or p1 → p, the quotient (p − p1I)/(p − p1G) and with that the first sum in
the brackets will be large. Equation (4.34) simplifies to

ϑI − ϑ0 =
αG∆hv

αLcpG

Le−2/3 ln
p − p1I

p − p1G

. (4.35)

To be able to estimate the influence of the inert gas on the heat transfer we
will consider a condensate film of thickness δ. In front of this there is vapour with
an inert gas. If there was no inert gas present, the surface of the film would be at
the saturation temperature ϑs(p) and the heat flux released would be

q̇ =
λL

δ
(ϑs − ϑ0) .

The presence of the inert gas means that with the same film thickness a smaller
heat flux

q̇G =
λL

δ
(ϑI − ϑ0)
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will be transferred. The ratio

q̇G

q̇
=

ϑI − ϑ0

ϑs − ϑ0

≤ 1 (4.36)

shows by how much the heat flux is reduced by the existence of the inert gas.
With (4.35) the approximate relationship below is yielded

q̇G

q̇
=

αG∆hvLe−2/3

(ϑs − ϑ0)αLcpG

ln
p − p1I

p − p1G

. (4.37)

As we can see from this, the flow velocity in the vapour phase has to be chosen
to be sufficiently high, in particular with large temperature differences ϑs −ϑ0, so
that the heat transfer coefficient αG of the vapour will be large and with that the
heat flux q̇G will not be too small.

The results of an accurate calculation are illustrated in Figs. 4.9 and 4.10.
The ratio of the two heat fluxes q̇G/q̇ are plotted over the temperature difference
ϑs−ϑ0 with the inert gas fraction as a parameter. Both diagrams are valid for the
condensation of steam out of mixture with air. Fig. 4.9 is valid for condensation
in forced flow, when the influence of gravity can be neglected compared to that
of the inertia forces, as is the case of flow over a horizontal plate. Fig. 4.10
shows the reverse case, in which the inertia forces are negligible compared to the
gravitational forces. This corresponds to free flow on a vertical plate. It is clearly
visible in both pictures that the heat transfer reduces with increasing inert gas
fractions, and that in free flow it is more significantly reduced due to the inert gas
than in forced flow.

Example 4.1: Saturated steam at a pressure 9.8 ·10−3 MPa, condenses on a vertical wall.
The wall temperature is 5 K below the saturation temperature. Calculate the following
quantities at a distance of H = 0.08m from the upper edge of the wall: the film thickness
δ(H), the mean velocity wm of the downward flowing condensate, its mass flow rate Ṁ/b
per m plate width, the local and the mean heat transfer coefficients.
At what point H1 is the mass flow rate Ṁ/b double that at the point H? Why is the heat
transfer coefficient over the length H < x ≤ H1 smaller than α(x ≤ H)?
Given are: saturation temperature at 9.8 · 10−3 MPa: ϑs = 45.4 ◦C, enthalpy of vapor-
ization ∆hv = 2392kJ/kg, density of the liquid �L = 991kg/m3 , thermal conductiv-
ity λL = 0.634W/Km, dynamic viscosity ηL = 6.54 · 10−4 kg/sm, density of the vapour
�G � �L.
According to (4.11) the film thickness is

δ(H) =

[
4 · 0.634W/K m · 6.54 · 10−4 kg/sm · 5K · 0.08m

9912 kg2/m6 · 9.81m/s2 · 2392 · 103 J/kg

]1/4

δ(H) = 7.325 · 10−5 m ≈ 0.073mm .

The mean velocity, according to (4.8), is

wm =
991kg/m3 · 9.81m/s2

3 · 6.54 · 10−4kg/sm
· (7.325 · 10−5)2 m2 = 0.0266m/s .
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From (4.9) we have

Ṁ/b = wm �L δ = 0.0266m/s · 991kg/m3 · 7.325 · 10−5 m = 1.93 · 10−3 kg/sm .

The local heat transfer coefficient at point H is

α(H) =
λL

δ
=

0.634W/K m

7.325 · 10−5 m
= 8655W/m2K .

The mean heat transfer coefficient follows from (4.13) as

αm(H) =
4

3
α(H) = 11540W/m2K .

Furthermore
Ṁ(H1)

b
= 2

Ṁ (H)

b
= 3.86 · 10−3 kg/sm .

According to (4.9) the associated film thickness is

δ(H1) =

(
Ṁ(H1) · 3ηL

�2
L g b

)1/3

=

(
3.86 · 10−3 kg/sm · 3 · 6.54 · 10−4 kg/sm

9912 kg2/m6 · 9.81m/s2

)1/3

δ(H1) = 9.23 · 10−5 m .

It follows from (4.11), with x = H1, that

H1 = δ4 �2
L g ∆hv

4λL ηL (ϑs − ϑ0)
,

which gives

H1 = (9.23 · 10−5)4 m4 · 9912 kg2/m6 · 9.81m/s2 · 2392 · 103 J/kg

4 · 0.634W/K m · 6.54 · 10−4 kg/sm · 5K
= 0.202m .

Over the length H < x ≤ H1 the film is thicker than over the length x ≤ H, and therefore
the the heat transfer coefficient is smaller.

Example 4.2: In a tube bundle condenser, like that sketched in Fig. 4.11, 7 · 103 kg/h
saturated vapour of refrigerant R22, at a pressure of 1.93 MPa is to be condensed. Cooling
water is available at a temperature of 18 ◦C, and this can be heated by 10K. Copper
tubes of length 1.5 m, 16 mm outer diameter and 1 mm wall thickness are to be used in the
construction of the condenser.
How many tubes are required? How large is the cooling water flow rate?
The following data are given for R22 at the saturation pressure 1.93 MPa: saturation tem-
perature ϑs = 50 ◦C, density of the liquid �L = 1.0839·103 kg/m3, enthalpy of vaporization
∆hv = 154.08 kJ/kg, specific heat capacity of the liquid cpL = 1.38 kJ/kg K, dynamic vis-
cosity ηL = 173 · 10−6 kg/s m, thermal conductivity λL = 75.4 · 10−3 W/K m. The heat
transfer coefficient on the water side is αmi = 2000 W/m2K, the specific heat capacity of
water is cpW = 4.1805 kJ/kg K. The resistance to heat of the copper wall can be neglected.
The required heat flow is

Q̇ = Ṁ ∆hv =
7 · 103 kg/h

3600 s/h
· 154.08kJ/kg ≈ 300kW .

The amount of cooling water follows from

ṀW =
Q̇

cpW ∆ϑW
=

300kW

4.1805kJ/kg K · 10K
= 7.18kg/s .
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The required area comes from Q̇ = km A∆ϑm with

∆ϑm =
(ϑs − ϑWin) − (ϑs − ϑWout)

ln[(ϑs − ϑWin)/(ϑs − ϑWout)]
=

(50 − 18)K − (50 − 28)K

ln[(50 − 18)K/(50 − 28)K]
= 26.69K ,

and with that

km A =
Q̇

∆ϑm
=

300kW

26.69K
= 11.24 · 103 W/K .

On the other hand
1

km A
=

1

αmi Ai
+

1

αmo Ao

and therefore with A = Ao

1

km
=

1

αmi (di/do)
+

1

αmo
.

The heat transfer coefficient αm on the condensate side is calculated from (4.15a) and
(4.17). It still contains in (4.15a) the mass flow rate of the condensate Ṁ/L on a single tube,
and can be determined if we knew the number of tubes or their surface area A. Therefore we
will estimate the mean outside heat transfer coefficient αmo, and use that to find the surface
area A and then check the estimate at the end. Our estimate is αmo = 1200W/m2K. With
that we get

1

km
=

1

2000W/m2K · (14mm/16mm)
+

1

1200W/m2K
= 1.4047 · 10−3 m2 K

W

km = 711.9W/m2K .

Giving an area of

A = kmA/km =
11.24 · 103 W/K

711.9W/m2K
= 15.79m2 .

The number of tubes is

z =
A

do π L
=

15.79m2

16 · 10−3 m · π · 1.5m
= 209 .

Fig. 4.11: Tube bundle condenser
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The mean wall temperature ϑ0 follows from Q̇ = αmo
A(ϑs − ϑ0) as

ϑ0 = ϑs − Q̇

αmo A
= 50 ◦C − 300 · 103 W

1200W/m2K · 15.79m2
= 34.2 ◦C .

Examination of αmo: According to (4.15a)

αm, hor = αm1 = λL

(
η2
L

�2
L g

)−1/3

0.959

(
Ṁ/L

ηL

)
−1/3

= 75.4 · 10−3 W/Km ·
[

(173 · 10−6)2 kg2/s2m2

(1.0839 · 103)2 kg2/m6 · 9.81m/s2

]−1/3

· 0.959 ·
(

1.94kg/s

209 · 1.5m · 173 · 10−6 kg/sm

)
−1/3

αm, hor = 1597W/m2K .

Around
√

209 ≈ 15 tubes lie one above each other. From (4.17) we get

αmn = αmo =

[
1 + 0.2 · 1.38kJ/kg K · (50 − 34.2)K

154.08kJ/kg
· (15 − 1)

]
· 15−1/4 · 1597W/m2K

αmo = 1133W/m2K .

A correction of the estimate for αmo is unnecessary.
Note: In the calculation of αmo according to (4.15a) and (4.17) an error is made, because
both equations presume a constant wall temperature. In this case this is variable, the
cooling water temperature and with that the wall temperature increases in the direction
of flow of the cooling water. However, because αm, hor according to (4.15a) only changes
with ∼ (ϑs − ϑ0)

−1/4, in this example the error hardly has any effect on the result.

4.1.5 Film condensation in a turbulent film

Nusselt’s film condensation theory presumes a laminar film flow. As the amount
of condensate increases downstream, the Reynolds number formed with the film
thickness increases. The initially flat film becomes wavy and is eventually trans-
formed from a laminar to a turbulent film; the heat transfer is significantly better
than in the laminar film. The heat transfer in turbulent film condensation was
first calculated approximately by Grigull [4.14], who applied the Prandtl analogy
for pipe flow to the turbulent condensate film. In addition to the quantities for
laminar film condensation the Prandtl number appears as a new parameter. The
results can not be represented explicitly. In order to obtain a clear representation,
we will now define the Reynolds number of the condensate film

Re :=
wm δ

νL

=
wm δ �L b

νL �L b
=

Ṁ

ηL b
. (4.38)

In the framework of Nusselt’s film condensation theory, using the mass flow rate
for the condensate, eq. (4.9),

Ṁ = wm �L b δ =
�L (�L − �G) g b

3 ηL

δ3
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Fig. 4.12: Local Nusselt number as a function of the Reynolds number, according
to [4.15], in condensation on a vertical tube or a vertical flat wall

and taking �L � �G into account, it can be rearranged into

Re =
Ṁ/b

ηL

=
�2

L g

3 η2
L

δ3 or (3Re)1/3 =

(
g

ν2
L

)1/3

δ .

By eliminating the film thickness δ using α = λL/δ, the heat transfer equation for
Nusselt’s film condensation theory can also be written as

Nu =
α (ν2

L/g)1/3

λL

= (3Re)−1/3 , (4.39)

where the Reynolds number is given by (4.38). In turbulent condensate films, as
Grigull showed, we get

Nu = f(Re, Pr) .

The results of an analytical solution of the differential equations for a turbulent
condensate film on a vertical tube are reproduced in Fig. 4.12, [4.15]. Line A
represents Nusselt’s film condensation theory according to (4.39).

The Reynolds number Re = wm δ/νL for the condensation on a vertical tube
can, due to the mass balance Ṁ = wm d π δ �L and with ηL = νL �L, also be written
as Re = Ṁ/(d π ηL). As the tube diameter d, on which the calculations from Fig.
4.12 are based, is much larger than the assumed thickness of the film, the curvature
of the condensate film has no effect on the heat transfer. The results also hold for
condensation on a vertical flat plate, with the Reynolds number defined in (4.38).

In the transition region between laminar and turbulent condensation, the con-
densate film is wavy. In Fig. 4.12 this transition region is represented by the
dotted lines, according to results from Henstock and Hanratti [4.16].
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The literature contains various comments concerning the size of the Reynolds
number for this laminar-turbulent transition. As Fig. 4.12 shows, it is not possi-
ble to establish a definite critical Reynolds number, although this has occasionally
been attempted. Rather, a transition region with a wavy film, follows on directly
from the laminar region. The Nusselt number in this region deviates from the val-
ues from Nusselt’s film condensation theory. This transition region starts at very
low Reynolds numbers Retrans, if the Prandtl number is high enough, whilst at
low Prandtl numbers, laminar flow is transformed into turbulent flow via a very
short transition region. Therefore, we can say that the critical Reynolds num-
ber depends on the Prandtl number and can lie well below the critical Reynolds
number of 400, at which the transition region roughly ends.

If a deviation of 1% from the values for Nusselt’s film condensation theory is
permitted, this leads to a Reynolds number of

Retrans = 256Pr−0.47 , (4.40)

valid for 1 ≤ Pr ≤ 10. In addition to this the film condensation theory can
only be applied if the shear stress exerted by the vapour is small enough. In
the turbulent region, at Reynolds numbers above Re = 400, the Nusselt numbers
reach values many times greater than those predicted by the film condensation
theory, in particular when the Prandtl numbers are large.

In the transition region, the Nusselt number initially decreases with Reynolds
number and once it has gone through a minimum it increases again. At first
the increased film thickness, which grows with the Reynolds number, causes a
reduction in heat transfer, but this is overcome by the increasing influence of the
turbulence which leads to improved heat transfer.

It should be noted that the local Nusselt numbers are plotted in Fig. 4.12. In
a condenser, the Reynolds number formed with the film thickness changes from
a value of zero, at the beginning of the condensation, to a final or end value. In
between, within the transition region there may be states where the heat transfer
is not particularly good, the mean heat transfer coefficient could be smaller than
the local coefficient at the outlet cross section. Fig. 4.13 reproduces the mean
heat transfer coefficients associated with Fig. 4.12, according to

αm (ϑs − ϑ0) = ∆hv Ṁ/A ,

where A is the surface area of the tube and Ṁ is the condensate mass flow rate
at the bottom end of the tube.

As we can see from this, at small Prandtl numbers good heat transfer can be
achieved by operating the condenser in the region of Nusselt’s film condensation
theory, that is at low Reynolds numbers. This can be attained by using short
tubes. If, in contrast, the Prandtl number is large, then good heat transfer pre-
dominates in the turbulent region, and this can be achieved by using tubes of an
adequate length.

Isashenko [4.17], has developed simple formulae, originating from the solution
of the momentum and energy equations for turbulent flow, for the turbulent film
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Fig. 4.13: Mean Nusselt number as a function of the Reynolds number, according
to [4.15], in condensation on a vertical tube or a vertical flat wall

region at Reynolds numbers Re ≥ 400. These formulae reproduce well known
measured values given in the literature. According to this, the local Nusselt
number is given by

Nu =
α (ν2

L/g)1/3

λL

= 0.0325Re1/4 Pr1/2 (4.41)

with the Reynolds number Re = (Ṁ/b)/ηL = Γ/ηL and the Prandtl number
Pr of the condensate. The equation is valid in the region 1 ≤ Pr ≤ 25 and
400 ≤ Re ≤ 7 · 105. The Reynolds number of the condensate is obtained from

Re =

⎡⎣89 + 0.024Pr1/2

(
Pr

Pr0

)1/4

(Z − 2300)

⎤⎦4/3

(4.42)

with

Z =
cpL (ϑs − ϑ0)

∆hv

1

Pr

x

(ν2
L/g)1/3

. (4.42a)

In these equations all the fluid properties are evaluated at saturation temperature,
except the Prandtl number Pr0, which is formed with the wall temperature. From
investigations by Labunzov [4.18] the measured heat transfer coefficients deviate
at the most by ±12 % from those calculated.

In the calculation of heat transfer in the transition region between laminar and
turbulent film condensation, empirical interpolation formulae are well established.
One of these types of formulae is

α =
4

√
(f αlam)4 + α4

turb . (4.43)

The factor f takes into account here the waviness of the laminar condensate film,
f ≈ 1.15; αlam is the heat transfer coefficient for laminar film condensation from
Nusselt’s film condensation theory and αturb is that for a turbulent condensate
film, which is found, for example from (4.41) together with (4.42).
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4.1.6 Condensation of flowing vapours

Nusselt extended his film condensation theory to take into account the influence
of vapour flowing along the condensate film on the velocity of the condensate.
The boundary conditions for (4.6) are no longer ∂w/∂y = 0 for y = δ, instead
the velocity profile ends with a finite gradient at the free surface of the film
corresponding to the shear stress exerted by the flowing vapour. In (4.6) for the
velocity profile

w = −(�L − �G)g

2 ηL

y2 + c1 y + c0

the coefficients c1 and c0 now have to be determined, so that the boundary con-
ditions

w(y = 0) = 0 and ηL(∂w/∂y)y=δ = ±τδ (4.44)

are satisfied, where the plus sign holds for downstream flowing vapour, the nega-
tive sign is used when the vapour is flowing upstream. With that we obtain the
following for the velocity

w =
(�L − �G)g

ηL

δ2

(
y

δ
− y2

2 δ2

)
± τδ y

ηL

. (4.45)

In the calculation of the shear stress which develops at the phase interface, it is
assumed that the pressure and frictional forces in the vapour space are equal. The
pressure drop along the flow direction dx is dp. For pipe flow we now have

τδ d π =
d2 π

4

dp

dx
. (4.46)

On the other hand, for the pressure drop it holds that

dp

dx
= ζ

�G w2
G

d
. (4.47)

With that we have

τδ = ζ
�G w2

G

4
. (4.48)

The mean velocity is found to be

wm =
1

δ

δ∫
0

w dy =
(�L − �G)g

3 ηL

δ2 ± τδ δ

2 ηL

(4.49)

and from that the mass flow rate of condensate, which flows through a plane
perpendicular to the wall is

Ṁ = wm �L b δ =
�L (�L − �G)g b

3 ηL

δ3 ± �L τδ δ2 b

2 ηL

. (4.50)
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Fig. 4.14: Influence of the
vapour shear stress on lam-
inar film condensation, ac-
cording to [4.19]

The film thickness, as already shown in section 4.1.2, is found using the energy
balance

λL

ϑs − ϑ0

δ
b dx = ∆hv dṀ

to be

δ4 ± 4

3

τδ δ3

g (�L − �G)
=

4λ ηL (ϑs − ϑ0)

�L (�L − �G) g ∆hv

x , (4.51)

and from the calculation of the film thickness δ, the heat flux q̇ = λL (ϑs − ϑ0)/δ
transferred is yielded. The shear stress τδ is given by (4.48).

If subcooling of the condensate or superheating of the vapour is considered,
then in place of the enthalpy of vaporization ∆hv the enthalpy difference ∆h∗

vs

according to (4.29) is used. If the condensation surface is inclined at an angle γ to
the vertical, the acceleration due to gravity g is replaced by its component g cos γ
parallel to the wall.

Rohsenow et al. [4.19] rearranged (4.51) by introducing dimensionless quanti-
ties and then determined the heat transfer coefficient α = λL/δ and also the mean
heat transfer coefficient αm from the calculated film thickness. Fig. 4.14 shows as
a result of this the mean Nusselt number

Num =
αm L

λ

with the characteristic length

L :=

[
�L ν2

L

(�L − �G)g

]1/3

plotted against the Reynolds number

Re =
wm δ

νL

=
Ṁ

b ηL

,
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Fig. 4.15: Film condensation of downward flowing saturated vapour, according
to [4.20], Prandtl number Pr = 5.0

where b is the width of the flowing condensate film, which for condensation on a
vertical tube is b = π d. As a parameter, the dimensionless shear stress

τ ∗
δ :=

τδ

L(�L − �G)g

is registered. The results are valid for vapour flowing upstream. The dotted lines
indicate the approximate boundary to turbulent film condensation.

The laws of conversation of mass, momentum and energy apply to turbulent
film condensation of flowing vapours as well as to laminar film condensation.
However, additional information about the mechanisms of the turbulent exchange
of mass, momentum and energy is required. The results of this type of calculation
provide us, once again, with a temperature profile and from that the heat transfer
coefficient. As an example of this Fig. 4.15 shows the results from Dukler [4.19],
for the local Nusselt number as a function of the Reynolds number, at a Prandtl
number Pr = 5 and a vapour flow in the downstream direction. The dimensionless
quantities are defined in exactly the same manner as those in Fig. 4.14 for laminar
flow, thereby enabling the comparison of heat transfer in laminar and turbulent
flow. It is also not possible to obtain an analytical expression for turbulent flow,
only numerical results are available for the calculated heat transfer coefficient.
These can be represented by empirical equations. As a good example for practical
usage the particularly simple equation from Shah [4.21] is presented. It contains
the relationship (3.262) for convective heat transfer in turbulent single phase flow,
in which the exponent for the Prandtl number has merely been increased from 1/3
to 0.4, and an additional term taking the phase change and the effect of vapour
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flow into account. For the local heat transfer we have

Nu = 0.023Re0.8 Pr0.4

{
(1 − x∗)0.8 +

3.8 (1 − x∗)0.04 x∗0.76

p+0.38

}
(4.52)

with

Nu =
α d

λL

, Re =
wm d

νL

, wm = Ṁ/

(
�L

π d2

4

)
, Pr =

νL

aL

, p+ =
p

pcr

.

The quantity x∗ = ṀG/Ṁ is the mass quality or simply quality in the flow at a
cross section of the tube. This equation reproduces the measurements for water,
refrigerants R11, R12, R113 and methanol, ethanol, benzene, toluene and tri-
chloroethylene in condensation in vertical, horizontal and inclined tubes with 7 to
40mm internal diameter, at normalised pressures 0.002 ≤ p+ ≤ 0.44, saturation
temperatures 21 ◦C ≤ ϑs ≤ 310 ◦C, vapour velocities 3 m/s ≤ wG ≤ 300 m/s,
mass fluxes 10.8 kg/m2 s ≤ ṁ ≤ 210.6 kg/m2 s, heat fluxes 158 W/m2 ≤ q̇ ≤
1.893 · 106 W/m2, Reynolds numbers 100 ≤ Re ≤ 63 000, and Prandtl numbers
1 ≤ Pr ≤ 13. The mean deviation from the experimental values has been shown
to be ±15.4 %.

For practical calculations it is recommended that the condenser tube be sub-
divided into sections in which the change ∆x∗ in the quality of the flow is equal.
If these sections are not chosen to be too large, a linear drop in the quality can be
assumed in each section and then the local heat transfer coefficient in the middle
of the section ∆x∗ can be calculated according to (4.52). Shah [4.21] states that a
subdivision in sections ∆x∗ < 0.4 is sufficient. The heat transfer coefficient in the
middle of the section is approximately equal to the mean heat transfer coefficient
α = αm of the section. The area A of the section in question is obtained from

Q̇ = km A ∆ϑm (4.53)

with
1

km A
=

1

αm AC

+
δ

λAm

+
1

αmo Ao

,

or, if the heat transfer coefficient is based on the condensate surface AC = A, with

1

km

=
1

αm

+
δ d

λ dm

+
1

αmo

d

do

=
1

αm

+
1

k′
m

(4.54)

and

∆ϑm =
ϑe − ϑi

ln[(ϑG − ϑi)/(ϑG − ϑe)]
, (4.55)

where ϑi is the inlet temperature of the cooling medium in the relevant section,
ϑe is the outlet (exit) temperature and ϑG is the mean vapour temperature.
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Example 4.3: In a tube bundle condenser made up of 200 vertical tubes each with 25 mm
inner diameter, ṀG = 8 kg/s of saturated toluene vapour at a pressure of 0.1 MPa is to
be condensed. The tubes will be cooled from outside by ṀW = 60kg/s of water flowing
countercurrent, fed into the condenser at a temperature of 45 ◦C. The overall heat transfer
coefficient of the cooling water up to the tube wall is k′

m = 2500 W/m2K. Calculate the
required tube length.
The following properties are given: liquid toluene: density �L = 782 kg/m3, specific heat
capacity cpL = 2.015 kJ/kg K, thermal conductivity λL = 0.126 W/K m, dynamic viscosity
ηL = 2.52 · 10−4 kg/sm, Prandtl number Pr = 4.03. Further, for toluene �G � �L, the
enthalpy of vaporization ∆hv = 356 kJ/kg, saturation temperature at 0.1 MPa: ϑs =
383.75K = 110.6 ◦C, critical pressure pcr = 4.11 MPa. The specific heat capacity of the
cooling water is cpW = 4.10 kJ/kg K.
The condenser power is Q̇ = ṀG ∆hv = 8kg/s · 356kJ/kg = 2848kW, the power for
each tube Q̇/200 = 14.24kW. The outlet temperature of the cooling water follows out of
Q̇ = ṀW cpW (ϑWe − ϑWi) to be

ϑWe = ϑWi +
Q̇

ṀW cpW

= 45.0 ◦C +
2848kW

60kg/s · 4.10kJ/kg K
= 56.58 ◦C .

In the calculation of the necessary tube length we will subdivide into four sections with
∆x∗ = 0.25. The condensate side heat transfer coefficient comes from (4.52). In this with
a condensate amount Ṁ = 8(kg/s)/200 = 0.04kg/s per tube, the Reynolds number is

Re =
Ṁ

ηL dπ/4
=

0.04kg/s

2.52 · 10−4 kg/sm · (25 · 10−3) · π/4
= 8084 .

According to (4.52) we get

α =
λL

d
0.023Re0.8 Pr0.4

{
(1 − x∗)0.8 +

3.8 (1 − x∗)0.04 x∗0.76

p+0.38

}
=

0.126W/K m

25 · 10−3 m
· 0.023 · 8 0840.8 · 4.030.4 ·

{
(1 − x∗)0.8 +

3.8 · (1 − x∗)0.04 · x∗0.76

(2.433 · 10−2)0.38

}
,

α = 270.63 (W/m2K)
{
(1 − x∗)0.8 + 15.579 (1 − x∗)0.04 x∗0.76

}
.

In the first section 1.0 ≥ x∗ ≥ 0.75 the mean quality is (1.0 + 0.75)/2 = 0.875. This yields
from the previous equation a mean heat transfer coefficient of

α = αm = 270.63W/m2K
{
(1 − 0.875)0.8 + 15.597 · (1 − 0.875)0.04 · 0.8750.76

}
= 3557W/m2K .

From (4.54), the mean overall heat transfer coefficient of this section is

1

km
=

1

αm
+

1

k′

m

=
1

3557W/m2K
+

1

2500W/m2K

km = km1 = 1468W/m2K .

The heat flow transferred in the first section is 14.24kW/4 = 3.56kW = Q̇1. The cooling
water enters the first section at a temperature of

ϑWi1 = ϑWe − Q̇1

ṀW1 cpW

= 56.58 ◦C − 3.56kW

0.3kg/s · 4.10kJ/kg K
= 53.69 ◦C .
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The logarithmic mean temperature according to (4.55) is

∆ϑm1 =
56.58 − 53.69

ln[(110.6 − 53.69)/(110.6 − 56.58)]
K = 55.4K .

With that, the area of the first section follows from (4.53)

A1 =
Q̇1

km1∆ϑm1
=

3.56 · 103 W

1468W/m2K · 55.4K
= 4.377 · 10−2 m2 .

The associated tube length is

L1 =
A1

dπ
=

4.377 · 10−2 m2

25 · 10−3 m · π = 0.56m .

x∗ x∗

m αm km ϑW ∆ϑm A L

W/m2K W/m2K ◦C ◦C m2 m

1.0 56.58
0.875 3557 1468 55.4 4.377 · 10−2 0.56

0.75 53.69
0.625 2960 1355 58.3 4.507 · 10−2 0.57

0.5 50.80
0.375 2149 1156 61.0 5.05 · 10−2 0.64

0.25 47.90
0.125 1106 768 63.9 7.25 · 10−2 0.92

0.0 45

A corresponding calculation for all the sections yields the values listed in the table. The
total length of the tubes is

∑
L = Ltot = 2.69m ≈ 2.7m.

4.1.7 Dropwise condensation

As we have already explained in section 4.1.1., if the condensate does not com-
pletely wet the wall, individual liquid droplets form instead of a continuous con-
densate film. Heat transfer coefficients in dropwise condensation are significantly
larger than in film condensation. In the condensation of steam, the heat transfer
coefficients measured have been a factor of four to eight times larger. However, it
has been shown that all investigated substances, in particular water, which con-
dense on commonly used heating surfaces, will completely wet the surface. This
is true as long as the material of the heated surface and the liquid have not been
contaminated. This also corresponds to the experience that the formation of a
water film is taken to be an indication that laboratory equipment is well cleaned.
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The type of condensation is chiefly influenced by foreign substances absorbed
on the solid surface. They lead to locally finite values of the contact angle and so
cause incomplete wetting. Foreign substances that come into question are those
added to water as antiwetting agents (injected substances, promoters). Occa-
sionally such foreign substance may be unintentionally present in the vapour, for
example, the lubricating oil from a boiler feed pump, even a small amount dis-
solved in the condensate is sufficient to generate dropwise concentration. The
addition of waxy substances has also been suggested [4.22]. The maintenance of a
stable dropwise condensation requires a constant or periodic feed of the injected
substance, as over the course of time it is removed from the surface by washing or
dissolution in the condensate. The formation of droplets is also influenced by the
roughness of the wall and its height, as well as the heat flux and the temperature
difference.

Thin gold layers applied by electrolysis and noble metal plating of gold,
rhodium, palladium and platinum have all proved to be effective as promoters.
However, as experiments have shown [4.23], these have to be of a certain minimum
thickness, which for gold layers is around 0,2µm, in order to maintain a lasting
dropwise condensation. Although this layer thickness is only half the size of the
wave length of visible light the necessary amount of gold is in no way small. It
amounts to 3,8 g per m2 of heating surface. This means, at a gold price of around
15 000 US-$ per kilo, this would cost about 57 US-$ per m2 of heating surface
for the plating alone. This produces five to seven times better heat transfer for
the condensation of steam, [4.23]. Nevertheless, the high expenditure means that
the gold plating would only be made use of in very special cases, otherwise film
condensation will be preferred.

Even when the type of condensation is not precisely known, film condensation
is assumed for the calculation of condensers, so that the condenser area will be
sufficient.

Experiments on dropwise condensation are difficult as they entail the measurement of tem-
perature differences of 1 K or less for the determination of the heat transfer coefficient. At these
small temperature differences the wall temperature fluctuates with time and also locally. The
cost of the measuring techniques for the achievement of accurate results is, therefore, consider-
able.

The photographs in Fig. 4.16 are a good illustration of dropwise condensation on a vertical
surface. The small droplets grow due to subsequent condensation from the vapour space and
coalescing. As soon as a certain drop size has been reached, the drop rolls downwards and in the
process of this takes the drops lying along its path with it. Behind the rolling drop new drops
appear immediately. They form predominantly on the water left behind and on scratches on the
condensation area. According to experiments by Krischer and Grigull [4.24], the nucleation site
density is mainly dependent on the subcooling of the heating area. Experiments with condensing
steam on copper and brass surfaces, with subcooling of the surface by 0.1 K, yield a nucleation
site density of approximately 3 · 103 nuclei per mm2 of the heating area, whilst with subcooling
of 0.4 K the nucleation site density lay at 15 · 103 nuclei per mm2.

Fig. 4.17 shows the results for heat transfer in dropwise condensation that have been pro-
duced over the last 20 years. Most condensation areas were made of copper. Different liquids
served as promoters; they were spread over the cooling surface. Depending on the promoter
and the material for the condensation surface very different results were found. As we can see,
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Fig. 4.16: Dropwise condensation
on a vertical condensation surface,
according to Krischer and Grigull
[4.24]. a Start of condensation;
b Condensation form after 16 s;
c Condensation form after 32 s.
The traces of the droplets rolling
downwards are clearly recognis-
able. Above, in picture b a drop
is just leaving. q̇ = 0.12W/cm2,
∆ϑ = 0.05K. Diameter of the
condensation surface: 18 mm

individual experimental results for the heat flux vary by as much as a factor of 30 from each
other. Curves 2, 5, and 6 from Wenzel [4.26], Le Fèvre and Rose [4.29] and Tanner et al. [4.30],
have weakly increasing gradients and only deviate slightly from one another. In Fig. 4.18, the
results from [4.30] and [4.32] together with those from Krischer and Grigull [4.24] are drawn
separately.

Several theories on dropwise condensation have been developed for the calculation of heat
transfer. One of the oldest theories, that from Eucken [4.33], starts with the concept that the
first droplets arise from an adsorbed monomolecular condensate layer, this layer is favoured by
nuclei, and that the new condensate flows to the droplets by means of surface diffusion which
primarily occurs at the edge of the drop. This theory was taken on later by other authors [4.34],
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[4.35] and developed further. Other theories presuppose that a thin, unstable water film exists
between the drops, that, once a critical thickness of a few µm has been reached, collapses and
vanishes into the droplets [4.36]. This concept has since been disproved by experiment [4.37],
[4.38].

The idea that agrees best with experiments is that initially tiny drops form at nuclei sites,
at depressions in the condensation surface or on the remnants of liquids. Their growth rate is
determined by the resistance to thermal conduction in the drops and also partly by the thermal
conduction resistances at the phase interface with the vapour. The growth rate is therefore only
dependent on the specific drop radius and the driving temperature difference. This has also been
confirmed by experiment [4.24]. The main reasons behind the lack of success in developing an
explicit theory are that the nucleation site density is unknown, and it is difficult to predict the
radius of the rolling drops, as this depends on the purity and smoothness of the condensation
surface as well as the interfacial tension.

Fig. 4.17: Experimental results for drop-
wise condensation of water at a condensa-
tion pressure of about 1 bar according to
[4.24]. 1 Hampson and Özisik 1952, graph
for two different promoters [4.25]; 2 Wenzel
1957 [4.26]; 3 Welch and Westwater 1961
[4.27]; 4 Kast 1965, chromium-plated (up-
per line) and plain copper surfaces [4.28]; 5

Le Fèvre and Rose 1965, different promoters
[4.29]; 6 Tanner et al. 1968, different pro-
moters [4.30]; 7 Griffith and Lee 1967, gold-
plated condensation surfaces: upper curve,
copper, middle curve, zinc and lower curve,
steel [4.31]

Fig. 4.18: Experimental results at around
0.03 bar condensation pressure, according
to [4.24]. Dotted lines: interpolated values
8 from measurements by Tanner et al. [4.30]
a) Promoter “Montan wax” and b) Pro-
moter “Dioctadecyldisulfide”; 9 Measure-
ments from Brown and Thomas [4.32]
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4.1.8 Condensation of vapour mixtures

In the process industry, vapour mixtures are frequently liquified with all the com-
ponents being present in the liquid phase. Alternatively, the vapour mixture may
contain inert gases that do not condense. The influence of this type of mixture
on the heat transfer in condensation has already been dealt with in section 4.1.4.
Therefore, the variation in the heat transfer for a condensate that contains all the
components, in larger or smaller amounts, still has to be discussed.

Depending on the purpose for the application the vapour can either be com-
pletely or only partially condensed so that the vapour leaving the condenser gen-
erally has a different composition from that entering it. This type of apparatus is
known as a partial condenser or in rectification columns it is called a dephlegmator.
Its purpose is to separate the higher boiling point components from a vapour by
condensation. These apparatus operate with smaller temperature differences be-
tween the vapour and the cooling medium than a condenser, in which the vapour
should be totally condensed.

As the components with the higher boiling points normally condense first
out of a vapour mixture, and the vapour left is lacking in these components, a
concentration profile which varies along the flow direction forms. This decisively
affects the heat transfer.

This suggests, that for the calculation of the heat and mass transfer, it would
be sensible to subdivide the flow path into individual sections, and then solve
the mass and energy balances for each section, taking the laws of heat and mass
transfer into consideration. Calculations of this type for binary mixtures are only
possible with the assistance of a computer. In the discussions presented here we
want to limit ourselves to an explanation of the fundamental physical processes
along with an illustration of the decisive balance equations. As the process of
condensation in multicomponent mixtures with more than two components is
similar to that in binary mixtures, we will limit ourselves to the consideration of
binary mixtures.

When a binary mixture, whose boiling and dew point lines are shown in
Fig. 4.19, condenses on a cooled wall of temperature ϑ0, a condensate forms,
Fig. 4.19b, which is bounded by the vapour. At the phase interface, a tempera-
ture ϑI develops, which lies between the temperature ϑG of the vapour far away
from the wall and the wall temperature ϑ0. If the vapour is saturated, its tem-
perature is ϑG = ϑs corresponding to Fig. 4.19a. The temperature profile in the
vapour and condensate are illustrated in Fig. 4.19c.

In general, at the phase interface the components with the higher boiling points
preferentially change from vapour to condensate. As a result of this the vapour
mixture at the phase interface contains more of the more volatile component than
at a large distance away from it. A concentration profile like that presented in
Fig. 4.19d develops. The concentration of the more volatile component increases
towards the phase interface. At steady-state, the molecules of the more volatile



436 4 Convective heat and mass transfer. Flows with phase change

Fig. 4.19: Temperature-concentration diagram for a binary mixture as well as the temperature
and concentration profiles in the vapour and the condensate. Indices: 0 cold wall, I interface, G
core flow of vapour (G Gas). a boiling and dew point lines; b condensate and vapour boundary
layer; c temperature profile; d concentration profile

component that have not condensed at the condensate surface will be transported
back into the vapour by diffusion. In the condensate the momentum, heat and
mass transfer by convection can be neglected compared to that by conduction
and diffusion, due to the low velocity of the condensate in comparison to that of
the vapour. This applies as long as the Prandtl or Schmidt number is not too
small. In the condensate film Nusselt’s assumptions are once more valid, according
to which the flow is only determined by the frictional and field (gravity) forces,
whilst the temperature profile is mainly determined by heat conduction. The
concentration over a cross section of the condensate film is constant because the
wall does not let any of the material through and convective mass transport in
the liquid film is negligible. This can easily be seen, as the diffusion equation for
these preconditions, known as Fick’s second law, is

∂

∂y

(
D

∂c

∂y

)
= 0 ,

where y is the coordinate perpendicular to the wall, D is the diffusion coefficient
and c = N/V is the concentration of one of the components in a binary mixture.
Integrating this equation, under the boundary conditions(

∂c

∂y

)
y=0

= 0 and c(y = δ) = cI ,

it immediately follows that c = c0 = cI = const. Therefore, we also have the case
illustrated in Fig. 4.19d, x̃ = x̃0 = x̃I = const.
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Fig. 4.20: Condensation in a co- and b countercurrent. In case a the falling liquid contains
more of the more volatile components than in b. In b molecules of the more volatile components
cross into the vapour, because the less volatile components rising up the column condense and
drive out the more volatile molecules.

The concentration profile is decisively influenced by the flow and the type
of flow configuration. In the usual cocurrent flow of vapour and condensate,
presented in Fig. 4.20a, the components with the higher boiling points go prefer-
entially from vapour to condensate. The fraction of the components with lower
boiling points increases downstream in the vapour from the initial composition ỹα

to the final composition ỹω. The amount of condensate at the inlet is large, the
result of which is that a great deal of the high boiling point components will be
drawn out of the vapour.

The behaviour in countercurrent flow, Fig. 4.20b, like the flow which exists in
falling film columns or in the reflux condensers in rectification columns, is different.
Here, the vapour, of initial composition ỹα meets a thick condensate film. The
amount of vapour that condenses is smaller, and less of the high boiling point
components are drawn out of the vapour than in the cocurrent case. The rising
vapour comes into contact with an increasingly thinner condensate film of the
falling liquid. The amount of condensate increases and the higher boiling point
components of the vapour condense preferentially. The condensation enthalpy
released causes evaporation of the low boiling point components. This is indicated
by the horizontal arrows in Fig. 4.20b. Mass exchange takes place between the
liquid and vapour by “rectification”, through which the vapour leaving contains
more, and correspondingly the condensate leaving at the bottom fewer, of the more
volatile components, than in the case of cocurrent flow according to Fig. 4.20b.
So, if a condensate rich in the less volatile components is desired, a countercurrent
flow configuration is preferable. This effect was first described by Claude [4.39]
more than 70 years ago. The vapour flowing downstream contains more of the
more volatile components in countercurrent flow than in cocurrent flow. However,
in cocurrent flow the condensate is held up as a result of the shear stress exerted
by the vapour, and with that the heat transfer worsens.

It is obvious that the flow configuration is decisive for mass transfer and there-
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Fig. 4.21: Reduction of the heat flow rate in the condensation of methanol/water. a relative
heat flux q̇/q̇0 as a function of the temperature ϑ∞; b boiling diagram

fore also for heat transfer. In general it holds that due to the concentration field
at the phase interface, a resistance to mass transfer develops that hinders the
mass flow towards the phase interface. As a result of this, the heat transfer in
condensing vapour mixtures is lower than that in pure vapours, for the same tem-
perature drop. This reduction can assume considerable values. As an example of
this, Fig. 4.21a shows the relative heat flux q̇/q̇0 plotted against the temperature
ϑ∞, which in this case shall be equal to the saturation temperature along the dew
point line. As we can see, the heat flux q̇ transferred is significantly smaller than
the heat flux q̇0, that would be transferred if no resistance to mass transfer in
the vapour had to be overcome, so that the condensate surface would be at the
saturation temperature ϑ∞. The continuous lines are valid for condensation of
a vapour mixture of methanol (CH3OH) and water (H2O) with negligible grav-
itational effects, i.e. on a horizontal plate or when the vapour velocity is large
enough, and so the Froude number Fr = w2

∞/g x is very large. The dashed lines
are valid for condensation at small Froude numbers, for example on a vertical wall
with free convection of the vapour.

Similarly to Nusselt’s film condensation theory, in the condensation of vapour
mixtures, the heat flux transferred increases with the driving temperature differ-
ence ϑ∞ − ϑ0. According to Nusselt’s film condensation theory, the heat transfer
coefficient decreases with the driving temperature difference according to α ∼
(ϑ∞−ϑ0)

−1/4, (4.12). The heat flux increases in accordance with q̇ ∼ (ϑ∞−ϑ0)
3/4.

Fig. 4.21a shows clearly that a minimum for the transferred heat flux exists at
a certain temperature ϑ∞. This is because the temperature difference ϑI − ϑ0

between the condensate surface and the wall, which is decisive for heat transfer,
also assumes a minimum; this can be explained by the boiling diagram, Fig. 4.21.
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We will presume a sufficiently large temperature difference ϑ∞−ϑ0, such that the
vapour in its initial state A condenses, and a condensate accumulates. This is
indicated by point B in Fig. 4.21b. The temperature ϑI at the phase interface is
then equal to the boiling point of the liquid mixture and the composition of the
accumulated condensate is identical to that of the vapour. This is known as local
total condensation. The wall temperature, which is assumed to be constant, is
characterised by point C. The line BC corresponds to the temperature difference
ϑI−ϑ0 that is decisive for the heat flux q̇. If Nusselt’s film condensation theory was
also valid for vapour mixtures, then q̇ ∼ (ϑI − ϑ0)

3/4. If ϑ∞ − ϑ0 is kept constant
and the temperature ϑ∞, is increased, then by following the curve in Fig. 4.21a,
ϑ∞ − ϑ0 = const in the direction of increasing temperature ϑ∞, then the distance
BC in Fig. 4.21b can once again be measured, if a line parallel to the dewpoint
line is drawn through point C. The distance AC =̂ ϑ∞ − ϑ0 remains, by presump-
tion, unchanged, whilst BC will first be smaller and then larger. The relative heat
flux q̇/q̇0 changes in the same ratio. If, on the other hand, the temperature of
the vapour ϑ∞ is kept constant and the temperature difference ϑ∞ − ϑ0 is made
smaller by raising the wall temperature, the ϑ0-line running through point C in
Fig. 4.21b has to be moved upwards. This means that the values of the heat flux
q̇ and the relative heat flux q̇/q̇0 will be smaller.

4.1.8.1 The temperature at the phase interface

As the previous discussions have shown, the calculation of heat transfer in film
condensation of vapour mixtures requires that the temperature ϑI at the phase
interface is known. Thermodynamic equilibrium exists between liquid and vapour
at the phase interface of a condensate film. The temperature ϑI is easy to calculate
if the accumulated condensate has the same composition as the vapour at every
position. In this case it agrees with respective temperature on the boiling line,
and for example is determined by point B in Fig. 4.21b. In order to reach this
temperature, the wall temperature ϑ0 = ϑC according to Fig. 4.21b, has to lie
sufficiently below the boiling point ϑB. As a general rule, it should be ϑB − ϑC >
2 (ϑA −ϑB). The condensation rate has, according to this, to be adequately large,
which is why we speak of local total condensation. In technical condensers this
condition is satisfied, though there are cases, such as in partial condensation,
where the wall temperature is deliberately chosen to be higher so that the more
volatile component is barely or not present in the condensate. In order to show
how the temperature at the phase interface is found, we will consider a binary
mixture and establish the mass balance at the condensate surface. The mass flow
ṀG of the vapour perpendicular to the phase interface condenses there and ṀL

is removed as condensate. We have

ṀG = ṀL = Ṁ1 .
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For the sake of simplicity we will assume the film theory to be valid, according
to which the velocity and concentration profiles are only dependent on the coordi-
nate y normal to the wall. With this assumption the continuity equation for the
component 1 being considered is

∂Ṁ1

∂y
= 0 ,

where y signifies the coordinate normal to the wall. This equation can, due to
Ṁ1 = M̃1 Ṅ1 with the molar mass M̃1 and the molar flow rate Ṅ1 (SI units mol/s),
also be written as

∂Ṅ1

∂y
= 0 . (4.56)

The mass flow in the gas is made up of the diffusional flow j1 A (SI units of j1:
mol/m2s) and the convective flow ỹ1 Ṅ , where Ṅ is the total molar flow rate and
ỹ = ỹ1 is

Ṅ1 = j1 A + ỹ Ṅ . (4.57)

According to Fick’s law, we obtain

j1 = −D c
∂ỹ

∂y
(4.58)

with c = N/V . The coordinate y runs perpendicular to the condensate surface
and points from it into the vapour space. With (4.58), equation (4.57), after
division by Ṅ , can also be written as

Ṅ

A
=

j1

Ṅ1/Ṅ − ỹ
= −D c

∂ỹ/∂y

Ṅ1/Ṅ − ỹ
. (4.59)

As the molar flux of each of the two components is independent of the position
coordinate y, the total molar flux Ṅ/A and likewise the quotient Ṅ1/Ṅ are also
independent of y. Therefore (4.59) can be integrated easily. The integration
extends from the condensate surface (index I) to the vapour space (index G). The
thickness of the vapour boundary layer will be δ. We assume constant values for
the pressure and temperature. Under the assumption that the gas phase exhibits
ideal behaviour, the diffusion coefficient and the molar concentration c = N/V =
p/(Rm T ) are likewise independent of the coordinate y. The integration yields

Ṅ

A
δ = D c ln

Ṅ1/Ṅ − ỹG

Ṅ1/Ṅ − ỹI

and after the introduction of the mass transfer coefficient βG = D/δ

Ṅ

A
= ṅ = βG c ln

Ṅ1/Ṅ − ỹG

Ṅ1/Ṅ − ỹI

. (4.60)
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This result can also be obtained from (1.192) of film theory, that was derived
earlier, if we apply it to the vapour phase and solve for ṅ.

In (4.60) the molar flow rate at the phase interface I is given by Ṅ1/A =
(c1 w1)G = (c1 w1)L and Ṅ/A = (c u)G = (c u)L, where u is the molar average
velocity according to (1.157). With that the ratio is Ṅ1/Ṅ = (c1 w1)L/(c u)L. As
no diffusion takes place in the liquid phase, we have according to (1.158) w1 = u,
and as a result of this it also holds that Ṅ1/Ṅ = c1/c = n1/n = x̃1. This value is
to be taken at the phase interface, so that we can write

Ṅ1

Ṅ
= x̃1I = x̃I .

If a vapour condenses out of a mixture with an inert gas, then x̃I = 1 and from
(4.60) the known equation (4.31) is obtained.

As the quotient (x̃I − ỹG)/(x̃I − ỹI) in (4.60) is smaller than one, the molar
flux will be negative. The mass flow of the condensing vapour is in the opposite
direction to the surface coordinate y chosen by us. As we are only interested in
the absolute size of the mass flux, we can write

|ṅ| = βG c ln
ỹI − x̃I

ỹG − x̃I

. (4.61)

(4.61) contains two limiting cases:
a) In local total condensation the composition of the liquid is identical to that

of the vapour x̃I = ỹG. This gives |ṅ| → ∞ for the molar flux of the vapour
flowing towards the condensate surface. In order to achieve local total
condensation, the wall temperature has to be far enough below the boiling
point of all the components, so that they all condense and the condensate
has the same composition as the vapour.

b) For vanishingly small molar flux of the existing condensate |ṅ| → 0, accord-
ing to (4.61) the vapour composition is ỹG = ỹI. Hardly any condensate
forms, the result of which is that no concentration profile develops in the
vapour space.

Both limiting cases are presented in Fig. 4.22. Actual condensation rates lie
between the two extremes.

The temperature ϑI at the phase interface lies, as can be seen in Fig. 4.22,
between the temperature on the dew point line (case b) and the temperature on
the boiling line (case a). The associated vapour and liquid compositions can be
read off the abcissa, points A and B in Fig. 4.22.

For the calculation of the temperature ϑI at the phase interface, the energy
equation at the condensate surface is required as a further balance equation

q̇L = q̇G + |ṅ|∆h̃v , (4.62)

where q̇L is the heat flux removed from the condensate by convection, q̇G is the
heat flux fed to the condensate from the vapour by convection and ∆h̃v is the
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Fig. 4.22: Limiting cases in condensation Fig. 4.23: Mole fractions and tem-
perature at the condensate surface

molar enthalpy of vaporization of the mixture. We have

q̇L = αL (ϑI − ϑ0) . (4.63)

On the other hand, this heat flux is also transferred through the wall to the cooling
medium, which is at a temperature of ϑc. The overall heat transfer coefficient
between the wall and the cooling medium is k′. Then

q̇L = k′ (ϑ0 − ϑc) . (4.64)

Using (4.63), ϑ0 can be eliminated, giving

q̇L =
αL

(αL/k′) + 1
(ϑI − ϑc) . (4.65)

In the case of a very large overall heat transfer coefficient k′ → ∞ the wall
temperature ϑ0 is constant and equal to the temperature ϑc of the cooling medium.

The heat flux transferred from the vapour to the condensate surface is

q̇G = α•
G (ϑG − ϑI) . (4.66)

It contains the fraction for the heat transfer at the phase interface due to the
temperature drop ϑG−ϑI and the fraction for the energy transported through the
vapour to the condensate surface.

If the heat flux q̇G from (4.66) together with the heat flux q̇L from (4.65),
are inserted into the energy balance (4.62), and, noting that the molar flux of
the condensate is given by (4.61), then the following is obtained for the energy
balance

αL

(αL/k′) + 1
(ϑI − ϑK) = α•

G (ϑG − ϑI) + βG c ln
ỹI − x̃I

ỹG − x̃I

∆h̃v . (4.67)
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The unknown temperature ϑI can be calculated from this equation. However, it
still has to be considered that the mole fractions x̃I, ỹI depend on the temperature
ϑI, as Fig. 4.23 indicates for a binary mixture.

In addition to this the heat transfer coefficient αL is dependent on the temper-
ature ϑI. As free convection frequently occurs in the vapour, the term α•

G (ϑG−ϑI)
can often not be neglected, but can be of the same magnitude as the other ex-
pressions in (4.67), in particular when the temperature at the phase interface ϑI

is close to the wall temperature. This means that the driving temperature drop
ϑI − ϑ0 will be small in the condensate, whilst in contrast, that in the vapour
ϑG − ϑI will be large. The practical calculation of the temperature ϑI at the con-
densate surface is time consuming and, even in the case discussed here for a binary
mixture, cannot be easily carried out without a computer.

4.1.8.2 The material and energy balance for the vapour

In the calculation of the temperature ϑI at the phase interface, the area A of
the condenser is subdivided into sections ∆A. Each section is assigned unified
(mean) values for the temperatures ϑI, ϑG and the composition ỹG. With help
from (4.67) the temperature ϑI can be obtained for given values of ϑG, ỹG. In
order to calculate the values ϑG, ỹG of any section from the values for the previous
section, the material and energy balances have to be solved.

In setting up the material balance we will consider a section of area dA, as
shown on the right hand side of Fig. 4.24. The material balance for the more
volatile component is

ṄG ỹG = (ṄG + dṄG) (ỹG + dỹG) + dṄ x̃I .

The mole fraction ỹG of the more volatile components here is, like in (4.67),
an integral mean value over a cross section of the vapour space. From the last
relationship with dṄ = − dṄG the so-called Rayleigh equation is obtained

dṄG

ṄG

=
− dỹG

ỹG − x̃I

. (4.68)

After integration between cross sections 1 and 2, Fig. 4.24 left, this delivers the

Fig. 4.24: Material balance
in a section of a condenser
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expression

ln
ṄG1

ṄG2

=

ỹG2∫
ỹG1

dỹG

ỹG − x̃I

,

from which the accumulated condensate in the section of area ∆A is calculated

|ṅ|∆A = ṄG1 − ṄG2 = ṄG1

⎛⎜⎝1 − exp

⎛⎜⎝− ỹG2∫
ỹG1

dỹG

ỹG − x̃I

⎞⎟⎠
⎞⎟⎠ . (4.69)

Once the temperature ϑI at the phase interface has been found using (4.67), the
molar condensate flow according to (4.61) is also known. Then, from (4.69), the
mole fraction ỹG2 of the vapour in the next section ∆A can be calculated.

The energy balance for the area shown in Fig. 4.25 is

ṄG h̃G = (ṄG + dṄG) (h̃G + dh̃G) + dṄ h̃GI
+ q̇G dA .

With dṄ = − dṄG, it follows that

0 = − dṄ (h̃G − h̃GI) + ṄG dh̃G + q̇G dA .

Now, we have d|Ṅ | = |ṅ| dA with |ṅ| according to (4.61). This yields

−ṄG dh̃G = |ṅ| (h̃G − h̃GI) dA + q̇G dA (4.70)

with dh̃G = c̃pG dϑG, h̃G − h̃GI = c̃pG (ϑG − ϑI) and q̇G = α•
G (ϑG − ϑI). This

equation cannot be integrated analytically, as the enthalpies h̃G and h̃GI depend
on the varying temperature and the mole fraction along the flow path. As long as
the section of area ∆A is not chosen to be too large, a good approach is to work
with forwards differences. Then

−ṄG1 (h̃G2 − h̃G1) = |ṅ| (h̃G1 − h̃GI) ∆A + q̇G ∆A . (4.71)

The enthalpy h̃G2 of the following section is obtained from this relationship,
and with that also its temperature, because we have

h̃G = h̃01(ϑG) ỹG + h̃02(ϑG) (1 − ỹG) and

h̃GI = h̃01(ϑI) ỹI + h̃02(ϑI) (1 − ỹI) , (4.72)

Fig. 4.25: Energy balance in
a section of a condenser
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where h̃01 and h̃02 are the temperature dependent molar enthalpies of the pure
substances 1 and 2. As we have assumed the gas phase as ideal, the pressure
dependence of the enthalpy is not considered. In (4.71) the heat flux released by
the gas phase is q̇G = α•

G (ϑG − ϑI) the heat transfer coefficient α•
G of the gas at

the phase interface is different from that for a vapour flow without condensation,
αG. According to (4.32) it is

α•
G = αG ζG ,

in which the correction factor ζ is given by the “Ackermann correction” (4.33).

4.1.8.3 Calculating the size of a condenser

The practical calculation for binary mixtures, based on the equations presented,
is now possible in various ways. The following procedure is recommended

– Take a section of area ∆A and estimate the temperature ϑI at the surface
of the condensate in this section. It is ϑG < ϑI < ϑc, where ϑG is the
temperature of the vapour and ϑc is that of the cooling medium. With
this estimate of ϑI the mole fractions x̃I and ỹI at the condesate surface are
fixed based on the phase equilibrium.

– Estimate the change ∆ỹG in the vapour composition in the relevant section
and approximate

ỹG = (ỹG1 + ỹG2)/2 with ỹG2 = ỹG1 + ∆ỹG ,

where ỹG1 is the vapour composition in the inlet cross section 1 and ỹG2 is
that in the outlet 2 of the section being considered.

– With these estimated values the vapour side heat transfer coefficient α•
G and

the mass transfer coefficient βG can be calculated. Just as the heat transfer
coefficient αL of the condensate film is also known, which in laminar film
condensation is yielded from Nusselt’s film condensation theory (4.39), and
for turbulent film condensation from (4.41). From (4.67) the temperature
ϑI at the condensate surface can be determined. If this does not agree
with the estimate, then a new estimate of the temperature ϑI has to be
made, until the calculated and estimated values agree with each other to a
sufficient degree of accuracy.

– In the next step the accumulated flow of the condensate |ṅ| is calculated
using (4.69). If this agrees with the value found from (4.61), then the initial
estimate with respect to the change ỹG in the composition of the vapour
was correct. If this does not occur the calculation has to be repeated until
the estimate and calculated value agree with each other.

– Once all these steps have been carried out the temperatures and the com-
position in the following segment can be investigated.

– As long as the vapour is superheated, ϑG > ϑD, (ϑD is the dew point), as
shown in Fig. 4.26, it is advisable to calculate the vapour temperature in
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Fig. 4.26: Temperatures ϑG, ϑI

and composition ỹG, ỹI, x̃I along
a condenser. e = inlet, a = outlet
state of the vapour

the following section using (4.71) and then go through the steps explained
above to find the other quantities. If the vapour is cooled to the dew point
ϑD, the energy equation (4.71) no longer has to be solved, because the
vapour temperature ϑG = ϑD, as is apparent in Fig. 4.26, is only dependent
on the mole fraction ỹG.

How the vapour temperature ϑG the mole fractions ỹG, ỹI, and the temperature
ϑI can vary along the condenser is illustrated schematically in Fig. 4.26.

4.1.9 Some empirical equations

In the following the equations introduced previously are summarised and supple-
mented by further equations.

1. Laminar film condensation on vertical or inclined plates, and on
the inside or outside of a vertical tube.
According to Nusselt’s film condensation theory, from (4.13a), under the
assumption �G 	 �L, the heat transfer coefficient follows as

Num =
αm

λL

(
ν2

L

g

)1/3

= 0.925

(
Ṁ/b

ηL

)−1/3

= 0.925Re−1/3 .

The local heat transfer coefficient is α = 3αm/4.
If the wall is inclined at an angle γ to the vertical then the acceleration due
to gravity g has to be replaced by its component parallel to the wall g cos γ
with 0 ≤ γ ≤ π/2. The equation also holds for condensation of quiescent
vapours on the inside or outside of a vertical tube, if the diameter of the
tube is large in comparison to the film thickness. The width b has to be
replaced by b = π d. If a deviation of 1 % from the values from Nusselt’s
film condensation theory is permitted, then the equation is valid up to a
Reynolds number

Retrans = 256Pr−0.47 with 1 ≤ Pr ≤ 10 .



4.1 Heat transfer in condensation 447

2. Laminar film condensation on horizontal tubes.
According to (4.15a), with �G 	 �L, the mean heat transfer coefficient is

Num =
αm, hor (ν2

L/g)1/3

λL

= 0.959

(
Ṁ/L

ηL

)−1/3

= 0.959Re−1/3 .

L is the tube length.

3. Turbulent film condensation on vertical or inclined plates and on
the inside or outside of vertical tubes.
The local heat transfer coefficient, for Re ≥ 400 is found from (4.41)

Nu =
α (ν2

L/g)1/3

λL

= 0.0325Re1/4 Pr1/2

with

Re =
Ṁ/b

ηL

=

⎡⎣89 + 0.024Pr1/2

(
Pr

Pr0

)1/4

(Z − 2300)

⎤⎦4/3

and

Z =
cpL (ϑs − ϑ0)

∆hv

1

Pr

x

(ν2
L/g)

1/3
.

4. Transition region between laminar and turbulent film condensa-
tion.
In the transition region 256Pr−0.44 ≤ Retrans ≤ 400 between laminar and
turbulent film condensation, the heat transfer coefficient according to (4.43)
is obtained from

α = 4

√
(f αlam)4 + α4

turb .

The factor f ≈ 1.15 accounts for the wave formation on the laminar con-
densate film.

5. Turbulent film condensation of vapour flowing in tubes.
According to Shah [4.21], (4.52), for the local heat transfer we have

Nu = 0.023Re0.8 Pr0.4

{
(1 − x∗)0.8 +

3.8 (1 − x∗)0.04 x∗0.76

p+0.38

}

with

Nu =
αd

λL

, Re =
wm d

νL

, wm = Ṁ/

(
�L

π d2

4

)
, Pr =

νL

aL

and p+ =
p

pcr

.

The region of validity is

100 ≤ Re ≤ 63 000, 1 ≤ Pr ≤ 13, 0.002 ≤ p+ ≤ 0.44 .

Further details regarding the region of validity can be found on p. 429
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6. Stratified flow in horizontal tubes.
In horizontal tubes, at low flow velocities, the liquid film that develops is
not annular, but stratified. The condensate collects in the lower part of
the tube, whilst the upper walls are wetted by the liquid. Stratified flow
appears if the dimensionless vapour velocity is

w∗
G =

x∗ Ṁ

A [g d �G (�L − �G)]1/2
≤ 1

and if the following holds for the liquid fraction

AL

AG

=
1 − ε

ε
with ε =

AG

A
and A = AG + AL .

1 − ε

ε
≤ 0.5 .

The mean heat transfer coefficient is given by

αm = 0.728 ε

[
�2

L g ∆hv λ3
L

ηL (ϑs − ϑ0)

1

d

]1/4

.

4.2 Heat transfer in boiling

Whilst heat transfer in convection can be described by physical quantities such
as viscosity, density, thermal conductivity, thermal expansion coefficients and by
geometric quantities, in boiling processes additional important variables are those
linked with the phase change. These include the enthalpy of vaporization, the
boiling point, the density of the vapour and the interfacial tension. In addition to
these, the microstructure and the material of the heating surface also play a role.
Due to the multiplicity of variables, it is much more difficult to find equations for
the calculation of heat transfer coefficients than in other heat transfer problems.
An explicit theory is still a long way off because the physical phenomena are too
complex and have not been sufficiently researched.

The cause of this is not only that there are many influencing quantities that
play a role in boiling processes, but also different types of heat transfer depending
on the flow configuration and superheating. These different types of heat transfer
will be considered first, followed by an explanation of the physical fundamentals
of boiling phenomena. The final part of this section will consist of the calculation
of the heat transfer.
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4.2.1 The different types of heat transfer

Depending on the type of boiling, we differentiate between evaporation, nucleate
boiling and convective boiling. We will consider evaporation first.

If a liquid on a heated wall is superheated to a temperature just above the
saturation temperature, no or only a few vapour bubbles form. In a vessel filled
with liquid, that is heated from below, a temperature profile develops, like that
schematically illustrated in Fig. 4.27. A boundary layer forms over the heated
wall which has a temperature of ϑ0. The boundary layer has thickness of the
order of 1mm, with a stark temperature drop, whilst in the core of the liquid the
temperature is almost constant (mean value ϑL) over the height z. At the free
surface the temperature falls, in a thin layer, to the value ϑI, that lies slightly above
the saturation temperature ϑs. The difference ϑI−ϑs was first measured by Prüger
[4.42] for water at 1.01 bar to be around 0.03K, whereas for non-polar liquids like
carbon tetrachloride this values is around 0.001K. As important as this liquid
superheating at the surface is for the kinetic considerations in evaporation, it can
be ignored in technical calculations. In the following, therefore, the temperature
at the vapour forming surface will always be given as the saturation temperature
ϑI = ϑs.

In the thin layer adjacent to the wall the temperature drops steeply, as can
be seen in Fig. 4.27. Conduction is the predominant heat transfer process in this
layer. In the liquid, rising and falling convection streams provide for the transport
of heat. They generate the uniform temperature field in the core of the liquid.
The two boundary layers at the top and bottom are differentiated by the fact that
the free surface can move because of the vapour formation, and so in contrast to
the liquid at the wall, finite velocities parallel to the surface can also appear.

The vaporization at the surface acts as a heat sink, which could be imaginarily
replaced by another process, for example radiation. As the vaporization takes
place at the surface, we speak of “stagnant boiling”. By its nature this process
belongs to the phenomena of convection in closed spaces. Heat transfer coefficients
from the heated surface to the liquid are formed with the driving temperature
difference ϑ0 − ϑL, where ϑ0 is the wall temperature of the heated surface and ϑL

is the liquid temperature. As the liquid temperature ϑL is not known in advance

Fig. 4.27: Temperature pattern in the
liquid during surface evaporation
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and, as explained above, only deviates slightly from the saturation temperature,
it is sensible to form the heat transfer coefficients with the temperature difference
∆ϑ = ϑ0 − ϑs. In stagnant boiling this law of heat transfer is valid in free flow.
Thus we have α = c1∆ϑ1/4 in laminar flow and α = c2∆ϑ1/3 in turbulent flow
over a horizontal plate. As the heat flux is given by q̇ = α∆ϑ, for laminar flow it
holds that

α = c1∆ϑ1/4 or α = c′1 q̇1/5 (4.73)

or in turbulent flow

α = c2 ∆ϑ1/3 or α = c′2 q̇1/4 . (4.74)

If the wall temperature is raised by increasing the heat flow to the wall, above
a certain wall temperature vapour bubbles begin to form. Observations have
shown that these bubbles only appear at certain points on the heated surface.
The number of bubbles increases with the heat being fed to the surface. This
type of heat transfer is known as nucleate boiling.

Fig. 4.28 shows a typical temperature profile over a horizontal plate from mea-
surements by Jakob et al. [4.43] to [4.49], to whom we owe the first fundamental
investigations into this process. In comparison to Fig. 4.27 it is immediately ap-
parent that the temperature difference ϑ0 − ϑL is larger, and ϑL − ϑs is smaller
now. The motion of the bubbles at the surface does not allow exact measurement
of the boundary layer. The heat transfer coefficient is formed, in the same way as
for stagnant boiling, with the temperature difference ∆ϑ = ϑ0−ϑs. Heat transfer
is much better than in stagnant boiling and is approximately proportional to the
cube of the temperature difference ∆ϑ. If we consider that the heat flux trans-
ferred is given by q̇ = α∆ϑ, then in the nucleate boiling region, it is approximately
valid that

α = c3 ∆ϑ3 or α = c′3 q̇3/4 . (4.75)

Fig. 4.28: Temperature profile over
a horizontal heated surface, from
Jakob and Linke [4.46]. Heat flux
q̇ = 22440W/m2 , temperature of
heated surface ϑ0 = 109.1 ◦C

Fig. 4.29: Heat transfer in boiling water at 100 ◦C
on a horizontal heated surface, according to Jakob
et al. [4.43], [4.45]. Curve a stagnant boiling region,
curve b nucleate boiling region
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If α(q̇) from (4.73) or (4.74) and (4.75) are graphically illustrated, two straight
lines are produced, if the ordinate and abcissa have logarithmic scales. Two
clearly separate areas are obtained, one for stagnant the other for nucleate boiling,
as shown in Fig. 4.29, which reproduces the measured values from Jakob et al.
[4.44], [4.45].

In industrial apparatus boiling normally takes place in forced convection. The
flow behaviour is largely determined by the pressure difference along the heated
surface. The vapour content increases constantly along the flow path until com-
plete vaporization sets in. Correspondingly, the decreasing amount of liquid yields
various boiling phenomena, upon whose heat transfer properties the local boiling
temperature is dependent. In general, a subcooled liquid enters a heating channel.
The vapour bubbles formed at the wall condense back into the core of the liquid.
If the core liquid is heated to the saturation temperature then nucleate boiling
predominates. The heat transfer coefficient will be principally determined by the
heat flux. In forced flow it only has a slight dependence on the mass flux, and
in free flow it is virtually independent of the mass flux. The individual vapour
bubbles coalesce into large bubbles, forming slug flow, as shown by Fig. 4.30.

With increasing vapour content, the large bubbles grow together such that a
semi-annular flow develops, and subsequently a liquid film forms at the tube wall
with vapour and liquid drops in the core. This is known as annular flow. As more
heat is added to the tube the liquid film disappears downstream, leaving a vapour
containing liquid droplets, so-called spray flow, flowing through the tube. Fig.
4.30 shows these flow patterns in a vertical tube. More complicated flow patterns
exist in horizontal or inclined tubes. Bubble, slug, semi-annular and annular flows
represent different forms of convective boiling.

