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Preface

Following the death of Claude Berge in June 2002, the Equipe Combinatoire, the
group founded by Berge in 1975 under the aegis of the C.N.R.S. and in liaison with
the Université Pierre et Marie Curie, decided to organise a conference on graph
theory in his memory. This meeting, GT04, took place in July 2004. It was the
first international conference on graph theory to be held in the Paris region since
the memorable meeting in Orsay in 1976, which coincided with Claude’s fiftieth
birthday. The conference was held in the heart of the Latin Quarter, on one of the
campuses of the Université Pierre et Marie Curie, the Couvent des Cordeliers (the
former site of a Franciscan convent). Our aim was not only to celebrate the life
and achievements of Claude Berge, but also to organise a conference in the line of
continuity of the international meetings on graph theory and related topics which
had been held successfully in Marseille-Luminy at five-year intervals since 1981.

GT04 brought together many prominent specialists on topics upon which
Claude Berge’s work has had a major impact, such as perfect graphs and matching
theory. The meeting attracted over two hundred graph-theorists, roughly half of
whom contributed to the scientific program. Plenary talks were presented by Maria
Chudnovsky, Vašek Chvátal, Gérard Cornuéjols, András Frank, Pavol Hell, László
Lovász, Jaroslav Nešetřil, Paul Seymour, Carsten Thomassen and Bjarne Toft.

Generous support for the conference was provided by the Université Pierre
et Marie Curie, CNRS (Centre National de la Recherche Scientifique), INRIA
(Institut National de Recherche en Informatique et en Automatique), the European
network DONET (Discrete Optimization NETwork), the Délégation Générale pour
l’Armement, France Télécom, ILOG and Schlumberger.

This volume includes contributions from many of the participants. All papers
were refereed, and we are pleased to thank those colleagues who assisted us in this
task. A short section of open problems presented during the meeting and edited
by Rama Murty concludes the book.

The Editors

Adrian Bondy
Jean Fonlupt
Jean-Luc Fouquet
Jean-Claude Fournier
Jorge Ramı́rez Alfonśın



Claude Berge



Graph Theory

Trends in Mathematics, 1–9
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Claude Berge – Sculptor of Graph Theory

Bjarne Toft

Abstract. Claude Berge fashioned graph theory into an integrated and signi-
ficant part of modern mathematics. As was clear to all who met him, he was
a multifaceted person, whose achievements, however varied they might seem
at first glance, were interconnected in many ways.

1. Introduction

My purpose here is to present an account of some of Claude Berge’s activities and
achievements, mainly with regard to his role as a graph theorist. The information
upon which I draw is mostly available in published sources. But the account is
also personal, in that I shall include some of my own experiences and impressions.
As a doctoral student in July 1969, I attended the Colloquium on Combinatorial
Theory and its Applications in Balatonfüred at Lake Balaton. For me, this was like
a dream, with its unique Hungarian charm and hospitality, the presence of many
young people and of famous mathematicians like Berge, Erdős, Rényi, Rota, Turán
and van der Waerden, to mention just a few. This was my first encounter with
Berge, and I admired his French intellectual style, if at a distance. I also learned
from him – at this meeting Berge emphasized the importance of hypergraphs,
then still something of a novelty. Again in Hungary, at the meeting in Keszthely
in June 1973 to celebrate Erdős’ 60th birthday, I got to know Berge better. I gave
my first conference lecture there, in the same afternoon session as Berge – I was
nervous talking about hypergraph colouring with Berge sitting in the front row.
But Berge was gracious and reassuring – he was without pretention, invariably
putting those in his company at ease. As regards his mathematics, too, Berge had
a distinctive manner, attempting always to combine the general with the concrete,
and to see things in a general mathematical framework. He introduced hypergraphs
not merely to generalize, but also to unify and simplify.

2. The late fifties and early sixties

The period around 1960 seems to have been particularly important and fruitful for
Berge. Through the book Théorie des graphes et ses applications [2] he had estab-
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lished a mathematical name for himself. In 1959 he attended the first graph theory
conference ever in Dobogokő, Hungary, and met the Hungarian graph theorists. He
published a survey paper on graph colouring [4]. It introduced the ideas that soon
led to perfect graphs. In March 1960 he talked about this at a meeting in Halle
in East Germany [6]. In November of the same year he was one of the ten found-
ing members of the OuLiPo (Ouvroir de Littérature Potentiel). And in 1961, with
his friend and colleague Marco Schützenberger, he initiated the Séminaire sur les
problèmes combinatoires de l’Université de Paris (which later became theEquipe
combinatoire du CNRS). At the same time Berge achieved success as a sculptor [7].

3. Games, graphs, topology

Games were a passion of Claude Berge throughout his life, whether playing them –
as in favorites such as chess, backgammon and hex – or exploring more theoretical
aspects. This passion governed his interests in mathematics. He began writing on
game theory as early as 1951, spent a year at the Institute of Advanced Study
at Princeton in 1957, and the same year produced his first major book Théorie
générale des jeux à n personnes [1]. Here, one not only comes across names such
as von Neumann and Nash, as one would expect, but also names like König, Ore
and Richardson. Indeed, the book contains much graph theory, namely the graph
theory useful for game theory. It also contains much topology, namely the topo-
logy of relevance to game theory. Thus, it was natural that Berge quickly followed
up on this work with two larger volumes, Théorie des graphes et ses applications
[2] and Espaces topologiques, fonctions multivoques [3]. Théorie des graphes et ses
applications [2] is a master piece, with its unique blend of general theory, theo-
rems – easy and difficult, proofs, examples, applications, diagrams. It is a personal
manifesto of graph theory, rather than a complete description, as attempted in the
book by König [31]. It would be an interesting project to compare the first two ear-
lier books on graph theory, by Sainte-Laguë [34] and König [31] respectively, with
the book by Berge [2]. It is clear that Berge’s book is more leisurely and playful
than König’s, in particular. It is governed by the taste of Berge and might well be
subtitled ‘seduction into graph theory’ (to use the words of Rota from the preface
to the English translation of [13]). Among the main topics in [2] are factorization,
matchings and alternating paths. Here Berge relies on the fundamental paper of
Gallai [25]. Tibor Gallai is one of the greatest graph theorists – he is to some
degree overlooked – but not by Berge. Gallai was among the first to emphasize
min-max theorems and LP-duality in combinatorics. In [26] one finds for the first
time in writing the result (in generalized form) that the complement of a bipartite
graph is perfect, attributed by Gallai to König and dated to 1932. But also [2]
contains a theorem characterizing the size of a maximum independent set of ver-
tices in a bipartite graph, which is easily seen to be equivalent to the fact that the
complement of a bipartite graph is perfect. To notice this non trivial, yet simple,
result seems to me to be a major step in the direction of the perfect graph con-
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jectures. The 1959 book Espaces topologiques, fonctions multivoques [3] deals with
general topology, focussing on what is useful in game theory, optimization theory
and combinatorics. It includes a theory of multivalued functions, as stated in the
title. And as Berge explains, when combinatorial properties of these functions are
studied, it may be called a theory of oriented graphs. One of the theorems of [3] is
known as Berge’s Maximum Theorem. It deals with multivalued continuous map-
pings. It is very useful in economics and well known among economists. Also here,
Berge manages to focus on the essential and useful. At The History of Economic
Thought Website (http://cepa.newschool.edu/het/) the topic Continuity and all
that is divided into four sections. Two of these deal with Berge’s theory. They are
called Upper and lower semicontinuity of correspondences and Berge’s Theorem.
In the 1960’s two more books by Berge appeared, namely Programmes, jeux et
réseaux de transport [8] and Principes de combinatoire [13]. In the preface to the
English version of [13], which came out in 1971, Gian-Carlo Rota said:

Two Frenchmen have played a major role in the renaissance of Com-
binatorics: Berge and Schützenberger. Berge has been the more prolific
writer, and his books have carried the word farther and more effectively
than anyone anywhere. I recall the pleasure of reading the disparate ex-
amples in his first book, which made it impossible to forget the material.
Soon after that reading, I would be one of the many who unknotted them-
selves from the tentacles of the Continuum and joined the then Rebel
Army of the Discrete. What are newed pleasure is it to again read Berge
in the present book!
Both books [2] and [3] are now classics, and can still be purchased (in English)

as new Dover Paperbacks. In 1970 Berge helped to give graph theory a new aspect
by extending it to hypergraphs in the book Graphes et hypergraphes [15]. The
purpose was to generalize, unify and simplify. The term hypergraph was coined by
Berge, following a remark by Jean-Marie Pla, who had used the word hyperedge
in a seminar. In 1978 Berge enriched the field once more with his lecture notes
Fractional Graph Theory [17]. The purpose was again the same – and conjectures
changed into elegant theorems in their fractional versions. The 1970 book was
later split into two and appeared in the most recent versions as Graphs [20] and
Hypergraphs [19]. In addition to his books Berge edited many collections of papers,
some of which have been very influential, such as Hypergraph Seminar [16] and
Topics on Perfect Graphs [18].

4. Perfect graphs

In 1960 Berge wrote a survey paper [4] on graph colouring, a topic not treated in
depth in [2]. The paper was reviewed in Mathematical Reviews (MR 21, 1608) by
Gabriel Andrew Dirac. Berge moved here into an area that Dirac knew like the
back of his hand – and where Dirac had thought a lot about how to best prove
and present results. Also Dirac, with his Hungarian background, did graph theory
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in the style of König, and he always maintained that König’s book was the best
source for learning graph theory. So Dirac was not particularly fond of Berge’s
more leisurely style, and his review of [4] was quite critical. Seen from today’s
perspective it seems too harsh. Here the first hints of perfect graphs appeared. As
Berge wrote (my translation):

We shall here determine certain categories of graphs for which the chro-
matic number equals the clique number.

In 1976 I attended the conference in Orsay to celebrate Berge’s 50th birth-
day. I asked him about his reaction to Dirac’s negative review. He said that he was
just surprised and that he was on good terms with Dirac both before and after
1960. This was his nature – he took no offence. And Dirac invited Berge to visit
Aarhus as one of the first graph theory guests after his appointment in Denmark
in 1970. Dirac did his utmost to please Berge and make the visit a success, as I
witnessed with my own eyes. I can still see the backs of Berge and Dirac, under
an umbrella, disappearing in the fog and rain down Ny Munkegade in Aarhus. In
1959 in Dobogokő, Berge met Gallai, who told him about his work about graphs
in which every odd cycle has two non-crossing chords, to be published in [27].
Berge saw immediately the importance of Gallai’s work and included some of it
in [4]. Berge called a graph in which every cycle has a chord a ‘Gallai graph’ (the
terminology commonly used now is ‘chordal graph’ or ‘rigid circuit graph’) and
proved the new result (in today’s terminology) that such a graph is perfect, and he
also included a proof of the theorem of Hajnal and Surányi that their complements
are perfect – this they had presented in Dobogokő [29]. Berge called line-graphs of
bipartite multigraphs ‘pseudo-Gallai graphs’. Such graphs, and also their comple-
ments, are shown to be perfect. One property of these graphs is that all odd cycles
of length at least 5 have chords. Berge remarked that, to establish perfectness,
it is not enough to require only that all odd cycles of length at least five have
chords, as the complement of the 7-cycle shows. He attributed this observation
to A. Ghouila-Houri. Berge lectured about all these ideas at the colloquium on
graph theory in Halle in East Germany, in March 1960, and wrote an extended
abstract [6]. Here he defined a ‘Gallai graph’ as in [4] and a ‘semi-Gallai graph’ as
one in which each odd cycle of length at least five has a chord. Berge mentions the
result of Hajnal and Surànyi [29] that the complement of a Gallai graph is perfect
and his own result that a Gallai graph itself is perfect. Moreover he notices that
bipartite graphs, line-graphs of bipartite graphs and a class of Shannon graphs
are perfect semi-Gallai graphs. At the end he says that it would seem natural to
conjecture that all semi-Gallai graphs are perfect, but he then again exhibits the
Ghouila-Houri counterexample (the complement of the 7-cycle). Berge does not
mention complements of line-graphs of bipartite graphs nor complements of bipar-
tite graphs in the Halle abstract. The abstract [6] is in German. Berge had given
it the title (English translation) Colouring of Gallai and semi-Gallai graphs. The
referee apparently asked Gallai if this was appropriate, and Gallai in his modest
style answered that there was a misunderstanding and that he had never looked
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thoroughly at these classes. So Dirac, involved with the editing, on his way to take
up a professorship at Ilmenau in East Germany, suggested the change of title to the
one the paper ended up with. In [21] Berge mentions that the strong perfect graph
conjecture was stated in Halle in March 1960 at the end of his lecture in the form,
that if a graph and its complement are both semi-Gallai graphs (such graphs are
now called Berge graphs) then the clique number and chromatic number are equal.
It is clear from the abstract that this was certainly a natural question with which
to end the lecture, but it also seems clear that the focus was not yet on the con-
jecture. In 1961 Berge spent the summer at a symposium on combinatorial theory
at the RAND Cooperation in Santa Monica in California. There he presented his
results, including some new ones on unimodular graphs, and he had many fruitful
discussions, among others with Alan J. Hoffman. It seems likely that the whole
English terminology, as we know it, was created here. On his return to Paris Berge
wrote an English version of the theory of perfect graphs, and he sent it to Hoffman
for comments. This manuscript, with some improvements suggested by Hoffman,
Gilmore and McAndrew, appeared as Some classes of perfect graphs ([9], [12] and
[14]). The 1963 paper [9] consists of lecture notes from the Indian Statistical In-
stitute in Calcutta, which Berge visited in March and April 1963. Berge himself
had at some point forgotten the existence of these published notes – they are not
mentioned in the preprint [21], where he had some difficulties explaining why these
important ideas from 1960 had to wait so long to get published. So he was pleased
when I sent him a copy of [9]. I discovered [9] in the fine library of the University
of Regina, Canada, in 1993. The published lecture notes are however not rare and
are present in several libraries around the world. So my bet on the first publication
using the term perfect graph and mentioning explicitly the perfect graph conjec-
tures is Berge’s paper [9] from 1963. This paper contains the whole basic theory
of perfect graphs in the still commonly used terminology. Now, 40 years later the
strong perfect graph conjecture has finally been proved [24]. In addition to [6], an
abstract [10] from a meeting in Japan in September 1963 is often mentioned as an
original source for perfect graphs. However the abstract is very short (nine lines)
and mentions neither perfect graphs nor the perfect graph conjectures. At the
meeting in Japan Berge did however distribute a manuscript. Judging from titles
and from [21] this was the manuscript later to be presented and discussed at Rav-
ello, Italy, in June 1964, and published in 1966 [11]. This paper (in French) contains
the strong perfect graph conjecture and acknowledges Paul C. Gilmore’s influence.

5. Problems

Berge was influential as an author of books, conference lecturer, thesis director
and seminar organizer – the weekly seminar held at the Maison des sciences de
l’homme on boulevard Raspail was legendary – but he was less so as a problem
poser. His problems are relatively few and sometimes seem accidental. The book
[2] has an appendix with fourteen unsolved problems. It might be interesting to
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examine these more closely with modern eyes. There are exceptions to this. In
particular the perfect graph conjectures have had a huge impact. There are at
least two other widely known circles of problems due to Berge: The Berge Path
Partition Conjectures and Berge’s Hypergraph Edge Colouring Problems. See [23]
or [30] for a more detailed description. Finally, Berge edited for a period (1960–64)
a magazine column [5] of brain teasers. It might also be interesting to take a closer
look at these (unfortunately I did not have access to this material).

6. OuLiPo

The OuLiPo is a group of French writers and intellectuals, who experiment with
literature. When one writes literature, poetry or music, one imposes on oneself
certain restrictions. The main idea of this workshop for potential literature is to
make these restrictions of a more precise mathematical nature (as Schönberg did
in music and Lewis Carroll did in some of his writings). Martin Gardner wrote two
columns on OuLiPo in Scientific American in the late 1970’s, later to be completely
rewritten and included in the book [28]. He said that

the most sophisticated and amusing examples of literary word play have
been produced by the whimsical, slightly mad French group called the
Oulipo.
There are some books in English about and by the group, among them [32]

and [33]. In both these books Berge is prominently featured. Berge was active in
OuLiPo and wrote several articles, responsible as he was for “combinatory ana-
lysis”. His most well-known OuLiPo work is the short storyWho killed the Duke
of Densmore? [22], which is a classical crime story, where the solution however
requires knowledge of the Theorem of Hajós, characterizing interval graphs (Berge
had heard Győrgy Hajós lecture about this theorem in Halle in March 1960).
With this theorem it is possible to see that the set of events cannot have taken
place as described by the participants, because the overlap graph of the events as
described is not an interval graph. So at least one of the participants must be lying.
But only the removal of one particular vertex of the corresponding overlap graph
changes this into an interval graph, so this reveals the culprit. Berge pays tribute
to the author Lewis Carroll and also to Carroll’s alter ego, the mathematician
C.L. Dodgson, both of whom are represented in the Duke’s library. In an interval
graph the sequence of events cannot be fully determined since a suitable sequential
ordering of the intervals may be reversed. One of the persons in the short story
contemplates the possibility of writing a novel with a set of events corresponding
to an interval graph, where the two possible orderings in time would give two
different solutions to the plot. Maybe Berge himself tried to create such an in-
teresting (possible?) sequence of events? Berge spoke to Adrian Bondy of his wish
to write a detective story in which the reader is the murderer, or the author, or
the publisher. . . In [33] there are other interesting contributions, for example the
ultimate lipogram, a book where not only one letter, but all letters have been
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avoided (where however the list of contents, footnotes, index, errata list, foreword
and afterword, not being part of the text of the book itself, do use letters!), and a
paper by the famous author Raymond Queneau (who had attended Berge’s graph
theory seminars around 1960), based on Hilbert’s axioms for plane geometry, where
point has been replaced by word and line by sentence, thus providing a foundation
for literature (Hilbert told us that the words point and line are undefined and may
be called anything). The OuLiPo group surely had/have a lot of fun, and their
meetings, which take place inpublic, are packed. This was in particular so for their
meeting in Berge’s memory, at which he was officially ‘excused’ for his absence.

7. Sculpture

In our modern everyday life we are surrounded and bombarded by (too) beautiful,
flawless pictures, sculptures and designs. In this stream Claude Berge’s sculptures
catch our attention, with their authenticity and honesty. They are not pretending
to be more than they are. Berge catches again something general and essential, as
he did in his mathematics. The sculptures may at first seem just funny, and they
certainly have a humorous side. But they have strong personalities in their unique
style – you come to like them as you keep looking at them – whether one could live
with them if they came alive is another matter! The book Sculptures multipètres
[7] gives a good impression of Berge’s early sculptures, made partly from stones he
found in the Seine. It was prefaced by Philippe Soupault, a well-known surrealist
writer.

8. Conclusion

Claude Berge’s greatest scientific achievement is that he gave graph theory a place
in mathematics at large by revealing and emphasizing its connections to set theory,
topology, game theory, operations research, mathematical programming, econom-
ics and other applications. The influence came mainly through his books, but
also via his lectures, discussions at conferences and seminars, and of course very
strongly through his many students. He generalized, unified, simplified, and com-
bined in a unique way the general and the concrete. He will for a long time remain
an inspirational force. So let us continue to play games and enjoy graph theory
Claude Berge style!
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matiques 138, Gauthier-Villars (Paris) 1957.
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c© 2006 Birkhäuser Verlag Basel/Switzerland

k-path-connectivity and mk-generation:
an Upper Bound on m

M. Abreu and S.C. Locke

Abstract. We consider simple connected graphs for which there is a path of
length at least k between every pair of distinct vertices. We wish to show that
in these graphs the cycle space over Z2 is generated by the cycles of length at
least mk, where m = 1 for 3 ≤ k ≤ 6, m = 6/7 for k = 7, m ≥ 1/2 for k ≥ 8
and m ≤ 3/4 + o(1) for large k.

Keywords. k-path-connectivity, cycle space, k-generation.

1. Introduction

For basic graph-theoretic terms, we refer the reader to Bondy and Murty [5]. All
graphs considered are simple (without loops or multiple edges). For a graph G, we
use V (G) for the vertex set of G, E(G) for the edge set, and ε(G) = |E(G)|. For a
set X ⊆ V (G), G[X ] denotes the subgraph of G induced by X . For a path P , the
length of P is ε(P ). If P has ends x and y, we call P an (x, y)-path. For u, v ∈ V (P )
with u preceding v on P , P [u, v] denotes the subpath of P from u to v. For a pos-
itive integer k, an (x, y : k)-path is an (x, y)-path of length at least k. A simple
connected graph is k-path-connected if between every pair of distinct vertices, there
is an (x, y : k)-path. It is easy to see that every maximal 2-connected subgraph of a
k-path-connected graph is itself k-path-connected, and we may therefore restrict
our study to graphs which are 2-connected and k-path-connected. Given a sub-
graph H of G, dH(x, y) will denote the distance in H between x and y (i.e., the
length of the shortest (x, y)-path in H). Recall that κ(G) is the (vertex) connec-
tivity of G and that N(x) is the neighborhood of a vertex x ∈ V (G).

A cycle is a connected, 2-regular graph. For a cycle C, the length of C is ε(C).
We use the term k+-cycle to refer to a cycle of length at least k. Given x, y ∈ V (C),
if dC(x, y) = max{dC(x′, y′) : x′, y′ ∈ V (C)} then x and y are said to be antipodal

The authors would like to thank the ‘Equipe Combinatoire’ Paris 6 and CNRS for the generous
support to attend GT04 conference.
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vertices of C. If ε(C) is even there exists a unique antipodal for each vertex of C
and an edge joining two antipodal vertices is called a diameter of C. If ε(C) is odd
there exist exactly two antipodals for each vertex of C and an edge joining two
antipodal vertices is called a near-diameter of C. We use the standard notation
(v1, . . . , vt) for the cycle C with edges vivi+1 for i = 1, . . . , t and the edge vtv1. This
notation induces a natural orientation for the cycle from which we may denote by
C[vi, vj ] the path on C with edges vsvs+1 for s = i, i+1, . . . , j−1 mod ε(C); and
by C−[vi, vj ] the path on C with edges vsvs−1 for s = i, i−1, . . . , j +1 mod ε(C).
Let {x, y} and {x′, y′} be two pairs of all distinct vertices of C. Then {x′, y′} is
said to be a separating pair for the pair {x, y} if the vertices appear on C in the
order xx′yy′ or xy′yx′. A chord is an edge joining two non consecutive vertices of
a cycle. Two chords are said to be crossing if the end vertices of one is a separating
pair for the end vertices of the other. The circumference of a graph is the length
of its longest cycle.

The cycle space, Z(G), of a graph G is the vector space of edge sets of
Eulerian subgraphs of G. A graph G is k-generated if the cycle space of G over
Z2 is generated by the cycles of length at least k. A 2-connected graph G is a
k-generator if it is both k-generated and (k − 1)-path-connected. In [8] it was
established that any 2-connected graph which contains a k-generator must itself
be a k-generator.

The relation between long paths, cycle space, k-path-connectivity and k-
generation of a graph has been studied by several authors. In particular, Bondy
[4] conjectured that if G is a 3-connected graph with minimum degree at least d
and at least 2d vertices, then every cycle of G can be written as the symmetric
difference of an odd number of cycles, each of whose lengths are at least 2d − 1
and Hartman [6] proved that if G is a 2-connected graph with minimum degree d,
where G is not Kd+1 if d is odd, then the cycles of length at least d + 1 generate
the cycle space of G. Locke [8, 9] partially proved Bondy’s conjecture and gave
ideas to extend the results presented. Furthermore, Locke [7, 8] gave another proof
of Hartman’s theorem and together with Barovich [3] generalized that result by
considering fields other than Z2. Locke and Teng in [10] give some results on odd
sums of long cycles in 2-connected graphs.

The families of graphs studied by Locke in [7, 8] turned out to be k-path-
connected and (k + 1)-generated. So in [9] he conjectured:

Conjecture 1.1. For some constant m, 0 < m ≤ 1, every k-path-connected graph
is mk-generated.

From [2] we recall that a k-path-connected graph G (other than K1) must
have a cycle of length at least k + 1 in each block. Thus, G is t-generated for
t ≤

⌊
k+3
2

⌋
. This immediately improves the lower bound, so every k-path-connected

graph is
⌊

k+3
2

⌋
-generated, for k ≥ 1. While noting that any (2k − 3)+-cycle is a

k-generator, implies that we only need to study k-path-connected graphs which
contain cycles of length less than or equal to 2k − 4.
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Locke in [9] proved that m = 1 for 3 ≤ k ≤ 5 and Abreu, Labbate, Locke in
[1] proved the following result:

Theorem 1.2. Let G be a 2-connected, 6-path-connected graph with |V (G)| ≥ 9 and
minimum degree at least 3. Then G is 6-generated.

In the next section we complete the proof of the following:

Theorem 1.3. Let G be a 2-connected, 6-path-connected graph. Then G is 6-gene-
rated.

The dodecahedron is an 18-path-connected graph but is only 17-generated
[9], so it will not be possible to prove in general that a k-path-connected graph is
k-generated.

However, in Section 3 we present a family of graphs that is (4a + 3)-path-
connected and (3a+3)-generated but not (3a+4)-generated for a ≥ 1. This family
allows us to prove

Theorem 1.4. Let G be a 2-connected, k-path-connected graph, and k ≥ 7. Then
G is mk-generated where

(i) m = 6/7 for k = 7, and
(ii) m ≤ 3/4 + o(1) for large k.

2. 6-path-connected graphs

We first recall some results from [1].

Theorem 2.1. Let G be a 2-connected, (k − 1)-path-connected graph with a cycle
C of length 2k − 4, then G is k-generated if one of the following holds:
(1) G is at least 3-connected,
(2) There are no diameters of C in E(G),
(3) There is exactly one diameter of C in E(G),
(4) There are at least three diameters of C in E(G).

Theorem 2.2. Let G be a 2-connected, (k − 1)-path-connected graph with a cycle
C of length 2k − 5, then G is k-generated if one of the following holds:
(1) There are no near-diameters of C in E(G),
(2) There is exactly one near-diameter of C in E(G),
(3) There are at least three pairwise crossing near-diameters of C in E(G).

Now we present a couple of new results on 2-connected, (k−1)-path-connected
graphs with a cycle of length at least (2k − 4).

Lemma 2.3. Let G be a 2-connected, (k − 1)-path-connected graph with a cycle
C = (v1, v2, . . . , v2k−4) of length (2k − 4). If there is a diameter v1vk−1 and a
(vi, vj)-path P , internally disjoint from C where v1vk−1 separates {vi, vj}, then
either |i− j| = k − 2 and P is a diameter or G is a k-generator.
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Proof. If |i − j| = k − 2 and P is a diameter, there is nothing to prove. We
may assume that j > i. Let C1 = C[v1, vi] ∪ P ∪ C[vj , v1] and C2 = C[vi, vj ] ∪ P .
ε(C1)+ε(C2) = ε(C)+2ε(P ) = 2k−4+2ε(P ). If ε(P ) > 1, then ε(C1)+ε(C2) ≥ 2k,
so max{ε(C1), ε(C2)} ≥ k. If ε(P ) = 1, then ε(C1) + ε(C2) = 2(k − 1) and either
ε(C1) = ε(C2) = k − 1, in which case |i − j| = k − 2 and P is a diameter,
or max{ε(C1), ε(C2)} ≥ k. In both cases in which P is not a diameter, we can
conclude that there is C3 ∈ {C1, C2} such that ε(C3) ≥ k. Therefore C ∪ P is
k-generated.

Let C4 = C[v1, vi] ∪ P ∪ C−[vj , vk−1] ∪ vk−1v1 and C5 = C−[v1, vj ] ∪ P ∪
C[vi, vk−1]∪ vk−1v1. ε(C4)+ ε(C5) = ε(C)+2ε(P )+2 = 2k− 4+2+2ε(P ). Since
ε(P ) ≥ 1, max{ε(C4), ε(C5)} ≥ k and therefore, there is C6 ∈ {C4, C5} such that
ε(C6) ≥ k. Hence C ∪ P ∪ {v1vk−1} is k-generated.

Now we need to prove that if P is not a diameter, H = C ∪ P ∪ {v1vk−1} is
(k − 1)-path-connected. For x, y ∈ V (H) − V (C), with x �= y, there are x′, y′ ∈
V (C) such that there is an (x, x′)-path P1 in H and an a (y, y′)-path P2 in H
with ε(C[x′, y′]) ≥ k − 2 or ε(C−[x′, y′]) ≥ k − 2, and with P1 disjoint from P2.
Therefore, either ε(P1 ∪ C[x′, y′] ∪ P2) ≥ k or ε(P1 ∪ C−[x′, y′] ∪ P2) ≥ k. Thus,
there is an (x, y : k)-path in H .

For x ∈ V (H)− V (C) and y ∈ V (C), there is an x′ ∈ V (C) and an (x, x′)-
path P3 with either ε(P3 ∪ C[x′, y]) ≥ k − 2 or ε(P3 ∪ C−[x′, y]) ≥ k − 2, which
gives us an (x, y : k − 1)-path in H .

For x, y ∈ V (C) with x and y not antipodal on C, there already is an (x, y :
k− 1)-path in C ⊆ H . Hence, we need only consider the case in which x and y are
antipodal. If {x, y} �= {v1, vk−1}, we may assume, without loss of generality, that
v1xvk−1y appear in this order on C and either C−[x, v1]∪v1vk−1∪C[vk−1, y] ≥ k−1
or C[x, vk−1] ∪ v1vk−1 ∪C−[v1, y] ≥ k − 1. Hence there is an (x, y : k − 1)-path in
C ∪ P ∪ {v1vk−1}.

If {x, y} = {v1, vk−1} we may assume, without loss of generality, that x = v1

and y = vk−1 and then either C[v1, vi] ∪ P ∪ C−[vj , vk−1] ≥ k − 1 or C−[v1, vj ] ∪
P ∪ C[vi, vk−1] ≥ k − 1. Giving an (x, y : k − 1)-path in H .

Therefore when P is not a diameter, C∪P∪{v1vk−1} is (k−1)-path-connected
and k-generated, hence a k-generator. �
Lemma 2.4. Let G be a 2-connected, k-path-connected graph with a cycle C =
(v1, v2, . . . , v2k−4) of length 2k− 4. If G contains two consecutive diameters of C,
then G is a k-generator.

Proof. Without loss of generality, suppose these two consecutive diameters are
v1vk−1 and v2vk. Suppose there is a (vi, vj)-path P crossing {v2, vk−1}. Thus P
crosses at least one of v1vk−1 or v2vk. By the previous lemma, ε(P ) = 1, and
the unique edge e of P is a diameter of C. But then, e /∈ {v1vk−1, v2vk}, and
{e, v1vk−1, v2vk} is a set of three diameters of G, which by Theorem 2.1 implies
that G is a k-generator.

Hence, we may assume that G − {v2, vk−1} is disconnected. Since G is k-
path-connected, there is a (v2, vk−1 : k)-path Q in G. If V (Q)∩ {v3, . . . , vk−2} = ∅,
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then Q∪C[v2, vk−1] is a (2k− 3)+-cycle, hence a k-generator. However if V (Q)∩
{v3, . . . , vk−2} �= ∅, then V (Q)∩ {vk, . . . , v2k−4, v1} = ∅, and Q ∪ C[vk−1, v2] is a
(2k − 3)+-cycle, hence a k-generator. Thus, G is a k-generator. �

We now return to the discussion of a 2-connected, 6-path-connected graph G
which is not a 6-generator. If G contains a 9+-cycle, then G is a 6-generator. We
may therefore assume G has no 9+-cycle.

Suppose G has an 8-cycle C = (v1, v2, . . . , v8). By Theorem 2.1, we may
assume that G has exactly two diameters, and by Lemma 2.4 we may assume,
without loss of generality, that these diameters are v1v5 and v3v7. From Lemma
2.3, no chord, which is not itself a diameter, can cross a diameter. Also, by Lemma
2.3, there can be no (vi, vj)-path P internally-disjoint from C if {vi, vj} separates
{v1, v5} or if {vi, vj} separates {v3, v7}.

Suppose that there is an edge xy in G− V (C). Then, we can find a (vi, vj)-
path P containing xy, and internally disjoint from C, with vi �= vj . Since P
cannot cross either diameter, without loss of generality, {vi, vj} ⊆ {v1, v2, v3}. But
then, P ∪ C contains a 9+-cycle, contradicting our hypotheses about G. Hence,
ε(G − V (C)) = 0. Suppose there is a vertex x ∈ V (G) − V (C). Then, we can
find a (vi, vj)-path P containing x, and internally disjoint from C, with vi �=
vj . Since P cannot cross either diameter, {vi, vj} ⊆ {v2m+1, v2m+2, v2m+3}, for
some m ∈ {0, 1, 2, 3}, subscripts modulo 8. Since G can have no cycle of length
exceeding 8, {vi, vj} = {v2m+1, v2m+3}, and ε(P ) = 2. Note that N(x) ⊆ V (C),
and thus N(x) ⊆ {v1, v3, v5, v7}. If N(x) �= {v2m+1, v2m+3}, then (reversing the
direction along the cycle, if necessary) we may assume that xv2m+5 ∈ E(G),
and v2m+1xv2m+5 is a path of length exceeding one and crossing the diameter
v2m+3v2m+7, in contradiction to our assumption. Thus, |N(x)| = 2.

We now have a characterization of G. The graph G is an eight cycle C =
(v1, v2, . . . , v8), together with two crossing diameters, v1v5 and v3v7 and possibly
some vertices of degree two joined to {v2m+1, v2m+3}, for various choices of m,
and also possibly some chords {v2m+1v2m+3}, again for various choices of m. But,
this graph has no (v1, v5)-path of length at least 6. This violates our assumptions
about G.

This concludes all of the cases in which the circumference of G is 8, leaving
only the cases where the circumference of G is 7, since a (k − 1)-path-connected
graph must contain a k+-cycle. Suppose that G has a vertex v of degree 2, with
N(v) = {x, y}. There is an (x, y : 6)-path P in G, and P ∪ xvy is an 8+-cycle.
Therefore, we may assume that δ(G) ≥ 3.

Let C = (v1, v2, . . . , v7) be a 7-cycle in G and let Rm = {v ∈ V (G) :
d(v, V (C)) = m} be the set of vertices of G at distance exactly m from the
cycle C. In previous work [1], we showed that |R2| = 0 (or G contains an 8+-
cycle) and that ε(G[R1]) = 0, (or G contains an 8+-cycle). But then, for any
v ∈ R1, H = C ∪ {v} ∪ {vw : w ∈ N(v)} is a 6-generator. Hence, |R1| = 0, and
V (G) = V (C).
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What remains is to check the Hamiltonian graphs on 7 vertices to see that
any of which are 6-path-connected are also 6-generated. In order to do this we first
prove some general results.

Lemma 2.5. Let G be a graph, C a cycle of length 2k − 5 in G and S a set of
chords of C in G. Then C + S is (k − 1)-path-connected if and only if for every
antipodal pair of vertices {vi, vi+k−3} there is a chord vsvt ∈ S separating the pair
{vi, vi+k−3}.
Proof. Given a pair {vi, vi+k−3}, if there is chord vsvt that separates it, without
loss of generality we may assume that the vertices appear in the order vivsvi+k−3vt

on C. Then the paths P1 = C[vi, vs] ∪ vsvt ∪C−[vt, vi+k−3] and P2 = C−[vi, vt] ∪
vtvs ∪ C[vs, vi+k−3] satisfy ε(P1) + ε(P2) = ε(C) + 2 = 2k − 3, implying that
max{ε(P1), ε(P2)} ≥ k− 1. Therefore there is path P3 ∈ {ε(P1), ε(P2)} which is a
(vi, vi+k−3 : k − 1)-path.

For the converse, let {vi, vi+k−3} be a pair of vertices for which there is no
chord in S separating it. This implies that C + S − {vi, vi+k−3} is disconnected
with exactly two components A1 and A2. For i = 1, 2, let Hi = Ai ∩ (C + S).
Then the longest path in Hi for i = 1, 2 has length k − 2. Therefore C + S is not
(k − 1)-path-connected. �

Let H be a 2-connected graph and s, t ∈ V (H). The graph H is said to be
{s, t}-near-(k − 1)-path-connected if k ≥ 3, there is an (s, t : k − 2)-path in H ,
and for every pair of distinct vertices x, y ∈ V (H) with {x, y} �= {s, t}, there is
an (x, y : k − 1)-path in H . If H is also k-generated, then it is said to be an
{s, t}-near-k-generator. In [1] the following lemma was proved.

Lemma 2.6. Let G be a 2-connected, (k − 1)-path-connected graph that contains
an {s, t}-near-k-generator H. Then, G contains a k-generator (and then G is a
k-generator).

Remark 2.7. In a cycle C = (v1, . . . , v2k−5) of length 2k − 5 there are (x, y :
k − 1)-paths among all pairs of non-antipodal vertices x, y ∈ C. A near-diameter
e = vivi+k−3 separates every pair of antipodal vertices {vj, vj+k−3} except for
the pairs p1 = {vi, vi+k−2} and p2 = {vi−1, vi+k−3}. Then any chord e′ which is
different from the near-diameters e1 = vivi+k−2 and e2 = vi−1vi+k−3 and which
crosses e, also crosses at least one of e1, e2. Therefore C + e + e′ is either a k-
generator or a pi-near-k-generator for some i = 1, 2.

Remark 2.8. In particular if C = (v1, . . . , v7) is a 7-cycle and if a 2-chord crosses
a 3-chord (near-diameter) in C, we have a near-6-generator. To prove this, sup-
pose without loss of generality that the 2-chord is the edge e = v2v7 and the
3-chord is the edge e′ = v1v4. The cycles C1 = (v1, v2, v3, v4, v5, v6, v7), C2 =
(v2, v3, v4, v5, v6, v7) and C3 = (v1, v2, v7, v6, v5, v4) generate the cycle space of
C + e + e′, so it is 6-generated and by Remark 2.7 it is near-5-path-connected.

Let G be 6-path-connected Hamiltonian graph on 7 vertices and let C =
(v1, . . . , v7) be a 7-cycle in G. The possible near-diameters of C are of the form
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ej = vjvj+3, subscripts modulo 7. We record the vector F = (f1, f2, . . . , f7),
where fj = 1 if ej ∈ E(G) and fj = 0 if ej /∈ E(G). We list a representative
of the equivalence class [F ] of F under the dihedral group D7, acting on C. We
write C + F for the graph whose vertex set is {v1, v2, . . . , v7} and whose edges are
the edges of C, together with the edges {ej : fj = 1}. Those patterns which force
three pairwise crossing near-diameters are marked with the symbol

√
, as are those

with zero or one near-diameters (hence covered by Theorem 2.2). For each of the
remaining patterns we study the addition of chords which are not near-diameters
to C + F and in each case we get either a 6-generator or a graph which is not 6-
path-connected. Each pattern is marked with the corresponding observation below
in which it is studied.

F |[F ]|
(0, 0, 0, 0, 0, 0, 0) 1

√

(1, 0, 0, 0, 0, 0, 0) 7
√

(1, 1, 0, 0, 0, 0, 0) 7 Obs. 2.9
(1, 0, 1, 0, 0, 0, 0) 7 Obs. 2.10
(1, 0, 0, 1, 0, 0, 0) 7 Obs. 2.11
(1, 1, 1, 0, 0, 0, 0) 7

√

(1, 1, 0, 1, 0, 0, 0) 14 Obs. 2.12
(1, 1, 0, 0, 1, 0, 0) 7 Obs. 2.9
(1, 0, 1, 0, 1, 0, 0) 7 Obs. 2.10

F |[F ]|
(1, 1, 1, 1, 0, 0, 0) 7

√

(1, 1, 1, 0, 1, 0, 0) 14
√

(1, 1, 0, 1, 1, 0, 0) 7 Obs. 2.12
(1, 1, 0, 1, 0, 1, 0) 7 Obs. 2.12
(1, 1, 1, 1, 1, 0, 0) 7

√

(1, 1, 1, 1, 0, 1, 0) 7
√

(1, 1, 1, 0, 1, 1, 0) 7
√

(1, 1, 1, 1, 1, 1, 0) 7
√

(1, 1, 1, 1, 1, 1, 1) 1
√

Observation 2.9. Let F1 = (1, 1, 0, 0, 0, 0, 0). By Remark 2.8 and Lemma 2.5 the
graphs C + F1 + v2v7, C + F1 + v4v6, C + F1 + v1v3 and C + F1 + v3v5 are 6-
generators or near-6-generators. On the other hand for F2 = (1, 1, 0, 0, 1, 0, 0), by
Lemma 2.5 C + F2 + {v2v4, v5v7, v1v6} is not 5-path-connected, since there is no
(v1, v5 : 5)-path, therefore neither is C + F1 + {v2v4, v5v7, v1v6}.
Observation 2.10. Let F3 = (1, 0, 1, 0, 0, 0, 0). By Remark 2.8 and Lemma 2.5 the
graphs C + F3 + v2v7, C + F3 + v5v7, C + F3 + v2v4 and C + F3 + v3v5 are 6-
generators. On the other hand C +F3 +{v1v3, v4v6, v1v6} is not 6-path-connected.
For F4 = (1, 0, 1, 0, 1, 0, 0) we have that C + F4 + {v1v3, v1v6} is not 6-path-
connected, since there is no (v3, v6 : 6)-path, while by Remark 2.8 C + F4 + v4v6

is a near-6-generator.

Observation 2.11. Let F5 = (1, 0, 0, 1, 0, 0, 0). By Remark 2.8 and Lemma 2.5 the
graphs C + F5 + v1v6, C + F5 + v2v7 and C + F5 + v3v5 are 6-generators or near-
6-generators. On the other hand, by Lemma 2.5 C + F5 + {v1v3, v2, v4, v4v6, v5v7}
is not 5-path-connected, since there is no (v1, v4 : 5)-path.

Observation 2.12. Let F6 = (1, 1, 0, 1, 0, 0, 0) and note that C + F6 is contained in
C + F0 + v4v7 where F0 = (1, 0, 0, 0, 0, 0, 0). Therefore C + F6 is a 6-generator, as
well as C + F7 and C + F8 with F7 = (1, 1, 0, 1, 1, 0, 0) and F8 = (1, 1, 0, 1, 0, 1, 0),
which contain C + F6.

This completes the proof of Theorem 1.3 �
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3. The M+
r,s,t family

Let X = {u1, u2, u3, u4} be the vertices of a copy of K4. We replace each edge uiuj

by a path Pij , where ε(P13) = ε(P24) = r, ε(P12) = ε(P34) = s, ε(P14) = ε(P23) =
t, with 1 ≤ r < s < t. The resulting graph, Mr,s,t, has only seven cycles. Four of
these cycles are of length r+s+ t and the other three have lengths: 2r+2s, 2r+2t
and 2s+2t. Any basis for the cycle space uses at least one cycle of length r+s+ t,
and thus Mr,s,t is (r + s + t)-generated but not (r + s + t + 1)-generated. The
cycle P12 ∪ P23 ∪ P34 ∪ P14 contains a (ui, ui+1)-path of length at least 2s + t, for
i = 1, 2, 3, 4 (with u5 = u1). The cycle P13∪P23∪P24∪P14 contains a (u1, u3)-path
of length at least 2s + t, and a (u2, u4)-path of length at least 2s + t. The graph
Mr,s,t is at most (min{2s + t, 2t + r})-path-connected. However, in general, the
path-connectivity of Mr,s,t is strictly less than this. For example, an M1,a+1,2a+1

can’t be more than (4a + 2)-path-connected since for x ∈ V (P23) at distance a
from u2 on P23, the longest (x, u4)-path in M1,a+1,2a+1 has length 4a + 2.

We would like to modify Mr,s,t to yield a graph with higher path-connectivity
but which is not (r+s+t+1)-generated. Let M+

r,s,t = Mr,s,t∪Q14∪Q23, where Q14

is a (u1, u4)-path and Q23 is a (u2, u3)-path, each of length t, internally disjoint
from each other and from Mr,s,t. The graph M+

r,s,t has only 19 cycles. Eight of
these cycles have length r + s + t, two have length 2t, one has length 2r + 2s, four
have length 2t+2r and four have length 2t+2s. Any basis for the cycle space uses
at least one cycle of length r + s + t, and thus M+

r,s,t is (r + s + t)-generated but
not (r + s + t + 1)-generated.

Lemma 3.1. For a ≥ 1, the graph M+
1,a+1,2a+1 is (4a + 3)-path-connected.

Proof. For distinct vertices x, y ∈ X . As before we realize that we can always find
an (x, y : 4a + 3)-path in M+

1,a+1,2a+1.
For x ∈ V (Pij) we have (x, ui : 4a + 3)-paths and (x, uj : 4a + 3)-paths

making use of the (ui, uj : 4a + 3)-path found in the previous case, together with
a segment of Pij . Similarly for x ∈ V (Qij).

For x ∈ V (M+
1,a+1,2a+1)−X but x /∈ V (Pij)∪V (Qij) there are (x, ui : 4a+3)-

paths and (x, uj : 4a+ 3)-paths using two paths of length 2a+ 1. For example, for
x ∈ V (P23), P23[x, u3] ∪Q−

23 ∪ u2u4 ∪ P−
14 is an (x, u1 : 4a + 3)-path.

For distinct vertices x, y ∈ V (M+
1,a+1,2a+1) − X . If x, y ∈ V (Pij) we may

assume without loss of generality that the vertices appear in the order ui, x, y, uj

in M+
1,a+1,2a+1. Consider the path P1 = Pij [ui, x] ∪ Pik ∪ Pkl ∪ Plj ∪ P−

ij [uj , y],
where Pkl is a path of length a + 1, and Pik and Plj are paths of length 2a + 1.
Then P1 is an (x, y : 4a + 3)-path. Similarly for x, y ∈ V (Qij)

If x ∈ V (Pij), y /∈ V (Pij) and ε(Pij) = a + 1. Then if y ∈ V (Pkl) with
ε(Pkl) = a + 1, let P2 = P−

ij [ui, x] ∪ Pik ∪ ukul ∪ Pjl ∪ P−
kl [y, ul] where Pik and Pjl

are paths of length 2a + 1. Then P2 is an (x, y : 4a + 3)-path. If y ∈ V (Pik) with
ε(Pik) = 2a + 1, let P3 = Pij [x, uj ] ∪ Pjl ∪ ului ∪ Qik ∪ P−

ik [uk, y] where Pjl is a
path of length 2a + 1. Then P3 is an (x, y : 4a + 3)-path. Similarly if y ∈ V (Qik)
or y ∈ V (Qjl) or y ∈ V (Pjl) with ε(Pjl) = 2a + 1.
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If x ∈ V (Pij), y /∈ V (Pij) and ε(Pij) = 2a + 1. Then if y ∈ V (Qij), let
P4 = P−

ij [ui, x] ∪Pik ∪Pkl ∪P−
jl ∪Q−

ij [uj, y] where Pik and Pjl are paths of length
a+1 and Pkl is a path of length 2a+1. Then P4 is an (x, y : 4a+3)-path. Similarly
if y ∈ V (Pkl) or y ∈ V (Qkl). Analogously if x ∈ V (Qij) and y /∈ V (Qij). �

Proof of Theorem 1.4. (i) For a = 1, M+
1,a+1,2a+1 is a 7-path-connected graph

which is only 6-generated, hence m = 6/7 for k = 7.
(ii) We have found a family of graphs which are (4a + 3)-path-connected and
(3a+3)-generated but not (3a+4)-generated. Since these graphs are also (4a+2),
(4a+1) and (4a)-path-connected, we have, for 0 ≤ b ≤ 3, graphs which are (4a+b)-
path-connected and (3a+3)-generated but not (3a+4)-generated. Now, 3a+3

4a+b has
a limit of approximately 3

4 , and approaching 3
4 as a increases, hence m ≤ 3/4+o(1)

for large k. �
We may now conclude that for k ≥ 8 every k-path-connected graph is mk-

generated for some constant m, with 1
2 ≤ m ≤ 3

4 .
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Automated Results and Conjectures on
Average Distance in Graphs

Mustapha Aouchiche and Pierre Hansen

Abstract. Using the AutoGraphiX 2 system, a systematic study is made on
generation and proof of relations of the form

bn ≤ l ⊕ i ≤ bn

where l denotes the average distance between distinct vertices of a connected
graph G, i one of the invariants: diameter, radius, girth, maximum, average
and minimum degree, bn and bn are best possible lower and upper bounds,
functions of the order n of G and ⊕ ∈ {−, +×, /}. In 24 out of 48 cases simple
bounds are obtained and proved by the system. In 21 more cases, the system
provides bounds, 16 of which are proved by hand.
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1. Introduction

Classical books on graph theory, such as Berge’s Graphs and Hypergraphs [4],
present many lower and upper bounds on graph invariants (i.e., numerical func-
tions of graphs which do not depend on the numbering of vertices or edges) in
terms of the graph’s number n of vertices and/or m of edges. So it appears to be
a naturel challenge to see if such bounds can be discovered automatically [8] by
some computer system, (and if not, if such a system can provide substantial help,
e.g., by discovering extremal graphs for a given expression).

Recently, using the AutoGraphiX 2 (AGX 2) software [1, 5, 6], a systematic
study has been performed [2] on automated generation of bounds of the following
form:

bn ≤ i1 ⊕ i2 ≤ bn

where bn and bn are expressions depending only on the order n of the graphs under
study, i1 and i2 are graph invariants and ⊕ belongs to {+,−,×, /}. Moreover, it
is requested that the bound bn and bn be best possible in the strong sense that
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for all n (except very small values, due to border effects) there exists a graph
for which the bound is tight. The proposed form generalizes formulae of the well-
known Nordhaus-Gaddum [12] form, in that i1 and i2 are independent invariants
instead of the same one in G and its complement G and that the operations −
and / are considered in addition to + and ×.

In the present paper we report in detail on results of the comparison of average
distance in graphs with six other invariants: diameter, radius, girth, maximum,
average and minimum degree.

These results fall into the following categories:

(a) Automated complete results: structural conjectures on the family of extremal
graphs, algebraic expression of the bound, automated proof of this bound’s
validity and tightness (it turns out that such results are frequently obtained
in a simple way; they are therefore referred to as observations);

(b) Automated complete conjectures: structural conjectures and algebraic rela-
tions obtained as above, but without automated proof. Some conjectures are
proved by hand (and referred to as propositions), others remain open;

(c) Semi-automated conjectures: structural conjectures obtained automatically,
but algebraic relations derived from them by hand; of those some are proved
and some remain open;

(d) Automated structural conjectures, for which algebraic expressions have not
been found (or do not exist);

(e) No results, as the (presumably) extremal graphs do not present any regularity.

In order to enable an informed evaluation of the results obtained, they are all
presented. Simple ones are briefly listed. Their main interest is that they can
enrich the database of relations used in the automated proofs. Other results are
given with full proofs or with indications about how to prove them if a previous
proof technique carries over.

The paper is organized as follow: each of the next six sections presents a
comparison of average distance with diameter, radius, girth, maximum, average
and minimum degree respectively. Brief conclusions are given in the last section.
Observations made by AGX 2 are collected in the Appendix.

2. The diameter

The diameter D of a graph G = (V, E) is defined by D = max{d(u, v), u, v ∈ V },
where d(u, v) is the distance between u and v in G. A diametric path in G is a
path between two vertices u and v such that d(u, v) = D.

Automated results obtained by AGX 2, in 6 cases out of 8, when comparing
the average distance l and the diameter D are given in Table 2 of the Appendix.

The following proposition was obtained automatically by AGX 2 and then
proved by hand.
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Proposition 2.1. For any connected graph on at least 3 vertices,

D − l ≤ 2n− 4
3
·

The bound is attained if and only if the graph is a path.

Proof. Let G be a connected graph of diameter D and average distance l, and H
a subgraph of G induced by a diametric path. Let

σ =
∑

u,v∈V

d(u, v) and σH =
∑

u,v∈V (H)

d(u, v),

where V (H) is the set of vertices of H . It is easy to see that

σ ≥ σ(H) = D · (D + 1) · (D + 2)/6

and
l ≥ D · (D + 1) · (D + 2)/(3n(n− 1)).

Thus
D − l ≤ D − D·(D+1)·(D+2)

3n(n−1)

≤ 3n(n−1)·D−D·(D+1)·(D+2)
3n(n−1)

≤ −D3−3D2+(3n(n−1)−2)·D)
3n(n−1) ·

Easy algebraic manipulations show that this last expression is an increasing func-
tion of D. It thus reaches its maximum if and only if D = n − 1, i.e., if G is a
path. �

Before stating the next conjecture, let us define the family of graphs called
bugs [10]. A bug Bugp,k1,k2

is a graph obtained from a complete graph Kp by
deleting an edge uv and attaching paths Pk1 and Pk2 at u and v, respectively. A bug
is balanced if |k1−k2| ≤ 1. (In a bug, n = p+k1+k2 and m = p(p−1)

2 +k1 +k2−1).

Conjecture 2.2. Among all connected graphs on at least 3 vertices, D/l is maximum
for a balanced bug.

3. The radius

The eccentricity of a vertex v in a graph G = (V, E) is defined by ecc(v) =
max{d(u, v), u ∈ V }, where d(u, v) is the distance between u and v in G. The
radius of G is the minimum of its eccentricities, i.e., r = min{ecc(v), v ∈ V }.

Automated results obtained by AGX 2, in 4 cases out of 8, when comparing
the average distance l and the radius r are given in Table 2 of the Appendix.

The following proposition was obtained as a conjecture using AGX 2 in au-
tomated mode, and then proved by hand.
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Proposition 3.1. For any connected graph on at least 3 vertices,

l/r ≤ 2− 2
n
·

The bound is attained if and only if the graph is a star.

Proof. If G is a connected graph of radius r, it contains a spanning tree T of the
same radius r(T ) = r. It is obvious that l(T ) ≥ l, where l(T ) and l denote the
average distance in T and G respectively, with equality if and only if G ≡ T . So
l/r is maximum for a tree and we can assume that G is a tree.

Let mi denote the number of vertex pairs in G at distance i, for i = 1, . . . , D
where D is the diameter of G. We have:

l = 2 · (m1 + 2m2 + 3m3 + · · ·+ DmD)/(n(n− 1))
l ≤ (2n− 2 + D((n(n− 1))− 2n + 2))/(n(n− 1))
l ≤ D − 2(D − 1)/n.

Then we obtain:

l/r ≤ D

r
− (D − 1)

r
· 2
n
·

Since G is assumed to be a tree, we have [4] D = 2r or D = 2r − 1, thus

l/r ≤ 2− 4
n

+
2
rn

which is largest for r = 1 and the bound follows.
Now, let G be a tree such that: l/r = 2− 2

n · Because of

l/r = 2− 2/n ≤ D/r − (D − 1)/r · 2/n ≤ 2− 2/n

necessarily
D/r − (D − 1)/r · 2/n = 2− 2/n

which implies D/r = 2 and D − 1 = r, i.e., D = 2 and r = 1. The star is the
unique tree satisfying these conditions. �

Before stating the conjectures about l− r and l/r, let us define the family of
graphs called bags [10]. A bag Bagp,k is a graph obtained from a complete graph
Kp by replacing an edge uv with a path Pk (as Pk has k − 2 internal vertices, for
bags n = p + k− 2 and m = p(p−1)

2 + k− 2). A bag is odd if k is odd, otherwise it
is even.

Conjecture 3.2. For given n ≥ 3, among all connected graphs on n vertices,

l − r ≥
{ −n(n−2)

4(n−1) if n is even,
8−(n−1)3

4n(n−1) if n is odd.

The bound is attained for a cycle if n is even and for a bag Bag4,n−2 if n is odd.

Conjecture 3.3. For given n ≥ 3, among all connected graphs on n vertices, l/r is
minimum for bags.
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Figure 1. Graphs obtained by AGX 2 when maximizing l − r.

When studying the maximum of l− r, AGX 2 obtained the trees represented
in Figure 1. They are not sufficiently regular to derive a conjecture.

4. The girth

The girth of a connected graph G is the length of its smallest cycle. If G contains
at least a cycle, 3 ≤ g ≤ n, and if not g =∞.

Automated results obtained by AGX 2, in 2 cases out of 8, when comparing
the average distance l and the girth g are given in Table 2 of the Appendix.

Before stating the next result, we need to define the Soltés graph [13]. Let u
be an isolated vertex or one end vertex of a path. Let us join u with at least one
vertex of a complete graph. The graph so obtained is the Soltés graph PKn,m, also
called the path-complete graph, where n is its order and m its size. There is exactly
one PKn,m for given n and m such that 1 ≤ n − 1 ≤ m ≤ n(n−1)

2 . For given n
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and m, PKn,m maximizes (non uniquely) the diameter D [11] and (uniquely) the
average distance l [13].

Proposition 4.1. For any connected graph with a finite girth g,

if n is even n2

4(n−1) − n

if n is odd n+1
4 − n

}
≤ l − g ≤ (n + 1)(n2 − 10n + 12)

3n(n− 1)
·

The lower bound is attained if and only if the graph is a cycle, and the upper bound
if and only if the graph is a triangle with an appended path.

Proof. The lower bound: Let G be a graph of girth g and H a subgraph of G
induced by a smallest cycle in G. Let σ and σ(H) denote the sum of all distances
in G and H respectively. We have σ ≥ σ(H), so

l − g ≥ 2σ(H)
n(n− 1)

− g.

If we denote the right-hand side of this last expression by f(g), we have

f(g) =

{
g3−4(n−1/2)2g

4n(n−1) if g is odd,
g3−4n(n−1)g

4n(n−1) if g is even.

For 3 ≤ g ≤ n, f is maximum if and only if g = n, and we have:

f(n) =
{

n2/(4(n− 1))− n if n is odd,
(n + 1)/4− n if n is even.

The cycle is the only graph for which g = n.
The upper bound: If G is a connected graph on n vertices and m edges with

a finite girth g, we have m ≥ n. Moreover, the deletion of an edge increases the
average distance in a graph, so

max
m≥n

(l − g) = max
m=n

(l − g) ≤ max
m=n

l− 3.

According to [13] and subject to m = n, l is maximum for a PKn,n graph, which is a
triangle with an appended path. Then easy computations lead to the formula. �
Remark 4.2. As the average distance of a graph is at most (n + 1)/3, which
is reached for a path on n vertices, and the girth is at least 3, a trivial upper
bound on l− g is an = (n− 8)/3. The bound is not sharp. However the difference
between an and the upper bound, say bn, given in Proposition 4.1 is very small
and asymptotically null. Indeed

an − bn =
n− 8

3
− (n + 1)(n2 − 10n + 12)

3n(n− 1)
=

4
n
− 2

n− 1
.

Proposition 4.3. For any connected graph with a finite girth g,

l + g ≤
{

n2

4(n−1) + n if n is even,
5n+1

4 if n is odd.

The bound is attained if and only if the graph is a cycle.
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Proof. As the deletion of an edge increases the average distance and G must con-
tain a cycle, the maximum of l + g is attained for a unicyclic graph. Let G be such
a graph. If g = n, G is a cycle and we have the bound. Let us assume that g < n
and consider a vertex u of degree at least 3 on the unique cycle of G (such a vertex
exists because G is unicyclic and not a cycle). Let v and w be neighbors of u such
that v is on the cycle and w is not. Consider the graph H constructed from G by
deleting the edge uv and adding the edge vw. It is clear that g(H) = g + 1, where
g(H) denotes the girth of H . It is easy to see that for any pair (x, y) of vertices

d(x, y)− 1 ≤ dH(x, y) ≤ d(x, y) + 1.

where d and dH are the distance functions in G and H respectively, with the first
inequality strict for at least the n− 1 common pairs of adjacent vertices between
G and H . This implies

l(G) < l(H) + 1.

Therefore

l(G) + g(G) < l(H) + g(G) + 1 = l(H) + g(H).

Iterating this operation leads to a cycle Cn. So, for any unicyclic graph G

l(G) + g(G) ≤ l(Cn) + g(Cn),

with equality if and only if G ≡ Cn. The bounds are then easily checked. �

Proposition 4.4. For any connected graph with a finite girth g,

l

g
≤ n3 − 7n + 12

9n(n− 1)
·

The bound is attained if and only if the graph is a triangle with an appended path.

Proof. This proposition can be proved exactly as the upper bound of l − g. �

Conjecture 4.5. For any connected graph with a finite girth g,

l

g
≥
{ n

4(n−1) if n is even,
n+1
4n if n is odd.

The bound is attained if and only if the graph is a cycle.

Conjecture 4.6. For any connected graph with a finite girth g,

l · g ≤
{

n3

4(n−1) if n is even,
n2+n

4 if n is odd.

The bound is attained if and only if the graph is a cycle.
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5. The maximum degree

Automated results obtained by AGX 2, in 4 cases out of 8, when comparing the
average distance l and the maximum degree ∆ are given in Table 2 of the Appendix.
The following propositions were first obtained automatically as conjectures and
then proved by hand.

Proposition 5.1. For any connected graph on at least 3 vertices,

∆ + l ≤ n + 1− 2
n
·

The bound is attained if and only if the graph is a star.

Proof. Recall that a comet is a star with a path appended at one of its pending
vertices.

(i) Any graph G maximizing ∆ + l must be a tree, with a vertex u such that
d(u) = ∆. Indeed assume not; then G must contain a cycle, at least one edge
of which is not incident to u. Removing this edge keeps ∆ unchanged and
strictly increases l, a contradiction.

(ii) The average distance in a tree with maximum degree ∆ is maximized by a
comet. Let T be a tree with a vertex u such that d(u) = ∆. Let v be a vertex
of degree d(v) ≥ 3 (if any) farthest from u and not equal to u. Let r and s be
pending vertices on two paths from u to r through v and from u to s through
v in T . Denote by P1 (resp. P2) the path joining v to r (resp. v to s) in T .
Let l(P1) (resp. l(P2)) denote the length of P1 (resp. P2). Let P denote the
path from r to s in T , with a length l(P1) + l(P2).
(ii-a) Consider then the following transformation on T : disconnect path P1

at v and reconnect it at s, thus obtaining a path P ′ from v to r with a
length l(P ′) = l(P ). Let us show this increases the total distance and
hence the average distance, between pairs of distinct vertices of T . Let
d(V1) denote the sum of all distances between vertices of V1 ⊂ V . Let
V1 = V (P ) = V (P ′). Then d(V1) is unchanged as well as d(V \V1).
Let d(V1, V \V1) denote the sum of all distances between a vertex of V1

and one of V \V1 in T . Then the transformation increases d(V1, V \V1)
by |V \V1| · l(P1) > 0 and d(V ) = d(V1) + d(V \V1) + d(V1, V \V1)
increases.
Iterating the transformation yields a tree T ′ homeomorphic to a star
(a daddy-long-legs).

(ii-b) Consider the following transformation on T ′. Let P3 denote a longest
path from u to a pending vertex r in T ′, and P4 the shortest path
from a pending vertex s �= r in T ′ to its closest neighbor w of u, with
l(P4) ≥ 1 (if any). Disconnect the path P4 at w and connect it at
r, thus obtaining a tree T ′′ with the same maximum degree as T ′.
Let us show this increases the total distance between pairs of distinct
vertices of T ′. Let P ′′ denote the path from r to s in T ′ and P ′′′ the
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Table 1. Optimal values for ∆.

n 12 13 14 15 16 17 18 19 20 21 22 23 24
∆ 7 8 8 9 9 9 10 10 10 11 11 12 12
n 25 26 27 28 29 30 31 32 33 34 35 36 37
∆ 13 13 13 14 14 15 15 15 16 16 17 17 17
n 38 39 40 41 42 43 44 45 46 47 48 49 50
∆ 18 18 19 19 20 20 20 21 21 22 22 23 23
n 51 52 53 54 55 56 57 58 59 60 61 62 63
∆ 23 24 24 25 25 25 26 26 27 27 28 28 28

path from w to s in T ′′. Clearly l(P ′′) = l(P ′′′) and then noting by V2

the set of vertices of these paths, d(V2) and d(V \V2) are unchanged.
Moreover d(V2, V \V2) is increased by |V \V1| · l(P3) · l(P4) > 0.
Iterating the transformation yields a comet T ′′.

(iii) To prove the result, we consider a third transformation: let r denote the
vertex farthest from u in the comet T ′′. Denote by P5 the path from u to r
in T ′′ and assume l(P5) ≥ 2. Let w be the neighbor of r in T ′′. Disconnect
the edge (w, r) at w and reconnect it at u thus obtaining a comet T ′′′ with a
maximum degree ∆ + 1. Let P6 denote the path from r to w in this comet.
Clearly, l(P5) = l(P6) and thus denote by V3 the set of vertices of these
paths in T ′′ and T ′′′, d(V3) and d(V \V3) are unchanged. In d(V3, V \V3), only
the distances between r and the ∆ − 1 pending neighbors of u, change. For
every u′ pending neighbor of u, the distance d(r, u′) decreases by exactly
n−∆− 1. Then the average distance (from T ′′ to T ′′′) decreases by exactly
2(∆−1)(n−∆−1)

n(n−1) < 1. Thus l + ∆ increases strictly.
Iterating the transformation yields a star T ′′′, for which ∆ = n − 1 and
l = 2− 2

n , which gives the desired bound. �

Proposition 5.2. Among all graphs on at least 3 vertices ∆ · l is maximum for a
star if n ≤ 11, and for a comet if n ≥ 12 for which the maximum degree (for
12 ≤ n ≤ 63) is given in Table 1.

Proof. Correctness of the structural result follows from the fact that the extremal
graph for a given ∆ is a comet as shown in the proof of Proposition 5.1. Due to
the apparent irregularity of optimal values of ∆, no algebraic conjecture could be
found.

To prove that each value of ∆ given in Table 1 is optimal for the corresponding
order n, it is sufficient to show that it maximizes the function

fn(∆) = ∆ · l(∆, n)

= ∆ · (n−∆ + 1)(n−∆ + 2)(n− 4∆− 3) + 12(∆− 1)(∆− 2)
3n(n− 1)

,
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where l(∆, n) denotes the average distance in a comet of order n and maximum
degree ∆.

For example if n = 12, we have

f12(∆) =
−4∆4 + 123∆3 − 989∆2 + 1650∆

396
.

which is maximum for ∆ = 7. �

When studying the minimum of ∆ + l and of ∆ · l, AGX 2 obtained graphs
with no apparent regularity, thus no conjecture was derived.

6. The average degree

Automated results obtained by AGX 2, in 4 cases out of 8, when comparing the
average distance l and the average degree d are given in Table 2 of the Appendix.
The following propositions were first obtained automatically as conjectures and
then proved by hand.

Proposition 6.1. For any connected graph on at least 3 vertices,

4− 4
n
≤ l + d ≤ n.

The lower bound is attained if and only if the graph is a star, and the upper bound
if and only if the graph is complete.

Proof. The lower bound:
Let σ(r, m) be the sum of all distances in a graph G of (fixed) order n, size m and
radius r. If r = 1, we have

σ(1, m) = m + 2(n(n− 1)/2−m) = n(n− 1)−m.

Therefore,

l + d = 2(n(n− 1)−m)/(n(n− 1)) + 2m/n = 2 + m(2n− 4)/(n(n− 1)).

This last expression is minimum if and only if m = n− 1, i.e., when the graph is
a star.

Consider now, the case where r > 1, and recall that mi is the number of
vertex-pairs at distance i in G,

σ(r, m) = m + 2m2 + 3m3 + · · · ≥ m + 2(m2 + m3 + · · · )

σ(r, m) > m + 2(n(n− 1)/2−m) = σ(1, m).

Therefore, we have:

l + d =
2σ(r, m)
n(n− 1)

+
2m

n
≥ 2σ(1, m)

n(n− 1)
+

2m

n
≥ 4− 4

n
·

This proves the lower bound and characterizes the associated graph.
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Figure 2. Obtaining PKn,m+1 from PKn,m.

The upper bound:
According to [13], for any connected graph G on n vertices and m edges, we have,

l(G) ≤ l(PKn,m)

where PKn,m is the path-complete graph on n vertices and m edges. So

l(G) + d(G) ≤ l(PKn,m) +
2m

n
·

So to prove the upper bound, we have to show that for any size m,

l(PKn,m) +
2m

n
≤ l(PKn,m+1) +

2(m + 1)
n

To obtain PKn,m+1 from PKn,m, we add an edge between any vertex from the
clique of PKn,m and the nearest end vertex of its path (see Figure 2).

It is easy to see that by adding an edge to PKn,m the average distance
decreases by at most 2(n − 2)/(n(n − 1)), and the average degree increases by
exactly 2/n, then

l(PKn,m+1)− l(PKn,m) ≥ − 2(n− 2)
n(n− 1)

+
2
n

=
2

n(n− 1)
> 0.

Iterating the operation leads to the complete graph Kn, thus

l(G) + d(G) ≤ l(Kn) + d(Kn) = n.

with equality if and only if G ≡ Kn. �

Proposition 6.2. For any connected graph on at least 3 vertices,

l · d ≥ 4(
n− 1

n
)2·

The bound is attained if and only if the graph is a star.
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Proof. As shown in the proof of Proposition 6.1, for given order n and size m the
sum of all distances in a graph is minimum for radius r = 1, so

l · d ≥ 2n(n− 1)− 2m

n(n− 1)
· 2m

n
=

4n(n− 1)m− 4m2

n2(n− 1)
·

This last expression is minimum only for m = n− 1, i.e., for a star. �

For the upper bound, AGX 2 leads to a structural conjecture, proved by hand
in the following proposition.

Proposition 6.3. Among all graphs on at least 3 vertices, l · d is maximum for a
complete graph if n ≤ 9 and for a Soltés graph if n ≥ 10.

Proof. This follows immediately from the result of Soltés [13]. �

Some extremal graphs are presented in Figure 3; no algebraic relation has (as
yet) been obtained.

7. The minimum degree

Automated results obtained by AGX 2, in 4 cases out of 8, when comparing the
average distance l and the minimum degree δ are given in Table 2 of the Appendix.

The following two propositions were obtained by AGX 2 as conjectures and
then proved by hand.

Proposition 7.1. For any connected graph on at least 3 vertices,

2n2 − 4
n(n− 1)

≤ l + δ ≤ n.

The lower bound is obtained if and only if the graph is a clique on n−1 vertices with
a pending edge. The upper bound is obtained if and only if the graph is complete.

Proof. The lower bound: let

F (m, δ, D) = l + δ

for a graph of (fixed) order n, size m, minimum degree δ and diameter D. If D = 1,
necessarily, m = n(n− 1)/2, δ = n− 1 and F (m, δ, 1) = n.

If D ≥ 2:

F (m, δ, D) = 2(m + 2m2 + 3m3 + · · ·+ DmD)/(n(n− 1)) + δ

F (m, δ, D) ≥ 2(m + 2(m2 + m3 + · · ·+ mD))/(n(n− 1)) + δ

F (m, δ, D) ≥ 2(m + 2(
n(n− 1)

2
−m))/(n(n− 1)) + δ = F (m, δ, 2).

The function F (m, δ, 2) is decreasing with respect to m, so it is minimum for the
largest possible value of m, that is m = (n−1)(n−2)

2 + δ, thus

F (m, δ, 2) ≥ F (
(n− 1)(n− 2)

2
+ δ, δ, 2) =

(1 + δ)n2 + (1− δ)n− 2(1 + δ)
n(n− 1)

·
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Figure 3. Graphs obtained by AGX 2 when maximizing l · d.

To be done, it is sufficient to observe that

F (
(n− 1)(n− 2)

2
+ δ, δ, 2) ≥ F (

(n− 1)(n− 2)
2

+ 1, 1, 2) =
2n2 − 4
n(n− 1)

·

and that the unique graph of order n, size (n − 1)(n − 2)/2 + 1, diameter 2 and
minimum degree 1 is a clique on n− 1 vertices with a pending edge.

The upper bound is a consequence of Proposition 6.1. �

The upper bound of the next proposition, obtained by AGX 2 in automated
mode, improves upon conjecture 127 of Graffiti [14], i.e., lδ ≤ n, which was proved
in [3] as a corollary of a stronger result.
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Proposition 7.2. For any connected graph on at least 3 vertices,
n2 + n− 4
n(n− 1)

≤ l · δ ≤ n− 1.

The lower bound is obtained if and only if the graph is a clique on n−1 vertices with
a pending edge. The upper bound is obtained if and only if the graph is complete.

Proof. The lower bound can be proved exactly as the lower bound of Proposi-
tion 7.1.

For the upper bound, according to Beezer et al. [3],

l ≤ (n + 1)n(n− 1)− 2m

(δ + 1)n(n− 1)
=

n + 1
δ + 1

− 2m

n
· 1
(δ + 1)(n− 1)

·

If we substitute 2m
n by d, multiply by δ, and use the fact that δ ≤ d, we get

l · δ ≤ (n + 1− d

n− 1
)

δ

δ + 1
≤ (n + 1− δ

n− 1
)

δ

δ + 1
·

The last expression is maximum if and only if δ = n − 1, i.e., when the graph
is complete. (This proof was obtained by the first author in April 2004; another
proof was obtained independently by Smith at about the same time.) �

8. Conclusion

A systematic comparison of average distance with other graph invariants, i.e.,
diameter, radius, girth, maximum, average and minimum degree, has been made
with the system AutoGraphiX 2. In each case, eight bounds have been sought for,
i.e., lower and upper bounds for an expression of the form l ⊕ i where ⊕ belongs
to {+,−,×, /}. In 24 of 48 cases, simple best possible bounds could be found
and proved automatically. In 21 more cases, conjectures were obtained either as
(i) both a structural result, i.e., description of extremal graphs, and an algebraic
relation (17 cases) or (ii) a structural result from which no relation was, as yet,
obtained (4 cases). Of these 21 conjectures 16 are proved in this paper and the
remaining ones are open. Finally, no conjectures were obtained in 3 cases.

It thus appears that it is possible to obtain automatically best possible bounds
for expressions of 2 graph invariants, which range from simple observations to more
substantial results and open questions. It is planned to do similar work for a variety
of graph invariants, as well as to explore other, more general or different forms of
conjectures [9] with the system AutoGraphiX in the near future.
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Appendix: Results proved automatically by AGX 2

Table 2 contains all observations obtained and proved automatically by AGX 2.

Table 2. Automated results obtained by AGX 2.

Lower bound i1 ⊕ i2 Upper bound
2 ≤ D + l ≤ (4n− 2)/3
2 ≤ D · l ≤ (n2 − 1)/3
0 ≤ D − l

1 ≤ D / l

2 ≤ r + l ≤ �n/2�+ (n + 1)/3
1 ≤ r · l ≤ �n/2� · (n + 1)/3
4 ≤ g + l

3 ≤ g · l

2− n ≤ l − ∆ ≤ (n− 5)/3
1/(n− 1) ≤ l / ∆ ≤ (n + 1)/6

2− n ≤ l − d ≤ (n− 5)/3 + 2/n

1/(n− 1) ≤ l / d ≤ (n2 + n)/(6n− 6)
2− n ≤ l − δ ≤ (n− 2)/3

1
n−1 ≤ l / δ ≤ (n + 1)/3

All the lower bounds are obtained for a complete graph Kn and all the upper
bounds are obtained for a path Pn. Note that the results in third and fourth line
are equivalent.
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Brambles, Prisms and Grids

E. Birmelé, J.A. Bondy and B.A. Reed

Abstract. The Cartesian product Ck × K2 of a circuit of length k with K2

is called a k-prism. It is well known that graphs not having the k-prism as a
minor have their tree-width bounded by an exponential function of k. Using
brambles and their well-studied relation to tree-width, we show that they
have in fact tree-width O(k2). As a consequence, we obtain new bounds on
the tree-width of graphs having no small grid as a minor.
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Keywords. Bramble, minor, tree-width.

1. Introduction

A bramble in a graph G (see [5]) is a set B of connected subgraphs every two of
which touch, that is, either intersect or are joined by an edge. A transversal of a
bramble B is a set of vertices which meets each element of B. The minimum size
of a transversal is the order of the bramble, and the maximum order of a bramble
in a graph G is the bramble number of G, denoted BN(G). This parameter is of
interest because of the duality theorem of Seymour and Thomas [7] which links it
to the tree-width TW(G):

Theorem. BN(G) = TW(G) + 1.

If xy is an edge of a graph G, we shall denote by Gxy the graph obtained
by contracting xy to a vertex x ∗ y; thus V (Gxy) = (V (G) \ {x, y}) ∪ {x ∗ y} and
E(Gxy) = E(G− {x, y}) ∪ {(x ∗ y)z : xz or yz ∈ E(G)}. A minor of G is a graph
obtained from G by a sequence of edge deletions, edge contractions and vertex
deletions. If H is a minor of G, we say that G has an H-minor.

Brambles are complicated objects which are hard to grasp. A graph which
has a Kn-minor contains a bramble of order n consisting of the preimages (un-
der contraction) of the vertices of the minor. But the converse is far from true.
Consider, for example, the (k× k)-grid, the graph Fk on {1, . . . , k}2 with edge set

{(i, j)(i′, j′) : |i− i′|+ |j − j′| = 1}.
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Figure 1. The (6× 6)-grid

The grid F6 is shown in Figure 1. For 1 ≤ i ≤ k, the path Ri induced by
the vertices of first coordinate i is called the ith row of the grid and the path Ci

induced by the vertices of second coordinate i is called the ith column of the grid.
Being planar, Fk has no K5-minor. However, its bramble number is at least

k. The set B := {Bi,j : 1 ≤ i, j ≤ k}, where Bi,j := Ri ∪ Cj , is a bramble; as each
row intersects each column, every Bi,j is connected and any two of these subgraphs
intersect. However, any set X of at most k − 1 vertices of Fk misses at least one
row, say Ri, and at least one column, say Cj . So X ∩ V (Bi,j) = ∅ and X is not a
transversal of B. This shows that

BN(Fk) ≥ k.

If xy ∈ E(G) and B is a bramble of Gxy, we obtain a bramble of the same
order in G by replacing x ∗ y by {x, y} in each element of B which contains it. So
BN(Gxy) ≤ BN(G).

Deleting edges or vertices also decreases the bramble number. Thus, if we
define h(G) as the greatest integer k such that G has an Fk-minor, we obtain the
following generalization of the above inequality for grids:

Theorem. BN(G) ≥ h(G).

In [6], Robertson and Seymour obtained an upper bound for BN(G) in terms
of h(G):

Theorem. BN(G) ≤ 220h(G)5 .

The authors of [3] gave a somewhat simpler proof of the Robertson-Seymour
theorem, but their bound is still greater. These bounds on BN(G) seem to be far
from sharp. Indeed, it may well be that BN(G), and therefore also TW(G), is
bounded above by a polynomial in h(G).

If h(G) = 1, then G contains no circuit of length four or more, so each block
is an edge or a triangle, and BN(G) ≤ 3. (Indeed, any graph with no K4-minor
has tree-width at most two – see, for example, Diestel [2].)

Recently, the authors [1] proved that if h(G) = 2 then BN(G) ≤ 8. This
bound is tight, as shown by the complete graph K8.

In this paper, using different techniques, we show that if h(G) = 3 then
BN(G) ≤ 7263. We obtain this bound as a consequence of a stronger result which
is of independent interest.
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The Cartesian product Ck × K2 of a k-circuit with K2 is called a k-prism
(see Figure 2).

Figure 2. The 8-prism

Theorem 1.1. If G contains no k-prism as a minor,

BN(G) ≤ 60k2 − 120k + 63.

We note that the (4× 4)-grid F4 is a minor of the 12-prism, so Theorem 1.1
implies that if h(G) = 3 then BN(G) ≤ 7263.

To prove Theorem 1.1, we first prove:

Theorem 1.2. If G does not contain two disjoint circuits linked by l disjoint paths,
BN(G) ≤ 60l− 57.

(By disjoint, we shall always mean vertex-disjoint.)
As we are about to show, Theorem 1.2 (combined with a well-known result

of Erdős and Szekeres [4] on monotone subsequences of integer sequences) implies
Theorem 1.1. We outline our proof of Theorem 1.2 in Section 2, and fill in the
details in Sections 3 and 4.

Proposition 1.3 (P. Erdős and G. Szekeres). A sequence of (k − 1)(l − 1) + 1
distinct integers has either an increasing subsequence of length k or a decreasing
subsequence of length l.

Let G be a graph such that BN(G) ≥ 60k2 − 120k + 64. By Theorem 1.2,
G contains two disjoint circuits C1 and C2 linked by k2 − 2k + 2 disjoint paths.
By Lemma 1.3, there are k paths among them whose endpoints appear in the
same order on C1 and C2 (the increasing and decreasing aspect in Lemma 1.3
corresponds here to the two possible orientations of C2). Thus G has the k-prism
as a minor.

2. Well-attached circuits

Given a bramble B of order k in a graph G, and a vertex-cut X of G with |X | < k,
there is a bramble element disjoint from X and hence a component of G\X which
contains an element of B. Because every pair of elements in a bramble touch, this
component is unique. We call it the big component of G \X (with respect to B)
and denote its vertex set by X∗.
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Lemma 2.1. Let B be a bramble and S a minimum transversal of B. Then, for all
X with |X | < |S|, (S∩X∗)∪X is a transversal of B. In particular, |S \X∗| ≤ |X |.

Proof. As X∗ contains an element of B, every element of B either is contained in
G[X∗] or else includes a vertex of the cut X . It follows that (S ∩ X∗) ∪ X is a
transversal of B. �

Let B be a bramble of order at least k, and let l be an integer, l ≤ k. We
say that a subgraph of G is l-attached to B if it intersects G[X∗] for all X with
|X | < l.

Lemma 2.2. Suppose that G contains a bramble B of order at least l, and also two
disjoint subgraphs, G1 and G2, each of which is l-attached to B. Then there are l
disjoint paths linking G1 and G2 in G.

Proof. If G1 and G2 are not linked by l disjoint paths, there exists a vertex cut X
of G with |X | < l separating G1 and G2. But now either G1 or G2 fails to intersect
G[X∗]. �

We shall show that every bramble of order at least three has an l-attached
circuit. Before doing so, we establish an analogous result for paths.

Theorem 2.3. For every bramble B of order l, there exists a path P meeting every
element of B. In particular, the path P is l-attached to B.

Proof. For notational convenience, we set B = B0. For an xy-path P , we denote
by [xPy[ the path P \ y.

Let B0 be an element of B0 and x0 ∈ B0. Set B1 = B0 \B0.

While Bi+1 �= ∅
• we choose Bi+1 ∈ Bi+1

• we define Pi as a shortest path linking xi to a vertex xi+1 ∈ Bi+1 such that
[xiPixi+1[⊂ Bi. Such a path exists because B is a bramble.
• we set Bi+2 = Bi+1 \ {B ∈ Bi+1|B ∩ Pi �= ∅}

We thus obtain a finite sequence P0, . . . , Pr and denote by P the walk P1 ∪
· · · ∪ Pr. As Br+2 is empty, it is clear that P meets every element of the bramble.

We claim that P is a path. To prove this, suppose to the contrary that a vertex
y appears twice in P . Then there exist two integers i < j such that y ∈ [xiPixi+1[
and y ∈ [xjPjxj+1[.

If j > i + 1, Bj ∈ Bi+2 and thus Bj ∩ Pi = ∅. This contradicts the fact
that y ∈ V (Bj ∩ Pi). Thus j = i + 1. As Pi was chosen as short as possible,
[xiPixi+1[∩Bi+1 = ∅, again contradicting the fact that y ∈ [xiPixi+1[∩Bj .

Therefore P is a path and satisfies the theorem. �

Theorem 2.4. Let B be a bramble of order l ≥ 3. Then there exists a circuit C
meeting every element of B. In particular, the circuit C is l-attached to B.
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Proof. Let P = x1x2 . . . xn be a shortest path meeting every element of B.
By the minimality of P , there exist two elements B1, Bn ∈ B such that

B1 ∩ P = {x1} and Bn ∩ P = {xn}.
Also, as B is a bramble, there is an (xn, x1)-path Q all of whose vertices

belong to B1 or Bn. The paths P and Q are thus internally-disjoint, and the
circuit C obtained by concatenating them meets all the elements of B. �

In Section 4, we shall prove:

Theorem 2.5. Let B be a bramble in a graph G. If G contains a circuit which is
(60l−56)-attached to B, it contains two disjoint circuits, each of which is l-attached
to B.

Combining Lemma 2.2 with Theorems 2.4 and 2.5 yields Theorem 1.2. Thus
it remains only to give the proof of Theorem 2.5. A key concept in our proof
of this theorem is that of a sun. Suns are defined in the next section, and their
relationship to l-attached circuits is shown.

3. Suns

For X ⊆ V , an X-sun (C, P1, . . . , Pl) consists of a circuit C together with l disjoint
(C, X)-paths P1, . . . , Pl, all internally-disjoint from C; note that if X ∩ V (C) �= ∅,
some of these paths will be of length zero. The paths Pi are the rays of the sun,
and their number, l, its order (see Figure 3). The vertex of a ray on C is its root.

Figure 3. A sun of order seven

Suns are of interest because they are easier to handle than l-attached circuits,
but are nonetheless closely linked to them, as described in the following lemma.

Lemma 3.1. Let B be a bramble of order l and S a minimum transversal of B.
If C is a circuit which is l-attached to B, there exist paths P1, . . . , Pl such that
(C, P1, . . . , Pl) is an S-sun of order l.
Conversely, if (C,P1,...,Pl) an S-sun of order l, the circuit C is � l

2�-attached to B.

Proof. First, let C be a circuit which is l-attached to B. Suppose that it cannot
be linked to S by l disjoint paths. Then there is a set X , with |X | < l, separating
C and S. Since C is l-attached to B, X∗ ∩ V (C) �= ∅ and hence S ∩X∗ = ∅. By
Lemma 2.1, this implies that X is a transversal of B. But |X | < |S|, a contradiction.
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Suppose, now, that (C, P1, . . . , Pl) is an S-sun of order l, and that C is not
� l

2�-attached to B. Then there exists a set X , with |X | < � l
2�, such that C includes

no vertex of X∗ (see Figure 4).

XC
X∗

Figure 4

But, as (C, P1, . . . , Pl) is an S-sun of order l, and as at most |X | of the paths
P1, . . . , Pl can meet X , |S \X∗| ≥ l − |X | > |X |, contradicting Lemma 2.1. �

4. Disjoint well-attached circuits

We are now ready to prove:
Theorem 2.5 Let B be a bramble in a graph G. If G contains a circuit which is
(60l−56)-attached to B, it contains two disjoint circuits, each of which is l-attached
to B.
To prove this theorem, we use the suns introduced in the previous section. By
virtue of Lemma 3.1, it suffices to show:

Theorem 4.1. Let B be a bramble, and S a minimal transversal of B. Suppose that
G has an S-sun of order at least 60l− 56. Then G contains two disjoint circuits,
each of which is l-attached to B.

We shall need the following result, which is a consequence of the minimality of S.

Lemma 4.2. Let S1 and S2 be disjoint subsets of S with |S1| = |S2| = k. Then
there are k disjoint paths linking S1 and S2.

Proof. Suppose the conclusion false. Then there exists a set X with |X | < k which
separates S1 and S2. Thus one of the two sets, say S2, is disjoint from X∗, implying
that |X ∪

(
S ∩X∗)| < |S|, and thereby contradicting Lemma 2.1. �

Proof of Theorem 4.1. Consider an S-sun of order at least 60l − 56, with circuit
C. Let C1 and C2 be disjoint segments of C, each containing the roots of at least
30l− 28 rays of the sun, and let Si denote the set of vertices of S reached by the
rays rooted in Ci, i = 1, 2.

By Lemma 4.2, there exist 30l − 28 disjoint paths linking S1 and S2. Each
of these paths shares its endpoint in S1 with a ray rooted in C1 and its endpoint
in S2 with a ray rooted in C2. Concatenating these three paths results in a walk
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C

H1

H2

W

A1

A2

Figure 5. Concatenating paths into a walk

from C1 to C2 (see Figure 5). Denote by Wi, 1 ≤ i ≤ 30l − 28, the walks thereby
obtained.

Each Wi contains a path Pi from C1 to C2, internally-disjoint from C. Let
H be the union of these 30l − 28 paths. Each vertex of H is in at most one ray
and at most one of the paths linking S1 and S2, so in at most two of the walks
Wi and thus in at most two of the paths Pi. Therefore there exist 15l − 14 paths
which are disjoint and whose edges are edges of the Pi’s: if not, there would exist
a set X of at most 15l − 15 vertices separating C1 and C2, and so three distinct
paths Pi would pass through the same vertex of X . Call these 15l − 14 paths
Q1, . . . , Q15l−14; note that the Qi are internally-disjoint from C.

Let X := {x0, . . . , x15(l−1)} be the set of endpoints of the paths Qi on C1,
enumerated in the order that they appear on this segment. For 0 ≤ i ≤ 5, we set
yi := x3i(l−1). Then, for 0 ≤ i ≤ 4, the segment of C1 between yi and yi+1 contains
3l− 2 vertices xj .
The following observation is important:

Claim. Any circuit containing 3l− 2 vertices of X is l-attached to B.

Let D be a circuit containing 3l − 2 vertices of X . Suppose that D is not
l-attached to B. Then there is a set Y with |Y | ≤ l − 1 such that V (D) ∩ Y ∗ = ∅.
Thus, by Lemma 2.1, |S \ Y ∗| ≤ l − 1, so one of the sets Si, i = 1, 2, satisfies
|Si \ Y ∗| ≤ � l−1

2 �. Suppose that this set is S2. (A similar argument applies to S1.)
Every vertex in X ∩V (D) is connected to a vertex of S2 by a segment of the

walk Wi to which it belongs, and thus by a path Ri contained in Wi. Moreover,
each vertex in G is in at most two such paths Ri, as it is in at most two of the
walks Wi. Thus at most l− 1 of the paths Ri link X to S2 \ Y ∗ and at most 2l− 2
of them link X to S2 ∩ (Y ∪Y ∗) by way of Y . This is a contradiction, as there are
3l− 2 such paths, and the claim is established.

Consider the four paths Qi starting from the vertices y1, y2, y3 and y4. By
Lemma 1.3, either two of them are parallel, that is, reach C2 in the same or-
der, or all four of them cross one another, that is, reach C2 in the opposite order
(see Figure 6).
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or

CC C′
C′

Figure 6. Parallel and crossing paths

In each case, there are two disjoint circuits, each containing at least 3l − 2
vertices of X , and thus, by the above claim, each l-attached to B. �
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Dead Cell Analysis in Hex
and the Shannon Game

Yngvi Björnsson, Ryan Hayward, Michael Johanson
and Jack van Rijswijck

Abstract. In 1981 Claude Berge asked about combinatorial properties that
might be used to solve Hex puzzles. In response, we establish properties of
dead, or negligible, cells in Hex and the Shannon game.

A cell is dead if the colour of any stone placed there is irrelevant to the
theoretical outcome of the game. We show that dead cell recognition is NP-
complete for the Shannon game; we also introduce two broader classifications
of ignorable cells and present a localized method for recognizing some such
cells. We illustrate our methods on Hex puzzles created by Berge.

Keywords. Game theory, Hex, Shannon game, dead cell, negligible, induced
path.

1. Introduction

Claude Berge, who loved to play Hex, commented in [4] that
“[it] would be nice to solve some Hex problem by using nontrivial
theorems about combinatorial properties of sets (the sets consid-
ered are groups of critical [board cells ]).”

In response, we investigate properties of cells that are dead, or ignorable in a certain
sense, in Hex and the Shannon game and show how these properties simplify the
solution of Hex puzzles.

In §2 we review Hex and the Shannon game. In §3 we define dead cells and
show some basic properties; in particular, dead cell recognition is NP-complete in
the Shannon game. In §4 we introduce captured and dominated sets, two broader
classes of ignorable cells, and explain how some such sets can be defined in terms of
local subgames. In §5 we explain the strategic implications of these results, while
in §6 we describe how some such sets can be recognized. In §7 we illustrate our
analysis on some Hex puzzles created by Berge.

The authors gratefully acknowledge the research support of NSERC.
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2. Hex and the Shannon game

Hex is played on a board containing a rhombic array of hexagonal cells with an
equal number of hexagons on each side.1 Commonly used board sizes are 11× 112

and 14×14.3 The two players, Black and White, take turns placing a stone on the
board. White’s goal is to connect the lower-left and upper-right sides of the board
with a chain of white stones; Black’s goal is to connect the upper-left and lower-
right sides with a black chain. Lest the players forget their goals, each marks their
two sides with a pair of extra stones off the board. Figure 1 shows a completed
game which White has won.

Figure 1. An empty 6× 6 Hex board (left) and a completed game (right).

For Hex on any board size, there exists a winning strategy for the first player;
however, the only known proof is by reductio ad absurdum and no explicit general
winning strategy is known [9]. Indeed, determining the existence of a winning
strategy is PSPACE-complete for Hex [18] and so also for the Shannon game [6].
For more on Hex, see the website by Thomas Maarup [16], the survey by two of
the authors of this paper [12], or the book by Cameron Browne [5].

The Shannon game is played on any graph G with two distinguished terminal
vertices. Shannon originally formulated the game as played by colouring the edges
of the graph; in this paper we consider only the vertex colouring game.4 Further,
we restrict our attention to finite graphs. We assume that the colours used are χs

and χc.
The two players of a Shannon game are called Short and Cut. To start, the

terminal vertices are coloured χs and all other vertices are uncoloured. Play pro-
ceeds with each player in turn colouring any previously uncoloured vertex. Short’s
goal is to form a monochrome path containing the terminal vertices; Cut’s goal
is to prevent this. Thus Short needs to create a χs-coloured terminal-connecting
path while Cut needs to establish a χc-coloured terminal-separating cutset.

Hex is a special case of the Shannon game. Each Hex position, or board
state, can be represented as a Shannon graph in two dual ways. Figure 2 shows

1If the side lengths are unequal, the game is trivial due to an easy pairing strategy [9].
2This is the size used by Piet Hein, the original inventor of Hex [14].
3This is the size preferred by Berge [3, 10].
4The edge colouring game, known as the Shannon switching game, is actually a special case of the
Shannon game since it is equivalent to colouring vertices on the line graph of the original graph.
Lehman found a polynomial-time algorithmic solution for the Shannon switching game [15].
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T

T T

T

Figure 2. The two dual Shannon game representations of the
5 × 5 Hex board. Short is White on the left and Black on the
right. Terminal vertices are labelled ‘T ’.

the two graphs that correspond to the empty 5 × 5 Hex board. Neither Hex nor
the Shannon game can end in a draw; proofs which hold for Hex are in [1, 8].

For the Shannon game, note that when a vertex is coloured by Cut, it may
equivalently be cut, or deleted, from the graph. On the other hand, when a vertex
is coloured by Short, it may equivalently be shorted or contracted by adding edges
between all pairs of its neighbors and then deleting the vertex. We refer to the
graph that results by shorting and cutting all coloured nonterminal vertices as
the Shannon reduced graph. For a Shannon board state represented by a graph G,
the vertices of the Shannon reduced graph G′ are the terminals and uncoloured
vertices of G, with two vertices adjacent in G′ if and only if they are adjacent or
connected by a χs-coloured path in G. Short has a winning path in G if and only
if the terminals are adjacent in the Shannon reduced graph G′; Cut has a winning
cutset in G if and only if the terminals are disconnected in G′. Figure 3 shows a
Hex position and the two Shannon reduced graphs that represent it.

In the remainder of this paper we use node to refer to both a vertex in a
Shannon graph and a cell on a Hex board.

3. Dead nodes

The Shannon game is a special case of a more general class of games known as
division games, which can be seen as set-colouring games with some function that
assigns a winner to each completely coloured set. Following Yamasaki, who gave a
theory of division games [21], an element in a particular state of a division game is
regular if it is never disadvantageous to own it, misère if it is never advantageous
to own it, and negligible if it does not matter who owns it. In the Shannon game,

T

T T

T

Figure 3. A Hex position and its two Shannon reduced graph representations.
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all nodes are regular and some nodes may become negligible during the course of
the game.

We shall refer to negligible nodes as dead. The notion of a dead cell in Hex
or other related games was implicitly recognized by Schensted and Titus in their
discussion of “worthless triangles” [19] and Beck et al. in the proofs of their opening
move results [1, 2].

Formally, define a board state (G, T, Ψ) of a Shannon game as a graph G with
a set of terminal nodes T and a colouring Ψ of some subset of the nonterminal
nodes. For colourings Ψ1 and Ψ2, say that Ψ2 extends Ψ1 if every coloured node
in Ψ1 has the same colour in Ψ2. A colouring is complete if every node is coloured.
If a colouring is complete, then the game is over and the winner is known.

Definition 3.1. A nonterminal node v in a board state (G, T, Ψ) is dead if, for every
complete colouring Ψ∗ that extends Ψ, the winner of (G, T, Ψ∗) is independent of
the colour of v; v is live otherwise.

Note that this definition applies to both coloured and uncoloured nodes.
The reader may enjoy working out which nodes are dead in Figure 3; the

answer is shown in Figure 4. Each of the three representations contains exactly
one dead node, and it is the same node in each case. As we shall see shortly, this
is no coincidence.

Consider a board state (G, T, Ψ) and a set S of uncoloured nodes. When Ψ
is extended to a complete colouring by assigning χπ to all nodes in S and χπ, the
colour different from χπ, to all other uncoloured nodes, the resulting colouring is
denoted by Ψ⊕π S. With respect to a board state, we say that S is a short set if
Ψ ⊕s S has a winning chain for Short. A short set is minimal if no proper subset
is a short set.

Theorem 3.2. For a board state of the Shannon game, an uncoloured node is live
if and only if some minimal short set contains it.

Proof. (⇐) Let S be a minimal short set that contains v, and let Ψ∗ = Ψ ⊕s S.
Short is the winner in (G, T, Ψ∗). If the colour of v is subsequently changed then
Cut is the winner, since otherwise S − v would be a short set and S would not be
minimal. Therefore v is live.

(⇒) Suppose v is live. Then there is an extension of Ψ to a complete colouring
Ψ∗ in which the colour of v determines the winner for Ψ∗. Let Ψ∗

s and Ψ∗
c be Ψ∗

with v repainted with χs and χc respectively, and let S be the uncoloured nodes of

Figure 4. The only dead cell for this Hex position.
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Ψ which are coloured χs in both Ψ∗
s and Ψ∗

c . Since Short wins (G, T, Ψ∗
s), S ∪ {v}

contains a minimal short set S′ for (G, T, Ψ). Since Cut wins (G, T, Ψ∗
c), S contains

no short set for (G, T, Ψ), so S′ is not a subset of S, so S′ contains v. �
For a Shannon board state with all non-terminal nodes uncoloured, a set is

a short set if and only if it contains a path between the terminals, and a set is a
minimal short set if and only if it is an induced, or chordless, inter-terminal path.
Thus we have the following.

Corollary 3.3. In the Shannon game, an uncoloured node is live if and only if it is
on some induced inter-terminal path in the Shannon reduced graph.

A coloured node is live if and only if it is live when uncoloured, so the pre-
ceding corollary can also be used to tell whether a coloured node is live.

Recognizing dead nodes simplifies Shannon game analysis, since:

Observation 3.4. A dead node can be assigned an arbitrary colour or removed from
the game without affecting the outcome.

Thus playing a move at a dead node is equivalent to skipping a move. In the
Shannon game no move can be worse than skipping a move, since all nodes are
regular, so every move wins if a dead cell represents a winning move. Also, if the
game has not ended, then at least one move is to a live node. Hence there is a
winning move if and only if there is a live winning move, and so:

Theorem 3.5. In the Shannon game, a player with a winning strategy has a winning
strategy in which every move is to a live node.

In the interest of streamlining the search for a winning strategy, a player
would thus like to be able to recognize dead nodes efficiently. So, how hard is it to
recognize dead nodes?

For a vertex subset S of a graph G, the set of all vertices on some induced
path between two vertices of S is known as the monophonic interval J(S). By
the preceding theorem, for a Shannon board state with reduced graph G′, the set
of live nodes is the monophonic interval J(T ) in G′, where T consists of the two
terminal nodes.

The induced path pairs problem is as follows: given a graph and vertex pairs
(a1, b1), . . . , (ak, bk), is there a vertex induced subpath consisting of k disjoint
induced paths joining aj to bj? Fellows showed the following [7].

Theorem 3.6 (Fellows). For k ≥ 2 the induced path pairs problem is NP-complete.

For k = 2, Marcus Schaefer observed5 that the induced path pairs problem
reduces to the problem of finding a monophonic interval by adding a new vertex
x adjacent to b1 and b2 and asking whether x is in J(a1, a2) Thus we have the
following.

Corollary 3.7. Determining membership of a monophonic interval is NP-complete.

5Private communication.
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Corollary 3.8. In the Shannon game, recognizing dead nodes is NP-complete.

Dead cell recognition might be easier in Hex than in the Shannon game. In
particular, in the Shannon reduced graph of a Hex position, dead nodes are often
simplicial or, more generally, separated from both terminals by a clique cutset.
Such nodes can be efficiently recognized using Whitesides’s algorithm for finding
clique cutsets [20].

Unfortunately, these observations do not simplify Hex analysis as much as
one might hope, since dead cells arise infrequently in typical Hex positions. On
the other hand, considering nodes that are at risk of becoming dead seems more
useful, as we explain in the next section.

4. Beyond death: captured and dominated sets

We introduce in this section two concepts that generalize node death. Informally,
we call a set of uncoloured nodes π-captured if player π can “own” the entire set
no matter who plays first, and π-dominated if π can own it provided π has the
first move. These notions evolved from [17, 11, 13].

By the value of a position, we mean the outcome assuming perfect play.
Consider for example the two Hex diagrams shown in Figure 5. On the left,

the two marked nodes are effectively captured by Black, since a White stone played
at either node becomes dead if Black then plays at the other. Thus adding Black
stones to these two nodes will not change the value of the game. On the right, the
three marked nodes form a dominating set for Black, since a Black move to the
node with a large dot captures the two other nodes.

Figure 5. A Black-captured set (left) and a Black-dominated set (right).

Before formally defining capture and domination, we first introduce a gener-
alization of the Shannon game.

The multi-Shannon game is a Shannon game played on a graph with two or
more terminals. At the start of the game, all terminals are χs-coloured. Short’s
goal is to join each pair of connected terminals with some χs-coloured path; these
paths may intersect. Cut’s goal is to separate each pair of nonadjacent terminals
with some χc-coloured cutset; these cutsets may intersect. This game can end in
a draw.

Consider the two graphs of Figure 6. On the left graph, Cut has a second-
player winning strategy, meaning that Cut wins even when Short goes first. On
the right graph, Short has a second-player winning strategy.
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T

T T

T

T

T

Figure 6. Multi-Shannon games with second-player wins for Cut
(left) and Short (right).

When such a graph occurs as a particular subgraph in a regular Shannon
game, we can simplify the analysis of the game. In a graph, the neighbourhood
N(S) of a set S of nodes is the set of all nodes not in S but adjacent to some
node in S. Let G be a reduced Shannon graph with a set S of nonterminal nodes
and let ΓS be the multi-Shannon game played on the subgraph of G induced by
S ∪N(S) with terminals N(S). Then:

Theorem 4.1. If player π has a second-player winning strategy for ΓS, then S can
be filled in with χπ stones without changing the Shannon value of Γ.

Proof. Let Γ = (G, T, Ψ) be a board state, and let Γ′ = (G, T, Ψ′) where Ψ′ is the
extension of Ψ by filling in S with χπ. The theorem is equivalent to stating that
π wins Γ if and only if π wins Γ′.

(⇒) If π wins Γ, then π trivially also wins on Γ′, since Γ′ is formed by giving
π a number of “free” moves.

(⇐) If π has a winning strategy for Γ′ and a second-player winning strategy
for ΓS , then π can adopt the following strategy for Γ. Whenever π plays in S, π
responds with a move in S according to the winning strategy for ΓS . Otherwise,
π plays a move in G − S according to the winning strategy for Γ′. Let Γ∗ be the
final board state when all nodes are coloured. There are two cases to distinguish:
• π plays Cut: If Short forms a chordless winning path P in Γ then P cannot

intersect S, for otherwise the two nodes P ∩ T would be nonadjacent and
Short would have at least achieved a draw in ΓS with the path P ∩ S. But if
P does not intersect S then Short has won Γ′, contradicting Cut’s winning
strategy for Γ′.
• π plays Short: Short forms some winning path P ′ in Γ′. If this path does not

intersect S then it is also a winning path for Short on Γ. If it does intersect
S then there is a winning path on Γ that consists of P ′ − S plus some Short
path connecting the two nodes P ∩ ST ; the latter is guaranteed to exist due
to Short’s win on ΓS .

Therefore π wins Γ. �

For example, let S consist of the two marked nodes in the left diagram of
Figure 5 and consider the resulting subgame ΓS ; thus N(S) consists of the twelve
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Figure 7. Multi-Shannon games with first-player wins for Cut.

nodes forming the diagram boundary. Short has a second-player winning strategy
for ΓS : play at whichever node of S that Cut does not play at. Thus the theorem
tells us that for any Hex position containing this diagram the marked nodes can
be filled in with black stones without changing value of the position.

In the graph on the left in Figure 7, the game ends in a draw when Short has
the first move. If Cut has the first move, then Cut wins by colouring the bottom
node. If this graph occurs as a subgraph in a regular Shannon graph, then a Cut
move in the bottom node is equivalent to cutting all the nodes in the subgraph,
since the remaining part of the subgraph is a second-player win for Cut and can
therefore be filled in with χc. This leads to the following theorem.

