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Introduction

‘I never heard of “Uglification,”
Alice ventured to say. ‘What is

it?’ ’

Lewis Carroll,
“Alice in Wonderland”

Subject and motivation. The present book is devoted to a theory of mul-
tipliers in spaces of differentiable functions and its applications to analysis,
partial differential and integral equations. By a multiplier acting from one
function space S1 into another S2, we mean a function which defines a bounded
linear mapping of S1 into S2 by pointwise multiplication. Thus with any pair
of spaces S1, S2 we associate a third one, the space of multipliers M(S1 → S2)
endowed with the norm of the operator of multiplication. In what follows, the
role of the spaces S1 and S2 is played by Sobolev spaces, Bessel potential
spaces, Besov spaces, and the like.

The Fourier multipliers are not dealt with in this book. In order to empha-
size the difference between them and the multipliers under consideration, we
attach Sobolev’s name to the latter. By coining the term Sobolev multipliers
we just hint at various spaces of differentiable functions of Sobolev’s type,
being fully aware that Sobolev never worked on multipliers. After all, Fourier
never did either.

Sobolev multipliers arise in many problems of analysis and theories of par-
tial differential and integral equations. Coefficients of differential operators can
be naturally considered as multipliers. The same is true for symbols of more
general pseudo-differential operators. Multipliers also appear in the theory
of differentiable mappings preserving Sobolev spaces. Solutions of boundary
value problems can be sought in classes of multipliers. Because of their al-
gebraic properties, multipliers are suitable objects for generalizations of the
basic facts of calculus (theorems on implicit functions, traces and extensions,
point mappings and their compositions etc.) Moreover, some basic operators

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 1
Grundlehren der mathematischen Wissenschaften 337,
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2 Introduction

of harmonic analysis, like the classical maximal and singular integral opera-
tors, act in certain classes of multipliers.

We believe that the calculus of Sobolev multipliers provides an adequate
language for future work in the theory of linear and nonlinear differential and
pseudodifferential equations under minimal restrictions on the coefficients,
domains, and other data.

Before the 1970s, the word multiplier was usually associated with the
name of Fourier, and a deep theory of Lp-Fourier multipliers created by
Marcinkiewicz, Mikhlin, Hörmander et al was quite popular. As for the multi-
pliers preserving a space of differentiable functions, only a few isolated results
were known (Devinatz and Hirschman [DH], Hirschman [Hi1], [Hi2], Strichartz
[Str], Polking [Pol1], Peetre [Pe2]), while the multipliers in pairs of such spaces
were not considered at all.

The first (and the only one for the time being) attempt to work out a more
or less comprehensive theory of multipliers acting either in one or in a pair
of spaces of Sobolev type was undertaken by the authors in the late 1970s
and early 1980s [Maz10], [Maz12], [MSh1]–[MSh16]. Results of that theory
were collected in our monograph “Theory of Multipliers in Spaces of Differ-
entiable Functions” (Pitman, 1985) [MSh16]. During the last two decades, we
continued to work in the area, adding new results and developing further ap-
plications [Sh2]–[Sh14], [MSh17]–[MSh23]. We wish to reflect the present state
of our theory in this book. An essential part of the aforementioned monograph
is also included here.

No results concerning multipliers in spaces of analytic functions are men-
tioned in what follows, in contrast to [MSh16]. To describe progress in this
area achieved during the last twenty five years would require a disproportion-
ate growth of the book.

Structure of the book. The book consists of two parts. Part I is devoted to
the theory of multipliers and covers the following topics:

• Trace inequalities
• Analytic characterization of multipliers
• Relations between spaces of Sobolev multipliers and other function spaces
• Maximal subalgebras of multiplier spaces
• Traces and extensions of multipliers
• Essential norm and compactness of multipliers
• Miscellaneous properties of multipliers (spectrum, composition and im-

plicit function theorems, point mappings preserving Sobolev spaces, etc.)

In Part II we dwell upon several applications of this theory. Their list is
as follows:

• Continuity and compactness of differential operators in pairs of Sobolev
spaces

• Multipliers as solutions to linear and quasilinear elliptic equations
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• Higher regularity in the single and double layer potential theory for
Lipschitz domains

• Regularity of the boundary in Lp-theory of elliptic boundary value prob-
lems

• Singular integral operators in Sobolev spaces

Each chapter starts with a short introductory outline of the included
material.

Readership. The volume is addressed to mathematicians working in func-
tional analysis and in the theories of partial differential, integral, and pseudo-
differential operators. Prerequisites for reading this book are undergraduate
courses in these subjects.

Acknowledgments. V. Maz’ya was partially supported by the Na-
tional Science Foundation (Grant DMS-0500029, USA) and EPSRC (Grant
EP/F005563/1, UK). T. Shaposhnikova gratefully acknowledges support from
the Swedish Natural Science Research Council (VR).



1

Trace Inequalities for Functions in Sobolev
Spaces

In this chapter we characterize the best constant C in the so-called trace
inequality (∫

|∇lu|pdµ
)1/p

≤ C ‖u‖W m
p
, u ∈ C∞

0 , (1.0.1)

with an arbitrary measure µ on the left-hand side. When the domain is not
indicated in the notation of a space or a norm, then it is assumed to be R

n.
Another variant of (1.0.1) will be with Wm

p replaced by wm
p . Here W k

p and wk
p

are completions of the space C∞
0 with respect to the norms ‖∇ku‖Lp

+ ‖u‖Lp

and ‖∇ku‖Lp
,∇k = {∂k/∂xα1

1 · · · ∂xαn
n }. Two-sided estimates for C are given

in different terms for p = 1 (Sect. 1.1) and for p ∈ (1,∞) (Sect. 1.2). The last
Sect. 1.3 concerns the case of p on the left-hand side of (1.0.1) replaced by
q 	= p.

In what follows, we denote by c, c1, c2 various positive constants which
depend only on m, l, p, n and similar parameters. The values a and b are
called equivalent (a ∼ b) if

c1 a ≤ b ≤ c2 a.

Here and henceforth Ω is an open set in R
n and C∞

0 (Ω) is the space of
infinitely differentiable functions with compact supports in Ω, and Br(x) =
{y ∈ R

n : |y − x| < r}, Br = Br(0).

1.1 Trace Inequalities for Functions in wm
1 and W m

1

We start with the results concerning p = 1 obtained in [Maz11], see also
[Maz14], Sect. 1.4.

1.1.1 The Case m = 1

The following lemma gives a representation of the n-dimensional variation of
a function as an integral of the area of a level surface.

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 7
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8 1 Trace Inequalities for Functions in Sobolev Spaces

Lemma 1.1.1. Let u ∈ C∞(Ω) and let

Nt = {x ∈ Ω : |u(x)| ≥ t}.

Then ∫

Ω

|∇u(x)|dx =
∫ ∞

0

s(Ω ∩ ∂Nt)dt, (1.1.1)

where s is the (n−1)-dimensional area (It is well known that ∂Nt is a smooth
(n− 1)-dimensional manifold for almost all t > 0, see [Mo].)

For more general classes of functions, (1.1.1) was proved in [Kr] for n = 2
and in [Fe1].

We give a simple proof of (1.1.1) for u ∈ C∞(Ω).

Proof. Let w = (w1, · · · , wn), wj ∈ C∞
0 (Ω). Integrating by parts, we obtain

∫

Ω

w∇u dx =
∫

Ω

u div w dx = −
∫

u>0

u div w dx−
∫

u<0

u div w dx.

From the definition of the Lebesgue integral we get
∫

u>0

u div w dx =
∫ ∞

0

dt

∫

u>t

div w dx.

For almost all t > 0
∫

u>t

div w dx = −
∫

u=t

wν ds = −
∫

u=t

w∇u
|∇u| ds,

where ν is the inward normal to {x : u(x) ≥ t}. Therefore
∫

u>0

u div w dx = −
∫ ∞

0

∫

u=t

w∇u
|∇u| ds dt.

The transformation of the integral
∫

u<0

u div w dx

is quite similar. Thus,
∫

Ω

w∇u dx =
∫ ∞

0

dt

∫

Ω∩∂Nt

w∇u
|∇u| ds.

In this identity, we set

w = ϕj
∇u

(|∇u|2 + j−1)1/2
,
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where j = 1, 2, · · · and {ϕj} is a non-decreasing sequence of nonnegative
functions in C∞

0 (Ω), convergent to one in Ω. Then
∫

Ω

ϕj
(∇u)2dx

(|∇u|2 + j−1)1/2
=
∫ ∞

0

dt

∫

Ω∩∂Nt

ϕj |∇u|ds
(|∇u|2 + j−1)1/2

.

Passing to the limit as j →∞ and using the monotone convergence theorem,
we obtain (1.1.1). The proof is complete. ��

Corollary 1.1.1. Let u ∈ C∞(Ω) and let Φ be a nonnegative lower semi-
continuous function on Ω. Then

∫

Ω

Φ(x)|∇u(x)| dx =
∫ ∞

0

dt

∫

Ω∩∂Nt

Φ(x)dsx.

Proof. The result follows from the chain of identities:
∫

Ω

Φ(x)|∇u(x)|dx =
∫ ∞

0

∫

Φ(x)>ρ

|∇u(x)| dx dρ

=
∫ ∞

0

∫ ∞

0

s({x ∈ ∂Nt : Φ(x) > ρ})dρ dt

=
∫ ∞

0

dt

∫

Ω∩∂Nt

Φ(x)dsx.

��

Formula (1.1.1) leads to a relation between the estimate
∫
|u| dµ ≤ C‖∇u‖L1 , u ∈ C∞

0 , (1.1.2)

and an isoperimetric inequality. Namely, we have the following assertion.

Lemma 1.1.2. The exact constant C in (1.1.2) is equal to

sup
g

µ(g)
s(∂g)

, (1.1.3)

where g is any open set in R
n with compact closure and smooth boundary.

Proof. We have
∫
|u| dµ =

∫ ∞

0

µ(Nt) dt ≤ sup
g

µ(g)
s(∂g)

∫ ∞

0

s(∂Nt) dt,

which, together with Lemma 1.1.1, gives the upper bound for C.
Let δ(x) = dist(x, g) and gt = {x : δ(x) < t}. It is well known that there

exists a small ε > 0 such that the surface ∂gt is smooth for t ≤ ε. We substitute
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the function uε(x) = α[δ(x)], where α ∈ C∞([0,∞)) and α(0) = 1, α(t) = 0
for t > ε, into (1.1.2). According to Corollary 1.1.1,

∫
|∇uε| dx =

∫ ε

0

α′(t)s(∂gt) dt.

Since s(∂gt)→ s(∂g) as t→ +0, it follows that
∫
|∇uε| dx→ s(∂g). (1.1.4)

Also, ∫
|uε| dµ ≥ µ(g). (1.1.5)

Combining (1.1.4), (1.1.5) and (1.1.2), we obtain µ(g) ≤ Cs(∂g).

The following more general assertion, which will be used in Sect. 5.1.1, is
proved in the same way.

Proposition 1.1.1. The best constant C in
∫
|u| dµ ≤ C‖Φ∇u‖L1 ,

where Φ ∈ C(Rn) and u is an arbitrary function in C∞
0 (Rn), is equal to

sup
g

µ(g)∫

∂g

Φ(x)dsx

.

Here g is any open set in R
n with compact closure, bounded by a smooth

surface, as in Lemma 1.1.2.

Further, we prove that

sup
g

µ(g)
s(∂g)

∼ sup
x∈Rn,r>0

r1−nµ(Br(x)). (1.1.6)

With this aim in view, we present certain known auxiliary assertions. We
start with the formulation of the classical Besicovitch covering theorem (see
[Guz]).

Lemma 1.1.3. Let E be a bounded set in R
n and let Br(x)(x) be a ball with

r(x) > 0 and x ∈ E. By L we denote the totality of these balls. Then one can
choose a sequence of balls {B(m)} from L such that

(i) E ⊂
⋃

m B(m);
(ii) there exists a number N , depending only on the dimension of the space,

such that every point of the space belongs to at most N balls from {B(m)};
(iii) the balls (1/3)B(m) are disjoint.

We present one more well-known geometric lemma (see [Fe2]).
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Lemma 1.1.4. Let g be an open subset of R
n with a smooth boundary such

that
2mesn(Br ∩ g) = mesn(Br).

Then
s(Br ∩ ∂g) ≥ cnr

n−1,

where cn is a positive constant depending only on n.

Proof. Let χ and ψ be characteristic functions of the sets g ∩ Br and Br\g.
For any vector z 	= 0 we introduce the projection mapping pz onto a (n− 1)-
dimensional subspace orthogonal to z. By Fubini’s theorem,

(1/4)
(
mesn(B1)rn

)2 = mesn(g ∩ Br)mesn(Br\g)

=
∫ ∫

χ(x)ψ(y)dxdy =
∫ ∫

χ(x)ψ(x+ z)dzdx

=
∫

|z|≤2r

mesn({x : x ∈ Br ∩ g, (x+ z) ∈ Br\g})dz.

Since any segment which joins x ∈ g ∩ Br with (x + z) ∈ Br\g intersects
Br ∩ ∂g, the last integral does not exceed

2r
∫

|z|≤2r

mesn−1[ pz(Br ∩ ∂g)]dz ≤ (2r)n+1mesn(B1) s(Br ∩ ∂g).

The result follows. ��

The following covering lemma is due to Gustin [Gus]. We give here the
proof found by Federer [Fe2].

Lemma 1.1.5. Let g be a bounded open subset of R
n with smooth boundary.

There exists a covering of g by a sequence of balls with radii ρi, i = 1, 2, · · · ,
such that ∑

j

ρn−1
j ≤ c s(∂g), (1.1.7)

where c is a constant which depends only on n.

Proof. Each point x ∈ g is the center of a ball Br(x) for which

mesn(Br(x) ∩ g)
mesn(Br(x))

=
1
2
. (1.1.8)

(This ratio is a continuous function of r equal to 1 for small r and tending
to zero as r →∞.) By Lemma 1.1.3, there exists a sequence of disjoint balls
Brj

(xj) for which

g ⊂
∞⋃

j=1

B3rj
(xj).
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From Lemma 1.1.4 and (1.1.8) we get

s(Brj
(xj) ∩ ∂g) ≥ cnr

n−1
j .

Therefore

s(∂g) ≥
∑

j

s(Brj
(xj) ∩ ∂g) ≥ 31−ncn

∑
j

(3rj)n−1.

Thus, {Brj
(xj)} is the required covering. ��

Corollary 1.1.2. The best constant in (1.1.2) is equivalent to

K = sup
x∈Rn,r>0

r1−nµ(Br(x)).

Proof. By Lemma 1.1.2, it is sufficient to show that µ(g) ≤ c Ks(∂g) for any
admissible set g. Let {Bρj

(xj)} be a covering of g constructed in Lemma 1.1.5.
It is clear that

µ(g) ≤
∑

j

µ(Bρj
(xj)) ≤ K

∑
j

ρn−1
j ≤ c K s(∂g).

The proof is complete. ��

1.1.2 The Case m ≥ 1

Theorem 1.1.1. Let m and l be integers with m ≥ l ≥ 0. Then the best
constant in ∫

|∇lu| dµ ≤ C‖u‖wm
1
, u ∈ C∞

0 , (1.1.9)

is equivalent to
K = sup

x∈Rn,r>0
rm−l−nµ(Br(x)). (1.1.10)

Proof. (i) We start with the estimate C ≥ c K, setting

u(ξ) = (x1 − ξ1)l ϕ(r−1(x− ξ))

in (1.1.9), where ϕ ∈ C∞
0 (B2) and ϕ = 1 on B1. Since

∫
|∇lu|dµ ≥ l!µ(Br(x)), ‖∇mu‖L1 = c rn−m+l,

it follows that C ≥ c K.
(ii) Now we establish the estimate C ≤ c K. Let us start with the case

l = 0. We have
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∫
|u| dµ(x) = c

∫ ∣∣∣∣
∫

(ξ − x)∇ξu(ξ)
|ξ − x|n dξ

∣∣∣∣ dµ(x) ≤ c

∫
|∇u| g dx, (1.1.11)

where

g(x) =
∫

dµ(y)
|x− y|n−1

.

We argue by induction on m. For m = 1 the result is contained in Corollary
1.1.2. The last integral in (1.1.11) does not exceed

c sup
x∈Rn,r>0

(
rm−n−1

∫

Br(x)

g(ξ)dξ
)
‖∇u‖wm−1

1
.

Clearly,
∫

Br(x)

g(ξ)dξ =
∫

Br(x)

dξ

∫

B2r(x)

|ξ − σ|1−ndµ(σ)

+
∫

Br(x)

dξ

∫

Rn\B2r(x)

|ξ − σ|1−ndµ(σ).

The first integral on the right-hand side is majorized by c rµ(B2r(x)) and
the second one is not greater than

c rn

∫

Rn\B2r(x)

|x−σ|1−ndµ(σ) = c (n−1)rn

∫ ∞

2r

µ{σ : 2r ≤ |x−σ| < t}t−ndt.

Thus
rm−n−1

∫

Br(x)

g(ξ) dξ ≤ c sup
x∈Rn,r>0

rm−nµ(Br(x)).

For l ≥ 1 the result follows by induction. ��

Remark 1.1.1. It is clear that for m − l > n the finiteness of (1.1.10) means
that µ = 0. In the case m− l = n, the value (1.1.10) is equal to µ(Rn).

We give an analogue of Theorem 1.1.1 for the space Wm
1 .

Theorem 1.1.2. Let m and l be integers, m ≥ l ≥ 0. Then the best con-
stant in ∫

|∇lu| dµ ≤ C‖u‖W m
1
, u ∈ C∞

0 , (1.1.12)

is equivalent to
K = sup

x∈Rn,r∈(0,1]

rm−l−nµ(Br(x)). (1.1.13)

Proof. The estimate C ≥ c K is obtained in precisely the same way as the
analogous one in Theorem 1.1.1. To prove the converse inequality, we introduce
a partition of unity {ϕj}i≥1 subordinate to the covering of R

n by unit balls



14 1 Trace Inequalities for Functions in Sobolev Spaces

with centers in nodes of a sufficiently small coordinate grid. We apply Theorem
1.1.1 to the integral ∫

|∇l(ϕju)|dµj ,

where µj is the restriction of µ to the support of the function ϕj . Then
∫
|∇lu|dµ ≤

∑
j

∫
|∇l(ϕju)|dµj ≤ c K

∑
j

‖ϕju‖wm
1

≤ c K‖u‖W m
1
.

��

Remark 1.1.2. Obviously, in the case m−l ≥ n the value K defined in (1.1.13)
is equal to

sup
x∈Rn

µ(B1(x)).

1.2 Trace Inequalities for Functions in wm
p and W m

p ,
p > 1

1.2.1 Preliminaries

In this and subsequent chapters we often use operators of the form

k(D) = F−1k(ξ)F,

where F is the Fourier transform in R
n and k is a function or a vector-

valued function which is called the symbol. In particular, D = −i∇ and
Dα = (−i)|α|∂xα1

1 · · · ∂xαn
n .

The following assertion is a variant of the Mikhlin theorem on Fourier
multipliers (see [Liz]).

Lemma 1.2.1. Let the function k and its derivatives ∂mk/∂ξj1 · · · ∂ξjm
,

where 0 ≤ j1 + · · · + jm = m ≤ n and j1, · · · , jm are distinct, be continuous
on the set {ξ ∈ R

n : ξ1 · · · ξn 	= 0} and let
∣∣∣∣ξj1 · · · ξjm

∂mk

∂ξj1 · · · ∂ξjm

∣∣∣∣ ≤ const. (1.2.1)

Then the operator k(D) is continuous in Lp, p ∈ (1,∞).
In particular, the singular integral operator with a symbol k ∈ Cn(Rn\0)

is continuous in Lp.

In what follows, the operators (−∆)r/2 and (1 −∆)s/2 with the symbols
|ξ|r and (1 + |ξ|2)s/2, r > −n, s ∈ R

1, play an important role.
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Lemma 1.2.2. Let 1 = 1, 2, · · · , p ∈ (1,∞). There exists a constant c > 1,
depending only on n, p, l, such that

c−1‖(−∆)l/2u‖Lp
≤ ‖∇lu‖Lp

≤ c ‖(−∆)l/2u‖Lp
(1.2.2)

for all u ∈ C∞
0 .

Proof. Let α be a multi-index of order l. Then

F−1ξαFu = F−1ξα|ξ|−l|ξ|lFu.

The function ξα|ξ|−l satisfies the condition of Lemma 1.2.1 which implies the
right inequality in (1.2.2). Also,

|ξ|l = |ξ|2l|ξ|−l =
(∑
|α|=l

cαξ
αξα

)
|ξ|−l,

where cα = l!/α!. Therefore,

F−1|ξ|lFu =
∑
|α|=l

cαF
−1 ξ

α

|ξ|l ξ
αFu.

Applying Lemma 1.2.1 once again, we obtain the left part of (1.2.2). ��

The following assertion has a similar proof.

Lemma 1.2.3. Let l = 1, 2, · · · , p ∈ (1,∞). There exists a constant c > 1,
depending only on n, p, l, such that

c−1‖(1−∆)l/2u‖Lp
≤ ‖u‖W l

p
≤ c ‖(1−∆)l/2u‖Lp

(1.2.3)

for all u ∈ C∞
0 .

The operator Il := (−∆)−l/2 is the integral convolution operator with the
kernel c |x|l−n, c = const., for l ∈ (0, n). It is usually called the Riesz potential
of order l.

For l > 0 the operator (1−∆)−l/2 has the representation

(1−∆)−l/2f = Gl ∗ f,

where Gl is the function with the Fourier transform (1 + |ξ|2)−l/2.
The function Gl can be written in the form

Gl(x) = c

∫ ∞

0

e−t−x2/4t t−n/2+l/2−1dt

or in the form
Gl(x) = cK(n−l)/2(|x|)|x|(l−n)/2,

where Kγ is the modified Bessel function of the third kind.
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The function Gl is positive and decreases with the growth of |x|. It satisfies
the following asymptotic estimates. For |x| → 0,

Gl(x) ∼

⎧
⎨
⎩
|x|l−n, 0 < l < n,
log |x|−1, l = n,
1, l > n.

(1.2.4)

For |x| → ∞ the following relation holds:

Gl(x) ∼ |x|(l−n−1)/2 e−|x|. (1.2.5)

The integral operator
F

Jl→ Gl ∗ f
is called the Bessel potential of order l.

For properties of Riesz and Bessel potentials see [AMS], [St2], [Str].
We introduce the maximal Hardy–Littlewood operatorM defined by

(Mf)(x) = sup
r>0

1
mesnBr

∫

Br(x)

|f(y)|dy.

By the Hardy–Littlewood theorem (see [St2]), the operatorM is bounded in
Lp, p ∈ (1,∞).

1.2.2 The (p, m)-Capacity

We define the (p,m)-capacity of a compact set e ⊂ R
n by

Cp,m(e) = inf{‖f‖pLp
: f ∈ Lp, f ≥ 0, Jmf ≥ 1 on e}, (1.2.6)

where Jm is the Bessel potential of order m. This capacity satisfies

Cp,m(e) = inf{‖(1−∆)m/2u‖pLp
: u ∈ C∞

0 , u ≥ 1 on e} (1.2.7)

(see Meyers [Me]). In view of the boundedness of the singular integral operator
in Lp,

Cp,m(e) ∼ inf{‖u‖pW m
p

: u ∈ C∞
0 , u ≥ 1 on e}. (1.2.8)

Replacing the Bessel potential Jm in (1.2.6) by the Riesz potential Im,
we obtain the definition of the capacity cp,m(e). These and analogous set
functions used in this book have been the subject of active study (see Maz’ya
[Maz7], Maz’ya, Havin [MH1], [MH2], Meyers [Me], Hedberg [Hed2], Adams,
Meyers [AM], Sjödin [Sj], Adams, Hedberg [AH]).

We describe certain simple properties of the capacities Cp,m(e) and cp,m(e)
which will be used in this chapter.

Proposition 1.2.1. The capacities Cp,m(e) and cp,m(e) are non-decreasing
functions of the set e.

The proof is obvious.
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Proposition 1.2.2. If mp > n, then

Cp,m(e) ∼ 1

for all compact sets e 	= ∅ with diameter less than one.

Proof. Obviously, Cp,m(e) ≤ Cp,m(B1). On the other hand by Sobolev’s the-
orem on the imbedding Wm

p ⊂ L∞, we have

c ‖u‖W m
p
≥ ‖u‖L∞ ≥ 1

for any function u ∈ C∞
0 which exceeds one on e. Consequently,

Cp,m(e) ≥ c−p.

��

Proposition 1.2.3. If mp < n, p ∈ (1,∞), then

cp,m(e) ≥ c (mesne)(n−mp)/n. (1.2.9)

The proof follows from the definition of the capacity and from Sobolev’s
inequality ‖u‖Lq

≤ c ‖u‖wm
p

, where q = pn/(n−mp), u ∈ C∞
0 . ��

To prove an estimate similar to (1.2.9) in the case mp = n we need the
following known assertion (see Yudovič [Yu], Pohozhaev [Poh1], Trudinger
[Tru]) which is given here with the proof for the reader’s convenience.

Lemma 1.2.4. If mp = n and p ∈ (1,∞), then

∫
Φ

⎛
⎝c |u|

p′

‖u‖p′

W m
p

⎞
⎠ dx ≤ 1 (1.2.10)

for all u ∈ C∞
0 , where c is a constant independent of u, p+ p′ = pp′, and

Φ(t) = et −
[p]∑

j=0

tj/j!.

Proof. Let u = Jmf = Gm ∗ f . By Lemma 1.2.3, it suffices to give the proof
under the assumption ‖f‖Lp

= 1. Obviously,

∫
Φ(c |u|p′

)dx =
∞∑

j=[p]+1

cj

j!
‖u‖p

′j
Lp′j

. (1.2.11)

By Young’s inequality for q ≥ p,

‖u‖Lq
≤ ‖Gm‖Ls

‖f‖Lp
, s =

qp′

q + p′
, p+ p′ = pp′. (1.2.12)
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Using the estimates (1.2.4) and (1.2.5) for the function Gm, one can show that

‖Gm‖sLs
≤ c0q, (1.2.13)

where c0 = c0(p, n). From (1.2.12), (1.2.13), where q = p′j and s = p′j/(j+1),
it follows that the right-hand side of (1.2.11) does not exceed

∞∑
j=[p]+1

cj(c0p′j)j+1/j!. (1.2.14)

This series converges if c c0 p′e < 1. Diminishing c, one can make the sum
(1.2.14) arbitrarily small. ��

Proposition 1.2.4. If mp = n, p ∈ (1,∞) and d(e) ≤ 1, then

Cp,m(e) ≥ c

(
log

2n

mesne

)1−p

. (1.2.15)

Proof. Let u ∈ C∞
0 , u ≥ 1 on e. It follows from (1.2.10) that

Φ
(
c ‖u‖−p′

W m
p

)
mesne ≤ 1.

Hence
Φ(c [Cp,m(e)]1/(1−p)) ≤ (mesne)−1. (1.2.16)

Since the argument of the function Φ in (1.2.16) is bounded away from zero,
we have

exp(c [Cp,m(e)]1/(1−p)) ≤ c0(mesne)−1.

��

Proposition 1.2.5. If mp < n, then

cp,m(Br) = c rn−mp.

Proof. Using the dilation, we obtain

cp,m(Br) = rn−mp cp,m(B1).

��

Proposition 1.2.6. If mp < n and 0 < r ≤ 1, then

Cp,m(Br) ∼ rn−mp.

Proof. The lower bound for the capacity follows from (1.2.9). The upper one
is obtained after the substitution of the function x → η(x/r) into the norm
‖u‖W m

p
, where η ∈ C∞

0 and η = 1 on the ball B1. ��
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Proposition 1.2.7. If mp = n, p ∈ (1,∞), and 0 < r ≤ 1, then

Cp,m(Br) ∼ (log 2/r)1−p.

Proof. The lower bound for the capacity follows from (1.2.15). Let us justify
the upper bound. We introduce the function

v(x) = (log 2/r)−1 log 2/|x|

and by α denote a function in the space C∞(R1) such that α(t) = 0 for t < 0,
α(t) = 1 for t > 1. Further, let u(x) = α[v(x)]. Clearly, u ∈ C∞

0 (B2) and
u = 1 on Br. Moreover, one can check that

|∇mu(x)| ≤ c (log 2/r)−1|x|−m

on B2\Br. This implies that

Cp,m(Br) ≤ c ‖∇mu;B2‖pLp

≤ c (log 2/r)−p

∫

B2\Br

|x|−mpdx = c (log 2/r)1−p.

1.2.3 Estimate for the Integral of Capacity of a Set Bounded
by a Level Surface

The following assertion is proved in [Hed3].

Lemma 1.2.5. Let 0 < θ < 1, 0 < r < n and let Irf be the Riesz potential of
order r with a nonnegative density f . Then

(Irθf)(x) ≤ c
(
(Irf)(x)

)θ((Mf)(x)
)1−θ

, (1.2.17)

where M is the Hardy–Littlewood maximal operator.

Proof. Let t be an arbitrary positive number to be chosen later. We use the
equality

∫

Bt(x)

f(y)dy
|x− y|n−rθ

= (n− rθ)
∫ t

0

∫

Bs(x)

f(y) dy
ds

sn−rθ+1

+trθ−n

∫

Bt(x)

f(y) dy (1.2.18)

which is checked by changing the order of integration on the right-hand side.
Hence

∫

Bt(x)

f(y)dy
|x− y|n−rθ

≤ c trθ(Mf)(x). (1.2.19)
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Clearly we have
∫

Rn\Bt(x)

f(y)dy
|x− y|n−rθ

≤ tr(θ−1)

∫

Rn\Bt(x)

f(y)dy
|x− y|n−r

≤ tr(θ−1)(Irf)(x). (1.2.20)

Adding this inequality to (1.2.19), we obtain

(
Irθf

)
(x) ≤ c trθ(Mf)(x) + tr(θ−1)(Irf)(x).

Minimization of the right-hand side in t completes the proof. ��

Corollary 1.2.1. Let m be an integer, 0 < m < n, Imf = |x|m−n ∗ f with
f ≥ 0 and let F be a function in Cm(0,∞) such that

tk−1|F (k)(t)| ≤ Q, k = 0, 1, · · · ,m, Q = const.

Then
|∇mF (Imf)| ≤ cQ(Mf + |∇mImf |) (1.2.21)

almost everywhere in R
n.

Proof. Let u = Imf . One can verify by induction that

|∇mF (u)| ≤ c
m∑

k=1

|F (k)(u)|
∑

j1+···+jk=m

|∇j1u| · · · |∇jk
u|. (1.2.22)

Consequently,

|∇mF (u)| ≤ cQ
m∑

k=1

∑
j1+···+jk=m

|∇j1u|
u1−j1/m

· · · |∇jk
u|

u1−jk/m
. (1.2.23)

Since |∇su| ≤ c Im−sf , it follows from (1.2.23) that

|∇mF (u)| ≤ cQ
(
|∇mImf |+

m∑
k=1

∑
′

j1+···+jk=m

Im−j1f · · · Im−jk
f

(Imf)1−j1/m · · · (Imf)1−jk/m

)
,

where the sum
∑′ is taken over the collections of numbers j1, · · · , jk each

less than m. Applying Lemma 1.2.5, we complete the proof. ��

Our aim is the following assertion.

Theorem 1.2.1. Let p ∈ (1,∞),m = 1, 2, · · · and mp < n. Then, for any
function u ∈ C∞

0 , ∫ ∞

0

cp,m(Nt) tp−1dt ≤ c ‖u‖pwm
p
, (1.2.24)

where Nt = {x : |u(x)| ≥ t} and c is a constant depending only on n, p,m.
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Proof. Let u = Imf and v = Im|f |. It is easily seen that v ∈ Cm(Rn) and
v(x) = O(|x|m−n) as |x| → ∞. Thus the set {x : v(x) ≥ t} is compact for any
t > 0. Putting tj = 2j , j = 0,±1, · · · , and using the inequality v(x) ≥ |u(x)|,
we obtain ∫ ∞

0

cp,m(Nt) tp−1dt

≤ c

+∞∑
j=−∞

(tj+1 − tj)pcp,m({x : v(x) ≥ tj}). (1.2.25)

Let γ ∈ C∞(R1), γ(τ) = 0 for τ < ε, γ(τ) = 1 for τ > 1, where ε > 0. We
introduce the function v → F ∈ C∞(0,∞) equal to

Fj(v) = tj + (tj+1 − tj)γ((v − tj)(tj+1 − tj)−1)

on the segment [tj , tj+1].
According to the definition of capacity cp,m, the sum on the right-hand

side of (1.2.25) does not exceed

∞∑
j=−∞

‖Fj(v)‖pwm
p

= ‖F (v)‖pwm
p
.

By Corollary 1.2.1, the last norm is majorized by

c (‖M|f |‖Lp
+ ‖∇mIm|f |‖Lp

). (1.2.26)

Since the operatorM and the singular integral operator∇mIm are continuous
in Lp, the sum (1.2.26) does not exceed c ‖f‖Lp

. By Lemma 1.2.2,

‖f‖Lp
∼ ‖u‖wm

p
.

The theorem is proved. ��

Together with (1.2.24), in this chapter we use the inequality
∫ ∞

0

Cp,m(Nt) tp−1dt ≤ c ‖u‖pW m
p
, (1.2.27)

where p ∈ (1,∞) and m = 1, 2, · · · . The proof of (1.2.27) is similar to that of
(1.2.24), the role of (1.2.17) being played by

(Jrθf)(x) ≤ c
(
(Jrf)(x)

)θ((Mf)(x)
)1−θ

, (1.2.28)

where 0 < θ < 1, r > 0 and Jrf is the Bessel potential of order r with a
nonnegative density f . We do not dwell on a similar though more cumbersome
proof of (1.2.28). A more general inequality will be proved in Lemma 4.2.3.
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The corollary and its proof remain valid if Im is replaced by Jm. To obtain
(1.2.27), it is sufficient to use the following chain of inequalities:

∫ ∞

0

Cp,m(Nt) tp−1dt ≤ c

∞∑
j=−∞

(tj+1 − tj)pCp,m({x : |v(x)| ≥ tj})

≤ c

∞∑
j=−∞

‖Fj(v)− tj‖pW m
p
≤ c

(
‖∇m(F (v))‖pLp

+ ‖v‖pLp

)

and to duplicate the end of the proof of Theorem 1.2.1.

Remark 1.2.1. The existence of inequalities of the type (1.2.24) was demon-
strated in [Maz3], where (1.2.24) (and for m = 1 even a stronger inequality,
in which the capacity of the condenser Nt\N2t plays the role of the capacity
of the set Nt) was obtained only for m = 1 and m = 2. In the more difficult
case m = 2 the proof was based on the ‘smooth truncation’ of a potential
near equipotential surfaces. Unifying this procedure with Hedberg’s inequal-
ity (1.2.17), Adams [Ad3] obtained the above proof for all integers m. Further
references can be found in [Maz18].

1.2.4 Estimates for Constants in Trace Inequalities

A simple though important corollary of inequalities (1.2.27) and (1.2.24) is:

Theorem 1.2.2. Let p ∈ (1,∞),m = 1, 2, · · · and let µ be a measure in R
n.

(i) The best constant C in
∫
|u|pdµ ≤ C ‖u‖pW m

p
, u ∈ C∞

0 , (1.2.29)

is equivalent to

sup
e

µ(e)
Cp,m(e)

, (1.2.30)

where e is an arbitrary compact set in R
n of positive capacity Cp,m(e).

(Expressions similar to (1.2.30) often occur in this book. In what follows
we do not mention the positivity of capacities in denominators.)

(ii) If mp < n, then the best constant C in
∫
|u|pdµ ≤ C ‖u‖pwm

p
, u ∈ C∞

0 , (1.2.31)

is equivalent to

sup
e

µ(e)
cp,m(e)

. (1.2.32)
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Proof. (i) From the definition of Lebesgue integral we obtain
∫
|u|pdµ =

∫ ∞

0

µ(Nt) d(tp).

Therefore ∫
|u|pdµ ≤ sup

e

µ(e)
Cp,m(e)

∫ ∞

0

Cp,m(Nt) d(tp).

Now (1.2.29) follows from (1.2.27).
Minimizing the right-hand side of (1.2.29) over the set

{u ∈ C∞
0 : u ≥ 1 on e},

we get

C ≥ sup
e

µ(e)
Cp,m(e)

.

Case (ii) is treated in the same way.

Lemma 1.2.6. The best constants C0 and C in the inequalities
∫
|∇lu|pdµ ≤ C0‖u‖pwm

p
, (1.2.33)

∫
|u|pdµ ≤ C‖u‖p

wm−l
p

, (1.2.34)

where m > l and u ∈ C∞
0 , are equivalent.

Proof. The estimate C0 ≤ c C is obvious. We show that C0 ≥ c C. It is clear
that

u =
∑
|α|=l

(l!/α!)D2α(−∆)−lu.

From (1.2.33) and Lemma 1.2.2 we get
∫
|D2α(−∆)−lu|pdµ ≤ C0‖Dα(−∆)−lu‖pwm

p
≤ c C0‖u‖pwm−l

p
.

Hence (1.2.34) holds with C ≤ cC0. ��

Lemma 1.2.7. The best constants C0 and C in the inequalities
∫

(|∇lu|p + |u|p)dµ ≤ C0‖u‖pW m
p
, (1.2.35)

∫
|u|pdµ ≤ C‖u‖p

W m−l
p

, (1.2.36)

where m > l and u ∈ C∞
0 , are equivalent.
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Proof. The estimate C0 ≤ c C is obvious. We prove the converse. Let x→ σ
be a smooth positive function on [0,∞), equal to x for x > 1. For any u ∈ C∞

0

we have the representation

u = (−∆)l[σ(−∆)]−lu+ T (−∆),

where T is a function from C∞
0 ([0,∞)). Since

(−∆)l = (−1)l
∑
|α|=l

(l!/α!)D2α,

it follows from (1.2.35) and Lemma 1.2.3 that
∫
|u|pdµ ≤ cC0

(
‖∇l[σ(−∆)]−lu‖pW m

p
+ ‖Tu‖pW m

p

)
≤ c1C0‖u‖pW m−l

p
.

The proof is complete. ��

We give one more expression equivalent to the best constant C in (1.2.29).

Corollary 1.2.2. The exact constant C in (1.2.29) is equivalent to

sup
{e:d(e)≤1}

µ(e)
Cp,m(e)

,

where d(e) is the diameter of e.

Proof. The lower bound for C follows from Theorem 1.2.2. We prove the upper
bound. Let κ be an arbitrary compact set in R

n. Further, let closed cubes Qj

form the coordinate grid with step n−1/2 and let 2Qj be homothetic open
cubes with double edge length. By u we denote a function in C∞

0 such that
u ≥ 1 on κ. Let ηj be a function in C∞

0 (2Qj), equal to one on Qj . Since the
multiplicity of intersection of 2Qj is finite and depends only on n, we have

∑
j

Cp,m(κ ∩Qj) ≤ c1
∑

j

‖ηju; 2Qj‖pW m
p

≤ c2
∑

j

‖u; 2Qj‖pW m
p
≤ c3‖u‖pW m

p
.

Minimizing the last norm, we get

Cp,m(κ) ≥ c
∑

j

Cp,m(κ ∩Qj). (1.2.37)

Clearly,

µ(κ ∩Qj) ≤ sup
{e:d(e)≤1}

µ(e)
Cp,m(e)

Cp,m(κ ∩Qj).
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Summing over j and using (1.2.37), we arrive at the inequality

µ(κ) ≤ c sup
{e:d(e)≤1}

µ(e)
Cp,m(e)

Cp,m(κ).

The result follows. ��

Corollary 1.2.3. If mp > n, then the best constant in (1.2.29) is equivalent to

sup
x∈Rn

µ(B1(x)).

Proof. By Proposition 1.2.2, Cp,m(e) ∼ 1 for any non-empty compact set e
with d(e) ≤ 1. It remains to refer to Corollary 1.2.2. ��

Using the estimates for capacity by the Lebesgue measure obtained in
Propositions 1.2.3 and 1.2.4, we immediately obtain:

Proposition 1.2.8. The following inequalities hold

sup
{e:d(e)≤1}

µ(e)
Cp,m(e)

≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

c sup
{e:d(e)≤1}

µ(e)
(mesne)(n−pm)/n

for mp < n,

c sup
{e:d(e)≤1}

(
log

4n

mesne

)p−1

µ(e) for mp = n;

sup
e

µ(e)
cp,m(e)

≤ c sup
e

µ(e)
(mesne)(n−pm)/n

for mp < n.

A direct corollary of Propositions 1.2.5 - 1.2.7 is

Proposition 1.2.9. The following inequalities hold

sup
{e:d(e)≤1}

µ(e)
Cp,m(e)

≥

⎧
⎪⎪⎨
⎪⎪⎩

c sup
x∈Rn,ρ∈(0,1)

ρmp−nµ(Bρ(x)) for mp < n,

c sup
x∈Rn,ρ∈(0,1)

(
log

2
ρ

)p−1

µ(Bρ(x)) for mp = n;

sup
e

µ(e)
cp,m(e)

≥ c sup
x∈Rn,ρ>0

ρmp−nµ(Bρ(x)) for mp < n.

1.2.5 Other Criteria for the Trace Inequality (1.2.29) with p > 1

Now we overview several other conditions which are necessary and sufficient
for (1.2.29).
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We start with a remark due to D. R. Adams [Ad3] stating that

sup
e

µ(e)
Cp,m(e)

∼ sup
e

⎡
⎢⎢⎣

∫
(Jmµe(x))p′

dx

µ(e)

⎤
⎥⎥⎦

p−1

(1.2.38)

where the suprema are taken either over arbitrary compact sets e ⊂ R
n or

over compact sets whose diameters do not exceed one, and µe stands for the
restriction of µ to e.

In fact, let the left and right-hand sides of (1.2.38) be denoted by A and B,
respectively. Further, let u be an arbitrary function in C∞

0 with u ≥ 1 on e.
We have

µ(e) ≤
∫
u(x) dµe(x) ≤ ‖(1−∆)−m/2µe‖Lp′ ‖(1−∆)m/2u‖Lp

which can be rewritten as

µ(e) ≤ c ‖Jmµe‖Lp′ ‖u‖W m
p
.

Minimizing the right-hand side over all functions u, we obtain

µ(e) ≤ cB1/pµ(e)1/p′
[Cp,m(e)]1/p,

i.e. A ≤ cB. Now we check the converse estimate. According to part (i) of
Theorem 1.2.2, ∫

|u|pdµ ≤ c A‖u‖pW m
p

for all u ∈ C∞
0 . Consequently,

∣∣∣∣
∫
u dµe

∣∣∣∣
p

≤ c Aµ(e)p−1‖(1−∆)m/2u‖pLp
,

and therefore
‖Jmµe‖Lp′ ≤ cA1/pµ(e)1/p′

.

Thus B ≤ cA. ��

The relation

sup
e

µ(e)
cp,m(e)

∼ sup
e

⎡
⎢⎢⎣

∫
(Imµe(x))p′

dx

µ(e)

⎤
⎥⎥⎦

p−1

, (1.2.39)

where e is an arbitrary compact set in R
n, mp < n, p ∈ (1,∞), can be

established in precisely the same manner. ��
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By (1.2.38), the upper estimate

sup
e

µ(e)
Cp,m(e)

≤ c sup
Rn

Jm(Jmµ)1/(p−1) (1.2.40)

holds if mp ≤ n. In particular, for p = 2 it becomes

sup
e

µ(e)
C2,m(e)

≤ c sup
Rn

J2mµ. (1.2.41)

Upper estimates similar to (1.2.40) and (1.2.41), with cp,m and I instead
of Cp,m and J , stem from (1.2.39) in the case mp < n. ��

One cannot allow arbitrary sets e in the capacitary upper bounds on the
left-hand sides of (1.2.38) and (1.2.39). This is in contrast with the suprema on
the right-hand sides of (1.2.38) and (1.2.39). In fact, it turned out, as shown
by Kerman and Sawyer in [KeS], that the role of e on the right-hand side of
(1.2.39) can be played by an arbitrary cube Q, i.e.

sup
e

µ(e)
cp,m(e)

∼ sup
Q

[
∫

(ImµQ(x))p′
dx

µ(Q)

]p−1

, (1.2.42)

With minor technical changes in the proof given in [KeS], one verifies that
the set {e} on the right-hand side of (1.2.38) can be reduced to a set of cubes
Q, i.e.

sup
e

µ(e)
Cp,m(e)

∼ sup
{Q:d(Q)≤1}

[
∫

(JmµQ(x))p′
dx

µ(Q)

]p−1

, (1.2.43)

where d(Q) is the diameter of Q.
Other conditions, necessary and sufficient for (1.2.29) and (1.2.31), which

do not involve arbitrary sets and even cubes and which are of a purely point-
wise nature, were found in [MV1]. It is shown in [MV1] that

sup
e

µ(e)
Cp,m(e)

∼ sup
x∈Rn

[Jm

(
Jmµ

)p′
(x)

Jmµ(x)

]p−1

, (1.2.44)

where mp ≤ n, and

sup
e

µ(e)
cp,m(e)

∼ sup
x∈Rn

[Im

(
Imµ

)p′
(x)

Imµ(x)

]p−1

, (1.2.45)

where mp < n. ��
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We note that the following three criteria for (1.2.31) which result from
(1.2.32), (1.2.42), and (1.2.45), respectively,

µ(e) ≤ C cp,m(e), (1.2.46)
∫ (

ImµQ(x)
)p′

dx ≤ C µ(Q), (1.2.47)

Im(Imµ)p′
(x) ≤ C Imµ(x) (1.2.48)

have been obtained independently of each other.
These criteria lead to different simpler conditions, either necessary or suf-

ficient, for (1.2.31), and each criterion (1.2.46)–(1.2.48) has its own range of
applications. For example, the sufficient condition

µ(e) ≤ C(mesne)(n−pm)/n

follows readily from (1.2.46) (see Proposition 1.2.8) but its direct derivation
from either (1.2.47) or (1.2.48) has not been obtained so far.

We finish this subsection with one more condition, necessary and sufficient
for the trace inequality (1.2.31) to hold, which was obtained by Verbitsky
[Ver1]: for every dyadic cube P0 in R

n

∑
P⊆P0

[ µ(P )
(mesnP )1−m/n

]p′

mesnP ≤ C µ(P0),

where the sum is taken over all dyadic cubes P contained in P0 and the
constant does not depend on P0.

Adding the restriction that the side length of P0 does not exceed 1, we
have a necessary and sufficient condition for the trace inequality (1.2.29).

1.2.6 The Fefferman and Phong Sufficient Condition

It was shown by Fefferman and Phong [F2] that the trace inequality (1.2.31)
is true for p > 1, mp < n and for the measure µ, absolutely continuous with
respect to the Lebesgue measure:

dµ(x) = g(x) dx, (1.2.49)

if there exists t > 1 such that
∫

Br(x)

[g(y)]tdy ≤ c rn−mpt. (1.2.50)

In order to prove this we make use of the inequality
∫

Rn

(
(Mmtf)(y)

)p
dν(y) ≤ c sup

x∈Rn,
r>0

ν(Br(x))
rn−mpt

∫

Rn

|f(y)|pdy (1.2.51)
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(see [SW]), where Mlf is the fractional maximal function defined by
(
Mlf

)
(x) = sup

r>0
rl−n

∫

Br(x)

|f(y)|dy.

Obviously, for any δ > 0

Imf(x) = (n−m)
∫ ∞

0

rm−n−1

∫

Br(x)

f(y)dy dr

≤ c
(
δm(Mf)(x) + δm(1−t)(Mmtf)(x)

)
,

where M is the Hardy–Littlewood maximal operator. Minimizing the right-
hand side in δ, we arrive at the inequality

Imf(x) ≤ c
(
(Mmtf)(x)

)1/t((Mf)(x)
)1−1/t

(see [AH], Sect. 3.1). Hence

‖Imf‖Lp(gdx) ≤ c ‖Mmtf‖1/t
Lp(gtdx)‖Mf‖1−1/t

Lp
.

Therefore, by (1.2.51) and the boundedness ofM in Lp, we find that

‖Imf‖Lp(gdx) ≤ c sup
x∈Rn,

r>0

( 1
rn−mpt

∫

Br(x)

(g(y))tdy
)1/pt

‖f‖Lp

which implies the above mentioned result in [F2]. ��

In the case p = 2 condition (1.2.50) was improved in [ChWW], where it is
shown that, if ϕ is an increasing function: [0,∞)→ [1,∞) subject to

∫ ∞

1

(τϕ(τ))−1dτ <∞, (1.2.52)

then the condition

sup
B

∫

B
g(x)ϕ

(
g(x)(diamB)2

)
dx

(mesnB)1−2/n
<∞

is sufficient for (1.2.31) to hold with µ given by (1.2.49). The assumption
(1.2.52) is sharp.

1.3 Estimate for the Lq-Norm with respect
to an Arbitrary Measure

In this section we collect various assertions on the best constant in the in-
equality (∫

|u|q dµ
)1/q

≤ C ‖u‖W m
p
, (1.3.1)

where u ∈ C∞
0 (Rn). Since in this book our concern is the case p = q, we

restrict ourselves to a short survey of known results for p 	= q.



30 1 Trace Inequalities for Functions in Sobolev Spaces

1.3.1 The case 1 ≤ p < q

As one can see below, for p < q all results on the best constant in (1.3.1)
can be given in non-capacitary terms and with balls rather than arbitrary
compact sets.

We start with the following criterion (see [Ad1] for p > 1 and [Maz11] for
p = 1).

Lemma 1.3.1. Let 1 ≤ p < q and let mp < n. Then the best constant in
(1.3.1) is equivalent to

sup
x∈Rn,ρ∈(0,1)

ρm−n/p
(
µ(Bρ(x)

)1/q
. (1.3.2)

The case mp = n considered in the next lemma was treated in [MP], see
also [Maz14], Sect. 8.6.

Lemma 1.3.2. Let 1 < p < q and let mp = n. Then the best constant in
(1.3.1) is equivalent to

sup
x∈Rn,ρ∈(0,1)

(log 2/ρ)(p−1)/p
(
µ(Bρ(x)

)1/q
. (1.3.3)

The next lemma is an obvious corollary of Sobolev’s theorem on the imbed-
ding Wm

p ⊂ L∞ which holds for mp > n.

Lemma 1.3.3. Let 1 < p < q and let mp > n or 1 = p < q, m ≥ n. Then the
best constant in (1.3.1) is equivalent to

sup
x∈Rn

(
µ(B1(x)

)1/q
. (1.3.4)

1.3.2 The case q < p ≤ n/m

To state the next assertion, proved in [MN], we use the following function of
one variable

(0,∞) � s→ νp,m(µ; s) = inf
{e:µ(e)>s}

Cp,m(e). (1.3.5)

Lemma 1.3.4. Let 1 < p < ∞ and let 0 < q < p. Then the best constant in
(1.3.1) is equivalent to

∫ ∞

0

( sp

νp,m(µ; s)q

) 1
p−q ds

s
. (1.3.6)

Another completely different characterization of the trace inequality
(1.3.1) can be found in [COV1] for q > 1 and [COV2] for q > 0.
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Lemma 1.3.5. Let 1 < p < ∞ and let 0 < q < p. Then the best constant in
(1.3.1) is equivalent to

∫

Rn

(
Wm,p µ(x)

) q(p−1)
p−q dx, (1.3.7)

where

(Wm,p µ)(x) =
∫ 1

0

(µ(Br(x))
rn−mp

) 1
p−1 dr

r
(1.3.8)

is the so-called nonlinear Wolff potential.
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Multipliers in Pairs of Sobolev Spaces

2.1 Introduction

In the present chapter we study multipliers acting in pairs of spaces W k
p and

wk
p , where k is a nonnegative integer.

The concepts of this chapter prove to be prototypes for the subsequent
study of multipliers in other pairs of spaces. Using the result of Sects. 1.2
and 1.1, we derive necessary and sufficient conditions for a function to belong
to the space of multipliers M(Wm

p → W l
p) and M(wm

p → wl
p), where m ≥

l ≥ 0 and p ∈ [1,∞) (Sects. 2.2, 2.3, and 2.8). The case of the half-space
R

n
+ is treated in Sect. 2.4. Section 2.5 contains conditions for the inclusion

γ ∈M(Wm
p →W−k

p ), k > 0. In Sect. 2.6 we present a brief description of the
space M(Wm

p →W l
q). Section 2.7 deals with certain properties of multipliers.

In the concluding Sect. 2.9 we give a description of multipliers preserving
spaces of functions with bounded variation. As usual, we omit R

n in notations
of spaces, norms, and integrals.

Let γ ∈ M(Wm
p → W l

p), un → u in Wm
p and γun → v in W l

p. Then there
exists a sequence {nk}k≥1, such that for almost all x

unk
(x)→ u(x), γ(x)unk

(x)→ v(x).

Hence v = γu almost everywhere in R
n, and therefore the operator

Wm
p � u→ γu ∈W l

p

is closed. Since this operator is defined on the whole of Wm
p , it is bounded by

the Banach theorem.
The norm in M(Wm

p → W l
p) is defined as the norm of the operator of

multiplication

‖γ‖M(W m
p →W l

p) = sup{‖γu‖W l
p

: ‖u‖W m
p
≤ 1}.

We use the notation MW l
p instead of M(W l

p →W l
p).

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 33
Grundlehren der mathematischen Wissenschaften 337,
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It is worth noting that we can always assume that m ≥ l, since in
the opposite case M(Wm

p → W l
p) = {0}.1 In fact, let m < l and let

γ ∈M(Wm
p →W l

p). We have

‖γ‖M(W m
p →W l

p) ≥
‖γ eitx1 η‖W l

p

‖eitx1 η‖W m
p

,

where t > 0 and η is an arbitrary non-zero function in C∞
0 . Therefore,

‖γ‖M(W m
p →W l

p) ≥ tl−m
(‖γη‖Lp

‖η‖Lp

+ o(1)
)

as t→∞ and this is possible only if γ = 0.
By W l

p,unif we denote the space endowed with the norm

‖u‖W l
p,unif

= sup
z∈Rn

‖ηzu‖W l
p
,

where ηz(x) = η(x− z), η ∈ C∞
0 , and η = 1 on B1.

We also need the space

W l
p,loc = {u : ηu ∈W l

p for all η ∈ C∞
0 }.

Throughout this book similar notations Sunif and Sloc will be used for
other Banach spaces S of functions defined on R

n.
The following is the main result of this chapter.

Theorem 2.1.1. (i) Let p > 1, mp > n or p = 1, m ≥ n. Then

‖γ‖M(W m
p →W l

p) ∼ sup
x∈Rn

‖γ;B1(x)‖W l
p
.

(ii) Let p = 1, m < n. Then

‖γ‖M(W m
1 →W l

1) ∼ sup
x∈Rn

r∈(0,1)

rm−n‖∇lγ;Br(x)‖L1

+

⎧
⎨
⎩

sup
x∈Rn

‖γ;B1(x)‖L1 , m > l,

‖γ; Rn‖L∞ , m = l.

(iii) Let mp ≤ n, p > 1. Then

‖γ‖M(W m
p →W l

p) ∼ sup
e⊂Rn

d(e)≤1

‖∇lγ; e‖Lp

(Cp,m(e))1/p

+

⎧
⎨
⎩

sup
x∈Rn

‖γ;B1(x)‖L1 , m > l,

‖γ‖L∞ , m = l,

where d(e) is the diameter of e.
1 In other words, the multipliers, acting between two different spaces, uglify their

domain, in full correspondence with Mock Turtle’s terminology in the epigraph
to the present book.
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2.2 Characterization of the Space M(W m
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Theorem 2.2.1. For any m > 0

‖γ‖M(W m
1 →L1) ∼ sup

x∈Rn

r∈(0,1)

rm−n‖γ;Br(x)‖L1 . (2.2.1)

Proof. The result follows by Theorem 1.1.2.

Theorem 2.2.2. For any 0 < l ≤ m the relation

‖γ‖M(W m
1 →W l

1) ∼ sup
x∈Rn

r∈(0,1)

rm−n
(
‖∇lγ;Br(x)‖L1 + r−l‖γ;Br(x)‖L1

)
(2.2.2)

holds.

Proof. First we note that

rj−l‖∇jγ;Br(x)‖L1 ≤ c
(
‖∇lγ;Br(x)‖L1 + r−l‖γ;Br(x)‖L1

)
.

Hence the equivalence relation (2.2.2) can be written as

‖γ‖M(W m
1 →W l

1) ∼ sup
x∈Rn,r∈(0,1)

rm−n
l∑

j=0

rj−l‖∇jγ;Br(x)‖L1 . (2.2.3)

We start with the lower estimate for the multiplier norm of γ. Let u(y) =
ϕ((y − x)/r), where r ∈ (0, 1) for m < n and r = 1 for m ≥ n, ϕ ∈ C∞

0 (B2),
ϕ = 1 on B1. We set this u into

‖γu‖W m
1
≤ ‖γ‖M(W m

1 →W l
1)‖u‖W m

1

and use the inequality

rj−l‖∇j(γu);B2r(x)‖L1 ≤ c ‖γu‖W l
1
, j = 0, 1, . . . , l,

valid because supp γu ⊂ B2r(x). Hence

rj−l‖∇jγ;Br(x)‖L1 ≤ c ‖γ‖M(W m
1 →W l

1)r
n−m

which gives the lower estimate for ‖γ‖M(W m
1 →W l

1).
To obtain the upper estimate, we combine the obvious inequality

‖∇l(γu)‖L1 ≤ c
l∑

j=0

‖ |∇jγ| |∇l−ju| ‖L1

with the estimate

‖ |∇jγ| |∇l−ju| ‖L1 ≤ c sup
x∈Rn,r∈(0,1)

rm−l+j−n‖∇jγ;Br(x)‖L1‖∇l−ju‖W m−l+j
1
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which holds by Theorem 1.1.2. Hence

‖∇l(γu)‖L1 ≤ c sup
x∈Rn,r∈(0,1)

rm−n
l∑

j=0

rj−l‖∇jγ;Br(x)‖L1‖u‖W m
1
.

Also, by the same Theorem 1.1.2,

‖γu‖L1 ≤ c sup
x∈Rn,r∈(0,1)

rm−l−n‖γ;Br(x)‖L1‖u‖W m−l
1

.

Adding together the last two inequalities and noting (2.2.3), we complete the
proof. ��

Corollary 2.2.1. Let 0 ≤ l < m. Then

‖γ‖M(W m−l
1 →L1)

≤ c ‖γ‖M(W m
1 →W l

1). (2.2.4)

Proof. The result follows directly from Theorems 2.2.2 and 2.2.1.

The equivalence relation (2.2.2) is modified in the following assertion.

Theorem 2.2.3. (i) If m ≥ n, and m ≥ l, then

‖γ‖M(W m
1 →W l

1) ∼ sup
x∈Rn

‖γ;B1(x)‖W l
1
. (2.2.5)

(ii) If l < n, then

‖γ‖MW l
1
∼ sup

x∈Rn,r∈(0,1)

rl−n‖∇lγ;Br(x)‖L1 + ‖γ‖L∞ . (2.2.6)

(iii) If l < m < n, then

‖γ‖M(W m
1 →W l

1) ∼ sup
x∈Rn,r∈(0,1)

rm−n‖∇lγ;Br(x)‖L1

+ sup
x∈Rn

‖γ;B1(x)‖L1 . (2.2.7)

Proof. Relations (2.2.5) and (2.2.6) follow from Theorem 2.2.2.
Let l < m < n. The lower estimate is a direct consequence of Theorem

2.2.2. To derive the upper estimate we show that

rm−n−l‖γ;Br(x)‖L1 ≤ c
(
‖γ;B1(x)‖L1+ sup

ρ∈(0,1)

ρm−n‖∇lγ;Bρ(x)‖L1

)
(2.2.8)

for any x ∈ R
n and r ∈ (0, 1). By the Sobolev integral representation (see, for

instance, [Maz14], Subsect. 1.1.10),

|γ(z)| ≤ c
(
‖γ;B(x)‖L1 +

∫

B(x)

|∇lγ(y)|
|z − y|n−l

dy
)
. (2.2.9)
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Hence

‖γ;Br(x)‖L1 ≤ c
(
rn‖γ;B1(x)‖L1 +

∫

Br(x)

∫

B1(x)

|∇lγ(y)|
|z − y|n−l

dydz
)

≤ c
(
rn‖γ;B1(x)‖L1 +rl‖∇lγ;B2r(x)‖L1 +

∫

Br(x)

∫

B2(x)\B2r(x)

|∇lγ(y)| dydz|y|n−l

)
.

Combining this fact with the obvious inequality
∫

Br(x)

∫

B1(x)\B2r(x)

|∇lγ(y)| dydz|y|n−l
≤ c rl−m+n sup

ρ∈(0,1)

ρm−n‖∇lγ;Bρ(x)‖L1 ,

we complete the proof. ��

Theorem 2.2.3 implies an interpolation inequality for elements of the space
M(Wm

1 →W l
1).

Corollary 2.2.2. Let γ ∈M(Wm
1 →W l

1). Then

‖γ‖M(W m−j
1 →W l−j

1 ) ≤ c ‖γ‖1−j/l

M(W m
1 →W l

1)
‖γ||j/l

M(W m−l
1 →L1)

, (2.2.10)

where j = 0, 1, . . . , l.

Proof. Making the dilation in the well-known inequality

‖∇l−jγ;B1‖L1 ≤ c ‖γ;B1‖1−j/l

W l
1
‖γ;B1‖j/l

L1
,

we obtain

rl−j‖∇l−jγ;Br(x)‖L1 ≤ c
(
rl‖∇lγ;Br(x)‖L1+‖γ;Br(x)‖L1

)1−j/l‖γ;Br(x)‖j/l
L1
.

Hence
rm−j−n‖∇l−jγ;Br(x)‖L1 + rm−n−l‖γ;Br(x)‖L1

≤ c
(
rm−n‖∇lγ;Br(x)‖L1+r

m−n−l‖γ;Br(x)‖L1

)1−j/l(
rm−n−l‖γ;Br(x)‖L1

)j/l
.

Reference to Theorem 2.2.2 completes the proof. ��

Corollary 2.2.3. Let 0 < l < m. Then

‖γ‖M(W m
1 →W l

1) ∼
l∑

j=0

‖∇l−jγ‖M(W m−j
1 →L1)

(2.2.11)

and
‖γ‖M(W m

1 →W l
1) ∼ ‖∇lγ‖M(W m

1 →L1) + ‖γ‖L1,unif . (2.2.12)

For m = l the norm ‖γ‖L1,unif should be replaced by ‖γ‖L∞ .
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Proof. Estimate 2.2.12 results from Theorems 2.2.3 and 2.2.1.
By Theorems 2.2.1 and 2.2.3

‖∇l−jγ‖M(W m−j
1 →L1)

≤ c sup
x∈Rn,r∈(0,1)

rm−j−n‖∇l−jγ;Br(x)‖L1

≤ c ‖γ‖M(W m−j
1 →W l−j

1 )

which is dominated by ‖γ‖M(W m
1 →W l

1) in view of Corollary 2.2.2. The lower
estimate 2.2.11 follows. ��

2.3 Characterization of the Space M(W m
p → W l

p)
for p > 1

Here we derive necessary and sufficient conditions for a function to belong to
the space M(Wm

p →W l
p) for p > 1.

The next assertion contains an inequality between multipliers and their
mollifiers.

Lemma 2.3.1. Let γρ denote a mollifier of a function γ which is defined as

γρ(x) = ρ−n

∫
K(ρ−1(x− ξ))γ(ξ)dξ,

where K ∈ C∞
0 (B1), K ≥ 0, and ‖K‖L1 = 1. Then

‖γρ‖M(W m
p →W l

p) ≤ ‖γ‖M(W m
p →W l

p) ≤ lim inf
ρ→0

‖γρ‖M(W m
p →W l

p). (2.3.1)

Proof. Let u ∈ C∞
0 . By Minkowski’s inequality

(∫ ∣∣∣∇j,x

∫
ρ−nK(ξ/ρ)γ(x− ξ)u(x)dξ

∣∣∣
p

dx
)1/p

≤
∫
ρ−nK(ξ/ρ)

(∫ ∣∣∇j,y

(
γ(y)u(y + ξ)

)∣∣pdy
)1/p

dξ,

where j = 0, l. Therefore,

‖γρu‖W l
p
≤ ‖γ‖M(W m

p →W l
p)

∫
ρ−nK(ξ/ρ)

((∫
|∇m,yu(y + ξ)|pdy

)1/p

+
(∫
|u(y + ξ)|pdy

)1/p)
dξ ≤ ‖γ‖M(W m

p →W l
p)‖u‖W m

p
.

This gives the left inequality (2.3.1). The right inequality (2.3.1) follows from

‖γu‖W l
p

= lim inf
ρ→0

‖γρu‖W l
p
≤ lim inf

ρ→0
‖γρ‖M(W m

p →W l
p)‖u‖W m

p
.

The proof is complete. ��
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The following assertion is a particular case of Lemma 1.2.7.

Lemma 2.3.2. Let γ ∈ Lp,loc, p ∈ (1,∞), and let u be an arbitrary function
in C∞

0 . The best constant in the inequality

‖γ∇lu‖Lp
+ ‖γu‖Lp

≤ C ‖u‖W m
p

is equivalent to the norm ‖γ‖M(W m−l
p →Lp).

The next lemma concerns derivatives of multipliers.

Lemma 2.3.3. Suppose that

γ ∈ M(Wm
p → W l

p) ∩ M(Wm−l
p → Lp), p ∈ (1,∞).

Then, for any multi-index α of order |α| ≤ l,

Dαγ ∈ M(Wm
p → W l−|α|

p )

and

‖Dαγ‖
M(W m

p →W
l−|α|
p )

≤ ε ‖γ‖M(W m−l
p →Lp) + c(ε) ‖γ‖M(W m

p →W l
p), (2.3.2)

where ε is an arbitrary positive number.

Proof. Let u ∈ W l
p and let ϕ be an arbitrary function in C∞

0 . Applying the
Leibniz formula

Dα(ϕu) =
∑

{β:α≥β≥0}

α!
β!(α − β)!

DβϕDα−βu,

we obtain
∫

ϕu(−D)αγdx =
∫

γDα(ϕu)dx =
∑

{β:α≥β≥0}

α!
β!(α − β)!

γDβϕDα−βu dx

=
∫

ϕ
∑

{β:α≥β≥0}

α!
β!(α − β)!

(−D)β(γDα−βu)dx.

Therefore,

uDαγ =
∑

{β:α≥β≥0}

α!
β!(α − β)!

Dβ
(
γ(−D)α−βu

)
,

which implies the estimate

‖uDαγ‖
W

l−|α|
p

≤ c
∑

{β:α≥β≥0}
‖γDα−βu‖

W
l−|α|+|β|
p

.
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Hence, it suffices to prove (2.3.2) for |α| = 1, l ≥ 1. We have

‖u∇γ‖W l−1
p

≤ ‖uγ‖W l
p

+ ‖γ∇u‖W l−1
p

≤
(
‖γ‖M(W m

p →W l
p) + ‖γ‖M(W m−1

p →W l−1
p )

)
‖u‖W m

p
.

Estimating the norm ‖γ‖M(W m−1
p →W l−1

p ) by (2.3.8), we arrive at (2.3.2). 	


The equivalent representation for the norm in M(Wm
p → Lp) is a direct

consequence of Theorem 1.2.2. Namely,

‖γ‖M(W m
p →Lp) ∼ sup

e

‖γ; e‖Lp

(Cp,m(e))1/p
. (2.3.3)

By Corollary 1.2.2 this can also be written in the form

‖γ‖M(W m
p →Lp) ∼ sup

e:d(e)≤1

‖γ; e‖Lp

(Cp,m(e))1/p
, (2.3.4)

where d(e) is the diameter of e.
Now we pass to two-sided estimates for the norms in M(Wm

p → W l
p),

p ∈ (1,∞), given in terms of the spaces M(W k
p → Lp). We start with lower

estimates.

Lemma 2.3.4. Let γ ∈ M(Wm
p → W l

p). Then

‖∇lγ‖M(W m
p →Lp) + ‖γ‖M(W m−l

p →Lp) ≤ c ‖γ‖M(W m
p →W l

p). (2.3.5)

Proof. Suppose first that γ ∈ M(Wm−l
p → Lp). We have

‖γ∇lu‖Lp
≤ ‖γ‖M(W m

p →W l
p)‖u‖W m

p
+ c

∑
|α|+|β|=l,

β �=0

‖DαuDβγ‖Lp

≤
(
‖γ‖M(W m

p →W l
p) + c

l∑
j=1

‖∇jγ‖M(W m−l+j
p →Lp)

)
‖u‖W m

p
. (2.3.6)

Lemma 2.3.3 implies

‖∇jγ‖M(W m−l+j
p →Lp)

≤ ε ‖γ‖M(W m−l
p →Lp) + c(ε) ‖γ‖M(W m−l+j

p →W j
p ). (2.3.7)

By an interpolation property of Sobolev spaces (see [Tr4]) we have

‖γ‖M(W m−j
p →W l−j

p ) ≤ c ‖γ‖(l−j)/l

M(W m
p →W l

p)
‖γ‖j/l

M(W m−l
p →Lp)

, (2.3.8)
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where 0 ≤ j ≤ l. Estimating the last norm in (2.3.7) by (2.3.8), we obtain

‖∇jγ‖M(W m−l+j
p →Lp) ≤ ε ‖γ‖M(W m−l

p →Lp) + c(ε) ‖γ‖M(W m
p →W l

p).

Substitution of this inequality into (2.3.6) gives

‖γ∇l‖Lp
≤

(
ε ‖γ‖M(W m−l

p →Lp) + c(ε) ‖γ‖M(W m
p →W l

p)

)
‖u‖W m

p
. (2.3.9)

Also,
‖γu‖Lp

≤ ‖γ‖M(W m
p →W l

p)‖u‖W m
p

. (2.3.10)

Combining the last two estimates and applying Lemma 2.3.2, we arrive at

‖γ‖M(W m−l
p →Lp) ≤ ε ‖γ‖M(W m−l

p →Lp) + c(ε) ‖γ‖M(W m
p →W l

p).

Hence,
‖γ‖M(W m−l

p →Lp) ≤ c ‖γ‖M(W m
p →W l

p). (2.3.11)

Next we remove the assumption γ ∈ M(Wm−l
p → Lp). Since γ ∈

M(Wm
p → W l

p), then
‖γη‖Lp

≤ c ‖η‖W m
p

,

where η ∈ C∞
0 (B2(x)), η = 1 on B1(x), and x is an arbitrary point in R

n.
Hence

sup
x

‖γ;B1(x)‖Lp
< ∞

and for any k = 0, 1, . . . there exists a constant cρ such that |∇kγρ| ≤ cρ.
Since the function γρ and all its derivatives are bounded, it follows that γρ is
a multiplier in W k

p for any k = 1, 2, . . . , and thus γρ ∈ M(Wm−l
p → Lp). By

(2.3.11)
‖γρ‖M(W m−l

p →Lp) ≤ c ‖γρ‖M(W m
p →W l

p).

Letting ρ → 0 and using Lemma 2.3.1 we arrive at (2.3.11) for all γ ∈
M(Wm

p → W l
p).

To estimate the first term on the right-hand side of (2.3.5) we combine
(2.3.11) with (2.3.7) for j = l. 	


The estimate inverse to (2.3.5) is contained in the following lemma.

Lemma 2.3.5. Let γ ∈ M(Wm−l
p → Lp) and let ∇lγ ∈ M(Wm

p → Lp). Then
γ ∈ M(Wm

p → W l
p) and the estimate

‖γ‖M(W m
p →W l

p) ≤ c
(
‖∇lγ‖M(W m

p →Lp) + ‖γ‖M(W m−l
p →Lp)

)
(2.3.12)

holds.
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Proof. Inequality (2.3.8) along with Lemma 2.3.3 gives

‖∇jγ‖M(W m−l+j
p →Lp) ≤ c ‖γ‖j/l

M(W m
p →W l

p)
‖γ‖1−j/l

M(W m−l
p →Lp)

, (2.3.13)

where j = 1, . . . , l − 1. For any u ∈ C∞
0 ,

‖∇l(γu)‖Lp
≤ c

l∑
j=0

‖ |∇jγ| |∇l−ju| ‖Lp
≤ c

(
‖∇lγ‖M(W m

p →Lp)

+‖γ‖M(W m−l
p →Lp) +

l−1∑
j=1

‖∇jγ‖M(W m−l+j
p →Lp)

)
‖u‖W m

p
.

Then it follows from (2.3.13) that

‖∇l(γu)‖Lp
≤ c

(
‖∇lγ‖M(W m

p →Lp) + ‖γ‖M(W m−l
p →Lp)

)
‖u‖W m

p
.

It remains to note that

‖γu‖Lp
≤ ‖γ‖M(W m−l

p →Lp)‖u‖W m−l
p

.

	


Unifying Lemmas 2.3.4 and 2.3.5, we arrive at the following assertion.

Theorem 2.3.1. Let m and l be integers, and let p ∈ (1,∞). A function γ
belongs to the space M(Wm

p → W l
p) if and only if γ ∈ W l

p,loc, γ ∈ M(Wm−l
p →

Lp), and ∇lγ ∈ M(Wm
p → Lp). Moreover,

‖γ‖M(W m
p →W l

p) ∼ ‖∇lγ‖M(W m
p →Lp) + ‖γ‖M(W m−l

p →Lp).

Relation (2.3.3) leads to the following reformulation of Theorem 2.3.1.

Theorem 2.3.2. Let m and l be integers, and let p ∈ (1,∞). A function γ
belongs to the space M(Wm

p → W l
p) if and only if γ ∈ W l

p,loc and, for any
compact set e ⊂ R

n,
‖∇lγ; e‖p

Lp
≤ c Cp,m(e)

and
‖γ; e‖p

Lp
≤ c Cp,m−l(e).

Moreover,

‖γ‖M(W m
p →W l

p) ∼ sup
e

( ‖∇lγ; e‖Lp

(Cp,m(e))1/p
+

‖γ; e‖Lp

(Cp,m−l(e))1/p

)
. (2.3.14)

An important particular case of Theorem 2.3.2 is m = l.
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Corollary 2.3.1. Let l be an integer and let p ∈ (1,∞). A function γ belongs
to the space MW l

p if and only if γ ∈ W l
p,loc and, for any compact set e ⊂ R

n,

‖∇lγ; e‖p
Lp

≤ c Cp,l(e).

Moreover,

‖γ‖MW l
p
∼ sup

e

‖∇lγ; e‖Lp

(Cp,l(e))1/p
+ ‖γ‖L∞ . (2.3.15)

By (2.3.4), one can use only compact sets with diameters not exceeding
1 in Theorem 2.3.2 and Corollary 2.3.1 and rewrite (2.3.14) and (2.3.15) as
follows:

‖γ‖M(W m
p →W l

p) ∼ sup
e:d(e)≤1

( ‖∇lγ; e‖Lp

(Cp,m(e))1/p
+

‖γ; e‖Lp

(Cp,m−l(e))1/p

)
, (2.3.16)

‖γ‖MW l
p
∼ sup

e:d(e)≤1

‖∇lγ; e‖Lp

(Cp,l(e))1/p
+ ‖γ‖L∞ . (2.3.17)

2.3.1 Another Characterization of the Space M(W m
p → W l

p)
for 0 < l < m, pm ≤ n, p > 1

Lemma 2.3.6. Let p ∈ (1,∞), 0 < ν < µ, and let ϕ be a nonnegative function
in Lpµ,loc. Then, for any compact set e of positive measure,

sup
e

(
∫

e

ϕνpdx

Cp,ν(e)

)1/ν

≤ sup
e

(
∫

e

ϕµpdx

Cp,µ(e)

)1/µ

. (2.3.18)

The same assertion holds for compact sets e of positive measure with diameter
not exceeding 1.

Proof. Let u ∈ C∞
0 and let f = Jνu. By (1.2.17) and Hölder’s inequality

∫
ϕνp|u|pdx ≤ c

∫
ϕνp

(
Jµ|f |

)νp/µ(
Mf

)(µ−ν)p/µ
dx

≤ c
(∫

ϕµp
(
Jµ|f |

)p
dx

)ν/µ(∫ (
Mf

)p
dx

)(µ−ν)/µ

.

Using the continuity of the Hardy–Littlewood operator M in Lp, we find

∫
ϕνp|u|pdx ≤ c sup

e

(
∫

e

ϕνpdx

Cp,µ(e)

)ν/µ

‖Jµ|f | ‖νp/µ

W µ
p

‖f‖(µ−ν)p/µ
Lp

.
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Since ‖Jµ|f | ‖W µ
p
≤ c ‖f‖Lp

, it follows that

∫
ϕνp|u|pdx ≤ c sup

e

(
∫

e

ϕνpdx

Cp,µ(e)

)ν/µ

‖u‖p
W µ

p
.

The result follows by Theorem 1.2.2. 	


Corollary 2.3.2. For any m > l ≥ 0 and p ∈ (1,∞),

sup
e

‖γ; e‖Lp

(Cp,m−l(e))1/p
≤ c sup

e

‖γ; e‖Lpm/(m−l)

(Cp,m(e))(m−l)/pm
. (2.3.19)

The same assertion holds for compact sets e of positive measure with diameter
not exceeding 1.

Proof. The result follows by Lemma 2.3.6 with ϕ = |γ|1/(m−l), ν = m − l,
and µ = m. 	


The following assertion was obtained in [Ad2].

Lemma 2.3.7. Let 0 < l < m ≤ n/p, p ∈ (1,∞), and let Ilf be the Riesz
potential with a nonnegative density f ∈ Lp,loc. Then

(Ilf)(x) ≤ c
(
sup
r>0

rm−n/p‖f ;Br(x)‖Lp

)l/m(
(Mf)(x)

)(m−l)/m
.

Proof. It is enough to put x = 0. For any δ > 0 we have

(Ilf)(0) =
∫

Bδ

f(z)dz

|z|n−l
+

∫

Rn\Bδ

f(z)dz

|z|n−l
. (2.3.20)

Clearly, ∫

Bδ

f(z)dz

|z|n−l
≤ c δl(Mf)(0). (2.3.21)

The second integral in (2.3.20) can be written as
∫

Rn\Bδ

f(z)dz

|z|n−l
= (n − l)

∫ ∞

δ

∫

Br

f(ξ)dξ
dr

rn−l+1
− δl−n

∫

Bδ

f(ξ)dξ.

By Hölder’s inequality the right-hand side does not exceed

c
(∫ ∞

δ

(∫

Br

f(ξ)pdξ
)1/p dr

r1−l+n/p
+ δl−n/p

(∫

Bδ

f(ξ)pdξ
)1/p)

.
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Hence ∫

Rn\Bδ

f(z)dz

|z|n−l
≤ c δl−m sup

r>0
rm−n/p‖f ;Br(x)‖Lp

which together with (2.3.21) implies that

(Ilf)(0) ≤ c
(
δl(Mf)(0) + δl−m sup

r>0
rm−n/p‖f ;Br(x)‖Lp

)
.

The result follows by minimizing the right-hand side in δ. 	


The next lemma is due to Verbitsky. For its proof see [MSh16], Sect. 2.6
and [MV1], Sect. 3.

Lemma 2.3.8. Let p ∈ (1,∞) and let 0 < m ≤ n/p. Then

sup
e

‖M f ; e‖Lp

(Cp,m(e))1/p
≤ c sup

e

‖f ; e‖Lp

(Cp,m(e))1/p
. (2.3.22)

This inequality plays a crucial role in the next assertion, also proved by
Verbitsky, see [MSh16], Sect. 2.6.

Lemma 2.3.9. Let m and l be integers, 0 < l < m ≤ n/p, and let p ∈ (1,∞).
Then

sup
e

‖γ; e‖Lpm/(m−l)

(Cp,m(e))(m−l)/pm

≤ c
(
sup

e

‖∇lγ; e‖Lp

(Cp,m(e))1/p
+ sup

x∈Rn

‖γ;B1(x)‖L1

)
. (2.3.23)

Proof. By the Sobolev integral representation [Sob] (see, for instance, [Maz14],
Subsect. 1.1.10 and [Bur], Sect. 3.4)

|γ(x)| ≤ c
(∫

B2

|∇lγ(x + z)|
|z|n−l

dz + sup
x∈Rn

‖γ;B1(x)‖L1

)
.

Combining this inequality with Lemma 2.3.7, we obtain

|γ(x)| ≤ c
(
( sup
z∈Rn,r∈(0,1)

rm−n/p‖∇lγ;Br(z)‖Lp
)l/m((M∇lγ)(x))1−l/m

+ sup
x∈Rn

‖γ;B1(x)‖L1

)
(2.3.24)

for almost all x ∈ R
n.

Adopting the notation

K = sup
z∈Rn,r∈(0,1)

rm−n/p‖∇lγ;Br(z)‖Lp
,
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we deduce from (2.3.24) that
∫

e

|γ|pm/(m−l)dx

≤ c
(
Kpl/(m−l)

∫

e

|(M∇lγ)(x)|pdx + ( sup
x∈Rn

‖γ;B1(x)‖L1)
pm/(m−l)mesne

)
.

Using here the obvious estimate mesne ≤ Cp,m(e), we find that

(
∫

e

|γ(x)|pm/(m−l)dx

Cp,m(e)

)(m−l)/pm

≤ c
(
Kl/m

(
sup

e

‖M∇lγ; e‖Lp

(Cp,m(e))1/p

)1−l/m

+ sup
x∈Rn

‖γ;B1(x)‖L1

)
.

Reference to Lemma 2.3.8 and the inequality

K ≤ sup
e

‖∇lγ; e‖Lp

(Cp,m(e))1/p
,

completes the proof. 	


The following assertion gives one more representation of a norm in
M(Wm

p → W l
p).

Theorem 2.3.3. Let m and l be integers, 0 < l < m ≤ n/p, and let p ∈
(1,∞). A function γ belongs to the space M(Wm

p → W l
p) if and only if γ ∈

W l
p,loc and for any compact set e ⊂ R

n

‖∇lγ; e‖p
Lp

≤ c Cp,m(e).

Moreover,

‖γ‖M(W m
p →W l

p) ∼ sup
e

‖∇lγ; e‖Lp

(Cp,m(e))1/p
+ sup

x∈Rn

‖γ;B1(x)‖L1 . (2.3.25)

Here one can use only compact sets with diameter not exceeding 1.

Proof. We start with the lower estimate. By Lemma 2.3.4,

‖γη‖Lp
≤ ‖γ‖M(W m−l

p →Lp)‖η‖W m−l
p

for any η ∈ C∞
0 (B2(x)) with η = 1 on B1(x), where x is an arbitrary point in

R
n. Therefore,

sup
x∈Rn

‖γ;B1(x)‖Lp
≤ c ‖γ‖M(W m−l

p →Lp).

The upper estimate is a direct corollary of (2.3.14), Corollary 2.3.2, and
Verbitsky’s Lemma 2.3.9. 	
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Corollary 2.3.3. Let m and l be integers, 0 < l < m and let p ∈ (1,∞).
Then

‖γ‖M(W m
p →W l

p) ∼
l∑

j=0

‖∇l−jγ‖M(W m−j
p →Lp) (2.3.26)

and
‖γ‖M(W m

p →W l
p) ∼ ‖∇lγ‖M(W m

p →Lp) + ‖γ‖L1,unif . (2.3.27)

For m = l the norm ‖γ‖L1,unif should be replaced by ‖γ‖L∞ .

Proof. The upper estimates follow from (2.3.25) and (2.3.3). The lower esti-
mate in (2.3.26) results from

‖∇l−jγ‖M(W m−j
p →Lp) ≤ c ‖γ‖M(W m−j

p →W l−j
p ) ≤ c ‖γ‖M(W m

p →W l
p).

	

We finish this subsection with one more two-sided estimate for the norm

in M(Wm
p → W l

p).

Corollary 2.3.4. Let m and l be integers, 0 < l < m and let p ∈ (1,∞).
Then

c

l∑
j=0

sup
e

‖∇jγ; e‖Lp

[Cp,m−l+j(e)]1/p
≤ ‖γ‖M(W m

p →W l
p)

≤ c
(
sup

e

‖∇lγ; e‖Lp

[Cp,m(e)]1/p
+ ‖γ‖L1,unif

)
. (2.3.28)

For m = l the norm ‖γ‖L1,unif should be replaced by ‖γ‖L∞ .

Proof. The lower estimate follows from (2.3.26) and (2.3.3). The upper one
is contained in (2.3.25). 	


2.3.2 Characterization of the Space M(W m
p → W l

p) for pm > n,
p > 1

For pm > n the space M(Wm
p → W l

p) has a simple description which is
contained in the next assertion.

Theorem 2.3.4. If pm > n, p ∈ (1,∞), then

‖γ‖M(W m
p →W l

p) ∼ sup
x∈Rn

‖γ;B1(x)‖W l
p
. (2.3.29)

Proof. Since for compact sets e with diameter less than 1 the equivalence
relation

Cp,m(e) ∼ 1
holds, the result follows from (2.3.25). 	


Remark 2.3.1. For pm > n, p ∈ (1,∞), the relation (2.3.29) can be written as

‖γ‖M(W m
p →W l

p) ∼ ‖γ‖W l
p,unif

.
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2.3.3 One-Sided Estimates for Norms of Multipliers in the Case
pm ≤ n

For mp ≤ n we can give different upper and lower bounds for norms in
M(Wm

p → W l
p) which do not involve capacity. In other words, we obtain

separate non-capacitary necessary and sufficient conditions for a function to
belong to this space of multipliers.

Using the estimates of the capacity of a ball given in Proposition 1.2.9
and Theorem 2.3.3 we immediately arrive at the following lower estimates for
norms of multipliers.

Proposition 2.3.1. (i) If pm < n, p ∈ (1,∞), then

‖γ‖M(W m
p →W l

p) ≥ c
(

sup
x∈Rn,r∈(0,1)

rm−n/p‖∇lγ;Br(x)‖Lp

+ sup
x∈Rn

‖γ;B1(x)‖L1

)
. (2.3.30)

(ii) If pm = n, p ∈ (1,∞), then

‖γ‖M(W m
p →W l

p) ≥ c
(

sup
x∈Rn,r∈(0,1)

((log(2/r))1−1/p‖∇lγ;Br(x)‖Lp

+ sup
x∈Rn

‖γ;B1(x)‖L1

)
. (2.3.31)

Next, we give upper estimates for the norm in M(Wm
p → W l

p) which result
directly from Theorem 2.3.3 and Proposition 1.2.8.

Proposition 2.3.2. (i) If pm < n, p ∈ (1,∞), then

‖γ‖M(W m
p →W l

p) ≤ c
(

sup
e:d(e)≤1

‖∇lγ; e‖Lp

(mesne)1/p−m/n
+ sup

x∈Rn

‖γ;B1(x)‖L1

)
, (2.3.32)

where d(e) is the diameter of e.
(ii) If pm = n, p ∈ (1,∞), then

‖γ‖M(W m
p →W l

p) ≤ c
(

sup
e:d(e)≤1

(log(2n/mesne))1−1/p‖∇lγ; e‖Lp

+ sup
x∈Rn

‖γ;B1(x)‖L1

)
. (2.3.33)

For m = l one should replace sup
x∈Rn

‖γ;B1(x)‖L1 by ‖γ‖L∞ .

The next assertion follows immediately from Proposition 2.3.2.

Corollary 2.3.5. (i) If pm < n, l < m, and p ∈ (1,∞), then

‖γ‖M(W m
p →W l

p) ≤ c ‖γ‖W l
n/m,unif

.

(ii) If lp < n, p ∈ (1,∞), then

‖γ‖MW l
p
≤ c

(
sup

x∈Rn

‖∇lγ;B1(x)‖Ln/l
+ ‖γ‖L∞

)
.
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2.3.4 Examples of Multipliers

Propositions 2.3.1, 2.3.1 and Theorem 2.3.4 enable one to verify conditions
for inclusion of individual functions into spaces of multipliers. We give three
examples of this kind.

Example 2.3.1. Let
γ(x) = η(x)|x|α+iβ ,

where η ∈ C∞
0 , η(0) = 1, α ∈ R, and β ∈ R\{0}.

Let mp > n. Clearly, γ ∈ W l
p,unif = M(Wm

p → W l
p) if and only if α >

l − n/p.
Suppose that mp ≤ n. If α ≤ l − n/p, then γ /∈ W l

p,loc and hence γ /∈
M(Wm

p → W l
p) because of (2.3.30) and (2.3.31). Consider the case mp ≤ n,

α > l − n/p. We obtain

‖∇lγ; e‖Lp
∼ ‖|x|α−l; e‖Lp

≤ c (mesne)α−l+n/p

for all compact sets e with d(e) ≤ 1. Using (2.3.32) and (2.3.33), we conclude
that γ ∈ M(Wm

p → W l
p). Summarizing, we have

γ ∈ M(Wm
p → W l

p) ⇐⇒ α > l − n/p.

Example 2.3.2. Let µ > 0 and let

γ(x) = η(x) exp(i|x|−µ),

where η ∈ C∞
0 , η(0) = 1. Clearly,

|∇lγ(x)| ∼ |x|−l(µ+1) as x → 0.

Therefore, γ ∈ W l
p(R

n) is equivalent to n > pl(µ + 1). Let us find a criterion
for γ ∈ M(Wm

p → W l
p).

In view of Theorem 2.3.4, the same inequality n > pl(µ + 1) is necessary
and sufficient for γ to belong to M(Wm

p (Rn) → W l
p(R

n)) for mp > n.
Suppose that mp < n. We have

‖∇lγ;Br‖L∞ ∼ ‖|x|−l(µ+1);Br‖Lp

and
lim
r→0

rm−n/p‖∇lγ;Br‖Lp
= ∞

for m < l(µ + 1). According to Proposition 2.3.1, this means that γ /∈
M(Wm

p → W l
p) for m < l(µ + 1). If m ≥ l(µ + 1), then

‖∇lγ; e‖Lp
≤ c‖|x|−l(µ+1); e‖Lp

≤ c (mesne)−l(µ+1)/n+1/p

for any compact set e with diameter d(e) ≤ 1. This, together with Proposition
2.3.2, implies that γ ∈ M(Wm

p → W l
p). Thus, for mp < n,
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γ ∈M(Wm
p →W l

p)⇐⇒ m ≥ l(µ+ 1).

In the same way we verify that

γ ∈M(Wm
p →W l

p)⇐⇒ m > l(µ+ 1)

for mp = n.

Example 2.3.3. Let µ, ν > 0, η ∈ C∞
0 (B1(0)), η(0) = 1 and

γ(x) = η(x)(log |x|−1)−ν exp(i (log |x|−1)µ).

Clearly,
|∇lγ(x)| ∼ c |x|−l(log |x|−1)l(µ−1)−ν .

Using the same arguments as in Example 2.3.2, from this relation and
Propositions 2.3.1 and 2.3.2 we obtain

λ ∈W l
p(R

n) ⇐⇒ l(µ− 1) < ν − 1/p,

λ ∈MW l
p(R

n) ⇐⇒ l(µ− 1) ≤ ν − 1

for lp = n. ��

2.4 The Space M(W m
p (Rn

+) → W l
p(R

n
+))

2.4.1 Extension from a Half-Space

Let R
n
+ = {z = (x, xn) : x ∈ R

n−1, xn > 0}. The classical extension operator
π is defined for functions given on R

n
+ by

π(v)(z) =

⎧
⎪⎪⎨
⎪⎪⎩

v(z) for xn > 0,
l∑

j=1

αj v(x,−jxn) for xn < 0,

where αj satisfy the conditions

l∑
j=1

(−1)kjkαj = 1, 0 ≤ k ≤ l − 1.

Lemma 2.4.1. Suppose that γ ∈M(Wm
p (Rn

+)→W l
p(R

n
+)), where 0 ≤ l ≤ m

and p ∈ [1,∞). Then

π(γ) ∈M(Wm
p (Rn)→Wm

p (Rn))

and
‖π(γ); Rn‖M(W m

p →W l
p) ≤ c ‖γ; Rn

+‖M(W m
p →W l

p). (2.4.1)
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Proof. Since γ ∈ W l
p,loc(R

n
+), it follows by the well-known property of the

operator π that π(γ) ∈ W l
p,loc(R

n). Hence π(γ)u ∈ W l
p(R

n) for any u ∈
C∞

0 (Rn). We have

‖π(γ); Rn‖p
W l

p
= ‖γu; Rn

+‖W l
p

+ ‖π(γ)u; Rn
−‖W l

p

≤ ‖γu; Rn
+‖W l

p
+ c

l∑
j=1

‖γ uj ; Rn
+‖pW l

p
,

where
uj(x, xn) = u(x,−xn/j)

and R
n
− = {z = (x, xn) : x ∈ R

n−1, xn < 0}. Therefore,

‖π(γ); Rn‖p
W l

p
≤ c ‖γ; Rn

+‖M(W m
p →W l

p)

(
‖u; Rn

+‖W m
p

+
l∑

j=1

‖uj ; Rn
+‖W m

p

)

and, since
‖uj ; Rn

+‖W m
p
≤ c ‖u; Rn

−‖W m
p
,

it follows that

‖π(γ); Rn‖p
W l

p
≤ c ‖γ; Rn

+‖M(W m
p →W l

p)‖u; Rn‖W m
p
.

The lemma is proved. ��

2.4.2 The Case p > 1

In this subsection and elsewhere we use the notation

B±r (Y ) = Br(Y ) ∩ R
n
±.

Theorem 2.4.1. A function γ belongs to M(Wm
p (Rn

+)→Wm
p (Rn

+)) with p ∈
(1,∞) if and only if γ ∈W l

p,loc(R
n
+) and, for any compact set e ⊂ R

n
+,

‖∇lγ; e‖pLp
≤ cCp,m(e). (2.4.2)

Moreover,

c1 sup
e

l∑
k=0

‖∇kγ; e‖Lp

(Cp,m−l+k(e))1/p
≤ ‖γ; Rn

+‖M(W m
p →W l

p)

≤ c2

(
sup

e

‖∇lγ; e‖Lp

(Cp,m(e))1/p
+ sup

X∈R
n
+

‖γ;B+
1 (X)‖L1

)
. (2.4.3)
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Proof. By Theorem 2.3.3

sup
e⊂R

n
+

‖∇kγ; e‖Lp

(Cp,m−l+k(e))1/p
≤ sup

e⊂Rn

‖∇kπ(γ); e‖Lp

(Cp,m−l+k(e))1/p
≤ c ‖π(γ); Rn‖M(W m

p →W l
p).

Reference to Lemma 2.4.1 implies the lower estimate for ‖γ; Rn
+‖M(W m

p →W l
p).

We turn to the proof of the upper estimate in (2.4.3). Let u ∈ C∞
0 (Rn

+)
and let

γ ∈M(Wm
p (Rn

+)→W l
p(R

n
+)).

We have
‖γu; Rn

+‖W l
p
≤ ‖π(γ)π(u); Rn‖W l

p
. (2.4.4)

By Theorem 2.3.3 the right-hand side does not exceed

c
(

sup
e⊂Rn

‖∇lπ(γ); e‖Lp

(Cp,m(e))1/p
+ sup

z∈Rn

‖π(γ);B1(z)‖L1

)
‖π(u); Rn‖W m

p
.

Since
‖π(u); Rn‖W m

p
≤ c ‖u; Rn

+‖W m
p

(2.4.5)

and
sup
z∈Rn

‖π(γ);B1(z)‖L1 ≤ c sup
X∈R

n
+

‖γ;B+
1 (X)‖L1 , (2.4.6)

it remains to prove the inequality

sup
e⊂Rn

‖∇lπ(γ); e‖Lp

(Cp,m(e))1/p
≤ c sup

e⊂R
n
+

‖∇lγ; e‖Lp

(Cp,m(e))1/p
. (2.4.7)

Let e± = e∩R
n
±. The quotient on the left-hand side of (2.4.7) does not exceed

the sum
‖∇lγ; e+‖Lp

(Cp,m(e+))1/p
+
‖∇lπ(γ); e−‖Lp

(Cp,m(e−))1/p
. (2.4.8)

We put
ej = {z : (x,−xn/j) ∈ e−}, j = 1, . . . , l.

Using the inequality

‖∇lπ(γ); e−‖Lp
≤ c ‖∇lγ; ej‖Lp

along with the equivalence relation

Cp,m(e−) ∼ Cp,m(ej),

we conclude that the second term in (2.4.8) is majorized by

c sup
e⊂R

n
+

‖∇lγ; e‖Lp

(Cp,m(e))1/p
.

The proof is complete. ��
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The following assertion follows directly from the last theorem.

Corollary 2.4.1. If γ ∈M(Wm
p (Rn

+)→W l
p(R

n
+)), then

Dαγ ∈M(Wm
p (Rn

+)→W l−|α|
p (Rn

+))

for any multi-index α of order |α| ≤ l. The estimate

‖Dαγ; Rn
+‖M(W m

p →W
l−|α|
p )

≤ c ‖γ; Rn
+‖M(W m

p →W l
p)

holds.

2.4.3 The Case p = 1

Theorem 2.4.2. A function γ belongs to M(Wm
1 (Rn

+) → W l
1(R

n
+)) if and

only if γ ∈W l
1,loc(R

n
+) and

‖∇lγ;B+
r (X)‖L1 ≤ c rn−m (2.4.9)

for any X ∈ R
n
+ and r ∈ (0, 1). Moreover,

‖γ; Rn
+‖M(W m

1 →W l
1) ∼

sup
X∈R

n
+

r∈(0,1)

rm−n‖∇lγ;B+
r (X)‖L1 + sup

X∈R
n
+

‖γ;B+
1 (X)‖L1 . (2.4.10)

Proof. By Theorem 2.2.3

sup
X∈R

n
+

r∈(0,1)

rm−n‖∇lγ;B+
r (X)‖L1 ≤ sup

Y ∈R
n
+

r∈(0,1)

rm−n‖∇lπ(γ);Br(Y )‖L1

≤ c ‖π(γ); Rn‖M(W m
1 →W l

1).

Reference to Lemma 2.4.1 implies the lower estimate for ‖γ; Rn
+‖M(W m

1 →W l
1).

To obtain the upper estimate, we take U ∈ C∞
0 (Rn

+) and γ ∈
M(Wm

1 (Rn
+)→W l

1(R
n
+)). In view of (2.4.4), which is also valid for p = 1, the

norm ‖γu; Rn
+‖W l

1
is dominated by

c
(

sup
Y ∈Rn

r∈(0,1)

rm−n‖∇lπ(γ);Br(Y )‖L1 + sup
Y ∈Rn

‖π(γ);B1(Y )‖L1

)
‖π(U); Rn‖W m

1
.

By (2.4.5), which holds also for p = 1, and (2.4.4), it remains to obtain the
majorant for ‖∇lπ(γ);Br(Y )‖L1 . We have

‖∇lπ(γ);Br(Y )‖L1 ≤ ‖∇lπ(γ);B+
r (Y )‖L1 + ‖∇lπ(γ);B−r (Y )‖L1 .

Putting
Br,j = {z : (x,−xn/j) ∈ B−r (Y )}

and using the inequalities

‖∇lπ(γ);B−r (Y )‖L1 ≤ c ‖∇lπ(γ);Br,j‖L1 ≤ c sup
X∈R

n
+

‖∇γ;B+
r (X)‖L1 ,

we complete the proof. ��
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2.5 The Space M(W m
p → W −k

p )

Let m and k be positive integers, and let W−k
p stand for the dual space (W k

p′)′,
where p+ p′ = pp′. The following assertion contains a sufficient condition for
inclusion into the distribution space M(Wm

p →W−k
p ).

Theorem 2.5.1. (i) Let p ∈ (1,∞), 0 < m ≤ k. If

γ =
∑
|α|≤k

Dαγα (2.5.1)

with
γα ∈M(W k

p′ →W k−m
p′ ) ∩M(Wm

p → Lp), (2.5.2)

then γ ∈M(Wm
p →W−k

p ).
(ii) Let p ∈ (1,∞), m ≥ k > 0. If

γ =
∑

|α|≤m

Dαγα

with
γα ∈M(Wm

p →Wm−k
p ) ∩M(W k

p′ → Lp′),

then γ ∈M(Wm
p →W−k

p ).

Proof. It suffices to prove only (i), since (ii) follows from (i) by duality.
Let u ∈Wm

p , m ≤ k. Since

uDαγα =
∑
λ≤α

cλαD
λ(γαD

α−λu), cλα = const,

we have
‖γu‖W−k

p
≤ c

∑
|λ|≤|α|≤k

‖γαD
α−λu‖

W
|λ|−k
p

≤ c
∑

|λ|≤|α|≤k

‖γα‖M(W
m−k+|λ|
p →W

|λ|−k
p )

‖u‖
W

m+|α|−k
p

. (2.5.3)

Applying the interpolation inequality

‖γα‖M(W
m−k+|λ|
p →W

|λ|−k
p )

≤ c ‖γα‖(k−|λ|)/k

M(W m−k
p →W−k

p )
‖γα‖|λ|/k

M(W m
p →Lp),

which results from the interpolation property of Sobolev spaces (see [Tr4],
Sect. 2.4), we obtain from (2.5.3)

‖γu‖W−k
p
≤ c (‖γα‖M(W m−k

p →W−k
p ) + ‖γα‖M(W m

p →Lp))‖u‖W m
p
.

It remains to note that

‖γα‖M(W m−k
p →W−k

p ) = ‖γα‖M(W k
p′→W k−m

p′ ).

The proof is complete. ��
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The next assertion shows that Theorem 2.5.1 provides a complete charac-
terization of M(Wm

p → W−k
p ) which holds under some conditions involving

k,m, p, and n.

Theorem 2.5.2. Let k and m be positive integers and let either k ≥ m > 0
and k > n/p′ or m ≥ k > 0 and m > n/p. Then γ ∈M(Wm

p →W−k
p ) if and

only if
γ ∈W−k

p,unif ∩W
−m
p′,unif . (2.5.4)

In particular, if max{k,m} > n/2 then M(Wm
2 →W−k

2 ) is isomorphic to
W

−min{m,k}
2 .

Proof. It suffices to consider the case k ≥ m > 0, k > n/p′, because the case
m ≥ k > 0, m > n/p results by duality.

Necessity. It follows from the inclusion γ ∈ M(Wm
p → W−k

p ) that γ ∈
W−k

p,unif . Since M(Wm
p → W−k

p ) is isomorphic to M(W k
p′ → W−m

p′ ), we have
γ ∈W−m

p′,unif as well.
Sufficiency. It is standard and easily proved that

γ ∈W−k
p,unif ∩W

−m
p′,unif

if and only if (2.5.1) holds with

γα ∈ Lp,unif ∩W k−m
p′,unif .

Since M(W k
p′ → W k−m

p′ ) is isomorphic to W k−m
p′,unif for p′k > n, it follows that

γα ∈M(W k
p′ →W k−m

p′ ).
It remains to show that γα ∈M(Wm

p → Lp). We choose q and r to satisfy

1/q > max{0, 1/p−m/n} > −ε+ 1/q,

1/r > max{0, 1/p′ − (k −m)/n} > −ε+ 1/r

with a sufficiently small ε. Since 1/p > 1− k/n, we have 1/p > 1/q+ 1/r. By
Hölder’s inequality

‖γαu‖Lp,unif ≤ c ‖γα‖Lr,unif‖u‖Lq,unif

and by Sobolev’s imbedding theorem

‖γαu‖Lp,unif ≤ c ‖γα‖W k−m
p′,unif

‖u‖W m
p,unif

.

This means that γα ∈M(Wm
p → Lp). The proof is completed by reference to

assertion (i) of Theorem 2.5.1. ��
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Remark 2.5.1. Note that by Sobolev’s imbedding theorem

W−m
p′,unif ⊂W−k

p,unif , k ≥ m,

if and only if either n ≤ (k −m)p or

n > (k −m)p,
k −m

n
≥ 2− p

p
.

Under these conditions, M(Wm
p →W−k

p ) is isomorphic to W−m
p′,unif if kp′ > n.

Analogously, if m ≥ k, mp > n and either n ≤ (m− k)p′ or

n > (m− k)p′,
m− k

n
≥ p− 2

p
,

then M(Wm
p →W−k

p ) is isomorphic to W−k
p,unif .

We now state a direct application of Theorem 2.5.2 to the theory of dif-
ferential operators.

Corollary 2.5.1. Let k and m be integers and let L(D) denote a differential
operator of order m+k with constant coefficients. If either k ≥ m and kp′ > n,
or m ≥ k > 0 and mp > n, then the operator

Wm
p � u→ L(D)u+ γ(x)u ∈W−k

p

is continuous if and only if

γ ∈W−k
p,unif ∩W

−m
p′,unif .

We conclude this subsection with a simple description of nonnegative ele-
ments of the space M(Wm

2 →W−m
2 ).

Theorem 2.5.3. Let γ ≥ 0. Then γ ∈M(Wm
2 →W−m

2 ) if and only if γ1/2 ∈
M(Wm

2 → L2). Moreover,

‖γ‖M(W m
2 →W−m

2 ) = ‖γ1/2‖2M(W m
2 →L2)

.

Proof. Let u ∈Wm
2 , v ∈Wm

2 . We have
∣∣∣
∫
γuv̄ dx

∣∣∣ ≤ ‖γ1/2u‖L2‖γ1/2v‖L2 ≤ ‖γ1/2‖2M(W m
2 →L2)

‖u‖W m
2
‖v‖W m

2
.

Hence
‖γ‖M(W m

2 →W−m
2 ) ≤ ‖γ1/2‖2M(W m

2 →L2)
.

To obtain the converse inequality, we first note that
∣∣∣
∫
γuv̄ dx

∣∣∣ ≤ ‖γ‖M(W m
2 →W−m

2 )‖u‖W m
2
‖v‖W m

2
.
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Putting here u = v, we obtain∫
|γ1/2u|2 dx ≤ ‖γ‖M(W m

2 →W−m
2 )‖u‖2W m

2
.

Thus,
‖γ‖M(W m

2 →W−m
2 ) ≥ ‖γ1/2‖2M(W m

2 →L2)
.

��

2.6 The Space M(W m
p → W l

q)

In this book consideration is limited to classes of the type M(Sm
p → Sl

p),
i.e. to multipliers acting in one scale of spaces preserving the integrability
degree p. Some generalizations to the pairs (Sm

p , Sl
q) are known. This is true,

in particular, for the class M(Wm
p → W l

q) with nonnegative and integer m
and l, which is briefly described in the present subsection.

Using the same arguments as in the proof of Theorem 2.3.1, we obtain

‖γ‖M(W m
p →W l

q) ∼ ‖∇lγ‖M(W m
p →Lq) + ‖γ‖M(W m−l

p →Lq), (2.6.1)

where p, q ∈ (1,∞). Thus, the problem is reduced to a description of the class
M(Wm

p → Lq). This can be obtained from Lemmas 1.3.1 – 1.3.5. In particular,
by (2.6.1) and the same lemmas we have the following assertions concerning
the norm in M(Wm

p →W l
q) with p < q.

Theorem 2.6.1. If 1 < p < q, then

‖γ‖M(W m
p →W l

q) ∼

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
x∈Rn,r∈(0,1)

rm−n/p‖∇lγ;Br(x)‖Lq
+ sup

x∈Rn

‖γ;B1(x)‖Lq

for mp < n,

sup
x∈Rn,r∈(0,1)

(log 2/r)1/p′‖∇lγ;Br(x)‖Lq
+ sup

x∈Rn

‖γ;B1(x)‖Lq

for mp = n,

sup
x∈Rn

‖γ;B1(x)‖W l
q

for mp > n.

Applying the same arguments as in Sect. 2.2, one can derive the following
result from relations (1.3.2) and (1.3.4) with p = 1.

Theorem 2.6.2. If q > 1, then

‖γ‖M(W m
1 →W l

q) ∼

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sup
x∈Rn,r∈(0,1)

rm−n‖∇lγ;Br(x)‖Lq
+ sup

x∈Rn

‖γ;B1(x)‖Lq

for m < n,

sup
x∈Rn

‖γ;B1(x)‖W l
q

for m ≥ n.
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Choosing

µ(e) =
∫

e

|∇lγ(x)|qdx

in Lemmas 1.3.4, 1.3.5 and using again the equivalence relation (2.6.1), we
can obtain descriptions of M(Wm

p →W l
q) with p > q, p > 1.

2.7 Certain Properties of Multipliers

In this section we study some simple properties of elements of the space
M(Wm

p →W l
p) with p ∈ [1,∞).

Proposition 2.7.1. The space M(Wm
p → W l

p) is contained in M(Wm−j
p →

W l−j
p ), j = 1, . . . , l, and

‖γ‖M(W m−j
p →W l−j

p ) ≤ c ‖γ‖M(W m
p →W l

p).

Proof. The inequality

‖γ‖M(W m−l
p →Lp) ≤ c ‖γ‖M(W m

p →W l
p)

is proved in Lemma 2.2.2 for p = 1 and in Lemma 2.3.4 for p > 1. It remains
to use interpolation inequalities (2.3.8) and (2.2.10). ��

Proposition 2.7.2. If a function γ depends only on variables x1, . . . , xs, s <
n, and

γ ∈M(Wm
p (Rs)→W l

p(R
s)),

then
γ ∈M(Wm

p (Rn)→W l
p(R

n))

and
‖γ; Rn‖M(W m

p →W l
p) ≤ c ‖γ; Rs‖M(W m

p →W l
p).

The proof is obvious.

Proposition 2.7.3. If γ ∈ M(Wm
p → W l

p) and k is a positive integer satis-
fying k ≤ m/(m− l), then

γk ∈M(Wm
p →Wm−k(m−l)

p )

and
‖γk‖

M(W m
p →W

m−k(m−l)
p )

≤ c ‖γ‖kM(W m
p →W l

p).

The proof is obvious.
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Proposition 2.7.4. The estimate

‖γ‖L∞ ≤ ‖γ‖MW l
p

(2.7.1)

holds.

Proof. For any N = 1, 2, . . . , and arbitrary u ∈ C∞
0 we have

‖γNu‖1/N
Lp
≤ ‖γNu‖1/N

W l
p
≤ ‖γ‖MW l

p
‖u‖1/N

W l
p
.

Passing to the limit as N →∞, we obtain (2.7.1). ��

Proposition 2.7.5. Let γ ∈ MW l
p and let σ be a segment on the real axis

such that γ(x) ∈ σ for almost all x ∈ R
n. Further let f ∈ Cl−1,1(σ). Then

f(γ) ∈MW l
p and

‖f(γ)‖MW l
p
≤ c

l∑
j=0

‖f (j);σ‖L∞ ‖γ‖
j
MW l

p
.

Proof. The assertion is obvious for l = 1. Suppose it is true for l − 1. For all
u ∈ C∞

0 we have

‖u f(γ)‖W l
p
≤ ‖f(γ)∇u‖W l−1

p
+ ‖u f ′(γ)∇γ‖W l−1

p
+ ‖u f(γ)‖Lp

. (2.7.2)

By the induction assumption, the first term on the right-hand side of (2.7.2)
does not exceed

c ‖∇u‖W l−1
p

l−1∑
j=0

‖f (j);σ‖L∞ ‖γ‖
j

MW l−1
p

.

For the same reason, the second term on the right-hand side of (2.7.2) is
dominated by

c ‖u∇γ‖W l−1
p

l∑
j=0

‖f (j+1);σ‖L∞ ‖γ‖
j

MW l−1
p

.

From (2.3.2) and Proposition 2.7.1 it follows that

‖∇γ‖M(W l
p→W l−1

p ) ≤ c ‖γ‖MW l
p
, ‖γ‖MW l−1

p
≤ c ‖γ‖MW l

p
.

Hence the right-hand side of (2.7.2) is dominated by

c ‖u‖W l
p

l∑
j=0

‖f (j);σ‖L∞ ‖γ‖
j
MW l

p
.

The proof is complete. ��
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Corollary 2.7.1. If γ ∈MW l
p and ‖γ−1‖L∞ <∞, then γ−1 ∈MW l

p and

‖γ−1‖MW l
p
≤ c ‖γ−1‖l+1

L∞
‖γ‖lMW l

p
.

Proof. The result follows from Proposition 2.7.5 with f(γ) = γ−1 and from
the inequality

‖γ−1‖L∞ ‖γ‖MW l
p
≥ 1

which is a consequence of Proposition 2.7.4. ��

Remark 2.7.1. All the assertions of the present section can be reformulated
for the space M(wm

p → wl
p).

2.8 The Space M(wm
p → wl

p)

In this section we assume that mp < n, p ∈ (1,∞) or m ≤ n, p = 1.

Lemma 2.8.1. (i) The inequality

‖γ‖M(W m
p →Lp) ≤ ‖γ‖M(wm

p →Lp) (2.8.1)

holds.
(ii) Let ρ > 0 and let γ ∈M(wm

p → Lp). Then

lim
ρ→0
‖ρ−m γ(·/ρ)‖M(W m

p →Lp) = ‖γ‖M(wm
p →Lp). (2.8.2)

(iii) The function γ satisfies

‖γ‖M(wm
p →Lp) ≥ c sup

x∈Rn

r>0

rm−n/p‖γ;Br(x)‖Lp
. (2.8.3)

Proof. (i) We have

‖γ‖M(W m
p →Lp) = sup

u∈C∞
0 (Rn)

‖γu‖Lp

‖u‖W m
p

(2.8.4)

and (2.8.1) follows from the inequality

‖u‖W m
p
≥ ‖u‖wm

p
.

(ii) Clearly,

‖ρ−m γ(·/ρ)‖M(W m
p →Lp) = sup

U∈C∞
0 (Rn)

‖ρ−m γ(·/ρ)U‖Lp

‖U‖W m
p

= sup
u∈C∞

0 (Rn)

‖ρ−m γ(·/ρ)u(·/ρ)‖Lp

(‖∇mu(·/ρ)‖pLp
+ ‖u(·/ρ)‖pLp

)1/p
.
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The right-hand side majorizes

‖γu‖Lp

(‖∇mu‖pLp
+ ρmp‖u‖pLp

)1/p
.

Hence
lim inf

ρ→0
‖ρ−m γ(·/ρ)‖M(W m

p →Lp) ≥ ‖γ‖M(wm
p →Lp). (2.8.5)

Noting that
‖ρ−m γ(·/ρ)‖M(wm

p →Lp) = ‖γ‖M(wm
p →Lp)

and using (2.8.1), we obtain

lim sup
ρ→0

‖ρ−m γ(·/ρ)‖M(W m
p →Lp) ≤ ‖γ‖M(wm

p →Lp). (2.8.6)

The result follows by combining (2.8.5) and (2.8.6).
(iii) Let η ∈ C∞

0 (B2), η = 1 on B1. The estimate (2.8.3) follows from
(2.8.4) by choosing the test function u(ξ) = η((ξ − x)/r). ��

Lemma 2.8.2. (i) Let m ≥ l and let γ ∈M(wm
p → wl

p). Then

‖γ‖M(W m
p →W l

p) ≤ c ‖γ‖M(wm
p →wl

p). (2.8.7)

(ii) The inequality

lim inf
ρ→0

||ρl−m γ(·/ρ)‖M(W m
p →W l

p) ≥ ‖γ‖M(wm
p →wl

p) (2.8.8)

holds.

Proof. (i) Let η be the same as in the proof of Lemma 2.8.1 (iii), and let
ηx(ξ) = η(x− ξ). We use the inequality

‖γ‖M(W m
p →W l

p) ≤ c sup
x∈Rn

||ηxγ‖M(W m
p →W l

p),

and observe that the norm on the right-hand side is equal to

sup
u∈C∞

0

‖ηxγu‖W l
p

‖u‖W m
p

.

In view of the imbedding wl
p(R

n) ⊂ Lpn/(n−lp)(Rn), the norm in the numera-
tor is equivalent to the norm ‖ηxγu‖wl

p
. Hence

‖γ‖M(W m
p →W l

p) ≤ c sup
x,u

‖ηxγu‖wl
p

‖u‖W m
p

≤ c ‖γ‖M(wm
p →wl

p) sup
x,u

‖ηxu‖wm
p

‖u‖W m
p

.
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The result follows.
(ii) Obviously, for any u ∈ C∞

0 (Rn),

‖ρl−m γ(·/ρ)‖M(W m
p →W l

p) ≥
‖ρl−m γ(·/ρ)u(·/ρ)‖W l

p

‖u(·/ρ)‖W m
p

=
(‖∇l(γu)‖pLp

+ ρpl‖γu‖pLp

‖∇mu‖pLp
+ ρpm‖u‖pLp

)1/p

.

Passing to the limit as ρ→ 0 we complete the proof. ��

Now we give a description of the space M(wm
p → wl

p) which follows essen-
tially from Corollary 2.3.3.

Theorem 2.8.1. Let mp < n, m ≥ l, p ∈ (1,∞) or m ≤ n, p = 1. Then
γ ∈M(wm

p → wl
p) if and only if γ ∈ wl

p,loc,

∇lγ ∈M(wm
p → Lp),

and
γ ∈ L∞(Rn) for m = l,

lim
r→∞

r−n‖γ;Br‖L1 = 0 for m > l. (2.8.9)

The norm in the space M(wm
p → wl

p), m > l, satisfies the equivalence
relation

‖γ‖M(wm
p →wl

p) ∼ ‖∇lγ‖M(wm
p →Lp). (2.8.10)

For m = l the norm ‖γ‖L∞ should be added to the right-hand side of this
relation.

The equivalence relation

‖γ‖M(wm
p →wl

p) ∼
l∑

j=0

‖∇l−jγ‖M(wm−j
p →Lp) (2.8.11)

holds.

Proof. We replace γ by ρl−mγ(·/ρ) in the equivalence relation (2.3.26). Then
(2.8.11) follows from Lemmas 2.8.1 and 2.8.2 as ρ→ 0.

We put ρl−mγ(·/ρ) as γ in (2.3.27) to obtain

‖ρl−m γ(·/ρ)‖M(W m
p →W l

p)

≤ c
(
‖∇l(ρl−m γ(·/ρ))‖M(W m

p →Lp) + sup
x∈Rn,
R>0

Rm−l−n||ρl−mγ(·/ρ)BR(x)‖L1

)
.
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Since the second term on the right is equal to

sup
x,r

rm−l−n‖γ;Br(x)‖L1 ,

and the first term tends to ‖∇lγ‖M(wm
p →Lp) as ρ→ 0 by (2.8.2), the reference

to (2.8.8) gives

‖γ‖M(wm
p →wl

p) ≤ c
(
‖∇lγ‖M(wm

p →Lp) + sup
x∈Rn,

r>0

rm−l−n‖γ;Br(x)‖L1

)
. (2.8.12)

It remains to remove the second term on the right-hand side in the case m > l.
Consider the case p ∈ (1,∞). We use the inequality

|γ(ξ)| ≤ c
(
(M∇lγ)(ξ)

)1−l/m( sup
x∈Rn,

r>0

rm−n/p‖∇lγ;Br(x)‖Lp

)l/m (2.8.13)

which follows from (2.3.24) with the term ‖γ‖L1,unif on the right-hand side
omitted due to condition (2.8.9). Integrating (2.8.13) over an arbitrary ball
Br(x), we arrive at

‖γ;Br(x)‖L1 ≤ c ( sup
x∈Rn

r>0

rm−n/p‖∇lγ;Br(x)‖Lp

)l/m‖(M∇lγ)1−l/m;Br(x)‖L1 .

By Hölder’s inequality
rm−l−n‖γ;Br(x)||L1

≤ c
(

sup
x∈Rn

r>0

rm−n
p ‖∇lγ;Br(x)‖Lp

) l
m
(
rm−n

p ‖M∇lγ;Br(x)‖Lp

)1− l
m . (2.8.14)

In view of Lemma 2.3.8,

rm−n/p‖M∇lγ;Br(x)‖Lp
≤ c sup

e

‖M∇lγ; e‖Lp

(Cp,m(e))1/p
≤ c ‖∇lγ‖M(wm

p →Lp),

which along with (2.8.14) leads to

sup
x∈Rn,

r>0

rm−l−n‖γ;Br(x)‖L1 ≤ c ‖∇lγ‖M(wm
p →Lp).

The result follows by (2.8.12).
For p = 1 the second term on the right-hand side of (2.8.12) is dominated

by c ‖∇lγ‖M(wm
1 →L1) by Theorem 1.1.1. ��

2.9 Multipliers in Spaces of Functions with Bounded
Variation

In the 1960s, the family of differentiable functions was complemented by the
space bv of functions with bounded variation which turned to be useful in
geometric measure theory, the calculus of variations and the theory of quasi-
linear partial differential equations.
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A function u locally integrable on R
n has bounded variation if its gradient,

understood in the sense of generalized functions, is a vector charge. In other
words, the functional

(C∞
0 )n � g→ (u, div g)

satisfies the estimate
|(u, div g)| ≤ C max |g|,

where C is a constant independent of g.
Let 0 < ρ < R and let ū(r) stand for the mean value of u on the sphere

∂Br. We introduce
gε(x) = x |x|−nηε(x),

where ηε is a smooth function equal to one on BR−ε\Bρ+ε and to zero on
BR\Bρ, 0 ≤ ηε ≤ 1. We have

|(u, div gε)| ≤ (var∇u)(BR\Bρ).

Making simple calculations and passing to the limit as ε→ 0, we find that

|ū(R)− ū(ρ)| ≤ c (var∇u)(BR\Bρ)

for almost all ρ and R with ρ < R. Therefore, any function with finite variation
has the limit

u∞ = lim
r→∞

ū(r).

The set of functions with finite variation for which u∞ = 0 is called the space
bv. The norm in bv is defined as the variation of the charge ∇u. Endowed with
this norm, bv becomes a Banach space.

Not every function in bv can be approximated by functions in C∞
0 in the

semi-norm ‖u‖bv, because the completion of C∞
0 in this semi-norm is the

Sobolev space w1
1. However, functions in bv can be approximated by functions

in C∞
0 in the following weak sense. If u ∈ bv, then there exists a sequence

{um}m≥1 of functions in C∞
0 such that um → u in L1,loc and

lim
m→∞

∫
|∇um| dx = ‖u‖bv. (2.9.1)

The Banach space BV = bv ∩ L1, endowered with the norm

‖u‖BV = ‖u‖bv + ‖u‖L1 ,

possesses a similar property.
The existence of the sequence {um} and the classical isoperimetric in-

equality (
mesn(g)

)(n−1)/n ≤ n−1
(
mesn(B1)

)−1/n
s(∂g), (2.9.2)

where g is an arbitrary open subset of R
n with compact closure and smooth

boundary, imply the inequality
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‖u‖Ln/(n−1) ≤ n−1
(
mesn(B1)

)−1/n‖u‖bv, u ∈ bv. (2.9.3)

By (2.9.1), we may assume that u ∈ C∞
0 . We have

‖u‖n/(n−1)
Ln/(n−1)

=
∫ ∞

0

mesn(Nt) d(tq), (2.9.4)

where q = n/(n − 1) and Nt = {x : |u(x)| ≥ t}. The last integral has the
estimate

q

∫ ∞

0

mesn(Nt)tq−1dt ≤ q

∫ ∞

0

(∫ t

0

mesn(Nτ )1/qdτ
)q−1

mesn(Nt)1/qdt

=
(∫ ∞

0

(
mesn(Nt)

)1/q
dt
)q

.

This fact and (2.9.2) imply the estimate

‖u‖Ln/(n−1) ≤ n−1
(
mesn(B1)

)−1/n
∫ ∞

0

s(∂Nt)dt,

which is equivalent to (2.9.3) in view of (1.1.1).
Setting the characteristic function of a ball into (2.9.3), we conclude that

the constant in (2.9.3) is sharp. This inequality with a non-sharp constant
was proved first in [Gag1] by a different method.

The space bv is closely related to the notion of the perimeter of a set which,
to a large extent, is the reason for its importance in analysis. The perimeter
P (E), in the sense of Cacciopoli and De Giorgi, of a Lebesgue measurable set
E ⊂ R

n is defined by

P (E) = inf
Πm

lim inf
m→∞

s(∂Πm),

where {Πm} is a sequence of polyhedra converging in volume to E. This means
that the volume of the symmetric difference

(Πm\E) ∪ (E\Πm)

tends to zero.
This definition, combined with (2.9.2) implies the isoperimetric inequality

min
{(

mesn(E)
)(n−1)/n

,
(
mesn(Rn\E)

)(n−1)/n}

≤ n−1
(
mesn(B1)

)−1/n
P (E).

The characteristic function χE of a set E belongs to bv if and only if
P (E) <∞. Moreover,

P (E) = ‖χE‖bv

(see [Fe3]).
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The perimeter P (E) does not exceed the Hausdorff measure s(∂E); in
particular, the inequality P (E) < s(∂E) is not excluded. The following gener-
alization of the notion of the normal to a smooth surface is useful for revealing
a deeper relation between the perimeter and the measure s.

A unit vector ν is called the exterior normal to a set E at a point x in the
sense of Federer if

lim
ρ→0

ρ−nmesn

{
y : y ∈ E ∩ Bρ(x), (y − x)ν > 0

}
= 0,

lim
ρ→0

ρ−nmesn

{
y : y ∈ Bρ(x)\E, (y − x)ν < 0

}
= 0.

The set of all points x ∈ ∂E for which the normal to E exists is called the
reduced boundary of the set E and is denoted by ∂∗E. A set E is said to be
a set with a local finite perimeter if

P (E ∩ Br(x)) <∞

for all balls Br(x).
The following assertion is a crucial result in the theory of perimeter (see

[Fe3]).

Theorem 2.9.1. If E is a set with a locally finite perimeter, then its reduced
boundary ∂∗E is measurable with respect to s and var∇χE. Moreover,

var∇χE(Rn\∂∗E) = 0,

and for any set L ⊂ ∂∗E

(∇χE)(L) = −
∫

L
ν(x) s(dx).

This implies that P (E) = s(∂∗E).
Note that for any u ∈ bv the generalization of (1.1.1) holds:

‖u‖bv =
∫ ∞

−∞
P (Mt) dt, (2.9.5)

where
Mt = {x : u(t) > t}

(see [FR]).

2.9.1 The Spaces Mbv and MBV

The next assertion contains a description of the space Mbv.
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Theorem 2.9.2. A function γ belongs to the space Mbv if and only if γ ∈
bvloc ∩ L∞ and for any ball Br(x)

var∇γ(Br(x)) ≤ c rn−1. (2.9.6)

The relation
‖γ‖Mbv ∼ sup

x∈Rn,
r>0

r1−n var∇γ(Br(x))

holds.

Proof. Sufficiency. Let u ∈ bv and let γ be a function in bvloc ∩ L∞ subject
to (2.9.6). By {um} we denote a sequence of functions in C∞

0 convergent in
L1,loc for which (2.9.1) holds. Then, for any ϕ ∈ C∞

0 ,

|(∇ϕ, γu)| = | lim
m→∞

(∇ϕ, γum)|

≤ | lim sup
m→∞

(ϕ, um∇γ)|+ | lim sup
m→∞

(ϕ, γ∇um)|.

Hence
|(∇ϕ, γu)| ≤ ‖ϕ‖L∞ lim sup

m→∞

∫
|um| var∇γ(dx)

+ ‖ϕ‖L∞‖γ‖L∞ lim sup
m→∞

∫
|∇um|dx.

Applying Corollary 1.1.2 to the first integral, we find that

|(∇ϕ, γu)| ≤ ‖ϕ‖L∞

(
c sup

x∈Rn,
r>0

r1−n var∇γ(Br(x)) + ‖γ‖L∞

)
‖u‖bv.

Thus the sufficiency and the upper estimate for the norm ‖γ‖Mbv are proved.
Necessity. If γ ∈Mbv, then for any N = 1, 2, . . .

‖γNv‖bv ≤ ‖γ‖NMbv‖v‖bv.

Applying inequality (2.9.3), we find that

‖γNv‖1/N
Ln/(n−1)

≤ ‖γ‖Mbv‖v‖1/N
bv .

Passing to the limit as N →∞, we conclude that

‖γ‖L∞ ≤ ‖γ‖Mbv.

Note that a mollification vh of the characteristic function of the ball
B(1+ε)r(y) obeys the inequality

∫
|vh|var∇γ(dx) ≤ ‖γvh‖bv +

∫
|γ| |∇vh| dx.



68 2 Multipliers in Pairs of Sobolev Spaces

Passing to the limit as ε→ 0, we obtain

var∇γ(Br(y)) ≤
(
‖γ‖Mbv + ‖γ‖L∞

)
rn−1.

Thus,
r1−nvar∇γ(Br(y)) ≤ 2 ‖γ‖Mbv.

The proof is complete. ��

We formulate a similar result for the space MBV which is proved in the
same way.

Theorem 2.9.3. A function γ belongs to the space MBV if and only if γ ∈
bvloc ∩ L∞ and, for any ball Br with r ∈ (0, 1), (2.9.6) holds. Moreover,

‖γ‖MBV ∼ sup
x∈Rn,
r∈(0,1)

r1−nvar∇γ(Br(x)).

Theorems 2.9.2 and 2.9.3 imply the following necessary and sufficient con-
ditions for inclusion of the characteristic function χE of a set E ⊂ R

n into
Mbv and MBV .

Corollary 2.9.1. (i) The function χE belongs to the space Mbv if and only if

s(Br(x) ∩ ∂∗E) ≤ c rn−1 (2.9.7)

for any set E with a locally finite perimeter and any ball Br(x).
(ii) Adding to this statement the condition r ∈ (0, 1), one gets a necessary

and sufficient condition for the inclusion χE ∈MBV .

Proof. It is enough to refer to Theorems 2.9.2 and 2.9.3, noting additionally
that (2.9.7) is equivalent to

var∇χE(Br(x)) ≤ c rn−1.

Indeed, by Theorem 2.9.1

s(Br(x) ∩ ∂∗E) = var∇χE(Br(x) ∩ ∂∗E) = var∇χE(Br(x)).

The proof is complete. ��
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Multipliers in Pairs of Potential Spaces

In this chapter we study the space of multipliers M(Hm
p → H l

p) and M(hm
p →

hl
p), m ≥ l ≥ 0, where Hs

p and hs
p are the space of Bessel and Riesz potentials

of order s with densities in Lp. (The case m < l is not interesting, since then
M(Hm

p → H l
p) = {0}, as can be shown by the argument used for Sobolev

spaces in Sect. 2.1.)
The introductory Sect. 3.1 gives information on Bessel linear and non-

linear potentials, on capacity and on imbedding theorems, which is used in
subsequent sections. A characterization of the spaces M(Hm

p → H l
p) and

M(hm
p → hl

p) is given in Sects. 3.2 and 3.7. In Sects. 3.3 and 3.4 we ob-
tain either necessary or sufficient conditions for a function to belong to
M(Hm

p → H l
p), formulated in terms of different classes of functions. In

Sect. 3.5 certain properties of elements of M(Hm
p → H l

p) are studied. In par-
ticular, we consider the imbedding of M(Hm

p → H l
p) into M(Hm−j

q → H l−j
q ).

Descriptions of the point, residual, and continuous spectra of multipliers in H l
p

and H−l
p′ are given in 3.6. Finally, Sect. 3.8 contains a characterization of pos-

itive homogeneous elements of the spaces M(Hm
p → H l

p) and M(hm
p → hl

p).

3.1 Trace Inequality for Bessel and Riesz Potential
Spaces

Let µ be a Radon measure in R
n and let Sl

p be a certain space of Sobolev
type with p and l being the integrability and smoothness parameters, p ≥ 1,
l > 0. As in Chap. 2, characterizations of the space M(Sm

p → Sl
p), m ≥ l,

to be obtained in the sequel are based on necessary and sufficient conditions
ensuring the trace inequality

(∫

Rn

|u|p dµ
)1/p

≤ c ‖u‖Sl
p
,

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 69
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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where u is an arbitrary function in C∞
0 (Rn). In this section we present such

conditions for the spaces of Bessel and Riesz potentials.

3.1.1 Properties of Bessel Potential Spaces

Here we survey some known facts on Bessel potential spaces to be used in the
sequel.

Given any real µ, we put

Λµ = (−∆+ 1)µ/2 = F−1(1 + |ξ|2)µ/2F ,

where F is the Fourier transform in R
n.

Let 1 < p < ∞, m ≥ 0. We introduce the space Hm
p of Bessel potentials

as the completion of C∞
0 with respect to the norm

‖u‖Hm
p

= ‖Λmu‖Lp
.

If m is integer then, according to Lemma 1.2.3, the spaces Wm
p and Hm

p

are isomorphic.
It follows from the definition of Hm

p that the function u belongs to Hm
p if

and only if u = Λ−mf , where f ∈ Lp.
Replacing Λm in the definition of Hm

p by the operator (−∆)m/2, we arrive
at the definition of the space hm

p . It is known that the space hm
p with mp < n

is isomorphic to the space of Riesz potentials of order m with density in Lp

(see [MH2]).

Definition 3.1.1. We define (Smu)(x) = |∇mu(x)| for integer m ≥ 0 and

(Smu)(x)=
(∫ ∞

0

[∫

B1

|∇[m]u(x+θy)−∇[m]u(x)|dθ
]2
y−1−2{m}dy

)1/2

(3.1.1)

for noninteger m > 0.

We present without proof a normalization of potential spaces due to
Strichartz [Str].

Theorem 3.1.1. The equivalence relations hold:

‖u‖hm
p
∼ ‖Smu‖Lp

, (3.1.2)
‖u‖Hm

p
∼ ‖Smu‖Lp

+ ‖u‖Lp
. (3.1.3)

The last formula implies the following uniform localization property for
the space Hm

p (see [Str]).

Theorem 3.1.2. Let {B(j)}j≥0 be a covering of R
n by balls with unit diam-

eter. Let this covering have a finite multiplicity, depending only on n. Fur-
ther, let O(j) be the centre of B(j), O(0) = 0 and ηj(x) = η(x − O(j)), where
η ∈ C∞

0 (2B(0)) and η = 1 on B(0). Then

‖u‖Hm
p
∼
(∑

j≥0

‖uηj‖pHm
p

)1/p

. (3.1.4)

We formulate the Sobolev imbedding theorem for the space Hm
p .
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Theorem 3.1.3. (i) If mp < n, p ≤ q ≤ np/(n−mp) or mp = n, p ≤ q <∞,
then for all u ∈ Hm

p

‖u‖Lq
≤ c ‖u‖Hm

p
.

(ii) If mp > n, then for all u ∈ Hm
p

‖u‖L∞ ≤ c ‖u‖Hm
p
.

The following generalization of the function Slu is the nonlinear operator
of fractional differentiation defined by Polking [Pol1]:

(Sl
q,θu)(x) =

(∫ ∞

0

(∫

B1

|u(x+ ρy)− u(x)|qdy
)θ/q dρ

ρ1+lθ

)1/θ

.

Lemma 3.1.1. [Pol1] Let 0 < l < 1, 1 ≤ q ≤ θ, 2 ≤ θ < ∞. If 1 < p < ∞
and p > nq/(n+ lq), then there exists a constant c depending only on l, q, p,
θ, n such that

‖Sl
q,θu‖≤c ‖u‖Hl

p

for all u ∈ H l
p.

3.1.2 Properties of the (p, m)-Capacity

For positive noninteger m the (p,m)-capacity is defined by (1.2.6), i.e.

Cp,m(e) = inf{‖f‖pLp
: f ∈ Lp, f ≥ 0, Jmf ≥ 1 on e}.

Similarly to (1.2.7), one has

Cp,m(e) ∼ inf{‖u‖pHm
p

: u ∈ C∞
0 , u ≥ 1 on e}.

Another capacity, introduced for any positive and noninteger m, is

cp,m(e) = inf{‖f‖pLp
: f ∈ Lp, f ≥ 0, Imf ≥ 1 on e}.

We list certain ‘metric’ properties of these capacities which will be used
later. For integer m > 0 they were proved in Propositions 1.2.2, 1.2.4, and
1.2.6.

Proposition 3.1.1. If mp > n, then for all compact sets e 	= ∅ with d(e) ≤ 1
the relation Cp,m(e) ∼ 1 holds.

The proof follows from part (ii) of Theorem 3.1.3.

Proposition 3.1.2. If mp < n, then

Cp,m(e) ≥ c (mesne)(n−mp)/n . (3.1.5)

The proof follows from part (i) of Theorem 3.1.3.
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Proposition 3.1.3. If mp = n and d(e) ≤ 1, then

Cp,m(e) ≥ c
(
log

2n

mesne

)1−p

. (3.1.6)

Proof. See Proposition 1.2.4.

Proposition 3.1.4. (i) If mp < n and 0 < r ≤ 1, then

Cp,m(Br) ∼ rn−mp.

(ii) If mp = n, 0 < r ≤ 1, then

Cp,m(Br) ∼ (log 2/r)1−p.

(iii) If r > 1, then
Cp,m(Br) ∼ rn.

For the proof of these relations see [AH], Sect. 5.1.
In the next proposition {B(j)} is the same covering as in Theorem 3.1.2.

Proposition 3.1.5. For any compact e

Cp,m(e) ∼
∑
j≥0

Cp,m(e ∩ B(j)).

Proof. Let u ∈ C∞
0 , u ≥ 1 on e. From the definition of Cp,m it follows that

∑
j≥0

Cp,m(e ∩ B(j)) ≤
∑
j≥0

‖uηj‖pHm
p
,

where {ηj}j≥0 is the sequence defined in Theorem 3.1.2. By (3.1.4), the right-
hand side is dominated by c ‖u‖pHm

p
. Minimizing this value, we obtain the

lower bound for Cp,m(e). The required upper bound is a direct corollary of
the semi-additivity of the capacity.

Proposition 3.1.6. Let mp < n and let e be a compact subset of R
n of

diameter d(e) ≤ 1. Then
Cp,m(e) ∼ cp,m(e). (3.1.7)

Proof. The estimate Cp,m(e) ≥ cp,m(e) is obvious. We prove that

Cp,m(e) ≤ c cp,m(e).

By definition of the capacity cp,m(e), for any ε > 0 there exists a function
u ∈ C∞

0 such that u ≥ 1 on e and

‖Smu‖pLp
≤ cp,m(e) + ε. (3.1.8)
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We introduce a function η ∈ C∞
0 (B2) such that η ≥ 1 on e. Then

‖Sm(ηu)‖pLp
+ ‖ηu‖pLp

≤ c
(
‖Smu‖pLp

+
[m]∑
k=0

‖ |x|k−m∇ku‖pLp

)

which does not exceed c ‖Smu‖pLp
by Hardy’s inequality. Reference to esti-

mate (3.1.8) completes the proof. ��

Corollary 3.1.1. Let mp < n and let e be a compact subset of R
n of diameter

d(e) ≤ 1. Then, for any δ ∈ (0, 1),

Cp,m(e) ∼ δn−mpCp,m(δ e). (3.1.9)

Proof. On the one hand,

Cp,m(e) ≤ δn−mp Cp,m(δ e)

by dilation. On the other hand,

Cp,m(e) ≥ cp,m(e) = δn−mpcp,m(δ e).

Reference to Proposition 3.1.6 completes the proof. ��

We give an estimate for the integral of the capacity of a set bounded by a
level surface which contains (1.2.27) as a particular case. For the history and
proof see [AH], Ch. 7.

Proposition 3.1.7. (i) Let u ∈ Hm
p , p ∈ (1,∞), m > 0, and let

Nt = {x : |u(x)| ≥ t}.

Then ∫ ∞

0

Cp,m(Nt)tp−1 dt ≤ c ‖u‖pHm
p
. (3.1.10)

(ii) If u ∈ hm
p , p ∈ (1, n/m), m > 0, then

∫ ∞

0

cp,m(Nt)tp−1 dt ≤ c ‖u‖phm
p
. (3.1.11)

3.1.3 Main Result

Here we present a generalization to Hm
p of Theorem 1.2.2 on integrability of

functions in Wm
p with respect to a measure µ.

Using (3.1.10) and (3.1.11), we can prove the following theorem in the
same way as Theorem 1.2.2.
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Theorem 3.1.4. (i) The best constant C in
∫
|u|p dµ ≤ C ‖u‖pHm

p
, u ∈ C∞

0 , (3.1.12)

is equivalent to

sup
e

µ(e)
Cp,m(e)

,

where e is an arbitrary compact set of positive capacity Cp,m(e).
(ii) Let p > 1 and mp < n. The best constant C in

∫
|u|p dµ ≤ C ‖u‖phm

p
, u ∈ C∞

0 , (3.1.13)

is equivalent to

sup
e

µ(e)
cp,m(e)

,

where e is an arbitrary compact set of positive capacity cp,m(e).

Remark 3.1.1. From Proposition 3.1.5 it follows that

sup
e

µ(e)
Cp,m(e)

∼ sup
{e:d(e)≤1}

µ(e)
Cp,m(e)

. (3.1.14)

Remark 3.1.2. Obviously,theconstantC inTheorem3.1.4satisfiestheinequality

C ≥ sup
x∈Rn,ρ∈(0,1/2)

µ(Bρ(x))
Cp,m(Bρ(x))

. (3.1.15)

If the converse estimate (up to a factor c = c(n, p, l)) were valid we could
avoid the notion of capacity in this book (see Proposition 3.1.4/4). According
to Proposition 3.1.1, this is really the case for mp > n when the right-hand
and left-hand sides of (3.1.15) are equivalent to

sup{µ(B1(x)) : x ∈ R
n}.

However, as was noted by Adams [Ad3], the finiteness of the right-hand side
of (3.1.15) for n ≥ mp does not imply C <∞.

Before we prove the last assertion, we recall the definition of the Hausdorff
ϕ-measure of a set E ⊂ R

n, where ϕ is a non-decreasing positive function on
[0, 1]: namely,

H(E,ϕ) = lim
ε→+0

inf
{B(i)}

∑
i

ϕ(ri) .

Here {B(i)} is any covering of E by open balls B(i) with radii ri < ε. We put
ϕ(t) = tn−mp for n > mp and ϕ(t) = | log t|1−p for n = mp. Let E be a Borel
set in R

n such that its diameter d(E) satisfies d(E) < 1 and 0 < H(E,ϕ) <∞.
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We may assume E to be closed and bounded, since any Borel set of positive
Hausdorff measure contains a closed subset with the same property.

By Frostman’s theorem (see Carleson [Car], Theorem 1, Ch. 2) there exists
a non-zero measure µ with support in E such that

µ(B�(x)) ≤ c ϕ(ρ)

with a constant c independent of x and ρ. By virtue of Proposition 3.1.4, this
means that the right-hand side of (3.1.15) is finite.

On the other hand, by the theorem of Meyers [Me] and Havin and Maz’ya
[MH1], [MH2], the finiteness of the measure H(E,ϕ) implies Cp,m(E) = 0. So
C =∞ (see Theorem 3.1.4), although the right-hand side of (3.1.15) is finite.

Remark 3.1.3. According to [KeS], [MV1], and [Ver1], the criteria for (1.2.31)
formulated at the end of Sect. 1.2.5 for integer m hold for all positive m.
The same concerns the Fefferman-Phong sufficient condition dealt with in
Sect. 1.2.6. For surveys of these and related results see [Ver2] and [Ver3].

3.2 Description of M(Hm
p → H l

p)

3.2.1 Auxiliary Assertions

We formulate the Calderon interpolation theorem [Ca1] for spaces of Bessel
potentials, of which a particular case is the inequality (2.3.8) used in the study
of the space M(Wm

p →W l
p).

Proposition 3.2.1. Let p0, p1 ∈ (1,∞), θ ∈ (0, 1), µ ∈ R
1 and

1
p

=
θ

p0
+

1− θ

p1
, l = θl0 + (1− θ)l1 .

Further, let L be a linear operator mapping

H l0+µ
p0

∩H l1+µ
p1

into H l0
p0
∩H l1

p1

and admitting an extension to continuous operators:

H l0+µ
p0

→ H l0
p0

and H l1+µ
p1

→ H l1
p1
.

Then L can be extended to a continuous operator: H l+µ
p → H l

p, and the inter-
polation inequality

‖L‖Hl+µ
p →Hl

p
≤ c ‖L‖θ

H
l0+µ
p0 →H

l0
p0
‖L‖1−θ

H
l1+µ
p1 →H

l1
p1

holds.
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Setting L = γ in this proposition, we obtain

‖γ‖M(Hl+µ
p →Hl

p) ≤ c ‖γ‖θ
M(H

l0+µ
p0 →H

l0
p0 )
‖γ‖1−θ

M(H
l1+µ
p1 →H

l1
p1 )

. (3.2.1)

Lemma 3.2.1. Let γρ be a mollification of γ ∈ H l
p,loc(R

n), 1 < p < ∞, with
kernel K ≥ 0 and radius ρ. Then

‖γρ‖M(Hm
p →Hl

p) ≤ ‖γ‖θM(Hm
p →Hl

p) ≤ lim inf
ρ→0

‖γρ‖M(Hm
p →Hl

p) . (3.2.2)

Proof. Let u ∈ C∞
0 and {l} > 0. By (3.1.3)

‖γρu‖Hl
p
≤ c

{∫ (∫ ∞

0

[∫

B1

∣∣∣∣
∫
ρ−nK(ξ/ρ)

×∇[l],x(Q(x+ θy, ξ)−Q(x, ξ)) dξ
∣∣∣∣ dθ
]2
y−1−2{l} dy

)p/2

dx

}1/p

+c
{∫ ∣∣∣∣

∫
ρ−nK(ξ/ρ)Q(x, ξ) dξ

∣∣∣∣
p

dx

}1/p

,

where Q(x, ξ) = γ(x− ξ)u(x). By the Minkowski inequality

‖γρu‖Hl
p
≤
∫
ρ−nK(ξ/ρ)‖SlQ(·, ξ)‖Lp

dξ +
∫
ρ−nK(ξ/ρ)‖Q(·, ξ)‖Lp

dξ .

Since
‖Q(·, ξ)‖Hl

p
≤ ‖γ‖M(Hm

p →Hl
p)‖u‖Hm

p
,

the left estimate (3.2.2) follows. The right inequality (3.2.2) results from

‖γu‖Hl
p

= lim
ρ→0
‖γρu‖Hl

p
≤ lim inf

ρ→0
‖γρ‖M(Hm

p →Hl
p)‖u‖Hm

p
.

For the case {l} = 0 see Lemma 2.3.1. ��

3.2.2 Imbedding of M(Hm
p → Hl

p) into M(Hm−l
p → Lp)

In Theorem 3.1.4 and Remark 3.1.1 the following description of the space
M(Hk

p → Lp) is contained:

Lemma 3.2.2. The relations

‖γ‖M(Hk
p→Lp) ∼ sup

e

‖γ; e‖Lp

[Cp,k(e)]1/p

and

‖γ‖M(Hk
p→Lp) ∼ sup

{e:d(e)≤1}

‖γ; e‖Lp

[Cp,k(e)]1/p

hold, where d(e) is the diameter of e.
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Lemma 3.2.3. The inequality

‖γ‖M(Hm−l
p →Lp) ≤ c ‖γ‖M(Hm

p →Hl
p) (3.2.3)

holds.

Proof. Let γ ∈M(Hm
p → H l

p) and let γρ be a mollification of γ with radius ρ.
Since M(Hm

p → H l
p) ⊂ M(Hm

p → Lp), then γ ∈ Lp,unif. Therefore γρ ∈ L∞
and consequently γρ ∈ M(Hm−l

p → Lp). This property of mollifications will
be used in what follows.

1. The case m ≥ 2l. Let u = Jm−lf , f ∈ Lp. By Lemma 1.2.5,

|u| ≤ c (Jm|f |)1−l/m(Mf)l/m .

Hence
‖γρu‖Lp

≤ c ‖f‖l/m
Lp
‖γl/(l−m)

ρ γρJm|f |‖1−l/m
Lp

.

This inequality and Lemma 3.2.2 imply that

‖γρu‖Lp
≤ c ‖f‖l/m

Lp
‖γρJm|f |‖1−l/m

Hl
p

sup
e

⎛
⎜⎜⎝

∫

e

|γρ|pl/(m−l) dx

Cp,l(e)

⎞
⎟⎟⎠

(m−l)/pm

.

We use Lemma 2.3.6, which is valid for all ν and µ, 0 < ν < µ, with ϕ =
|γρ|1/(m−l), ν = l, µ = m− l. Then the last supremum does not exceed

c

(
sup

e

‖γρ; e‖Lp

[Cp,m−l(e)]1/p

)l/m

which, together with Lemma 3.2.2, gives

‖γρu‖Lp
≤ c ‖γρ‖l/m

M(Hm−l
p →Lp)

‖γρ‖1−l/m

M(Hm
p →Hl

p)
‖f‖l/m

Lp
‖Jm|f |‖1−l/m

Hm
p

≤ c ‖γρ‖l/m

M(Hm−l
p →Lp)

‖γρ‖1−l/m

M(Hm
p →Hl

p)
‖u‖Hm−l

p
.

Then reference to Lemma 3.2.1 yields (3.2.3) for m ≥ 2l.
2. Suppose that m = l. For any positive integer N we have

‖γNu‖1/N
Lp
≤ ‖γNu‖1/N

Hl
p
≤ ‖γ‖MHl

p
‖u‖1/N

Hl
p
.

Consequently,
‖γ‖MLp

= ‖γ‖L∞ ≤ ‖γ‖MHl
p
.

3. Now let 2l > m > l. By ε we denote a positive number such that
ε < m− l. Since m− l+ ε > 2ε, it follows from the first part of the proof that

‖γρ‖M(Hm−l
p →Lp) ≤ c ‖γρ‖M(Hm−l+ε

p →Hε
p) .
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By (3.2.1) we have

‖γρ‖M(Hm−l+ε
p →Hε

p) ≤ c ‖γρ‖1−ε/l

M(Hm−l
p →Lp)

‖γρ‖ε/l

M(Hm
p →Hl

p)

which, together with the preceding estimate and Lemma 3.2.1, implies (3.2.3).
��

3.2.3 Estimates for Derivatives of a Multiplier

Lemma 3.2.4. If γ ∈M(Hm
p → H l

p), then Dαγ ∈M(Hm
p → H

l−|α|
p ) for any

multi-index α with |α| ≤ l. The estimate

‖Dαγ‖
M(Hm

p →H
l−|α|
p )

≤ c ‖γ‖M(Hm
p →Hl

p) (3.2.4)

holds.

Proof. It suffices to consider the case |α| = 1, l ≥ 1. Obviously,

‖u∇γ‖Hl−1
p
≤ ‖uγ‖Hl

p
+ ‖γ∇u‖Hl−1

p

≤
(
‖γ‖M(Hm

p →Hl
p) + ‖γ‖M(Hm−1

p →Hl−1
p )

)
‖u‖Hm

p
.

Using (3.2.1) and (3.2.3), we obtain

‖γ‖M(Hm−l
p →Hl−1

p ) ≤ c1‖γ‖1−1/l

M(Hm−l
p →Lp)

‖γ‖1/l

M(Hm
p →Hl

p)

≤ c2‖γ‖M(Hm
p →Hl

p) .

Consequently,

‖u∇γ‖Hl−1
p
≤ c ‖γ‖M(Hm

p →Hl
p)‖u‖Hm

p
.

��

This result and Lemma 3.2.3 give:

Corollary 3.2.1. If γ ∈M(Hm
p → H l

p), then Dαγ ∈M(Hm−l+|α|
p → Lp) for

any multi-index α of order |α| ≤ l. The inequality

‖Dαγ‖
M(H

m−l+|α|
p →Lp)

≤ c ‖γ‖M(Hm
p →Hl

p)

holds.
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3.2.4 Multiplicative Inequality for the Strichartz Function

Lemma 3.2.5. Let m ≥ l, 0 < δ < l < 1. Then

Sl−δγ ≤ c
(
Slγ + ‖γ‖M(Hm−l

p →Lp)

)1−δ/m‖γ‖δ/m

M(Hm−l
p →Lp)

. (3.2.5)

Proof. For any R > 0

(Sl−δγ)(x) ≤ c
(
Rδ
[∫ R

0

(∫

B1

|γ(x+ θy)− γ(x)| dθ
)2

y−1−2l dy
]1/2

+
[∫ ∞

R

(∫

B1

|γ(x+ θy)| dθ
)2

y−1−2(l−δ) dy
]1/2

+ |γ(x)|Rδ−l
)
.

Since
c |γ(x)| ≤

∫

B1

|γ(x+ θy)− γ(x)| dθ +
∫

B1

|γ(x+ θy)| dθ ,

it follows that

cR−l|γ(x)| ≤
(∫ ∞

R

(∫

B1

|γ(x+ θy)− γ(x)| dθ
)2

y−1−2l dy
)1/2

+
(∫ ∞

R

(∫

B1

|γ(x+ θy)| dθ
)2

y−1−2l dy
)1/2

.

Henceforth we assume that R ≤ 1. We have

(Sl−δγ)(x) ≤ c
[
Rδ(Slγ)(x) +

(∫ 1

R

(∫

B1

|γ(x+ θy)| dθ
)2

y−1−2(l−δ) dy
)1/2

+
(∫ ∞

1

(
y−n

∫

By

|γ(x+ s)| ds
)2

y−1−2(l−δ) dy
)1/2]

≤ c
[
Rδ(Slγ)(x) +Rδ−m sup

x∈Rn,ρ∈(0,1)

‖γ;Bρ(x)‖Lp

ρn/p−m+l

+ sup
x∈Rn

‖γ;B1(x)‖Lp

]
.

It is clear that the last term can be thrown away by changing the constant c.
By Lemma 3.2.2,

sup
x∈Rn,ρ∈(0,1)

‖γ;Bρ(x)‖Lp

ρn/p−m+l
≤ c ‖γ‖M(Hm−l

p →Lp) .

Thus, for all R ∈ (0, 1]

(Sl−δγ)(x) ≤ cRδ
(
(Slγ)(x) +R−m‖γ‖M(Hm−l

p →Lp)

)
. (3.2.6)
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If
(Sl−δ)γ(x) ≤ ‖γ‖M(Hm−l

p →Lp),

we arrive at (3.2.5) by putting R = 1 in (3.2.6). In the opposite case, (3.2.5)
follows from (3.2.6), with

Rm =
‖γ‖M(Hm−l

p →Lp)

(Slγ)(x)
.

The lemma is proved. ��

3.2.5 Auxiliary Properties of the Bessel Kernel Gl

We formulate some asymptotic properties of the kernel Gl of the Bessel po-
tential which will be used later (see [AMS]):

(i) For |x| → 0,

Gl(x) ∼ |x|l−n if 0 < l < n , (3.2.7)
|Gl(x)− c1 log |x|−1| ≤ c2 if l = n , (3.2.8)
|Gl(x)− c| ≤ c |x|min(l−n,1) if l > n , (3.2.9)

|∇Gl(x)| ≤
{
c |x|l−n−1 if l ≤ n+ 1 ,
c if l ≥ n+ 1 . (3.2.10)

(ii) For |x| → ∞,
Gl(x) ∼ |x|(l−n−1)/2e−|x| , (3.2.11)

|∇Gl(x)| ∼ |x|(l−n−1)/2e−|x| . (3.2.12)

Using these relations we prove the following:

Lemma 3.2.6. The estimate

|Gl(x)−Gl(y)| ≤ c |x− y|δ
(
Gl−δ(x/4) +Gl−δ(y/4)

)
(3.2.13)

holds with δ ∈ (0, 1] and l > δ.

Proof. It suffices to consider the case |y| > |x|. If 2|x − y| < |x|, then by
(3.2.10), for |x| < 2,

|Gl(x)−Gl(y)| ≤
{
c |x− y||x|l−n−1 , l ≤ n+ 1 ,
c |x− y| , l ≥ n+ 1 ,

and for |x| ≥ 2 we deduce from (3.2.11) that

|Gl(x)−Gl(y)| ≤ c |x− y||x|(l−n−1)/2e−|x|/2 .

These estimates and (3.2.12) yield

|Gl(x)−Gl(y)| ≤ c |x− y|δGl−δ(x/4)
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for 2|x− y| < |x|.
Now let 2|x− y| > |x|. If l > n and |y| < 2, then by (3.2.9) we have

|Gl(x)−Gl(y)| ≤ c |y|min(l−n,1)

which, together with |y| ≤ 3 |x− y|, gives

|Gl(x)−Gl(y)| ≤ c |x− y|δ|y|min(l−n,1)−δ .

Combining this estimate with (3.2.7)–(3.2.9), we obtain (3.2.13) in the case
l > n.

For the same values of x and y we have

|Gl(x)−Gl(y)| ≤ c1| log(|x|/|y|)|+ c2 ≤ c (|y|/|x|)δ ≤ c |x− y|δ|x|−δ

if l = n, and

|Gl(x)−Gl(y)| ≤ c (|x|l−n + |y|l−n) ≤ c |x− y|δ(|x|l−n−δ + |y|l−n−δ)

if l < n. Using (3.2.8) again, we arrive at (3.2.13).
It remains to deal with the case

2|x− y| ≥ |x|, |y| ≥ 2.

By (3.2.7)–(3.2.9) and (3.2.11) we obtain

|Gl(x)−Gl(y)| ≤ cGl(x) ≤ c |x− y|δ|x|−δGl(x) ≤ c |x− y|δGl−δ(x/4)

for |x| > 1. If |x| < 1, then |x− y| ≥ 1 and therefore

|Gl(x)−Gl(y)| ≤ cGl(x) ≤ c |x− y|δGl(x) ≤ c |x− y|δGl−δ(x/4) .

The proof is complete. ��

3.2.6 Upper Bound for the Norm of a Multiplier

We obtain a sufficient condition for a function to belong to the space
M(Hm

p → H l
p).

Lemma 3.2.7. Let γ ∈ H l
p,loc, Slγ ∈ M(Hm

p → Lp), and γ ∈ M(Hm−l
p →

Lp). Then γ ∈M(Hm
p → H l

p) and

‖γ‖M(Hm
p →Hl

p) ≤ c (‖Slγ‖M(Hm
p →Lp) + ‖γ‖M(Hm−l

p →Lp)) . (3.2.14)

(The function Sl was introduced in Definition 3.1.1.)
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Proof. By Theorem 3.1.1 one can easily verify that a function in L∞ with
uniformly bounded derivatives of any order belongs to the space M(Hm

p →
H l

p).
Let γρ be a mollification of γ with nonnegative kernel and radius ρ. Since

M(Hm
p → H l

p) ⊂M(Hm
p → Lp), it follows that γ ∈ Lp,unif. Therefore ∇jγρ ∈

L∞, j = 0, 1, . . . , and γρ ∈M(Hm
p → H l

p).
The assertion was proved for the case {l} = 0 in Lemma 2.3.5.
Suppose that {l} > 0. For any u ∈ C∞

0 ,

‖γρu‖Lp
≤ ‖γρ‖M(Hm−l

p →Lp)‖u‖Hm−l
p

. (3.2.15)

Clearly,
‖Sl(γρu)‖Lp

≤ c
∑

0≤β≤α
|α|=[l]

‖S{l}(DβγρD
α−βu)‖Lp

.

First consider the terms corresponding to multi-indices of order |β| = j < [l].
By Lemma 3.2.4 and interpolation inequality (3.2.1), for any k ∈ (0, l− j) we
have

‖∇jγρ‖M(Hm−k
p →Hl−k−j

p ) ≤ c ‖γρ‖M(Hm−k
p →Hl−k

p )

≤ c ‖γρ‖1−k/l

M(Hm
p →Hl

p)
‖γρ‖k/l

M(Hm−l
p →Lp)

.(3.2.16)

Consequently, for |β| = j < [l],

‖S{l}(DβγρD
α−βu)‖Lp

≤ c ‖γρ‖({l}+j)/l

M(Hm
p →Hl

p)
‖γρ‖([l]−j)/l

M(Hm−l
p →Lp)

‖u‖Hm
p
. (3.2.17)

This inequality together with (3.2.15) implies that

‖γρu‖Hl
p
≤ (ε‖γρ‖M(Hm

p →Hl
p) + c(ε)‖γρ‖M(Hm−l

p →Lp))‖u‖Hm
p

+‖S{l}(u∇[l]γρ)‖Lp
(3.2.18)

for any ε > 0. It remains to estimate the last term on the right-hand side. We
have

‖S{l}(u∇[l]γρ)‖Lp
≤ ‖uSlγρ‖Lp

+ ‖|∇[l]γρ|S{l}u‖Lp
+

{∫ (∫ ∞

0

[∫

B1

|∆yθu(x)||∆yθ(∇[l]γρ)(x)| dθ
]2
y−1−2{l}dy

)p/2

dx
}1/p

, (3.2.19)

where ∆zu(x) = u(x+ z)− u(x). Obviously,

‖uSlγρ‖Lp
≤ c ‖Slγρ‖M(Hm

p →Lp)‖u‖Hm
p
. (3.2.20)

Consider the second norm on the right-hand side of (3.2.19). Applying
Minkow- ski’s inequality, we obtain
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S{l}u ≤ Λ−[l]S{l}Λ
[l]u .

This and (3.2.16) yield

‖|∇[l]γρ|S{l}u‖Lp
≤ ‖∇[l]γρ‖M(H

m−{l}
p →Lp)

‖Λ{l}−mS{l}Λ
m−{l}u‖

H
m−{l}
p

≤ c ‖γρ‖[l]/l

M(Hm
p →Hl

p)
‖γρ‖{l}/l

M(Hm−l
p →Lp)

‖u‖Hm
p
. (3.2.21)

Now we estimate the third term on the right-hand side of (3.2.19). Let
u = Λ−mf and let δ be a sufficiently small positive number. We notice that

|u(x+ yθ)− u(x)| ≤
∫ ∣∣Gm(x− ξ + yθ)−Gm(x− ξ)

∣∣ |f(ξ)| dξ

and use Lemma 3.2.6. Then

|u(x+ yθ)− u(x)| ≤ c yδ

[
(Λδ−m|f |)

(x+ yθ

4

)
+ (Λδ−m|f |)

(x
4

)]
.

Thus, the third term in (3.2.19) does not exceed

c
{∫ (∫ ∞

0

[∫

B1

(Λδ−m|f |)
(x+yθ

4

)
|∆yθ(∇[l]γρ)(x)|dθ

]2
y−1−2({l}−δ)dy

) p
2
dx
} 1

p

+c
{∫ [

(Λδ−m|f |)
(x

4

)]p
(Sl−δγρ)p dx

} 1
p

.