In practice annular or at very low flow velocities, slug flow frequently occur.
Bubble flow only appears at very low vapour contents and high flow velocities.
Increasing pressure and with that a decreasing density difference between vapour
and liquid extends the bubble flow region.

Whilst in nucleate boiling the heat transfer coefficient is chiefly dependent on
the heat flux q̇ and is barely dependent on the flow velocity, curve b in Fig. 4.29,
in convective boiling the heat transfer is determined by the flow velocity or the
mass flux ṁ, with the heat flux having vitually no influence. This is shown by Fig.
4.31, in which the nucleate boiling and convective boiling regions are distinctly
separate from each other.

A further independent variable is the quality x∗ = ṀG/Ṁ . With increasing
quality, the curves for convective boiling in Fig. 4.31 are shifted to larger heat
transfer coefficients α.

The fundamental dependence of the heat transfer coefficients on the quality
is illustrated in Fig. 4.32. In regions of low quality x∗ nucleate boiling occurs
and the heat transfer coefficient is principally dependent on the heat flux. The
quality increases downstream, and with that the flow velocity also increases. The
heat fed into the system is mainly transferred by convection from the tube wall to
the vapour-liquid flow. A conversion from nucleate boiling to convective boiling



452 4 Convective heat and mass transfer. Flows with phase change

Fig. 4.30: Flow patterns in a vertical,
heated tube

Fig. 4.32: Trends of the heat transfer coefficient for
a horizontal evaporator tube

Fig. 4.31: Heat transfer coeffi-
cient in nucleate and convective
boiling (qualitative)

occurs, as the arrow on the curves q̇1 and ṁ1 in Fig. 4.32 indicates. In the con-
vective boiling region the local heat transfer coefficient is practically independent
of the heat flux q̇, and depends strongly on the mass flow rate and the quality.
At high quality the heat transfer coefficient decreases because of the low thermal
conductivity of the vapour compared to that of the liquid.

The calculation of the heat transfer coefficient can be carried out using equa-
tions of the form

α = c q̇n ṁs f(x∗) ,

where c depends on the material properties. In the convective boiling region n ≈ 0,
with s lying between 0.6 and 0.8. In nucleate boiling n is approximately 3/4 and
s is around 0.1 to 0.3.
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4.2.2 The formation of vapour bubbles

Heat transfer in boiling is more easily understood when we know how the vapour
bubbles form on the hot surface. The following consists of a discussion of the
formation and growth of vapour bubbles, with a subsequent explanation of the
different types of heat transfer.

The following considerations hold for the equilibrium of a vapour bubble, as-
sumed to be spherical, Fig. 4.33, with the liquid surrounding it. Between the
gaseous bubble (gas = index G) and the surrounding liquid (liquid = index L),
thermal equilibrium exists

ϑG = ϑL = ϑ . (4.76)

If a surface element of the spherical shell is cut out of the vapour bubble, as
depicted in the right hand side of Fig. 4.33, with side lengths r dϕ, the forces
σr dϕ exerted by the surface tension σ (σ is force per unit length) act upon the
edges. The resultant FR of these forces is given by

d2FR = 2σr dϕ2 .

The forces resulting from the gas and liquid pressure are also of influence

pL(r dϕ)2 + d2FR = pG(r dϕ)2 .

From this, the condition of mechanical equilibrium follows

pG = pL + 2σ/r . (4.77)

Finally the condition for equilibrium with respect to mass exchange between the
gaseous and liquid phase also holds. This leads, as was illustrated, for instance,
in [4.50], to

pL = p0 −
�′

�′ − �′′
2σ

r
(4.78)

Fig. 4.33: Mechanical Equilibrium between a spherical vapour bubble and the
liquid surrounding it
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Fig. 4.34: Vapour and liq-
uid pressure between a liq-
uid and a spherical vapour
bubble

or with (4.77) to

pG = p0 −
�′′

�′ − �′′
2σ

r
. (4.79)

Equation (4.78) or (4.79) is known as Thomson’s equation. It produces a relation-
ship between the vapour pressure p0(ϑ) at a flat phase interface, the liquid pressure
pL(ϑ, r) and the vapour pressure pG(ϑ, r) at the surface of a vapour bubble of ra-
dius r. These relationships are illustrated in Fig. 4.34. At a given temperature ϑ,
the vapour pressure pG, corresponding to (4.79), is smaller by

p0 − pG = ∆pG =
�′′ 2σ
∆� r

=
�′′

�′ − �′′
2σ

r
,

than the vapour pressure p0 at the flat phase boundary. As the surface tension σ
is temperature dependent, the curves for the vapour pressure pG and the liquid
pressure pL do not run exactly but only approximately parallel to the vapour
pressure curve p0 at the phase interface.

If, instead of stipulating the boiling temperature ϑ, the pressure p0 of a liquid-
vapour bubble system is given, then the liquid has to be superheated by ∆ϑ =
ϑ − ϑS in comparison to the system with a flat phase boundary, so that a vapour
bubble of radius r is in equilibrium with the liquid, as Fig. 4.34 shows. In addition
it is clear that the required degree of superheating ∆ϑ = ϑ − ϑS is larger, the
smaller the radius r of the vapour bubble is, so for small radii r∗ < r the curves
for the vapour pressure pG(ϑ, r∗) and the liquid pressure pL(ϑ, r∗) in Fig. 4.34 are
shifted further to the right. Conversely, for a given degree of superheating ∆ϑ, a
vapour bubble of definite radius r is in equilibrium with the superheated liquid.
For the approximate calculation of the required superheating, we assume that the
curves p0(ϑ) and pL(ϑ, r) in Fig. 4.34 run parallel. This gives

dpL

dϑ
=

dp0

dϑ
.
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The differential dp0/dϑ is the slope of the vapour pressure curve p0(ϑ). It can be
calculated from the Clausius-Clapeyron equation

dp0

dϑ
=

∆hv�
′′�′

Ts (�′ − �′′)
. (4.80)

On the other hand with (4.78)

dpL

dϑ
∼= p0 − pL

∆ϑ
∼= 1

∆ϑ

�′

�′ − �′′
2σ

r
. (4.81)

From these equations, the bubble radius r is calculated as a function of the su-
perheating ∆ϑ = ϑ − ϑS to be approximately

r ∼= 2σTS

�′′∆hv∆ϑ
. (4.82)

According to this, for a particular degree of liquid superheating ∆ϑ a definite
bubble radius exists, at which the bubble is in equilibrium with the liquid. Bubbles
whose radii are r∗ < r are in equilibrium with the liquid only if the superheating is
∆ϑ∗ > ∆ϑ, as Fig. 4.34 shows. A liquid superheated by ∆ϑ is too cold. Therefore
bubbles that are too small will condense again. Bubbles of radius r∗ > r are in
liquid that is superheated, and they can continue to grow. However, in reality
the residence time of bubbles, in particular those close to the wall, is so small
that equilibrium is never reached and the actual superheating of the fluid is many
times greater than ∆ϑ. A particular critical bubble radius also belongs to this
actual superheating. In boiling water at 1 bar, according to (4.82), the bubble
diameter is 2r ∼= 0.155 mm, based on superheating in the core of the liquid by
0.4K. A bubble of this size is then able to form and can then grow. A bubble of
this type contains around 3 · 1020 water molecules. However it is difficult for so
many molecules with the high energy of vapour molecules to collect coincidentally
at a certain position inside the liquid, form a bubble and then grow. This raises
the question of how vapour bubbles actually form.

Observations have taught us that no bubbles form in a completely pure, care-
fully degassed liquid, unless the liquid is extremely superheated or, for example,
ionising beams are sent through it. Furthermore, over a long time, the bubbles
reappear at the same place on the heated surface, with a varying frequency that
can be approximated to an error function. Obviously this has something to do
with highly active centres that catalyse the transformation from unstable super-
heated liquid to stable vapour. These centres are the remains of gas or vapour in
depressions in the surface that have not been driven out by the liquid, because
even with good wetting ability it cannot completely fill the fine depressions on the
surface. When heat is added the gas or vapour remnants expand until a critical
size is reached that corresponds to the size of a viable bubble. Then a vapour
bubble can grow further as a result of the superheating of the fluid, until finally
the adhesion force becomes smaller than the buoyancy and dynamic forces and the
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bubble detaches itself from the heated surface. After the bubble breaks off, fur-
ther gas or vapour remains enclosed in the depression. This will be cooled by the
cold liquid flowing from the centre of the fluid to the wall, and then subsequently
heated by the addition of heat from the wall. A new nucleus for the growth of a
vapour bubble forms. These considerations explain why the surface structure is
an influential quantity for heat transfer.

Vapour bubbles almost always develop at particularly favourable positions on
solid surfaces or on suspended particles. Therefore, it is generally heterogeneous
nuclei formation that prevails. The homogeneous nuclei formation, with bubbles
formed by “themselves” as a result of the natural fluctuations of the molecules,
plays a very minor role.

4.2.3 Bubble frequency and departure diameter

The bubble formed at the wall grows by vaporization until it reaches a limiting
volume when it detaches itself from the wall and rises. In slow growth this limiting
volume is determined by the equilibrium of buoyancy and surface forces and the
adhesion conditions at the wall. The decisive differential equation for this was
first solved numerically by Bashfort and Adams [4.51]. Based on their solution,
Fritz [4.52] later showed that there is a greatest volume VA for a vapour bubble,
that can be represented in the form

(
VA

b3

)1/3

= f(β0) , (4.83)

where β0 is the contact angle between the bubble and the heated wall. The so-
called Laplace constant serves as a parameter

b =

√
2σ

g (�L − �G)
. (4.84)

If this is formed with the saturation values �′ and �′′ of the densities, then, for
example, for water at 100 ◦C the value b = 3.54 mm is obtained, and for the
refrigerant R134a at 25 ◦C b = 1.18 mm. Some values for air bubbles in a liquid
are presented in Table 4.1. Eq. (4.83) has been confirmed by Fritz and Ende [4.53]

Table 4.1: Laplace constant b for air bubbles in liquids at 20 ◦C

Water Ethanol Mercury

b in mm 3.82 2.26 2.69

and by Kabanow and Frumkin [4.54] from the evaluation of recordings of films,
Fig. 4.35.



4.2 Heat transfer in boiling 457

Fig. 4.35: Detachment volume VA of vapour and gas bubbles over a horizontal heated surface,
according to Fritz and Ende [4.53]. b Laplace constant

From (4.83), for a spherical bubble dA = (6VA/π)1/3, the following is obtained
for the departure diameter

dA = 0.851β0

√
2σ

g (�L − �G)
(4.85)

with the contact angle β0 in radians. According to Fritz [4.52] the contact angles
of vapour bubbles in water at atmospheric pressure lie between 40◦ and 45◦,
and those in refrigerants of halogenated hydrocarbons at around 35◦. Actual
departure diameters deviate somewhat from those according to (4.85), and are
also dependent on the shape of the depressions [4.55] and the superheating of the
wall. The shape of the bubble before it breaks off is additionally influenced by
the intensive evaporation at the heated surface. This produces a bubble shape
like that in Fig. 4.36 a. A “bubble neck” forms between the heated surface and
the part of the bubble away from it. According to Mitrović [4.57], the bubble
breaks off when the bubble neck is completely constricted, Fig. 4.36 b. The total
vapour mass splits into two different sized amounts. A small amount of vapour
remains attached to the heated surface. The larger amount of vapour is found in
the detached bubble. Due to the small radius of curvature at the point at the
bottom of the bubble a high capillary pressure forms which seeks to equalize itself
and in the process of this, provided the bubble is not extremely small, causes
the bubble to oscillate. In the same way a capillary pressure acts on the vapour
remains on the surface. As Mitrović [4.57] showed with an example this can reach
4bar. As a result of this overpressure the vapour remains will be partly or even
completely liquified. In particular with little superheating of the wall the vapour
remains will be condensed to a great extent. Therefore, it takes a long time
until the next bubble forms, whilst with sufficient superheating the next bubble
will develop out of the vapour remains without any waiting time. The breaking
down of the capillary forces causes the peak in Fig. 4.36 b to disappear, and the
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bubble shape shown in Abb. 4.36 c forms with diverging streamlines underneath
the bubble. In the liquid below the bubble an underpressure develops that keeps
the detached bubbles close to the wall for a short time. This underpressure causes
the liquid to be in a metastable state with high superheating. The superheated
liquid can also serve as a nucleus for new bubbles, so that, in addition to the
heterogeneous nucleation on the depressions in the wall, homogeneous nucleation
close to the wall is also possible. This, along with the liquid flow, quickly removes
the underpressure.

These thoughts show that convection is also of influence on the growth and de-
tachment of the bubbles. Previous results for the influence of convection are still
inconsistent, as emerges from the summaries from [4.58] among others. Tokuda
[4.59] proved in a theoretical study that the growth of the bubble is only deter-
mined by heat conduction immediately following its formation, after that, with
increasing bubble size the radial convection will be decisive. After the break off
of the bubble, heat conduction and radial and axial convection all influence the
bubble growth.

Equations for the calculation of the frequency f of vapour bubbles of departure
diameter dA, originally started with the assumption that fdA = const, where the
constants for water and carbon tetrachloride were found to be 100mm/s [4.60].
The constants were later expressed in terms of the physical properties of the
boiling liquid,

fdA = 0.59

(
gσ (�′ − �′′)

�′2

)1/4

,

whilst other authors, [4.61] to [4.63], suggested equations of the form fdn
A = const

with n = 1/2. More accurate investigations, [4.64], have, however, shown that the
exponent n is not constant but assumes values between 0.5 and 2.

Under the assumption that at the moment of detachment the bubbles do

Fig. 4.36: Detachment process, according to Mitrović [4.57]. a Shape of the attached bubble; b

constriction and break off of the bubble; c condensation of the remaining vapour and the liquid
flow
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not accelerate and their velocity is the same as their rising velocity in the fluid,
Malenkov [4.65] found the following expression for the frequency

f =
1

dAπ

[
dAg (�′ − �′′)
2(�′ + �′′)

+
2σ

dA(�′ + �′′)

]1/2

, (4.86)

which can be simplified for regions well below the critical pressure, with �′ � �′′,
to

f =
g1/2

d
1/2
A π

√
2

(
1 +

4σ

d2
A�′g

)1/2

. (4.87)

These equations are only valid if the heat flux is so small that the bubbles do not
noticeably influence each other. In any other case, the frequency increases by a
heat flux dependent factor of

1 +
q̇

�′′∆hv w
,

where

w =

[
dAg (�′ − �′′)
2(�′ + �′′)

+
2σ

dA(�′ + �′′)

]1/2

is a velocity. The frequency is obtained to be

f =
1

dAπ

(
1 +

q̇

�′′∆hvw

)
w , (4.88)

an equation in which the velocity w can be simplified, if �′ � �′′. In the limiting
case of sufficiently small heat flux, this relationship transforms into the equation
given above for single bubbles. These equations from Malenkov have been checked
by numerous measurements by different authors and have shown good agreement.

As can be seen in (4.86), for large departure diameters, the second term in the

square brackets is small, then we have fd
1/2
A = const. If, however the departure

diameter is sufficiently small the second sum in the square brackets will be large,
giving fd

3/2
A = const. In a middle region of the departure diameter the expression

in the square brackets is independent of the departure diameter, and with that
fdA = const. The equations contain the relationships, ascertained by different
authors, between the frequency and the departure diameter.

According to (4.88) the bubble frequency increases with heat flux. The size of
the nucleation site is also definitely of influence. Nucleation sites of small opening
diameters release bubbles at a higher frequency than nucleation sites with larger
opening diameters. The equations above do not take this effect into account,
but reproduce mean values over nucleation sites of different sizes. Likewise, the
influence of subcooling is also not considered. Increased subcooling produces
bubbles less frequently because the bubble growth is hindered by condensation.
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4.2.4 Boiling in free flow. The Nukijama curve

We will now consider boiling in free flow, and in this we will assume that the
dimensions of the vessel in which the vapour is present are large in comparison to
the vapour bubbles. The flow is a result of the buoyancy of the generated bubbles
and of the density differences. For simplification we speak of pool boiling. The two
phase flow in a narrow evaporator tube, even when it is caused by the buoyancy
of the vapour bubbles in a horizontal tube, shall not be investigated. As was
already explained in section 4.2.1, at small superheating of the wall “stagnant
boiling” develops. Heat is only transferred by free convection, curve a in Fig.
4.29. Nucleate boiling sets in only after a certain degree of superheating of the
wall compared to the boiling temperature. We will look at the more frequent
case where the liquid is at the saturation temperature. The driving temperature
difference for heat transfer is ϑ0 − ϑs = ∆ϑ between the wall and the saturation
temperature. Jakob and Linke [4.66] were the first to discover that the heat
flux transferred in fully developed nucleate boiling, curve b in Fig. 4.29, can be
described by simple empirical equations of the form

q̇ = c′∆ϑm . (4.89)

If the heat transfer coefficient is defined by

α = q̇/∆ϑ , (4.90)

then (4.89) can also be written as

α = c q̇n , (4.91)

with c = (c′)1/m and n = (m − 1)/m. In this equation, as many measurements
show, the quantity n and therefore also m principally depend on the type of boiling
liquid, but also on the material, structure and shape of the heated surface and
the pressure. In general

0.6 < n < 0.8 .

Lower values n ≈ 0.5 have only been found for substances with low boiling
points, such as helium. The quanitity c is strongly dependent on the material
properties of the boiling liquid and the structure of the heating surface. If, for
example, c is known for a particular liquid that boils at a given pressure on a
flat, polished, steel tube, then the heat transfer coefficient calculated with this
quantity may not be used if the same liquid was boiling on a rough steel tube or
a copper tube.

Equation (4.89) or (4.91) is only valid in regions of intensive nucleate boiling.
However, as Nukijama [4.67] was the first to show there are further regions of
vaporization. Fig. 4.37 illustrates the individual regions that appear in boiling
water at atmospheric pressure and in free flow. The heat flux q̇ is plotted against
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Fig. 4.37: (q̇,∆ϑ) diagram for
boiling water

the temperature difference ∆ϑ = ϑ0−ϑs. The rising left hand branch of the curve
indicates the region of fully developed nucleate boiling. The heat flux increases
with rising temperature. Once a maximum has been reached the transferred heat
flux decreases again despite the rising temperature. This falling region of the
“boiling line” is known as partial film boiling, because the heated surface is partly
covered by vapour. A minimum heat flux is passed and once again the heat flux
starts to increase with the wall temperature. This region on the right hand end
of the boiling line is designated as film boiling, because there the heated surface
is completely covered by a vapour film.

The N -shaped curve, also called the Nukijama curve, which at first glance
seems rather strange, is physically plausible: With increasing wall temperature
more vapour bubbles form at the heated wall, which set the liquid close to the wall
into motion. The result of this is that bubble formation promotes heat transfer
from the wall to the liquid.

Because the vapour insulates the wall from the liquid, the heat transfer will be
hindered the greater the amount of vapour present. It is easy to imagine that with
increasing wall temperature the insulating effect of the vapour dominates and so
despite the rising temperature the heat flux decreases. Once a sufficiently high
wall temperature has been attained the heat flux will begin to increase again, as
the thickness of the vapour film only increases slightly with the wall temperature.
The maximum on the boiling line is frequently called the critical or maximum heat
flux. Useful, but less appropriate designations are burnout or DNB (departure
from nucleate boiling).

4.2.5 Stability during boiling in free flow

If the wall temperature of the heated surface is raised above the value associated
with the maximum heat flux, the wall is suddenly covered by a vapour film. Within
fractions of a second the temperature of the wall sharply increases and can even
reach the melting temperature of the wall. An example of this is illustrated in
Figs. 4.38 and 4.39. Fig. 4.38 shows nucleate boiling of the refrigerant R11 on a
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horizontal copper tube that has been electrically heated with a heat flux of around
2·105 W/m2. This heat flux is only slightly less than the maximum. After a minor
increase in the heat flux, the temperature rises so far that the tube melts through.
This is clearly recognisable in parts of the tube shown in Fig. 4.39.

Fig. 4.38: Electrically heated cop-
per tube immediately before the max-
imum heat flux is reached. Heat flux
q̇max = 2.2 · 105 W/m2. Boiling R11,
p = 0.1MPa

Fig. 4.39: Electrically heated tube
from Fig. 4.38 at the moment of melting
(burnout)

In order to prevent this phenomenon, to be avoided above all in nuclear reac-
tors, a sufficiently large “safety margin” should be maintained from the maximum
heat flux. Obviously not all of the states along the boiling line illustrated in Fig.
4.37 are stable, rather under certain conditions instabilities can occur.
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In the following we will explain these instability phenomena. The boiling line,
like that in Fig. 4.37, represents all pairs of values (q̇,∆ϑ) that are possible in
the steady-state operation of a boiler. Of these pairs of values only quite specific
ones come into question as operating points of the evaporator. Similarly to the
way the operating point of a compressor is determined by the compressor and
tube operating lines, the operating point of a boiler is determined by the boiling
curve and the operating line of the boiler. When the material properties of the
heated surface are presumed to be independent of temperature, the operating line
of the boiler is a straight line in a (q̇,∆ϑ)-diagram. This can be explained with
the example of a flat wall, Fig. 4.40.

Using the notation in Fig. 4.40, the heat flux transferred from the wall is

q̇ =
1

RW

(ϑL − ϑ0) (4.92)

with the thermal resistance

RW =
1

αi

+
s

λ
, (4.93)

where αi is the heat transfer coefficient between the heating fluid and the wall, s
is the wall thickness and λ is the thermal conductivity of the wall. (4.92) can also
be written as

q̇ =
−1

RW

(ϑ0 − ϑs) +
1

RW

(ϑL − ϑs) . (4.94)

If additional internal energy is generated in the wall, from nuclear fission or

Fig. 4.40: Heat transfer in a
boiling liquid

electrical dissipation, then the heat flux released increases by q̇0, and we obtain

q̇ =
−1

RW

(ϑ0 − ϑs) +
1

RW

(ϑL − ϑs) + q̇0 . (4.95)

The operating line being sought is given by this equation. Its graphical presen-
tation is a straight line in a (q̇,∆ϑ)-diagram. All pairs of values (q̇,∆ϑ) that are
possible in the steady-state operation of the evaporator have to lie along this line.
As (4.95) corresponds, in terms of its structure, to Ohm’s law, the operating line
is called the “resistance line”. Due to its negative slope −1/RW, the heat flux
released by the heated surface decreases with rising wall temperature ϑ0. This
surprising result is understandable if we consider that with increasing wall tem-
perature ϑ0, the difference between wall temperature ϑ0 and fluid temperature ϑL

becomes smaller, and so the heat flux decreases.
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The operating point of the boiler is the point at which the boiling and resis-
tance lines meet. As Fig. 4.41 shows, the two curves can have one intersection and
one contact point or three intersection points in common. These are the possible
operating points of the evaporator. The stability consideration [4.68], which will
not derived here, shows that the operating point is only stable if the gradient of
the boiling line at that point is greater than the gradient of the resistance line.
The following statement for the N -shaped curve has the same meaning: When
three intersection points exist only the two outer ones are stable whilst the middle
point characterises an unstable state. If only one intersection point occurs this is
always stable. These explanations make the so-called burnout phenomenon easier

Fig. 4.41: Operating point of a
boiler

to understand. If the resistance line for nuclear energy generation or electrical
resistance heating is drawn in a (q̇, ϑ)-diagram the boiling and resistance lines
have three intersection points close to the maximum in common, Fig. 4.42, of
which points 1 and 2 are very close to each other. A small disturbance is suffi-
cient to transform the system from the stable state 1 into the unstable state 2.
Then because of the inertia of the system it will move further to point 3 where a
new stable state is attained. In most systems, this new steady-state is associated
with a wall temperature that is larger than the melting temperature of the heated
surface, so it will melt before a stable state is reached. In order to prevent this
somewhat undesirable event, the resistance line has to be chosen so steep such
that it does not intersect the boiling line a second time near the maximum. This
procedure is clearly illustrated by curve a in Fig. 4.42. A steep resistance line is
yielded, in accordance with (4.93) and (4.94), if αi is chosen to be large and the
thermal resistance of the wall is small. This also allows a stable operating point
at the maximum heat flux to be realised.

Fig. 4.42: Stability at maximum
heat flux
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4.2.6 Calculation of heat transfer coefficients for boiling
in free flow

Current known models for heat transfer in boiling only partially describe the pro-
cess and so do not lead to a complete theory. Obviously, heat transfer in nucleate
boiling is so complex that several exchange mechanisms are active simultaneously.
Depending on the conditions present, the heat flux, pressure, wetting, forced con-
vection, subcooling, etc., one or more of the mechanisms will dominate. This is
probably a good explanation for the fact that the theories presented up until now
agree with measured values in certain regions for particular substances, but fail
for other regions and materials.

Basically, it has been ascertained that the current models contain one or more
of the following mechanisms for heat transfer:

1. Microconvection in the boundary layer adjacent to the wall as a result of
the rapid growth of the vapour bubble and its collapse in the subcooled
liquid.

2. Displacement of hot liquid from the wall by the growing and detaching
vapour bubbles, and the back-flow of cold liquid from the core to the wall.

3. Transient heat conduction to the liquid transported in the wake of a bubble.
4. Transient heat conduction in the liquid adjacent to the wall during the

growth of a bubble in its vicinity.
5. Vapour formation from the thin, superheated liquid layer under the growing

bubble. If the core liquid is subcooled then vapour will simultaneously
condense at the top of the bubble.

It is not uncommon for the heat transfer coefficients calculated according to the
different equations, to deviate by up to a factor of 2 from the experimental values.
However these deviations cannot be purely traced back to shortcomings in the
theory, but can also be partly explained by experimental errors and inaccurate
material property data. Moreover, the departure diameter of the bubbles, the
contact angle and the bubble frequency at fixed external conditions are not, as is
often assumed, constant but are subject to statistical fluctuations. It is not yet
clear how these fluctuations have to be taken into consideration in the theory. It
is also disadvantageous that, with a few exceptions, in the equations the structure
of the heating surface is disregarded, although it has been known for some time
that heat transfer in nucleate boiling is noticeably better on rough than on smooth
surfaces.

In order to find an equation with a wide application range, it is expedient to
combine the decisive properties for heat transfer into dimensionless groups. For
the general law of heat transfer it is advisable to choose an exponential equation
in these quantities, because equations of this nature have proven themselves for
the representation of heat transfer.

Regression analysis represents an effective tool for establishing a relationship
between the Nusselt number and the other dimensionless variables. This analysis
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allows us to decide which of the characteristic quantities are important in heat
transfer and which are less meaningful. Stephan and Abdelsalam [4.69] have
critically examined around 5000 known data for heat transfer in nucleate boiling
and established empirical correlations using this method. Regression analysis
showed that some dimensionless quantities are important for some substances,
but are meaningless for others. The data could best be reproduced when the
substances were split into four groups (hydrocarbons, cryogenic fluids, refrigerants
and water) and a different set of dimensionless quantities were used for each of
these groups. In addition, an equation valid for all substances has been derived,
although it is less accurate than the equations for the particular substance groups
named above.

As most experiments have been carried out near to atmospheric pressure,
which for organic liquids corresponds to an approximate, normalised boiling pres-
sure of p/pcr = 0.03, the accuracy of these correlations can be increased if their
validity is restricted to pressures close to ambient pressure. Such a relationship
has been established by Stephan and Preußer [4.70]. It reads:

Nu = 0.0871

(
q̇ dA

λ′ Ts

)0.674 (
�′′

�′

)0.156 (
∆hvd

2
A

a′2

)0.371 (
a′2�′

σ dA

)0.350

(Pr′)−0.162
.

(4.96)
The quantities with ′ relate to the saturated boiling liquid, and those with ′′ relate
to the saturated vapour. The Nusselt number is defined by Nu = αdA/λ′. The
departure diameter dA is given by (4.85), in which �L = �′ and �G = �′′ have to be
substituted. For the contact angle β0 in water π/4 rad = 45◦, in cryogenic liquids
0.01745 rad = 1◦ and for other liquids 0.611rad = 35◦ have to be used.

Measurements for water in the region of fully developed nucleate boiling with
heat fluxes between

104 W/m2 < q̇ < 106 W/m2

and boiling pressures between

0.5 bar < p < 20 bar

can, according to investigations by Fritz [4.71], be reproduced well by the simple
empirical equation

α = 1.95 q̇0.72p0.24 , (4.97)

where α is in W/m2K, q̇ in W/m2 and p in bar.
From (4.96), for a given heat flux q̇0, the heat transfer coefficients α0 can be

obtained, in accordance with the validity of the equation only in the vicinity of
atmospheric pressure. If a pair of values α0, q̇0 have been found for a moderate
reference pressure p0, then, following a suggestion by Danilowa [4.72], modified
by Gorenflo [4.73], from

α

α0

= CWF (p+)

(
q̇

q̇0

)n

, (4.98)
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where F (p+ = p/pcr) is a pressure function, the heat transfer coefficients at other
pressures can be calculated. Herein is

CW =

(
Ra

Ra0

)0.133 (
b

b0

)1/2

(4.99)

with Ra as mean roughness of the heating surface, defined by the German norm
DIN 4762/01.89. We have 0.1µm ≤ Ra ≤ 5µm for technical surfaces. Ra0 =
0.4µm is a reference roughness. The value b =

√
λ�c is the thermal penetration

coefficient of the heater, eq. (2.128), b0 =
√

λ0�0c0 that of copper.
According to Gorenflo [4.73], for organic liquids, sulphur hexafluoride and

ammonia, the pressure function reads

F (p+) = 1.2 p+0.27 +

(
2.5 +

1

1 − p+

)
p+ (4.100)

and for water and helium

F (p+) = 1.73 p+0.27 +

(
6.1 +

0.68

1 − p+2

)
p+2 . (4.101)

Both equations were established for a heat flux q̇0 = 20 000 W/m2 . The refer-
ence pressure p0 is chosen such that, for the normalised pressure p+

0 = p0/pcr = 0.1,
the function will be F (p+

0 ) = 1. Correspondingly α0, q̇0 in (4.98) are values belong-
ing to a pair of heat transfer coefficient and heat flux at the normalised pressure
p+

0 = 0.1.
Numerous experiments have yielded that the exponent n of the heat flux in

(4.98) is not constant, but decreases with rising boiling pressure. According to
Gorenflo [4.73], for organic liquids, sulphur hexafluoride and ammonia, it is

n = 0.9 − 0.3 p+0.3 . (4.102)

According to that n = 0.75 for p+
0 = 0.1 and n = 0.62 for p+

1 = 0.8. The pressure
dependence for water and helium is somewhat weaker

n = 0.9 − 0.3 p+0.15 . (4.103)

For water at a boiling pressure of 1 bar corresponding to p+
2 = 0.004532, it follows

that n = 0.77, we have n = 0.69 for p+
0 = 0.1, and n = 0.61 for p+

1 = 0.8.
With the data for water, α0 = 5 580 W/m2K, q̇0 = 20 000 W/m2 at p+

0 = 0.1,
the following empirical equation can be reproduced from (4.98)

α

5 580 W/m2K
= CWF (p+)

(
q̇

20 000 W/m2

)0.9−0.3 p+0.15

, (4.104)

where F (p+) is given by (4.101). This equation is valid in the fully developed
nucleate boiling region and at normalised boiling pressures of

10−4 ≤ p+ ≤ 0.9 ,
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which correspond to boiling pressures of

0.0221 bar ≤ p ≤ 199 bar .

It extends over a wider range of pressures than the simple equation (4.97) by Fritz
and agrees well with this equation within its range of validity.

4.2.7 Some empirical equations for heat transfer during
nucleate boiling in free flow

In the following the equations introduced previously for heat transfer in nucleate
boiling in free flow are summarised and supplemented by further equations.

1. Nucleate boiling of water in free flow.
According to (4.97) it holds for 0.5 bar < p < 20 bar that

α = 1.95 q̇0.72p0.24

with α in W/m2K, q̇ in W/m2 and p in bar, and from (4.104), for
0.0221 bar ≤ p ≤ 199 bar, it is also valid that

α

5 580 W/m2
= CWF (p+)

(
q̇

20 000 W/m2

)0.9−0.3 p+0.15

with

F

(
p+ =

p

pcr

)
= 1.73 p+0.27 +

(
6.1 +

0.68

1 − p+2

)
p+2

and

CW =

(
Ra

Ra0

)0.133 (
b

b0

)1/2

.

Ra is the mean surface roughness of the heater, which for technical surfaces
is in the range 0.1µm ≤ Ra ≤ 5µm, Ra0 = 0.4µm a reference roughness.
b =

√
λ�c is the thermal penetration coefficient of the heater, eq. (2.128),

b0 =
√

λ0�0c0 that of copper.

2. Nucleate boiling, general equation.
For pressures close to atmospheric, according to (4.96), it holds that

Nu=
α dA
λ

= 0.0871

(
q̇ dA

λ′ Ts

)0.674 (
�′′

�′

)0.156 (
∆hvd

2
A

a′2

)0.371 (
a′2�′

σ dA

)0.350

(Pr′)−0.162
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with the departure diameter from (4.85):

dA = 0.851β0

√
2σ

g (�L − �G)
.

The contact angle β0, in radians, for water lies between 0.22π (=40◦) and
0.25π (=45◦), and for the halogenated hydrocarbons used as refrigerants
it is around 0.194π (=35◦). For other pressures, α0 for the reference heat
flux q̇0 = 20 000 W/m2 at a reference pressure p0 close to the ambient
pressure, is first calculated from the equation above. The desired heat
transfer coefficient α at pressure p and heat flux q̇ is obtained from (4.98)

α

α0

= CWF (p+)

(
q̇

q̇0

)n

with CW from no. 1. For organic liquids, sulphur hexafluoride and ammonia
we have

F (p+) = 1.2 p+0.27 +

(
2.5 +

1

1 − p+2

)
p+

and
n = 0.9 − 0.3 p+0.3 .

For water and helium we have

F (p+) = 1.73 p+0.27 +

(
6.1 +

0.68

1 − p+2

)
p+2

and
n = 0.9 − 0.3 p+0.15 .

3. Nucleate boiling on horizontal copper tubes.
According to Gorenflo [4.74]

α

α0

=
F (p+/

√
ϕ)

F (p+
0 /

√
ϕ)

· 50.1H/t1

(
q̇

q̇0

)nf

.

In which, α0 is the heat transfer coefficient at pressure p0 and reference heat
flux q̇0 = 20 000 W/m2 calculated from the equation given in 2 for a flat
tube. F (p+/

√
ϕ) is obtained from the function F (p+) in 2, when in place

of p+ = p/pcr the quantity p+/
√

ϕ is used with the area ratio ϕ = Af/A.
Af is the surface area of the finned tube, A that of a flat tube of the same
core diameter as the finned tube. It is

nf = n − 0.1H/t1 .

n is the exponent for the heat flux given in 2. H is the height of the fin,
t1 is the internal fin spacing, see Fig. 4.43.
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Fig. 4.43: Dimensions of a finned tube

4. Nucleate boiling in a horizontal bank of smooth or finned tubes.
Heat transfer coefficients in boiling on the outside of smooth or finned
tubes in a bundle are greater than those for an individual tube. The heat
transfer is improved by the oncoming flow at the lowest tube row, in the
tubes themselves the ascending vapour bubbles produce better convection.
The influence of convection on the total heat transfer is clearly noticeable,
especially if the heat flux is not too large. As a result of this the mean
heat transfer coefficient αm of the bundle is significantly larger than that
of a single tube. According to [4.73] it holds that

αm

α1

= 1 +
1

2 + q̇ ϕ/(1 000 W/m2)
,

where α1 is the heat transfer coefficient of the lowest tube row. The equa-
tion is equally valid for smooth and finned tubes in the range

1 000W/m2 ≤ q̇ ϕ ≤ 20 000W/m2

and for pressures close to ambient. The heat flux q̇ is related to the total
external surface area of the tube. The quantity ϕ is the area ratio for
a finned tube; for a smooth tube, we have ϕ = 1. The heat transfer
coefficients α1 at the bottom row of tubes are obtained, according to a
suggestion by Slipčević [4.75], from the heat transfer coefficients αB for
nucleate boiling on a single tube, see No. 2, and the heat transfer coefficients
αC for free flow without bubble formation, see 3.9.3 No. 3, also for a single
tube, according to

α1 = αB + fαK ,

where f is a factor, which depends on the magnitude of the inlet flow
velocity. For small bundles f is around 0.5, whilst for large bundles f = 1.

5. Maximum heat flux.
According to Kutateladze [4.76] and Zuber [4.77], it holds that

q̇max = K∆hv

√
�′′
[
σ (�′ − �′′)g

]1/4
,

where K is a constant to be found by experimentation, that lies between
0.13 and 0.16. A mean value is K = 0.145.
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6. Film boiling.
In film boiling, the influence of radiation on the heat transfer cannot be
neglected because of the high wall temperature. According to [4.78], the
mean heat transfer coefficient αm in film boiling is given by

αm

αmG

= 1 +
1

5

αR

αmG

(
4 +

1

1 + 3αmG/αR

)

with

αmG =
2

3

(
�G (�L − �G)g∆hv λ3

G

ηG∆ϑ

1

H

)1/4

and

αR =
σS

1

ε0

+
1

εL

− 1

T 4
0 − T 4

s

ϑ0 − ϑs

.

H is the height of the plate or H = dπ/2 for horizontal tubes, σS =
5.67 · 10−8 W/m2K4 is the Stefan-Boltzmann constant, cf. section 1.1.5,
page 25, and 5.2.3, page 532, ε0 is the emissivity of the wall, εL is the
emissivity of the liquid surface.

Example 4.4: In a saucepan 1 l of water at atmospheric pressure 0.1013 MPa is to be
boiled on an electric cooker. The power of the hotplate of the electric cooker is Q̇ = 3 kW,
its diameter is the same as that of the saucepan, namely 0.3 m.

a) How long does it take until the water starts to boil, if the initial temperature is 20 ◦C?
The heat losses to the surroundings amount to 30 % of the heat input.

b) What is the temperature at the bottom of the saucepan when the water begins to boil?

c) How long does it take for all the water to be vaporized?

d) Calculate the maximum heat flux.

The following data are given: saturation temperature ϑs = 100 ◦C at a pressure of
0.1013 MPa, density of the liquid �L = 958.1kg/m3 , specific heat capacity of the liq-
uid cpL = 4.216 kJ/kgK, vapour density �′′ = 0.5974kg/m3 , surface tension σ = 58.92 ·
10−3 N/m, enthalpy of vaporization ∆hv =2257.3 kJ/kg.

a) Until the boiling point is reached the following amount of heat has to be fed to the
water

Q = McpL∆ϑ = �LV cpL∆ϑ = 958.1kg/m3 · 10−3 m3 · 4.216kJ/kgK · 80K = 323kJ .

We have Q̇ ∆t0 = Q, i.e. the time taken to reach the boiling temperature is

∆t0 =
Q

Q̇
=

323kJ

3kW · 0.7 = 154 s = 2.56min .
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b) According to (4.97) the heat transfer coefficient in boiling in obtained as

α = 1.95 q̇0.72 p0.24 with q̇ =
Q̇

A
=

0.7 · 3kW

0.32 m2 · π/4
= 2.971 · 104 W/m2 .

So

α = 1.95 · (2.971 · 104)0.72 · (1.013)0.24 W/m2K = 3250W/m2K

and

∆ϑ =
q̇

α
=

2.971 · 104 W/m2

3250W/m2K
= 9.1K .

The temperature at the bottom of the pan is ϑ0 = ϑs + ∆ϑ = 100 ◦C + 9.1 ◦C =
109.1 ◦C.

c) 70 % of the heat released is fed to the water. In order to completely vaporize the mass
M = �L V , the following amount of heat is required

Q = �L V ∆hv = 958.1kg/m
3 · 10−3 m3 2257.3kJ/kg = 2163kJ .

The time required for this is

∆t = Q/Q̇ =
2163kJ

0.7 · 3kW
= 1030 s = 17.2min .

d) The maximum heat flux is found, using 4.2.7, No. 5, to be

q̇max = 0.145∆hv

√
�′′ [σ (�′ − �′′) g]

1/4

= 0.145 · 2.2573 · 106 J/kg ·
√

0.5974kg/m3

· [58.92 · 10−3 N/m · (958.1 − 0.5974) kg/m3 · 9.81m/s2
]1/4

q̇max = 1.23 · 106 W/m2 .

4.2.8 Two-phase flow

In boiling in free flow the flow pattern and heat transfer are determined by the
difference in the hot surface and boiling temperatures, as well as by the properties
of the fluid and the heating wall. Meanwhile in boiling in forced flow the velocity
of the vapour and liquid phases and the distribution of the phases are additional
factors that influence the flow patterns and heat transfer. As has already been
discussed in section 4.2.1, the heat transfer coefficient can no longer be represented
by a simple empirical correlation of the form α = c q̇n, but the mass flux ṁ
and the quality x∗ come into play as influencing quantities, such that empirical
heat transfer relationships of the form α = c q̇nṁsf(x∗) are used. The form of
these relationships is significantly determined by the flow pattern, which will be
discussed in the following section.
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4.2.8.1 The different flow patterns

The numerous forms of two-phase flow can be divided into certain basic types,
between which transition and mixed states are possible. The basic types of flow
pattern in upward two-phase flow in a vertical, unheated tube are shown in Fig.
4.44.

Fig. 4.44: Flow types in a vertical, unheated tube with upward flow. a bubble flow;
b plug flow; c churn flow; d wispy-annular flow; e annular flow; f spray or drop flow

In bubble flow, Fig. 4.44 a, the gas or vapour phase is uniformly dispersed in
the continuous liquid phase. Only very small bubbles are spherical the larger ones
are oblate. This type of flow pattern occurs when the gas fraction is small. In plug
flow, Fig. 4.44 b, large bubbles (plugs) almost fill the entire tube cross section.
Between the plugs, the liquid is interspersed with small bubbles.

At high mass fluxes the bubble structure increasingly disintegrates. This pro-
duces churn flow, Fig. 4.44 c. It consists more or less of large irregular gas or
vapour fragments and has a very unstable character. This type of flow develops
especially in tubes with large diameters and at high pressure.

The wispy-annular flow, Fig. 4.44 d, consists of a relatively thick liquid film
at the wall, even though the liquid fraction in the vapour or gas core of the flow
is still large. The film is interspersed with small bubbles, and the liquid phase
in the core flow is mainly made up of large drops that sometimes coalesce into
liquid strands. This type of flow pattern is normally observed when the mass flux
is large.

A pattern that frequently appears is annular flow, Fig. 4.44 e. It is charac-
terised by the fact that the main portion of the liquid mass is at the wall and the
gas or vapour phase, that is interspersed with drops, flows in the core of the tube
at a significantly higher velocity.

As a result of evaporation and especially at high velocities of vapour or gas, the
liquid film at the wall disintegrates and a spray or drop flow is formed, Fig. 4.44 f.
This occurs particularly in evaporation at high pressure.
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Fig. 4.45: Flow patterns in a horizontal, unheated tube a bubble flow; b plug flow;
c stratified flow; d wavy flow; e slug flow; f annular flow; g spray or drop flow

All these two-phase flow patterns are not only observed in cylindrical tubes,
but also in channels with other cross sections, as long as they do not deviate
completely from the circular shape, for example a channel with a very flat, oblate
cross section.

All these flow types appear more or less in a series one after the other during the
evaporation of a liquid in a vertical tube, as Fig. 4.30 illustrates. The structure of
a non-adiabatic vapour-liquid flow normally differs from that of an adiabatic two-
phase flow, even when the local flow parameters, like the mass flux, quality, etc.
agree with each other. The cause of this are the deviations from thermodynamic
equilibrium created by the radial temperature differences, as well as the deviations
from hydrodynamic equilibrium. Processes that lead to a change in the flow
pattern, such as bubbles coalescing, the dragging of liquid drops in fast flowing
vapour, the collapse of drops, and the like, all take time. Therefore, the quicker
the evaporation takes place, the further the flow is away from hydrodynamic
equilibrium. This means that certain flow patterns are more pronounced in heated
than in unheated tubes, and in contrast to this some may possibly not appear at
all.

The force of gravity causes the liquid in a horizontal, unheated tube or channel,
to flow mainly in the lower section and the vapour in the upper part of the tube.
The smaller the inertia forces are in comparison to the gravitational forces, the
greater the difference between the flow in horizontal and vertical tubes. Thus,
at low velocities flow patterns develop in horizontal tubes that are never seen in
vertical tubes. Fig. 4.45 shows the characteristic patterns of two-phase flow in a
horizontal tube.

The vapour bubbles collect in the upper part of the tube due to buoyancy
forces, this is known as bubble flow, Fig. 4.45 a. They can then grow into plugs,
producing plug flow, Fig. 4.45 b.

At low velocities the two phases are completely separate. This is called strati-
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fied flow, Fig. 4.45 c. If the gas or vapour velocity increases then waves will form
at the surface of the liquid, wavy flow, Fig. 4.45 d. The wave peaks will get larger
and eventually wet the upper channel wall in an irregular sequence, slug flow, Fig.
4.45 e. At even higher velocities an annular flow develops, Fig. 4.45 f, where the
thickness of the film in the top half of the tube is generally smaller than that in
the lower part of the tube. With a further increase in the vapour velocity this is
transformed into spray flow, Fig. 4.45 g.

In a horizontal, heated tube these flow patterns appear one after the other. For
the same reasons as in a vertical evaporator tube, thermodynamic equilibrium
is not achieved because of the radial temperature profile. Fig. 4.46 shows the
different flow patterns in a horizontal evaporator tube, under the assumption that
the liquid enters the tube at a sufficiently low velocity, below 1 m/s. It is clear

Fig. 4.46: Flow patterns in horizontal evaporator tube according to Collier [4.79]

here, that in slug flow the upper wall of the tube alternates between being dry
and wetted. In the region of annular flow, the upper wall of the tube drys out
further downstream. The higher the mass flux, the more symmetrical the phase
distribution, which approaches that in a vertical evaporator tube.

4.2.8.2 Flow maps

As the different flow regimes are determined by the forces between the two phases,
above all by the inertia and gravitational forces, it is appropriate to mark the
dependence of the boundaries between the different flow patterns on these forces
in diagrams, so-called flow maps. This type of flow map was first presented by
Baker [4.80]. Therefore, we also speak of Baker-diagrams. These diagrams only
provide a rough orientation because the decisive forces in the different flow regions
are not known with sufficient certainty. In particular, for a two-phase flow with
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heat input, large uncertainty has to be reckoned with, as most flow maps have
been developed for adiabatic flows. In addition to this, the transition regions
between the different flow regimes are not very clear, a definite boundary with a
marked transition does not exist.

Fig. 4.47: Flow pattern dia-
gram for vertical, two-phase
flow according to Hewitt and
Roberts [4.81]

Fig. 4.47 is an example of one of these flow maps. It was developed by Hewitt
and Roberts [4.81] from observations of the flow in an air-water mixture at am-
bient pressure and in water-steam mixtures at high pressure in vertical tubes of
diameters between 10 and 30 mm. The momentum fluxes �Gw2

G of the vapour and
�Lw2

L of the liquid are plotted on the ordinates. These have the same dimensions
as pressure and are formed with the apparent gas and liquid velocities, that would
appear if each of the two phases filled the entire cross section,

wG = x∗ṁ/�G and wL = (1 − x∗) ṁ/�L .

A corresponding flow map for horizontal and inclined tubes has been developed
by Taitel and Dukler [4.82].

4.2.8.3 Some basic terms and definitions

Some basic terms and definitions from two-phase flow theory are required for the
description of heat transfer in boiling. For this we will consider the section of a
channel shown in Fig. 4.48, in which the gas and liquid are flowing. An annular
flow is shown in the picture for the sake of simplicity, but the following terms are
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Fig. 4.48: Two-phase flow in a
heated channel

also valid for the other flow patterns. In any cross section A, the gas phase fills
the fraction

ε := AG/A , (4.105)

and the liquid phase the corresponding fraction

1 − ε = AL/A , (4.106)

because AG + AL = A. These fractions do not change within a sufficiently small
tube section ∆z. Therefore

ε = AG∆z/A∆z .

The volume fraction of the vapour in the tube section under consideration is then

ε := VG/V (4.107)

and the volume fraction of the liquid is

1 − ε = VL/V . (4.108)

The quantity ε is called the volumetric vapour content. This is to be distinguished
from the volumetric quality

ε∗ := V̇G/V̇ , (4.109)

which is the volumetric flow of the vapour over the total flow of vapour and liquid.
A further term is the quality, that represents the ratio of the mass flow rate ṀG

of the vapour to the total mass flow rate Ṁ = ṀG + ṀL:

x∗ := ṀG/Ṁ . (4.110)

Thus
1 − x∗ = ṀL/Ṁ . (4.111)
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The quality has to distinguished from the specific vapour content in thermody-
namics, which is defined by x = MG/M . With the mass flow rates ṀG of the gas
and ṀL of the liquid the mean velocity of both phases in any cross section can be
obtained

wG =
ṀG

�GAG

=
x∗Ṁ
�GεA

=
x∗ṁ
�Gε

, (4.112)

wL =
ṀL

�LAL

=
(1 − x∗) Ṁ

�L(1 − ε)A
=

(1 − x∗) ṁ

�L(1 − ε)
. (4.113)

The ratio of the two velocities is known as slip or the slip factor

s :=
wG

wL

=
x∗

1 − x∗
1 − ε

ε

�L

�G

. (4.114)

The quality x∗ and the volumetric quality ε∗ are linked to each other by

x∗ =
ṀG

ṀG + ṀL

=
V̇G�G

V̇G�G + V̇L�L

=
ε∗V̇ �G

ε∗V̇ �G + (1 − ε∗) V̇ �L

or

x∗ =
ε∗

ε∗ + (1 − ε∗) �L/�G

. (4.115)

The volumetric quality ε∗ and the vapour content ε coincide when the slip factor
is equal to one, i.e. when wG = wL, which then gives

ε∗ =
V̇G

V̇
=

wGAG

wGAG + wLAL

=
AG

A
= ε .

The quality x∗ is normally known or is easy to find out.
In general, for flow in unheated channels, the mass flow rates of the individual

phases are stipulated. In a heated channel the quality is yielded from an energy
balance, Fig. 4.48. We assume here that the liquid enters the evaporator tube in
a subcooled state. Its specific enthalpy at the inlet is h1. The input heat flow rate
Q̇ heats the liquid to the saturation temperature where it begins to evaporate.
The energy balance between the inlet and another cross section at the point z,
disregarding the kinetic and potential energy, yields

Ṁh1 + Q̇ = Ṁ
[
x∗hG + (1 − x∗)hL

]
.

If we further assume that the vapour and liquid are in thermal equilibrium in
the cross section at point z, then their specific enthalpies in the saturated state
have to be calculated at pressure p(z). This gives hG = h′′ and hL = h′ as well
as h′′ − h′ = ∆hv the enthalpy of vaporization at pressure p in the cross section
being considered. As we have assumed thermodynamic equilibrium, the quality
is indicated by x∗

th and is called the thermodynamic quality. This yields

Ṁh1 + Q̇ = Ṁ (x∗
th∆hv + h′)
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and

x∗
th =

1

∆hv

(
Q̇

Ṁ
+ h1 − h′

)
. (4.116)

The assumptions made mean that this equation is only valid if the vapour and
liquid in a cross section are at the same temperature. It fails close to the inlet,
where the quality x∗ is still low, and also with a high vapour content. In the
vicinity of the inlet, vapour bubbles can already form on the hot wall, even when
the core flow is still subcooled. So the vapour and liquid are at different temper-
atures. The quality is thus positive, whilst according to (4.116) a negative value

Fig. 4.49: Qualitative plot of the
real quality x∗

real against the ther-
modynamic quality x∗

th

for the thermodynamic quality is obtained, because the liquid is still subcooled,
and therefore Q̇ + Ṁh1 < Ṁh′. At high vapour content spray flow develops.
Heat is principally transferred to the vapour which is superheated, although fluid
drops are still present in the core flow, which only evaporate slowly. The quality
is therefore lower than one, even though the thermodynamic quality according to
(4.116) has already reached a value of one.

However, in regions of intermediate quality, where neither subcooled boiling or
spray flow occur, (4.116) delivers exact values. Fig. 4.49 shows a qualitative plot
of the real quality x∗

real against the thermodynamic quality x∗
th based on (4.116).

4.2.8.4 Pressure drop in two-phase flow

In two-phase flow, the boiling temperature falls in the direction of flow as a result
of the pressure drop. This results in a change in the driving temperature drop
decisive for heat transfer along the flow path. Calculation of the heat transfer
without simultaneous investigation of the pressure drop is therefore impossible.
The fundamentals steps for this shall be explained in the following.
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Fig. 4.50: Force balance on a
two-phase fluid element

In the calculation of the pressure drop, we will consider a channel inclined at
an angle γ to the horizontal, through which a two-phase fluid flows, Fig. 4.50.

The forces exerted by the pressure, the friction forces at the channel wall and
gravity all act on a volume element of length dz, as illustrated in the picture.
We are presuming the flow to be steady and one-dimensional and that the cross
section of the channel is constant. The pressure, density and momentum flux over
a cross section are only dependent on the flow path z. The momentum balance
implies that the sum of the pressure, friction and gravitational forces are equal to
the change in momentum[

p −
(
p +

dp

dz
dz

)]
− τ0 C dz − � g A sin γ dz =

d

dz
(Ṁw) dz

or

−dp

dz
= τ0

C

A
+

1

A

d

dz
(Ṁw) + � g sin γ , (4.117)

where τ0 is the shear stress at the channel wall and C is the circumference of the
channel. The density of a two-phase mixture is calculated from

� = ε�G + (1 − ε)�L . (4.118)

The flow momentum is made up of that of the gas and the liquid, according to

Ṁw = ṀGwG + ṀLwL . (4.119)

Together with (4.112) and (4.113), this can also be written as

Ṁw =
Ṁ2

A

[
x∗2

ε�G

+
(1 − x∗)2

(1 − ε)�L

]
. (4.120)

Putting (4.118) and (4.120) into (4.117) yields

−dp

dz
= τ0

C

A
+ ṁ2 d

dz

[
x∗2

ε�G

+
(1 − x∗)2

(1 − ε)�L

]
+
[
ε�G + (1 − ε)�L

]
g sin γ . (4.121)

The total pressure drop is composed of three parts, the pressure drop due to
friction

−
(

dp

dz

)
f

= τ0

C

A
, (4.122)
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the acceleration pressure drop

−
(

dp

dz

)
a

= ṁ2 d

dz

[
x∗2

ε�G

+
(1 − x∗)2

(1 − ε)�L

]
(4.123)

and the pressure drop as a result of gravity, which is also called the geodetic
pressure drop

−
(

dp

dz

)
g

=
[
ε�G + (1 − ε)�L

]
g sin γ . (4.124)

In channels with bends or constrictions additional pressure drops occur, which will
not be dealt with here. The relevant literature is suggested for further reading on
this topic [4.83].

The pressure drop due to friction exists because of the shear stress between
the fluid flow and the channel wall. The acceleration pressure drop is yielded from
the change in momentum in both phases, as in vapour-liquid flows evaporation
due to flashing occurs because of the loss in pressure, and in heated channels,
evaporation occurs in addition due to the heat input. This causes a change in
the mass and velocity and therefore in the momentum flux of both phases. The
geodetic pressure drop is caused by the gravitational force acting on the fluid. It
disappears in horizontal flows. Geodetic and acceleration pressure drops are often
negligible in comparison to the frictional pressure drop.

However, in heated channels with large heat and mass fluxes the acceleration
pressure drop can be considerable and no longer assumes negligible values. In an
adiabatic, two-phase flow, the acceleration pressure drop only exists as a result
of further evaporation or expansion of the vapour or gas phase, and is small.
A simple rule for adiabatic two-phase flow in refrigeration plants say that the
acceleration pressure drop does not play a role as long as ∆pf/ps < 0.2 holds for
the frictional pressure drop. If this is not the case, then the acceleration pressure
drop has to be determined, according to (4.123), over the channel length between
inlet 1 and outlet 2:

(p1 − p2)a = ṁ2

[
x∗2

2

ε2�G2

− x∗2
1

ε1�G1

+
(1 − x∗

2)
2

(1 − ε2)�L2

− (1 − x∗
1)

2

(1 − ε1)�L1

]
. (4.125)

Accurate calculations are only possible here, if a reliable relationship for the vol-
umetric vapour content is available.

If the slip factor can be set to s = 1, (homogeneous flow), then, according to
(4.114), the volumetric vapour content will be

ε =

(
�G

�L

1 − x∗

x∗ + 1

)−1

. (4.126)

In complete vaporization, with a change in the quality from x∗
1 = 0 to x∗

2 = 1,
ε1 = 0 and ε2 = 1 and the acceleration pressure drop will be

(p1 − p2)a = ṁ2

[
1

�G2

− 1

�L1

]
.
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The frictional pressure drop normally constitutes the largest fraction of the
total pressure drop. However, only empirical methods are available for its cal-
culation. It includes not only the momentum transfer between the fluid and the
wall, but also the momentum transfer between the individual phases. These two
processes cannot be measured separately and can only be estimated for simple
flows. Thus, only imprecise ideas of the influence of momentum transfer between
the phases exist.

At constant mass flux, the frictional pressure drop does not show linear de-
pendence on the quality between the limits x∗ = 0 and x∗ = 1, but rises with
increasing x∗ until it reaches a maximum between x∗ = 0.7 and x∗ = 0.9, and
then falls back to the pressure drop of a pure vapour stream, Fig. 4.51. This
maximum is more pronounced the larger the difference in the densities of the two
phases.

Methods for the determination of the frictional pressure drop usually start
with simple models. For the most part, either homogeneous flow (homogeneous
distribution of the phases s → 1) or heterogeneous flow (heterogeneous distribution
of the phases, s > 1) are presumed. Less common are methods based upon specific
flow patterns and are only applicable if this flow pattern is present.

In the calculation of frictional pressure drop it is advantageous to define a few
parameters that are suitable for the representation of two-phase frictional pressure
drop and the volumetric quality. The frictional pressure drop is often reduced to
the pressure drop for single phase flow, using the definitions from Lockhart and
Martinelli [4.84] (

dp

dz

)
f

:= Φ2
L

(
dp

dz

)
L

(4.127)

or (
dp

dz

)
f

:= Φ2
G

(
dp

dz

)
G

. (4.128)

Here (dp/dz)L is the frictional pressure drop of the liquid, (dp/dz)G is that of
the vapour, under the assumption that each of the two phases is flowing by itself
through the tube. The factors Φ2

L and Φ2
G are defined by th equations above.

If these factors are known, only the pressure drop of the individual phases has

Fig. 4.51: Profile of the frictional
pressure drop
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to be determined, to allow the frictional pressure drop for two-phase flow to be
calculated.

The pressure drop in the two phases can be determined using well known
methods. For the frictional pressure drop of a liquid stream, it holds that(

dp

dz

)
L

= −ζL

1

d

�Lw2
L

2
= −ζL

1

d

ṁ2
L

2�L

(4.129)

with ṁL = ṁ(1− x∗), where d is the diameter of the channel and ζ is the friction
factor dependent on the Reynolds number. According to Blasius, for example,

ζL = c1/Ren
L , (4.130)

where c1 and n are functions of the flow, i.e. whether it is laminar or turbulent,
and the roughness of the tube. The Reynolds numbers is calculated under the
assumption that only the liquid is flowing through the tube

ReL =
wL�Ld

ηL

=
ṁLd

ηL

=
ṁ(1 − x∗)d

ηL

. (4.131)

Another possibility for the investigation of the pressure drop in two-phase flows
exists in the determination of the frictional pressure drop of the gas and the liquid,
under the assumption that the total mass of the fluid would be flowing through
the tube either as liquid or as gas. In this case the factors ΦL0 and ΦG0 are defined
by (

dp

dz

)
f

:= Φ2
L0

(
dp

dz

)
L0

(4.132)

and (
dp

dz

)
f

:= Φ2
G0

(
dp

dz

)
G0

. (4.133)

This gives (
dp

dz

)
L0

= −ζL0

1

d

ṁ2

2�L

, (4.134)

and the resistance factor ζL0 has to be determined with the Reynolds number

ReL0 =
ṁ d

ηL

. (4.135)

The homogeneous model
In flows with a high proportion of small bubbles, x∗ → 0, in spray or drop flow,
x∗ → 1, or in flows with small density differences, like those near the critical state,
the frictional pressure drop can be well represented by the homogeneous model.
The heterogeneous model delivers inaccurate results for these conditions.

Calculations according to the homogeneous model are similar to those for
single-phase flow, although they involve suitably defined mean property values.
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The following holds for the frictional pressure drop in a homogeneous two-phase
flow (

dp

dz

)
f

:= −ζ
1

d

�w2

2
= −ζ

1

d

ṁ2

2�
. (4.136)

With the assumption of equal liquid and vapour velocities, the volumetric vapour
content is obtained from (4.126) and with that the density of the homogeneous
flow is

� = ε�G + (1 − ε)�L =

(
x∗

�G

+
1 − x∗

�L

)−1

. (4.137)

The friction factor is calculated in the same way as for single-phase flow, for
example, according to Blasius

ζ = c1/Ren . (4.138)

The dynamic viscosity of the homogeneous two-phase flow now has to be put
into the Reynolds number Re = ṁd/η. Empirical equations for this have been
suggested in the literature [4.85] to [4.87]. These include the limits η(x∗ = 0) = ηL

and η(x∗ = 1) = ηG. According to McAdams et al. [4.85] it holds that

1

η
=

x∗

ηG

+
1 − x∗

ηL

, (4.139)

according to Cicchitti et al. [4.86]

η = x∗ηG + (1 − x∗) ηL (4.140)

and from Dukler et al. [4.87]

η = �

[
x∗ ηG

�G

+ (1 − x∗)
ηL

�L

]
. (4.141)

With (4.137), the frictional pressure drop in homogeneous two-phase flow is ob-
tained from (4.136) to be(

dp

dz

)
f

= −ζ
1

d

ṁ2

2

(
x∗

�G

+
1 − x∗

�L

)
. (4.142)

On the other hand, the pressure drop, under the assumption that only liquid is
flowing through the tube, is(

dp

dz

)
L

= −ζL

1

d

ṁ2(1 − x∗)2

2�L

. (4.143)

The friction factor ζL of the liquid stream, according to Blasius’ law, is

ζL = c/Ren
L with ReL = ṁ(1 − x∗) d/ηL . (4.144)
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With (4.143), (4.136) and (4.127), the factor Φ2
L for homogeneous two-phase flow

is found to be

Φ2
L =

ζ

ζL

[
1 + x∗

(
�L

�G

− 1

)]
(1 + x∗)−2 . (4.145)

The friction factor, still using Blasius’ law (4.138), and (4.144), can be eliminated,
giving

Φ2
L = (1 + x∗)n−2

[
1 + x∗

(
�L

�G

− 1

)]/[
1 + x∗

(
ηL

ηG

− 1

)]n

, (4.146)

where n is the exponent of Blasius’ law (4.138).

The heterogeneous model
In contrast to the homogeneous model, the two phases flow separately to each
other and have different velocities, so that slip exists between the phases.

A particularly simple and frequently used method comes from Lockhart and
Martinelli [4.84]. It is based on measurements of air-water and air-oil mixtures
in horizontal tubes at low pressure. However the procedure has also proved itself
in upward, vertical flow of two-phase single and multicomponent mixtures. The
basic idea of the Lockhart-Martinelli method is that the frictional pressure drop
in a two-phase flow can be determined, with use of a correction factor, from the
frictional pressure drop in the individual phases. This means that the two-phase
multipliers Φ2

L and Φ2
G are defined according to (4.127) and (4.128).

We put

X2 :=
Φ2

G

Φ2
L

=
(dp/dz)L

(dp/dz)G

(4.147)

with (dp/dz)L according to (4.143) and(
dp

dz

)
G

= −ζG

1

d

ṁ2x∗2

2�G

. (4.148)

It follows from (4.143) and (4.148) that

X2 =
(dp/dz)L

(dp/dz)G

=
ζL

ζG

(
1 − x∗

x∗

)2 �G

�L

. (4.149)

In general, the quantity X defined by (4.147) is known as the Lockhart-Martinelli
parameter. It assumes different values depending on the type of flow for the two
phases, whether laminar or turbulent. The following combinations, indicated by
indices on X, are possible:

Flow state of the phases
Gas Liquid Indices of X

laminar laminar ll

laminar turbulent lt

turbulent laminar tl

turbulent turbulent tt
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As an example we will calculate Xtt for the case where both phases are turbulent,
a state that occurs frequently. Presuming the validity of Blasius’ law for the
friction factor

ζL = c/Ren
L = c/

[
ṁ (1 − x∗) d

ηL

]n

(4.150)

and

ζG = c/Ren
G = c/

(
ṁ x∗ d

ηG

)n

, (4.151)

then, according to (4.149)

X2
tt =

(
1 − x∗

x∗

)2−n
(

ηL

ηG

)n
�G

�L

. (4.152)

For turbulent flow in technically smooth tubes, the exponent n lies between 0.2
and 0.25. With n = 0.2 we have

Xtt =
(

1 − x∗

x∗

)0.9
(

ηL

ηG

)0.1 (
�G

�L

)0.5

. (4.153)

Lockhart and Martinelli assumed that each of the two factors ΦG and ΦL can be
represented as a function of the parameter X. Fig. 4.52 shows the quantities ΦL

and ΦG, determined by Lockhart and Martinelli for the different types of flow,
plotted against the parameter X.

Fig. 4.52: Investigation of the
frictional pressure drop accord-
ing to Lockhart and Martinelli
[4.84]

The curves are reproduced well by the following equations

Φ2
L = 1 +

C

X
+

1

X2
, (4.154)

and

Φ2
G = 1 + CX + X2 . (4.155)

The values from Table 4.2 are to be used for the constant C.



4.2 Heat transfer in boiling 487

Table 4.2: Constants C in the equations (4.154) and (4.155)

Gas/Vapour Liquid Index C

laminar laminar ll 5

laminar turbulent lt 10

turbulent laminar tl 12

turbulent turbulent tt 20

The flow of a phase can be assumed to be laminar when Re < 1000, and
turbulent when Re > 2000. The transition region 1000 < Re < 2000 is more
difficult to predict but to be on the safe side the values for turbulent flow should
be taken.

The Lockhart-Martinelli method is especially simple and clear. In certain
parameter regions its accuracy is surpassed by other methods, but it delivers
satisfactory values for the pressure drop, irrespective of the application, within a
range of uncertainty of around ±50%. Larger deviations are to be expected for
tube diameters d > 0.1 m. Furthermore, it should also be taken into account,
that the two-phase multipliers ΦL and ΦG were determined from measurements
at low pressures. Other equations have been developed for higher pressure and
greater demands on the accuracy of the result. They are normally only valid for
certain substances and in a narrow range of parameters. The extensive literature
on two-phase flow, in particular the summary in [4.83], is suggested for further
information on this subject.

4.2.8.5 The different heat transfer regions in two-phase flow

We shall now consider subcooled liquid fed into the bottom of a vertical evapo-
rator tube, that is uniformly heated along its entire length. The heat flux q̇ is
assumed to be low and the tube should be long enough such that the liquid can
be completely evaporated. Fig. 4.53 shows, on the left, alongside the various heat
exchange regions that have already been explained, the profiles of the liquid and
wall temperatures.

As long as the wall temperature stays below that required for the formation
of vapour bubbles, heat will be transferred by single-phase, forced flow. If the
wall is adequately superheated, vapour bubbles can form even though the core
liquid is still subcooled. This is a region of subcooled boiling. In this area, the
wall temperature is virtually constant and lies a few Kelvin above the saturation
temperature. The transition to nucleate boiling, is, by definition, at the point
where the liquid reaches the saturation temperature at its centre, and with that
the thermodynamic quality is x∗

th = 0. In reality, as Fig. 4.53 indicates, the liquid
at the core is still subcooled due to the radial temperature profile, whilst at the
same time vapour bubbles form at the wall, so that the mean enthalpy is the
same as that of the saturated liquid. As explained in the previous section, the
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Fig. 4.53: Wall and liquid temperatures, flow pattern and the associated heat transfer regions,
heated tube

saturation temperature in the core is reached further downstream from the point
x∗

th = 0.