Theorem 4.2. If player π has a first-player winning strategy for ΓS with winning
move v, then in Γ v is at least as good for π as any other move in S.

Proof. A π-move to v is equivalent to simultaneous π-moves to all nodes of S. �

We now formally define capture and domination with respect to a Shannon
game Γ, a set of uncoloured nodes S, and the local multi-Shannon game ΓS .

Definition 4.3. S is π-captured if π has a second-player winning strategy for ΓS .

Definition 4.4. S is π-dominated if π has a first-player winning strategy for ΓS .
For any initial move m in such a strategy, we say that m π-dominates S.

Based on the usual recursive definitions of wins and losses in games, we have
the following.

Observation 4.5. S is π-captured if and only if S is the empty set or, for each
π-move m in S, both (i) S−m is π-dominated and (ii) m is dead if S−m is filled
in with χπ stones.

Observation 4.6. S is π-dominated if and only if S is the empty set or there is
some π-move m in S such that S −m is π-captured.

In Observation 4.5, (i) guarantees that π can capture all cells of S −m after
an π move at m, while (ii) guarantees that the π-stone at m would then also be
dead; thus π captures all cells of S.
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Short moves first
Short wins draw Cut wins

Cut Short wins Short-captured – –
moves draw Short-dominated indifferent –
first Cut wins both dominated Cut-dominated Cut-captured

Table 1. Possible outcomes of a local position. E.g., for the event
“Short wins when both Short and Cut go first”, the outcome is
“Short-captured”.

Note that for any position of a Shannon game, each uncoloured node is dom-
inated by both players and each dead node is captured by both players. Also, note
that captured and dominated sets are defined only for uncoloured nodes, whereas
dead cells are defined for coloured and uncoloured nodes.

5. Strategic advice

A local subgame ΓS can be a win for Short or Cut or a draw, depending on whether
Short or Cut has the first move. The possible outcomes are listed in Table 1. The
boxes marked ‘–’ represent impossible combinations, since having the first move
cannot be a disadvantage in the multi-Shannon game.

Suppose player π is considering a move in ΓS . According to the outcomes in
Table 1, the following cases can be distinguished:

• One of the players has a second-player win. Then the set is captured and can
be filled in, as per Theorem 4.1. Any π-move in S would be wasted.
• Set S is dominated by π. Then π has a locally winning move in ΓS . By

Theorem 4.2, π can safely play such a move.
• Set S is dominated by π but not by π. Then the best local move available

for π is a local draw, while other moves may be local losses. Since a locally
losing move can be followed by a π-move that captures S and kills π’s move,
π should avoid locally losing moves.
• Set S is not dominated by either player. Any π-move leads to a local draw

with locally optimal play. The choice of move depends on which pairs of
terminals are favourable for π to connect or disconnect in the global game.

This information can be summarized by the following theorem.

Theorem 5.1. Let Γ be a multi-Shannon game, and let v and w be moves in a
subgame ΓS defined by a set of nodes S. If v is at least as good as w for player π
in ΓS, then v is at least as good as w for π in Γ.

Thus, if π is going to move in S, then π should make a move that is optimal
in ΓS . In short, “do not make any local mistakes”. Here we consider the act of
making no move at all to be optimal in a second-player win game, since it is better
than wasting a move.
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Once dominated and captured sets have been identified, the strategic advice
for player π to move, is:

1. Fill in all captured sets, iterate until no new captured nodes are found.
2. For any π-dominated set, pick one dominating move and ignore the rest.
3. For any π-dominated set, ignore the locally losing moves.

A special case of Step 3 is a π-dominated set with two nodes {v, w}. There,
the dominating move for π, say v, is also the only locally drawing move for π. If
π moves in w then S − w is still dominated by π, since it is a single uncoloured
node, and v is dead after π moves in w, since S was π-dominated by w.

Theorems 4.1–5.1 also hold in the more general case where a multi-Shannon
game is a subgame of another multi-Shannon game.

6. Recognizing captured and dominated sets

In order for a player to benefit from our results so far, the player should be able
to recognize captured and dominated sets efficiently. One way to achieve this is to
build a library of local patterns, or subgames, that yield such sets.

Consider a set Q of nodes of a Hex position, where Q may contain Black or
White stones. Let S be the uncoloured nodes of Q. Create a new board position
by uncolouring all coloured nodes in N(Q). Now let Γ be the reduced Shannon
graph of this new position. Any move in S that is suboptimal in the multi-Shannon
game ΓS is also suboptimal in the original Hex position. This allows moves in Q
to be analysed while ignoring the rest of the board. Moreover, whenever this same
node pattern occurs anywhere else on the board, the local analysis results are the
same. We consider such a pattern to be irreducible if none of the captured cells or
suboptimal moves could have been detected by considering a smaller pattern.

Such a library need not be exhaustive, as there is a trade-off in effort saved
by disregarding locally suboptimal moves and effort invested in detecting them.
Experimental computer results suggest that in Hex games such sets are almost
always reducible to a few base cases that can be derived from simplicial nodes.

Such a derivation is illustrated in Figure 8, which shows irreducible local Hex
patterns with two empty cells that can be built up by starting from all cases in
which a node is found to be simplicial by considering only its immediate neighbor-
hood in the nonreduced graph. In the five starting patterns shown on the bottom
of the figure, the empty cell is dead. Removing a White stone from each pattern
yields a pattern with a two-cell White-dominated set; the dominating move is in-
dicated with a dot. Now, pairs of these six patterns are combined to form larger
patterns with two empty cells, such that each empty cell White-dominates the
other; these two cells form a White-captured set. The eleven larger patterns that
can be created in this way are shown as entries of the central array of the chart,
with each entry indexed by the two smaller patterns that yield it.

There are no irreducible captured set patterns with three connected empty
cells. Figure 9 shows examples of irreducible captured sets with four empty cells.
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Figure 8. Constructing irreducible White-captured sets (empty
hexagons of table entry patterns) and White-dominated sets
(empty hexagons of row and column index patterns) from the
five bottom dead-cell patterns.
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Figure 9. Some irreducible White-captured sets.

7. Hex examples

Claude Berge presented five Hex puzzles in his introduction to the game [3]6 (see
also [10]). Figures 10–13 show the static analysis of these puzzles according to
the notions of captured and dominated sets. Captured cells, including dead cells,
have been marked by a large dot. Small dots represent suboptimal moves in locally
dominated sets. Table 2 summarizes the statistics for these puzzles.

Figure 10. Berge’s Puzzles 1 and 2. White to play can ignore
all but the unmarked empty cells. Large dots are captured; small
dots are locally inferior.

puzzle available ignored viable percentage
number moves moves moves ignored

1 15 11 4 73%
2 19 13 6 68%
3 163 65 98 40%
4 145 75 70 52%
5 120 59 61 49%

Table 2. Statistics for dead cell analysis of Berge’s puzzles.
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6The Puzzle 5 that we include is from an early version of Berge’s manuscript; a later version has
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Figure 11. Berge’s Puzzle 3: Black to play.

Figure 12. Berge’s Puzzle 4: Black to play.
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Abstract. In the class of all graphs and the class of claw-free graphs, we give
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1. Introduction

We consider finite simple graphs G with vertex-set V (G), edge-set E(G) and min-
imum degree δ(G) (we use V , E and δ if there is no ambiguity). The neighbor-
hood of a vertex x is N(x) = {y ∈ V (G); xy ∈ E(G)} and its closed neighbor-
hood is N [x] = N(x) ∪ {x}. If S is a subset of V (G) then N(S) = ∪x∈SN(x),
N [S] = ∪x∈SN [x] and the subgraph induced by S in G is denoted G[S]. A domi-
nating set of G is a subset S of V such that every vertex in V −S has at least one
neighbor in S, in other terms N [S] = V . The notion of domination is essential in
the representation of many problems and since its first formal definition by Berge
[2], many variants have been introduced to deal with different kinds of problems
(see [16]). We give below some of them. A subset S ⊂ V is a total dominating
set [5] if every vertex of V has at least one neighbor in S, in other terms if S is
dominating and G[S] has no isolated vertex, or if N(S) = V . A dominating set S
is a paired dominating set [17] if G[S] admits a perfect matching. A dominating
set S is an independent dominating set if G[S] is independent. A subset S ⊂ V is a
2-dominating set [13] if every vertex of V −S has at least two neighbors in S and a
double dominating set [14] if S is both a 2-dominating set and a total dominating
set (in [10] these sets were also introduced under the term 1-total 2-dominating
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sets). Since some of these sets do not exist if G has isolated vertices, we suppose in
the whole paper δ(G) ≥ 1. We consider the following parameters associated with
the previous definitions: γt(G) (γpr(G), γ2(G), γ×2(G) respectively) is the mini-
mum cardinality of a total dominating set (paired dominating set, 2-dominating
set, double dominating set respectively) of G. Note that γ×2(G) was denoted dd(G)
in [14] and γ1,2(G) in [10]. The minimum and maximum cardinalities of an inde-
pendent dominating set of G are denoted i(G) and β(G). Of course these different
notions are not independent and the corresponding parameters satisfy in every
graph some obvious and well-known inequalities as

γ(G) ≤ γt(G) ≤ γpr(G), γt(G) ≤ γ×2(G),

γ(G) ≤ γ2(G) ≤ γ×2(G), γ(G) ≤ i(G) ≤ β(G).

When two graph parameters satisfy a ≤ b, one can wonder how large b can be with
respect to a. This is often done by studying the difference b− a but the ratio b/a
is more informative. For instance both differences β(G)− γ(G) and γt(G)− γ(G)
can be arbitrarily large. But γt(G)/γ(G) cannot since γt(G) ≤ 2γ(G) for every G
while β(G)/γ(G) is not bounded. In this paper we are interested in exact upper
bounds, if any, on all the ratios b(G)/a(G) where a and b are each of the five
parameters γ, γt, γpr, γ×2 and β. Some of these bounds were already known. We
determine the other ones and construct families of graphs showing the sharpness
of all the bounds.

The class of claw-free graphs, i.e., graphs containing no claw K1,3 as an
induced subgraph, has particularly interesting properties in domination theory. It
is known that every claw-free graph satisfies γ(G) = i(G) [1] and β(G) ≤ 2i(G)
[19]. This means that the ratios i/γ and β/i , which can be arbitrarily large in
general graphs, are bounded respectively by 1 and 2 in the class of claw-free graphs.
We extend these results by looking for upper bounds on the ratios of any pair of
the five above mentioned parameters in claw-free graphs. Note that as β(G) can be
determined in polynomial time in this class [18], the inequalities β(G)/2 ≤ γ(G) ≤
β(G), 2β(G)/3 ≤ γt(G) ≤ γpr(G) ≤ 2β(G), β(G) ≤ γ×2(G) ≤ 2β(G) (cf. Table 1)
give polynomial approximations for the other four parameters of claw-free graphs.

Other results on domination parameters in claw-free graphs and on the ratio
of domination parameters in particular classes of graphs can be found in [3, 4, 6,
7, 8, 9, 10, 11, 12, 14, 15, 17, 19, 20, 21].

2. Some families of extremal graphs

We describe here some families of connected graphs which will provide extremal
examples in Section 3. Each family depends on one or two arbitrarily large param-
eters which proves that the bounds given in the table below cannot be improved
even if we suppose each component of the graphs large enough.
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Family Bk (Figure 1.a)
The claw-free graph Bk (Figure 1.a) is constructed from a clique Kk of vertex-set
{x1, . . . , xk} by adding k disjoint triangles aibici and the k edges aixi for 1 ≤ i ≤ k.
It is easy to check that γ(Bk) = i(Bk) = k, β(Bk) = k+1, γt(Bk) = γpr(Bk) = 2k
and γ2(Bk) = γ×2(Bk) = 2k + 1.

. . . .
. . . . . .

.

K
K

k
k

Figure 1.a: Nk Figure 1.b: Lk

Family Lk (Figure 1.b)
The claw-free graph Lk (Figure 1.b) is constructed by attaching at each vertex a
of a clique Kk a pendant copy of a graph of vertex set {a}∪1≤i≤3 {bi, ci, di} where
{a, b1, b2, b3} induces a clique and {bi, ci, di} a triangle for 1 ≤ i ≤ 3. The graph
Lk satisfies γt(Lk) = 3k and γpr(Lk) = 4k.

Family Jk (Figure 2 for k = 5)

Figure 2: J5

For k ≥ 4, the graph Jk is constructed from a star K1,k with center a and leaves

v1, . . . , vk by adding
(

k
2

)
new vertices xi,j and the edges vixi,j , vjxi,j for 1 ≤

i < j ≤ k. For Jk, {a, v1, . . . , vk−1} is a minimum dominating set which is total.
Moreover all the total dominating sets of order k are of this type and are not double.
Hence γ(Jk) = γt(Jk) = k and γ×2(Jk) ≥ k + 1. Since the set {a, v1, . . . , vk} is a
double dominating set, γ×2(Jk) = k+1. Finally let D be any dominating set of Jk

and β(D) the order of a maximum independent set of D. If |D ∩ {v1, . . . , vk}| ≥
k − 1, then β(D) ≥ k − 1. Otherwise let W = {v1, . . . , vk} − D with |W | ≥ 2.
To dominate Jk, the set D contains the set X of order |W |(|W | − 1)/2 of all the
vertices xij such that {vi, vj} ⊂W . Hence again β(D) ≥ |D∩{v1, . . . , vk}|+ |X | =
k − |W |+ |W |(|W | − 1)/2 ≥ k − 1. Therefore every dominating set of G contains
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at least k− 1 independent vertices. This implies that every paired dominating set
has order at least 2(k − 1). Since {v1, x1,2, v2, x2,3, . . . , vk−1, xk−1,k} is a paired
dominating set, γpr(Jk) = 2k − 2. Note the graph Jk contains claws.

Family Hk (Figure 3)
Let Hk be the claw-free graph constructed from k disjoint copies of the graph H
of Figure 3 by adding the edges ciai+1 and dibi+1 for 1 ≤ i ≤ k−1. For this graph,
γ(Hk) = 3k and γt(Hk) = γpr(Hk) = γ×2(Hk) = 4k.

x y

z

t

a 1

b1

c 1

b2

a 2

c 2

Figure 3: H

Family Mk,p (Figure 4.a)
For p ≥ 2, the graph Mk,p is obtained by attaching p pendant edges at each vertex
of a clique K2k. Clearly Mk,p contains claws and satisfies γ(Mk,p) = γt(Mk,p) =
γpr(Mk,p) = 2k and γ×2(Mk,p) = 2kp.

K2k K2k
. . . . . . . . . .

Figure 4.a: Mk,p Figure 4.b: Rk

Family Rk (Figure 4.b)
The claw-free graph Rk is obtained by attaching a pendant triangle at each vertex
of a clique K2k. This graph satisfies γt(Rk) = γpr(Rk) = 2k and γ×2(Rk) = 4k.

The last five families could be gathered into one using two parameters. How-
ever the notation would be formally heavy and we define them separately to facil-
itate the reading.

Family Qk (Figure 5.a)
The claw-free graph Qk is obtained from a cycle C3k = a1b1c1a2b2c2 · · · akbkck

by adding 2k new vertices, di joined to ai and bi and ei joined to bi and ci for
1 ≤ i ≤ k. In Qk, {b1, . . . , bk} is a minimum dominating set and γ(Qk) = k.
Moreover each double dominating set D must contain at least three vertices in
each set {ai, bi, ci, di, ei} (for if di /∈ D, then {ai, bi} ⊂ D and ci or ei is in
D). Therefore V (C3k) is a minimum double dominating set and γ×2(Qk) = 3k.
Similarly, each total or paired dominating set contains at least two vertices in each
set {ai, bi, ci, di, ei} and γt(Qk) = γpr(Qk) = 2k.
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Family Sk (Figure 5.b)

The claw-free graph Sk is obtained from a cycle C2k = a1a2 · · · a2k by adding 2k
new vertices ci joined to ai and ai+1 (mod 2k) for 1 ≤ i ≤ 2k. Clearly γ(Sk) = k
and β(Sk) = 2k.

. . .

.
.

.

.
.

.

C4kC2kC3k

Figure 5a: Qk Figure 5b: Sk Figure 5c: Tk

Family Tk (Figure 5.c)

The claw-free graph Tk is obtained from a cycle C4k = a1b1c1d1a2b2c2d2 · · ·
akbkckdk by adding 3k new vertices ei joined to ai and bi, fi joined to bi and
ci, gi joined to ci and di for 1 ≤ i ≤ k. Clearly β(Tk) = 3k. Every dominating
set of Tk contains at least two vertices in each set {ai, bi, ci, di, ei, fi, gi}. Since
{b1, c1, . . . , bk, ck} is a paired dominating set of Tk, γt(Tk) = γpr(Tk) = 2k.

Family Wk (Figure 5.d)

The claw-free graph Wk is obtained from a cycle C3k = a1b1c1a2b2c2 · · ·akbkck by
adding k new vertices di joined to ai and bi for 1 ≤ i ≤ k. Clearly {c1, d1, . . . , ck, dk}
is a maximum independent set and β(Wk) = 2k. Every 2-dominating set contains
at least two vertices in each set {ai, bi, ci, di} and since {a1, b1, . . . , ak, bk} is a
double dominating set which is total, γ2(Wk) = γ×2(Wk) = 2k.

.
.

.
. .

.
C3k C2k

Figure 5d: Wk Figure 5e: Zk

Family Zk (Figure 5.e)

The claw-free graph Zk is obtained from a cycle C2k = a1b1a2b2 · · ·akbk by adding
k new vertices ci joined to ai and bi for 1 ≤ i ≤ k. Clearly γ(Zk) = β(Zk) = k and
γ×2(Zk) = 2k.
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3. Ratios of different parameters

γ γt γpr γ×2 β

γ

2

2

2 [17]

2

∞∞∞

3 [Cor 3.9]

∞∞∞

2 [19]

γt

1

1

2 [17]

4/3 [6]

∞∞∞

2 [Th 3.3]

∞∞∞

3/2 [Th 3.4]

γpr

1

1

1

1

∞∞∞

2 [Th 3.3]

∞∞∞

3/2 [Th 3.4]

γ×2

1

3/4 [10]

1

1

2 [Cor 3.2]

1 [4]

∞∞∞

1 [Th 3.5]

β

1

1

2

2

2

2

2 [Cor 3.7 ]

2 [Cor 3.7]

Table 1

We present the results of this section in a table the entries of which are the
five parameters a1 = γ, a2 = γt, a3 = γpr, a4 = γ×2 and a5 = β. The square (i, j)
corresponding to the row i and the column j consists of two subsquares respectively
containing an upper bound on the ratio aj/ai in the class of all graphs for the upper
subsquare and in the class of claw-free graphs for the lower one. For instance the
two values 2 and 1 contained in the square (4,3) indicate that γpr(G)/γ×2(G) is
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at most 2 for every G and at most 1 if G is claw-free. All the bounds are sharp or
asymptotically sharp. When a bound is not the direct consequence of the obvious
inequalities between the parameters given in the introduction, we refer to the
article where it was first established or to a theorem in this paper. The following
comments on the squares of the table contain the justification of the bound given
in each square and arbitrarily large examples of extremal graphs. Moreover in
each extremal example, the domination parameters involved in the corresponding
inequality can take arbitrarily large values.

Squares (2,1),(3,1),(3,2),(4,2): γ/γt, γ/γpr, γt/γpr, γt/γ×2.

Since in every graph with δ ≥ 1, γ(G) ≤ γt(G) ≤ γpr(G) and γt(G) ≤ γ×2(G),
these four ratios are bounded by 1. The bound 1 is sharp even in claw-free graphs.
This can be seen for the first three ratios on the corona G = K2koK1 obtained
by adding a pendant edge at each vertex of a clique K2k. Indeed γ(G) = γt(G) =
γpr(G) = 2k. For the fourth ratio, the graphs Hk (Figure 3) show that the bound
1 on γt/γ×2 is sharp even in claw-free graphs.

Squares (1,2),(1,3),(2,3): γt/γ, γpr/γ, γpr/γt.

As observed in [17], every graph with δ ≥ 1 satisfies γt(G) ≤ γpr(G) ≤ 2γ(G).
Hence γt(G)/γ(G) ≤ 2 and γpr(G)/γ(G) ≤ 2 for all graphs. These two bounds
are sharp even for claw-free graphs as shown by the graph Bk of Figure 1.a or the
graph Qk of Figure 5.a.

It is also proved in [17] that every graph G with δ ≥ 1 satisfies γpr(G) ≤
2γt(G) − 2. Hence γpr(G)/γt(G) < 2 for all graphs. The subdivided star SSk

obtained by subdividing each edge of a star K1,k by exactly one vertex satis-
fies γt(SSk) = k + 1 and γpr(SSk) = 2k, which proves that the bound 2 on
γpr(G)/γt(G) is asymptotically sharp. However this example contains claws and
the upper bound is lower in the class of claw-free graphs. Brigham and Dutton
proved in [6] that every claw-free graph with δ ≥ 1 satisfies γpr(G)/γt(G) ≤ 4/3.
The graph Lk of Figure 1.b shows that this bound is sharp.

Square (4,1): γ/γ×2.

For every graph with δ ≥ 1, γ(G) ≤ γ×2(G). More precisely it has been observed
in [14, 10] that γ(G) ≤ γ×2(G) − 1. Hence γ(G)/γ×2(G) < 1. The graph Jk of
Figure 2 shows that the bound 1 is asymptotically sharp.

The graph Jk contains claws. It is proved in [10] that every claw-free graph
with δ ≥ 1 satisfies γ(G)/γ×2(G) ≤ 3/4 (actually this inequality holds in the larger
class of claw-free block graphs, that are graphs for which each block is claw-free).
The claw-free graph Hk of Figure 3 shows that this bound is sharp.

Square (4,3): γpr/γ×2.

Theorem 3.1. Every graph G with δ ≥ 1 satisfies γpr(G) ≤ max{2γ×2(G)− 4, 2}.
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Proof. Let S be a γ×2(G)-set, M a maximum matching of S, B = V (M) and
A = S−B. If A = ∅, then S is a paired dominating set of G and γpr(G) ≤ γ×2(G).
Hence γpr(G) ≤ 2 if γ×2(G) = 2 and γpr(G) ≤ 2γ×2(G)−4 if γ×2(G) ≥ 4. Assume
henceforth A �= ∅. Since the matching M is maximum in S the set A is independent
and since S is a total dominating set of G each vertex of A has at least one
neighbor in B. If N(A) ⊂ N(B) then B is a paired dominating set of G of order
|S| − |A| ≤ γ×2(G) − 1. As above γpr(G) ≤ max{2γ×2(G) − 4, 2}. Assume now
N(A) is not contained in N(B) and let A′ = N(A)−N(B) = V (G)− S −N(B).
Since S is a 2-dominating set of G each vertex x of A′ has at least two neighbors
in A. Therefore for every u ∈ A, the set A − {u} dominates A′ and thus, if D
is a minimum subset of A dominating A′, |D| ≤ |A| − 1. Let M ′ be a maximum
matching between D and A′. Then |V (M ′)| ≤ 2|D| ≤ 2|A| − 2. If a vertex x of A′

is not dominated by V (M ′), there exists a vertex y ∈ D − V (M ′) adjacent to x
and M ′∪xy contradicts the choice of M ′. Hence B∪V (M ′) is a paired dominating
set of G. Therefore γpr(G) ≤ |B|+ |V (M ′)| ≤ |B|+ 2|A| − 2 = 2|S| − |B| − 2. But
since δ(S) ≥ 1, |B| ≥ 2. Hence γpr(G) ≤ 2|S| − 4 which completes the proof. �
Corollary 3.2. Every graph G with δ ≥ 1 satisfies γpr/γ×2 < 2.

Proof. Obvious from Theorem 3.1 since γpr(G) = γ×2 if γ×2 = 2 and γpr(G) <
2γ×2(G) otherwise. �

The graph Jk shown in Figure 2 satisfies γpr(Jk) = 2k − 2 and γ×2(Jk) = k + 1.
Hence Jk is an extremal graph for Theorem 3.1 and shows that the bound 2 on
γpr/γ×2 is asymptotically sharp in the class of all graphs.

For claw-free graphs with δ ≥ 1, the bound 2 can be lowered and the authors
of [4] proved that γpr/γ×2 ≤ 1. As for the ratio γt/γ×2, the graphs Hk of Figure
3 show that the bound 1 is sharp.

Squares (1,4),(2,4),(3,4): γ×2/γ, γ×2/γt, γ×2/γpr.

In general graphs these three ratios can be arbitrarily large as can be seen on the
graph Mk,p of Figure 4.a for which γ(Mk,p) = γt(Mk,p) = γpr(Mk,p) = 2k and
γ×2(Mk,p) = 2pk.

However Corollary 3.9, which will be given later, shows that γ×2(G)/γ(G) ≤ 3
in every claw-free graph with δ ≥ 1 and the following theorem shows that the other
two ratios γ×2/γt and γ×2/γpr are also bounded in the class of claw-free graphs.

Theorem 3.3. Every claw-free graph G with δ ≥ 1 satisfies γ×2(G)/γpr(G) ≤
γ×2(G)/γt(G) ≤ 2.

Proof. Let S be a γt(G)-set and u ∈ S. The external S-private neighborhood
epn(S, u) of u is the set of all the vertices of V − S having u as their unique
neighbor in S. Since G is claw-free and since u has at least one neighbor in S,
epn(S, u) is either empty or induces a clique in G. Let f(u) = {u} if epn(S, u) = ∅,
f(u) = {u, u′} with u′ ∈ epn(S, u) otherwise. Then T = ∪u∈Sf(u) is a double
dominating set of G such that |T | ≤ 2|S|. Hence γ×2(G) ≤ 2γt(G) ≤ 2γpr(G). �
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The graph Qk of Figure 5.a for which γ(Qk) = k and γ×2(Qk) = 3k shows
that the bound 3 in Corollary 3.9 is sharp.

The graph Rk of Figure 4.b for which γt(Rk) = γpr(Rk) = 2k and γ×2(Rk) =
4k shows that the bound 2 in Theorem 3.3 is sharp for the two ratios.

Squares (1,5),(2,5),(3,5): β/γ, β/γt, β/γpr.

The star K1,k for which γ(K1,k) = 1, γt(K1,k) = γpr(K1,k) = 2 and β(K1,k) = k
shows that β/γ, β/γt and β/γpr can be arbitrarily large in graphs with claws.

For claw-free graphs, the bound β(G)/γ(G) ≤ 2 was given by Sumner in
[19] without proof. For the sake of completeness we give here a short proof of
this property. Let G be a claw-free graph, S a β(G)-set and D = {x1, . . . , xγ}
a γ(G)-set. Since D is dominating, V (G) = ∪x∈DN [x] and since G is claw-free,
|N [x] ∩ S| ≤ 2 for every x in D. Hence we have

β(G) = |S| = |S ∩ (∪x∈DN [x])| ≤
∑
x∈D

|S ∩N [x]| ≤ 2|D| = 2γ(G).

The graph Sk of Figure 5.b shows that the bound 2 on β/γ is sharp in claw-free
graphs.

In the following theorem we show that β/γt and β/γpr also are bounded in
claw-free graphs.

Theorem 3.4. Every claw-free graph G with δ ≥ 1 satisfies

β(G)/γpr(G) ≤ β(G)/γt(G) ≤ 3/2.

Proof. Let G be a claw-free graph with δ ≥ 1, S a γt(G)-set, I a β(G)-set and M =
{x1y1, . . . , xkyk} a maximum matching of S. Since G is claw-free, for every edge
xiyi the neighborhood N({xi, yi}) contains at most three independent vertices.
Hence |I ∩ N({xi, yi})| ≤ 3. Moreover, since every vertex w ∈ S − V (M) has at
least one neighbor, say xi, in V (M), the set I contains at most one vertex from
N(w)−N(xi). It follows that

|I| ≤ 3|M |+ (|S| − 2|M |) = |S|+ |M | ≤ |S|+ |S|/2 = 3|S|/2. �

The graph Tk of Figure 5.c shows that the bound 3/2 on β(G)/γpr(G) and
β(G)/γt(G) is sharp.

Square (4,5): β/γ×2.

The graph G consisting of k triangles aibc sharing the edges bc satisfies β(G) = k,
γ×2(G) = 2 and shows that the ratio β/γ×2 is not bounded in general graphs.

This is not true for claw-free graphs as shown by the following theorem.

Theorem 3.5. Every claw-free graph G with δ ≥ 1 satisfies

β(G)/γ×2(G) ≤ β(G)/γ2(G) ≤ 1.
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Proof. Let G be a claw-free graph with δ ≥ 1, D a γ2(G)-set and I a β(G)-set.
The set D is not strictly contained in I for otherwise the vertices of I −D would
not be dominated by D. If I ⊂ D we are done. Hence we assume I −D �= ∅ and
D − I �= ∅. Every vertex of I − D has at least two neighbors in D − I since D
is a 2-dominating set. Every vertex of D − I has at most two neighbors in I −D
since G is claw-free. Therefore the number e(I −D, D− I) of edges of G between
I −D and D − I satisfies 2|I −D| ≤ e(I −D, D − I) ≤ 2|D − I| which leads to
β(G) ≤ γ2(G) ≤ γ×2(G). �

The graph Wk of Figure 5.d shows that the bound 1 on β/γ×2 and β/γ2 is sharp.

Squares (5,1),(5,2),(5,3): γ/β, γt/β, γpr/β.

Since β(G) ≥ γ(G) and by the bounds in squares (1,2) and (1,3), we have
γ(G)/β(G) ≤ 1, γt(G)/β(G) ≤ 2 and γpr(G)/β(G) ≤ 2 in every graph G. The
claw-free graphs Zk of Figure 5.e, and more generally the claw-free well-covered
graphs, satisfy β(G)/γ(G) = 1 (well-covered means that i(G) = β(G)). For the last
two ratios, the graph Bk of Figure 1.a shows that the bound 2 is asymptotically
sharp even in claw-free graphs.

Square (5,4): γ×2/β.

Theorem 3.6. Every graph G with δ ≥ 1 satisfies γ×2(G) ≤ i(G) + β(G).

Proof. Let S be an i(G)-set and S′ a maximum independent set of G[V (G)− S].
Since S′ is independent in G, |S′| ≤ β(G). Let A = N(S′) ∩ S and B = S − A. If
B = ∅ then the graph induced by S∪S′ has no isolated vertex and so S∪S′ double
dominates G. Therefore γ×2(G) ≤ |S∪S′| ≤ i(G)+β(G). Assume now that B �= ∅.
Let C be a smallest set of V − S that dominates B. Such a set exists since G has
no isolated vertices and |C| ≤ |B|. Then A ∪ B ∪ C ∪ S′ is a double dominating
set of G. Moreover |A|+ |C| ≤ |A|+ |B| = i(G) and B ∪ S′ is independent. Hence

γ×2(G) ≤ |A ∪B ∪ C ∪ S′| ≤ |A ∪ C|+ |B ∪ S′| ≤ i(G) + β(G). �

Corollary 3.7. Every graph G with δ ≥ 1 satisfies γ×2(G)/β(G) ≤ 2. �

Another obvious consequence of Theorem 3.6 is the following

Corollary 3.8. Every graph G satisfies γ2(G) ≤ i(G) + β(G). �
The graphs Bk of Figure 1.a show that Theorem 3.6 and Corollary 3.8 are

sharp even for claw-free graphs. The graphs Zk of Figure 5.e give claw-free extremal
examples for Theorem 3.6 and Corollary 3.7.

Finally, since i(G) = γ(G) and β(G) ≤ 2γ(G) hold for every claw-free graph
[19], Theorem 3.6 also shows the following inequality, already mentioned earlier
with equality for Qk.

Corollary 3.9. Every claw-free graph G with δ ≥ 1 satisfies γ×2(G)/γ(G) ≤ 3. �
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Excessive Factorizations of Regular Graphs

Arrigo Bonisoli and David Cariolaro

Abstract. An excessive factorization of a graph G is a minimum set F of
1-factors of G whose union is E(G). In this paper we study excessive fac-
torizations of regular graphs. We introduce two graph parameters related to
excessive factorizations and show that their computation is NP-hard. We pose
a number of questions regarding these parameters. We show that the size of
an excessive factorization of a regular graph can exceed the degree of the
graph by an arbitrarily large quantity. We conclude with a conjecture on the
excessive factorizations of r-graphs.

Mathematics Subject Classification (2000). Primary 05C70; Secondary 05C15.
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1. Introduction

In this paper all graphs are simple, finite and undirected, unless stated otherwise.
Terminology and notation, not explicitly introduced here, will follow [9]. We shall
occasionally say that a set S is odd (even) if its cardinality is odd (even). Accord-
ingly, we shall say that a graph G is odd or even if V (G) is odd or even, respectively.
The order of G is |V (G)|. The symbol r will be always used, without further men-
tion, to denote the degree of regularity of the graph under consideration. A graph
G is 1-factorizable if its edge set E(G) can be partitioned into edge-disjoint 1-
factors (perfect matchings). It is obvious that, if the graph G is 1-factorizable,
then G is even and regular, but it is a notoriously difficult question to determine
which regular graphs are 1-factorizable (we call this the 1-Factorization Problem).
For example, the Petersen graph P is even and regular, but not 1-factorizable.

If the degree of G is sufficiently high (with respect to its order), it appears
that G ought to be 1-factorizable. That is the content of the following long-standing
conjecture, see [6].

The first author carried out this research within the activity of G.N.S.A.G.A. of the Italian
I.N.d.A.M. with the financial support of the Italian Ministry M.I.U.R., project “Strutture geo-
metriche, combinatoria e loro applicazioni.”
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Conjecture 1.1 (1-Factorization Conjecture). Let G be a regular graph of even
order 2n and degree r ≥ n∗, where

n∗ =
{

n if n is odd,
n− 1 if n is even.

Then G is 1-factorizable.

Notice that the bound of Conjecture 1.1 is best possible. Indeed, if n is odd,
a regular graph G of order 2n and degree r = n−1 which is not 1-factorizable may
be produced by taking for G two copies of Kn, and for n even a similar example
of order 2n and degree n− 2 can be constructed (see Fig. 1). We also notice that,
to prove Conjecture 1.1, it suffices to prove that the regular graphs of order 2n
and degree equal to n∗ are 1-factorizable. Indeed every graph of larger degree can
be reduced to a graph of degree exactly n∗ by removing some of its 1-factors, and
the 1-factorizability of the latter graph implies the 1-factorizability of the former
graph. (It is easily seen, e.g., by applying Dirac’s condition for Hamiltonicity[10],
that every graph of order 2n and degree larger than n∗ has a 1-factor.) This shows
that the class of the n∗-regular graphs of order 2n is particularly important with
respect to the 1-Factorization Problem and deserves special attention.

Figure 1. Two regular graphs of even order which show that the
bound of Conjecture 1.1 is best possible.

A slightly weaker version of Conjecture 1.1 (namely the conjecture that every
regular graph of order 2n and degree r ≥ n is 1-factorizable) has been proved to
hold “asymptotically” (i.e., for n very large and r ≥ n + ε) by Perkovic and
Reed [17]. For what concern exact results, the best result to date was obtained
by Chetwynd and Hilton [7] and, independently, Niessen and Volkmann [16], who
proved that even regular graphs with degree r ≥ 1

2 (
√

7 − 1)|V (G)| � 5
6 |V (G)|



Excessive Factorizations of Regular Graphs 75

are 1-factorizable. A partial improvement has been obtained by Cariolaro [5], who
proved that, if r ≥ (0.794)|V (G)|, then either G is 1-factorizable or G belongs to a
very special (possibly empty) class of graphs. The techniques used to prove these
results rely, ultimately, on the fact that, if in a graph the set of vertices of maximum
degree induces a subgraph with certain properties, then the graph is Class 1 (i.e.,
∆-edge colourable, where ∆ is the maximum degree). It does not seem probable,
at the present state of understanding, that a significant improvement upon the
above results could be obtained using the same technique. Therefore, in order to
solve Conjecture 1.1, new ideas need to be developed.

Partially motivated by the necessity of finding new ideas and approaches for
the 1-Factorization Problem, we shall introduce a generalization of the concept
of 1-factorization, called excessive factorization. Informally speaking an excessive
factorization is a minimum “cover” of the edge set of a graph by a set of (not
necessarily disjoint) 1-factors. Thus, if G is 1-factorizable, an excessive factoriza-
tion is nothing else than a 1-factorization, but if G is not 1-factorizable, then an
excessive factorization of G (if it exists) provides an answer to the problem: “Find
a minimum set of 1-factors which cover all the edges of G”1.

To give an example of a possible (admittingly recreational) application of
the idea of excessive factorization, suppose that a tennis tournament with 2n
participants is being organized and that there is a fixed set M of pairs of players
that are supposed to play against each other during the tournament. To allow
sufficient time for rest every player can play at most one match per day. However
(as often happens in amateur tournaments) the director of the tournament wants
to ensure that every player plays exactly one match per day, so that no player is left
aside during any day of the tournament. In order to ensure that the tournament is
run at the above conditions, the director is willing, if necessary, to let the same pair
of players in M play against each other more than once during the tournament.
It is natural to assume that the director of the tournament will be willing to run
the tournament in the minimum possible number of days.

It is easy to see, by considering the graph G having the 2n players as vertices,
with two vertices joined by an edge if and only if the corresponding pair of players
is in M , that the above problem is equivalent to the problem of finding a minimum
set of 1-factors which covers G, i.e., an excessive factorization of G.

Problems of this kind constitute a further motivation for the introduction
and study of the concept of excessive factorization which forms the subject of this
paper.

1The term “excessive factorization” is borrowed from [3], where it was used with a slightly
different meaning, namely to denote a (inclusionwise) minimal family of 1-factors of K2n covering
all the edges of K2n and consisting of precisely 2n 1-factors. Such a family is called an overfull
set of 1-factors by Wallis in [21]
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2. Preliminary results and definitions

Let G be a graph and let F be a set of 1-factors of G. We say that F covers G if⋃
{F | F ∈ F} = E(G).

Although we shall be mainly interested in minimum covers, it will be convenient
to have a more general notion of cover. Therefore we introduce the following defi-
nition.

Definition 2.1. A 1-factor cover of G is a set F of 1-factors of G which covers G.

If F is a 1-factor cover, and |F| = p, we say that F has size p. We also say
that F is a minimal 1-factor cover if F does not contain properly any 1-factor
cover. Bonisoli [3] considered minimal 1-factor covers of the complete graph of
order 2n and consisting of precisely 2n 1-factors. In this paper we shall be mainly
concerned with regular graphs and 1-factor covers of minimum size. Therefore we
pose the following definition.

Definition 2.2. An excessive factorization of G is a 1-factor cover of G of minimum
size.

An obvious question is: “Which graphs admit an excessive factorization?”.
This question is clearly equivalent to the question: “Which graphs admit a 1-factor
cover?” and it is easy to see that such graphs are precisely those for which every
edge belongs to (at least) one 1-factor of the graph. In the literature (see, e.g.,
[15]) connected graphs with this property are usually called matching covered or 1-
extendable. The restriction that G is connected is here of no particular significance
and we shall use the term “1-extendable” with a slightly more general meaning,
namely to denote a (not necessarily connected) graph which admits an excessive
factorization.

It will be convenient to have at our disposal a notation for the size of an ex-
cessive factorization of a 1-extendable graph G. Accordingly, we pose the following
definition.

Definition 2.3. Let G be a 1-extendable graph. The excessive index of G is defined
as the size of an excessive factorization of G and denoted by χ′

e(G).

By defining χ′
e(G) = ∞ for all those graphs which are not 1-extendable, we

have now defined the parameter χ′
e on all graphs2.

The question arises to compute χ′
e(G) for any graph G. It is obvious that

χ′
e(G) ≥ ∆(G), where ∆(G) is the maximum degree of G. Moreover, if G is

regular, then the sign of equality holds in the previous inequality if and only if G is
1-factorizable. This shows in particular that the computation of χ′

e(G) is at least

2If we assume the convention that min ∅ = ∞ then the above definition can be made in a unified
way by letting

χ′
e(G) = min{|F| | F is a 1-factor cover of G}.
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as hard as the decision problem: “Is G 1-factorizable?”, which is known to be NP-
hard (see [14]). We are therefore led to investigate χ′

e(G) only for specific classes
of graphs G. In this paper we shall only be considering (even) regular graphs.

Since the difference χ′
e(G)− r is nonnegative for any even r-regular graph G

and null if and only if G is 1-factorizable, it is natural to take such difference as a
measure of “how far is G from being 1-factorizable”. This prompts us to introduce
a new parameter.

Definition 2.4. Let G be an even regular graph with degree r. The excessive class3

of G is defined as
exc(G) = χ′

e(G) − r.

If a graph G satisfies exc(G) = k, we shall say that G is k-excessive. Thus the
0-excessive regular graphs are precisely those which are 1-factorizable. It is obvious
from the above definition that the computation of exc(G) is equivalent to the
computation of χ′

e(G) (given that we know the degree of G). Therefore, to compute
exc(G) is NP -hard in general. More precisely, to decide whether exc(G) = 0 is
NP-complete for arbitrary graphs (and remains NP-complete even when restricted
to cubic graphs, see Holyer [14]). The complexity of solving the decision problem
exc(G) ≤ k, for k > 0, is, to the best of our knowledge, unknown. This is obviously
equivalent to the problem of determining whether G has a 1-factor cover of size at
most r + k, and we suspect that, at least for k = 1, this problem is NP-complete.
We leave this as an open problem.
Problem 1: Determine the complexity of finding whether exc(G) ≤ k for an arbi-
trary regular even graph G, for any constant k > 0.

The inequality χ′
e(G) ≥ r can be slightly improved upon. Indeed, it is easy to

see that, if G has a 1-factor cover F of size p, then G has also a p-edge colouring.
(An easy way to obtain this is by labelling the edges of the 1-factors in F with
integers 1, 2, . . . , p and then by giving to each edge as colour the minimum of the
labels of the 1-factors of F which contain it.) Therefore we have that χ′

e(G) ≥
χ′(G), where χ′(G) is the chromatic index of G.

Conjecture 1.1, when stated in terms of the excessive class, says that any
regular graph G of order 2n has excessive class 0 if r ≥ n∗. Having at our disposal
the concept of excessive class, it is natural to formulate the following weaker form
of Conjecture 1.1.

Conjecture 2.5. Let k > 0 be an integer. Let G be a regular graph of order 2n and
degree r ≥ n∗, where n∗ is as in Conjecture 1.1. Then exc(G) ≤ k.

Unfortunately, even Conjecture 2.5 seems to be very hard (however large is
the integer k), and one is tempted to go one step further and ask whether the
constant k could be replaced by a function θ(G) (possibly depending on the order
or other graph parameters of G). We state this as a problem.

3This definition can be generalized to the case that G is non-regular by replacing r with ∆(G),
but we shall not be concerned in this paper with the investigation of non-regular graphs.
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Problem 2: Find a function θ(G) such that any regular graph of order 2n and
degree r ≥ n∗ (where n∗ is as in Conjecture 1.1) satisfies exc(G) ≤ θ(G). (It is
obvious that what we really ask is a function θ(G) which provides the best possible
upper bound for exc(G).)

We note here that, trivially, χ′
e(G) ≤ |E(G)| for any 1-extendable graph G.

Moreover, using the fact that the intersection of two distinct 1-factors in G cannot
contain more than |V (G)|/2 − 2 edges, the above inequality can be improved
without difficulty to χ′

e(G) ≤ max |{|E(G)| − |V (G)|/2, 1}, so that the function
θ(G) = max{|E(G)| − |V (G)|/2 − ∆(G), 0} provides a first, rather crude upper
bound for exc(G) (and this upper bound holds also for 1-extendable non-regular
graphs).

3. Graphs with small excessive class

The following theorem was proved in [3] for complete even graphs, but holds, more
generally, for regular even graphs.

Theorem 3.1. Let G be a regular graph of even order. Let G have a 1-factor cover
F of size r + 1. Call an edge “excessive” if it belongs to more than one 1-factor in
F . Then we have the following:

1. each excessive edge of G belongs to exactly two 1-factors in F ;
2. the set of excessive edges forms a 1-factor F ∗ of G, which we call the “exces-

sive 1-factor”;
3. F is a minimal 1-factor cover of G if and only if F ∗ /∈ F .

Proof. For any vertex u of G there are precisely r edges incident with u. Since
every 1-factor is incident with u, and all the r edges incident with u are covered by
at least one 1-factor in F , it follows that there is precisely one edge incident with
u which is excessive, and this edge belongs to exactly two 1-factors in F . Since the
choice of u is arbitrary, this proves Claim 1 and Claim 2. Let now F ∗ be the set of
excessive edges, which is a 1-factor by (2). If F ∗ ∈ F , then F \ {F ∗} covers G, so
that F is not a minimal 1-factor cover of G. Conversely, if F is a 1-factor cover of
G which is not minimal and F1 ∈ F is such that F \ {F1} covers G, then F \ {F1}
is a 1-factorization of G, and hence F1 coincides with the set F ∗ of excessive edges
of F . This proves Claim 3 and concludes the proof of the theorem. �

It would be desirable to have an extension of Theorem 3.1 to 1-factor covers
of size r + 2. In this case it is easy to see that the excessive edges do not always
form a 2-factor, but it would be interesting to prove under what conditions they
do.

Theorem 3.1 is useful, for instance, when we want to prove or disprove that
a given graph is 1-excessive. An example is offered by the case of the Petersen
graph, which is 2-excessive. To exemplify the application of Theorem 3.1, we give
a detailed proof of this fact.
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Proposition 3.2. The Petersen graph is 2-excessive.

Proof. First notice that exc(P ) > 0, since P is not 1-factorizable. It is easy to see
that there is a 1-factor cover of P of size 5, thus proving that χ′

e(P ) ≤ 5, and hence
that exc(P ) ≤ 2. To terminate the proof, it remains to be shown that exc(P ) �= 1.
Arguing by contradiction, assume that exc(P ) = 1. Let F = {F1, F2, F3, F4} be
an excessive factorization of P . Notice that F is, in particular, a minimal 1-factor
cover. Applying Theorem 3.1, we have that the excessive factor F ∗ /∈ F . Since
every two distinct 1-factors of P intersect in precisely one edge, we have that

|F1 ∩ F ∗| = |F2 ∩ F ∗| = |F3 ∩ F ∗| = |F4 ∩ F ∗| = 1.

But |F ∗| = 5, which implies that F ∗ contains one edge which is not in F1 ∪ F2 ∪
F3 ∪ F4 = E(G), which is a contradiction. Hence exc(P ) = 2. �

Is there an example of a regular 1-excessive graph G? These graphs appear
to be quite rare among those with small order. Cariolaro [5] gave an example of
a 5-regular graph of order 18 with excessive class 1. Wallis [22] found an example
of a cubic 1-excessive graph of order 18. This graph can be obtained by taking
two copies of P ∗ (where P ∗ denotes the Petersen graph with one vertex deleted)
and matching the three vertices of degree 2 of one copy of P ∗ to the three vertices
of degree 2 of the other copy. However these are not the smallest regular graphs
with excessive class 1. Indeed the graph P ′ obtained by expanding one vertex of
the Petersen graph into a triangle is a regular 1-excessive graph and has order
12 (see Fig. 2). Using the known classification of the graphs of order at most 12
with respect to the chromatic index (see [2, 4, 8, 12]), it is easy to show that P ′ is
indeed the smallest 1-excessive regular graph (in the sense that there is no other
1-excessive regular graph of order at most 12).

14 24

3

34

1

3
4

12

4
3

2 21

12

4

13 23

Figure 2. The smallest regular graph with excessive class 1. An
excessive factorization consisting of four 1-factors labelled 1, 2, 3, 4
is shown. The excessive edges are marked in bold. Notice that the
excessive edges form a 1-factor.
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4. Graphs of arbitrary excessive class

The examples of graphs considered thus far show, in particular, the existence of
regular graphs of excessive class 0, 1 and 2. It is natural to ask if there are graphs
with higher excessive class. In this section we will prove that there is no upper
bound on the excessive class of regular graphs of even order (even when we exclude
those with infinite excessive class, i.e., those that are not 1-extendable).

Figure 3. A regular graph with excessive class 4.

We will actually prove a stronger result, namely the following.

Theorem 4.1. Let k be a positive integer. Then there is a regular graph G such
that exc(G) = 2k. Moreover G can be chosen to have order 2n and degree n − 1,
for n = 2k + 3.

Proof. Let n be an odd positive integer, n ≥ 5, and let Gn be the graph obtained
as follows: take two copies H1, H2 of Kn − e (i.e., the complete graph of order n
with one edge deleted). Let e1 = u1v1 be the deleted edge in H1 and let e2 = u2v2

be the deleted edge in H2. To complete the definition of Gn add the edges u1u2

and v1v2.(Fig. 3 shows the graph G7.) We shall prove that exc(Gn) = n − 3,
which will prove the theorem. Notice that Gn is (n− 1)-regular; hence our claim
is equivalent to the claim that χ′

e(Gn) = (n− 1)+ (n− 3) = 2n− 4. We first prove
the inequality χ′

e(Gn) ≤ 2n− 4 by exhibiting a 1-factor cover of Gn of size 2n− 4.
Notice that the graphs H1 − u1, H1 − v1, H2 − u2, H2 − v2 are complete graphs of
order n − 1 and, since n − 1 is even, they are 1-factorizable. Thus in particular
there exists a 1-factor cover F1 of H1 − u1 of size n − 2. Similarly there exists a
1-factor cover F2 of H2 − u2 of size n− 2. We can combine each 1-factor F1 ∈ F1

with one 1-factor F2 ∈ F2 and, adding the edge u1u2, obtain a 1-factor of Gn. By
doing this for all the 1-factors in F1,F2 we obtain a set F of 1-factors of Gn of
size n− 2 which covers the edge u1u2, all the edges of H1−u1 and all the edges of
H2 − u2. Similarly, there exists a set F ′ of 1-factors of Gn of size n− 2, such that
F ′ covers the edge v1v2, all the edges of H1 − v1 and all the edges of H2 − v2. It
is easy to see that the set F ∪ F ′ has size 2n− 4 and covers all the edges of Gn,
and hence is a 1-factor cover of Gn of the required size. Thus χ′

e(Gn) ≤ 2n− 4.
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It remains to prove that χ′
e(Gn) ≥ 2n − 4. Let p = χ′

e(Gn) and let F be a
1-factor cover of Gn of size p. It is easy to see that every 1-factor of Gn contains
either the edge u1u2 or the edge v1v2. By symmetry we may assume that the edge
u1u2 is contained in at least �p

2� of the 1-factors in F . Let F0 be the set of 1-factors
in F which contain the edge u1u2. Let e1, e2, . . . , en−2 be the edges incident with
u1 and distinct from the edge u1u2. Certainly no 1-factor in F0 can contain any of
these edges. Moreover, to cover each of these edges, we need distinct 1-factors, since
these edges are mutually adjacent. Therefore there are at least n − 2 one-factors
in F \ F0. This proves that

p ≥ �p
2
�+ n− 2, which gives p ≥ 2(n− 2),

as wanted. �
Notice that Theorem 4.1 reinforces the claim that the bound r ≥ n∗ in

Conjecture 1.1 is best possible, since it shows that there are regular graphs of
order 2n and degree n∗ − 1 which not only fail to be 1-factorizable, but, in some
sense, are “very far from being 1-factorizable altogether” (and not in an obvious
way as the graphs of Fig. 1 for which no excessive factorization exists).

It would be interesting to complement the construction given in the proof
of Theorem 4.1 with a parallel construction that shows that all the odd positive
integers can also be attained as excessive classes of regular graphs.

5. r-graphs and the perfect matching polytope

Some of the above concepts and results may be rephrased in terms of the so-
called perfect matching polytope. The perfect matching polytope of G, denoted by
PM(G), is the convex hull of the incidence vectors of the 1-factors of G (viewed
as 0–1 functions on the edge set of G). It is a well-known and studied concept in
matching theory and combinatorial optimization (see, e.g., [15]). For example, the
requirement that G has an excessive factorization is equivalent to the requirement
that, if e ∈ E(G), then xe > 0 for at least one vector x in PM(G).

By Edmonds’ theorem [11], the perfect matching polytope can be described
as follows. Let G be an even graph. Call an edge cut an odd cut if it is the set of
edges joining an odd set X ⊂ V (G) and the (odd) set V (G) \X . Call an odd cut
trivial if either X = {v} or V (G) \X = {v}, for a vertex v ∈ V (G). Then PM(G)
is the solution to the following system of inequalities:⎧⎪⎨

⎪⎩
x ≥ 0
x(C) = 1 (where C is a trivial odd cut)
x(C) ≥ 1 (where C is a non trivial odd cut)

(Here the notation x(C) is used to denote
∑

e∈C xe.)
A class of regular graphs is naturally associated with the perfect matching

polytope and it is interesting to investigate the excessive factorizations for this
class. These graphs are named r-graphs in Seymour’s paper [18]. The r-graphs
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are precisely those regular graphs for which the vector x ∈ RE equal to 1/r on
every edge belongs to PM(G). (An equivalent definition is that every odd cut of
G contains at least r edges.) Thus it is immediate that, if G is an r-graph, then
G is 1-extendable and hence admits an excessive factorization. (This fact could
also be proved directly using Tutte’s 1-factor theorem [19]). It is easy to see that
every 1-factorizable graph of degree r is an r-graph. However the converse is not
true since the Petersen graph is a 3-graph but is not 1-factorizable. Tutte [20]
conjectured that every 3-graph with no Petersen minor is 1-factorizable, i.e., has
excessive class 0. (A proof of this conjecture has been announced by Robertson,
Sanders, Seymour and Thomas). If true, this implies that the Petersen graph is, in
some sense, the “only” graph which causes any 3-graph to have a positive excessive
class. In fact we are led to believe that there is no r-graph which has excessive
class greater than 2 and we would like to pose this as a conjecture.

Conjecture 5.1. For every r-graph G, exc(G) ≤ 2.

Notice that Conjecture 5.1 implies Conjecture 2.5 with k = 2, since every
regular graph of order 2n and degree r ≥ n∗ is an r-graph. The case r = 3 of
Conjecture 5.1 has an interest of its own. It claims that every cubic bridgeless
graph can be covered by 5 one-factors (or less). It seems that, up to now, it is
not even known if the number 5 in the previous statement can be replaced by any
larger number k (see [1]).

The same statement is also a weaker statement than Fulkerson’s Conjecture
[13]. Indeed an equivalent formulation of Fulkerson’s Conjecture is that every cubic
bridgeless graph can be covered by 5 one-factors in such a way that the excessive
edges (i.e., the edges which belong to more than one of the 1-factors) form a 2-
factor. Accordingly it would be interesting to know when a given 1-factor cover has
an excessive factor (by which term we mean the subgraph induced by the excessive
edges) which forms a 2-factor, as remarked at the end of the proof of Theorem 3.1.

Conjecture 5.1 suggests a new way to classify r-graphs, introducing in par-
ticular an element of differentiation among Class 2 (i.e., non 1-factorizable) r-
graphs. Specifically, Conjecture 5.1 suggests the following classification scheme for
r-graphs:

1. 1-factorizable r-graphs (those with exc(G) = 0);
2. Type I r-graphs (those with exc(G) = 1, like the one in Fig. 2);
3. Type II r-graphs (those with exc(G) ≥ 2, like the Petersen graph).
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Odd Pairs of Cliques

Michel Burlet, Frédéric Maffray and Nicolas Trotignon

Abstract. A graph is Berge if it has no induced odd cycle on at least 5 vertices
and no complement of induced odd cycle on at least 5 vertices. A graph is
perfect if the chromatic number equals the maximum clique number for every
induced subgraph. Chudnovsky, Robertson, Seymour and Thomas proved that
every Berge graph either falls into some classical family of perfect graphs, or
has a structural fault that cannot occur in a minimal imperfect graph. A
corollary of this is the strong perfect graph theorem conjectured by Berge:
every Berge graph is perfect. An even pair of vertices in a graph is a pair of
vertices such that every induced path between them has even length. Meyniel
proved that a minimal imperfect graph cannot contain an even pair. So even
pairs may be considered as a structural fault. Chudnovsky et al. do not use
them, and it is known that some classes of Berge graph have no even pairs.

The aim of this work is to investigate an “even-pair-like” notion that
could be a structural fault present in every Berge graph. An odd pair of cliques
is a pair of cliques {K1, K2} such that every induced path from K1 to K2 with
no interior vertex in K1 ∪ K2 has odd length. We conjecture that for every
Berge graph G on at least two vertices, either one of G, G has an even pair,
or one of G, G has an odd pair of cliques. We note that this conjecture is true
for basic perfect graphs. By the strong perfect graph theorem, we know that a
minimal imperfect graph has no odd pair of maximal cliques. In some special
cases we prove this fact independently of the strong perfect graph theorem.
We show that adding all edges between any 2 vertices of the cliques of an odd
pair of cliques is an operation that preserves perfectness.

Keywords. Perfect graph, graph, even pair.

1. Introduction

In this paper graphs are simple, non-oriented, with no loop and finite. Several
definitions that can be found in most handbooks (for instance [11]) will not be
given. A graph G is perfect if every induced subgraph G′ of G satisfies χ(G′) =
ω(G′), where χ(G′) is the chromatic number of G′ and ω(G′) is the maximum
clique size in G′. Berge [2, 3] introduced perfect graphs and conjectured that the
complement of a perfect graph is a perfect graph.
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This conjecture was proved by Lovász:

Theorem 1.1 (Lovász, [19, 18]). The complement of every perfect graph is a perfect
graph.

Berge also conjectured a stronger statement: a graph is perfect if and only
if it does not contain as an induced subgraph an odd hole or an odd antihole (the
Strong Perfect Graph Conjecture), where a hole is a chordless cycle with at least
four vertices and an antihole is the complement of a hole. We follow the tradition
of calling Berge graph any graph that contains no odd hole and no odd antihole.
The Strong Perfect Graph Conjecture was the objet of much research (see the
book [24]), until it was finally proved by Chudnovsky, Robertson, Seymour and
Thomas:

Theorem 1.2 (Chudnovsky, Robertson, Seymour and Thomas [5]). Every Berge
graph is perfect.

In fact Chudnovsky, Robertson, Seymour and Thomas [5] proved a stronger
fact, conjectured by Conforti, Cornuéjols and Vuśković [9]: every Berge graph
either falls in a basic class or has a structural fault. Before stating this more
precisely, let us say that a basic class of graphs is a class of graphs that are proved
to be perfect by some classical coloring argument. A structural fault in a graph is
something that cannot occur in a minimal counter-example to the perfect graph
conjecture. The basic classes used by Chudnovsky et al. are the bipartite graphs,
their complement, the line-graphs of bipartite graphs, their complement, and the
double split-graphs. The structural faults used by Chudnovsky et al. are the 2-
join (first defined by Cornuéjols and Cunningham [10]), the even skew partition (a
refinement of Chvátal’s skew partition [7]) and the homogeneous pair (first defined
by Chvátal and Sbihi [8]). We do not give here the precise definitions as far as we
do not need them.

Despite those breakthroughs, some conjectures about Berge graphs remain
open. An even pair in a graph G is a pair of non-adjacent vertices such that every
chordless path between them has even length (number of edges). Given two vertices
x, y in a graph G, the operation of contracting them means removing x and y and
adding one vertex with edges to every vertex of G \ {x, y} that is adjacent in G to
at least one of x, y; we denote by G/xy the graph that results from this operation.
Fonlupt and Uhry proved the following:

Theorem 1.3 (Fonlupt and Uhry [15]). If G is a perfect graph and {x, y} is an even
pair in G, then the graph G/xy is perfect and has the same chromatic number as G.

Meyniel also proved the following:

Theorem 1.4 (Meyniel, [21]). Let G be a minimal imperfect graph. Then G has no
even pair.

So even pairs can be consider as a “structural fault”, with respect to a proof
of perfectness for some classes of graphs. This approach for proving perfectness has
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Figure 1. The double-diamond and L(K3,3 \ e)

been formalised by Meyniel [21]: a strict quasi-parity graph is a graph such that
every induced subgraph either is a clique or has an even pair. By Theorem 1.4,
every strict quasi-parity graph is perfect. Many classical families of perfect graphs,
such as Meyniel graphs, weakly chordal graphs, perfectly orderable graphs, Artemis
graphs, are strict quasi-parity, see [12, 20]. A quasi-parity graph is a graph G such
that for every induced subgraph G′ on at least two vertices, either G′ has an even
pair, or G′ has an even pair. By Theorems 1.4 and 1.1, we know that quasi-parity
graphs are perfect. Quasi-parity graphs graphs include every strict quasi parity
graphs, and also other classes of graphs: bull-free Berge graphs [13], bull-reducible
Berge graphs [14].

There are interesting open problems about quasi-parity graphs. Say that a
graph is a prism if it consists of two vertex-disjoint triangles (cliques of size 3)
with three vertex-disjoint paths between them, and with no other edges than those
in the two triangles and in the three paths. (Prisms were called stretchers in [12]
and 3PC(∆, ∆)’s in [9]). A prism is said to be long if it has at least 7 vertices.
The double-diamond and L(K3,3 \ e) are the graphs depicted figure 1. Let us now
recall a definition: a graph is bipartisan [6] if in G and G there is no odd hole,
no long prism, no double-diamond and no L(K3,3 \ e). The last 50 pages of the
strong perfect theorem paper [5] are devoted to a proof of perfectness for bipartisan
graphs. This part could be replaced by a proof of the following conjecture:

Conjecture 1.5 (Maffray, Thomas). Every bipartisan graph is a quasi-parity graph.

Why not conjecture that every Berge graph is a quasi-parity graph? Simply
because this is false. Some counter-examples (like the smallest one: L(K3,3 \ e)),
were known since the very beginning of the study of even-pairs. Hougardy found
an infinite class of counter-examples:

Theorem 1.6 (Hougardy, [17]). Let G be the line-graph of a 3-connected graph.
Then G and G have no even pair.

The aim of this paper is to investigate the following question: is there an
“even-pair-like” notion that could be a structural fault present in every Berge
graph? We know that line-graphs of bipartite graphs are likely to be without even
pairs. So, they certainly form one of the first class where we have to find something.
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On the other hand, a bipartite graph B with at least 3 vertices always has an even
pair: consider two vertices a, b in the same side of the bipartition. What happens
to this even pair {a, b} in L(B)? All the edges incident to a form a clique Ka of
L(B), and there is a similar clique Kb. Moreover, every induced path from Ka to
Kb with no interior vertices in V (Ka) ∪ V (Kb) has odd length. This leads us to
the following definition: let K1 and K2 be two cliques of a graph G. We say that
an induced path P is external from K1 to K2 if P has one end-vertex in Ka, one
end-vertex in Kb, and all the other possible vertices in V (G) \ (V (K1) ∪ V (K2)).
The pair {K1, K2} is an odd pair of cliques if every external induced path between
K1 and K2 has odd length. Note that if {K1, K2} is an odd pair of cliques, then
K1 and K2 are disjoint since a possible common vertex would be an external
path of length 0. Similarly, we say that {K1, K2} is an even pair of cliques when
every external induced path between K1 and K2 has even length. We propose the
following two conjectures:

Conjecture 1.7. Let G be a Berge graph on at least two vertices. Then either:
• G or G has an even pair.
• G or G has an odd pair of cliques {K1, K2} such that K1, K2 are maximal

cliques of G.

Conjecture 1.8. Let G be a minimal imperfect graph. Then G has no odd pair of
cliques {K1, K2}, such that K1, K2 are maximal cliques of G.

Clearly, between two maximal cliques of an odd hole, there exists an external
induced path of even length. Between two maximal cliques of an odd antihole,
there exists an external induced path of length 2. But by the strong perfect graph
theorem, the only minimal imperfect are the odd holes and the odd antiholes.
Thus the conjecture above is true. But we would like a proof that does not use the
strong perfect graph theorem.

As already mentioned, it is easy to see that Conjecture 1.7 holds for bipartite
graphs, line-graphs of bipartite graphs, and their complement. Let us prove that it
holds also for the last basic class: double split graphs. A double split graph (defined
in [5]) is any graph G that can be constructed as follows. Let m, n ≥ 2 be integers.
Let A = {a1, . . . , am}, B = {b1, . . . , bm}, C = {c1, . . . , cn}, D = {d1, . . . , dn} be
four disjoint sets. Let G have vertex set A ∪ B ∪ C ∪D and edges in such a way
that:
• ai is adjacent to bi for 1 ≤ i ≤ m. There are no edges between {ai, bi} and
{ai′ , bi′} for 1 ≤ i < i′ ≤ m.
• cj is non-adjacent to dj for 1 ≤ i ≤ m. There are all four edges between
{cj, dj} and {cj′ , bj′} for 1 ≤ j < j′ ≤ n.
• There are exactly two edges between {ai, bi} and {cj, dj} for 1 ≤ i ≤ m and

1 ≤ j ≤ n and these two edges are disjoint.
If G is a double split graph with the notation of the definition, we may

assume up to a relabeling of the cj , dj ’s that a1 sees every cj and that b1 sees
every dj (if this fails for some j, just swap cj , dj). Now it is easy to see that



Odd Pairs of Cliques 89

Figure 2. The claw and the diamond

Ka = {a1, c1, . . . , cn} and Kb = {b1, d1, . . . , dn} are both maximal cliques of G.
The only possible external induced paths of length greater than 1 from Ka to Kb,
are paths from cj to dj for some j. But such a path must start in cj , and then
go to some ai, and then the only option is to go to bi, and then back to dj . So,
every external path from Ka to Kb has length 1 or 3. So, {Ka, Kb} is an odd
pair of maximal cliques. Note that there exist double split graphs that have no
even pair: L(K3,3 \e) is an example and arbitrarily large examples exist. However,
Conjecture 1.7 holds for every basic graph.

2. Odd pairs of cliques in line-graphs of bipartite graphs

We observed in the introduction that every line-graph of bipartite graph has an
odd pair of cliques. In this section, we will see that we can say something much
stronger. But we first need some information on the structure of line-graphs of
bipartite graphs.

The facts stated in this paragraph need careful checking, but we do not prove
them since they are well known (see [1] and [16]). Let us consider a graph G that
contains no claw and no diamond. Let v be a vertex of G. Either v belongs to
exactly one maximal clique of G, or v belongs to exactly two maximal cliques
of G. In the second case, the intersection of the two cliques is exactly {v}. Let us
build a new graph R. Every maximal clique of G is a vertex of R. Such vertices
of R are called the clique vertices of R. Every vertex of G that belongs to a single
clique of G is also a vertex of R. Such vertices of R are called pendent vertices of R.
We add an edge between two clique vertices of R whenever the two corresponding
cliques in G do intersect. We add an edge between a clique vertex u of R and a
pendent vertex v of R whenever the pendent vertex v is a vertex of G that belongs
to u seen as a clique of G. Note that a pendent vertex of R has always degree 1
(the converse is not true when G has a connected component that consists in a
single vertex). One can check that R has no triangle and that G is isomorphic to
L(R). This leads us to the following well known theorem:

Theorem 2.1. Let G be a graph. There exists a triangle-free graph R such that
G = L(R) if and only if G contains no claw and no diamond.

The following theorem shows that the maximal cliques of the line-graph of
a bipartite graph behave like the vertices of a bipartite graph in quite a strong
sense.
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Theorem 2.2. Let G be a graph with no claw and no diamond. Then G is the line-
graph of a bipartite graph if and only if the maximal cliques of G may be partitioned
into two sets A and B such that for every distinct maximal cliques K1, K2 of G
we have:
• If K1 ∈ A and K2 ∈ A, then {K1, K2} is an odd pair of cliques.
• If K1 ∈ B and K2 ∈ B, then {K1, K2} is an odd pair of cliques.
• If K1 ∈ A and K2 ∈ B, then {K1, K2} is an even pair of cliques.

Proof. By the discussion above, we know that G is isomorphic to the line-graph
of a triangle-free graph R. So, we may assume that R is built from G like in the
construction described in the discussion above.

If R is bipartite, then the clique vertices of R are partitioned into two stable
sets A and B. This partition is also a partition of the maximal cliques of G. So, let
K1 ∈ A and K2 ∈ A be two maximal cliques of G. Note that K1 and K2 are also
non-adjacent vertices of R. So, we know that K1 and K2 are disjoints cliques of G.
If there exists an induced path of G, of even length, external from K1 to K2, then
the interior vertices of this path (which has length at least 2) are the edges of the
interior of a path of R of odd length, linking the vertex K1 to the vertex K2. This
contradicts the bipartition of R. So, every external induced path in G between K1

and K2 is of odd length, in other words, K1 and K2 form an odd pair of cliques.
By the same way, we prove that if K1 ∈ B and K2 ∈ B, then K1 and K2 form an
odd pair of cliques. Similarly, if K1 ∈ A and K2 ∈ B, then K1 and K2 form an
even pair of cliques.

If R is not bipartite, then R has an odd hole H of length at least 5 (because
R is triangle-free). Let v1, v2, . . . v2k+1 be the vertices of H in their natural order.
Every vertex of H has degree at least 2, and therefore is a clique vertex of R.
So, every vertex vi is in fact a maximal clique of G. If one manages to partition
the maximal cliques of G into two sets A and B as indicated in the lemma, two
consecutive cliques vi and vi+1 are not disjoint. So, they cannot be both in A or
both in B. So in the sequence (v1, . . . , v2k+1, v1, . . . ) every second clique is in A
and the other ones are in B. But this is impossible because there is an odd number
of vi’s. �

3. An operation that preserves perfectness

We know that the contraction of an even pair {x, y} in a perfect graph G yields
another perfect graph. What would be the corresponding operation in L(G) for an
odd pair of cliques? The edges incident to x form a clique Kx of L(G), and those
incident to y form a clique Ky. The contracted vertex xy in G/xy is incident to the
edges that were incident to x or y in G, and so becomes in L(G) a clique obtained
by adding an edge between every vertex of Kx and every vertex of Ky. So let us
define the following operation for any graph G and any pair {K1, K2} of disjoint
cliques of G: just add an edge between every vertex in K1 and every vertex in K2

(if they are not adjacent). The graph obtained is denoted by GK1≡K2 . We will see
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that this operation preserves perfectness when applied to an odd pair of cliques.
Before this, we need a technical lemma, roughly saying that in GK1≡K2 , there is
no other big clique than the clique induced by V (K1) ∪ V (K2):

Lemma 3.1. Let {K1, K2} be an odd pair of cliques in a graph G. Let K be a clique
of GK1≡K2 . There are then only two possibilities:
• K is a clique of G.
• V (K) ⊆ V (K1) ∪ V (K2).

Proof. If K is not a clique of G, then K contains at least a vertex v1 of K1 and a
vertex v2 of K2 that are not adjacent in G. Moreover, if V (K) if not included in
V (K1) ∪ V (K2), then K contains a vertex v that is neither in K1, nor in K2, and
that sees v1 and v2. But then, v1−v−v2 is an external induced path of G, of even
length from K1 to K2, a contradiction. �

The proof of the next theorem looks like the proof of Fonlupt and Uhry for
Theorem 1.3. For Theorem 1.3, it is needed to prove by a bichromatic exchange
that some vertices may have the same color in some optimal coloring of a graph.
The only possible obstruction to this exchange is a path of odd length between
them, contradicting the definition of an even pair of vertices. In our theorem, at
a certain step we will need to prove that there is an optimal coloring that gives
different colors to some vertices. The only obstruction to this will be an induced
path of even length, contradicting the definition of odd pairs of cliques.

Theorem 3.2. Let G be a perfect graph and let {K1, K2} be an odd pair of cliques
of G. Then GK1≡K2 is a perfect graph.

Proof. Let H ′ be an induced subgraph of GK1≡K2 . Let H be the induced subgraph
of G that has the same vertex-set than H ′. Clearly, V (K1) ∩ V (H) and V (K2) ∩
V (H) form an odd pair of cliques in H and H ′ = H(K1∩H)≡(K2∩H). So, to prove
the theorem, it suffices to check χ(GK1≡K2) = ω(GK1≡K2). Let us suppose that
G is colored with ω(G) colors. We look for a coloring of GK1≡K2 with ω(GK1≡K2)
colors.

Let us first color the vertices that are neither in K1 nor in K2: we give
them their color in G. If ω(GK1≡K2) > ω(G), then by Lemma 3.1, we know that
V (K1) ∪ V (K2) induces the only maximum clique of GK1≡K2 . So, whatever the
sizes of K1, K2, we take γ = max(0, |V (K1) ∪ V (K2)| − ω(G)) new colors. We use
them to color γ vertices in V (K1)∪V (K2). So, we are left with |V (K1)∪V (K2)|−γ
vertices in V (K1)∪V (K2): let us give them their color in G. We may assume that
there is a vertex v1 in K1 and a vertex v2 in K2 with the same color (say red) for
otherwise we have an ω(GK1≡K2)-coloring of GK1≡K2 and the conclusion of the
lemma holds.

So there is a color used in G (say blue) that is used neither in K1 nor in K2.
Let C be the set of vertices of G that are red or blue. The set C induces a bipartite
subgraph of G and we call C1 the connected component of v1 in this subgraph. If
v2 ∈ C1, then a shortest path in C1 from v1 to v2 is an induced path of G, of even
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length from K1 to K2. This path is external because there is no blue vertex in
V (K1)∪V (K2). This contradicts the definition of an odd pair of cliques, so v1 and
v2 are not in the same connected component C1. So, we can exchange the colors
red and blue in C1, and give the color blue to v1, without changing the color of v2.
We can do this again as long as there are vertices of the same color in K1 ∪K2.
Finally, we obtain an ω(GK1≡K2)-coloring of GK1≡K2 . �

4. Odd pairs of cliques in minimal imperfect graphs

In this section, we will see that in a minimal imperfect graph G, there is no odd
pair of cliques (K1, K2) with |K1| + |K2| = ω(G). This will be proven without
using the strong perfect graph theorem. We first need some results on minimal
imperfect graphs.

Theorem 4.1 (Lovász, [18]). A graph G is perfect if and only if for every induced
subgraph G′ we have α(G′)ω(G′) ≥ |V (G′)|.

Lovász also introduced an important notion. Let p, q ≥ 1 be two integers. A
graph G is (p, q)-partitionable if and only if for every vertex v of G, the graph G\v
can be partitioned into p cliques of size q and also into q stable sets of size p. The
theorem to come follows from Theorem 4.1:

Theorem 4.2 (Lovász, [18]). Let G be a minimal imperfect graph. Then G is par-
titionable.

Partitionable graphs have several interesting properties (see [23] for a survey).
Padberg [22] proved the following in the particular case of minimal imperfect
graphs:

Theorem 4.3 (Bland, Huang, Trotter [4]). Let G be a graph (p, q)-partitionable
with n = pq + 1 vertices. Then:

1. α(G) = p and ω(G) = q.
2. G has exactly n cliques of size ω.
3. G has exactly n stable sets of size α.
4. Every vertex of G belongs to exactly ω cliques of size ω.
5. Every vertex of G belongs to exactly α stable sets of size α.
6. Every clique of G of size ω is disjoint from exactly one stable set of G of

size α.
7. Every stable set of G of size α is disjoint from exactly one clique of G of

size ω.
8. For every vertex v of G, there is a unique coloring of G \ v with ω colors.

If K1 and K2 are two disjoint subcliques of a clique K, then they form an
odd pair of cliques. In this case, we say that K1 and K2 form a trivial odd pair of
cliques.
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The following theorem is a particular case of Conjecture 1.8:

Theorem 4.4. Let G be a minimal imperfect graph. Let {K1, K2} be a non trivial
odd pair of cliques of G. Then |K1|+ |K2| �= ω(G).

Proof. Suppose |K1| + |K2| = ω(G). By Lemma 3.1, ω(GK1≡K2) = ω(G). More-
over, α(GK1≡K2) ≤ α(G). And by Theorem 4.1, we have α(G)ω(G) < |V (G)|.

By the definition, every induced subgraph of G is perfect. So, by Theorem 3.2,
every induced subgraph of GK1≡K2 is perfect. Note that the ω-clique K1 ∪K2 of
GK1≡K2 is not a clique of G since {K1, K2} is not a trivial odd pair of cliques.
So, by counting the cliques and by the fact that G is partitionable, we know that
GK1≡K2 is not partitionable (because of Property (2) of Theorem 4.3). All its
subgraphs are perfect, so by Theorem 4.2, we know it is perfect. But we have:

α(GK1≡K2)ω(GK1≡K2) ≤ α(G)ω(G) < |V (G)| = |V (GK1≡K2)|
This contradicts Theorem 4.1. �

By the preceding theorem, if {K1, K2} is an odd pair of cliques in a minimal
imperfect graph G, there are two cases:
• |K1|+ |K2| < ω(G)

In this case, interestingly, the edges that we add when constructing GK1≡K2

do not create any ω-clique by Lemma 3.1. Moreover, these edges do not
destroy any α-stable. Let us prove this:

Proof. Suppose that an α-stable set of G is destroyed. This means that there
exists two vertices v1 ∈ K1 and v2 ∈ K2 that are in some α-stable set S
of G. By Property (7) of Theorem 4.3, there exists one ω-clique K disjoint
from S. Let v ∈ V (K). By the definition of partitionable graphs, G \ v can
be partitioned into ω stable sets of size α. At least one of these stable sets
(say S′) is disjoint from K, since K\v contains ω−1 vertices. By Property (6)
of Theorem 4.3, we know that S′ = S. So we have found in G a vertex v such
that G\v can be optimally colored giving to v1 and v2 the same color, say red.
But since |K1|+ |K2| < ω(G), there exists a color (say blue) that is not used
in K1 ∪ K2. By a bichromatic exchange (like in the proof of Theorem 3.2),
we can find a coloring of G \ v that gives the same red color to v1 and color
blue to v2 (if such an exchange fails, there is an external induced path of even
length between K1 and K2, a contradiction). Finally we found two different
colorings of G \ v. This contradicts Property (8) of Theorem 4.3. �

So GK1≡K2 is a partitionable graph. Seemingly, this does not lead to a con-
tradiction.

• |K1|+ |K2| > ω(G)
In this case, by Lemma 3.1, GK1≡K2 has a unique maximum clique: K1∪K2.
This graph is not partitionable, all its induced subgraphs are perfect, so it is
perfect. One more time, this does not seem to lead to contradiction.
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5. Odd pairs of cliques in Berge graphs

To prove Conjecture 1.7, one could try to use the approach that worked for the
decomposition of Berge graphs [5]: first, consider the case when G has a “substan-
tial” line-graph H as an induced subgraph. We know that H has an odd pair of
cliques (by Theorem 2.2). Then, one could hope that this pair of cliques is likely
to somehow “grow” to an odd pair of cliques of the whole graph. A star-cutset in
a graph G is a set C of vertices such that G \ C is disconnected and such that
there exists a vertex in C that sees all the other vertices of C. Star cutsets have
been introduced by Chvátal [7], who proved that they are a “structural fault” that
cannot occur in minimal imperfect graph. It is known however that some non-basic
Berge graphs have no star-cutset. The following lemma shows that there is some-
thing wrong in the idea of making the odd pair cliques “grow”: it can work only
in graphs that have a star-cutset.

Lemma 5.1. Let {K1, K2} be an odd pair of cliques of a graph G. Suppose that K2

is a maximal clique of G. Let K ′
1 �= K1 be a sub-clique of K1. If {K ′

1, K2} is an
odd pair of cliques, then G has a star cutset.

Proof. Let a ∈ K ′
1 and b ∈ K2 be non adjacent vertices (they exist because K2

is maximal). Let c be any vertex of V (K1) \ V (K ′
1). We are going to show that

{a}∪N(a) \ {c} is a cutset of G separating c from b. To prove this, we check that
every induced path P from c to b that has no interior vertex in K1 contains a
neighbor of a different of c. Indeed:

If the interior of P contains no vertex of K2, then P has odd length because
{K1, K2} is an odd pair of cliques. Since {K ′

1, K2} is an odd pair of cliques, there
is a chord in the even-length path (a, c, . . . , b), and this chord is between a and a
vertex of the interior of P .

If the interior of P contains a vertex of K2, then this vertex is the neighbor
of b in P : we denote it by d. We see that c−P−d has odd length because {K1, K2}
is an odd pair of cliques. So the path (a, c, . . . , d) has even length, and there is a
chord between a and a vertex of the interior of P (this chord can be ad). �
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[13] C.M.H. de Figueiredo, F. Maffray, and O. Porto, On the structure of bull-free perfect
graphs, Graphs Combin. 13 (1997), 31–55.

[14] C.M.H. de Figueiredo, F. Maffray, and C.R. Villela Maciel, Even pairs in bull-
reducible graphs, Manuscript, 2004. Res. Report 117, Laboratoire Leibniz.

[15] J. Fonlupt and J.P. Uhry, Transformations which preserve perfectness and h-
perfectness of graphs, Ann. Disc. Math. 16 (1982), 83–85.

[16] F. Harary and C. Holzmann, Line graphs of bipartite graphs, Rev. Soc. Mat. Chile
1 (1974), 19–22.

[17] S. Hougardy, Even and odd pairs in line-graphs of bipartite graphs, European J.
Combin. 16 (1995), 17–21.

[18] L. Lovász, A characterization of perfect graphs, J. Combin. Theory Ser. B 13 (1972),
95–98.

[19] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2
(1972), 253–267.

[20] F. Maffray and N. Trotignon, A class of perfectly contractile graphs, Submited to
Comb. Th. Ser. B (2003).

[21] H. Meyniel, A new property of critical imperfect graphs and some consequences,
European J. Comb. 8 (1987), 313–316.

[22] M.W. Padberg, Almost integral polyhedra related to certain combinatorial optimiza-
tion problems, Math. Programming 6 (1974), 180–196.
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Abstract. We give an O(mn log log n+m2)-time algorithm to recognize perfect
circular-arc graphs.
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1. Introduction and motivation

Given a family F of non-empty sets, the intersection graph I(F) of F has vertex-
set F and an edge between two elements u and v of F exactly when u∩v �= ∅. The
family F is called a model for the graph I(F). Interval graphs are the intersection
graphs of a set of intervals on a line. Circular-arc graphs are the intersection graphs
of a set of arcs on a circle.

Let G be a graph. A clique in G is a set of vertices every pair of which is
joined by an edge; the size of a largest clique is denoted ω(G). A stable set in G is
a set of vertices no two of which are joined by an edge; the size of a largest stable
set is denoted α(G). A colouring of G is a partition of the vertices into stable sets;
the stable sets are called the colours; the minimum number of colours required in
a colouring is the chromatic number of G, denoted χ(G). A clique cover of G is a
partition of the vertices into cliques; the minimum number of cliques required in
a clique cover is the clique covering number of G, denoted θ(G).

Clearly, for any graph G, α(G) ≤ θ(G) and ω(G) ≤ χ(G). Berge [4] defined a
graph G to be perfect if for every induced subgraph H of G, ω(H) = χ(H). Lovász
[13] proved that a graph is perfect if and only if its complement is perfect. Thus, a
graph is perfect if and only if for every induced subgraph H of G, α(H) = θ(H).

We give an algorithm to recognize perfect circular-arc graphs. Our recognition
algorithm is faster than the general perfect graph recognition algorithm in [6].

This work was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC), the Research Council of The University of Dayton, and Wilfrid Laurier University.
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We also describe a method to optimally colour a perfect circular-arc graph, for
which there is an efficient implementation using tools similar to those used by our
recognition algorithm.

A hole is a chordless cycle with at least four vertices. An antihole is the
complement of a hole. A hole or antihole is called odd or even depending on whether
it has an odd or even number of vertices. Berge [4] conjectured and Chudnovsky,
Robertson, Seymour and Thomas proved the Strong Perfect Graph Theorem:

Theorem 1.1. [7] Graph G is perfect if and only if G does not contain an odd hole
or an odd antihole as an induced subgraph.

The Strong Perfect Graph Theorem restricted to circular-arc graphs had been
proved previously by Tucker [19]. We remark that all holes and all odd antiholes
are circular-arc graphs.

1.1. Notation

For vertex v in graph G, NG(v) denotes the set of neighbors of v, and NG[x] =
NG(x) ∪ {x}. The set of non-neighbors of v is MG(v) = V (G)− {v} −NG(v). We
use dG(v) to denote the degree of vertex v in G. We omit the subscript G when
the graph is clear from the context.

For a circular-arc graph, we use Av to denote the arc in the model that
corresponds to vertex v in the graph. When we traverse the circle in the clockwise
direction, the arc Av is assumed to extend from endpoint CC(v) to CL(v). We
can assume that in a model for a circular-arc graph, all arc endpoints are distinct.
In the model for an interval graph, l(I) and r(I) denote, respectively, the left and
right endpoints of interval I. We use Iv to denote the interval in the model that
corresponds to vertex v in the graph.

We use odd (even) chordless path to refer to a chordless path on an odd (even)
number of edges. Given the model for an interval graph, by a chordless path between
intervals I and J we mean a chordless path between the corresponding vertices in
the interval graph. We use m and n to refer to the number of edges and number
of vertices, respectively, in a given graph.

2. A tool

Our recognition algorithm detects an odd hole in a circular-arc graph by testing
for each vertex x, if x lies in an odd hole. This task is accomplished by searching
for a pair u, v of non-adjacent vertices in N(x) such that there is an odd chordless
path from u to v whose interior vertices lie in M(x), the set of non-neighbors of
x. This sub-task is essentially a problem on an appropriately constructed interval
graph. In this section we present an algorithm to solve this problem. The algorithm
will be used as a subroutine by our recognition algorithm.

A similar problem that has appeared in the literature is the parity path prob-
lem, which asks “Given a graph G and a pair x, y of non-adjacent vertices, does
there exist a chordless path of specified parity between x and y ?”. This problem
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is NP-complete for general graphs [3] and solvable in polynomial time for per-
fect graphs (using the recognition algorithm for perfect (Berge) graphs given in
[6]). Polynomial-time algorithms have been reported for some subclasses of perfect
graphs as well [17]. In addition, an O(mn)-time algorithm for circular-arc graphs
[1] and an O(m + n)-time algorithm for chordal graphs [1] have been designed for
the parity path problem. The problem we consider here is slightly different. Also,
our algorithm is more efficient.

We now present our algorithmic tool. While Right is a set of intervals, for
convenience we will also refer to Right as a set of vertices, each of which corresponds
to an interval in Right.

Algorithm Scan (I, L, R, V , Right)

Input:
I: a set of intervals spanning the line segment [L, R]
V : the only interval in I with l(V) = L
Right: a set of intervals each of whose right endpoint is R

Output:
For each interval W ∈ I, an odd (even) chordless path from
V to W such that no interior vertex of the path belongs to Right,
if such a path exists.

We first describe the information maintained by the algorithm. Each interval
may be assigned one or both of the labels odd and even. An interval I is assigned
the label odd (even) if and only if there exists an odd (even) chordless path from
the interval V to the interval I such that no interior vertex of the path belongs to
Right.

Our algorithm processes the intervals by scanning their endpoints from L to
R. ActiveEven is a set of intervals, each of which has the following properties: i)
its left endpoint has been scanned, but its right endpoint has not, ii) it is not in
Right, and iii) it is labeled even. The set ActiveOdd is defined analogously. We say
that an interval J is active if (J ∈ ActiveEven) or (J ∈ ActiveOdd).

There are two ways that an interval I can obtain the label odd (even). One
is when r(J) is scanned where J is an active interval with even (odd) label and
l(J) < l(I) < r(J) < r(I) (see Step 4a). The other is when r(I) is scanned and I
does not yet have an odd (even) label (see Step 4b); this is the case when interval
I is contained in all active even (odd) labeled intervals with l(J) < l(I). Note that
in this latter case, interval I is necessarily the last interval in an odd (even) length
chordless path from V .

We now present the details of the algorithm.

Algorithm Scan (I, L, R, V , Right)
(0) for each interval I do

Label(I) ← ∅
endfor
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(1) Add even to Label(V)
(2) Starting at L scan the line segment [L, R] from L to R
(3) when l(I) is scanned

LabelMeOdd(I) ← interval in ActiveEven with the smallest right endpt.
LabelMeEven(I) ← interval in ActiveOdd with the smallest right endpt.

endwhen
(4) when r(J) is scanned
(4a) for each interval I with J = LabelMeOdd(I) or J = LabelMeEven(I) do

if (J = LabelMeOdd(I)) then
Add odd to Label(I)

endif
if (J = LabelMeEven(I)) then

Add even to Label(I)
endif

endfor
(4b) if LabelMeEven(J) is still active then

Add even to Label(J)
endif
if LabelMeOdd(J) is still active then

Add odd to Label(J)
endif

endwhen
endAlgorithm

We next show that the algorithm Scan is correct.

Lemma 2.1. If an interval I is labeled odd (even), then there is an odd (even)
chordless path from V to I such that no interior vertex of the path belongs to
Right.

Proof of Lemma 2.1. We will prove by induction on the order of the left endpoints
of the intervals that if an interval I is labeled odd (even), then there is an odd
(even) chordless path v0v1 . . . vk from V to I (i.e., Iv0 = V and Ivk

= I) such
that no interior vertex of the path belongs to Right and such that for even j,
LabelMeEven(Ivj ) = Ivj−1 , and for odd j LabelMeOdd(Ivj ) = Ivj−1 .

Suppose interval I is labeled odd; the proof when I is labeled even is analo-
gous. Let Q be the interval that labeled I odd; that is, Q=LabelMeOdd(I). Then
Q was active and had label even when l(I) was scanned, so l(Q) < l(I) < r(Q).
By induction, there is a chordless path PQ = v0v1 . . . vk−1 with Iv0 = V and
Ivk−1 = Q such that no interior vertex of the path belongs to Right, and such that
LabelMeEven(Ivt ) = Ivt−1 whenever t is even and LabelMeOdd(Ivt ) = Ivt−1 when-
ever t is odd, for t = 0, . . . , k− 1. Since Q=LabelMeOdd(I), Q was in ActiveEven;
thus, by the definition of ActiveEven, Q = Ivk−1 is not in Right. Consider the
path PI = v0v1 . . . vk−1vk obtained by adding the vertex corresponding to I to PQ

(i.e., Ivk
= I). Since PQ is chordless, any chord of PI must have vk as one of its
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endpoints; further, for t ≤ k − 3, r(Ivt ) < l(Q) < l(I), so the only possible chord
of PI is vk−2vk. But, since Ivk−2=LabelMeEven(Q) and Q had the label even when
l(I) was scanned, it follows that r(Ivk−2 ) < l(I). Thus, PI is the desired path. �

Lemma 2.2. If there is an odd (even) chordless path from the interval V to an
interval J such that no interior vertex of the path belongs to Right, then the algo-
rithm will label J odd (even). Moreover, if J ′ immediately precedes J on the path,
then J ′ is active with label even (odd) when l(J) is scanned.

Proof of Lemma 2.2. The proof is by induction on the length of the path (which
is one less than the number of vertices in the path). Assume the lemma holds for
chordless paths of length at most k−1. We will prove the lemma holds for chordless
paths of length k, where k is odd; the proof when k is even is analogous. Consider
an odd chordless path PJ = v0v1 . . . vk, where V = Iv0 , J = Ivk

and k ≥ 2. By
induction, Ivk−1 is correctly labeled even and Ivk−2 was active with label odd when
l(Ivk−1) was scanned. It follows that l(Ivk−2) < l(Ivk−1). Since PJ is a chordless
path, Ivk

does not intersect Ivk−2 (but intersects Ivk−1 , by definition). Thus, we
have l(Ivk−2) < l(Ivk−1 ) < r(Ivk−2 ) < l(Ivk

) < r(Ivk−1 ).
So, when r(Ivk−2 ) is scanned, either Ivk−1 receives the label even (in Step 4a),

or it already has the label. This means that when l(Ivk
) is scanned, Ivk−1 /∈ Right

is active with label even and hence is on ActiveEven. So, LabelMeOdd(Ivk
) will be

assigned a valid value (either Ivk−1 or some other interval K with label even and
r(K) < r(Ivk−1 )), and eventually Ivk

will be labeled odd. �

Finally, we note that for any interval W ∈ I that is labeled odd (even), a
required chordless path from V can easily be constructed using the information
stored in LabelMeOdd (LabelMeEven).

2.1. Implementation of the algorithm Scan
Next, we show that the algorithm Scan can be implemented to run in O(n log log n)
time where n is the number of intervals in the input.

We maintain ActiveEven and ActiveOdd as priority queues of intervals where
the priority of an interval I is its right endpoint r(I). It is possible for an interval
to belong to both the priority queues. However, neither priority queue will ever
hold more than n elements.

For each interval I, we maintain the following information:
• LabelThis(I): a doubly linked list containing the intervals that I is responsible

for labeling, i.e., a list of those intervals J such that either LabelMeOdd(J)
= I or LabelMeEven(J) = I.
• LabelMeEven(I): remembers the only interval that can label I even.
• PtrEven(I): a pointer to where I is in LabelThis(J), where J is the interval

that is supposed to label I even.
• LabelMeOdd(I): remembers the only interval that can label I odd.
• PtrOdd(I): points to where I is in LabelThis(J), where J is the interval that

is supposed to label I odd.
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When a left endpoint l(I) is scanned in Step 3 of the algorithm, let J1 = top of
ActiveEven and J2 = top of ActiveOdd. We add I to LabelThis(Ji), i = 1, 2, and set
the pointers PtrEven(I) and PtrOdd(I) appropriately. We also set LabelMeEven(I)
to J2, and LabelMeOdd(I) to J1.

When a right endpoint r(J) is scanned in Step 4 of the algorithm we do the
following: the intervals that J must label are readily available in LabelThis(J).
Therefore, we implement Step 4a by simply traversing LabelThis(J) and label-
ing every interval I in the list as specified in the algorithm (i.e., test whether
J = LabelMeOdd(I) and whether J = LabelMeEven(I)). When an interval I is
labeled even (odd) thus, if I does not belong to Right, as I has now become active,
we add I to the priority queue ActiveEven (ActiveOdd) with r(I) as the priority.
Then, we remove J from any priority queue that it is present in.

Finally, in Step 4b of the algorithm, if the interval that is supposed to label
J even (odd) finishes later than J , then J must label itself. We implement this
step as follows: let K = LabelMeEven(J). If r(K) > r(J), then add the label even
to J . Remove J from the list LabelThis(K) using PtrEven(J). Similarly, let M =
LabelMeOdd(J). If r(M) > r(J), then add the label odd to J . Remove J from the
list LabelThis(M) using PtrOdd(J).

We have the following theorem:

Theorem 2.3. Algorithm Scan can be implemented to run in O(n log log n) time.

Proof of Theorem 2.3. During the entire run of the algorithm, no interval is la-
beled more than twice. Therefore, the number of times an interval is added to
priority queues is at most two, and also the number of times an interval is added
to LabelThis lists is at most two. Thus, the total number of operations performed
on each priority queue is O(n), and the total number of times intervals are added
and deleted from LabelThis lists is O(n). Each operation on the LabelThis lists
takes constant time. As the priorities are integers in the range 1 through 2n, Ac-
tiveEven and ActiveOdd can be implemented as Van Emde Boas priority queues
[20], supporting each insertion and deletion in O(log logn) time. Therefore, algo-
rithm Scan runs in O(n log log n) time. �

3. Recognition algorithm

In this section we present an O(mn log log n+m2)-time algorithm to test whether
a given graph is a perfect circular-arc graph. As the recognition of circular-arc
graphs and construction of a model when the input is a circular-arc graph can
both now be done in O(m + n) time [15], our task is to test whether a given
circular-arc graph is perfect. Again, given Theorem 1.1, the problem is reduced to
testing whether a given circular-arc graph, presented via its model, contains an odd
hole or an odd antihole. We note that the current best algorithm for recognizing
perfect graphs [6] runs in O(n9) time.

Next, we present an algorithm that tests whether a given circular-arc graph
contains an odd hole. The basic idea behind the algorithm is to check for each
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vertex x, whether there exists a pair u, v of non-adjacent vertices in N(x) such
that there is an odd chordless path from u to v whose interior vertices lie in M(x),
the set of non-neighbors of x. Note that vertices whose arcs are contained in Ax

or contain Ax cannot be in an odd hole with x.

Algorithm FindOddHole (A)

Input:
A: the model for a circular-arc graph G

Output:
An odd hole in G, or the message “no odd holes”

for each vertex x in G do /* Arc Ax corresponds to vertex x */
/* P contains arcs that overlap the counter-clockwise end of Ax only */
P ← {Aw ∈ A | CC(x) ∈ Aw and CL(x) /∈ Aw}
/* Q contains arcs that overlap the clockwise end of Ax only */
Q← {Aw ∈ A | CC(x) /∈ Aw and CL(x) ∈ Aw}
/* M contains arcs that do not intersect Ax */
M ← {Aw ∈ A | w ∈M(x)}

Chop each arc Aw ∈ P at CC(x) by changing CL(w) to CC(x)
Chop each arc Au ∈ Q at CL(x) by changing CC(u) to CL(x)
for each Aw ∈ P do

Q′ ← Q− {Au ∈ Q | u ∈ NG(w)}
I ← {Aw} ∪M ∪Q′

L← CC(x)
R← CL(x)
V ← Aw

Right ← Q′

Scan (I, L, R, V , Right)
if some Au ∈ Right is labeled odd then

return x and the odd chordless path from V to Au found
by Scan

endif
endfor

endfor
return “no odd holes”
endAlgorithm

Next, we prove the correctness of the algorithm FindOddHole and establish
its time complexity.

Theorem 3.1. Algorithm FindOddHole is correct and runs in O(mn log log n) time.

Proof of Theorem 3.1. Suppose the given circular-arc graph has an odd hole
v1v2k+1 . . . v3v2, k ≥ 2, where the vertices are indexed in the order their corre-



104 K. Cameron, E.M. Eschen, C.T. Hoàng and R. Sritharan

sponding arcs’ counter-clockwise endpoints appear in a clockwise scan of the circle.
Consider the algorithm when x = v1; it must be that Av2 ∈ P and Av2k+1 ∈ Q.

Now, consider the invocation of Scan when V = Av2 ; it must be that Av2k+1 ∈
Right. Further, the set I of intervals computed by the algorithm will include the
arcs Avi , i = 2, . . . , 2k + 1. Hence, an odd chordless path exists between Av2 and
Av2k+1 in I such that no interior vertex of the path belongs to Right. Therefore,
algorithm Scan will label Av2k+1 odd. Since Av2 and Av2k+1 do not intersect in the
model for the graph, they do not intersect in I either. Thus, any odd chordless
path between Av2 and Av2k+1 that the algorithm Scan discovers must have at least
three edges. Further, as no internal vertex of such a path belongs to Right, given
the construction of I, each such internal vertex must belong to M(x). Finally,
as the chordless path discovered in I also corresponds to a chordless path in the
graph, the vertices on this path along with x induce an odd hole in the graph.

On the other hand, for some invocation of the algorithm Scan with V = Au,
suppose an Av ∈ Right is labeled odd. Then, clearly {u, v} ⊆ N(x) and u is not
adjacent to v in the graph, so any odd chordless path between Au and Av in I
must have at least three edges. Given the construction of I, the internal vertices
of the odd chordless path discovered between Au and Av in I belong to M(x).
Therefore, as the chordless path discovered in I also corresponds to a chordless
path in the graph, the vertices on that path with x induce an odd hole in the
graph.

For a particular vertex x, since |P | ≤ d(x), Scan is invoked O(d(x)) times.
Therefore, the inner loop runs in O(d(x) ∗n log log n) time. Since the outer loop is
done once for each vertex x in the graph, the overall running time of the algorithm
is O(mn log log n). �

The O(m + n) algorithm in [2] can be used to test whether there is an odd
chordless path between two given vertices of an interval graph. This algorithm
can be used to recognize perfect circular-arc graphs in O(n3(n + m)) time in an
obvious way. Our implementation of Algorithm FindOddHole gives a better time
bound.

Theorem 3.2. Perfect circular-arc graphs can be recognized in O(m2+mn log log n)
time.

Proof of Theorem 3.2. Given a graph G, we can test whether G is a circular-arc
graph and if so, construct a model for it in O(m + n) time [15]. We can then test
whether G has an odd hole in O(mn log log n) time using algorithm FindOddHole.
It is well known that a circular-arc graph cannot have an antihole on an even
number of vertices. Therefore, any antihole present in G must have an odd number
of vertices. It is shown in [16] that when a graph does not have a hole on five
vertices, whether it has an antihole can be decided in O(m2) time using O(m + n)
space; we can then use this algorithm to determine if there are any odd antiholes
present. �
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4. An approach for a colouring algorithm

An approach used to optimally colour the vertices of certain perfect graphs is via
the use of an even-pair in the graph. Non-adjacent vertices u and v in graph G
form an even-pair if every chordless path between u and v has an even number of
edges.

If {u, v} is an even-pair in graph G, then G/uv is the graph obtained by
adding a vertex uv such that N(uv) = N(u)∪N(v), and then deleting the vertices
u and v. We say that G/uv is obtained from G by contracting the even-pair {u, v}.

Lemma 4.1. [10] Let {u, v} be an even-pair in graph G. Then, ω(G/uv) = ω(G)
and χ(G/uv) = χ(G). Moreover, when G is perfect, G/uv is perfect.

Suppose C is a class of graphs such that every member of C that is not a
complete graph contains an even-pair. For a graph G ∈ C and even-pair {u, v} in
G, if G/uv were in C, then one could repeat the even-pair contractions to obtain
an optimal vertex colouring for G. However, it is known that there are classes of
graphs, such as the class of Meyniel graphs, whose noncomplete members have
even-pairs, but they do not have an even-pair whose contraction yields a graph
in the class [9]. On the other hand, there are classes of graphs, such as perfectly
orderable graphs and the graphs satisfying the hypothesis of Theorem 4.2, for which
contraction of an appropriate even-pair preserves membership in the class [9, 14].
Next, we show that for a perfect circular-arc graph G that is not a complete graph,
there is always a choice for an even-pair so that the contraction of the even-pair
yields another perfect circular-arc graph. We need some definitions first.

A stretcher [14] is a graph that consists of two vertex-disjoint triangles with
three vertex-disjoint chordless paths between them, and with no edge other than
those in the two triangles and in the three paths. Two stretchers are illustrated in
Figure 1. Observe that if a stretcher does not contain an odd hole, then all three
chordless paths must be of the same parity.
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Figure 1. Some stretchers

Vertex x is simplicial if N(x) is a clique. The following result is implied by a
stronger theorem in [14].

Theorem 4.2. [14] Suppose G contains no odd holes, no antiholes, and no stretcher,
and vertex x is not simplicial in G. Then, there exists an even-pair {u, v} of G
such that {u, v} ⊆ N(x).
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Since stretchers and even antiholes are not circular-arc graphs, and since odd
holes and odd antiholes are not perfect, we have the following:

Corollary 4.3. Suppose G is a perfect circular-arc graph and vertex x of G is not
simplicial in G. Then, there exists an even-pair {u, v} of G such that {u, v} ⊆
N(x).

Lemma 4.4. Suppose G is a circular-arc graph, x is a vertex of G such that Ax

contains no other arc in the model for G, and {u, v} ⊆ N(x) is an even-pair of G.
Then, G/uv is a circular-arc graph.

Proof of Lemma 4.4. Let A be a circular-arc model for G. Let Ax be an arc that
does not contain any other arc in the model. Suppose {u, v} ⊆ N(x) is an even-pair
of G.

Since u and v are non-adjacent and Ax does not contain any other arc, we
can assume that Au contains CC(x) and not CL(x), while Av contains CL(x) and
not CC(x). Consider the set of arcs A′ obtained from A by replacing Au and Av

with the arc Auv that extends from CC(u) to CL(v) in the clockwise direction.
Note that Auv = Au ∪Ax ∪Av.

We claim that A′ is a circular-arc model for G/uv.
For any pair of vertices y, z, neither of which is uv, the adjacency between

them is the same in G/uv as in G and the corresponding arcs Ay and Az are
unchanged in A′. Therefore, we need only verify that Auv intersects an arc Aw

(w �= uv) if and only if w ∈ N(u) ∪ N(v) in G. If w ∈ N(u) ∪ N(v), then Aw

intersects either Au or Av. In either case, Aw must then also intersect Auv. Now
suppose Auv intersects an arc Aw. If Aw does not intersect Au or Av, then Aw

must be contained in Ax, which contradicts the fact that Ax contains no other arc
in A. Therefore, it must be that w ∈ N(u) ∪N(v) in G. �

The above results suggest the following recursive algorithm to optimally
colour a perfect circular-arc graph. Let Ax be an arc that contains no other arc
in the model for a perfect circular-arc graph G. If x is simplicial in G, we can
recursively colour G\x, after which x can be coloured easily. If x is not simplicial,
by Corollary 4.3 and Lemma 4.4, we can find an appropriate even-pair {u, v} of G
in N(x) and colour G/uv recursively. We can then complete the colouring of G by
assigning vertices u and v the colour given to vertex uv in the colouring of G/uv.