After simple calculations we obtain that this sum is majorized by

c
(∥∥∥(Λδ−m|f |

)( ·
4

)
∇[l]γρ

∥∥∥
H

{l}−δ
p

+
∥∥∥|∇[l]γρ|S{l}−δ

[(
Λδ−m|f |

)( ·
4

)]∥∥∥
Lp

+
∥∥∥(Λδ−m|f |)

( ·
4

)
S{l}−δ(∇[l]γρ)

∥∥∥
Lp

)
.

Let the last norms be denoted by N1, N2 and N3 respectively. Using (3.2.16),
we get

N1 ≤ ‖∇[l]γρ‖M(Hm−δ
p →H

{l}−δ
p )

∥∥∥(Λδ−m|f |)
( ·

4

)∥∥∥
Hm−δ

p

≤ c ‖γρ‖1−δ/l

M(Hm
p →Hl

p)
‖γρ‖δ/l

M(Hm−l
p →Lp)

‖f‖Lp
. (3.2.22)

Similarly,

N2 ≤ ‖∇[l]γρ‖M(H
m−{l}
p →Lp)

∥∥∥S{l}−δ

[(
Λδ−m|f |

)( ·
4

)]∥∥∥
H

m−{l}
p

≤ c ‖∇[l]γρ‖M(H
m−{l}
p →Lp)

∥∥∥(Λδ−m|f |
)( ·

4

)∥∥∥
Hm−δ

p

≤ c ‖γρ‖[l]/l

M(Hm
p →Hl

p)
‖γρ‖{l}/l

M(Hm−l
p →Lp)

‖f‖Lp
. (3.2.23)
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Now we estimate the norm N3. According to Lemma 3.2.5,

S{l}−δ(∇[l]γρ) ≤ c (Slγρ)1−δ/m‖∇[l]γρ‖δ/m

M(H
m−{l}
p →Lp)

+c ‖∇[l]γρ‖M(H
m−{l}
p →Lp)

.

Further we notice that

Λδ−m|f | ≤ c (Λ−m|f |)1−δ/m(Mf)δ/m

(see Lemma 1.2.5). Thus we have proved the estimate

N3 ≤ c ‖∇[l]γρ‖δ/m

M(H
m−{l}
p →Lp)

∥∥∥
[(
Λ−m|f |

)( ·
4

)
Slγρ

]1−δ/m[
(Mf)

( ·
4

)]δ/m∥∥∥
Lp

+c ‖∇[l]γρ‖M(H
m−{l}
p →Lp)

‖Λδ−m|f |‖Lp
.

Consequently,

N3 ≤ c ‖∇[l]γρ‖δ/m

M(H
m−{l}
p →Lp)

‖Mf‖δ/m
Lp

∥∥∥(Λ−m|f |
)( ·

4

)
Slγρ

∥∥∥
1−δ/m

Lp

+c ‖∇[l]γρ‖M(H
m−{l}
p →Lp)

‖Λδ−m|f |‖Hm−δ
p

.

Applying (3.2.16), we finally obtain

N3 ≤ c ‖γρ‖δ[l]/ml
M(Hm

p →Lp)‖γρ‖δ{l}/ml
M(Hm

p →Lp)

(
‖Slγρ‖M(Hm

p →Lp)

+‖γρ‖[l]/l

M(Hm
p →Hl

p)
‖γρ‖{l}/l

M(Hm−l
p →Lp)

)1−δ/m ‖f‖Lp
. (3.2.24)

Adding the estimates (3.2.22)–(3.2.24), we conclude that

{∫ (∫ ∞

0

[∫

B1

|∆yθu(x)||∆yθ(∇[l]γρ)(x)| dθ
]2
y−1−2{l}dy

)p/2

dx
}1/p

≤
(
ε‖γρ‖M(Hm

p →Hl
p) + ε ‖Slγρ‖M(Hm

p →Lp)

+ c(ε) ‖γρ‖M(Hm−l
p →Lp)

)
‖u‖Hm

p
. (3.2.25)

This together with (3.2.20) and (3.2.21) makes it possible to deduce from
(3.2.19) that

‖S{l}(u∇[l]γρ)‖Lp
≤
(
ε ‖γρ‖M(Hm

p →Hl
p) + c ‖Slγρ‖M(Hm

p →Lp)

+c(ε)‖γρ‖M(Hm−l
p →Lp)

)
‖u‖Hm

p
.

Substitution of this estimate into (3.2.18) leads to (3.2.14) for γρ. Reference
to Lemma 3.2.1 completes the proof. ��
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3.2.7 Lower Bound for the Norm of a Multiplier

We prove the assertion converse to Lemma 3.2.7.

Lemma 3.2.8. If γ ∈ M(Hm
p → H l

p), then γ ∈ H l
p,loc, Slγ ∈ M(Hm

p → Lp),
and γ ∈M(Hm−l

p → Lp). The following inequality holds

‖Slγ‖M(Hm
p →Lp) + ‖γ‖M(Hm−l

p →Lp) ≤ c ‖γ‖M(Hm
p →Hl

p) . (3.2.26)

Proof. It is clear that γ ∈ H l
p,loc. The upper estimate of ‖γ‖M(Hm−l

p →Lp) is
contained in Lemma 3.2.3.

The assertion was proved for integer l in Lemma 2.3.4. Suppose that {l}>0.
For any u ∈ C∞

0 ,

‖S{l}(u∇[l]γρ)‖Lp
≤ ‖Sl(γρu)‖Lp

+
∑

0≤β<α
|α|=[l]

‖S{l}(DβγρD
α−βu)‖Lp

and therefore

‖uSlγρ‖Lp
≤ ‖γρu‖Hl

p
+

∑
0≤β<α
|α|≤[l]

‖S{l}(DβγρD
α−βu)‖Lp

+ ‖|∇[l]γρ|S{l}u‖Lp

+
{∫ (∫ ∞

0

[∫

B1

|∆yθu(x)||∆yθ(∇[l]γρ)(x)| dθ
]2
y−1−2{l}dy

)p/2

dx
}1/p

.

This estimate and (3.2.17), (3.2.21), (3.2.25) give

‖uSlγρ‖Lp
≤
(
ε ‖Slγρ‖M(Hm

p →Lp)

+c1‖γρ‖M(Hm
p →Hl

p) + c ‖γρ‖
M(Hm−l

p →Lp

))‖u‖Hm
p

≤
(
ε‖Slγρ‖M(Hm

p →Lp) + c2 ‖γρ‖M(Hm
p →Hl

p)

)
‖u‖Hm

p

which implies that

‖Slγρ‖M(Hm
p →Lp) ≤ c ‖γρ‖M(Hm

p →Hl
p) .

It remains to use Lemma 3.2.1. ��

Corollary 3.2.2. Let 0 < l < m and let p ∈ (1,∞). Then

‖γ‖M(Hm
p →Hl

p)

∼
[l]∑

j=0

(
‖Sl−jγ‖M(Hm−j

p →Lp) + ‖∇[l]−jγ‖M(H
m−j−{l}
p →Lp)

)
. (3.2.27)
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Proof. The upper estimate in (3.2.27) follows from Lemma 3.2.7. In view of
(3.2.26) and Corollary 3.2.1, the lower estimate in (3.2.27) results from

‖Sl−jγ‖M(Hm−j
p →Lp) ≤ c ‖γ‖M(Hm−j

p →Hl−j
p ) ≤ c ‖γ‖M(Hm

p →Hl
p)

and

‖∇[l]−jγ‖M(H
m−j−{l}
p →Lp)

≤ c ‖γ‖
M(H

m−j−{l}
p →H

[l]−j
p )

≤ c ‖γ‖M(Hm
p →Hl

p).

3.2.8 Description of the Space M(Hm
p → Hl

p)

Combining Lemmas 3.2.7 and 3.2.8, we obtain:

Theorem 3.2.1. Let m ≥ l ≥ 0, p ∈ (1,∞). A function γ belongs to the
space M(Hm

p → H l
p) if and only if γ ∈ H l

p,loc, Slγ ∈ M(Hm
p → Lp), and

γ ∈M(Hm−l
p → Lp). The relation

‖γ‖M(Hm
p →Hl

p) ∼ ‖Slγ‖M(Hm
p →Lp) + ‖γ‖M(Hm−l

p →Lp)

holds.

This, together with Lemma 3.2.2, gives the following assertion.

Theorem 3.2.2. A function γ belongs to the space M(Hm
p → H l

p), m ≥ l ≥
0, p ∈ (1,∞) if and only if γ ∈ H l

p,loc and, for any compact set e ⊂ R
n,

‖Slγ; e‖pLp
≤ cCp,m(e) ,

‖γ; e‖pLp
≤ cCp,m−l(e) .

The relations

‖γ‖M(Hm
p →Hl

p) ∼ sup
e

( ‖Slγ; e‖Lp

[Cp,m(e)]1/p
+

‖γ; e‖Lp

[Cp,m−l(e)]1/p

)
, (3.2.28)

‖γ‖M(Hm
p →Hl

p) ∼ sup
{e:d(e)≤1}

( ‖Slγ; e‖Lp

[Cp,m(e)]1/p
+

‖γ; e‖Lp

[Cp,m−l(e)]1/p

)
(3.2.29)

hold.
In particular,

‖γ‖MHl
p
∼ sup

e

‖Slγ; e‖Lp

[Cp,l(e)]1/p
+ ‖γ‖L∞ , (3.2.30)

‖γ‖MHl
p
∼ sup

{e:d(e)≤1}

‖Slγ; e‖Lp

[Cp,l(e)]1/p
+ ‖γ‖L∞ . (3.2.31)
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Remark 3.2.1. According to Stein’s theorem [St1], the norm in H l
p for p ≥ 2,

0 < l < 1, is equivalent to ‖Tu‖Lp
+ ‖u‖Lp

, where

(Tu)(x) =
(∫
|u(x+ y)− u(x)|2 dy

|y|n+2l

)1/2

. (3.2.32)

This and the inequality

|T (γu)− uTγ| ≤ ‖γ‖L∞Tu

imply that

‖γ‖MHl
p
∼ sup

e

‖Tγ; e‖Lp

[Cp,l(e)]1/p
+ ‖γ‖L∞ ,

where p ≥ 2, 0 < l < 1.

3.2.9 Equivalent Norm in M(Hm
p → Hl

p) Involving the Norm
in Lmp/(m−l)

In this subsection we obtain one more norm for the space M(Hm
p → H l

p).

Lemma 3.2.9. If γ ∈M(Hm
p → H l

p), m > l, p ∈ (1,∞) and k is an integer,

1 ≤ k ≤ m/(m− l), then γk ∈M(Hm
p → H

m−k(m−l)
p ). Moreover,

‖γk‖
M(Hm

p →H
m−k(m−l)
p )

≤ c ‖γ‖k θ(k)

M(Hm−l
p →Lp)

‖γ‖k(1−θ(k))

M(Hm→Hl
p)
, (3.2.33)

where θ(k) = (k − 1)(m− l)/2l.

Proof. We have

‖γk‖
M(Hm

p →H
m−k(m−l)
p )

≤ c ‖γ‖
M(H

m−(k−1)(m−l)
p →H

m−k(m−l)
p )

×‖γk−1‖
M(Hm

p →H
m−(k−1)(m−l)
p )

. (3.2.34)

Suppose that (3.2.33) is proved for k − 1. Then from (3.2.34) and the inter-
polation inequality

‖γ‖
M(H

m−(k−1)(m−l)
p →H

m−k(m−l)
p )

≤ c ‖γ‖(k−1)(m−l)/l

M(Hm−l
p →Lp)

‖γ‖(m−k(m−l))/l

M(Hm
p →Hl

p)

we obtain

‖γk‖
M(Hm

p →H
m−k(m−l)
p )

≤ c ‖γ‖(k−1)(m−l)/l+(k−1)θ(k−1)
M(Hm

p →Lp)

×‖γ‖m−k(m−l)/l+(k−1)(1−θ(k−1))

M(Hm
p →Hl

p)

which is equivalent to (3.2.33). ��
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Corollary 3.2.3. The inequality

sup
e

‖γ; e‖Lpm/(m−l)

[Cp,m(e)](m−l)/mp
≤ c ‖γ‖1−µ

M(Hm−l
p →Lp)

‖γ‖µ
M(Hm

p →Hl
p)

holds, where µ = k(1− θ(k)), k = [m/(m− l)], θ(k) = (k − 1)(m− l)/2l.

Proof. By Lemma 3.2.2,

‖|γ|m/(m−l)u‖Lp
≤ c

(
sup

e

∫

e

|γ|pα dx

Cp,α(m−l)(e)

)1/p

‖γku‖
H

α(m−l)
p

,

where α is a fractional part of m/(m− l). Applying Lemmas 3.2.2 and 2.3.6,
we get from the last estimate that

‖|γ|m/(m−l)u‖Lp
≤ c ‖γ‖α

M(Hm−l
p →Lp)

‖γku‖
H

α(m−l)
p

.

It remains to use Lemma 3.2.9. ��

Theorem 3.2.3. The equivalence relation

‖γ‖M(Hm
p →Hl

p) ∼ sup
e

( ‖γ; e‖Lmp/(m−l)

[Cp,m(e)](m−l)/mp
+
‖Slγ; e‖Lp

[Cp,m(e)]1/p

)
(3.2.35)

holds with p ∈ (1,∞), m > l ≥ 0.

Proof. The upper estimate for the norm in M(Hm
p → H l

p) follows from
Lemmas 3.2.7 and 2.3.6 which implies that

sup
e

‖γ; e‖Lp

[Cp,m−l(e)]1/p
≤ c sup

e

‖γ; e‖Lmp/(m−l)

[Cp,m(e)](m−l)/mp
.

The lower bound is deduced from Corollary 3.2.3 and Lemma 3.2.8. ��

From this theorem and (3.1.14) we obtain

Corollary 3.2.4. The relation

‖γ‖M(Hm
p →Hl

p) ∼ sup
{e:d(e)≤1}

( ‖γ; e‖Lmp/(m−l)

[Cp,m(e)](m−l)/mp
+
‖Slγ; e‖Lp

[Cp,m(e)]1/p

)

holds with p ∈ (1,∞), m > l ≥ 0.
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3.2.10 Characterization of M(Hm
p → Hl

p), m > l, Involving
the Norm in L1,unif

In the case m > l, the second term on the right-hand sides of (3.2.28) and
(3.2.29) can be replaced by the norm of γ in L1,unif as shown by the following
assertion.

Theorem 3.2.4. Let 0 < l < m ≤ n/p, p ∈ (1,∞). Then

‖γ‖M(Hm
p →Hl

p) ∼ sup
e

‖Slγ; e‖Lp

[Cp,m(e)]1/p
+ ‖γ‖L1,unif . (3.2.36)

This relation also holds if e is any compact subset of R
n with diameter less

than 1.

The lower estimate for the norm in M(Hm
p → H l

p) is a direct corollary of
(3.2.28), (3.2.29), and the obvious inequality

sup
e

‖γ; e‖Lp

[Cp,m−l(e)]1/p
≥ c sup

x
‖γ;B1(x)‖L1 .

The upper estimate follows from Theorem 3.2.3 and the next assertion ob-
tained by Verbitsky (see Sect. 2.6 in [MSh16]). This assertion is similar in
nature to Lemma 2.3.9.

Lemma 3.2.10. Let 0 < l < m ≤ n/p, p ∈ (1,∞), and let γ ∈ H l
p,loc. Then

sup
e

‖γ; e‖Lmp/(m−l)

(Cp,m(e))(m−l)/mp
≤ c
(
sup

e

‖Slγ; e‖Lp

(Cp,m(e))1/p
+ ‖γ‖L1,unif

)
, (3.2.37)

The proof is based on several auxiliary assertions. In the first three of them
we use the Poisson operator which is defined for functions γ ∈ L1,unif by

(Tγ)(x, y) =
1

|∂B(n+1)|

∫

Rn

y γ(ξ)dξ
(y2 + |x− ξ|2)(n+1)/2

, (x, y) ∈ R
n+1
+ , (3.2.38)

where |∂B(n+1)| is the area of the (n+ 1)-dimensional unit ball.
Lemmas 3.2.11–3.2.14 below are proved by Verbitsky, see Sect. 2.6

[MSh16].

Lemma 3.2.11. For any k = 0, 1, . . . there holds the inequality

|γ(x)| ≤ c
(
‖γ‖L1,unif +

∫ 1

0

∣∣∣∂
k+1(Tγ)(x, y)

∂yk+1

∣∣∣ykdy
)
. (3.2.39)

Proof. The following equality is readily checked by integration by parts

γ(x) = (Tγ)(x, 1)− ∂(Tγ)(x, 1)
∂y

+
1
2
∂2(Tγ)(x, 1)

∂y2
− . . .+ (−1)k

k!
∂k(Tγ)(x, 1)

∂yk
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+
(−1)k+1

k!

∫ 1

0

∂k+1(Tγ)(x, y)
∂yk+1

ykdy. (3.2.40)

Now we show that for any k = 0, 1, . . . the inequality

∥∥∥∂
k(Tγ)(·, 1)
∂yk

∥∥∥
L∞
≤ c ‖γ‖L1,unif (3.2.41)

holds.
Let k > 0. The Poisson kernel

P (x, y) = y(|x|2 + y2)−(n+1)/2

obeys the estimates

∣∣∣∂
kP (x, y)
∂yk

∣∣∣ ≤ c (|x|+ y)−n−k (3.2.42)

(see [St2], Ch. 5, Sect. 4). Hence

∣∣∣∂
k(Tγ)(x, 1)

∂yk

∣∣∣ =
∣∣∣
∫

∂kP (t, 1)
∂yk

γ(x− t)dt
∣∣∣

≤ c

∫ |γ(x− t)|dt
(|t|+ 1)n+k

≤ c
(∫

|t|≤1

|γ(x− t)|dt+
∫

|t|≥1

|γ(x− t)|dt
|t|n+k

)

≤ c
(
‖γ‖L1,unif +

∫ ∞

1

r−n−k−1dr

∫

|t|≤r

|γ(x− t)|dt
)
.

Note that for r ≥ 1
∫

|t|≤r

|γ(x− t)|dt ≤ c rn‖γ‖L1,unif .

Therefore,

∣∣∣∂
k(Tγ)(x, 1)

∂yk

∣∣∣ ≤ c ‖γ‖L1,unif

(
1 +

∫ ∞

1

r−k−1dr
)
.

Combining (3.2.40) and (3.2.41), we complete the proof for k > 0.
The case k = 0 is treated in a similar way with the help of the estimate

P (x, 1) ≤ c (|x|+ 1)−n−1. ��

Lemma 3.2.12. Let γ ∈W [l]
1,loc and let k = [l] + 1. Then

(∫ ∞

0

∣∣∣∂
k(Tγ)(x, y)

∂yk

∣∣∣
2

y1−2{l}dy
)1/2

≤ c (Slγ)(x).
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Proof. First, consider the case k = 1, l ∈ (0, 1). The identity
∫

∂P (t, y)
∂y

dt = 0

(see [St2], Ch. 5, Sect. 4) implies that

∂(Tγ)(x, y)
∂y

=
∫

∂P (t, y)
∂y

γ(x− t)dt =
∫

∂P (t, y)
∂y

(
γ(x− t)− γ(x)

)
dt.

Using (3.2.42), we get

∣∣∣∂(Tγ)(x, y)
∂y

∣∣∣ ≤ c

∫ |γ(x− t)− γ(x)|
(|t|+ y)n+1

dt.

Consequently,
∫ ∞

0

∣∣∣∂(Tγ)(x, y)
∂y

∣∣∣
2

y1−2ldy ≤ c

∫ ∞

0

y1−2l
(∫ |γ(x− t)− γ(x)|

(|t|+ y)n+1
dt
)2

dy

≤ c

∫ ∞

0

y−(1+2l+2n)dy
(∫

|t|≤y

|γ(x− t)− γ(x)|dt
)2

+c
∫ ∞

0

y1−2l
(∫

|t|≥y

|γ(x− t)− γ(x)|
(|t|+ y)n+1

dt
)2

dy = A1 +A2.

We have

A1 = c

∫ ∞

0

y−(1+2l+2n)
(∫

|τ |≤1

|γ(x− τy)− γ(x)|yndτ
)2

dy

= c

∫ ∞

0

y−(1+2l)
(∫

|τ |≤1

|γ(x− τy)− γ(x)| dτ
)2

dy ≤ c
(
(Slγ)(x)

)2
.

To find a majorant for A2, we rewrite it as follows

A2 = c

∫ ∞

0

y1−2l
(∫

r≥y

r−n−2dr

∫

y≤|t|≤r

|γ(x− t)− γ(x)|dt
)2

dy.

Applying the Hardy inequality, we get

A2 ≤ c

∫ ∞

0

r−2n−2l−1
(∫

|t|≤r

|γ(x− t)− γ(x)|dt
)2

dr

= c

∫ ∞

0

r−2l−1
(∫

|τ |≤1

|γ(x− τr)− γ(x)|dτ
)2

dr ≤ c
(
(Slγ)(x)

)2
.

Thus, for l ∈ (0, 1)
∫ ∞

0

∣∣∣∂(Tγ)(x, y)
∂y

∣∣∣
2

y1−2ldy ≤ c
(
(Slγ)(x)

)2
.
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Next, let k = 2m, m = 1, 2, . . .. Since Tγ is a harmonic function in R
n+1
+ ,

∂2(Tγ)(x, y)
∂y2

= −
n∑

j=1

∂2(Tγ)(x, y)
∂x2

j

.

Therefore

∂k(Tγ)(x, y)
∂yk

= (−1)m
n∑

i1,...,im=1

∂2m(Tγ)(x, y)
∂x2

i1
. . . ∂x2

im

. (3.2.43)

Using the identity
∫

∂P (t, y)
∂ti

dt = 0, i = 1, . . . , n,

and the estimate ∣∣∣∂P (x, y)
∂xi

∣∣∣ ≤ c (|x|+ y)−n−1

(see [St2], Ch. 5, Sect. 4), we get

∣∣∣∂
k(Tγ)(x, y)

∂yk

∣∣∣=
∣∣∣

n∑
i1,...,im=1

∫
∂P (t, y)
∂ti1

( ∂[l]γ(x−t)
∂xi1∂x

2
i2
. . . ∂x2

im

− ∂[l]γ(x)
∂xi1∂x

2
i2
. . . ∂x2

im

)
dt

≤ c

∫ |∇[l]γ(x− t)−∇[l]γ(x)|
(|t|+ y)n+1

dt.

We complete the proof in the same way as for l ∈ (0, 1).
For k = 2m+ 1, m = 1, 2, . . ., we use the identity

∂k(Tγ)(x, y)
∂yk

= (−1)m
n∑

i1,...,im=1

∂2m+1(Tγ)(x, y)
∂y∂x2

i1
. . . ∂x2

im

= (−1)m
n∑

i1,...,im=1

∫
∂P (t, y)
∂y

( ∂[l]γ(x− t)
∂x2

i1
. . . ∂x2

im

− ∂[l]γ(x)
∂x2

i1
. . . ∂x2

im

)
dt

which implies that

∣∣∣∂
k(Tγ)(x, y)

∂yk

∣∣∣ ≤ c

∫ |∇[l]γ(x− t)−∇[l]γ(x)|
(|t|+ y)n+1

dt.

Again we complete the proof in the same way as for l ∈ (0, 1). ��

In the next two assertions we use the notation

K = sup
x∈Rn,r∈(0,1]

rm−n/p‖Slγ;Br(x)‖Lp
. (3.2.44)
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Lemma 3.2.13. Let γ ∈W [l]
1,loc, y ∈ (0, 1], and let k = [l] + 1. Then

∣∣∣∂
k(Tγ)(x, y)

∂yk

∣∣∣ ≤ cKy{l}−m−1.

Proof. Let r/2 < y ≤ r, r ∈ (0, 1]. By Lemma 3.2.12,
∫

Br(x)

(∫ ∞

0

∣∣∣∂
k(Tγ)(t, y)

∂yk

∣∣∣
2

y1−2{l}dy
)p/2

dt ≤ cKprn−mp. (3.2.45)

Applying the mean value theorem for harmonic functions and then the Cauchy
inequality, we obtain

∣∣∣∂
k(Tγ)(x, y)

∂yk

∣∣∣ ≤ c r−n−1

∫

Br(x)

∫ r

r/2

∣∣∣∂
k(Tγ)(t, η)

∂ηk

∣∣∣dη dt

≤ c r−n−1/2

∫

Br(x)

(∫ r

r/2

∣∣∣∂
k(Tγ)(t, η)

∂ηk

∣∣∣
2

dη
)1/2

dt

≤ c r−n−1+{l}
∫

Br(x)

(∫ r

r/2

∣∣∣∂
k(Tγ)(t, η)

∂ηk

∣∣∣
2

η1−2{l}dη
)1/2

dt.

Using (3.2.45) and the Hölder inequality, we find that

∣∣∣∂
k(Tγ)(x, y)

∂yk

∣∣∣ ≤ c r−n−1+{l} rn(p−1)/p K r(n−mp)/p ≤ cK y{l}−m−1.

The proof is complete. ��

Lemma 3.2.14. Let γ ∈ W
[l]
1,loc, 0 < l < m ≤ n/p. Then, for almost all

x ∈ R
n,

|γ(x)| ≤ c
(
Kl/m((Slγ)(x))(m−l)/m + ‖γ‖L1,unif

)
, (3.2.46)

where K is introduced in (3.2.44).

Proof. We use Lemma 3.2.11 with k = [l] + 1. Let

ϕ(y) =

{
|∂k+1(Tγ)(x, y)/∂yk+1| for 0 < y ≤ 1,
0 for y ≥ 1.

Then, for any R > 0,
∫ 1

0

∣∣∣∂
k+1(Tγ)(x, y)

∂yk+1

∣∣∣ykdy =
∫ ∞

0

ϕ(y) yk dy

=
∫ R

0

ϕ(y) yk dy +
∫ ∞

R

ϕ(y) yk dy.
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Applying the Cauchy inequality to the first term and using Lemma 3.2.13 to
estimate the second one, we find that

∫ ∞

0

ϕ(y)ykdy

≤ c
((∫ R

0

ϕ(y)2y1−2{l}dy
)1/2(∫ R

0

y2k+2{l}−1dy
)1/2

+K

∫ ∞

R

yk+{l}−1−mdy
)

≤ c
((∫ ∞

0

ϕ(y)2y1−2{l}
)1/2

Rl +KRl−m
)
.

Putting here

R = K1/m
(∫ ∞

0

ϕ(y)2y1−2{l}dy
)−1/2m

,

we arrive at
∫ ∞

0

ϕ(y)ykdy ≤ cKl/m
(∫ ∞

0

ϕ(y)2y1−2{l}dy
)(m−l)/2m

.

Consequently,

|γ(x)| ≤ c
(
Kl/m

(∫ 1

0

∣∣∣∂
k+1(Tγ)(x, y)

∂yk+1

∣∣∣
2

y1−2{l}dy
)(m−l)/2m

+ ‖γ‖L1,unif

)
.

Reference to Lemma 3.2.12 completes the proof. ��

Proof of Lemma 3.2.10. Let K be defined by (3.2.44). By Lemma 3.2.14,
∫

e

|γ(x)|mp/(m−l)dx ≤ c
(
Klp/(m−l)

∫

e

|(Slγ)(x)|pdx+ ‖γ‖mp/(m−l)
L1,unif

mesne
)
,

which together with the obvious estimate mesne ≤ Cp,m(e) implies that

‖γ; e‖Lmp/(m−l)

(Cp,m(e))(m−l)/mp
≤ c
(
Kl/mQ(m−l)/m + ‖γ‖L1,unif

)
,

where

Q = sup
e

‖Slγ; e‖Lp

(Cp,m(e))1/p
.

Since K ≤ Q, we complete the proof. ��

Corollary 3.2.5. Let 0 < l < m and let p ∈ (1,∞). Then

‖γ‖M(Hm
p →Hl

p) ∼ ‖Slγ‖M(Hm
p →Lp) + ‖γ‖L1,unif . (3.2.47)

For m = l the norm ‖γ‖L1,unif should be replaced by ‖γ‖L∞ .

Proof. The result follows by Theorem 3.2.4 and Lemma 3.2.2.
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3.2.11 The Space M(Hm
p → Hl

p) for mp > n

Theorem 3.2.5. If mp > n, p ∈ (1,∞), then

‖γ‖M(Hm
p →Hl

p) ∼ ‖γ‖Hl
p,unif

.

Proof. The required lower bound for the norm in M(Hm
p → H l

p) follows from
the inequality

‖γηz‖Hl
p
≤ c ‖γ‖M(Hm

p →Hl
p)‖ηz‖Hm

p
.

Let us obtain the upper bound. Since Hm
p is imbedded into L∞, we have

Cp,m(e) ∼ 1 for any compact set e with diameter d(e) not exceeding 1. There-
fore, it follows from Theorem 3.2.4 that

‖γ‖M(Hm
p →Hl

p) ∼ sup
z∈Rn

‖Slγ;B1/2(z)‖Lp
+ ‖γ‖L1,unif .

We have

‖Slγ;B1/2(z)‖Lp
≤ ‖Sl(γηz);B1/2(z)‖Lp

+ ‖Sl[γ(1− ηz)];B1/2(z)‖Lp
.

The first norm on the right-hand side does not exceed ‖γηz‖Hl
p
. By Theorem

3.1.1 the second one is not greater than

c sup
x∈B1/2(z)

(∫ ∞

1/2

[
y−n

∫

|s|<y

|∇[l][γ(x+ s)(1− ηz(x+ s))]| ds
]2
y−1−2{l} dy

)1/2

≤ c1 sup
x∈Rn

‖γ;B1(x)‖
W

[l]
p
≤ c2 sup

x∈Rn

‖γηx‖Hl
p
.

Thus the upper estimate for ‖γ‖M(Hm
p →Hl

p) follows. ��

Remark 3.2.2. The coincidence of MHm
p and Hm

p,unif for mp > n is a result by
Strichartz [Str].

3.3 One-Sided Estimates for the Norm in M(Hm
p → H l

p)

We present here some lower and, separately, upper bounds for the norm in
M(Hm

p → H l
p), mp ≤ n, which do not contain the capacity and which follow

from the characterization of multipliers in M(Hm
p → H l

p) obtained in the
previous section.
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3.3.1 Lower Estimate for the Norm in M(Hm
p → Hl

p) Involving
Morrey Type Norms

The next assertion follows directly from Proposition 3.1.4 and Theorem 3.2.2.

Proposition 3.3.1. Let 0 < l < m. If mp < n, then

‖γ‖M(Hm
p →Hl

p)

≥ c sup
x∈Rn

r∈(0,1)

(
rm−n/p‖Slγ;Br(x)‖Lp

+ rm−l−n/p‖γ;Br(x)‖Lp

)
(3.3.1)

and, if mp = n, then
‖γ‖M(Hm

p →Hl
p)

≥ c sup
x∈Rn

r∈(0,1)

(
(log 2r−1)1−1/p‖Slγ;Br(x)‖Lp

+ r−l‖γ;Br(x)‖Lp

)
. (3.3.2)

For m = l the second term on the right-hand sides of (3.3.1) and (3.3.2) should
be replaced by ‖γ‖L∞ .

Remark 3.3.1. Let p ∈ (1,∞) and let λ ∈ (0, n). By the Morrey space Lp,λ

one means the set of functions in R
n with the finite norm

‖f‖Lp,λ
= sup

x∈Rn,r>0
r−λ/p‖f ;Br(x)‖Lp

. (3.3.3)

Using this norm, we can rewrite estimate (3.3.1), where mp < n, as

‖γ‖M(Hm
p →Hl

p) ≥ c
(
‖Slγ‖Lp,n−mp

+ ‖γ‖L1,unif

)
. (3.3.4)

3.3.2 Upper Estimate for the Norm in M(Hm
p → Hl

p) Involving
Marcinkiewicz Type Norms

The next assertion is a corollary of Theorem 3.2.4 and estimates (3.1.5),
(3.1.6).

Proposition 3.3.2. If mp < n and m > l, then

‖γ‖M(Hm
p →Hl

p)

≤ c
(

sup
{e:d(e)≤1}

(mesne)m/n−1/p‖Slγ; e‖Lp
+ ‖γ‖L1,unif

)
(3.3.5)

and, if mp = n, m > l, then

‖γ‖M(Hm
p →Hl

p)

≤ c
(

sup
{e:d(e)≤1}

(log(2n/mesne))(p−1)/p‖Slγ; e‖Lp
+ ‖γ‖L1,unif

)
, (3.3.6)

where d(e) is the diameter of e.
In case m = l the norm in L1,unif on the right-hand sides of (3.3.5) and

(3.3.6) should be replaced by ‖γ‖L∞ .

In connection with (3.3.5) we make the following remark.
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Remark 3.3.2. By the Marcinkiewicz space Mα one means the linear set of
functions in a domain Ω ⊂ R

n for which

sup
0<t<∞

t [m(t)]α <∞ , (3.3.7)

where α ∈ (0, 1) and

m(t) = mesn{x ∈ Ω : |f(x)| ≥ t}.

We denote the left-hand side of (3.3.7) by ‖f ;Ω‖M∗
α

and we set

‖f ;Ω‖Mα
= sup

e⊂Ω

∫

e

|f | dx

(mesne)1−α
.

It is known that

(1− α)‖f ;Ω‖Mα
≤ ‖f ;Ω‖M∗

α
≤ ‖f ;Ω‖Mα

(3.3.8)

(cf. [KZPS], 8.3, Ch. 2). In fact, for all e,
∫

e

|f | dx ≤ ‖f ;Ω‖Mα
(mesne)1−α

and, in particular,
∫

|f |≥t

|f | dx ≤ ‖f ;Ω‖Mα
[m(t)]1−α .

On the other hand, ∫

|f |≥t

|f | dx ≥ tm(t) .

Consequently,
t [m(t)]α ≤ ‖f ;Ω‖Mα

and the right inequality (3.3.8) is proved.
Now let (0,mesne) � µ→ F (µ) be a non-increasing rearrangement of |f |,

i.e. a non-increasing function which satisfies

m(t) = mes1({µ : F (µ) ≥ t}) .

It is clear that ∫

e

|f | dx ≤
∫ mesne

0

F (µ) dµ .

Moreover,
F (µ) ≤ µ−α‖f ;Ω‖M∗

α
.

Hence
∫

e

|f | dx ≤ ‖f ;Ω‖M∗
α

∫ mesne

0

µ−α dµ = ‖f ;Ω‖M∗
α

(mesne)1−α

1− α

and the left estimate (3.3.8) is proved.
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Now it is clear that (3.3.5) can be written in terms of Marcinkiewicz spaces.
For l < m < n/p this inequality is equivalent to

‖γ‖M(Hm
p →Hl

p) ≤ c
(

sup
x∈Rn

‖Slγ;B1(x)‖Mm/n
+ ‖γ‖L1,unif

)
. (3.3.9)

For l = m < n/p a similar result takes the form

‖γ‖MHl
p
≤ c
(

sup
x∈Rn

‖Slγ;B1(x)‖Ml/n
+ ‖γ‖L∞

)
. (3.3.10)

We complete this subsection by stating the two-sided estimate of the norm
in M(Hm

p → H l
p) unifying inequalities (3.3.4) and (3.3.9):

c1
(
‖Slγ‖Lp,n−mp

+ ‖γ‖L1,unif

)
≤ ‖γ‖M(Hm

p →Hl
p)

≤ c2
(

sup
x∈Rn

‖Slγ;B1(x)‖Mm/n
+ ‖γ‖L1,unif

)
. (3.3.11)

Similarly,
c1
(
‖Slγ‖Lp,n−lp

+ ‖γ‖L∞

)
≤ ‖γ‖MHl

p

≤ c2
(

sup
x∈Rn

‖Slγ;B1(x)‖Ml/n
+ ‖γ‖L∞

)
. (3.3.12)

These estimates mean that the space of multipliers M(Hm
p → H l

p) is situated
between Morrey-Sobolev type and Marcinkiewicz-Sobolev spaces with norms
of the same space dimension m− l.

Remark 3.3.3. An estimate similar to (3.3.9), in which p = 2, 0 < l < 1
and the function Tγ, defined by (3.2.32), plays the role of Slγ, was given by
Hirschman [Hi1]. In the case l ∈ (0, 1), lp < n, inequality (3.3.9) was proved
by Strichartz [Str] with the use of interpolation methods.

3.3.3 Upper Estimates for the Norm in M(Hm
p → Hl

p) Involving
Norms in Hl

n/m

Theorem 3.3.1. (i) If lp < n and γ ∈ H l
n/l,unif ∩ L∞, then γ ∈MH l

p and

‖γ‖MHl
p
≤ c (‖γ‖Hl

n/l,unif
+ ‖γ‖L∞) . (3.3.13)

(ii) If mp < n, l < m and γ ∈ H l
n/m,unif, then γ ∈M(Hm

p → H l
p) and

‖γ‖M(Hm
p →Hl

p) ≤ c ‖γ‖Hl
n/m,unif

.

Proof. Let η ∈ C∞
0 (B1), η = 1 on B1/2 and ηz(x) = η(x − z). By Theorem

3.1.2,
‖γ‖M(Hm

p →Hl
p) ≤ c sup

z∈Rn

‖ηzγ‖M(Hm
p →Hl

p) .
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This and (4.3.96) imply that the norm of γ in M(Hm
p → H l

p) has the majorant

c sup
z∈Rn

(‖Sl(ηzγ)‖Ln/m
+ ‖ηzγ‖Ln/(m−l)) .

Now, using Theorem 3.1.1, we derive the estimate

‖γ‖M(Hm
p →Hl

p) ≤ c (‖γ‖Hl
n/m,unif

+ ‖γ‖Ln/(m−l),unif)

which coincides with (3.3.13) for m = l. Since by the Sobolev theorem H l
n/m ⊂

Ln/(m−l) for m > l, we have

‖γ‖Ln/(m−l),unif ≤ c ‖γ‖Hl
n/m,unif

.

The proof is complete. ��

Remark 3.3.4. Estimate (3.3.13) was first obtained by Polking [Pol1] with a
different proof.

3.4 Upper Estimates for the Norm in M(Hm
p → H l

p)
by Norms in Besov Spaces

Let {µ} > 0. We define the space Bµ
q,∞ of functions in R

n with the norm

‖v‖Bµ
q,∞ = sup

h∈Rn

|h|−{µ}‖∆h∇[µ]v‖Lq
+ ‖v‖

W
[µ]
q

. (3.4.1)

In the present section we find sufficient conditions for the inclusion γ ∈
M(Hm

p → H l
p) formulated in terms of the space Bµ

q,∞ (see Theorem 3.4.1).

3.4.1 Auxiliary Assertions

Lemma 3.4.1. Let q ≥ 1, {µ} > 0, µq < n. Further, let v ∈W [µ]
q (B1). Then

sup
e⊂B1

‖v; e‖Lq

(mesne)µ/n
≤ c

(
sup
e⊂B1

‖∇[µ]v; e‖Lq

(mesne){µ}/n
+ ‖v;B1‖Lq

)
. (3.4.2)

Proof. By (2.2.8), for any integer l < m we have

(mesne)(m−l)/n−1/q‖γ; e‖Lq

≤ c
(
‖γ;B1‖Lq

+ (mesne)(m−l)/n−1/q
(∫

e

(∫

|z|<2

|∇lγ(x+ z)|
|z|n−l

dz
)q

dx
)1/q)

.
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We estimate the integral over the ball |z| < 2 by the sum

∫

B(0)
+

N∑
j=0

∫

B(j+1)\B(j)
,

where
B(j) = {z : |z| ≤ 2j(mesne)1/n}

and 2N (mesne)1/n ≤ 1. By Minkowski’s inequality

(∫

e

(∫

B(0)
. . . dz

)q

dx
)1/q

≤
∫

B(0)

dz

|z|n−l

(∫

e

|∇lγ(x+ z)|qdx
)1/q

.

Let mq ≤ n. We introduce the notation

s(γ) = sup
{e:d(e)≤1}

‖∇lγ; e‖Lq

(mesne)1/q−m/n
.

Clearly, the right-hand side of the last inequality does not exceed

s(γ)(mesne)1/q−m/n

∫

B(0)

dz

|z|n−l
≤ c s(γ)(mesne)1/q−(m−l)/n.

Next we estimate the integral over the spherical layer B(j+1)\B(j):
∫

B(j+1)\B(j)
. . . dz ≤ c(2j(mesne)1/n)l−n/q

(∫

B(j+1)\B(j)
|∇lγ(x+ z)|qdz

)1/q

≤ c s(γ)(2j(mesne)1/n))l−m.

Consequently
(∫

e

( N∑
j=0

∫

B(j+1)\B(j)
. . . dz

)q

dx
)1/q

≤ c s(γ)
N∑

j=0

(2j(mesne)1/n)l−m(mesne)1/q ≤ c s(γ)(mesne)1/q−(m−l)/n.

Thus
(mesne)(m−l)/n−1/q‖γ; e‖Lq

≤ c
(
‖γ;B1‖Lq

+ sup
e⊂B

(mesne)m/n−1/q‖∇lγ; e‖Lq

)
.

To complete the proof it remains to put here m = n/q − {µ} and l = [µ]. ��
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Lemma 3.4.2. Let q ≥ 1, µ > 0, {µ} > 0, v ∈W [µ]
q (B2). Then

sup
e⊂B1

(mesne)−{µ}/n‖∇[µ]v; e‖Lq

≤ c

[
sup
h∈B1

|h|−{µ}‖∆h∇[µ]v;B1‖Lq
+ sup

x∈B1,0<r<1
r−µ‖v;Br(x)‖Lq

]
,

where (∆hw)(x) = w(x+ h)− w(x).

Proof. Let

Q ∈ C∞
0 (B1) and

∫
Qdx = 1.

Further, let ρ ∈ (0, 1), and let e be an arbitrary compact set in B1. We have

|Dαv(x)| ≤
∣∣∣∣ρ−n

∫
Q(h/ρ)(Dαv(x+ h)−Dαv(x)) dh

∣∣∣∣

+ρ−n−[µ]

∣∣∣∣
∫

(DαQ)(h/ρ)v(x+ h) dh
∣∣∣∣

for any multi-index α of order [µ]. Consequently,
∫

e

|Dαv|qdx≤ c
[
ρ−qn

∫

e

(
|Q(h/ρ)|1/q′ |Q(h/ρ)|1/q|Dαv(x+h)−Dαv(x)|dh

)q

dx

+(mesne)ρ−q[µ]−n sup
x∈B1

∫

Bρ(x)

|v(h)|q dh
]
.

Applying Hölder’s inequality to the first term on the right-hand side, we obtain
∫

e

|Dαv|q dx ≤ c ρq{µ}
[

sup
h∈Bρ

|h|−q{µ}
∫

e

|Dαv(x+ h)−Dαv(x)|qdx

+(mesne)ρ−n sup
x∈B1,r∈(0,1)

r−µq‖v;Br(x)‖qLq

]
.

It remains to put ρ = 2−1(mesne)1/n and to multiply both sides of the last
inequality by ρ−q{µ}. ��

The following lemma contains a well known integral representation of a
function formulated in terms of its higher-order differences (see [BIN], Ch. 2,
Sect.7.8).

Lemma 3.4.3. Let v be a function in Lq, 1 ≤ q < ∞. Then, for almost all
z ∈ R

n,

v(z) =
n∑

i=1

∫ ∞

0

dσ

σn+2

∫

R1
M
( t
σ

)
dt

∫

Rn

Ωi

(y − z

σ

)
∆s

tei
v(z+y +tei)dy (3.4.3)

where M ∈ C∞
0 (0, 1), Ωi ∈ C∞

0 ((0, 1)n), s is an arbitrary integer and ∆s
tei

is
the difference of order s in the direction of the unit vector ei.
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Proof. Let K ∈ C∞
0 (0, (s+ 1)−1) and let

∫

R1
K(t) dt = 1.

We put

L(t) = (s+ 1)
s∑

j=0

(−1)j

(1 + j)2

(
s

j

)
K

(
t

1 + j

)
. (3.4.4)

Since
∫

R1

s∑
j=0

(−1)s

(1 + j)2

(
s

j

)
K

(
t

1 + j

)
dt =

∫ 1

0

(1− t)s dt = (s+ 1)−1 ,

it follows that ∫

R1
L(t) dt = 1.

We introduce the function Φ:

Φ(τ) =
∫

R1
L(τ − η)L(η) dη

and set

vσ(z) =
∫

Rn

v(z + y)
n∏

j=1

σ−1Φ
(yj

σ

)
dy , z ∈ R

n, σ > 0 .

The inclusion v ∈ Lq, 1 ≤ q <∞, implies that vσ(z)→ 0 as σ →∞. Hence

v(z) = −
∫ ∞

0

∂

∂σ
vσ(z) dσ

for almost all z ∈ R
n. We have

∂

∂σ
vσ(z) =

∫

Rn

v(z + y)
∂

∂σ

( n∏
j=1

σ−1Φ
(yj

σ

))
dy

=
n∑

i=1

∫

Rn

v(z + y)
(∏

j �=i

σ−1Φ
(yj

σ

)) ∂

∂σ

(
σ−1Φ

(yi

σ

))
dy. (3.4.5)

From the definition of Φ we obtain
∂

∂σ

(
σ−1Φ

(yi

σ

))
=

∂

∂σ

∫

R1

( 1
σ
L
(yi − τ

σ

))( 1
σ
L
( τ
σ

))
dτ

= 2
∫

R1

1
σ
L
(yi − τ

σ

) ∂

∂σ

( 1
σ
L
( τ
σ

))
dτ

= −2σ−2

∫

R1
L
(yi

σ
− t
)
(tL(t))′ dt

= 2σ−3

∫

R1

τ

σ
L
( τ
σ

)
L′
(yi − τ

σ

)
dτ .
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Substituting the above expression for ∂(σ−1Φ(yi/σ))/∂σ into (3.4.5), we
obtain

∂

∂σ
vσ(z) = −2

n∑
i=1

σ−n−2

∫

R1

t

σ
L
( t
σ

)
dt

×
∫

Rn

v(z + y)
(∏

j �=i

Φ
(yi

σ

))
L′
(yi − τ

σ

)
dy

= σ−n−2
n∑

i=1

∫

R1

t

σ
L
( t
σ

)
dt

∫

Rn

v(z + y + tei)Ωi

( y
σ

)
dy,

where
Ωi(y) = 2

∏
j �=i

Φ(yj)L′(yi), supp Ωi ⊂ (0, 1)n.

Thus

v(z) =
n∑

i=1

∫ ∞

0

σ−n−2dσ

∫

Rn

Ωi

( y
σ

)
dy

∫

R1
v(z + y + tei)

t

σ
L
( t
σ

)
dt. (3.4.6)

Using definition (3.4.4) of the function L, we write the last integral over R
1

as

(s+ 1)
∫

R1
v(z + y + tei)

s∑
j=0

(−1)j

1 + j

(
s

j

)
t

σ(1 + j)
K
( t

σ(1 + j)

) dt

1 + j

= (−1)s(s+ 1)
∫

R1

s∑
j=0

(−1)s−j

(
s

j

)
v(z + y + (1 + j)τei)

τ

σ
K
( τ
σ

)
dτ

=
∫

R1
∆s

tei
v(z + y + tei)M

( t
σ

)
dt,

where M(t) = (−1)s(s+ 1)tK(t). Hence, using (3.4.6), we obtain (3.4.3). ��

3.4.2 Properties of the Space Bµ
q,∞

Proposition 3.4.1. (cf. [BIN], Ch. 4, Sect. 18.15). The norm (3.4.1) is equi-
valent to the norm

‖v‖(1)
Bµ

q,∞
=

n∑
i=1

sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

+ ‖v‖Lq
,

where s > µ, 1 ≤ q <∞ and ∆s
tei

is the difference of order s in the direction
of the unit vector ei.
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Proof. Let v ∈ Bµ
q,∞. Putting k = [µ] and m = s− [µ] in the formula

∆k+m
tei

v(x) = tk
∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
k

∆m
tei

∂kv

∂xk
i

(x+ t(ξ1 + · · ·+ ξk)ei) dξ1 . . . , dξk

and applying Minkowski’s inequality, we get

|t|−µ‖∆s
tei
v‖Lq

≤ |t|−{µ}
∥∥∥∆s−[µ]

tei

∂[µ]

∂x
[µ]
i

v
∥∥∥

Lq

≤ 2s−[µ]−1|t|−{µ}
∥∥∥∆tei

∂[µ]

∂x
[µ]
i

v
∥∥∥

Lq

.

This implies that ‖v‖(1)
Bµ

q,∞
≤ c ‖v‖Bµ

q,∞ .
Now we derive the converse inequality. We show that the finiteness of the

norm ‖v‖(1)
Bµ

q,∞
implies the inclusion v ∈ W [µ]

q . Let vσ be the mean value of v
defined in the proof of Lemma 3.4.3. We have

vσ(x)− vε(x) =
∫ σ

ε

∂

∂τ
vτ (x) dτ , 0 < ε < σ, x ∈ R

n .

Using the expression for ∂vτ (x)/∂τ borrowed from the just mentioned proof,
we arrive at the identity

vε(x) = vσ(x)

+
∫ σ

ε

dτ

τn+2

∫

R1
M
( t
τ

)
dt

n∑
i=1

∫

Rn

Ωi

(y
τ

)
∆s

tei
v(x+ y + tei)dy. (3.4.7)

Differentiating (3.4.7) with k ≤ [µ], we find that

∇kvε = ∇kvσ(x)(t− 1)k

∫ σ

ε

dτ

τn+2+k

∫

R1
M
( t
τ

)
dt

×
n∑

i=1

∫

Rn

(∇kΩi)
(y
τ

)
∆s

tei
v(x+ y + tei) dy (3.4.8)

which together with Minkowski’s inequality yields

‖∇kvε −∇kvσ‖Lq
≤ c

n∑
i=1

∫ σ

ε

τ−2−k dτ

∫

R1
M
( t
τ

)
‖∆s

tei
v‖Lq

dt

≤
n∑

i=1

(
sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

) ∫ σ

0

τ−2−k dτ

∫

R1

∣∣∣M
( t
τ

)∣∣∣|t|µ dt

≤ c σµ−k‖v‖(1)
Bµ

q,∞
.

The latter and the Lq-convergence vσ → v as σ → +0 imply the existence of
any distributional derivative Dαv ∈ Lq, |α| ≤ [µ]. Also,
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‖∇kvε‖Lq
≤ ‖∇kvσ‖Lq

+ c σµ−k‖v‖(1)
Bµ

q,∞
.

Passing here to the limit as ε→ +0, we get

‖∇kv‖Lq
≤ ‖∇kvσ‖Lq

+ c σµ−k‖v‖(1)
Bµ

q,∞
≤ c σ−k‖v‖Lq

+ c σµ−k‖v‖(1)
Bµ

q,∞
.

Putting σ = 1, we arrive at the estimate

‖v‖
W

[µ]
q
≤ c ‖v‖(1)

Bµ
q,∞

.

Since ∇kv ∈ Lq, it follows that ∇kvσ(x) → 0 as σ → ∞. We also have
∇kvε(x) → ∇kv(x) as ε → 0 for almost all x ∈ R

n. Therefore, by (3.4.7) we
find that

∇kv(x)=(−1)k

∫ ∞

0

dτ

τn+2+k

∫

R1
M
( t
τ

)
dt

n∑
i=1

∫

Rn

(∇kΩi)
(y
τ

)
∆s

tei
(x+y+tei)dy

for almost all x ∈ R
n. Hence, for any λ > 0 and k = [µ], we have

∆λej
∇kv(x) (3.4.9)

= (−1)k
n∑

i=1

∫

Rn

∆λej
∆tei

v(x+ y+ tei)dy
∫

R1
dt

∫ λ

0

M
( t
τ

)(
∇kΩi

)(y
τ

) dτ

τn+2+k

+(−1)k+1λ

n∑
i=1

∫ 1

0

dξ

∫

Rn

∆s
tei
v(x+y+tei+ξej)

∫

R1
dt

∫ ∞

λ

M
( t
τ

)
ψ
(y
τ

) dτ

τn+3+k
,

where
ψ(z) = ∇k

∂

∂zj
Ωi(z).

To derive equality (3.4.9), we made the change of variables z = x + y in
the second summand and then applied the difference ∆λej

to the kernel
(∇kΩi)

(
z−x

τ

)
, using the formula

(
∇kΩi

)(z − x− λej

τ

)
− (∇kΩi)

(z − x

τ

)
= −λ

∫ 1

0

ψ
(z − x− λξej

τ

)
dξ.

After that we made the reverse change of variables y = z − x − λξej .
Since M ∈ C∞

0 (0, 1) and Ωi ∈ C∞
0 ((0, 1)n), i = 1, . . . , n, it follows for

α = max{|y1|, . . . , |yn|, t} and 0 < t < λ, that

∣∣∣
∫ λ

0

τ−n−2−kM
( t
τ

)
∇kΩi

(y
τ

)
dτ
∣∣∣

≤ c

∫ ∞

α

τ−n−2−k dτ ≤ c (|y|+ t)−n−1−k. (3.4.10)
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If t > λ then the integral on the left-hand side of (3.4.10) is equal to zero. In
a similar way we get∣∣∣∣

∫ ∞

λ

τ−n−3−kM
( t
τ

)
ψ
(y
τ

)
dτ

∣∣∣∣ ≤ c (|y|+ t+ λ)−n−2−k (3.4.11)

provided that t > δλ with some δ > 0. In the case t ≤ δλ, the integral on the
left-hand side of (3.4.10) is equal to zero. Using (3.4.8)–(3.4.11), we find that

|∆λej
∇kv(x)| ≤ c

n∑
i=1

∫ λ

0

dt

∫

Rn

|∆s
tei
∆λej

v(x+ y + tei)
(|y|+ t)n+1+k

dy

+c
n∑

i=1

λ

∫ ∞

δλ

dt

∫

Rn

∫ 1

0
|∆s

tei
v(x+ y + tei + λξej)|dξ
(|y|+ t)n+2+k

dy .

Applying Minkowski’s inequality we obtain

λ−{µ}‖∆λej
∇kv‖Lq

≤ c
n∑

i=1

λ−{µ}
∫ λ

0

‖∆tei
v‖Lq

t−1−k dt

+c
n∑

i=1

λ1−{µ}
∫ ∞

δλ

‖∆tei
v‖Lq

t−2−k dt ≤ c

n∑
i=1

sup
t>0

t−µ‖∆s
tei
v‖Lq

.

Thus

sup
λ>0

λ−{µ}‖∆λej
∇kv‖Lq

≤ c ‖v‖(1)
Bµ

q,∞
, j = 1, . . . , n . (3.4.12)

Next we note that

‖∆ηv‖Lq
≤

n∑
j=1

‖∆|ηj |ej
v‖Lq

, η ∈ R
n .

Therefore

|η|−{µ}‖∆η∇kv‖Lq
≤

n∑
j=1

|ηj |−{µ}‖∆|ηj |ej
∇kv‖Lq

.

By (3.4.12), the last sum does not exceed c‖v‖(1). The result follows. ��

The proposition just proved and the definition of the norms ‖·‖ and ‖·‖(1)
imply that the norm in Bµ

q,∞,unif is equivalent to either of the following two
norms:

sup
x∈Rn,h∈B1

|h|−{µ}‖∆h∇[µ]v;B1(x)‖Lq
+ sup

x∈Rn

‖v;B1(x)‖Lq
,

n∑
i=1

sup
x∈Rn,|t|<1

|t|−µ‖∆s
tei
v;B1(x)‖Lq

+ sup
x∈Rn

‖v;B1(x)‖Lq
.

Next we present an assertion which is due to V. P. Il’in (personal commu-
nication).
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Lemma 3.4.4. Let v be a function in Lq with compact support and let q ≥ 1,
µ > 0, µq < n. Then

sup
x∈Rn,r>0

r−µ‖v;Br(x)‖Lq
≤ c

n∑
i=1

sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

. (3.4.13)

Proof. It follows from (3.4.3) that

|v(z)| ≤
n∑

i=1

∫ ∞

0

dσ

σn+2

∫

R1

∣∣∣M
( t
σ

)∣∣∣ dt
∫
|∆s

tei
v(y + tei)|

∣∣∣Ω
(y − z

σ

)∣∣∣ dy,

where M ∈ C∞
0 (0, 1) and Ω ∈ C∞

0 ((0, 1)n).
By Ui we denote the i-th term on the right-hand side. Let us represent

Ui as the sum Vi +Wi of two integrals over σ so that the integration in Vi is
taken over σ ∈ [0, r]. By Minkowski’s inequality,

‖Vi;Br(x)‖Lq
≤
∫ r

0

dσ

σn+2

∫

R1

∣∣∣M
( t
σ

)∣∣∣ dt

×
∥∥∥
∫
|∆s

tei
v(y + tei)|

∣∣∣Ω
(y − z

σ

)∣∣∣ dy;Br(x)
∥∥∥

Lq

.

Applying Minkowski’s inequality once more, we obtain

∥∥∥
∫
|∆s

tei
v(y + tei)|

∣∣∣Ω
(y − z

σ

)∣∣∣ dy;Br(x)
∥∥∥

Lq

≤ c σn‖∆s
tei
v‖Lq

.

Therefore,

‖Vi;Br(x)‖Lq
≤ c

∫ r

0

dσ

σn+2
σn

∫ σ

0

τµ dτ sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

≤ c rµ sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

. (3.4.14)

By Hölder’s inequality,

sup
z∈Br(x)

|Wi(z)| ≤ c1

∫ ∞

r

dσ

σn+2

∫ σ

0

σn/q′
[
sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

]
τµ dτ

= c rµ−n/q sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

.

Consequently,

‖Wi;Br(x)‖Lq
≤ c rn/q sup

z∈Br(x)

|Wi(z)| ≤ c rµ sup
t∈R1
|t|−µ‖∆s

tei
v‖Lq

.

This, together with (3.4.14), implies (3.4.13). ��
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The next assertion follows immediately from Lemmas 3.4.1 - 3.4.4.

Corollary 3.4.1. Let {µ} > 0, q ≥ 1, µq ≤ n and let v ∈W [µ]
q,loc. Then

sup
{e:d(e)≤1}

(mesne)−µ/n
(
(mesne)[µ]/n‖∇[µ]v; e‖Lq

+ ‖v; e‖Lq

)

≤
{
c ‖v‖Bµ

q,∞,unif
for µq < n ,

c (‖v‖Bµ
q,∞,unif

+ ‖v‖L∞) for µq = n ,

where d(e) is the diameter of a compact set e.

3.4.3 Estimates for the Norm in M(Hm
p → Hl

p) by the Norm
in Bµ

q,∞

The following assertion is the main result of the present section.

Theorem 3.4.1. Let q ≥ p, µ = n/q −m+ l, µ > l, {µ} > 0.
(i) If γ ∈ Bµ

q,∞,unif ∩ L∞, then γ ∈MH l
p and

‖γ‖MHl
p
≤ c

(
sup

x∈Rn,h∈B1

|h|−{µ}‖∆h∇[µ]γ;B1(x)‖Lq
+ ‖γ‖L∞

)
. (3.4.15)

(ii) If γ ∈ Bµ
q,∞,unif, then γ ∈M(Hm

p → H l
p) and

‖γ‖M(Hm
p →Hl

p)

≤ c
(

sup
x∈Rn,h∈B1

|h|−{µ}‖∆h∇[µ]γ;B1(x)‖Lq
+ sup

x∈Rn

‖γ;B1(x)‖Lq

)
.(3.4.16)

Proof. Let m ≥ l. It is sufficient to assume that the difference ε = n/q −m
is small, since the general case follows by interpolation between the pairs
{Hm−l

p , Lp} and {Hn/q−ε
p ,Hµ−ε

p } (cf. (3.2.1)). Thus we assume that 1−{l} >
n/q −m > 0.

We introduce the function Φx on (0,∞) with the values

Φx(y) =
∫

By

|∇[l]γ(x+ z)−∇[l]γ(x)| dz .

Clearly,

‖Slγ; e‖pLp
=
∫

e

(∫ ∞

0

[Φx(y)]2y−1−2({l}+n) dy
)p/2

dx,

where e is a compact set with d(e) ≤ 1. Since Φx is an increasing function,
the internal integral on the right-hand side is dominated by

({l}+ n)
∫ ∞

0

Φx(y) dy
y1+{l}+n

∫ ∞

y

Φx(t)
dt

t1+{l}+n
=
{l}+ n

2

(∫ ∞

0

Φx(y)
dy

y1+{l}+n

)2

.
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We write the last integral as the sum of two integrals i1(x) + i2(x), of which
the first is over the semi-axis y > |e|1/n, where |e| = mesne. We have
∫

e

i1(x)p dx ≤
∫

e

{∫ ∞

|e|1/n

(
y−n

∫

By

|∇[l]γ(x+ z)| dz + |∇[l]γ(x)|
) dy

y1+{l}

}p

dx.

This and Minkowski’s inequality imply that
∫

e

i1(x)pdx≤
{∫ ∞

|e|1/n

(∫

e

[
y−n

∫

By

|∇[l]γ(x+z)|dz+|∇[l]γ(x)|
]p
dx
)1/p dy

y1+{l}

}p

.

Therefore
∫

e

i1(x)pdx≤c
{∫ ∞

|e|1/n

(∫

e

[
y−n

∫

By

|∇[l]γ(x+z)|pdz+|∇[l]γ(x)|p
]
dx
)1/p dy

y1+{l}

}p

≤ c |e|1−p/q
{∫ ∞

|e|1/n

[
y−n

∫

By

(∫

e

|∇[l]γ(x+ z)|q dx
)1/q

dz

+
(∫

e

|∇[l]γ(x)|q dx
)1/q] dy

y1+{l}

}p

.

By N(γ) we denote the right-hand sides of (3.4.15) and (3.4.16). According
to Corollary 3.4.1, where µ = n/q −m+ l,

(∫

e

|∇[l]γ(x+ z)|q dx
)1/q

≤ c |e|1/q−m/nN(γ) .

Consequently, ∫

e

i1(x)p dx ≤ c |e|1−mp/nN(γ)p . (3.4.17)

Applying Minkowski’s inequality, we obtain

∫

e

i2(x)p dx =
∫

e

(∫ |e|1/n

0

∫

By

|∇[l]γ(x+ z)−∇[l]γ(x)| dz dy

y1+{l}+n

)p

dx

≤
{∫ |e|1/n

0

∫

By

(∫

e

|∇[l]γ(x+ z)−∇[l]γ(x)|p dx
)1/p

dz
dy

y1+{l}+n

}p

.

By Hölder’s inequality the last expression does not exceed

|e|1−p/q
{∫ |e|1/n

0

∫

By

(∫

e

|∇[l]γ(x+ z)−∇[l]γ(x)|q dx
)1/q

dz
dy

y1+{l}+n

}p

.

Since
|z|q(m−{l})−n

∫

e

|∇[l]γ(x+ z)−∇[l]γ(x)|q dx ≤ cN(γ)q ,
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it follows that
∫

e

i2(x)p dx ≤ c |e|1−p/qN(γ)p
(∫ |e|1/n

0

∫

By

|z|−m+{l}+n/q dz
dy

y1+{l}+n

)p

= c |e|1−pm/nN(γ)p . (3.4.18)

Adding together (3.4.17) and (3.4.18), we arrive at

‖Slγ; e‖pLp
≤ c |e|1−pm/nN(γ)p.

By Hölder’s inequality and Corollary 3.4.1 with µ = n/q −m+ l we obtain

‖γ; e‖Lp
≤ |e|1/p−1/q‖γ; e‖Lq

≤ c |e|1/p−1/q|e|1/q−(m−l)/nN(γ) . (3.4.19)

Reference to Proposition 3.3.2 completes the proof. ��

3.4.4 Estimate for the Norm of a Multiplier in MHl
p(R

1)
by the q-Variation

Hirschman [Hi2] obtained the following sufficient conditions for a function γ
to belong to the class MW l

2 on a unit circumference C: γ is bounded and has
a finite q-variation Varq(γ) for some q, 2 < q < 1/l.

Here q-variation is defined by

Varq(γ) = sup
(m−1∑

j=0

|γ(tj+1)− γ(tj)|q
)1/q

, (3.4.20)

with the supremum taken over all partitions of the circumference C by
points tj .

Using Theorem 3.4.1, one may easily derive a sufficient condition for a
function to belong to MH l

p(R
1) which, for p = 2, coincides with Hirschman’s

condition up to the change of R
1 for C.

We define the local q-variation of a function γ defined on R
1 by (3.4.20),

with the supremum taken over all choices of a finite number of points t0 <
t1 < · · · < tm on any interval σ of unit length.

Since ∫

σ

|γ(t+ h)− γ(t)|q dt ≤ c |h|[Varq(γ)]q,

we arrive at the following assertion.

Corollary 3.4.2. Let n = 1, q ≥ p, lq < 1. If γ ∈ L∞ and Varq(γ) < ∞,
then γ ∈MH l

p and

‖γ‖MHl
p
≤ c (‖γ‖L∞ + Varq(γ)) .
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3.5 Miscellaneous Properties of Multipliers
in M(Hm

p → H l
p)

The following assertion is a generalization of Proposition 2.7.1.

Proposition 3.5.1. If k ∈ [0, l], then M(Hm
p → H l

p) ⊂ M(Hm−l+k
p → Hk

p )
and

‖γ‖M(Hm−l+k
p →Hk

p ) ≤ c ‖γ‖M(Hm
p →Hl

p) .

Proof. The imbedding M(Hm
p → H l

p) ⊂M(Hm−l
p → Lp) and the correspond-

ing inequality for the norms were proved in Lemma 3.2.3. It remains to use
the interpolation inequality

‖γ‖M(Hm−l+k
p →Hk

p ) ≤ c ‖γ‖k/l

M(Hm
p →Hl

p)
‖γ‖(l−k)/l

M(Hm−l
p →Lp)

which is a particular case of estimate (3.2.1). ��

Proposition 3.5.2. (i) If mp > n, 1 < q <∞, 0 ≤ k < l and k ≤ l+n(1/q−
1/p), then M(Hm

p → H l
p) ⊂M(Hm−l+k

q → Hk
q ) and

‖γ‖M(Hm−l+k
q →Hk

q ) ≤ c ‖γ‖M(Hm
p →Hl

p) . (3.5.1)

(ii) If mp = n, 0 ≤ k ≤ l, q > 1 and k < l −m + n/q, then M(Hm
p →

H l
p) ⊂M(Hm−l+k

q → Hk
q ) and inequality (3.5.1) holds.

Proof. (i) According to Theorem 3.2.5, M(Hm
p → H l

p) = H l
p,unif. Since mp >

n, it follows that

M(Hm
p → H l

p) ⊂ H l
n/m,unif for m > l

and
MHm

p ⊂ Hm
n/m,unif ∩ L∞ for m = l.

This, together with Propostion 3.3.1, implies that

M(Hm
p → H l

p) ⊂M(Hm
q → H l

q)

for any q ∈ (1, n/m). Applying Proposition 3.5.1 and interpolating with
respect to q between 1 + ε and p (cf. (3.2.1)), we obtain the inclusion
M(Hm

p → H l
p) ⊂M(Hm−l+k

q → Hk
q ) for all k ∈ [0, l], q ∈ (1, p].

For q ∈ (p,∞) we put s = l + n(1/q − 1/p). It is clear that s < l and
q(s+m− l) > n. By Theorem 3.2.5 and the Sobolev imbedding theorem,

M(Hm
p → H l

p) = H l
p,unif ⊂ Hs

q,unif.

Since q(s + m − l) > n, we can apply Theorem 3.2.5 once more to ob-
tain M(Hm

p → H l
p) ⊂ M(Hm−l+s

q → Hs
q ). Further, by Proposition 3.5.1,

M(Hm
p → H l

p) ⊂M(Hm−l+k
q → Hk

q ) for all k ≤ s, q ∈ [p,∞).
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(ii) By Theorem 3.2.5, M(Hm
p → H l

p) ⊂ H l
n/m,unif for m > l and MHm

p ⊂
Hm

n/m,unif ∩ L∞. According to the Sobolev imbedding theorem,

H l
n/m,unif ⊂ Hk

n/r,unif, where r = m− l + k, k < l.

This and Proposition 3.3.1 imply that

M(Hm
p → H l

p) ⊂M(Hm−l+k
q → Hk

q )

for any q ∈ (1, n/r). ��

Next we present an imbedding theorem for the space MHm
p .

Proposition 3.5.3. The spaceMHm
p is imbedded intoMHk

q , k≤m, 1<q<∞,
provided that

(i) mp > n, k ≤ m+ n(1/q − 1/p),
(ii) mp ≤ n, k < mp/q.

Proof. For mp ≥ n the assertion is proved in Propostion 3.5.2. Let mp < n.
We start with the case q ≥ p. If γ ∈MHm

p then γ ∈ L∞ and hence γ ∈MLr

for any r ∈ (1,∞). The interpolation between Hm
p and Lr with r ∈ [q,∞) (cf.

inequality (3.2.1)) implies the imbedding MHm
p ⊂MHk

q with 0 < k < mp/q,
q ≥ p. Now suppose that q < p, k ≤ m and γ ∈ MHm

p . Then by Theorem
3.2.2

sup
e

‖Smγ; e‖pLp

Cp,m(e)
<∞ .

This and Lemma 2.3.6 yield

sup
e

‖Smγ; e‖qLq

Cp,mq/p(e)
<∞ .

Applying the inequality

Cp,mq/p(e) ≤ cCq,m(e) with q < p

(see Adams, Meyers [AM]), we find that

sup
e

‖Smγ; e‖qLq

Cq,m(e)
<∞ .

Since γ ∈ L∞, we get γ ∈ MHm
q by Theorem 3.2.2. Again, interpolating

between Hm
q and Lq, we obtain γ ∈ MHk

q with k ≤ m, q < p. The result
follows.
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Remark 3.5.1. For mp ≥ n this proposition was obtained by Strichartz [Str].
In the case mp < n the result proved in his paper is incomplete. Above we
have presented a stronger statement communicated to us by Verbitsky who
also showed that these embeddings cannot be improved. For q ≤ p, k ≤ m the
latter can be easily verified by an example of lacunary series. The proof of the
exactness is much more difficult in the case q > p, k ≤ mp/q; in particular,
for k = mp/q it can be performed by using Blaschke products.

Next we give a simple sufficient condition for a function to belong to the
space M(Hm

p (Rn)→ H l
p(R

n)) which is formulated in terms of M(Hm
p (R1)→

H l
p(R

1)).

Proposition 3.5.4. If for all j = 1, . . . , n

ess sup
(x1,...,xj−1,xj+1,...,xn)

‖γ(x1, . . . , xj−1, ·, xj+1, . . . , xn; R1‖M(Hm
p →Hl

p) <∞,

then γ ∈M(Hm
p (Rn)→ H l

p(R
n)).

Proof. It can be easily verified that the functions

(1 + |ξ|2)l/2

n∑
j=1

(1 + ξ2j )l/2

,

(
1 + ξ2k
1 + |ξ|2

)l/2

, k = 1, 2, . . . , n ,

satisfy the condition of Lemma 1.2.1. Therefore

‖u‖Hl
p
∼

n∑
j=1

∥∥∥
(
1− ∂2

∂x2
j

)l/2

u
∥∥∥

Lp

. (3.5.2)

The conclusion is obvious. ��

From (3.5.2) we immediately obtain

Proposition 3.5.5. If a function γ depends only on variables x1, . . . , xs,
s < n, then γ ∈M(Hm

p (Rn)→ H l
p(R

n)) if and only if

γ ∈M(Hm
p (Rs)→ H l

p(R
s)) .

Moreover,
‖γ; Rn‖M(Hm

p →Hl
p) ∼ ‖γ; Rs‖M(Hm

p →Hl
p) .

Proof. The upper bound for the norm in M(Hm
p (Rn) → H l

p(R
n)) follows

directly from Proposition 3.5.4. Let η ∈ C∞
0 (Rn−s), η 	= 0. By (3.5.2) for

v ∈ Hm
p (Rs) we have
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‖γv; Rs‖Hl
p
≤ c ‖γηv; Rn‖Hl

p
≤ c ‖γ; Rn‖M(Hm

p →Hl
p)‖ηv; Rn‖Hm

p

≤ c ‖γ; Rn‖M(Hm
p →Hl

p)‖v; Rs‖Hm
p
,

which yields the lower bound for the norm in M(Hm
p (Rn)→ H l

p(R
n)). ��

Corollary 3.5.1. The characteristic function χ of the half-space R
n
+ belongs

to MH l
p(R

n) if and only if lp < 1.

Proof. By Proposition 3.5.5 we may limit consideration to the case n = 1.
According to Theorem 3.4.1, for lp < 1

‖χ; R1‖MHl
p
≤ c
(

sup
x∈R1,|h|<1

|h|−1/p‖∆hχ;B1(x)‖Lp
+ 1
)
.

Since the right-hand side is bounded, χ ∈MH l
p(R

1).
Now let lp = 1. By η we denote a function in C∞

0 (R1) which is equal to
one in a neighborhood of the point O. Since (Fχ)(ξ) = iξ−1 +πδ(ξ), it follows
that

[F (ηχ)](ξ) = iξ−1 +O(|ξ|2)
for large |ξ|. Therefore

Λl(ηχ) = F−1(1 + ξ2)l/2F (ηχ) = c |x|−lsgn x+O(1)

for small |x| and hence χ /∈ H l
p,loc(R

1). Consequently, χ /∈MH l
p(R

1). ��

Remark 3.5.2. Corollary 3.5.1 is well known. For p = 2 it was proved by
Hirschman [Hi2]. The case p ∈ (1,∞) was considered by Shamir [Sha] and
Strichartz [Str]. An analogous assertion for the space W l

p is given by Lions
and Magenes [LiM1]. The conditions for the function χ to belong to classes
of multipliers in various functional spaces have been studied by Triebel [Tr1],
[Tr2], and [Tr4], Frazier and Jawerth [FrJ], Franke [Fr], Gulisashvili [Gu1],
[Gu2], Runst and Sickel [RS].

Remark 3.5.3. Corollary 3.5.1 for n = 1 and Proposition 3.5.4 immediately
imply that the characteristic function of any convex open subset of R

n is
a multiplier in H l

p(R
n) for lp < 1. It is even sufficient to assume that the

multiplicity of the intersection of the set with almost any straight line parallel
to one coordinate axis is bounded.

We state some simple properties of the class MH l
p.

Proposition 3.5.6. The estimate

‖γ‖L∞ ≤ ‖γ‖MHl
p

holds.
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Proof. This estimate is deduced in precisely the same way as (2.7.1).

The following assertion complements Proposition 2.7.5, where the case
{l} = 0 is considered.

Proposition 3.5.7. Let {l} > 0, γ ∈MH l
p and let σ be a segment of the real

axis such that γ(x) ∈ σ for almost all x ∈ R
n. Further, let f ∈ C [l],1(σ). Then

f(γ) ∈MH l
p and the estimate

‖f(γ)‖MHl
p
≤ c

[l]+1∑
j=0

‖f (j);σ‖L∞‖γ‖
j
MHl

p

holds.

Proof. Let l ∈ (0, 1). By Theorem 3.1.1,

‖uf(γ)‖Hl
p
≤ c

(
‖Sl(uf(γ))‖Lp

+ ‖uf(γ)‖Lp

)

for all u ∈ C∞
0 . Since

Sl(uf(γ))) ≤ |u|Slf(γ) + ‖f(γ)‖L∞Slu

≤ |u|‖f ′;σ‖L∞Slγ + ‖f(γ)‖L∞Slu ,

we have

‖uf(γ)‖Hl
p
≤ c (‖f ′‖L∞‖Slγ‖M(Hl

p→Lp) + ‖f(γ)‖L∞)‖u‖Hl
p
.

This, together with Lemma 3.2.8, implies the required estimate

‖f(γ)‖MHl
p
≤ c (‖f ′‖L∞‖γ‖MHl

p
+ ‖f(γ)‖L∞) .

It remains to proceed by induction on [l] (cf. the proof of Proposition 2.7.5). ��

This and Proposition 3.5.6 imply

Corollary 3.5.2. If γ ∈MH l
p, {l} > 0, and ‖γ−1‖L∞ <∞, then γ−1 ∈MH l

p

and
‖γ−1‖MHl

p
≤ c ‖γ−1‖[l]+2

L∞
‖γ‖[l]+1

MHl
p
.

3.6 Spectrum of Multipliers in H l
p and H−l

p′

3.6.1 Preliminary Information

We recall certain definitions and facts of the operator spectral theory (see for
example, [DS], Ch. VII, Sect. 3.4 and 5.4).

Let X be a complex Banach space and let A be a bounded linear operator
on X.
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Definition 3.6.1. The set of complex values λ for which the operator (λI −
A)−1 exists, is defined on the whole of X and is bounded, is called the resolvent
set ρ(A) of the operator A. The complement of ρ(A) is called the spectrum
σ(A) of A.

It is known that the resolvent set ρ(A) is open and that the function
(λI −A)−1 is analytic on ρ(A).

Definition 3.6.2. The value r(A) = sup |σ(A)| is called the spectral radius of
the operator A.

The Gelfand formula holds:

r(A) = lim
m→∞

m
√
‖Am‖. (3.6.1)

Definition 3.6.3. The operator A is called quasinilpotent if

lim
m→∞

m
√
‖Am‖ = 0.

The next three definitions give a classification of points of the spectrum.

Definition 3.6.4. The set of points λ ∈ σ(A) such that the mapping λI − A
is not one-to-one is called the pointwise spectrum and is denoted by σρ(A). In
other words, λ ∈ σp(A) if and only if there exists a nontrivial solution u ∈ X
of the equation (λI −A)u = 0. Elements of σp are called eigenvalues.

Definition 3.6.5. The set of numbers λ ∈ σ(A) for which the mapping λI−A
is one-to-one and the range of λI −A is not dense in X is called the residual
spectrum and is denoted by σr(A).

Definition 3.6.6. The set of numbers λ ∈ σ(A) for which the mapping λI−A
is one-to-one and the range of λI − A is dense in X but does not coincide
with X is called the continuous spectrum of A and is denoted by σc(A).

It is clear that the sets σp(A), σr(A) and σc(A) are disjoint. By the Banach
theorem on isomorphism, the condition (λI −A)X 	= X in Definition 3.6.5 is
unnecessary and therefore

σ(A) = σp(A) ∪ σr(A) ∪ σc(A) . (3.6.2)

Let A∗ be the operator adjoint of A. Definitions 3.6.4–3.6.6 imply that

σr(A) ⊂ σp(A∗) ⊂ σr(A) ∪ σp(A) , (3.6.3)

where the bar denotes complex conjugation.
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3.6.2 Facts from Nonlinear Potential Theory

Definition 3.6.7. If E is any subset of R
n, then the numbers

Cp,m(E) = sup{Cp,m(e) : e ⊂ E, e is a compact set}

and
Cp,m(E) = inf{Cp,m(G) : G ⊃ E,G is an open set}

are called the inner and outer capacities of E.

We formulate some known properties of these capacities (see [AH], Ch. 2).
1. If the set e ⊂ R

n is compact, then Cp,m(e) = Cp,m(e).
2. If E1 ⊂ E2 ⊂ R

n, then

Cp,m(E1) ≤ Cp,m(E2)

and
Cp,m(E1) ≤ Cp,m(E2).

3. Let {Ek}∞k=1 be a sequence of sets in R
n, E =

⋃
k Ek. Then

Cp,m(E) ≤
∞∑

k=1

Cp,m(Ek).

4. Any analytic (in particular, any Borel) subset E of the space R
n is

measurable with respect to the capacity Cp,m (i.e. Cp,m(E) = Cp,m(E)).
If the inner and the outer capacities of the set E are equal, then their value

is called the capacity of E and is denoted Cp,m(E).
By Vp,mµ we mean the nonlinear Bessel potential of a measure µ, i.e.

Vp,mµ = Jm(Jmµ)p′−1.

The potential Vp,mµ satisfies the following ‘rough’ maximum principle (cf.
[MH1], [MH2], and [AH], Sect. 2.6).

Proposition 3.6.1. There exists a constant M depending only on n, p,m,
and such that

(Vp,mµ)(x) ≤M sup{(Vp,mµ)(x) : x ∈ supp µ} . (3.6.4)

The following assertion contains basic properties of the so-called capacitary
measure (see [MH1], [MH2], and [AH], Sect. 2.5).

Proposition 3.6.2. Let E be a subset of R
n. If Cp,m(E) < ∞, then there

exists a unique measure µE with the properties:
1. ‖JmµE‖p

′

L′
p

= Cp,m(E),
2. (Vp,mµE)(x) ≥ 1 (p,m)-quasi everywhere in E.
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(Here ‘(p,m)-quasi everywhere’ means ‘everywhere except for a set of zero
outer capacity Cp,m’.)

3. supp µE ⊂ Ē,
4. µE(Ē) = Cp,m(E),
5. (Vp,mµE)(x) ≤ 1 for all x ∈ supp µE.

The measure µE is called the capacitary measure of the set E and Vp,mµE

is called the capacitary potential of the set E.
In addition we notice that the capacity Cp,m(e) may be defined by

Cp,m(e) = sup{µ(e) : supp µ ⊂ e and (Vp,mµ)(x) ≤ 1 on supp µ}

(see [AH], Sect. 2.5).

3.6.3 Main Theorem

In the present and subsequent subsections the role of the space X is played
by H l

p and H−l
p′ ; the multipliers are considered as an operator A.

Corollaries 2.7.1, 3.5.2 and the imbedding MH l
p ⊂ L∞ immediately imply:

Corollary 3.6.1. A number λ belongs to the spectrum of a multiplier γ ∈
MH l

p if and only if (γ−λ)−1 /∈ L∞ or, which is equivalent, for any ε > 0 the
set {x : |γ(x)− λ| < ε} has positive n-dimensional measure.

Since the adjoint operator of γ ∈MH l
p is the multiplier γ̄ inH−l

p′ , Corollary
3.6.1 implies:

Corollary 3.6.2. A number λ belongs to the spectrum of γ ∈ MH−l
p′ if and

only if (γ −A)−1 /∈ L∞.

From Corollaries 3.6.1 and 3.6.2 we obtain that the spectral radius r(γ) of
a multiplier γ in H l

p or in H−l
p′ is equal to ‖γ‖L∞ .

This and (3.6.1) imply that

lim
m→∞

m

√
‖γm‖MHl

p
= ‖γ‖L∞ .

Thus the only quasinilpotent multiplier is zero. In other words, the algebra
MH l

p is semisimple.
This is a generalization of results obtained in [DH] for p = 2, 2l < 1.
The main theorem of the present section contains a description of the

decomposition (3.6.2) for multipliers in H l
p and H−l

p′ . Before we pass to its
formulation, we present certain auxiliary definitions and results.

Definition 3.6.8. A function u is called (p, l)-refined if for any ε > 0 one
can find an open set ω such that Cp,l(ω) < ε and u is continuous on R

n\ω.

For proofs of the next assertions see [MH2].
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Proposition 3.6.3. For any u ∈ H l
p,loc there exists a (p, l)-refined Borel func-

tion which coincides with u almost everywhere.

Proposition 3.6.4. If two (p, l)-refined functions u1 and u2 are equal almost
everywhere then they are equal (p, l)-quasi everywhere.

Henceforth in this section all the functions are assumed to be (p, l)-refined
and Borel.

The following assertion is proved for integer l in [Maz14] and for fractional
l in [APo] for compact sets. The passage to arbitrary sets does not need new
arguments if one uses Proposition 3.6.2.

Proposition 3.6.5. Let E ⊂ R
n. The capacity Cp,l(E) is equivalent to the

set function
inf{‖v‖p

Hl
p

: v ∈M(E)},

where M(E) is the collection of (p, l)-refined functions equal to one (p, l)-quasi
everywhere on E and satisfying the inequalities 0 ≤ v ≤ 1.

Definition 3.6.9. A set E ⊂ R
n is called the set of uniqueness for the space

H l
p if the conditions u ∈ H l

p, u(x) = 0 for (p, l)-quasi all x ∈ R
n\E imply that

u = 0.

A description of sets of uniqueness for H l
p is given in [Hed3] and [Pol2].

The first result of such a kind for H1/2
2 on a circumference is due to Ahlfors

and Beurling [AB].

Proposition 3.6.6. (see [Hed3]). Let E be a Borel subset of R
n. The following

conditions are equivalent:
(i) E is the set of uniqueness for H l

p;
(ii) Cp,l(G\E) = Cp,l(G) for any open set G;
(iii) for almost all x

lim
ρ→0

ρ−nCp,l(Bρ(x)\E) > 0.

If lp > n then E is the set of uniqueness if and only if it has no interior
points.

Now we state a theorem which gives a characteristic of the sets σp(γ),
σr(γ) and σc(γ) for a multiplier γ in H l

p or H−l
p′ .

Theorem 3.6.1. (i) Let γ ∈MH l
p and λ ∈ σ(γ).

1. λ ∈ σp(γ) if and only if the set Zλ = {x : γ(x) = λ} does not satisfy
any of conditions (i)–(iii) of Propostion 3.6.6.

2. λ ∈ σr(γ) if and only if the set Zλ satisfies any one of the conditions of
Proposition 3.6.6 and Cp,l(Zλ) > 0.

3. λ ∈ σc(γ) if and only if Cp,l(Zλ) = 0.
(ii) Let γ ∈MH−l

p′ and λ ∈ σ(γ).
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1. λ ∈ σp(γ) if and only if Cp,l(Zλ) > 0.
2. λ ∈ σc(γ) if and only if Cp,l(Zλ) = 0 (hence the set σr(γ) is empty).

An obvious corollary of Propositions 3.6.3 and 3.6.4 is the following
assertion.

Lemma 3.6.1. Let γ be a (p, l)-refined function in MH l
p. The equation (γ −

λ)u = 0 has a nontrivial solution in H l
p if and only if there exists a (p, l)-

refined non-zero function in H l
p vanishing (p, l)-quasi everywhere outside Zλ.

This lemma shows that part (i)1 of the theorem immediately follows from
Proposition 3.6.6. The proof of the other assertions of the theorem is contained
in the next subsection.

3.6.4 Proof of Theorem 3.6.1

Below we shall use the following assertion.

Lemma 3.6.2. Let γ be a (p, l)-refined function in MH l
p and let Z0 = {x :

γ(x) = 0}. If Cp,l(Z0) = 0, then the set γH l
p is dense in H l

p.

Proof. Let f ∈ C∞
0 and let

Nτ = {x ∈ supp f : |γ(x)| ≤ τ}.

By ε we denote a small positive number and by ω we mean an open set
with Cp,l(ω) < ε and such that γ is continuous on R

n\ω. Let G stand for a
neighborhood of the set N0\ω with Cp,l(G) < ε.

We note that Nτ\ω ⊂ G for small enough τ > 0. In fact, if for any τ > 0
there exists a point xτ ∈ Nτ\ω which is not contained in G then, by continuity
of γ outside ω, the limit point x0 of the family {xτ} is in N0\ω, contrary to
the definition of G.

Consequently, Cp,l(Nτ\ω) < ε for small values of τ and

Cp,l(Nτ ) ≤ Cp,l(Nτ\ω) + Cp,l(ω) < 2ε .

Thus, Cp,l(Nτ )→ 0 as τ → 0.
By {wτ}τ>0 we denote a family of functions in M(Nτ ) such that

lim
τ→0
‖wτ‖Hl

p
= 0

(see Proposition 3.6.5). Further, we put

uτ,δ = (1− wτ )γ̄f/(γγ̄ + δ),

where δ > 0. Since

(1− wτ )f ∈ H l
p, γ̄ ∈MH l

p, γγ̄ ∈MH l
p, and γγ̄ + δ ≥ δ,
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it follows that uτ,δ ∈ H l
p. We have

f − γuτ,δ = wτf + δ(1− wτ )f/(γγ̄ + δ) .

Let ϕ be a smooth increasing function on [0,∞), ϕ(0) = τ2/4, ϕ(τ) = t for
t > τ2/2. Since 1− wτ = 0 (p, l)-quasi everywhere on Nτ ,

f − γuτ,δ = wτf + δ(1− wτ )f/[ϕ(γγ̄) + δ] .

Using the inequality
ϕ(γγ̄) + δ > τ2/4,

we obtain from Proposition 2.7.5 and Corollary 3.5.2 that the norm

‖[ϕ(γγ̄) + δ]−1‖MHl
p

is uniformly bounded with respect to δ. Therefore

‖f − γuτ,δ‖Hl
p
≤ ‖wτf‖Hl

p
+ δk(τ),

where k(τ) does not depend on δ. We put δ(τ) = τ/k(τ). Then

‖f − γuτ,δ(τ)‖Hl
p
≤ c ‖wτ‖Hl

p
+ τ

and hence γuτ,δ(τ) → f as τ → 0 in H l
p. ��

In the next three propositions γ is a (p, l)-refined function from MH l
p.

Proposition 3.6.7. A number λ is contained in the pointwise spectrum of a
multiplier γ in H−l

p′ if and only if Cp,l(Zλ) > 0.

Proof. Sufficiency. Let R be so large that Cp,l(Zλ ∩ BR) > 0 and let µ be the
capacitary measure of Zλ∩BR. Note that, whatever the (p, l)-refined function
u ∈ H l

p, we have u(x)(γ(x) − λ) = 0 for (p, l)-quasi all x ∈ Zλ ∩ BR. By
Proposition 3.6.2, the last equality holds µ-almost everywhere. Therefore,

∫
u(γ − λ) dµ = 0.

In other words, (γ − λ)µ = 0. Since

‖µ‖p
′

H−l
p′

= ‖Jlµ‖p
′

Lp′ = Cp,l(Zλ ∩ BR) <∞ ,

we conclude that λ ∈ σp(γ).
Necessity. Let λ ∈ σp(γ). Then there exists a distribution T ∈ H−l

p′ , T 	= 0
such that (γ − λ)T = 0. Therefore (T, (γ − λ)u) = 0 for all u ∈ H l

p and the
set (γ − λ)H l

p is not dense in H l
p. The result follows by application of Lemma

3.6.2. ��
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Proposition 3.6.8. A number λ is contained in the residual spectrum of a
multiplier in H l

p if and only if λ /∈ σp(γ) and Cp,l(Zλ) > 0.

Proof. Sufficiency. Since Cp,l(Zλ) > 0 it follows by Proposition 3.6.7 that λ̄ is
an eigenvalue of the multiplier γ̄ in H−l

p′ . This fact and (3.6.3) imply that

λ ∈ σr(γ) ∪ σp(γ) = σr(γ).

Necessity. Let λ ∈ σr(γ). By (3.6.3), λ̄ is an eigenvalue of the multiplier γ̄
in H−l

p′ . Hence, according to Proposition 3.6.7, Cp,l(Zλ) > 0. ��

Proposition 3.6.9. The multiplier γ in H−l
p′ has no residual spectrum.

Proof. Let λ ∈ σr(γ). By (3.6.3), λ̄ is an eigenvalue of γ̄ in H l
p. This and the

first assertion in Theorem 3.6.1 part (i) imply that Cp,l(G\Zλ) < Cp,l(G) for
some open set G ⊂ R

n. Since

Cp,l(Zλ) > Cp,l(G)− Cp,l(G\Zλ),

we have Cp,l(Zλ) > 0. According to Proposition 3.6.7, this means that
λ ∈ σp(γ). Thus we arrive at a contradiction. ��

Thus the statements of Theorem 3.6.1 concerning the pointwise and resid-
ual spectrum are proved. The characterization of the continuous spectrum
obviously follows from these criteria and the relation (3.6.2).

3.7 The Space M(hm
p → hl

p)

In this section we assume that mp < n, p ∈ (1,∞).
Using Sobolev’s theorem on the imbedding hm

p ⊂ Lq with q = mp/(n −
mp), n > mp, one can easily prove that any function ψ ∈ C∞

0 belongs to the
space Mhm

p of multipliers in hm
p . This immediately implies that the norm in

Mhm
p of the function ψr with values ψr(x) = ψ(x/r), r > 0, does not depend

on r.
This enables one to proceed as in the proofs of Lemmas 3.2.7 and 3.2.8,

with γρ replaced by ψrγρ, where ψ ∈ C∞
0 , ψ = 1 on B1, passing to the limit

as ρ→ 0, r →∞ at the final step.
Thus we are led to the relation for the norm in M(hm

p → hl
p) with 0 ≤ l ≤

m < n/p:

‖γ‖M(hm
p →hl

p) ∼ sup
e

( ‖Slγ; e‖Lp

[cp,m(e)]1/p
+

‖γ; e‖Lp

[cp,m−l(e)]1/p

)
. (3.7.1)

The next two assertions are proved in the same way as Lemmas 2.8.1 and
2.8.2 with W replaced by H and w replaced by h.
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Lemma 3.7.1. (i) The inequality

‖γ‖M(Hm
p →Lp) ≤ ‖γ‖M(hm

p →Lp) (3.7.2)

holds.
(ii) Let ρ > 0 and let γ ∈M(hm

p → Lp). Then

lim
ρ→0
‖ρ−m γ(·/ρ)‖M(Hm

p →Lp) = ‖γ‖M(hm
p →Lp). (3.7.3)

(iii) The function γ ∈M(hm
p → Lp) satisfies

‖γ‖M(hm
p →Lp) ≥ c sup

x∈Rn

r>0

rm−n/p‖γ;Br(x)‖Lp
. (3.7.4)

Lemma 3.7.2. (i) Let m ≥ l and let γ ∈M(hm
p → hl

p). Then

‖γ‖M(Hm
p →Hl

p) ≤ c ‖γ‖M(hm
p →hl

p). (3.7.5)

(ii) The inequality

lim inf
ρ→0

‖ρl−m γ(·/ρ)‖M(Hm
p →Hl

p) ≥ ‖γ‖M(hm
p →hl

p) (3.7.6)

holds.

Now we give a description of the space M(hm
p → hl

p).

Theorem 3.7.1. Let mp < n, m ≥ l, p ∈ (1,∞). Then γ ∈ M(hm
p → hl

p) if
and only if γ ∈ hl

p,loc,
Slγ ∈M(hm

p → Lp), (3.7.7)

and
γ ∈ L∞(Rn) for m = l,

lim
r→∞

r−n‖γ;Br‖L1 = 0 for m > l. (3.7.8)

The norm in the space M(hm
p → hl

p), m > l, is subject to the equivalence
relation

‖γ‖M(hm
p →hl

p) ∼ ‖Slγ‖M(hm
p →Lp). (3.7.9)

For m = l the norm ‖γ‖L∞ should be added to the right-hand side of this
relation.

The equivalence relation

‖γ‖M(hm
p →hl

p)

∼
[l]∑

j=0

(
‖Sl−jγ‖M(hm−j

p →Lp) + ‖∇[l]−jγ‖M(h
m−{l}−j
p →Lp)

)
(3.7.10)

holds.
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Proof. We replace γ by ρl−mγ(·/ρ) in (3.2.27). Then (3.7.10) follows from
Lemmas 3.7.1 and 3.7.2 as ρ→ 0.

We take γ as ρl−mγ(·/ρ) in (3.2.47) to obtain

‖ρl−m γ(·/ρ)‖M(Hm
p →Hl

p)

≤ c
(
‖Sl(ρl−m γ(·/ρ))‖M(Hm

p →Lp) + sup
x∈Rn

R>0

Rm−l−n||ρl−mγ(·/ρ);BR(x)‖L1

)
.

Since the second term on the right-hand side is equal to

sup
x∈Rn

r>0

rm−l−n‖γ;Br(x)‖L1 ,

and the first term tends to ‖Slγ‖M(hm
p →Lp) as ρ → 0 by (3.7.3), reference to

(3.7.6) gives

‖γ‖M(hm
p →hl

p) ≤ c
(
‖Slγ‖M(hm

p →Lp) + sup
x∈Rn

r>0

rm−l−n‖γ;Br(x)‖L1

)
. (3.7.11)

It remains to remove the second term on the right-hand side in the case m > l.
We use the inequality

|γ(x)| ≤ c
(

sup
x∈Rn,r∈(0,1)

rm−n
p ‖Slγ;Br(x)‖Lp

) l
m ((Slγ)(x))1−

l
m , (3.7.12)

which follows from (3.2.46) with the term ‖γ‖L1,unif omitted on the right-hand
side due to condition (3.7.8). Integrating (3.7.12) over an arbitrary ball Br(x),
we arrive at

‖γ;Br(x)‖L1 ≤ c ( sup
x∈Rn

r∈(0,1)

rm−n/p‖Slγ;Br(x)‖Lp

)l/m‖Slγ
1−l/m;Br(x)‖L1 .

By Hölder’s inequality
rm−l−n‖γ;Br(x)||L1

≤ c
(

sup
x∈Rn

r∈(0,1)

rm−n
p ‖Slγ;Br(x)‖Lp

) l
m
(
rm−n

p ‖Slγ;Br(x)‖Lp

)1− l
m . (3.7.13)

The result follows by (3.7.11). ��

Remark 3.7.1. By Theorem 3.1.4, condition (3.7.7) can be formulated in four
ways as follows:

(i) for all compact sets e ⊂ R
n

‖Slγ; e‖pLp
≤ C cp,m(e),
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(ii) for all cubes Q in R
n

∫ (
Im(χQSlγ)p(x)

)p′
dx ≤ C

∫

Q

(Slγ)pdx,

(iii) for almost all x ∈ R
n

Im

(
Im(Slγ)p

)p′
(x) ≤ C Im(Slγ)p(x),

(iv) for every dyadic cube P0 in R
n

∑
P⊆P0

[
(mesnP )(m−n)/n

∫

P

(Slγ(x))pdx
]p′

mesnP ≤ C

∫

P0

(Slγ(x))pdx,

where the sum is taken over all dyadic cubes P contained in P0.

3.8 Positive Homogeneous Multipliers

In this section we give a description of elements in the spaces M(hm
p → hl

p)
and M(Hm

p → H l
p) which have the form |x|l−mf(x/|x|).

3.8.1 The Space M(Hm
p (∂B1) → Hl

p(∂B1))

Let {Ui} be a finite covering of ∂B1 by open sets with small diameters, and
let {ϕi} be a family of diffeomorphisms Ui → R

n−1 which form a smooth
structure on ∂B1. Further, let {νi} be a smooth partition of unity on ∂B1

subordinate to the covering {Ui}.
We say that a function v on ∂B1 is in the space H l

p(∂B1) if

(νi ◦ v) ◦ ϕ−1
i ∈ H l

p(R
n−1) for all i.

We equip H l
p(∂B1) with the norm

‖v; ∂B1‖Hl
p

=
(∑

i

‖(νiv) ◦ ϕ−1
i ; Rn−1‖p

Hl
p

)1/p

.

It is well known that the passage from one collection {Ui, ϕi, νi} to another
leads to an equivalent norm.

Proposition 3.8.1. A function f is contained in the space M(Hm
p (∂B1) →

H l
p(∂B1)) if and only if

(νi ◦ f) ◦ ϕ−1
i ∈M(Hm

p (Rn−1)→ H l
p(R

n−1))

for all i. Moreover,

‖f ; ∂B1‖M(Hm
p →Hl

p) ∼ max
i
‖(νif) ◦ ϕ−1

i ; Rn−1‖M(Hm
p →Hl

p) . (3.8.1)
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Proof. For any v ∈ Hm
p (∂B1) we have

‖fv; ∂B1‖Hl
p
≤
(∑

i,j

‖(νifνjζiv) ◦ ϕ−1
i ; Rn−1‖p

Hl
p

)1/p

≤ sup
i
‖(νif) ◦ ϕ−1

i ; Rn−1‖M(Hm
p →Hl

p)

(∑
i,j

‖(νjζiv) ◦ ϕ−1
i ; Rn−1‖pHm

p

)1/p

,

where ζi ∈ C∞
0 (Ui) and ζiνi = νi. Since the mapping

ϕjϕ
−1
i : ϕj(Uj ∩ Ui)→ ϕi(Uj ∩ Ui)

is infinitely differentiable, we have

‖(νjζiv) ◦ ϕ−1
i ; Rn−1‖Hm

p
= ‖(νjζiv) ◦ ϕ−1

j ϕjϕ
−1
i ; Rn−1‖Hm

p

≤ c ‖(νjv) ◦ ϕ−1
j ; Rn−1‖Hm

p
,

and thus the required upper estimate for the norm in M(Hm
p (∂B1) →

H l
p(∂B1)) follows.

On the other hand, for any w ∈ Hm
p (Rn−1)

‖[(νif) ◦ ϕ−1
i ]w; Rn−1‖Hl

p
= ‖[νif(w ◦ ϕi)] ◦ ϕ−1

i ; Rn−1‖Hl
p

≤ ‖νif(w ◦ ϕi); ∂B1‖Hl
p
≤ ‖f ; ∂B1‖M(Hm

p →Hl
p)‖νi(w ◦ ϕi); ∂B1‖Hm

p
.

It is clear that the last norm does not exceed
(∑

j

‖[νjνi(w ◦ ϕi)] ◦ ϕ−1
j ; Rn−1‖pHm

p

)1/p

≤ c
(∑

j

‖[νjνi(w ◦ ϕ)] ◦ ϕ−1
i ; Rn−1‖pHm

p

)1/p

≤ c ‖w; Rn−1‖Hm
p

and the lower estimate for the norm in M(Hm
p (∂B1)→ H l

p(∂B1)) follows. ��

We note that H l
p(∂B1) can be supplied with an equivalent norm using the

operator (1− δ)l/2 where δ is the Beltrami operator on the sphere. Namely,

‖v; ∂B1‖Hl
p
∼ ‖(1− δ)l/2v; ∂B1‖Lp

. (3.8.2)

It is essentially a consequence of the following property established in [Se]:
(1− δ)l/2 is the pseudo-differential operator with symbol |ξ|l (see also [Sh]).
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3.8.2 Other Normalizations of the Spaces hm
p and Hm

p

The normalizations in the title of this subsection are given below in Lemma
3.8.1 and Corollary 3.8.1.

Let 0 ≤ l ≤ m, p > 1, mp < n. Then the well known Hardy type inequality
∥∥∥ u

|x|m−l

∥∥∥
hl

p

≤ c ‖u‖hm
p

(3.8.3)

is valid. It means that |x|l−m ∈ M(hm
p → hl

p) and it follows, for instance,
from (3.7.1) together with the inequalities

∫

e

dx

|x|mp
≤ c (mesne)1−mp/n ,

(
Sl|y|l−m

)
(x) ≤ c |x|−m .

Here, the second inequality results from the easily verified estimate
∫

B1

| |x+ θy|l−m − |x|l−m| dθ ≤ cmin{y, |x|}|x|l−m−1 .

Using (3.8.3), we may equip the space hm
p , mp < n, with an equivalent

norm. Let

Gk = {x : 2k−1 < |x| < 2k+1}, k = 0,±1, . . . ,

and let {ψk} be a partition of unity on R
n\{0} subject to the covering {Gk}.

We suppose that |Dαψk| ≤ cα2−k|α|.

Lemma 3.8.1. Let p > 1, mp < n. The relation

‖u‖hm
p
∼
( ∞∑

k=−∞
‖ψku‖phm

p

)1/p

(3.8.4)

holds.

Proof. First we show that the proof of (3.8.4) easily reduces to the case 0 ≤
m ≤ 1. Suppose that m ≥ 1 and that the assertion is proved for m − 1. One
can readily check that, for integer s, the norms of the functions |x|αDαψk in
Mhs

p are uniformly bounded with respect to k. The same is true for fractional
s by interpolation. Therefore,

∣∣ ‖ψk∇u‖hm−1
p
− ‖∇(ψku)‖hm−1

p

∣∣
≤ ‖σku∇ψk‖hm−1

p
≤ c ‖|x|−1σku‖hm−1

p
, (3.8.5)

where
σk ∈ C∞

0 (Gk), σkψk = ψk, |Dασk| ≤ cα2−k|α|.
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Consequently,

‖∇u‖p
hm−1

p
≤ c

∞∑
k=−∞

‖ψk∇u‖phm−1
p

≤ c

∞∑
k=−∞

(
‖∇(ψku)‖p

hm−1
p

+ ‖|x|−1σku‖phm−1
p

)
.

This and (3.8.3) imply

‖u‖phm
p
≤ c

∞∑
k=−∞

(
‖ψmu‖phm

p
+ ‖σku‖phm

p

)
.

Since {ψk} is a partition of unity and ‖σk‖Mhm
p
≤ const, the upper estimate

for the norm ‖u‖hm
p

follows.
Next we derive the lower bound. By (3.8.5) we have

+∞∑
k=−∞

‖ψku‖phm
p
≤ c

∞∑
k=−∞

(
‖ψk∇u‖phm−1

p
+ ‖|x|−1σku‖phm−1

p

)
.

Replacing σk by ψk in the last norm and using the induction hypothesis, we
obtain that the right-hand side does not exceed

c
(
‖u‖phm

p
+ ‖|x|−1u‖p

hm−1
p

)
.

It remains to make use of (3.8.3).
In the case m = 0 the relation (3.8.4) is trivial. Let 0 < m < 1. It is clear

that

‖Smu‖pLp
∼

∞∑
k=−∞

‖ψkSmu‖pLp
. (3.8.6)

The definition of Sm and Minkowski’s inequality imply that
∣∣ψk(x)(Smu)(x)− (Sm(ψku))(x)

∣∣

≤
(∫ ∞

0

[∫

By

|u(x+ h)||ψk(x+ h)− ψk(x)| dh
]2
y−1−2n−2m dy

)1/2

≤ c

∫
|u(z)| |ψk(z)− ψk(x)| dz

(∫ ∞

|x−z|
y−1−2n−2mdy

)1/2

≤ c

∫
|u(z)| |ψk(z)− ψk(x)|

|z − x|n+m
dz .

By A(x) we denote the right-hand side and put gk = Gk−1∪Gk ∪Gk+1. Since
supp ψk ⊂ Gk, it follows that
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A(x) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c 2−k(n+m)

∫

Gk

|u(z)| dz if |x| < 2k−2 ,

c |x|−(n+m)

∫

Gk

|u(z)| dz if |x| > 2k+2 ,

c
(
2−k

∫

B2|x|

|u(z)| dz
|z − x|n+m−1

+
∫

Rn\B2|x|

|u(z)| dz
|z|n+m

)
if x ∈ gk .

Therefore,

‖ψkSmu− Sm(ψku)‖pLp
≤ c 2k(n−pm−pn)

(∫

Gk

|u(z)| dz
)p

+c 2−kp

∫

gk

(∫

B2|x|

|u(z)| dz
|z − x|n+m−1

)p

dx+ c

∫

gk

(∫

Rn\B2|x|

|u(z)|dz
|z|n+m

)p

dx.

The first term on the right-hand side does not exceed c 2−kpm‖u;Gk‖pLp
. The

second one is majorized by

c 2−kp
(
max

x

∫

B2k+3

dζ

|ζ − x|n+m−1

)p
∫

B2k+3

|u(z)|p dz ≤ c 2−kpm

∫

B2k+3

|u(z)|p dz.

The third term can be written as

c

∫ 2k+2

2k−2
rn−1

(∫ ∞

2r

v(ρ)
ρm+1

dρ
)p

dr,

where v(ρ) is the mean value of |u| on ∂Bρ. Summing over k and using the
one-dimensional Hardy inequality, we arrive at

+∞∑
k=−∞

‖ψkSmu− Sm(ψku)‖pLp

≤ c ‖ |x|−mu‖pLp
∼

+∞∑
k=−∞

‖ |x|−mψku‖pLp
. (3.8.7)

Now, (3.8.7) and (3.8.3) imply that

‖Smu‖pLp
≤ c

+∞∑
k=−∞

‖Sm(ψku)‖pLp
.

Thus the upper bound for the norm in hm
p follows.

Also, by (3.8.7) we have
+∞∑

k=−∞
‖Sm(ψku)‖pLp

≤ ‖Smu‖pLp
+ ‖ |x|−mu‖pLp

.

Applying (3.8.3) once again, we complete the proof. ��
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Relation (3.8.4) and the equivalence

‖u‖Hm
p
∼ ‖u‖hm

p
+ ‖u‖Lp

imply the result similar to the last lemma for the space Hm
p .

Corollary 3.8.1. Let p > 1 and mp < n. Then

‖u‖Hm
p
∼
( +∞∑

k=−∞
‖ψku‖pHm

p

)1/p

.

A direct corollary of Lemma 3.8.1 is the following assertion on the nor-
malization of the space M(hm

p → hl
p), pm < n, which will be used in Subsect.

3.8.3.

Corollary 3.8.2. If p > 1 and pm < n, then

‖γ‖M(hm
p →hl

p) ∼ sup
−∞<k<∞

‖ψkγ‖M(hm
p →hl

p) . (3.8.8)

3.8.3 Positive Homogeneous Elements of the Spaces M(hm
p → hl

p)
and M(Hm

p → Hl
p)

We state and prove the main result of this section.

Theorem 3.8.1. Let p > 1 and pm < n. The function

x→ γ(x) = |x|l−mf(x/|x|)

is contained in any of the spaces M(hm
p → hl

p) and M(Hm
p → H l

p) if and only
if

f ∈M(Hm
p (∂B1)→ H l

p(∂B1)).

Moreover,

‖γ‖M(hm
p →hl

p) ∼ ‖γ‖M(Hm
p →Hl

p) ∼ ‖f ; ∂B1‖M(Hm
p →Hl

p) .

Proof. We start with the space M(hm
p → hl

p). Let ζ ∈ C∞
0 (−1/2, 2), ζ(t) = 1

for t ∈ (1, 3/2) and ζk(x) = ζ(2−k|x|). Since the norms of the functions ζk and
ψk in Mhl

p are uniformly bounded with respect to k, it follows from (3.8.8)
that

‖γ‖M(hm
p →hl

p) ∼ sup
−∞<k<∞

‖ζkγ‖M(hm
p →hl

p) . (3.8.9)

Using the homogeneity of the norm in hk
p with respect to the similarity trans-

form and the homogeneity of γ we conclude that the norm on the right-hand
side of (3.8.9) does not depend on k. Therefore,

‖γ‖M(hm
p →hl

p) ∼ ‖ζγ‖M(hm
p →hl

p) . (3.8.10)
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Let {νi} be a partition of unity on ∂B1 subordinate to the covering of ∂B1

by a family {Ui} of coordinate neighborhoods on ∂B1. Further, let {ϕi} be the
family of diffeomorphisms used in the definition of the space H l

p(∂B1). Since
(Slνi)(x) = O(|x|−l), we have νi ∈Mhl

p (see (3.7.1)). From this inclusion and
from (3.8.10) it follows that

‖γ‖M(hm
p →hl

p) ∼ max
i
‖νiζγ‖M(hm

p →hl
p) . (3.8.11)

We introduce the local coordinates y = (y′, yn), where yn = |x| and y′ =
ϕi(x/|x|), on the set {x : 1/2 < |x| < 2, x/|x| ∈ Ui}. Since the mapping
Φi : x→ y is a diffeomorphism, we have

‖νiζγ‖M(hm
p →hl

p) ∼ ‖(νiζγ) ◦ Φ−1
i ‖M(hm

p →hl
p) . (3.8.12)

Next, we note that
(
(νiζγ) ◦ Φ−1

i

)
(y) = ζ(yn) yl−m

n

(
(νif) ◦ ϕ−1

i

)
(y′)

and that the function y → ζ(yn) yl−m
n is smooth and has a compact support.

Therefore,

‖νiζγ‖M(hm
p →hl

p) ≤ c ‖(νif) ◦ Φ−1
i ‖M(hm

p →hl
p)

≤ c ‖(νif) ◦ ϕ−1
i ; Rn−1‖M(hm

p →hl
p) . (3.8.13)

By the relation

‖u‖hl
p
∼

n∑
i=1

∥∥∥
∣∣∣ ∂
∂yi

∣∣∣
l

u
∥∥∥

Lp

(see the proof of (3.5.2)), every function y → v(y′) with v ∈ C∞
0 (Rn−1)

satisfies the inequality

‖(νif) ◦ ϕ−1
i v; Rn−1‖hl

p
≤ c ‖(νiζγ) ◦ Φ−1

i vζ; Rn‖hl
p
.

The right-hand side, obviously, does not exceed

c ‖(νiζγ) ◦ Φ−1
i ‖M(hm

p →hl
p) ‖vζ; Rn‖hm

p

≤ c ‖(νiζγ) ◦ Φ−1
i ‖M(hm

p →hl
p) ‖v; Rn−1‖hm

p
.

Thus

‖(νif) ◦ ϕ−1
i ; Rn−1‖M(hm

p →hl
p) ≤ c ‖(νiζγ) ◦ Φ−1

i ‖M(hm
p →hl

p)

which together with (3.8.12) and (3.8.13) leads to

‖νiζγ‖M(hm
p →hl

p) ∼ ‖(νif) ◦ Φ−1
i ; Rn−1‖M(hm

p →hl
p) . (3.8.14)
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Comparing (3.8.14), (3.8.1) and (3.8.11), we complete the proof for the space
M(hm

p → hl
p).

Now we turn to the space M(Hm
p → H l

p). For all u ∈ C∞
0 we have

‖γu‖hl
p
≤ c ‖γ‖M(Hm

p →Hl
p)(‖u‖hm

p
+ ‖u‖Lp

) .

Putting here u(x) = w(ax), where a is an arbitrary positive number, and
using the positive homogeneity of γ, we find that, for any w ∈ C∞

0 ,

‖γw‖hl
p
≤ c ‖γ‖M(Hm

p →Hl
p)(‖w‖hm

p
+ a−m‖w‖Lp

) .

Passing to the limit as a→∞, we arrive at

‖γ‖M(hm
p →hl

p) ≤ c ‖γ‖M(Hm
p →Hl

p) . (3.8.15)

Now we derive the converse estimate. Let {ηj} be the sequence of functions
defined in Theorem 3.1.2. Since M(hm

p → hl
p) ⊂ M(hm−l

p → Lp), it follows
that

‖γuηj‖Hl
p
≤ c (‖γuηj‖hl

p
+ ‖γuηj‖Lp

)

≤ c (‖γ‖M(hm
p →hl

p) ‖uηj‖hm
p

+ ‖γ‖M(hm
p →hl

p)‖uηj‖hm−l
p

)

≤ c ‖γ‖M(hm
p →hl

p) ‖uηj‖Hm
p
.

Therefore, using Theorem 3.1.2, we obtain

‖γu‖Hl
p
≤ c ‖γ‖M(hm

p →hl
p)‖u‖Hm

p
.

Thus
‖γ‖M(Hm

p →Hl
p) ≤ c ‖γ‖M(hm

p →hl
p)

which together with (3.8.15) shows that the norms of γ in M(Hm
p → H l

p) and
in M(hm

p → hl
p) are equivalent. The theorem is proved. ��
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The Space M(Bm
p → Bl

p) with p > 1

4.1 Introduction

In the present chapter we give necessary and sufficient conditions for a function
to be a multiplier acting from one Besov space Bm

p (Rn) into another Bl
p(R

n),
where 0 < l ≤ m and p ∈ (1,∞) (see Sect. 4.3).

Let l = k+ α, where α ∈ (0, 1] and k is a nonnegative integer. Further, as
before, let

∆
(2)
h u(x) = u(x+ 2h)− 2u(x+ h) + u(x)

and

(Dp,lu)(x) =
(∫

Rn

|∆(2)
h ∇ku(x)|p|h|−n−pαdh

)1/p

, (4.1.1)

where ∇k stands for the gradient of order k, i.e.

∇ku = {∂α1
x1
. . . ∂αn

xn
}, α1 + . . .+ αn = k.

The Besov space Bl
p(R

n) is introduced as the completion of C∞
0 (Rn) in the

norm
‖u; Rn‖Bl

p
= ‖Dp,lu; Rn‖Lp

+ ‖u; Rn‖Lp
. (4.1.2)

Let {l} and [l] denote the fractional and integer parts of a positive number
l and let

(Dp,lu)(x) =
(∫

Rn

|∆h∇[l]u(x)|p|h|−n−p{l}dh
)1/p

,

where ∆hv(x) = v(x+ h)− v(x). The fractional Sobolev space W l
p is defined

as the closure of C∞
0 in the norm ‖Dp,lu‖Lp

+ ‖u‖Lp
. As before, we omit R

n

in the notation of norms, spaces, and in the range of integration.
For {l} > 0 the spaces Bl

p and W l
p have the same elements and their norms

are equivalent since

(2− 2{l})Dp,lu ≤ Dp,lu ≤ (2 + 2{l})Dp,lu, (4.1.3)

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 133
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which follows directly from the identity

2[u(x+ h)− u(x)] = −[u(x+ 2h)− 2u(x+ h) + u(x)] + [u(x+ 2h)− u(x)].

Similarly to the case of Sobolev spaces in Sect. 2.1, one can show that the
space M(Bm

p → Bl
p) is trivial provided that m < l.

We formulate the main result of this chapter.

Theorem 4.1.1. Let 0 < l ≤ m, p ∈ (1,∞), and let γ ∈ Bl
p,loc. A function γ

belongs to M(Bm
p → Bl

p) if and only if γ ∈ Bl
p,loc, Dp,lγ ∈M(Bm

p → Lp), and
either γ ∈ L1,unif for m > l or γ ∈ L∞ for m = l. The equivalence relation

‖γ‖M(Bm
p →Bl

p) ∼ sup
e

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
+

{
‖γ‖L1,unif , m > l,

‖γ‖L∞ , m = l
(4.1.4)

holds, where e is an arbitrary compact set in R
n.

The relation (4.1.4) remains valid if the condition d(e) ≤ 1 is added, where
d(e) is the diameter of e.

For mp > n the statement of the above theorem can be simplified. Namely,
the relation (4.1.4) is equivalent to

‖γ‖M(Bm
p →Bl

p) ∼ ‖γ‖Bl
p,unif

for m ≥ l, (4.1.5)

and for lp > n
‖γ‖MBl

p
∼ ‖Dp,lγ‖Lp,unif + ‖γ‖L∞ . (4.1.6)

Various upper estimates for the norm in M(Bm
p → Bl

p) are derived in
Sects. 4.4 and 4.5.

The following assertion concerning the composition ϕ(γ), where γ ∈
M(Wm

p → W l
p), 0 < l < 1, p > 1, is proved in the last Sect. 4.6. If a

function ϕ satisfies the Hölder condition

|ϕ(t+ τ)− ϕ(t)| ≤ A |τ |ρ, |τ | < 1,

with ρ ∈ (0, 1), then ϕ(γ) ∈M(Wm−l+r
p →W r

p ) for any r ∈ (0, lρ).

4.2 Properties of Besov Spaces

4.2.1 Survey of Known Results

We start with three classical properties of the space Bl
p.

Proposition 4.2.1. (see [St2], Sect. 5.1) The equivalence relation

‖u‖Bk
p
∼ ‖Λαu‖Bk−α

p
, (4.2.1)

holds, where p ∈ (1,∞), α ∈ (0, k), and Λ = (1−∆)1/2.
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Proposition 4.2.2. (see [St2], Sect. 5.3) The inequalities

‖u‖Hl
p
≤ c ‖u‖Bl

p
for 1 < p ≤ 2

and
‖u‖Bl

p
≤ c ‖u‖Hl

p
for 2 ≤ p <∞

hold.

Proposition 4.2.3. (see [Bes]) Let R
n = R

m×R
k = {x = (y, z) : y ∈ R

m, z ∈
R

k}. The relation

‖u‖Bl
p
∼ ‖u‖Lp

+
(∫

Rk

∫

Rm

‖∆(2)
η ∇ku(·, z); Rm‖pLp

dη dz

|η|m+pα

)1/p

+
(∫

Rm

∫

Rk

‖∆(2)
ζ ∇ku(y, ·); Rk‖pLp

dζ dy

|ζ|k+pα

)1/p

(4.2.2)

holds, where l = k + α > 0 and p ∈ [1,∞). Similarly, for noninteger l,

‖u‖W l
p
∼ ‖u‖Lp

+
(∫

Rk

∫

Rm

‖∆η∇[l]u(·, z); Rm‖pLp

dη dz

|η|m+p{l}

)1/p

+
(∫

Rm

∫

Rk

‖∆ζ∇[l]u(y, ·); Rk‖pLp

dζ dy

|ζ|k+p{l}

)1/p

. (4.2.3)

Analogous norms appear under decomposition of R
n into more than two

factors.

Now we recall well known trace properties of Besov spaces (see [Usp] or
[Bur], Sect. 5.4).

Proposition 4.2.4. Let U ∈ C∞
0 (Rn+s) be any extension of u ∈ C∞

0 (Rn)
onto the space R

n+s = {z = (x, y) : x ∈ R
n, y ∈ R

s}.
(i) If p ∈ (1,∞) and l > 0, then

‖u; Rn‖Bl
p
∼ inf

{U}
‖U ; Rn+s‖

H
l+s/p
p

. (4.2.4)

(ii) If p ∈ [1,∞) and l > 0, then

‖u; Rn‖Bl
p
∼ inf

{U}
‖U ; Rn+s‖

B
l+s/p
p

. (4.2.5)

(iii) If p ∈ [1,∞) and l > 0, then

‖u; Rn‖Bl
p
∼ inf

{U}

(∫

Rn+s

|y|p(1−{l})−s
(
|∇[l]+1U |p + |U |p

)
dz
)1/p

. (4.2.6)

Another classical property of Bl
p is the following Sobolev type imbedding

result.
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Proposition 4.2.5. (see [Bes], [Tr3], Sect. 2.8). The inequality

‖u‖Lq
≤ c ‖u‖Bl

p

holds with p > 1 and

q = pn/(n− pl) if n > pl,

q ∈ [p,∞) if n = pl,

q ∈ [p,∞] if n < pl.

The next assertion follows from (4.2.4) and Theorem 3.1.2.

Proposition 4.2.6. Let {ηj}j≥0 be the same sequence as in Theorem 3.1.2.
Then

‖u‖Bl
p
∼
(∑

j≥0

‖uηj‖pBl
p

)1/p

.

One can prove either by the Banach isomorphism theorem or directly that
the equivalence relation

‖u‖Bl
p
∼ ‖Dp,lu‖Lp

(4.2.7)

holds for functions u ∈ Bl
p with supports in the unit ball. This gives

Proposition 4.2.7. Let u ∈ Bm
p and suppu ⊂ Bδ. Then for any k ∈ (0, l]

δk‖Dp,lu‖Lp
+ ‖u‖Lp

≤ c δl ‖Dp,lu‖Lp
. (4.2.8)

This and Proposition 4.2.6 imply

Corollary 4.2.1. Let {B(j)
δ } be a covering of R

n by open balls of radius δ ∈
(0, 1) with finite multiplicity depending only on n. Further, let u(j) ∈W l

p and

suppu(j) ⊂ B(j)
δ . Then

‖
∑

j

u(j)‖p
W l

p
≤ c

∑
j

‖Dp,lu
(j)‖pLp

.

4.2.2 Properties of the Operators Dp,l and Dp,l

We start this section with a composition property of the operator Dp,l.

Lemma 4.2.1. For any α, β > 0 with α+ β < 1 the inequality

‖Dp,αDp,βu‖Lp
≤ c ‖Dp,α+βu‖Lp

holds.
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Proof. Let t ∈ R
n and let ut(x) = u(x+ t). We have

|(Dp,βu)(x)− (Dp,βut)(x)| ≤
(∫
|∆h

(
u(x)− ut(x)

)
|p dh

|h|n+pβ

)1/p

.

Therefore,

‖Dp,αDp,βu‖pLp
≤
∫ ∫ ∫

|∆h

(
u(x)− ut(x)

)
|p dhdtdx

|h|n+pβ |t|n+pα
.

We write the integral over R
3n on the right-hand side as the sum of two

integrals, one of which is taken over |h| ≤ |t| and does not exceed
∫
dx

∫ |∆hu(x)|p
|h|n+pβ

dh

∫

|t|≥|h|

dt

|t|n+pα

+
∫

dh

|h|n+pβ

∫

|t|≥|h|

dt

|t|n+pα

∫
|∆hut(x)|pdx.

Clearly, the second term coincides with the first one which in its turn is
equal to

c

∫
dx

∫
|∆hu(x)|p dh

|h|n+(α+β)p
= c ‖Dp,α+βu‖pLp

.

The integral over the set |h| > |t| is estimated in the same way. The result
follows. ��

We proceed with elementary upper pointwise estimates for Dp,l and Dp,l.

Lemma 4.2.2. For any positive l > 0 and m > 0 the inequalities

(Dp,lu)(x) ≤
(
JmDp,lΛ

mu
)
(x), (4.2.9)

(Dp,lu)(x) ≤
(
JmDp,lΛ

mu
)
(x) (4.2.10)

hold with Jm and Λm defined in Sects. 1.2.1 and 3.1, respectively.

Proof. Let f = Λmu and let l = k + α, α ∈ (0, 1]. Clearly,

(Dp,lu)(x) = (Dp,lJmf)(x)

=
(∫ ∣∣∣

∫ (
Gm(x−ξ+2h)−2Gm(x−ξ+h)+Gm(x−ξ)

)
∇kf(ξ)dξ

∣∣∣
p dh

|h|n+pα

)1/p

=
(∫ ∣∣∣

∫
Gm(x− ξ)

(
∇kf(ξ + 2h)− 2∇kf(ξ + h) +∇kf(ξ)

)
dξ
∣∣∣
p dh

|h|n+pα

)1/p

.

Using Minkowski’s inequality, we obtain Dp,lu ≤ JmDp,lf . An analogous esti-
mate for Dp,lu with {l} > 0 does not need a separate proof in view of (4.1.3). ��
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4.2.3 Pointwise Estimate for Bessel Potentials

Henceforth we need the following modification of Hedberg’s inequality
(1.2.17).

Lemma 4.2.3. Let M be the Hardy–Littlewood maximal operator in R
n and

let J (n+s)
r denote the Bessel potential in R

n+s, s ≥ 1. Then, for any nonneg-
ative function f ∈ Lp(Rn+s), p > 1, and for almost all x ∈ R

n

(J (n+s)
rθ+s/pf)(x, 0) ≤ c

(
(J (n+s)

r+s/pf)(x, 0)
)θ(MF (x)

)1−θ
, (4.2.11)

where F (x) = ‖f(x, ·); Rs‖Lp
and 0 < θ < 1.

Proof. Let δ ∈ (0, 1] and let

Eδ(x) = {ζ = (ξ, η) : ξ ∈ R
n, η ∈ R

s, (x− ξ)2 + η2 > δ2}.

We express the potential on the left-hand side of (4.2.11) as the sum of two
integrals one of which is over Eδ(x). Let rθ < n+s/p′. Then in view of (1.2.4)
we have ∫

Rn+s\Eδ(x)

Grθ+s/p(x− ξ, η) f(ξ, η) dξ dη

≤ c

∫

Bδ(x)

F (ξ)
(∫

|η|<δ

dη

(|x− ξ|+ |η|)p′q

)1/p′

dξ, (4.2.12)

where p′ = p/(p− 1) and q = n− rθ + s/p′.
One checks directly that

(∫

|η|<δ

dη

(|x− ξ|+ |η|)p′q

)1/p′

≤

⎧
⎪⎪⎨
⎪⎪⎩

c |x− ξ|rθ−n rθ < n,

c log
2δ
|x− ξ| , rθ = n,

c δrθ−n, rθ > n.

(4.2.13)

In the case rθ < n it follows from (4.2.13) and (1.2.19) that the right-hand
side of (4.2.12) does not exceed

c

∫

Bδ(x)

F (ξ) dξ
|x− ξ|n−rθ

≤ c δrθ(MF )(x).

The same estimate follows from (4.2.12), (4.2.13) for rθ ≥ n.
Now let rθ = n + s/p′. By (4.2.13) and (1.2.4) with t = δ, the left-hand

side of (4.2.12) is not greater than

c

∫

Bδ(x)

F (ξ)
(∫

|η|<δ

| log c (|x− ξ|+ |η|)p′
dη
)1/p′

dξ

≤ c (1 + | log δ|) δs/p′
∫

Bδ(x)

F (ξ) dξ ≤ c (1 + | log δ|) δrθ(MF )(x).
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If rθ > n+ s/p′, the right-hand side of (4.2.12) is dominated by

c δs/p′
∫

Bδ(x)

F (ξ) dξ ≤ c δn+s/p′
(MF )(x).

Thus, for δ ≤ 1
∫

Rn+s\Eδ(x)

Grθ+s/p(x− ξ, η) f(ξ, η) dξ dη

≤

⎧
⎪⎪⎨
⎪⎪⎩

c δrθ(MF )(x), rθ < n+ s/p′,

c (1 + | log δ|) δrθ(MF )(x), rθ = n+ s/p′,

c δn+s/p′
(MF )(x), rθ > n+ s/p′.

(4.2.14)

Next we estimate the integral over Eδ(x). In the case rθ < n + s/p′ we
have
∫

Eδ(x)

Grθ+s/p(x− ξ, η) f(ξ, η) dξ dη ≤ c

∫

Eδ(x)\E1(x)

f(ξ, η) dξ dη
(|x− ξ|+ |η|)n−rθ+s/p′

+ c

∫

E1(x)

e−
√

(x−ξ)2+η2 f(ξ, η) dξ dη
(|x− ξ|+ |η|)(n+1−rθ+s/p′)/2

≤ c δ−r(1−θ)

∫

Eδ(x)\E1(x)

f(ξ, η) dξ dη
(|x− ξ|+ |η|)n−r+s/p′

+ c δ−r(1−θ)/2

∫

E1(x)

e−
√

(x−ξ)2+η2 f(ξ, η) dξ dη
(|x− ξ|+ |η|)(n+1−r+s/p′)/2

≤ c δ−r(1−θ)(J (n+s)
r+s/pf)(x, 0).

The case rθ ≥ n+ s/p′ is treated the same way. As a result we have
∫

Eδ(x)

Grθ+s/p(x− ξ, η) f(ξ, η) dξ dη

≤

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

c δ−r(1−θ)(J (n+s)
r+s/pf)(x, 0), rθ < n+ s/p′,

c (1 + | log δ|) (J (n+s)
r+s/pf)(x, 0), rθ = n+ s/p′,

c (J (n+s)
r+s/pf)(x, 0), rθ > n+ s/p′.

(4.2.15)

Further, we recall that Gr(z) = O(e−c|z|) for |z| > 1 to obtain
∫

E1(x)

Grθ+s/p(x− ξ, η) f(ξ, η) dξ dη ≤ c

∫

E1(x)

F (ξ)e−c|x−ξ|dξ

= c

∞∑
j=0

∫

2j<|x−ξ|<2j+1
e−c|x−ξ|F (ξ) dξ ≤ c

∞∑
j=0

e−c2j

2nj(MF )(x)=c (MF )(x).
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Combining this with (4.2.14), where δ = 1, we arrive at
(
J

(n+s)
rθ+s/pf

)
(x, 0) ≤ c (MF )(x). (4.2.16)

In the case rθ > n+ s/p′ we have
∫

Rn+s\E1(x)

Grθ+s/p(x− ξ, η) f(ξ, η) dξ dη

≤
∫

Rn+s\E1(x)

f(ξ, η) dξ dη ≤ c (J (n+s)
rθ+s/pf)(x, 0)

which together with (4.2.15) yields
(
J

(n+s)
rθ+s/pf

)
(x, 0) ≤ c

(
J

(n+s)
r+s/pf

)
(x, 0). (4.2.17)

For rθ < n+ s/p′ estimates (4.2.14) –(4.2.16) imply that
(
J

(n+s)
rθ+s/pf

)
(x, 0) ≤ c

(
δrθ(MF )(x) + δ−r(1−θ)(J (n+s)

r+s/pf)(x, 0)
)

for all δ ∈ (0,∞). Minimizing the right-hand side with respect to δ, we arrive
at (4.2.11).

If rθ = n+ s/p′, then by (4.2.14) and (4.2.15)

(J (n+s)
rθ+s/pf)(x, 0) ≤ c (1 + | log δ|)

(
δrθ(MF )(x) + (J (n+s)

r+s/pf)(x, 0)
)

(4.2.18)

for all δ ∈ (0, 1). In the case

(MF )(x) ≤ (J (n+s)
r+s/pf)(x, 0),

by (4.2.16) we have
(
J

(n+s)
rθ+s/pf

)
(x, 0) ≤ c

(
J

(n+s)
r+s/pf

)
(x, 0) (4.2.19)

and (4.2.11) follows from (4.2.16) and (4.2.19). Let

(MF )(x) > (J (n+s)
r+s/pf)(x, 0).

We put
δrθ = (J (n+s)

r+s/pf)(x, 0)/(MF )(x)

in (4.2.18). Then
(
J

(n+s)
rθ+s/pf

)
(x, 0) ≤ c (1 + | log δ|)(J (n+s)

r+s/p)f(x, 0)

= c (1 + | log δ|)δrθ(1−θ)
(
(J (n+s)

r+s/pf)(x, 0)
)θ((MF )(x)

)1−θ
.

Since δ ∈ (0, 1], inequality (4.2.11) is proved.
In the case rθ > n + s/p′ estimate (4.2.11) results from (4.2.16) and

(4.2.17). ��
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4.3 Proof of Theorem 4.1.1

4.3.1 Estimate for the Product of First Differences

While deriving estimates involving the second difference of the product of two
functions, we need to estimate the product of their first differences, which is
based on the next lemma.

Lemma 4.3.1. For p ∈ (1,∞), δ ∈ (0, 1) and any integer k ≥ 1, we have

(∫ ∫
|∆hγ(x)∆hu(x)|p dhdx

|h|n+p

)1/p

≤ c sup
e

‖Dp,δγ; e‖Lp

[Cp,k−1+δ(e)]1/p
‖u‖Bk

p
. (4.3.1)

Proof. Let U ∈ C∞
0 (Rn+s) be an extension of a function u ∈ Bk

p (Rn) to R
n+s

with k subject to k < n+ s/p′. By f we denote the function Λk+s/pU . Then

u(x) =
∫

Rn+s

Gk+s/p(x− ξ, η)f(ξ, η)dξdη.

We shall use the properties of the function Gr listed in Sect. 1.2.1. Let us
introduce the sets

N1 = {(ξ, η) : 4|h| < |x− ξ|+ |η| < 1},

N2 = {(ξ, η) : |x− ξ|+ |η| < min(1, 4|h|)},

N3 = {(ξ, η) : |x− ξ|+ |η| > max(1, 4|h|)},

N4 = {(ξ, η) : 4|h| > |ξ − x|+ |η| > 1}.

It is clear that

|∆hu(x)| ≤
∫

Rn+s

∣∣Gk+s/p(x− ξ + h, η)−Gk+s/p(x− ξ, η)
∣∣ |f(ξ, η)|dξdη.

We represent the last integral as the sum of four integrals over N1, . . . ,N4

and estimate each of them. First,
∫

N1

≤ c |h|
∫

N1

t
−(n−k+1+s/p′)
θ |f(ξ, η)|dξdη,

where t2θ = (x+ θh− ξ)2 + η2, θ ∈ (0, 1). Since t2θ ≥ c
(
(x− ξ)2 + η2

)
on N1,

it follows that
∫

N1

≤ c |h|1−δ

∫

N1

t
−(n−k+1+s/p′−δ)
0 |f(ξ, η)|dξdη

≤ c |h|1−δ
(
Λ−(k−1+s/p+δ)|f |

)
(x, 0). (4.3.2)
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The integral over N2 is dominated by
∫

N2

(
t
−(n−k+s/p′)
1 + t

−(n−k+s/p′)
0

)
|f(ξ, η)|dξdη

≤ c |h|1−δ

∫

N2

(
t
−(n−k+s/p′+1−δ)
1 + t

−(n−k+s/p′+1−δ)
0 |f(ξ, η)|dξdη.

Consequently,
∫

N2

≤ c|h|1−δ
(
(Λ−(k−1+s/p+δ)|f |)(x+h, 0)+(Λ−(k−1+s/p+δ)|f |)(x, 0)

)
. (4.3.3)

Using (2.8.5), we obtain
∫

N3

≤ c |h|
∫

N3

e−t0/2|f(ξ, η)|dξdη.

Hence,
∫

N3

≤ c |h|1−δ

∫

N3

t
(k−n−s/p′−1+δ)/2
0 e−t0/4|f(ξ, η)|dξdη

≤ c |h|1−δ(Λ−(k−1+s/p+δ)|F |)
(x
4
, 0
)
, (4.3.4)

where F (ξ, η) = f(4ξ, 4η). In a similar way we find that
∫

N4

≤ c

∫

N4

(e−t1/2 + e−t0/2)|f(ξ, η)|dξdη

≤ c |h|1−δ

∫

N4

(
t
(k−n−s/p′−1+δ)/2
1 e−t1/4+t

(k−n−s/p′−1+δ)/2
0 e−t0/4

)
|f(ξ, η)|dξdη,

and consequently
∫

N4

≤ c |h|1−δ
(
(Λ−(k−1+s/p+δ)|F |)

(x+ h

4
, 0
)

+ (Λ−(k−1+s/p+δ)|F |)
(x
4
, 0
))
.

Adding the last inequality to (4.3.2)–(4.3.4) and noting that Gr(az) ≥ Gr(z)
for any constant a < 1, we conclude that

|∆hu(x)|≤c |h|1−δ
(
(Λ−(k−1+s/p+δ)|F |)

(x+h

4
, 0
)
+(Λ−(k−1+s/p+δ)|F |)

(x
4
, 0
))
.

Hence, ∫ ∫
|∆hγ(x)∆hu(x)|p dhdx

|h|n+p

≤ c

∫ (
(Λ−(k−1+s/p+δ)|F |)

(x
4
, 0
))p

∫
|∆hγ(x)|p dhdx

|h|n+pδ

= c1

∫ (
(Λ−(k−1+s/p+δ)|F |)(x, 0)

)p ∫ |∆hγ(4x)|p dhdx

|h|n+pδ
.
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By (4.3.12), ∫ ∫
|∆hγ(x)∆hu(x)|p dhdx

|h|n+p

≤ c sup
e

∫

e

∫
|∆hγ(4x)|p dhdx

|h|n+pδ

Cp,k−1+δ(e)
‖(Λ−(k−1+s/p+δ)|F |)(·, 0)‖p

W k−1+δ
p

. (4.3.5)

Clearly,
∫

e

∫
|∆hγ(4x)|p dhdx

|h|n+pδ
= c

∫

4e

∫
|∆hγ(x)|p dhdx

|h|n+pδ
(4.3.6)

and
Cp,k−1+δ(e) ≥ cCp,k−1+δ(4e), (4.3.7)

where 4e = {x : x/4 ∈ e}. Note also that

‖(Λ−(k−1+s/p+δ)|F |)(·, 0)‖W k−1+δ
p

≤ c ‖F ; Rn+s‖Lp

= c 4−(n+s)‖f ; Rn+s‖Lp
= c 4−(n+s)‖Λk+s/pU ; Rn+s‖Lp

.

This, together with (4.3.5)–(4.3.7), implies that
∫ ∫

|∆hγ(x)∆hu(x)|p dhdx

|h|n+p

≤ c sup
e

‖Dp,δγ; e‖pLp

Cp,k−1+δ(e)
‖Λk+s/pU ; Rn+s‖pLp

.

Minimizing the last norm over all extensions U , we complete the proof. ��

4.3.2 Trace Inequality for Bk
p , p > 1

Lemma 4.3.2. Let µ be a measure in R
n, p ∈ (1,∞), k ∈ (0,∞). The best

constant C in the inequality
∫
|u|p dµ ≤ C ‖u‖p

Bk
p
, u ∈ C∞

0 , (4.3.8)

is equivalent to

sup
µ(e)

Cp,k(e)
, (4.3.9)

where e is an arbitrary compact set of positive capacity Cp,k(e).
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Proof. Let U ∈ C∞
0 (Rn+1) be an arbitrary extension of u ∈ C∞

0 (Rn) to R
n+1.

By Theorem 3.1.4,
∫

Rn

|u|p dµ ≤ c sup
e⊂Rn

µ(e)

C
(n+1)
p,k+1/p(e)

‖U ; Rn+1‖p
H

k+1/p
p

.

In the present proof we use the notation C
(n+1)
p,k+1/p(e) temporarily in order to

stress that the functions in the definition (1.2.6) of the capacity are given on
R

n+1 instead of R
n. Minimizing the right-hand side over all extensions of u

and applying the relation

Cp,k(e) ∼ C
(n+1)
p,k+1/p(e), (4.3.10)

which follows from the definition of capacity and the equivalence

‖u; Rn‖Bk
p
∼ inf

{U}
‖U ; Rn+1‖

H
k+1/p
p

, (4.3.11)

we obtain the required upper bound for C. The lower bound is obvious. ��

Remark 4.3.1. The above result can be found in [Maz9] and [Maz11]. For its
generalizations to Besov spaces with three indices see [Wu] and [AX].

By Lemma 4.3.2,

‖γ‖M(Bk
p→Lp) ∼ sup

e

‖γ; e‖Lp

[Cp,k(e)]1/p
(4.3.12)

for p ∈ (1,∞). Hence, in view of Lemma 3.2.2,

‖γ‖M(Bk
p→Lp) ∼ ‖γ‖M(Hk

p→Lp) ∼ sup
e,diam(e)≤1

‖γ; e‖Lp

[Cp,k(e)]1/p
. (4.3.13)

By Proposition 3.1.4 containing the estimates for the capacity of a ball,
one obtains the following relations from (4.3.12):

if pk > n, then
‖γ‖M(Bk

p→Lp) ∼ ‖γ‖Lp,unif ; (4.3.14)

if pk < n, then

‖γ‖M(Bk
p→Lp) ≥ c sup

x∈Rn,r∈(0,1)

rk−n/p‖γ;Br(x)‖Lp
; (4.3.15)

if pk = n, then

‖γ‖M(Bk
p→Lp) ≥ c sup

x∈Rn,r∈(0,1)

(
log

2
r

)(p−1)/p‖γ;Br(x)‖Lp
. (4.3.16)
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By Propositions 3.1.2, 3.1.3 the following upper estimates for the norm in
M(Bk

p → Lp) hold:
if pk < n, then

‖γ‖M(Bk
p→Lp) ≤ c sup

e,diam(e)≤1

(mesne)k/n−1/p‖γ; e‖Lp
; (4.3.17)

if pk = n, then

‖γ‖M(Bk
p→Lp) ≤ c sup

e,diam(e)≤1

(
log

2n

mesne

)(p−1)/p‖γ; e‖Lp
. (4.3.18)

4.3.3 Auxiliary Assertions Concerning M(Bm
p → Bl

p)

We start with inequalities for mollifiers of multipliers.

Lemma 4.3.3. Let γρ denote a mollifier of a function γ which is defined as

γρ(x) = ρ−n

∫
K
(
ρ−1(x− ξ)

)
γ(ξ)dξ,

where K ∈ C∞
0 (B1), K ≥ 0, and ‖K‖L1 = 1. The inequalities

‖γρ‖M(Bm
p →Bl

p) ≤ ‖γ‖M(Bm
p →Bl

p) ≤ lim inf
ρ→0

‖γρ‖M(Bm
p →Bl

p), (4.3.19)

‖γρ‖M(Bm
p →Lp) ≤ ‖γ‖M(Bm

p →Lp) ≤ lim inf
ρ→0

‖γρ‖M(Bm
p →Lp), (4.3.20)

and

sup
e

‖Dp,lγρ; e‖Lp

[Cp,m(e)]1/p
≤ sup

e

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
(4.3.21)

hold.

Proof. Let u ∈ C∞
0 . Clearly,

‖γρu‖Bl
p

=
(∫ ∫ ∣∣∣ρ−n

∫
K
( ξ
ρ

)
∇l−1,x∆

(2)
h (γ(x− ξ)u(x))dξ

∣∣∣
p dh

|h|n+1
dx
)1/p

+
(∫ ∣∣∣

∫
ρ−nK

( ξ
ρ

)
γ(x− ξ)u(x)dξ

∣∣∣
p

dx
)1/p

. (4.3.22)

By Minkowski’s inequality,

‖Dp,l(γρu)‖Lp
≤ ρ−n

∫
K
( ξ
ρ

)
‖Dp,l

(
γ(· − ξ)u(·)

)
‖Lp

dξ.

This and (4.3.22) imply that

‖γρu‖Bl
p
≤ ρ−n

∫
K
( ξ
ρ

)
‖γ(· − ξ)u(·)‖Bl

p
dξ.
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Since
‖γ(· − ξ)u(·)‖Bl

p
≤ ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
,

the left inequality (4.3.19) follows. One can prove the right inequality (4.3.19)
duplicating the argument in Lemma 2.3.1. The proof of (4.3.20) is obvious.

To derive the estimate (4.3.21) we use Minkowski’s inequality once more
to obtain

‖Dp,lγρ; e‖Lp

[Cp,m(e)]1/p
≤

∫
K(z)

(∫

e

(
Dp,lγ(x− ρz)

)p
dx
)1/p

dz

[Cp,m(e)]1/p

≤

∫

B1

K(z)
(∫

E

(
Dp,lγ(ξ)

)p
dξ
)1/p

dz

[Cp,m(E)]1/p
≤ ‖K‖L1 sup

e

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p

where E = {x− ρz : x ∈ e, z ∈ B1}. The proof is complete. ��

We use the interpolation properties

Bm−k
p =

(
Bm

p , Hm−l
p

)
k/l,p

(4.3.23)

and
Bm−k

p =
(
Bm

p , Bm−l
p

)
k/l,p

, (4.3.24)

where l < k < m (see, [T], Th. 2.4.2). In particular, (4.3.24) implies that

‖γ‖MBr
p
≤ c ‖γ‖θMBσ

p
‖γ‖1−θ

MBτ
p
, (4.3.25)

where p ∈ (1,∞), σ > τ > 0, 0 < θ < 1, and r = θσ + (1 − θ)τ . It follows
from (4.3.12) and (4.3.24) that γ ∈ M(Bm

p → Bl
p) ∩M(Bm−l

p → Lp) implies
that γ ∈M(Bm−k

p → Bl−k
p ) for 0 < k < l. Moreover,

‖γ‖M(Bm−k
p →Bl−k

p ) ≤ c ‖γ‖1−k/l

M(Bm
p →Bl

p)
‖γ‖k/l

M(Bm−l
p →Lp)

(4.3.26)

for 0 < k < l < m and

‖γ‖MBl−k
p
≤ c ‖γ‖1−k/l

MBl
p
‖γ‖k/l

L∞
(4.3.27)

for 0 < k < l.

4.3.4 Lower Estimates for the Norm in M(Bm
p → Bl

p)

The following is the main result of this subsection.
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Lemma 4.3.4. Let 0 < l ≤ m and p ∈ (1,∞). Then

‖γ‖L∞ ≤ ‖γ‖MBl
p

for m = l (4.3.28)

and
‖γ‖M(Bm−l

p →Lp) ≤ c ‖γ‖M(Bm
p →Bl

p) for m > l. (4.3.29)

Proof. Let u ∈ Bl
p and let N be a positive integer. Clearly,

‖γNu‖1/N
Lp
≤ ‖γNu‖1/N

Bl
p
≤ ‖γ‖MBl

p
‖u‖1/N

Bl
p
.

Passing to the limit as N →∞ we arrive at (4.3.28).
Now suppose that 0 < l < m. Let γρ be the mollification of γ ∈M(Bm

p →
Bl

p). By Lemma 4.3.3, it suffices to prove (4.3.29) for γρ. To simplify the
notation we write γ in place of γρ.

We consider two cases: m ≥ 2l and 2l > m > l. Assume first that m≥2l. In
view of Lemma 4.2.4, there exists U ∈ Hm−l+1/p

p (Rn+1) which is an extension
of the function u ∈ Bm−l

p (Rn) to R
n+1 such that

‖U ; Rn+1‖
H

m−l+1/p
p

≤ c ‖u; Rn‖Bm−l
p

. (4.3.30)

By the same lemma, the converse estimate

‖u; Rn‖Bm−l
p
≤ c ‖U ; Rn+1‖

H
m−l+1/p
p

(4.3.31)

holds for all extensions U . Let us take U as the Bessel potential J (n+1)
m−l+1/pf

with density f ∈ Lp(Rn+1). By Lemma 4.2.3,

|u(x)| ≤ c
(
(J (n+1)

m+1/p|f |)(x, 0)
)(m−l)/l(MF (x)

)l/m
,

where F (x) = ‖f(x, ·); R1‖Lp
. Therefore,

‖γu‖Lp
≤ c ‖f ; Rn+1‖l/m

Lp
‖ |γ|l/(m−l)

(
J

(n+1)
m+1/p|f |

)
(·, 0)‖(m−l)/m

Lp
.

According to Lemma 4.3.2, the right-hand side does not exceed

c ‖f ; Rn+1‖
l

m

Lp
‖γ
(
J

(n+1)
m+1/p|f |

)
(·, 0)‖1−

l
m

Bl
p

sup
e

(
∫

e

|γ|
pl

m−l dx

Cp,l(e)

)m−l
mp

. (4.3.32)

Setting ϕ = |γ|1/(m−l), ν = l, µ = m − l in Lemma 2.3.6, which is valid
for all ν and µ such that 0 < µ < ν, we find that in the case m ≥ 2l the
supremum in (4.3.32) is dominated by

c

(
sup

e

∫

e

|γ|pdx

Cp,m−l(e)

)l/mp

≤ c ‖γ‖l/m

M(Bm−l
p →Lp)

.



148 4 The Space M(Bm
p → Bl

p) with p > 1

Therefore, by (4.3.32) we obtain

‖γu‖Lp
≤ c‖f ; Rn+1‖

l
m

Lp
‖γ‖1−

l
m

M(Bm
p →Bl

p)
‖J (n+1)

m+1/p|f |(·, 0)‖1−
l

m

Bm
p
‖γ‖

l
m

M(Bm−l
p →Lp)

.

Using first (4.3.31) and then the equality ‖u‖Hk
p

= ‖Λku‖Lp
and (4.3.30), we

obtain

‖J (n+1)
m+1/p|f |(·, 0)‖Bm

p
≤ c ‖J (n+1)

m+1/p|f |; R
n+1‖

H
m+1/p
p

= c ‖f ; Rn+1‖Lp

= c ‖U ; Rn+1‖
H

m−l+1/p
p

≤ c ‖u; Rn‖Bm−l
p

.

Thus,
‖γu‖Lp

≤ c ‖γ‖l/m

M(Bm−l
p →Lp)

‖γ‖(m−l)/m

M(Bm
p →Bl

p)
‖u‖Bm−l

p
,

which implies (4.3.29) for m ≥ 2l.
Suppose that 2l > m > l. Let µ be an arbitrary positive number less than

m− l. By (4.3.26) with k = l − µ,

‖γ‖M(Bm−l+µ
p →Bµ

p ) ≤ c ‖γ‖(l−µ)/l

M(Bm−l
p →Lp)

‖γ‖µ/l

M(Bm
p →Bl

p)
.

Since m− l + µ > 2µ, it follows from the first part of the proof that (4.3.29)
holds with m and l replaced by m− l + µ and µ, respectively, i.e.

‖γ‖M(Bm−l
p →Lp) ≤ c ‖γ‖M(Bm−l+µ

p →Bµ
p ).

Consequently,

‖γ‖M(Bm−l
p →Lp) ≤ c ‖γ‖(l−µ)/l

M(Bm−l
p →Lp)

‖γ‖µ/l

M(Bm
p →Bl

p)

and (4.3.29) is proved for 2l > m > l as well. ��

By Lemma 4.3.4 and (4.3.12), the following assertion holds.

Corollary 4.3.1. Let γ ∈M(Bm
p → Bl

p), 0 < l < m. Then

sup
e

‖γ; e‖Lp

[Cp,m−l(e)]1/p
≤ c ‖γ‖M(Bm

p →Bl
p).

Lemma 4.3.4 in combination with (4.3.26) and (4.3.27) implies:

Corollary 4.3.2. Let γ ∈M(Bm
p → Bl

p), 0 < l ≤ m. Then

γ ∈M(Bm−k
p → Bl−k

p ), 0 < k < l,

and
‖γ‖M(Bm−k

p →Bl−k
p ) ≤ c ‖γ‖M(Bm

p →Bl
p).
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The following assertion contains an estimate for derivatives of a multiplier.

Lemma 4.3.5. Let γ ∈M(Bm
p → Bl

p), 0 < l ≤ m. Then

Dαγ ∈M(Bm
p → Bl−|α|

p )

for any multi-index α of order |α| ≤ l and

‖Dαγ‖
M(Bm

p →B
l−|α|
p )

≤ c ‖γ‖M(Bm
p →Bl

p).

Proof. It suffices to consider the case |α| = 1, l ≥ 1. Clearly,

‖u∇γ‖Bl−1
p
≤ ‖uγ‖Bl

p
+ ‖γ∇u‖Bl−1

p

≤
(
‖γ‖M(Bm

p →Bl
p) + ‖γ‖M(Bm−1

p →Bl−1
p )

)
‖u‖Bm

p
.

Hence, using Corollary 4.3.2, we find that

‖u∇γ‖Bl−1
p
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p

which completes the proof. ��

Corollary 4.3.3. Let γ ∈ M(Bm
p → Bl

p), 0 < l ≤ m. Then, for any ε > 0

and every multi-index α of order |α| ≤ l, Dαγ ∈M(Bm−l−|α|
p → Lp), and the

inequality

‖Dαγ‖
M(B

m−l+|α|
p →Lp)

≤ ε ‖γ‖M(Bm
p →Bl

p) + c(ε) ‖γ‖M(Bm
p →Lp)

holds.

Proof. The result follows by Lemma 4.3.5 and inequality (4.3.26).

Lemma 4.3.4 and Corollary 4.3.3 imply the following assertion.

Corollary 4.3.4. Let γ ∈ M(Bm
p → Bl

p), 0 < l ≤ m. Then, for any multi-

index α of order |α| ≤ l, Dαγ ∈M(Bm−l−|α|
p → Lp), and the inequality

‖Dαγ‖
M(B

m−l+|α|
p →Lp)

≤ c ‖γ‖M(Bm
p →Bl

p)

holds.

4.3.5 Proof of Necessity in Theorem 4.1.1

In this section we derive the inequalities

sup
e

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
+ sup

x∈Rn

‖γ;B1(x)‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p), m > l, (4.3.33)

and

sup
e

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
+ ‖γ‖L∞ ≤ c ‖γ‖MBl

p
. (4.3.34)

The core of the proof is the following assertion.
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Lemma 4.3.6. Let γ ∈ M(Bm
p → Bl

p), where 0 < l ≤ m and p ∈ (1,∞).
Then

sup
e

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
≤ c ‖γ‖M(Bm

p →Bl
p). (4.3.35)

Proof. We use induction on l and start by showing that (4.3.35) holds for
l ∈ (0, 1].

(i) Let l ∈ (0, 1). We have

‖uDp,lγ‖Lp
≤ c
(
‖γu‖Bl

p
+ ‖γDp,lu‖Lp

)

≤ c
(
‖γ‖M(Bm

p →Bl
p)‖u‖Bl

p
+ ‖γDp,lu‖Lp

)
. (4.3.36)

Consider first the case m = l. Clearly,

‖γDp,lu‖Lp
≤ ‖γ‖L∞‖u‖Bl

p

which together with (4.3.36) and (4.3.28) gives

‖uDp,lγ‖Lp
≤ c ‖γ‖MBl

p
‖u‖Bl

p
.

Therefore,
‖Dp,lγ‖M(Bl

p→Lp) ≤ c ‖γ‖MBl
p

and, in view of (4.3.12), we obtain (4.3.35).
Suppose now that l < m. By (4.2.9),

‖γDp,lu‖Lp
≤ ‖γ‖M(Bm−l

p →Lp)‖Jm−lDp,lΛ
m−lu‖Bm−l

p
. (4.3.37)

By Lemma 4.2.1, the last norm does not exceed

c ‖Dp,lΛ
m−lu‖Lp

≤ c ‖Λm−lu‖Bl
p
≤ c ‖u‖Bm

p

which in combination with (4.3.37) implies that

‖γDp,lu‖Lp
≤ c ‖γ‖M(Bm−l

p →Lp)‖u‖Bm
p
. (4.3.38)

Using (4.3.36), (4.3.38) and Lemma 4.3.4, we arrive at

‖uDp,lγ‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
.

Thus,
‖Dp,lγ‖M(Bm

p →Lp) ≤ c ‖γ‖M(Bm
p →Bl

p)

which together with (4.3.12) gives (4.3.35).
(ii) Let l = 1. In view of the identity

∆
(2)
h (γu) = γ∆

(2)
h u+ u∆

(2)
h γ +∆2hγ∆2hu− 2∆hγ∆hu (4.3.39)
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one has

‖uDp,1γ‖Lp
≤ ‖γu‖B1

p
+ ‖γDp,1u‖Lp

+ 4
(∫ ∫

|∆hγ(x)∆hu(x)|p|h|−n−pdhdx
)1/p

(4.3.40)

for any u ∈ C∞
0 .

We proceed separately for m = 1 and m > 1. Let first m = 1. Using (4.3.1)
with k = 1 and δ ∈ (0, 1) together with (4.3.40) and (4.3.28), we find that

‖uDp,1γ‖Lp
≤ c

(
‖γ‖MB1

p
+ sup

e

‖Dp,δγ; e‖Lp

[Cp,δ(e)]1/p

)
‖u‖B1

p
. (4.3.41)

In view of part (i) of this proof, the last supremum is majorized by c ‖γ‖MBδ
p
.

Hence (4.3.41) leads to the inequality

sup
e

‖Dp,1γ; e‖Lp

[Cp,1(e)]1/p
≤ c (‖γ‖MB1

p
+ ‖γ‖MBδ

p
). (4.3.42)

Since by Corollary 4.3.2

‖γ‖MBδ
p
≤ c ‖γ‖MB1

p
,

we arrive at (4.3.35) for m = l = 1.
Next we estimate the right-hand side of (4.3.40) for m > 1. By (4.2.9), its

second term is majorized by

‖γJm−1Dp,1Λ
m−1u‖Lp

≤ c ‖γ‖M(Bm−1
p →Lp)‖Jm−1Dp,1Λ

m−1u‖Bm−1
p

≤ c ‖γ‖M(Bm−1
p →Lp)‖Dp,1Λ

m−1u‖Lp

≤ c ‖γ‖M(Bm−1
p →Lp)‖Λm−1u‖B1

p
≤ c ‖γ‖M(Bm

p →B1
p)‖u‖Bm

p
. (4.3.43)

The last inequality in this chain follows from (4.2.1) and (4.3.29). We estimate
the third term on the right-hand side of (4.3.40) using (4.3.1) with k = m > 1
and (4.3.35) with l = δ < 1. Then this term does not exceed

c sup
e

‖Dp,δγ; e‖Lp

[Cp,m−1+δ(e)]1/p
‖u‖Bm

p
≤ c ‖γ‖M(Bm−1+δ

p →Bδ
p)‖u‖Bm

p
. (4.3.44)

Furthermore, by Corollary 4.3.2

‖γ‖M(Bm−1+δ
p →Bδ

p) ≤ c ‖γ‖M(Bm
p →B1

p).

Hence the third term on the right-hand side of (4.3.40) is dominated by

c ‖γ‖M(Bm
p →B1

p)‖u‖Bm
p
.



152 4 The Space M(Bm
p → Bl

p) with p > 1

This along with (4.3.40) and (4.3.43) implies that

‖uDp,1γ‖Lp
≤ c ‖γ‖M(Bm

p →B1
p)‖u‖Bm

p

and thus (4.3.35) holds for l = 1.
(iii) Suppose that l is positive and integer, and that the lemma is proved

for γ ∈ M(Bm
p → Bk

p ), where k is any positive integer not exceeding l − 1.
Applying (4.3.39), we find that

‖uDp,lγ‖Lp
≤ ‖γu‖Bl

p
+ c

l−1∑
j=0

‖ |∇jγ|Dp,l−ju‖Lp
+ c

l−1∑
j=1

‖ |∇ju|Dp,l−jγ‖Lp

+c
l−1∑
j=0

(∫ ∫
|∆h∇jγ(x)|p|∆h∇l−1−ju|p|h|−n−pdhdx

)1/p

. (4.3.45)

By (4.2.9) with α = l − j and β = m− l + j, we have

(Dp,l−ju)(x) ≤ (Jm−l+jDp,l−jΛ
m−l+ju)(x).

Therefore, for j = 1, . . . , l − 1 and m ≥ l,

‖ |∇jγ|Dp,l−ju‖Lp
≤ c ‖∇jγ‖M(Bm−l+j

p →Lp)‖Jm−l+jDp,l−jΛ
m−l+ju‖Bm−l+j

p

≤ c ‖∇jγ‖M(Bm−l+j
p →Lp)‖Dp,l−jΛ

m−l+ju‖Lp
. (4.3.46)

According to (4.2.1),

‖Dp,l−jΛ
m−l+ju‖Lp

≤ ‖Λm−l+ju‖Bl−j
p
≤ c ‖u‖Bm

p
. (4.3.47)

By Corollary 4.3.4,

‖∇jγ‖M(Bm−l+j
p →Lp) ≤ c ‖γ‖M(Bm

p →Bl
p), j = 1, . . . , l − 1, m ≥ l. (4.3.48)

For j = 0 by Lemma 4.3.4 we obtain

‖γDp,lu‖Lp
≤ ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
. (4.3.49)

Unifying (4.3.46)–(4.3.49), we find that for all j = 0, . . . , l− 1 and 1 ≤ l ≤ m,

‖ |∇jγ|Dp,l−ju‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
. (4.3.50)

For j = 1, . . . , l − 1 we have

‖ |∇ju|Dp,l−jγ‖Lp
≤ c sup

e

‖Dp,l−jγ; e‖Lp

[Cp,m−j(e)]1/p
‖u‖Bm

p
. (4.3.51)
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From the induction assumption and Corollary 4.3.2 it follows that for m ≥ l
one has

sup
e

‖Dp,l−jγ; e‖Lp

[Cp,m−j(e)]1/p
≤ c ‖γ‖M(Bm−j

p →Bl−j
p ) ≤ c ‖γ‖M(Bm

p →Bl
p) (4.3.52)

which together with (4.3.51) implies that

‖ |∇ju|Dp,l−jγ‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
, j = 1, . . . , l − 1. (4.3.53)

Next we estimate the last sum in (4.3.45). Let δ ∈ (0, 1) be such that m+δ
is a noninteger. By (4.3.1) with γ replaced by ∇jγ, u replaced by ∇l−1−ju,
and k = m− l + j + 1, each term of the last sum in (4.3.45) does not exceed

c sup
e

‖Dp,j+δγ; e‖Lp

[Cp,m−l+j+δ(e)]1/p
‖∇l−1−ju‖Bm−l+j+1

p
. (4.3.54)

By the induction assumption and Corollary 4.3.2 this implies that

(∫ ∫
|∆h∇jγ(x)|p|∆h∇l−1−ju|p|h|−n−pdhdx

)1/p

≤ c ‖γ‖M(Bm−l+j+δ
p →Bj+δ

p )‖u‖Bm
p
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
. (4.3.55)

Combining this with (4.3.53) and (4.3.51), we obtain from (4.3.45)

‖uDp,lγ‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
(4.3.56)

and thus (4.3.35) follows for all integer l.
(iv) Now let l be a noninteger. Suppose that

sup
e

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
≤ c ‖γ‖M(Bm

p →Bl
p)

for all noninteger l ∈ (0, N), where N is an integer. Let N < l < N + 1. In
view of the equivalence Dp,lγ ∼ Dp,lγ we have

‖uDp,lγ‖Lp
≤ ‖γu‖Bl

p
+ c

N∑
j=0

‖ |∇jγ|Dp,l−ju‖Lp

+ c

N∑
j=1

‖ |∇ju|Dp,l−jγ‖Lp
. (4.3.57)

Let t ∈ (0,m − l + j) if m > l or m = l, j > 0 and let t = 0 if m = l and
j = 0. By (4.2.10) with α = l − j and β = t one has

(
Dp,l−ju

)
(x) ≤

(
JtDp,l−jΛ

tu
)
(x).
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Using (4.2.1), we find

‖ |∇jγ|Dp,l−ju‖Lp
≤ ‖∇jγ‖M(W m−l+j

p →Lp)‖JtDp,l−jΛ
tu‖W m−l+j

p

≤ c ‖∇jγ‖M(Bm−l+j
p →Lp)‖Dp,l−jΛ

tu‖W m−l+j−t
p

. (4.3.58)

By definition of the operator Dp,l and the space W l
p,

‖Dp,l−jv‖W m−l+j−t
p

= ‖Dp,m−l+j−tDp,{l}∇[l−j]v‖Lp
+ ‖Dp,l−jv‖Lp

.