In the nucleate boiling region heat transfer is chiefly determined by the for-
mation of vapour bubbles and only to a small extent by convection. This region
encompasses the bubble, plug, churn and a part of the annular flow regimes. The
vapour content constantly increases downstream, and at a sufficiently high vapour
content the churn flow converts into an annular flow, with a liquid film at the wall
and vapour, with liquid droplets, in the core. The entire nucleate boiling region is
characterised by the formation of vapour bubbles at the wall. However in annular
flow, the liquid film downstream is so thin and its resistance to heat transfer is
so low, that the liquid close to the wall is no longer sufficiently superheated, and
the formation of bubbles at the wall is suppressed. Heat is conducted principally
by the liquid that is evaporating at its surface. Heat is transferred by “convective
evaporation”.

As soon as the liquid film at the wall is completely evaporated, the temperature
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of a wall being heated with constant heat flux rises. This transition is known as
dryout. The spray flow region is entered, followed by a region where all the liquid
droplets being carried along by the vapour are completely evaporated, in which
heat is transferred by convection to the vapour.

The transition regions shown in Fig. 4.53, can extend over very different areas
depending on the size of the heat and mass flux.

4.2.8.6 Heat transfer in nucleate boiling and convective evaporation

Nucleate boiling in saturated liquids, so-called saturated boiling, and convective
evaporation occur most frequently in evaporators, and shall therefore be explained
in some depth here. The extensive publications concerning the other types of heat
transfer in two-phase flows are suggested for further information, including [4.50].
By definition, saturated boiling begins when the quality, calculated assuming ther-
modynamic equilibrium from (4.116), is x∗

th = 0. The mean liquid temperature
is then equal to the saturation temperature. However, in reality at the start of
saturated boiling, the liquid core is still subcooled and the liquid layer adjacent to
the wall is superheated. If bubbles have already formed in the region of subcooled
boiling, bubble formation is suppressed again even when the mean temperature
approaches the saturation temperature. This is the case when, as a result of im-
proved heat transfer, the heat removed from a two-phase flow is equal to that
supplied by the wall. Saturated boiling begins, when the heat supplied by the
wall is greater than the heat that can be removed from the two-phase flow with-
out additional bubble formation. A sufficiently large heat flux is necessary for this
to happen. Its calculation is explained in [4.50], p. 192.

In the calculation of the heat transfer in saturated boiling it is presumed
that the heat transfer is predominantly determined by the bubble formation. In
addition, convection also has some influence on the heat transfer, although this
may only be small. Models and empirical equations start from the heat transfer
in boiling in free flow. The influence of forced flow is taken into account with
an extra term. This is based on the concept that the growth of the bubbles is
only slightly influenced by the flow, as long as the bubbles are smaller than the
superheated boundary layer. The heat transfer coefficient is a combination of two
parts

α2Ph = αB + αC , (4.156)

where αB is the heat transfer coefficient in boiling in free flow, section 4.2.6, and
αC is the heat transfer coefficient for forced flow, if only the liquid had been
flowing through the tube. This is calculated from the Colburn relationship for
heat transfer in a single-phase forced flow

Nu =
αCd

λL

= 0.023Re0.7Pr1/3 (4.157)

with the Reynolds number Re = ṁLd/ηL = ṁ(1−x∗)d/ηL and the Prandtl number
Pr = νL/aL of the liquid. In (4.156), the heat transfer by forced flow αC only
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amounts to a few percent of the total heat transfer. This calculation method does
not take into account the weak effect of the quality on the heat transfer in the
saturated boiling region, but reproduces measured values with sufficient accuracy.
More exact equations that take this effect into account have been communicated
by Chawla [4.88], as well as by Stephan and Auracher [4.89].

When vapour and liquid flow downwards in a vertical tube, the slip between
the two phases is reduced because of the buoyancy. This leads to a deterioration
in the heat transfer, and according to measurements made by Pujol [4.90] using
the refrigerant R113, the heat transfer coefficient αdown of the downward flow is
smaller by a factor 0.75 than that for upward flow αup

αdown = 0.75αup . (4.158)

The value αup can, for example, be calulated from (4.156).

Although in (4.156) no differentiation was made between vertical and hori-
zontal tubes, more recent measurements, by Steiner and colleagues [4.91], have
confirmed the expectation that in horizontal tubes the vapour and liquid are al-
ways non-symmetrically distributed, disregarding very high flow velocities. This
means that heat transfer in saturated boiling in vertical and horizontal tubes can-
not be calculated from unified equations. The upper side of a horizontal tube is
wetted less by the liquid than the lower side. This effect is especially noticeable
when the tube wall is thin and a poor conductor of heat, because the tempera-
tures over the perimeter are not as uniform as in thick walled tubes that conduct
heat well. The heat transfer coefficients are, therefore, variable in the flow di-
rection and over the perimeter. Local heat transfer measurements have not yet
been carried out. Only heat transfer coefficients averaged over the perimeter have
been measured by several authors. Steiner [4.91] has evaluated these and his own
data, and developed equations for the calculation of the heat transfer in horizon-
tal tubes with good and also with poor thermal conductivity. Further reference
should be made to the representation [4.91] in the VDI-Wärmeatlas. Information
about heat transfer in saturated boiling in inclined tubes and tube bends can also
be found in this publication.

The region of saturated boiling is followed by that of convective evaporation.
With the increasing vapour content the heat transfer from the wall to the fluid
improves. The thermal resistance of the boundary layer decreases in comparison
to the thermal resistances in nucleate boiling. Likewise, the wall temperature
drops, cf. Fig. 4.53, so that only a few or no bubbles are formed at the wall. The
heat transfer is predominantly or exclusively determined by evaporation at the
phase boundary between the liquid at the wall and the vapour in the core flow.

Of the many different methods for calculating heat transfer, that from Chen
[4.92] will be discussed here, as it was established with a model that is plausible
in physical terms. It also has the advantage that it is not only valid for convective
evaporation but also for saturated boiling. Similarly to saturated boiling, it is
assumed that the heat transfer coefficient is a combination of two parts which are
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independent of each other. These are the part associated with bubble formation
α′

B and that for convection α′
C:

α2Ph = α′
B + α′

C . (4.159)

The part α′
B emanating from the bubble formation is based on the heat transfer

coefficient αB in nucleate boiling in free flow. However because the temperature
rise in the boundary layer of a forced flow is steeper than in free flow nucleate
boiling, more heat will be released from the wall by conduction and the bubble
formation will be partially suppressed in comparison to that in free flow. Chen
accounted for this effect with a suppression factor S ≤ 1, which the heat transfer
coefficient αB in nucleate boiling in free flow is multiplied by, α′

B = SαB.
The factor S approaches one for vanishingly small mass flux, the heat transfer

coefficient α′
B is then the same as that in boiling in free flow. It approaches zero

at large mass flux because then the heat transfer is exclusively determined by the
convective part α′

C in (4.159).
The convective part α′

C of the heat transfer coefficient includes a contribution
for the heat transfer to the single-phase liquid. The rapidly flowing vapour and
the vapour bubbles that are still present mean that the heat transfer coefficient
αC of the single-phase forced liquid flow will be greater and has to be improved
by an enhancement factor F ≥ 1:

α′
C = FαC .

The factor F is principally determined by the shear stress exerted by the vapour
on the liquid and, as Chen showed, may be expressed by the Lockhart-Martinelli
parameter (4.153). With that equation (4.159) becomes

α2Ph = SαB + FαC . (4.160)

In the limiting case of S = F = 1, this equation converts into that for saturated
boiling, (4.156). The heat transfer coefficients αB for nucleate boiling in free flow
were taken by Chen from an equation from Forster and Zuber [4.93]. More recent
investigations [4.94], etc. showed however, that this gives somewhat inaccurate
results. It therefore seems more sensible to calculate αB using one of the formulae
from section 4.2.6.

The factor S in (4.160) depends on the mass flux of the liquid, and can be
expressed in terms of the fluid’s Reynolds number

Re = ṁ (1 − x∗) d/ηL .

Good agreement with known experimental data for vertical tubes is obtained
[4.95], if the factors S and F in (4.160) are calculated with the following correla-
tions

S =
(
1 + 1.15 · 10−6F 2Re1.17

)−1
, (4.161)

F = 1 + 2.4 · 104Bo1.16 + 1.37X−0.86
tt (4.162)
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with Bo = q̇/ṁ∆hv, Re = ṁ(1− x∗)d/ηL and the Lockhart-Martinelli parameter
Xtt. The mean deviation in the heat transfer coefficient α2Ph, from around 4300
measured values which were used in setting up (4.161) and (4.162), amounts to
±21.4%.

For convective evaporation in the annular space between two tubes heated from
only one side, an equivalent diameter, de, has to be introduced. It is given by

de = 4A/Cw

for annular gaps over 4 mm and by

de = 4A/Ch

for annular gaps less than 4 mm. A is the flow cross section, Cw the wetted and
Ch the heated circumference.

Calculation procedure
In the calculation of the heat transfer coefficient according to (4.160) from Chen
it is sensible to take the following steps:

– The Lockhart-Martinelli parameter should be determined first

Xtt =
(

1 − x∗

x∗

)0.9
(

ηL

ηG

)0.1 (
�G

�L

)0.5

.

– The heat transfer coefficient αB in nucleate boiling, for the given heat flux
q̇ is then found using the formulae presented in section 4.2.6. Likewise the
factors S and F are then calculated from (4.161) and (4.162).

– With these values the heat transfer coefficient α2Ph according to (4.160) is
fixed and then the wall temperature ϑ0 = ϑs + q̇/α2Ph can be determined.

4.2.8.7 Critical boiling states

As has already been explained in connection with boiling in free flow, the heat
transfer coefficient falls quickly once a maximum heat flux has been exceeded.
The liquid at the wall is displaced by vapour. If the surface is heated electrically,
by nuclear heating or thermal radiation, then the wall temperature rises rapidly
after the maximum heat flux has been reached. If in contrast, the wall tempera-
ture is determined by another fluid, such as in a heat exchanger or condenser, a
small increase in the temperature leads to a drastic fall in the heat flux. These
occurrences come together under the term of critical boiling states. This is under-
stood to be a reduction in the heat transfer coefficient after a critical heat flux
is exceeded. In general for the case of boiling in forced convection this is not
identical to the maximum heat flux in free flow and can, as the following explains,
be caused by different mechanisms. Therefore we speak of critical heat flux to
distinguish it from the maximum heat flux in free flow boiling.
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The phenomena that are observed in free flow also appear in forced flow, but
are more complex. There are two fundamental types of boiling crisis:

a) With small volumetric vapour content film boiling occurs. The liquid is
the continuous phase, and once a critical heat flux has been reached, a
vapour film forms at the wall that separates the liquid from the hot wall.
The higher thermal resistance of the vapour film leads to a drop in the
heat flux if the wall temperature is imposed, or to an increase in the wall
temperature if the heat flux is stipulated. The critical heat flux is larger,
the smaller the volumetric vapour content.

b) With a larger volumetric vapour content annular flow develops. At the
wall there is chiefly liquid present, and in the core the vapour forms a
continuous phase. Once the critical heat flux has been reached the liquid
film disappears at the wall and this becomes covered by vapour. This is
known as dryout.

If the vapour content is sufficiently large the heated surface drys out at very
low heat flux. Downstream, small liquid drops can reach the heated surface from
the core flow, and because of the low heat flux they are only partially vaporized.
This type of dryout with subsequent spray cooling of the wall with liquid droplets
is called “deposition controlled burnout”.

Fig. 4.54 illustrates both types of critical boiling, namely film boiling and
dryout. A qualitative diagram of the change in the critical heat flux with the
quality is presented in Fig. 4.55.

Fig. 4.54: Types of boiling crisis. a film
boiling; b dryout

Fig. 4.55: Critical heat flux as a function of
quality

In the film boiling region, the critical heat flux decreases approximately linearly
with the quality. In dryout the critical heat flux drops markedly with the quality.
It is only at high quality in a dryout region with subsequent spray cooling that it
falls weakly with the quality.
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A lower limit for the critical heat flux can be found from the energy balance

q̇dπz = ṀcpL [ϑL(z) − ϑ1] = α dπz [ϑ0 − ϑL(z)] ,

where ϑ1 is the inlet temperature. From this follows

ϑ0 = ϑL(z) +
q̇

α
= ϑ1 +

q̇ dπz

ṀcpL

+
q̇

α

or

q̇ =
ϑ0 − ϑ1

dπz

ṀcpL

+
1

α

.

As the wall temperature is significantly greater than the saturation temperature once the critical
heat flux has been reached, then the lower limit for the critical heat flux is

q̇cr >
ϑs − ϑ1

dπz

ṀcpL

+
1

α

=
∆ϑu

dπz

ṀcpL

+
1

α

, (4.163)

where ∆ϑu is the subcooling of the liquid at the inlet.

Using this in the example of water with an initial subcooling of ∆ϑu = 50K, mass flux
ṁ = 1000kg/m2s and specific heat capacity cpL = 4.186 kJ/kgK, which boils in a 1 m long tube
of d = 25mm inner diameter, assuming the heat transfer coefficient is α = 10000W/m2K, the
critical heat flux has to be

q̇cr > 3.62 · 105 W/m
2

.

Even when the critical heat flux is reached not all the liquid is vaporized. Therefore an
upper limit for the critical heat flux is obtained, which is necessary for complete evaporation of
the liquid. Once again this is found from an energy balance

q̇dπz = Ṁ (h′′ − h1) = Ṁ(∆hv + h′ − h1) .

Substituting in

Ṁ(h′ − h1) = ṀcpL∆ϑu ,

where cpL is the mean specific heat capacity between the inlet temperature ϑ1 and the boiling
temperature ϑs, gives, because q̇cr < q̇:

q̇cr <
Ṁ∆hv

dπz

(
1 +

cpL∆ϑu

∆hv

)
. (4.164)

With the data from the example above and an enthalpy of vaporization of 2100 kJ/kg we have

q̇cr < 1.4 · 107 W/m2 ,

so that, for the example, the critical heat flux has to lie between 3.62 · 105 and 1.4 · 107 W/m2.
In view of the large number of empirical methods for the calculation of the critical heat flux and
the many influential quantities upon which this depends, it is recommended that the interval
in which the critical heat flux must lie is estimated. Application formulae for the calculation of
the critical heat flux can be found in the relevant literature, e.g. [4.50] p. 215.
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4.2.8.8 Some empirical equations for heat transfer in two-phase flow

In the following the equations presented previously for heat transfer in two-phase
flow shall be summarised and supplemented by further equations.

1. Subcooled boiling
According to [4.96], bubble growth begins when the wall is superheated to
a certain critical value with respect to the boiling point:

(ϑ0 − ϑs)cr = 2

(
2 q̇ σTs

�′′∆hvλL

)1/2

.

For water, this gives the dimension equation [4.97]

(ϑ0 − ϑs)cr =
5

9

⎡⎣( q̇

1120 W/m2

)0.436

p0.535

⎤⎦p0.0234

valid for 1.03 bar ≤ p ≤ 138 bar, with q̇ in W/m2, p in bar and (ϑ0 − ϑs)cr

in K. Both equations presume a minimum roughness of the heated surface.
The radius of the opening of the smallest pore required for bubble formation
is

(r0)cr =

(
2σTs λL

�′′∆hv q̇

)1/2

.

The transferred heat flux in the subcooled boiling region follows from

q̇ = q̇B + q̇C = αB (ϑ0 − ϑs) + αC (ϑ0 − ϑL) .

Here αB is the heat transfer coefficient for nucleate boiling from section
4.2.6, αC is that by forced, single phase flow, sections 3.7.4, page 338, and
3.9.3, page 384, ϑL is the adiabatic mixing temperature of the liquid.

2. Saturated boiling
Subcooled boiling changes to saturated boiling when the quality, according
to (4.116), is x∗

th = 0. Heat transfer is strongly dependent on the heat flux,
but weakly dependent on the mass flux and the quality; it holds that

α2Ph = αB + αC .

Here αB is the heat transfer coefficient for nucleate boiling from section
4.2.6 and αC is that for forced, single phase flow, sections 3.7.4, page 338,
and 3.9.3, page 384.

3. Convective boiling in vertical tubes
Heat transfer is highly dependent on the mass flux and the quality, but
only shows weak dependence on the heat flux. It holds that

α = SαB + FαC .
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Here αB is the heat transfer coefficient for nucleate boiling from section
4.2.6, and αC is that for forced, single phase flow, sections 3.7.4 and 3.9.3
The special case of S = F = 1 in saturated boiling heat transfer is in-
cluded in the equations above. The factors S (suppression factor) and F
(enhancement factor) are yielded from

S = (1 + 1.15 · 10−6F 2Re1.17)−1

F = 1 + 2.4 · 104Bo1.16 + 1.37X−0.86
tt

with

Bo = q̇/ṁ∆hv , Re = ṁ(1 − x∗)d/ηL

and

Xtt =
(

1 − x∗

x∗

)0.9
(

ηL

ηG

)0.1 (
�G

�L

)0.5

.

4. Convective evaporation in horizontal tubes
Under the influence of gravity the liquid predominantly collects at the
bottom of the tube, assuming the axial velocity is not too great, whilst the
top of the tube is barely or not wetted. Stratified flow exists if the Froude
number is

Fr = ṁ2/(�2
L gd) < 0.04 ;

at large Froude numbers, the influence of gravity is negligible. Annular
flow occurs, and the equation in 3 for a vertical tube is valid. In stratified
flow, according to Shah et al. [4.98], [4.99] it holds that:

α2Ph

αC

= 3.9Fr0.24
(

x∗

1 − x∗

)0.64
(

�L

�G

)0.4

with

αC =
λL

d
0.023

(
ṁ (1 − x∗)

ηL

)0.8

Pr0.4 .

4.2.9 Heat transfer in boiling mixtures

In industrial processes liquid mixtures of two or more components often have to be
vaporized in order to separate the components from each other. Examples of this
include concentrating solutions, the recovery of solvents, distillation of sea water
to gain drinking water or the separation of substances by boiling in distillation.
Heat and mass transfer are closely linked with each other in evaporation, and
the amount of vapour generated will, in contrast to the evaporation of pure sub-
stances, be determined by the mass transfer. It is known from earlier experiments
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Fig. 4.56: Heat transfer coefficients in
boiling ethanol-water. ỹ mole fraction of
ethanol in the vapour; x̃ mole fraction of
ethanol in the liquid

that the heat transfer coefficients in the evaporation of mixtures can be consid-
erably smaller than those for the pure components of the mixture. On the other
hand, significant improvements in heat transfer have been noticed when one of
the components in the mixture was very surface active. This leads to a reduction
in the surface tension, and with that a larger bubble density, as was explained
in section 4.2.2. At the same time the bubble frequency and therefore the heat
transfer increase. However, mixtures of organic and inorganic liquids only contain
surface active components in certain cases, (soap, addition of wetting media), so,
in general, a reduction in the heat transfer coefficient in comparison to those for
the pure components should be reckoned with. In order to explain the fundamen-
tal phenomena we will only consider here the heat transfer in boiling of a binary
mixture in free flow.

A large number of binary mixtures of organic liquids and of water with organic
liquids were first investigated by Bonilla and Perry [4.100]. In Fig. 4.56 the heat
transfer coefficients found from their measurements with an ethanol-water mixture
are presented along with the results from Preußer [4.101]. Heat flux and pressure
are indicated in the diagram. As we can see, the heat transfer coefficients α of
the mixture are noticeably smaller than the values αid, which would be obtained,
if we had interpolated linearly between the heat transfer coefficients of the pure
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components. A significant reduction of the heat transfer coefficient in the region
where a large difference exists between the vapour and fluid composition ỹ − x̃
can also be seen from a comparison with the curve in Fig. 4.56.

This decrease in the heat transfer in a region of large difference between vapour
and liquid composition can be observed in many mixtures. It can be explained
by the fact that during the formation of vapour bubbles the individual compo-
nents convert in different fractions from liquid to vapour. The more the vapour is
enriched by the more volatile components, the lower the fraction of these compo-
nents in the vicinity of the vapour bubble. This means that we have to distinguish
between processes close to the wall and those in the core of the liquid. At the
heated surface the vapour bubbles form at preferred places, which are suitable for
the nucleation. The bubbles grow as a result of the heat input, until the buoy-
ancy forces are large enough so that the bubble detaches from the surface. As
the departure diameter is relatively small, only a part of the heat input serves for
the bubble formation at the wall. Another part of the heat flow is released by
the heated surface into the liquid and serves at the surface of bubbles inside the
liquid for further vapour formation. The hot wall thereby delivers the necessary
nuclei for nucleate boiling and also releases heat into the liquid boundary layer,
which is transmitted by convection or conduction via the liquid columns, to the
vapour bubbles. This process is no different for mixtures than for pure substances.
However there are basic differences with respect to the heat transport to the ris-
ing bubbles, because the heat transport in mixtures is also determined by mass
transfer.

The influence of the composition of the mixture on the heat transfer is shown
in the following diagrams taken from a paper by Stephan and Körner [4.102]. In
a mixture that in a certain region shows large differences between vapour and
liquid composition, as indicated by the boiling diagram Fig. 4.57 for an aceton/n-
butanol mixture ((CH3)2CO/C4H9OH), the heat transfer is considerably reduced.
This can be seen in Fig. 4.58, in which the heat transfer coefficient is plotted
against the composition. Where the difference ỹ− x̃ is largest, the greatest fall in
the heat transfer coefficient exists.

This is particularly conspicuous in boiling mixtures that contain an azeotropic
point. With regard to this we will consider a methanol/benzene mixture (CH3OH/
C6H6), Fig. 4.59 and Fig. 4.60. The mixture shows a sharp reduction in heat
transfer in the region of large differences ỹ − x̃. Towards the azeotropic point
the heat transfer increases again. In the vicinity of an azeotropic point the heat
transfer coefficient decreases. Obviously it is not the sign of the difference ỹ − x̃,
but its absolute value that is decisive.

Two methods have proved themselves in the reproduction of heat transfer
measurements. One starts from empirical correlations for the pure substances.
These correlations normally contain dimensionless numbers, that now have to be
formed with the properties of the binary mixture. The reduction in heat transfer
because of inhibited bubble growth caused by diffusion is taken into account by
the introduction of an extra term. This type of equation has been presented by
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Fig. 4.57: Boiling diagram acetone/n-
butanol. Solid line: mole fraction x̃ of the
more volatile component in the liquid; dot-
ted line: mole fraction ỹ of the most volatile
component in the vapour

Fig. 4.58: Heat transfer coefficient α for an
acetone/n-butanol mixture. Heat flux q̇ =
105 W/m2

Preußer [4.101]

α = α0

[
1 +

∣∣∣∣(ỹ − x̃)

(
∂ỹ

∂x̃

)
p

∣∣∣∣
]−0.0733

, (4.165)

in which the heat transfer coefficient α0 is calculated from (4.96) established for
pure substances. The property data for the mixture should be used for this case.
Equation (4.165) is based on measurements at ambient pressure, and so is only
valid for that.

As Preußer showed a considerable fraction of the reduction in heat transfer
compared to pure substances is caused by the change in the thermal properties,
whilst the additional term in the square brackets provides a comparatively small
contribution. For most hydrocarbon mixtures and those of hydrocarbons with
water it lies between 0.8 and almost 1. All the other methods and models presented
in the following are used to avoid the extensive calculations of the property data
for the mixture.

One of these correlations, which avoids the difficult and time consuming cal-
culation of the properties of the mixture, has been suggested by Stephan and
Körner [4.102]. It is based on the fact that the transfer of a given heat flux to
the mixture, requires a larger superheating of the wall ∆ϑ = ϑ0 − ϑs, than in the
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Fig. 4.59: Boiling diagram methanol/ben-
zene. Solid line: mole fraction x̃ of the most
volatile component in the liquid; dashed line:
mole fraction ỹ of the most volatile compo-
nent in the vapour

Fig. 4.60: Heat transfer coefficient α for
the methanol/benzene mixture. Heat flux
q̇ = 105 W/m2

vaporization of the pure substances. The saturation temperature ϑs here is the
boiling temperature of the mixture at the mean composition x̃ of the liquid. In
order to calculate the superheat, an “ideal” wall superheat ∆ϑid is defined by

∆ϑid := x̃1∆ϑ1 + x̃2∆ϑ2 , (4.166)

wherein the temperature differences ∆ϑ1 and ∆ϑ2 between the wall and saturation
temperature are yielded from the heat transfer coefficients α1 and α2 of the pure
substances 1 and 2 at the heat flux q̇ of the mixture, in accordance with

∆ϑ1 = q̇/α1 and ∆ϑ2 = q̇/α2

and can also be calculated with, for example, the aid of (4.96). According to
(4.166) the driving temperature differences that would be yielded from the va-
porization of the pure substances, are added together corresponding to the mole
fractions of the two components. The actual driving temperature difference ∆ϑ is
different from the ideal value ∆ϑid by an extra temperature difference ∆ϑE. We
put

∆ϑ = ∆ϑid + ∆ϑE or ∆ϑ = ∆ϑid(1 + θ) (4.167)

with
θ = ∆ϑE/∆ϑid .
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The dimensionless extra term θ principally depends on the difference between
the vapour and liquid compositions and is always positive, due to the reduction
in heat transfer in the mixture. Experiments with numerous mixtures yielded a
linear relationship

θ = K12 |ỹ − x̃| , (4.168)

where K12 is a positive number, virtually independent of the composition. K12

can also be interpreted as a binary interaction parameter, that has to be found for
each mixture at every pressure. In the pressure range between 1 and 10 bar, the
pressure dependence of K12 can be represented approximately by the empirical
equation

K12 = K0
12 (0.88 + 0.12 p/p0) (4.169)

with p0 = 1 bar. The value K0
12 is different for each mixture, but is independent of

pressure. A good mean value for binary mixtures of organic liquids and of water
with organic liquids is K0

12 = 1.4.

4.3 Exercises

4.1: Saturated steam at a pressure of 0.101325 MPa condenses on a horizontal tube of
25 mm outer diameter and a wall temperature of 60 ◦C. Estimate by what factor the
accumulated condensate is reduced, if the steam is mixed with 10 mass-% = 6.47 mol %
air at the same total pressure of 0.101325 MPa.
The following property data are given for water at the saturation temperature of 100 ◦C:
liquid density �L = 958.1 kg/m3, vapour density �G = 0.5974 kg/m3, enthalpy of vapor-
ization ∆hv = 2257.3 kJ/kg, liquid thermal conductivity λL = 0.677 W/K m, dynamic
viscosity of the liquid ηL = 0.2822 · 10−3 kg/s m, specific heat capacity of the steam-air
mixture cpG = 1.93 kJ/kgK. Further, the heat transfer coefficient between the steam-air
mixture and the condensate film is αG = 30 W/m2K.

4.2: A horizontal, electrically conductive, cylindrical metal rod of 5 mm diameter, 0.5 m
length and a surface temperature of 300 ◦C is placed in a boiling water bath at 100 ◦C.
Calculate the thermal power of the rod.
The following material data are given: density of the boiling water at 100 ◦C: �L =
958.1 kg/m3, enthalpy of vaporization ∆hv = 2257.3 kJ/kg, density of steam at 300 ◦C:
�G = 46.255 kg/m3, specific heat capacity cpG = 6.144 kJ/kgK, thermal conductivity
λG = 0.0718 W/K m, kinematic viscosity νG = 0.427 · 10−6 m2/s, emissivity ε0 = εL = 1.

4.3: In a process at a chemical plant, steam at 0.25 MPa is to be generated in a steam
generator. This generator is a horizontal tube bundle, 25 kg/s of a heat carrying oil is
flowing through the tubes. The oil is to be cooled from 200 ◦C to 150 ◦C. The water will
evaporate on the outside of the tubes. The heat transfer coefficient between the oil and the
wall is αi=700 W/m2K. The thermal resistance of the tube wall may be neglected. The
water enters the generator at approximately its boiling temperature. How much steam can
be produced per hour? What is the area of the steam generator? The following values are
given: specific heat capacity of the heat carrying oil cpoil=2.4 kJ/kgK, boiling temperature
of water at 0.25 MPa: ϑs=127.4 ◦C, enthalpy of vaporization ∆hv=2160 kJ/kg.
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4.4: A vertical, 3.5 m long evaporator tube of 12 mm internal diameter has water flowing
through it from bottom to top. The water enters the tube at a pressure of 5.5 MPa,
subcooled with a temperature ϑi = 210 ◦C. It is initially heated to the saturation
temperature and then partly vaporized. The tube is heated with a constant heat flux
q̇ = 7.58 · 105 W/m2. Calculate

a) the tube length at which the water reaches the saturation temperature at its centre
and

b) the vapour content at the oulet.

The following data are given: saturation temperature ϑs(5.5 MPa) = 269.9 ◦C ≈ 270 ◦C,
enthalpies: h1(210

◦C; 5.5 MPa) = 940 kJ/kg, h′(270 ◦C) = 1184.5 kJ/kg, enthalpy of
vaporization ∆hv= 1605 kJ/kg; density of the saturated liquid �′(270 ◦C) = 768.0kg/m

3
,

density of the saturated vapour �′′(270 ◦C) = 28.07kg/m3 . The calculations may be done
with constant densities. Mass flux of water ṁ = 103 kg/m2s.

4.5: Calculate the frictional pressure drop in the evaporation zone of the evaporator tube
in exercise 4.4.
The friction factor is ζL= 0.038, the dynamic viscosities are ηL = 97.4 · 10−6 kg/sm and
ηG = 18.38 ·10−6 kg/sm. Both phases are flowing turbulently. The saturation temperature
is reached in the centre at a length ∆z = 0.97 m.

4.6: Water at a temperature of ϑ1 = 250 ◦C and a pressure of 6 MPa (associated saturation
temperature ϑs = 275.56 ◦C), flows into a vertical steel tube of internal diameter 20 mm.
The mass flux is ṁ = 1000 kg/m2s. The heat flux, due to the condensing steam on the
outside of the tube, is approximately constant and amounts to q̇ = 8 · 105 W/m2.

a) How long does the tube have to be, if the quality at the outlet is to be x∗ = 0.25? The
pressure drop can be disregarded in this case.

b) What is the temperature of the wall at the outlet, under the assumption that the
pressure drop is 500 hPa?

The following data are given: liquid density �L = 758.3 kg/m3, vapour density �G =
30.85kg/m3 , dynamic viscosity of the liquid ηL = 97.7 · 10−6 kg/s m, dynamic viscos-
ity of the vapour ηG = 18.45 · 10−6 kg/sm, Prandtl number of the liquid PrL = 0.875,
thermal conductivity of the liquid λL = 0.581 W/K m, specific enthalpy at the inlet
h1 = 1085.8 kJ/kg, of the saturated liquid h′(6MPa) = 1213.7kJ/kg, of the saturated
vapour h′′(6MPa) = 2785.0kJ/kg, pcr = 22.064 MPa, CW = (bsteel/bcu)1/2 = 0.616.
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Thermal radiation differs from heat conduction and convective heat transfer in
its fundamental laws. Heat transfer by radiation does not require the presence of
matter; electromagnetic waves also transfer energy in empty space. Temperature
gradients or differences are not decisive for the transferred flow of heat, rather the
difference in the fourth power of the thermodynamic (absolute) temperatures of
the bodies between which heat is to be transferred by radiation is definitive. In
addition, the energy radiated by a body is distributed differently over the single
regions of the spectrum. This wavelength dependence of the radiation must be
taken as much into account as the distribution over the different directions in
space.

In the first section the physical quantities, which are necessary for the formu-
lation of the laws of thermal radiation, will be introduced. These laws also have
to cover the directional and wavelength dependence of the radiant energy. The
second section is devoted to the ideal radiator, the black body. The discovery of
the laws governing black body radiation by M. Planck (1900) stands at the origin
of modern physics, namely quantum theory. The third section is a discussion of
the properties and material laws for real radiators. In section 5.4 we will deal
with solar radiation and how it is weakened on passing through the Earth’s at-
mosphere. The following section concerns heat transfer between radiating bodies,
so-called radiative exchange. The final section in this chapter offers an introduc-
tion to gas radiation which plays an important role in heat transfer in furnaces
and combustion chambers.

5.1 Fundamentals. Physical quantities

As the laws for thermal radiation are different to those valid for heat conduction
and convective heat transfer, the essential terms and physical quantities, from
which the thermal radiation laws are formulated, are introduced in the following
sections.
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5.1.1 Thermal radiation

All the considerations that follow are only valid for radiation that is stimulated
thermally. Radiation is released from all bodies and is dependent on their material
properties and temperature. This is known as heat or thermal radiation. Two
theories are available for the description of the emission, transfer and absorption of
radiative energy: the classical theory of electromagnetic waves and the quantum
theory of photons. These theories are not exclusive of each other but instead
supplement each other by the fact that each describes individual aspects of thermal
radiation very well.

According to quantum theory, radiation consists of photons (= light particles),
that move at the velocity of light and have no rest mass. They transfer energy,
whereby each photon transports the energy quantum

ePh = h ν .

Here, h = (6.626 068 76±0.000 000 52)·10−34 J s is the Planck constant, also known
as Planck’s action quantum; ν is the frequency of the photons. Quantum theory
is required to calculate the spectral distribution of the energy emitted by a body.
Other aspects of heat transfer can, in contrast, be covered by classical theory,
according to which the radiation is described as the emission and propagation of
electromagnetic waves.

Electromagnetic waves are transverse waves that oscillate perpendicular to the
direction of propagation. They spread out in a straight line and in a vacuum at
the velocity of light c0 = 299 792 458 m/s. Their velocity c in a medium is lower
than c0, whilst their frequency ν remains unchanged; the ratio n := c0/c > 1 is
the refractive index of the medium. The wavelength λ is linked to the frequency
ν by

λ · ν = c .

The energy transported by the electromagnetic waves depends on λ. This also
has to be considered for heat transfer.

Fig. 5.1 shows the electromagnetic spectrum that extends from λ = 0 to
very large wave lengths (λ → ∞). At small wave lengths (λ < 0.01 µm) we
have gamma-rays and x-rays, neither of which are thermally stimulated and so
therefore do not belong to thermal radiation. The same is true for the region
of large wavelengths, (λ > 103 µm), that is determined by the oscillations of
electronic switching networks (radar, television and radio waves). Neither region
has any meaning for thermal radiation. The thermal radiation region is the middle
of the range of wavelengths between around 0.1 µm and 1000 µm. Within this
region bodies, whose temperatures lie between a few Kelvin and 2 ·104 K, radiate.
This includes the visible light region between 0.38 µm (violet) and 0.78 µm (red).
The designation of this radiation as light has no physical reason, but instead is
based on the peculiarity that the human eye can “see” in this wavelength range.
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Fig. 5.1: Electromagnetic wave spectrum

The wavelength interval 0.01 µm ≤ λ ≤ 0.38 µm is the range of ultraviolet (UV)
radiation. Between 0.78 µm and 1000 µm lies infrared (IR) radiation. This is the
wavelength range in which most earthly bodies radiate.

The limits for thermal radiation at λ = 0.1 µm and λ = 1000 µm are somewhat arbitrary.
Very hot bodies, e.g. stars, also radiate in the region λ < 0.1 µm. However they only release
more than a few percent of their energy in this region if their temperature lies above 15000 K.
Thermal radiation can also be emitted in the range λ > 1000 µm. If this is to make up more
than a few percent of the total radiation, then the radiator has to be colder than around 12 K.
An ideal radiator, the so-called black body, cf. section 5.2, at the temperature of boiling helium
(4.22 K) has its maximum emission at λ = 686 µm, and in the wavelength region λ > 1000 µm
more than 30% of the total radiation will be emitted.

Thermal radiation is not only dependent on the wavelength; in numerous prob-
lems, particularly in radiative exchange between different bodies, its distribution
in space must also be considered. This holds for the emission of radiative energy
in the same way as for reflection and absorption of radiation incident on a body.
This double dependency — on the wavelength and the direction in space — makes
the quantitative description of heat radiation quite complicated. It requires four
different types of physical radiation quantities:

– Directional spectral quantities. These describe the directional and wave-
length distribution of the radiative energy in a detailed manner. They are
of fundamental meaning, but are very difficult to determine experimentally
or theoretically. This is why we frequently employ radiation quantities that
only include one effect, either the dependence on the wavelength or the di-
rection.

– Hemispherical spectral quantities average the radiation into all directions
of the hemisphere over a surface element and so are only dependent on the
wavelength.

– Directional total quantities average the radiation over all wavelengths and
describe the dependence on the directions in the hemisphere.

– Hemispherical total quantities combine the radiation over all wavelengths
and from all directions. They do not provide information on the spec-
tral distribution and the directional dependence of the radiation; but are
frequently sufficient to provide the solution to radiative heat transfer prob-
lems.
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This variety of physical quantities of radiation with their different significations
causes some difficulties for the beginner, even though exact relationships exist
between the four groups. The fundamental directional spectral quantities are
used to calculate the other three by integration over the wavelength or over all
the solid angles in the hemisphere, or finally over the two independent variables.
In the following sections these four groups of quantities and their relationships for
the specific cases of emission of radiation, the irradiation of an area, as well as the
absorption and reflection of radiative energy, will be dealt with. All these cases
are based on the same train of thought, only the expressions and the symbols
are different. It is, therefore, sufficient to discuss the emission of radiation in
depth, whilst limiting ourselves to the exact definitions of the quantities and the
establishment of the associated equations for the other cases.

5.1.2 Emission of radiation

By the emission of thermal radiation, internal energy of the emitting body is
converted into energy of the electromagnetic waves or, in the language of quantum
theory, the energy of photons, which leave the surface of the radiating body. In
this emission process the atoms or molecules of the body change from a state of
higher energy to one of lower energy. However we do not need to go into these
intramolecular processes for the formulation of the important phenomenological
laws of heat transfer.

Matter emits radiation in all its aggregate states. In gases or solids which
allow radiation go through (e.g. glass), the radiation emitted from a finite volume
is the combination of the local emissions within the volume being considered. We
will come back to a discussion of these volumetric emissions in section 5.6. In
most solids and liquids the radiation released from molecules within the body is
strongly absorbed by neighbouring molecules, so that it cannot reach the sur-
face. Therefore, the radiation emitted by solids and liquids comes normally from
molecules in a layer immediately below the surface. As the thickness of this layer
only amounts to around 1 µm the emission can be associated with the surface,
and we speak of radiating surfaces rather than radiating bodies.

5.1.2.1 Emissive power

We consider an element of the surface of a radiating body, that has a size of dA.
The energy flow (heat flow) dΦ, emitted into the hemisphere above the surface
element, is called radiative power or radiative flow, Fig. 5.2. Its SI-unit is the
Watt. The radiative power divided by the size of the surface element

M := dΦ/dA (5.1)
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Fig. 5.2: Radiation flow dΦ,
emitted from a surface element

is called the (hemispherical total) emissive power. This is the heat flux released
by radiation; the SI units for M are the same as the SI units for q̇, i.e. W/m2.
The emissive power M belongs to the group of hemispherical total quantities, as it
combines the radiation energy emitted over the total range of wavelengths and into
all the directions of the hemisphere. M is a property of the radiator; it changes
above all with the thermodynamic temperature of the radiator, M = M(T ), and
depends on the nature of its surface.

5.1.2.2 Spectral intensity

We will now investigate how the emitted radiation dΦ is distributed over the
spectrum of wavelengths and the directions in the hemisphere. This requires the
introduction of a special distribution function, the spectral intensity Lλ. It is a
directional spectral quantity, with which the wavelength and directiondistribution
of the radiant energy is described in detail.

A certain direction in space is determined by two angular coordinates β and ϕ,
Fig. 5.3. β is the polar anglemeasured outwards from the surface normal (β = 0)
and ϕ is the circumferential angle with an arbitrarily assumed position for ϕ = 0.
The radiative flux, that falls on a small area dAn at a distance r from the surface
element dA, perpendicular to the radiation direction, Fig. 5.4, is proportional to
the solid angle element

dω = dAn/r
2 . (5.2)

The small area dAn in Fig. 5.4 and with that the solid angle element dω result

Fig. 5.3: Spherical coordinates of the
point P: distance from origin r, polar
angle β, circumferential angle ϕ

Fig. 5.4: Radiative flux d2Φ′ into a solid angle
element dω in the direction of the polar angle β
and the circumferential angle ϕ
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Fig. 5.5: Projection dAp of the surface element
dA perpendicular to the radiation direction

from the fact that the polar angle β changes by dβ and the circumferential angle
ϕ by dϕ. So dAn = r dβ · r sin β dϕ = r2 sin β dβ dϕ, and we obtain for the solid
angle element

dω = sin β dβ dϕ . (5.3)

The solid angle indicates the contents of a cone shaped section, whereby the apex of the
cone coincides with the vertex of the solid angle. If a sphere of any radius R is placed around
the vertex, the surface of the cone cuts an area of AK out of the surface of the sphere. The size
of the solid angle is defined by

ω = AK/R2 ,

cf. DIN 1315 [5.1]. The solid angle units are m2/m2 and are called stere radians (unit symbol
sr). They may also be replaced by the number 1.

Now d3Φ signifies the radiative flow that the surface element dA emits into a
solid angle element dω, that lies in the direction indicated by β and ϕ; additionally
d3Φ contains only a part of this radiative flux that is emitted at a certain wave
length λ, in an infinitesimal wave length interval dλ. This restriction of the
radiative flux to a solid angle element and a wavelength interval serves to describe
the directional and wavelength dependence of the radiant energy. The following
formulation can be made for d3Φ

d3Φ = Lλ (λ, β, ϕ, T ) cos β dA dω dλ . (5.4)

This is the defining equation for the fundamental material function Lλ, the spectral
intensity; it describes the directional and wavelength dependence of the energy
radiated by a body and has the character of a distribution function. The (ther-
modynamic) temperature T in the argument of Lλ points out that the spectral
intensity depends on the temperature of the radiating body and its material prop-
erties, in particular on the nature of its surface. The adjective spectral and the
index λ show that the spectral intensity depends on the wavelength λ and is a
quantity per wavelength interval. The SI-units of Lλ are W/(m2µm sr). The units
µm and sr refer to the relationship with dλ and dω.

The factor cos β that appears in (5.4) is a particularity of the definition of
Lλ: the spectral intensity is not relative to the size dA of the surface element
like in M(T ), but instead to its projection dAp = cos β dA perpendicular to the
radiation direction, Fig. 5.5. It complies with the geometric fact that the emission
of radiation for β = π/2 will be zero and will normally be largest in the direction
of the normal to the surface β = 0. An area that appears equally “bright” from
all directions is characterised by the simple condition that Lλ does not depend on



5.1 Fundamentals. Physical quantities 509

β and ϕ. This type of surface with Lλ = Lλ(λ, T ) is known as a diffuse radiating
surface, cf. 5.1.2.4.

5.1.2.3 Hemispherical spectral emissive power and total intensity

The spectral intensity Lλ(λ, β, ϕ, T ) characterises in a detailed way the depen-
dence of the energy emitted on the wavelength and direction. An important task
of both theoretical and experimental investigations is to determine this distribu-
tion function for as many materials as possible. This is a difficult task to carry
out, and it is normally satisfactory to just determine the radiation quantities that
either combine the emissions into all directions of the hemisphere or the radiation
over all wavelengths. The quantities, the hemispherical spectral emissive power
Mλ and the total intensity L, characterise the distribution of the radiative flux
over the wavelengths or the directions in the hemisphere.

The hemispherical spectral emissive power Mλ(λ, T ) is obtained by integrating
(5.4) over all the solid angles in the hemisphere. This yields

d2Φ = Mλ(λ, T ) dλ dA (5.5)

with

Mλ(λ, T ) =
∫
��

Lλ(λ, β, ϕ, T ) cos β dω . (5.6)

Here d2Φ is the radiation flow emitted from the surface element dA in the wave-
length interval dλ into the hemisphere. The symbol ��in (5.6) signifies that
the integration should be carried out over all the solid angles in the hemisphere.
The hemispherical spectral emissive power Mλ(λ, T ) with the SI-units W/m2µm
belongs to the hemispherical spectral quantities; it represents the wavelength dis-
tribution of the emissive power, Fig. 5.6. The area under the isotherm of Mλ(λ, T )
in Fig. 5.6 corresponds to the emissive power, because integration of (5.5) over all
the wavelengths leads to

dΦ =

∞∫
0

Mλ(λ, T ) dλ dA , (5.7)

from which, due to (5.1)

M(T ) =

∞∫
0

Mλ(λ, T ) dλ (5.8)

follows.
The integration in (5.6) over all the solid angles of the hemisphere corresponds

to a double integration over the angular coordinates β and ϕ. With dω according
to (5.3) we obtain

Mλ(λ, T ) =

2π∫
ϕ=0

π/2∫
β=0

Lλ(λ, β, ϕ, T ) cos β sin β dβ dϕ . (5.9)
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Fig. 5.6: Hemispherical spectral emissive power Mλ(λ, T ) as a function of
wavelength λ at constant temperature T (schematic). The hatched area under
the curve represents the emissive power M (T )

In most cases, the spectral intensity Lλ only depends on the polar angle β and
not on the circumferential angle ϕ. We then obtain the more simple relationship

Mλ(λ, T ) = 2π

π/2∫
0

Lλ(λ, β, T ) cos β sin β dβ . (5.10)

The directional distribution of the emission integrated over all the wave lengths
is described by the total intensity L(β, ϕ, T ). This is found by integrating (5.4)
over λ, yielding

d2Φ′ = L(β, ϕ, T ) cos β dω dA (5.11)

with the total intensity

L(β, ϕ, T ) =

∞∫
0

Lλ(λ, β, ϕ, T ) dλ . (5.12)

Here d2Φ′ is the radiation flow emitted by the surface element into the solid angle
element dω in the direction of the angle β and ϕ. The total intensity L has units
W/m2 sr; it belongs to the directional total quantities and represents the part of
the emissive power falling into a certain solid angle element.

If we integrate (5.11) over all the solid angles in the hemisphere then we obtain
the radiation flow dΦ, emitted by the surface element in the entire hemisphere:

dΦ =
∫
��

L(β, ϕ, T ) cos β dω dA . (5.13)

A comparison with (5.1) shows that the emissive power M(T ) according to

M(T ) =
∫
��

L(β, ϕ, T ) cos β dω (5.14)

can be calculated from the total intensity L(β, ϕ, T ).
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To summarise, there are in total four radiation quantities for the characteri-
sation of the emission of radiation from an area:

1. The spectral intensity Lλ(λ, β, ϕ, T ) describes the distribution of the emit-
ted radiation flow over the wavelength spectrum and the solid angles of the
hemisphere (directional spectral quantity).

2. The hemispherical spectral emissive power Mλ(λ, T ) covers the wavelength
dependency of the radiated energy in the entire hemisphere (hemispherical
spectral quantity).

3. The total intensity L(β, ϕ, T ) describes the directional dependency (distri-
bution over the solid angles of the hemisphere) of the radiated energy at
all wavelengths (directional total quantity).

4. The emissive power M(T ) combines the radiation flow emitted at all wave-
lengths and in the entire hemisphere (hemispherical total quantity).

Spectral intensity

Hemispherical spectral emissive
power

L(β, ϕ, T ) =

∞∫
0

Lλ(λ, β, ϕ, T ) dλ

Total intensity

Lλ(λ, β, ϕ, T )

Mλ(λ, T ) =
∫
��

Lλ(λ, β, ϕ, T ) cos β dω

M(T ) =

∞∫
0

Mλ(λ, T ) dλ

Emissive power

M(T ) =
∫
��

L(β, ϕ, T ) cos β dω

Emissive power

�
�

��
�

�
�

�
��

�
�

��
�

�
�
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��
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Fig. 5.7: Relationships between the four radiation quantities. Each arrow represents an inte-
gration

The relationships between the four quantities are schematically represented and
illustrated in Fig. 5.7. The spectral intensity Lλ(λ, β, ϕ, T ) contains all the in-
formation for the determination of the other three radiation quantities. Each
arrow in Fig. 5.7 corresponds to an integration; on the left first over the solid
angles in the hemisphere and then over the wavelengths, on the right first over
the wavelengths and then over the solid angles. The result of the two successive
integrations each time is the emissive power M(T ).
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Example 5.1: The spectral intensity Lλ of radiation emitted by a body shall not depend
on the circumferential angle ϕ and can be approximated by the function

Lλ(λ, β, T ) = Lλ,0(λ, T ) cos β , (5.15)

where Lλ,0(λ, T ) has the pattern shown in Fig. 5.8 for a particular temperature. Calculate
the intensity L(β, T ), the spectral emissive power Mλ(λ, T ) and the emissive power M (T ).

Fig. 5.8: Dependence of the
spectral intensity Lλ,0(λ, T )
in the direction normal to
the surface (β = 0) on the
wave length λ for a constant
temperature

The intensity is obtained from (5.12) and (5.15) by integrating over all the wavelengths

L(β, T ) =
∞∫
0

Lλ(λ, β, T ) dλ = cosβ
∞∫
0

Lλ,0(λ, T ) dλ

= cos β Lmax
λ,0

[
(4.0 − 3.0)µm +

1

2
(8.0 − 4.0)µm

]
= cos β Lmax

λ,0 3.0µm = Lmax · cos β = 1650
(
W/m2sr

)
cos β ,

cf. Fig. 5.8. For the spectral emissive power, it follows from (5.10) that

Mλ(λ, T ) = 2π

π/2∫
0

Lλ(λ, β, T ) cos β sin β dβ = 2πLλ,0(λ, T )

π/2∫
0

cos2β sin β dβ .

The integral that appears here has, because of

β∫
0

cos2β sin β dβ = −
[
cos3β

3

]β

0

=
1

3

(
1 − cos3β

)
, (5.16)

the value 1/3. With that we get

Mλ(λ, T ) =
2π

3
Lλ,0(λ, T ) = 2.094 sr Lλ,0(λ, T ) .

The spectral emissive power agrees with the function Lλ,0(λ, T ) from Fig. 5.8 except for
the factor 2.094 sr.
The emissive power M (T ) is calculated according to (5.14) by integrating the intensity
L(β, T ) over the solid angles of the hemisphere. This yields

M (T ) =
2π∫

ϕ=0

π/2∫
β=0

L(β, T ) cos β sin β dβ dϕ = 2πLmax
π/2∫
0

cos2β sin β dβ

= (2π/3)Lmax = 2.094 sr · 1650W/m2sr = 3456W/m2 .
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The radiation emitted by a small surface element dA of the body being considered here is
absorbed by a sheet with a circular opening cf. Fig. 5.9. What proportion of the radiation
flow emitted by dA succeeds in passing through the opening?
The radiation flow emitted from the surface element dA in Fig. 5.9 that goes through the
circular hole is indicated by dΦ′. It holds for this, that

dΦ′ =

2π∫
ϕ=0

β∗∫
β=0

L(β, T ) cos β sin β dβ dϕdA = 2πLmax

β∗∫
0

cos2β sin β dβ dA

and with (5.16)

dΦ′ =
2π

3
Lmax

(
1 − cos3 β∗

)
dA .

The total radiation flow emitted from dA is dΦ = M (T ) dA. For the desired ratio dΦ′/dΦ
we obtain

dΦ′/dΦ = 1 − cos3 β∗ .

Fig. 5.9: Radiation of a surface element
through a circular opening in a sheet
(s = 50mm, d = 25mm)

According to Fig. 5.9, it holds for the angle β∗ that

cosβ∗ =
s√

s2 + (d/2)2
=

50√
502 + 12.52

= 0.9701 .

With that we have dΦ′/dΦ = 0.0869; only a small portion of the radiation succeeds in
passing through the opening, even though it lies vertically above the surface element.

5.1.2.4 Diffuse radiators. Lambert’s cosine law

No radiator exists that has a spectral intensity Lλ independent of the wave length.
However, the assumption that Lλ does not depend on β and ϕ applies in many
cases as a useful approximation. Bodies with spectral intensities independent of
direction, Lλ = Lλ(λ, T ), are known as diffuse radiators or as bodies with diffuse
radiating surfaces. According to (5.9), for their hemispherical spectral emissive
power it follows that

Mλ(λ, T ) = Lλ(λ, T )

2π∫
ϕ=0

π/2∫
β=0

cos β sin β dβ dϕ . (5.17)

The double integral here has the value π, so that for diffuse radiating surfaces

Mλ(λ, T ) = π Lλ(λ, T ) (5.18)

is yielded as a simple relationship between spectral emissive power and spectral
intensity.
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Fig. 5.10: Intensity L = In(T ) and di-
rectional emissive power I = In(T ) cosβ
of a diffuse radiating surface

As the intensity L is also independent of β and ϕ, from (5.11) we obtain

d2Φ′ = L(T ) cos β dω dA (5.19)

for the radiative power of a diffuse radiating surface element into the solid angle
element dω. The radiative power per area dA and solid angle dω is known as
the directional emissive power

I :=
d2Φ′

dA dω
. (5.20)

For a diffuse radiating surface, it follows from (5.19) that

I(β, T ) = L(T ) cos β = In(T ) cos β , (5.21)

where In(T ) is the directional emissive power in the direction normal to the surface
(β = 0), Fig. 5.10. This relationship is called Lambert’s cosine law 1 [5.2]; diffuse
radiators are also called Lambert radiators. The emissive power of a Lambert
radiator is found from (5.14) to be

M(T ) = L(T )
∫
��

cos β dω = π L(T ) (5.22)

in analogy to (5.18) for the corresponding spectral quantities.

5.1.3 Irradiation

When a radiation flow dΦin hits an element on the surface of a body, Fig. 5.11,
the quotient

E := dΦin/ dA (5.23)

1Johann Heinrich Lambert (1728–1777), mathematician, physicist and philosopher, was a
tutor for the Earl P. v. Salis in Chur from 1748–1759, where he wrote his famous work on
photometry [5.2]. In 1759 he became a member of the Bavarian Academy of Science and upon
proposal by L. Euler became a member of the Berlin Academy of Science in 1765. Lambert wrote
several philosophical works and dealt with subjects from all areas of physics and astronomy in
his numerous publications. He presented the absolute zero point as a limit in the expansion
of gases and constructed several air thermometers. In 1761 he proved that π and e are not
rational numbers. His works on trigonometry were particularly important for the theory of map
construction.
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Fig. 5.11: Radiation flow dΦin of radiation
incident on a surface element

is known as the irradiance of the surface element of size dA. The irradiance
E records the total heat flux incident by radiation as an integral value over all
wavelengths and solid angles in the hemisphere. It belongs to the hemispherical
total quantities; its SI units are W/m2.

The description of the direction and wavelength distribution of the radiation
flow is provided by radiation quantities that are defined analogous to those for
the emission of radiation. For the radiation flow d3Φin, from a solid angle element
dω in the direction of the angles β and ϕ incident on the surface element dA,
and which only contains the radiation in a wavelength interval dλ, we can make
a statement analogous to (5.4)

d3Φin = Kλ(λ, β, ϕ) cos β dA dω dλ . (5.24)

The distribution function Kλ(λ, β, ϕ), the incident spectral intensity, is defined by
this. It describes the wavelength and directional distribution of the radiation flow
falling onto the irradiated surface element. Like the corresponding quantity Lλ

for the emission of radiation, Kλ is defined with the projection dAp = cos β dA
of the irradiated surface element perpendicular to the direction of the incident
radiation, Fig. 5.12. The SI units of Kλ are W/(m2µmsr); the relationship to the
wavelength interval dλ and the solid angle element dω is also clear from this.

Fig. 5.12: Projection dAp of the surface element
dA perpendicular to the direction of the radiation
incident under the polar angle β

In contrast to Lλ, Kλ is not a material property of the irradiated body, but
a characteristic function of λ, β and ϕ for the incident radiative energy: It is
the spectral intensity of the incident radiation. The spectral intensity remains
constant along the radiation path from source to receiver, as long as the medium
between the two neither absorbs nor scatters radiation and also does not emit any
radiation itself2. If this applies, and the radiation comes from a source with a
temperature T ∗, it holds that

Kλ(λ, β, ϕ) = Lλ(λ, β∗, ϕ∗, T ∗) . (5.25)

2The proof for the constancy of the spectral intensity along a path through a medium that
does not influence the radiation can be found in R. Siegel u. J.R. Howell [5.37], p. 518–520.
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Fig. 5.13: Irradiated surface with surface
element dA, the radiation is obtained from
the surface element dA∗ of a radiation source
at a temperature T ∗

Here Lλ(λ, β∗, ϕ∗, T ∗) is the spectral intensity of a surface element dA∗ of the
radiation source, from which the solid angle dω starting at dA stretches out in
the direction (β, ϕ), Fig. 5.13. The angles β∗ and ϕ∗ indicate the direction at which
the irradiated surface element dA appears to the radiation source. The incident
spectral intensity, Kλ of dA, therefore depends indirectly on the temperature T ∗

and the other properties of the radiation source. The directional and wavelength
distributions of the radiation energy incident on the irradiated surface element dA
are, however, completely described by the function Kλ(λ, β, ϕ), without further
knowledge of the properties of the radiation source being required. The statement
of its temperature T ∗ in Kλ is, therefore, unnecessary. With known properties of
the radiation source, Kλ(λ, β, ϕ) can be found from the spectral intensity of the
radiation source. However in many cases this is very difficult or even impossible,
for instance when the radiation hitting dA comes from several sources or when
the source of radiation is unknown. The incident spectral intensity Kλ(λ, β, ϕ)
has then to be measured in situ, i.e. on the surface element dA.

By integrating (5.24) over all the solid angles in the hemisphere, the radiation
flows that come from all the directions in the wavelength interval dλ are combined,
giving

d2Φin = Eλ(λ) dλ dA (5.26)

with the spectral irradiance

Eλ(λ) =
∫
��

Kλ(λ, β, ϕ) cos β dω . (5.27)

It belongs to the hemispherical spectral quantities. Integration of (5.26) over all
wavelengths leads to

dΦin = E dA , (5.28)

giving the irradiance already introduced by (5.23):

E =

∞∫
0

Eλ(λ) dλ . (5.29)

The spectral irradiance Eλ describes the distribution of the incident energy
over the spectrum, whereby the radiation from all directions in the hemisphere
is combined. If, on the contrary, the directional distribution of the radiation
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falling on the body is to be described, without considering the dependence on the
wavelength, then (5.24) should be integrated over all λ. This gives the following
for the radiation flow which falls on the surface element dA from a particular
solid angle element dω,

d2Φ′
in = K(β, ϕ) cos β dω dA (5.30)

with the incident intensity

K(β, ϕ) =

∞∫
0

Kλ(λ, β, ϕ) dλ . (5.31)

Through integration of the incident intensity over all solid angles the irradiance
is finally obtained as

E =
∫
��

K(β, ϕ) cos β dω . (5.32)

Just as for the emission of radiation, cf. 5.1.2, four radiation quantities are
used for the characterisation of the incident radiation flow on a surface:

– The incident spectral intensity Kλ(λ, β, ϕ) describes the distribution of the
incident radiation flow over the solid angles of the hemisphere and the
spectrum (directional spectral quantity).

– The spectral irradiance Eλ(λ) describes the wavelength distribution of the
radiation flow incident from the entire hemisphere (hemispherical spectral
quantity).

– The incident intensity K(β, ϕ) describes the directional distribution of the
incident radiation flow (directional total quantity).

– The irradiance E combines the incident radiative power of all directions
and wavelengths (hemispherical total quantity).

Fig. 5.14 shows the relationships between these four quantities. It is assembled
in an analogous manner to Fig. 5.7, which contains the four quantities for emission
of radiation.

5.1.4 Absorption of radiation

The radiation falling on a body can be partially reflected at its surface, whilst
the portion that is not reflected penetrates the body. Here the radiative energy is
absorbed and then converted into internal energy or part of it may be allowed to
pass through the body. The absorbed portion is very important in terms of heat
transfer. It is covered by the four absorptivities described in the following. These
four belong to the four groups of physical radiation quantities introduced in 5.1.1.

Just as in 5.1.3 we will consider a radiation flow d3Φin according to (5.24),
coming from a solid angle element dω, that hits a surface element dA and only
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Kλ(λ, β, ϕ)

Incident spectral intensity

Eλ(λ) =
∫
��

Kλ(λ, β, ϕ) cos β dω

Spectral irradiance

K(β, ϕ) =

∞∫
0

Kλ(λ, β, ϕ) dλ

Incident intensity

E =

∞∫
0

Eλ(λ) dλ

Irradiance

E =
∫
��

K(β, ϕ) cos β dω

Irradiance

�
���

�
�

�
��

�
��	

�
�

�
��

� �

Fig. 5.14: Relationships between the four radiation quantities of irradiation

contains the radiation power within a wavelength interval dλ. For the absorbed
portion of the radiation flow we put

d3Φin,abs = a′
λ(λ, β, ϕ, T ) d3Φin (5.33)

and with that define the directional spectral absorptivity a′
λ. This dimensionless

quantity, which has a value below one, is a material property of the absorbing
body; it depends on the variables given in (5.33) namely wavelength λ, polar
angle β, circumferential angle ϕ and the temperature T of the absorbing surface
element. In addition to this the directional spectral absorptivity is also strongly
influenced by the surface properties, e.g. the roughness of the surface.

Using a′
λ allows the absorbed portions of the integrated radiation flows in-

troduced in 5.1.3 to be calculated. By integrating (5.33) over all solid angles in
the hemisphere, the absorbed part of the hemispherical irradiation of the surface
element dA in the wavelength interval dλ is obtained

d2Φin,abs =
∫
��

a′
λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) cos β dω dλ dA . (5.34)

If, however, (5.33) is integrated over all wavelengths then the absorbed portion of
the total radiative power from a solid angle element dω is obtained. This gives

d2Φ′
in,abs =

∞∫
0

a′
λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) dλ cos β dω dA . (5.35)
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Table 5.1: Definitions of the absorptivities and the relationships that exist between them

Directional spectral absorptivity

a′λ(λ, β, ϕ, T ) :=
d3Φin,abs

d3Φin

a′

λ is a material property of the absorbing body and gives, for every wavelength λ
and for each direction (β,ϕ), the absorbed part of the incident radiation flow d3Φin,
which, in a wavelength interval dλ, comes from a solid angle element dω.

Hemispherical spectral absorptivity

aλ(λ, T ) :=
d2Φin,abs

d2Φin
=

1

Eλ(λ)

∫
��

a′λ(λ, β, ϕ, T ) · Kλ(λ, β, ϕ) cosβ dω

aλ covers the radiation flow d2Φin, which comes from the entire hemisphere within a
certain wavelength interval, and provides, for each wavelength λ, the absorbed portion
of the spectral irradiance Eλ(λ).

Directional total absorptivity

a′(β, ϕ, T ) :=
d2Φ′

in,abs

d2Φ′
in

=
1

K(β, ϕ)

∞∫
0

a′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) dλ

a′ describes the radiation flow d2Φ′

in of all wavelengths that comes from a certain
solid angle element, and gives, for each direction (β,ϕ), the absorbed portion of the
incident intensity K(β,ϕ).

Hemispherical total absorptivity

a(T ) :=
dΦin,abs

dΦin
=

1

E

∞∫
0

aλ(λ, T )Eλ(λ) dλ

=
1

E

∞∫
0

[∫
��

a′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) cosβ dω
]
dλ

a covers the radiation flow dΦin of all wavelengths that comes from the entire hemi-
sphere and gives the absorbed part of the irradiance E.

Finally, (5.34) can be integrated over all wavelengths or (5.35) over all solid
angles in the hemisphere. This gives the absorbed part of the total radiation flow
hitting the surface element dA:

dΦin,abs =

∞∫
0

[∫
��

a′
λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) cos β dω

]
dλ dA . (5.36)

Now, by putting these absorbed energy flows in relation to the associated inci-
dent radiation flows d2Φin from (5.26), d2Φ′

in from (5.30) and dΦin from (5.28),
the absorptivities presented in Table 5.1 are obtained. These describe either the
absorption of radiation coming from all directions in the hemisphere or over all
wavelengths or finally the absorption of the total radiation on the surface element.



520 5 Thermal radiation

All absorptivities are less than one, but in contrast to the directional spectral ab-
sorptivity a′

λ, aλ(λ, T ), a′(β, ϕ, T ) and a(T ) are not material properties of the
absorbing body. They also depend on the direction and wavelength distribution
of the radiation falling on the body, which are given by the incident spectral in-
tensity Kλ(λ, β, ϕ). The four absorptivities from Table 5.1 correspond to the four
radiation quantities in 5.1.3 used to describe the irradiation of a surface element
quantitatively. This multitude of absorptivities is required for applications where
the selectivity of the absorbing surface with respect to the direction and the wave-
length region as well as the directional and wavelength dependency of the incident
radiation have to be considered.

Example 5.2: The hemispherical spectral absorptivity of a surface which appears bright
to the eye is strongly simplified given by

aλ(λ, T ) =

⎧⎨⎩
αλ1 = 0.10 for 0 ≤ λ ≤ λ1

αλ2 = 0.80 for λ1 < λ < ∞
with λ1 = 1.50 µm; Fig. 5.15. So, at small wavelengths, only a low amount of radiative
energy will be absorbed, whilst at large wavelengths significantly more radiation energy
will be absorbed. Radiation hits the surface, from a source at a temperature T ∗ with
spectral irradiance

Eλ(λ, T ∗) =
c1

λ5
exp(−c2/λT ∗) . (5.37)

Here c2 = 14.5 · 103 µmK and c1 is a constant of proportionality. For T ∗ = 1000K
and T ∗ = 5777K (temperature of the sun’s surface) calculate the hemispherical total
absorptivity a(T ).

Fig. 5.15: Approximation of the hemispherical
spectral absorptivity aλ of a surface

The wavelength and temperature dependency given by (5.37) correspond to a relationship
found by W. Wien [5.3] in 1896 to be approximately valid for the hemispherical spectral
emissive power Mλs(λ, T ∗) of an ideal radiator, a black body, with a temperature T ∗. We
will come back to the properties of black bodies in section 5.1.6 and more extensively in
5.2.2. In our example a spectral irradiance Eλ ∼ Mλs has been assumed, so that its indirect
dependence on T ∗ appears explicitly in (5.37).
Fig. 5.16 shows the spectral irradiance Eλ according to (5.37) for T ∗ = 1000K and
T ∗ = 5777K. Here, the proportionality constants c1 were each chosen so that for both
temperatures the maximum of Eλ, which appears at λmax = c2/5T

∗, was the same. The
hatched areas in Fig. 5.16 are proportional to the absorbed fraction of the incident ra-
diation flow, whilst the areas under the Eλ curves correspond to the irradiance E. The
desired hemispherical total absorptivity a(T ) is, according to (5.28) and (5.36) the ratio of
these areas. For T ∗ = 1000K an absorptivity close to aλ2 will be expected. In contrast the
largest portion of the solar radiation (T ∗ = 5777K) falls in the region of small wavelengths
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(λ < λ1); therefore for solar radiation a total absorptivity only slightly larger than aλ1 is
expected.

Fig. 5.16: Spectral irradiance Eλ(λ, T ∗) according to (5.37) for T ∗ = 1000K
and T ∗ = 5777K. The ordinates of the maxima were arbitrarily chosen to be the
same. The hatched areas represent the absorbed part of the irradiance E(T ∗).

The results found from Fig. 5.16 can be confirmed by the following calculations. According
to Table 5.1 the hemispherical total absorptivity is obtained to be

a(T ) =

∞∫
0

aλ(λ, T )Eλ(λ) dλ

E
=

aλ1

λ1∫
0

Eλ(λ) dλ + aλ2

∞∫
λ1

Eλ(λ) dλ

∞∫
0

Eλ(λ) dλ

. (5.38)

The evaluation of the integrals is facilitated by the introduction of the dimensionless vari-
able

ζ := c2/λT ∗

which with
Eλ(ζ, T ∗) =

(
c1/c

5
2

)
T ∗5ζ5e−ζ

and

dλ = − c2

T ∗

dζ

ζ2

gives for the absorptivity

a (ζ1) =

aλ1

∞∫
ζ1

ζ3e−ζ dζ + aλ2

ζ1∫
0

ζ3e−ζ dζ

∞∫
0

ζ3e−ζ dζ

.

It depends on ζ1 = c2/λ1T
∗ and therefore indirectly on the temperature T ∗ of the radiation

source. The integrals that appear here can be calculated from∫
ζ3e−ζ dζ = C − e−ζ

(
ζ3 + 3ζ2 + 6ζ + 6

)
= C − F (ζ) .