When this paper was submitted for publication, an O(mn4)-time algorithm to
optimally colour a graph satisfying the hypothesis of Theorem 4.2 had been given
in [14]. We could provide an implementation of the algorithm described above
to optimally colour a perfect circular-arc graph, via appropriate use of algorithm
Scan, that runs in O(mn2+n3 log log n) time. However, since then an O(mn2)-time
algorithm to optimally colour a graph satisfying the hypothesis of Theorem 4.2
has been presented in [12]. In view of this, we omit the details of our algorithm
for optimally colouring perfect circular-arc graphs.
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5. Conclusions and future work

The algorithms in this paper together with the algorithms referenced here provide
a combinatorial polynomial-time algorithm for finding what the following existen-
tially polynomial-time (EP) theorem [5] asserts to exist: For any graph G, either
G contains an odd hole, or G contains an odd antihole, or G has a clique and a
colouring of the same size, or G is not a circular-arc graph. Such an algorithm is
what Spinrad refers to as a robust algorithm for finding a clique and a colouring
of the same size in a circular-arc graph [18].

The algorithms for testing whether a given graph is a circular-arc graph con-
struct a model in the case that the input graph is circular-arc [11, 8, 15]. However,
if the graph is not circular-arc, the algorithms do not provide a polynomial-time
verifiable certificate showing the graph is not circular-arc other than a trace of the
execution of the algorithm. It would be very interesting to design a recognition
algorithm that could provide such a certificate (a co-NP description of circular-arc
graphs). It would provide a nicer robust algorithm for the above EP theorem in that
there would be a nice certificate given for whichever clause of the theorem holds.

Another interesting direction for future work is to find an algorithm for de-
termining whether a circular-arc graph has an antihole that is more efficient than
the general algorithm of [16].
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[12] B. Lévêque, F. Maffray, B. Reed and N. Trotignon, Coloring Artemis graphs, Man-
uscript.

[13] L. Lovász, A characterization of perfect graphs, J. Combinatorial Theory (Ser. B)
13 (1972), 95–98.

[14] F. Maffray and N. Trotignon, A class of perfectly contractile graphs, Manuscript,
2002.

[15] R. McConnell, Linear-time recognition of circular-arc graphs, Algorithmica 37 (2003),
93–147.

[16] S.D. Nikolopoulos and L. Palios, Hole and antihole detection in graphs, Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2004, 843–852.

[17] C.R. Satyan and C. Pandu Rangan, The parity path problem on some subclasses of
perfect graphs, Discrete Appl. Math. 68 (1996), 293–302.

[18] J.P. Spinrad, Efficient Graph Representations, American Mathematical Society,
Providence, Rhode Island, 2003.

[19] A. Tucker, Coloring a family of circular arcs, SIAM J. Appl. Math. 29 (1975), 493–
502.

[20] P. Van Emde Boas, Preserving order in a forest in less than logarithmic time and
linear space, Information Processing Letters 6 (1977), 80–82.

Kathie Cameron
Department of Mathematics, Wilfrid Laurier University
Waterloo, Canada N2L 3C5
e-mail: kcameron@wlu.ca

Elaine M. Eschen
Lane Department of Computer Science and Electrical Engineering
West Virginia University
Morgantown, WV 26506, USA
e-mail: eeschen@csee.wvu.edu

Ch́ınh T. Hoàng
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On Edge-maps whose Inverse
Preserves Flows or Tensions

Matt DeVos, Jaroslav Nešetřil and André Raspaud

Abstract. A cycle of a graph G is a set C ⊆ E(G) so that every vertex of
the graph (V (G), C) has even degree. If G, H are graphs, we define a map
φ : E(G) → E(H) to be cycle-continuous if the pre-image of every cycle of H
is a cycle of G. A fascinating conjecture of Jaeger asserts that every bridgeless
graph has a cycle-continuous mapping to the Petersen graph. Jaeger showed
that if this conjecture is true, then so is the 5-cycle-double-cover conjecture
and the Fulkerson conjecture.

Cycle continuous maps give rise to a natural quasi-order 	 on the class
of finite graphs. Namely, G 	 H if there exists a cycle-continuous mapping
from G to H . The goal of this paper is to establish some basic structural
properties of this (and other related) quasi-orders. For instance, we show that
	 has antichains of arbitrarily large finite size. It appears to be an interesting
question to determine if 	 has an infinite antichain.

1. Introduction

Some of the most striking conjectures in structural graph theory have an algebraic
flavour. These include Tutte’s conjectures on flows, a variety of polynomials asso-
ciated with combinatorial phaenomena, the Hedetniemi product conjecture, and
Ulam’s reconstruction conjecture. In all these cases not only one can formulate
these problems involving some familiar algebraic notions and constructions but in
all of these cases some of the (currently) best results were obtained after the proper
algebraic context was realized, see, e.g., [9, 23, 25, 26, 27, 14, 16]. It is perhaps
not surprising that many of these problems can be expressed as statements about
partially ordered (or quasi-ordered) sets and classes. In some of these situations
such a formulation is straightforward as the problem deals directly with the cate-
gory of graphs and standard maps, such as homomorphisms. This is the case, e.g.,

Supported by Project LN00A056 and 1M0021620808 of the Czech Ministery of Education.
Supported by Barrande 02887WD P.A.I. Franco-Tchèque.
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for the product conjecture, see, e.g., [23, 17]. However, in other situations a dif-
ferent algebraic and order-theoretic formulation is far from obvious and the right
definitions were sought for a long time. Sometimes strange looking definitions are
far from arbitrary as they reflect the experience gained with dealing with concrete
problems (such as 4CC) and other algebraic concepts such as matroids, flows and
tensions. The later notions are the subject of this paper.

In [10], Jaeger constructs a partial order on the class of graphs, and makes
a fascinating conjecture concerning the atoms of this order. If true, his conjecture
would immediately imply both the 5-cycle double cover conjecture, and Fulker-
son’s conjecture. Jaeger’s interesting partial order was the starting point for this
research. In the next section we shall introduce flow and tension continuous maps
over rings, together with the corresponding orders. Our Z2-flow continuous order
is quite closely related to Jaeger’s order, and later in the paper, this connection is
made precise. After establishing some basic properties of flow and tension continu-
ous maps, we study the Z2 and Z flow and tension orders in detail. Two results of
note are a theorem showing that the Z2 flow order has arbitrarily large finite an-
tichains, and a theorem establishing the relationship between the Z-tension order
and the usual homomorphism order.

Our approach has some similarities to [13] where the authors are also in-
terested in various maps between graphs (and mostly between edges). However
despite some formal similarities our approach is very different (although it is man-
ifested in some subtle differences): our mappings are defined by “continuous”-type
condition (for example: by requiring that the preimage of every cycle is a cycle),
whereas mappings in [13] are mostly “open” (for example cycle preserving). The
motivation of [13] is matroid theory (and strong maps are one of the classes con-
sidered). Our motivation is flow and coloring problems (following Tutte’s original
approach). For these types of questions, a “continuous” approach seems to be
better suited.

In this paper we concentrate on graphs (both directed and undirected). How-
ever several results one can consider in the context of matroids (and regular ma-
troids in particular). This we postpone to another occasion.

2. Basic definitions and overview

All graphs considered in this paper are assumed to be finite unless it is explicitly
stated otherwise. Graphs may have both loops and multiple edges. Frequently, we
will have need to refer to both an oriented graph and the underlying undirected
graph. If G is an undirected graph, then we may use G to denote an orientation
of G. If G is defined to be an oriented graph, then it is understood that G is the
underlying undirected graph.

Let G be a graph and let C ⊆ E(G). We say that C is a cycle if every vertex
of the graph (V (G), C) has even degree. A circuit is a non-empty cycle which is
minimal with respect to inclusion. We define the odd-girth γo(G) of a graph G to
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be the size of the smallest circuit of G of odd cardinality (or ∞ if none exists). If
X ⊆ V (G), then we will let ∆(X) denote the set of edges with one end in X and
one end in V (G) \X . For a vertex v ∈ V (G), we use ∆(v) to denote ∆({v}). Any
set of edges of the form ∆(X) for some X ⊆ V (G) is defined to be an edge-cut.
A bond is a non-empty edge-cut which is minimal with respect to inclusion. We
define λo(G) to be the size of the smallest bond of G of odd cardinality (or ∞ if
none exists). A single edge e ∈ E(G) is a cut-edge if {e} is an edge-cut.

If G is an oriented graph and X ⊆ V (G), then we let ∆+(X) denote the set of
edges with tail in X and head in V (G)\X . We define ∆−(X) to be ∆+(V (G)\X)
and as before, for a vertex v ∈ V (G), we let ∆+(v) = ∆+({v}) and ∆−(v) =
∆−({v}). If C ⊆ G is a circuit and e, f ∈ E(G), then e and f are either given
the same orientation relative to C or the opposite orientation relative to C. A
direction of C is a pair (X, Y ) of disjoint subsets of E(C) with union E(C) so that
every e ∈ X and f ∈ Y have opposite orientation with respect to C. We call the
edges in X forward edges and the edges in Y backward edges. We say that an edge
e ∈ E(G) is a cut-edge if the corresponding edge is a cut-edge of the underlying
undirected graph G.

Let M be an Abelian group, let G be an oriented graph, and let φ : E(G)→
M be a map. We say that φ is a flow or an M -flow if∑

e∈∆+(v)

φ(e) =
∑

e∈∆−(v)

φ(e)

holds for every vertex v ∈ V (G). We say that φ is a tension or an M -tension if∑
e∈A

φ(e) =
∑
e∈B

φ(e)

holds for every circuit C ⊆ G where (A, B) is the direction of C.
We now follow the framework of Jaeger in [11] by defining a restricted class

of flows and tensions. Let B ⊆ M and assume that −B = B. If φ : E(G) → M

is a flow (tension) and φ(E(G)) ⊆ B, then we say that φ is a B-flow (B-tension).
We say that a flow (tension) φ is nowhere-zero if it is a (M \ {0})-flow (tension).
We say that φ : E(G)→ Z is a k-flow (k-tension) for a positive integer k if φ is a
B-flow (B-tension) where B = {−(k − 1), . . . ,−1, 0, 1, . . . , k − 1}. If φ is a B-flow
(B-tension) of G and we reverse the orientation of some edge e ∈ E(G), then by
replacing φ(e) by its additive inverse, we maintain that φ is a B-flow (B-tension).
Thus, for an unoriented graph G, we have that some orientation of G has a B-flow
(B-tension) if and only if every orientation of G has a B-flow (B-tension). In this
case, we say that G has a B-flow (B-tension). Similarly, we say that G has a
nowhere-zero M -flow or k-flow (M -tension or k-tension) if some (and thus every)
orientation of G has such a flow (tension). The following is a famous conjecture of
Tutte on nowhere-zero flows.

Conjecture 2.1 (The 5-flow conjecture). Every graph with no cut-edge has a no-
where-zero 5-flow.
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In this introduction, we will focus most of our attention on B-flows. However,
we wish to mention here that the theory of B-tensions is quite rich and is closely
connected with graph coloring. Indeed, it is an easy fact (see Proposition 3.4) that
a graph has a B-tension if an only if it has a homomorphism to a certain Cayley
graph. It follows from this that G has a nowhere-zero k-tension if and only if it is
k-colorable.

Jaeger initiated the study of B-flows and B-tensions and observed that a
number of important questions in graph theory may be phrased in terms of the
existence of certain B-flows. Here we list three famous conjectures. For each of
these problems we offer two equivalent formulations. The first is the traditional
statement of the problem, the second is an equivalent statement in terms of B-
flows.

Conjecture 2.2 (The five cycle double cover conjecture).

(1) For every graph with no cut-edge, there is a list of five cycles so that every
edge is contained in exactly two.

(2) Every graph with no cut-edge has a B-flow for the set B ⊆ Z5
2 consisting of

those vectors with exactly two 1’s.

Conjecture 2.3 (The orientable five cycle double cover conjecture).

(1) For every oriented graph with no cut-edge, there is a list of five 2-flows
φ1, φ2, . . . , φ5 with

∑5
i=1 φi = 0 such that every edge is in the support of

exactly two of these flows.
(2) Every graph with no cut-edge has a B-flow for the set B ⊆ Z5 consisting of

those vectors with exactly three 0’s, one 1, and one −1.

Conjecture 2.4 (Fulkerson).

(1) For every cubic graph with no cut-edge, there is a list of 6 perfect matchings
so that every edge is contained in exactly two.

(2) Every graph with no cut-edge has a B-flow for the set B ⊆ Z6
2 consisting of

those vectors with exactly four 1’s.

For the history of these conjectures see, e.g., [2, 24, 11, 8] and also the original
papers [5, 22, 3]. In addition to defining B-flows, Jaeger defined a type of mapping
between graphs which is closely related to one we give here. We will discuss the
relationship between our and Jaeger’s definitions in Section 9 of this paper. Next
we give the central definition for this paper.

Definition. Let G and H be oriented graphs, let M be an Abelian group, and let
f : E(G) → E( H). We say that f is M -flow-continuous (M -tension-continuous)
if φ ◦ f is a M -flow (M -tension) of G for every M -flow (M -tension) φ of H (see
Figure 1).

The name flow-continuous (tension-continuous) is used here since in such a
map every flow (tension) of H lifts to a flow (tension) of G. Note that if f is a flow-
continuous (tension-continuous) map from G to H and we reverse the direction of
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E(G) E(H)

M

φ

f

φ f

Figure 1. M -flow(tension)-continuous

an arc e ∈ E( H), then by reversing the arcs f−1({e}) in G, we maintain that f is
flow-continuous (tension-continuous). Also note that if f is M -flow-continuous (M -
tension-continuous), then f is also Mn-flow-continuous (Mn-tension-continuous)
for every positive integer n. Here we mention the key property of flows and con-
tinuous maps which is motivation for our study.

Proposition 2.5. If there is a M -flow-continuous (M -tension-continuous) map
from G to H and H has a B-flow (B-tension) for some B ⊆Mn, then G also has
a B-flow (B-tension).

Proof. We prove the proposition in the flow-continuous case. The tension-continu-
ous case follows by the same argument. If f : E(G)→ E( H) is M -flow-continuous,
then it is also Mn-flow-continuous. Thus, if φ : E( H)→ B is a B-flow of H , then
φ ◦ f is a B-flow of G. �

The above proposition is especially interesting because it suggests a different
approach to showing the existence of a B-flow. To prove that G has a B-flow, it
suffices to show that some orientation of G has an M -flow-continuous map to an
orientation of a graph H which is known to have a B-flow. Based on this property,
we now define for every Abelian group M the relations �f

M and �t
M as follows.

For any two unoriented graphs G, H , we write G �f
M H (G �t

M H) if there exists
an M -flow-continuous (M -tension-continuous) map between some orientation of
G and some orientation of H . We write G ��f

M H or G ��t
M H if no such map

exists. A relation is a quasi-order if it is reflexive and transitive.

Proposition 2.6. The relations �f
M and �t

M are quasi-orders on the class of finite
graphs.

Proof. We give the proof only for �f
M , a similar argument works for �t

M . For any
graph G, and any orientation G of G, the identity map from E(G) to E(G) is
M -flow-continuous, so G �f

M G. To prove that �f
M is transitive, let F, G, H be

graphs with F �f
M G �f

M H . Then there exists a flow-continuous map f from an
orientation F of F to an orientation G of G and a flow-continuous map f ′ from an
orientation Ǧ of G to an orientation H of H . By possibly reversing the direction
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of some arcs in G and reversing the corresponding arcs in F (as described above),
we may assume that G = Ǧ. Now, for any M -flow φ of H, the map φ ◦ f ′ is a flow
of G = Ǧ and the map φ◦ f ′ ◦ f is a K-flow of F . Thus, the map f ′ ◦ f is a M -flow
continuous map from F to H and we have that F �f

M H as required. �

We review now some simple characteristics of quasi-orders which we will
investigate. Let � be a quasi-order on S. Two elements x, y ∈ S are comparable
if either x � y or y � x. We say that x dominates y if x � y and we say that x
and y are equivalent if x � y and y � x. An element x ∈ S is maximal (minimal)
if x is equivalent to every element y for which y � x (x � y). A set Y ⊆ S is an
antichain if no two elements in Y are comparable. A set X ⊆ S is a chain if every
two elements in X are comparable but not equivalent. An increasing (decreasing)
chain is a sequence {xn}∞n=1 such that xj � xi if and only if j ≥ i (j ≤ i). An
increasing chain {xn}∞n=1 is said to be a scaling chain if every y ∈ S which is not
maximal is dominated by xi for some i ≥ 1. An element y ∈ S is an atom if y
is not minimal and every element which is dominated by y but is not equivalent
to y, is minimal. Finally, we say that a function f : S → Z is monotone if either
x � y implies f(x) ≥ f(y) or x � y implies f(x) ≤ f(y).

A quasi-order � is said to be well founded if it does not contain an infinite
(strictly) descending chain X1 � X2 � · · · . We say that it is a well quasi-order
(shortly WQO) if it is well founded and it does not contain an infinite antichain.
The following proposition shows that these two concepts are equivalent for the
orders �f

M and �t
M .

Proposition 2.7. For any Abelian group M , the orders �f
M and �t

M are WQO if
and only if they are well founded.

Proof. We need only prove that well founded implies WQO as the other direction is
clear. Assume the contrary and let G1, G2, . . . be an infinite antichain. Then letting
+ denote the disjoint union, we have that G1 �f

M G1 + G2 �f
M G1 + G2 + G3 · · ·

is a strictly decreasing chain, contradicting our assumption. �

Next we state an important open problem concerning the flow orders.

Problem 2.8. Is �f
M WQO for any group M?

This problem is related to the global conjectures by means of the following:

Theorem 2.9. If �f
M is WQO then �f

M has a single atom.

We shall see (Section 3) that a graph G is an atom of �f
M if G contains no

bridge and there is no bridgeless graph H satisfying G �f
M H and H ��f

M G.

Proof. Assume that �f
M is WQO. By the well-foundedness property for every

bridgeless graph G there exists an atom H with G �f
M H . Let A be the set of all

(mutually non-equivalent ) atoms. Assume that |A| > 1 and let H , H ′ be atoms
satisfying H ��f

M H ′ ��f
M H . Then consider the graph H ′′ = H + H ′ (disjoint
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union of H and H ′; 1-sum could be used too). Then H �f
M H ′′ and H ′ �f

M H ′′

(by inclusion), while obviously H ′′ ��f
M H , H ′′ ��f

M H ′. Thus H (and H ′) fails to
be atoms, a contradiction. �

Theorem 2.9 explains why all of the global conjectures have only a single
atom, and is another indication of the importance of these atoms in the study of
the flow orders.

The main purpose of this paper is to investigate the structure of the quasi-
orders �f

M and �t
M . We will establish some basic properties and connections be-

tween these orders and raise some new open problems. Here we mention a fascinat-
ing conjecture equivalent to a conjecture of Jaeger concerning the order �f

Z2
which

we view as powerful motivation for the study of the flow-continuous quasi-orders.
We use P10 to denote the Petersen graph (see Figure 2).

Figure 2. P10

Conjecture 2.10. If G has no cut-edge, then G �f
Z2

P10.

If this conjecture is true, then so is the five cycle double cover conjecture and
Conjecture 2.4 of Fulkerson. This implication follows immediately from Proposition
2.5 and the second formulations of these conjectures given in the introduction and
the fact that these conjectures hold for the Petersen graph.

This paper is organized as follows. In the next section we establish some
general properties of flow and tension continuous maps. In section 4, we compare
the various quasi-orders and prove that homomorphisms are precisely the cut-
tension continuous maps. Following this are four short sections in which each of
the orders �f

Z2
, �f

Z
, �t

Z2
, and �t

Z
is given a quick investigation. Finally, a section

is devoted to Jaeger’s order ≺J and its comparison to our approach (which we
believe is more streamlined).

3. Flow/tension-continuous maps over rings

Before we study the orders generated by some particular groups, we wish to men-
tion some general properties satisfied by all flow or tension-continuous maps over
rings. This will shorten and unify some of our statements below. Our approach is
the standard one.
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Throughout this section, we will assume that K is a ring. For every oriented
graph G, we regard KE(�G) as a module over K. It follows from the definitions
that the set of K-tensions and K-flows are both submodules of KE(�G). If φ, ψ ∈
KE(�G), we say that φ and ψ are orthogonal, written φ ⊥ ψ, if

∑
e∈E(�G) φ(e)ψ(e) =

0. It is an elementary fact that every K-flow is orthogonal to every K-tension.
Furthermore, a map ψ : E(G) → K is a K-flow (K-tension) if and only if it is
orthogonal to every K-tension (K-flow).

Next we state a key equivalence. If f : X → Y and ψ : X → K, then we let
ψf : Y → K be given by the rule ψf (y) =

∑
x∈f−1({y}) ψ(x).

Theorem 3.1. Let G and H be oriented graphs and let f : E(G) → E( H). Then
f is K-flow-continuous (K-tension-continuous) if and only if ψf is a K-tension
(K-flow) of H for every K-tension (K-flow) ψ of G.

Proof. We prove the theorem only in the flow-continuous case. The tension con-
tinuous case follows by a similar argument. Let f : E(G) → E( H) be a map, let
ψ be a K-tension of G and let φ be a K-flow of H . Then we have the following
equations :∑

e∈E(H)

φ(e)ψf (e) =
∑

e∈E(H)

φ(e)
∑

s∈f−1({e})
ψ(s)

=
∑

e∈E(H)

∑
s∈f−1({e})

φ(f(s))ψ(s) =
∑

s∈E(G)

(φ ◦ f)(s)ψ(s).

If we assume that f is K-flow-continuous, then (φ ◦ f) is a flow on G, so the last
line in the above equation evaluates to zero. In this case, we have that ψf ⊥ φ.
Since φ was an arbitrary flow, it follows that ψf is orthogonal to every flow, so ψf

is a tension as desired.
If we assume that ψf is a tension of H , then the first line in the above equation

evaluates to zero. In this case, we have that ψ ⊥ (φ ◦ f). Since ψ was an arbitrary
tension, it follows that φ ◦ f is orthogonal to every tension, so φ ◦ f is a flow as
desired. �

Next we prove that for every graph H , there is a subspace B ⊆ Kn with
−B = B, such that G �f

K H (G �t
K H) if and only if G has a B-flow (B-tension).

This useful fact was first discovered by Jaeger (in the case where K = Z2). Let A
be a matrix with entries in K and columns indexed by E(G), and let a1, a2, . . . , an

denote the rows of A. We say that A represents the cycle-space (cocycle-space) of
G if every ai is a K-flow (K-tension) and for every K-flow (K-tension) ψ of G,
there exist x1, x2, . . . , xn ∈ K such that ψ =

∑n
i=1 xiai.

Theorem 3.2. Let H be an oriented graph, let K be a ring, let A be an n×m matrix
over K which represents the cycle-space (cocycle-space) of H, and let B = {x ∈
Kn | x or −x is a column of A}. Then for every graph G, we have that G �f

K H
(G �t

K H) if and only if G has a B-flow (B-tension).
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Proof. Again, we prove the statement only in the case when A represents the
cycle-space of H . A similar argument proves the statement when A represents the
cocycle-space of H . Let a1, a2, . . . , an denote the row vectors of A. We think of
ai as a map from E(H) to K and we let φ : E(H) → Kn be the map given by
the rule φ(e) = (a1(e), a2(e), . . . , an(e)). Let G be an orientation of G, and let
f : E(G)→ E( H) be a map. Next we establish the following claim.

Claim. f is K-flow-continuous if and only if φ ◦ f is a flow.

Proof. If f is K-flow-continuous, then ai ◦ f is a flow for 1 ≤ i ≤ n, so φ ◦ f is also
a flow. On the other hand, if φ ◦ f is a flow and ψ : E( H) → K is any K-flow of
H , then we may choose xi ∈ K for 1 ≤ i ≤ n so that ψ =

∑n
i=1 xiai. Since φ ◦ f is

a flow, ai ◦ f is a flow for 1 ≤ i ≤ n and we find that ψ ◦ f =
∑n

i=1 xiai ◦ f is also
a flow. Since ψ was an arbitrary flow of H , it follows that f is K-flow-continuous.
This completes the proof of the claim.

Let B0 denote the set of columns of the matrix A. It follows from the above
claim that G �f

K H if and only if there exists an orientation G of G and a map
ψ : E(G) → B0 so that ψ is a flow. By reversing edges, the latter condition is
equivalent to the statement that G has a B-flow. This completes the proof. �

Let M be an Abelian group and let p : V (G)→M be a map (p for potential).
We define the coboundary of p to be the map δp : E(G) → M given by the rule
δp(e) = p(v) − p(u) if e is directed from u to v. It is easy to see that δp is always
a tension. The following well-known lemma shows that every tension arises in this
manner from a potential.

Lemma 3.3. For every tension φ : E(G)→ M , there exists a map p : V (G) →M
so that δp = φ. Further, if G is connected and δp = φ = δp′, then there is a fixed
x ∈M so that p(v)− p′(v) = x for every e ∈ E(G).

Proof. Define the height of a walk W to be the sum of φ on the forward edges
of W minus the sum of φ on the backward edges of W . Since φ is a tension, the
height of every closed walk is zero. Now, choose a vertex u and define the map
p : V (G)→M by the rule p(v) = the height of a walk from u to v. It follows from
the fact that every closed walk has height zero that p is well defined. Furthermore,
by construction δp = φ. To prove the second statement in Lemma 3.3, let p′ :
V (G)→ K satisfy δp′ = φ. Now for any edge e directed from u to v, we have that
p′(v) − p′(u) = φ(e) = p(v) − p(u). Thus, p(v) − p′(v) = p(u)− p′(u) and Lemma
3.3 follows. �

If G, H are undirected graphs. A homomorphism from G to H is a map
f : V (G) → V (H) with the property that f(u) ∼ f(v) whenever u ∼ v. It is easy
to see that there is a homomorphism from G to Kn if and only if G is n-colorable.
Thus, we may view homomorphisms as a generalization of graph coloring.

For any Abelian group M and any subset B ⊆ M with B = −B, we let
Cayley(M, B) denote the simple (undirected, but not necessarily loopless) graph
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with vertex set M in which two vertices x, y ∈ M are adjacent if and only if
x − y ∈ B. Note that Cayley(M, B) is an infinite graph if M is infinite. The
following proposition is a well-known equivalence which we sketch a proof of for
completeness.

Proposition 3.4. Let M be an Abelian group and let B ⊆ M with −B = B. Then
a graph G has a B-tension if and only if there is a homomorphism from G to
Cayley(M, B).

Proof. Let G be an orientation of G. If there is a homomorphism p from G to
Cayley(M, B), then the map ψ = δp is a B-tension. If ψ : E(G) → M is a B-
tension, then by the above lemma, we may choose a map p : V (G) → M so
that δp = ψ. Since V (G) = V (G), the map p is a homomorphism from G to
Cayley(M, B) as desired. �

Based on the above proposition and Theorem 3.2, we now have the following
corollary.

Corollary 3.5. Let H be an oriented graph, let K be a ring, let A be an n × m

matrix over K which represents the cocycle-space of H, and let B = {x ∈ Kn |
x or −x is a column of A}. Then G �t

K H if and only if G �hom Cayley(Kn, B).

Proof. By Theorem 3.2, G �t
K H if and only if G has a B-tension. By Proposi-

tion 3.4 this is equivalent to the existence of a graph homomorphism from G to
Cayley(Kn, B). �

4. Comparing the quasi-orders

In this section we compare the quasi-orders induced by flow-continuous (tension-
continuous) maps over different groups. At the end of this section, we introduce a
quasi-order based on graph homomorphisms and we compare this to the tension-
continuous orders. We begin with a definition of circuit-flows and cut-tensions
followed by an easy (folkloristic) proposition which we prove for the sake of com-
pleteness.

Let G be an oriented graph and let M be an Abelian group. For every X ⊆
V (G) and every z ∈M , define the map γz

X : E(G)→M by the rule

γz
X(e) =

⎧⎨
⎩

z if e ∈ ∆+(X)
−z if e ∈ ∆−(X)
0 otherwise.

For any map φ : E(G)→M , we say that φ is a cut-tension if there exist X ⊆ V (G)
and z ∈ M so that φ = γz

X . If such an X, z exist with the added property that
∆(X) is a bond, then we say that φ is a bond-tension. The following observation
follows from the definitions.
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Observation 4.1. If G is connected and φ is a cut-tension of G, then every p :
V (G)→M which satisfies δp = φ must have |p(V (G)| ≤ 2.

If C ⊆ G is a circuit and (A, B) is a direction of C, and then z ∈M ,the map
φz

C : E(G)→M given by the rule

ψz
C(e) =

⎧⎨
⎩

z if e ∈ A
−z if e ∈ B
0 otherwise

is a flow. We define any flow of this form to be a circuit-flow. Circuit-flows are
dual to bond-tensions. Since we will not need the flow analogue of a cut-tension,
we will not define it.

Proposition 4.2. For every flow (tension) φ of G, there exist circuit-flows (bond-
tensions) φ1, φ2, . . . , φn such that φ =

∑n
i=1 φi.

Proof. We prove the proposition in the case that φ is a flow. The case when φ is a
tension follows by a similar argument. We proceed by induction on Supp(φ). The
proposition is trivially true if Supp(φ) = ∅, so we may assume that this is not so
and choose an edge e ∈ E(G) with φ(e) = x �= 0. It follows immediately from
the definitions that there is no edge-cut C containing e with the property that
φ(f) = 0 for every f ∈ C \ {e}. Thus, we may choose a circuit D with e ∈ D such
that D ⊆ Supp(φ). Let φ1 : E(G)→M be a circuit-flow with Supp(φ1) = D and
with φ1(e) = x. By induction, we may choose a list of circuit flows φ2, φ3, . . . , φn

with
∑n

i=2 φi = φ − φ1. By construction, φ1, φ2, . . . , φn is a list of circuit flows
with the required properties. �

Using this we can characterize the minimal and maximal elements in the flow
and tension continuous orders over every group. In particular, the following shows
that the minimal elements in the flow (tension) continuous order are independent
of the group.

Theorem 4.3. A graph is minimal in �f
M (�t

M ) if and only if it contains a cut-edge
(loop). A graph G is maximal in �f

M (�t
M ) if and only if there is an orientation

G of G such that every constant map from E(G) to M is a flow (tension).

Proof. We prove the proposition only for the flow order �f
M . The same argument

works for �t
M if we replace every occurrence of “flow” with “tension” and inter-

change the use of the words “loop” and “cut-edge”.
Let H be an oriented graph with a cut-edge s and let G be any oriented

graph. We claim that the map f : E(G) → E( H) given by the rule f(e) = s for
every e ∈ E(G) is M -flow-continuous. To see this, let φ be a flow of H . Then
φ(s) = 0, so φ ◦ f is identically zero and we have that it is a flow.

To see that these are the only minimal graphs, let G be an oriented graph
without a cut-edge and let H be an oriented graph with a single edge s which is a
cut-edge. By the above argument G �f

M H . We claim that H ��f
M G. To see this,
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let f : E( H) → E(G) be a map and let e = f(s). Since e is not a cut-edge of G,
there is a circuit containing e, so we may choose a circuit-flow φ : E(G)→M with
e ∈ Supp(φ). Now φ ◦ f is not a flow of H.

Let G be a graph with an orientation G such that every constant map from
G to M is a flow. Let H be an oriented graph, let s ∈ E( H) be an edge and let
f : E(G) → E( H) be the map given by the rule f(e) = s for every e ∈ E(G).
Then for every flow φ : E( H)→ M , the map φ ◦ f is constant, so by assumption
it is a flow.

To see that these are the only maximal graphs, let H be a graph with no
orientation satisfying the property above and let H be an orientation of H . Let G
be an orientation of a graph with a single edge s which is a loop. By the above
argument G �f

M H . We claim that H ��f
M G. To see this, let f : E( H) → E(G)

be a map and choose x ∈ M such that the function on E( H) which is constantly
x is not a flow. Then the map φ : E(G)→M given by the rule φ(s) = x is a flow,
but φ ◦ f is not. The claim follows. �

We can also prove that the order �f
Z

(�t
Z
) is the most restrictive among the

flow (tension) continuous orders.

Theorem 4.4. If G �f
Z

H (G �t
Z

H), then G �f
M H (G �t

M H) for every Abelian
group M .

Proof. We prove the proposition only for the case G �t
Z

H . The flow-continuous
case follows by a similar argument. Let f : E(G)→ E( H) be a Z-tension contin-
uous map from an orientation of G to an orientation of H and let φ : E( H)→M
be a tension. By Proposition 4.2, we may choose bond-tensions φz1

X1
, φz2

X2
, . . . , φzn

Xn

of H such that φ =
∑n

i=1 φzi

Xi
. Since φ ◦ f =

∑n
i=1 φzi

Xi
◦ f , it suffices to show

that φzi

Xi
◦ f is a tension for 1 ≤ i ≤ n. Let i ∈ {1, 2, . . . , n} and consider the

bond-tension γ1
Xi

: E(G)→ Z. By assumption, γ1
Xi
◦ f is a Z-tension of H, but it

follows immediately from this that φzi

Xi
◦ f is an M -tension of H . Since 1 ≤ i ≤ n

was arbitrary, we have that φ ◦ f is M -tension-continuous as required. �

Next we turn our attention to the quasi-order related to graph homomor-
phisms: we define the relation �hom by the rule G �hom H if there exists a ho-
momorphism from G to H . Since the identity map is a homomorphism and the
composition of two homomorphisms is a homomorphism, �hom is a quasi-order.

We also define homomorphisms between oriented graphs as mappings pre-
serving direction of arcs. Each homomorphism f : G → H induces a mapping
f � : E(G)→ E( H) defined by f �(x, y) = (f(x), f(y)). This induced mapping will
be called the chromatic mapping E(G)→ E( H) induced by f . It is easy to see that
for every homomorphism p : V (G) → V (H) and every orientation H of H , there
exists an orientation G of G and a map f : E(G)→ E( H) which is chromatic and
is induced by p. So in particular, G �hom H if and only if there is a chromatic map
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from some orientation of G to some orientation of H . The following proposition
gives a key property of chromatic maps.

Proposition 4.5. Let M be an Abelian group and let f : E(G) → E( H) be a
chromatic map. Then we have the following.

(i) φ ◦ f is a cut-tension of G for every cut-tension φ : E( H)→M of H.
(ii) f is M -tension continuous for every Abelian group M .

Proof. To prove (i), let p : V (G) → V (H) be a homomorphism so that f is
induced by p, and choose z ∈ M and X ⊆ V (G) so that φ = γz

X . It follows from
the definitions that φ ◦ f = γz

p−1(X), so φ ◦ f is an M -cut-tension as required.

To prove (ii), let φ : E( H) → M be a tension. By Proposition 4.2 we may
choose cut-tensions φ1, φ2, . . . , φn such that

∑n
i=1 φi = φ. By (i), φi ◦ f is a cut-

tension, so in particular it is a tension. Thus, φ◦ f =
∑n

i=1 φi ◦ f is a tension of G.
Since φ was arbitrary, it follows that f is M -tension continuous as required. �

The following proposition proves perhaps a surprising converse of Proposition
4.5, thus giving an equivalent formulation of graph homomorphisms in terms of
“cut-tension-continuous maps”.

Theorem 4.6. Let G and H be connected oriented graphs and let f : E(G)→ E( H).
Then f is chromatic if and only if φ◦ f is a cut-tension of G for every cut-tension
φ : E( H)→ Z of H.

E(G) E(H)

φ

f

φ f

Z

Cut−

tension

Figure 3. Cut-tension

Proof. The “only if” part of the proof is an immediate consequence of Proposition
4.5. To prove the “if” part, we will assume that φ ◦ f is a cut-tension of G for
every cut-tension φ : E( H) → Z of H . For every vertex v ∈ V ( H) we have that
γ1
{v} : E( H) → Z is a cut-tension, so by our assumption, we may assume that

there exists Yv ⊆ V (G) so that γ1
{v} ◦ f = γ1

Yv
.

Claim 1. If u, v ∈ V ( H) and u �= v, then either Yu ∩ Yv = ∅ or Yu ∪ Yv = V (G).

Proof of Claim 1. For every A ⊆ V (G), let χA : V (G)→ {0, 1} be the characteristic
map given by the rule χA(v) = 1 if v ∈ A and χA(v) = 0 otherwise. Clearly
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δχA = −γ1
A = γ1

V (G)\A = γ1
Ā

(by Ā we denoted the complement of A). Now,
γ1
{u,v} = γ1

u + γ1
v , so we have that

γ1
{u,v} ◦ f = γ1

{u} ◦ f + γ1
{v} ◦ f

= γ1
Yu

+ γ1
Yv

= δχȲu
+ δχȲv

= δ(χȲu
+ χȲv

).

Since γ1
{u,v} ◦ f is a cut-tension, and G is connected, we have by Observation 4.1

that p = χȲu
+ χȲv

takes on at most two distinct values. If p does take on two
distinct values, then these values must differ by exactly one since δp = γ1

{u,v}◦f . By

definition every w ∈ Ȳu∩ Ȳv must satisfy p(w) = 2 and every w ∈ V (G)\ (Ȳv ∪ Ȳu)
must satisfy p(w) = 0, so it follows that at least one of these sets must be empty
as required.

Fix distinct vertices u, v ∈ V (G). By possibly switching the orientations of
every edge in G and then replacing Yw with V (G) \ Yw for every w ∈ V (G), we
may assume that Yu ∩ Yv = ∅. The next claim shows that now, Yw and Yw′ are
disjoint whenever w �= w′.

Claim 2. Yw ∩ Yw′ = ∅ if w �= w′.

Proof of Claim 2. If there is a vertex w so that Yw ∩ Yu �= ∅, then by Claim 1,
Yw ∪ Yu = V (G), so in particular Yv ⊆ Yw. But then by Claim 1 we must have
either Yv = ∅ or Yw = V (G) and either possibility contradicts our assumption.
Thus, we find that Yw is disjoint from Yu for every w ∈ V (G) \ {u}. If there exist
vertices w, w′ ∈ V (G)\{u} so that Yw∩Y ′

w �= ∅, then Yw∪Yw′ = V (G), by Claim 1
so either Yw∩Yu �= ∅ or Yw′ ∩Yu �= ∅. This contradiction implies that Yw∩Yw′ = ∅
whenever w �= w′ as required.

The following observation follows immediately from our construction.

Observation. If e ∈ E( H) is directed from u to v, then f−1({e}) ⊆ ∆+(Yu) ∩
∆−(Yv).

Since H does not have any isolated vertices, Claim 2 and the above observa-
tion imply that {Yw | w ∈ V ( H)} is a partition of V (G). Now, let p : V (G)→ V ( H)
be given by the rule p(v) = u if v ∈ Yu. It follows from the above observation that
f is chromatic with respect to p. This completes the proof. �

Let us rephrase Theorem 4.6 in terms of homomorphisms:

Corollary 4.7. Given two connected oriented graphs G and H, a mapping f :
V (G) → V ( H) is a homomorphism G → H if and only if φ ◦ f � is a cut-tension
of G whenever φ is a cut-tension of H.

This is indicated by Figure 4.
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E(G) E(H)

φ

f

φ f

#

V(G) V(H)
f

homomorphism

Z

Cut−

tension

Figure 4. Homomorphism and cut-tension

The cut-tension continuous mappings form a quasi-order on their own which
may be denoted by �ct. The above Theorem 4.6 then means that �ct=�hom. It
follows that (despite its similarity to �t

Z
) the cut-tension order is very rich (and

indeed countable universal) quasi-order, see [17]. However note that �ct is a proper
subset of �t

Z
. Examples are abundant. For example for any oriented bipartite graph

G we have G �t
Z

K2 (here K2 denotes the complete graph on two vertices) however
the oriented bipartite graphs G satisfying G ��hom

K2 induce a universal poset on
their own (for example P3 ��hom

K2 where P3 denotes the two edge path).

5. The order �f
Z2

E(G) E(H)

φ

f

φ f

Z

cycle−

continuous

2

Figure 5. Cycle-continuous

We start our investigation of particular orders by the order which has perhaps
the most intuitive appeal.

In the ring Z2, addition and subtraction are the same operation. As such, the
orientation of the graph does not play a role, and we define a map φ : E(G)→ Z2

to be a flow of the unoriented graph G if
∑

e∈∆(v) φ(e) = 0 for every v ∈ V (G).
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Note that this definition is consistent with our earlier definitions since a map
φ : E(G) → Z2 is a flow if and only if it is a flow of some (and thus every)
orientation of G. A set X ⊆ E(G) is a cycle if and only if it is the support of a
Z2-flow. Therefore, a map f : E(G) → E(H) is Z2-flow-continuous if and only if
f−1(C) is a cycle of G for every cycle C ⊆ E(H). Based on this link, we call such
a map cycle-continuous. The following is a corollary of Theorem 4.3.

Corollary 5.1. A graph G is maximal in �f
Z2

if and only if every vertex of G has
even degree. A graph G is minimal in �f

Z2
if and only if it has a cut-edge.

Based on the above corollary, we can now restate conjecture 2.10 as follows.

Conjecture 5.2 (Jaeger). P10 is the only atom in the cycle-continuous order.

In the first paragraph of this section, we observed that a set of edges is a cycle
if and only if it is the support of a Z2-flow. Similarly, a set of edges D ⊆ E(G) is
an edge-cut if and only if it is the support of a Z2-tension. With the help of this
observation, Theorem 3.1 now gives us a monotone invariant of �f

Z2
.

Proposition 5.3. If G �f
Z2

H then λo(G) ≥ λo(H).

Proof. If λo(G) =∞ then there is nothing to prove, so we may assume that λo(G)
is finite and choose an edge-cut C ⊆ E(G) of size λo(G). Let ψ : E(G) → Z2 be
given by the rule ψ(e) = 1 if e ∈ C and ψ(e) = 0 otherwise. Now, ψ is a tension
of G, so by Theorem 3.1, ψf is a tension of H . Let D be the support of ψf . Now,
|D| is odd since |C| was odd, and D is an edge-cut of H . Thus, we have that
λo(H) ≤ λo(G) as desired. �

For every positive integer h, we let Kh
2 denote the graph on two vertices

consisting of h edges in parallel. For any graph G, we say that a set of edges
J ⊆ E(G) is a postman join if E(G) \ J is a cycle. The following proposition gives
a characterization of when G �f

Z2
K2a+1

2 and when K2a+1
2 �f

Z2
G.

Proposition 5.4.

1. K2a+1
2 �f

Z2
G if and only if λo(G) ≤ 2a + 1.

2. G �f
Z2

K2a+1
2 if and only if E(G) may be written as a disjoint union of 2a+1

postman joins.

Proof. Since λo(K2a+1
2 ) = 2a + 1, Proposition 5.3 gives us the “only if” direction

of (1). To prove the “if” direction, let G be a graph with λo(G) ≤ 2a+1 and choose
an odd edge-cut C of G of size ≤ 2a+1. Next choose a map f : E(K2a+1

2 )→ E(G)
with the property that |f−1({e})| is odd for every e ∈ C and f−1(E(G) \ C) = ∅.
It follows easily that this map is cycle-continuous.

To see the “only if” direction of (2) let f : E(G) → E(K2a+1
2 ) be cycle-

continuous, and note that f−1({e}) is a postman join for every e ∈ E(K2a+1
2 ) since

f−1(E(K2a+1
2 )\ {e}) is a cycle. To see the “if” direction, let J1, J2, . . . , J2a+1 be a

list of disjoint postman joins with union E(G), let E(K2a+1
2 ) = {e1, e2, . . . , e2a+1},
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and consider the map f : E(G)→ E(K2a+1
2 ) given by the rule f(s) = ei if s ∈ Ji.

It is easily verified that this map is cycle-continuous. This completes the proof. �

Based on this proposition, we have the following scaling chain.

Proposition 5.5. The graphs K1
2 , K3

2 , K5
2 , . . . form a scaling chain in �f

Z2
.

Proof. It follows immediately from (1) of the previous proposition that K1
2 , K3

2 ,
K5

2 , . . . is an increasing chain. If G is any non maximal graph in �f
Z2

, then λo(G) <
∞ and we have by (1) of the previous proposition that there exists a positive integer
2a + 1 such that K2a+1

2 �f
Z2

G. �

Proposition 5.4 above shows a connection between the cycle-continuous order
and the problem of partitioning the edge set of a graph into postman joins. We
now state a special case of a conjecture of Rizzi [20] concerning postman joins. In
the language of the cycle-continuous order, his conjecture asserts that the graph
K2a+1

2 is comparable with every other graph.

Conjecture 5.6 (Rizzi). If K2a+1
2 ��f

Z2
G, then G �f

Z2
K2a+1

2 .

Since every graph dominates K1
2 , this conjecture obviously holds for a = 0.

A graph can be partitioned into 3 postman joins if and only if it has a nowhere-
zero 4-flow. With this, the above conjecture for a = 1 follows from Jaeger’s 4-flow
theorem. A recent result of DeVos and Seymour asserts that Rizzi’s conjecture
holds with an added factor of two.

Theorem 5.7 (DeVos, Seymour). If K4a−1
2 ��f

Z2
G then G �f

Z2
K2a+1

2 .

If Jaeger’s conjecture 2.10 is correct, then every graph is comparable with P10.
If Rizzi’s conjecture 5.6 is correct, then every graph is comparable with K2a+1

2 for
every nonnegative integer a. In light of these conjectures it may not be surprising
that it is tricky to construct antichains in this order. In particular, we cannot solve
the following problem.

Problem 5.8. Does �f
Z2

contain an infinite antichain?

We can prove that the order �f
Z2

does contain finite antichains of arbitrary
size. We have two closely related families of graphs which demonstrate this fact.
One of these families comes from a clever construction of Xuding Zhu and will be
given below. The second family will be described here, but we will postpone the
proof of its validity to the full paper [4].

It is easy to see that an r-regular graph G satisfies G �f
Z2

Kr
2 if and only

if it is r-edge colorable. Let G be an r-regular graph with λo(G) = r < ∞ (so
in particular, r is odd). If every edge-cut of G of size r is of the form ∆(x) for
some x ∈ V (G) and G ��f

Z2
Kr

2 , then we say that G is an r-snark. If G \ e �f
Z2

Kr
2

for every edge e ∈ E(G), then we say that G is critical. Both of our families of
antichains are based on the following proposition.
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Proposition 5.9. If G, H are non-isomorphic critical r-snarks with |E(G)| =
|E(H)|, then G and H are incomparable in the order �f

Z2
.

Proof. Suppose the proposition is false and let f : E(G) → E(H) be a cycle-
continuous map. First we establish the following claim.

Claim. The map f is a bijection.
Proof of the Claim. Since G and H have the same number of edges by assumption,
it will suffice to prove that f is onto. Suppose (for a contradiction) that f is
not onto and choose an edge e ∈ E(H) which is not in the image of E(G). It
follows that f is a cycle-continuous map from G to H \ e. But then we have that
G �f

Z2
H \ e �f

Z2
Kr

2 which contradicts the assumption that G is an r-snark.

Continuing the proof, let v ∈ V (G) and consider the edge-cut ∆G(v). The
image of ∆G(v) is another edge-cut of odd size, so by assumption, it must be equal
to ∆H(v′) for some vertex v′ ∈ V (H). If u and v are distinct vertices of G and
f(∆G(u)) = ∆H(u′) and f(∆G(v)) = ∆H(v′) for u′, v′ ∈ V (H), then it follows
from the fact that f is a bijection that u′ �= v′. Thus the map which sends every
v ∈ V (G) to the corresponding v′ ∈ V (H) is an isomorphism between G and H
and we have a contradiction. �

Let M be a perfect matching of the Petersen graph P10. Define the graph
P (a, b) to be the graph obtained from P10 by adding a− 1 parallel edges to every
edge not in M and adding b−1 parallel edges to every edge in M . Our first family
of antichains is as follows.

Theorem 5.10 (Zhu). For every nonnegative integer k, the set {P (2j +1, 6k−4j+
1) | 0 ≤ j ≤ k} is an antichain in �f

Z2
of size k + 1.

Proof. Let Fk = {P (2j + 1, 6k − 4j + 1) | 0 ≤ j ≤ k} and let G ∈ Fk. It follows
from our construction that G is (6k + 3)-regular, λo(G) = 6k + 3, and every odd
edge-cut of G of size 6k + 3 is of the form ∆(x) for some x ∈ V (G). Now, for
an odd integer r, and an r-regular graph G satisfies G �f

Z2
Kr

2 if and only if G

is r-edge-colorable. It is well known that none of the graphs in Fk are (6k + 3)-
edge-colorable. Thus, we find that every graph in Fk is a (6k + 3)-snark with the
same number of edges. Now, it follows from a theorem of Rizzi [20] that for every
e ∈ E(G) the edges of the graph G \ e may be partitioned into (6k + 3)-disjoint
postman joins, so G \ e �f

Z2
K

(6k+3)
2 . It follows from this and Proposition 5.9 that

Fk is an antichain as desired. �

The above construction gives us antichains of arbitrary size, but requires
graphs with λo large. Next we describe a construction for antichains of arbitrary
size with λo bounded (and thus bounded in �f

Z2
by K3

2).
Let G, H be cubic graphs, let st ∈ E(G) and let x1, x2, t and x3, x4, s be the

neighbors of s and t respectively. Let y1y2, y3y4 ∈ E(H) be nonadjacent edges. Let
F be a graph obtained from the disjoint union of G \ {s, t} and H \ {y1y2, y3y4}
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by adding new edges with ends xi, yi for 1 ≤ i ≤ 4, F is again a cubic graph. We
say that F is a dot product of G with H . In [4], the following theorem is proved.

Theorem 5.11. If G is a critical 3-snark, then every dot product of G with P10 is
a critical 3-snark.

Since the Petersen graph P10 is a critical 3-snark, any dot product of P10

with itself is critical. There are two nonisomorphic graphs on 18 vertices known
as Blanusa’s snarks [1] which are obtained as dot products of P10 with itself.
By Proposition 5.9, these two graphs are incomparable in the order �f

Z2
. It is

straightforward to iterate this operation to create large families of nonisomorphic
3-snarks on the same number of edges, which by Proposition 5.9 are antichains.
Equivalently, there are arbitrarily large antichains of graphs under K3

2 (in �f
Z2

).

6. The order �t
Z2

E(G) E(H)

φ

f

φ f

Z

continuous

2

cut−

Figure 6. Cut-continuous

As was the case in the order �f
Z2

, the orientation of the edges does not play
any role in the order �t

Z2
, and thus �t

Z2
relates to undirected graphs. As in the

previous section, we define a map φ : E(G)→ Z2 to be a tension of the undirected
graph G if

∑
e∈E(C) φ(e) = 0 for every circuit C of G. As observed earlier, a set

of edges is an edge-cut if and only if it is the support of a Z2-tension. Thus, a
map f : E(G)→ E(H) is Z2-tension-continuous if and only if f−1(C) is an edge-
cut of G for every edge-cut C of H . Based on this property, we call such a map
cut-continuous. We begin by stating a corollary of Theorem 4.3 which gives us the
maximal and minimal elements in this order.

Corollary 6.1. The maximal elements in �t
Z2

are the bipartite graphs. The minimal
elements are the graphs which contain loops.

As was the case with the cycle-continuous order, Theorem 3.1 implies that
odd girth is a monotone invariant:

Proposition 6.2. If G �t
Z2

H then γo(G) ≥ γo(H).

Proof. If γo(G) =∞ then there is nothing to prove, so we may assume that γo(G)
is finite and choose a cycle C ⊆ E(G) of size γo(G). Let ψ : E(G)→ Z2 be given
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by the rule ψ(e) = 1 if e ∈ C and ψ(e) = 0 otherwise. Let f be a Z2-tension-
continuous map from E(G) to E(H). Now, ψ is a flow of G, so by Theorem 3.1,
ψf is a flow of H . Let D be the support of ψf . Now, |D| is odd since |C| was odd,
and D is a cycle of H . Thus, we have that γo(H) ≤ γo(G) as desired. �

We let Cn denote the circuit of length n for every n ≥ 1. Let Qn denote the
graph of the n-cube for n ≥ 1. The vertex set of Qn is {0, 1}n and two vertices
are adjacent if and only if they differ in a single coordinate. Let Q+

2n denote the
graph obtained from the 2n-cube by adding all edges between vertices which differ
in every coordinate. Now, we have the following proposition which characterizes
when a graph dominates and is dominated by C2a+1.

Proposition 6.3.

1. C2a+1 �t
Z2

G if and only if γo(G) ≤ 2a + 1
2. G �t

Z2
C2a+1 if and only if G �hom Q+

2a.

Proof. Since γo(C2a+1) = 2a+1, Proposition 6.2 gives us the “only if” direction of
(1). To prove the “if” direction, let G be a graph with γo(G) ≤ 2a + 1 and choose
an odd cycle C of G of size ≤ 2a + 1. Next choose a map f : E(C2a+1) → E(G)
with the property that |f−1({e})| is odd for every e ∈ C and f−1(E(G) \ C) = ∅.
It follows easily that this map is tension-continuous.

For (2), let B ⊆ Z2a
2 be the subset consisting of all vectors with exactly

one 1 together with the vector (1, 1, 1, . . . , 1). Now, Q+
2a
∼= Cayley(Z2a

2 , B), so by
Corollary 3.5, it suffices to see that the following 2a× (2a + 1) matrix represents
the Z2-cocyle-space of C2a+1.⎡

⎢⎢⎢⎣
1

1 0
1
1

0
. . .

1

...
1

⎤
⎥⎥⎥⎦

�

As was the case with the graphs K2a+1
2 in the cycle-continuous order, the

odd circuits C2a+1 form a scaling chain in the cut-continuous order.

Proposition 6.4. The odd circuits C3, C5, C7, . . . form a scaling chain in the cut-
continuous order �t

Z2
.

Proof. It follows immediately from (1) of the previous proposition that C3, C5, . . .
is an increasing chain. If G is any non maximal graph in �t

Z2
, then γo(G) < ∞

and we have by (1) of the previous proposition that there exists a positive integer
2a + 1 such that C2a+1 �t

Z2
G. �

For any graph G, we let Gn denote the graph with vertex set V (G) in which
two vertices are adjacent if and only if they are distance n in G. The following
proposition gives a condition similar to that in part 2 of Proposition 6.3 for graphs
dominating a complete graph. Our setting provides a short proof :
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Proposition 6.5 (Linial, Meshulam, Tarsi [13]). G �t
Z2

Kn if and only if
G �hom Q2

n.

Proof. Let B ⊆ Zn
2 be the set of all vectors with exactly two 1’s. Then Q2

n
∼=

Cayley(Zn
2 , B). Let A be the incidence matrix of Kn considered as a matrix

over Z2. Then A represents the Z2-cocycle-space of Kn and

{x ∈ Zn
2 | x is a column of A} = B.

Thus, the proposition now follows from Corollary 3.5. �
The above proposition 6.5 demonstrates that G �t

Z2
K3 if and only if G �hom

K4. We have a similar relation for the complete graphs with 2n vertices.

Proposition 6.6. G �t
Z2

K2n if and only if G �hom K2n.

Proof. Let f be a cut-continuous map from G to K2n and choose edge-cuts D1, D2,
. . . , Dn of K2n so that

⋃n
i=1 Di = E(K2n). Now f−1(Di) for 1 ≤ i ≤ n is a list of

n edge-cuts of G containing every edge. It follows that χ(G) ≤ 2n, so G �hom K2n .
If G �hom K2n , then by Proposition 4.5 we have that G �t

Z2
K2n . �

Thus, we find that K3 and K4 are equivalent and that the sequence K4,
K8, K16, . . . is a strict descending chain in Z2

t. For every graph G we define
the log-chromatic number χlog(G) = �log2 χ(G)� = min{n : G �hom K2n}. Our
next proposition shows that χlog is a monotone invariant with respect to the cut
continuous order.

Proposition 6.7. If G �t
Z2

H, then χlog(G) ≤ χlog(H).

Proof. Let χlog(H) = n. Then we have that G �t
Z2

H �t
Z2

K2n so by Proposition
6.6 G �hom K2n so χlog(G) ≤ χlog(H) as desired. �

With this last proposition, we are ready to construct an infinite antichain in
the cut-continuous order.

Proposition 6.8. The order �t
Z2

contains an infinite antichain.

Proof. Let G0 be an arbitrary graph. To create Gi+1 given G0, G1, . . . , Gi, choose
Gi+1 to be a graph with γo(Gi+1) > γo(Gi) and with χlog(Gi+1) > χlog(Gi) (such
a graph always exists due to the existence of graphs with arbitrarily high girth
and chromatic number). It now follows from Proposition 6.2 that there is no cut-
continuous map from Gj to Gi+1 for every 1 ≤ j ≤ i and from proposition 6.7
that there is no cut-continuous map from Gi+1 to Gj for every 1 ≤ j ≤ i. �

We have two monotone invariants in the cut-continuous order, namely γo

and χlog. The above construction uses these two invariants to build an infinite
antichain. It would be interesting to know if graphs of high chromatic number are
essential for this construction. In particular, we offer the following problem.

Problem 6.9. Does there exist an infinite antichain of graphs in the cut-continuous
order which have a bounded chromatic number?
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7. The order �f
Z

The order �f
Z

is similar to the flow order �f
Z2

except that the orientations of edges
begin to play a strong role.

E(G) E(H)

φ

f

φ f

Z

Z−cycle

Figure 7. Z-cycle

A corollary of Theorem 4.3 gives us the maximal and minimal elements in
this order.

Corollary 7.1. The maximal elements of �f
Z

are the graphs in which every vertex
has even degree. The minimal elements are the graphs with cut-edges.

We say that an oriented graph G is a (mod p) orientation (of G) for a positive
integer p if deg+(v)−deg−(v) ≡ 0 (modulo p) for every v ∈ V (G). We say that an
undirected graph G has a mod p orientation if there is an orientation of G which
is a mod p orientation. Note that if G has a mod p orientation for an even integer
p, then every vertex of G has even degree. It is worth noting that a graph has a
mod 2k + 1 orientation if and only if it has circular flow number at most 2 + 1

k
(see [6] for more details). With this definition, we are ready to characterize when
K2a+1

2 �f
Z

G and when G �f
Z

K2a+1
2 .

Proposition 7.2.

1. K2a+1
2 �f

Z
G if and only if λo(G) ≤ 2a + 1.

2. G �f
Z

K2a+1
2 if and only if G has a mod (2a + 1) orientation.

Proof. If K2a+1
2 �f

Z
G, then K2a+1

2 �f
Z2

G, so by Proposition 5.3, λo(G) ≤ 2a + 1.
If λo(G) ≤ 2a + 1, then choose an odd edge-cut ∆(X) of G of size 2b + 1 ≤
2a + 1. Let G be an orientation of G such that ∆−(X) = ∅. Let u, v be the
vertices of K2

2a+1, let e1, e2, . . . , e2a+1 be the edges of K2
2a+1 and let K2

2a+1
be

an orientation with edges e1, e2, . . . , ea+b+1 directed from u to v and with edges
ea+b+2, . . . , e2a+1 directed from v to u. Choose a map f : E( K2

2a+1
) → E(G)

such that f maps {e1, e2, . . . , e2b+1} injectively onto the set ∆+(X) and such that
f({e2b+2, e2b+3, . . . , e2a+1}) = {e} for some e ∈ E(G). For every flow φ : E(G)→ Z

the map φ ◦ f is a flow of K2
2a+1

, so we have that K2a+1
2 �f

Z
G as desired.
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If G �f
Z

K2a+1
2 , then let H be an orientation of K2a+1

2 such that every edge
has the same head and choose an orientation G of G and a Z-flow-continuous
map f : E(G) → E( H). We claim that G is a mod 2a + 1 orientation of G. Let
{e1, e2, . . . , e2a+1} = E( H) and let Xi = f−1({ei}) for 1 ≤ i ≤ 2a + 1. Now for
every 2 ≤ i ≤ 2a + 1, the map φi : E( H)→ Z given by the rule

φi(e) =

⎧⎨
⎩

1 if e = e1

−1 if e = ei

0 otherwise

is a flow. Thus φi ◦ f is a 2-flow of G and for every v ∈ V (G) we have that∑
e∈∆+(v) φi(e) =

∑
e∈∆−(v) φi(e). It follows from this that

|X1 ∩∆+(v)| − |X1 ∩∆−(v)| = |Xi ∩∆+(v)| − |Xi ∩∆−(v)|
holds for every v ∈ V (G). Since the above equation holds for every 1 ≤ i ≤ 2a + 1
we have that |∆+(v)| − |∆−(v)| = (2a + 1)(|Xi ∩∆+(v)| − |Xi ∩∆−(v)|). Thus G
is a mod 2a + 1 orientation of G as desired.

Let G be a mod 2a + 1 orientation of G. Suppose that there is a vertex
v ∈ V (G) with ∆+(v) �= ∅ and ∆−(v) �= ∅. Choose an edge e ∈ ∆−(v) with tail
u and an edge e′ ∈ ∆+(v) with head w and form a new oriented graph G1 by
deleting the edges e, e′ and adding a new edge directed from u to w. Now G1 is
still a mod 2a + 1 orientation. Further, any M -flow continuous map from G1 to H
naturally extends to a M -flow continuous map from G to H . Thus, by repeating
this operation, we may assume that either ∆+(v) or ∆−(v) is empty for every
v ∈ V (G). Suppose that v ∈ V (G) with |∆+(v)| > 2a + 1. Then we may form a
new oriented graph G2 by replacing v by two new vertices v1, v2 so that every edge
incident with v now attaches to one of v1, v2 and such that |∆+

G2
(v1)| and |∆+

G2
(v2)|

are both positive multiples of (2a + 1). As before, G2 is a mod 2a + 1 orientation.
Further, any M -continuous map from G2 to H can easily be extended to a M -
continuous map from G to H . Thus, by repeating this operation, we may assume
that |∆+(v)| = 2a + 1 and ∆−(v) = ∅ or |∆−(v)| = 2a + 1 and ∆+(v) = ∅ for
every v ∈ V (G). Let X = {v ∈ V (G) | ∆−(v) = ∅} and let Y = V (G)\X . Then G
is a (2a + 1)-regular bipartite graph with bipartition (X, Y ). By König’s theorem,
there exists a partition of E(G) into perfect matchings {Z1, Z2, . . . , Z2a+1}. Let
H be an orientation of K2a+1

2 so that every edge has the same head and let
{e1, e2, . . . , e2a+1} be arcs of H . Define the map f : E(G) → E( H) by the rule
f(e) = ei if e ∈ Zi. It follows easily that f is Z-flow continuous. This completes
the proof. �

Based on this proposition, we find an infinite chain of graphs of the form
K2a+1

2 as before.

Proposition 7.3. The graphs K1
2 , K3

2 , K5
2 , . . . form an scaling chain.

Proof. This follows immediately from part 1 of the preceding proposition. �
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Jaeger [12] has conjectured that every 4p-edge-connected graph has a mod
(2p + 1) orientation. He proved that if this conjecture is true, then both Tutte’s
3-Flow and 5-Flow conjectures are also true. The following is a slight extension
of this conjecture made by Zhang [28]. Evidence for this stronger conjecture is
provided by some work of Zhang (see [29]) and Zhu (see [30]).

Conjecture 7.4. If K4p−1
2 ��f

Z
G, then G �f

Z
K2p+1

2 .

A graph G has a nowhere-zero 3-flow if and only if it has a mod 3 orientation
which exists if and only if G �f

Z
K3

2 . The following proposition shows that G has
a nowhere-zero 4-flow if and only if G �f

Z
K4.

Proposition 7.5. A graph G has a nowhere-zero 4-flow if and only if G �f
Z

K4.

Proof. Tutte proved that G has a nowhere-zero 4-flow if and only if it has a B-flow
where B ⊆ Z4 is the set of all vectors with two 0’s, one 1, and one −1. Thus, the
proposition follows from Theorem 3.2 and the observation that the matrix⎡

⎢⎢⎣
1 1 1 0 0 0
−1 0 0 1 1 0

0 −1 0 −1 0 1
0 0 −1 0 −1 −1

⎤
⎥⎥⎦

represents the Z-cycle-space of K4. �
Based on the above propositions, we have that the Petersen graph does not

dominate K3
2 or K4 and that K3

2 does dominate the Petersen. It is not difficult
to verify the the Petersen graph and K4 are �f

Z
-incomparable. Viewing this one

could suggest that K4 + P10 is an atom of the order �f
Z
. However this is not so as

the following graph Q is strictly below both K4 and P10:
Let Q be the graph obtained from P10 by splitting a vertex of degree 3 to

form three vertices of degree 1 and then placing a triangle on these three vertices.

Claim 7.6. Q does not dominate P10 in the order �f
Z
.

Proof. First observe the following:

Observation 7.7. If G �f
K H in the K-flow order for any Abelian group K, and e

is an edge of G, then G/e �f
K H in the K-flow order (here G/e denotes the graph

obtained from G by contracting e).

The proof of this observation is left to the reader. By an earlier result (Theo-
rem 3.2) a graph F will dominate H in the order �f

Z
if and only if F has a B-flow

for a certain carefully constructed set B. If G dominates H , then G has a B-flow,
but then this gives a B-flow of G/e, so G/e dominates H as well.

This observation is tricky to apply. We have to be careful to keep the multiple
edges around after contracting – it doesn’t work if we delete them.

If the graph Q above dominated P10 then anything obtained from Q by pure
contraction would also dominate P10. But it is possible to contract edges in Q
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to form a graph which is isomorphic to K4 with some loops added on a vertex.
Since K4 does not dominate P10 we have by the above observation that Q does
not dominate P10. This completes the proof of the claim. �

The ordering �f
Z

does suggest some other questions. For instance, there is a 3
elements chain consisting of K3

2 �
f
Z

V8 �f
Z

K4 (one can prove that K4 and V8, see
figure 8, are not equivalent in the order �f

Z
). Jaeger’s 4-flow theorem asserts that

every 4-edge-connected graph dominates K4, while a conjecture of Jaeger (actually
a weak version of Tutte’s 3-flow conjecture) asserts that for some k every k-edge-
connected graph dominates K3

2 . The following problem is a natural weakening of
that conjecture.

Problem 7.8. Does there exist a fixed integer k so that every k-edge-connected
graph dominates V8?

Figure 8. V8

8. The order �t
Z

The order �t
Z

is similar to the order �t
Z2

except that the orientations of edges
begin to play a strong role and it is more related to the homomorphism order
�hom.

E(G) E(H)

φ

f

φ f

Z

Z−tension

Figure 9. Z-tension

Applying Theorem 4.3, we establish the maximal and minimal elements.
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Corollary 8.1. The maximal graphs in the order �t
Z

are the bipartite graphs. The
minimal graphs are the graphs which contain loop edges.

As before, odd-girth γo is a monotone invariant.

Proposition 8.2. If G �t
Z

H then γo(G) ≥ γo(H)

Proof. If G �t
Z

H , then G �t
Z2

H , so by Proposition 6.2 γo(G) ≥ γo(H) as
required. �

Proposition 6.6 showed that G �t
Z2

K2n if and only if G �hom K2n . The
following proposition gives a similar equivalence for the order �t

Z
but for a much

richer class of graphs.

Theorem 8.3. For every positive integer n, G �t
Z

Cayley(Zn, B) if and only if
G �hom Cayley(Zn, B).

Proof. The “if” direction is an immediate consequence of Proposition 4.5. To prove
the “only if” direction, let G be a graph with G �t

Z
Cayley(Zn, B). Then G �t

Zn

Cayley(Zn, B). Now, Cayley(Zn, B) has a B-tension by Proposition 3.4, so G has
a B-tension. But then by Proposition 3.4 we have that G �hom Cayley(Zn, B).

�

Based on this theorem, we have the following corollary.

Corollary 8.4.

1. G �t
Z

Kn if and only if G �hom Kn.
2. G �t

Z
Cn if and only if G �hom Cn.

Proof. 1. follows from Kn
∼= Cayley(Zn, Zn \ {0}).

2. follows from Cn
∼= Cayley(Zn, {−1, 1}). �

Based on this proposition, we have the following infinite chains.

Proposition 8.5. In the order �t
Z
, the graphs C3, C5, C7, . . . form a scaling chain

and K3, K4, K5, . . . form a decreasing chain.

Proof. This follows immediately from the above corollary. �

9. Jaeger’s order

As we stated in the introduction one of our main motivations for this paper was
provided by Jaeger’s work. However rather than following his actual definitions we
tried to follow his ideas and it is in this final section where we carefully compare
our approach (which we believe is a more streamlined one) to Jaeger’s original
definitions.

In [11] Jaeger defined the following relation: Let G1 = (E1, V1) and G2 =
(V2, E2) be two graphs. We say that G2 �J G1 if and only if there exits a subdivi-
sion G′

1 = (V ′
1 , E′

1) of G1 and a bijective mapping f from E2 to E′
1 such that, for
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each Z2-flow φ of G′
1, φ◦f is a Z2-flow of G2. We write G1 �J G2 if G2 �J G1 and

G1 �J G2. It is easy to see that �J is a quasi-order. We now have the following
proposition relating �J with �f

Z2
.

Proposition 9.1. If G1, G2 are graphs then G1 �J G2 if and only if there exists a
cycle-continuous map f : E(G1)→ E(G2) which is onto. In particular, G1 �J G2

implies that G1 �f
Z2

G2.

φφ f

Z

cycle−

continuous

2

E(G )
2

E(G )
1

f
onto

Figure 10. G1 �J G2

Proof. This is easy to see. The “if” direction is clear. For the “only if” direction
observe that it suffices to subdivide every e ∈ E(G2) by |f−1(e)| − 1 vertices. �

It follows from this proposition that the order �J is a subset of �f
Z2

. The
following proposition is an easy consequence of this fact.

Proposition 9.2. Let B ⊆ Zk
2 for some positive integer k. If G �J H and H has a

B-flow, then G also has a B-flow.

Proof. This follows immediately from Propositions 9.1 and 2.5. �
If G is a graph we will denote by µ(G) the dimension of its cycle space and we

denote by τ(G) the maximum number of edge-disjoint circuits of G. The following
proposition proved by Jaeger now follows from the definitions:

Proposition 9.3. If G2 �J G1 then the following holds:
i) |E(G1)| ≤ |E(G2)|;
ii) µ(G1) ≤ µ(G2);
iii) τ(G1) ≤ τ(G2)

The monotone parameters appearing in the above proposition make the
construction of arbitrarily large antichains for �J quite simple. For instance,
to form an antichain of size k, choose graphs G1, G2, . . . , Gk so that λo(G1) >
λo(G2) > · · · > λo(Gk) and then subdivide edges of these graphs so that |E(G1)| <
|E(G2)| < · · · < |E(Gk)|. Despite these simple constructions we do not know if
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there exists an infinite antichain in Jaeger’s order (which is equivalent to �J being
WQO). Next we establish a scaling chain in �J .

Proposition 9.4. The graphs K1
2 , K3

2 , K5
2 , . . . form a scaling chain in �J .

Proof. To show that K1
2 , K3

2 , K5
2 , . . . is a chain we will show that K2a+1

2 �J K2a−1
2

for every a ≥ 1. To see this, replace one edge of K2a−1
2 by a path of length three

to form the graph (K2a−1
2 )′. Now, let f : E(K2a+1

2 )→ E((K2a−1
2 )′) be a bijection.

It follows easily that f satisfies Jaeger’s condition.
Let G be a graph with a vertex v of degree 2k + 1 and let m = |E(G \ v)|.

We claim that K2m+2k+1
2 �J G. To see this, subdivide every edge e ∈ E(G) not

incident with v to form the graph G′ and let φ be a bijection from E(K2m+2k+1
2 )

to E(G′). By construction, every cycle of G′ has an even number of edges. Thus
φ demonstrates that K2m+2k+1

2 �J G and we conclude that K1
2 , K3

2 , K5
2 , . . . is a

scaling chain. �

If A is a matrix over Z2 which represents the cycle-space of P10 and B is the
set of columns in A, then we say that a B-flow of a graph G is a Petersen-flow
of G. In Jaeger’s original article, he conjectured that every bridgeless graph G
must satisfy G �J P10, G �J K3

2 , or G �J K1
1 . This is equivalent to Conjecture

2.10, and Jaeger showed that it is also equivalent to the conjecture that every
bridgeless graph has a Petersen-flow. These equivalent conjectures are collected in
the following theorem.

Theorem 9.5. For every graph G, the following statements are equivalent.
(i) G �J P10 or G �J K3

2 or G �J K1
1 .

(ii) G �f
Z2

P10

(iii) G has Petersen-flow.

Proof. The equivalence between (ii) and (iii) is an immediate consequence of The-
orem 3.2. Since K1

1 �
f
Z2

K3
2 �

f
Z2

P10, it follows that (i) implies (ii). To see that (ii)
implies (i), let f : E(G)→ E(P10) be cycle-continuous. If f is onto, then G ≥J P10

and we are finished. Otherwise, there is an edge e ∈ E(P10) not in the image of
f and we find that G �f

Z2
P10 \ e �f

Z2
K3

2 . If g is a cycle-continuous map from G

to K3
2 , then either g is onto and G ≥J K3

2 or there is an edge e′ ∈ E(K3
2 ) not in

the image of g and we find that G �f
Z2

K3
2 \ e′ �f

Z2
K1

1 . In this case we must have
G �J K1

1 so we are done. �

If G is a cubic graph, then a Petersen edge-coloring of G is a coloring of the
edges of G using edges of P10 so that any three adjacent edges of G map to three
adjacent edges of P10.

Proposition 9.6. If G is a cubic graph, then the following statements are equivalent.

(i) G �f
Z2

P10

(ii) G has a Petersen edge-coloring
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Proof. It follows immediately that (ii) implies (i). To see the reverse direction,
note that by Proposition 5.3, in every cycle-continuous mapping from G to P10,
the image of every vertex star must be a vertex star. �

In Jaeger’s original article, he showed that Conjecture 2.10 could be reduced
to cubic graphs, thus establishing another form of his conjecture :

Conjecture 9.7 (Jaeger). Every bridgeless cubic graph has a Petersen edge-coloring.
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On the Extremal Number of Edges
in 2-Factor Hamiltonian Graphs

Ralph J. Faudree, Ronald J. Gould and Michael S. Jacobson

Abstract. In this paper we consider the question of determining the maximum
number of edges in a Hamiltonian graph of order n that contains no 2-factor
with more than one cycle, that is, 2-factor Hamiltonian graphs. We obtain
exact results for both bipartite graphs, and general graphs, and construct
extremal graphs in each case.
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1. Introduction

In this paper, we determine the maximum number of edges in a Hamiltonian graph
of order n containing no 2-factor with more than one component. The question
of the structure of Hamiltonian graphs with no 2-factors with more than one
component has been receiving attention lately, for example see [2], [3], [4] and [5].

A Hamiltonian cycle is interpreted as a 2-factor with one component. In [4],
the question of the minimum degree in a Hamiltonian graph sufficient to ensure
the existence of a 2-factor with two cycles is considered. A 4-regular Hamiltonian
graph with no other 2-factor with less than n/5 cycles is shown. However, the
exact minimum degree condition remains an open question. Hendry [6] provided
sharp results for the maximum number of edges in a graph with a unique 2-factor.

We say a graph is 2-factor isomorphic if it contains a 2-factor X , but contains
no 2-factor that is not isomorphic to X . If X is a Hamiltonian cycle, then of course,
there are no 2-factors with more than one cycle. In this instance we will refer to
such graphs as 2-factor Hamiltonian graphs.

The following is a special case of a result in [1].

Theorem 1.1. If G is a Hamiltonian graph with δ(G) ≥ 8, then G is not 2-factor
Hamiltonian.
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While in [3] the following was shown.

Theorem 1.2. Let G be a 2-factor Hamiltonian k-regular graph. Then k ≤ 3.

We consider the nonregular case for 2-factor Hamiltonian graphs and de-
termine the maximum number of edges in such graphs. In addition, we present
examples of the extremal graphs and show that when n ≡ 2 mod 4 and bipartite,
the extremal graph is unique. The extremal graphs are shown not to be unique in
all other cases studied here.

Let G be a graph. We denote the minimum degree of G by δ(G). For a vertex
x of G, we denote by N(x) and deg x the neighborhood of x and the degree of x

in G, respectively. Given a vertex x on a cycle C with an orientation,
−→
C , then the

successor of x on C will be denoted by x+ and the predecessor by x−.
For convenience we establish the following notation. Let C be a cycle with

a given orientation and v ∈ V (C). A t-chord associated with v will be an edge
e = v+(t−1)/2v−(t−1)/2 such that e forms a t-cycle containing v and the cycle
uses only the edge e and edges of the cycle C. Note, this is only defined for
odd t. Similarly, a t-chord associated with an edge f = xy ∈ E(C) is an edge
e = x−(t−2)/2y+(t−2)/2 such that e forms a t-cycle containing f and the cycle uses
only the edge e and edges of the cycle C.

2. Extremal graph constructions

In this section we present several different constructions of graphs which will be
shown to be 2-factor Hamiltonian and attain the maximum size in Sections 3 (the
bipartite case) and 4 (the nonbipartite case).

Let Bn be bipartite of even order n with partite sets {u1, u2, . . . , u2m} and
{v1, v2, . . . , v2m } if n ≡ 0 mod 4 and {u1, u2, . . . , u2m+1} and {v1, v2, . . . , v2m+1

} if n ≡ 2 mod 4. Define the adjacencies in Bn as follows:

N(u1) = {v1, v2},
N(u2)={v1,v2,v3}, N(u3)={v1,v2,v4},
N(u4)={v1,v2,v3,v4,v5}, N(u5)={v1,v2,v3,v4,v6} , . . .
N(u2j)={v1,v2,...,v2j ,v2j+1}, N(u2j+1)={v1,v2,...,v2j ,v2j+2}, . . . ,
N(u2m−2)={v1,v2,...,v2m−2,v2m−1}, N(u2m−1)={v1,v2,...,v2m−2,v2m}

and
N(u2m) = {v1, v2, . . . , v2m} (if n ≡ 0 mod 4)

while
N(u2m) = N(u2m+1) = {v1, v2, . . . , v2m+1} (if n ≡ 2 mod 4).

Extremal graphs for the nonbipartite case when n ≡ 0 mod 4 can be obtained by
inserting all possible edges into either one of the partite sets of a copy of Bn of
the appropriate order. We designate these two graphs as Sn,u (Sn,v) when the set
{u1, . . . , u2m} ({v1, . . . , v2m}) is complete. When n ≡ 2 mod 4 the graphs Sn,u

and Sn,v are isomorphic.
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Next we consider the case for odd n. When n ≡ 1 mod 4 we form the graph
On as follows: take a copy of Sn−1,v along with a new vertex x and we join x
to each vertex of the complete set {v1, . . . , v2m} and we join x to u2m. When
n ≡ 3 mod 4 we form On by taking a copy of Sn−1,v along with a new vertex x
where x is joined to each of v1, . . . , v2m and u2m+1.

3. Bipartite 2-factor Hamiltonian graphs

We now turn to the question of establishing the upper bounds on the size of a
bipartite 2-factor Hamiltonian graph.

Theorem 3.1. If G is a bipartite 2-factor Hamiltonian graph of order n ≡ 0 mod 4,
then

|E(G)| ≤ n2/8 + n/2

and the bound is sharp.

Proof. Assume G is a bipartite 2-factor Hamiltonian graph of order n = 2k (we use
a more general condition to establish a setting useful in the subsequent theorem
as well) with partite sets {u1, u2, . . . , uk} and {v1, v2, . . . , vk}. Let C∗ : v1, uk,
v2, uk−1, . . . , vk, u1, v1 be a Hamiltonian cycle in G.

Define parallel classes of pairs of vertices as follows:

P1 = {u1v1, u2v2, . . . , ukvk}

and let Pi be the parallel class containing the pair u1vi, obtained from the rotation
of P1. Note that every edge of the complete graph on these vertices is in exactly
one parallel class.

As G is 2-factor Hamiltonian, it follows that at most � (n/2−2)
2 +2� = �n

4 +1�
of the pairs in any parallel class can then be edges of G, for otherwise a 2-factor
with two cycles formed using consecutive parallel edges would clearly result. It
now follows that |E(G)| ≤ (n/4 + 1)n/2 = n2/8 + n/2, when n ≡ 0 mod 4.

To see that this is optimal consider Bn, n ≡ 0 mod 4, as defined in the pre-
vious section. The cycle C : u1, v2, u3, v4, . . . , u2m−1, v2m, u2m, v2m−1, u2m−2, . . . ,
v3, u2, v1, u1 shows that this graph is Hamiltonian. To see that there is no noniso-
morphic 2-factor observe that the edges u1v1 and u1v2 must be in any 2-factor. If
the edges u2v3 and u3v4 are not in the 2-factor, then one of u2 or u3, say u2, would
be adjacent to v1 and v2 in the 2-factor. However, this would imply that u3 would
have degree one in the remaining graph and a 2-factor could not be formed. Now a
similar argument applies to u4 and u5 forcing the edges u4v5 and u5v6 to be used.
Subsequently, u2tv2t+1 and u2t+1v2t+2 would also be used. Therefore, any 2-factor
must contain the path v2m−1, u2m−2, v2m−3, . . . , u2, v1, u1, v2, u3, . . . , v2m. Hence,
it follows that the only possible 2-factor is a Hamiltonian cycle. Furthermore, this
graph has n2/8 + n/2 edges, demonstrating the extremal number. �
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Theorem 3.2. If G is a bipartite 2-factor Hamiltonian graph of order n ≡ 2 mod 4,
then

|E(G)| ≤ n2/8 + n/2 + 1/2.

Further, the graph Bn is the unique extremal graph in this case.

Proof. Consider Bn, n ≡ 2 mod 4, as defined in the previous section. The cycle
C∗ : u1, v2, u3, v4, . . . , u2m−1, v2m, u2m+1, v2m+1, u2m, v2m−1, u2m−2, . . . , v3, u2,
v1, u1 shows that this graph is Hamiltonian.

To see that there is no nonisomorphic 2-factor, observe that the edges u1v1

and u1v2 must be in any 2-factor. If the edges u2v3 and u3v4 are not in the 2-
factor, then one of u2 or u3, say u2, would be adjacent to v1 and v2 in the 2-factor.
However, this would imply that u3 would have degree one in the remaining graph
and a 2-factor could not be formed. Now a similar argument applies to u4 and u5

forcing the edges u4v5 and u5v6 to be used. Subsequently, u2tv2t+1 and u2t+1v2t+2

would also be used. Therefore, any 2-factor must contain the path

u2m, v2m−1, u2m−2, v2m−3, . . . , u2, v1, u1, v2, u3, . . . , v2m.

Hence, it follows that the only possible 2-factor is a Hamiltonian cycle. Further-
more, this graph has n2/8 +n/2+ 1/2 edges, demonstrating the extremal number
of edges is at least this number.

Now let G be a bipartite 2-factor Hamiltonian graph of order n = 4m + 2
containing the extremal number of edges. Let C be a Hamiltonian cycle in G with
the given ordering v1, uk, v2, . . . , vk, u1, v1, and note, to avoid a 2-factor with two
cycles, each parallel class as defined in the previous theorem admits at most m+2
edges into the graph G.

For each edge e of the Hamiltonian cycle, let Fe be the family of edges of
the parallel class containing e which are included in the graph G. In this case,
we call the edge e strong if |Fe| = m + 2, and weak otherwise. When e is weak,
|Fe| ≤ m + 1. Also note that when e is strong, Fe contains the 4-chord associated
with e and alternate edges of the parallel class must also be in Fe, in particular,
the 8-chord associated with e must also be in Fe. Observe that if e′ is the antipodal
edge of e on C, e is strong if and only if e′ is strong. Note by the edge count, at
least 2m + 2 of the edges must be strong.

There cannot be three consecutive strong edges or a 2-factor with two cycles
results (see Figure 1).

If consecutive edges e1 and e2 are strong, then the families

Fe3 , Fe5 , Fe7 , . . . , Fe2m+1 , Fe2m+4 , Fe2m+6 , . . . , Fe4m+2

cannot contain the associated 4-chords. See Figure 2 for the e5 and e7 cases. All
other cases work similarly, using one chord from the strong parallel class of e1, one
chord from the strong parallel class of e2 and the 4-chord in question from e2j+1

for an appropriate j, to produce a 2-factor with two cycles. Thus, each of these
edges must be weak. This implies there are at most 2m + 2 strong edges but as
we discussed above, we can conclude that there are precisely 2m + 2 strong edges.
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Figure 1. For n ≥ 10, 3 consecutive strong edges produce a contradiction.

Each of the families associated with the remaining weak edges must have precisely
m + 1 edges and no 4-chords. Thus, G has size at most n2/8 + n/4 + 1/2.

The extremal case arises when strong and weak edges alternate, with the
exception of two consecutive strong edges (and their corresponding two consecutive
strong antipodal edges). Furthermore, the weak classes are completely determined
as alternating edges in the family. Thus, this graph is unique and hence must be
isomorphic to Bn. �

See Figure 3 for the n = 14 case. This figure shows the graph for this case,
displays a Hamiltonian cycle C, as well as the strong and weak edges. Consequently,
the graph of Figure 3 and Bn restricted to the case when n = 14, are seen to be
isomorphic.

We conclude this section with a summary of the results.

Theorem 3.3. If G is a bipartite 2-factor Hamiltonian graph of order n, then

|E(G)| ≤
{

n2/8 + n/2 if n ≡ 0 mod 4,
n2/8 + n/2 + 1/2 if n ≡ 2 mod 4,

and the bounds are sharp in each case.

4. The general case

We now consider the question of establishing the upper bound on the size of a
2-factor Hamiltonian graph of order n.

Theorem 4.1. If G is a 2-factor Hamiltonian graph of order n, then

|E(G)| ≤ �n2/4 + n/4�
and the bound is sharp for all n ≥ 6.
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Figure 2. A 4-chord in Fe5 and Fe7 cases.

Proof. First suppose that n is even. Let V (G) = {v1, v2, . . . , vn} and let C :
v1, v2, . . . , vn, v1 be a Hamiltonian cycle in G. We next partition V (G) into two
sets, V1 = {2, 4, . . . , n− 2, n} and V2 = {1, 3, 5, . . . , n− 1}.

Besides the parallel classes for edges as in the bipartite case, we now must
also consider parallel classes of edges within the sets V1 and V2. That is, parallel
classes defined relative to a vertex rather than an edge.

Hence, we recognize two types of parallel classes. Define the classes relative
to edges of C (hence relative to the bipartite structure of V1 and V2) just as we
did in the bipartite case. From Theorem 3.3 we have a bound on the maximum
number of these edges that may be included in G.

Next, define the classes relative to a vertex of C as: Pn = {(1, n− 1), (2, n−
2), (3, n− 3), . . .} and let Pi be obtained by a translation of Pn to contain the pair
(i− 1, i + 1). These edges partition the edges whose ends both are within the set
V1 or both within the set V2. Let Qi be the edges in G that are in Pi. Note that
in this case a parallel class Qi has at most �n/4� edges.
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Figure 3. The graph when n = 14.

First suppose that n ≡ 2 mod 4. Now the bipartite parallel classes may
contribute a total of at most n2/8 + n/2 + 1/2 edges. The n/2 distinct classes Qi

may contribute at most (n− 2)/4 edges each. Hence, we may have at most:

|E(G)| ≤ n2/8 + n/2 + 1/2 + ((n− 2)/4)(n/2) (4.1)
= n2/8 + n/2 + 1/2 + n2/8− n/4 (4.2)
= n2/4 + n/4 + 1/2. (4.3)

Note that the split graphs Sn (and similarly On) are 2-factor Hamiltonian
because the corresponding Bn are 2-factor Hamiltonian. Since the split graph Sn,
n ≡ 2 mod 4 achieves this size, this bound is sharp.

If n = 4m, then the n/2 classes Qi cannot all contain n/4 edges, as a 2-factor
with two cycles is then easily produced. We say a parallel class Qi is full (F) if
it contains m edges. Clearly, in this case, Qi cannot contain more than m edges,
for otherwise a 2-factor with two cycles results. Note that if Qi is full, then the
antipodal class Qi+n/2 is also full. A class Qi is called near-full (N) if it contains
exactly m − 1 edges and is called partially full (P) if it contains at most m − 2
edges. Observe that for any i, families Qi, Qi+1 and Qi+2 cannot all be full (see
Figure 4). In fact, if Qi+1 is full, then we know that at least one of Qi and Qi+2

must not contain the associated 3-chord.
Suppose we have two consecutive full classes, without loss of generality say

Qn and Q1. Now consider the class Q2. Since Q2 does not contain the 3-chord
associated with vertex 2, we know Q2 is not full. We now show that Q2 is a
partially full class. Assume to the contrary that it contains more than m − 2
edges. By the remarks above, Qn/2+2 cannot contain its associated 3-chord. Hence,
for Q2 to be near-full, it must contain precisely the 5, 9, 13, . . .-chords associated
with vertex 2. Thus, we see that C1 : 1, 2, 3, , n − 3, n − 2, 4, n, n − 1, 1 and C2 :
5, 6, 7, n−7, n−6, 10, 11, n−11, n−10, . . . , n/2−2, n/2−1, n−(n/2−1), n−(n/2−
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Figure 4. Three consecutive full families

2), n/2, n−(n/2−4), n−(n/2−3), n/2−3, n/2−4, . . . , n−8, n−9, 9, 8, n−4, n−5, 5
forms a 2-factor with two cycles, a contradiction. Hence, Q2 must be a partially
full class.

Therefore, the vertices can be partitioned into intervals around C containing
one, two or three consecutive vertices of C into patterns of the form FN, FFP, P
or N. Each of the intervals must average m−1/2 edges in order to achieve the size
of Sn.

Thus, we see that the edge average for each of these patterns is: m− 2/3 for
FFP , m− 1/2 for FN, m− 1 for N, and finally at most m− 2 for P.

Hence, the upper bound on the size can only be obtained by having the
pattern FN repeated around the cycle. Thus, we must have n/4 full classes and
n/4 near-full classes with (n/4 − 1) edges each, implying

|E(G)| ≤ n2/8 + n/2 + (n/4)(n/4) + (n/4)(n/4 − 1) (4.4)
= n2/8 + n/2 + n2/16 + n2/16− n/4 (4.5)
= n2/4 + n/4. (4.6)

Again the split graph on n = 4m vertices with the bipartite structure from
the previous section achieves this bound.

Now suppose that n ≡ 3 mod 4. Let C be a Hamiltonian cycle. In this
case the parallel classes defined relative to a vertex may contain at most (n+1)/4
edges. Since there are n such classes, we see that |E(G)| ≤ n(n+1)/4 = n2/4+n/4
as desired. The graph On shows that the bound is sharp in this case.

Finally, suppose that n ≡ 1 mod 4, say n = 4m + 1. First, we call a
vertex strong provided its parallel class contains exactly (n + 3)/4 edges. It is
weak otherwise. Note that this includes the antipodal edge on C.

As before, there cannot be three consecutive strong vertices, or a 2-factor with
two cycles is immediate. Next we show that there are at most 2m + 1 = (n + 1)/2
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strong vertices. Otherwise, if there were more than (n + 1)/2 strong vertices, then
either there are three consecutive strong vertices, or there are at least two places
around the cycle where there are two consecutive strong vertices. Therefore, there
exists a strong vertex, separated from two consecutive strong vertices by an even
number of vertices. For convenience let the two consecutive vertices be labeled vn

and v1 and suppose there is another strong at vertex v2t. Observe that the chord
c = v2t+(n−3)/2v2t−(n−3)/2 is an edge of G since v2t is strong. Note that there is a
chord c1 from the parallel class of vertex v1 between the vertices v(n−5)/2−2t+1 and
v2t+(n+5)/2. Further, there is a chord c2 from the parallel class of vn between the
vertices v2t+(n−1)/2 and v(n−5)/2−2t+2. We now form a 2-factor with two cycles as
follows. For one cycle we take the chord c1 and the path on the Hamiltonian cycle
between the ends of c1 and containing v1. The second cycle is formed by taking
the chord c2, following the Hamiltonian cycle back to v2t+(n+3)/2, then taking the
chord c, and now following the Hamiltonian cycle back to v(n−5)/2−2t+2.

Therefore, if there are two consecutive vertices, say vn and v1, then by our
previous observation, vertices v2, v4, . . . , vn−1 must all be weak. Hence, there can
be at most (n + 1)/2 strong vertices. (If there are not two consecutive strong
vertices, then we can have at most (n− 1)/2 strong vertices.) Consequently,

|E(G) ≤ (
n + 1

2
)(

n + 3
4

) + (
n− 1

2
)(

n− 1
4

).

Hence, |E(G)| ≤ �n2/4 + n/4� as desired. The graph On for this case shows that
this bound is sharp. �

5. Remarks

We conclude with a few remarks. First, it is clear from our proofs that any Hamil-
tonian graph with more than the extremal number of edges, must contain a 2-factor
with exactly two cycles.

Further, note that Bn for n ≡ 2 mod 4 was the only unique extremal graph.
This is easily seen since in all other cases there were parallel classes which allowed
some flexibility in exactly where the edges were placed. This flexibility allows the
existence of nonisomorphic extremal graphs in these cases. For example, in the
graph B4m, the edge u2m−2v2m−2 can be removed and then the edge u2m−1v2m−1

can be inserted, forming B′. The graph B′ can be further altered by removing
u2m−4v2m−4 and inserting u2m−3v2m−3. Each of these graphs can easily be seen
to be 2-factor Hamiltonian. Further, we can continue this edge exchange process
until the edge u2v2 is removed and u3v3 inserted. At this point a graph isomorphic
to B4m has been constructed, with the role of the partite sets interchanged.

Finally, consider Sn. Here we note that the edge vn/2−1vn/2 can be removed
and the edge un/2−1un/2 can be inserted. These two graphs are clearly nonisomor-
phic and it is again easy to see the new graph is 2-factor Hamiltonian.
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Generalized Colourings (Matrix Partitions)
of Cographs

Tomás Feder, Pavol Hell and Winfried Hochstättler

Abstract. Ordinary colourings of cographs are well understood; we focus on
more general colourings, known as matrix partitions. We show that all ma-
trix partition problems for cographs admit polynomial time algorithms and
forbidden induced subgraph characterizations, even for the list version of the
problems. Cographs are the largest natural class of graphs that have been
shown to have this property. We bound the size of a biggest minimal M -
obstruction cograph G, both in the presence of lists, and (with better bounds)
without lists. Finally, we improve these bounds when either the matrix M , or
the cograph G, is restricted.

1. Introduction

Cographs are a well-understood class of graphs [4, 5, 14, 18]. A recursive definition
is as follows. The one-vertex graph K1 is a cograph; if G′ and G′′ are cographs,
then so are the disjoint union G′ ∪ G′′ and their join G′ + G′′ (obtained from
G′ ∪ G′′ by adding all edges joining vertices of G′ to vertices of G′′). It follows
that the complement of a cograph is a cograph, and in fact the join of G′ and G′′

is the complement of the disjoint union of G′ and G′′. It is not hard to show that
G is a cograph if and only if it contains no induced path with four vertices [18].
Cographs can be recognized in linear time [5], and they can be represented, in the
same time, by their cotree [5], which embodies the sequence of binary operations
∪, +, from the recursive definition, used in their construction. Many combinatorial
optimization problems can be efficiently solved on the class of cographs, using the
cotree representation [4, 5, 14]. This includes computing the chromatic number,
and, more specifically, deciding if a cograph G is k-colourable. This suggests look-
ing at more general colouring problems for the class of cographs. In fact, such
investigations have already begun in [6, 19].

In [3, 7, 10, 11], a framework was developed, which encompasses many gen-
eralizations of colourings. Let M be a symmetric m by m matrix over 0, 1, ∗.



150 T. Feder, P. Hell and W. Hochstättler

An M -partition of a graph G is a partition of the vertex set V (G) into m parts
V1, V2, . . . , Vm such that Vi is a clique (respectively independent set) whenever
M(i, i) = 1 (respectively M(i, i) = 0), and there are all possible edges (respectively
no edges) between parts Vi and Vj whenever M(i, j) = 1 (respectively M(i, j) = 0).
Thus the diagonal entries prescribe when the parts are cliques or independent sets,
and the off-diagonal entries prescribe when the parts are completely adjacent or
nonadjacent (with ∗ meaning no restriction). A graph G that does not admit an
M -partition is called an M -obstruction, and is also said to obstruct M . A minimal
M -obstruction is a graph G which is an M -obstruction, but such that every proper
induced subgraph of G admits an M -partition. If M is a set of matrices, we say
that G is a minimal M-obstruction if it is an M -obstruction for all M ∈ M, but
every proper induced subgraph of G admits an M -partition for some M ∈M.

Given a graph G, we sometimes associate lists with its vertices: a list L(v)
of a vertex v is a subset of {1, 2, . . . , m}, and it prescribes the parts to which v
can be placed. In other words, a list M -partition of G (with respect to the lists
L(v), v ∈ V (G)) is an M -partition of G in which each vertex v belongs to a part
Vi with i ∈ L(v). Note that the trivial case when all lists are L(v) = {1, 2, . . . , m}
corresponds to the situation when no lists are given. M -obstructions and mini-
mal M -obstructions (as well asM-obstructions and minimalM-obstructions) for
graphs G with lists L are defined in the obvious way.

In the (list) M -partition problem, we have a fixed matrix M , and are asked
to decide whether or not a given graph G (with lists) does or does not admit a
(list) M -partition (with respect to the given lists).

We shall mostly focus on matrices M which have no diagonal ∗’s. If M has
a diagonal ∗, then every graph G admits an M -partition; however, if lists are
involved we will allow diagonal ∗’s. A matrix without diagonal ∗’s may be written
in a block form, by first listing the rows and columns with diagonal 0’s, then those
with diagonal 1’s. The matrix falls into four blocks, a k by k diagonal matrix A
with a zero diagonal, an � by � diagonal matrix B with a diagonal of 1’s, and a k
by � off-diagonal matrix C and its transpose. We shall say that M is a constant
matrix, if the off-diagonal entries of A are all the same, say equal to a, the off-
diagonal entries of B are all the same, say b, and all entries of C are the same, say
c. In this case, we also say that M is an (a, b, c)-block matrix. Note that we may
assume that a �= 0 and b �= 1, or else we can decrease k or �.

Let M be a fixed matrix; if we prove that all cographs that are minimal M -
obstructions have at most K vertices, then we can characterize M -partitionability
of cographs by a finite set of forbidden induced subgraphs.

The complement M of a matrix M has all 0’s changed to 1’s and vice versa.
It is clear that G admits an M -partition if and only if G admits an M -partition,
and that this also applies in the obvious way to M -partitions with lists, and to
M-partitions.

If the matrix M is a (∗, ∗, ∗)-block matrix, then an M -partition of G is pre-
cisely a partition of the vertices of G into k independent sets and � cliques. Such
partitions have been introduced in [1] (see also [10, 11, 17]), and further studied in
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[15, 16] for the class of chordal graphs (see also [12, 13]) and in [9] for the class of
perfect graphs. More recently, they have been studied (without lists) for the class
of cographs in [6, 19].

Suppose M is an m by m matrix; we shall refer to the integers 1, 2, . . . , m
as parts, since they index the set of parts in any M -partition of a graph. Given
two sets of parts, P, Q ⊆ {1, 2, . . . , m}, we define MP,Q to be the submatrix of M
obtained by taking the rows in P and the columns in Q. We also let MP denote
MP,P .

2. List partition problems

We first prove that for every matrix M the list M -partition problem for cographs
can be solved in polynomial time, and characterized by finitely many forbidden
induced subgraphs (with lists). By contrast, it is shown in [12, 13] that there exist
matrices M for which the M -partition problem restricted to chordal graphs is
NP-complete, even without lists.

Many of our arguments use the following observation. A disconnected graph
G = G1∪G2 has anM-partition if and only if G1 has an MP -partition and G2 has
an MQ-partition, for some matrix M ∈M and sets P, Q of parts such that MP,Q

contains no 1. Of course the argument applies also with lists, if we view G1, G2 as
inheriting the corresponding lists. We shall state this in the contrapositive form
as follows.

Lemma 2.1. Let M be fixed, and let G = G1 ∪ G2 be a disconnected graph, with
lists.

Then G is an M-obstruction if and only if for any matrix M ∈ M and any
two sets P, Q of parts from M such that MP,Q does not contain a 1, the graph
G1 (with the corresponding lists) is an MP -obstruction, or the graph G2 (with the
corresponding lists) is an MQ-obstruction. �

Suppose M is fixed, and G = G1 ∪G2 is disconnected.
Let M1 be a set of matrices MP , where M ∈ M and P is a set of parts

in M , such that G1 is an MP -obstruction, and let M2 be a set of matrices MQ,
where M ∈ M and Q is a set of parts in M , such that G2 is an MQ-obstruction.
If, for any M ∈ M, and any sets of parts P, Q of M such that MP,Q does not
contain a 1, we have MP ∈M1 or MQ ∈ M2, then the lemma ensures that for any
subgraphs G′

1 of G1 and G′
2 of G2 which areM1-obstruction andM2-obstruction

respectively, the subgraph G′ = G′
1 ∪G′

2 of G is also anM-obstruction. Thus the
minimality of G also implies the minimality of G1, G2. Such sets M1,M2 can be
always chosen – for instance as the sets of all matrices MP such that G1 is an
MP -obstruction, respectively all matrices MQ such that G2 is an MQ-obstruction.

Corollary 2.2. Let M be fixed, and let G = G1 ∪G2 be a disconnected graph, with
lists. Let M1 and M2 be chosen as described above.
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Then G is an M-obstruction if and only if G1 is an M1-obstruction and G2

is an M2-obstruction.
Moreover, if G is a minimal M-obstruction, then G1 is a minimal M1-

obstruction, and G2 is a minimal M2-obstruction. �

Let f(m) be the smallest integer such that for every m by m matrix M and
every minimal M -obstruction cograph G with lists, G has at most f(m) vertices.
(In other words, f(m) is the largest size, i.e., number of vertices, of a minimal
M -obstruction cograph, over all m by m matrices M .)

Theorem 2.3. For every integer m, we have

f(m) ≤ amm!

where a = 1
ln(3/2) .

Proof. We apply Corollary 2.2 withM consisting of the single matrix M . Clearly
a minimalM-obstruction has size at most equal to the sum of the sizes of minimal
M ′-obstructions for all M ′ ∈ M; thus we have

f(m) ≤ 2
∑
i<m

(
m

i

)
f(i).

By induction, letting a = 1/ ln(3/2), we have

f(m) ≤ 2m!am
∑

0<j≤m

1/(j!aj) ≤ 2m!am(e1/a − 1) = amm!. �

Lemma 2.1 also yields an efficient algorithm to solve the list M -partition
problem in the class of cographs. We consider the cotree of G, associating with each
node t of the cotree (corresponding to a cograph Gt involved in the construction
of G) a family of matrices Mt. The family Mt consists of all matrices MX , for
X ⊆ {1, 2, . . . , m}, such that Gt obstructs MX . If t is a node of the cotree with
children t′, t′′ corresponding to Gt = Gt′ ∪ Gt′′ , we know that Gt obstructs MX

if and only if for any P ⊆ X, Q ⊆ X with MP,Q not containing 1, the graph Gt′

obstructs MP or the graph Gt′′ obstructs MQ. Thus from the families Mt′ ,Mt′′

we can compute the family Mt. If Gt = Gt′ + Gt′′ , we use complementation, as
discussed earlier. Since the leaves of the cotree are single vertex cographs, each leaf
t has Mt = ∅. Then the given cograph G, is at the root r of the cotree, G = Gr,
and we conclude G has a list M -partition if and only if M �∈ Mr.

Each set Mt has at most 2m members, since there are at most 2m subsets
of {1, 2, . . . , m}. Thus we obtain the following bound. (Note that 2O(m) accounts
also for the time to check if M is one of the matrices in Mr.)

Corollary 2.4. Every list M -partition problem for cographs can be solved in time
2O(m)n, linear in n. �

We could, of course, proceed similarly, to solve the cograph listM-partition
problem for a family M of matrices.
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We note that in [6] there are efficient algorithms solving related partition
problems for cographs, for special matrices M , but not necessarily of fixed size.

We now derive a lower bound on f(m). The special m by m matrix Mm has
m diagonal zeros, and all off-diagonal entries ∗. Thus a list Mm-partition of G is
precisely a list m-colouring of G. It turns out that there are very large cograph
minimal Mm-obstructions. Since we are dealing with list colourings, we shall use
the corresponding terminology.

Theorem 2.5. For every positive integer m, there exists a minimal Mm-obstruction
cograph G, with lists, of size (e− 1− ε(m))m!, where 1 ≥ ε(m) = o(1).

Proof. We shall construct a cograph G, with lists from the set {1, . . . , m} of colours,
that does not have a list colouring, but each of its proper induced subgraphs
does. The construction will be done recursively. For each subset of colours, K⊆
{1,2,...,m}, we shall construct a graph G(K), with lists from {1,...,m}, such that
• G(K) is list colourable with colours from a set S ⊆ {1, . . . , m} if and only if
|S| ≥ |K| and S �= K, and,
• for each v ∈ V (G), the subgraph G(K)\v is list colourable with colours from

the set K.
Then G = G({1, 2, . . . , m}) will be a minimal Mm-obstruction, as desired.
The recursion starts with sets K consisting of a single element i. The graph

G({i}) is a single vertex with list {1, . . . , m} \ i. This graph clearly satisfies the
above conditions. The graph G(K) with K ⊆ {1, . . . , m} and |K| ≥ 2 is recursively
defined as the disjoint union of all graphs G(K \ j) for j ∈ K, together with an
additional vertex vK , with list {1, . . . , m}, that is adjacent to all other vertices.
Note that each G(K) is a cograph, by induction.