We use Lemma 4.2.1 with α = m− l+ j− t, β = {l} assuming t to be so close
to m− l + j that 0 < m− t− [l] + j < 1. Then

‖Dp,m−l+j−tDp,{l}∇[l]−jv‖Lp

≤ c ‖Dp,m−t−[l]−j∇[l]−jv‖Lp
≤ c ‖v‖W m−t

p
. (4.3.59)

We may also choose t in such a way that m−t is a noninteger so that Wm−t
p =

Bm−t
p . Then (4.3.57) together with (4.3.58) and (4.3.59), where v = Λtu, and

Corollary 4.3.4 imply that

‖ |∇jγ|Dp,l−ju‖Lp
≤ c ‖∇jγ‖M(Bm−l+j

p →Lp)‖Λ
tu‖Bm−t

p

≤ c ‖γ‖M(Bm
p →Bl

p)‖u‖Bm
p
. (4.3.60)

By the induction hypothesis, we have

‖ |∇ju|Dp,l−jγ‖Lp
≤ c sup

e

‖Dp,l−jγ; e‖Lp

[Cp,m−j(e)]1/p
‖∇ju‖Bm−j

p

≤ c ‖γ‖M(Bm−j
p →Bl−j

p )‖u‖Bm
p

(4.3.61)

for j = 1, . . . , N which, together with Corollary 4.3.2, implies that

‖ |∇ju|Dp,l−jγ‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
.

This together with (4.3.60) and (4.3.57) leads to

‖uDp,lγ‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p)‖u‖Bm

p
.

The proof is complete. ��

The following simple corollary contains the required lower estimate of the
norm in M(Bm

p → Bl
p) in Theorem 4.1.1. It also finishes the proof of necessity

in Theorem 4.1.1.

Corollary 4.3.5. Let γ ∈ M(Bm
p → Bl

p), where 0 < l ≤ m and p ∈ (1,∞).
Then (4.3.33) and (4.3.34) hold.
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Proof. Since γ ∈M(Bm
p → Bl

p), it follows that

‖γη‖Lp
≤ ‖γ‖M(Bm

p →Bl
p)‖η‖Bm

p

for any η ∈ C∞
0 (B2(x)), η = 1 on B1(x), where x is an arbitrary point of R

n.
Therefore,

sup
x∈Rn

‖γ;B1(x)‖Lp
≤ c ‖γ‖M(Bm

p →Bl
p).

The result follows by combining this inequality with Lemma 4.3.6. ��

The next corollary contains one more lower estimate for the norm in the
space M(Bm

p → Bl
p).

Corollary 4.3.6. Let γ ∈M(Bm
p → Bl

p), where 0 < l ≤ m, p ∈ (1,∞). Then
for any k = 0, . . . , [l], if l is a noninteger, and for any k = 0, . . . , l − 1, if l is
an integer, the inclusion Dp,l−kγ ∈M(Bm−k

p → Lp) holds and

‖Dp,l−kγ‖M(Bm−k
p →Lp) ≤ c ‖γ‖M(Bm

p →Bl
p).

Proof. By Corollaries 4.3.5 and 4.3.2,

sup
e

‖Dp,l−kγ; e‖Lp

[Cp,m−k(e)]1/p
≤ c ‖γ‖M(Bm−k

p →Bl−k
p ) ≤ c ‖γ‖M(Bm

p →Bl
p). (4.3.62)

It remains to make use of (4.3.12). ��

4.3.6 Proof of Sufficiency in Theorem 4.1.1

The aim of this section is to prove the upper estimate for ‖γ‖M(Bm
p →Bl

p) in
(4.1.4).

Lemma 4.3.7. Let γ ∈ Bl
p,loc, p ∈ (1,∞). Then for m > l

‖γ‖M(Bm
p →Bl

p) ≤ c sup
e,diam(e)≤1

(‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
+

‖γ; e‖Lp

[Cp,m−l(e)]1/p

)
. (4.3.63)

For m = l the second term should be replaced by ‖γ‖L∞ .

Proof. It follows from the finiteness of the right-hand side of (4.3.63) that
γ ∈ L1,unif . Let γρ denote a mollifier of γ with radius ρ. Since γ ∈ L1,unif we
see that all derivatives of γρ are bounded. Hence γρ ∈M(Bm

p → Bl
p).

For integer l we find by (4.3.45) that

‖γρu‖Bl
p
≤ c
( l−1∑

j=0

‖ |∇jγρ|Dp,l−ju‖Lp
+

l−1∑
j=0

‖ |∇ju|Dp,l−jγρ‖Lp

+
l−1∑
j=0

(∫ ∫
|∆h∇jγρ(x)|p|∆h∇l−1−ju|p|h|−n−pdhdx

)1/p)
. (4.3.64)
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By Corollary 4.3.4,

‖∇jγρ‖M(Bm−l+j
p →Lp) ≤ c ‖γρ‖M(Bm−l+j+α

p →Bα
p ) (4.3.65)

for any α ∈ (0, 1). In view of (4.3.26), for m > l the right-hand side in (4.3.65)
does not exceed

c ‖γρ‖(l−α)/l

M(Bm−l
p →Lp)

‖γρ‖α/l

M(Bm
p →Bl

p)
.

Combining this fact with (4.3.46) and (4.3.47), we obtain

‖ |∇jγρ|Dp,l−ju‖Lp

≤
(
ε‖γρ‖M(Bm

p →Bl
p) + c(ε)‖γρ‖M(Bm−l

p →Lp)

)
‖u‖Bm

p
, (4.3.66)

where j = 0, . . . , l − 1, and ε is an arbitrary positive number.
In case m = l inequalities (4.3.65) and (4.3.27) imply that

‖∇jγρ‖M(Bj
p→Lp) ≤ c ‖γρ‖(l−j)/l

L∞
‖γρ‖j/l

MBl
p
.

Unifying this estimate with (4.3.46) and (4.3.47) for m = l, we obtain

‖ |∇jγρ|Dp,l−ju‖Lp
≤
(
ε‖γρ‖MBl

p
+ c(ε)‖γρ‖L∞

)
‖u‖Bl

p
. (4.3.67)

It follows from (4.3.51), (4.3.52), and (4.3.26), (4.3.27) that for j > 0

‖ |∇ju|Dp,l−jγρ‖Lp

≤
(
ε‖γρ‖M(Bm

p →Bl
p) + c(ε)‖γρ‖M(Bm−l

p →Lp)

)
‖u‖Bm

p
, (4.3.68)

if m > l, and

‖ |∇ju|Dp,l−jγρ‖Lp
≤
(
ε‖γρ‖MBl

p
+ c(ε)‖γρ‖L∞

)
‖u‖Bl

p
, (4.3.69)

if m = l.
The third sum on the right-hand side of (4.3.64) is estimated by using

(4.3.55) and (4.3.26), (4.3.27). It has the same majorant as the right-hand
side of (4.3.68) for m > l or (4.3.69) for m = l. Thus, for m > l we find that

‖γρu‖Bl
p
≤
(
ε‖γρ‖M(Bm

p →Bl
p) + c(ε)‖γρ‖M(Bm−l

p →Lp)

+ c sup
e,diam(e)≤1

‖Dp,lγρ; e‖Lp

[Cp,m(e)]1/p

)
‖u‖Bm

p
. (4.3.70)
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Similarly, for m = l,

‖γρu‖Bl
p
≤
(
ε‖γρ‖MBl

p
+ c(ε)‖γρ‖L∞

+ c sup
e,diam(e)≤1

‖Dp,lγρ; e‖Lp

[Cp,l(e)]1/p

)
‖u‖Bl

p
. (4.3.71)

For noninteger l the following estimate, simpler than (4.3.64), holds:

‖γρu‖Bl
p
≤ c
( [l]∑

j=0

‖ |∇jγρ|Dp,l−ju‖Lp
+

[l]∑
j=0

‖ |∇ju|Dp,l−jγρ‖Lp

)

Combining (4.3.60) with Corollary 4.3.4 and (4.3.26), (4.3.27), we arrive at
(4.3.66) and (4.3.67) in the same way as for integer l. We also note that (4.3.61)
and (4.3.26) for m > l and (4.3.27) for m = l imply (4.3.68) and (4.3.69)
for noninteger l. Reference to (4.3.12) and Lemma 4.3.3 completes the proof. ��

The required upper estimate of ‖γ‖MBl
p

in (4.1.4) is obtained in Lemma
4.3.7. In order to show that the second term in the right-hand side of (4.3.63)
can be replaced by ‖γ‖L1,unif for m > l, we need several auxiliary assertions.

Let (Tγ)(x, y) denote the Poisson integral of a function γ ∈ L1,unif defined
by (3.2.38).

Lemma 4.3.8. Let l be a noninteger and let γ ∈W [l]
1,loc. Then

(∫ ∞

0

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣
p

yp−1−p{l}dy
)1/p

≤ c (Dp,lγ)(x).

Proof. Our argument is similar to that used in the proof of Lemma 3.2.12.
We start with the inequality

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣ ≤ c

∫ |∇[l]γ(x− ξ)−∇[l]γ(x)|
(|ξ|+ y)n+1

dξ (4.3.72)

derived in the proof of Lemma 3.2.12. Hence
∫ ∞

0

∣∣∣∂
[l]+1γ(x, y)
∂y[l]+1

∣∣∣
p

yp−1−p{l}dy

≤ c

∫ ∞

0

yp(1−{l})
(∫ |∇[l]γ(x− ξ)−∇[l]γ(x)|

yn+1

(
1 +
|ξ|
y

)−n−1
dξ
)p dy

y

= c

∫ ∞

0

(∫ |∇[l]γ(x− ξ)−∇[l]γ(x)|
|ξ|n+{l}

( |ξ|
y

)n+{l}(1+
|ξ|
y

)−n−1
dξ
)p dy

y
. (4.3.73)
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Introducing spherical coordinates, we write the last expression as

c

∫ ∞

0

(∫ ∞

0

f
( t
y

)
g(t, x)

dt

t

)p dy

y
,

where
f(s) = sn+{l}(1 + s)−n−1

and
g(t, x) = t−{l}

∫

∂B1

|∇[l]γ(x+ tθ)−∇[l]γ(x)|dθ.

Clearly,
∫ ∞

0

(∫ ∞

0

f
( t
y

)
g(t, x)

dt

t

)p dy

y
=
∫ ∞

0

(∫ ∞

0

f(s)g(sy, x)
ds

s

)p dy

y
. (4.3.74)

By Minkowski’s inequality the expression on the right-hand side does not
exceed (∫ ∞

0

(∫ ∞

0

(f(s))p(g(sy, x))p dy

y

)1/p ds

s

)p

=
(∫ ∞

0

f(s)
(∫ ∞

0

(g(τ, x))p dτ

τ

)1/p ds

s

)p

=
(∫ ∞

0

f(s)
ds

s

)p
∫ ∞

0

(g(τ, x))p dτ

τ
.

We deduce from the definition of f that
∫ ∞

0

f(s)
ds

s
≤
∫ 1

0

sn+{l} ds

s
+
∫ ∞

1

s{l}−1 ds

s
<∞. (4.3.75)

Therefore, (4.3.73)–(4.3.75) imply the estimate

∫ ∞

0

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣
p

yp−1−p{l}dy ≤ c

∫ ∞

0

(g(τ, x))p dτ

τ
.

It remains to note that
∫ ∞

0

(g(τ, x))p dτ

τ
=
∫ ∞

0

τ−p{l}
(∫

∂B1

|∇[l]γ(τθ + x)−∇[l]γ(x)|dθ
)p dτ

τ

≤
∫ ∞

0

∫

∂B1

|∇[l]γ(τθ + x)−∇[l]γ(x)|pdθ dτ

τ1+p{l}

≤ c

∫ |∇[l]γ(x+ h)−∇[l]γ(x)|p
|h|n+p{l} dh.

The proof is complete. ��
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The following two lemmas are similar to Lemmas 3.2.13 and 3.2.14.

Lemma 4.3.9. Let γ ∈W [l]
1,loc, y ∈ (0, 1]. Then

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣ ≤ c y{l}−m−1 sup
x∈Rn,r∈(0,1)

rm−n/p‖Dp,lγ;Br(x)‖Lp
.

Proof. We introduce the notation

K = sup
x∈Rn,r∈(0,1)

rm−n/p‖Dp,lγ;Br(x)‖Lp
. (4.3.76)

Let r ∈ (0, 1]. By Lemma 4.3.8,
∫

Br(x)

∫ ∞

0

∣∣∣∂
[l]+1(Tγ)(t, y)

∂y[l]+1

∣∣∣
p

yp−1−p{l}dy dt ≤ cKprn−mp. (4.3.77)

Applying the mean value theorem for harmonic functions, we find for r/2 <
y < 2r/3 that

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣ ≤ c r−n−1

∫

Br(x)

∫ r

r/4

∣∣∣∂
[l]+1(Tγ)(t, η)

∂η[l]+1

∣∣∣ dηdt.

By Hölder’s inequality the right-hand side is dominated by

c r{l}−1−n/p
(∫

Br(x)

∫ r

r/4

∣∣∣∂
[l]+1(Tγ)(t, η)

∂η[l]+1

∣∣∣
p

ηp−1−p{l}dηdt
)1/p

which by (4.3.77) does not exceed c r{l}−m−1K. The result follows. ��

Lemma 4.3.10. Let γ ∈W [l]
1,loc. Then for almost all x ∈ R

n the inequality

|γ(x)| ≤ c
((

sup
x∈Rn,
r∈(0,1)

rm−n/p‖Dp,lγ;Br(x)‖Lp

)l/m(Dp,lγ(x))(m−l)/m + ‖γ‖L1,unif

)

holds.

Proof. We put

v(y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣ for 0 < y ≤ 1,

0 for y > 1.

Then, for any R > 0
∫ 1

0

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣y[l]dy =
∫ ∞

0

v(y)y[l]dy =
∫ R

0

v(y)y[l]dy+
∫ ∞

R

v(y)y[l]dy.
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Applying Hölder’s inequality, we find that
∫ R

0

v(y)y[l]dy ≤ c Rl
(∫ R

0

(v(y))pyp−p{l}−1dy
)1/p

.

By Lemma 4.3.9,

∣∣∣∂
[l]+1(Tγ)(x, y)

∂y[l]+1

∣∣∣ ≤ cKy{l}−m−1,

where K is defined by (4.3.76). Hence
∫ ∞

0

v(y)y[l]dy ≤ c
(
Rl
(∫ ∞

0

(v(y))pyp−p{l}−1dy
)1/p

+Rl−mK
)
.

Putting here

R = K1/m
(∫ ∞

0

v(y)pyp−p{l}−1dy
)−1/pm

,

we arrive at
∫ ∞

0

v(y)y[l]dy ≤ cKl/m
(∫ ∞

0

v(y)pyp−p{l}−1dy
)(m−l)/pm

.

Combining this inequality with (3.2.39) for k = [l] we arrive at

|γ(x)| ≤ c
(
Kl/m

(∫ ∞

0

v(y)pyp−p{l}−1dy
)(m−l)/pm

+ ‖γ‖L1,unif

)
.

Reference to Lemma 4.3.8 completes the proof. ��

Now, we are in a position to prove the main result of this section.

Lemma 4.3.11. Let 0 < l < m, p ∈ (1,∞). Then

‖γ‖M(Bm
p →Bl

p) ≤ c
(

sup
e,diam(e)≤1

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
+ ‖γ‖L1,unif

)
. (4.3.78)

Proof. By (2.3.18) with ϕ = |γρ|1/(m−l), λ = m− l, and µ = m− ε, where ε is
a positive number less than l such that both l− ε and m− ε are nonintegers,
we find that

sup
e

∫

e

|γρ|p(x)dx

Cp,m−l(e)
≤ c sup

e

(
∫

e

|γρ|
m−ε
m−l p(x)dx

Cp,m−ε(e)

)m−l
m−ε

. (4.3.79)

Using Lemma 4.3.10 with l replaced by l − ε and m replaced by m − ε, we
obtain
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∫

e

|γρ|
(m−ε)p

m−l dx ≤ c
((

sup
x∈Rn,r∈(0,1)

rm−ε−n
p ‖Dp,l−εγρ;Br(x)‖Lp

) (l−ε)p
m−l

×
∫

e

|(Dp,l−εγρ)(x)|pdx+ ‖γρ‖
(m−ε)p

m−l

L1,unif
mesne

)
.

Hence

(
∫

e

|γρ|
(m−ε)p

m−l (x)dx

Cp,m−ε(e)

) m−l
(m−ε)p

≤ c

{(
sup

x∈Rn,
r∈(0,1)

rm−ε−n
p ‖Dp,l−εγρ;Br(x)‖Lp

) l−ε
m−ε

×
(

sup
e

‖Dp,l−εγρ; e‖Lp

[Cp,m−ε(e)]1/p

)m−l
m−ε

+ ‖γρ‖L1,unif

}
. (4.3.80)

By Corollary 4.3.2,

sup
e

‖Dp,l−εγρ; e‖Lp

[Cp,m−ε(e)]1/p
≤ c ‖γρ‖M(W m−ε

p →W l−ε
p )

= c ‖γρ‖M(Bm−ε
p →Bl−ε

p ) ≤ c ‖γρ‖M(Bm
p →Bl

p).

Thus, the left-hand side of (4.3.80) has the majorant

c
((

sup
x∈Rn,
r∈(0,1)

rm−ε−n
p ‖Dp,l−εγρ;Br(x)‖Lp

) l−ε
m−ε ‖γρ‖

m−l
m−ε

M(Bm
p →Bl

p)
+ ‖γρ‖L1,unif

)

which together with (4.3.79) implies the inequality

sup
e

(
∫

e

|γρ|p(x)dx

Cp,m−l(e)

)1/p

≤ c(δ) sup
x∈Rn,
r∈(0,1)

rm−ε−n
p ‖Dp,l−εγρ;Br(x)‖Lp

+ δ‖γρ‖M(Bm
p →Bl

p) + c ‖γρ‖L1,unif , (4.3.81)

where δ is an arbitrary positive number.
Next we show that

sup
x∈Rn,r∈(0,1)

rm−ε−n
p ‖Dp,l−εγρ;Br(x)‖Lp

≤ c(σ) sup
x∈Rn,r∈(0,1)

rm−n
p ‖Dp,lγρ;Br(x)‖Lp

+ σ ‖γρ‖M(Bm
p →Bl

p) (4.3.82)

where σ is an arbitrary positive number. We note that by (4.1.3) Dp,l−εγρ can
be replaced by Dp,l−εγρ. Let ω denote a positive number to be chosen later.
Further, let k = l − 1 and λ = 1 for integer l, and let k = [l] and λ = {l} for
noninteger l. We then have
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∫

Br(x)

dy

∫

Bωr

|∇kγρ(y + 2h)− 2∇kγρ(y + h) +∇kγρ(y)|p
|h|n+p(λ−ε)

dh

≤ (ωr)pε

∫

Br(x)

dy

∫

Bωr

|∇kγρ(y + 2h)− 2∇kγρ(y + h) +∇kγρ(y)|p
|h|n+pλ

dh

≤ (ωr)pε‖Dp,lγρ;Br(x)‖pLp
. (4.3.83)

Also,
∫

Br(x)

dy

∫

Rn\Bωr

|∇kγρ(y + 2h)− 2∇kγρ(y + h) +∇kγρ(y)|p
|h|n+p(λ−ε)

dh

≤ c
(∫

Br(x)

dy

∫

Rn\Bωr

|∇kγρ(y + 2h)|p
|h|n+p(λ−ε)

dh+
∫

Br(x)

dy

∫

Rn\Bωr

|∇kγρ(y + h)|p
|h|n+p(λ−ε)

dh

+(ωr)p(ε−λ)‖∇kγρ;Br(x)‖pLp

)
. (4.3.84)

Further, we have
∫

Br(x)

dy

∫

Rn\Bωr

|∇kγρ(y + 2h)|p
|h|n+p(λ−ε)

dh

≤
∫

Rn\Bωr

dh

|h|n+p(λ−ε)

∫

Br(x+2h)

|∇kγρ(z)|pdz

≤ c ωp(ε−λ)rn−pm+pε sup
x∈Rn,r∈(0,1)

rp(m−λ)−n‖∇kγρ;Br(x)‖pLp
.

By (4.3.14)–(4.3.16) the last supremum is dominated by

c ‖∇kγρ‖pM(W m−λ
p →Lp)

which by Corollary 4.3.4 does not exceed c ‖γρ‖pM(Bm
p →Bl

p)
.

Clearly, the second term on the right-hand side of (4.3.84) is estimated in
the same way. Similarly, the third term does not exceed

c ωp(ε−λ)rn−pm+pε‖γρ‖pM(Bm
p →Bl

p)
.

Hence
∫

Br(x)

dy

∫

Rn\Bωr

|∇kγρ(y + 2h)− 2∇kγρ(y + h) +∇kγρ(y)|p
|h|n+p(λ−ε)

dh

≤ c ωp(ε−λ)rn−pm+pε‖γρ‖pM(Bm
p →Bl

p)
. (4.3.85)
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From (4.3.83) and (4.3.85) we obtain

rm−ε−n/p‖Dp,l−εγρ‖Lp
≤c
(
ωεrm−n/p‖Dp,lγρ;Br(x)‖Lp

+ωε−λ‖γρ‖M(Bm
p →Bl

p)

)
.

Setting σ = c ωε−λ, we arrive at (4.3.82).
By (4.3.14)–(4.3.16) and (4.3.82),

sup
x∈Rn,r∈(0,1)

rm−ε−n
p ‖Dp,l−εγρ;Br(x)‖Lp

≤ c(σ) sup
e

‖Dp,lγρ; e‖Lp

[Cp,m(e)]1/p
+ σ‖γρ‖M(Bm

p →Bl
p),

which together with (4.3.81) and Lemma 4.3.7 gives

‖γρ‖M(Bm
p →Bl

p) ≤ c
(
sup

e

‖Dp,lγρ; e‖Lp

[Cp,m(e)]1/p
+ ‖γρ‖L1,unif

)
. (4.3.86)

It remains to estimate the right-hand side of (4.3.86) by Lemma 4.3.3, and to
use the equivalence relation

Cp,m(e) ∼
∑
j≥1

Cp,m(e ∩ B(j)),

where {B(j)}j≥0 is a covering of R
n by balls of diameter one with multiplicity

depending only on n (see Proposition 3.1.5). The result follows. ��

Combining the statements of Lemmas 4.3.6 and 4.3.11, we complete the
proof of Theorem 4.1.1.

The next assertion contains a modified version of Theorem 4.1.1.

Corollary 4.3.7. Let 0 < l < m and let p ∈ (1,∞). Then for noninteger l

‖γ‖M(Bm
p →Bl

p)

∼
[l]∑

j=0

(
‖Dp,l−jγ‖M(Bm−j

p →Lp) + ‖∇[l]−jγ‖M(B
m−j−{l}
p →Lp)

)
, (4.3.87)

and for integer l
‖γ‖M(Bm

p →Bl
p)

∼
l−1∑
j=0

‖Dp,l−jγ‖M(Bm−j
p →Lp) +

l∑
j=1

‖∇l−jγ‖M(Bm−j
p →Lp). (4.3.88)

Also,
‖γ‖M(Bm

p →Bl
p) ∼ ‖Dp,lγ‖M(Bm

p →Lp) + ‖γ‖L1,unif . (4.3.89)

For m = l the norm ‖γ‖L1,unif should be replaced by ‖γ‖L∞ .
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Proof. The upper estimate in (4.3.87) follows from Theorem 4.1.1 and the
equivalence relation (4.3.12). By Corollaries 4.3.6 and 4.3.4, the lower bound
in (4.3.87) results from

‖Dp,l−jγ‖M(Bm−j
p →Lp) ≤ c ‖γ‖M(Bm−j

p →Bl−j
p ) ≤ c ‖γ‖M(Bm

p →Hl
p)

and

‖∇[l]−jγ‖M(B
m−j−{l}
p →Lp)

≤ c ‖γ‖
M(B

m−j−{l}
p →B

[l]−j
p )

≤ c ‖γ‖M(Bm
p →Bl

p).

��

Remark 4.3.2. It follows from Remark 3.1.3 that the supremum on the right-
hand side of (4.1.4) is equivalent to each of the suprema

sup
{Q}

‖JmχQ(Dp,lγ)p;Q‖Lp/(p−1)

‖Dp,lγ;Q‖p−1
Lp

, (4.3.90)

where {Q} is the collection of all cubes, χQ is the characteristic function of
Q, and

sup
x∈Rn

Jm(Jm(Dp,lγ)p)p/(p−1)(x)
Jm(Dp,lγ)p(x)

. (4.3.91)

Adding to (4.3.90) and (4.3.91) the norms ‖γ‖L1,unif for m > l and ‖γ‖L∞

for m = l, we arrive at two non-capacitary necessary and sufficient conditions
for γ ∈M(Bm

p → Bl
p).

4.3.7 The Case mp > n

For mp > n Theorem 4.1.1 has a simpler formulation.

Corollary 4.3.8. Let 0 < l ≤ m, mp > n, and p ∈ (1,∞). Then

‖γ‖M(Bm
p →Bl

p) ∼ sup
x∈Rn

(
‖Dp,lγ;B1(x)‖Lp

+ ‖γ;B1(x)‖Lp

)
. (4.3.92)

For m = l the second term on the right-hand side can be replaced by ‖γ‖L∞ .

Proof. The lower estimate of ‖γ‖M(Bm
p →Bl

p) follows from the relation

Cp,m(e) ∼ 1 (4.3.93)

wich holds for mp > n and e with diam(e) ≤ 1, and from Corollary 4.3.5. The
upper estimate results from

‖γ‖M(Bm
p →Bl

p) ≤ ‖γ‖MBl
p
≤ c

(
sup

e,diam(e)≤1

‖Dp,lγ; e‖Lp
+ ‖γ‖L∞

)

≤ c sup
x∈Rn

(
‖Dp,lγ;B1(x)‖+ ‖γ;B1(x)‖Lp

)
.

The proof is complete. ��
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Remark 4.3.3. One can easily verify that the right-hand side of (4.3.92) is
equivalent to the norm of γ in Bl

p,unif . Hence M(Bm
p → Bl

p) is isomorphic to
Bl

p,unif for 0 < l ≤ m, mp > n, p ∈ (1,∞).

4.3.8 Lower and Upper Estimates for the Norm in M(Bm
p → Bl

p)

Here we present some lower and, separately, upper bounds for the norm in
M(Bm

p → Bl
p), mp ≤ n, which do not involve the capacity and which follow

from the characterization of multipliers in M(Bm
p → Bl

p). The next assertion
stems directly from Proposition 3.1.4 and Theorem 4.1.1.

Proposition 4.3.1. Let 0 < l < m. If mp < n, then

‖γ‖M(Bm
p →Bl

p) ≥ c
(

sup
x∈Rn

r∈(0,1)

rm−n/p‖Dp,lγ;Br(x)‖Lp
+ ‖γ‖L1,unif

)
(4.3.94)

and, if mp = n, then
‖γ‖M(Bm

p →Bl
p)

≥ c
(

sup
x∈Rn

r∈(0,1)

(log 2r−1)1−1/p‖Dp,lγ;Br(x)‖Lp
+‖γ‖L1,unif

)
. (4.3.95)

For m = l the second term on the right-hand side of (4.3.94) and (4.3.95)
should be replaced by ‖γ‖L∞ .

Finally we formulate a corollary of Theorem 4.1.1 and Propositions 3.1.2
and 3.1.3.

Proposition 4.3.2. Let 0 < l < m. If mp < n, then

‖γ‖M(Bm
p →Bl

p)

≤ c
(

sup
{e:d(e)≤1}

(mesne)m/n−1/p‖Dp,lγ; e‖Lp
+ ‖γ‖L1,unif

)
(4.3.96)

and, if mp = n, then
‖γ‖M(Bm

p →Bl
p)

≤ c
(

sup
{e:d(e)≤1}

(log(2n/mesne))1/p′‖Dp,lγ; e‖Lp
+ ‖γ‖L1,unif

)
. (4.3.97)

For m = l the second term on the right-hand side of (4.3.96) and (4.3.97)
should be replaced by ‖γ‖L∞ .
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4.4 Sufficient Conditions for Inclusion
into M(W m

p → W l
p) with Noninteger m and l

It may be of use to compare the contents of this section with sufficient condi-
tions for inclusion into the class M(Hm

p → H l
p) obtained in 3.4. Here similar

conditions are found for M(Wm
p → W l

p), {m} > 0, {l} > 0. They are for-
mulated in terms of the spaces Bµ

q,∞ (cf. (4.4.2)), Bl
q,p (cf. (4.4.3)) and H l

n/m

(cf. (4.4.4).
By Bs

q,θ we denote the space of functions in R
n having the finite norm

‖u‖Bs
q,θ

=
(∫
‖∆h∇[s]u‖θLq

|h|−n−θ{s} dh
)1/θ

+ ‖u‖
W

[s]
q
, (4.4.1)

where {s} > 0, q, θ ≥ 1.

4.4.1 Conditions Involving the Space Bµ
q,∞

We prove an assertion analogous to Theorem 3.4.1 and formulated in terms
of the space Bs

q,θ,unif.
It is clear that

‖u‖Bs
q,θ,unif

∼ sup
x∈Rn

[( ∫

B1

‖∆h∇[s]u;B1(x)‖θLq
|h|−n−θ{s} dh

)1/θ

+‖u;B1(x)‖
W

[s]
q

]
.

Theorem 4.4.1. Let q ≥ p > 1, {m} > 0, {l} > 0, µ = n/q −m + l, µ > l,
and {µ} > 0.

(i) If γ ∈ Bµ
q,∞,unif ∩ L∞ then γ ∈MW l

p and

‖γ‖MW l
p
≤ c (‖γ‖Bµ

q,∞,unif
+ ‖γ‖L∞). (4.4.2)

(ii) If γ ∈ Bµ
q,∞,unif, then γ ∈M(Wm

p →W l
p) and

‖γ‖M(W m
p →W l

p) ≤ c ‖γ‖Bµ
q,∞,unif

. (4.4.3)

Proof. Let m ≥ l. It suffices to assume that the difference ε = µ− l is small,
since the general case follows by interpolation between the pairs {Wm−l

p , Lp}
and {Wn/q−ε

p ,Wµ−ε
p } (see (4.3.26)). Thus we assume that 1 + [l] > µ > l.

Let e be a compact set in R
n, d(e) ≤ 1, and let |e| = mesne. We have

‖Dp,lγ; e‖pLp
=
∫

dh

|h|n+p{l}

∫

e

|∇[l]γ(x+ h)−∇[l]γ(x)|p dx . (4.4.4)

We express the integral over R
n as the sum of two integrals i1 + i2, the first

being taken over the exterior of the ball {h : |h| < |e|1/n}. Obviously,
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i1 ≤ c

∫

|h|>|e|1/n

dh

|h|n+p{l}

(∫

e

|∇[l]γ(x+ h)|p dx+
∫

e

|∇[l]γ(x)|p dx
)

≤ c |e|1−p/q

∫

|h|>|e|1/n

dh

|h|n+p{l}

(∫

e

|∇[l]γ(x+ h)|q dx+
∫

e

|∇[l]γ(x)|q dx
)p/q

.

Hence, using Corollary 3.4.1, we obtain

i1 ≤ c |e|1−p/q+{µ}p/n

∫

|h|>|e|1/n

dh

|h|n+p{l}N(γ)p , (4.4.5)

where N(γ) is the right-hand side of either (4.4.2) or (4.4.3). Since [µ] = [l],
we have {µ} − {l} = µ− l and consequently

i1 ≤ c |e|1−mp/nN(γ)p .

By Hölder’s inequality,

i2 ≤ |e|1−p/q

∫

|h|<|e|1/n

dh

|h|n+p{l}

(∫

e

|∇[l]γ(x+ h)−∇[l]γ(x)|q dx
)p/q

≤ |e|1−p/q

∫

|h|≤|e|1/n

dh

|h|n+p({l}−{µ})N(γ)p = c |e|1−pm/nN(γ)p .

Combining this result with (4.4.4) and (4.4.5), we have

‖Dp,lγ; e‖Lp
≤ c |e|1/p−m/nN(γ).

In addition, according to (3.4.19),

‖γ; e‖Lp
≤ c |e|1/p−(m−l)/nN(γ) (4.4.6)

for m > l. It remains to refer to Proposition 4.3.2. ��

Using the same arguments as in the proof of Corollary 3.4.2, we obtain:

Corollary 4.4.1. Let n = 1, q ≥ p and lq < 1. If γ ∈ L∞ and Varq(γ) <∞,
then γ ∈MW l

p and

‖γ‖MW l
p
≤ c (‖γ‖L∞ + Varq(γ)) .

We give one more sufficient condition for a function to belong to the space
M(Bm

p → Bl
p) for noninteger m and l in the case mp = n. We introduce the

semi-norm

〈γ〉 = sup
y∈Rn

sup
h∈B1/2

|h|−{l} log(1/|h|)‖∆h∇[l]γ;B1(y)‖Lp
.
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Theorem 4.4.2. Let {m} > 0, {l} > 0, p > 1.
(i) If lp = n, γ ∈ L∞ and 〈γ〉 <∞, then γ ∈MW l

p and

‖γ‖MW l
p
≤ c (〈γ〉+ ‖γ‖L∞) . (4.4.7)

(ii) If mp = n, γ ∈ Lp,unif and 〈γ〉 < ∞, then γ ∈ M(Wm
p → W l

p) for
l < m and

‖γ‖M(W m
p →W l

p) ≤ c (〈γ〉+ ‖γ‖Lp,unif) . (4.4.8)

Proof. By Q(γ) we denote either of the right-hand sides of (4.4.7) and (4.4.8).
We express the integral over R

n in (4.4.4) as the sum i1 + i2 of two integrals,
the first being taken over the exterior of the ball

K = {h : |h| < c0|e|1/n(log 2n/|e|)(p−1)/p{l}} ,

where |e| = mesne and c0 is a small positive constant depending on n and p.
By Corollary 3.4.1 with q = p and µ = n/p = l,

i1 ≤ c

∫

Rn\K

dh

|h|n+p{l}

(∫

e

|∇[l]γ(x+ h)|p dx+
∫

e

|∇[l]γ(x)|p dx
)

≤ c |e|{l}p/n

∫

Rn\K

dh

|h|n+p{l}Q(γ)p ≤ c(log 2n/|e|)1−pQ(γ)p . (4.4.9)

Moreover,

i2 ≤ 〈γ〉p
∫

K

dh

|h|n(log 1/|h|)p
.

The integral on the right-hand side does not exceed c (log 2n/|e|)1−p. This
estimate, together with (4.4.4) and (4.4.9), yields

(log 2n/|e|)(p−1)/p‖Dp,lγ; e‖Lp
≤ cQ(γ).

In addition, by (4.4.6)

|e|−l/n‖γ; e‖Lp
≤ cQ(γ).

Reference to Proposition 4.3.1 completes the proof. ��

4.4.2 Conditions Involving the Fourier Transform

We start with the following known characterization of the space Bs
2,∞ (see,

for example, [Tr3]).

Lemma 4.4.1. The relation

‖u‖Bs
2,∞ ∼ sup

R>1
Rs‖Fu;B2R\BR‖L2 + ‖u‖L2 (4.4.10)

holds.
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Proof. The lower bound for the norm in Bs
2,∞ is obtained as follows:

sup
h
|h|−2{s}‖∆h∇[s]u‖2L2

= c sup
ρ>0

ρ−2{s}
∫

∂B1

‖∆ρθ∇[s]u‖2L2
dσθ

= c sup
ρ>0

ρ−2{s}
∫∫

∂B1

|ξ|2[s]|Fu(ξ)|2 sin2 ρ(θ, ξ)
2

dσθdξ

≥ c sup
ρ>0

ρ2(1−{s})
∫

ρ−1>|ξ|>(2ρ)−1
|ξ|2[s]+1|Fu(ξ)|2 dξ

≥ c sup
ρ>0

R2s

∫

B2R\BR

|Fu(ξ)|2 dξ .

On the other hand,

sup
h
|h|−2{s}‖∆h∇[s]u‖2L2

≤ c sup
h
|h|−2{s}

∫

|ξ||h|>1

|ξ|2[s]|Fu(ξ)|2dξ

+ c sup
h
|h|2(1−{l})

∫

|ξ||h|<1

|ξ|2[s]+2|Fu(ξ)|2 dξ . (4.4.11)

The first term on the right-hand side does not exceed

c sup
h
|h|−2s

∞∑
j=1

4j[s]

∫

2j>|ξ||h|>2j−1
|Fu(ξ)|2 dξ

≤ c

∞∑
j=1

4−j{s} sup
R

R2s

∫

B2R\BR

|Fu(ξ)|2 dξ .

The second term on the right-hand side of (4.4.11) is majorized by

c sup
h
|h|−2s

∞∑
j=0

4−j([s]+1)

∫

2−j−1<|ξ||h|<2−j

|Fu(ξ)|2 dξ

≤ c

∞∑
j=0

4−j(1−{s}) sup
R

Rs

∫

B2R\BR

|Fu(ξ)|2 dξ .

The proof is complete. ��

In the same way one may prove:

Lemma 4.4.2. The norms

sup
y∈Rn

sup
h∈B1/2

|h|−{l} log(1/|h|)‖∆h∇[l]u;B1(y)‖L2 + ‖u‖L2

and
sup
R>2

Rl logR ‖Fu;B2R\BR‖L2 + ‖u‖L2

are equivalent.
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Theorems 4.4.1, 4.4.2 and Lemmas 4.4.1, 4.4.2 imply:

Theorem 4.4.3. (i) If 1 < p ≤ 2, n/2 > m, m, l are noninteger, m > l and

(Fγ)(ξ) = O((1 + |ξ|)m−l−n),

then γ ∈M(Wm
p →W l

p).
(ii) If 1 < p ≤ 2, n/2 > l, l is a noninteger, γ ∈ L∞ and

(Fγ)(ξ) = O((1 + |ξ|)−n),

then γ ∈MW l
p.

(iii) If n is odd, 2l = n, γ ∈ L∞ and

(Fγ)(ξ) = O(|ξ|−n(log |ξ|)−1)

for |ξ| ≥ 2, then γ ∈MW l
2.

4.4.3 Conditions Involving the Space Bl
q,p

The condition γ ∈ Bµ
q,∞,unif in Theorem 4.4.1 requires the ‘number of deriv-

atives’ µ to exceed l. In this subsection we obtain sufficient conditions for a
function to belong to the class M(Wm

p →W l
p) in terms of the space Bl

q,p,unif.
We recall that diminishing the exponent θ leads to narrowing of Bµ

q,θ, and
diminishing of µ leads to expansion of this space. So new sufficient conditions
are not comparable with the conditions of Theorem 4.4.1.

Theorem 4.4.4. Let {m} > 0, {l} > 0, p > 1.
(i) Let q ∈ [n/l,∞] for pl < n and q ∈ (p,∞] for lp = n. If γ ∈ Bl

q,p,unif ∩
L∞, then γ ∈MW l

p and
‖γ‖MW l

p

≤ c
(

sup
x∈Rn

(∫

B1

‖∆h∇[l]γ;B1(x)‖pLq
|h|−n−p{l} dh

)1/p

+ ‖γ‖L∞

)
. (4.4.12)

(ii) Let m > l, q ∈ [n/m,∞] for mp < n and q ∈ (p,∞) for mp = n. If
γ ∈ Bl

q,p,unif, then γ ∈M(Wm
p →W l

p) and

‖γ‖M(W m
p →W l

p)

≤ c sup
x∈Rn

((∫

B1

‖∆h∇[l]γ;B1(x)‖pLq
|h|−n−p{l} dh

)1/p

+‖γ;B1(x)‖Lp

)
.

(4.4.13)

Proof. Proposition 4.2.6 implies that

‖γ‖M(W m
p →W l

p) ≤ c sup
x∈Rn

‖ηxγ‖M(Bm
p →Bl

p),
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where η ∈ C∞
0 (B1), η = 1 on B1/2 and ηx(y) = η(x− y). Therefore it suffices

to obtain (4.4.12), (4.4.13) under the assumption that the diameter of supp γ
does not exceed 1.

Let e ⊂ R
n, d(e) ≤ 1. We have

‖Dp,lγ; e‖pLp
≤
∫
‖∆h∇[l]γ; e‖pLp

dh

|h|n+p{l}

≤ (mesne)1−p/q

∫
‖∆h∇[l]γ; e‖pLq

dh

|h|n+p{l}

≤ (mesne)1−p/q sup
x∈Rn

∫
‖∆h∇[l]γ;B1(x)‖pLq

dh

|h|n+p{l} .

Reference to Proposition 4.3.2 completes the proof. ��

Putting q =∞ in (4.4.12), we obtain a simple condition for a function γ to
belong to the class MW l

p (and hence to M(Wm
p →W l

p)) formulated in terms
of the modulus of continuity ω of the vector-function ∇[l]γ:

∫

0

[
ω(t)

t{l}+1/p

]p

dt <∞ . (4.4.14)

The last theorem contains the condition lp ≤ n. Nevertheless, (4.4.14) ensures
that γ ∈MW l

p for lp > n, since in that case MW l
p = W l

p,unif ⊃ Bl
∞,p.

We show that even a rough condition (4.4.14) is the best possible in some
sense.

Example 4.4.1. Let ω be a continuous increasing function on [0, 1] satisfying
the inequalities

δ

∫ 1

0

ω(t)
t2

dt+
∫ δ

0

ω(t)
t

dt ≤ c ω(δ) , 1 > ω(δ) ≥ c δ. (4.4.15)

Further, let ∫ 1

0

[ω(t)t−{l}−1/p]p dt =∞.

We construct a function γ on R
n such that

1. the modulus of continuity of the vector-function ∇[l]γ does not exceed
c ω, where c = const;

2. γ /∈W l
p,unif and hence γ /∈M(Wm

p →W l
p).

We put

γ(x) =
n∏

i=1

η(xi)
∞∑

k=1

e−[l]kω(e−k) sin(ekx1) , (4.4.16)

where η ∈ C∞
0 (−2π, 2π), η = 1 on (−π, π), 0 < η ≤ 1.
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For small enough |h| we have

|∇[l]γ(x+ h)−∇[l]γ(x)|

≤ c
(
|h|

∞∑
k=1

ω(e−k) + |h|
∑

k≤log |h|−1

ω(e−k)ek +
∑

k>log |h|−1

ω(ek)
)

which, together with (4.4.15), gives

|∇[l]γ(x+ h)−∇[l]γ(x)| ≤ c ω(|h|) . (4.4.17)

Further,

‖γ‖p
W l

p
≥ c

∫

Rn

∫

R1

∣∣∣∆te1

∂[l]γ

∂x
[l]
1

∣∣∣
p dt

t1+p{l} . (4.4.18)

We set

f(x1) =
∞∑

k=1

e−[l]kω(e−k)eiekx1 . (4.4.19)

By virtue of (4.4.18) we have

‖f‖p
W l

p
≥ c ‖Imf [l]; (−π, π)‖p

W
{l}
p

≥ c ‖f [l]; (−π, π)‖p
W

{l}
p

.

It is clear that

∆tf
[l](x1) =

∞∑
k=1

e−[l]kω(e−k)(eiekt − 1)eiekx1 .

According to a known property of lacunary trigonometric series (see [Zy], v. 1,
Th. 8.20),

‖∆tf
[l]; (−π, π)‖2Lp

∼
∞∑

k=1

e−2[l]k(ω(e−k) sin(ekt/2))2 .

Therefore

‖γ‖p
W l

p
≥ c

∫ π

0

[ω(e−k(t)) sin(ek(t)t/2)]p
dt

t1+p{l} ,

where k(t) = [log 2t−1]. Finally,

‖γ‖p
W l

p
≥ c

∫ 1

0

[ ω(t)
t{l}+1/p

]p
dt =∞ .
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4.5 Conditions Involving the Space H l
n/m

Here we obtain an upper bound for the norm in M(Wm
p → W l

p) with nonin-
teger m and l, p ≥ 2, and mp < n, by the norm in the Bessel potential space
H l

n/m,unif.

Theorem 4.5.1. The estimates hold:

‖γ‖M(W m
p →W l

p) ≤ c ‖γ‖Hl
n/m,unif

, (4.5.1)

where m > l, {m} > 0, {l} > 0, mp < n and p ≥ 2, and

‖γ‖MW l
p
≤ c (‖γ‖Hl

n/l,unif
+ ‖γ‖L∞) , (4.5.2)

where {l} > 0, lp < n and p ≥ 2.

Proof. It suffices to derive (4.5.1) and (4.5.2) under the assumption that
the diameter of supp γ does not exceed 1 (cf. the beginning of the proof
of Theorem 4.4.4).

We use the inequality

‖Dp,lγ‖Ln/m
≤ c ‖γ‖Hl

n/m
,

where p ≥ 2, n > p(m−{l}), see Polking [Pol1]. Moreover, by Theorem 3.1.3,

‖γ‖Ln/(m−l) ≤ c ‖γ‖Hl
n/m

,

where m > l. It remains to apply the estimate

‖γ‖M(Bm
p →Bl

p) ≤ c sup
x∈Rn

(‖Dp,lγ;B1(x)‖Ln/m
+ ‖γ;B1(x)‖Ln/(m−l))

which follows from (4.3.96). ��

Possibly, it is of interest to compare the last theorem with Theorem 3.3.1,
according to which the right-hand sides of (4.5.1) and (4.5.2) majorize the
norms of MH l

p and M(Hm
p → H l

p) for any p ∈ (1,∞).
We show that the condition p ≥ 2 in the theorem of this subsection cannot

be omitted.

Example 4.5.1. Let us consider the function γ defined by (4.4.16). Since, for
q ∈ (1,∞),

‖γ‖Hl
q
∼

n∑
j=1

∥∥∥
(
1− ∂2

∂x2
j

)l/2

γ
∥∥∥

Lq
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(see the proof of Proposition 3.5.4), it follows that

‖γ‖Hl
q
∼ ‖η Im f ; R1‖Hl

q
,

where η and f are functions defined in Example 4.4.1.
It is known that η Im f ∈ H l

q(R
1) if and only if the function Im f belongs

to the space H l
q on the unit circumference C and

‖η Im f ; R1‖Hl
q
∼ ‖Im f ;C‖Hl

q
=
(∫ π

−π

∣∣∣
(
1− d2

dθ2

)l/2

Im f(θ)
∣∣∣
q

dθ
)1/q

.

(We omit a standard but rather tedious proof of this fact.) Therefore

‖γ‖Hl
q
∼
( ∞∑

k=1

e−2[l]k(1 + e2k)l/2[ω(e−k)]2
)1/2

and consequently γ ∈ H l
q if and only if

∫ 1

0

(ω(t)
t{l}

)2 dt

t
<∞ . (4.5.3)

From Theorem 3.3.1 and from the imbedding M(Hm
p → H l

p) ⊂ H l
p,unif we

obtain that (4.5.3) is equivalent to γ ∈M(Hm
p → H l

p).
It was shown in Example 4.4.1 that γ ∈M(Wm

p →W l
p) if and only if

∫ 1

0

(ω(t)
t{l}

)p dt

t
<∞ . (4.5.4)

If the theorem of this subsection were true for p < 2, we would have
implication (4.5.3) ⇒ (4.5.4), which is obviously wrong.

What is more, we see that for p < 2 one cannot give sufficient conditions
for inclusion into M(Wm

p →W l
p), {l} > 0 stated in terms of H l

q.

4.6 Composition Operator on M(W m
p → W l

p)

According to a theorem by Hirschman [Hi1], the composition ϕ(γ) of ϕ ∈ C0,ρ,
ρ ∈ (0, 1], and of a multiplier γ in the space W l

2, l ∈ (0, 1), represents a
multiplier in W r

2 , where r ∈ (0, lρ) if ρ < 1 and r = l if ρ = 1. The case ρ = 1
was considered earlier by Beurling [Beu].

The purpose of this section is to present a generalization of Hirschman’s
result, obtained in [MSh8].

Theorem 4.6.1. Let γ ∈ M(Wm
p → W l

p), m ≥ l, 0 < l < 1, p > 1. Further,
let ϕ be a function defined on R

1 if Im γ = 0 or on C
1 if γ is complex-valued.

Suppose that ϕ(0) = 0 and for all t and τ , |τ | < 1, the inequality

|ϕ(t+ τ)− ϕ(t)| ≤ A |τ |ρ with ρ ∈ (0, 1]
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is valid. Then
ϕ(γ) ∈M(Wm−l+r

p →W r
p ),

where r ∈ (0, lρ) if ρ < 1 and r = l if ρ = 1. The following estimate holds:

‖ϕ(γ)‖M(W m−l+r
p →W r

p ) ≤ cA(‖γ‖ρ
M(W m

p →W l
p)

+ ‖γ‖M(W m
p →W l

p)) .

Proof. First we note that for all t and τ

|ϕ(t+ τ)− ϕ(t)| ≤ A (|τ |ρ + |τ |) . (4.6.1)

By (4.6.1), the inclusions ϕ(γ) ∈ L1,unif and ϕ(γ) ∈ L∞ follow from γ ∈ L1,unif

and γ ∈ L∞, respectively.
Consider the case ρ = 1. We have

‖ϕ(γ)u‖W l
p

= ‖Dp,l[ϕ(γ)u]‖Lp
+ ‖ϕ(γ)u‖Lp

≤ ‖uDp,lϕ(γ)‖Lp
+ ‖ϕ(γ)Dp,lu‖Lp

+ ‖ϕ(γ)u‖Lp
.

Using (4.6.1), we see that the sum on the right-hand side does not exceed

2A(‖uDp,lγ‖Lp
+ ‖γDp,lu‖Lp

+ ‖γu‖Lp
).

It is clear that

‖γDp,lu‖Lp
≤ ‖Dp,l(γu)‖Lp

+ ‖uDp,lγ‖Lp
.

Hence
‖ϕ(γ)u‖W l

p
≤ 2A(2‖uDp,lγ‖Lp

+ ‖γu‖W l
p
) .

Applying (4.3.12), we get

‖ϕ(γ)u‖W l
p
≤ 2A

(
c sup

e

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
+ ‖γ‖M(W m

p →W l
p)

)
‖u‖W m

p

which together with Theorem 4.1.1, gives

‖ϕ(γ)‖M(W m
p →W l

p) ≤ cA ‖γ‖M(W m
p →W l

p).

Now let 0 < ρ < 1. Let us write the integral
∫∫
|ϕ(γ(x))u(x)− ϕ(γ(y))u(y)|p|x− y|−n−pr dydx

as the sum of two integrals of which one is taken over the set

M = {(x, y) : |γ(y)| ≤ |γ(x)|}.



176 4 The Space M(Bm
p → Bl

p) with p > 1

It is sufficient to estimate the integral over M which obviously does not exceed

c
(∫∫

M

|u(x)|p|ϕ(γ(x))− ϕ(γ(y))|p|x− y|−n−pr dydx

+
∫∫

M

|ϕ(γ(y))|p|u(x)− u(y)|p|x− y|−n−pr dydx . (4.6.2)

We introduce two sets

M1(x) = {y : |γ(y)| ≤ |γ(x)|, |γ(x)− γ(y)| ≤ 1}

and
M2(x) = {y : |γ(y)| ≤ |γ(x)|, |γ(x)− γ(y)| > 1}.

It follows from (4.6.1) that
∫

M1(x)

|ϕ(γ(x))− ϕ(γ(y))|p|x− y|−n−pr dy

≤ cAp

∫

M1(x)

|γ(x)− γ(y)|pρ|x− y|−n−pr dy

≤ cAp
(
2pρ|γ(x)|pρ

∫

|x−y|≥δx

|x− y|−n−pr dy

+
∫

|x−y|<δx

|γ(x)− γ(y)|pρ|x− y|−n−pr dy
)
, (4.6.3)

where δx is a nonnegative function to be chosen later. Estimating the last
integral by the Hölder inequality, we find that it is dominated by

(∫

|x−y|<δx

|γ(x)− γ(y)|p|x− y|−n−pl dy
)ρ

×
(∫

|x−y|<δx

|x− y|−n−p(r−lρ)/(1−ρ) dy
)1−ρ

≤ c(Dp,lγ(x))pρδp(lρ−r)
x . (4.6.4)

Using (4.6.3) and (4.6.4), we have
∫

M1(x)

|ϕ(γ(x))− ϕ(γ(y))|p|x− y|−n−pr dy

≤ cAp
(
|γ(x)|pρδ−pr

x +Dp,lγ(x))pρδp(ρl−r)
x

)
.

Minimizing the right-hand side over δx, we obtain
∫

M1(x)

|ϕ(γ(x))− ϕ(γ(y))|p|x− y|−n−pr dy

≤ cAp|γ(x)|p(ρ−r/l)(Dp,lγ(x))pr/l .
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By (4.6.1),
∫

M2(x)

|ϕ(γ(x))− ϕ(γ(y))|p|x− y|−n−pr dy

≤ cAp

∫

M2(x)

|γ(x)− γ(y)|p|x− y|−n−pr dy ≤ cAp(Dp,rγ(x))p .

Consequently, the first integral in (4.6.2) is not greater than
∫
|u(x)|p|γ(x)|p(ρ−r/l)(Dp,lγ(x))pr/l dx+

∫
|u(x)|p(Dp,rγ(x))p dx . (4.6.5)

Let m 	= l. We set v = Λ−s|Λsu|, where Λ = (−∆ + 1)1/2, s = m− l + r − ε
and ε is a small positive number. The properties of the kernel Gr, given in
Sect. 3.2.5, and the Hölder inequality imply that

v ≤ c (Λrv)(l−r)/l(Λr−lv)r/l . (4.6.6)

Hence the first term in (4.6.5) does not exceed

c

∫
(Λr−lvDp,lγ)pr/l(Λrv)p(1−r/l)|γ|p(ρ−r/l) dx

≤ c
(∫

(Λr−lv)p(Dp,lγ(x))p dx
)r/l(∫

(Λrv)p|γ|p(lρ−r)/(l−r) dx
)1−r/l

≤ c1

(
sup

e

‖Dp,lγ; e‖pLp

Cp,m(e)

)r/l

‖Λr−lv‖pr/l
W m

p

×
(

sup
e

‖|γ|(lp−r)/(l−r); e‖pLp

Cp,m−l(e)

)1−r/l

‖Λrv‖p(1−r/l)

W m−l
p

.

Here we used the Hölder inequality and (4.3.12). Furthermore,

‖Λr−lv‖W m
p

= ‖Λε−m |Λm−l+r−εu|‖W m
p
≤ c‖|Λm−l+r−εu|‖W ε

p

≤ c ‖Λm−l+r−εu‖W ε
p
≤ c1‖u‖W m−l+r

p

(see (4.3.57)) and similarly

‖Λrv‖W m−l
p

= ‖Λε−m+l |Λm−l+r−εu|‖W m−l
p
≤ c ‖|Λm−l+r−εu|‖W ε

p

≤ c1‖u‖W m−l+r
p

.

Now the first term in (4.6.5) is majorized by

c
(

sup
e

‖Dp,lγ; e‖pLp

Cp,m(e)

)r/l(
sup

e

‖|γ|(lρ−r)/(l−r); e‖pLp

Cp,m−l(e)

)1−r/l

‖u‖p
W m−l+r

p
. (4.6.7)
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The same bound can be obtained for m = l, if we put v = Λ−r|Λru| and apply
the inequality

v ≤ c (MΛrv)(l−r)/l(Λr−lv)r/l

instead of (4.6.6) (see Lemma 1.2.5).
Taking into account that

‖|γ|(lρ−r)/(l−r); e‖pLp

Cp,m−l(e)
≤
( ‖γ; e‖pLp

Cp,m−l(e)

)(lρ−r)/(l−r)( mesne

Cp,m−l(e)

)l(1−ρ)/(l−r)

≤
( ‖γ; e‖pLp

Cp,m−l(e)

)(lρ−r)/(l−r)

,

we obtain from Corollary 4.3.1 and Lemma 4.3.6 that (4.6.7), and consequently
the first term in (4.6.5), do not exceed

c ‖γ‖pρ
M(W m

p →W l
p)
‖u‖p

W m−l+r
p

.

In view of Corollary 4.3.1 and the imbedding of M(Wm
p → W l

p) into
M(Wm−l+r

p → W r
p ), the second term in (4.6.5) is estimated in the follow-

ing way:

∫
|u(x)|p(Dp,lγ(x))p dx ≤ c sup

e

‖Dp,lγ; e‖pLp

Cp,m−l+r(e)
‖u‖p

W m−l+r
p

≤ c1‖γ‖pM(W m
p →W l

p)
‖u‖p

W m−l+r
p

.

The proof is complete. ��



5

The Space M(Bm
1 → Bl

1)

A complete description of the space M(Bm
1 (Rn) → Bl

1(R
n)), 0 ≤ l ≤ m, is

given in Sect. 5.3 for integer l and in Sect. 5.4 for noninteger l. Sections 5.1 and
5.2 are auxiliary. In Sect. 5.5 we survey some results on multipliers in Besov,
BMO, and related function spaces.

5.1 Trace Inequality for Functions in Bl
1(R

n)

Let l = k+α, where α ∈ (0, 1] and k is a nonnegative integer. In concert with
(4.1.1) and (4.1.2) we use the notations

(D1,lu)(x) =
∫

Rn

|∆(2)
h ∇ku(x)| |h|−n−αdh, (5.1.1)

and
‖u; Rn‖Bl

1
= ‖D1,lu; Rn‖L1 + ‖u; Rn‖L1 . (5.1.2)

Let us adopt the notation z = (x, y) and ζ = (ξ, η) for points of R
n+s,

where x, ξ ∈ R
n and y, η ∈ R

s. Further, let B(d)
r (q) be a d-dimensional ball

with centre q ∈ R
d. If d = n, we write Br(q) instead of B(n)

r (q).
In this section we prove the following assertion.

Theorem 5.1.1. [Maz11] The best constant K1 in
∫

Rn

|u|dµ ≤ K ‖D1,lu; Rn‖L1 (5.1.3)

is equivalent to
Q = sup

x∈Rn,ρ>0
ρl−nµ(Bρ(x)).

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 179
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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5.1.1 Auxiliary Facts

Lemma 5.1.1. Let g be an open subset of R
n+s with compact closure and

smooth boundary ∂g such that
∫

B(n+s)
r (z)∩g

|η|αdζ
(∫

B(n+s)
r (z)

|η|αdζ
)−1

= 1/2, (5.1.4)

where α > −s. Then
∫

B(n+s)
r (z)∩∂g

|η|αdσ(ζ) ≥ c rn+s−1(r + |y|)α, (5.1.5)

where σ is the (n+ s− 1)-dimensional area.

The proof is based on the following lemma.

Lemma 5.1.2. Let α > −s for s > 1 and 0 ≥ α > −1 for s = 1. Then for

any v ∈ C∞(B(n+s)
r ) there exists a constant V such that
∫

B(n+s)
r

|v(ζ)− V ||η|αdζ ≤ c r

∫

B(n+s)
r

|η|α|∇v(ζ)|dζ. (5.1.6)

Proof. It suffices to derive (5.1.6) for r = 1. We adopt the notation B(s)
1 ×B1 =

Q. By R(ζ) we denote the distance from the point ζ ∈ ∂Q to the origin
i.e. R(ζ) = (1 + |ζ|2)1/2 for |η| = 1, |ξ| < 1, and R(ζ) = (1 + |η|2)1/2 for
|ξ| = 1, |η| < 1. Since B(n+s)

1 is the bi-Lipschitz image of Q under the mapping
ζ → ζ/R(ζ), we can deduce (5.1.6) from the inequality

∫

Q

|v(ζ)− V ||η|αdζ ≤ c

∫

Q

|∇v(ζ)||η|αdζ. (5.1.7)

Let us show that (5.1.7) holds. Since

(s+ α)|η|α = div(|η|αη),

we find by integrating by parts on the left-hand side of (5.1.7) that it does
not exceed

(s+ α)−1
(∫

Q

|∇v||η|α+1dζ +
∫

B(n)
1

dξ

∫

∂B(s)
1

|v(ζ)− V |ds(η)
)
. (5.1.8)

We put T = B1 × (B(s)
1 \B

(s)
1/2). Let s > 1. The second term in (5.1.8) is not

greater than

c

∫

T

|∇v|dζ + c

∫

T

|v − V |dζ.

Hence, taking the mean value of v in T as V , we get (5.1.7) from (5.1.8). If
s = 1 then the set T has two components: T+ = B1 × (1/2, 1) and T− =
B1 × (−1,−1/2). The same arguments as for the case s > 1 lead to



5.1 Trace Inequality for Functions in Bl
1(R

n) 181

∫

B1

|v(ξ,±1)− V±| dξ ≤ c

∫

T±

|∇v(ζ)|dζ ≤ c

∫

Q

|∇v(ζ)||η|αdζ,

where V± is the mean value of v in T±. It remains to be noted that

|V+ − V−| ≤ c

∫

B1

dξ

∫ 1

−1

∣∣∣∣
∂v

∂η

∣∣∣∣dη ≤ c

∫

Q

|∇v(ζ)||η|αdζ

for α ≤ 0. Thus, for s = 1, inequality (5.1.7) follows with V+ or V− in place
of V .

Proof of Lemma 5.1.1. For the sake of brevity, let B = B(n+s)
r (z). We

let v in (5.1.6) be the mollification χρ of the characteristic function of g. Then
the left-hand side is bounded from below by the sum

|1− V |
∫

e1

|η|αdζ + |V |
∫

e0

|η|αdζ,

where ei = {z ∈ B : χρ(z) = i}, i = 0, 1.
Let ε be an arbitrarily small positive number. By (5.1.4),

(
1
2
− ε)(|1− V |+ |V |)

∫

B
|η|αdζ ≤ c r

∫

B
|η|α|∇χρ(ζ)|dζ

for sufficiently small ρ. Consequently

1
2

∫

B
|y|αdζ ≤ c r lim sup

ρ→+0

∫

B
|η|α|∇ζχρ(ζ)|dζ = c r

∫

B∩∂g

|η|αdσ(ζ).

(The last equality can be derived from Corollary 1.1.1.) It remains to note
that ∫

B
|y|αdζ ≥ c rn+s(r + |y|)α.

�

Lemma 5.1.3. Let ν be a measure in R
n+s and let α > −s. The best constant

K1 in
∫

Rn+s

|U |dν ≤ K1

∫

Rn+s

|y|α|∇zU |dz, U ∈ C∞
0 (Rn+s), (5.1.9)

is equivalent to

Q1 = sup
z,ρ>0

(ρ+ |y|)−αρ1−n+sν(B(n+s)
ρ (z)). (5.1.10)

Proof. 1. First let m > 1 or 0 ≥ α > −1,m = 1. According to Proposition
1.1.1,
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K1 = sup
g

ν(g)∫

∂g

|y|αdσ
,

where g is an arbitrary open subset of R
n+s with compact closure and smooth

boundary. We show that for any g there exists a covering of g by a sequence
of balls B(n+s)

ρi (zi), i = 1, 2, · · · , such that

∑
i

ρn+s−1
i (ρi + |yi|)α ≤ c

∫

∂g

|y|αdσ. (5.1.11)

Every point z ∈ g is the centre of a ball B(n+s)
r (z) for which (5.1.4) holds. In

fact, the ratio on the left-hand side of (5.1.4) is a continuous function in r,
equal to one for small values of r and tending to zero as r → ∞. By Lemma
1.1.3 there exists a sequence of disjoint balls B(n+s)

ri (zi) such that

g ⊂
∞⋃

i=1

B(n+s)
3ri

(zi).

Lemma 5.1.1 implies that
∫

B(n+s)
ri (zi)∩∂g

|y|αdσ ≥ c rn+s−1
i (ri + |yi|)α.

Consequently {B(n+s)
3ri

(zi)}i≥1 is the required covering. Obviously,

ν(g) ≤
∑

i

ν(B(n+s)
3ri

(zi)) ≤ Q1

∑
i

rn+s−1
i (ri + |yi|α)

≤ cQ1

∫

∂g

|y|αdσ.

Thus K1 ≤ cQ1.
2. Let s = 1 and α > 0. We construct a covering of the set {ζ : η 	= 0}

by balls B(j) such that the radius ρj of B(j) is equal to the distance from
B(j) to the hyperplane {ζ : η = 0}. By {ϕj} we denote a partition of unity
subordinate to the covering {B(j)} with |∇ϕj | ≤ c ρ−1

j (see [St2], Ch. VI, §1).
Using the present assertion for α = 0, we get

∫

Rn+1
|ϕju|dν ≤ c sup

ρ,z
ρ−nνj(B(n+1)

ρ (z))‖∇(ϕju); Rn+1‖L1 ,

where νj is the restriction of the measure ν to B(j). It is clear that

sup
ρ,z

ρ−nνj(B(n+1)
ρ (z)) ≤ c sup

ρ≤ρj ,z∈B(j)
ρ−nν(B(n+1)

ρ (z)).
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Therefore,
∫

Rn+1
|ϕju|dν

≤ c sup
ρ≤ρj ,z∈B(j)

(ρ+ ρj)−αρ−nν(B(n+1)
ρ (z))

∫

Rn+1
|∇(ϕju)||η|αdζ.

Summing over j, we find that
∫

Rn+1
|u|dν ≤ cK1

(∫

Rn+1
|∇u||η|αdζ +

∫

Rn+1
|u||η|αdζ

)
.

Since ∫

Rn+1
|u||η|α−1dζ ≤ α−1

∫

Rn+1
|∇u||η|αdζ

for α > 0, we also have K1 ≤ cQ1 for s = 1, α > 0.
3. To obtain the converse estimate, we put U(ξ) = ϕ(ρ−1(ζ − z)) into

(5.1.9), where ϕ ∈ C∞
0 (B(n+s)

2 ), ϕ = 1 on B(n+s)
1 . We notice that

∫

B(n+s)
2ρ (z)

|η|α|∇ζU |dζ ≤ c ρ−1

∫

B(n+s)
2ρ (z)

|η|αdζ ≤ c ρn+s−1(ρ+ |y|)α.

The proof is complete. ��

Corollary 5.1.1. Let ν be a measure in R
n and let α > −s. The best constant

in (5.1.9) is equivalent to

sup
x∈Rn,ρ>0

ρ1−n−s−αν(B(n+s)
ρ (z)).

To prove this assertion, it suffices to note that the value Q1 defined in (5.1.10)
is equivalent to the last supremum if supp ν ⊂ R

n.

5.1.2 Main Result

Now we are in a position to prove Theorem 5.1.1.
The estimates K1 ≥ c Q and K2 ≥ c Q can be be obtained quite simply.

It suffices to put u(ξ) = ϕ(ρ−1(x − ξ)) into (5.1.3), where ϕ ∈ C∞
0 (B2) and

ϕ = 1 on B1, and to note that
∫

Rn

|u|dµ ≥ µ(Bρ(x)), ‖D1,lu; Rn‖L1 = c ρn−l.

Now we obtain the estimates K ≤ cQ. Let l ∈ (0, 1). According to
Corollary 5.1.1, ∫

Rn

|u|dµ ≤ c Q

∫

Rn+1
|y|−l|∇U |dz, (5.1.12)
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where U ∈ C∞
0 (Rn+1) is an arbitrary extension of u ∈ C∞

0 (Rn) to R
n+1. If

l = 1, then by Theorem 1.1.1
∫

Rn

|u|dµ ≤ cQ

∫

Rn+1
|∇2U |dz. (5.1.13)

It is known (see [Usp]) that

‖D1,lu; Rn‖L1 ∼ inf
U

∫

Rn+1
|y|−l|∇U |dz, l ∈ (0, 1),

‖D1,1u; Rn‖L1 ∼ inf
U

∫

Rn+1
|∇2U |dz.

Hence, minimizing the right-hand sides of (5.1.12) and (5.1.13) over all exten-
sions U , we arrive at

∫

Rn

|u|dµ ≤ cQ‖D1,lu; Rn‖L1 , l ∈ (0, 1].

Suppose that the estimate K ≤ cQ is proved under the condition
l ∈ (m − 2,m − 1], where m is an integer, m ≥ 2. Duplicating the argu-
ment used in part (ii) of the proof of Theorem 1.1.1, we obtain the required
estimate for l ∈ (m− 1,m]. ��

Remark 5.1.1. It follows from Theorem 5.1.1 that (5.1.3) with l > n is valid
only in the trivial case µ = 0, and for l = n if and only if the measure µ is
finite.

Theorem 5.1.2. The best constant K0 in
∫

Rn

|u|dµ ≤ K0‖u; Rn‖Bl
1

is equivalent to
Q0 = sup

x∈Rn,ρ∈(0,1)

ρl−nµ(Bρ(x)).

Proof. The estimate K0 ≥ c Q0 can be obtained in the same way as the
estimate K ≥ c Q in Theorem 5.1.1. To prove the converse inequality, we use
the sequence {ηj}j≥0 defined in Theorem 3.1.2. We apply Theorem 5.1.1 to
the integral ∫

Rn

|ηju|dµj ,

where µj is the restriction of µ to the support of ηj . Then
∫

Rn

|u|dµ ≤ c
∑

j

∫

Rn

|ηju|dµj ≤ cQ0

∑
j

‖D1,l(ηju)‖L1 .
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Since
‖u; Rn‖Bl

1
∼
∑

j

‖ηju; Rn‖Bl
1
,

the last sum does not exceed c ‖u; Rn‖Bl
1
. ��

Remark 5.1.2. It is clear that

Q0 = sup
x∈Rn

µ(B1(x))

for l ≥ n.

5.2 Properties of Functions in the Space Bk
1(R

n)

5.2.1 Trace and Imbedding Properties

We start with the statement of a well-known trace and extension result.

Lemma 5.2.1. [Usp] Suppose that m ≥ 1.
(i) Let U be an arbitrary function in the space W l+1

1 (Rn+1
+ ). Then the limit

u(x) = lim
ρ→0

U(x, ρ)

exists for almost all x ∈ R
n, the function u belongs to the space Bl

1(R
n), and

‖u; Rn‖Bl
1
≤ c ‖U ; Rn+1

+ ‖W l+1
1

.

(ii) Let Tu denote the action of the Poisson operator on the function
u ∈ L1,unif(Rn) defined by (3.2.38). Then

‖Tu; Rn+1
+ ‖W l+1

1
≤ c ‖u; Rn‖Bl

1
.

The next lemma contains an interpolation inequality for functions in
Bl

1(R
n).

Lemma 5.2.2. Let u ∈ Bl
1(R

n), where l is an integer, l ≥ 1. Then for j =
0, . . . , l − 1

‖u; Rn‖Bl−j
1
≤ c ‖u; Rn‖(l−j)/l

Bl
1

‖u; Rn‖j/l
L1
. (5.2.1)

Proof. We introduce the function

(D(q)
s u)(x) =

∫

Rn

|∆(q)
h u(x)|
|h|n+s

dh (5.2.2)
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with any integer q > s, where ∆(q)
h u(x) is the difference of order q defined by

∆
(q)
h u(x) =

q∑
i=0

(
q

i

)
(−1)i u(x+ (q − i)h).

Given s > 0, the equivalence relation

‖u; Rn‖Bs
1
∼ ‖D(q)

s u; Rn‖L1 + ‖u; Rn‖L1 (5.2.3)

holds for all values of q greater than s (see [Tr4], Sect. 3.5.3). Let q > l.
Adding together the two inequalities

∫

Rn

∫

B

|∆(q)
h u(x)|
|h|n+l−j

dh dx ≤
∫

Rn

∫

B

|∆(q)
h u(x)|
|h|n+l

dh dx

and ∫

Rn

∫

Rn\B

|∆(q)
h u(x)|
|h|n+l−j

dh dx ≤ c ‖u; Rn‖L1(Rn),

we find that

‖D(q)
l−ju; Rn‖L1 =

∫

Rn

∫

Rn

|∆(q)
h u(x)|
|h|n+l−j

dh dx

≤ c
(
‖D(q)

l u; Rn‖L1 + ‖u; Rn‖L1

)
. (5.2.4)

By (5.2.3),

‖D1,l−ju; Rn‖L1 ≤ c
(
‖D(q)

l−ju; Rn‖L1 + ‖u; Rn‖L1

)
.

This, together with (5.2.4) and (5.2.3), leads to

‖D1,l−ju; Rn‖L1 ≤ c
(
‖D1,lu; Rn‖L1 + ‖u; Rn‖L1

)
. (5.2.5)

The interpolation inequality (5.2.1) follows from (5.2.5) by dilation. ��

Let B denote the unit ball centered at the origin and let l be a positive
integer. We introduce the space Bl

1(B) of functions on B with finite norm

‖u;B‖Bl
1

=
l−1∑
j=0

‖∇ju;B‖L1 +
l−1∑
j=0

∫

B

∫

B
|(∆(2)

y ∇ju)(x)| dx dy

|x− y|n+1
.

A local variant of inequality (5.2.1) is contained in the next statement.

Corollary 5.2.1. Let u ∈ Bl
1(B). Then, for any j = 0, . . . , l − 1

‖u;B‖Bl−j
1
≤ c ‖u;B‖(l−j)/l

Bl
1

‖u;B‖j/l
L1
. (5.2.6)
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Proof. It is well known (see [Tr4], Sect. 4.5) that u can be extended onto R
n

so that
‖u; Rn‖Bl

1
≤ c ‖u;B‖Bl

1
(5.2.7)

and
‖u; Rn‖L1 ≤ c ‖u;B‖L1 . (5.2.8)

These inequalities, combined with Lemma 5.2.2, give (5.2.6). ��

We need the following Hardy-type inequality.

Lemma 5.2.3. Let u ∈ Bl
1(R

n), where l is an integer, 1 ≤ l < n. Then
∫

Rn

|x|−l |u(x)| dx ≤ c ‖u; Rn‖Bl
1
. (5.2.9)

Proof. Let U ∈W l+1
1 (Rn+1

+ ) be an arbitrary extension of u. We have
∫

Rn

|x|−l |u(x)| dx =
2l − 1
l

∫ ∞

0

dr

rl+1

∫

B2r\Br

|u(x)| dx. (5.2.10)

To estimate the right-hand side of (5.2.10), we use the standard trace
inequality

∫

B2r\Br

|u(x)| dx ≤ c

∫

G2r\Gr

(
r−1|U(z)|+ |∇U(z)|

)
dz,

where Gr = B(n+1)
r ∩R

n+1
+ . Together with (5.2.10), this inequality implies that

∫

Rn

|x|−l |u(x)| dx ≤ c

∫

R
n+1
+

( |U(z)|
|z| + |∇U(z)|

) dz
|z|l . (5.2.11)

Iterating the Hardy-type inequality
∫

R
n+1
+

|∇jU(z)| dz

|z|l+1−j
≤ c

∫

R
n+1
+

|∇j+1U(z)| dz

|z|l−j

with j = 0, . . . , l−1, we find that the right-hand side in (5.2.11) is dominated
by

c

∫

R
n+1
+

|∇l+1U(z)|dz.

Taking into account that u is the trace of U on R
n and using part (i) of

Lemma 5.2.1, we complete the proof. ��

The next lemma contains two more inequalities for intermediate derivatives
of functions given on the ball Br. The integral over (Br)2 stands for the double
integral over Br.
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Lemma 5.2.4. Let l be a positive integer and let j = 0, . . . , l − 1. Then for
any r ∈ (0, 1]

rj−l‖∇ju;Br‖L1

≤ c
(∫

(Br)2
|
(
∆(2)∇l−1u

)
(x, y)| dx dy

|x− y|n+1
+ r−l‖u;Br‖L1

)
(5.2.12)

and
rj+1−l

∫

(Br)2
|(∆(2)∇ju)(x, y)| dx dy

|x− y|n+1

≤ c
(∫

(Br)2
|(∆(2)∇l−1u)(x, y)| dx dy

|x− y|n+1
+ r−l‖u;Br‖L1

)
, (5.2.13)

where
(∆(2)v)(x, y) = v(x)− 2v

(x+ y

2

)
+ v(y).

Proof. By dilation, the proof reduces to the case r = 1. It is well known that
for j = 1, . . . , l − 2

‖∇ju;B‖L1 ≤ c (‖∇l−1u;B‖L1 + ‖u;B‖L1) . (5.2.14)

Hence, it suffices to prove (5.2.12) for j = l − 1. We introduce the function

ϕ ∈ C∞
0 (B) subject to

∫

Rn

ϕ(y)dy = 1.

We have
∇l−1u(x) =

∫

B
ϕ(y)∇l−1u(x)dy

=
∫

B
ϕ(y)∆(2)∇l−1u(x, y)dy +

∫

B
ϕ(y)

(
2∇l−1u

(x+ y

2
)
−∇l−1u(y)

)
dy.

Integrating by parts in the last integral, we obtain

∇l−1u(x) =
∫

B
ϕ(y)∆(2)∇l−1u(x, y)dy

+(−1)l−1

∫

B

(
22−lu

(x+ y

2
)
− u(y)

)
(∇l−1ϕ)(y)dy. (5.2.15)

Therefore,
∫

B
|∇l−1u(x)|dx ≤

∫

B

∣∣∣
∫

B
ϕ(y)

(
∆(2)∇l−1u

)
(x, y)dy

∣∣∣dx+ c ‖u;B‖L1 .

Since the right-hand side does not exceed

c
(∫

B

∫

B

∣∣(∆(2)∇l−1u
)
(x, y)

∣∣ dydx

|x− y|n+1
+ ‖u;B‖L1

)
,

we arrive at (5.2.12) with j = l−1. The proof of (5.2.12) is complete. Finally,
(5.2.13) results from the definition of the space Bl

1(B) and inequalities (5.2.6)
and (5.2.12). ��
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5.2.2 Auxiliary Estimates for the Poisson Operator

We deal with the Poisson operator T defined by (3.2.38).

Lemma 5.2.5. Let γ ∈W l−1
1,loc(R

n). Then

∫ ∞

0

∣∣∣∂
l+1(Tγ)
∂yl+1

∣∣∣ dy ≤ c (D1,lγ)(x), (5.2.16)

where (Dlγ)(x) is defined by (5.1.1).

Proof. For every n-dimensional multi-index α with |α| = 2,

Dα
x (Tγ)(x, y) = y−n−2

∫

Rn

(Dαζ)
(ξ − x

y

)
γ(ξ)dξ

= y−n−2

∫

Rn

(Dαζ)
(h
y

)
γ(x+h)dh = y−n−2

∫

Rn

ζ0,α

(h
y

)
∆

(2)
h γ(x)dh, (5.2.17)

where
ζ0,α =

1
2
(Dαζ)(ξ).

The last equality in (5.2.17) holds because Dαζ is even and satisfies
∫

Rn

Dαζ(t)dt = 0.

Since

(Tγ)(x, y) =
1
2
y−n

∫

Rn

ζ
(h
y

)
∆

(2)
h γ(x)dh+ γ(x), (5.2.18)

it follows for every n-dimensional multi-index β with |β| = 1 that

∂

∂y
Dβ

x(Tγ)(x, y) =
1
2

∫

Rn

∂

∂y

(
y−n−1

(
Dβ

y ζ
)(h

y

))
∆

(2)
h γ(x)dh

= y−n−2

∫

Rn

ζ0,β

(h
y

)
∆

(2)
h γ(x)dh, (5.2.19)

where
ζ0,β =

−1
2
(
(n+ 1 + 〈ξ,∇〉)Dβζ

)
(ξ).

Suppose that l ≥ 2. Let τ = α + δ, where |τ | = l + 1, |α| = 2, |δ| = l − 1.
By (5.2.17),

Dτ
x(Tγ)(x, y) = y−n−2

∫

Rn

ζ0,α

(h
y

)
∆

(2)
h (Dδγ)(x)dh. (5.2.20)
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Next, let τ = β + δ, where |τ | = l, |β| = 1, |δ| = l − 1. By (5.2.19),

∂

∂y
Dτ

x(Tγ)(x, y) = y−n−2

∫

Rn

ζ0,β

(h
y

)
∆

(2)
h (Dδγ)(x)dh. (5.2.21)

Suppose that l + 1 is even, then the harmonicity of Tγ implies that

∂l+1

∂yl+1
(Tγ)(x, y) = (−∆x)(l+1)/2(Tγ)(x, y).

Hence, by (5.2.20),

∣∣∣ ∂
l+1

∂yl+1
(Tγ)(x, y)

∣∣∣ ≤ c y−n−2

∫

Rn

ζ1
(h
y

)
|(∆(2)

h ∇l−1γ)(x)|dh, (5.2.22)

where
0 < ζ1(ξ) ≤ c (1 + |ξ|)−n−3. (5.2.23)

If l + 1 is odd, then we have by harmonicity of Tγ

∂l+1

∂yl+1
(Tγ)(x, y) =

∂

∂y
(−∆x)l/2(Tγ)(x, y).

This, together with (5.2.21), gives

∣∣∣ ∂
l+1

∂yl+1
(Tγ)(x, y)

∣∣∣ ≤ c y−n−2

∫

Rn

ζ2
(h
y

)
|(∆(2)

h ∇l−1γ)(x)|dh, (5.2.24)

where
0 < ζ2(ξ) ≤ c (1 + |ξ|)−n−2. (5.2.25)

Hence, ∫ ∞

0

∣∣∣∂
l+1(Tγ)
∂yl+1

∣∣∣ dy ≤ c

∫ ∞

0

dy

∫

Rn

|(∆(2)
h ∇l−1γ)(x)|

(y + |h|)n+2
dh

=
c

n+ 1

∫

Rn

|(∆(2)
h ∇l−1γ)(x)|
|h|n+1

dh

which completes the proof. ��

Lemma 5.2.6. Suppose that γ ∈W l−1
1,loc(R

n) and let

N = sup
x∈Rn

r∈(0,1)

rm−n‖D1,lγ;Br(x)‖L1 . (5.2.26)

Then, for any y ∈ (0, 1]

∣∣∣∂
l+1(Tγ)(x, y)

∂yl+1

∣∣∣ ≤ cN y−m−1.
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Proof. By Lemma 5.2.5,
∫

Br(x)

dz

∫ ∞

0

∣∣∣∂
l+1(Tγ)(z, y)

∂yl+1

∣∣∣ dy ≤ cN rn−m (5.2.27)

for r ∈ (0, 1). Let r/2 < y ≤ r. Applying the mean value theorem for harmonic
functions, we find that

∣∣∣∂
l+1(Tγ)(x, y)

∂yl+1

∣∣∣ ≤ c

rn+1

∫

Br(x)

dz

∫ r

r/2

∣∣∣∂
l+1(Tγ)(z, η)

∂ηl+1

∣∣∣dη.

By (5.2.27), the right-hand side is dominated by cN r−1−m. The proof is
complete. ��

The next assertion is based mainly on two previous lemmas.

Corollary 5.2.2. Let 0 < l < m ≤ n and let γ ∈ W l−1
1,loc(R

n). Then, for all
x ∈ R

n

|γ(x)| ≤ c
(
N l/m

(
(D1,lγ)(x)

)(m−l)/m + ‖γ‖L1,unif

)
.

Proof. Introducing the notation

ϕ(y) =

{
|∂l+1(Tγ)(x, y)/∂yl+1| for 0 < y ≤ 1,
0 for y > 1,

for any R > 0, we have

∫ 1

0

∣∣∣∂
l+1(Tγ)(x, y)

∂yl+1

∣∣∣ yldy =
∫ ∞

0

ϕ(y) yl dy ≤ Rl

∫ R

0

ϕ(y)dy +
∫ ∞

R

ϕ(y)yldy.

By Lemma 5.2.5, the first term on the right-hand side is majorized by
cRl(D1,lγ)(x) and, by Lemma 5.2.6,

∫ ∞

R

ϕ(y)yldy ≤ cN

∫ ∞

R

yl−m−1dy = cN Rl−m.

Choosing R as
R = N1/m

(
(D1,lγ)(x)

)−1/m
,

we arrive at the inequality
∫ ∞

0

ϕ(y)yldy ≤ cN l/m
(
(D1,lγ)(x)

)(m−l)/m

which together with (3.2.39) completes the proof. ��
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Corollary 5.2.3. Suppose that γ ∈ W l−1
1,loc(R

n). For any integer l ≥ 1 and
any z ∈ R

n

rm−n−l‖γ;Br(z)‖L1 ≤ c
(

sup
ρ∈(0,1)

ρm−n‖D1,lγ;Br(z)‖L1 +‖γ‖L1,unif

)
. (5.2.28)

Proof. By Corollary 5.2.2,

rm−n−l‖γ;Br(z)‖L1

≤ c
(
N l/mrm−n−l

∫

Br(z)

((D1,lγ)(x))(m−l)/mdx+ rm−l‖γ; Rn‖L1,unif

)

which does not exceed

c
(
N l/m

(
rm−n

∫

Br(z)

(D1,lγ)(x)dx
)(m−l)/m

+ ‖γ; Rn‖L1,unif

)

by Hölder’s inequality. Using (5.2.26), we complete the proof. ��

In the next two lemmas, we return to the Poisson operator T .

Lemma 5.2.7. Let r < y < 1. Then, for any integer k ≥ 1

|∇k(Tγ)(x, y)| ≤ c rl−m−k sup
z∈Rn

ρ∈(0,1)

ρm−n−l‖γ;Bρ(z)‖L1 . (5.2.29)

Proof. By (3.2.38),

|∇k(Tγ)(x, y)| ≤ c

∫

Rn

|γ(ξ)|
(|x− ξ|+ y)n+k

dξ. (5.2.30)

We have ∫

Br(x)

|γ(ξ)|
(|x− ξ|+ y)n+k

dξ ≤ c y−n−k

∫

Br(x)

|γ(ξ)|dξ

≤ c rl−m−k sup
z∈Rn

ρ∈(0,1)

ρm−n−l‖γ;Bρ(z)‖L1 . (5.2.31)

Also, ∫

Rn\Br(x)

|γ(ξ)|
(|x− ξ|+ y)n+k

dξ ≤
∫

Rn\Br(x)

|γ(ξ)|
|x− ξ|n+k

dξ

≤ c r−n

∫

Rn\B2r(x)

dz

∫

Br(z)

|γ(ξ)|
|x− ξ|n+k

dξ.

Since |ξ−x| > |z−x|/2, it follows that the right-hand side of the last inequality
does not exceed
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c rl−m

∫

Rn\B2r(x)

dt

|t− x|n+k
sup
x∈Rn

ρ∈(0,1)

ρm−n−l‖γ;Bρ(x)‖L1 .

Therefore,
∫

Rn\Br(x)

|γ(ξ)|
(|x− ξ|+y)n+k

dξ ≤ c rl−m−k sup
z∈Rn

ρ∈(0,1)

ρm−n−l‖γ;Bρ(z)‖L1 . (5.2.32)

Now, (5.2.29) results by combining inequalities (5.2.31), (5.2.32), and (5.2.30).
��

Lemma 5.2.8. Let y > 1 and let k ≥ 0. Then

|∇k(Tγ)(x, y)| ≤ c y−k‖γ‖L1,unif . (5.2.33)

Proof. First, observe that
∫

By(x)

|γ(ξ)| dξ
(|x− ξ|+ y)n+k

≤ c y−n−k

∫

By(x)

|γ(ξ)|dξ ≤ cy−k‖γ‖L1,unif . (5.2.34)

Clearly,
∫

Rn\By(x)

|γ(ξ)|
(|x− ξ|+ y)n+k

dξ ≤ c

∫

Rn\B2(x)

dz

∫

B1(z)

|γ(ξ)|
|x− ξ|n+k

dξ. (5.2.35)

Since |ξ − x| > |z − x|/2, the right-hand side of (5.2.35) is dominated by

c ‖γ‖L1,unif

∫

Rn\B2(x)

dz

|z − x|n+k
.

Therefore,
∫

Rn\By(x)

|γ(ξ)|
(|x− ξ|+ y)n+k

dξ ≤ c y−k‖γ‖L1,unif . (5.2.36)

Combining the inequalities (5.2.34) and (5.2.36), and then using (5.2.30), we
complete the proof. ��

5.3 Descriptions of M(Bm
1 → Bl

1) with Integer l

In this section we give two different characterizations of the space M(Bm
1 →

Bl
1) with integer l.
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5.3.1 A Norm in M(Bm
1 → Bl

1)

As before, in the following theorem the integral over (B(n)
r (z))2 stands for the

double integral over B(n)
r (z).

Theorem 5.3.1. Let l be an integer and let m ≥ l ≥ 1. The equivalence
relation holds:

‖γ‖M(Bm
1 →Bl

1)
∼

sup
z∈Rn

r∈(0,1)

rm−n
(∫

(Br(z))2
|
(
∆(2)∇l−1γ

)
(x, y)| dx dy

|x−y|n+1
+r−l‖γ;Br(z)‖L1

)
. (5.3.1)

Proof. We use the norm

|||v;Br|||Bl
1

=
l−1∑
j=0

rj−l‖∇jv;Br‖L1

+
l−1∑
j=0

rj+1−l

∫

(Br)2
|∆(2)

y ∇jv(x)| dx dy

|x− y|n+1
(5.3.2)

defined for a positive integer l and r ∈ (0, 1). Lemma 5.2.4 implies that

|||v;Br|||Bl
1
∼
∫

(Br)2
|(∆(2)

y ∇l−1v)(x)| dx dy

|x− y|n+1
+ r−l‖v;Br‖L1 . (5.3.3)

By dilation in (5.2.6) we obtain

|||v;Br|||Bl−j
1
≤ c |||v;Br|||1−j/l

Bl
1
‖v;Br‖j/l

L1
(5.3.4)

for any j = 0, . . . , l − 1.
By (5.3.3), the required relation (5.3.1) can be written as

‖γ‖M(Bm
1 →Bl

1)
∼ sup

z∈Rn

r∈(0,1)

rm−n|||γ;Br(z)|||Bl
1
. (5.3.5)

From Lemma 5.2.3 and (5.3.3), we see that

|||v;Br|||Bl
1
≤ c ‖v; Rn‖Bl

1
(5.3.6)

for l < n. Let u(y) = η
(

y−x
r

)
, where r ∈ (0, 1) for m < n, and r = 1 for

m ≥ n, and η ∈ C∞
0 (B2), η = 1 on B1. Setting this u into the inequality

‖γ u‖Bl
1
≤ ‖γ‖M(Bm

1 →Bl
1)
‖u‖Bm

1
(5.3.7)

and using (5.3.6) with v = γu, we have

|||γ;Br(x)|||Bl
1
≤ c rn−m‖γ; Rn‖M(Bm

1 →Bl
1)

(5.3.8)
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for any x ∈ R
n. The required lower estimate for the norm ‖γ; Rn‖M(Bm

1 →Bl
1)

follows from (5.3.3).
Now we obtain the upper estimate for the norm ‖γ; Rn‖M(Bm

1 →Bl
1)

. As
before, let Tγ stand for the Poisson integral of γ. For any U ∈Wm+1

1 (Rn+1
+ ),

we have by Lemma 5.2.1 that

‖γ u; Rn‖Bl
1
≤ c ‖(Tγ)U ; Rn+1

+ ‖W l+1
1

, (5.3.9)

where u(x) = U(x, 0). Let X = (x, y) ∈ R
n+1
+ and let

Gr(X) = B(n+1)
r (X) ∩ R

n+1
+ .

By Theorem 2.4.2, for any integer l ∈ [0,m),

‖Γ ; Rn+1
+ ‖M(W m+1

1 →W l+1
1 ) ∼

sup
X∈R

n+1
+

r∈(0,1)

rm−n‖∇l+1Γ ;Gr(X)‖L1 + sup
X∈R

n+1
+

‖Γ ;G1(X)‖L1 . (5.3.10)

The first supremum in (5.3.10) can be replaced by

sup
X∈R

n+1
+

‖∇l+1Γ ;G1(X)‖L1

in the case m ≥ n. Furthermore,

‖Γ ; Rn+1
+ ‖MW l+1

1
∼ sup

X∈R
n+1
+

r∈(0,1)

rl−n‖∇l+1Γ ;Gr(X)‖L1 + ‖Γ ; Rn+1
+ ‖L∞ . (5.3.11)

This relation and (5.3.9) give

‖γ u; Rn‖Bl
1
≤ cKm,l‖U ; Rn+1

+ ‖W m+1
1

, (5.3.12)

where

Km,l = sup
X∈R

n+1
+

r∈(0,1)

rm−n‖∇l+1(Tγ);Gr(X)‖L1 + sup
X∈R

n+1
+

‖Tγ;G1(X)‖L1 . (5.3.13)

We introduce one more notation

km,l := sup
z∈Rn

r∈(0,1)

rm−n

∫

(Br(z))2
|∆(2)∇l−1γ(x, y)| dx dy

|x− y|n+1
(5.3.14)

and intend to show that

Km,l ≤ c
(
km,l + sup

z∈Rn

‖γ;B(n)
1 (z)‖L1

)
. (5.3.15)
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Then the upper estimate for ‖γ; Rn‖M(Bm
1 →Bl

1)
follows from (5.3.12) by

Lemma 5.2.1 and the arbitrariness of U .
Let us justify (5.3.15). When estimating ‖∇l+1(Tγ);Gr(X0)‖L1 , where

X0 ∈ R
n+1
+ , it suffices to take X0 = (0, y0). Suppose first that y0 > 2. Then,

by Lemma 5.2.8,

rm−n‖∇l+1(Tγ);Gr(X0)‖L1 ≤ c ‖γ; Rn‖L1,unif .

For 2 > y0 ≥ 2r, from Lemma 5.2.7 we have

rm−n‖∇l+1(Tγ);Gr(X0)‖L1 ≤ c sup
x∈Rn

ρ∈(0,1)

ρm−n−l‖γ;B(n)
ρ (x)‖L1 .

Given any r∈(0, 1), it remains to estimate the norm ‖∇l+1(Tγ);Gr(X0)‖L1

for y0 < 2r.
For any even k ≥ 2 and |σ| = l + 1 − k, the harmonicity of Tγ in R

n+1
+

implies that

∂k

∂yk
Dσ

x(Tγ)(x, y) = Dσ
x(−∆x)k/2(Tγ)(x, y).

This together with (5.2.20) gives

∣∣∣ ∂
k

∂yk
Dσ

x(Tγ)(x, y)
∣∣∣ ≤ c y−n−2

∫

Rn

ζ1

(h
y

)
|(∆(2)

h ∇l−1γ)(x)|dh, (5.3.16)

where ζ1 obeys (5.2.23). Similarly, for any odd k ≥ 3

∂k

∂yk
Dσ

x(Tγ)(x, y) =
∂

∂y
Dσ

x(−∆x)(k−1)/2(Tγ)(x, y).

Using (5.2.21), we have

∣∣∣ ∂
k

∂yk
Dσ

x(Tγ)(x, y)
∣∣∣ ≤ c y−n−2

∫

Rn

ζ2

(h
y

)
|(∆(2)

h ∇l−1γ)(x)|dh (5.3.17)

with ζ2 satisfying (5.2.25).
Introducing the notation

J1 :=
∫

Gr(X0)

y−n−2dxdy

∫

By

ζ2

(h
y

)
|∆(2)

h (∇l−1γ)(x)|dh, (5.3.18)

we deduce from (5.2.25) that for y0 < 2r

J1 ≤ c

∫ 3r

0

y−n−2dy

∫

B2r

dx

∫

By

|∆(2)
h ∇l−1γ)(x)|dh

= c

∫

B3r

|h|−n−1dh

∫

B2r

|(∆(2)
h ∇l−1γ)(x)|dx.
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Therefore,
J1 ≤ c rn−m km,l (5.3.19)

with km,l given by (5.3.14).
Let

J2 :=
∫

Gr(X0)

∫

Rn\By

ζ2
(h
y

)
|(∆(2)

h ∇l−1γ)(x)|dh y−n−2dxdy. (5.3.20)

By (5.3.17) and (5.2.25), we have for the inner integral over R
n\B(n)

y

∫

Rn\By

ζ2
(h
y

)
|(∆(2)

h ∇l−1γ)(x)|dh ≤ c yn+2

∫

Rn\By

|(∆(2)
h ∇l−1γ)(x)|dh
|h|n+2

.

We write the integral on the right-hand side as the sum of two integrals, one
taken over B2r\By and another over R

n\B2r. We see that

∫ 3r

0

dy

∫

Br

|(∆(2)
h ∇l−1γ)(x)|dx

∫

B2r\By

dh

|h|n+2

≤
∫

Br

dx

∫

B2r

|(∆(2)
h ∇l−1γ)(x)|dh
|h|n+1

≤ c rn−m km,l. (5.3.21)

Also,

∫ 3r

0

dy

∫

B(n)
r

dx

∫

Rn\B2r

|(∆(2)
h ∇l−1γ)(x)|dh
|h|n+2

≤ c (I + I+ + I−), (5.3.22)

where

I =
∫ 3r

0

dy

∫

B(n)
r

|∇l−1γ(x)| dx
∫

Rn\B2r

dh

|h|n+2

and

I± =
∫ 3r

0

dy

∫

Br

∫

Rn\B2r

|∇l−1γ(x±h)|dh
|h|n+2

dx.

Clearly,

I ≤ c r−1

∫

Br

|∇l−1γ(x)|dx. (5.3.23)

Hence,

I ≤ c rn−m
(

sup
z∈Rn

ρ∈(0,1)

ρm−n−1

∫

Bρ(z)

|∇l−1γ(x)|dx
)
. (5.3.24)
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Obviously,

I± ≤ c r1−n

∫

B(n)
r

∫

Rn\B2r

∫

Br(ξ)

|∇l−1γ(x±h)|dh
|h|n+2

dξ dx.

In view of the estimate |ξ| ≤ r + |h| < 1
2 |ξ|+ |h|, this implies that

I± ≤ c r1−n

∫

Rn\B2r

∫

Br(ξ)

∫

Br

|∇l−1γ(x±h)| dx dh dξ

|ξ|n+2
, (5.3.25)

and therefore

I± ≤ c rn−m
(

sup
z∈Rn

ρ∈(0,1)

ρm−n−1

∫

Bρ(z)

|∇l−1γ(x)|dx
)
. (5.3.26)

Combining (5.3.21), (5.3.23), and (5.3.26), we conclude that J2 defined by
(5.3.20) is subject to the inequality

J2 ≤ c rn−m
(
kl,m + sup

z∈Rn

ρ∈(0,1)

ρm−n−1

∫

Bρ(z)

|∇l−1γ(x)|dx
)
. (5.3.27)

Together with (5.3.19), this leads to

rm−n‖∇l+1(Tγ);Gr(X0)‖L1

≤ c
(
kl,m + sup

z∈Rn

ρ∈(0,1)

ρm−n−1

∫

Bρ(z)

|∇l−1γ(x)|dx
)
. (5.3.28)

It remains to show that

sup
X0∈R

n+1
+

‖Tγ;G1(X0)‖L1 ≤ c sup
x∈Rn

‖γ;B1(x)‖L1 . (5.3.29)

If y0 ≥ 2, this inequality stems directly from (5.2.33). Let y0 < 2. Clearly,

‖Tγ;G1(X0)‖L1 ≤
∫ 3

0

∫

B

∫

By(x)

ζ
(ξ − x

y

)
|γ(ξ)|dξ dx dy

yn

+
∫ 3

0

dy

∫

B(n)
1

∫

Rn\By(x)

ζ
(ξ − x

y

)
|γ(ξ)|dξ dxdy

yn
. (5.3.30)

The first term on the right-hand side does not exceed
∫

B
ζ(t) dt

∫ 3

0

∫

B
|γ(x+ ty)| dxdy ≤ c sup

z∈Rn

‖γ;B1(z)‖L1 . (5.3.31)
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Since ζ is the Poisson kernel, the second term in (5.3.30) is dominated by

c

∫ 3

0

∫

B

∫

Rn\By

|γ(x+ h)| dh
(y + |h|)n+1

dx ydy

≤ c

∫ 3

0

∫

B

∫

Rn\B2y

dξ

∫

By(ξ)

|γ(x+ h)| dh
|h|n+1

dx
dy

yn−1
. (5.3.32)

In view of the inequality |h| > |ξ|/2 which is valid since |ξ| ≤ r+|h| < 1
2 |ξ|+|h|,

the right-hand side in (5.3.32) is majorized by

c

∫ 3

0

∫

Rn\B2y

∫

By(ξ)

∫

B
|γ(x+ h)|dxdh dξ

|ξ|n+1

dy

yn−1
≤ c sup

z∈Rn

‖γ; (B1(z))‖L1 .

Combining the last estimate with (5.3.31) and (5.3.32), we arrive at (5.3.29).
Now, adding the inequalities (5.3.19), (5.3.27), and (5.3.29), we conclude

that the value Kl,m defined by (5.3.13) satisfies

Kl,m≤ c
(
kl,m+ sup

z∈Rn

r∈(0,1)

rm−n−1

∫

Br(z)

|∇l−1γ(x)|dx+sup
z∈Rn

‖γ;B1(z)‖L1

)
. (5.3.33)

Estimating the second term on the right-hand side by Lemma 5.2.4, we arrive
at (5.3.15). The result follows for l < m. For m = l, instead of (5.3.29), we
use the maximum principle

‖Tγ; Rn+1
+ ‖L∞ ≤ ‖γ; Rn‖L∞ .

The proof of Theorem 5.3.1 is complete. ��

Remark 5.3.1. It is obvious that form = l the relation (5.3.1) can be written as

‖γ‖MBl
1
∼

sup
z∈Rn

r∈(0,1)

rm−n

∫

(Br(z))2
|
(
∆(2)∇l−1γ

)
(x, y)| dx dy

|x− y|n+1
+ ‖γ‖L∞ . (5.3.34)

Corollary 5.3.1. Suppose that γ ∈ M(Bm
1 (Rn) → Bl

1(R
n)). Then ∇jγ ∈

M(Bm−j
1 (Rn)→ Bl−j

1 (Rn)).

Proof. This follows directly from Theorem 5.3.1 and Lemma 5.2.4.

5.3.2 Description of M(Bm
1 → Bl

1) Involving D1,l

Now we give another description of the space M(Bm
1 (Rn)→ Bl

1(R
n)).
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Theorem 5.3.2. Let l be an integer and let m ≥ l ≥ 1. Then the equivalence
relation

‖γ‖M(Bm
1 →Bl

1)
∼ sup

z∈Rn

r∈(0,1)

rm−n‖D1,lγ;Br(z)‖L1 + ‖γ‖L1,unif (5.3.35)

holds. If m = l, then

‖γ‖MBl
1
∼ sup

z∈Rn

r∈(0,1)

rm−n‖D1,lγ;Br(z)‖L1 + ‖γ‖L∞ . (5.3.36)

For m ≥ n and m > l,

‖γ‖M(Bm
1 →Bl

1)
∼ sup

z∈Rn

(
‖D1,lγ;B1(z)‖L1 + ‖γ; (B1(z))‖L1

)
(5.3.37)

which, in its turn, is equivalent to ‖γ; Rn‖Bl
1,unif

.

Proof. The desired lower estimate for the norm ‖γ‖M(Bm
1 →Bl

1)
follows from

(5.3.8) and the estimate

‖D1,lγ;Br(z)‖L1 ≤ c sup
ξ∈Rn

|||γ;Br(ξ)|||Bl
1
, (5.3.38)

which holds for all z ∈ R
n and r ∈ (0, 1]. In order to justify (5.3.38), it suffices

to check that ∫

Br(z)

∫

Rn\Br

|
(
∆

(2)
h ∇l−1γ

)
(x)| dh

|h|n+1
dx

≤ c r−1 sup
ξ∈Rn

‖∇l−1γ;Br(ξ)‖L1 . (5.3.39)

Clearly, ∫

Br(z)

∫

Rn\Br

|∇l−1γ(x)| dh

|h|n+1
dx

≤ c r−1 sup
ξ∈Rn

‖∇l−1γ;Br(ξ)‖L1 . (5.3.40)

Also, ∫

Br(z)

∫

Rn\Br

|∇l−1γ(x±h)| dh

|h|n+1
dx

≤ c

rn

∫

Br(z)

∫

Rn\B2r

∫

Br(ξ)

|∇l−1γ(x±h)| dh

|h|n+1
dξ dx.

Since |ξ| < r + |h|, it follows that |h| > |ξ|/2 and, therefore, the right-hand
side of the last inequality is dominated by

c

∫

Rn\B2r

∫

Br(ξ)

|∇l−1γ(x±h)|dh dξ

|ξ|n+1
≤ c r−1 sup

z∈Rn

‖∇l−1γ;Br(z)‖L1

which together with (5.3.40) implies (5.3.39).
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To get the required upper estimate for ‖γ‖M(Bm
1 →Bl

1)
, we combine (5.3.33)

with Lemma 5.2.4 and Corollary 5.2.3 to conclude that

Km,l ≤ c
(

sup
z∈Rn

r∈(0,1)

rm−n‖D1,lγ;Br(z)‖L1 + ‖γ‖L1,unif

)
.

Using this inequality in (5.3.12), the result follows.
For m ≥ n, the right-hand side in (5.3.5) is obviously equivalent to

Bl
1,unif(R

n). The proof is complete. ��

5.3.3 M(Bm
1 (Rn) → Bl

1(R
n)) as the Space of Traces

We use the notation R
n+1
+ = {(x, y) : x ∈ R

n, y > 0} and R
n = ∂R

n+1
+ . By

W k
1 (Rn+1

+ ) with integer k we mean the space of functions defined on R
n+1
+

with finite norm

‖U ; Rn+1
+ ‖W k

1
= ‖∇kU ; Rn+1

+ ‖L1 + ‖U ; Rn+1
+ ‖L1 .

The next theorem shows that M(Bm
1 (Rn)→ Bl

1(R
n)), with integer m and l,

is the space of traces on R
n of functions in M(Wm+1

1 (Rn+1
+ )→W l+1

1 (Rn+1
+ )).

Theorem 5.3.3. Let m and l be integers, m ≥ l ≥ 1.
(i) Suppose that

γ ∈M(Bm
1 (Rn)→ Bl

1(R
n)).

Then the Dirichlet problem

∆Γ = 0 on R
n+1
+ , Γ |Rn = γ

has a unique solution in M(Wm+1
1 (Rn+1

+ )→W l+1
1 (Rn+1

+ )) and the estimate

‖Γ ; Rn+1
+ ‖M(W m+1

1 →W l+1
1 ) ≤ c ‖γ; Rn‖M(Bm

1 →Bl
1)

(5.3.41)

holds.
(ii) Suppose that

Γ ∈M(Wm+1
1 (Rn+1

+ )→W l+1
1 (Rn+1

+ )).

If γ is the trace of Γ on R
n, then

γ ∈M(Bm
1 (Rn)→ Bl

1(R
n))

and the estimate

‖γ; Rn‖M(Bm
1 →Bl

1)
≤ c ‖Γ ; Rn+1

+ ‖M(W m+1
1 →W l+1

1 ) (5.3.42)

holds.
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Proof. (i) Suppose that γ ∈M(Bm
1 (Rn)→ Bl

1(R
n)). Then by Theorem 5.3.1,

the right-hand side in (5.3.1) is finite. Taking into account (5.3.15), we con-
clude that Km,l defined in (5.3.13) is finite. Then reference to the equivalence
relation (5.3.10) completes the proof of part (i).

(ii) Let U ∈ Wm+1
1 (Rn+1

+ ) and U(x, 0) = u(x). Clearly, by part (i) of
Lemma 5.2.1,

‖γ u; Rn‖Bl
1
≤ c ‖ΓU ; Rn+1

+ ‖W l+1
1

≤ c ‖Γ ; Rn+1
+ ‖M(W m+1

1 →W l+1
1 )‖U ; Rn+1

+ ‖W m+1
1

.

Minimizing the right-hand side over all extensions U of u and using part (ii)
of Lemma 5.2.1, we complete the proof.

5.3.4 Interpolation Inequality for Multipliers

From Theorem 5.1.2 one readily obtains

Corollary 5.3.2. Let 0 < s < n, then

‖γ; Rn‖M(Bs
1→L1) ∼ sup

x∈Rn

r∈(0,1)

rs−n‖γ;Br(x)‖L1 . (5.3.43)

Let s ≥ n, then

‖γ; Rn‖M(Bs
1→L1) ∼ sup

x∈Rn

‖γ;B1(x)‖L1 . (5.3.44)

Theorem 5.3.4. Let m and l be integers, m ≥ l > 0, and let j = 0, . . . , l− 1.
Then

‖γ‖M(Bm−j
1 →Bl−j

1 )

≤ c ‖γ‖1−j/l

M(Bm
1 →Bl

1)
‖γ‖j/l

M(Bm−l
1 →L1)

. (5.3.45)

Proof. By (5.3.4),

|||u;Br(x)|||Bl−j
1
≤ c |||u;Br(x)|||1−j/l

Bl
1
‖γ;Br(x)‖j/l

L1
.

Hence,
sup
x∈Rn

r∈(0,1)

rm−j−n|||u;Br(x)|||Bl−j
1

≤ c
(

sup
x∈Rn

r∈(0,1)

rm−n|||u;Br(x)|||Bl−j
1

)1−j/l( sup
x∈Rn

r∈(0,1)

rm−l−n‖γ;Br(x)‖L1

)j/l
.

It remains to apply Theorem 5.3.1 and Corollary 5.3.2.
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5.4 Description of the Space M(Bm
1 → Bl

1)
with Noninteger l

Before we pass to a complete characterization of the space of multipliers
M(Wm

1 (Rn) → W l
1(R

n)) for noninteger l, we prove an assertion similar to
Lemma 5.2.4.

Lemma 5.4.1. Let l be a positive noninteger, and let j = 0, . . . , [l]. Then for
any r ∈ (0, 1],

rj−l‖∇ju;Br‖L1

≤ c
(∫

(Br)2
|∇[l]u(x)−∇[l]u(y)| dx dy

|x− y|n+{l} + r−l‖u;Br‖L1

)
(5.4.1)

and
rj−[l]

∫

(Br)2
|∇ju(x)−∇ju(y)| dx dy

|x− y|n+{l}

≤ c
(∫

(Br)2
|∇[l]u(x)−∇[l]u(y)| dx dy

|x− y|n+{l} + r−l‖u;Br‖L1

)
. (5.4.2)

Proof. We apply the same argument as in the proof of Lemma 5.2.4 with
(5.2.15) replaced by the identity

∇[l]u(x) =
∫

B
ϕ(y)

(
∇[l]u(x)−∇[l]u(y)

)
dy

+(−1)[l]
∫

B
u(y)(∇[l]ϕ)(y)dy. (5.4.3)

��

Theorem 5.4.1. Let l be a noninteger and let m ≥ l ≥ 0. The equivalence
relation

‖γ‖M(W m
1 →W l

1) ∼

sup
z∈Rn

r∈(0,1)

rm−n
(∫

(Br(z))2
|∇[l]γ(x)−∇[l]γ(y)| dx dy

|x− y|n+{l} + r−l‖γ;Br(z)‖L1

)

holds. For m ≥ n
‖γ‖M(W m

1 →W l
1) ∼ ‖γ‖W l

1,unif
.

Proof. We use the norm

|||v;Br|||W l
1

=
[l]∑

j=0

rj−l‖∇jv;Br‖L1

+
[l]∑

j=0

rj−[l]

∫

(Br)2
|∇jv(x)−∇jv(y)|

dx dy

|x− y|n+{l} (5.4.4)
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defined for positive and noninteger l, and r ∈ (0, 1]. Lemma 5.4.1 implies that

|||v;Br|||W l
1
∼
∫

(Br)2
|∇[l]v(x)−∇[l]v(y)|

dx dy

|x− y|n+{l} + r−l‖v;Br‖L1 . (5.4.5)

Making dilation in (5.2.6) with noninteger l, we obtain

|||v;Br|||W l−j
1
≤ c |||v;Br|||1−j/l

W l
1
‖v;Br‖j/l

L1
(5.4.6)

for any j = 0, . . . , l − 1, and hence

|||v;Br|||W l−j
1
≤ c |||v;Br|||W l

1
. (5.4.7)

By (5.4.5), the equivalence required in the theorem can be written as

‖γ; Rn‖M(W m
1 →W l

1) ∼ sup
z∈Rn

|||γ;B1(z)|||W l
1
. (5.4.8)

For m ≥ n the right-hand side of (5.4.8) becomes

sup
z∈Rn

r∈(0,1)

rm−n|||γ;Br(z)|||W l
1
∼ ‖γ; Rn‖W l

1,unif
.

From Lemma 5.2.3 and (5.4.5), we obtain

|||v;Br|||W l
1
≤ c ‖v; Rn‖W l

1
(5.4.9)

for l < n. Let u(y) = η
(

y−x
r

)
, where r ∈ (0, 1) for m < n and r = 1 for

m ≥ n, and η ∈ C∞
0 (B2), η = 1 on B1. Setting this u into the inequality

‖γ u‖W l
1
≤ ‖γ‖M(W m

1 →W l
1)‖u‖W m

1
(5.4.10)

and using (5.4.9) with v = γu, we have

|||γ;Br(x)|||W l
1
≤ c rn−m‖γ; ‖M(W m

1 →W l
1) (5.4.11)

for any x ∈ R
n. The required lower estimate for the norm ‖γ‖M(W m

1 →W l
1)

follows from (5.4.5).
Now we obtain the upper estimate for the norm ‖γ‖M(W m

1 →W l
1). We have

‖D1,l(γu)‖L1

≤ c

[l]∑
j=0

(
‖ |∇ju|D1,l−jγ‖L1 + ‖ |∇jγ|D1,l−ju‖L1

)
. (5.4.12)

By Theorem 5.1.2
‖ |∇ju|D1,l−jγ‖L1

≤ c sup
x∈Rn

r∈(0,1)

rm−j−n‖D1,l−jγ;Br(x)‖L1‖∇ju‖W m−j
1

. (5.4.13)
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Note that the estimate

‖D1,lγ;Br(z)‖L1 ≤ c sup
ξ∈Rn

|||γ;Br(ξ)|||W l
1
, (5.4.14)

holds for all z ∈ R
n and r ∈ (0, 1]. To justify this estimate, it suffices to check

that ∫

B(n)
r (z)

∫

Rn\Br

|∇[l]γ(x+ h)−∇[l]γ(x)| dh

|h|n+{l} dx

≤ c r−{l} sup
ξ∈Rn

‖∇[l]γ;Br(ξ)‖L1 (5.4.15)

which is proved in the same way as (5.3.39) with obvious changes. By (5.4.15),

r−j‖D1,l−jγ;Br(x)‖L1 ≤ c r−j−{l} sup
ξ∈Rn

‖∇[l]−jγ;Br(ξ)‖L1

≤ c sup
ξ∈Rn

|||γ;Br(ξ)|||W l
1
.

This together with (5.4.13) implies that

‖ |∇ju|D1,l−jγ‖L1 ≤ c sup
ξ∈Rn

r∈(0,1)

rm−n|||γ;Br(ξ)|||W l
1
‖u‖W m

1
(5.4.16)

for m < n, and

‖ |∇ju|D1,l−jγ‖L1 ≤ c sup
z∈Rn

|||γ;B1(z)|||W l
1
‖u‖W m

1
(5.4.17)

for m ≥ n.
Since the proof of (4.3.60) is also valid for p = 1, we have

‖ |∇jγ|D1,l−ju‖L1 ≤ c ‖∇jγ‖M(W m−l+j
1 →L1)

‖u‖W m
1

which together with Theorem 5.1.2 gives

‖ |∇jγ|D1,l−ju‖L1 ≤ c sup
x∈Rn

r∈(0,1)

rm−l+j−n‖∇jγ;Br(x)‖L1‖u‖W m
1
.

This estimate along with Lemma 5.4.1 implies that

‖ |∇jγ|D1,l−ju‖L1 ≤ c sup
z∈Rn

r∈(0,1)

rm−n|||γ;Br(z)|||W l
1
‖u‖W m

1
(5.4.18)

for m < n, and

‖ |∇jγ|D1,l−ju‖L1 ≤ c sup
z∈Rn

|||γ;B1(z)|||W l
1
‖u‖W m

1
(5.4.19)

for m ≥ n. Substituting (5.4.16)–(5.4.19) into (5.4.12), we complete the proof.
��
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5.5 Further Results on Multipliers in Besov
and Other Function Spaces

5.5.1 Peetre’s Imbedding Theorem

As early as in 1976 Peetre showed that, in order for a function γ be a multiplier
in Bl

p,θ, it suffices that γ belongs to Bl
∞,θ (see [Pe2]). He used a Littlewood-

Paley decomposition of a function u as the sum of elementary functions un

such that the Fourier transform of un is supported by the dyadic annulus of
width ∼2n. In this section we reproduce Peetre’s result.

The space Bl
p,θ with p ≥ 1 defined in Sect. 4.4 can be supplied with other

norms (see [Pe2], [Tr3]). For example, for l ∈ (0, 1) one may put

‖u‖Bl
p,θ

=

⎧
⎪⎨
⎪⎩

(∫ ∞

0

(
t−1ωp(t, u)

)θ dt
t

)1/θ

+ ‖u‖Lp
for θ <∞,

sup
t>0

t−1ωp(t, u) + ‖u‖Lp
for θ =∞,

where

ωp(t, u) = sup
|h|≤t

(∫

Rn

|u(x+ h)− u(x)|p dx
)1/p

.

Another frequently used norm in Bl
p,θ introduced by Peetre has the follow-

ing definition. Let ϕ ∈ S, where S is the space of rapidly decreasing functions.
Further let

(1) suppϕ = {ξ : 2−1 ≤ |ξ| ≤ 2},
(2) ϕ(ξ) > 0 for 2−1 < |ξ| < 2,

(3)
∞∑

k=−∞
ϕ(2−kξ) = 1, ξ 	= 0.

Let Ψ and ϕk be given by

FΨ(ξ) = 1−
∑
k≥1

ϕ(2−kξ); Fϕk(ξ) = ϕ(2−kξ), −∞ < k < +∞, (5.5.1)

where F is the Fourier transform. Then the norm (the quasi-norm for 0<θ<1)
in Bl

p,θ is equivalent to

‖u‖(1)
Bl

p,θ
=

⎧
⎪⎪⎨
⎪⎪⎩

(∑
k≥1

(
2kl‖u ∗ ϕk‖Lp

)θ)1/θ

+ ‖u ∗ Ψ‖Lp
for θ <∞,

sup
k≥1

2kl ‖u ∗ ϕk‖Lp
+ ‖u ∗ Ψ‖Lp

for θ =∞

(see, for example, [Pe2], [Tr3]). Using the right-hand sides of these equalities,
one can define the spaces Bl

p,θ for all l ∈ R
1 and for p ∈ (0, 1).

Theorem 5.5.1. [Pe2] If l > 0, p ∈ [1,∞], and θ ∈ (0,∞], then Bl
∞,θ ⊂

MBl
p,θ.
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Proof. Let u ∈ Bl
p,θ and let γ ∈ Bl

∞,θ. We put U = u ∗ Ψ , uk = u ∗ ϕk, and
similarly Γ = γ ∗ Ψ , γk = γ ∗ ϕk. Then

u = U +
∑
k≥1

uk, γ = Γ +
∑
k≥1

γk.

For the product g = γ u we have the decomposition

g = ΓU + Γ
∑
j≥1

uj + U
∑
k≥1

γk +
∑
k≥1

∑
j≥1

γk uj . (5.5.2)

Clearly,
‖g ∗ Ψ‖Lp

≤ c ‖g‖Lp
.

In order to estimate the norm
(∑

m≥1

(
2ml ‖g ∗ ϕm‖Lp

)θ)1/θ

,

we consider only the functions (γk uj)∗ϕm because other terms in (5.5.2) can
be estimated in a similar way. Let us introduce the spherical layer

Gm = {ξ : 2m−1 < |ξ| < 2m+1}.

Note that
F−1

(
(γk uj) ∗ ϕm

)
=
(
F−1γk ∗ F−1uj

)
F−1ϕm

and

suppF−1γk ⊂ Gk, suppF−1uj ⊂ Gj , suppF−1ϕm ⊂ Gm.

Therefore, if (γk uj)∗ϕm is not identical to zero, we have 2m−1 ≤ 2j+1 +2k+1.
Hence it is sufficient to estimate the norms

Mm :=
∥∥ ∑

j≥m−3

∑
k≥1

(γk uj) ∗ ϕm

∥∥
Lp

and
Lm :=

∥∥ ∑
k≥m−3

∑
j≥1

(γk uj) ∗ ϕm

∥∥
Lp
.

We have
Mm =

∥∥ ∑
j≥m−3

(
uj

∑
k≥1

γk

)
∗ ϕm

∥∥
Lp

≤ c
∥∥∑

k≥1

γk

∥∥
L∞

∑
j≥m−3

‖uj‖Lp
≤ c ‖γ‖L∞

∑
j≥m−3

‖uj‖Lp
.

This implies the estimate

Mθ
m ≤ c ‖γ‖θL∞ sup

j≥m−3

(
2sθj‖uj‖θLp

)
2−sθm (5.5.3)
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for any s ∈ (0, l). Hence
∑
m≥4

2lθmMθ
m ≤ c ‖γ‖θL∞

∑
m≥4

2(l−s)θm
∑

j≥m−3

2sθj‖uj‖θLp

≤ c ‖γ‖θL∞

∑
m≥1

2lθm‖um‖θLp
.

The norm Lm satisfies

Lm =
∥∥ ∑

k≥m−3

(
γk

∑
j≥1

uj

)
∗ ϕm

∥∥
Lp

≤ c
∥∥∑

j≥1

uj

∥∥
Lp

∑
k≥m−3

‖γk‖L∞ ≤ c ‖u‖Lp

∑
k≥m−3

‖γk‖L∞ .

Hence, by the same argument as in the case of the norm Mm, we conclude
that ∑

m≥4

2lθmMθ
m ≤ c ‖u‖θLp

∑
m≥1

2lθm‖γm‖θL∞ .

Finally, we obtain

‖γu‖Bl
p,θ
≤ c

(
‖γ‖Bl

∞,θ
‖u‖Lp

+ ‖γ‖L∞‖u‖Bl
p,θ

)
.

The proof is complete. ��

5.5.2 Related Results on Multipliers in Besov and Triebel-Lizorkin
Spaces

We begin an overview of further results with Triebel’s theorem, similar to
Theorem 5.5.1, on multipliers in Bl

p,θ and in the Triebel-Lizorkin space F l
p,θ

with l ∈ R
1 and positive p and θ.

The norm (quasi-norm) in F l
p,θ is defined by

‖u‖F l
p,θ

=
∥∥∥
(∑

k≥1

(
2kl |u ∗ ϕk|

)θ)1/θ∥∥∥
Lp

+ ‖u ∗ Ψ‖Lp
.

(For properties of these spaces see [Tr4] and [RS].)

Theorem 5.5.2. [Tr4] (i) If l ∈ R
1, p ∈ (0,∞], θ ∈ (0,∞], and ρ >

max{l,−l + n/p}, then Bρ
∞,∞ ⊂MBl

p,θ.
(ii) If l ∈ R

1, p ∈ (0,∞], θ ∈ (0,∞], and ρ > max{l,−l + n/min(p, θ)},
then Bρ

∞,∞ ⊂MF l
p,θ.
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Note that F l
p,2 coincides with the space of Bessel potentials H l

p for p > 1
and in this case part (ii) of Theorem 5.5.2 is contained in part (i) of Theorem
3.4.1.

Peetre’s approach, based on the decomposition (5.5.2) and sometimes
called the paraproduct algorithm, was used in the study of multipliers in
Besov and Triebel-Lizorkin spaces in [Sic1]–[Sic3], [Tr4], Sect. 2.8, [Jo], [RS],
[Mar1]–[Mar3], [Yam], [Yu], [SS], [KoS], [Ger]. In [SS] Sickel and Smirnov
showed that

MBl
p,θ = Bl

p,θ,unif

for any p, θ such that 1 ≤ p ≤ θ and l > n/p, whereas Bourdaud [Bo]
demonstrated that

MBl
p,θ 	= Bl

p,θ,unif

for 1 ≤ θ < p ≤ ∞, l > n/p.
Multipliers preserving the Besov spaces B0

∞,1 and B0
∞,∞ were character-

ized by Koch and Sickel [KoS]. In particular, they found the equivalence re-
lation

‖γ‖MB0
∞,∞
∼ ‖γ‖L∞ + ‖γ‖F 0

∞,1
+ sup

k≥0
(k + 1) ‖γ ∗ ϕk‖L∞

with ϕk defined in (5.5.1). We also mention that MB0
p,θ 	= L∞ unless p=θ=2,

according to Frazier and Jawerth [FrJ].
The imbeddings of the form Bs

p,θ, F
s
p,θ ⊂ M(X), where X = Bs0

p0,θ0
or

X = F s0
p0,θ0

were studied in [RS], Ch. 4. A description of M(wm
2 → w−k

2 ),
where m and k belong to (−n/2, n/2) and m 	= k, can be found in [Ger].

Netrusov [Net] gave a characterization of multipliers in Triebel-Lizorkin
spaces F l

p,θ, p ≤ θ ≤ ∞, and Besov spaces Bl
p,∞, where 0 < p ≤ 1. Different

characterizations of MF l
p,θ were obtained by Sickel [Sic3] in the case

0 < p <∞, 0 < θ ≤ ∞, l > nmax{0, p−1 − 1, θ−1 − 1}.

We note that, since B1
1,∞ = BV (see [Pe2], p. 164, and [Gu1]), it follows

from Theorem 2.9.3 that

‖γ‖MB1
1,∞
∼ sup

x∈Rn,
r∈(0,1)

r1−nvar∇γ(Br(x)). (5.5.4)

The following description of the space M(Bl
p,1 → Bl

p,∞), where p ∈ (1,∞)
and 0 < l ≤ 1/p, was given by Gulisashvili [Gu1], [Gu2].

Theorem 5.5.3. A function γ belongs to the space M(Bl
p,1 → Bl

p,∞), p ∈
(1,∞), 0 < l ≤ 1/p, if and only if γ ∈ L∞ and

∫

Br(x)

|∆hγ(t)|pdt ≤ c |h|pl rn−pl

for all balls Br(x), r ∈ (0, 1) and any h ∈ R
n.
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The relation

‖γ‖M(Bl
p,1→Bl

p,∞) ∼ sup
x∈Rn,r∈(0,1)

h∈Rn\{0}

( 1
|h|pl rn−pl

∫

Br(x)

|∆hγ(t)|pdt
)1/p

+ ‖u‖L∞

holds.

As a corollary of this result one obtains the following condition for the in-
clusion of χE into M(B1/p

p,1 → B
1/p
p,∞), where χE is the characteristic function of

a Lebesgue measurable set E in R
n. (See Sect. 2.9 for the notations s and ∂∗.)

Corollary 5.5.1. [Gu1] The inclusion χE ∈ M(B1/p
p,1 → B

1/p
p,∞) holds if and

only if E is a set with local finite perimeter and

s(Br(x) ∩ ∂∗E) ≤ c rn−1

for all balls Br(x) with r ∈ (0, 1).

Comparing this assertion with Corollary 2.9.1 and (5.5.4), we see that χE

belongs to M(B1/p
p,1 → B

1/p
p,∞) and M(B1

1,1 → B1
1,∞) simultaneously.

5.5.3 Multipliers in BMO

The space BMO of functions with bounded mean oscillation (see [JN], [Cam],
[F1], [Ste2], [Ja1], [Ja2], and elsewhere) plays an important role in modern
analysis. It is situated between B0

∞,1 and B0
∞,∞. This space is defined as

follows. Let Qr(x) be the cube in R
n with side length r centered at x whose

sides are parallel to coordinate axes. By f(Q) we denote the mean value of f
on a cube Q, that is,

f(Q) =
1

mesnQ

∫

Q

f(x)dx.

Further, we introduce the mean oscillation of f on Q by

O(f,Q) =
1

mesnQ

∫

Q

|f(x)− f(Q)|dx.

By BMO we denote the space of functions integrable on R
n and such that

sup
x∈Rn,r∈(0,1)

O(f,Qr(x)) <∞.

Endowed with the norm

‖f‖BMO = ‖f‖L1 + sup
x∈Rn,r∈(0,1/2)

O(f,Qr(x)),

BMO becomes a Banach space.
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We can include BMO into the family of spaces BMOϕ of locally integrable
functions with the finite norm

‖f‖L1 + sup
x∈Rn,r∈(0,1/2)

O(f,Qr(x))
ϕ(r)

,

where ϕ ia a positive nondecreasing function on (0, 1/2).
The following theorem, containing a description of the space M(BMO) of

multipliers in BMO, is due to Stegenga [Ste1] and Janson [Ja1].

Theorem 5.5.4. The space M(BMO) coincides with BMO| log r|−1 ∩ L∞.

Proof. We begin by deriving the following useful estimate for functions in
BMO:

|f(Qr)− f(Q1/2)| ≤ c ‖f‖BMO | log r|, (5.5.5)

where Qρ = Qρ(x). It is clear that the left-hand side of this inequality does
not exceed

∫ 1/2

r

∣∣∣ d
dρ
f(Qρ)

∣∣∣dρ ≤
∫ 1/2

r

dρ

ρn

∫

∂Qρ

|f(y)− f(Qρ)|dsy

≤ c1

∫ 1/2

r

dρ

ρn+1

∫ ρ

ρ/2

dr

∫

∂Qρ

|f(y)− f(Qρ)|dsy.

Therefore,

|f(Qr)− f(Q1/2)| ≤ c

∫ 1/2

r

dρ

ρn+1

∫

Qρ

|f(y)− f(Qρ)|dy,

which implies (5.5.5). By (5.5.5),

|f(Qr)| ≤ 2n‖f‖L1 + c ‖f‖BMO| log r|. (5.5.6)

Let γ ∈ BMO| log r|−1 ∩ L∞. Then

r−n

∫

Qr

|(γf)(y)− γ(Qr)f(Qr)|dy

≤ r−n

∫

Qr

|γ(x)| |f(x)− f(Qr)|dy + r−n

∫

Qr

|f(Qr)| |γ(y)− γ(Qr)|dy

≤ ‖γ‖L∞O(f,Qr) + |f(Qr)| O(γ,Qr).

From (5.5.6) it follows that the last sum is dominated by

c | log r|
(
‖γ‖L∞ + ‖γ‖BMO| log r|−1

)
‖f‖BMO.
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It remains to note that

O(f,Qr) ≤
2

mesnQr

∫

Qr

|f(y)− a|dy

for any number a. Hence γ ∈M(BMO).
Now let us show that M(BMO) ⊂ BMO| log r|−1 ∩ L∞. Obviously,

‖γ‖L∞ = lim
N→∞

‖γNf‖1/N
L1
≤ lim inf

N→∞
‖γNf‖1/N

BMO ≤ ‖γ‖M(BMO). (5.5.7)

We see that
1

mesnQr

∫

Qr

|γ(y)− γ(Qr)| |f(y)|dy ≤ O(γf,Qr) + 2‖γ‖L∞O(f,Qr).

This together with (5.5.7) and the inequality

O(γf,Qr) ≤ ‖γ‖M(BMO)‖f‖BMO

implies that

1
mesnQr

∫

Qr

|γ(y)− γ(Qr)| |f(y)|dy ≤ 3 ‖γ‖M(BMO)‖f‖BMO.

Setting here
f(y) = η(y) log[x− y],

where η ∈ C∞
0 (Qr) and η = 1 on Q1/2, we obtain

O(γ,Qr) ≤ c | log r|−1.

The proof is complete. ��

The following general result has a slightly more complicated proof (see
[Ja1]).

Theorem 5.5.5. Let the function ϕ(r) r−1 be almost decreasing in the sense
that

ϕ(ρ) ρ−1 ≤ c ϕ(r) r−1 for ρ ≥ r.

Then
M(BMOϕ) = BMOψ ∩ L∞,

where

ψ(r) = ϕ(r)
(∫ 1

r

ϕ(t)
dt

t

)−1

.

Concerning the space M(BMOϕ) for R
n and for general domains, see the

series of papers by Bloom [Blo], Nakai [Na1], [Na2], Nakai and Yabuta [NY1],
[NY2], Yabuta [Ya].

Using the duality of the Hardy space H1 and BMO (see [St2]), Janson
[Ja1] proved the coincidence of spaces of multipliers in H1 and BMO. In other
words, MH1 = BMO| log r|−1 ∩ L∞.
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Maximal Algebras in Spaces of Multipliers

6.1 Introduction

Let A be a subset of a Banach function space. Then A is called a multiplication
algebra if for all u and v in A their product uv belongs to A and there exists
a constant c such that

‖uv‖ ≤ c ‖u‖ ‖v‖.
Let l be an integer. For lp ≤ n and p ∈ (1,∞), or for l < n and p = 1, the

space W l
p contains unbounded functions which are certainly not multipliers

in W l
p (see, for example, (2.7.1)). Hence the space W l

p is not a multiplication
algebra for the values of p, l, and n given above. It is not difficult to describe
the maximal algebra contained in W l

p. If u ∈ A, then for any N = 1, 2, . . .

‖uN‖1/N
Lp
≤ ‖uN‖1/N

W l
p
≤ c ‖u‖W l

p
.

Consequently, A ⊂ W l
p ∩ L∞. On the other hand, it is well known that the

intersection W l
p ∩ L∞ is a multiplication algebra. In fact, for all u and v in

W l
p ∩ L∞,

‖∇l(uv)‖Lp
≤ c

l∑
k=0

‖ |∇ku| |∇l−kv| ‖Lp
≤ c

l∑
k=0

‖∇ku‖Lpl/k
‖∇l−kv‖Lpl/(l−k)

≤ c

l∑
k=0

‖u‖(l−k)/l
L∞

‖u‖k/l

W l
p
‖v‖k/l

L∞
‖v‖(l−k)/l

W l
p

.

Here we have used the Gagliardo - Nirenberg inequality

‖∇ju‖Lpl/j
≤ c ‖u‖(l−j)/l

L∞
‖u‖j/l

W l
p
, j = 1, . . . , l − 1.

(see [Gag2] and [Nir]). Thus the space W l
p ∩ L∞ is the maximal algebra

contained in W l
p.

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 213
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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Since by Sobolev’s theorem W l
p ⊂ L∞ for lp > n, p ∈ (1,∞) or for l ≥ n,

p = 1, it follows that W l
p is a multiplication algebra for the indicated values

of p and l. Obviously, this known assertion follows from (2.2.5) and (2.3.29)
as well.

Let us turn to the question of Banach algebras in spaces of multipliers
M(Wm

p →W l
p). Obviously, this question is trivial for MW l

p which is a Banach
algebra itself, but this is not the case for spaces of multipliers mapping one
Sobolev space into a different one.

In Sect. 6.3 we show that the maximal Banach algebra Am,l
p , imbedded in

the space of multipliers M(Wm
p → W l

p) which map the Sobolev space Wm
p

to W l
p with noninteger m and l, m > l and p ∈ [1,∞), is isomorphic to

M(Wm
p →W l

p) ∩ L∞.
It is proved in Sect. 6.4 that the maximal Banach algebra Am,l

p , imbedded
in the space of multipliers acting between Bessel potential spaces M(Hm

p →
H l

p), is isomorphic to M(Hm
p → H l

p)∩L∞. Precise descriptions of the imbed-
dings Am,l

p ⊂ Aµ,λ
p and Am,l

p ⊂ Aµ,λ
p are given in Sect. 6.5.

6.2 Pointwise Interpolation Inequalities for Derivatives

6.2.1 Inequalities Involving Derivatives of Integer Order

The aim of this subsection is the following inequality (see [Kal] and [MSh17]).

Lemma 6.2.1. Let 0 < k < m. Then

|∇ku(x)| ≤ c (Mu(x))
m−k

m (M∇mu(x))
k
m . (6.2.1)

Proof. Let η be a function in the ball B1 with Lipschitz derivatives of order
m− 2 and which vanishes on ∂B1 together with all these derivatives. Also let

∫

B1

η(y) dy = 1. (6.2.2)

We need the Sobolev integral representation:

v(0) =
∑

|β|<m−k

t−n

∫

Bt

(−y)β

β!
∂βv(y)η(y/t) dy

+(−1)m−k(m− k)
∑

|α|=m−k

∫

Bt

yα

α!
∂αv(y)

∫ ∞

|y|/t

η
(
ρ
y

|y|
)
ρn−1dρ

dy

|y|n (6.2.3)

(see [Maz14], Sec. 1.5.1).
Setting here v = ∂γu with an arbitrary multi-index γ of order k and

integrating by parts in the first integral, we arrive at the identity
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∂γu(0) = (−1)kt−n

∫

Bt

u(y)
∑

|β|<m−k

1
β!
∂β+γ

(
yβη(y/t)

)
dy

+
∑

|α|=m−k

(−1)m−k(m− k)
∫

Bt

yα

α!
∂α+γu(y)

∫ ∞

|y|/t

η
(
ρ
y

|y|
)
ρn−1dρ

dy

|y|n . (6.2.4)

Hence

|∇ku(0)| ≤ c1t
−n−k

∫

Bt

|u(y)| dy + c2

∫

Bt

|∇mu(y)| dy

|y|n−m+k
. (6.2.5)

If m− k ≥ n, the second integral does not exceed

tm−k−n

∫

Bt

|∇mu(y)| dy .

In the case m− k < n the second integral in (6.2.5) equals

tm−k−n

∫

Bt

|∇mu(y)| dy + (n−m+ k)
∫ t

0

dτ

τn−m+k+1

∫

Bτ

|∇mu(y)| dy .

Therefore,
∫

Bt

|∇mu(y)| dy

|y|n−m+k
≤ n

m− k
tm−k sup

τ≤t
τ−n

∫

Bτ

|∇mu(y)| dy. (6.2.6)

Thus, for any t > 0,

|∇ku(0)| ≤ c3 t
−kMu(0) + c4 t

m−kM∇mu(0) (6.2.7)

which implies (6.2.1). ��

6.2.2 Inequalities Involving Derivatives of Fractional Order

Lemma 6.2.2. Let k and l be integers, and let m be a noninteger, 0 ≤ l ≤
k < m. If u ∈W [m]

p,loc, then

|∇ku(x)| ≤ c
(
(M∇lu)(x)

)m−k
m−l

(
(Dp,mu)(x)

) k−l
m−l (6.2.8)

for almost all x ∈ R
n.

Proof. It suffices to prove (6.2.8) for l = 0 and x = 0. Let η be a function in
the ball B1 with Lipschitz derivatives of order m − 2 and which vanishes on
∂B1 together with all these derivatives. We assume also that η is subject to
(6.2.2). Let t be an arbitrary positive number to be chosen later.
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Replacing m by [m] in (6.2.3) and setting there v = ∂γu with an arbitrary
multi-index γ of order k and then integrating by parts in the first integral, we
arrive at the identity

∂γu(0) = (−1)kt−n

∫

Bt

u(y)
∑

|β|<[m]−k

1
β!
∂β+γ(yβη(y/t)) dy (6.2.9)

+
∑

|α|=[m]−k

(−1)[m]−k([m]− k)
∫

Bt

yα

α!
∂α+γu(y)

∫ ∞

|y|/t

η(ρ
y

|y| )ρ
n−1dρ

dy

|y|n .

Hence, for k < [m] we have

|∇ku(0)| ≤ c
(
t−kMu(0) + t[m]−k|∇[m]u(0)|

+
∫

Bt

|∇[m]u(y)−∇[m]u(0)|
|y|n−[m]+k

dy
)
. (6.2.10)

Hölder’s inequality implies that
∫

Bt

|∇[m]u(y)−∇[m]u(0)|
|y|n−[m]+k

dy ≤ c tm−k(Dp,mu)(0) . (6.2.11)

Let γ be an arbitrary multi-index of order [m]. The identity

∂γu(0) = t−n

∫

Bt

η(
y

t
)∂γu(y)dy + t−n

∫

Bt

η(
y

t
) [∂γu(0)− ∂γu(y)] dy

gives

|∇[m]u(0)| ≤ t−n−[m]
∣∣∣
∫

Bt

u(y)(∇[m]η)(
y

t
) dy

∣∣∣

+t{m}
(∫

Bt

|η(y)|q|y|( n
p +{m})qdy

)1/q

(Dp,mu)(0) , (6.2.12)

where p−1 + q−1 = 1. Combining (6.2.10)–(6.2.12), we arrive at

|∇ku(0)| ≤ c
(
t−k(Mu)(0) + tm−k(Dp,mu)(0)

)
. (6.2.13)

Minimization of the right-hand side in t completes the proof. ��

Remark 6.2.1. Note that one can replace Dp,mu on the right-hand sides of
(6.2.11) and (6.2.12) by D

(r)
p,mu, where

(D(r)
p,mu)(x) =

(∫

Br

|∇[m]u(x+ h)−∇[m]u(x)|p dh

|h|n+p{s}

)1/p

. (6.2.14)

Hence, by (6.2.10),

|∇ku(0)| ≤ c
(
t−k(Mu)(0) + tm−k(D(t)

p,mu)(0)
)
. (6.2.15)

Lemma 6.2.2 implies the following assertion.
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Corollary 6.2.1. Let k be an integer and let m be a noninteger, 0 < k < m.
Then

|∇ku(x)| ≤ c ‖u‖
m−k

m

L∞

(
(Dp,mu)(x)

) k
m (6.2.16)

for almost all x ∈ R
n.

In the following lemma we derive a multiplicative inequality involving the
function (6.2.14) and use the notation of integral with a bar for the mean
value.

Lemma 6.2.3. Let s and l be positive nonintegers, s < l, and let 1 ≤ p <∞.
If either {s} ≥ {l} or 0 < s < 1, then there exists a positive constant

c = c(s, l, n, p) such that

(D(r)
p,su)(x) ≤ c

(∫
−

Br(x)

|u(y)|dy
) l−s

l
(
r−l

∫
−

Br(x)

|u(y)|dy+D
(r)
p,l u(x)

) s
l

(6.2.17)

for almost all x ∈ R
n.

Proof. Let s ≥ 1. It is enough to prove (6.2.17) for x = 0. Since s < l and
{s} ≥ {l}, it follows that [s] ≤ [l]− 1. We have

(∫

B1

∣∣∇[s]u(h)−∇[s]u(0)
∣∣p dh

|h|n+p{s}

)1/p

≤
(∫

B1

∣∣∣∇[s]u(h)−
∑

{α:|α|≤[l]−1−[s]}

hα

α!
Dα∇[s]u(0)

∣∣∣
p dh

|h|n+p(l−[s])

)1/p

+ c

[l]−1∑
i=[s]+1

|∇iu(0)|. (6.2.18)

The last sum should be omitted if [s] = [l]− 1. For [s] ≤ [l]− 1 the identity

∇[s]u(h)−
∑

{α:|α|≤[l]−1−[s]}

hα

α!
Dα∇[s]u(0)

= ([l]− [s])
∫ 1

0

∑
{α:|α|=[l]−[s]}

hα

α!
(
Dα∇[s]u(th)

−Dα∇[s]u(0)
)
(1− t)[l]−[s]−1dt (6.2.19)

implies that the integral on the right-hand side of (6.2.18) does not exceed

c
(∫

B1

(∫ 1

0

|∇[l]u(th)−∇[l]u(0)|(1− t)[l]−[s]−1dt
)p dh

|h|n+p{l}

)1/p

.



218 6 Maximal Algebras in Spaces of Multipliers

By Minkowski’s inequality this last expression is dominated by
∫ 1

0

(∫

B1

|∇[l]u(th)−∇[l]u(0)|p dh

|h|n+p{l}

)1/p

(1− t)[l]−[s]−1dt

= cD
(1)
p,l u(0). (6.2.20)

It follows from (6.2.5) that for every i ≤ [l]− 1

|∇iu(0)| ≤ c1

∫

B1

|u(h)|dh+ c2

∫

B1

|∇[l]u(h)| dh

|h|n−[l]+i

≤ c1

∫

B1

|u(h|dh+ c2

∫

B1

|∇[l]u(h)−∇[l]u(0)|
|h|n−[l]+i

dh+ c3 |∇[l]u(0)|. (6.2.21)

Let η be a function in the ball B1 with Lipschitz derivatives of order l− 2
and which vanishes on ∂B1 together with all these derivatives. We also assume
that η satisfies (6.2.2). For any multi-index β of order [l] the identity

Dβu(0) =
∫

B1

η(h)Dβu(h)dh+
∫

B1

η(h)
(
Dβu(0)−Dβu(h)

)
dh

and Hölder’s inequality imply that

|∇[l]u(0)| ≤ c1

∫

B1

|u(h)|dh

+ c2

(∫

B1

|η(h)|q|h|( n
p +{l})qdh

)1/q

D
(1)
p,l u(0), (6.2.22)

where p−1 + q−1 = 1. Using Hölder’s inequality again, we obtain
∫

B1

|∇[l]u(h)−∇[l]u(0)|
|h|n−[l]+i

dh ≤ cD
(1)
p,l u(0)

which together with (6.2.22) and (6.2.21) results in

|∇iu(0)| ≤ c1

∫

B1

|u(h)|dh+ c2 D
(1)
p,l u(0), i ≤ [l]− 1. (6.2.23)

Combining this inequality with (6.2.18) and (6.2.20), we arrive at

D(1)
p,su(0) ≤ c1

∫

B1

|u(h)|dh+ c2 D
(1)
p,l u(0) (6.2.24)

which, after the dilation h→ h/r, becomes

D(r)
p,su(0) ≤ c

(
r−s

∫
−

Br

|u(h)|dh+ rl−sD
(r)
p,l u(0)

)
. (6.2.25)
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Now, one has the alternatives: either
∫
−

Br

|u(h)|dh ≤ rlD
(r)
p,l u(0)

and
D(r)

p,su(0) ≤ c
(∫
−

Br

|u(h)|dh
)1− s

l
(
D

(r)
p,l u(0)

) s
l

,

or ∫
−

Br

|u(h)|dh > rlD
(r)
p,l u(0)

and
D(r)

p,su(0) ≤ c r−s

∫
−

Br

|u(h)|dh.

Therefore, (6.2.17) holds.
For 0 < s < 1 the inequality (6.2.17) is, obviously, valid. ��

Corollary 6.2.2. Let s and l be positive nonintegers such that s < l and let
p ≥ 1.

(i) If either {s} ≥ {l} or 0 < s < 1, then there exists a positive constant
c = c(s, l, n, p) such that

(
Dp,su

)
(x) ≤ c

(
Mu(x)

) l−s
l
(
Dp,lu(x)

) s
l (6.2.26)

for any u ∈W l
p,loc and almost all x ∈ R

n.
(ii) If s > 1 and {s} < {l}, then even the rougher inequality

(
Dp,su

)
(x) ≤ c ‖u‖

l−s
l

L∞

(
Dp,lu(x)

) s
l

does not hold.

Proof. (i) From (6.2.17) we deduce that

(
D(r)

p,su
)
(x) ≤ c

(
Mu(x)

) l−s
l
(
r−lMu(x) +D

(r)
p,l u(x)

) s
l .

The result follows by passing to the limit as r →∞.
(ii) Let s > 1 and {s} < {l}. Suppose that the inequality

(Dp,su)(x) ≤ c ‖u‖
{l}−{s}
[s]+{l}

L∞

(
Dp,[s]+{l}u(x)

) s
[s]+{l} (6.2.27)

holds. According to part (i),

(Dp,[s]+{l}u)(x) ≤ c ‖u‖
[l]−[s]

l

L∞

(
Dp,lu(x)

) [s]+{l}
l

which together with (6.2.27) results in (6.2.17). Hence it is enough to disprove
(6.2.27).
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We set x = 0 and assume that supp u ⊂ B2\B1. Then (6.2.27) implies that

(∫

B2\B1

|∇[s]u(h)|pdh
)1/p

≤ c ‖u‖L∞

which, obviously, does not hold for all u. This completes the proof. ��

Remark 6.2.2. For p =∞ the inequality (6.2.17) becomes

sup
y

|∇[s]u(y)−∇[s]u(x)|
|y − x|{s} ≤ c

(
Mu(x)

) l−s
l

(
sup

y

|∇[l]u(y)−∇[l]u(x)|
|y − x|{l}

) s
l

,

where s < l and either {s} ≤ {l} or 0 < s < 1.

6.3 Maximal Banach Algebra in M(W m
p → W l

p)

6.3.1 The Case p > 1

Theorem 6.3.1. Let m ≥ l ≥ 0, and let p ∈ (1,∞). The maximal Banach
algebra Am,l

p imbedded into

M(Wm
p →W l

p)

is isomorphic to the space

M(Wm
p →W l

p) ∩ L∞. (6.3.1)

The estimate

‖γ1γ2‖M(W m
p →W l

p)

≤ c
(
‖γ1‖L∞‖γ2‖M(W m

p →W l
p) + ‖γ2‖L∞‖γ1‖M(W m

p →W l
p)

)

holds.

Proof. The statement is trivial for m = l, since MW l
p is an algebra and is

imbedded into L∞ (see (2.3.15) and (4.3.28)).
Let Am,l

p be a Banach subalgebra of M(Wm
p →W l

p) and let c be a constant
such that

‖γ‖M(W m
p →W l

p) ≤ c ‖γ‖Am,l
p

for all γ ∈ Am,l
p . For every N = 1, 2 . . . and all γ ∈ Am,l

p , u ∈Wm
p we have

‖γNu‖1/N
Lp
≤ ‖γNu‖1/N

W l
p
≤ ‖γN‖1/N

M(W m
p →W l

p)
‖u‖1/N

W m
p

≤ (c ‖γN‖Am,l
p

)1/N‖u‖1/N
W m

p
≤ c1/N‖γ‖Am,l

p
‖u‖1/N

W m
p
.
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Passing to the limit as N →∞, we obtain that γ ∈ L∞ and

‖γ‖L∞ ≤ ‖γ‖Am,l
p
. (6.3.2)

Consider first the case of integer l. Suppose that γ1 and γ2 belong to
(6.3.1). Then, for all u ∈Wm

p

‖∇l (γ1γ2u)‖Lp
≤ c
(
‖γ1‖L∞

‖∇l (γ2u)‖Lp
+ ‖γ2‖L∞

l∑
h=1

‖ |∇hγ1| |∇l−hu| ‖Lp

+
l−1∑
h=1

l−h∑
k=1

‖ |∇hγ1| |∇kγ2| |∇l−h−ku| ‖Lp

)
. (6.3.3)

The first term on the right-hand side is majorized by

c ‖γ1‖L∞
‖γ2‖M(W m

p →W l
p) ‖u‖W m

p
.

To estimate the second term, we recall that, if γ ∈ M(Wm
p → W l

p), then for
any j = 0, . . . , l,

∇jγ ∈M(Wm
p →W l−j

p ) ⊂M(Wm−l+j
p → Lp)

and the estimate

‖∇jγ‖M(W m−l+j
p →Lp) ≤ c ‖γ‖M(W m

p →W l
p) (6.3.4)

holds (see (2.3.13)). Therefore, the second term on the right-hand side of
(6.3.3) is not greater than

c ‖γ2‖L∞
‖γ1‖M(W m

p →W l
p) ‖u‖W m

p
.

To estimate the remaining terms on the right-hand side of (6.3.3), we use
the inequality

|∇hγ(x)| ≤ c ‖γ‖
k

h+k

L∞
(M∇h+kγ(x))

h
k+h

stemming from (6.2.1). Hence

‖ |∇hγ1| |∇kγ2| |∇l−h−ku| ‖Lp

≤ c ‖γ1‖
k

h+k

L∞
‖γ2‖

h
h+k

L∞
‖ (M∇h+kγ1)

h
h+k (M∇h+kγ2)

k
h+k |∇l−h−ku| ‖Lp

≤c‖γ1‖
k

h+k

L∞
‖γ2‖

h
h+k

L∞
‖(M∇h+kγ1)|∇l−h−ku| ‖

h
h+k

Lp
‖(M∇h+kγ2)|∇l−h−ku| ‖Lp

.

By (2.3.22) we have

‖Mγ‖M(W s
p→Lp) ≤ c ‖γ‖M(W s

p→Lp) . (6.3.5)
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This inequality and (6.3.4) give

‖ |∇hγ1| |∇kγ2| |∇l−h−ku| ‖Lp

≤ c ‖γ1‖
k

h+k

L∞
‖γ2‖

h
h+k

L∞
‖ |∇h+kγ1| |∇l−h−ku| ‖

h
h+k

Lp
‖ |∇h+kγ2| |∇l−h−ku| ‖

k
h+k

Lp

≤ c ‖γ1‖
k

h+k

L∞
‖γ2‖

h
h+k

L∞
‖γ1‖

h
h+k

M(W m
p →W l

p)
‖γ2‖

k
h+k

M(W m
p →W l

p)
‖u‖W m

p

which completes the proof for integer l.
Let l be a positive noninteger. Suppose that γ1 and γ2 belong to (6.3.1).

Then, for all u ∈Wm
p

‖Dp,l(γ1γ2u)‖Lp
= ‖Dp,{l}∇[l](γ1γ2u)‖Lp

(6.3.6)

≤ c
∑

|α|+|β|+|σ|=[l]

‖Dp,{l}
(
Dαγ1D

βγ2D
σu
)
‖Lp

≤ c
∑

|α|+|β|+|σ|=[l]

(Aα,β,σ +Bα,β,σ + Cα,β,σ),

where
Aα,β,σ = ‖(Dαγ1) (Dβγ2)Dp,{l}D

σu‖Lp
,

Bα,β,σ = ‖(Dαγ1) (Dp,{l}D
βγ2)Dσu‖Lp

,

and Cα,β,σ is given by
(∫ ∫

|Dαγ1(x)|p|Dβγ2(x+h)|p|Dσu(x+h)−Dσu(x)|p dhdx

|h|n+p{l}

)1/p

. (6.3.7)

To estimate Aα,β,σ, we use the inequality

|∇iϕ(x)| ≤ c ‖ϕ‖
k−i

k

L∞

(
M∇kϕ(x)

) i
k a.e. in R

n (6.3.8)

with 0 ≤ i ≤ k, which follows directly from (6.2.1). We have

Aα,β,σ ≤ c‖γ1‖
1− |α|

[l]−|σ|
L∞

‖γ2‖
1− |β|

[l]−|σ|
L∞

×
(∫ ∫ (

M∇[l]−|σ|γ1(x)
) p|α|

[l]−|σ|
(
M∇[l]−|σ|γ2(x)

) p|β|
[l]−|σ|

×|Dσu(x+ h)−Dσu(x)|p dhdx

|h|n+p{l}

)1/p

.

By Hölder’s inequality, the double integral on the right-hand side is domi-
nated by

c
(∫ ∫ (

M∇[l]−|σ|γ1(x)
)p|Dσu(x+ h)−Dσu(x)|p dhdx

|h|n+p{l}

) |α|
([l]−[σ|)p

×
(∫ ∫ (

M∇[l]−|σ|γ2(x)
)p|Dσu(x+ h)−Dσu(x)|p dhdx

|h|n+p{l}

) |β|
([l]−|σ|)p
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which equals

c ‖
(
M∇[l]−|σ|γ1

)
Dp,|σ|+{l}u‖

|α|
[l]−|σ|
Lp

×‖
(
M∇[l]−|σ|γ2

)
Dp,|σ|+{l}u‖

|β|
[l]−|σ|
Lp

. (6.3.9)

This expression does not exceed

c ‖M∇[l]−|σ|γ1‖
|α|

[l]−|σ|

M(W
m−|σ|−{l}
p →Lp)

‖u‖
|α|

[l]−|σ|
W m

p

×‖M∇[l]−|σ|γ2‖
|β|

[l]−|σ|

M(W
m−|σ|−{l}
p →Lp)

‖u‖
|β|

[l]−|σ|
W m

p
. (6.3.10)

We estimate (6.3.10) using (6.3.5) combined with the inequality

‖∇jγ‖M(W m−l+j
p →Lp) ≤ c ‖γ‖M(W m

p →W l
p) (6.3.11)

(see (2.2.11)). Since |α|+ |β|+ |σ| = [l], we obtain from (6.3.9)– (6.3.11)

Aα,β,σ ≤ c ‖γ1‖
|β|

|α|+|β|
L∞

‖γ2‖
|α|

|α|+|β|
L∞

×‖γ1‖
|α|

|α|+|β|
M(W m

p →W l
p)
‖γ2‖

|β|
|α|+|β|
M(W m

p →W l
p)
‖u‖W m

p
.

Now, by Hölder’s inequality

Aα,β,σ ≤ c
(
‖γ1‖L∞‖γ2‖M(W m

p →W l
p)

+‖γ2‖L∞‖γ1‖M(W m
p →W l

p)

)
‖u‖W m

p
. (6.3.12)

To estimate Bα,β,σ defined by (6.3.7), we use (6.3.8) with ϕ = Dαγ1 and
apply Lemma 6.2.3 with ϕ = γ2 and s = {l}+ |β|. Then

Bα,β,σ ≤ c ‖γ1‖
1− |α|

l−|σ|
L∞

‖γ2‖
1− |β|+{l}

l−|σ|
L∞

×‖
(
Dp,l−|σ|γ1

) |α|
l−|σ|

(
Dp,l−|σ|γ2

) |β|+{l}
l−|σ| Dσu‖Lp

.

By Hölder’s inequality, the last norm is dominated by

‖Dp,l−|σ|γ1D
σu‖

|α|
l−|σ|
Lp
‖Dp,l−|σ|γ2D

σu‖
|β|+{l}

l−|σ|
Lp

.

Since
‖Dp,l−jγ‖M(W m−j

p →Lp) ≤ c ‖γ‖M(W m
p →W l

p)

(see (4.3.87)), it follows for i = 1, 2 that

‖Dp,l−|σ|γiD
σu‖Lp

≤ ‖Dp,l−|σ|γi‖M(W
m−|σ|
p →Lp)

‖u‖W m
p

≤ c ‖γi‖M(W m
p →W l

p)‖u‖W m
p
.
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Hence,

Bα,β,σ ≤ c ‖γ1‖
|β|+{l}

|α|+|β|+{l}
L∞

‖γ2‖
|α|+{l}

|α|+|β|+{l}
L∞

× ‖γ1‖
|α|

|α|+|β|+{l}
M(W m

p →W l
p)
‖γ2‖

|β|+{l}
|α|+|β|+{l}
M(W m

p →W l
p)
‖u‖W m

p
.

Therefore, by Hölder’s inequality, Bα,β,σ has the same majorant (6.3.12) as
Aα,β,σ.

In order to estimate Cα,β,σ, we use (6.3.8). Then

Cα,β,σ ≤ c ‖γ1‖
1− |α|

[l]−|σ|
L∞

‖γ2‖
1− |β|

[l]−|σ|
L∞

×
(∫ ∫ (

M∇[l]−|σ|γ1(x)
) p|α|

[l]−|σ|
(
M∇[l]−|σ|γ2(x+ h)

) p|β|
[l]−|σ|

× |D
σu(x+ h)−Dσu(x)|p

|h|n+p{l} dhdx
)1/p

.

By Hölder’s inequality, the double integral on the right-hand side is not greater
than

c
(∫ ∫ (

M∇[l]−|σ|γ1(x)
)p|Dσu(x+ h)−Dσu(x)|p dhdx

|h|n+p{l}

) |α|
([l]−|σ|)p

×
(∫ ∫ (

M∇[l]−|σ|γ2(x+ h)
)p|Dσu(x+ h)−Dσu(x)|p dhdx

|h|n+p{l}

) |β|
([l]−|σ|)p

which coincides with (6.3.9). The above estimate of (6.3.9) implies (6.3.12)
with Aα,β,σ replaced by Cα,β,σ. This completes the proof. ��

Theorems 6.3.1 and 4.1.1 imply

Corollary 6.3.1. The maximal Banach algebra in M(Wm
p → W l

p), m ≥ l,
p ∈ (1,∞), consists of functions γ ∈W l

p,loc with finite norm

sup
e⊂Rn

diam(e)≤1

‖Dp,lγ; e‖Lp

(Cp,m(e))1/p
+ ‖γ‖L∞ . (6.3.13)

In the case mp > n the norm (6.3.13) can be simplified as

‖Dp,lγ‖Lp,unif + ‖γ‖L∞ .

6.3.2 Maximal Banach Algebra in M(W m
1 → W l

1)

Theorem 6.3.2. Let m ≥ l ≥ 0. The maximal Banach algebra Am,l
1 imbedded

into M(Wm
1 →W l

1) is isomorphic to the space
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M(Wm
1 →W l

1) ∩ L∞. (6.3.14)

The estimate
‖γ1γ2‖M(W m

1 →W l
1)

≤ c
(
‖γ1‖L∞‖γ2‖M(W m

1 →W l
1) + ‖γ2‖L∞‖γ1‖M(W m

1 →W l
1)

)

holds.

Proof. The imbedding Am,l
1 ⊂ L∞ is proved in the same way as in Theorem

6.3.1, where the case p > 1 is considered.
(i) Let l be integer. Suppose that γ1 and γ2 belong to (6.3.14). Then

‖γ1γ2u‖W l
1
≤ c

l∑
j=0

‖ |∇j(γ1γ2)| |∇l−ju|‖L1 .