This then gives

a (ζ1) =
1

6
{aλ1F (ζ1) + aλ2 [6 − F (ζ1)]} . (5.39)
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For the radiation from the source at T ∗ = 1000K, ζ1 = 9.667, from which, with F (ζ1) =
0.0791, the total absorptivity a = 0.791 is yielded. The result expected from Fig. 5.16
a ≈ aλ2 = 0.80 is therefore confirmed. The incident solar radiation with T ∗ = 5777K
yields the value ζ1 = 1.6733 and from that F (ζ1) = 5.4646. This yields, from (5.39), the
much smaller absorptivity a = 0.162.
The hemispherical total absorptivity is not only a property of the absorbing surface.
Rather, it depends on the spectral distribution of the incident radiation energy. This
is shown by the different values of a for the mainly short-wave solar radiation, in which the
absorption properties at small wavelengths are decisive, and for the incident radiation from
an earthly source, for which the long-wave portion of the absorption spectrum aλ(λ, T ) is
of importance.

5.1.5 Reflection of radiation

The radiation flow reflected from the surface of a body can be described using
dimensionless reflectivities, in the same manner as for the absorbed power with
the absorptivities dealt with in the last section. However, this involves further
complications if we do not only want to find out what proportion of the radiation
from a certain direction is reflected but also in which direction the reflected energy
is sent back. The possible reflective behaviour of a surface can be idealised by two
limiting cases: mirrorlike (or specular) reflection and diffuse reflection.

Fig. 5.17: Mirrorlike reflection of radiation
incident from the polar angle β

Fig. 5.18: Diffuse reflection of the radiation
incident from the polar angle β

In mirrorlike reflection the ray incident from the angles β and ϕ will be re-
flected at an equal polar angle βr = β, but at a circumferential angle ϕr = ϕ + π,
Fig. 5.17. On a diffuse reflecting surface the radiation falling from a certain di-
rection (β, ϕ) generates a reflected radiation whose total intensity is equal over
all radiating directions away from the surface (βr, ϕr), cf. Fig. 5.18. The reflec-
tive behaviour of real surfaces lies somewhere between these two limits. Shiny,
polished metal surfaces reflect in approximately mirror fashion. Rough and matt
surfaces reflect in good approximation in a diffuse manner. Here the scale of the
roughness must also be seen in relation to the wavelength of the radiation. A
surface may be rough for short wave radiation, whilst for long wave radiation it
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Table 5.2: Definitions of the reflectivities and the relationships existing between them

Directional spectral reflectivity

r′λ(λ, β, ϕ, T ) :=
d3Φin,ref

d3Φin

r′λ is a material property of the reflecting body and gives, for each wavelength λ and
for each direction (β,ϕ), the reflected portion of the incident radiation flow d3Φin,
which, in the wavelength interval dλ, comes from a solid angle element.

Hemispherical spectral reflectivity

rλ(λ, T ) :=
d2Φin,ref

d2Φin
=

1

Eλ(λ)

∫
��

r′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) cosβ dω

rλ covers the radiation flow d2Φin, which comes from the entire hemisphere, within a
certain wavelength interval, and provides, for each wavelength λ the reflected part of
the spectral irradiance Eλ(λ).

Directional total reflectivity

r′(β, ϕ, T ) :=
d2Φ′

in,ref

d2Φ′
in

=
1

K(β, ϕ)

∞∫
0

r′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) dλ

r′ covers the radiation flow d2Φ′

in of all wavelengths which comes from a certain solid
angle element, and gives, for each direction (β,ϕ), the reflected portion of the incident
intensity K(β,ϕ).

Hemispherical total reflectivity

r(T ) :=
dΦin,ref

dΦin
=

1

E

∞∫
0

rλ(λ, T )Eλ(λ) dλ

=
1

E

∞∫
0

[∫
��

r′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) cosβ dω
]
dλ

r covers the radiation flow dΦin, of all wavelengths, that comes from the entire hemi-
sphere and gives the reflected fraction of the irradiance.

may be considered to be smooth. The complex relationships for the consideration
of the directional distribution of the reflected radiation have to be described by
bidirectional reflectivities, which are dependent on two pairs of angles (β, ϕ) and
(βr, ϕr). We will not look at this here, but suggest the extensive discussion of this
subject by R. Siegel et al [5.4] for further reading. In the following we will re-
strict ourselves to the introduction of reflectivities which only provide us with the
portion of the incident radiation that is reflected, without specifying what propor-
tion of the reflected energy is sent back in which direction. However, in the two
limiting cases of mirrorlike and diffuse reflection, this question has already been
answered, see Fig. 5.17 and 5.18. As the reflectivities are defined in a completely
analogous way to the absorptivities discussed in 5.1.4, it is sufficient to consider
Table 5.2, which is the analogue of Table 5.1, without further explanations. In
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addition if the body does not allow radiation to pass through it, then the balance
is

d3Φin,ref + d3Φin,abs = d3Φin , (5.40)

according to which, the incident radiation will either be reflected or absorbed.
Dividing (5.40) by d3Φin gives the relationship

r′λ(λ, β, ϕ, T ) + a′
λ(λ, β, ϕ, T ) = 1 . (5.41)

The two material functions r′λ and a′
λ of an opaque body are not independent

of each other. The directional spectral reflectivity r′λ is determined by the di-
rectional spectral absorptivity a′

λ. The similar relationship between the different
absorptivities and reflectivities from Tables 5.1 and 5.2, respectively, mean that
equations analogous to (5.41) are valid, with which the three other reflectivities
can be found from the corresponding absorptivities.

5.1.6 Radiation in an enclosure. Kirchhoff’s law

Thermodynamic relationships exist between the emission and absorption capabil-
ities of a body. These were first discovered in 1860 by G.R. Kirchhoff3 [5.5]. These
relationships also show that an upper limit exists for the emitted radiation flow.

In order to derive these we will consider an adiabatic evacuated enclosure,
like that shown in Fig. 5.19, with walls of any material. In this enclosure a
state of thermodynamic equilibrium will be reached: The walls assume the same
temperature T overall and the enclosure is filled with radiation, which is known
as hollow enclosure radiation. In the sense of quantum mechanics this can also
be interpreted as a photon gas in equilibrium. This equilibrium radiation is fully
homogeneous, isotropic and non-polarised. It is of equal strength at every point
in the hollow enclosure and is independent of direction; it is determined purely
by the temperature T of the walls. Due to its isotropic nature, the spectral
intensity L∗

λ of the hollow enclosure radiation does not depend on β and ϕ, but
is, as Kirchhoff was the first to recognise, a universal function of wavelength and
temperature: L∗

λ = L∗
λ(λ, T ), which is also called Kirchhoff’s function. As the

enclosure is filled with the same diffuse radiation, the incident spectral intensity
Kλ for every element of any area that is oriented in any position, will, according

3Gustav Robert Kirchhoff (1824–1887) first formulated and published the laws named after
him for electrical networks when he was still a student at university in Königsberg. In 1850
he was nominated professor in Breslau and in 1854 he became a professor in Heidelberg. It
was here that he worked with R. Bunsen for over 10 years and carried out investigations into
the emission and absorption of radiation. Their results became known as Kirchhoff’s radiation
laws and as Bunsen-Kirchhoff spectral analysis. In 1875 he became Professor of Theoretical
Physics of the University of Berlin. Alongside his teacher F. Neumann, Kirchhoff was a founder
of mathematical (theoretical) physics in Germany.
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Fig. 5.19: Cavity with adiabatic walls Fig. 5.20: Black body (a′

λ ≡ 1) in an adia-
batic and isothermal cavity

to (5.25), be the same as the spectral intensity of the hollow enclosure radiation:

Kλ = L∗
λ(λ, T ) . (5.42)

A small body is located in the enclosure that, once thermodynamic equilibrium
has been reached, assumes the same temperature T as the walls, Fig. 5.20. This
body shall have the special property that it completely absorbs all incident radia-
tion from every direction at every wavelength. Its directional spectral absorptivity
is (independent of λ, β, ϕ and T ) always one:

a′
λ(λ, β, ϕ, T ) ≡ 1 . (5.43)

Then, according to 5.1.4, its three other absorptivities aλ, a′ and a are also equal
to one. Kirchhoff named this ideal absorber a black body.

According to the 2nd law, the state of this equilibrium system consisting of
radiation in an enclosure and the black body cannot change despite the absorp-
tion of the radiation in the enclosure. The black body therefore has to replace
the radiation it absorbs by its own emission of radiation. This holds for every
wavelength interval and every solid angle element; otherwise the distribution of
the hollow enclosure radiation, given by L∗

λ(λ, T ), would change, and the thermo-
dynamic equilibrium in the enclosure would be disturbed. So the radiation flow
d3Φs, emitted by the black body in a particular solid angle element dω and within
a certain wavelength interval dλ has to be the same as the radiation flow d3Φ∗

in

of the hollow enclosure radiation that hits the black body.
According to (5.4), the radiation flow emitted from the black body is

d3Φs = Lλs(λ, β, ϕ, T ) cos β dω dλ dA ,

where Lλs is its spectral intensity. The incident radiation flow of the hollow
enclosure radiation is, from (5.24) and (5.42),

d3Φ∗
in = L∗

λ(λ, T ) cos β dω dλ dA . (5.44)

From the condition of thermodynamic equilibrium, d3Φs = d3Φ∗
in, it follows that

Lλs(λ, β, ϕ, T ) = L∗
λ(λ, T ) .
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Fig. 5.21: Body with any directional spectral
absorptivity a′

λ in an adiabatic enclosure

According to this, the spectral intensity of the black body is independent of di-
rection and is the same as the spectral intensity of hollow enclosure radiation at
the same temperature:

Lλs(λ, T ) = L∗
λ(λ, T ) . (5.45)

Hollow enclosure radiation and radiation of a black body (a′
λ ≡ 1) have iden-

tical properties. The black body radiates diffusely; from (5.18) it holds for its
hemispherical spectral emissive power that

Mλs(λ, T ) = πLλs(λ, T ) . (5.46)

We will now consider an enclosure with a body that has any radiation prop-
erties, Fig. 5.21. Thermodynamic equilibrium means that this body must also
emit exactly the same amount of energy in every solid angle element and in every
wavelength interval as it absorbs from the hollow enclosure radiation. It therefore
holds for the emitted radiative power that

d3Φ = a′
λ(λ, β, ϕ, T ) d3Φ∗

in (5.47)

with a′
λ as its directional spectral absorptivity. For d3Φ we use the expression

from (5.4); the radiation flow d3Φ∗
in of the hollow enclosure radiation is given by

(5.44). With (5.45), for the spectral intensity of any radiator, it follows that

Lλ(λ, β, ϕ, T ) = a′
λ(λ, β, ϕ, T )Lλs(λ, T ) . (5.48)

This is the law from G.R. Kirchhoff [5.5]: Any body at a given temperature T
emits, in every solid angle element and in every wavelength interval, the same
radiative power as it absorbs there from the radiation of a black body (= hollow
enclosure radiation) having the same temperature. Therefore, a close relationship
exists between the emission and absorption capabilities. This can be more simply
expressed using this sentence: A good absorber of thermal radiation is also a good
emitter.

As the black body is the best absorber, a′
λ ≡ 1, it also emits the most. From

(5.48) with a′
λ ≤ 1 the inequality follows

Lλ(λ, β, ϕ, T ) ≤ Lλs(λ, T ) .

At a given temperature the black body emits the maximum radiative power at
each wavelength and in every direction. It is not possible for any other body at
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the same temperature to emit more radiative power in any wavelength interval
or any solid angle than that emitted by a black body at that temperature. The
black body is also the ideal emitter. The determination of the spectral intensity
Lλs(λ, T ) of a black body as the thermodynamic upper limit of emission is therefore
an important task of the theory of thermal radiation; we will consider this in the
following sections.

5.2 Radiation from a black body

As shown in 5.1.6, the laws of thermodynamics demand that there must be an
upper limit for the spectral intensity Lλ(λ, β, ϕ, T ) for all bodies. This maxi-
mum emission is associated with an ideal radiator, the black body. Its radiation
properties shall be dealt with in the following.

5.2.1 Definition and realisation of a black body

A black body is defined as a body where all the incident radiation penetrates it
and is completely absorbed within it. No radiation is reflected or allowed to pass
through it. This holds for radiation of all wavelengths falling onto the body from
all angles. In addition to this the black body is a diffuse radiator. Its spectral
intensity Lλs does not depend on direction, but is a universal function Lλs(λ, T ) of
the wavelength and the thermodynamic temperature. The hemispherical spectral
emissive power Mλs(λ, T ) is linked to Kirchhoff’s function Lλs(λ, T ) by the simple
relationship

Mλs(λ, T ) = πLλs(λ, T ) , (5.49)

see (5.46).
The determination of the universal functions Lλs(λ, T ) or Mλs(λ, T ) is a fun-

damental task of physics. This was solved experimentally towards the end of the
19th century, but a theoretical basis for the measured data was first found by
M. Planck4 in 1900. Through assumptions, which later formed one of the founda-
tions of quantum theory, he was able to formulate the law for the spectral intensity

4Max Karl Ernst Ludwig Planck (1858–1947) became Professor of Theoretical Physics in Kiel
in 1885; from 1888 to 1920 he taught at the University of Berlin, where he was successor to G.R.
Kirchhoff. From 1894 onwards he was a member of the Prussian Academy of Science. Planck
dealt with thermodynamic problems in his PhD thesis (1879), in particular with the 2nd law and
the concept of entropy. He found his famous radiation law in 1900, by linking thermodynamic
laws for the energy and entropy of hollow enclosure radiation with the electromagnetic radiation
theory, statistical methods and the assumption that energy was made up of a large number of
discrete, small energy elements (quanta). Planck also dealt with the theory of relativity and the
philosophical basis of science. In 1918 he was awarded the Nobel prize for Physics.
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Fig. 5.22: Isothermal hollow enclosure for the realisation of a black body. 1 insulation;
2 heating; 3 copper cylinder; 4 reflected radiation; 5 polished surface; 6 black surface;
7 incident beam; 8 strongly absorbing surface

named after him, which has been confirmed experimentally and is considered to
be correct until today.

The black body got its name because of the property of a good absorber to appear black
to the eye when visible light falls on its surface. However, the eye is only an indicator of
absorption capability of a body within the very small wavelength region of visible light, see
Fig. 5.1. Therefore, surfaces which appear to be black, such as soot or black platinum only
approximately attain the complete absorption of radiation at all wavelengths, which is the
prerequisite for a black body.

In order to realise the black body as a reference standard for radiation measurements a
cavity with a small opening, like that shown in Fig. 5.22, is used. A beam coming through this
opening hits the enclosure wall, and will be partly absorbed there. The portion that is reflected
hits another point on the wall where it will once again be absorbed with a small part being
reflected, and so on. With a sufficiently small opening to the enclosure only a tiny part of the
beam entering the enclosure will be able to leave it. The condition of complete absorption of the
entering radiation is fulfilled to a high degree. The opening of the enclosure therefore absorbs
(almost) like a black body. So, according to Kirchhoff’s law it radiates black body radiation.

5.2.2 The spectral intensity and the spectral emissive
power

We refrain from deriving the equations for the spectral intensity and the hemi-
spherical spectral emissive power of a black body, found by M. Planck [5.6], for
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Fig. 5.23: Hemispherical spectral emissive power Mλs(λ, T ) of a black body according to
Planck’s radiation law (5.50)

this see [5.7]. They are

Mλs(λ, T ) = πLλs(λ, T ) =
c1

λ5 [exp (c2/λT ) − 1]
. (5.50)

The two radiation constants c1 and c2 are made up of fundamental natural con-
stants, from the velocity of light c0 in a vacuum, the Planck constant h and the
Boltzmann constant k. With the best values for these quantities, according to
[5.8],

c1 = 2πhc2
0 = (3.741 771 07 ± 0.000 000 29) · 10−16Wm2 (5.51a)

and

c2 = hc0/k = (14 387.752 ± 0.024)µm K (5.51b)

are obtained.
Planck’s law (5.50) is illustrated in Fig. 5.23 for several isotherms. These

have a horizontal tangent at λ = 0. The emission of radiation at small wave-
lengths is initially very low, but increases steeply with increasing λ, runs through
a maximum and then falls back to a lower value. For λ → ∞ the limit value
Mλs = 0 is yielded. A characteristic is the displacement of the maximum to small
wavelengths with increasing temperature. Here, the maximum value Mλs(λmax, T )
increases rapidly with T . The different isotherms do not cross each other (except
at λ = 0); at every wavelength the emission of radiation increases with rising
temperature

In Fig. 5.24, Mλs is reproduced with a logarithmic scale. The region of visible
light is also indicated. It is only at sufficiently high temperatures that a significant
portion of the emissive power is emitted within this wavelength interval. First,
at the so-called Draper point at 798 K (525 ◦C), [5.9], will a heated body in dark
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Fig. 5.24: Hemispherical spectral emissive power Mλs(λ, T ) of a black body, according to (5.50),
with a logarithmic scale.The hatched wavelength region corresponds to the region of visible light.

surroundings appear as a dark red object to the human eye. The sun emits radi-
ation with a hemispherical spectral emissive power approximately corresponding
to a black body at 5777 K. As Fig. 5.24 shows, at this temperature the maximum
of Mλs lies in the visible spectral region. The human eye has adapted itself to this
and is at its most sensitive at these wavelengths.

The position of the maximum of Mλs on an isotherm is found from the condi-
tion

∂Mλs

∂λ
= 0 , T = const .

This leads to the transcendental equation(
1 − c2

5λT

)
exp (c2/λT ) = 1

with the solution (c2/λmaxT ) = 4.965 114 23 or

λmaxT = (2897.7686 ± 0.0048)µm K . (5.52)

This is a form of Wien’s5 [5.10] displacement law. It is frequently used to calcu-
late the temperature of a radiator from its measured wavelength λmax, under the
assumption that it behaves like a black body.

5Wilhelm Carl Werner Otto Fritz Franz Wien (1864–1928) became an assistant to Hermann
v. Helmholtz at the Physikalisch-Technische Reichsanstalt in Berlin in 1890. It was there that
he discovered the displacement law in 1893, and also published an equation for Mλs in 1896,
that only slightly differed from Planck’s law. Wien became Professor of Physics at the TH in
Aachen in 1896, moved in 1899 to become a professor in Würzburg, and once again changed to
the University of Munich in 1920. In 1911 he was awarded the Nobel prize for Physics as an
acknowledgement of his work on thermal radiation.
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Fig. 5.25: Dimensionless representation of Planck’s radiation law from (5.55)
and (5.57)

The isotherms of Planck’s radiation law (5.50) may be reproduced by a single
curve, if instead of Mλs, Mλs/T

5 over the product λT or the dimensionless quantity

x := λT/c2 (5.53)

is plotted. This gives

Mλs(λT )

T 5
=

c1

(λT )5 [exp (c2/λT ) − 1]
(5.54)

or
Mλs(x)

T 5
=

c1/c
5
2

x5 (e1/x − 1)
(5.55)

with c1/c
5
2 = (0.606 893 5 ± 0.000 052) · 10−12W/(µm m2 K5). The maximum for

this function appears at

xmax =
λmaxT

c2

= 0.201 405 235 (5.56)

and has the value

Mλs(xmax)

T 5
= 21.201 435 7

c1

c5
2

= (0.128 670 1 ± 0.000 001 1) · 10−10 W

µm m2 K5
.

(5.57)
So, the maximum value of Mλs increases with the fifth power of T . Fig. 5.25 shows
the ratio Mλs(x)/Mλs(xmax). In Table 5.3 the values of Mλs(λT )/T 5 calculated
using (5.54) as a function of λT are presented.

The relationships communicated for Mλs(λ, T ) are exactly valid for the radiation of a black
body in a vacuum. With radiation in a medium with refractive index n > 1 the propagation
velocity c and the wavelength λM ar smaller than in a vacuum; although the frequency ν remains
the same. In Planck’s law, some change has to be made. The velocity of light in a vacuum c0
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that appears in the constants c1 and c2 has to be replaced by c, and in (5.50) λ is replaced by
λM. Taking into account the relationship c = c0/n, instead of (5.54), we obtain

MλM,s(λMT )

n3T 5
=

c1

(nλMT )5 [exp (c2/nλMT ) − 1]
,

where c1 and c2 have their original meanings according to (5.50). The values in Table 5.3 can
be used, if λT is interpreted as nλMT and Mλs/T

5 as MλM,s/n
3T 5.

The emissive power of a black body in a medium with a refractive index n will be

Ms,n(T ) =

∞∫
0

MλM,s(λM, T ) dλM = n2Ms(T ) ,

where Ms(T ) is the emissive power in a vacuum. This will be calculated in the next section.
As the refractive index n of air and other gases lies very close to one, the increase in the

emission compared to emission into a vacuum (n = 1) is of very little importance. Exceptions to
this are the radiation effects in molten glass with n ≈ 1.5 and similar semi-transparent materials,
see [5.11].

5.2.3 The emissive power and the emission of radiation in
a wavelength interval

According to (5.8) the emissive power Ms(T ) of a black body is obtained by
integration of Mλs(λ, T ) over all wavelengths. A surprisingly simple result comes
out of the fairly complex equation (5.50). With

dλ =
c2

T
dx

according to (5.53), the following is obtained from (5.55)

Ms(T ) =

∞∫
0

Mλs(λ, T ) dλ = c2T
4

∞∫
0

Mλs(x)

T 5
dx =

c1

c4
2

T 4

∞∫
0

dx

x5 (e1/x − 1)
.

The definite integral has the value π4/15, so

Ms(T ) = σT 4 (5.58)

with

σ =
c1

c4
2

π4

15
=

2π5k4

15 c2
0 h3

= (5.670 400 ± 0.000 040) · 10−8 W

m2K4
(5.59)

is obtained, [5.8]. The best directly measured, but not so accurate value is σ =
(5.669 59 ± 0.000 76) · 10−8W/m2K4 from [5.12].

Equation (5.58) is the famous law from Stefan and Boltzmann, cf. also section
1.1.5. J. Stefan [5.13] presented this law in 1879 based on experimental results,
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Table 5.3: Hemispherical spectral emissive power of a black body divided by the fifth power
of the temperature, according to (5.54) and fraction function F (0, λT ) according to (5.60) as a
function of the product λT

λT Mλs/T
5 F (0, λT ) λT Mλs/T

5 F (0, λT ) λT Mλs/T
5 F (0, λT )

µm K 10−10W
m2µmK5 µm K 10−10W

m2µmK5 µm K 10−10W
m2µmK5

1000 0.00211 0.00032 2750 0.12781 0.21660 4500 0.08641 0.56431
1050 0.00328 0.00056 2800 0.12830 0.22789 4550 0.08482 0.57186
1100 0.00485 0.00091 2850 0.12859 0.23922 4600 0.08325 0.57927
1150 0.00686 0.00142 2900 0.12867 0.25056 4650 0.08169 0.58654
1200 0.00933 0.00213 2950 0.12857 0.26191 4700 0.08016 0.59367

1250 0.01230 0.00308 3000 0.12831 0.27323 4750 0.07864 0.60067
1300 0.01573 0.00432 3050 0.12788 0.28453 4800 0.07715 0.60754
1350 0.01963 0.00587 3100 0.12730 0.29578 4850 0.07568 0.61428
1400 0.02395 0.00779 3150 0.12659 0.30697 4900 0.07423 0.62089
1450 0.02864 0.01011 3200 0.12576 0.31810 4950 0.07280 0.62737

1500 0.03365 0.01285 3250 0.12482 0.32915 5000 0.07140 0.63373
1550 0.03892 0.01605 3300 0.12377 0.34011 5050 0.07002 0.63996
1600 0.04438 0.01972 3350 0.12263 0.35097 5100 0.06866 0.64608
1650 0.04998 0.02388 3400 0.12141 0.36173 5150 0.06732 0.65207
1700 0.05563 0.02854 3450 0.12011 0.37238 5200 0.06601 0.65795

1750 0.06130 0.03369 3500 0.11875 0.38291 5250 0.06472 0.66371
1800 0.06691 0.03934 3550 0.11733 0.39332 5300 0.06346 0.66937
1850 0.07242 0.04549 3600 0.11586 0.40360 5350 0.06222 0.67491
1900 0.07778 0.05211 3650 0.11434 0.41375 5400 0.06100 0.68034
1950 0.08295 0.05920 3700 0.11279 0.42377 5450 0.05981 0.68566

2000 0.08790 0.06673 3750 0.11120 0.43364 5500 0.05863 0.69089
2050 0.09261 0.07469 3800 0.10959 0.44338 5550 0.05748 0.69600
2100 0.09704 0.08306 3850 0.10796 0.45297 5600 0.05636 0.70102
2150 0.10119 0.09180 3900 0.10631 0.46241 5650 0.05525 0.70594
2200 0.10504 0.10089 3950 0.10465 0.47172 5700 0.05417 0.71077

2250 0.10859 0.11031 4000 0.10297 0.48087 5750 0.05311 0.71550
2300 0.11182 0.12003 4050 0.10130 0.48987 5800 0.05207 0.72013
2350 0.11475 0.13002 4100 0.09962 0.49873 5850 0.05105 0.72468
2400 0.11737 0.14026 4150 0.09794 0.50744 5900 0.05005 0.72914
2450 0.11969 0.15071 4200 0.09626 0.51600 5950 0.04907 0.73351

2500 0.12172 0.16136 4250 0.09459 0.52442 6000 0.04812 0.73779
2550 0.12346 0.17217 4300 0.09293 0.53269 6050 0.04718 0.74199
2600 0.12493 0.18312 4350 0.09128 0.54081 6100 0.04626 0.74611
2650 0.12613 0.19419 4400 0.08965 0.54878 6150 0.04536 0.75015
2700 0.12709 0.20536 4450 0.08802 0.55662 6200 0.04448 0.75411
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Table 5.3: (continued)

λT Mλs/T
5 F (0, λT ) λT Mλs/T

5 F (0, λT ) λT Mλs/T
5 F (0, λT )

µm K 10−10W
m2µmK5 µm K 10−10W

m2µmK5 µm K 10−10W
m2µmK5

6250 0.04362 0.75800 10000 0.01164 0.91416 17000 0.00198 0.97765
6300 0.04278 0.76181 10100 0.01128 0.91618 17200 0.00190 0.97834
6350 0.04195 0.76554 10200 0.01094 0.91814 17400 0.00182 0.97899
6400 0.04115 0.76921 10300 0.01061 0.92004 17600 0.00175 0.97962
6450 0.04035 0.77280 10400 0.01029 0.92188 17800 0.00168 0.98023

6500 0.03958 0.77632 10500 0.00998 0.92367 18000 0.00162 0.98081
6600 0.03808 0.78317 10600 0.00969 0.92540 18200 0.00156 0.98137
6700 0.03665 0.78976 10700 0.00940 0.92709 18400 0.00150 0.98191
6800 0.03527 0.79610 10800 0.00913 0.92872 18600 0.00144 0.98243
6900 0.03395 0.80220 10900 0.00886 0.93031 18800 0.00139 0.98293

7000 0.03269 0.80808 11000 0.00861 0.93185 19000 0.00133 0.98341
7100 0.03148 0.81374 11200 0.00812 0.93480 19200 0.00129 0.98387
7200 0.03033 0.81918 11400 0.00767 0.93758 19400 0.00124 0.98431
7300 0.02922 0.82443 11600 0.00725 0.94021 19600 0.00119 0.98474
7400 0.02816 0.82949 11800 0.00686 0.94270 19800 0.00115 0.98516

7500 0.02714 0.83437 12000 0.00649 0.94505 20000 0.00111 0.98555
7600 0.02617 0.83907 12200 0.00615 0.94728 20500 0.00102 0.98649
7700 0.02523 0.84360 12400 0.00583 0.94939 21000 0.00093 0.98735
7800 0.02434 0.84797 12600 0.00552 0.95139 21500 0.00085 0.98814
7900 0.02348 0.85219 12800 0.00524 0.95329 22000 0.00079 0.98886

8000 0.02266 0.85625 13000 0.00498 0.95509 22500 0.00072 0.98952
8100 0.02187 0.86018 13200 0.00473 0.95681 23000 0.00067 0.99014
8200 0.02111 0.86397 13400 0.00450 0.95843 23500 0.00062 0.99070
8300 0.02038 0.86763 13600 0.00428 0.95998 24000 0.00057 0.99123
8400 0.01969 0.87116 13800 0.00407 0.96145 24500 0.00053 0.99172

8500 0.01902 0.87457 14000 0.00388 0.96285 25000 0.00049 0.99217
8600 0.01838 0.87787 14200 0.00369 0.96419 26000 0.00043 0.99297
8700 0.01776 0.88105 14400 0.00352 0.96546 27000 0.00037 0.99368
8800 0.01717 0.88413 14600 0.00336 0.96667 28000 0.00032 0.99429
8900 0.01660 0.88711 14800 0.00321 0.96783 29000 0.00028 0.99482

9000 0.01606 0.88999 15000 0.00306 0.96893 30000 0.00025 0.99529
9100 0.01553 0.89278 15200 0.00292 0.96999 32000 0.00020 0.99607
9200 0.01503 0.89547 15400 0.00280 0.97100 34000 0.00016 0.99669
9300 0.01455 0.89808 15600 0.00267 0.97196 36000 0.00013 0.99719
9400 0.01408 0.90060 15800 0.00256 0.97289 38000 0.00010 0.99759

9500 0.01363 0.90305 16000 0.00245 0.97377 40000 0.00008 0.99792
9600 0.01320 0.90541 16200 0.00234 0.97461 45000 0.00005 0.99851
9700 0.01279 0.90770 16400 0.00225 0.97542 50000 0.00004 0.99890
9800 0.01239 0.90992 16600 0.00215 0.97620 55000 0.00002 0.99917
9900 0.01201 0.91207 16800 0.00206 0.97694 60000 0.00002 0.99935
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Fig. 5.26: Isotherm of Mλs(λ, T ). The
emissive power in the wavelength interval
(λ1, λ2) corresponds to the hatched area

Fig. 5.27: Function F (0, λ) according to
(5.60), is represented by the ratio of the
hatched area to the total area under the
isotherm of Mλs(λ, T )

whilst L. Boltzmann [5.14] derived this relationship between emissive power and
temperature in 1884, by thermodynamic reasoning and using results from the
classic electromagnetic theory of radiation. Of course neither researcher could
reduce the constant σ, also called the Stefan-Boltzmann constant, to fundamental
constants of nature, as the appearance of the Planck constant h in (5.59) shows
that this is only possible using quantum theory.

The emissive power Ms(T ) of a black body according to (5.34) is illustrated in
Fig. 5.26 by the total area under the isotherm of Mλs(λ, T ). In many calculations
for radiative transfer, the portion of the emissive power from a certain wavelength
interval (λ1, λ2) is required. This part corresponds to the hatched area in Fig. 5.26.
Its calculation requires the definition of the fraction function

F (λ1, λ2) :=

λ2∫
λ1

Mλs(λ, T ) dλ

∞∫
0

Mλs(λ, T ) dλ
=

1

σT 4

λ2∫
λ1

Mλs(λ, T ) dλ .

Using the function

F (0, λ) :=
1

σT 4

λ∫
0

Mλs(λ, T ) dλ , (5.60)

which is illustrated in Fig. 5.27, F (λ1, λ2) can be expressed as

F (λ1, λ2) = F (0, λ2) − F (0, λ1) . (5.61)

If, instead of λ, the dimensionless variable x from (5.53) is introduced, then
F (0, λ) can be represented as a function only of x:

F (0, x) = F (0,
λT

c2

) =
15

π4

x∫
0

dx

x5 (e1/x − 1)
, (5.62)

Fig. 5.28. As x and λT only differ by the radiation constant c2, the func-
tion F (0, λT ) is used for applications. For λmaxT according to (5.52) this gives
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Fig. 5.28: Function F (0, λT/c2)
from (5.62) versus x = λT/c2

F (0, λmaxT ) = 0.250 05. Therefore, just over a quarter of the emissive power of a
black body falls in the wavelength region λ ≤ λmax, at all temperatures.

The analytical representation of the integral (5.62) is possible by integrating a series expan-
sion of the integrand. With y = 1/x = c2/λT we obtain, for all y, the convergent series

F (0, y) =
15

π4

∞∑
m=1

e−my

m4
{[(my + 3)my + 6] my + 6} .

For y < 2 it is more convenient to use the series

F (0, y) = 1 − 15

π4
y3

(
1

3
− y

8
+

y2

60
− y4

5040
+

y6

272160
− y8

13305600
+ · · ·

)
,

cf. [5.15], [5.16].

Example 5.3: The sun can be approximated as a radiating sphere of radius RS = 6.96 ·
108 m. The distance between the earth and the sun is DES = 1.496 · 1011 m. At this
distance, the irradiance on an area normal to the sun and at the outer edge of the earth’s
atmosphere has a value of E0 = 1367W/m

2
, that will be known as the solar constant. The

extraterrestrial solar radiation shall be considered to be black body radiation. Under these
assumptions determine the emissive power MS of the sun and its surface temperature TS.
What proportion of the radiation leaving the sun falls within the region of visible light
(0.38µm ≤ λ ≤ 0.78µm)?
The radiative power emitted by the sun is

ΦS = 4πR2
SMS(TS) .

This radiative power also penetrates an (imaginary) spherical surface lying at a distance
DES concentric around the sun, Fig. 5.29.

Fig. 5.29: Geometry of the sun-
earth system (not to scale) and
schematic representation of the ir-
radiation of a surface element dA
at a distance DES from the centre
of the sun, RS radius of sun
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So, it holds that
ΦS = 4πD2

ESE0

with E0 as the solar constant. This gives the emissive power of the sun as

MS(TS) =

(
DES

RS

)2

E0 = 63.16
MW

m2
.

A black body with this emissive power has, according to the Stefan-Boltzmann law, a
temperature of

TS =

(
MS

σ

)1/4

=

(
DES

RS

)1/2 (
E0

σ

)1/4

= 5777K .

As a first approach, extraterrestrial solar radiation can be taken to be radiation from a
black body at this temperature, see also section 5.3.5.
The proportion of the radiation emitted by this black body within the wavelength interval
λ1 = 0.38µm to λ2 = 0.78µm, according to (5.61) and (5.62), is

F (λ1, λ2) = F (0, λ2TS) − F (0, λ1TS) .

For λ2TS = 4506µmK and λ1TS = 2195µmK

F (λ1, λ2) = 0.5652 − 0.1000 = 0.4652

is found from Table 5.3 as an approximate value for the proportion of the solar radiation
in the visible wavelength region.

5.3 Radiation properties of real bodies

In the following sections we will look at the radiation properties of real bodies,
which, with respect to the directional dependence and the spectral distribution of
the radiated energy, are vastly different from the properties of the black body. In
order to record these deviations the emissivity of a real radiator is defined. Kirch-
hoff’s law links the emissivity with the absorptivity and suggests the introduction
of a “semi-ideal” radiator, the diffuse radiating grey body, that is frequently used
as an approximation in radiative transfer calculations. In the treatment of the
emissivities of real radiators we will use the results from the classical electromag-
netic theory of radiation. In the last section the properties of transparent bodies,
(e.g. glass) will be dealt with.

5.3.1 Emissivities

According to Kirchhoff’s law a black body emits the maximum radiation energy at
every wavelength in every direction in the hemisphere. It therefore suggests itself
to relate the four radiation quantities, used to characterise the emission of any
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radiator in 5.1.2, to their maximum values, namely the corresponding quantities
for a black body at the same temperature. This leads to the definition of four
dimensionless quantities that are smaller than one and are called emissivities.
These four emissivities are material properties of the radiation emitting body.

The definitions of the four emissivities are brought together in Table 5.4. It
additionally contains the relationships which are used in the calculation of the
other three emissivities from the directional spectral emissivity ε′λ(λ, β, ϕ, T ). This
emissivity describes the directional and wavelength distributions of the emitted
radiation flow, whilst the hemispherical spectral emissivity ελ(λ, T ) only gives
the spectral energy distribution. The directional total emissivity ε′(β, ϕ, T ) only
describes the distribution over the solid angles in the hemisphere. In contrast,

Table 5.4: Definitions of the emissivities and the relationships existing between them

Directional spectral emissivity

ε′λ(λ, β, ϕ, T ) :=
Lλ(λ, β, ϕ, T )

Lλs(λ, T )

ε′λ describes the directional and wavelength distribution of the emitted radiation flow
by comparing the spectral intensity Lλ with that of a black body.

Hemispherical spectral emissivity

ελ(λ, T ) :=
Mλ(λ, T )

Mλs(λ, T )

ελ(λ, T ) =
1

π

∫
��

ε′λ(λ, β, ϕ, T ) cosβ dω

ελ describes the wavelength distribution of the radiative power emitted in the hemi-
sphere by comparison of the hemispherical spectral emissive power Mλ with that of
a black body.

Directional total emissivity

ε′(β, ϕ, T ) :=
L(β, ϕ, T )

Ls(T )
=

π

σT 4
L(β, ϕ, T )

ε′(β, ϕ, T ) =
1

Ls(T )

∞∫
0

ε′λ(λ, β, ϕ, T )Lλs(λ, T ) dλ

ε′ describes the directional distribution of the emitted radiation flow of all wavelengths
by comparison of the total intensity L with that of a black body.

Hemispherical total emissivity

ε(T ) :=
M(T )

Ms(T )
=

M(T )

σT 4

ε(T ) =
1

Ms(T )

∞∫
0

ελ(λ, T )Mλs(λ, T ) dλ =
1

π

∫
��

ε′(β, ϕ, T ) cosβ dω

ε compares the emissive power M with that of a black body.
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Fig. 5.30: Hemispherical spectral emissive
power Mλ(λ, T ) of a real body compared to
the hemispherical spectral emissive power
Mλs(λ, T ) of a black body at the same tem-
perature. The hatched area represents the
emissive power M (T ) of the real body

the hemispherical total emissivity ε(T ) — normally just called the emissivity —
does not have a distribution function character. It merely gives the temperature
dependent factor by which the emissive power M(T ) of a real body is smaller than
the emissive power Ms(T ) of a black body at the same temperature.

The following relationships for the four radiation quantities for emission from
a real body are obtained from the defining equations for the emissivities. The
body’s spectral intensity Lλ is

Lλ(λ, β, ϕ, T ) = ε′λ(λ, β, ϕ, T )Lλs(λ, T ) , (5.63)

where the spectral intensity Lλs of the black body is given by Planck’s function
according to (5.50). As the black body is a Lambert radiator, ε′λ alone covers the
deviations of the real emission from Lambert’s cosine law. This also applies to
the directional total emissivity ε′(β, ϕ, T ), with which the intensity L of the real
body is expressed by

L(β, ϕ, T ) = ε′(β, ϕ, T )Ls(T ) = ε′(β, ϕ, T )
σ

π
T 4 , (5.64)

In general, the directional emissivities ε′λ(λ, β, ϕ, T ) and ε′(β,ϕ, T ) do not depend on the
circumferential angle ϕ. Integration over all solid angles in the hemisphere, which, according to
Table 5.4, leads from ε′λ to ελ and from ε′ to ε, is then simplified. This produces

ελ(λ, T ) =
1

π

2π∫
ϕ=0

π/2∫
β=0

ε′λ(λ, β, T ) cos β sin β dβ dϕ = 2

π/2∫
β=0

ε′λ(λ, β, T ) cos β sin β dβ . (5.65)

and likewise

ε(T ) = 2

π/2∫
β=0

ε′(β, T ) cosβ sin β dβ . (5.66)

It holds for the hemispherical spectral emissive power of a real body that

Mλ(λ, T ) = ελ(λ, T )Mλs(λ, T ) , (5.67)

where the hemispherical spectral emissive power Mλs of a black body is given by
(5.50). Fig. 5.30 illustrates (5.67) for a given temperature. Every ordinate of
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Mλs(λ, T ) is reduced by a factor of ελ(λ, T ). The hatched area corresponds to the
emissive power of the real body, since it holds that

M(T ) =

∞∫
0

Mλ(λ, T ) dλ =

∞∫
0

ελ(λ, T )Mλs(λ, T ) dλ = ε(T )Ms(T ) = ε(T )σT 4 .

(5.68)

5.3.2 The relationships between emissivity, absorptivity
and reflectivity. The grey Lambert radiator

5.3.2.1 Conclusions from Kirchhoff’s law

Kirchhoff’s law shows that a close relationship exists between the emission and
absorption capabilities of a body, see 5.1.6. From (5.48) we obtained the following
equation for the spectral intensity of any body

Lλ(λ, β, ϕ, T ) = a′
λ(λ, β, ϕ, T )Lλs(λ, T )

as a quantitative expression of Kirchhoff’s law. Here, the directional spectral
absorptivity a′

λ is a material property that characterises the absorption capability
of the body. The comparison of this relationship with (5.63) yields

a′
λ(λ, β, ϕ, T ) = ε′λ(λ, β, ϕ, T ) . (5.69)

The directional spectral absorptivity of a any radiator agrees with its directional
spectral emissivity.

The directional spectral reflectivity r′λ of an opaque body can also be traced
back to the directional spectral emissivity ε′λ. According to (5.41) and (5.69), it
holds that

r′λ(λ, β, ϕ, T ) = 1 − a′
λ(λ, β, ϕ, T ) = 1 − ε′λ(λ, β, ϕ, T ) . (5.70)

This says that one single material function is sufficient for the description of the
emission, absorption and reflective capabilities of an opaque body. Table 5.4
shows that it is possible to calculate the emissivities ελ, ε′ and ε from ε′λ. Corre-
spondingly, with known incident spectral intensity Kλ of the incident radiation,
this also holds for the calculation of aλ, a′ and a from a′

λ as well as of rλ, r′

and r from r′λ, cf. Tables 5.1 and 5.2. So, only one single material function,
e.g. ε′λ = ε′λ(λ, β, ϕ, T ), is actually necessary to record all the radiation properties
of a real body6. This is an example of how the laws of thermodynamics limit the
number of possible material functions (equations of state) of a system.

6However, this is valid with the restriction that the bidirectional reflectivities are not covered,
which describe the directional distribution of the reflected radiation; see for this the comments
in 5.1.5 as well as [5.4], p. 71 ff.
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5.3.2.2 Calculation of absorptivities from emissivities

The equality resulting from Kirchhoff’s law between the directional spectral ab-
sorptivity and the emissivity, a′

λ = ε′λ, suggests that investigation of whether the
other three (integrated) absorptivities aλ, a′ and a can be calculated from the
corresponding emissivities ελ, ε′ and ε should be carried out. This will be impos-
sible without additional assumptions, as the absorptivities aλ, a′ and a are not
alone material properties of the absorbing body, they also depend on the incident
spectral intensity Kλ of the incident radiation, see Table 5.1. The emissivities ελ,
ε′ and ε are, in contrast, purely material properties. An accurate test is therefore
required to see whether, and under what conditions, the equations analogous to
(5.69), aλ = ελ, a′ = ε′ and a = ε are valid.

If the hemispherical spectral absorptivity and emissivity shall agree, aλ(λ, T ) = ελ(λ, T ),
then according to Table 5.1 and 5.4 the equation

1

Eλ(λ)

∫
��

ε′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) cos β dω =
1

π

∫
��

ε′λ(λ, β, ϕ, T ) cos β dω (5.71)

has to be satisfied. On the left hand side, according to Kirchhoff’s law, a′

λ was replaced by ε′λ.
Equation (5.71) is only satisfied in two cases:

1. The body has a diffuse radiating surface (Lambert radiator); then ε′λ = ε′λ(λ, T ) is valid.

2. Diffuse irradiation with Kλ = Kλ(λ) is present, see section 5.1.3.

If the directional total absorptivity a′ equals the directional total emissivity, a′(β,ϕ, T ) =
ε′(β,ϕ, T ), then according to Tables 5.1 and 5.4

1

K(β,ϕ)

∞∫
0

ε′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) dλ =
1

Ls(T )

∞∫
0

ε′λ(λ, β, ϕ, T )Lλs(λ, T ) dλ (5.72)

must hold. Once again, this is only possible in two cases:

1. The directional spectral emissivity is independent of the wavelength λ: ε′λ = ε′λ(β,ϕ, T ). A
body with this property is called a grey body or a grey radiator.

2. The incident radiation satisfies the condition Kλ(λ, β, ϕ) = C(β,ϕ) · Lλs(λ, T ), where the
factor C does not depend on λ.

Finally, it remains to investigate under which conditions the hemispherical total quantities
a and ε are the same, such that a(T ) = ε(T ) can be stated. According to Tables 5.1 and 5.4,
the equation∫
��

[
∞∫
0

ε′λ(λ, β, ϕ, T )Kλ(λ, β, ϕ) dλ

]
cosβ dω

∫
��

[
∞∫
0

Kλ(λ, β, ϕ) dλ

]
cos β dω

=
1

Ms(T )

∫
��

⎡⎣ ∞∫
0

ε′λ(λ, β, ϕ, T )Lλs(λ, T ) dλ

⎤⎦ cosβ dω

(5.73)
has to be satisfied.
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This is possible in four cases:

1. The body is both a diffuse and grey radiator: ε′λ = ε′λ(T ).

2. The body is a diffuse radiator, ε′λ = ε′λ(λ, T ), and the spectral irradiance Kλ of the radiation
has a wavelength dependence like black body radiation at the temperature of the absorbing
body: Kλ(λ, β, ϕ) = C(β,ϕ) · Lλs(λ, T ).

3. The body is a grey radiator, ε′λ = ε′λ(β,ϕ, T ), and Kλ is independent of the direction (diffuse
irradiation), Kλ = Kλ(λ).

4. The body has any radiation properties. The spectral irradiance Kλ is independent of direc-
tion and is proportional to the spectral intensity of a black body at the temperature of the
absorbing surface: Kλ = C · Lλs(λ, T ).

The proof of the correctness of these conditions, under which the equations (5.71) to (5.73) hold,
is left to the reader.

The equality of the three pairs of absorptivities and emissivities, namely
aλ(λ, T ) = ελ(λ, T ), a′(β, ϕ, T ) = ε′(β, ϕ, T ) and a(T ) = ε(T ), is only given if
the absorbing and emitting surfaces have particular properties, or if the incident
spectral intensity Kλ of the radiation satisfies certain conditions in terms of its
directional and wavelength dependency. These conditions are satisfied by inci-
dent black body radiation, when the black body is at the same temperature as
the absorbing body, which does not apply for heat transfer. In practice, the more
important cases are those in which the directional spectral emissivity ε′λ of the
absorbing body at least approximately satisfies special conditions. We will once
again summarise these conditions:

1. When ε′λ = ε′λ(λ, T ), (diffuse radiating surface), it holds that

aλ(λ, T ) = ελ(λ, T ) = ε′λ(λ, T ) . (5.74)

2. When ε′λ = ε′λ(β, ϕ, T ), (grey radiating surface), it holds that

a′(β, ϕ, T ) = ε′(β, ϕ, T ) = ε′λ(β, ϕ, T ) . (5.75)

3. When ε′λ = ε′λ(T ), (diffuse and grey emitting surface), it holds that

a(T ) = ε(T ) = ε′λ(T ) . (5.76)

If the conditions mentioned above for ε′λ are satisfied, then (5.74) to (5.76) are
valid for incident radiation with any incident spectral intensity Kλ.

5.3.2.3 The grey Lambert radiator

In radiative exchange calculations, it is preferable to use the model, described in
the previous section, of a grey, diffuse radiating body as a simple approximation
for the radiative behaviour of real bodies. As Lambert’s cosine law is valid for
this model, we denote these bodies as grey Lambert radiators. The energy radi-
ated from them is distributed like that from a black body over the directions in
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Fig. 5.31: Hemispherical spectral emissive
power Mλ(λ, T ) = ε(T )Mλs(λ, T ) of a grey
Lambert radiator at a certain temperature

the hemisphere and the spectrum; yet the spectral emissive power Mλ(λ, T ) and
the spectral intensity Lλ(λ, T ) are smaller by the purely temperature dependent
emissivity ε(T ) than the corresponding functions for a black body, Fig. 5.31:

Mλ(λ, T ) = πLλ(λ, T ) = ε(T )Mλs(λ, T ) . (5.77)

Here, Mλs(λ, T ) is the Planck function according to (5.50). The emissivity ε(T )
is the only material function of a grey Lambert radiator; all four emissivities are
equal and the same as the four absorptivities:

ε(T ) = ε′(T ) = ελ(T ) = ε′λ(T ) = a′
λ(T ) = aλ(T ) = a′(T ) = a(T ) . (5.78)

Real bodies are often approximate Lambert radiators. In contrast, ε′λ and
ελ are, in general, highly dependent on the wavelength. The assumption of a
grey radiating surface no longer applies. However it is a good approximation, if
the wavelength region with significant spectral emissive power Mλ and spectral
irradiance Eλ lies in a wavelength interval in which ελ is roughly constant. This is
illustrated in Fig. 5.32, where is is assumed that at small wavelengths radiation is
neither emitted, incident nor absorbed. This applies to radiation sources that are
at not too high temperatures. However if solar radiation, with a maximum lying at
small wavelengths λ < λ1, falls on the body under consideration in Fig. 5.32, then
a �= ε; the assumption of a grey body is now incorrect, so special absorptivities
aS for solar radiation have to be used, cf. section 5.4.5.

Fig. 5.32: Approximately constant spectral
emissivity ελ for λ > λ1 as well as the pattern
of the hemispherical spectral emissive power
Mλ and the spectral irradiance Eλ, such that
a grey radiator can be assumed
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Example 5.4: A material has a directional spectral emissivity that only depends on the
polar angle β: ε′λ(λ, β, ϕ, T ) = ε′(β). This directional dependence is given by

ε′(β) =

{
ε′1 = 0.20 for 0 ≤ β < π/4
ε′2 = 0.50 for π/4 ≤ β ≤ π/2

.

The external skin of a satellite is made of this material and is exposed to solar radiation
with a flux density q̇sol = 1500W/m2. What temperature does the surface of the satellite
assume, when it is hit perpendicularly by the solar radiation? What temperature develops
when the surface forms an angle of π/6 = 30◦ with the direction of the solar radiation?
A heat flow between the surface and the inside of the satellite can be neglected; the
temperature of space may be assumed to be TW = 0K.
Under the assumptions given, the emissive power M (T ) = εσT 4 of the satellite surface has
to be equal to the energy flux q̇abs that it absorbs from the incident solar radiation:

εσT 4 = q̇abs = a′(β)E = ε′(β) q̇sol cos β .

Here, (5.75) has been used because a grey radiator (ε′λ independent of λ) is present. The
temperature T of the satellite surface will then be

T =
4

√
ε′(β) q̇sol cos β

εσ
. (5.79)

In this equation, ε is the hemispherical total emissivity, calculated according to (5.66).
This gives

ε = 2 ε′1

π/4∫
0

cos β sin β dβ + 2 ε′2

π/2∫
π/4

cosβ sin β dβ .

The two integrals each have a value of 1/4, yielding ε = 1
2 (ε′1 + ε′2) = 0.35.

For perpendicularly falling radiation, β = 0, the temperature obtained from (5.79) is
T = 351K. When the surface and the direction of the solar radiation form an angle of
π/6, the polar angle is β = π/2− π/6 = π/3. The directional emissivity ε′(β), decisive for
the absorption, now assumes the large value of ε′2, whilst the irradiance is reduced by a
factor of cos β = cos(π/3) = 0.5. The two effects partly compensate each other, such that
(5.79) delivers the only slightly higher surface temperature of T = 371K.

5.3.3 Emissivities of real bodies

According to 5.3.2.1, the radiation properties of an opaque body are determined
by its directional spectral emissivity ε′λ = ε′λ(λ, β, ϕ, T ). In order to determine
this material function experimentally numerous measurements are required, as
the dependence on the wavelength, direction and temperature all have to be in-
vestigated. These extensive measurements have, so far, not been carried out for
any substance. Measurements are frequently limited to the determination of the
emissivity ε′λ,n normal to the surface (β = 0), the emissivities for a few chosen
wavelengths or only the hemispherical total emissivity ε is measured.
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In addition to incomplete radiation measurements, the strong dependence of
the results on the condition of the surface is a further difficulty. Impurities also
play a role, alongside roughness. Even a very thin film of water or an oxide layer
can completely change the radiation behaviour compared to the base material
alone. It is therefore no surprise that the emissivities measured by various re-
searchers often differ significantly. Unfortunately, in the description of the exper-
iments the surface properties were inexactly or incompletely characterised, which
frequently occurs due to the lack of quantitative measures for surface properties.
The emissivities presented in Tables B12 and B13 of the Appendix must therefore
be taken to be relatively uncertain.

In view of the experimental difficulties a theory for radiation properties is
desirable. The classical theory of electromagnetic waves from J.C. Maxwell (1864),
links the emissivity ε′λ with the so-called optical constants of the material, the
refractive index n and the extinction coefficient k, that can be combined into a
complex refractive index n̄ = n − ik. The optical “constants” depend on the
temperature, the wavelength and electrical properties, in particular the electrical
resistivity re of the material. In addition, the theory delivers, in the form of
Fresnel’s equations, an explicit dependence of the emissivity on the polar angle
β, whilst no dependence on the circumferential angle ϕ appears, as isotropy has
been assumed.

Unfortunately the electromagnetic theory is only valid under a series of limiting
suppositions, so that the emissivities calculated from it frequently differ from
reality. Despite this, it provides important, qualitative statements that can be
used for the extrapolation from measurements or to estimate for missing data.
We will not discuss the electromagnetic theory, see for this [5.4], but will use
some of its results in the treatment of emissivities of electrical insulators and
electrical conductors (metals). These two material groups differ significantly in
their radiation behaviour.

5.3.3.1 Electrical insulators

Materials that do not conduct electricity include construction materials, paints,
oxide layers on metals and most liquids. For the application of electromagnetic
theory they are idealised by the assumption that their specific electrical resistance
is re → ∞. These substances are called dielectrics. Their extinction coefficient k
is zero; their refractive index is yielded, according to

n =
√

µrγr (5.80)

from their magnetic permeability µr and their electrical permittivity γr. In a
vacuum both quantities are equal to one, so n = 1. The refractive indices of most
dielectrics lie between n = 1 and n = 3.

According to theory, the spectral emissivity ε′λ,n normal to the surface simply
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depends on the refractive index as follows

ε′λ,n =
4n

(n + 1)2 . (5.81)

The complicated dependence ε′λ = ε′λ(β, n) on the polar angle β is illustrated in
Fig. 5.33, a polar diagram. According to that and (5.81) high emissivities, over
0.8, would be expected for insulators, which is confirmed by the data presented
in Table B12. In Fig. 5.33 lines n = const run almost circular up to large polar
angles β. Therefore Lambert’s cosine law holds in good approximation; dielectrics
can be treated like diffuse radiators. Measurements from E. Schmidt [5.17] as well
as from E. Schmidt and E. Eckert [5.18] essentially confirm the dependence of the
emissivity on the polar angle β, as illustrated in Fig. 5.33.

The electromagnetic theory makes no explicit statements about the wavelength
dependence of n. The high emissivities expected from (5.81) and Fig. 5.33 were
only observed in radiation measurements at large wavelengths, around λ > 2µm.
This is shown in Fig. 5.34, in which ε′λ(λ, β ≈ 0) according to measurements by
W. Sieber [5.19] is illustrated. In the regions of large wavelengths important in
practice, as a first approximation, ε′λ does not depend on λ; we can put ε′ ≈ ε′λ and
ε ≈ ελ, if the temperature is low enough such that the emission at wavelengths
below around 2µm does not deliver any meaningful contribution. Dielectrics are
approximate grey radiators.

Since frequently only the emissivity ε′n or ε′λ,n normal to the surface are deter-
mined in radiation experiments, and because the hemispherical total emissivity ε
is required for radiative exchange calculations, the ratio ε/ε′n is of interest. For
dielectrics, we can put

ε/ε′n ≈ ελ (n) /ε′λ,n (n) ,

so that the ratio can be calculated from the electromagnetic theory equations. It
is presented in Tab. 5.5, and illustrated in Fig. 5.35. As Lambert’s cosine law is
roughly satisfied, ε/ε′n only deviates slightly from one.

Fig. 5.33: Directional spectral emissivity
ε′λ(β, n) of electrical insulators according to
(5.82) in a polar diagram
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Fig. 5.34: Directional spectral emissivity ε′λ(λ, β ≈ 0) as a function of wavelength for various
insulators, according to measurements by W. Sieber [5.19]. a white paint on wood, b oak wood
(smoothed), c white tiles (glazed), d concrete

Table 5.5: Hemispherical (spectral) emissivity ελ, ratio ελ/ε′λ,n and refractive index n as
functions of the directional (spectral) emissivity ε′λ,n normal to the surface for electrical non-
conductors according to electromagnetic theory. The ratio ελ/ε′λ,n can be set equal to ε/ε′n.

ε′λ,n ελ ελ/ε′λ,n n ε′λ,n ελ ελ/ε′λ,n n ε′λ,n ελ ελ/ε′λ,n n

0.50 0.5142 1.0284 5.8284 0.80 0.7647 0.9559 2.6180 0.92 0.8675 0.9429 1.7888
0.55 0.5575 1.0136 5.0757 0.82 0.7812 0.9526 2.4738 0.94 0.8868 0.9434 1.6488
0.60 0.5999 0.9999 4.4415 0.84 0.7978 0.9497 2.3333 0.96 0.9082 0.9461 1.5000
0.65 0.6417 0.9872 3.8973 0.86 0.8146 0.9472 2.1957 0.98 0.9342 0.9532 1.3294
0.70 0.6829 0.9756 3.4221 0.88 0.8317 0.9451 2.0600 0.99 0.9518 0.9615 1.2222
0.75 0.7238 0.9651 3.0000 0.90 0.8492 0.9436 1.9249 1.00 1.0000 1.0000 1.0000

The equation of electromagnetic theory, upon which Fig. 5.33 is based, is

ε′λ (β, n) =
2a cos β

(a + cosβ)2

[
1 +

n2(
a cos β + sin2 β

)2
]

(5.82)

with a = (n2−sin2 β)1/2, cf. [5.20]. By integration of ε′λ from (5.66), the hemispherical emissivity
ελ can be found, which, according to theory only depends on the refractive index n from (5.80).
R.V. Dunkle [5.21] carried out this integration with the result

ελ (n) =
1

2
− (3n + 1) (n − 1)

6 (n + 1)2
+

n2
(
n2 − 1

)2
(n2 + 1)3

ln
n + 1

n − 1

+
2n3

(
n2 + 2n − 1

)
(n2 + 1) (n4 − 1)

− 8n4
(
n4 + 1

)
(n2 + 1) (n4 − 1)

2 ln n .

(5.83)

Through division by ε′λ,n from (5.81) the values in Tab. 5.5 and Fig. 5.33 were obtained, which
can be interpreted as ε/ε′n.
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Fig. 5.35: Ratio ε/ε′n of the hemispherical total emissivity ε to the emissivity ε′n normal to the
surface as a function of ε′n. Right hand line: Dielectrics from Table 5.5, left hand line: Metals
from Table 5.6. Circles: data from [5.18]

5.3.3.2 Electrical conductors (metals)

In contrast to dielectrics, the electromagnetic waves that penetrate metals are
damped; the extinction coefficient k in the complex refractive index n̄ = n − ik
is not equal to zero, but generally greater than n. For the spectral emissivity ε′λ,n

normal to the surface, the electromagnetic theory delivers the relationship

ε′λ,n (n, k) =
4n

(n + 1)2 + k2
. (5.84)

According to this, with metals, significantly smaller emissivities than those for
electrical insulators are to be expected.

At large wavelengths, around λ > 5µm, and small electrical resistivity re, the
radiation properties of metals can be described by a simplified version of electro-
magnetic wave theory, which goes back to P. Drude [5.22]. It is also linked with
the names E. Hagen and H. Rubens, who checked its applicability by experiment
[5.23]. According to this theory n and k assume large values, and it holds that

n = k =

√
c0µ0

4π

λ

re

=

√
R0λ

re

. (5.85)

Here c0 is the velocity of light in a vacuum and µ0 = 4π ·10−7N/A2 is the magnetic
field constant. These universal constants yield an electrical resistance of R0 =
c0µ0/4π = 29.979 Ω.

According to Drude’s theory, ε′λ only depends on the polar angle β and n
from (5.85), cf. Fig. 5.36. At polar angles larger than 80◦, ε′λ assumes a distinct
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Fig. 5.36: Directional spectral emissivity ε′λ(β, n) of metals according to the simplified electro-
magnetic theory, eq. (5.87)

maximum; Lambert’s cosine law is not fulfilled; metals cannot be treated as diffuse
radiators. The ratio ε/ε′n illustrated in Fig. 5.35, is therefore considerably larger
than one. Measurements by E. Schmidt and E. Eckert [5.18] confirm qualitatively
the wavelength dependence of ε′λ shown in Fig. 5.36.

As the refractive index n from (5.85) depends on the wavelength λ, this also
applies to ε′λ. At large wavelengths, the spectral emissivity of metals falls with
increasing λ. Metals can therefore, not be viewed as grey radiators, so a(T ) =
ε(T ) cannot be used. According to E. Eckert [5.24], the following holds for the
absorptivity a of a metal surface at temperature T for incident black or grey
radiation from a source at temperature T ∗

a = ε(
√

T · T ∗) . (5.86)

However, this relationship is only correct when T ∗ is so low that the portion of
the incident radiation in the region λ < 5µm can be neglected.

According to Drude’s theory, the directional spectral emissivity ε′λ of metals, see [5.4], is
found to be

ε′λ (β, n) = 2n cos β

[
1

(n cos β)2 + (1 + n cos β)2
+

1

n2 + (n + cos β)2

]
. (5.87)

Fig. 5.36 is based on this equation. By integrating (5.87) corresponding to (5.66), gives the
spectral emissivity that is only dependent on n

ελ (n) = 4n +
2

n
−
(

4n2 +
1

n2

)
ln

(
1 +

1

n
+

1

2n2

)
− 2

n2
ln (2n) . (5.88)

As Drude’s theory is only applicable for large n, ελ(n) is developed into a power series of (1/n).
With (5.85), the numerical value equations valid for re in Ωcm and λ in µm follow as

ελ = 48.70

√
re

λ

{
1 +

[
31.62 + 6.849 ln

re

λ

]√re

λ
− 166.78

re

λ

+ 3973.8
( re

λ

)2

− 47628
( re

λ

)5/2

+ · · ·
}

,

(5.89)
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Table 5.6: Hemispherical total emissivity ε, ratio ε/ε′n and product reT as functions of the
(directional) total emissivity ε′n normal to the surface, for metals, calculated according to the
simplified electromagnetic theory (n = k)

ε′n ε ε/ε′n reT ε′n ε ε/ε′n reT ε′n ε ε/ε′n reT

ΩcmK ΩcmK ΩcmK

0.00 0.0000 1.333 0.00000 0.12 0.1424 1.187 0.04992 0.30 0.3231 1.077 0.3999
0.02 0.0258 1.292 0.00123 0.14 0.1640 1.172 0.06967 0.35 0.3688 1.054 0.5904
0.04 0.0506 1.264 0.00505 0.16 0.1852 1.157 0.0934 0.40 0.4129 1.032 0.8417
0.06 0.0745 1.242 0.01163 0.18 0.2059 1.144 0.1213 0.45 0.4555 1.012 1.1722
0.08 0.0977 1.221 0.02114 0.20 0.2263 1.131 0.1537
0.10 0.1203 1.203 0.03384 0.25 0.2757 1.103 0.2577

valid for re/λ < 5 · 10−4 Ωcm/µm. According to that, at large wavelengths, ελ decreases pro-
portionally to λ−1/2. The electrical resistivity re increases with rising temperature, such that
ελ goes up with T . However, this only holds at large wavelengths; at small wavelengths Drude’s
theory fails, and a fall in ελ with rising temperature is observed.

In order to obtain the hemispherical total emissivity ε(T ) from ελ, according to Table 5.4
ελ has to be multiplied by Mλs and integrated over all wavelengths. This yields the numerical
value equation (for re in Ωcm and T in K)

ε (T ) = 0, 7671
√

reT − (0.3091 − 0.08884 ln reT ) (reT ) − 0.02334 (reT )
3/2

+3.50 · 10−4 (reT )
5/2 − 8.7 · 10−5 (reT )

3
+ · · · ,

(5.90)

valid for reT < 1.2ΩcmK. As Drude’s theory is invalid at small wavelengths, the integration of
ελ · Mλs still begins at λ = 0, then (5.90) is only applicable at such low temperatures that the
contribution of small wavelengths to ε is negligible. In general, this is the case for T < 550K.

Finally ε′λ,n from (5.84) with k = n can be developed into a power series of (1/n) and by
integrating over all wavelengths, the total emissivity ε′n normal to the surface can be calculated
to be

ε′n (T ) = 0.5753
√

reT − 0.1777 (reT ) + 0.0292 (reT )
3/2

−0.00184 (reT )
5/2

+ 0.000712 (reT )
3 − · · ·

. (5.91)

The values given in Table 5.6 for ε/ε′n, which are also illustrated in Fig. 5.35 are obtained from
(5.90) and (5.91).

5.3.4 Transparent bodies

Metals and most electrical insulators completely absorb incident radiation in a
layer of only a few micrometres thickness close to the surface, so that they are
opaque. Exceptions to this are formed by liquids and solids like glass and some
minerals (rock salt, sylvite and fluorite); these selectively let radiation through
even at large thicknesses, namely in a limited wavelength band, mostly at small
wavelengths in the visible part of the spectrum.
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Fig. 5.37: Transmissivity τλ of a sheet
of Jena-glass (colourless) of s = 1mm
thickness, taking into account the mul-
tireflections on the two surfaces at T ≈
300K

In order to describe radiation transmitted by a body, the spectral transmissivity
is defined as

τλ (λ, T ) := d2Φin,tr/d
2Φin . (5.92)

Here, just as in section 5.1.3

d2Φin = Eλ (λ) dλ dA

is the radiation flow, in the wavelength interval dλ, incident on an element dA
of the surface of the body; d2Φin,tr is the radiation flow transmitted through the
body. The spectral transmissivity τλ for every wavelength indicates the portion
of the spectral irradiance Eλ that is allowed to pass through. With the spectral
absorptivity aλ(λ, T ) from Table 5.1 and the spectral reflectivity rλ(λ, T ) from
Table 5.2 the following balance is obtained

rλ (λ, T ) + aλ (λ, T ) + τλ (λ, T ) = 1 . (5.93)

Fig. 5.37 illustrates the transmissivity τλ of Jena-glass. Glass possesses a
high transparency within a very limited interval at small wavelengths. This se-
lective transparency provides the possibility of collecting solar energy through
glass windows. A significant proportion of the mostly short wave sunlight will
be transmitted. Bodies located behind the window, which are at around ambient
temperature, emit radiation at large wavelengths, where τλ assumes small values.
This longwave radiation is not allowed to pass through the glass, but is mostly
absorbed. This is what has become known as the greenhouse effect. It is not
only used in plant nurseries, but also in collectors for the thermal use of solar
energy, see [5.25]. A glass covering over the absorber surface of the collector al-
lows solar radiation almost uninhibited through and at the same time reduces the
undesirable release of heat by the collector to the surroundings.