Let S be a set of colours such that G(K) has a list colouring with colours
from S, and let j0 denote the colour of vK in such a colouring. Then each graph
G(K \j) has a list colouring using the colours from S \j0, and hence, by induction,
|S \ j0| ≥ |K \ j|, and S �= K. On the other hand, if we remove vK , all components
G(K \ j) are colourable with colours from K by induction, and if we remove any
other vertex v ∈ G(K \ j0), then, again by induction, we can colour G(K \ j0) \ v
and all G(K \ j), for j �= j0, with colours from K \ j0, and colour vK by j0.

Thus G = G({1, . . . , m}) is a minimal Mm-obstruction (with lists). Let g(k)
denote the number of vertices of a graph G(K) with |K| = k. Then g(1) = 1 and
g(k) = 1 + kg(k − 1), and hence

g(m) =
m−1∑
i=0

m!
(m− i)!

= m!
∑

1≤i≤m

1/i! = m!(e− 1− ε(m)),

where 1 ≥ ε(m) =
∑∞

i=m+1
1
i! = o(1). �

Corollary 2.6. For every integer m, we have

(e− 1− o(1))m! ≤ f(m) ≤ amm!

for a = 1/ln(3/2). �



154 T. Feder, P. Hell and W. Hochstättler

3. Partition problems without lists

For the remainder of the paper, we shall focus on the M -partition problem without
lists. This implies that we now think of M in the block form, having k diagonal
0’s and � diagonal 1’s, with m = k + �. Specifically, the parts 1, 2, . . . , k will be
independent sets, and the parts k + 1, k + 2, . . . , k + � = m will be cliques.

Given that we have no lists, we can improve the general bounds on the size
of cograph minimal M -obstructions G. This is what we shall do in the present
section. In the following two sections we shall obtain even better bounds when
either the matrices M , or the cographs G, are restricted.

Lemma 3.1. Let M be a collection of matrices, each of size at most m.
If G is a minimal M-obstruction cograph with maximum clique size r, then

G has at most g(m, r) ≤ 2
(
m+r

r

)
+
(
m+r−1

r−1

)
−
(
m+r−2

r−2

)
−m− 1 vertices.

The same conclusion applies if G has maximum independent set size r.

Proof. Suppose G has maximum clique size r. Since G is a cograph, its vertices
can be partitioned into three graphs G0, G1, G2 with no edges between G0 and
G1, G2, and with all edges between G1 and G2, where G1 and G2 are non-empty.
We may assume that G′ = G1 + G2 contains a clique of r vertices; in particular,
there exists an integer 1 ≤ t ≤ r − 1 such that the maximum clique size in G1 is
r − t and in G2 is at most t. We now consider how many vertices are needed to
ensure that G does not admit an M -partition for any matrix M ∈ M. Note that
no matrix M ∈ M can contain the submatrix Mr (defined above Theorem 2.5),
since G is perfect, and hence r-colourable.

Let g(m, r) denote the maximum number of vertices in a minimalM-obstruc-
tion cograph G with maximum clique size r. We derive a recurrence on g(m, r)
by estimating separately G0, G1, and G2. If G0 is not empty, then G′ has an M -
partition for some M ∈ M, and since M does not contain Mr, each clique of size
r in G′ is placed in some set P of t ≤ r parts such that MP contains a 1. This
ensures that G0 cannot use at least one part of M . Thus G0 can be described as
a minimalM′-obstruction where all matrices inM′ have size at most m− 1, i.e.,
G0 has at most g(m− 1, r) vertices. On the other hand, G1 and G2 have at most
g(m, r− t) respectively g(m, t) vertices, as noted above. We obtain the recurrence

g(m, r) ≤ g(m− 1, r) + g(m, r − t) + g(m, t),

g(0, r) = 1, g(m, 1) ≤ m + 1.

In order to bound g(m, r) we consider the quantity

h(m, r) = 2
(

m + r

r

)
+
(

m + r − 1
r − 1

)
−
(

m + r − 2
r − 2

)
.

Using the well-known identity
(
n
k

)
−
(
n−1
k−1

)
=
(
n−1

k

)
we find that

h(m, r)− h(m, r − 1) = h(m− 1, r),



Generalized Colourings (Matrix Partitions) of Cographs 155

and thus

(h(m, r)−h(m, r−1))− (h(m, r−1)−h(m, r−2)) = h(m−1, r)−h(m−1, r−1)

= 2
(

m + r − 2
r

)
+
(

m + r − 3
r − 1

)
−
(

m + r − 4
r − 2

)
≥ 0.

(Note that
(
m+r−2

r

)
≥
(
m+r−4

r−2

)
.) Therefore h(m, r−(t+1))+h(m, t+1) ≤ h(m, r−

t)+h(m, t) for t+1 ≤ r−t, and so h(m, r−t)+h(m, t) ≤ h(m, r−1)+h(m, 1). Using
the recursion for g(m, r) we conclude inductively that g(m, r) ≤ h(m, r)−m− 1,
namely

g(m, r) ≤ h(m− 1, r)−m− 2 + h(m, r − t)−m− 1 + h(m, t)−m− 1
≤ h(m− 1, r) + h(m, r − 1) + h(m, 1)− 3m− 4
= h(m, r) + 2(m + 1) + 1− 3m− 4 = h(m, r) −m− 1.

The case of maximum independent set size r follows by complementation. �

Theorem 3.2. Any minimal M -obstruction cograph G has at most O(8m/
√

m)
vertices.

Proof. We shall consider a cotree for G, and associate with each node t of the
cotree a set Mt of submatrices of M , obstructed by the graph Gt corresponding
to the node t, and such that Gt obstructsMt if and only if the two graphs Gt′ , Gt′′ ,
corresponding to the two children t′, t′′ of t in the cotree, obstruct Mt′ and Mt′′

respectively. This is analogous to the algorithm inherent in Corollary 2.2. The
root t0 of our cotree will have Mt0 consisting of the one (given) matrix M , and
the corresponding (given) graph Gt0 = G. The total number of vertices of G is
precisely the number of leaves in the cotree. If Gt has maximum clique size at most
m̃, and if all matrices in Mt have size at most m̃, then the entire branch of the
cotree rooted at t contains at most 2

(
2m̃
m̃

)
+
(
2m̃−1
m̃−1

)
−
(
2m̃−2
m̃−2

)
− m̃−1 leaves, by the

above lemma. If Gt = Gt′ ∪Gt′′ , and if both Gt′ and Gt′′ contain a clique of size
greater than k (the number of diagonal 0’s in M), then we can choose Mt′ and
Mt′′ to consist of matrices with maximum size smaller than the maximum size
of a matrix in Mt. Indeed, any M ′-partition of Gt′ (or of Gt′′), with M ′ ∈ Mt,
uses a part j of M which is a clique (j > k), and which therefore cannot be used
by Gt′′ (respectively Gt′); thus it suffices to certify the non-partitionability of Gt′

and Gt′′ for matrices of strictly smaller size. Similarly, if Gt = Gt′ +Gt′′ , and both
Gt′ and Gt′′ contain an independent set of size greater than �, it suffices to certify
their non-partitionability for matrices of size strictly smaller than the maximum
size of a matrix inMt.

We let g(m̃) denote the maximum size of a minimalM-obstruction cograph
G, over all setsM consisting of matrices of size at most m̃. Suppose G = G′ ∪G′′

(the case G = G′ + G′′ is similar), and the maximum clique sizes in G′, G′′ are
c′, c′′ respectively, with c′ ≥ c′′. We have observed above that if c′ ≥ c′′ > k, then
G has at most 2g(m̃− 1) vertices. If c′′ ≤ c′ ≤ m̃, then both G′ and G′′ have size
at most 2

(
2m̃
m̃

)
+
(
2m̃−1
m̃−1

)
−
(
2m̃−2
m̃−2

)
−m̃−1 by the lemma, whence G has size at most
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2[2
(
2m̃
m̃

)
+
(
2m̃−1
m̃−1

)
−
(
2m̃−2
m̃−2

)
− m̃− 1]. If c′ > m̃ and c′′ ≤ k we continue exploring

the cotree, obtaining a sequence of graphs G′
0, G

′
1, . . . , G

′
s, where G′

i = G′
i+1∪G′′

i+1

or G′
i = G′

i+1 + G′′
i+1. We always assume that if G′

i = G′
i+1 ∪ G′′

i+1, then G′
i+1

has a clique of size greater than m̃ and G′′
i+1 has maximum clique size at most k,

and if G′
i = G′

i+1 + G′′
i+1, then G′

i+1 has an independent set of size greater than
m̃ and G′′

i+1 has maximum independent set size at most �. We now argue that
the sequence cannot be too long, namely, that s ≤ 2m̃. Indeed, we may assume
that the sets Mt are reduced, in the sense that no MP , MQ ∈ Mt have P ⊆ Q
(as any graph obstructing MP also obstructs MQ). If we let Ni denote the set
of all maximal sets P of parts (out of the m parts of M) such that MP ∈ Mt

corresponding to G′
i, then we see that Ni+1 �= Ni, otherwise G′′

i+1 is not needed.
Thus one maximal set is dropped in each step from Ni to Ni+1. This implies that
s ≤ 2m̃, and we obtain the general recurrence

g(m̃) ≤ 2m̃+1[2
(

2m̃

m̃

)
+
(

2m̃− 1
m̃− 1

)
−
(

2m̃− 2
m̃− 2

)
− m̃− 2] + 2g(m̃− 1)

≤ O(23m̃/
√

m̃) + 2g(m̃− 1),

which solves to g(m) ≤ O(8m/
√

m). �

We now define F (m) to be the size (number of vertices) of a largest minimal
M -obstruction cograph G without lists, for any m by m matrix M . From the above
theorem we have an upper bound on F (m); the following lower bound will follow
from Theorem 5.2.

Corollary 3.3. We have

m2/4 ≤ F (m) ≤ O(8m/
√

m). �

4. Constant matrices

In this section we prove that for each constant matrix M with k diagonal 0’s and �
diagonal 1’s, all cograph minimal M -obstructions have size at most (k + 1)(�+ 1).
These M -partitions for constant matrices M (i.e., for (a, b, c)-block matrices M)
have been investigated in the classes of perfect and chordal graphs in [9, 12, 13],
and, in the case of (∗, ∗, ∗)-block matrices (corresponding precisely to partitions
into k independent sets and � cliques), in [6, 15, 16, 19]. Recall that we do not
consider lists in this section.

We illustrate the technique in the special case of (∗, ∗, ∗)-block matrices,
proving the following result; special cases of this result have been proved, by a
different technique, in [6], cf. also [19].

Theorem 4.1. Let M be a (∗, ∗, ∗)-block matrix. Then each minimal M -obstruction
cograph is (k + 1)-colourable, and partitionable into � + 1 cliques.
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Proof. When � = 0, each minimal M -obstruction is a minimal cograph G that
is not k-colourable. Since cographs are perfect, G = Kk+1, which is both (k +
1)-colourable, and partitionable to (0 + 1) cliques. The case k = 0 follows by
complementation, and we can proceed by induction on k + �. Let the cograph G
be a minimal M -obstruction; we may assume that G is disconnected, G = G1∪G2

(or we can consider G instead). We shall now use Corollary 2.2, with the set M
consisting of the single matrix M , and with all lists equal to {1, 2, . . . , m} (i.e.,
without lists); we shall be taking into account the special form of M to choose
particular families M1,M2.

Specifically, let j be the smallest integer such that G1 has a partition into
k independent sets and j cliques. (Note that 0 ≤ j ≤ �, by the minimality of
G.) Since G1 has a partition into k independent sets and j cliques, G2 does not
have a partition into k independent sets and � − j cliques (otherwise G is not
an M -obstruction). Let M1 be the (∗, ∗, ∗)-block matrix with k diagonal 0’s and
j− 1 diagonal 1’s, and let M2 be the (∗, ∗, ∗)-block matrix with k diagonal 0’s and
� − j diagonal 1’s. We now let M1 consist of M1 and all its submatrices, and let
M2 consist of M2 and all its submatrices. It is easy to check that these classes
M1,M2 satisfy the conditions stated below Lemma 2.1. Indeed, if P, Q are such
that MP �∈ M1, MQ �∈ M2, then MP has at least j diagonal 1’s (parts that are
cliques), and MQ has at least �− j + 1 diagonal 1’s (parts that are cliques). This
means that some part i, i > k, (part that is a clique) lies in both P and Q, whence
MP,Q contains a 1.

We conclude, by Corollary 2.2, that G1 is a minimalM1-obstruction, and G2

is a minimalM2-obstruction, and hence a minimal M1-obstruction and a minimal
M2-obstruction respectively (because of the special form ofM1,M2).

Now, by the induction hypothesis, G1 is (k + 1)-colourable and partitionable
into j cliques, while G2 is (k+1)-colourable and partitionable into �−j+1 cliques.
It follows that G is both (k+1)-colourable and partitionable into �+1 cliques. �

Note that a clique can meet an independent set in at most one vertex. Thus
we have an upper bound on the size of a minimal M -obstruction. In fact, we can
conclude that a minimal M -obstruction cograph G can be described as follows.
The vertices of G are vi,j , i = 0, 1, . . . , k, j = 0, 1, . . . , �, with any two vi,j , vi′,j
adjacent, and no two vi,j , vi,j′ adjacent. (There are additional constraints on when
arbitrary vi,j , vi′,j′ are adjacent, arising from the fact that G is a cograph. This
aspect is examined in [6, 19].)

Corollary 4.2. Let M be a (∗, ∗, ∗)-block matrix. Then each cograph minimal M -
obstruction has exactly (k + 1)(� + 1) vertices. �

We shall prove the general result in a form better able to support induction.
Instead of obstructions to one single (a, b, c)-block matrix M with k diagonal 0’s
and � diagonal 1’s, we shall consider collections M consisting of (a, b, c)-block
matrices M0, M1, M2, . . . , Mr, each having ki diagonal 0’s and �i diagonal 1’s. We
shall further assume that the collection M is staircase-like, meaning that ki ≤ kj
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and �i ≥ �j for all i < j. If we have strict inequality everywhere, we call the
collection strictly staircase-like. Clearly every collection of (a, b, c)-block matrices
N contains a staircase-like subcollection M1 as well as a strictly staircase-like
subcollection M2, such that a graph G is an N -obstruction if and only if it is an
M1-obstruction if and only if it is anM2-obstruction.

For notational convenience we shall allow matrices with ki = −1 or �i = −1.
In this case we view each graph G as obstructing such a matrix. In particular, we
shall set k−1 = �r+1 = −1.

Theorem 4.3. Let a, b, c be fixed. Let M = {Mi}ri=0 be a staircase-like collection
of (a, b, c)-block matrices.

Then the maximum size of a minimal M-obstruction cograph is at most

f(M) =
r∑

i=0

(ki − ki−1)(�i + 1) =
r∑

i=0

(�i − �i+1)(ki + 1).

Proof. Since the values of a, b, c are fixed, the matrices Mi are fully described by
their parameters ki, �i. To simplify the discussion, we shall write each Mi in the
more descriptive form M [ki, �i], and also write the bounding function f(M) in the
more descriptive form f({(ki, �i)}ri=0).

Let G be a minimal M-obstruction. We may again suppose that G is dis-
connected, say G = G1 ∪ G2, and shall derive an upper bound on G from upper
bounds on G1, G2, using Corollary 2.2. Recall that we may assume that a �= 0 and
b �= 1. We shall distinguish two main cases – when c �= 1 and when c = 1.
Case 1: c �= 1.
We first consider the subcase when a = ∗. Thus a = ∗, b �= 1, c �= 1, and the
matrices in M have no 1’s, except those on the main diagonal. As in the proof
of Theorem 4.1, the graph G obstructs M [ki, �i] if and only if there exists some
0 ≤ ji ≤ �i +1 such that G1 obstructs M [ki, ji− 1] and G2 obstructs M [ki, �i− ji]
(and, moreover, if G is a minimal M [ki, �i]-obstruction, then G1 is a minimal
M [ki, ji−1]-obstruction, and G2 a minimal M [ki, �i−ji]-obstruction). As M [ki, d]
is a submatrix of M [ki+1, d] we can choose ji so that ji ≥ ji+1 and �i − ji ≥
�i+1 − ji+1. Using induction, and setting jr+1 = 0, we compute

f({(ki, �i)}ri=0) = f({(ki, ji − 1)}ri=0) + f({(ki, �i − ji)}ri=0)

=
r∑

i=0

((ji − ji+1)(ki + 1) + (�i − ji − �i+1 + ji+1)(ki + 1))

=
r∑

i=0

(�i − �i+1)(ki + 1).

Now we consider the other subcase, when a = 1. Here a = 1, b �= 1, c �= 1,
and there are off-diagonal ones between any parts j, j′ that are independent sets
(j, j′ ≤ k). Thus any two vertices that are placed in different independent sets
must be adjacent. We can derive the following conditions from Corollary 2.2, or
by the arguments given below.
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The graph G = G1 ∪ G2 has an M [ki, �i]-partition if and only if it has a
partition where all parts i that are independent sets (i ≤ k) are in one of G1, G2,
or a partition in which there is only one part that is an independent set, and that
set intersects both G1 and G2 (for this we must have ki ≥ 1). Equivalently, G
obstructs M [ki, �i] if and only if the following three conditions hold:

1. there exists a ui with 0 ≤ ui ≤ �i +1 such that G1 obstructs M [0, ui−1] and
G2 obstructs M [ki, �i − ui],

2. symmetrically, there exists a vi with 0 ≤ vi ≤ �i + 1 such that G2 obstructs
M [0, vi − 1] and G1 obstructs M [ki, �i − vi], and

3. if ki ≥ 1, there exists a wi with 0 ≤ wi ≤ �i + 1 such that G1 obstructs
M [1, wi − 1] and G2 obstructs M [1, �i − wi].

Note that we always can choose ui and vi such that

ui + vi ≥ �i + 1 for all 0 ≤ i ≤ r. (1)

If x denotes the largest value such that G1 obstructs M [0, x − 1] we may
actually assume that ui = min{x, �i + 1} and vi = min{y, �i + 1}, where y denotes
the largest value such that G2 obstructs M [0, y − 1]. In particular, this implies
ui ≥ ui+1 and vi ≥ vi+1 for 0 ≤ 1 ≤ r − 1. Similarly, if i0 is the smallest index
such that ki0 ≥ 1 we may assume that wi = min{wi0 , �i0 + 1}.

Thus, in order to meet both conditions, it suffices that G1 obstructs M [0, u0−
1], M [1, wi0−1] and M [ki, �i−vi] for i ≥ 0, and G2 obstructs M [0, v0−1], M [1, �i0−
wi0 ] and M [ki, �i−ui]. We may assume that the parameters ki are strictly increas-
ing, for if ki = ki+1 then, as �i > �i+1 any graph that obstructs M [ki, �i] also must
obstruct M [ki+1, �i+1] and, furthermore (ki+1−ki)(�i+1+1) = 0. By Corollary 4.2,
we may assume that r ≥ 1 or k0 ≥ 1.

If k0 = 0 and k1 = 1, we may assume that x = u0 and y = v0 have been chosen
such that u0 +v0 = �0 +1 (x and y not necessarily maximal). Also we may assume
that w1 = �1−v1 as well as �1−w1 = �1−u1. Thus, also u0−1 = �0−v0, w1 = �1−v1

and v0 − 1 = �0 − u0 and using induction we compute the size of G as the sum of
the sizes of G1 and G2, at most

∑r
i=0(ki − ki−1)(�i − vi + 1) +

∑r
i=0(ki − ki−1)(�i − ui + 1)

=
∑r

i=0(ki − ki−1) ((�i + 1)− (ui + vi − �i − 1))
≤
∑r

i=0(ki − ki−1) (�i + 1) = f(M).

In order to complete this case it suffices to additionally consider the first
three summands in the induction step. Assume first, that k0 ≥ 2. Then we have
the first three summands in f(G1) are u0 + w0 + (k0 − 1)(�0 + 1− v0) and for G2

we have v0 + �0 + 1−w1 + (k0 − 1)(�0 + 1− u0). Adding up these numbers yields

(k0 + 1)(�0 + 1)− (k0 − 2)(u0 + v0 − �0 − 1) ≤ (k0 + 1)(�0 + 1).
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If k0 = 1 similar to the first case we may assume w0 = u0 = �0 + 1− v0 and
we compute

u0 + w0 + (k1 − k0)(2�1 + 2− v1 − u1) + v0 + (�0 + 1− w0)

= (k1 − k0)(�1 + 1) + 2(�0 + 1)− (k1 − k0)(u1 + v1 − �1 − 1)

≤ (k0 + 1)(�0 + 1) + (k1 − k0)(�1 + 1).

Finally, if k0 = 0 and k1 ≥ 2 again we may assume x + y = u0 + v0 = �0 and
compute

u0 + w1 + (k1 − 1)(2�1 + 2− v1 − u1) + v0 + �1 + 1− w1

= (k0 + 1)(�0 + 1) + (k1 − k0)(�1 + 1)− (k1 − 1)(u1 + v1 − �1 − 1)

≤ (k0 + 1)(�0 + 1) + (k1 − k0)(�1 + 1).

Thus, in any case G has at most f(M) vertices.

Case 2: c = 1.
In this case a �= 0, b �= 1, c = 1, and a disconnected graph G = G1 ∪ G2 has an
M [k, �]-partition if and only if it has an M [0, �]-partition, or an M [k, 0]-partition.
It follows from facts proved in [8], and is easy to see directly, that the only minimal
M [k, 0]-obstruction is Kk+1, except in the case when a = 1 and k ≥ 2, when the
disjoint union of K1 and K2 is the only other minimal M [k, 0]-obstruction. Com-
plements of these graphs are all the minimal M [0, �]-obstructions, the complement
of K1 ∪K2, i.e., the path P3 with three vertices, only if � ≥ 2 and b = 0.

Suppose now G is an M-obstruction. Let k, � be largest integers such that
G obstructs M [k, 0], M [0, �]; note that kr ≤ k, �0 ≤ �. We claim that G contains
a disconnected induced subgraph H which obstructs M [kr, 0] and M [0, �0] and
has size

kr + �0 + 1 = f({(0, �0), (kr , 0)}) ≤ f({(ki, li)}ri=0).

We may assume that both kr and �0 are positive, as in case kr = 0 or �0 = 0
the claim holds trivially using the minimal M [kr, 0]-obstructions and the minimal
M [0, �0]-obstructions.

If G contains Kkr+1 and K�0+1 then, since in a cograph any maximum clique
meets any maximum independent set (see, for instance Theorem 11.3.3 in [2]), the
union of any two such sets can serve as H (with kr + �0 + 1 vertices).

Next, we consider the case that G contains Kkr+1 and P3 and �0 ≥ 2. If
these obstructions are in different components, then we let H = Kkr+1 ∪ P3, of
size kr +4 ≤ (�0 +1)+kr, unless �0 = 2. In the latter case we remove the midpoint
v of P3. Then H \ v has the right size and contains K3. If Kkr+1 and P3 are in
the same component, then this component is not a clique. Hence, by connectivity,
it contains a clique K of size k0 + 1 ≥ 2 and a vertex w which is adjacent to
some vertex of K and non-adjacent to another. Now, K +w contains a P3 and has
kr + 2 < (�0 + 1) + kr vertices.
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If G contains K�0+1 and K1 + K2 and kr ≥ 2, then we correspondingly find
an independent set I with �0 + 1 vertices, and a vertex w adjacent to some vertex
in I and non-adjacent to another. Hence I + w also contains K1 + K2.

Finally, if G contains P3 as well as K1 + K2, then the P3 plus a vertex from
a different component yields an obstruction of size 4 < (�0 + 1) + kr. �
Corollary 4.4. If M is a constant matrix and G a minimal M -obstruction cograph,
then G has at most (k + 1)(� + 1) vertices. �

If c �= 1 and b = ∗, or if c �= 0 and a = ∗, the bound from Theorem 4.3 is
tight. We give a minimal obstruction of size f(M) for the first case, the second
follows by taking complements. Let G consist of the disjoint union of �r +1 cliques
of size kr + 1 and �i− �i+1 cliques of size ki + 1 for 0 ≤ i ≤ r− 1. We show that G
cannot be partitioned into ki independent sets and �i cliques. Assume it had such
a partition. There are �i + 1 cliques of size at least ki + 1. At least one vertex of
each of these cliques has to be mapped to a clique, a contradiction. In order to
show that G is minimal let v be a vertex in a ki +1 clique. Then we have �i cliques
of size > ki and the other cliques can be partitioned into ki independent sets.

Theorem 4.3 also implies efficient algorithms for the M -partition problem,
where M is an (a, b, c)-block matrix. Thus suppose that a, b, c are fixed; given
a cograph G, we can find the strictly staircase-like collection dominating all the
matrices Mi to which G is an obstruction, in time O((k+�)n). Given a staircase-like
collection of matricesM, such that G contains anM-obstruction, we can find an
induced subgraph H of G, such that H has size at most f(M) and H also contains
anM-obstruction, in time O((k+ �)n). (We always assume the cograph G is given
by its cotree; note that the cotree can be found in linear time [5].) The algorithms
find all minimal pairs (k, �) such that a corresponding partition exists (along the
boundary of the staircase) for each node in the cotree, testing each one in constant
time as indicated by the cases in the proof, given the corresponding staircases for
the two children in the cotree. Since the length of the boundary of the staircase is
O(k + �), and there are n nodes in the cotree, the time O((k + �)n) follows.

We remark that the upper bound (k+1)(�+1) does not hold in general even
for the class of trees. For instance, in the case k = 1, b = 0, c = ∗, there is a tree
with (�/3)2 vertices that is a minimal M -obstruction [12, 13]. The more general
bound f(M) does not hold for trees even in the case a = b = c = ∗: take the
stair-like collectionM of two matrices M0, M1 with k0 = 0, k1 = 1, �0 = 7, �1 = 4
– we have f(M) = 13, but there is a minimal M-obstruction with 14 vertices
which is a tree, namely an edge e = uv plus four attached paths of length 3, two
attached at u and two attached at v. However, it is shown in [15] that the upper
bound (k +1)(�+1) does apply to collections consisting of one matrix, in the case
of chordal graphs.
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5. Unions of cliques

In this section we study minimal obstructions that are unions of cliques. Unions
of cliques are an interesting subclass of cographs – while cographs are precisely
those graphs not containing an induced path on four vertices, unions of cliques are
precisely those graphs not containing an induced path on three vertices.

Recall that we are no longer considering lists. We start the simplest case of
a non-constant matrix.

Proposition 5.1. Let M be an m × m matrix which has only 0’s on the main
diagonal, one off-diagonal 1 and ∗’s elsewhere. Then M has just two minimal
obstructions that are cographs, namely Km+1 and Km ∪Km−1.

Proof. An M -partition of a graph G is an m-colouring of G, in which two special
colour classes are completely adjacent (each vertex of one is adjacent to each vertex
of the other). Clearly both Km+1 and Km ∪Km−1 are minimal M -obstructions.
Suppose G is an M -obstruction cograph not containing Km+1. Then its maximum
clique size must be m, as otherwise G, as a cograph, and hence a perfect graph,
would be m− 1 colourable, and so would admit an M -partition. Let A be a clique
of size m in G.

Suppose e = uv is any edge of A. The graph G−u− v must have a clique Be

of size m− 1, or else G− u− v would be m− 2- colourable, and u and v could be
placed as the only vertices in the two classes that are completely adjacent, yielding
an M -partition of G.

Suppose G is a minimal M -obstruction cograph. We now claim that the
cliques Be can be chosen so that no clique Be can contain a vertex w adjacent to
exactly one vertex of the edge e = uv, say w adjacent to v. (In other words, each
vertex w ∈ Be is adjacent to either both or to neither of u, v.) Otherwise, let Ge be
a smallest induced subgraph of G containing A and Be without an M -colouring
placing u and v as the only vertices in the special classes that are completely
adjacent: indeed, considering the cotree of Ge we find that the ∪-node where the
directed paths from u resp. w to the root meet must be a descendent of the +-node,
where both meet the path from v to the root. Let U, W be the graphs defined by
the children of that ∪-node such that u ∈ U and w ∈ W and v ∈ S the graph
defined by the child of the +node. The minimality of Ge implies that Ge \W can
be placed, and the maximality of the clique A in graph G implies that the largest
clique in W is no larger than the clique U ∩ A. Given the placement for Ge \W ,
we may then place W in the parts where the clique U ∩ A is placed, since these
parts are joined by ∗, and W can be colored with |U ∩A| colors, thus placing all
of Ge, a contradiction.

We may choose e in A joining two sets S and S′ closest to the root of the
cotree of G. If A and Be are in different components of G then A∪Be = Km∪Km−1

is an obstruction, while if A and Be are in the same component of G then each
vertex w in Be is adjacent to at least one endpoint of e, and thus to both, giving
the obstruction Be ∪ {u, v} = Km+1. �
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For general matrices M (with k diagonal 0’s and � diagonal 1’s) we derive
the following bounds on possible M -obstructions that are unions of cliques. Recall
that we view M as a block matrix with a diagonal matrix A (having zero diagonal)
and B (having a diagonal of 1s), and an off-diagonal matrix C and its transpose.

We shall consider the function

f(k, �) =

⎧⎨
⎩

(k + 1)(� + 1) if k ≤ � + 2
k(� + 2)− 1 if � + 2 ≤ k ≤ 2� + 4
�(k + 2� + 4)2/8− 1� if k ≥ 2� + 4.

We note that f(k, �) = max((k+1)(�+1), Θ(k2)), i.e., there exists a function
h(k) = Θ(k2) such that f(k, �) = max((k + 1)(� + 1), h(k)).

Theorem 5.2. For each k and � there exists a matrix M with k 0s and � 1s on the
diagonal, which admits a minimal M -obstruction G with f(k, �) vertices that is a
union of cliques.

Proof. The case k ≤ � + 2 follows from Corollary 4.2, thus assume k ≥ � + 2. Let

2 ≤ 2r ≤ k and start M with r blocks
(

0 1
1 0

)
on the diagonal. This is followed

by a constant matrix of size k − 2r with 0’s on the diagonal and 1’s off-diagonal.
All other off-diagonal entries are ∗’s. Let G be a disjoint union of � + r cliques of
size k−2r+2 and one of size k−2r+1. This is an obstruction since removing � of
the cliques, we are left with r cliques of size k−2r+2 that we can partition at best
into an edge and a clique of size k − 2r. As the cliques are pairwise non-adjacent
each of these edges has to use a different block, leaving one vertex of the clique of
size 2k − 2r + 1 pending. This already shows how to partition G \ v if v is in the
smaller clique. If v belongs to a clique of size k−2r+2 then we can map one vertex
of each of the cliques of size k−r+1 to the same element of one of the small blocks
and, otherwise, proceed as above. Now, choosing r = max{1, �(k − 2(l + 1))/4�}
yields the desired bounds. �

Theorem 5.3. Let f be defined as above. If M is any matrix with k 0’s and � 1’s on
the diagonal, then each minimal M -obstruction that is a disjoint union of cliques
has at most f(k, �) + (k + 1)� vertices.

If the block C of M contains no 1, then each minimal M -obstruction that is
a disjoint union of cliques has at most f(k, �) vertices.

Proof. Suppose a minimal M -obstruction G is the disjoint union of cliques K1, . . . ,
Kt, with |Ki| ≥ |Kj| for i ≤ j. Removing v ∈ Kt we have a partition assigning each
Ki to a set of parts Si for i < t. The submatrix Mi corresponding to Si must have
at least one 1, as otherwise each part of Si would be an independent set, i.e., it
would contain at most one vertex from Ki; since |Kt| ≤ |Ki|, we could additionally
assign Kt to parts of Si and not have an obstruction. If Mi has a 1 on the diagonal,
we may assume that Si = {si} consists of this entry alone. The sets Si, thus, are
partitioned into a collection T of Si’s all having Si = {si} and Mi = (1) and a
collection R of Sj ’s where Mj has 0’s on the diagonal and some 1 off-diagonal
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M(rj , cj) = 1. Note, that part Sj must have at least one vertex, that is in class rj

as well as one that is in cj . We may further assume that for Si ∈ T and Sj ∈ R we
always have |Ki| ≥ |Kj|, since si can absorb any clique. Hence, the clique Kt \ v is
assigned to parts in R and no pair of cliques from K1, . . . , Kt−1, Kt \ v may share
the parts si, rj , cj. Since G is minimal the Ki in T are of size at most k +1, as this
already enforces them to use a 1 on the diagonal of M . Let r = |R|. A set Sj ∈ R
must not use rk, ck for k �= j, since Kj is non-adjacent to Kk. Hence, such an Sj

has size at most k − 2r + 2 and Kt has size at most k − 2r + 1, for Kt − v avoids
all pairs cj , rj (note, that j < t).

If part C of M has no 1’s, then also the Si = {si} ∈ T correspond to
cliques of size at most k − 2r + 2. For if, say Ki has size ki > k − r + 2 and
v ∈ Ki, then G \ v has an M -partition where we may assume that Ki \ v is one
of the � cliques, contradicting G being an M -obstruction. Therefore, in this case,
|V (G)| ≤ (�+ r+1)(k−2r+2)−1 which is maximized at f(k, �). If r = 0 we have
� cliques in T of size k + 1 and |Kt| ≤ k + 1 adding up to (� + 1)(k + 1) = f(k, �).
This proves the upper bound for this special case.

Continuing with the general case, the Si = {si} ∈ T correspond to cliques
of size at most k + 1, giving at most (k + 1)� additional vertices, so |V (G)| ≤
f(k, �) + (k + 1)�. �

Theorem 5.4. There exists a matrix M with the k by k block A with 0 diagonal
having no off-diagonal 0s, the � by � block B with 1 diagonal having all off-diagonal
entries ∗, and the k by � block C having all entries ∗, such that M admits a minimal
M -obstruction with f ′(k, �) = Θ(k� + k1.5) vertices, that is a disjoint union of
cliques.

To be more precise, letting

r = max(1, �−1/2− �/3 +
√

(1/2 + �/3)2 + 2(k + 1)/3�),

so that r = Θ(1) if k ≤ �, r = Θ(k/�) if � ≤ k ≤ �2, and r = Θ(
√

k) if k ≥ �2, and
t = k + 1− (r2 + r)/2, so that t = Θ(k), we have

f ′(k, �) = (t + r)� + tr + (r2 + r)/2.

Proof. We may interpret any matrix A = (k)ij with no off-diagonal zeros as a kind
of adjacency matrix A(H) of a simple graph H on the k vertices {1, 2, . . . , k}: two
vertices i, j are adjacent if kij = 1 and nonadjacent if kij = ∗. Vice versa, with any
simple graph H we can associate this way a unique matrix A(H) of the described
type.

Let t, r be positive integers, and H be the disjoint union of t isolated vertices
and r − 1 cliques of sizes 2, 3, . . . , r respectively. The corresponding matrix A =
A(H) is a k × k-matrix where k = t− 1 + (r2 + r)/2.

Now let G be the graph that is the disjoint union of r cliques of sizes t +
r, t + r − 1, . . . , t + 1 respectively, and an additional � cliques of size t + r. Thus
|V (G)| = q = (t + r)� + tr + (r2 + r)/2. First, we show, by induction on r, that
G is an obstruction for the matrix M with the A part as described above. If G
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had an M -partition, then each of the � parts corresponding to a 1 diagonal can be
used for a clique of G, and we may put in such parts the largest cliques possible,
that is, the � additional cliques of size t+ r. The remaining r cliques must go to A,
so we reduce the problem to A-partition after removing the � additional cliques of
size t + r from G. The clique KG of size t + 1 in G had to use at least one vertex
of a non-trivial clique KH of H . Since G is the disjoint union of cliques, the other
cliques of G may use one and only one vertex of H if and only if KG uses only
one vertex of KH . Let G̃ arise from G by deleting KG and one vertex of each of
the other non-trivial cliques of G. Then G has an M -partition only if G̃ has an
M(H \KH) partition, which is not the case by inductive assumption (G does not
have an M(H̃) partition for any graph H̃ consisting of t isolated vertices and r−1
non-trivial cliques; the base case r = 1 has G consisting of a clique of size t + 1
but H̃ has no non-trivial cliques).

We still have to show that the obstruction G is minimal. Assume v is a vertex
in the clique of size t+r− i, then G\v has r− i cliques of size at most t+r− i−1.
These can be mapped to into the t isolated vertices of H and to one vertex of each
of the r − i − 1 cliques of size at most r − i of H . From each of the remaining
cliques Kj of size t+r−j, 0 ≤ j ≤ i−1 of G we map t vertices each to the isolated
vertices of H and the remaining r− j vertices of Kj to the clique of size r− j in H .

It remains to choose r to maximize

q = qr = (k + 1− r2/2 + r/2)� + (k + 3/2− r2/2)r.

We note that

qr+1 − qr = −3/2(r2 + 2(1/2 + �/3)r − 2(k + 1)/3),

so the maximum occurs at

r = max(1, �−1/2− �/3 +
√

(1/2 + �/3)2 + 2(k + 1)/3�). �

Theorem 5.5. Suppose the block submatrix A with 0 diagonal has no 0 off diagonal.
Let f ′ be defined as above, satisfying f ′(k, �) = Θ(k� + k1.5), and let

g′(k, �) = f ′(k, �) + (k + 1)�.

If M has k 0’s and � 1’s on the diagonal, then any minimal M -obstruction that is
a disjoint union of cliques has at most g′(k, �) vertices.

If in addition the block C contains no 1, then any obstruction that is a disjoint
union of cliques has at most f ′(k, �) vertices.

Proof. We proceed as in the proof of Theorem 5.3, and assume a minimal M -
obstruction G is the disjoint union of cliques K1, . . . , Kt with |Ki| ≥ |Kj | for i ≤ j.
Removing v ∈ Kt we have a partition assigning each Ki to parts from Si for i < t.
The sets Si are partitioned into a collection T of Si’s having Si = {si} and Mi = (1)
and a collection R of Sj ’s where Mj has 0’s on the diagonal and 1,* off-diagonal.
Let Uj be the set of indices that are used exclusively by Sj ∈ R and D be the set of
indices that are used by at least two Si ∈ R. We may order the sets U1, . . . , Ur−1

nonincreasingly. Then |Ui| ≥ r + 1 − i, since otherwise we may U be a set of size
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r − i consisting of one element from each of Ui, . . . , Ur−1, and assign the cliques
Ki, . . . , Kr−1 and Kt to U ∪D, contrary to the fact that G is an obstruction. If we
let t be the number of parts in A that do not correspond to r+1−i chosen elements
out of Ui, then k ≥ t+2+3+ · · ·+ r = t− 1+ (r2 + r)/2 so t ≤ k +1− (r2 + r)/2.

If part C of M has no 1’s, then also the Si = {si} ∈ T correspond to cliques
of size at most t+r. For if, say Ki has size ki > t+r and v ∈ Ki, then G\v has an
M -partition where we may assume that Ki \v is one of the � cliques, contradicting
G being an obstruction. Therefore |V (G)| ≤ (t + r)� + tr + (r2 + r)/2 which is
maximized at f ′(k, �).

Continuing with the general case, we estimate the largest clique by k + 1, so
|V (G)| ≤ (k + 1)� + tr + (r2 + r)/2 ≤ (k + 1)� + f ′(k, �) = g′(k, �). �

We are indebted to an anonymous referee for a careful reading of the manu-
script.
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A Note on [k, l]-sparse Graphs

Zsolt Fekete and László Szegő

Abstract. In this note we provide a Henneberg-type constructive characteri-
zation theorem of [k, l]-sparse graphs, that is, the graphs for which the number
of induced edges in any subset X of nodes is at most k|X| − l. We consider
the case 0 ≤ l ≤ k.
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1. Introduction

In this paper we consider undirected graphs and we allow parallel edges and loops.
Let G = (V, E) be a graph. If u, v ∈ V and e ∈ E, then e = uv denotes that edge
e has endnodes u and v (there may be other edges parallel to e).

For a subset X ⊆ V , iG(X) denotes the number of induced edges in X , i.e.,
iG(X) := |{e ∈ E : e = uv with u, v ∈ X}|. If v ∈ V , then iG(v) := iG({v})
is the number of loops on v. If X, Y ⊆ V , then dG(X, Y ) := |{e ∈ E : e =
uv with u ∈ X − Y, v ∈ Y − X}|. dG(X) := dG(X, V − X). For a node v ∈ V
degG(v) will denote the degree of v, that is, degG(v) := dG({v}, V −{v})+2iG(v)
(note that a loop contributes 2 to the degree). We note that with this convention∑

v∈V deg(v) = 2|E| holds.
Here we give the definition of the graphs for which we provide certain char-

acterizations in the paper. Let l, k be integers and k ≥ 1. If l ≤ k, the we say that
a graph G = (V, E) is [k, l]-sparse in ∅ �= Z ⊆ V if i(X) ≤ k|X | − l holds for every
∅ �= X ⊆ Z. If k + 1 ≤ l ≤ 2k − 1 holds, then we say that a graph G = (V, E)
is [k, l]-sparse in ∅ �= Z ⊆ V if G is loopless and i(X) ≤ k|X | − l holds for every
X ⊆ Z, |X | ≥ 2.

Research is supported by OTKA grants T 037547 and TS 049788, by European MCRTN Adonet,
Contract Grant No. 504438 and by the Egerváry Research Group of the Hungarian Academy of
Sciences.
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We say that a graph G = (V, E) is a [k, l]-graph if |E| = k|V | − l and G is
[k, l]-sparse in V . Remark that if l < k, then there can be (at most k − l) loops
incident to any node in a [k, l]-graph.

Nash-Williams [6] proved the following theorem concerning coverings by trees.

Theorem 1.1 (Nash-Williams). A graph G = (V, E) is the union of k edge-disjoint
forests if and only if G is [k, k]-sparse in V .

A consequence of this theorem is that a graph is a [k, k]-graph if and only if
its edgeset is a disjoint union of k spanning trees.

Frank [1] observed that a combination of a theorem of Mader and a theorem
of Tutte gives rise to the following characterization. The main operation will be
pinching a set F of edges into a new node z which means that we split every edge
e ∈ F with a node ez and identify these with one node z. (If F is the emptyset
then pinching F into a node z will simply mean adding a new isolated vertex z to
the graph.)

Theorem 1.2 (Frank). An undirected graph G = (V, E) is a [k, k]-graph if and only
if G can be built from a single node by the following two operations:

1. add a new node z and k new non-loop edges ending at z,
2. pinch j (1 ≤ j ≤ k− 1) existing edges with a new node z, and add k− j new

edges connecting z with existing nodes.

We mention that there is known an analogous constructive characterization
theorem for [k, k + 1]-graphs (see Theorem 3.2).

If 0 ≤ l ≤ k, then the class of [k, l]-graphs can be characterized by packings
of trees and pseudotrees. A pseudotree is a set of edges which is connected and
contains exactly one cycle. Let F be an edgeset on vertex set V . We say that F
is a spanning pseudoforest if every component of (V, F ) is a pseudotree. Now we
show how they are related to [k, l]-graphs, where 0 ≤ l ≤ k. Whiteley [12] proved
the following characterization.

Theorem 1.3 (Whiteley). If G = (V, E) is a graph and 0 ≤ l ≤ k, then the following
are equivalent.

1. G is a [k, l]-graph,
2. E is the disjoint union of l spanning trees and (k− l) spanning pseudoforests.

If we are given a graph G = (V, E), then the system of the edgesets F ⊆ E
for which (V, F ) is [k, l]-sparse in V is the collection of the independent sets of a
matroid on ground set E (see, e.g., [13]).

The notion of sparsity is strongly related to rigidity theory. Laman’s theorem
[4] says that the minimally rigid graphs in the plane are exactly the [2, 3]-graphs.
The rigidity of bar-and-body structures in arbitrary dimension can be character-
ized by [k, k]-graphs [10], and [k, k + 1]-graphs has also connections to rigidity
theory [8, 9]. Whitely [12] conjectures that if 0 ≤ l ≤ k then, the [k, l]-graphs are
the minimally rigid graphs on certain surfaces.
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G′
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2j solid k − m dashed edges

j edges

Figure 1. G′ is obtained from G by operation K(k, m, j).

Henneberg [3] proved a constructive characterization for minimally rigid
graphs in the plane. With Laman’s theorem this result gives a constructive char-
acterization of [2, 3]-graphs. In the above mentioned examples the constructive
characterization theorems serve useful tools in proving properties of the graphs in
question. (See Section 3 about [k, l]-graphs for l > k.)

We will prove a Henneberg-type construction of [k, l]-graphs for 0 ≤ l ≤ k.
We will use the following operations.

Definition 1.4. Let 0 ≤ j ≤ m ≤ k. K(k, m, j) will denote the following operation.
Choose j edges of G, pinch into a new node z. Put m − j loops on z and link it
with other nodes by k −m new edges. (After this operation the resulting graph
has k more edges than the original graph and the new node z has degree (k + m).
See Figure 1.)

The graph on one node with l loops will be denoted by Pl.

Lemma 1.5. If graph G is obtained by operations K(k, m, j) for which j ≤ m ≤
k, m− j ≤ k − l starting from Pk−l, then it is a [k, l]-graph.

Proof. This can be seen directly from the definition. (Or using Theorem 1.3: one
can easily construct the bases in G′ if the bases in G are given.) �

We will prove the following theorem.

Theorem 1.6. Let G = (V, E) be a graph and 1 ≤ l ≤ k. Then G is a [k, l]-graph if
and only if G can be obtained starting from Pk−l with operations K(k, m, j) where
j ≤ m ≤ k − 1, m− j ≤ k − l.

Let G = (V, E) be a graph. Then G is a [k, 0]-graph if and only if G can be
constructed from Pk with operations K(k, m, j) where j ≤ m ≤ k, m− j ≤ k.

We remark that loopless [k, l]-graphs cannot be obtained by operations above
via a sequence of loopless [k, l]-graphs. (See Figure 2 for an example.)
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Figure 2. A loopless [2, 0]-graph, which cannot be obtained by
a sequence of loopless [2, 0]-graphs.

2. Proof of Theorem 1.6

The if part of Theorem 1.6 is Lemma 1.5. To prove the other direction we need
the following lemma.

Lemma 2.1. Let G = (V, E) be a [k, l]-graph.
1. If l > 0 then ∃v ∈ V such that k ≤ deg(v) ≤ 2k − 1.
2. If l = 0 then ∃v ∈ V such that k ≤ deg(v) ≤ 2k.
3. If l < 0 and |V | ≥ 2l + 1 then ∃v ∈ V such that k ≤ deg(v) ≤ 2k.

By splitting off a pair of edges e = uv, f = uw ∈ E we mean the operation
of replacing e and f by a new edge connecting v and w. Denote Gef = (V, E− e−
f + vw) the obtained graph. We say that the new edge vw is a split edge.

The following will give the “only if” part of Theorem 1.6.

Theorem 2.2. Let 0 ≤ l ≤ k. Let G = (V + s, E) be a [k, l]-graph and let m, j be
integers such that degG(s) = k+m, iG(s) = m−j where j ≤ m ≤ k, m−j ≤ k− l.
Then we can split off j pairs of edges so that after deleting s the remaining graph
is a [k, l]-graph.

We will use the following simple lemma. Let b(X) denote the following b(X) =
bG(X) := k|X | − l− iG(X). We remark that a graph G is [k, l]-sparse in V if and
only if bG(Z) ≥ 0 for all ∅ �= Z ⊆ V .

If G = (V + s, E) is [k, l]-sparse in V and e = sv, f = sw ∈ E, then splitting
off e and f is called admissible if Gef is [k, l]-sparse in V .

Lemma 2.3. Let G = (V, E) be a graph and X, Y ⊆ V . Then
1. i(X) + i(Y ) + d(X, Y ) = i(X ∩ Y ) + i(X ∪ Y ).
2. b(X) + b(Y ) = b(X ∩ Y ) + b(X ∪ Y ) + d(X, Y ).
3. Let l ≤ k. If G is a [k, l]-graph, then b(X) = b(Y ) = 0, X ∩ Y �= ∅ implies

b(X ∪ Y ) = b(X ∩ Y ) = 0.
4. Let l ≤ 2k − 1. If G is a [k, l]-graph, then b(X) = b(Y ) = 0, |X ∩ Y | ≥ 2

implies b(X ∪ Y ) = b(X ∩ Y ) = 0.
5. If G = (V + s, E) is [k, l]-sparse in V and e = sv, f = sw are edges incident

to s (v, w ∈ V ), then the pair e, f is admissible if and only if �X ⊆ V such
that v, w ∈ X and b(X) = 0.

We omit the proof of the lemma. Now we give the proof of Theorem 2.2.
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Proof. First we remark if j = 0, then it is clear that G− s is a [k, l]-graph (since
k edges were deleted). So we can assume that j ≥ 1. Now assume on the contrary
that we cannot split off j pairs of edges so that the resulting graph is [k, l]-sparse
in V . Split off as many pairs as possible. We split off say p < j pairs of edges
and denote the resulting graph by G′. Let e1 = sv1, . . . , eα = svα be the non-loop
edges incident to s in G′ where α = k + m− 2(m− j)− 2p = k−m + 2j− 2p ≥ 2.
By Lemma 2.3 we know that for every vν , vµ (1 ≤ ν < µ ≤ α) there exists an
Xνµ ⊆ V such that vν , vµ ∈ Xνµ and bG′(Xνµ) = 0. Using the second statement
of Lemma 2.3 we get that there exists an X ⊆ V such that vν ∈ X for every ν
and bG′(X) = 0. Let XG′ be a maximal set having these properties.

Now consider every G′ which can be obtained by splitting off p pairs of edges
at s in G. For each G′ we have a set XG′ . Choose G1 := G′ so that |XG′ | is
maximal. Let X := XG1 .

Claim 2.4. There is a split edge e = vw in G1 such that v, w /∈ X .

Proof. Assume on the contrary that for every split edge e = vw, v ∈ X or w ∈ X .
Let β := |{e : e = vw is a split edge and v, w ∈ X}|. bG1(X) = 0 implies bG(X) =
β. bG(X+s) = bG(X)+k−γG(s)−dG(s, X) = bG(X)+k−(m−j)−(k−m+2j−(p−
β)) = β+k−m+j−(k−m+2j−p+β) = β+k−m+j−k+m−2j+p−β = p−j < 0.
A contradiction. �

Let e = vw be an edge given by the claim. Let G2 := G1 − e + sv + sw. We
state that sv, sv1 is an admissible splitting off in G2. Because if v, v1 ∈ Y ⊆ V
and bG2(Y ) = 0, then bG1(Y ) ≤ bG2(Y ) = 0 so bG1(Y ) = 0. But X ∩ Y �= ∅
(since v1 ∈ X ∩ Y ) hence bG1(X ∪ Y ) = 0 by Lemma 2.3, which contradicts the
maximality of |XG1 |.

Let G3 := G2−sv−sv1+vv1. We state that sw, sv2 is an admissible splitting
off in G3. Assume on the contrary that w, v2 ∈ Z ⊆ V and bG3(Z) = 0.

If v /∈ Z or v1 /∈ Z, then bG1(Z) ≤ bG2(Z) = bG3(Z) = 0 so bG1(Z) = 0.
But X ∩ Z �= ∅ (since v2 ∈ X ∩ Z) hence bG1(X ∪ Z) = 0, which contradicts the
maximality of |XG1 |.

If v, v1 ∈ Z, then bG1(Z) = bG2(Z) − 1 = bG3(Z) = 0 so bG1(Z) = 0. But
X ∩ Z �= ∅ (since v2 ∈ X ∩ Z) hence bG1(X ∪ Z) = 0 but this contradicts the
maximality of |XG1 |.

We proved that sw, sv2 is an admissible splitting off in G3. This contradicts
the maximality of p. �

We mention that our proof is algorithmic. The only nontrivial claim we need
is that we can algorithmically decide if a graph is [k, l]-sparse in V , and give back
a set i(X) > k|X | − l if not. This can be tested by the following simple claim.

Claim 2.5. Let G = (V, E) be a graph and k, l ≥ 1 be integers. i(X) ≤ k|X | − l
holds for every X ⊆ V if and only if for every e = uv ∈ E: iGe(X) ≤ k|X | holds
for every X ⊆ V , where the graph Ge is obtained by adding l uv-edges to G.
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The condition i(X) ≤ k|X | can be checked by the orientation theorem of
Hakimi: a graph has an orientation such that every indegree is at most k if and
only if i(X) ≤ k|X | for every set X of vertices.

Proof of Theorem 1.6. Lemma 1.5 shows the “if” part. To prove the other direction
we observe that the only [k, l]-graph with one node is Pk−l. Let G be an arbitrary
[k, l]-graph with at least two nodes. By Lemma 2.1 there exists a node s of degree
at most 2k − 1 if l > 0 or a node of degree at most 2k if l = 0.

Let m := deg(s)−k. It is clear that 0 ≤ m ≤ k. By the definition of the degree,
i(s) = deg(s)−(|E|−i(V −s)) hold. We have that |E|−i(V −s) ≥ k|V |−l−(k|V |−
k − l) = k because G is a [k, l]-graph. This implies that i(s) ≤ deg(s) − k = m.
Let j := m− i(s). Now 0 ≤ j ≤ m and m− j = i(s) ≤ k − l holds because G is a
[k, l]-graph. Thus these m and j satisfy the conditions of Theorem 2.2.

Theorem 2.2 claims that G is obtained from a graph G′ by an operation
K(k, m, j). By induction we know that G′ can be constructed from Pk−l, this
implies that G can be constructed from Pk−l too. �

By the remark after the proof of Theorem 2.2 we can determine an inductive
construction of a [k, l]-graph (0 ≤ l ≤ k) algorithmically in polynomial time.

3. Partial results for other k and l values

In this section k, l will be integers and k ≥ 1, but l can be negative. First we
remark that Theorem 2.2 remains true without assumption l ≥ 0 (the proof is the
same). Thus for l < 0 the following version of Theorem 1.6 follows (using 3. of
Claim 2.1).

Theorem 3.1. Let G = (V, E) be a graph and l < 0 < k. Then G is a [k, l]-graph
if and only if G can be obtained from a [k, l]-graph on at most 2|l| vertices by
operations K(k, m, j) where 0 ≤ j ≤ m ≤ k, m− j ≤ k − l.

An undirected graph is called k-tree-connected if it contains k edge-disjoint
spanning trees. Remark that a graph is minimally k-tree-connected if and only if it
is a [k, k]-graph. Two variants of the notion of k-tree-connectivity were considered
by Frank and Szegő in [2]. One of them is the following: a loopless graph G (with
at least 2 nodes) is called nearly k-tree-connected if G is not k-tree-connected but
adding any new edge to G results in a k-tree-connected graph. It is easy to see
that a graph is nearly k-tree-connected if and only if it is a [k, k + 1]-graph.

Let Kt
2 denote the graph on two nodes with t parallel edges. Based on the

work of Henneberg [3] and Laman [4], Tay and Whiteley gave a proof of the
following theorem in the special case of k = 2 in [11].

Theorem 3.2 (Frank and Szegő). An undirected graph G = (V, E) is nearly k-
tree-connected if and only if G can be built from Kk−1

2 by applying the following
operations:
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1. add a new node z and k new edges ending at z so that no k parallel edges can
arise,

2. choose a subset F of j existing edges (1 ≤ j ≤ k − 1), pinch the elements of
F with a new node z, and add k− j new edges connecting z with other nodes
so that there are no k parallel edges in the resulting graph.

In [8] Tay proved for inductive reasons that a node of degree at most 2k − 1
either can be “split off”, or “reduced” to obtain a smaller nearly k-tree-connected
graph. Theorem 3.2 says that there always exists a node which can be “split off”.

The following theorem follows easily from the definition of [k, l]-graphs.

Proposition 3.3. Let k+1 ≤ l ≤ 3k
2 . If an undirected graph G = (V, E) can be built

up from K2k−l
2 by applying the following operations, then it is a [k, l]-graph.

(P1) add a new node z and k new edges ending at z so that no k − l + 1 parallel
edges can arise.

(P2) Choose a subset F of j existing edges (1 ≤ j ≤ k − 1), pinch the elements of
F with a new node z, and add k− j new edges connecting z with other nodes
so that there are no k − l + 1 parallel edges in the resulting graph.

Inspiring by Theorem 3.2 we would conjecture that the reverse of the propo-
sition above is also true for all k and l satisfying k + 1 ≤ l ≤ 3k

2 . But as it was
shown in [7], this is not true if k + k+2

3 ≤ l, still we think the following holds.

Conjecture 3.4. Let k + 1 ≤ l < k + k+2
3 . An undirected graph G = (V, E) is a

[k, l]-graph if and only if G can be built from K2k−l
2 by applying the operations

(P1) and (P2).

At last after a lemma we give a weaker form of Theorem 2.2 for l ≤ 3k
2 .

Lemma 3.5. Assume l ≤ 3k
2 and G = (V, E) is a [k, l]-graph. Let X, Y, Z ⊆ V . If

b(X) = b(Y ) = b(Z) = 0 and |X ∩ Y | = |X ∩ Z| = |Y ∩ Z| = 1, |X ∩ Y ∩ Z| = 0
then b(X ∪ Y ∪ Z) = 0 and l = 3k

2 .

Proof. 0 ≤ b(X∪Y ∪Z) = k|X∪Y ∪Z|− l−i(X∪Y ∪Z) ≤ k(|X |+ |Y |+ |Z|−3)−
l−i(X)−i(Y )−i(Z) = k|X |− l−i(X)+k|Y |− l−i(Y )+k|Y |− l−i(Y )−3k+2l =
b(X) + b(Y ) + b(Z)− 3k + 2l = 2l− 3k ≤ 0. �

Theorem 3.6. Assume l ≤ 3k
2 . Let G = (V + s, E) be a [k, l]-graph and let m, j be

integers such that degG(s) = k + m, iG(s) = m− j where j ≤ m ≤ k, m− j ≤ l.
Then there exist a j-element edgeset F on the neighbors of s such that (G−s)+F
is a [k, l]-graph.

Proof. Let N ⊆ V denote the neighbors of s. For arbitrary X containing N :
iG(s) = m − j, degG(s) = k + m and iG(X + s) = k|X + s| − l implies that
bG(X) ≥ j. (iG(X) = iG(X + s)− iG(s) − dG(s, X) ≤ k(|X |+ 1)− l − (m− j)−
(degG(s)− 2(m− j)) = k|X |+ k− l−m + j − (k + m− 2m + 2j) = k|X | − l− j).



176 Z. Fekete and L. Szegő

We prove the following claim by induction on ν.

Claim 3.7. For every 0 ≤ ν ≤ j there exist an Fν ν-element edgeset on N such
that (G− s) + F ′ is a [k, l]-sparse in V .

Proof. If ν = 0, then it is trivial. Suppose that there is a (ν − 1)-element edgeset
Fν−1, such that iG+Fν−1(X) ≤ k|X | − l for all ∅ �= X ⊆ V . Now we prove that we
add can one more edge.

Suppose on the contrary that for every uv ∈ E, u, v ∈ N there exists an
Xuv such that u, v ∈ Xuv: γG+Fν−1(Xuv) = k|Xuv| − l, i.e., bG+Fν−1(Xuv) = 0.
We claim that there exist a set X , such that N ⊆ X ⊆ V and bG+Fν−1(X) = 0.
If |N | = 1, then X := Xuu (where N = {u}) is appropriate. If |N | ≥ 2, then
let u, w ∈ N, u �= w and let X ⊆ V be a maximal set satisfying Xuw ⊆ X and
bG+Fν−1(X) = 0. We claim that N ⊆ X . Suppose that v ∈ N−X . If |Xvu∩X | ≥ 2
or |Xvw ∩X | ≥ 2, then X cannot be maximal by Lemma 2.3. If |Xvu ∩Xvw| ≥ 2,
then bG+Fν−1(Xvu ∪ Xvw) = 0 and |(Xvu ∪ Xvw) ∩ X | = |{u, w}| = 2 implies
bG+Fν−1(Xvu ∪Xvw ∪X) = 0, this contradicts the maximality of X .

But then we have |Xvu∩X | = |Xvw∩X | = |Xvu∩Xvw | = 1 and by Lemma 3.5
b(Xvu ∪Xvw ∪X) = 0 contradicting the maximality of X .

Now we have 0 = bG+Fν−1(X) = bG(X)− (ν − 1) ≥ bG(X)− (j − 1) contra-
dicting the remark at the beginning of the proof, which said bG(X) ≥ j. �

�

Acknowledgment

The authors are grateful to an anonymous referee for her/his useful comments and
suggestions.

References

[1] A. Frank, Connectivity and network flows, in: R. Graham, M. Grötschel and L.
Lovász, eds., Handbook of Combinatorics (Elsevier Science B.V., 1995), 111–177.
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Even Pairs in Bull-reducible Graphs

Celina M.H. de Figueiredo, Frédéric Maffray and
Claudia Regina Villela Maciel

Abstract. A bull is a graph with five vertices a, b, c, d, e and five edges ab, bc,
cd, be, ce. A graph G is bull-reducible if no vertex of G lies in two bulls. An
even pair is a pair of vertices such that every chordless path joining them has
even length. We prove that for every bull-reducible Berge graph G with at
least two vertices, either G or its complementary graph G has an even pair.

1. Introduction

A graph is perfect if for every induced subgraph H of G the chromatic number of
H is equal to its clique number. Perfect graphs were defined by Claude Berge [1].
The study of perfect graphs led to several interesting and difficult problems. The
first one is their characterization. Berge conjectured that a graph is perfect if and
only if it contains no odd hole and no odd antihole, where a hole is a chordless
cycle of length at least 4, and an antihole is the complementary graph of a hole.
It has become customary to call Berge graph any graph that contains no odd
hole and no antihole, and to call the above conjecture the “Strong Perfect Graph
Conjecture”. This conjecture was proved by Chudnovsky, Robertson, Seymour,
and Thomas [4] in 2002. A second problem is the existence of a polynomial-time
algorithm to color optimally the vertices of a perfect graph. This problem was
solved in 1984 by Grötschel, Lovász and Schrijver [10] with an algorithm based
on the ellipsoid method for linear programming. A third problem is the existence
of a polynomial-time algorithm to decide if a graph is Berge. This was solved by
Chudnovsky, Cornuéjols, Liu, Seymour and Vušković [3] in 2002. There remains
a number of interesting open problems in the context of perfect graphs. Some of
them are related to the concept of even pair.

Even pairs: An even pair [18] in a graph G is a pair of vertices such that every
chordless path between them has even length. A graph G is called a quasi-parity

This research was partially supported by CNPq, CAPES (Brazil)/COFECUB (France), project
number 359/01.
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graph [18] if for every induced subgraph H of G on at least two vertices, either H
has an even pair or H has an even pair. A graph G is called a strict quasi-parity
graph [18] if every induced subgraph of G on at least two vertices has an even pair.
Clearly, strict quasi-parity graphs are quasi-parity graphs. Meyniel [18] proved that
every quasi-parity graph is perfect. The concept of even pair turned out to be very
useful for proving that certain classes of Berge graphs are perfect and for designing
optimization algorithms on special classes of perfect graphs. See [8] for a survey
on this matter. Some questions of particular interest are the characterization of
quasi-parity graphs and of strict-quasi-parity graphs. Hougardy [14, 15] (see also
[8]) made two conjectures: (1) there is a family F of line-graphs of bipartite graphs
such that a graph is a strict quasi-parity graph if and only if it does not contain
an odd hole, an antihole, or a graph in F ; (2) there is a family F ′ of line-graphs
of bipartite graphs such that a graph is a quasi-parity graph if and only if it does
not contain an odd hole, an odd antihole, or a graph in F ′. These two conjectures
are still unsolved.

Bull-free graphs: A bull is a graph with five vertices r, y, x, z, s and five edges
ry, yx, yz, xz, zs; see Figure 1. We will frequently use the notation r − yxz − s for
such a graph. Chvátal and Sbihi [6] proved in 1987 that every bull-free Berge graph
is perfect. Subsequently Reed and Sbihi [20] gave a polynomial-time algorithm for
recognizing bull-free Berge graphs. De Figueiredo, Maffray and Porto [9] proved
that every bull-free Berge graph is a quasi-parity graph, and that every bull-free
Berge graph with no antihole is a strict quasi-parity graph. Hayward [11] proved
that every bull-free graph with no antihole if perfectly orderable (see [5, 13] for
this definition), as conjectured by Chvátal. These results also settled Hougardy’s
above two conjectures for bull-free graphs.

�
x

�y �z

�r �s

�
�

�
�

Figure 1. The bull r − yxz − s.

Bull-reducible graphs: A graph G is called bull-reducible if every vertex of G
lies in at most one bull of G. Clearly, bull-free graphs are bull-reducible. Ev-
erett, de Figueiredo, Klein and Reed [7] proved that every bull-reducible Berge
graph is perfect. Although this result now follows directly from the Strong Perfect
Graph Theorem [4], the proof given in [7] is much simpler and leads moreover
to a polynomial-time recognition algorithm for bull-reducible Berge graphs whose
complexity is lower than that given for all Berge graphs in [3]. Here we will prove:

Theorem 1. Let G be a bull-reducible Berge graph with at least two vertices. Then
either G or G has an even pair.
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We note that this theorem settles Hougardy’s above two conjectures in the
case of bull-reducible graphs. The proof of this theorem is given in Section 3,
while Section 2 presents some technical lemmas. We tend to follow the standard
terminology of graph theory [2], but we will use the verb “sees” instead of “is
adjacent to” and “misses” instead of “is not adjacent to”.

2. Some technical lemmas

As in [20], call wheel a graph made of an even hole of length at least 6 plus a
vertex that sees all vertices of this hole. Say that a proper subset H of vertices of
a graph G is homogeneous if every vertex of V (G) \ H either sees all vertices of
H or misses all vertices of H and 2 ≤ |H | ≤ |V (G)| − 1. We recall two lemmas
from [7].

Lemma 2 ([7]). Let G be a bull-reducible odd hole-free graph, and let C be a shortest
even hole of length at least 6 in G, with its vertices colored alternately red and blue.
Let v be any vertex in V (G) \ V (C). Then v satisfies exactly one of the following
conditions:
• N(v) ∩ V (C) = ∅;
• N(v) ∩ V (C) = V (C), so C and v form a wheel;
• N(v) ∩ V (C) consists in either all red vertices and no blue vertex or all blue

vertices and no red vertex;
• N(v) ∩ V (C) consists in either one, or two consecutive or three consecutive

vertices of C;
• N(v) ∩ V (C) consists in two vertices at distance 2 along C;
• C has length 6 and N(v) ∩ V (C) consists in four vertices such that exactly

three of them are consecutive. �

Lemma 3 (Wheel Lemma [7]). Let G be a bull-reducible odd hole-free graph. If G
contains a wheel, then G contains a homogeneous set. �

Now we give a few more lemmas that will be useful in the proof of the main result.

Lemma 4. Let G be a bull-reducible odd hole-free graph. Let P = u0-· · · -ur be a
chordless path of G of odd length r ≥ 5, and let c be a vertex of V (G) \ V (P ) that
sees u0 and ur. Then up to symmetry we have either:

1. N(c) ∩ V (P ) = V (P );
2. N(c)∩V (P ) = {u0, u1, ur} or {u0, u1, u3, ur}, and in this case there is a bull

ur − cu0u1 − u2;
3. r = 5 and N(c) ∩ V (P ) = {u0, u1, u2, u3, u5}, and in this case there is a bull

u0 − cu2u3 − u4.

Proof. Since G contains no odd hole, c has two consecutive neighbors along P .
If outcome 1 of the Lemma does not hold, then up to symmetry there exists an
integer i ∈ {0, . . . , r} such that c sees ui, ui+1 and misses ui+2. Clearly i ≤ r − 3.
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Suppose i is odd. So i ≤ r − 4. We find a first bull ur − cuiui+1 − ui+2.
Then i = 1, for otherwise we find a second bull u0 − cuiui+1 − ui+2 containing
c. Then c misses every uj with 5 ≤ j ≤ r − 1, for otherwise we find a second
bull uj − cu1u2 − u3 containing c. Then c sees u4 for otherwise {c, u2, u3, . . . , ur}
induces an odd hole. Then r < 7 for otherwise {c, u4, u5, . . . , ur} induces an odd
hole. So r = 5. But then we find a second bull u0− cu5u4 − u3 containing c. Thus
i is even.

Suppose i = 0. Then we find a first bull ur − cu0u1 − u2; and then c misses
every cj with 4 ≤ j ≤ r − 1, for otherwise we find a second bull uj − cu0u1 − u2

containing c. So we obtain outcome 2.
Suppose i is even and i ≥ 2. Then we find a first bull u0 − cuiui+1 − ui+2.

Then i = r− 3, for otherwise we find a second bull ur − cuiui+1− ui+2 containing
c. Then c sees ui−1, for otherwise we find a second bull ui−1 − uicui+1 − ui+2

containing c. If r = 5 we have outcome 3. So suppose r ≥ 7, so i ≥ 4. Then c sees
ui−2, for otherwise we find a second bull ui−2 − ui−1uic − ur containing c. But
then we find a second bull ui−2 − cuiui+1 − ui+2 containing c. This completes the
proof of the lemma. �

A P4 is a chordless path on four vertices. We call double broom the graph
made of a P4 (called the central P4 of the double broom), plus two non-adjacent
vertices a, b that see all vertices of the P4, plus a vertex a′ that sees only a and a
vertex b′ that sees only b. See Figure 2.
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Figure 2. A double broom and its complement

Lemma 5. Let G be a bull-reducible Berge graph. Let P be a chordless odd path
of G of length at least 5, and let a, b, a′, b′ be four vertices of G such that aa′ and
bb′ are edges, ab′ and ba′ are not edges, a, b see the two endpoints of P , and a′, b′

miss the two endpoints of P . Then G or G contains a double broom.

Proof. Note that a, b do not lie on P . On the other hand, a′, b′ may be interior
vertices of P . Put P = u0-u1-· · · -ur, with odd r ≥ 5. Note that each of ab and a′b′

may be an edge or not. More precisely, if ab is an edge then a′b′ is an edge, for
otherwise we find two intersecting bulls a′−au0b−b′ and a′−aurb−b′. Conversely, if
a′b′ is an edge then ab is an edge, for otherwise {a′, a, u0, b, b

′} induces an odd hole.
We can apply Lemma 4 to P and each of a, b. If we have outcome 2 for one

of a, b, say for a, then (regardless of symmetry) there is a bull containing a, u0, ur;
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and then we do not have outcome 2 or 3 for b, for otherwise there would be a
second bull containing one of u0, ur. If we have outcome 3 for both a, b, then we
find two bulls containing u2, u3. Therefore we must have outcome 1 for at least
one of a, b, say for b, that is, b sees all vertices of P . It follows that a′ does not lie
on P . We claim that a′ misses every vertex of P . For suppose the contrary. Then,
up to symmetry, a′ sees ui and misses ui−1 with 1 ≤ i ≤ (r − 1)/2, and we find
a bull a′ − uiui−1b − ur. Then a′ sees ur−1, for otherwise we find a second bull
a′−uiui−1b−ur−1 containing b. But then we find a second bull a′−ur−1urb−u0

containing b, a contradiction. So the claim holds.
If we have outcome 2 for a, then ur− au0u1−u2 and a′− au0u1−u2 are two

intersecting bulls, a contradiction. If we have outcome 3 for a, then u0−au2u3−u4

and a′ − au2u3 − u4 are two intersecting bulls. So a sees all vertices of P , which
restores the symmetry between a and b, and thus b′ does not lie on P and misses ev-
ery vertex of P . Now, if both ab, a′b′ are non-edges, then {u0, u1, u2, u3, a, b, a′, b′}
induces a double broom in G, while if both are edges, the same subset induces a
double broom in G. This completes the proof of the lemma. �

Lemma 6. Let G be a bull-reducible C5-free graph that contains a double broom.
Then G has a homogeneous set that contains the central P4 of the double broom.

Proof. Pick any double broom of G, and label its vertices w1, w2, w3, w4, a, b, a′, b′

so that its edges are w1w2, w2w3, w3w4, aw1, aw2, aw3, aw4, bw1, bw2, bw3, bw4,
aa′, bb′. Vertices w1, w2, w3, w4 form the central P4 of the double broom and we
write W = {w1, w2, w3, w4}. We partition the vertices of V (G) \W as follows:
• Let T be the set of vertices of V (G) \W that see all of w1, w2, w3, w4.
• Let P be the set of vertices of V (G) \W that see at least one but not all of

w1, w2, w3, w4.
• Let F be the set of vertices of V (G) \W that see none of w1, w2, w3, w4.

Clearly the four sets W , T , P , F are pairwise disjoint and their union is V (G).
Note that a, b ∈ T and a′, b′ ∈ F . We define some subsets of T as follows:

A = {t ∈ T | ta′ ∈ E, tb′ /∈ E};
B = {t ∈ T | ta′ /∈ E, tb′ ∈ E};
C = {t ∈ T | ta′ ∈ E, tb′ ∈ E}.

Note that A, B, C are pairwise disjoint and that a ∈ A, b ∈ B.

Claim 6.1. There is no edge between A and B.

Proof. For suppose there is an edge uv with u ∈ A, v ∈ B. Then a′ − uwiv − b′ is
a bull, for every i = 1, . . . , 4, so a′ belongs to four bulls, a contradiction. �

Claim 6.2. If p ∈ P , then:
1. There exist adjacent vertices wg, wh ∈W such that p sees wg and misses wh;
2. There exist nonadjacent vertices wr, ws ∈ W such that p sees wr and

misses ws.
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Proof. This follows directly from the definition of P and the fact that W induces
a connected subgraph in G and in G. �

Claim 6.3. Every vertex of P sees all of A ∪B ∪ C and none of a′, b′.

Proof. Consider any p ∈ P and u ∈ A. We first prove that p sees u. Suppose on
the contrary that p misses u.

Case 1: There is a subpath w-w′-w′′ of W such that p sees both w, w′ and
misses w′′. If p misses a′, then p − w′w′′u − a′ is a bull, while if p sees a′, then
a′−pww′−w′′ is a bull. In either case, p must miss b′ for otherwise b′−pww′−w′′

is a second bull containing p, a contradiction. Then p sees b or else p−w′w′′b− b′

is a second bull containing p. But then u−w′pb− b′ is a second bull containing p.
So p sees u.

Case 2: p sees exactly one of w1, w2 and misses w4. Then {p, w1, w2, u, w4}
induces a bull. This implies pb ∈ E, for otherwise {p, w1, w2, b, w4} induces a second
bull containing p, a contradiction. Then p sees a′, for otherwise {p, w1, w2, u, a′}
induces a second bull containing p. But then {a′, p, wg, b, w4}, where g ∈ {1, 2} is
such that p sees wg, induces a second bull containing p, a contradiction. So p sees
u. The case where p sees exactly one of w3, w4 and misses w1 is symmetric.

It is easy to see that if we are not in one of the above two cases, and up
to symmetry, then p sees w1, w4 and misses w2, w3; but then {p, w1, w2, w3, w4}
induces a C5, a contradiction. Thus we have proved that p sees u, and so p sees
every vertex of A ∪B.

Now we prove that p misses both a′ and b′. By Claim 6.2 there are two
nonadjacent vertices wr, ws ∈W such that p sees wr and misses ws. Suppose that
p sees a′. Then a′ − pwrb−ws is a bull. Now if p sees b′, then b′ − pwra−ws is a
second bull containing p; while if p misses b′, then a′ − pwrb− b′ is a second bull
containing p, in either case a contradiction. So p misses a′ and by symmetry it
misses b′.

Finally, we prove that p sees every vertex c ∈ C. Recall that c sees both a′, b′.
By Claim 6.2, there are two adjacent vertices wg, wh ∈ W such that p sees wg

and misses wh. Then p sees c for otherwise we find two bulls p− wgwhc− a′ and
p− wgwhc− b′ that contain p, a contradiction. Thus Claim 6.3 holds. �

Now we define subsets X, Z of F and a subset Y of T \ (A∪B∪C) as follows:
• x ∈ X if x ∈ F and there exists in G a path p-x1-· · · -xi, with p ∈ P , i ≥ 1,

x1, x2, . . . , xi ∈ F and x = xi. Any such path will be called a forcing sequence
for x.
• y ∈ Y if y ∈ T \ (A ∪ B ∪ C) and there exists in G a path x-y1-· · · -yj, with

x ∈ P ∪X , j ≥ 1, y1, y2, . . . , yj ∈ T \ (A∪B ∪C), and y = yj. Note that if x
is not in P there exists a forcing sequence p-x1-· · · -xi for x = xi. In this case
the sequence p-x1-· · · -xi-y1-· · · -yj will be called a forcing sequence for y. In
case x ∈ P the sequence x-y1-· · · -yj will be called a forcing sequence for y.
In either case a forcing sequence for y can be denoted by x0-· · · -xi-y1-· · · -yj

with i ≥ 0 and j ≥ 1.



Even Pairs in Bull-reducible Graphs 185

• z ∈ Z if z ∈ F \X and there exists in G a path y-z1-. . . -zk, with y ∈ Y , k ≥ 1,
z1, z2, . . . , zk ∈ F \X , and z = zk. Note that there exists a forcing sequence
x0-x1-· · · -xi-y1-· · · -yj for y = yj , with i ≥ 0 and j ≥ 1. The sequence x0-x1-
· · · -xi-y1-· · · -yj-z1-· · · -zk will be called a forcing sequence for z.
Naturally we can consider for each v ∈ X∪Y ∪Z a shortest forcing sequence.

Such sequences have notable properties which we express in the following claims.

Claim 6.4.

1. If x ∈ X and p-x1-· · · -xi is a shortest forcing sequence for x = xi then it is
a chordless path of G.

2. If y ∈ Y and x0-x1-· · · -xi-y1-· · · -yj is a shortest forcing sequence for y = yj,
with the above notation, then x0-x1-· · · -xi is a chordless path of G, xi-y1-
· · · -yj is a chordless path of G, and, if i ≥ 1, each of x0, x1, . . . , xi−1 sees
each of y1, . . . , yj.

3. If z ∈ Z and p-x1-· · · -xi-y1-· · · -yj-z1-· · · -zk is a shortest forcing sequence for
z = zk, with the above notation, then p-x1-· · · -xi is a chordless path of G, xi-
y1-· · · -yj is a chordless path of G, yj-z1-· · · -zk is a chordless path of G, each
of p, x1, . . . , xi−1 sees each of y1, . . . , yj, and each of p, x1, . . . , xi, y1, . . . , yj−1

misses each of z1, . . . , zk.

Proof. The claim follows routinely from the definition of X, Y, Z and from the
definition of a shortest forcing sequence. Details are omitted. �
Claim 6.5. If y ∈ Y , a shortest forcing sequence for y contains at most two vertices
of X.

Proof. For suppose on the contrary that there exists a shortest forcing sequence
S = p-x1-· · · -xi-y1-· · · -yj with j ≥ 1 and i ≥ 3. Then S satisfies the properties
stated in Claim 6.4, part 2. Then for each h = 1, . . . , 4 we find a bull wh −
y1xi−2xi−1 − xi that contains y1, so y1 lies in four bulls, a contradiction. �
Claim 6.6. If z ∈ Z, a shortest forcing sequence for z contains no vertex of X.

Proof. For suppose on the contrary that S = p-x1-· · · -xi-y1-· · · -yj-z1-· · · -zk is
a shortest forcing sequence for z = zk with i ≥ 1. Recall that S satisfies the
properties stated in Claim 6.4, part 3. By Claim 6.2, there are nonadjacent vertices
wr, ws ∈ W such that p sees wr and misses ws. By the preceding claim we have
i ≤ 2. Suppose i = 1. Then ws−y1wrp−x1 is a bull. If j = 1, then z1−y1wrp−x1 is
a second bull containing p; if j = 2, then z1−y2x1p−y1 is a second bull containing
p; if j ≥ 3, then z1 − yjyj−2p− yj−1 is a second bull containing p; in either case
we have a contradiction. So i = 2. Then ws − y1px1 − x2 is a bull. If j = 1, then
z1 − y1px1 − x2 is a second bull containing p; if j = 2, then z1 − y2x2x1 − y1 is
a second bull containing x1; if j ≥ 3, then z1 − yjyj−2p − yj−1 is a second bull
containing p; in either case we have a contradiction. Thus the claim holds. �
Claim 6.7. If z ∈ Z, a shortest forcing sequence for z contains at most two vertices
of Y .
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Proof. For let S = p-y1-· · · -yj-z1-· · · -zk be a shortest forcing sequence for z = zk.
The sequence S satisfies the properties stated in Claim 6.4, part 3, and it contains
no vertex of X by Claim 6.6. Suppose that j ≥ 3. Then z1 − yjyj−2wh − yj−1 is
a bull that contains z1 for each h = 1, . . . , 4, a contradiction. So j ≤ 2, and the
claim holds. �

Let H be the set of vertices that form the connected component of G\(T \Y )
that contains W .

Claim 6.8. H = W ∪ P ∪X ∪ Y ∪ Z.

Proof. Put H ′ = W ∪P ∪X∪Y ∪Z. First we prove that H ′ ⊆ H . Clearly, W ⊆ H .
We also have P ∪X ∪ Y ⊂ H since every vertex of P ∪X ∪ Y is linked to W by a
path in G \ (T \ Y ). Consequently Z ⊂ H , since every vertex of Z is linked to Y
by a path in G \ (T \ Y ). So we have H ′ ⊆ H .

Conversely, let h ∈ H . Recall that V (G) is partitioned into the four sets W ,
P , T , F . If h ∈ W ∪P then h ∈ H ′. If h ∈ T , then, by the definition of H , we have
h ∈ Y . If h ∈ F , then, by the definition of H , there exists a path in G \ (T \ Y )
from h to W . Along this path, let v be the first vertex, starting from h, that is not
in F . Then v must be in P ∪W ∪ Y . If v ∈ P ∪W , then h ∈ X . If v ∈ Y , then
h ∈ Z. So we have H ⊆ H ′, and the claim holds. �
Claim 6.9. Every vertex of H sees all of T \ (A ∪B ∪ C ∪ Y ).

Proof. Consider any t ∈ T \ (A∪B∪C ∪Y ). So t sees all of W by the definition of
T . In addition, t sees all of P ∪X ∪Y , for otherwise t would be in Y . Now suppose
that t misses a vertex z of Z. There exists a shortest forcing sequence S for z, and
by Claims 6.6 and 6.7 we have S = p-y1-· · · -yj-z1-· · · -zk with z = zk and with
j ∈ {1, 2}. We may also choose z such that k is as small as possible, so t sees all
vertices of S \zk. Let wg, wh be two adjacent vertices of W such that p sees wg and
misses wh. Suppose j = 1. Then we find a first bull p−wgwhy1−z1. If k = 1, then
p− twhy1−z1 is a second bull containing p; if k = 2, then p− ty1z1−z2 is a second
bull containing p; if k ≥ 3, then p − tzk−2zk−1 − zk is a second bull containing
p; in either case there is a contradiction. So j = 2. Then we find a first bull
y1−wgpy2−z1. If k = 1, then y1−tpy2−z1 is a second bull containing y1; if k = 2,
then y1−ty2z1−z2 is a second bull containing y1; If k ≥ 3, then y1−tzk−2zk−1−zk

is a second bull containing y1; in either case there is a contradiction. Thus the claim
holds. �
Claim 6.10. Every vertex of X sees all of A ∪B ∪ C and none of a′, b′.

Proof. Consider any x ∈ X . By the definition of X , there exists a shortest forcing
sequence S = p-x1-· · · -xi for x = xi, with i ≥ 1, p ∈ P , and x1, . . . , xi−1 ∈ X .
Then S satisfies the properties stated in Claim 6.4, part 1, i.e., S is a chordless
path. Let wr, ws be nonadjacent vertices of W such that p sees wr and misses ws.
We argue by induction on i.

Assume i = 1. Let u ∈ A ∪ C, and suppose that x misses u. We find a
first bull ws − uwrp − x. Then x sees b, for otherwise ws − bwrp − x is a second



Even Pairs in Bull-reducible Graphs 187

bull containing x. Then x misses a′, for otherwise a′ − xpb − ws is a second bull
containing x. But then a′ − uwrp− x is a second bull containing x. Hence x sees
every vertex of A ∪C. Analogously, x sees every vertex of B. Suppose that x sees
a′. So we find a first bull a′ − xpb − ws. Then x misses b′, for otherwise we find
a second bull b′ − xpa− ws containing x. But then b′ − bpx− a′ is a second bull
containing x. Hence x misses a′, and analogously, x misses b′.

Now assume i ≥ 2. So vertices xi−1 and xi−2 are defined, with xi−1 ∈ X and
xi−2 ∈ P ∪ X . Let u ∈ A ∪ C, and suppose that xi misses u. By the induction
hypothesis u sees xi−1 and xi−2, and we obtain a first bull xi − xi−1xi−2u − ws.
Then xi sees b, for otherwise xi − xi−1xi−2b − ws is a second bull containing xi.
Then xi misses a′, for otherwise a′ − xixi−1b− ws is a second bull containing xi.
But then xi − xi−1xi−2u − a′ is a second bull containing xi. Hence, xi sees every
u ∈ A∪C. Analogously, xi sees every vertex of B. Suppose that xi sees a′. By the
induction hypothesis, xi−1 sees b. Hence a′ − xixi−1b− wr and a′ − xixi−1b− ws

are two intersecting bulls, a contradiction. Hence, xi misses a′, and analogously,
xi misses b′. Thus the claim holds. �
Claim 6.11. Every vertex of Y sees all of A ∪B ∪ C and none of a′, b′.

Proof. Consider any y ∈ Y . By the definition of Y , there exists a shortest forcing
sequence S = x0-· · · -xi-y1-y2-· · · -yj for y = yj , with j ≥ 1, and by Claim 6.5 we
have i ≤ 2. Since Y ⊆ T \ (A∪B ∪C), y misses a′ and b′. Consider any u ∈ A∪C.
Pick a vertex w as follows: If i = 0 then xi ∈ P and xi sees a vertex w ∈ W . If
i > 0 then we take w = xi−1. By Claims 6.3 and 6.10, xi and w see both u, b and
miss both a′, b′. Also w sees all of y1, . . . , yj by the definition of Y . We prove by
induction on j that y sees u. Suppose the contrary.

Assume j = 1. So we find a first bull a′ − uxiw − y. If u sees b′, we find a
second bull b′ − uxiw − y, a contradiction. So u misses b′, so u ∈ A, so u misses
b by Claim 6.1. Then y sees b, for otherwise we find a second bull b′ − bxiw − y
containing y. But then we find a second bull b′ − byw − u containing y. Hence, y
sees every u ∈ A ∪ C. Analogously, y sees every vertex of B.

Assume j ≥ 2. By the induction hypothesis, yj−1 sees u and b. Then we find
a first bull a′ − uyj−1w − y. If u sees b′, we find a second bull b′ − uyj−1w − y, a
contradiction. So u misses b′, so u ∈ A, so u misses b by Claim 6.1. Then y sees b,
for otherwise we find a second bull b′−byj−1w−y containing y. But then we find a
second bull b′− byw−u containing y. Hence, y sees every u ∈ A∪C. Analogously,
y sees every vertex of B. Thus the claim holds. �
Claim 6.12. Every vertex of Z sees all of A ∪B ∪ C and none of a′, b′.

Proof. Consider any z ∈ Z. By Claims 6.6 and 6.7, there exists a shortest forcing
sequence S = p-y1-· · · -yj-z1-· · · -zk for z = zk with 1 ≤ j ≤ 2; and S satisfies the
properties given in Claim 6.4, part 3. Consider any u ∈ A ∪ B ∪ C. So u sees all
of W and, by the preceding claims, u sees all of p, y1, . . . , yj. As usual there exist
adjacent vertices wg, wh ∈W such that p sees wg and misses wh. We prove that z
sees u and misses a′, b′ by induction on k.
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Assume k = 1. If j = 1, we find a bull z − y1whwg − p. Then z sees u
for otherwise we find a second bull z − y1whu − p containing z. So z sees all of
A ∪ B ∪ C. Then z misses a′, for otherwise we find a second bull a′ − zy1b − p
containing z. Likewise z misses b′. If j = 2, we find a bull z − y2pwg − y1. Then z
sees u, for otherwise we find a second bull z− y2pu− y1 containing z. So z sees all
of A ∪B ∪C. Then z misses a′, for otherwise we find a second bull a′ − zy2b− y1

containing z. Likewise z misses b′. So the claim holds when k = 1.
Assume k ≥ 2. By the induction hypothesis, u sees all of z1, . . . , zk−1. If

j = 1, we find a bull p − wgwhy1 − z1. Then z sees u, for otherwise we find a
second bull p− uz′zk−1 − z containing z, where z′ = zk−2 if k ≥ 3 and z′ = y1 if
k = 2. If j = 2, we find a bull z1 − y2pwg − y1. Then z sees u, for otherwise we
find a second bull z − zk−1z

′u − y1 containing y1, where z′ = zk−2 if k ≥ 3 and
z′ = y2 if k = 2. So z sees all of A∪B ∪C. In either case (j = 1 or 2), z misses a′,
for otherwise we find a second bull a′− zzk−1b− p containing p. Likewise z misses
b′. Thus the claim holds. �

Claim 6.13. H is a homogeneous set.

Proof. Since H is a component of G \ (T \ Y ), it suffices to prove the property
that every vertex v ∈ H sees every vertex t ∈ T \ Y . Claim 6.9 establishes this
property when t ∈ T \ (A∪B ∪C ∪Y ). Suppose t ∈ A∪B ∪C. Then when v ∈ W
the property follows from the definition of A, B, C; and when v ∈ P, X, Y, Z the
property follows respectively from Claims 6.3, 6.10, 6.11 and 6.12. Thus the claim
holds. �

This completes the proof of Lemma 6. �

3. Even pairs

Recall that a graph is weakly triangulated if G and G contain no hole of length at
least 5. In the case of weakly triangulated the desired result is already known as
it was proved by Hayward, Hoàng and Maffray [12] in a stronger form. Say that
two non-adjacent vertices form a 2-pair if every chordless path joining them has
length 2.

Theorem 7 ([12]). Let G be a weakly triangulated graph that is not a clique. Then
G has a 2-pair.

Now we are ready to prove our main result, which we state again:

Theorem 8. Let G be a bull-reducible Berge graph with at least two vertices. Then
either G or G has an even pair.

Proof. We prove Theorem 8 by induction on the number of vertices of the graph
G. First, suppose that G and G contain no hole of length at least 5. Then G is
weakly triangulated. In that case the result follows from Theorem 7. So suppose
that G is not weakly triangulated. Suppose that G has a homogeneous set. By
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the induction hypothesis, the subgraph H induced by this set has two vertices a, b
that form an even pair in H or in H . Since every vertex of G \H either sees both
a, b or misses both a, b, it follows that a, b also form an even pair in G or in G.

Now suppose that G has no homogeneous set and that one of G, G contains
a hole of length at least 5. By Lemma 3, G and G contain no wheel. By Lemma 6,
G and G contain no double broom. Let l be the number of vertices of a shortest
hole of length at least 5 in G or G. By symmetry, we may assume that G contains
a hole of length l. Note that l ≥ 6 and l is even since G is Berge. So V (G)
contains l pairwise disjoint and non-empty subsets V1, . . . , Vl such that, for each
i = 1, . . . , l (with subscript arithmetic modulo l), every vertex of Vi sees every
vertex of Vi−1 ∪ Vi+1 and misses every vertex of Vi+2 ∪ Vi+3 ∪ · · · ∪ Vi−3 ∪ Vi−2.
We write V ∗ = V1 ∪ V2 ∪ · · · ∪Vl. We can choose these sets so that V ∗ is maximal.
Given these subsets, we define some further subsets:
• Let A1 be the set of vertices of V (G) \ V ∗ that see all of V2 ∪ V4 ∪ · · · ∪ Vl

and miss all of V1 ∪ V3 ∪ · · · ∪ Vl−1;
• Let A2 be the set of vertices of V (G) \ V ∗ that see all of V1 ∪ V3 ∪ · · · ∪ Vl−1

and miss all of V2 ∪ V4 ∪ · · · ∪ Vl;
• For each i = 1, . . . , l, let Xi be the set of vertices of V (G) \ (V ∗ ∪ A1 ∪ A2)

that see all of Vi−1 ∪ Vi+1 and miss all of Vi−2 ∪ Vi+2;
• Let Z = V (G) \ (V ∗ ∪A1 ∪A2 ∪X1 ∪ · · · ∪Xl).

Clearly, the sets V1, . . . , Vl, A1, A2, X1, . . . , Xl, Z are pairwise disjoint and their
union is V (G). Let us now establish some useful properties of these sets. In the
following claims, for each i = 1, . . . , l, we let vi be an arbitrary vertex of Vi.

Claim 8.1. For i = 1, . . . , l, if Xi �= ∅ then l = 6 and every vertex of Xi has a
neighbor in Vi+3. Moreover, if a vertex of Xi sees all of Vi+3 then it has a neighbor
in Vi.

Proof. For simpler notation put i = 3. Let x be any vertex of X3. So x sees all of
V2 ∪V4 and misses all of V1 ∪ V5. Then x must have a neighbor in V6 ∪ · · · ∪Vl, for
otherwise we could add x to V3, which would contradict the maximality of V ∗. Let
h be the smallest index such that x has a neighbor y in Vh with 6 ≤ h ≤ l. If h ≥ 7,
the set {x, v4, . . . , vh−1, y} induces a hole of length h− 2, with 5 ≤ h− 2 ≤ l − 2,
which contradicts G being Berge (if h is odd) or the definition of l (if h is even).
So h = 6. Suppose l ≥ 8. Then we can apply Lemma 2 to the hole induced by
{v1, v2, v3, v4, v5, y, . . . , vl} and to x, which implies that x sees every vj with even
j �= 6 and misses every vj with odd j. Then applying Lemma 2 to the hole induced
by {v1, . . . , vl} implies that x also sees every v6 ∈ V6. But then we have x ∈ A1,
which contradicts the definition of X3. Thus the first part of the claim holds.

To prove the second part, let x be a vertex of X3 that sees all of V6. Thus
l = 6. So x sees all of V2 ∪ V4 ∪ V6 and misses all of V1 ∪ V5. By Lemma 2, if x has
no neighbor in V3 then x must be in A1, which contradicts the definition of X3.
So x has a neighbor in V3. Thus the claim holds. �
Claim 8.2. For i = 1, . . . , l, there is no P4 in Vi ∪Xi.
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Proof. For if there is a P4 in Vi ∪ Xi, then its four vertices together with vi−1,
vi−2, vi+1, vi+2 induce a double broom, a contradiction. �

Claim 8.3. For i = 1, . . . , l, if i is odd there is no edge between Vi ∪ Xi and A1;
and if i is even there is no edge between Vi ∪Xi and A2.

Proof. Up to symmetry and for simpler notation we may take i = 3 and suppose
that there exists an edge da with d ∈ V3 ∪ X3 and a ∈ A1. The definition of
A1 implies d ∈ X3 and so, by Claim 8.1, we have l = 6 and d has a neighbor
u6 ∈ V6. If d has a neighbor u3 ∈ V3 then we find two bulls u3 − dau6 − v5 and
u3 − dau6 − v1 containing d, a contradiction. So d has no neighbor in V3, and so,
by Claim 8.1, d has a non-neighbor w6 ∈ V6. Then we find two bulls v3−v4da−w6

and v3 − v2da− w6 containing d, a contradiction. Thus the claim holds. �

Claim 8.4. For i = 1, . . . , l, there is no edge between Vi ∪Xi and Vi+2 ∪Xi+2.

Proof. Put i = 3, and suppose that there is an edge xy with x ∈ V3 ∪ X3 and
y ∈ V5 ∪X5. Since x has a neighbor in V5 ∪X5 we have x /∈ V3, so x ∈ X3; and
then, by Claim 8.1, we have l = 6 and x has a neighbor u6 ∈ V6. Likewise, y is
in X5 and has a neighbor u2 ∈ V2. If x has a non-neighbor w6 ∈ V6 and y has
a non-neighbor w2 ∈ V2 then {x, y, w6, v1, w2} induces a C5, a contradiction. So
we may assume, up to symmetry, that x sees all of V6. Then, by Claim 8.1, x has
a neighbor w3 ∈ V3. So we find a first bull w3 − xyu6 − v1. If y has a neighbor
w5 ∈ V5, then we find a second bull w5 − yxu2 − v1 containing x, a contradiction.
So y has no neighbor in V5, and, by Claim 8.1, y has a non-neighbor w2 ∈ V2.
But then we find a second bull v1 − w2w3x − y, a contradiction. Thus the claim
holds. �

Claim 8.5. For i = 1, . . . , l, let x be a vertex that has a neighbor and a non-neighbor
in Vi ∪Xi. If x has a neighbor in Vi−1, then it misses all of Vi+2. Likewise, if it
has a neighbor in Vi+1, then it misses all of Vi−2.

Proof. Put i = 3 and let a, b respectively be a neighbor and a non-neighbor of x
in V3 ∪X3. Recall that a, b see all of V2 ∪V4 and miss all of V1 ∪V5. Suppose up to
symmetry that x has neighbors u2 ∈ V2 and u5 ∈ V5. Then x sees every v4 ∈ V4,
for otherwise {x, u2, b, v4, u5} induces an odd hole. Then Lemma 2, applied to x
and the hole induced by {v1, u2, v3, v4, u5, v6, . . . , vl} for every v3 ∈ V3, v6 ∈ V6,
v1 ∈ V1, and the fact that G contains no wheel, implies that l = 6 and that x sees
every vertex of V6 ∪ V4 and none of V1 ∪ V3. So x ∈ A1 ∪ X5; and since x has a
neighbor, we have x ∈ X5; but then the edge xa contradicts Claim 8.4. Thus the
claim holds. �

Claim 8.6. For i = 1, . . . , l, there is no chordless odd path of G of length at least
5 whose two endpoints are in Vi ∪Xi.

Proof. For suppose that there is such a path P . Then its two endpoints see both
vi−1, vi+1 and miss both vi−2, vi+2, and so we can apply Lemma 5 in G to P and
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vertices vi−1, vi+1, vi−2, vi+2, which implies that G or G contains a double broom,
a contradiction. �
Claim 8.7. For i = 1, . . . , l, there is no chordless odd path in G of length at least
5 whose two endpoints are in Vi ∪Xi.

Proof. For suppose that there is such a path Q in G. Then, in G, its two endpoints
see both vi−2, vi+2 and miss both vi−1, vi+1, and so we can apply Lemma 5 in G to
Q and vertices vi−1, vi+1, vi−2, vi+2, which implies that G or G contains a double
broom, a contradiction. � �

Claim 8.8. For i = 1, . . . , l, suppose that there exists a chordless path x-a-b-y in
G with a, b ∈ Vi ∪Xi. Then one of x, y is in Vi ∪Xi.

Proof. Put i = 3, and suppose that x sees v2, v4. By Claim 8.5, x misses all of
V1∪V5. If x has a non-neighbor w2 ∈ V2, we find two intersecting bulls v1−w2ba−x
and w2−axv4−v5. So x sees all of V2; likewise x sees all of V4. So x ∈ V3∪X3∪A2;
actually, since x sees a and by Claim 8.3, we have x ∈ V3 ∪X3. So the claim holds
in this case. It holds similarly if y sees v2, v4.

Suppose now that x does not see both v2, v4, and the same for y. At least one
of x, y must see at least one of v2, v4, for otherwise we find two intersecting bulls
x− av2b− y and x− av4b− y. So assume x sees v2 and misses v4. By Claim 8.5, x
misses v5, and so we find a bull x−abv4−v5. Then y sees v4, for otherwise we find
a second bull x− av4b− y containing a. Then y misses v1 by Claim 8.5 and v2 by
the preceding paragraph. But then we find a second bull y − bav2 − v1 containing
a. Thus the claim holds. �
Claim 8.9. For i = 1, . . . , l, suppose that there exists a chordless path a-u-v-b in G
with a, b ∈ Vi ∪Xi. Then one of u, v is in Vi ∪Xi.

Proof. Put i = 3. So a, b see all of V2 ∪ V4 and miss all of V1 ∪ V5.
First consider the case where one u, v, say u, has a neighbor in each of V2, V4.

Let u2 ∈ V2, u4 ∈ V4 be neighbors of u. By Claim 8.5, u misses all of V1 ∪ V5.
Suppose that u has a non-neighbor w2 ∈ V2. Then we find a first bull w2− auu4−
v5. Vertex v sees w2, for otherwise {w2, a, u, v, b} induces an odd hole. Then, by
Claim 8.5, v misses all of V5. Vertex v sees v1, for otherwise we find a second bull
v1 − u2au − v containing a. Then, by Claim 8.5, v misses all of V4. But then we
find a second bull v5 − u4au− v containing a. So u sees all of V2, and similarly u
sees all of V4. So u is in V3 ∪X3 ∪A1; and the definition of V3, X3 and Claim 8.3
imply u ∈ V3 ∪X3. So in this case the claim holds.

In the remaining case, we may assume that u misses all of V4, and so v sees
all of V4 (for otherwise {w4, a, u, v, b} induces an odd hole for any w4 ∈ V4 \N(v)),
and so v misses all of V2, and so u sees all of V2. By Claim 8.5, u misses all of
V5, and v misses all of V1. If u misses any w1 ∈ V1, we find two intersecting bulls
w1 − v2ua− v4 and w1− v2au− v, a contradiction. So u sees all of V1. Likewise, v
sees all of V5. By Lemma 2 applied to u and to the hole induced by {v1, . . . , vl},
and since u sees v1, v2 and misses v4, v5, we have N(u) ∩ {v6, . . . , vl} ⊆ {vl}.
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Likewise we have N(v) ∩ {v6, . . . , vl} ⊆ {v6}. Suppose l ≥ 8. If u misses vl and
v misses v6 then {v1, u, v, v5, v6, . . . , vl} induces a hole of odd length l − 1. If u
sees vl and v sees v6 then {u, v, v6, . . . , vl} induces a hole of odd length l − 3.
If u sees vl and v misses v6, then {u, v, v5, v6, . . . , vl} induces an even hole of
length l − 2, a contradiction to the definition of l. A similar contradiction occurs
if u misses vl and v sees v6. So we must have l = 6. Then every v6 sees one of
u, v, for otherwise {v1, u, v, v5, v6} induces an odd hole. Up to symmetry let us
assume that v has a neighbor u6 ∈ V6. Then v misses every v3 ∈ V3, for otherwise
{v, v3, v2, v1, u6} induces an odd hole. Suppose that v also has a non-neighbor
w6 ∈ V6. Then, u sees w6, for otherwise {w6, v1, u, v, v5} induces an odd hole; and
u misses every v3 ∈ V3, for otherwise {u, v3, v4, v5, w6} induces an odd hole; but
then {v2, u, v, v4, v3} induces an odd hole, a contradiction. Thus v sees all of V6.
Now the fact that v sees all of V4∪V5∪V6 and misses all of V1∪V3 implies that v is
in V5 ∪X5; but then the edge vb contradicts Claim 8.4. Thus the claim holds. �

Claim 8.10. If for some i = 1, . . . , l, the set Vi∪Xi is not a clique then it contains
an even pair of G or an even pair of G.

Proof. Put i = 3. For any two vertices a, b ∈ V3 ∪ X3, put Nin(a, b) = N(a) ∩
N(b) ∩ (V3 ∪ X3). Choose a pair {a, b} of non-adjacent vertices of V3 ∪ X3 that
maximizes the size of Nin(a, b) (such a pair exists since V3 ∪X3 is not a clique). If
the claim does not hold, {a, b} is not an even pair of G, so there exists a chordless
odd path of G with endpoints a, b. By Claim 8.6 this path has length 3, so we can
write it as a-u-v-b. By Claim 8.9, we may assume up to symmetry that u ∈ V3∪X3.
Consider any d ∈ Nin(a, b). Then d sees u, for otherwise u-a-d-b is a P4 in V3∪X3,
which contradicts Claim 8.2. So we have Nin(a, b) ⊆ Nin(u, b), and the choice
of {a, b} implies Nin(a, b) = Nin(u, b). We claim that {a, u} is an even pair of
G. For suppose that there exists a chordless odd path Q in G with endpoints
a, u. By Claim 8.7, Q has length 3. So we can write Q = a-x-y-u in G, which
means that in G we have a chordless path y-a-u-x. By Claim 8.8, one of x, y is
in V3 ∪X3. By symmetry we may assume that x ∈ V3 ∪X3. Then x misses b, for
otherwise we have x ∈ Nin(u, b) \ Nin(a, b). Then x sees every d ∈ Nin(a, b), for
otherwise x-u-d-b is a P4 in V3 ∪ X3, which contradicts Claim 8.2. But then we
have Nin(a, x) ⊇ Nin(a, b) ∪ {u}, which contradicts the choice of {a, b}. Thus the
claim holds. �

Claim 8.11. If for some i = 1, . . . , l, the set Vi∪Xi induces a clique of size at least
2 then any two vertices of Vi ∪Xi form an even pair of G.