We show that

∇j(γ1γ2) ∈M(Wm−l+j
1 → L1), j = 0, . . . , l, (6.3.15)

which implies the result.
Since the intersection W j

1 (B1) ∩ L∞(B1) is an algebra, we have

‖γ1γ2;B1‖W j
1
≤ c

(
‖γ1;B1‖L∞‖γ2;B1‖W j

1
+ ‖γ2;B1‖L∞‖γ1;B1‖W j

1

)
.

Hence, for any r > 0

rj

∫

Br

|∇j(γ1γ2)(x)|dx ≤ c
(
‖γ1;Br‖L∞(rj‖∇jγ2;Br‖L1 + rn‖γ2;Br‖L1)

+ ‖γ2;Br‖L∞(rj‖∇jγ1;Br‖L1 + rn‖γ1;Br‖L1)
)
.

This inequality, taken for r ∈ (0, 1), along with (2.2.3) gives

rm−l+j−n‖∇j(γ1γ2);Br‖L1 ≤ c
(
‖γ1;Br‖L∞‖γ2‖M(W m

1 →W l
1)

+‖γ2;Br‖L∞‖γ1‖M(W m
1 →W l

1)

)

which implies (6.3.15).
(ii) Let l be a noninteger. We have

∫

B1

∫

B1

|∇[l]

(
γ1(x)γ2(x)

)
−∇[l]

(
γ1(y)γ2(y)

)
| dxdy

|x− y|n+{l}

≤
[l]∑

k=0

(∫

B1

∫

B1

|∇kγ1(x)| |∇[l]−kγ2(x)−∇[l]−kγ2(y)|
dxdy

|x− y|n+{l}

+
∫

B1

∫

B1

|∇[l]−kγ2(y)| |∇kγ1(x)−∇kγ1(y)|
dxdy

|x− y|n+{l}

)
. (6.3.16)
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By Hölder’s inequality, the right-hand side does not exceed

c

1∑
i=0

[l]∑
k=0

‖∇kγ1+i;B1‖L l
k

×
(∫

B1

(∫

B1

|∇[l]−kγ2−i(x)−∇[l]−kγ2−i(y)|
dy

|x− y|n+{l}

) l
l−k

dx
) l−k

l

. (6.3.17)

Duplicating the argument leading from (6.2.25) to (6.2.17), we conclude
that (6.2.15) implies the estimate

|∇ku(0)| ≤ c
(
‖u;Bt‖L∞

)1− k
l
(
tl‖u;Bt‖L∞ +D

(t)
p,lu(0)

) k
l . (6.3.18)

For t = 1 and u replaced by γ it becomes

|∇kγ(x)|

≤ c ‖γ;B1‖
1− k

l

L∞

(∫

B1

|∇[l]γ(x)−∇[l]γ(y)| dy

|x− y|n+{l} +‖γ;B1‖L∞

) k
l

. (6.3.19)

Furthermore, by Lemma 6.2.3
∫

B1

|∇[l]−kγ(x)−∇[l]−kγ(y)| dy

|x− y|n+{l}

≤ c‖γ;B1‖
k
l

L∞

(∫

B1

|∇[l]γ(x)−∇[l]γ(y)| dy

|x− y|n+{l} +‖γ;B1‖L1

) l−k
l

. (6.3.20)

Using (6.3.17)–(6.3.20) in (6.3.16), we find that
∫

B1

∫

B1

|∇[l]

(
γ1(x)γ2(x)

)
−∇[l]

(
γ1(y)γ2(y)

)
| dxdy

|x− y|n+{l}

≤ c

1∑
i=0

[l]∑
k=0

‖γ1+i; Rn‖1−
k
l

L∞

(∫

B1

∫

B1

|∇[l]γ1+i(x)−∇[l]γ1+i(y)|
dy

|x− y|n+{l}

+‖γ1+i;B1‖L1

) k
l ‖γ2−i; Rn‖

k
l

L∞

×
(∫

B1

∫

B1

|∇[l]γ2−i(x)−∇[l]γ2−i(y)|
dy

|x− y|n+{l} + ‖γ2−i;B1‖L1

)1− k
l

.

By the dilation x→ x/r we obtain

rm−n

∫

Br

∫

Br

|∇[l]

(
γ1(x)γ2(x)

)
−∇[l]

(
γ1(y)γ2(y)

)
| dxdy

|x− y|n+{l}



6.4 Maximal Algebra in Spaces of Bessel Potentials 227

≤ c

1∑
i=0

[l]∑
k=0

‖γ1+i‖
1− k

l

L∞

(
rm−n

∫

Br

∫

Br

|∇[l]γ1+i(x)−∇[l]γ1+i(y)|
dy

|x− y|n+{l}

+ rm−l‖γ1+i;Br‖L1

) k
l ‖γ2−i‖

k
l
L∞

×
(
rm−n

∫

Br

∫

Br

|∇[l]γ2−i(x) −∇[l]γ2−i(y)| dy

|x − y|n+{l} + rm−l‖γ2−i;Br‖L1

)1− k
l
.

Using this estimate for r ∈ (0, 1) together with Theorem 5.4.1, we arrive at

rm−n‖D(r)
1,l (γ1γ2);Br‖L1 ≤

c

1∑
i=0

[l]∑
k=0

‖γ1+i‖
1− k

l

L∞
‖γ1+i‖

k
l

M(W m
1 →W l

1)
‖γ2−i‖

k
l

L∞
‖γ2−i‖

1− k
l

M(W m
1 →W l

1)

≤ ‖γ1‖L∞‖γ2‖M(W m
1 →W l

1) + ‖γ2‖L∞‖γ1‖M(W m
1 →W l

1)

which, along with Theorem 5.4.1 and the obvious inequality

rm−l−n‖γ1γ2;Br(x)‖L1 ≤ c ‖γ1‖L∞‖γ2‖M(W m
1 →W m

1 ),

completes the proof. ��

The following assertion resulting from Theorem 6.3.2 involves the norm
||| · ||| defined by (5.4.4) and possessing the property (5.4.5).

Corollary 6.3.2. Let m ≥ l ≥ 0. The maximal Banach algebra in M(Wm
1 →

W l
1), consists of functions γ ∈W l

1,loc with finite norm

sup
x∈Rn

r∈(0,1)

rm−n|||γ;Br(x)|||W l
1

+ ‖γ‖L∞ . (6.3.21)

In the case m ≥ n the norm (6.3.21) can be simplified as

sup
x∈Rn

|||γ;B1(x)|||W l
1

+ ‖γ‖L∞ .

6.4 Maximal Algebra in Spaces of Bessel Potentials

6.4.1 Pointwise Inequalities Involving the Strichartz Function

We start with an inequality similar to (6.2.16).
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Lemma 6.4.1. Let k and r be an integer and noninteger, respectively, with
0 < k < r and let ϕ ∈ W

[r]
p,loc. There exists a positive constant c = c(k, r, n)

such that
|∇kϕ(x)| ≤ c (Mϕ(x))

r−k
r (Srϕ(x))

k
r (6.4.1)

for almost all x ∈ R
n.

Proof. We use the inequality

|∇kϕ(0)| ≤ c
(∫

B1

|ϕ(y)|dy +
∫

B1

|∇[r]ϕ(y)| dy

|y|n−[r]+k

)
(6.4.2)

(see (6.2.5)). Clearly, the right-hand side is majorized by

c
(
Mϕ(0)+

∫

B1

|∇[r]ϕ(y)−∇[r]ϕ(0)| dy

|y|n−[r]+k
+ |∇[r]ϕ(0)|

)
. (6.4.3)

Using the notation
ψ(y) = |∇[r]ϕ(y)−∇[r]ϕ(0)|,

we find that the second term in (6.4.3) is equal to

(n− [r]− k)
∫ 1

0

t−n+[r]−k−1

∫

Bt

ψ(z)dzdt+
∫

B1

ψ(z)dz.

This sum is dominated by

c
(
Srϕ(0) +

∫

B2

(2− |z|)ψ(z)dz
)
.

We have ∫

B2

(2− |z|)ψ(z)dz =
∫ 2

0

∫

Bt

ψ(z)dzdt

≤ c
(∫ 2

0

t−2n−1−2{r}(
∫

Bt

ψ(z)dz
)2
dt
)1/2

≤ c Srϕ(0). (6.4.4)

Therefore,
|∇kϕ(0)| ≤ c

(
Mϕ(0) + Srϕ(0) + |∇[r]ϕ(0)|

)
. (6.4.5)

In order to estimate the third term in (6.4.5), we use the identity

∇[r]ϕ(0) =
∫

B1

η(y)∇[r]ϕ(y)dy

+
∫

B1

η(y)
(
∇[r]ϕ(0)−∇[r]ϕ(y)

)
dy, (6.4.6)

where η ∈ C∞
0 (B1) is such that

∫

B1

η(y)dy = 1.



6.4 Maximal Algebra in Spaces of Bessel Potentials 229

Clearly, the first term on the right-hand side of (6.4.6) is majorized by
cMϕ(0). The second term is estimated by

c

∫

B2

(2− |z|)ψ(z)dz

and does not exceed c Srϕ(0) by (6.4.4). Therefore,

|∇[r]ϕ(0)| ≤ c
(
Mϕ(0) + Srϕ(0)

)
. (6.4.7)

Combining (6.4.7) with (6.4.5), we arrive at

|∇kϕ(0)| ≤ c
(
Mϕ(0) + Srϕ(0)

)
.

Now we obtain by dilation x→ x/ρ that

|∇kϕ(0)| ≤ c
(
ρ−kMϕ(0) + ρr−kSrϕ(0)

)
.

The result follows by minimization of the right-hand side in ρ. ��

Lemma 6.4.2. Let k and l be an integer and noninteger, respectively, with
0 < k < l, and let ϕ ∈ W

[l]
p,loc. There exists a positive constant c = c(k, l, n)

such that
Sl−kϕ(x) ≤ c ‖ϕ‖

k
l

L∞
(Slϕ(x))

l−k
l (6.4.8)

for almost all x ∈ R
n.

Proof. Clearly,
∫ 2

0

(∫

B1

|
(
∇[l]−kϕ

)
(θy)−

(
∇[l]−kϕ

)
(0)|dθ

)2 dy

y1+2{l}

≤
∫ 2

0

(∫

B1

∣∣(∇[l]−kϕ
)
(θy)−

∑
{α:|α|≤k−1}

yαθα

α!
(
Dα∇[l]−kϕ

)
(0)
∣∣dθ
)2 dy

y1+2{l}

+
k−1∑
i=0

|∇[l]−iϕ(0)|2. (6.4.9)

The difference in the integral over B1 on the right-hand side is equal to

k

∫ 1

0

∑
{α:|α|=k}

yαθα

α!

((
Dα∇[l]−kϕ

)
(τθy)−

(
Dα∇[l]−kϕ

)
(0)
)
(1− τ)k−1dτ.

Using this and Minkowski’s inequality, we see that the first term on the right-
hand side of (6.4.9) is dominated by

c
(∫ 1

0

(∫ ∞

0

(∫

B1

|(∇[l]ϕ)(τθy)− (∇[l]ϕ)(0)|dθ
)2 dy

y1+2{l}

)1/2

dτ
)2

= c (Slϕ(0))2. (6.4.10)
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By Lemma 6.4.1,

|∇[l]−iϕ(0)| ≤ c ‖ϕ‖
{l}+i

l

L∞
(Slϕ(0))

[l]−i
l , i = 0, . . . , [l], (6.4.11)

which together with (6.4.9) and (6.4.10) gives
∫ 2

0

(∫

B1

|(∇[l]−kϕ)(θy)−−(∇[l]−kϕ)(0)|dθ
)2 dy

y1+{l}

≤ c
(
‖ϕ‖L∞ + Slϕ(0)

)2
. (6.4.12)

Obviously,
∫ ∞

2

(∫

B1

|(∇[l]−kϕ)(θy)− (∇[l]−kϕ)(0)|dθ
)2 dy

y1+{l}

≤ c
(
|(∇[l]−kϕ)(0)|2 +

∫ ∞

2

(∫

By

|∇[l]−kϕ(z)|dz
)2 dy

y1+2{l}+2n

)
. (6.4.13)

The second term on the right-hand side does not exceed
∫ ∞

2

(∫

By+1

dξ

∫

B1(ξ)

|∇[l]−kϕ(z)|dz
)2 dy

y1+2{l}+2n
. (6.4.14)

Since by (6.2.5)
∫

B1(ξ)

|∇[l]−kϕ(z)|dz ≤ c

∫

B1(ξ)

(
|∇[l]ϕ(z)|+ |ϕ(z)|

)
dz,

the expression (6.4.14) is dominated by

c
(∫ ∞

2

(∫

By+1

dξ

∫

B1(ξ)

|∇[l]ϕ(z)|dz
)2 dy

y1+2{l}+2n
+ ‖ϕ‖2L∞

)

≤ c
(∫ ∞

2

(∫

By+2

|∇[l]ϕ(z)|dz
)2 dy

y1+2{l}+2n
+ ‖ϕ‖2L∞

)

≤ c
(
Slϕ(0) + |∇[l]ϕ(0)|+ ‖ϕ‖L∞

)2
.

Hence, we find by (6.4.13) and (6.4.11) that
∫ ∞

2

(∫

B1

|(∇[l]−kϕ)(θy)− (∇[l]−kϕ)(0)|dθ
)2 dy

y1+2{l}

≤ c
(
‖ϕ‖L∞ + Slϕ(0)

)2
.

Using (6.4.12), we obtain

Sl−kϕ(x) ≤ c
(
‖ϕ‖L∞ + Slϕ(x)

)
.

The result follows by dilation as in Lemma 6.4.1. ��
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6.4.2 Banach Algebra Am,l
p

Theorem 6.4.1. The maximal Banach algebra Am,l
p imbedded into M(Hm

p →
H l

p), m ≥ l, is isomorphic to the space

M(Hm
p → H l

p) ∩ L∞. (6.4.15)

The estimate

‖γ1γ2‖M(Hm
p →Hl

p) ≤ c
(
‖γ1‖L∞‖γ2‖M(Hm

p →Hl
p)

+ ‖γ2‖L∞‖γ1‖M(Hm
p →Hl

p)

)

holds.

Proof. LetAm,l
p be a subset of M(Hm

p → H l
p) and let γ ∈ Am,l

p . The inequality

‖γ‖L∞ ≤ ‖γ‖Am,l
p

(6.4.16)

is proved in the same way as (6.3.2).
Suppose that γ1 and γ2 belong to the space (6.4.15). For any u ∈ Hm

p ,

‖Sl(γ1γ2u)‖Lp
=‖S{l}∇[l](γ1γ2u)‖Lp

≤c
∑

|α|+|β|+|σ|=[l]

‖S{l}
(
Dαγ1D

βγ2D
σu
)
‖Lp

≤ c
∑

|α|+|β|+|σ|=[l]

(
Aα,β,σ + Bα,β,σ + Cα,β,σ

)
,

where
Aα,β,σ = ‖(Dαγ1) (Dβγ2)S{l}D

σu‖Lp
, (6.4.17)

Bα,β,σ = ‖(Dαγ1) (S{l}D
βγ2)Dσu‖Lp

, (6.4.18)

Cα,β,σ =
(∫
|Dαγ1(x)|p

(∫ ∞

0

(∫

B1

|Dβγ2(x+ θy)| |Dσu(x+ θy)

−Dσu(x)|dθ
)2 dy

y1+2{l}

)p/2

dx
)1/p

. (6.4.19)

Applying Lemma 6.4.1, we obtain

Aα,β,σ ≤ c‖γ1‖
1− |α|

[l]−|σ|
L∞

‖γ2‖
1− |β|

[l]−|σ|
L∞

×‖
(
M∇[l]−|σ|γ1

) |α|
[l]−|σ|

(
M∇[l]−|σ|γ2

) |β|
[l]−|σ|S{l}+|σ|u‖Lp

. (6.4.20)

By Hölder’s inequality the last norm is dominated by

c ‖
(
M∇[l]−|σ|γ1

)
S{l}+|σ|u‖

|α|
[l]−|σ|
Lp

‖
(
M∇[l]−|σ|γ2

)
S{l}+|σ|u‖

|β|
[l]−|σ|
Lp

. (6.4.21)
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Since by Minkowski’s inequality

S{l}v ≤ Λ|σ|+{l}−mS{l}Λ
m−|σ|−{l}v,

it follows that for γ ∈M(Hm−|σ|−{l}
p → Lp)

‖γS{l}v‖Lp
≤ ‖γ‖

M(H
m−|σ|−{l}
p →Lp)

‖Λ|σ|+{l}−mS{l}Λ
m−|σ|−{l}v||

H
m−|σ|−{l}
p

≤ c ‖γ‖
M(H

m−|σ|−{l}
p →Lp)

‖v‖
H

m−|σ|
p

.

Putting here γ =M∇[l]−|σ|γi, i = 1, 2, and v = ∇|σ|u, we find that (6.4.21)
does not exceed

c ‖M∇[l]−|σ|γ1‖
|α|

[l]−|σ|

M(H
m−|σ|−{l}
p →Lp)

‖u‖
|α|

[l]−|σ|
Hm

p

×‖M∇[l]−|σ|γ2‖
|β|

[l]−|σ|

M(H
m−|σ|−{l}
p →Lp)

‖u‖
|β|

[l]−|σ|
Hm

p
. (6.4.22)

We use (6.3.5) and the estimate

‖∇jγ‖M(Hm−l+j
p →Lp) ≤ c ‖γ‖M(Hm

p →Hl
p) (6.4.23)

(see Corollary 3.2.1). Then, using the equality |α|+ |β|+ |σ| = [l], we obtain
that (6.4.22) does not exceed

c ‖γ1‖
|α|

|α|+|β|
M(Hm

p →Hl
p)
‖γ2‖

|β|
|α|+|β|
M(Hm

p →Hl
p)
‖u‖Hm

p
. (6.4.24)

Now, by (6.4.20) and Hölder’s inequality,

Aα,β,σ≤c
(
‖γ1‖L∞‖γ2‖M(Hm

p →Hl
p)+‖γ2‖L∞‖γ1‖M(Hm

p →Hl
p)

)
‖u‖Hm

p
. (6.4.25)

To estimate Bα,β,σ, defined by (6.4.18), we apply Lemma 6.4.1 to the
function Dαγ1 and Lemma 6.4.2 to the function S{l}D

βγ2. Then, by Hölder’s
inequality,

Bα,β,σ ≤ c ‖γ1‖
1− |α|

l−|σ|
L∞

‖γ2‖
1− |β|+{l}

l−|σ|
L∞

‖
(
Sl−|σ|γ1

) |α|
l−|σ|

(
Sl−|σ|γ2

) |β|+{l}
l−|σ| Dσu‖Lp

≤ c ‖γ1‖
1− |α|

l−|σ|
L∞

‖γ2‖
1− |β|+{l}

l−|σ|
L∞

‖
(
Sl−|σ|γ1

)
Dσu‖

|α|
l−|σ|
Lp
‖
(
Sl−|σ|γ2

)
Dσu‖

|β|+{l}
l−|σ|

Lp
.

By Lemma 3.2.8, we have for i = 1, 2

‖
(
Sl−|σ|γi

)
Dσu‖Lp

≤ ‖Sl−|σ|γi‖M(H
m−|σ|
p →Lp)

‖u‖Hm
p

≤ c ‖γi‖M(Hm
p →Hl

p)‖u‖Hm
p
.

Hence Bα,β,σ has the same majorant (6.4.25) as Aα,β,σ.
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In order to estimate Cα,β,σ defined by (6.4.19), we use Lemma 6.4.1 and get

Cα,β,σ ≤ c ‖γ1‖
1− |α|

[l]−|σ|
L∞

‖γ2‖
1− |β|

[l]−|σ|
L∞

Kα,β,σ,

where
Kα,β,σ =

(∫
(M∇[l]−|σ|γ1(x))

p|α|
[l]−|σ|

×
∞∫

0

(∫

B1

(
M∇[l]−|σ|γ2(x+θy)

) p|β|
[l]−|σ| |∇|σ|u(x+θy)−∇|σ|u(x)|dθ

)2 dy

y1+2{l}

) p
2
dx
) 1

p

.

By Hölder’s inequality, Kα,β,σ is dominated by (6.4.22) which, as was shown
above, has the majorant (6.4.24). Therefore, (6.4.25) holds with Aα,β,σ

replaced by Cα,β,σ. This completes the proof. ��

Corollary 6.4.1. The maximal Banach algebra Am,l
p in M(Hm

p → H l
p), m ≥

l, 1 < p <∞, is the set of functions γ ∈ H l
p,loc such that

sup
e⊂Rn

diam(e)≤1

‖Slγ; e‖Lp

(Cp,m(e))1/p
+ ‖γ‖L∞

<∞. (6.4.26)

In the case mp > n this condition can be simplified as

‖Slγ‖Lp,unif + ‖γ‖L∞ <∞.

6.5 Imbeddings of Maximal Algebras

In this section we deal with the imbeddings Am,l
p ⊂ Aµ,λ

p and Am,l
p ⊂ Aµ,λ

p . We
fix an arbitrary µ and find the maximum value of λ for which the imbeddings
hold. Since the best value of λ is equal to l when µ ≥ m, we can restrict
ourselves to µ < m.

The next theorem contains a complete characterization of the imbedding
Am,l

p ⊂ Aµ,λ
p . The corresponding assertion relating the algebras Am,l

p is stated
and proved in exactly the same way with Dp,l replaced by Sl in the proof.

Theorem 6.5.1. Let m, l,mθ, lθ be nonintegers for any θ ∈ (0, 1), m ≥ l,
and let p ∈ (1,∞). The following imbeddings hold:

(i) if pm ≤ n, then Am,l
p ⊂ Amθ,lθ

p ,

(ii) if pmθ > n, then Am,l
p ⊂ A

mθ,min{mθ,l}
p ,

(iii) if pmθ = n, then

Am,l
p ⊂ Amθ,mθ

p for mθ < l
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and
Am,l

p ⊂ Amθ,l−ε
p for mθ ≥ l

with an arbitrary small ε > 0,
(iv) if pmθ < n < pm, then

Am,l
p ⊂ Amθ,mθ

p for pl > n

and
Am,l

p ⊂ Amθ,mθlp/n
p for pl ≤ n.

All these imbeddings are best possible.

Proof. (i) Since the multiplication by γ ∈ Am,l
p continuously maps Lp to Lp

and Wm
p to W l

p, the imbedding Am,l
p ⊂ Amθ,lθ

p results by complex interpolation
(see [Tr4], Sec. 2.4.7).

In the cases (ii)–(iv) we have pm > n. Thus, by Corollary 6.2.2,

Am,l
p = (W l

p,unif ∩ L∞).

(ii) Since pmθ > n, Corollary 6.2.2 implies that Amθ,λ
p = (Wλ

p,unif ∩ L∞)

for λ ≤ mθ. The result follows from the imbedding W l
p,unif ⊂W

min{mθ,l}
p,unif .

(iii) If pmθ = n and mθ < l, then pl > n and by Remark 4.3.3 we have
W l

p,unif = MW l
p. This last space is imbedded into MWmθ

p = Amθ,mθ
p by the

complex interpolation between W l
p and Lp. Hence Am,l

p ⊂ Amθ,mθ
p .

Let pmθ = n and mθ ≥ l. By Corollary 6.2.2, a norm in Amθ,l−ε
p can be

given by

sup
e⊂Rn

diam(e)≤1

‖Dp,l−εγ; e‖Lp

(Cp,mθ(e))1/p
+ ‖γ‖L∞ .

Since (3.1.6) shows for pmθ = n that

Cp,mθ(e) ≥ c (mesne)ε/n

with an arbitrary ε > 0, it follows that

‖γ‖Amθ,l−ε
p

≤ c
(
‖γ‖W l−ε

q,unif
+ ‖γ‖L∞

)

with q = pn/(n − pε). It remains to use the Sobolev imbedding W l
p,unif ⊂

W l−ε
q,unif .
(iv) Let pmθ < n < pm and pl > n. Then Am,l

p = W l
p,unif = MW l

p. Since
l > mθ, we have

MW l
p ⊂MWmθ

p = Amθ,mθ
p .

The result follows.
Now let pmθ < n < pm and lp ≤ n. By (3.1.6), we obtain from Corollary

6.2.2 that
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‖γ; Rn‖
A

mθ,mθlp/n
p

≤c
(

sup
e⊂Rn

diam(e)≤1

‖Dp,mθlp/nγ; e‖Lp

(mesne)(n−pmθ)/np
+ ‖γ‖L∞

)

≤c
(
‖γ‖

W
mθlp/n
n/mθ,unif

+ ‖γ‖L∞

)
. (6.5.1)

Suppose first that {mθlp/n} > 0. Let Ht
p(R

n+1
+ ) denote the Bessel potential

space of functions defined on R
n+1
+ = {(x, y) : x ∈ R

n, y > 0}. The space
W t

p(Rn) is the space of traces on R
n of functions in H

t+1/p
p (Rn+1

+ ), where
{t} > 0 and p ∈ (1,∞). This and the Gagliardo-Nirenberg type inequality

‖Γ ; Rn+1
+ ‖

H
mθ(lp+1)/n
n/mθ,unif

≤ c ‖Γ ; Rn+1
+ ‖pmθ/n

H
l+1/p
p,unif

‖Γ ; Rn+1
+ ‖1−pmθ/n

L∞

(see [AF], Lemma 3.4) imply that the right-hand side of (6.5.1) is domi-
nated by

c
(
‖γ‖pmθ/n

W l
p,unif
‖γ‖1−pmθ/n

L∞
+ ‖γ‖L∞

)
≤ c ‖γ‖Am,l

p
.

Hence the imbedding Am,l
p ⊂ A

mθ,mθlp/n
p is valid.

To obtain the same imbedding for integer mθlp/n we use Hölder’s inequal-
ity and the estimate

|∇ku(x)| ≤ c ‖u‖1−k/l
L∞

(Dp,lu(x))k/l, k < l, (6.5.2)

valid by Corollary 6.2.1. Then the right-hand side of (6.5.1) is dominated by

‖γ‖pmθ/n

W l
p,unif

‖γ; ‖1−pmθ/n
L∞

.

We now show that the imbedding Am,l
p ⊂ Amθ,λ

p with λ given in (i)–(iv)
cannot be improved. Let

γµ(x) = exp(i|x|−µ) (6.5.3)

with µ > 0. From the equivalence relations

|∇[l]γµ(x)| ∼ |x|−[l](µ+1)

and

|∇[l]γµ(x+ h)−∇[l]γµ(x)| ∼ min{|h|, |x|1+µ}
|x|([l]+1)(1+µ)

,

where |x| is sufficiently small, it follows that

Dp,lγµ(x) ∼ |x|−l(µ+1) (6.5.4)

for |x| < 1. Furthermore, Dp,lγµ(x) is bounded for |x| ≥ 1. Now, by Corollary
6.3.1,
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γµ ∈ Am,l
p ⇐⇒

⎧
⎪⎨
⎪⎩

(µ+ 1)l ≤ m if pm < n,

(µ+ 1)l < m if pm = n,

p(µ+ 1)l < n if pm > n.

(6.5.5)

We conclude by (6.5.5) that in the case pm ≤ n

γ ∈ Am,l
p ⇐⇒ γ ∈ Amθ,lθ

p for θ ∈ (0, 1)

which shows that the imbedding (i) is sharp.
Since the imbedding (ii) is equivalent to

W l
p,unif ∩ L∞ ⊂W

min{mθ,l}
p,unif ∩ L∞

and, obviously, λ ≤ mθ in Am,l
p ⊂ Amθ,λ

p , it follows that (ii) cannot be im-
proved.

We turn to the imbeddings (iii). The optimality of the first one (cor-
responding to mθ < l) is obvious. Let mθ ≥ l. We show that Am,l

p is not
imbedded into Amθ,l

p .
Let µ ≥ 0 and pl(µ+ 1) = n. We introduce the function

Γµ,δ(x) = η(x)exp
(
i|x|−µ(log |x|−1)−δ

)
,

where δ > −1 and η is a function in C∞
0 (Rn) with support in a small neigh-

bourhood of the origin, equal to 1 near the origin. For µ > 0 direct calculations
imply that

|∇[l]Γµ,δ(x)| ∼ |x|−[l](µ+1)(log |x|−1)−[l]δ

and

|∇[l]Γµ,δ(x+ h)−∇[l]Γµ,δ(x)| ∼ min{|h|, |x|1+µ(log |x|−1)δ}
|x|([l]+1)(1+µ)(log |x|−1)([l]+1)δ

,

where |x| is sufficiently small. Therefore, for small |x|

Dp,lΓµ,δ(x) ∼ |x|−l(µ+1)(log |x|−1)−lδ. (6.5.6)

Analogously,

|∇[l]Γ0,δ(x)| ∼ |x|−[l](log |x|−1)−[l](δ+1)

and

|∇[l]Γ0,δ(x+ h)−∇[l]Γ0,δ(x)| ∼ min{|h|, |x|(log |x|−1)δ+1}
|x|[l]+1(log |x|−1)[l]+1)(δ+1)

for small |x|. Hence,

Dp,lΓ0,δ(x) ∼ |x|−l(log |x|−1)−l(δ+1). (6.5.7)
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Now it is straightforward that

Γµ,δ ∈ Am,l
p = (W l

p,unif ∩ L∞)

if and only if plδ > 1 for µ > 0, and pl(δ + 1) > 1 for µ = 0. On the other
hand, by Corollary 6.2.2 and Proposition 3.1.4,

‖Γµ,δ‖Amθ,l
p
≥ c (log ρ−1)(p−1)/p‖Dp,lΓµ,δ;Bρ‖Lp

for small ρ > 0. Applying (6.5.6) and (6.5.7), we obtain

‖Γµ,δ‖Amθ,l
p
≥ c (log ρ−1)(p−1)/p+(1−plδ)/p for µ > 0

and
‖Γ0,δ‖Amθ,l

p
≥ c (log ρ−1)(p−1)/p+(1−pl(δ+1))/p.

This, obviously, implies that Γµ,δ ∈ Am,l
p and Γµ,δ 	∈ Amθ,l

p if 1 > lδ > 1/p for
µ > 0, and Γ0,δ ∈ Am,l

p and Γ0,δ 	∈ Amθ,l
p if 1 > l(δ + 1) > 1/p. The result

follows.
We pass to (iv). It suffices to consider only the case pl < n. Assume that

Am,l
p ⊂ Amθ,λ

p with λ = mθpl/n(1− ε)

for some ε > 0. We choose µ to satisfy pl(µ+1) > n(1− ε). Then the function
γµ, introduced by (6.5.3), belongs to W l

p,unif = Am,l
p . On the other hand, by

Corollary 6.2.2 and (6.5.4),

‖γµ‖Amθ,λ
p
≥ c ρmθ−n/p‖Dp,λγµ;Bρ‖Lp

≥ c ρmθ−λ(µ+1)

for ρ < 1. Since

mθ − λ(µ+ 1) = mθ(1− pl(µ+ 1)/n(1− ε)) < 0,

we have γµ 	∈ Amθ,λ
p . The proof is complete. ��

The following assertion is an analogue of Theorem 6.5.1 for p = 1.

Theorem 6.5.2. Let m, l,mθ, lθ be nonintegers for any θ ∈ (0, 1), m ≥ l.
The following imbeddings are valid:

(i) if m < n, then Am,l
1 ⊂ Amθ,lθ

1 ,
(ii) if mθ > n, then Am,l

1 ⊂ A
mθ,min{mθ,l}
1 ,

(iii) if mθ < n < m, then

Am,l
1 ⊂ Amθ,mθ

1 for l > n

and
Am,l

1 ⊂ A
mθ,mθl/n
1 for l < n.

All these imbeddings are best possible.
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Proof. (i) By (6.2.17) and Hölder’s inequality, for all θ ∈ (0, 1)

sup
x∈Rn

r∈(0,1)

rmθ−n‖D(r)
1,lθγ;Br(x)‖L1

≤ c ‖γ‖1−θ
L∞

sup
x∈ Rn

r∈(0,1)

(rm−n‖D(r)
1,l γ;Br(x)‖L1)

θ.

Hence Am,l
1 ⊂ Amθ,lθ

1 and

‖γ‖Amθ,lθ
1

≤ c ‖γ‖1−θ
L∞
‖γ‖θ

Am,l
1
.

In the cases (ii), (iii) we have mθ ≥ n. Therefore, by Corollary 6.2.2,
Am,l

1 = W l
1,unif ∩ L∞.

(ii) Since mθ > n, Corollary 6.2.2 implies that

Amθ,λ
1 = Wλ

1,unif ∩ L∞ for λ ≤ mθ.

The result follows from the imbedding

W l
1,unif ⊂W

min{mθ,l}
1,unif .

(iii) Let mθ < n < m and l > n. Then

Am,l
1 = W l

1,unif = MW l
1.

Since l > mθ, we have

MW l
1 ⊂MWmθ

1 = Amθ,mθ
1 .

The result follows.
Now let mθ < n < m and l < n. By Corollary 6.3.2,

‖γ‖
A

mθ,mθl/n
1

≤ c
(

sup
x∈Rn

r∈(0,1)

rmθ−n‖D(r)
1,mθl/nγ;Br(x)‖L1 + ‖γ‖L∞

)
. (6.5.8)

If mθl/n is integer, then the imbedding Am,l
1 ⊂ A

mθ,mθl/n
1 follows by the same

argument as for p > 1 (see part (iv) of Theorem 6.5.1). Suppose that mθl/n
is a noninteger and {mθl/n} ≥ {l}. Then, by Lemma 6.2.3 and Hölder’s
inequality, (6.5.8) is dominated by

c ‖γ‖mθ/n

W l
1,unif
‖γ‖1−mθ/n

L∞
,

and we arrive at the imbedding Am,l
1 ⊂ A

mθ,mθl/n
1 .

Let {mθl/n} < {l}. Then

‖γ‖
W

mθl/n
n/mθ,unif

≤ c ‖γ‖mθ/n

W l
1,unif
‖γ‖1−mθ/n

L∞
.
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One can show that the imbedding Am,l
1 ⊂ Amθ,λ

1 with λ given in (i)–(iii)
cannot be improved by using the same argument as in the proof of the sharp-
ness of (i), (ii), and (iv) in Theorem 6.5.1 with p = 1. ��

Remark 6.5.1. The conditions on parameters of integrability and smoothness
for concrete function spaces to be multiplication algebras, were studied by
many authors, see Strichartz [Str], Peetre [Pe2], Hertz [Her], Bennet and
Gilbert [BG], Johnson [Jo], Triebel [Tr1], [Tr2], [Tr4], Zolesio [Zo], Bliev [Bl1],
[Bl2], Kalyabin [K1]–[K3], Marschall [Mar3], Benchekroun and Benkirane
[BB], Ali Mehmeti and Nicaise [AN], Runst [Ru].

Considerable attention was paid to the description of the range of a prod-
uct of two or more functions in Sobolev type spaces (see Maz’ya [Maz6],
Amann [Am], Hanouzet [Ha], Valent [Va], Franke [Fr] Johnsen [Jo], Miyachi
[Mi], Runst and Sickel [RS], Sickel [Sic1], Sickel and Triebel [ST], Sickel and
Youssfi [SY], Dacorogna and Moser [DM1], Ye [Ye], Runst and Youssfi [RY],
Youssfi [Yo], Drihem and Moussai [DM2] et al.



7

Essential Norm and Compactness
of Multipliers

In this chapter we study elements of the space M(Wm
p → W l

p), where
p ∈ [1,∞), and m and l are arbitrary, integer and noninteger, with m ≥ l ≥ 0.
As usual, we omit R

n in notations of spaces, norms, and integrals.
By ess ‖γ‖M(W m

p →W l
p) we denote the essential norm of the operator of

multiplication by γ ∈M(Wm
p →W l

p), that is,

inf
{T}
‖γ − T‖W m

p →W l
p
,

where {T} is the set of compact operators Wm
p →W l

p.
As before,

(Dp,lγ)(x) = |∇lγ(x)|
for integer l and

(Dp,lγ)(x) =
(∫ |∆h∇[l]u(x)|p

|h|n+p{l} dh
)1/p

for noninteger l.
The main results are sharp two-sided estimates for ess ‖γ‖M(W m

p →W l
p). We

formulate the main result concerning m > l.

Theorem 7.0.3. Let γ ∈M(Wm
p →W l

p), where m > l ≥ 0.
(i) If p ∈ (1,∞) and mp ≤ n, then

ess ‖γ‖M(W m
p →W l

p)

∼ lim
δ→0

(
sup

{e:d(e)≤δ}

‖Dp,lγ; e‖Lp(
Cp,m(e)

) 1
p

+ sup
x∈Rn

ρ≤δ

ρm−l−n
p ‖γ;Bρ(x)‖Lp

)

+ lim
r→∞

(
sup

e⊂Rn\Br
d(e)≤1

‖Dp,lγ; e‖Lp

(Cp,m(e))
1
p

+ sup
x∈Rn\Br

‖γ;B1(x)‖Lp

)
, (7.0.1)

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 241
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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where d(e) is the diameter of a compact set e ⊂ R
n.

(ii) If m < n, then
ess ‖γ‖M(W m

1 →W l
1)

∼ lim sup
δ→0

δm−n sup
x∈Rn

(
‖D1,lγ;Bδ(x)‖L1 + δ−l‖γ;Bδ(x)‖L1

)

+ lim sup
|x|→∞

(
sup

r∈(0,1)

rm−n‖D1,lγ;Br(x)‖L1 + ‖γ;B1(x)‖L1

)
. (7.0.2)

(iii) If mp > n, p ∈ (1,∞), then

ess ‖γ‖M(W m
p →W l

p) ∼ lim sup
|x|→∞

‖γ;B1(x)‖W l
p
. (7.0.3)

Theorem 7.0.4. Let γ ∈MW l
p.

(i) If p ∈ (1,∞) and lp ≤ n, then

ess ‖γ‖MW l
p
∼ lim

δ→0
sup

{e:d(e)≤δ}

‖Dp,lγ; e‖Lp(
Cp,l(e)

) 1
p

+ lim
r→∞

sup
e⊂Rn\Br

d(e)≤1

‖Dp,lγ; e‖Lp

(Cp,l(e))
1
p

+ ‖γ‖L∞ . (7.0.4)

(ii) If l < n, then

ess ‖γ‖MW l
1
∼ lim sup

δ→0
δl−n sup

x∈Rn

‖D1,lγ;Bδ(x)‖L1

+ lim sup
|x|→∞

sup
r∈(0,1)

rl−n‖D1,lγ;Br(x)‖L1 + ‖γ‖L∞ .

(iii) If m ≥ n, then

ess ‖γ‖MW l
1
∼ lim sup

|x|→∞
‖γ;B1(x)‖W l

p
+ ‖γ‖L∞ . (7.0.5)

Clearly, if multipliers have compact supports, the above equivalence rela-
tions for the essential norm are simplified, since all terms containing either
r →∞ or |x| → ∞ vanish.

As simple corollaries we obtain characterizations of the space M̊(Wm
p →

W l
p), m > l, of compact multipliers. We note also that Sect. 7.2.7 contains

one-sided estimates for the essential norm of a multiplier which do not involve
capacities.
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7.1 Auxiliary Assertions

In this chapter we use the following cutoff functions.

Definition 7.1.1. Let x ∈ R
n, δ ∈ (0, 1), and let η be a function in C∞

0 [0, 2),
equal to 1 on [0, 1]. Furthermore, we assume that 0 ≤ η ≤ 1. We set

R
n � y → ηδ,x(y) = η

( |y − x|
δ

)
.

Definition 7.1.2. Let η be the same as in Definition 7.1.1. We put

R
n � y → µδ,x(y) = η

( 2 log δ
log |y − x|

)
, δ ∈ (0, 1/2).

We also adopt the notation ηδ = ηδ,0 and µδ = µδ,0.

Definition 7.1.3. Let ζr(y) = ζ(y/r), where r > 1, ζ ∈ C∞(Rn), ζ = 0 for
y ∈ B1 and ζ(y) = 1 for y ∈ R

n\B2. Furthermore, let 0 ≤ ζ ≤ 1.

As usual, by W l
p(Br) we denote the space of functions with the finite norm

‖u;Br‖W l
p

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

l∑
j=0

‖∇ju;B‖Lp
for {l} = 0,

[l]∑
j=0

(∫

Br

∫

Br

|∇ju(x)−∇ju(y)|p dxdy

|x− y|n+p{l}

)1/p

+‖u;Br‖W [l]
p

for {l} > 0.

We introduce one more norm in W l
p(Br) depending on r ∈ (0, 1). Namely,

we set

|||u;Br|||W l
p

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∑
j=0

rj−l‖∇ju;Br‖Lp
for {l} = 0,

[l]∑
j=0

rj−[l]
(∫

Br

∫

Br

|∇ju(x)−∇ju(y)|p dxdy

|x− y|n+p{l}

)1/p

+
[l]∑

j=0

rj−l‖∇ju;Br‖Lp
for {l} > 0.

It is clear that the last norm is invariant under dilation.
We present some properties of the norm |||u;Br|||W l

p
which will be used

henceforth.

Lemma 7.1.1. If l is a positive noninteger, then

‖Dp,lu;Br‖Lp
≤ c sup

x∈Rn

|||u;Br|||W l
p
.
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Proof. It suffices to estimate

(∫

Br/2(z)

∫

Rn\Br/2(z)

|∇[l]u(x)−∇[l]u(y)|p dxdy

|x− y|n+p{l}

)1/p

,

where z is an arbitrary point of the ball Br. This value does not exceed

(∫

Br/2(z)

|∇[l]u(y)|p dy
∫

Rn\Br/2(z)

dx

|x− y|n+p{l}

)1/p

+
(∫

Rn\Br/2(z)

|∇[l]u(x)|p dx
∫

Br/2(z)

dy

|x− y|n+p{l}

)1/p

≤ c r−{l}‖∇[l]u;Br(z)‖Lp
+ c
(∫

Rn\Br/2(z)

|∇[l]u(x)|p dx
|x− z|n+p{l}

)1/p

.

The second term on the right-hand side does not exceed

c
(∫

Rn\Br/2(z)

1
|x− ξ|n+p{l}

∫

Br(ξ)

|∇[l]u(x)|p dxdξ
)1/p

,

which is dominated by
c r−{l} sup

x∈Rn

|||u;Br|||W l
p
.

The proof is complete. ��

Next we formulate three well-known properties of the norm |||u;Br|||W m
p

,
leaving their proof to the reader as an exercise.

Lemma 7.1.2. If ϕ ∈ C∞
0 (Br) and |∇kϕ| ≤ c r−k, k = 0, 1, . . . ,m, then for

all u ∈Wm
p (Br)

‖ϕu; Rn‖W m
p
≤ c |||u;Br|||W m

p
for r ≤ 1

and
‖ϕu; Rn‖W m

p
≤ c ‖u;Br‖W k

p
for r > 1.

Lemma 7.1.3. Let u ∈ Wm
p (Bδ). There exists a polynomial P of degree [m]

of the form

P (u;x) =
∑

β

(x
δ

)β

δ−n

∫

Bδ

ϕβ

(y
δ

)
u(y) dy,

where ϕ ∈ C∞
0 (B1), and such that

|||u− P (u; ·);Bδ|||W m
p
≤ c

∫

Bδ

∫

Bδ

|∇[m]u(x)−∇[m]u(y)|p dxdy

|x− y|n+p{m} .
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Lemma 7.1.4. The inequality

|||u;Br|||W s
p
≤ c |||u;Br|||s/k

W k
p
‖u;Br‖1−s/k

Lp
, 0 < s < k, (7.1.1)

holds.

From (7.1.1) we immediately obtain

Corollary 7.1.1. If k is a noninteger, then

|||u;Br|||W k
p
∼
(∫

Br

∫

Br

|∇[k]u(x)−∇[k]u(y)|p dxdy

|x− y|n+p{k}

)1/p

+ r−k‖u;Br‖Lp
.

If k is an integer, then

|||u;Br|||W k
p
∼ ‖∇ku;Br‖Lp

+ r−k‖u;Br‖Lp
.

Using the Hardy-type inequality

‖u |x|−k‖Lp
≤ c ‖u‖W k

p
, kp < n,

(which, in particular, easily follows from (4.3.17)), we deduce

Lemma 7.1.5. If kp < n, then

|||u;Br|||W k
p
≤ c ‖u‖W k

p

with a constant c independent of r.

Next we prove some technical lemmas.

Lemma 7.1.6. Let ϕ ∈ C∞
0 (Bδ) with δ < 1, and let |∇kϕ| ≤ c δ−k, k =

0, 1, . . . , [l] + 1. Then
‖ϕ‖MW l

p
≤ c,

where lp < n and p ∈ [1,∞), or l = n and p = 1.

Proof. Let u ∈ C∞
0 (Rn). According to Lemma 7.1.2 and Corollary 7.1.1,

‖ϕu‖W l
p
≤ c |||u;B2δ|||W l

p

≤ c
((∫

B2δ

∫

B2δ

|∇[l]u(x)−∇[l]u(y)|p dx dy

|x− y|n+p{l}

) 1
p

+‖u;B2δ‖L pn
n−lp

)
. (7.1.2)

Now the result follows from Proposition 4.2.5. ��

Lemma 7.1.7. If u ∈ C∞
0 and lp < n, then

sup
x∈Rn

‖ηδ,x u‖W l
p
→ 0 as δ → 0, (7.1.3)

where ηδ,x is the function in Definition 7.1.1.
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Proof. This assertion follows from (7.1.2).

Lemma 7.1.8. Let {l} > 0. Then

|∇jµδ(z)| ≤ c | log |z| |−1 |z|−j (7.1.4)

and
∫

Bδ

|∇jµδ(z)−∇jµδ(y)|p
|z − y|n+p{l} dy ≤ cj | log |z| |−p |z|−p({l}+j), (7.1.5)

where z ∈ Bδ, j = 0, 1, . . .

Proof. Estimate (7.1.4) is obvious. We prove (7.1.5). Since

|Dαµδ(z)| ≤ |z|−|α|
|α|∑
k=1

σk

(2 log δ
log |z|

)
(2 log δ)−k,

with σk ∈ C∞
0 (−1, 1), it follows that

|∇jµδ(z)−∇jµδ(y)| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c | log δ|−1|z − y| |z|−j−1

if |z|/2 ≤ |y| ≤ |z|;

c | log δ|−1
(
max{|z|, |y|}

)−j if j > 0
and either |y| < |z|/2 or |z| < |y|/2;

c | log δ|−1
∣∣∣log |z|

|y|

∣∣∣ if j = 0

and either |y| < |z|/2 or |z| < |y|/2.

(7.1.6)

These estimates imply that
∫

Bδ

|∇jµδ(z)−∇jµδ(y)|p
|z − y|n+p{l} dy ≤ c | log δ|−p |z|−p({l}+j)

which is equivalent to (7.1.4) for z ∈ Bδ\Bδ3 by the second and the third
estimates in (7.1.6). Let z ∈ Bδ3 . Then

∫

Bδ

|∇jµδ(z)−∇jµδ(y)|p
|z − y|n+p{l} dy ≤ c

∫

Bδ\Bδ2

|δ0j −∇jµδ(y)|p
|y|n+{l} dy

≤ cj | log δ|−p

∫

Bδ\Bδ2

|y|−jp

|y|n+{l} dy = cj | log δ|−p δ−3p(j+{l}),

where δ0j is the Kroneker delta. Putting here |z| = δ3 and noting that
t3({l}+j)| log t| increases near t = 0, we arrive at (7.1.5) for z ∈ Bδ3 . ��
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Lemma 7.1.9. Let ∇ψ ∈ C∞
0 (B1) and ψr(y) = ψ(y/r), r > 1. Then

‖ψr‖MW l
p
≤ 1 + c r−σ,

where σ = l if 0 < l < 1 and σ = 1 if l ≥ 1.

Proof. The assertion is obvious for integer l. Let {l} > 0. Then

‖ψr u‖W l
p
≤ ‖ψr Dp,lu‖Lp

+ ‖ψr u‖Lp

+
∑

|α|+|β|=[l],
|α|>0

‖Dαψr D
βu‖

W
{l}
p

+ ‖∇[l]uDp,{l}ψr‖Lp
. (7.1.7)

Note that

Dαψr = r−|α|(Dαψ)r and Dp,{l}ψr = r−{l}(Dp,{l}ψ)r.

Since the function (Dαψ)r is bounded together with all its derivatives and
since (Dp,{l}ψ)r is uniformly bounded with respect to r, it follows that

‖Dαψr D
βu‖

W
{l}
p
≤ c r−|α|‖u‖

W
|β|+{l}
p

and
‖∇[l]uDp,{l}ψr‖Lp

≤ c r−{l}‖u‖W l
p
. (7.1.8)

Combining (7.1.7) and (7.1.8), we complete the proof. ��

Lemma 7.1.10. Let ψ and ψr be the functions defined in Lemma 7.1.9. Fur-
ther, let ψ = 0 in the ball B1/2. Then, for any u ∈W l

p,

lim
r→∞

‖ψr u‖W l
p

= 0.

Proof. The result follows from the inequality

‖ψr u‖W l
p
≤ ‖ψr Dp,lu‖Lp

+ ‖ψr u‖Lp
+ c r−σ‖u‖W l

p

established in the proof of Lemma 7.1.9. ��

Lemma 7.1.11. Let mp < n, k ∈ [0,m]. Further, let e be a compact subset
of the ball Br, r ∈ (0, 1). Then

Cp,k(e) ≤ c r(m−k)pCp,m(e). (7.1.9)

Proof. Let u ∈ C∞
0 with u ≥ 1 on e. We have

[Cp,k(e)]1/p ≤ ‖ηru‖W k
p

= ‖Dp,k(ηru)‖Lp
+ ‖ηru‖Lp

.
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By inequality (4.2.8),

‖ηru‖Lp
≤ c rm ‖Dp,m(ηru)‖Lp

and therefore
[Cp,k(e)]1/p ≤ c rm−k ‖ηru‖W m

p
.

This and Lemmas 7.1.6 and 7.1.9 imply that

[Cp,k(e)]1/p ≤ c1 r
m−k ‖u‖W m

p
.

Minimizing the right-hand side, we arrive at (7.1.9). ��

7.2 Two-Sided Estimates for the Essential Norm.
The Case m > l

7.2.1 Estimates Involving Cutoff Functions

Lemma 7.2.1. The estimate

lim sup
r→∞

‖ζrγ‖M(W m
p →W l

p) ≤ c ess ‖γ‖M(W m
p →W l

p)

holds, where m ≥ l, p ≥ 1.

Proof. Let ε > 0 and let T = T (γ, ε) be a compact operator such that

‖γ − T‖ ≤ ess ‖γ‖M(W m
p →W l

p) + ε .

Then, for all u ∈Wm
p ,

‖γu− Tu‖W l
p
≤ ( ess ‖γ‖M(W m

p →W l
p) + ε)‖u‖W m

p
. (7.2.1)

Let S be the unit ball in Wm
p centered at the origin and let {vk} be a finite

ε-net in TS. Without loss of generality we assume that vk ∈ C∞
0 . It is clear

that ζrvk = 0 for sufficiently large r. Therefore,

‖ζrγu‖W l
p

= ‖ζr(γu− vk)‖W l
p
≤ ‖ζr(γu− Tu)‖W l

p
+ ‖ζr(Tu− vk)‖W l

p
.

From this inequality and from Lemma 7.1.9 we obtain

‖ζrγu‖W l
p
≤ c ( ess ‖γ‖M(W m

p →W l
p) + ε)‖u‖W m

p
.

The result follows. ��
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Theorem 7.2.1. Let m > 1 and let either lp < n and p > 1, or l ≤ n and
p = 1. Then the equivalence relation

ess ‖γ‖M(W m
p →W l

p) ∼ lim sup
δ→0

sup
x∈Rn

‖ηδ,xγ‖M(W m
p →W l

p)

+ lim sup
r→∞

‖ζrγ‖M(W m
p →W l

p) (7.2.2)

holds.

Proof. (i) The lower bound for the essential norm. We use the notation intro-
duced in the proof of Lemma 7.2.1. For any u ∈ S,

‖ηδ,xγu‖W l
p
≤ ‖ηδ,x(γu− vk)‖W l

p
+ ‖ηδ,xvk‖W l

p

≤ ‖ηδ,x(γu− Tu)‖W l
p

+ ‖ηδ,x(Tu− vk)‖W l
p

+ ‖ηδ,xvk‖W l
p
.

From this inequality and Lemma 7.1.6 we get

‖ηδ,xγu‖W l
p
≤ c ( ess ‖γ‖M(W m

p →W l
p) + 2ε) + ε

which, together with reference to Lemma 7.2.1, completes the proof of the
lower bound for ess ‖γ‖M(W m

p →W l
p).

(ii) The upper bound for the essential norm. We choose δ and r so that
the following estimates hold:

sup
x∈Rn

‖η2δ,xγ‖M(W m
p →W l

p) ≤ lim sup
δ→0

sup
x∈Rn

‖ηδ,xγ‖M(W m
p →W l

p) + ε,

(7.2.3)
‖ζrγ‖M(W m

p →W l
p) ≤ lim sup

r→∞
‖ζrγ‖M(W m

p →W l
p) + ε .

By {K(j)
δ } we denote a finite covering of the ball B2r by open balls with

radius δ and centers xj . We can choose the balls K(j)
δ so that the multiplicity

of the covering of B2r by the balls K(j)
2δ depends only on n. Let {ϕ(j)} be a

smooth partition of unity subordinate to {K(j)
δ } and such that

|∇kϕ
(j)| ≤ c δ−k, k = 0, 1, . . . .

Given any u ∈ Wm
p (Bδ), we use the polynomials introduced in Lemma 7.1.3.

Let P (j) = P (j)(u; ·) be such polynomials constructed for the balls K(j)
2δ .

Further, let Γ = (1 − ζr)γ and let T∗ be the finite-dimensional operator
defined by

(T∗u)(x) = Γ (x)
∑

j

ϕ(j)(x)P (j)(u;x) . (7.2.4)
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We have

‖(γ − T∗)u‖W l
p
≤ ‖(Γ − T∗)u‖W l

p
+ ‖ζrγu‖W l

p
. (7.2.5)

Since
(Γ − T∗)u =

∑
j

Γ η2δ,xj
ϕ(j)(u− P (j)),

it follows from Corollary 4.2.1 that

‖(Γ − T∗)u‖pW l
p
≤
∑

j

‖Γ η2δ,xj
ϕ(j)(u− P (j))‖p

W l
p

≤ c sup
j
‖Γ η2δ,xj

‖p
M(W m

p →W l
p)

∑
j

‖ϕ(j)(u− P (j))‖pW m
p
. (7.2.6)

Using Lemmas 7.1.2 and 7.1.3, we obtain that the last sum does not exceed

c
∑

j

|||u− P (j);K(j)
2δ |||

p
W m

p
≤ c1‖Dp,mu‖pLp

. (7.2.7)

We further note that, by Lemma 7.1.9,

‖Γ η2δ,xj
‖M(W m

p →W l
p) ≤ c ‖γ η2δ,xj

‖M(W m
p →W l

p) .

This and inequalities (7.2.3), (7.2.5)–(7.2.7) imply that

‖γ − T∗‖W m
p →W l

p
(7.2.8)

≤ c
(
lim sup

δ→0
sup

x∈Rn

‖ηδ,xγ‖M(W m
p →W l

p) + lim sup
r→∞

‖ζrγ‖M(W m
p →W l

p) + ε
)
.

��

Remark 7.2.1. Relation (7.2.2) fails for lp > n. In fact, let γ = 1. It is clear
that 1 ∈M(Wm

p →W l
p). On the other hand, Remark 4.3.3 implies that

lim
δ→0
‖ηδ,x‖M(W m

p →W l
p) =∞ .

7.2.2 Estimate Involving Capacity (The Case mp < n, p > 1)

The following theorem presents one more relation for the essential norm.

Theorem 7.2.2. If mp < n and p ∈ (1,∞), then

ess ‖γ‖M(W m
p →W l

p) ∼ lim
δ→0

sup
{e : d(e)≤δ}

( ‖γ; e‖Lp

[Cp,m−l(e)]1/p
+
‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p

)

+ lim
r→∞

sup
{e⊂Rn\Br : d(e)≤1}

( ‖γ; e‖Lp

[Cp,m−l(e)]1/p
+
‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p

)
. (7.2.9)
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Proof. We limit consideration to the case of noninteger l, since for integer l
the proof is analogous and slightly simpler.

(i) The lower bound for the essential norm. We introduce the notation

fk(γ; e) =
‖Dp,kγ; e‖Lp

[Cp,m−l+k(e)]1/p

for noninteger k, 0 < k ≤ l, and

fk(γ; e) =
‖∇kγ; e‖Lp

[Cp,m−l+k(e)]1/p

for integer k, 0 ≤ k ≤ l. Clearly, for any compact set e with d(e) ≤ δ,

f0(γ; e) ≤ sup
x∈Rn

sup
e⊂Bδ(x)

f0(γ; e) ≤ sup
x∈Rn

sup
e⊂Bδ(x)

f0(ηδ,xγ; e) .

This, together with Corollary 4.3.1, implies that

f0(γ; e) ≤ c sup
x∈Rn

‖ηδ,xγ‖M(W m
p →W l

p) .

Applying Theorem 7.2.1, we obtain

f0(γ; e) ≤ c ( ess ‖γ‖M(W m
p →W l

p) + ε). (7.2.10)

Now we turn to the bound for fl(γ; e). For e ⊂ Bδ(x) we have

‖Dp,lγ; e‖pLp
=
∫

e

dy

∫

B2δ(x)

|∇[l](γ(y)η2δ,x(y))−∇[l](γ(z)η2δ,x(z))|p
|y − z|n+p{l} dz

+
∫

e

dy

∫

Rn\B2δ(x)

|∇[l]γ(y)−∇[l]γ(z)|p dz

|y − z|n+p{l} .

Therefore,

‖Dp,lγ; e‖Lp
≤ c
[
‖Dp,l(η2δ,xγ); e‖Lp

+
(∫

e

|∇[l]γ(y)|pdh
∫

Rn\B2δ(x)

dz

|y − z|n+p{l}

)1/p

+
(∫

Rn\B2δ(x)

|∇[l]γ(y)|pdy
∫

e

dz

|y − z|n+p{l}

)1/p]
. (7.2.11)

The second term on the right-hand side does not exceed

c1δ
−{l}‖∇[l]γ; e‖Lp

≤ c2 δ
−{l}‖∇[l](γη2δ,x); e‖Lp

. (7.2.12)
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Since e ⊂ Bδ(x), the third term is not greater than

c (mesne)1/p
(∫

Rn\B2δ(x)

|∇[l]γ(z)|pdz
|z − x|n+p{l}

)1/p

≤ c1(mesne)1/p
(∫

Rn\B2δ(x)

|z − x|−n−p{l}δ−n

∫

Bδ(z)

|∇[l]γ(ξ)|pdξ dz
)1/p

≤ c2 (mesne)1/p sup
z∈Rn

‖∇[l](η2δ,zγ);Bδ(z)‖Lp
δ−{l}−n/p . (7.2.13)

Therefore,

fl(γ; e) ≤ c
[
fl(η2δ,xγ; e) + δ−{l}

(Cp,m−{l}(e)
Cp,m(e)

)1/p

f[l](η2δ,xγ; e)

+
(δ−mpmesne

Cp,m(e)

)1/p

sup
x∈Rn

sup
e⊂Bδ(x)

f[l](η2δ,xγ; e)
]
. (7.2.14)

Now from (7.2.14) and Lemma 7.1.11 we obtain

fl(γ; e) ≤ c sup
x∈Rn

sup
e⊂Bδ(x)

[fl(η2δ,xγ; e) + f[l](η2δ,xγ; e)]

which, together with Proposition 4.3.1 and Theorem 7.2.1, implies that

fl(γ; e) ≤ sup
x∈Rn

‖η2δ,xγ‖M(W m
p →W l

p) ≤ c1
(
ess ‖γ‖M(W m

p →W l
p) + ε

)
. (7.2.15)

Combining (7.2.10) and (7.2.16), we arrive at the inequality

lim
δ→0

sup
{e : d(e)≤δ}

( ‖γ; e‖Lp

[Cp,m−l(e)]1/p
+
‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p

)

≤ c ess ‖γ‖M(W m
p →W l

p) . (7.2.16)

Let e ⊂ R
n\B3r. It is clear that f0(γ; e) ≤ f0(ζrγ; e) and, by Theorems

4.1.1 and 7.2.1, the estimate (7.2.10) holds if r is sufficiently large.
Let us estimate fl(γ; e). We have

‖Dp,lγ; e‖pLp
=
∫

e

dy

∫

Rn\B2r

|∇[l](γ(y)ζr(y))−∇[l](γ(z)ζr(z))|p
|y − z|n+p{l} dz

+
∫

e

dy

∫

B2r

|∇[l]γ(y)−∇[l]γ(z)|p
|y − z|n+p{l} dz .

Consequently,

‖Dp,lγ; e‖Lp
≤ c
[
‖Dp,l(ζrγ); e‖Lp

+
(∫

e

|∇[l]γ(y)|pdy
∫

B2r

dz

|y − z|n+p{l}

)1/p

+
(∫

B2r

|∇[l]γ(z)|pdz
∫

e

dy

|y − z|n+p{l}

)1/p]
. (7.2.17)
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The second term on the right-hand side of (7.2.17) does not exceed

c r−{l}
(∫

e

|∇[l]γ(y)|pdy
)1/p

≤ c1r
−{l}f[l](γ; e)

[
Cp,m−{l}(e)

]1/p

which, by Lemma 7.1.11 and Theorem 4.1.1, is not greater than

c2 r
−{l}‖γ‖M(W m

p →W l
p)[Cp,m(e)]1/p.

Let us get a similar estimate for the third term on the right-hand side of
(7.2.17). We have

(∫

B2r

|∇[l]γ(z)|pdz
∫

e

dy

|y − z|n+p{l}

)1/p

≤ c r−n/p−{l}(mesne)1/p‖∇[l]γ;B2r‖Lp
≤ c f[l](γ;B2r)(mesne)1/pr−m .

Therefore, the third term is majorized by

c r−m‖γ‖M(W m
p →W l

p)[Cp,m(e)]1/p .

Finally,

fl(γ; e) ≤ c
(
fl(ζrγ; e) + (r−{l} + r−m)‖γ‖M(W m

p →W l
p)

)
. (7.2.18)

Taking the supremum with respect to e on both sides of this inequality and
making r →∞, we arrive at

lim
r→∞

sup
e⊂Rn\Br

fl(γ; e) ≤ c lim
r→∞

sup
e
fl(ζrγ; e) .

Combining this estimate with (7.2.10) and Theorem 7.2.1, we conclude that

lim
r→∞

sup
e⊂Rn\Br

( ‖γ; e‖Lp

[Cp,m−l(e)]1/p
+
‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p

)
≤ c ess ‖γ‖M(W m

p →W l
p). (7.2.19)

Adding (7.2.16) and (7.2.19), we obtain the required estimate for the essential
norm.

(ii) The upper bound for the essential norm. Let e be an arbitrary compact
set in R

n. We have

‖Dp,l(ηδ,xγ); e‖Lp
≤ c
[ [l]∑

j=0

‖|∇j(η2δ,xγ)|Dp,l−jηδ,x; e ‖Lp

+
[l]∑

j=0

(∫

Rn

|∇jηδ,x(y)|pdy
∫

e

|∇[l]−j(η2δ,x(y)γ(y))−∇[l]−j(η2δ,x(z)γ(z))|p
|y − z|n+p{l} dz

)1/p

+‖Dp,l(ηδ,xη2δ,xγ); e\B4δ(x)‖Lp

]
. (7.2.20)
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The obvious estimate
Dp,l−jηδ,x ≤ c δj−l

and Lemma 7.1.11 imply that

‖|∇j(η2δ,xγ)|Dp,l−jηδ,x; e‖Lp
≤ c δj−lfj(η2δ,xγ; e)[Cp,m−l+j(e)]1/p

≤ cfj(η2δ,xγ; e)[Cp,m(e)]1/p .

By Theorem 4.1.1,

fj(η2δ,xγ; e) ≤ c ‖η2δ,xγ‖M(W m−l+j
p →W j

p ) . (7.2.21)

Hence, from Lemma 7.1.6 and Corollary 4.3.7, we obtain

fj(η2δ,xγ; e) ≤ c sup
ξ∈Rn

‖ηδ,ξη2δ,xγ‖M(W m−l+j
p →W j

p )

≤ c sup
ξ∈Rn

‖ηδ,ξγ‖M(W m−l+j
p →W j

p )

≤ ε sup
ξ∈Rn

‖ηδ,ξγ‖M(W m
p →W l

p) + c(ε) sup
ξ∈Rn

‖ηδ,ξγ‖M(W m−l
p →Lp) .

Thus the first sum in (7.2.20) does not exceed
(
ε ‖ηδ,xγ‖M(W m

p →W l
p) + c(ε)‖ηδ,xγ‖M(W m−l

p →Lp)

)
[Cp,m(e)]1/p. (7.2.22)

The j-th term in the second sum on the right-hand side of (7.2.20) is
majorized by

c δ−j‖Dp,l−j(η2δ,xγ); e‖Lp
≤ c δ−jfl−j(η2δ,xγ; e)[Cp,m−j(e)]1/p

≤ c fl−j(η2δ,xγ; e)[Cp,m(e)]1/p .

Using the same arguments as when estimating fj(γ; e), we get

fl−j(η2δ,xγ; e) ≤ ε sup
ξ∈Rn

‖ηδ,ξγ‖M(W m
p →W l

p) + c(ε) sup
ξ∈Rn

‖ηδ,ξγ‖M(W m−l
p →Lp)

for j = 1, . . . , [l]. Therefore, the second sum on the right-hand side of (7.2.20)
does not exceed
(
εsup
x∈Rn

‖ηδ,xγ‖M(W m
p →W l

p)+c(ε) sup
ξ∈Rn

‖ηδ,ξγ‖M(W m−l
p →Lp)+cfl(γ; e)

)
[Cp,m(e)]1/p.

Now we give a bound for

‖Dp,l(ηδ,xη2δ,xγ); e\B4δ(x)‖Lp
.
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By Hölder’s inequality and the estimate for the capacity (3.1.2), we find that
for z ∈ B2δ(x) ∫

e\B4δ(x)

|y − z|−n−p{l}dy

≤ c (mesne)(n−mp)/n
(∫

e\B4δ(x)

|y − z|−(n+p{l})n/mpdy
)mp/n

≤ cCp,m(e) δp(m−{l})−n.

Consequently,

‖Dp,l(ηδ,xη2δ,xγ); e\B4δ(x)‖pLp

≤ c

[l]∑
j=0

∫

Bδ(x)

|∇j(η2δ,x(z)γ(z))|pdz δ(j−[l])p

∫

e\B4δ(x)

|y − z|−p{l}−ndy

≤ cCp,m(e)
[l]∑

j=0

δ(m−j+l)p−n

∫

B2δ(x)

|∇j(η2δ,x(z)γ(z))|pdz

≤ cCp,m(e)
[l]∑

j=0

fj(η2δ,xγ;B2δ(x)) .

Following the same lines as when estimating fj(η2δ,xγ; e), we conclude that
the third term on the right-hand side of (7.2.20) does not exceed (7.2.22).
Substituting the derived estimates into (7.2.20), we arrive at

fl(ηδ,xγ; e) ≤ c
(
ε sup

ξ∈Rn

‖ηδ,ξγ‖M(W m
p →W l

p)

+ c(ε) sup
ξ∈Rn

‖ηδ,ξγ‖M(W m−l
p →Lp) + fl(γ; e)

)
,

which implies that

‖ηδ,xγ‖M(W m
p →W l

p)

≤ c
(
ε sup

ξ∈Rn

‖ηδ,ξγ‖M(W m
p →W l

p) + c(ε) sup
ξ∈Rn

‖ηδ,ξγ‖M(W m−l
p →Lp)

+ sup
e⊂B2δ(x)

f0(γ; e) + sup
e⊂B4δ(x)

fl(γ; e)
)
.

Taking the supremum over x on both sides, we find that

sup
x∈Rn

‖ηδ,xγ‖M(W m
p →W l

p)

≤ c
(

sup
{e : d(e)≤4δ}

f0(γ; e) + sup
{e : d(e)≤8δ}

fl(γ; e)
)
. (7.2.23)
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Now let e ⊂ R
n with d(e) ≤ 1, and let r be a sufficiently large positive

number. We have

‖Dp,l(ζ3rγ); e‖Lp

≤ c
[ [l]∑

j=0

‖|∇jγ|Dp,l−jζ3r; e\Br‖Lp

+
[l]∑

j=0

(∫

Rn

|∇jζ3r(y)|pdy
∫

e\Br

|∇[l]−jγ(y)−∇[l]−jγ(z)|p
|y − z|n+p{l} dy dz

)1/p

+ ‖Dp,l(ζ3rγ); e ∩ Br‖Lp

]
. (7.2.24)

The first sum on the right-hand side does not exceed

c

[l]∑
j=0

rj−lfj(γ; e\Br)[Cp,m−l+j(e\Br)]1/p

≤ c r−{l}‖γ‖M(W m
p →W l

p)[Cp,m(e\Br)]1/p .

The j-th term on the right-hand side of (7.2.24) is majorized by

c r−j‖Dp,l−jγ; e\Br‖Lp
≤ c r−jfl−j(γ; e\Br)[Cp,m−j(e\Br)]1/p.

Hence the sum in question is dominated by

c (fl(γ; e\Br) + r−1‖γ‖M(W m
p →W l

p))[Cp,m(e)]1/p .

Further, we estimate the last term on the right-hand side of (7.2.24). We
have

‖Dp,l(ζ3rγ); e ∩ Br‖pLp

≤
[l]∑

j=0

∫

Rn\B3r

|∇jγ(z)|pdz r(j−[l])p

∫

e∩Br

|y − z|−n−p{l}dy

≤ cmesne

[l]∑
j=0

∫

Rn\B3r

|∇jγ(z)|p
|z|n+p{l} dz r

(j−[l])p.

We note that
∫

Rn\B3r

|∇jγ(z)|p dz

|z|n+p{l} ≤ r−p{l} sup
ξ∈Rn\B2r

‖∇jγ;B1(ξ)‖pLp

≤ c r−p{l}‖γ‖p
M(W m

p →W l
p)
.
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Therefore,

‖Dp,l(ζ3rγ); e ∩ Br‖Lp
≤ c (mesne)1/pr−{l}‖γ‖M(W m

p →W l
p) .

Consequently,

‖Dp,l(ζ3rγ); e‖Lp
≤ c

(
fl(γ; e\Br) + r−{l}‖γ‖M(W m

p →W l
p)

)
[Cp,m(e)]1/p .

Using Theorem 4.1.1, we obtain the estimate

‖ζ3rγ‖M(W m
p →W l

p) ≤ c1 sup
e⊂Rn\Br,d(e)≤1

(
fl(γ; e) + f0(γ; e)

)

+ c2r
−{l}‖γ‖M(W m

p →W l
p). (7.2.25)

This inequality, together with (7.2.23) and Theorem 7.2.1, implies the re-
quired upper bound for the essential norm. ��

7.2.3 Estimates Involving Capacity (The Case mp = n, p > 1)

Theorem 7.2.3. The relation (7.2.9) also holds for mp = n, p > 1.

Proof. As in the proof of Theorem 7.2.2, we need to consider only the more
difficult case of noninteger l, 0 < l < m.

(i) The lower bound for the essential norm. Let e be a compact set in R
n

with d(e) ≤ δ ≤ 1/2. The argument leading to (7.2.10) applies equally for
obtaining the required estimate of f0(γ; e).

For fl(γ; e) we have the estimates (7.2.11)–(7.2.13). The right-hand side
of (7.2.12) does not exceed

c δ−{l}(mesne){l}/n‖∇[l](γη2δ,x); e‖Lpn/(n−p{l})

≤ c
| log δ|(p−1)/p

| log mesne|(p−1)/p
‖∇[l](γη2δ,x); e‖Lpn/(n−p{l}) .

The expression on the right-hand side here is not greater than

c [Cp,m(e)]1/p sup
x∈Rn

‖Dp,l(γη2δ,x);B4δ(x)‖Lp

[Cp,m(B4δ(x))]1/p
. (7.2.26)

Similarly, the right-hand side of (7.2.13) does not exceed

c (mesne)1/p| log mesne|(p−1)/p[Cp,m(e)]1/pδ−n/p sup
z∈Rn

‖Dp,l(γη2δ,z);B4δ(z)‖Lp

which, in turn, is majorized by (7.2.26). Thus

fl(γ; e) ≤ c sup
x∈Rn

fl(γη2δ,x;B4δ(x)) .
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Combining this estimate with Theorem 4.1.1 and Theorem 7.2.1, we get
(7.2.15). Consequently we arrive at (7.2.16).

The proof of (7.2.18) holds for mp = n as well. Thus the required lower
bound for the essential norm is obtained.

(ii) The upper bound for the essential norm. We take the relation (7.2.2)
as the basis of the proof. Since ηδ2,xµδ,x = ηδ2,x, then, by Lemma 7.1.6,

‖ηδ2,xγ‖M(W m
p →W l

p) ≤ c ‖µδ,xγ‖M(W m
p →W l

p) .

Our aim is to prove the estimate

‖µδ,xγ‖M(W m
p →W l

p) ≤ c sup
e⊂B6δ(x)

(f0(γ; e) + fl(γ; e)) . (7.2.27)

Let e be a compact set in R
n with d(e) < 1/2. We have

‖Dp,l(µδ,xγ); e‖Lp

≤ c
[ [l]∑

j=0

‖|∇jγ|Dp,l−jµδ,x; e ∩ B2δ(x)‖Lp

+
[l]∑

j=1

(∫
|∇jµδ,x(y)|p dy

∫

e∩B2δ(x)

|∇[l]−jγ(y)−∇[l]−jγ(z)|p
|y − z|n+p{l} dz

)1/p

+ ‖Dp,l(µδ,xγ); e\B2δ(x)‖Lp
+ ‖µδ,xDp,lγ; e‖Lp

]
. (7.2.28)

Applying Lemma 7.1.8, we find that

‖|∇jγ|Dp,l−jµδ,x; e ∩ B2δ(x)‖Lp

≤ c ‖|∇jγ| | log r|−1 rj−l; e ∩ B2δ(x)‖Lp
, (7.2.29)

where r(z) = |z − x|. By Hölder’s inequality the right-hand side does not
exceed

c ‖∇jγ;B2δ(x)‖Lpn/(n−p(l−j))‖| log r|−1 rj−l ; e ∩ B2δ(x)‖Ln/(l−j) .

Since the function | log t|−1tj−l decreases near t = 0, the maximum value of
the integral ∫

E

dz

|z|n| log |z||n/(l−j)

over all sets E with prescribed small mesnE is attained for the ball centered
at z = 0. Consequently,

‖| log r|−1rj−l; e∩B2δ(x)‖Ln/(l−j)≤c | log mesn(e∩B2δ(x))|(l−j−n)/n. (7.2.30)

We further note that

‖∇jγ;B2δ(x)‖Lnp/(n−p(l−j)) ≤ c
(
‖Dp,lγ;B2δ(x)‖Lp

+ δ−l‖γ;B2δ(x)‖Lp

)
.



7.2 Two-Sided Estimates for the Essential Norm. The Case m > l 259

From (7.2.29) and two last inequalities we obtain

‖|∇jγ|Dp,l−jµδ,x; e ∩ B2δ(x)‖Lp

≤ c | log δ|(p(l−j)−n)/np
(
| log δ|(1−p)/pfl(γ;B2δ(x)) + f0(γ;B2δ(x)

)

× | log mesn(e ∩ B2δ(x))|(1−p)/p .

Applying Proposition 4.3.1, we arrive at

‖|∇jγ|Dp,l−jµδ,x; e ∩ B2δ(x)‖Lp

≤ c
(
fl(γ;B2δ(x)) + f0(γ;B2δ(x))

)
[Cp,m(e)]1/p . (7.2.31)

The general term of the second sum on the right-hand side of (7.2.28) is
equal to

(∫ dh

|h|n+p{l}

∫

e∩B2δ(x)

|∆h∇[l]−jγ(z)|p|∇jµδ,x(z + h)|pdz
)1/p

.

Since suppµδ,x ⊂ Bδ(x), the last expression does not exceed

‖|∇jµδ,x; e ∩ B2δ(x)|Ln/j

(∫

B3δ(x)

‖∆h∇[l]−jγ;B2δ(x)‖pLnp/(n−jp)

dh

|h|n+p{l}

)1/p

.

Using Lemma 7.1.8 and applying the same argument as in the proof of (7.2.30),
we conclude that

‖∇jµδ,x; e ∩ B2δ(x)‖Ln/j
≤ c

∣∣∣log mesn(e ∩ B2δ(x))
∣∣∣
(j−n)/n

. (7.2.32)

It is known that the space Bs1
q1,p is imbedded continuously into Bs2

q2,p with
s1−n/q1 = s2−n/q2, 1 < q1 < q2 <∞ (see [Bes]). This, in particular, implies
that

∫

B3δ(x)

‖∆h∇[l]−jγ;B2δ(x)‖pLnp/(n−jp)

dh

|h|n+p{l} ≤ c |||γ;B6δ(x)|||p
W l

p

∼ c
(
‖Dp,lγ;B6δ(x)‖Lp

+ δ−l‖γ;B6δ(x)‖Lp

)p
. (7.2.33)

From (7.2.32) and (7.2.33) we obtain that the general term of the second sum
on the right-hand side of (7.2.28) is dominated by

c | log δ|(pj−n)/np
(
| log δ|(1−p)/pfl(γ;B6δ(x))

+ f0(γ;B6δ(x))
)
| log mesn(e ∩ B2δ(x))|(1−p)/p .

This, together with Proposition 3.1.3, yields
(∫
|∇jµδ,x(y)|p dy

∫

e∩B2δ(x)

|∇[l]−jγ(y)−∇[l]−jγ(z)|p
|y − z|n+p{l} dz

)1/p

≤ c (fl(γ;B6δ(x)) + f0(γ;B6δ(x)))[Cp,m(e)]1/p . (7.2.34)
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Let us estimate the norm ‖Dp,l(µδ,xγ); e\B2δ(x)‖Lp
, which is obviously

equal to (∫

e\B2δ(x)

dy

∫

Bδ(x)

|∇[l](µδ,xγ)(z)|p
|y − z|n+p{l} dz

)1/p

=
(∫

Bδ(x)

|∇[l](µδ,xγ)(z)|p dz
∫

e\B2δ(x)

dy

|y − z|n+p{l}

)1/p

.

It is clear that∫

e\B2δ(x)

dy

|y − z|n+p{l} ≤ min{δ−n−p{l}mesne, δ
−p{l}}

≤ | log δ|p−1

| log mesne|p−1 δp{l} .

Moreover, by Lemma 4.2.7,
∫

Bδ(x)

|∇[l](µδ,xγ)(z)|p dz

≤ δp{l}
∫

Bδ(x)

∫

Bδ(x)

|∇[l](µδ,xγ)(y)−∇[l](µδ,xγ)(z)|p
|y − z|n+p{l} dz dy .

Consequently,

‖Dp,l(µδ,xγ); e\B2δ(x)‖pLp

≤ c
| log δ|p−1

| log mesne|p−1

(
‖Dp,lγ;Bδ(x)‖pLp

+
[l]∑

j=0

‖|∇jγ|Dp,l−jµδ,x;Bδ(x)‖pLp

+
[l]∑

j=1

∫

Bδ(x)

|∇jµδ,x(y)|p dy
∫

Bδ(x)

|∇[l]−jγ(y)−∇[l]−jγ(z)|p
|y − z|n+p{l} dz

)
.

Putting e = Bδ(x) in (7.2.31) and (7.2.34), we see that either of the two last
sums may be estimated from above by

c | log δ|1−p
(
fl(γ;B6δ(x)) + f0(γ;B6δ(x))

)p
.

Therefore,

‖Dp,l(µδ,xγ); e\B2δ(x)‖pLp
≤ c (fl(γ;B6δ(x)) + f0(γ;B6δ(x)))pCp,m(e) .

Setting this, together with (7.2.31) and (7.2.34), into (7.2.28), we arrive at
(7.2.27).

The estimate

lim sup
r→∞

‖ζrγ‖M(W m
p →W l

p) ≤ c lim
r→∞

sup
e⊂Rn\Br,d(e)≤1

(fl(γ; e) + f0(γ; e))

was obtained at the end of the proof of Theorem 7.2.2. ��
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7.2.4 Proof of Theorem 7.0.3

To obtain the lower estimate for ess‖γ‖M(W m
p →W l

p) we use Theorem 7.2.2 and
the upper estimates for the capacity of a ball (see Proposition 3.1.4). Then

sup
{e:d(e)≤δ}

‖γ; e‖Lp

[Cp,m−l(e)]1/p
≥ sup

ρ≤δ

‖γ;Bρ(x)‖Lp

[Cp,m−l(Bρ(x))]1/p

= c sup
ρ≤δ

ρm−l−n/p‖γ;Bρ(x)‖Lp
≥ c sup

ρ≤δ
ρm−l−n‖γ;Bρ(x)‖L1 ,

where x is an arbitrary point of R
n. Also,

sup
{e⊂Rn\Br:d(e)≤1}

‖γ; e‖Lp

[Cp,m−l(e)]1/p
≥ sup

x∈Rn\Br

‖γ;B1(x)‖Lp
.

To prove the upper estimate in part (i) of Theorem 7.0.3, we show that

sup
{e:d(e)≤δ}

‖γ; e‖Lp

[Cp,m−l(e)]1/p

≤ c
(

sup
{e:d(e)≤δ}

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
+ sup

x∈Rn

δm−l−n‖γ;Bδ(x)‖L1

)
(7.2.35)

for pm ≤ n. In view of Corollary 4.3.1 and Lemma 4.3.11 we have

sup
{e:d(e)≤1}

‖γ; e‖Lp

[Cp,m−l(e)]1/p

≤ c
(

sup
{e:d(e)≤1}

‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p
+ sup

x∈Rn

‖γ;B1(x)‖L1

)
. (7.2.36)

In the last inequality we replace e by δ−1E where d(E) ≤ δ and introduce
Γ (·) = γ(δ−1·). Then (7.2.36) becomes

sup
{E:d(E)≤δ}

δ−n/p‖Γ ;E‖Lp

[Cp,m−l(δ−1E)]1/p

≤ c
(

sup
{E:d(E)≤δ}

δl−n/p‖Dp,lΓ ;E‖Lp

[Cp,m(δ−1E)]1/p
+ sup

y∈Rn

δ−n‖Γ ;Bδ(y)‖L1

)
. (7.2.37)

For mp < n, by Corollary 3.1.1 we have

Cp,m−l(δ−1E) ≤ c δp(m−l)−nCp,m−l(E)

and
Cp,m(δ−1E) ≥ c δpm−nCp,m(E).
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For mp = n the last inequality should be replaced by the estimate

Cp,m(δ−1E) ≥ cCp,m(E),

which holds since the capacity is a non-decreasing set function. Thus, for
mp ≤ n

sup
{E:d(E)≤δ}

δ−(m−l)‖Γ ;E‖Lp

[Cp,m−l(E)]1/p

≤ c
(

sup
{E:d(E)≤δ}

δ−(m−l)‖Dp,lΓ ;E‖Lp

[Cp,m(E)]1/p
+ sup

y∈Rn

δ−n‖Γ ;Bδ(y)‖L1

)

and (7.2.35) follows. ��

7.2.5 Sharpening of the Lower Bound for the Essential Norm
in the Case m > l, mp ≤ n, p > 1

In addition to Theorems 7.2.2 and 7.2.3 we prove the following result.

Theorem 7.2.4. If m > l, mp ≤ n, and p > 1, then

ess ‖γ‖M(W m
p →W l

p)

≥ c lim
δ→0

sup
{e : d(e)≤δ}

[l]∑
j=0

(‖Dp,l−jγ; e‖Lp

[Cp,m−j(e)]1/p
+

‖∇jγ; e‖Lp

[Cp,m−l+j(e)]1/p

)

+ c lim
r→∞

sup
{e⊂Rn\Br : d(e)≤1}

[l]∑
j=0

(‖Dp,l−jγ; e‖Lp

[Cp,m−j(e)]1/p
+

‖∇jγ; e‖Lp

[Cp,m−l+j(e)]1/p

)
.

To prove this theorem, we need an auxiliary assertion.

Lemma 7.2.2. For any multi-index α with |α| ≤ l < m,

ess ‖Dαγ‖
M(W m

p →W
l−|α|
p )

≤ c

|α|∑
j=0

ess ‖γ‖M(W m−j
p →W l−j

p ) .

Proof. It suffices to limit consideration to |α| = 1. By Tj , j = 0, 1, we denote
compact operators acting from Wm−j

p into W l−j
p and such that

‖γu− Tju‖W l−j
p
≤ ( ess ‖γ‖M(W m−j

p →W l−j
p ) + ε)‖u‖W m−j

p
.

For any function u ∈Wm
p we have

‖γ∇u+ u∇γ −∇T0u‖W l−1
p
≤ ( ess ‖γ‖M(W m

p →W l
p) + ε)‖u‖W m

p
.
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Therefore,

‖u∇γ −∇T0u+ T1∇u‖W l−1
p

≤ ( ess ‖γ‖M(W m
p →W l

p) + ε)‖u‖W m
p

+ ‖γ∇u− T1∇u‖W l−1
p

≤ ( ess ‖γ‖M(W m
p →W l

p) + ess ‖γ‖M(W m−l
p →W l−1

p ) + 2ε)‖u‖W m
p
.

Since T = ∇T0 − T1∇ is a compact operator acting from Wm
p into W l−1

p , it
follows that

ess ‖∇γ‖M(W m
p →W l−1

p ) ≤ ess ‖γ‖M(W m
p →W l

p) + ess ‖γ‖M(W m−1
p →W l−1

p ) .

��

Proof of the Theorem 7.2.4. From the interpolation property (4.3.26)
and from Theorem 7.2.1, we find that

ess ‖γ‖M(W m−j
p →W l−j

p ) ≤ c ess ‖γ‖(l−j)/l

M(W m
p →W l

p)
ess ‖γ‖j/l

M(W m−l
p →Lp)

which, together with Lemmas 2.3.4 and 4.3.4, gives

ess ‖γ‖M(W m−j
p →W l−j

p ) ≤ c ess ‖γ‖M(W m
p →W l

p) .

By this inequality and Lemma 7.2.2 we conclude that

ess ‖∇jγ‖M(W m
p →W l−j

p ) ≤ c ess ‖γ‖M(W m
p →W l

p) .

It remains to make use of Theorems 7.2.2 and 7.2.3. ��

7.2.6 Estimates of the Essential Norm for mp > n, p > 1
and for p = 1

In the two cases mentioned, we do not need a capacity. The simplest formu-
lation is for mp > n, p ≥ 1 and for m = n, p = 1.

Theorem 7.2.5. If mp > n and p ≥ 1, or m = n and p = 1, and γ ∈
M(Wm

p →W l
p), m > l, then

ess ‖γ‖M(W m
p →W l

p) ∼ lim sup
|x|→∞

‖γ;B1(x)‖W l
p
. (7.2.38)
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Proof. Applying Corollary 4.3.8 and Theorem 5.4.1 to the multiplier ζrγ, we
obtain from Lemma 7.2.1 that

lim sup
r→∞

sup
x∈Rn

‖ζrγ;B1(x)‖W l
p
≤ c ess ‖γ‖M(W m

p →W l
p)

which is equivalent to

lim sup
|x|→∞

‖γ;B1(x)‖W l
p
≤ c ess ‖γ‖M(W m

p →W l
p) .

Let us prove the converse estimate. Corollary 4.3.8 and Theorem 5.4.1
imply that

‖γ‖MW l
p
∼ ‖γ‖M(W m

p →W l
p) <∞.

This and Lemma 7.1.2 yield

‖(1− ζr)γu‖W l
p
≤ ‖γ‖MW l

p
‖(1− ζr)u‖W l

p
≤ c ‖u;B4r‖W l

p
.

Since any bounded subset of Wm
p is compact in W l

p(B4r), the operator

(1− ζr)γ : Wm
p →W l

p

is compact. Consequently, for any r > 0,

ess ‖γ‖M(W m
p →W l

p) = ess ‖ζrγ‖M(W m
p →W l

p) ≤ ‖ζrγ‖M(W m
p →W l

p) .

Estimating the last norm with the help of Corollary 4.3.8 and passing to the
limit as r →∞, we complete the proof. ��

Theorem 7.2.6. If l < m < n, then

ess ‖γ‖M(W m
1 →W l

1) ∼ lim sup
δ→0

δm−n sup
x∈Rn

|||γ;Bδ(x)|||W l
1

+ lim sup
|x|→∞

sup
r∈(0,1)

rm−n|||γ;Br(x)|||W l
1
. (7.2.39)

Proof. According to Theorems 5.4.1 and 7.2.1,

ess ‖γ‖M(W m
1 →W l

1) ∼ lim sup
δ→0

sup
x,y∈Rn

sup
r∈(0,1)

rm−n|||ηδ,xγ;Br(y)|||W l
1

+ lim sup
ρ→∞

sup
y∈Rn

sup
r∈(0,1)

rm−n|||ζργ;Br(y)|||W l
1
.

Let the first term on the right-hand side be denoted by A1 and the second
one by A2. Dealing first with A2, we have

A2 ≥ lim sup
ρ→∞

sup
y/∈B2ρ

sup
r∈(0,1)

rm−n|||γ;Br(y)|||W l
1

= lim sup
|y|→∞

sup
r∈(0,1)

rm−n|||γ;Br(y)|||W l
1
.



7.2 Two-Sided Estimates for the Essential Norm. The Case m > l 265

An upper bound for A2 can be obtained as follows:

A2 ≤ lim sup
ρ→∞

sup
y/∈Bρ/2

sup
r∈(0,1)

rm−n|||ζργ;Br(y)|||W l
1

≤ c lim sup
ρ→∞

sup
y/∈Bρ/2

sup
r∈(0,1)

rm−n|||γ;B2r(y)|||W l
1

≤ c1 lim sup
|y|→∞

sup
r∈(0,1)

rm−n|||γ;Br(y)|||W l
1
.

Now we turn to estimates for A1. We have

A1 ≥ lim sup
δ→0

sup
x∈Rn

δm−n|||ηδ,xγ;Bδ(x)|||W l
1

≥ c lim sup
δ→0

sup
x∈Rn

δm−n|||γ;Bδ/2(x)|||W l
1
.

On the other hand,

sup
r∈(0,1)

rm−n|||ηδ,xγ;Br(y)|||W l
1

≤ sup
r∈(0,δ/2)

rm−n|||ηδ,xγ;Br(y)|||W l
1

+ (2δ)m−n sup
r∈(δ/2,1)

|||ηδ,xγ;Br(y)|||W l
1
.

The first term on the right-hand side does not exceed

c sup
r∈(0,δ/2)

rm−n|||γ;B2r(y)|||W l
1

and the second one is not greater than

c δm−n|||γ;B2δ(x)|||W l
1
.

Consequently,
A1 ≤ c lim sup

δ→0
δm−n sup

x∈Rn

|||γ;Bδ(x)|||W l
1
.

��

Remark 7.2.2. It follows from Lemma 7.1.1 that (7.2.39) can be written as

ess ‖γ‖M(W m
1 →W l

1) ∼ lim sup
δ→0

δm−n sup
x∈Rn

(
δ−l‖γ;Bδ(x)‖L1 + ‖D1,lγ;Bδ(x)‖L1

)

+ lim sup
|x|→∞

sup
r∈(0,1)

rm−n
(
r−l‖γ;Br(x)‖L1 + ‖D1,lγ;Br(x)‖L1

)
.

Remark 7.2.3. Let T∗ be the operator defined by (7.2.4) for pm ≤ n, p > 1
and m < n, p = 1. For other values of p and m we put T∗ = (1− ζr)γ. In the
proofs of Theorems 7.2.1–7.2.6 we verified in passing the following estimates
for the norm of γ − T∗ for fixed δ and r.
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(i) If mp < n, p > 1, m > l, then

‖γ − T∗‖W m
p →W l

p
≤ c sup

{e : d(e)≤8δ}
(fl(γ; e) + f0(γ; e))

+ c
(

sup
{e⊂Rn\Br/2 : d(e)≤1}

(fl(γ; e) + f0(γ; e)) + r−{l}‖γ‖M(W m
p →W l

p)

)
.

(ii) If mp = n, p > 1, m > l, then the last estimate remains valid with
{e : d(e) ≤ 8δ} replaced by {e : d(e) ≤ δ1/2}.

(iii) If l < m < n, then

‖γ − T∗‖W m
1 →W l

1
≤ c δm−n sup

x∈Rn

(
δ−l‖γ;Bδ(x)‖L1 + ‖D1,lγ;Bδ(x)‖L1

)

+c sup
x∈Rn\Br/2

sup
ρ∈(0,1)

(
ρ−l‖γ;Bρ(x)‖L1 + ‖D1,lγ;Bρ(x)‖L1

)
.

(iv) If mp > n, p > 1 or m ≥ n, p = 1, m > l, then

‖γ − T∗‖W m
p →W l

p
≤ c sup

x∈Rn\Br/2

‖γ;B1(x)‖W l
p
.

From (i)-(iv), together with lower estimates for the essential norm proved
in the above theorems, it follows that, given any ε, one can find r so large and
δ so small that

‖γ − T∗‖W m
p →W l

p
≤ c ( ess ‖γ‖M(W m

p →W l
p) + ε) . (7.2.40)

7.2.7 One-Sided Estimates for the Essential Norm

Using Theorem 7.0.3 and the lower estimates of the capacity Cp,m (see
Propositions 3.1.2 and 3.1.3), one can readily obtain upper estimates for the
essential norm in M(Wm

p →W l
p).

Theorem 7.2.7. Let γ ∈M(Wm
p (Rn)→Wm

p (Rn)), where m > l ≥ 0.
(i) If p ∈ (1,∞) and mp < n, then

ess ‖γ‖M(W m
p →W l

p)

≤ c1 lim
δ→0

(
sup

{e:d(e)≤δ}

‖Dp,lγ; e‖Lp(
mesne

) 1
p−m

n

+ sup
x∈Rn

ρ≤δ

ρm−l−n
p ‖γ;Bρ(x)‖Lp

)

+c2 lim
r→∞

(
sup

e⊂Rn\Br
d(e)≤1

‖Dp,lγ; e‖Lp

(mesne)
1
p−m

n

+ sup
x∈Rn\Br

‖γ;B1(x)‖Lp

)
. (7.2.41)

(ii) If p ∈ (1,∞) and mp = n, then

ess ‖γ‖M(W m
p →W l

p)
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≤ c1 lim
δ→0

(
sup

{e:d(e)≤δ}

(
log

2n

mesne

)1− 1
p ‖Dp,lγ; e‖Lp

+ sup
x∈Rn

ρ≤δ

ρ−l‖γ;Bρ(x)‖Lp

)

+c2 lim
r→∞

(
sup

e⊂Rn\Br
d(e)≤1

(
log

2n

mesne

)1− 1
p ‖Dp,lγ; e‖Lp

+ sup
x∈Rn\Br

‖γ;B1(x)‖Lp

)
. (7.2.42)

Restricting the suprema in Theorem 7.0.3 to balls of radii less than one and
using the formulas for the capacity of a ball (see Proposition 3.1.4), we arrive
at the following lower estimates for the essential norm in M(Wm

p →W l
p).

Theorem 7.2.8. Let γ ∈M(Wm
p (Rn)→Wm

p (Rn)), where m > l ≥ 0.
(i) If p ∈ (1,∞) and mp < n, then

ess ‖γ‖M(W m
p →W l

p)

≥ c1 lim
δ→0

sup
x∈Rn

ρ≤δ

ρm−n
p

(
‖Dp,lγ;Bρ(x)‖Lp

+ ρ−l‖γ;Bρ(x)‖Lp

)

+c2 lim
r→∞

sup
x∈Rn\Br

‖γ;B1(x)‖W l
p
. (7.2.43)

(ii) If p ∈ (1,∞) and mp = n, then

ess ‖γ‖M(W m
p →W l

p)

≥ c1 lim
δ→0

sup
x∈Rn

ρ≤δ

((
log(2/ρ)

)1− 1
p ‖Dp,lγ;Bρ(x)‖Lp

+ ρ−l‖γ;Bρ(x)‖Lp

)

+c2 lim
r→∞

sup
x∈Rn\Br

‖γ;B1(x)‖W l
p
. (7.2.44)

Remark 7.2.4. Some one-sided estimates for essential norms of multipliers act-
ing in pairs of Besov-Triebel-Lizorkin spaces Bs

p,q(R
n), F s

p,q(R
n) were obtained

by Edmunds and Shargorodsky in [ES]. These estimates involve norms in the
same scales of spaces. The proofs are based on a certain abstract functional-
analytic equivalent representation of the essential norm.

7.2.8 The Space of Compact Multipliers

Definition 7.2.1. By M̊(Wm
p → W l

p), m > l, we mean the set of functions
γ such that the operator of multiplication by γ is a compact operator acting
from Wm

p into W l
p.

Needless to say,

γ ∈ M̊(Wm
p →W l

p) if and only if ess ‖γ‖M(W m
p →W l

p) = 0.

Therefore, Theorems 7.0.3, 7.2.5, and 7.2.6 imply the following necessary and
sufficient conditions for a function γ ∈ M(Wm

p → W l
p) to belong to the class

M̊(Wm
p →W l

p).
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Theorem 7.2.9. (i) If mp ≤ n and p > 1, then γ ∈ M̊(Wm
p → W l

p) if and
only if

lim
δ→0

(
sup

{e:d(e)≤δ}

‖Dp,lγ; e‖Lp(
Cp,m(e)

) 1
p

+ sup
x∈Rn

ρ≤δ

ρm−l−n
p ‖γ;Bρ(x)‖Lp

)
= 0, (7.2.45)

lim
r→∞

(
sup

e⊂Rn\Br
d(e)≤1

‖Dp,lγ; e‖Lp

(Cp,m(e))
1
p

+ sup
x∈Rn\Br

‖γ;B1(x)‖Lp

)
= 0. (7.2.46)

(ii) Let either mp > n and p ≥ 1, or m = n and p = 1. Then γ ∈
M̊(Wm

p →W l
p) if and only if γ ∈W l

p,unif and

lim
|x|→∞

‖γ;B1(x)‖W l
p

= 0 . (7.2.47)

(iii) In the case m < n, a necessary and sufficient condition for γ ∈
M̊(Wm

1 →W l
1) is (7.2.47) together with

lim
δ→0

δm−n sup
x∈Rn

|||γ;Bδ(x)|||W l
1

= 0 . (7.2.48)

Remark 7.2.5. From Theorems 7.2.2 and 7.2.3, we obtain another form of the
compactness criteria for γ ∈ M̊(Wm

p →W l
p) with mp ≤ n, p > 1:

lim
δ→0

sup
{e : d(e)≤δ}

( ‖γ; e‖Lp

[Cp,m−l(e)]1/p
+
‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p

)
= 0 , (7.2.49)

lim
r→∞

sup
{e⊂Rn\Br : d(e)≤1}

( ‖γ; e‖Lp

[Cp,m−l(e)]1/p
+
‖Dp,lγ; e‖Lp

[Cp,m(e)]1/p

)
= 0. (7.2.50)

Theorem 7.2.1 immediately implies:

Theorem 7.2.10. Let lp < n, m > l and p ≥ 1. Then γ ∈ M̊(Wm
p → W l

p) if
and only if

lim
δ→0

sup
x∈Rn

‖ηδ,xγ‖M(W m
p →W l

p) = 0 ,

lim
r→∞

‖ζrγ‖M(W m
p →W l

p) = 0 .

From this theorem combined with Propositions 4.3.1, 4.3.2 and the re-
sults in Sect. 4.4, we can get various necessary or sufficient conditions for
γ ∈ M̊(Wm

p →W l
p) which do not contain capacity.

The following theorem gives one more description of M̊(Wm
p →W l

p) with
m > l.

Theorem 7.2.11. The space M̊(Wm
p → W l

p) is the completion of C∞
0 with

respect to the norm in M(Wm
p →W l

p).
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Proof. By Theorem 7.2.9, C∞
0 ⊂ M̊(Wm

p → W l
p). Therefore, any function in

M(Wm
p →W l

p), approximated by a sequence in C∞
0 in the norm of M(Wm

p →
W l

p), generates a compact operator of multiplication: Wm
p →W l

p.
Further, we prove the converse assertion. Let γ ∈ M̊(Wm

p →W l
p). Accord-

ing to parts (ii) and (iii) of Theorem 7.2.9, it suffices to consider the case
mp ≥ n, p > 1. By Theorem 7.2.1 we have

lim
r→∞

‖γ − (1− ζr)γ‖M(W m
p →W l

p) = 0 . (7.2.51)

Let Γ = (1 − ζr)γ and let Γρ be a mollification of Γ with radius ρ. By T∗

and T
(ρ)
∗ we denote the operators given by (7.2.4) for Γ and Γρ respectively.

It follows from (7.2.8) that

lim
r→0
‖γ − T∗‖W m

p →W l
p

= 0 . (7.2.52)

By (7.2.8) and Theorem 7.2.1,

‖Γρ − T
(ρ)
∗ ‖W m

p →W l
p
≤ c lim sup

δ→0
sup

x∈Rn

‖ηδ,xΓρ‖M(W m
p →M l

p) + ε

≤ c ess ‖Γρ‖M(W m
p →W l

p) + ε = ε . (7.2.53)

The last equality holds since Γρ ∈ C∞
0 .

From the definitions of the operators T∗ and T
(ρ)
∗ we get

‖(T∗ − T
(ρ)
∗ )u‖W l

p
≤ c(δ, r)‖u‖Lp

∑
j

‖(Γ − Γρ)ϕ(j)‖W l
p

and hence

‖T∗ − T
(ρ)
∗ ‖W m

p →W l
p
≤ c(δ, r)‖Γ − Γρ‖W l

p
. (7.2.54)

The right-hand side of this inequality tends to zero as ρ→ 0. Since

‖Γ − Γρ‖M(W m
p →W l

p) ≤ ‖Γ − T∗‖W m
p →W l

p
+ ‖Γρ − T

(ρ)
∗ ‖W m

p →W l
p

+ ‖T∗ − T
(ρ)
∗ ‖W m

p →W l
p
,

it follows by (7.2.52)–(7.2.54) that

lim
r→∞,ρ→0

‖γ − Γρ‖M(W m
p →W l

p) = 0 .

Since Γρ ∈ C∞
0 , the proof is complete. ��
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7.3 Two-Sided Estimates for the Essential Norm
in the Case m = l

7.3.1 Estimate for the Maximum Modulus of a Multiplier
in W l

p by its Essential Norm

Theorem 7.3.1. If l > 0 and 1 ≤ p <∞, then

‖γ‖L∞ ≤ ess ‖γ‖MW l
p
. (7.3.1)

Proof. Let T be a compact operator in W l
p such that

‖(γ − T )u‖W l
p
≤ ( ess ‖γ‖MW l

p
+ ε)‖u‖W l

p
(7.3.2)

for all u ∈W l
p.

Let η be an arbitrary function in C∞
0 (Qk), where Qk is the cube {y : |yj | <

πk} and k is an integer. We consider the sequence

uN (y) = N−l exp(iNy1)η(y) , N = 1, 2, . . . .

Obviously, for integer l we have

‖uN‖W l
p

= ‖η‖Lp
+O(N−1).

Let l be a noninteger, 0 < l < 1. Then

‖uN‖W l
p

= N−l‖eiNy1η‖W l
p

= N−l‖Dp,le
iNy1η‖Lp

+O(N−1) .

Clearly,
|Dp,l(eiNy1η)− |η|Dp,le

iNy1 | ≤ Dp,lη.

Since
Dp,le

iNy1 = alN
l,

where al = const > 0, it follows that

‖Dp,l(eiNy1η)− alN
l|η| ‖Lp

= O(1) . (7.3.3)

Let l > 1. Then

Dp,l(eiNy1η) = Dp,{l}(∇[l]e
iNy1).

We have

∣∣∣Dp,{l}(∇[l](eiNy1η))−N [l]Dp,{l}(eiNy1η)
∣∣∣ ≤ c

[l]∑
j=0

N jDp,{l}

(
eiNy1

∂[l]−jη

∂y
[l]−j
1

)
.
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This and (7.3.3) imply that

‖Dp,l(eiNy1η)−N la{l}‖Lp
≤ cN [l].

So in the case {l} > 0 we obtain

‖uN‖W l
p

= a{l}‖η‖Lp
+O(N−{l}) . (7.3.4)

We show that {uN} converges weakly to zero in W̊ l
p(Qk). Let f be any

linear functional on W̊ l
p(Qk). If p ≤ 2, then the restriction of f to W̊ l

2(Qk) is
a linear functional on W̊ l

2(Qk). Consequently,

f(uN ) =
∫
ΛluNΛ

lψ dx,

where ψ ∈ W̊ l
2(Qk). Since

‖Λlun − eiNy1η‖L2 = O(N−1)

and the sequence ∫

Qk

eiNy1η(y)Λlψ dy

tends to zero, being a sequence of Fourier coefficients of a function in L2(Qk),
it follows that f(uN )−→ 0 as N →∞.

Let p > 2. Taking into account the imbedding of H l
p into W l

p, we get

|f(uN )| ≤ c ‖uN‖Hl
p
.

Therefore,

f(uN ) =
∫
gΛluN dy ,

where g ∈ Lp′ . Since

‖ΛluN − eiNy1η‖Lp
= O(N−1) ,

we have
f(uN ) =

∫

Qk

eiNy1η(y)g dy +O(N−1)‖g‖Lp′ .

Applying the Hausdorff-Young theorem (see [Zy], Ch. V.II) to the function
ηg ∈ Lp′(Qk), p′ < 2, we conclude that f(uN )−→ 0 as N →∞.

By ϕ we denote a function in C∞
0 (Q1) which is equal to one on the cube

Q1−δ, δ > 0, and we set ϕk(y) = ϕ(y/k). The compactness of the operator
ϕkT in W̊ l

p(Qk) implies that

ϕkTuN −→
N→∞

0 in W̊ l
p(Qk).
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Now it follows from Lemma 7.1.9 and (7.3.2) that

lim sup
N→∞

‖ϕkγuN‖W l
p

= lim sup
N→∞

‖ϕk(γ − T )uN‖W l
p

≤ (1 +O(k−δ)) lim sup
N→∞

‖(γ − T )uN‖W l
p

≤ (1 +O(k−δ)) lim sup
N→∞

‖uN‖W l
p
( ess ‖γ‖MW l

p
+ ε)

which together with (7.3.4) yields

lim sup
N→∞

‖ϕkγuN‖W l
p
≤ (1 +O(k−δ))a{l}‖η‖Lp

( ess ‖γ‖MW l
p

+ ε) .

With the same arguments as in the proof of (7.3.4), we obtain

lim
N→∞

‖ϕkγuN‖W l
p

= a{l}‖ϕkγη‖Lp
.

Thus
lim sup

k→∞
‖ϕkγη‖Lp

≤ ‖η‖Lp
ess ‖γ‖MW l

p
.

Since ϕkη = η for large values of k, and η is an arbitrary function in C∞
0 , the

result follows. ��

7.3.2 Estimates for the Essential Norm Involving Cutoff Functions
(The Case lp ≤ n, p > 1)

Theorem 7.3.2. For lp < n, p ≥ 1 the relation

ess ‖γ‖MW l
p
∼ lim sup

δ→0
sup

x∈Rn

‖ηδ,xγ‖MW l
p

+ lim sup
r→∞

‖ζrγ‖MW l
p

(7.3.5)

holds.

The proof of this relation can be obtained by duplicating the proof of
Theorem 7.2.1, where m = l.

Theorem 7.3.3. If 0 < l ≤ 1, lp = n, and p > 1, then

ess ‖γ‖MW l
p
∼ ‖γ‖L∞ + lim sup

δ→0
sup

x∈Rn

‖ηδ,xDp,lγ‖M(W l
p→Lp)

+ lim sup
r→∞

‖ζrγ‖MW l
p
. (7.3.6)

Proof. (i) The upper bound for the essential norm. We choose δ and r so that

sup
x∈Rn

‖ηδ,xDp,lγ‖M(W l
p→Lp) ≤ lim sup

δ→0
sup

x∈Rn

‖ηδ,xDp,lγ‖M(W l
p→Lp) + ε ,
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‖ζrγ‖MW l
p
≤ lim sup

r→∞
‖ζrγ‖MW l

p
+ ε .

Let Γ and T∗ be the function and operator introduced in the second part of
Theorem 7.2.1. By (7.2.5) it suffices to get the estimate for ‖(Γ − T∗)u‖W l

p
.

We have

‖(Γ − T∗)u‖pW l
p
≤ A+B + C , (7.3.7)

where

A =
∥∥Γ
∑

j

ϕ(j)(u− P (j))
∥∥p

Lp
,

B =
∥∥∑

j

(Dp,lΓ )η2δ,xj
ϕ(j)(u− P (j))

∥∥p

Lp
,

C =
∥∥ΓDp,l

∑
j

ϕ(j)(u− P (j))
∥∥p

Lp
.

By Lemma 7.1.2,

A ≤ ‖γ‖pL∞

∑
j

‖u− P (j) ;K(j)
δ ‖

p
Lp
≤ c ‖γ‖pL∞

‖Dp,lu‖pLp
. (7.3.8)

It follows from Lemmas 7.1.2 and 7.1.3 that

B ≤ c
∑

j

‖(Dp,lΓ )η2δ,xj
ϕ(j)(u− P (j))‖pLp

≤ c sup
j
‖η2δ,xj

Dp,lΓ‖pM(W l
p→Lp)

∑
j

‖ϕ(j)(u− P (j))‖pLp

≤ c1 sup
j
‖η2δ,xj

Dp,lΓ‖pM(W l
p→Lp)

‖Dp,lu‖pLp
. (7.3.9)

Using Lemmas 7.1.1–7.1.3, we deduce that

C ≤ c ‖γ‖pL∞

∑
j

‖ϕ(j)(u− P (j))‖p
W l

p

≤ c1‖γ‖pL∞

∑
j

|||u− P (j);K(j)
δ |||

p
W l

p
≤ c2‖γ‖pL∞

‖u‖p
W l

p

which together with (7.3.7)–(7.3.9) implies that

‖(Γ − T∗)u‖W l
p
≤ c

(
‖γ‖L∞ + sup

j
‖η2δ,xj

Dp,lΓ‖M(W l
p→Lp)

)
‖u‖W l

p
.

Lemma 7.1.9 enables one to replace Γ by γ on the right-hand side of the
last inequality. The required upper estimate for the essential norm is obtained.

(ii) The lower bound for the essential norm. Let T be a compact operator
in W l

p such that
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‖Dp,l(γu)−Dp,l(Tu)‖Lp
≤ ( ess ‖γ‖MW l

p
+ ε)‖u‖W l

p
.

Hence

‖uDp,lγ −Dp,lTu‖Lp
≤ ( ess ‖γ‖MW l

p
+ ε)‖u‖W l

p
+ ‖γDp,lu‖Lp

.

It follows from the inequality

‖Dp,lv1 −Dp,lv2‖Lp
≤ ‖Dp,l(v1 − v2)‖Lp

that the compactness of the set {Tu : u ∈ S} in the space W l
p, where S is the

unit ball in W l
p, implies the compactness of the set {Dp,lTu : u ∈ S} in Lp.

Let the collection {wk} form a finite ε-net in the last set. Then, for u ∈ S,

‖uηδ,xDp,lγ‖Lp
≤ ‖ηδ,x(Dp,lTu− wk)‖Lp

+ ‖ηδ,xwk‖Lp

+ ess ‖γ‖MW l
p

+ ε+ ‖γ‖L∞ .

Consequently, for any x ∈ R
n and for sufficiently small δ > 0,

‖uηδ,xDp,lγ‖Lp
≤ c ( ess ‖γ‖MW l

p
+ ε) .

(Here we have used Theorem 7.2.1.) This, together with Lemma 7.2.1 and
Theorem 7.3.1, implies the required lower bound for the norm ess ‖γ‖MW l

p
. ��

Theorem 7.3.4. If l ≥ 1, lp = n, and p > 1, then

ess ‖γ‖MW l
p
∼ ‖γ‖L∞ + lim sup

δ→0
sup

x∈Rn

‖ηδ,x∇kγ‖M(W l
p→W l−k

p )

+ lim sup
r→∞

‖ζrγ‖MW l
p
,

where k = 1, . . . , [l].

Proof. (i) Upper bound for the essential norm. We have

‖(Γ − T∗)u‖pW l
p

≤ c
(∥∥∇k

(
Γ
∑

j

ϕ(j)(u− P (j))
)∥∥p

W l−k
p

+ ‖(Γ − T∗)u‖pLp

)
. (7.3.10)

The second term on the right-hand side does not exceed

c ‖γ‖pL∞
‖u‖p

W l
p

(see estimate (7.3.8)). The first term is not greater than

c
∑

|α|+|β|=k

∥∥DαΓ
∑

j

Dβ [ϕ(j)(u− P (j))]
∥∥p

W l−k
p
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≤ c
k∑

|α|=0

sup
j
‖η2δ,xj

DαΓ‖p
M(W

l−k+|α|
p →W l−k

p )

∑
j

‖ϕ(j)(u− P (j))‖p
W l

p
. (7.3.11)

Since p(l− k) < n, we conclude, using Theorems 7.2.1 and 7.3.2, that the
expression on the right-hand side of (7.3.11) is dominated by

c
(
sup

j
‖η2δ,xj

∇kΓ‖M(W l
p→W l−k

p ) +
k−1∑
j=0

ess ‖∇jΓ‖(W l−k+j
p →W l−k

p )

)p

‖u‖p
W l

p
,

which by Lemma 7.2.2 does not exceed

c
(
sup

j
‖η2δ,xj

∇kΓ‖M(W l
p→W l−k

p ) +
k∑

i=1

ess ‖Γ‖MW l−i
p

)p

‖u‖p
W l

p
.

We obtain by interpolation that

ess ‖Γ‖MW l−i
p
≤ ‖Γ − T∗‖W l−i

p →W l−i
p
≤ c ‖Γ − T∗‖(l−i)/l

W l
p→W l

p
‖Γ − T∗‖i/l

Lp→Lp

≤ ε‖Γ − T∗‖W l
p→W l

p
+ c(ε)‖γ‖L∞ , (7.3.12)

where ε is an arbitrarily small positive number. Therefore, the right-hand side
of (7.3.10) does not exceed

c
(
sup

j
‖η2δ,xj

∇kΓ‖M(W l
p→W l−k

p ) + ε‖Γ − T∗‖W l
p→W l

p
+ c(ε)‖γ‖L∞

)p

‖u‖p
W l

p
.

Choosing ε sufficiently small and applying Lemma 7.1.9, we obtain from the
last inequality and from (7.3.10) that

‖(Γ − T∗)‖W l
p→W l

p
≤ c
(
sup

j
‖η2δ,xj

∇kΓ‖M(W l
p→W l−k

p ) + ‖γ‖L∞

)
(7.3.13)

which, together with (7.2.5) and Lemma 7.1.9, gives the required upper bound
for the essential norm.

(ii) The lower bound for the essential norm. By Lemma 7.2.1 and Theorem
7.3.1, it suffices to show that

‖ηδ,x∇kγ‖M(W l
p→W l−k

p ) ≤ c ( ess ‖γ‖MW l
p

+ ε) (7.3.14)

for all x ∈ R
n and small enough δ > 0.

Let T be a compact operator for which (7.3.2) holds. Then, for all u ∈W l
p,

‖∇k[(γ − T )u]‖W l−k
p
≤ ( ess ‖γ‖MW l

p
+ ε)‖u‖W l

p
.

In view of the inequality p(l − k) < n,

‖ηδ,x∇k[(γ − T )u]‖W l−k
p
≤ c ( ess ‖γ‖MW l

p
+ ε)‖u‖W l

p
.
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Let S be the unit ball in W l
p. The set

{v = DαTu, |α| = k : u ∈ S}

is compact in W l−k
p . Let {vν} be an ε-net in W l−k

p for the last set. Without
loss of generality we may assume that vν ∈ C∞

0 .
Since p(l − k) < n, we see by Lemma 7.1.7 that for small δ

sup
x∈Rn

‖ηδ,xvν‖W l−k
p

< ε

and hence
sup

x∈Rn

‖ηδ,x∇k(Tu)‖W l−k
p

< c ε .

Thus, for all u ∈ S,

‖uηδ,x∇kγ‖W l−k
p
≤ c
(
ess ‖γ‖MW l

p
+

∑
|α|+|β|=k,

|α|>0

‖ηδ,xD
αuDβγ‖W l−k

p
+ ε
)

≤c
(
ess‖γ‖MW l

p
+
∑

|α|+|β|=k
|α|>0

‖ηδ,xD
βγ‖

M(W
l−|α|
p →W l−k

p )
‖Dαu‖

W
l−|α|
p

+ε
)
. (7.3.15)

From Theorems 7.2.1 and 7.3.2, it follows that for small δ

‖ηδ,xD
βγ‖

M(W
l−|α|
p →W l−k

p )
≤ c ess ‖Dβγ‖

M(W
l−|α|
p →W l−k

p )
.

Making use of Theorem 7.3.2 and interpolating (see (7.3.12)), we obtain

ess ‖Dβγ‖
M(W

l−|α|
p →W l−k

p )
≤ c

|β|∑
j=0

ess ‖γ‖
MW

l−|α|−j
p

≤ ε‖γ − T∗‖W l
p→W l

p
+ c(ε)‖γ‖L∞ .

From this inequality, combined with (7.3.15) and the estimate

‖γ − T∗‖W l
p→W l

p
≤ c
(
sup

j
‖η2δ,xj

∇kγ‖M(W l
p→W l−k

p ) + ‖γ‖L∞ + ‖ζrγ‖MW l
p

)

established in the first part of the proof (see (7.3.13)), we get for u ∈ S

‖uηδ,x∇kγ‖W l−k
p
≤ c(ε) ess ‖γ‖MW l

p
+ ε sup

j
‖η2δ,xj

∇kγ‖M(W l
p→W l−k

p ) + ε .

Inequality (7.3.14) follows, which completes the proof of the theorem. ��
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7.3.3 Estimates for the Essential Norm Involving Capacity
(The Case lp ≤ n, p > 1)

For the theorem in this subsection we need the following interpolation
inequality.

Lemma 7.3.1. If lp ≤ n, p > 1, and 0 < σ < l, then

ess ‖γ‖MW σ
p
≤ c ess ‖γ‖σ/l

MW l
p
‖γ‖1−σ/l

L∞
. (7.3.16)

Proof. When proving any of Theorems 7.3.2–7.3.4, it was shown in passing
that for some r and δ we obtain from the definition of T∗ that

‖γ − T∗‖W l
p→W l

p
≤ c ess ‖γ‖MW l

p
+ ε (7.3.17)

(cf. Remark 7.2.2). Moreover,

‖γ − T∗‖Lp→Lp
≤ c ‖γ‖L∞ .

Hence, interpolating between W l
p and Lp, we get

ess ‖γ‖MW σ
p
≤ ‖γ − T∗‖W σ

p →W σ
p
≤ c ( ess ‖γ‖MW l

p
+ ε)σ/l‖γ‖1−σ/l

L∞
.

��

Theorem 7.3.5. Let lp ≤ n and p > 1. Then

ess ‖γ‖MW l
p
∼ ‖γ‖L∞ + lim

δ→0
sup

{e : d(e)≤δ}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p

+ lim
r→∞

sup
{e⊂Rn\Br : d(e)≤1}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
. (7.3.18)

Proof. For lp < n it suffices to duplicate the proof of Theorem 7.2.2, putting
m = l.

Inequalities (7.2.18) and (7.2.25), which are also valid for m = l ≤ n/p,
imply that

lim sup
r→∞

‖ζrγ‖MW l
p

∼ lim
r→∞

(
‖γ; Rn\Br‖L∞ + sup

{e⊂Rn\Br : d(e)≤1}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p

)
. (7.3.19)

Therefore, from Theorem 7.3.3 and Remark 7.2.2, we have (7.3.18) for
0 < l ≤ 1 and lp = n.
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Let lp = n and l > 1. It is shown in the proof of Theorem 7.3.3 that

‖ηδ2,x∇γ‖M(W l
p→W l−1

p ) ≤ c
(

sup
{e : d(e)≤2δ}

‖Dp,l−1(∇γ); e‖Lp

[Cp,l(e)]1/p
+
‖∇γ; e‖Lp

[Cp,1(e)]1/p

)
,

‖ζrγ‖MW l
p
≤c
(

sup
{e⊂Rn\Br/2 : d(e)≤1}

(‖Dp,l−1(∇γ); e‖Lp

[Cp,l(e)]1/p
+
‖∇γ; e‖Lp

[Cp,1(e)]1/p

)
+‖γ‖L∞

)
.

Hence, using the estimate for ess ‖γ‖MW l
p

and Theorem 7.3.4, we get

ess ‖γ‖MW l
p
≤ c
(
‖γ‖L∞ + lim

δ→0
sup

{e : d(e)≤δ}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p

+ lim
r→∞

sup
{e⊂Rn\Br : d(e)≤1}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
+ ess ‖γ‖MW 1

p

)
.

It remains to note that, by Lemma 7.3.1,

ess ‖γ‖MW 1
p
≤ c ess ‖γ‖1/l

MW l
p
‖γ‖(l−1)/l

L∞
.

Let us derive the lower bound for the essential norm. By Lemma 7.3.1 and
Theorem 7.3.1,

ess ‖γ‖MW l
p
≥ c ess ‖γ‖MW l−1

p

which, together with Lemma 7.2.2, gives the estimate

ess ‖γ‖MW l
p
≥ c ess ‖∇γ‖M(W l

p→W l−1
p ) .

Taking into account Theorem 7.2.3, we obtain that the right-hand side of this
inequality is not less than

c lim
δ→0

sup
{e : d(e)≤δ}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
.

It remains to use (7.3.19) and Theorem 7.2.2. The result follows. ��

7.3.4 Two-Sided Estimates for the Essential Norm in the Cases
lp > n, p > 1, and p = 1

Theorem 7.3.6. If lp > n and p > 1, then

ess ‖γ‖MW l
p
∼ ‖γ‖L∞ + lim sup

|x|→∞
‖γ,B1(x)‖W l

p
. (7.3.20)
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Proof. From Corollary 4.3.8 and Lemma 7.1.9 we obtain

lim sup
|x|→∞

‖γ;B1(x)‖W l
p
∼ lim sup

r→∞
‖ζrγ‖MW l

p
. (7.3.21)

Hence the required lower bound for the essential norm follows by Lemma 7.2.1
and Theorem 7.3.1.

Now we establish the upper bound. Let Γ and T∗ be the function and
operator specified in the second part of Theorem 4.2.1. With the function Γρ,
which stands for a mollification of Γ with radius ρ, we associate the operator
T

(ρ)
∗ by the same rule. Using Corollary 4.3.8 for sufficiently small ρ, we find

that

‖Γ − Γρ‖MW l
p
≤ c ‖Γ − Γρ‖W l

p
< ε . (7.3.22)

Next we note that the proof of inequality (7.3.13) holds in the case lp > n.
Replacing the numbers l and k by an integer s, s > np, in (7.3.13) and using
Corollary 4.3.8, we arrive at

‖Γρ − T
(ρ)
∗ ‖W s

p→W s
p
≤
(
sup

j
‖η2δ,xj

∇sΓρ‖Lp
+ ‖γ‖L∞

)
.

This implies for small δ that

‖Γρ − T
(ρ)
∗ ‖W s

p→W s
p
≤ c ‖γ‖L∞ . (7.3.23)

The same inequality obviously holds for s = 0. Interpolating between Lp and
W s

p , we obtain (7.3.23) for s = l which, together with (7.3.22), gives

‖Γ − T
(ρ)
∗ ‖W l

p→W l
p
≤ c ‖γ‖L∞ + ε .

The result follows from the last inequality and (7.2.5).
Further, we note that one may replace the operator T (ρ)

∗ by T∗ in the last
inequality. In fact, it follows from Lemmas 7.1.2, 7.1.3 and Corollary 4.3.1
that

∥∥u−
∑

j

ϕ(j)P (j)
∥∥p

W l
p
≤ c

∑
j

‖ϕ(j)(u− P (j))‖p
W l

p
≤ c1‖u‖pW l

p
.

Therefore,

‖(T∗ − T (ρ)
∗ )u‖W l

p
≤ ‖Γ − Γρ‖MW l

p

∥∥∑
j

ϕ(j)P (j)
∥∥

W l
p
≤ c ‖Γ − Γρ‖MW l

p
‖u‖W l

p

and it remains to use inequality (7.3.22). ��
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Theorem 7.3.7. If l < n, then

ess ‖γ‖MW l
1
∼ lim sup

δ→0
δl−n sup

x∈Rn

|||γ;Bδ(x)|||W l
1

+ lim sup
|x|→∞

sup
r∈(0,1)

rl−n|||γ;Br(x)|||W l
1
. (7.3.24)

The proof runs in the same way as that of Theorem 7.2.6, where one should
put m = l and use Theorem 7.3.2 instead of Theorem 7.2.1.

Remark 7.3.1. By Lemma 7.1.1, the equivalence relation (7.3.24) can be
rewritten as

ess ‖γ‖MW l
1
∼ ‖γ‖L∞ + lim sup

δ→0
δl−n sup

x∈Rn

‖D1,lγ;Bδ(x)‖L1

+ lim sup
|x|→∞

sup
r∈(0,1)

rl−n‖D1,lγ;Br(x)‖L1 .

Theorem 7.3.8. If l ≥ n, then

ess ‖γ‖MW l
1
∼ ‖γ‖L∞ + lim sup

|x|→∞
‖γ;B1(x)‖W l

1
. (7.3.25)

Proof. The lower bound for the essential norm follows directly from Lemma
7.2.2 and Theorems 5.4.1 and 7.3.1.

Next we obtain the upper bound. Let k = [l] + 1− n. We have

‖(Γ − T∗)u‖W l
1
≤ c

(∥∥∇k

(∑
j

ϕ(j)(u− P (j))
)∥∥

W l−k
1

+ ‖(Γ − T∗)u‖L1

)
.

The second term on the right-hand side does not exceed c ‖γ‖L∞‖u‖W l
1

(see
(7.3.8)). The first one is not greater than

c
∑

|α|+|β|=k

∥∥DαΓ
∑

j

Dβ [ϕ(j)(u− P (j))]
∥∥

W l−k
1

≤ c

k∑
|α|=0

sup
j
‖η2δ,xj

DαΓ‖
M(W

l−k+|α|
1 →W l−k

1 )

∑
j

‖ϕ(j)(u− P (j))‖W l
1
.

With the help of Lemmas 7.1.1–7.1.3 we obtain that the last norm is majorized
by c ‖u‖W l

1
.

Now we show that

lim sup
δ→0

sup
x∈Rn

‖ηδ,xΓ‖MW l−k
1
≤ c ‖Γ‖L∞ . (7.3.26)

Since l− k < n, it follows by Theorems 7.3.2 and 7.3.3 that the left-hand side
of (7.3.26) does not exceed
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c ess ‖Γ‖MW l−k
1
∼ lim sup

δ→0
δl−k−n sup

x∈Rn

|||Γ ;Bδ(x)|||W l−k
1

≤ lim sup
δ→0

δl−n sup
x∈Rn

|||Γ ;Bδ(x)|||W l
1

= ‖Γ‖L∞ .

Thus, (7.3.26) follows.
To complete the proof, it suffices to establish the equality

lim
δ→0

sup
x∈Rn

‖ηδ,x∇jΓ‖M(W l−k+j
1 →W l−k

1 ) = 0 , (7.3.27)

where j = 1, . . . , k. By Theorem 7.2.1 the left-hand side is equivalent to the
essential norm of ∇jΓ in M(W l−k+j

1 →W l−k
1 ). Since

∇jΓ ∈W l−j
1 , supp∇jΓ ⊂ B2r,

and l − k + j > n, we have by Theorem 7.2.9, part (ii), that

∇jΓ ∈ M̊(W l−k+j
1 →W l−k

1 ).

The equality (7.3.27) is proved, and so is the theorem. ��

Remark 7.3.2. In addition to Lemma 7.3.1 we note that by Theorems 7.3.7,
7.3.8 and estimate (7.1.7), the following interpolation inequality is valid:

ess ‖γ‖MW σ
1
≤ c ( ess ‖γ‖MW l

1
)σ/l‖γ‖1−σ/l

L∞
, 0 < σ < l .

7.3.5 Essential Norm in M̊W l
p

According to Theorem 7.2.11, the space of compact multipliers M̊(Wm
p →

W l
p), m > l, coincides with the completion of C∞

0 with respect to the norm
of the space M(Wm

p → W l
p). Similarly, M̊W l

p denotes the completion of C∞
0

with respect to the norm of the space MW l
p. The following theorem shows

that the essential norm in M̊W l
p is equivalent to the norm in L∞.

Theorem 7.3.9. If γ ∈ M̊W l
p, l ≥ 0, and p ≥ 1, then

‖γ‖L∞ ≤ ess ‖γ‖MW l
p
≤ c ‖γ‖L∞ . (7.3.28)

Proof. The left-hand estimate was obtained in Theorem 7.3.1. Let us establish
the upper bound for the essential norm. Without loss of generality, we may
assume that γ ∈ C∞

0 .
Let p > 1 and lp ≥ n. Since

Cp,l(e) ≥ c (mesne)ν ,
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where ν ∈ (0, 1) and d(e) ≤ δ (see Proposition 3.1.2), we have

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
≤ c (mesne)(1−ν)/p

and

lim
δ→0

sup
{e : d(e)≤δ}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
= 0 .

For any compact set e ⊂ R
n\Br with d(e) ≤ 1,

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
≤ c r−{l}−n/p(mesne)(1−ν)/p .

Therefore,

lim
r→∞

sup
{e⊂Rn\Br : d(e)≤1}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
= 0 .

Now the right-hand inequality in (7.3.28) follows from Theorem 7.3.5.
For lp > n, p > 1 and for l ≥ n, p = 1, the result is a consequence of the

equality
lim

|x|→∞
‖γ;B1(x)‖W l

p
= 0

and Theorems 7.3.6 and 7.3.8.
Finally, for l < n and p = 1, the desired estimate for the essential norm

follows immediately from Remark 7.3.1, since for γ ∈ C∞
0

lim
δ→0

δl−n sup
x∈Rn

‖D1,lγ;Bδ(x)‖L1 = 0

and
lim

|x|→∞
sup

r∈(0,1)

rl−n‖D1,lγ;Br(x)‖L1 = 0 .

��

We can describe the space M̊W l
p without approximation by functions in

C∞
0 . The following assertion, supplementing Theorem 7.2.9, holds.

Theorem 7.3.10. A function γ belongs to M̊W l
p if and only if γ is a contin-

uous function vanishing at infinity and satisfying one of the conditions:
(i) If lp ≤ n and p > 1, then

sup
{e : d(e)≤δ}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
= o(1) as δ → 0 (7.3.29)

and

sup
{e⊂Rn\Br : d(e)≤1}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
= o(1) as r →∞ . (7.3.30)
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(ii) If l ≤ n, then

sup
x∈Rn

δl−n‖D1,lγ;Bδ(x)‖L1 = o(1) as δ → 0 (7.3.31)

and
sup

r∈(0,1)

rl−n‖D1,lγ;Br(x)‖L1 = o(1) as |x| → ∞ . (7.3.32)

(iii) If lp > n and p > 1, or l ≥ n and p = 1, then

‖Dp,lγ;B1(x)‖Lp
= o(1) as |x| → ∞ . (7.3.33)

Proof. Necessity. Let γ ∈ M̊W l
p and let {γj} be a sequence of functions in C∞

0

approximating γ in MW l
p. It follows from the expressions for equivalent norms

in MW l
p derived in Chap. 4 that the left-hand sides of (7.3.29)–(7.3.33), with

γ replaced by γ−γj , are arbitrarily small for sufficiently large j. On the other
hand, it has been shown in the proof of Theorem 7.3.9 that (7.3.29)–(7.3.33)
hold for γj ∈ C∞

0 . Consequently, they hold for γ as well.
Sufficiency. Let a function γ ∈ C ∩ MW l

p satisfy one of the conditions
(7.3.29)–(7.3.33) and let γ(x) → 0 as |x| → ∞. For lp > n, p > 1 and for
p = 1 the possibility of approximation of γ by mollifications of functions
ζrγ, r →∞, immediately follows from the expressions for the norm in MW l

p

derived in Chap. 4. Consider the case lp ≤ n, p > 1. Then

‖ζrγ‖MW l
p
→ 0 as r →∞

because of (7.3.19). Therefore, it suffices to approximate the multiplier γ with
support in Br/2 for a fixed r by functions from C∞

0 .
Let γρ be a mollification of γ with nonnegative kernel K and radius ρ. We

introduce the operators

T∗ = γ
∑

j

ϕ(j)P (j) , T
(ρ)
∗ = γρ

∑
j

ϕ(j)P (j).

Here we retain the same notation as in the definition of the operator T∗ in
the proof of Theorem 7.2.1. Obviously,

‖γ − γρ‖MW l
p
≤ ‖(γ − γρ)− (T∗ − T

(ρ)
∗ )‖W l

p→W l
p

+ ‖T∗ − T
(ρ)
∗ ‖W l

p→W l
p
.

For lp < n as well as for lp = n, 0 < l < 1, we have

‖(γ − γρ)− (T∗ − T
(ρ)
∗ )‖W l

p→W l
p

≤ c
(

sup
{e : d(e)≤δ}

‖Dp,l(γ − γρ); e‖Lp

[Cp,l(e)]1/p
+ ‖γ − γρ‖L∞

)
(7.3.34)

(see the proof of Theorem 7.2.2, where the restriction l < m is insignificant,
and the proof of Theorem 7.3.3). The right-hand side of (7.3.34) does not
exceed
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c
(

sup
{e : d(e)≤δ}

(‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p
+
‖Dp,lγρ; e‖Lp

[Cp,l(e)]1/p

)
+ ‖γ − γρ‖L∞

)
.

Replacing here c by 2c, we can omit the second term because of the estimate

‖Dp,lγρ; e‖Lp
≤
∫
ρ−nK(ξ/ρ)‖Dp,lγ; eξ‖Lp

dξ,

where eξ = {x : x+ ξ ∈ e}. Further, we note that

‖T∗ − T
(ρ)
∗ ‖W l

p→W l
p
≤ c(δ, r)‖γ − γρ;Br‖MW l

p
.

Consequently,

lim sup
ρ→0

‖γ − γρ‖MW l
p
≤ 2c sup

{e : d(e)≤δ}

‖Dp,lγ; e‖Lp

[Cp,l(e)]1/p

and it remains to make use of (7.3.29).
For lp = n, l > 1, the proof follows the same lines provided that (7.3.34)

is replaced by the estimate

‖(γ − γρ) − (T∗ − T
(ρ)
∗ )‖W l

p→W l
p
≤ c
(

sup
{e : d(e)≤δ}

‖Dp,l(γ − γρ); e‖Lp

[Cp,l(e)]1/p

+ sup
{e : d(e)≤δ}

‖∇(γ − γρ); e‖Lp

[Cp,1(e)]1/p
+ ‖γ − γρ‖L∞

)

(see the proof of Theorem 7.3.5). ��
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Traces and Extensions of Multipliers

8.1 Introduction

Let R
n
+ denote the upper half-space {z = (x, y) : x ∈ R

n−1, y > 0}. We
introduce the weighted Sobolev space W s,α

p (Rn
+) with the norm

‖(min{1, y})α∇sU ; Rn
+‖Lp

+ ‖(min{1, y})αU ; Rn
+‖Lp

, (8.1.1)

where s is nonnegative integer. We always assume that −1 < αp < p − 1.
Obviously, the usual Sobolev space W s

p (Rn
+) is included here as W s,0

p (Rn
+).

It is well known that the fractional Sobolev space W l
p(R

n−1) is the space of
traces on R

n−1 of functions in W s,α
p (Rn

+), where s = [l]+1, α = 1−{l}−1/p,
and p ∈ (1,∞) (see [Usp]). In Sects. 8.2–8.5 we show that a similar trace
characterization holds for spaces of multipliers acting in a pair of fractional
Sobolev spaces. To be precise, we prove that, for all noninteger m and l with
m ≥ l > 0, the multiplier space M(Wm

p (Rn−1) → W l
p(R

n−1)) is the space of
traces on R

n−1 of functions in M(W t,β
p (Rn

+) → W s,α
p (Rn

+)), where s and α
are as above and β = 1− {m} − 1/p, t = [m] + 1. Sect. 8.6 concerns traces of
multipliers on the smooth boundary of a domain. The remaining Sects. 8.7–8.9
are devoted to three trace and extension theorems for multipliers preserving
a certain Sobolev-type space.

8.2 Multipliers in Pairs of Weighted Sobolev Spaces
in R

n
+

We introduce the notion of (p, s, α)-capacity of a compact set e ⊂ R
n
+:

Cp,s,α(e) = inf{‖U ; Rn
+‖pW s,α

p
: U ∈ C∞

0 (Rn
+), U ≥ 1 on e}.

The following result is known (see [Maz15], Sects. 8.1, 8.2).

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 285
Grundlehren der mathematischen Wissenschaften 337,
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Proposition 8.2.1. Let k be a nonnegative integer, −1 < βp < p− 1, and let
1 < p <∞. Then Γ ∈M(W k,β

p (Rn
+)→W 0,α

p (Rn
+)) if and only if

sup
e⊂R

n
+

d(e)≤1

‖(min{1, y})αΓ ; e‖Lp

(Cp,k,β(e))1/p
<∞,

where d(e) is the diameter of e. The equivalence relation

‖Γ‖M(W k,β
p →W 0,α

p ) ∼ sup
e⊂R

n
+

d(e)≤1

‖(min{1, y})αΓ ; e‖Lp

(Cp,k,β(e))1/p
(8.2.1)

holds.

We shall use some general properties of multipliers in weighted Sobolev
spaces. We start with the inequality

‖Γ‖M(W t−j,β
p →W s−j,α

p )

≤ c ‖Γ‖(s−j)/s

M(W t,β
p →W s,α

p )
‖Γ‖j/s

M(W t−s,β
p →W 0,α

p )
, (8.2.2)

where 0 ≤ j ≤ s, −1 < αp < p− 1, and −1 < βp < p− 1, which follows from
the interpolation property of weighted Sobolev spaces (see [Tr4], Sect. 3.4.2).

In this section and in Sects. 8.3, 8.4 we omit R
n+1
+ in notations of spaces,

norms, and integrals, when it causes no ambiguity. The notations B(d)
r (x) =

{z ∈ R
d : |z − x| < r} and Br(x) = B(n)

r (x) will be adopted.
The next assertion contains inequalities between multipliers and their mol-

lifiers in x.

Lemma 8.2.1. Let Γρ denote a mollifier of a function Γ defined by

Γρ(x, y) = ρ−n+1

∫

Rn−1
K(ρ−1(x− ξ))Γ (ξ, y)dξ,

where K ∈ C∞
0 (B(n−1)

1 ), K ≥ 0, and ‖K; Rn−1‖L1 = 1. Then

‖Γρ‖M(W t,β
p →W s,α

p ) ≤ ‖Γ‖M(W t,β
p →W s,α

p )

≤ lim inf
ρ→0

‖Γρ‖M(W t,β
p →W s,α

p ). (8.2.3)

Proof. Let U ∈ C∞
0 . By Minkowski’s inequality

(∫

R
n
+

(min{1, y})pα
∣∣∇j,z

∫

Rn−1
ρ−nK(ξ/ρ)Γ (x− ξ, y)U(x, y)dξ

∣∣pdz
)1/p

≤
∫

Rn−1
ρ−nK(ξ/ρ)

(∫

R
n
+

(min{1, y})pα|∇j,z

(
Γ (x, y)U(x+ ξ, y)

)
|pdz

)1/p

dξ,
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where either j = 0 or j = s. Therefore,

‖Γρu‖W s,α
p
≤ ‖Γ‖M(W t,β

p →W s,α
p )

×
∫

Rn−1
ρ−nK(ξ/ρ)

{(∫

R
n
+

(min{1, y})pβ |∇t,zU(x+ ξ, y)|pdz
)1/p

+
(∫

R
n
+

(min{1, y})pβ |U(x+ ξ, y)|pdz
)1/p}

dξ

≤ ‖Γ‖M(W t,β
p →W s,α

p )‖U‖W t,β
p
.

This gives the left inequality (8.2.3). The right inequality (8.2.3) follows from

‖Γu‖W s,α
p

= lim inf
ρ→0

‖ΓρU‖W s,α
p
≤ lim inf

ρ→0
‖Γρ‖M(W t,β

p →W s,α
p )‖U‖W t,β

p
.

The proof is complete. ��

Lemma 8.2.2. Let Γ ∈ Lp,loc, p ∈ (1,∞), −1 < βp < p− 1, and let U be an
arbitrary function in C∞

0 (Rn
+). The best constant in the inequality

‖(min{1, y})αΓ∇sU‖Lp
+ ‖(min{1, y})αΓU‖Lp

≤ C ‖U‖W t,β
p

(8.2.4)

is equivalent to the norm ‖Γ‖M(W t−s,β
p →W 0,α

p ).

Proof. The estimate
C ≤ c ‖Γ‖M(W t−s,β

p →W 0,α
p )

is obvious. To derive the converse estimate, we introduce a function x → σ
which is positive on [0,∞) and equal to x for x > 1. For any U ∈ C∞

0 (Rn
+)

we have
U = (−∆)s

(
σ(−∆)

)−[l]−1
u+ T (−∆)u,

where T is a function in C∞
0 ([0,∞)). Since

(−∆)s = (−1)s
∑
|τ |=s

s!
τ !
D2τ ,

it follows from (8.2.4) and the theorem on the boundedness of convolution
operators in weighted Lp spaces (see [And]) that

∫

R
n
+

(min{1, y})pα|Γ (z)U(z)|pdz

≤ c C
(
‖∇s(σ(−∆))−sU‖p

W t,β
p

+ ‖TU‖p
W t,β

p

)
≤ c C‖U‖p

W t−s,β
p

.

The proof is complete. ��
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8.3 Characterization of M(W t,β
p → W s,α

p )

Here we derive necessary and sufficient conditions for a function to belong to
the space M(W t,β

p →W s,α
p ) for p ∈ (1,∞) with α and β satisfying

−1 < αp < p− 1, −1 < βp < p− 1, t ≥ s. (8.3.1)

These inequalities will be assumed throughout. We start with an assertion on
derivatives of multipliers.

Lemma 8.3.1. Suppose that

Γ ∈M(W t,β
p →W s,α

p ) ∩M(W t−s,β
p →W 0,α

p ), p ∈ (1,∞).

Then DσΓ ∈ M(W t,β
p → W

s−|σ|,α
p ) for any multi-index σ of order |σ| ≤ s,

and

‖DσΓ‖
M(W t,β

p →W
s−|σ|,α
p )

≤ ε ‖Γ‖M(W t−s,β
p →W 0,α

p ) + c(ε) ‖Γ‖M(W t,β
p →W s,α

p ), (8.3.2)

where ε is an arbitrary positive number.

Proof. Let U ∈W s,α
p and let ϕ be an arbitrary function in C∞

0 . Applying the
Leibniz formula

Dσ(ϕU) =
∑

{τ :σ≥τ≥0}

σ!
τ !(σ − τ)!

DτϕDσ−τU,

we obtain
∫
ϕU(−D)σΓdz =

∫
ΓDσ(ϕU)dz =

∑
{τ :σ≥τ≥0}

σ!
τ !(σ − τ)!

ΓDτϕDσ−τUdz

=
∫
ϕ

∑
{β:σ≥τ≥0}

σ!
τ !(σ − τ)!

(−D)τ (ΓDσ−τU)dz.

Therefore,

UDσΓ =
∑

{τ :σ≥τ≥0}

σ!
τ !(σ − τ)!

(D)τ (Γ (−D)σ−τU),

which implies the estimate

‖UDσΓ‖
W

s−|σ|,α
p

≤ c
∑

{τ :σ≥τ≥0}
‖ΓDσ−τU‖

W
s−|σ|+|τ|,α
p

.
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Hence, it suffices to prove (8.3.2) for |σ| = 1. We have

‖U∇Γ‖W s−1,α
p

≤ ‖UΓ‖W s,α
p

+ ‖Γ∇U‖W s−1,α
p

≤
(
‖Γ‖M(W t,β

p →W s,α
p ) + ‖Γ‖M(W t−1,β

p →W s−1,α
p )

)
‖U‖W t,β

p
.

Estimating the norm ‖Γ‖M(W t−1,β
p →W s−1,α

p ) by (8.2.2), we arrive at (8.3.2). ��

Now we pass to two-sided estimates of the norms in M(W t,β
p → W s,α

p ),
p ∈ (1,∞), given in terms of the spaces M(W k,β

p → W 0,α
p ). We start with

lower estimates.

Lemma 8.3.2. Let Γ ∈M(W t,β
p →W s,α

p ). Then

‖∇sΓ‖M(W t,β
p →W 0,α

p ) + ‖Γ‖M(W t−s,β
p →W 0,α

p ) ≤ c ‖Γ‖M(W t,β
p →W s,α

p ). (8.3.3)

Proof. Suppose first that Γ ∈M(W t−s,β
p →W 0,α

p ). We have

‖Γ∇sU‖W 0,α
p
≤ ‖Γ‖M(W t,β

p →W s,α
p )‖U‖W t,β

p
+ c

∑
|σ|+|τ|=s,

τ �=0

‖DσUDτΓ‖W 0,α
p

≤
(
‖Γ‖M(W t,β

p →W s,α
p ) + c

s∑
j=1

‖∇jΓ‖M(W t−s+j
p →W 0,α

p )

)
‖U‖W t,β

p
. (8.3.4)

By Lemma 8.3.1,
‖∇jΓ‖M(W t−s+j,β

p →W 0,α
p )

≤ ε ‖Γ‖M(W t−s,β
p →W 0,α

p ) + c(ε) ‖Γ‖M(W t−s+j,β
p →W j,α

p ). (8.3.5)

Estimating the last norm by (8.2.2), we obtain

‖∇jΓ‖M(W t−s+j,β
p →W 0,α

p )

≤ ε ‖Γ‖M(W t−s,β
p →W 0,α

p ) + c(ε) ‖Γ‖M(W t,β
p →W s,α

p ).

Substitution of this inequality into (8.3.4) gives

‖Γ∇sU‖W 0,α
p
≤
(
ε ‖Γ‖M(W t−s,β

p →W 0,α
p )

+ c(ε) ‖Γ‖M(W t,β
p →W s,α

p )

)
‖U‖W t,β

p
. (8.3.6)

Also,
‖ΓU‖W 0,α

p
≤ ‖Γ‖M(W t,β

p →W s,α
p )‖U‖W t,β

p
. (8.3.7)

Adding the last two estimates and applying Lemma 8.2.2, we arrive at

‖Γ‖M(W t−s,β
p →W 0,α

p ) ≤ ε ‖Γ‖M(W t−s,β
p →W 0,α

p ) + c(ε) ‖Γ‖M(W t,β
p →W s,α

p ).



290 8 Traces and Extensions of Multipliers

Hence,
‖Γ‖M(W t−s,β

p →W 0,α
p ) ≤ c ‖Γ‖M(W t,β

p →W s,α
p ). (8.3.8)

Now we remove the assumption Γ ∈ M(W t−s,β
p → W 0,α

p ). Since Γ ∈
M(W t,β

p →W s,α
p ), it follows that

‖Γη‖W s,α
p
≤ c ‖η‖W t,β

p
,

where η ∈ C∞
0 (B(n)

2 (z)), η = 1 on B(n)
1 (z), and z is an arbitrary point in R

n
+.

Hence Γ ∈W s,α
p,unif(R

n
+), which implies that for any (n−1)-dimensional multi-

index τ the derivative Dτ
xΓρ belongs to W s,α

p,unif(R
n
+). Therefore, Γρ ∈ L∞(Rn

+)
which, in its turn, guarantees that Γρ ∈ M(W t−s,β

p → W 0,α
p ). Thus, we may

put Γρ into (8.3.8) to obtain

‖Γρ‖M(W t−s,β
p →W 0,α

p ) ≤ c ‖Γρ‖M(W t,β
p →W s,α

p ).

Letting ρ → 0 and using Lemma 8.2.1, we arrive at (8.3.8) for all Γ ∈
M(W t,β

p →W s,α
p ).

To estimate the first term on the right-hand side of (8.3.3), we combine
(8.3.8) with (8.3.5) for j = s. ��

The estimate opposite to (8.3.3) is contained in the following lemma.

Lemma 8.3.3. Let Γ ∈ M(W t−s,β
p → W 0,α

p ) and let ∇sΓ ∈ M(W t,β
p →

W 0,α
p ). Then Γ ∈M(W t,β

p →W s,α
p ) and the estimate

‖Γ‖M(W t,β
p →W s,α

p ) ≤ c
(
‖∇sΓ‖M(W t,β

p →W 0,α
p ) + ‖Γ‖M(W t−s,β

p →W 0,α
p )

)
(8.3.9)

holds.

Proof. By Lemma 8.3.2 and (8.2.2) we have

‖∇jΓ‖M(W t−s+j,β
p →W 0,α

p ) ≤ c ‖Γ‖M(W t−s+j,β
p →W j,α

p )

≤ c ‖Γ‖j/s

M(W t,β
p →W s,α

p )
‖Γ‖1−j/s

M(W t−s,β
p →W 0,α

p )
, (8.3.10)

where j = 1, . . . , s. For any U ∈ C∞
0 (Rn

+),

‖(min{1, y})α∇s(ΓU)‖Lp
≤ c

s∑
j=0

‖(min{1, y})α|∇jΓ | |∇s−jU | ‖Lp

≤ c
(
‖∇sΓ‖M(W t,β

p →W 0,α
p ) + ‖Γ‖M(W t−s,β

p →W 0,α
p )

+
s−1∑
j=1

‖∇jΓ‖M(W t−s+j,β
p →W 0,α

p )

)
‖U‖W t,β

p
.
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This and (8.3.10) imply that

‖(min{1, y})α∇s(ΓU)‖Lp

≤ c
(
‖∇sΓ‖M(W t,β

p →W 0,α
p ) + ‖Γ‖M(W t−s,β

p →W 0,α
p )

)
‖U‖W t,β

p
.

It remains to note that

‖(min{1, y})αΓU‖Lp
≤ ‖Γ‖M(W t−s,β

p →W 0,α
p )‖U‖W t−s,β

p
.

The proof is complete. ��

Using Lemmas 8.3.2 and 8.3.3, we arrive at the following description of
the space M(W t,β

p (Rn
+)→W s,α

p (Rn
+)).

Theorem 8.3.1. A function Γ belongs to the space M(W t,β
p →W s,α

p ) if and
only if Γ ∈ W s,α

p,loc, Γ ∈ M(W t−s,β
p → W 0,α

p ), and ∇sΓ ∈ M(W t,β
p → W 0,α

p ).
Moreover,

‖Γ‖M(W t,β
p →W s,α

p ) ∼ ‖∇sΓ‖M(W t,β
p →W 0,α

p ) + ‖Γ‖M(W t−s,β
p →W 0,α

p ).

The equivalence relation (8.2.1) enables us to reformulate Theorem 8.3.1
as follows.

Theorem 8.3.2. A function Γ belongs to the space M(W t,β
p →W s,α

p ) if and
only if Γ ∈W s,α

p,loc, and, for any compact set e ⊂ R
n
+,

‖(min{1, y})α∇sΓ ; e‖pLp
≤ c Cp,t,β(e)

and
‖(min{1, y})αΓ ; e‖pLp

≤ c Cp,t−s,β(e).

Moreover,
‖Γ‖M(W t,β

p →W s,α
p )

∼ sup
e⊂R

n
+

d(e)≤1

(‖(min{1, y})α∇sΓ ; e‖Lp

(Cp,t,β(e))1/p
+
‖(min{1, y})αΓ ; e‖Lp

(Cp,t−s,β(e))1/p

)
, (8.3.11)

where d(e) is the diameter of e.

We formulate the important particular case of Theorem 8.3.2 when t = s.

Corollary 8.3.1. A function Γ belongs to the space MW s,α
p if and only if

Γ ∈W s,α
p,loc and, for any compact set e ⊂ R

n
+,

‖(min{1, y})α∇sΓ ; e‖pLp
≤ c Cp,s,α(e).

Moreover,

‖Γ‖MW s,α
p
∼ sup

e⊂R
n
+

d(e)≤1

‖(min{1, y})α∇sΓ ; e‖Lp

(Cp,s,α(e))1/p
+ ‖Γ‖L∞ . (8.3.12)
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8.4 Auxiliary Estimates for an Extension Operator

8.4.1 Pointwise Estimates for Tγ and ∇Tγ

For functions γ ∈ L1,unif(Rn−1), we introduce the operator T by

(Tγ)(x, y) = y1−n

∫

Rn−1
ζ
(x− ξ

y

)
γ(ξ)dξ, (x, y) ∈ R

n
+, (8.4.1)

where ζ is a continuously differentiable function defined on R
n
+. We assume

that
(|z|+ 1)|∇ζ(z)|+ |ζ(z)| ≤ C (|z|+ 1)−n (8.4.2)

and that ∫

Rn−1
ζ(z)dz = 1. (8.4.3)

Lemma 8.4.1. Let γ ∈ M(Wm−l
p (Rn−1) → Lp(Rn−1)), where m ≥ l and

1 < p <∞. Then

|Tγ(z)|+ y|∇(Tγ(z))| ≤ c (1 + yl−m)‖γ; Rn−1‖M(W m−l
p →Lp).

Proof. By (8.4.2),
|Tγ(z)|+ y|∇(Tγ(z))|

≤ c y1−n
(∫

B(n−1)
y (x)

|γ(ξ)|dξ + yn

∫

Rn−1\B(n−1)
y (x)

|γ(ξ)|dξ
|ξ − x|n

)
. (8.4.4)

By Hölder’s inequality,
∫

B(n−1)
y (x)

|γ(ξ)|dξ ≤ cy(n−1)(p−1)/p‖γ;B(n−1)
y (x)‖Lp

. (8.4.5)

Let y ∈ (0, 1). The right-hand side in (8.4.5) does not exceed

c y−m+l+n−1 sup
r∈(0,1)
x∈Rn−1

(1 + rm−l−n−1
p ) ‖γ;B(n−1)

r (x)‖Lp
.

This, being combined with (8.4.5) and (4.3.15), implies that
∫

B(n−1)
y (x)

|γ(ξ)|dξ ≤ c y−m+l+n−1‖γ; Rn−1‖M(W m−l
p →Lp) (8.4.6)

for y < 1.
Suppose that y > 1. By (4.3.12),

‖γ; Rn−1‖M(W m−l
p →Lp) ≥ c sup

y>1

‖γ;B(n−1)
y ‖Lp(

Cp,m−l(B(n−1)
y )

)1/p

≥ c sup
y>1

y(1−n)/p‖γ;B(n−1)
y ‖Lp

, (8.4.7)
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because
Cp,m−l(B(n−1)

y (x)) ∼ yn−1

for y > 1. Combining (8.4.7) with (8.4.5), we have

y1−n

∫

B(n−1)
y (x)

|γ(ξ)|dξ ≤ c y−(n−1)/p‖γ;B(n−1)
y ‖Lp

≤ c ‖γ; Rn−1‖M(W m−l
p →Lp). (8.4.8)

Thus, (8.4.6) and (8.4.8) give

y1−n

∫

B(n−1)
y (x)

|γ(ξ)|dξ ≤ c (1 + yl−m)‖γ; Rn−1‖M(W m−l
p →Lp) (8.4.9)

for any y > 0.
Now we estimate the second integral on the right-hand side of (8.4.4).

Clearly,
∫

Rn−1\B(n−1)
y (x)

|γ(ξ)|dξ
|ξ − x|n ≤ n

∫ ∞

y

dρ

ρn+1

∫

B(n−1)
ρ (x)

|γ(ξ)|dξ. (8.4.10)

By Hölder’s inequality the right-hand side of (8.4.10) has the majorant

c

∫ ∞

y

ρ−2−n−1
p ‖γ;B(n−1)

ρ (x)‖Lp
dρ. (8.4.11)

Let y > 1. Then by (8.4.7), the function (8.4.11) does not exceed

c y−1‖γ; Rn−1‖M(W m−l
p →Lp).

Suppose that y < 1. Then
∫ 1

y

ρ−2−n−1
p ‖γ;B(n−1)

ρ (x)‖Lp
dρ

≤ cy−m+l−1 sup
r∈(0,1)
x∈Rn−1

(1 + rm−1−n−1
p ) ‖γ;B(n−1)

r (x)‖Lp
(8.4.12)

which is dominated by

c y−m+l−1‖γ; Rn−1‖M(W m−l
p →Lp)

owing to (4.3.15). Furthermore, (8.4.7) implies that
∫ ∞

1

ρ−2−n−1
p ‖γ;B(n−1)

ρ (x)‖Lp
dρ ≤ c ‖γ; Rn−1‖M(W m−l

p →Lp).
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Hence, for y < 1
∫ ∞

1

ρ−2−n−1
p ‖γ;Bn−1

ρ (x)‖Lp
dρ ≤ c (1 + y−m+l−1) ‖γ; Rn−1‖M(W m−l

p →Lp).

This, in combination with the case y > 1, implies that the integral (8.4.11)
does not exceed

cy−1(1 + yl−m)‖γ; Rn−1‖M(W m−l
p →Lp)

for all y > 0. Thus, the result follows from (8.4.9), (8.4.10), and (8.4.4). ��

8.4.2 Weighted Lp-Estimates for Tγ and ∇Tγ

Lemma 8.4.2. Let the extension operator T be defined by (8.4.1). Suppose
that γ ∈ M(Wm−l

p (Rn−1) → Lp(Rn−1)), where l ∈ (0, 1), [m] ≥ 1, and
1 < p <∞. Then, for k = 1, . . . , [m],

(∫ 1

0

yp(k−l)−1
(
|Tγ(z)|+ y|∇(Tγ)(z)|

)p
dy
)1/p

≤ c ‖γ; Rn−1‖
k−l
m−l

M(W m−l
p →Lp)

[(Mγ)(x)]
m−k
m−l , (8.4.13)

where M is the Hardy–Littlewood maximal operator in R
n−1.

Proof. Let δ be a number in (0,1] to be chosen later. We set
∫ 1

0

yp(k−l)−1
(
|Tγ|+ y|∇(Tγ)(z)|

)p
dy =

∫ δ

0

. . . dy +
∫ 1

δ

. . . dy.

By (8.4.4),
∫ δ

0

. . . dy ≤ c

∫ δ

0

yp(k+1−l−n)−1
(∫

B(n−1)
y (x)

|γ(ξ)|dξ
)p

dy

+ c

∫ δ

0

yp(k+1−l)−1
(∫

Rn−1\B(n−1)
y (x)

|γ(ξ)|
|ξ − x|n dξ

)p

dy.

From the definition ofM it follows that
∫ δ

0

yp(k+1−l−n)−1
(∫

B(n−1)
y (x)

|γ(ξ)|dξ
)p

dy ≤ c [(Mγ)(x)]pδp(k−l). (8.4.14)

Using (8.4.10), we obtain
∫ δ

0

yp(k+1−l)−1
(∫

Rn−1\B(n−1)
y (x)

|γ(ξ)|
|ξ − x|n dξ

)p

dy

≤ c [(Mγ)(x)]pδp(k−l). (8.4.15)
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Combining (8.4.14) and (8.4.15), we conclude that

∫ δ

0

. . . dy ≤ c [(Mγ)(x)]pδp(k−l). (8.4.16)

By Lemma 8.4.1,
∫ 1

δ

yp(k−l)−1
(
|Tγ|+ y|∇(Tγ)(z)|

)p
dy

≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)
δp(k−m). (8.4.17)

Adding (8.4.16) and (8.4.17), we find that

∫ 1

0

yp(k−l)−1
(
|Tγ|+ y|∇(Tγ)(z)|

)p
dy

≤ c
(
[(Mγ)(x)]pδp(k−l) + ‖γ; Rn−1‖p

M(W m−l
p →Lp)

δp(k−m)
)
.

The right-hand side in this inequality attains its minimum value for

δ =
(‖γ; Rn−1‖M(W m−l

p →Lp)

(Mγ)(x)

)1/(m−l)

.

The proof is complete. ��

Lemma 8.4.3. Let the operator T be defined by (8.4.1) and let 0 < l < 1.
Then ∫ 1

0

yp(1−l)−1|∇(Tγ)(z)|pdy ≤ c
(
(Dp,lγ)(x)

)p
.

Proof. Let R(ξ, x) = γ(ξ)− γ(x). Using the identity

y−n+1

∫

Rn−1
ζ
(ξ − x

y

)
dξ = const,

we have

∂Tγ

∂y
(x, y) =

∂

∂y

(
y−n+1

∫

Rn−1
ζ
(ξ − x

y

)
R(ξ, x)dξ

)
. (8.4.18)

Furthermore, it is clear that

∂Tγ

∂xj
(x, y) = y−n+1

∫

Rn−1
R(ξ, x)

∂

∂xj
ζ
(ξ − x

y

)
dξ.
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Therefore,

|∇(Tγ)(x, y)| ≤ c y−n
1∑

k=0

∫

Rn−1

∣∣∇kζ
(ξ − x

y

)∣∣(1 +
|ξ − x|
y

)k

|R(ξ, x)|dξ.

This estimate and (8.4.2) imply that

|∇(Tγ)(x, y)| ≤ c y−n

∫

Rn−1

(
1 +
|ξ − x|
y

)−n

|R(ξ, x)|dξ

= c y−1/p

∫

Rn−1

( |ξ − x|
y

)n−1/p(
1 +
|ξ − x|
y

)−n |R(ξ, x)|
|ξ − x|n−1/p

dξ.

Consequently,
∫ 1

0

yp(1−l)−1|∇(Tγ)(x, y)|pdy

≤ c

∫ 1

0

(∫

Rn−1
f
( |ξ − x|

y

) |R(ξ, x)|
|ξ − x|n−1/p

dξ
)p

yp(1−l)−1 dy

y
,

where f(η) = ηn−1/p(1 + η)−n. We write the last integral over (0, 1) as

∫ 1

0

(∫ ∞

0

f
( t
y

)
g(t, x)

dt

t

)p

yp(1−l)−1 dy

y

=
∫ 1

0

(∫ ∞

0

f(s)g(sy, x)
ds

s

)p

yp(1−l)−1 dy

y
, (8.4.19)

with
g(t, x) = t1/p−1

∫

∂B(n−1)
1

|R(tθ + x, x)|dθ.