The absorptivity aλ and transmissivity τλ of a transparent body do not only
depend on its capability for absorbing penetrating radiation, but also on its thick-
ness s. In order to clarify these relationships, further material characteristics are
used, which we will look at in the following, cf. also DIN 1349 [5.26].
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Table 5.7: Spectral absorption coefficient κλ of water according to [5.27]

λ κλ λ κλ λ κλ λ κλ λ κλ

µm cm−1 µm cm−1 µm cm−1 µm cm−1 µm cm−1

0.20 0.0691 0.70 0.0060 1.8 8.03 3.8 112.0 7.0 5740
0.25 0.0168 0.75 0.0261 2.0 69.1 4.0 145.0 7.5 5460
0.30 0.0067 0.80 0.0196 2.2 16.5 4.2 206.0 8.0 5390
0.35 0.0023 0.85 0.0433 2.4 50.1 4.4 294.0 8.5 5430
0.40 0.00058 0.90 0.0679 2.6 153.0 4.6 402.0 9.0 5570

0.45 0.00029 0.95 0.388 2.8 5160.0 4.8 393.0 9.5 5870
0.50 0.00025 1.0 0.363 3.0 11400.0 5.0 312.0 10.0 6380
0.55 0.000045 1.2 1.04 3.2 3630.0 5.5 265.0
0.60 0.0023 1.4 12.4 3.4 721.0 6.0 2240.0
0.65 0.0032 1.6 6.72 3.6 180.0 6.5 758.0

A body of thickness s is struck by radiation with a spectral irradiance Eλ(λ). From this,
the spectral radiation flow

Φλ (0) = (1 − rλ)Eλ (5.94)

penetrates the body. Through absorption inside the body, the penetrated radiation flow is
reduced and reaches the smaller value Φλ(s) at the other surface. This weakening is covered by
the spectral pure transmissivity, defined by

τi (λ, s) := Φλ (s) /Φλ (0) . (5.95)

The index i indicates the weakening taking place inside the body. The portion of the penetrating
radiation flow absorbed in the body is described by the spectral pure absorptivity

ai (λ, s) :=
Φλ (0) − Φλ (s)

Φλ (0)
= 1 − τi (λ, s) . (5.96)

In order to separate the effect of the body thickness s from its specific absorption capability,
the spectral absorption coefficient is defined as

κ (λ, s) :=
1

s
ln

1

τi (λ, s)
. (5.97)

For most materials κ does not depend on the layer thickness s, but is one of the material
properties dependent on the wavelength: κ = κ(λ). We will presume this, getting

τi (λ, s) = exp [−κ (λ) s] = 1 − ai (λ, s) . (5.98)

The spectral pure transmissivity decreases exponentially with the thickness of the body. An
opaque body of thickness s has such a large spectral absorption coefficient that the product
κ(λ)s reaches values over 7, then τi ≈ 0 and ai ≈ 1.

In Table 5.7 the spectral absorption coefficient of water is exhibited. At wavelengths in the
visible part of the spectrum, κ(λ) is very small. This gives, for λ = 0.5µm and s = 1.0m

τi = exp
(−0.00025 cm−1 · 1.0m

)
= 0.975 .

The water layer transmits short wave radiation almost completely unweakened. This does not
hold for wavelengths λ ≥ 0.95µm. Here τi will be immeasurably small for s = 1.0m. As the sun,
according to Example 5.3, mainly radiates in a region of short wavelengths, 36% of the total
solar radiation penetrating the water will still pass through it to a depth of 1.0m. In contrast,
the mainly long wave radiation from earthly sources will already be completely absorbed in a
water layer of around 2mm thickness [5.17].
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Fig. 5.38: Schematic of the radiation flow in multiple reflection at the edges
of a plate that allows radiation to pass through it

The radiation allowed to pass through solid bodies, such as glass, is not only determined by
the absorption internally, the multiple reflection at both surfaces also plays a role. The radiation
flows that appear in multiple reflections are schematically illustrated in Fig. 5.38. At each of
the two edges the radiation flow is divided by reflection into a reflected and a continuing part.
The decisive reflectivity is known as the spectral Fresnel reflectivity r̄(λ) according to [5.26]. It
is calculated from r̄(λ) = 1 − ε′λ with the directional spectral emissivity ε′λ from (5.82), if the
body is bounded by a medium with the refractive index n = 1, that is, in a vacuum or in air.
By each transmission from one edge to the other, the radiation flow is weakened by the factor
τi. This gives the proportions drawn in Fig. 5.38 for the continuing and reflected fractions of an
incident radiation flow set equal to one.

Addition of all transmitted radiation flows gives

τλ = (1 − r̄)2 τi

[
1 + r̄2τ2

i + r̄4τ4
i + · · ·]

or

τλ =
(1 − r̄)

2
τi

1 − r̄2τ2
i

. (5.99)

Addition of the reflected radiation flows produces the spectral reflectivity

rλ = r̄ + r̄ (1 − r̄)2 τ2
i

[
1 + r̄2τ2

i + r̄4τ4
i + · · ·]

or

rλ = r̄

[
1 +

(1 − r̄)2 τ2
i

1 − r̄2τ2
i

]
. (5.100)

The multiple reflections increase rλ compared to r̄ and reduce τλ compared to τi. The fraction
of radiation absorbed in the body can be calculated from (5.93). The spectral absorptivity is
obtained as

aλ = (1 − r̄)

[
1 − (1 − r̄) τi

1 − r̄τi

]
; (5.101)

it is smaller than the pure absorptivity ai = 1− τi. For many electrical insulators, in particular
for glass with n = 1.5, for polar angles β < 60◦, Fresnel’s reflectivity is r̄ < 0.1. Then 1− r̄2τ2

i =
1 − r̄2 may be used, which has an error of less than 1%, giving from (5.99)

τλ ≈ 1 − r̄

1 + r̄
τi . (5.102)

The transmissivity τλ of glass, illustrated in Fig. 5.37, reaches a maximum value of 0.88. With
a refractive index n = 1.55, this yields, from (5.81), for perpendicular incident radiation, r̄ =
(n − 1)2/(n + 1)2 = 0.0465. This then gives, from (5.101) a pure transmissivity τi = 0.97. In
the region of the maximum of τλ, glass is almost completely transparent; the reduction of τλ

compared to the highest value τλ = 1 can mainly be put down to the reflection on the two edges
of the sheet of glass.
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Example 5.5: The spectral transmissivity of a 2.0mm thick glass sheet is approximated
by

τλ =

⎧⎨⎩
0 for λ < λ1

0.86 for λ1 ≤ λ ≤ λ2

0.03 for λ > λ2

with λ1 = 0.35µm and λ2 = 1.5µm. Calculate the total transmissivity for perpendicularly
incident solar radiation. The spectral irradiance Eλ (λ) shall be assumed to be proportional
to the hemispherical spectral emissive power Mλs of a black body with T = TS = 5777K,
see Example 5.3. How large will τ be for a glass sheet with s = 4.0mm and refractive
index n = 1.52 ?
The total transmissivity, in analogy to the total absorptivity a from Table 5.1, is given by

τ =

∞∫
0

τλ (λ, T ) Eλ (λ) dλ

∞∫
0

Eλ (λ) dλ

=

∞∫
0

τλ (λ)Mλs (λ, TS) dλ

σT 4
S

.

With the function F (0, λT ) from (5.62) and from Table 5.3 this gives

τ = 0.86 [F (0, λ2TS) − F (0, λ1TS)] + 0.03 [1 − F (0, λ2TS)] .

For λ1TS = 2022µmK and λ2TS = 8665.5µmK, we find, from Table 5.3, F (0, λ1TS) =
0.0702 and F (0, λ2TS) = 0.8800. With that τ = 0.700. The glass sheet allows 70% of the
incident solar radiation to pass through it.
A doubling of the sheet thickness to s = 4.0mm changes the spectral transmissivity τλ.
Firstly, we will calculate the pure transmissivity τi for the glass sheet with 2.0mm thickness.
With n = 1.52 we obtain from (5.81) and r̄ = 1−ε′λ,n Fresnel’s reflectivity r̄ = (n−1)2/(n+
1)2 = 0.0426. As r̄ < 0.1, then τi can be calculated from (5.102):

τi =
1 + r̄

1 − r̄
τλ = 1.089 τλ .

This yields

τi =

⎧⎨⎩
0 for λ < λ1

0.937 for λ1 ≤ λ ≤ λ2

0.033 for λ > λ2 .

With τi = exp[−κ(λ)s] from this we get, for s = 2.0mm the spectral absorption coefficients

κ =

⎧⎨⎩
∞ for λ < λ1

0.328 cm−1 for λ1 ≤ λ ≤ λ2

17.1 cm−1 for λ > λ2 .

This then gives the pure transmissivity of the thicker glass sheet s = 4.0mm as

τi =

⎧⎨⎩
0 for λ < λ1

0.877 for λ1 ≤ λ ≤ λ2

0.001 for λ > λ2

and finally the desired spectral transmissivity as

τλ =

⎧⎨⎩
0 for λ < λ1

0.805 for λ1 ≤ λ ≤ λ2

0.001 for λ > λ2 .
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The total transmissivity is then

τ = 0.805 [F (0, λ2TS) − F (0, λ1TS)] + 0.001 [1 − F (0, λ2TS)] = 0.652 .

The glass sheet with double the thickness absorbs a somewhat larger part of the solar
radiation, but still allows 65% of the incident radiation to pass through it compared to
70% with the thin sheet. The spectral reflectivity rλ of the thick sheet from (5.100) is

rλ =

⎧⎨⎩
0.0426 for λ < λ1

0.0727 for λ1 ≤ λ ≤ λ2

0.0426 for λ > λ2 .

It is increased between λ1 and λ2 by the multiple reflection at the edges, so that in total
6.7% instead of 4.26% of the solar energy is reflected.

5.4 Solar radiation

Without the radiation from the sun life on earth would be impossible; therefore
the sun belongs to the most important radiation sources. The energetic use of the
sun’s radiation is still very low; however in the future it will have a far greater
importance, in order to gain energy for heating and endothermic reactions and to
generate electrical energy in photovoltaic and solar-thermal power stations. The
following section does not contain a discussion on solar energy technology, further
information can be found in [5.25] and [5.28] to [5.30]. We will, however, deal with
the quantity and spectral distribution of the radiant energy provided by the sun
and how it is weakened during its transmission through the earth’s atmosphere.
This allows us to calculate the solar irradiance at the surface of the earth. We will
conclude this section with consideration of the absorptivities for solar radiation.
They differ from the absorptivities for radiation from earthly sources because solar
radiation is only incident at small wavelengths, namely below 4µm and mainly in
the region of visible light.

5.4.1 Extraterrestrial solar radiation

The sun is an almost spherical radiation source with a diameter of 1.392 · 106 km.
It lies in one of the foci of the elliptical orbit of the earth. The solar radiation
flow, which reaches the earth is inversely proportional to the square of the dis-
tance r between the sun and the earth. The mean distance is r0 = 149.6 · 106 km;
this distance is called one astronomical unit (AU)7. The smallest distance lies at
0.983AU and occurs on 3rd January, the largest separation between the sun and

7The exact value is 1AU = 149.597 870 ·106 km. For the strict definition of the AU, see [5.32].
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Fig. 5.39: Extraterrestrial solar radiation on a
surface, whose normal forms the polar angle βS

with the direction of the solar rays

earth is 1.017AU, this is reached on 4th July. The ratio required for radiation cal-
culations, (r0/r)

2 is known as the eccentricity factor, and according to J.A. Duffie
and W.A. Beckmann [5.29], can be calculated approximately from

fex = (r0/r)
2 = 1 + 0.033 cos (2πdn/365) , (5.103)

where dn is the day number of the year, starting with dn = 1 on 1st January
and ending with dn = 365 on 31st December. A more accurate relationship from
J.W. Spencer [5.31] can be found in M. Iqbal [5.34].

The large distance between sun and earth means that solar radiation forms a
quasi-parallel bundle of rays. The radiation that is not yet weakened by scattering
and absorption in the earth’s atmosphere is called extraterrestrial radiation. If
it is perpendicularly incident on a surface just outside the earth’s atmosphere,
at a distance r0 = 1AU from the centre of the sun then the irradiance of the
extraterrestrial solar radiation is called the solar constant E0. By evaluating more
recent measurements, C. Fröhlich and R.W. Brusa [5.33] determined the value

E0 = (1367 ± 1.6) W/m2 ,

that was also accepted by the World Meteorological Organisation (WMO) in 1981
as the best value. With this value of E0, the temperature TS = 5777K in Example
5.3 was calculated. This would be the temperature at the surface of the sun if it
radiated like a black body.

The irradiance of extraterrestrial radiation, that falls perpendicularly onto a
surface that is at the same distance r as the earth is from the sun, is given by

Esol
n = E0 (r0/r)

2 = E0fex (5.104)

with fex from (5.103). If the direction of the sun’s rays forms the polar angle βS

with the surface normal, Fig. 5.39, then the irradiance will be

Esol = E0fex cos βS . (5.105)

The sun’s polar angle βS depends on the position and the orientation of the ir-
radiated surface. This dependence is reproduced by trigonometric equations that
can be found in books about solar radiation and its uses, e.g. in [5.30] and [5.34].

The spectral irradiance Esol
λ,n of extraterrestrial solar radiation, that falls per-

pendicularly on a surface at a distance r0 = 1AU from the sun, has been deter-
mined by several series of experiments using stratospheric aircraft. Their eval-
uation by C. Fröhlich and C. Werli at the World Radiation Centre in Davos,
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Fig. 5.40: Spectral irradiance Esol
λ,n of extraterrestrial solar radiation falling perpendicularly on

an area at a distance r0 = 1AU from the sun

Switzerland, yielded the spectrum reproduced in Fig. 5.40. The numerical values
upon which this diagram is based can be found in M. Iqbal [5.34]. The maximum
of Esol

λ,n lies in the visible light region at λ ≈ 0.45µm. 99 % of the irradiance falls
in the wavelength band λ ≤ 3.8µm. Fig. 5.40 also shows the spectral irradiance
Eλ,s of the radiation emitted by a “black” sun at TS = 5777 K. The areas under
the two curves (up to λ → ∞) are equal — they each yield the solar constant E0

—, but the spectrum of the extraterrestrial solar radiation deviates significantly
at some points, in particular at λ < 0.6µm, from the spectrum of radiation from
a black body.

Example 5.6: Determine the irradiance of extraterrestrial solar radiation on a horizontal
area in Berlin (latitude ψ = 52.52◦ North, longitude ϕ = 13.35◦ East) on 1st September,
12.00 central European summertime.
The irradiance Esol is given by (5.105), where the sun’s polar angle βS is still unknown. It
holds for a horizontal surface, cf. [5.34], that

cos βS = sin δ sin ψ + cos δ cos ψ cos ω . (5.106)

The declination δ of the sun, for 1st September, that appears in this equation, can be taken
from tables presented by M. Iqbal [5.34]: δ = 8.51◦. The hour angle ω is calculated from
the local solar time tS, according to

ω = 15◦ (tS/h) .

In the validity region of central European time tCET it holds that 8

tS = tCET − 12h + (ϕ/15◦ − 1) h .

8 This equation yields the mean local solar time. In order to obtain the actual (date depen-
dent) local solar time, a small correction, the so-called equation of time has to be used. This
correction amounts to only a few minutes.
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12.00 hours central European summertime corresponds to tCET = 11.0h. From this we get
with ϕ = 13.35◦ as the degree of longitude of Berlin, tS = −1.11h and ω = −16.65◦. With
these values, it follows from (5.106) that cosβS = 0.6940, i.e. βS = 46.05◦ .
For 1st September, dn = 244. This then gives the eccentricity factor from (5.103) of
fex = 0.9838. The irradiance of the extraterrestrial radiation is found to be

Esol = E0fex cosβS = 1367
W

m2
0.9838 · 0.6940 = 933

W

m2
.

5.4.2 The attenuation of solar radiation in the earth’s at-
mosphere

The extraterrestrial solar radiation incident on the outer edge of the earth’s atmo-
sphere is weakened as it travels through the atmosphere, so the solar irradiance at
the surface of the earth is considerably lower than the extraterrestrial value from
(5.105). Part of the incident radiant solar energy is removed from the bundle of
rays by scattering on air molecules and aerosols; a further part is absorbed by the
constituents of air. Around half of this scattered radiation reaches the ground in
the form of so-called diffuse radiation, whilst the other half is radiated back into
space, cf. Fig. 5.41. The radiation absorbed by molecules in the atmosphere raises
the energy of the atmosphere which emits radiation itself. Part of this mostly long
wave radiation reaches the ground and is known as atmospheric counter-radiation.

Fig. 5.41: Direct and diffuse solar
radiation that passes through the
atmosphere to the earth’s surface
(schematic)

5.4.2.1 Spectral transmissivity

We are now going to calculate the attenuation of direct (directional) solar radiation
through scattering and absorption in the atmosphere. The atmosphere is assumed
to be cloudless; for details on the complicated effect of clouds, [5.34] is suggested.
We will consider a bundle of rays that goes through an optically turbid, namely
absorbent and scattering medium, Fig. 5.42. The reduction dLλ of its spectral
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Fig. 5.42: Reduction of the spectral intensity Lλ in
transit through a turbid (scattering and absorbing)
medium

intensity Lλ according to the law from P. Bouguer9 , is proportional to the distance
through which the radiation passes dl and the density � of the scattering and
absorbing particles:

dLλ

Lλ

= −µ(λ, l)�(l) dl . (5.107)

It is assumed, according to the so-called Beer’s10 law, that the attenuation coeffi-
cient µ is independent of the pathway. Integration between l and l0 gives

Lλ(l) = Lλ(l0) exp[−µ(λ)
l∫

l0

�(l) dl] . (5.108)

We will now apply (5.108) to solar radiation, Fig. 5.43. The path s of the
bundle of rays is slightly curved because of refraction in the atmosphere. It begins,
at large distance away, with Lλ(l0) = Lλ(s → ∞) = Lsol

λ , the spectral intensity
of extraterrestrial solar radiation, and ends at the earth’s surface (s = 0) with
the intensity Lλ(s = 0). It therefore follows from (5.108), taking into account
dl = − ds, that

Lλ(s = 0) = Lsol
λ exp[−µ(λ)

∞∫
0
�(s) ds] . (5.109)

The ratio

τλ =
Lλ(s = 0)

Lsol
λ

= exp[−µ(λ)
∞∫
0
�(s) ds] (5.110)

is the spectral transmissivity of the atmosphere (τλ ≤ 1). This is the factor
by which the direct solar radiation reaching the ground is reduced compared to
extraterrestrial solar radiation.

The integral which appears in (5.109) and (5.110)

m =
∞∫
0
�(s) ds (5.111)

9Pierre Bouguer (1698–1758) was nominated at the age of 15 to be Professor of Hydrology as
a successor to his father who had passed away. In 1735, Bouguer became a member of the Paris
Académie Royale des Sciences. He wrote several books about ship building and navigation. In
his “Essai d’optique sur la gradation de la lumière” (Essay in optics on the gradation of light),
published in 1729, he was the first to develop methods of photometry and layed down the law
named after him, according to which the strength of a light ray in a homogeneous medium falls
according to an exponential law as it passes through.

10August Beer (1825–1863) became a Professor of Physics in Bonn in 1855. In his “Einleitung
in die höhere Optik” (Introduction to higher optics), published in 1854, he summarised the
theory of light known at that time.
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is known as the optical mass of the atmosphere. Its units are kg/m2, and it is
proportional to the mass and therefore the number of atmospheric particles along
the pathway of the solar ray bundle. If the sun is at its zenith, the pathway
through the atmosphere is at its shortest and the optical mass attains its smallest
value

mn =
∞∫
0
�(z) dz ,

cf. Fig. 5.43. The ratio

mr = m/mn =

∞∫
0

�(s) ds
/ ∞∫

0

�(z) dz (5.112)

is called the relative optical mass, where mr ≥ 1 is valid. According to Fig.
5.44, for a homogeneous and non-refractive atmosphere, the simple result below
is obtained

mr =
1

cos βS

. (5.113)

This equation shows errors because of refraction and the height dependent density
�. However, these errors only become significant at large polar angles βS > 70◦.
According to F. Kasten and A.T. Young [5.35], for an atmosphere of dry air

mr,L =
1

cos βS + 0.5057 (96.080 − βS)
−1.6364 (5.114)

is obtained, where the sun’s polar angle βS is in degrees.
With the relative optical mass mr, it follows for the argument of the exponen-

tial function in (5.110) that

µ(λ)

∞∫
0

�(s) ds = µ(λ)mnmr .

If we combine the product of µ(λ) and mn into the dimensionless attenuation
coefficient

κ(λ) := µ(λ)mn , (5.115)

Fig. 5.43: Passage of directional solar radi-
ation through the earth’s atmosphere

Fig. 5.44: Passage of directional solar radi-
ation through a homogeneous, non-refractive
atmosphere
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then the spectral transmissivity of the atmosphere is found to be

τλ = exp [−κ(λ)mr(βS)] . (5.116)

In the calculation of τλ it must be taken into account that several independent
scattering and absorption processes act in the attenuation of direct solar radiation.
It therefore holds that

κ(λ)mr =
j∑

i=1

κi(λ)mr,i , (5.117)

where j is the number of attenuation processes. In general, five different types of
process are considered: Rayleigh scattering on the molecules of the atmosphere,
scattering and absorption on aerosols, the absorption by ozone, water vapour and
other gases in the atmosphere. It follows from (5.116) and (5.117) that the spectral
transmissivity is

τλ = τλ,R τλ,A τλ,O3
τλ,W τλ,G , (5.118)

where the indices are R for Rayleigh scattering, A for aerosols, O3 for ozone, W
for water vapour and G for other gases in the atmosphere.

5.4.2.2 Molecular and aerosol scattering

As the molecular diameter (∼ 10−4 µm) is considerably smaller than the wavelength of the
radiation, the scattering by the molecules of the atmosphere can be described by the theory
of light scattering by small particles, first presented by Lord Rayleigh11 [5.36], cf. also [5.37].
According to this, the attenuation coefficient is κR(λ) ∼ λ−4. This also explains the blue colour
of a cloudless sky. The blue fraction of sunlight lies at the small wavelength end of the visible
spectrum and therefore experiences strong Rayleigh scattering in all directions. Without this
molecular scattering the sky would appear to be black with the exception of the bright disk of
the sun.

The scatter coefficient κR(λ) of Rayleigh scattering in dry air is reproduced well by an
equation presented by R.E. Bird and C. Riordan [5.38]. This gives the following for the spectral
transmissivity with λ in µm

τλ,R = exp
[
−mr,Lλ−4

(
115.6406 − 1.335/λ2

)−1
]

. (5.119)

The relative optical mass mr,L is given by (5.114). As can be seen in Fig. 5.45, at small
wavelengths Rayleigh scattering considerably weakens direct solar radiation. In contrast to this,
for λ > 1.2µm no noticeable attenuation occurs. At large sun polar angles βS, that is with
large optical masses mr,L > 5, the atmosphere is almost opaque for short wavelength light. This
explains the reddish-yellow colour of the sun disc at sunrise and sunset.

Dust and small suspended water droplets form aerosols. They scatter and absorb solar
radiant energy, whereby the scattered proportion predominates. The scattering and absorption

11John William Strutt, Third Baron of Rayleigh (1842–1919) set up his own physical labora-
tory at his family seat, Terling Place in Essex, England. In 430 scientific publications he dealt
with problems from all areas of classical physics, in particular acoustics, for which he wrote his
famous work, “The Theory of Sound” (1877/78). Together with W. Ramsey he discovered the
element Argon (1892–95), for which he was awarded the Nobel prize for Physics in 1904. The
chemist W. Ramsey was awarded the Nobel prize for Chemistry in the same year.
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Fig. 5.45: Spectral transmissivity τλ,R

of the atmosphere as a result of Rayleigh
scattering from (5.119) for various rela-
tive optical masses mr,L

by aerosols are difficult and inexact to model. The turbidity formula from A. Ångström [5.39]
is frequently used

τλ,A = exp
(
−β∗λ−α∗

mr,A

)
. (5.120)

Values between 0.8 and 1.8 are used for the exponent α∗; β∗ varies from β∗ = 0 (pure atmo-
sphere) via 0.1 (clear) and 0.2 (cloudy) to 0.3 (very murky atmosphere), see for this [5.34]. The
relative optical aerosol mass mr,A is generally unknown because of the large fluctuations in the
size, distribution and composition of aerosol particles. This is why mr,L from (5.114) is often
used in place of mr,A.

5.4.2.3 Absorption

In contrast to scattering, absorption only takes place within certain narrow wavelength intervals,
the so-called absorption bands. The main constituents of the atmosphere are N2 and O2, which
dissociate to atomic N and O at heights above 100 km. These four gases only absorb, although
very strongly, at small wavelengths. N and O absorb all radiation below 0.085µm; O2 and
N2 absorb solar radiation in several overlapping bands up to λ = 0.20µm, so no radiation of
wavelength below 0.20µm reaches the earth’s surface. O2 has three additional distinctive but
weak bands at 0.63, 0.69 and 0.76µm.

Ozone (O3) absorbs strongly between 0.2µm and 0.35µm, through which the energy rich
UV-B-radiation is kept away from the earth. Further absorption bands lie in the visible region
between 0.47 and 0.76µm. Ozone is generated in the stratosphere principally by solar UV radi-
ation; close to the ground it exists due to the photo-chemical decomposition of nitrous oxides.
Chlorine, which reaches the stratosphere mainly in the form of long living chlorofluorocarbons
(CFCs), attacks and destroys the protective stratospheric ozone layer. This is why the produc-
tion and use of CFC’s, for example as refrigerants or as propellants for insulation foams, should
be discontinued in the next few years, cf. [5.40].

The amount of ozone in the atmosphere is frequently indicated by the height hO3
of a

vertical column of gaseous ozone under standard conditions (tn = 0 ◦C, pn = 1.01325 bar). This
quantity varies seasonally and with latitude; it has an average value of around 2.5mm at the
equator, 3.5mm at medium latitudes and up to 4.5mm at the poles. The amount of ozone
has fallen over several years as a result of the discharge of CFCs. At the beginning of spring a
reduction up to 20 % of the average value occurs over northern Europe. The “hole in the ozone
layer” over the south pole, which appears in October, leads to a reduction at times of up to
75 %.
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Fig. 5.46: Spectral transmissivity τλ,O3
of the absorption by ozone from (5.121).

The region of energy rich UV-B-radiation is highlighted.

Fig. 5.46 shows the spectral transmissivity

τλ,O3
= exp [−kO3

(λ)hO3
mr,O3

] . (5.121)

Tabulated values of absorption coefficients kO3
(λ) can be found in [5.34] and [5.38]. The relative

optical mass of ozone is indicated by mr,O3
. It only deviates significantly from mr,L for βS > 70◦

and can be calculated using a relationship given by N. Robinson [5.41].
The most important absorbers in the infrared region of the spectrum are water vapour and

CO2. Here the humidity of the atmosphere undergoes considerable fluctuations. The amount of
water vapour is often described by the thickness w of a layer of water on the ground formed by
the condensation of water vapour perpendicular to the ground. A typical value is w = 20mm.
The law from Bouguer, (5.107), is not exactly valid for water vapour and CO2. Therefore,
relationships used for the transmission coefficients τλ,W and τλ,G have a form different from
(5.116). These equations can be found in M. Iqbal [5.34], where the associated absorption
coefficients are given as functions of the wavelength. Fig. 5.47 shows the pattern of τλ,W and
τλ,G. These spectral transmissivities have values close to one at wavelengths around 1.2 and
1.6µm as well as at 2.2 and 3.9µm. These narrow wavebands are called atmospheric windows,
as here the atmosphere allows solar radiation and also radiation from the earth’s surface to pass
through with virtually no attenuation.

Fig. 5.47: Spectral transmissivities τλ,W and
τλ,G as a result of absorption by water vapour,
O2 and CO2 respectively, for mr,L = 1
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5.4.3 Direct solar radiation on the ground

The spectral transmissivity τλ from (5.110) also gives the ratio of the spectral
irradiance Eλ,n of an area located on the ground and oriented perpendicular to
the direction of radiation, to the spectral irradiance Esol

λ,n by extraterrestrial solar
radiation. It therefore holds that

Eλ,n = τλE
sol
λ,n = τλ,R τλ,A τλ,O3

τλ,W τλ,GEsol
λ,n , (5.122)

and for an area whose normal forms an angle βS with the suns rays, it follows that

Eλ = τλ cos βSE
sol
λ,n . (5.123)

Fig. 5.48 shows the extraterrestrial spectrum Esol
λ,n and the associated pattern

of Eλ,n. The upper edge of this curve represents the irradiance reduced purely
by Rayleigh scattering. The deteriorations marked in black are caused by the
absorption by the gases O3, O2, H2O and CO2. Further diagrams of this type,
which show the variation in the influencing quantities (water vapour and ozone
content, turbidness due to aerosols, different optical masses), are available in M.
Iqbal [5.34].

In most practical applications, it is normally sufficient to know just the irra-
diance E at an area on the ground. The most exact method for obtaining E is
by integrating the spectral irradiance Eλ over all wavelengths, practically from
λ = 0.3µm to λ = 4.0µm. In order to avoid this somewhat difficult numerical

Fig. 5.48: Spectral irradiance Esol
λ,n of extraterrestrial solar radiation and Eλ,n of direct solar

radiation at the ground for a pure, cloudless atmosphere with mr,L = 1.5. The curve indicated
by τλ,REsol

λ,n represents the attenuation caused by Rayleigh scattering alone. The dark areas
indicate the absorption by each of the gases written on the graph (hO3

= 0.30 cm, w = 2.0 cm)
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integration, approximation formulae are used. Various authors have presented
these formulae and they have been collected and compared by M. Iqbal [5.34].

A rather accurate calculation of E is permitted by the relationships given by R.E. Bird and
R.L. Hulstrom [5.42] for the irradiance of direct (directional) solar radiation. The irradiance of
a surface, whose normal forms an angle βS with the sun’s rays, is

E = En cos βS . (5.124)

The irradiance En of a surface normal to the sun’s rays is, according to [5.42] and [5.34],

En = 0.975E0 τR τA τO3
τW τG , (5.125)

where the transmissivities are calculated according to the following equations. The relative
optical mass mr,L from (5.114) is uniformly used, simplified to here mr.
Rayleigh scattering:

τR = exp
[−0.0903m0.84

r

(
1 + mr − m1.01

r

)]
.

Aerosol scattering:

τA = 0.1245α∗ − 0.0162 + (1.003 − 0.125α∗) exp [−β∗mr (1.089α∗ + 0.5123)] ,

where α∗ and β∗ are the parameters from (5.120). τA can also be given as a function of the
(horizontal) visibility sh in km:

τA = exp

[
m0.9

r ln

(
0.97 − 1.265

s0.66
h

)]
, 5km < sh < 180km .

The utilisation of sh replaces the estimation of the parameters α∗ and β∗.
Absorption by Ozone12:

τO3
= 1 − 0.153hO3

mr

(1 + 139.5hO3
mr)

0.3035 ,

where hO3
is entered in cm, cf. section 5.4.2.3.

Absorption by water vapour:

τW = 1 − 2.496w mr

6.385w mr + (1 + 79.03w mR)0.6828

with w in cm, cf. section 5.4.2.3.
Absorption by CO2 and other gases:

τG = exp
(−0.0127m0.26

r

)
.

Example 5.7: Determine the irradiance of direct solar radiation on a horizontal area in
Berlin on 1st September, 12.00 central European summertime, cf. Example 5.6. The sky
is cloudless, hO3

= 0.30 cm, w = 2.6 cm and a horizontal visibility of sh = 40km may be
assumed.
According to Example 5.6 the sun’s polar angle is βS = 46.05◦. This gives, from (5.114), a
relative optical mass mr,L = mr = 1.439. The transmissivities that appear in (5.125) have
the following values:

τR = 0.8852, τO3
= 0.9811, τW = 0.8715, τG = 0.9861, τA = 0.8100 .

It follows from (5.125) that En = 805.8W/m2 ; with cosβS = 0.694, according to (5.124)
E = 559W/m2 is obtained. This value reaches only 59.9% of the irradiance Esol of
extraterrestrial solar radiation calculated in Example 5.6. Scattering and absorption by
aerosols are of great influence. If a less turbid atmosphere is assumed with sh = 100km,
then τA increases to τA = 0.8766, and the irradiance reaches a value of E = 605W/m2.

12The equation for τO3
has been simplified, compared with [5.42], without any loss of accuracy.
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5.4.4 Diffuse solar radiation and global radiation

In addition to the direct solar radiation dealt with in the previous sections, part
of the radiation scattered in the atmosphere also reaches the ground. This is
known as diffuse solar radiation. Diffuse and direct solar radiation are partially
reflected by the ground; the reflected radiation is also sent back to the ground
by the atmosphere to a small extent. The reflection between the atmosphere and
the earth’s surface continues with increasingly smaller fractions of radiation, and
leads in total, to an additional radiation flow towards the ground. This radiation
and the diffuse solar radiation are together called sky-radiation. This should not
be confused with the atmospheric counter-radiation mentioned in section 5.4.2;
this long wave radiation is emitted by molecules in the atmosphere, chiefly water
vapour and CO2. Sky-radiation, on the other hand, occurs at small wavelengths
due to its formation in the scattering of directional solar radiation. This is shown
by Fig. 5.49, which exemplarily illustrates the three fractions of the spectral ir-
radiance Eλ,d of diffuse sky-radiation, namely ER

λ,d of Rayleigh scattering, EAe
λ,d of

aerosol scattering and EMR
λ,d as a result of multiple reflections.

The direct solar radiation and the diffuse sky-radiation are combined under
the term global radiation. The global irradiance EG of a horizontal area on the
ground is made up of the following parts:

EG = En cos βS + ERa
d + EAe

d + EMR
d . (5.126)

Here, the first term on the right hand side is the irradiance due to direct solar ra-
diation, from (5.124) and (5.125); ERa

d indicates the irradiance of diffuse radiation
from Rayleigh scattering by air molecules, EAe

d the irradiance of diffuse radiation

Fig. 5.49: Spectral irradiance of the three fractions of diffuse sky-radiation, calculated
for mr,L = 1.5, hO3

= 0.3 cm, w = 2.0 cm as well as α∗ = 1.3 and β∗ = 0.10 in
(5.120): ERa

λ,d spectral irradiance of Rayleigh scattering EAe
λ,d of scattering by aerosols,

EMR
λ,d spectral irradiance due to multiple reflection.
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caused by aerosol scattering, and EMR
d the irradiance due to multiple reflection.

For areas inclined to the horizontal, more complicated relationships are yielded
because the radiative exchange with the surroundings of the area being considered
also have to be taken into account. M. Iqbal [5.34] is suggested for an extensive
illustration of this.

The model from R.E. Bird and R.L. Hulstrom [5.42], see also [5.34], is once again mentioned
for the calculation of the diffuse fraction of radiation in (5.126). The source of the scattered
radiation is the non-absorbed direct solar radiation with the irradiance

Ena
n = 0.786E0 cos βS τO3

τW τG τabs
A .

Here, τabs
A is the transmissivity resulting from the absorption by aerosols alone:

τabs
A = 1 − (1 − ω0) (1 − τA)

(
1 − mr + m1.06

r

)
.

The quantity ω0 is the ratio of the energy scattered from the aerosols to the energy scattered
and absorbed by them. This fraction can only be estimated; values of around 0.9 are generally
used.

Under the assumption that half of the energy scattered by molecules in the atmosphere
reaches the ground, according to [5.42], we obtain

ERa
d =

1

2
Ena

n

1 − τR

1 − mr + m1.02
r

for the irradiance as a result of Rayleigh scattering. For the irradiance from aerosol scattering
we get

EAe
d = FA Ena

n

1 − τA/τabs
A

1 − mr + m1.02
r

.

The factor FA indicates what proportion of the energy scattered by the aerosols is scattered
“forwards”, i.e. the part which reaches the ground. FA also has to be estimated. R.E. Bird and
R.L. Hulstrom recommend FA = 0.84. G.D. Robinson [5.43] determined FA for aerosols over
the British Isles; these values are well reproduced by

FA =

{
0.91 for 0 ≤ βS ≤ 45◦

0.45 + 0.65 cos βS for 45◦ < βS ≤ 85◦
.

Through considerations, analogous to the explanation of multiple reflection in section 5.3.4,
we obtain

EMR
d =

(
En cosβS + ERa

d + EAe
d

) rErAt

1 − rErAt
. (5.127)

Here, rE is the reflectivity of the earth’s surface for short wave radiation originating from the
sun; it is also known as the Albedo in meteorology. rE can be calculated from information about
the absorptivity of solar radiation, given in the following section 5.4.5. The reflectivity of the
atmosphere is indicated by rAt; it is small and, according to [5.42], can be calculated from

rAt = 0.0685 + (1 − FA)
(
1 − τA/τabs

A

)
.

With EMR
d from (5.127), we obtain the following for the irradiance of global radiation on a

horizontal area from (5.126)

EG =
(
En cos βS + ERa

d + EAe
d

) 1

1 − rErAt
.

This equation is also valid for models in which En, ERa
d , EAe

d and rAt are determined using
different relationships than those in [5.42].
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Example 5.8: Calculate the irradiances of the diffuse solar radiation and the global
radiation for the case dealt with in Example 5.7. Additional assumptions are: ω0 = 0.90,
FA according to G.D. Robinson [5.43] and rE = 0.25.
With mr = 1.439 and τA = 0.810 from Example 5.7, we obtain τ abs

A = 0.980. With that and
the other transmissivities calculated in Example 5.7, the irradiance of the non-absorbed
direct solar radiation is found to be

Ena
n = 0.786 · 1367 W

m2
0.694 · 0.9811 · 0.8715 · 0.9861 · 0.980 = 616

W

m2
.

For the Rayleigh fraction, the irradiance then follows as ERa
d = 35.0W/m2 . With

FA = 0.45 + 0.65 cos 46.05◦ = 0.90

we obtain the irradiance for the aerosol fraction as EAe
d = 95.3W/m2.

The reflectivity of the atmosphere is rAt = 0.086, and with that the fraction due to multiple
reflection is calculated to be

EMR
d = (559 + 35.0 + 95.3)

W

m2

0.25 · 0.086
1 − 0.25 · 0.086 = 15.1

W

m2
.

The irradiance of the diffuse sky-radiation is therefore

ERa
d + EAe

d + EMR
d = 145W/m2 ,

which is 26 % of the irradiance of the direct solar radiation. The global irradiance is
EG = 704W/m2.
If we assume a less turbid atmosphere, like in Example 5.7, with τA = 0.8766, then
τabs
A = 0.987 and rAt = 0.080. This yields ERa

d = 35.2W/m2, EAe
d = 61.8W/m2 and

EMR
d = 14.3W/m2. The irradiance of the diffuse radiation, with 111W/m2, is smaller,

whilst the irradiance of the direct radiation, calculated as in Example 5.7, has increased
to 605W/m2. The global radiation is, with EG = 716W/m2 , only 1.7 % larger than in
the more turbid atmosphere.

5.4.5 Absorptivities for solar radiation

The spectral emissivity ελ(λ, T ) of almost all substances assumes considerably
different values at small wavelengths below 2µm, than at larger wavelengths.
The spectral emissivities of electrical insulators are generally significantly smaller,
and the spectral emissivities of metals a little larger than at large wavelengths.
Assuming a diffuse radiating surface (Lambert radiator), this behaviour is also
true of the spectral absorptivity aλ(λ, T ), because aλ(λ, T ) = ελ(λ, T ). It is
therefore to be expected that most substances behave differently in the absorption
of solar radiation than in the absorption of predominantly long-wave radiation
from earthly radiation sources.

The model of a grey Lambert radiator, with a(T ) = ε(T ) can therefore not be
applied to the absorption of solar radiation. Rather, it is to be expected that the
absorptivities deviate vastly from the tabulated emissivities. These absorptivi-
ties aS for the absorption of predominantly short-wave solar radiation, generally
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have to be determined by special measurements. Some results from such measure-
ments are put together in Table 5.8. Further data for “natural” surfaces like corn
fields, different soil types, forests, snow and ice can be found in K.Y. Kondratyew
[5.44], in the form of reflectivity rS = 1 − aS, that is also known as the albedo in
meteorological circles, see also [5.34].

Table 5.8: Absorptivity aS for solar radiation and (total) emissivity ε = ε(300K) of different
materials

Material aS ε aS/ε Material aS ε aS/ε

Aluminium, polished 0.20 0.08 2.5 Asphalt, Road covering 0.93
Chromium, polished 0.40 0.07 5.7 Leaves, green 0.71...0.79 0,86 0.83...0.92
Iron, galvanised 0.38 Tar paper, black 0.82 0.91 0.90

rough 0.75 0.82 0.91 Earth, ploughed 0.75
Gold, polished 0.29 0.026 11.1 Paint
Copper, polished 0.18 0.03 6.0 Zinc white 0.22 0.92 0.24

oxidised 0.70 0.45 1.56 Black oil paint 0.90 0.92 0.98
Magnesium, polished 0.19 0.12 1.6 Marble, white 0.46 0.90 0.51
Nickel, polished 0.36 0.09 4.0 Slate 0.88 0.91 0.97
Platinum, shiny 0.31 0.07 4.4 Snow, clean 0.20...0.35 0,95 0.21...0.37
Silver, polished 0.13 0.018 7.2 Brick, red 0.75 0.93 0.81

For solar technology applications, the ratio aS/ε of a surface is of great im-
portance. It should be large for solar collectors, so that the radiation to the
surroundings proportional to ε is small compared to the absorbed solar radiation.
If, in contrast, the surface under solar radiation is to assume a low temperature,
aS/ε should be as small as possible, which, for example, can be achieved by paint-
ing the surface white, (aS = 0.22; ε = 0.92) giving aS/ε = 0.24.

5.5 Radiative exchange

In heat transfer by radiation, energy is not only transported from hot to cold
bodies; the colder body also emits radiation that strikes the warmer body and
can be absorbed there. An exchange of energy takes place, in contrast to the
transfer that occurs in heat conduction and convection. This radiative exchange
depends on the mutual position and orientation of the radiating surfaces, their
temperatures and there radiative properties. In the following sections it is assumed
that the radiating surfaces are separated by a medium that has no effect on
the radiative exchange, that neither absorbs, emits nor scatters radiation. This
condition is exactly satisfied by a vacuum, although most gases also have little
effect on radiative exchange. We will discuss gas radiation in section 5.6.

Even when the medium between the surfaces has no influence on the radia-
tive exchange, the calculations are still difficult if the directional and wavelength
dependence of the absorbed, emitted and reflected radiation is to be considered
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exactly. We will therefore use the grey Lambert radiator from 5.3.2.3 as a model
in the following discussions, and, (with the exception of 5.5.4), assume that re-
flection is diffuse. The complex calculation for radiative exchange between two
surfaces that are neither diffuse nor grey radiators is dealt with extensively by
R. Siegel et al., [5.37], [5.45].

The geometric relationships for radiative exchange between grey Lambert radi-
ators are described by the view factor, which we will look at in section 5.5.1. The
section after that deals with radiative exchange between black bodies, a simple
case due to the fact that no reflection takes place. Radiative exchange between
any two isothermal areas that behave like grey Lambert radiators is explained
in 5.5.3. Finally, the last section covers the insulating effect of radiation shields
where we will also consider specularly reflecting surfaces.

5.5.1 View factors

The calculation of radiative exchange between two surfaces requires a quantity
that describes the influence of their position and orientation. This is the view
factor, which is also known by the terms configuration factor or angle factor. The
view factor indicates to what extent one surface can be “seen” by another, or
more exactly, what proportion of the radiation from surface 1 falls on surface 2.

The first step in the calculation of the view factor is to determine the radiation
flow d2Φ12, emitted from surface element dA1 that strikes surface element dA2,
Fig. 5.50. With L1 as the intensity of the radiation emitted from dA1, from (5.11),
we get

d2Φ12 = L1 cos β1 dA1 dω2 .

Here, dω2 is the solid angle at which the surface element dA2 appears to dA1:

dω2 =
dA2n

r2
=

cos β2 dA2

r2
.

This produces

d2Φ12 = L1

cos β1 cos β2

r2
dA1 dA2 . (5.128)

This relationship is also known as the photometric fundamental law. According
to this, the radiation that reaches dA2 decreases with the square of the distance
r between radiation source and receiver. In addition to this, the orientation of
the surface elements to the straight line between them is of importance. This is
expressed in terms of a cosine function of the two polar angles β1 and β2.

We will now calculate the radiation that is emitted by the finite surface 1 that
strikes surface 2, Fig. 5.50. This involves the assumption that the intensity L1 is
constant over the entire surface 1. Integration of (5.128) over both surfaces yields

Φ12 = L1

∫
A1

∫
A2

cos β1 cos β2

r2
dA1 dA2 . (5.129)
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Fig. 5.50: Geometric quantities for
the calculation of the view factor

This is the radiation flow emitted by 1 that falls on 2. With

Φ1 = πL1A1

as the radiation flow emitted by surface 1 into the hemisphere, the view factor is
obtained as

F12 :=
Φ12

Φ1

=
1

πA1

∫
A1

∫
A2

cos β1 cos β2

r2
dA1 dA2 . (5.130)

This quantity gives the proportion of the radiation emitted by surface 1 that falls
on surface 2. The view factor is only dependent on the geometry. This is the
result of the limiting assumption of constant intensity L1: Equation (5.130) is
only valid if surface 1 radiates diffusely, has a constant temperature and the same
radiation properties over the entire area.

If the indices 1 and 2 are exchanged in (5.130), then

F21 =
Φ21

Φ2

=
1

πA2

∫
A2

∫
A1

cos β1 cos β2

r2
dA1 dA2 (5.131)

is obtained as the proportion of the radiation flow emitted by surface 2 (at constant
intensity L2!), that strikes surface 1. The equations (5.130) and (5.131) provide
the important reciprocity rule for view factors,

A1F12 = A2F21 . (5.132)

This means that only one of the two view factors has to be determined by the
generally very complicated integration of (5.130) or (5.131).

A further relationship between view factors can be found when n areas, for each
of which Li = const holds, form an enclosure such as that illustrated schematically
in Fig. 5.51. From the radiation balance for area i,

Φi1 + Φi2 + · · · + Φin = Φi ,

and by dividing by Φi, the summation rule

n∑
j=1

Fij = 1 , i = 1, 2, . . . n (5.133)
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Fig. 5.51: Enclosure and radiation flows
Φij , emitted from the area Ai

Fig. 5.52: Enclosure formed by the
concentric spherical areas 1 and 2

is obtained. Fii also belongs to the view factors in the sum. It tells us what
proportion of the radiation emitted by i strikes i. Fii �= 0 is only possible for a
concave surface; it “sees itself”. For flat and convex surfaces, we have Fii = 0.

A simple example for the application of the relationships (5.132) and (5.133) is provided
by radiation in an enclosure formed by two spherical surfaces 1 and 2, Fig. 5.52. There are
four view factors in this case, F11, F12, F21 and F22. The summation rule is applied to the inner
sphere in order to calculate them:

F11 + F12 = 1 .

As surface 1 is convex, we have F11 = 0, and it follows that F12 = 1: All the radiation emitted
by 1 strikes the outer sphere surface 2. The factor F21 is obtained using the reciprocity rule
(5.132) with A1 and A2 as the surfaces of the two spheres:

F21 =
A1

A2
F12 =

A1

A2
=

(
r1

r2

)2

< 1 .

The fourth view factor is found by applying the summation rule F21 + F22 = 1 to the outer
sphere

F22 = 1 − F21 = 1 − (A1/A2) = 1 − (r1/r2)
2

.

It is not equal to zero because part of the radiation emitted by the outer spherical surface also
strikes it again.

View factors are not always as easy to find as for the simple geometry present
in the example we have just looked at. Then the multiple integral in (5.130) has
to be evaluated. However, not all the view factors have to be calculated in this
manner. In an enclosure bounded by n surfaces there are n2 view factors in total.
From these, n view factors can be found by the application of the summation rule
(5.133) on each of the n surfaces. In addition to this, n(n− 1)/2 view factors can
be determined using the reciprocity rule (5.132). Therefore the number of view
factors that have to be calculated from (5.130) is only

n2 − n − n(n − 1)/2 = n(n − 1)/2 .

This number is reduced even further by the number of flat or convex surfaces for
which Fii = 0 holds.
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The multiple integral in (5.130) has been calculated for a large number of geo-
metrical arrangements, most of which yield equations that are difficult to evaluate.
The methods that should be applied to obtain these equations are reported by
R. Siegel [5.45], and other authors. Some examples of calculated view factors are
presented in Table 5.9. A larger collection of view factors can be found in R. Siegel
and others [5.45] with numerous information on sources, in the VDI-Wärmeatlas
[5.46] and in J.R. Howell [5.47].

Example 5.9:

Calculate the view factors for the inside of a cylinder, according to Fig. 5.53, with r =
0.10 m and h = 0.25 m.

Fig. 5.53: Hollow cylinder with end
areas 1 and 2 and body surface 3

In an enclosure bounded by three surfaces there are 9 view factors. Of these only 3 need
to be calculated according to (5.130). As the end areas 1 and 2 are flat, we have F11 = 0
and F22 = 0, so that only one view factor has to be determined by evaluating the double
integral from (5.130). This is the view factor F12; it is found from Table 5.9 (two equally
sized, parallel concentric circular discs) with z = 2 + (h/r)2 = 8.25 to be

F12 =
1

2

(
z −

√
z2 − 4

)
= 0.123 .

This means that F13 = 1 − F12 = 0.877.
From symmetry (or by applying the reciprocity rule), we find that F21 = F12 = 0.123 and
F23 = 1 − F21 = 0.877 = F13. From the reciprocity rule

A3F31 = A1F13

follows

F31 =
A1

A3
F13 =

πr2

2πrh
F13 = 0.1754 .

With F32 = F31 (symmetry!), from

F31 + F32 + F33 = 1

we finally get
F33 = 1 − 2F31 = 0.649 .
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Table 5.9: View factors F12 for selected geometric arrangements

Two infinitely long, parallel strips, with centre lines that lie vertically above

one another

x = b1/h ; y = b2/h

F12 =
1

2x

[√
(x + y)

2
+ 4 −

√
(y − x)

2
+ 4

]

Two infinitely long strips, perpendicular to each other with a common edge

F12 =
1

2

[
1 +

b1

b2
−
√

1 + (b2/b1)
2

]

Two identical, parallel rectangles lying opposite each other

x = a/h ; y = b/h

F12 =
2

πxy

[
1

2
ln

(
1 + x2

) (
1 + y2

)
1 + x2 + y2

+x
√

1 + y2 arctan
x√

1 + y2

+y
√

1 + x2 arctan
y√

1 + x2
− x arctan x − y arctan y

]

Two rectangles perpendicular to each other with a common edge

x = b1/a ; y = b2/a

F12 =
1

πx

[
x arctan

1

x
+ y arctan

1

y

−
√

x2 + y2 arctan
1√

x2 + y2

+
1

4
ln

(
1 + x2

) (
1 + y2

)
1 + x2 + y2

+
x2

4
ln

x2
(
1 + x2 + y2

)
(1 + x2) (1 + y2)

+
y2

4
ln

y2
(
1 + x2 + y2

)
(1 + x2) (1 + y2)

]
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Table 5.9: (continued)

Two parallel circular disks with common central vertical

x = r1/h ; y = r2/h

z = 1 +
(
1 + y2

)
/x2

F12 =
1

2

[
z −

√
z2 − 4 (y/x)2

]

An infinitely long strip and an infinitely long cylinder parallel to it

F12 =
r

b − a

(
arctan

b

h
− arctan

a

h

)

Two infinitely long, parallel cylinders with equal diameters

x = h/2r

F12 = F21 =
1

π

(√
x2 − 1 + arcsin

1

x
− x

)

A sphere and a circular disk, whose central vertical goes through the centre

of the sphere

F12 =
1

2

⎛⎝1 − 1√
1 + (r2/h)2

⎞⎠

Two areas on the inner side of a hollow sphere

F12 =
A2

4πr2
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5.5.2 Radiative exchange between black bodies

The calculation of radiative exchange is simplified if black bodies are considered,
because no reflection occurs and the entire incident radiation flow is absorbed.
Besides that, the intensity Ls of a black body is only dependent on its temperature.
Therefore the intensity is constant on an isothermal surface of a black body. This
was a prerequisite for the calculation of view factors in the previous section.

Fig. 5.54: Radiation flows Φ12 and Φ21

in direct radiative exchange between black
bodies 1 and 2

We will calculate first the direct radiative interchange between two black bodies
of arbitrary shape with surfaces A1 and A2 and uniform temperatures T1 and T2,
Fig. 5.54. In this case, all radiation flows emitted by one body that do not strike
the other body will be ignored. The proportion of the radiation flow emitted by
1 and incident on 2 is given by

Φ12 = A1F12σT 4
1 .

This energy flow is absorbed by black body 2. The radiation flow received and
absorbed by black body 1, from body 2, is

Φ21 = A2F21σT 4
2 .

The net radiation flow transferred by direct radiative interchange from 1 to 2 is
therefore

Φ∗
12 = Φ12 − Φ21 = A1F12σT 4

1 − A2F21σT 4
2 .

If both bodies are at the same temperature T1 = T2, then no (net) energy flow
will be transferred between them: Φ∗

12 = 0. This then yields

A1F12 = A2F21 ,

i.e. the reciprocity rule, (5.132), for view factors, previously derived in another
manner. This gives

Φ∗
12 = A1F12σ

(
T 4

1 − T 4
2

)
= A2F21σ

(
T 4

1 − T 4
2

)
. (5.134)

The net radiation flow transferred by direct radiative exchange between two black
bodies is proportional to the difference of the fourth powers of their thermody-
namic temperatures.

We will now consider a hollow enclosure surrounded by walls consisting of sev-
eral parts each with an isothermal surface, Fig. 5.55. According to H.C. Hottel
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and A.F. Sarofim [5.48], these isothermal sections of the surrounding walls are
called zones. Non-isothermal walls with continuously changing temperatures can
be approximated by a series of sufficiently small zones each at a different temper-
ature. In the following all zones are assumed to be black surfaces. An opening
in the enclosure is viewed as a zone with such a temperature that its radiation
corresponds to the radiation, being assumed to be black, coming from outside
through the opening into the enclosure.

In order to maintain a steady state, each zone has to have a heat flow supplied
(or removed) from outside, to make up the difference between the emitted radi-
ation flows and the sum of all the incident (and absorbed) radiation flows. The
energy balance for zone i with surface Ai and temperature Ti is

Q̇i = AiσT 4
i −

n∑
j=1

AjFjiσT 4
j . (5.135)

By applying the reciprocity rule (5.132) the following is obtained

Q̇i = AiσT 4
i −

n∑
j=1

AiFijσT 4
j .

Since, according to (5.133),
n∑

j=1
Fij = 1, it also holds that

Q̇i = Aiσ
n∑

j=1

Fij

(
T 4

i − T 4
j

)
; i = 1, 2, . . . n . (5.136)

The heat flow supplied to zone i from outside (or, with Q̇i < 0, released to the
outside), is the sum of the net radiation flows Φ∗

ij from (5.134) between zone i and
the other zones that bound the enclosure.

A zone with Q̇i > 0 is called a (net) radiation source, as it emits more radiation
than it absorbs. A zone with Q̇i < 0 is a (net) radiation receiver, that absorbs
more radiation than it emits. An adiabatic zone (Q̇i = 0) with respect to the
outside is known as a reradiating wall. Its temperature is such that it emits
just as much radiation as it absorbs from radiation incident upon it (radiative
equilibrium).

The heat flows for all the zones can be found from (5.136) for given tem-
peratures. If, on the contrary, some of the heat flows are known, the n balance

Fig. 5.55: a Hollow enclosure bounded by black radiating edges. b Illustration of
the energy balance for the zone i
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Fig. 5.56: Enclosure formed from
radiation source 1, radiation re-
ceiver 2 and reradiating walls with
Q̇R = 0

equations (5.136) represent a linear system of equations, from which all the un-
known temperatures and heat flows can be determined.

An enclosure with only three zones is often a good approximation for the case of a radiation
source of area A1 and temperature T1 in radiative exchange with a radiation receiver of area
A2 and temperature T2 < T1, cf. Fig. 5.56. In addition to this walls that are adiabatic with
respect to the outside also participate in the radiative exchange. These can be roughly assigned
a unified temperature, TR. The reradiating walls that enclose the space are combined here into
a single zone with TR and Q̇R = 0.

The following balance equations are valid for this hollow enclosure with three black radiating
zones:

Q̇1 = A1σ
[
F12

(
T 4

1 − T 4
2

)
+ F1R

(
T 4

1 − T 4
R

)]
, (5.137a)

Q̇2 = A2σ
[
F21

(
T 4

2 − T 4
1

)
+ F2R

(
T 4

2 − T 4
R

)]
, (5.137b)

0 = ARσ
[
FR1

(
T 4

R − T 4
1

)
+ FR2

(
T 4

R − T 4
2

)]
. (5.137c)

With the reciprocity rule (5.132) it follows from here that Q̇2 = −Q̇1, which is also yielded from
the balance for the entire enclosure. The temperature of the reradiating zone is obtained from
(5.137c) as

T 4
R =

A1F1RT 4
1 + A2F2RT 4

2

A1F1R + A2F2R
(5.138)

and by elimination of T 4
R from (5.137a)

Q̇1 = −Q̇2 = A1F 12 σ
(
T 4

1 − T 4
2

)
(5.139)

with the modified view factor

F 12 = F12 +
F1RF2R

(A1/A2)F1R + F2R
. (5.140)

As comparison with (5.134) shows, the heat flow Q̇1 transferred from 1 to 2 is increased
compared to the net radiation flow Φ∗

12 due to the reradiating walls, because F 12 > F12. If the
radiation source and receiver have flat or convex surfaces (F11 = 0, F22 = 0), then the view
factors F1R and F2R can lead back to F12 and instead of (5.140)

F 12 =
1 − (A1/A2)F

2
12

1 − 2(A1/A2)F12 + A1/A2
(5.141)

is obtained. Only one view factor, namely F12 is required to calculate Q̇1.

Example 5.10: The hollow cylinder from Example 5.9 has black radiating walls. The two
ends are kept at temperatures T1 = 550K and T2 = 300K. The body area 3 is adiabatic,
Q̇3 = Q̇R = 0. Calculate the heat flow Q̇1 and the temperature T3 = TR of the reradiating
body area, if this is taken to be an approximately isothermal area (zone).
In order to determine the heat flow Q̇1 from (5.139), the modified view factor F 12 is
required. This can be calculated according to (5.141), because the two ends are flat. With
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F12 = 0.123 from Example 5.9 and A1/A2 = 1, F 12 = 0.5615 is obtained. This yields the
following from (5.139)

Q̇1 = −Q̇2 = π · 0.102 m2 · 0.5615 · 5.67 · 10−8 W

m2K4

(
5504 − 3004

)
K4 = 83.4W .

The temperature of the reradiating shell area can be found from (5.138). With F1R =
F13 = F23 = F2R (symmetry!) and A1 = A2 we get

T 4
R =

1

2

(
T 4

1 + T 4
2

)
and from that TR = 472K.
This is the temperature at which the assumed isothermal body area emits as much energy
as it absorbs. In reality the temperature of the body area varies continuously between
T1 and T2, radiation with different irradiance strikes each annular strip of infinitesimal
width. So each strip has a different emissive power and assumes a temperature accordingly.
The correct treatment of this type of radiative exchange process with continuously varying
temperature (corresponding to an infinite number of infinitesimal zones) is mathematically
very involved; see [5.45], p. 107–132 for more information.

5.5.3 Radiative exchange between grey Lambert radiators

If the bodies participating in radiative exchange cannot be assumed to be black
bodies, then the reflected radiation flows also have to be considered. In hollow
enclosures, multiple reflection combined with partial absorption of the incident
radiation takes place. A general solution for radiative exchange problems without
simplifying assumptions is only possible in exceptional cases. If the boundary
walls of the hollow enclosure are divided into isothermal zones, like in 5.5.2, then
a relatively simple solution is obtained, if these zones behave like grey Lambert
radiators. Each zone is characterised purely by its hemispherical total emissivity
εi = εi(Ti), whilst ai = εi is valid for its absorptivity, and for the reflectivity
we have ri = 1 − εi. In addition to this the intensity is constant for each zone.
The reflected radiation also has constant intensity, if diffuse reflection is assumed,
cf. section 5.1.5. The sum of the radiation emitted and reflected from one zone
therefore obeys the cosine law, so just like for black bodies, view factors can be
used to describe the radiative exchange between the zones.

We will now investigate radiative exchange between the isothermal walls (zones)
of the enclosure illustrated in Fig. 5.57. The temperature of some of the zones is
known, for others the heat flow supplied from or released to the outside is given.
The heat flows of the zones with known temperatures and the temperature of
each zone with stipulated heat flow are what we are seeking. There are as many
unknown quantities (temperatures or heat flows) as there are zones.

The energy balance equations for all the zones need to be established to solve
this radiative exchange problem. This is done using the net-radiation method
introduced by G. Poljak [5.49]. This yields a system of linear equations that,
when solved, deliver the unknown temperatures and heat flows. With simple
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Fig. 5.57: Hollow enclosure bounded by
isothermal surfaces (zones) each of which
is a grey Lambert radiator

problems of only two or three zones, an electrical circuit analogy presented by
A.K. Oppenheim [5.50] leads, in a simple manner, to the relationship between the
temperatures and heat flows of the zones.

5.5.3.1 The balance equations according to the net-radiation method

According to G. Poljak, a new quantity has to be introduced when setting up
the energy balance equation for a zone. It combines the radiation emitted and
reflected by an isothermal surface i. It is made up by adding the emissive power
Mi of the surface i and the reflected portion of its irradiance Ei:

Hi := Mi + riEi = Mi + (1 − εi)Ei . (5.142)

The quantity Hi is called the radiosity of the surface i, cf. E.R.G. Eckert [5.51].

Fig. 5.58: Illustration of the energy balance
for the zone i with area Ai

We will now set up the energy balance illustrated in Fig. 5.58 for a zone i. The
heat flow Q̇i supplied from outside has to cover the difference between the emitted
and reflected radiation flow and the incident radiation flow. It holds, therefore,
that

Q̇i = Ai (Hi − Ei) ; (5.143)

the heat flow agrees with the net radiation flow. We now calculate the irradiance
Ei from (5.142) and put it into (5.143) with the result

Q̇i =
Ai

1 − εi

(Mi − εiHi) =
Aiεi

1 − εi

(
σT 4

i − Hi

)
. (5.144)

The emissivity εi appearing here is normally dependent on the temperature; it
has to be calculated at the temperature Ti of the zone i: εi = εi(Ti).

A second relationship between Q̇i and Hi is obtained, when the radiation flow
AiEi incident on zone i is linked with the radiation flows emitted by the other
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zones. The radiation flow AjHj is sent out by zone j, but only the radiation flow
AjFjiHj, multiplied by the view factor Fji, strikes zone i. Therefore, the total
radiation striking zone i is

AiEi =
n∑

j=1

AjFjiHj = Ai

n∑
j=1

FijHj ,

where the reciprocity rule (5.132) has been applied for the view factors. Putting
this expression into (5.143), and taking (5.133) into account, it follows that

Q̇i = Ai

(
Hi −

n∑
j=1

FijHj

)
= Ai

n∑
j=1

Fij

(
Hi − Hj

)
. (5.145)

The two balance equations (5.144) and (5.145) can be established for each
zone (i = 1, 2, . . . n). Therefore, 2n equations are available for the n unknown
radiosities Hi and the n required values for Q̇i and Ti respectively. Before we go
into this equation system in 5.5.3.4, the next section offers solutions for the more
simple case of enclosures bounded by only two or three zones.

5.5.3.2 Radiative exchange between a radiation source, a radiation
receiver and a reradiating wall

An enclosure surrounded by three isothermal surfaces (zones), like that shown
schematically in Fig. 5.59, serves as a good approximation for complicated cases
of radiative exchange. Zone 1 at temperature T1 and with emissivity ε1 is the
(net-) radiation source, it is supplied with a heat flow Q̇1 from outside. Zone 2
with temperature T2 < T1 and emissivity ε2 is the radiation receiver, whilst the
third zone at temperature TR, assumed to be spatially constant, is a reradiating
wall, (Q̇R = 0). The heat flow Q̇1 = −Q̇2 transferred by radiative exchange in the
enclosure is to be determined.

Fig. 5.59: Enclosure formed by a radiation
source 1, radiation receiver 2 and (adiabatic)
reradiating walls R

The solution of this problem starts with the writing of the two fundamental
balance equations (5.144) and (5.145) in the form

Q̇i =
σT 4

i − Hi

1 − εi

Aiεi

(5.146)
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Fig. 5.60: Equivalent electrical cir-
cuit diagram for (5.146) with “reflec-
tion resistance” (1 − εi)/Aiεi

Fig. 5.61: Equivalent electrical circuit diagram
for (5.147): Current branching with the “geo-
metric resistances” (AiFij)

−1

and

Q̇i =
n∑

j=1

Hi − Hj

1

AiFij

. (5.147)

We put these relationships in analogy to an electrical circuit. According to (5.146),
the “current” Q̇i, caused by the “potential difference” between σT 4

i and Hi, flows
through a “conductor” with “resistance” (1 − εi)/Aiεi. This is illustrated in the
equivalent electrical circuit diagram in Fig. 5.60. Eq. (5.146) can be interpreted as
the current with a

”
potential“ Hi splitting at a node into wires with the “geometric

resistances” (1/AiFij) to the “potentials” Hj, see Fig. 5.61. The wire possible for
Fii �= 0 is missing, as due to Hj = Hi no “current” flows.

The radiative exchange in the enclosure from Fig. 5.59 can be replaced by the
circuit diagram from Fig. 5.62.

As the reradiating wall has no current, (Q̇R = 0), the current Q̇1 of potential
σT 4

1 flows to the node H1, where it branches off, it flows directly and via HR to

Fig. 5.62: Equivalent electrical circuit diagram for the radiative exchange in a
hollow enclosure according to Fig. 5.59
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the node H2 and finally reaches the potential σT 4
2 . Three resistances, placed one

behind the other, lie between the end points with the potentials σT 4
1 and σT 4

2 ,
whereby, because of the branching of the current, the central resistance (A1F 12)

−1

between H1 and H2 is made up of the three individual resistances (A1F12)
−1,

(A1F1R)−1 and (A2F2R)−1. As three series resistances are added, it holds that

Q̇1 =
σ (T 4

1 − T 4
2 )

1 − ε1

ε1A1

+
1

A1F 12

+
1 − ε2

ε2A2

. (5.148)

With parallel resistances the conductances are added together; it then follows that

A1F 12 = A1F12 +
1

(A1F1R)−1 + (A2F2R)−1 . (5.149)

This relationship for F 12 agrees with (5.140), which was derived in a different
manner. If both surfaces 1 and 2 are flat or convex (F11 = 0 and F22 = 0), then
A1F 12 can, according to (5.141), be calculated using only F12, A1 and A2.

Equation (5.148) is often written in the form

Q̇1 = ε12A1σ
(
T 4

1 − T 4
2

)
, (5.150)

through which the radiative exchange factor ε12 is defined. From (5.148) we get

1

ε12A1

=
1 − ε1

ε1A1

+
1

A1F 12

+
1 − ε2

ε2A2

. (5.151)

For emissivities dependent on the temperature, ε1 = ε1(T1) and ε2 = ε2(T2) should
be used.

No current, Q̇R = 0, flows between the nodes with the potentials σT 4
R and HR,

cf. Fig. 5.62. The resistance (1− εR)/εRAR therefore has no effect and σT 4
R = HR

is valid. The temperature TR of a reradiating wall presents itself independent of
its emissivity εR. The radiosity HR required for its determination is found from
the balance

A1F1R (H1 − HR) = A2F2R (HR − H2) ,

read off Fig. 5.62 as

HR = σT 4
R =

A1F1RH1 + A2F2RH2

A1F1R + A2F2R

. (5.152)

The radiosities H1 and H2 are obtained from (5.146) for i = 1 and i = 2, with Q̇1

from (5.150) and Q̇2 = −Q̇1.
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Example 5.11: The electrically heated oven in Fig. 5.63a is used for the surface treatment
of thin, square metal plates that are covered on both sides. The oven has a square base
of side length a = 1.50m. The radiation emitting surface of the heating elements has
emissivity ε = 0.85; their distance from the metal plate is b = 0.25m. 12.5kW power
is supplied to each of the two rows of heating elements being well insulated against the
exterior. The non-insulated side walls of the oven have emissivity ε = 0.70. At steady-state
the surface temperature of the heating elements reaches 750 K. Determine the temperature
of the side walls and the temperature of the covered metal plate.