Proof. For suppose that there is a chordless odd path Q in G with endpoints a, b
in Vi ∪Xi. By Claim 8.7, Q has length 3, so we can write Q = a-x-y-b in G, and
so we have a chordless path y-a-b-x in G. By Claim 8.8, one of x, y is in Vi ∪Xi;
but this contradicts the fact that Vi ∪Xi is a clique. Thus the claim holds. �

Claim 8.12. Suppose that for every i = 1, . . . , l, the set Vi ∪ Xi has size 1. Then
{vi, vi+2} is an even pair of G for every i.
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Proof. For suppose on the contrary and up to symmetry that {v1, v3} is not an
even pair; so there is a chordless odd path P = x0-x1-· · · -xr with v1 = x0, v3 = xr

and r ≥ 3. Since V (P ) ∪ {v2} cannot induce an odd hole (when r = 3), and by
Lemma 4 (when r ≥ 5), and up to symmetry, we may assume that v2 sees x1.
If x1 sees vl, then x1 misses vl−1 by Lemma 2, and we have x1 ∈ V1 ∪ X1, a
contradiction. So x1 misses vl, and we find a bull vl− v1x1v2− v3. Then v2 misses
xr−1, for otherwise by symmetry we find a second bull v4−v3xr−1v2−v1. If r = 3,
then vl sees x2, for otherwise we find a second bull vl− v1v2x1− x2 containing v2;
but then {vl, v1, v2, v3, x2} induces an odd hole. So r ≥ 5. Since v2 misses xr−1,
we have outcome 2 or 3 of Lemma 4, and in either case Lemma 4 states that there
is a second bull containing v2, a contradiction. Thus the claim holds. �

Claims 8.10, 8.11 and 8.12 complete the proof of the theorem. �

4. Comments

For any integer k ≥ 0, let Bk be the class of graphs in which every vertex belongs
to at most k bulls. So B0 is the class of bull-free graphs, and B1 is the class of
bull-reducible graphs. One can consider the following statements:

Statement Ak: For every Berge graph G in Bk with at least two vertices,
either G or G has an even pair.
Statement A′

k: For every Berge graph G in Bk that contains no antihole,
either G is a clique or G has an even pair.
Statement A′′

k : For every Berge graph G in Bk that contains no antihole,
G is perfectly orderable.

Statements A0 and A′
0 are theorems proved in [9]. Statement A′′

0 is a theorem
proved in [11]. Statement A1 is the main result in this article. Statements A′

1 and
A′

2 are theorems, as they can be obtained easily as corollaries of the main result
in [17]. On the other hand, consider the graph H12 with 12 vertices v1, . . . , v12

such that v1-v2-· · · -v8-v1 is a hole, vertex v9 is adjacent to v1, v2, v11, vertex v10

is adjacent to v3, v4, v12, vertex v11 is adjacent to v5, v6, v9, and vertex v12 is
adjacent to v7, v8, v10. Then it is easy to see that H12 is a Berge graph (it is
actually the line-graph of a bipartite graph), it contains no antihole, it is in B5,
and H12 and its complement have no even pair. So H12 is a counterexample to
statements Ak, A′

k for any k ≥ 5. Moreover, the graph “E” in [13, p. 142, Fig. 7.1]
is a counterexample to A′′

3 . We do not have a proof or a counterexample for any
of the remaining statements A2, A3, A4, A′

3, A
′
4 and A′′

1 , A′′
2 .
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Kernels in Orientations of
Pretransitive Orientable Graphs

Hortensia Galeana-Sánchez and Roćıo Rojas-Monroy

Abstract. Let D be a digraph, V (D) and A(D) will denote the sets of vertices
and arcs of D, respectively. A kernel N of D is an independent set of vertices
such that for every w∈V (D)−N there exists an arc from w to N . A digraph
D is called right-pretransitive (resp. left-pretransitive) when (u, v) ∈ A(D)
and (v, w)∈A(D) implies (u, w)∈A(D) or (w, v)∈A(D) (resp. (u, v)∈A(D)
and (v, w) ∈ A(D) implies (u, w) ∈ A(D) or (v, u) ∈ A(D)). These concepts
were introduced by P. Duchet in 1980. Let G be a graph, an orientation of
G is a digraph obtained from G by directing each edge of G in at least one
of the two possible directions; an orientation D of G is: a right (resp. left)-
pretrantive orientation of G if D is a right (resp. left)-pretransitive digraph;
and D is a Meyniel-orientation or M -orientation of G, if every directed cycle
of length 3 of D has at least two symmetrical arcs. In this paper the following
result is proved: Let G be a simple (possible infinite) graph, and D an M -
orientation of G. If there exists a right (resp. left)-pretransitive orientation T
of G such that T has no infinite outward path nor infinite inward path either,
and Sym(T ) = Sym(D), then D has a kernel. Previous results are generalized.

Mathematics Subject Classification (2000). 05C20.

Keywords. Kernel, kernel-perfect digraph, right-pretransitive digraph, left-
pretransitive digraph.

1. Introduction

For general concepts we refer the reader to [2]. In the paper we write digraph to
mean 1-digraph in the sense of Berge [2]. In this paper D will denote a possibly
infinite digraph. Often we shall write u1u2 instead of (u1, u2). An arc u1u2∈A(D)
is called asymmetrical (resp. symmetrical) if u2u1 /∈ A(D) (resp. u2u1 ∈ A(D)).
The asymmetrical part of D (resp. symmetrical part of D), which is denoted by
Asym(D) (resp. Sym(D)), is the spanning subdigraph of D whose arcs are the
asymmetrical (resp. symmetrical) arcs of D. We recall that a subdigraph D1 of D



198 H. Galeana-Sánchez and R. Rojas-Monroy

is a spanning subdigraph if V (D1) = V (D). If S is a nonempty subset of V (D)
then the subdigraph D[S] induced by S is the digraph with vertex set S and
whose arcs are those arcs of D which join vertices of S. A directed path is a finite
sequence (x1, x2, . . . , xn) of distinct vertices of D such that (xi, xi+1)∈A(D) for
each i∈ {1, . . . , n − 1}. When D is infinite, we say that a sequence (xi)i∈N is an
infinite outward (resp. inward) path if for each i ∈ N we have (xi, xi+1) ∈ A(D)
(resp. (xi+1, xi) ∈ A(D)) and for every {i, j} ⊆ N we have xi �= xj . Let S1 and
S2 be subsets of V (D), a finite directed path (x1, . . . , xn) will be called an S1S2-
directed path whenever x1 ∈S1 and xn ∈S2 in particular when the directed path
is an arc.

Definition 1.1. A set I ⊆ V (D) is independent if A(D[I]) = ∅. A kernel N of D
is an independent set of vertices such that for each z ∈ V (D) − N there exists a
zN -arc in D. A digraph D is called kernel-prefect when every induced subdigraph
of D has a kernel.

The concept of kernel was introduced by Von Neumann and Morgenstern [14]
in the context of Game Theory. The problem of the existence of a kernel in a given
digraph has been studied by several authors in particular by Von Neumann and
Morgenstern [14], Richardson [16, 17], Berge [2], Berge and Duchet [4], Duchet and
Meyniel [11], Duchet [8, 10], Galeana-Sánchez and Neumann-Lara [12]. It is well
known that a finite transitive digraph is kernel-perfect and a finite symmetrical
digraph is kernel-perfect (see for example [2]). (We recall that a digraph D is
transitive whenever (u, v)∈A(D) and (v, w)∈A(D) implies (u, w)∈A(D).)

Definition 1.2 (Duchet [8]). A digraph D is called right (resp. left)-pretransitive
digraph if every nonempty subset B of V (D) possesses a vertex t(B) = b such
that (x, b) ∈A(D) and (b, y)∈A(D) implies (x, y) ∈A(D) or (y, b)∈A(D) (resp.
(x, b)∈A(D) and (b, y)∈A(D) implies (x, y)∈A(D) or (b, x)∈A(D)), for any two
vertices x, y∈V (D).

Clearly taking B = {b} for each b∈V (D) (taking all the possible singletons
of V (D)) in Definition 1.2, we obtain that Definition 1.2 is equivalent to those
given in the abstract, which for technical reasons will be used in this paper.

Theorem 1.1 (Duchet [8]). A finite right-pretransitive (resp. left-pretransitive) di-
graph is kernel-perfect.

The result proved in this paper generalize Theorem 1.1 (as any right (resp.
left)-pretransitive digraph D satisfies that every directed cycle of length 3 in D
has at least two symmetrical arcs), and the following result of Champetier [6].

Theorem 1.2 (Champetier [6]). Every M -orientation of a comparability finite graph
G is kernel-perfect.

We recall that a graph G is a comparability graph whenever there exists
an asymmetrical orientation D of G which is a transitive digraph. In [1] C. Berge
defined the perfect graphs as follows: A graph G is perfect whenever for any induced
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subgraph H of G the chromatic number of H , χ(H), is equal to its clique number,
w(H). In [3] C. Berge proved that a comparability graph is a perfect graph. More
about perfect graphs can be found in [3, 9] and [15]. In 1960 C. Berge stated the
famous Strong Perfect Graph Conjecture which asserts that a graph G is perfect
iff G contains nor C2n+1 neither C2n+1, for n ≥ 2, as an induced subgraph. This
Conjecture is now proved.

Theorem 1.3 (Chudnovsky et al. [7]). A graph G is perfect iff G contains neither
C2n+1 nor C2n+1, for n ≥ 2, as a induced subgraph.

A graph G is said to be solvable if every orientation of G is kernel-perfect
provided that all its cliques have a kernel

Theorem 1.4 (C. Berge and P. Duchet [4]). Any induced subgraph of a solvable
graph is also solvable.

Theorem 1.5. The if part. (C. Berge and P. Duchet [4]) C2n+1 (resp. C2n+1) is
not solvable for any n ≥ 2.

In [4] C. Berge and P. Duchet conjectured the following alternative charac-
terization of perfect graphs: A graph G is perfect if and only if G is solvable. This
conjecture was proved in its only if part by Boros and Gurvich in [5], and the part
if is a direct consequence of Theorems 1.3, 1.4 and 1.5; so we have the following
result:

Theorem 1.6. A graph G is perfect if and only if is solvable.

Clearly Theorem 1.2 is a particular case of Theorem 1.6. (As comparability
graphs are perfect and in every M -orientation every clique has a kernel). We say
that a graph G is M -solvable whenever every M -orientation of G is kernel-perfect.
In this paper we prove that right (resp. left)-pretransitive orientable graphs satisfy
that every M -orientation whose symmetrical part coincides with the symmetrical
part of a right (resp. left)-pretransitive orientation is kernel-perfect and we can
construct an infinite class of non perfect graphs with this property. This result
and the Berge-Duchet Theorem (Theorem 1.5) lead us to propose the following
problem: Characterize M -solvable graphs.

2. Kernels, M-orientations and pretransitive orientations

The main result of this section is Theorem 2.1. To prove this result we use a
method related to the one of Sands et al. [18]. The following two Lemmas will be
useful in the proof of Theorem 2.1.

Lemma 2.1. [13] Let D be a right-pretransitive or left-pretransitive digraph.
If (x1, x2, . . . , xn) is a sequence of vertices such that (xi, xi+1) ∈ A(D) and
(xi+1, xi) /∈ A(D), then the sequence is a directed path and for each i ∈ {1, . . . ,
n− 1}, (xi, xj) ∈ A(D) and (xj , xi) /∈ A(D), for every j ∈ {i + 1, . . . , n}.
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Lemma 2.2. [13] Let D be a right-pretransitive digraph or left-pretransitive digraph.
If D has no infinite outward path, and ∅ �= U ⊆ V (D), then there exists x∈U such
that (x, y)∈A(D) with y∈U implies (y, x)∈A(D).

Theorem 2.1. Let G be a possibly infinite graph. And D an M -orientation of G.
If there exists a right (resp. left)-pretransitive orientation T of G, such that: T
has no infinite outward path and no infinite inward path, and Sym(D) = Sym(T ),
then D has a kernel.

Proof. Given a digraph D, we denote by D−1 the inverse of D, which is the digraph
obtained from D by reversing the direction of each one of its arcs. Let T be a
right-pretransitive or a left-pretransitive orientation of G, which has no infinite
outward path and no infinite inward path, and Sym(T ) = Sym(D). Since T is a
right (resp. left)-pretransitive digraph iff T−1 is a left (resp. right)-pretransitive
digraph, we may assume that T is a left-pretransitive digraph and so, T−1 is a
right-pretransitive digraph. Notice that T as well as T−1 has no infinite outward
path; and also observe that Sym(T ) = Sym(T−1) and hence Sym(T−1) = Sym(D).
For distinct vertices x, y of D, x→ y will mean that the arc (x, y)∈A(D).

Suppose x→ y; we will write x
red→ y when (x, y)∈A(T ) and x

blue→ y whenever
(x, y) ∈A(T−1). For S ⊆ V (D), x → S will mean that there exists an arc in D

from x toward a vertex in S. The negation of x → y (resp. x
red→ y, x

blue→ y, and

x → S) will be denoted x �→ y (resp. x
red

�→ y, x
blue

�→ y, and x �→ S). Also we write
x

T→ y to mean (x, y) ∈A(T ). Note that x
red→ y and x

blue→ y refer to arcs of A(D)

while x
T→ y and x

T−1

→ y do not, for S ⊆ V (D) the notations x
T→S, x

T

�→S, x
T

�→ y
are analogous to the previous ones; and we can use a similar notation for T−1.
Notice that if x→ y then x

red→ y or x
blue→ y; also notice that if (x, y)∈A(Sym(D))

then x
red→ y, x

blue→ y, y
red→ x and y

blue→ x; finally if x
T→ y (resp. x

T−1

→ y) and x
red

�→ y

(resp. x
red

�→ y) then y
blue→ x (resp. y

blue→ x). Let U be the family of independent sets
of vertices S of G such that S

red→ x implies x→ S. We define the following binary
relation in U, ≤ : S ≤ R if and only if for each s∈S there exists r∈R such that

either s = r or s
T−1

→ r and r
T−1

�→ s. Observe that if S and R are independent sets
belonging to U with S ⊆ R, then S ≤ R.

(1) The family U is partially ordered by ≤.
≤ is reflexive.

This follows from the fact S ⊆ S.
≤ is transitive.

Let S, Q and R sets belonging to U such that S ≤ Q and Q ≤ R, and let s∈ S.
Since S ≤ Q there exists q∈Q such that

either s = q or (s T−1

→ q and q
T−1

�→ s); (I)
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and Q ≤ R implies that there exists r∈R such that

either q = r or (q T−1

→ r and r
T−1

�→ q). (II)

If s = q or q = r, then it follows from (II) or (I) respectively that either s = r

or (s T−1

→ r and r
T−1

�→ s), with r ∈R; otherwise we have, (s T−1

→ q and q
T−1

�→ s) and

(q T−1

→ r and r
T−1

�→ q), and since T−1 is a right-pretransitive digraph it follows from

Lemma 2.1 on the succession (s, q, r) that s
T−1

→ r and r
T−1

�→ s. Thus R ≤ S.
≤ is antisymmetrical.

Let S and R sets belonging to U such that S ≤ R and R ≤ S; we will prove
that S = R. Let s∈ S; since S ≤ R there exists r∈R such that either, s = r or

(s T−1

→ r and r
T−1

�→ s). Suppose s �= r; the fact R ≤ S implies that there exists s′∈S

such that either, r = s′ or (r T−1

→ s′ and s′
T−1

�→ r). When r = s′ we obtain s
T−1

→ s′

contradicting that S is an independent set; so r �= s′ and (r T−1

→ s′ and s′
T−1

�→ r).

Now applying Lemma 2.1 on the sequence (s, r, s′), we have s
T−1

→ s′ contradicting
that S is an independent set. We conclude r = s and consequently s ∈ R and
S ⊆ R. Analogously it can be proved R ⊆ S.

(2) (U,≤) has maximal elements.

(3) U �= ∅.Since T is a left-pretransitive digraph, which has no infinite outward
path it follows from Lemma 2.2 (taking D = T and U = V (T )) there exists a vertex
y∈V (D) such that y

T→x implies x
T→ y, and in this case (x, y) is a symmetrical arc

of T ; since Sym(T ) ⊆ Sym(D) we have that (x, y)∈Sym(D). Thus y
red→ x implies

x→ y and then {y}∈U.

(4) Every chain in (U,≤) is upper bounded.
Let C be a chain in (U,≤) and define S∞ = {s∈

⋃
S∈C

S | there exists S ∈ C

such that s∈R whenever R∈C and R ≥ S} (S∞ consists of all vertices of D that
belong to every member of C from some point on). We will prove that S∞ is an
upper bound of C.

(5) S∞ �= ∅, and for each S ∈ C, S∞ ≥ S. Let S ∈ C and t0 ∈ S, we will prove

that there exists t∈S∞ such that either t0 = t or (t0
T−1

→ t and t
T−1

�→ t0). If t0∈S∞

we are done, so assume t0 /∈ S∞. We proceed by contradiction; suppose that if

t ∈ V (D) with (t0
T−1

→ t and t
T−1

�→ t0), then t /∈ S∞. Take R0 = S; since t0 /∈ S∞

there exists R1 ∈ C, R1 ≥ R0 such that t0 /∈ R1. Hence there exists t1 ∈ R1

such that t0
T−1

→ t1 and t1
T−1

�→ t0; and our assumption implies t1 /∈ S∞. The fact
t1 /∈ S∞ implies t1 /∈ R2 for some R2 ∈C, R2 ≥ R1, and there exists t2∈R2 such
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that t1
T−1

→ t2 and t2
T−1

�→ t1, since T−1 is a right-pretransitive digraph, it follows

Lemma 2.1 on the sequence τ2 = (t0, t1, t2) that t0
T−1

→ t2 and t2
T−1

�→ t0, and our
assumption implies t2 /∈ S∞. We may continue that way and we obtain, for each

n∈N, Rn ∈ C, tn ∈Rn, (t0
T−1

→ tn and tn
T−1

�→ t0) and tn /∈ S∞, hence there exists
Rn+1 ∈ C such that Rn+1 ≥ Rn and tn /∈ Rn+1, so there exists tn+1 ∈ Rn+1

with tn
T−1

→ tn+1 and tn+1

T−1

�→ tn. Since T−1 is a right-pretransitive digraph, and

(tn
T−1

→ tn+1 and tn+1

T−1

�→ tn) for each n ∈ N; it follows from Lemma 2.1 (on the
sequence (t0, t1, . . . , tn)) that τn+1 = (t0, t1, . . . , tn+1) is a directed path in T−1

and (t0
T−1

→ tn+1 and tn+1

T−1

�→ t0). And our assumption implies tn+1 /∈ S∞. Now

consider the sequence τ = (tn)n∈N, for each n ∈N. We have tn
T−1

→ tn+1, and for
n < m, {tn, tm} ⊆ V (τm); and since τm is a directed path in T−1 we have tn �= tm.
Hence τ is an infinite outward path contained in T−1, a contradiction. We conclude

that there exists t∈S∞ such that (t0
T−1

→ t and t
T−1

�→ t0). Thus S∞ ≥ S and S∞ �= ∅.

(6) S∞ is an independent set. Let s1, s2 ∈ S∞ and suppose without loss of gener-
ality that S1, S2∈C are such that: s1∈S whenever S∈C and S ≥ S1; s2∈S2 and
S1 ≤ S2. Then s1∈S2 and since S2 is independent there is no arc between s1 and
s2 in D.

(7) S∞∈U.

Suppose that S∞ red→ y, we will prove y → S∞. We proceed by contradiction,
assume that y �→ S∞. Let s∈S∞ be such that s

red→ y, and let S1∈C be such that
s∈W for every W ∈C, W ≥ S1. First we prove the following assertion:

(8) If y
blue→ s′ for some s′∈R, R∈C, R ≥ S1, then there exists t∈S∞ such that:

(i) t
red→ s′, and,

(ii) If R′ ∈ C with R′ ≥ R and t ∈ R′ then for some s′′ ∈ R′ we have s′ blue→ s′′,

s′′
T−1

�→ s′ and y
blue→ s′′.

Since we are assuming that y �→ S∞ then s′ /∈ S∞, from (5) we have S∞ ≥ R,

thus there exists t∈S∞ such that s′ T−1

→ t and t
T−1

�→ s′; we will prove that t satisfies
(i) and (ii).

Proof of (i). Since y
blue→ s′ we have y

T−1

→ s′. Now, the facts that T−1 is a right-

pretransitive digraph and t
T−1

�→ s′ imply that y
T−1

→ t. Since y �→ S∞ then y
blue

�→ t

and t
red→ y. �
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(9) s′ �→ t; If s′ → t then (y, s′, t, y) is a directed triangle contained in D; now
observe that (s′, t) is not a symmetrical arc of T−1 and then it is not a sym-

metrical arc of D; and y
blue

�→ t which implies (t, y) /∈ A(Sym(D)); so this directed

triangle has at most one symmetrical arc; a contradiction. Thus s′ �→ t, s′
blue

�→ t

and consequently t
red→ s′ (recall s′ T−1

→ t, so s′ and t are adjacent in D).

Proof of (ii). Let R′∈C be such that R′ ≥ R and t∈R′; since t
red→ s′, then R′ red→ s′

and thus s′ → R′, that is s′ → s′′ for some s′′∈R′ (notice that s′′ �= t because we
have proved in the proof of (i) that s′ �→ t, see (9)). �

(10) s′
red

�→ s′′: If s′ red→ s′′ then s′ T→ s′′; and since t
T→ s′ we have that t

T→ s′′ or s′ T→ t

(as T is a left-pretransitive digraph). Now t
T

�→ s′′ because {t, s′′} ⊆ R′ and R′ is
an independent set; so: s′ T→ t and (s′, t) ∈ Sym(T ) ⊆ Sym(D) (recall t

red→ s′), a
contradiction. (As we have proved s′ �→ t (9)).

(11) s′ blue→ s′′: Since s′ → s′′, we have that s′ red→ s′′ or s′ blue→ s′′, and the assertion
follows from (10).

(12) s′′
T−1

�→ s′: Assume by contradiction that s′′
T−1

−−→ s′; it follows from the previous
assertion (11) that (s′, s′′)∈ Sym(T−1) = Sym(T ) ⊆ Sym(D) which implies that
s′ red→ s′′ a contradiction to the previous assertion (10).

(13) y
T−1

→ s′′: Since y
blue→ s′ and s′ blue→ s′′ we have y

T−1

→ s′ and s′ T−1

→ s′′. Now the
assertion follows from (12) and the fact that T−1 is a right-pretransitive digraph.

(14) y
blue→ s′′. From (13) we have that y and s′′ are adjacent in D; and clearly we

have two possibilities: y → s′′ or s′′ → y. If s′′ → y then (y, s′, s′′, y) is a directed
triangle contained in D and it follows from the hypothesis that it has at least two

symmetrical arcs. Recall s′′
T−1

�→ s′ (12), so, (s′, s′′) /∈ Sym(T−1) ⊆ Sym(D); and
we conclude that {(y, s′), (s′′, y)} ⊆ Sym(D). Thus in any case we obtain y → s′′;
and from (13) we finally conclude that y

blue→ s′′. Assertion (8) follows from (10),
(12) and (14). Now, since s

red→ y and s∈S1, then S1
red→ y which implies y → S1 (as

S1∈C ⊆ U). Let s1∈S1 such that y → s1. We have the following property:

(15) y
blue→ s1: y → s1 implies y

red→ s1 or y
blue→ s1. Assume by contradiction that

y
red→ s1, since s

red→ y we have y
T→ s1 and s

T→ y; consequently s
T→ s1 or y

T→ s (as T

is a left-pretransitive digraph). The fact s
T→ s1 is impossible because {s, s1} ⊆ S1

which is an independent set; thus y
T→ s and (y, s)∈Sym(T ) ⊆ Sym(D). It follows

that y → s with s∈S∞; a contradiction to our assumption. Now, from (8) taking
s′ = s1 and R = S1 we have that there exists t1∈S∞ such that:
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(16) t1
red→ s1.

Since t1 ∈ S∞, there exists S2 ∈ C such that t1 ∈ W for each W ∈ C with
W ≥ S2, we may assume that S2 ≥ S1 (In the opposite case you can take S2 = S1

anyway). Then it follows from (8) (ii) taking R′ = S2 and t = t1 that:

(17) There exists s2∈S2 such that s1
blue→ s2, s2

T−1

�→ s1 and y
blue→ s2. Again; taking

s′ = s2 and R = S2 it follows from (8) that there exists t2∈S∞ such that:

(18) t2
red→ s2.t2 ∈ S∞ implies that there exists S3 ∈ C such that t2 ∈W for each

W ∈ C with W ≥ S3, and clearly we may assume S3 ≥ S2 (As any W ∈ C with
W ≥ S3 satisfies the same property as S3). Thus, taking R′ = S3 and t = t2 in (8)
(ii) we obtain:

(19) There exists s3∈S3 such that s2
blue→ s3, s3

T−1

�→ s2 and y
blue→ s3. Therefore: If we

assume that for some n∈N we have that {t1, . . . , tn} ⊆ S∞, {S1, . . . , Sn+1} ⊆ C

with S1 ≤ S2 ≤ · · · ≤ Sn+1, {s1, . . . , sn+1} ⊆ V (D) are such that for each i ∈
{i, 2, . . . , n}:

(20) (i) ti
red→ si.

(ii) {ti, si+1} ⊆ Si+1, si
blue→ si+1, si+1

T−1

�→ si and y
blue→ si+1.

Then taking s′ = sn+1 and R = Sn+1 in (8) we have that there exists tn+1 ∈S∞

such that:

(21) tn+1
red→ sn+1.tn+1 ∈S∞ implies that there exists Sn+2 ∈C with tn+1 ∈W for

each W ∈C, W ≥ Sn+2, we may assume Sn+2 ≥ Sn+1; and from (8) (ii) (taking
s′ = sn+1, R = Sn+1, R′ = Sn+2 and t = tn+1) the following:

(22) There exists sn+2 ∈ Sn+2 such that sn+1
blue→ sn+2, sn+2

T−1

�→ sn+1 and y
blue→

sn+2. Therefore we have a sequence of vertices of D, (sn)n∈N such that sn+1
T−1

→

sn+2 and sn+2

T−1

�→ sn+1. Since T−1 is a right-pretransitive digraph, it follows from
Lemma 2.1 that for each k ∈ N, the sequence (s1, s2, . . . , sk) is a directed path
in T−1; clearly this implies that (sn)n∈N is an infinite outward path in T−1, a
contradiction. So, y → S∞ and then S∞∈U. It follows from (5), (6) and (7) that
S∞ is an upper bound of C. We have proved that any chain in U has an upper
bound in U, and so by Zorn’s Lemma, (U,≤) contains maximal elements. Let S
be a maximal element of (U,≤).

(23) S is a kernel of D.

(24) S is an independent set of D. Since S∈U, S is an independent set of vertices
of D.

(25) For each x ∈ (V (D) − S) there exists an xS-arc. Suppose by contradiction
that there exists x ∈ (V (D) − S) such that x �→ S. There exists a vertex x0 ∈
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V (D) such that x0 �→ S, and x0 satisfies: x0
T→ y and y �→ S imply y

T→x0, for
all vertices y ∈ V (D). This follows directly from Lemma 2.2 taking D = T and
U = {x ∈ V (D) |x �→ S} (notice that our assumption implies U �= ∅). Let P =

{s∈S | s
blue

�→ x0}; we have the following assertions:

(26) P ∪ {x0} is an independent set of vertices of D.P is an independent set (as
P ⊆ S and S∈U); x0 �→ P (because x0 �→ S and P ⊆ S). From the definition of P

we have P
blue

�→ x0. Also P
red

�→ x0 because P
red→ x0 implies S

red→ x0 and then x0 → S,
a contradiction (recall S ∈U).(27) P ∪ {x0}∈U. Suppose that P ∪ {x0} red→ y; we
will prove y → P ∪ {x0}. In order to prove this we assume y �→ P and we will
prove y → x0. We proceed by considering the two following cases:

Case a. P
red→ y. In this case we have S

red→ y (as P ⊆ S) and then y → S (as S∈U).
Thus y → (S−P ) (recall our assumption); and we have two possibilities: y

red→(S−
P ) or y

blue→ (S−P ). When y
red→(S−P ), we consider p∈P such that p

red→ y; and by
applying that T is a left-pretransitive digraph we obtain y

T→ p or p
T→(S−P ). Since

S is an independent set; we have p
T

�→(S − P ) and then y
T→ p. This implies that

(p, y)∈ Sym(T ) = Sym(D); and thus y → P , a contradiction to our assumption.

So y
red

�→(S−P ). When y
blue→ (S−P ) we consider s∈(S−P ) such that y

blue→ s. Since
s

blue→ x0 (recall the definition of P ) and T−1 is a right-pretransitive digraph; we

have x0
T−1

→ s or y
T−1

→ x0. If x0
T−1

→ s then (x0, s)∈Sym(T−1) ⊆ Sym(D), so x0 → S,

a contradiction. If y
T−1

→ x0, then y → x0 or x0 → y. In case x0 → y we have the
directed triangle of D, (x0, y, s, x0) which by hypothesis has two symmetrical arcs
in D. Thus (x0, y)∈Sym(D) (as x0 �→ S) and y → x0.

Case b. x0
red→ y. We analyze the two possibilities:

Subcase b.1. y �→ S. In this case the definition of x0 implies y
T→x0 and thus

(x0, y)∈Sym(T ) ⊆ Sym(D). So y → x0.

Subcase b.2. y → S. In this case we take s∈(S − P ) such that y → s (recall
y �→ P ). From the definition of P we have s

blue→ x0 and then the directed
triangle (x0, y, s, x0) is contained in D; which from the hypothesis has two
symmetrical arcs in D (notice that x0 → y otherwise y → x0 and we are
done; also s→ x0 because x0 �→ S). Since x0 �→ S we have (x0, y)∈Sym(D)
and thus y → x0. We conclude that P ∪ {x0}∈U.

(28) S ≤ P∪{x0}. Let s∈S. When s belongs to P we are done. When s /∈P we have

s
blue→ x0 and x0

blue

�→ s (Recall the definitions of P and x0 respectively); therefore

s
T−1

→ x0 and x0

T−1

�→ s. Since x0 /∈ S we conclude from (28) that S < T ∪ {x0}
contradicting the maximality of S. �
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Notice that the hypothesis Sym(T ) = Sym(D) in Theorem 2.1 is used only
to prove that any chain in (U,≤) is upper bounded and for the rest of the proof
we only need that Sym(T ) ⊆ Sym(D); so when G is a finite graph it suffices to ask
that Sym(T ) ⊆ Sym(D) and the same proof as that of Theorem 2.1 works. So, we
have the following result:

Theorem 2.2. Let G be a finite graph and D an M -orientation of G. If there exists
an orientation T of G that is a right-pretransitive digraph or a left-pretransitive
digraph, with Sym(T ) ⊆ Sym(D). Then D has a kernel.

Corollary 2.1. Let G be a possibly infinite graph and D an M -orientation of G.
If there exists a right (resp. left)-pretransitive orientation T of G such that T has
no infinite outward path nor infinite inward path either and Sym(D) = Sym(T ).
Then D is a kernel-perfect digraph.

Corollary 2.2. Let G be a finite graph and D an M -orientation of G. If there exists
a right (resp. left)-pretransitive orientation T of G with Sym(T ) ⊆ Sym(D), then
D is a kernel-perfect digraph.

Corollary 2.3 (Champetier [6]). Every M -orientation of a finite comparability
graph G is kernel-perfect.

Proof. If T is an asymmetrical transitive orientation of G, then clearly T satisfies
the hypothesis of Corollary 2.2. �
Remark 2.1. The hypothesis that T has no infinite outward path cannot be
dropped in Theorem 2.1. Consider the graph G defined as follows: V (G) = {un |n∈
N} and ui is adjacent to uj iff i �= j. And consider the following orientation T of
G; (ui, uj) ∈ A(T ) whenever i < j. Clearly T is transitive, and taking D = T
we have that D is an M -orientation (moreover T is asymmetrical) such that
Sym(T ) = Sym(D); however D has no kernel.

Remark 2.2. The hypothesis that D be an M -orientation in Theorem 2.1 is tight.

Let G be the complete graph with set of vertices V (G) = {u, v, w, x}; D the
following orientation; A(D) = {(u, v), (v, w), (w, x), (x, u), (u, w), (w, u), (v, x),
(x, v)} D is not an M -orientation and D has no kernel. And let T be the follow-
ing orientation of G; A(T ) = {(u, v), (w, v), (w, x), (u, x), (u, w), (w, u), (v, x),
(x, v)}, clearly T is a right-pretransitive digraph, a left-pretransitive digraph and
Sym(T ) = Sym(D).

Remark 2.3. In Theorem 2.2 the hypothesis Sym(T ) ⊆ Sym(D) cannot be
dropped. Let G be an odd cycle of length at least 5; D the corresponding
directed cycle (clearly D has no kernel and D is an M -orientation of G). We
have the following right-pretransitive orientation ofG : T with

A(T ) = {(v1, v2), (v2, v1)}
∪ {(v2i+1, v2i), (v2i+1, v2i+2) | i ∈ {1, 2 . . . , n} (mod 2n + 1)}

clearly Sym(T ) �⊆ Sym(D).
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Remark 2.4. The following non perfect graph satisfies the hypothesis of Theorem
2.2. Let G be defined as follows:

V (G) = {v1, v2, . . . , v2n+1}
∪ {u1, u2 . . . , u2n−2, u2n, u2n+1}, u2n−1 = v2 .

E(G) = {(vi, vi+1) | i ∈ {1, . . . , 2n + 1}(mod2n + 1)}
∪ {(ui, ui+1) | i∈{1, 2, . . . , 2n + 1} (mod 2n + 1)} ∪ {(v1, u2n)} .
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Nonrepetitive Graph Coloring
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Abstract. A coloring of the vertices of a graph G is nonrepetitive if no simple
path in G looks like a1a2 . . . ana1a2 . . . an. The minimum number of colors
needed for a graph G is denoted by π(G). For instance, by the famous 1906
theorem of Thue, π(G) = 3 if G is a simple path with at least 4 vertices. This
implies that π(G) ≤ 4 if ∆(G) ≤ 2. But how large can π(G) be for cubic
graphs, k-trees, or planar graphs? This paper is a small survey of problems
and results of the above type.

Mathematics Subject Classification (2000). Primary 05C38, 15A15; Secondary
05A15, 15A18.

Keywords. Graph coloring, Thue chromatic number, nonrepetitive sequence.

1. Introduction

A coloring f of the vertices of a graph G is nonrepetitive if there is no integer n ≥ 1
and a simple path v1v2 . . . v2n in G such that f(vi) = f(vn+i) for all i = 1, . . . , n. In
other words, it is not possible to read a sequence of colors like a1a2 . . . ana1a2 . . . an

while tracing any path in G. This notion was introduced in [2] as a graph-theoretic
variant of nonrepetitive sequences of Thue (see Section 2).

The minimum number of colors in a nonrepetitive coloring of G is denoted
by π(G) and is called the Thue chromatic number of a graph G. In fact, such a
coloring must be proper in the usual sense, so, π(G) ≥ χ(G). On the other hand,
π(G) ≤ |V (G)|, where V (G) is the set of vertices of a graph G.

Unlike for most of chromatic graph invariants, determining π(G) is a nontriv-
ial task even for paths or cycles. It is not even clear a priori that π(G) is bounded
for paths. However, the celebrated theorem of Thue [24] asserts that there are
arbitrarily long nonrepetitive sequences over just three symbols (see Section 2).
This clearly implies that π(Pn) = 3 and π(Cn) ≤ 4 for all n ≥ 4.

This work was supported by KBN grant 1 P03A 017 27.
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For other classes of graphs the situation is much less clear. For instance,
it is not known how large the Thue chromatic number of a cubic graph can be,
though it can be proved probabilistically that 108 colors suffice (see Section 3).
Outerplanar graphs can be nonrepetitively colored using 12 colors, but we do not
know if there are planar graphs of arbitrarily high Thue chromatic number (see
Sections 4 and 5).

The present paper is intended as a short survey of problems and results of
the above type. To make the presentation as self-contained as possible we include
some proofs, as well as a glimpse of the history of this topic.

2. Chess, music, and sequences

During a game of chess the same position may appear several times on the board.
Hence, in official rules of a chess tournament some convention must be adopted by
which a draw can be claimed by either player. Suppose a draw could be claimed
only if the same position appeared for the third time after the same sequence
of moves. Is this condition sufficient to guarantee that no infinite chess play is
possible?

The problem was considered by the famous Dutch chess master Max Euwe
[13]. He discovered a peculiar recursive construction of an infinite binary sequence
U without blocks of the form xY xY x, thereby providing a negative answer to the
chess question. The sequence is defined as follows. Let U1 = 0 and Un+1 = UnU ′

n,
n ≥ 1, where U ′

n is the “negation” of Un. Hence U2 = 01, U3 = 0110, U4 =
01101001, and so on. Now an infinite sequence U = u1u2 . . . is defined by taking
u1 . . . u2n−1 = Un, for each n ≥ 1. Correctness of this definition follows from the
fact that Un is a prefix of Un+1.

Curiously, the same structure was independently introduced by Prouhet [19],
Thue [25], Morse [18], Mahler [17] and Arshon [4], in different contexts of Number
Theory and Dynamical Systems. In particular, Thue’s fundamental work is con-
sidered the starting point of Combinatorics on Words, while Morse’ ideas led to
the birth of Symbolic Dynamics (cf. [1], [6], [7], [8], [9], [10], [11], [15], [16]).

However, the most surprising is the appearance of the sequence U in music.
Around 1965 the famous Danish composer Per Noerg̊ard discovered (or invented?)
the sequence of integers defined by N2n+1 = Nn + 1 and N2n = −Nn for n ≥ 0,
with N0 = 0 (see [1], [23]). In other words, the sequence is a perfect shuffle of the
negative copy of itself with the shifted copy of itself:

0 −1 1 −2 −1 0 2 −3 1
1 2 0 3 2 1 −1 4 0 . . . .

Noerg̊ard called it “the infinity series” and used it frequently in many of his compo-
sitions. For instance, in a mysterious symphony “Voyage into the Golden Screen”
(1968), for chamber orchestra, or in “I Ching” (1982), for percussion solo.
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It is not hard to show that the sequence U coincides with the infinity series
reduced mod 2. We give now a proof of the “unending chess” property of the
sequence U , first published by Thue in 1912.

Theorem 2.1. (Thue [25]) The sequence U does not contain a block of the form
xY xY x, where Y is a (possibly empty) binary word and x is a single letter.

Proof. Clearly it is sufficient to prove the assertion for finite words Un. So assume,
for an induction argument, that Un satisfies the property and that a bad block
B = 0Y 0Y 0 appears in Un+1. Color the odd positions of Un+1 blue and the even
positions red. Then the blue subword coincides with Un, while the red subword
coincides with U ′

n. For instance,

U4 = 01101001 =
0 1 1 0 = U3 (blue subword)

1 0 0 1 = U ′
3 (red subword) .

We distinguish two cases with respect to the parity of the length of Y .
If the length of Y is odd then the three zeros of B are of the same color, say

blue. But then the blue copy of Un contains 0Yblue0Yblue0, where Yblue is the blue
part of the word Y . This contradicts our inductive assumption on Un. If the three
zeros are red, then 0Yred0Yred0 appears in U ′

n. This also contradicts the inductive
assumption, since then (0Yred0Yred0)′ appears in Un.

Now suppose Y is of even length. Then the two utmost zeros are of the same
color, say blue, while the middle zero is red. Denote B = 0x1 . . . x2n0y1 . . . y2n0.
By the “perfect shuffle” property, in any word Un, the next term after a blue zero
is a red one, and the next term after a blue one is a red zero. Since the first zero
is blue, x1 must be a red one. So, y1 = 1 (since y1 = x1) and it is blue (since the
middle zero is red). Hence y2 must be a red zero. Therefore, x2 = 0 (since x2 = y2)
and it is blue (since x1 was red). Continuing this “ping-pong” we see that the first
copy of Y in B must end with a blue zero. But this gives an impossible block of
two zeros (the first blue and the second red) in the middle.

When the utmost zeros are red and the middle zero is blue, the argument is
similar. This completes the proof. �

A finite or infinite sequence S = s1s2 . . . is nonrepetitive if no two adjacent
blocks in S are identical, that is, if there are no integers k ≥ 0 and n ≥ 1 such
that sk+i = sk+n+i, for all i = 1, . . . , n. In particular, S cannot contain blocks of
the form aa, abab, abcabc, abcdabcd, etc.

It is easy to see that there are no nonrepetitive binary sequences with more
than three terms. Curiously, if a third symbol is available then one can produce
arbitrarily long nonrepetitive sequences. This fact, proved for the first time by
Thue in 1906, can be deduced easily from the “unending chess” theorem.

Theorem 2.2. (Thue [24]) There exists an infinite nonrepetitive sequence over three
symbols 1, 2, 3.

Proof. Let X = {1, 4, 6, 7, . . .} be the set of positions occupied by zeros in the
sequence U , and let x1 < x2 < · · · be the elements of X ordered increasingly.
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Consider the sequence T = t1t2 . . . defined by tn = xn+1 − xn, for each n ≥ 1.
Thus T = 321312321231 . . . , and clearly ti ∈ {1, 2, 3}, for each i ≥ 1.

Now suppose that for some k, n ≥ 1, tk+i = tk+n+i, for all i = 0, . . . , n − 1.
Then the triple xk, xk+n, xk+2n forms a 3-term arithmetic progression of difference
tk + · · · + tk+n−1, and the set {xk+1, . . . , xk+n−1} is a translated copy of the set
{xk+n+1, . . . , xk+2n−1}. However this is equivalent to finding a block of the form
0Y 0Y 0 in a sufficiently long word Um. This contradicts Theorem 1. �

Clearly, the above theorem provides a constructive nonrepetitive 3-coloring
of any path Pn.

3. Graphs with bounded degree

Let π(d) be the supremum of numbers π(G), where G ranges over all graphs of
maximum degree at most d. By Theorem 2 we know that π(2) ≤ 4. It is not hard
to check that in fact π(2) = 4, since the cycle C5 demands four colors. Actually,
as proved by Currie [12], π(Cn) = 3 for all n ≥ 3, except n = 5, 7, 9, 10, 14, 17.

For d ≥ 3 the situation is less clear. In [2] it was proved that there are positive
constants c1, c2 such that

c1
d2

ln d
≤ π(d) ≤ c2d

2.

The proof is probabilistic and provides no explicit constructions. However, no other
way of establishing at least the finiteness of π(3) was found so far. Similarly for
the lower bound; no explicit graphs of degree d and the Thue number of order
d2/ ln d are known, though we know that almost every graph has this property.

We present here a slightly refined proof from [2], which shows that π(d) ≤
36d2. The proof is based on the Lovász Local Lemma in the form stated below
(see [3]). Recall that a dependency graph of random events A1, . . . , An is any graph
D = (V, E) on the set of vertices V = {A1, . . . , An}, such that each event Ai is
mutually independent of the events {Aj : AiAj /∈ E}.

Lemma 3.1. (The local lemma) Let A1, . . . , An be events in any probability space
with dependency graph D = (V, E). Let V = V1 ∪ · · · ∪ Vk be a partition such
that all members of each part Vr have the same probability pr. Suppose that the
maximum number of vertices from Vs adjacent to a vertex from Vr is at most ∆rs.
If there are real numbers 0 ≤ x1, . . . , xk < 1 such that pr ≤ xr

∏k
s=1(1 − xs)∆rs

then Pr(
⋂n

i=1 Ai) > 0.

Theorem 3.2. (Alon et al. [2]) π(G) ≤ 36∆2, for every graph G of maximum degree
at most ∆.

Proof. Let G be a graph of maximum degree ∆. Consider a random coloring of
the vertices of G with N = 36∆2 colors. For each path P in G let AP be the event
that the first half of P is colored the same as the second. Let Vr be the set of all
events AP with P having 2r vertices. Clearly we have pr = N−r.
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Now define a dependency graph so that AP is adjacent to AQ iff the paths
P and Q have a common vertex. Since a fixed path with 2r vertices intersects at
most 4rs∆2s paths with 2s vertices in G, we may take ∆rs = 4rs∆2s.

Next set xs = (5∆)−2s, and notice that (1−xs) ≥ e−2xs , as xs ≤ 1/2. Hence
we get

xr

∏
s

(1 − xs)∆rs ≥ (5∆)−2r
∏
s

e−8rs5−2s

> (5∆)−2r exp

(
−2r

∞∑
s=1

4s

52s

)
.

Since the series
∑∞

s=1
4s
52s converges to 25/144, we obtain

xr

∏
s

(1− xs)∆rs ≥ (5e25/144∆)−2r > (6∆)−2r = pr.

By the local lemma the proof is complete. �

4. Graphs of bounded treewidth

Another nontrivial class of graphs with bounded Thue chromatic number are
graphs of bounded treewidth. This result was obtained independently by Kündgen
and Pelsmajer [14] and Barát and Varjú [5].

Theorem 4.1. (Kündgen and Pelsmajer [14]) π(G) ≤ 4k, for any k-tree G.

For the ease of presentation we give here a proof of a weaker bound from [5].
Actually, we derive it from a slightly more general theorem relating nonrepetitive
colorings to oriented colorings, which is implicitly proved in [5].

Let
−→
G be an orientation of a simple graph G. A directed nonrepetitive coloring

of the vertices of
−→
G is defined similarly, by restricting the condition to directed

paths. Denote by π(
−→
G ) the fewest number of colors in a directed nonrepetitive

coloring of
−→
G .

A coloring of the vertices of
−→
G is called a proper oriented coloring if each

color class is an independent set in the underlying graph G, and all the edges
between any two color classes are of the same direction. Let χo(

−→
G) denote the

minimum number of colors in a proper oriented coloring of an oriented graph
−→
G .

Finally recall that fraternal orientation of a graph is an orientation such that
any two vertices with a common out-neighbor are adjacent.

Theorem 4.2. (Barát and Varjú [5]) Let
−→
G be a fraternal orientation of a graph

G. Then π(G) ≤ π(
−→
G)χo(

−→
G ).

Proof. Let f be a directed nonrepetitive coloring of
−→
G and let g be a proper

oriented coloring of
−→
G . Consider a coloring h of the vertices of G defined by

h(v) = (f(v), g(v)), for each vertex v of G. We will show that h is a nonrepetitive
coloring of G. To this end suppose that a path P = v1v2 . . . v2n is a shortest path
in G colored repetitively, that is, h(vi) = h(vn+i), for all i = 1, . . . , n.
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Now consider the related sequence of signs SP = s1s2 . . . s2n−1 defined by
si = +, if vi dominates vi+1 in

−→
G , and si = −, otherwise. Since g is a proper

oriented coloring, it follows that si = sn+i for all i = 1, . . . , n − 1. Since f is a
directed nonrepetitive coloring, the sequence SP cannot be constant. Hence there
exists 1 < j ≤ n such that vj is a common out-neighbor of vj−1 and vj+1.

Suppose first that j < n. Then sj−1 �= sj , say sj−1 = + and sj = −. In
consequence, sj−1+n = + and sj+n = −. This means that vj+n is dominated
by its neighbors on the path P . Since the orientation

−→
G is fraternal, both pairs

of vertices vj−1vj+1 and vj−1+nvj+1+n forms the edges of G. So removing the
vertices vj , vj+n from the path P results in a shorter repetitive path, contrary to
our assumption.

If j = n then similarly the path v1 . . . vn−1vn+1 . . . v2n−1 forms a shorter
repetitive path. This completes the proof. �

Let G be a k-tree and let v1, . . . , vn be a perfect elimination ordering of the
vertices of G. This means that the vertices v1, . . . , vk induce a k-clique, and for
each i > k, the neighbors of vi with strictly smaller indices also induce a k-clique
in G. Let

−→
G be an orientation of G such that vi dominates vj if i < j. Clearly,

−→
G

is a fraternal orientation of G. Now using Theorem 2 it is not hard to prove that
π(
−→
G ) ≤ 3k. An appropriate coloring by k-tuples (x1, . . . , xk) with xi ∈ {1, 2, 3}

can be constructed as follows. Arrange the vertices of
−→
G into levels, in a tree-

like fashion, and assign to the levels successive terms of a ternary nonrepetitive
sequence. This fixes first coordinates of k-tuples. Then repeat the procedure inside
each level. It is not hard to prove by induction that this coloring has the desired
property.

On the other hand, by the theorem of Raspaud and Sopena [20], any orien-
tation of a k-tree has a proper oriented coloring with at most 2k(k + 1) colors.
Hence, we get the following.

Corollary 4.3. (Barát and Varjú [5]) π(G) ≤ 6k(k + 1), for any k-tree G.

The fact that π(G) is bounded for graphs of bounded treewidth has further
consequences for graphs with forbidden planar minor. The well-known theorem
of Robertson and Seymour [21] asserts that graphs not containing a fixed planar
graph as a minor has bounded treewidth. The bound on the treewidth improved
later in [22] allows for the following corollary.

Corollary 4.4. Let H be planar graph with n vertices and m edges. Let G be any
graph without a minor isomorphic to H. Then π(G) ≤ 4202(2n+4m)5

.

Therefore each minor-closed class of graphs with unbounded Thue chromatic
number must contain the class of planar graphs.
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5. Planar graphs

An intriguing open question is whether the Thue chromatic number is bounded
for planar graphs. The results presented so far suggest that perhaps the following
conjecture holds.

Conjecture 5.1. There is a constant c such that π(G) ≤ c, for each planar graph G.

There are many intersecting sub-classes of planar graphs for which the con-
jecture is true and it is not so easy to guess an eventual counterexample. In the rest
of this section we present several weaker versions of the problem, none of which
has been completely decided for planar graphs.

5.1. Power-free colorings

We start with generalizing another property introduced by Thue. Let k > 1 be
a fixed integer. A coloring f of the vertices of a graph G is k-power-free if there
is no positive integer n and a path v1v2 . . . vkn in G such that f(vi) = f(vi+n) =
· · · = f(vi+(k−1)n), for each i = 1, . . . , n. Less formally, the condition says that no
block is repeated k times in a row on any path in G.

Let πk(G) be the smallest number of colors in a k-power-free coloring of G.
Clearly, πk(G) ≤ πm(G) if k > m and π2(G) = π(G). Notice that for k > 2 a
k-power-free coloring may not be proper.

Conjecture 5.2. There exist constants k and c such that πk(G) ≤ c, for any planar
graph G.

Let us remark that it is not excluded that this seemingly weaker statement
actually implies the previous conjecture. Indeed, the existence of nonrepetitive
ternary sequences can be deduced from a weaker property for binary sequences,
as we demonstrated in the proof of Theorem 2.

5.2. Are four colors enough?

Suppose for a while that Conjecture 10 is true. What is then the smallest value of
c for which the conjecture holds with some, possibly huge k?

The following example shows that this minimum must be greater than 3. Let
G1 = K3 and let Gn be a plane graph obtained from Gn−1 by inserting a vertex
inside each inner face of Gn−1, and joining it to the three vertices of the face. It
is not hard to show that for every k there exists n such that in any 3-coloring of
the vertices of Gn a monochromatic path with k vertices appears.

Conjecture 5.3. There exists k such that πk(G) ≤ 4, for any planar graph G.

This statement is hard to believe. In fact, we do not know if this is true even
for outerplanar graphs, for which π(G) ≤ 12 as proved in [5] and [14].
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5.3. Induced paths

Brešar and Klavžar proposed another variant of nonrepetitive colorings. Consider
a vertex coloring of a graph G in which only the induced paths are to be colored
nonrepetitively. Denote by πind(G) the induced Thue chromatic number of a graph
G defined similarly as before. Clearly πind(G) ≤ π(G) for any graph G.

Conjecture 5.4. There exists a constant c such that πind(G) ≤ c, for any planar
graph G.

It seems plausible that πind(G) should behave more like the classical chro-
matic number. For instance, a nice observation of Brešar shows that “perfect”
graphs with respect to πind(G) are exactly the P4-free graphs. Indeed, let G be
a πind-perfect, that is, πind(H) = ω(H) for any induced subgraph H of G, where
ω(H) stands for the clique number of H . Since πind(P4) = 3 and ω(P4) = 2, G
cannot contain P4 as an induced subgraph. On the other hand, any proper coloring
of a P4-free graph is certainly nonrepetitive on induced paths (we just don’t care
about paths with more than 3 vertices). The assertion follows since any P4-free
graph is perfect in the usual sense.

5.4. Subdivision

Let S(G) be the set of all possible subdivisions of a graph G. By known properties
of nonrepetitive sequences one can prove that for every graph G there is a graph
H ∈ S(G) such that π(H) ≤ 5. Indeed, mark all vertices of G by symbol 5.
Then subdivide each edge of G by one vertex and mark it by symbol 4. Next
take m = |E(G)| nonrepetitive sequences Si of different lengths, constructed of
symbols 1, 2, 3. Assign the sequences Si bijectively to subdivided edges, and turn
each edge into a path 5Si4Si5. Now in a repetitive path P the symbols 4 and 5
must occupy the same positions in both halves of P . This is however impossible
since the lengths of Si are pairwise different.

Of course, no such result is possible in general if we bound the number of
vertices subdividing an edge. How many vertices per edge one should add to a
planar graph to make it 5-colorable in the sense of Thue?

Conjecture 5.5. There are constants c, r such that each planar graph G has a
subdivision H, with at most r vertices subdividing one edge, such that π(H) ≤ c.

Again, this looks easier than Conjecture 9, but it is not excluded that both
statements are equivalent.

6. Metachromatic number

Similar problems can be considered in a more general setting. Suppose a large
structure is given with adjacency relation on a collection of its substructures. We
want to color the structure so as to distinguish the adjacent substructures, using
as few colors as possible.
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For instance, let G be a simple graph and let A, B be two connected subgraphs
of G. The subgraphs A, B are said to be adjacent if their vertex sets are disjoint,
and there is at least one edge uv in G with u ∈ V (A) and v ∈ V (B). Let f be a
coloring of the vertex set of G. We say that the subgraphs A, B are distinguished by
f if there is no color-preserving isomorphism between A and B. If f distinguishes
every pair of adjacent connected subgraphs in G we call it a metacoloring of G.
The minimum number of colors needed is the metachromatic number of a graph
G, denoted by M(G).

Notice that for graphs of maximum degree at most 2, M(G) = π(G). For
which other natural classes of graphs is M(G) bounded?
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A Characterization of the
1-well-covered Graphs with no 4-cycles

B.L. Hartnell

Abstract. The problem of determining which graphs have the property that
every maximal independent set of vertices is also a maximum independent set
was proposed in 1970 by M.D. Plummer who called such graphs well-covered.
Whereas determining the independence number of an arbitrary graph is NP-
complete, for a well-covered graph one can simply apply the greedy algorithm.
A well-covered graph G is 1-well-covered if and only if, for every vertex v in
G, G − {v} is also well covered and has the same independence number. The
notion of a 1-well-covered graph was introduced by J. Staples in her 1975
dissertation and was further investigated by M. Pinter in 1991 and later. In
this note the 1-well-covered graphs with no 4-cycles are characterized.

Mathematics Subject Classification (2000). 05C69.

Keywords. Well-covered, maximal independent sets.

1. Introduction

A graph G is said to be well-covered if every maximal independent set of vertices
has the same cardinality. These graphs were introduced by M.D. Plummer [16] in
1970. Although the recognition problem of well-covered graphs in general is Co-
NP-complete [6, 19], it is polynomial for certain classes of graphs. For instance,
well-covered graphs that are claw-free [22], have girth at least 5 [7], have neither
4-cycles nor 5-cycles (but 3-cycles are permitted) [8] or are chordal [18] are all
recognizable in polynomial time (for further complexity issues see [4, 5, 22, 23]).
The reader is referred to Plummer [17] for an excellent survey of the work on
well-covered graphs and to a much lesser extent (but for more recent activity) to
Hartnell [10].

In this investigation, we will be interested in a special class of well-covered
graphs, called 1-well-covered. A well-covered graph G is 1-well-covered if and only

Research supported in part by NSERC of Canada.
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if, for every vertex v in G, G − {v} is also well-covered and has the same inde-
pendence number. These graphs, also known as W2 graphs, were introduced by
J. Staples [20, 21] and were later investigated in more detail by M. Pinter [12,
13, 14, 15]. Using the characterization of cubic well-covered graphs [3] and girth
5 well-covered graphs [7], Pinter was able to determine the 1-well-covered ones in
each class. He then extended this work to 4-regular 1-well-covered if these graphs
were also planar and 3-connected [13] and to the planar 1-well-covered graphs of
girth 4 [14]. In [15] he also provides several constructions to obtain infinite families
of 1-well-covered graphs of girth 4. Here, we will address the question of what are
the 1-well-covered graphs with no 4-cycles (but 3-cycles are allowed). In general,
there is no known characterization of well-covered graphs without 4-cycles (for
partial results see [9, 24]).

A few definitions and some notation are needed. For S a subset of vertices of
a graph, N [S] is the set S as well as all neighbors of vertices in S. A vertex will be
called a stem if it has a neighbor of degree one (a leaf). A 3-cycle will be called
basic if at least one of its vertices is of degree two. The following are defined in [7].
A 5-cycle is called basic if it contains no adjacent vertices of degree three or more.
A vertex v in a well-covered graph G is said to be extendable if G − {v} is also
well-covered and has the same independence number as G. Hence every vertex is
extendable in a 1-well-covered graph.

The following known results are required to establish the theorem of this paper.

Lemma 1. [1, 2, 7] If G is a well-covered graph and I is an independent set of
vertices in G, then G−N [I] must also be well-covered.

In a similar manner, we have the corresponding result for 1-well-covered
graphs.

Lemma 2. [12, 13] If G is a 1-well-covered graph and I is an independent set of
vertices in G, then G−N [I] is also a 1-well-covered graph.

Lemma 3. [7] Let G be a well-covered graph and v be an extendable vertex. Then
there is no set I of independent vertices in G such that G −N [I] ∼= {v}. That is,
it is not possible to isolate v.

Finally, the following result plays a crucial role in our investigation. The
graph S8 is shown in Figure 1.

Lemma 4. [11] Let G be a well-covered graph without 4-cycles. Let v be a vertex in
G satisfying the following two conditions:

(i) v is extendable.
(ii) v is not a stem and is not on a basic 3-cycle nor on a basic 5-cycle.

Then v must be a vertex on an induced S8.
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h

c

Figure 1. The graph S8

2. The main result

Let F be a graph on 3t vertices such that F has no 4-cycles and such that the
vertices can be partitioned into t subsets each of which induces a 3-cycle in F .
Furthermore, at least two of the three vertices on this 3-cycle are of degree two in
F (see Figure 2 for an illustration). Let F represent the family of all such graphs.

We shall show that if G is a 1-well-covered graph without 4-cycles, then G
must, in fact, be K2 or C5 or a member of F .

Figure 2. A graph in the family F

Theorem 1. Let G be a connected graph without 4-cycles. The graph G is 1-well-
covered if and only if G is isomorphic to K2, C5 or a member of the family F .

Proof. We first consider the only if direction of the statement. Assume that the
result does not hold. Let G be a connected graph without 4-cycles with as few
vertices as possible such that G is 1-well-covered but is not K2 nor C5 nor a
member of F . Since every vertex of G is extendable, Lemma 4 ensures that there
are limited possibilities for such a vertex. In particular, each vertex must either be
a stem or on a basic 3-cycle or a basic 5-cycle or belong to an induced subgraph
of G that is isomorphic to the graph S8. We shall show that none of these cases
can occur.
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Assume some vertex of G is a stem. Let a neighbor of degree one of this stem
be a and a neighbor other than a be called b (since G is not K2 there must be such
a vertex b). But then G − N [b] contains the isolated vertex a which contradicts
Lemma 3. Thus no vertex of G is a stem.

Next, assume some vertex is on a basic 5-cycle. Since G is not C5, there must
be a vertex, say a, of degree 3 or more on that 5-cycle. Let the 5-cycle be abcde
and v be a neighbor of a other than b or e. Since G has no 4-cycles, we observe
that v and d are not adjacent. But then G−N [{v,d}] contains the isolated vertex
b which is impossible (Lemma 3). Hence no vertex of G is on a basic 5-cycle.

Now assume some vertex is on a basic 3-cycle. Note that there cannot be
only one vertex, say a, of degree 2 on that 3-cycle, say abc. Say both b and c
have neighbors, say b∗ and c∗ respectively, where these are not part of the 3-
cycle. As there are no 4-cycles, b∗ and c∗ are neither adjacent nor equal. But then
G − N [{b∗,c∗}] contains the isolated vertex a which contradicts Lemma 3. Thus
any basic 3-cycle must have two degree two vertices. But since G is not a member
of F there must be some vertex not on such a basic 3-cycle.

Now select such a vertex of G that is not on a basic 3-cycle (with two degree
two vertices) and label the S8 that it belongs to as shown in Figure 1. Therefore,
recalling that for any vertex w of G that G−N [w] must be 1-well-covered (Lemma
2), it follows, since G is minimal, that each component of G−N [w] is isomorphic
to one of K2, C5 or a member of F .

Consider G−N [g] and the component containing the vertices a, b and c. This
component is not K2 nor C5. Furthermore the vertices a, b and c form a 3-cycle
where b is of degree at least three in that component and hence a and c must be of
degree two in order for this component to belong to F . Since there are no 4-cycles
in the graph, g cannot be adjacent to a neighbor of a (other than d ) nor to a
neighbor of c (other than h). This implies that a and c must be of degree three in
G itself. Similarly, in G−N [e] the component containing a, b and c has c of degree
three and thus b must be of degree two. As e is not adjacent to a neighbor of b
(other than f) since there are no 4-cycles, b must be of degree three in G. Thus
each of a, b and c is of degree 3 in G.

Now consider the component of G−N [h] containing the 5-cycle with vertices
a, b, f , e and d. Since G−N [h] is isomorphic to one of K2, C5 or a member of F , it
follows that these must be all the vertices in that component. Hence d must be of
degree three in G (since d and h cannot have another common neighbor besides g
as there are no 4-cycles in G). Next consider the component of G−N [c] containing
d as well as g, e and f . Since d is of degree two in this component it cannot be
part of a K2 and so must belong a C5 or to a K3 as part of a graph in F . As
e and g are not adjacent it must, in fact, be a C5. This forces e to be of degree
two in G since c (being of degree three in G) shares no neighbor with e. But now
observe that G−N [{b,g}] has a component consisting of the single vertex e. This
is a contradiction (see Lemma 3) as G is a 1-well-covered graph. This completes
the only if part of the proof.
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Noting that K2, C5 or a member of the family F is 1-well-covered the proof
is complete. �

We conclude by observing that, given the characterization, it is easy to rec-
ognize in polynomial time if a graph is a 1-well-covered graph with no 4-cycles.
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[5] Y. Caro, A. Sebö and M. Tarsi, Recognizing greedy structures, J. Algorithms 20 No.
1 (1996), 137–156.
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A Graph-theoretical Generalization of Berge’s
Analogue of the Erdős-Ko-Rado Theorem

A.J.W. Hilton and C.L. Spencer

Abstract. A family A of r-subsets of the vertex set V (G) of a graph G is
intersecting if any two of the r-subsets have a non-empty intersection. The
graph G is r-EKR if a largest intersecting family A of independent r-subsets
of V (G) may be obtained by taking all independent r-subsets containing some
particular vertex.

In this paper, we show that if G consists of one path P raised to the
power k0 ≥ 1, and s cycles 1C, 2C, . . . , sC raised to the powers k1, k2, . . . , ks

respectively, with

min
(
ω(1C

k1), ω(2C
k2), . . . , ω(sC

ks)
)
≥ ω(P k0) ≥ 2

where ω(H) denotes the clique number of H , and if G has an independent
r-set (so r is not too large), then G is r-EKR. An intersecting family of the
largest possible size may be found by taking all independent r-subsets of V (G)
containing one of the end-vertices of the path.

1. Introduction

We first discuss the Erdős-Ko-Rado theorem, Berge’s analogue of it, and a recent
further analogue due to Talbot. Then we show that all three can be presented in
a unified way as being a property of some relevant graph. Then we give a much
more general analogue, extending Berge’s result.

1.1. The Erdős-Ko-Rado theorem

The Erdős-Ko-Rado (EKR) theorem [6] of 1961 states that if A is a family of r-
subsets of {1, 2, . . . , n} with r ≤ n/2 such that A is intersecting (that is A1, A2 ∈
A ⇒ A1∩A2 �= ∅), then |A| ≤

(
n−1
r−1

)
. From the Hilton-Milner theorem [9] it follows

that, except if n = r/2, the only way of obtaining the equality |A| =
(
n−1
r−1

)
is by

taking all r-sets containing a common element (but, as Claude Berge observed to
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the first author, this fact can also be determined by a close examination of the
original proof of the EKR theorem).

1.2. Berge’s analogue of the EKR theorem

Let X1, X2, . . . , Xs be finite sets with |Xi| = ki (1 ≤ i ≤ s) and 2 ≤ k1 ≤
k2 ≤ . . . ≤ ks. In 1972 Berge considered the hypergraph, say H0, with vertex set
X1 ∪ X2 ∪ . . . ∪Xs and (hyper)edge set all k1, k2, . . . , ks subsets {x1, x2, . . . , xs}
with xi ∈ Xi (1 ≤ i ≤ s). The chromatic index q(H) of a hypergraph H is the
smallest number of colours needed to colour the edges of H so that no two edges
with a vertex in common have the same colour. Berge [1] showed that

q(H0) = k2k3 · · · ks.

A corollary of this is the analogue of the EKR theorem mentioned in the title
of this paper. This is that the greatest number of pairwise intersecting hyperedges
in H is the same number, namely k2k3 · · · ks; this number is clearly the greatest
number of hyperedges containing a common vertex, i.e. the maximum degree in
H . This corollary can be expressed in terms of integer sequences (e.g. [4], [5], [7],
[8], [12], [14]) and in other formulations as well (e.g. [2], [11], [15]) and is a special
case of Theorem 1.3.

1.3. Talbot’s analogue of the EKR theorem

Very recently, in 2003, Talbot [15], investigating a problem of Holroyd [10], pro-
duced a further analogue of the EKR theorem. Considering the numbers 1, 2, . . . , n
in cyclic fashion, so that i and i + 1 are adjacent (1 ≤ i ≤ n − 1) and n and 1
are adjacent, Talbot treated r-subsets of {1, 2, . . . , n} which are separated, that is
no adjacent pair is in any separated r-subset. Talbot showed that if A is an inter-
secting family of separated r-subsets of {1, 2, . . . , n} then |A| ≤

(
n−r−1

r−1

)
. He also

characterized the families A for which there is equality here. Talbot’s achievement
in finding a proof of this was quite notable, as there seems to be no easy way of
tackling this problem on the lines of the original proof [6], Katona’s proof [13] or
Daykin’s proof [3], the three main proofs of the EKR theorem; Talbot’s proof is
more similar to the original proof than to the other two.

1.4. A unified viewpoint: r-EKR graphs

The EKR theorem, the corollary to Berge’s theorem and Talbot’s theorem can all
be expressed in a very similar way in terms of graph theory. Let G be a given
graph with n vertices and consider the independent (or stable) r-subsets of the
vertex set V (G) of G, that is, the r-subsets with no edge of G joining any pair
of vertices. We look for an intersecting family of independent r-subsets. For the
original EKR-theorem, we can take G to be the graph with n ≥ 2r vertices and no
edges. For the corollary to Berge’s theorem, we can take G to be the graph with r
components, each a complete graph, the ith having order ki. For Talbot’s theorem
we can take G to be an n-cycle.

We call a family A of independent r-subsets of V (G), all containing the
same vertex, say w, an r-star ; the vertex w is called the star centre. We call a
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graph G r-EKR if some largest intersecting family of independent r-subsets of
V (G) is an r-star. We call G strictly r-EKR if every largest intersecting family
of independent r-sets is an r-star. The EKR theorem, the corollary to Berge’s
theorem, and Talbot’s theorem may all be expressed by saying that the relevant
graph is r-EKR.

We mention that Talbot actually proved more, namely that the kth power
of an n-cycle is r-EKR if k ≥ 1, r ≥ 1 and n ≥ r(k + 1). He also showed exactly
when Ck

n is strictly r-EKR.
Not all graphs need be r-EKR. For a much fuller discussion of this, see

Holroyd and Talbot [12]. A simple example of a graph which is not r-EKR is
provided, paradoxically, by the graph with n vertices and no edges when n < 2r.
Then every r-set intersects every other r-set. Another simple example is provided
by the graph G in Figure 1. This graph is not 3-EKR. A largest 3-star that can

a e fb c d

Figure 1

be obtained is clearly {acd, ace, acf, adf}, which has four members. Yet a largest
intersecting family of independent 3-sets is {acd, ace, acf, adf, cdf}, which has five
members.

We draw attention to the following interesting conjecture of Holroyd and
Talbot. Let,

µ(G) = min{|I| : I is a maximal independent subset of V (G)}.

Conjecture 1.1. If 1 ≤ r ≤ µ/2, then G is r-EKR.

1.5. Further extensions of Berge’s analogue

Our main result, Theorem 1.3, generalizes Berge’s theorem as well as a number
of generalizations of Berge’s theorem due to Gronau [8], Meyer [14], Deza and
Frankl [4], Bollobás and Leader [2], culminating in the following theorem of Hol-
royd, Spencer and Talbot [11].

Theorem 1.2. Let t ≥ r ≥ 1 and let G be a graph with t components, each being a
complete graph of order at least two (the complete graphs not necessarily being of
the same order). Then G is r-EKR, and a largest star may be found by taking the
star centre to be a vertex in a complete graph of smallest order.

The requirement in Theorem 1.2 that the components have order at least two
is essential (apart from the fact (not observed by Holroyd, Spencer and Talbot) that
we can permit one complete graph to be an isolated vertex.) In the extreme case,
when all the components are isolated vertices, we are in the situation described in
the EKR-theorem, where we needed the extra requirement that r ≤ t/2 for G to
be r-EKR.



228 A.J.W. Hilton and C.L. Spencer

1.6. Our further extension of Berge’s Theorem

We let ω(G) be the clique number of a graph G, that is the largest order of a
complete subgraph of G. Note that the formulae for the clique numbers of P k

n and
Ck

n, where Pn and Cn are the path and cycle respectively with n vertices, are

ω(P k
n ) =

{
k + 1 if n ≥ k + 1,
n if n ≤ k,

and

ω(Ck
n) =

{
k + 1 if n ≥ 2k + 2,
n if n ≤ 2k + 1.

Our main result concerns a graph G consisting of cycles 1C, 2C, . . . , sC, raised
to the powers k1, k2, . . . , ks respectively and a path P raised to the power k0. We
let ci = |V (iC)| and p = |V (P )| and we let

κi =
{
�ci/(ki + 1)� if ci ≥ ki + 1,
1 if 2 ≤ ci ≤ ki + 1.

We shall denote this graph G by G(ck1
1 , ck2

2 , . . . , cks
s , pk0). Our main result is:

Theorem 1.3. Let s ≥ 0, p ≥ 1 and ci ≥ 2 (1 ≤ i ≤ s). Let

min
(
ω(1Ck1), ω(2Ck2), . . . , ω(sC

ks)
)
≥ max(ω(P k0), 2), (1)

and let

1 ≤ r ≤
(

s∑
i=1

κi

)
+
⌈

p

k0 + 1

⌉
.

Then G(ck1
1 , ck2

2 , . . . , cks
s , pk0) is r-EKR. An r-star of maximum size may be ob-

tained by taking all independent r-subsets of V (G) containing one of the end ver-
tices of the path P .

It is not hard to verify that Condition (1) is equivalent to the following
Condition (2).

min
(

min
1≤i≤s

(ki + 1, ci)
)
≥ max (min (k0 + 1, p) , 2) . (2)

Thus we have:

Lemma 1.4. Conditions (1) and (2) are equivalent.

In Theorem 1.3, we include K2’s as cycles (degenerate cycles!), so that the
equation ω(iC

ki) = 2 is permitted for any value of i, 1 ≤ i ≤ s. The theorem
remains true in this case, and the proof is considerably simplified. The theorem
becomes untrue if we go further and include K1’s as (degenerate) cycles as well.

Graphs G consisting of powers of one path and several cycles may well be
r-EKR even if ω(P k0) > min1≤i≤s ω(iC

ki), but it is not clear to the authors where
the star centre of a largest star might be.
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The curious term max(ω(P k0), 2) in Theorem 1.3 is there simply to take
account of the fact that the cycles iC (1 ≤ i ≤ s) all have to have length at least
two, whereas the path can just have length 1.

Our proof of Theorem 1.3 is inspired by Talbot’s clever proof. It takes The-
orem 1.2 as its starting point.

1.7. Notation

Given the path P and the cycles 1C, 2C, . . . , sC, we let p = |V (P )|, ci = |V (iC)|,
π = c1 + c2 + · · ·+ cs and n = p+ c1 + c2 + · · ·+ cs(= p+π). We shall suppose that
the vertices of iC are c1+c2+ · · ·+ci−1+1, . . . , c1+c2+ · · · ci and that the vertices
c1 + c2 + · · ·+ ci−1 + j − 1 and c1 + c2 + · · ·+ ci−1 + j are adjacent in iC (1 ≤ i ≤
s, 2 ≤ j ≤ ci) and that c1 + c2 + · · ·+ ci−1 +1 and c1 + c2 + · · ·+ ci are adjacent in
iC. We shall suppose that the vertices of P are π + 1, π + 2, . . . , π + p(= n). The
graph G described in Theorem 1.3 has cycles 1C, 2C, . . . sC raised to the powers
k1, k2, . . . , ks respectively, and a path P raised to the power k0; we shall suppose
that G has vertex set {1, 2, . . . , n}, and shall denote G by G(ck1

1 , ck2
2 , . . . , cks

s , pk0).
We let I(r) or I(r)(G) denote the set of all independent r-sets of G, and let

I(r)
a or I(r)

a (G) denote the set of all independent r-sets of G containing some vertex
a ∈ V (G).

We shall use the letter a for an end vertex of the path P .

2. Proof of Theorem 1.3

The proof proceeds through a number of lemmas and sublemmas. Throughout A
will be an intersecting family of independent r-subsets of

V (G(ck1
1 , ck2

2 , . . . , cks
s , pk0)).

Lemma 2.1. Theorem 1.3 is true for any graph which is the union of the k0th power
of a path and s cycles, where the ith cycle is raised to the power ki, if

(1) the length of the path is at least 2 and at most k0 + 1,
(2) for 1 ≤ i ≤ s, the length of the ith cycle is at least 2 and at most 2ki +1, and
(3) the clique number of the power of the path is not more than the smallest clique

number of the powers of the cycles.

Proof. In this case, the power of the path and the various powers of the cycles are
cliques, and then Theorem 1.3 reduces to Theorem 1.2. �

Lemma 2.2. Theorem 1.3 is true if p = k0 + 1, r =
∑r

i=1 κi + �p/(k0 + 1)�, and
condition (1) is satisfied.
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Before proving Lemma 2.2, let us introduce another piece of terminology.
Consider a bijection µ : {1, 2, . . . , n} → {1, 2, . . . , n} given by:

µ(c1 + c2 + · · ·+ ci−1 + j) = c1 + c2 + · · ·+ ci−1 + j + 1 (1 ≤ j < ci,
1 ≤ i ≤ s),

µ(c1 + c2 + · · ·+ ci) = c1 + c2 + · · ·+ ci−1 + 1 (1 ≤ i ≤ s),
µ(π + j) = π + j + 1 (1 ≤ j < p),

µ(n) = π + 1.

We call µ a clockwise rotation.

Proof of Lemma 2.2. Since p = k0+1, �p/(k0 + 1)� = 1. Let r =
∑s

i=1 κi+1. Then
r is the largest possible cardinality that an independent set can have; moreover
any independent r-set must contain exactly one vertex of P .

By condition (2), ci ≥ p = k0 +1 (1 ≤ i ≤ s), so for any independent r-set A,
the intersecting family A will contain at most one of A, µ(A), µ2(A), . . . , µk0(A).
Therefore |A| ≤ |I(r)|/(k0+1). But since I(r) = I(r)

π+1∪· · ·∪I
(r)
π+p and I(r)

k ∩I
(r)
l = ∅

(π + 1 ≤ k < l ≤ π + p), it follows that |I(r)| = p|I(r)
π+1| = (k0 + 1)|I(r)

π+1|, so that
|A| ≤ |I(r)

π+1|, which proves Lemma 2.2. �

Lemma 2.3. Theorem 1.3 is true if |V (P )| = k0 + 1, 1 ≤ r ≤
∑s

i=1 κi + 1, and
condition (1) is satisfied.

Proof. In view of Lemma 2.1, we may assume that iC
ki is not a complete graph

for at least one i, 1 ≤ i ≤ s. Without loss of generality, assume that c1 >
max(3, ω(P k0)) = max(3, k0 + 1). In particular, this implies that c1 ≥ 4 if k1 = 1
and c1 ≥ 2k1 + 2 if k1 ≥ 2 (since 1C

k1 is a complete graph if c1 ≤ 2k1 + 1). It
also implies that Ck1

c1
contains a Kp. Notice that Ck1

c1−1 and Ck1
c1−k1−1 also contain

a Kp; this is obvious if neither of these is a complete graph, but if, for example,
c1 = 2k1 + 2, then Kk1

c1−k1−1 is a Kk1+1 ⊃ Kk0+1 = Kp.
We use induction on c1 and, in particular, we shall assume that Lemma 2.3

is true for c1 − 1 and c1 − 2. Lemma 2.1 provides the base step for our induction
hypothesis. In view of Lemma 2.2, we may assume that r <

∑s
i=1 κi + 1.

Define the function f : {1, 2, . . . , n} → {1, 2, . . . , n− 1} by

f(j) =
{

1 if j = 1,
j − 1 if 2 ≤ j ≤ n.

We shall need the following very easy sublemmas:

Sublemma 2.3.1. If G is an intersecting family, then so is f(G).

Sublemma 2.3.2. If A and B are independent r-subsets of G(ck1
1 , ck2

2 , . . . , cks
s , pk0)

and A �= B, then, for 1 ≤ j ≤ ks, f j(A) = f j(B)⇒ A∆ B = {c, d} for some c, d
with 1 ≤ c < d ≤ j + 1.
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Consider the following partition of our intersecting family A of independent
r-subsets of G:

A = B ∪ C ∪
(

k1⋃
i=0

Di

)
,

where

B =
{

A ∈ A : 1 /∈ A and f(A) ∈ I(r)
(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
,

C =
{

A ∈ A : 1 ∈ A and f(A) ∈ I(r)
(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
,

D0 = {A ∈ A : 1, k1 + 2 ∈ A}
Di = {A ∈ A : c1 + 1− i, k1 + 2− i ∈ B} (1 ≤ i ≤ k1).

Since f(B) ∪ f(C) = f(B ∪ C), and since, by Sublemma 2.3.1, f(B ∪ C) is an
intersecting family of independent r-subsets of I(r)

(
G
(
(c1−1)k1 ,ck2

2 ,...,cks
s ,pk0

))
,

it follows by induction that

|f(B) ∪ f(C)| ≤
∣∣∣I(r)

a

(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (3)

It follows from Sublemma 2.3.2 with j = 1 that |f(B)| = |B| (as no set in B contains
1) and |f(C)| = |C| (as no set in C contains 2). Therefore |B|+ |C| = |f(B)|+ |f(C)|.
Consequently

|B|+ |C| = |f(B) ∪ f(C)|+ |f(B) ∩ f(C)|.
Let

E = f(B) ∩ f(C).
Then, by (3),

|B|+ |C| ≤ |E|+
∣∣∣I(r)

a

(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (4)

For any family G of sets, let G − {1} = {G\{1} : G ∈ G}. Define,

F =
(
fk1−1(E − {1})

)
∪
(

k1⋃
i=0

(
fk1(Di)− {1}

))
.

Note that if E ∈ E then E = f(C) for some C ∈ C, so 1 ∈ E. Also note that
if D ∈ Di for some i, 0 ≤ i ≤ k1, then 1 ∈ fk1(D). Therefore F is a family of
(r − 1)-subsets. The family F has many further properties given in the following
sublemmas.

Sublemma 2.3.3.

(1) F is a family of independent (r − 1)-subsets of

V
(
G
(
(c1 − k1)k1 , ck2

2 , ck3
3 , . . . , cks

s , pk0

))
.

(2) fk1 (D0 − {1}) , fk1 (D1 − {1}) , . . . , fk1 (Dk − {1}) and fk1−1(E − {1}) are
pairwise disjoint families of sets.

(3) F is intersecting.
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(4) f(F) is a family of independent (r − 1)-subsets of

V
(
G
(
(c1 − k1 − 1)k1 , ck2

2 , ck3
3 , . . . , cks

s , pk0

))
.

Sublemma 2.3.4. With p = k0 + 1,∣∣∣I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , pk0)
)∣∣∣ =

∣∣∣I(r)
a

(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣
+
∣∣∣I(r−1)

a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣
By Sublemma 2.3.2, fk1 acts as an injective mapping on Di (0 ≤ i ≤ k1), so

|Di| = |fk1(Di)| (0 ≤ i ≤ k1). (5)

By Sublemma 2.3.2 again, fk1 also acts as an injective mapping on C, so fk1−1

acts injectively on E , and so

|E| = |fk1−1(E)|. (6)

By Sublemma 2.3.3(2) it follows that |F| = |fk1−1(E)|+
∑k1

i=0 |fk1(Di)|. Therefore,
by (5) and (6),

|F| = |E|+
k1∑

i=0

|Di|. (7)

As no set in F contains the vertex 1, the map f : F → f(F) is bijective, so

|F| = |f(F)|. (8)

By Sublemma 2.3.3(3) F is intersecting, so by Sublemma 2.3.2, f(F) is also
intersecting. By Sublemma 2.3.3(4), f(F) is a family of independent (r−1)-subsets
of V

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
. Therefore, by induction,

|f(F)| ≤
∣∣∣I(r−1)

a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (9)

Therefore, using (3), (7), (8) and (9),

|A| = |B|+ |C|+
k1∑

i=0

|Di|

= |f(B) ∪ f(C)|+ |E|+
k1∑

i=0

|Di|

= |f(B) ∪ f(C)|+ |F|
= |f(B) ∪ f(C)|+ |f(F)|
≤

∣∣∣I(r)
a

(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣
+
∣∣∣I(r−1)

a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ .
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Therefore, by Sublemma 2.3.4,

|A| ≤
∣∣∣I(r)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ .
Lemma 2.3 now follows by induction on c1. �

Lemma 2.4. Theorem 1.3 is true if 1 ≤ |V (P )| ≤ k0 + 1, 1 ≤ r ≤
∑s

i=1 κi +
�p/(k0 + 1)�, and Condition 1 is satisfied.

Proof. From Lemma 2.3 we know that G(ck1
1 , ck2

2 , . . . , cks
s , pk0) is r-EKR if |V (P )| =

k0 + 1, 1 ≤ r ≤ (
∑s

i=1 κi) + 1 and Condition (1) is satisfied, and that an r-star of
maximum size can be found by taking all independent r-sets containing an end-
point a of P (in fact, since P k0 is a complete graph, any vertex of P could be the
centre of a suitable r-star).

If several vertices of P k0 are removed leaving at least one vertex, say w,
the number of independent r-sets centred on w remains unaltered. Lemma 2.4
follows. �

The rest of the proof of Theorem 1.3 bears a close resemblance to the proof of
Lemma 2.3, and is similarly modelled on Talbot’s proof of his separated sets result
in [15]. We still need to show that, with the cycle powers fixed, we can “grow” the
length of the path, P , to the required value p.

We argue by induction on p. The basis for the induction is provided by
Lemma 2.4 which established Theorem 1.3 whenever 1 ≤ r ≤ (

∑s
i=1 κi) + 1,

Condition (1) is satisfied, and 1 ≤ |V (P )| ≤ k0 + 1. Recall that the vertices of P
are labelled π + 1, π + 2, . . . , π + p.

Consider the following partition of our intersecting family of A independent
r-sets:

A = Q ∪R ∪ S0,

where

Q =
{
A ∈ A : π + 1 /∈ A and g(A) ∈ I(r)

a

(
G(ck1

1 , ck2
2 , . . . , cks

s , (p− 1)k0)
)}

,

R =
{

A ∈ A : π + 1 ∈ A and g(A) ∈ I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , (p− 1)k0)
)}

,

S0 = {A ∈ A : π + 1, π + k0 + 2 ∈ A}.
Define the function g : {1, 2, . . . , n} → {1, 2, . . . , n− 1} by

g(j) =
{

j if 1 ≤ j ≤ π + 1,
j − 1 if π + 2 ≤ j ≤ π + p.

The analogues of Sublemmas 2.3.1 and 2.3.2 are:

Sublemma 2.4.1. If G is an intersecting family, then so is g(G).
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Sublemma 2.4.2. If A and B are independent r-subsets of G
(
ck1
1 , ck2

2 , . . . , cks
s , pk0

)
and A �= B, then, for 1 ≤ j ≤ k0,

gj(A) = gj(B)⇒ A∆ B = {c, d}
for some c, d with π + 1 ≤ c < d ≤ π + 1 + j.

Since g(Q)∪g(R) = g(Q∪R) and since, by Sublemma 2.4.1, g(Q∪R) is an in-
tersecting family of independent r-subsets of I(r)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))
,

it follows by induction that

|g(Q) ∪ g(R)| ≤
∣∣∣I(r)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣ . (10)

It follows by Sublemma 2.4.2 with j = 1 that |g(Q)| = |Q| (as no set in Q
contains π + 1) and that |g(R)| = |R| (as no set in R contains π + 2). Therefore
|Q|+ |R| = |g(Q)|+ |g(R)|. Consequently

|Q|+ |R| = |g(Q) ∪ g(R)|+ |g(Q) ∩ g(R)|.
Let T = g(Q) ∩ g(R). Then, by (10),

|Q|+ |R| ≤ |T |+
∣∣∣I(r)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣ . (11)

Define,

U =
(
gk0−1 (T − {π + 1})

)
∪
(
gk0 (S0)− {π + 1}

)
.

Note that if T ∈ T then T = g(R) for some R ∈ R, so π +1 ∈ T . Also note that if
S ∈ S0 then π + 1 ∈ gk0(S). Therefore U is a family of (r− 1)-subsets. The family
U has the following further properties:

Sublemma 2.4.3.

(1) U is a family of independent (r − 1)-subsets of

V
(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))
,

(2) gk0 (S0 − {π + 1}) and gk0−1 (T − {π + 1}) are disjoint families of sets,
(3) U is intersecting,
(4) g(U) is a family of intersecting (r − 1)-subsets of

V
(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))
.

By Sublemma 2.4.2, gk0 acts injectively on S0, so

|S0| = |gk0 (S0) |. (12)

Again, by Sublemma 2.4.2, gk0 acts injectively on R, and so gk0−1 acts injectively
on T , and so

|T | =
∣∣gk0−1 (T )

∣∣ (13)
By Sublemma 2.4.3(2) it follows that

|U| =
∣∣gk0−1 (T )

∣∣+ ∣∣gk0(S0)
∣∣ .
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Therefore, by (12) and (13),

|U| = |T |+ |S0| . (14)

As no set in U contains 1, the map g : U → g(U) is injective, so

|U| = |g(U)|. (15)

By Sublemma 2.4.3(3), U is intersecting, so by Sublemma 2.4.1, g(U) is also inter-
secting. By Sublemma 2.4.3(4), g(U) is a family of independent (r − 1)-subsets of
V
(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))
. Therefore, by induction,

|g(U)| ≤
∣∣∣I(r−1)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))∣∣∣ . (16)

Therefore, using (10),(14),(15) and (16),

|A| = |Q|+ |R|+ |S0|
= |g(Q) ∪ g(R)|+ |T |+ |S0|
= |g(Q) ∪ g(R)|+ |U|
= |g(Q) ∪ g(R)|+ |g(U)|

≤
∣∣∣I(r)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣
+
∣∣∣I(r−1)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))∣∣∣ .
We now need the following sublemma.

Sublemma 2.4.4. If p ≥ k0 + 2 then∣∣∣I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , pk0)
)∣∣∣ =

∣∣∣I(r)
a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− 1)k0

))∣∣∣
+
∣∣∣I(r−1)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , (p− k0 − 1)k0

))∣∣∣ .
Using this, it now follows that

|A| ≤
∣∣∣I(r)

a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ .
Thus G is r-EKR. Theorem 1.3 now follows by induction on p.

3. Proofs of the lemmas

In this section we prove those lemmas used in the proof of Theorem 1.3 which
still await a proof. We only give a proof of Sublemmas 2.3.1, 2.3.2, 2.3.3 and 2.3.4
because, for 1 ≤ x ≤ 4, the proof of Sublemma 2.4.x is either virtually the same,
or is a considerable simplification of the proof of Sublemma 2.3.x.

Proof of Sublemma 2.3.1. If G is an intersecting family and A, B ∈ f(G), then
there exist C, D ∈ G such that A = f(C) and B = f(D). Then ∅ �= f(C ∩D) ⊆
f(C) ∩ f(D) = A ∩B. Thus f(G) is intersecting. �
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Proof of Sublemma 2.3.2. Let A, B ∈ I(r)
a

(
G(ck1

1 , ck2
2 , . . . , cks

s , pk0)
)

with A �= B

but f j(A) = f j(B) for some j, 1 ≤ j ≤ k1. If 2 ≤ a ≤ c1 − j then a ∈ f j(A) ⇔
a + j ∈ A. Hence

A ∩ {j + 2, j + 3, . . . , c1} = B ∩ {j + 2, j + 3, . . . , c1}.
So as f j(A) = f j(B) but A �= B, there exist c, d ∈ {1, 2, . . . , j+1} such that c ∈ A
and d ∈ B, say. But since j ≤ k1 we have that A ∩ {1, 2, . . . , j + 1} = {c} and
B ∩ {1, 2, . . . , j + 1} = {d}. Thus A∆ B = {c, d}. �

Proof of Sublemma 2.3.3 (1). We have already that

F =
(
fk1−1 (E − {1})

)
∪
(

k1⋃
i=0

(
fki (Di)− {1}

))

is a family of (r − 1)-sets. We have to show that the sets are independent. There
are three cases.

First consider the sets in fk1−1 (E − {1}). Let H ∈ fk1−1(E). Then there
exists E ∈ E such that fk1−1(E) = H , and, as E = f(B) ∩ f(C), there also exists
B ∈ B and C ∈ C such that f(B) = f(C) = E. By Sublemma 2.3.2 with j = 1, we
know that one of the sets B, C contains 1 and the other 2, and, by the definition of B
and C, we have that 1 ∈ C, so 1 ∈ H and 2 ∈ B. Moreover, C∩{c1−k1+1, . . . , c1} =
∅ so E ∩ {c1 − k1, . . . , c1} = ∅. Therefore H ∩ {c1 − 2k1 + 1, . . . , c1} = ∅. Since
2 ∈ B it follows that E ∩ {2, . . . , k1 + 1} = ∅. It now follows that

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {1, 2}) = {1}, (17)

and thence that H − {1} ∈ fk1−1(E − {1}) is an independent (r − 1)-subset of

V
(
H
(
(c1 − kk1

1 ), ck2
2 , . . . , cks

s , pk0

))
.

Next suppose that H ∈ fk1(D0). Then there exists D ∈ D0 such that H =
fk1(D), and, as D ∈ D0, 1, k1 + 2 ∈ D. Thus 1 ∈ H and

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {1, . . . , k1 + 2}) = {1, 2} (18)

and so H − {1} is an independent (r − 1)-subset of

V
(
H
(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

Finally let H ∈ fk1(Di) for some i, 1 ≤ i ≤ k1. Then there exists a D ∈ Di

with H = fk1(D), and, as D ∈ Di, c1 + 1 − i, k1 + 2 − i ∈ D. Since k1 ≥ i ≥ 1,
fk1(k1 + 2− i) = 1, so 1 ∈ H . Therefore

H∩({c1− i−2k1 +1, . . . , c1−k1}∪{1, . . . , k1 +2− i}) = {c1− i−k1 +1, 1}. (19)

Hence H − {1} is an independent (r − 1)-subset of

V
(
H
(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

Sublemma 2.3.3(1) now follows from (17), (18) and (19). �



A Generalization of Berge’s Analogue of the EKR Theorem 237

Proof of Sublemma 2.3.3 (2). To show that these families are pairwise disjoint, we
consider how the members of each family intersect the set {c1 − 2k1 + 1, . . . , c −
k1} ∪ {2}. Let H ∈ fk1−1(E)− {1}. From (17) we have that

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {2}) = ∅.

Next let H ∈ fk1(D0). From (18) it follows that

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {2}) = {2}.

Finally let H ∈ fk1(Di)− {1} for some i, 1 ≤ i ≤ k1. From (19) we have

H ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {2}) = {c1 − i− k1 + 1}.

Hence the families are pairwise disjoint. �

Proof of Sublemma 2.3.3 (3). Let A, B ∈ F . First suppose that A, B ∈ fk1(Di) −
{1} for some i, 0 ≤ i ≤ k1. Then there exist D′, D′′ ∈ Di with A = fk1(D′)− {1}
and B = fk1(D′′)−{1}. If i = 0 then k+2 ∈ D′∩D′′ and so 2 = fk1(k1+2) ∈ A∩B.
If 1 ≤ i ≤ k1 then c1 + 1− i ∈ D′ ∩D′′, so c1 + 1− i− k1 ∈ A ∩B.

Now suppose that A, B ∈ fk1(E) − {1}. Then there exist E′, E′′ ∈ E with
A = fk1−1(E′)− {1} and B = fk1−1(E′′)− {1}. As E′, E′′ ∈ E = f(B) ∩ f(C), it
follows that there are B1 ∈ B and C1 ∈ C such that f(B1) = E′ and f(C1) = E′′.
As B1, C1 ∈ A, we have that B1 ∩ C1 �= ∅. By the definitions of B and C, and by
Sublemma 2.3.2 with j = 1, we have that 1 ∈ C1 and 2 ∈ B1. It follows that, for
some j ≥ k1 + 3, j ∈ B1 ∩ C1. Therefore 3 ≤ fk1(j) ∈ A ∩B.

Next suppose that 0 ≤ i < j ≤ k1 and A ∈ fk1(Di)−{1} and B ∈ fk1(Dj)−
{1}. In this case there exist D′ ∈ Di and D′′ ∈ Dj with A = fk1(D′) − {1} and
B = fk1(D′′) − {1}. This implies that D′ ∩ {1, 2, . . . , k1 + 2} = {k1 + 2 − j} and
D′′ ∩ {1, 2, . . . , k1 + 2} = {k1 + 2 − i}, where 2 ≤ k1 + 2 − j < k1 + 2 − i. But
D′, D′′ ∈ A which is intersecting, so D′∩D′′ �= ∅. Therefore there is some l ≥ k1+3
with l ∈ D′ ∩D′′. Then 3 ≤ fk1(l) ∈ A ∩B.

Finally suppose that A ∈ fk1−1 − {1} and B ∈ fk1(Di) − {1}. In this case
there exist D ∈ Di and E ∈ E with B = fk1(D) − {1} and A = fk1−1(E) − {1},
and, since E = f(B)∩f(C), there exist B1 ∈ B and C1 ∈ C such that E = f(B1) =
f(C1). From Sublemma 2.3.2 with j = 1 it follows that 1 ∈ C1 and 2 ∈ B1, so
B1 ∩ {1, 2, . . . , k1 + 2} = {2} and C1 ∩ {1, 2, . . . , k1 + 1} = {1}. Also, from the
definition of Di we have that

D ∩ {1, 2, . . . , k1 + 2} =
{
{1, k1 + 2} if i = 0,
{k1 + 2− i} if 1 ≤ i ≤ k1.

As B1, C1, D are all elements of A, we know that B1∩D and C1∩D are both non-
empty. If i = 0 then there exists some j ≥ 2k1 +3 such that j ∈ B1∩D. Otherwise
we have that 1 ≤ i ≤ k1, and in this case there exists some j1 ≥ 2k1 + 2− i + 1 ≥
k1 + 3 with j ∈ C1 ∩D. Hence 3 ≤ fk1(j) ∈ A ∩B. �
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Proof of Sublemma 2.3.3 (4). From Sublemma 2.3.3(1) we know that F is a family
of independent (r− 1)-subsets of V

(
G
(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
. Let F ∈ F

and consider f(F). Clearly f(F ) is an (r − 1)-subset of

V
(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

We just need to check that f(F) is an independent set. Since F was an independent
(r − 1)-subset of V

(
G
(
(c1 − k1)k1 , ck2

2 , . . . , cks
s , pk0

))
, the only way that f(F)

could fail to be an independent (r − 1)-subset of

V
(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
is if F contains one of the following pairs of elements:

(c1 − 2k1 + 1, 2), (c1 − 2k1 + 2, 3), . . . , (c1 − k1, k1 + 1), (1, k1 + 2).

The vertex 1 has been removed from every set in F so the last pair (1, k1 + 2)
cannot be contained in F . If F ∈ fk1−1(E) − {1} then by (17) (as the H there is
in fk−1(E)) it follows that

F ∩ {c1 − 2k1 + 1, . . . , c1 − k1} = ∅.

This also follows from (18) if F ∈ fk1(D0)− {1} (as the H in (18) is in fk1(D0)).
It remains to check what happens if F ∈ fk1(Di) − 1 for some i, 1 ≤ i ≤ k1. In
this case it follows from (19) that

F ∩ ({c1 − 2k1 + 1, . . . , c1 − k1} ∪ {1, . . . , k1 + 2− i}) = {c1 − i− k1 + 1} (20)

(as the H in (19) is in fk1(Di)). Note that all pairs of vertices in the list other
than the excluded pair (1, k1 + 2) are of the form (c1 − 2k1 + j, j + 1). Since we
have c1 − k1 − i + 1 = c1 − 2k1 + (k1 − i + 1) ∈ F it follows from (20) that
(k1− i+1)+1 = k1− i+2 /∈ F . Thus F cannot contain any of the pairs of vertices
in the list. �

Proof of Sublemma 2.3.4. To prove this we let

A = I(r)
a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , pk0

))
and follow the line of reasoning in the induction step in the proof of Lemma 2.3.
We may suppose here that the end-vertex a of the path is the vertex n.

From the definitions of B and C it follows that

f(B) ∪ f(C) = I(r)
a

(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
,

so that (3) holds with equality. We therefore have that

|B|+ |C| =
∣∣∣I(r)

a

(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ + |E|

so that (4) holds with equality.
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Since A is partitioned into B, C,D0, . . . ,Dk, it follows that∣∣∣I(r)
a

(
G
(
ck1
1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣
−
∣∣∣I(r)

a

(
G
(
(c1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ = |E|+
∑k1

i=0 |Di|
= |F|, by (7),
= |f(F)|, by (8).

(21)

From Sublemma 2.3.3(4) we know that f(F) is a family of independent (r − 1)-
subsets of V

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
. Since f(F) is a subfamily of

fk1+1(A), it follows that every independent (r − 1)-set in f(F) contains the end-
vertex of P k0 , and thus in I(r−1)

a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
it follows

that
|f(F)| ≤ I(r−1)

a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
. (22)

For a family G of subsets of {1, 2, . . . , n}, let G+{i} denote the family {G∪{i} :
G ∈ G}.

Now consider the “reverse” map f−(k1+1) : {1, 2, . . . , n − k1 − 1} → {k1 +
2, . . . , n} given by f−(k1+1)(j) = k1+1+j. Under this map the independent (r−1)-
sets in I(r−1)

a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
are taken to E ′ ∪

∑k1
i=0D′

i,
where E ′∪{2} ⊆ B, E ′∪{1} ⊆ C (and f(E ′) ⊆ E −{1}) and D′

i +{k1 +2− i} ⊆ Di

(1 ≤ i ≤ k1) and D′
0 + {1} ⊆ D0. Let us describe this in more detail. Consider an

independent (r − 1)-set S in I(r−1)
a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))
.

(a) If S contains the vertex 1 (so does not contain any vertex in {c1 − 2k1, c1 −
2k1 + 1, . . . , c1 − k1 − 1}), then f−(k1+1)(S) contains the vertex k1 + 2 and
does not contain any of the vertices in {c1− k1 + 1, . . . , c1} ∪ {1, . . . , k1 + 1}.
We let

D′
0 =

{
f−(k1+1)(S) : 1 ∈ S and

S ∈ I(r−1)
a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
;

then D′
0 ∪ {1} ⊆ D0.

(b) If S contains a vertex c1−k1−i for some i, 1 ≤ i ≤ k1 (and so does not contain
any vertex in the set {c1− k1 − i + 1, . . . , c1− k1 − 1}∪ {1, 2, . . . , k1 + 1− i},
then f−(k1+1)(S) contains the vertex c1 − i + 1 and does not contain any of
the vertices in {c1− i+ 2, . . . , c1} ∪ {1, 2, . . . , 2k1 + 2− i}. For 1 ≤ i ≤ k1, we
let

D′
i =

{
f−(k1+1)(S) : c1 − k1 − i ∈ S and

S ∈ I(r−1)
a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
;

then D′
i + {k1 + 2− i} ⊆ Di.
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(c) If S contains no vertex from the set {c1 − 2k1, . . . , c1 − k1 − 1} ∪ {1}, then
f−(k1+1)(S) contains no vertex from the set {c1−k1+1, . . . , c1}∪{1, 2, . . . , k1+
2}. We let

E ′ =
{

f−(k1+1)(S) : S ∩ ({c1 − 2k1, . . . , c1 − k1 − 1} ∪ {1}) = ∅ and

S ∈ I(r−1)
a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))}
.

Then E ′ ∪ {2} ⊂ B and E ′ ∪ {1} ⊆ C, so E ′ ⊆ E . It follows that∣∣∣I(r−1)
a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ ≤ |E ′|+ k1∑
i=0

|D′
i|. (23)

The family E ′ ∪
∑k1

i=0D′
i has the properties that

|E ′|+
k1∑

i=0

|D′
i| ≤ |E|+

k1∑
i=0

|Di| = |F| = |f(F)|.

It therefore follows from (22) and (23) that

|f(F)| =
∣∣∣I(r−1)

a

(
G
(
(c1 − k1 − 1)k1 , ck2

2 , . . . , cks
s , pk0

))∣∣∣ . (24)

The equality we wish for now follows from (21) and (24). �

4. Final remarks

There are a number of operations which can be used to obtain new r-EKR graphs
from old. The first is described by the following lemma of Holroyd, Spencer and
Talbot [11]. Let N(v) denote the neighborhood of v, that is N(v) = {w : w ∈
V (G) and vw ∈ E(G)}.
Lemma 4.1. Let G be an r-EKR graph with a star centre v. If S ⊂ N(v) then
G− S is also r-EKR with a star centre v.

By applying this to the graph G(ck1
1 , ck2

2 , . . . , cks
s , pk0) in the case where p ≥

k0 + 2 and S = N(n) (n being the end vertex of the path P ), we obtain the
following theorem.

Theorem 4.2. Let s ≥ 0, p ≥ 1 and ci ≥ 2 (1 ≤ i ≤ s). Let G be a graph consisting
of cycles 1C, 2C, . . . , sC raised to the powers k1, k2, . . . , ks respectively, a path P
raised to the power k0, and an isolated vertex. Let c1 = |V (iC)| (1 ≤ i ≤ s) and
p = |V (P )|+ k0 + 1. Also let

1 ≤ r ≤
s∑

i=1

⌊
ci

ki + 1

⌋
+
⌈

p

k0 + 1

⌉
.

Let
min

(
ω(1Ck1), ω(2Ck2), . . . , ω(sC

ks)
)
≥ k0 + 1.

Then G is r-EKR with the isolated vertex w as star centre.



A Generalization of Berge’s Analogue of the EKR Theorem 241

It is worth remarking that in a similar vein Holroyd, Spencer and Talbot in
[11] showed that if G is a graph with q components being paths, cycles, complete
graphs, and at least one isolated vertex, and if q ≥ 2r, then G is r-EKR.

Finally we make two further comments.

(1) If w ∈ N(v	), where v	 is a star centre of an r-EKR graph G, then it is clear
that the addition of any edge wv produces a further graph that is r-EKR
with star centre v	.

(2) If G is an r-EKR graph, then we can introduce a further vertex w and join
it to each vertex of G, and by this means produce a further r-EKR graph.
Conversely, if G is an r-EKR graph, and G contains a vertex w which is
joined to all other vertices, then G− w is also r-EKR.
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Independence Polynomials and
the Unimodality Conjecture for
Very Well-covered, Quasi-regularizable,
and Perfect Graphs

Vadim E. Levit and Eugen Mandrescu

Abstract. If sk denotes the number of stable sets of cardinality k in the graph

G, then I(G;x) =
α∑

k=0

skxk is the independence polynomial of G (Gutman,

Harary, 1983), where α = α(G) is the size of a maximum stable set in G.
Alavi, Malde, Schwenk and Erdös (1987) conjectured that I(T, x) is uni-
modal for every tree T , while, in general, they proved that for each per-
mutation π of {1, 2, . . . , α} there is a graph G with α(G) = α such that
sπ(1) < sπ(2) < · · · < sπ(α). Brown, Dilcher and Nowakowski (2000) conjec-
tured that I(G; x) is unimodal for well-covered graphs. Michael and Traves
(2003) provided examples of well-covered graphs with non-unimodal indepen-
dence polynomials. They proposed the so-called “roller-coaster” conjecture:
for a well-covered graph, the subsequence (s�α/2�, s�α/2�+1, . . . , sα) is uncon-
strained in the sense of Alavi et al. The conjecture of Brown et al. is still open
for very well-covered graphs, and it is worth mentioning that, apart from K1

and the chordless cycle C7, connected well-covered graphs of girth ≥ 6 are
very well covered (Finbow, Hartnell and Nowakowski, 1993).