By Minkowski’s inequality, the right-hand side of (8.4.19) does not exceed

(∫ ∞

0

(∫ 1

0

(f(s))p(g(sy, x))pyp(1−l)−1 dy

y

)1/p ds

s

)p

=
(∫ ∞

0

f(s)
(∫ s

0

(g(τ, x))pτp(1−l)−1 dτ

τ

)1/p ds

s2−l−1/p

)p

≤
(∫ ∞

0

f(s)
ds

s2−l−1/p

)p
∫ ∞

0

(g(τ, x))pτp(1−l)−1 dτ

τ
. (8.4.20)

Therefore,
∫ 1

0

yp(1−l)−1|∇(Tγ)(x, y)|pdy ≤ c

∫ ∞

0

(g(τ, x))pτp(1−l)−1 dτ

τ
.
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It remains to note that
∫ ∞

0

(g(τ, x))pτp(1−l)−1 dτ

τ
=
∫ ∞

0

τ−pl
(∫

∂B(n−1)
1

|γ(τθ + x)− γ(x)|dθ
)p dτ

τ

≤ c

∫ ∞

0

∫

∂B(n−1)
1

|γ(τθ + x)− γ(x)|pdθ dτ

τpl+1
≤ c

∫

Rn−1

|γ(x+ h)− γ(x)|p
|h|pl+n−1

dh

= c
((
Dp,lγ

)
(x)
)p
.

The result follows. ��

8.5 Trace Theorem for the Space M(W t,β
p → W s,α

p )

Theorem 8.5.1. (i) Let m and l be positive nonintegers with m ≥ l, and let

Γ ∈M(W t,β
p (Rn

+) → W s,α
p (Rn

+))

where t = [m] + 1, s = [l] + 1, β = 1− {m} − 1/p, and α = 1− {l} − 1/p. If
γ is the trace of Γ on R

n−1, then

γ ∈M(Wm
p (Rn−1) → W l

p(R
n−1))

and the estimate

‖γ; Rn−1‖M(W m
p →W l

p) ≤ c ‖Γ ; Rn
+‖M(W t,β

p →W s,α
p ) (8.5.1)

holds.
(ii) Let

γ ∈M(Wm
p (Rn−1)→W l

p(R
n−1)).

Then the Dirichlet problem

∆Γ = 0 on R
n
+, Γ |Rn−1 = γ (8.5.2)

has a unique solution in M(W t,β
p (Rn

+) → W s,α
p (Rn

+)), where t = [m] + 1,
s = [l] + 1, β = 1− {m} − 1/p, and α = 1− {l} − 1/p. The estimate

‖Γ ; Rn
+‖M(W t,β

p →W s,α
p ) ≤ c ‖γ; Rn−1‖M(W m

p →W l
p) (8.5.3)

holds.

Proof. We start with (i). Let U ∈ W t,β
p (Rn

+) and let u be the trace of U on
R

n−1. By setting ΓU and γu instead of U and u, respectively, in the inequality

‖u; Rn−1‖W l
p
≤ c ‖U ; Rn

+‖W s,α
p

,
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we obtain the estimate

‖γu; Rn−1‖W l
p
≤ c ‖Γ ; Rn

+‖M(W t,β
p →W s,α

p )‖U ; Rn
+‖W t,β

p
.

Minimizing the right-hand side over all extensions U of u, we obtain

‖γu; Rn−1‖W l
p
≤ c ‖Γ ; Rn

+‖M(W t,β
p →W s,α

p )‖u; Rn−1‖W m
p

which gives (8.5.1).
The proof of (ii) will be given separately for l < 1 and for l > 1 in

Sects. 8.5.1 and 8.5.2. ��

8.5.1 The Case l < 1

Our aim now is to prove that for l < 1 and s = 1 the operator T de-
fined by (8.4.1) maps M(Wm

p (Rn−1)→W l
p(R

n−1)) into M(W [m]+1,β
p (Rn

+)→
W 1,α

p (Rn
+)) with α = 1− l − 1/p, β = 1− {m} − 1/p, and that

‖Tγ; Rn
+‖M(W t,β

p →W 1,α
p ) ≤ c C‖γ; Rn−1‖M(W m

p →W l
p), (8.5.4)

where C is the constant in (8.4.2).
We have

‖(min{1, y})α∇(UTγ); Rn
+‖pLp

≤c
∫ 1

0

ypα

∫

Rn−1

(
|∇(Tγ)|p|U |p+|Tγ|p|∇U |p

)
dz

+c
∫ ∞

1

∫

Rn−1

(
|∇(Tγ)|p|U |p + |Tγ|p|∇U |p

)
dz

= c

∫

0<y<1

. . . dz + c

∫

y>1

. . . dz. (8.5.5)

The integration in the last two integrals is taken in y over (0, 1) and over
(1,∞), respectively, and over R

n−1 in x. By Lemma 8.4.1, for y > 1

y|∇(Tγ)(z)|+ |(Tγ)(z)| ≤ c ‖γ; Rn−1‖M(W m−l
p →Lp).

Hence
∫

y>1

. . . dz ≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)
‖U ; Rn

+‖pW 1,α
p

. (8.5.6)

It remains to refer to the estimate

‖U ; Rn
+‖W 1,α

p
≤ c ‖U ; Rn

+‖W t,β
p

which follows from the one-dimensional Hardy inequality.
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Introducing the notation

R0U(z) = U(z)−
[m]∑
k=0

∂k

∂yk
U(x, 0)

yk

k!
,

R1U(z) = ∇U(z)−
[m]−1∑
k=0

∂k

∂yk
∇U(x, 0)

yk

k!
for m > 1,

and
R1U(z) = ∇U(z) for m < 1,

we have

∫

0<y<1

. . . dz ≤ c

∫

0<y<1

yp(1−l)−1
1∑

j=0

|∇j(Tγ)|p|R1−jU(z)|pdz

+ c

∫

0<y<1

y−pl−1
(
|Tγ(z)|+ y|∇(Tγ)(z)|

)p [m]∑
k=1

|∇kU(x, 0)|pypkdz

+ c

∫

0<y<1

yp(1−l)−1|∇Tγ(z)|p|U(x, 0)|pdz (8.5.7)

for m > 1. When m < 1 the second integral on the right-hand side of (8.5.7)
should be omitted.

By Lemma 8.4.1, we have for 0 < y < 1

|Tγ(z)|+ y|∇(Tγ)(z)| ≤ c yl−m‖γ; Rn−1‖M(W m−l
p →Lp). (8.5.8)

Since for j = 0, 1

|R1−jU(z)| ≤ y[m]+j−1

([m] + j − 1)!

∫ y

0

|∇tU(x, t)|dt, (8.5.9)

we obtain the inequality
∫

0<y<1

yp(1−{m})−1|R1−jU(z)|pdz

≤ c

∫

0<y<1

y−p{m}−1
(∫ y

0

|∇[m]+1U(x, t)|dt
)p

dz.

By Hardy’s inequality, the right-hand side does not exceed c ‖U ; Rn
+‖pW [m]+1,β

p

.

Combining this fact with (8.5.8), we obtain that the first integral on the right-
hand side of (8.5.7) does not exceed

‖γ; Rn−1‖p
M(W m−l

p →Lp)
‖U ; Rn

+‖pW [m]+1,β
p

. (8.5.10)
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Now we pass to the estimate of the second integral on the right-hand side
of (8.5.7) for k = 1, . . . , [m], m > 1. Applying Lemma 8.4.2, we find that

∫

0<y<1

yp(k−l)−1
(
|Tγ(z)|+ y|∇(Tγ)(z)|

)p|∇kU(x, 0)|pdz

≤ c ‖γ; Rn−1‖p
k−l
m−l

M(W m−l
p →Lp)

∫

Rn−1

(
Mγ(x)

)p m−k
m−l |∇kU(x, 0)|pdx. (8.5.11)

The last integral is not greater than

‖(Mγ)
m−k
m−l ; Rn−1‖p

M(W m−k
p →Lp)

‖∇kU(·, 0); Rn−1‖p
W m−k

p
. (8.5.12)

Using Lemma 2.3.6 with λ = m−k, µ = m− l and Lemma 2.3.8, we find that
(8.5.12) is dominated by

c ‖γ; Rn−1‖
p(m−k)

m−l

M(W m−l
p →Lp)

‖U(·, 0); Rn−1‖pW m
p

which together with (8.5.11) implies that
∫

0<y<1

yp(k−l)−1
(
|Tγ(z)|+ y|∇(Tγ)(z)|

)p|∇kU(x, 0)|pdz

≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)
‖U ; Rn

+‖pW [m]+1,β
p

. (8.5.13)

By Lemma 8.4.3, the integral
∫

0<y<1

yp(1−l)−1|∇(Tγ)(z)|p|U(x, 0)|pdz (8.5.14)

does not exceed
c

∫

Rn−1
(Dp,lγ(x))p|U(x, 0)|pdx

≤ c ‖Dp,lγ; Rn−1‖pM(W m
p →Lp)‖U(·, 0); Rn−1‖pW m

p

≤ c ‖γ; Rn−1‖p
M(W m

p →W l
p)
‖U ; Rn

+‖pW [m]+1,β
p

. (8.5.15)

Thus, we arrive at the inequality
∫

0<y<1

ypα|∇(UTγ)(z)|pdz ≤ c ‖γ; Rn−1‖p
M(W m

p →W l
p)
‖U ; Rn

+‖pW [m]+1,β
p

.

It remains to estimate the integral
∫

0<y<1

yp(1−l)−1|(Tγ)(z)|p|U(z)|pdz.
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Clearly,
∫

0<y<1

yp(1−l)−1|(Tγ)(z)|p|U(z)|pdz

≤
∫

0<y<1

yp(1−l)−1|(Tγ)(z)|p|R0U(z)|pdz

+
[m]∑
k=0

∫

0<y<1

yp(1−l+k)−1|(Tγ)(z)|p|∇kU(x, 0)|pdz. (8.5.16)

By (8.5.8) and (8.5.9) with j = 1 we have
∫

0<y<1

yp(1−l)−1|(Tγ)(z)|p|R0U(z)|pdz

≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)

∫

0<y<1

yp(1−{m})−1
(∫ y

0

|∇[m]+1U(x, t)|dt
)p

dz

which, by Hardy’s inequality, is dominated by (8.5.10). In view of (8.5.13),
∫

0<y<1

yp(k−l)−1|(Tγ)(z)|p|∇kU(x, 0)|pdz

≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)
‖U ; Rn

+‖pW [m]+1,β
p

.

Thus, we arrive at the estimate
∫

0<y<1

. . . dz ≤ c ‖γ; Rn−1‖p
M(W m

p →W l
p)
‖U ; Rn

+‖pW [m]+1,β
p

.

Since the Poisson kernel satisfies condition (8.4.2), Theorem 8.5.1 with l < 1
follows. ��

8.5.2 The Case l > 1

Lemma 8.5.1. Let m and l be nonintegers with m ≥ l > 1, and let T be the
extension operator (8.4.1). Suppose that γ ∈ M(Wm−l

p (Rn−1) → Lp(Rn−1)).
Then

Tγ ∈M(W [m]−[l],β
p (Rn

+)→W 0,α
p (Rn

+))

and

‖Tγ; Rn
+‖M(W

[m]−[l],β
p →W 0,α

p )
≤ c ‖γ; Rn−1‖M(W m−l

p →Lp). (8.5.17)
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Proof. To begin with, let [m] = [l]. Then by (8.5.8)
∫

0<y<1

yp(1−{l})−1|U(z)(Tγ)(z)|pdz

≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)

∫

0<y<1

yp(1−{m})−1|U(z)|pdz

which gives the result.
Next suppose that [m] ≥ [l] + 1. We introduce the function

RU = U(z)−
[m]−[l]−1∑

j=0

∂jU

∂yj
(x, 0)

yj

j!

which, clearly, satisfies

|RU(z)| ≤ y[m]−[l]−1

([m]− [l]− 1)!

∫ y

0

|∇[m]−[l]U(x, t)|dt.

This estimate and (8.5.8) imply that
∫

0<y<1

yp(1−{l})−1|Tγ(z)|p|RU(z)|pdz

≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)

∫

0<y<1

y−p{m}−1
(∫ y

0

|∇[m]−[l]U(x, t)|dt
)p

dz.

By Hardy’s inequality, the right-hand side is majorized by

c ‖γ; Rn−1‖p
M(W m−l

p →Lp)
‖U ; Rn

+‖pW [m]−[l],β
p

.

Furthermore, by Lemma 8.4.2 with m replaced by m− [l], l replaced by {l},
and k = j + 1, we have for j = 0, . . . , [m]− [l]− 1

∫

0<y<1

yp(j+1−{l})−1|Tγ(z)|p|∇jU(x, 0)|pdz

≤ c ‖γ; Rn−1‖p
j+1−{l}

m−l

M(W m−l
p →Lp)

∫

Rn−1

(
Mγ(x)

)p m−[l]−j−1
m−l |∇jU(x, 0)|pdx. (8.5.18)

The last integral is dominated by

‖
(
Mγ

)p m−[l]−j−1
m−l ; Rn−1‖p

M(W
m−[l]−j−1
p →Lp)

‖U(·, 0); Rn−1‖p
W

m−[l]−1
p

which by Lemma 2.3.6 does not exceed

‖Mγ; Rn−1‖p
m−[l]−j−1

m−l

M(W m−l
p →Lp)

‖U ; Rn
+‖pW [m]−[l],β

p

.
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Therefore, using (8.5.18), we obtain
∫

0<y<1

yp(j+1−{l})−1|Tγ(z)|p|∇jU(x, 0)|pdz

≤ c ‖γ; Rn−1‖p
M(W m−l

p →Lp)
‖U ; Rn

+‖pW [m]−[l],β
p

.

The result follows. ��

8.5.3 Proof of Theorem 8.5.1 for l > 1

Suppose that Theorem 8.5.1 has been proved for [l] = 1, . . . ,L − 1, where
L ≥ 2. Let [l] = L and let

γ ∈M(Wm
p (Rn−1)→W l

p(R
n−1)) for m ≥ L. (8.5.19)

Let Tγ denote the Poisson integral. Since by Theorem 4.1.1 we have

γ ∈M(Wm−l
p (Rn−1)→ Lp(Rn−1)),

it follows from Lemma 8.5.1 that

Tγ ∈M(W [m]−[l],β
p (Rn

+)→W 0,α
p (Rn

+))

and (8.5.17) holds. Next we show that

∇L+1(Tγ) ∈M(W [m]+1,β
p (Rn

+)→W 0,α
p (Rn

+)). (8.5.20)

Using Lemma 4.3.5, we obtain

∂γ

∂xk
∈M(Wm

p (Rn−1)→W l−1
p (Rn−1)), k = 1, . . . , n− 1.

Then, by the induction hypothesis applied to ∂γ/∂xk,

∂

∂xk
(Tγ) = T

∂γ

∂xk
∈M(W [m]+1,β

p (Rn
+)→WL,α

p (Rn
+)). (8.5.21)

By Lemma 8.3.1,

∇L
∂

∂xk
(Tγ) ∈M(W [m]+1,β

p (Rn
+)→W 0,α

p (Rn
+)). (8.5.22)

Using the harmonicity of Tγ and (8.5.22), we find that

∂L+1(Tγ)
∂yL+1

= −∂
L−1(∆x(Tγ))

∂yL−1
∈M(W [m]+1,β

p (Rn
+)→W 0,α

p (Rn
+))

which together with (8.5.22) implies the inclusion (8.5.20). Combining this
with (8.5.17), we find that Tγ ∈ M(W [m]+1,β

p (Rn
+) → W

[l]+1,α
p (Rn

+)). It
remains to note that all the above inclusions are accompanied by the corre-
sponding estimates. The result follows. ��
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8.6 Traces of Multipliers on the Smooth Boundary
of a Domain

Let Ω be a bounded domain in R
n with smooth boundary ∂Ω. It is well

known that the fractional Sobolev space W l
p(∂Ω) is the space of traces of the

weighted Sobolev space W s,α
p (Ω) endowed with the norm

(∫

Ω

(
dist(x, ∂Ω)

)pα ∑
{τ :0≤|τ |≤s}

|Dτu|pdx
)1/p

,

where α = 1− {l} − 1/p, s = [l] + 1 and p ∈ (1,∞) (see [Usp]). It is straight-
forward to deduce from this fact that the trace γ of the function

Γ ∈M(W t,β
p (Ω)→W s,α

p (Ω)) (8.6.1)

belongs to M(Wm
p (∂Ω)→W l

p(∂Ω)). Herem and l are nonintegers,m ≥ l > 0,
s and α are given above, t = [m] + 1, and β = 1− {m} − 1/p.

We prove that the converse assertion is also true showing that there exists
an extension Γ of γ ∈M(Wm

p (∂Ω)→Wm
p (∂Ω)) subject to (8.6.1).

Theorem 8.6.1. Let γ ∈ M(Wm
p (∂Ω)→ W l

p(∂Ω)), where m and l are non-
integers, m ≥ l > 0, and p ∈ (1,∞). There exists a linear extension operator

γ → Γ ∈M(W t,β
p (Ω)→W s,α

p (Ω)),

where t = [m] + 1, s = [l] + 1, β = 1− {m} − 1/p, and α = 1− {l} − 1/p.

Proof. It suffices to construct an extension Γ only for γ with sufficiently small
support. To be precise, we assume that γ = 0 outside the ball B(n)

ρ centered
at 0 ∈ ∂Ω, where ρ is small enough. We introduce a cutoff function ϕ ∈
C∞

0 (B(n)
3ρ ), equal to one on B(n)

2ρ . Let us define Cartesian coordinates ζ = (ξ, η)
with the origin 0, where ξ ∈ R

n−1 and η ∈ R
1. Let

Ω ∩ B(n)
3ρ = {ζ : ξ ∈ B(n−1)

3ρ , η > f(ξ)},

where f is a smooth function. We make the change of variables τ : ζ → (x, y),
where x = ξ, y = η − f(ξ). The diffeomorphism τ maps Ω ∩ B(n)

3ρ into the
half space R

n
+ = {(x, y) : x ∈ R

n−1, y > 0}. Clearly, the function γ̃ = γ ◦ τ−1

belongs to M(Wm
p (Rn−1) → W l

p(R
n−1)). Its harmonic extension to R

n
+,

denoted by Γ̃ , is in M(W t,β
p (Rn

+) → W s,α
p (Rn

+)) and satisfies the estimate
(8.5.3) according to Theorem 8.5.1. Hence the function γ =

(
Γ̃ ◦ τ

)
ϕ is a

desired extension. The proof is complete. ��
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8.7 MW l
p(R

n) as the Space of Traces of Multipliers

in the Weighted Sobolev Space W k
p,β(Rn+m)

In this section we show that MW l
p(R

n) is the space of traces on R
n of mul-

tipliers in weighted Sobolev spaces on R
n+m in the same way as W l

p(R
n) is

the space of traces of functions which belong to a weighted Sobolev space on
R

n+m. In Sect. 8.7.5 we give an application of this result to the first boundary
value problem for an elliptic operator in R

n+1
+ . We prove the unique solvability

of this problem in a space of multipliers on R
n+1
+ , assuming that the Dirichlet

data belong to certain classes of multipliers on R
n.

8.7.1 Preliminaries

Let R
n+m = {z = (x, y) : x ∈ R

n, y ∈ R
m}, m > 0. For U ∈ C∞

0 (Rn+m) we
introduce the norm

〈U〉k,p,β =
(∫

Rn+m

|y|pβ |∇k,zU |p dz
)1/p

.

By Hardy’s inequality,

〈U〉k−r,p,β−r ≤ c 〈U〉k,p,β

for k > r, β > r −m/p.
Let W k

p,β(Rn+m) denote the completion of C∞
0 (Rn+m) with respect to the

norm
〈U〉k,p,β + ‖U ; Rn+m‖Lp

.

The following known assertion (see [Usp]) gives a characterization of traces
on R

n for functions in W k
p,β(Rn+m).

Lemma 8.7.1. (i) Let U be an arbitrary function in W k
p,β(Rn+m), and let

l = k − β −m/p be a positive noninteger , l < k. Then for almost all x ∈ R
n

the limit
u(x) = lim

|y|→0
U(x, y) in Lp(∂B(n−1))

exists. The function u belongs to the space W l
p(R

n) and the estimate

‖u; Rn‖W l
p
≤ c ‖U ; Rn+m‖W k

p,β
(8.7.1)

holds.
(ii) Let l be a positive noninteger. There exists a linear bounded extension

operator
E : W l

p(R
n) � u→ U ∈W k

p,β(Rn+m),

where k > l and β = k − l −m/p.
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Lemma 8.7.2. Let r be a positive noninteger and let ω be an m-tuple multi-
index, |ω| < [r]. Further, let

Rω(h, x) = Dωγ(x+ h)−
∑

|ν|<r−|ω|
Dν+ωγ(x)

hν

ν!
. (8.7.2)

Then
(∫

Rn

|h|p(|ω|−r)−n|Rω(h, x)|p dh
)1/p

≤ c (Dp,rγ)(x) . (8.7.3)

Proof. It follows from the identity

Rω(h, x) = ([r]− |ω|)
∫ 1

0

∑
|ν|=[r]−|ω|

hν

ν!

×[(Dν+ωγ)(x+ th)−Dν+ωγ(x)](1− t)[r]−|ω|−1 dt

and the Minkowski inequality that the left-hand side of (8.7.3) does not exceed

c

∫ 1

0

(∫

Rn

|h|−p{r}−n
∑

|α|=[r]

|(Dαγ)(x+ th)− (Dαγ)(x)|p dh
)1/p

dt

which is equal to c (Dp,rγ)(x). ��

8.7.2 A Property of Extension Operator

We introduce an extension operator which maps functions defined on R
n into

functions on R
n+m by

(T γ)(x, y) =
∫
ζ(t)γ(x+ |y|t) dt, x ∈ R

n, y ∈ R
m,

where
ζ ∈ C∞(Rn) ∩ L(Rn),

∫
ζ(x) dx = 1.

Lemma 8.7.3. Let {r} > 0, p ∈ [1,∞) and let q be an integer with q > r.
Further, let

∫
xαζ(x) dx = 0 , 0 < |α| ≤ [r] (8.7.4)

and

Cq,r =
∫

(1 + |x|)r

q∑
j=0

sup
∂B(n)

|x|

|∇jζ(x)|(1 + |x|)j dx . (8.7.5)

Then the estimate holds:
(∫

Rm

|y|p(q−r)−m|∇q,z(T γ)|p dy
)1/p

≤ c Cq,r (Dp,rγ)(x) . (8.7.6)
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Proof. Let τ , σ, ρ, ω be m-tuple multi-indices such that |τ |+ |σ| = q, and also

ρ = 0, ω = τ if |τ | ≤ r

and
ρ = τ − ω > 0, |ω| = [r] if |τ | > r.

We have

Dτ
xD

σ
y

∫
ζ(t)γ(x+ |y|t)dt = Dρ

xD
σ
y

∫
ζ(t)Dω

xγ(x+ |y|t)dt

= Dσ
y

(
|y|−n−|ρ|

∫
(Dρζ)

(ξ − x

|y|
)
Dωγ(ξ)dξ

)

= Dσ
y

(
|y|−n−|ρ|

∫
(Dρζ)

(ξ − x

|y|
)
Rω(ξ − x, x)dξ

)
,

where Rω is the function defined by (8.7.2). Here we used the identity

Dσ
y

(
|y|−n−|ρ|

∫
(Dρζ)

(ξ − x

|y|
)
(ξ − x)νdξ

)

= Dσ
y

(
|y||ν|−|ρ|

∫
Dρζ(ξ)ξνdξ

)
= 0 . (8.7.7)

It is clear that
∣∣∣Dσ

y

(
|y|−n−|ρ|

∫
(Dρζ)

(ξ − x

|y|
)
Rω(ξ − x, x)

)∣∣∣

≤ |y|r−|ρ|−|σ|−|ω|ϕ
(ξ − x

|y|
) |Rω(ξ − x, x)|
|ξ − x|r−|ω|+n

with ϕ standing for a nonnegative function for which the estimate

ϕ(ξ) ≤ c |ξ|r−|ω|+n

|σ|∑
i=0

|∇i+|ρ|ζ(ξ)| (|ξ|i + 1) (8.7.8)

holds. Since |ρ|+ |ω| = |τ | and |τ |+ |σ| = q, it follows that
∫

Rm

|y|p(q−r)−m|Dτ
xD

σ
y (Tγ)|p dy

≤ c

∫

Rm

(∫

Rn

ϕ
(ξ − x

|y|
) |Rω(ξ − x, x)|
|ξ − x|r−|ω|+n

dξ
)p dy

|y|m .

Introducing spherical coordinates, we write the right-hand side in the form

c

∫ ∞

0

dλ

λ

(∫ ∞

0

∫

∂B1

ϕ
( tθ
λ

) |Rω(tθ, x)|
tr−|ω|

dt

t
dθ
)p

.
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This value is not greater than

c

∫ ∞

0

dλ

λ

(∫ ∞

0

Q
( t
λ

)
g(t)

dt

t

)p

≤ c
(∫ ∞

0

Q(t)
dt

t

)p
∫ ∞

0

g(t)p dt

t
,

where
Q(t) = sup

|θ|=1

ϕ(tθ), g(t) = t|ω|−r

∫

∂B1

|Rω(tθ, x)|dθ.

Now we use (8.7.8) to obtain
∫

Rm

|y|p(q−r)−m|Dτ
xD

σ
y (Tγ)|p dy

≤ c
(∫

Rn

|ξ|r−|ω|
|σ|∑
i=0

(|ξ|+1)i sup
∂B|ξ|

|∇i+|ρ|ζ(ξ)|dξ
)p
∫

Rn

|h|p(|ω|−r)−n|Rω(h, x)|pdh.

Making use of Lemma 8.7.2, we complete the proof. ��

8.7.3 Trace and Extension Theorem for Multipliers

The following theorem shows that MW l
p(R

n) coincides with the space of traces
on R

n of functions in MW k
p,β(Rn+m).

Theorem 8.7.1. (i) Let Γ ∈ MW k
p,β(Rn+m) with β = k − l −m/p, {l} > 0,

and k > l. Further, let γ be the trace of Γ on R
n (its existence results from

Γ ∈W k
p,β,loc(R

n+m) and Lemma 8.7.1). Then γ ∈MW l
p(R

n) and the estimate

‖γ; Rn‖MW l
p
≤ c ‖Γ ; Rn+m‖MW k

p,β
(8.7.9)

holds.
(ii) Let {l} > 0, s = 0, 1, . . . , and let k be an integer with k > l. Further,

let ∇sγ ∈ MW l
p(R

n) and let T γ be the extension of γ to R
n+m defined in

Sect. 8.7.2 with ζ subject to the conditions

Ck+s,l+s <∞ , (8.7.10)

and ∫
xαζ(x) dx = 0 , 0 < |α| ≤ [l] + s (8.7.11)

where Cq,r is given by (8.7.5). Then

∇s,z(T γ) ∈MW k
p,β(Rn+m), β = k − l −m/p,

and

‖∇s,z(T γ); Rn+m‖MW k
p,β
≤ c Ck+s,l+s‖∇s,xγ; Rn‖MW l

p
. (8.7.12)
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Proof. (i) Let U ∈W k
p,β(Rn+m) and let U(x, 0) = u(x). We have

‖γu; Rn‖W l
p
≤ c ‖ΓU ; Rn+m‖W k

p,β
≤ c ‖Γ ; Rn+m‖MW k

p,β
‖U ; Rn+m‖W k

p,β
.

Using the second part of Lemma 8.7.1 and the arbitrariness of U , we arrive
at (8.7.9).

(ii) Let χ be any m-tuple multi-index with |χ| = s. It is clear that

〈UDχ
y (T γ)〉k,p,β ≤ c

∑
|ε|+|µ|+|ν|=k

〈Dν
zUD

µ
xD

χ+ε
y (T γ)〉0,p,β . (8.7.13)

For |µ| < s we have

Dµ
xD

χ+ε
y (Tγ)(z) = Dχ+ε

y |y|−n

∫
ζ
(ξ − x

|y|
)

×
[
Dµ

ξ γ(ξ)−
∑

|κ|≤s−|µ|−1

(ξ − x)κ

κ!
Dκ+µγ(x)

]
dξ (8.7.14)

and, for |µ| ≥ s,

Dµ
xD

χ+ε
y (T γ)(z) = Dµ1

x Dχ+ε
y

(
|y|−n

∫
ζ
(ξ − x

|y|
)
Dµ2

ξ γ(ξ) dξ
)
,

where µ = µ1 + µ2, |µ1| > 0, and |µ2| = s. Thus, in both cases,

|Dµ
xD

χ+ε
y (T γ)(z)| ≤ cK‖∇sγ; Rn‖L∞ |y|−|µ|−|ε| . (8.7.15)

Here and in what follows we put

K = Ck+s,l+s

with Ck+s,l+s given by (8.7.10). Hence, for |ν| > l, we obtain

〈Dν
zUD

µ
xD

χ+ε
y (T γ)〉0,p,β ≤ cK‖∇sγ; Rn‖L∞〈U〉|ν|,p,|ν|−l−m/p

≤ cK‖∇sγ; Rn‖L∞〈U〉k,p,β . (8.7.16)

Now let |ν| < l. Using Taylor’s formula for Dν
zU , we have

〈Dν
zUD

µ
xD

χ+ε
y (T γ)〉0,p,β

≤ 〈RνD
µ
zD

χ+ε
y (T γ)〉k,p,β +

[l]−|ν|∑
j=0

(∫

Rn+m

|y|p(k−l+j)−m

× |Dµ
zD

χ+ε
y (T γ)(z)|p|(∇j,yD

ν
zU)(x, 0)|p dz

)1/p

, (8.7.17)
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where

Rν(z) = Dν
zU(z)−

∑
|τ |≤[l]−|ν|

(Dτ
yD

ν
zU)(x, 0)

yτ

τ !

= ([l]− |ν| − 1)
∑

|τ |=[l]−|ν|+1

yτ

τ !

∫ 1

0

(Dτ
yD

ν
zU)(x, ty)(1− t)[l]−|ν| dt .

By (8.7.15) and Minkowski’s inequality,

〈RνD
µ
zD

χ+ε
y (T γ)〉k,p,β

≤ cK‖∇sγ; Rn‖L∞

(∫
|y|p(1−{l})−m

(∫ 1

0

|(∇[l]+1,zU)(x, ty)| dt
)p

dz
)1/p

≤ cK‖∇sγ; Rn‖L∞〈U〉[l]+1,p,1−{l}−m/p

≤ cK‖∇sγ; Rn‖L∞〈U〉k,p,β .

Using Lemma 8.7.3 with q = |µ| + s + |ε| and r = l + s − j − |ν|, we see
that the sum on the right-hand side of (8.7.17) does not exceed

cK

[l]−|ν|∑
j=0

(∫

Rn

|(∇j,yD
ν
zU)(x, 0)|p[(Dp,l−j−|ν|∇sγ)(x)]p dx

)1/p

. (8.7.18)

By Lemma 4.3.2, for p > 1 this is majorized by

cK

[l]−|ν|∑
j=0

sup
e

(
∫

e

|Dp,l−j−|ν|∇sγ|p dx

Cp,l−j−|ν|(e)

)1/p

‖(∇j+|ν|,zU)(·, 0); Rn‖
W

l−j−|ν|
p

.

which by Theorem 4.1.1 is not greater than

cK‖∇sγ; Rn‖MW l
p
‖U ; Rn+m‖W k

p,β
. (8.7.19)

The same estimate results in the case p = 1 from Theorems 5.1.2 and 5.3.2.
So, for |ν| < l,

〈Dν
zUD

µ
xD

χ+ε
y (T γ)〉0,p,β ≤ cK‖∇sγ; Rn‖MW l

p
‖U ; Rn+m‖W k

p,β
.

Combining this estimate with (8.7.16) and (8.7.13), we find that

〈UDχ
y (T γ)〉0,p,β ≤ cK‖∇sγ; Rn‖MW l

p
‖U ; Rn+m‖W k

p,β
.

According to (8.7.15) with |µ| = |ε| = 0, we have

|Dχ
y (T γ)| ≤ cK‖∇sγ; Rn‖L∞ .

Therefore,

‖UDχ
y (T γ); Rn+m‖Lp

≤ cK‖∇sγ; Rn‖L∞‖U ; Rn+m‖Lp
.

The proof is complete. ��
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8.7.4 Extension of Multipliers from R
n to R

n+1
+

An assertion analogous to Theorem 8.7.1 is also valid for the space of mul-
tipliers MW k

p,β(Rn+1
+ ), where R

n+1
+ = {z = (x, y) : x ∈ R

n, y > 0} and

W k
p,β(Rn+1

+ ) is the completion of C∞
0 (Rn+1

+ ) with respect to the norm

(∫

R
n+1
+

ypβ |∇k,zU |p dz
)1/p

+ ‖U ; Rn+1
+ ‖Lp

.

If we put m = 1 and replace R
m by R

1
+ = {y : y > 0} in the statement

of Lemma 8.7.3, then it holds without the condition (8.7.4). We only need to
verify that

Dσ
y (y|ν|−|ρ|)

∫
Dρζ(ξ)ξν dξ = 0 . (8.7.20)

For |ν| < |ρ| after integration by parts we obtain that the integral in
(8.7.20) is equal to zero. In the case |ν| ≥ |ρ| the function Dσ

y (y|ν|−|ρ|) vanishes
identically, since σ > σ + [r]− q = [r]− |τ | = [r]− |ω| − |ρ| ≥ |ν| − |ρ|.

The condition (8.7.11) was used only in (8.7.14), in the proof of Theorem
8.7.1. Since |χ| + |ε| = s + |ε| > s − |µ| − 1 ≥ |χ|, we conclude that (8.7.14)
remains valid for m = 1 and y ∈ R

1
+ without the condition (8.7.11). Therefore,

we have the following assertion.

Theorem 8.7.2. (i) Let {l} > 0, Γ ∈MW k
p,β(Rn+1

+ ), β = k − l − 1/p, k > l

and γ(x) = Γ (x, 0). Then γ ∈MW l
p(R

n) and

‖γ; Rn‖MW l
p
≤ c ‖Γ ; Rn+1

+ ‖MW k
p,β

.

(ii) Let {l} > 0 and ∇sγ ∈ MW l
p(R

n). Further, let T γ be the extension
of γ to R

n+1
+ defined in Sect. 8.7.2, where the function ζ is subject only to the

condition (8.7.10). Then ∇s(T γ) ∈ MW k
p,β(Rn+1

+ ), k > l, β = k − l − 1/p,
and the estimate

‖∇s(T γ); Rn+1
+ ‖MW k

p,β
≤ c Ck+s,l+s‖∇sγ; Rn‖MW l

p

holds.

8.7.5 Application to the First Boundary Value Problem
in a Half-Space

Let us consider the Dirichlet problem in the half-space R
n+1
+

L(D)U = 0 for y ≥ 0 ,
∂jU/∂yj = ϕj for y = 0 , j = 0, . . . ,m− 1 ,

where L is a homogeneous differential elliptic operator of order 2m with con-
stant coefficients.
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Theorem 8.7.3. Let ∇m−1−jϕj ∈ MW l
p(R

n), where 0 < l < 1, 1 ≤ p ≤ ∞.
Then there exists one and only one solution of the Dirichlet problem such that

∇m−1U ∈MW k
p,k−l−1/p(R

n+1
+ ), k ≥ 1.

This solution satisfies the estimate

‖∇m−1U ; Rn+1
+ ‖MW k

p,k−l−1/p
≤ K

m−1∑
j=0

‖∇m−1−jϕj ; Rn‖MW l
p
,

where K is a constant which depends on L and n, p,m, k, l.

Proof. If U ∈MW k
p,k−l−1/p(R

n+1
+ ) is a solution of the homogeneous problem,

then
‖∇m−lU ; Rn+1

+ ‖L∞ <∞
and hence U = 0 (see, for instance, [ADN1], Ch. I, §2).

According to the same reference, the existence of a solution follows from
the assumption

∇m−1−jϕj ∈ L∞(Rn), j = 0, 1, . . . ,m− 1,

and the solution satisfies the equality

Dα
x

∂i

∂yi
U(x, y) =

m−1∑
j=0

∑
|β|=m−1−j

∫

Rn

Ki,j,β(x− ξ, y)Dβ
ξ ϕj(ξ) dξ ,

where 0 ≤ i ≤ m−1, α is any multi-index of order m−1− i and Ki,j,β(z) are
positive homogeneous functions of order −n, smooth in R

n+1\{0} and such
that Ki,j,β(x, 0) = 0 for x 	= 0. These conditions imply the estimate

(|x|2 + y2)1/2|∇xKi,j,β(x, y)|+ |Ki,j,β(x, y)| ≤ c y(|x|2 + y2)−(n+1)/2

which shows that the function ζ(x) = Ki,j,β(x, 1) satisfies (8.7.10) for s = 0,
0 < l < 1. It remains to make use of Theorem 8.7.2. ��

8.8 Traces of Functions in MW l
p(R

n+m) on R
n

In this section we show that the space of restrictions of functions in
MW l

p(R
n+m) (lp > n, l − m/p is a noninteger) to R

n coincides with

MW
l−m/p
p (Rn).
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8.8.1 Auxiliary Assertions

We use the extension operator T defined in Sect. 8.7.2. Let us assume that
the conditions (8.7.10) and (8.7.11) for k = [l], s = 1 are fulfilled.

Lemma 8.8.1. Let σ ∈ (0, l] and let p ∈ [1,∞). Then

(∫

2|η|<|y|
|∇[σ],y(T γ)(x, y + η)−∇[σ],y(T γ)(x, y)|p|η|−m−p{σ} dη

)1/p

≤ c C[l]+1,l+1 |y|−σ‖γ; Rn‖L∞ , (8.8.1)

and
(∫

Rn

|∇[σ],x(T γ)(x+ h, y)−∇[σ],x(T γ)(x, y)|p|h|−n−p{σ} dh
)1/p

≤ c C[l]+1,l+1|y|−σ‖γ; Rn‖L∞ , (8.8.2)

where C[l]+1,l+1 is defined by (8.7.10).

Proof. Let Ay and Bx denote the left-hand sides of (8.8.1) and (8.8.2). One
verifies directly that

Ay ≤ ‖γ; Rn‖L∞

{∫

2|η|<|y|

(∫

Rn

∣∣∣∇[σ],y

[
ζ
( ξ − x

|y + η|
)
|y + η|−n

−ζ
(ξ − x

|y|
)
|y|−n

]∣∣∣ dξ
)p

|η|−m−p{σ} dη
}

≤ ‖γ; Rn‖L∞

{∫

2|η|<|y|

|η|p dη
|η|m+p{σ}

×
(∫ 1

0

dz

∫

Rn

∣∣ϕ(σ+1)
ξ−x [|y|+ z(|y + η| − |y|)]

∣∣ dξ
)p}1/p

,

where

ϕ
(l)
ξ−x(t) = − ∂[l]

∂t[l]

(
t−nζ

(ξ − x

t

))
.

Therefore,

Ay ≤ c C[l]+1,l+1‖γ; Rn‖L∞

×
{∫

2|η|<|y|
|η|p(1−{σ})−m dη

(∫ 1

0

(
|y|+ z(|y + η| − |y|)

)−[σ]−1
dz
)p}1/p

≤ c C[l]+1,l+1‖γ; Rn‖L∞ |y|−σ .

The inequality (8.8.1) is proved.
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Making the change of variables

ξ − x = |y|Ξ, h = |y|H,

we obtain

Bx ≤ |y|−σ
{∫

Rn

(∫

Rn

∣∣∇[σ],Ξ [ζ(Ξ +H)− ζ(Ξ)]
∣∣ dΞ

)p

|H|−n−p{σ} dH
}1/p

.

Now we divide the exterior integral into two integrals, the first of which is
over the ball B1. We have

∫

B1

≤
∫

B1

(∫

Rn

∣∣∣
n∑

i=1

Hi

∫ 1

0

∂

∂Ξi
∇[σ],Ξζ(Ξ + zH) dz

∣∣∣ dΞ
)p

|H|−n−p{σ} dH

≤
(∫

Rn

|∇[σ]+1ζ(Ξ)| dΞ
)p
∫

B1

|H|−n+(1−{σ})pdH ≤ c Cp
[l]+1,l+1 .

Finally,
∫

Rn\B1

≤
∫

Rn\B1

(∫

Rn

(|∇[σ]ζ(Ξ +H)|+ |∇[σ]ζ(Ξ)|) dΞ
)p

|H|−n−p{σ} dH

= 2p
(∫

Rn

|∇[σ]ζ(Ξ)| dΞ
)p
∫

Rn\B1

|H|−n−p{σ} dH ≤ c Cp
[l]+1,l+1 .

The proof is complete. ��

Let dj denote the number of all derivatives of order j with respect to the
variables y1, . . . , ym and let [W σ

p (Rn)]dj be the Cartesian product of dj copies
of the space Wσ

p (Rn). It is known (see [Usp] that there exists an extension
operator E defined on vector-functions (ϕ0,ϕ1, . . . ,ϕ[l−m/p]), where ϕj is the
dj-tuple vector-function. This operator maps into a space of scalar functions
and has the following properties.

(i) E is a continuous operator:

[l−m/p]∏
j=0

[W [l−j−m/p]
p (Rn)]dj →W k

p,k−l(R
n+m) . (8.8.3)

(ii) The relation

(∇jEϕ)(x, 0) = ϕj(x) with j = 0, 1, . . . , [l −m/p]

holds.
In what follows we use the fact that W

[l]+1
p,1−{l}(R

n+m) is imbedded into
W l

p(R
n+m) (see [Usp]). We also apply the Hardy-type inequality
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∫

Rm

|y|−pl|V (x, y)|p dy ≤ c ‖V (x, ·); Rm‖p
W l

p
, (8.8.4)

where V is a function in W l
p(R

m) subject to the conditions

(∇jV )(x, 0) = 0 , j = 0, 1, . . . , [l −m/p] . (8.8.5)

Moreover, we make use of the following norm in W l
p(R

n+m):

‖U ; Rn+m‖W l
p

∼
(∫

Rn

dx

∫

Rm

dy

∫

Rm

|∇[l],yU(x, y + η)−∇[l],yU(x, y)|p|η|−m−p{l} dη
)1/p

+
(∫

Rm

dy

∫

Rn

dx

∫

Rn

|∇[l],xU(x+ h, y)−∇[l],xU(x, y)|p|h|−n−p{l} dh
)1/p

+‖U ; Rn+m‖Lp
(8.8.6)

(see Proposition 4.2.3).

8.8.2 Trace and Extension Theorem

Theorem 8.8.1. (i) Let lp > n, 1 ≤ p < ∞ and l − m/p be noninteger.
Further, let Γ ∈MW l

p(R
n+m) and γ(x) = Γ (x, 0). Then γ ∈MW

l−m/p
p (Rn)

and

‖γ; Rn‖
MW

l−m/p
p

≤ c ‖Γ ; Rn+m‖MW l
p
. (8.8.7)

(ii) Let the kernel ζ satisfy (8.7.10) and (8.7.11). If γ ∈ MW
l−m/p
p (Rn)

with lp > m, 1 ≤ p < ∞ and noninteger l −m/p, then T γ ∈ MW l
p(R

n+m)
and

‖T γ : R
n+m‖MW l

p
≤ c C[l]+1,l+1‖γ; Rn‖

MW
l−m/p
p

. (8.8.8)

Proof. (i) Let U ∈W l
p(R

n+m), U(x, 0) = u(x). We have

‖γu; Rn‖
W

l−m/p
p

≤ c ‖ΓU ; Rn+m‖W l
p
≤ c ‖Γ ; Rn+m‖MW l

p
‖U ; Rn+m‖W l

p

which implies (8.8.7).
(ii) It is sufficient to assume that l is a noninteger, since for integer l the

result is contained in Theorem 8.7.1.
Let U ∈W l

p(R
n+m) and

ϕ(x) = (U(x, 0), (∇y(U)(x, 0), . . . , (∇[l−m/p],yU)(x, 0)) .
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We introduce the function V = U − Eϕ, where E is the extension operator
which was considered in Sect. 8.8.1. Then

‖UT γ; Rn+m‖W l
p
≤ ‖(T γ)Eϕ; Rn+m‖W l

p
+ ‖V T γ; Rn+m‖W l

p
.

In view of the imbedding

W
[l]+1
p,1−{l}(R

n+m) ⊂W l
p(R

n+m),

the first term on the right-hand side does not exceed

c ‖(T γ)Eϕ; Rn+m‖
W

[l]+1
p,1−{l}

which, by Theorem 8.7.1, is not greater than

c C[l]+1,l+1‖γ; Rn‖
MW

l−m/p
p

‖Eϕ; Rn+m‖
W

[l]+1
p,1−{l}

.

Since E performs the continuous mapping (8.8.3), it follows that

‖(T γ)Eϕ; Rn+m‖W l
p

≤ c C[l]+1,l+1‖γ; Rn‖
MW

l−m/p
p

[l−m/p]∑
j=0

‖(∇j,yU)(·, 0); Rn‖
W

l−m/p−j
p

.

Consequently,

‖(T γ)Eϕ; Rn+m‖W l
p
≤ c C[l]+1,l+1‖γ; Rn‖

MW
l−m/p
p

‖U ; Rn+m‖W l
p
. (8.8.9)

Let us prove the inequality

‖V T γ; Rn+m‖W l
p
≤ c C[l]+1,l+1‖γ; Rn‖L∞‖V ; Rn+m‖W l

p
. (8.8.10)

It is easy to see that
(∫

Rn

dx

∫

Rm

dy

∫

2|η|>|y|

∣∣∇[l],y(V T γ))(x, y + η)

−(∇[l],y(V T γ))(x, y)
∣∣p|η|−m−p{l} dη

)1/p

≤ c
(∫

Rn+m

|∇[l],y(V T γ)|p|y|−p{l} dz
)1/p

(8.8.11)

which, by (8.7.15) with s = 0 and µ = 0, does not exceed

c

[l]∑
j=0

(∫

Rn+m

|∇[l]−j,yT γ|p|∇j,yV |p|y|−p{l} dz
)1/p

≤ c C[l]+1,l+1‖γ; Rn‖L∞

[l]∑
j=0

(∫

Rn+m

|∇j,yV |p|y|(j−l)p dz
)1/p

.
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This fact and (8.8.4) show that the left-hand side of (8.8.11) is dominated by

c C[l]+1,l+1‖γ; Rn‖L∞‖V ; Rn+m‖W l
p
.

The expression

(∫

Rn

dx

∫

Rm

dy

∫

2|η|<|y|

∣∣∇[l],y[(V T γ)(x, y+η)−(V T γ)(x, y)]
∣∣p|η|−m−p{l}dη

)1/p

is majorized by

c

[l]∑
j=0

(∫

Rn

dx

∫

Rm

dy

∫

2|η|<|y|
|(∇[l]−j,yT γ)(x, y + η)|p

×|∇j(V (x, y + η)− V (x, y))|p|η|−m−p{l}dη
)1/p

+c
[l]∑

j=0

(∫

Rn

dx

∫

Rm

dy|(∇j,yV )(x, y)|p

×
∫

2|η|<|y|

∣∣∇[l]−j,y

(
T γ(x, y + η)− T γ(x, y)

)∣∣p|η|−m−p{l}dη
)1/p

. (8.8.12)

Since
|(∇[l]−j,yT γ)(x, y + η)| ≤ c C[l]+1,l+1‖γ; Rn‖L∞ |y|j−[l],

the first sum does not exceed

c C[l]+1,l+1‖γ; Rn‖L∞

[l]−1∑
j=0

(∫

Rn

dx

∫

Rm

|y|p(j−[l])

∫

2|η|<|y|
|η|−m+p(1−{l})

×
(∫ 1

0

|∇j+1,yV (x, y+tη)|dt
)p

dη
)1/p

+ c C[l]+1,l+1‖γ; Rn‖L∞‖V ; Rn+m‖W l
p
.

Here we have used the relation (8.8.6). Further, we have

∫

Rn

|y|(j−[l])p

∫

2|η|<|y|
|η|−m+p(1−{l})

(∫ 1

0

|∇j+1,yV (x, y + tη)| dt
)p

dη dy

≤ c

∫ 1

0

dt

∫

Rm

|η|−m+p(1−{l})
∫

2|η|<|y|
|y|(j−[l])p|∇j+1,yV (x, y + tη)|p dy dη

≤ c

∫

Rm

|η|−m+p(1−{l})
∫

|χ|>|η|
|χ|(j−[l])p|∇j+1,χV (x, χ)|p dχ dη

= c

∫

Rm

|χ|p(j+1−l)|∇j+1,χV (x, χ)|p dχ
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which, according to (8.8.4), does not exceed c ‖V (x, ·); Rm‖p
W l

p
for almost all

x ∈ R
n. Thus, the first sum in (8.8.12) is not greater than

c C[l]+1,l+1‖V ; Rn+m‖W l
p
.

Using (8.8.1), we find that the second sum in (8.8.12) has the majorant

c C[l]+1,l+1‖γ; Rn‖L∞

[l]∑
j=0

(∫

Rn+m

|(∇j,yV )(z)|p|y|(j−l)p dz
)1/p

which, by (8.8.4), is dominated by

c C[l]+1,l+1‖γ; Rn‖L∞‖V ; Rn+m‖W l
p
.

To obtain a bound for
(∫

Rm

dy

∫

Rn

dx

∫

Rn

|∇[l],x(V T γ)(x+ h, y)− (V T γ)(x, y)]|p|h|−n−p{l}dh
)1/p

,

it suffices to estimate the integrals
∫

Rm

dy

∫

Rn

|∇j,xV (x, y)|p

×
∫

Rn

∣∣∇[l]−j,x[(T γ)(x+ h, y)− (T γ)(x, y)]
∣∣p|h|−n−p{l} dh dx ,

∫

Rm

dy

∫

Rn

∣∣[∇[l]−j,x(T γ)](x, y)|p

×
∫

Rn

|∇j,x(V (x+ h, y)− V (x, y))
∣∣p|h|−n−p{l} dh dx .

The first integral is estimated by Lemma 8.8.1 and inequality (8.8.4). It does
not exceed

c
(
C[l]+1,l+1‖γ; Rn‖L∞‖V ; Rn+m‖W l

p

)p
.

The second integral is dominated by

c Cp
[l]+1,l+1‖γ; Rn‖pL∞

∫

Rn

dx

∫

Rn

|h|−n−p{l}

×
∫

Rm

|y|p(j−{l})|∇j,x(V (x+ h, y)− V (x, y))|pdydh

≤ c Cp
[l]+1,l+1‖γ; Rn‖pL∞

∫

Rn

dx

∫

Rn

|h|−n−p{l}

×
∫

Rm

|∇[l],z(V (x+ h, y)− V (x, y))|p dydh

≤ c (C[l]+1,l+1‖γ; Rn‖L∞‖V ; Rn+m‖W l
p
)p.
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Here we have used (8.8.4) and (8.8.6). Thus inequality (8.8.10) is proved.
Putting γ = 1, T γ = 1 in (8.8.9), we obtain the estimate

‖Eϕ; Rn+m‖W l
p
≤ c ‖U ; Rn+m‖W l

p

which, together with (8.8.10) and the equality V = U − Eϕ, shows that

‖V T γ; Rn+m‖W l
p
≤ c C[l]+1,l+1‖γ; Rn‖L∞‖U ; Rn+m‖W l

p .

The proof is complete. ��

8.9 Multipliers in the Space of Bessel Potentials
as Traces of Multipliers

The goal of this section is to show that multipliers in the space H l
p(R

n) are
traces of multipliers in a certain class of differentiable functions in R

n+m with
a weighted mixed norm.

8.9.1 Bessel Potentials as Traces

The space Lk
p,β(Rn+m) is defined as the completion of C∞

0 (Rn+m) in the norm
(∫

Rn

(∫

Rm

|y|2β |∇k,zU |2dy
)p/2

dx
)1/p

+
(∫

Rn

(∫

Rm

|y|2β |U |2dy
)p/2

dx
)1/p

.

Let the first term be denoted by < U >p,β,k. For k > r and β > r −m/p,
by Hardy’s inequality one has

< U >p,β−r,k−r≤ c < U >p,β,k . (8.9.1)

The following assertion shows that elements of H l
p(R

n) are traces on R
n

of functions in Lk
p,β(Rn+m) (see [Sh1] for 0 < l < 1, the general case is treated

in a similar way). Below we use the spherical coordinates (ρ, ω) in R
m: ρ = |y|

and ω = y/|y|.
Lemma 8.9.1. (i) Let U ∈ Lk

p,β(Rn+m), where k is an integer, 2β > −m,
and 1 < p <∞. Then, for almost all x ∈ R

n, the limit

U(x, 0) = lim
ρ→+0

∫

∂B(m)
1

U(x; ρ, ω)dω

exists. Moreover, U(·, 0) ∈ H l
p(R

n) with l = k − β −m/2, {l} > 0 and

‖U(·, 0); Rn‖Hl
p
≤ c ‖U ; Rn+m‖Lk

p,β
. (8.9.2)

(ii) Let u ∈ H l
p(R

n), l > 0, 1 < p < ∞. There exists a linear continuous
extension operator:

H l
p(R

n) � u→ U ∈ Lk
p,β(Rn+m),

where k is an integer, k > l, and β = k − l −m/2.
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8.9.2 An Auxiliary Estimate for the Extension Operator T

Here we use the notations T , ζ, Cq,r introduced in Sect. 8.7.2. The following
lemma will be applied in the next section.

Lemma 8.9.2. For any positive and noninteger δ > 0, and any integer q > δ,
the estimate

(∫

Rn+m

|y|2(q−δ)−m|∇q,z(T u)|2dy
)1/2

≤ c Cq,δSδu(x) (8.9.3)

holds, where Cq,δ is defined by (8.7.5) and Sδ is given by (3.1.1).

Proof. Let τ , κ, and µ be n-dimensional multi-indices, and let σ be an m-
dimensional multi-index such that |τ | + |σ| = q, κ = 0, and µ = τ if |τ | ≤ δ,
and κ = τ − µ, |µ| = [δ], and µ < τ if |τ | > δ. We introduce the notation

Rµ(h, x) = Dµu(x+ h)−
∑

|ν|<[δ]−|µ|
Dµ+νu(x)

hν

ν!
.

Using the identity

Dσ
y

(
|y|−n−|κ|

∫

Rn

(
Dκζ

)(ξ − x

|y|
)
(ξ − x)νdξ

)

= Dσ
y

(
|y||ν|−|κ|

∫

Rn

Dκζ(ξ)ξνdξ
)

= 0,

we obtain

Dτ
xD

σ
y

∫

Rn

ζ(η)u(x+ |y|η)dη = Dκ

xD
σ
y

∫

Rn

ζ(η)Dµ
xu(x+ |y|η)dη

= Dσ
y

(
|y|−n−|κ|

∫

Rn

(
Dκζ

)(ξ − x

|y|
)
Dµu(ξ)dξ

)

= Dσ
y

(
|y|−n−|κ|

∫

Rn

(
Dκζ

)(ξ − x

|y|
)
Rµ(ξ − x, x)dξ

)
.

Clearly,
∣∣∣Dσ

y

(
|y|−n−|κ|(Dκζ

)(ξ − x

|y|
)
Rµ(ξ − x, x)

)∣∣∣

≤ |y|δ−|κ|−|σ|−|µ|ϕ
(ξ − x

|y|
) |Rµ(ξ − x, x)|
|ξ − x|δ−|µ|+n

,

where ϕ is a nonnegative function having the estimate

ϕ(ξ) ≤ c |ξ|δ−|µ|+n

|σ|∑
i=0

|∇i+|κ|ζ(ξ)| (|ξ|i + 1). (8.9.4)
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Since |κ|+ |µ| = |τ | and |τ |+ |σ| = q, we arrive at the inequality
∫

Rm

|y|2(q−δ)−m|Dτ
xD

σ
y (T u)|2dy

≤ c

∫

Rm

(∫

Rn

ϕ
(ξ − x

|y|
) |Rµ(ξ − x, x)|
|ξ − x|δ−|µ|+n

dξ
)2 dy

|y|m .

Passing to the spherical coordinates t = |ξ−x| and θ = (ξ−x)t−1, we can
write the right-hand side as

c

∫ ∞

0

(∫ ∞

0

∫

∂B(n)
1

ϕ
( tθ
λ

) |Rµ(tθ, x)|
tδ−|µ|

dt

t
dθ
)2 dλ

λ
.

This expression does not exceed

c

∫ ∞

0

(∫ ∞

0

Q
( t
λ

)
g(t)

dt

t

)2 dλ

λ
, (8.9.5)

where
Q(t) = sup

θ∈∂B(n)
1

ϕ(tθ)

and
g(t) = t|µ|−δ

∫

∂B(n)
1

|Rµ(tθ, x)|dθ.

By Minkowski’s inequality, (8.9.5) is not greater than

c
(∫ ∞

0

Q(t)
dt

t

)2
∫ ∞

0

g(t)2
dt

t
.

This and (8.9.4) imply that

(∫

Rm

|y|2(q−δ)−m|Dτ
xD

σ
y (T u)|2dy

)1/2

≤ c Cq,δ

(∫ ∞

0

t2(|µ|−δ)−1
(∫

∂B(n)
1

|Rµ(tθ, x)|dθ
)2

dt
)1/2

. (8.9.6)

For 0 < δ < 1 we have µ = 0 and

R0(tθ, x) = u(x+ tθ)− u(x).

Therefore, for such δ, the right-hand side of (8.9.6) is equal to c Cq,δSδu(x).
Hence we need to consider only δ > 1. Since

Rµ(tθ, x) =

([δ]− |µ|)
∫ 1

0

∑
|ν|=[δ]−|µ|

(tθ)ν

ν!

((
Dν+µu

)
(x+htθ)−Dν+µu(x)

)
(1− h)[δ]−|µ|−1dh,
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we obtain
(∫

Rm

|y|2(q−δ)−m|∇q,z(T u)|2dy
)1/2

≤c Cq,δ

(∫ ∞

0

t−2{δ}−1
(∫

∂B(n)
1

∫ 1

0

∑
|α|=[δ]

|(Dαu)(x+ htθ)−Dαu(x)|dhdθ
)2

dt
)1/2

.

By Minkowski’s inequality, the right-hand side is dominated by

c Cq,δ

∫ 1

0

(∫ ∞

0

t−2{δ}−1
(∫

∂B(n)
1

∑
|α|=[δ]

|(Dαu)(x+htθ)−Dαu(x)|dθ
)2

dt
)1/2

dh.

Making the change of variable t → h−1τ for any h ∈ (0, 1), we find that the
last expression is equal to

c Cq,δ

∫ 1

0

h{δ}
(∫ ∞

0

τ−2{δ}−1
(∫

∂B(n)
1

∑
|α|=[δ]

|(Dαu)(x+τθ)−Dαu(x)|dθ
)2

dτ
)1/2

dh

and is not greater than c Cq,δSδu(x). The proof is complete. ��

8.9.3 MHl
p as a Space of Traces

The main result of this section runs as follows.

Theorem 8.9.1. (i) Let Γ ∈ MLk
p,β(Rn+m), where k is an integer, 1 < p <

∞, 2β > −m, and let k−β−m/2 be a positive noninteger. Then the function
γ = Γ (x, 0) belongs to the space MH l

p(R
n) with l = k − β − m/2, and the

estimate
‖γ; Rn‖MHl

p
≤ c ‖Γ ; Rn+m‖MLk

p,β

holds.
(ii) Let γ ∈MH l

p(R
n), and let T γ be the extension of γ to R

n+m defined
in Sect. 8.9.2 and subject to (8.7.4) with r = l. Then T γ ∈MLk

p,β(Rn+m) with
an integer k, k > l, and β = k − l −m/2. Moreover,

‖T γ; Rn+m‖MLk
p,β
≤ c Ck,l‖γ; Rn‖MHl

p
,

where Ck,l is defined by (8.7.5).

Proof. (i) The existence of a trace γ of the function Γ ∈MLk
p,β(Rn+m) follows

from the inclusion Γ ∈ Lk
p,β,loc(R

n+m) and Lemma 8.9.1. Let U ∈ Lk
p,β(Rn+m)

and let u(x) = U(x, 0). We have

‖γu; Rn‖Hl
p
≤ c ‖ΓU ; Rn+m‖Lk

p,β
≤ c ‖Γ ; Rn+m‖MLk

p,β
‖U ; Rn+m‖Lk

p,β
.
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The result follows from part (ii) of Lemma 8.9.1.
(ii) Let µ, ε, and ν be arbitrary multi-indices of dimensions n, m, and

n+m, respectively. Clearly,

< UT γ; Rn+m >p,β,k

≤ c
∑

|ν|+|µ|+|ε|=k

< |Dν
zU ||Dµ

xD
ε
y(T γ)|; Rn+m >p,β,0 . (8.9.7)

By
∑(1) and

∑(2) we denote the sums of those terms in (8.9.7) for which
|ν| < l and |ν| > l, respectively. Since

|Dµ
xD

ε
y(T γ)(z)| ≤ c Ck,l‖γ; Rn‖L∞ |y|−|µ|−|ε| (8.9.8)

(see (8.7.15)), we have

∑(2)
≤ c Ck,l‖γ; Rn‖L∞ < U ; Rn+m >p,β−k+|ν|,|ν| .

By (8.9.1) the right-hand side does not exceed

c Ck,l‖γ; Rn‖L∞ < U ; Rn+m >p,β,k .

Now let |ν| < l. We put

QνU(z) = Dν
zU(z)−

∑
|τ |≤[l]−|ν|

(
Dτ

yD
ν
zU
)
(x, 0)

yτ

τ !
.

Then

∑(1)
≤
(∫

Rn

(∫

Rm

|y|2(k−l)−m
∑

|ν|+|µ|+|ε|=k

|QνU |2|Dµ
xD

ε
y(T γ)|2dy

) p
2
dx
) 1

p

+
(∫

Rn

(∫

Rm

|y|2(k−l)−m
∑

|ν|+|µ|+|ε|=k

[l]−|ν|∑
i=0

|y|2i|Dµ
xD

ε
y(T γ)|2

×|∇i,yD
ν
zU(x, 0)|2dy

) p
2
dx
) 1

p

.

Let us denote the first and the second terms on the right-hand side by A and
B, respectively. Since

QνU(z) = ([l]− |ν|+ 1)
∑

|τ |=[l]−|ν|+1

yτ

τ !

∫ 1

0

(
Dτ

yD
ν
z

)
U(x, ty)(1− t)[l]−|ν|dt,

we have the estimate

|QνU(z)| ≤ c |y|[l]−|ν|+1

∫ 1

0

|
(
∇[l]+1,zU

)
(x, ty)|dt.
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Hence, using (8.9.8) and Minkowski’s inequality, we find that A is majorized
by

c Ck,l‖γ; Rn‖L∞

∫ 1

0

(∫

Rn

(∫

Rm

|y|2(1−{l})−m|(∇[l]+1,zU)(x, ty)|2dy
)p/2

dx
)1/p

dt.

Therefore,
A ≤ c Ck,l‖γ; Rn‖L∞ < U >p,β,k .

By Lemma 8.9.2 with q = k− |ν| and δ = l− |ν| − i, we find that B is not
greater than

c Ck,l

[l]−|ν|∑
i=0

(∫

Rn

|(∇iD
ν)U(x, 0)|p|Sl−i−|ν|γ(x)|pdx

)1/p

≤ c Ck,l

[l]−|ν|∑
i=0

‖Sl−i−|ν|γ; Rn‖
M(H

l−i−|ν|
p →Lp)

‖∇i+|ν|U(·, 0); Rn‖
H

l−i−|ν|
p

,

which by (3.2.26) does not exceed

c Ck,l||γ; Rn||MHl
p
||U ; Rn+m||Lk

p,β
. (8.9.9)

Using the estimates obtained for A and B, we find that (8.9.9) is a majorant
for the norm < UT γ >p,β,k. It remains to note that (8.9.8) with µ = ε = 0
implies that

(∫

Rn

(∫

Rm

|y|2(k−l)−m|UT γ|2dy
)p/2

dx
)1/p

≤ c Ck,l‖γ; Rn‖L∞

(∫

Rn

(∫

Rm

|y|2(k−l)−m|U |2dy
)p/2

dx
)1/p

.

The proof is complete. ��



9

Sobolev Multipliers in a Domain, Multiplier
Mappings and Manifolds

In this chapter we deal with multipliers in pairs of Sobolev spaces in a domain.
Section 9.1 concerns the special Lipschitz domain G, i.e., G = {(x, y) : x ∈
R

n, y > ϕ(x)}, where ϕ is a function satisfying the Lipschitz condition. We
find necessary and sufficient conditions for a function to belong to the space
M(Wm

p (G) → W l
p(G)), where m and l are integers with 0 ≤ l ≤ m. In

Sect. 9.2 we show that the Stein extension operator (see [St2], Ch.6, §3) maps
continuously

M(Wm
p (G)→W l

p(G)) into M(Wm
p (Rn)→W l

p(R
n)) .

Analogous results for the space M(Wm
p (Ω)→W l

p(Ω)), where Ω is a bounded
domain with boundary in the Lipschitz class C0,1, are obtained in 9.3. A de-
scription of the space ML1

p(Ω) is given, where L1
p(Ω) = {u ∈ Lp,loc(Ω) : ∇u ∈

Lp(Ω)} and Ω is an arbitrary domain. We show that, in general, the restriction
to Ω of a multiplier in W 1

p (Rn) is not a multiplier in W 1
p (Ω).

Further, in Sect. 9.4 we study the influence of a change of variables upon
Sobolev spaces. Here we introduce classes of mappings ((p, l)-diffeomorphisms)
which preserve the space W l

p, as well as classes of non-smooth manifolds on
which the space W l

p is correctly defined. These definitions of mappings and
manifolds involve spaces of multipliers. In conclusion, a change of variables
Tm,l

p acting in the pair of Sobolev spaces Wm
p (V ) → W l

p(U) is defined and
investigated.

In Sect. 9.5 we give the following modification of the classical implicit func-
tion theorem (see, for example, [KP]) which involves multipliers in its state-
ment. We consider a function u in a special Lipschitz domain G and assume
that ∇u ∈ MW l−1

p (G), l ≥ 2, that u vanishes on ∂G, i.e., for y = ϕ(x),
and that the trace of ∂u/∂y on ∂G is separated from zero. We show that
∇ϕ ∈MW

l−1−1/p
p (Rn−1).

Finally, in Sect. 9.6.2 we give a description of the space M(W̊m
p (Ω) →

W l
p(Ω)).

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 325
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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9.1 Multipliers in a Special Lipschitz Domain

9.1.1 Special Lipschitz Domains

Let z = (x, y), where x ∈ R
n−1 and y ∈ R

1. By a special Lipschitz domain
we mean G = {z ∈ R

n : x ∈ R
n−1, y > ϕ(x)}, where ϕ is a function satisfying

the Lipschitz condition

|ϕ(x1)− ϕ(x2)| ≤ L |x1 − x2|.

It is shown in [St2] (§3, Ch. 6) that there exists a function z → δ∗(z) with
the properties:

(i) δ∗ ∈ C∞(Rn\∂G) and, for any multi-index α,

|Dαδ∗| ≤ cα(δ∗)1−|α| ,

where cα are constants depending on L.
(ii) For all z ∈ R

n\G,

2 [ϕ(x)− y] ≤ δ∗(z) ≤ a [ϕ(x)− y] , (9.1.1)

where a = const > 2.
We introduce the operator C which performs an extension to the whole of

R
n of a function f defined on G. Namely, if z ∈ R

n\G, then we put

(Cf)(z) =
∫ 2

1

f(x, y + λδ∗(z))ψ(λ) dλ , (9.1.2)

where ψ is a function in C([1, 2]) such that

∫ 2

1

ψ(λ) dλ = 1 ,
∫ 2

1

λkψ(λ) dλ = 0 , k = 1, 2, . . . , l . (9.1.3)

The operator C maps W l
p(G) continuously into W l

p(R
n) (see [St2], Ch.6, §3).

Let Br = {x ∈ R
n : |x| < r} and let K be a nonnegative function in

C∞
0 (B1) with support in the cone {z : y > 2L|x|}. With a function f defined

on R
n we associate its mollification with radius h,

[K(h)f ](z) =
∫

Rn

f(z + hζ)K(ζ) dζ . (9.1.4)

It is clear that if z ∈ G then [K(h)f ](z) depends only on the values of f in G.

9.1.2 Auxiliary Assertions

Here, as in Sect. 9.1.1, G is a special Lipschitz domain in R
n.
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Lemma 9.1.1. Let w be a measurable nonnegative function defined on G and
let m and l be integers with 0 ≤ l < m and 1 < p < ∞. The best constant C
in the inequality

∫

G

(
|∇lu(z)|p + |u(z)|p

)
w(z) dz ≤ C ‖u;G‖pW m

p
, (9.1.5)

for all u ∈Wm
p , is equivalent to

L = sup

∫

e

w(z) dz

Cp,m−l(e)
, (9.1.6)

where the supremum is taken over all compact subsets e of the domain G.

Proof. We extend w by zero to the exterior of G. Then (9.1.5) implies the
same inequality with G replaced by R

n. Now the desired lower estimate for
the constant C follows immediately from Theorem 1.2.2 and Lemma 1.2.7.

Let us obtain the upper bound for C. By wε we denote a function which
coincides with w on the set

{z ∈ G : dist(z, ∂G) > ε, w(z) < 1/ε}, ε > 0,

and vanishes elsewhere. By Lemma 1.2.7,

∫

Rn

(
|∇lv|p + |v|p

)
wε dz ≤ c sup

E

∫

E

wε(z) dz

Cp,m−l(E)
‖v; Rn‖pW m

p
(9.1.7)

for all v ∈ C∞
0 (Rn), where the supremum is taken over all compact subsets of

R
n. It follows from the definition of wε and the monotonicity of the capacity

that this supremum does not exceed (9.1.6). Let u ∈ Wm
p (G). Then Cu ∈

Wm
p (Rn). Approximating Cu by C∞

0 (Rn)-functions in the norm of the space
Wm

p (Rn), we obtain from (9.1.7) that
∫

Rn

(
|∇lCu|p + |Cu|p

)
wε dz ≤ cL‖Cu; Rn‖pW m

p
.

Since Cu = u in G, wε = 0 in R
n\G and the operator C : Wm

p (G)→Wm
p (Rn)

is continuous, it follows that
∫

Rn

(|∇lu|p + |u|p)wε dz ≤ cL‖u;G‖pW m
p
.

Passing to the limit on the left-hand side as ε→ 0, we complete the proof. ��

The next assertion results directly from Lemma 9.1.1 and (1.2.8).
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Corollary 9.1.1. The equivalence relation

‖γ;G‖M(W m
p →Lp) ∼ sup

e⊂G

‖γ; e‖Lp

[Cp,m(e)]1/p

holds.

From the existence of the operator C and the interpolation property of
Sobolev spaces in R

n it follows that the spaces W k
p (G) have the same inter-

polation property. In particular,

‖γ;G‖M(W m−j
p →W l−j

p ) ≤ c ‖γ;G‖(l−j)/l

M(W m
p →W l

p)
‖γ;G‖j/l

M(W m−l
p →Lp)

. (9.1.8)

We introduce some notation. Let γ be a function defined on G, whose
distributional derivatives of order k are locally integrable with power p. We put

fk(γ; e) =
‖∇kγ; e‖Lp

[Cp,m−l+k(e)]1/p
, (9.1.9)

where m ≥ l, 0 ≤ k ≤ l and e is a compact subset of G. Further, let

sk(γ) = sup
e⊂G

fk(γ; e) , (9.1.10)

where the supremum is taken over all compact subsets of G of positive
n-dimensional measure. If m = l, then s0(γ) = ‖γ;G‖L∞ .

We note that the value sk(γ) does not change if e is replaced in its definition
by any compact subset of G of positive n-dimensional measure. In fact, for
any ε > 0 there exists a compact set E ⊂ G such that

sup
e⊂G

fk(γ; e) ≤ (1 + ε)fk(γ;E) . (9.1.11)

Let Eδ = {z ∈ E : y ≥ ϕ(x) + δ}, δ > 0. It is clear that

fk(γ; e) ≤
‖∇kγ;E‖Lp

[Cp.m−l+k(Eδ)]1/p
.

Since for small δ,

‖∇kγ;E‖Lp
≤ (1 + ε)‖∇kγ;Eδ‖Lp

,

it follows that
fk(γ;E) ≤ (1 + ε)fk(γ;Eδ)

which, together with (9.1.11), yields

sup
e⊂G

fk(γ; e) ≤ (1 + ε)2 sup
e⊂G

fk(γ; e) .

It remains to make use of the arbitrariness of ε. ��
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Lemma 9.1.2. Let K(h)γ be the mollification of γ, given by (9.1.4). Then

‖K(h)γ;G‖M(W m
p →W l

p) ≤ ‖γ;G‖M(W m
p →W l

p)

≤ lim inf
h→0

‖K(h)γ;G‖M(W m
p →W l

p) , (9.1.12)

and

lim inf
h→0

sk(K(h)γ) ≥ sk(γ) ≥ c sk(K(h)γ) . (9.1.13)

The proof of (9.1.12) is the same as that of Lemma 2.3.1. Inequality (9.1.13)
follows from (9.1.12) with l = 0, and Corollary 9.1.1.

9.1.3 Description of the Space of Multipliers

Theorem 9.1.1. Let m and l be integers with m ≥ l ≥ 0 and p ∈ (1,∞).
Then the space M(Wm

p (G) → W l
p(G)) consists of functions γ which are lo-

cally integrable with power p, along with their distributional derivatives up to
order l, and such that sl(γ) + s0(γ) <∞. The equivalence relation

‖γ;G‖M(W m
p →W l

p) ∼ sl(γ) + s0(γ) (9.1.14)

holds.

The proof is similar to that of Theorem 2.3.2 except that we use Lemmas
9.1.1 and 9.1.2 as well as the interpolation inequality (9.1.8).

From Theorem 9.1.1 and the inequality

‖∇jγ;G‖M(W m−l+j
p →Lp) ≤ c ‖γ;G‖j/l

M(W m
p →W l

p)
‖γ;G‖1−j/l

M(W m−l
p →Lp)

,

where j = 1, . . . , l − 1 (cf. (2.3.8)), it follows that

‖γ;G‖M(W m
p →W l

p) ∼
l∑

j=0

sj(γ) . (9.1.15)

Next we turn to the space M(Wm
1 (G)→W l

1(G)).

Lemma 9.1.3. Let G be a special Lipschitz domain and let w be a measurable
function defined on G. Then the best constant C in

‖wu;G‖L1 ≤ C‖u;G‖W m
1
, u ∈Wm

1 (G) , (9.1.16)

is equivalent to

N = sup
z∈Rn,ρ∈(0,1)

ρm−n‖w;Bρ(z) ∩G‖L1 .
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Proof. We extend w by zero to the exterior ofG. Then, from (9.1.16) we obtain
the same inequality with G replaced by R

n. Now the desired lower bound for
the constant C follows from Theorem 2.2.3. The same theorem implies that

‖wv; Rn‖L1 ≤ cN‖v; Rn‖W m
1

for all v ∈ Wm
1 (Rn). Minimizing the right-hand side over all extensions of

u ∈Wm
1 (G), we arrive at (9.1.16) with the constant cN . ��

Remark 9.1.1. Obviously, replacing the condition ρ ∈ (0, 1) in the definition
of N by ρ ∈ (0, C), where C is an arbitrary positive constant, we obtain an
equivalent value. The same is true if z ∈ R

n is replaced by z ∈ G.

Theorem 9.1.2. Let G be a special Lipschitz domain and let m and l be inte-
gers with 0 ≤ l ≤ m. The space M(Wm

1 (G)→W l
1(G)) consists of functions γ

which are locally integrable in G together with their distributional derivatives
of order l and such that

‖∇lγ;Bρ(z) ∩G‖L1 + ρ−l‖γ;Bρ(z) ∩G‖L1 ≤ c ρ−m+n

for all z ∈ R
n, ρ ∈ (0, 1).

The relation

‖γ;G‖M(W m
1 →W l

1) ∼ sup
z∈Rn,ρ∈(0,1)

ρm−n
l∑

j=0

ρj−l‖∇jγ;Bρ(z) ∩G‖L1

holds. (Obviously, the same relation holds if we take z ∈ G on the right-hand
side.)

Proof. Let us substitute the function ζ → u(ζ) = Φ((ζ− z)/ρ), where z ∈ R
n,

Φ ∈ C∞
0 (B2), Φ = 1 on B1, and ρ ∈ (0, 1), into the inequality

‖γu;G‖W l
1
≤ ‖γ;G‖M(W m

1 →W l
1)‖u;G‖W m

1
. (9.1.17)

Since, for j = 0, 1, . . . , l − 1,

ρj−l‖∇j(γu);B2ρ(z) ∩G‖L1 ≤ c ‖∇l(γu);B2ρ(z) ∩G‖L1 ,

it follows from (9.1.17) that

ρj−l‖∇jγ;Bρ(z) ∩G‖L1 ≤ ‖γ;G‖M(W m
1 →W l

1) ρ
−m+n .

Thus the required lower estimate for the norm in M(Wm
1 (G) → W l

1(G)) is
obtained.

The upper estimate results from the obvious inequality

‖γu;G‖W l
1
≤ c

∑
0≤k+j≤l

‖ |∇ju| |∇kγ|;G‖L1

and the above lemma. ��
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The following theorem shows that the description of the spaceM(Wm
p (G)→

W l
p(G)) is especially simple if either mp > n and p > 1, or m ≥ n and p = 1.

This theorem can be derived from Theorems 9.1.1, 9.1.2, but we present a
direct proof.

Theorem 9.1.3. Let G be a special Lipschitz domain and let m and l be
integers with 0 ≤ l ≤ m. Further, let either mp > n and p > 1, or m ≥ n and
p = 1.

Then the space M(Wm
p (G) → W l

p(G)) consists of functions γ which are
locally integrable with power p in G together with their distributional deriv-
atives of order l and such that ‖γ;B1(z) ∩ G‖W l

p
≤ const for any z ∈ R

n.
Moreover,

‖γ;G‖M(W m
p →W l

p) ∼ sup
z∈Rn

‖γ;B1(z) ∩G‖W l
p
.

(Obviously, the same relation holds if we take z ∈ G on the right-hand side
above.)

Proof. Putting the function ζ → u(ζ) = ϕ(ζ−z), where z ∈ R
n, ϕ ∈ C∞

0 (B2),
and ϕ = 1 on B1, into

‖γu;G‖W l
p
≤ ‖γ;G‖M(W m

p →W l
p)‖u;G‖W m

p
,

we obtain
‖γ;B1 ∩G‖W l

p
≤ c ‖γ;G‖M(W m

p →W l
p) .

By {B(j)}j≥1 we denote a covering of R
n by unit balls with a finite mul-

tiplicity which depends only on n. We have

‖γu;B(j) ∩G‖W l
p
≤ c

l∑
i=0

‖ |∇iu| |∇l−iγ|;B(j) ∩G‖Lp

≤ c
l∑

i=0

‖∇iu;B(j) ∩G‖Lqi
‖∇l−iγ;B(j) ∩G‖Lqip/(qi−p) ,

where qi = pn/[n − p(m − i)] if n > p(m − i), qi = ∞ if n < p(m − i) and
qi is an arbitrary positive number in the case n = p(m− i). According to the
Sobolev imbedding theorem,

‖∇iu;B(j) ∩G‖Lqi
≤ c ‖u;B(j) ∩G‖W m

p
,

‖∇l−iγ;B(j) ∩G‖Lqip/(qi−p) ≤ c ‖γ;B(j) ∩G‖W l
p
.

Consequently,

‖γu;B(j) ∩G‖p
W l

p
≤ c ‖γ;B(j) ∩G‖p

W l
p
‖u;B(j) ∩G‖pW m

p
. (9.1.18)

Summing over j and applying the inequality
∑

aα
j ≤ (

∑
aj)α, where aj ≥ 0, α ≥ 1,

we complete the proof. ��
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9.2 Extension of Multipliers to the Complement
of a Special Lipschitz Domain

Theorem 9.2.1. Let γ ∈M(Wm
p (G)→W l

p(G)), where m and l are integers,
0 ≤ l ≤ m and 1 ≤ p <∞. Then Cγ ∈M(Wm

p (Rn)→W l
p(R

n)) and

‖Cγ; Rn‖M(W m
p →W l

p) ≤ c ‖γ;G‖M(W m
p →W l

p) . (9.2.1)

Proof. Let u ∈ C∞
0 (Rn). We have

‖uCγ; Rn‖W l
p
≤ ‖uCγ; Rn\G‖Lp

+ ‖∇l(uCγ); Rn\G‖Lp
+ ‖uγ;G‖W l

p
. (9.2.2)

Let us estimate the first term on the right-hand side. It is clear that

|(Cγ)(z)| ≤ c

∫ 2

1

|γ(x, y + λδ∗(z))| dλ = c(δ∗)−1

∫ 2δ∗

δ∗
|γ(x, y + s)| ds .

Using property (ii) of δ∗, we obtain for z ∈ R
n\G

|(Cγ)(z)| ≤ c (ϕ(x)− y)−1

∫ a(ϕ(x)−y)

2(ϕ(x)−y)

|γ(x, y + s)| ds

= c

∫ a

2

|γ(x, y + t(ϕ(x)− y))| dt . (9.2.3)

This and the Minkowski inequality imply that

‖uCγ; Rn\G‖Lp
≤ c
[∫

Rn\G

|u(z)|p
(∫ a

2

|γ(x, y + t(ϕ(x)− y))| dt
)p

dz
]1/p

≤ c

∫ a

2

(∫

Rn\G

|u(z)γ(x, y + t(ϕ(x)− y))|p dz
)1/p

dt .

Let p > 1. In view of Lemma 9.1.1, we have

‖uCγ; Rn\G‖Lp
(9.2.4)

≤ C sup
2<t<a

sup
E⊂Rn\G

(∫

E

|γ(x, y + t(ϕ(x)− y))|p dz
)1/p

[Cp,m−l(E)]1/p
‖u; Rn\G‖W m−l

p
.

By e(t) we denote the image of a compact set E under the mapping

z → ζ = (ξ, η), where ξ = x, η = y + t(ϕ(x)− y). (9.2.5)

Since
η ≥ y + 2(ϕ(x)− y) > ϕ(x) = ϕ(ξ)
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for y < ϕ(x), (9.2.5) maps R
n\G into G. It is clear that z → ζ is Lipschitz uni-

formly with respect to t and that the inverse mapping has the same property.
From this fact and the definition (1.2.6) it follows that

Cp,m−l(E) ∼ Cp,m−l(e(t)) .

Therefore the right-hand side of (9.2.4) does not exceed

c sup
2<t<a

sup
e(t)⊂G

f0(γ; e(t))‖u; Rn\G‖W m−l
p

.

Thus, for p > 1,

‖uCγ; Rn\G‖Lp
≤ c s0(γ)‖u; Rn\G‖W m−l

p
. (9.2.6)

In the case p = 1, using Lemma 9.1.3 in place of Lemma 9.1.1, we get the
following analogue of the inequality (9.2.4):

‖uCγ; Rn\G‖L1

≤c sup
2<t<a

sup
σ∈Rn\G,ρ∈(0,1)

ρm−l−n

∫

Bρ(σ)\G

|γ(x, y+t(ϕ(x)−y))|dz‖u; Rn\G‖W m−l
p

.

Applying the properties of the mapping (9.2.5) which were used earlier in this
proof, we arrive at

‖uCγ; Rn\G‖L1

≤ c sup
σ∈G,ρ∈(0,1)

ρm−l−n

∫

Bcρ(σ)∩G

|γ(z)| dz ‖u; Rn\G‖W m−l
1

. (9.2.7)

Clearly, we may assume the last integral to be taken over Bρ(σ)∩G by means
of an appropriate change of the constant factor before the supremum. For
simplicity of notation in the case p = 1 we shall denote the value

sup
σ∈G,ρ∈(0,1)

ρm−l+j−n

∫

Bρ(σ)∩G

|∇jγ(z)| dz

by sj(γ) for the rest of the proof.
Obviously, the second term on the right-hand side of (9.2.2) is not greater

than

c

l∑
j=0

‖ |∇l−ju| |∇jCγ)|; Rn\G‖Lp
. (9.2.8)

By (9.2.6) and (9.2.7) the term corresponding to j = 0 does not exceed

c s0 (γ)‖u; Rn\G‖W m
p
.
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Next we estimate the other terms in (9.2.8). Applying the operator Dκ

xD
k
y ,

|κ|+k = j ≥ 1, to Cγ and formally differentiating under the integral, we obtain
a linear combination of expressions of the form

∫ 2

1

(Dρ
xD

r
yγ)(x, ϕ(λ, z))

r∏
ν=1

Dαν
x Daν

y [ϕ(λ, z)]ψ(λ) dλ , (9.2.9)

where

0 ≤ ρ ≤ κ , |ρ|+ r ≤ |κ|+ k ,

r∑
ν=1

αν = κ − ρ ,

r∑
ν=1

aν = k ,

and ϕ(λ, z) = y+λδ∗(z). For each derivative (Dρ
xD

r
yγ)(x, ϕ(λ, z)) with |ρ|+r <

|κ|+ k, we take the Taylor expansion

(Dρ
xD

r
yγ)(x, y + λδ∗)(z)

=
|κ|+k−|ρ|−r−1∑

j=0

(j!)−1[(λ− 1)δ∗(z)]j(Dρ
xD

r+j
y γ)(x, y + δ∗(z)) (9.2.10)

+
1

(|κ|+k−|ρ|−r)!

∫ λδ∗(z)

δ∗(z)

[λδ∗(z)−t]|κ|+k−|ρ|−r−1(Dρ
xD

|κ|+k−|ρ|
y γ)(x, y+t)dt.

In view of (9.1.3),

∫ 2

1

(λ− 1)j
r∏

ν=1

Dαν
x Daν

y [y + λδ∗(z)]ψ(λ) dλ = 0 .

The absolute value of the integral on the right-hand side of (9.2.10) is ma-
jorized by

c [δ∗(z)]|κ|+k−|ρ|−r−1

∫ λδ∗(z)

δ∗(z)

|(Dρ
xD

|κ|+k−|ρ|
y γ)(x, y + t)| dt .

Moreover, by the inequality

|Dτ
z δ

∗| ≤ c|τ |(δ∗)1−|τ |

we have
∣∣∣

r∏
ν=1

Dαν
x Daν

y [ϕ(λ, z)]
∣∣∣ ≤ c

r∏
ν=1

(δ∗(z))1−|αν |−aν

= c (δ∗(z))r+|ρ|−|κ|−k . (9.2.11)

Consequently, for |ρ|+ r < |κ|+ k the absolute value of integral (9.2.9) does
not exceed
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c (δ∗(z))−1

∫ 2

1

dλ

∫ λδ∗(z)

δ∗(z)

|∇|κ|+kγ(x, y + t)| dt

≤ c (δ∗)−1

∫ 2δ∗

δ∗
|(∇|κ|+kγ)(x, y + s)| ds . (9.2.12)

It follows directly from (9.2.11) that the integral (9.2.9) is also majorized by
(9.2.12) in the case |ρ|+ r = |κ|+ k.

Thus, for j ≥ 1,

|∇jCγ)(z)| ≤ c

∫ a

2

|∇jγ(x, y + t(ϕ(x)− y))| dt

(cf. (9.2.3)). Hence, duplicating the arguments used in the proof of (9.2.6) and
(9.2.7) and applying (9.2.3), we find that

‖ |∇l−ju| |∇jCγ|; Rn\G‖Lp
≤ c sj(γ)‖u; Rn\G‖W m

p
.

Hence the second term in (9.2.2) is not greater than

c
l∑

j=0

sj(γ)‖u; Rn\G‖W m
p

which, together with (9.2.2), (9.2.6) and (9.2.7), gives

‖uCγ; Rn‖W l
p
≤ c

l∑
j=0

sj(γ)‖u; Rn\G‖W m
p

+ ‖γ;G‖M(W m
p →W l

p)‖u;G‖W m
p
.

By (9.1.15) this completes the proof. ��

The next assertion complements Theorem 9.1.1, providing another descrip-
tion of the space M(Wm

p (G)→W l
p(G)).

Corollary 9.2.1. Let m and l be integers with m ≥ l ≥ 0 and p ∈ (1,∞).
Then the space M(Wm

p (G) → W l
p(G)) consists of the functions γ which are

locally integrable with power p, along with their distributional derivatives up
to order l, and such that sl(γ) <∞. The equivalence relation

‖γ;G‖M(W m
p →W l

p) ∼ sl(γ) + ‖γ;G‖L1,unif (9.2.13)

holds.

Proof. We use Theorem 9.1.1 and show that

‖γ;G‖L1,unif ≤ c s0(γ) ≤ sl(γ) + ‖γ;G‖L1,unif . (9.2.14)

The lower estimate for s0(γ) trivially holds. We prove the upper estimate.
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By Lemma 2.3.9,

s0(γ) ≤ c sup
E⊂Rn

‖Cγ;E‖Lp

[Cp,m−l(E)]1/p

≤ c
(

sup
E⊂Rn

‖∇l(Cγ);E‖Lp

[Cp,m(E)]1/p
+ ‖Cγ; Rn‖L1,unif

)
. (9.2.15)

Obviously,

sup
E⊂Rn

‖∇l(Cγ);E‖Lp

[Cp,m(E)]1/p
≤ c
(
sl(γ) + sup

E⊂Rn\G

‖∇l(Cγ);E‖Lp

[Cp,m(E)]1/p

)
. (9.2.16)

By (9.2.6) with γ replaced by ∇lγ and with m− l replaced by m, we find that

‖u∇l(Cγ); Rn\G‖Lp
≤ c sl(γ)‖u; Rn\G‖W m

p
, (9.2.17)

which, in view of Lemma 9.1.1 with R
n\G in place of G, implies that

sup
E⊂Rn\G

‖∇l(Cγ);E‖Lp

[Cp,m(E)]1/p
≤ c sl(γ).

Combining the last inequality with (9.2.15) and (9.2.16), and noting that

‖Cγ; Rn‖L1,unif ≤ c ‖γ;G‖L1,unif ,

we arrive at (9.2.14). The proof is complete. ��

9.3 Multipliers in a Bounded Domain

9.3.1 Domains with Boundary in the Class C0,1

We say that a bounded domain Ω has its boundary in the class Ck,1, k =
0, 1, . . . , if any point of ∂Ω has a neighborhood in which ∂Ω can be represented
(in a Cartesian coordinate system) by y = ϕ(x), where ϕ is a function whose
derivatives of order k satisfy the Lipschitz condition.

Let ∂Ω ∈ C0,1 and let ε be a small positive number. We construct a
covering of the set

Γε = {z ∈ R
n : dist(z, ∂Ω) ≤ ε}

by domains U1, . . . , UN with the following property: for any i = 1, . . . , N there
exists a special Lipschitz domain Gi such that Ui ∩Ω = Ui ∩Gi. We add the
set U0 = Ω\Γε/2 to the collection {Ui}i≥1.
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By {ϕi}ni=0 we denote a set of nonnegative functions such that

(i) ϕi ∈ C∞
0 (Ui) ; (ii)

∑
0≤i≤N

ϕ2
i = 1 on Ω .

To define an extension operator from Ω to R
n, we note that for i = 1, . . . , N

there exists a linear continuous operator

Ci : W l
p(Ui ∩Ω)→W l

p(R
n), p ≥ 1.

Let C0 denote the operator of extension by zero to the exterior of the set U0.
Obviously, the operator

C =
∑

0≤i≤N

ϕiCiϕi (9.3.1)

performs an extension of a function defined on Ω to R
n. We introduce the

operator K(h), h > 0, by

K(h)γ =
∑

0≤i≤N

ϕiKi(h)(ϕiγ) , (9.3.2)

where Ki(h) is the mollification operator defined by (9.1.4) for a special Lip-
schitz domain Gi.

9.3.2 Auxiliary Assertions

Lemmas 9.1.1 and 9.1.3 hold for any bounded domain with boundary in the
class C0,1 except that in their proof we mean by C the operator given by
(9.3.1).

To restate Theorem 9.1.1 for bounded domains with boundary in the class
C0,1 we need the following two lemmas.

Lemma 9.3.1. The estimate

sup
e⊂Ω

‖∇kγ; e‖Lp

[Cp,m(e)]1/p
≤c sup

z∈Ω
ρ∈(0,1)

ρm−n/p
(
‖∇lγ;Bρ(z)‖Lp

+ρ−l‖γ;Bρ(z)‖Lp

)
(9.3.3)

holds, where p > 1, k = 0, 1, . . . , l − 1.

Proof. If mp > n, then the capacity Cp,m(e) of any non-empty compact set e
in Ω is separated from zero. Hence the left-hand side of (9.3.3) is equivalent
to the norm ‖∇kγ;Ω‖Lp

. Further,

‖∇kγ;Ω‖Lp
≤ c (‖∇lγ;Ω‖Lp

+ ‖γ;Ω‖Lp
)

which implies (9.3.3).
For mp ≤ n the left-hand side of (9.3.3) does not exceed

c sup
e⊂Ω

‖∇kγ; e‖Lq

[Cp,s(e)]1/p
, (9.3.4)
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where s < m, q > p and the numbers s and q are sufficiently close to m and
p respectively. From the inequality

(∫

Ω

|u|q dµ
)p/q

≤ c sup
z∈Ω,ρ∈(0,1)

ρps−n [µ(Bρ(z) ∩Ω]p/q ‖u; Rn‖pW s
p
,

where µ is a measure in Ω and u ∈ C∞
0 (Rn) (see Lemma 1.3.1), it follows that

(9.3.4) is not greater than

c sup
z∈Ω,ρ∈(0,1)

ρs−n/p‖∇kγ;Bρ(z)‖Lq
.

Since q is close to p, it follows that

ρk−l+n(1/p−1/q)‖∇kγ;Bρ(z)‖Lq
≤ c (‖∇lγ;Bρ(z)‖Lp

+ ρ−l‖γ;Bρ(z)‖Lp
).

Consequently, (9.3.4) is majorized by

c sup
z∈Ω,ρ∈(0,1)

ρµ(ρm−n/p‖∇lγ;Bρ(z)‖Lp
+ ρm−l−n/p‖γ;Bρ(z)‖Lp

),

where µ = l − k + n(1/q − 1/p) + s−m. Since µ > 0, the result follows. ��

Lemma 9.3.2. The following inequalities hold:

c ‖K(h)γ;Ω‖M(W m
p →W l

p) ≤ ‖γ;Ω‖M(W m
p →W l

p)

≤ lim inf
h→0

‖K(h)γ;Ω‖M(W m
p →W l

p) , (9.3.5)

lim inf
h→0

sk(K(h)γ) ≥ sk(γ) , (9.3.6)

sk(K(h)γ) ≤ c [sk(γ) + s0(γ)] , (9.3.7)

where sk(γ) is the same as in (9.1.10) with G replaced by Ω.

Proof. It is clear that

‖K(h)γ;Ω‖M(W m
p →W l

p) ≤ c
∑

0≤i≤N

‖Ki(h)(ϕiγ);Gi‖M(W m
p →W l

p) .

This and Lemma 9.1.2 imply that

‖K(h)γ;Ω‖M(W m
p →W l

p) ≤ c
∑

0≤i≤N

‖ϕiγ;Gi‖M(W m
p →W l

p)

= c
∑

0≤i≤N

‖ϕiγ;Ω‖M(W m
p →W l

p) .

Since ϕ ∈ C∞
0 (Rn), the left inequality in (9.3.5) is proved.
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The right inequality in (9.3.5) follows from

‖uγ;Ω‖W l
p

= lim
h→0
‖uK(h)γ;Ω‖W l

p
≤ lim inf

h→0
‖K(h)γ;Ω‖M(W m

p →W l
p)‖u;Ω‖W m

p
.

Obviously, for any compact set E ⊂ Ω

lim inf
h→0

sk(K(h)γ) ≥
lim
h→0

(∫

E

|∇k(K(h)γ)|p dx
)1/p

[Cp,m−l+k(E)]1/p
. (9.3.8)

Since
ϕiKi(h)(ϕiγ)→ ϕ2

i γ in W k
p (Ω) and

∑
i

ϕ2
i = 1 ,

the right-hand side of (9.3.8) is equal to fk(γ;E). Thus, (9.3.6) is proved.
Next we turn to the estimate (9.3.7). Since ϕ ∈ C∞

0 (Rn), it follows for
small enough h that

∫

E

∣∣∇k[ϕiKi(h)(ϕiγ)]
∣∣p dx ≤ c

∑
0≤j≤k

∫

E∩Gi

∣∣∇j [Ki(h)(ϕiγ)]
∣∣p dx .

By Lemma 9.1.2,

sup
e⊂Gi

∫

e

∣∣∇j [Ki(h)(ϕiγ)]
∣∣p dx

Cp,m−l+k(e)
≤ sup

e⊂Gi

∫

e

|∇j(ϕiγ)|p dx

Cp,m−l+k(e)
.

Therefore,

sk(K(h)γ) ≤ c
∑

0≤i≤n

∑
0≤j≤k

sup
e⊂Gi

∫

e

|∇jγ|p dx

Cp,m−l+k(e)
.

It remains to use Lemma 9.3.1, noting first that the right-hand side of (9.3.3)
does not exceed c(sl(γ) + s0(γ)). ��

9.3.3 Description of Spaces of Multipliers in a Bounded Domain
with Boundary in the Class C0,1

Theorem 9.3.1. Let m and l be integers with m ≥ l ≥ 0 and p ∈ (1,∞). The
space M(Wm

p (Ω)→W l
p(Ω)) consists of functions γ ∈W l

p(Ω) such that

sup
e⊂Ω

‖∇lγ; e‖Lp

[Cp,m(e)]1/p
<∞ . (9.3.9)
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The following inequalities hold:

c
l∑

j=0

sup
e⊂Ω

‖∇jγ; e‖Lp

[Cp,m−l+j(e)]1/p
≤ ‖γ;Ω‖M(W m

p →W l
p)

≤ c
(

sup
e⊂Ω

‖∇lγ; e‖Lp

[Cp,m(e)]1/p
+ ‖γ;Ω‖L1

)
. (9.3.10)

The proof follows the same lines as that of Corollary 2.3.4 and the theorems
preceding it, except that in place of the usual mollification operator we use
K(h) given by (9.3.2) and Lemma 9.3.2.

The next assertion is proved in the same way as Theorem 9.1.2.

Theorem 9.3.2. Let m and l be integers with m ≥ l ≥ 0. The space
M(Wm

1 (Ω)→W l
1(Ω)) consists of functions γ ∈W l

1(Ω) such that

‖∇lγ;Bρ(z) ∩Ω‖L1 + ρ−l‖γ;Bρ(z) ∩Ω‖L1 ≤ c ρn−m

for all z ∈ Ω and ρ ∈ (0, 1). The relation

‖γ;Ω‖M(W m
1 →W l

1) ∼ sup
z∈Ω,ρ∈(0,1)

ρm−n
l∑

j=0

ρj−l‖∇jγ;Bρ(z) ∩Ω‖L1

holds.

The following theorem results directly from Theorem 9.1.3.

Theorem 9.3.3. Let either mp > n and p ∈ (1,∞), or m ≥ n and p = 1.
Then the space M(Wm

p (Ω)→W l
p(Ω)) coincides with W l

p(Ω).

A corollary of Theorem 9.2.1 and formula (9.3.1) is:

Theorem 9.3.4. Let C be the extension operator defined by (9.3.1) and let
γ ∈ (Wm

p (Ω)→W l
p(Ω)), p ≥ 1. Then Cγ ∈M(Wm

p (Rn)→W l
p(R

n)) and

‖Cγ; Rn‖M(W m
p →W l

p) ≤ c ‖γ;Ω‖M(W m
p →W l

p) .

9.3.4 Essential Norm and Compact Multipliers in a Bounded
Lipschitz Domain

Let Ω be a bounded domain with ∂Ω ∈ C0,1. As in the case of the whole space
R

n, we associate with any element γ ∈ M(Wm
p (Ω) → W l

p(Ω)) the essential
norm

ess ‖γ;Ω‖M(W m
p →W l

p) = inf
{T}
‖γ − T ;Ω‖W m

p →W l
p

where {T} is the collection of all compact linear operators: Wm
p (Ω)→W l

p(Ω).
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To derive two-sided estimates for the essential norm in M(Wm
p (Ω) →

W l
p(Ω)) we do not need new arguments beyond those given in Chap. 7. This

is even simpler, since m and l are integers and the domain Ω is bounded now.
The role of the operator T∗ used in Chap. 7 is played by the mapping T∗,
defined by

(T∗u)(x) = γ(x)
∑

j

ϕ(j)(x)P (j)(u;x)

(cf. the proof of the second part of Theorem 7.2.1). Here we use the following
notation: {ϕ(j)} is a smooth finite partition of unity subordinate to the cov-
ering of Ω by open balls K(j)

δ with radius δ and with centers xj ∈ Ω; P (j) are
polynomials of the form

∑
|β|≤m−1

(x− xj

δ

)β

δ−n

∫

K
(j)
δ ∩Ω

ψβ

(y − xj

δ

)
u(y) dy

where ψβ ∈ C∞
0 (B1).

In the same way as in Chap. 7, majorants for ess ‖γ;Ω‖W m
p →W l

p
can be ob-

tained from upper bounds for the norms ‖(γ−T∗)u;Ω‖W l
p

which are collected
in the next assertion (cf. Remark 7.2.3).

Lemma 9.3.3. Let γ ∈ M(Wm
p (Ω) → W l

p(Ω)) where m and l are integers
with m ≥ l > 0.

(i) If p > 1 and mp < n, then

‖γ − T∗;Ω‖W m
p →W l

p
≤ c
(

sup
{e⊂Ω : d(e)≤δ}

‖∇lγ; e‖
[Cp,m(e)]1/p

+ sup
x∈Ω
‖γ;Bδ(x) ∩Ω‖Lp

)
.

In particular,

‖γ − T∗;Ω‖W l
p→W l

p
≤ c
(

sup
{e⊂Ω : d(e)≤δ}

‖∇lγ; e‖Lp

[Cp,l(e)]1/p
+ ‖γ;Ω‖L∞

)
.

If p > 1 and mp = n, then δ is replaced by δ1/2 on the right-hand sides of
these inequalities.

(ii) If m ≤ n, then

‖γ − T∗;Ω‖W m
1 →W l

1
≤ c δm−n sup

x∈Ω

(
‖∇lγ;Bδ(x) ∩Ω‖L1

+δ−l‖γ;Bδ(x) ∩Ω‖L1

)
.

In particular,

‖γ − T∗;Ω‖W l
1→W l

1
≤ c
(
δl−n sup

x∈Ω
‖∇lγ;Bδ(x) ∩Ω‖L1 + ‖γ;Ω‖L∞

)
.

Now we state a theorem on two-sided estimates for the essential norm.
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Theorem 9.3.5. Let γ ∈M(Wm
p (Ω)→W l

p(Ω)), where m and l are integers
with m ≥ l ≥ 0.

(i) If p > 1 and mp ≤ n, then

ess ‖γ;Ω‖M(W m
p →W l

p)

∼ lim
δ→0

sup
{e⊂Ω : d(e)≤δ}

( ‖∇lγ; e‖Lp

[Cp,m(e)]1/p
+

‖γ; e‖Lp

[Cp,m−l(e)]1/p

)

∼ lim
δ→0

(
sup

{e⊂Ω : d(e)≤δ}

‖∇lγ; e‖Lp

[Cp,m(e)]1/p
+ sup

{x∈Ω,ρ≤δ}
ρm−l−n

p ‖γ;Bρ(x) ∩Ω‖Lp

)
.

In particular,

ess ‖γ;Ω‖MW l
p
∼ lim

δ→0
sup

{e⊂Ω : d(e)≤δ}

‖∇lγ; e‖Lp

[Cp,l(e)]1/p
+ ‖γ;Ω‖L∞ .

(ii) If m < n, then

ess ‖γ;Ω‖M(W m
1 →W l

1) ∼ lim sup
δ→0

sup
x∈Ω
ρ≤δ

ρm−n
(
‖∇lγ;Bρ(x) ∩Ω‖L1

+ρ−l‖γ;Bρ(x) ∩Ω‖L1

)
.

In particular,

ess ‖γ;Ω‖MW l
1
∼ lim sup

δ→0
sup
x∈Ω
ρ≤δ

ρl−n‖∇lγ;Bρ(x) ∩Ω‖L1 + ‖γ;Ω‖L∞ .

(iii) If mp > n and p ∈ (1,∞), or m ≥ n and p = 1, then

ess ‖γ;Ω‖M(W m
p →W l

p) = 0 for m > l

and
ess ‖γ;Ω‖MW l

p
∼ ‖γ;Ω‖L∞ for m = l .

This immediately implies:

Proposition 9.3.1. A function γ ∈ M(Wm
p (Ω) → W l

p(Ω)), where m and l

are integers with m > l ≥ 0, belongs to the space M̊(Wm
p (Ω) → W l

p(Ω)) of
compact multipliers if and only if

lim
δ→0

sup
{e⊂Ω : d(e)≤δ}

( ‖γ; e‖Lp

[Cp,m−l(e)]1/p
+
‖∇lγ; e‖Lp

[Cp,m(e)]1/p

)
= 0

or, equivalently,

lim
δ→0

(
sup

{e⊂Ω : d(e)≤δ}

‖∇lγ; e‖Lp

[Cp,m(e)]1/p
+ sup

{x∈Ω,ρ≤δ}
ρm−l−n

p ‖γ;Bρ(x) ∩Ω‖Lp

)
= 0
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for p ∈ (1,∞) and mp ≤ n;

lim
δ→0

δm−n sup
x∈Ω

(
‖∇lγ;Bδ(x) ∩Ω‖L1 + δ−l‖γ;Bδ(x) ∩Ω‖L1

)
= 0

for m < n. Finally,

M̊(Wm
p (Ω)→W l

p(Ω)) = W l
p(Ω)

if mp > n and p ∈ (1,∞), or m ≥ n and p = 1.

Similarly to Theorem 7.2.11, we can obtain the following description of
the space of compact multipliers.

Proposition 9.3.2. M̊(Wm
p (Ω) → W l

p(Ω)), where m and l are integers
with m > l ≥ 0, is the completion of C∞(Ω) with respect to the norm in
M(Wm

p (Ω)→W l
p(Ω)).

In concert with this assertion, by M̊W l
p(Ω) we denote the completion of

C∞(Ω) with respect to the norm of MW l
p(Ω).

The following proposition is an analogue of Theorem 7.3.10.

Proposition 9.3.3. A function γ belongs to M̊W l
p(Ω), where l is a positive

integer, if and only if γ ∈ C(Ω) and one of the following conditions is satisfied:
(i) If pl ≤ n and p > 1, then

sup
{e⊂Ω : d(e)≤δ}

‖∇lγ; e‖Lp

[Cp,l(e)]1/p
= o(1) as δ → 0 . (9.3.11)

(ii) If l < n, then

δl−n sup
x∈Ω
‖∇lγ;Bδ(x)‖L1 = o(1) as δ → 0 . (9.3.12)

(iii) If pl > n and p > 1, or l ≥ n and p = 1, then M̊W l
p(Ω) = W l

p(Ω).

To conclude this section, we consider a relation between the essential norm
and the constant K in the inequality

‖γu;Ω‖W l
p
≤ K‖u;Ω‖W m

p
+ C(γ)‖u;Ω‖Lp

. (9.3.13)

Theorem 9.3.6. Let γ ∈M(Wm
p (Ω)→W l

p(Ω)), where m and l are integers
with m ≥ l ≥ 0, and let inf K be the infimum of those K for which there exists
a constant C(γ) such that (9.3.13) holds for all u ∈Wm

p (Ω). Then

inf K ≤ ess ‖γ;Ω‖M(W m
p →W l

p) ≤ c inf K (9.3.14)

where c = c(Ω,n, p, l,m).
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Proof. We set
u−

∑
j

ϕ(j)P (j)

in place of u in (9.3.13). Then

‖γu−T∗u;Ω‖W l
p
≤ K

∥∥u−
∑

j

ϕ(j)P (j);Ω
∥∥

W m
p

+C(γ)
∥∥u−

∑
j

ϕ(j)P (j);Ω
∥∥

Lp
.

We have
∥∥u−

∑
j

ϕ(j)P (j);Ω
∥∥p

W m
p

=
∥∥∑

j

ϕ(j)(u− P (j));Ω
∥∥p

W m
p

≤ c
∑

j

m∑
k=0

δ−kp‖u− P (j);K(j)
δ ∩Ω‖p

W m−k
p

.

Since Ω is Lipschitz, it follows that, for some c ≥ 1,

‖u− P (j);K(j)
δ ∩Ω‖W m−k

p
≤ c δk‖u;K(j)

cδ ∩Ω‖W m
p
.

Therefore,
‖(γ − T∗)u;Ω‖W l

p
≤ c (K + C(γ)δm)‖u;Ω‖W m

p

and hence
ess ‖γ;Ω‖M(W m

p →W l
p) ≤ c (K + C(γ)δm)

for any small enough δ. The right estimate in (9.3.14) follows.
Now we turn to the left estimate of (9.3.14). According to the definition

of the essential norm, for some compact operator T : Wm
p (Ω) → W l

p(Ω) and
for all u ∈Wm

p (Ω), we have

‖γu;Ω‖W l
p
≤ ( ess ‖γ;Ω‖W m

p →W l
p

+ ε)‖u;Ω‖W m
p

+ ‖Tu;Ω‖W l
p
.

We need to show that for any ε > 0 one can find a constant Cε such that

‖Tu;Ω‖W l
p
≤ ε ‖u;Ω‖W m

p
+ Cε ‖u;Ω‖Lp

. (9.3.15)

We assume that this is not the case. Then for some ε > 0 there exist a function
sequence {uj} with ‖uj ;Ω‖W m

p
= 1 and a number sequence {kj}, kj → +∞,

such that

‖Tuj ;Ω‖W l
p
> ε+ kj‖uj ;Ω‖Lp

. (9.3.16)

Since the operator T : Wm
p (Ω) → W l

p(Ω) is bounded and the norm of uj in
Wm

p (Ω) is equal to one, we see by (9.3.16) that uj → 0 in Lp(Ω). We select
a subsequence from {uj} weakly convergent in Wm

p (Ω) for which we retain
the notation {uj}. Let v be its weak limit. Then, for any g ∈ Lp′(Ω), where
p+ p′ = pp′, we have
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∫

Ω

guj dx→
∫

Ω

gv dx

and hence v = 0 because uj → 0 in Lp(Ω). Since T transforms a sequence
weakly convergent in Wm

p (Ω) into a sequence strongly convergent in W l
p(Ω)

we have
‖Tuj ;Ω‖W l

p
→ 0,

contrary to (9.3.16). ��

Proposition 9.3.4. If m = l and γ ∈ M̊(W l
p(Ω)), then

inf K = ‖γ;Ω‖L∞ .

Proof. Let γ1 be a function in C∞(Ω) such that ‖γ−γ1;Ω‖MW l
p
< ε. Clearly,

‖γ1u;Ω‖W l
p
≤ (‖γ;Ω‖L∞‖u;Ω‖W l

p
+ c

l∑
j=1

‖ |∇jγ1| |∇l−ju|;Ω‖Lp
.

Hence

‖γu;Ω‖W l
p
≤
(
‖γ;Ω‖L∞ + 2ε

)
‖u;Ω‖W l

p
+ c ‖γ1;Ω‖Cl‖u;Ω‖W l−1

p
.

Since
‖u;Ω‖W l−1

p
≤ ε ‖u;Ω‖W l

p
+ c(ε) ‖u;Ω‖Lp

,

it follows that inf K ≤ ‖γ;Ω‖L∞ .
Let us estimate inf K from below. We set

uδ(x) = δl−n/pη((x− y)/δ)

into (9.3.13), where m = l. We take y ∈ Ω, δ > 0, η ∈ C∞
0 (B1), η(0) = 1.

By definition of M̊W l
p(Ω), the function γ can be assumed to be smooth in Ω.

One can easily see that

‖γuδ;Ω‖Lp
= |γ(y)| ‖uδ;Ω‖W l

p
+ o(1)

and
‖uδ;Ω‖Lp

= o(1) as δ → 0.

This, together with (9.3.13) and the inequality

lim inf
δ→0

‖uδ;Ω‖W l
p
> 0,

gives |γ(y)| ≤ K. ��



346 9 Sobolev Multipliers in a Domain, Multiplier Mappings and Manifolds

Remark 9.3.1. The inequality

‖γu;Ω‖W l
p
≤
(
‖γ;Ω‖L∞ + ε

)
‖u;Ω‖W l

p
+ C(γ; ε)‖u;Ω‖Lp

with an arbitrarily small ε > 0 is used in the Lp-theory of elliptic boundary
value problems (see, for example, [Tr3], Sect. 5.3.4).

In conclusion, we state an obvious corollary of Theorem 9.3.6 and
Proposition 9.3.4.

Corollary 9.3.1. If γ ∈ M̊(W l
p(Ω)) then

‖γ;Ω‖L∞ ≤ ess ‖γ;Ω‖MW l
p
≤ c ‖γ;Ω‖L∞ . (9.3.17)

Similarly to Theorem 7.3.1, we can prove that the left estimate in (9.3.17)
holds for any γ ∈MW l

p(Ω).

9.3.5 The Space ML1
p(Ω) for an Arbitrary Bounded Domain

Let Ω be a domain in R
n with compact closure. By L1

p(Ω) we denote the space
of functions in Lp,loc(Ω) with the first distributional derivatives in Lp(Ω),
p ∈ [1,∞). We supply L1

p(Ω) with the norm

‖u;Ω‖L1
p

= ‖∇u;Ω‖Lp
+ ‖u;ω‖Lp

,

where ω is a nonempty domain contained in Ω along with its closure. We can
check that the change of ω leads to an equivalent norm.

If Ω is a domain with boundary in the class C0,1, then L1
p(Ω) ⊂ Lp(Ω)

and therefore L1
p(Ω) = W 1

p (Ω). Comparing Theorem 2.1.1 with Theorems
9.3.1, 9.3.2 and using Theorem 9.3.4, we obtain that for Lipschitz domains
the space ML1

p(Ω) coincides with the space of restrictions to Ω of multipliers
in W 1

p (Rn). The following example shows that this fails for arbitrary domains.

Example 9.3.1. Let Ω be the union of the rectangles

Am = {x : 21−m − δm < x1 < 21−m, 2/3 < x2 < 1} ,
Bm = {x : 21−m − εm < x1 < 21−m, 1/3 ≤ x2 ≤ 2/3} ,
C = {x : 0 < x1 < 1, 0 < x2 < 1/3} ,

where δm = 2−m−1, εm = 2−(m+1)β , β ≥ 1, m = 1, 2, . . . (see Fig. 9.1). This
domain was proposed by Nikodym in 1933 [Nik] as an example of the failure
of the Poincaré inequality.

We show that the function γ(x) = xλ
1 is a multiplier in L1

p(Ω) if and only
if λ ≥ (β+ p− 1)/p. It is clear that this function is a multiplier in W 1

p,loc(R
n)
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0

1

y

x

C

Am

Bm

1

Fig. 9.1. Domain in Example 9.3.1

even for λ > (p − 1)/p. Thus, in the case (p − 1)/p < λ < (β + p − 1)/p,
the restriction to Ω of the multiplier xλ

1 in W 1
p,loc(R

n) is not a multiplier in
L1

p(Ω).
The necessity of the condition λ ≥ (β + p− 1)/p can be checked easily. In

fact, let u be a continuous function equal to (2mβm−2)1/p in Am and to zero
in C, and let u be linear to Bm. Clearly,

‖∇u;Ω‖pLp
=

∞∑
m=1

2mβ m−2 mes2Bm <∞ ,

‖∇(γu);Ω‖pLp
≥ c

∞∑
m=1

2mβ m−2 2−(λ−1)pm mes2Am .

The last series diverges if λ < (β + p− 1)/p.
Now let λ ≥ (β + p − 1)/p. By B+

m and B−
m we denote the rectangle Bm

raised and lowered by one-third, respectively. We have

δ−1
m

∫

Am

|u|pdx− ε−1
m

∫

B+
m

|u|pdx ≤ c δp−1
m

∫

Am

|∂u/∂x2|pdx .
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Moreover,

1
2

∫

Bm∪B+
m

|u|pdx−
∫

B−
m

|u|pdx ≤ c

∫

Bm∪B+
m∪B−

m

|∂u/∂x1|pdx .

Therefore,
∫

Am∪Bm

|u|pdx ≤ c
δm

εm

(∫

Am∪Bm∪B−
m

|∇u|pdx+
∫

B−
m

|u|pdx
)
. (9.3.18)

Obviously,

‖u∇γ;Ω‖pLp
≤ c

(∫

C

|u|pdx+
∞∑

m=1

δ(λ−1)p
m

∫

Am∪Bm

|u|pdx
)
.

Taking into account (9.3.18), we conclude that the sum on the right-hand side
does not exceed

c

∞∑
m=1

δ(λ−1)p+1−β
m

(∫

Am∪Bm∪B−
m

|∇u|pdx+
∫

B−
m

|u|pdx
)

≤ c sup
m

δ(λ−1)p+1−β
m

(∫

Ω

|∇u|pdx+
∫

C

|u|pdx
)
.

Consequently,

‖∇(γu);Ω‖Lp
≤ c

(
‖∇u;Ω‖Lp

+ ‖u;C‖Lp

)
,

i.e., γ ∈ML1
p(Ω).

It can be easily shown that xλ
1 ∈MW 1

p (Ω) if and only if λ ≥ 1. Therefore,
for (p − 1)/p < λ < 1 the restriction to Ω of xλ

1 ∈ MW 1
p,loc does not belong

to MW 1
p (Ω).

Below we describe the space of multipliers in L1
p(Ω), where Ω is an arbi-

trary bounded domain. This description is obtained as a corollary of theorems
in [Maz15] on necessary and sufficient conditions for the validity of imbeddings
of spaces of functions with first derivatives in Lp(Ω) (for earlier publications
see, for example, [Maz1]–[Maz3]).

In what follows, by g and G we denote the so-called admissible subsets of
Ω, i.e., bounded sets such that Ω ∩ ∂g and Ω ∩ ∂G are manifolds of the class
C∞. Further, let closΩg be the closure of g with respect to Ω. We need the
following capacity of the pair of sets g and G:

p-capΩ(g,G) = inf{‖∇u;Ω‖pLp
: u ∈ C∞(Ω), u = 0 on G, u = 1 on g} .

Theorem 9.3.7. ([Maz15]). Let u be an arbitrary function in C∞(Ω) with
u = 0 on G.



9.3 Multipliers in a Bounded Domain 349

(i) For p > 1, the inequality

‖γu;Ω‖Lp
≤ C ‖∇u;Ω‖Lp

(9.3.19)

holds if and only if ∫

g

|γ|pdx ≤ const p-capΩ(g,G),

where g is an admissible set with

closΩ ⊂ Ω\closΩG.

The best constant C in (9.3.19) for p > 1 satisfies the inequality

(p− 1)p−1

pp
Cp ≤ sup

g

‖γ; g‖pLp

p-capΩ(g,G)
≤ Cp .

(ii) For p = 1, the inequality (9.3.19) holds if and only if∫

g

|γ| dx ≤ const s(Ω ∩ ∂g),

where g is any admissible set with closΩg ⊂ Ω\closΩG and s is the (n − 1)-
dimensional area.

The best constant C in (9.3.19) for p = 1 is given by

C = sup
g

‖γ; g‖L1

s(Ω ∩ ∂g) .

Using Theorem 9.3.7, one easily obtains a description of the space
ML1

p(Ω).

Theorem 9.3.8. A function γ belongs to ML1
p(Ω) if and only if γ ∈ L∞(Ω)∩

MW 1
p,loc(Ω) and, for some admissible set G with G ⊂ Ω,

sup
‖∇γ; g‖pLp

p-capΩ(g,G)
<∞ for p > 1 ,

sup
‖∇γ; g‖L1

s(Ω ∩ ∂g) <∞ for p = 1 ,

where the suprema are taken over all admissible sets g with closΩg ⊂ Ω\G.

Proof. The necessity of the condition γ ∈ MW 1
p,loc(Ω) is obvious and the

necessity of the boundedness of γ follows from the inequality

‖γNu;Ω‖1/N
L1

p
≤ ‖γ;Ω‖ML1

p
‖u;Ω‖1/N

L1
p
, N = 1, 2, . . . .

Other assertions result from Theorem 9.3.7 and the estimate

‖u∇Γ −∇(Γu);Ω‖Lp
≤ ‖γ;Ω‖L∞‖∇u;Ω‖Lp

,

where Γ = ηγ, η ∈ C∞(Rn), η = 0 on G, η = 1 in a neighborhood of ∂Ω, and
0 ≤ η ≤ 1. ��
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Remark 9.3.2. By Theorem 9.3.1 for p > 1, the condition γ ∈ MW 1
p,loc(Ω)

can be replaced by

sup
‖∇γ; g‖pLp

Cp,1(e)
<∞ .

Here the supremum is taken over all admissible sets g placed at an arbitrary
fixed positive distance from ∂Ω.

According to Theorem 9.3.2, γ ∈MW 1
1,loc(Ω) if and only if

sup r1−n‖∇γ;Br(x)‖L1 <∞ ,

where the supremum is taken over all balls Br(x), x ∈ Ω, placed at an arbitrary
fixed positive distance from ∂Ω.

9.4 Change of Variables in Norms of Sobolev Spaces

In this section we introduce and study certain classes of differentiable map-
pings which are considered as operators in pairs of Sobolev spaces. In
Sect. 9.4.1, using spaces of multipliers, we define the so-called (p, l)-diffeomor-
phisms. We show that these mappings preserve the space W l

p. With the help of
(p, l)-diffeomorphisms we introduce in Sect. 9.4.4 the class of (p, l)-manifolds
on which W l

p can be properly defined. Sect. 9.4.5 concerns mappings of the
class Tm,l

p , i.e., the mappings U → V which generate continuous operators:
Wm

p (V )→W l
p(U), where p ≥ 1, m and l are integers, U and V are open sets

in R
n.

9.4.1 (p, l)-Diffeomorphisms

Let V be an open subset of R
n and let l be a noninteger. By W l

p(V ) we mean
the space of functions with the finite norm

‖u;V ‖W l
p
=‖∇[l]u;V ‖Lp

+
(∫

V

∫

V

|∇[l]u(x)−∇[l]u(y)|p|x−y|−n−p{l}dxdy
)1/p

.

Let p ∈ (1,∞), l ≥ 1, and let U and V be open subsets of R
n. A quasi-

isometric mapping κ : U → V is called a (p, l)-diffeomorphism if all elements
of its Jacobi matrix ∂κ belong to the space of multipliers MW l

p(U).
The following four lemmas contain someproperties of (p, l)-diffeomorphisms.

By ‖∂κ;U‖MW l−1
p

we denote the sum of the norms of elements of ∂κ in
MW l−1

p (U).

Lemma 9.4.1. Let u ∈ W l
p(V ), l ∈ [1,∞), and let κ : U → V be a (p, l)-

diffeomorphism. Then u ◦ κ ∈W l
p(U) and

‖u ◦ κ;U‖W l
p
≤ c ‖u;V ‖W l

p
. (9.4.1)
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Proof. Set λ = inf det ∂κ. Clearly,

‖u ◦ κ;U‖W 1
p
≤ ‖(∂κ)∗(∇u) ◦ κ;U‖Lp

+ ‖u ◦ κ;U‖Lp

≤ λ−1/p
(
‖∂κ;U‖L∞‖∇u;V ‖Lp

+ ‖u;V ||Lp

)
.

In the case {l} > 0 we have

‖u ◦ κ;U‖
W

{l}
p

=
(∫

U

∫

U

|u(κ(x))− u(κ(y))|p|x− y|−n−p{l}dxdy
)1/p

+‖u ◦ κ;U‖Lp
≤
(
λ−2/p‖∂κ;U‖n/p+{l}

L∞
+ λ−1/p

)
‖u;V ‖

W
{l}
p
.

Suppose that (9.4.1) holds for all l with [l] = 1, . . . , k−1. Then, for [l] = k,

‖u ◦ κ;U‖W l
p

= ‖∇(u ◦ κ);U‖W l−1
p

+ ‖u ◦ κ;U‖Lp

= ‖(∂κ)∗(∇u) ◦ κ);U‖W l−1
p

+ ‖u ◦ κ;U‖Lp

≤ ‖∂κ;U‖MW l−1
p
‖(∇u) ◦ κ);U‖W l−1

p
+ ‖u ◦ κ;U‖Lp

.

Using the induction assumption, we complete the proof. ��

Lemma 9.4.2. If κ is a (p, l)-diffeomorphism, then κ
−1 is also a (p, l)-

diffeomorphism.

Proof. For l = 1 this assertion is contained in the definition of the (p, l)-
diffeomorphism.

Let 1 < l < 2 and let u be an arbitrary function in W l−1
p (V ). Since κ is a

bi-Lipschitz mapping, it follows that

‖u ∂(κ−1);V ‖W l−1
p

= ‖
(

(u ◦ κ)(∂κ)−1
)
◦ κ

−1;V ‖W l−1
p

≤ c ‖(u ◦ κ)(∂κ)−1;U‖W l−1
p

.

Hence

‖u ∂(κ−1);V ‖W l−1
p
≤ c ‖(∂κ)−1;U‖MW l−1

p
‖u ◦ κ;U‖W l−1

p
.

It remains to use Lemma 9.4.1 and the condition ∂κ ∈MW l−1
p (U).

We proceed by induction. Suppose that the lemma is proved for
[l] = 1, . . . , k − 1. Let [l] = k. The condition ∂κ ∈ MW l−1

p (U) implies
the inclusion ∂κ ∈ MW l−2

p (U) and hence, by the induction assumption,
∂(κ−1) ∈ MW l−2

p (V ). This together with Lemma 9.4.1 implies that the
matrix (u ◦ κ)(∂κ)−1 ◦ κ

−1 belongs to the space W l−1
p (V ) provided that

(u◦κ)(∂κ)−1 ∈W l−1
p (U). The last inclusion holds since (∂κ)−1 ∈MW l−1

p (U)
and u ◦ κ ∈W l−1

p (U) by Lemma 9.4.1. ��
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Lemma 9.4.3. Let γ ∈MW l
p(V ) and let κ be a (p, l)-diffeomorphism. Then

‖γ ◦ κ;U‖MW l
p
≤ c ‖γ;V ‖MW l

p
. (9.4.2)

Proof. By Lemma 9.4.1, for all u ∈W l−1
p (U)

‖(γ ◦ κ)u;U‖W l
p

= ‖
(
u ◦ κ

−1)γ
)
◦ κ;U‖W l

p

≤ c ‖γ;V ‖MW l
p
‖u ◦ κ

−1;V ‖W l
p
. (9.4.3)

Since by Lemma 9.4.2 κ
−1 is a (p, l)-diffeomorphism, Lemma 9.4.1 implies

the estimate
‖u ◦ κ

−1;V ‖W l
p
≤ c ‖u;U‖W l

p
.

Combined with (9.4.3), this completes the proof. ��

Lemma 9.4.4. Let κ1 : U → V and κ2 : V → W be (p, l)-diffeomorphisms.
Then their composition κ2 ◦ κ1 : U →W is a (p, l)-diffeomorphism.

Proof. Since the matrix ∂(κ2◦κ1) is equal to the product of matrices (∂κ2◦κ1)
and ∂κ1, it follows that

‖∂(κ2 ◦ κ1);U‖MW l−1
p
≤ ‖∂κ2 ◦ κ1;U‖MW l−1

p
‖∂κ1;U‖MW l−1

p
.

We estimate the first factor on the right by (9.4.2) replacing l by l − 1, γ by
∂κ2 and κ by κ1. ��

Remark 9.4.1. The above definition of (p, l)-diffeomorphisms can be general-
ized replacing MW l

p by one of the multiplier algebras Am,l
p and Am,l

p dealt
with in Sect. 6.3 and Sect. 6.4.2. Obviously, all results in this subsection re-
main true.

Remark 9.4.2. Runst and Youssfi [RY] used (p, l)-diffeomorphisms to prove an
existence theorem for an equation involving the Jacobian. (For other results
in the same area see Dacorogna and Moser [DM1], Ye [Ye], and Sickel and
Youssfi [SY].)

9.4.2 More on (p, l)-Diffeomorphisms

In the sequel we sometimes use the norm ||| · ||| in W l
p(V ), invariant with respect

to dilations, which is defined for integer l by

|||u;V |||W l
p

=
l∑

j=0

dj−l‖∇ju;V ‖Lp
, (9.4.4)
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where d is the diameter of V . In the case of noninteger l we put

|||u;V |||W l
p

=
[l]∑

j=0

dj−l‖∇ju;V ‖Lp

+
[l]∑

j=0

dj−[l]
(∫

V

∫

V

|∇ju(x)−∇ju(y)|p dxdy

|x− y|n+p{l}

)1/p

. (9.4.5)

The norm in M(Wm
p (V )→W l

p(V )) generated by the norm ||| · ||| in W l
p(V )

will be denoted by

|||γ;Ω|||M(W m
p →W l

p) . (9.4.6)

In this subsection we collect some properties of (p, l)-diffeomorphisms re-
lated to the norm ||| · |||.

(i) Let u ∈ W l
p(V ), l ∈ [1,∞), and let κ : U → V be a (p, l)-

diffeomorphism. Then u ◦ κ ∈W l
p(U) and

|||u ◦ κ;U |||W l
p
≤ c |||u;V |||W l

p
. (9.4.7)

(ii) If κ is a (p, l)-diffeomorphism, then κ
−1 is also a (p, l)-diffeomorphism,

that is,
|||∂(κ−1);U |||MW l−1

p
≤ c. (9.4.8)

(iii) Let γ ∈MW l
p(V ) and let κ be a (p, l)-diffeomorphism. Then

|||γ ◦ κ;U |||MW l
p
≤ c |||γ;V |||MW l

p
. (9.4.9)

The constants c in (i)–(iii) depend on inf det ∂κ, p, l, n, and the norm
|||∂κ;U |||MW l−1

p
. A similar remark concerns the next property.

(iv) Let κ1 : U → V and κ2 : V → W be (p, l)-diffeomorphisms. Then
their composition κ2 ◦ κ1 : U →W is a (p, l)-diffeomorphism, i.e.

|||∂(κ2 ◦ κ1);U |||MW l−1
p
≤ c. (9.4.10)

Assertions (i)–(iv) are obtained in Sect. 9.4.1 for the usual norm in W l
p.

The passage to the norm (9.4.6) does not change the proof.

9.4.3 A Particular (p, l)-Diffeomorphism

Let ϕ : R
n → R be a Lipschitz function with the Lipschitz constant L. We

introduce the operator T by the formula

(T f)(x, y) =
∫

Rn

ζ(t)ϕ(x+ ty)dt, y > 0, (9.4.11)
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where ζ ∈ C∞
0 (Rn). By Theorem 8.7.2, if l is an integer, p ∈ [1,∞) and

∇sϕ ∈MW
l−1/p
p (Rn), s = 0, 1, . . . , l, then ∇s(T ϕ) ∈MW l

p(R
n+1
+ ) and

‖∇s(T ϕ); Rn+1
+ ‖MW l

p
≤ c ‖∇sϕ; Rn‖

MW
l−1/p
p

. (9.4.12)

We assume further that ζ ≥ 0 and
∫

Rn

ζ(t)dt = 1.

Let, as before,
G = {(x, y) : x ∈ R

n, y > ϕ(x)}
and let N be a sufficiently large constant depending on L. We introduce the
mapping

λ : R
n+1
+ � (ξ, η)→ (x, y) ∈ G (9.4.13)

by the equalities
x = ξ, y = Nη + (T ϕ)(ξ, η). (9.4.14)

Lemma 9.4.5. For any ξ ∈ R
n the mapping

αξ : R+ � η → y = Nη + (T ϕ)(ξ, η)

is one to one, and the inverse is Lipschitz. Moreover,
∣∣∣ ∂
∂y

(α−1
ξ (y))

∣∣∣ ≤ (N − L)−1. (9.4.15)

and ∣∣α−1
ξ1

(y)− α−1
ξ2

(y)
∣∣ ≤ cL(N − cL)−1‖ξ1 − ξ2‖Rn , (9.4.16)

where c is a constant depending on n.

Proof. We fix points x ∈ R
n and y ∈ R+. The operator

β : η → N−1
(
y − (T ϕ)(ξ, η)

)

maps the segment
{η : |η| ≤ |y − ϕ(x)|}

into itself, because

|β(η)| ≤ N−1
(
|y − ϕ(x)|+ |(T ϕ)(ξ, η)− (T ϕ)(ξ, 0)|

)

≤ N−1
(
|y − ϕ(x)|+ L |η|

)
≤ (1 + L)N−1|y − ϕ(x)|.

Also, β is a contraction operator, since

|β(η1)− β(η2)| ≤ LN−1|η1 − η2|.
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Therefore, there exists a unique solution η of the equation

N−1
(
y − (T ϕ)(ξ, η)

)
= η,

or, equivalently, of the equation αξ(η) = y.
Let y1 and y2 be arbitrary points in R+ and let ηj = α−1

ξ (yj), j = 1, 2.
We have

η1 − η2 = N−1
(
y1 − y2 − (T ϕ)(x, η1) + (T ϕ)(x, η2)

)
.

Hence
|η1 − η2| ≤ N−1

(
|y1 − y2|+ L|η1 − η2|

)
.

Since N > L, we arrive at (9.4.15).
The equalities

y = Nα−1
ξj

(y) + (T ϕ)(ξ, α−1
ξj

(y)), j = 1, 2,

imply that

|α−1
ξ1

(y)− α−1
ξ2

(y)| ≤ cN−1L
(
‖ξ1 − ξ2‖Rn + |α−1

ξ1
(y)− α−1

ξ2
(y)|
)
.

Hence (9.4.16) follows. ��

Lemma 9.4.6. Let l be an integer, l > 1, and p ∈ [1,∞). Further, let
∇ϕ ∈ MW p,l−1−1/p. Then the mapping λ defined by (9.4.14) is a (p, l)-
diffeomorphism.

Proof. By Lemma 9.4.5, the inverse mapping λ−1 exists, is defined by

ξ = x, η = α−1
x (y),

and satisfies the Lipschitz condition. Its Jakobi matrix ∂λ is given by
(

I 0
∇ξ(T f) N + ∂(T f)/∂η

)
(9.4.17)

where I is the identity (n − 1) × (n − 1)-matrix. Since |∂(T ϕ)/∂η| ≤ L, it
follows that

det ∂λ = N + ∂(T ϕ)/∂η ≥ N − L > 0.

In view of (9.4.12), the elements of ∂λ belong to the space MW l−1
p (Rn

+). ��

Remark 9.4.3. By Lemma 9.4.2, the mapping κ = λ−1 is a (p, l)-
diffeomorphism of the domain

G = {(x, y) : x ∈ R
n−1, y > ϕ(x)}, (9.4.18)
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where ϕ is a Lipschitz function, onto R
n
+. The mapping κ is given by

ξ = x, η = u(x, y),

where u is the unique solution of the equation

y = Nu+ (T ϕ)(x, u). (9.4.19)

The restrictions of the mappings λ and κ to R
n−1 = ∂R

n
+ and ∂G will be

also denoted by λ and κ, respectively.
Let G be a special Lipschitz domain. By W

l−1/p
p (∂G) we denote the space

of traces on ∂G of functions in W l
p(G). In a similar way, we define the space

W
l−1/p
p (Γ ), where Γ is a subset of ∂G.
Since G can be mapped onto R

n
+ by a (p, l)-diffeomorphism, it follows by

Theorem 8.7.2 and Lemma 9.4.3 that MW
l−1/p
p (∂G) is the space of traces of

functions in MW l
p(G).

9.4.4 (p, l)-Manifolds

In terms of the (p, l)-diffeomorphisms, we can define in a standard manner
(see, for instance, de Rham [dR], Hörmander [H1]) a class of non-smooth
n-dimensional manifolds on which Sobolev spaces can be properly defined.

We recall that a topological space M is called an n-dimensional manifold,
if there exists a collection of homeomorphisms {ϕ} of open sets Uϕ ∈M onto
open subsets of R

n with M = ∪Uϕ.
The pair (ϕ,Uϕ) is called a map (or the coordinate system) and the set of

maps is called the atlas.
We say that two maps (ϕ,Uϕ) and (ψ,Uψ) have a (p, l)-overlapping, if the

mapping
ϕψ−1 : ϕ(Uϕ ∩ Uψ)→ ψ(Uϕ ∩ Uψ)

is a (p, l)-diffeomorphism. By Lemma 9.4.2, the same is true for the inverse
mapping.

If any two maps have a (p, l)-overlapping, then we have a (p, l)-atlas. The
maximal (p, l)-atlas on M is called a (p, l)-structure. By a (p, l)-manifold we
mean a manifold with a (p, l)-structure.

Since
MW l−1

p (Rn) = W l−1
p,unit(R

n) for p(l − 1) > n,

it follows for these values of p and l that the structure on a (p, l)-manifold
belongs to the class C1, whereas for p(l−1) ≤ n such manifolds are Lipschitz.

For functions defined on a (p, l)-manifold Ω we introduce the space
W l

p,loc(Ω). Namely, u ∈ W l
p,loc(Ω) if u ◦ ϕ−1 belongs to W l

p,loc(ϕ(Uϕ)) for
each map (ϕ,Uϕ).

With the help of Lemmas 9.4.1 and 9.4.2 we can prove in a standard way
(see [H1], Theorem 2.6.2) that to define the space W l

p,loc(Ω) it suffices to use
only one arbitrary (p, l)-atlas; i.e., the following assertion holds.
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Theorem 9.4.1. If a function u defined on a (p, l)-manifold Ω is such that

u ◦ ϕ−1 ∈W l
p,loc(ϕ(Uϕ))

for any map of some atlas, then u ∈ W l
p,loc(Ω). If ηϕ ∈ C∞

0 (ϕ(Uϕ)) and the
open sets

Vϕ = {x ∈ Uϕ : ηϕ(ϕ(x)) 	= 0}
cover Ω, then, in order to define a topology in the space W l

p,loc(Ω), it suffices
to introduce the seminorms

u→ ‖ηϕ(u ◦ ϕ−1‖W l
p
.

If a manifold Ω is compact, then the topology in W l
p,loc(Ω) can be induced

by the norm ∑
ϕ

‖ηϕ(u ◦ ϕ−1)‖W l
p
,

where the sum is taken over all maps of a certain atlas.

Replacing the space R
n by the closed half-space R

n
+ = {ζ ∈ R

n : ζn ≥ 0}
in the definition of a (p, l)-manifold M, we obtain the definition of a (p, l)-
manifold M with the boundary ∂M.

Let l be an integer, l ≥ 2, and let M be a (p, l)-manifold. If p(l − 1) ≤ n,
we additionally assume that the (p, l)-structure on M belongs to the class C1.
Then the implicit function theorem 9.5.2, which will be proved in Sect. 9.5, im-
plies that the (p, l)-structure on ∂M induces the (p, l−1/p)-structure on ∂M.

9.4.5 Mappings T m,l
p of One Sobolev Space into Another

Let U and V be domains in R
n. We say that a mapping κ : U → V belongs

to the class Tm,l
p if u ◦ κ ∈W l

p(U) for any u ∈Wm
p (V ) and

‖u ◦ κ;U‖W l
p
≤ c ‖u;V ‖W m

p
. (9.4.20)

We limit consideration to integer m and l, m ≥ l ≥ 1. For m = l we write T l
p

instead of T l,l
p .

In this subsection we give sufficient and, for some values of p, m, l, nec-
essary and sufficient conditions for a mapping to belong to the class Tm,l

p .
In particular, for m = l we obtain a wider set of mappings than the class of
(p, l)-diffeomorphisms.

In what follows, κ = (κ1, . . . ,κn) is a one-to-one mapping with ∂κ ∈
W l−1

1 (U) such that det ∂κ does not change its sign and
∫

U

u(κ(z)) |det ∂κ(z)| dz =
∫

V

u(ζ) dζ (9.4.21)
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for any u ∈ L1(V ). (For sufficient conditions ensuring (9.4.21) see, for instance,
Vodop’yanov, Gol’dshtein, Reshetnyak [VGR], and Malý [Mal]).

Since κ is a mapping of the class W l
1(U), it follows that, for any u ∈ Cl(V )

and multi-index α with |α| ≤ l,

Dα[u(κ(z))] =
∑

1≤|β|≤|α|
ϕα

β(z)(Dβu)(κ(z)) (9.4.22)

a.e. in U . Here and henceforth,

ϕα
β =

∑
s

cs

n∏
i=1

∏
j

Dsij κi ,

where the sum is taken over all collections of multi-indices s = (sij) satisfying
∑
i,j

sij = α, |sij | ≥ 1,
∑
i,j

(|sij | − 1) = |α| − |β|.

We note that another and more explicit expression for the functions ϕα
β was

found by Fraenkel [Fra].

Proposition 9.4.1. If

|det (∂κ ◦ κ
−1)|−1/p ∈M(Wm

p (V )→ Lp(V ))

and
(ϕα

β(|det ∂κ|−1/p)) ◦ κ
−1 ∈M(Wm−|β|

p (V )→ Lp(V ))

for all multi-indices α and β with l ≥ |α| ≥ |β| ≥ 1, then the mapping κ

belongs to the class Tm,l
p .

Proof. Inequality (9.4.20) for any u ∈ Cl(V ) ∩Wm
p (V ) follows directly from

(9.4.21) and (9.4.22). The additional assumption u ∈ Cl(V ) can be removed
by approximation.

��

We give an example which shows that the conditions of Proposition 9.4.1
are sharp.

Example 9.4.1. We consider the domain

U = {z : z2
1 + · · ·+ z2

n−1 < z2γ
n , 0 < zn < 1}, γ > 0,

and the mapping

κ : z → ζ with ζi = zi, 1 ≤ i ≤ n− 1, and ζn = zγ
n.
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0 0

zi

zn ζn

zj

U

ζi ζj

V

Fig. 9.2. Mapping in the class T m,l
p of a cusp to a cone

It is clear that κ transforms U into the cone

V = {ζ : ζ2
1 + · · ·+ ζ2

n−1 < ζ2
n, 0 < ζn < 1}.

(See Fig. 9.2) We show that κ ∈ Tm,l
p if and only if

either p(m− 1) < n, γ ≥ pl − 1
pm− 1

, (9.4.23)

or p(m− 1) ≥ n, γ >
pl − 1

p+ n− 1
. (9.4.24)

Let u(ζ) = ζσ
n , where σ = 1 in the case p(m−1) ≥ n and σ is a noninteger

in the interval
(m− n/p, (pl − 1 + γ − γn)/γp]

for p(m − 1) < n. Clearly, u ∈ Wm
p (V ). On the other hand, u(κ(z)) = zγσ

n

and therefore

‖∇l(u ◦ κ
−1);U‖pLp

≥ c

∫ 1

0

zp(γσ−l)
n

∫ zγ
n

0

rn−2 dr dzn =∞ .

Thus, conditions (9.4.23), (9.4.24) are necessary.
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Now we turn to the proof of sufficiency. By straightforward computation
we have ϕα

β(z) = c z
|β|γ−|α|
n and det ∂κ(z) = γ zγ−1

n . Consequently,

(ϕα
β ◦ κ

−1)(ζ) = c ζ |β|−|α|/γ
n

and
det(∂κ ◦ κ

−1)(ζ) = γz1−1/γ
n .

To check the conditions of Proposition 9.4.1, it suffices to verify the inequalities
∫

V

|ζ|(1−γ)/γ |w|p dζ ≤ c ‖w;V ‖pW m
p

and ∫

V

|ζ|p(|β|−|α|/γ)+(1−γ)/γ |w|p dζ ≤ c ‖w;V ‖p
W

m−|β|
p

for any w ∈Wm
p (V ). It is known that the Hardy inequality

∫

V

|w|p
|ζ|pk

dζ ≤ c ‖w;V ‖pW s
p
, pk < n ,

holds if and only if either ps ≥ n or ps < n and k ≤ s. It remains to note that

(1− γ)/γ > −n , (1− γ)/γp ≥ −m

and that, by (9.4.23),

p(|β| − |α|/γ) + (1− γ)/γ ≥ p(1− l/γ) + (1− γ)/γ > −n

and
|β| − |α|/γ + (1− γ)/γp ≥ |β| −m

for p(m− 1) < n. ��

Remark 9.4.4. For |β| = |α| = l = m, one of the conditions of Proposition
9.4.1 takes the form

ϕα
β |det ∂κ|−1/p ∈ L∞(U) .

We have

∂l

∂zi1 · · · ∂zil

u(κ(z))

=
∑

k1,...,kl

( ∂lu

∂ζk1 · · · ∂ζkl

)
(κ(z))

l∏
ν=1

∂κkν
/∂ziν

+ . . . , (9.4.25)

where the terms involving differentiation with respect to ζ of order less than
l are omitted. So the condition mentioned above is equivalent to
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∂κk1

∂zi1

· · · ∂κkl

∂zil

|det ∂κ|−1/p ∈ L∞(U) . (9.4.26)

Here k1, . . . , kl, i1, . . . , il are numbers with values 1, . . . , n. The inclusion
(9.4.26) can be rewritten in the form

|∂κ|pl

|det ∂κ| ≤ C , (9.4.27)

where C = const and

|∂κ| =
( n∑

i,j=1

(∂κi

∂zj

)2)1/2

.

According to the Hadamard determinant inequality,

|det ∂κ| ≤
n∏

i=1

( n∑
j=1

(∂κi

∂zj

)2)1/2

.

Hence
|det ∂κ| ≤ n−n/2|∂κ|n.

Consequently, for pl > n,

|∂κ| ≤ (Cn−n/2)1/(pl−n),

i.e. κ is a Lipschitz mapping. In the case pl < n we obtain

|det ∂κ| ≥ (npl/2C−1)n/(n−pl) . (9.4.28)

Suppose that the mapping κ satisfies (9.4.27) together with κ
−1. Then κ is

Lipschitz for pl < n also. Indeed, replacing κ by κ
−1 in (9.4.28), we get

|det ∂κ| ≤ (npl/2C−1)n/(pl−n) .

This estimate and (9.4.27) imply that

|∂κ| ≤ nn/2(pl−n)C(2n−pl)/(n−pl)pl .

Thus, for pl 	= n, the mapping κ, which belongs to T l
p together with κ

−1,
is bi-Lipschitz.

The class of mappings which perform the isomorphism W 1
p (U) ≈ W 1

p (V )
was studied in [VG], where it is shown that such mappings are bi-Lipschitz
for p ≥ n.

For pl = n, (9.4.27) means that κ is a mapping with bounded distortion
(see Reshetnyak [Re]). Mappings subjected to (9.4.27) with p = l = 1 are
called subareal since they either decrease the area of (n − 1)-dimensional
surfaces or increase it with a finite coefficient (see [Maz4], [Maz15], Sect.
3.3.1).
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Proposition 9.4.2. Inequality (9.4.27) is necessary for κ ∈ T l
p. The same

inequality is equivalent to κ ∈ T 1
p . (Hence, by interpolation, T l

p ⊂ T k
p ,

k = 1, . . . , l − 1.)

Proof. We put
u(ζ) = η(ζ)|λ|−l exp(i(λ, ζ)) ,

where η ∈ C∞
0 (V ) and λ ∈ C

n, into (9.4.20). Applying the Cauchy formula

Dγ
λP (0; z) = γ!(2πi)−n

∫

|λ1|=1

· · ·
∫

|λn|=1

P (λ; z)λ−γ dλ1

λ1
· · · dλn

λn

to the polynomial
λ→ P (λ; z) = |λ|lDα[u(κ(z))] ,

we find that its coefficients belong to Lp(U). Therefore, we may pass to the
limit as |λ| → ∞ in (9.4.20). As a result, for any unit vector θ = (θ1, . . . , θn)
we obtain

∥∥∥η |det (∂κ ◦ κ
−1)|−1/p

∑
|γ|=l

θγDγP (0; ·) ◦ κ
−1;V

∥∥∥
Lp

≤ c ‖η;V ‖Lp

which by (9.4.25) can be written as
∥∥∥η |det (∂κ◦κ−1)|−1/p

∑
k1,...,kl

θk1 · · · θkl

(∂κk1

∂zi1

· · · ∂κkl

∂zil

)
◦κ−1;V

∥∥∥
Lp

≤ c‖η;V ‖Lp
.

Since η is arbitrary, we conclude that the functions

|det(∂κ ◦ κ
−1)|−1/p ∂(θ,κ)

∂zi1

· · · ∂(θ,κ)
∂zil

are bounded. Hence condition (9.4.27) holds. ��

The next assertion concerning conditions for a mapping to belong to Tm,l
p

follows directly from Proposition 9.4.1 and Theorem 9.3.1.

Proposition 9.4.3. Let V be a bounded domain with boundary in the class
C0,1 and let p ∈ (1,∞). If, for any compact set e ⊂ V ,

mesnκ
−1(e) ≤ cCp,m(e)

and, for all multi-indices α, β with l ≥ |α| ≥ |β| ≥ 1,

sup
e⊂V

‖ϕα
β ; κ−1(e)‖Lp

[Cp,m−|β|(e)]1/p
<∞ ,

then κ ∈ Tm,l
p .
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Now we present two propositions on necessary and sufficient conditions for
a mapping to belong to the class Tm,l

p .

Proposition 9.4.4. Let V be a bounded domain with boundary in the class
C0,1. The mapping κ belongs to Tm,l

1 if and only if, for any ball Br(ζ) with
ζ ∈ V and r ∈ (0, 1),

mesnκ
−1(Br(ζ) ∩ V ) ≤ c rn−m

and, for all multi-indices α and β with l ≥ |α| ≥ |β| ≥ 1,

sup
ζ∈V ,r∈(0,1)

rm−|β|−n‖ϕα
β ; κ−1(Br(ζ) ∩ V )‖L1 <∞ .

Proof. Sufficiency is an immediate corollary of Proposition 9.4.1 and Theorem
9.3.2.

On the other hand, the inclusion κ ∈ Tm,l
1 is equivalent to

∥∥∥ u

det(∂κ ◦ κ−1)
;V
∥∥∥

L1

+
∑

1≤|α|≤l

∥∥∥
∑

1≤|β|≤|α|

( ϕα
β

det ∂κ

)
◦ κ

−1Dβu;V
∥∥∥

L1

≤ c ‖u;V ‖W m
1
.

It remains to use Theorem 10.1.1 to be proved in the sequel. ��

The following two assertions can be proved with the same arguments.

Proposition 9.4.5. Let V be a bounded Lipschitz domain and let (m−l)p > n
and p ∈ (1,∞). A mapping κ is an element of Tm,l

p if and only if mesnU <∞
and ϕα

β ∈ Lp(U) for all multi-indices α, β with l ≥ |α| ≥ |β| ≥ 1.

Proposition 9.4.6. Let V be a bounded domain with boundary in the class
C0,1 and let p > n. A mapping κ belongs to T l

p if and only if (9.4.27) holds
and ϕα

β ∈ Lp(U) for l ≥ |α| ≥ |β| ≥ 1.

For instance, for p > n the inclusion κ ∈ T 2
p is equivalent to the conditions

|∂κ|2p(|det ∂κ|)−1 ∈ L∞(U) and ∇∂κ ∈ Lp(U) .

Similarly, κ ∈ T 3
p for p > n if and only if

|∂κ|3p(|det ∂κ|)−1 ∈ L∞(U) , ∇2∂κ ∈ Lp(U)

and ∑
1≤ρ,σ,τ≤n

∂κr

∂zρ

∂2
κs

∂zσ∂zτ
∈ Lp(U) , r, s = 1, . . . , n .

If both U and V are bounded and belong to C0,1, then the conditions of
Proposition 9.4.5 can be simplified. Namely, the following assertion holds.
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Proposition 9.4.7. Let U and V be bounded domains with boundaries in C0,1

and let p > 1 and (m − l)p > n. A mapping κ belongs to Tm,l
p if and only if

κ ∈W l
p(U).

Proof. Since
{ϕα

β}|
|β|=1
|α|=l =

{
Dα

κi

}1≤i≤n

|α|=l

and

{ϕα
β}

|β|=l
|α|=l =

{ l∏
ν=1

∂κkν

∂ziν

}1≤iν≤n

1≤kν≤n
,

the necessity follows from Proposition 9.4.5.
By definition of ϕα

β we obtain

‖ϕα
β ;U‖Lp

≤ c
∑

s

n∏
i=1

∏
j

‖Dsij κi;U‖Lp|α|/|sij |

which, together with the Gagliardo-Nirenberg inequality

‖Dsij κi;U‖Lp|α|/|sij | ≤ c ‖κi;U‖|sij |/|α|
W

|α|
p

‖κi;U‖1−|sij |/|α|
L∞

(see [Gag2], [Nir]), completes the proof. ��

9.5 Implicit Function Theorems

Using properties of the (p, l)-diffeomorphisms we are in a position to prove
the following assertion concerning regularity properties of a function defined
implicitly. For the existence of such a function without differentiability as-
sumptions, one may consult Sect. 5.2 in [KP].

Theorem 9.5.1. Let G be the domain (9.4.18) where ϕ ∈ C0,1 and let u be a
function in G satisfying

(i) ∇u ∈MW l−1
p (G), l ≥ 2,

(ii) tru = 0, where tr stands for the trace on ∂G,
(iii) inftr(∂u/∂y) > 0,

where l is an integer and p ∈ [1,∞). Then

∇ϕ ∈ MW l−1−1/p
p (Rn−1).

Proof. We introduce the bi-Lipschitz mapping τ : G � (x, y)→ (ξ, η) ∈ R
n
+ by

ξ = x, η = y − ϕ(x)

and put v(ξ, η) = u(ξ, η + ϕ(ξ)). Since ∂zu ∈ L∞(G), it follows that ∂ξv ∈
L∞(Rn

+) and almost everywhere in R
n
+
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∂ξv = (∂xu+ ∂yu∇ϕ) ◦ τ−1

(see, for example, [GR], p.244). Hence, for any g ∈ C∞
0 (Rn) and almost all

η ∈ R+ we have
∫

Rn−1
g(ξ)∂ξv(ξ, η)dξ =

∫

Rn−1
g(ξ)

(
(∂xu+ ∂yu∇ϕ) ◦ τ−1

)
(ξ, η)dξ. (9.5.1)

Since ∂zu(x, ·) ∈W l−1
p (R1

+) and l ≥ 2, the function y → ∂zu(x, y) is continu-
ous for almost all x in R

n. Hence, for almost all ξ ∈ R
n−1 the right-hand side

of (9.5.1) is continuous in η, and, in particular, the limit

lim
η→0

∫

Rn−1
g(ξ)∂ξv(ξ, η)dξ =

∫

Rn−1
g(ξ)

(
(∂xu+∂yu∇ϕ)◦ τ−1

)
(ξ, 0)dξ (9.5.2)

exists. The function (ξ, η)→ v(ξ, η) is Lipschitz and v(ξ, 0) = 0. Therefore,

lim
η→0

∫

Rn−1
g(ξ)∂ξv(ξ, η)dξ = − lim

η→0

∫

Rn−1
∂g(ξ)v(ξ, η)dξ = 0.

This and (9.5.2) imply that

(∂xu+ ∂yu∇ϕ) ◦ τ−1(ξ, 0) = 0 for almost all ξ ∈ R
n−1,

or, equivalently,

∂xu(x, ϕ(x)) + ∂yu(x, ϕ(x))∇ϕ(x) = 0 for almost all x ∈ R
n−1.

Thus, the identity

∇ϕ(x) = −
(
∂yu(x, ϕ(x))

)−1
∂xu(x, ϕ(x)) (9.5.3)

holds for almost all x ∈ R
n−1.

Since ∇u ∈ MW 1
p (G), we have by Theorem 8.7.2 that truxi

and truy

belong to MW
1−1/p
p (∂G) or, equivalently, that the functions

x→ uxi
(x, ϕ(x) + 0) and x→ uy(x, ϕ(x) + 0)

are in MW
1−1/p
p (Rn−1). The inequality inf uy(x, ϕ(x) + 0) > 0 and the in-

clusion uy(·, ϕ(·)) ∈ MW
1−1/p
p (Rn−1) imply that 1/uy(·, ϕ(·)) ∈ MW

1−1/p
p

(Rn−1). Hence the function

x→ uxi
(x, ϕ(x) + 0)/uy(x, ϕ(x) + 0)

belongs to the space MW
1−1/p
p (Rn−1). Thus,

ϕxi
∈MW 1−1/p

p (Rn−1).
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We proceed by induction. Let k be a positive integer such that 2 ≤ k < l.
Suppose that ϕxi

∈ MW
k−1−1/p
p (Rn−1). By Lemma 9.4.6 the mapping λ :

R
n
+ → G defined by (9.4.14) is a (p, k)-diffeomorphism. This and the inclusion

uxi
, uy ∈MW k

p (G) imply that

uxi
◦ λ, uy ◦ λ ∈MW k

p (Rn
+).

By Theorem 8.7.2,

tr(uxi
◦ λ), tr(uy ◦ λ) ∈MW k−1/p

p (Rn−1).

Since the function tr(uy ◦ λ) is separated from zero, it follows that the ratio
tr(uxi

◦ λ)/tr(uy ◦ λ) belongs to the space MW
k−1/p
p (Rn−1). It remains to

note that (9.5.3) can be written as

∇ϕ(x) = − tr(∇xu ◦ λ)
tr(uy ◦ λ)

.

��

Now we prove a local variant of Theorem 9.5.1.

Theorem 9.5.2. Let G be the same domain as in Theorem 9.5.1. Further, let
ω be an (n− 1)-dimensional domain and let U be the cylinder

{(x, y) : x ∈ ω, y ∈ R}.

Suppose that the function u, defined on G ∩ U , satisfies the conditions:
(i) ∇u ∈ (MW p,l−1

loc (U ∩G))n, where l is an integer, l ≥ 2, and p ∈ [1,∞).
(ii) tru = 0 on ω ∩ ∂G,
(iii) the function tr ∂u

∂y is separated from zero on any compact subset of
ω ∩ ∂G.

Then
∇ϕ ∈MW

l−1−1/p
p,loc (ω).

Proof. Duplicating the beginning of the proof of Theorem 9.5.1 we arrive at
(9.5.3) for almost all x ∈ ω. In the rest of the proof we need only to replace
the spaces

W s
p (G), W s−1/p

p (∂G), W s
p (Rn

+), W s−1/p
p (Rn−1)

by the spaces

W s
p,loc(U ∩G), W

s−1/p
p,loc (U ∩ ∂G), W p,s

p,loc(τ(U ∩G)), W
ps−1/p
p,loc (ω),

where τ = λ−1.
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Remark 9.5.1. Theorems 9.5.1 and 9.5.2 are sharp in the following sense. If
∇ϕ ∈ MW

l−1−1/p
p (Rn−1), then there exists a function u in G satisfying the

conditions (i)–(iii). The role of such a function can be played by a solution
of equation (9.4.19). In fact, (9.4.19) implies that u(x, ϕ(x)) = 0 and

∂u

∂y
=
(
N +

∂(T ϕ)
∂u

)−1

≥ (N + L)−1.

Since τ is a (p, l)-diffeomorphism, it follows that ∇u ∈MW l−1
p (G).

To conclude this section we formulate the implicit mapping theorem anal-
ogous to Theorem 9.5.1 and which can be proved in the same way.

Theorem 9.5.3. Let l and s be integers, n > s > n− (l−1)p ≥ 0, z = (x, y),
x ∈ R

s, y ∈ R
n−s, and let u ϕ be the mappings R

n → R
n−s and R

s → R
n−s,

respectively, with the properties:
(i) uz ∈MW l−1

p (Rn),
(ii) tru = 0, where tr is the trace on the surface {z : x ∈ R

s, y = ϕ(x)},
(iii) the inverse matrix (truy)−1 exists and its norm is uniformly bounded

on the surface {z : x ∈ R
s, y = ϕ(x)}.

Then ϕx ∈MW
l−1−(n−s)/p
p (Rs).

9.6 The Space M(W̊ m
p (Ω) → W l

p(Ω))

9.6.1 Auxiliary Results

In the present section m and l are integers, Ω is a domain in R
n, p ∈ (1,∞),

and W̊m
p (Ω) is the completion of C∞

0 (Ω) in the norm Wm
p (Ω).

We define two capacities of a compact set e ⊂ Ω by

Cp,l(e,Ω) = inf{‖u;Ω‖p
W l

p
: u ∈ C∞

0 (Ω), u ≥ 1 on e}

and
cp,l(e,Ω) = inf{‖∇lu;Ω‖pLp

: u ∈ C∞
0 (Ω), u ≥ 1 on e}.

Obviously, if e1 ⊂ e2 and Ω1 ⊃ Ω2, then

Cp,l(e1, Ω1) ≤ Cp,l(e2, Ω2) .

The capacity cp,l(e,Rn) has the same property of monotonicity. It is also clear
that the capacity cp,l(e,Rn) acquires the factor dn−pl under the similarity
transform with coefficient d. The capacity cp,l(e,Rn) vanishes for any compact
set e if n ≤ lp, p > 1.

The Sobolev theorem on the imbedding of W l
p(R

n) into L∞(Rn) for lp > n,
p > 1, implies that the capacity Cp,l(e,Rn) is separated from zero.
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We present some other known properties of capacity (see [Maz15], Ch. 9):
(i) Let lp < n and let e be a compact subset of the ball Bρ. Then

cp,l(e,Bρ) ≤ c cp,l(e,Rn) (9.6.1)

where c does not depend on ρ.
(ii) For all compact subsets e of the ball B1,

Cp,l(e,B2) ∼ Cp,l(e,Rn) . (9.6.2)

We recall certain properties of capacity discussed in Sect. 3.1.2:
(iii) If ρ ≤ 1, then

Cp,l(Bρ) ∼
{
ρn−pl if n > pl, p > 1;
(log 2/ρ)1−p if n = pl, p > 1 .