Fig. 5.63: a Electrically heated oven for the surface treatment of metal plates, b

Hollow enclosure for the calculation of the radiative exchange of the top half of the
oven

The symmetry of the construction means that it is sufficient to just consider the top half
of the oven. It forms the schematically illustrated enclosure in Fig. 5.63b. It is bounded at
the top by the heated square 1 with ε1 = 0.85, at the side by the rectangular areas 2 with
ε2 = 0.70, which release heat to the outside, and below by the metal plate R. It is adiabatic
as a result of symmetry, and represents a reradiating wall. We will assign the approximately
uniform temperatures T1, T2 and TR to these surfaces, such that the radiative exchange
in a hollow enclosure bounded by three zones is to be calculated according to (5.148) or
(5.151).
The first step is the determination of the view factors required for (5.149), F12, F1R and
F2R. The easiest to calculate is the view factor F1R between two parallel squares lying one
above the other (side length a) from Table 5.9. With x = y = a/b = 6.0 we obtain, from

F1R =
2

πx2

[
1

2
ln

(
1 + x2

)2
1 + 2x2

+ 2x
√

1 + x2 arctan
x√

1 + x2
− 2x arctan x

]
,

the value F1R = 0.7326. As F11 = 0, then F12 = 1 − F1R = 0.2674. In order to determine
F2R, we consider that due to symmetry FR2 = F12 is valid. Using the reciprocity rule
(5.132), it then follows, with AR = A1 = a2 and A2 = 4ab, that

F2R =
AR

A2
FR2 =

A1

A2
F12 =

a

4b
F12 = 0.4011 .

This yields from (5.149) the modified view factor F 12 = 0.4633.
We now calculate the radiative exchange factor ε12 from (5.151) and obtain

1

ε12A1
= 1.3234 m−2 and ε12 = 0.3358 .

The temperature T2 of the four side walls is calculated from (5.150) with Q̇1 = 12, 5kW:

T 4
2 = T 4

1 − Q̇1

ε12A1σ
.
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This gives T2 = 396.3K. The temperature TR of the covered metal plates is obtained from
their radiosity HR as

TR = (HR/σ)1/4 . (5.153)

The radiosities H1 and H2 are required for the calculation of HR from (5.152). They are
found from (5.146) to be

H1 = σT 4
1 − 1 − ε1

ε1A1
Q̇1 = 16.96

kW

m2

and because Q̇2 = −Q̇1

H2 = σT 4
2 +

1 − ε2

ε2A2
Q̇1 = 4.970

kW

m2
.

It then follows from (5.152) that HR = 13.75kW/m
2

and finally from (5.153), TR = 702K.

5.5.3.3 Radiative exchange in a hollow enclosure with two zones

The relationships derived in the last section for the heat flow, Q̇1, transferred from
a radiation emitter 1 to a receiver 2, are also valid for an enclosure that is only
bounded by these two zones. As no reradiating zone is present, with F1R = 0 and
F2R = 0 from (5.149), F 12 = F12 is obtained. The heat flow transferred from 1 to
2 is

Q̇1 = ε12A1σ
(
T 4

1 − T 4
2

)
. (5.154)

The radiative exchange factor ε12 is yielded from (5.151) to be

1

ε12

=
1

F12

+
1

ε1

− 1 +
A1

A2

(
1

ε2

− 1

)
. (5.155)

These equations hold for several important, practical cases:
1. The area 1 is completely enclosed by the area 2, so that F12 = 1. For the

radiative exchange factor we have now

1

ε12

=
1

ε1

+
A1

A2

(
1

ε2

− 1

)
. (5.156)

This result holds in particular for concentric spheres and very long concen-
tric cylinders as here the assumption of isothermal surfaces applies more
easily. If, however, body 1 lies eccentric in the enclosure surrounded by
body 2, Fig. 5.64, then the two surfaces will generally not be isothermal,
as the radiation flow is much higher in the regions where the two surfaces
are close to each other than where a large distance exists between them.

Fig. 5.64: Enclosure surrounded by body 2
with an eccentrically placed body 1
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2. Surface 2 completely surrounds surface 1, (F12 = 1), and is black: ε2 = 1.
It now follows from (5.156) that ε12 = ε1, the simple equation

Q̇1 = ε1A1σ
(
T 4

1 − T 4
2

)
(5.157)

for the transferred heat flow. As the surrounding shell does not reflect any
radiation, the size A2 of its surface has no effect on the radiative exchange.

3. Area 2 completely encloses area 1, (F12 = 1), and its surface is much larger
than that of area 1: A2 � A1. With A1/A2 → 0 it follows from (5.156)
that ε12 = ε1, with (5.157) for the heat flow. The radiative properties of a
very large shell do not have any influence. The shell 2 appears like a black
body to the small body 1.

4. For two very large, parallel plates, F12 = 1 is likewise valid, and in addition
A1 = A2. From (5.156) the radiative exchange factor is found to be

1

ε12

=
1

ε1

+
1

ε2

− 1 . (5.158)

The second of these special cases of the body 1 completely enclosed by a black radiating
shell 2 can also be generalised for an enclosed body with any radiative properties. The radiation
flow emitted by it is

Φ1 = A1ε1(T1)σT 4
1 .

The black shell absorbs this radiation flow completely. It emits the radiation flow A2σT 4
2 itself,

of which the proportion F21 strikes body 1. Body 1 absorbs the following radiation flow from
the black radiation striking it

Φ21 = a1(T1, T2)A2F21σT 4
2 .

Here, a1(T1, T2) is the hemispherical total absorptivity of body 1 for black radiation at temper-
ature T2. This gives

Q̇1 = Φ1 − Φ21 = ε1(T1)A1σT 4
1 − a1(T1, T2)A2F21σT 4

2 (5.159)

for the heat flow transferred from body 1 to the black shell 2.
We will now consider the limiting case T2 = T1, for which Q̇1 = 0. Eq. (5.159) yields

a1(T1, T2)A2F21 = ε1(T1)A1 . (5.160)

According to section 5.3.2.2, the hemispherical total absorptivity of a body with any radiative
properties is equal to its hemispherical total emissivity, if radiation from a black body at the
same temperature strikes the body. This is the case here. It therefore follows from (5.160) that
A2F21 = A1. This corresponds to the reciprocity rule (5.132) with F12 = 1. Its application to
this case was however not assured from the start as the intensity of body 1 is not constant.

We obtain now, as a generalisation of (5.157)

Q̇1 = A1σ
[
ε1(T1)T 4

1 − a1(T1, T2)T 4
2

]
. (5.161)

For a grey Lambert radiator the absorptivity a1 for every incident radiation is the same as the
emissivity ε1(T1), so that (5.157) is once again yielded.
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5.5.3.4 The equation system for the radiative exchange between any
number of zones

In complicated geometries the boundary walls of an enclosure must be divided
into several zones. Non-isothermal walls also have to be split into a number of
isothermal surfaces (= zones) in order to increase the accuracy of the results13.
The equivalent electrical circuit diagram introduced in 5.5.3.2 would be confusing
for this case. It is more sensible to set up and then solve a system of linear
equation for the n radiosities of the n zones. The difficulty here is not the solving
of the large number of equations in the system, but is the determination of the
n2 view factors that appear.

For n zones, 2n equations (5.144) and (5.145) with i = 1, 2, . . . n are valid. They are
rearranged so that a system of n equations is yielded for the n radiosities Hi. The solution of
this system of equations gives, from (5.144), the heat flow Q̇i for each zone where the temperature
Ti is given. The temperature of a zone with stipulated heat flow Q̇i is found by solving (5.144)
for T 4

i :

T 4
i =

1

σ

[
Hi +

1 − εi(Ti)

εi(Ti)

Q̇i

Ai

]
. (5.162)

If, as this equation indicates, the emissivity εi depends on the temperature, iteration is required.
In order to obtain the equation system for the radiosities, (5.145) is rearranged:

Hi −
n∑

j=1

FijHj = Q̇i/Ai . (5.163)

With the Kronecker symbol

δij =

{
0 for i �= j
1 for i = j

(5.164)

the linear equation follows
n∑

j=1

(δij − Fij)Hj = Q̇i/Ai . (5.165)

It is used for the zones of the enclosure with given heat flow Q̇i and for which the temperature
Ti has to be determined.

For the zones where the temperature Ti is given, the unknown Q̇i is eliminated by setting
(5.144) equal to (5.145). After canceling Ai this yields

Hi −
n∑

j=1

FijHj =
εi

1 − εi

(
σT 4

i − Hi

)
;

from which follows

Hi − (1 − εi)
n∑

j=1

FijHj = εiσT 4
i

13For demands of high accuracy, even this procedure of splitting the area with continuously
varying temperature into a finite number of zones has to be avoided. However, the correct
method for non-isothermal areas leads to complicated mathematical relationships (integral equa-
tions), which we will not go into here; [5.45], p. 107–132 is suggested for further reading.
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or with the Kronecker symbol from (5.164)

n∑
j=1

[δij − (1 − εi) Fij ]Hj = εiσT 4
i . (5.166)

This equation, linear in the radiosity, is used for the zones where the temperature Ti is given,
with which εi(Ti) can also be found, so all the coefficients and the right hand side are known.

The zones 1, 2, . . . m shall have given temperatures and the zones m + 1,m + 2, . . . n shall
have stipulated heat flows. The linear equation system for the radiosities becomes

n∑
j=1

[δij − (1 − εi)Fij ] Hj = εiσT 4
i , i = 1, 2, . . . m (5.167)

and
n∑

j=1

(δij − Fij)Hj = Q̇i/Ai , i = m + 1,m + 2, . . . n . (5.168)

This can be solved using known methods of linear algebra. With the radiosities Hi, the heat flows
Q̇i for i = 1, 2, . . . m are found using (5.144) and the temperatures Ti for i = m + 1,m + 2, . . . n
from (5.162).

If some of the m areas with given temperatures are black, then the associated equations
(5.167) with εi = 1 are reduced to Hi = σT 4

i . These radiosities are known from the start
so the number of unknown radiosities is accordingly reduced. Equ. (5.144) is not suitable for
the calculation of heat flows Q̇i for black bodies; Q̇i is determined from the less convenient
relationship (5.163).

Example 5.12: The radiative exchange in the hollow cylinder (r = 0.10m; h = 0.25m)
from Examples 5.9 and 5.10 is to be investigated further. End 1 is black (as in Example
5.10), (ε1 = 1) and has a temperature T1 = 550K. The other end has emissivity ε2 = 0.75
and temperature T2 = 300K. The body area is adiabatic. In order to obtain higher
accuracy the reradiating body area is split into equally sized zones 3 and 4, the position
of which is indicated in Fig. 5.65. The heat flows Q̇1 and Q̇2 and the temperatures T3 and
T4 of the two reradiating zones are to be determined.

Fig. 5.65: Hollow cylinder with ends 1 and 2. The rera-
diating body area is divided into two equally sized zones
3 and 4. 5 imaginary auxiliary area for the calculation of
the view factors

Before we set up the equation system for the radiosities of the four zones we will calculate
the 16 view factors Fij . Obviously F11 = F22 = 0; the view factor F12 = 0.1230 is carried
over from Example 5.9. In order to determine the other view factors the auxiliary area
5 in Fig. 5.65 with the dashed line is introduced. With z = 2 + (h/2r)

2
= 3.5625, F15

is calculated from the equation given in Example 5.9 as F15 = 0.3072. For the enclosure
formed by 1, 3 and 5 we have F13 + F15 = 1, from which F13 = 0.6928. The summation
for the entire cylinder is

F11 + F12 + F13 + F14 = 1 ,
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from which F14 = 0.1841 is obtained. Due to symmetry with respect to the auxiliary
area 5, the view factors for area 2 are obtained from those calculated for 1 as F21 = F12;
F22 = F11 = 0; F23 = F14; F24 = F13.
The reciprocity rule is used for the determination of the view factors for area 3. This gives
F31 = (A1/A3)F13 = (r/h)F13 = 0.2771 as well as F32 = (A2/A3)F23 = (r/h)F14 = 0.0736.
Coming back to the enclosure formed by 1, 3 and 5, the summation rule

F31 + F33 + F35 = 1

gives, because of F35 = F31 (symmetry!), the view factor F33 = 1 − 2F31 = 0.4458. The
corresponding summation for the entire cylinder yields

F34 = 1 − F31 − F32 − F33 = 0.2035 .

Symmetry is also the reason for the view factors for area 4 being F41 = F32; F42 = F31;
F43 = F34 and F44 = F33. Combining these results into a matrix makes things a lot clearer:

(Fij) =

⎡⎢⎢⎣
0 0.1230 0.6928 0.1841

0.1230 0 0.1841 0.6928
0.2771 0.0736 0.4458 0.2035
0.0736 0.2771 0.2035 0.4458

⎤⎥⎥⎦ .

As area 1 is black, the first of the two equations (5.167) is reduced to

H1 = σT 4
1 = 5188.9W/m

2
.

The second equation from (5.167) with i = m = 2 and the two equations (5.168), with
Q̇3 = Q̇4 = 0, take the form

H2 − (1 − ε2) F23H3 − (1 − ε2)F24H4 = ε2σT 4
2 + (1 − ε2) F21H1

−F32H2 + (1 − F33)H3 − F34H4 = F31H1

−F42H2 − F43H3 + (1 − F44)H4 = F41H1 .

With the values given and those already calculated we get

H2 − 0.0460H3 − 0.1732H4 = 504.0 W/m
2

−0.0736H2 + 0.5542H3 − 0.2035H4 = 1437.8 W/m
2

−0.2771H2 − 0.2035H3 + 0.5542H4 = 381.9 W/m2 .

with the solution H2 = 1126.8 W/m
2
, H3 = 3703.3 W/m

2
and H4 = 2612.3 W/m

2
.

The heat flow from the black area 1 is calculated from (5.163) to be

Q̇1 = A1 (H1 − F12H2 − F13H3 − F14H4) = 62.9W .

The heat flow of the other end is yielded from (5.144) as

Q̇2 =
A2ε2

1 − ε2

(
σT 4

2 − H2

)
= −62.9W .

It is the same, as it has to be, as −Q̇1. The temperatures of the reradiating walls 3 and
4 are found from Hi = σT 4

i as T3 = 506K and T4 = 463K. As expected area 3, that is
closer to the hot end 1, has a higher temperature than area 4.
We will now compare these results with the rough approximation in which the body area
is treated as a single, reradiating zone of temperature TR. From (5.150) and (5.151) we
get Q̇1 = −Q̇2 = 70.3W, a value greater by almost 12 %. The temperature of the body
area of TR = 474K lies between T3 and T4.
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5.5.4 Protective radiation shields

Protective radiation shields are used to reduce the radiative exchange between
walls at different temperatures: thin foils or sheets made of good reflecting mate-
rials are placed between the walls, Fig. 5.66. The spaces between the protective
shields are normally evacuated so that heat transfer by convection is prevented.
This multi-layer arrangement is used predominantly in cryogenic applications for
the insulation of containers for very cold liquified gases.

The heat flux transferred between two very large, parallel, flat walls, according
to (5.154) and (5.158), is given by

q̇ =
Q̇

A
=

σ (T 4
1 − T 4

2 )
1

ε1

+
1

ε2

− 1
. (5.169)

We will now consider the case of N radiation shields present between the walls
1 and 2. The emissivity εS shall have the same value on both sides of the shield
and for all shields. As the shields are very thin, each shield can have a uniform
temperature assigned to it. The following equations are obtained with TSi as the
temperature of the i-th shield:

q̇

(
1

ε1

+
1

εS

− 1

)
=σ (T 4

1 − T 4
S1) ,

q̇

(
1

εS

+
1

εS

− 1

)
=σ (T 4

S1 − T 4
S2) ,

. . . . . . . . . . . . . . . . . . . . . . . ,

q̇

(
1

εS

+
1

ε2

− 1

)
=σ (T 4

SN − T 4
2 ) .

The temperatures of the shields drop out of the right hand side when all the

Fig. 5.66: a Flat radiation shields between two flat parallel walls 1 and 2. b Concentric
radiation shields between concentric spheres or very long cylinders 1 and 2
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equations are added together, giving

q̇

[
1

ε1

+
1

ε2

− 1 + N

(
2

εS

− 1

)]
= σ

(
T 4

1 − T 4
2

)
or

q̇ (N) =
σ (T 4

1 − T 4
2 )

1

ε1

+
1

ε2

− 1 + N

(
2

εS

− 1

) . (5.170)

As can immediately be seen, the heat flux is significantly reduced compared to the
case without protective shields (N = 0). Table 5.10 shows examples for εS = 0.05,
of how the ratio q̇(N)/q̇(N = 0) decreases with N for different emissivities ε1 = ε2

of the outer walls. According to this, the effect of shielding is greater, the higher
the emissivity ε1 = ε2.

Table 5.10: Ratio of the heat flux q̇(N) for N protective shields with εS = 0.05 to the heat
flux q̇(N = 0) without protective shields between two flat walls with ε1 = ε2 = ε

ε N = 1 2 5 10 20 50

0.1 0.3276 0.1959 0.0888 0.04645 0.02378 0.00965
0.2 0.1875 0.1034 0.0441 0.02256 0.01141 0.00459
0.4 0.0930 0.0488 0.0201 0.01015 0.00510 0.00205
0.6 0.0565 0.0290 0.0118 0.00595 0.00298 0.00120
0.8 0.0370 0.0189 0.0076 0.00383 0.00192 0.00077
1.0 0.0250 0.0127 0.0051 0.00256 0.00128 0.00052

We will now look at the radiative exchange between concentric cylinders or
spheres. The heat flow transferred calculated from (5.154) and (5.156) is

Q̇ =
A1σ (T 4

1 − T 4
2 )

1

ε1

+
A1

A2

(
1

ε2

− 1

) . (5.171)

N very thin protective shields with the same emissivity εS are placed concentri-
cally between the cylinders or spheres. Following the same procedure as for flat
radiation protection shields gives the reduced heat flow

Q̇ =
A1σ (T 4

1 − T 4
2 )

1

ε1

+
A1

A2

(
1

ε2

− 1

)
+

(
2

εS

− 1

)
N∑

i=1

A1

ASi

. (5.172)

Here, A1 is the surface area of the inner wall and the index i of the shields rises
from inside to outside.
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Surfaces with low emissivities often exhibit approximately mirrorlike or spec-
ular reflection rather than diffuse reflection. We want to investigate how the
assumption of mirrorlike reflection affects the heat transfer. The assumptions re-
garding the emission of diffuse and grey radiation remain unaltered. Grey Lambert
radiators with mirrorlike reflection are therefore assumed.

As the pathways between two large, flat plates drawn schematically in Fig. 5.67
show, the radiation emitted by plate 1 always strikes plate 2 and continues to be
reflected between the plates until it has been completely absorbed. The same is
true for the radiation emitted by plate 2. The heat transfer is not different from
that by diffuse reflection and equation (5.169) for the heat flux holds, regardless of
whether one or both walls reflect diffusely or mirrorlike. The relevant relationship
(5.170) for the heat flux with N radiation shields is applied without any changes
for mirrorlike reflection. It is also valid when only the shields reflect mirrorlike
and the plates diffusely.

Fig. 5.67: Radiation pathways for mirrorlike
reflection between two large, flat, parallel walls
1 and 2

Fig. 5.68 illustrates the radiation pathways between two concentric cylinders
or spheres that reflect like mirrors. The radiation emitted from the inner area 1,
(pathway a), always strikes the outer area 2 and is reflected such that it strikes
area 1 again. F12 = 1 is valid. As in diffuse reflection, the radiation emitted by the
inner area is continuously reflected between the two surfaces until it is completely
absorbed.

This is different for the radiation emitted by the outer area 2; it either strikes
the inner surface or bypasses it and falls back on the outer surface 2. This part,
pathway b in Fig. 5.68, is specularly reflected in such a way that it never leaves
area 2. It does not participate in the radiative exchange between the surfaces.
The other part, given by the view factor F21 = A1F12/A2 = A1/A2, (pathway c),
strikes area 1 and is mirrorlike reflected between the surfaces until it is completely
absorbed. Therefore, the outer surface only contributes to the radiative exchange
by mirrorlike reflection, on the scale as if its surface A2 was reduced by the factor
F21: it has the effective surface area A2F21 = A1.

Therefore, if the outer surface 2 reflects mirrorlike, in the following equation
for the heat flow, from (5.148) with F̄12 = F12 = 1,

Q̇ =
σ (T 4

1 − T 4
2 )

1 − ε1

ε1A1

+
1

A1

+
1 − ε2

ε2A2

,
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Fig. 5.68: Ray pathways in mirrorlike reflec-
tion between concentric spheres or very long
cylinders 1 and 2

in the third “resistance” of the denominator the area A2 should be replaced by
the effective area A1, yielding

Q̇ =
A1σ (T 4

1 − T 4
2 )

1

ε1

+
1

ε2

− 1
. (5.173)

The size of the outer area 2 is immaterial for radiative exchange. Eq. (5.173) also
holds if the inner surface 1 reflects diffusely.

N concentric, thin radiation shields, with the same emissivity εS, are placed between the
(diffuse or mirrorlike reflecting) inner area 1 and the diffuse reflecting outer area 2. The shields
reflect mirrorlike. According to (5.173), the following balance equations hold

Q̇

A1

(
1

ε1
+

1

εS
− 1

)
=σ

(
T 4

1 − T 4
S1

)
,

Q̇

AS1

(
2

εS
− 1

)
=σ

(
T 4

S1 − T 4
S2

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q̇

ASN−1

(
2

εS
− 1

)
=σ

(
T 4

SN−1 − T 4
SN

)
,

Q̇

ASN

[
1

εS
+

ASN

A2

(
1

ε2
− 1

)]
=σ

(
T 4

SN − T 4
2

)
.

The temperatures of the shields drop out when the equations are added together giving

Q̇(N) =
A1σ

(
T 4

1 − T 4
2

)
1

ε1
+

A1

A2

(
1

ε2
− 1

)
+

(
2

εS
− 1

)N−1∑
i=1

A1

ASi
+

1

εS

(
1 +

A1

ASN

)
− 1

. (5.174)

If the outer area 2 also reflects mirrorlike then A2 in the second term of the denominator should
be replaced by ASN because this is the size of the effective surface area of 2 for mirrorlike
reflection.
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Example 5.13: A tube, with liquid nitrogen flowing through it, has an external diameter
d1 = 30mm. It emissivity is ε1 = 0.075 and its temperature T1 = 80K. The tube is
surrounded by a second concentric tube with internal diameter d2 = 60mm with ε2 = 0.12
and T2 = 295K. The space between them has been evacuated. Determine the heat flow per
tube length L that is transferred by radiation. The limiting cases of diffuse and mirrorlike
reflection of the outer tube should be investigated.
With diffuse reflection, the desired heat flow is obtained from (5.171) to be

Q̇

L
=

πd1σ
(
T 4

1 − T 4
2

)
1

ε1
+

d1

d2

(
1

ε2
− 1

) = −2.368
W

m
.

The minus sign indicates that the heat is transferred from outside to inside. The inner
tube is cooled by the liquid nitrogen. In the case of mirrorlike reflection, from (5.173), the
smaller value Q̇/L = −1.948W/m is obtained. As only a part of the outer area contributes
to radiative exchange the insulation effect is greater.
A thin radiation protective shield of diameter dS = 45mm is introduced between the
tubes to improve the insulation of the nitrogen pipe. This shield reflects like a mirror; its
emissivity is εS = 0.025. Find the decrease in the incident heat flow.
Eqn. (5.174) with N = 1 is applied here, so that in the denominator the sum drops out:

Q̇ (N = 1)

L
=

πd1σ
(
T 4

1 − T 4
2

)
1

ε1
+

d1

d2

(
1

ε2
− 1

)
+

1

εS

(
1 +

d1

ds

)
− 1

= −0.487
W

m
.

This holds for the diffuse reflecting outer cylinder. The heat flow has decreased significantly.
The ratio Q̇(N = 1)/Q̇(N = 0) has the value 0.487/2.368 = 0.206. With a mirrorlike
reflecting outer cylinder d2 is replaced by dS. This then gives Q̇(N = 1)/L = −0.480W/m
and Q̇(N = 1)/Q̇(N = 0) = 0.480/1.948 = 0.246. In specular reflection of the outer
cylinder, the relative decrease of the heat flow caused by the protective shield is somewhat
lower than that for a diffuse reflecting outer cylinder. However, the smallest absolute value
of Q̇/L is yielded when both the shield and the outer cylinder reflect mirrorlike.

5.6 Gas radiation

A. Schack [5.52] was the first to recognise the technical importance of radiation
from gases in 1924. He suggested that the radiation of the CO2 and H2O in com-
bustion gases would contribute significantly to heat transfer in industrial ovens
and in furnaces of steam generators. This was confirmed experimentally and be-
tween 1932 and 1942 the radiation of these gases was systematically investigated.
The work by E. Schmidt [5.53] and E. Eckert [5.54], [5.55], in Germany and that
by H.C. Hottel and his coworkers, [5.56] to [5.58], in the USA were of particular
importance.

In technical applications, the gas radiation in the infrared, i.e. at wavelengths
above 1µm is of interest. In this region, the main emitters are CO2 and H2O,
although other gases like CO, SO2, NH3, CH4 and further hydrocarbons also emit
here. In contrast, N2 and O2, the main constituents of air allow radiation in the
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infrared region to pass through with virtually no attenuation; they do not absorb,
and therefore according to Kirchhoff’s law do not emit either.

Gases only absorb and emit radiation in narrow wavelength regions, so-called
bands. Their spectral emissivities show a complex dependency on the wavelength,
in complete contrast to solid bodies. This means that gases cannot be idealised
as grey radiators without a loss of accuracy.

In the following we will deal with the absorption of radiation by gases and
then look at the definitions of the absorptivities and emissivities of radiating gas
spaces. These quantities are dependent on the size and shape of the gas space;
their calculation entails complicated integrations. This is avoided by introducing
the mean beam length of the gas space, the determination of which will also be
explained here. This allows radiative exchange between isothermal gas volumes
and their boundary walls to be calculated. Finally we will give some hints how
radiative exchange in complicated cases, for example in combustion chambers and
furnaces, can be determined.

5.6.1 Absorption coefficient and optical thickness

If radiation passes through an optically turbid gas or mixture of gases its energy
is reduced due to absorption and scattering by the gas molecules. We will now
assume that the radiation is only absorbed but not scattered. This applies to
the infrared wavelengths because Rayleigh scattering by the molecules only takes
place at very small wavelengths and is practically meaningless for λ > 1µm, cf.
5.4.2.2. In the gas mixture being considered, only one component may absorb
radiant energy, for example CO2 in the non-absorbing components N2 and O2.

Fig. 5.69: Reduction in the spectral intensity Lλ with
increasing beam length s as a result of absorption by
a gas

Absorption causes a reduction in the spectral intensity Lλ with increasing
beam length s of the gas, Fig. 5.69. This fall in the spectral intensity as radiation
passes through the distance ds is described by

− dLλ

Lλ

= kG(λ, T, p, pG) ds , (5.175)

through which the spectral absorption coefficient kG of the absorbing gas is defined.
It is dependent on the wavelength λ and the state of the gas, namely on its
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temperature T , the pressure p and the partial pressure pG, which is a measure of
the concentration of the absorbing gas in the mixture. In order to simplify the
expression, we generally do without writing the dependency in an explicit way.
We simply write kG instead of kG(λ, T, p, pG).

In a non-homogeneous gas mixture the properties vary along the path followed
by the radiation. The absorption coefficient therefore has an indirect dependence
on s. Integration of (5.175) between s = 0 and s yields

ln
Lλ(s)

Lλ(s = 0)
= −

s∫
0

kG ds

or

Lλ(s) = Lλ(s = 0) exp(−
s∫
0
kG ds) . (5.176)

The integral

κG :=

s∫
0

kG(λ, T, p, pG) ds (5.177)

is known as the optical thickness of the gas layer with the (geometric) thickness
given by s. In contrast to s, κG is a dimensionless quantity; it is a measure of the
strength of the absorption of a gas layer of certain thickness s. A gas with κG → 0
is called optically thin. With κG = 7, Lλ(s) falls to less than 1 per thousend of
the initial value Lλ(s = 0); the gas almost completely absorbs the penetrating
radiation.

A homogeneous gas mixture has constant intensive properties T , p and pG over
its entire volume. Its spectral absorption coefficient kG is, therefore, independent
of s. So, from (5.177), the optical thickness is found to be

κG = kG(λ, T, p, pG) s = kGs , (5.178)

and the decrease in the spectral intensity as

Lλ(s) = Lλ(s = 0) exp (−kGs) . (5.179)

This equation corresponds to the law from P. Bouguer (1729), according to
which the spectral intensity falls exponentially along the path radiation is passing
through.

As the absorption of radiation takes place on the individual molecules of the gas, the as-
sumption is suggested, that the spectral absorption coefficient κG is proportional to the molar
concentration cG = NG/V of the absorbing molecules or to the partial pressure pG = RmTcG.
The optical thickness of a homogeneous gas is then given by

κG = kGs = k∗

G(λ, T, p)(pGs) , (5.180)

that is a proportionality to the product (pGs). This is known as the law from A. Beer (1854).
It applies to some gases, e.g. CO2, very well, but from other gases, in particular H2O, it is not
satisfied.
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The spectral absorption coefficient kG is also decisive for the radiation energy emitted by
a volume element of the gas. d2Φλ,V indicates the radiation flow emitted by a volume element
dV of a homogeneous gas in the wavelength interval dλ into all directions. It holds for this that

d2Φλ,V = 4π kGLλs(λ, T ) dV dλ = 4kGMλs(λ, T ) dV dλ . (5.181)

The spectral intensity Lλs and the hemispherical spectral emissive power Mλs of a black body
are given here by (5.50). A derivation of (5.181) can be found in R. Siegel and J.R. Howell
[5.37], p. 531.

5.6.2 Absorptivity and emissivity

The enclosure schematically illustrated in Fig. 5.70 contains a homogeneous gas
mixture with an absorbent component. The element dA on the surface of the gas
volume, shown in Fig. 5.70, will be used for the definition and calculation of its
directional spectral absorptivity a′

λ,G. The radiation emitted from dA, with the
spectral intensity Lλ, is weakened by absorption. Depending on the direction, the
path through the gas is of different lengths, which according to (5.179) leads to
varying reductions in Lλ.

Fig. 5.70: For the calculation of the
spectral absorptivity in a gas space

The spectral absorptivity a′
λ,G belonging to a certain direction is the ratio of

the energy absorbed in the distance s, to the energy emitted:

a′
λ,G :=

Lλ(s = 0) − Lλ(s)

Lλ(s = 0)
= 1 − Lλ(s)

Lλ(s = 0)
= 1 − τ ′

λ,G . (5.182)

The ratio Lλ(s)/Lλ(s = 0) is the directional spectral transmissivity τ ′
λ,G. For a

homogeneous gas or gas mixture, we obtain from (5.179)

a′
λ,G(λ, s, T, p, pG) = a′

λ,G(kGs) = 1 − exp (−kGs) . (5.183)

The directional spectral absorptivity is a property (variable of state) of the ab-
sorbing gas. Its direction dependence manifests itself in the dependence on the
beam length s, through which the radiation passes in the gas.

According to Kirchhoff’s law, cf. section 5.3.2.1., the directional spectral emis-
sivity ε′λ,G of a gas is equal to its directional spectral absorptivity:

ε′λ,G (λ, T, p, pG, s) = ε′λ,G (kGs) = a′
λ,G (kGs) = 1 − exp (−kGs) . (5.184)
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Fig. 5.71: Directional spectral emissivity ε′λ,CO2
of carbon dioxide at T = 294 K and p = 10.13

bar for a beam length s = 0.38 m according to D.K. Edwards [5.65]

ε′λ,G is a property of the gas that additionally depends on the (direction dependent)
beam length s. As an example, Fig. 5.71 shows the directional emissivity of CO2

at T = 294 K and p = 10.13 bar. The emission bands are clearly recognisable.
With ε′λ,G, the radiation flow d3Φλ,G received by an element dA on the surface

of the gas volume, in the wavelength interval dλ, from the solid angle element
dω highlighted in Fig. 5.72, can be calculated. According to (5.4), the defining
equation for the spectral intensity, it holds for this that

d3Φλ,G = ε′λ,G (kGs) Lλs(λ, T ) dλ dω cos β dA , (5.185)

where Lλs is the spectral intensity of a black body.
In order to determine the radiation flow d2Φλ,G that strikes dA from the entire

gas space, d3Φλ,G has to be integrated over all the solid angles coming from dA
with their associated beam lengths s, that is over the whole gas space:

d2Φλ,G =
∫
��

ε′λ,G(kGs) cos β dω Lλs(λ, T ) dλ dA . (5.186)

Analogous to the hemispherical spectral emissivity of a solid, cf. Table 5.4, through

εV
λ,G(kGL0) :=

1

π

∫
��

ε′λ,G(kGs) cos β dω (5.187)

the spectral emissivity of the gas volume for the radiation on an element dA of
its surface is defined. It depends on the shape of the gas space, the position of

Fig. 5.72: Gas space with surface element dA
and associated solid angle element dω
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Fig. 5.73: Radiation of a gas hemisphere with the radius R
on a surface element dA at the centre of the sphere

the surface element dA and on the optical thickness κG = kGL0. Here L0 is
a characteristic length for the gas space. The spectral irradiance of the surface
element as a result of the gas radiation, with Mλs = πLλs, is

Eλ,G =
d2Φλ,G

dA dλ
= εV

λ,G(kGL0)Mλs(λ, T ) . (5.188)

Integration of Eλ,G over all wavelengths, taking kG = kG(λ, T, p, pG) into ac-
count, yields the (total) irradiance of dA:

EG =
dΦG

dA
= εV

G(T, p, pG, L0)Ms(T ) = εV
G(T, p, pG, L0) σT 4 . (5.189)

In which

εV
G(T, p, pG, L0) :=

1

Ms(T )

∞∫
0

εV
λ,G(kGL0)Mλs(λ, T ) dλ (5.190)

is the total emissivity of the gas volume for its radiation on an element dA of its
surface. εV

G also depends on the form of the gas space, which is expressed in the
formula by the dependence on the characteristic length L0.

As the emissivity of the gas radiation depends on the shape of the gas space,
it is not purely a material property like the emissivity of solid surfaces. The
dependence on the shape of the gas space is especially easy to consider for radiation
from a hemisphere of gas on the surface element at the centre of the sphere, see
Fig. 5.73. The directional spectral emissivity ε′λ,G is independent of direction here,
because the beam length s is equal to the radius R for all directions. It follows
from (5.187) that simply εV

λ,G = ε′λ,G(kGR). In this case εV
λ,G is termed the spectral

emissivity ελ,G of the gas, for which, according to (5.184)

ελ,G(kGR) = 1 − exp (−kGR) (5.191)

holds, treating ελ,G as a gas property, even though ελ,G is the spectral emissivity
of a gas hemisphere that radiates on the surface element at its centre.

The total emissivity of the radiating hemisphere is yielded from (5.190), with
εV

λ,G = ελ,G(kGR) from (5.191), as

εG(T, p, pG, R) =
1

σT 4

∞∫
0

[1 − exp (−kGR)]Mλs(λ, T ) dλ . (5.192)

This emissivity is also viewed as a material property. The next section contains
graphs from which εG for CO2 and H2O can be taken. The validity of Beer’s law
means that εG depends on the product pGR, such that εG = εG(T, p, pGR) holds.
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As we will show in section 5.6.4, the complicated determination of the emis-
sivities εV

λ,G and εV
G of any shape of gas space can be traced back to the “standard

case” of the gas hemisphere we have just dealt with. A mean beam length sm is
determined for the gas space under consideration from the following condition:
a gas hemisphere with the radius R = sm should give rise to the same spectral
irradiance on a surface element at its centre as that for the radiation from any
shaped gas volume on a certain element of its surface. As follows from (5.188)
and (5.191)

εV
λ,G(kGL0) = ελ,G(kGsm) = 1 − exp (−kGsm) (5.193)

can then be set, and from (5.189) and (5.192) it follows that

εV
G(T, p, pG, L0) = εG(T, p, pG, sm) . (5.194)

This avoids the integration required in (5.187) and (5.190) over all solid angles
and wavelengths respectively. The graphs from the next section can be used to
determine εG, thereby making it easy to find the irradiance EG from (5.189) and
(5.194), once the mean beam length sm has been calculated for the problem.

5.6.3 Results for the emissivity

H.C. Hottel and R.B. Egbert [5.57], [5.58] have critically compared the results
available for CO2 and H2O from radiation measurements, and offered best values
of the total emissivity in graphs, in which εCO2

and εH2O are plotted against the
gas temperature T with the product (pCO2

sm) or (pH2Osm) as curve parameters.
These diagrams have formed the basis of the calculations for gas radiation from
CO2 and H2O for the last 50 years. Uncertainties of at least 5 % have to be
reckoned with in their application. Information concerning correction factors,
based on more recent data can be found in [5.37], p. 636. The emissivities εCO2

and εH2O
are valid for the calculation of the radiation of a gas hemisphere of radius

R = sm on a surface element in the centre of the sphere, cf. Fig. 5.73. How these
results can be transferred to other shapes of gas space by using the mean beam
length, sm, is explained in the next section.

The hemispherical total emissivity εCO2
(T, pCO2

sm) of CO2 at p = 100 kPa is
illustrated in Fig. 5.74. εCO2

increases slightly with rising pressure. D. Vortmeyer
[5.59] presents a particularly complex pressure correction factor, which can be
neglected for pressures below around 200 kPa.

As H2O does not follow Beer’s law, εH2O
has to be determined from

εH2O

(
T, p, pH2O

, sm

)
= CH2O

(
p + pH2O

, pH2Osm

)
ε∗H2O

(
T, pH2O

sm

)
(5.195)

with the help of a second graph. Fig. 5.75 shows the emissivity ε∗H2O for p =
100 kPa, extrapolated to pH2O

→ 0. The partial pressure correction CH2O is taken
from Fig. 5.76. For pressures p greater than 100 kPa, ε∗H2O should be multiplied
by the pressure correction, an equation for this is given in [5.59].
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Fig. 5.74: Hemispherical total emissivity εCO2
of carbon dioxide at p = 1bar as a function of

temperature T with the product of the partial pressure pCO2
and the mean beam length sm as

a parameter. 1 bar = 100kPa = 0.1MPa

If, as in combustion gases, CO2 and H2O appear at the same time, then the emissivity of
this sort of mixture is slightly less than the sum εCO2

+εH2O, calculated at the respective partial
pressures. This can be traced back to the fact that some of the absorption and emission bands
of CO2 and H2O overlap. H.C. Hottel and R.B. Egbert [5.58] determined the correction factor
∆ε that has to be introduced into

εG = εCO2
+ εH2O − ∆ε (5.196)

and plotted it in graphs. These can also be found in [5.59].
Equations for the dependency of the emissivities εCO2

and εH2O on T , p and (pGsm) are
required for model design and process simulations. Various authors have developed these equa-
tions, cf. [5.60] to [5.63] as well as [5.37], p. 639–641. Although they contain numerous terms,
they can only reproduce nearly accurate results for limited ranges of the variables, and this is
why they cannot be recommended without limitations.
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Fig. 5.75: Total emissivity ε∗H2O
for water vapour at p = 1bar, extrapolated to pH2O → 0, as

a function of temperature T , with the product of the partial pressure pH2O and the mean beam
length sm as parameter. 1 bar = 100kPa = 0.1MPa

Fig. 5.76: Partial pressure
correction factor CH2O for wa-
ter vapour for use in (5.195)

The emissivities of other gases, namely SO2, NH3 and CH4, are presented graphically in
[5.59]. Similar diagrams for CO, HCl and NO2 can be found in [5.48].
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5.6.4 Emissivities and mean beam lengths of gas spaces

The emission of gas radiation depends on the size and shape of the gas space; it
is described quantitatively by the irradiance, which the gas radiation generates at
the surface of the gas space. The decisive equations (5.188) and (5.189) include
the spectral emissivity εV

λ,G and the emissivity integrated over all wavelengths εV
G,

which, according to (5.193) and (5.194), can be replaced by the emissivity of a
gas hemisphere with a radius the same as the mean beam length sm of any shaped
gas space.

In order to explain the determination of the mean beam length, we first have
to look at the calculation of the spectral emissivity εV

λ,G of a gas volume. We will
then show how sm is determined and put together in Table 5.11 values of sm that
have been calculated for different geometries. In addition a simple approximation
formula will be derived with which sm can be determined for gas spaces that are
not covered in this collection.

The spectral emissivity εV
λ,G from (5.187) covers the radiation coming from the entire gas

space, which is incident on a surface element dA = dA2 in Fig. 5.77. The solid angle element
dω1 which appears in

εV
λ,G =

1

π

∫
��

ε′λ,G(kGs) cos β2 dω1 , (5.197)

and to which the beam length s belongs, is bounded by the surface element dA1, such that

dω1 = cos β1 dA1/s
2

holds. With that we obtain the following from (5.197)

εV
λ,G =

1

π

∫
A1

ε′λ,G (kGs) cos β1 cos β2
dA1

s2
. (5.198)

The integration over all solid angles is replaced by the integration over all the surface elements
dA1 visible from dA2. In general, in (5.198) the integration is carried out over the entire surface
area A1 of the gas space. We will show how the integration is carried out for the example of a
gas sphere of diameter D = 2R, that radiates on an element dA2 of its surface.

According to Fig. 5.78, β1 = β2 = β has to be put into (5.198). We choose an annular
surface element

dA1 = 2πs sin β
sdβ

cosβ
= 2πs2 sin β

cos β
dβ .

Fig. 5.77: Gas space with surface element dA2, which
receives radiation from the solid angle element dω1 which
is bounded by the surface element dA1
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Fig. 5.78: Gas sphere of radius R = D/2 and
the surface elements dA1 and dA2

According to Fig. 5.78, we have cos β = s/2R = s/D, from which sin β dβ = −ds/D follows.
With that dA1 = −2πsds. With ε′λ,G(kGs) from (5.184), we obtain out of (5.198)

εV
λ,G =

2

D2

D∫
0

[1 − exp (−kGs)] sds .

Carrying out the integration gives

εV
λ,G (kGD) = 1 − 2

(kGD)
2 [1 − (1 + kGD) exp (−kGD)] . (5.199)

The spectral emissivity of the gas sphere depends on its optical thickness κG = kGD. The
characteristic length L0 of the gas space introduced in (5.187), is, as could be expected, the
diameter D of the sphere.

The symmetry of the sphere means that εV
λ,G is independent of the position of the irradiated

surface element dA2. The spectral irradiance Eλ,G from (5.188) is constant over the entire
surface of the sphere. So, with εV

λ,G(kGD) the mean irradiance Eλ,G of an arbitrary sized piece

A2 of the sphere surface can be calculated. In general, the mean spectral irradiance Eλ,G of a
finitely large surface is obtained by integration of Eλ,G over all surface elements dA2 that make
up A2. A corresponding emissivity εV

λ,G is yielded from the additional integration of (5.198)
over all surface elements dA2 followed by division by A2.

The mean beam length sm of a gas space of any shape that radiates on an element dA = dA2

of its surface, is defined by the fact that the spectral irradiance Eλ,G of dA2 has exactly the
same magnitude as the spectral irradiance of a surface element in the centre of a gas hemisphere
of radius R = sm. According to section 5.6.2, the spectral irradiance of this surface element is

Eλ,G = ελ,G(kGsm)Mλs(λ, T ) = [1 − exp (−kGsm)]Mλs(λ, T ) . (5.200)

By setting this expression equal to Eλ,G from (5.188), the relationship (5.193) from section 5.6.2
is obtained, from which

sm(kGL0)

L0
= − 1

kGL0
ln
[
1 − εV

λ,G (kGL0)
]

. (5.201)

follows. According to this, the mean beam length of a particular gas space is not constant, but
depends on its optical thickness kGL0. For a gas sphere sm/D = f(kGD) can be calculated
exactly from (5.199).

The dependence of the mean beam length sm on the optical thickness of the gas space makes
the use of this quantity more difficult. Therefore, a constant mean beam length is used. It is
determined in such a way that (5.193) is satisfied in the best approximation for all technically
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important optical thicknesses. For constant mean beam length sm, the integration carried out
in (5.190) over all wavelengths can be replaced by the integration from (5.192) with R = sm, so
that (5.192) is approximately satisfied and the irradiance EG from (5.190) with εG, instead of
εV
G, can be calculated.

In the determination of a constant mean beam length sm we first will consider the limiting
case of an optically thin gas with κG = kGL0 → 0. The spectral radiation flow emitted from a
volume element of the gas in all directions is, according to (5.181),

d2Φλ,V = 4kGMλs(λ, T ) dV dλ .

It is not weakened as it passes through the optically thin gas. Therefore, the radiation flow
emitted from the entire gas volume is

dΦλ = 4kGV Mλs(λ, T ) dλ .

This generates, over the entire surface A of the gas volume, the mean spectral irradiance

Eλ,G =
1

A

dΦλ

dλ
= 4kG

V

A
Mλs(λ, T ) .

An optically thin gas hemisphere of radius R = sm causes, according to (5.200), the spectral
irradiance

lim
kGsm→0

Eλ (kGsm) = lim
kGsm→0

[1 − exp (1 − kGsm)]Mλs(λ, T ) = (kGsm + · · ·)Mλs(λ, T )

on the surface element in the centre of the sphere. Setting this irradiance equal to Eλ,G delivers
the simple result

s∗m = 4V/A , kGL0 → 0 , (5.202)

where s∗m indicates the limit of sm for an optically thin gas.

Values of s∗m can be found easily for different gas spaces. For example a sphere has

s∗m = 4
πD3/6

πD2
=

2

3
D

and for the gas layer between infinitely large, flat plates with separation d we get

s∗m = 4
d

2
= 2d .

In the case of finite optical thickness s∗m is corrected by a constant factor C, so that

sm = C s∗m = C 4V/A (5.203)

holds. The correction factor C is determined in such a way that the spectral emissivity
ελ,G(kGsm) of the gas sphere agrees with εV

λ,G(kGL0) within a few percent for a wide range
of optical thicknesses, and equation (5.193) is satisfied in the average. This is shown by Fig.
5.79 for the example of a gas sphere of diameter D. The ratio εV

λ,G(kGD)/ελ,G(kGCs∗m) is plot-
ted versus the optical thickness kGD. For C = 1 only negative deviations from the ideal value
occur. Correction factors C < 1 lead to smaller deviations and an optimal fit is obtained with
C = 0.96, that is for sm = 0.64D in place of s∗m = (2/3)D.

As can be seen from Fig. 5.79, the choice of the correction factor C is arbitrary within
certain limits. It also depends on the range of optical thickness in which a particularly good
agreement between εV

λ,G(kGL0) and ελ,G(kGsm) is to be reached. This is why the values of sm

for some cases in the literature may differ slightly from one another.
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Fig. 5.79: Ratio of the spectral emissivity εV
λ,G(kGD) from (5.199) for a gas sphere with diam-

eter D to the spectral emissivity ελ,G(kGCs∗m) from (5.200), with s∗m = (2/3)D as a function of
the optical thickness kGD

εV
λ,G has been calculated exactly for a series of gas spaces and the associated

mean beam lengths sm have also been determined. These values of sm are put
together in Table 5.11. This shows that the correction factors C, in (5.203), only a
little deviate from 0.9. It can therefore be said that for those gas space geometries
not included in Table 5.11

sm ≈ 0.9 s∗m = 3.6 V/A . (5.204)

With this mean beam length, the mean irradiance EG of the total surface A of
the radiating gas space of volume V is found to be

EG = εG(T, p, pG, sm)σT 4 . (5.205)

The emissivities εG for CO2 and H2O can be taken from Fig. 5.74 to 5.76 in section
5.6.3.

Example 5.14: A hemisphere of radius R = 0.50m contains CO2 at p = 1bar and
T = 1200K. Determine the mean irradiance ECO2

of its surface and compare this value
with the irradiance ECO2

of a surface element at the centre of the sphere.
We obtain ECO2

from (5.205), whereby εCO2
is taken from Fig. 5.74. As no value is given

for sm for a hemisphere in Table 5.11, sm is calculated approximately from (5.204). With
V = (2π/3)R3 and A = 2πR2 + πR2 = 3πR2, this gives s∗m = (8/9)R and sm = 0.80R =
0.40m. With that we have pCO2

sm = psm = 0.40bar·m. εCO2
= 0.16 is read off Fig. 5.74.

This yields, according to (5.205), the approximate value

ECO2
= 0.16 · 5.67 · 10−8 W

m2K4
12004K4 = 18.8

kW

m2
.

For the radiation of the gas hemisphere on a surface element at its centre, we have exactly
sm = R = 0.50m. Then from Fig. 5.74, the somewhat larger emissivity εCO2

= 0.18 and
the correspondingly larger irradiance ECO2

= 21.2kW/m
2

are obtained. This result with
ECO2

> ECO2
is expected because the irradiance is not constant over the surface of the

hemisphere.
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Table 5.11: Mean beam lengths s∗m for vanishingly small optical thicknesses and sm for finite
optical thickness. Further information in [5.37], [5.48] and [5.59]

Gas space
Characteristic

length L0

s∗m
L0

sm

L0

sm

s∗m

Sphere Diameter 2/3 0.64 0.96

Infinitely long cylinder Diameter 1 0.94 0.94

Cylinder, Length L = D, Diameter
Radiation on the whole
surface 2/3 0.60 0.90
Radiation on the centre
of the base 0.764 0.71 0.93

Cylinder, Length L = D/2 Diameter
Radiation on the whole
surface 1/2 0.45 0.90
Radiation on the body 0.525 0.46 0.88
Radiation on an end 0.475 0.43 0.91

Cylinder, Length L = 2D Diameter
Radiation on the whole
surface 4/5 0.73 0.91
Radiation on the body 0.817 0.76 0.93
Radiation on both ends 0.730 0.60 0.82

Cylinder, Length L → ∞ Diameter
Radiation on the base 0.814 0.65 0.80

Cube Side length 2/3 0.60 0.90

Cuboid, Side lengths 1:1:4 shortest side
Radiation on the total area 0.89 0.81 0.91
Radiation on 1×4 area 0.90 0.82 0.91
Radiation on 1×1 area 0.86 0.71 0.83

Flat layer between two infini- Distance 2 1.76 0.88
tely extended parallel walls

5.6.5 Radiative exchange in a gas filled enclosure

The radiative exchange in a gas filled enclosure is more difficult to calculate than
the exchange dealt with in 5.5.3, without an absorbing and therefore self radiating
gas. In the following we will consider two simple cases, in which an isothermal gas
is involved in radiative interchange with its boundary walls that are likewise at a
uniform temperature. At the end of this section we will point to more complex
methods with which more difficult radiative exchange problems may be solved.

5.6.5.1 Black, isothermal boundary walls

An isothermal gas at temperature TG is enclosed by isothermal walls at a tem-
perature TW < TG. As a simplification the walls will be idealised as black bodies;
reflection does not need to be considered. A heat flow Q̇GW from the gas to the
colder walls is transferred by radiative exchange. If the gas is to maintain its
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temperature TG, then this energy has to be supplied to the gas in another way,
for example from a combustion process taking place in the gas space.

The radiation flow emitted by the gas generates a mean irradiance

EG = εG(TG, p, pG, sm)σT 4
G

at the walls, cf. (5.205). The black walls with an area AW absorb the radiation
flow AWEG completely. The radiation flow emitted by them

AWMs(TW) = AWσT 4
W

is partially absorbed as it travels through the gas. The portion that is not absorbed
strikes the walls once again and is absorbed there. As the walls have the same
temperature TW overall this part of the radiation flow does not contribute to the
heat flow Q̇GW. This gives

Q̇GW = AW [EG(TG) − aGMs(TW)] = AWσ
(
εGT 4

G − aGT 4
W

)
. (5.206)

Here, aG is the absorptivity of the gas for the radiation emitted by a black body
at temperature TW. As the gas is not a grey radiator, aG is not the same as εG,
except for the limiting case where TW = TG. H.C. Hottel and R.B. Egbert [5.58],
see also [5.48], determined aG for CO2 and H2O from absorption measurements,
and related them to the emissivity from 5.6.3, as shown in the following equations:

aCO2
=

(
TG

TW

)0.65

εCO2

(
TW, pCO2

TW

TG

sm

)
, (5.207)

aH2O =

(
TG

TW

)0.45

ε∗H2O

(
TW, pH2O

TW

TG

sm

)
·CH2O

(
pH2O

+ p

2
, pH2O

TW

TG

sm

)
. (5.208)

The emissivities are taken from Fig. 5.74 to 5.76, for a wall temperature TW and
the product (pGsm) reduced by a factor of (TW/TG). For pressures p above 1bar,
the pressure corrections mentioned in section 5.6.3 have to be brought into play
at εCO2

and ε∗H2O
.

5.6.5.2 Grey isothermal boundary walls

If the gas filled enclosure is surrounded by grey walls with emissivity εW =
εW(TW), then the energy reflected by the walls also has to be considered. Rough,
oxidised and dirty walls have emissivities that are only slightly smaller than one.
In this case, which often applies in furnaces, the reflected radiation proportion
is of little importance. The heat flow Q̇GW transferred from the gas to the walls
is smaller, by a factor that lies between εW and 1, than the heat flow calculated
according to (5.206) for black walls. At sufficiently large values of εW, around
εW > 0.8, the approximation recommended by H.C. Hottel and A.F. Sarofim
[5.48] of

Q̇GW =
εW + 1

2
AWσ

(
εGT 4

G − aGT 4
W

)
(5.209)
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is accurate enough.
In the consideration of the radiation reflected by the walls, the exchange of

radiation can be calculated just like in section 5.5.3. According to (5.143), the
heat released by the walls to the outside

Q̇GW = AW (EW − HW) (5.210)

is equal to the net flow of radiation. Here this is the difference between the mean
irradiance EW and the mean radiosity HW of the area AW. The irradiance EW

is made up of the fraction generated by the gas radiation, EG = εGσT 4
G, and the

fraction emitted by the walls that is not absorbed by the gas, (1 − aG)HW:

EW = εGσT 4
G + (1 − aG)HW . (5.211)

The radiosity HW includes, according to (5.142), the emissive power MW =
εWσT 4

W of the wall area and the reflected fraction of the irradiance EW:

HW = εWσT 4
W + (1 − εW)EW . (5.212)

Solving the two equations, (5.211) and (5.212), for EW and HW, and by putting
the result into (5.210), gives

Q̇GW =
εWAWσ

1 − (1 − aG) (1 − εW)

(
εGT 4

G − aGT 4
W

)
. (5.213)

This equation is also not exact, because of the restrictive assumptions that were made. Only
symmetrically formed gas spaces (spheres, very long cylinders) have approximately constant
values of EW and HW on their entire boundary walls, which is one of the presumptions made
here. The radiation not absorbed by the gas, given by the term (1−aG)HW in (5.211), does not
take into account in HW that the radiation passing through the gas consists of radiation made
up of fractions with different spectral distributions: This includes the grey radiation emitted by
the walls and the radiation reflected by the walls after one, two or even multiple passes through
the absorbing gas. The application of a uniform absorptivity aG is therefore incorrect. As long
as the reflected fractions are small (large εW), the use of the absorptivity calculated according to
(5.207) and (5.208) is a good enough approximation. It is certainly better than the assumption
of a grey gas, where aG = εG would be valid.

A more exact calculation of the radiative exchange, in which the absorption of the reflected
radiation in the gas space has been extensively modelled, has been presented by K. Elgeti [5.64].
Another method for the consideration of the spectral absorption bands can be found in [5.37],
section 17-7.

Example 5.15: A cylindrical combustion chamber with diameter D = 0.40m and length
L = 0.95m contains a combustion gas at temperature TG = 2000K and pressure p =
1.1bar. The partial pressures of CO2 and H2O are pCO2

= 0.10bar and pH2O = 0.20bar
respectively. The walls of the chamber are at TW = 900K and their emissivity is εW = 0.75.
Determine the heat flow transferred from the gas to the chamber casing.
The relationships derived in this section for the radiative exchange only allow the calcu-
lation of the mean heat flux of the entire surface of the gas space. It follows from (5.213)
as

q̇GW =
Q̇GW

AW
=

εWσ

1 − (1 − aG)(1 − εW)

(
εGT 4

G − aGT 4
G

)
. (5.214)
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This provides us with an approximate value for the heat flow transferred from the gas to
the chamber casing

Q̇GW = q̇GWAM = πDL q̇GW . (5.215)

The mean beam length has to be determined for the calculation of εG and aG. Its limit
for an optically thin gas is

s∗m = 4
V

AW
=

D

1 + D/2L
= 0.330m .

According to Table 5.11, the ratio C = sm/s∗m for a cylinder with L/D = 2 has a value of
0.91. This value applies with good accuracy for a combustion chamber with L/D = 2.375.
We therefore have sm = 0.91 · 0.330m = 0.30m.
For pCO2

sm = 0.030bar m, we read off from Fig. 5.74, an emissivity εCO2
= 0.0362. Then

from Figs. 5.75 and 5.76, we obtain for pH2Osm = 0.060bar m,

εH2O = ε∗H2OCH2O = 0.0360 · 1.20 = 0.0432 .

As the gas pressure p = 1.1 bar is only slightly greater than 1 bar, a pressure correction
of εCO2

and εH2O is not necessary. In order to obtain εG from (5.196), the correction ∆ε
is required. This is found, using the graph reproduced in [5.59], to be ∆ε = 0.0025, which
gives εG = 0.0769.
The determination of the absorptivity aG requires the emissivity at the reduced partial
pressures, i.e. at

pCO2

TW

TG
sm = 0.0135barm and pH2O

TW

TG
sm = 0.027barm .

For T = TW = 900K, Fig. 5.74 gives εCO2
= 0.060, which, with (5.207) gives aCO2

= 0.101.
For H2O, we find ε∗H2O

= 0.226 and CH2O = 1.20, so aH2O = 0.388 is yielded from (5.208).
With ∆ε = 0.003 from [5.59] we get

aG = aCO2
+ aH2O − ∆ε = 0.486 .

The gas mixture absorbs the radiation coming from the walls far more strongly than it
emits itself radiation in comparison to “black” gas radiation.
The mean heat flux transferred by radiation to the walls of the combustion chamber is
found, with the values of εG and aG, from (5.214), to be

q̇GW =
0.75 · 5.67 · 10−8W/(m2K4)

1 − (1 − 0.486)(1 − 0.75)

[
0.0769 (2000K)4 − 0.468 (900K)4

]
= 45.1

kW

m2
.

The heat flow we want to determine follows from (5.215) as

Q̇GM = π(0.40m)(0.95m)45.1(kW/m2 ) = 53.8 kW .

According to (1.64) in section 1.1.6, the heat flux q̇GW, corresponds to a heat transfer
coefficient of radiation of

αrad =
q̇GW

TG − TW
= 41.0

W

m2K
.

It lies in the same order of magnitude as the heat transfer coefficient expected here for
convection. The gas radiation may not be neglected in heat transfer calculations for com-
bustion chambers and furnaces.
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5.6.5.3 Calculation of the radiative exchange in complicated cases

If the gas filled enclosure is surrounded by non-isothermal walls, then these should
be split into several isothermal areas, the so-called zones. The radiative exchange
between several zones can then be calculated as in section 5.5.3. However, the
absorption of the radiation as it passes through the gas must also be taken into
account along with the radiation exchange between the gas and the zones. This
calculation requires the view factors introduced in section 5.5.1, as well as the
transmissivities of the gas volumes participating in radiative interchange between
the zones. As in section 5.5.3.1, a system of equations is obtained, from which the
radiosities of the zones, their temperatures and the heat flows supplied from or
released to the outside can be calculated. R. Siegel and J.R. Howell [5.37], Chap.
13, show how this equation system should be set up and how the transmissivities of
the gas volumes which the radiation passes through are calculated. A somewhat
different formulation of the radiative exchange equations can be found in H.C.
Hottel and A.F. Sarofim [5.48].

A further problem in the calculation of radiative exchange is the consideration
of the fact that gases only absorb and emit within certain wavelength intervals
or bands. Here, sometimes the highly simplified assumption will be made that
the gas behaves like a grey radiator. A better model of real radiation behaviour
is band approximation. This is extensively discussed in [5.37], p. 549–567 and
607–609.

In the more realistic calculations of radiative exchange in furnaces and com-
bustion chambers, a non-isothermal gas space has to be considered. H.C. Hottel
and A.F. Sarofim [5.48] developed the so-called zone method for this case, cf.
also [5.37], p. 647–652. Other procedures for the consideration of the temperature
fields in the gas space have been extensively dealt with by R. Siegel and J.R. How-
ell [5.37], Chapter 15. The application of the Monte-Carlo method is suggested
in particular, cf. [5.37] and [5.66], which despite being mathematically complex,
produces results without making highly simplified assumptions.

In technical furnaces the radiation from soot, coal and ash particles has to
be considered as well as the gas radiation. Then the scattering of radiation by
the suspended particles becomes important, alongside absorption and emission.
P. Biermann and D. Vortmeyer [5.67], as well as H.-G. Brummel and E. Kakaras
[5.68] have developed models for this. A summary can be found in [5.69] and in
[5.37], p. 652–673. The calculations of heat transport in furnaces has been dealt
with by W. Richter and K. Görner [5.70] as well as H.C. Hottel and A.F. Sarofim
[5.48].
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5.7 Exercises

5.1: Radiation with the vacuum wavelength λ = 3.0µm goes through glass (refractive
index n = 1.52). What are the propagation velocity c and the wavelength λM in the glass?
Calculate the energy of a photon in a vacuum and in glass.

5.2: A Lambert radiator emits radiation at a certain temperature only in the wavelength
interval (λ1, λ2), where its spectral intensity

Lλ(λ) = Lλ(λm) − a (λ − λm)2

with Lλ(λm) = 72W/(m2µmsr), a = 50W/(m2µm2 sr) and λm = 3.5µm, has positive
values. For λ ≤ λ1 and λ ≥ λ2 we have Lλ = 0. Find λ1 and λ2. Calculate the intensity L
and the emissive power M . What fraction of the emissive power falls into the solid angle
bounded by (π/3) ≤ β ≤ (π/2) and 0 ≤ ϕ ≤ (π/4)?

5.3: What proportion ∆M of the emissive power M of a Lambert radiator falls in the
portion of the hemisphere for which the polar angle is β ≤ 30◦?

5.4: An opaque body, with the hemispherical total reflectivity r = 0.15, reflects diffusely.
Determine the intensity Lref of the reflected radiation and the absorbed radiative power
per area for an irradiance E = 800W/m2 .

5.5: An enclosure is kept at a constant temperature. Radiation enters from outside through
a small, circular opening of diameter d = 5.60mm; the radiation flow is Φ = 2.35W. What
is the temperature of the enclosure walls?

5.6: A radiator emits its maximum hemispherical spectral emissive power at λmax =
2.07µm. Estimate its temperature T and its emissive power M (T ), under the assumption
that it radiates like a black body.

5.7: What temperature does a black body need to be at, so that a third of its emissive
power lies in the visible light region (0.38µm ≤ λ ≤ 0.78µm)?

5.8: A diffuse radiating oven wall has a temperature T = 500K and a spectral emissivity
approximated by the following function:

ελ =

⎧⎨⎩
0.12 , 0 < λ ≤ 1.6µm ,
0.48 , 1.6µm < λ ≤ 8µm ,
0.86 , λ > 8µm .

The oven wall is exposed to radiation from glowing coal; the spectral irradiance Eλ can
be assumed to be proportional to the hemispherical spectral emissive power Mλs(TK) of a
black body at TK = 2000K.

a) Calculate the total emissivity ε of the oven wall.

b) Calculate the total absorptivity a of the oven wall for the radiation emitted by the coal.
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5.9: A very long cylinder is struck by radiation that comes from a single direction, per-
pendicular to its axis (parallel directed radiation). The surface of the cylinder behaves
like a grey radiator with the directional total emissivity ε′(β) = 0.85 cos β. Calculate the
reflected fraction of the incident radiative power.

5.10: A plate which allows radiation to pass through with a hemispherical total absorp-
tivity a = 0.36, is irradiated equally from both sides, whilst air with ϑL = 30 ◦C flows
over both surfaces. They assume a temperature ϑW = 75 ◦C at steady-state. The heat
transfer coefficient between the plate and the air is α = 35W/m2K. Using a radiation
detector it is ascertained that the plate releases a heat flux q̇Str = 4800W/m2 from both
sides. Calculate the irradiance E and the hemispherical total emissivity ε of the plate.

5.11: A smooth, polished platinum surface emits radiation with an emissive power of
M = 1.64kW/m2 . Using the simplified electromagnetic theory determine its temperature
T , the hemispherical total emissivity ε and the total emissivity ε′n in the direction of the
surface normal. The specific electrical resistance of platinum may be calculated according
to

re = (0.384 6 (T/K) − 6.94) 10−7 Ωcm .

5.12: A long channel has a hemispherical cross section (circle diameter d = 0.40 m).
Determine the view factors F11, F12, F21 and F22, where index 1 indicates the flat surface
and index 2 the curved surface.

5.13: A sphere 1 lies on an infinitely large plane 2. How large is the view factor F12?

5.14: An enclosure is formed from three flat surfaces of finite width and infinite length.
The three widths are b1 = 1.0m, b2 = 2.5m and b3 = 1.8m. Calculate the nine view
factors Fij (i, j = 1, 2, 3).

5.15: A very long, cylindrical heating element of diameter d = 25mm is h = 50mm away
from a reflective (adiabatic) wall, Fig. 5.80.

Fig. 5.80: Cylindrical heating element
above a reflective wall

The heating element has a temperature T = 700K, the surroundings are at TS = 300K.
The heating element, wall and surroundings are all assumed to be black bodies. Only
the heat transfer by radiation is to be considered. Determine the temperature of the wall
surface as a function of the coordinate x and calculate T (x) for x = 0, x = h, x = 2h,
x = 10h and x → ∞. Note: The view factor between a surface strip dA1 of infinitesimal
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width and any length (perpendicular to the drawing plane in Fig. 5.81) and a ruled or
cylindrical surface 2 is given by

F12 =
1

2
(sin β2 − sin β1) .

Here, the ruled surface 2 is produced by parallel straight lines of infinite length, perpen-
dicular to the drawing plane in Fig. 5.81. The derivation of this equation is available in
[5.37], p. 197–199.

Fig. 5.81: Surface strip dA1 of infinitesimal
width and a ruled surface 2 generated by paral-
lel, infinitely long straight lines perpendicular
to the drawing plane

5.16: A long, cylindrical nickel rod (d1 = 10mm) is heated electrically and releases a heat
flow per length L of Q̇1/L = 210W/m. The emissivity of nickel can be calculated from

ε(T ) = 0.050 + 0.000 10 (T/K) .

The rod is surrounded by a concentrically arranged hollow cylinder, d2 = 25mm, ε2 = 0.88.
The hollow cylinder is cooled from outside to a temperature of T2 = 290K. What surface
temperature does the nickel rod reach, if heat is only transferred by radiation?

5.17: A living room has a rectangular floor (width 3.5m, depth 4.8m) and a height of
2.8m. Underfloor heating keeps the base area 1 at a constant temperature ϑ1 = 29 ◦C.
One of the narrow side walls (3.5m by 2.8m) is the external wall and has been built into
a window, the temperature of which is ϑ2 = 17 ◦C. The ceiling and the other walls can be
considered as (adiabatic) reradiating walls. All surfaces are grey Lambert radiators with
ε = 0.92. Determine the heat flow transferred by radiation from the floor to the external
wall.

5.18: In order to reduce the radiative exchange between two large, parallel plates, a thin,
flat radiation protection shield is introduced between the plates. However, the emissivities
of the two surfaces of the shield are different; one surface has emissivity εS < 0.4, the other
an emissivity of 2.5 εS.

a) The protection shield is to be orientated so that the heat flow transferred is as small
as possible. Should the side with the emissivity εS be directed to the plate at the
temperature T1 > T2, or is the opposite arrangement better?

b) Which of the two orientations leads to the higher temperature TS of the protection
shield?
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5.19: Two very thin, radiation protection shields, A and B, are positioned parallel to and
between two very large, parallel plates at temperatures T1 = 750K and T2 = 290K. All
surfaces are grey radiators with the same emissivity ε = 0.82.

a) Calculate the temperatures TA and TB of the protection shields.

b) Calculate the heat flux q̇ transferred by radiation between the two plates.

c) The two protection shields are removed, plate 1 is heated with the heat flux q̇ from
b), and plate 2 is kept at the temperature T2 = 290K. What is the temperature T1 of
plate 1?

5.20: The walls of older houses were often constructed as two shells, see Fig. 5.82. A
column of air exists between two brick walls (λ = 0.95W/K m, ε = 0.88) of thicknesses
δ1 = 0.24m and δ2 = 0.115m. This column is δ = 0.060m wide. The heat transfer
coefficients have the values αi = 7.5W/m2K and αa = 18.0W/m2K. The temperatures are
ϑi = 22.0 ◦C and ϑa = −5.0 ◦C. The thermal conductivity of air is λair = 0.024 5W/K m.