In this paper we prove that s�(2α−1)/3� ≥ · · · ≥ sα−1 ≥ sα are valid for
(a) bipartite graphs; (b) quasi-regularizable graphs on 2α vertices.

In particular, we infer that these inequalities are true for (a) trees,
thus doing a step in an attempt to prove the conjecture of Alavi et al.; (b)
very well-covered graphs. Consequently, for the latter case, the unconstrained
subsequence appearing in the roller-coaster conjecture can be shortened to
(s�α/2�, s�α/2�+1, . . . , s�(2α−1)/3�). We also show that the independence poly-
nomial of a very well-covered graph G is unimodal for α ≤ 9, and is log-
concave whenever α ≤ 5.

Mathematics Subject Classification (2000). Primary 05C69, 05C17; Secondary
05A20, 11B83.

Keywords. Stable set, independence polynomial, unimodal sequence, quasi-
regularizable graph, perfect graph, tree, very well-covered graph.
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1. Introduction

Throughout this paper G = (V, E) is a simple (i.e., a finite, undirected, loopless and
without multiple edges) graph with vertex set V = V (G) and edge set E = E(G).
If X ⊂ V , then G[X ] is the subgraph of G spanned by X . By G−W we mean the
subgraph G[V −W ], if W ⊂ V (G). We also denote by G−F the partial subgraph
of G obtained by deleting the edges of F , for F ⊂ E(G), which we abbreviate by
G− e whenever F = {e}.

A vertex v is pendant if its neighborhood N(v) = {u : u ∈ V, uv ∈ E}
contains only one vertex; an edge e = uv is pendant if one of its endpoints is a
pendant vertex.

G stands for the complement of G, while Kn, Pn, Cn denote respectively, the
complete graph on n ≥ 1 vertices, the chordless path on n ≥ 1 vertices, and the
chordless cycle on n ≥ 3 vertices. As usual, a tree is an acyclic connected graph.

A set of pairwise non-adjacent vertices is called stable. If S is a stable set,
then we denote N(S) = {v : N(v) ∩ S �= ∅} and N [S] = N(S) ∪ S. A stable set
of maximum size will be referred to as a maximum stable set of G. The stability
number of G, denoted by α(G), is the cardinality of a maximum stable set in G,
and ω(G) = α(G). A graph G is called perfect if χ(H) = ω(H) for every induced
subgraph H of G, where χ(H) denotes the chromatic number of H (Berge, [3]).

The disjoint union of the graphs G1, G2 is the graph G = G1 ∪ G2 having
as vertex set and edge set the disjoint unions of V (G1), V (G2) and E(G1), E(G2),
respectively.

If G1, G2 are disjoint graphs, then their Zykov sum (Zykov, [40], [41]) is the
graph G1 + G2 with

V (G1 + G2) = V (G1) ∪ V (G2),
E(G1 + G2) = E(G1) ∪ E(G2) ∪ {v1v2 : v1 ∈ V (G1), v2 ∈ V (G2)}.

In particular, ∪nG and +nG denote the disjoint union and Zykov sum, respectively,
of n > 1 copies of the graph G.

According to Berge, a graph G is called quasi-regularizable if one can replace
each edge of G with a non-negative integer number of parallel copies, so as to
obtain a regular multigraph of degree �= 0 (see [4], [5]).

Evidently, a disconnected quasi-regularizable graph has no isolated vertices.
Moreover, a disconnected graph is quasi-regularizable if and only if each of its
connected components spans a quasi-regularizable graph.

� � � �

� � �

�
�

�
G1

� � � � �

� � �
�

�
�

G2

Figure 1. G1 is a non-quasi-regularizable graph, while G2 is a
quasi-regularizable graph.
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The following characterization of quasi-regularizable graphs, due to Berge,
we shall use in the sequel.

Theorem 1.1. [4] A graph G is quasi-regularizable if and only if |S| ≤ |N(S)| holds
for any stable set S of G.

Let sk be the number of stable sets in G, of cardinality k ∈ {0, 1, . . . , α(G)}.
The polynomial

I(G; x) = s0 + s1x + s2x
2 + · · ·+ sαxα, α = α(G),

is called the independence polynomial of G (Gutman and Harary, [19]). Various
properties of this polynomial are presented in a number of papers, like [2], [6], [7],
[8], [11], [15], [16], [17], [18], [20], [22], [29], [31], [38], [39].

A finite sequence of real numbers (a0, a1, a2, . . . , an) is said to be:

• unimodal if there is some k ∈ {0, 1, . . . , n}, called the mode of the sequence,
such that a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an;
• log-concave if a2

i ≥ ai−1 · ai+1 holds for i ∈ {1, 2, . . . , n− 1}.
It is well known that every log-concave sequence of positive numbers is also

unimodal.
A polynomial is called unimodal (log-concave) if the sequence of its coefficients

is unimodal (log-concave), respectively. For instance, the independence polynomial
I(K1,3; x) = 1+4x+3x2+x3 is log-concave and hence unimodal, as well. However,
the independence polynomial of G = K24 + (K3 ∪K3 ∪K4) is not unimodal, since
I(G; x) = 1 + 34x + 33x2 + 36x3 (for other examples, see [1] and [30]). Moreover,
Alavi et al. [1] proved that for any permutation π of {1, 2, . . . , α} there is a graph
G with α(G) = α such that

sπ(1) < sπ(2) < · · · < sπ(α).

Nevertheless, for trees, they stated the following conjecture.

Conjecture 1.2. [1] The independence polynomial of a tree is unimodal.

A graph G is called well-covered if all its maximal stable sets are of the same
cardinality, (Plummer, [35], [36]). If, in addition, G has no isolated vertices and
its order |V (G)| equals 2α(G), then G is very well covered (Favaron, [13]). Berge
proved that every well-covered graph is quasi-regularizable (see [4], [5]).

By G∗ we mean the graph obtained from G by appending a single pendant
edge to each vertex of G (Dutton, Chandrasekharan, and Brigham, [12]).

� � � �

� �

�
�

�

Figure 2. The graph K∗
3 .
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Let us notice that G∗ is very well covered (see, for instance, [23]), and α(G∗)
is equal to |V (G)|. Moreover, the following theorem shows that, under certain
conditions, every well-covered graph is identical to G∗ for some graph G.

Theorem 1.3. [14] Let G be a connected graph of girth ≥ 6, which is isomorphic to
neither C7 nor K1. Then G is well covered if and only if its pendant edges form a
perfect matching.

In other words, Theorem 1.3 shows that, apart from K1 and C7, connected
well-covered graphs of girth ≥ 6 are very well covered. For example, a tree T �= K1

is well covered if and only if it is very well covered, in which case T = G∗ for some
tree G (see also [37], [13], [24]).

In [6] it was conjectured that the independence polynomial of every well-
covered graph G is unimodal. Michael and Traves [34] proved that this conjecture
is true for α(G) ∈ {1, 2, 3}, but false for α(G) ∈ {4, 5, 6, 7}. A family of well-covered
graphs with non-unimodal independence polynomials and stability numbers ≥ 8
is presented in [30]. However, the conjecture is still open for very well-covered
graphs. In [25] and [26], unimodality of independence polynomials of some very
well-covered graphs (e.g., P ∗

n , K∗
1,n) was verified. To prove it for P ∗

n , we showed
that I(P ∗

n ; x) is equal to the independence polynomial of a claw-free graph, and
then we used the following theorem, due to Hamidoune.

Theorem 1.4. [21] The independence polynomial of any claw-free graph is log-
concave and hence unimodal.

In [27] it was demonstrated that the polynomial I(G∗; x) is unimodal for each
graph G∗ whose skeleton G has α(G) ≤ 4, while in [31] it was shown that I(G∗; x)
is log-concave whenever α(G) ≤ 3.

Michael and Traves formulated (and verified for well-covered graphs with
stability numbers ≤ 7) the following so-called “roller-coaster” conjecture.

Conjecture 1.5. [34] For any permutation π of the set {�α/2� , �α/2�+ 1, . . . , α},
there exists a well-covered graph G, with α(G) = α, whose sequence (s0, s1, . . . , sα)
satisfies

sπ(	α/2
) < sπ(	α/2
+1) < · · · < sπ(α).

In [33], Matchett showed that this conjecture is true for well-covered graphs
having stability numbers ≤ 11.

In this paper we prove that if G is a quasi-regularizable graph on 2α(G)
vertices, then

s	(2α(G)−1)/3
 ≥ s	(2α(G)−1)/3
+1 ≥ · · · ≥ sα(G),

while if G is a perfect graph, then

s	(ωα−1)/(ω+1)
 ≥ s	(ωα−1)/(ω+1)
+1 ≥ · · · ≥ sα, where α = α(G), ω = ω(G).

We infer that for very well-covered graphs, the domain of the roller-coaster
conjecture can be shortened to

{�α/2� , �α/2�+ 1, . . . , �(2α− 1)/3�}.
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Moreover, we show that the independence polynomial of a very well-covered graph
G is unimodal for α(G) ≤ 9, and log-concave whenever α(G) ≤ 5.

2. Very well-covered graphs

In [6] it was shown that any well-covered graph G on n vertices enjoys the following
inequalities: sk−1 ≤ k · sk and sk ≤ (n− k + 1) · sk−1, 1 ≤ k ≤ α(G).

Proposition 2.1. [34], [28] If G is a well-covered graph with α(G) = α, then the
following statements are true:

(i) (α− k) · sk ≤ (k + 1) · sk+1 holds for 0 ≤ k < α;
(ii) sk−1 ≤ sk for every 1 ≤ k ≤ (α + 1)/2.

Notice that Proposition 2.1(i) can fail for non-well-covered graphs, e.g., the
graph G1 from Figure 3 has α(G1) = 3 and (3−2)·s2 = 8 > 3 = (2+1)·s3. However,
there are non-well covered graphs satisfying Proposition 2.1(i), for instance, G2

from Figure 3. Since I(G1; x) = 1 + 6x+ 8x2 + x3 and I(G2; x) = 1 + 5x+ 4x2, we
see that both G1 and G2 satisfy Proposition 2.1(ii). On the other hand, K1,3 does
not satisfy Proposition 2.1(ii), because I(K1,3; x) = 1+4x+3x2+x3, α(K1,3) = 3,
while s1 = 4 > 3 = s2.

� � � �

� �

�
�
�

�
�

�

�
�

�
v

G1

� � �

� �
�

�
��

�
�

G2

Figure 3. Non-well-covered graphs.

For a graph G of order n and having α(G) = α, we denote

ωα−k = max{n− |N [S]| : S is a stable set with |S| = k}, 0 ≤ k ≤ α.

Clearly, ω0 = 0 and ωα = n. While ω1 (G) ≤ ω(G), it is not necessary that
ω1 (G) is equal to ω(G). For instance, the graph K∗

3 (see Figure 2) has ω1 = 2 and
ω(K∗

3 ) = 3. It is worth mentioning that for every odd chordless cycle C2n+1, n ≥ 2,
or even chordless path P2n, n ≥ 2, we have ω1 = ω.

Lemma 2.2. If G is a graph of order n ≥ 1 with α(G) = α, then

(k + 1) · sk+1 ≤ ωα−k · sk, 0 ≤ k < α.

In particular, α · sα ≤ ω1 · sα−1 ≤ ω(G) · sα−1.

Proof. Let Ωk be the set of all stable sets of k vertices in G. Define the bipartite
graph (Ωk ∪ Ωk+1, Ψ) with partite sets Ωk and Ωk+1 and an edge XkXk+1 in Ψ
provided Xk ⊂ Xk+1. Now, since every stable set Xk+1 has exactly k + 1 subsets
of cardinality k, we get |Ψ| = (k + 1)sk+1.
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On the other hand, if X ∈ Ωk, then X ∪ {v} ∈ Ωk+1 for every vertex v
belonging to V (G) − N [X ], i.e., X has at most ωα−k neighbors in Ωk+1. Hence,
we get that

(k + 1) · sk+1 = |Ψ| ≤ ωα−k · |Ωk| = ωα−k · sk.

In particular, for k = α− 1, we obtain α · sα ≤ ω1 · sα−1 ≤ ω(G) · sα−1. �

Let us remark that there are quasi-regularizable graphs with non-unimodal
independence polynomials, e.g.,
(a) G = K10 + ∪6K1 is connected and has

I(G; x) = (1 + x)6 + 10x = 1 + 16x + 15x2 + 20x3 + 15x4 + 6x5 + x6;

(b) G = (K24 + ∪6K1) ∪ (K25 + ∪6K1) is disconnected and has

I(G; x) =
(
(1 + x)6 + 24x

)(
(1 + x)6 + 25x

)
= 1 + 61x + 960x2 + 955x3 + 1475x4 + 1527x5

+1218x6 + 841x7 + 495x8 + 220x9 + 66x10 + 12x11 + x12.

Proposition 2.3. If G is a quasi-regularizable graph of order n = 2α(G) = 2α, then
(i) ωα−k ≤ 2(α− k), 0 ≤ k ≤ α;
(ii) (k + 1) · sk+1 ≤ 2(α− k) · sk, 0 ≤ k < α;
(iii) s	(2α−1)/3
 ≥ · · · ≥ sα−1 ≥ sα.

Proof. (i) Let S be a stable set in G of size k ≥ 0. From Theorem 1.1, it follows
that |S| ≤ |N(S)|, which implies 2 · |S| ≤ |S ∪N(S)| = |N [S]| and, hence,

2 · (α − k) = 2 · (α− |S|) ≥ n− |N [S]| ,
because n = 2α. Consequently, we obtain ωα−k ≤ 2(α− k).
(ii) The result follows by combining Lemma 2.2 and part (i).
(iii) The fact that (k + 1) · sk+1 ≤ 2(α − k) · sk implies that sk+1 ≤ sk holds for
k + 1 ≥ 2(α− k), i.e., for k ≥ (2α− 1)/3. �

There are no quasi-regularizable graphs G of order n > 2α(G) that satisfy
Proposition 2.3(i),(ii), since for k = 0, each of them demands n ≤ 2α (G).

In addition, for the graphs G1, G2 in Figure 4, I(G1; x) = 1 + 6x + 8x2 and
I(G2; x) = 1 + 8x + 19x2 + 12x3 show that Proposition 2.3(iii) is sometimes, but
not always, valid for a quasi-regularizable graph G on n > 2α(G) vertices. Notice
that G1 is also well covered, but not very well covered.
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Figure 4. G1, G2 are quasi-regularizable graphs, but only G1 is
well covered.
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The graph G in Figure 5 is very well covered and its independence polynomial
I(G; x) = 1 + 12x + 52x2 + 110x3 + 123x4 + 70x5 + 16x6 is not only unimodal but
log-concave, as well.
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Figure 5. G is a very well-covered graph with a log-concave
independence polynomial.

Theorem 2.4. If G is a very well-covered graph of order n ≥ 2 with α(G) = α,
then:

(i) (α− k) · sk ≤ (k + 1) · sk+1 ≤ 2(α− k) · sk, 0 ≤ k < α;
(ii) s0 ≤ s1 ≤ · · · ≤ s	α/2
 and s	(2α−1)/3
 ≥ · · · ≥ sα−1 ≥ sα;
(iii) if α ≥ 2, then sα−2 · sα ≤ s2

α−1;
(iv) if α ≤ 9, then I(G; x) is unimodal;
(v) if α ≤ 5, then I(G; x) is log-concave.

Proof. (i) It follows from Proposition 2.1(i) and Proposition 2.3(ii), because each
well-covered graph without isolated vertices is quasi-regularizable (see [4], [5]).

(ii) It is readily apparent from Proposition 2.1(ii) and Proposition 2.3(iii).
(iii) Taking k = α− 2 in Proposition 2.1(i), we get 2 · sα−2 ≤ (α− 1) · sα−1,

while substituting k = α−1 in part (i) assures that α·sα ≤ 2·sα−1, which together
lead to 2α · sα−2 · sα ≤ 2(α− 1) · s2

α−1 and, hence, sα−2 · sα ≤ s2
α−1.

(iv) By part (ii), s0 ≤ s1 ≤ · · · ≤ s	α/2
 and s	(2α−1)/3
 ≥ · · · ≥ sα−1 ≥ sα.
In addition, the fact that α(G) ≤ 9 ensures that |�α/2� − �(2α− 1) /3�| ≤ 1.

(v) The result is trivial for α(G) = 1.
Notice that

s0 · s2 =
∣∣E(G)

∣∣ ≤ |V (G)|2 = s2
1

is true for every graph G with α(G) = α ≥ 2. Moreover, sα−2 · sα ≤ s2
α−1 holds by

part (iii), since G is very well covered.
Now, it follows immediately that I(G; x) is log-concave for 2 ≤ α(G) ≤ 3.
Assume that α(G) = 4. Then part (i) implies that 3s1 ≤ 2s2 and 3s3 ≤ 4s2

and hence s1 · s3 ≤ s2
2. Together with the inequalities s0 · s2 ≤ s2

1 and s2 · s4 ≤ s2
3

it follows that I(G; x) is log-concave.
Suppose that α(G) = 5. Then, taking k ∈ {1, 2, 3} in part (i), we obtain

that 4s1 ≤ 2s2, 3s2 ≤ 3s3 ≤ 6s2, and 4s4 ≤ 4s3, respectively. Consequently,
s1 · s3 ≤ s2

2 and s2 · s4 ≤ s2
3. Therefore, I(G; x) is log-concave, because s0 · s2 ≤ s2

1

and s3 · s5 ≤ s2
4 are true, as well. �
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3. Perfect graphs

Lovász proved the theorem claiming that a graph G is perfect if and only if
|V (H)| ≤ α(H) · ω(H) holds for every induced subgraph H of G (see [32]).

Proposition 3.1. If G is a perfect graph with α(G) = α and ω = ω(G), then

s	(ωα−1)/(ω+1)
 ≥ · · · ≥ sα−1 ≥ sα.

Proof. Let S be a stable set in G of size k ≥ 0. Then H = G−N [S] is an induced
subgraph of G and has α(H) ≤ α− k. Therefore, by Lovász’s theorem,

|V (H)| ≤ ω(H) · α(H) ≤ ω(H) · (α− k) ≤ ω · (α− k)

and, hence, ωα−k ≤ ω · (α− k). Further, according to Lemma 2.2, we obtain that

(k + 1) · sk+1 ≤ ω · (α− k) · sk, 0 ≤ k < α.

Now, sk+1 ≤ sk is true while k+1 ≥ ω ·(α−k), i.e., for k ≥ (ωα−1)/ (ω + 1). �

In fact, in Proposition 3.1 there is some k such that⌈
ωα− 1
ω + 1

⌉
≤ k < α

if and only if

α− 1 + α

1 + ω
≤ α− 1, i.e., α ≥ ω.

It is worth mentioning that, for general graphs, Lemma 2.2 assures that if a graph
G satisfies ω(G) ≤ α = α(G), then sα ≤ sα−1. Let us notice that the converse
assertion is not true, e.g., α(K4 − e) = 2 < 3 = ω(K4 − e) and I(K4 − e; x) =
1 + 4x + x2, where by K4 − e we mean the graph obtained from K4 by deleting
one of its edges.

For non-perfect graphs, Proposition 3.1 is not necessarily false, for example,
I(C7; x) = 1 + 7x + 14x2 + 7x3. However, the graph G = ∪4C5 is not perfect,
α(G) = 8, ω(G) = 2 and

I(∪4C5; x) =
(
1 + 5x + 5x2

)4
= 1 + 20x + 170x2 + 800x3 + 2275x4

+4000x5 + 4250x6 + 2500x7 + 625x8

is log-concave, but it does not satisfy Proposition 3.1, since

�(ωα− 1)/ (ω + 1)� = �(2 · 8− 1)/ (2 + 1)� = 5 and s5 = 4000 < 4250 = s6.

The validation of the Strong Perfect Graph Conjecture, due to Chudnovsky, Ro-
bertson, Seymour and Thomas, [9], [10], shows that the holes (i.e., C2n+1, n ≥ 2)
and the antiholes (i.e., C2n+1, n ≥ 2) are the only minimal imperfect graphs. Since
both C2n+1, n ≥ 2, and C2n+1, n ≥ 2, are claw-free graphs, we may infer that the
polynomials I(C2n+1; x), I(C2n+1; x) are log-concave, according to Theorem 1.4.
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However, there are imperfect graphs, whose independence polynomials are not
unimodal, e.g., the disconnected graph G = (K95 + ∪4K3) ∪ C5 has

I(G; x) =
(
1 + 107x + 54x2 + 108x3 + 81x4

) (
1 + 5x + 5x2

)
= 1 + 112x + 594x2 + 913x3 + 891x4 + 945x5 + 405x6.

Let H = K97 + ∪4K3, and G be the graph obtained from H by adding an edge
that joins a vertex of K97 to a vertex of some C5. Then G is a connected imperfect
graph whose independence polynomial is not unimodal, because

I(G; x) =
(
1 + 109x + 54x2 + 108x3 + 81x4

) (
1 + 4x + 3x2

)
+x(1 + 2x)

(
1 + 108x + 54x2 + 108x3 + 81x4

)
= 1 + 114x + 603x2 + 921x3 + 891x4 + 945x5 + 405x6.

Since every bipartite graph G is perfect and has ω(G) ≤ 2, we obtain the
following result.

Corollary 3.2. If G is a bipartite graph with α(G) = α ≥ 1, then

s	(2α−1)/3
 ≥ · · · ≥ sα−1 ≥ sα.

In particular, we infer a similar result for trees, whose importance is signifi-
cant vis-à-vis the conjecture of Alavi et al.

Corollary 3.3. If T is a tree with α(T ) = α, then

s	(2α−1)/3
 ≥ · · · ≥ sα−1 ≥ sα.

4. Conclusions

In this paper we prove that for very well-covered graphs the “chaotic interval”

(s	α/2
, s	α/2
+1, . . . , sα)

involved in the roller-coaster conjecture can be shortened to

(s	α/2
, s	α/2
+1, . . . , s	(2α−1)/3
).

It seems that one can get even deeper results, by using more efficiently the power
of the new defined parameters {ωk, 0 ≤ k ≤ α}.

Based on our observations on log-concavity made in [29], [31], and this pa-
per, we conclude with the two following conjectures sharpening the conjectures of
Brown et al. and Alavi et al., respectively.

Conjecture 4.1. I(G; x) is log-concave for any very well-covered graph G.

Conjecture 4.2. I(T ; x) is log-concave for any (well-covered) tree T .
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Precoloring Extension on Chordal Graphs

Dániel Marx

Abstract. In the precoloring extension problem (PrExt) we are given a graph
with some of the vertices having preassigned colors and it has to be decided
whether this coloring can be extended to a proper k-coloring of the whole
graph. 1-PrExt is the special case where every color is assigned to at most
one vertex in the precoloring. Answering an open question of Hujter and Tuza
[7], we show that the 1-PrExt problem can be solved in polynomial time for
chordal graphs.

Mathematics Subject Classification (2000). Primary 05C15; Secondary 05C85.

Keywords. Coloring, precoloring extension, chordal graph.

1. Introduction

In graph vertex coloring we have to assign colors to the vertices such that neigh-
boring vertices receive different colors. Starting with [4] and [16], a generalization
of coloring was investigated: in the list coloring problem each vertex can receive a
color only from its list of available colors. A special case is the precoloring exten-
sion problem: a subset W of the vertices have a preassigned color and we have to
extend this to a proper coloring of the whole graph, using only colors from a color
set C. It can be viewed as a special case of list coloring: the list of a precolored
vertex consists of a single color, while the list of every other vertex is C. A thor-
ough survey on list coloring, precoloring extension, and list chromatic number can
be found in [15].

Since vertex coloring is the special case when W = ∅, the precoloring ex-
tension problem is NP-complete in every class of graphs where vertex coloring
is NP-complete. Therefore, we can hope to solve precoloring extension efficiently
only on graphs that are easy to color. Biró, Hujter and Tuza [2, 6, 7] started a
systematic study of precoloring extension in perfect graphs, where coloring can
be done in polynomial time. It turns out that for some classes of perfect graphs,
e.g., split graphs, complements of bipartite graphs, and cographs, the precoloring

Research is supported in part by grants OTKA 44733, 42559 and 42706 of the Hungarian National
Science Fund.
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extension problem can be solved in polynomial time. On the other hand, for some
other classes like bipartite graphs, line graphs of bipartite graphs, and interval
graphs, precoloring extension is NP-complete.

The d-PrExt problem is the restriction of the precoloring extension problem
where every color is used at most d-times in the precoloring. It is easy to reduce
PrExt to 1-PrExt: collapse the vertices precolored with the same color to a
single vertex. Therefore, 1-PrExt is not easier than PrExt on classes of graphs
that are closed for this operation. One can also show that 1-PrExt is NP-complete
on bipartite graphs [6, 3].

However, there are cases where 1-PrExt is strictly easier than PrExt. For
planar bipartite graphs, if the set of colors C contains only 3 colors, then PrExt
is NP-complete [9], while 1-PrExt can be solved in polynomial time [11]. For
interval graphs already 2-PrExt is NP-complete [2], but 1-PrExt can be solved
in polynomial time [2]. For the special case of unit interval graphs PrExt remains
NP-complete [10], and obviously 1-PrExt remains polynomial-time solvable.

Every chordal graph is perfect and interval graphs form a subset of chordal
graphs (cf. [5]). Therefore, by [2], the 2-PrExt problem is NP-complete for chordal
graphs. The complexity of 1-PrExt on chordal graphs is posed by Hujter and Tuza
as an open question [7]. Here we show that 1-PrExt can be solved in polynomial
time also for chordal graphs. The algorithm is a generalization of the method of
[2] for interval graphs. As in [2], 1-PrExt is reduced to a network flow prob-
lem, but for chordal graphs a more elaborate construction is required than for
interval graphs.

The paper is organized as follows. In Section 2 we review some known prop-
erties of chordal graphs. In Section 3 we define a set system that will be crucial in
the analysis of the algorithm. The algorithm is presented in Section 4. In Section 5
we discuss some connections of the problem with matroid theory.

2. Tree decomposition

A graph is chordal if every cycle of length greater than 3 contains at least one
chord, i.e., an edge connecting two vertices not adjacent in the cycle. Equivalently,
a graph is chordal if and only if it does not contain a cycle of length greater than
3 as an induced subgraph. This section summarizes some well-known properties of
chordal graphs. First, chordal graphs can be also characterized as the intersection
graphs of subtrees of a tree (see e.g., [5]):

Theorem 2.1. The following two statements are equivalent:
1. G(V, E) is chordal.
2. There exists a tree T (U, F ) and a subtree Tv ⊆ T for each v ∈ V such that

u, v ∈ V are neighbors in G(V, E) if and only if Tu ∩ Tv �= ∅.
The tree T together with the subtrees Tv is called the tree decomposition of

G. Given a chordal graph G, a tree decomposition can be found in polynomial
time (see [5, 14]).
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For clarity, we will use the word “vertex” when we refer to the graph G(V, E),
and “node” when referring to T (U, F ). We assume that T is a rooted tree with
some root r ∈ U . For a node x ∈ U , let T x be the subtree of T rooted at x.
Consider those subtrees Tv that contain at least one node of T x, denote by Vx the
set of corresponding vertices v. The subgraph of G induced by Vx will be denoted
by Gx = G[Vx]. For a node x ∈ U of T , denote by Kx the union of v’s where
x ∈ Tv. Clearly, the vertices of Kx are in Vx, and they form a clique in Gx, since
the corresponding trees intersect in T at node x. An important property of the
tree decomposition is the following: for every node x ∈ U , the clique Kx separates
Vx \Kx and V \Vx. That is, among the vertices of Vx, only the vertices in Kx can
be adjacent to V \ Vx.

Every inclusion-wise maximal clique of a chordal graph G is a clique Kx of
the tree decomposition. This is a consequence of the fact that subtrees of a tree
satisfy the Helly property (a family of sets is said to satisfy the Helly property
if for each pairwise intersecting collection of sets from the family it follows that
the sets in the collection have a common element). If K is a clique of G, then its
vertices correspond to pairwise intersecting subtrees, hence by the Helly property,
these trees have a common node x, implying K ⊆ Kx.

Since every chordal graph is perfect, the chromatic number of G equals its
clique number, and it follows that G is k-colorable if and only if |Kx| ≤ k for every
node x ∈ T . Clearly, the precoloring can exist only if G is |C|-colorable, hence we
assume in the following that |Kx| ≤ |C| holds for every x ∈ T .

A tree decomposition will be called nice [8], if it satisfies the following addi-
tional requirements:

• Every node x ∈ U has at most two children.
• If x ∈ U has two children y, z ∈ U , then Kx = Ky = Kz (x is a join node).
• If x ∈ U has only one child y ∈ U , then either Kx = Ky ∪ {v} (x is the add

node of v) or Kx = Ky \ {v} (x is the forget node of v) for some v ∈ V .
• If x ∈ U has no children, then Kx contains exactly one vertex (x is a leaf

node).

cdv
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JoinAdd a Forget v Forget c
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Leaf of eAdd v

Add v

Forget e Add b
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cebce

c
c
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bcv

bcv

bcv

Forget d Add d

Figure 1. Nice tree decomposition of a chordal graph.

Figure 1 shows a nice tree decomposition. The node containing ab is the root of
the tree; the children of each node appear to the right of the node in the figure.
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It is easy to see that by splitting the nodes of the tree in an appropriate way,
a tree decomposition of G can be transformed into a nice tree decomposition in
polynomial time. If we go from the root towards the leaves, then the first node
containing vertex v is the root of the subtree Tv, and the parent of this node is
the forget node of v. The leaves of the subtree Tv are exactly the add nodes and
leaf nodes of v. A vertex v can have multiple add nodes, but at most one forget
node (the vertices in clique Kr of the root r have no forget nodes, but every other
vertex has exactly one).

Given a graph G and a precolored set of vertices, we slightly modify the graph
to obtain an even nicer tree decomposition. For each precolored vertex v, we add
a clique K of |C| − 1 new vertices to the graph, each vertex of K is connected to
v; and we also add a new vertex v′ that is connected to each vertex of K (but
not to v). The precoloring of vertex v is removed and v′ becomes a precolored
vertex, the color of v is assigned to v′. It is easy to see that this transformation
does not change the solvability of the instance: vertices v and v′ receive the same
color in every |C|-coloring of the new graph G′ (since they are both connected to
the same clique of |C| − 1 vertices), thus a precoloring extension of G′ induces a
precoloring extension for G. Although the transformation increases the size of the
graph and hence the size of the tree decomposition, it will be very useful, since now
we can assume that the nice tree decomposition satisfies the following additional
properties:
• If x ∈ U is the add node of v, then v is not a precolored vertex.
• If x ∈ U is a join node, then Kx does not contain precolored vertices.

We show how a nice tree decomposition T of G can be modified to obtain a nice
tree decomposition T ′ of G′ satisfying these two additional properties. Let v1, v2,
. . . , v|C|−1 be the neighbors of v′ in G′. Let x be an arbitrary node containing
vertex v, let Kx = {v, w1, w2, . . . , wt}. Insert a new join node y between x and its
parent. A new branch of the tree decomposition is attached to y: this branch will
contain the subtrees representing the vertices v′, v1, . . . , v|C|−1. The new branch
is a path, containing the following nodes (see Figure 2):

a

bc
Leaf of eForget e Add c

cebce

Forget vAdd a
ab

Forget c JoinJoin

v1v2vvbv

bvbv

v1v2 v1v2v′ v1v′
Leaf of v′Add v1Add v2Forget v′Forget v1

v2v
Forget v2

bcv

bcv bcv

cvcv
Leaf of cAdd v

Add v

Add v

Add b

Add b

Add b

Forget d Add d
cdv

v2

v′

v′

v1

v

b

b

c

c

e

e

d

Figure 2. Nice tree decomposition of the graph shown on Fig-
ure 1, after adding the vertices v′, v1, v2 to the graph. Dashed
lines show the new parts of the tree decomposition.
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• Leaf node containing v′.
• Add node of v1, add node of v2, . . . , add node of v|C|−1.
• Forget node of v′.
• Add node of v.
• Forget node of v1, forget node of v2, . . . , forget node of v|C|−1.
• Add node of w1, add node of w2, . . . , add node of wt.

It is clear that this modification results in a nice tree decomposition, and if we
perform it for each precolored vertex v, then we obtain a decomposition of G′.

3. System of extensions

Let H be an induced subgraph of G, and let K be a clique of H . We define a set
system S (H, K) over K that will play an important role in the analysis of the
algorithm. Denote by CH ⊆ C those colors that the precoloring assigns to vertices
in H . The set system S (H, K) is defined as follows:

Definition 3.1. For S ⊆ K, the set S is in S (H, K) if and only if there is a
precoloring extension ψ: V (H)→ C of subgraph H such that
• ψ(v) ∈ CH for every v ∈ S, and
• ψ(v) �∈ CH for every v ∈ K \ S.

Thus the set system S (H, K) describes all the possible colorings that can
appear on K in a precoloring extension of H , but this description only distinguishes
between colors in CH and colors not in CH . In particular, the precoloring can be
extended to H if and only if S (H, K) is not empty. If H contains no precolored
vertices, but it can be colored with |C| colors, then S (H, K) contains only the
empty set.

The following observation bounds the possible size of a set in S (H, K):

Observation 3.2. If S ∈ S (H, K), then

|K| − |C \ CH | ≤ |S| ≤ |CH |

Proof. If S ∈ S (H, K), then there is a coloring ψ that assigns exactly |S| colors
from CH to the vertices of K. Clearly, in ψ at most |CH | vertices of the clique K
can receive colors from CH , proving the upper bound. Coloring ψ assigns colors
from C \ CH to the vertices in K \ S, hence |C \ CH | ≥ |K| − |S|, and the lower
bound follows. �

The definition of this set system is somewhat technical, but it precisely cap-
tures the information necessary for solving the precoloring extension problem. Let
K be a clique separator of G, that is, K is a clique such that its removal separates
the graph into two or more components. Let V \K = V1 ∪V2 be a partition of the
remaining vertices such that there is no edge between V1 and V2 (that is, each of V1

and V2 contains one or more connected components of V \K). Let G1 = G[V1∪K]
and G2 = G[V2 ∪ K]. Assume that we have already extended the precoloring to
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G1 (coloring ψ1) and to G2 (coloring ψ2). If ψ1(v) = ψ2(v) for every vertex v of
the clique K, then they can be merged to obtain a coloring of G. Therefore, G
has a precoloring extension if and only if there is a precoloring extension ψ1 of
G1, and a precoloring extension ψ2 of G2 such that they agree on K. This means
that if we have the list of all possible colorings that a precoloring extension of G1

can assign to K, then to decide if G has a precoloring extension this list is all the
information required from the graph G1. More formally, if we replace G1 with a
graph that has the same list of possible colorings on K, then this does not change
the existence of a precoloring extension on G.

However, the following lemma shows that even less information is sufficient:
we do not need the list of all possible colorings that can appear on clique K in
a coloring of G1, the set system S (G1, K) is sufficient. More precisely, the set
system S (G, K) can be constructed from S (G1, K) and S (G2, K), hence these
two systems are sufficient to decide whether G has a precoloring extension.

Lemma 3.3. Let K be a clique separator of G(V1 ∪K ∪ V2, E) containing no pre-
colored vertices, let G1 = G[V1 ∪ K] and G2 = G[V2 ∪ K]. A set S ⊆ K is in
S (G, K) if and only if |S| ≥ |K| − |C \CG| and S can be partitioned into disjoint
sets S1 ∈ S (G1, K) and S2 ∈ S (G2, K).

Proof. Assume first that S ∈ S (G, K) and let ψ be a coloring corresponding to
the set S. Observation 3.2 implies that |S| ≥ |K| − |C \CG|, as required. Coloring
ψ induces a coloring ψi of Gi, let Si ∈ S (Gi, K) be the set corresponding to ψi

(i = 1, 2). Coloring ψ can assign three different types of colors to the vertices in K:

• If ψ(v) �∈ CG (i.e., ψ(v) is not used in the precoloring), then v �∈ S, S1, S2.
• If the precoloring uses ψ(v) in V1, then v ∈ (S ∩S1) \S2. (Since each color is

used at most once in the precoloring, ψ(v) cannot appear in V2 on a precolored
vertex.)
• If the precoloring uses ψ(v) in V2, then v ∈ (S ∩ S2) \ S1.

Note that v cannot be a precolored vertex, hence the precoloring cannot use ψ(v)
in K. Therefore, S is the disjoint union of S1 and S2, as required.

Now assume that S can be partitioned into disjoint sets S1 ∈ S (G1, K) and
S2 ∈ S (G2, K), let ψ1 and ψ2 be the two corresponding colorings. In general, ψ1

and ψ2 might be different on K, thus they cannot be combined to obtain a coloring
of G. However, with some permutations of colors we modify the two colorings in
such a way that they assign the same color to every vertex of K. Let C1 (resp., C2)
be the colors of the precolored vertices in V1 (resp., V2). Notice that both ψ1 and
ψ2 assign colors from C \C1 to S2, (since S1 and S2 are disjoint). Modify coloring
ψ1: permute the colors of C \ C1 such that ψ1(v) = ψ2(v) holds for every v ∈ S2

(this can be done since K is a clique, hence both ψ1 and ψ2 assign distinct colors
to the vertices in S2). Since the precolored vertices in V1 have colors only from
C1, coloring ψ1 remains a valid precoloring extension for G1. Similarly, in coloring
ψ2, permute the colors of C \ C2 such that ψ1(v) = ψ2(v) for every v ∈ S1. Now
we have that ψ1 and ψ2 agree on S, there might be differences only on K \ S.
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Moreover, ψ1 uses only colors from C \C1 on K \ S, and ψ2 uses colors only from
C \ C2 on this set. Now select a set C′ ⊆ C \ CG such that |C′| = |K \ S| (here
we use the assumption |S| ≥ |K| − |C \ CG|, which implies that there are enough
colors in C \ CG). Permute again the colors of C \C1 in coloring ψ1 such that ψ1

assigns to K \ S exactly the colors in C′. Similarly, permute the colors of C \ C2

in coloring ψ2 such that ψ2 also uses C′ on K \ S. Now the colorings ψ1 and ψ2

agree on K, hence we can combine them to obtain a coloring ψ of G. This coloring
proves that S = S1 ∪ S2 is in S (G, K), what we had to show. �

Lemma 3.3 implies that if we know the set systems S (G1, K) and S (G2, K),
then the set system S (G, K) can be also determined. This suggests the following
algorithm: for each node x of the tree decomposition, determine S (Gx, Kx). In
principle, this can be done in a bottom-up fashion: the set system for node x can be
determined from the systems of its children. Unfortunately, the size of S (Gx, Kx)
can be exponential, thus it cannot be constructed explicitly during the algorithm.
However, if G is a chordal graph, then these set systems have nice combinatorial
structure that allows a compact representation. The main idea of the algorithm
in Section 4 is to use network flows to represent the set systems S (Gx, Kx). As a
consequence, it follows that S (G, K) has nice combinatorial structure: in Section 5
we show that if G is chordal and K is a clique of G, then S (G, K) is the projection
of a matroid.

4. The algorithm

In this section we prove the main result of the paper:

Theorem 4.1. 1-PrExt can be solved in polynomial time for chordal graphs.

Given an instance of the 1-PrExt problem, we construct a network flow
problem that has a feasible flow if and only if there is a solution to 1-PrExt.
We use the following variant of the flow problem. The network is a directed graph
D(U, A), each arc e ∈ A has an integer capacity c(e). The set of arcs entering
(resp., leaving) node v will be denoted by δ−(v) (resp., δ+(v)). The set of sources
is S ⊆ U , and T ⊆ U is the set of terminals in the network (we require S∩T = ∅).
Every source v ∈ S produces exactly one unit amount of flow, and each terminal
v ∈ T has a capacity w(v), it can consume up to w(v) units. Formally, a feasible
flow is a function f : A → Z+ that satisfies 0 ≤ f(e) ≤ c(e) for every arc e ∈ A,
and the following holds for every node v ∈ U :
• If v ∈ S, then

∑
e∈δ−(v) f(e)−

∑
e∈δ+(v) f(e) = −1.

• If v ∈ T , then 0 ≤
∑

e∈δ−(v) f(e)−
∑

e∈δ+(v) f(e) ≤ w(v).
• If v ∈ U \ (T ∪ S), then

∑
e∈δ−(v) f(e) =

∑
e∈δ+(v) f(e).

Using standard techniques, the existence of a feasible flow can be tested by
a maximum flow algorithm. It is sufficient to add two new vertices s and t, an arc
with capacity 1 from s to every vertex v ∈ S, and an arc with capacity w(v) to t
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from every vertex v ∈ T . Clearly, there is a feasible flow in the original network
if and only if there is an

−→
st flow with value |S| in the modified network. The

maximum flow can be determined using at most |S| iterations of the Edmonds-
Karp augmenting path algorithm, hence the existence of a feasible flow in a network
D(U, A) can be tested in O(|S||A|) time.

Given a chordal graph G(V, E), its nice tree decomposition T (U, F ), {Tv | v ∈
V }, and the set of precolored vertices W ⊆ V , we construct a network as follows.
Direct every edge of T towards the root r. For every v ∈ V and for every x ∈ Tv

add a node xv to the network. Denote by Ux the |Kx| nodes corresponding to x.
If the edge xy is in Tv, then connect xv ∈ Ux and yv ∈ Uy by an arc. If y is the
child of x, then direct this arc from yv to xv. These new arcs −−→yvxv have capacity
1, while the arcs −→yx of the tree T have capacity |C|− |Ky| (recall that if the graph
is |C|-colorable, then |Ky| ≤ |C|).

For each node x ∈ T , depending on the type of x, we do one of the following:
• If x is an add node of some vertex v �∈ W , and y is the child of x, then add

an arc −−→yxv to the network.
• If leaf node x contains some vertex v ∈ W , then add a new node x′

v to the
network, add an arc

−−→
x′

vxv with capacity 1, and set x′
v to be a source.

• If x is a forget node of some vertex v (either in W or not), and y is the child
of x, then add an arc −→yvx to the network.

For join nodes and for leaf nodes containing vertices outside W we do nothing.
Figure 3 sketches the construction for the different types of nodes.

So far there are no terminals in the network. The definition of the network is
completed by adding terminals as follows. Here we define not only a single network,
but several subnetworks that will be useful in the analysis of the algorithm. For
every node x ∈ U of the tree T , the network Nx contains only those nodes of the
network that correspond to nodes in T x (recall that T x is the subtree of T rooted
at x). Formally, the network Nx has the node set T x ∪

⋃
y∈T x Uy, and the source

nodes (if available) corresponding to the leaves of T x. Moreover, in network Nx

the nodes in Ux are set to be terminals with capacity 1, and node x is a terminal
with capacity |C| − |Kx|. This completes the description of the network Nx.

Notice that there are sources only at the leaf nodes of precolored vertices.
Therefore, the number of sources in network Nx is the same as the number of
precolored vertices in Vx (recall that Vx is the set of those vertices v whose tree
Tv has at least one node in T x, and Gx = G[Vx]). We will denote by Cx the set
of colors that appear on the precolored vertices of Vx. In network Nx, there are
terminals only at x and Ux, these terminals must consume all the flow.

Observation 4.2. The number of sources in Nx equals the number of precolored
vertices in Vx, which is |Cx|. Consequently, in every feasible flow of Nx, the amount
of flow consumed by the terminals at x and Ux is exactly |Cx|. �

To prove Theorem 4.1, we show that the precoloring of G can be extended
to the whole graph if and only if there is a feasible flow in Nr, where r is the
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Figure 3. Construction of the network when node x is of the
following types: (a) add node for v �∈ W , (b) forget node for v
(either in W or not), (c) leaf node for v ∈ W , (d) join node.

root of T . This gives a polynomial-time algorithm for 1-PrExt in chordal graphs,
since constructing network Nr and finding a feasible flow in Nr can be done in
polynomial time. The proof of this claim uses induction on the tree decomposition
of the graph. For every node x ∈ U of T , we prove the following more general
statement: the network Nx has a feasible flow if and only if the precoloring of G
can be extended to Gx.

More precisely, we show that the network Nx represents (in some well-defined
sense) the set system S (Gx, Kx): every feasible flow corresponds to a set in the
system. Therefore, Nx has no feasible flows if and only if S (Gx, Kx) is empty, or,
equivalently, the precoloring cannot be extended to Gx.

We say that a feasible integer flow of Nx represents the set S ⊆ Kx if for every
v ∈ S, the terminal at xv consumes one unit of flow, while for every v �∈ S, there is
no flow entering xv. The following lemma establishes the connection between the
constructed networks and the set systems S (Gx, Kx). The proof of this lemma
completes the proof of Theorem 4.1, as it reduces the 1-PrExt problem to finding
a feasible flow in Nr.

Lemma 4.3. For an arbitrary node x ∈ U of T , the network Nx has a feasible flow
representing a set S ⊆ Kx if and only if S ∈ S (Gx, Kx).

Proof. The lemma is proved for every node x of T by a bottom-up induction on
the tree T . After checking the lemma for the leaf nodes, we show that it is true for
a node x assuming that it is true for the children of x. The proof is done separately
for the different types of nodes. Verifying the lemma in every case is tedious, but



264 D. Marx

it does not require any new ideas. The way the networks are constructed ensures
that the set systems represented by the networks have the required properties.

Leaf node. For a leaf node x, the lemma is trivial: if the vertex v in Kx is
precolored, then every flow of Nx represents {v}, otherwise Nx contains no sources,
and every flow represents ∅.

Add node for v �∈ W . Let x be an add node of v �∈ W , and let y be the
child of x. For every S ∈ S (Gx, Kx), it has to be shown that there is a feasible
flow of Nx representing the set S. Assume first that v �∈ S. Since Gy = Gx \ v
and Ky = Kx \ {v}, it follows that S ∈ S (Gy, Ky). Therefore, by the induction
hypothesis, there is a flow fy in Ny representing S. We modify this flow to obtain
a flow fx of Nx also representing S. For every u ∈ S, in flow fy there is one unit
of flow consumed by the terminal at yu. To obtain flow fx, direct this unit flow
towards xu, and consume it by the terminal at that node. Similarly, in the flow
fy, there is some amount of flow consumed by the terminal at y, direct this flow
to x, and consume it by that terminal. By Observation 4.2, the amount of flow
consumed at x is exactly |Cx|− |S|. Moreover, the lower bound of Observation 3.2
implies that this is at most |Cx|− |Kx|+ |C \Cx| = |C|− |Kx| < |C|− |Ky|, hence
the capacity of the arc −→yx and the terminal at x is sufficient for the flow. Thus we
obtained a feasible flow of Nx, and obviously it represents S.

We proceed similarly if v ∈ S. In this case S \ {v} ∈ S (Gy, Ky), thus Ny

has a flow fy representing S \ {v}. To obtain a flow fx of Nx representing S, the
flow consumed at yu is directed to xu, as in the previous paragraph. However, now
we do not direct all the flow consumed at y to x, but we direct one unit amount
through the arc −−→yxv, and only the rest goes through arc −→yx. Therefore, the amount
of flow consumed by the terminal at x is one unit less than the flow consumed at y
in flow fy, hence the capacity of the terminal at x is sufficient. Clearly, this results
in a flow fx of Nx representing S, as required. The only thing to verify is that
there is at least one unit of flow consumed at y in flow fy. The flow fy represents
S\{v}, and by Observation 4.2, the amount of flow consumed in Uy∪{y} is exactly
|Cy|, hence the flow consumed at y is |Cy| − |S| + 1. Since v is not a precolored
vertex, we have that Cy = Cx. We know that S ∈ S (Gx, Kx), therefore by the
upper bound of Observation 3.2, |Cy| − |S| + 1 ≥ 1, hence there is nonzero flow
consumed at y in flow fy.

Now assume that there is a flow fx in Nx representing S ⊆ Kx, it has to be
shown that S ∈ S (Gx, Kx). Let y be the child of x. Assume first that v �∈ S, we
show that Ny has a flow fy in Ny representing S. To obtain this fy, the flow fx

is modified the following way. For every vertex xw ∈ Ux, where w �= v, if there is
flow on the arc −−−→ywxw, then consume it by the terminal at yw. Similarly, the flow
on the arc −→yx can be consumed by the terminal at y (the capacity of the terminal
at y equals the capacity of arc −→yx). It is clear that these modifications result in
a feasible flow for Ny that represents S. By the induction hypothesis, this means
that S ∈ S (Gy, Ky), and there is a corresponding coloring ψ. Since v is the only
vertex in Vx \ Vy, to prove S ∈ S (Gx, Kx) it is sufficient to show that coloring
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ψ can be extended to v in such a way that v receives a color not in Cx. If there
is no such extension, then this means that ψ uses every color of C \ Cx on the
neighbors of v, that is, on the clique Ky. By construction, ψ assigns exactly |S|
colors from Cx to the clique Ky, hence if every color of C \Cx is used on Ky, then
|Ky| = |C\Cx|+|S|. Therefore, |Kx| = |Ky|+1 = |C\Cx|+|S|+1 and the capacity
of the terminal at x is |C| − |Kx| = |Cx| − |S| − 1. However, in flow fx of Nx that
represents S, exactly |Cx| − |S| unit of flow is consumed at x (Observation 4.2), a
contradiction. Thus ψ can be extended to v, and S ∈ S (Gx, Kx) follows.

The case v ∈ S can be handled similarly. If there is a flow fx in Nx that
represents S, then this is only possible if there is flow on the arc −−→yxv. Therefore,
by restricting the flow to Ny as in the previous paragraph, we can obtain a flow
representing S \ {v}. (Notice that the capacity of the terminal at y equals the
combined capacity of the terminals at x and xv, hence it can consume the flow on
the arcs −−→yxv and −→yx.)

By the induction hypothesis, it follows that S \ {v} ∈ S (Gy , Ky), and there
is a corresponding coloring ψ. Now it has to be shown that ψ can be extended to
vertex v such that v receives a color from Cx. Coloring ψ assigns exactly |S| − 1
colors from Cx to Ky. The extension is not possible only in the case if every color
of Cx is already used on Ky, that is, if |Cx| = |S| − 1. This would imply that in
flow fx of Nx, the amount of flow consumed at Ux is |S| = |Cx| + 1. However,
by Observation 4.2, this is strictly larger than the number of sources in Nx, a
contradiction.

Forget node for v (vertex v is either in W or not). Let x be the forget node
of v, and let y be the child of x. Let S ∈ S (Gx, Kx). Since Gx = Gy, either S or
S ∪ {v} is in S (Gy , Ky). In the first case, the flow fy in Ny that represents S can
be extended to a flow in Nx that also represents S. As before, the flow consumed
at yw is directed to xw , and the flow consumed at y is directed to x. Recall that the
capacity of the arc −→yx equals the capacity of the terminal at y, while the capacity
of the terminal at x is strictly greater. Therefore, the resulting flow is feasible in
Nx, and clearly it represents S. If S∪{v} ∈ S (Gy, Ky), then we do the same, but
the flow consumed at yv is directed to x through the arc −→yvx. The resulting flow
is feasible in Nx and represents S.

To prove the other direction, assume that Nx has a flow fx representing S ⊆
Kx. Restrict this flow to Ny, that is, modify the flow such that the terminals at y
and Uy consume all the flow. This results in a feasible flow fy of Ny that represents
S or S ∪ {v}. Notice that the terminal at y has the same capacity as the arc −→yx,
hence this terminal can consume all the flow going through the arc. Therefore,
by the induction hypothesis, either S or S ∪ {v} is in S (Gy , Ky), depending on
whether there is flow consumed at yv or not. In either case, S ∈ S (Gx, Ky) follows
since Gx = Gy and Kx = Ky \ {v}.

Join node. Let y and z be the two children of the join node x. Let S ∈
S (Gx, Kx). By Lemma 3.3 this means that

|S| ≥ |Kx| − |C \ Cx| (4.1)
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and S can be partitioned into disjoint sets S1 ∈ S (Gy , Ky) and S2 ∈ S (Gz , Kz).
By the induction hypothesis, this implies that there are flows fy, fz in Ny and
Nz that represent the sets S1 and S2, respectively. We combine these two flows
to obtain a flow fx of Nx that represents the set S. If there is flow consumed at
a node yv ∈ Uy (resp., zv ∈ Uz) in fy (resp., fz), then direct this flow on the arc
−−→yvxv (resp., −−→zvxv) to node xv, and consume it there. The capacity of the terminal
at xv is only 1, but the disjointness of S1 and S2 implies that at most one unit
of flow is directed to xv. The flow consumed at node y and z is directed to x on
the arc −→yx, −→zx, respectively. Since there are exactly |S| units of flow consumed in
Ux, therefore |Cx| − |S| units of flow has to be consumed at x. By (4.1), this is
at most |Cx| − |Kx|+ |C \ Cx| = |C| − |Kx|, thus the capacity of the terminal at
x is sufficient for consuming this flow. Therefore, we have obtained a flow fx in
network Nx that represents S.

Now assume that Nx has a flow fx that represents S. Since the terminal at
x has capacity at most |C| − |Kx|, and by Observation 4.2, the amount of flow
consumed in x ∪ Ux is |Cx|, it follows that

|S| ≥ |Cx| − (|C| − |Kx|) = |Kx| − |C \ Cx|. (4.2)

If flow is consumed at a node xv ∈ Ux, then the flow arrives to this node either
from yv or from zv. Define the sets S1, S2 ⊆ Kx such that v ∈ S1 (resp., v ∈ S2)
if there is flow on arc −−→yvxv (resp., −−→zvxv).

Based on the flow fx of Nx representing S, we create a flow fy of Ny that
represents S1 and a flow fz of Nz that represents S2. The flows fy and fz are
constructed as follows. For every yv ∈ Uy, if there is flow going through the arc
−−→yvxv, then consume this flow at yv, and similarly for the nodes zv ∈ Uz. The flow
on arcs −→yx and −→zx are consumed at y and z, respectively (the capacities of nodes
x, y, and z are the same |C| − |Kx| = |C| − |Ky| = |C| − |Kz|). Clearly, flows fy

and fz represent S1 and S2, respectively. By the induction hypothesis, the flows
fx and fy imply that S1 ∈ S (Gy, Ky) and S2 ∈ S (Gz , Kz). Furthermore, it is
clear that S1 and S2 are disjoint, and S = S1 ∪ S2. Therefore, by Lemma 3.3 and
Inequality (4.2), this proves that S ∈ S (Gx, Kx), as required. �

To determine the running time of the algorithm, we have to consider two main
steps: the construction of the network and the solution of the flow problem. First of
all, the transformation introduced at the end of Section 2 turns a graph G0(V0, E0)
into a graph G(V, E) with |V | ≤ |V0||C|. The tree decomposition of G(V, E) can
be constructed by first finding a perfect vertex elimination scheme [5, 14]. Based
on this ordering of the vertices, one can build a tree T (U, F ) of size O(|V |), and
one subtree for each vertex of the graph. This tree decomposition can be found in
time linear in the size of the output, that is, in O(|V |2) time. Converting T (U, F )
to a nice tree decomposition can introduce an increase of factor at most |V |, thus it
can be done in O(|V |3) time. The network defined by the algorithm has size linear
in the total size of the tree decomposition (size of T (U, F ) and the sum of the size
of the subtrees), and clearly it can be constructed in linear time. Therefore, the



Precoloring Extension on Chordal Graphs 267

constructed network has O(|V |3) nodes and O(|V |3) arcs, and the construction
takes O(|V |3) time.

In a network with n nodes and m arcs, the maximum flow can be determined
in O(n2m) or even in O(n3) time [1]. Moreover, it can be determined in O(km) time
if a flow with value k exists: the Edmonds-Karp algorithm produces such a flow
after finding the first at most k augmenting paths (assuming that the capacities
are integer). As discussed at the beginning of the section, the existence of a feasible
flow can be tested by finding an s-t flow with value |S|, hence it can be done in
O(|S| · |V |3) time. By Observation 4.2, this is at most O(|C| · |V |3) = O(|C|4 · |V0|3).
We believe that the running time can be significantly improved by streamlining
the algorithm. However, our aim was only to prove that the problem can be solved
in polynomial time, thus we preferred ease of presentation over efficiently.

The algorithm described above determines whether a precoloring extension
exists, but does not find a coloring. However, based on the feasible flow of network
Nr, one can construct a precoloring extension of the graph. We have seen that the
feasible flow of network Nx represents a set Sx ∈ S (Gx, Kx). Recursively for each
x ∈ U , we compute a coloring ψx corresponding to Sx. For the leaf nodes this is
trivial. Let x be an add node of vertex v, and let y be the child of x. To obtain ψx,
coloring ψy has to be extended to v: if there is flow on −−→yxv, then v has to receive
a color from Cx, otherwise from C \ Cx. The construction ensures that there is
always such a color not already used on the neighbors of v. If x is a forget node
with child y, then ψx can be selected to be the same as ψy. Finally, assume that x
is a join node with children y and z. By the way the network was constructed, Sy

and Sz are disjoint, Sx = Sy ∪Sz , and S ≥ |Kx|− |C \Cx|. Therefore, the method
described in the proof of Lemma 3.3 can be used to construct a coloring ψx of Gx

that corresponds to Sx ∈ S (Gx, Kx).

5. Matroidal systems

The main idea of the algorithm in Section 4 is to represent the set system
S (G, K) by a network flow. We have shown that for chordal graphs the set sys-
tems S (Gx, Kx) can be represented by network flows for every subgraph Gx and
clique Kx given by the tree decomposition. It follows from this representation that
the set systems have nice combinatorial structure:

Theorem 5.1. Let G(V, E) be a chordal graph, and let W ⊆ V be a arbitrary
set of precolored vertices such that every color of C is used at most once in the
precoloring. If H is an induced subgraph of G, and K is a clique of H, then the
set system S (H, K) is the projection of the basis set of a matroid.

Theorem 5.1 will be proved at the end of this section. Recall that the a set
system B is the basis set of a matroid, if it satisfies the following two conditions:
• Every set in B has the same size.
• For every B1, B2 ∈ B and v ∈ B1 \B2, there is an element u ∈ B2 \B1 such

that B1 ∪ {u} \ {v} ∈ B.
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Figure 4. A non-chordal graph G and a clique K = {v5, v6, v7}
such that S (G, K) is not the projection of a matroid (|C| = 4).

If B is a set system over X , then its projection to Y ⊆ X is a set system over
Y that contains B′ ⊆ Y if and only if there is a set B ∈ B with B ∩ Y = B′. The
projection of a matroid is always a so-called ∆-matroid [12], hence Theorem 5.1
also says that S (G, K) is a ∆-matroid. For further notions of matroid theory, the
reader is referred to e.g., [13].

In general, if G is not chordal, then S (G, K) is not necessarily the projection
of a matroid. Figure 4 shows a graph G with two precolored vertices v1 and v2.
The graph is not chordal, since vertices v1, v4, v2, v8 induce a cycle of length 4.
If we have only four colors, then G has four precoloring extensions: vertex v3 can
have only color 3 or 4, vertex v9 can have only color 1 or 2, and setting the color of
these two vertices forces a unique coloring for the rest of the graph. For example,
if coloring ψ assigns color 3 to v3, and color 1 to v9, then ψ(v3) = 3, ψ(v9) = 1,
ψ(v2) = 2 imply ψ(v4) = 4; ψ(v9) = 1, ψ(v2) = 2, ψ(v4) = 4 imply ψ(v6) = 3;
ψ(v1) = 1, ψ(v2) = 2, ψ(v6) = 3 imply ψ(v8) = 4; and finally ψ(v5) = 1 and
ψ(v7) = 2 follow in a similar fashion. Therefore, the clique K = {v5, v6, v7} receives
one of the four colorings (3, 1, 4), (1, 3, 2), (4, 1, 3), (1, 4, 2) in every precoloring
extension. Since CG = {1, 2}, it follows that S (G, K) = {{v6}, {v5, v7}}, which
cannot be the projection of a matroid (for example, it is not even a ∆-matroid).

The proof of Theorem 5.1 uses the following result of matroid theory. In a
directed graph D(U, A), we say that Y ⊆ U can be linked onto X ⊆ U , if |X | = |Y |
and there are |X | pairwise node disjoint paths from the nodes in X to the nodes in
Y . The sets X and Y do not have to be disjoint, and the zero-length path consisting
of a single node is also allowed. Hence X can be linked onto X in particular. The
following theorem states that the graph G together with a set X ⊆ U induces a
matroid on the vertices of the graph (see e.g., [13]):
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Theorem 5.2. If D(U, A) is a directed graph and X ⊆ U is a fixed subset of nodes,
then those subsets Y ⊆ U that can be linked onto X form the bases of a matroid
M over U .

Considering the line graph of the directed graph, one can state an arc disjoint
version of Theorem 5.2:

Theorem 5.3. If D(U, A) is a directed graph, s ∈ U is a fixed vertex and r is a
positive integer, then those r-element subsets A′ ⊆ A whose arcs can be reached
from s by r pairwise arc disjoint paths form the bases of a matroid M over A. �

To prove Theorem 5.1, we use the fact that S (Gx, Kx) can be represented
by the network Nx (Lemma 4.3). Then Theorem 5.3 is used to show that the set
system represented by a network is the projection of a matroid.

Proof (of Theorem 5.1). Clearly, it is sufficient to consider only the case when
H = G, since every induced subgraph of a chordal graph is also chordal. Moreover,
it can be assumed that K is a maximal (non-extendable) clique: if K1 ⊆ K2 are
two cliques, then S (G, K1) is the projection of S (G, K2). Therefore, if S (G, K2)
is the projection of the basis set of a matroid, then this also follows for S (G, K1).
We have seen in Section 2 that given a tree decomposition T (U, F ), {Tv}v∈V (G)

of the chordal graph G, every maximal clique of G is a clique Kx for some x ∈ U .
Furthermore, since the choice of the root node of T is arbitrary, it can be assumed
that x is the root, thus we have G = Gx and S (G, K) = S (Gx, Kx).

By Lemma 4.3, the sets in S (Gx, Kx) are exactly the sets represented by the
feasible flows of the network Nx. Now, as described at the beginning of Section 4,
add two new nodes s, t to the network, add an arc with unit capacity from s to
every source, and for every terminal x, add an arc from x to t that has capacity
equal to the capacity of x. Furthermore, replace every arc e having capacity c(e)
with c(e) parallel arcs of unit capacity, clearly this does not change the problem.
Call the resulting network N ′

x. By Observation 4.2, the number of sources in Nx

is r = |Cx|, hence every feasible flow of Nx corresponds to an
−→
st flow with value

r in N ′
x. Since every arc has unit capacity in N ′

x, an integral
−→
st flow with value

r corresponds to r arc disjoint paths from s to t. Now consider the matroid M
given by Lemma 5.3. Denote by At the arcs incident to t, and let matroid Mt be
the restriction of matroid M to At. Let A′

t ⊆ At be those arcs of At that originate
from some node xv ∈ Ux (and not from x). We claim that S (G, Kx) is isomorphic
to the projection of Mt to A′

t (vertex v ∈ Kx maps to arc
−→
xvt). By Lemma 4.3,

if S ∈ S (G, Kx), then there is a feasible flow in Nx where flow is consumed only
by those terminals of Ux that correspond to the elements in S. Based on this flow,
one can find r arc disjoint

−→
st paths in N ′

x, and it follows that the matroid Mt has
a base whose intersection with A′

t is exactly S, hence S is in the projection of Mt

to A′
t. It is easy to show the other direction as well: if S is in the projection of

Mt, then there is a feasible flow of Nx where only the terminals corresponding to
S consume flow in Ux. Thus by Lemma 4.3, S ∈ S (G, Kx), as required. �
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On the Enumeration of Bipartite
Minimum Edge Colorings

Yasuko Matsui and Takeaki Uno

Abstract. For a bipartite graph G = (V, E), an edge coloring of G is a col-
oring of the edges of G such that any two adjacent edges are colored in dif-
ferent colors. In this paper, we consider the problem of enumerating all edge
colorings with the fewest number of colors. We propose a simple polyno-
mial delay algorithm whose amortized time complexity is O(|V |) per output,
whereas the previous fastest algorithm took O(|E| log |V |) time per output.
Although the delay of the algorithm is O(|E||V |), the delay of our algorithm
can be reduced to O(|V |) by using a simple modification with a queue of
polynomial size. We show an improvement to reduce the space complex-
ity from O(|V ||E|) to O(|E| + |V |). Furthermore, we obtain a lower bound

(|E|− |V̂ |+1) max{2∆−3, 2(|V̂ |/2+1)∆−3/(∆−1)}/∆ of the number of edge

colorings included in G, where ∆ is the maximum degree and V̂ is the set of
vertices of the maximum degree.

Keywords. Enumeration, generation, listing, edge coloring, bipartite graph,
algorithm, complexity, output polynomial.

1. Introduction

Enumeration problems and enumeration algorithms are quite fundamental in com-
puter science. The subject has a long history, and many studies have been done [5,
7, 9, 14, 16, 18]. Enumeration has many applications in the other area of computer
science, such as optimization, sampling, data mining, bioinformatics, and so on. For
example, the basis of branch and bound algorithms is the enumeration, and many
exact algorithms for NP-hard problems, which are actively studied in these 10
years, use enumeration algorithms. In data mining, the pattern mining algorithms,
which finds all the patterns satisfying given constraints from a database, utilize
the enumeration of candidate patterns[1]. Particularly, the recent increase of the
power of computers supports the efficiency of enumeration approaches in practice.

A weak point of enumeration approach is that there are quite few generalized
problems which contain many other enumeration problems as their special cases.
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For example, in optimization, linear programming is a generalized problem, and
it includes many other problems as its special cases, such as maximum matchings,
network flow problems, assignment problems. In contrast, only few enumeration
problems can be efficiently solved by other enumeration algorithms. For example,
if we enumerate all spanning trees in a given graph G by enumerating all subtrees
of G, it possibly takes exponential time for each spanning tree, since the number
of subtrees is often exponentially larger than the number of spanning trees. If we
want to reduce an enumeration problem A to an enumeration problem B, we have
to preserve the structures with respect to all the solutions. In contrast to it, in
optimization problems, we have to preserve only structures with respect to optimal
solutions. Intuitively, this is one of difficulties of the reduction on enumeration
problems.

One approach to handle enumeration problems efficiently is to develop fun-
damental techniques commonly applicable to many enumeration problems. For
achieving polynomial algorithms, there are several techniques, such as divide and
conquer (binary partition), backtracking, and reverse search. Here an enumeration
algorithm is polynomial time if the computation time is polynomial in the input
size and the output size of the input problem. For reducing the order of the time
complexity of polynomial time algorithms, such as using the sparsity, data struc-
tures, and amortized analysis of the time complexity. There are quite many kinds
of enumeration problems, thus it is important to develop and summarize efficient
techniques. One of the big tasks in the research of enumeration algorithms is to
clarify what kind of structures of the problems help to reduce the time complexity,
and what kind of techniques can be applicable to the structures. In the literatures,
we can see many efficient but simple enumeration algorithms for fundamental
graph objects such as paths and cycles[11], spanning trees[7, 16], independent sets
and cliques[6], and matchings[4], and fundamental geometrical objects such as ver-
tices of polytopes[2], non-crossing spanning trees in plane[2], and floorplans[14].

In this paper, we consider the problem of enumerating all the minimum edge
colorings of a given bipartite graph with multiple edges. Let G = (V (= V1∪V2), E)
be a bipartite graph with vertex set V and edge set E. An edge coloring of G is
a coloring of all the edges of G such that no pair of adjacent edges is colored the
same. An edge coloring with the minimum number of colors is called a minimum
edge coloring. We simply denote a minimum edge coloring by an edge coloring if
there is no confusion. We denote the maximum degree of G by ∆(G), and the set
of vertices of maximum degree by V̂ (G). If there is no confusion, we simply write
them ∆ and V̂ .

In 1916, König [8] proved that any minimum edge coloring of a bipartite
graph G uses exactly ∆ colors. Since no edges with the same color are adjacent,
the set of edges with the same color forms a matching. Hence we can consider
an edge coloring as a partition of E into ∆ disjoint matchings. The enumeration
problem of edge coloring considered here is to output all the ways of partitioning
of E into disjoint ∆ matchings.
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An algorithm for solving the problem has been proposed by Matsui and
Matsui [12, 13]. The amortized time complexity of the algorithm is O(|E| log |V |)
per edge coloring, and the space complexity is O(∆|E|). The current best time
complexity algorithm for finding a minimum edge coloring in a given bipartite
graph, which is proposed by Cole, et al., and Schrijver [3, 15], takes O(|E| log |V |)
time, hence naturally we may think that Θ(|E| log |V |) is a kind of lower bound for
the time complexity. However, the structure of the set of edge coloring seems to
have an advantage. For any edge coloring, we can generate another edge coloring
by exchanging several edges of two matchings in it, along an alternating cycle. This
implies that when we traverse the set of edge colorings, we basically need the time
to exchange the edges along a cycle, which seems to be very short in average. Thus,
naturally there is a question “Is there an algorithm for enumerating all minimum
edge colorings in short time for each”.

In this paper, we give a positive answer to the question. We propose a simple
algorithm running in O(|V |) time for each edge coloring. The space complex-
ity is also reduced to O(|E| + |V |). In detail, the delay[6] of the algorithm is
O(∆|E| log |V |). The delay is the maximum computation time between two con-
secutive output. Actually, by the technique described in [17], we can reduce the
delay to O(|V |) by using O(∆|E|) extra memory. We note that to output an edge
coloring, our algorithm outputs the symmetric difference between an edge coloring
and the next one instead of exact output. It reduces the computation time for
output one edge coloring to O(|V |) on average.

The main technique to reduce the time complexity is on the analysis of
the time complexity. Actually, our algorithm is obtained by adding slight and
simple modifications to the previous algorithm. It uses neither complicated data
structures nor sophisticated algorithms. The modifications of the algorithm avoid
the worst cases which make the time complexity of the previous algorithm tight.
It is interesting that such kind of simple modifications reduces the time com-
plexity so much. This is also an advantage from both theoretical and applica-
tion viewpoints. Furthermore, as a corollary of the amortized analysis, we give
(|E| − |V̂ | + 1)max{2∆−3, 2(|V̂ |/2 + 1)∆−3/(∆ − 1)}/∆ as a lower bound of the
number of edge colorings included in G.

The organization of this paper is as follows. We explain the framework of our
enumeration algorithm in Section 2. In Section 3, we analyze the time complexity,
and show a lower bound of the number of edge colorings included in a graph.
Finally, we explain a way to reduce the space complexity in Section 4.

2. Framework of algorithm for enumerating edge coloring

The basis of our enumeration algorithm is the same as that described in [12, 13].
We start the explanations with the definitions and properties. For a vertex set W ,
a matching covering all the vertices of W is called a covering matching for W .
If no confusion can arise we will omit W . From König’s theorem, any minimum
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edge coloring uses exactly ∆ colors. This means that any vertex of V̂ is incident to
edges with all colors, and any matching which forms a minimum edge coloring is a
covering matching for V̂ . Conversely, any covering matching M for V̂ is included
in at least one minimum edge coloring, since the removal of M from G is a graph
with maximum degree ∆− 1.

For an edge e, any edge coloring includes just one covering matching including
e. Thus, edge colorings of G is partitioned into groups by the covering matchings
including e. This observation immediately leads to the following algorithm.
ALGORITHM: Basic Algorithm (G = (V, E), C)
(BA1) If G is a matching then output C
(BA2) e := an edge of G

(BA3) For each covering matching M for V̂ including e
Call Basic Algorithm((V, E \M), C ∪ {M})

Figure 1. An example of enumeration of edge colorings. Each
circle denotes a problem/subproblem, and arrows connect prob-
lems and their subproblems. Each arrow corresponds to a covering
matching which is obtained from each subproblem.

Figure 1 shows an example of the execution of the algorithm. The enumera-
tion of covering matchings in (BA3) can be done by using an algorithm proposed
in [12, 13]. We explain their algorithm next. For conciseness, we modify their
algorithm slightly.
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For an edge e = (u, v), let G\e = (V, E\{e}), and G−{u, v} be the subgraph
of G obtained by removing u, v, and all edges incident to either u or v. Here we
consider the set of covering matchings for a vertex set W . Then, we can see that
the set of the covering matchings not including e is equal to the set of covering
matchings in G \ e. Similarly, we can see that the set of the covering matchings
for W \ {u, v} including e is equal to the set of matchings obtained by adding e
to each covering matchings in G− {u, v}. Thus, this enumeration problem can be
partitioned into two subproblems.

To partition the problem, we choose an edge e from the symmetric difference
between two covering matchings M and M ′. This ensures that both subproblems
are non-empty, since either M or M ′ includes e. By augmenting the matching, we
can find a covering matching which covers vertices in V̂ We thus explain how to
find a covering matching different from the given covering matching.

For the explanation, we define the following notation. Let Z be the set of
isolated vertices in G. We recall that V1 and V2 are the partition of V so that G
is a bipartite graph.
Ū1 is the set of vertices in V1 \ (Z ∪W ) incident to an edge of M .
Ū2 is the set of vertices in V2 \ (Z ∪W ) incident to an edge of M .
U1 is the set of vertices in V1 \ (Z ∪W ) incident to no edge of M .
U2 is the set of vertices in V2 \ (Z ∪W ) incident to no edge of M .

Let D1 = (G, M, W ) be the directed graph obtained from G as follows:
1. remove all isolated vertices from G
2. orient the edges of M from V1 to V2, and the edges of E \M from V2 to V1

3. add a vertex s to V
4. add the arcs from s to each vertex of Ū1 ∪ U2, and
5. add the arcs from each vertex of Ū2 ∪ U1 to s.

V1

2V

s

Figure 2. An instance of D1(G, M, W ) : Gray vertices are in W ,
and bold edges are in matching M .

For an example of D1(G, M, W ), see Figure 2. For a directed cycle C of
D1(G, M, W ), we define E(C) by the set of all edges corresponding to the arcs
of C. From the rule of orienting edges, edges of M and edges not in M appear
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in E(C) alternatively in any directed cycle. This is a common technique to find
alternating paths and alternating cycles.

D1(G, M, W ) is equivalent to the graph obtained by contracting the source
and sink of the graph G′(G, M) used in the find-matching algorithm of [13]. In
[13], the following lemma is proved.

Lemma 1. [13] The following two conditions hold.
(1) For any directed cycle C of D1(G, M, W ), M!E(C) is a covering matching

for V̂ .
(2) If D1(G, M, W ) has no directed cycle, then M is the unique covering matching

of G. �
Since [13] is not a journal paper, we include a proof here.

Proof. For any two covering matchings M and M ′, the symmetric difference be-
tween them is composed of paths and cycles. Any cycle of those cycles forms a
directed cycle in D1(G, M, W ). Any path P of those paths forms a directed path
P ′ of D1(G, M, W ) whose end vertices are not in W . Moreover, since the end edges
of P are not adjacent to the edges of M , one end vertex of P is in Ū1∪U2 and the
other is in Ū2 ∪ U1. Hence, by connecting s and the end vertices of P ′, we obtain
a directed cycle.

Let C be a directed cycle of D1(G, M, W ). If C does not include s, then
M!E(C) is a covering matching, since the sets of vertices incident to the edges
of matchings are the same for M and M!E(C). If C includes s, then E(C) is a
path connecting a vertex of Ū1 ∪ U2 and a vertex of Ū2 ∪ U1. Hence, M!E(C) is
a matching. Since the end vertices of E(C) are not in W , M!E(C) is a covering
matching. �

A covering matching for V̂ can be found in O(|E| log |V |) time by the algo-
rithms of Cole et al., and Schrijver [3, 15]. Actually, the computation time can be
also bounded by O(|V̂ |2∆), by removing all the edges incident to no vertex of V̂ in
O(|E|) time. Thus, the enumeration of covering matchings takes O(|E| + |V̂ |2∆)
time for the first covering matching, and O(|E|) for each following covering match-
ing.

Our algorithm is obtained by introducing three additional modifications to
the basic algorithm. These modifications are the following. We note that a star is
a graph such that all the edges are incident to a vertex.
(1) if the input graph is a star, then output the unique edge coloring directly
(2) choose an edge incident to not all the edges in (BA2)
(3) output by the difference from the previous output

The modified algorithm is described below. Note that the algorithm is com-
posed of two procedures, the main part and the enumeration of covering matchings.
The procedures are nested so that they call recursively each other. The algorithm
memorize a graph with multiple edges by its underline graph with the multiplicity
for each edge. Hence, the memory space never exceed O(|V |2). For outputting an
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edge coloring of a star, we output its underline graph and the multiplicities, and a
message “each edge is a matching”, instead of exact output. By this modification,
the execution of (1) never take more than O(|V |) time. In the next section we
analyze the time complexity of the algorithm to bound it by O(|V |) for each.

ALGORITHM: Enum Edge Coloring(G = (V, E):graph,
Col:set of matchings to be edge colorings)

(1) If ∆(G) = 1, output edge coloring Col ∪ {E}
(2) If (G is a star) or (E is a matching) then output Col and the unique edge

coloring of G // improvement (1)
(3) (u, v) := an edge not adjacent to all edges // improvement (2)
(4) M := a covering matching for V̂ (G) of G including e

// computed in O(|V̂ |2∆) time
(5) Call Enum Covering Matching

(G− {u, v}, V̂ (G) \ {u, v}, M \ {(u, v)}, G, Col)
// enumerate covering matchings

ALGORITHM: Enum Covering Matching
(H :graph, W :vertices to be covered,
M :edge set to be a matching, G:original graph,
Col:set of matching to be an edge coloring)

(6) If no directed cycle is in D1(H, M, W ) then
Call Enum Edge Coloring ((V, E \M , Col ∪ {M} )
// generate recursive call when a new covering matching is found

(7) C := a directed cycle of D1(H, M, W ) ; M ′ := M!E(C) ;
(u, v) := an edge in M!M ′

(8) If (u, v) ∈M ′ then swap M and M ′

// now (u, v) is an edge in M \M ′

(9) Call Enum Covering Matching
(H − {u, v}), W \ {u, v}, M \ {(u, v)}, G, Col)
// enumerate covering matchings including (u, v)

(10) Call Enum Covering Matching (H \ (u, v), W, M ′, G, Col)
// enumerate covering matchings not including (u, v)

3. Analysis of the time complexity

In this section, we now start with some definitions. We define an iteration of the
enumeration algorithm of edge colorings by the set of operations to generate sub-
problems for enumerating edge colorings from an input graph, i.e., the union of the
iteration of Enum Edge Coloring inputting graph G and all the iterations of
Enum Covering Matching which enumerate covering matchings of G. For each
iteration x, we denote the input graph of x by Gx = (V, Ex). Iterations generated
by x are called the children of x. The depth of the recursion is up to ∆, and each
iteration on the bottom of the recursion outputs an edge coloring.
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Lemma 2. For a graph G with ∆ ≥ 3, a covering matching for V̂ including an
edge e = (u, v) is unique if and only if all edges of G are adjacent to e.

Proof. The ‘if’ part is obvious, thus we prove the ‘only if’ part by its contraposition.
Let M be a covering matching for V̂ . We show that D1(G− {u, v}, M, V̂ \ {u, v})
includes a directed cycle. From Lemma 1, this implies that G has a covering
matching different from M . Since at least one edge is not adjacent to e, G−{u, v}
contains at least one edge. For any vertex w of V̂ \ {u, v}, w is incident to at most
one of u and v. Hence, its degree in G − {u, v} is no less than two, and w has
at least one out-going arc in D1(G − {u, v}, M, V̂ \ {u, v}). For any vertex w in
V \ V̂ \ {u, v}, there is an arc (w, s) or (w, x) for some x �= u, v since (w, x) in M .
Hence the out-degree of any non-isolated vertex of D1(G−{u, v}, M, V̂ \ {u, v}) is
at least one. Therefore, a depth-first search for the graph always reaches a vertex
that has already been visited, and gives a directed cycle. �

If any edge of Gx is adjacent to all the other edges, then all the edges are
incident to a vertex (note that Gx is bipartite), and Gx is a star. In this case the
algorithm outputs the unique edge coloring in (1) and the iteration terminates, in
O(|V |) time. In the other case, the algorithm chooses an edge e so that at least
one edge is not adjacent to e. From Lemma 2, at least two covering matchings
includes e. Thus, we have the following corollary.

Corollary 1. In algorithm Enum Edge Coloring, if an iteration has a child, the
number of its children is at least two. �

This corollary implies that the number of vertices in the enumeration tree
is at most twice the number of leaves, which is the same as the number of edge
colorings in G. To bound the number of iterations more, we give the following
lemmas, where the first one is a standard result of graph theory.

Lemma 3. For a directed graph H = (VH , AH) in which each arc is included in
a directed cycle, H contains at least |AH | − |VH | + cc(H) directed cycles, where
cc(H) is the number of strongly connected components of H.

Proof. If all the arcs are self-loops or |VH | = 1, the statement holds. Assume that
the statement holds if |VH | < k, and we consider the case that |VH | = k and
not all arcs of H are self-loops. Let C be a shortest directed cycle of H including
no self-loop, and |C| denote the number of arcs in C. Note that |C| ≥ 2. Let
H ′ = (VH′ , AH′) be the graph obtained from H by removing all the arcs of C and
contracting vertices of C into a vertex. Since |VH′ | = |VH | − |C| + 1 < k, H ′ has
at least

|AH′ | − |VH′ |+ cc(H ′) = (|AH | − |C|)− (|VH | − |C|+ 1) + cc(H)

directed cycles. Note that cc(H) = cc(H ′). Since H has at least one more directed
cycle (which is C) than H ′, H has at least

(|AH | − |C|)− (|VH | − |C|+ 1) + cc(H) + 1 = |AH | − |VH |+ cc(H)

directed cycles. �
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Theorem 1. Any graph G with ∆ ≥ 3 and |V̂ | ≥ 3 has at least (|E| − |V̂ | +
1)max{2∆−3, 2(|V̂ |/2 + 1)∆−3/(∆− 1)}/∆ edge colorings.

Proof. Let Z be the set of isolated vertices in G, and M be a covering matching. In
D1(G, M, V̂ ), any non-isolated vertex not in V̂ is connected to s, hence its degree
is at least 2, and the degree of s is |V | − |Z| − |V̂ |. Therefore, the number of arcs
in D1(G, M, V̂ ) is at least |E|+ (|V | − |Z| − |V̂ |). For any edge e, an edge coloring
of G includes both a covering matching which includes e and another covering
matching which does not. This means that any arc of D1(G, M, V̂ ) is included in
a directed cycle. From Lemma 3, D1(G, M, V̂ ) includes at least

|E|+ (|V | − |Z| − |V̂ |)− (|V |+ 1) + |Z|+ 1 = |E| − |V̂ |

directed cycles. Thus, G includes at least |E| − |V̂ |+ 1 covering matchings.
Let v be a vertex in V̂ and F be the set of edges incident to v. Any covering

matching includes an edge in F , hence there is an edge f in F such that f is
included in at least (|E| − |V̂ | + 1)/∆ covering matchings. Thus, if ∆ = 3, G

includes at least (|E| − |V̂ |+ 1)/3 edge colorings.
We next consider the case ∆ > 3. Similar to the above, for any covering

matching M , the graph H = (V, E\M) includes at least (|E\M |−|V̂ |+1)/(∆−1)
covering matchings including an edge f , which is incident to a vertex in V̂ (H).
Since |E| ≥ ∆|V̂ |/2), we have

(|E \M | − |V̂ |+ 1)/(∆− 1) ≥ ((∆− 3)|V̂ (H)|/2 + 1)/(∆− 1).

From Lemma 3, if |V̂ | ≥ 3, there is an edge f incident to a vertex in V̂ (H) included
in at least two covering matchings. Therefore, by induction, G has at least

((|E| − |V̂ |+ 1)/∆)×
∆−1∏
i=3

max{2, ((i− 1)|V̂ |/2 + 1)/i)

≥ (|E| − |V̂ |+ 1)max{2∆−3, 2(|V̂ |/2 + 1)∆−3/(∆− 1)}/∆

edge colorings. �
In particular, we can directly obtain the following corollary from the fact that

|E| ≥ ∆|V̂ |/2.

Corollary 2. Any graph G with ∆ = 3 has at least |V̂ |/6 edge colorings.

From these lemmas and corollary, we obtain the following theorem.

Theorem 2. The algorithm Enum Edge Coloring enumerates all minimum edge
colorings of a bipartite graph G = (V, E) with multiple edges in O(|V |N) time,
where N is the number of minimum edge colorings of G.

Proof. For any child y obtained at iteration x, we have |Ey| ≥ |Ex| − |V |/2, since
Ey is obtained by removing a matching from Ex. An iteration x takes O(|Ex| +
|V | + |V̂ (Gx)|2∆(Gx)) time and O(|Ex| + |V |) time per child. By assigning a
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computation cost of O(|Ex|+ |V |) to each child, we suppose that the computation
time T (x) of x is

T (x) =
{

c× |V | if ∆(Gx) < 3 or Gx is a star
c× (|V̂ (Gx)|2∆(Gx) + |Ex|+ |V |) otherwise

.

Here c is a constant, and T (x) does not include the computation time for out-
putting the edge colorings. We have |V̂ (Gx)| ≤ |V̂ (Gy)|, since any vertex of V̂ (Gx)
is the maximum degree in Gy. Hence, if ∆(Gx) > 3 and Gx is not a star,

T (x) = c× (|V̂ (Gx)|2∆(Gx) + |Ex|+ |V |)
≤ c× (|V̂ (Gy)|2(∆(Gy) + 1) + |Ey|+ 1.5|V |).

Hence, from Corollary 1, for any 4 ≤ k ≤ ∆(G),∑
x|∆(Gx)=k,Gx is not a star

T (x)

≤
∑

y|∆(Gy)=k−1

c× (|V̂ (Gy)|2(∆(Gy) + 1) + |Ey|+ 1.5|V |)/2

≤
∑

y|∆(Gy)=k−1

3T (y)/4.

Therefore, from Lemma 2,∑
x|∆(Gx)≥3

T (x) ≤
∑

x|∆(Gx)=3

4T (x)

≤
∑

x|∆(Gx)=3

48c(|V̂ (Gx)||V |)

≤ 48cN |V |

Next we consider the computation time for outputting the obtained edge
colorings. Consider the recursive structure of our algorithm as a recursion tree.
Our algorithm outputs the difference from the edge coloring output just before.
From the edge coloring which is outputted just before, the size of the difference
is at most |V |/2 times the number of edges in the recursion tree traced by the
algorithm. Hence, the sum of these numbers of edges in the output is at most
|V |/2 × 2(# of iterations). Since the number of iterations is less than 2N , the
computation time for output is O(|V |N) per output. We note that the algorithm
outputs the unique edge coloring in a star in O(|V |) time. �

4. Reducing delay

The delay is the maximum computation time between two consecutive outputs.
An enumeration algorithm is said to be polynomial delay if its delay is polynomial
of the input size[6]. If an enumeration algorithm is polynomial delay, it is output
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polynomial time, but an output polynomial time algorithm is not always polyno-
mial delay. Thus, polynomial delay is a stronger result than output polynomial.
We recall that an enumeration algorithm is output polynomial if the computation
time is bounded by a polynomial of the input and output size. In this section, we
carefully analyze the delay of our algorithm.

First, we show that the delay of covering matchings enumeration can be
bounded by O(|E|). In [10, 17], they claimed that if an enumeration algorithm
outputs a solution in each iteration, then the delay can be 3 times the maximum
computation time of an iteration. Algorithm Enum Covering Matching finds
a new matching in each iteration, thus we can modify the algorithm to satisfy the
condition. The idea in [10, 17] is to modify the algorithm so that the algorithm
outputs a solution before executing recursive calls at odd levels of the recursion,
and after the recursive calls at even levels. Then, we can see that at least one
iteration of any consecutive three iterations must output a solution. Thus, delay
is O(|E|) without increasing neither time nor space complexity.

Next, we reduce the delay of the main algorithm. For an iteration I of an
enumeration algorithm, let Out(I) be the set of solutions output by the iterations
which are descendants of I. Suppose that the delay of an enumeration algorithm
A is D, and satisfies that for any iteration I, the amortized computation time
taken by all descendants of I is T per solution in Out(I). In [17], we can see that
under these conditions, the delay can be reduced to O(T ) with using O(D/T ×S)
memory where S is the maximum size of output. The main idea is that we make
a buffer and insert each solution into the buffer when the algorithm outputs it.
The solutions in the buffer is extracted and output one by one with keeping the
intermediate computation time equal to 6T unless the buffer is overflow. We can
prove that after the buffer is once full, it never be empty. At the beginning of the
enumeration, we do not extract solutions from the buffer until the first overflow
of the buffer. Then, the delay is 6T = O(T ).

On our algorithm, T = O(|V |) and S = |V |. Since each iteration of both
procedures takes O(|E|) time, and the depth of the recursion is O(∆), the delay
is O(∆|E|). According to the above, we can reduce the delay to O(|V |) by using
O(∆|E|) memory.

Theorem 3. Minimum edge colorings in a bipartite graph G = (V, E) can be enu-
merated in O(|V |) delay by using O(∆|E|) memory, where ∆ is the maximum
degree in G.

5. Reducing space complexity

In this section, we describe a way for reducing the space complexity. Since our
enumeration algorithm is composed of two nested enumeration algorithms, which
are for edge colorings and for covering matchings, the total depth of two recur-
sions can be up to Θ(∆|E|). Note that here the iterations are different from the
definition in Section 3. Here we consider that an iteration is the computation time
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in a recursive call except for the computation done in the further recursive calls
generated in it.

Each recursive call requires Ω(1) memory, hence the total required memory
is up to Θ(∆|E|). When Enum Covering Matching generates a subroutine call
of Enum Covering Matching, O(|E| + |V |) memory is required to store H in
each level, hence the accumulated memory for storing H is up to O(∆(|E|+ |V |)).
These two parts are the bottle neck of the space complexity. Note that the total
accumulated memory to store M and I is O(|E|), since each time the algorithm
executes, stored matchings M ∪ I compose a subset of an edge coloring. Note also
that V̂ can be computed from V̂ and I in O(|E|+ |V |) time.

To improve these memory-consuming parts, we add the following two modi-
fications to Enum Covering Matching. The first one is to use a loop instead of
generating a recursive call with respect to H \ e. By this modification, a recursive
call always adds an edge to I or a matching to C, hence the depth of the recursion
is at most |E|+ |V |.

The second modification is to use the minimum possible index edge e to par-
tition the problem, in Enum Covering Matching. For a graph G, a matching
M , and an index j, let G(M, j) = (V, X) where

X = {ei ∈ E|i ≥ j and (ei is not adjacent to any edge eh ∈M, h < j)}

For an example of G(M, j), see Figure 3.
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Figure 3. An example of G and G(I ∪M, l). In the figure, the
edges of I ∪M are shown by the bold lines, and l = 6.

Suppose that an iteration of Enum Covering Matching inputs a graph H
and a covering matching M . Let el be the minimum index edge of H . If el ∈ E(C)
for a directed cycle C of D1(H, M, V̂ ), the condition holds for both subproblems
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generated by el. If el �∈ E(C) for any directed cycle C of D1(H, M, V̂ ), the con-
dition holds for H and G(I ∪M, l). Therefore, by induction, at any iteration of
Enum Covering Matching inputting H, V̂ , M , and I such that the minimum
index edge of H is el, the set of covering matchings in H and that of G(I ∪M, l)
are equal. From this, we can see that a graph equivalent to H can be constructed
from G, I ∪M, l in O(|E|+ |V |) time.

By using these two modifications, the space complexity is reduced to O(|E|+
|V |). We now describe the algorithm with these two modifications.

ALGORITHM: Enum Covering Matching2 (H, M, V̂ )
(1) If D1(H, M, V̂ ) includes no directed cycle then output M ; return
(2) el(= (ul, vl)) := the minimum index edge of H included

in some directed cycle
(3) H := G(M, l) // remove edges less than l and not included in M
(4) C := a directed cycle including el ; M ′ := M!E(C)
(5) If el ∈M then swap M and M ′

(6) Call Enum Covering Matching2

(H − {ul, vl}, M ′ ∪ {(ul, vl)}, V̂ \ {ul, vl})
// H will be changed by the execution of the recursive call

(7) H := G(M, l)
(8) Remove el from H ; go to (1)

Step (1) outputs a covering matching if the covering matching of H is unique.
An execution of (2) through (8) corresponds to an internal iteration which has some
children in the enumeration tree. el is the edge to be used partitioning the problem,
step (6) generates a recursive call for enumerating covering matchings including el,
and step (8) corresponds to the recursive call for enumerating covering matchings
not including el. Setting H to G(M, l) in (3) is equivalent to removing the edges
whose indices are less than l and not included in M . Since the recursive call in (6)
changes H , H is not preserved after the termination of the recursive call. However,
G is preserved in the execution1, we can reconstruct H by setting H to G(M, l).
This is the key to save the memory for storing H during the execution of the
recursive call. Step (8) removes el from H and go to the beginning. It corresponds
to the recursive call for enumerating covering matchings not including el.

By using this algorithm, we obtain the following theorem.

Theorem 4. The algorithm

Enum Edge Coloring with Enum Covering Matching2

enumerates all minimum edge colorings of a bipartite graph G = (V, E) with mul-
tiple edges in O(|V |N) time and O(|E| + |V |) space, where N is the number of
minimum edge colorings of G. �

1In exact, G is changed by recursively calling Enum Edge Coloring, however it is reconstructed
after the termination by adding the covering matching which is removed before the execution
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6. Conclusion

We proposed an algorithm for enumerating all minimum edge colorings in a bi-
partite graph G = (V, E) without using any sophisticated data structure or any
sophisticated algorithm. The amortized time complexity of the algorithm is O(|V |)
per output. It improves the previous algorithm by a factor of |E| log |V |/|V |. We
also reduced the space complexity of the algorithm from O(|E|∆) to O(|E|+ |V |).
Although the delay of the algorithm is O(∆|E|), we can reduce it to O(|V |)
by using a queue with O(∆|E|) memory. We further give a lower bound (|E| −
|V̂ |+ 1)max{2∆−3, 2(|V̂ |/2 + 1)∆−3/(∆− 1)}/∆ of the number of edge colorings
included in G.
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Kempe Equivalence of Colorings

Bojan Mohar

Abstract. Several basic theorems about the chromatic number of graphs can
be extended to results in which, in addition to the existence of a k-coloring, it
is also shown that all k-colorings of the graph in question are Kempe equiv-
alent. Here, it is also proved that for a planar graph with chromatic number
less than k, all k-colorings are Kempe equivalent.

1. Introduction

Let G be a graph and k ≥ 1 an integer. A vertex set U ⊆ V (G) is independent if
no two vertices of U are adjacent in G. A k-coloring of G is a partition of V (G)
in k independent sets U1, . . . , Uk, called color classes. If v ∈ Ui (i ∈ {1, . . . , k}),
then v is said to have color i. Every k-coloring can be identified with a mapping
c : V (G)→ {1, . . . , k} where c(v) is the color of v. The chromatic number of G is
denoted by χ(G).

Let a, b ∈ {1, . . . , k} be distinct colors. Denote by G(a, b) the subgraph of
G induced on vertices of color a or b. Every connected component K of G(a, b)
is called a K-component (short for Kempe component). By switching the colors a
and b on K, a new coloring is obtained. This operation is called a K-change (short
for Kempe change). Two k-colorings c1, c2 are K-equivalent (or Kk-equivalent),
in symbols c1∼k c2, if c2 can be obtained from c1 by a sequence of K-changes,
possibly involving more than one pair of colors in successive K-changes.

Let Ck = Ck(G) be the set of all k-colorings of G. The equivalence classes
Ck/∼k are called the Kk-classes (or just K-classes). The number of Kk-classes of
G is denoted by Kc(G, k).

K-changes have been introduced by Kempe in his false proof of the four color
theorem. They have proved to be an utmost useful tool in graph coloring theory.
It remains one of the basic and most powerful tools. The results of this paper
show that some basic theorems about graph colorings can usually be turned into

Supported in part by the Ministry for Higher Education, Science and Technology of Slovenia,
Research Program P1–0297.
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stronger K-equivalence results where it can be proved that all k-colorings are K-
equivalent. These results have been one of our motivations to study K-equivalence
of colorings. Several such results have been published by Meyniel and Las Vergnas
[9, 7] who proved, in particular, that all 5-colorings of a planar graph (respectively,
a K5-minor free graph) are K-equivalent. Fisk [5] proved that all 4-colorings of an
Eulerian triangulation of the plane are K-equivalent. We extend these results by
showing that in every planar graph G with chromatic number less than k, all
k-colorings are K-equivalent (see Corollary 4.5).

The second motivation to study K-equivalence is the possibility to gener-
ate colorings either by using K-changes as a heuristic argument [1, 12], or with
the goal of obtaining a random coloring by applying random walks and rapidly
mixing Markov chains [16]. For instance, Vigoda [16] proved that the Markov
chain, whose state space is Ck(G) and whose transitions correspond to K-changes,
quickly converges to the stationary distribution if k ≥ 11

6 ∆(G). On the other
hand [8], there are bipartite graphs for which the Markov chain needs exponen-
tially many steps to come close to the stationary distribution if k = O(∆/ log ∆).
Later, Hayes and Vigoda [6] proved rapid mixing for k > (1 + ε)∆(G) for all
ε > 0 assuming that G has girth more than 9 and ∆ = Ω(log n). Dyer et al. [3]
studied the same phenomenon on random graphs with expected average degree
d, where d is a constant. Kempe change method has been successfully applied in
some experiments [13] leading to new theoretical results. In relation to this, let us
mention that K-changes appear in theoretical physics in the study of the Glauber
dynamics for the hard-core lattice gas model at zero temperature. The related
Wang-Swendsen-Kotecký dynamics [17, 18] uses K-changes to move from state to
state. The question whether the associated Markov chain is ergodic is the same
as asking if all colorings are K-equivalent. We refer to a survey by Sokal [14] for
further details.

Finally, let us observe that Claude Berge, to whom we dedicate this paper,
considered Kempe changes in some of his late papers, e.g., [2].

2. Basic results

The following result shows that the study of Kk-equivalence may be interesting
also when k is much larger than the chromatic number of the graph. It also shows
that it is possible that Kc(G, k − 1) = 1 and Kc(G, k) > 1.

Proposition 2.1.

(a) Let G be a bipartite graph and k ≥ 2 an integer. Then Kc(G, k) = 1.
(b) For any integers l ≥ 3 and k > l, there exists a graph G with chromatic

number l such that Kc(G, l) = 1 and Kc(G, k) > 1.

Proof. (a) Clearly, any two 2-colorings are K2-equivalent. Hence, it suffices to prove
that every k-coloring of G is K-equivalent to a 2-coloring. This is easy to see and
is left to the reader.
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(b) Let G be the categorical product Kl × Kk. Its vertices are pairs (i, j),
1 ≤ i ≤ l, 1 ≤ j ≤ k, and vertices (i, j) and (i′, j′) are adjacent if and only if
i �= i′ and j �= j′. Let c be the l-coloring of G where c((i, j)) = i, and let c′ be the
k-coloring of G where c′((i, j)) = j. It is easy to see that c is the unique l-coloring
of G, so χ(G) = l and Kc(G, l) = 1. On the other hand, c′ is not K-equivalent
to any other k-coloring since all its 2-colored subgraphs G(a, b) are connected. In
particular, it is not K-equivalent to c, so Kc(G, k) > 1. �

There are other graphs with the same properties as in Proposition 2.1(b).
They can be obtained from Kl ×Kk by replacing every vertex (i, j) by an inde-
pendent set U(i, j) (of any size) and, for any two adjacent vertices (i, a) and (i′, b)
of Kl×Kk adding edges between U(i, a) and U(i′, b) so that the subgraph induced
on ∪l

i=1(U(i, a)∪U(i, b)) is connected. This construction describes the l-colorable
graphs with a k-coloring which is not K-equivalent to any other k-coloring. More
generally, it would be interesting to characterize l-colorable graphs (l < k) with a
k-coloring (k large) which is not K-equivalent to any (k−1)-coloring. This problem
was considered by Las Vergnas and Meyniel [7] who conjectured that such graphs
contain the complete graph Kk as a minor.

Lemma 2.2. Suppose that c0 is a (k − 1)-coloring of a graph G and that U is an
independent vertex set of G. Then c0 is K-equivalent in Ck(G) to a k-coloring of
G, one of whose color classes is U .

Proof. Let U = {u1, . . . , ur}. For i = 1, . . . , r, let ci be the k-coloring of G that
is obtained from ci−1 by recoloring the vertex ui with color k. It is clear that
the vertex ui forms a K-component in ci−1 for colors k and ci−1(ui) = c0(ui).
Therefore, ci is K-equivalent to ci−1. This shows that cr is a coloring that is K-
equivalent to c0, and one of its color classes is U . �
Corollary 2.3. Let k be an integer. Suppose that G is a graph such that every k-
coloring of G is K-equivalent to some (k − 1)-coloring. If U is an independent
vertex set of G, then Kc(G, k) ≤ Kc(G− U, k − 1).

Proof. For i = 1, 2, let ci be a k-coloring of G. By assumption, ci is K-equivalent
to a (k − 1)-coloring c′i. By Lemma 2.2, c′i is K-equivalent to a k-coloring c′′i , one
of whose color classes is U . The restrictions of c′′1 and c′′2 to G − U are (k − 1)-
colorings of G−U . If they are Kk−1-equivalent, then c′′1 ∼k c′′2 , and hence c1∼k c2.
This completes the proof. �

A graph G is d-degenerate if every subgraph of G contains a vertex of degree
≤ d. Las Vergnas and Meyniel [7, Proposition 2.1] proved the following result,
whose proof we include for completeness.

Proposition 2.4. If G is a d-degenerate graph and k > d is an integer, then
Kc(G, k) = 1.

Proof. The proof is by induction on |V (G)|. The statement is clear if G = K1.
Otherwise, let v be a vertex of degree ≤ d, and let G′ = G − v. Let c1 and c be
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arbitrary k-colorings of G. By c′1 and c′ we denote their restrictions to G′. By the
induction hypothesis, c′1 is K-equivalent to c′. There is a sequence of K-changes,
c′1∼k c′2∼k · · ·∼k c′r = c′.

For i = 2, . . . , r, let ci be an extension of c′i to G which is obtained as follows.
There are two colors, say ai and bi, that are involved in the K-change yielding
c′i from c′i−1. We assume that ai �= ci−1(v). Now we distinguish three cases. If
ci−1(v) �= bi, then we let ci(v) = ci−1(v), and the same K-change as performed
on G′ shows that ci∼k ci−1. If ci−1(v) = bi and v has precisely one neighbor u
with c′i−1(u) = ai, then the K-components for ai and bi of the coloring ci−1 are
the same as in G′, except that the component containing u is extended by one
vertex, namely v. Now we set ci(v) = ci−1(v) if the K-change yielding c′i does not
involve u, and we set ci(v) = ai if it does. In both cases, ci is K-equivalent with
ci−1. Finally, suppose that ci−1(v) = bi and v has more than one neighbor whose
color in ci−1 is ai. Then there is a color b′i �= bi that is not contained among the
neighbors of v in ci−1. Now we first make a K-change replacing ci−1(v) with b′i,
and then another change as described above (since now the color of v is different
from ai and bi). This gives the coloring ci which is K-equivalent with ci−1 also in
this case.

Finally, repeating the above changes, we see that c1 is K-equivalent to cr,
an extension of c′r. Note that cr and c are the same except that they possibly
disagree on v. Therefore, if cr �= c, another K-change can replace the color cr(v)
by c(v) since none of these colors appears in the neighborhood of v. This shows
that cr∼k c, and the proof is complete. �

An immediate corollary of Proposition 2.4 is:

Corollary 2.5. Let ∆ be the maximum degree of a graph G and let k ≥ ∆ + 1 be
an integer. Then Kc(G, k) = 1. If G is connected and contains a vertex of degree
< ∆, then also Kc(G, ∆) = 1.

We conjecture that the last statement of Corollary 2.5 can be extended to
include all connected ∆-regular graphs with the exception of odd cycles and com-
plete graphs.

The following proposition is left as an exercise.

Proposition 2.6. Let G be a graph of order n, let α be the cardinality of a largest
independent vertex set in G, and let k ≥ n − α + 1 be an integer. Then every
k-coloring of G is Kk-equivalent to the k-coloring in which a fixed maximum in-
dependent set is a color class and every other color class is a single vertex. In
particular, Kc(G, k) = 1.

3. Edge-colorings

Coloring the edges of a graph G is the same as coloring the vertices of its line
graph L(G). Vizing’s Theorem states that the edges of a graph with maximum
degree ∆ can be colored with ∆ + 1 colors, i.e., χ′(G) = χ(L(G)) ≤ ∆ + 1.
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We prove:

Theorem 3.1. Let ∆ be the maximum degree of a graph G. If k ≥ χ′(G) + 2 is an
integer, then Kc(L(G), k) = 1.

Proof. The proof is by induction on χ′(G). The case when χ′(G) ≤ 2 follows by
Proposition 2.1(a), so assume that χ′(G) ≥ 3.

Let c be an arbitrary k-edge-coloring of G. First, we claim that c is K-
equivalent to a (k − 1)-edge-coloring. To prove this, we may assume that c has
m > 0 edges of color k and that every k-edge-coloring which is K-equivalent to
c has at least m edges of color k. The standard “fan” arguments of Vizing show
that there is a sequence of K-changes which transforms c into an edge-coloring
with m − 1 edges of color k, a contradiction. (Cf., e.g., [4] for details.) However,
in order to make the proof self-contained, we repeat those arguments.