(iv) If ρ > 1, then Cp,l(Bρ) ∼ ρn.
(v) If n > pl, then Cp,l(e) ≥ c (mesne)(n−pl)/n.
(vi) If n = pl and d(e) ≤ 1, then

Cp,l(e) ≥ c (log(2n/mesne))1−p .

To reveal the dependence of certain constants upon the diameter of the
domain, we use the norms (9.4.4) and (9.4.6) in W k

p (Ω) and M(Wm
p (Ω) →

W l
p(Ω)), respectively.
In the following theorem we present the norms equivalent to the norm

(9.4.6). The equivalence means that their ratios are bounded and separated
from zero by constants independent of d.

Theorem 9.6.1. Let Ω be a domain with ∂Ω ∈ C0,1 and finite diameter
d <∞.

(i) If p ∈ (1,∞), then

|||γ;Ω|||M(W m
p →W l

p) ∼ sup
e⊂Ω

‖∇lγ; e‖Lp

[cp,m(e,Bad)]1/p
+ ‖γ;Ω‖L1 , (9.6.3)

where a > 1 and Bad is a ball with center 0 ∈ Ω. In the case mp < n we can
replace Bad by R

n. If m = l, then the second term is equal to ‖γ;Ω‖L∞ .
(ii) If either pm > n and p > 1, or m ≥ n and p = 1, then the relation

|||γ;Ω|||M(W m
p →W l

p) ∼ dm−n/p|||γ;Ω|||W l
p

(9.6.4)

holds.
(iii) If m < n, then

|||γ;Ω|||M(W m
1 →W l

1) ∼ sup
x∈Ω ,

2ρ<dist(x,∂Ω)

ρm−n(‖∇lγ;Bρ(x)‖L1 + ρ−l‖γ;Bρ(x)‖L1) .

Proof. For d = 1 the assertions formulated above are contained in Theorems
9.3.1-9.3.3. (To obtain (i) one must use in addition (9.6.1) and (9.6.2).) The
passage from d = 1 to d ∈ (0,∞) is performed by dilation. ��
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9.6.2 Description of the Space M(W̊ m
p (Ω) → W l

p(Ω))

Let Ω be a domain in R
n with compact closure and ∂Ω ∈ C0,1. In the next

theorem, Qj are cubes with edge-length dj forming a Whitney covering of Ω
(see [St2] §1, ch. 6). Furthermore, let Q∗

j be a cube homothetic to Qj with edge
length 9dj/8. The cubes Q∗

j form a covering of Ω with a finite multiplicity
which depends only on n (see [St2]).

Theorem 9.6.2. Let 1 < p <∞ and mp < n. The relation

‖γ;Ω‖M(W̊ m
p →W l

p) ∼ sup
j

sup
e⊂Qj

‖∇lγ; e‖Lp

[Cp,m(e,Q∗
j )]1/p

+ ‖γ;Ω‖L1 (9.6.5)

holds.

Proof. By r(x) we denote the regularized distance from x ∈ Ω to ∂Ω (see
[St2], §2, Ch. 6). It follows from the Hardy inequality

‖r−m+j∇ju;Ω‖Lp
≤ c ‖u;Ω‖W̊ m

p
, j = 0, 1, . . . ,m− 1, (9.6.6)

that

‖u;Ω‖p
W̊ m

p

∼
∑

j

|||u;Qj |||pW m
p
∼
∑

j

|||u;Q∗
j |||pW m

p
(9.6.7)

where ||| · ||| is the norm defined by (9.4.6). By (9.6.7) we obtain a norm
in M(W̊m

p (Ω) → W l
p(Ω)) described in terms of the space M(Wm

p (Qj) →
W l

p(Qj)). Namely,

‖γ;Ω‖M(W̊ m
p →W l

p) ∼ sup
j
|||γ;Qj |||M(W m

p →W l
p) . (9.6.8)

In fact,

‖γu;Ω‖p
W l

p
≤
∑

j

|||γu;Qj |||pW l
p
≤ sup

j
|||γ;Ω|||p

M(W m
p →W l

p)

∑
j

|||u;Qj |||pW m
p

which, together with (9.6.7), gives the required upper bound for the norm of
γ in M(W̊m

p (Ω)→W l
p(Ω)).

To justify the lower bound, let u ∈ Wm
p (Qj) and let v be an extension of

u onto Q∗
j satisfying

|||v;Q∗
j |||W m

p
≤ c ‖u;Qj‖W m

p
. (9.6.9)

By ϕ we denote a function in C∞
0 (Q∗

j ), equal to 1 on Qj and such that

|∇kϕ| = o(d−k
j ).
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We have

|||γu;Qj |||W l
p
≤ |||γϕv;Q∗

j |||W l
p
≤ c ‖γϕv;Ω‖W l

p

≤ c ‖γ;Ω|M(W̊ m
p →W l

p)‖ϕv;Ω‖W m
p

≤ c ‖γ;Ω‖M(W̊ m
p →W l

p)|||v;Q
∗
j |||W m

p
. (9.6.10)

By (9.6.9) and (9.6.10) we find the lower bound for the norm of γ in
M(W̊m

p (Ω)→W l
p(Ω)). Relation (9.6.8) is proved.

It remains to use Theorem 9.6.1. The proof is complete. ��

Corollary 9.6.1. Let 1 < p <∞. The relations

‖γ;Ω‖M(W̊ m
p →W l

p) ∼ sup
e⊂Ω

( ‖∇lγ; e‖Lp

[Cp,m(e,Ω)]1/p
+

‖γ; e‖Lp

[Cp,m−l(e,Ω)]1/p

)
(9.6.11)

∼ sup
e⊂Ω

‖∇lγ; e‖Lp

[Cp,m(e,Ω)]1/p
+ ‖γ;Ω‖L1 (9.6.12)

hold. These relations still hold if we add the restriction d(e) ≤ δ(e), where
d(e) is the diameter of e and δ(e) is the distance from e to ∂Ω.

Proof. In view of (9.6.7),

Cp,m(e,Ω) ≥ c
∑

j

cp,m(e ∩Qj , Q
∗
j ) , e ⊂ Ω ,

which leads to the required lower bound for the norm of γ in M(W̊m
p (Ω) →

W l
p(Ω)). The upper bound is obtained via the inequalities

cp,m(e,Q∗
j ) ≥ Cp,m(e,Q∗

j ) ≥ Cp.m(e,Ω) .

��

The following two statements do not contain capacities.

Corollary 9.6.2. Let pm > n and p > 1, or m ≥ n and p = 1. Then

‖γ;Ω‖M(W̊ m
p →W l

p) ∼ sup
j
d

m−n/p
j |||γ;Qj |||W l

p
.

Corollary 9.6.3. The relation

‖γ;Ω‖M(W̊ m
1 →W l

1) ∼ sup
x∈Ω ,

2ρ<δ(x)

ρm−n
(
‖∇lγ;Bρ(x)‖L1 + ρ−l‖γ;Bρ(x)‖L1

)

holds.

Corollaries 9.6.2 and 9.6.3 result from (9.6.8) and Theorem 9.6.1.
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Differential Operators in Pairs of Sobolev
Spaces

The most natural connection of the theory of multipliers with differential
operators arises when one is looking for the bounds of the norms and essential
norms of these operators mapping one Sobolev space into another.

In Sect. 10.1 we give estimates for the norms of general differential opera-
tors performing a mapping between two Sobolev spaces, formulated in terms
of their coefficients as multipliers. These estimates involve multiplier norms of
the coefficients, and for some values of integrability and smoothness parame-
ters they are two-sided. We also describe a class of differential operators for
which their continuity in pairs of Sobolev spaces is equivalent to the inclusion
of the coefficients into classes of multipliers without any additional conditions
on indices. We give a counterexample showing that in general the inclusion of
the coefficients into the natural classes of multipliers is not necessary for the
continuity of differential operators.

Estimates for the essential norms of general differential operators is the
topic of Sect. 10.2. By the example of a Schrödinger operator in R

n considered
in Sect. 10.3, we outline the role of the essential norm of a multiplier in the
Fredholm theory of elliptic differential operators. The last Sect. 10.4 deals with
a characterization of pairs of differential operators with constant coefficients
which obey the dominance property between L2 and its weighted counterpart.

10.1 The Norm of a Differential Operator: W h
p → W h−k

p

In this section we discuss some simple applications of the spaceM(Wm
p →W l

p)
to the theory of differential operators, namely, to the question of the continuity
of such operators in pairs of Sobolev spaces. As usual, we use the notation
Br(x) = {y ∈ R

n : |y − x| < r} and omit R
n in notations of the norms.

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 373
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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10.1.1 Coefficients of Operators Mapping W h
p into W h−k

p

as Multipliers

Lemma 10.1.1. (i) The operator

P (x,Dx)u =
∑
|α|≤k

aα(x)Dα
xu, x ∈ R

n , (10.1.1)

is a continuous mapping Wh
p →Wh−k

p , where h ≥ k, provided that

aα ∈M(Wh−|α|
p →Wh−k

p )

for any multi-index α. The estimate

‖P‖W h
p →W h−k

p
≤ c

∑
|α|≤k

‖aα‖M(W
h−|α|
p →W h−k

p )
(10.1.2)

holds.
(ii) If p = 1 or if p(h− k) > n and p > 1, then the relation

‖P‖W h
p →W h−k

p
∼
∑
|α|≤k

‖aα‖M(W
h−|α|
p →W h−k

p )
(10.1.3)

holds.

Proof. The estimate (10.1.2) is obvious, so we need to prove only (ii). Let
x ∈ R

n and let η ∈ C∞
0 (B2) with η = 1 on B1. Further, let u(y) = η((x−y)/δ),

where δ ∈ (0, 1]. By substituting the function u into the inequality
∥∥∥
∑
|α|≤k

aαD
αu
∥∥∥

W h−k
p

≤ c ‖u‖W h
p
,

we obtain
sup

x∈Rn

‖a0;Bδ(x)‖W h−k
p
≤ c δn/p−h

which, together with Theorem 2.1.1, Corollary 4.3.8, and Theorem 5.3.1,
shows that a0 ∈M(Wh

p →Wh−k
p ).

Suppose that aα ∈M(Wh−|α|
p →Wh−k

p ) for |α| ≤ ν, ν ≤ k − 1, and
∑
|α|≤ν

‖aα‖M(W
h−|α|
p →W h−k

p )
≤ c ‖P‖W h

p →W h−k
p

.

We show that the same holds with ν is replaced by ν + 1. Clearly,
∥∥∥
∑

|α|≥ν+1

aαD
αu‖W h−k

p
≤
∥∥∥Pu−

∑
|α|≤ν

aαD
αu
∥∥∥

W h−k
p

≤ c ‖P‖W h
p →W h−k

p
‖u‖W h

p
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for all u ∈Wh
p . Putting here

u(y) = (x− y)αη((x− y)/δ), |α| = ν + 1,

we obtain

sup
x∈Rn

‖aα;Bδ(x)‖W h−k
p
≤ c ‖P‖W h

p →W h−k
p

δn/p−h+|α| .

This, together with Theorem 2.1.1, Corollary 4.3.8, and Theorem 5.3.1 implies
that aα ∈M(Wh−|α|

p →Wh−k
p ). ��

Now we present an analogous result for matrix operators. Let u(x) =
{u1(x), u2(x), . . . , uN (x)} be an N -tuple vector-valued function. Consider the
operator

Pu =
{ N∑

k=1

Pjk(x,Dx)uk
}M

j=1
, x ∈ R

n , (10.1.4)

where
Pjk(x,Dx)uk =

∑
|α|≤sj+tk

a
(α)
jk (x)Dα

xu
k

and sj , tk are integers.

Theorem 10.1.1. Let h ≥ s = max sj, j = 1, . . . ,M .
(i) The operator P is a continuous mapping

P :
N∏

k=1

W tk+h
p →

M∏
j=1

Wh−sj
p , (10.1.5)

if
a
(α)
jk ∈M(W tk+h−|α|

p →Wh−sj
p ).

The estimate

‖P‖ ≤ c

N∑
k=1

M∑
j=1

∑
|α|≤sj+tk

‖a(α)
jk ‖M(W

tk+h−|α|
p →W

h−sj
p )

(10.1.6)

holds.
(ii) If p(h− s) ≥ n and p > 1, or p = 1, then the relation

‖P‖ ∼
N∑

k=1

M∑
j=1

∑
|α|≤sj+tk

‖a(α)
jk ‖M(W

tk+h−|α|
p →W

h−sj
p )

holds.
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Proof. Inequality (10.1.6) follows from Lemma 10.1.1. Let

M∑
j=1

∥∥∥
N∑

k=1

Pjk(x,Dx)uk
∥∥∥

W
h−sj
p

≤ c ‖P‖
N∑

k=1

‖uk‖
W

h+tk
p

.

We fix i and set uk = 0 provided that k 	= i. Then

M∑
j=1

‖Pji(x,Dx)ui‖
W

h−sj
p

≤ c ‖P‖‖ui‖
W

h+ti
p

and in the case p(h−s) > n, p > 1, as well as in the case p = 1, Lemma 10.1.1
gives the estimate

M∑
j=1

∑
|α|≤sj+ti

‖a(α)
ji ‖M(W

h+ti−|α|
p →W

h−sj
p )

≤ c ‖P‖ ,

where i = 1, 2, . . . , N . ��

Next we show that an equivalence relation similar to (10.1.3) with an
arbitrary p ∈ (1,∞) can be obtained for partial differential operators of a
special form.

Theorem 10.1.2. Let h and s be positive integers, h ≥ 2s, 1 < p <∞ and

P (x,Dx)u =
s∑

j=0

bj(x)∆ju,

where ∆ is the Laplace operator. Then P is a continuous mapping: Wh
p →

Wh−2s
p if and only if

bj ∈M(Wh−2j
p →Wh−2s

p ), j = 0, . . . , s.

Moreover, the relation

‖P‖W h
p →W h−2s

p
∼

s∑
j=0

‖bj‖M(W h−2j
p →W h−2s

p ) (10.1.7)

holds.

Proof. The sufficiency as well as the upper bound for the norm of P follows
from Lemma 10.1.1.

Suppose that, for all u ∈Wh
p ,

‖Pu‖W h−2s
p

≤ c ‖u‖W h
p
.
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Let u = 1 in a neighborhood of a compact set e with d(e) ≤ 1. Then

‖∇h−2sb0; e‖Lp
+ ‖b0; e‖Lp

≤ c ‖u‖W h
p
.

Consequently,
‖∇h−2sb0; e‖Lp

≤ c [Cp,h(e)]1/p

and ‖b0;B1(x)‖Lp
≤ c for all x ∈ R

n. By Theorem 2.3.3 this means that

b0 ∈M(Wh
p →Wh−2s

p ).

Therefore, the operator Q∆ with

Q =
s−1∑
j=0

bj+1(x)∆j

satisfies the inequality

‖Q∆u‖W h−2s
p

≤ c‖u‖W h
p
. (10.1.8)

Let ζ ∈ Wh−2
p and let supp ζ ⊂ {x = (x1, . . . , xn) : 0 < xi < 1}. We

put w(x) = ζ(x) − ζ(−x) and wi(x) = w(x1, . . . , xi−1, xi/2, xi+1, . . . , xn) for
i = 1, . . . , n. Further, let

v(x) = w(x) +
n∑

i=1

αiwi(x− ai) (10.1.9)

where ai are fixed points with dist(ai, aj) > (8n)1/2 and αi are arbitrary
constants. It is clear that all the functions on the right-hand side of (10.1.9)
are orthogonal to one and have disjoint supports. We show that the coefficients
αi can be selected so that

∫
xjv(x) dx = 0 , j = 1, . . . , n,

which is equivalent to the algebraic system with respect to α1, . . . , αn:

2
∫
xjζ(x) dx

(
1 + 2

n∑
i=1

αi(1 + δj
i )
)

= 0 , j = 1, . . . , n ,

where δj
i is the Kronecker delta. The system is solvable because

det ‖1 + δj
i ‖ni,j=1 = n+ 1.

Let u be the harmonic (Newtonian for n > 2 and logarithmic for n = 2)
potential with density v. Since v is orthogonal to 1, x1, . . . , xn and the diameter
of its support is bounded by a constant depending only on n, then
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‖u‖W h
p
≤ c ‖v‖W h−2

p
≤ c1‖ζ‖W h−2

p
.

This and (10.1.8) imply that

‖Qζ‖W h−2s
p

≤ c ‖ζ‖W h−2
p

.

By the arbitrariness of the origin, the last inequality holds for all functions
ζ ∈ Wh−2

p supported by any cube of the coordinate grid. Hence it is valid
for all ζ ∈ Wh−2

p , i.e. Q is a continuous operator: Wh−2
p → Wh−2s

p . Now the
result follows by successive reduction of order of the operator. ��

10.1.2 A Counterexample

Theorem 10.1.2 and part (ii) of Lemma 10.1.1 suggest the hypothesis: relation
(10.1.3) holds for all p, h, k, i.e. the coefficients of any differential operator
(10.1.1), mapping Wh

p into Wh−k
p , are necessarily multipliers in corresponding

Sobolev spaces. The next example disproves this conjecture.

Example 10.1.1. Let x = (x′, xn), x′ = (x1, . . . , xn−1), n ≥ 3. We show that
the coefficient a of the continuous operator

a(x′)
∂

∂xn
: W 2

2 → L2 (10.1.10)

need not be an element of M(W 1
2 → L2).

Suppose that

A = sup
y∈Rn−1,r∈(0,1)

r3−n

∫

B(n−1)
r (y)

|a(x′)|2 dx′ <∞,

where B(n−1)
r (y) is the (n − 1)-dimensional ball with centre y and radius r.

By û(x′, λ) we denote the Fourier transform of the function u with respect to
xn. According to Theorem 1.1.2,

∫

Rn−1
|a(x′)û(x′, λ)|2dx′ ≤ A ‖[û(·, λ)]2; Rn−1‖W 2

1

≤ cA

∫

Rn−1

(
|û(x′, λ)| |∇2,x′ û(x′, λ)|+ |∇x′ û(x′, λ)|2 + |û(x′, λ)|2

)
dx′.

Consequently,
∫

Rn

∣∣∣a(x′) ∂u
∂xn

∣∣∣
2

dx ≤ cA

∫

R1
dλ

∫

Rn−1

(
|λ2û(x′, λ)| |∇2,x′ û(x′, λ)|

+|λ∇x′ û(x′, λ)|2 + |λû(x′, λ)|2
)
dx′ ≤ c1A

(
‖∇2u‖2L2

+ ‖∇u‖2L2

)
.
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Thus the finiteness of the value A is sufficient for the continuity of operator
(10.1.10). The necessity of the same condition results from the estimate

‖P‖W h
p →W h−k

p
≥ c

∑
|α|≤k

sup
x;r∈(0,1)

(
rh−|α|−n/p‖∇h−kaα;Br(x)‖Lp

+ rk−|α|−n/p‖aα;Br(x)‖Lp

)
(10.1.11)

derived in the proof of the second part of Lemma 10.1.1 for all p ∈ [1,∞).
If (10.1.3) is valid for all p, h, and k, then the continuity of the operator

(10.1.10) implies that a ∈ M(W 1
2 → L2). We choose the coefficient a as

follows:
a(x′) = ρ−1| log ρ|ε−1 η(x1, x2) ζ(x3, . . . , xn−1)

where

ρ2 = x2
1 + x2

2, 0 < ε < 1/2, η ∈ C∞
0 (B(2)

1 ), ζ ∈ C∞
0 (B(n−3)

1 ).

It is clear that for any y ∈ R
n−1 and for all r ∈ (0, 1/2) we have

∫

B(n−1)
r (y)

|a(x′)|2 dx′ ≤ c rn−3

∫

B(2)
r

ρ−2| log ρ|2(ε−1) dx1dx2

= c rn−3| log r|2ε−1 .

Therefore A <∞. Suppose that

‖au; Rn‖L2 ≤ c ‖u; Rn‖W 1
2

for any u ∈ C∞
0 (Rn). Then, for all v ∈ C∞

0 (R2),

‖ηρ−1| log ρ|ε−1v; R2‖L2 ≤ c ‖v; R2‖W 1
2
.

This estimate implies that
∫

ρ<r

ρ−2| log ρ|2(ε−1) dx1dx2 ≤ cC2,1(B(2)
r )

for r ∈ (0, 1/2), which contradicts the relation

C2,1(B(2)
r ) ∼ | log r|−1.

Thus, the operator (10.1.10) with the function a under consideration is con-
tinuous, although a /∈M(W 1

2 (Rn)→ L2(Rn)).

10.1.3 Operators with Coefficients Independent of Some Variables

A necessary and sufficient condition for the continuity of operator (10.1.10)
derived in the last example can be generalized to operators with coefficients
depending on only some of the variables.
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Theorem 10.1.3. Let y ∈ R
s, z ∈ R

n−s, where s ≤ n. Further, let h and k
be integers with h ≥ k, and

P (y,Dy,Dz)u =
∑

0≤|β|+|γ|≤k

aβγ(y)Dβ
yD

γ
zu .

Then the operator P (y,Dy,Dz) is a continuous mapping: Wh
2 (Rn) →

Wh−k
2 (Rn) if and only if the operator

P (y,Dy, 0) : Wh
2 (Rs)→Wh−k

2 (Rs)

is continuous and, for all multi-indices β and γ,

sup
y∈Rs,r∈(0,1)

rh−|β|−|γ|−s/2
(
‖∇h−kaβγ ;B(s)

r (y)‖L2

+ rk−h‖aβγ ;B(s)
r (y)‖L2

)
<∞ (10.1.12)

where B(s)
r (y) is the s-dimensional ball with center y and radius r.

The proof of this theorem is based on the following assertion (see [Maz15],
Ch. 1).

Lemma 10.1.2. Let µ be a measure in R
s such that

K = sup
y∈Rs,r∈(0,1)

r−σµ(B(s)
r (y)) <∞ (10.1.13)

for a certain σ ∈ [0, s]. Further, let l and m be integers, 0 ≤ l < m, σ >
s− 2(m− l). Then, for all u ∈ C∞

0 ,

(∫

Rs

|∇lu|2 dµ
)1/2

≤ cK‖u; Rs‖τW m
2
‖u; Rs‖1−τ

L2
, (10.1.14)

where τ = (2l + s − σ)/2m and c is a constant independent of u and µ.
Moreover, condition (10.1.13) is necessary for the validity of (10.1.14).

Proof of Theorem 10.1.3. Sufficiency. First we verify that for |γ| > 0
the operator

aβγ(y)Dβ
yD

γ
z : Wh

2 (Rn)→Wh−k
2 (Rn)

is continuous. With this aim in view, we show the continuity of the operator

(Dµ
y aβγ(y))Dρ+β

y Dγ+θ
z : Wh

2 (Rn)→ L2(Rn),

where 0 ≤ |µ|+ |ρ|+ |θ| ≤ h− k. By û(y, λ) we denote the Fourier transform
of the function u with respect to z. Putting

l = |ρ|+ |β|, σ = 2|β|+ 2|γ|+ s− 2k − 2|µ|, m = k + |µ|+ |ρ|+ |θ|
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in Lemma 10.1.2, we conclude that

∫

Rs

|(Dµ
y aβγ(y))Dρ+β

y û(y, λ)|2 dy

≤ cA2
β,γ,µ ‖û(·, λ); Rs‖2τ

W m
2
‖û(·, λ); Rs‖2(1−τ)

L2
,

where τ = (|µ|+ |ρ|+ k − |γ|)/(|µ|+ |ρ|+ |θ|+ k) and

Aβ,γ,µ = sup
y∈Rs,r∈(0,1)

r−σ/2‖Dµ
y aβγ ;B(s)

r (y)‖L2 .

(We note that the condition σ > s − 2(m − l) in Lemma 10.1.2 is equivalent
to |γ| > 0.) Multiplying the last inequality by |λ|2(|γ|+|θ|) and integrating over
λ, we get

‖(Dµ
y aβγ)Dρ+β

y Dγ+θ
z u; Rn‖2L2

≤ cA2
β,γ,µ

∫

Rn−s

‖û(·, λ); Rs‖2τ
W m

2
‖|λ|mû(·, λ); Rs‖2(1−τ)

L2
dλ

≤ cA2
β,γ,µ‖u; Rn‖2W m

2
.

Since m ≤ h and Aβ,γ,µ does not exceed the value (10.1.12), the operator

P (y,Dy,Dz)− P (y,Dy, 0) : Wh
2 (Rn)→Wh−k

2 (Rn) (10.1.15)

is continuous.
In order to derive the continuity of P (y,Dy, 0) in the same pair of spaces

we prove the inequality

‖P (y,Dy, 0)v; Rs‖L2 ≤ c ‖v; Rs‖k/h

W h
2
‖v; Rs‖1−k/h

L2
. (10.1.16)

Applying Lemma 10.1.2 with l = |β| and m = h, for any multi-index β with
|β| ≤ k, we obtain

‖aβ0D
β
y v; R

s‖L2

≤ c sup
y∈Rn,r∈(0,1)

rk−|β|−s/2‖aβ0;B(s)
r (y)‖L2 ‖v; Rs‖k/h

W h
2
‖v; Rs‖1−k/h

L2

which entails (10.1.16). Using (10.1.16) together with (10.1.12), we find that

‖P (·,Dy, 0)u; Rn‖2
W h−k

2

≤ c

∫

Rn−s

(
‖P (·,Dy, 0)û(·, λ); Rs‖2

W h−k
2

+ |λ|2(h−k)‖P (·,Dy, 0)û(·, λ); Rs‖2L2

)
dλ
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≤ c

∫

Rn−s

(
‖û(·, λ); Rs‖2W h

2
+ ‖û(·, λ); Rs‖2k/h

W h
2
‖|λ|hû(·, λ); Rs‖2(1−k/h)

L2

)
dλ

≤ c ‖u; Rn‖2W h
2

for all u ∈Wh
2 (Rn). The sufficiency follows.

Necessity. We note that by replacing s by n in (10.1.12) we obtain an
equivalent condition. Then the finiteness of (10.1.12) for all multi-indices β, γ
follows from (10.1.11). Thus the first part of this theorem implies the conti-
nuity of the operator (10.1.15). Since the mapping

P (y,Dy,Dz) : Wh
2 (Rn)→Wh−k

2 (Rn)

is continuous, it follows for all v ∈Wh
2 (Rn) that

‖P (y,Dy, 0)v,Rn‖W h−k
2
≤ c ‖v; Rn‖W h

2
.

Substituting here v(x) = η(z)u(y), where η is a fixed function in C∞
0 (Rn−s)

and u is an arbitrary function in Wh
2 (Rs), we complete the proof of Theorem

10.1.3. ��

10.1.4 Differential Operators on a Domain

Let U and V be open sets in R
n and let

P (z,Dz)u =
∑
|α|≤k

pα(z)Dα
z u (10.1.17)

be a differential operator on U . Given any (p, l)-diffeomorphism κ : U → V
with l ≥ k, we introduce the differential operator Q on V , defined by

Q(u ◦ κ
−1) = (Pu) ◦ κ

−1.

In view of Lemmas 9.4.1 and 9.4.2, Q maps W l
p(V ) continuously into W l−k

p (V )
if and only if P maps W l

p(U) continuously into W l−k
p (U).

By Ol,k
p,loc(U) we denote the class of operators of the form (10.1.17) such

that
pα ∈M(W l−|α|

p,loc (U)→W l−k
p,loc(U))

for any multi-index α with |α| ≤ k.

Lemma 10.1.3. The operator P belongs to the class Ol,k
p,loc(U) if and only if

Q ∈ Ol,k
p,loc(V ).
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Proof. Let ζ = κ(z). We have

Dα[v(κ(z))] =
∑

1≤|β|≤|α|
(Dβv)(κ(z))

∑
s

cs

n∏
i=1

∏
j

Dsij κi(z) , (10.1.18)

where the sum is taken over all multi-indices s = (sij) such that
∑
i,j

sij = α , |sij | ≥ 1,
∑
i,j

(|sij | − 1) = |α| − |β| . (10.1.19)

Let
Q(ζ,Dζ) =

∑
|β|≤k

qβ(ζ)Dβ
ζ .

By (10.1.18),

qβ =
∑

|β|≤|α|≤k

(pα ◦ κ
−1)

∑
s

cs

n∏
i=1

∏
j

(Dsij κi) ◦ κ
−1 . (10.1.20)

Since
∇κi ∈MW l−1

p,loc(U) ⊂MW l−r
p,loc(U), 1 ≤ r ≤ l,

it follows that

Dsij κi ∈M(W l−r
p,loc(U)→W

l−r−|sij |+1
p,loc (U)) .

Therefore,
∏
i,j

Dsij κi ∈M(W l−|β|
p,loc (U)→W

l−|β|−
∑

i,j(|sij |−1)

p,loc (U)),

which is the same as∏
i,j

Dsij κi ∈M(W l−|β|
p,loc (U)→W

l−|α|
p,loc (U)) .

It remains to use the condition pα ∈ M(W l−|α|
p,loc (U) → W l−k

p,loc(U)) together
with Lemmas 9.4.1 and 9.4.2. ��

By Lemma 10.1.1, the inclusion P ∈ Ol,k
p,loc(U) is sufficient for the opera-

tor P to map W l
p,loc(U) into W l−k

p,loc(U). The inclusion P ∈ Ol,k
p,loc(U) is also

necessary for p = 1 or p(l − k) > n (see Lemma 10.1.1).

Remark 10.1.1. Let Ω be a (p, l)-manifold. Such manifolds were introduced
in Sect. 9.4.4. We define a differential operator of order k, k ≤ l, as a linear
mapping P of the space W l

p,loc(Ω) into the space W l−k
p,loc(Ω) if, for any map

(ϕ,Uϕ), there exists a differential operator Pϕ in the class Ol,k
p,loc(ϕ(Uϕ)) such

that
(Pu) ◦ ϕ−1 = Pϕ(u ◦ ϕ−1) on ϕ(Uϕ).

By Lemma 10.1.3, it suffices to restrict oneself to the maps of a certain
atlas.
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10.2 Essential Norm of a Differential Operator

In this section we obtain bounds for the essential norm of a differential
operator.

Let P (x,Dx) be a differential operator of order k, defined by (10.1.1),
let P0 be its principal homogeneous part, and let ess ‖P‖W h

p →W h−k
p

be the
essential norm of the mapping

P : Wh
p →Wh−k

p , h ≥ k.

Lemma 10.2.1. For all θ ∈ ∂B1,

‖P0(·, θ)‖L∞ ≤ ess ‖P‖W h
p →W h−k

p
.

The proof is quite similar to that of Theorem 7.3.1, so we only outline it.
Let η, ϕk and Qk be the same functions and cube as in the proof of Theorem
7.3.1. We put

vξ(y) = |ξ|−hη(y) exp
(
i

n∑
j=1

[ξj ]yj

)
,

where ξ ∈ R
n\{0} and [ξj ] is the integer part of ξj . By the same argument as

in the proof of Theorem 7.3.1, we show that in the first place

lim
|ξ|→∞

‖vξ‖W h
p

= Ah‖η‖Lp
, Ah = const > 0 ,

in the second place

lim
|ξ|→∞

‖ϕkPvξ‖W h−k
p

= Ah‖ϕkP0(·, ξ|ξ|−1)η‖Lp
,

and in the third place

ϕkTvξ → 0 as |ξ| → ∞ in W̊h
p (Qk),

where T is a compact operator in Wh
p . Then

lim sup
|ξ|→∞

‖ϕkPvξ‖W h−k
p

= lim sup
|ξ|→∞

‖ϕk(P − T )vξ‖W h−k
p

and, by Lemma 7.1.9, for some σ > 0,

lim sup
|ξ|→∞

‖ϕkPvξ|W h−k
p
≤ (1 +O(k−σ)) lim sup

|ξ|→∞
‖(P − T )vξ‖W h−k

p

≤ (1 +O(k−σ)) lim sup
|ξ|→∞

‖vξ‖W h
p
( ess ‖P‖W h

p →W h−k
p

+ ε) .

Consequently,

‖ϕkP0(·, ξ|ξ|−1)η‖Lp
≤ (1 +O(k−σ))‖η‖Lp

ess ‖P‖W h
p →W h−k

p

and finally
‖P0(·, ξ|ξ|−1η)‖Lp

≤ ‖η‖Lp
ess ‖P‖W h

p →W h−k
p

.

��
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Lemma 10.2.2. (i) The estimate

ess ‖P‖W h
p →W h−k

p
≤ c

∑
|α|≤k

ess ‖aα‖M(W
h−|α|
p →W h−k

p )
(10.2.1)

holds.
(ii) If p = 1 or p(h − k) > n, p > 1 and P maps continuously Wh

p into
Wh−k

p , then

ess ‖P‖W h
p →W h−k

p
∼
∑
|α|≤k

ess ‖aα‖M(W
h−|α|
p →W h−k

p )
. (10.2.2)

Proof. (i) Let ε > 0 and let Tα be a compact operator which maps Wh−|α|
p

into Wh−k
p and satisfies

‖aα − Tα‖W h−|α|
p →W h−k

p
≤ ess ‖aα‖M(W

h−|α|
p →W h−k

p )
+ ε .

Since the operator
T =

∑
|α|≤k

TαD
α : Wh

p →Wh−k
p

is compact, we arrive at (10.2.1).
(ii) We begin with the case p = 1, h − k ≤ n. Let ε > 0 and let T be a

compact operator such that

‖P − T‖W h
1 →W h−k

1
≤ ess ‖P‖W h

1 →W h−k
1

+ ε .

Further, let ηδ,x and ζr be the cutoff functions introduced at the beginning of
Sect. 7.1. Duplicating the proof of the upper estimate in Theorem 7.2.1 with
obvious changes, we obtain the estimate

‖ηδ,xP‖W h
1 →W h−k

1
+ ‖ζrP‖W h

1 →W h−k
1
≤ c ( ess ‖P‖W h

1 →W h−k
1

+ ε) (10.2.3)

which, by (10.1.3), is equivalent to
∑
|α|≤k

(
‖ηδ,xaα‖M(W

h−|α|
1 →W h−k

1 )
+ ‖ζraα‖M(W

h−|α|
1 →W h−k

1 )

)

≤ c ( ess ‖P‖W h
1 →W h−k

1
+ ε) .

It remains to use Theorem 7.2.1.
Next let p(h − k) > n and p ≥ 1. According to Lemma 10.1.1, aα ∈

M(Wh−|α|
p →Wh−k

p ). The inequality

‖ζrP‖W h
p →W h−k

p
≤ c ( ess ‖P‖W h

p →W h−k
p

+ ε) ,

where ε is sufficiently small and r is sufficiently large, can be obtained in the
same way as (10.2.3). This inequality and (10.1.3) give
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∑
|α|≤k

‖ζraα‖M(W
h−|α|
p →W h−k

p )
≤ c ( ess ‖P‖W h

p →W h−k
p

+ ε) .

Therefore,

lim sup
|x|→∞

∑
|α|≤k

‖aα;B1(x)‖W h−k
p
≤ c ess ‖P‖W h

p →W h−k
p

(10.2.4)

and, by Theorem 7.2.5,
∑
|α|<k

ess ‖aα‖M(W
h−|α|
p →W h−k

p )
≤ c ess ‖P‖W h

p →W h−k
p

. (10.2.5)

Applying part (i) of the present lemma to the operator P − P0 and using
(10.2.5), we arrive at

ess ‖P0‖W h
p →W h−k

p
≤ c ess ‖P‖W h

p →W h−k
p

which, together with Lemma 10.2.1, shows that
∑
|α|=k

ess ‖aα‖L∞ ≤ c ess ‖P‖W h
p →W h−k

p
. (10.2.6)

Taking into account Theorems 7.3.6 and 7.3.8, and using (10.2.4) and (10.2.6),
we find that

∑
|α|=k

ess ‖aα‖MW h−k
p
≤ c ess ‖P‖W h

p →W h−k
p

.

This estimate and (10.2.5) imply (ii). ��

10.3 Fredholm Property of the Schrödinger Operator

The usefulness of the essential norm of a Sobolev multiplier, whose two-sided
estimates were obtained in Chap. 7, can be illustrated by the following appli-
cation to the Schrödinger operator

S := −∆+ I − γ : Wm
p →Wm−2

p , (10.3.1)

where I is the imbedding operator: Wm
p →Wm−2

p and p ∈ (1,∞). We notice
that (10.3.1) holds if and only if γ ∈M(Wm

p →Wm−2
p ).

Proposition 10.3.1. Let cp,m = ‖(I −∆)−1‖W m−2
p →W m

p
. If

ess ‖γ‖M(W m
p →W m−2

p ) < c−1
p,m,

then S is Fredholm.
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Proof. We start with collecting some well-known definitions and facts (see,
for example, [Pa]). The operators R± : Wm

p →Wm−2
p are called the right and

left regularizers of S if
SR+ = Im−2 + Tm−2

and
SR− = Im + Tm,

respectively, where Im−2 and Im are identity operators in Wm−2
p and Wm

p ,
whereas Tm−2 and Tm are compact operators in Wm−2

p and Wm
p . It is well

known and easily seen that the existence of R+ implies dim kerS <∞ and the
existence ofR− guarantees the closedness of the range of S and the finiteness of
dim kerS. Hence the existence of both R+ and R− ensures that S is Fredholm.

Let T be a compact operator: Wm
p →Wm−2

p such that

‖γ − T‖W m
p →W m−2

p
< c−1

p,m.

Under this condition the inverse operators of

Im−2 − (γ − T )(I −∆)−1 : Wm−2
p →Wm−2

p

and
Im − (I −∆)−1(γ − T ) : Wm

p →Wm
p

exist. Now, it is straightforward that

(I −∆)−1
(
Im−2 − (γ − T )(I −∆)−1

)−1

and (
Im − (I −∆)−1(γ − T )

)−1(I −∆)−1

are the right and left regularizers of S. The proof is complete. ��

10.4 Domination of Differential Operators in R
n

The discussion in the present section is related to the problem of the dom-
ination relations for differential operators with constant coefficients (see, for
example, [H1], Sect. 3.3, and [GM]). Here we consider one of the formulations
of this problem.

Let R(D) and P (D) be differential operators in R
n with constant coef-

ficients and let S be the Schwartz space of infinitely differentiable functions
defined on R

n and tending to zero at infinity, with all its derivatives, faster
than an arbitrary positive power of |x|−1 (see [Sch], [GSh]). In the following
theorem we use the space L2((1 + |x|2)k/2), k ∈ R, with the norm

‖u‖L2((1+|x|2)k/2) =
(∫
|u|2(1 + |x|2)k dx

)1/2

.
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Theorem 10.4.1. The inequality

‖R(D)u‖L2((1+|x|2)−l/2) ≤ C ‖P (D)u‖L2 , l > 0 , (10.4.1)

holds for every u ∈ S if and only if R/P ∈ M(W l
2 → L2), which is equiva-

lent to

sup
{e:d(e)≤1}

‖R/P ; e‖L2

[C2,l(e)]1/2]
<∞ . (10.4.2)

In particular, in the case 2l > n the condition (10.4.2) means that

sup
x∈Rn

∫

B1(x)

|R(ξ)/P (ξ)|2 dξ <∞ . (10.4.3)

Proof. Sufficiency. The left-hand side in (10.4.1) is equal to

sup
ϕ

|(R(D)u, ϕ)|
‖ϕ‖L2((1+|x|2)l/2)

= sup
Φ

|(PFu, (R/P )Φ)|
‖Φ‖W l

2

,

where F is the Fourier transform in R
n. The last supremum does not exceed

‖PFu‖L2 sup
Φ

‖(R/P )Φ‖L2

‖Φ‖W l
2

= ‖R/P‖M(W l
2→L2)‖P (D)u‖L2 .

Necessity. Let

Qε(ξ) = (|P (ξ)|2 + ε)1/2, where ε = const > 0,

and let Qε(D) = F−1QεF . Since FS = S, the operator Q−1
ε (D) = F−1Q−1

ε F
maps S into itself. We set u = Q−1

ε (D)f , where f is an arbitrary function in
S. By (10.4.1),

‖R(D)Q−1
ε (D)f‖L2((1+|x|2)−l/2) ≤ C ‖f‖L2

which is the same as

|(Ψ, (R/Qε)Φ)| ≤ C ‖Ψ‖L2‖Φ‖W l
2
.

Consequently, for all Φ ∈W l
2, we have

‖(R/Qε)Φ‖L2 ≤ C ‖Φ‖W l
2
.

Passing to the limit as ε→ +0, we complete the proof. ��

A rough corollary of Theorem 10.4.1 is the sufficiency of (10.4.3) for the
validity of

‖R(D)u;K‖L2 ≤ C(K)‖P (D)u‖L2 , (10.4.4)

where u ∈ S, K is an arbitrary compact set in R
n and C(K) is a constant

independent of u. Namely, the following theorem holds:
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Theorem 10.4.2. [Maz8] Inequality (10.4.4) is true if and only if the func-
tions R and P satisfy (10.4.3).

Proof. We need to prove only the necessity. Let x be a fixed point in R
n, let

χx be the characteristic function of the ball B1(x), and let K be the cube
{x ∈ R

n : |xi| ≤ 1, 1 ≤ i ≤ n}. We define a family of functions {uε,h} by

Fuε,h =
( Rχx

|P |2 + ε

)
h
,

where (ϕ)h is the mollification of ϕ with radius h and ε is a positive number.
Clearly, uε,h ∈ S and it can be put into (10.4.4). We then have

lim
h→0
‖P (D)uε,h‖L2 =

∥∥∥ PR

|P |2+ε
;B1(x)

∥∥∥
L2

≤
∥∥∥ R

(|P |2+ε)1/2
;B1(x)

∥∥∥
L2

. (10.4.5)

On the other hand,

‖R(D)uε,h;K‖L2 = c ‖ψ ∗RFuε,h‖L2 ,

where
ψ(ξ) =

∏
1≤i≤n

ξ−1
i sin ξi.

Therefore

‖R(D)uε,h;K‖2L2
≥ c

∫

B1(x)

∣∣∣
∫
ψ(ξ − η)R(η)(Fuε,h)(η) dη

∣∣∣
2

dξ .

The right-hand side tends to

c

∫

B1(x)

∣∣∣
∫

B1(x)

ψ(ξ − η)
|R(η)|2 dη
|P (η)|2 + ε

∣∣∣
2

dξ

as h→ 0. Here |ξ − η| < 2 and consequently ψ(ξ − η) ≥ const > 0. We arrive
at the inequality

lim inf
h→0

‖R(D)uε,h;K‖L2 ≥ c

∫

B1(x)

|R(η)|2 dη
|P (η)|2 + ε

. (10.4.6)

Now, from (10.4.4) for uε,h and from (10.4.5) and (10.4.6) we obtain

‖R(|P |2 + ε)−1/2;B1(x)‖L2 ≤ c .

Passing to the limit as ε→ 0, we get (10.4.3). ��
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Schrödinger Operator and M(w1
2 → w−1

2 )

11.1 Introduction

The results presented in this chapter were obtained in [MV2]. Here a charac-
terization is given for the class of measurable functions (or, more generally,
real- or complex-valued distributions) V such that the Schrödinger operator
H = −∆ + V maps the energy space w1

2(R
n) to its dual w−1

2 (Rn). Simi-
lar results are obtained for the inhomogeneous Sobolev space W 1

2 (Rn). In
other words, a complete solution is given to the problem of the relative form-
boundedness of the potential energy operator V with respect to the Laplacian
−∆, which is fundamental to quantum mechanics. Relative compactness cri-
teria for the corresponding quadratic forms are established as well. Analogous
boundedness and compactness criteria for Sobolev spaces on domains Ω ⊂ R

n

are obtained under mild restrictions on ∂Ω.
The abovementioned mapping property of H is equivalent to the classical

inequality
∣∣∣∣
∫

Rn

|u(x)|2 V (x) dx
∣∣∣∣ ≤ C

∫

Rn

|∇u(x)|2 dx, u ∈ C∞
0 (Rn), (11.1.1)

holding. Here the “indefinite weight” V may change sign, or even be a complex-
valued distribution on R

n, n ≥ 3. (In the latter case, the left-hand side of
(11.1.1) is understood as | < V u, u > |, where < V ·, · > is the quadratic
form associated with the corresponding multiplication operator V .) We also
characterize an analogous inequality for the inhomogeneous Sobolev space
W 1

2 (Rn), n ≥ 1: ∣∣∣∣
∫

Rn

|u(x)|2 V (x) dx
∣∣∣∣

≤ C

∫

Rn

[ |∇u(x)|2 + |u(x)|2 ] dx, u ∈ C∞
0 (Rn). (11.1.2)

Such inequalities are used extensively in the spectral and scattering theory
of the Schrödinger operator H = H0 + V , where H0 = −∆ is the Laplacian

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 391
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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on R
n. In particular, (11.1.2) is equivalent to the concept of the relative

boundedness of V (potential energy operator) with respect to H0 in the sense
of quadratic forms.

It follows from the polarization identity

ūv =
1
4
(
|u+ v|2 − |u− v|2 − i|u− iv|2 + i|u+ iv|2

)
(11.1.3)

that (11.1.1) can be restated equivalently in terms of the sesquilinear form
< V u, v > as

| < V u, v > | ≤ C ‖∇u‖L2 ‖∇v‖L2 , (11.1.4)

for all u, v ∈ C∞
0 (Rn). In other words, it is equivalent to the boundedness of

the operator H = H0 + V ,

H : w1
2(R

n)→ w−1
2 (Rn), n ≥ 3. (11.1.5)

Here the energy space w1
2(R

n) is defined as the completion of C∞
0 (Rn) with

respect to the norm ‖∇u‖L2 , and w−1
2 (Rn) is the dual of w1

2(R
n). Simi-

larly, (11.1.2) means that H is a bounded operator which maps W 1
2 (Rn) to

W−1
2 (Rn), n ≥ 1.
Note that (11.1.4) means that the distribution V belongs the space of

multipliers M(w1
2(R

n)→ w−1
2 (Rn)).

Before stating the main results we note that we use some expressions
involving pseudodifferential operators, e.g. ∇∆−1 or (−∆)−1/2, which will be
defined in the main body of this chapter.

As before, R
n will be omitted in notations of norms and integrals.

Theorem 11.1.1. Let V be a complex-valued distribution on R
n, n ≥ 3. Then

V ∈ M((w1
2 → w−1

2 ), i.e. (11.1.1) holds, if and only if V is the divergence of
a vector field Γ : R

n → C
n such that

∫
|u(x)|2 |Γ(x)|2 dx ≤ C

∫
|∇u(x)|2 dx, (11.1.6)

where the constant is independent of u ∈ C∞
0 . The vector field Γ ∈ L2,loc can

be chosen as Γ = ∇∆−1V .
Equivalently, the Schrödinger operator H = H0+V acting from w1

2 to w−1
2

is bounded if and only if V = div Γ with Γ subject to (11.1.6). Furthermore,
the corresponding multiplication operator V : w1

2 → w−1
2 is compact if and

only if V = div Γ, where Γ is such that the embedding

w1
2 ⊂ L2(|Γ|2)

is compact.

Obviously, (11.1.6) means that Γ ∈ M(w1
2 → L2). Recall that the last

space was discussed in Sect. 2.8.
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We remark that once V is written as V = div Γ, the implication

(11.1.6) =⇒ (11.1.1)

becomes trivial. It follows using integration by parts and the Schwarz inequal-
ity (compare with Sect. 2.5, where a similar argument was used to obtain
sufficient conditions for the inclusion into M(Wm

p →W−k
p )).

On the other hand, the converse statement (11.1.1)=⇒(11.1.6), where
Γ = ∇∆−1V , is rather delicate. Its proof is based on a special factorization
of functions in w1

2 involving powers P δ
K of the equilibrium harmonic potential

PK associated with an arbitrary compact set K ⊂ R
n of positive Wiener’s

capacity. New sharp estimates for P δ
K , where ultimately δ is picked so that

1 < 2δ < n/(n− 2), are established in a series of lemmas and propositions in
Sect. 11.1.22. One also makes use of the fact that standard Mikhlin-Calderon-
Zygmund operators are bounded on L2 with a weight P δ

K , and the correspond-
ing operator norm bounds do not depend on K.

We now briefly outline the contents of this chapter. In Sect. 11.2 we de-
fine the Schrödinger operator on the energy space w1

2, and characterize the
basic inequality (11.1.1). The compactness problem is treated in Sect. 11.3.
Analogous results for the Sobolev space W 1

2 are obtained in Sect. 11.4, while
Sect. 11.5 is devoted to similar problems on a domain Ω ⊂ R

n for a broad
class of Ω, including those with Lipschitz boundaries.

11.2 Characterization of M(w1
2 → w−1

2 )
and the Schrödinger Operator on w1

2

In this section, we assume that n ≥ 3, since for the homogeneous space w1
2(R

n)
our results become vacuous if n = 1 and n = 2, (11.1.1) then implying that
V = 0. (Analogous results for inhomogeneous Sobolev spaces W 1

2 (Rn) are
valid for all n ≥ 1; see Sect. 11.4 below.)

For V ∈ (C∞
0 )′, consider the multiplication operator on C∞

0 defined by

< V u, v > := < V, ū v >, u, v ∈ C∞
0 , (11.2.1)

where < ·, · > represents the usual pairing between C∞
0 and its dual (C∞

0 )′.
Elements of w1

2(R
n), for n ≥ 3, are weakly differentiable functions u ∈

L 2n
n−2

(Rn) whose first-order weak derivatives lie in L2(Rn). By Hardy’s in-
equality, an equivalent norm on w1

2 is given by

‖u‖w1
2

=
[∫ (
|x|−2 |u(x)|2 + |∇u(x)|2

)
dx

] 1
2

.

If the sesquilinear form < V ·, · > is bounded on w1
2 × w−1

2 :

| < V u, v > | ≤ c ‖∇u‖L2 ‖∇v‖L2 , u, v ∈ C∞
0 , (11.2.2)
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where the constant c is independent of u and v, then V u ∈ w−1
2 , and the

multiplication operator can be extended by continuity onto w1
2. As usual, this

extension is also denoted by V .
Note that the least constant c in (11.2.2) is equal to the multiplier norm:

‖V ‖M(w1
2→w−1

2 ) = sup { ‖V u‖w−1
2

: ‖u‖w1
2
≤ 1, u ∈ C∞

0 }.

For V ∈ M(w1
2 → w−1

2 ), we extend the form < V, ūv > defined by the
right-hand side of (11.2.1) to the case where both u and v are in w1

2. This can
be done by letting

< V u, v > := lim
N→∞

< V uN , vN >,

where
u = lim

N→∞
uN , and v = lim

N→∞
vN in w1

2

with uN , vN ∈ C∞
0 .

We now state the main result of this section for arbitrary (complex-valued)
distributions V . By L2,loc = L2,loc⊗C

n we denote the space of vector-functions
Γ = (Γ1, . . . , Γn) such that Γi ∈ L2,loc, i = 1, . . . , n.

Theorem 11.2.1. Let V ∈ (C∞
0 )′. Then V ∈ M(w1

2 → w−1
2 ), i.e., the in-

equality
| < V u, v > | ≤ c ‖u‖w1

2
‖v‖w1

2
(11.2.3)

holds for all u, v ∈ C∞
0 , if and only if there is a vector field Γ ∈ L2,loc such

that V = div Γ, and (11.1.6) holds for all u ∈ C∞
0 . The vector field Γ can be

chosen in the form
Γ = ∇∆−1V.

Proof. Suppose that V = div Γ, where Γ satisfies (11.1.6). Then using inte-
gration by parts and the Schwarz inequality we obtain:

| < V u, v > | = | < V, ū v > | = | < Γ, v∇ū > + < Γ, ū∇v > |

≤ ‖Γv̄‖L2 ‖∇ū‖L2 + ‖Γu‖L2 ‖∇v‖L2 ≤ 2
√
C ‖∇u‖L2 ‖∇v‖L2 ,

where C is the constant in (11.1.6). This completes the proof of the “if” part
of Theorem 11.2.1.

The proof of the “only if” part of Theorem 11.2.1 is based on several
lemmas and propositions.

In the next lemma, we show that Γ = ∇∆−1V ∈ L2,loc, and give a crude
preliminary estimate of the rate of its decay at infinity.

Lemma 11.2.1. Suppose that

V ∈M(w1
2 → w−1

2 ). (11.2.4)
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Then
Γ = ∇∆−1V ∈ L2,loc

and
V = div Γ in (C∞

0 )′.

Moreover, for any ball BR(x0) (R > 0) and ε > 0,
∫

BR(x0)

|Γ(x)|2 dx ≤ C(n, ε)Rn−2+ε ‖V ‖2
M(w1

2→w−1
2 )

, (11.2.5)

where R ≥ max{1, |x0|}.

Proof. Suppose that V ∈M(w1
2 → w−1

2 ). Define the vector field Γ ∈ (C∞
0 )′ by

< Γ, φ >= − < V, ∆−1div φ >, (11.2.6)

for every φ ∈ C∞
0 ⊗ C

n. In particular,

< Γ, ∇ψ >= − < V, ψ >, ψ ∈ C∞
0 , (11.2.7)

i.e., V = div Γ in (C∞
0 )′.

We first have to check that the right-hand side of (11.2.6) is well-defined,
which a priori is not obvious. For φ ∈ C∞

0 ⊗ C
n, let w = ∆−1div φ, where

−∆−1f = I2f is the Newtonian potential of f ∈ C∞
0 . Clearly,

w(x) = O(|x|1−n) and |∇w(x)| = O (|x|−n) as |x| → ∞,

and hence
w = ∆−1div φ ∈ w1

2 ∩ C∞.

We will show below that w = u v, where u is real-valued, and both u
and v are in w1

2 ∩ C∞. Then, since V ∈ M(w1
2 → w−1

2 ), it follows that
< V, w >=< V u, v > is defined through the extension of the multiplication
operator V as explained above.

For our purposes, it is important to note that this extension of < V, w >
to the case where w = ūv, and u, v ∈ w1

2 ∩C∞, is independent of the choice of
factors u and v. To demonstrate this, we define a real-valued cutoff function

ηN (x) = η(N−1|x|), where η ∈ C∞(R+),

so that η(t) = 1 for 0 ≤ t ≤ 1 and η(t) = 0 for t ≥ 2. Note that ∇ηN is
supported in the annulus N ≤ |x| ≤ 2N , and |∇ηN (x)| ≤ c |x|−1. It follows
easily (for instance, from Hardy’s inequality) that

lim
N→∞

‖ηN u− u‖w1
2

= 0, u ∈ w1
2.

Then letting
uN = ηNu and vN = ηNv,
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so that uN vN = η2
N w, we define < V, w > explicitly by setting:

< V, w > := lim
N→∞

< V uN , vN >= lim
N→∞

< V, η2
Nw > .

This definition is independent of the choice of η and the factors u, v. Moreover,

| < V,w > | ≤ C inf{‖u‖w1
2
‖v‖w1

2
: w = ū v; u, v ∈ w1

2 ∩ C∞},

where
C = ‖V ‖M(w1

2→w−1
2 ).

Now we fix ε > 0 and factorize:

w(x) = ∆−1div φ(x) = u(x) v(x),

where

u(x) = (1+ |x|2)−n−2+ε
4 and v(x) = (1+ |x|2)n−2+ε

4 ∆−1div φ(x). (11.2.8)

Obviously, u ∈ w1
2 ∩ C∞, and

‖u‖w1
2

= c(n, ε) <∞.

It is easy to see that v ∈ w1
2∩C∞ as well. Furthermore, the following statement

holds.

Proposition 11.2.1. Suppose that φ ∈ C∞, and suppφ ⊂ BR(x0). Let v be
defined by (11.2.8), where 0 < ε < 2. Then

‖v‖w1
2
≤ c(n, ε)R

n−2+ε
2 ‖φ‖L2 , (11.2.9)

for R ≥ max{1, |x0|}.

Proof. Since φ is compactly supported, it follows that

|∆−1div φ(x)| ≤ c(n) I1|φ|(x), x ∈ R
n.

Hence
c(n, ε) ‖v‖w1

2
≤ ‖(1 + |x|2)n−2+ε

4 ∇∆−1div φ(x)‖L2

+‖(1 + |x|2)n−4+ε
4 I1|φ|(x)‖L2 .

Note that ∇∆−1div is a Mikhlin-Calderon-Zygmund operator, and that the
weight

w(x) = (1 + |x|2)n−2+ε
2

belongs to the Muckenhoupt class A2 if 0 < ε < 2 (see [CF]). Applying the
corresponding weighted norm inequality, we have:

‖(1 + |x|2)n−2+ε
4 ∇∆−1div φ(x)‖L2
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≤ c(n, ε) ‖(1 + |x|2)n−2+ε
4 |φ(x)| ‖L2 . (11.2.10)

The other term is estimated by the weighted Hardy inequality:
∫

(I1|φ|(x))2 (1 + |x|2)n−4+ε
2 dx

≤ c(n, ε)
∫
|φ(x)|2 (1 + |x|2)n−2+ε

2 dx. (11.2.11)

Clearly,
‖(1 + |x|2)n−2+ε

4 φ(x)‖L2 ≤ c(n, ε)R
n−2+ε

2 ‖φ‖L2 .

Hence, combining (11.2.10), (11.2.11), and the preceding estimate, we obtain
the desired inequality (11.2.9). The proof of Proposition 11.2.1 is complete. ��

Now let us prove (11.2.5). Suppose that φ ∈ C∞ ⊗ C
n, and suppφ ⊂

BR(x0). Then by (11.2.6) and Proposition 11.2.1,

| < Γ, φ > | = | < V, u v > | ≤ ‖V ‖M(w1
2→w−1

2 ) ‖u‖w1
2
‖v‖w1

2

≤ C(n, ε)R
n−2+ε

2 ‖V ‖M(w1
2→w−1

2 ) ‖φ‖L2 . (11.2.12)

Taking the supremum over all φ supported in BR(x0) with the unit L2-norm,
we arrive at (11.2.5). The proof of Lemma 11.2.1 is complete.

It remains to prove the main estimate (11.1.6) of Theorem 11.2.1. For this
aim, it suffices to establish the inequality

∫

e

|Γ(x)|2 dx ≤ c(n) ‖V ‖2
M(w1

2→w−1
2 )

c2,1(e), (11.2.13)

for every compact set e ⊂ R
n. Notice that in the special case e = BR(x0), the

preceding estimate gives a sharper version of (11.2.5):
∫

BR(x0)

|Γ(x)|2 dx ≤ C(n)Rn−2 ‖V ‖2
M(w1

2→w−1
2 )

, x0 ∈ R
n, R > 0.

Without loss of generality we assume that c2,1(e) > 0; otherwise mesne=0,
and (11.2.13) holds. Denote by P (x) = Pe(x) the equilibrium potential on e.
It is well known that P is the Newtonian potential of a positive measure which
gives a solution to several variational problems. This measure νe is called the
equilibrium measure for e.

We list some standard properties of νe and its potential Pe(x) = I2νe(x)
which will be used below:

(a) supp νe ⊂ e;
(b) Pe(x) = 1 dνe − a.e.;
(c) νe(e) = c2,1(e) > 0;
(d) ‖∇Pe‖2L2

= c2,1(e);
(e) sup

x∈Rn

Pe(x) ≤ 1. (11.2.14)
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The rest of the proof of Theorem 11.2.1 is based on some inequalities
involving the powers Pe(x)δ which are established below.

Proposition 11.2.2. Let δ > 1
2 and let P = Pe be the equilibrium potential

of a compact set e of positive capacity. Then

‖∇P δ‖L2 =
δ√

2δ − 1

√
c2,1(e). (11.2.15)

Proof. Clearly,
∫
|∇P (x)∆|2 dx = δ2

∫
|∇P (x)|2 P (x)2δ−2 dx. (11.2.16)

Using integration by parts, together with the properties −∆P = νe (under-
stood in the distributional sense) and P (x) = 1 dνe-a.e., we have

∫
|∇P (x)|2 P (x)2δ−2 dx =

∫
∇P (x) · ∇P (x)P (x)2δ−2 dx

=
∫
P (x)2δ−1 dνe − (2δ − 2)

∫
|∇P (x)|2 P (x)2δ−2 dx

= c2,1(e)− (2δ − 2)
∫
|∇P (x)|2 P (x)2δ−2 dx.

The integration by parts above is easily justified for δ > 1
2 by examining the

behavior of the potential and its gradient at infinity

c1 |x|2−n ≤ P (x) ≤ c2 |x|2−n,

|∇P (x)| = O (|x|1−n), as |x| → ∞. (11.2.17)

It follows from these calculations that

(2δ − 1)
∫
|∇P (x)|2 P (x)2δ−2 dx = c2,1(e).

Combining this with (11.2.16) yields (11.2.15). The proof of Proposition
11.2.2 is complete. ��

Remark 11.2.1. For δ ≤ 1
2 , it is easy to see that ∇P δ 	∈ L2.

In the next lemma we demonstrate that ‖∇v‖L2 is equivalent to the
weighted norm ‖P−δ∇(vP δ)‖L2 .

Lemma 11.2.2. Let δ > 0, and let v ∈ w1
2. Then

‖∇v‖2L2
≤
∫
|∇(v P δ)(x)|2 dx

P (x)2δ
≤ (δ + 1)(4δ + 1) ‖∇v‖2L2

. (11.2.18)
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Proof. Without loss of generality we may assume that v is real-valued. We
first prove (11.2.18) for v ∈ C∞

0 . The general case will follow using an approx-
imation argument. Clearly,

∫
|∇(v P δ)(x)|2 dx

P 2δ(x)
=
∫
|∇v(x) + δ v(x)∇P (x)P (x)−1|2 dx

=
∫
|∇v(x)|2 dx+ δ2

∫
v(x)2

|∇P (x)|2
P (x)2

dx+ 2δ
∫
∇v · ∇P (x)

v(x)
P (x)

dx.

Integration by parts and the equation −∆P = νe (understood in the distrib-
utional sense) give

2
∫
∇v · ∇P (x)

v(x)
P (x)

dx =
∫
v(x)2

dνe(x)
P (x)

dx+
∫
v(x)2

|∇P (x)|2
P (x)2

dx.

Using this identity, we rewrite the preceding equation in the form
∫
|∇(v P δ)(x)|2 dx

P 2δ(x)
=
∫
|∇v(x)|2 dx

+δ(δ + 1)
∫
v(x)2

|∇P (x)|2
P (x)2

dx+ δ

∫
v(x)2

dνe(x)
P (x)

. (11.2.19)

The lower estimate in (11.2.18) is now obvious provided the last two terms on
the right-hand side of the preceding equation are finite. They are estimated in
the following proposition, which holds for Newtonian potentials of arbitrary
(not necessarily equilibrium) positive measures.

Proposition 11.2.3. Let ω be a positive Borel measure on R
n such that

P (x) = I2ω(x) 	≡ ∞. Then the inequalities hold:
∫
v(x)2

|∇P (x)|2
P (x)2

dx ≤ 4 ‖∇v‖2L2
, v ∈ C∞

0 , (11.2.20)

and ∫
v(x)2

dω(x)
P (x)

≤ ‖∇v‖2L2
, v ∈ C∞

0 . (11.2.21)

Proof. Suppose that v ∈ C∞
0 . ThenA = supp v is a compact set, and obviously

inf
x∈A

P (x) > 0.

Without loss of generality we may assume that ∇P ∈ L2,loc, and hence the
left-hand side of (11.2.20) is finite. (Otherwise we replace ω by its convolution
with a compactly supported mollifier: ωt = ω ∗ εt, and complete the proof by
applying the estimates given below to P (x) = I2ωt(x), and then passing to
the limit as t→∞.)
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Using integration by parts together with the equation −∆P = ω as above,
and applying the Schwarz inequality, we get

∫
v(x)2

|∇P (x)|2
P (x)2

dx+
∫
v(x)2

dω(x)
P (x)

= 2
∫
∇v(x) · ∇P (x)

v(x)
P (x)

dx

≤ 2
(∫

v(x)2
|∇P (x)|2
P (x)2

dx

) 1
2
(∫
|∇v(x)|2 dx

) 1
2

for all v ∈ C∞
0 . The preceding inequality obviously yields both (11.2.20) and

(11.2.21). This completes the proof of Proposition 11.2.3. ��

Remark 11.2.2. The constants 4 and 1 respectively in (11.2.20) and (11.2.21)
are sharp. Indeed, if ω is a point mass at x = 0, it follows that P (x) =
c(n) |x|2−n. Hence, (11.2.20) boils down to the classical Hardy inequality

∫
|u(x)|2 dx

|x|2 ≤
4

(n− 2)2

∫
|∇u(x)|2 dx, u ∈ C∞

0 , (11.2.22)

with the best constant 4/(n− 2)2. To show that the constant in (11.2.21) is
sharp, it suffices to let ω = νe for a compact set e of positive capacity, so that
P (x) = 1 dω-a.e. and νe(e) = c2,1(e), and then minimize the right-hand side
over all v ≥ 1 on e, where v ∈ C∞

0 .

We now complete the proof of Lemma 11.2.2. Combining (11.2.19) with
(11.2.20) and (11.2.21) (with νe in place of ω), we arrive at the estimate

‖∇v‖2L2
≤
∫
|∇(v P δ)(x)|2 dx

P (x)2δ
≤ (δ + 1)(4δ + 1) ‖∇v‖2L2

,

for all v ∈ C∞
0 .

To verify this inequality for arbitrary v in w1
2, let

v = lim
N→∞

vN

both in w1
2 and dx-a.e. for vN ∈ C∞

0 . Now put vN in place of v in (11.2.20)
and let N → ∞. Using Fatou’s lemma, we see that (11.2.20) holds for all
v ∈ w1

2. Hence

lim
N→∞

∫
|vN (x)− v(x)|2 |∇P (x)|2

P (x)2
dx = 0,

and consequently

lim
N→∞

∫
|∇(vN P δ)(x)|2 dx

P 2δ(x)
= lim

N→∞

∫
|∇vN (x) + δvN (x)

∇P (x)
P (x)

|2dx
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=
∫
|∇v(x) + δv(x)

∇P (x)
P (x)

|2dx =
∫
|∇(v P δ)(x)|2 dx

P 2δ(x)
.

Thus, the proof of the general case is completed by putting vN in place of v
in (11.2.18), and letting N →∞. The proof of Lemma 11.2.2 is complete. ��

Remark 11.2.3. In what follows only the lower estimate in (11.2.18) will be
used, together with the fact that

‖P−δ∇(vP δ)‖L2 <∞

for every v ∈ w1
2.

In the next proposition, we extend the equation < V, w >= − < Γ, ∇w >
to the case where w = u v, where both u and v lie in w1

2, are locally bounded,
and have a certain decay at infinity.

Proposition 11.2.4. Suppose that V ∈ M(w1
2 → w−1

2 ), and Γ = ∇∆−1V ∈
L2,loc is defined as in Lemma 11.2.1. Suppose that w = u v, where u, v ∈ w1

2,
and

|u(x)| ≤ C (1 + |x|2)−β/2, |v(x)| ≤ C (1 + |x|2)−β/2, x ∈ R
n, (11.2.23)

for some β > (n− 2)/2. Then Γ · ∇w̄ is integrable, and

< V, w >= −
∫

Γ · ∇w̄(x) dx. (11.2.24)

Proof. Clearly,

∫
|Γ · ∇w̄(x)| dx ≤

(∫
|Γ(x)|2|u(x)|2 dx

) 1
2
(∫

Rn

|∇v(x)|2 dx
) 1

2

+
(∫
|Γ(x)|2|v(x)|2 dx

) 1
2
(∫
|∇u(x)|2 dx

) 1
2

.

To show that the right-hand side is finite, note that, for every ε > 0 and
R ≥ 1, ∫

|x|≤R

|Γ(x)|2 dx ≤ C Rn−2+ε, (11.2.25)

by Lemma 11.2.1. It is easy to see that the preceding estimate yields
∫
|Γ(x)|2 (1 + |x|2)−β dx <∞, (11.2.26)

for β > (n− 2)/2. Indeed, pick ε ∈ (0, 2β − n+ 2), and estimate
∫
|Γ(x)|2(1 + |x|2)−β dx ≤

∫

|x|≤1

|Γ(x)|2 dx+
∫

|x|>1

|Γ(x)|2|x|−2β dx
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≤ c1 + c2

∫ ∞

1

(∫

|x|≤r

|Γ(x)|2 dx
)
r−2β−1 dx

≤ c1 + c2

∫ ∞

1

rn−3−2β dx <∞.

From this and (11.2.23) it follows that
∫
|Γ(x)|2|u(x)|2 dx <∞,

∫
|Γ(x)|2|v(x)|2 dx <∞.

Thus Γ · ∇w̄ is integrable.
To prove (11.2.24), we first assume that both u and v lie in w1

2 ∩C∞, and
satisfy (11.2.23). Let ηN (x) be a smooth cutoff function as in the proof of
Lemma 11.2.1. Let uN = ηN u and vN = ηN v. Then by (11.2.7),

< V, uNvN >= −
∫

Γ · ∇(ūN v̄N )(x) dx

= −
∫

Γ · ∇ūN (x) v̄N (x) dx−
∫

Γ · ∇v̄N (x) ūN (x) dx.

Note that
0 ≤ ηN (x) ≤ 1 and |∇ηN (x)| ≤ C |x|−1,

which gives

|Γ · ∇ūN (x) v̄N (x)|+ |Γ · ∇ūN (x) v̄N (x)| ≤ C |Γ(x)|
(
|u(x)| |v(x)||x|−1

+|∇u(x)||v(x)|+ |∇v(x)||u(x)|
)
.

Since v ∈ w1
2), it follows from Hardy’s inequality (or directly from (11.2.23))

that |v(x)||x|−1 ∈ L2. Applying (11.2.26) and the Schwarz inequality, we con-
clude that the right-hand side of the preceding inequality is integrable. Thus
(11.2.24) follows from the dominated convergence theorem in this case.

It remains to show that the C∞ restriction on u and v can be dropped.
We set

ur = u � φr, vr = v � φr,

where φr(x) = r−n φ(x/r). Here φ ∈ C∞
0 is a C∞-mollifier supported in B1

such that 0 ≤ φ(x) ≤ 1. It is not difficult to verify that ur and vr satisfy
estimates (11.2.23). Obviously,

|ur(x)| = |u ∗ φr(x)| ≤ Mu(x),

whereM is the Hardy–Littlewood maximal operator. We can suppose without
loss of generality that (n− 2)/2 < β < n in (11.2.23). Notice that, for 0 <
β < n,

M(1 + |x|2)−β/2 ≤ C(1 + |x|2)−β/2, x ∈ R
n.
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Hence,

|ur(x)| ≤ Mu(x) ≤ C(1 + |x|2)−β/2, x ∈ R
n, (11.2.27)

where C does not depend on r, and a similar estimate holds for v.
We also need the estimate

|∇ur(x)| = |∇u � φr(x)| ≤ M|∇u|(x). (11.2.28)

As was shown above,

< V, urvr >= −
∫

Γ · ∇ūr(x) v̄r(x) dx−
∫

Γ · ∇v̄r(x) ūr(x) dx.

Moreover, by (11.2.27) and (11.2.28) we have

|Γ · ∇ūr(x)v̄r(x)|+ |Γ · ∇v̄r(x) ūr(x)|

≤ C|Γ(x)|(1 + |x|2)−β/2(M|∇u|(x) +M|∇v|(x)).

Since u, v ∈ w1
2, and M is a bounded operator on L2, it follows that M|∇u|

and M|∇v| lie in L2. Applying (11.2.26) again, we see that the right-hand
side of the preceding inequality is integrable. Thus, letting r → 0, and using
the dominated convergence theorem, we obtain

< V, w >= lim
r→0

< V, urvr >= −
∫

Γ · ∇w̄(x) dx,

which completes the proof of Proposition 11.2.4. ��

Now we continue the proof of (11.2.13). Suppose that

V ∈M(w1
2 → w−1

2 ),

i.e., the inequality

| < V u, v > | ≤ ‖V ‖M(w1
2→w−1

2 ) ‖u‖w1
2
‖v‖w1

2

holds, where u, v ∈ w1
2.

Let φ = (φ1, . . . , φn) be an arbitrary vector field in C∞
0 ⊗ C

n, and let

w = ∆−1 div φ = −I2 div φ, (11.2.29)

so that
φ = ∇w + s, div s = 0.

Note that w ∈ w1
2 ∩ C∞, since

w(x) = O(|x|1−n) and |∇w(x)| = O (|x|−n) as |x| → ∞. (11.2.30)
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Now set

u(x) = P (x)δ and v(x) =
w(x)
P (x)δ

, (11.2.31)

where P (x) is the equilibrium potential of a compact set e ⊂ R
n, and 1 <

2δ < n/(n− 2).
By (11.2.14) and (11.2.17) we have

0 ≤ P (x) ≤ 1 for all x ∈ R
n

and
P (x) ≤ c |x|2−n for |x| large.

Hence
|P (x)|δ ≤ C (1 + |x|2)−δ(n−2)/2.

Since β = δ(n− 2) > (n− 2)/2, it follows that u satisfies (11.2.23).
To verify that (11.2.23) holds for v = wP−δ, note that

inf
K
P (x) > 0

for every compact set K, and hence by (11.2.17)

P (x)−δ ≤ C (1 + |x|2)δ(n−2)/2.

Combining this estimate with (11.2.30), we conclude that

|v(x)| ≤ C (1 + |x|2)−β/2,

where β = −δ(n− 2) + n− 1 > (n− 2)/2.
By Proposition 11.2.2 and Lemma 11.2.2 both u and v lie in w1

2. Now
applying Proposition 11.2.4, we obtain

< V u, v >=< V, w >= −
∫

Γ · ∇w̄(x) dx.

Hence, ∣∣∣∣
∫

Γ · ∇w̄(x) dx
∣∣∣∣ ≤ ‖V ‖M(w1

2→w−1
2 ) ‖∇u‖L2 ‖∇v‖L2 .

By Lemma 11.2.2,

‖∇v‖2L2
≤
∫
|∇(vP δ)(x)|2 dx

P (x)2δ
=
∫
|∇w(x)|2 dx

P (x)2δ
<∞.

Applying this together with Proposition 11.2.2, we obtain the estimate
∣∣∣∣
∫

Γ · ∇w̄(x) dx
∣∣∣∣ ≤ C(δ) ‖V ‖M(w1

2→w−1
2 (Rn)) c2,1(e)

1
2

×
(∫
|∇w(x)|2 dx

P (x)2δ

) 1
2

. (11.2.32)
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To complete the proof of Theorem 11.2.1, we need one more estimate which
involves powers of equilibrium potentials.

Proposition 11.2.5. Let w be defined by (11.2.29) with φ ∈ C∞
0 ⊗ C

n. Sup-
pose that 1 < 2δ < n/(n− 2). Then

∫
|∇w(x)|2 dx

P (x)2δ
≤ C(n, δ)

∫
|φ(x)|2 dx

P (x)2δ
. (11.2.33)

Proof. Note that ∇w is related to φ through the Riesz transforms Rj , j =
1, . . . , n ([St2]):

∇w =
{ n∑

k=1

Rj Rkφk

}
, j = 1, . . . , n.

Since Rj are bounded operators on L2(ρ) with a weight ρ in the Muckenhoupt
class A2(Rn) ([CF], [St3]), we have

‖∇w‖L2(ρ) ≤ C ‖φ‖L2(ρ),

where the constant C depends only on the Muckenhoupt constant of the
weight.

Let ρ(x) = P (x)−2δ. It is easily seen that

inf
x∈K

P (x) > 0

for every compact set K, and hence P (x)−2δ ∈ L1, loc(Rn). It was proved
in [MV1] that P (x)2δ is an A2-weight, provided that 1 < 2δ < n/(n− 2).
Moreover, its Muckenhoupt constant depends only on n and δ, but not on the
compact set e. (See [MV1], p. 95, the proof of Lemma 3.1 in the case p = 2.)
Clearly, the same is true for ρ(x) = P (x)−2δ. This completes the proof of
Proposition 11.2.5. ��

Now we are in a position to complete the proof of Theorem 11.2.1. Recall
that from (11.2.7) and Proposition 11.2.4 it follows that

< V, w >= −
∫

Γ · ∇w̄(x) dx = −
∫

Γ · φ(x) dx.

Using (11.2.32) and Proposition 11.2.5, we obtain

∣∣∣∣
∫

Γ · φ(x) dx
∣∣∣∣ ≤ C(n, δ) ‖V ‖M(w1

2→w−1
2 ) c2,1(e)

1
2

(∫ |φ(x)|2
P (x)2δ

dx

) 1
2

for all φ ∈ C∞
0 ⊗ C

n, and hence for all φ ∈ L2,loc.
Let us pick R > 0 so that e ⊂ BR. Letting φ = χBR

P 2δ Γ in the preceding
inequality, we conclude that
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(∫

BR

|Γ(x)|2 P (x)2δ(x) dx
) 1

2

≤ C(n, δ) ‖V ‖M(w1
2→w−1

2 ) c2,1(e)
1
2 .

Since P (x) ≥ 1 dx-a.e. on e (actually P (x) = 1 on e\E, where E is a polar
set, i.e., c2,1(E) = 0), it follows that

∫

e

|Γ(x)|2 dx ≤ C(n, δ)2 ‖V ‖2
M(w1

2→w−1
2 )

c2,1(e).

Thus, (11.2.13) holds for every compact set e ⊂ R
n, and hence this yields

(11.1.6). The proof of Theorem 11.2.1 is complete. ��

We now prove an analogue of Theorem 11.2.1 formulated in terms of
(−∆)−1/2V .

Theorem 11.2.2. Under the assumptions of Theorem 11.2.1, it follows that

V ∈M(w1
2 → w−1

2 )

if and only if
(−∆)−1/2V ∈M(w1

2 → L2).

Proof. By Theorem 11.2.1, ∇∆−1V ∈ L2,loc is well defined in terms of distri-
butions. We now have to show that (−∆)−1/2V is also well defined.

Since ∇∆−1V lies in M(w1
2 → L2)⊗ C

n, it follows from Corollary 3.2 in
[MV1] that the Riesz transforms Rj (j = 1, . . . , n) are bounded operators on
M(w1

2 → L2). Hence
(−∆)−1/2∇ = {Rj}1≤j≤n

is a bounded operator from M(w1
2 → L2) to M(w1

2 → L2) ⊗ C
n. Then

(−∆)−1/2V can be defined by

(−∆)−1/2V = (−∆)−1/2∇ · ∇∆−1V

as an element of M(w1
2 → L2). The proof of Theorem 11.2.2 is complete. ��

Remark 11.2.4. It is worthwhile to observe that the “näıve” approach is to
decompose V into its positive and negative parts: V = V+ − V−, and to
apply the criteria in Sect. 1.2 to both V+ and V−. However, this procedure
drastically diminishes the class of admissible weights V by ignoring a possible
cancellation between V+ and V−. This cancellation phenomenon is evident for
strongly oscillating weights considered below.

Example 11.2.1. Let us set

V (x) = |x|N−2 sin (|x|N ), (11.2.34)
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where N is an integer, N ≥ 3, which may be arbitrarily large. Obviously,
both V+ and V− fail to satisfy (11.1.1) due to the growth of the amplitude at
infinity. However,

V (x) = div Γ(x)+O (|x|−2), where Γ(x) =
−1
N

x
|x|2 cos (|x|N ). (11.2.35)

By Hardy’s inequality (11.2.22) with n ≥ 3, the term O (|x|−2) in (11.2.35) is
harmless, whereas Γ clearly satisfies (11.1.6) since |Γ(x)|2 ≤ |x|−2. This shows
that V is admissible for (11.1.1), while |V | is obviously not. Similar examples
of weights with strong local singularities can easily be constructed.

11.3 A Compactness Criterion

In this section we give a compactness criterion for V ∈M(w1
2 → w−1

2 ). Denote
by M̊(w1

2 → w−1
2 ) the class of compact multiplication operators acting from

w1
2 to w−1

2 . Obviously,

M̊(w1
2 → w−1

2 ) ⊂M(w1
2 → w−1

2 ),

where the latter class was characterized in the preceding section.

Theorem 11.3.1. Let V ∈ (C∞
0 )′ and n ≥ 3. Then

V ∈ M̊(w1
2 → w−1

2 )

if and only if
V = div Γ, (11.3.1)

where Γ = (Γ1, . . . , Γn) is a vector field such that

Γi ∈ M̊(w1
2 → L2), i = 1, . . . , n.

Moreover, Γ can be represented in the form ∇∆−1V , as in Theorem 11.2.1.

Proof. Let V be given by (11.3.1), and let u belong to the unit ball B in w1
2.

Then
V u = div (uΓ)− Γ · ∇u. (11.3.2)

The set
{div (uΓ) : u ∈ B}

is compact in w−1
2 because the set

{uΓ : u ∈ B}
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is compact in w−1
2 . The set {Γ ·∇u : u ∈ B} is also compact in w−1

2 since the
set {|∇u| : u ∈ B} is bounded in L2, and the multiplier operators Γ̄i, being
adjoint to Γi (i = 1, . . . , n), are compact from L2 to w−1

2 . This completes the
proof of sufficiency of (11.3.1).

We now prove the necessity. Pick F ∈ C∞(R+), where F (t) = 1 for t ≤ 1
and F (t) = 0 for t ≥ 2. For x0 ∈ R

n, δ > 0, and R > 0, define the cutoff
functions

κδ,x0(x) = F (δ−1|x− x0|), and ξR(x) = 1− F (R−1|x|).

Lemma 11.3.1. If f ∈ w−1
2 , then

lim
δ→0

sup
x0∈Rn

‖κδ,x0 f‖w−1
2

= 0, (11.3.3)

and
lim

R→∞
‖ξR f‖w−1

2
= 0. (11.3.4)

Proof. Let us prove (11.3.3). The distribution f has the form f = div φ, where
φ = (φ1, . . . , φn) ∈ L2. Hence,

κδ,x0 f = div (κδ,x0 φ)− φ∇κδ,x0 .

Clearly,
‖κδ,x0 f‖w−1

2
≤ ‖κδ,x0 |φ| ‖L2 + c δ ‖∇κδ,x0 · φ‖L2

≤ c ‖ |φ|;B2δ(x0)‖L2 .

This proves (11.3.3). Since (11.3.4) is derived in a similar way, the proof of
Lemma 11.3.1 is complete. ��

Lemma 11.3.2. If V ∈ M̊ (w1
2 → w−1

2 ), then

lim
δ→0

sup
x0∈Rn

‖κδ,x0 V ‖M̊ (w1
2→w−1

2 ) = 0, (11.3.5)

and
lim

R→∞
‖ξR V ‖M̊ (w1

2→w−1
2 ) = 0. (11.3.6)

Proof. Fix ε > 0, and pick a finite number of fk ∈ w−1
2 such that

‖V u− fk‖w−1
2

< ε

for k = 1, . . . , N(ε), and for all u ∈ B, where B is the unit ball in w1
2. Note

that by Hardy’s inequality

sup
x0∈Rn, δ>0

‖κδ,x0‖M(w1
2→w−1

2 ) ≤ c <∞.
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Next,
‖κδ,x0 V u‖w−1

2
≤ ‖κδ,x0 (V u− fk)‖w−1

2
+ ‖κδ,x0 fk‖w−1

2

≤ c ε+ ‖κδ,x0 fk‖w−1
2
.

Hence,
‖κδ,x0‖M(w1

2→w−1
2 ) ≤ c ε+ ‖κδ,x0 fk‖w−1

2
.

By Lemma 11.3.1, this gives (11.3.5), and the proof of (11.3.6) is quite similar.
The proof of Lemma 11.3.2 is complete. ��

We can now complete the proof of the necessity part of Theorem 11.3.1.
Suppose that

V ∈ M̊ (w1
2 → w−1

2 ).

By Theorem 11.2.1,

‖∇∆−1(ξR V )‖M(w1
2→L2) ≤ c ‖ξR V ‖M(w1

2→L2).

By the preceding estimate and (11.3.6),

lim
R→∞

‖∇∆−1(ξR V )‖M(w1
2→L2) = 0.

Hence we can assume without loss of generality that V is compactly supported,
e.g., suppV ⊂ B1. To show that

Γ = ∇∆−1V ∈ M̊ (w1
2 → L2),

consider a covering of the closed unit ball B1 by open balls Bk (k = 1, . . . , n)
of radius

√
n δ centered at the nodes xk of the lattice with mesh size δ. We

introduce a partition of unity φk subordinate to this covering and satisfying
the estimate |∇φk| ≤ c δ−1, so that suppφk ⊂ B∗k, where B∗k is the ball of
radius 2

√
n δ concentric to Bk. Also, pick ψk ∈ C∞

0 (B∗k), where

φk ψk = φk, and |∇ψk| ≤ c δ−1.

We have

∇∆V =
N(δ)∑
k=1

∇∆(φk V ) =
N(δ)∑
k=1

∇∆(φk ψk V )

=
N(δ)∑
k=1

ψk∇∆(φk V ) +
N(δ)∑
k=1

[∇∆, ψk ]φk V,

where [A, B ] = AB − BA is the commutator of the operators A and B.
Since the multiplicity of the covering
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N(δ)⋃
k=1

Bk

depends only on n, it follows that

∥∥∥
N(δ)∑
k=1

ψk∇∆(φk V )
∥∥∥

M(w1
2→L2)

≤ c(n) sup
1≤k≤N(δ)

‖∇∆(φk V )‖M̊ (w1
2→L2)

.

The last supremum is bounded by

c ‖φk V ‖M̊ (w1
2→w−1

2 ),

which is made smaller than any ε > 0 by choosing δ = δ(ε) small enough.
It remains to check that each function

Φk := [∇∆, ψk ]φk V

is a compact multiplier from w1
2 to L2, k = 1, . . . , n. Indeed, the kernel of the

operator V → [∇∆, ψk ]φk V is smooth, and hence

|Φk(x)| = |( [∇∆, ψk ]φk V )(x)| ≤ ck (1 + |x|)1−n ‖φk V ‖w−1
2

≤ ck (1 + |x|)1−n ‖V ‖M̊ (w1
2→w−1

2 ) ‖φk‖w1
2
≤ Ck (1 + |x|)1−n,

where the constant Ck does not depend on x. Since n > 2, this means that
the multiplier operator Φk : w1

2 → L2 is compact. The proof of Theorem
11.3.1 is complete. ��

Remark 11.3.1. The compactness of the multipliers Γi : w1
2 → L2, where

i = 1, . . . , n, is obviously equivalent to the compactness of the embedding

w1
2 ⊂ L2(|Γ|2). (11.3.7)

An analytic characterization of this property is equivalent to the inequalities

lim
δ→0

sup
{e:diam(e)≤δ}

∫

e

|Γ|2dx

c2,1(e)
= 0,

lim
ρ→∞

sup
e⊂Rn\Bρ

∫

e

|Γ|2dx

c2,1(e)
= 0

(see [Maz2] and [Maz15], § 2.5).
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11.4 Characterization of M(W 1
2 → W −1

2 )

In this section, we characterize the class of multipliers V : W 1
2 → W−1

2 for
n ≥ 1. Here W−1

2 = (W 1
2 )′, the dual of W 1

2 . Let Jα (0 < α < +∞) denote
the Bessel potential of order α. Every u ∈W 1

2 can be represented in the form
u = J1g, where

c1 ‖g‖L2 ≤ ‖u‖W 1
2
≤ c2 ‖g‖L2 .

(See [St2].)
Let S denote the Schwarz space of infinitely differentiable functions on R

n

and S ′ its dual. We say that V ∈ S ′ is a multiplier from W 1
2 to W−1

2 if the
sesquilinear form defined by

< V u, v > :=< V, ūv >

is bounded on W 1
2 ×W 1

2 :

| < V u, v > | ≤ c ‖u‖W 1
2
‖v‖W 1

2
, u, v ∈ S, (11.4.1)

where the constant c is independent of u and v in Schwartz space S. As in
the case of homogeneous spaces, the preceding inequality is equivalent to the
boundedness of the corresponding quadratic form; i.e., it suffices to verify
(11.4.1) for u = v.

If (11.4.1) holds, then V defines a bounded multiplier operator from W 1
2

to W−1
2 . (Originally, it is defined on S, but by continuity is extended to W 1

2 .)
The corresponding class of multipliers is denoted by M(W 1

2 →W−1
2 ).

Since I −∆ : W 1
2 →W−1

2 is a bounded operator, it follows that

V ∈M(W 1
2 →W−1

2 )

if and only if the operator

(I −∆) + V : W 1
2 →W−1

2

is bounded.
If V is a locally finite complex-valued measure on R

n, then (11.4.1) can
be rewritten in the form

∣∣∣∣
∫
u(x) v(x) dV (x)

∣∣∣∣ ≤ c ‖u‖W 1
2
‖v‖W 1

2
, (11.4.2)

where u, v ∈ S.
We now characterize (11.4.2) in the general case of distributions V .

Theorem 11.4.1. Let V ∈ S ′. Then V ∈M(W 1
2 →W−1

2 ) if and only if there
exist a vector field Γ = {Γ1, . . . , Γn} ∈ L2,loc and Γ0 ∈ L2,loc such that

V = div Γ + Γ0, (11.4.3)
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and ∫
|u(x)|2 |Γi(x)|2 dx ≤ C ‖u‖2W 1

2
, i = 0, 1, . . . , n, (11.4.4)

where C does not depend on u ∈ S.
In (11.4.3), one can set

Γ = −∇ (I −∆)−1V, and Γ0 = (I −∆)−1V. (11.4.5)

Proof. Suppose that V is represented in the form (11.4.3), and (11.4.4) holds.
Then using integration by parts and the Schwarz inequality, we have

| < V, ū v > | = | < Γ, v∇ū > + < Γ, ū∇v > + < Γ0, ū v > |

≤ ‖Γv‖L2 ‖∇u‖L2 + ‖Γu‖L2 ‖∇v‖L2 + ‖Γ0u‖L2 ‖v‖L2

≤ 3
√
C ‖u‖W 1

2
‖v‖W 1

2
,

where C is the constant in (11.4.4). This proves the “if” part of Theorem
11.4.1.

To prove the “only if” part, define Γ = {Γ1, . . . , Γn} and Γ0 by (11.4.5).
Then, for every j = 0, 1, . . . , n, we have Γj ∈ L2,loc, and the following crude
estimate holds:

∫

BR(x0)

|Γj(x)|2 dx ≤ C(n, ε)Rn−2+ε ‖V ‖2
M(W 1

2 →W−1
2 )

, (11.4.6)

where R ≥ max{1, |x0|}. The proof is based on the same argument as the
proof of Lemma 11.2.1 in the homogeneous case.

Now fix a compact set e ⊂ R
n such that diam (e) ≤ 1, and C2,1(e) > 0.

Denote by P (x) = Pe(x) the equilibrium potential of e which corresponds to
the capacity C2,1. Letting

u(x) = P (x)δ and v(x) =
w(x)
P (x)δ

,

where 1 < 2δ < n/(n− 2) and w ∈ S, we have

| < V, w > | ≤ ‖V ‖M(W 1
2 →W−1

2 ) ‖P δ‖W 1
2
‖∇v‖W 1

2
.

Calculations analogous to those of Propositions 11.2.2 - 11.2.5 yield

‖P δ‖W 1
2
≤ C(n, δ)C2,1(e)

1
2 ,

and

‖∇v‖W 1
2
≤ C(n, δ)

[∫
(|w(x)|2 + |∇w(x)|2) dx

P (x)2δ

] 1
2

.
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Combining the preceding inequalities, we obtain

| < V, w > | ≤ C(n, δ) ‖V ‖M(W 1
2 →W−1

2 ) C2,1(e)
1
2

×
[∫

(|w(x)|2 + |∇w(x)|2) dx

P (x)2δ

] 1
2

.

Set w = (1−∆)−1 div φ, where φ is an arbitrary vector-field with components
in S. Then the preceding estimate can be restated in the form

|< Γ,φ > | ≤ C(n, δ)C2,1(e)
1
2

[∫
(|w(x)|2+|∇w(x)|2) dx

P (x)2δ

] 1
2

. (11.4.7)

Unlike in the homogeneous case, P (x)−2δ is not a Muckenhoupt weight
for Bessel potentials. To proceed, we need a localized version of the estimates
used in Sect. 11.3.

Lemma 11.4.1. Let P (x) = Pe(x) be the equilibrium potential of a compact
set e of positive capacity C2,1 and such that e ⊂ B, where B = B1(x0) is the
ball of radius 1 centered at x0 ∈ R

n. Let w = (I −∆)−1∇ψ, where ψ ∈ C∞

and suppψ ⊂ B. Suppose that 1 < 2δ < n/(n− 2). Then
∫

(|w(x)|2 + |∇w(x)|2) dx

P (x)2δ
≤ C(n, δ)

∫
|ψ(x)|2 dx

P (x)2δ
. (11.4.8)

Proof. Let ν = νe be the equilibrium measure of the compact set e in the
sense of the capacitiy C2,1, so that P (x) = J2ν(x) (see [AH]). Suppose first
that n ≥ 3. Since both supp ν and suppψ are contained in B, it follows that

P (x) = J2ν(x) ∼ I2ν(x) = c(n)
∫

B

dν(y)
|x− y|n−2

, x ∈ 2B, (11.4.9)

where 2B is a concentric ball of radius 2.
We set ρ(x) = I2ν(x)−2δ. Then ρ(x) ∼ P (x)−2δ on 2B, and ρ(x) is an

A2-weight (see the proof of Proposition 11.2.4). Note that

∇w = ∇2 (I −∆)−1ψ,

where

∇2 (I −∆)−1 = {−Rj Rk ∆ (I −∆)−1}, j, k = 1, . . . , n.

Here Rj , j = 1, . . . , n, are the Riesz transforms which are bounded operators
on L2(ρ) (see [St3]).

Since
∆ (I −∆)−1 = I − (I −∆)−1,

we have to show that J2 = (I − ∆)−1 is a bounded operator on L2(ρ), and
its norm is bounded by a constant which depends only on the Muckenhoupt
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constant of ρ. It is not difficult to see that the same is true for more general
operators Jα = (I −∆)−

α
2 , where α > 0.

Indeed, denote byGα(x) the kernel of the Bessel potential Jα. Then clearly,

|Jαf(x)| = |Gα � f(x)| ≤ c(n, α)Mf(x)
∞∑

k=−∞
2kn max

2k≤|t|≤2k+1
Gα(t),

whereMf(x) is the Hardy–Littlewood maximal function. Standard estimates
of Bessel kernels Gα(x) (see Sect. 3.2.5), show that

∞∑
k=−∞

2kn max
2k≤|t|≤2k+1

Gα(t) <∞,

for every α > 0. Since M is bounded on L2(ρ) (see [St3]), it follows that

‖Jαf‖L2(ρ) ≤ C ‖f‖L2(ρ), (11.4.10)

where C depends only on n, α, and the Muckenhoupt constant of ρ.
Applying (11.4.10) with α = 2, we get

∫

2B
|∇w(x)|2 dx

P (x)2δ
≤ C(n, δ)

∫
|ψ(x)|2 ρ(x) dx

≤ C(n, δ)
∫
|ψ(x)|2 dx

P (x)2δ
.

Similarly,
|w(x)| = |∇ (I −∆)−1ψ(x)| ≤ C J1|ψ|(x)

and, by (11.4.10) with α = 1,
∫

2B
|w(x)|2 dx

P (x)2δ
≤ C

∫

2B
(J1|ψ|(x))2 ρ(x) dx

≤ C(n, δ)
∫
|ψ(x)|2 ρ(x) dx ≤ C(n, δ)

∫
|ψ(x)|2 dx

P (x)2δ
.

Now suppose that x ∈ (2B)c. Then, by standard estimates of the Bessel
kernel as |x| → ∞ (see Sect. 3.2.5),

|∇w(x)| = |∇2J2ψ(x)| ≤ C(n) |x| 1−n
2 e−|x|

∫

B
|ψ(y)| dy

and
|w(x)| ≤ C(n)|∇J2ψ(x)| ≤ C |x|−n

2 e−|x|
∫

B
|ψ(y)| dy.

Also, for x ∈ (2B)c,

P (x) = J2ν(x) ∼ |x| 1−n
2 e−|x| ν(e), |x| → ∞,

where ν(e) = C2,1(e) > 0.
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Now pick δ so that 1 < 2δ < min {2, n/(n− 2)}. Using the above estimates
of w(x), ∇w(x), and P (x), and the inequality 2δ < 2, we get

∫

(2B)c

(|w(x)|2 + |∇w(x)|2) dx

P (x)2δ
≤ C(n, δ) ν(e)−2δ

(∫

B
|ψ(y)| dy

)2

.

By the Schwarz inequality,
(∫

B
|ψ(y)| dy

)2

≤
∫

B
|ψ(y)|2 dy

P (y)2δ

∫

B
P (x)2δ dx.

Applying Minkowski’s inequality and the fact that 2δ < n/(n− 2), we obtain
∫

B
P (x)2δ dx ≤

∫

B
(I2ν)2δ dx ≤ C(n, δ) ν(e)2δ.

Thus,
∫

(2B)c

(|w(x)|2 + |∇w(x)|2) dx

P (x)2δ
≤ C(n, δ)

∫
|ψ(x)|2 dx

P (x)2δ
.

This completes the proof of (11.4.8) for n ≥ 3. The cases n = 1 and n = 2
are treated in a similar way with obvious modifications. The proof of Lemma
11.4.1 is complete. ��

Let
w = (I −∆)−1 div φ, where φ = {φk} ∈ S.

Applying Lemma 11.4.1 with ψ = φk, k = 1, . . . , n, we obtain
∫

(|w(x)|2 + |∇w(x)|2) dx

P (x)2δ
≤ C(n, δ)

∫
|φ(x)|2 dx

P (x)2δ
.

This and (11.4.7) yield

| < Γ, φ > | ≤ C(n, δ)C2,1(e)
1
2

[∫
|φ(x)|2 dx

P (x)2δ

] 1
2

.

By duality, the preceding inequality is equivalent to
∫
|Γ(x)|2 P (x)2δ dx ≤ C(n, δ) ‖V ‖2

M(W 1
2 →W−1

2 )
C2,1(e).

Since P (x) ≥ 1 a.e. on e, we obtain the desired estimate
∫

e

|Γ(x)|2 dx ≤ C(n, δ) ‖V ‖2
M(W 1

2 →W−1
2 )

C2,1(e).

The corresponding inequality with Γ0 in place of Γ is verified in a similar
way. By (2.3.3) with p = 2 these inequalities are equivalent to (11.4.4). The
proof of Theorem 11.4.1 is complete. ��
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Remark 11.4.1. It is easy to see that in the sufficiency part of Theorem 11.4.1
the restriction on the “lower order” term Γ0 in (11.4.4) can be relaxed. It is
enough to assume that Γ0 ∈ L1,loc is such that

∫
|u(x)|2 |Γ0(x)| dx ≤ C ‖u‖2W 1

2
. (11.4.11)

Finally, we state a compactness criterion in the case of the space W 1
2

analogous to that of Theorem 11.3.1.

Theorem 11.4.2. Let V ∈ S ′(Rn), n ≥ 1. Then

V ∈ M̊(W 1
2 →W−1

2 )

if and only if
V = div Γ + Γ0,

where Γ = (Γ1, . . . , Γn), and

Γi ∈ M̊(W 1
2 → L2), i = 0, . . . , n.

Moreover, one can set

Γ = −∇(I −∆)−1V and Γ0 = (I −∆)−1V,

as in Theorem 11.4.1.

The proof of Theorem 11.4.2 requires only minor modifications outlined
in the proof of Theorem 11.4.1, and is omitted here.

11.5 Characterization of the Space
M(ẘ1

2(Ω) → w−1
2 (Ω))

Using dilation and the description of the space M(W 1
2 → W−1

2 ) given in the
preceding section, we arrive at the following auxiliary statement.

Corollary 11.5.1. Let V ∈ M(W 1
2 → W−1

2 ). Suppose that there exists a
number d > 0 such that

| < V, |u|2 > | ≤ c (‖∇u‖2L2
+ d−2 ‖u‖2L2

), (11.5.1)

where c does not depend on u ∈ C∞
0 . Then V can be represented as

V = div Γ + d−1 Γ0, (11.5.2)

where Γ0 and Γ = (Γ1, . . . , Γn) are in M(W 1
2 → L2), and

∫
|Γiu(x)|2 dx ≤ C (‖∇u‖2L2

+ d−2 ‖u‖2L2
), (11.5.3)

for all i = 0, 1, . . . , n.



11.5 Characterization of the Space M(ẘ1
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Now let Ω be an open set in R
n such that, for all u ∈ C∞

0 (Ω), Hardy’s
inequality holds:

∫

Ω

|u(x)|2 dx

d∂Ω(x)2
≤ const

∫

Ω

|∇u(x)|2 dx. (11.5.4)

Here d∂Ω(x) = dist (x, ∂Ω). It is well-known that (11.5.4) holds for a wide
class of domains including those with Lipschitz boundaries. (See [Dav], [Lew],
[MMP] for a discussion of Hardy’s inequality and related questions, including
best constants, on domains Ω in R

n.)
Let Qj be the cubes with side-length dj forming Whitney’s covering of

Ω (see [St2], Sec. 5.1). Denote by Q∗
j the open cube obtained from Q by

dilation with coefficient 9
8dj . The cubes Q∗

j form an open covering of Ω of
finite multiplicity which depends only on n. By {ηj} (ηj ∈ C∞

0 (Q∗
j )) we denote

a smooth partition of unity subordinate to the covering {Qj} and such that
|∇ηj(x)| ≤ c d−1

j . In the proof of the following theorem we also need the
functions ζj ∈ C∞

0 (Q∗
j ) such that

ζj(x) ηj(x) = ηj(x), and |∇ζj(x)| ≤ c d−1
j . (11.5.5)

In this section we deal with the space ẘ1
2(Ω) defined as the completion

of C∞
0 (Ω) in the norm ‖∇u;Ω‖L2 . By w−1

2 (Ω) the dual space (ẘ1
2(Ω))′ is

denoted.
The next result is a characterization of the space M(ẘ1

2(Ω)→ w−1
2 (Ω)).

Theorem 11.5.1. (i) Let d∂Ω (x) = dist (x, ∂Ω), and let

V = div Γ + d−1
∂Ω Γ0,

where Γ = {Γ1, . . . , Γn} and

Γi ∈M(ẘ1
2(Ω)→ L2(Ω)), i = 0, 1, . . . , n.

Suppose that (11.5.4) holds. Then V ∈M(ẘ1
2(Ω)→ w−1

2 (Ω)), and

‖V ;Ω‖M(ẘ1
2→w−1

2 ) ≤ c
∑

0≤i≤n

‖Γi;Ω‖M(ẘ1
2→L2). (11.5.6)

(ii) Conversely, if

V ∈M(ẘ1
2(Ω)→ w−1

2 (Ω)),

then there exist Γ = (Γ1, . . . , Γn) and Γ0 such that

Γi ∈M(ẘ1
2(Ω)→ L2(Ω)), i = 0, 1, . . . , n,

and
V = div Γ + d−1

∂Ω Γ0.

Moreover,
∑

0≤i≤n

‖Γi;Ω‖M(ẘ1
2→L2) ≤ C ‖V ;Ω‖M(ẘ1

2→w−1
2 ). (11.5.7)



418 11 Schrödinger Operator and M(w1
2 → w−1

2 )

Proof. The proof of statement (i) is straightforward (see, e.g., the proof of
Theorem 11.4.1 above). To prove (ii), note that, for all u, v ∈ C∞

0 (Ω), and
the functions ζj with the properties (11.5.5), we have

| < V ηj , u v > | = | < V ηj , ζju ζj v > |

≤ ‖V ηj ;Ω‖M(ẘ1
2→w−1

2 ) (‖∇u‖L2 + d−1
j ‖u‖L2) (‖∇v‖L2 + d−1

j ‖v‖L2).

Hence by Corollary 11.5.1,

V ηj = div Γ(j) + d−1
j Γ

(j)
0 , (11.5.8)

where Γ(j) and Γ
(j)
0 satisfy the inequality

∫
|Γ (j)

i u(x)|2 dx

≤ C ‖V ηj ;Ω‖2M(ẘ1
2→w−1

2 )
(‖∇u‖2L2

+ d−2
j ‖u‖2L2

), (11.5.9)

for all i = 0, 1, . . . , n. Multiplying (11.5.8) by ζj , we obtain

V ηj = div (ζj Γ(j)) + d−1
j Γ

(j)
0 − Γ(j)∇ζj .

We set

Γ =
∑

j

ζj Γ(j) and Γ0 =
∑

j

(dj Γ
(j)
0 − Γ(j)∇ζj).

If u ∈ C∞
0 (Ω), then ∫

Ω

|(|Γ|+ |Γ0|)u|2 dx

≤ c
∑

j

(∫

Ω

|Γ(j)ζj u|2 dx+ d−2
j

∫

Ω

|(dj Γ
(j)
0 ζj − Γ(j)∇ζj) κj u|2 dx

)
,

where κj ∈ C∞
0 (Q∗

j ), and κj = 1 on supp ζj . By (11.5.9), the last sum does
not exceed

sup
j
‖V ηj ;Ω‖2M(ẘ1

2→w−1
2 )

∑
j

∫

Ω

(|∇(κju)|2 + d−2
j |κju|2) dx.

By Hardy’s inequality (11.5.4), this is bounded by

c ‖V ;Ω‖2
M(ẘ1

2→w−1
2 )

∫

Ω

|∇u|2 dx.

The proof of Theorem 11.5.1 is complete. ��
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Remark 11.5.1. In Theorem 11.5.1, one can replace
∑

0≤i≤n

‖Γi;Ω‖M(ẘ1
2→L2)

by the equivalent norm

sup
j

sup
e⊂Qj

‖(|Γ|+ |Γ0|); e‖L2

C2,1(e,Q∗
j )

1
2

. (11.5.10)

In the case n > 2, one can use Wiener’s capacity c2,1 in place of C2,1(·, Q∗
j )

(see Sect. 13.2.2).

We now characterize the class of compact multipliers, M̊ (ẘ1
2(Ω) →

w−1
2 (Ω)). We use the same notation as in the previous section.

Theorem 11.5.2. Under the assumptions of Theorem 11.5.1, a distribution
V is in M̊ (ẘ1

2(Ω)→ w−1
2 (Ω)) if and only if

V = div Γ + d−1
∂Ω Γ0, (11.5.11)

where Γi ∈ M̊ (ẘ1
2(Ω)→ L2(Ω)) for i = 0, 1, . . . , n.

Proof. Suppose that V is given by (5.11). Let u be an arbitrary function in
the unit ball B of w1

2(Ω). Then

V u = div (uΓ)− Γ + d−1
∂Ω uΓ0.

The set {div (uΓ) : u ∈ B} is compact in w−1
2 (Ω) since the set {uΓ : u ∈ B}

is compact in L2(Ω). The sets

{∇u · Γ : u ∈ B} and {d−1
∂Ω Γ0 u : u ∈ B}

are also compact in w−1
2 (Ω) since the sets

{|∇u| : u ∈ B} and {d−1
∂Ω u : u ∈ B}

are bounded in L2(Ω), and the multiplier operators Γ̄i : L2(Ω) → w−1
2 (Ω),

i = 1, . . . , n are compact, being adjoint to Γi. This completes the proof of the
“if” part of Theorem 11.5.2.

To prove the “only if” part let us assume that O ∈ R
n\Ω. Then, for any

x ∈ Ω, it follows that |x| ≥ d∂Ω(x), and the inequality
∫

Ω

|u(x)|2
|x|2 dx ≤ c

∫

Ω

|∇u(x)|2 dx (11.5.12)

follows from (11.5.4).
As in the previous section, we introduce the cutoff functions

κδ(x) = F

(
d∂Ω

δ

)
,
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and

ξR(x) = 1− F

(
|x|
R

)
,

where F ∈ C∞(R+) such that F (t) = 1 for t ≤ 1 and F (t) = 0 for t ≥ 2.

The proofs of the following two lemmas are similar to those of Lemma
11.3.1 and Lemma 11.3.2.

Lemma 11.5.1. If f ∈ w−1
2 (Ω), then

lim
δ→0
‖κδ f ;Ω‖w−1

2
= 0 (11.5.13)

and
lim

R→∞
‖ξR f ;Ω‖w−1

2
= 0. (11.5.14)

Lemma 11.5.2. If V ∈ M̊ (ẘ1
2(Ω)→ w−1

2 (Ω)), then

lim
δ→0
‖κδ V ;Ω‖M̊ (ẘ1

2→w−1
2 ) = 0, (11.5.15)

and
lim

R→∞
‖ξR V ;Ω‖M̊ (ẘ1

2→w−1
2 ) = 0. (11.5.16)

We now complete the proof of the “only if” part of Theorem 11.5.2. Write
V in the form

V = κδ V + ξRV + (1− κδ − ξR)V.

By Theorem 11.5.1 (ii), there exist Γδ and Γ (0) such that

κδ V = div Γδ + d−1
∂Ω Γ

(0)
δ ,

where ∑
0≤i≤n

‖Γ (i)
δ ;Ω‖M(ẘ1

2→L2) ≤ C ‖κδ V ;Ω‖M(ẘ1
2→w−1

2 ).

Analogously,
ξR V = div Γ(R) + |x|−1 Γ

(0)
(R),

where ∑
0≤i≤n

‖Γ (i)
(R);Ω‖M(ẘ1

2→L2) ≤ C ‖ξR V ;Ω‖M(ẘ1
2→w−1

2 ).

Hence, by Lemma 11.5.2,

lim
δ→0

∑
0≤i≤n

‖Γ (i)
δ ;Ω‖M(ẘ1

2→L2) = 0,

and
lim

R→∞

∑
0≤i≤n

‖Γ (i)
(R);Ω‖M(ẘ1

2→L2) = 0.
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Now we estimate the multiplier

Vδ,R := (1− κδ − ξR)V.

Note that
Vδ,R ∈ M̊ (ẘ1

2(Ω)→ w−1
2 (Ω)).

Since its support is separated from ∞ and from ∂Ω, it follows that

Vδ,R ∈ M̊ (W 1
2 (Rn)→W−1

2 (Rn)).

By Theorem 11.4.2,
Vδ,R = div Γδ,R + Ψδ,R, (11.5.17)

where all components of Γδ,R, together with Ψδ,R, are in M̊ (W 1
2 (Rn) →

L2(Rn)).
Multiplying, if necessary, both sides of (11.5.17) by a cutoff function as

before, we may assume that the supports of |Γδ,R| and Ψδ,R are in Ω, and are
both separated from∞, and from ∂Ω. Hence, the components of Γδ,R, as well
as d∂Ω Ψδ,R, are in M̊ (ẘ1

2(Ω)→ L2(Ω)). Finally,

V = div Γ + d−1
∂Ω Γ (0),

where
Γ = Γδ + Γ(R) + Γδ,R,

and
Γ (0) = Γ

(0)
δ + |x|−1 d∂Ω Γ

(0)
(R) + d∂Ω Γ

(0)
δ,R.

It remains to note that

Γδ, Γ(R), Γ
(0)
δ , and |x|−1 d∂Ω Γ

(0)
(R)

are small in the corresponding operator norms, while Γδ,R and Γ
(0)
δ,R are com-

pact. This completes the proof of Theorem 11.5.2. ��

11.6 Second-Order Differential Operators Acting
from w1

2 to w−1
2

Further development of the topic of the present section can be found in [MV4].
Here we survey some results of this article, where explicit necessary and suf-
ficient conditions for the boundedness of the general second-order differential
operator

L =
n∑

i, j=1

aij ∂i∂j +
n∑

j=1

bj ∂j + c
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with real- or complex-valued distributional coefficients aij , bj , and c, acting
from the Sobolev space w1

2 to its dual w−1
2 , are found.

For the sake of convenience, let us assume that the principal part of L is
in the divergence form, i.e.,

Lu = div (A∇u) + b · ∇u+ q u, u ∈ C∞
0 , (11.6.1)

where

A = (aij)n
i, j=1 ∈ (C∞

0 )′, b = (bj)n
j=1 ∈ (C∞

0 )′, and q ∈ (C∞
0 )′.

We present necessary and sufficient conditions on A, b, and q which guar-
antee the boundedness of the sesquilinear form associated with L:

|〈Lu, v〉| ≤ C ‖u‖w1
2
‖v‖w1

2
, (11.6.2)

where the constant C does not depend on u, v ∈ C∞
0 . Equivalently, we char-

acterize all A, b, and q such that

L : w1
2 → w−1

2 (11.6.3)

is a bounded operator. We state this boundedness criterion.
For A = (aij), let At = (aji) denote the transposed matrix, and let

Div : (C∞
0 )′ → (C∞

0 )′ be the row divergence operator defined by

Div(aij) =
( n∑

j=1

∂j aij

)n

i=1
. (11.6.4)

We do not differ in notations between spaces of scalar, vector-, and matrix-
valued functions.

Theorem 11.6.1. [MV4] Let

L = div (A∇·) + b · ∇+ q,

where A ∈ (C∞
0 )′, b ∈ (C∞

0 )′ and q ∈ (C∞
0 )′, n ≥ 2. Then the following

statements hold.
(i) The sesquilinear form of L is bounded, i.e., (11.6.2) holds if and only if

1
2 (A+At) ∈ L∞,

and b and q can be represented respectively in the form

b = c + DivF, q = div h, (11.6.5)

where F is a skew-symmetric matrix field such that

F − 1
2 (A−At) ∈ BMO, (11.6.6)

whereas c and h belong to M(w1
2 → L2).
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(ii) If the sesquilinear form of L is bounded, then c, F , and h in the
decomposition (11.6.5) can be determined explicitly by

c = ∇(∆−1div b), h = ∇(∆−1 q), (11.6.7)

F = ∆−1curl [b− 1
2 Div (A−At)] + 1

2 (A−At). (11.6.8)

where
∆−1curl [b− 1

2 Div (A−At)] ∈ BMO (11.6.9)

and
∇(∆−1div b) and ∇(∆−1 q)

belong to M(w1
2 → L2).

Remark 11.6.1. Condition (11.6.9) in statement (ii) of Theorem 11.6.1 may
be replaced by

b−Div 1
2 (A−At) ∈ BMO−1, (11.6.10)

which ensures that the decomposition (11.6.5) holds. Here BMO−1 stands for
the well-known space of distributions that can be represented in the form
f = div g where g ∈ BMO.

Remark 11.6.2. In the case n = 2, it is shown in [MV4] that (11.6.2) holds if
and only if

1
2 (A+At) ∈ L∞(R2),

b− 1
2 Div (A−At) ∈ BMO−1(R2),

and
q = div b = 0.

Remark 11.6.3. Expressions like

∇(∆−1div b), Div(∆−1curlb), and ∇(∆−1 q)

used above, which involve nonlocal operators, are defined in the sense of dis-
tributions. This is possible since

∆−1div b, ∆−1curlb, and ∆−1q

can be understood in terms of convergence in the weak-∗ topology of BMO
of, respectively,

∆−1 div (ψN b), ∆−1 curl (ψN b), and ∆−1 (ψN q)

as N → +∞. Here ψN is a smooth cutoff function supported on {x : |x| < N},
and the limits above do not depend on the choice of ψN .
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It follows from Theorem 11.6.1 that L : w1
2 → w−1

2 is bounded if and only
if the symmetric part of A is essentially bounded, i.e.,

1
2
(A+At) ∈ L∞

and
b1 · ∇+ q : w1

2 → w−1
2

is bounded, where
b1 = b− 1

2 Div(A−At). (11.6.11)

In particular, the principal part

Pu = div(A∇u) : w1
2 → w−1

2

is bounded if and only if
1
2 (A+At) ∈ L∞ (11.6.12)

and
Div 1

2 (A−At) ∈ BMO−1. (11.6.13)

A simpler condition with

1
2 (A−At) ∈ BMO

in place of (11.6.13) is sufficient, but generally not necessary, unless n ≤ 2.
Thus, the boundedness problem for the general second order differential

operator in the divergence form (11.6.1) is reduced to the special case

L = b · ∇+ q, b ∈ (C∞
0 )′, q ∈ (C∞

0 )′. (11.6.14)

As a corollary of Theorem 11.6.1, one obtains that, if

b · ∇+ q : w1
2 → w−1

2 (11.6.15)

is bounded, then the Hodge decomposition

b = ∇(∆−1div b) + Div (∆−1curlb) (11.6.16)

holds, where
∆−1curlb ∈ BMO

and
∫

|x−y|<r

[ |∇(∆−1div b)|2 + |∇(∆−1 q)|2 ] dy ≤ const rn−2 (11.6.17)

for all r > 0, x ∈ R
n, in the case n ≥ 3; in two dimensions divb = q = 0.

The condition (11.6.17) is generally stronger than

∆−1div b ∈ BMO and ∆−1 q ∈ BMO,
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while the divergence-free part of b is characterized by ∆−1curlb ∈ BMO, for
all n ≥ 2.

A close sufficient condition of the Fefferman–Phong type can be stated in
the following form:
∫

|x−y|<r

[ |∇(∆−1div b)|2 + |∇(∆−1 q)|2 ]1+ε dy ≤ const rn−2(1+ε), (11.6.18)

for some ε > 0 and all r > 0, x ∈ R
n. This is a consequence of Theorem 11.6.1

coupled with (1.2.50), where

|(∆−1div b)|2 + |∇(∆−1 q)|2

is used in place of g, p = 2, m = 1, and t = 1 + ε.
It is worth mentioning that the class of potentials obeying (11.6.18) is

substantially broader than its subclass
∫

|x−y|<r

(|b|2 + |q|)1+ε dy ≤ const rn−2(1+ε). (11.6.19)

The sufficiency of the preceding condition for (11.6.15) is deduced by a di-
rect application of the original Fefferman–Phong condition and Schwarz’s
inequality.

More generally, (11.6.15) clearly follows from a cruder estimate,
∫

Rn

|u|2 (|b|2 + |q|) dx ≤ const ‖u‖2w1
2
, u ∈ C∞

0 , (11.6.20)

which is equivalent to

b ∈M(w1
2 → L2) and |q|1/2 ∈M(w1

2 → L2).

However, by replacing (11.6.15) with (11.6.20), one strongly reduces the
class of admissible vector fields b and potentials q. An instructive example for
b · ∇ in the case q = 0 is provided by the vector field

b(x) =
(
x2(x2

1 + x2
2)

−1, −x1(x2
1 + x2

2)
−1, 0, . . . 0

)
, x ∈ R

n,

where n ≥ 2. An elementary argument involving polar coordinates and a
Fourier series expansion shows that this vector field obeys (11.6.15). On the
other hand, (11.6.20) fails since b 	∈ L2

loc.
We note that, for q = 0, (11.6.20) is equivalent to the boundedness of the

nonlinear operator
u→ |b · ∇u| : w1

2 → w−1
2 .

However, dealing with the linear version 〈b · ∇u, u〉 is more difficult.
The main obstacle in the proof of Theorem 11.6.1 is the interaction be-

tween the quadratic forms associated with q− 1
2 div b and the divergence free
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part of b. To overcome this difficulty, one needs to distinguish the class of
vector fields b such that the commutator inequality

∣∣∣∣
∫

b · (u∇v̄ − v̄∇u) dx
∣∣∣∣ ≤ const ‖u‖w1

1
‖v‖w1

2
(11.6.21)

holds for all u, v ∈ C∞
0 . In the important special case of irrotational fields

where b = ∇f , the preceding inequality is equivalent to the boundedness of
the commutator [f, ∆] acting from w1

2 to w−1
2 .

We state a complete characterization of those b which obey (11.6.21) in
[MV4]. First, the irrotational part c = ∇(∆−1div b) of b belongs to M(w1

2 →
L2) and second, F = ∆−1curlb belongs to BMO, and b = c + DivF . These
conditions combined turn out to be necessary and sufficient for (11.6.21).
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Relativistic Schrödinger Operator
and M(W

1/2
2 → W

−1/2
2 )

The material of this chapter is taken from the article [MV3]. The goal is to
give necessary and sufficient conditions for the boundedness of the relativistic
Schrödinger operator H =

√
−∆ + Q from the Sobolev space W

1/2
2 (Rn) to

its dual W−1/2
2 (Rn), for an arbitrary real- or complex-valued potential Q on

R
n. In other words, a complete characterization of the space M(W 1/2

2 (Rn)→
W

−1/2
2 (Rn)) is obtained.

12.1 Auxiliary Assertions

As before, we omit R
n in notations of norms and integrals.

Let γ ∈ (C∞
0 )′ be a complex-valued distribution on R

n. As always, we use
the same notation for the corresponding multiplication operator γ : C∞

0 →
(C∞

0 )′ defined by
〈γu, v〉 = 〈γ, ū v〉 u, v ∈ C∞

0 .

Given m, l ∈ R, the inclusion γ ∈ M (Wm
2 → W l

2) means that the
sesquilinear form 〈γ ·, ·〉 is bounded:

|〈γ u, v〉| = |〈γ, ū v〉| ≤ C ‖u‖W m
2
‖v‖W−l

2
, ∀u, v ∈ C∞

0 , (12.1.1)

where C does not depend on u, v. The multiplier norm ‖γ‖M(W m
2 →W l

2) is equal
to the least bound C in the preceding inequality.

It is easy to see that, in the case l = −m, (12.1.1) is equivalent to the
quadratic form inequality

|〈γ u, u〉| = |〈γ, |u|2〉| ≤ C ′ ‖u‖2W m
2
, ∀u ∈ C∞

0 . (12.1.2)

To verify this, suppose that

‖u‖W m
2
≤ 1, ‖v‖W m

2
≤ 1, where u, v ∈ C∞

0 .

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 427
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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Applying (12.1.2) together with the polarization identity (11.1.3), we get

|〈γ, ū v〉| ≤ C ′

4
(
‖u+ v‖2W m

2
+ ‖u− v‖2W m

2
+ ‖u+ iv‖2W m

2
+ ‖u− iv‖2W m

2

)
≤ 2C ′.

Hence, (12.1.1) holds for l = −m with C = 2C ′. Moreover, the least bound
C ′ in (12.1.2) satisfies the inequalities

C ′ ≤ ‖γ‖M(W m
2 →W−m

2 ) ≤ 2C ′.

Let |D| = (−∆)1/2. We define the relativistic Schrödinger operator as

H = |D|+Q : C∞
0 → (C∞

0 )′,

(see [LL], Sect. 7.15), where Q : C∞
0 → (C∞

0 )′ is a multiplication operator
defined by Q ∈ (C∞

0 )′. It is well known that actually |D| is a bounded operator
from W

1/2
2 to W

−1/2
2 . Thus, H can be extended to a bounded operator:

H : W 1/2
2 →W

−1/2
2 ,

if and only if Q ∈M (W 1/2
2 →W

−1/2
2 ) or, equivalently, if the quadratic form

inequality (12.1.2) holds for γ = Q and m = 1/2.
From the preceding discussion it follows that H : W

1/2
2 → W

−1/2
2 is

bounded if and only if

|〈Qu, u〉| ≤ a 〈|D|u, u〉+ b 〈u, u〉, ∀u ∈ C∞
0 , (12.1.3)

for some a, b > 0. By definition this means that Q is relatively form bounded
with respect to |D|.

In particular, if Q is real-valued, and 0 < a < 1 in the preceding inequality,
then by the so-called KLMN Theorem ([RS1], Theorem X.17), H = |D| + Q
is defined as a unique self-adjoint operator such that

〈Hu, v〉 = 〈|D|u, v〉+ 〈Qu, v〉, ∀u ∈ C∞
0 .

For the complex-valued Q such that (12.1.3) holds with 0 < a < 1/2, it follows
that H = |D| + Q, understood in a similar sense, is an m-sectorial operator
([EE], Theorem IV.4.2).

In the case of Q ∈ L1, loc, (12.1.3) is equivalent to the inequality
∣∣∣∣
∫
|u(x)|2 Q(x) dx

∣∣∣∣ ≤ const ‖u‖2
W

1/2
2

, ∀u ∈ C∞
0 , (12.1.4)

and hence to the boundedness of the corresponding sesquilinear form:
∣∣∣∣
∫
u(x) v(x) Q(x) dx

∣∣∣∣ ≤ const ‖u‖
W

1/2
2
‖v‖

W
1/2
2

,

where the constant is independent of u, v ∈ C∞
0 .
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The characterization of potentials Q such that H : W
1/2
2 → W

−1/2
2 is

based on a series of lemmas and propositions presented below, and the results
for the nonrelativistic Schrödinger operator obtained in the previous chapter.

By L2,unif , we denote the class of f ∈ L2,loc such that

‖f‖L2,unif = sup
x∈Rn

‖χB1(x) f‖L2 <∞. (12.1.5)

Lemma 12.1.1. Let 0 < l < 1, and m > l. Then γ ∈ M (Wm
2 → W l

2) if and
only if

γ ∈Wm−l
2 → L2 and |D|lγ ∈M (Wm

2 → L2).

Moreover,

‖γ‖M(W m
2 →W l

2) ∼
∥∥|D|lγ∥∥

M(W m
2 →L2)

+ ‖γ‖M(W m−l
2 →L2)

. (12.1.6)

Proof. We first prove the lower estimate for ‖γ‖M(W m
2 →W l

2)

∥∥|D|lγ∥∥
M(W m

2 →L2)
+ ‖γ‖M(W m−l

2 →L2)
≤ c ‖γ‖M(W m

2 →W l
2) . (12.1.7)

Here and below c denotes a constant which depends only on l,m, and n.
Let u ∈ C∞

0 . Using the integral representation

|D|lu(x) = c(n, l)
∫

u(x)− u(y)
|x− y|n+l

dy (12.1.8)

which follows by inspecting the Fourier transforms of both sides, we obtain

|D|l (γ u)(x)− γ(x) |D|l u(x)− u(x) |D|l γ(x)

= −c(n, l)
∫

(u(x)− u(y))(γ(x)− γ(y))
|x− y|n+l

dy.

Hence,
∣∣ |D|l (γ u)− γ |D|l u− u |D|lγ

∣∣ ≤ cD2,l/2 u ·D2,l/2 γ, (12.1.9)

where, as in Chap. 4,

D2,s u(x) =
(∫ |u(x)− u(y)|2

|x− y|n+2s
dy

) 1
2

, s > 0.

Next, we estimate

‖u · |D|lγ‖L2 ≤
∥∥ |D|l(γ u)

∥∥
L2

+
∥∥γ |D|lu∥∥

L2
+ c ‖D2,l/2u ·D2,l/2γ‖L2

≤ ‖γu‖W l
2

+ ‖γ‖M(W m−l
2 →L2)

∥∥ |D|lu∥∥
W m−l

2
+ c ‖D2,l/2u ·D2,l/2γ‖L2

≤ ‖γ‖M(W m
2 →W l

2) ‖u‖W m
2

+ ‖γ‖M(W m−l
2 →L2)

‖u‖W m
2

+ c ‖D2,l/2u ·D2,l/2γ‖L2

≤ c ‖γ‖M(W m
2 →W l

2) ‖u‖W m
2

+ c ‖D2,l/2u ·D2,l/2γ‖L2 . (12.1.10)
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In the last line we have used the inequality

‖γ‖M(W m−l
2 →L2)

≤ c ‖γ‖M(W m
2 →W l

2) (12.1.11)

(see (4.3.29)).
To estimate the term

‖D2,l/2u ·D2,l/2γ‖L2 ,

we apply the pointwise estimate (4.2.10)

D2,l/2u ≤ JsD2,l/2((−∆+ 1)s/2 u),

with s = m− l/2, where Js = (−∆+ 1)−s/2 is the Bessel potential of order s.
Hence

‖D2,l/2u ·D2,l/2γ‖L2 ≤ ‖Jm−l/2D2,l/2((−∆+ 1)m/2−l/4 u)) ·D2,l/2γ‖L2

≤ c ‖D2,l/2γ‖M(W
m−l/2
2 →L2)

‖Jm−l/2D2,l/2((−∆+ 1)m/2−l/4 u))‖
W

m−l/2
2

≤ c ‖D2,l/2γ‖M(W
m−l/2
2 →L2)

‖D2,l/2(−∆+ 1)m/2−l/4u‖L2

≤ c ‖D2,l/2γ‖M(W
m−l/2
2 →L2)

‖u‖W m
2
. (12.1.12)

We next notice that, by Corollary 4.3.6,

‖D2,l/2γ‖M(W
m−l/2
2 →L2)

≤ c ‖γ‖M(W m
2 →W l

2). (12.1.13)

Combining the estimates (12.1.10)–(12.1.13), we obtain
∥∥u · |D|lγ∥∥

L2
≤ c ‖γ‖M(W m

2 →W l
2) ‖u‖W m

2
,

which is equivalent to the inequality
∥∥|D|lγ∥∥

M(W m
2 →L2)

≤ c ‖γ‖M(W m
2 →W l

2).

This, together with (12.1.11), completes the proof of (12.1.7).
We now prove the upper estimate

‖γ‖M(W m
2 →W l

2) ≤ c
(∥∥|D|lγ∥∥

M(W m
2 →L2)

+ ‖γ‖M(W m−l
2 →L2)

)
. (12.1.14)

By (12.1.9),
∥∥|D|l(γu)

∥∥
L2
≤
∥∥γ|D|lu∥∥

L2
+
∥∥|D|lγ · u∥∥

L2
+ c ‖D2,l/2u ·D2,l/2γ‖L2 .

Using the elementary estimate

‖u‖W m−l
2
≤ c ‖u‖W m

2
,



12.1 Auxiliary Assertions 431

we have

‖γu‖L2
≤ ‖γ‖M(W m−l

2 →L2)
‖u‖W m−l

2
≤ c ‖γ‖M(W m−l

2 →L2)
‖u‖W m

2
.

From these inequalities, combined with the estimate

‖D2,l/2u ·D2,l/2γ‖L2 ≤ c ‖γ‖
M(W

m−l/2
2 →W

l/2
2 )
‖u‖W m

2

established above, it follows that

‖γu‖W l
2
≤ c

(
‖γ‖M(W m−l

2 →L2)
‖u‖W m

2
+
∥∥|D|lγ∥∥

M(W m
2 →L2)

‖u‖W m
2

)

+c ‖γ‖
M(W

m−l/2
2 →W

l/2
2 )
‖u‖W m

2
.

Thus,

‖γ‖M(W m
2 →W l

2) ≤ c
(∥∥|D|lγ∥∥

M(W m
2 →L2)

+ ‖γ‖M(W m−l
2 →L2)

+‖γ‖1/2

M(W m−l
2 →L2)

‖γ‖1/2

M(W m
2 →W l

2)

)
.

Combining this with (12.1.11), we find that

‖γ‖M(W m
2 →W l

2) ≤ c
(∥∥|D|lγ∥∥

M(W m
2 →L2)

+ ‖γ‖M(W m−l
2 →L2)

)
.

This completes the proof of Lemma 12.1.1. ��

Lemma 12.1.2. Let 0 < l < 1 and n
2 ≥ m > l. Then γ ∈ M (Wm

2 → W l
2) if

and only if
(−∆+ 1)l/2γ ∈M (Wm

2 → L2)

and
‖γ‖M(W m

2 →W l
2) ∼ ‖(−∆+ 1)l/2γ‖M(W m

2 →L2). (12.1.15)

Proof. Recall that a nonnegative weight w ∈ L1,loc is said to be in the Muck-
enhoupt class A1 if

Mw(x) ≤ cw(x) for almost all x ∈ R
n,

where M is the Hardy–Littlewood maximal operator. The least constant on
the right-hand side of the preceding inequality is called the A1-bound of w.

We need the following statement established in [MV1], Lemma 3.1 (see
also [MSh16], Sec. 2.6.3) for the homogeneous Sobolev space wm

p (Rn).
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Lemma 12.1.3. Let γ ∈ M (wm
p → Lp), where 1 < p < ∞ and 0 < m < n

p .
Suppose that T is a bounded operator on the weighted space Lp(w) for every
w ∈ A1. Suppose additionally that, for all f ∈ Lp(w), the inequality

‖Tf‖Lp(w) ≤ C ‖f‖Lp(w)

holds with a constant C which depends only on the A1-bound of the weight w.
Then Tγ ∈M (wm

p → Lp), and

‖Tγ‖M(wm
p →Lp) ≤ C1‖γ‖M(wm

p →Lp),

where the constant C1 does not depend on γ.

We also need a Fourier multiplier theorem of Mikhlin type for Lp spaces
with weights. Let m ∈ L∞. Then the Fourier multiplier operator with symbol
m is defined on L2 by Tm = F−1 mF , where F and F−1 are respectively the
direct and inverse Fourier transforms.

The next lemma follows from the results of Kurtz and Wheeden [KWh],
Theorem 1.

Lemma 12.1.4. Suppose that 1 < p < ∞ and w ∈ A1. Suppose also that
m ∈ C∞(Rn \ {0}) satisfies the Mikhlin multiplier condition:

|Dαm(x)| ≤ Cα |x|−|α|, x ∈ R
n \ {0}, (12.1.16)

for every multi-index α such that 0 ≤ |α| ≤ n. Then the inequality

‖Tm f‖Lp(w) ≤ C ‖f‖Lp(w), f ∈ Lp(w) ∩ L2,

holds, where C depends only on p, n, the A1-bound of w, and the constant Cα

in (12.1.16).

Corollary 12.1.1. Suppose that 1 < p < ∞ and w ∈ A1. Suppose also that
0 < l ≤ 2. Define

ml(x) = (1 + |x|2)l/2 − |x|l. (12.1.17)

Then

‖Tml
f‖Lp(w) ≤ C ‖f‖Lp(w), f ∈ Lp(w) ∩ L2, (12.1.18)

where the constant C depends only on l, p, n, and the A1-constant of w.

Proof. Clearly,

0 ≤ ml(x) ≤ C (1 + |x|)l−2, x ∈ R
n.

Furthermore, it is easy to see by induction that, for any multi-index α with
|α| ≥ 1, we have the following estimates:
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|Dα ml(x)| ≤ Cα,l |x|l−2−|α|, |x| → ∞,

and
|Dα ml(x)| ≤ Cα,l |x|l−|α|, |x| → 0.

Since 0 < l ≤ 2, it follows from this that ml satisfies (12.1.16), and hence by
Lemma 12.1.4 the inequality

‖Tml
f‖Lp(w) ≤ C ‖f‖Lp(w)

holds with a constant that depends only on l, p, and the A1-bound of w. ��

Now we are in a position to complete the proof of Lemma 12.1.2. Suppose
that γ ∈ M (Wm

2 → W l
2), where n

2 ≥ m > l and 0 < l < 1. By Corollary
12.1.1, the operator Tml

= (1 − ∆)l/2 − |D|l is bounded on L2(w) for every
w ∈ A1, and its norm is bounded by a constant which depends only on l, n, and
the A1-bound of w. Hence by Lemma 12.1.3 it follows that γ ∈M (wm

2 → L2)
yields

Tml
γ =

(
(1−∆)l/2 − |D|l

)
γ ∈M (wm

2 → L2),

and
‖Tml

γ‖M(wm
2 →L2) ≤ c ‖γ‖M(wm

2 →L2),

where c depends only on l, m, and n.
We need to replace wm

2 in the preceding inequality by Wm
2 . To this end,

let B = B1(x0) denote a ball of radius 1 in R
n, and 2B = B2(x0). Suppose

that m < n
2 (the case m = n

2 requires usual modifications). Using Theorem
3.1.2, we obtain that γ ∈M (Wm

2 → L2) if and only if

sup
B
‖χB γ‖M(wm

2 →L2) < +∞,

and
‖γ‖M(W m

2 →L2) ∼ sup
B
‖χB γ‖M(wm

2 →L2).

Hence,
‖Tml

γ‖M(W m
2 →L2) ≤ c sup

B
‖χB Tml

γ‖M(wm
2 →L2).

We set
γ = χ2B γ + χ(2B)c γ

and estimate each term separately. By Lemma 12.1.3,

‖χB Tml
(χ2B γ)‖M(wm

2 →L2) ≤ c sup
B
‖χ2B γ‖M(wm

2 →L2) ≤ c ‖γ‖M(W m
2 →L2).

To estimate the second term, notice that Tml
(χ(2B)cγ) ∈ L∞(B), and hence

‖χB Tml
(χ(2B)cγ)‖M(wm

2 →L2) ≤ c ‖Tml
(χ(2B)cγ)(x);B‖L∞ ≤ c ‖γ‖M(W m

2 →L2).
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Indeed, for x ∈ B,

|Tml
(χ(2B)cγ)(x)| ≤ c

∫

|x−y|≥1

|γ(y)|
|x− y|n+l

dy ≤ c

∫ +∞

1

∫

Br(x)

|γ(y)|dy

rn+l+1
dr.

Since γ ∈M (Wm
2 → L2), it follows that γ ∈ L2,unif , and hence

∫

Br(x)

|γ(y)|2 dy ≤ c rn ‖γ‖2M(W m
2 →L2)

, r ≥ 1.

Consequently,
∫

Br(x)

|γ(y)| dy ≤ c rn/2‖γ;Br(x)‖L2 ≤ c rn ‖γ‖M(W m
2 →L2), r ≥ 1.

Hence,
‖Tml

(χ(2B)cγ);B‖L∞ ≤ c ‖γ‖M(W m
2 →L2).

Thus, we have proved the inequality
∥∥∥
(
(1−∆)l/2 − |D|l

)
γ
∥∥∥

M(W m
2 →L2)

≤ c ‖γ‖M(W m
2 →L2).

Using this estimate, inequality (12.1.11), and Lemma 12.1.1, we arrive at

‖(1−∆)l/2 γ‖M(W m
2 →L2) ≤ c

(∥∥|D|lγ∥∥
M(W m

2 →L)
+ ‖γ‖M(W m

2 →L2)

)

≤ c ‖γ‖M(W m
2 →W l

2).

Conversely, suppose that

(1−∆)l/2 γ ∈M (Wm
2 → L2).

It follows from the above estimate of
∥∥∥
(
(1−∆)l/2 − |D|l

)
γ
∥∥∥

M(W m
2 →L2)

that
∥∥|D|lγ∥∥

M(W m
2 →L2)

≤ c
(
‖(1−∆)l/2 γ‖M(W m

2 →L2) + ‖γ‖M(W m
2 →L2)

)
.

Obviously,
‖γ‖M(W m

2 →L2) ≤ c ‖γ‖M(W m−l
2 →L2)

.

Applying again Lemma 12.1.1 together with the preceding estimates, we have

‖γ‖M(W m
2 →W l

2) ≤ c
(∥∥ |D|lγ∥∥

M(W m
2 →L2)

+ ‖γ‖M(W m−l
2 →L2)

)
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≤ c
(
‖(1−∆)l/2 γ‖M(W m

2 →L2) + ‖γ‖M(W m−l
2 →L2)

)
.

It remains to obtain the estimate

‖γ‖M(W m−l
2 →L2)

≤ c ‖(1−∆)l/2 γ‖M(W m
2 →L2).

Since (1−∆)l/2 γ ∈M (Wm
2 → L2), it follows that

∫

e

|(1−∆)l/2 γ|2 dx ≤ ‖(1−∆)l/2 γ‖2M(W m
2 →L2)

C2,m (e),

for every compact set e ⊂ R
n. Hence, for every ball Br(a),∫

Br(a)

|(1−∆)l/2 γ|2 dx ≤ c ‖(1−∆)l/2 γ‖2M(W m
2 →L2)

rn−2m, 0 < r ≤ 1,

and in particular

‖(1−∆)l/2 γ‖L2,unif ≤ c ‖(1−∆)l/2 γ‖M(W m
2 →L2).

In view of the properties (1.2.4), (1.2.5) of the Bessel function Gl, it is
easy to derive the pointwise estimate

|γ(x)| ≤
∫
Gl(x− t) |(1−∆)l/2 γ(t)| dt

≤ c

(∫

|z|≤1

|(1−∆)l/2 γ(x+ z)|
|z|n−l

dz + ‖(1−∆)l/2 γ‖L2,unif

)
.

Using Lemma 2.3.7 together with the preceding pointwise estimate, we de-
duce that

|γ(x)| ≤ c (M (1−∆)l/2 γ(x))1−
l

m

(
sup

0<r≤1, a∈Rn

∫

Br(a)

|(1−∆)l/2 γ|2dy

rn−2m

) l
2m

+c ‖(1−∆)l/2γ‖L2,unif ≤ c (M (1−∆)l/2 γ(x))1−
l

m ‖(1−∆)l/2γ‖
l

m

M(W m
2 →L2)

+ c ‖(1−∆)l/2γ‖M(W m
2 →L2),

where M is the Hardy–Littlewood maximal operator. Using the preceding
estimates, together with the boundedness of M on the space M (Wm

2 → L2)
(see (2.3.22)), we obtain

∥∥|γ| m
m−l

∥∥1− l
m

M(W m
2 →L2)

≤ c ‖(1−∆)l/2 γ‖M(W m
2 →L2).

By Lemma 2.3.6 it follows that

‖γ‖M(W m−l
2 →L2)

≤ c
∥∥|γ| m

m−l

∥∥1− l
m

M(W m
2 →L2)

≤ c ‖(1−∆)l/2 γ‖M(W m
2 →L2).

The proof of Lemma 12.1.2 is complete. ��
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12.1.1 Main Result

Now we are in a position to obtain an analytic characterization of the space
of multipliers M(W 1/2

2 →W
−1/2
2 ).

Theorem 12.1.1. Let γ ∈ (C∞
0 )′. Then

γ ∈M (W 1/2
2 →W

−1/2
2 )

if and only if
Φ = (−∆+ 1)−1/4γ ∈M (W 1/2

2 → L2).

Furthermore,
‖γ‖

M(W
1/2
2 →W

−1/2
2 )

∼ ‖Φ‖
M(W

1/2
2 →L2)

.

Proof. To prove the “if” part, it suffices to verify that, for every u ∈ C∞
0 and

Φ = (−∆+ 1)−1/4γ ∈M (W 1/2
2 → L2), the inequality

∣∣∣∣
∫
|u|2γ dx

∣∣∣∣ ≤ C ‖Φ‖
M(W

1/2
2 →L2)

‖u‖2
W

1/2
2

(12.1.19)

holds. Here the integral on the left-hand side is understood in the sense of
quadratic forms: ∫

|u|2γ dx = 〈 γu, u〉,

where 〈 γ·, ·〉 is the quadratic form associated with the multiplier operator γ,
as explained in detail in [MV2].

Since γ = (−∆+ 1)1/4Φ, we have
∣∣∣∣
∫
|u|2 γ dx

∣∣∣∣ =
∣∣∣∣
∫

(−∆+ 1)1/4Φ · |u|2 dx
∣∣∣∣

≤
∣∣∣∣
∫ (

(−∆+ 1)1/4 − |D|1/2
)
Φ · |u|2 dx

∣∣∣∣+
∣∣∣∣
∫
|D|1/2 Φ · |u|2 dx

∣∣∣∣ .

Note that
(−∆+ 1)1/4 − |D|1/2 = Tm1/2 ,

where Tml
is the Fourier multiplier operator defined by (12.1.17). By Corollary

12.1.1, Tm1/2 is a bounded operator on L2(w) for any A1-weight w, and its
norm depends only on the A1-bound of w. Hence by Lemma 12.1.3 it follows
that (

(−∆+ 1)1/4 − |D|1/2
)
Φ ∈M (W 1/2

2 → L2)

and
∥∥∥
(
(−∆+ 1)1/4 − |D|1/2

)
Φ
∥∥∥

M(W
1/2
2 →L2)

≤ C ‖Φ‖
M(W

1/2
2 →L2)

.
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Using this estimate and the Schwarz inequality, we get
∣∣∣∣
∫ (

(−∆+ 1)1/4 − |D|1/2
)
Φ · |u|2 dx

∣∣∣∣

≤ C ‖((−∆+ 1)1/4 − |D|1/2)Φ · u‖L2 ‖u‖L2

≤ C ‖Φ‖
M(W

1/2
2 →L2)

‖u‖2
W

1/2
2

.

Hence, in order to prove (12.1.19), it suffices to establish the inequality
∣∣∣∣
∫
|D|1/2 Φ · |u|2 dx

∣∣∣∣ ≤ C ‖Φ‖
M(W

1/2
2 →L2)

‖u‖2
W

1/2
2

. (12.1.20)

By duality, ∣∣∣∣
∫
|D|1/2 Φ · |u|2 dx

∣∣∣∣ =
∣∣∣∣
∫
Φ (|D|1/2 |u|2) dx

∣∣∣∣ ,

where Φ ∈ L2,loc, and the integral on the right-hand side is well-defined.
Notice that for u ∈ C∞

0 ,

|D|1/2 |u|2(x) = c

∫ |u(x)|2 − |u(y)|2
|x− y|n+1/2

dy.

Using the identity

|a|2 − |b|2 = |a− b|2 − 2Re [b̄ (b− a)]

with b = u(x) and a = u(y), and integrating against dy/|x− y|n+1/2, we get
∫ |u(x)|2 − |u(y)|2

|x− y|n+1/2
dy =

∫ |u(x)− u(y)|2
|x− y|n+1/2

dy

−2Re
[
u(x)

∫
u(x)− u(y)
|x− y|n+1/2

dy

]
.

Hence,

∣∣∣ |D|1/2 |u|2(x)
∣∣∣ ≤ c

(
2 |u(x)|

∣∣∣∣
∫

u(x)− u(y)
|x− y|n+1/2

dy

∣∣∣∣+
∫ |u(x)− u(y)|2
|x− y|n+1/2

dy

)

= 2c |u(x)|
∣∣∣ |D|1/2 u(x)

∣∣∣+ c |D2,1/4u(x)|2.

Using the preceding inequality, we estimate
∣∣∣∣
∫
Φ |D|1/2 |u|2 dx

∣∣∣∣

≤ c ‖Φu‖L2

∥∥∥|D|1/2 u
∥∥∥

L2

+ c

∫
|Φ| |D2,1/4u|2 dx
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≤ c ‖Φ‖
W

1/2
2 →L2

‖u‖2
W

1/2
2

+ c

∫
|Φ| |D2,1/4J1/2f |2 dx,

where f = (−1 +∆)1/4 u. The last integral is bounded by
∫
|Φ| |J1/4 D2,1/4 J1/4 f |2 dx

≤ c

∫
|Φ|M(D2,1/4 J1/4 f) |J1/2 D2,1/4 J1/4 f | dx

≤ c ‖M(D2,1/4 J1/4 f)‖L2 ‖ΦJ1/2 D2,1/4 J1/4 f‖L2

≤ c ‖D2,1/4 J1/4 f‖L2 ‖Φ‖M(W
1/2
2 →L2)

‖J1/2 D2,1/4 J1/4 f‖W 1/2
2

≤ c ‖Φ‖
M(W

1/2
2 →L2)

‖f‖2L2
= c ‖Φ‖

W
1/2
2 →L2

‖u‖2
W

1/2
2

.

In the preceding chain of inequalities we first applied the inequality (1.2.28)

J1/4 g ≤ c (Mg)1/2 (J1/2 g)1/2,

with g = |D2,1/4 J1/4 f |, and then the Hardy–Littlewood maximal inequality
for the operator M. This completes the proof of (12.1.19).

To prove the “only if” part of the Theorem, we show that

‖Φ‖
M(W

1/2
2 →L2)

≤ c ‖γ‖
M(W

1/2
2 →W

−1/2
2 )

.

The proof of this estimate is based on the extension of the distribution
γ ∈ M (W 1/2

2 → W
−1/2
2 )) to the higher-dimensional Euclidean space, and

subsequent application of the characterization of the class of multipliers
M (W 1

2 (Rn+1)→W−1
2 (Rn+1)) obtained in Sect. 11.4.

We denote by γ ⊗ δ the distribution on R
n+1 defined by

〈γ ⊗ δ, u(x, xn+1)〉 = 〈γ, u(x, 0)〉,

where x = (x1, . . . , xn) ∈ R
n, and δ = δ(xn+1) is the delta-function supported

by xn+1 = 0. It is not difficult to see that

‖γ ⊗ δ; Rn+1‖M(W 1
2 →W−1

2 ) ∼ ‖γ; Rn‖
M(W

1/2
2 →W

−1/2
2 )

.

This follows from the well-known fact that the space of traces on R
n of func-

tions in W 1
2 (Rn+1) coincides with W

1/2
2 (Rn), with the equivalence of norms

(see Lemma 8.7.1). Indeed, for any U, V ∈ C∞
0 (Rn+1) let

u(x) = U(x, 0) and v(x) = V (x, 0).

Then by the trace estimate mentioned above

‖u; Rn‖
W

1/2
2
≤ c ‖U ; Rn+1‖W 1

2
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and hence

|〈γ ⊗ δ, U V 〉| = |〈γ, u v〉| ≤ ‖γ; Rn‖
M(W

1/2
2 →W

−1/2
2 )

‖u; Rn‖
W

1/2
2
‖v; Rn‖

W
1/2
2

≤ c2 ‖γ; Rn‖
M(W

1/2
2 →W

−1/2
2 )

‖U ; Rn+1‖W 1
2
‖V ; Rn+1‖W 1

2
.

This gives the estimate

‖γ ⊗ δ; Rn+1‖M(W 1
2 →W−1

2 ) ≤ c2 ‖γ; Rn‖
M(W

1/2
2 →W

−1/2
2 )

.

The converse inequality (which is not used below) follows similarly by extend-
ing u, v ∈ C∞

0 (Rn) to U, V ∈ W 1
2 (Rn+1) with the corresponding estimates of

norms.
For the rest of the proof, it will be convenient to introduce the notation

J (n+1)
s = (−∆n+1 + 1)−s/2, s > 0,

for the Bessel potential of order s on R
n+1; here ∆n+1 denotes the Laplacian

on R
n+1.

Now by Theorem 11.4.1 we obtain that

γ ⊗ δ ∈M (W 1
2 (Rn+1)→W−1

2 (Rn+1))

if and only if

J
(n+1)
1 (γ ⊗ δ) ∈M (W 1

2 (Rn+1)→ L2(Rn+1)),

and

‖J (n+1)
1 (γ ⊗ δ); Rn+1‖M(W 1

2 →L2) ≤ c ‖γ ⊗ δ; Rn+1‖M(W 1
2 →W−1

2 )

≤ c1 ‖γ; Rn‖
M(W

1/2
2 →W

−1/2
2 )

.

Next, pick 0 < ε < 1/2 and observe that

J
(n+1)
1 = (−1 +∆n+1)1/4+ε/2 J

(n+1)
ε+3/2 .

Using Lemma 12.1.2 with l = 1/2+ ε, m = 1, and J
(n+1)
ε+3/2 (γ⊗ δ) in place of γ,

we deduce that

‖J (n+1)
1 (γ ⊗ δ); Rn+1‖M(W 1

2 →L2) ∼ ‖J (n+1)
ε+3/2 (γ ⊗ δ); Rn+1‖

M(W 1
2 →W

1/2+ε
2 )

.

As was proved above, the left-hand side of the preceding relation is bounded
by a constant multiple of ‖γ; Rn‖

M(W
1/2
2 →W

−1/2
2 )

.

Thus,

‖J (n+1)
ε+3/2 (γ ⊗ δ); Rn+1‖

M(W 1
2 →W

1/2+ε
2 )

≤ c ‖γ; Rn‖
M(W

1/2
2 →W

−1/2
2 )

.
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Passing to the trace on R
n = {xn+1 = 0} in the multiplier norm on the

left-hand side, we obtain

‖Trace J (n+1)
ε+3/2 (γ ⊗ δ); Rn‖

M(W
1/2
2 →W ε

2 )
≤ c ‖γ; Rn‖

M(W
1/2
2 →W

−1/2
2 )

.

We now observe that

Trace J (n+1)
ε+3/2 (γ ⊗ δ) = const J (n)

ε+1/2(γ),

which follows immediately by inspecting the corresponding Fourier trans-
forms.

In other words,

‖J (n)
ε+1/2 γ; Rn‖

M(W
1/2
2 →W ε

2 )
≤ c ‖γ; Rn‖

M(W
1/2
2 →W

−1/2
2 )

. (12.1.21)

From this estimate and Lemma 12.1.2 with l = ε, m = 1/2, and with γ

replaced by J
(n)
ε+1/2γ, it follows that

‖J (n)
1/2 γ‖M(W

1/2
2 →L2)

= ‖(−∆+ 1)ε/2J
(n)
ε+1/2γ‖M(W

1/2
2 →L2)

≤ c ‖J (n)
ε+1/2γ‖M(W

1/2
2 →W ε

2 )
≤ C ‖γ‖

M(W
1/2
2 →W

−1/2
2 )

.

Thus,
Φ = J

(n)
1/2 γ ∈M (W 1/2

2 → L2)

and
‖Φ‖

M(W
1/2
2 →L2)

≤ C ‖γ‖
M(W

1/2
2 →W

−1/2
2 )

.

The proof of Theorem 12.1.1 is complete. ��

The theorem just proved can be reformulated as follows.

Theorem 12.1.2. Let Q ∈ (C∞
0 )′, n ≥ 1. The following statements are equiv-

alent:
(i) The relativistic Schrödinger operator H =

√
−∆ + Q is bounded from

W
1/2
2 to W

−1/2
2 .

(ii) The inequality
|〈Qu, u〉| ≤ C ‖u‖2

W
1/2
2

(12.1.22)

holds for all u ∈ C∞
0 .

(iii) Φ = (−∆+ 1)−1/4Q ∈ L2, loc, and the inequality
∫
|u(x)|2 |Φ(x)|2 dx ≤ C ‖u‖2

W
1/2
2

(12.1.23)

holds for all u ∈ C∞
0 .
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12.2 Corollaries of the Form Boundedness Criterion
and Related Results

Theorem 12.1.1 combined with the criteria for the trace inequality with a
nonnegative measure (see Theorem 3.1.4 and Remark 3.1.3) implies

Theorem 12.2.1. Let Q ∈ (C∞
0 )′, n ≥ 1, and let H =

√
−∆ + Q. Then

H : W 1/2
2 →W

−1/2
2 is bounded if and only if

Φ = (−∆+ 1)−1/4Q ∈ L2, loc

and any one of the following equivalent conditions holds:
(i) For every compact set e ⊂ R

n,
∫

e

|Φ(x)|2 dx ≤ C C2,1/2(e), (12.2.1)

where the constant does not depend on e.
(ii) The function J1/2 |Φ|2 is finite a.e., and

J1/2

(
J1/2 |Φ|2

)2
(x) ≤ C J1/2 |Φ|2(x) a.e. (12.2.2)

Here J1/2 = (−∆+ 1)−1/4 is the Bessel potential of order 1/2.
(iii) For every dyadic cube P0 in R

n of side length !(P0) ≤ 1,

∑
P⊆P0

⎡
⎢⎢⎣

∫

P

|Φ(x)|2 dx

(mesnP )1−1/2n

⎤
⎥⎥⎦

2

mesnP ≤ C

∫

P0

|Φ(x)|2 dx, (12.2.3)

where the sum is taken over all dyadic cubes P contained in P0, and the
constant does not depend on P0.

Some simpler either necessary or sufficient conditions which do not involve
capacities are discussed in this section.

The following necessary condition is immediate from (12.2.1) and the
known estimates of the capacity of the ball in R

n (see Sect. 1.2.2).

Corollary 12.2.1. Suppose that Q ∈ (C∞
0 )′, n ≥ 1. Suppose also that H =√

−∆+Q : W 1/2
2 →W

−1/2
2 is a bounded operator. Then, for every ball Br(a)

in R
n,

∫

Br(a)

|Φ(x)|2 dx ≤ c rn−1, 0 < r ≤ 1, n ≥ 2, (12.2.4)

and ∫

Br(a)

|Φ(x)|2 dx ≤ c

log 2
r

, 0 < r ≤ 1, n = 1, (12.2.5)

where the constant c does not depend on a ∈ R
n and r.
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We notice that the class of distributions Q such that Φ = (−∆+ 1)−1/4Q
satisfies (12.2.4) can be regarded as a Morrey space of order −1/2.

Combining Theorem 12.2.1 with the Fefferman-Phong condition (see
Sect. 1.2.6) applied to |Φ|2, we arrive at sufficient conditions involving Morrey
spaces of negative order. (Strictly speaking, the Fefferman-Phong condition
[F2] was originally established for estimates in the homogeneous Sobolev
space w1

2 of order m = 1. However, it can be carried over to Sobolev spaces
Wm

2 for all 0 < m ≤ n/2. See, e.g., [KeS] or [MV1], p. 98.)

Corollary 12.2.2. Suppose that Q ∈ (C∞
0 )′, n ≥ 2. Suppose also that Φ =

(−∆ + 1)−1/4Q, and t > 1. Then H is a bounded operator from W
1/2
2 to

W
−1/2
2 if ∫

Br(a)

|Φ(x)|2t dx ≤ C rn−t, 0 < r ≤ 1, (12.2.6)

where the constant does not depend on a ∈ R
n and r.

Remark 12.2.1. It is worth mentioning that the condition (12.2.6) defines a
class of potentials which is strictly broader than the (relativistic) Fefferman-
Phong class of Q such that

∫

Br(a)

|Q(x)|t dx ≤ const rn−t, 0 < r ≤ 1, n ≥ 2, (12.2.7)

for some t > 1.
This follows from the observation that if one replaces Q by |Q| in (12.2.6),

then obviously the resulting class defined by
∫

Br(a)

(J1/2|Q|)2t dx ≤ const rn−t, 0 < r ≤ 1, n ≥ 2, (12.2.8)

becomes smaller, but still contains some singular measures, together with all
functions in the Fefferman-Phong class (12.2.7). (This was noticed earlier in
[MV1], Proposition 3.5.)

A smaller but more conventional class of admissible potentials appears
when one replaces C2,1/2(e) on the right-hand side of (12.2.1) by its lower
bound involving the Lebesgue measure of e ⊂ R

n, as shown by the following
result.

Corollary 12.2.3. Suppose that Q ∈ (C∞
0 )′, n ≥ 1. Suppose also that Φ =

(−∆ + 1)−1/4Q. Then H =
√
−∆ + Q is a bounded operator from W

1/2
2 to

W
−1/2
2 if, for every measurable set e ⊂ R

n,
∫

e

|Φ(x)|2 dx ≤ c (mesne)(n−1)/n, diam (e) ≤ 1, n ≥ 2, (12.2.9)
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or
∫

e

|Φ(x)|2 dx ≤ c

log 2
mesne

, diam (e) ≤ 1, n = 1, (12.2.10)

where the constant c does not depend on e.

We remark that (12.2.9), without the extra assumption diam (e) ≤ 1, is
equivalent to Φ ∈ L2n,∞, where Lp,∞ is the Lorentz (weak Lp) space of
functions f such that

|{x ∈ R
n : |f(x)| > t}| ≤ C

tp
, t > 0.

In particular, (12.2.9) holds if Φ ∈ L2n or, equivalently, Q ∈W−1/2
2n .

Furthermore, if Φ ∈ L∞, then obviously (12.2.9) holds as well, since

C2,1/2(e) ≥ C mesne,

if diam (e) ≤ 1. This leads to the sufficient condition Φ ∈ L2n + L∞, n ≥ 2.
It is worth noting that (12.2.9) defines a substantially broader class of

admissible potentials than the standard (in the relativistic case) class Q ∈
Ln + L∞, n ≥ 2 ([LL], Sec. 11.3). This is a consequence of the imbedding

Ln ⊂W
−1/2
2n , n ≥ 2,

which follows from the classical Sobolev imbedding W
1/2
p ⊂ Lr for p =

2n/(2n − 1) and r = n/(n − 1), n ≥ 2. Indeed, by duality, the latter is
equivalent to

Ln = (Lr)′ ⊂ (W 1/2
p )′ = W

−1/2
2n .

Similarly, in the one-dimensional case, the class of potentials defined by
(12.2.10) is wider than the standard class L1+ε(R1) + L∞(R1), ε > 0.

It is easy to see that actually Q ∈ Ln(Rn) + L∞(Rn) if n ≥ 2, or Q ∈
L1+ε(R1) + L∞(R1) if n = 1, is sufficient for the inequality

∫
|u(x)|2 |Q(x)| dx ≤ C ‖u‖2

W
1/2
2

, u ∈ C∞
0 ,

which is a “näıve” version of (12.1.4), where Q is replaced by |Q|.
We conclude this chapter with mentioning the article by Frank and

Seiringer [FrS] which is mostly devoted to sharp Hardy type inequalities in-
volving Besov type seminorms and their generalizations. In particular, the
authors found the optimal value of the constant Cn,s,p in the inequality

∫

Rn

∫

Rn

|u(x)− u(y)|p
|x− y|n+ps

dx dy ≥ Cn,s,p

∫

Rn

|u(x)|p
|x|ps

dx, (12.2.11)
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where 0 < s < 1 and 1 ≤ p < n/s. Moreover, they extend this result to
functionals on the left-hand side of (12.2.11) with |x−y|−n−ps replaced by an
arbitrary symmetric and nonnegative, but not necessarily translation invari-
ant, kernel k(x, y):

E[u] :=
∫

Rn

∫

Rn

|u(x)− u(y)|pk(x, y) dx dy.

In [FrS], a sufficient condition for the following general version of Hardy’s
inequality ∫

Rn

Q(x) |u(x)|pdx ≤ E[u], u ∈ C∞
0 (Rn),

is found. The function Q is assumed to be of the form

Q(x) = 2ω(x)1−p

∫

Rn

(
ω(x)− ω(y)

)
|ω(x)− ω(y)|p−2 k(x, y) dy (12.2.12)

with a certain positive function ω. The integral on the right-hand side of
(12.2.12) might be divergent and some regularization of the principal value
type is needed for its definition. In particular, the representation

Q(x) = 2
∫

Rn

(
1− ω(x)

ω(y)

) dy

|x− y|n+1
(12.2.13)

with ω > 0 proves to be sufficient for the inequality
∫

Rn

Q(x)|u(x)|2 dx ≤
∫

Rn

∫

Rn

|u(x)− u(y)|2
|x− y|n+1

dx dy, u ∈ C∞
0 (Rn). (12.2.14)

Note that (12.2.14) does not imply that Q ∈ M(w1/2
2 → w

−1/2
2 ) if Q is not

nonnegative. However, for Q ≥ 0 the representation (12.2.13) with a positive
factor in place of 2 is sufficient for the inclusion Q ∈M(w1/2

2 → w
−1/2
2 ) (and

hence for Q ∈M(W 1/2
2 →W

−1/2
2 )). It is of interest to investigate the question

of necessity.
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Multipliers as Solutions to Elliptic Equations

In Sects. 13.1–13.3 of this chapter, solutions of second-order linear and quasi-
linear elliptic differential equations and systems are considered as multipliers
in certain spaces of differentiable functions in a domain Ω. On one hand, this
can be of interest for the theory of functions, since it leads to new charac-
terizations of multipliers and, on the other hand, for the theory of partial
differential equations, since it allows us to obtain a priori information about
the solutions in spaces different from the usual ones.