Fig. 5.82: Double shell brick walls
with air gap of width δ

a) An effective thermal conductivity λeff of the air gap that also takes into account the
effect of radiation is introduced. The free convection in the air gap can be neglected.
Calculate λeff and the heat flux q̇ transferred by the wall.

b) The air gap is filled with insulating foam (λis = 0.040W/K m). How does this change
q̇?

5.21: CO2 at p = 1bar flows through a long, cooled pipe with internal diameter d = 0.10m.
Its velocity is w = 20m/s, and its mean temperature is ϑG = 1000 ◦C. The pipe wall
temperature is ϑW = 500 ◦C, the emissivity of the pipe wall is εW = 0.86. In order to
determine the contribution of the gas radiation to heat transfer, calculate the heat transfer
coefficients α for convection and αrad for radiation. — Property data for CO2 at 1000 ◦C:
λ = 0.0855W/K m, ν = 117 · 10−6 m2/s, Pr = 0.736.
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A.1 Introduction to tensor notation

In the derivation of balance equations the tensor notation is used because it allows
the equations to be written in a clearer and simpler fashion. We have restricted
ourselves in this to cartesian coordinates. In the following, the essential features
of cartesian tensor notation are only illustrated to an extent required for the
derivation of the balance equations; extensive publications are available for further
reading. We will start with an example. The velocity w of a point of mass is known
as a vector which can be set in a cartesian coordinate system using its components
wx, wy, wz:

w(wx, wy, wz) .

If the unit vector in a cartesian coordinate system is indicated by ex, ey, ez, it
holds that

w = wx ex + wy ey + wz ez .

In tensor notation, the indices x, y, z are replaced by the indices 1, 2, 3 and we
write instead

w = w1 e1 + w2 e2 + w3 e3 =
3∑

i=1

wi ei .

The velocity vector w is characterised completely by its components wi, i =
1, 2, 3. In tensor notation, the velocity vector is indicated by the abbreviation wi

with i = 1, 2, 3. Correspondingly, the position vector x(x, y, z) is determined by
its components x1 = x, x2 = y, x3 = z, and in tensor notation by the abbreviated
xi with i = 1, 2, 3. According to this, a vector is indicated by a single index.

It is possible to differentiate between tensors of different levels. Zero level
tensors are scalars. They do not change by transferring to another coordinate
system. Examples of scalars are temperature ϑ, pressure p and density �. No
index is necessary for their characterisation.

First level tensors are vectors. As explained above, they are indicated by
one index. Second level tensors are characterised by two indices. The stress
tensor is such a quantity. It has nine components τ11, τ12, τ13, τ21 . . . τ33. The
abbreviation normally written is τji, where j and i each assume the values 1, 2, 3.
In calculations with tensors, the following rule is used. If an index only appears
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once in a term of an equation it is called a free index. It can be replaced by
any other index. All terms in an equation must agree in their free indices. The
relationship

ai = c · bi , (A.1)

whereby c is a constant (scalar), means that the vectors ai and bi only differ in
their amount, they have the same direction. So

a1 = c b1 ; a2 = c b2 ; a3 = c b3 .

The internal product (scalar product) of two vectors

a · b = a1 b1 + a2 b2 + a3 b3

looks like the following for the index notation

a · b =
3∑

i=1

ai bi .

As internal products appear frequently the following “summation convention” was
settled: if an index appears twice in a term, then it should be summed over this
index. This index is called a bound index. It can not be replaced by any other
index. The summation symbol is left out. With that we have

ai bi = a1 b1 + a2 b2 + a3 b3 . (A.2)

Differentiation leads to a tensor that is one order higher. So the gradient of a
scalar p

gradp = ∇ p = e1

∂p

∂x1

+ e2

∂p

∂x2

+ e3

∂p

∂x3

(A.3)

is a vector with the three components ∂p/∂xi, i = 1, 2, 3, which is abbreviated
to just ∂p/∂xi in tensor notation. If we differentiate a vector wj, each of the
three components w1, w2, w3 can be differentiated with respect to each position
coordinate x1, x2, x3. This gives a second level tensor

∂wj

∂xi

(i = 1, 2, 3 ; j = 1, 2, 3) , (A.4)

that consists of 9 components. On the other hand, the divergence of a vector is a
scalar,

divw = ∇ · w =
∂wi

∂xi

=
∂w1

∂x1

+
∂w2

∂x2

+
∂w3

∂x3

. (A.5)

The formulation of a divergence produces a tensor one order lower than the original
tensor. A sensible ‘operator’ is the Kronecker delta δij, defined by

δij = 1 for i = j , δij = 0 for i �= j . (A.6)
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δij is also called the unit tensor. It further holds that

δij bj = bi , (A.7)

which can be confirmed by writing the whole equation out, because it is

δij bj = δi1 b1 + δi2 b2 + δi3 b3

that is, for i = 1 : δ1j bj = δ11 b1 = b1, for i = 2 : δ2j bj = δ22 b2 = b2 and for
i = 3 : δ3j bj = δ33 b3 = b3, and with that δij bj = bi.

A.2 Relationship between mean and thermody-

namic pressure

By definition, the mean pressure p̄ = −1/3 δji τkk only includes normal stresses. In
order to create a link between mean and thermodynamic pressure we will consider
a cubic fluid element at a temperature T and of specific volume v, Fig. A1. We
will now assume that the cube is at rest at time t = 0, so that the thermodynamic
pressure p prevails inside the element. Now let us assume the mean pressure p̄ is
being exerted on the element from outside. When p̄ > p the cube is compressed,
should p̄ < p then it expands. So, work −p̄ dV is carried out by the external
pressure p̄. This is equal to the work done during the volume change in the
gas −p dV and the dissipated work. It therefore holds that dW = −p̄ dV =
−p dV + dWdiss with the the dissipated work as

dWdiss = −(p̄ − p) dV .

This is always positive according to the second law, because for p̄ > p we have
dV < 0 and for p̄ < p, dV > 0. On the other hand, the increase in the volume dV
is yielded from the transport theory (3.18) with Z = V and z = Z/M = V/M =
1/� to be

dV

dt
=

∫
V (t)

∂wi

∂xi

dV .

The dissipated work can also be written as

dWdiss = −(p̄ − p)

⎛⎜⎝ ∫
V (t)

∂wi

∂xi

dV

⎞⎟⎠ dt .

It is clearly reasonable that the speed dV /dt of the volume change or ∂wi/∂xi is
a monotonically decaying function of p̄−p, Fig. A2, as the larger the overpressure
p̄ − p, the faster the volume of the cube reduces. It is therefore suggested, that
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Fig. A.1: Interrelation between mean and thermo-
dynamic pressure

Fig. A.2: Expansion as a function
of the over pressure

where the speed of the volume change is not that fast, the curve in Fig. A2 may
be replaced by a straight line:

p̄ − p = −ζ
∂wi

∂xi

.

The factor defined by this, ζ > 0, is the volume viscosity (SI units kg/sm).
It has to be determined either experimentally or using methods of statistical
thermodynamics, which is only possible for substances with simple molecules. It
can be seen that the mean and thermodynamic pressures only strictly agree when
ζ = 0 or the fluid is incompressible, ∂wi/∂xi = 0.

A.3 Navier-Stokes equations for an incompress-

ible fluid of constant viscosity in cartesian

coordinates

The mass force is the acceleration due to gravity kj = gj.

x1 = x-direction:

�

(
∂w1

∂t
+ w1

∂w1

∂x1

+ w2

∂w1

∂x2

+ w3

∂w1

∂x3

)
=

� g1 −
∂p

∂x1

+ η

(
∂2w1

∂x1
2

+
∂2w1

∂x2
2

+
∂2w1

∂x3
2

)
.

(A.8)
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x2 = y-direction:

�

(
∂w2

∂t
+ w1

∂w2

∂x1

+ w2

∂w2

∂x2

+ w3

∂w2

∂x3

)
=

� g2 −
∂p

∂x2

+ η

(
∂2w2

∂x1
2

+
∂2w2

∂x2
2

+
∂2w3

∂x3
2

)
.

(A.9)

x3 = z-direction:

�

(
∂w3

∂t
+ w1

∂w3

∂x1

+ w2

∂w3

∂x2

+ w3

∂w3

∂x3

)
=

� g3 −
∂p

∂x3

+ η

(
∂2w3

∂x1
2

+
∂2w3

∂x2
2

+
∂2w3

∂x3
2

)
.

(A.10)

A.4 Navier-Stokes equations for an incompress-

ible fluid of constant viscosity in cylindrical

coordinates

The mass force is the acceleration due to gravity kj = gj.

r-direction:

�

(
∂wr

∂t
+ wr

∂wr

∂r
+

wθ

r

∂wr

∂θ
− w2

θ

r
+ wz

∂wr

∂z

)
=

� gr −
∂p

∂r
+ η

[
∂

∂r

(1

r

∂

∂r
(r wr)

)
+

1

r2

∂2wr

∂θ2
− 2

r2

∂wθ

∂θ
+

∂2wr

∂z2

]
.

(A.11)

θ-direction:

�

(
∂wθ

∂t
+ wr

∂wθ

∂r
+

wθ

r

∂wθ

∂θ
+

wr wθ

r
+ wz

∂wθ

∂z

)
=

� gθ −
1

r

∂p

∂θ
+ η

[
∂

∂r

(1

r

∂

∂r
(r wθ)

)
+

1

r2

∂2wθ

∂θ2
+

2

r2

∂wr

∂θ
+

∂2wθ

∂z2

]
.

(A.12)

z-direction:

�

(
∂wz

∂t
+ wr

∂wz

∂r
+

wθ

r

∂wz

∂θ
+ wz

∂wz

∂z

)
=

� gz −
∂p

∂z
+ η

[
1

r

∂

∂r

(
r

∂wz

∂r

)
+

1

r2

∂2wz

∂θ2
+

∂2wz

∂z2

]
.

(A.13)
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A.5 Entropy balance for mixtures

The Gibbs’ fundamental equation for mixtures,

du = T ds − p dv +
∑
K

µK

M̃K

dξK

or

�
du

dt
= � T

ds

dt
− � p

dv

dt
+ �

∑
K

µK

M̃K

dξK

dt
, (A.14)

taking into account
dv

dt
= − 1

�2

d�

dt
=

1

�

∂wi

∂xi

and (3.25)

�
dξK

dt
= −∂j∗K,i

∂xi

+ Γ̇K (A.15)

can be rearranged into

�
du

dt
= � T

ds

dt
− p

∂wi

∂xi

−∑
K

µK

M̃K

∂j∗K,i

∂xi

+
∑
K

µK

M̃K

Γ̇K .

Due to µK/M̃K = hK − T sK this delivers

�
du

dt
= � T

ds

dt
− p

∂wi

∂xi

−∑
K

hK

∂j∗K,i

∂xi

+ T
∑
K

sK

∂j∗K,i

∂xi

+
∑
K

µK

M̃K

Γ̇K .

Putting this into the energy equation (3.81), taking into account the following,
yields

q̇′ = q̇i +
∑
K

hK j∗K,i

−∂q̇i

∂xi

+ Φ +
∑
K

j∗K,i kK,i = � T
ds

dt
+
∑
K

j∗K,i

∂hK

∂xi

+ T
∑
K

sK

∂j∗K,i

∂xi

+
∑
K

µK

M̃K

Γ̇K .

(A.16)
We write the following for

T
∑
K

sK

∂j∗K,i

∂xi

= T
∑
K

∂(j∗K,i sK)

∂xi

− T
∑
K

j∗K,i

∂sK

∂xi

and combine to give∑
K

j∗K,i

(
∂hK

∂xi

− T
∂sK

∂xi

)
=
∑
K

j∗K,i

(
∂µK

∂xi

)
T

1

M̃K

.

Then (A.16) becomes

−∂q̇i

∂xi

+ Φ +
∑
K

j∗K,i kK,i = � T
ds

dt
+ T

∑
K

∂(j∗K,i sK)

∂xi

+
∑

K j∗K,i

(
∂µK

∂xi

)
T

1

M̃K

+
∑
K

µK

M̃K

Γ̇K .
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And so

�
ds

dt
= −∂(q̇i/T )

∂xi

−∑
K

∂(j∗K,i sK)

∂xi

− q̇i

T 2

∂T

∂xi

+
1

T

∑
K

j∗K,i

[
kK,i −

1

M̃K

(
∂µK

∂xi

)
T

]
+

Φ

T
+

1

T

∑
K

µK

M̃K

Γ̇K .

A comparison with

�
ds

dt
= − ∂

∂xi

(JS,i − � wi s) + σ̇ (A.17)

yields the entropy flow JS,i (SI units W/m2K)

JS,i =
q̇i

T
+
∑
K

j∗K,i sK + � wi s (A.18)

and the entropy generation σ̇ (SI units W/m3K)

σ̇ = − q̇i

T 2

∂T

∂xi

+
1

T

∑
K

j∗K,i

[
kK,i −

1

M̃K

(
∂µK

∂xi

)
T

]
+

Φ

T
+

1

T

∑
K

µK

M̃K

Γ̇K . (A.19)

The entropy flow is based on a heat or material flow, the entropy generation on
a heat flow in a temperature field, diffusion by mass forces and differences in the
chemical potential, mechanical dissipation and chemical reactions.

A.6 Relationship between partial and

specific enthalpy

When the following summation is written out with the abbreviation δ = ∂/∂xi it
looks like

N∑
K=1

j∗K,i

∂hK

∂xi

= j∗1,i δh1 + j∗2,i δh2 + . . . j∗N,i δhN .

Now
N∑

K=1
j∗K,i = 0, also j∗N,i = −j∗1,i − j∗2,i − . . . − j∗N−1,i. The sum can also be

written as

j∗1,i δ(h1 − hN) + j∗2,i δ(h2 − hN) + . . . j∗N−1,i δ(hN−1 − hN) .

In the thermodynamics of mixtures [3.1], page 114, it can be shown, that for
specific partial quantities of state the following relationship is valid

hA − hN =

(
∂h

∂ξA

)
T,p,K �=A

, A = 1, 2, . . . N − 1 .
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It holds therefore that

N∑
K=1

j∗K,i

∂hK

∂xi

=
N−1∑
K=1

j∗K,i δ

(
∂h

∂ξK

)
T,p,A �=K

=
N−1∑
K=1

j∗K,i

∂

∂xi

(
∂h

∂ξK

)
T,p,A �=K

.

On the other hand, the enthalpy of a mixture is given by

h = h(T, p, ξ1, ξ2, . . . ξN−1)

and therefore (
∂h

∂ξN

)
T,p,ξK

= 0 .

So the sum can also run from K = 1 to K = N , instead of from K = 1 to
K = N − 1, as the last term with K = N is zero.

A.7 Calculation of the constants an of a Graetz-

Nusselt problem (3.246)

Multiplication of (3.247) with ψm(r+) (1 − r+2) r+ and integration between the
limits r+ = 0 and r+ = 1 yields

1∫
0

ψm (1 − r+2) r+ dr+ =
∞∑

n=0

an

1∫
0

ψm ψn (1 − r+2) r+ dr+ .

All the integrals on the right hand side disappear when m �= n, yielding (3.248).
In order to show that this applies, we write (3.245) for the eigenvalues βm and βn:

d

dr+
(r+ ψ′

m) = −β2
m (1 − r+2) r+ ψm

d

dr+
(r+ ψ′

n) = −β2
n (1 − r+2) r+ ψn .

Multiplication of the first equation with ψn and of the second with ψm gives

ψn

d

dr+
(r+ ψ′

m) = −β2
m (1 − r+2) r+ ψm ψn

ψm

d

dr+
(r+ ψ′

n) = −β2
n (1 − r+2) r+ ψn ψm ,

which can also be written as

d

dr+
(r+ ψn ψ′

m) − r+ ψ′
n ψ′

m = −β2
m (1 − r+2) r+ ψm ψn

d

dr+
(r+ ψ′

n ψm) − r+ ψ′
n ψ′

m = −β2
n (1 − r+2) r+ ψn ψm .



Appendix A: Supplements 625

Subtraction of both equations and integration between the limits r+ = 0 and
r+ = 1 yields

r+(ψn ψ′
m − ψ′

n ψm)
∣∣∣1
0

= (β2
n − β2

m)

1∫
0

ψm ψn(1 − r+2) r+ dr+ .

The left hand side disappears because of ψm(r+ = 1) = ψn(r+ = 1) = 0 and
ψ′

m(r+ = 0) = ψ′
n(r+ = 0) = 0. This means that the integral on the right hand

side must also vanish when n �= m.
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Table B 1: Properties of air at pressure p = 1 bar

ϑ � cp β λ ν a Pr
◦C kg/m3 kJ/kg K 10−3/K 10−3W/K m 10−7m2/s 10−7m2/s —

−200 5.106 1.186 17.24 6.886 9.786 11.37 0.8606
−180 3.851 1.071 11.83 8.775 17.20 21.27 0.8086
−160 3.126 1.036 9.293 10.64 25.58 32.86 0.7784
−140 2.639 1.010 7.726 12.47 35.22 46.77 0.7530
−120 2.287 1.014 6.657 14.26 46.14 61.50 0.7502

−100 2.019 1.011 5.852 16.02 58.29 78.51 0.7423
−80 1.807 1.009 5.227 17.74 71.59 97.30 0.7357
−60 1.636 1.007 4.725 19.41 85.98 117.8 0.7301
−40 1.495 1.007 4.313 21.04 101.4 139.7 0.7258
−20 1.377 1.007 3.968 22.63 117.8 163.3 0.7215

0 1.275 1.006 3.674 24.18 135.2 188.3 0.7179
20 1.188 1.007 3.421 25.69 153.5 214.7 0.7148
40 1.112 1.007 3.200 27.16 172.6 242.4 0.7122
80 0.9859 1.010 2.836 30.01 213.5 301.4 0.7083

100 0.9329 1.012 2.683 31.39 235.1 332.6 0.7070

120 0.8854 1.014 2.546 32.75 257.5 364.8 0.7060
140 0.8425 1.016 2.422 34.08 280.7 398.0 0.7054
160 0.8036 1.019 2.310 35.39 304.6 432.1 0.7050
180 0.7681 1.022 2.208 36.68 329.3 467.1 0.7049
200 0.7356 1.026 2.115 37.95 354.7 503.0 0.7051

300 0.6072 1.046 1.745 44.09 491.8 694.3 0.7083
400 0.5170 1.069 1.486 49.96 645.1 903.8 0.7137
500 0.4502 1.093 1.293 55.64 813.5 1131 0.7194
600 0.3986 1.116 1.145 61.14 996.3 1375 0.7247
700 0.3576 1.137 1.027 66.46 1193 1635 0.7295

800 0.3243 1.155 0.9317 71.54 1402 1910 0.7342
900 0.2967 1.171 0.8523 76.33 1624 2197 0.7395

1000 0.2734 1.185 0.7853 80.77 1859 2492 0.7458
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Table B 2: Properties of water at pressure p = 1 bar

Liquid water

ϑ � cp β λ ν a Pr
◦C kg/m3 kJ/kg K 10−3/K 10−3W/K m 10−6m2/s 10−6m2/s —

0 999.84 4.218 −0.0672 561.0 1.793 0.1330 13.48
5 999.97 4.203 0.0162 570.5 1.519 0.1358 11.19

10 999.70 4.192 0.0879 580.0 1.307 0.1384 9.443
15 999.10 4.185 0.1507 589.3 1.139 0.1409 8.082
20 998.21 4.181 0.2067 598.4 1.004 0.1434 7.001

25 997.05 4.179 0.2572 607.2 0.893 0.1457 6.128
30 995.65 4.177 0.3034 615.5 0.801 0.1480 5.414
35 994.03 4.177 0.3459 623.3 0.724 0.1501 4.823
40 992.22 4.177 0.3855 630.6 0.658 0.1521 4.328
45 990.21 4.178 0.4226 637.3 0.602 0.1540 3.909

50 988.04 4.180 0.4578 643.6 0.554 0.1558 3.553
55 985.69 4.182 0.4912 649.2 0.512 0.1575 3.248
60 983.20 4.184 0.5232 654.4 0.475 0.1591 2.983
65 980.55 4.187 0.5541 659.0 0.442 0.1605 2.754
70 977.77 4.190 0.5840 663.1 0.413 0.1619 2.553

75 974.84 4.193 0.6130 666.8 0.388 0.1631 2.376
80 971.79 4.197 0.6414 670.0 0.365 0.1643 2.221
85 968.61 4.201 0.6693 672.8 0.344 0.1653 2.082
90 965.31 4.206 0.6967 675.2 0.326 0.1663 1.959
95 961.89 4.211 0.7238 677.3 0.309 0.1672 1.849

99.63a 958.61 4.216 0.7487 678.9 0.295 0.1680 1.757

a Saturated state

Water vapour

ϑ � cp β λ ν a Pr
◦C kg/m3 kJ/kg K 10−3/K 10−3W/K m 10−6m2/s 10−6m2/s —

100 0.5896 2.042 2.881 25.08 20.81 20.83 0.9990
150 0.5164 1.980 2.452 28.85 27.46 28.22 0.9733
200 0.4604 1.975 2.160 33.28 35.14 36.60 0.9600
250 0.4156 1.990 1.938 38.17 43.83 46.15 0.9497
300 0.3790 2.013 1.761 43.42 53.54 56.92 0.9406

350 0.3483 2.040 1.616 48.96 64.22 68.90 0.9321
400 0.3223 2.070 1.493 54.76 75.86 82.07 0.9243
450 0.2999 2.102 1.388 60.77 88.42 96.40 0.9172
500 0.2805 2.135 1.297 66.97 101.9 111.9 0.9107
600 0.2483 2.203 1.147 79.89 131.4 146.1 0.8993

700 0.2227 2.273 1.029 93.37 164.1 184.2 0.8899
800 0.2019 2.343 0.9327 107.3 199.9 226.8 0.8816
900 0.1847 2.412 0.8530 121.7 238.6 273.0 0.8739

1000 0.1702 2.478 0.7859 163.3 280.0 323.2 0.8665
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Table B 3: Properties of water in the saturated state from the triple point to the critical point

ϑ p �′ �′′ c′p c′′p β′ β′′ ∆hv
◦C bar kg/m3 kJ/kg K 10−3/K kJ/kg

0.01 0.006117 999.78 0.004855 4.229 1.868 −0.08044 3.672 2500.5
10 0.012281 999.69 0,009404 4.188 1.882 0.08720 3.548 2476.9
20 0.023388 998.19 0.01731 4.183 1.882 0.2089 3.435 2453.3
30 0.042455 995.61 0.03040 4.183 1.892 0.3050 3.332 2429.7
40 0.073814 992.17 0.05121 4.182 1.904 0.3859 3.240 2405.9

50 0.12344 987.99 0.08308 4.182 1.919 0.4572 3.156 2381.9
60 0.19932 983.16 0.13030 4.183 1.937 0.5222 3.083 2357.6
70 0.31176 977.75 0.19823 4.187 1.958 0.5827 3.018 2333.1
80 0.47373 971.79 0.29336 4.194 1.983 0.6403 2.964 2308.1
90 0.70117 965.33 0.42343 4.204 2.011 0.6958 2.919 2282.7

100 1.0132 958.39 0.59750 4.217 2.044 0.7501 2.884 2256.7
110 1.4324 951,00 0.82601 4.232 2.082 0.8038 2.860 2229.9
120 1.9848 943.16 1.1208 4.249 2.126 0.8576 2.846 2202.4
130 2.7002 934.88 1.4954 4.267 2.176 0.9123 2.844 2174.0
140 3.6119 926.18 1.9647 4.288 2.233 0.9683 2.855 2144.6

150 4.7572 917.06 2.5454 4.312 2.299 1.026 2.878 2114.1
160 6.1766 907.50 3.2564 4.339 2.374 1.087 2.916 2082.3
170 7.9147 897.51 4.1181 4.369 2.460 1.152 2.969 2049.2
180 10.019 887.06 5.1539 4.403 2.558 1.221 3.039 2014.5
190 12.542 876.15 6.3896 4.443 2.670 1.296 3.128 1978.2

200 15.536 864.74 7.8542 4.489 2.797 1.377 3.238 1940.1
250 39.736 799.07 19.956 4.857 3.772 1.955 4.245 1715.4
300 85.838 712.41 46.154 5.746 5.981 3.273 7.010 1404.7
350 165.21 574.69 113.48 10.13 16.11 10.37 22.12 893.03

373.976 220.55 322,00 322,00 ∞ ∞ ∞ ∞ 0
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Table B 3: (Continued)

ϑ λ′ λ′′ ν′ ν′′ a′ a′′ Pr′ Pr′′ σ
◦C 10−3W/K m 10−6 m2/s 10−6 m2/s — 10−3N/m

0.01 561.0 17.07 1.792 1898.0 0.1327 1883.0 13.51 1,008 75.65
10 580.0 17.62 1.307 1006.0 0.1385 999.8 9.434 1,006 74.22
20 598.4 18.23 1,004 562.0 0.1433 559.6 7,005 1,004 72.74
30 615.4 18.89 0.8012 329.3 0.1478 328.3 5.422 1,003 71.20
40 630.5 19.60 0.6584 201.3 0.1519 200.9 4.333 1,002 69.60

50 643.5 20.36 0.5537 127.8 0.1558 127.7 3.555 1,001 67.95
60 654.3 21.18 0.4746 83.91 0.1591 83.92 2.983 1,000 66.24
70 663.1 22.07 0.4132 56.80 0.1620 56.85 2.551 0.9992 64.49
80 670.0 23.01 0.3648 39.51 0.1644 39.56 2.219 0.9989 62.68
90 675.3 24.02 0.3258 28.17 0.1664 28.20 1.958 0.9989 60.82

100 679.1 25.09 0.2941 20.53 0.1680 20.55 1.750 0.9994 58.92
110 681.7 26.24 0.2680 15.27 0.1694 15.26 1.582 1,001 56.97
120 683.2 27.46 0.2462 11.56 0.1705 11.53 1.444 1,003 54.97
130 683.7 28.76 0.2278 8.894 0.1714 8.840 1.329 1,006 52.94
140 683.3 30.14 0.2123 6.946 0.1720 6.869 1.234 1.011 50.86

150 682.1 31.59 0.1991 5.496 0.1725 5.399 1.154 1.018 48.75
160 680.0 33.12 0.1877 4.402 0.1727 4.285 1.087 1.027 46.60
170 677.1 34.74 0.1779 3.565 0.1727 3.430 1.030 1.039 44.41
180 673.4 36.44 0.1693 2.915 0.1724 2.764 0.9822 1.055 42.20
190 668.8 38.23 0.1619 2.405 0.1718 2.241 0.9423 1.073 39.95

200 663.4 40.10 0.1554 2,001 0.1709 0.825 0.9093 1.096 37.68
250 621.4 51.23 0.1329 0.8766 0.1601 0.6804 0.8299 1.288 26.05
300 547.7 69.49 0.1207 0.4257 0.1338 0.2517 0.9018 1.691 14.37
350 447.6 134.6 0.1146 0.2098 0.07692 0.07365 1.490 2.849 3.675

373.976 141.9 141.9 0.1341 0.1341 0 0 ∞ ∞ 0
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Table B 4: Properties of ammonia at pressure p = 1 bar

ϑ � cp β λ ν a Pr
◦C kg/m3 kJ/kg K 10−3/K 10−3W/K m 10−7m2/s 10−7m2/s —

−50 702.1 4.434 1.685 — — — —
−40 690.1 4.441 1.763 601.9 4.093 1.964 2.084

−30 0.8645 2.309 4.638 17.84 93.35 89.37 1.045
−20 0.8266 2.242 4.342 18.94 101.9 102.2 0.9973
−10 0.7925 2.202 4.100 20.06 110.8 115.0 0.9637

0 0.7615 2.178 3.896 21.22 120.1 127.9 0.9390
10 0.7330 2.165 3.719 22.39 129.8 141.1 0.9203
20 0.7068 2.160 3.563 23.59 139.9 154.4 0.9060
30 0.6826 2.161 3.423 24.80 150.4 168.1 0.8947
40 0.6600 2.166 3.297 26.04 161.3 182.1 0.8858

50 0.6390 2.174 3.181 27.29 172.6 196.4 0.8786
60 0.6193 2.185 3.075 28.56 184.2 211.1 0.8729
70 0.6009 2.197 2.977 29.84 196.3 226.0 0.8683
80 0.5835 2.210 2.886 31.13 208.7 241.4 0.8647
90 0.5672 2.225 2.801 32.44 221.5 257.1 0.8618

100 0.5517 2.241 2.721 33.76 234.7 273.1 0.8595
110 0.5371 2.257 2.646 35.09 248.3 289.5 0.8578
120 0.5233 2.274 2.576 36.43 262.2 306.2 0.8565
130 0.5101 2.291 2.509 37.79 276.6 323.3 0.8555
140 0.4976 2.309 2.446 39.15 291.3 340.7 0.8549

150 0.4858 2.328 2.386 40.53 306.3 358.4 0.8546
200 0.4340 2.422 2.127 47.59 387.1 452.6 0.8553
250 0.3923 2.518 1.921 54.93 477.0 556.0 0.8579
300 0.3580 2.612 1.751 62.54 576.0 668.9 0.8611
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Table B 5: Properties of carbon dioxide at pressure p = 1 bar

ϑ � cp β λ ν a Pr
◦C kg/m3 kJ/kg K 10−3/K 10−3W/K m 10−7m2/s 10−7m2/s —

−50 2.403 0.7825 4.682 11.10 46.69 59.05 0.7907
−40 2.296 0.7903 4.453 11.77 51.05 64.85 0.7873
−30 2.198 0.7988 4.248 12.45 55.60 70.92 0.7839
−20 2.109 0.8078 4.063 13.17 60.32 77.28 0.7805
−10 2.027 0.8172 3.896 13.90 65.21 83.94 0.7769

0 1.951 0.8267 3.742 14.66 70.28 90.89 0.7732
10 1.880 0.8363 3.601 15.43 75.51 98.13 0.7695
20 1.815 0.8459 3.471 16.22 80.92 105.7 0.7659
30 1.754 0.8555 3.351 17.03 86.49 113.5 0.7623
40 1.697 0.8650 3.239 17.84 92.22 121.5 0.7589

50 1.644 0.8744 3.134 18.67 98.12 129.8 0.7557
60 1.594 0.8837 3.037 19.50 104.2 138.4 0.7526
70 1.547 0.8929 2.945 20.34 110.4 147.2 0.7498
80 1.503 0.9018 2.859 21.18 116.8 156.3 0.7471
90 1.461 0.9107 2.778 22.03 123.3 165.5 0.7447

100 1.422 0.9193 2.702 22.87 129.9 175.0 0.7425
120 1.349 0.9361 2.561 24.57 143.7 194.6 0.7386
140 1.283 0.9523 2.435 26.27 158.1 215.0 0.7353
160 1.224 0.9678 2.321 27.96 173.0 236.1 0.7327
180 1.169 0.9827 2.217 29.64 188.4 257.9 0.7306

200 1.120 0.9971 2.122 31.31 204.4 280.5 0.7289
300 0.9238 1.061 1.749 39.47 291.8 402.6 0.7248
400 0.7864 1.114 1.488 47.26 390.6 539.4 0.7242
500 0.6846 1.159 1.294 54.70 499.5 689.7 0.7242

600 0.6061 1.196 1.146 61.84 617.7 853.2 0.7239
700 0.5438 1.227 1.028 68.69 744.3 1030 0.7229
800 0.4931 1.253 0.9320 75.30 878.9 1219 0.7212
900 0.4511 1.275 0.8525 81.69 1021 1420 0.7189
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Table B 6: Properties of nitrogen at pressure p = 1 bar

ϑ � cp β λ ν a Pr
◦C kg/m3 kJ/kg K 10−3/K 10−3W/K m 10−7m2/s 10−7m2/s —

−210 867.9 1.951 4.287 176.4 2.497 1.04 2.386
−200 827.4 2.053 5.270 156.9 1.957 0.9238 2.118

−190 4.195 1.102 13.31 8.061 13.04 17.44 0.7477
−180 3.707 1.081 11.53 9.108 16.73 22.74 0.7357
−160 3.019 1.061 9.199 11.13 25.19 34.75 0.7248
−120 2.212 1.048 6.643 14.86 46.06 64.11 0.7184

−100 1.953 1.045 5.847 16.59 58.30 81.27 0.7173
−90 1.845 1.044 5.518 17.43 64.83 90.42 0.7170
−80 1.749 1.044 5.224 18.24 71.63 99.95 0.7167
−70 1.662 1.043 4.961 19.04 78.69 109.8 0.7165
−60 1.583 1.043 4.724 19.83 86.01 120.1 0.7163

−50 1.512 1.042 4.508 20.59 93.58 130.7 0.7162
−40 1.447 1.042 4.312 21.35 101.4 141.6 0.7160
−30 1.387 1.042 4.132 22.09 109.4 152.8 0.7159
−20 1.332 1.042 3.967 22.81 117.7 164.4 0.7159
−10 1.281 1.041 3.814 23.53 126.2 176.3 0.7158

0 1.234 1.041 3.673 24.23 134.9 188.5 0.7158
10 1.190 1.041 3.542 24.92 143.9 201.0 0.7157
20 1.150 1.041 3.420 25.60 153.1 213.8 0.7157
30 1.112 1.041 3.307 26.27 162.4 227.0 0.7157
40 1.076 1.041 3.200 26.93 172.0 240.3 0.7157

50 1.043 1.042 3.101 27.59 181.8 254.0 0.7157
60 1.011 1.042 3.007 28.23 191.8 268.0 0.7158
70 0.9818 1.042 2.918 28.87 202.0 282.2 0.7158
80 0.9539 1.042 2.836 29.50 212.4 296.7 0.7159
90 0.9276 1.043 2.757 30.13 223.0 311.5 0.7159

100 0.9027 1.043 2.683 30.75 233.8 326.5 0.7160
120 0.8568 1.044 2.546 31.97 255.9 357.3 0.7162
140 0.8153 1.046 2.422 33.18 278.8 389.1 0.7165
160 0.7776 1.048 2.310 34.37 302.4 421.9 0.7168
180 0.7433 1.050 2.208 35.55 326.8 455.6 0.7172

200 0.7118 1.053 2.114 36.72 351.8 490.2 0.7177
300 0.5876 1.070 1.745 42.47 487.1 675.8 0.7208
400 0.5003 1.092 1.485 48.12 638.4 880.9 0.7247
500 0.4356 1.116 1.293 53.68 804.8 1104 0.7288
600 0.3857 1.140 1.145 59.13 985.6 1345 0.7327

700 0.3461 1.162 1.027 64.45 1180 1603 0.7363
800 0.3139 1.182 0.9316 69.63 1388 1887 0.7394
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Table B 7: Properties of oxygen at pressure p = 1 bar

ϑ � cp β λ ν a Pr
◦C kg/m3 kJ/kg K 10−3/K W/K m 10−7m2/s 10−7m2/s —

−210 1268 1,676 3.58 0.192 3.34 0.903 3.70
−200 1223 1.678 3.84 0.177 2.57 0.862 2.98
−190 1176 1.685 4.06 0.162 1.90 0.818 2.32

−180 4.254 0.9474 11.7 0.0860 16.0 21.3 0.75
−160 3.458 0.9304 9.24 0.0106 24.4 32.9 0.74
−140 2.921 0.9237 7.77 0.0126 34.3 46.7 0.73
−120 2.930 0.9192 6.67 0.0144 39.3 53.5 0.73

−100 2.233 0.9164 5.86 0.0162 57.9 79.2 0.73
−90 2.110 0.9154 5.53 0.0171 64.5 88.5 0.73
−80 1.999 0.9149 5.23 0.0179 71.5 97.9 0.73
−70 1.900 0.9146 4.97 0.0188 78.8 107 0.73
−60 1.810 0.9143 4.73 0.0196 86.2 118 0.73

−50 1.728 0.9141 4.50 0.0204 94.0 129 0.73
−40 1.653 0.9143 4.31 0.0211 102 140 0.73
−30 1.585 0.9147 4.13 0.0219 110 151 0.73
−20 1.522 0.9152 3.98 0.0227 119 163 0.73
−10 1.464 0.9159 3.82 0.0234 127 175 0.73

0 1.410 0.9167 3.67 0.0242 136 187 0.73
10 1.360 0.9177 3.54 0.0249 146 200 0.73
20 1.314 0.9189 3.43 0.0257 155 213 0.73
25 1.292 0.9195 3.38 0.0260 160 219 0.73
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Table B 8: Properties of helium at pressure p = 1.01325 bar = 1 atm

T � cp β λ ν a Pr
K kg/m3 kJ/kg K 10−3/K 10−3W/K m 10−7m2/s 10−7m2/s —

4.222 16.84 9.144 628.8 9.038 0.7375 0.5869 1.26
5 11.98 6.770 329.2 9.537 1.022 1.179 0.867
6 9.164 6.025 223.2 11.17 1.564 2.023 0.773
8 6.433 5.581 143.9 13.97 2.779 3.891 0.714

10 5.016 5.429 108.5 16.38 4.181 6.015 0.695

20 2.440 5.251 50.65 26.15 13.70 20.41 0.671
40 1.216 5.206 25.00 41.07 43.19 64.88 0.666
60 0.8112 5.198 16.64 53.43 84.22 126.7 0.665
80 0.5952 5.196 12.20 64.45 135.2 203.7 0.665

100 0.4871 5.196 9.986 74.53 195.6 294.5 0.665

120 0.4060 5.194 8.323 84.09 265.0 398.8 0.665
140 0.3481 5.194 7.135 93.47 342.4 517.0 0.665
160 0.3046 5.193 6.244 101.8 428.1 643.6 0.665
180 0.2708 5.193 5.506 110.7 521.0 783.6 0.665
200 0.2437 5.193 4.996 118.2 621.3 934.0 0.665

220 0.2216 5.193 4.543 126.1 728.3 1096 0.665
240 0.2031 5.193 4.164 133.8 842.9 1269 0.665
260 0.1875 5.193 3.844 141.2 964.3 1450 0.665
280 0.1741 5.193 3.569 148.5 1092 1643 0.665
300 0.1625 5.193 3.332 155.7 1226 1845 0.655

350 0.1393 5.193 2.856 173.0 1589 2392 0.655
400 0.1219 5.193 2.499 189.6 1991 2995 0.655
500 0.09753 5.193 1.999 221.3 2904 4365 0.655
600 0.08128 5.193 1.666 251.3 3958 5954 0.655
700 0.06967 5.193 1.428 280.1 5147 7742 0.655

800 0.06096 5.193 1.250 307.9 6467 9726 0.665
900 0.05419 5.193 1.111 334.9 7911 11900 0.665

1000 0.04877 5.193 1.000 361.1 9479 14260 0.665
1100 0.04434 5.193 0.9090 386.7 11170 16790 0.665
1200 0.04065 5.193 0.8333 411.9 12910 19510 0.665

1300 0.03752 5.193 0.7692 436.5 14890 22400 0.665
1400 0.03484 5.193 0.7142 460.8 16940 25470 0.665
1500 0.03252 5.193 0.6666 484.7 19090 28700 0.665
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Table B 9: Diffusion coefficients at pressure p = 1.01325 bar = 1 atm

a) Gases

The pressure and temperature dependency in the ideal gas state can be
estimated from D ∼ T 1.75/p.

Substances N2 – CO2 N2 – CH4 N2 – C2H6 N2 – SF6

ϑ D D D D
◦C 10−4m2/s 10−4m2/s 10−4m2/s 10−4m2/s

0 0.1391 0.1955 0.1302 0.0869
20 0.1583 0.2219 0.1481 0.0987
40 0.1785 0.2495 0.1669 0.1110
60 0.1997 0.2784 0.1865 0.1239
80 0.2217 0.3084 0.2069 0.1373

100 0.2446 0.3396 0.2281 0.1512
200 0.3714 0.5122 0.3455 0.2281
300 0.5175 0.7106 0.4806 0.3166
400 0.6814 0.9331 0.6322 0.4159
500 0.8621 1.1785 0.7993 0.5254

Substance T D

K 10−4m2/s

Air – CO2 276 0.144
317 0.179

Air – C2H5OH 313 0.147
Air – He 276 0.632
Air – H2O 313 0.292

CO2 – H2O 307 0.201
He – H2O 352 1.136
H2 – H2O 307 0.927

CH4 – H2O 352 0.361

b) Diluted aqueous solutions

Substances T D

K 10−9m2/s

CH4 – H2O 275 0.85
333 3.55

CO2 – H2O 298 2,00
CH3OH– H2O 288 1.26

C2H5OH– H2O 288 1.0
O2 – H2O 298 2.4
N2 – H2O 298 2.6
H2 – H2O 298 6.3
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Table B 10: Thermophysical properties of non-metallic solids at 20 ◦C.

Substance � c λ a
103 kg/m3 kJ/kgK W/K m 10−6 m2/s

Acrylic glass (plexiglass) 1.18 1.44 0.184 0.108
Asphalt 2.12 0.92 0.70 0.36
Bakelite 1.27 1.59 0.233 0.115
Concrete 2.1 0.88 1.0 0.54
Ice (0 ◦C) 0.917 2.04 2.25 1.203

Ground, coarse gravel 2.04 1.84 0.52 0.14
Sandy ground, dry 1.65 0.80 0.27 0.20
Sand ground, damp 1.75 1.00 0.58 0.33
Clay soil 1.45 0.88 1.28 1.00

Fat 0.91 1.93 0.16 0.091

Glass, window- 2.48 0.70 0.87 0.50
mirror- 2.70 0.80 0.76 0.35
Quartz- 2.21 0.73 1.40 0.87
Thermometer- 2.58 0.78 0.97 0.48

Plaster 1.00 1.09 0.51 0.47
Granite 2.75 0.89 2.9 1.18
Cork sheets 0.19 1.88 0.041 0.115
Marble 2.6 0.80 2.8 1.35
Mortar 1.9 0.80 0.93 0.61
Paper 0.7 1.20 0.12 0.14
Polyethylene 0.92 2.30 0.35 0.17
Polyamide 1.13 2.30 0.29 0.11

Polytetrafluoroethylene
(Teflon) 2.20 1.04 0.23 0.10

PVC 1.38 0.96 0.15 0.11
Porcelain (95 ◦C) 2.40 1.08 1.03 0.40
Hard coal 1.35 1.26 0.26 0.15
Pine wood (radial) 0.415 2.72 0.14 0.12
Plasterwork 1.69 0.80 0.79 0.58
Celluloid 1.38 1.67 0.23 0.10
Brick 1.6 . . . 1.8 0.84 0.38 . . . 0.52 0.28 . . . 0.34
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Table B 11: Thermophysical properties of metals and alloys at 20 ◦C.

Substance � c λ a

103 kg/m3 kJ/kgK W/Km 10−6 m2/s

Metals

Aluminium 2.70 0.888 237 98.8
Lead 1.34 0.129 35 23.9
Chromium 6.92 0.440 91 29.9
Iron 7.86 0.452 81 22.8
Gold 19.26 0.129 316 127.2
Iridium 22.42 0.130 147 50.4
Copper 8.93 0.382 399 117.0
Magnesium 1.74 1.020 156 87.9
Manganese 7.42 0.473 21 6.0
Molybdenum 10.2 0.251 138 53.9
Sodium 9.71 1.220 133 11.2
Nickel 8.85 0.448 91 23.0
Platinum 21.37 0.133 71 25.0
Rhodium 12.44 0.248 150 48.6
Silver 10.5 0.235 427 173.0
Titanium 4.5 0.522 22 9.4
Uranium 18.7 0.175 28 8.6
Tungsten 19.0 0.134 173 67.9
Zinc 7.10 0.387 121 44.0
Tin, white 7.29 0.225 67 40.8
Zirconium 6.45 0.290 23 12.3

Alloys

Bronze (84 Cu, 9 Zn, 6 Sn, 1 Pb) 8.8 0.377 62 18.7
Duraluminium 2.7 0.912 165 67.0
Cast iron 7.8 0.54 42 . . . 50 10 . . . 12
Carbon steel (< 0.4%C) 7.85 0.465 45 . . . 55 12 . . . 15
Cr-Ni-Steel (X12 CrNi 18,8) 7.8 0.50 15 3.8
Cr-Steel (X8 Cr17) 7.7 0.46 25 7.1
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Table B 12: Emissivities of non-metallic surfaces. εn Total emissivity in the direction of the
surface normal, ε hemispherical total emissivity.

Substance ϑ/ ◦C εn ε

Acrylic glass (plexiglass) 20 . . . 60 0.97
Concrete, rough 0 . . . 93 0.94
Beechwood 70 0.94 0.91
Tar roofing 20 0.91
Oakwood, planed 0 . . . 93 0.90
Ice, smooth, thickness > 4mm −9.6 0.965 0.918
Enamel paint, white 20 0.91
Tiles, light grey 25 0.92
Floor covering (Pegulan) 20 . . . 60 0.94
Rubber 20 0.92
Glazed tiles, white 25 0.93
Coal 150 0.81
Cork 25 0.80
Paint, black, gloss 25 0.88
Marble, polished 0 . . . 93 0.90

Oil paints, 16 different
colours 100 0.92 . . . 0.96

Oil, thick layer 21 0.82
Paper, white, matt 95 0.92 0.89
Plaster 0 . . . 200 0.91
Polytetrafluoroethylene (Teflon) 20 . . . 100 0.97
Pyrex glass −170 . . . 430 0.85
White frost coating, rough 0 0.985
Sand 20 0.76
Fire clay 1000 0.75
Emery (corundum), rough 84 0.855 0.842

Table glass, 6 mm thick −60 . . . 0 0.910
60 0.913

120 0.919

Water, thickness > 0.1mm 10 . . . 50 0.965 0.91
Brick, red 0 . . . 93 0.93
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Table B 13: Emissivities of metal surfaces. εn total emissivity in the direction of the surface
normal, ε hemispherical total emissivity. Where the temperature interval is stated, the emissivity
may be linearly interpolated between the given values.

Substance ϑ/ ◦C εn ε

Aluminium, polished 20 0.045
rough 75 0.055 . . . 0.07
rolled smooth 170 0.039 0.049
commercial foil 100 0.09
oxidised at 600 ◦C 200 . . . 600 0.11 . . . 0.19
strongly oxidised 100 . . . 500 0,32 . . . 0.31

Lead, not oxidised 127 . . . 227 0.06 . . . 0.08
grey oxidised 20 0.28

Chromium, polished 150 0.058
oxidised by red heat 400 . . . 800 0.11 . . . 0.32

Iron, polished −73 . . . 727 0.04 . . . 0.19 0.06 . . . 0.25
oxidised −73 . . . 727 0.32 . . . 0.60
polished with emery 25 0.24
electrolytically polished 150 0.128 0.158
casting skin 100 0.80
rusted 25 0.61
very rusted 20 0.85

Gold, polished 227 . . . 627 0.020 . . . 0.035
oxidised −173 . . . 827 0.013 . . . 0.070

Copper, polished 327 . . . 727 0.012 . . . 0.019
oxidised 130 0.76 0.725
highly oxidised 25 0.78

327 0.83
427 0.89

527 . . . 727 0.91 . . . 0.92
Magnesium, rolled shiny 118 0.048 0.053
Brass, polished 25 0.038 . . . 0.043

matt 50 . . . 350 0.22
oxidised 200 . . . 600 0.60

Nickel, polished 100 0.045 0.053
127 . . . 1127 0.07 . . . 0.19
127 . . . 727 0.09 . . . 0.15

oxidised 227 . . . 627 0.37 . . . 0.47
Platinum, polished 127 . . . 1127 0.05 . . . 0.16

127 . . . 1527 0.07 . . . 0.21
Platinum wire 227 . . . 1377 0.07 . . . 0.18
Mercury, not oxidised 25 . . . 100 0.10 . . . 0.12
Silver, polished 127 . . . 527 0.020 . . . 0.030

127 . . . 927 0.020 . . . 0.047
Steel, material No.

DIN 1.4301=AISI 304
polished 50 . . . 200 0.111 . . . 0.132
sand blasted, Ra = 2.1µm −50 . . . 200 0.446 . . . 0.488

Bismuth, smooth 80 0.340 0.366
Tungsten, aged 1327 . . . 2427 0.20 . . . 0.31
Zinc, polished 227 . . . 327 0.04 . . . 0.05

grey oxidised 25 0.23 . . . 0.25
Tin, shiny 25 0.064
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Chapter 1: Introduction. Technical Applications

1.1: Q̇ = 484 W; for the concrete blocks Q̇ = 270 W

1.3: By differentiation of q̇ = −λ(ϑ) dϑ/dx follows

dλ

dϑ
= −λ

d2ϑ/dx2

( dϑ/dx)2
< 0 .

λ decreases with rising temperature.

1.4: Imax = 28.6 A

1.5: ϑW1 = 38.9 ◦C

1.6: a) ϑmax = ϑ0 along the hypotenuse y = x; ϑmin = ϑ0−ϑ1 at x = l, y = 0. ϑ1 = ϑmax−ϑmin.

b) gradϑ = 2ϑ1
l

(
−x

l
ex + y

l
ey

)
, q̇ = 2λϑ1

l

(
x
l
ex − y

l
ey

)
, |q̇| = 2λϑ1

l

√(
x
l

)2

+
(

y
l

)2

is

largest at x = y = l.

c) y = 0 : Q̇1 = 0; x = l : Q̇2 = −2λhϑ1; y = x : Q̇3 = 2λhϑ1 = −Q̇2.

1.7: α = 6241 W/m2K

1.8: α = 5.0 W/m2K

1.9: αW/αA = 578

1.10: ϑi = 552 ◦C, ϑo = 548 ◦C, αrad = 5.33 W/m2K

1.11: q̇ = 72.7 W/m2, ϑW1 = 12.6 ◦C, ϑW2 = −9.1 ◦C

1.12: q̇ = 15.35 W/m2, ϑW1 = 20.0 ◦C

1.13: Q̇/L = 514 W/m; ϑ3 = 193 ◦C lies below the permitted value of 250 ◦C.

1.14: ϑF = 17.0 ◦C; t∗ = 3.16 h = 3 h 10 min. These values are valid under the assumption
that one of the circular ends is adiabatic.

1.15: ϑ+
1 (z) := [ϑ1(z)− ϑ′

2] / (ϑ′

1 − ϑ′

2); ϑ+
2 (z) := [ϑ2(z) − ϑ′

2] / (ϑ′

1 − ϑ′

2);

C = 1 : ϑ+
1 (z)=1− N

1 + N

z

L
=1 − ε

z

L
; ϑ+

2 (z)=
N

1 + N

(
1 − z

L

)
=ε

(
1 − z

L

)
C �= 1 : ϑ+

1 (z)=1− 1 − C1ε1

1 − C1

{
1 − exp

[
N1 (C1 − 1)

z

L

]}
; ϑ+

2 (z)=C1

[
ϑ+

1 (z) + ε1 − 1
]

ε1 = ε1(N1, C1) is to be calculated according to Table 1.4.

1.16: Countercurrent: kA = 423 W/K; Cross-flow with one tube row: kA = 461 W/K, Cross
countercurrent flow with two tube rows as in Fig. 1.59: kA = 433 W/K.
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1.17: Under the assumptions mentioned ṄA = ujA2πrL = −D∂cA/∂r2πrL = const and with
that

dṄA

dr
= 0 =

∂

∂r

(
Dr

∂cA

∂r

)
.

Integration between the limits cA(r0) = cAW and cA(r0+δ) = cAδ yields the concentration
profile

cA − cAW

cAδ − cAW
=

ln r/r0

ln [(r0 + δ)/r0]
.

From this, by differentiation and introduction into the equation for ṄA the expression
given is found.

1.18: a) ṅA = 3.848 · 10−6 kmol/m2s; ṁA = ṅAM̃A = 1.773 · 10−4 kg/(m2 s).
b) During the time dt an enthalpy amount of ṁAAdt = ṅAM̃AAdt evaporates.
According to the question, the diffusion flow is calculated from that of the steady-state
solution (1.174), in which we now have y1 = y(t). This is then

dt = − �L

M̃A

y2 − y(t)

pD/RmT

1

ln(pB2/pB1)
dy = B [y2 − y(t)] dy .

Integration and putting in the numerical values gives t = 20.57 h.

1.19: Equimolar counterdiffusion prevails in the tubes. It therefore follows from (1.176): ṄA =
−cDA∂x̃A/∂y. As ṄA is constant, a linear concentration drop over the length L of the
tubes develops. It then holds that

ṄA = −cDA
x̃Aa − x̃Ae

L
.

x̃Aa = 1 is the mole fraction of the ammonia in the pipes, x̃Ae = 0 that of the ammonia
in the air. The ammonia loss is found to be ṄA = 3.99 · 10−13 kmol/s, ṀA = M̃AṄA =
6.78 · 10−12 kg/s. The amount of ammonia flowing through the pipes is Ṁ = 1.91 · 10−3

kg/s, which is Ṅ = 1.123 ·10−4 kmol/s. The amount of air which gets into the ammonia is
ṄB = −ṄA = −3.99 · 10−13 kmol/s, ṀB = M̃BṄB = 1.16 · 10−11 kg/s. The mole fraction
of air in the pipes is extremely small, namely x̃B = |ṄB|/Ṅ = 3.55 · 10−9.

1.20: Unidirectional mass transfer prevails. From (1.195), we have

ṁA = M̃AṅA = M̃A
p

RmT
β ln

1 − x̃Aδ

1 − x̃A0
= 3.59 · 10−5 kg

m2s
.

In order to use (1.195a), the moisture content is required

XA = 1.530 · 10−2, ṁA = 3.635 · 10−5 kg/m2s .

1.21: From (1.210) and (1.203), using steam tables, the solution is found by trial and error to
be ϑI = 2.56 ◦C. It is ps(2.56

◦C) = 7.346 mbar.

1.22: We will assume a small blowing rate. The lowest temperature is the wet bulb temperature
ϑI. In (1.211), the factor is

M̃Bcβm

αm
=

M̃AcβmcpA

αm

M̃B

M̃AcpA

= 1.097 · 10−3 molK/J

This allows (1.211) to be written as follows, as XAδ = 0,

(600 − ϑI)
◦C = 1.097 · 10−3 · 2346 · 103 · XAI

◦C .

With (1.203), using a steam table, the wet bulb temperature is found through trial and
error to be ϑI = 65.1 ◦C. This value also satisfies (1.206) very well. The amount of water
fed to the chamber follows from (1.209) as ṁA = 2.27 · 10−2 kg/m2s.
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1.23: The amount of benzene transferred is ∆ṄB = 11.88 kmol/h. The molar ratio of the gas
in cross section e is Ỹe = 2.5 · 10−3. According to (1.224), X̃o = 0.216.

Chapter 2: Heat conduction and mass diffusion

2.2: At x = 0, ϑ(x) has a horizontal tangent. The tangent at x = δ intersects the horizontal
ϑ = ϑF at point R with the abscissa xR = δ +λ/α =

(
1 + Bi−1

)
δ = 1.667 δ. The tangent

to the fluid temperature plot at x = δ intersects the line ϑ = ϑF at xF = δ + λF/α =(
1 + Nu−1

)
δ = 1.100 δ.

2.3: a) The plate heats up, because ∂2ϑ+/∂x+2
> 0.

b) x+
T = 1/2; (∂ϑ/∂t)max = 4.40 K/s.

c) x+
min = 0.3778.

d) B(t) = 0.850 exp
[−0.03454 s−1 (t − t0)

]
. For t → ∞ we have ϑ+ = x+.

2.4: a) q̇(R) = ẆRR/(m + 2); ẆR = Ẇ0 (1 + m/2).

b) Θ(r) = R2ẆR

λ (m + 2)
2

[
1 − (r/R)m+2

]
.

c) Θmax/Θ
0
max = 2/(m + 2).

2.5: a) ϑ0 = 55.39 ◦C, ϑL = 37.39 ◦C.

b) Q̇0 = 3.204 W, Q̇L = 0.0622 W.

c) The results do not differ within the numbers given. The simple calculation with the
replacement bolts of length LC is very exact.

2.6: ηf = 0.603

2.7: a) 87 fins/m. This means the heat flow increases by a factor 6.019. b) 1.40.

2.8: Q̇/L = 149 W/m

2.9: a) Q/A = 1027 kJ/m2. b) ϑ = 50.6 ◦C

2.10: Surface temperature: 73.1 ◦C; at 10 cm depth: 27.2 ◦C.

2.11: Surface temperature: 45.8 ◦C; at 10 cm depth: 24.3 ◦C.

2.12: a) The amplitude at a depth of 1 m is only 3.7·10−4 K.
b) Highest temperature 18.6 ◦C on 2nd October, lowest temperature 1.4 ◦C on 2nd April.

2.13: a) α = 19.3 W/m2K. b) The temperatures of the insulated surface are ϑ(t1) = 146.4 ◦C
and ϑ(t2) = 112.3 ◦C.

2.14: a) ϑ = 37.5 ◦C. b) ϑm = 39.1 ◦C; ϑsurf = 37.9 ◦C; ϑcentre = 40.9 ◦C

2.15: w = 0.206 m/s

2.16: t(s = 15mm) = 3.26 h; t(s = 20mm) = 3.57 h.

2.18:
i = x/∆x 0 1 2 3 4 5 6 7 8 9

(ϑ+)6i 1.000 0.412 0.140 0.037 0.007 0.001 0.000

ϑ+(x, t∗) 1.000 0.419 0.151 0.046 0.012 0.002 0.000

(ϑ+)12i 1.000 0.681 0.414 0.216 0.098 0.038 0.012 0.003 0.001 0.000

ϑ+(x, 2t∗) 1.000 0.679 0.409 0.217 0.102 0.042 0.016 0.005 0.001 0.000
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2.19: a) M = 0.375; Bi∗ = 0.2087. The stability criterium

M ≤ 1

2 (1 + Bi∗)
= 0.4137

is satisfied. Temperature profile at time t∗ = 15 min: ϑ15
1 = 80.0 ◦C; ϑ15

2 = 63.9 ◦C;
ϑ15

3 = 50.7 ◦C; ϑ15
4 = 40.8 ◦C; ϑ15

5 = 34.9 ◦C; ϑ15
6 = 30.8 ◦C.

b) Steady-state temperature profile (t → ∞): ϑ∞

1 = 80.0 ◦C; ϑ∞

2 = 71.6 ◦C; ϑ∞

3 =
64.1 ◦C; ϑ∞

4 = 57.4 ◦C; ϑ∞

5 = 51.3 ◦C; ϑ∞

6 = 45.7 ◦C.

2.20: a) − (2 + m2∆x2
)
ϑ+

1 + ϑ+
2 + ϑ+

6 = 0,

ϑ+
1 − (

3 + m2∆x2
)
ϑ+

2 + ϑ+
3 + ϑ+

7 = 0,

ϑ+
2 − (

3 + m2∆x2
)
ϑ+

3 + ϑ+
4 + ϑ+

8 = 0,

ϑ+
3 − (

3 + m2∆x2
)
ϑ+

4 + ϑ+
5 + ϑ+

9 = 0,

ϑ+
4 − (

1 + 0.5m2∆x2
)
ϑ+

5 = 0,

ϑ+
1 − (

3 + m2∆x2
)
ϑ+

6 + ϑ+
7 + ϑ+

10 = 0,

ϑ+
2 + ϑ+

6 − (
4 + m2∆x2

)
ϑ+

7 + ϑ+
8 + ϑ+

11 = 0,

ϑ+
3 + ϑ+

7 − (
4 + m2∆x2

)
ϑ+

8 + ϑ+
9 + ϑ+

12 = 0,

ϑ+
4 + ϑ+

8 − (
2 + 0.5m2∆x2

)
ϑ+

9 = 0,

1.90384 ϑ+
6 − (

43.5992 + 0.56837m2∆x2
)
ϑ+

10 + (4/3)ϑ+
11 = −40.35875,

(4/3)ϑ+
7 + ϑ+

10 −
(
6 + 0.92069m2∆x2

)
ϑ+

11 + ϑ+
12 = −8/3

ϑ+
8 + ϑ+

11 −
(
2 + 0.5m2∆x2

)
ϑ+

12 = 0.

b) ϑ+
1 = 0.54791; ϑ+

2 = 0.50806; ϑ+
3 = 0.44968; ϑ+

4 = 0.39775;

ϑ+
5 = 0.36828; ϑ+

6 = 0.67543; ϑ+
7 = 0.60786; ϑ+

8 = 0.51519;

ϑ+
9 = 0.43891; ϑ+

10 = 0.97859; ϑ+
11 = 0.83003; ϑ+

12 = 0.64674.

ηR = 0.5756. Approximation from (2.81): ηR = 0.5758, from (2.82): ηR = 0.5721.

2.21: We have

ξA(x=0, t)−ξAS

ξAα−ξAS
=

4

π
exp

(
−π2

4
t+D

)
− 4

3π
exp

(
−9π2

4
t+D

)
+

4

5π
exp

(
−25π2

4
t+D

)
−. . .+. . . .

Using the first term of the series we obtain t+D = 1.039 and t = 14.1 days. The other series
terms are negligibly small, which can be simply checked, so that it is actually sufficient
to just use the first series term.

2.22: The diffusion now occurs in the direction of the x- and y-coordinate. In the treatment
of the corresponding heat conduction problem, section 2.3.5, has shown that for a block
with side lengths 2X, 2Y , the temperature profile is given by (2.191)

ϑ+ =
ϑ − ϑS

ϑ0 − ϑS
= ϑ+

Pl

(
x

X
,

at

X2
,
αX

λ

)
· ϑ+

Pl

(
y

Y
,

at

Y 2
,
α′Y

λ

)
.

For the diffusion problem, in the centre of the rod x = y = 0 and for βX/D = β ′Y/D → ∞
it correspondingly holds that

ξ+
A =

ξA(x = y = 0) − ξAS

ξAα − ξAS
= c+

Pl

(
D t

X2

)
· c+

Pl

(
D t

Y 2

)
.

Under the assumption still to be checked, i.e. that the first term of the series from the
solution of the previous exercise is satisfactory, follows

ξ+
A =

[
4

π
exp

(
−π2

4
t+D

)]2

.

Which gives t+D = 0.569 and t = 7.7 days. It is easy to prove that the remaining series
terms are actually negligible in comparison with the first term.
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2.23: a) We have ṀLa = 0.7 kg/s, ṀGa = 6.0 kg/s and ṀW = 0.532 kg/s.
b) The required time is obtained from (2.389). In which cAα = 0 and so

cAm/cAS = ξL
Aa/ξA0 = 0.6 .

It then follows from (2.390) that

0.65797 =
∞∑

i=1

1

i2
exp

(−i2π2t+D
)

.

The solution is found by trial and error to be t+D = 0.0485. The first three terms of the
series suffice. They give t = 72.7 s.
c) L = tw = 7.27 m.

2.24: We can approximately say that BiD → ∞. In addition to this the surface of the spheres
are immediately completely immersed in the water, ξA0 = 1. Therefore

cA0 = � ξA0/M̃A = 55.5kmol/m3 .

Furthermore

t+D = 0.072.

From (2.390)

c+
Am(t+D) =

cAm − cA0

cAα − cA0
=

6

π2

∞∑
i=1

1

i2
exp

(−i2π2t+D
)

follows, with cAα = 0: cAm /cA0 = 0.6927 and cAm = 38.42 kmol/m3. Each sphere takes
in 0.241 g of water.

Chapter 3: Convective heat and mass transfer. Single phase
flows

3.1: From −q̇j = λji∂ϑ/∂xi follows, under consideration from λ12 = λ21,

−q̇1 = λ11
∂ϑ

∂x1
+ λ12

∂ϑ

∂x2

−q̇2 = λ12
∂ϑ

∂x1
+ λ22

∂ϑ

∂x2

−q̇3 = λ33
∂ϑ

∂x3
.

In steady heat conduction, we generally have ∂q̇j/∂xj = 0 as the plate is thin in the
x2-direction, then ∂ϑ/∂x2 = 0 and the differential equation for steady heat transfer looks
like

∂q̇1

∂x1
+

∂q̇2

∂x2
+

∂q̇3

∂x3
= λ11

∂2ϑ

∂x2
1

+ λ33
∂2ϑ

∂x2
3

= 0.

3.2: For the model (index M) and the original (index O) it has to hold that

Nu = f(Re,Pr) .

a) It has to be PrM = PrO. With PrO = 4.5, the associated temperature is T = 311 K.
b) We have (wM)1 = 0.0355 m/s and (wM)2 = 0.355 m/s.
c) Because NuM = NuO or (αMdM) /λM = (αOdO) /λO, αO = 484 W/m2K.
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3.3: For the model (subscript M) and the original (subscript O), according to (3.333), it holds
that

Num ∼ Gr1/4

with Num = αmL/λ and Gr = β∞ (∆ϑ) g L3/ν2. This then gives

αmO

αmM
=

(
LM

L

)1/4 (
∆ϑO

∆ϑM

)1/4

,

and
Q̇O

Q̇M

=
αmOAO∆ϑO

αmMAM∆ϑM
=

(
LO

LM

)7/4 (
∆ϑO

∆ϑM

)5/4

,

because of AO/AM = L2
O/L2

M . We obtain Q̇O = 469.5W.

3.4: Firstly, a dimension matrix is set up. L indicates the dimension of a length:

L = dim L ;

correspondingly t = dim t, T = dim ϑ, M = dim M . The dimension matrix looks like

L w0 � λ ν c αm

L 1 1 −3 1 2 2 0
t 0 −1 0 −3 −1 −2 −3
M 0 0 1 1 0 0 1
T 0 0 0 −1 0 −1 −1

Only the rank r of the matrix is determined, using equivalent transformations; these are
linear combinations of rows (or columns). For this we form linear combinations of rows
until the diagonal of a sub-matrix only contains ones, with the neighbouring diagonals
all zeros. The first row is indicated by Z1, the second by Z2 and so on, forming a new
matrix, the rows of which will be indicated by dashes. So Z ′

4 = −Z4, Z ′

3 = Z3 +Z4, Z ′

2 =
−Z2 + 3Z4. The new matrix looks like

L w0 � λ ν c αm

1 1 −3 1 2 2 0
0 1 0 0 1 −1 0
0 0 1 0 0 −1 0
0 0 0 1 0 1 1

It already contains only ones in the front main diagonal. By a further transformation
Z ′′

1 = Z ′

1 − Z ′

2 + 3Z ′

3 − Z ′

4 we get

L w0 � λ ν c αm

1 0 0 0 1 −1 −1
0 1 0 0 1 −1 0
0 0 1 0 0 −1 0
0 0 0 1 0 1 1

The left hand sub-matrix now contains, as demanded, only ones in the main diagonal, in
the neighbouring diagonals only zeros. The rank of the matrix is r = 4, as there are four
rows that are linearly independent of each other: By equivalent transformation no more
rows can be converted into another. According to Buckingham [1.20], the number m of
π-quantities m = n − r, where n is the number of original variables, in our case is n = 7.
There are

m = 7 − 4 = 3
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π-quantities. These are yielded from the above matrix as

π1 = νL−1w−1
m �−0λ−0 =

ν

wmL
= 1/Re

π2 = cL1w1
m�1λ−1 =

c�

λ
wmL =

wmL

a
= RePr

π3 =αmL1w0
m�0λ−1 =

αmL

λ
= Nu

We have f(π1, π2, π3) = 0 or f(Nu,Re,Pr) = 0.

3.5: a) The dimension matrix is

d w �A �W g

L 1 1 −3 −3 1
t 0 −1 0 0 −2
M 0 0 1 1 0

By equivalent transformations, new rows Z ′

i are obtained from the original rows Zi(i =
1, 2, 3). The following equivalent transformation of the rows Z ′

1 = Z1 + Z2 + 3Z3, Z ′

2 =
−Z2, Z ′

3 = Z3 is carried out yielding

d w �A �W g

1 0 0 0 −1
0 1 0 0 2
0 0 1 1 0

The rank of the matrix is r = 3. This gives m = n − r = 5 − 3 = 2. The dimensionless
quantities are

π1 = �Wd0w0�−1
L =

�W

�L

π2 = gd1w−2�0
L =

gd

w2
.

b) We have π2 = f(π1) or gd/w2 = f(�W/�L).