Let c and m > 0 be as above. We say that a color a is missing at a vertex v
of G if no edge incident with v is colored a. Since k ≥ ∆ + 2, at least two colors
are missing at each vertex, and at least one of them is different from k. Clearly,
if the same color a is missing at adjacent vertices u and v, then the change of the
color of the edge uv to a represents a K-change.

Let e = uv be an edge of color k. Suppose that color a1 is missing at u and
that a0 is missing at v. If a0 = a1, then changing the color of e to a0 is a K-change,
yielding a coloring with m − 1 edges of color k, a contradiction. So, there is an
edge vv1 of color a1. There is a color a2 �= k which is missing at v1. If a2 is missing
at v, we recolor vv1 with a2 and, as mentioned above, are henceforth able to get
rid of the color k at e. Therefore, there is an edge vv2 of color a2.

Consider the K-component K ⊆ G(a0, a2) at the vertex v1. After the corre-
sponding K-change, a0 becomes missing at v1. If a0 is still missing at v, then we
get a contradiction as above. Therefore, the corresponding K-change has changed
the color a2 at v to a0, so vv2 ∈ E(K).

We shall now repeat the above procedure and henceforth have distinct edges
vv1, . . . , vvr whose colors are a1, . . . , ar (respectively), and such that color ai is
missing at vi−1 for i = 2, . . . , r. Moreover, the K-component in G(a0, ai) at vi−1

is a path from vi−1 to v, whose last edge is viv. Having this situation, there is a
color ar+1 �= k that is missing at vr. If ar+1 /∈ {a0, . . . , ar}, then we consider the
K-component K ⊆ G(a0, ar+1) at vr. If this is a path ending at v, its last edge,
call it vr+1v, has color ar+1, and we proceed with the next step. If K does not
contain v, then after the K-change at K, a0 is missing at vr and at v. Now, we
recolor vvr with a0, then we recolor vvr−1 with ar, vvr−2 with ar−1, . . . , vv1 with
a2. Finally, recolor e with a1. All these recolorings were K-changes, so we have a
coloring with m− 1 edges of color k, a contradiction.

From now on, we may assume that ar+1 = aj , where 0 ≤ j < r. Let us
consider K ⊆ G(a0, aj) at vr. The K-change at K makes a0 missing at vr. Since
the component of G(a0, aj) containing vvj is a path from vj−1 to vj and v, K does
not contain vvj . Therefore, a0 is still missing at v. Now we conclude as above. This
completes the proof of the claim.
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By repeating the above arguments again if necessary, we conclude that c is
K-equivalent to a (∆ + 1)-edge-coloring.

Fix an edge-coloring c0 with the color partition E(G) = M1 ∪ · · · ∪ Mr,
r = χ′(G). It suffices to prove that any (∆+1)-edge-coloring c of G is K-equivalent
with c0 in C∆+2(L(G)). By Lemma 2.2, c is K-equivalent to a (∆ + 2)-coloring c′

whose first color class is Mr. Now, the proof is complete by applying induction on
the graph G−Mr. �

It would be interesting to extend Theorem 3.1 to include (∆ + 1)-colorings
as well. It is quite plausible that Kc(L(G), χ′(G) + 1), Kc(L(G), ∆ + 2), or even
Kc(L(G), ∆ + 1) are always 1. Let us remark, however, that there are graphs for
which Kc(L(G), χ′(G)) > 1. Such examples are given after Theorem 3.3 below. We
emphasize, specifically, the following interesting special case of the above specula-
tions:

Conjecture 3.2. If G is a graph with ∆(G) ≤ 3, then all its 4-edge-colorings are
K-equivalent.

The most challenging example, the Petersen graph, has been checked using
computer by Drago Bokal (and it satisfies the conjecture).

We can say more if G is bipartite.

Theorem 3.3. Let ∆ be the maximum degree of a bipartite graph G. If k ≥ ∆ + 1
is an integer, then Kc(L(G), k) = 1.

Proof. The proof is the same as for Theorem 3.1 except that we need to show
that every k-edge-coloring of G is Kk-equivalent to a ∆-edge-coloring. This is a
standard exercise and is left to the reader. �

The complete bipartite graph Kp,p (where p is a prime) has a p-edge-coloring
in which any two color classes form a Hamiltonian cycle. This example shows that
Theorem 3.3 cannot be extended to ∆-colorings, not even for complete bipartite
graphs.

Problem 3.4. For which cubic bipartite graphs is Kc(L(G), 3) = 1?

A special case of this problem, when G is planar and 3-connected has been
solved by Fisk. Let G be a 3-connected cubic planar bipartite graph. Its dual
graph T is a 3-colorable triangulation of the plane. Fisk [5] proved (see Theorem
4.1 below) that any two 4-colorings of T are K-equivalent. If c1, c2 are 3-edge-
colorings of G, they determine 4-colorings c∗1, c

∗
2 (respectively) of T . It is easy to

see that a K-change on 4-colorings of T corresponds to a sequence of one or more
K-changes among the corresponding 3-edge-colorings in G. This implies that c1

and c2 are K-equivalent, and hence Kc(L(G), 3) = 1.
Let us observe that planarity is essential for the above examples since the

graph K3,3 has non-equivalent edge-colorings, Kc(L(K3,3), 3) = 2.
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4. Planar graphs

In [11], the author described an infinite class of “almost Eulerian” triangulations
of the plane that have a special 4-coloring which is not K-equivalent to any other
4-coloring (and other 4-colorings exist). This shows that there are planar triangu-
lations for which Kc(G, 4) ≥ 2. By taking 3-sums of such graphs, we get planar
triangulations with arbitrarily many equivalence classes of 4-colorings.

Meyniel [9] proved that Kc(G, 5) = 1 for every planar graph (and also
Kc(G, k) = 1 if k ≥ 6, which follows by 5-degeneracy of planar graphs). In this sec-
tion we prove a similar result for 4-colorings in the case when G is 3-colorable (cf.
Theorem 4.4). A special case of this result, when G is a 3-colorable triangulation
of the plane was proved by Fisk [5].

Theorem 4.1 (Fisk [5]). Let G be a 3-colorable triangulation of the plane. Then
Kc(G, 4) = 1.

In order to extend Theorem 4.1, we shall need two auxiliary results.

Lemma 4.2. Suppose that G is a subgraph of a graph G̃. Let c̃1, c̃2 be r-colorings of
G̃. Denote by ci the restriction of c̃i to G, i = 1, 2. If c̃1 and c̃2 are Kr-equivalent,
then c1 and c2 are Kr-equivalent colorings of G.

Proof. Any K-component in G̃ gives rise to one or more K-components in G, with
respect to the induced coloring of G. This implies the lemma. �

A near-triangulation of the plane is a plane graph such that all its faces
except the outer face are triangles.

Proposition 4.3. Suppose that G is a planar graph with a facial cycle C. If c1, c2

are 4-colorings of G, then there is a near-triangulation T of the plane with the
outer cycle C such that T ∩ G = C and there are 4-colorings c′1, c

′
2 of G which

are K-equivalent to c1 and c2, respectively, such that they both can be extended to
4-colorings of G ∪ T . Moreover, if the restriction of c1 to C is a 3-coloring, then
c′1 = c1, and c1 can be extended to a 3-coloring of T .

Proof. Let C = v1v2 . . . vkv1. The proof is by induction on k. If k = 3, then
T = C, c′1 = c1, and c′2 = c2. Suppose now that k ≥ 4. If there are indices i, j
(1 ≤ i < j ≤ k) such that vi and vj are not consecutive vertices of C and such
that c1(vi) �= c1(vj) and c2(vi) �= c2(vj), then we add the edge vivj inside C and
apply induction on C1 = vivi+1 . . . vjvi and C2 = vjvj+1 . . . vkv1 . . . vivj .

More precisely, let G1 = G + vivj . By the induction hypothesis for the cycle
C1, there are sequences of K-changes in G1 (and hence also in G, by Lemma 4.2)
transforming c1 into c11, and transforming c2 into c12, respectively, and there is a
near-triangulation T1 with outer cycle C1 such that c11 and c12 can be extended to
colorings c̄11 and c̄12 of G1 ∪ T1. Next, apply the induction hypothesis to G1 ∪ T1

for the facial cycle C2 and colorings c̄11 and c̄12. Let T2 be the corresponding
near-triangulation, and c′11, c

′
12 the corresponding colorings of G1 ∪T1 that can be

extended to G1 ∪ T1 ∪ T2. By Lemma 4.2, the K-changes which produce c′11 and
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c′12 from c̄11 and c̄12, respectively, can be made in G. All together, the restriction
c′l of the coloring c′1l to G is K-equivalent to cl in G (l = 1, 2). Clearly, c′l has an
extension to G∪ T , where T = T1 ∪ T2. Therefore, T can be taken as the required
near-triangulation for C.

If the restriction of c1 to C is a 3-coloring, then c11 = c1 and the restriction
of c1 to C1 can be extended to a 3-coloring of T1. Similarly, c′11 = c1, and c1 can be
extended to a 3-coloring of T . This proves the “moreover” part of the proposition.

1a 1a 1a2b 2b 1c
2b

24b 2c 2c
1b

13a 3a 2a

(a) (b) (c)

Figure 1. The special cases

Next, we show that vertices vi, vj exist unless one of the cases in Figure 1
occurs (where c1 is represented by colors 1–4 and c2 by colors a–d), up to per-
mutations of colors, dihedral symmetries of C and up to changing the roles of
c1 and c2. This is easy to see if k = 4. The details are left to the reader. If
k ≥ 5, we argue as follows. Suppose that vi, vj do not exist. We may assume that
c1(v1) = c1(v3) = 1. Then c1(v1) �= c1(v4), so c2(v1) = c2(v4) = a may be assumed.
Suppose that c1(v2) = 2 and c2(v2) = b. Since b = c2(v2) �= c2(v4) = a, we have
c1(v4) = c1(v2) = 2. Now, c1(v2) �= c1(v5), so c2(v5) = b. Next, c2(v5) �= c2(v3)
implies that c1(v5) = c1(v3) = 1. It follows, in particular, that k ≥ 6. Similar
conclusions as before imply that c1(v6) = 2 and c2(v3) = c2(v6) = c. If k = 6, this
is the exceptional case of Figure 1(c). If k ≥ 7, then we see that either v2, v7 or
v4, v7 is the required pair vi, vj .

Let us consider the exceptional case shown in Figure 1(c). Let v1 be the
vertex with c1(v1) = 1 and c2(v1) = a (upper-left). Try first a K-change of colors 1
and 3 at v1. If this change gives rise to the same exception, there is a (1,3)-colored
path P joining v1 and v3. Now, a K-change of colors 2 and 4 at v2 changes c1 into
a coloring which does not fit Figure 1(c). None of these K-changes affects c2, and
we are done unless we do not want to change c1 because of the “moreover” part.
In that case we are allowed to use the fourth color in the extension of c2, and we
take T to be the near-triangulation with one interior point joined to all vertices
on C.
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Consider now the case of Figure 1(b). By symmetry, we may assume that c1

is not allowed to be changed according to the “moreover” part of the proposition.
Let v1 be the vertex in the upper-left corner. By a K-change of colors a and d
at v1, or of b and c at v2, we replace c2 either by a 4-coloring which uses on C
all four or only two of the colors. In each case, we can triangulate C by adding
two adjacent vertices p, q such that p is adjacent to v1, v2, v4, and q is adjacent to
v2, v3, v4.

The final case is the one shown in Figure 1(a). If we want c′2 = c2, then we
let T be the near-triangulation consisting of C and a vertex of degree 4 inside.
Then c2 extends to a 3-coloring of T , and c1 also extends to a 4-coloring with the
exception of the case when all vertices on C have distinct colors. In the latter case,
we can either K-change colors 1 and 3 at v1, or change 2 and 4 at v2, without
affecting the colors at v3 and v4. The new coloring c′1 extends to T .

Suppose, finally, that we want c′1 = c1. In this case, c1 is a 3-coloring on C.
Up to symmetries, we may assume either c1(v3) = 1 and c1(v4) = 2, or c1(v3) = 3
and c1(v4) = 2. In the first case we can take the same near-triangulation T as
above (one interior vertex of degree 4). In the latter case, we take two interior
vertices u1, u2 in T , where u1 is adjacent to u2, v4, v1, v2 and u2 is adjacent to
u1, v2, v3, v4. This completes the proof. �

Theorem 4.4. Let G be a 3-colorable planar graph. Then Kc(G, 4) = 1.

Proof. In order to be able to assume that G is 2-connected, we apply induction
on the number of blocks of G. If G = G1 ∪ G2, where G1 ∩ G2 is either empty or
a cutvertex v, we apply induction hypotheses on G1 and G2 but making sure that
we never use a K-change on a K-component containing v. This is possible since a
K-change using component K of Gi(a, b) is the same as making K-changes on all
components of Gi(a, b) distinct from K.

From now on, we assume that G is 2-connected. Let c1 be a 3-coloring of G.
It suffices to see that every 4-coloring of G is K-equivalent to c1.

Let c2 be a 4-coloring of G. Let C1, . . . , Cm be the facial cycles of G. Let
G0 = G, c0

1 = c1 and c0
2 = c2. For i = 1, . . . , m, we apply Proposition 4.3 to the

graph Gi−1, its facial cycle Ci and the colorings ci−1
1 and ci−1

2 . We conclude that
there is a near-triangulation Ti with outer cycle Ci such that Gi−1 ∩ Ti = Ci. Let
Gi = Gi−1 ∪Ti. By Proposition 4.3, ci−1

1 can be extended to a 3-coloring ci
1 of Gi,

and ci−1
2 is K-equivalent in Gi−1 to a 4-coloring that has an extension ci

2 to Gi.
The final graph Gm is a triangulation with the 3-coloring cm

1 . By Theorem
4.1, cm

2 is K-equivalent to cm
1 . By successively applying Lemma 4.2 to Gm−1 ⊆ Gm,

etc. up until G0 ⊆ G1, we conclude that cm−1
2 ∼k cm−1

1 in Gm−1, etc., until finally
concluding that c1 = c0

1∼k c0
2 = c2 in G0 = G. �

It is worth mentioning that there exist 3-colorable planar graphs G with
Kc(G, 3) ≥ 2. An infinite family of such examples can be obtained as follows. In
[11], a family of planar triangulations T is constructed for which a special 4-coloring
exists for which no nontrivial K-change exists. Let T ∗ be the dual cubic graph, and
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let L be its line graph. It is well-known that every 4-coloring of a triangulation
gives rise to a 3-edge-coloring of its dual. The special 4-coloring of T therefore
determines a (vertex) 3-coloring of L. The property of the 4-coloring of T implies
that the 3-coloring of L is not K-equivalent with any other 3-coloring of L. Since
T admits other 4-colorings, also L admits other 3-colorings, hence Kc(L, 3) ≥ 2.

Theorem 4.4 combined with Proposition 2.1(a) and the aforementioned result
of Meyniel [9] yield:

Corollary 4.5. Let G be a planar graph and k > χ(G) and integer. Then

Kc(G, k) = 1.

A planar graph G may have 4-colorings which are not K-equivalent. However,
if G is “almost 3-colorable”, this is not likely to happen.

Problem 4.6. Suppose that G is a 4-critical planar graph. Is it possible that G has
two 4-colorings that are not K-equivalent to each other?

5. Some further open problems

In the preceding sections, we have exposed several open problems about K-classes
of graph colorings. Two further questions are presented below.

Meyniel [10] proved that a graph, in which every odd cycle of length 5 or
more has at least two chords, is perfect. He conjectured that for every such graph
G and every integer k ≥ χ(G), Kc(G, k) = 1. He proved that every k-coloring
of G is K-equivalent to some χ(G)-coloring. The last property does not hold for
arbitrary perfect graphs.

Let G be a triangulation of some orientable surface, and let c be a 4-coloring
of G. Let t+1 be the number of facial 3-cycles whose coloring (in the clockwise
order around the face) is 234, and let t−1 be the number of facial 3-cycles whose
coloring is 432. Let d(c) = |t+1 − t−1 |. The number d(c) turns out to be invariant
on permutations of the colors, and it is called the degree of the coloring c [5]. The
degree, in particular its parity has been studied by Tutte who also observed that
this is Kempe invariant, i.e., all colorings within the same K-class have the same
parity.

One can also define two colorings to be close if they have at least one color
class in common. Two colorings are similar if there is a sequence of colorings,
starting with one and ending with the other, such that any two consecutive col-
orings in this sequence are close. The parity of the degree is constant on close
colorings. It is not difficult to find triangulations of the plane with two similarity
classes of 4-colorings. However, in all such examples known, colorings in different
similarity classes have different parity of the degree. Tutte [15] asked if it is pos-
sible to have non-similar 4-colorings of a planar triangulation whose degrees have
the same parity.
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Acyclic 4-choosability of Planar Graphs
with Girth at Least 5

Mickaël Montassier

Abstract. A proper vertex coloring of a graph G = (V, E) is acyclic if G
contains no bicolored cycle. A graph G is L-list colorable, for a given list
assignment L = {L(v) : v ∈ V }, if there exists a proper coloring c of G such
that c(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every list assignment
with |L(v)| ≥ k for all v ∈ V , then G is called k-choosable. A graph is said
to be acyclically k-choosable if these L-list colorings can be chosen to be
acyclic. In this paper, we prove that if G is planar with girth g ≥ 5, then G is
acyclically 4-choosable. This improves the result of Borodin, Kostochka and
Woodall [BKW99] concerning the acyclic chromatic number of planar graphs
with girth at least 5.

1. Introduction

An acyclic coloring of a graph G is a proper coloring of the vertices of G such
that the graph induced by every union of two color classes is a forest. We denote
by χa(G) the minimum number of colors in an acyclic coloring of G. Acyclic col-
orings were introduced by Grünbaum in [Grü73]. For planar graphs, Grünbaum
conjectured that χa(G) ≤ 5 and proved χa(G) ≤ 9. After many studies (Mitchem
[Mit74], Albertson and Berman [AB77], Kostochka [Kos76]), Borodin proved that
χa(G) ≤ 5 [Bor79]. This bound is best possible since there exist planar graphs
which are not acyclically colorable with four colors [Grü73, KM76]. In 1999,
Borodin, Kostochka and Woodall improved this bound for planar graphs with
large girth:

Theorem 1. [BKW99]
1. If G is planar with girth g ≥ 5, then χa(G) ≤ 4.
2. If G is planar with girth g ≥ 7, then χa(G) ≤ 3.

A graph G is L-list colorable, for a given list assignment L = {L(v) : v ∈ V (G)},
if there exists a coloring c of the vertices such that c(v) ∈ L(v) and c(v) �= c(u) if
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u and v are adjacent in G. If G is L-list colorable for every list assignment with
|L(v)| ≥ k for all v ∈ V (G), then G is called k-choosable. We denote by χl(G)
the smallest integer k such that G is k-choosable. In [Tho94], Thomassen proved
that every planar graph is 5-choosable (i.e., χl(G) ≤ 5) and Voigt proved that
there are planar graphs which are not 4-choosable [Voi93]. In the following, we
are interested in the acyclic choosability of graphs (the L-list colorings can be
chosen to be acyclic). In [BFDFK+02], the following theorem is proved and the
next conjecture is given:

Theorem 2. [BFDFK+02] Every planar graph is acyclically 7-choosable.

This means that for any given list assignment L such that ∀v ∈ V, |L(v)| = 7, we
can choose for each vertex v a color in L(v) such that the obtained coloring of G
is acyclic.

Conjecture 1. [BFDFK+02] Every planar graph is acyclically 5-choosable.

Conjecture 1 is very strong, since it implies the result of Borodin [Bor79]. More-
over,we know that Borodin’s proof is tough.
In [MOR05], we study the acyclic choosability of graph with bounded maximum
average degree. The maximum average degree, Mad(G), of the graph G is defined as

Mad(G) = max{2|E(H)|/|V (H)|, H ⊂ G}.
Theorem 3. [MOR05]

1. Every graph G with Mad(G) < 8
3 is acyclically 3-choosable.

2. Every graph G with Mad(G) < 19
6 is acyclically 4-choosable.

3. Every graph G with Mad(G) < 24
7 is acyclically 5-choosable.

The following are the immediate consequences of Theorem 3.

Corollary 1. [MOR05]
1. Every planar graph with girth at least 8 is acyclically 3-choosable.
2. Every planar graph with girth at least 6 is acyclically 4-choosable.
3. Every planar graph with girth at least 5 is acyclically 5-choosable.

Our main result is Theorem 4; it improves Theorem 1.1 and Corollary 1.

Theorem 4. Every planar graph with girth at least 5 is acyclically 4-choosable.

The proof of Theorem 1 is based on the method of reducible configurations and a
discharging procedure. The proof of Theorem 4 has a similar structure and uses
the techniques developed in [BKW99]. Let H be a counterexample to Theorem 4
having the minimum number of vertices and edges. First, by minimality of H , we
prove that H does not contain some configurations. Finally, we apply a discharging
procedure in order to obtain a contradiction with Euler’s formula.
In the following, a k-vertex (resp. ≥k-vertex, ≤k-vertex) is a vertex of degree k
(resp. ≥ k, ≤ k). A k(l)-vertex is a k-vertex adjacent to at least l 2-vertices.
An i, j-path is a bicolored path with colors i and j. An r-cycle (resp. ≤r-cycle,
≥r-cycle) is a cycle with length r (resp. ≤ r, ≥ r).
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2. Proof of Theorem 4

2.1. Reducible configurations

Lemma 1. The minimum counterexample H satisfies the following:
1. There is no 1-vertices.
2. No 2-vertex is adjacent to a 2-vertex or 3-vertex.
3. There are no d(d)-vertices (2 ≤ d ≤ 15), no d(d−1)-vertices (2 ≤ d ≤ 9) and

no d(d− 2)-vertices (3 ≤ d ≤ 4).
4. If w is a 5(3)-vertex, then the three 2-vertices occur consecutively in cyclic

order round w, and both of the two faces between consecutive 2-vertices are
>5-faces.

5. If a 5(2)-vertex is adjacent to three 3-vertices, then it is incident to at least
one >5-face.

6. A 5(3) or 6(4)-vertex is not adjacent to any 3-vertices.

Proof.
1. Suppose that H contains a 1-vertex v. By minimality of H , the graph H ′ =

H \ {v} is acyclically 4-choosable: so, for any list assignment L, there exists
an acyclic proper coloring c with ∀u ∈ V (H ′), c(u) ∈ L(u). It is easy to
extend the coloring c to H by choosing a color for v in its list different from
the color of its neighbor. The obtained coloring is proper and acyclic and
∀v ∈ V (H), c(v) ∈ L(v). The contradiction completes the proof.

2. follows immediately from 3.

z1

z2

w w w

v1 u1 v1 u1 v1 u1

vi ui vi ui vd−2 ud−2

vd−1 ud−1

vd ud z1

Figure 1.

3. Suppose that H contains a d(d)-vertex w adjacent to d 2-vertices v1, . . . , vd

(see Figure 1). Each vertex vi is adjacent to w and to another vertex ui,
1 ≤ i ≤ d. By minimality of H , the graph H ′ = H \ {w} is acyclically 4-
choosable. Hence, for any list assignment L = {L(v) : v ∈ V }, there exists an
acyclic coloring c of H ′ with c(v) ∈ L(v). Now, we show that we can extend
c to H . Since 2 ≤ d ≤ 15, there exists a color j of L(w) that appears on at
most three of u1, . . . , ud. Set c(w) = j. Now, we give distinct proper colors to
the vi such that c(ui) = j and any proper color to the other ui. The obtained
coloring is proper and acyclic and ∀v ∈ V (H), c(v) ∈ L(v).
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Suppose that H contains a d(d−1)-vertex w adjacent to d−1 2-vertices
v1, . . . , vd−1 and to another vertex z1. Each vertex vi is adjacent to w and to
another vertex ui, 1 ≤ i ≤ d−1. By minimality of H , the graph H ′ = H \{w}
is acyclically 4-choosable. Since 2 ≤ d ≤ 9, there exists a color j of L(w)
distinct from c(z1) that appears on at most two of u1, . . . , ud−1. Set c(w) = j.
Now, we give distinct proper colors different from c(z1) to the vi such that
c(ui) = j and any proper color to the other vi.

Finally, suppose that H contains a d(d−2)-vertex w adjacent to d−2 2-
vertices v1, . . . , vd−2 and to two other vertices z1, z2. Each vertex vi is adjacent
to w and to another vertex ui, 1 ≤ i ≤ d− 2. By minimality of H , the graph
H ′ = H \ {v1} is acyclically 4-choosable. If c(w) �= c(u1), we give any proper
color to v1. Hence, we assume that c(w) = c(u1). If c(u2) �= c(w) (or if u2 does
not exist), then we color v1 with c(v1) ∈ L(v1) \ {c(w), c(z1), c(z2)}. Suppose
now that c(w) = c(u1) = c(u2). We consider two cases: if c(z1) = c(z2),
we color v1 with c(v1) ∈ L(v1) \ {c(w), c(z1), c(v2)}; if c(z1) �= c(z2), we
erase the color of v2, we modify the color of w and choose c(w) ∈ L(w) \
{c(z1), c(z2), c(u1)}, then we give any proper color to vi, i = 1, 2.

w

v1

v2

v3

u3

u2

u1

1, 3-path

1, 4-path

u1

v1

w

v2

v3

u3

u2

1

1

1

1

2

2

z1

z2

>5-face

>5-face

z1

z2

Figure 2.

4. Suppose that H contains a 5(3)-vertex w. The vertex w is adjacent to three
2-vertices v1, v2, v3 and to two other vertices z1, z2 (see Figure 2). Each 2-
vertex vi is adjacent to w and to another vertex ui. By minimality of H , the
graph H ′ = H \ {v1} is acyclically 4-choosable. If c(w) �= c(u1), we color v1

with any proper color. Assume now that c(u1) = c(w).
First, observe that a face between two 2-vertices is necessarily a >5-

face. If not, suppose w.l.o.g. that v1 and v2 occur consecutively in cyclic
order round w and the face with boundary u1u2v2wv1 is a 5-face. Since u1

and u2 are adjacent, then c(u1) �= c(u2). If c(u3) �= c(u1), then we color v1
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with c(v1) ∈ L(v1)\{c(w), c(z1), c(z2)}. So, suppose that c(u3) = c(u1). If we
cannot color v1, this implies that w.l.o.g. L(v1) = {1, 2, 3, 4}, c(w) = c(u1) =
c(u3) = 1, c(z1) = 2, c(z2) = 3, and c(v3) = 4. Now, we erase the colors of
v2 and v3; we recolor w with a color different from 1, 2, 3. We color then v1

and v3 with any proper color and v2 with a proper color if c(w) �= c(u2) and
with a color different from c(w), c(z1), c(z2) otherwise.

Now, we consider the case c(w) = c(u1) = c(u2) = c(u3) and w.l.o.g.
suppose c(w) = 1 (the case where w, u1, u2, u3 do not have the same color
can be reduced with the previous reasoning). Observe that if c(z1) �= c(z2),
we erase the colors of v2, v3, we modify the color of w by choosing c(w) ∈
L(w)\{1, c(z1), c(z2)} and we give any proper color to vi, i = 1, 2, 3. W.l.o.g.,
we assume that c(z1) = c(z2) = 2. If the vi are not consecutive in cyclic
order round w, assume that v1 is between z1 and z2. L(v1) contains 1 and 2;
otherwise we color v1 with c(v1) ∈ L(v1) \ {1, 2, c(v2), c(v3)} (there remains
at least one color). We assume w.l.o.g. that L(v1) = {1, 2, 3, 4}. If we cannot
color v1, this implies that there exists a 1,4-path and a 1,3-path between u1

and u2, u3. Now, we erase the colors of v2, v3. We modify the color of w with
a color different from 1 and 2: we cannot create a bicolored cycle between
z1, z2 (since there exist 1,4-path and 1,3-path). Finally, we give any proper
color to vi, i = 1, 2, 3.

w

z1

z2

z3 v2
u2

u1

u1
v1

w

z1

v2

u2

z2
z3

v1

Figure 3.

5. Suppose that H contains a 5(2)-vertex w adjacent to two 2-vertices v1 and
v2 and three 3-vertices z1, z2, z3. Assume that w is incident to five 5-faces.
By minimality of H , the graph H ′ = H \ {v1} is acyclically 4-choosable. If
c(w) �= c(u1), we give any proper color to v1. Suppose that c(w) = c(u1),
w.l.o.g. c(w) = c(u1) = 1. Note that at most three different 1, j-paths of
length > 1 can start from w and go through z1, z2, z3, v2 (see Figure 3);
this means that, if 1 /∈ L(v1), then at least one color remains to color v1.
W.l.o.g., we suppose that L(v1) = {1, 2, 3, 4}. If c(u2) = 1, then v1 and v2

are not consecutive in the cyclic order round w, and at most one of z1, z2, z3

has an outer neighbor colored 1: this contradicts the existence of the three



304 M. Montassier

1,2-, 1,3-, 1,4-paths and we can color v1. Hence, suppose that c(u2) �= 1. If
we cannot color v1, this implies that z1, z2, z3 are colored with 2, 3, 4 and
each has an outer neighbor colored 1. We erase the color of v2. Observe that
L(w) = {1, 2, 3, 4}, otherwise we modify w with a color different from 1,2,3,4
and give any proper color to vi. There exists a color j ∈ L(w)\{1, c(u2)} that
occurs on at most one of the outer neighbors of z1, z2, z3, say zl. We color w
with j and give any proper color to v1, v2, zl.

w
z1

z2

z′1

v1

u1

u2

u3

u4

v2

v3

v4

z′′1

Figure 4.

6. Suppose that H contains a 5(3)-vertex w adjacent to three 2-vertices v1, v2, v3

(adjacent each to another vertex ui), a 3-vertex z1 (adjacent to z′1 and z′′1 )
and another vertex z2. By minimality of H , the graph H ′ = H \ {v1} is
acyclically 4-choosable. If c(u1) �= c(w), we give any proper color to v1. Now,
we assume that c(u1) = c(w) = 1. If c(z1) �= c(z2), we erase the colors
of v2, v3 and we modify the color of w by choosing a color different from
c(z1), c(z2) that occurs on at most one of u1, u2, u3. Then, we give a proper
color different from c(z1), c(z2) to vi such that c(ui) = c(w) and proper color
to the others. Hence, we assume that c(z1) = c(z2) = 2. Observe that L(v1)
contains 1 and 2; otherwise, we can color v1. We assume w.l.o.g. that L(v1) =
{1, 2, 3, 4}. If we cannot color v1 this implies that c(u1) = c(u2) = c(u3) = 1,
c(v2) = 3, c(v3) = 4. If c(z′1) �= c(z′′1 ), we recolor z1 with a color different from
2, c(z′1), c(z′′1 ). Now, c(z1) �= c(z2). We erase then the colors of v2, v3, we color
w with a color different from 1, 2, c(z1) and we give any proper colors to the
vi. Hence, c(z′1) = c(z′′1 ). We modify the color of w with a color different from
c(z′1), 2, 1 and give any proper colors to v1, v2, v3. So, H does not contain a
5(3)-vertex adjacent to a 3-vertex.

Suppose that H contains a 6(4)-vertex w adjacent to four 2-vertices
v1, v2, v3, v4, a 3-vertex z1 (adjacent to z′1 and z′′1 ) and another vertex z2. By
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minimality of H , the graph H ′ = H \ {v1} is acyclically 4-choosable. W.l.o.g
assume that c(w) = c(u1) = 1. Consider the number of ui colored with 1:

6.1. Suppose that c(w) = c(u1) = 1 and c(u2), c(u3), c(u4) are different from
1. We color v1 with c(v1) ∈ L(v1) \ {c(w), c(z1), c(z2)}.

6.2. Suppose that c(w) = c(u1) = c(u2) = 1 and c(u3), c(u4) �= 1. Observe
that if c(z1) = c(z2), we can color v1 with c(v1) ∈ L(v1)\{1, c(z1), c(v2)};
thus we may assume that c(z1) �= c(z2). Now, assume that c(u3) �= c(u4).
We recolor w with a color different from 1, c(z1), c(z2); since c(u3) �=
c(u4), there exists at most one pair w, ui with c(w) = c(ui), we color the
corresponding vi with a color different from c(w), c(z1), c(z2) and give
any proper colors to the other vj . Finally, assume that c(u3) = c(u4), say
c(u3) = 2. Now, c(z1) �= 1, 2 and c(z2) �= 1, 2; otherwise we can recolor
w with a color different from 1, 2, c(z1), c(z2) and give any proper colors
to the vi, i = 1, 2, 3, 4. Say c(z1) = 3 and c(z2) = 4. By the same
observation, L(w) = {1, 2, 3, 4}. Remark that at least one of z′1, z′′1 is
colored with 1; otherwise we can color v1 with a color different from
1, c(v2), c(z2). Recolor w with 2 and the same observation shows that
at least one of z′1, z

′′
1 is colored with 2. So, {c(z′1), c(z′′1 )} = {1, 2}. Now,

recolor w with 3 and give proper colors to z1 and vi, i = 1, 2, 3, 4.

6.3. Suppose that c(w) = c(u1) = c(u2) = c(u3) = 1 and c(u4) �= 1. If
c(z1) �= c(z2), we recolor w with a color different from 1, c(z1), c(z2); we
give any proper colors to v1, v2, v3 and we color v4 with a proper color if
c(w) �= c(u4) and with a color different from c(w), c(z1), c(z2) otherwise.
So, c(z1) = c(z2). If c(z′1) �= c(z′′1 ), we recolor z1 with a color different
from c(z2), c(z′1), c(z′′1 ) and we are in the previous case. If c(z′1) = c(z′′1 ),
we recolor w with a color different from 1, c(z1), c(z′1) and we are in an
earlier case.

6.4. Suppose that c(w) = c(u1) = c(u2) = c(u3) = c(u4) = 1. If c(z1) �=
c(z2), we recolor w with a color different from 1, c(z1), c(z2) and give
proper colors to vi. Assume now that c(z1) = c(z2). If c(z′1) = c(z′′1 ),
we recolor w with a color different from 1, c(z1), c(z′1) and give proper
colors to vi. If c(z′1) �= c(z′′1 ), we recolor z1 with a color different from
c(z′1), c(z

′′
1 ), c(z2) and we are in an earlier case. �

We call a vertex weak if it is a 2- or 3-vertex or a 4-vertex adjacent to both
a 2-vertex and a 3-vertex.

Lemma 2. Each 3-vertex is adjacent to at most one weak vertex.

Proof. Observe that by Lemma 1.3, a 3-vertex is not adjacent to a 2-vertex. Let
w be a 3-vertex adjacent to x, y, z where x, y are weak, with degree 3 or 4. Let the
outer neighbors of x be x1, x2 and if d(x) = 4, x3 where d(x3) = 2 and the other
neighbor of x3 is x′

3. So is it for y (see Figure 5).
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Figure 5.

By minimality of H , the graph H ′ = H \{w, x3, y3} is acyclically 4-choosable.
We have to consider the different cases:

1. The vertices x, y, z have all distinct colors, c(x) �= c(y) �= c(z) �= c(x). We
color w with c(w) ∈ L(w) \ {c(x), c(y), c(z)}. If c(x) = c(x′

3), we color x3

with c(x3) ∈ L(x3) \ {c(x), c(x1), c(x2)} and with any proper color otherwise
(color y3 similarly).

2. Exactly two vertices of x, y, z have the same color.
2.1. Suppose that c(x) = c(y) = 2 and c(z) = 1.

First, we show that L(w) contains 1 and 2. Suppose that L(w) does not
contain 1 and 2; w.l.o.g. we assume that L(w) = {3, 4, 5, 6}. Then, if
c(x) = c(x′

3), we color x3 with c(x3) ∈ L(x3) \ {c(x), c(x1), c(x2)}; if
not, we color x3 with a proper color (deal analogously with y3); finally,
we color w with c(w) ∈ L(w) \ {c(x1), c(x2), c(x3)}.
Assume now that L(w) contains 1 and not 2: L(w) = {1, 3, 4, 5}. Hence,
if c(x) = c(x′

3), we color x3 with c(x3) ∈ L(x3) \ {c(x), c(x1), c(x2)};
if not, we color x3 with a proper color (deal analogously with y3). If
we cannot color w, this implies that {c(x1), c(x2), c(x3)} = {3, 4, 5} and
c(x′

3) = 2. So, we color w with c(x3) and we change the color of x. If
we cannot change the color of x, this implies that L(x) = {2, 3, 4, 5}. In
this case, we color x with c(x3) and we give a proper color to x3 and
w. The case “L(w) contains 2” may be dealt with in the same as “L(w)
contains 1”.
So, L(w) contains 1 and 2: L(w) = {1, 2, 3, 4}.
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First assume that there is no 2, 3-path between x and y (going through
x1 or x2 and y1 or y2; w, x3, y3 are not colored). We color w with 3.
Now, if we cannot color x3, this implies that c(x) = c(x′

3) = 2, L(x3) =
{2, 3, c(x1), c(x2)} with c(x1) �= c(x2), and c(x1), c(x2) �= 3. By the
same way, if we cannot color y3, this implies that c(y) = c(y′

3) = 2,
L(y3) = {2, 3, c(y1), c(y2)} with c(y1) �= c(y2), and c(y1), c(y2) �= 3.
W.l.o.g. suppose that we cannot color x3. We recolor x with a color
different from 2, c(x1), c(x2). If this new color is different from 1, then
the colors of x, y, z are all distinct and we obtain case 1. Now, if this new
color is equal to 1, we color x3 with 3 (we recall that c(x1), c(x2) �= 3,
c(x) = 1, and c(x′

3) = 2). And finally, we color y3 with a color different
from 2, c(y1), c(y2) if c(y) = c(y′

3) and with any proper color otherwise.
We can do the same if there is no 2, 4-path connecting x and y; hence we
may suppose that both paths exist and c(x1) = 3, c(x2) = 4,
{c(y1), c(y2)} = {3, 4}.
Observe that L(x) = L(y) = {1, 2, 3, 4}; otherwise, we can recolor x
(or y) with a color different from 1, 2, 3, 4 and we obtain case 1. Now
either the 2, 3-path (completed to a cycle through w) separates x2 from
z or the 2, 4-path (similarly completed) separates x1 from z. Suppose
the former. Consequently, there is no 1, 4-path connecting x2 to z. We
color w with 4, x with 1. Finally, we color x3 (resp. y3) with any proper
color if c(x) �= c(x′

3) (resp. c(y) �= c(y′
3)) and with a color different from

1, 3, 4 (resp. 2, 3, 4) otherwise.
2.2. Suppose that c(x) = c(z) = 1 and c(y) = 2. If c(x1) �= c(x2), we

change c(x) to get case 1 or 2. Now, if c(x1) = c(x2), we color w with
c(w) ∈ L(w) \ {1, 2, c(x1)}, x3 with c(x3) ∈ L(x3) \ {c(x), c(x1), c(w)}
if c(x) = c(x′

3) or a proper color otherwise and y3 with c(y3) ∈ L(y3) \
{c(y), c(y1), c(y2)} if c(y) = c(y′

3) or a proper color otherwise.
3. The vertices x, y, z have the same color, w.l.o.g. assume that c(x) = c(y) =

c(z) = 1. If c(x1) �= c(x2) or c(y1) �= c(y2), we change c(x) or c(y) to get case
1 or 2. Now, suppose that c(x1) = c(x2) and c(y1) = c(y2). We color w with
c(w) ∈ L(w) \ {1, c(x1), c(y1)} and x3 with c(x3) ∈ L(x3) \ {1, c(x1), c(w)} if
c(x) = c(x′

3) or a proper color otherwise (we deal analogously for y). �

Lemma 3. Every connected planar graph satisfies:

∑
v∈V

(3d(v)− 10) +
∑
f∈F

(2r(f)− 10) = −20

where d(v) denotes the degree of the vertex v and r(f) the length of the face f .

Proof. We can rewrite the Euler’s formula n−m+f = 2 in the form (6m−10n)+
(4m− 10f) = −20. Now,

∑
v∈V d(v) =

∑
f∈F r(f) = 2m. �
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2.2. Discharging procedure

We complete the proof with a discharging procedure. First, we assign to each
vertex v a charge ω(v) such that ω(v) = 3d(v) − 10 and to each face f a charge
ω(f) such that ω(f) = 2r(f)− 10. Then we apply the following rules:

Rule 1. Each 2-vertex receives 2 from each adjacent vertex.
Rule 2. Each 3-vertex receives 1

2 from each adjacent non weak vertex.

Rule 3. Each ≥6-face f with bounding cycle v1v2 . . . vr(f)v1 gives 1
2 to each

vertex vi for which d(vi−1) ≤ 3 and d(vi+1) ≤ 3 (index modulo r(f)).

Let ω∗ be the new charge after the discharging process. Clearly∑
v∈V (H)

ω∗(v) +
∑

f∈F (H)

ω∗(f) =
∑

v∈V (H)

ω(v) +
∑

f∈F (H)

ω(f) = −20 (1)

by Lemma 3. We will prove that ω∗(v) ≥ 0 for every vertex v and ω∗(f) ≥ 0 for
every face f , and this contradiction with (1) will complete the proof.

Let f be a face. Since a 2-vertex is not adjacent to a 2- or 3-vertex (Lemma
1.2) and since a 3-vertex is adjacent to at most one 3-vertex (Lemma 2), the
boundary of f cannot contain three consecutive vertices with degree less or equal
to 3; so, f gives at most 1

2r(f)1
2 ; hence, ω∗(f) ≥ 2 · r(f) − 10 − 1

4 · r(f) ≥ 0 if
r(f) ≥ 6.
Let v be a k-vertex.
• If k = 2, ω(v) = −4 and ω∗(v) = −4 + 2 · 2 = 0 by Rule 1.
• If k = 3, ω(v) = −1 and ω∗(v) ≥ −1 + 1 = 0 by Lemma 2 and Rule 2.
• If k = 4, ω(v) = 2. If v is adjacent to a 2-vertex, then v is not adjacent to

other 2-vertices by Lemma 1.3, and v gives nothing to 3-vertices by Rule 2,
since if v is adjacent to a 3-vertex then v is weak; so, it gives 2. If however
v is not adjacent to a 2-vertex then v gives 1

2 to each adjacent 3-vertex (at
most 4 · 1

2 ). In either case, ω∗(v) ≥ 0.
• If k = 5, ω(v) = 5. If v is adjacent to at most one 2-vertex, it is easy to see

that ω∗(v) ≥ 5 − 2 − 4 · 1
2 ≥ 1. If v is adjacent to two 2-vertices and to at

most two 3-vertices, then ω∗(v) ≥ 5− 2 · 2− 2 · 1
2 ≥ 0. If v is adjacent to two

2-vertices and three 3-vertices, then v receives 1
2 from an incident ≥6-face

(Lemma 1.5) and ω∗(v) ≥ 5 − 2 · 2 − 3 · 1
2 + 1

2 ≥ 0. Finally, if v is adjacent
to three 2-vertices, then v is not adjacent to 3-vertices (Lemma 1.6) and v is
incident to at least two ≥6-faces which gives each 1

2 to v by Lemma 1.4 and
Rule 3. Hence, ω∗(v) ≥ 0.
• If k = 6, ω(v) = 8. By Lemmas 1.3 and 1.6, v gives at most 8, either to

four 2-vertices, or to at most three 2-vertices and three 3-vertices; hence,
ω∗(v) ≥ 0.
• If k = 7, ω(v) = 11. By Lemma 1.3, v gives to at most five 2-vertices and two

3-vertices; hence, ω∗(v) ≥ 0.
• If k = 8, ω(v) = 14. By Lemma 1.3, v gives to at most six 2-vertices and two

3-vertices; hence, ω∗(v) ≥ 0.
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• If k = 9, ω(v) = 17. By Lemma 1.3, v gives to at most seven 2-vertices and
two 3-vertices; hence, ω∗(v) ≥ 0.
• If k ≥ 10, ω(v) = 3 ·k−10. The vertex v gives at most 2 ·k; hence, ω∗(v) ≥ 0.

This contradiction with (1) completes the proof of Theorem 4.

3. Concluding remarks

In this paper, we give a sufficient condition for a planar graph to be acyclically
4-choosable: if its girth is at least 5.

Recently, we gives some new sufficient conditions for a planar graph to be
acyclically 4-choosable:

Theorem 5. [MRW05] Let G be a planar graph without 4-cycles and 5-cycles. The
graph G is acyclically 4-choosable if G furthermore satisfies one of the following
conditions: G does not contain (1) 6-cycles; (2) 7-cycles; (3) intersecting triangles.

We conclude with a challenging problem regarding the acyclic choosability of
planar graphs:

Problem 1. Is acyclically 5-choosable every planar triangle-free graph?
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Automorphism Groups of
Circulant Graphs – a Survey

Joy Morris

Abstract. A circulant (di)graph is a (di)graph on n vertices that admits a
cyclic automorphism of order n. This paper provides a survey of the work that
has been done on finding the automorphism groups of circulant (di)graphs,
including the generalisation in which the arcs of the (di)graph have been
assigned colours that are invariant under the aforementioned cyclic automor-
phism.
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1. Introduction

The aim of this paper is to provide a history and overview of work that has been
done on finding the automorphism groups of circulant graphs. We will focus on
structural theorems about these automorphism groups, and on efficient algorithms
based on these theorems, that can be used to determine the automorphism group
of certain classes of circulant graphs.

We must begin this discussion by defining the terms that will be central to
the topic. In what follows, we sometimes refer simply to “graphs” or to “digraphs,”
but all of our definitions, and many of the results on automorphism groups, can
be generalised to the case of “colour digraphs:” that is, digraphs whose arcs not
only have directions, but colours.

Definition 1.1. Two graphs X = X(V, E) and Y = Y (V ′, E′) are said to be iso-
morphic if there is a bijective mapping φ from the vertex set V to the vertex set
V ′ such that (u, v) ∈ E if and only if (φ(u), φ(v)) ∈ E′. The mapping φ is called
an isomorphism. We denote the fact that X and Y are isomorphic by X ∼= Y .

The author gratefully acknowledges support from the National Science and Engineering Research
Council of Canada (NSERC).
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That is, an isomorphism between two graphs is a bijection on the vertices that
preserves edges and nonedges. In the case of digraphs, an isomorphism must also
preserve the directions assigned to the arcs, and in the case of colour (di)graphs,
the colours must also be preserved.

This definition has the following special case:

Definition 1.2. An automorphism of a (colour) (di)graph is an isomorphism from
the (colour) (di)graph to itself.

When we put all of the automorphisms of a (colour) (di)graph together, the
result is a group:

Definition 1.3. The set of all automorphisms of a graph X forms a group, denoted
Aut(X), the automorphism group of X.

Now that we know what automorphism groups of graphs are, we must define
circulant graphs.

Definition 1.4. A circulant graph X(n; S) is a Cayley graph on Zn. That is, it is a
graph whose vertices are labelled {0, 1, . . . , n− 1}, with two vertices labelled i and
j adjacent iff i− j (mod n) ∈ S, where S ⊂ Zn has S = −S and 0 �∈ S.

For a circulant digraph, the condition that S = −S is removed. For a colour
circulant (di)graph, each element of S also has an associated (not necessarily dis-
tinct) colour, which is assigned to every edge (or arc) whose existence is a conse-
quence of that element of S.

With these basic definitions in hand, we can explore the history of the ques-
tion: what do the automorphism groups of circulant graphs look like, and how can
we find them?

Although we define most of the terms used in this paper, for permutation
group theoretic terms that are not defined, the reader is referred to Wielandt’s
book on permutation groups [43], which has recently come back into print in his
collected works [44]. Another good source is Dixon and Mortimer’s book [12].
Throughout this paper, the symmetric group on n points is denoted by Sn.

2. History

In 1936, König [28] asked the following question: “When can a given abstract group
be interpreted as the group of a graph and if this is the case, how can the corre-
sponding graph be constructed? This same question could be asked for directed
graphs.” (This quote is from the English translation published by Birkhäuser in
1990). By the group of a graph, he is referring to the automorphism group.

This question was answered by Frucht, in 1938 [19]. The answer was yes; in
fact, it went further: there are infinitely many such graphs for any group G.

By no means was this the end of the matter. One method of construction
involved the creation of graphs on large numbers of vertices, that encoded the
colour information from the Cayley colour digraph of a group, into structured
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subgraphs. This construction led to graphs that had, in general, many more vertices
than the order of the group.

One major area of research that spun off from this, was the search for “graph-
ical regular representations” of a particular group G: that is, graphs whose auto-
morphism group is isomorphic to G, and whose number of vertices is equal to the
order of G. This is not a topic that we will pursue further in this paper, however.

A related question was presumably also considered by mathematicians. That
is, given a particular representation of permutation group G, is there a graph X
for which Aut(X) ∼= G as permutation groups? We know of no reference for this
question prior to 1974, when it appears in [3].

The answer to this question did not prove to be so straightforward. For ex-
ample, if ρ = (0 1 2 . . . n), no graph has 〈ρ〉 as its automorphism group, because
the reflection that maps a to −a for every 0 ≤ a ≤ n will always be an auto-
morphism of any such graph. Another way of explaining this, is that the dihedral
group acting on n elements has the same orbits on unordered pairs (i, j) as Zn

has. This shows that there is not always a graph X whose automorphism group is
a particular representation of a permutation group.

Although it is not our aim to discuss this version of the question, we will give
here the most significant results that have been obtained on it.

The first result is due to Hemminger [22], in 1967.

Theorem 2.1. Let G be a transitive Abelian permutation group that is abstractly
isomorphic to Zn1 × · · · ×Znk

. Then if the number of factors in the direct product
of order 2 is not 2, 3, or 4, and the number of factors of order 3 is not 2, there is
a directed graph whose automorphism group is isomorphic to G.

In 1981, Godsil [21] proved the following result.

Theorem 2.2. Let G be a finite permutation group. A necessary condition for the
Cayley graph X = X(G; S) to have G as its automorphism group, is that the
subgroup of G that fixes some vertex of X, is isomorphic to the automorphisms of
G that fix S set-wise.

He also proved that this condition is sufficient for many p-groups, and ob-
tained necessary and sufficient conditions for the occurrence of the dihedral groups
of order 2k, and of certain Frobenius groups, as the full automorphism groups of
vertex-transitive graphs and digraphs.

In 1989, a paper by Zelikovskij [45] appeared in Russian. We are unaware of
a translation, so can only report the main result as stated in the English summary:
that for every finite Abelian permutation group G whose order is relatively prime
to 30, the paper provides necessary and sufficient conditions for the existence of
a simple graph whose automorphism group is isomorphic to G. Note that the
facts that Zelikovskij produces a simple graph and apparently does not require
transitivity, represent improvements over Hemminger’s result, although he does
not cover all of the orders that Hemminger does.
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In 1999, Peisert proved [37] the following result.

Theorem 2.3. If two permutation groups each have representations as automor-
phism groups of graphs, then the direct product of these representations, will also
have a graph for which it is isomorphic to the automorphism group, unless the
two original groups are isomorphic as permutation groups, transitive, and have a
unique graph for which they are the automorphism group (up to isomorphism).

The approach to this question that we will follow in this paper, is to ask what
is the automorphism group of a given graph X? Again, the answer is not easy, so
we will limit our consideration to circulant graphs.

3. Algorithms for finding automorphism groups

As one focus of this paper will be finding efficient algorithms for calculating the
automorphism group of a graph, it is necessary to spend some time considering
what makes an algorithm “efficient” in this regard.

There is, after all, a very straightforward algorithm that is guaranteed to
find the automorphism group of any graph on n vertices: simply consider every
possible permutation in Sn, and include those that turn out to be automorphisms
of our graph. As Sn has order n!, this algorithm is exponential in n.

Depending on our goal, it may not be possible to do any better than this.
Specifically, if our goal is to list every automorphism in the automorphism group,
then as there may be as many as n! elements, generating the list in anything less
than exponential time will not be feasible in general.

If the number of prime factors of n is bounded with a sufficiently low bound,
then we actually can do more than this. In such cases, the number of subgroups
of Sn that can be automorphism groups of circulant graphs may be sufficiently
small that we can choose the automorphism group of our graph from a short
list. We will not be listing all of its elements, but we may be able to describe its
structure precisely without the use of generating sets, as for example by saying it
is isomorphic to Sp × Sq.

However, when the number of prime factors is unbounded, we lose this ability
to explicitly describe the automorphism group. Thus, when we consider algorithms
intended to determine the automorphism group of a circulant graph on a number
of vertices whose number of factors is unbounded, what we are looking for is not an
explicit listing of all of the elements of the group, but the provision of a generating
set for the group.

Each of the algorithms that we provide below runs in polynomial time in the
number of vertices of the graph, and provides either a generating set for the auto-
morphism group of the graph, or (where possible) a precise structural description
of the automorphism group.
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4. Circulant graphs on a prime number of vertices

In 1973, Alspach proved the following result on the automorphism groups of cir-
culant graphs on a prime number of vertices.

Theorem 4.1. [2] Let p be prime. If S = ∅ or S = Z∗
p, then Aut(X) = Sp; otherwise,

Aut(X) = {Ta,b : a ∈ E(S), b ∈ Zp}, where Ta,b(vi) = vai+b, and E(S) is the
largest even-order subgroup of Z∗

p such that S is a union of cosets of E(S).

Notice that since S = −S, S must be a union of cosets of {1,−1}, so E(S)
can always be found.

This leads to the following algorithm for finding the automorphism group of
such a graph.
Algorithm for finding Aut(X):

1. If S = ∅ or S = Z∗
p, Aut(X)= Sp.

2. For each even-order subgroup H of Z∗
p, verify whether S is a union of cosets

of H .
3. Since Z∗

p is cyclic, there is one H of every order dividing p− 1. Set E(S) to
be the largest H that satisfies (2).

4. If Aut(X)�= Sp, Aut(X)= {Ta,b : a ∈ E(S), b ∈ Zp}.
Proof of Alspach’s theorem relies on the following theorem by Burnside.

Theorem 4.2. [9] If G is a transitive group acting on a prime number p of elements,
then either G is doubly transitive or G = {Ta,b : a ∈ H < Z∗

p, b ∈ Zp}.

Although the algorithm given above may be the most natural way to create
an algorithm from the statement of Alspach’s theorem, we will re-state the algo-
rithm slightly differently. The purpose of this, is to provide a closer parallel to
the algorithms that we will be constructing subsequently, to cover other possible
numbers of vertices.
Alternate algorithm:

1. Find A, the set of all multipliers a ∈ Z∗
p for which aS = S.

2. If A = Z∗
p, then Aut(X)= Sp.

3. Otherwise, Aut(X)= {Ta,b : a ∈ A, b ∈ Zp}.
Before presenting any generalisations of this algorithm, the concept of wreath

products will be required.

5. Wreath products

Although we will present a formal definition of the wreath product of two graphs in
a moment, we will first give a description which may make the formal presentation
easier to follow. If we are taking a wreath product of two (di)graphs, X and Y ,
we replace every vertex of X by a copy of the (di)graph Y . Between two copies of
Y , we include all edges (or all arcs in a particular direction) if there was an edge
(or an arc in the appropriate direction) between the corresponding vertices of X .
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Now for the formal definition.

Definition 5.1. The wreath product of the (di)graph X with the (di)graph Y , denoted
X % Y , is defined in the following way.

The vertices of X % Y are the ordered pairs (x, y) where x is a vertex of X
and y is a vertex of Y . There is an arc (or edge) from the vertex (x1, y1) to the
vertex (x2, y2) if and only if one of the following holds:

1. x1 = x2 and (y1, y2) is an arc (or edge) of Y ; or
2. (x1, x2) is an arc (or edge) of X.

We say two sets of vertices A and B are wreathed if either ab is an edge (or
arc) for every a ∈ A and every b ∈ B, or ab is a nonedge (or nonarc) for every
a ∈ A and every b ∈ B.

In graph theory, what we have called the “wreath” product is also often called
the “lexicographic” product, and has also been called the “composition” of graphs.
The notion of a wreath product is also defined on groups; in fact, the term “wreath
product” comes from group theory. Although it can be defined on abstract groups,
we will only be considering permutation groups, where the definition is simpler,
so it is this definition that we provide.

Definition 5.2. The wreath product of two permutation groups, H and K, acting
on sets U and V respectively, is the group of all permutations f of U×V for which
there exist h ∈ H and an element ku of K for each u ∈ U such that

f((u, v)) = (h(u), kh(u)(v))

for all (u, v) ∈ U × V . It is written H %K.

It is easy to verify that

Aut(X) %Aut(Y) ≤ Aut(X % Y)

is true for any graphs X and Y ; in fact, it is often the case that equality holds.

6. Circulant graphs on pq vertices, or pn vertices

The following theorem, proven by Klin and Pöschel in 1978, characterises the
automorphism groups of circulant graphs on pq vertices, where p and q are distinct
primes.

Theorem 6.1. [26] If G is the automorphism group of a circulant graph on pq
vertices, then G is one of:

1. Spq;
2. A1 % A2, or A2 % A1, where A1 and A2 are automorphism groups of circulant

graphs on p and q vertices, respectively;
3. Sp×A2, or A1×Sq, where A1 and A2 are automorphism groups of circulant

graphs on p and q vertices, respectively; or,
4. {Ta,b : a ∈ A ≤ Z∗

n, b ∈ Zn} (a subgroup of the holomorph).
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The following algorithm can be constructed from this characterisation, to
determine the automorphism group of a graph on pq vertices.
Algorithm:

1. If S = ∅ or S = Zpq − {0}, then Aut(X)= Spq. END.
2. If (v0 vp v2p . . . v(q−1)p) ∈Aut(X), then Aut(X)= A1 % A2, where A1

is the automorphism group of the induced subgraph of X on the vertices
{v0, vq, . . . , v(p−1)q} and A2 is the automorphism group of the induced sub-
graph of X on the vertices {v0, vp, . . . , v(q−1)p}. Use the previous algorithm
(for finding the automorphism group of a circulant graph on a prime number
of vertices) to find A1 and A2. END.

3. Repeat (2) with the roles of p and q reversed.
4. Let A be the group of all multipliers a in Z∗

pq for which aS = S.
5. Define Ep by Ep = {Ta,b : a ∈ A, a ≡ 1 (mod p), b ∈ qZp}; if Ep

∼=AGL(1, p)
then Aut(X) = Sp×A2, where A2 is as in step (2). Use the previous algorithm
to find A2. END.

6. Repeat (4) with the roles of p and q reversed, and A1 taking the role of A2.
END.

7. Otherwise, Aut(X)= {Ta,b : a ∈ A, b ∈ Zpq}.
The full automorphism group of circulant graphs on pn vertices has been

determined, first by Klin and Pöschel, and later independently by Dobson; both
results are unpublished.

The full result is technical, but the following nice result gets much of the way.

Theorem 6.2. [13, 27] A circulant graph on pn vertices is either a wreath product,
or its automorphism group has a normal Sylow p-subgroup.

7. The square-free case

There is no known characterisation for the automorphism groups of circulant
graphs in the general square-free case that is as straightforward as the results
we have described above, when the number of vertices is p or pq and p, q are
distinct primes.

However, Dobson and Morris [15] did prove the following structural theorem
about the automorphism groups of circulant graphs of arbitrary square-free order.
The definition of a group being 2-closed is quite technical, but the important
thing to know about 2-closed groups is that the automorphism group of a vertex-
transitive graph or digraph is always 2-closed. The terms used in the second point
of this theorem are defined later in this paper, in the section “A Strategy,” for
readers who are interested.

Theorem 7.1. Let mk be a square-free integer and G ≤ Smk be 2-closed and contain
a regular cyclic subgroup, 〈ρ〉. Then one of the following is true:

1. G = G1 ∩G2, where G1 = Sr %H1 and G2 = H2 % Sk, where H1 is a 2-closed
group of degree mk/r, H2 is a 2-closed group of order m, and r|m; or
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2. there exists a complete block system B of G consisting of m blocks of size k,
and there exists H � G such that H is transitive, 2-closed, and 〈ρ〉 ≤ H =
H1×H2 (with the canonical action), where H1 ≤ Sm is 2-closed and H2 ≤ Sk

is 2-closed and primitive.

Unlike the previous structural results by Alspach, and by Klin and Pöschel,
this clearly does not provide a clear, short list of groups from among which the
automorphism group of a circulant graph on any square-free number of vertices
must be chosen. However, it is sufficient to allow Dobson and Morris, in a sub-
sequent paper [16], to construct the following algorithm that will determine the
automorphism group of any such graph.
General algorithm (n square-free)
Inputs: The number n of vertices of X , and the connection set S ⊆ Zn.

1. Let A be the group of all multipliers a in Z∗
n for which aS = S.

2. For each prime divisor p of n, define Ep by Ep = {Ta,b : a ∈ A, a ≡ 1
(mod p), b ∈ n

p Zp}; if Ep
∼=AGL(1, p) then define Ep = Sp.

3. Let p1, . . . , pt be all primes such that Ep = Sp.
(a) For each pair of distinct primes pi, pj , if the transposition that switches

n/pi + kpipj with n/pj + kpipj for every 0 ≤ k ≤ n/pipj and fixes all
other vertices is an automorphism of X , then Epipj = Spipj . Otherwise,
Epipj = EpiEpj .

(b) Define a relation R on {p1, . . . , pt} by piRpj iff there exists a sequence of
primes pk1 , . . . , pks where pi = pk1 , pj = pks such that Elcm(pkl ,pkl+1) =
Slcm(pkl ,pkl+1). This is an equivalence relation. For each equivalence class
Ei, let mi = Πj∈Eipj , then let Emi = Smi .

(c) For any divisor m of n,

Em = ΠESgcd(mi,m)Πp|gcd(n/p1...pt,m)Ep.

4. For each composite divisor m of n, let Am = {a ∈ A : a ≡ 1(mod n
m )}, and

let An = A. Define E′
m = 〈Em, Am〉.

5. Let G = E′
n. For each complete block system of E′

n, B, consisting of n/k
blocks of size k, do:
(a) For each complete block system of E′

n, D, consisting of n/kk′ blocks of
size kk′, determine whether or not

ρn/k|D0 ,

the mapping that acts as ρn/k on the vertices of D0, and fixes all other
vertices, is an automorphism of X . If it is, let our new G be the group
generated by the old G together with every E′

k|D, where D ∈ D; if not,
leave G unchanged.

6. G is the automorphism group of X .
To avoid some technical details, we have oversimplified some of the notation

in this algorithm; the astute reader may observe, for example, that if we define
Ep = Sp, then Ep is acting on p vertices, and subsequent products involving
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Ep (Em = EpEq, etc.,) may not be properly defined. These issues are properly
addressed in the paper that presents the algorithm, but as the intent of this paper
was only to give the flavour of the algorithm, the technical details seemed likely
to unnecessarily complicate our presentation.

In the same paper, Dobson and Morris prove that this algorithm runs in
polynomial time on the number of vertices of the graph.

8. A strategy

In this section, we outline a general strategy that is often used to obtain structural
results about circulant graphs.

Definition 8.1. Let V be a set, and G a permutation group acting on the elements
of V . The subset B ⊆ V is a G-block if for every g ∈ G, either g(B) = B, or
g(B) ∩B = ∅.

In some cases, the group G is clear from the context and we simply refer to
B as a block.

It is a simple matter to realise that if B is a G-block, then for any g ∈ G,
g(B) will also be a G-block. Also, intersections of G-blocks remain G-blocks.

Let G be a transitive permutation group, and let B be a G-block. Then,
as noted above, {g(B) : g ∈ G} is a set of blocks that (since G is transitive)
partition the set V . We call this set the complete block system of G generated by
the block B.

Notice that any singleton in V , and the entire set V , are always G-blocks.
The size of the block B is the cardinality of the set B. A block B is nontrivial

if the size of B is neither 1 nor the cardinality of V .

Definition 8.2. The transitive permutation group G is said to be imprimitive if G
admits nontrivial blocks. If G is transitive but not imprimitive, then G is said to
be primitive.

The notion of transitivity for permutation groups can be generalised.

Definition 8.3. The permutation group G acting on the set V is k-transitive if given
any two k-tuples (v1, . . . , vk) and (u1, . . . , uk) with v1, . . . , vk, u1, . . . , uk ∈ V , there
exists some g ∈ G such that g(vi) = ui for 1 ≤ i ≤ k.

In particular, we often say that a 2-transitive group is doubly transitive.

Definition 8.4. The abstract group G is a Burnside group if every primitive per-
mutation group containing the regular representation of G as a transitive subgroup
is doubly transitive.

Burnside gave the first example of such a group, hence the name. This is
extremely useful in the theory of circulant graphs, due to the following theorem.

Theorem 8.5 (Theorem 25.3, [43]). Every cyclic group of composite order is a
Burnside group.
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In particular, if n is composite, the automorphism group of a circulant graph
of order n is either doubly transitive or imprimitive.

Corollary 8.6. For any circulant graph X = X(n; S), one of the following holds:
1. Aut(X) = Sn;
2. Aut(X) is imprimitive; or
3. n is prime.

This can be used repeatedly to show that the minimal blocks of a circulant
graph must either have prime size, or the induced subgraph on these vertices is
complete or empty.

We can also use this to determine additional information about how Aut(X)
acts upon any blocks - once again, this action must be imprimitive or doubly
transitive unless there are a prime number of blocks.

9. Related problems

In this section, we discuss a number of problems that are closely related to finding
the automorphism group of a circulant graph.

9.1. The Cayley Isomorphism problem for circulants

One of the most-studied problems related to finding the automorphism group of
circulant graphs, is the Cayley Isomorphism, or CI, problem.

Definition 9.1. A circulant graph X = X(n; S) is said to have the Cayley Isomor-
phism (CI) property if whenever Y = Y (n; S′) is isomorphic to X, there is some
a ∈ Z∗

n for which aS = S′.
The cyclic group of order n is said to have the Cayley Isomorphism (CI)

property if every circulant graph X(n; S) has the CI property.

The CI problem, of course, is to determine which graphs (or which groups)
have the CI property. When applied to digraphs, the CI property is referred to as
the DCI property (for “directed Cayley Isomorphism” property).

Theorem 9.2. [6, 7] A circulant graph X on n vertices has the CI property if and
only if any two n-cycles in Aut(X) are conjugate in Aut(X).

So, knowing that a graph has the CI-property gives us significant information
about its automorphism group.

We give a brief history of the major results on this problem.
In 1967, Àdàm conjectured [1] that all cyclic groups are CI-groups. Elspas

and Turner proved in 1970 that this was not the case [18], and that, in fact, Zp2

is not CI for p ≥ 5. There were also many positive results on this conjecture,
however. First, in 1967, Turner proved that Zp is CI [41]. In a computer search,
McKay [33] found that Zn is CI, when n ≤ 37 and n �= 16, 24, 25, 27, 36. In 1977,
Babai [7] proved that Z2p is CI, which was generalised in 1979 by Alspach and
Parsons [6], who proved that Zpq is CI. In 1983, Godsil [20] proved that Z4p is
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CI. Muzychuk completed the work in 1997 [35, 36] by showing that Zn is DCI if
and only if n ∈ {k, 2k, 4k} where k is odd and squarefree; Zn is CI if and only if
n ∈ {8, 9, 18} or Zn is DCI.

This problem has also been studied for particular families of graphs; Huang
and Meng proved in 1996 [23], that X(n; S) has the CI property if S is a minimal
generating set for Zn. In 1977, Toida conjectured that if S ⊆ Z∗

n then X(n; S)
is CI [40]. This conjecture was proven by Klin, Pöschel and Muzychuk [25], and
independently by Dobson and Morris [14].

The special case where the connection set, S, is small, has also been studied.
In 1977, Toida [40] proved that if |S| ≤ 3, X(n; S) is CI. In 1988, Sun [39] was the
first to prove that if |S| = 4, X(n; S) is CI, although others later also proved this
result. In 1995, Li proved that if |S| = 5, X(n; S) is CI [29].

This is by no means intended as a full history of work that has been done
on the CI problem; for further information, the reader is referred to Li’s survey of
the problem [30].

9.2. Edge-transitivity, arc-transitivity, 2-arc-transitivity

Definition 9.3. A k-arc is a list v1, . . . , vk of vertices for which any two sequential
vertices are adjacent, and any 3 sequential vertices are distinct.

This definition allows us to consider graphs whose automorphism groups are
transitive on the set of k-arcs of the graph, for various values of k; for our purposes,
we will consider only k = 1 and k = 2.

The following theorem was proven by Chao [10] in 1971; the proof was sim-
plified by Berggren [8] in 1972 and further simplified by Alspach in Theorem 1.16
of [4].

Theorem 9.4. A circulant graph on p vertices is edge-transitive iff S = ∅ or S is a
coset of an even order subgroup H ≤ Z∗

p.

Notice that in the case of circulant graphs, the reflection is an automorphism,
so arc-transitivity is equivalent to edge-transitivity.

This result, and those that follow, provide significant information about how
the automorphism group of a graph can act on the edge set of the graph. They
are therefore related to finding the automorphism group, although they do not
directly provide much information about the automorphism group of an arbitrary
circulant graph.

The above theorem was extended to classifications of arc-transitive graphs
on pq vertices, for any distinct primes p and q, in papers by Cheng and Oxley
[11], who classified the graphs on 2p vertices; Wang and Xu [42], who classified
the graphs on 3p vertices; and Praeger, Wang and Xu [38], who completed the
classification.

In 2001, the following classification was obtained of arc-transitive circulants
on a square-free number of vertices, by Li, Marušič and Morris [31].
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Theorem 9.5. If X is an arc-transitive circulant graph of square-free order n, then
one of the following holds:

1. X = Kn;
2. Aut(X) contains a cyclic regular normal subgroup; or
3. X = Y % K̄b, or X = Y % K̄b − bY , where n = mb, and Y is an arc-transitive

circulant of order m.

Another approach has been taken to classifying edge-transitive circulant
graphs, using the more stringent condition that the complement must also be
edge-transitive. The following result was proven by Zhang in 1996 [46].

Theorem 9.6. If G and G are both edge-transitive circulants, then G is one of:
mKn, mKn, or a self-complementary Paley graph (n is prime, 1 ( mod 4) and
S = {a2 : a ∈ Z∗

n}).
The property of 2-arc-transitivity is stronger than arc-transitivity, but ac-

cordingly tells us more about the action of the automorphism group. Circulant
graphs that are 2-arc-transitive have been fully classified by Alspach, Conder,
Marušič and Xu [5], as follows.

Theorem 9.7. A connected 2-arc-transitive circulant graph is one of:
1. Kn (exactly 2-arc-transitive);
2. Kn/2,n/2 (exactly 3-arc-transitive);
3. Kn/2,n/2 minus a 1-factor, n ≥ 10, n/2 odd (exactly 2-arc-transitive);
4. Cn (k-arc-transitive for every k ≥ 0).

9.3. Other regular subgroups in Aut(X)

The automorphism group of any circulant graph will have a cyclic subgroup that
acts regularly on the vertices of the graph. (A permutation group on a set V is
said to act regularly if for any pair of points in V , there is exactly one permutation
in the group that maps one to the other.) Sometimes, the automorphism group of
a graph may have multiple, nonisomorphic, regular subgroups. This is of interest
from a different perspective, because it means that the graph in question can be
represented as a Cayley graph on some noncyclic group, besides being a circulant
graph. From our perspective, knowing the regular subgroups of the automorphism
group may be useful in determining the automorphism group.

There are only a few results of note on this topic. The first result was proven
by Joseph in the special case n = p2 [24], and extended by Morris [34] to all prime
powers.

Theorem 9.8. If n = pe, X is a circulant graph on n vertices, and Aut(X) contains
a regular subgroup that is not cyclic, then X is isomorphic to a wreath product of
smaller circulant graphs.

Recently, Marušič and Morris [32] proved the following results.

Theorem 9.9. Let X = X(n; S) be a circulant graph, and Z∗
n(S) be the subgroup

of Z∗
n that fixes S set-wise. Then if gcd(n, |Z∗

n(S)|) > 1, the automorphism group
of X has a noncyclic regular subgroup.
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In fact, if p is any prime divisor of gcd(n, |Z∗
n(S)|), then the automorphism

group of X contains a regular subgroup that is isomorphic to Zp � Zn/p.

They also show that the converse is not true in general; that is, there may
be noncyclic regular subgroups in the automorphism group even if this greatest
common divisor is 1.

In the same paper, they prove the following result. The condition that we
must have a normal circulant means that the regular cyclic group must be normal
in the automorphism group of the graph.

Theorem 9.10. Let X be a normal circulant graph of order n, n not divisible by 4.
Then if the automorphism group of X has a noncyclic regular subgroup, that group
must be metacyclic, generated by two cyclic subgroups whose orders are relatively
prime.

10. Concluding remarks

Efficient algorithms have been found for determining the automorphism group of
a circulant graph, when the number of vertices is any product of distinct primes.
In the case where the number of vertices is a prime power, structural theorems
about the automorphism groups exist (in unpublished form), but no algorithms
have been constructed. No work has been done on combining these into results
that may hold when the number of vertices is divisible by at least two distinct
primes, but is not square-free. There is, therefore, a great deal of room for more
results on this problem.

Unfortunately, in the results that we have seen, the complexity (of the proofs)
seems to be growing. The result on circulant graphs on a square-free number of
vertices is the culmination of two densely-packed, long papers; the first provides
a structural theorem, and the second the algorithm. The result that deals with
circulant graphs whose number of vertices is a prime power seems to be unpub-
lished to this point, largely because of its length and complexity. It may be that
new techniques will need to be developed before the problem can be completed in
its full generality.

Of course, circulant graphs are just one very small step towards answering
the general question with which we began, of finding the automorphism group of
any graph. In full generality, this problem seems unmanageable, but it may be
that for some other classes of graphs, the solution turns out to be feasible, or even
easy.
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[31] C.H. Li, D. Marušič and J. Morris, Classifying arc-transitive circulants of square-free
order. J. Algebraic Combin. 14 (2001), 145–151.
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Hypo-matchings in Directed Graphs

Gyula Pap

Abstract. We give a common generalization of results on hypo-matchings
given in a sequence of papers by G. Cornuéjols, D. Hartvigsen and W. Pul-
leyblank in [2, 3, 4, 5] and results on even factors given by W.H. Cunningham
and J.F. Geelen in [7] and by the author and L. Szegő in [13].

1. Introduction

The main result of this paper is a common generalization of the hypo-matching
formula and the even factor formula.

The maximum hypo-matching problem is the following. Given an undirected
graph G and a family F of factor-critical (hypo-matchable) subgraphs of G. A
hypo-matching in G is a subgraph the components of which are some members
of F and some components isomorphic to K2. The problem is to maximize the
number of nodes covered by a hypo-matching, for results on this problem, see
papers of G. Cornuéjols, D. Hartvigsen and W. Pulleyblank [2, 3, 4, 5].

The maximum even factor problem is given in directed graphs. An even factor
is the arc set M of a subgraph the weak components of which are directed cycles
of even length and directed paths of arbitrary length. The problem is to maxi-
mize the cardinality of M . This problem can only be solved for a class of directed
graphs called odd-cycle-symmetric – a directed graph is odd-cycle-symmetric if
each directed odd cycle is symmetric, i.e., its arcs also exist in the opposite di-
rection. W.H. Cunningham proposed this problem in [6] as a generalization of the
optimum path-matching problem, the algebraic method of Cunningham and J.F.
Geelen [7, 8] may be extended to even factors. The author and L. Szegő gave a
simplified min-max formula in [13].

We present a theorem generalizing results in both topics, let us make some re-
marks here on the method of proof. In [16] M. Loebl and S. Poljak gave an elegant

The author is supported by the Egerváry Research Group of the Hungarian Academy of Sciences.
Supported by European MCRTN Adonet, Contract Grant No. 504438. Research supported by
the Hungarian National Foundation for Scientific Research Grant, OTKA T037547.
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proof of the hypo-matching formula, which uses the Edmonds-Gallai decompo-
sition of G (see [9, 10]). In [13], the author and Szegő used a non-constructive
inductive method (“divide-and-conquer”) to show the maximum even factor for-
mula, where they also described an Edmonds-Gallai-type decomposition for even
factors. It would be desirable to use this decomposition for the elegant method
of Loebl and Poljak, but there is an obstacle. For hypo-matchings in undirected
graphs the inclusion DF

G ⊆ DG holds, using widespread notation for the Edmonds-
Gallai-type decomposition in graph G. However, the analogue inclusion does not
hold for the concept in this paper for hypo-matchings in directed graphs.

The “divide-and-conquer” method of proof could only be extended to prove
a special case of Theorem 3.1, see [14].

The proof of this paper uses the constructive method first presented in [15]
by the author to solve the maximum even factor problem algorithmically. In fact,
the proof of the paper is also constructive in the same sense as those of results
on hypo-matchings. That is, given a digraph D and H as in Definition 2.1, and
suppose we have an oracle for testing H-criticality of subgraphs, we can solve the
maximum H-matching problem in polynomial time.

2. Definitions

Consider a digraph D = (V, A) where we allow loops or parallel arcs. A cycle
(path) is the arc-set of a closed (unclosed) directed walk without repetition of arcs
or nodes. The emptyset is regarded as the zero-length path, any node may be
regarded as the start and end of a zero-length path. A loop-arc gives a one-arc
cycle. We call an arc e = uv ∈ A symmetric (in D) if there is an arc f = vu ∈ A,
otherwise e is asymmetric (in D). A cycle or a path is even (odd) if it consists
of an even (odd) number of arcs. A cycle is asymmetric (in D) if it has at least
one asymmetric arc. Loop-arcs are regarded as symmetric. The weakly connected
components of a digraph (i.e., connected components in the undirected sense)
are called weak components, for short. A path-cycle-matching is the arc-set of a
subgraph the weak components of which are directed cycles and directed paths.

An undirected graph G = (V, E) is called factor-critical if for all v ∈ V the
graph G − v has a perfect matching. (For a survey on matching theory, see L.
Lovász and M.D. Plummer [12].) A digraph is called symmetric-critical if all its
arcs are symmetric and the underlying undirected graph is factor-critical. Let H
be a (possibly empty) family of symmetric-critical subgraphs in D. For example,
single node subgraphs may be put in H as they are symmetric-critical.

Definition 2.1. An H-matching in D = (V, A) is a subset M of A so that for each
weak component (V0, M0) of the digraph (V, M)

1. M0 is a path, or
2. M0 is an even cycle, or
3. M0 is an asymmetric odd cycle, or
4. (V0, M0) is a member of H.
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The size(M) is defined as the number of arcs in all these paths and cycles plus the
number of nodes covered by members of H used in M . We say M uses a member
H of H if H is a weak component in (V, M). Let νH(D) denote the maximum size
of an H-matching in D.

Some further definitions, notation: for a set X ⊆ V let Γ+
D(X) := {x ∈

V − X : ∃y ∈ X, yx ∈ A} and �D(X) = |{uv ∈ A : u ∈ V − X, v ∈ X}| and
δD(X) = |{uv ∈ A : u ∈ X, v ∈ V −X}|. For uv ∈ A we call v the head of arc uv,
while u is called the tail of arc uv; uv leaves u and enters v.

A set X ⊆ V induces the subgraph D[X ] = (X, A[X ]) where A[X ] = {uv ∈
A : u, v ∈ X}. D−X := D[V −X ]. Also, for a set M ⊆ A we define the set of arcs
in M induced in X as M [X ] := {uv ∈M : u, v ∈ X}. For a set U ⊆ V we denote
the contracted graph by D/U having node set V/U = V − U + {U} and arc-set
A/U given by deleting the arcs in A[U ] and identifying the nodes in U by {U} (we
will use contractions only if D[U ] is connected, thus this definition is equivalent
with the usual contraction of the arcs in A[U ]). Consider an induced subgraph
D[U ], let HU be the family of members of H that are subgraphs of D[U ]. To make
the notation simpler, an HU -matching in D[U ] will be called an H-matching in
D[U ].

For an H-matching M let VH(M) denote the set of nodes covered by a
member of H used in M . Let V +(M) := {v ∈ V : δM (v) = 1} ∪ VH(M) and
V −(M) := {v ∈ V : �M (v) = 1} ∪ VH(M), hence |V +(M)| = |V −(M)| = size(M).
We say the set V −V −(M) consists of the M -source-nodes and V −V +(M) consists
of the M -sink-nodes. M is defined to be perfect if it size(M) = |V |, or equivalently
it has no sink-nodes or source-nodes.

Consider an induced subgraph D[U ] which is symmetric-critical. Let D[U ]
be called H-critical if there is no perfect H-matching in D[U ]. Here we remark
that, a symmetric-critical subgraph is not necessarily induced, but only induced
symmetric-critical subgraphs may be called H-critical, by definition. (This defini-
tion of H-critical subgraphs makes also sense because of the following observation.
If some digraph has a symmetric-critical spanning subgraph and has an asymmet-
ric arc, then there exists a perfect H-matching – this follows from Claim 3.5.)

A set S ⊆ V is called a source-component in D if D[S] is strongly connected
and �D(S) = 0. Let σH(D[X ]) denote the number of those source-components in
D[X ] which are H-critical.

The deficiency of an H-matching M is defD,HM := |V | − size(M), which is
non-negative, of course. The deficiency of a set X ⊆ V is defined by defD,HX :=
σH(D[X ]) − |Γ+

D(X)|. Let us use the notation τD,H(X) := |V | + |Γ+
D(X)| −

σH(D[X ]) = |V | − defD,HX . Define τH(D) := minX⊆V τD,H(X).
To prove the main theorem 3.1, in the next section we will use the following

well-known statements about factor-critical undirected graphs.

Lemma 2.2. Consider an undirected graph G = (V, E). If for some U ⊆ V the in-
duced subgraph G[U ] is factor-critical and G/U is factor-critical, then G is factor-
critical, too. �
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Lemma 2.3. Suppose we are given a factor-critical undirected graph G = (V, E)
and nodes s, t ∈ V . Then there is an even path P from s to t and a perfect matching
M in G− V (P ). �

3. A min-max formula

In this section we prove the following theorem, the main result of the paper.

Theorem 3.1. If D = (V, A) is a digraph and H is a family of symmetric-critical
subgraphs of D, then

νH(D) = τH(D). (1)

The easy part of the proof is to see that the left hand side in (1) is at most
the right hand side. This follows from the following lemma.

Lemma 3.2. For any H-matching M and any set X ⊆ V we have |X−V +(M)| ≥
σH(D[X ])− |Γ+

D(X)|.

Proof. First we show that we may assume without loss of generality that M does
not use any member H of H with V (H)∩X �= ∅, V (H)−X �= ∅. Otherwise, if M
uses some H split by X , then consider a node v in V (H) ∩ Γ+

D(X), which is non-
empty since H is strongly connected. Since H is symmetric-critical, there exists
a perfect matching in the underlying undirected graph of H − v. We construct
another H-matching M ′ by replacing H in M by a subset of A(H) of |V (H)| − 1
arcs which is the union of node-disjoint two-arc cycles covering V (H)−v: these two-
arc cycles are constructed from a perfect matching in the underlying undirected
graph of H − v. Then X − V +(M ′) = X − V +(M).

Consider the set M [X ] of arcs of M induced in X . By the above assumption,
M [X ] is an H-matching. Consider an H-critical source-component S in D[X ].
Since S is a source-component, M [S] is an H-matching, too. There is no per-
fect H-matching in S, hence S − V −(M [S]) �= ∅. Since S is a source-component,
S − V −(M [S]) = S − V −(M [X ]). Thus |X − V +(M [X ])| = |X − V −(M [X ])| ≥
σH(D[X ]).

Each node a in (X−V +(M [X ]))−(X−V +(M)) is covered by an arc ab ∈M
with b ∈ Γ+(X). This arc ab can only be an arc on a cycle or a path of M , hence
|(X − V +(M [X ]))− (X − V +(M))| ≤ |Γ+(X)|. �
Definition 3.3. A set X ⊆ V is a verifying set for an H-matching M if size(M) =
τD,H(X), or equivalently defD,HM = defD,HX.

Lemma 3.2 implies

size(M) = |V +(M) ∩X |+ |V +(M)−X |
≤ |X | − σH(D[X ]) + |Γ+

D(X)|+ |V −X | = τD,H(X),

so we can easily see the following “slackness” type condition.

Claim 3.4. If M is an H-matching with a verifying set X, then V −X ⊆ V +(M).
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The following claim is straightforward from Lemma 2.3.

Claim 3.5. Suppose D = (V, A) is symmetric-critical, and s, t ∈ V are two not
necessarily distinct nodes. Then there is an H-matching Mst for which

1. size(Mst) = |V | − 1,
2. Mst consists of two-arc cycles and an even s − t path Pst (in case of s = t

this path has length zero). �

Claim 3.6. Consider symmetric-critical induced subgraph D[U ], suppose J induces
a symmetric-critical subgraph in D/U with {U} ∈ J . Let R be the pre-image of J
in D. Then D[R] is symmetric-critical, or there is a perfect H-matching in D[R]
(or both).

Proof. By Lemma 2.2, the underlying undirected graph of D[R] is factor-critical,
so either D[R] is symmetric-critical, or there is an asymmetric arc ab ∈ A[R]. Then
ab is not induced in U , so the images a′ and b′ in D/U are distinct. By Claim 3.5,
in D/U there is a node-disjoint family of two-arc cycles and a b′−a′ path internally
covering J , the union of these is denoted by N ′. Then by Claim 3.5, there is an
expansion N in D which internally covers R by even cycles and a b − a path. So
N + ab covers R by even cycles and one asymmetric cycle. �

Definition 3.7. Suppose D[U ] is a symmetric-critical induced subgraph in D, let
D′ := D/U . We construct a family H′ in D′ as follows. We put a symmetric-
critical induced subgraph D′[Q′] into H′ if and only if the pre-image Q of Q′

induces a subgraph D[Q] which is not symmetric-critical, or a symmetric-critical
subgraph D[Q] which is not H-critical.

By Claim 3.6 we make the following observation on this definition.

Observation 3.8. If D′[J ] ∈ H′ and R is the pre-image of J in D, then there is a
perfect H-matching in D[R].

Definition 3.9. Suppose D[U ] is symmetric-critical. We say an H-matching N fits
U if δN (U) = 0, �N (U) ≤ 1, and size(N [U ]) = |U | − 1.

Notice, it follows from δN (U) = 0 that N does not use any member H of H
split by U . Thus N [U ] is an H-matching, so size(N [U ]) also makes sense. If N fits
U , then N/U will be an H′-matching in D/U with size(N)− size(N/U) = |U |− 1.
The following Lemma shows the key property of the definition of “N fitting U”
which will be used later in an inductive fashion.

Lemma 3.10. Consider an H-matching N in D which fits U . Define D′ = D/U
and N ′ = N/U . For H′, use Definition 3.7.

1. If N is a maximum H-matching, then N ′ is a maximum H′-matching.
2. If X ′ is a verifying set for N ′, then the pre-image X is a verifying set for N .

We prove this lemma by showing Claim 3.11 and Claim 3.12 which imply the
first and second assertions, respectively.



332 G. Pap

Claim 3.11. Suppose D[U ] is symmetric-critical and M ′ is an H′-matching in
D′ = D/U . Then

1. there is an H-matching M in D of size size(M ′) + |U | − 1,
2. νH(U) ≥ νH′

(D′) + |U | − 1.

Proof. The second statement follows from the first, we need to prove the first. We
construct M as the pre-image of M ′, except for the weak component of (V ′, M ′)
incident with {U}.

If this component is a member D′[J ] of H′, then by Observation 3.8 there
is a perfect H-matching in J ’s pre-image R. We add this perfect H-matching in
D[R] to the pre-images of the other components of (V ′, M ′).

If this component is a cycle or a path, say Z ′, then Z ′ contains at most one arc
entering {U}, and at most one arc leaving {U}. So the pre-image Z of the arcs in
Z ′ contains at most one arc entering U , say s′s, otherwise choose s ∈ U arbitrarily.
Similarly, Z contains at most one arc leaving U , say tt′, otherwise choose t ∈ U
arbitrarily. Let Mst be the H-matching in D[U ] from Claim 3.5. Adding Mst to
the pre-image of M ′, we get an H-matching M in D size size(M ′) + |U | − 1. �

Claim 3.12. Suppose D[U ] is symmetric-critical and N is an H-matching in D
fitting U . Define D′ = D/U and N ′ = N/U . If X ′ is a verifying set in D′ for N ′,
then {U} ∈ X ′ and the pre-image X := X ′ − {U} ∪ U is a verifying set for N .

Proof. Since X ′ is a verifying set for N ′, N ′ is a maximum H′-matching. By
definition δN ′({U}) = 0, thus by Claim 3.4 we get that {U} ∈ X ′. Consider an
H′-critical source-component Q′ in D′[X ′]. If {U} /∈ Q′, then Q′ is an H-critical
source-component in D[X ]. If {U} ∈ Q′ then we claim that Q := Q′ − {U} ∪ U
induces an H-critical source-component in D[X ], which can be seen as follows:
D[Q] is a source component in D[X ] – here we use that D′[Q′] and D[U ] are
strongly connected, hence so is D[Q]. Moreover, by Definition 3.7 and Claim 3.6,
D[Q] is H-critical.

Thus D[X ] has at least as many H-critical source-components as the num-
ber H′-critical source-components of D′[X ′], that is σH(D[X ]) ≥ σH′(D′[X ′]).
Furthermore {U} ∈ X ′ implies Γ+

D(X) = Γ+
D′(X ′).

size(N) = size(N ′) + |U | − 1 = |V/U |+ |Γ+
D′(X ′)| − σH′(D′[X ′]) + |U | − 1

≥ |V |+ |Γ+
D(X)| − σH(D[X ]) ≥ size(N).

�

The following definition presents the auxiliary graph which will be used as a
tool in the proof to find N fitting U .

Definition 3.13. Let M be a fixed H-matching in D = (V, A), let {H1, H2, · · · , Hm}
be the family of symmetric-critical subgraphs used by M . Let D∗ = (V ∗, A∗) be the
graph with each V (Hi) contracted to a single node {Hi}, a loop li added on this
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node, moreover a loop is added on a node a ∈ V ∗ if {a} ∈ H (these nodes a are
called pseudonodes). M∗ is defined by replacing Hi by li, i.e.,

V ∗ := V/V (H1)/V (H2)/ · · · /V (Hm),

A∗ := A/V (H1)/V (H2)/ · · · /V (Hm)

+ {l1, l2, · · · , lm}+ {f : f a loop on a pseudonode },
M∗ := M −H1 −H2 − · · · −Hm + l1 + l2 + · · ·+ lm

So M∗ is a path-cycle-matching with |M∗| = size(M) − |V | + |V ∗|. Let K+ =
K+(M∗) := V ∗ − V +(M∗) be the set of sink-nodes for M∗. A sequence W =
(v0, e0, v1, e1, . . . , vn−1, en−1, vn) is called an M∗-alternating walk if

1. v0 ∈ K+ and vi ∈ V ∗,
2. if i is even then ei = vivi+1 ∈ A∗,
3. if i is odd then ei = vi+1vi ∈M∗.

Here n is called the length of W , v0 is the first node of W and vn is the last node
of W . W is called even/odd by the parity of its length. Let A∗(W ) = {ei : 0 ≤
i ≤ n − 1} denote the set of arcs in W . A node vi with i even/odd is called an
even/odd node of W .

Definition 3.14. An M∗-alternating walk W = (v0, e0, v1, e1, . . . , vn−1, en−1, vn)
is called special if its even nodes are pairwise distinct, and its odd nodes are
pairwise distinct. The starting segment of a walk (v0, e0, v1, e1, . . . , vn) of length k
is (v0, e0, v1, e1, . . . , vk). Notice, the starting segment of a special M∗-alternating
walk is a special M∗-alternating walk, too.

Claim 3.15. If for some nodes w, z ∈ V ∗ there is an even M∗-alternating walk
from w to z, then there is a special even M∗-alternating walk from w to z, too.

Proof. If an M∗-alternating walk W is not special, then vi = vj for some i <
j, i ≡ j mod 2. A shorter M∗-alternating walk is constructed by deleting the
section from vi to vj . So a shortest even M∗-alternating walk from w to z must
be special. �

Claim 3.16. For a special even M∗-alternating walk W , M∗∆A∗(W ) is a path-
cycle-matching in D∗.

Proof. Path-cycle-matchings are exactly those arc-sets having in- and out-degree
at most one in any node. A special M∗-alternating walk has the property that it
traverses any arc at most once. The in-degree of nodes is only inflicted for nodes
vi with i odd. The symmetric difference M∗∆A∗(W ) is constructed in such a way
that we replace an arc in M with head vi (i odd) by another arc with head vi.
So the in-degree of nodes does not change. Similar reasoning shows that the out-
degree of nodes does not change, except for v0 and vn. There the out-degree is 0
and 1 in M , and is 1 and 0 in M∗∆A∗(W ), respectively. �
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A cycle which is symmetric in D∗ is called D∗-symmetric, for short. Let us
call a D∗-symmetric odd cycle C in D∗ feasible if the pre-image of V ∗(C) is not
H-critical.

Claim 3.17. If N∗ is a path-cycle-matching in D∗ such that all D∗-symmetric odd
cycles in N∗ are feasible, then there is an H-matching N in D of size |N∗|+ |V |−
|V ∗| such that the contraction of N gives N∗.

Proof. Notice, by Claim 3.5 for an even cycle C in D∗, there is a node-disjoint
family of one even cycle and some two-arc cycles in D partitioning the pre-image of
V ∗(C). For an asymmetric odd cycle C in D∗, there is a node-disjoint family of one
asymmetric odd cycle and some two-arc cycles in D partitioning the pre-image of
V ∗(C). For a path P in D∗ there is a family of one path and some two-arc cycles in
D partitioning the pre-image of V ∗(P ). By Claim 3.6, if C is a feasible symmetric
odd cycle, then there is a perfect H-matching in the pre-image of V ∗(C). �

Definition 3.18. Let L = L(D, M) ⊆ V ∗ be the set of nodes v ∈ V ∗ for which
there exists an even alternating walk with last node v.

Notice, a node in K+ sets up a zero-length alternating walk, thus K+ ⊆ L.
So if M is not a perfect H-matching, then L will be non-empty.

Proof of Theorem 3.1. We prove Theorem 3.1 by induction on |V | + |A|. Let M
be a maximum H-matching. By Lemma 3.2 it is enough to present a verifying set
for M . Let D∗ be the contracted graph defined in 3.13.

Case I. Suppose there is an arc ab = e ∈ A∗ with a ∈ L = L(D, M) and b ∈
V ∗ − V −(M∗). (Arc ab may be a loop!) In this case we will find a maximum H-
matching N which fits a symmetric-critical subgraph, the proof will be completed
using Theorem 3.10.

By Claim 3.15 there is a special even M∗-alternating walk W with last node
a. Suppose q = v0 ∈ K+ is the first node, i.e.,

W = (q = v0, e0, v1, e1, . . . , vn−1, en−1, vn = a).

Let n = 2l be the length of W , let Wi be the starting segments of W of length
2i (for i = 0, . . . , l). Of course, each Wi is a special even M∗-alternating walk. By
Claim 3.16 M∗

i := M∗∆A∗(Wi) are path-cycle-matchings in D∗. Notice, the only
D∗-symmetric odd cycles in M∗

0 = M∗ are the loops li, which are are feasible.
From this fact we will only use later that D∗-symmetric odd cycles in M∗

0 are
feasible. It is easy to see that for i ≤ n− 1

M∗
i+1 = M∗

i + v2iv2i+1 − v2i+2v2i+1, (2)

i.e., M∗
i+1 is obtained from M∗

i by replacing an arc entering v2i+1 by a different
arc entering v2i+1.

Subcase Ia. Suppose each D∗-symmetric odd cycle in M∗
l is feasible. It is easy

to see that M∗
l + ab is a path-cycle-matching. If each D∗-symmetric odd cycle in

M∗
l + ab is feasible, then by Claim 3.17 one could construct an H-matching larger
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than M . So M∗
l +ab has a unique D∗-symmetric odd cycle C which is not feasible,

and we have ab ∈ C. Let U be the pre-image of V ∗(C). Then D[U ] is symmetric-
critical since C is not feasible. By Claim 3.17 applied for N∗ = M∗

l there is an
H-matching N of size size(M) which fits U .

Subcase Ib. Suppose there is a D∗-symmetric odd cycle in M∗
l which is not feasible.

Consider the smallest index 0 ≤ i < l for which M∗
i+1 has a D∗-symmetric odd

cycle which is not feasible. So each D∗-symmetric odd cycle in M∗
i is feasible.

Then by (2) there is a unique D∗-symmetric odd cycle C in M∗
i+1 which is not

feasible, and we have v2iv2i+1 ∈ C. Let U be the pre-image of V ∗(C). By Claim
3.17 applied for N∗ = M∗

l there is an H-matching N of size size(M) which fits U .

In both subcases we have a maximum H-matching N which fits U . By part 1
of Lemma 3.10 N ′ = N/U is a maximumH′-matching in D′ = D/U . By induction,
there is a verifying set X ′ for N ′ in D′. By part 2 of Lemma 3.10 there is a verifying
set for N in D, which completes the proof in case I.

Case II. Suppose there is no arc ab = e ∈ A∗ with a ∈ L = L(D, M) and
b ∈ V ∗ − V −(M∗). Let X ⊆ V be the pre-image of L, we will prove that X is a
verifying set for M . Let M1 := M [X ] = {vz ∈ M : v ∈ X, z ∈ X}, M2 := {vz ∈
M : v ∈ X, z ∈ V − X} and M3 := {vz ∈ M : v ∈ V − X}. Let S be the set
of nodes v in L for which there is no arc uv with u ∈ L – these are exactly the
source-nodes in D∗[L] without a loop. Notice, by definition, the pre-images of the
nodes in S are H-critical source-components in D[X ].

Claim 3.19. In Case II we have size(M3) = |V | − |X |, size(M2) = |Γ+
D(X)| and

size(M1) = |X | − |S|.
Proof. The sizes defined in the claim make sense because M1, M2, M3 are H-
matchings, since M uses no H split by X .

The first equality follows from K+ ⊆ L.
Consider a node b in Γ+

D(X). We claim that b is covered by a cycle or a path
in M . First suppose for contradiction that b ∈ V (Hi) for some Hi ∈ H used by M .
Then {Hi} ∈ Γ+

D∗(L), so there is an arc a{Hi} ∈ A∗ with a ∈ L. By the definition
of L there is an even M∗-alternating walk W with last node a. The extension of
W by arcs a{Hi} and li gives an even M∗-alternating walk with last node {Hi},
thus {Hi} ∈ L, a contradiction. Hence a cycle or a path in M covers b. Then
b ∈ V ∗, i.e., b is not a contracted node. So b ∈ Γ+

D∗(L), and there is an arc ab ∈ A∗

with a ∈ L. From the assumption of case II we get that b ∈ V −(M∗), i.e., there
must be an arc cb ∈ M∗. By the definition of L there is an even M∗-alternating
walk W with last node a. The extension of W by arcs ab and cb gives an even
M∗-alternating walk with last node c, thus c ∈ L. But b ∈ Γ+

D∗(L), so b �= c. Hence
arc cb is not equal to any loop li. Then c is also a non-contracted node in V ∗, so
c ∈ X , cb ∈ A. Thus, each node b in Γ+

D(X) is covered by an arc cb of a cycle or a
path in M leaving X , this proves size(M2) = |Γ+

D(X)|.
For the third equality, consider a node b ∈ L − S. Then there is an arc

ab ∈ A∗ with a ∈ L. From the assumption of case II we get that b ∈ V −(M∗),
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i.e., there must be an arc cb ∈ M∗. (Here cb may be one of the loops li.) There
is an even M∗-alternating walk W with last node a. The extension of W by arcs
ab and cb gives an even M∗-alternating walk with last node c, thus c ∈ L. We get
that each node in b ∈ L− S is covered by an arc cb ∈M∗. This implies the third
equality. �

By definition, there is no H ∈ H used by M split by X , which explains the
first part of the following calculation, completing the proof of Theorem 3.1.

size(M) = size(M1) + size(M2) + size(M3)

= |V |+ |Γ+
D(L)| − |S| ≥ |V |+ |Γ+

D(L)| − σ(D[L]) ≥ size(M). ��
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Eötvös University
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On Reed’s Conjecture about ω, ∆ and χ

Bert Randerath and Ingo Schiermeyer

Abstract. For a given graph G, the clique number ω(G), the chromatic number
χ(G) and the maximum degree ∆(G) satisfy ω(G) ≤ χ(G) ≤ ∆(G)+1. Brooks
showed that complete graphs and odd cycles are the only graphs attaining
the upper bound ∆(G)+1. Reed conjectured χ(G) ≤ 
∆+1+ω

2
�. In this paper

we will present some partial solutions for this conjecture.

Mathematics Subject Classification (2000). 05C15.

Keywords. Brooks Theorem, colouring, chromatic number.

1. Introduction

We refer to [16] for terminology and notation not defined here and consider finite,
simple and undirected graphs only. A k-colouring of a graph G is an assignment
of k different colours to the vertices of G such that adjacent vertices receive dif-
ferent colours. The minimum cardinality k for which G has a k-colouring is called
the chromatic number of G and is denoted by χ(G) or briefly χ if no ambiguity
can arise.

An obvious lower bound for χ is the size of a largest clique in a graph G.
This number is called the clique number of G and denoted by ω(G) or briefly ω.
Unfortunately, the computations of χ and ω are both NP-hard.

By a classical result of Erdős [14] we know that the difference χ(G) − ω(G)
can be arbitrarily large. On the other hand, the graphs for which χ attains the
lower bound ω form a graph class of great variety, even if we impose the equality
to all induced subgraphs of a graph. A graph G is called perfect if the chromatic
number χ(H) equals the clique number ω(H) for every induced subgraph H of
G. More than four decades ago Berge [2] introduced the concept of perfect graphs
motivated by Shannon’s notion of the zero-error capacity of a graph which has
been applied in Shannon’s work on communication theory.

Parts of this research were performed within the RIP program (Research in Pairs) at the
Mathematisches Forschungsinstitut Oberwolfach. Hospitality and financial support are gratefully
acknowledged.
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Berge [3] conjectured that a graph G is perfect if and only if neither G nor
its complement Ḡ contains an induced odd cycle of order at least five. In honor
of Berge the graphs defined by the righthand side of the conjecture are known
as Berge graphs. This famous longstanding conjecture known as Strong Perfect
Graph Conjecture has recently been solved by Chudnovsky, Robertson, Seymour
and Thomas [8] (see also [12] and[13]). Polynomial time recognition algorithms
for Berge graphs have recently be announced by Chudnovsky and Seymour and
Cornuéjols, Liu and Vušković (see [9], [10], [13]).

Upper bounds for χ can be obtained by studying the degrees of the vertices
of a graph G. In particular, we are interested in the maximum degree of G, which
is denoted by ∆(G) or simply ∆. Obviously, the chromatic number of G is at most
∆ + 1. In fact, there is a simple recursive greedy algorithm for colouring G with
at most ∆ + 1 colours. Having coloured G − v, we just colour the vertex v of G
with one of the colours not appearing on any of the at most ∆ neighbors of v.

Hence, for a given graph G, the clique number ω(G), the chromatic number
χ(G) and the maximum degree ∆(G) satisfy

ω(G) ≤ χ(G) ≤ ∆(G) + 1.

In 1941 Brooks [6] determined for connected graphs G the families of graphs at-
taining the upper bound ∆(G) + 1, namely complete graphs and odd cycles. This
characterization leads to an improvement of the upper bound.

Theorem 1.1. [6] If a connected graph G = (V, E) is neither complete nor an odd
cycle, then G has a ∆(G)-colouring.

Based on Lovász algorithmic proof [22] of Brooks Theorem it is possible to
design a linear time algorithm (see for instance [1] for an implementation in time
O(|V |+ |E|)).

In this work we will strengthen the upper bound ∆ + 1 for χ by consider-
ing additional parameters in terms of vertex degrees and the clique number. It
is important to mention that all proofs in this work for upper bounds lead to
polynomial time algorithms attaining these improved bounds.

2. ω, ∆ and χ

We start this section with a well-known corollary of Brooks’ Theorem.

Corollary 2.1. If a graph of maximum degree ∆ ≥ 3 has no clique containing more
than ∆ vertices, then its chromatic number χ is at most ∆.

Reed [27] (see also [24]) believes that this corollary is just the tip of the
iceberg. He conjectured that the chromatic number is bounded by the average of
the trivial upper and lower bound.

Conjecture 2.2. For any graph G of maximum degree ∆ and clique number ω,

χ(G) ≤ �∆ + 1 + ω

2
�.



On Reed’s Conjecture about ω, ∆ and χ 341

The Chvátal graph [11], the smallest 4-regular, triangle-free graph of order
12 with chromatic number 4, shows that the rounding up in this conjecture is
necessary. The next conjecture, a variation of Conjecture 2.2 omitting rounding
up, is likewise due to Reed [27].

Conjecture 2.3. For any graph G of maximum degree ∆ ≥ 3,

χ(G) ≤ 2(∆ + 1)
3

+
ω

3
.

Conjecture 2.2 is obviously true for ω ∈ {∆, ∆ + 1} and ω ∈ {∆− 2, ∆− 1}
by Brooks’ Theorem. For completeness we add the special case, where ω = 2, of
Conjecture 2.2.

Conjecture 2.4. Any triangle-free graph G satisfies χ(G) ≤ ∆(G)
2 + 2.