In Sect. 13.4 we obtain coercive estimates in multiplier spaces for solutions
of linear elliptic systems in a half-space. The last Sect. 13.5 is devoted to
regularity of solutions to higher order semilinear elliptic equations.

13.1 The Dirichlet Problem for the Linear Second-Order
Elliptic Equation in the Space of Multipliers

Let us start with a multiplier analogue of the classical unique solvability of a
linear second-order equation in the variational sense.

By Ω we denote a bounded domain in R
n with ∂Ω ∈ C0,1. Let

Lu = −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
. (13.1.1)

Suppose that the coefficients aij are real measurable bounded functions
on Ω and that the matrix ‖aij‖ is symmetric and uniformly positive definite.

We consider the Dirichlet problem

Lu = 0 in Ω, u− g ∈ W̊ 1
2 (Ω),

where g ∈W 1
2 (Ω). This problem is uniquely solvable.

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 445
Grundlehren der mathematischen Wissenschaften 337,
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Theorem 13.1.1. If g ∈MW 1
2 (Ω), then u ∈MW 1

2 (Ω). Moreover,

u− g ∈M(W 1
2 (Ω)→ W̊ 1

2 (Ω))

and

‖u;Ω‖MW 1
2
≤ c ‖g;Ω‖MW 1

2
. (13.1.2)

Proof. By the maximum principle for variational solutions of the equation
Lu = 0 we have

‖u;Ω‖L∞ ≤ ‖g;Ω‖L∞ . (13.1.3)

Hence the function γ = u − g belongs to W̊ 1
2 (Ω) ∩ L∞(Ω). The definition of

a variational solution yields
∫

Ω

aij
∂ϕ

∂xi

∂γ

∂xj
dx = −

∫

Ω

aij
∂ϕ

∂xi

∂g

∂xj
dx (13.1.4)

for any ϕ ∈ W̊ 1
2 (Ω). Let v be an arbitrary function in W 1

2 (Ω) ∩ L∞(Ω). It
is easily seen that γv and γv2 belong to W̊ 1

2 (Ω). We set ϕ = γv2 in (13.1.4).
Then
∫

Ω

aij
∂(γv)
∂xi

∂(γv)
∂xj

dx =
∫

Ω

aij
∂v

∂xi

∂v

∂xj
γ2 dx

−
∫

Ω

aij
∂(γv)
∂xi

v
∂g

∂xj
dx−

∫

Ω

γ v aij
∂v

∂xi

∂g

∂xj
dx .

Consequently,
c ‖∇(γv);Ω‖2L2

≤ ‖γ;Ω|2L∞‖∇v;Ω‖
2
L2

+‖∇(γv);Ω‖L2‖v∇g;Ω‖L2 + ‖γ;Ω‖L∞‖∇v;Ω‖L2‖v∇g;Ω‖L2 . (13.1.5)

Clearly,
‖v∇g;Ω‖L2 ≤ ‖vg;Ω‖W 1

2
+ ‖g;Ω‖L∞‖v;Ω‖W 1

2
.

Since
‖g;Ω‖L∞ ≤ ‖g;Ω‖MW 1

2
,

it follows that
‖v∇g;Ω‖L2 ≤ 2 ‖g;Ω‖MW 1

2
‖v;Ω‖W 1

2
.

This inequality, together with (13.1.3) and (13.1.5), implies that

c ‖∇(γv);Ω‖2L2

≤ 8 ‖g;Ω‖2MW 1
2
‖v;Ω‖2W 1

2
+ 2 ‖∇(γv);Ω‖L2‖g;Ω‖MW 1

2
‖v;Ω‖W 1

2
.

Hence
‖γv;Ω‖W 1

2
≤ c ‖g;Ω‖MW 1

2
‖v;Ω‖W 1

2
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or, which is the same,

‖uv;Ω‖W 1
2
≤ c ‖g;Ω‖MW 1

2
‖v;Ω‖W 1

2
. (13.1.6)

Since W 1
2 (Ω) ∩ L∞(Ω) is dense in W 1

2 (Ω) and γv ∈ W̊ 1
2 (Ω) for all

v ∈W 1
2 (Ω)∩L∞(Ω), we have (13.1.6) and γv ∈ W̊ 1

2 (Ω) for any v ∈W 1
2 (Ω). ��

Remark 13.1.1. Let Ω be a bounded domain in R
n with ∂Ω ∈ C0,1. By

Theorem 8.7.2, MW
1/2
2 (Rn−1) is the space of traces on R

n−1 of functions
in MW 1

2 (Rn
+). This clearly implies that ϕ ∈ MW

1/2
2 (∂Ω) has an extension

g ∈MW 1
2 (Ω) for which

‖g;Ω‖MW 1
2
∼ ‖ϕ; ∂Ω‖

MW
1/2
2

.

This, together with Theorem 13.1.1, proves the unique solvability of the
Dirichlet problem

Lu = 0 in Ω , u|∂Ω = ϕ ∈MW
1/2
2 (∂Ω)

in MW 1
2 (Ω).

Remark 13.1.2. Let Ω be a bounded domain in R
n with ∂Ω ∈ C0,1. In

Theorem 13.1.1 we used the space M(Wm
p (Ω)→ W̊ l

p(Ω)). Let us show that

M(Wm
p (Ω)→ W̊ l

p(Ω)) = W̊ l
p(Ω) ∩M(Wm

p (Ω)→W l
p(Ω)) .

We denote the left-hand side of this equality by A and the right-hand side
by B. Since 1 ∈ Wm

p (Ω), it follows that A ⊂ B. Let u ∈ Wm
p (Ω), γ ∈ B

and let {uν}ν≥1 be a sequence of functions in C∞(Ω) such that uν → u in
Wm

p (Ω). Then γuν ∈ W̊ l
p(Ω) and

‖γu− γuν ;Ω‖W l
p
≤ ‖γ;Ω‖M(W m

p →W l
p)‖u− uν ;Ω‖W m

p
= o(1) .

Consequently γu ∈ W̊ l
p(Ω), that is, γ ∈ A.

13.2 Bounded Solutions of Linear Elliptic Equations
as Multipliers

13.2.1 Introduction

In this section we study bounded solutions of a linear elliptic second-order
equation without any requirements on their boundary values. It is shown that,
under some conditions on the right-hand side of the equation, such solutions
are multipliers in certain function spaces.
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Let Ω be a domain in R
n with compact closure and sufficiently smooth

boundary ∂Ω. By W 1
2,β(Ω), β ∈ R

1 we denote the space of functions
u ∈W 1

2,loc(Ω), having the finite norm

‖u;Ω‖W 1
2,β

=
(∫

Ω

ρ(x)β |∇u|2dx + ‖u;Ω‖2L2

)1/2

,

where ρ(x) = dist (x, ∂Ω) .
Theorem 13.2.1 below states that bounded solutions of the above men-

tioned equations are multipliers in the space W 1
2,β(Ω) for β > 1. For β < 1

this fact is not true since the space of traces of functions from W 1
2,β(Ω) with

β < 1 is W
(1−β)/2
2 (∂Ω), which does not contain all bounded functions on

∂Ω. The case β = 1 is special. It is considered in Theorems 13.2.2-13.2.4,
in which solutions from L∞(Ω) appear as multipliers acting into the space
W 1

2,1(Ω) from some function spaces more narrow than W 1
2,1(Ω). In Theorems

13.2.3 and 13.2.4 we deal with the weighted Hilbert space W 1
2,w(ρ)(Ω) similar

to W 1
2,β(Ω), where the role of ρβ is played by a weight w(ρ). Here it is shown

that all bounded solutions belong to the class M(W 1
2,w(ρ)(Ω) → W 1

2,1(Ω)) if
and only if 1/w ∈ L(0, 1).

13.2.2 The Case β > 1

Let L be the uniformly elliptic operator (13.1.1) with sufficiently smooth co-
efficients in Ω̄ and let aij = aji. We consider the equation

Lγ = f + div g, (13.2.1)

where f is a scalar function while g is a vector-valued function from L2,loc(Ω).
By a variational solution of (13.2.1) we mean a function γ ∈W 1

2,loc(Ω), satis-
fying ∫

Ω

aij
∂γ

∂xj

∂η

∂xi
dx =

∫

Ω

(fη − g ∇η)dx, (13.2.2)

where η is an arbitrary function from W 1
2 (Ω) with compact support in Ω.

Theorem 13.2.1. Let β > 1 and let the functions f and g satisfy the condi-
tion

ρβ/2(|f |1/2 + |g|) ∈M(W 1
2,β(Ω)→ L2(Ω)).

Then any variational solution γ ∈ L∞(Ω) of equation (13.2.1) belongs to the
space MW 1

2,β(Ω), and the estimate

‖γ;Ω‖MW 1
2,β
≤ c

(
‖ρβ/2|f |1/2;Ω‖2M(W 1

2,β→L2)

+ ‖ρβ/2g;Ω‖M(W 1
2,β→L2) + ‖γ;Ω‖L∞

)
(13.2.3)

holds with a constant c independent of f, g and γ.
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Proof. Let R denote a solution of the Dirichlet problem

LR = 1 in Ω, R = 0 on ∂Ω.

From Giraud’s theorem on the sign of the normal derivative (see[Mir], Sect.
3.5) and the boundedness of the gradient of R it follows that c1ρ ≤ R ≤ c2ρ
on Ω. Choosing a sufficiently small δ > 0, we introduce a family of functions
{ζτ} from C∞

0 (Ω), 0 < τ < δ, such that ζτ = 1 on the set

Ωτ = {x ∈ Ω : ρ(x) > τ},

and 0 ≤ ζτ ≤ 1, |Dαζτ | ≤ c τ−|α| for all multi-indices α.
We set

η = Rβζ2
τu

2γ

in (13.2.2), where u is an arbitrary function from W 1
2,β(Ω). Then the left-hand

side of (13.2.2) can be written as
∫

Ω

aij
∂γ

∂xj

∂η

∂xi
dx =

∫

Ω

aij
∂(γu)
∂xj

∂(γu)
∂xi

Rβζ2
τdx−

∫

Ω

aij
∂u

∂xj

∂u

∂xi
γ2Rβζ2

τdx

+
∫

Ω

aij
∂(γu)
∂xj

∂(Rβζ2
τ )

∂xi
γu dx−

∫

Ω

aij
∂u

∂xj

∂(Rβζ2
τ )

∂xi
γ2u dx. (13.2.4)

Since
|∇(Rβζ2

τ )| ≤ cRβ−1ζτ ,

the third term on the right-hand side of (13.2.4) does not exceed

c ‖γ;Ω‖L∞

∫

Ω

ζτ |∇(γu)| |u| ρβ−1dx

≤ c ‖γ;Ω‖L∞‖ζτ |∇(γu)|ρβ/2;Ω‖L2‖u ρ(β−2)/2;Ω‖L2 . (13.2.5)

By the Hardy inequality,

‖u ρ(β−2)/2;Ω‖L2 ≤ c ‖u;Ω‖W 1
2,β
. (13.2.6)

We estimate the fourth term on the right-hand side of (13.2.4) using
(13.2.6):

∣∣∣
∫

Ω

aij
∂u

∂xj

∂(Rβζ2
τ )

∂xi
γ2u dx

∣∣∣ ≤ c ‖γ;Ω‖2L∞

∫

Ω

|∇u| |u| ρβ−1dx

≤ c ‖γ;Ω‖2L∞‖u;Ω‖2W 1
2,β
.
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Consequently, (13.2.4) implies that
∫

Ω

aij
∂(γu)
∂xj

∂(γu)
∂xi

Rβζ2
τ dx ≤ c ‖γ;Ω‖2L∞‖u;Ω‖2W 1

2,β

+
∣∣∣
∫

Ω

(
fRβζ2

τu
2γ − g ∇(Rβζ2

τu
2γ)
)
dx
∣∣∣. (13.2.7)

We have ∣∣∣
∫

Ω

fRβζ2
τu

2γ dx
∣∣∣

≤ c ‖γ;Ω‖L∞

∥∥ρβ/2|f |1/2;Ω
∥∥2

M(W 1
2,β→L2)

‖u;Ω‖2W 1
2,β
. (13.2.8)

Also, ∣∣∣
∫

Ω

g∇(Rβζ2
τu

2γ)dx
∣∣∣ ≤ c

∫

Ω

|g| ρβζτ |u| |∇(γu)| dx

+ c ‖γ;Ω‖L∞

∫

Ω

|gu| |∇(Rβζτu)|dx ≤

≤ c ‖ρβ/2 g;Ω‖M(W 1
2,β→L2) ‖ζτ ρ

β/2∇(γu);Ω‖L2 ‖u;Ω‖W 1
2,β

+c ‖γ;Ω‖L∞‖ρβ/2 g u;Ω‖L2

∥∥ρ−β/2∇(Rβζ2
τu);Ω

∥∥
L2
.

Since by (13.2.6) the last norm does not exceed c ‖u;Ω‖W 1
2,β

, it follows that
∣∣∣
∫

Ω

g ∇(Rβζ2
τu

2γ)dx
∣∣∣ ≤ c ‖ρβ/2g;Ω‖M(W 1

2,β→L2)

(
‖ζτ ρβ/2∇(γu);Ω‖L2

+ ‖γ;Ω‖L∞‖u;Ω‖W 1
2,β

)
‖u;Ω‖W 1

2,β
.

Combining this estimate with (13.2.8) and (13.2.7), we find that

‖ζτ ρβ/2∇(γu);Ω‖L2 ≤ c
(
‖γ;Ω‖L∞ + ‖ρβ/2 |f |1/2;Ω‖2M(W 1

2,β→L2)

+‖ρβ/2 g;Ω‖M(W 1
2,β→L2)

)
‖u;Ω‖W 1

2,β
.

Passing to the limit as τ → 0, we complete the proof. ��

Remark 13.2.1. The same proof shows that for 0 ≤ β < 1 the assertion of
Theorem 13.2.1 remains valid for bounded solutions γ ∈ W 1

2 (Ω) of equation
(13.2.1) satisfying the Dirichlet condition γ = 0 on ∂Ω.

We next describe the space MW 1
2,β(Ω) for β > 1. By Qj we denote the

cubes with edge lengths dj forming a Whitney covering of Ω. Let Q∗
j be the

cube in Ω, concentric to Qj and with edge length 9dj/8. The cubes Q∗
j form

a covering of Ω of finite multiplicity, depending only on n.
We introduce the relative capacity of a compact set e ⊂ Ω,

cap(e,Ω) = inf{‖∇u;Ω‖2L2
: u ∈ C∞

0 (Ω), u = 1 on e}.



13.2 Bounded Solutions of Linear Elliptic Equations as Multipliers 451

Proposition 13.2.1. For β > 1

‖γ;Ω‖MW 1
2,β
∼ sup

j
sup

e⊂Qj

‖∇γ; e‖L2

[cap(e,Q∗
j )]1/2

+ ‖γ;Ω‖L∞ .

Proof. First of all we note that for β > 1 the Hardy inequality (13.2.6) leads
to the relation

‖u;Ω‖2W 1
2,β
∼
∫

Ω

ρ(x)β
(
|∇u|2 + ρ(x)−2u2

)
dx.

By {ηj} we denote a partition of unity, subordinate to the covering {Qj}
and such that |∇ηj | ≤ c d−1

j . Assume also that {ζj} is a sequence of smooth
functions with

supp ζj ⊂ Q∗
j , ζj = 1 on Qj and |∇ζj | ≤ c d−1

j .

By the last equivalence relation and the Poincaré inequality, we have

‖u;Ω‖2W 1
2,β
∼
∑

j

dβ
j ‖∇(ηju);Ω‖2L2

.

The same holds if we replace ηj by ζj on the right-hand side. This relation
and Theorem 1.2.2 give

‖γu;Ω‖2W 1
2,β
≤ c

∑
j

dβ
j ‖∇(γηjζju);Ω‖2L2

≤ c sup
j

sup
e⊂Qj

‖∇(γηj); e‖2L2

cap(e,Q∗
j )

∑
j

dβ
j ‖∇(ζju);Ω‖2L2

≤ c
(
sup

j
sup

e⊂Qj

‖∇γ; e‖2L2

cap(e,Qj)
+ ‖γ;Ω‖2L∞d

−2
j

mesne

cap(e,Qj)

)
‖u;Ω‖2W 1

2,β
.

Since the Poincaré inequality implies the estimate

cap(e,Q∗
j ) ≥ c d2

j mesne,

we obtain the required upper estimate for the norm of γ in MW 1
2,β(Ω).

The inequality
‖γ;Ω‖L∞ ≤ ‖γ;Ω‖MW 1

2,β

is obtained by standard arguments (see Proposition 2.7.4). Setting u ∈
C∞

0 (Q∗
j ) , u = 1 on a compact e ⊂ Qj , in

∫

Ω

ρ(x)β |∇u|2dx ≤ ‖γ;Ω‖2MW 1
2,ρ
‖u;Ω‖2W 1

2,β
,

we obtain
‖∇γ; e‖2L2

≤ c cap(e,Q∗
j )‖γ;Ω‖2MW 1

2,β
.

The proposition is proved. ��
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In a similar manner we can derive the relation

‖h ρβ/2;Ω‖M(W 1
2,β→L2) ∼ sup

j
sup

e⊂Qj

‖h; e‖L2

[cap(e,Q∗
j )]1/2

,

where β > 1. Therefore, the estimate of the solution γ obtained in Theorem
13.2.1 can be written in the form

sup
j

sup
e⊂Qj

‖∇γ; e‖L2

[cap(e,Q∗
j )]1/2

≤ c
(
‖γ;Ω‖L∞ + sup

j
sup

e⊆Qj

‖f ; e‖L1 + ‖g; e‖L2

[cap(e,Q∗
j )]1/2

)
.

In the case n > 2 we can replace cap(e,Q∗
j ) by the Wiener capacity c2,1,

and the supremum with respect to j and with respect to e ⊂ Qj , by the
supremum over compact sets e with d(e) ≤ ρ(e), where d(e) is the diameter
of e and ρ(e) is the distance from e to ∂Ω.

It follows from Proposition 13.2.1 that the spaces of multipliers in W 1
2,β(Ω)

are isomorphic for all β > 1. Since the proof of the lower estimate for
‖γ‖MW 1

2,β(Ω) remains valid for β = 1 as well, it follows that in the case
β > 1 we have the imbedding MW 1

2,β(Ω) ⊂ MW 1
2,1(Ω). We show that the

last imbedding is strict. Indeed, let

γ(x) = sin log ρ(x) and u(x) = |log ρ(x)|1/2−ε, ε > 0.

One checks directly that u ∈W 1
2,1(Ω) whereas γu 	∈W 1

2,1(Ω).

13.2.3 The Case β = 1

By S(Ω) we mean the space of functions from W 1
2,loc(Ω) with the finite norm

‖u;Ω‖S =
(∫

Ω

ρ(x)|∇u|2dx + ‖u;Ω‖2L2

)1/2

+
∫ δ

0

‖∇u;Γτ‖L2dτ,

where δ is a small positive number and Γτ is the boundary of the domain Ωτ .

Theorem 13.2.2. Suppose that the functions f and g are subject to

ρ1/2(|f |1/2 + |g|) + |g|1/2 ∈M(S(Ω)→ L2(Ω)).

Then any variational solution γ ∈ L∞(Ω) of (13.2.1) belongs to the space
M(S(Ω)→W 1

2,1(Ω)) and

‖γ;Ω‖M(S→W 1
2,1)
≤ c

(
‖γ;Ω‖L∞ +

∥∥(ρ |f |+ |g|)1/2;Ω
∥∥2

M(S→L2)

+‖ρ1/2g;Ω‖M(S→L2)

)
(13.2.9)

with a constant c, independent of f, g and γ.
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Proof. We use the notations R and ζτ , introduced in the proof of Theorem
13.2.1. We set η = Rζ2

τu
2γ in (13.2.2), where u is an arbitrary function from

S(Ω). Then the left-hand side in (13.2.2) takes the form
∫

Ω

aij
∂(γu)
∂xj

∂(γu)
∂xi

Rζ2
τ dx−

∫

Ω

aij
∂u

∂xj

∂u

∂xi
γ2Rζ2

τ dx

+
∫

Ω

aij
∂(γu)
∂xj

∂(Rζ2
τ )

∂xi
γu dx−

∫

Ω

aij
∂u

∂xj

∂(Rζ2
τ )

∂xi
γ2u dx. (13.2.10)

The third term on the right-hand side of (13.2.10) is equal to

1
2

∫

Ω

(γu)2L(Rζ2
τ ) dx =

1
2

∫

Ω

(γu)2ζ2
τdx+

∫

Ω

(γu)2
(
aij

∂R

∂xi

∂ζ2
τ

∂xj
+

1
2
RL(ζ2

τ )
)
dx.

The absolute value of the last integral does not exceed

c ‖γ;Ω‖2L∞τ
−1

∫

Ω\Ωτ

u2dx ≤ c1‖γ;Ω‖2L∞ sup
0<τ<δ

‖u;Γτ‖2L2
.

Clearly,

‖u;Γτ‖L2 ≤
∫ δ

0

‖∇u;Γσ‖L2dσ + c δ−1‖u;Ωδ/2\Ωδ‖L2 . (13.2.11)

Consequently, the absolute value of the third term in (13.2.10) is not greater
than

c ‖γ;Ω‖2L2
‖u;Ω‖2S . (13.2.12)

Next we estimate the fourth term on the right-hand side of (13.2.10). We
have
∣∣∣
∫

Ω

aij
∂u

∂xj

∂(Rζ2
τ )

∂xi
γ2u dx

∣∣∣ ≤ c ‖γ;Ω‖2L∞

(
‖u;Ωδ‖2W 1

2
+
∫

Ω\Ωδ

|∇u| |u|dx
)
.

Using (13.2.11), we find that the last integral does not exceed

c

∫ δ

0

‖∇u;Γτ‖L2‖u;Γτ‖L2dτ ≤ c sup
0<τ<δ

‖u;Γτ‖L2‖u;Ω‖S ≤ c1‖u;Ω‖2S

and, consequently, the absolute value of the fourth term on the right-hand side
of (13.2.10), as well as the third one, is majorized by the product (13.2.12).
Combining this fact with (13.2.10) and (13.2.2), we arrive at the estimate

∫

Ω

aij
∂(γu)
∂xj

∂(γu)
∂xi

Rζ2
τ dx ≤ c ‖γ;Ω‖2L∞‖u;Ω‖2S

+
∣∣∣
∫

Ω

(
fRζ2

τu
2γ − g ∇(Rζ2

τu
2γ)
)
dx
∣∣∣. (13.2.13)
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The second term on the right-hand side of this inequality does not exceed

c ‖γ;Ω‖L∞

(
‖(ρ |f |)1/2u;Ω‖2L2

+
∫

Ω

|gu∇(Rζ2
τu)|dx

)

+
∫

Ω

|g| |∇(γu)|Rζ2
τ |u| dx. (13.2.14)

Obviously, the first term in brackets has the majorant

‖(ρ |f |)1/2;Ω‖2M(S→L2)
‖u;Ω‖2S ,

while the third one is not greater than

c ‖ζτρ1/2∇(γu);Ω‖L2 ‖ρ1/2g u;Ω‖L2

≤ c ‖ζτρ1/2∇(γu);Ω‖L2 ‖ρ1/2g;Ω‖M(S→L2) ‖u;Ω‖S .
We estimate the second term in the brackets in (13.2.14):

∫

Ω

|gu∇(Rζ2
τu)| dx ≤ c ‖ |g|1/2u;Ω‖2L2

+ c

∫

Ω

ρ |g| |u∇u| dx

≤ c
(
‖|g|1/2;Ω‖2M(S→L2)

+ ‖ρ1/2g;Ω‖M(S→L2)

)
‖u;Ω‖2S .

Combining the above estimates with (13.2.13) and noting that R ≥ cρ, we
find that the norm ‖ρ1/2∇(γu);Ω‖L2 does not exceed the right-hand side of
(13.2.9) multiplied by ‖u;Ω‖S . The theorem is proved. ��

13.2.4 Solutions as Multipliers from W 1
2,w(ρ)(Ω) into W 1

2,1(Ω)

Using Theorem 13.2.2, we show that bounded solutions of (13.2.1) are mul-
tipliers acting from a weighted Hilbert space, intermediate between W 1

2,1(Ω)
and W 1

2,β(Ω) with β < 1, into W 1
2,1(Ω).

Let w be a continuous function on [0,∞) such that w(ρ) ≥ cρ for ρ > 0.
We say that a function u ∈W 1

2,loc(Ω) belongs to W 1
2,w(ρ)(Ω) if it has the finite

norm

‖u;Ω‖W 1
2,w(ρ)

=
(∫

Ω

w(ρ(x))|∇ u|2dx+ ‖u;Ω‖2L2

)1/2

.

In particular, for w(ρ) = ρ we have W 1
2,w(ρ)(Ω) = W 1

2,β(Ω).

Theorem 13.2.3. Let ∫ δ

0

dτ

w(τ)
<∞. (13.2.15)

Suppose also that

ρ1/2(|f |+ |g|) + |g|1/2 ∈M(W 1
2,w(ρ)(Ω)→ L2(Ω)).
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Then any variational solution γ ∈ L∞(Ω) of (13.2.1) belongs to the space

M(W 1
2,w(ρ)(Ω)→W 1

2,1(Ω))

and

‖γ;Ω‖M(W 1
2,w(ρ)→W 1

2,1)
≤ c

(
‖γ;Ω‖L∞ + ‖ρ |f |+ |g|;Ω‖2M(W 1

2,w(ρ)→L2)

+ ‖ρ1/2g;Ω‖M(W 1
2,w(ρ)→L2)

)
(13.2.16)

with a constant c independent of f, g and γ.

Proof. Since
∫ δ

0

‖∇u;Γτ‖L2dτ ≤ c
(∫ δ

0

dτ

w(τ)

)1/2(∫

Ω\Ωδ

w(ρ(x))|∇u|2dx
)1/2

,

it follows that W 1
2,w(ρ)(Ω) ⊂ S(Ω) and

‖u;Ω‖S ≤ c‖u;Ω‖W 1
2,w(ρ)

.

It remains to make use of Theorem 13.2.2. ��

The next theorem shows that the condition (13.2.15) is also necessary.

Theorem 13.2.4. If any variational solution γ ∈ L∞(Ω) of the equation
Lγ = 0 belongs to M(W 1

2,w(ρ)(Ω)→W 1
2,1(Ω)), then the condition (13.2.15) is

satisfied.

Proof. Suppose (13.2.15) does not hold. We introduce a positive Lipschitz
function u in Ω, coinciding near ∂Ω with the function

x→ v(ρ(x)) =
(∫ 2δ

ρ(x)

dτ

w(τ)

)1/2−σ

,

where σ is an arbitrarily small positive number. Clearly, u ∈ W 1
2,w(ρ)(Ω).

Therefore, for any γ ∈ L∞(Ω), the norm ‖ρ1/2∇(γu);Ω‖L2 is finite and,
consequently,

‖ ρ1/2 u∇γ;Ω‖L2 <∞.

Let A and B denote the Banach spaces of solutions of the equation Lγ = 0
with the finite norms ‖γ;Ω‖L∞ and

‖γ;Ω‖L∞ + ‖ρ1/2u ∇γ;Ω‖L2 ,

respectively. Let I be the identity mapping of A into B which is, obviously,
linear, continuous, and one-to-one. By what we have just proved, I maps B
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onto A and, consequently, by Banach’s theorem, it is an isomorphism. Thus,
we have the estimate

‖ρ1/2u ∇γ;Ω‖L2 ≤ c ‖γ;Ω‖L∞

with a constant c independent of γ.
For any sufficiently small ε we have

(∫ 2δ

ε

dτ

w(τ)

)1/2−σ

‖ρ1/2∇γ;Ω \Ωε‖L2 ≤ c ‖γ;Ω‖L∞ .

This inequality and the maximum principle imply that

‖ρ1/2∇γ;Ω‖L2 ≤ 2c
(∫ 2δ

ε

dτ

w(τ)

)σ−1/2

‖γ; ∂Ω‖L∞ + c(ε)‖γ;Ωε/2‖L2 .

Since solutions of Lγ = 0 obey the estimate

‖γ; ∂Ω‖L2 ≤ c
(
‖ρ1/2∇γ;Ω‖L2 + ‖γ;Ωδ‖L2

)

(see for instance, [Maz5], Sect.2), it follows that

‖γ; ∂Ω‖L2 ≤ c2

(∫ 2δ

ε

dτ

w(τ)

)σ−1/2

‖γ; ∂Ω‖L∞ + c(ε)‖γ;Ωε/2‖L2 .

Given an arbitrary sequence of solutions γ, whose traces on ∂Ω belong to
the unit ball in L∞(∂Ω), we select a subsequence {γm}m≥0 convergent in
L2(Ωε/2). Then

lim sup
m,k→∞

‖γm − γk; ∂Ω‖L2 ≤ 2 c2
(∫ 2δ

ε

dτ

w(τ)

)σ−1/2

.

By assumption, the right-hand side tends to zero as ε → 0. Hence {γm}m≥0

converges in L2(∂Ω). Thus, the unit ball in L∞(∂Ω) is compact in L2(∂Ω)
which, of course, is not true. The theorem is proved. ��

13.3 Solvability of Quasilinear Elliptic Equations
in Spaces of Multipliers

In the present section we collect theorems on the solvability of boundary
value problems for quasilinear second-order elliptic equations and systems
in spaces of multipliers. Sects. 13.3.1 and 13.3.3 concern the case of a single
equation in divergent form, while in Sect. 13.3.2 we examine a system of the
same type. It is shown that bounded variational solutions of these equations
and systems belong to the space MW 1

p(Ω) of multipliers in W 1
p (Ω) under

certain conditions. A similar assertion concerning solutions of nondivergence
equations in the space MW 2

2(Ω) is contained in Sect. 13.3.4.
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13.3.1 Scalar Equations in Divergence Form

Here we deal with a variational formulation of the mixed boundary value
problem

∂ai(x, γ,∇γ)
∂xi

= ϕ(x, γ,∇γ), x ∈ Ω, (13.3.1)

γ|Γ = 0, ai(x, γ,∇γ)cos(ν, xi)
∣∣
∂Ω\Γ

= 0, (13.3.2)

where Γ is a subset of the boundary ∂Ω and ν is a normal to ∂Ω.
Let Ω be an arbitrary bounded domain in R

n. We assume that the func-
tions ai(x, ξ0, ξ) are measurable with respect to x for all ξ0, ξ = (ξ1, ..., ξn),
continuous with respect (ξ0, ξ) for almost all x ∈ Ω, and, for x ∈ Ω, |ξ0| ≤ Q,
satisfy the inequalities

ai(x, ξ0, ξ)ξi ≥ c1|ξ|p − f1(x) (13.3.3)

and
n∑

i=1

|ai(x, ξ0, ξ)| ≤ c2|ξ|p−1 + f2(x), (13.3.4)

where Q, c1, c2 are positive constants, f1 and f2 are nonnegative functions,
ξ 	= 0 and

f
1/p
1 ∈M(W 1

p (Ω)→ Lp(Ω)), f1/(p−1)
2 ∈M(W 1

p (Ω)→ Lp(Ω)), p > 1.

By W̊ 1
p (Ω,Γ ) we denote the completion, in the norm of space W 1

p (Ω), of the
set of functions in W 1

p (Ω) with compact supports in Ω\Γ. It is standard that
the intersection W̊ 1

p (Ω,Γ ) ∩ L∞(Ω) is dense in W̊ 1
p (Ω,Γ ).

Let |γ(x)| ≤ Q for almost all x ∈ Ω. By a variational solution of problem
(13.3.1)–(13.3.2), we mean a function γ ∈ W̊ 1

p (Ω,Γ ) satisfying the identity
∫

Ω

ai(x, γ,∇γ)
∂v

∂xi
dx =

∫

Ω

ϕ(x, γ,∇γ)v dx (13.3.5)

for any function v ∈ W̊ 1
p (Ω,Γ ).

Theorem 13.3.1. Let γ be a variational solution of problem (13.3.1)–(13.3.2)
with |γ(x)| ≤ Q for almost all x ∈ Ω. Further, let

|ϕ(x, ξ0, ξ)| ≤ k |ξ|p + g(x), (13.3.6)

where k = const > 0 and

g1/p ∈M(W 1
p (Ω)→ Lp(Ω)).

Then
γ ∈MW 1

p (Ω).
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Proof. Let u be an arbitrary element of (W 1
p ∩ L∞)(Ω) and let γ be a varia-

tional solution of problem (13.3.1)–(13.3.2). We set

v = (eλγ − 1)|u|p

in (13.3.5), where λ is a positive constant whose value will be chosen later. It
is easily seen that this function belongs to the space W̊ 1

p (Ω,Γ ). We have

λ

∫

Ω

ai(x, γ,∇γ)
∂γ

∂xi
eλγ |u|pdx = −p

∫

Ω

ai(x, γ,∇γ)
∂u

∂xi
|u|p−1sgnu(eλγ − 1)dx

+
∫

Ω

ϕ(x, γ,∇γ)(eλγ − 1)|u|pdx.

Using (13.3.3) and (13.3.4), we obtain

λ c1

∫

Ω

eλγ |u∇γ|pdx ≤ λ

∫

Ω

eλγf1|u|pdx+ p c2

∫

Ω

|u∇γ|p−1|∇u|(eλγ − 1)dx

+
∫

Ω

f2|∇u| |u|p−1(eλγ − 1) dx+
∫

Ω

ϕ |u|p(eλγ − 1) dx.

By (13.3.6) the last integral does not exceed

k

∫

Ω

|∇γ|p |u|p(eλγ − 1) dx+
∫

Ω

g |u|p(eλγ − 1) dx.

Setting λ = 2k/c1 and ε = eλQ, we arrive at the inequality

k

2ε

∫

Ω

|u∇γ|pdx ≤ 2k
c1
ε

∫

Ω

f1|u|pdx+ (ε− 1)
∫

Ω

g|u|pdx

+ p c2 (ε− 1)
∫

Ω

|u∇γ|p−1|∇u| dx+ (ε− 1)
∫

Ω

f2|∇u| |u|p−1dx.

Hence

‖∇(uγ);Ω‖Lp
≤ c
[(∫

Ω

(g + f1 + f
p/(p−1)
2 )|u|pdx

)1/p

+ ‖∇u;Ω‖Lp

]
.

Since the functions g1/p, f
1/p
1 , f

1/(p−1)
2 belong to M(W 1

p (Ω) → Lp(Ω)), the
result follows. ��

13.3.2 Systems in Divergence Form

Theorem 13.3.1 has a partial generalization to systems of equations of the
type (13.3.1). In the theorem below we assume λ, ai, and ϕ to be vector
functions with values in R

m. In (13.3.5), by v we mean an m-dimensional
vector function.
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Theorem 13.3.2. Suppose that vector-valued functions ai and ϕ obey condi-
tions (13.3.3), (13.3.4), (13.3.6), where f1, f2, g are the same as above. Let the
constant k in (13.3.6) be sufficiently small. If γ is a variational solution of the
system (13.3.1), satisfying the boundary conditions (13.3.2) and |γ(x)| ≤ Q
for almost all x ∈ Ω, then γ ∈MW 1

p (Ω).

Proof. We set v = γ |u|p in (13.3.5), where u is an arbitrary function in
(W l

p ∩ L∞)(Ω). It is easily seen that the vector function γ|u|p belongs to the
space W̊ 1

p (Ω,Γ ). We have
∫

Ω

ai(x, γ,∇γ)
∂γ

∂xi
|u|pdx = −p

∫

Ω

γai(x, γ,∇γ)
∂u

∂xi
|u|p−2u dx

+
∫

Ω

ϕ(x, γ,∇γ)γ |u|pdx.

From this inequality and condition (13.3.3), we obtain
∫

Ω

|∇(γu)|pdx ≤ c
(∫

Ω

|ai(x, γ,∇γ)| |∇u| |u|p−1|γ|dx

+
∫

Ω

|ϕ(x, γ,∇γ)| |γ| |u|pdx+
∫

Ω

f1|u|pdx+
∫

Ω

|γ|p|∇u|pdx
)
. (13.3.7)

Using condition (13.3.4) and the Hölder inequality to estimate the first integral
on the right-hand side of (13.3.7), we find that it is dominated by

c ‖γ;Ω‖L∞

(
‖∇(γu);Ω‖p−1

Lp
‖∇u;Ω‖Lp

+ ‖γ;Ω‖p−1
L∞
‖∇u;Ω‖pLp

+‖f1/(p−1)
2 ;Ω‖p−1

M(W 1
p→Lp)‖∇u;Ω‖pLp

)
. (13.3.8)

By (13.3.6), the second integral on the right-hand side of (13.3.7) does not
exceed

‖γ;Ω‖L∞

∫

Ω

|u|p(k |∇γ|p + g)dx.

Consequently,

‖∇(γu);Ω‖Lp
≤ c0‖γ;Ω‖L∞

(
‖∇u;Ω‖Lp

+‖f1/(p−1)
2 ;Ω‖1−1/p

M(W 1
p→Lp) ‖∇u;Ω‖Lp

)

+ k1/p‖γ;Ω‖1/p
L∞
‖∇(γu);Ω‖Lp

+ k1/p‖γ;Ω‖1+1/p
L∞

‖∇u;Ω‖Lp

+ ‖γ;Ω‖1/p
L∞
‖g1/p;Ω‖M(W 1

p→Lp)‖∇u;Ω‖Lp

)
.

In view of the smallness of k we may assume that

c0 k
1/p ‖γ;Ω‖1/p

L∞
< 1/2. (13.3.9)

Then
‖∇(γu);Ω‖Lp

≤ c ‖∇u;Ω‖Lp
.

The theorem is proved. ��
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Comparison with the case of a single equation, considered in Theorem
13.3.1, may give the impression that the result obtained in Theorem 13.3.2
for a system is weaker because of the condition that the constant k in (13.3.6)
is small (see (13.3.9)). However, we show by the following example that this
restriction is not only dictated by the proof, but really is necessary.

Example. Let Ω be the disk

Ω = {x+ iy = reiθ : 0 < r < e−1, 0 ≤ θ < 2π}.

Consider the quasilinear elliptic system

∆γ1 =
−2γ1 − 2−

(
(loglog r−1)−2 + (loglog r−1)−1

)
γ2

|γ|2 + 2γ1 + 2
|∇γ|2,

∆γ2 =
−2γ2 +

(
(loglog r−1)−2 + (loglog r−1)−1

)
(γ1 + 1)

|γ|2 + 2γ1 + 2
|∇γ|2, (13.3.10)

where
γ = (γ1, γ2) and |∇γ|2 = |∇γ1|2 + |∇γ2|2.

We subject the vector function γ to the homogeneous Dirichlet condition on
∂Ω. It can be checked directly that the boundary value problem just formu-
lated has the solution

γ1 = cos (loglog r−1)2 − 1,

γ2 = sin (loglog r−1)2 (13.3.11)

in the space W̊ 1
2 (Ω) ∩ L∞(Ω). In fact, the substitution v = (γ1 + 1) + iγ2

reduces the system (13.3.10) to the scalar equation

∆v =
−2v + i(loglog r−1)−2v + i(loglogr−1)−1v

|v|2 + 1
|∇v|2,

After writing the Laplacian in polar coordinates one readily checks that

v = ei(loglog r−1)2

satisfies the last equation.
It is clear that |γ(x)| ≤ 2 on Ω̄. Since

|∇γ(x)| = 2
loglog r−1

rlog r−1
,

it follows that

‖∇γ;Ω‖L2 = c

∫ ∞

1

(logt)2

t2
dt <∞.
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If the vector function γ is a multiplier in W 1
2 (Ω), then the inequality

∫

Ω

|∇γ|2u2dx ≤ c ‖u;Ω‖2W 1
2

holds for all u ∈W 1
2 (Ω), which is equivalent to the estimate
∫

Ω

( loglog r−1

rlog r−1

)2

u2dx ≤ c ‖u;Ω‖2W 1
2
. (13.3.12)

We set here

u(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 for r ≤ ε2;
0 for r > ε;
logεr−1

logε−1
for ε2 ≤ r ≤ ε,

where ε is a small positive number. Then the right-hand side of (13.3.12) is
O((log ε−1)−1), while the left-hand side majorizes the expression

c

∫ ε2

0

( loglog r−1

rlog r−1

)2

rdr ≥ c

∫ ∞

logε−2

(log t)2

t2
dt ≥ c

(loglog ε−1)2

logε−1
.

Thus, (13.3.12) is false and γ 	∈MW 1
2 (Ω). It remains to note that the vector-

valued function γ = (γ1, γ2) given by (13.3.11) satisfies a system for which
(13.3.6) is valid, but that k is not sufficiently small.

13.3.3 Dirichlet Problem for Quasilinear Equations in Divergence
Form

In this subsection we extend Theorem 13.1.1 to a class of quasilinear equations.
As above, we assume Ω to be an open bounded subset of R

n. Let the functions
Ai(x, ξ) be measurable with respect to x for all ξ = (ξ1, ..., ξn), and continuous
for almost all x ∈ Ω, and let the inequalities

Ai(x, ξ)ξi ≥ c1|ξ|p,
n∑

i=1

|Ai(x, ξ)| ≤ c2 |ξ|p−1 (13.3.13)

be satisfied for any ξ, where c1, c2 are positive constants and p > 1. Further
suppose that the monotonicity condition

(
Ai(x, v)−Ai(x,w)

)
(vi − wi) > 0

is satisfied for v 	= w.
By the solution to the Dirichlet problem for the equation

∂Ai(x,∇u)
∂xi

= 0
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we mean a function u ∈W 1
p (Ω), satisfying

∫

Ω

Ai(x,∇u)
∂v

∂xi
dx = 0, u− g ∈ W̊ 1

p (Ω), (13.3.14)

where g is a given function from W 1
p (Ω), and v is any function from W̊ 1

p (Ω).
It is known (see [LeL])that, under the above conditions on Ai, the problem

(13.3.14) has a unique solution from the space W 1
p (Ω). If g is bounded, then

the solution u is also bounded by the maximum principle.
The following theorem on the unique solvability of the problem (13.3.14)

in a multiplier space basically follows from Theorem 13.3.1.

Theorem 13.3.3. If g ∈ MW 1
p (Ω), then the solution u of (13.3.14) belongs

to the space MW 1
p (Ω).

Proof. Set γ = u− g and introduce the notation

ai(x,∇γ(x)) := Ai(x,∇γ(x) +∇g(x)).

By (13.3.13) we have

ai(x, ξ)ξi = Ai(x, ξ +∇g(x))ξi ≥ c1|ξ +∇g(x)|p ≥ c1
(
21−p|ξ|p − |∇g(x)|p

)
,

n∑
i=1

|ai(x, ξ)| =
n∑

i=1

|Ai(x, ξ +∇g(x))| ≤ c2
(
|ξ|+ |∇g(x)|

)p−1
.

Since
∇g ∈M(W 1

p (Ω)→ Lp(Ω)),

the functions ai satisfy (13.3.3) and (13.3.4). It remains to use Theorem
13.3.1. ��

Let Ω be a bounded domain in R
n with ∂Ω ∈ C0,1 (that is, a Lipschitz

graph domain). In Sect. 8.7.4 it is shown that MW
1−1/p
p (Rn−1) is the space

of traces on R
n−1 of functions from MW 1

p (Rn
+). It readily follows that any

function ϕ from the space MW
1−1/p
p (∂Ω) has an extension g onto Ω such that

c−1‖g;Ω‖MW 1
p
≤ ‖ϕ; ∂Ω‖

MW
1−1/p
p

≤ c ‖g;Ω‖MW 1
p
,

where c is a constant depending only on Ω and c > 1. The next assertion
follows from Theorem 13.3.3.

Corollary 13.3.1. The Dirichlet problem

∂Ai(x,∇u)
∂xi

= 0, u ∈W 1
p (Ω), u

∣∣
∂Ω

= ϕ,

where ϕ ∈MW
1−1/p
p (∂Ω), has a unique solution in the space MW 1

p (Ω).
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13.3.4 Dirichlet Problem for Quasilinear Equations
in Nondivergence Form

We next prove a theorem showing that solutions to the Dirichlet problem for
nondivergence quasilinear elliptic equations belong to the space MW 2

2 (Ω).
Let Ω be a domain with C2 boundary and let Q be a nonnegative con-

stant. Suppose that the functions F (x, ξ0, ξ) and aij(x, ξ0, ξ), i, j = 1, ..., n,
are measurable with respect to x for all ξ0 ∈ (−Q,Q), ξ = (ξ1, ..., ξn) ∈ R

n,
and continuous with respect to ξ0, ξ for almost all x ∈ Ω. We assume that the
functions aij are bounded and that there exists a positive constant c such that

aijξiξj ≥ c |ξ|2

for the same ξ0, ξ. Further, for some ε > 0, let the coefficients aij satisfy the
Cordes condition

(
2n− 4 +

3
n+ 1

)[
n

n∑
i,j=1

a2
ij −

( n∑
i=1

aii

)2]
≤ (1− ε)

( n∑
i=1

aii

)2

(see [Cor]), which restricts the dispersion of eigenvalues of the matrix ‖aij‖ni,j=1.
Suppose that

|F (x, ξ0, ξ)| ≤ k |ξ|2 + g(x)

for |ξ0| ≤ Q, where
g ∈M(W 2

2 (Ω)→ L2(Ω))

and k is a small constant.
Consider the Dirichlet problem

aij(x, u,∇u)
∂2u

∂xi∂xj
= F (x, u,∇u) inΩ, u

∣∣
∂Ω

= ϕ, (13.3.15)

where
u ∈W 2

2 (Ω), |u(x)| ≤ Q almost everywhere in Ω,

and ϕ ∈MW
3/2
2 (∂Ω). We set

v = u− Φ, (13.3.16)

where Φ is an extension of ϕ onto R
n belonging to the class MW 2

2 (Rn) (see
Theorem 8.6.1). Then the problem (13.3.15) is equivalent to the problem

bij(x, v,∇v)
∂2v

∂xi∂xj
= G(x, v,∇v) in Ω, v|∂Ω = 0,

where
bij(x, ξ0, ξ) = aij(x, ξ0 + Φ(x), ξ +∇Φ(x))
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and

G(x, ξ0, ξ) = F (x, ξ0 + Φ(x), ξ +∇Φ(x)) + bij(x, ξ0, ξ)
∂2Φ

∂xi∂xj
.

It is clear that the coefficients bij satisfy the same conditions as aij . Moreover,

|G(x, ξ0, ξ)| ≤ 2 k |ξ|2 + h(x), (13.3.17)

where
h = 2k|∇Φ|2 + c |∇2Φ|.

Lemma 13.3.1. The function h belongs to the space M(W 2
2 (Ω)→ L2(Ω)).

Proof. For any function w ∈ C∞
0 (Rn) we have

∫

Rn

|∇Φ|4w2dx = −
∫

Rn

Φdiv
(
|∇Φ|2(∇Φ)w2

)
dx

≤ c ‖Φ; Rn‖L∞

(∫

Rn

|∇Φ|2|∇2Φ|w2dx+
∫

Rn

|∇Φ|3 |w| |∇w| dx
)

≤ c ‖Φ; Rn‖L∞‖ |∇Φ|2w; Rn‖L2

(
‖ |∇2Φ|w; Rn‖L2 + ‖ |∇Φ| |∇w| ; Rn‖L2

)
.

Since
‖∇2Φ; Rn‖M(W 2

2 →L2) + ‖∇Φ; Rn‖M(W 1
2 →L2)

≤ c ‖Φ; Rn‖MW 2
2
, (13.3.18)

it follows that

‖ |∇Φ|2w; Rn‖L2 ≤ c ‖Φ; Rn‖L∞‖Φ; Rn‖MW 2
2
‖w; Rn‖W 2

2
.

It is clear that the last inequality is valid for all w ∈ W 2
2 (Rn). Let w be any

function in W 2
2 (Ω), extended onto R

n and such that

‖w; Rn‖W 2
2
≤ c ‖w;Ω‖W 2

2
,

where c is independent of w. Then

‖ |∇Φ|2w;Ω‖L2 ≤ c ‖w;Ω‖W 2
2
,

which means that
|∇Φ|2 ∈M(W 2

2 (Ω)→ L2(Ω)).

Using the inclusion
g ∈M(W 2

2 (Ω)→ L2(Ω)),

by (13.3.18) we find that the function |∇2Φ| belongs to class M(W 2
2 (Ω) →

L2(Ω)). The proof is complete. ��
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Theorem 13.3.4. If ϕ ∈ MW
3/2
2 (∂Ω) and u is a solution of problem

(13.3.15) in the space W 2
2 (Ω) such that |u| ≤ Q, then u belongs to the

space MW 2
2 (Ω).

Proof. It is sufficient to assume that n ≥ 4, since otherwise MW 2
2 (Ω) =

W 2
2 (Ω). Let e be an arbitrary compact subset of Ω̄ and let σe be the C2,2-

capacitary Bessel potential of e (see Sect. 3.6.2). We show that the function v,
given by (13.3.16), belongs to the space MW 2

2 (Ω). Since σe ∈ L∞(Rn) and
W 2

2 (Ω)∩L∞(Ω) is an algebra with respect to multiplication, the product σev
is a function from W 2

2 (Ω). We have

bij
∂2(σev)
∂xi∂xj

= σe G− 2bij
∂σe

∂xi

∂v

∂xj
− v bij

∂2σe

∂xi∂xj
.

According to [Cor], the estimate

‖σev;Ω‖W 2
2
≤ c

(
‖σeG;Ω‖L2 + ‖ |∇σe| |∇v| ;Ω‖L2 + ‖v∇2σe;Ω‖L2

)

is valid. Hence we find from (13.3.17) and Lemma 13.3.1 that

‖σev;Ω‖W 2
2
≤ c
(
k ‖σe|∇v|2;Ω‖L2 + ‖ |∇σe||∇v| ;Ω‖L2

+
(
‖h;Ω‖M(W 2

2 →L2) + ‖v;Ω‖L∞

)
‖σe; Rn‖W 2

2

)
. (13.3.19)

We have
σe = (1−∆)−2µ and (1−∆)σe = (1−∆)−1µ,

where µ is a nonnegative measure. By G4 and G2 we denote the kernels of the
integral operators (1−∆)−2 and (1−∆)−1. In view of the relations given in
Subsect. 13.3.4,

|∇G4| =
{
O(|x|3−n) for |x| ≤ 1,
O(|x|(3−n)/2e−|x| for |x| > 1.

Also,

|G2(x)| ≥ c

{
|x|2−n for |x| ≤ 1,
|x|(1−n)/2e−|x| for |x| > 1

and

|G4(x)| ≥ c

⎧
⎪⎨
⎪⎩

|x|4−n for |x| ≤ 1, n > 4,
log|x|−1 for |x| < 1/2, n = 4,
|x|(3−n)/2e−|x| for |x| > 1.

Therefore,
|∇G4| = O(G1/2

4 G
1/2
2 )

and
|∇σe(x)|2 ≤ c σe(x)(1−∆)σe(x). (13.3.20)
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We use this inequality to estimate the second norm on the right-hand side of
(13.3.19):

‖ |∇σe| |∇v| ;Ω‖L2 ≤ c ‖σe|∇v|2;Ω‖1/2
L2
‖(1−∆)σe;Ω‖1/2

L2

≤ k ‖σe|∇v|2;Ω‖L2 + c k−1‖σe; Rn‖W 2
2
. (13.3.21)

Now, (13.3.21) and (13.3.19) imply that

‖ σev;Ω‖W 2
2
≤ c
(
2k‖σe|∇v|2;Ω‖L2

+ (‖h;Ω‖M(W 2
2 →L2) + ‖v;Ω‖L∞ + k−1)‖σe; Rn‖W 2

2

)
. (13.3.22)

We estimate the first norm on the right-hand side. Since v ∈ W̊ 2
2 (Ω) ∩

W 1
2 (Ω), integration by parts yields

I : =
∫

Ω

σ2
e |∇v|4dx

≤ c ‖v;Ω‖L∞

(∫

Ω

σe|∇σe| |∇v|3dx+
∫

Ω

σ2
e |∇v|2|∇2v|dx

)
,

which together with (13.3.20) gives the estimate

I ≤ c ‖v;Ω‖L∞

(∫

Ω

(
σe|∇v|2

)3/2((1−∆)σe

)1/2
dx

+ I1/2‖σe|∇2v| ;Ω‖L2

)
.

Consequently,

I ≤ c ‖v;Ω‖L∞

(
I3/4‖σe; Rn‖1/2

W 2
2

+ I1/2‖σe|∇2v| ;Ω‖L∞

)

and hence

I1/2 ≤ c ‖v;Ω‖L∞

(
I1/4‖σe; Rn‖1/2

W 2
2

+ ‖σev;Ω‖W 2
2

+‖ |∇σe| |∆v| ;Ω‖L2 + ‖v∇2σe;Ω‖L2

)
.

Applying (13.3.20), we conclude that

I1/2 ≤ c ‖v;Ω‖L∞

(
‖σev;Ω‖W 2

2
+ ‖v;Ω‖L∞‖σe; Rn‖W 2

2

+ kI1/2 + c k−1‖σe; Rn‖W 2
2

)
.

Since k ‖v; Rn‖L∞ is small, it follows that

‖σe|∇v|2;Ω‖L2 = I1/2 ≤ c ‖v;Ω‖L∞

(
‖σev; Rn‖W 2

2
+ c k−1‖σe; Rn‖W 2

2

)
.
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The required estimate is obtained for the first norm on the right-hand side of
(13.3.22). We find from (13.3.22) that

‖σev;Ω‖W 2
2
≤ c

(
‖h;Ω‖M(W 2

2 →L2) + k−1
)
‖σe; Rn‖W 2

2
.

Therefore,
∫

e

|∇2v|2dx ≤ c
(
‖h;Ω‖M(W 2

2 →L2) + k−1
)2
C2,2(e).

Using the equivalent norm for ‖v;Ω‖MW 2
2
, we complete the proof. ��

13.4 Coercive Estimates for Solutions of Elliptic
equations in Spaces of Multipliers

It is well known that solutions of elliptic boundary value problems satisfy
coercive estimates in Sobolev spaces (see [ADN2]). The purpose of this section
is to show that similar estimates are valid for norms in classes of multipliers
acting in a Sobolev space or in a pair of Sobolev spaces.

13.4.1 The Case of Operators in R
n

Theorem 13.4.1. Let P be an elliptic (in the sense of Douglis and Nirenberg)
operator (10.1.4), where M = N . Let the coefficients of P be constant. Further
let γ = {γ1, . . . , γN} be a vector-valued function in the space

∏
k

Wh+tk

p,loc

⋂∏
k

M(W r−h−tk
p → Lp)

and let
Pγ ∈

∏
j

M(W r
p →Wh−sj

p ),

where r ≥ h+ tk ≥ 0, r ≥ h− sj ≥ 0, 1 ≤ j, k ≤ N . Then

γ ∈
∏
k

M(W r
p →Wh+tk

p )

and the estimate
‖γ‖∏

k M(W r
p →W

h+tk
p )

≤ C
(
‖Pγ‖∏

jM(W r
p →W

h−sj
p )

+ ‖γ‖∏
kM(W r−h+tk→Lp)

)
(13.4.1)

holds.
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Proof. It is known that for all u ∈
∏

k W
tk+h
p

‖u‖∏
k W

tk+h
p

≤ C1

(
‖Pu‖∏

j W
h−sj
p

+ ‖u‖Lp

)
.

Consequently, for all ϕ ∈ C∞
0 ,

‖γρϕ‖∏
kW

tk+h
p

≤ C1

(
‖ϕPγρ‖∏

jW
h−sj
p

+ ‖γρϕ‖Lp
+ ‖[ϕ,P ]γρ‖∏

jW
h−sj
p

)
, (13.4.2)

where [ϕ,P ] is the commutator of P and the operator of multiplication by ϕ.
As usual, by γρ we denote a mollification of γ with radius ρ.

It is clear that

‖ϕPγρ‖∏
jW

h−sj
p

≤ ‖Pγρ‖∏
jM(W r

p →W
h−sj
p )

‖ϕ‖W r
p

(13.4.3)

and
‖γρϕ‖Lp

≤ ‖γρ‖∏
kM(W

r−h−tk
p →Lp)

‖ϕ‖
W

r−h−mink tk
p

. (13.4.4)

It remains to estimate the third term in (13.4.2). For any multi-index α,
|α| ≤ sj + tk, we have

‖[ϕ,Dα]γρ‖∏
jW

h−sj
p

≤ c
∑

0<β≤α

‖DβϕDα−βγρ‖∏
kW

h−|α|+tk
p

≤ c1
∑

0<β≤α

‖Dα−βγρ‖∏
k M(W

r−|β|
p →W

h−|α|+tk
p )

‖Dβϕ‖
W

r−|β|
p

which, together with Lemma 2.3.3, gives

‖[ϕ,Dα]γρ‖∏
jW

h−sj
p

≤ c
∑

1≤ν≤|α|
‖γρ‖∏

kM(W r−ν
p →W

h−ν+tk
p )

‖ϕ‖W r
p

≤
(
ε ‖γρ‖∏

kM(W r
p →W

h+tk
p )

+ c(ε)‖γρ‖∏
kM(W

r−h−tk
p →Lp)

‖ϕ‖W r
p

)
. (13.4.5)

Now, (13.4.5) and (13.4.2)–(13.4.4) imply that

‖γρϕ‖∏
kW

h+tk
p

≤ C2

(
‖Pγρ‖∏

jM(W r
p →W

h−sj
p )

+ε ‖γρ‖∏
kM(W r

p →W
h+tk
p )

+ c(ε)‖γρ‖∏
kM(W

r−h−tk
p →Lp)

)
‖ϕ‖W r

p
.

Consequently, γρ satisfies (13.4.1). Since Pγρ = (Pγ)ρ, the result follows by
Lemma 2.3.1. ��

Remark 13.4.1. If r − h = tk for all k = 1, . . . , N , then the additional
assumption

γ ∈
∏
k

M(W r−h−tk
p → Lp)
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is equivalent to γ ∈ L∞ and the estimate (13.4.1) takes the form

‖γ‖MW r
p
≤ C

(
‖Pγ‖∏

jM(W r
p →W

h−sj
p )

+ ‖γ‖L∞

)
.

In particular, the inequality

‖γ‖MW r
p
≤ C(‖Pγ‖M(W r

p →W r−2σ
p ) + ‖γ‖L∞) (13.4.6)

holds for a scalar elliptic operator P of order 2σ with constant coefficients.
Here we a priori assume that

γ ∈W r
p,loc ∩ L∞ and Pγ ∈M(W r

p →W r−2σ
p ), r ≥ 2σ.

Remark 13.4.2. We show that the norm ‖γ‖L∞ on the right-hand side of
(13.4.6) cannot be omitted. Let P = −∆ + 1, r = 2, 2p < n, and let
γ0(x) = η(x) log |x|, where η ∈ C∞

0 (B1) with η(0) = 1. Then

Pγ0 = O(|x|−2) and suppPγ0 ⊂ B1.

Therefore, Pγ0 ∈M(W 2
p → Lp). Suppose that

‖γ‖MW 2
p
≤ c ‖Pγ‖M(W 2

p→Lp)

for all γ ∈W 2
p,loc ∩L∞. Let us substitute a mollification (γ0)ρ of the function

γ0 into the last estimate. Then, according to Corollary 2.3.1 and Lemma 2.3.1,

‖(γ0)ρ‖L∞ ≤ C‖(Pγ0)ρ‖M(W 2
p→Lp) ≤ C‖Pγ0‖M(W 2

p→Lp) .

Passing to the limit as ρ→ 0, we obtain a contradiction.

13.4.2 Boundary Value Problem in a Half-Space

Let us consider an operator {P, trP1, . . . , trPσ} of the boundary value prob-
lem in R

n+1
+ , where P and Pj are differential operators of orders 2σ and σj ,

respectively, and tr stands for the trace at the boundary. Suppose that the
coefficients of operators P and Pj are constant and the operators {P ; trPj}
form an elliptic boundary value problem in R

n+1
+ (see, for instance, [H1], Sect.

10.1).
We need the following two auxiliary assertions.

Lemma 13.4.1. Let [γ]ρ be a mollification of γ in R
n+1
+ with respect to vari-

ables x ∈ R
n with nonnegative kernel and radius ρ. Then

‖[γ]ρ; Rn+1
+ ‖M(W m

p →W l
p) ≤ ‖γ; Rn+1

+ ‖M(W m
p →W l

p)

≤ lim inf
ρ→0

‖[γ]ρ; Rn+1
+ ‖M(W m

p →W l
p) (13.4.7)

and
‖[γ]ρ; Rn‖

M(W
m−1/p
p →W

l−1/p
p )

≤ ‖γ; Rn‖
M(W

m−1/p
p →W

l−1/p
p )

≤ lim inf
ρ→0

‖[γ]ρ; Rn‖
M(W

m−1/p
p →W

l−1/p
p )

. (13.4.8)
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The proof of (13.4.7) is analogous to that of Lemma 2.3.1, and (13.4.8)
was proved in Lemma 4.3.3.

Lemma 13.4.2. If γ ∈W l
p,unif(R

n+1
+ ) and [γ]ρ is a mollification of γ in R

n+1

with respect to variables x ∈ R
n, then [γ]ρ ∈MW l

p(R
n+1
+ ).

Proof. Obviously all derivatives with respect to x of the function ψ = [γ]ρ
belong to W l

p,unif(R
n+1
+ ). Therefore all derivatives of ψ up to order l, except

for ∂lψ/∂yl, are bounded. What is more, for all y ∈ R
1
+,

sup
x

∫ y+1

y

|∂lψ(x, t)/∂tl|p dt <∞ .

Using these properties and the estimate

|u(x, y)|p ≤ c

l∑
j=0

∫ y+1

y

|∂ju(x, t)/∂tj |p dt ,

we arrive at ‖ψu‖W l
p
≤ C‖u‖W l

p
. ��

Theorem 13.4.2. Let

γ ∈Wh
p,loc(R

n+1
+ ) ∩M(W r−h

p (Rn+1
+ )→ Lp(Rn+1

+ )),

where r and h are integers, r ≥ h− σj > 0, and r ≥ h− 2σ. Further, let

Pγ ∈M(W r
p (Rn+1

+ )→Wh−2σ
p (Rn+1

+ ))

and
trPjγ ∈M(W r−1/p

p (Rn)→Wh−σj−1/p
p (Rn)).

Then
γ ∈M(W r

p (Rn+1
+ )→Wh

p (Rn+1
+ ))

and

‖γ; Rn+1
+ ‖M(W r

p →W h
p ) ≤ C

(
‖Pγ; Rn+1

+ ‖M(W r
p →W h−2σ

p )

+
σ∑

j=1

‖trPjγ; Rn‖
M(W

r−1/p
p →W

h−σj−1/p
p )

+‖γ; Rn+1
+ ‖M(W r−h

p →Lp)

)
. (13.4.9)

Proof. It is known (see, for instance, [Tr3], Sect. 5.3.3) that, for all u ∈
Wh

p (Rn+1
+ ),

‖u; Rn+1
+ ‖W h

p
≤ C1

(
‖Pu; Rn+1

+ ‖W h−2σ
p

+
σ∑

j=1

‖trPju; Rn‖
W

h−σj−1/p
p

+ ‖u; Rn+1
+ ‖Lp

)
. (13.4.10)
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First we assume that γ belongs to M(W r
p (Rn+1

+ )→Wh
p (Rn+1

+ )). By virtue of

(13.4.10), for all ϕ ∈ C∞
0 (Rn+1

+ ),

‖γϕ; Rn+1
+ ‖W h

p
≤ C

(
‖ϕPγ; Rn+1

+ ‖W h−2σ
p

+
σ∑

j=1

‖tr(ϕPjγ); Rn‖
W

h−σj−1/p
p

+‖ϕγ; Rn+1
+ ‖Lp

+ ‖[ϕ,P ]γ; Rn+1
+ ‖W h−2σ

p

+
σ∑

j=1

‖tr([ϕ,Pj ]γ); Rn‖
W

h−σj−1/p
p

)
, (13.4.11)

where [ϕ,P ], [ϕ,Pj ] are commutators of P , Pj and the operator of multipli-
cation by ϕ. It is clear that

‖ϕPγ; Rn+1
+ ‖W h−2σ

p
≤ ‖Pγ; Rn+1

+ ‖M(W r
p →W h−2σ

p )‖ϕ; Rn+1
+ ‖W r

p
,

‖ϕγ; Rn+1
+ ‖Lp

≤ ‖γ; Rn+1
+ ‖M(W r−h

p →Lp)‖ϕ; Rn+1
+ ‖W r−h

p
, (13.4.12)

‖tr(ϕPjγ); Rn‖
W

h−σj−1/p
p

≤‖trPjγ; Rn‖
M(W

r−1/p
p →W

h−σj−1/p
p )

‖trϕ; Rn‖
W

r−1/p
p

.

Let us estimate the norm ‖[ϕ,P ]γ; Rn+1
+ ‖W h−2σ

p
. For any multi-index α with

|α| ≤ 2σ we have

‖[ϕ,Dα]γ; Rn+1
+ ‖W h−2σ

p
≤ c

∑
0<β≤α

‖DβϕDα−βγ; Rn+1
+ ‖

W
h−|α|
p

≤ c1
∑

0<β≤α

‖Dα−βγ; Rn+1
+ ‖

M(W
r−|β|
p →W

h−|α|
p )

‖Dβϕ; Rn+1
+ ‖

W
r−|β|
p

.

This and Corollary 2.4.1 yield

‖[ϕ,Dα]γ; Rn+1
+ ‖W h−2σ

p
≤ c

∑
0<β≤α

‖γ; Rn+1
+ ‖

M(W
r−|β|
p →W

h−|β|
p )

‖ϕ; Rn+1
+ ‖W r

p
.

By (2.3.13) the expression on the right-hand side does not exceed

c
∑

0<β≤α

‖γ; Rn+1
+ ‖1−|β|/h

M(W r
p →W h

p )
‖γ; Rn+1

+ ‖|β|/h

M(W r−h
p →Lp)

‖ϕ; Rn+1
+ ‖W r

p
.

Thus for any ε > 0,

‖[ϕ,P ]γ; Rn+1
+ ‖W h−2σ

p
≤
(
ε ‖γ; Rn+1

+ ‖M(W r
p →W h

p )

+c(ε) ‖γ; Rn+1
+ ‖M(W r−h

p →Lp)

)
‖ϕ; Rn+1

+ ‖W r
p
. (13.4.13)

We estimate the norm

‖tr([ϕ,Pj ]γ); Rn‖
W

h−σj−1/p
p

.
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For any multi-index α, |α| ≤ σj , we have

‖tr([ϕ,Dα]γ); Rn‖
W

h−σj−1/p
p

≤ c
∑

0<β≤α

‖tr(DβϕDα−βγ); Rn‖
W

h−|α|−1/p
p

≤ c
∑

0<β≤α

‖trDα−βγ; Rn‖
M(W

r−|β|−1/p
p →W

h−|α|−1/p
p )

‖trDβϕ; Rn‖
W

r−|β|−1/p
p

.

It is clear that

‖trDα−βγ; Rn‖
M(W

r−|β|−1/p
p →W

h−|α|−1/p
p )

≤c‖Dα−βγ; Rn+1
+ ‖

M(W
r−|β|
p →W

h−|α|
p )

.

This inequality and Corollary 2.4.1 imply that

‖tr([ϕ,Dα]γ); Rn‖
W

h−σj−1/p
p

≤c
∑

0<β≤α

‖γ; Rn+1
+ ‖

M(W
r−|β|
p →W

h−|β|
p )

‖ϕ; Rn+1
+ ‖W r

p
.

The right-hand side of this inequality was estimated earlier. Therefore for any
ε > 0 the norm ‖tr([ϕ,Pj ]γ); Rn‖

W
h−σj−1/p
p

is majorized by the right-hand

side of (13.4.13). Therefore, using (13.4.11)–(13.4.13), we arrive at

‖γϕ; Rn+1
+ ‖W h

p
≤ C1

(
‖Pγ; Rn+1

+ ‖M(W r
p →W h−2σ

p )

+
σ∑

j=1

‖trPjγ; Rn‖
M(W

r−1/p
p →W

h−σj−1/p
p )

+ ε ‖γ; Rn+1
+ ‖M(W r

p →W h
p )

+ c(ε) ‖γ; Rn+1
+ ‖M(W r−h

p →Lp)

)
‖ϕ; Rn+1

+ ‖W r
p
.

Consequently (13.4.9) holds.
Now we get rid of the assumption

γ ∈M(W r
p (Rn+1

+ )→Wh
p (Rn+1

+ )).

Let ηy be a function in C∞
0 (Rn+1) defined by ηy(z) = η(z − y), y ∈ R

n+1.
Since

‖Γηy; Rn+1
+ ‖W l

p
≤ ‖Γ ; Rn+1

+ ‖M(W m
p →W l

p)‖ηy; Rn+1
+ ‖W m

p

≤ c ‖Γ ; Rn+1
+ ‖M(W m

p →W l
p)

for all y ∈ R
n+1
+ , it follows that

M(Wm
p (Rn+1

+ )→W l
p(R

n+1
+ )) ⊂W l

p,unif(R
n+1
+ ) .

The inclusion

M(Wm−1/p
p (Rn)→W l−1/p

p (Rn)) ⊂W
l−1/p
p,unif (Rn)



13.4 Coercive Estimates for Solutions of Elliptic Equations 473

can be derived in a similar way. This inclusion and the conditions of Theorem
imply that

Pγ ∈Wh−2σ
p,unif (R

n+1
+ ) and trPjγ ∈Wh−σj−1/p

p,unif (Rn).

The last fact, together with a local coercive estimate (see [ADN1], Ch. 15),
leads to γ ∈ Wh

p,unif(R
n+1
+ )). It remains to substitute the mollification of γ

with respect to the variables x ∈ R
n into (13.4.9) and to use Lemmas 13.4.1

and 13.4.2. ��

Remark 13.4.3. In the same way one can prove a generalization of Theorem
13.4.2 to elliptic boundary value problems for a system, elliptic in the sense
of Douglis-Nirenberg (cf. Theorem 13.4.1).

Remark 13.4.4. If r = h, then (13.4.9) takes the form

‖γ; Rn+1
+ ‖MW r

p
≤ C

(
‖Pγ; Rn+1

+ ‖M(W r
p →W r−2σ

p )

+
σ∑

j=1

‖trPjγ; Rn‖
M(W

r−1/p
p →W

r−σj−1/p
p )

+ ‖γ; Rn+1
+ ‖L∞

)
. (13.4.14)

Here we a priori assume that

γ ∈W r
p,loc(R

n+1
+ ) ∩ L∞(Rn+1

+ )

and
Pγ ∈M(W r

p (Rn+1
+ )→W r−2σ

p (Rn+1
+ )), r ≥ 2σ.

13.4.3 On the L∞-Norm in the Coercive Estimate

We show by an example that the norm ‖γ; Rn+1
+ ‖L∞ on the right-hand side

of (13.4.14) cannot be omitted even if the operator {P,P1, . . . , Pσ} satisfies
(13.4.10) without the norm ‖u; Rn+1

+ ‖Lp
(cf. Remark 13.4.2).

Let
P = −∆+ 1, trP1 = ∂/∂xn+1|Rn , r = 2, 2p < n.

By η we denote a function in C∞
0 (Rn+1) with support in the unit ball centered

at the origin. Let

η(0) = 1 and ∂η/∂xn+1 = 0 for xn+1 = 0.

We put
Γ (z) = η(z) log |z|.

It is clear that

Γ ∈W 2
p (Rn+1

+ ), PΓ = O(|z|−2) for |z| < 1, PΓ = 0 for |z| > 1.
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Therefore,
PΓ ∈M(W 2

p (Rn+1
+ )→ Lp(Rn+1

+ )).

Further we notice that trP1Γ = 0. We suppose that

‖γ; Rn+1
+ ‖MW 2

p
≤ C

(
‖Pγ; Rn+1

+ ‖M(W 2
p→Lp) + ‖trP1γ; Rn‖

M(W
2−1/p
p →W

1−1/p
p )

)

for all γ ∈W 2
p (Rn+1

+ )∩L∞(Rn+1
+ ), and we substitute a mollification [Γ ]ρ of Γ

with respect to variables x ∈ R
n into the last inequality. Since MW r

p (Rn+1
+ ) ⊂

L∞(Rn+1
+ ) and P [Γ ]ρ ∈M(W 2

p → Lp) by Lemma 13.4.1, it follows that

‖[Γ ]ρ; Rn+1
+ ‖L∞ ≤ C ‖P [Γ ]ρ; Rn+1

+ ‖M(W 2
p→Lp) .

The right-hand side of this inequality is uniformly bounded with respect to ρ
by Lemma 13.4.1, although the left-hand side tends to infinity as ρ→ 0, and
we have the required contradiction.

13.5 Smoothness of Solutions to Higher Order Elliptic
Semilinear Systems

13.5.1 Composition Operator in Classes of Multipliers

Here we study a composition operator in the space M(Wm
p (Ω) → W l

p(Ω))
with integer m and l, m ≥ l ≥ 0 and p ∈ (1,∞). One can consult general
properties of such operators in the book [KZPS].

Let a function (x, ξ) → f be defined on Ω × BR, where BR = {ξ ∈ R
s :

|ξ| < R} and Ω is a domain in R
n with compact closure and the boundary

∂Ω of the class C0,1. We assume that, for almost all x ∈ Ω and all ξ ∈ BR,
there exist partial derivatives of f up to order l independent of the order of
differentiation and satisfying the Carathéodory conditions, that is, they are
measurable in x for all ξ ∈ BR and continuous in ξ for almost all x ∈ Ω.

Consider the non-linear mapping γ → F (γ) defined by

F (γ)(x) = f(x, γ(x)), x ∈ Ω,

where γ(x) = (γ1(x), . . . , γs(x)) is the mapping Ω → BR. We additionally
assume that f and all its partial derivatives up to order l− 1 obey the rule of
differentiation of a composition function (see [MaMi]) if γ ∈ C∞(Ω̄).

The next assertion contains the main result concerning the operator F (γ).

Theorem 13.5.1. Let γ ∈ MWm
p (Ω), m ≥ l, and let |γ(x)| ≤ R for almost

all x ∈ Ω. Further, let

|Dβ
ξ D

α
x f(x, ξ)| ≤ G|β|(x), |β|+ |α| ≤ l, (13.5.1)
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where
G|β| ∈M(Wm−|β|

p (Ω)→ Lp(Ω)).

Then
F (γ) ∈M(Wm

p (Ω)→W l
p(Ω)). (13.5.2)

Proof. Let K(h)γ stand for the mollification of γ ∈ MWm
p (Ω) defined with

the help of a partition of unity on Ω used in Sect. 9.1.2. For brevity we put
γh = K(h)γ. The mollification has the following properties: γh ∈ C∞(Ω̄),
|γh(x)| ≤ R, if |γ(x)| ≤ R, and γh ∈MWm

p (Ω) (see Sects. 9.1.2, 9.1.3).
Suppose that the theorem is proved for the pairs (l−1,m) and (l−1,m−1)

and that

‖uF (γh);Ω‖MW l−1
p
≤ C ‖u;Ω‖W r

p
, r = m− 1,m,

with a constant independent of h. We have

∂

∂xj

[
F (γh(x))

]
=

∂f

∂xj

(
x, γh(x)

)
+

s∑
i=1

∂f

∂ξj

(
x, γh(x)

)∂(γh)i(x)
∂xj

. (13.5.3)

By (13.5.1), ∣∣∣Dβ
ξD

α
x

∂f

∂ξi

∣∣∣ ≤ G|β|+1, |β|+ |α| ≤ l − 1,

where
G|β|+1 ∈M(Wm−1−|β|

p (Ω)→ Lp(Ω)).

Hence, by the induction hypothesis for the pair (l − 1,m − 1) it follows that
the functions ∂f(·, γh(·))/∂ξi belong to M(Wm−1

p (Ω)→W l−1
p (Ω)). Also, the

inequality ∥∥∥u ∂f
∂ξi

(·, γh(·));Ω
∥∥∥

W l−1
p

≤ C ‖u;Ω‖W m−1
p

(13.5.4)

holds with a constant C independent of h. Since
∥∥∥u∂(γi)h

∂xj
;Ω
∥∥∥

W m−1
p

≤
∥∥∥∂(γi)h

∂xj
;Ω
∥∥∥

M(W m
p →W m−1

p )
‖u;Ω‖W m

p

≤
∥∥∥ ∂γi

∂xj
;Ω
∥∥∥

M(W m
p →W m−1

p )
‖u;Ω‖W m

p
(13.5.5)

(see Lemma 9.3.2), it follows that the sum over i in (13.5.3) belongs to the
space M(Wm

p (Ω)→W l−1
p (Ω)).

Similarly, by (13.5.1)
∣∣∣Dβ

ξD
α
x

∂f

∂xj

∣∣∣ ≤ G|β|(x), |β|+ |α| ≤ l − 1,

where
G|β| ∈M(Wm−|β|

p (Ω)→ Lp(Ω)).
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Therefore, by the induction hypothesis for the pair (l − 1,m) it follows that
the derivatives ∂f(·, γh(·))/∂xj belong to M(Wm

p (Ω)→W l−1
p (Ω)) and that

∥∥∥u ∂f
∂xj

(·, γh(·));Ω
∥∥∥

W l−1
p

≤ C ‖u;Ω‖W m
p

(13.5.6)

with a constant C independent of h. Thus,

∇xF (γh) ∈M(Wm
p (Ω)→W l−1

p (Ω)).

Now, (13.5.4)–(13.5.6) imply that

‖u∇xF (γh);Ω‖W l−1
p
≤ C ‖u;Ω‖W m

p
(13.5.7)

with a constant C independent of h.
Using (13.5.1) with |β| = |α| = 0, we find that the norms of the functions

F (γh) are uniformly bounded in Lp(Ω). Moreover, (13.5.1) with m = l implies
that the derivatives

Dβ
xf(x, γh(x)), |β| = m,

are bounded on Ω×BR uniformly with respect to h. Hence F (γh) is uniformly
bounded on Ω × BR. This fact and Theorem 9.1.1 imply the inequality

‖uF (γh);Ω‖W l
p
≤ C ‖u;Ω‖W m

p
(13.5.8)

with a constant C independent of h.
The induction basis, that is (13.5.8) with l = 0 follows directly from the

inequality |f(x, ξ)| ≤ G0(x), where

G0 ∈M(Wm
p (Ω)→ Lp(Ω)).

To complete the proof, it remains to show that Dα[uF (γh)] with u ∈
C∞(Ω̄) tends to Dα[uF (γ)], |α| = l, for almost all x ∈ Ω, and then to use
estimate (13.5.8). The result will follow by passage to the limit in (13.5.8) and
the Fatou theorem.

Since f(x, ξ) and all its partial derivatives up to order l are continuous in
ξ for almost all x ∈ Ω, and

lim
h→0

Dαγh = lim
h→0

(Dαγ)h = Dαγ

for almost all x ∈ Ω, it follows that for such x the limit

lim
h→0

Dα[uF (γh)] = g(x)

exists. Let us show that g coincides with Dα[uF (γ)]. Let η be an arbitrary
function in C∞

0 (Ω) and let ( , ) stand for the scalar product in L2(Ω). We
have

(Dα[uF (γh)], η) = (−1)|α|(uF (γh),Dαη). (13.5.9)
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Since F (γh) tends to F (γ) for almost all x ∈ Ω and |F (γh)(x)| ≤ G0(x), it
follows by Lebesgue’s theorem that the right-hand side of (13.5.9) has the
limit

(−1)|α|(uF (γ),Dαη) = (Dα[uF (γ)], η).

Hence
lim
h→0

(Dα[uF (γh)], η) = (g, η) = (Dα[uF (γ)], η)

and g = Dα[uF (γ)]. Thus, Dα[uF (γh)] tends to Dα[uF (γ)] almost every-
where in Ω. The proof is complete. ��

Remark 13.5.1. When proving the equality

lim
h→0

(Dα[uF (γh)], η) = (Dα[uF (γ)], η) for a.e. x ∈ Ω,

we showed in passing that the chain rule of differentiation of f(x, γ(x)) holds
for all its partial derivatives of order l−1, provided that all partial derivatives
of f up to order l satisfy the Carathéodory conditions and γ ∈MW l

p(Ω).

Remark 13.5.2. According to Theorem 9.1.1, the condition

Gk ∈M(Wm−k
p (Ω)→ Lp(Ω)), p ∈ (1,∞),

is equivalent to

sup
e

∫

e

|Gk(x)|pdx

Cp,m−k(e)
<∞, (13.5.10)

where e is an arbitrary compact subset of Ω̄. In the case m = k, (13.5.10)
should be replaced by the inclusion Gk ∈ L∞(Ω). For p = 1 the role of the
condition (13.5.10) is played by

sup
x∈Ω̄,0<r<1

rm−k−n

∫

Br(x)∩Ω̄

|Gk(y)|dy <∞.

13.5.2 Improvement of Smoothness of Solutions to Elliptic
Semilinear Systems

Let Ω be a bounded domain with smooth boundary and let P (x,Dx) be a
(s× s)-matrix-valued elliptic operator of order 2k. Further, let

P1(x,Dx), . . . , Pk(x,Dx)

be differential operators of orders m1, . . . ,mk ≤ 2k − 1. We assume that the
coefficients of P and Pj are smooth and that the system of boundary operators
{P1, · · · , Pk} is normal (see [LiM2], vol. 1, Sect. 1.4).

The next auxiliary assertion follows directly from Remark 13.4.4 by a
standard localization argument.
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Lemma 13.5.1. If
γ ∈W 2k

p,loc(Ω) ∩ L∞(Ω)
and

Pγ ∈M(W s
p (Ω)→W s−2k

p (Ω)), s > 2k, trPjγ = 0 on ∂Ω,

then γ ∈MW s
p (Ω).

Consider the boundary value problem{
P (x,Dx)γ(x) = f(x, γ(x)) in Ω,

trPj(x,Dx)γ = 0 on ∂Ω, j = 1, . . . , k,

where γ ∈W 2k
p,loc(Ω)∩L∞(Ω) and f(x, γ(x)) satisfies the conditions immedi-

ately preceding Theorem 13.5.1 with l replaced by m− 2k, m ≥ 2k + 1.

Theorem 13.5.2. Let |γ(x)| ≤ R for almost all x ∈ Ω. Assume that (13.5.2)
holds with l = m− 2k for almost all x ∈ Ω and for all ξ ∈ BR, and that

G|β| ∈M(Wm−1−|β|
p (Ω)→ Lp(Ω)).

Then γ ∈MWm
p (Ω).

Proof. Since

G0 ∈M(Wm−1
p (Ω)→ Lp(Ω)) ⊂M(W 2k

p (Ω)→ Lp(Ω)),

it follows by Lemma 13.5.1 that γ ∈MW 2k
p (Ω). For all multi-indices α and β

such that |α|+ |β| ≤ m− 2k, we have

|Dβ
ξD

α
xf | ≤ G|β|(x), where G|β| ∈M(Wm−1−|β|

p (Ω)→ Lp(Ω)).

Therefore, by Theorem 13.5.1,

f(·, γ(·)) ∈M(Wm−1
p (Ω)→Wm−2k

p (Ω)).

Hence
f(·, γ(·)) ∈M(Wm

p (Ω)→Wm−2k
p (Ω)).

This inclusion and Lemma 13.5.1 imply that γ ∈ MWm
p (Ω). The result

follows. ��

Remark 13.5.3. For pl > n, when the space M(Wm
p (Ω) → W l

p(Ω)) coincides
with W l

p(Ω) (see Theorem 9.3.3), Theorem 13.5.2 contains the same result as
Theorem 1 in [Poh2].

Remark 13.5.4. We finish this chapter by noting that during recent years mul-
tipliers in spaces of differentiable functions turned out to be useful in the study
of nonlinear evolution equations. The first application of such a kind seems
to be made by Lasiecka who proved the existence of compact local attractors
for a von Karman dissipative system with nonlinear dissipation [Las].

Lemarié-Rieusset applied the spaceM(hm
p → hl

p) to the problem of unique-
ness for the Navier-Stokes system [LR] (see also [Ger], [MaPa], and [LRM]).
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Regularity of the Boundary in Lp-Theory
of Elliptic Boundary Value Problems

14.1 Description of Results

The purpose of this chapter is to give applications of the theory of multipliers,
developed earlier, to elliptic boundary value problems in domains with ‘non-
regular’ boundaries.

We consider an operator {P, tr P1, . . . , tr Ph} of the general elliptic bound-
ary value problem with smooth coefficients in a bounded domain Ω ⊂ R

n. We
assume that ord P = 2h ≤ l and ord Pj = kj < l, where l is an an integer.
The trace operator on the boundary ∂Ω is denoted by tr.

It is well known that the mapping

{P ; trPj} : W l
p(Ω)→W l−2h

p (Ω)×
h∏

j=1

W l−kj−1/p
p (∂Ω), (14.1.1)

where 1 < p < ∞, is Fredholm, i.e., it has a finite index and a closed range,
provided that the boundary is sufficiently smooth. In particular, for all u ∈W l

p

the a priori estimate

‖u;Ω‖W l
p
≤ c
(
‖Pu;Ω‖W l−2h

p
+

h∑
j=1

‖trPju; ∂Ω‖
W

l−kj−1/p
p

+‖u;Ω‖L1

)
(14.1.2)

holds; the last norm on the right-hand side can be omitted in the case of a
unique solution (see [ADN1], [H1] et al.).

The analytic background to these fundamental assertions of elliptic Lp-
theory is the study of the boundary value problem with constant coefficients
in R

n
+ and subsequent localization of the original problem, with the help of a

partition of unity together with a local mapping of the domain onto a half-
space. The smoothness of the coefficients, and hence that of the solution of
the obtained boundary value problem in R

n
+, depends on the smoothness of

the surface ∂Ω. It is well known that the above mentioned properties of the
operator (14.1.1) fail where the boundary has singularities.

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 479
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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In this chapter ∂Ω is characterized either in terms of spaces of multipliers
for p(l−1) ≤ n or in terms of fractional Sobolev spaces for p(l−1) > n. We use
the usual procedure of localization of the boundary value problem. The novel
aspect is the application of properties of multipliers and, in particular, theo-
rems on their traces on the boundary. This makes less stringent the conditions
on the domain Ω which ensure the main results of elliptic Lp-theory.

Sections 14.2 and 14.4 contain auxiliary results. In 14.3 we show that the
mapping (14.1.1) is Fredholm in the case p(l − 1) ≤ n provided that the
boundary ∂Ω belongs to the class M l−1/p

p (δ). This means that for each point
of the boundary there exists a neighborhood U and a Lipschitz function ϕ
such that

U ∩Ω = {(x, y) ∈ U : x ∈ R
n−1, y > ϕ(x)} (14.1.3)

and
‖∇ϕ; Rn−1‖

MW
l−1−1/p
p

≤ δ .

Here δ is a small constant and MW s
p is the space of multipliers in W s

p for
s > 0 and the space L∞ for s ≤ 0.

For p(l − 1) > n the mapping {P ; tr Pj} is Fredholm provided that ∂Ω
belongs to the class W l−1/p

p .
In Sect. 14.5 we consider specifically the first boundary value problem for

a strongly elliptic operator P in divergence form. We study two variants of
this problem which differ in the description of the boundary data. In the
first formulation, called generalized, we look for a solution u ∈ W l

p(Ω) of the
equation

Pu = f ∈W l−2h
p (Ω), l ≥ h,

satisfying the condition

u− g ∈W l
p(Ω) ∩ W̊h

p (Ω),

where g is a given function in W l
p(Ω). It is shown that this problem has a

unique solution if ∂Ω is in the class M l+1−h−1/p
p (δ) for p(l − h) ≤ n and ∂Ω

belongs to the class W l+1−h−1/p
p for p(l − h) > n. In the second, stronger,

formulation, the boundary data are prescribed by means of some differential
operators Pj , 1 ≤ j ≤ h. We prove that such a problem is solvable for h > 1 if
∂Ω belongs to the class M l−1/p

p defined by the condition ∇ϕ ∈ MW
l−1−1/p
p ,

where ϕ is the same as in (14.1.3), and if the Lipschitz constant of ϕ is small.
In the case p(l − 1) > n, this condition is equivalent to ∂Ω ∈W l−1/p

p .
The inclusion ∂Ω ∈W l−1/p

p for p(l− 1) > n is not only sufficient but also
necessary for solvability of the Dirichlet problem in the second formulation
(see Sect. 14.6).

In Sect. 14.6.3 we give an analytic description of the class M l−1/p
p (δ) in-

volving a capacity and obtain some simpler conditions for the inclusion of
∂Ω into M

l−1/p
p (δ). For instance, if the norm ‖∇ϕ; Rn−1‖L∞ is small and ϕ
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belongs to the Besov space Bl−1/p
q,p (Rn−1) with q ∈ [p(n−1)/(p(l−1)−1),∞]

for p(l−1) < n and q ∈ (p,∞] for p(l−1) = n, then ∂Ω belongs to M l−1/p
p (δ).

Putting q = ∞ we obtain that this inclusion follows from the convergence of
the integral ∫

0

[ωl−1(t)/t]p dt,

where ωl−1 is the modulus of continuity of the vector-function ∇l−1ϕ.
In view of the imbedding B

l−1/p
∞,p ⊂ W

l−1/p
p , the last condition is also

sufficient for ∂Ω ∈ W
l−1/p
p . Using this fact, one can immediately derive the

following assertions from our theorems.
The inclusion ωl−1(t)/t ∈ Lp(0, 1) provides the Fredholm property of the

operator {P ; trPj} as well as the unique solvability of the Dirichlet problem
in the second formulation. Moreover, the unique solvability in W l

p(Ω) of the
Dirichlet problem in the first (generalized) formulation is obtained under the
assumption

ωl−h(t)/t ∈ Lp(0, 1).

In Sect. 14.6.3 we note that even these, the roughest of our sufficient con-
ditions, are precise in a sense.

The proof of a theorem in 14.6.3, which contains a local characterization
of the class M l−1/p

p (δ), is given in 14.7.

14.2 Change of Variables in Differential Operators

Consider the domain

G = {z = (x, y) ∈ R
n : x ∈ R

n−1, y > ϕ(x)},

where ϕ is a function satisfying the Lipschitz condition

|ϕ(x1)− ϕ(x2)| ≤ L |x1 − x2|.

The following assertion characterizes coefficients of a differential operator un-
der a change of variables.

Proposition 14.2.1. Let G be a special Lipschitz domain and let λ be an
arbitrary (p, l)-diffeomorphism R

n
+ → G, κ = λ−1. Further, let

R(z,Dz) =
∑

0≤|α|≤h

aα(z)Dα
z , z ∈ G ,

and
S(ζ,Dζ) =

∑
0≤|β|≤h

bβ(ζ)Dβ
ζ , ζ ∈ R

n
+ ,
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be differential operators in G and R
n
+ such that

Sv = [R(v ◦ κ)] ◦ λ . (14.2.1)

If
aα ∈M(W l−|α|

p (G)→W l−h
p (G))

for all multi-indices α, then

bβ ∈M(W l−|β|
p (Rn

+)→W l−h
p (Rn

+))

and

‖bβ ; Rn
+‖M(W

l−|β|
p →W l−h

p )
≤ c

∑
|β|≤|α|≤h

‖aα;G‖
M(W

l−|α|
p →W l−h

p )
. (14.2.2)

The proof follows the same lines as that of Lemma 10.1.3.
We note that according to (10.1.20) the equality

bβ =
∑

|β|≤|α|≤h

(aα ◦ λ)
∑

cs
∏
i,j

(Dsij
z κi) ◦ λ (14.2.3)

holds.

Lemma 14.2.1. Let G denote a special Lipschitz domain and let λ be an
arbitrary (p, l)-diffeomorphism: R

n
+ → G. Further, let R be a homogeneous

differential operator of order h with constant coefficients and let S be an op-
erator defined by (14.2.1). Then

‖S −R; Rn
+‖M(W l

p→W l−h
p ) ≤ c ‖I − ∂λ; Rn

+‖MW l−1
p

, (14.2.4)

where c is a continuous function of the norm of ∂λ in MW l−1
p (Rn

+). (Here
and henceforth by the norm of a matrix we mean the sum of the norms of its
elements.)

Proof. We put κ = λ−1 and

a = ‖I − ∂λ; Rn
+‖MW l−1

p
.

Let S1(ζ,Dζ) denote the principal homogeneous part of the operator S. Since

S1(ζ, ρ) = S((∂κ)∗ρ) ◦ λ

for any vector ρ ∈ R
n, it follows that every coefficient of S1 differs from the

corresponding coefficient of R by O(a) in the norm of MW l−h
p (Rn

+). Hence,

‖S1 −R; Rn
+‖M(W l

p→W l−h
p ) ≤ c a.

Consider the coefficients of S which multiply the derivatives of order |β| <
h. Let formula (14.2.3) relate the coefficients aα and bβ of the operators R
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and S. Since R is homogeneous, we have |α| = h in (14.2.3). Hence by (14.2.2)
every term in (14.2.3) with |β| < h contains at least one factor Dsij κi(z) for
which |sij | > 1. Noting that such a factor is equal to Dsij [κi(z) − zi], we
obtain

‖bβ ; Rn
+‖M(W

l−|β|
p →W l−h

p )
≤ c ‖I − ∂κ;G‖MW l−1

p
≤ c a

(see the proof of Lemma 10.1.3). Therefore,

‖S − S1; Rn
+‖M(W l

p→W l−h
p ) ≤ c a.

��

Duplicating the proof of Lemma 14.2.1 with obvious changes and using the
properties of (p, l)-diffeomorphisms given in Sect. 9.4.1, we obtain the following
local variant of Lemma 14.2.1.

Lemma 14.2.2. Let all conditions of Proposition 14.2.1 be satisfied. Then for
each v ∈W l

p(R
n
+) with support in Br ∩ R

n
+,

‖(S −R)v; Rn
+‖W l−h

p
≤ c |||I − ∂λ;Br ∩ R

n
+|||MW l−1

p
‖v; Rn

+‖W l
p
, (14.2.5)

where c is a constant independent of r ∈ (0, 1).

For p(l − 1) > n it follows from (9.6.4) that (14.2.5) is equivalent to

‖(S−R)v; Rn
+‖W l−h

p
≤ c rl−1−n/p|||I−∂λ;Br ∩R

n
+|||W l−1

p
‖v; Rn

+‖W l
p
. (14.2.6)

14.3 Fredholm Property of the Elliptic Boundary Value
Problem

14.3.1 Boundaries in the Classes M l−1/p
p , W l−1/p

p , and M l−1/p
p (δ)

Let Ω be a bounded domain with ∂Ω ∈ C0,1. We introduce the class M l−1/p
p

(l = 2, 3, . . . ) of boundaries ∂Ω, satisfying the following condition. For every
point of ∂Ω there exists an n-dimensional neighborhood in which ∂Ω is spec-
ified (in a certain Cartesian coordinate system) by a function ϕ such that

∇ϕ ∈MW l−1−1/p
p (Rn−1).

Furthermore, by definition, M1−1/p
p = C0,1.

We say that ∂Ω belongs to the class W l−1/p
p if ∂Ω can be locally specified

by a function ϕ ∈W l−1/p
p (Rn−1). Since

MW l−1−1/p
p (Rn−1) ⊂W

l−1−1/p
p,loc (Rn−1), l ≥ 2,
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and C0,1(Rn−1) ⊂W
l−1/p
p,loc (Rn−1), it follows that any bounded domain Ω with

∂Ω ∈M l−1/p
p satisfies ∂Ω ∈W l−1/p

p .
According to Corollary 4.3.8, for p(l − 1) > n we have

‖∇ϕ; Rn−1‖
MW

l−1−1/p
p

∼ sup
x∈Rn−1

‖∇ϕ;B1(x)‖
W

l−1−1/p
p

.

Therefore, the classes M l−1/p
p and W

l−1/p
p coincide for p(l − 1) > n.

For a bounded domain Ω with ∂Ω ∈ C0,1, by W
l−l/p
p (∂Ω) we denote the

space of traces on ∂Ω of functions in W l
p(Ω). Taking into account the anal-

ogous fact for special Lipschitz domains of the class M l−1/p
p (see Sect. 9.4.3),

we obtain that MW
l−1/p
p (∂Ω) is the space of traces of functions in MW l

p(Ω).
Let P,P1, . . . , Pk be differential operators in Ω̄ of orders 2h, k1, . . . , kh,

respectively, where 2h ≤ l and kj < l. Suppose that the coefficients of P and
Pj belong to Cl−2h(Ω̄) and Cl−kj (Ω̄), respectively. (This restriction can be
removed by the use of spaces of multipliers, but we do not want to complicate
the formulations.) We assume that the operators P , tr P1, . . . , tr Pn form an
elliptic boundary value problem at every point O ∈ ∂Ω with respect to the
hyperplane y = 0 and that P is an elliptic operator in Ω.

In our subsequent exposition the following additional condition on Ω will
play an important role.

The class M
l−1/p
p (δ). We say that ∂Ω belongs to the class M l−1/p

p (δ) if
for each point O ∈ ∂Ω there exists a neighborhood U and a special Lipschitz
domain G = {z = (x, y) : x ∈ R

n−1, y > ϕ(x)} such that U ∩Ω = U ∩G and

‖∇ϕ; Rn−1‖
MW

l−1−1/p
p

≤ δ .

Here p(l− 1) ≤ n and δ is a constant which depends on the coefficients of the
principal homogeneous parts of P , P1, . . . , Ph calculated at the point O in the
coordinate system (x, y). For l = 1 the role of the last inequality is played by

‖∇ϕ; Rn−1‖L∞ ≤ δ.

Obviously, the boundaries in M
l−1/p
p (δ) belong to the class M l−1/p

p and,
therefore, to the class W l−1/p

p . In 14.6.3 we give an equivalent description of
M

l−1/p
p (δ) and discuss sufficient conditions for the inclusion into this class.

14.3.2 A Priori Lp-Estimate for Solutions and Other Properties
of the Elliptic Boundary Value Problem

In the next two theorems we consider separately the cases p(l − 1) ≤ n and
p(l − 1) > n.

Theorem 14.3.1. If p(l− 1) ≤ n, 1 < p <∞, and if ∂Ω belongs to the class
M

l−1/p
p (δ), then (14.1.2) holds for any u ∈W l

p(Ω).
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Proof. We retain the notation used in the definition of M l−1/p
p (δ). Let U be

an open ball with a small radius, σ ∈ C∞
0 (U), and R and Rj be the principal

homogeneous parts of the operators P and Pj with “frozen” coefficients at
the point O. Clearly,

‖(P −R)(σu);U ∩Ω‖W l−2h
p

≤ ε ‖σu;U ∩Ω‖W l
p
+c ‖σu;U ∩Ω‖W l−1

p
, (14.3.1)

where ε is a small positive number (the required smallness is defined by the
coefficients of the operators R, R1, . . . , Rh). An analogous estimate holds for
the norm of (Pj −Rj)(σu) in W

l−kj
p (U ∩Ω).

By definition of the class M l−1/p
p (δ), the Lipschitz constant of ϕ is small,

so we can put N = 1 in the definition (9.4.14) of the mapping λ : R
n
+ → G.

Then, from (9.4.12), we obtain that ∂λ differs from the identity matrix by
O(δ) in the norm of MW l−1

p (Rn
+). It is well known (see, for instance, [ADN1],

[Tr3], Sect. 5.3.3) that, for all v ∈W l
p(R

n
+) with supports in B1 ∩ R

n
+,

‖v; Rn
+‖W l

p
≤ c
(
‖Rv; Rn

+‖W l−2h
p

+
h∑

j=1

‖trRjv; Rn−1‖
W

l−kj−1/p
p

)
.

Since δ is small, we can replace here R by Rj and S by Sj (see Lemma 14.2.2).
From the estimate obtained after this change, it follows that

‖σu;U ∩Ω‖W l
p
≤ c
(
‖R(σu);U ∩Ω‖W l−2h

p

+
h∑

j=1

‖trRj(σu);U ∩ ∂Ω‖
W

l−kj−1/p
p

)
.

This inequality and (14.3.1) entail

‖σu;Ω‖W l
p
≤ c
(
‖P (σu);Ω‖W l−2h

p
+

h∑
j=1

‖trPj(σu); ∂Ω‖
W

l−kj−1/p
p

+‖σu;Ω‖W l−1
p

)
.

Summing over all sufficiently small neighborhoods U which generate a covering
of Ω̄, we arrive at

‖u;Ω‖W l
p
≤ c
(
‖Pu;Ω‖W l−2h

p
+

h∑
j=1

‖trPju; ∂Ω‖
W

l−kj−1/p
p

+ ‖u;Ω‖W l−1
p

)
.

It remains to use the known inequality

‖u;Ω‖W l−1
p
≤ ε ‖u;Ω‖W l

p
+ c(ε)‖u;Ω‖L1 ,

where ε is any positive number. Estimate (14.1.2) is proved. ��
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Theorem 14.3.2. If p(l− 1) > n, 1 < p <∞, and if ∂Ω ∈W l−1/p
p , then the

conclusion of Theorem 14.3.1 holds.

Proof. From the condition ∂Ω ∈W l−1/p
p and the Sobolev embedding theorem,

it follows that ∂Ω ∈ C1. We place the origin at the point O ∈ ∂Ω and direct
the axis Oy along the interior normal to ∂Ω. Let U be the neighborhood of O
in the definition of the class W l−1/p

p , i.e. U ∩Ω = U ∩G, where G = {z : x ∈
R

n−1, y > ϕ(x)} and ϕ ∈ W
l−1/p
p (Rn−1). Let ε be a small positive number,

which will be specified later, and let Bρ = {z ∈ R
n : |z| < ρ}.

We choose a small number ρ such that

‖∇ϕ;Bρ ∩ R
n−1‖L∞ < ε

and B2ρ ⊂ U . Let τ ∈ C∞
0 (B2), τ = 1 on B1, and τρ(z) = τ(z/ρ). We introduce

the function ϕ∗ = ϕτρ on R
n−1 and note that

‖∇ϕ∗; Rn−1‖L∞ < c ε.

We also define the extension Φ of ϕ∗ onto R
n
+ by Φ = T ϕ∗. According to

(9.4.12), where ϕ is replaced by ϕ∗,

‖∇Φ; Rn
+‖L∞ ≤ c ε . (14.3.2)

Since
‖ϕ∗; Rn−1‖

W
l−1/p
p

≤ c(ρ)‖ϕ; Rn−1‖
W

l−1/p
p

,

we have
‖Φ; Rn

+‖W l
p
≤ c(ρ)‖ϕ; Rn−1‖

W
l−1/p
p

.

Now let r be a small positive number such that r < ρ and

rl−1−n/p‖Φ; Rn
+‖W l

p
< ε . (14.3.3)

It follows from the inequality

|||∇Φ;Br ∩ R
n
+|||W l−1

p
≤ c

(
‖∇lΦ;Br ∩ R

n
+‖Lp

+ r1−l+n/p‖∇Φ;Br ∩ R
n
+‖L∞

)

and the estimates (14.3.2) and (14.3.3) that

rl−1−n/p|||∇Φ;Br ∩ R
n
+|||W l−1

p
≤ c ε .

According to (9.6.4), this means that

|||∇Φ;Br ∩ R
n
+|||MW l−1

p
≤ c ε .

Using the function Φ, we define the mapping λ by (9.4.14) with N = 1. By
the last inequality,

|||I − ∂λ;Br ∩ R
n
+|||MW l−1

p
≤ c ε .

Now it suffices to duplicate the arguments we have already used in Theorem
14.3.1, with Br in place of the ball U , and estimate (14.2.6) instead of (14.2.5).
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The following assertion can be deduced in a standard way from the a priori
estimate (14.1.2) (see, for instance [H1], §10.5; [Tr3], Sect. 5.4.3).

Proposition 14.3.1. Let the domain Ω satisfy the conditions of either
Theorem 14.3.1 or Theorem 14.3.2.

(i) If the kernel of the operator (14.1.1) is trivial, then the norm ‖u;Ω‖L1

in (14.1.2) can be omitted.
(ii) The kernel of the operator (14.1.1) is finite-dimensional.
(iii) The range of the operator (14.1.1) is closed.

Proof. (i) Suppose that the assertion is not true. Then there exists a sequence
of functions {vm}m≥1 in W l

p(Ω) such that

‖vm;Ω‖W l
p

= 1, (14.3.4)

‖Pvm;Ω‖W l−2h
p

+
h∑

j=1

‖trPjvm; ∂Ω‖
W

l−kj−1/p
p

→ 0 . (14.3.5)

We can select a subsequence of {vm}, also denoted by {vm}, which weakly
converges in W l

p(Ω) to a function v ∈ W l
p(Ω). Since the imbedding operator

W l
p(Ω) → L1(Ω) is compact, we can assume that vm → v in L1(Ω). Substi-

tuting vm − vk into (14.1.2), we have vm → v in W l
p(Ω). This and (14.3.5)

imply that v ∈ ker{P ; trPj}, i.e. v = 0, which contradicts (14.3.4).
(ii) It follows from (14.1.2) that, for all v ∈ ker{P ; trPj},

‖v;Ω‖W l
p
≤ c ‖v;Ω‖L1 .

Therefore a unit sphere in ker{P ; trPj}, considered as a subspace of W l
p(Ω),

is compact and the dimension of the kernel is finite.
(iii) Since dim ker{P ; trPj} < ∞, there exists a projection operator Π

which acts parallel to ker {P ; trPj}.
Duplicating the arguments used in part (i) of the present proof, we obtain

‖v;Ω‖W l
p
≤ c
(
‖Pv;Ω‖W l−2h

p
+

h∑
j=1

‖trPjv; ∂Ω‖
W

l−kj−1/p
p

)

for all v ∈ W l
p(Ω), which implies that the range of the operator {P ; tr Pj} is

closed. ��

Next we derive a local a priori estimate for solutions of the elliptic bound-
ary value problem (cf. [ADN1], Sect. 15).

Proposition 14.3.2. Let the domain Ω satisfy the condition of either
Theorem 14.3.1 or Theorem 14.3.2. Further, let U and V be open subsets
of R

n with U ⊂ V , and let u ∈W l
p(V ∩Ω). Then
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‖u;U ∩Ω‖W l
p
≤ c
(
‖Pu;V ∩Ω‖W l−2h

p
+

h∑
j=1

‖trPju;V ∩ ∂Ω‖
W

l−kj−1/p
p

+‖u;V ∩Ω‖L1

)
. (14.3.6)

Proof. Let U and V be concentric balls with radii r and ρ, r < ρ. Further, let
either V̄ ⊂ Ω or the centre of the balls be placed on ∂Ω. It suffices to prove
the proposition under this additional assumption. We introduce the sets

C0 = U ∩Ω, Ck = {x ∈ Ω : δk < ρ− |x| < δk−1},

where k = 1, 2, . . . and δk = (ρ− r)2−k. Let

D0 = C0 ∪ Cl, Dk = Ck−1 ∪ Ck ∪ Ck+1, k = 1, 2, . . . .

We construct a C∞-partition of unity {σk}k≥0 subordinate to the covering
{Dk}k≥0 of V ∩Ω and satisfying

|Dασk| = O(δ−|α|
k )

for any multi-index α.
Applying the a priori estimate (14.1.2) to σkv, we obtain

‖σkv;Ω‖W l
p
≤ c
(
‖P (σkv);Ω‖W l−2h

p

+
h∑

j=1

‖trPj(σkv); ∂Ω‖
W

l−kj−1/p
p

+ ‖σkv;Ω‖L1

)
,

which implies that

‖σkv;Ω‖W l
p
≤ c
(
‖σkPv;Ω‖W l−2h

p

+
h∑

j=1

‖σktrPjv; ∂Ω‖
W

l−kj−1/p
p

+ δ−l
k ‖v;Dk‖W l−1

p

)
.

Let M be a sufficiently large positive number. We have
∞∑

k=0

δM
k ‖v;Ck‖W l

p
≤ c
( ∞∑

k=0

δM
k ‖σkPv;Ω‖W l−2h

p

+
∞∑

k=0

δM
k

h∑
j=1

‖σk trPjv; ∂Ω‖
W

l−kj−1/p
p

+
∞∑

k=0

δM−l
k ‖v;Dk‖W l−1

p

)

≤ c
(
‖Pv;V ∩ ∂Ω‖W l−2h

p
+

h∑
j=1

‖trPjv;V ∩ ∂Ω‖
W

l−kj−1/p
p

+
∞∑

k=0

δM−l
k ‖v;Dk‖W l−1

p

)
.
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Note that, for any ε > 0 and for some positive N ,

‖v;Dk‖W l−1
p
≤ ε δl

k‖v;Dk‖W l
p

+ c(ε)δ−N
k ‖v;Dk‖L1 .

Consequently,

∞∑
k=0

δM
k ‖v;Ck‖W l

p
≤ c
(
‖Pv;V ∩Ω‖W l−2h

p
+

h∑
j=1

‖trPjv;V ∩ ∂Ω‖
W

l−kj−1/p
p

+c(ε)‖v;V ∩Ω‖L1 + ε
∞∑

k=0

δM
k ‖v;Dk‖W l

p

)
.

Clearly, the last sum can be removed by changing c. The result follows. ��

Using the same properties of P , Pj , λ, κ as those used in the proof of
Theorems 14.3.1 and 14.3.2, one can establish the existence of a right regu-
larizer by the same argument as in, for instance, [Wl], Sect. 13.

Proposition 14.3.3. Let the domain Ω satisfy the condition of either
Theorem 14.3.1 or Theorem 14.3.2. Then there exists a linear bounded operator

R : W l−2h
p (Ω)×

h∏
j=1

W l−kj−1/p
p (∂Ω)→W l

p(Ω)

such that {P ; trPj}R = I + K. Here I and K are the identity and compact
operators respectively.

A direct corollary of Proposition 14.3.1 and 14.3.3 is:

Theorem 14.3.3. Let ∂Ω belong to M l−1/p
p (δ) for p(l−1) ≤ n and to W l−1/p

p

for p(l−1) > n. Then the operator (14.1.1) is Fredholm, that is, its null space
is finite-dimensional and its range is closed and has a finite codimension.

In the following sections we consider the Dirichlet problem in more detail.

14.4 Auxiliary Assertions

14.4.1 Some Properties of the Operator T

In this subsection, T is the operator defined by (9.4.11).

Lemma 14.4.1. Let α be an n-tuple multi-index and let k, r be nonnegative
integers with k ≥ |α| − r ≥ 0. Then the operator

M(W k−1/p
p (Rn−1)) � γ → ηr(DαT γ)(ζ) ∈M(W k

p (Rn
+)→W k−|α|+r

p (Rn
+))

is continuous.
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Proof. Clearly,

ηr(DαT γ)(ζ) = Dβ
∑

0≤|ν|≤r

cνη
|ν|(DνT γ)(ζ) ,

where β is a multi-index of order |α| − r, cν = const. The operator

γ
Tν−→ η|ν|(DνT γ)(ζ)

has the same form as T and therefore it maps MW
k−1/p
p (Rn−1) into

M(W k
p (Rn

+)). Hence, the continuity of the operator

M(W k−1/p
p (Rn−1)) � γ → DβTνγ ∈M(W k

p (Rn
+)→W k−|α|+r

p (Rn
+))

follows from Corollary 2.4.1. ��

The next assertion follows directly from the lemma just proved.

Corollary 14.4.1. Let G be a special Lipschitz domain, let α be a positive
n-tuple multi-index and let r be a nonnegative integer with l ≥ |α| − r > 0.
Then the function ζ → ηr(DαT ϕ)(ζ) belongs to the space M(W l−1

p (Rn
+) →

W
l−|α|+r
p (Rn

+)) and

‖ηrDαT ϕ; Rn
+‖M(W l−1

p →W
l−|α|+r
p )

≤ c ‖∇ϕ; Rn−1‖
MW

l−1−1/p
p

.

14.4.2 Properties of the Mappings λ and κ

Let G be a special Lipschitz domain and let λ be the mapping (9.4.13) defined
by (9.4.14). As in Sect. 9.4.3, we denote by κ the inverse mapping to λ. We
shall assume that L < 1 and N = 1.

From Corollary 14.4.1 we deduce

Corollary 14.4.2. Let α be a multi-index. Let r be a nonnegative integer with
l ≥ |α| − r + 1 > 0, and write λ(ζ) = {λ1(ζ), . . . , λn(ζ)}. Then the function

ζ → ηr(Dα∂λi)(ζ)

belongs to M(W l−1
p (Rn

+)→W
l−1−|α|+r
p (Rn

+)) and

‖ηrDα(∂λ− I); Rn
+‖M(W l−1

p →W
l−1−|α|+r
p )

≤ c ‖∇ϕ; Rn−1‖
MW

l−1−1/p
p

.

A similar assertion concerning the mapping κ needs a separate proof.
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Lemma 14.4.2. Let α be a multi-index, let r be a nonnegative integer with
l ≥ |α| − r + 1 > 0, and write κ(z) = {κ1(z), . . . ,κn(z)}. Then the function

z → (ηrDα∂κi)(z)

belongs to M(W l−1
p (G)→W

l−1−|α|+r
p (G)) and

‖ηrDα(∂κ − I);G‖
M(W l−1

p →W
l−|α|+r−1
p )

≤ c ‖∇ϕ; Rn−1‖
MW

l−1−1/p
p

.

Proof. For |α| = 0 the result follows from the definition of a (p, l)-
diffeomorphism. Suppose that the lemma is proved for |α| < N . Let |α| = N ,
r < N . For any multi-index δ of order N − 1,

(Dδ∂κ)(z) = Dδ[∂λ(κ(z))]−1

=
∑

1≤|β|≤|δ|
[Dβ(∂λ)−1](κ(z))

∑
cs

n∏
i=1

∏
j

Dsij κi(z) ,

where the summation is taken over all collections of multi-indices s = (sij)
such that

∑
sij = δ, |sij | ≥ 1,

∑
(|sij | − 1) = |δ| − |β|.

Therefore, the expression (ηrDδ∂κ)(z) is the sum of the products of two
factors

π1(z) = cβ
[
η|β|Dβ(∂λ)−1

]
(κ(z))

and

π2(z) =
n∏

i=1

∏
j

(ηr−|β|Dsij κi)(z) .

Corollary 14.4.2 implies that the function

ζ → η|β|Dβ(∂λ)−1

belongs to the space MW l−1
p (Rn

+), and since κ is a (p, l)-diffeomorphism, it
follows that π1 ∈MW l−1

p (G).
We introduce positive integers σij such that

σij ≤ |sij |,
∑

(σij − 1) = r − |β|.

Then

π2(z) =
n∏

i=1

∏
j

(ησij−1Dsij κi)(z) .
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Since |β| ≥ 1, we have |sij | ≤ N − 1 and by the induction hypothesis the
function

z → (ησij−1Dsij κi)(z)

belongs to

M(W q
p (G)→W q−1−|sij |+σij

p (G)), q = |sij | − σij , . . . , l − 1.

Hence

π2∈M(W l−1
p (G)→W l−2−

∑
(|sij |−σij)

p (G))=M(W l−1
p (G)→W l−2−|δ|+r

p (G)).

Noting that |α| = 1 + |δ| and π1 ∈MW l−1
p (G), we obtain

π1π2 ∈M(W l−1
p (G)→W l−1−|α|−r

p (G)).

Since the space W l
p is invariant under the (p, l)-diffeomorphisms, a function

u on ∂G belongs to W l−1/p
p (∂G) if and only if u◦tr λ ∈W l−1/p

p (Rn−1). We put

‖u; ∂G‖
W

l−1/p
p

= ‖u ◦ trλ; Rn−1‖
W

l−1/p
p

.

Taking here an arbitrary (p, l)-diffeomorphism: R
n
+ → G instead of λ, we

obtain an equivalent norm (see Lemmas 9.4.1, 9.4.2 and 9.4.4).

14.4.3 Invariance of the Space W l
p ∩ W̊ h

p Under a Change
of Variables

In this subsection we present auxiliary assertions which will be used later in
the study of conditions for solvability of the Dirichlet problem in W l

p(Ω).
As before, let G = {z = (x, y) : x ∈ R

n−1, y > ϕ(x)} and let ∂G belong
to the class M l+1−h−1/p

p , where l and h are integers with l ≥ h ≥ 1. In other
words,

∇ϕ ∈MW l−h−1/p
p (Rn) if l > h

and
ϕ ∈ C0,1(Rn−1) if l = h.

Let λ be the mapping R
n
+ � (ξ, η) → (x, y) ∈ G, defined by (9.4.13), and let

κ = λ−1.

Lemma 14.4.3. Let v ∈ (W̊ k
p ∩ W t+k

p )(G), where 0 ≤ t ≤ l − h, and let

∂G ∈M l+1−h−1/p
p . Then

‖η−kv;G‖W t
p
≤ c ‖v;G‖W t+k

p
. (14.4.1)
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Proof. Since η(z) is equivalent to y − ϕ(x), the inequality (14.4.1) with t = 0
follows from the Hardy inequality,

∫ ∞

ϕ(x)

|v(x, y)|p dy

(y − ϕ(x))pk
≤ c

∫ ∞

ϕ(x)

∣∣∣∂
kv

∂yk
(x, y)

∣∣∣
p

dy (14.4.2)

a.e. in R
n−1. Let the lemma be proved for all t < T and k > K. We have

‖η−Kv;G‖W T
p
≤ ‖∇(η−Kv);G‖W T−1

p
+ ‖η−Kv;G‖Lp

.

The second term on the right-hand side is estimated by (14.4.2) and the first
one does not exceed

‖η−K∇v;G‖W T−1
p

+K‖η−K−1v∇η;G‖W T−1
p

. (14.4.3)

Since ∂G ∈M l+1−h−1/p
p , it follows that

∇η ∈MW l−h
p (G) ⊂MWT−1

p (G).

Hence the sum (14.4.3) is dominated by

‖η−K∇v;G‖W T−1
p

+ c ‖η−K−1v;G‖W T−1
p

.

Using the induction hypothesis, we complete the proof. ��

Lemma 14.4.4. For all u ∈W l
p(G) ∩ W̊h

p (G), the inequality

‖u ◦ λ; Rn
+‖W l

p
≤ c ‖u;G‖W l

p
(14.4.4)

holds.

Proof. We have
∫

R
n
+

|Dα
ζ [u(λ(ζ))]|p dζ

≤ c
∑

1≤|β|≤l

∫

R
n
+

∣∣∣(Dβu)(λ(ζ))
∑

s

cs
∏
i,j

D
sij

ζ λi(ζ)
∣∣∣
p

dζ ,

where α is an arbitrary positive multi-index of order l and s = (sij) is the set
of multi-indices satisfying (10.1.19). Hence,

∫

R
n
+

|Dα
ζ [u(λ(ζ))]|p dζ

≤ c
∑

1≤|β|≤l

∫

G

∣∣∣(Dβu)(z)
∑

s

cs
∏
i,j

(Dsijλi)(κ(z))
∣∣∣
p

dz ‖∂κ;G‖pL∞
. (14.4.5)
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Let |β| ≥ h or, what is the same, l − |β| ≤ l − h. Since ∇λi ∈MW k
p (Rn

+) for
k ≤ l − h, we have

Dsijλi ∈M(W k
p (Rn

+)→W k−|sij |+1
p (Rn

+))

for |sij | − 1 ≤ k ≤ l − h. Consequently,

∏
i,j

Dsijλi ∈M
(
W
∑

i,j(|sij |−1)
p (Rn

+)→ Lp(Rn
+)
)
=M(W l−|β|

p (Rn
+)→ Lp(Rn

+)).

Since κ is a (p, l − h)-diffeomorphism, we obtain
∏
i,j

Dsijλi ◦ κ ∈M(W l−|β|
p (G)→ Lp(G)) .

Therefore, the terms on the right-hand side of (14.4.5) which correspond to
multi-indices β of order |β| ≥ h are majorized by c ‖u;G‖p

W l
p
.

Now suppose that |β| ≤ h− 1. By (14.4.1) the function

z → η(z)|β|−h(Dβu)(z)

belongs to the space W l−h
p (G). By σij we denote integers subject to

1 ≤ σij ≤ |sij |,
∑
i,j

(σij − 1) = h− |β|.

Such numbers exist, since
∑
i,j

(|sij | − 1) = l − |β| and l ≥ h.

By Corollary 14.4.2, the function

ζ → ησij−1(Dsijλi)(ζ)

belongs to M(W k
p (Rn

+)→W
k−|sij |+σij
p (Rn

+)). Using the identity

∏
i,j

(Dsijλi)(ζ) = η|β|−h
∏
i,j

ησij−1(Dsijλi)(ζ) ,

we observe that the function

ζ → ηh−|β|
∏

(Dsij ◦ λi)(ζ)

belongs to M(W l−h
p (Rn

+) → Lp(Rn
+)). Since κ is a (p, l − h)-diffeomorphism,

the function
z → η(z)h−|β|

∏
(Dsijλi)(κ(z))
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is an element of M(W l−h
p (G)→ Lp(G)). Therefore, the terms with |β| ≤ h−1

on the right-hand side of (14.4.5) are bounded by c ‖u;G‖p
W l

p
. We also have

‖u;G‖Lp
∼ ‖u ◦ λ; Rn

+‖Lp

because λ is a bi-Lipschitz mapping. This relation and (14.4.5) give the esti-
mate (14.4.4). ��

Now we prove an analogous assertion concerning the mapping κ.

Lemma 14.4.5. For each v ∈W l
p(R

n
+) ∩ W̊h

p (Rn
+), the inequality

‖v ◦ κ;G‖W l
p
≤ c ‖v; Rn

+‖W l
p

(14.4.6)

holds.

Proof. It is sufficient to derive the estimate
∫

Ω

|Dα
z [v(κ(z))]|p dz ≤ c ‖v; Rn

+‖pW l
p
.

The left-hand side is dominated by

c
∑

1≤|β|≤l

∫

R
n
+

∣∣∣(Dβ
ζ v)(ζ)

∑
s

cs
∏
i,j

(Dsij κi)(λ(ζ))
∣∣∣
p

dζ ‖∂λ; Rn
+‖pL∞

(14.4.7)

(cf. (14.4.5)).
Let |β| ≥ h. Repeating the same arguments as in Lemma 14.4.4 with R

n
+

replaced by G, λ by κ, u by v and vice versa, we obtain that the terms in
(14.4.7) with |β| ≥ h do not exceed c ‖v; Rn

+‖pW l
p
.

Now let |β| ≤ h − 1. Since v ∈ W l
p(R

n
+) ∩ W̊h

p (Rn
+), it follows that

ηh−|β|(Dβv)(ζ) belongs to W l−h
p (Rn

+) and its norm is dominated by
c ‖v; Rn

+‖W l
p
. According to Lemma 14.4.2,

η|sij |−1(Dsij κi)(λ(ζ))

is a multiplier in W l−h
p (Rn

+). Hence

η|β|−h
∏

(Dsij κi)(λ(ζ))

is a multiplier in the same space.
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14.4.4 The Space W −k
p for a Special Lipschitz Domain

We assume G to be a special Lipschitz domain. In other words, we put l = h
in the conjectures of the preceding subsection. Let us retain the notation of
Sect. 14.4.3.

We introduce the space W−k
p (G) of linear functionals on W̊ k

p (G), where
p+ p′ = pp′, k = 0, 1, . . . .

One can immediately check the continuity of the operator Dα : W s
p (G)→

W
s−|α|
p (G) for any s = 0,±1, . . . .
By Lemmas 14.4.4 and 14.4.5, the mapping λ performs an isomorphism

between W̊ k
p′(G) and W̊ k

p′(Rn
+). Therefore, λ maps W−k

p (G) onto W−k
p (Rn

+)
isomorphically.

The following assertion, which is proved in a standard way, gives one of
possible realizations of W−k

p (G).

Proposition 14.4.1. Any linear functional on W̊ k
p′(G) can be identified with

a distribution f ∈ (C∞
0 (G))′ of the form

f(z) =
∑
|α|≤k

Dαfα(z) , (14.4.8)

where fα is a function such that

ηk−|α|fα ∈ Lp(G).

The norm of this functional is equivalent to the norm

‖f‖ = inf
∥∥∥
( ∑

|α|≤k

η2(k−|α|)f2
α

)1/2

;G
∥∥∥

Lp

,

the infimum being taken over all collections {fα}|α|≤k in (14.4.8).

Proof. By Lemma 14.4.1, the space W̊ k
p′(G) can be supplied with the norm

∥∥∥
( ∑

|α|≤k

η2(k−|α|)(Dαu)2
)1/2

;G
∥∥∥

Lp′
.

Therefore the right-hand side of (14.4.8) is a linear functional on W̊ k
p′(G), and

‖f‖ ≤
∥∥∥
( ∑

|α|≤k

η2(k−|α|)f2
α

)1/2

;G
∥∥∥

Lp

.

To express an arbitrary linear functional on W̊ k
p′ in the form (14.4.8), we

consider the space Lp′(G) of vectors v = {vα}|α|≤k with components in Lp′(G)
endowed with the norm
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‖(
∑
|α|≤k

v2
α)1/2;G‖Lp′ .

Further, let
Λk = {(−1)|α|η|α|−kDα}|α|≤k .

Since the space W̊ k
p′(G) is complete, the range of the operator Λk : W̊ k

p′(G)→
Lp′(G) is a closed subspace of Lp′(G). Let u ∈ W̊ k

p′(G) and let f(u) be the
value of the functional f ∈ W−k

p (G) on u. We define the functional Φ by
Φ(v) = f(u) on the set of vectors v which can be expressed in the form Λku.
Then ‖Φ‖ = ‖f‖ and, by the Hahn-Banach theorem, Φ can be extended to a
linear functional on Lp′(G) with the same norm. Consequently,

Φ(Λku) =
∑
|α|≤k

∫

G

gα(−1)|α|η|α|−kDαu dz ,

where gα ∈ Lp(G). It remains to put fα = η|α|−kgα. ��

Lemma 14.4.6. Let v ∈ W̊ t+k
p (G), where t < 0, k is a nonnegative integer,

and t+ k ≥ 0. Then (14.4.1) holds.

Proof. We have

‖η−kv;G‖W t
p

= sup
w∈W̊−t

p′

(η−kv, w)
‖w‖W−t

p′

.

By Lemma 14.4.1,

(η−kv, w) ≤ ‖η−k−tv;G‖Lp
‖ηtw‖Lp′ ≤ c ‖v;G‖W t+k

p
‖w‖W−t

p′
.

��

Corollary 14.4.3. Let ηkv ∈W t+k
p (G), where t and k are the same numbers

as in Lemma 14.4.6. Then

‖v;G‖W t
p
≤ c ‖ηkv;G‖W t+k

p
.

Proof. Let w ∈ W̊−t
p′ . We have

(v, w) ≤ ‖ηkv;G‖W t+k
p
‖η−kw;G‖W−t−k

p′
.

Using Lemma 14.4.6 with p and t replaced by p′ and −t− k, we obtain

‖η−kw;G‖W−t−k
p′

≤ c ‖w;G‖W−t
p′

.

The result follows. ��
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14.4.5 Auxiliary Assertions on Differential Operators
in Divergence Form

Lemma 14.4.7. Let ∂G ∈M l+1−h−1/p
p , l ≥ h, and let

Pu =
∑

|α|,|β|≤h

(−1)|α|Dα(aαβ(z)Dβu) . (14.4.9)

If

ηh−|β|aαβ ∈M(W l−h
p (G)→W l−2h+|α|

p (G)) for l − 2h+ |α| ≥ 0

and
η2h−|α|−|β|aαβ ∈MW l−h

p (G)

for l − 2h+ |α| < 0, then P is a continuous operator:

(W l
p ∩ W̊h

p )(G)→W l−2h
p (G)

and its norm does not exceed cA, where

A =
∑
|β|≤h

( ∑
|α|≥2h−l

‖ηh−|β|aαβ ;G‖
M(W l−h

p →W
l−2h+|α|
p )

+
∑

|α|<2h−l

‖η2h−|α|−|β|aαβ ;G‖MW l−h
p

)
.

Proof. Let u ∈ (W l
p ∩ W̊h

p )(G). According to Lemma 14.4.3,

η|β|−hDβu ∈W l−h
p (G).

Consequently,
aαβD

βu ∈W l−2h+|α|
p (G)

and
Dα(aαβD

βu) ∈W l−2h
p (G)

for |α| ≥ 2h− l.
Now let |α| < 2h− l. By Corollary 14.4.3, we have

‖Dα(aαβD
βu);G‖W l−2h

p

≤ ‖aαβD
βu;G‖

W
l−2h+|α|
p

≤ c ‖ηh−|α|aαβD
βu;G‖W l−h

p

≤ c ‖η2h−|α|−|β|aαβ ;G‖MW l−h
p
‖η|β|−hDβu;G‖W l−h

p
.

Using inequality (14.4.1) to estimate the last norm, we arrive at

‖Dα(aαβD
βu);G‖W l−2h

p
≤ cA‖u;G‖W l

p
.

��
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Henceforth in this subsection, R is a differential operator of order 2h with
constant coefficients having the form

R(D) =
∑

|α|,|β|≤h

(−1)|α|Dα(aαβD
β)

and S is the operator defined by (14.2.1).
We retain the notation as well as the conditions imposed on the domain

G in Sect. 14.4.3.

Lemma 14.4.8. For all v ∈ (W l
p ∩ W̊h

p )(Rn
+) with l ≥ h,

‖(S −R)v; Rn
+‖W l−2h

p
≤ c ‖I − ∂λ; Rn

+‖MW l−h
p
‖v; Rn

+‖W l
p
,

where c is a continuous function of the norm of ∂λ in MW l−h
p (Rn

+) indepen-
dent of v.

Proof. Changing variables in the bilinear form (Rϕ,ψ), where ϕ,ψ ∈ C∞
0 (G),

we obtain

S(ζ,Dζ) =
1

det ∂λ(ζ)

∑
|µ|,|δ|≤h

(−1)|µ|Dµ
ζ [det ∂λ(ζ)fµδ(ζ)Dδ

ζ ] ,

where

fµδ(ζ) =
∑

|α|=|β|=h

(aαβ ◦ λ)
∑
{s}

cs
∏
i,j

(Dsij κi)(λ(ζ))
∑
{t}

ct
∏
i,j

(Dtij κi)(λ(ζ)) .

By {s} and {t} we denote collections of multi-indices sij and tij such that
∑
i,j

sij = α , |sij | ≥ 1 ,
∑
i,j

(|sij | − 1) = h− |µ| ,

∑
i,j

tij = β , |tij | ≥ 1 ,
∑
i,j

(|tij | − 1) = h− |δ| .

Since
uDµu =

∑
µ≥γ>0

cµγD
γ(vDµ−γu),

it follows that

S(ζ,Dζ) =
∑

|γ|,|δ|≤h

(−1)|γ|Dγ
ζ (bγδ(ζ)Dδ

ζ),

where

bγδ(ζ) =
∑

µ≥γ>0

(−1)|µ|−|γ|cµγ

[
Dµ−γ

ζ

( 1
det ∂λ(ζ)

)]
det ∂λ(ζ)fµδ(ζ) .
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In particular, if |γ| = |δ| = h, we have

bγδ(ζ) =
∑

|α|=|β|=h

aαβPαβγδ(∂κ ◦ λ) ,

where Pαβγδ is a polynomial of elements of the matrix ∂κ. Also Pαβγδ(I) = 1
if α = γ, β = δ, and Pαβγδ(I) = 0 if α 	= γ or β 	= δ.

Let

S0(ζ,Dζ) =
∑

|γ|=|δ|=h

(−1)hDγ
ζ (bγδ(ζ)Dδ

ζ) , S1 = S − S0 .

It is clear that

‖(S0 −R)v; Rn
+‖W l−2h

p
≤

∑
α,β,γ,δ

‖(Pαβγδ(∂κ ◦ λ)− Pαβγδ(I))Dδ
ζv; R

n
+‖W l−h

p

≤ c ‖I − ∂λ; Rn
+‖MW l−h

p
‖v; Rn

+‖W l
p

≤ c ‖∇ϕ; Rn−1‖
MW

l+1−h−1/p
p

‖v; Rn
+‖W l

p
.

Next we derive an analogous estimate for the norm

‖(S − S0)v; Rn
+‖W l−2h

p
.

According to Lemma 14.4.7, is suffices to prove the two inequalities

‖ηh−|δ|bγδ; Rn
+‖M(W l−h

p →W
l−2h+|γ|
p )

≤ c ‖∇ϕ; Rn−1‖
MW

l+1−h−1/p
p

(14.4.10)

for |γ| ≤ h, |δ| ≤ h, |γ|+ |δ| < 2h, l − 2h+ |γ| ≥ 0, and

‖η2h−|γ|−|δ|bγδ; Rn
+‖MW l−h

p
≤ c ‖∇ϕ; Rn−1‖

MW
l+1−h−1/p
p

. (14.4.11)

for |γ| ≤ h, |δ| ≤ h, |γ|+ |δ| < 2h, l − 2h+ |γ| < 0.
By Corollary 14.4.2,

Dµ−γ
ζ (1/det ∂λ(ζ)) ∈M(W l−h

p (Rn
+)→W l−h−|µ|+|γ|

p (Rn
+)) (14.4.12)

and, for µ > γ,

‖Dµ−γ
ζ (1/det ∂λ(ζ)); Rn

+‖M(W l−h
p →W

l−h−|µ|+|γ|
p )

≤ c ‖∇ϕ; Rn−1‖
MW

l+1−h−1/p
p

. (14.4.13)

We show that

ηh−|δ|fµδ ∈M(W l−h−|µ|+|γ|
p (Rn

+)→W l−2h+|γ|
p (Rn

+)) . (14.4.14)
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Applying Corollary 14.4.2 once more, we obtain

ηh−|δ|
∏
i,j

(Dtij κi) ◦ λ ∈MW l−h
p (Rn

+) ,

∏
i,j

(Dsij κi) ◦ λ ∈M(W l−h
p (Rn

+)→W l−2h+|µ|
p (Rn

+))

⊂M(W l−h−|µ|+|γ|
p (Rn

+)→W l−2h+|γ|
p (Rn

+)) (14.4.15)

and therefore the inclusion (14.4.14) holds. Since, for µ = γ, at least one of
the exponents tij and sij is greater than 1, it follows that

‖ηh−|δ|fγδ; Rn
+‖M(W l−h

p →W
l−2h+|γ|
p )

≤ c ‖∇ϕ; Rn−1‖
MW

l+1−h−1/p
p

. (14.4.16)

Now (14.4.10) results directly from (14.4.12)–(14.4.14), and (14.4.16).
Next we turn to the proof of (14.4.11). By virtue of Corollary 14.4.2, the

inclusion (14.4.15) holds. Moreover,

η|µ|−|γ|Dµ−γ
ζ (1/det ∂λ(ζ)) ∈MW l−h

p (Rn
+) ,

and
ηh−|µ|

∏
i,j

(Dsij κi) ◦ λ ∈MW l−h
p (Rn

+) .

To obtain (14.4.11), it remains to note that we always have either µ > γ or
one of the exponents tij , sij is greater than one, and then to apply Corollary
14.4.2 once more. ��

With minor modifications in the above proof and using the properties
of (p, l)-diffeomorphisms given in Sect. 9.4.2, we arrive at the following local
variant of Lemma 14.4.8.

Lemma 14.4.9. For all v ∈ (W l
p∩W̊h

p )(Rn
+), l ≥ h, with supports in Br∩R

n
+,

the inequality

‖(S −R)v; Rn
+‖W l−2h

p
≤ c |||I − ∂λ;Br ∩ R

n
+|||MW l−h

p
‖v; Rn

+‖W l
p

(14.4.17)

holds. For p(l − h) > n it follows from (9.6.4) that (14.4.17) is equivalent to

‖(S −R)v; Rn
+‖W l−2h

p

≤ c rl−h−n/p|||I − ∂λ;Br ∩ R
n
+|||W l−h

p
‖v; Rn

+‖W l
p
. (14.4.18)
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14.5 Solvability of the Dirichlet Problem in W l
p(Ω)

14.5.1 Generalized Formulation of the Dirichlet Problem

Let Ω be open subset of R
n and let P be the operator (14.4.9), where aαβ ∈

Cl−h(Ω̄), l ≥ h. Further, let the G̊arding inequality

Re
∫

Ω

∑
|α|=|β|=h

aαβD
αuDβu dz ≥ c ‖u;Ω‖2W h

2
(14.5.1)

hold for u ∈ C∞
0 (Ω).

We say that u ∈W l
p(Ω) is a solution of the generalized Dirichlet problem

in W l
p(Ω) if

Pu = f , u− g ∈W l
p(Ω) ∩ W̊h

p (Ω) , (14.5.2)

where f and g are given functions in the spaces W l−2h
p (Ω) and W l

p(Ω) respec-
tively.

By W−k
p (Ω), k = 1, 2, . . . , we mean the space of linear continuous func-

tionals in W̊ k
p′(Ω).

14.5.2 A Priori Estimate for Solutions of the Generalized Dirichlet
Problem

Following the proof of Theorem 14.3.1 and using Lemma 14.4.8 in place of
Lemma 14.2.1, we arrive at:

Theorem 14.5.1. If p(l− h) ≤ n, 1 < p <∞, and if ∂Ω belongs to the class
M

l+1−h−1/p
p (δ), then

‖u;Ω‖W l
p
≤ c (‖Pu;Ω‖W l−2h

p
+ ‖u;Ω‖L1) (14.5.3)

for all u ∈ (W l
p ∩ W̊h

p )(Ω).

Duplicating the proof of Theorem 14.3.2 and using (14.4.18) instead of
(14.2.6), we obtain:

Theorem 14.5.2. If p(l − h) > n, 1 < p < ∞, and ∂Ω ∈ W l+1−h−1/p
p , then

Theorem 14.5.1 holds.

Next we state two corollaries of (14.5.3) which are analogous to
Propositions 14.3.1 and 14.3.2.

Proposition 14.5.1. Let Ω satisfy the conditions of either Theorem 14.5.1
or Theorem 14.5.2.

(i) If the kernel of the operator

P : (W l
p ∩ W̊h

p )(Ω)→W l−2h
p (Ω) (14.5.4)

is trivial, then the norm ‖u;Ω‖L1 in (14.5.3) can be omitted.
(ii) The kernel of the operator (14.5.4) is finite-dimensional and the range

of this operator is closed.
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Proposition 14.5.2. Let Ω satisfy the conditions of either Theorem 14.5.1
or Theorem 14.5.2. Further, let U and V be open bounded subsets of R

n with
Ū ⊂ V , and let u ∈ (W l

p ∩ W̊h
p )(Ω). Then

‖u;U ∩Ω‖W l
p
≤ c (‖Pu;V ∩Ω‖W l−2h

p
+ ‖u;V ∩Ω‖L1) .

14.5.3 Solvability of the Generalized Dirichlet Problem

Let the G̊arding inequality (14.5.1) hold for all u ∈ C∞
0 (Ω). Then, as is well

known, the equation Pu = f with f ∈W−h
2 (Ω) is uniquely solvable in W̊h

2 (Ω).

Theorem 14.5.3. Let ∂Ω ∈M l+1−h−1/p
p for p(l − h) ≤ n and let ∂Ω belong

to the class W l+1−h−1/p
p for p(l − h) > n.

(i) If f ∈ W l−2h
p (Ω) ∩W−h

2 (Ω) and g ∈ W l
p(Ω) ∩Wh

2 (Ω), 1 < p < ∞,
and if u ∈Wh

2 (Ω) is such that Pu = f and u− g ∈ W̊h
2 (Ω), then u ∈W l

p(Ω)
and u− g ∈ W̊h

p (Ω).
(ii) The problem (14.5.2) has one and only one solution u ∈W l

p(Ω).

Proof. It is sufficient to assume that g = 0.
(i) First let p(l − h) ≤ n. We put ϕε(x) = ε + Φ(x, ε), where Φ is an

extension of ϕ defined by Φ = T ϕ (cf. (9.4.11)). We introduce the domain
Gε = {z = (x, y) : x ∈ R

n−1, y > ϕε(x)}. Since 1 + ∂Φ/∂η > 0, it follows that
{Gε} is an increasing family, Gε ⊂ G, and Gε → G as ε→ +0.

By part (i) of Theorem 8.7.2 we have

‖∇ϕε; Rn−1‖
MW

l+1−h−1/p
p

≤ c ‖∇Φ; Rn
+‖MW l−h+1

p
.

This inequality and (9.4.12) imply that

‖∇ϕε; Rn−1‖
MW

l+1−h−1/p
p

≤ c ‖∇ϕ; Rn−1‖
MW

l+1−h−1/p
p

, (14.5.5)

with a constant c independent of ε. Let Ωε = Ω\(Ū\Gε) and let uε be a
solution of Pu = f in W̊h

2 (Ωε). It is known (see, for instance, Nečas [Ne], 6.6,
Ch. 3), that uε → u in W̊h

2 (Ω). By U1 we denote an open set such that U1 ⊂ U .
Since ϕε ∈ C∞(Rn−1), we have uε ∈ W l

p(U1 ∩Ωε) by the known theorem on
the regularity of weak solutions of elliptic boundary value problems near a
smooth part of a boundary. This and Proposition 14.5.2 give the estimate

‖uε;U2 ∩Ωε‖W l
p
≤ c (‖f ;U1 ∩Ωε‖W l−2h

p
+ ‖uε;U1 ∩Ωε‖L1) ,

where U2 is an open set, U2 ⊂ U1, and c does not depend on ε. Hence the
left-hand side is uniformly bounded with respect to ε. Now, if we fix a domain
ω such that ω̄ ⊂ Ω, then the upper limit

lim sup
ε→+0

‖uε;ω‖W l
p
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is majorized by a constant independent of ω. From {uε} we select a sequence
which is weakly convergent in W l

p(ω). This sequence converges in Wh
2 (ω), and

hence its weak limit in W l
p(ω) coincides with u. Therefore, u ∈W l

p(ω), and the
W l

p(ω)-norm of u is uniformly bounded with respect to ω. Thus u ∈ W l
p(Ω).

The identity of the spaces Wh
p (Ω)∩W̊h

2 (Ω) and W̊h
p (Ω) for Lipschitz domains

Ω is known.
The case p(l − 1) > n can be treated in the same way, with (14.5.5)

replaced by

‖ϕε; Rn−1‖
W

l+1−h−1/p
p

≤ c ‖ϕ; Rn−1‖
W

l+1−h−1/p
p

.

(ii) For p ≥ 2, the assertion follows from the unique solvability of the
problem in W̊h

2 (Ω), together with the first part of the theorem.
Consider the case p < 2. By P t we denote the operator formally conjugate

to P . The coefficients of P t belong to Cl−2h(Ω̄), and G̊arding’s inequality
(14.5.1) holds for P t too. Recall that the property ∂Ω ∈M1−1/p

p implies that
the Lipschitz constants of the functions ϕ which locally specify ∂Ω are small.
Hence the equation

P tv = F ∈W−h
p′ (Ω) with v ∈ W̊h

p′(Ω)

is uniquely solvable in W̊h
p′(Ω). Let u be a solution of the homogeneous prob-

lem (14.5.2) and let {vm}m≥1 be a sequence of functions in C∞
0 (Ω), which

converges to v in W̊h
p′(Ω). Then

0 = lim
∑

|α|,|β|≤h

(aαβD
αu,Dβvm) =

∑
|α|,|β|≤h

(aαβD
αu,Dβv) = (u, F ) ,

and the uniqueness property of problem (14.5.2) follows.
Let

fm ∈ Cl(Ω̄), m = 1, 2, . . . , fm → f in W l−2h
p (Ω).

By um we denote a function in W̊h
2 (Ω) satisfying Pum = fm. According to the

first part of the theorem, um ∈ W l
p(Ω) ∩ W̊h

p (Ω). By part (i) of Proposition
14.5.1,

‖um − uk;Ω‖W l
p
≤ c ‖fm − fk;Ω‖W l−2h

p
.

Thus {um} converges in W l
p(Ω) ∩ W̊h

p (Ω) and its limit satisfies Pu = f . ��

14.5.4 The Dirichlet Problem Formulated in Terms of Traces

The first boundary value problem (14.5.2) is not a particular case of the
general boundary value problem formulated in Sect. 14.3.1. In the present
subsection we study the Dirichlet problem in another formulation which is
analogous to that considered in 14.3.1
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Let P be the elliptic operator (14.4.9) with coefficients aαβ in Cl−h(Ω̄),
l ≥ h, for which the inequality (14.5.1) holds. We assume ∂Ω to be in the
class C0,1.

We introduce a sufficiently small finite open covering {U} of Ω̄ and a
corresponding partition of unity {ζU}. Let

PjU = ∂j−1/∂yj−1, j = 1, . . . , h, if U ∩ ∂Ω 	= ∅

and
PjU = 0 if U ∩ ∂Ω = ∅.

The Dirichlet boundary conditions will be prescribed by the operators

Pj =
∑
U

ζUPjU .

We give a formulation of the Dirichlet problem. Let us look for a function
u ∈W l

p(Ω) such that

Pu = f in Ω, trPju = fj on ∂Ω, j = 1, . . . , h , (14.5.6)

where f and fj are functions in W l−2h
p (Ω) and W

l+1−j−1/p
p (∂Ω) respectively.

It is clear that any solution of the problem (14.5.2) is a solution of (14.5.6)
with fj = trPjg. The following lemma shows that an opposite statement holds
if ∂Ω ∈M l−1/p

p .

Lemma 14.5.1. Let G = {z = (x, y) : x ∈ R
n−1, y > ϕ(x)} be a do-

main with ∂G in the class M l−1/p
p and let f1, . . . , fh be arbitrary functions in

W
l−1/p
p (∂G), . . . , W l+1−h−1/p

p (∂G). Then there exists a function g ∈ W l
p(G)

such that
tr(∂j−1g/∂yj−1) = fj , j = 1, . . . , h.

Proof. We use the notation λ, κ, and T ϕ introduced in Sect. 9.4.3. We have

[(∂/∂y)j−1g] ◦ λ = [(N + ∂(T ϕ)/∂η)−1(∂/∂η)]j−1(g ◦ λ) .

Since ∇(T ϕ) ∈MW l
p(R

n
+), it follows that

[(∂/∂y)j−1g] ◦ λ =
j∑

ν=1

aνj(∂/∂η)ν−1(g ◦ λ) , j = 1, . . . , h , (14.5.7)

where

aνj ∈M(W l−ν+1
p (Rn

+)→W l−j+1
p (Rn

+)), ajj = (N + ∂(T ϕ)/∂η)1−j .

We note that (14.5.7) is a triangular algebraic system with respect to
(∂/∂η)ν−1(u ◦ λ). Hence
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(∂/∂η)ν−1(g ◦ λ) =
ν∑
j

bjν [(∂/∂y)j−1g] ◦ λ , ν = 1, . . . , h ,

where
bjν ∈M(W l−j+1

p (Rn
+)→W l−ν+1

p (Rn
+)).

Taking into account that

tr bjν ∈M(W l+1−j−1/p
p (Rn−1)→W l+1−ν−1/p

p (Rn−1)),

we obtain
(tr bjν)fj ◦ λ ∈W l+1−ν−1/p

p (Rn−1).

Therefore, there exists a function H ∈W l
p(R

n
+) such that

tr (∂/∂η)ν−1H =
j∑

ν=1

(trbjν)fj ◦ λ .

Setting g = H ◦ κ, we complete the proof. ��

Since both formulations (14.5.2) and (14.5.6) of the Dirichlet problem
are equivalent for domains with boundary in the class M

l−1/p
p , then, from

Theorem 14.5.3, we obtain:

Theorem 14.5.4. Let any of the following conditions hold:
(α) h = 1, p(l − 1) ≤ n; ∂Ω ∈M l−1/p

p (δ);
(β) h = 1, p(l − 1) > n; ∂Ω ∈W l−1/p

p ;
(γ) h > 1, ∂Ω ∈ M

l−1/p
p and ∂Ω is locally defined by equations of the

form y = ϕ(x), where ϕ is a function with a small Lipschitz constant (for
p(l − 1) > n, this is equivalent to ∂Ω ∈W l−1/p

p ).
Then the operator

{P ; trPj} : W l
p(Ω)→W l−2h

p (Ω)×
h∏

j=1

W l+1−j−1/p
p (∂Ω)

is an isomorphism.

Proof. For h = 1 the result follows from Theorem 14.5.3.
Let h > 1. According to (2.3.8),

‖∇ϕ; Rn−1‖
MW

l−h−1/p
p

≤ c ‖∇ϕ; Rn−1‖α
MW

l−1−1/p
p

‖∇ϕ; Rn−1‖1−α
L∞

with α = (p(l − h)− 1)/(p(l − 1)− 1). Consequently, it follows from (γ) that

∂Ω ∈M l+1−h−1/p
p (δ) if p(l − h) ≤ n

and
∂Ω ∈W l+1−h−1/p

p if p(l − h) > n.

By Theorem 14.5.3 the proof is complete. ��
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Thus, by changing the formulation of the Dirichlet problem, we have ob-
tained its solvability in W l

p(Ω) under stricter assumptions on Ω (compare the
last theorem with Theorem 14.5.3). The exception is the second-order op-
erator P , i.e., h = 1, when admissible classes of domains coincide for both
formulations.

In the following section we discuss the necessity of the conditions in the
last theorem.

14.6 Necessity of Assumptions on the Domain

14.6.1 A Domain Whose Boundary is in M
3/2
2 ∩ C1 but does not

Belong to M
3/2
2 (δ)

In this subsection we give an example which shows that for p(l − 1) ≤ n and
for h = 1 the condition ∂Ω ∈M l−1/p

p (δ) in part (α) of Theorem 14.5.4 cannot
be replaced by the assumption that ∂Ω belongs to the class M l−1/p

p ∩ Cl−1.
To be precise, we construct a domain Ω with ∂Ω ∈M3/2

2 ∩ C1 for which the
problem

−∆u = f in Ω , tr u = 0 on ∂Ω (14.6.1)

is not solvable in W 2
2 (Ω) for all f ∈ L2(Ω). This means that the smallness of

‖∇ϕ; Rn−1‖
MW

1/2
2

in the definition of M3/2
2 (δ) is essential for the solvability

of the problem (14.6.1) in W 2
2 (Ω).

Let the domain Ω be specified in a neighborhood of O by the inequality
y > Cϕ(x), where C is a positive constant and

ϕ(x) = η(x, 0)|x1|/ log(1/|x1|).

Here and henceforth η is a function in C∞
0 (B1/2) with η = 1 on the ball B1/4.

We introduce the domain

ω = {ξ : x1 + ix2 : |ξ| < 1/2, x2 > C|x1|/ log(1/|x1|)}

and we denote by ζ(ξ) the conformal mapping of ω onto the half-disc {ζ :
Im ζ > 0, |ζ| < 1} with the fixed point ξ = 0. Let ξ = iρ exp(iθ) and let ω be
given in polar coordinates (ρ, θ) as

ω = {ξ : ρ < 1/2, |θ| < π/2 + ϕ(ρ)}.

It is easily checked that

ϕ(ρ) = C(log 1/ρ)−1 +O((log 1/ρ)−3) .

According to an asymptotic formula due to Warschawski [Wa],
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Im ζ(ξ) = c
(
exp

(
− π

∫ 1/2

ρ

dr

r(π + 2ϕ(r))

))(
cos

πθ

π + 2ϕ(ρ)
+ o(1)

)

= c ρ(log 1/ρ)2C/π
(

cos
πθ

π + 2ϕ(ρ)
+ o(1)

)
as ρ→ +0.

It is clear that, for C ≥ π/4,
∫

ω

(Im ζ(ξ))2

ρ4(log ρ)2
dx1dx2 =∞ . (14.6.2)

Next we need the following assertion.

Lemma 14.6.1. If h ∈W 2
2 (ω) ∩ W̊ 1

2 (ω), then
∫

ω

h2dx1dx2

ρ4(log ρ)2
≤ c ‖h;ω‖2W 2

2
. (14.6.3)

Proof. First we show that, for any g ∈W 1
2 (ω),

∫

ω

g2 dx1dx2

ρ2(log ρ)2
≤ c ‖g;ω‖2W 1

2
. (14.6.4)

Clearly, to prove (14.6.4) it suffices to assume that ω is the half-disc {ξ : ρ <
1/2, |θ| < π/2}. After integration of the Hardy inequality

∫ 1/2

0

g2 dρ

ρ(log ρ)2
≤ 4

∫ 1/2

0

(∂g
∂ρ

)2

ρ dρ

with respect to the variable θ, we arrive at (14.6.4). Putting g = ∂h/∂x1 and
g = ∂h/∂x2 into (14.6.4), we obtain

∫

ω

(∇h)2
dx1dx2

ρ2(log ρ)2
≤ c ‖h;ω‖2W 2

2
.

Let Cρ = {ξ : |ξ| = ρ}. Since h = 0 on ∂ω, it follows that for almost all
ρ > 0 ∫

ω∩Cρ

h2 dθ ≤ c

∫

ω∩Cρ

(∂h/∂θ)2 dθ ≤ c ρ2

∫

ω∩Cρ

(∇h)2 dθ ,

which leads to
∫

ω

h2 dx1dx2

ρ4(log ρ)2
≤ c

∫

ω

(∇h)2
dx1dx2

ρ2(log ρ)2
.

��



14.6 Necessity of Assumptions on the Domain 509

By (14.6.2) and (14.6.3), we see that the function u defined on Ω by

u(z) = η(2z)Im ζ(x1 + ix2)

does not belong to W 2
2 (Ω). On the other hand, u is in W̊ 1

2 (Ω) and satisfies
the equation

−∆u = f, f ∈ L2(Ω).

Consequently, the boundary value problem (14.6.1) is solvable in W̊ 2
2 (Ω) if

and only if C < π/4.
Obviously, ∂Ω is in the class C1. We show that ∂Ω ∈ M

3/2
2 , i.e. ∇ϕ ∈

MW
1/2
2 (Rn−1). With this aim in view, we verify that the gradient of the

function ψ defined as

ψ(z) = η(z)r log r , where r = (x2
1 + y2)1/2 ,

belongs to the space MW 1
2 (Rn) (cf. Theorem 8.7.1). Clearly, ∇ψ ∈ L∞(Rn)

and it remains to prove that

∇2ψ ∈M(W 1
2 (Rn)→ L2(Rn)).

In fact, for all u ∈W 1
2 (Rn),

‖u∇2ψ; Rn‖2L2
≤ c

∫

B1/2

∣∣∣ u

r log r

∣∣∣
2

dz ≤ c ‖u;B1‖2W 1
p
.

Thus, ∂Ω ∈M3/2
2 .

14.6.2 Necessary Conditions for Solvability of the Dirichlet
Problem

The next assertion, which follows directly from the Implicit Function Theorem
9.5.2, shows that the condition ∂Ω ∈W l−1/p

p with p(l−1) > n is necessary for
the solvability of the problem (14.5.6) in W l

p(Ω) for an operator P of higher
than the second order.

Theorem 14.6.1. Let Ω be a bounded Lipschitz domain and let l be an inte-
ger, l ≥ 2h, p(l − 1) > n, 1 < p < ∞, and h > 1. If there exists a solution
u ∈W l

p(Ω) of the problem

Pu = 0 in Ω, tru = 0, trP2u = 1, trPju = 0, j = 3, . . . , h , (14.6.5)

then ∂Ω ∈W l−1/p
p .

Under the additional assumption ∂Ω ∈ Cl−2,1, we can prove the necessity
of the inclusion ∂Ω ∈W l−1/p

p for p(l − 1) ≤ n.
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Theorem 14.6.2. Let ∂Ω be in the class Cl−2,1 and let l be an integer, l ≥ 2h,
p(l − 1) ≤ n, 1 < p < ∞, and h > 1. If there exists a solution u ∈ W l

p(Ω) of

problem (14.6.5), then ∂Ω ∈W l−1/p
p .

Proof. We use the same notation as in the formulation of Theorem 9.5.2. Since

∇xu, uy ∈W l−1
p.loc(U ∩ Ḡ) and ϕ ∈ Cl−2,1(Rn−1),

it follows that
∇xu ◦ λ, uy ◦ λ ∈W l−1

p.loc(κ(U ∩ Ḡ)).

Therefore, tr(∇xu ◦ λ) and tr(uy ◦ λ) belong to W
l−1−1/p
p,loc (ω). Now we note

that ∂Ω is in the class Ch and so, by the known coercive estimate for solutions
of the elliptic boundary value problem in the variational form (cf. [ADN1],
Sect. 15), we have u ∈ Wh

q (Ω) for any q < ∞. In particular, ∇u ∈ C(Ω̄).

Since the space (W l−1−1/p
p,loc ∩ L∞)(ω) is a multiplication algebra, the vector

function
∇ϕ = tr (∇xu ◦ λ)/tr (uy ◦ λ)

belongs to W
l−1−1/p
p,loc (ω). ��

We consider the case of the second-order operator P .

Theorem 14.6.3. Let l be an integer, l ≥ 2, 1 < p <∞, h = 1, and P (1) ≤ 0.
Let Ω be a domain with ∂Ω ∈ C1 and let the normal to ∂Ω satisfy the Dini
condition. If, for a nonpositive function f ∈ C∞

0 (Ω), there exists a solution
u ∈W l

p(Ω) of the problem

Pu = f in Ω, tr u = 0 , (14.6.6)

then ∂Ω ∈W l−1/p
p .

Proof. It is sufficient to note that the interior normal derivative at any point
of ∂Ω is positive by Giraud’s theorem (see, for example, [Mir], Sect. 3.5) and
then to duplicate the proof of Theorem 14.6.2. ��

14.6.3 Boundaries of the Class M l−1/p
p (δ)

Let Ω be a bounded Lipschitz domain. We denote by O an arbitrary point
of ∂Ω and introduce a neighborhood U of O such that Ω ∩ U = G ∩ U with
G = {(x, y) : x ∈ R

n−1, y > ϕ(x)}.
By Theorem 4.1.1, the norm of ∇ϕ in MW

l−1−1/p
p (Rn−1) is equivalent to

sup
e⊂Rn−1

‖Dp,l−1/pϕ; e‖Lp

[Cp,l−1−1/p(e)]1/p
+ ‖∇ϕ; Rn−1‖L∞ . (14.6.7)
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(Here we can restrict ourselves to compact sets e with d(e) ≤ 1.) Thus the
definition of the class M l−1/p

p (δ) means that the sum (14.6.7) is sufficiently
small.

The following assertion, whose proof is postponed to Sect. 14.7, gives a
local characterization of the class M l−1/p

p (δ).

Theorem 14.6.4. Let p(l − 1) ≤ n. The class M
l−1/p
p (δ) has the following

equivalent description. For any point O ∈ ∂Ω there exists a neighborhood U
and a special Lipschitz domain G = {z = (x, y) : x ∈ R

n−1, y > ϕ(x)} such
that U ∩Ω = U ∩G and

lim
ε→0

(
sup
e⊂Bε

‖Dl−1/p(ϕ;Bε); e‖Lp

[Cp,l−1−1/p(e)]1/p
+ ‖∇ϕ;Bε‖L∞

)
≤ c δ . (14.6.8)

Here Bε is the ball with centre at O and radius ε, c is a constant which depends
only on l, p, n, and

Dj−1/p(ϕ;Bε)(x) =
(∫

Bε

|∇j−1ϕ(x)−∇j−1ϕ(y)|p|x− y|−n+2−p dy
)1/p

.

Theorem 14.6.4 and properties (v), (vi) of the capacity formulated in
Sect. 9.6.1 lead to:

Corollary 14.6.1. (i) If n > p(l − 1) and

lim
ε→0

(
sup
e⊂Bε

‖Dl−1/p(ϕ;Bε); e‖Lp

(mesn−1e)[n−p(l−1)]/(n−1)p
+ ‖∇ϕ;Bε‖L∞

)
< c δ ,

then ∂Ω ∈M l−1/p
p (δ).

(ii) If n = p(l − 1) and

lim
ε→0

(
sup
e⊂Bε

‖Dl−1/p(ϕ;Bε); e‖Lp
| log(mesn−1e)|(p−1)/p + ‖∇ϕ;Bε‖L∞

)
< c δ ,

then ∂Ω ∈M l−1/p
p (δ).

Now we derive another test for the inclusion into M l−1/p
p (δ) involving the

Besov space Bm
q,p (cf. Corollary 14.6.2 below).

We say that the boundary of the Lipschitz domain Ω belongs to B
l−1/p
q,p

(l = 1, 2, . . . , ) if, for any point of ∂Ω, there exists a neighborhood in which
∂Ω is specified in Cartesian coordinates by a function ϕ satisfying

∫

Rn−1

(∫

Rn−1
|∇l−1ϕ(x+ h)−∇l−1ϕ(x)|q dx

)p/q

|h|2−n−p dh <∞ .
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Corollary 14.6.2. Let p(l− 1) ≤ n and let Ω be a bounded Lipschitz domain
with ∂Ω ∈ Bl−1/p

q,p where

q ∈ [p(n− 1)/(p(l − 1)− 1),∞] if p(l − 1) < n

and
q ∈ (p,∞] if p(l − 1) = n.

Further, let ∂Ω be locally defined in Cartesian coordinates by y = ϕ(x), where
ϕ is a function with a Lipschitz constant less than c δ. Then ∂Ω ∈M l−1/p

p (δ).

Proof. We have

‖Dl−1/p(ϕ;Bε); e‖pLp
≤
∫

Bε

|h|−n+2−p dh

∫

e

|∇l−1ϕ(x+ h)−∇l−1ϕ(x)|p dx

≤ (mesn−1e)1−p/q

∫

Bε

|h|−n+2+p dh

×
(∫

Bε

|∇l−1ϕ(x+ h)−∇l−1ϕ(x)|q dx
)p/q

.

Then the result follows from part (i) of Corollary 14.6.1. ��

Corollary 14.6.2 can be made sharper in the case p(l−1) = n, by virtue of
part (ii) of Corollary 14.6.1, if one uses the Orlicz space Ltp(log+ t)p−1 instead
of Lq, but we shall not go into this.

Setting q = ∞ in Corollary 14.6.2, we obtain a simple sufficient condi-
tion for the inclusion into M

l−1/p
p (δ) formulated in terms of the modulus of

continuity ωl−1(t) of ∇l−1ϕ:
∫

0

(ωl−1(t)
t

)p

dt <∞ . (14.6.9)

Since Bl−1/p
∞,p ⊂W

l−1/p
p , it follows that (14.6.9) is sufficient for ∂Ω ∈W l−1/p

p .
We show that (14.6.9) is in a sense a sharp condition for solvability of the

Dirichlet problems (14.6.5) and (14.6.6) in W l
p(Ω).