3.6: Introducing the velocity profile in the integral condition that follows from (3.165) for the
momentum

d

dx

⎡⎣w2
δδ

1∫
0

wx

wδ

(
1 − wx

wδ

)
d
(y

δ

)⎤⎦ =
νwδ

δ

(
∂wx/∂wδ

∂y/δ

)
y=0

yields, with the abbreviation z = π/2(y/δ):

2

π
w2

δ

d

dx

⎡⎢⎣δ

π/2∫
0

sin z(1 − sin z) dz

⎤⎥⎦ =
νwδ

δ

π

2
.

The integral has the value 1 − π/4. With that, after integration

δ = π

(
2

4 − π

)1/2 (
νx

wδ

)1/2

= 4.795xRe−1/2
x .

This result differs from (3.170) by the fact that in place of the factor 4.64 in (3.170), the
factor 4.795 appears.
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3.7: In order to ascertain whether the flow is turbulent, the Reynolds number is calculated at
the end of the plate Re = w∞L/ν. As the viscosity is only found at a pressure 0.1 MPa,
we make use of η = �ν = const for ϑ = const. It follows from this, that p1/(RT1)ν1 =
p2/(RT2)ν2 or ν2 = ν1p1/p2 at ϑ = const. We have ν1(p1, ϑm) = 30.84 · 10−6 m2/s with
p1 = 0.1 MPa, and the mean temperature ϑm = (ϑ∞ + ϑ0)/2 = (300 + 25)/2 ◦C =
162.5 ◦C. This then gives ν2 = 30.84 · 10−5 m2/s and the associated Reynolds number as
Re = 3.243 · 104. The flow is laminar to the end of the plate. The mean Nusselt number
is, see also Example 3.8, Num = 105.5. This yields αm = 3.84 W/m2K and q̇ = 1056
W/m2.

3.8: The Reynolds number at the end of the lake is Re = 2.606 · 106. This means that the
flow is initially laminar and becomes turbulent after a distance of xcr = 3.84 m. The
Sherwood number is calculated from (3.208), in which the Nusselt number is replaced by
the Sherwood number. We have Shm,lam = 904.1 and Shm,turb = 3592. This then gives

Shm =
√

Sh2
m,lam + Sh2

m,turb = 3704, βm = 4.741 · 10−4m/s

ṁA = βm� (ξA0 − ξA∞) = βm
1

RT
(pA0 − pA∞) = βm

1

RT
(pA0 − ϕpA0) .

We also have pA0 = pWs and therefore

ṁA = βm
pWs

RT
(1 − ϕ) = βm�′′ (1 − ϕ) ,

ṁA = 4.099 · 10−6 kg/m2s

ṀA = 147.5kg/h .

3.9: Ṁ = �V̇ = 0.25 kg/s. Further, the energy balance holds

Q̇ = Ṁcp (ϑe − ϑi) = αmdπL∆ϑm

with

∆ϑm =
(ϑ0 − ϑi) − (ϑ0 − ϑe)

ln [(ϑ0 − ϑi) / (ϑ0 − ϑe)]
= 57.71 ◦C .

This yields

αm =
Ṁcp (ϑe − ϑi)

dπL∆ϑm
= 766.9W/m2K .

3.10: The solar energy caught by the reflector is transferred to the absorber tube

q̇SsL = q̇ doπL/2 .

The heat flux absorbed by the absorber tube is therefore q̇ = 1.567 · 104 W/m2. It serves
to heat the water:

q̇ doπL/2 = Ṁcp (ϑe − ϑi)

with Ṁ = �wmd2
i π/4 = 8.468 · 10−2 kg/s.

L =
2 Ṁcp (ϑe − ϑi)

q̇ doπ
= 13.3m .

The wall temperature ϑ0 at the outlet follows from q̇ = α (ϑ0 − ϑF) = α (ϑ0 − ϑe) as
ϑ0 = q̇/α + ϑe = 139.4 ◦C.
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3.11: The heat losses are yielded from the energy balance as Q̇ = Ṁcp (ϑi − ϑe) = 11.97 kW.
The heat flux transferred at the end of the tube is

q̇ = k(ϑe − ϑ0) with
1

k
=

1

α
+

1

αe
.

Here, α is the heat transfer coefficient of the superheated steam on the inner tube wall.
We set di ≈ do here. For the calculation of α, the Reynolds number has to be found first

Re =
wmd

ν
=

4Ṁ

πdη
= 7.48 · 105 .

The flow is turbulent. In addition L/d > 100. We obtain from (3.262) Num = 1145,
αm = 1267 W/m2K and q̇ = 1779 W/m2. Furthermore, it holds that q̇ = αm (ϑe − ϑ0)
and therefore ϑ0 = ϑe − q̇/αm = 118.6 ◦C.

3.12: The specific surface area of the particle from (3.269) is aP = 6(1 − ε)/d = 180 m2/m3.
The arrangement factor from (3.271) is fε = 1.9, the Reynolds number

Re =
wmd

εν
= 6.098 · 103.

The Nusselt number is calculated according to section 3.7.4, No. 5, from

Num = 2 +
√

Nu2
m,lam + Nu2

m,turb

with Num,lam = 46.47 and Num,turb = 35.57 to be Num = 60.52. This yields αm = 79.28
W/m2K. The total particle surface area is, according to (3.267), nAP = aPV = aPA0H =
117 m2.

a) With that Q̇ = αmnAP (ϑA − ϑ0) = 171601W ≈ 172kW.

b) The amount of water evaporated due to the heat fed is

ṀW = Q̇/∆hv = 7 · 10−2 kg/s

The amount of water evaporated due to the partial pressure drop

ṀW = βm
p

RLT
(XWS − X)

is around two orders of magnitude smaller, and can be neglected. This can be checked
using the mass transfer coefficients and specific humidity X = 0.622 pWS/(p/ϕ − pWS)
from section 3.7.4, No. 5.

3.13: The height Hmf of a fluidised bed at the fluidisation point follows from the condition of
constant sand mass

A0Hmf(1 − εmf)�S = A0HS(1 − εS)�S .

It is

Hmf =
1 − εS

1 − εmf
HS = 0.57m .

The total pressure drop, according to (3.274), is ∆p = [�S(1− εmf) + �Gεmf ]gH ∼= �S(1−
εmf)gH. As (1−εmf)H = const holds, the pressure drop in the fluidised bed is practically
constant, which can also be confirmed by experiment. We can also put, for (1− εmf)H at
the fluidisation point, (1−εS)H0 of the quiescent sand layer. With that, we get ∆p ∼= 7848
Pa. This pressure drop has to be summoned up by the blower. The pressure p2 at the
blower outlet is equal to the pressure at the inlet of the fluidised bed p2 = p1+∆p = 107848
Pa. The mean pressure of the air in the fluidised bed is �mG = pm/RT = 0.322 kg/m3. The
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fluidisation velocity follows from (3.275). This includes the Archimedes number formed
with the mean density �mG

Ar =
�S − �mG

�mG

d3
Pg

ν2
= 415.8 .

According to (3.275) it is Remf = 0.310; and wmf = 0.094 m/s. The actual velocity is
wm = 10wmf = 0.94 m/s. The mass flow rate of the air at the inlet is

ṀG = �GwmA0 =
p2

RT
wmA0 = 2.22kg/s.

The required blower power is

P = ṀG
κ

κ − 1

RT1

ηV

[(
p2

p1

)κ−1
κ

− 1

]
= 20.4kW.

It is

ηV =
Prev

P
=

Ṁcp(ϑ1′ − ϑ1)

P

when ϑ1′ is the final temperature of the compression. It follows from this, that ϑ1′ =
299.5K = 26.4 ◦C. The heat flow fed in is Q̇ = ṀLcpmG(ϑ2 − ϑ1′) = 2126 kW.

3.14: The density of the air over the ground is

�A1 =
p1

RATA1
= 1.2084kg/m3 ,

that of the waste gases is

�G1 =
p1

RGTG1
= 1.1946kg/m3 .

�G1 < �A1; the exhaust gases can rise. They would no longer rise if �G1 ≥ �A1 or

TG1 ≤ RA

RGTA1
= 438.1K = 164.9 ◦C ,

if the exhaust gas temperature was to lie below 165 ◦C.

It holds for the air that dp = −�g dx and so v dp = −g dx. With v = RATA/p follows

dp

p
= − g

RATA
dx .

Through integration the barometric height formula is obtained

p2 = p1 exp

(
− g∆x

RATA

)
.

The air pressure at 100m is p2 = 0.09882 MPa. The density of the air at 100 m height is

�A2 =
p2

RATA
= 1.194kg/m3 .

The density of the exhaust gases at 100m follows from

�G2 =

(
p2

p1

)1/κ

�G1 = 1.184kg/m3 .

The exhaust gases are lighter than air at 100m height, they can rise further.
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3.15: We have

Gr =
β∞(ϑ0 − ϑ∞)gL3

ν2
= 4.49 · 109

and Ra = GrPr = 3.20 · 109. Then, from (3.331) the mean Nusselt number for free flow
is found to be NumF = 168.8. Furthermore

Re =
w0L

ν
= 5.794 · 104 .

Giving Num,lam = 142.7 and Num,turb = 203.99. The mean Nusselt number for forced
convection is obtained as

NumC =
√

Nu2
m,lam + Nu2

m,turb = 248.9 .

As free and forced flow are directed against each other, the minus sign in (3.337) holds,
Num = 219.7 and αm = 5.97 W/m2K. The two sides of the plate release the heat flow
Q̇ = αmA(ϑ0 − ϑ∞) = 477 W.

3.16: In this section 3.9.3, page 385, No. 5 is used. We have

Rax = GrxPr =
β∞q̇gx4

ν2λ
Pr = 7.176 · 1010

( x

m

)4

.

At the end of the plate x1 = 0.4 m, Rax1 = 1.84 · 109. The flow at the end of the plate is
just about still laminar. It is

Nux = 78.63
( x

m

)4/5

and α = Nux
λ

x
= 1.961x−1/5 W

m9/5K
.

It further follows from q̇ = α(ϑ0 − ϑ∞) :

ϑ0 =
q̇

α
+ ϑ∞ = 7.649

W

m1/5
x1/5 + 283.15K .

The wall temperature increases with x1/5, and at the end of the plate x1 = 0.4 m is

ϑ0 = 289.5K = 16.4 ◦C .

3.17: The cooling is determined by the heat transfer in free flow. (3.331) holds for the vertical
cylinder, for the horizontal cylinder, equation No. 3 in section 3.9.3, page 385. The
Rayleigh number Raver for the vertical cylinder is formed with the cylinder height, that
for the horizontal Rahor with the cylinder diameter. It is

Raver =
β∞(ϑo − ϑ∞)gL3

ν2
Pr = 8.81 · 106 and Rahor = 5.64 · 105 .

From (3.331) Numver = 30.14 and αmver = Numverλ/L = 4.72 W/m2K. From No. 3 in
section 3.9.3, page 385, Numhor = 12.40 and αmhor = Numhorλ/d = 4.86 W/m2K. This
gives αmhor > αmver. In addition to this heat is also released via the ends of the horizontal
cylinder. The can therefore cools more rapidly if it is lying down.

3.18: The temperature of the outer skin T0 is practically equal to the eigentemperature, as the
heat flux released from the outer skin, according to (3.372), is q̇ = α(T0−Te) = k′(Ti−T0)
with 1/k′ = 1/αi + δ/λ. It follows from this, that T0 − Te = k′/α(Ti − T0). Here, Ti − T0

is a few K, and the external heat transfer coefficient is α  k′. Therefore, T0
∼= Te.

The eigentemperature is calculated from (3.355) with wSδ =
√

κRTδ = 299.5 m/s and
Maδ = wδ/wSδ = 0.649 to be

Te = T0 = Tδ

[
1 +

κ − 1

2
Ma2

δ

]
= 241.95K = −31.2 ◦C .
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Approximately the same results are obtained from (3.357) with r = 3
√

Pr Pr(−50 ◦C) =
0.727, cp = 1.007 kJ/kgK. We obtain T0 = 240K = −33, 1 ◦C. The heat flux is q̇ =
k(Ti − T0) = 170.7 W/m2 with

1

k
=

1

αi
+

δ

λ
and k = 3.33W/m2K .

3.19: As soon as the temperature T0 of the outer skin rises above an eigentemperature Te of
300 ◦C cooling must occur. Therefore, T0 ≤ Te so that cooling is not necessary. According
to (3.355)

Te

Tδ
= 1.8 .

We should have T0 ≤ Te = 1.8Tδ , that is Tδ ≥ T0/1.8 = 45.3 ◦C. As soon as the air
temperature rises above 45.3 ◦C cooling has to start.

Chapter 4: Convective heat and mass transfer. Flows
with phase change

4.1: According to (4.15) αm,hor = 5028.8 W/m2K. The temperature at the condensate surface,
is yielded approximately from (4.35) as

ϑI − 333.15 =
30W/m2K · 2257.3kJ/kgK

5028.8W/m2K · 1.93kJ/kgK
ln

0.101325 − pI

0.101325 − 0.0948
.

Here, (p1G − ỹ1G)p = (1 − 0.0647)0.101325 = 0.0948 MPa is set. For the determination of
ϑI from the equation above, ϑI is guessed first, and then with the value pI(ϑI) from the
steam tables, the estimate is checked for its correctness. We find ϑI

∼= 348.8K = 75.7 ◦C,
for this we get pI = 0.0397 MPa and the equation above is well satisfied. It follows from
(4.37) that q̇G/q̇ = 0.39. The heat flux released falls to 39 % of the heat flux that would
be released if pure, saturated steam was present. The area has to be increased by a factor
of 1/0.39 = 2.56, if the condenser power is to stay the same.

4.2: We get ∆ϑ = ϑ0 − ϑs = 200 ◦C, according to Fig. 4.37 this is in the region of film boiling.
The heat transfer coefficients are yielded from section 4.2.7, page 463, No. 6 as αR = 25.1
W/m2K and αmG = 688.8 W/m2K. With that we get αmG/αR = 27.4 and αm/αmG =
1.029, αm = 708.8 W/m2K. The heating power is Q̇ = αmA∆ϑ = 1113.4 W.

4.3: The heating power amounts to Q̇ = Ṁoilcpoil∆ϑ = 3 MW. The amount of steam generated
ṀW follows from Q̇ = ṀW∆hv as ṀW = 1.39kg/s = 5 · 103 kg/h. On the other hand, the
heat flow transferred is

Q̇ = kA∆ϑm with ∆ϑm =
(ϑoil,i − ϑs) − (ϑoil,e − ϑs)

ln[(ϑoil,i − ϑs)/(ϑoil,e − ϑs)]
.

It is ∆ϑm = 42.84 K and from 1/(kA) = 1/(αiAi) + 1/(αoAo) with A = Ao
∼= Ai follows

1/k = 1/αi + 1/αo. According to (4.97), αo = 2.43 q̇0.72 W/m2K and so

1

k
=

1

700
+

1

2.43 q̇0.72
m2K/W .

This gives
Q̇

A
= q̇ = k∆ϑm =

(
1

700
+

1

2.43 q̇0.72

)
−1

W/m2K · 42.84K .

This leads to a transcendental equation for q̇:

3.3347 · 10−5q̇ + 9.606 · 10−3q̇0.28 − 1 = 0 .

The solution is q̇ = 25080 W/m2. The transfer area is follows from Q̇ = q̇A as A ∼= 120 m2.



652 Appendix C: Solutions to the exercises

4.4: a) The length follows from the energy balance

q̇dπ∆z = ṁ
d2π

4
(h′ − h1) as ∆z =

ṁd(h′ − h1)

4q̇
= 0.97m .

b) The quality at the outlet is yielded from (4.116) as x∗ = 0.399.

4.5: According to (4.153),

Xtt = 0.2259

(
1 − x∗

x∗

)0.9

.

From (4.127) with (4.129) we get(
dp

dz

)
r

= −Φ2
L

(
dp

dz

)
L

= Φ2
LζL

1

d

ṁ2

2�L
(1 − x∗)2(

dp

dz

)
r

= −2061.6N/m3 Φ2
L (1 − x∗)

2
.

With the values given above for Xtt, we get from (4.154)

Φ2
L = 1 +

20

Xtt
+

1

X2
tt

= 1 + 88.53

(
x∗

1 − x∗

)0.9

+ 19.596

(
x∗

1 − x∗

)1.8

and therefore(
dp

dz

)
r

dx∗ = −2061N/m3
[
(1 − x∗)2 + 88.53x∗0.9(1 − x∗)1.1

+19.596x∗1.8 (1 − x∗)
0.2
]

dx∗ .

As the heating is with constant heat flux, the flow quality x∗ changes linearly with the
distance z. This follows from the energy balance

x∗ =
1

∆hv

q̇dπ (z − ∆z)

ṁd2π/4
=

q̇ · 4
∆hvṁd

(z − ∆z) .

With ∆z = 0.97 m, x∗ = 0.1574 (z/m−0.97). So dx∗/dz = 0.1574 1/m and in the previous
equation for the pressure drop(

dp

dz

)
r

dx∗ = ( dp)r 0.15741/m .

It therefore holds that

( dp)r = −13094N/m2
[
(1 − x∗)

2
+ 88.53x∗0.9 (1 − x∗)

1.1

+19.596x∗1.8 (1 − x∗)
0.2
]

dx∗ .

Integration between x∗ = 0 and x∗ = 0.399 yields (∆p)r = −863hPa = −0.863 MPa .

4.6: a) The length is obtained from the energy balance

q̇dπL + Ṁh1 = ṀGh′′ + ṀLh′

q̇dπL
ṁd2π/4

= x∗h′′ + (1 − x∗)h′ − h1

L =
ṁd

4q̇
[x∗h′′ + (1 − x∗) h′ − h1] = 3.25m .
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b) The wall temperature is yielded from ϑ0 = ϑs + q̇/α2Ph. It is ϑs(5.95MPa) = 275 ◦C.
The heat transfer coefficient α2Ph follows from (4.160) with (4.161) and (4.162). It is

Re =
ṁ (1 − x∗) d

ηL
= 1.534 · 105

Bo =
q̇

ṁ∆hv
= 5.09 · 10−4 ,

Xtt = 0.64 .

Then, according to (4.162) F = 6.64 and according to (4.161) we get S = 1.66 · 10−2.
It further follows from (4.101) and (4.104) that F (p+) = 1.723 and with CW = 0.616 we

obtain α = αB = 6.59 · 104 W/m2K. It is αC = λL/d · 0.023 ·Re0.7Pr
1/3
L = 2726.6 W/m2K.

Giving α2Ph = 1.92 · 104 W/m2K and ϑ0 = 316.7 ◦C.

Chapter 5: Thermal radiation

5.1: c = 197.2 · 106 m/s; λM = 1.97 µm; ePh = 6.622 · 10−20 J.

5.2: λ1 = 2.3 µm, λ2 = 4.7 µm; L = 115.2 W/(m2sr); M = 361.9 W/m2; ∆M/M = 1/32.

5.3: ∆M/M = 1/4

5.4: Lref = 38.2 W/(m2sr); Φb,abs/A = 680 W/m2

5.5: T = 1139 K

5.6: T = 1400 K; M = 218 kW/m2

5.7: T = 4330 K and T = 11810 K. There are two temperatures!

5.8: a) ε = 0.677; b) a = 0.375

5.9: 0.332

5.10: E = 6375 W/m2; ε = 0.864

5.11: T = 740 K; ε = 0.0964; εn = 0.0789

5.12: F11 = 0; F12 = 1; F21 = 0.6366; F22 = 0.3634

5.13: F12 = 0.5

5.14: F11 = 0; F12 = 0.8500; F13 = 0.1500; F21 = 0.3400; F22 = 0; F23 = 0.6600; F31 = 0.0833;
F32 = 0.9167; F33 = 0.

5.15: T (0) = 507 K; T (h) = 439 K; T (2h) = 375 K; T (10h) = 305 K; T (∞) = 300 K.

5.16: T = 953 K

5.17: Q̇ = 436 W

5.18: a) The heat flow is independent of the orientation of the radiation protection shield.
b) If the side with the larger emissivity (2.5εS) is directed towards the plate with T1, the
higher temperature TS is yielded.

5.19: a) TA = 679.6 K; TB = 576.1 K. b) q̇ = 4063 W/m2. c) T1 = 576.1 K = TB from part a).

5.20: a) λeff = 0.2545 W/K m; q̇ = 33.82 W/m2. b) q̇ = 13.1 W/m2

5.21: α = 39.9 W/(m2K); αStr = 23.8 W/(m2K). The gas radiation participates by around 37
% in the heat transfer.
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Vulkan-Verlag 1985
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[3.7] Töpfer, C.: Bemerkungen zu dem Aufsatz von H. Blasius,
”
Grenzschichten in Flüssig-

keiten mit kleiner Reibung“. Z. Math. u. Phys. 60 (1912) 197–398

[3.8] Howarth, L.: On the solution of the laminar boundary layer equations. Proc. Roy. Soc.
London A 164 (1938) 547–579

[3.9] Schlichting, H.: Grenzschicht-Theorie. 8th ed. Karlsruhe: G. Braun 1982, p. 592



660 Literature

[3.10] Colburn, A.P.: A method of correlating forced convection, heat transfer data and a
comparison with fluid friction. Trans. Am. Inst. Chem. Eng. 29 (1933) 174–210

[3.11] Chilton, T.H.; Colburn, A.P.: Mass transfer (absorption) coefficients. Ind. Eng. Chem.
26 (1934) 1138–1187

[3.12] Petukhov, B.J.; Popov, N.V.: Theoretical calculation of heat exchange and frictional
resistance in turbulent flow in tubes of an incompressible fluid with variable physical
properties. High Temperature 1 (1963) 69–83

[3.13] Gnielinski, V.: Berechung mittlerer Wärme- und Stoffübergangskoeffizienten an lami-
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Rohren und ebenen Spalten. Diss. T.H. Karlsruhe 1959

[3.25] Kays, W.M.; Crawford, M.E.: Convective heat and mass transfer. New York: McGraw
Hill 1980
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[3.27] Graetz, L.: Über die Wärmeleitfähigkeit von Flüssigkeiten. Ann. Phys. Neue Folge 18
(1883) 79–94 und 25 (1885) 337–357

[3.28] Nußelt, W.: Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge. Z. Ver.
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[3.49] Le Fèvre, E.J.: Laminar free convection from a vertical plane surface. Proc. 9th Int.
Congr. Appl. Mech., Brüssel, 4 (1956) paper I-168



662 Literature

[3.50] Churchill, S.W.; Chu, H.H.S.: Correlating equations for laminar and turbulent free con-
vection from a vertical plate. Int. J. Heat Mass Transfer 18 (1975) 1049–1053 and
1323–1329

[3.51] Saville D.A.; Churchill, W.S.: Simultaneous heat and mass transfer in free convection
boundary layers. Amer. Inst. Chem. Eng. J. 16 (1970) 268–273

[3.52] Eckert, E.R.G.; Drake, M.: Analysis of heat and mass transfer. New York: McGraw Hill
1972, p. 421

[3.53] Eckert, E.R.G.: Engineering relations for heat transfer and friction in high-velocity lam-
inar and turbulent boundary-layer flow over surfaces with constant pressure and temper-
ature. Trans. Amer. Soc. Mech. Eng., J. Heat Transfer 78 (1956) 1273–1283

Chapter 4: Convective heat and mass transfer. Flows
with phase change

[4.1] Butterworth, C.: Condensers: Basic heat transfer and fluid flow. In: Kakaç, S.; Bergles,
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[4.46] Jakob, M.; Linke, W.: Der Wärmeübergang beim Verdampfen von Flüssigkeiten an
senkrechten und waagerechten Flächen. Phys. Z. 36 (1935) 267–280

[4.47] Jakob, M.: Heat transfer in evaporation and condensation. Mech. Eng. 58 (1936) 643–
660, 729–739
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mung. Energetica 7 (1959) 229-239, and Izv. Akad. Nauk. Otd. Tekh. Nauk 4 (1951)
529



666 Literature

[4.77] Zuber, N.: On the stability of boiling heat transfer. Trans. Am. Soc. Mech. Eng., Ser.
C. J. Heat Transfer 80 (1958) 711

[4.78] Roetzel, W.: Berechnung der Leitung und Strahlung bei der Filmverdampfung an der
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flächen. Forsch. Ing. Wes. 6 (1935) 175–183

[5.19] Sieber, W.: Zusammensetzung der von Werk- und Baustoffen zurückgeworfenen Wärme-
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–, energy balance for the vapour in 443
–, film 406, 407
–, influence of non-condensable gases on

416, 418
–, influence of vapour shear stress on 427
–, limiting cases in 442
–, local total 439, 442
–, material balance for the vapour in 443
– of flowing vapours 426
– of immiscible liquids 407
– of vapour mixtures 435
–, partial 439
–, reduction of heat flow in 438
–, types of 406
Condensation nuclei 408
Condenser 53, 96
–, calculation of the size of a 445
–, energy balance of a 444
–, material balance of a 443

–, partial 435
–, reflux 437
–, tube bundle 421, 430
Conduction of heat 2, 5, 105
Conductor, electrical 545, 548
Configuration factor 570
Conformal mapping 134
Constant, optical 545
Constitutive equations 272, 281
Contact angle 406, 456, 457
Contact between two bodies 154
Contact heat transfer coefficient 112
Contact resistance 112
Contact temperature 155
Contact time 86
Continuity equation 261, 294, 301
–, component 262
Convection, forced 22, 451
–, free 22
–, natural 22
Convective boiling 451
– in vertical tubes 495
Convective evaporation 488, 489, 490
– in an annular space 492
– in horizontal tubes 496
Convective flow, vanishing 79
Convective heat transfer 10
– to liquid 488
– on vapour 488
Convective vaporization 488
Converter, catalytic 237
Convolution theorem 143, 189
Cooling 159
– of a cuboid 173
– of a cylinder 159, 167, 173
– of a parallelepiped 173
– of a plate 159, 163
– of a semi-infinite body 149
– of simple bodies 159
– of a sphere 159, 167
– of a steel plate 201, 205
– of superheated steam 53
– of thin walled vessels 37, 38, 39
– of vessels 114
Cooling time 170, 174, 175
Coordinates, spherical 507
Correspondence table 145, 146
Cosine law 513, 514
Couette flow 286
Countercurrent absorber 95
Countercurrent flow 40, 41, 53
– in falling film columns 437
– in reflux condensers 437
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Countercurrent heat exchanger 41, 49
Counterdiffusion, equimolar 75
Counter-radiation, atmospheric 558, 566
Creeping flow 290
Critical boiling state 492
Critical heat flux 461, 462, 470, 493
Crossflow 42, 56, 59, 61, 330, 334
–, circular cylinder in 330, 331, 335, 339
–, cylinder of arbitrary profile in 339
–, non-circular cylinder in 333, 339
–, single-sided laterally mixed 56, 57, 59
–, sphere in 333
–, tube bundles in 334
– with a tube row 57
Crossflow heat exchanger 56
–, counter 103
Cross sectional average temperature 12
Cylinder 7
– in crossflow 330, 331, 335, 339
–, finite 173
–, horizontal 385
–, non-circular 333, 339
Cylindrical wall 8

Damköhler number 236
Day number 556
Declination of the sun 557
Deformation velocity tensor 272
Density 18
– of a two-phase mixture 480
Departure diameter 456, 457
Departure from nucleate boiling 461
Dephlegmator 435
Deposition controlled burnout 493
Designing a heat exchanger 44, 47
Detachment point 330
Detachment volume of vapour 457
Development of the error integral,

asymptotic 151
Deviator 268, 272
Dew point 436
Dielectrics 545
Difference equations 193–195, 215
–, explicit 194, 212
–, –, stability behaviour of 199, 208
– for an adiabatic boundary 198, 219
– for a cylinder 208
– for grid points close to the boundary 218
– for grid points on a boundary 218, 219
– for grid points with stipulated

heat flux 220
– for plane temperature fields 212, 215
–, implicit 203, 213

–, instability of 195, 196
–, ε-scheme for 195
Difference method 192, 193
–, Crank-Nicolson 203, 208, 209
–, explicit 193
–, – with constant material properties 208
–, – with temperature dependent material

properties 209, 210
– for cylindrical coordinates 206
– for plane temperature fields 214
– for spherical coordinates 206
– for transient heat conduction 193
–, graphical 196
–, implicit 203, 208
–, – with constant material properties 209
–, modulus of 194, 206, 208
Difference quotient 193
–, central 197
–, –, second 194
–, forward 194
Differential equations 105
– for annular fins 129
– for straight fins 129
– for the concentration field 225, 227
– for the Laplace transform 144, 146, 150
– for the temperature field 105, 108, 109
Differential operator, self-adjoint 207
Diffuse radiating surface 509, 514
Diffuse radiator 513, 542
Diffuse reflection 522, 579, 592
Diffusion 65, 66, 71, 222
– coefficient 70, 71
– –, turbulent 307
– equation 222, 229, 230
–, equimolar 72, 79, 224
–, molecular 65
–, steady-state 234, 238
–, – with catalytic surface reaction 234
–, – with homogeneous reaction 238
– through a semipermeable plane 72, 73
–, transient 242
–, – with one-dimensional mass flow 244
–, – in a semi-infinite solid 243
–, turbulent 65
Diffusional flux 68, 71, 225, 226, 232
–, turbulent 306
Diffusion resistance factor 238
Diffusive fluxes 67
Dilatation 271
Dimensionless groups 44
Dimensionless numbers 15
Dimensionless variables 16
Directional distribution 505
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– of radiative energy 505, 507, 508
– of reflected radiation 523
Directional emissive power 514
Discretisation of differential equations 193
– of boundary conditions 197
– of the heat transfer condition 199
– of the self-adjoint differential operator 207
Discretisation error 194, 215
Disk fins 133, 134
Displacement law 530
Dissipated energy 279
–, mechanically 280
Dissipated power 107
Dissipation, viscous 280, 297
Distillate 96
Diversion factor 239
Double pipe heat exchanger 40, 41
Drag 276
Draper point 529
Drop flow 473, 474, 475, 488
Droplet mist 407
Dropwise condensation 406, 407, 431
– on a vertical condensation surface 433
–, theory of 433
Drying 83, 357, 361
Dryout 493
– of a heating surface 493

Eccentricity factor 556
Eckert number 20, 298
Eddy v, 305
Eddy diffusivity 307
– for heat transfer 307
– for mass transfer 307
– for momentum transfer 307
Efficiency of annular fins 133
– of fins 35, 127, 131, 133
– of a heat exchanger 51
– of sheet fins 133
– of straight fins 132, 133
Effectiveness of a heat exchanger 51
Eigenfunction 162
Eigentemperature 391, 397
– of an air flow 392
Eigenvalue 162, 167, 352
–, smallest 165
Eigenvalue problem, Sturm-Liouville 162,

163
Electromagnetic waves 503
–, spectrum of 504, 505
Emission 25, 506
– radiation quantities of 509, 511
Emission bands 598

Emission of radiation 506
Emissive power 506, 507, 509, 511, 540
–, directional 514
–, hemispherical spectral 509, 510, 511
–, – of a black body 528, 530, 533
–, – of a grey Lambert radiator 543
–, – of a real body 539
–, hemispherical total 507, 509, 510
–, – of a black body 532, 535
–, – of a real body 540
–, – of the sun 537
Emissivity 26, 538, 540, 597, 600
–, directional spectral 538, 540, 541
–, – normal to the surface 545, 547, 548
–, – of CO2 598
–, – of electrical insulators 546, 547
–, – of gases 597
–, – of metals 549
–, directional total 538, 541
–, – normal to the surface 550
–, hemispherical spectral 538, 541
–, – of electrical insulators 547
–, hemispherical total 538, 541
–, – normal to the surface 546, 548
–, – of CO2 601
–, – of electrical insulators 548
–, – of a gas volume 599
–, – of gases 599, 602
–, – of H2O 602
–, – of metals 548, 550
– of a grey Lambert radiator 543
– of a real body 544
–, spectral 599
–, – of a gas sphere 604, 606
–, – of a gas volume 598
–, total 599
–, – of different materials 569
–, – of a gas volume 599
Empirical equations for heat transfer 338,

370, 384, 446, 468, 495
– during nucleate boiling in free flow 468
– in condensation 446
– in external forced flow 338
– in flow through channels, packed and

fluidised beds 370
– in free flow 384
– in two-phase flow 495
Empirical equations for mass transfer 338,

370
– in external forced flow 338
– in flow through channels, packed and

fluidised beds 370
Enclosure, adiabatic 524, 525, 526
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–, isothermal hollow 525, 528, 576, 580
– with three zones 578
– with two zones 585
Enclosure radiation 524
–, hollow 524, 525, 526
–, spectral intensity of 524, 525, 526
Energy, dissipated 279
–, internal, of a flowing fluid 274
–, radiative 505, 507
Energy balance 274
– for a fluidised bed reactor 365
– for multicomponent mixtures 278, 279,

286
– for pure substances 274, 277
– for the vapour in condensation 443
– of a condenser 444
– of a zone 580
Energy equation 282, 301
– of condensate surface 441
–, enthalpy form of 282, 283, 390
–, temperature form of 282, 283
–, – for incompressible mixtures 285
–, – for incompressible pure substances 284
–, – for mixtures 284, 286
–, – for pure substances 283
Energy quantum 504
Enhancement factor 491
Enthalpy of mixtures 284
Entropy 279
– flux 280
– production 280
Entry flow, thermal 349
Entry length 342
–, hydrodynamic 341
Entry temperature 45, 46
Equation system
– for radiative exchange 587
– for the radiosity 587, 588
Equations
– for the design of a heat exchanger 44
– for the emissivity of gases 601
Equilibrium, hydrostatic 374
–, mechanical 453
–, thermal 453
–, with respect to mass exchange 453
Equilibrium constant 232
Equilibrium line for an absorber 99
Equilibrium radiation 524
Equivalent electrical circuit diagram for

radiative exchange 582
Error function 151, 152, 179
– complement 145, 148, 151, 152, 153
–, integrated 152, 153, 186

Euler’s equation 291, 296
Evaporation 449
–, convective 488, 489, 490
–, – in horizontal tubes 496
Evaporative cooling 87, 88
–, adiabatic 87
Exit temperature 45, 46
Expansion coefficient 23
–, mass 386
–, thermal 378
Exponential integral 191, 192
External forced flow 312, 338
Extinction coefficient 545, 548
– of electrical insulators 545
Extraction 93

Falling film column 437
Feed 96
Fick’s law 70, 225, 227, 229
Fick’s second law 231, 436
Film boiling 461, 471, 493
Film condensation 406, 407
–, laminar 408, 446
–, – on a inclined plate 446
–, – on horizontal tubes 411, 447
–, – on a vertical plate 446
–, – on a vertical tube 446
– of downward flowing vapour 428
– theory 408, 422
–, transition region between laminar

and turbulent 447
–, turbulent 422, 428, 447
–, – of vapour flowing in tubes 447
–, – on a inclined plate 446
–, – on a vertical flat wall 423, 425
–, – on a vertical plate 446
–, – on a vertical tube 423, 425, 446
Film theory 80, 87, 263
Film thickness 410, 427
Fin 34, 127
–, annular 129
–, circular 34
–, disk 133, 134
–, –, hexagonal 133
–, –, rectangular 133, 134
–, –, square 133
–, straight 34, 128
– with lowest material use 131
– with rectangular profile 130
Fin efficiency 35, 127, 131, 133
Fin height, optimal 131
Finite difference method 192, 193
Finite element method 192, 211
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Finned tube bundle 336
Flat plate 7
– heat exchanger 42
Flat wall 5, 8, 9
Flow, adiabatic 390
–, annular 451, 473, 474, 475, 488
–, bubble 451, 473, 474, 475, 488
–, channel 15
–, churn 473, 488
–, compressible 389
–, creeping 290
–, drop 473, 474, 475
–, external 14
–, –, forced 312, 387
–, free 373, 386, 387
–, – on a horizontal cylinder 385
–, – on a horizontal plate 384
–, – on a inclined plate 385
–, – on a sphere 385
–, – on a vertical plate 385
–, – on a vertical wall 379
–, frictionless 253, 291
–, Hagen-Poiseuille 343, 350
–, heterogeneous 482
–, homogeneous 481, 482
–, internal 12
–, –, forced 341
–, laminar 289, 308
–, –, hydrodynamically fully developed 342
–, –, thermally fully developed 344, 346
–, molar 228
–, plug 473, 474, 475, 488
–, radiative 506, 507
–, semi-annular 451, 475
–, single phase 253
–, slug 451, 474, 475
–, spray 451, 473, 474, 475, 488
–, stratified 308, 474, 496
–, – in horizontal tubes 448
–, thermal entry 349
–, thermally and hydrodynamically

developing 354
–, turbulent 289, 308, 325
–, –, wall law for 309
–, two-phase 472
–, – in a heated channel 477
–, – in a horizontal, heated tube 475
–, – in a horizontal, unheated tube 474
–, – in a vertical, heated tube 452
–, – in a vertical, unheated tube 473
–, wavy 474, 475
–, wispy-annular 473
– with phase change 405

Flow along a flat plate, longitudinal 338
–, parallel 313
Flow around a cylinder in crossflow 331, 339
Flow configurations 40, 63
–, comparison between 61
Flow in circular tubes, laminar 341, 371
–, turbulent 355, 370
Flow in non-circular tubes 371
Flow maps 475
Flow near solid walls, turbulent 308
Flow of vapour and condensate, cocurrent

437
Flow over a flat plate 253, 255, 338
Flow over a sphere 333, 339
Flow pattern diagrams 476
Flow patterns 451
– in a horizontal, heated tube 475
– in a horizontal, unheated tube 474
– in a vertical, heated tube 452, 488
– in a vertical, unheated tube 473
Flow through a packing 372
– of spheres 372
Fluctuations, turbulent 305
–, velocity 304
Fluctuation velocity 305
Fluid, ideal viscous 273
–, Newtonian 273
Fluid temperature, average 14
–, mean 15
Fluidisation point 362
Fluidisation velocity, minimum 362
Fluidised bed 341, 357, 361, 363, 365, 373
–, heterogeneous 364
–, homogeneous 363
–, pressure drop in 362
– reactor 365
Flux, molar 228
–, molar production 228
Force, body 264
–, friction 289, 377
–, inertia 289, 377
–, lift 374
–, surface 265, 266
–, total 266
Force balance 342
Forced convection 22, 451
Fourier number 116
– of the difference method 194
Fourier’s law 4, 11, 106, 281
Fraction function 533, 535
Free flow 373, 387
– momentum equation 376
– temperature 12
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Fresnel’s equations 545
Fresnel’s reflectivity, spectral 553
Frequency 504
Friction factor 301, 316, 322, 325, 356
Friction forces 289, 377
Friction velocity 309
Frictional pressure drop 480, 482
– in homogeneous two-phase flow 484
Frictionless flow 253, 291
Froude number 438, 496
Fundamental law, photometric 570
Fundamental law for heat conduction 4
Fusion enthalpy 177

Galilei number 22, 24
Gamma function 145
Gas, grey 609
– hemisphere 599
– radiation 594
– sphere 603, 604
Gauss’ integral theorem 107, 226, 260
Geodetic pressure drop 481
Gibbs’ fundamental equation 279
Global radiation 566
Graetz-Nusselt Problem 350
Grashof number 24, 378
–, modified 379, 387
Greenhouse effect 551
Grey body 541
Grey Lambert radiator 542, 568, 570
Grey radiator 28, 541, 542
Grid 193, 201
–, centred 207
–, square 214, 215

Hagen-Poiseuille flow 343, 350
Harmonic mean 210
Hatta number 240
Heat and mass transfer 253, 405
– in binary mixtures 387
–, influence of turbulence on 304
–, simultaneous 387
Heat capacity, specific 18
Heat capacity flow rate 45
Heat conduction 2, 5, 105
– between two tubes 136
– in a shaped brick 220
–, longitudinal, in a rod 122
–, steady-state 119
–, –, geometric one-dimensional 5, 119
–, transient 140
– with heat sources 119
Heat conduction equation 105, 109, 114

– in cylindrical coordinates 109
– in spherical coordinates 109
– with temperature dependent material

properties 115
Heat exchanger 40, 44
–, adiabatic 45
–, counter crossflow 103
– design 44, 47
– operating characteristic 47, 48
–, types of 40
Heat explosion 189, 190, 191
Heat flow 5
–, linear 110
–, multi-dimensional 134, 172
– reduction in condensation 438
– through a surface element 4
Heat flux 2, 197, 275, 281
–, critical 461, 470
–, –, limit for the 494
–, maximum 461, 462, 470
–, stipulated 219
–, turbulent 306
Heating 159
– of a cuboid 173
– of a cylinder 159, 167, 173
– of a parallelepiped 173
– of a plate 159, 163
– of a semi-infinite body 149, 150
– of simple bodies 159
– of a sphere 159, 167
– of thin walled vessels 37, 39
– of vessels 114
–, ohmic 107
Heating time 170, 174
Heat sources 108, 119, 185, 196
–, homogeneous 186
–, internal 108
–, linear 187
–, point 187, 188
Heat transfer, convective 10, 253, 405
–, types of 449
–, overall 30
Heat transfer
– during convective boiling 452
– during convective evaporation 489
– during film boiling in free flow 465, 471
– during nucleate boiling 448, 452, 489
– – in free flow 465
– – –, general equation for 468
– – –, in a horizontal bank of smooth or

finned tubes 469
– – –, on horizontal copper tubes 469
– – –, of water 466, 468
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– for flow across a circular cylinder 331, 332,
335, 339

– for flow across a finned tube bundle 336
– for flow across a non-circular cylinder 333,

339
– for flow across a smooth tube bundle 335,

340
– for flow along a flat plate 338
– for flow around a sphere 333, 339
– for flow in non-circular tubes 371
– for flow through a packing 372
– – of spheres 372
– for free falling droplets 340
– for laminar flow in circular tubes 371
– for turbulent flow in circular tubes 371
– in boiling mixtures 496
– in compressible flow 396
– in condensation 405
– – of downward flowing vapour 428
– in external forced flow 338
– in flow through channels 370
– in a fluidised bed 365
– in free flow 384
– – on a horizontal cylinder 385
– – on a horizontal plate 384
– – on a inclined plate 385
– – on a sphere 385
– – on a vertical plate 385
– – on a vertical wall 379
– in laminar film condensation 408, 446
–, – on a inclined plate 446
–, – on horizontal tubes 411, 447
–, – on a vertical plate 446
–, – on a vertical tube 446
– in laminar flow on a vertical wall 379
– in laminar flow, thermally fully

developed 346
–, in the transition region between laminar

and turbulent film condensation 447
– in turbulent film condensation 422, 447
–, – of vapour flowing in tubes 447
–, – on a inclined plate 446
–, – on a vertical flat wall 423, 425
–, – on a vertical plate 446
–, – on a vertical tube 423, 425, 446
– in two-phase flow 487, 495
– – during convective boiling in

vertical tubes 495
– – during convective evaporation in

horizontal tubes 496
– – during saturated boiling 495
– – during subcooled boiling 495
– through multi-layer walls 32

– through pipes 32
– through walls with extended surfaces 33
Heat transfer coefficient 10, 15, 112, 253
–, average 14
–, local 10
– of radiation 28
–, overall 30, 31
Heat transfer condition 114, 117, 198
– in the difference method 198, 199, 204,

218
Hemisphere 506, 511
Henry coefficient 231, 233
Henry’s law 92
Heterogeneous flow 482
Heterogeneous model 485
Homogeneous flow 481, 482
Homogeneous model 483
Hookeian behaviour 273
Hookeian body 273
Hour angle 557

Ideal viscous fluid 273
Immiscible liquid 407
Incident intensity 517, 518
–, spectral 515, 517, 518
Indifference point 313
Inert gas 416
Inertia forces 289, 377
Infrared radiation 505
Initial and boundary condition problem 141
Initial condition 111, 160, 231
Injected substances 432
Instability of the explicit difference

method 195, 196
–, numerical 195
Insulator, electrical 545, 546
Integral condition for energy 315
– for mass transfer 315
– for momentum 315
Integral methods 314
Intensity, incident 517, 518
–, incident spectral 515, 517, 518
–, spectral 507, 508, 511, 515, 538, 539
–, total 509, 510, 511, 538, 539
Interface area per volume 97
Interfacial tension 406
Internal energy of a flowing fluid 274
Internal forced flow 341
Inverse transformation 144, 146, 147, 150
–, correspondences for 143, 145, 146
–, term by term 146, 148
Inversion 376
IR radiation 505
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Irradiance 515, 516, 518
– of diffuse solar radiation 566, 568
– of direct solar radiation at the ground 564
– of extraterrestrial solar radiation 556
– of global radiation 566, 567
–, spectral 516, 517, 518, 521
–, – as a result of gas radiation 599
–, – of direct solar radiation

at the ground 564
–, – of extraterrestrial solar

radiation 556, 557, 564
Irradiation 514
–, absorbed part of 518
–, radiation quantities of 515, 515
Isothermal hollow enclosure 525, 528,

576, 580
Isothermal surface 576
Isotherms 3
Isotropic material 4

Kirchhoff’s function 524, 527
Kirchhoff’s law 26, 524, 526, 540
Kronecker-δ 268

Lambert radiator 514, 541
–, grey 542, 568, 570
Lambert’s cosine law 513, 514, 542, 546
Laminar boundary layer 313
Laminar film 408, 446
Laminar flow 289, 308
–, hydrodynamically fully developed 342
–, thermally fully developed 344, 346
Laminar sublayer 311, 312, 326, 328
Laplace constant 456
– for air bubbles 456
Laplace operator 109
Laplace parameter 142
Laplace transform 142, 143, 145
–, differential equation for the 144, 146
Laplace transformation 142, 146, 171, 185
–, inverse 144, 146, 147, 150
–, –, correspondences for 143, 145, 146
–, –, term by term 146, 148
–, object function of 143
Laplace’s differential equation 111, 134
Law from Beer 559, 596
– from Blasius 484, 485, 486
– from Bouguer 559, 596
– from Fick 70, 225, 227, 229
– –, second 231, 436
– from Fourier 4, 11, 106, 281
– from Henry 92
– from Kirchhoff 26, 524, 526, 540

– from Planck 529, 531
– from Raoult 93
– from Stefan-Boltzmann 532
– from Stokes 364
Lévêque solution 353
Lewis number 85, 257, 303
Lewis numbers of gas mixtures 85
Lewis relationship 303, 417
Lewis’ equations 85
Light 504
– scattering 561
–, velocity of 504, 529, 548
Liquid, immiscible 407
Liquid droplets 340
Liquid superheating 449
Local total condensation 439, 442
Lockhart-Martinelli method 485, 487
– parameter 485, 492
Longitudinal pitch 335

Mach number 293, 389, 391
Magnetic field constant 548
Mass balance 226, 227, 260
– for multicomponent mixtures 261, 286
– for pure substances 260
Mass diffusion 105, 222, 231
– equation 222
–, steady-state 234, 238
–, – with catalytic surface reaction 234
–, – with homogeneous reaction 238
–, transient 242
–, – in a semi-infinite solid 243
–, – with one-dimensional mass flow 244
Mass expansion coefficient 386
Mass fraction 66
–, dimensionless 322
Mass, optical 560
–, – of the atmosphere 560
–, –, relative 560
Mass quality 429, 451, 477
Mass transfer 64
– at a catalyst surface 236
–, convective 76, 236, 253, 405
– in external flow 338
– in a fluidised bed 365
– in free flow 386
– in rectification 437
–, overall 64, 91
–, single side 83
–, two-film theory of 91
Mass transfer apparatus 93
Mass transfer coefficient 76, 253
Mass transfer column 97
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Mass transfer theories 80
Material, isotropic 4
–, wet 83
Material balance 94
– for the vapour in condensation 443
– of a condenser 443
Material properties, constant 208
– of solids 110
–, temperature dependent 22, 114, 206,

209, 413
Maximum heat flux 461, 462, 470, 493
Medium, non-isotropic 4
–, quiescent 222
Melting of a solid 177
Mesh size 193
Microconvection 465
Mirrorlike reflection 522, 592
Mixing length 310
– theory 309, 310
Mixing temperature, adiabatic 13
Mixture, binary 263, 387, 435
–, multicomponent 261, 265, 278, 286
Mixtures, enthalpy of 284
Modulus of the difference method 194, 206,

208
Moisture content 83
Molar flow 228
Molar flux 228
Molar mass, average 67
Molar production flux 228
Mole fraction 66
–, average 74
Molecular diffusion 65
Momentum balance 264
Momentum equation 301, 376
Multicomponent mixtures 261, 265,

278, 286
Multiple reflection 553, 566

Navier-Stokes equations 273, 274, 290, 294
Net radiation flow 576, 580
Net radiation method 580
Newton’s second law of mechanics 264
Newtonian behaviour 273
Newtonian fluid 273
–, incompressible 285
Non-circular tubes 333, 339, 371
Non-condensable gases 416
Non-isotropic medium 4
Normal stresses 267
Nucleate boiling 450, 488
– general equation for 468
– in a horizontal bank of smooth

or finned tubes 469
– on horizontal copper tubes 469
– of water 466, 468
–, transition to 487
Nuclei formation, heterogeneous 456
–, homogeneous 456
Nukijama curve 460, 461
Number of transfer units 46
Numerical solution of heat conduction

problems 192
– of transient heat conduction 141
Nusselt number 17, 117, 302, 335
–, end value of 348, 353, 355
–, mean 20, 302, 325, 329, 332
Nusselt numbers
– in laminar tubular flow 355
– in laminar flow, thermally

fully developed 344, 349
Nusselt’s film condensation theory 408, 422
–, deviations from 412
–, – for subcooled condensate 414
–, – for superheated vapour 415
–, – for temperature dependent material

properties 413, 415
–, – for wave formation on the

film surface 413

Oberbeck-Boussinesq approximation 379
Object function 143
Ohmic heating 107
Operating characteristic 47, 48, 63
– for laterally mixed crossflow 59
– of a cocurrent heat exchanger 50
– of a countercurrent heat exchanger 49, 50,

51
Operating line for an absorber 99
– of a boiler 463, 464
Operating point of a boiler 464
Optical mass 560
– of the atmosphere 560
–, relative 560
Optical thickness 595, 596, 604
Overall heat transfer 30
– coefficient 30, 31
– resistance 31, 32, 36, 37
– – of a finned wall 36
– through multi-layer walls 32
– through pipes 32
– through walls with extended surfaces 33
Overall mass transfer 64, 91
– coefficient 92
Ozone 561, 562
Ozone layer, hole in 562
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Packed bed 341, 357, 363, 372
Packed column 94, 97, 357
Packing 94, 372
– of spheres 372
– –, cubic 359
– –, irregular 359
Parallelepiped 173
– with adiabatic surface 173
Partial condensation 439
Partial condenser 435
Particle reference system 68, 229
Particle velocity 363
Péclet number 21, 297
Penetration depth of temperature

fluctuations 158
Penetration theory 86
Phase 1
Phase interface 97
–, temperature at the 439, 441
Phase transition number 180
Photon 504, 506
Pin 34, 127
Planck constant 504, 529
Planck’s radiation law 529, 531
Plate, flat 7, 313, 322
–, flat, with longitudinal flow 253, 338
–, horizontal 384
–, inclined 385
–, vertical 385
Plate heat exchanger 42
Plug flow 473, 474, 475, 488
Poiseuille parabola 341
Polar angle 507
–, of the sun 556, 557, 560
Pool boiling 460
Pore effectiveness factor 241
Power, dissipated 107
–, total 277
Power density 107, 186, 276, 279
–, constant 120
–, temperature dependent 196
–, time dependent 186
Power product 17
Prandtl analogy 326, 328
Prandtl number 20, 297
–, turbulent 327
Pressure, average 269
–, thermodynamic 269
Pressure diffusion 66
Pressure drop in two-phase flow 479
–, acceleration 481
–, frictional 480, 482, 484

–, geodetic 481
Prism 173
Production density 262
Production rate 226
Product solution 161
– for multi-dimensional temperature

fields 172
Promoters 432
Protective radiation shields 590
Pure absorptivity 553
–, spectral 552
Pure crossflow 56, 59, 61
Pure substances 260, 274
Pure transmissivity 553
–, spectral 552

Quality 429, 451, 477
–, real 479
–, thermodynamic 478
–, volumetric 477
Quantities 505
–, directional spectral 505, 506, 507
–, directional total 505
–, hemispherical spectral 505
–, hemispherical total 505, 507
Quantum theory 504, 527

Radiation 505
–, absorption of 25, 517
–, black body 526, 527, 528, 532
– constants 529
– from soot 611
–, global 566
–, hollow enclosure 524, 525, 526
–, infrared 505
– of gases 594
– pathway in mirrorlike reflection 592, 593
– receiver 577, 581
–, reflection of 522
–, scattered 558
–, solar 520, 522, 555
–, –, diffuse 558, 566
–, –, direct 558, 566
–, –, extraterrestrial 555, 556
– source 516, 577, 581
–, thermal 25
–, transmitted 551
–, ultraviolet 505
Radiation properties of real bodies 537
– of metals 548
Radiation quantities 505
– of emission 509, 511
– of irradiation 515, 517
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Radiation shields 590
Radiative energy 505, 507
Radiative equilibrium 577
Radiative exchange 27, 569
– between black bodies 576
– between grey Lambert radiators 579
–, equation system for 587
–, equivalent electric circuit diagram for 582
– factor 583, 584, 585, 586
– in complicated cases 611
– in an enclosure 581, 585
– in furnaces 611
– in gas filled enclosures 607
– – surrounded by non-isothermal walls 611
– in a hollow cylinder 588
Radiative flow 506, 507
–, absorbed part of 519
Radiative power 506
–, absorbed part of 518
Radiator, diffuse 513, 542
–, diffuse and grey 542
–, grey 28, 541, 542
–, Lambert 514, 541
Radiosity of a surface 580, 583, 587, 609
Raoult’s law 93
Rate constant 235
Rayleigh equation 443
Rayleigh scattering 561, 565
Reaction 108
–, catalytic surface 234
–, chemical 108, 185, 263, 357, 361
–, first order 234
–, heterogeneous 234, 236
–, homogeneous 234, 238
–, n-th order 234
–, nuclear 108, 185
– rate 239, 263
Reactor, catalytic 234, 235
–, fluidised bed 365
Real quality 479
Reciprocity rule for view factors 571, 576
Recovery factor 392
Rectification 94
– column 95
–, continuous 96
Rectifying column 96
Recuperator 44
Reduction in spectral intensity 595
– of heat flow in condensation 438
Reference temperature 397
Reflection 522
–, diffuse 522, 579, 592
–, mirrorlike 522, 592

– of radiation 522
–, specular 592
Reflectivity 26, 522, 540
–, bidirectional 523
–, directional spectral 523, 540
–, directional total 523
–, hemispherical spectral 523
–, hemispherical total 523
–, spectral Fresnel’s 553
Reflux condenser 437
Refractive index 504, 531, 545
–, complex 545, 548
– of electrical insulators 545, 546
– of metals 548, 549
Regenerator 43, 44
Region, fully turbulent 313
–, transition 313, 329, 423, 447
Regression analysis 465
Reradiating wall 577, 581
Resistance
– factor 349, 356, 357, 363, 364, 483
– heating 107
– line 463, 464
–, specific electrical 107, 545, 548
– to heat conduction 6, 7, 31, 137, 139
– to heat transfer 31, 37
– to mass transfer 91, 93
Reynolds analogy 304, 325, 328
Reynolds number 19, 288, 364
–, critical 289
–, influence of 287
Reynolds’ stresses 306, 307, 309
Reynolds’ transport theorem 258, 260

Saturated boiling 489, 495
Scattering 558
–, aerosol 558, 561, 565
– in the atmosphere 558
–, light 561
–, molecular 561
–, Rayleigh 561, 565
Schmidt number 79
–, turbulent 328
Semi-annular flow 451, 475
Semi-infinite bodies in contact 154
Semi-infinite solid 149, 150, 151
Separation of variables 141, 161
Separation parameter 162
Separation point 330
Setting of concrete 186
Shah equation 428
Shape coefficient 139
– factor 139, 140
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Shear stress 268
– at the phase interface 426
Shell-and-tube heat exchanger 41
Sherwood number 79, 302
–, mean 84, 303
Similarity solution 381
Similarity theory 16
Singularity method 135
Sky radiation 566
Slip 478
– factor 478, 481
Slug flow 451, 474, 475
Smog risk 376
Smooth tube bundle 335, 340
Solar constant 536, 556
Solar energy technology 555
Solar energy use 555
Solar radiation 520, 522, 555
– at the ground 564
–, attenuation of 558
–, diffuse 558, 566
–, direct 558, 566
–, extraterrestrial 555, 556
Solar time 557
Solid angle 508
Solid angle element 507
Solid angle unit 508
Solidification 177
– in a hollow sphere 183
– inside of a tube 183
– of flat layers 178
– outside of a tube 183
–, quasi-steady approximation of 181
Solidification time 180, 182
– for cylindrical layers 183, 184
– for flat layers 182
– for spherical layers 184
Solidification speed 179, 184
Solubility of gases in liquids 232
– of gases in solids 233
Solution of linear systems using the

Gauss-Seidel-method 216
– using the SOR-method 216
Sound, velocity of 293, 294, 389, 391
Specific surface area 239
Spectral absorptivity 518, 540
–, directional 518, 519, 540, 541
–, hemispherical 519, 541
Spectral emissivity 538, 599
–, directional 538, 540, 541
–, – normal to the surface 545, 547, 548
–, – of CO2 598
–, – of electrical insulators 546, 547

–, – of gases 597
–, – of metals 549
–, hemispherical 538, 541
–, – of electrical insulators 547
– of a gas sphere 604, 606
– of a gas volume 598
Spectral intensity 507, 508, 511, 515, 538, 539
–, incident 515, 517, 518
– of a black body 526, 528
– of hollow enclosure radiation 524, 525, 526
Spectral irradiance 516, 517, 518, 521
Spectral reflectivity 523
–, directional 523, 540
–, hemispherical 523
Spectral quantities 505
–, directional 505, 506, 507
–, hemispherical 505
Spectrum of electromagnetic waves 504, 505
Specular reflection 592
Sphere 7, 385
–, flow around a 333, 339
–, gas 603, 604
Spheres, packing of 358
–, cubic packing of 359
–, irregular packing of 359
Spherical wall 8
Sphericity 362
Spray flow 451, 473, 474, 475, 488
Stability condition 195, 199
– criteria 208, 209, 212
Stability in boiling 461
– at maximum heat flux 464
Stagger 335
Stagnant boiling 449, 450, 460
Stanton number 21, 22, 326, 327
–, mean 328
Stefan-Boltzmann constant 25, 535
Stefan-Boltzmann law 532
Stefan correction factor 82, 85, 417
Stefan number 180
Stefan problem 178, 184
Stere radians 508
Stokes’ hypothesis 273
Stokes’ law 364
Straight fin 34, 132
Strain tensor 270, 272
Stratification 375
Stratified flow 308, 474, 496
– in horizontal tubes 448
Stream function 320
Stress component 267
– tensor 266, 267, 268
– vector 265, 267
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Stresses, Reynolds’ 306, 307, 309
–, normal 267
–, shear 268
–, – at the phase interface 426
–, tangential 267
–, turbulent 306
Sturm-Liouville eigenvalue

problem 162, 163
Subcooled boiling 488, 495
Subcooled liquid 488
Subcooling of condensate 414
Sublayer, laminar 311, 312, 326, 328
–, viscous 313
Summation rule for view factors 571
Summertime 558
Sun, emissive power of the 537
–, polar angle of the 556, 557, 560
–, surface temperature of the 536, 556
Superheated vapour 415, 488
Superheating vapour 414
Superposition of free and forced flow 387
– of heat sources and sinks 135
Suppression factor 491
Surface, adiabatic 112
–, diffuse radiating 509, 514
–, extended 33, 34
–, isothermal 576
–, radiosity of a 580, 583, 587, 609
Surface area, specific 239
Surface element, irradiated 516
Surface evaporation 449
Surface force 265, 266
Surface reaction, catalytic 234
Surface renewal theory 86
Surface temperature 112
– of the sun 536, 556
System, quiescent 222

Tangential stresses 267
Temperature 2
–, adiabatic mixing 13, 344, 347, 352
–, adiabatic wall 391
– at the boundary 197, 204
– at the fin base 35
– at the phase interface 439, 441
–, Celsius 2
–, dimensionless 116, 322
–, free flow 12
–, reference 397
–, thermodynamic 2, 389, 508
–, transformed 114, 115
–, wet bulb 87, 90
Temperature changes in a cylinder 169

– in heat exchangers 46, 47
– in a plate 169
– in a sphere 169
– in the cooling of a steel plate 202, 205
–, periodic 156
Temperature-concentration diagram for a

binary mixture 436
Temperature dependence of the density 22
– of the material properties 22, 114, 413
Temperature difference 2
–, characteristic 16
–, logarithmic mean 53
–, mean 48
–, – of a cocurrent heat exchanger 53
–, – of a countercurrent heat exchanger 53
Temperature drop 32
– at the interface between

two bodies 112
Temperature field 3, 106
– after a heat explosion 191
– around a linear heat source 190
–, differential equation for the 105, 108, 109
– in a compressible flow 389
– in a semi-infinite solid 154
–, steady-state 110, 134, 214
Temperature fields, planar and spatial 134
–, similar 115
–, transient multi-dimensional 211
Temperature fluctuation 156
–, daily 156
– in combustion engines 156
–, penetration depth of 158
–, seasonal 156
Temperature gradient 3
Temperature inversion 376
Temperature jump at the interface between

two bodies 113
– of the surface temperature 150
Temperature oscillation 158
Temperature pattern at the interface between

two bodies 113
– in fins and pins 127
– in flowing fluids 11
– in a rod 123, 126
– in semi-infinite bodies 155, 158
– in straight fins 130
– in walls 8, 9
Temperature profile 5
– around a linear heat source 190, 191
– around a point heat source 189
– at the wall 11
– for small Biot number 176
– in a cylinder of finite length 173
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– in a cylindrical wall 8
– in a flat wall 8, 9
– in an infinitely long cylinder 168
– in a parallelepiped 173
– in a prism 173
– in a rod 123, 126
– in a sphere 168
– in a spherical wall 8
– in compressible flow 392
– – of ideal gas 395, 396
– in condensation of vapour mixtures 436
– in free flow 377, 382
– in heating or cooling of a plate 164, 171
– of a thermally and hydrodynamically

developing flow 354
Temperature variation, normalised 50
Temperature waves in semi-infinite

bodies 158
Tensor, deformation velocity 272
–, strain 270, 272
–, stress 266, 267, 268
–, trace of 268
–, unit 268
Theory of electromagnetic waves 545,

546, 548
Thermal boundary layer 254, 255, 296, 298
– of multicomponent mixtures 298
Thermal conductance 6
Thermal conductivity 4, 6, 18, 36
–, average 6, 8, 36
–, harmonic mean of 210
–, temperature dependent 121
– tensor 282
–, turbulent 307
Thermal diffusion 66
Thermal diffusivity 20, 109, 110
–, turbulent 307
Thermal entry flow 349
Thermal expansion coefficient 378
Thermal penetration coefficient 151, 155
Thermal power 2
Thermal radiation 25, 503, 504
–, emission of 506
Thermal resistance 6
Thermally and hydrodynamically

developing flow 354
Thermodynamic pressure 269
Thermodynamic quality 478
Thermodynamic temperature 2, 389, 508
Thickness, film 410
–, optical 595, 596, 604
Thomson’s equation 454
Time, central European 557

–, contact 86
–, dimensionless 116
Total absorptivity, directional 519, 541
–, hemispherical 519, 522, 541
Total condensation, local 439, 442
Total emissivity 538, 599
–, directional 538, 541
–, – normal to the surface 550
–, hemispherical 538, 541
–, – normal to the surface 546, 548
–, – of CO2 601
–, – of electrical insulators 548
–, – of gases 599, 602
–, – of H2O 602
–, – of metals 548, 550
– of a gas volume 599
Total force 266
Total intensity 509, 510, 511, 538, 539
Total power 277
Total quantities 505
–, directional 505
–, hemispherical 505, 507
Total reflectivity, directional 523
–, hemispherical 523
Transfer capability of a heat exchanger

45, 47, 54
– in counter and cocurrent flow 50, 54
–, dimensionless 46, 53
Transition region 313, 329
– between laminar and turbulent

condensation 423, 447
Transition to nucleate boiling 487
Transmissivity 26
–, directional spectral 597
–, pure 553
–, –, spectral 552
–, spectral 551, 558
–, – as a result of Rayleigh scattering 561
–, – of the absorption by ozone 563
–, – of the absorption by water vapour 563
–, – of the atmosphere 559, 561, 562
–, – of glass 551
Transparent body 550
Transport, convective 406
–, diffusion 406
Transverse pitch 334
Tridiagonal system 203, 204
Tube arrangement 334
– for a bundle of smooth tubes 340
– in crossflow 334
– –, aligned 334, 335
– –, staggered 334, 335
Tube bank, horizontal 412
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Tube bundle condenser 421, 430
Tube bundles in crossflow 334
Tube in crossflow 330, 335
Turbidity formula 562
Turbulence influence on heat transfer 304
– on mass transfer 304
Turbulence models 305
Turbulent core 311
Turbulent diffusion 65
– coefficient 307
Turbulent diffusional flux 306
Turbulent film 422, 428, 447
Turbulent flow 289, 308, 325
–, boundary layer equations for 306
– in circular tubes 355
– near solid walls 308
–, wall law for 309
Turbulent heat flux 306
Turbulent region, fully 313
Turbulent stresses 306
Turbulent thermal conductivity 307
Turbulent thermal diffusivity 307
Turbulent viscosity 307
Two-film theory 91
Two layer model 326
Two-phase flow 472
– in a heated channel 477
– in a horizontal, heated tube 475
– in a horizontal, unheated tube 474
– in a vertical, heated tube 452, 488
– in a vertical, unheated tube 473
–, heat transfer regions in 487
–, heterogeneous 482
–, heterogeneous model of 485
–, homogeneous 481, 482
–, –, dynamic viscosity of 484
–, –, frictional pressure drop in 484
–, homogeneous model of 483
–, pressure drop in 479
–, –, acceleration 481
–, –, frictional 480, 482
–, –, geodetic 481
Two-phase mixture, density of 480
Types of condensation 406
– of heat exchanger 40
– of heat transfer 449
– of mass transfer 64

Ultraviolet radiation 505
Unit, astronomical 555
Unit tensor 268
UV radiation 505

Vapour bubble, spherical 453
Vapour bubbles, formation of 453
–, frequency of 456, 458, 459
Vapour content, volumetric 477
Velocity, average mass 68
–, average molar 68, 223
–, fluctuation 305
–, friction 309
–, gravitational 68, 223
–, minimum fluidisation 362
– of light 504, 529, 548
– of sound 293, 294, 389, 391
–, particle 363
Velocity boundary layer 292, 293, 295
Velocity distribution in the turbulent

boundary layer 312
Velocity fluctuations 304
Velocity profile 293
– in compressible flow 392
– – of ideal gas 395
– in free flow 377, 382
–, laminar 308, 341
–, logarithmic 311
– of a thermally and hydrodynamically

developing flow 354
– on a flat plate 322
–, turbulent 308, 341
View factor 570, 571, 574
–, modified 578
View factors, calculation of 572
–, collection of 573, 574
–, reciprocity rule for 571, 576
–, summation rule for 571
Viscosity 18
–, bulk 269, 280
–, dynamic 273
–, – of homogeneous two-phase flow 484
–, kinematic 20
–, turbulent 307
Viscous dissipation 280, 297
Visible light region 504
Void fraction 239, 358, 359
Volumetric quality 477
Volumetric vapour content 477

Wall, cylindrical 8
–, flat 5, 8, 9
–, multi-layer 32
–, reradiating 577, 581
–, spherical 8
Wall condition 317
Wall law for turbulent flow 309
Wall superheating, ideal 500
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Wall temperature, calculation of 32
–, adiabatic 391
Wave formation on film surfaces 413
Wavelength 157, 503, 504
Wavelength distribution of radiative

energy 505, 507, 508
Waves, electromagnetic 503
Wavy flow 474, 475
Wet bulb temperature 87, 90
Wet material 83
Wetting 407
Wetting media 497

Wetting tension 407
Wien’s displacement law 530
Winding factor 239
Window, atmospheric 563
Winkler process 361
Wispy-annular flow 473

Zone 577, 587
–, energy balance of a 580
Zone method 611
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