Asymptotically even a smaller upper bound is valid as shown by Johannson
[19] and independently by Kim [20]. In fact, they proved that there is a constant
c such that if ω = 2 for a graph G, then

χ(G) ≤ c∆(G)
ln ∆(G)

.

In [27] it was observed that Conjecture 2.2 is also valid for all graphs G = (V, E)
with ∆(G) = |V | − 1. The main result in [27] asserts that if ∆ is sufficiently large
and ω is sufficiently close to ∆, then Conjecture 2.2 holds.

Theorem 2.5. ([27]) There is a constant ∆0 such that for ∆ ≥ ∆0 and if G is a
graph of maximum degree ∆ having clique number ω with ω ≥ �(1 − 1

70000000 )∆�,
then χ(G) ≤ ∆+1+ω

2 .

A related result due to Reed [28] thereby mainly proving a conjecture of
Beutelspacher and Hering [4] asserts that for sufficiently large ∆, any graph with
maximum degree at most ∆ and no cliques of size ∆ has a ∆− 1 colouring.

We shall prove now that Conjecture 2.2 holds for a given ω, if ∆ is sufficiently
large.

Theorem 2.6. For every k ≥ 3 there is a constant ck such that if G is a graph
of order n with clique number ω and maximum degree ∆ ≥ 2n

k + ckωk−1, then
χ(G) ≤ ∆+1+ω

2 .

The proof of our main result will make use of Ramsey numbers. For given
integers p, q ≥ 1 the Ramsey number r(Kp, Kq) is the smallest integer n such
that any graph G of order n contains a clique of size p or an independent set of
size q. For example r(K3, K3) = 6 solves the simple party problem asking for the
minimal number of people required such that at least three persons pairwise know
each other or pairwise don’t know each other. An upper bound for the Ramsey
number r(Kp, Kq) has been obtained by Erdős and Szekeres [15].
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Theorem 2.7. ([15]) For p, q ≥ 3 the inequality

r(Kp, Kq) ≤ r(Kp−1, Kq) + r(Kp, Kq−1)

holds, with strict inequality if both r(Kp−1, Kq) and r(Kp, Kq−1) have even parity.
Moreover, the inequality implies

r(Kp, Kq) ≤
(

p + q − 2
q − 1

)
.

Now we are able to start with the proof of Theorem 2.6.

Proof. We first iteratively choose k independent vertices. This is possible as long
as there are at least r(Kω+1, Kk) vertices remaining.

Therefore, we can find �n−(r(Kω+1,Kk)−1)
k � disjoint subsets of k independent

vertices. We colour the k vertices of each subset with a single colour. All remaining
n− k�n−r(Kω+1,Kk)+1

k � vertices can be coloured differently. Hence by applying the
last theorem we obtain,

χ(G) ≤ n− (k − 1)�n− r(Kω+1, Kk) + 1
k

� ≤ n− k + 1
k

+
k − 1

k

(
ω + k − 1

k − 1

)
.

Now we compare this bound for the chromatic number with the desired bound

n− k + 1
k

+
k − 1

k

(
ω + k − 1

k − 1

)
≤ ∆ + 1 + ω

2

⇔ ∆ ≥ 2n

k
+

2k − 2
k

(
ω + k − 1

k − 1

)
− ω − 1− 2k − 2

k
.

For every k ≥ 3 there exists a constant ck such that

ckωk−1 ≥ 2k − 2
k

(
ω + k − 1

k − 1

)
− ω − 1− 2k − 2

k
.

Hence, χ(G) ≤ ∆+1+ω
2 for all sufficiently large ∆ satisfying ∆ ≥ 2n

k +ckωk−1. �

Remark 2.8. For every k a vertex colouring with at most ∆+1+ω
2 colours can be

found in time O(nk+1) by an algorithm indicated in the proof given above.

The approach above can be used to show that Conjecture 2.2 holds for all
graphs G with maximum degree ∆(G) = n− k if the independence number of G
satisfies α(G) ≥ k + 1.

Theorem 2.9. Let G be a graph with maximum degree ∆ = n − k for some k ≥
1, independence number α and clique number ω. If G satisfies α ≥ k + 1, then
χ(G) ≤ ∆+1+ω

2 .

Proof. First choose an independent set I containing k + 1 vertices and colour
these vertices with one colour. Now let H = G − I and compute a maximum
matching M in H. If M is missing p vertices of H, then it has size n−k−1−p

2 .
Hence ω(G) ≥ ω(H) ≥ p. Now choose one colour for every vertex not contained
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in the matching M and one colour for every pair of vertices of a matching edge.
This colouring of G satisfies

χ(G) ≤ 1 + p +
n− k − 1− p

2
=

n− k + p + 1
2

≤ ∆ + ω + 1
2

. �

Therefore, to prove Conjecture 2.2 for all graphs with ∆(G) = n − k for
some fixed k ≥ 2, it remains to prove it for all graphs with ∆(G) = n − k and
2 ≤ α(G) ≤ k.

We will now show that Conjecture 2.2 holds for all graphs with maximum
degree n− 4 ≤ ∆(G) ≤ n− 1.

Theorem 2.10. Let G be a graph with maximum degree ∆ = n− k for some k with
1 ≤ k ≤ 4. Then χ(G) ≤ �∆+1+ω

2 �.

Proof. We first compute a maximum matching M in G. Let q = |M | and uiwi ∈
E(G) for 1 ≤ i ≤ q be the edges of M. Then H = G[V (G) − V (M)] is complete.
Set n = p+2q and let V (H) = {v1, v2, . . . , vp}. We now consider the following fact.

(F1) There are no triples of integers i, j, t with 1 ≤ i < j ≤ p and 1 ≤ t ≤ q such
that viut, vjwt /∈ E(G), since otherwise M − utwt ∪ {viut, vjwt} would be a
matching of larger cardinality in G.

As remarked earlier, the conjecture is easily verified for all ω with ∆ − 2 ≤ ω ≤
∆ + 1. Hence we may assume ω ≤ ∆− 3.

If ω ≥ n− 2q + k− 2, then � (n−k)+(n−2q+k−2)+1
2 � = n− q ≥ χ(G). Hence we

may assume p = n− 2q ≤ ω ≤ n− 2q + k − 3.

If p = 0, then q = n
2 . Hence χ(G) ≤ q = n

2 ≤ �
(n−4)+ω+1

2 �, since ω ≥ 2 and
n is even.

If p = 1, then q = n−1
2 . Hence for all ω, ∆ with ∆ + ω ≥ n − 1 we have

χ(G) ≤ q + 1 = n+1
2 ≤ �∆+ω+1

2 �, since n is odd. If ∆ + ω ≤ n − 2, then ω = 2
and ∆ = n − 4. Let u be a vertex of maximum degree ∆ = d(u) = n − 4.
Then u can receive colour 1 and all vertices in N(u) colour 2. Now the remaining
vertices in V (G) − ({u} ∪ N(u)) can be coloured with colours 1 and 3. Hence
χ(G) ≤ 3 < n−1

2 ≤ �∆+ω+1
2 �, since 2 ≤ ω ≤ ∆− 3 = n− 7 implies n ≥ 9. Hence

we may assume p ≥ 2.
If there are integers i, t with 1 ≤ i ≤ p and 1 ≤ t ≤ q such that viut, viwt /∈

E(G), then ut and wt can receive the same colour as vi. Then χ(G) ≤ p+(q−1) =
n− q− 1 = � (n−4)+(n−2q)+1

2 � ≤ �∆+ω+1
2 �. Hence, using (F1), we may assume that

uiv ∈ E(G) for all v ∈ V (Kp) and 1 ≤ i ≤ q. Therefore, p + 1 = n− 2q + 1 ≤ ω ≤
n− 2q + k − 3.

Thus k = 4 and ω = n− 2q + 1.
Now uiuj /∈ E(G) for 1 ≤ i < j ≤ p, since ω = p + 1. Since q ≤ α ≤ k = 4

and ω = n − 2q + 1 ≤ ∆ − 3 = n − 7, we conclude that p = n − 8 and q = 4.
Let F = G[{w1, w2, w3, w4}]. If F is bipartite, then χ(G) ≤ p + 1 + 2. If F is not
bipartite, then F contains a K3, say with vertices w1, w2, w3.
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Because of ω = p+1, there are no two vertices wi, wj ∈ V (K3), 1 ≤ i < j ≤ 3,
such that wiv, wjv ∈ E(G) for all v ∈ V (Kp), and there are no p − 1 vertices of
V (Kp), say v1, v2, . . . , vp−1, such that viwj ∈ E(G) for 1 ≤ i ≤ p−1 and 1 ≤ j ≤ 3.

Hence there are integers i1, i2, i3, i4 with 1 ≤ i1 < i2 ≤ 3 and 1 ≤ i3 < i4 ≤ p
such that wi1vi3 , wi2vi4 /∈ E(G). Then wi1 and wi2 can receive the colours of vi3

and vi4 , respectively. Further ui1 and ui2 can receive the same colour, say the one
of ui1 , since ui1ui2 /∈ E(G). Hence χ(G) ≤ p+1+2 = n−5 = � (n−4)+(n−7)+1

2 �. �

In the book of Jensen and Toft [18] (Problem 4.6, p. 83) the problem of
improving Brooks’ Theorem for the class of triangle-free graphs is stated or, more
generally provided that the graph contains no Kr+1 (cf. also [26]). The problem has
its origin in a paper of Vizing [29]. Besides the already mentioned asymptotic result
of Johannson and Kim the best known improvement of Brooks’ Theorem in terms
of the maximal degree for the class of triangle-free or, more generally Kr+1-free
graphs is due to Borodin, Kostochka [5], Catlin [7], Kostochka [21]. They proved
that if 3 ≤ r ≤ ∆(G) and G contains no Kr+1, then χ(G) ≤ r

r+1(∆(G) + 2).
Kostochka [21] proved χ(G) ≤ 2/3(∆(G)+3) for every triangle-free graph G. The
remaining authors independently proved that χ(G) ≤ 3/4(∆(G) + 2) for every
triangle-free graph G. For the class of triangle-free graphs Brooks’ Theorem can
be restated in terms of forbidden induced subgraphs, since triangle-free graphs G
satisfy G[NG[x]] ∼= K1,dG(x) for every vertex x of G.

Theorem 2.11 ([6]). (Triangle-free version of Brooks’ Theorem)
Let G be a triangle-free and K1,r+1-free graph. Then G is r-colourable unless G is
isomorphic to an odd cycle or a complete graph with at most two vertices.

The following theorem will extend this triangle-free version of Brooks’ Theo-
rem. An r-sunshade (with r ≥ 3) is a star K1,r with one branch subdivided once.
The 3-sunshade is sometimes called chair and the 4-sunshade cross. In [25] we
obtained the following result.

Theorem 2.12. ([25]) Let G be a connected, triangle-free and r-sunshade-free graph
with r ≥ 3, which is not an odd cycle. Then
(a) G is r-colourable;
(b) G is bipartite, if ∆(G) ≥ 2r − 3;
(c) G is (r − 1)-colourable, if r = 3, 4 or if ∆(G) ≤ r − 1.

Problem 2.13. Let G be the class of all connected, triangle-free and r-sunshade-
free graphs with 5 ≤ r ≤ ∆(G) ≤ 2r− 4. Does there exist an r-chromatic member
G∗ ∈ G?

Using Kostochka’s result that χ(G) ≤ 2/3(∆(G) + 3) for every triangle-free
graph G, it is not very difficult for r ≥ 9 to reduce Problem 2.13 to the range
3/2(r − 3) ≤ ∆(G) ≤ 2r − 4. If Conjecture 2.4 is true then it is not very difficult
to reduce Problem 2.13 to the range 2r − 5 ≤ ∆(G) ≤ 2r − 4, which seems
to be tractable. Moreover, an affirmative answer to Conjecture 2.4 would imply
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that there exists no 5-regular, 5-chromatic or 6-regular, 6-chromatic triangle-free
graph. These negative results would settle the remaining cases of Grünbaum’s girth
problem ([17], see also [18]).
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On the Generalization of
the Matroid Parity Problem

András Recski* and Jácint Szabó**

Abstract. Let T1, T2, . . . , Tt be disjoint k-element sets and let their union be
denoted by S. Let A be a subset of {0, 1, 2, . . . , k}. For an integer 0 ≤ c ≤ t, a
subset X ⊆ S is called (≥ c)-legal if |X∩Ti| ∈ A holds for at least c subscripts
and it is called c-legal if |X∩Ti| ∈ A holds for exactly c subscripts. Let M be a
matroid on S. In this paper we study problems like “Does there exist a (≥ c)-
legal (or c-legal) independent set of given cardinality in M?” Observe that
if A = {0, k} and c = t then both problems reduce to the matroid k-parity
problem (in particular, to the classical matroid parity problem for k = 2).
The problems have some motivations from engineering applications and are
also related to the more recent theory of jump systems.

Mathematics Subject Classification (2000). Primary 05B35; Secondary 90C27,
05C70.

Keywords. Matroid parity.

1. Preliminaries

For brevity, we denote the set {0, 1, . . . , k} by [k]. The problems stated in the
abstract are trivial in the case when A = ∅ and when A = [k]. Hence, in what
follows, we suppose that A is a proper subset of [k] and we denote its complement
by B. Throughout, α and β denote the smallest elements of A and B, respectively.

The two questions (existence of a (≥ c)-legal or a c-legal subset) may or
may not be accompanied with a cardinality constraint. If the cardinality of the
independent set may be arbitrary, we shall speak about the weak version of the
problem while the strong version means that legal independent sets of a given size
p are requested.
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The complexity of the problems may also depend on the way how the matroid
M is given. For example, the strong version of the existence of a t-legal set for
k = 2 and A = {0, 2} (i.e., the classical matroid parity problem) is in P, i.e., is of
polynomial time complexity if M is a linear matroid, and a representation with
subspaces of a vector space over a field is given [Lo81], but is non-polynomial if
M is given by an independence oracle [JeKo, Lo81]. Here we concern complexity
issues so if M is represented over the field K then we tacitly assume that it is
possible to perform elementary computations with the elements of K.

Hence for each prescription A ⊆ [k] we have the problem in 8 variations.
Namely, given a matroid M by an independence oracle (or by a linear represen-
tation if M is linear) with ground set S = T1 ∪̇ · · · ∪̇Tt, |Ti| = k, together with
integers c and p, decide if there exists a (≥ c)-legal (or c-legal) independent set of
arbitrary size (or of size p).

In what follows, full solution of six variations will be presented. If the matroid
is given with a linear representation then we have only partial results for the strong
version.

Remark 1.1. Although the questions concerning (≥ c)-legal or c-legal sets are
clearly related, we shall consider them separately. Note that for a given A, the
complexity of the (≥ c)-legal version is at most t times the complexity of the c-legal
version, hence if the latter is polynomial so is the former. The other implication is
certainly false, see Statements 3.1 and 3.2 below for an example.

Similarly, for a given A, the complexity of the weak version is at most |S|
times the complexity of the strong version.

If E is a set of edges in a graph then the set of vertices covered by E is
denoted by V (E). We will need the following observation.

Lemma 1.2. If M is a linear matroid given by its representation on the ground
set S and E is a set of undirected edges on the vertex set S, then we can find in
polynomial time a matching M ⊆ E of maximum size with the property that V (M)
is independent in M.

Proof. For each v ∈ S replace v by degE(v) parallel elements such that E becomes
a perfect matching on the new ground set S′. Note that the representation of
the new matroid M′ can easily be produced. For all new edges uv = e ∈ E let
Ue = {u, v}. By the matroid parity algorithm of Lovász [Lo81] we can find in
polynomial time an independent set ofM′ of maximum size which is the union of
some sets Ue. Such an independent set clearly corresponds to a matching M with
the required property. �

Finally, throughout the paper, we define the matroid N to be the partitional
matroid [Re74] on S with I ⊆ S independent if and only if |I ∩ Ti| ≤ 1 holds for
all i.
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2. The “weak version” of the problems

In this section we study the complexity of the problem formulated in Section 1
without the cardinality constraint. Recall that α = minA and β = minB. Note
that the weak version is equivalent to the following: given a matroid M and an
integer c, decide if there exists an independent set I of M with at least c (or
exactly c in the c-legal case) subsets Ti with |I ∩ Ti| = α and at most (or exactly)
t− c subsets Ti with |I ∩ Ti| = β. Hence if α ≥ 1, both the c-legal and the (≥ c)-
legal versions are equivalent to deciding if there exists an independent set I ofM
intersecting exactly c of the Ti’s each in exactly α elements.

Hence our problem is closely related to the matroid l-parity problem, which is
the following. Given a matroidM′ on ground set S′ = U1 ∪̇ . . . ∪̇Ut with |Ui| = l,
determine the maximum size of an independent set I ofM′ with the property that
for all 1 ≤ i ≤ t either Ui ⊆ I or Ui ∩ I = ∅ holds. M′ may be given either by an
independence oracle, or by a linear representation if it is linear. The case l = 2 is the
classical matroid parity problem. Now we show that the matroid l-parity problem
reduces to the weak version of our problem with respect to an arbitrary prescription
A with l = α ≥ 1. First, add as a direct sum t · (k− l) loops toM′ resulting in the
matroidM on ground set S, and let the partition S = T1 ∪̇ . . . ∪̇Tt, |Ti| = k such
that Ui ⊆ Ti holds for 1 ≤ i ≤ t. The independence oracle (or the representation)
of M is immediate. Moreover, the largest c for which there exists a c-legal (or
(≥ c)-legal) independent set in M with respect to A implies the answer to this
instance of the matroid l-parity problem.

Here we cite the following results. Lovász [Lo81] proved that the matroid
parity problem is polynomial for linearly represented matroids, and is of exponen-
tial order for matroids given by an independence oracle (proved also in [JeKo]).
On the other hand, the matroid α-parity problem for α ≥ 3, even if restricted to
graphic matroids, is known [We] to contain an NP-complete problem (determine
whether a directed Hamiltonian path with given initial and terminal points exists
in a directed graph).

These considerations will be used in proving the following statements.

Statement 2.1. For matroids given by an independence oracle the problem con-
cerning (≥ c)-legal sets is in P if and only if α ≤ 1.

Proof. First, if α = 0 then ∅ is always a (≥ c)-legal independent set. If α = 1 then
a (≥ c)-legal subset (of arbitrary size) which is independent in M exists if and
only if there exists a common independent set ofM and N with cardinality c, with
the matroid N defined in the end of Section 1. This condition can be checked in
polynomial time for any pair of matroids given by independence oracles. Finally,
by our above observation, the case α ≥ 2 is not in P, because the matroid α-parity
problem can be reduced to it. �

Statement 2.2. For represented linear matroids the problem concerning (≥ c)-legal
sets is in P if α ≤ 2 and is NP-complete for α ≥ 3.
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Proof. For the case α ≤ 1 we refer to the proof of Statement 2.1.
In case α = 2 we can make the following reduction to the matroid parity

problem. Add as a direct sum 2t coloops v′i, v′′i , 1 ≤ i ≤ t, to M resulting in a
matroid M′ on ground set S′. Note that the representation of M′ can easily be
produced in linear time. Next we define a graph on vertex set S′ with edge set
E = {v′iv′′i : 1 ≤ i ≤ t}∪{v′is, v′′i s : s ∈ Ti, 1 ≤ i ≤ t}. By Lemma 1.2 we can find
in polynomial time a matching M ⊆ E of maximum size with the property that
V (M) is independent inM′. We can assume that v′i, v′′i ∈ V (M) for all 1 ≤ i ≤ t
so it is easy to see that |M | ≥ c + t if and only if M has an independent set
intersecting at least c of the Ti’s each in exactly 2 elements. In other words, if and
only if it has a (≥ c)-legal independent set.

Finally, by our above observation, the case α ≥ 3 is NP-complete because
the matroid α-parity problem for represented matroids can be reduced to it. �

As for the c-legal version, note that a matroid has a c-legal independent set
with respect to the prescription A if and only if it has a (t− c)-legal independent
set with respect to the prescription B. So the roles of A and B are symmetric,
hence we may assume that α ≥ 1. Above we showed that in the case α ≥ 1 the
c-legal and the (≥ c)-legal versions are equivalent in the weak version so the above
statements imply the following results.

Statement 2.3. For matroids given by an independence oracle the problem con-
cerning c-legal sets is in P if and only if max(α, β) = 1.

Statement 2.4. For represented linear matroids the problem concerning c-legal sets
is in P if max(α, β) ≤ 2 and is NP-complete for max(α, β) ≥ 3.

3. The “strong version” for matroids given by an oracle

In this section we consider the problem of deciding if there exists a (≥ c)-legal
(or c-legal) independent set of cardinality p in the matroidM, given the integers
c, p and the matroidM by an independence oracle. Note that by truncating this
problem is equivalent to finding a (≥ c)-legal (or c-legal) base ofM. Moreover, by
dualizing, this problem is equivalent to finding a (≥ c)-legal (or c-legal) base with
respect to AR = {a : k − a ∈ A}. The independence oracles for truncating and
dualizing are straightforward to produce.

Statement 3.1. For matroids given by an independence oracle the problem con-
cerning (≥ c)-legal sets of cardinality p is in P if and only if {1, 2, . . . , k− 1} ⊆ A.

Proof. An integer q is called a gap of A if q �∈ A yet neither A ∩ {0, 1, . . . , q − 1}
nor A ∩ {q + 1, q + 2, . . . , k} is empty. In [Re83] it was proved that if A contains
at least one gap then the above problem is not in P even in the special case c = t.

We can reduce the matroid α-parity problem to the case α ≥ 2 in exactly
the same way as we did in the beginning of Section 2. Namely, extend Ui to Ti by
adding k − α loops as a direct sum for all 1 ≤ i ≤ t. Now, finding the largest c
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for which there exists a (≥ c)-legal independent set of cardinality c · α solves the
matroid α-parity problem. This is of exponential order for matroids given by an
independence oracle when α ≥ 2 so this holds for our problem, too. Hence – by
dualizing – we get that the case minAR ≥ 2 is of exponential order as well. So
{1, 2, . . . , k − 1} ⊆ A is necessary for the polynomial solvability of this problem.

As for the sufficiency, we consider only the case k ≥ 2, otherwise being trivial.
For a base B ofM let

s+(B) = |{i : Ti ⊆ B}| ,
s−(B) = |{i : Ti ∩B = ∅}|

and s+
−(B) = s+(B) + s−(B). Moreover, let s+(M), s−(M) and s+

−(M) resp.,
denote the minima of the above values taken over all bases of M. Note that one
can determine s−(M) and s+(M) in polynomial time: t − s−(M) is just the
maximum cardinality common independent set of M and N (defined in the end
of Section 1), while s+(M) = s−(M∗).

Omitting the reference to the matroid, one can observe that s+
− ≥ s− + s+.

In fact, equality holds here. Though the linking property for polymatroids implies
this, we include a short proof. Let B0 be a base with s−(B0) = s− and let B be a
base with s+(B) = s+ such that B∩B0 is maximal. We show that s+

−(B) = s−+s+,
proving the equality. Otherwise s−(B) > s− so B ∩ Ti = ∅, B0 ∩ Ti �= ∅ holds for
some Ti. For u ∈ B0 ∩ Ti there exists v ∈ B \B0 such that B + u− v is a base as
well. Now s+(B) ≤ s+ and B∩B0 increased, a contradiction. Hence s+

− = s− + s+

can be determined in polynomial time as well.
First, let A = {1, 2, . . . , k} (recall, that A is assumed to be a proper subset

of [k]). Now M has a (≥ c)-legal base if and only if s−(M) ≤ t − c. For A =
{0, 1, . . . , k−1} replace this condition with s+(M) ≤ t−c and forA = {1, 2, . . . , k−
1} with s+

−(M) ≤ t− c. �

Statement 3.2. For matroids given by an independence oracle the problem con-
cerning c-legal sets of cardinality p is in P if and only if k = 1.

Proof. By Remark 1.1 all the polynomially solvable cases satisfy {1, 2, . . . , k−1} ⊆
A. On the other hand, as we observed before Statement 2.3, the roles of A and B
are symmetric in the c-legal version. So even {1, 2, . . . , k − 1} ⊆ B must hold in a
polynomial case. This can happen only if k = 1, when the problem is trivial. �

4. The “strong version” for represented matroids

4.1. Necessary conditions for the solvability

Statement 4.1. Deciding the existence of a (≥ c)-legal independent set of size p is
NP-complete for linearly represented matroids unless

1. A contains no adjacent gaps and
2. A intersects {0, 1, 2} and {k − 2, k − 1, k}.
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Proof. If A contains adjacent gaps then even the special case c = t is NP-complete,
see [Re83].

Suppose that {0, 1, 2} ∩ A = ∅, i.e., α ≥ 3. As usual, we make a reduction of
the matroid α-parity problem: extend Ui to Ti by adding k − α loops as a direct
sum for all 1 ≤ i ≤ t. Now, finding the largest c for which there exists a (≥ c)-legal
independent set of cardinality c · α solves the matroid α-parity problem, which is
NP-complete for linearly represented matroids when α ≥ 3.

Suppose now that {k − 2, k − 1, k} ∩ A = ∅. So α′ ≥ 3 with the notation
α′ = k − maxA. We reduce the matroid α′-parity problem of the matroid M′

to this problem: extend Ui to Ti by adding k − α′ coloops as a direct sum for
all 1 ≤ i ≤ t resulting in the new matroid M. A linear representation of M is
straightforward to produce. Now there exists a (≥ c)-legal independent set of size
(t − c) · α′ + t(k − α′) in M if and only if M′ has an independent set consisting
of t− c of the Ui’s. Hence finding the smallest such c solves the matroid α′-parity
problem. �

As we noted before Statement 2.3, in the c-legal version the roles of A and
B are symmetric, hence we get the following corollary.

Corollary 4.2. Deciding the existence of a c-legal independent set of size p is NP-
complete for linearly represented matroids unless

1. A and B contain no adjacent gaps (hence both are jump systems [BoCu,
Lo97]) and

2. both A and B intersect {0, 1, 2} and {k − 2, k − 1, k}.

For example, if k = 3 then A = {0, 3} and A = {1, 2} are excluded by 1. and
A = {0}, A = {3}, A = {0, 1, 2} and A = {1, 2, 3} are excluded by 2.

4.2. Sufficient conditions for the solvability

Statement 4.3. If A is the set of even integers then it is polynomial to decide
whether a (≥ c)-legal independent set of size p exists in a matroid represented over
the reals, given the integers p and c.

Proof. We may assume that p ≡ t − c (mod 2). Let us extend the underlying
set S of the matroid M by t new elements s1, s2, . . . , st, and define M′ on this
extended set S′ as the direct sum ofM and the uniform matroid Ut,t−c. A linear
representation ofM′ over the reals can easily be produced. Next we define a graph
on vertex set S′ with edge set

E = {sisj : 1 ≤ i < j ≤ t}∪{vsi : v ∈ Ti, 1 ≤ i ≤ t}∪{vv′ : v, v′ ∈ Ti, 1 ≤ i ≤ t}.
By Lemma 1.2 we can find in polynomial time a matching M ⊆ E of maximum size
with the property that V (M) is independent in M′. Let us call such a matching
independent.

Now we prove that the existence of a (≥ c)-legal independent set of size p is
equivalent to the existence of an independent matching covering at least p + t− c
elements. One direction is clear using that p ≡ t − c (mod 2). So suppose that
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M ⊆ E is an independent matching covering at least p + t − c elements. Since
Ut,t−c is a direct component in M′ we may assume that M covers exactly t − c
of the elements si. Hence deleting the edges of M incident to some si results in a
(≥ c)-legal independent set I of M such that |I| − p ≥ 0 is even. If |I| > p then
it is possible to delete either two elements from I contained in one subset Ti or
two elements from two subsets Ti, Tj with |I ∩ Ti|, |I ∩ Tj | odd. In this way we
do not decrease the number of subscripts i with |I ∩ Ti| even. Hence there exists
a (≥ c)-legal independent set of size p.

By Lemma 1.2, the existence of an independent matching covering at least
p + t − c elements can be decided in polynomial time by Lovász’ matroid parity
algorithm. �

We do not know the complexity of the remaining cases, they may include both
polynomial and NP-complete problems. We mention that deciding the existence of
a c-legal (or (≥ c)-legal) base is much easier. This would be the case if p = r(M)
or if we could represent the p-truncation of the given matroid over some field in
polynomial time (the complexity of such a representation is unknown). In this case
we could decide the existence of a c-legal base for A = {even numbers} (and hence
for A = {odd numbers}) and for A = {0, 1}, k = 3. We do not go into details.

It may be interesting to show a graph theoretic problem, which is similar in
flavor. Both the degree-sequences of the subgraphs of an undirected graph, and the
vectors (|I ∩ T1|, . . . , |I ∩ Tt|) for all independent sets I of a matroid with ground
set S = T1∪̇ . . . ∪̇Tt form a jump system [BoCu]. Hence it is tempting to formulate
the related problem for degree-sequences: given an undirected graph G, an integer
c and a degree-prescription A ⊆ N, does there exist a subgraph F ⊆ E(G) such
that degF (v) ∈ A holds for at least (or exactly) c vertices v? Besides some trivially
polynomial cases (e.g. when A consists of the odd numbers, which is an instance
of the degree prescribed factor problem introduced by Lovász, see [Lo72]), one
can prove by a reduction to the set cover problem that the (≥ c)-legal case is
NP-complete even for the simple prescription A = {1} [Be].
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Reconstruction of a Rank 3 Oriented Matroids
from its Rank 2 Signed Circuits

Ilda P.F. da Silva

Abstract. We consider the problem of reconstructing oriented rank 3 matroids
from its family of rank 2 signed circuits. We prove that the oriented matroid
of affine dependencies of the set of points of a m × n rectangular lattice can
be reconstructed from its rank 2 circuits.

Keywords. Orthogonality of signed sets, oriented matroid, rectangular lattice.

1. Introduction

It is well known that a simple matroid of rank 3 is determined by its rank 2 circuits.
For oriented matroids this result is not true in general. In fact, a rank 3 matroid
over an n-element set with no rank 2 circuits is the uniform matroid Un,3 and,

asymptotically, it has more then 2
n2
8 non-isomorphic orientations, [5] [3].

Which matroids have this property? Are there any? Is this property a prop-
erty of the matroid or of the orientation?

In the next paragraphs we introduce and play two “orthogonality games”
which give a quick first answer to these questions, namely Proposition 1.1 says
that this property is an invariant of the orientation class of the matroid.

The main result of the paper is Theorem 2.1 which says that for every m, n ≥
3 the oriented matroid of affine dependencies of the set B(m, n) := {(p, q) ∈ N :
1 ≤ p ≤ m, 1 ≤ q ≤ n} is determined by its rank 2 signed circuits.

The proof of Theorem 2.1. is constructive: we combine orthogonality between
signed circuits and cocircuits with elimination for modular pairs of cocircuits to
obtain from the rank 2 circuits, the cocircuit signature of the oriented matroid.
Determining convenient modular pairs of cocircuits leading the signature of a new
cocircuit involves geometric properties of the integer lattice namely Pick’s Theorem
(see, for instance, [1]).

We start by recalling the notion of orthogonality of signed sets as introduced
by R. Bland and M. Las Vergnas in [4] so that any reader may enjoy playing
the “orthogonality games”. The interested reader is referred to [3] for details on
oriented matroids.
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1.1. Orthogonality of signed sets

A signed subset of a (finite) set E is a map X : E −→ {−1, 0, 1}. The preimages
of −1, 0, 1 are denoted, respectively, X−, X0, X+. The support of X is the subset
X := X+∪X− = E \X0 and X is identified with the ordered pair X = (X+, X−)
of subsets of E.

The opposite signed subset −X : E −→ {−1, 0, 1}, defined by (−X)(e) =
−X(e) is identified with the ordered pair −X = (X−, X+).

If X is a signed subset of E then the restriction of X to a subset F of E is
the signed subset X(F ) = (X+ ∩ F, X− ∩ F ) of F .

Two signed subsets X, Y of E are orthogonal if the following condition is
satisfied:

(O) X(X ∩ Y ) �= ±Y (X ∩ Y )

Two families C and D of signed subsets of E are orthogonal if the following con-
dition is satisfied:

(OF) ∀X ∈ C, Y ∈ D, X and Y are orthogonal

In concrete examples signed subsets X = (X+, X−) of a set E are described
by fixing a total order on E and identifying X with the word X = eε1

i1
. . . eεk

ik
with

i1 < · · · < ik and εj = + if ej ∈ X+, εj = − if ej ∈ X−.

Example. Consider E = {1, 2, 3, 4} and the signed subsets

X = 1+2+3−(⇔ X+ = {1, 2}, X− = {3} X0 = {4} ⇔ X = ({1, 2}, {3})),

Y = 1+2−4− and Z = 1−3+.

Then X, Y are orthogonal but X, Z and Y, Z are not orthogonal.

1.2. Orthogonality games

Game 1. Consider the set E of points of R2 represented in Figure 1.

Figure 1
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Let C2 be the family of signed subsets of E defined by:
C2 := {i+j−k+ : i, j,k ∈ E such that j lies in the interior of the line segment

ik}, i.e.,
C2 = {1+2−3+, 1+4−7+, 1+5−9+, 2+5−8+, 3+5−7+, 3+6−9+, 4+5−6+,

7+8−9+}.
Objective:

1) Determine a signed subset X of E orthogonal to C2 with X0 = {1, 6}.
2) Play the same game as in 1) replacing X0 by any set of points of E on a

straight line s containing at least two points of E (there are 20 such lines,
but symmetry helps).

Solutions of Game 1. There is exactly one pair of opposite signed subsets of E in
the required conditions:

X = 2−3−4+5+7+8+9+, −X = 2+3+4−5−7−8−9−.

This conclusion is obtained arguing in the following way.
Let X = (X+, X−) denote a signed subset of E satisfying the required con-

ditions. X must be orthogonal to 3+6−9+ ∈ C2 implying that 3 and 9 must have
different signs in X . Assume that 3 ∈ X− and 9 ∈ X+. Then orthogonality with
the signed subsets 1+5−9+,1+2−3+ ∈ C2 implies 5,9 ∈ X+ and 2,3 ∈ X−. The
signs of 4,7 and 8 in X are now fixed by orthogonality of X with the signed
subsets 1+4−9+, 3+5−7+ and 2+5−8+ implying that X = 2−3−4+5+7+8+9+.

Note that if the assumption 3 ∈ X− and 9 ∈ X+ is replaced by 3 ∈
X+ and 9 ∈ X− the same steps would lead us to the opposite vector −X =
2+3+4−5−7−8−9−. Both X and −X are orthogonal to the family C2. Remark
that the partition X+ &X− of E \X0 determined by both signed sets describes
the partition of the points of E \X0 into the points that are on each side of the
straight line spanned by X0 = {1,6}.
2) For each one of the 20 straight lines there is exactly one pair of opposite signed
sets orthogonal to C2. In all the cases the solution corresponds to the partition of
the set E into the open half-spaces determined by the straight line.

Game 2. Play the same game now on the “board” E′ of points of R2 represented
in Figure 2 (see next page).
As in the previous case consider C′2 the family of signed subsets of E′ defined by:
C′2 := {i+j−k+ : i, j,k ∈ E′ such that j lies in the interior of the line segment ik}.

1) Determine a signed subset X of E′ orthogonal to C′2 such that X0 = {1, 6}.
2) Play the same game as in 1) replacing X0 by any the set of points of E′ on

a straight line s containing at least two points of E′ (there are 20 lines).

Solutions of Game 2.

1) There are 4 possible solutions, two pairs of opposite signed subsets: X1 and
−X1 , X2 and −X2 with

X1 = 2−3−4+5−7+8−9− and X2 = 2−3−4+5−7+8+9−.
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Figure 2

2) For X0 = {2,4}, {2,9} or {6,8} there are 3 pairs of opposite signed sets
as possible solutions. For X0 = {1,6}, {1,8}, {2,5,8}, {2,6}, {4,5,6},
{4,8}, {4,9} there are two pairs of signed sets as possible solutions. For the
remaining 10 lines there is a unique pair of signed sets as possible solutions.

1.3. The general context of the games and results

In both cases the game consisted in giving a set E of points in R2 (the board)
together with the family C2 of (signed) rank 2 circuits of the oriented matroid
Aff(E), the oriented matroid of affine dependencies of E over R. The purpose of
the game consisted in finding signatures of a (all) cocircuit(s) orthogonal to the
family C2.

The general questions underlying this game are the following:

Question 1. Let M = M(E) be a simple (no loops nor parallel elements) oriented
matroid of rank 3 over a set E. Denote by C2 the family of signed circuits of rank 2
of M . Characterize those oriented matroids (of rank 3) which satisfy the following
property:

(C2) C2 determines the oriented matroid.

The unicity of the solution for the 20 lines of E in Game 1 shows that the matroid
of affine dependencies of E over R has the property (C2).

Question 2. Is (C2) a property of the underlying matroid or of the orientation?

The analysis of Games 1 and 2 answers this question in the following way: Property
(C2) is a property of the oriented matroid and not of the underlying matroid.
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In fact: The oriented matroids Aff(E) and Aff(E′) determined by the sets E and
E′ of Figure 1 and 2 have the same underlying matroid but, while the family of
signed cocircuits of Aff(E) (and therefore the oriented matroid) can be recovered
from C2, the oriented matroid Aff(E′) cannot be reconstructed from C′2.

In order to prove that Aff(E′) cannot be recovered from C′2 consider the set
E∗ of points of R2 obtained from E′ replacing 8 by a point 81 on the interior of the
line segment 79 but on the other side of the straight line 16 and then replacing 2
by 21 the intersection point of lines 581 and 13. The oriented matroids Aff(E′)
and Aff(E∗) have the same underlying matroid, the same family C′2 of circuits of
rank 2 but while the pair of signed cocircuits of Aff(E) complementary of line
{1,6} is the pair of signed subsets X1,−X1 with X1 = 2−3−4+5−7+8−9− (pair
of solutions of Game 2.1), the pair of signed cocircuits of Aff(E∗) complementary
of line {1,6} is the pair of signed subsets X2,−X2 with X2 = 2−

1 3−4+5−7+8+
1 9−

(the other pair of solutions of Game 2.1).

The next proposition shows that Property (C2) is an invariant of the class
of orientations of a matroid.

Proposition 1.1. Let M(E) be an oriented matroid satisfying property (C2) then
for all A ⊆ E the reorientation −AM obtained from A reversing signs on A also
has property (C2)

Proof. The proof is by contradiction: assume that M = M(E) is an oriented
matroid satisfying property (C2) and that for some A ⊆ E the oriented matroid
−AM does not satisfy property (C2). Then there is an oriented matroid M1 �=−A

M with the same family, C2, of rank two circuits then −AM . But then −AM1 and
M would be different oriented matroids with the same family, −AC2, of rank 2
circuits, a contradiction. �

2. Main theorem

Consider B(m, n) := {(p, q) ∈ N2 : 1 ≤ p ≤ m 1 ≤ q ≤ n} and L(m, n) the
oriented matroid of affine dependencies of B(m, n) over R.

Denote by C(m, n) the family of signed circuits of L(m, n) and by C2(m, n)
its subfamily of rank 2 signed circuits.

Theorem 2.1. For every m, n ∈ N, such that m, n ≥ 3 the oriented matroid L(m, n)
can be reconstructed from the family C2(m, n) of its rank 2 circuits.

The theorem is proven by induction in the next two Lemmas.

Lemma 2.2 establishes the result for m = n = 3. Lemma 2.3 is the induction
step. It says that given m ≥ 3, n ≥ 4 and assuming the theorem is true for (m, n′)
with n′ < n then the theorem is true for (m, n). This is enough to prove the
theorem since if the theorem is true for L(m, n), m, n ≥ 3, then, by symmetry, it
is also true for L(n, m).
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Lemma 2.2. The oriented matroid L(3, 3) can be reconstructed from the family
C2(3, 3) of its rank 2 circuits.

As pointed out in the previous section the proof of this lemma is the result
of “playing” Game 1 for the 20 lines of the set E.

Lemma 2.3. Consider m, n ∈ N, m ≥ 3 and n ≥ 4.
Assume that for all n′ ∈ N, 3 ≤ n′ < n the oriented matroid L(m, n′) can be

reconstructed from the family C2(m, n′) of its rank 2 signed circuits. Then L(m, n)
can be reconstructed from C2(m, n).

Proof. Consider m, n ∈ N, m ≥ 3 and n ≥ 4 in the conditions of the Lemma. To
simplify denote by L the oriented matroid L(m, n) and put C2 := C2(m, n). Denote
by D the family of signed cocircuits of L.

The proof consists in describing a procedure to reconstruct D from C2.
Since C2 determines the underlying matroid we know the lines (flats of rank 2)

and the unsigned cocircuits of L. Given a line s of L we denote by Xs the unsigned
cocircuit complementary of s.

In order to use the induction assumption, it is convenient to define the fol-
lowing subsets of B(m, n):

A := {1, . . . , m} × {1, . . . , n− 1} and A′ := {1, . . . , m} × {2, . . . , n}.

Clearly the restrictions L(A) and L(A′) of the oriented matroid L to A and
A′ are isomorphic to L(m, n− 1).

Given a line s of L if s∩A is a line of L(A) then the restriction Xs(A) of the
cocircuit Xs to A is a cocircuit of L(A).

We use the same letter to denote the line s of the matroid and the (straight)
line s of R2. The lines hi := {(p, i) : 1 ≤ p ≤ m} are called horizontal lines and
the lines vj := {(j, q) : 1 ≤ q ≤ n} vertical lines.

In order to prove the lemma we describe a procedure to determine, for every
line s of L, the unique pair Xs,−Xs of signed sets with support Xs. This procedure
combines essentially orthogonality between the circuits and elimination for pairs
of modular cocircuits of an oriented matroid and is divided in 3 cases:

Case 1) The line s satisfies one of the following conditions:

i) s ∩A is a line of L(A) and s ∩A′ is a line of L(A′) or

ii) s is one of the horizontal lines h1 or hn.

Note that this case includes all the lines that contain three or more points of L.

Case 2) s contains exactly two points and satisfies one of the following conditions:

i) s ∩A is a line of L(A) and s ∩A′ is not a line of L(A′) or
ii) s ∩A′ is a line of L(A′) and s ∩A is not a line of L(A).

Note that by symmetry of B(m, n) (and L) we only have to consider one of these
two conditions.
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Case 3) s contains exactly two points and s∩A is not a line of L(A) and s∩A′ is
not a line of L(A′)

Case 1-i) s ∩A is a line of L(A) and s ∩A′ is a line of L(A′).
In this case the restriction Xs(A) of the cocircuit Xs to A is a cocircuit

of L(A). By the induction assumption C2 determines the unique pair of signed
cocircuits, XA,−XA, of L(A) with support Xs(A). Similarly, C2 determines the
unique pair of signed cocircuits, XA′ ,−XA′ , of L(A′) with support Xs(A

′).
Since n ≥ 4 we have Xs(A) ∩Xs(A

′) �= ∅. Let x be an element in Xs(A) ∩
Xs(A

′) and assume, without loss of generality, that x has the same sign in XA

and XA′ . The restriction of a signed cocircuit Xs of L with support Xs to A
(resp. A′) is either XA,−XA (resp. XA′ ,−XA′). Since x has the same sign on XA

and on XA′ we conclude that the signed cocircuits complementary of s in L are:
Xs = (X+

A ∪X+
A′ , X

−
A ∪X−

A′) and −Xs.

Case 1-ii) s is the horizontal line h1 := {(i, 1) : 1 ≤ i ≤ m}. Let Xh1 be a signed
cocircuit of L complementary of h1. Since h1 is a line of L(A). By definition of
L(A) and by the induction assumption, we may assume that the restriction of Xs

to A is the positive cocircuit Xs(A) = (A \ h1, ∅). Then, orthogonality with the
circuits of C2 of the form (i, 1)+(i, j)−(i, n)+ with 1 < j < n implies that Xs is a
positive cocircuit as well.

The case of the horizontal line hn is similar.

From now on we only consider lines with two points. Since B(m, n) has an
horizontal axe of symmetry we may restrict our attention to lines with a “positive
slope”, i.e., to lines of L of the form:

s = {(p, q), (p′, q′)} with 1 ≤ p < p′ ≤ m and 1 < q < q′ ≤ n

Case 2) s contains exactly two points, s ∩A is a line of L(A) and s ∩ A′ is not a
line of L(A′). Note that in this case we have:

s = {(p, 1), (p′, q′)} with 1 ≤ p < p′ ≤ m and 1 < q′ ≤ n− 1}.
We consider separately two subcases:
A) the straight line of R2 spanned by s crosses the horizontal straight line

(spanned by) hn between (i, n) and (i + 1, n) for some 1 < i < m (Figure
3.A) and

B) the straight line of R2 spanned by s crosses the vertical straight line (spanned
by) vm between (m, j) and (m, j +1) (eventually in (m, j)) for some 1 < j ≤
n− 1 (Figure 3.B)

Case 2A) The line s = {(p, 1), (p′, q′)} with 1 ≤ p < p′ ≤ m and 1 < q′ ≤ n − 1
crosses the horizontal straight line hn between (i, n) and (i + 1, n). Let Xs be the
cocircuit of L complementary of s and XA the restriction of Xs to A.

Consider the points Pi := (p′, q′)+(p′−i, q′−n) and Pi+1 := (p′, q′)+(p′−(i+
1), q′−n) (see Figure 3.A). Since the line s contains exactly two points of B(m, n),
Pi and Pi+1 belong to the grey rectangle R ⊆ A of Figure 3.A, therefore C2 contains
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Figure 3.A Figure 3.B

the signed circuits (i, n)+(p′, q′)−P+
i and (i, n)+(p′, q′)−P+

i+1.Orthogonality with
these circuits implies that Xs((i, n)) = −XA(Pi) and Xs((i+1, n)) = −XA(Pi+1).

By definition of L(A) we have XA(Pi) = −XA(Pi+1) implying that

Xs((i, n)) = −Xs((i + 1, n)).

Then, orthogonality with the signed circuits of C2 contained in the horizontal line
hn determines Xs.

Case 2B) The line s = {(p, 1), (p′, q′)} with 1 ≤ p < p′ ≤ m and 1 < q′ ≤ n − 1
crosses the vertical straight line vm between (m, j) and (m, j + 1) (eventually in
(m, j)) for some 1 < j ≤ n− 1 .

Let Xs be a signed cocircuit of L complementary of s and XA the restriction
Xs to A. (See Figure 3.B.)

Orthogonality with the circuits of C2 contained in the vertical lines vp, . . . ,vm

determines the sign of the elements (p, n), . . . , (m, n) in Xs. The sign of Xs in
the remaining elements of the horizontal line hn is determined using elimination
between one of the modular pair of signed cocircuits of L determined by the
horizontal line h1 and the vertical line vp (these two pairs of modular signed
cocircuits of L are known from Case 1).

Case 3) s contains exactly two points and s ∩A is not line of L(A) and s ∩A′ is
not a line of L(A′). In this case we have:

s = {(p, 1), (p′, n)} with 1 ≤ p < p′ ≤ m}.
We consider separately the two subcases: A) p′ < m (Figure 4.A) and B) p′ = m
(Figure 4.B).

Case 3A) p′ < m. Consider the triangles T1, T2 of R2 with vertices, respectively,
((p, 1), (p′, n), (p′ − 1, n)) and ((p, 1), (p′, n), (p′ + 1, n)) (Figure 4.A).
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Figure 4.A Figure 4.B

Since area(T1) = area(T2) = n−1
2 > 1

2 (n ≥ 4) by Pick’s Theorem both these
triangles contain (in their closure) points of B(m, n) other then the vertices. Such
points are not contained neither in the line s nor in the horizontal line hn.

For all points Pi ∈ T1 (resp. Qj ∈ T2), different from the vertices of the
triangle denote by ri (resp. tj) the line of L containing (p, 1), Pi (resp. (p, 1), Qj).
Note that all lines ri, tj fall into a previous case and therefore we know the signed
complementary cocircuits of L.

Denote by r the line ri that minimizes the angle between the straight lines
ri and s. Similarly denote by t the line tj that minimizes the angle between the
straight lines tj and s.

By definition of L the signed cocircuits complementary of s are obtained
by elimination between the two modular pairs of cocircuits Xr, Xt such that
Xr

+ ∩Xt
− = {(p′, n)}.

Case 3B) p′ = m. A similar reasoning applies to the triangles T1 with vertices
(p, 1), (m, n), (m− 1, n) and T2 with vertices (p, 1), (m, n), (m− 1, n). In this case
area(T1) = n−1

2 > 1
2 (n ≥ 4) and area(T2) = m−p

2 ≥ 1
2 . If p < m − 1 then we

proceed as in the previous case. If p = m−1 then the triangle T2 contains no other
points of B(m, n) but the vertices. In this case the line t = {(p, 1), (m, n−1)} falls
in case 2A. �

As immediate consequences of the results of Section 1.3. we have:

Corollary 2.4. For every m, n ∈ N, such that m, n ≥ 3 and every A ⊆ B(m, n) the
oriented matroid −AL(m, n) can be reconstructed from the family C2(m, n) of its
rank 2 circuits.
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Corollary 2.5. The oriented matroid L(3, 3) has more than one reorientation class.

Note that the oriented matroids Aff(E), Aff(E′) and Aff(E∗) where E, E′

are the sets of points in the plane of Game 1, Game 2 and E∗ described in Section
1.4. represent, in fact, three different orientation classes of L(3, 3).

3. Final remarks

1. We would like to point out that although L(3, 3) has more then one class of
orientations it is not clear whether L(m, n) will have more then one class of
orientations ∀m, n ≥ 3 or if there is (m0, n0) such that for m ≥ m0, n ≥ n0

L(m, n) will have exactly one class of orientations.
2. Questions 1 and 2 considered in this paper (Section 1), generalize to the fol-

lowing problem: characterize those oriented matroids of rank r whose orien-
tation can be reconstructed from the subfamily Ck of its rank k signed circuits.

3. In this paper we have restricted our study to rank 3 simple oriented matroids
whose orientation can be recovered from its subfamily of rank 2 circuits. In
this case it is obvious that not only the orientation but also the underlying
matroid can be recovered form C2. For different values of r and k it is not
clear whether or not the oriented property: “the orientation is defined by its
rank k signed circuits” implies the non oriented property: “the underlying
matroid is defined by its rank k circuits”.

Conclusion. Perhaps the best conclusion was given by Claude Berge, in 1968, [2]:
“Si l’on regarde tous les aspects de la Combinatoire que nous avons essayé d’énu-
merer ici, on est frappé par la prolifération récente des problèmes qui peuvent se
poser à propos de configurations, et de la diversité des outils pour les résoudre.”
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The Normal Graph Conjecture
is True for Circulants

Annegret K. Wagler

Abstract. Normal graphs are defined in terms of cross-intersecting set fami-
lies and turned out to be “weaker” perfect graphs w.r.t. several aspects, e.g.,
by means of co-normal products (Körner [5]) and graph entropy (Cziszár et
al. [4]). Perfect graphs have been recently characterized as those graphs with-
out odd holes and odd antiholes as induced subgraphs (Chudnovsky et al. [2]).

In analogy, Körner and de Simone [7] conjectured that every (C5, C7, C7)-free
graph is normal (Normal Graph Conjecture). We prove this conjecture for
a first class of graphs that generalize both odd holes and odd antiholes: the
circulants. For that, we characterize all the normal circulants by explicitly
constructing the required set families for all normal circulants and showing
that the remaining ones are not (C5, C7, C7)-free.

Mathematics Subject Classification (2000). Primary 05C17; Secondary 05C69.

Keywords. Perfect graphs, normal graphs, circulants.

1. Introduction

Normal graphs come up in a natural way in an information theoretic context [6]. A
graph G is called normal if G admits a clique cover Q and a stable set cover S such
that every clique in Q intersects every stable set in S. (A set is a clique (resp. stable
set) if its nodes are mutually adjacent (resp. non-adjacent).) In Figure 1, the last
two graphs are normal (the clique covers consist of the shaded cliques and the
cross-intersecting stable set covers consist of 3 (resp. 6) stable sets of the form
indicated by the black nodes).

The interest in normal graphs is caused by the fact that they form “weaker”
perfect graphs w.r.t several concepts, e.g. by co-normal products [5] and graph
entropy [4, 9]. Berge [1] introduced the latter class in 1960 and conjectured that
a graph is perfect if and only if it does not contain chordless odd cycles C2k+1

This work was supported by the Deutsche Forschungsgemeinschaft (Gr 883/9–2).
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9 9C 7 C CC 7C  = C55

Figure 1. Small odd holes and odd antiholes

with k ≥ 2, called odd holes, or their complements, the odd antiholes C2k+1, as
induced subgraphs (see Figure 1 for small examples). The Strong Perfect Graph
Conjecture stimulated the study of perfect graphs; it turned out that they have
many fascinating properties and interesting relationships to other fields of scientific
enquiry, see e.g. [8]. Recently Chudnovsky et al. [2] verified this conjecture.

Körner and de Simone [7] asked whether the similarity of perfect and normal
graphs is also reflected in terms of forbidden subgraphs. Körner [5] showed that
an odd (anti)hole is normal iff its length is at least 9. In particular, the three
smallest odd (anti)holes C5, C7, and C7 are not normal. These three graphs are
even minimally not normal since all of their proper induced subgraphs are perfect
and, hence, normal. This led Körner and de Simone conjecture:

Conjecture 1.1 (Normal Graph Conjecture [7]). Graphs without any C5, C7, or
C7 as induced subgraph are normal.

Our aim is to verify the conjecture for a first graph class. We consider graphs
with circular symmetry of their maximum cliques and stable sets, introduced in
[3] as generalization of odd holes and odd antiholes: A circulant Ck

n is a graph with
nodes 1, . . . , n where ij is an edge if i and j differ by at most k (mod n) and i �= j.
We assume k ≥ 1 in order to exclude the degenerated case when Ck

n is a stable
set. Circulants include all holes Cn = C1

n and odd antiholes C2k+1 = Ck−1
2k+1.

The main result is the characterization of all normal circulants in Section 2.
As all the non-normal circulants contain one of the graphs C5, C7, and C7 as
induced subgraph, this implies that the Normal Graph Conjecture is true for cir-
culants, see Section 3.

2. The normal circulants

The circulants C1
n are holes, thus C1

n is normal iff n �= 5, 7. For any k ≥ 2, Ck
n is a

clique if n < 2(k + 1), a perfect graph, namely a clique minus a perfect matching,
if n = 2(k + 1), and an odd antihole if n = 2(k + 1)+ 1. Thus, we have to consider
circulants Ck

n with k ≥ 2 and n ≥ 2(k+1)+2 only. Note that the size of a maximum
clique of Ck

n is k+1, and the size of a maximum stable set, called stability number
α, is � n

k+1�. Unless stated otherwise, arithmetic is always performed modulo the
number of nodes of the circulant involved in the computation.
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Our goal is to characterize all the normal circulants. We explicitly construct
the required set families in Section 2.1: According to the circular structure of
circulants, we introduce cyclic clique covers Q of odd size 2t− 1 and construct the
corresponding cross-intersecting covers S consisting of stable t-sets. We show that
such a pair (Q,S) exists for each circulant Ck

n satisfying t(k+1) ≤ n ≤ (2t−1)k. In
Section 2.2, we figure out for which circulants Ck

n such an appropriate parameter
t exists and for which circulants not. Proving that the latter circulants are indeed
not normal finishes the characterization of all normal circulants.

2.1. Cyclic clique covers and cross-intersecting stable set covers

According to the circular symmetry of the maximum cliques in a circulant, we
shall construct clique covers with an appropriate structure. Let Q = {Q1, . . . , Ql}
be a clique cover of Ck

n consisting of maximum cliques only. We call Q cyclic if
each clique Qi has a non-empty intersection with precisely the cliques Qi−1 and
Qi+1 (where the indices are taken modulo l), see Figure 2 for three examples.

x x
x

Figure 2. Cyclic clique covers of different size in C4
11, C3

12, and C2
12

The next lemma answers the question when a circulant Ck
n admits a cyclic

clique cover of a certain size, thereby establishing a 1-1-correspondence between
cyclic clique covers of size l and induced holes C1

l in Ck
n.

Lemma 2.1. Ck
n with k ≥ 2 admits a cyclic clique cover of size l if and only if

1
2 (k + 1)l ≤ n ≤ kl

holds.

Proof. Consider a cyclic clique cover Q = {Q1, . . . , Ql} and denote by qi the first
node in Qi. Then qi is adjacent to qi−1 and qi+1 but not to qj with i + 1 < j <
i − 1(modl) by definition; thus q1, . . . , ql induce an l-hole in Ck

n . On the other
hand, consider C1

l ⊆ Ck
n with nodes q1, . . . , ql and the maximum cliques Q(qi) =

{qi, . . . , qi + k} of Ck
n starting in qi. A result of Trotter [10] shows that Q(qi) con-

tains precisely two nodes of C1
l , namely qi and qi+1; thus Q = {Q(q1), . . . , Q(ql)}

is a cyclic clique cover. Hence cyclic clique covers of size l and holes C1
l ⊆ Ck

n

correspond to each other. Furthermore, Trotter [10] shows that

C1
l ⊆ Ck

n iff (k+1)
2 l ≤ n ≤ k

1 l (2.1)

holds, as required. �
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Note that the assertion of the above lemma remains true if l = 3. In this case,
inequality (2.1) shows that Ck

n contains a triangle C1
3 consisting of non-consecutive

nodes only if n ≤ 3k holds. This implies in particular:

Lemma 2.2. A circulant Ck
n has maximal cliques consisting of non-consecutive

nodes only if n ≤ 3k.

Proof. Consider such a maximal clique Q ⊆ Ck
n. Then Q can clearly neither be a

single node nor a single edge, hence Q must contain a triangle C1
3 consisting of non-

consecutive nodes. By inequality (2.1), this is possible only if n ≤ 3k holds. �

Let q(x,Q) stand for the number of cliques in Q containing node x. By
the definition of Q, we have q(x,Q) ∈ {1, 2} for all nodes x (since Q covers all
nodes but no three cliques intersect). We call x a 1-node (resp. 2-node) w.r.t. Q if
q(x,Q) = 1 (resp. q(x,Q) = 2) holds.

For a cyclic clique cover Q consisting of l cliques of size k + 1 each, the
lower bound 1

2 (k + 1)l ≤ n in inequality (2.1) is attained if there are 2-nodes only,
whereas the upper bound n ≤ kl guarantees that there is at least one 2-node in
the intersection of two consecutive cliques (if l = 3, the 2-nodes induce a clique).

For our purpose, we are interested in cyclic clique covers Q of odd size 2t− 1
due to the following reason. If a 1-node x belongs to Q ∈ Q, then Q−Q consists of
2t−2 cliques or, in other words, of t−1 pairs of intersecting cliques. We denote by
S(x,Q) a t-set containing x and one node from the intersection of the t− 1 pairs
of cliques (see the black nodes in Figure 2 and Figure 3). Thus S(x,Q) intersects
all cliques in Q by construction; we shall show that there exist stable sets S(x,Q)
whose union covers all nodes.

Lemma 2.3. If t(k + 1) ≤ n ≤ (2t− 1)k and k, t ≥ 2, then Ck
n has a cyclic clique

cover Q of size 2t− 1, and for each 1-node x w.r.t. Q of Ck
n there is a stable set

S(x,Q) of size t in Ck
n.

Proof. By (2t−1)(k+1)
2 < t(k+1), Ck

n has a cyclic clique cover Q = {Q1, . . . , Q2t−1}
due to Lemma 2.1. Furthermore, t(k + 1) ≤ n guarantees that Ck

n contains stable
sets of size t by t ≤ α(Ck

n) = � n
k+1�.

Consider a 1-node x of Ck
n and assume w.l.o.g. that x belongs to Q1 ∈ Q.

We construct a stable set S(x,Q) = {x, x1, . . . , xt−1} s.t. xi ∈ Q2i ∩ Q2i+1 for
1 ≤ i ≤ t− 1, see Figure 3.

Since x ∈ Q1 −Q2, there is a non-neighbor of x in Q2 ∩Q3 (at least the last
node in Q2 is not adjacent to x but belongs to Q3). We choose x1 = x+(k+1)+d1 ∈
Q2 ∩Q3 with d1 ∈ N ∪ {0} minimal.

In order to construct xi from xi−1 for 2 ≤ i ≤ t − 1, notice that we have
xi−1 ∈ Q2i−2 ∩Q2i−1, in particular xi−1 ∈ Q2i−1−Q2i. As before, there is a non-
neighbor of xi−1 in Q2i∩Q2i+1 and we choose xi = xi−1+(k+1)+di ∈ Q2i∩Q2i+1

with di ∈ N ∪ {0} minimal. Then S(x,Q) is a stable set if xt−1 and x are non-
adjacent (all other nodes are non-adjacent by construction).
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Q

Q

3

2

Q 2i

x

1Q
Q

Q

2t−1

2t−2

2i+1 Q

xi

xt−1 1x

Figure 3. Constructing the stable set S(x,Q) for x ∈ Q1

If di = 0 for 1 ≤ i ≤ t − 1, then xt−1 = x + (t − 1)(k + 1). Hence, there are
at least k + 1 nodes between xt−1 and x (in increasing order modulo n) due to
n ≥ t(k + 1) and we are done. Otherwise, let j be the smallest index s.t. dj > 0.
Then xj is the first node in Q2j+1 since we choose dj minimal: By xj−1 �∈ Q2j , we
have xj−1 + (k + 1) ∈ Q2j . The only reason for choosing dj > 0 was, therefore,
xj−1 + (k + 1) + d′j �∈ Q2j+1 for all 0 ≤ d′j < dj by the minimality of dj . Hence,
xj is indeed the first node in Q2j+1. This implies that its first non-neighbor is the
node xj + (k + 1) belonging to Q2j+2 −Q2j+1 and xj+1 = xj + (k + 1) + dj+1 ∈
Q2j+2 ∩ Q2j+3 is, by the minimality of dj+1, the first node of Q2j+3. The same
argumentation shows that every further xi with i > j + 1 is the first node in
Q2i+1; in particular, xt−1 is the first node of Q2t−1. Hence, x ∈ Q1−Q2t−1 shows
that xt−1 and x are non-adjacent. Thus S(x,Q) = {x, x1, . . . , xt−1} is a stable
set of size t and intersects all cliques of Q by x ∈ Q1 and xi ∈ Q2i ∩ Q2i+1 for
1 ≤ i ≤ t− 1. �

Lemma 2.3 implies that there is, for each 1-node x, at least one stable set
S(x,Q). There can be several such sets; for the cyclic clique cover Q of C4

11 in
Figure 2, e.g., there are two stable sets S(x,Q) for the 1-node x.

It is left to show that the union of all stable sets S(x,Q) covers the circulant.

Lemma 2.4. Consider a cyclic clique cover Q of Ck
n of size 2t− 1 where t(k +1) ≤

n ≤ (2t − 1)k and k, t ≥ 2. Then the union S of the stable sets S(x,Q), where x
is a 1-node of Ck

n w.r.t Q, covers all nodes of Ck
n.

Proof. Assume to the contrary that there is a node y in Ck
n not covered by S. Then

there is no stable set S(x,Q) with y ∈ S(x,Q). In particular, y is a 2-node w.r.t. Q
by Lemma 2.3. W.l.o.g. let y ∈ Q1∩Q2t−1. We first show yl = y + l(k+1) ∈ Q2l+1

for 0 ≤ l ≤ t− 2. Clearly, we have y = y0 = y + 0(k + 1) ∈ Q1 by assumption and
prove that yi−1 = y + (i− 1)(k + 1) ∈ Q2i−1 implies yi = y + i(k + 1) ∈ Q2i+1 for
1 ≤ i ≤ t− 2.



370 A.K. Wagler
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Q2t−3
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Figure 4. Constructing the nodes yi ∈ Q2i+1

If there is a 1-node x in Q2i\(Q2i−1 ∪ Q2i+1), then x is adjacent to yi−1 =
y+(i−1)(k+1), see Figure 4(a) (otherwise, there is a stable set S(x,Q) containing
x and y0, . . . , yi−1 in contradiction to our assumption) and x < y + i(k + 1) yields
yi = y + i(k + 1) ∈ Q2i+1.

If Q2i\(Q2i−1 ∪Q2i+1) = ∅, then yi = y + i(k + 1) clearly belongs to Q2i+1

(since we have yi−1 = y + (i− 1)(k + 1) ∈ Q2i−1 and |Q2i−1| = k + 1).
In particular, we have yt−2 = y + (t − 2)(k + 1) ∈ Q2t−3. Any 1-node x in

Q2t−2\(Q2t−3 ∪ Q2t−1) is adjacent to yt−2 or to y, see Figure 4(b) (otherwise,
x together with y0, . . . , yt−2 would be a set S(x,Q) ∈ S in contradiction to our
assumption). We distinguish three cases:

If x is adjacent to y, then x > y − (k + 1) = y−1 follows and y−1 is adjacent
to yt−2: either y−1 belongs to Q2t−3 or is as 1-node adjacent to yt−2; thus, y−1 =
y − (k + 1) ≤ y + (t− 2)(k + 1) + k = yt−2 + k implies y ≤ y + (t− 1)(k + 1) + k.

If x is adjacent to yt−2, we obtain x < yt−2 + (k + 1) = yt−1 and yt−1 either
belongs to Q2t−1 or is a 1-node adjacent to y; here, yt−1 ≥ y − k and, therefore,
y + (t− 1)(k + 1) ≥ y − k holds.

The non-existence of a 1-node in Q2t−2 implies yt−1 ∈ Q2t−2 and, therefore,
yt−1 ≥ y − k follows again.

All three cases imply n ≤ (t− 1)(k + 1) + k. By n ≥ t(k + 1), we obtain

t(k + 1) ≤ (t− 1)(k + 1) + k

yielding the final contradiction. Hence the union S of the stable sets S(x,Q), where
x is a 1-node of Ck

n w.r.t Q, covers all nodes of Ck
n. �

Since each S(x,Q) meets all cliques in Q by construction, S is the required
stable set cover. Thus Lemma 2.1, Lemma 2.3, and Lemma 2.4 together imply:

Theorem 2.5. A circulant Ck
n with k ≥ 2 admits, for t ≥ 2,

• a cyclic clique cover Q of size 2t− 1 and
• a cross-intersecting stable set cover S of stable t-sets

if t(k + 1) ≤ n ≤ (2t− 1)k holds.
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2.2. Characterizing the normal circulants

Theorem 2.5 shows that a circulant Ck
n with k ≥ 2 is normal if there is a t ≥ 2

with t(k + 1) ≤ n ≤ (2t− 1)k. It is left to figure out for which Ck
n such a t exists.

Lemma 2.6. A circulant Ck
n with k ≥ 2 and n ≥ 2(k + 1) + 2 is normal if

• k = 2 and n �= 8, 11,
• k ≥ 3 and n �= 3k + 1, 3k + 2.

Proof. We shall ensure, for such a Ck
n, the existence of a t ≥ 2 with t(k +1) ≤ n ≤

(2t−1)k. For that we check, for fixed k, whether there are gaps between the ranges
t(k + 1) ≤ n ≤ (2t − 1)k and (t + 1)(k + 1) ≤ n ≤ (2t + 1)k for two consecutive
values of t ≥ 2. There is no gap between the two ranges if

(t + 1)(k + 1) ≤ (2t− 1)k + 1

which is true for k = 2 if t ≥ 4 and for k ≥ 3 if t ≥ 3 (in Figure 5 the dotted
(resp. solid, resp. dashed) line indicates the range for t = 2 (resp. t = 3, resp. t = 4).
Thus Theorem 2.5 shows normality for all circulants Ck

n with k ≥ 2 except the cases
n = 3k + 1, 3k + 2 (gap between the ranges for t = 2 and t = 3) and C2

11 (gap
between the ranges for t = 3 and t = 4), see Figure 5. �

It remains to prove that C2
11 and Ck

3k+1, Ck
3k+2 are not normal for all k ≥ 2.

Lemma 2.7. The circulant C2
11 is not normal.

Proof. Suppose conversely that C2
11 admits a clique cover Q and a cross-intersect-

ing stable set cover S. Lemma 2.2 implies that all maximal cliques of C2
11 are of

the form Q(i) = {i, i + 1, i + 2}.
First,Q must not contain three disjoint cliques Q, Q′, Q′′: These three cliques

cannot cover all nodes of C2
11 by 11 > 9 = |Q ∪Q′ ∪ Q′′|. Hence, there is a node

x �∈ Q ∪Q′ ∪ Q′′ but due to α(C2
11) = 3, there is no stable set in S containing x

and meeting all three cliques Q, Q′, Q′′.
Thus Q contains at most two disjoint cliques Q and Q′. They must not be

consecutive (see Figure 6(a)): If Q = {1, 2, 3} and Q′ = {4, 5, 6} we need a clique
Q′′ among {7, 8, 9}, {8, 9, 10}, {9, 10, 11} in order to cover node 9, but Q, Q′, Q′′

would be disjoint in any case.
There is no possibility for avoiding two consecutive disjoint cliques: Suppose

Q = {1, 2, 3}. If Q′ = {5, 6, 7} (Figure 6(b)), then {8, 9, 10}, {9, 10, 11} �∈ Q follows,
but we need the two consecutive cliques {7, 8, 9} and {10, 11, 1} to cover the nodes
9 and 10. If Q′ = {6, 7, 8} (Figure 6(c)), then {4, 5, 6}, {3, 4, 5} �∈ Q follows. Thus
we need the two consecutive cliques {2, 3, 4} and {5, 6, 7} to cover the nodes 4 and
5, which yields the final contradiction. �

Lemma 2.8. For all k ≥ 2, the circulants Ck
3k+1 and Ck

3k+2 are not normal.

Proof. Suppose in contrary, Ck
n with n ∈ {3k + 1, 3k + 2} has a clique cover Q

and a cross-intersecting stable set cover S. Lemma 2.2 implies that all maximal
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Figure 5. The ranges of normal circulants for t = 2, 3, 4

cliques of Ck
n have maximum size k + 1 as n > 3k. Hence, Q consists of cliques

Q(i) = {i, . . . , i + k} only.
In particular, there are two disjoint cliques Q and Q′ in Q: Otherwise, every

two cliques of Q would intersect. For |Q| = 2, we would obtain n ≤ 2k + 1, a
contradiction to k ≥ 2 and n > 3k. For |Q| ≥ 3, the cliques intersect pairwise only
if n ≤ 3k, a contradiction to n > 3k again.

The two disjoint cliques Q and Q′ cannot cover all nodes of Ck
n with k ≥ 2

by n ≥ 3k + 1 > 2(k + 1) = |Q ∪ Q′|. Hence, there is a node x �∈ Q ∪ Q′.
Due to α(Ck

n) = 2, there is no stable set in S which contains x and meets both
cliques Q and Q′ (such a stable set had to contain three nodes). Thus, Ck

n with
n = 3k+1, 3k+2 and k ≥ 2 does not admit a clique cover and a cross-intersecting
stable set cover and is, therefore, not normal. �
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Q Q Q
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Q’ Q’
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Figure 6. Two disjoint cliques Q and Q′ in C2
11

As a consequence, we are able to characterize all the normal circulants:

Theorem 2.9. A circulant Ck
n is normal if and only if

• k = 1 and n �= 5, 7,
• k = 2 and n �= 7, 8, 11,
• k ≥ 3 and n �= 3k + 1, 3k + 2.

3. Conclusions

Theorem 2.9 does not only characterize all the normal circulants, but also which
circulants are not normal (see the black circles in Figure 5). With the help of
inequality (2.1) it is a routine to check that all the non-normal circulants Ck

n

different from C5, C7, C7 contain either a C5 (if n = 3k+1, 3k+2) or a C7 (for C2
11)

as induced subgraph. Thus, all the non-normal circulants are not (C5, C7, C7)-free
which finally verifies the Normal Graph Conjecture for circulants:

Corollary 3.1. The Normal Graph Conjecture is true for circulants.

Since the class of normal graphs is closed under taking complements (by
definition), we obtain the same assertion for the complementary class. Thus, we
verified the Normal Graph Conjecture for the first two graph classes. However, even
proving the Normal Graph Conjecture in general would not yield a characteriza-
tion of normal graphs, as induced subgraphs of normal graphs are not necessarily
normal. In order to get a better analogy with perfect graphs, Körner and de Si-
mone [7] introduced a hereditary property by defining strongly normal graphs as
those normal graphs whose induced subgraphs are all normal. In terms of strongly
normal graphs the Normal Graph Conjecture is equivalent to the following:

Conjecture 3.2 (Strongly Normal Graph Conjecture [7]). A graph G is strongly
normal if and only if neither G nor its complement G contain any C5 or C7 as
induced subgraph.

The interest of this conjecture lies in the fact that it would immediately lead
to a polynomial time recognition algorithm for strongly normal graphs.
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Two-arc Transitive Near-polygonal Graphs

Sanming Zhou
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Abstract. For an integer m ≥ 3, a near m-gonal graph is a pair (Σ,E) con-
sisting of a connected graph Σ and a set E of m-cycles of Σ such that each
2-arc of Σ is contained in exactly one member of E, where a 2-arc of Σ is an
ordered triple (σ, τ, ε) of distinct vertices such that τ is adjacent to both σ
and ε. The graph Σ is called (G, 2)-arc transitive, where G ≤ Aut(Σ), if G
is transitive on the vertex set and on the set of 2-arcs of Σ. From a previous
study it arises the question of when a (G, 2)-arc transitive graph is a near
m-gonal graph with respect to a G-orbit on m-cycles. In this paper we answer
this question by providing necessary and sufficient conditions in terms of the
stabiliser of a 2-arc.

Mathematics Subject Classification (2000). Primary 05C25; Secondary 20B25.

Keywords. Symmetric graph, 2-arc transitive graph, near-polygonal graph,
3-arc graph construction, group action.

1. Introduction

We consider finite, undirected and simple graphs only. For a graph Σ = (V (Σ),
E(Σ)) and an integer s ≥ 1, an s-arc of Σ is a sequence (σ0, σ1, . . . , σs) of s + 1
vertices of Σ such that σi−1 and σi are adjacent for 1 ≤ i ≤ s and σi−1 �= σi+1 for
1 ≤ i ≤ s − 1. For an integer m ≥ 3, a near m-gonal graph [13] is a pair (Σ,E),
where Σ is a connected graph and E is a set of m-cycles of Σ, such that each
2-arc of Σ is contained in a unique member of E. Here and in the following by an
m-cycle we mean an undirected cycle of length m. In this case we also say that
Σ is a near m-gonal graph with respect to E, and we call cycles in E basic cycles
of (Σ,E). From the definition it follows that near m-gonal graphs are associated
with the Buekenhout geometries [3, 13] of the following diagram:

�
m � c �

Supported by a Discovery Project Grant (DP0558677) from the Australian Research Council and
a Melbourne Early Career Researcher Grant from The University of Melbourne.
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In such a geometry associated with (Σ,E), the maximal flags are those triples
(σ, e, C) such that σ ∈ V (Σ), e ∈ E(Σ) is incident with σ in Σ, and C is a member
of E containing e. A near m-gonal graph with girth m is called an m-gonal graph [7].
(The girth of a graph Σ is the length of a shortest cycle of Σ if Σ contains cycles, and
is defined to be ∞ otherwise.) In fact, the concept of a near-polygonal graph was
introduced [13] as a generalisation of that of a polygonal graph. As a simple exam-
ple, the (3-dimensional) cube together with its faces (taking as 4-cycles) is a 4-gonal
graph. There are exactly four 6-cycles in the cube with the property that no three
consecutive edges on the cycle belong to the same face; the cube together with these
four 6-cycles is a near 6-gonal graph. Another example is the well-known embed-
ding of the Petersen graph on the projective plane as the dual of K6, which together
with the six faces (taking as 5-cycles) is a near 5-gonal graph. The reader is referred
to [7, 8, 9, 10, 11, 12, 16, 17] and [13, 14] respectively for results, constructions
and more examples on polygonal graphs and near-polygonal graphs. For group-
theoretic notation and terminology used in the paper, the reader may consult [1, 2].

This paper was motivated by a recent study [19] where the author found
an intimate connection between near-polygonal graphs and a class of imprimitive
symmetric graphs with 2-arc transitive quotients. Let Γ be a graph and G a group.
If G acts on V (Γ) as a group of automorphisms of Γ such that G is transitive on
V (Γ) and, in its induced action, transitive on the set of s-arcs of Γ, then Γ is said
[1, 18] to be (G, s)-arc transitive. Usually, a 1-arc is called an arc and a (G, 1)-arc
transitive graph is called a G-symmetric graph. A G-symmetric graph Γ is said
to be imprimitive if G is imprimitive on V (Γ), that is, V (Γ) admits a partition
B such that 1 < |B| < |V (Γ)| and Bg ∈ B for any block B ∈ B and element
g ∈ G, where Bg := {σg : σ ∈ B}. In this case the quotient graph ΓB of Γ with
respect to this G-invariant partition B is defined to be the graph with vertex set
B such that two blocks B, C ∈ B are adjacent if and only if there exists at least
one edge of Γ between B and C. Denote by Γ(B) the set of vertices of Γ adjacent
to at least one vertex in B. In [19, Theorem 1.1] we proved that, if (Γ,B) is an
imprimitive G-symmetric graph with connected but non-complete ΓB such that
the subgraph (without including isolated vertices) induced by two adjacent blocks
B, C of B is a matching of |B| − 1 ≥ 2 edges and that Γ(C) ∩ B �= Γ(D) ∩ B for
different blocks C, D of B adjacent to B, then ΓB must be a (G, 2)-arc transitive
near m-gonal graph with respect to a certain G-orbit on m-cycles of ΓB, where
m ≥ 4 is an even integer. Moreover, any (G, 2)-arc transitive near m-gonal graph
(where m ≥ 4 is even) with respect to a G-orbit on m-cycles can occur as such
a quotient ΓB. Furthermore, the graph Γ can be reconstructed from ΓB by using
the 3-arc graph construction introduced in [6] by Li, Praeger and the author.
For more information about this construction, its extension and applications, see
[6, 20], [21, 22] and [4, 5, 19, 21], respectively.

The result above motivated us to ask when a (G, 2)-arc transitive graph is a
near m-gonal graph with respect to a G-orbit on m-cycles. In this paper we answer
this question by giving necessary and sufficient conditions in terms of the stabiliser
of a 2-arc.
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2. Main result

For a G-symmetric graph Σ and σ, τ, ε ∈ V (Σ), denote by Gστε the pointwise
stabiliser of {σ, τ, ε} in G, that is, the subgroup of G consisting of those elements
of G which fix each of σ, τ and ε. Denote by Σ(σ) the subset of vertices of Σ which
are adjacent to σ in Σ. For a subgroup H of G, let NG(H) denote the normalizer of
H in G. For a near m-gonal graph (Σ,E), define [13] Aut(Σ,E) to be the subgroup
of Aut(Σ) consisting of those elements g of Aut(Σ) which leave E invariant, that is,
Eg = E under the induced action of Aut(Σ) on the set of m-cycles of Σ. Note that,
for a near m-gonal graph (Σ,E) such that Σ is (G, 2)-arc transitive, G ≤ Aut(Σ,E)
holds if and only if E is a G-orbit on m-cycles of Σ [19, Lemma 2.6].

Theorem 1. Suppose that Σ is a connected (G, 2)-arc transitive graph, where G ≤
Aut(Σ). Let (σ, τ, ε) be a 2-arc of Σ and set H = Gστε. Then the following condi-
tions (a)-(c) are equivalent:
(a) there exist an integer m ≥ 3 and a G-orbit E on m-cycles of Σ such that

(Σ,E) is a near m-gonal graph;
(b) H fixes at least one vertex in Σ(ε) \ {τ};
(c) there exists g ∈ NG(H) such that (σ, τ)g = (τ, ε).

Moreover, if one of these conditions is satisfied, then G ≤ Aut(Σ,E) and G is
transitive on the maximal flags of the Buekenhout geometry associated with (Σ,E).

Proof. (a) ⇒ (b) Suppose that (Σ,E) is a near m-gonal graph for a G-orbit E
on m-cycles of Σ, where m ≥ 3. Let C(σ, τ, ε) = (σ, τ, ε, η, . . . , σ) be the basic
cycle containing the 2-arc (σ, τ, ε). Then we have η ∈ Σ(ε) \ {τ}. (Note that η
coincides with σ when m = 3.) We claim that η is fixed by H . Suppose other-
wise and let ηg �= η for some g ∈ H . Then, since E is a G-orbit on m-cycles of
Σ, (C(σ, τ, ε))g = (σ, τ, ε, ηg , . . . , σ) is a basic cycle containing (σ, τ, ε) which is
different from C(σ, τ, ε). This contradicts with the uniqueness of the basic cycle
containing a given 2-arc, and hence (b) holds.

(b) ⇒ (c) Suppose H fixes η ∈ Σ(ε) \ {τ}. Then we have H ≤ Gτεη. Since Σ
is (G, 2)-arc transitive, there exists g ∈ G such that (σ, τ, ε)g = (τ, ε, η) and hence
Gτεη = Hg. Therefore, Hg = H and g ∈ NG(H).

(c) ⇒ (a) Suppose that there exists g ∈ NG(H) such that (σ, τ)g = (τ, ε).
Set η := εg. Then η ∈ Σ(ε) \ {τ}, (σ, τ, ε)g = (τ, ε, η) and hence Gτεη = Hg = H .
Set σ0 = σ, σ1 = τ, σ2 = ε and σ3 = η, and set σ4 = σg

3 . Then σ4 ∈ Σ(σ3) \ {σ2}
and Gσ2σ3σ4 = (Gσ1σ2σ3)g = Hg = H . Now set σ5 = σg

4 , then similarly σ5 ∈
Σ(σ4) \ {σ3} and Gσ3σ4σ5 = (Gσ2σ3σ4)g = Hg = H . Continuing this process,
we obtain inductively a sequence σ0, σ1, σ2, σ3, σ4, σ5, . . . of vertices of Σ with the
following properties:

(1) σi = σg
i−1 for all i ≥ 1, and hence σi+1 ∈ Σ(σi)\{σi−1} for i ≥ 1 and σi = σgi

0

for i ≥ 0; and
(2) Gσi−1σiσi+1 = H for all i ≥ 1.

Since we have finitely many vertices in Σ, this sequence will eventually contain
repeated terms. Suppose σm is the first vertex in this sequence which coincides
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with one of the preceding vertices. Without loss of generality we may suppose that
σm coincides with σ0 for if σm = σi for some i ≥ 1 then we can begin with σi and
relabel the vertices in the sequence. Thus, we obtain an m-cycle

J := (σ0, σ1, σ2, σ3, σ4, . . . , σm−1, σ0)

of Σ. (It may happen that m = 3 if the girth of Σ is 3.) Let E denote the G-orbit
on m-cycles of Σ containing J . In the following we will prove that each 2-arc of Σ
is contained in exactly one of the “basic cycles” in E and hence (Σ,E) is indeed a
near m-gonal graph.

By the (G, 2)-arc transitivity of Σ, it is clear that each 2-arc (σ′, τ ′, ε′) of Σ
is contained in at least one member Jx of E, where x ∈ G is such that (σ′, τ ′, ε′) =
(σ, τ, ε)x. So it suffices to show that if two members of E have a 2-arc in common
then they are identical; or, equivalently, if Jx and J have a 2-arc in common then
they are identical.

Suppose then that Jx and J have a 2-arc in common for some x ∈ G. Note
that, for each i ≥ 0, gi maps each vertex σj to σj+i and so 〈g〉 leaves J invariant
(subscripts modulo m here and in the rest of this proof). So, replacing Jx by Jxgi

for some i if necessary, we may suppose without loss of generality that (σ0, σ1, σ2)
is a common 2-arc of Jx and J . Then (σ0, σ1, σ2) ∈ Jx implies that (σ0, σ1, σ2) =
(σi−1, σi, σi+1)x for some 1 ≤ i ≤ m. Thus, (σ0, σ1, σ2) = (σ0, σ1, σ2)gi−1x and
hence gi−1x ∈ H . From the properties (1)-(2) above, we then have σx

j+i−1 =

σgi−1x
j = σj for each vertex σj on J . That is, σx

j = σj−i+1 for each j and hence
Jx = J . Thus, we have proved that each 2-arc of Σ is contained in exactly one
member of E, and so (Σ,E) is a near m-gonal graph.

So far we have proved the equivalence of (a), (b) and (c). Now assume that one
of these conditions is satisfied, so that (Σ,E) is a near m-gonal graph for a G-orbit
E on m-cycles of Σ, where m ≥ 3. Clearly, we have G ≤ Aut(Σ,E). Let (α, e, C),
(α′, e′, C′) be maximal flags of the Buekenhout geometry associated with (Σ,E).
Denote e = {α, β}, e′ = {α′, β′}, C = (α, β, γ, . . . , α) and C′ = (α′, β′, γ′, . . . , α′).
Since Σ is (G, 2)-arc transitive there exists h ∈ G such that (α, β, γ)h = (α′, β′, γ′).
Hence αh = α′, eh = e′ and Ch = C′. That is, (α, e, C)h = (α′, e′, C′), and
thus G is transitive on the maximal flags of the Buekenhout geometry associated
with (Σ,E). �

3. Remarks

The proof above gives a procedure for generating the near m-gonal graph (Σ,E)
guaranteed by Theorem 1. Unfortunately, it does not tell us any information about
the relationship between m and the girth of Σ. Moreover, the basic cycles of (Σ,E)
are not necessarily induced cycles of Σ, that is, they may have chords. (See [19,
Example 3.3, Proposition 3.4] for an example of such graphs. A chord of a cycle
is an edge joining two non-consecutive vertices on the cycle.) Furthermore, from
[19, Lemma 2.6(e)] such basic cycles contain chords only when either Gτ is sharply
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2-transitive on Σ(τ) or Gστ is imprimitive on Σ(τ) \ {σ}, where σ, τ are adjacent
vertices of Σ, Gτ is the stabiliser of τ in G and Gστ is the pointwise stabiliser of
{σ, τ} in G.

It is hoped that Theorem 1 would be useful in constructing 2-arc transitive
near-polygonal graphs. In view of the 3-arc graph construction [6] and [19, Theorem
1.1], it would also be helpful in studying imprimitive G-symmetric graphs (Γ,B)
such that the subgraph (excluding isolated vertices) induced by two adjacent blocks
B, C of B is a matching of |B| − 1 ≥ 2 edges and that Γ(C) ∩ B �= Γ(D) ∩ B for
different blocks C, D of B adjacent to B. A sufficient condition was given in [19]
for a connected, non-complete, (G, 2)-arc transitive graph Σ of valency at least 3
to be a near m-gonal graph with respect to a G-orbit on m-cycles, where m ≥ 4
is even. It was shown in [19, Corollary 4.1] that this is the case if Gσ is sharply
2-transitive on Σ(σ) and one of the G-orbits on 3-arcs of Σ is self-paired. (A set
A of 3-arcs is called self-paired if (σ, τ, ε, δ) ∈ A implies (δ, ε, τ, σ) ∈ A.) Another
sufficient condition was given in [13, Theorem 2.2] for a connected, non-complete,
(G, 2)-arc transitive graph Σ to be a near m-gonal graph with respect to a G-orbit
on m-cycles, where m ≥ 4 is not necessarily even. Note that a near m-gonal graph
(Σ,E) is (G, 2)-arc transitive if and only if G is transitive on the maximal flags
of the Buekenhout geometry associated with (Σ,E). The “only if” part of this
statement was proved in the last paragraph of the proof of Theorem 1, and the
“if” part was part of [13, Theorem 1.8] and can be verified easily.

Finally, in the original definition [13] of a near m-gonal graph Σ, it was
required that the girth of Σ be at least 4 and subsequently m ≥ 4. In the definition
given at the beginning of the introduction, we removed this requirement since the
case of girth 3 is not entirely uninteresting when the graph is not 2-arc transitive.
Of course for 2-arc transitive graphs this case is not so interesting, because a
connected 2-arc transitive graph has girth 3 if and only if it is a complete graph
(see e.g. [19, Lemma 2.5]). This is perhaps the main reason [15] for requiring girth
≥ 4 in a near-polygonal graph in [13], since the research in the area is focused
on 2-arc transitive near-polygonal graphs. Recently, the author showed [23] that
every connected trivalent (G, 2)-arc transitive graph (other than K4) of type G1

2

are near polygonal with respect to two G-orbits on even cycles.
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Open Problems

Edited by U.S.R. Murty

This chapter contains open problems that were presented at the problem session
of the GT04 conference, complemented by several submitted later. Comments and
questions of a technical nature should be addressed to the poser of the problem.

Problem GT04-1: Superstrongly perfect graphs

B.D. Acharya
Department of Science and technology,
Government of India, New Mehrauli Road,
New Delhi – 110 016, India

e-mail: bdacharya@yahoo.com

A graph G is superstrongly perfect if every induced subgraph H possesses a minimal
dominating set that meets all the maximal complete subgraphs of H . Clearly, every
strongly perfect graph is superstrongly perfect, but not conversely.

Problem. Characterize superstrongly perfect graphs.

Problem GT04-2: Eulerian Steinhaus graphs

M. Augier S. Eliahou
EPFL, LMPA-ULCO,
Lausanne, Switzerland B.P. 699, F-62228 Calais cedex, France

e-mail: maxime.augier@epfl.ch e-mail: eliahou@lmpa.univ-littoral.fr

To every binary string s = x1x2 . . . xn−1 ∈ Fn−1
2 is associated a simple graph G(s)

on the vertex set {0, 1, . . . , n− 1}, whose adjacency matrix M = (ai,j)0≤i,j≤n−1 ∈
Mn(F2) satisfies ai,i = 0 for i ≥ 0, a0,i = xi for i ≥ 1, and ai,j = ai−1,j−1 + ai−1,j

for 1 ≤ i < j ≤ n−1. The graph G(s) is called the Steinhaus graph associated to s.

Problem. Is it true that an Eulerian Steinhaus graph is completely determined by
its vertex degree sequence?
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It is known that G(s) is connected unless s is the zero string 0 . . . 0. Denote
di = di(s) the degree of vertex i in G(s), and

d(s) = (d1, d2, . . . , dn)

the vertex degree sequence of G(s).
The example s1 = 010, s2 = 100 with d(s1) = d(s2) = (1, 2, 2, 1) shows that

d(s) alone does not determine s or G(s) in general.
A conjecture of Dymacek states that the only regular Steinhaus graphs are

those corresponding to the binary strings 1, 0 . . . 0, and 110110 . . .110, see [6]. In
[2], we investigate parity-regular Steinhaus graphs G(s), where the degrees di(s) all
have the same parity, even or odd. The even case corresponds to Eulerian Steinhaus
graphs, except for s = 0 . . . 0. Dymacek has shown that there are exactly 2�

n−1
3 −1

Eulerian Steinhaus graphs on n vertices [6].
In our study of parity-regular Steinhaus graphs, we came upon the observa-

tion that it is much harder in this context to find collisions, i.e., binary strings
s1 �= s2 ∈ Fn−1

2 with d(s1) = d(s2). The smallest collision in the parity-regular
case occurs at n = 26 and is unique in this size:

s1 = 0010101001111110010101001
s2 = 1101010110000001101010111 = s1 + 1111111111111111111111110

giving rise to the common degree sequence

d(s1)=d(s2)

=(13,15,9,9,13,13,17,11,9,19,9,9,11,11,9,9,19,9,11,17,13,13,9,9,15,13).

Up to n ≤ 50 vertices, we have found a total of 29 collisions in the parity-
regular case. They only occur if n ≡ 2 mod 4, namely at n = 26, 34, 38, 42, 46
and 50 (yes, 30 is missing), and they all satisfy s1 + s2 = 11 . . . 10. We conjecture
in [2] that these properties always hold.

Finally, in these 29 instances, all vertex degrees turn out to be odd. Thus, up
to n ≤ 50 vertices, there are no collisions s1 �= s2 where all degrees in d(s1) = d(s2)
are even.

In other words, Eulerian Steinhaus graphs G(s) are completely determined
by their degree sequence d(s) ∈ Nn for n ≤ 50. Does this remain true for n ≥ 51?

Problem GT04-3: Edge-disjoint paths in planar graphs with a fixed number
of terminal pairs

C. Bentz
CEDRIC, CNAM, Paris, France

e-mail: cedric.bentz@cnam.fr

Input: An undirected planar graph G, a list of k pairs of terminal vertices (source
si, sink ti), k being a fixed integer.
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Problem. Find in
⋃

i Pi a maximum number of edge-disjoint paths (i.e., edge-
disjoint in G), where, for each i, Pi is the set of elementary paths linking si to
ti in G.

If the graph is not planar, the problem is NP-hard, even for k = 2 [7]. If
k is not fixed, the problem is NP-hard even in outerplanar graphs [9]. Moreover,
in general graphs, the problem is tractable if the maximum degree is bounded
or if we allow only one path between si and ti for each i (in this case, one can
solve the problem by solving a constant number of instances of the edge-disjoint
paths problem and using the algorithm given in [13]). When k = 2 and adding
the 2 edges (s1, t1) and (s2, t2) to G does not destroy planarity, the problem is
polynomial-time solvable [11].

Problem GT04-4: Shortest alternating cycle

M.-C. Costa, D. de Werra,
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: costa@cnam.fr e-mail: dewerra.ima@epfl.ch

C. Picouleau B. Ries
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: chp@cnam.fr e-mail: bernard.ries@epfl.ch

The decision problem SAC (Shortest Alternating Cycle) is formally defined as
follows:
Instance: A graph G = (V, E) and a positive integer L ≤ |V |.
Question: Is there a maximum matching M and an even cycle C with |C| ≤ L and
|C ∩M | = 1

2 |C| ?
Problem. Determine the complexity status of SAC.

The complexity status of SAC is unknown even if G is a 3-regular bipartite
graph. Notice that the problem SAC becomes solvable in polynomial time if either
a cycle C or a perfect matching M is given.

Problem GT04-5: Edge 3-coloration of Kmn with pre-specified colored degrees

M.-C. Costa, D. de Werra,
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: costa@cnam.fr e-mail: dewerra.ima@epfl.ch

C. Picouleau B. Ries
CEDRIC, CNAM, Paris, France EPFL, Lausanne, Suisse
e-mail: chp@cnam.fr e-mail: bernard.ries@epfl.ch

Let G = (X, Y, E) = Kmn be the complete bipartite graph with X = {x1, . . . , xm}
and Y = {y1, . . . , yn}. Let L1 = (a1, . . . , am), L2 = (b1, . . . , bm), R1 = (c1, . . . , cn)
and R2 = (d1, . . . , dn) be four sequences of nonnegative integers such that ai+bi ≤
n, i = 1, . . . , m and ci + di ≤ m, i = 1, . . . , n.
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The goal is to find a partition E1, E2, E3 of the edge set E such that:
• δG1(xi) = ai, i = 1, . . . , m and δG1(yi) = ci, i = 1, . . . , n
• δG2(xi) = bi, i = 1, . . . , m and δG2(yi) = di, i = 1, . . . , n
• δG3(xi) = n− ai − bi, i = 1, . . . , m and δG3(yi) = m− ci − di, i = 1, . . . , n

Here δGi(z) denotes the degree of the vertex z in the partial graph

Gi = (X, Y, Ei), i = 1, 2, 3.

Problem. Determine the complexity status of this problem.

This problem can be seen as a special case of a two-commodity integral flow
problem in a complete bipartite network, for which the complexity status is also
unknown. The problem can also be seen as the three-colored matrix reconstruction
problem well known in discrete tomography.

Problem GT04-6: List matrix partition

T. Feder P. Hell
268 Waverley St. Palo Alto, Simon Fraser University,
CA 94301, USA Burnaby, B.C., Canada, V5A 1S6
e-mail: tomas@theory.stanford.edu e-mail: pavol@cs.sfu.ca

Problem. Find a polynomial time algorithm for the following decision problem:
Given a complete graph with edges labeled by 1,2,3, can the vertices be labeled,
also by 1,2,3, so that there is no monochromatic edge (i.e., an edge labeled by i
whose both ends are also labeled by i)?

The best-known algorithm, due to T. Feder, P. Hell, D. Kral and J. Sgall [8]
has the (subexponential) complexity O(nlog n/ log log n), indicating the problem is
unlikely to be NP-complete.

In [5], the authors define a problem of partitioning a given graph into four
parts with certain constraints. That problem also turned out to be difficult to
classify, and the authors have dubbed it the ‘stubborn’ problem. The problem
described here is a relative of the stubborn problem (they can be shown to be
polynomially equivalent). In particular, the algorithm of Feder, Hell, Kral and
Sgall mentioned above also solves the stubborn problem in time O(nlog n/ log log n).

Problem GT04-7: A point-line configuration

Harald Gropp
Mühlingstr. 19, D-69121 Heidelberg, Germany
e-mail: d12@ix.urz.uni-heidelberg.de

A configuration v6 is a finite incidence structure of v points and v lines such that
each line consists of 6 points, there are 6 lines through each point, and two different
points are connected by at most one line.
Problem. Does a configuration 336 exist ?
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This is the last unsettled case after the construction of a configuration 346

by Krčadinac in 2004. The configuration 316 is the projective plane of order 5; a
configuration 326 does not exist; for all other values of v ≥ 34 a configuration v6

exists.

Problem GT04-8: Graph partitioning

M. Haviv E. Korach
Department of Statistics, Department of Industrial Engineering

and Management,
The Hebrew University of Jerusalem, Ben-Gurion University of the Negev,
Israel Israel
e-mail: haviv@mscc.huji.ac.il e-mail: korach@bgumail.bgu.ac.il

Problem. Given an undirected graph G = (V, E), a constant δ and a positive
integral weight function ω on E where, ωs,t is the weight of the edge (s, t), find a
partition V = (J(1), . . . , J(q)) of the vertices of G into q subsets such that q is as
large as possible and

max
1≤i≤q

max
s∈J(i)

∑
1≤j≤q

j �=i

∑
t∈J(j)

ωs,t ≤ δ,

i.e., a partition such that for every vertex v in G, the sum of the weights of the
edges connecting v with vertices that are not in the same part of the partition as
v, is at most δ.

It is known that the analogous problem for directed graph is NP-hard [10]. A
motivation for this problem comes from the subject of partitioning Markov chains.
A related problem was defined and solved polynomially in [10].

Problem GT04-9: Number of independent sets in multicolorings

Dániel Marx
Dept. of Computer Science and Information Theory
Budapest University of Technology and Economics
H-1521 Budapest, Hungary
e-mail: dmarx@cs.bme.hu

Multicoloring is a generalization of ordinary vertex coloring. A graph G(V, E) is
given with integer weights w : V → N on the vertices. A multicoloring is a function
Ψ : V → 2N that assigns w(v) colors to each vertex v in such a way that adjacent
vertices receive disjoint sets of colors. The goal is to minimize the number of colors
used. Clearly, ordinary vertex coloring is the special case where every weight is 1.

Another way to look at a multicoloring is to consider it as a collection of
independent sets. This implies an integer linear programming formulation. Let A
be a matrix where the rows correspond to the vertices of G and the columns are
the incidence vectors of the maximal independent sets. Let w be a vector whose
elements correspond to the weights of the vertices. The optimum of the following
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integer linear program determines the minimum number of colors required by a
multicoloring:

min 1� · x
Ax ≥ w

The length of the vector x can be exponential in the size of the graph. However,
if the graph is perfect, then it is well known that there is an optimum solution x
with at most |V | non-zero components. But what can we say about the number of
non-zero components if the graph is not perfect?
Problem. Is it true that for every multicoloring problem there is an optimum
solution with a polynomial (or even linear) number of independent sets?

The following example shows that if the graph is not perfect, then we may
need more than |V | independent sets for a solution. Consider the complement of
the following graph G:

22

2 222

2 2

2
3 3

The graph G has 11 vertices and 12 maximal independent sets, each of size
2. It is not difficult to show that the only way to satisfy the weights shown on the
figure is to select each of these 12 independent sets once.

The significance of the problem comes from the fact that it is not known
whether the multicoloring problem is in the complexity class NP. The multicoloring
itself is not a good certificate, since the weights can be exponentially large, and the
color sets cannot be described in polynomial size. However, if we can prove that a
polynomial number of independent sets is always sufficient for the multicoloring,
then this implies that the problem is in NP.

Paul Seymour observed that if G is the complement of a triangle-free graph,
then a linear number of independent sets are always sufficient. In this case the
maximal independent sets of G are the edges of G (as in the example). If the
independent sets of a solution form an even cycle in G, then the solution can
be simplified by alternately increasing and decreasing the multiplicities of the
independent sets in the cycle. Thus the solution corresponds to an even-cycle-free
subgraph of G, which has a linear number of edges.

Problem GT04-10: Geodesic convexity

Ignacio M. Pelayo
Departament de Matemàtica Aplicada III,
Universitat Politècnica de Catalunya,
Barcelona, Spain
e-mail: ignacio.m.pelayo@upc.edu
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Given vertices u, v in a connected graph G, the geodetically closed interval I[u, v]
is the set of vertices of all u−v shortest paths. For S ⊆ V , the geodetic closure I[S]
of S is the union of all geodetically closed intervals I[u, v] over all pairs u, v ∈ S,
i.e., I[S] =

⋃
u,v∈S I[u, v]. A vertex set S is called convex if I[S] = S. The smallest

convex set containing S is denoted [S] and is called the convex hull of S. A non-
empty set A ⊆ V is called a hull set if [A] = V , and it is said to be geodetic if
moreover I[A] = V .

The eccentricity of a vertex u ∈ V (G) is defined as ecc
G
(u)=max{d(u,v) | v∈

V (G)}. A vertex v ∈ V is called a contour vertex of G if no neighbor vertex of v
has an eccentricity greater than ecc(v). The contour Ct(G) of G is the set all of
its contour vertices:

Ct(G) = {v ∈ V | ecc(u) ≤ ecc(v), ∀u ∈ N(v)}.

A set of vertices S is called redundant if [S] =
⋃

a∈S[S − a], and irredundant
otherwise. The Carathéodory number c = c(G) is the maximum cardinality of
an irredundant set. A set of vertices S is called exchange-dependent if [S − x] ⊆⋃

a∈S−x[S − a] for all x ∈ S, and exchange independent otherwise. The exchange
number, e = e(G), is the maximum cardinality of an exchange independent set [15].

Problem 1. Is it true that I2[Ct(G)] = V (G) for every connected graph G?

It was proved in [3] that the contour of every graph is a hull set. It was shown
in [4], firstly, that the contour of every chordal graph is geodetic, and secondly,
that this statement is not true for every graph. We know of no example of a graph
G having a contour whose geodetic closure is not geodetic.

Problem 2. Is it true that I[Ct(G)] = V (G) for every bipartite graph G?

It was shown in [4], that the contour of every chordal graph is geodetic, that
the contour of every distance hereditary graph is geodetic, and that this statement
is not true for every perfect graph.We know of no example of a bipartite graph G
whose contour be not geodetic.

Problem 3. Is it true that e−1≤c≤e hold in general for every connected graph G?

In [14], G. Sierksma proved that, for every convexity space, e − 1 ≤ c. We
know of no example of a graph G for which c(G) > e(G) when considering the
geodesic convexity.

Problem GT04-11: Partition into closed trails

J.L. Ramı́rez Alfonśın
Université Pierre et Marie Curie, Paris 6,
Equipe Combinatoire et Optimisation – Case 189,
4 Place Jussieu Paris 75252 Cedex 05, France

e-mail: ramirez@math.jussieu.fr
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Let H be a family of graphs consisting of mi graphs Hi for i = 1, . . . , l. A decompo-
sition of a graph G intoH is a partition of the edges of G into

∑l
i=1 mi edge-disjoint

subgraphs such that mi of which are isomorphic to Hi for each i = 1, . . . , l.

Problem 1. Let a1, . . . , am, n be positive integers. If n is odd and a1 + · · ·+ am =
n(n−1)

2 (respectively, if n is even and a1 + · · · + am = n(n−2)
2 ), 3 ≤ ai ≤ n, does

there exist a decomposition of Kn into Ta1 , . . . , Tam (respectively, a decomposition
of Kn−F into Ta1 , . . . , Tam) where Kn−F denote the complete graph on n vertices
from which a 1-factor has been removed and Tai is any closed trail of length ai [12]?

The above question is a weaker version of Alspach’ conjecture [1] in which
each closed trail Tai is replaced by a cycle of length ai.
Consider the following two questions, see [12]:

Input: Paths Pa1 , . . . , Pam with
∑m

i=1 ai = n(n−1)
2 .

Question: Does there exist a decomposition of Kn into Pa1 , . . . , Pam?

Input: Rooted trees Ta1 , . . . , Tam with
∑m

i=1 ai = n(n−1)
2 and m ≤ n.

Question: Does there exist a rooted decomposition of Kn into Ta1 , . . . , Tam (that
is, the root of each tree Tai starts at different vertex of Kn)?

Problem 2. Are these questions decidable in polynomial time?
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[12] J.L. Ramı́rez Alfonśın, Topics in Combinatorics and Computational Complexity,
D.Phil. Thesis, University of Oxford, U.K., (1993).

[13] N. Robertson and P.D. Seymour, Graphs minors XIII: The disjoint paths problem,
J. Comb. Theory, Ser. B, 63 (1995) 65–110.

[14] G. Sierksma, Relationships between Carathéodory, Helly, Radon and exchange num-
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