We have shown in 4.4.3 that, for any increasing function ω ∈ C[0, 1] satis-
fying the inequalities (4.4.15) as well as the condition

∫ 1

0

(ω(t)
t

)p

dt =∞,

one can construct a function ϕ on R
n−1 such that

(i) the continuity modulus of ∇l−1ϕ does not exceed c ω with c = const;
(ii) supp ϕ ⊂ Q2π, where Qd = {x ∈ R

n−1 : |xi| < d};
(iii) ϕ /∈W l−1/p

p (Rn−1).
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By Ω we denote a bounded domain in R
n such that

Ω ∩ {z : x ∈ Q3π, |y| < 1} = {z : x ∈ Q3π, ϕ(x) < y < 1} .

Further, we assume that ∂Ω is a surface of the class C∞ in the exterior of the
set {z : x ∈ Q2π, y = ϕ(x)}.

By Theorems 14.6.1–14.6.3 the problems (14.6.5), (14.6.6) for this Ω have
no solutions in W l

p(Ω).

Remark 14.6.1. Suppose that, for any point O ∈ ∂Ω, there exists a neighbor-
hood U such that U ∩Ω is Cl-diffeomorphic to the domain

{(x, y) : y > ϕ(x1, . . . , xn−s)}, 2 ≤ s ≤ n− 1,

i.e. ‘the dimensions of singularities of ∂Ω are not less than s − 1’. Then all
properties of domains with boundaries in M

l−1/p
p (δ) remain valid after the

change from n − 1 to n − s. This follows from the definition of the class
M

l−1/p
p (δ), from Theorem 8.7.1 and from the fact that, if ψ is defined in R

n

and ψ depends on n− s+ 1 variables only, the norms

‖ψ; Rn‖MW l
p
, ‖ψ; Rn−s+1‖MW l

p

are equivalent (see Proposition 2.7.2).

14.7 Local Characterization of M l−1/p
p (δ)

In this section we prove Theorem 14.6.4 which gives a local characterization
of surfaces in the class M l−1/p

p (δ). By Bε we mean the ball in R
n−1 of radius

ε centered at the origin.

14.7.1 Estimates for a Cutoff Function

Let η be an even function in C∞
0 (−1, 1) with η = 1 on (−1/2, 1/2). For z ∈ R

n

we define

ηε(z) =

⎧
⎨
⎩

η(|z|/ε), if p(l − 1) < n,

η(log ε/ log |z|), if p(l − 1) = n.

Clearly, supp ηε ⊂ Bε and

|∇jηε(z)| ≤

⎧
⎨
⎩

c ε−j , if p(l − 1) < n,

c | log |z||−1|z|−j , if p(l − 1) = n.
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Lemma 14.7.1. Let p(l − 1) = n. Then
∫

Bε

|∇jηε(x)−∇jηε(y)|p
|x− y|n−2+p

dy ≤ cj | log |x||−p|x|1−p−pj , (14.7.1)

where x ∈ Bε, j = 0, 1, ....

Proof. Since

Dαηε(x) = |x|−|α|
|α|∑
k=1

σk(log ε/ log |x|)(log ε)−k,

where σk ∈ C∞
0 (−1, 1), it follows that

|∇jηε(x)−∇jηε(y)| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cj | log ε|−1|x− y||x|−j−1

if |x|/2 ≤ |y| ≤ 2|x|,

cj | log ε|−1(max{|x|, |y|})−j

if j > 0 and |y| < |x|/2 or |x| < |y|/2,

cj | log ε|−1| log(|x|/|y|)|
if j = 0 and |y| < |x|/2 or |x| < |y|/2.

These inequalities imply that
∫

Bε

|∇jηε(x)−∇jηε(y)|p
|x− y|n−2+p

dy ≤ cj | log ε|−p|x|1−p−pj , (14.7.2)

which is equivalent to (14.7.1) for x ∈ Bε\Bε3 . Let x ∈ Bε3 . We then have
∫

Bε\Bε2

|δ0,j −∇jηε(y)|p
|y|n−2+p

dy ≤ c

∫

Bε

|∇jηε(x)−∇jηε(y)|p
|x− y|n−2+p

dy,

where δ0,j = 1 for j = 0 and δ0,j = 0 for j > 0. Consequently,
∫

Bε\Bε2

|δ0,j −∇jηε(y)|p
|y|n−2+p

dy ≤ c | log ε|−p|x|1−p−pj .

Setting |x| = ε3 in the last inequality and observing that

t3(p+pj−1)| log t|p

increases near t = 0, we obtain (14.7.1). ��
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14.7.2 Description of M l−1/p
p (δ) Involving a Cutoff Function

The aim of this subsection is to prove the following assertion on a local char-
acterization of M l−1/p

p (δ) involving a cutoff function. Hereafter, without loss
of generality, we assume that ϕ(0) = 0.

Lemma 14.7.2. A surface ∂Ω belongs to the class M l−1/p
p (δ) if and only if

for any O ∈ ∂Ω there exists a neighborhood U and a special Lipschitz domain
G = {z = (x, y) : x ∈ R

n−1, y > ϕ(x)} such that U ∩Ω = U ∩G and

lim sup
ε→0

‖∇(ηεϕ); Rn−1‖
MW

l−1−1/p
p

≤ c δ, (14.7.3)

where c is a constant which depends on l, p, n, and ηε is the function introduced
in the previous subsection.

Proof. Clearly, (14.7.3) implies that ∂Ω ∈ M l−1/p
p (δ). In order to obtain the

converse assertion, it is sufficient to derive the estimate

‖∇(ηεϕ); Rn−1‖
MW

l−1−1/p
p

≤ c ‖∇ϕ; Rn−1‖
MW

l−1−1/p
p

. (14.7.4)

Let Φ = T ϕ be an extension of ϕ, defined in Sect. 8.7.2. By Theorem 8.7.1,

‖∇(ηεϕ); Rn−1‖
MW

l−1−1/p
p

≤ c ‖∇(ηεΦ); Rn
+‖MW l−1

p
. (14.7.5)

For any function u ∈W l−1
p (Rn

+), we have

‖u∇(ηεΦ); Rn
+‖W l−1

p
≤ c

( l−1∑
j=0

‖Φ |∇j+1ηε| |∇l−1−ju|; Rn
+‖Lp

+
l−1∑
j=0

j∑
k=0

‖|∇j+1−kΦ| |∇kηε| |∇l−1−ju|; Rn
+‖Lp

)
. (14.7.6)

Let p(l− 1) < n. The first sum on the right-hand side of (14.7.6) is domi-
nated by

c ‖∇Φ; Rn
+‖L∞

l−1∑
j=0

‖r−j∇l−1−ju; Rn
+‖Lp

and the second one is not greater than

l−1∑
j=0

j∑
k=1

‖∇j+1−kΦ; Rn
+‖M(W j−k

p →Lp)‖r
−k∇l−1−ju; Rn

+‖W j−k
p

.

From Corollary 2.4.1 and the inclusion MW s
p (Rn

+) ⊂ MW t
p(Rn

+), s > t, it
follows that
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‖∇j+1−kΦ; Rn
+‖M(W j−k

p →Lp) ≤ c ‖∇Φ; Rn
+‖MW j−k

p

≤ c ‖∇Φ; Rn
+‖MW l−1

p
. (14.7.7)

Moreover, by Hardy’s inequality

‖r−k∇l−1−ju; Rn
+‖W j−k

p
≤ c ‖u; Rn

+‖W l−1
p

with p(l − 1) < n and l − 1 ≥ j ≥ k, we obtain

‖∇(ηεΦ); Rn
+‖MW l−1

p
≤ c ‖∇Φ; Rn

+‖MW l−1
p

. (14.7.8)

This, together with Theorem 8.7.2 and (14.7.5), implies (14.7.4) for p(l−1)<n.
Now let p(l− 1) = n. The first sum on the right-hand side of (14.7.6) does

not exceed

c ‖∇Φ; Rn
+‖L∞

(
| log ε|−1

l−2∑
j=0

‖r−j∇l−1−ju; Rn
+‖Lp

+ ‖rl−1(log r)−1u;B1/2 ∩ R
n
+‖Lp

)
,

and the second one is not greater than

l−1∑
j=0

j∑
k=0

‖∇j+1−kΦ; Rn
+‖M(W j−k

p →Lp)‖r
−k(log r)−1η1/2∇l−1−ju; Rn

+‖W j−k
p

.

Using Hardy’s inequality

‖r−k(log r)−1v; Rn
+‖W j−k

p
≤ c ‖v; Rn

+‖W j
p
,

where v is a function supported by B1/2, we obtain

‖r−k(log r)−1η1/2∇l−1−ju; Rn
+‖W j−k

p
≤ c ‖u; Rn

+‖W l−1
p

,

which, together with (14.7.7), gives (14.7.8). This, in combination with
Theorem 8.7.2 and (14.7.5), leads to (14.7.4) for p(l − 1) = n. The result
follows. ��

14.7.3 Estimate for s1

Clearly, if

sup
e⊂Rn−1

‖Dp,l−1/pϕ; e‖Lp

[Cp,l−1−1/p(e)]1/p
+ ‖∇ϕ,Rn−1‖L∞ ≤ c δ,

then (14.6.8) holds. So we must prove the sufficiency of (14.6.8).
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According to Theorem 4.1.1, the condition (14.7.3) means that

sup
e

‖Dp,l−1/p(ηεϕ); e‖Lp

[Cp,l−1−1/p(e)]1/p
+ ‖∇(ηεϕ);Bε‖L∞ < c δ (14.7.9)

for sufficiently small ε > 0. Hereafter, e is a compact set in R
n−1 with d(e) < 1.

Since ϕ(0) = 0, we derive from (14.7.1) that

‖∇(ηεϕ);Bε‖L∞ ≤ c ‖∇ϕ;Bε‖L∞ .

The first term in (14.7.9) is majorized by

sup
e⊂Rn−1

(‖Dp,l−1/p(ηεϕ); e\Bε‖Lp

[Cp,l−1−1/p(e\Bε)]1/p
+
‖Dp,l−1/p(ηεϕ); e ∩ Bε‖Lp

[Cp,l−1−1/p(e ∩ Bε)]1/p

)
. (14.7.10)

(If either e\Bε or e ∩ Bε has zero capacity, then the corresponding term is
equal to zero). Consequently, the supremum in (14.7.9) is not greater than
s1 + s2 + s3, where

s1 = sup
e⊂Rn−1\Bε

‖Dp,l−1/p(ηεϕ); e‖Lp

[Cp,l−1−1/p(e)]1/p
,

s2 = sup
e⊂Bε

(∫

e

dx

∫

Rn−1\Bε

|∇l−1(ηεϕ)(x)−∇l−1(ηεϕ)(y)|p
|x− y|n−2+p

dy
)1/p

[Cp,l−1−1/p(e)]1/p
,

s3 = sup
e⊂Bε

‖Dl−1/p(ηεϕ;Bε); e‖Lp

[Cp,l−1−1/p(e)]1/p
.

The goal of this subsection is to give an estimate for s1.

Lemma 14.7.3. If (14.6.8) holds, then s1 ≤ c δ for sufficiently small ε.

Proof. We have

sp
1 = sup

e⊂Rn−1\Bε

∫

Bε

|∇l−1(ηεϕ)(y)|pdy
∫

e

|x− y|2−n−pdx

Cp,l−1−1/p(e)
.

Let q = (n−1)/(p(l−1)−1) if p(l−1) < n, and let q ∈ [1,∞) if p(l−1) = n.
Since y ∈ supp ηε ⊂ Bε/2, it follows that

∫

e

|x− y|2−n−pdx ≤ (mesn−1e)1−1/q

(∫

Rn−1\Bε

|x− y|(2−n−p)qdx

)1/q

≤ c (mesn−1e)1−1/qε2−n−p+(n−1)/q. (14.7.11)



518 14 Regularity of the Boundary in Lp-Theory of Elliptic Problems

We use the inequalities

Cp,l−1−1/p(e) ≥
{

c (mesn−1e)1−1/q if p(l − 1) < n,

c (log(2n/mesn−1e))1−p if p(l − 1) = n.
(14.7.12)

Then, for p(l − 1) < n,
∫

e

|x− y|2−n−pdx ≤ c εp(l−2)+1−n(mesn−1e)1−1/q.

In the case p(l − 1) = n, we have

(log(2n/mesn−1e))p−1

∫

e

|x− y|2−n−pdx

≤ c (mesn−1e)1−1/q(log(2n/mesn−1e))p−1ε2−n−p+(n−1)/q. (14.7.13)

If mesn−1e ≤ εn−1, then the right-hand side is dominated by c ε1−p| log ε|p−1.
If mesn−1e > εn−1, then, setting q = 1 in (14.7.13), we obtain the same
majorant c ε1−p| log ε|p−1. Thus

sp
1 ≤

⎧
⎪⎪⎨
⎪⎪⎩

c εp(l−2)+1−n

∫

Bε

|∇l−1(ηεϕ)|pdy if p(l − 1) < n,

c ε1−p| log ε|p−1

∫

Bε

|∇l−1(ηεϕ)(y)|pdy if p(l − 1) = n.

In the case p(l − 1) < n, this implies that

sp
1 ≤ cεp(l−2)+1−n

(
ε(1−l)p

∫

Bε

|ϕ|pdy +
l−2∑
j=0

ε−jp

∫

Bε

|∇l−1−jϕ|pdy
)
.

We introduce the notation

〈v;Bε〉p,l−1−1/p = ‖Dl−1−1/p(v;Bε);Bε‖Lp

and use the inequality ∫

Bε

|∇l−2−jv|pdy

≤ c
(
εp(j+1)−1〈v;Bε〉pp,l−1−1/p + εp(j+2−l)

∫

Bε

|v|pdy
)
. (14.7.14)

Then

sp
1 ≤c

(
ε−p+1−n

∫

Bε

|ϕ|pdy + ε1−n

∫

Bε

|∇ϕ|pdy + εp(l−1)−n〈ϕ;Bε〉pp,l−1/p

)

≤c
(
εp(l−1)−n〈ϕ;Bε〉pp,l−1/p + ‖∇ϕ;Bε‖pL∞

)
,

which, together with (14.6.8), gives s1 ≤ cδ.
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Now let p(l − 1) = n. In the case l = 2, we have

sp
1 ≤ c ε1−p| log ε|p−1‖∇ϕ;Bε‖pL∞

(∫

Bε

|ηε|pdy +
∫

Bε

|y|p|∇ηε|pdy
)
.

Since ∫

Bε

|ηε|pdy ≤ c

∫

Bε

|y|p|∇ηε|pdy ≤ c εp−1| log ε|−p,

we obtain
sp
1 ≤ c | log ε|−1‖∇ϕ;Bε‖pL∞

.

Suppose that l > 2 and p(l − 1) = n. We write

sp
1 ≤ c ε1−p| log ε|p−1

(
| log ε|−p

∫

Bε

|y|(1−l)p|ϕ|pdy

+
l−2∑
j=1

| log ε|−p

∫

Bε

|y|−jp|∇l−1−jϕ|pdy +
∫

Bε

|ηε∇l−1ϕ|pdy
)
. (14.7.15)

The first term in brackets does not exceed

c εp−1| log ε|−p‖∇ϕ;Bε‖pL∞
. (14.7.16)

Using the inequality
∫

Bε

|y|−jp|∇l−2−jv|pdy ≤ c
(∫

Bε

|∇l−2v|pdy + εp(2−l)

∫

Bε

|v|pdy
)

with v = ∂ϕ/∂yi, we conclude that the sum with respect to j in (14.7.15) is
majorized by

c εp−1| log ε|−p
(
ε1−p

∫

Bε

|∇l−1ϕ|pdy + ‖∇ϕ;Bε‖pL∞

)
. (14.7.17)

We apply (14.7.14) with j = 0 to the vector function v = ∇ϕ. Then (14.7.17)
is not greater than

c εp−1| log ε|−p
(
〈ϕ : Bε〉pp,l−1/p + ‖∇ϕ;Bε‖pL∞

)
. (14.7.18)

Now we turn to an estimate for the last integral in (14.7.15). The inequality

‖w;Bε‖Lp
≤ c ε1−1/p〈w;Bε〉p,1−1/p

holds for all w defined on Bε and vanishing outside B(1−c)ε, c ∈ (0, 1). Hence,

ε1−p

∫

Bε

|ηε∇l−1ϕ|pdy ≤ c 〈∇l−1(ηεϕ);Bε〉pp,1−1/p
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≤ c
(
〈∇l−1ϕ;Bε〉pp,1−1/p+

∫

Bε

|∇l−1ϕ(x)|pdx
∫ |ηε(x)− ηε(y)|p
|x− y|n−2+p

dy
)
. (14.7.19)

According to Lemma 14.7.1,

∫ |ηε(x)− ηε(y)|p
|x− y|n−2+p

dy ≤ c | log ε|−p|x|1−p.

Therefore,

〈∇l−1(ηεϕ);Bε〉pp,1−1/p

≤ c
(
〈∇l−1ϕ;Bε〉pp,1−1/p + | log ε|−p

∫

Bε

|∇l−1ϕ(y)|p|y|1−pdy
)
.

Since p(l − 1) = n and l > 2, we see that p < n and Hardy’s inequality
∫

Bε

|v|p|y|1−pdy ≤ c
(
〈v;Bε〉pp,1−1/p + ε1−p

∫

Bε

|v|pdy
)

holds. Setting here ∇l−1ϕ as v, we get

〈∇l−1(ηεϕ);Bε〉pp,1−1/p

≤ c
(
〈ϕ;Bε〉pp,l−1/p + ε1−p| log ε|−p

∫

Bε

|∇l−1ϕ(y)|pdy
)
.

By (14.7.14), the last integral does not exceed

εp−1(〈ϕ;Bε〉pp,l−1/p + ‖∇ϕ;Bε‖pL∞
)

and, therefore,

〈∇l−1(ηεϕ);Bε〉pp,1−1/p ≤ c
(
〈ϕ;Bε〉pp,l−1/p + | log ε|−p‖ϕ;Bε‖pL∞

)
. (14.7.20)

Consequently,
∫

Bε

|ηε∇l−1ϕ|pdy ≤ c εp−1
(
〈ϕ;Bε〉pp,l−1/p + | log ε|−p‖∇ϕ;Bε‖pL∞

)
. (14.7.21)

Substituting (14.7.14), (14.7.18) and (14.7.21) into (14.7.15), we derive

sp
1 ≤ c

(
| log ε|p−1〈ϕ;Bε〉pp,l−1/p + ‖∇ϕ;Bε‖pL∞

)

which, together with (14.6.8), gives s1 ≤ cδ.

14.7.4 Estimate for s2

Lemma 14.7.4. If (14.6.8) holds, then s2 ≤ c δ for sufficiently small ε.
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Proof. Clearly,

sp
2 = sup

e⊂Bε

∫

e

|∇l−1(ηεϕ)|pdx
∫

Rn−1\Bε

|x− y|2−n−pdy

Cp,l−1−1/p(e)
.

Let p(l− 1) < n. By q we denote any number sufficiently close to p, such that
q > p. We have

sp
2 ≤ c sup

e⊂Bε

l−1∑
j=0

ε−(j+1)p+1

∫

e

|∇l−1−jϕ|pdx

Cp,l−1−1/p(e)

≤ c

l−1∑
j=0

ε−(j+1)p+1 sup
e⊂Bε

(mesn−1e)1−p/q

(∫

e

|∇l−1−jϕ|qdx
)p/q

Cp,l−1−1/p(e)
. (14.7.22)

From Lemma 1.3.1 and the equality

W l−1
p (Rn)|Rn−1 = W l−1−1/p

p (Rn−1),

it follows that

(∫

Rn−1
|u|qdµ

)p/q

≤ c sup
x∈Bε,ρ∈(0,ε)

[µ(Bρ(x))]p/q

Cp,l−1−1/p(Bρ)
‖u; Rn−1‖p

W
l−1−1/p
p

,

where µ is a measure with supp µ ⊂ Bε. Therefore

sup
e⊂Bε

[µ(e)]p/q

Cp,l−1−1/p(e)
≤ c sup

x∈Bε,ρ∈(0,ε)

[µ(Bρ(x))]p/q

Cp,l−1−1/p(Bρ)
. (14.7.23)

This estimate and (14.7.22) imply that

sp
2 ≤ c

l−1∑
j=0

ε−(j+1)p+1+(n−1)(1−p/q)

× sup
x∈Bε,ρ∈(0,ε)

((∫

Bρ(x)

|∇l−1−jϕ|qdy
)p/q

ρp(l−1)−n
)
.

Since −(j + 1)p+ 1 + (n− 1)(1− p/q) ≤ (n− 1)(1− p/q) + 1− p < 0 for any
q sufficiently close to p, we obtain

sp
2 ≤ c

l−2∑
j=0

sup
x∈Bε,ρ∈(0,ε)

(∫

Bρ(x)

|∇l−1−jϕ|qdyρq(l−j−2)+1−n
)p/q

+c ‖∇ϕ;Bε‖pL∞
.
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We use the inequality

ρl−j−2−(n−1)/q
(∫

Bρ

|∇l−2−jv|qdy
)1/q

≤ c ρl−1−1/p−(n−1)/p〈v;Bρ〉p,l−1−1/p + c
(
ρ1−n

∫

Bρ

|v|pdy
)1/p

, (14.7.24)

j = 0, · · ·, l−2, which follows by dilation from the continuity of the embedding
of W l−1−1/p

p (B1) into W l−2−j
q (B1). Then

sp
2 ≤ c sup

x∈Bε,ρ∈(0,ε)

〈∇ϕ;Bρ(x)〉pp,l−1−1/p

ρn−1−p(l−1−1/p)
+ c ‖∇ϕ;Bε‖pL∞

. (14.7.25)

Let p(l − 1) = n. By Hölder’s inequality and (14.7.23 ) we have

sp
2 ≤ c ε1−p sup

e⊂Bε

(mesn−1e)1−p/q

(∫

e

|∇l−1(ηεϕ)|qdx
)p/q

Cp,l−1−1/p(e)

≤ c ε1−p+(n−1)(1−p/q) sup
x∈Bε,ρ∈(0,ε)

| log ρ|p−1
(∫

Bρ(x)

|∇l−1(ηεϕ)|qdy
)p/q

.

Hence

sp
2 ≤ c sup

x∈Bε,ρ∈(0,ε)

[
ρ1−p+(n−1)(1−p/q)| log ρ|−1

×
l−2∑
j=1

(∫

Bρ(x)

|y|−jq|∇l−1−jϕ(y)|qdy
)p/q

+ ρ1−p+(n−1)(1−p/q)| log ρ|−1
(∫

Bρ(x)

|y|−(l−1)q|ϕ(y)|qdy
)p/q

+ ε1−p+(n−1)(1−p/q)| log ρ|p−1
(∫

Bρ(x)

|ηε∇l−1ϕ|qdy
)p/q]

. (14.7.26)

We apply the following variant of Hardy’s inequality:

(∫

Bρ

|y|−jq|∇l−2−jv|qdy
)1/q

≤ c ρ1−1/p+(n−1)(1/q−1/p)〈v;Bρ〉p,l−1−1/p

+ c ρ2−l+(n−1)(1/q−1/p)
(∫

Bρ

|v|pdy
)1/p

, j = 1, · · · , l − 2,

with ∇ϕ instead of v. Then the first term on the right-hand side of (14.7.26)
is dominated by
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c | log ρ|−1
(
〈ϕ;Bρ(x)〉pp,l−1/p + ‖∇ϕ;Bρ(x)‖pL∞

)

≤ c
(
〈ϕ;B2ε〉pp,l−1/p + ‖∇ϕ;B2ε‖pL∞

)
.

Obviously, the second term on the right-hand side of (14.7.26 ) does not exceed

c ρ1−p+(n−1)(1−p/q)| log ρ|−1
(∫

Bρ(x)

|y|−(l−2)qdy
)p/q

‖∇ϕ;Bρ(x)‖pL∞

≤ c | log ρ|−1‖∇ϕ;Bρ(x)‖pL∞
.

We turn to an estimate of the third term on the right-hand side of (14.7.26).
Let s be a number sufficiently close to q with s > q. By Hölder’s inequality
this term is majorized by

ε1−p+(n−1)(1−p/q)ρ(n−1)p(1/q−1/s)| log ρ|p−1
(∫

Bρ(x)

|ηε∇l−1ϕ|sdy
)p/s

≤ ε1−p+(n−1)(1−p/s)| log ε|p−1
(∫

Bε

|ηε∇l−1ϕ|sdy
)p/s

. (14.7.27)

The inequality

‖w;Bε‖Ls
≤ c ε(n−1)(1/s−1/p)+1−1/p〈w;Bε〉p,1−1/p

holds for all w, defined on Bε and vanishing outside B(1−c)ε, c ∈ (0, 1). Hence
the right-hand side of (14.7.27) is not greater than

c | log ε|p−1〈ηε∇l−1ϕ;Bε〉pp,1−1/p.

By (14.7.21) this last term does not exceed

c | log ε|p−1
(
〈ϕ;Bε〉pp,1−1/p + | log ε|−p‖∇ϕ;Bε‖pL∞

)
.

Using the estimates which were obtained for three terms in (14.7.26), we
arrive at

sp
2 ≤ c

(
sup

x∈Bε,ρ∈(0,ε)

| log ρ|p−1〈ϕ;Bρ(x)〉pp,l−1/p + ‖∇ϕ;B2ε‖pL∞

)
.

The result follows from (14.6.8). ��

14.7.5 Estimate for s3

Lemma 14.7.5. If (14.6.8) holds, then s3 ≤ c δ for sufficiently small ε.
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Proof. We have

‖Dl−1/p(ηεϕ;Bε); e‖pLp
≤ c

( ∑
|α|+|β|=l−1

|α|>0

‖D1−1/p(DαηεD
βϕ;Bε); e‖pLp

+‖Dl−1/p(ϕ;Bε); e‖pLρ
+
∫

e

|∇l−1ϕ(x)|pdx
∫

Bε

|ηε(x)− ηε(y)|p
|x− y|n−2+p

dy
)
. (14.7.28)

Clearly,

‖D1−1/p(DαηεD
βϕ;Bε); e‖pLp

≤ c
(∫

e

|Dβϕ(x)|pdx
∫

Bε

|Dαηε(x)−Dαηε(y)|p
|x− y|n−2+p

dy

+
∫

Bε

|Dαηε(y)|pdy
∫

e

|Dβϕ(x)−Dβϕ(y)|p
|x− y|n−2+p

dx
)
. (14.7.29)

Let p(l − 1) < n. Using (14.7.2), we obtain

sp
3 ≤ c sup

e⊂Bε

l−1∑
j=0

ε−(j+1)p+1

∫

e

|∇l−1−jϕ(x)|pdx

Cp,l−1−1/p(e)

+ c sup
e⊂Bε

l−1∑
j=0

ε−jp

∫

e

dx

∫

Bε

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dy

Cp,l−1−1/p(e)
. (14.7.30)

The first supremum is bounded by the right-hand side of (14.7.25) (see the
beginning of the proof of Lemma 14.7.4).

Let q denote a number sufficiently close to p and such that q > p. By
Hölder’s inequality and (14.7.23), the second supremum on the right-hand
side of (14.7.30) does not exceed

c sup
ξ∈Bε,ρ∈(0,ε)

l−1∑
j=1

ε−jp+n(1−p/q)ρp(l−1)−n

×
[
ε(p−q)/p

∫

Bρ(ξ)

(∫

Bε

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dy
)q/p

dx
]p/q

+ c sup
e⊂Bε

‖Dl−1/p(ϕ;Bε); e‖pLp

Cp,l−1−1/p(e)
. (14.7.31)

We note that for j = 1, · · · , l − 2

ε(p−q)/p

∫

Bρ(ξ)

dx
(∫

Bε

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dy
)q/p
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≤ ε(p−q)/p

∫

Bρ(ξ)

dx

∫

Bε

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|q
|x− y|n−2+q

dy
(∫

Bε

dy

|x− y|n−2

)(q−p)/q

≤c
(∫

Bρ(ξ)

dx

∫

B2ρ(ξ)

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|q
|x− y|n−2+q

dy

+
∫

Bε\B2ρ(ξ)

∫

Bρ(ξ)

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|q
|x− y|n−2+q

dx dy
)
. (14.7.32)

The first term on the right-hand side of (14.7.32) is dominated by

c 〈∇ϕ;B2ρ(ξ)〉qq,l−1−j−1/q

which does not exceed

c
(
ρ( 1

q − 1
p )n+j〈∇ϕ;B2ρ(ξ)〉p,l−1−1/p+ρ−l+1+j+ n

q ‖∇ϕ;B2ρ(ξ)‖L∞

)q
. (14.7.33)

Since |x− y| > ρ in the second term on the right-hand side of (14.7.32), this
term is majorized by

c

∫

B2ε\Bρ

dz

|z|n−2+q

∫

Bρ(ξ)

(
|∇l−1−jϕ(x+ z)|q + |∇l−1−jϕ(x)|q

)
dx

≤ c

∫

B2ε\Bρ

(‖∇l−1−j ;Bρ(ξ + z)‖qLq

|z|n−2+q
+ c ρ1−q‖∇l−1−j ;Bρ(ξ + z)‖qLq

)
dz

which does not exceed

c sup
ξ∈B3ε

(
ρq[n(1/q−1/p)+j]〈ϕ;Bρ(ξ)〉qp,l−1/p + ρ(−l+1+j)q+n‖∇ϕ;Bρ(ξ)‖qL∞

)
.

Note that n(1/q − 1/p) + j > 0 for j = 1, . . . , l − 2, because q is close to
p. Hence, the terms in the second sum in (14.7.30) with j = 1, . . . , l − 2 are
estimated by

c sup
ξ∈B3ε,ρ∈(0,ε)

ε−jp+n(1−p/q)
(
ρq[n(1/q−1/p)+j]ρp(l−1)−n〈ϕ;Bρ(ξ)〉pp,l−1/p

+ρjp+n(p/q−1)‖∇ϕ;Bρ(ξ)‖pL∞

)

≤ c sup
ξ∈B3ε,ρ∈(0,ε)

(
ρp(l−1)−n〈ϕ;Bρ(ξ)〉pp,l−1/p + ‖∇ϕ;Bρ(ξ)‖pL∞

)
.

The term with j = l − 1 in (14.7.31) has the majorant

ε−(l−1)p+(n−1)(1−p/q)ρp(l−1)−n‖∇ϕ;B2ε‖pL∞

[∫

Bρ(ξ)

dx
(∫

Bε

dy

|x− y|n−2

)q/p]p/q

≤ c ε1−(l−1)p+(n−1)(1−p/q)ρp(l−1)−n+(n−1)p/q‖∇ϕ;B2ε‖pL∞
≤ c ‖∇ϕ;B2ε‖pL∞

.
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Finally, the second supremum in (14.7.30) is dominated by

c sup
ξ∈Bε,ρ∈(0,ε)

((ρp(l−1)−n〈ϕ;B2ρ(ξ)〉pp,l−1/p + ‖∇ϕ;B2ρ(ξ)‖pL∞
)

+ c sup
e⊂Bε

‖Dl−1/p(ϕ;Bε); e‖pLp

Cp,l−1−1/p(e)
.

Taking into account the estimate for the first supremum in (14.7.30), obtained
previously, we complete the proof for the case p(l − 1) < n.

Let p(l − 1) = n. We have

‖Dl−1/p(ηεϕ;Bε); e‖pLp
≤ σ1 + σ2 + σ3 + c ‖Dl−1/p(ϕ;Bε); e‖pLp

, (14.7.34)

where

σ1 = c
l−2∑
j=0

∫

e

|∇l−1−jϕ(x)|pdx
∫

Bε

|∇jηε(x)−∇jηε(y)|p
|x− y|n−2+p

dy,

σ2 = c

l−2∑
j=1

∫

Bε

|∇jηε(y)|pdy
∫

e

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dx,

σ3 = c

∫

e

dx

∫

Bε

|ϕ(x)∇l−1ηε(x)− ϕ(y)∇l−1ηε(y)|p
|x− y|n−2+p

dy.

By (14.7.2),
∫

Bε

|∇jηε(x)−∇jηε(y)|p
|x− y|n−2+p

dy ≤ c | log |x||−p|x|1−p(j+1).

Therefore,

σ1 ≤ c

l−2∑
j=0

∫

e

|∇l−1−jϕ(x)|p|x|1−p(j+1)| log |x||−pdx

≤ c

l−3∑
j=0

(∫

Bε

|∇l−1−jϕ(x)|p(n−1)/(n−p(j+1))dx
)(n−p(j+1))/(n−1)

×
(∫

e

dx

|x|n−1| log |x||p(n−1)/(p(j+1)−1)

)(p(j+1)−1)/(n−1)

+ c ‖∇ϕ;Bε‖pL∞

∫

e

|x|1−n| log |x||−pdx.

The function tn−1| log t|α increases near t = 0. Hence, among all sets e with
a fixed mesn−1, the integral

∫

e

|x|1−n| log ||−αdx
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attains its maximum at a ball with centre x = 0. Consequently, for α > 1, we
have ∫

e

|x|1−n| log |x||−αdx ≤ c | log mesn−1e|1−α (14.7.35)

and hence,

σ1 ≤ c

l−3∑
j=0

| log mesn−1e|1−p−(n−p(j+1))/(n−1)‖∇l−1−jϕ;Bε‖pLp(n−1)/(n−p(j+1))

+ c | log mesn−1e|1−p‖∇ϕ;Bε‖pL∞
. (14.7.36)

This and (14.7.24) with q = p(n− 1)/[n− p(j + 1)], ρ = ε and ∇ϕ as v yield

σ1 ≤ c | log mesn−1e|1−p
(
〈ϕ;Bε〉pp,l−1/p + ‖∇ϕ;Bε‖pL∞

)
.

We now estimate the sum σ2. Note that
∫

e

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dx

≤ c
(∫

{x∈e:|x|>2|y|}
|∇l−1−jϕ(x)|p dx

|x|n−2+p

+ |∇l−1−jϕ(y)|p
∫

{x∈e:|x|>2|y|}

dx

|x|n−2+p

+
∫

{x∈e:|x|≤2|y|}

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dx
)
.

Therefore, σ2 ≤ σ
(1)
2 + σ

(2)
2 + σ

(3)
2 , where

σ
(1)
2 = c

l−2∑
j=1

∫

e

|∇l−1−jϕ(x)|p dx

|x|n−2+p

∫

B|x|/2

|∇jηε(y)|pdy,

σ
(2)
2 = c

l−2∑
j=1

∫

e

dx

|x|n−2+p

∫

B|x|/2

|∇l−1−jϕ(y)|p|∇jηε(y)|pdy,

σ
(3)
2 = c

l−2∑
j=1

∫

Bε

|∇jηε(y)|pdy
∫

{x∈e:|x|≤2|y|}

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dx.

Using the definition of ηε given in Sect. 14.7.1, we obtain

σ
(1)
2 ≤ c

l−2∑
j=1

∫

e

|∇l−1−jϕ(x)|p
|x|n−2+p

dx

∫

B|x|/2

| log |y||−p|y|−jpdy

≤ c

l−2∑
j=1

∫

e

|∇l−1−jϕ(x)|pdx
|x|(j+1)p−1| log |x||p .
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A majorant for this sum was found when estimating σ1. It is equal to

c | log mesn−1e|1−p
(
〈ϕ;B2ε〉pp,l−1/p + ‖∇ϕ;B2ε‖pL∞

)
. (14.7.37)

Clearly,

σ
(2)
2 ≤ c

l−1∑
j=1

∫

e

dx

|x|n−2+p

∫

B|x|/2

|∇l−1−jϕ(y)|p|y|−jp| log |y||−pdy

≤ c

l−2∑
j=1

∫

e

dx

|x|n−2+p| log |x||p
∫

B|x|/2

|∇l−1−jϕ(y)|p|y|−jpdy.

In view of the inequality
∫

B|x|/2

|∇l−1−jϕ(y)|p|y|−jpdy ≤ c |x|p−1
(
〈ϕ;B|x|/2〉pp,l−1/p + ‖∇ϕ;B|x|/2‖pL∞

)

we have

σ
(2)
2 ≤ c

∫

e

dx

|x|n−1| log |y||p
(
〈ϕ;Bε〉pp,l−1/p + ‖∇ϕ;Bε‖pL∞

)
.

This inequality, together with (14.7.35), gives (14.7.37) as a majorant of σ(2)
2 .

The value σ(3)
2 does not exceed

c

l−2∑
j=1

∫

Bε

dx

|y|jp| log |y||p
∫

{x∈e:|x|≤2|y|}

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dx.

Changing the order of integration and using the monotonicity of tjp| log t|p
near t = 0, we find that

σ
(3)
2 ≤ c

l−1∑
j=1

∫

e

dx

|x|jp| log |x||p
∫

Bε

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dy.

We apply Hölder’s inequality and (14.7.35). Then, for qj = (n−1)/(n−1−jp),

σ
(3)
2 ≤ c

l−2∑
j=1

(∫

e

|x|1−n| log |x||(1−n)/jdx
)jp/(n−1)

×
[∫

Bε

(∫

Bε

|∇l−1−jϕ(x)−∇l−1−jϕ(y)|p
|x− y|n−2+p

dy
)qj

dx
]1/qj

≤ c

l−2∑
j=1

| log mesn−1e|1−p−1/qj

×
[∫

Bε

(∫

Bε

|∇l−1−jϕ(x+ h)−∇l−1−jϕ(x)|p dh

|h|n−2+p

)qj

dx
]1/qj

.
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Now, by Minkowski’s inequality,

σ
(3)
2 ≤ c | log mesn−1e|1−p

×
l−1∑
j=1

∫

Bε

(∫

Bε

|∇l−1−jϕ(x+ h)−∇l−1−jϕ(x)|pqjdx
)1/qj dh

|h|n−2+p
.

Since

W l−1−1/p
p (Rn−1) ⊂ Bl−j−1−1/p

pqj ,p (Rn−1) with j = 1, · · · , l − 2,

(see [Bes] or [Tr3], Sect. 2.8.1), it follows that
∫

Bε

(∫

Bε

|∇l−2−jv(x+ h)−∇l−2−jv(x)|pqjdx
)1/qj dh

|h|n−2−p

≤ c (〈v;B3ε〉pp,l−1−1/p + ε1−n‖v;B3ε‖pL∞
).

Therefore,

σ
(3)
2 ≤ c | log mesn−1e|1−p

(
〈ϕ;B3ε〉pp,l−1/p + ‖∇ϕ;B3ε‖pL∞

)
.

Taking into account the estimates for σ(1)
2 and σ(2)

2 which were obtained above,
we find that σ2 is bounded from above by the right-hand side of the last
inequality.

To obtain an estimate for σ3 we note that
∫

e

dx

∫

B2|x|\B|x|/2

|ϕ(x)∇l−1ηε(x)− ϕ(y)∇l−1ηε(y)|p
dy

|x− y|n−2+p

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

|x|(l−1)p| log |x||p
∫

B2|x|

dy

|x− y|n−2

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

|x|n−1| log |x||p . (14.7.38)

Moreover,
∫

e

dx

∫

B|x|/2

|ϕ(x)∇l−1ηε(x)− ϕ(y)∇l−1ηε(y)|p
dy

|x− y|n−2+p

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

∫

B|x|/2

(|x|2−l| log |x||−1 + |y|2−l| log |y||−1)p

|x− y|n−2+p
dy

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

|x|n−2+p

∫

B|x|/2

dy

|y|n−p| log |y||p

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

|x|n−1| log |x||p . (14.7.39)
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In the same way we obtain
∫

e

dx

∫

Rn−1\B2|x|

|ϕ(x)∇l−1ηε(x)− ϕ(y)∇l−1ηε(y)|p
dy

|x− y|n−2+p

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

∫

Rn−1\B2|x|

(|x|2−l| log |x||−1 + |y|2−l| log |y||−1)p

|x− y|n−2+p
dy

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

|x|(l−2)p| log |x||p
∫

Rn−1\B2|x|

dy

|y|n−2+p

≤ c ‖∇ϕ;Bε‖pL∞

∫

e

dx

|x|n−1| log |x||p . (14.7.40)

Adding the estimates (14.7.38) – (14.7.40) and applying (14.7.35), we arrive at

σ3 ≤ c | log mesn−1e|1−p‖∇ϕ;Bε‖pL∞
.

Now from (14.7.34) and the estimates for σ1, σ2, σ3, it follows that

‖Dl−1/p(ηεϕ;Bε); e‖pLp
≤ c | log mesn−1e|1−p

(
〈ϕ;B3ε〉pp,l−1/p

+ ‖∇ϕ;B3ε‖pL∞

)
+ c ‖Dl−1/p(ϕ;Bε); e‖pLp

.

This, together with (14.7.31), gives the estimate

sp
3 ≤ c

(
〈ϕ;B3ε〉pp,l−1/p + ‖∇ϕ;B3ε‖pL∞

+ sup
e⊂Bε

‖Dl−1/p(ϕ;Bε); e‖pLp

Cp,l−1−1/p(e)

)

which together with (14.6.8) gives s3 ≤ c δ. ��

Proof of Theorem 14.6.4. Lemmas 14.7.3–14.7.5 and the inequality
(14.7.10) imply that (14.7.9) holds for sufficiently small ε. As was pointed
out at the beginning of Sect. 14.7.3, the estimate (14.7.9) is equivalent to the
inclusion ∂Ω ∈M l−1/p

p (δ). The result follows.

Remark 14.7.1. The results of the present chapter were obtained in [MSh10].
Filonov applied these results to the study of the Maxwell operator in Lipschitz
domains [Fil].
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Multipliers in the Classical Layer Potential
Theory for Lipschitz Domains

In this chapter we give applications of Sobolev multipliers to the question
of higher regularity in fractional Sobolev spaces of solutions to boundary in-
tegral equations generated by the classical boundary value problems for the
Laplace equation in and outside a Lipschitz domain. Since the sole Lipschitz
graph property of ∂Ω does not guarantee higher regularity of solutions, we are
forced to select an appropriate subclass of Lipschitz domains whose descrip-
tion involves a space of multipliers. For domains of this subclass we develop
a solvability and regularity theory analogous to the classical one for smooth
domains. We also show that the chosen subclass of Lipschitz domains proves
to be the best possible in a certain sense. We end the chapter with a brief
discussion of boundary integral equations of linear elastostatics.

15.1 Introduction

We study the internal and external Dirichlet problems

∆u+ = 0 in Ω, tru+ = Φ+ on ∂Ω, (D+)

and
∆u− = 0 in R

n\Ω, tru− = Φ− on ∂Ω,

u−(x) = O(|x|2−n) as |x| → ∞, (D−)

where the boundary trace is denoted by tr, as well as the internal and external
Neumann problems

∆v+ = 0 in Ω,
∂v+

∂ν
= Ψ+ on ∂Ω, (N+)

and
∆v− = 0 in R

n\Ω, ∂v−
∂ν

= Ψ− on ∂Ω,

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 531
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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v−(x) = O(|x|2−n) as |x| → ∞, (N−)

where ν stands for the outer normal with respect to Ω.
In what follows, we exclude the case n = 2, which will simplify the presen-

tation. The changes required in formulations, in comparison with dimensions
n > 2, are the same as in the logarithmic potential theory for smooth con-
tours. Our proofs, given for n > 2, apply to the two-dimensional case after
minor changes.

A classical method for solving the problems (D±) and (N±) is representa-
tion of their solutions using the double layer potential

Dσ(z) =
∫

∂Ω

∂

∂νζ
Γ (ζ − z)σ(ζ)dsζ , z ∈ R

n\∂Ω,

and the single layer potential

Sρ(z) =
∫

∂Ω

Γ (ζ − z) ρ(ζ)dsζ , z ∈ R
n\∂Ω,

where Γ is the fundamental solution of ∆ with singularity at the origin.
Putting u± = Dσ± and v± = Sρ±, one arrives at the boundary integral
equations (

± 1
2I +D

)
σ± = Φ±, (2±)

and (
∓ 1

2I +D∗) ρ± = Ψ±, (3±)

where D∗ is the adjoint of D given by

D∗ρ(z) =
∫

∂Ω

∂

∂νz
Γ (ζ − z) ρ(ζ)dsζ .

Looking for solutions of the problems (D±) and (N±) with boundary data
Φ± = Φ and Ψ± = Ψ in the form u± = Sρ and v± = Dσ, one obtains the
integral equations on ∂Ω

Sρ = Φ, (15.1.1)

and
∂

∂ν
Dσ = Ψ. (15.1.2)

Let ! be positive and noninteger. In the case p(! − 1) > n − 1, our sole
restriction on Ω is the inclusion of its boundary in the class W �

p , which means
that every function ϕ in (14.1.3) belongs to W �

p(Rn−1).
In the opposite case p(! − 1) ≤ n − 1, we assume that ∂Ω belongs to the

class M �
p if every point O ∈ ∂Ω has a neighborhood U such that Ω∩U is given

by (14.1.3) with ϕ ∈ C0,1(Rn−1) subject to

∇ϕ ∈MW �−1
p (Rn−1)
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(here and elsewhere we do not differ between spaces of scalar and vector-
valued functions in our notation). Furthermore, the surface ∂Ω is said to be
in the class M �

p(δ) if
‖∇ϕ; Rn−1‖MW �−1

p
≤ δ, (15.1.3)

where δ is a positive number. Obviously,

M �
p =

⋃
δ>0

M �
p(δ).

These definitions are in accordance with those in Sect. 14.3.1, where we dealt
with the particular case ! = l − 1/p with integer l.

Several conditions, either necessary or sufficient for ∂Ω ∈ M �
p(δ), will be

discussed in Sect. 15.5. In particular, the inclusion

∂Ω ∈M �
p(0) := ∩

δ>0
M �

p(δ)

is guaranteed by the condition
∫ 1

0

(
ωq(∇[�]ϕ, t)

t{�}

)p
dt

t
<∞, (15.1.4)

where ωq(∇kϕ, t) is the Lq continuity modulus of the vector

∇kϕ = {∂αϕ/∂xα1
1 . . . , ∂x

αn−1
n−1 }

with α1+· · ·+αn−1 = |α| = k, and q is any number satisfying (n−1)/(!−1) ≤
q ≤ ∞ for p(!− 1) < n− 1 and p < q ≤ ∞ for p(!− 1) = n− 1.

Clearly, any surface in the class C�+ε, ε > 0, belongs to M �
p(0). However,

there are surfaces in C� which are not in M �
p. Note that ∂Ω ∈ M �

p may have
vertices and edges on ∂Ω in the case p(!− 1) < n− 1.

We formulate our main result concerning the boundary integral equations
(2±)-(15.1.2). In the statement of this result and in the sequel, the notation
W s

p (∂Ω) � g with g ∈ (W s
p (∂Ω))∗ stands for the subspace of functions ψ ∈

W s
p (∂Ω) such that ∫

∂Ω

ψgds = 0.

Theorem 15.1.1. Let n > 2, p ∈ (1,∞), and let ! be a noninteger with ! > 1.
Suppose that ∂Ω is connected, ∂Ω ∈W �

p for p(!−1) > n−1 and ∂Ω ∈M �
p(δ)

with some δ = δ(n, p, !) > 0 for p(!−1) ≤ n−1. Then the following assertions
hold.

(i) The operator 1
2I +D is an isomorphism of W �

p(∂Ω).
(ii) The operator 1

2I +D∗ is an isomorphism of W �−1
p (∂Ω).

(iii) The operator S maps W �−1
p (∂Ω) isomorphically onto W �

p(∂Ω).
(iv) The operator (∂/∂ν)D maps W �

p(∂Ω) continuously into W �
p(∂Ω)� 1.
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There exists a continuous inverse
(
∂

∂ν
D

)−1

: W �−1
p (∂Ω)� 1→W �

p(∂Ω)� 1.

(v) There exists a continuous inverse

(
− 1

2I +D
)−1 : W �

p(∂Ω)� 1→W �
p(∂Ω)� ∂P

∂ν
,

where P is the harmonic capacitary potential of Ω and

∂P/∂ν ∈W �−1
p (∂Ω)∩(W �

p(∂Ω))∗.

The equality
(
− 1

2I +D
)
1 = 0 holds.

(vi) There exists a continuous inverse

(
− 1

2I +D∗)−1 : W �−1
p (∂Ω)� 1→W �−1

p (∂Ω)� 1.

The equality (
−1

2
I +D∗

)
∂P/∂ν = 0

holds.

Counterexamples in Sect. 15.6 show that Theorem 15.1.1 fails if M �
p(δ) is

replaced by M �
p.

The invertibility properties of the operators

±1
2
I +D, ±1

2
I +D∗, S, and (∂/∂ν)D

in Theorem 15.1.1 result from solvability properties of the problems (D±) and
(N±) collected in the next Theorem 15.1.2 which is of independent interest.
The continuity properties of D, D∗, S, and (∂/∂ν)D stated in Theorem 15.1.1
are deduced from the part of Theorem 15.1.2 concerning the transmission
problem

∆w+ = 0 in Ω, ∆w− = 0 in R
n\Ω,

tr w+ − tr w− = Φ,
∂w+

∂ν
− ∂w−

∂ν
= Ψ on ∂Ω,

w−(x) = O(|x|2−n) as |x| → ∞. (T )

In the formulation of Theorem 15.1.2 and in the sequel, we use the weighted
Sobolev space W k,α

p (Ω) endowed with the norm

‖u;Ω‖W k,α
p

=
(∫

Ω

(dist(z, ∂Ω))pα|∇ku(z)|pdz
)1/p

+ ‖u,Ω‖Lp
. (15.1.5)



15.1 Introduction 535

Also, W k,α
p,loc(R

n\Ω) stands for the space of functions subject to

‖u;B\Ω‖W k,α
p

<∞

for an arbitrary open ball B containing Ω.

Theorem 15.1.2. Let n > 2, p ∈ (1,∞), and α = 1 − {!} − 1/p, where ! is
a noninteger with ! > 1. Suppose that ∂Ω ∈ W �

p for p(! − 1) > n − 1, and
∂Ω ∈M �

p(δ) with some δ = δ(n, p, !) for p(!− 1) ≤ n− 1. Then
(i) For every Φ+ ∈ W �

p(∂Ω) there exists a unique solution of the problem

(D+), u+ ∈W [�]+1,α
p (Ω), and

‖u+;Ω‖
W

[�]+1,α
p

≤ c ‖Φ+; ∂Ω‖W �
p
. (15.1.6)

This solution is represented uniquely as (Dσ+)+ with σ+ ∈ W �
p(∂Ω) subject

to equation (2+). Moreover, u+ can be represented uniquely in the form Sρ
with ρ ∈W �−1

p (∂Ω) subject to equation (15.1.1).
(ii) For every Φ− ∈W �

p(∂Ω) there exists a unique solution of the problem

(D−), u− ∈W [�]+1,α
p,loc (Rn\Ω) and, for every ball B with B ⊃ Ω,

‖u−;B\Ω‖
W

[�]+1,α
p

≤ c(B) ‖Φ−; ∂Ω‖W �
p
. (15.1.7)

This solution is represented uniquely in the form

u−(z) = (Dσ−)(z) + C Γ (z), z ∈ R
n\Ω,

where C is a constant, the singularity of the fundamental solution Γ is situated
in Ω, and σ− ∈W �

p(∂Ω)� 1 is a solution of the equation
(
− 1

2I +D
)
σ− = Φ− − CΓ on ∂Ω. (15.1.8)

Moreover, u− can be represented uniquely in the form Sρ with ρ ∈
W �−1

p (∂Ω) subject to equation (15.1.1).
(iii) For every Ψ+ ∈ W �−1

p (∂Ω) � 1 there exists a unique solution of the

problem (N+), v+ ∈W [�]+1,α
p (Ω), subject to v+ ⊥ 1 on Ω and satisfying

‖v+;Ω‖
W

[�]+1,α
p

≤ c ‖Ψ+; ∂Ω‖W �−1
p

. (15.1.9)

This solution is represented uniquely in the form

v+(z) = (Sρ+)(z) + C, z ∈ Ω,

where C is a constant, ρ+ ∈W �−1
p (∂Ω)� 1 and ρ+ satisfies (3+). Moreover,

v+ can be represented uniquely as

v+(z) = (Dσ)(z) + C, z ∈ Ω,

where C is a constant and σ ∈W �
p(∂Ω)� 1 satisfies (15.1.2).
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(iv) For every Ψ− ∈W �−1
p (∂Ω) there exists a unique solution of the prob-

lem (N−), v− ∈W [�]+1,α
p,loc (Rn\Ω) and, for every ball B with B ⊃ Ω,

‖v−;B\Ω‖
W

[�]+1,α
p

≤ c(B)‖Ψ−; ∂Ω‖W �−1
p

. (15.1.10)

The solution is represented uniquely in the form (Sρ−)− with ρ− ∈
W �−1

p (∂Ω) subject to equation (3−). Moreover, v− can be represented uniquely
as

v−(z) = (Dσ)(z) + CΓ (z), z ∈ R
n\Ω,

where
C = −

∫

∂Ω

Ψ−ds, σ ∈W �
p(∂Ω)� 1

and σ satisfies the equation

∂

∂ν
(Dσ)− = Ψ− − C

∂

∂ν
Γ−. (15.1.11)

(v) For every (Φ, Ψ) ∈W �
p(∂Ω)×W �−1

p (∂Ω) there exists a unique solution
of the problem (T )

(w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω)

and, for every ball B with B ⊃ Ω,

‖w+;Ω‖
W

[�]+1,α
p

+ ‖w−;B\Ω‖
W

[�]+1,α
p

≤ c(B)
(
‖Φ; ∂Ω‖W �

p
+ ‖Ψ ; ∂Ω‖W �−1

p

)
. (15.1.12)

This solution is given explicitly by

w± = (SΨ)± + (DΦ)± on R
n\∂Ω. (15.1.13)

This theorem follows essentially from Theorem 15.2.1 in Sect. 15.2 con-
cerning the W [�]+1,α

p -solvability of the Dirichlet, Neumann, and transmission
problems for equations with nonzero right-hand sides. A typical statement,
contained in Theorem 15.2.1, runs as follows.

Let n ≥ 2, 1 < p <∞, ! > 1, and {!} > 0. If ∂Ω ∈W �
p for p(!−1) > n−1

and ∂Ω ∈ M �
p(δ) with some δ = δ(n, p, !), for p(! − 1) ≤ n − 1, then the

mapping

W [�]+1,α
p (Ω) � u→ {∆u, tr u} ∈W [�]−1,α

p (Ω)×W �
p(∂Ω) (15.1.14)

is isomorphic.
In the case p(!−1) > n−1 this last assertion can be inverted for a subclass

of Lipschitz domains: the isomorphism property of the mapping (15.1.14)
implies that ∂Ω ∈W �

p (Theorem 15.6.1).
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Note that this implication fails for the whole class of Lipschitz domains. As
for the case p(!−1) ≤ n−1, several examples in Sects. 15.5 and 15.6 illustrate
the sharpness of the condition ∂Ω ∈ M �

p(δ) in formulations of Theorems
15.1.1-15.2.1. In particular, Example 15.6.6 shows that in general the condition
∂Ω ∈M �

p(δ) in Theorem 15.2.1 cannot be improved by ∂Ω ∈M �
p ∩ C [�].

We outline the structure of this chapter. In Sect. 15.2.1 we introduce and
study a class of mappings, the so-called (p, k, α)-diffeomorphisms, preserving
W k,α

p and which play a crucial role in the subsequent study of the boundary
value problems.

Properties of the problems (D±), (N±), and (T ) are obtained in Sect. 15.2
(Proposition 15.3.1). The next section deals with continuity properties of the
potentials and their normal derivatives. Here, in particular, definitions of all
integral operators involved in Theorem 15.1.1 are given. Proof of Theorems
15.1.1 and 15.1.2 can be found in Sect. 15.4.

The short Sect. 15.5 is devoted to a discussion of the class M �
p(δ). In

Sect. 15.6 we give a number of examples of domains which demonstrate the
sharpness of our solvability results for the Dirichlet and Neumann problems
as well as for the corresponding integral equations.

15.2 Solvability of Boundary Value Problems
in Weighted Sobolev Spaces

15.2.1 (p, k, α)-Diffeomorphisms

In this section U and V are open subsets of R
n
+ = {z = (x, y) : x ∈ R

n−1, y >
0}. By W k,α

p (V ) we denote the space of functions with the finite norm

(∫

V

(min{1, y})pα(|∇kv(x, y)|p + |v(x, y)|p)dz
)1/p

,

where k is a positive integer,−1 < pα < p−1, and 1 ≤ p ≤ ∞. By analogy with
the definition of the (p, l)-diffeomorphism given in Sect. 9.4.1, a bi-Lipschitz
homeomorphism κ : U → V will be called a (p, k, α)-diffeomorphism if the ele-
ments of its Jacobi matrix ∂κ belong to the space of multipliers MW k−1,α

p (U).
The next two propositions contain basic properties of (p, k, α)-diffeomor-

phisms, verified in the same way as the corresponding properties of (p, l)-
diffeomorphisms in Chap. 9. By ‖∂κ, U‖MW k−1,α

p
we denote the sum of the

norms of the elements of ∂κ in the space MW k−1,α
p (U).

Proposition 15.2.1. (i) If u ∈W k,α
p (V ) and κ is a (p, k, α)-diffeomorphism:

U → V , then u ◦ κ ∈W k,α
p (U) and

‖u ◦ κ;U‖W k,α
p
≤ c ‖u;V ‖W k,α

p
.
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(ii) If κ is a (p, k, α)-diffeomorphism, then κ
−1 is also a (p, k, α)-diffeomor

phism.
(iii) If γ ∈ MW k,α

p (V ) and κ is a (p, k, α)-diffeomorphism, then γ ◦ κ ∈
MW k,α

p (U) and
‖γ ◦ κ;U‖MW k,α

p
≤ c ‖γ;V ‖MW k,α

p
.

(iv) If κ1 : U → V and κ2 : V → W are (p, k, α)-diffeomorphisms then
their composition κ2 ◦ κ1 : U →W is a (p, k, α)-diffeomorphism.

Let T denote the extension operator defined by (9.4.11), where ζ(τ) = 0
for |τ | ≥ 1. Consider a domain

G = {(x, y) : x ∈ R
n−1, y > ϕ(x)}, (15.2.1)

where ϕ is a Lipschitz function such that ϕ(0) = 0 and |∇ϕ(x)| ≤ L for almost
all x ∈ R

n−1. We introduce the mapping

κ : R
n
+ � (ξ, η)→ (x, y) ∈ G

by the equalities
x = ξ, y = Nη + (T f)(ξ, η), (15.2.2)

where N is a sufficiently large constant depending on L.

Proposition 15.2.2. Let ! be a noninteger with ! > 1, and let p ∈ (1,∞). If
∇ϕ ∈MW �−1

p (Rn−1), then κ is a (p, [!] + 1, α)-diffeomorphism.

We say that a function f defined on ∂G belongs to the space W �
p(∂G) if the

function R
n−1 � x → f(x, ϕ(x)) belongs to W �

p(Rn−1). This can be written
as

f ∈W �
p(∂G) ⇔ f ◦ κ|Rn−1 ∈W �

p(Rn−1). (15.2.3)

By (15.2.3) and Proposition 15.2.1 (i), the inclusion u ∈ W [�]+1,α
p (G) implies

that tru ∈W �
p(∂G) and there exists a linear extension operator: W �

p(∂G)→
W

[�]+1,α
p (G).
Note that (15.2.2) gives an extension of κ to the lower half-space R

n
− =

{(x, y) : x ∈ R
n−1, y < 0}:

R
n
− � (ξ, η)→ (x, y) ∈ R

n\G

and this extension has the same properties as the original mapping κ. We
preserve the same notation κ for the extended mapping so that, now, κ is
a quasi-isometric mapping of R

n onto R
n and a (p, [!] + 1, α)-diffeomorphic

mapping of R
n
+ and R

n
− onto G and R

n\G, respectively.
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15.2.2 Weak Solvability of the Dirichlet Problem

We need the following assertion which is similar in flavor to [GG] and Sect.
5.7.2 in [Tr4].

Lemma 15.2.1. Let p ∈ (1,∞), and let 0 < α + 1/p. Suppose that the Lip-
schitz constant of the function ϕ in (15.1.3) does not exceed a sufficiently small
constant depending on n, p, and α. Then the mapping

W 1,α
p (Ω) � u→ {∆u, tru} ∈W−1,α

p (Ω)×W 1−α−1/p
p (∂Ω)

is an isomorphism.

Proof. It is well known that the fractional Sobolev space W
k−α−1/p
p (Rn−1)

is the space of traces on R
n−1 of functions in the space W k,α

p (Rn
+), where

p ∈ (1,∞) (see [Usp]). Since ∂Ω ∈ C0,1, it follows from this result that the
Dirichlet problem

∆u = F in Ω, u = Φ on ∂Ω (15.2.4)

with F ∈W [�]−1,α
p (Ω) and Φ ∈W �

p(∂Ω) can be reduced to the case Φ = 0.
Let W̊ 1

q (Ω) be the completion of C∞
0 (Ω) in the norm of W 1

q (Ω) and let
W−1

q′ (Ω) stand for the dual ofW 1
q (Ω), where q+q′ = qq′. We choose s = s(p, α)

so that the imbeddings

W̊ 1,α
p (Ω) ⊂ W̊ 1

s (Ω), (15.2.5)

W̊ 1
s′(Ω) ⊂ W̊ 1,α

p (Ω), (15.2.6)

W−1,α
p (Ω) ⊂ W−1

s (Ω), (15.2.7)

hold. By Hölder’s inequality these imbeddings follow from

s′ ≥ p, s <
p

1 + αp
, for α > 0,

s′ ≥ p, s ≤ p, for α = 0,

s′ >
p

1 + αp
, for α < 0.

We can put, for example,

s =
1
2

(
1 + min

{ p

p− 1− αp
, p
})
, for α ≤ 0

and
s =

1
2

(
1 + min

{ p

1 + αp
, p
})
, for α > 0.

Since s′ > 2, the operator

W̊ 1
s′(Ω) � u→ ∆u ∈W−1

s′ (Ω) (15.2.8)
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is a monomorphism. We now show the existence of a bounded inverse to
(15.2.8) defined on W−1

s′ (Ω).
Let F ∈W−1

s′ (Ω), and let u ∈W 1
2 (Ω) be a solution to the problem (15.2.4)

with Φ = 0. We denote by U a small coordinate neighborhood of a point
O ∈ ∂Ω and by V an open set such that O ∈ V and V ⊂ U . We take a
function χ ∈ C∞

0 (U) with χ = 1 on V . Then

∆(χu) = [∆,χ]u+ χF.

Let κ be the bi-Lipschitz diffeomorphism: R
n
+ � (ξ, η) → (x, y) ∈ G defined

by
x = ξ, y = η + ϕ(ξ), (15.2.9)

and let σ denote its inverse. Clearly, σ maps U ∩ ∂Ω onto an open subset of
the hyperplane η = 0. Now, (χu) ◦ κ satisfies the boundary value problem

div (A∇((χu) ◦ κ)) = (χF ) ◦ κ + ([∆,χ]u) ◦ κ on R
n
+, (15.2.10)

(χu) ◦ κ
∣∣
Rn−1 = (χΦ) ◦ (κ

∣∣
Rn−1), (15.2.11)

where
A = (∂σ ◦ κ)∗(∂σ ◦ κ). (15.2.12)

Obviously, the right-hand side of (15.2.10) belongs to W−1
s′ (Ω). Therefore, the

function
v := (χu) ◦ κ ∈W 1

s′(Rn
+)

is a solution of the problem

div(A∇v)− v = H on R
n
+, v

∣∣
Rn−1 = 0, (15.2.13)

where
H = (χF ) ◦ κ + ([∆,χ]u) ◦ κ − (χu) ◦ κ. (15.2.14)

Clearly,
‖I − ∂κ; Rn

+‖L∞ ≤ c ‖∇ϕ; Rn−1‖L∞ ,

which implies that
‖I −A; Rn

+‖L∞ < ε, (15.2.15)

where ε is sufficiently small.

It is a classical fact that the Dirichlet problem

−∆w + w = g0 + div g on R
v
+, w|Rn−1 = 0, (15.2.16)

with g0 ∈ Lq(Rn
+) and g ∈ (Lq(Rn

+))n, 1 < q < ∞, is uniquely solvable
in W̊ 1

q (Rn
+). (This follows from the explicit representation of w by Green’s

function and the continuity of a singular integral operator in Lq(Rn).) Let
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(I −∆)−1 stand for the inverse operator of the problem (15.2.16). We write
(15.2.13) in the form

v − (I −∆)−1Sv = (∆− I)−1H, (15.2.17)

with H given by (15.2.14), and

Sv = div ((A− I)∇v). (15.2.18)

This leads to the Neumann series

v =
∞∑

j=0

((I −∆)−1S)j(∆− I)−1H, (15.2.19)

where the operator (I − ∆)−1S has a small norm in W 1
q (Rn

+) for every q ∈
(2, s′], by (15.2.15). Hence,

‖v; Rn
+‖W 1

q
≤ c ‖(∆− I)−1H; Rn

+‖W 1
q
.

Using (15.2.14) and the arbitrariness of the point O ∈ ∂Ω, we obtain

‖u;Ω‖W 1
q
≤ c (‖F ;Ω‖W−1

q
+ ‖u;Ω‖Lq

). (15.2.20)

By Sobolev’s imbedding theorem, u ∈ L2n/(n−2)(Ω) if n > 2. Thus,

u ∈W 1
2n/(n−2)(Ω)

by (15.2.20). Using Sobolev’s theorem again, we see that

u ∈ L2n/(n−4)(Ω) if n > 4

and
u ∈W 1

s′(Ω) if n ≤ 4.

Repeating this argument m times, where m > n(s′−2)/2s′, we conclude that
u ∈W 1

s′(Ω) and arrive at the estimate

‖u;Ω‖W 1
s′
≤ c (‖F ;Ω‖W−1

s′
+ ‖u;Ω‖L2n/(n−2)).

This implies that

‖u;Ω‖W 1
s′
≤ c (‖F ;Ω‖W−1

s′
+ ‖u;Ω‖W 1

2
)

≤ c (‖F ;Ω‖W−1
s′

+ ‖F ;Ω‖W−1
2

) ≤ c ‖F ;Ω‖W−1
s′
.

Hence, the operator (15.2.8) is isomorphic. By duality, the operator

W̊ 1
s (Ω) � u→ ∆u ∈W−1

s (Ω) (15.2.21)
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is isomorphic as well. This fact, combined with (15.2.5), shows that the
operator

∆ : W̊ 1,α
p (Ω)→W−1,α

p (Ω)

is a monomorphism.
Let F ∈W−1

s′ (Ω), and let u ∈W 1
s′(Ω) be a solution of (15.2.4) with Φ = 0.

By (15.2.6), we see that u ∈ W̊ 1,α
p (Ω). It remains to prove the estimate

‖u;Ω‖W 1,α
p
≤ c ‖F ;Ω‖W−1,α

p
. (15.2.22)

It is well known that there exists a bounded inverse (I−∆)−1 of the operator
I − ∆ in R

n
+ with zero Dirichlet data on R

n−1, acting from W k−2,α
p (Rn

+)
into W k,α

p (Rn
+), k = 1, 2, . . . (cfr. [GG], [Tr4], Sect. 5.3.2). Using this inverse,

we write (15.2.13) in the form (15.2.17) and arrive at the Neumann series
(15.2.19), where the operator (I −∆)−1S has a small norm in W 1,α

p (Rn
+), by

(15.2.15). Hence,

‖v; Rn
+‖W 1,α

p
≤ c ‖(∆− I)−1H; Rn

+‖W 1,α
p

.

Using the arbitrariness of the point O ∈ ∂Ω and (15.2.14), we obtain

‖u;Ω‖W 1,α
p
≤ c (‖F ;Ω‖W−1,α

p
+ ‖u;Ω‖W 0,α

p
). (15.2.23)

It follows from the one-dimensional Hardy inequality that

‖u;Ω‖W 0,α
p
≤ ε0‖u;Ω‖W 1,α

p
+ C(ε0)‖u;Ω‖L1 . (15.2.24)

for any sufficiently small ε0 > 0. Since the operator (15.2.21) is isomorphic
and the imbedding (15.2.7) holds, we have

‖u;Ω‖L1 ≤ c1 ‖u;Ω‖W 1
s
≤ c2 ‖F ;Ω‖W−1

s
≤ c3 ‖F ;Ω‖W−1,α

p
,

which together with (15.2.23) and (15.2.24) completes the proof of Lemma
15.2.1. ��

15.2.3 Main Result

Let W k,α
p (Ω) be the weighted Sobolev space endowed with the norm (8.1.1).

We also need the weighted Sobolev space W k,α
p (Rn\Ω) supplied with the norm

‖v; Rn\Ω‖W k,α
p

=
( ∫

Rn\Ω

(min{dist(x, ∂Ω), 1})pα(|∇kv(x)|p + |v(x)|p)dx
)1/p

.

Using a partition of unity and properties of the special Lipschitz do-
main (15.2.1) mentioned at the end of Sect. 15.2.1, we can introduce the
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space W �
p(∂Ω) and show that it is the trace space for both W

[�]+1,α
p (Ω) and

W
[�]+1,α
p (Rn\Ω). We also need the space W̊ 1,α

p (Ω) obtained by completion of
C∞

0 (Ω) in the norm of W 1,α
p (Ω).

By W−1,α
p (Ω) we denote the space of distributions F = g0 + div g, with

g0 ∈W 0,α
p (Ω) and g ∈ (W 0,α

p (Ω))n. We supply W−1,α
p (Ω) with the norm

‖F ;Ω‖W−1,α
p

= inf
(
‖g0;Ω‖W 0,α

p
+ ‖g;Ω‖(W 0,α

p )n

)
,

where the infimum is taken over all representations F = g0 + div g.
The next theorem contains all the information on auxiliary boundary value

problems (D±), (N±), and (I) to be used in the sequel.

Theorem 15.2.1. Let p ∈ (1,∞), and let α = 1 − {!} − 1/p, where ! is a
noninteger with ! > 1. Suppose that ∂Ω ∈ W �

p for p(! − 1) > n − 1 and
∂Ω ∈M �

p(δ) with some δ = δ(n, p, !) for p(!− 1) ≤ n− 1.
The five mappings

W
[�]+1,α
p (Ω) � u (15.2.25)

→ {∆u, tr u}∈W [�]−1,α
p (Ω)×W �

p(∂Ω),

W
[�]+1,α
p (Rn\Ω) � u (15.2.26)

→ {∆u− u, tr u}∈W [�]−1,α
p (Rn\Ω)×W �

p(∂Ω),

W
[�]+1,α
p (Ω) � u (15.2.27)

→ {∆u− u, ∂u/∂ν} ∈W [�]−1,α
p (Ω)×W �−1

p (∂Ω),

W [�]+1,α
p (Rn\Ω) � u (15.2.28)

→ {∆u− u, ∂u/∂ν} ∈W [�]−1,α
p (Rn\Ω)×W �−1

p (∂Ω),

W [�]+1,α
p (Ω) × W [�]+1,α

p (Rn\Ω) � (u+, u−) (15.2.29)

→
{
∆u+, ∆u− − u−, tr (u+ − u−),

∂u+

∂ν
− ∂u−

∂ν

}

∈ {W [�]−1,α
p (Ω)×W [�]−1,α

p (Rn\Ω)×W �
p(∂Ω)×W �−1

p (∂Ω)}

are all isomorphisms.

Proof. The continuity of the mappings (15.2.25)–(15.2.29) is obvious. Deal-
ing with their invertibility, we restrict ourselves to a detailed treatment of
(15.2.25), since the analysis of (15.2.26)–(15.2.29) is essentially the same.
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Let us show that the Dirichlet problem (15.2.4) with F ∈ W
[�]−1,α
p (Ω) and

Φ ∈W �
p(∂Ω) is uniquely solvable in W

[�]+1,α
p (Ω), and that

‖u;Ω‖
W

[�]+1,α
p

≤ c
(
‖F ;Ω‖

W
[�]−1,α
p

+ ‖Φ; ∂Ω‖W �
p

)
.

By Lemma 15.2.1, the problem (15.2.4) has a unique solution u ∈W 1,α
p (Ω).

Therefore, in order to prove Theorem 15.2.1 we only need to show that the
solution u belongs to W

[�]+1,α
p (Ω) and to estimate its norm in this space.

Let U be a coordinate neighborhood of a point O ∈ ∂Ω and let V denote
an open set such that O ∈ V and V ⊂ U . We take a function χ ∈ C∞

0 (U)
with χ = 1 on V . Then

∆(χu) = [∆,χ]u+ χF.

Let κ be the (p, [!] + 1, α)-diffeomorphism defined by (15.2.2), where N = 1,
and let σ denote its inverse. Clearly, σ maps U ∩ ∂Ω onto an open subset of
the hyperplane η = 0. Now, (χu) ◦ κ satisfies the boundary value problem

div (A∇((χu) ◦ κ)) =
(χF ) ◦ κ + ([∆,χ]u) ◦ κ

det(∂σ ◦ κ)
on R

n
+, (15.2.30)

(χu) ◦ κ
∣∣
Rn−1 = (χΦ) ◦ (κ

∣∣
Rn−1), (15.2.31)

where

A =
(∂σ ◦ κ)∗(∂σ ◦ κ)

det(∂σ ◦ κ)
. (15.2.32)

By Proposition 15.2.1 (i), (iii), the right-hand side of (15.2.30) belongs to
W

[�]−1,α
p (Rn

+) and the Dirichlet data (15.2.31) are in W �
p(Rn−1). These data

have an extension Θ ∈W [�]+1,α
p (Rn

+). Therefore, the function

v := (χu) ◦ κ −Θ ∈W 1,α
p (Rn

+)

is a solution of the problem

div(A∇v)− v = H on R
n
+, v

∣∣
Rn−1 = 0, (15.2.33)

where

H =
(χF ) ◦ κ + ([∆,χ]u) ◦ κ

det(∂σ ◦ κ)
− div(A∇Θ) +Θ − (χu) ◦ κ. (15.2.34)

We shall consider the cases p(!−1) ≤ n−1 and p(!−1) > n−1 separately.
The case p(! − 1) ≤ n − 1. Let ∂Ω ∈ M �

p(δ). By (9.4.17) and Theorem
8.7.1,

‖I − ∂κ; Rn
+‖MW

[�],α
p
≤ c ‖∇ϕ; Rn−1‖MW �−1

p
.

This along with (15.1.3) implies that

‖I −A; Rn
+‖MW

[�],α
p
≤ c ‖∇ϕ; Rn−1‖MW �−1

p
≤ c δ. (15.2.35)
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We can replace [!] on the left-hand side of (15.2.35) by any k = 0, 1, . . . [!] be-
cause of the imbedding MW

[�],α
p (Rn

+) ⊂MW k,α
p (Rn

+). This imbedding follows
from

MW 0,α
p (Rn

+) = L∞(Rn
+) ⊃MW k,α

p (Rn
+)

by interpolation between W
[�],α
p (Rn

+) and W 0,α
p (Rn

+) (see [Tr4], Sect. 3.4.2).
It is standard that there exists a bounded inverse (I−∆)−1 to the operator

I − ∆ in R
n
+ with zero Dirichlet data on R

n−1, acting from W k,α
p (Rn

+) into
W k−2,α

p (Rn
+), k = 0, 1, . . . (see [Tr4], Sect. 5.3.2).

We write (15.2.33) in the form

v − (I −∆)−1Sv = (∆− I)−1H (15.2.36)

with H given by (15.2.34) and

Sv = div((A− I)∇v).

This leads to the Neumann series

v =
∞∑

j=0

((I −∆)−1S)j(∆− I)−1H

where the operator (I−∆)−1S has a small norm in W k+1,α
p (Rn

+), k = 0, 1, . . . ,
by (15.2.35).

Since H ∈ W 0,α
p (Rn

+) and (∆ − I)−1H ∈ W 2,α
p (Rn

+), it follows that v ∈
W 2,α

p (Rn
+) and therefore, χu ∈W 2,α

p (Ω). Using the arbitrariness of the point
O ∈ ∂Ω we derive that u ∈W 2,α

p (Ω) which completes the proof for ! < 2.
Let ! > 2. Using Proposition 15.2.1 and u ∈ W 2,α

p (Ω), we obtain H ∈
W 1,α

p (Rn
+) which implies that v ∈ W 3,α

p (Rn
+) by (15.2.36). Repeating this

argument several times if necessary, we conclude that u ∈ W [�]+1,α
p (Ω). This

is the required result for p(!− 1) ≤ n− 1.
The case p(!− 1) > n− 1. We have

‖A; Rn
+‖W [�],α

p
≤ c ‖ϕ; Rn−1‖W �

p
. (15.2.37)

Without loss of generality we may assume that ‖∇ϕ; Rn−1‖L∞ < δ, where
δ is sufficiently small. Then

‖I −A; Rn
+‖L∞ ≤ cδ. (15.2.38)

We introduce a cutoff function ζ ∈ C∞
0 (B2) with ζ = 1 on B1, and set

ζε(ξ, η) = ζ(ξ/ε, η/ε), where ε is a small positive number. By (15.2.33)

div(A∇(ζεv))− ε−2ζεv = K on R
n
+, ζεv

∣∣
Rn−1 = 0, (15.2.39)

where
K = ζεH +∇ζεA∇v + div(vA∇ζε)− ε−2ζεv
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with H and v defined as in the case p(!− 1) ≤ n− 1.
We know that u ∈ W 1,α

p (Ω). Let us suppose that u ∈ W k,α
p (Ω), 1 <

k ≤ [!]. Then v ∈ W k,α
p (Rn

+) and H ∈ W k−1,α
p (Rn

+), which implies K ∈
W k−1,α

p (Rn
+). We introduce the new coordinates (ξ/ε, η/ε) and use the nota-

tions Ã, ṽ and K̃ for A, v, and K as functions of (ξ/ε, η/ε). Written in these
dilated variables, the problem (15.2.39) becomes

(I −∆)(ζṽ)− div((Ã− I)∇(ζṽ)) = ε2K̃ on R
n
+, ζṽ

∣∣
Rn−1 = 0.

By (15.2.37)

‖∇[�]Ã; Rn
+‖W 0,α

p
≤ c ε�−1−(n−1)/p‖ϕ; Rn−1‖W �

p
.

Also, (15.2.38) holds with A replaced by Ã. Therefore, ‖Ã− I; Rn
+‖MW

[�],α
p

is
sufficiently small. This implies that the operator P given by

Pw = (I −∆)−1div((Ã− I)∇w)

is contractive in W k+1,α
p (Rn

+). Hence, ζṽ ∈ W k+1,α
p (Rn

+) which implies that
u ∈W k+1,α

p (Ω). This gives the result for the mapping (15.2.25).
Only trivial changes in the above argument are needed in order to treat

the mappings (15.2.26)–(15.2.29). ��

Now we deduce certain properties of the problems (D±), (N±) and (I)
from Theorem 15.2.1.

Proposition 15.2.3. Let Ω satisfy the conditions in Theorem 15.2.1. Then:
(i) For every Φ+ ∈ W �

p(∂Ω) there exists a unique solution u+ ∈
W

[�]+1,α
p (Ω) of (D+) subject to (15.1.6).
(ii) For every Φ− ∈ W �

p(∂Ω) there exists a unique solution u− ∈
W

[�]+1,α
p,loc (Rn\Ω) of (D−) subject to (15.1.7).
(iii) For every Ψ+ ∈ W �−1

p (∂Ω) � 1 there exists a unique solution v+ ∈
W

[�]+1,α
p (Ω) of (N+) subject to v+ ⊥ 1 on Ω and (15.1.9).
(iv) For every Ψ− ∈ W �−1

p (∂Ω) there exists a unique solution v− ∈
W

[�]+1,α
p,loc (Rn\Ω) of (N−) subject to (15.1.10).

(v) For every (Φ, Ψ) ∈ W �
p(∂Ω) ×W

[�]+1,α
p (∂Ω) there exists a unique so-

lution (w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω) of (I) subject to (15.1.12).

Proof. Assertion (i) was justified in Theorem 15.2.1.
Let us prove (ii). Since the local Lipschitz constant of ∂Ω is small, the

unique solvability of (N−) in W 1,α
p,loc(R

n\Ω) is standard. It suffices to prove

that the solution u ∈ W 1,α
p,loc(R

n\Ω) belongs to W
[�]+1,α
p,loc (Rn\Ω). Let χ ∈

C∞
0 (Rn), χ = 1 on Ω. Clearly,
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(I −∆)(χu) = −χu− [∆,χ]u on R
n\Ω, tr(χu) = 0 on ∂Ω.

Since

χu+ [∆,χ]u ∈W k−1,α
p (Rn\Ω) for u ∈W k,α

p (Rn\Ω),

it follows from Lemma 15.2.1 with [!] replaced by k that u ∈W k+1,α
p (Rn\Ω).

Letting k = 1, . . . , [!], we arrive at (ii).
Proofs of (iii)–(v) require only obvious changes in the argument just used.

��

15.3 Continuity Properties of Boundary Integral
Operators

We collect basic properties of the potentials Dσ and Sρ with σ ∈ W �
p(∂Ω)

and ρ ∈W �−1
p (∂Ω) where, as usual, p ∈ (1,∞), ! > 1, and {!} > 0.

Proposition 15.3.1. Let the notations Dσ and Sρ refer to the double and
single layer potentials defined on R

n\∂Ω. For almost all Q ∈ ∂Ω there exist
the seven limits

(Dσ)(Q) := lim
ε→0

1
|∂B1|

∫

∂Ω\Bε(Q)

(ζ −Q, ν(ζ))
|ζ −Q|n σ(ζ)dsζ ,

(D∗σ)(Q) := lim
ε→0

1
|∂B1|

∫

∂Ω\Bε(Q)

(ζ −Q, ν(Q))
|ζ −Q|n σ(ζ)dsζ ,

lim
z→Q
z∈Ω

(Dσ)(z) =
(

1
2I +D)σ(Q), (15.3.1)

lim
z→Q

z∈Rn\Ω

(Dσ)(z) =
(
− 1

2I +D
)
σ(Q), (15.3.2)

(Sρ)(Q) := lim
z→Q

z∈Rn\∂Ω

(Sρ)(z) =
−1

|∂B1|(n− 2)

∫

∂Ω

ρ(ζ)dsζ

|ζ −Q|n−2
, (15.3.3)

∂

∂ν
(Sρ)+(Q) := lim

z→Q
z∈Ω

(ν(Q), (∇Sρ)(z)) =
(
− 1

2I +D∗)ρ(Q), (15.3.4)

∂

∂ν
(Sρ)−(Q) := lim

z→Q
z∈Rn\Ω

(ν(Q), (∇Sρ)(z)) =
(

1
2I +D∗)ρ(Q), (15.3.5)

where (Sρ)+ and (Sρ)− are the restrictions of Sρ to Ω and R
n\Ω.
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These classical properties of the layer potentials can be found in [Verc]
for σ and ρ in Lp(∂Ω), where z → Q means a nontangential approach. As a
justification, a reference is given in [Verc] to the methods developed in [CMM],
[Ca3], and [FJR]. However, for our more regular σ and ρ, the above identities
can be deduced directly by using the convergence of the integral

∫

∂Ω

|σ(ζ)− σ(z)|p + |ρ(ζ)− ρ(z)|p
|ζ − z|n−1+p{�} dsζ

for almost every z ∈ ∂Ω.

Proposition 15.3.2. The operators D, D∗, and S satisfy

‖ Dσ; ∂Ω‖W �
p
≤ c ‖σ, ∂Ω‖W �

p
(15.3.6)

‖ (Dσ)+;Ω‖
W

[�]+1,α
p

≤ c ‖σ; ∂Ω‖W �
p

(15.3.7)

‖ (Dσ)−;B\Ω‖
W

[�]+1,α
p

≤ c(B) ‖σ, ∂Ω‖W �
p

(15.3.8)

‖ Sρ; ∂Ω‖W �
p
≤ c ‖ρ; ∂Ω‖W �−1

p
(15.3.9)

‖ (Sρ)+;Ω‖
W

[�]+1,α
p

≤ c ‖ρ; ∂Ω‖W �−1
p

(15.3.10)

‖ (Sρ)−;B\Ω‖
W

[�]+1,α
p

≤ c(B) ‖ρ, ∂Ω‖W �−1
p

(15.3.11)

‖ D∗ρ; ∂Ω‖W �−1
p
≤ c ‖ρ; ∂Ω‖W �−1

p
, (15.3.12)

where (Dρ)± and (Sρ)± are the restrictions of Dσ and Sρ to Ω and R
n\Ω,

respectively, and B is an arbitrary ball containing Ω.

Proof. Let us prove (15.3.6)–(15.3.8). Suppose that σ ∈ W �
p(∂Ω). By Propo-

sition 15.2.3 (v), the transmission problem (I) with Φ = σ and Ψ = 0 has a
unique solution

(w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω)

subject to

‖w+;Ω‖
W

[�]+1,α
p

≤ c ‖σ; ∂Ω‖W �
p
, (15.3.13)

‖w−;B\Ω‖
W

[�]+1,α
p

≤ c(B) ‖σ; ∂Ω‖W �
p
. (15.3.14)

By Green’s formula, w± = D(w+ − w−) = Dσ on R
n\∂Ω which implies

(15.3.7), (15.3.8), and

‖tr w+, ∂Ω‖W �
p
≤ c ‖σ, ∂Ω‖W �

p
.

Since Dσ = trw+ − σ/2 by (15.3.1), this last inequality leads to (15.3.6).
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Combining (15.3.6) with (15.3.1) and (15.3.2), we see that tr (Dσ)+ and
tr (Dσ)− belong to W �

p(∂Ω). This together with Theorem 15.1.2 (i), (ii) lead
to (15.3.7) and (15.3.8).

We turn to the proof of (15.3.9)–(15.3.12). Let ρ ∈ W �−1
p (∂Ω). By

Proposition 15.2.3 (v) the transmission problem (T ) with Φ = 0 and Ψ = ρ
has a unique solution

(w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω)

subject to
‖w+;Ω‖

W
[�]+1,α
p

≤ c ‖Ψ ; ∂Ω‖W �−1
p

and
‖w−;B\Ω‖

W
[�]+1,α
p

≤ c(B) ‖Ψ, ∂Ω‖W �−1
p

.

By Green’s formula,

w± = S

(
∂w+

∂ν
− ∂w−

∂ν

)
= (SΨ)± (15.3.15)

which implies (15.3.10), (15.3.11), and

‖tr w−; ∂Ω‖W �
p

+ ‖∂w−
∂ν

; ∂Ω‖W �−1
p
≤ c ‖ρ; ∂Ω‖W �−1

p
. (15.3.16)

Since
D∗ρ = ∂w−/∂ν −

1
2
ρ

by (15.3.5), we arrive at (15.3.12). Finally, (15.3.9) follows from (15.3.15) and
(15.3.16). ��

We finish this section with a discussion of properties of the normal deriv-
atives of the double layer potential with density in W �

p(∂Ω). By (15.3.7), the
trace of ∇(Dσ)+ belongs to W �−1

p (∂Ω) and defines a continuous operator:
W �

p(∂Ω)→W �−1
p (∂Ω).

We need the following weighted extension of Proposition 2.7.5 which is
proved in the same way.

Proposition 15.3.3. Let Γ ∈MW k,α
p (Rn

+) and let Γ0 := ‖Γ ; Rn
+‖L∞ . If g ∈

Ck−1([−Γ0, Γ0]), then g(Γ ) ∈MW k,α
p (Rn

+) and

‖g(Γ ); Rn
+‖MW k,α

p
≤ c

k∑
j=0

‖g(j); [−Γ0, Γ0]‖L∞‖Γ ; Rn
+‖jMW k,α

p
.
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Corollary 15.3.1. Let γ ∈W �
p(Rn−1) and let

γ0 := ‖γ; Rn−1‖L∞ .

Suppose that g ∈ C [�],1([−γ0, γ0]). Then g(γ) ∈MW �
p(Rn−1) and

‖g(γ); Rn−1‖MW �
p
≤ c

[�]+1∑
j=0

‖g(j); [−γ0, γ0]‖L∞‖γ; Rn−1‖j
MW �

p
.

Proof. The result follows from Proposition 15.3.3 by putting Γ = T γ, where
T is defined by (9.4.11), and using Theorem 8.7.1.

Proposition 15.3.4. Let σ ∈W �
p(∂Ω). The operator defined by

∂

∂ν
(Dσ)+(P ) :=

(
ν(P ), tr ∇(Dσ)+) (15.3.17)

maps W �
p(∂Ω) into W �−1

p (∂Ω)� 1 continuously, and

∂

∂ν
(Dσ)+ =

∂

∂ν
(Dσ)− a.e. on ∂Ω. (15.3.18)

Proof. The components of ν, expressed in a local cartesian system (x, y),
depend smoothly on ∇ϕ, where ϕ is the function in (14.1.3). Since ∇ϕ ∈
MW �−1

p (Rn−1), we conclude by Proposition 15.3.3 that

ν ∈MW �−1
p (∂Ω). (15.3.19)

Hence the operator

W �
p(∂Ω) � σ → ∂

∂ν
(Dσ)+(P ) ∈W �−1

p (∂Ω)

is continuous.
Let us consider the solution (w+, w−) of problem (T ) with the boundary

conditions

trw+ − trw− = σ and
∂w+

∂ν
− ∂w−

∂ν
= 0 a.e. on ∂Ω. (15.3.20)

By Green’s formula,

w+ = D trw+ − S
∂w+

∂ν
and S

∂w−
∂ν

= D trw− on Ω. (15.3.21)

Analogously,

w− = S
∂w−
∂ν
−D trw− and S

∂w+

∂ν
= D trw+ on R

n\Ω. (15.3.22)
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Hence,
w+ = D(trw+ − trw−) = Dσ on Ω (15.3.23)

and
w− = D(trw+ − trw−) = Dσ on R

n\Ω.
Now, equality (15.3.18) is a consequence of (15.3.20), and ∂(Dσ)+/∂ν ⊥ 1
follows from (15.3.23). ��

The proposition just proved enables us to introduce the operator (∂/∂ν)D
by

( ∂
∂ν

D
)
σ :=

∂

∂ν
(Dσ)± (15.3.24)

and to conclude that (∂/∂ν)D maps W �
p(∂Ω) into W �−1

p (∂Ω)� 1.

15.4 Proof of Theorems 15.1.1 and 15.1.2

15.4.1 Proof of Theorem 15.1.1

The continuity of the operators

D : W �
p(∂Ω)→W �

p(∂Ω)

D∗ : W �−1
p (∂Ω)→W �−1

p (∂Ω)

S : W �−1
p (∂Ω)→W �

p(∂Ω)
∂

∂ν
D : W �

p(∂Ω)→W �−1
p (∂Ω)� 1

was established in Propositions 15.3.2 and 15.3.4.
Solvability of equation (2+). Let u+ ∈ W

[�]+1,α
p (Ω) solve (D+) with

Φ+ ∈ W �
p(∂Ω). Then ∂u+/∂ν ∈ W �−1

p (∂Ω). We find a solution v− ∈
W

[�]+1,α
p,loc (Rn\Ω) of problem (N−) with Ψ− := ∂u+/∂ν. By Green’s formula,

u+ = D tru+ − S
∂u+

∂ν
and S

∂v−
∂ν

= D tr v− on Ω.

Hence, u+ = D(tru+ − tr v−) on Ω. This together with (15.3.1) shows that

σ+ := tru+ − tr v− ∈W �
p(∂Ω)

is a solution of (2+).
We have

‖σ+; ∂Ω‖W �
p
≤ ‖tru+; ∂Ω‖W �

p
+ ‖tr v−; ∂Ω‖W �

p

≤ c
(
‖u+;Ω‖

W
[�]+1,α
p

+ ‖v−;B\Ω‖
W

[�]+1,α
p

)
. (15.4.1)
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By Proposition 15.2.3 (iv) and (15.3.19)

‖v−;B\Ω‖
W

[�]+1,α
p

≤ c ‖∂u+

∂ν
; ∂Ω‖W �−1

p
≤ c ‖u+;Ω‖

W
[�]+1,α
p

.

The last norm does not exceed c ‖Φ+, ∂Ω‖W �
p

by Proposition 15.3.1 (i) which
together with (15.4.1) leads to the estimate

‖σ+; ∂Ω‖W �
p
≤ c ‖Φ+; ∂Ω‖W �

p
. (15.4.2)

Uniqueness for equation (2+). Let

(
1
2
I +D)σ = 0 with σ ∈W �

p(∂Ω).

By Proposition 15.2.3 (v) we can find a solution

(w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω)

of the transmission problem for the Laplace equation on R
n\∂Ω with bound-

ary conditions (15.3.20). By (15.3.21), w+ = (Dσ)+. It follows from (15.3.1)
and the definition of σ that trw+ = 0. In view of Proposition 15.2.3 (i),
w+ = 0 which together with (15.3.20) implies that ∂w−/∂ν = 0. Proposition
15.2.3 (iv) gives w− = 0 and hence σ = trw+ − trw− = 0. This completes
the proof of (i).

Solvability of equation (3−). Let v− ∈ W
[�]+1,α
p,loc (Rn\Ω) solve (N−) with

Ψ− ∈W �−1
p (∂Ω). Then tr v− ∈W �

p(∂Ω). We find a solution u+ ∈W [�]+1,α
p (Ω)

of (D+) with Φ+ := tr v−. By Green’s formula,

v− = S(∂v−/∂ν − ∂u+/∂ν)

which implies that

ρ− = ∂v−/∂ν − ∂u+/∂ν ∈W �−1
p (∂Ω)

satisfies (3−).
By (15.3.19),

‖ρ−; ∂Ω‖W �−1
p
≤ c (‖tr∇v−; ∂Ω‖W �−1

p
+ ‖tr∇u+; ∂Ω‖W �−1

p
)

≤ c (‖v−;B\Ω‖
W

[�]+1,α
p

+ ‖u+;Ω‖
W

[�]+1,α
p

).

Using Proposition 15.2.3 (i), we see that the last norm does not exceed
c ‖tr v−; ∂Ω‖W �

p
which is majorized by ‖v−;B\Ω‖

W
[�]+1,α
p

. Hence,

‖ρ−; ∂Ω‖W �−1
p
≤ c ‖v−;B\Ω‖

W
[�]+1,α
p

.
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Reference to Proposition 15.2.3 (iv) yields the estimate

‖ρ−, ∂Ω‖W �−1
p
≤ c ‖Ψ−, ∂Ω‖W �−1

p
.

Uniqueness for equation (3−). Let

(
1
2
I +D∗)ρ− = 0, where ρ− ∈W �−1

p (∂Ω).

By Proposition 15.2.3 (v) we can find a solution (w+, w−) ∈ W
[�]+1,α
p (Ω) ×

W
[�]+1,α
p,loc (Rn\Ω) of the transmission problem for the Laplace equation on

R
n\∂Ω with boundary conditions

trw+ − trw− = 0 and
∂w−
∂ν
− ∂w+

∂ν
= ρ− on ∂Ω. (15.4.3)

By Green’s formula,

w− = S
∂w−
∂ν
−Dw− and S

∂w+

∂ν
−Dw+ = 0 on R

n\Ω. (15.4.4)

Hence
w− = S

(∂w−
∂ν
− ∂w+

∂ν

)
= Sρ− on R

n\Ω.

By (15.3.5),
∂w−
∂ν

=
(

1
2I +D∗)ρ−

which implies that ∂w−/∂ν = 0 on ∂Ω. Using Theorem 15.1.2 (iv), we see
that w− = 0 on R

n\Ω. This and (15.4.3) gives trw+ = 0. Proposition 15.2.3
(i) shows that w+ = 0. Therefore, ρ− = 0 by (15.4.3). This completes the
proof of assertion (ii).

We turn to assertion (iii).
Solvability of equation (15.1.1). Let u+ ∈ W

[�]+1,α
p (Ω) be a solution of

(D+) with Φ+ := Φ ∈ W �
p(∂Ω). By u− we denote a solution of (D−) with

Φ− := Φ, u− ∈W [�]+1,α
p,loc (Rn\Ω). Using Green’s formula we obtain

u+ = S(∂u−/∂ν − ∂u+/∂ν)

which together with (15.3.19) implies that

ρ = ∂u−/∂ν − ∂u+/∂ν ∈W �−1
p (∂Ω).

Hence, ρ is a solution of (15.1.1). We have

‖ρ; ∂Ω‖W �−1
p
≤
∥∥∂u+

∂ν
; ∂Ω

∥∥
W �−1

p
+
∥∥∂u−
∂ν

; ∂Ω
∥∥

W �−1
p

≤ c
(
‖u+;Ω‖

W
[�]+1,α
p

+ ‖u−;B\Ω‖
W

[�]+1,α
p

)
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and, in view of Proposition 15.2.3 (i), (ii), we obtain

‖ρ; ∂Ω‖W �−1
p
≤ c ‖Φ; ∂Ω‖W �

p
.

Uniqueness for equation (15.1.1). Let ρ ∈ W �−1
p (∂Ω) and Sρ = 0 on ∂Ω.

By (15.3.3), tr (Sρ)± = 0 which together with Proposition 15.2.3 (i), (ii)
implies that (Sρ)± = 0. Since

ρ = ∂(Sρ)−/∂ν − ∂(Sρ)+/∂ν

by (15.3.4) and (15.3.5), it follows that ρ = 0.
Our next goal is assertion (iv).
Solvability of equation (15.1.2). Let Ψ ∈ W �−1

p (∂Ω) � 1. By Proposition

15.3.1 (iii) there exists a solution v+ ∈ W
[�]+1,α
p (Ω) of (N+) with boundary

data Ψ , unique up to an arbitrary constant term. By v− we denote a unique
W

[�]+1,α
p,loc (Rn\Ω)-solution of (N−) with the same boundary data ψ which exists

by Proposition 15.2.3 (iv). Let σ = tr v+ − tr v−. Then (15.3.20) holds and,
by (15.3.21), v+ = Dσ. This together with (15.3.24) gives (15.1.2). Choosing
the value of an arbitrary constant term in v+, we obtain σ ⊥ 1.

We have

‖σ; ∂Ω‖W �
p
≤ ‖tr v+ − tr v+; ∂Ω‖W �

p
+ ‖tr v− − tr v−; ∂Ω‖W �

p
,

where the bar over a function stands for its mean value. Hence,

‖σ; ∂Ω‖W �
p
≤ ‖v+ − tr v+;Ω‖

W
[�]+1,α
p

+ ‖v−;B\Ω‖
W

[�]+1,α
p

,

where B is a ball containing Ω. Using Proposition 15.2.3 (iii), (iv), we obtain

‖σ; ∂Ω‖W �
p
≤ c ‖Ψ ; ∂Ω‖W �−1

p
.

Uniqueness for equation (15.1.2). Let σ ∈W �−1
p (∂Ω) and let ∂(Dσ)/∂ν=0

on ∂Ω. By (15.3.24), ∂(Dσ)±/∂ν = 0 and therefore, by Proposition 15.2.3 (ii),
(iv),

(Dσ)+ = const, (Dσ)− = 0.

It follows from
σ = tr (Dσ)+ − tr (Dσ)−

that σ = const.
Solvability of equation (2−). We recall that the capacitary potential P of

Ω is a unique solution of (D−) with the Dirichlet data 1 and that

−
∫

∂Ω

∂P

∂ν
ds = capΩ > 0.

Suppose that
Φ− ∈W �

p(∂Ω)� ∂P/∂ν.
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Let u− ∈W [�]+1,α
p,loc (Rn\Ω) satisfy problem (D−). Then

∂u−/∂ν ∈W �−1
p (∂Ω)

and ∫

∂Ω

∂u−
∂ν

ds =
∫

∂Ω

∂u−
∂ν

trPds =
∫

∂Ω

Φ−
∂P

∂ν
ds = 0.

By Proposition 15.2.3 (iii), there exists a solution v+ ∈W [�]+1,α
p (Ω) of (N+)

with Ψ+ = ∂u−/∂ν and v+ ⊥ 1 on Ω. By Green’s formula,

u− = S
∂u−
∂ν
−D tru− and S

∂v+

∂ν
= D tr v+ on R

n\Ω.

Hence, u− = D(tr v+ − tru−). This together with (15.3.2) shows that

tr v+ − tru− ∈W �
p(∂Ω)

is a solution of (2−).
From (D1)− = 0 and (15.3.2) we find

(− 1
2I +D)1 = 0.

Therefore, the function

σ− := tr v+ − tru− − tr v+ + tru−

satisfies (2−). Clearly,

‖σ−; ∂Ω‖W �
p
≤ c

(
‖tr v+; ∂Ω‖W �

p
+ ‖tru−; ∂Ω‖W �

p

)

≤ c
(
‖v+;Ω‖

W
[�]+1,α
p

+ ‖u−;B\Ω‖
W

[�]+1,α
p

)
. (15.4.5)

In view of Proposition 15.2.3 (ii) and (15.3.19)

‖v+;Ω‖
W

[�]+1,α
p

≤ c
∥∥∂u−
∂ν

, ∂Ω
∥∥

W �−1
p
≤ c ‖u−;B\Ω‖

W
[�]+1,α
p

for an arbitrary ball B ⊃ Ω. The last norm does not exceed c ‖Φ−; ∂Ω‖W �
p
, by

Proposition 15.2.3 (ii), which together with (15.4.5) leads to

‖σ−; ∂Ω‖W �
p
≤ c ‖Φ−; ∂Ω‖W �

p
.

Uniqueness for equation (2−). Suppose that σ ∈W �
p(∂Ω) and

(− 1
2I +D)−1σ = 0.

By Proposition 15.2.3 (v) we can find a solution

(w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω)
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of the transmission problem for the Laplace equation on R
n\∂Ω with bound-

ary conditions (15.3.20). In view of (15.3.22), w− = (Dσ)−. It follows from
(15.3.2) and the definition of σ that trw− = 0. By Proposition 15.3.1 (ii),
w− = 0 which together with (15.3.20) implies that ∂w+/∂ν = 0. Proposition
15.2.3 (iii) gives w+ = const and hence

σ = trw+ − trw− = const.

The result follows since σ ⊥ 1.
Solvability of equation (3+). Let v+ ∈ W [�]+1,α

p (Ω) solve (N+) with Ψ+ ∈
W �−1

p (∂Ω) � 1. We assume that v+ ⊥ 1 on Ω. We find a solution u− ∈
W

[�]+1,α
p,loc (Rn\Ω) of (D−) with Φ− := tr v+ ∈W �

p(∂Ω). By Green’s formula,

v+ = D tr v+ − S
∂v+

∂ν
and S

∂u−
∂ν

= D tru− on Ω.

Hence,

v+ = S
(∂u−
∂ν
− ∂v+

∂ν

)
.

This together with (15.3.4) shows that

∂u−/∂ν − ∂v+/∂ν ∈W �−1
p (∂Ω)

is a solution of (3+).
Since S∂P/∂ν = 1 on Ω, it follows from (15.3.4) that

(− 1
2I +D∗)∂P/∂ν = 0.

Therefore, the function

ρ+ :=
∂u−
∂ν
− ∂v+

∂ν
+ C

∂P

∂ν
, C = const, (15.4.6)

satisfies (3+). The constant C can be chosen so that ρ+ ⊥ 1 on ∂Ω. By (15.4.6)
and (15.3.19),

‖ρ+; ∂Ω‖W �−1
p
≤ c (‖tr∇v+; ∂Ω‖W �−1

p
+ ‖tr∇u−; ∂Ω‖W �−1

p
)

≤ c
(
‖v+;Ω‖

W
[�]+1,α
p

+ ‖u−;B\Ω‖
W

[�]+1,α
p

)
.

By Proposition 15.2.3 (iii), the last norm does not exceed c ‖tr v+; ∂Ω‖W �
p

which is majorized by c ‖v+;Ω‖
W

[�]+1,α
p

. Hence,

‖ρ+; ∂Ω‖W �−1
p
≤ c ‖v+;Ω‖

W
[�]+1,α
p

.

Reference to Proposition 15.2.3 (iii) yields in the estimate

‖ρ+; ∂Ω‖W �−1
p
≤ c ‖Ψ+; ∂Ω‖W �−1

p
.
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Uniqueness for equation (3+). Let

(− 1
2I +D∗)ρ+ = 0, where ρ+ ∈W �−1

p (∂Ω)� 1.

By Proposition 15.2.3 (v) we can find a solution

(w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω)

of the transmission problem for the Laplace equation on R
n\∂Ω with the

boundary conditions

trw+ − trw− = 0 and
∂w−
∂ν
− ∂w+

∂ν
= ρ+ on ∂Ω. (15.4.7)

By Green’s formula,

w+ = D trw+ − S
∂w+

∂ν
and S

∂w−
∂ν

= D trw− on Ω. (15.4.8)

Hence,

w+ = S
(∂w−
∂ν
− ∂w+

∂ν

)
= S ρ+ on Ω.

Using (15.3.4), we have

∂w+

∂ν
= (− 1

2I +D∗)ρ+

which implies that ∂w+/∂ν = 0 on ∂Ω. Using Proposition 15.2.3 (iii), we see
that w+ = const on Ω. This and (15.4.7) gives trw− = const which implies
that w− = constP . Using (15.4.7) again, we obtain ρ+ = const ∂P/∂ν. This
together with ρ+ ⊥ 1 completes the proof of assertion (v). ��

15.4.2 Proof of Theorem 15.1.2

Now, we are in a position to prove Theorem 15.1.2 stated in Introduction.
All assertions concerning the solvability of the problems (D±), (N±),

and (T ), as well as the estimates (15.1.6)–(15.1.12) have been proved in
Proposition 15.2.3. We need to justify the representations of solutions to these
problems by layer potentials.

(i) By Theorem 15.1.1 (i), there exists a unique solution σ+ ∈ W �
p(∂Ω)

to equation (2+). By (15.3.1) and (15.3.7), (Dσ+)+ is a solution of (D+) in
W

[�]+1,α
p (Ω). Hence, u+ = (Dσ+)+ by Proposition 15.2.3 (i).
Theorem 15.1.1 (iii) implies the existence of a unique solution ρ ∈

W �−1
p (∂Ω) of (15.1.1). From (15.3.3) and (15.3.10) we obtain that (Sρ)+ is a

solution of (D+) in W [�]+1,α
p (Ω). Hence, u+ = (Sρ)+ by Proposition 15.2.3 (i).

(ii) By Theorem 15.1.1 (v), (15.1.8) has a solution σ− ∈ W �
p(∂Ω) � 1 if

and only if
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∫

∂Ω

(Φ− − C Γ )
∂P

∂ν
ds = 0,

which is equivalent to

C =
∫

∂Ω

Φ−
∂P

∂ν
ds.

By (15.3.2) and (15.3.8), the function (Dσ−)− + C Γ− is a solution in
W

[�]+1,α
p,loc (Rn\Ω) to (D−). Hence,

u− = (Dσ−)− + C Γ−

by Proposition 15.2.3 (ii).
According to Theorem 15.1.1 (iii), there exists a unique solution ρ ∈

W �−1
p (∂Ω) of (15.1.1). Using (15.3.3) and (15.3.11), we find that (Sρ)− is

a solution of (D−) in W
[�]+1,α
p,loc (Rn\Ω). Hence, u− = (Sρ)− by Proposition

15.2.3 (ii).
(iii) Theorem 15.1.1 (vi) implies the existence of a unique solution ρ+ ∈

W �−1
p (∂Ω) � 1 of equation (3+). From (15.3.4) and (15.3.10) we obtain that

(Sρ)+ is a solution of (N+) in W
[�]+1,α
p (Ω). Therefore,

v+ = (Sρ)+ + C.

The constant C can be chosen to ensure that v+ ⊥ 1 on Ω.
By Theorem 15.1.1 (iv), there exists a unique solution σ ∈W �

p(∂Ω)� 1 of
(15.1.2). From (15.3.17) and (15.3.7) we find that (Dσ)+ +C is a solution of
(N+) in W

[�]+1,α
p (Ω). Choosing C to ensure the orthogonality of (Dσ)+ + C

and 1 on Ω, we conclude that

v+ = (Dσ)+ + C.

(iv) Theorem 15.1.1 (ii) implies the existence of a unique solution ρ− ∈
W �−1

p (∂Ω) of equation (3−). It follows from (15.3.5) and (15.3.11) that (Sρ−)−
is a solution of (N−) in W

[�]+1,α
p,loc (Rn\Ω). Hence, v− = (Sρ−)− by Proposition

15.2.3 (iv).
By Theorem 15.1.1 (iv), there exists a unique solution σ ∈W �

p(∂Ω)� 1 of
(15.1.11) provided that

C = −
∫

∂Ω

Ψ−ds.

It follows from (15.3.24) and (15.3.8) that (Dσ)− +CΓ− is a solution of (N−)
in the space W [�]+1,α

p,loc (Rn\Ω). Therefore,

v− = (Dσ)− + CΓ−

by Proposition 15.2.3 (iv).
(v) We note that (SΨ)+ + (DΦ)+ belongs to W

[�]+1,α
p (Ω) and that

(SΨ)−+(DΦ)− belongs to W [�]+1,α
p,loc (Rn\Ω) by (15.3.7), (15.3.10) and (15.3.8),



15.5 Properties of Surfaces in the Class M �
p(δ) 559

(15.3.11), respectively. Furthermore, (SΨ)± + (DΦ)± satisfies the boundary
conditions of problem (T ) by (15.3.1), (15.3.2), (15.3.3), and (15.3.5). The
equality

w± = (SΨ)± + (DΦ)±

results from Proposition 15.2.3 (v). The proof of Theorem 15.1.2 is complete. ��

15.5 Properties of Surfaces in the Class M �
p(δ)

Let p(!− 1) ≤ n− 1. According to Theorem 4.1.1, the condition ∂Ω ∈M �
p(δ)

is equivalent to the inequality

‖Dp,�ϕ; Rn−1‖M(W �−1
p →Lp) + ‖∇ϕ; Rn−1‖L∞ < c δ, (15.5.1)

where

Dp,� ϕ(x) =
(∫

Rn−1
|∇[�]ϕ(x+ h)−∇[�]ϕ(x)|p|h|1−n−p{�}dh

)1/p

.

The following local characterization of M �
p(δ) is obtained in the same way

as Lemma 14.7.2, where ! = l− 1/p with integer l. Let η be an even function
in C∞

0 (−1, 1) with η = 1 on (−1/2, 1/2). We put

ηε(z) =

⎧
⎪⎨
⎪⎩

η(|z|/ε) if p(!− 1) < n,

η(log ε/log |z|) if p(!− 1) = n.

Lemma 15.5.1. A surface ∂Ω belongs to the class M �
p(δ) if and only if for

any O ∈ ∂Ω there exists a neighborhood U and a special Lipschitz domain
G = {z = (x, y) : x ∈ R

n−1, y > ϕ(x)} such that U ∩Ω = U ∩G and

lim sup
ε→0

‖∇(ηεϕ); Rn−1‖MW �−1
p
≤ c δ, (15.5.2)

where c is a constant which depends on !, p, n, and ηε is introduced above.

A proof of the next local condition, equivalent to ∂Ω ∈M �
p(δ), follows the

same lines as that of Theorem 14.6.4.

Theorem 15.5.1. A surface ∂Ω belongs to the class M �
p(δ) if and only if for

every point O ∈ ∂Ω there exists a neighborhood U such that (14.1.3) holds
with ϕ satisfying

lim
ε→0

(
sup
e⊂Bε

‖Dp,�(ϕ,Bε); e‖Lp(
C�−1,p(e)

)1/p
+ ‖∇ϕ;Bε‖L∞

)
≤ c δ, (15.5.3)
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where Bε = {ζ ∈ R
n−1, |ζ| < ε},

Dp,�(ϕ,Bε)(x) =
(∫

Bε

|∇[�]ϕ(x)−∇[�]ϕ(ζ)|p
|x− ζ|n−1+p{�} dζ

)1/p

,

and c is a constant depending on n, p, and !.

Simpler conditions sufficient for ∂Ω ∈M �
p(δ) can be derived from (15.5.3)

combined with the well-known inequalities between the capacity and the
Lebesgue measure (see Propositions 3.1.2, 3.1.3):

We have ∂Ω ∈M �
p(δ) if either

(a) p(!− 1) < n− 1 and

lim
ε→0

(
sup
e⊂Bε

‖Dp,�(ϕ,Bε); e‖Lp(
mesn−1(e)

)n−1−p(�−1)
(n−1)p

+ ‖∇ϕ;Bε‖L∞

)
≤ c δ,

or
p(!− 1) = n− 1 and

lim
ε→0

(
sup
e⊂Bε

|log (mesn−1(e))|(p−1)/p‖Dp,�(ϕ,Bε); e‖Lp
+ ‖∇ϕ;Bε‖L∞

)
≤ c δ.

This leads to the following condition, sufficient for ∂Ω ∈M �
p(0):

∂Ω ∈ B�
q,p and ‖∇ϕ; Rn−1‖L∞ < δ.

The condition ∂Ω ∈ B�
q,p can be improved for p(!− 1) = n − 1, if the Orlicz

space Ltp(log+t)p−1 is used instead of Lq with an arbitrary q, but we shall not
go into this. Note that ∂Ω ∈ B�

∞,p means that the continuity modulus ω[�] of
∇[�]ϕ satisfies ∫ 1

0

(
ω[�](t)
t{�}

)p
dt

t
<∞, (15.5.4)

which implies, in particular, that any surface ∂Ω in the class C [�],{�}+ε with
an arbitrary ε > 0 belongs to M �

p(0). ��

The next example shows that the condition (15.5.4), sufficient for ∂Ω ∈
M �

p(0), is sharp. It demonstrates, in particular, that there exist surfaces in
C [�],{�} which do not belong to M �

p.

Example 15.5.1. Let T denote a domain in R
2 with compact closure and

boundary ∂T . By B(2)
r we denote the open disk of a sufficiently small radius

r centered at an arbitrary point O ∈ ∂T . We assume that

B(2)
r ∩ T = {(x1, y) ∈ B(2)

r : x1 ∈ R
1, y > F (x1)}.
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Let B(n−2)
ρ = {x′ ∈ R

n−2 : |x′| < ρ}, where x′ = (x2, . . . , xn) and let η ∈
C∞

0 (B(n−2)
2 ) with η = 1 on B(n−2)

1 . Also let ϕ(x) = F (x1) η(x′) and U =
B(2)

r × B(n−2)
2 . We construct a bounded domain Ω ⊂ R

n satisfying (14.1.3)
whose boundary is smooth outside U . According to Example 4.4.1, for any
increasing function ω ∈ C[0, 1] satisfying the inequality

δ

∫ 1

δ

ω(t)
dt

t2
+
∫ δ

0

ω(t)
dt

t
≤ c ω(δ),

as well as the condition
∫ 1

0

(
ω(t)
t{�}

)p
dt

t
=∞, (15.5.5)

one can construct a function ϕ of the above form such that the continuity
modulus of ∇[�]ϕ does not exceed c ω with c = const, and

ϕ /∈W �
p(Rn−1). (15.5.6)

Therefore, ∂Ω /∈ M �
p. In the case ∂Ω ∈ C [�],{�} we have ω(t) = t{�} which

implies (15.5.5). Hence, the last inclusion is not sufficient for ∂Ω to be inM �
p. ��

Now we show that surfaces in the class M �
p(δ) with p(!− 1) < n− 1 may

have conic vertices and s-dimensional edges if s < n− 1− p(!− 1).

Example 15.5.2. Let s be an integer, 1 ≤ s ≤ n − 1, and let x =
(x1, . . . , xn−1) ∈ R

n−1. We use the notations ξ = (x1, . . . , xs) and
η = (xs+1, . . . , xn−1). Consider the domain G = Kn−s × R

s, where Kn−s is
the (n− s)-dimensional cone

{(η, y) : y > −A |η|}, A = const > 0. (15.5.7)

The well-known equivalence relation

‖v; Rn−1‖W �−1
p
∼
(∫

Rs

‖v(ξ, ·); Rn−1−s‖p
W �

p
dξ

)1/p

+
(∫

Rn−1−s

‖v(·, η); Rs‖p
W �

p
dη

)1/p

(15.5.8)

(see (4.2.3)) implies that the Hardy-type inequality

∫

Rn−1

|v|pdx
|η|p(�−1)

≤ c ‖v; Rn−1‖p
W �−1

p
(15.5.9)
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holds for all v ∈ C∞
0 (Rn−1) if and only if
∫

Rn−1−s

|w|pdη
|η|p(�−1)

≤ c ‖w; Rn−1−s‖p
W �−1

p

holds for all w ∈ C∞
0 (Rn−1−s). It is standard that the last inequality is valid

if and only if p(!−1) < n−1−s. One can easily check that Dp,�|η| = c |η|1−�.
Hence, (15.5.9) is equivalent to

Dp,�|η| ∈M(W �−1
p (Rn−1)→ Lp(Rn−1)).

By (4.3.89), the last inclusion can be written as ∇|η| ∈MW �−1
p (Rn−1). Thus,

the domain G belongs to M �
p ∩C0,1 if and only if s < n− 1− p(!− 1). Under

this restriction on the dimension of the edge, ∂G ∈M �
p(cA). ��

Remark 15.5.1. Suppose that for any point O ∈ ∂Ω there exists a neighbor-
hood U such that U ∩Ω is C∞-diffeomorphic to the domain

R
s × {(x, y) : y > f(xs+1, . . . , xn−1)}, 0 ≤ s ≤ n− 2,

i.e. the dimensions of boundary singularities are at most n − 1 − s. Then
(15.5.8) shows that (15.1.3) is equivalent to

‖∇ϕ; Rn−1−s‖MW �−1
p
≤ c δ

and, in particular, it takes the form

‖∇ϕ; Rn−1−s‖W �−1
p,unif

≤ c δ,

if n − 1 − s < p(! − 1) ≤ n − 1. In other words, ∂Ω ∈ M �
p(δ) if and only if

the (n − 1 − s)-dimensional domain {(x, y) : y > ϕ(xs+1, . . . , xn−1)} belongs
to M �

p(c δ).

15.6 Sharpness of Conditions Imposed on ∂Ω

15.6.1 Necessity of the Inclusion ∂Ω ∈ W �
p in Theorem 15.2.1

We start by showing that the condition ∂Ω ∈ W �
p is necessary for the solv-

ability in W
[�]+1,α
p (Ω) of the Dirichlet problem

∆u = g ∈W [�]−1,α
p (Ω), u|∂Ω = Φ ∈W �

p(∂Ω) (15.6.1)

provided that Ω is subject to some regularity assumptions. It is worth noting
that certain additional conditions on ∂Ω should be imposed to guarantee the
above statement. For example, it is well known that the problem

∆u = g ∈ L2(Ω), u|∂Ω = 0

is uniquely solvable in W 2
2 (Ω) for any convex domain which is not necessarily

in W
3/2
2 (p = 2, α = 0, ! = 3/2).
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Theorem 15.6.1. Let one of the following conditions hold:
Either ! ∈ (1, 2), ∂Ω ∈ C1, and the continuity modulus ω of the normal to

∂Ω satisfies the Dini condition
∫ 1

0

ω(t)
dt

t
<∞, (15.6.2)

or ! > 2 and ∂Ω ∈ C [�]−1,1.
Then ∂Ω ∈ W �

p if, for every Φ ∈ W �
p(∂Ω), the problem (15.6.1) has a

solution u ∈W [�]+1,α
p (Ω), where α = 1− {!} − 1/p.

Proof. Let Φ be a nonnegative function vanishing on U ∩ ∂Ω, where U is an
arbitrary coordinate neighborhood. It is well known that (15.6.2) guarantees
that u ∈ C1(Ω) and the outer normal derivative at any point of U ∩ ∂Ω is
positive. Let us use the mapping λ = κ

−1 with κ introduced in Sect. 9.4.3.
Since ϕ ∈ C [�]−1,1(Rn−1) and ∇xu, uy ∈ W [�],α(V ∩ Ω) for any set V

with V ⊂ U , it follows that ∇xu ◦ λ and uy ◦ λ belong to W [�],α(κ(V ∩ Ω)).
Therefore, tr (∇xu ◦ λ) and tr (uy ◦ λ) are in W �

p(κ(V ∩ ∂Ω)). Observing that

(W �
p ∩ L∞)(κ(V ∩ ∂Ω))

is a multiplication algebra, we conclude that

∇ϕ = −tr (∇xu ◦ λ)/tr (uy ◦ λ) ∈W �
p(κ(V ∩ ∂Ω)).

The result follows from the arbitrariness of V and U . ��

Remark 15.6.1. By the above proof we have shown that the inclusion ∂Ω ∈W �
p

is necessary for the solvability of (D+) in W [�]+1,α(Ω) for all Φ ∈ W �
p(∂Ω)

under the conditions imposed on ∂Ω in Theorem 15.6.1. Note that ∂Ω ∈W �
p

is also sufficient in the case p(!− 1) > n− 1 by Theorem 15.1.2.

15.6.2 Sharpness of the Condition ∂Ω ∈ B�
∞,p

Using Remark 15.6.1 we show in the following example that no condition on
∂Ω weaker than ∂Ω ∈ B�

∞,p (condition (15.5.4)) can give the solvability of
problem (D+) in W [�]+1,α(Ω) for all Φ+ ∈ W �

p(∂Ω). We recall that ∂Ω ∈
B�

∞,p is sufficient for ∂Ω ∈ M �
p(δ) and hence for this solvability in the case

p(!− 1) ≤ n− 1 (see Theorem 15.1.2 and Sect. 15.4).

Example 15.6.1. Let Ω be the domain described in Example 15.5.1. By
(15.5.6) and Theorem 15.6.1, problem (D+) for Ω is not generally solvable
in W

[�]+1,α
p (Ω) if Φ+ ∈W �

p(∂Ω).
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The next example of the same nature demonstrates the sharpness of the
conditions ∂Ω ∈ W �

p and ∂Ω ∈ B�
∞,p for the solvability of the Neumann

problem.

Example 15.6.2. We use the domains T and Ω from Example 15.5.1. Let ∂T
be a simple contour and let (α, β) denote the arc B(2)

r ∩ ∂T . We choose an
arbitrary point τ ∈ ∂T\(α, β) and introduce a function γ ∈ W �−1

p (∂T ) equal
to zero on (α, β) and at the point τ , negative on (τ, α) and positive on (β, τ).
We require also that γ is orthogonal to one on ∂T . Since ∂T ∈ C [�]−1,1, the
problem

∆h = 0 in R
2\T , ∂h/∂ν = γ on ∂T

has a solution h ∈ (W [�]
p,loc ∩ L∞)(R2\T ).

Let ζ ∈ C∞
0 (R2) with ζ = 1 on T , and let η be the cutoff function from Ex-

ample 15.5.1. The function v(x, y) = h(x1, y) ζ(x1, y) η(x′) satisfies the Neu-
mann problem

∆v − v = g in R
n\Ω, ∂v/∂ν = Ψ on ∂Ω (15.6.3)

with
g = h∆η + 2η∇h∇ζ ∈W [�]

p (Rn\Ω) ⊂W [�]−1,α
p (Rn\Ω)

and
ψ = η∂h/∂ν + h∂η/∂x ∈W �−1

p (∂Ω).

If the problem (15.6.3) is solvable in the space W [�]+1,α
p (Rn\Ω) for all

g ∈W [�]−1,α
p (Rn\Ω) and Ψ ∈W �−1

p (∂Ω),

then v ∈ W
[�]+1,α
p (Rn\Ω) and hence h ∈ W

[�]+1,α
p,loc (R2\T ). By χ we de-

note a conjugate harmonic function of h such that h(α) = 0. Clearly,
χ ∈ W

[�]+1,α
p (R2\T ). Since the first derivative of χ|∂T is equal to γ, it fol-

lows that χ = 0 on B(2)
r ∩ ∂T and χ ≥ 0 on ∂T .

Repeating the proof of Theorem 15.6.1 with R
2\T and χ|∂T instead of Ω

and ϕ, respectively, we obtain ∂T ∈ W �
p which implies that ∂Ω ∈ W �

p . How-
ever, this is not true in view of (15.5.6), and therefore (15.6.3) is not solvable
in W

[�]+1,α
p (Rn\Ω), in general. Thus, no matter how weak the violation of the

inclusion ∂Ω ∈ B�
∞,p be, it may lead to the breakdown of the solvability in

W
[�]+1,α
p (Ω), p(!− 1) ≤ n, for the Neumann problem (15.6.3).

15.6.3 Sharpness of the Condition ∂Ω ∈ M �
p(δ) in Theorem 15.2.1

It was mentioned preceding Theorem 15.6.1, that the inclusion ∂Ω ∈ W �
p

is not necessary for the solvability of the Dirichlet problem in W
[�]+1,α
p (Ω).

Hence, there is no necessity of the condition M �
p(δ). However, we show in this
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section that the inclusion ∂Ω ∈ M �
p(δ) is best possible in a certain sense.

In fact, the following two examples demonstrate that the inequality (15.1.3),
where p(!− 1) < n− 1 and δ is not small, is not sufficient, in general, for the
W

[�]+1,α
p -solvability of the Dirichlet and Neumann problems.

Example 15.6.3. Let a domain Ω coincide with the domain G in Example
15.5.2 in a neighborhood of the origin. We adopt the same notations as in
Example 15.5.2.

Let u be a positive harmonic function in Ω, satisfying tru = Φ+ ∈W l
p(∂Ω)

with Φ+ vanishing on U ∩∂Ω. It is well known that for small r = (|η|2+y2)1/2

u(x) = C(ξ)rλΘ(ω) +O(rλ1), (15.6.4)

where 1 > λ1 > λ > 0, ω = (η/r, y/r), Θ is smooth on {(η, y) ∈ Kn−s : r = 1},
and C is smooth and positive near the origin of R

s. Moreover, the asymptotic
relation (15.6.4) is infinitely differentiable and therefore u ∈ W

[�]+1,α
p (Ω) if

and only if n − 1 − s > p(! − λ). If s < n − 2, λ can be made arbitrarily
small by choosing sufficiently large A in (15.5.7). In the case s = n − 2, we
have λ > 1/2, and λ − 1/2 can be made arbitrarily small by increasing the
value of A.

According to Example 15.5.2, ∂Ω ∈M �
p if and only if n− 1− s > p(!− 1).

At the same time, one can choose A to have u /∈ W
[�]+1,α
p (Ω) if and only if

n−1−s < p! for s < n−2, and 1 < p(!−1/2) for s = n−2. Thus, the inclusion
∂Ω ∈M �

p ∩C0,1 does not imply the solvability of (D+) in W
[�]+1,α
p (Ω) for all

Φ+ ∈W �
p(∂Ω) if

p! > n− 1− s > p(!− 1) for s < n− 2

and
p(!− 1/2) > 1 > p(!− 1) for s = n− 2.

��

In the next example we demonstrate that the inclusion ∂Ω ∈ M �
p(δ) in

Theorem 15.2.1 cannot be replaced by ∂Ω ∈M �
p ∩C [�], for a particular choice

of p and !.

Example 15.6.4. Let the domain Ω be described in a neighborhood of O by
the inequality y > ϕ(x), where

ϕ(x) = C η(x, 0)|x1|/log(1/|x1|)

with C ≥ π/4 and η ∈ C∞
0 (B1/2), η = 1 on B1/4. By ζ(t) we denote the

conformal mapping of the domain

{t = x1 + ix2 : |t| < 1/2, x2 > C|x1|/log(1/|x1|)}
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into the half-disk {ζ : Im ζ > 0, |ζ| < 1} with ζ(0) = 0. By Sect. 14.6.1, the
function u(z) = η(2z)Im ζ(x1 + ix2) does not belong to W 2

2 (Ω) and satisfies
the Dirichlet problem

∆u = f ∈ L2(Ω), tru = Φ ∈W 3/2
2 (∂Ω). (15.6.5)

Replacing Ω by R
n\Ω and using the function v(z) = η(2z)Re ζ(x1 + ix2), we

arrive at a solution of the Neumann problem

∆v − v = f ∈ L2(Ω), ∂v/∂ν = Ψ ∈W 1/2
2 (∂Ω), (15.6.6)

which does not belong to W 2
2 (Ω). Thus, there is no solvability in W 2

2 (Ω)
and in W 2

2 (Rn\Ω) of problems (15.6.5) and (15.6.6) in spite of the inclusion
∂Ω ∈M3/2

2 ∩ C1.
The same result can be obtained for the problem (N−) by making small

changes in the above argument. We require that R
n\Ω coincides with the

domain G from Example 15.5.2 near the origin O. We note that there exists
a harmonic function in R

n\Ω satisfying

∂u/∂ν = Ψ− ∈W �−1
p (∂Ω)

with Ψ− = 0 in a neighborhood of O such that the asymptotic representation
(15.6.4) holds with C(0) 	= 0. The rest of the argument is literally the same
as for (D+).

15.6.4 Sharpness of the Condition ∂Ω ∈ M �
p(δ) in Theorem 15.1.1

Here we give counterexamples concerning the solutions σ and ρ of the integral
equations (2+) and (3−). First we show that the solvability properties of
(2+) and (3−) proved in Theorem 15.1.1 may fail if ∂Ω ∈ M �

p ∩ C0,1 and
∂Ω /∈M �

p(δ).

Example 15.6.5. Let us consider the domain Ω at the beginning of Example
15.5.2 with n = 3 and s = 0. Now we deal with the three-dimensional conic
singularity {z = (r, θ, ω) : r > 0, 0 ≤ θ < π− ε, 0 ≤ ω < 2π}, where ε > 0 and
θ is the angle between y-axis and z.

We asume that the functions Φ+ and Ψ− in (2+) and (3−) vanish near the
vertex of this cone. It was proved in [LeM] that solutions of (2+) and (3−)
have the asymptotic representations

σ+(z) = σ(0) + c1 |z|λ +O(|z|1+ε),
ρ−(z) = c2 |z|λ−1(1 +O(|z|µ))

with µ > 0, 0 < λ < 1, and nonzero c1 and c2. The exponent λ can be made
arbitrarily small by diminishing the value of ε. Also note that these asymptotic
formulae can be differentiated. According to Example 15.5.2, ∂Ω ∈M �

p if and
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only if p(!−1) < 2. However, for p! > 2, we can choose A in the cone (15.3.22)
so large that σ+ /∈W �

p(∂Ω) and ρ− /∈W �−1
p (∂Ω).

Now, suppose that ρ− ∈ W �−1
p (∂Ω) is a solution of (15.1.1) with Φ = 1

near O, 0 ≤ Φ ≤ 1 on ∂Ω. Let us denote the solutions of the interior and
exterior Dirichlet problems for the Laplace equation with the same boundary
data Φ by u+ and u−. It is well known that

∇ku−(z) = o(|z|k−1) as |z| → 0 for k = 1, 2

and
u+(z) = c |z|λ α(θ) (1 + o(|z|µ)) as |z| → 0,

where µ > 0, α is smooth, α′(π − ε) 	= 0, and λ > 0 can be made arbitrarily
small by choosing a sufficiently small ε > 0. The above asymptotics of u+ can
be differentiated. Hence,

ρ = ∂u−/∂ν − ∂u+/∂ν

has the differentiable representation

ρ(z) = c3 |z|λ−1(1 + o(|z|µ))

which contradicts the inclusion ρ ∈W �−1
p (∂Ω). ��

Next, we give an example demonstrating that, in general, the condition
∂Ω ∈M �

p(δ) in Theorem 15.1.1 (iii) cannot be improved by ∂Ω ∈M �
p ∩ C [�].

Example 15.6.6. Consider the same domain Ω as in Example 15.6.4. Let
ρ ∈ W 1/2

2 (∂Ω) be a solution of (15.1.1) with Φ = 1 near O and 0 ≤ Φ ≤ 1 on
∂Ω. By u+ and u− we mean the solution of the interior and exterior Dirich-
let problems for the Laplace equation with tru± = Φ. Using the conformal
mapping t → ζ(t) one can show that u+ has the differentiable asymptotic
representation

u+(z) = H(ξ) Im ζ(t) (1 + | log |t| |−1) as |t| → 0,

where ξ = (x3, . . . , xn−1, y) and H is a smooth function with H(0) 	= 0. We
also have ∇ku−(z) = o(|z|k−1) as |z| → 0 for k = 1, 2. Hence ρ = ∂u−/∂ν −
∂u+/∂ν has the differentiable representation

ρ(z) = cH(ξ) | log |t| |2C/π (1 + | log |t| |−1)

for sufficiently small |ξ| and |t| → 0. One can check directly that the function
on the right-hand side does not belong to W 1/2

2 in any neighborhood of O for
C ≥ π/4. If the condition ∂Ω ∈ W

3/2
2 (δ) in Theorem 15.1.1 (iii) could be

replaced by ∂Ω ∈W 3/2
2 ∩ C1, one would have a contradiction.
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Remark 15.6.2. For the history of boundary integral equations generated by
elliptic boundary value problems in domains with nonsmooth boundaries see
[Ke2], [Maz17]. In particular, a comprehensive theory of integral equations
on the boundaries of Lipschitz graph domains was developed in [JK1], [JK2],
[CMM], [Verc], [Ke1], [Ca4], [Fab], [FKV], [DKV], [Cos], [MT1]–[MT5], and
[MM]. All these works concern solvability and regularity properties either in
Lp(∂Ω) or in fractional Sobolev spaces W �

p(∂Ω), 0 < ! < 1.
Under the assumption that ∂Ω is sufficiently smooth, one can apply such

powerful tools as pseudodifferential calculus to equations (2±)–(15.1.2), which
results in a comprehensive theory of their solvability in various spaces of dif-
ferentiable functions.

The regularity theory for equations (2±)–(15.1.2) with respect to the scale
of the fractional Sobolev spaces W �

p(∂Ω) is developed in this chapter under
weak smoothness assumptions on ∂Ω, when the corresponding results in the
theory of pseudodifferential operators on ∂Ω are unavailable at the present
time. As a substitute, we rely upon an approach proposed in [Maz13], [Maz14],
[Maz16], [Maz17], which reduces the study of boundary integral equations to
the study of the inverse operators of auxiliary boundary value problems.

The exposition of Sects. 15.1–15.6 follows the paper [MSh23].

15.7 Extension to Boundary Integral Equations
of Elasticity

In principle, the Laplace operator we dealt with in this chapter can be replaced
by the operator ∑

1≤i,j≤n

Aij
∂2

∂zi∂zj

with constant matrix coefficients Aij = ‖Ars
ij ‖mr,s=1, subject to the symmetry

condition Ars
ij = Asr

ji and the Legendre-Hadamard strong ellipticity condition

(Aijη, η)ξiξj ≥ c|ξ|2|η|2, c = const > 0,

for all vectors ξ ∈ R
n and η ∈ R

m. The statement of the interior and exterior
Dirichlet problems for a bounded Lipschitz domain Ω ∈ R

n does not change,
whereas the Neumann condition is replaced by

∑
1≤i,j≤n

νi Aij tr
∂u±
∂zj

= Ψ±

with ν = (ν1, . . . , νn) standing for the outer unit normal with respect to Ω.
In particular, one may include the Dirichlet and traction problems for

the Lamé system of linear elastostatics. We preserve the same notations for
boundary value problems and elastic potentials as in the harmonic potential
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theory developed previously. Also, we make no difference in notations of spaces
of scalar and vector-valued functions.

Let Ω be a domain in R
3 with compact closure and boundary ∂Ω. We

study the internal and external Dirichlet problems for the Lamé system

µ∆u+ + (λ+ µ)∇div u+ = 0 in Ω,

tru+ = Φ+ on ∂Ω, (D+)

and
µ∆u− + (λ+ µ)∇div u− = 0 in R

3\Ω,
tru− = Φ− on ∂Ω,

u−(x) = O(|x|−1) as |x| → ∞, (D−)

where the boundary trace is denoted by tr and

µ > 0, 3λ+ 2µ > 0,

as well as the internal and external Neumann problems

µ∆v+ + (λ+ µ)∇div v+ = 0 in Ω,

J v+ = Ψ+ on ∂Ω, (N+)

and
µ∆v− + (λ+ µ)∇div v− = 0 in R

3\Ω,
J v− = Ψ− on ∂Ω,

v−(x) = O(|x|−1) as |x| → ∞, (N−)

where J is the traction operator given by

J
( ∂

∂x
, νx

)
u = 2µ

∂u

∂νx
+ λνx · div u+ µ νx × rotu.

We also need the transmission problem

µ∆w+ + (λ+ µ)∇divw+ = 0 in Ω,

µ∆w− + (λ+ µ)∇divw− = 0 in R
3\Ω,

tr w+ − tr w− = Φ and Jw+ − Jw− = Ψ on ∂Ω,

w−(x) = O(|x|−1) as |x| → ∞. (T )

We collect properties of the problems (D±), (N±), and (T ) in the following
statement.
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Theorem 15.7.1. Let p ∈ (1,∞) and α = 1 − {!} − 1/p, where ! is a non-
integer with ! > 1. Suppose that ∂Ω ∈ W �

p for p(!− 1) > 2 and ∂Ω ∈ M �
p(δ)

with some δ = δ(p, !) for p(!− 1) ≤ 2. Then
(i) For every Φ+ ∈ W �

p(∂Ω) there exists a unique solution u+ of (D+) in

W
[�]+1,α
p (Ω).
(ii) For every Φ− ∈W �

p(∂Ω) there exists a unique solution u− of (D−) in

W
[�]+1,α
p,loc (Rn\Ω).
(iii) For every Ψ+ ∈ W �−1

p (∂Ω) � 1 there exists a unique solution v+ of

(N+) in W
[�]+1,α
p (Ω), subject to v+ ⊥ 1 on Ω.

(iv) For every Ψ− ∈W �−1
p (∂Ω) there exists a unique solution v− of (N−)

in W
[�]+1,α
p,loc (Rn\Ω).

(v) For every (Φ, Ψ) ∈W �
p(∂Ω)×W �−1

p (∂Ω) there exists a unique solution

(w+, w−) ∈W [�]+1,α
p (Ω)×W

[�]+1,α
p,loc (Rn\Ω)

of (T ).

The proof is essentially the same as that of Theorem 15.1.2.
The following two results in the theory of elastic potentials are parallel to

Proposition 15.3.2 and Theorem 15.1.1, and can be proved in a similar way.
We restrict ourselves to the solution of (D±) by means of the single layer
potential as well as (D±) and (N±) by means of the double layer potential.

We recall that the Kelvin-Somigliana tensor Γ = ‖Γij‖3i,j=1, where

Γij(x) = − λ+ µ

8πµ(λ+ 3µ)

(λ+ 3µ
λ+ µ

δj
i

|x| +
xi xj

|x|3
)
,

is a fundamental solution of the Lamé system, and we introduce the elastic
single layer potential

(Sρ)(x) =
∫

∂Ω

Γ (x− ξ) ρ(ξ)ds.

Theorem 15.7.2. Let ∂Ω satisfy the conditions in Theorem 15.7.1. Then

‖ Sρ; ∂Ω‖W �
p
≤ c ‖ρ; ∂Ω‖W �−1

p
, (15.7.1)

‖ (Sρ)+;Ω‖
W

[�]+1,α
p

≤ c ‖ρ; ∂Ω‖W �−1
p

, (15.7.2)

‖ (Sρ)−;B\Ω‖
W

[�]+1,α
p

≤ c(B) ‖ρ, ∂Ω‖W �−1
p

, (15.7.3)

where (Sρ)± are the restrictions of Sρ to Ω and R
n\Ω, respectively, and B is

an arbitrary ball containing Ω.
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Let D be the elastic double layer potential defined by

(Dχ)(x) =
∫

∂Ω

J
( ∂

∂ξ
, νξ

)(
Γ (x− ξ)

)
χ(ξ) ds, x /∈ ∂Ω.

If u+ = Dχ+, then χ+ satisfies the integral equation

1
2χ+ +Dχ+ = Φ+ on ∂Ω, (15.7.4)

which is understood in the same sense as in [Ke1] and [Fab]. The solution of
(D−) may be represented as the sum

(Dχ)(x) + aΓ (x, 0) + b rotΓ (x, 0),

where a and b are unknown constant vectors. The triple (χ, a, b) satisfies the
equation

− 1
2χ− +Dχ− + aΓ (·, 0) + b rotΓ (·, 0) = −Φ−. (15.7.5)

Representing solutions of problems (N±) in the form Sχ±, one arrives at the
equations

− 1
2χ+ +D∗χ+ = Ψ+, (15.7.6)
1
2χ− +D∗χ− = Ψ−, (15.7.7)

where D∗ is the adjoint of D.
Here is the main result concerning the integral equations (15.7.4)–(15.7.7).

Theorem 15.7.3. Let ∂Ω satisfy the conditions in Theorem 15.7.1. Then
(i) the operators D and D∗ are bounded on W �

p(∂Ω) and W �−1
p (∂Ω), re-

spectively;
(ii) for Φ± ∈ W �

p(∂Ω) the equations (15.7.4) and (15.7.5) are uniquely
solvable in W �

p(∂Ω) and W �
p(∂Ω)× R

3 × R
3;

(iii) there exists a continuous inverse of 1
2 I+D∗ on the space W �−1

p (∂Ω).
Equation (15.7.6) has a solution in W �−1

p (∂Ω) for an arbitrary Ψ+ orthogonal
to all rigid motions.

Remark 15.7.1. A straightforward modification of our arguments used in the
harmonic potential theory developed in this chapter leads to analogous higher
regularity results in the theory of hydrodynamic potentials related to the
Stokes system

ν∆u−∇p = 0, divu = 0,

(for background, see [Lad], [Ke1], [Fab], and Sects. 2.2–2.4 in [Maz17]).
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Applications of Multipliers to the Theory
of Integral Operators

In this chapter it is shown that Sobolev multipliers are useful for the study
of integral operators. First, in Sect. 16.1 we consider an arbitrary convolution
operator acting in a pair of weighted L2-spaces and collect corollaries of the
theory of multipliers providing criteria of boundedness and compactness of
the convolutions and a characterization of their spectra. Next we turn to
classical singular integral operators acting in Sobolev spaces. In Sect. 16.2
a calculus of these operators is developed under the assumption that their
symbols belong to classes of multipliers in Sobolev spaces. Finally, in Sect. 16.3
sharp conditions for continuity of the singular integral operators acting from
Wm

2 to W l
2 are found. These conditions are formulated in terms of certain

classes of multipliers.

16.1 Convolution Operator in Weighted L2-Spaces

Let
K : u→ k ∗ u

be a convolution operator with the kernel k. The results of Sects. 3.6 and
4.6 for the case p = 2 can be interpreted as theorems on properties of K
considered as a mapping

K : L2((1 + |x|2)m/2)→ L2((1 + |x|2)l/2), m ≥ l ≥ 0, (16.1.1)

where

‖u‖L2((1+|x|2)k/2) =
(∫
|u|2(1 + |x|2)k dx

)1/2

.

For example, the operator K is continuous if and only if its symbol, i.e. the
Fourier transform Fk, belongs to M(Wm

2 → W l
2). By Theorem 4.1.1 this is

equivalent to the following properties: Fk ∈ W l
2,unif and, for every compact

set e ⊂ R
n,

V.G. Maz’ya, T.O. Shaposhnikova, Theory of Sobolev Multipliers, 573
Grundlehren der mathematischen Wissenschaften 337,
c© Springer-Verlag Berlin Hiedelberg 2009
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∫

e

[D2,l(Fk)]2 dx ≤ const C2,m(e) ,

where

(D2,lu)(x) =
(∫
|∇[l],x(u(x+ h)− u(x))|2|h|−n−2{l} dh

)1/2

if {l} > 0, and
(D2,lu)(x) = |∇lu(x)|

if {l} = 0. Moreover,

‖K‖ ∼ sup
e

(
‖Fk‖L2,unif +

‖D2,l(Fk); e‖L2

[C2,m(e)]1/2

)
.

In the case 2m > n,
‖K‖ ∼ ‖Fk‖W l

2,unif
.

Theorem 4.6.1 describes properties of a function of the operator K considered
as the mapping (16.1.1). Namely, let 0 < l < 1 and let ϕ be a complex-
valued function of a complex argument with ϕ(0) = 0. By ϕ(K) we denote
the convolution operator with the symbol ϕ(Fk). If

|ϕ(t+ τ)− ϕ(t)| ≤ A|τ |ρ,

where |τ | < 1 and ρ ∈ (0, 1), we derive the following assertion from Theorem
4.6.1. If the operator (16.1.1) is continuous, then the operator

ϕ(K) : L2((1 + |x|2)(m−l+r)/2)→ L2((1 + |x|2)r/2)

with r ∈ (0, lρ) is continuous as well.
Results of Chap. 7 imply two-sided estimates for the essential norm and

conditions for compactness of the convolution K:
(i) If m > l and 2m ≤ n, then

ess ‖K‖ ∼ lim
δ→0

(
sup

{e:d(e)≤δ}

‖D2,l(Fk); e‖L2(
C2,m(e)

) 1
2

+ sup
x∈Rn

ρ≤δ

ρm−l−n
2 ‖Fk;Bρ(x)‖L2

)

+ lim
r→∞

(
sup

e⊂Rn\Br
d(e)≤1

‖D2,l(Fk); e‖L2

(C2,m(e))
1
2

+ sup
x∈Rn\Br

‖Fk;B1(x)‖L2

)
, (16.1.2)

where d(e) is the diameter of a compact set e ⊂ R
n.

(ii) If m > l and 2m > n, then

ess ‖K‖ ∼ lim sup
|x|→∞

‖Fk;B1(x)‖W l
2
. (16.1.3)

Hence K is compact if and only if either m > l, 2m ≤ n, and
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lim
δ→0

(
sup

{e:d(e)≤δ}

‖D2,l(Fk); e‖L2(
C2,m(e)

) 1
2

+ sup
x∈Rn

ρ≤δ

ρm−l−n
2 ‖Fk;Bρ(x)‖L2

)
= 0,

lim
r→∞

(
sup

e⊂Rn\Br
d(e)≤1

‖D2,lFk; e‖L2

(C2,m(e))
1
2

+ sup
x∈Rn\Br

‖Fk;B1(x)‖L2

)
= 0;

or m > l, 2m > n and

lim
|x|→∞

‖Fk;B1(x)‖W l
2

= 0.

According to Corollary 3.6.1, a complex number λ belongs to the spectrum
σ(K) of an operator K, continuous in L2((1 + |x|2)l/2), l > 0, if and only if

(Fk − λ)−1 /∈ L∞.

Let λ ∈ σ(K). By Theorem 3.6.1, λ is an eigenvalue of K if and only if

lim
ρ→0

ρ−n C2,l(Bρ(x)\Zλ) = 0

for all x in a set of positive measure, where Zλ = {ξ ∈ R
n : (Fk)(ξ) = λ}.

This condition is equivalent to

C2,l(G\Zλ) < C2,l(G) for some open set G. (16.1.4)

By the same Theorem 3.6.1, λ belongs to the residual spectrum σr(K) if and
only if (16.1.4) does not hold and C2,l(Zλ) > 0. Furthermore, λ belongs to
the continuous spectrum of K if and only if C2,l(Zλ) = 0.

If λ is a point of the spectrum of an operator K, continuous in L2((1 +
|x|2)−l/2), then Theorem 3.6.1 implies that

λ ∈ σp(K)⇐⇒ C2,l(Zλ) > 0

and
λ ∈ σc(K)⇐⇒ C2,l(Zλ) = 0 .

Consequently, the convolution acting in L2((1 + |x|2)−l/2) has no residual
spectrum.

16.2 Calculus of Singular Integral Operators
with Symbols in Spaces of Multipliers

In this section we demonstrate that the spaces MW l
p and M̊W l

p are useful in
construction of a calculus of singular integral operators acting in W l

p, 1 < p <
∞, l = 0, 1, . . . .

First we quote basic definitions of the theory of singular integrals (see
Mikhlin and Prössdorf [MiP]).
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Let α be a bounded measurable function defined on R
n× ∂B1, orthogonal

to one on ∂B1, and let α
(0)
0 ∈ L∞(Rn). The singular integral operator is

defined by

(Au)(x) = α
(0)
0 (x)u(x) +

∫

Rn

α(x, θ)
rn

u(y) dy , x ∈ R
n , (16.2.1)

where r = |y−x|, θ = (y−x)/r and the integral is interpreted in the sense of
the Cauchy principal value. We express α as a series in spherical harmonics

α(x, θ) =
∞∑

m=1

km∑
k=1

α(k)
m (x)Y (k)

m (θ) , (16.2.2)

where km is the number of spherical harmonics Y (k)
m of order m. Then (16.2.1)

and (16.2.2) imply the formal expansion

(Au)(x) = α
(0)
0 (x)u(x) +

∞∑
m=1

km∑
k=1

α(k)
m (x)

∫

Rn

Y
(k)
m (θ)
rn

u(y) dy . (16.2.3)

We put (S(0)
0 u)(x) = u(x), k0 = 0 and

(S(k)
m u)(x) =

∫

Rn

Y
(k)
m (θ)
rn

u(y) dy .

It is known that S(k)
m = µmF

−1Y
(k)
m F , where F is the Fourier transform in

R
n, µ0 = 1 and

µm = i−mπn/2 Γ (m/2)
Γ ((n+m)/2)

, |µm| ∼ m−n/2, (16.2.4)

for m ≥ 1 with Γ standing for the Gamma function. Hence the operator A
can be written in the form

(Au)(x) = F−1
ξ→x[a(x, ξ/|ξ|)(Fu)(ξ)] ,

where a is defined by

a(x, θ) =
∞∑

m=0

km∑
k=1

µmα
(k)
m (x)Y (k)

m (θ) (16.2.5)

and is called the symbol of the singular integral operator A.
Next we introduce the space C∞(MW l

p, ∂B1) of infinitely differentiable
functions defined on ∂B1 with range in MW l

p. The space C∞(M̊W l
p, ∂B1) is

defined in a similar way.
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Lemma 16.2.1. If a ∈ C∞(MW l
p, ∂B1), then the singular integral operator

A with the symbol a is continuous in W l
p and can be expressed as the series

∞∑
m=0

km∑
k=1

α(k)
m S(k)

m

which converges in the operator norm in W l
p.

Proof. From (16.2.4), (16.2.5), and the definition of the space C∞(MW l
p, ∂B1),

it follows that for any positive integer N there exists a constant CN such that

‖α(k)
m ; Rn‖MW l

p
≤ CNm

−N , m ≥ 1 .

It remains to make use of the fact that the singular convolution operator S(k)
m

is continuous in W l
p and its norm increases no faster than a certain degree of

m as m→∞. ��

Henceforth, A, B, and C are singular integral operators in R
n with the

symbols a(x, θ), b(x, θ), and c(x, θ), where x ∈ R
n and θ ∈ ∂B1.

Theorem 16.2.1. Let AB be a singular operator with the symbol ab and let
A ◦B be the composition of operators A and B.

If a ∈ C∞(MW l
p, ∂B1) and there exists a function b∞ ∈ C∞(∂B1) such

that b − b∞ ∈ C∞(M̊W l
p, ∂B1), then the operator AB − A ◦ B is compact in

W l
p.

Proof. By Lemma 16.2.1, it is sufficient to consider the operators A and B
expressed in the form of finite sums

∑
m,k

α(k)
m S(k)

m ,
∑
q,r

β(r)
q S(r)

q .

It is clear that

A ◦B = F−1
( ∑

m,k,q,r

µmα
(k)
m µqβ

(r)
q Y (k)

m Y (r)
q

)
F

=
∑

m,k,q,r

α(k)
m β(r)

q µmF
−1Y (k)

m FµqF
−1Y (r)

q F

=
∑

m,k,q,r

α(k)
m β(r)

q S(k)
m S(r)

q .

On the other hand,

AB =
∑

m,k,q,r

α(k)
m S(k)

m β(r)
q S(r)

q

=
∑

m,k,q,r

α(k)
m β(r)

q S(k)
m S(r)

q +
∑

m,k,q,r

α(k)
m [S(k)

m , β(r)
q ]S(r)

q ,
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where [X,Y ] = XY − Y X. Therefore,

AB −A ◦B =
∑

m,k,q,r

α(k)
m [S(k)

m , β(r)
q ]S(r)

q , (16.2.6)

and it remains to show that the commutator [S(k)
m , β

(r)
q ] is compact in W l

p.
This assertion is contained in the following lemma.

Lemma 16.2.2. Let γ ∈ M̊W l
p, and let A be a singular integral operator with

the symbol a(θ), where a ∈ C∞(∂B1). Then the commutator [γ,A] is compact
in W l

p.

Proof. Let {γj} be a sequence of functions, γj ∈ C∞
0 , and let γj converge to

γ in MW l
p. Then the operators (γ − γj)A and A(γ − γj) tend to zero in the

operator norm in W l
p. The compactness of the mapping [γj , A] in W l

p is well
known and can be easily verified. ��

The following theorem contains conditions for the operator AB−A ◦B to
be of order −1 in W l

p (cf. [KN]).

Theorem 16.2.2. If a ∈ C∞(MW l+1
p , ∂B1) and ∇xb ∈ C∞(MW l

p, ∂B1),
then the operator AB − A ◦ B maps W l

p continuously into W l+1
p . Here AB

is a singular operator with the symbol ab, and A ◦ B is the composition of
operators A and B.

This assertion follows from (16.2.6) and the next lemma.

Lemma 16.2.3. Let a function γ satisfy the Lipschitz condition and let ∇γ ∈
MW l

p. Further, let A be a singular integral operator with the symbol a(ξ),
where a ∈ C∞(∂B1). Then the commutator [γ,A] satisfies the inequality

‖[γ,A]‖W l
p→W l+1

p
≤ c ‖∇γ‖MW l

p
.

Proof. For l = 0 the assertion is a known result due to Calderon [Ca2]. Let
the lemma be proved for all l = 0, 1, . . . , k − 1. Then, for all u ∈W k+1

p ,

‖[γ,A]u‖W k+1
p
≤

n∑
j=1

∥∥∥ ∂

∂xj
[γ,A]u

∥∥∥
W k

p

+ ‖[γ,A]u‖W k
p
. (16.2.7)

In view of the imbedding MW k
p ⊂ MW k−1

p , the last term in (16.2.7) is esti-
mated by the induction hypothesis. Since

(∂/∂xj)[γ,A] = (∂γ/∂xj)A−A(∂γ/∂xj) + [γ,A](∂/∂xj),

it follows that
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∥∥∥ ∂

∂xj
[γ,A]u

∥∥∥
W k

p

≤ 2‖A‖W k
p →W k

p

∥∥∥ ∂γ
∂xj

∥∥∥
MW k

p

‖u‖W k
p

+
∥∥∥[γ,A]

∂u

∂xj

∥∥∥
W k

p

.

Applying the induction hypothesis to the last norm, we complete the proof.
��

To conclude this section we formulate two corollaries on the regularization
of a singular integral operator which follow from Theorems 16.2.1 and 16.2.2.

Corollary 16.2.1. Let there exist a function a∞ ∈ C∞(∂B1) such that

a− a∞ ∈ C∞(M̊W l
p, ∂B1).

Further, let c = 1/a ∈ L∞(Rn × ∂B1). Then

c ∈ C∞(MW l
p, ∂B1)

and
c− c∞ ∈ C∞(M̊W l

p, ∂B1),

where c∞ = 1/α∞. Moreover, the operators A ◦ C − I and C ◦ A − I are
compact in W l

p.

Corollary 16.2.2. Let a ∈ L∞(Rn × ∂B1) and let

∇xa ∈ C∞(MW l
p, ∂B1).

Further, let c = 1/a ∈ L∞(Rn × ∂B1). Then

∇xc ∈ C∞(MW l
p, ∂B1)

and the operators A ◦ C − I and C ◦A− I map W l
p continuously into W l+1

p .

Remark 16.2.1. The condition of infinite differentiability of the symbols on
∂B1 can be replaced everywhere in this section by the condition of their suf-
ficient smoothness.

16.3 Continuity in Sobolev Spaces of Singular Integral
Operators with Symbols Depending on x

Here we give conditions for the boundedness of a singular integral operator,
acting from the Sobolev class Wm

2 (Rn) into W l
2(R

n) with m ≥ l ≥ 0. The
symbol may depend not only on the angular variable θ ∈ ∂B but also on the
space variable x ∈ R

n. Here ∂B stands for the unit sphere in R
n centered at

the origin. It will be shown that the conditions, which are stated in terms of
a certain space of multipliers, are sharp.
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16.3.1 Function Spaces

Let µ be a measurable function defined on R
n−1 and satisfying the inequalities

µ(ξ) ≥ c and µ(ξ + η) ≤
(
1 + c |ξ|Q

)
µ(η),

where c and Q are positive constants. By Hµ(Rn−1) we denote the completion
of C∞

0 (Rn−1) in the norm

‖v; Rn−1‖Hµ
=
(∫

Rn−1
|µ(ξ)(Fv)(ξ)|2dξ

)1/2

, (16.3.1)

where F is the Fourier transform in R
n−1. We obtain the space of Bessel

potentials H l
2(R

n−1), l ∈ R
1, by setting µ(ξ) = (1 + |ξ|2)l. The space Hµ

was introduced and studied in [H2], [VP]. In particular, it was shown in [H1],
[VP] that Hµ(Rn−1) is embedded into the space C(Rn−1) of continuous and
bounded functions on R

n−1 if and only if
∫

Rn−1

dξ

µ(ξ)2
<∞. (16.3.2)

Everywhere in this section we assume that (16.3.2) holds.
We suppose that µ is weakly subadditive, that is,

µ(ξ + η) ≤ c (µ(ξ) + µ(η)), c = const.

An easy modification of the proof of a similar result for H l
2 given in [Pe1] shows

that the spaceHµ(Rn−1) is an algebra with respect to pointwise multiplication
if µ satisfies (16.3.2). The converse assertion also holds. In fact, since µ(ξ) ≥
c > 0, we have

c ‖uN ; Rn−1‖L2 ≤ ‖uN ; Rn−1‖Hµ
≤ cN1 ‖u; Rn−1‖NHµ

for all u ∈ Hµ(Rn−1), where N = 1, 2, . . . and the constants c and c1 do not
depend on N . Taking the N -th root and passing to the limit as N → ∞, we
arrive at

‖u; Rn−1‖L∞ ≤ c1‖u; Rn−1‖Hµ
.

Consequently, Hµ(Rn−1) ⊂ C(Rn−1), which is equivalent to (16.3.2).
We supply the sphere ∂B with a structure of the class C∞ by introducing

a family of coordinate neighborhoods {Uk} and a family of diffeomorphisms
ϕk : Uk → R

n−1. Further, let {νk} be a smooth partition of unity on ∂B
subordinate to the covering {Uk}.

A function σ defined on ∂B belongs to the space Hµ(∂B) if

(νkσ) ◦ ϕ−1
k ∈ Hµ(Rn−1)

for all k. The norm in Hµ(∂B) is introduced by
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‖σ; ∂B‖Hµ
=
(∑

k

‖(νkσ) ◦ ϕ−1
k ; R

n−1‖2Hµ

)1/2
.

Similarly to Hµ(Rn−1), the space Hµ(∂B) is an algebra with respect to
multiplication if and only if (16.3.2) holds. The same condition is equivalent
to the embedding Hµ(∂B) ⊂ C(∂B).

Let B(x) denote the unit ball in R
n centered at x, and let B = B(0). We

need the space H l,µ(B × ∂B) of functions B × ∂B � (x, θ)→ u(x, θ) with the
finite norm

(∫

B
(‖∇lu(x, ·); ∂B‖2Hµ

+ ‖u(x, ·); ∂B‖2Hµ
)dx
)1/2

for integer l ≥ 0, and with the finite norm
(∫

B

∫

B
‖∇[l],xu(x, ·)−∇[l],yu(y, ·); ∂B‖2Hµ

dxdy

|x− y|n+2{l}

+
∫

B
‖u(y, ·); ∂B‖2Hµ

dy
)1/2

for noninteger l > 0. Further, we introduce the space H l,µ(Rn × ∂B) of func-
tions

R
n × ∂B � (x, θ)→ u(x, θ)

endowed with the norm

‖u; Rn × ∂B‖Hl,µ =
(∫

Rn

((
Dl,µu(x)

)2 +
(
D0,µu(x)

)2)
dx
)1/2

,

where
Dl,µu(x) = ‖∇l,xu(x, ·); ∂B‖Hµ

(16.3.3)

for {l} = 0, and

Dl,µu(x)=
(∫

Rn

‖∇[l],xu(x+ h, ·)−∇[l],xu(x, ·); ∂B‖2Hµ

dh

|h|n+2{l}

)1/2

(16.3.4)

for {l} > 0.
We say that a function γ defined on R

n × ∂B belongs to the space of
multipliersM(Hm,µ → H l,µ) if γu ∈ H l,µ(Rn×∂B) for all u ∈ Hm,µ(Rn×∂B).

Since the operator

Hm,µ(Rn × ∂B) � u→ γu ∈ H l,µ(Rn × ∂B)

is closed, it is bounded. As a norm in M(Hm,µ → H l,µ) we take the norm of
the multiplication operator:

‖γ; Rn × ∂B‖M(Hm,µ→Hl,µ)

= sup{‖γu; Rn × ∂B‖Hl,µ : ‖u; Rn × ∂B‖Hm,µ ≤ 1}.
We use the notation MH l,µ instead of M(H l,µ → H l,µ).
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16.3.2 Description of the Space M(Hm,µ → Hl,µ)

Here we characterize the space M(Hm,µ → H l,µ). Consider first the case
l = 0.

Lemma 16.3.1. A function γ defined on R
n × ∂B belongs to the space

M(Hm,µ → H0,µ) if and only if γ ∈ H0,µ(B(x) × ∂B) for an arbitrary unit
ball B(x), and for any compact set e ⊂ R

n

‖γ; e× ∂B‖2H0,µ ≤ c C2,m(e),

where c is a constant which does not depend upon e. Moreover, the equivalence
relation

‖γ; Rn × ∂B‖M(Hm,µ→H0,µ) ∼ sup
e⊂Rn

(
∫

e

‖γ(x, ·); ∂B‖2Hµ
dx

C2,m(e)

)1/2

(16.3.5)

holds.

Proof. Necessity. We substitute u(x, θ) := u(x), where u ∈Wm
2 (Rn), into the

inequality
(∫

Rn

‖γ(x, ·)u(x, ·); ∂B‖2Hµ
dx
)1/2

≤ c ‖u; Rn × ∂B‖Hm,µ .

Then (∫

Rn

‖γ(x, ·); ∂B‖2Hµ
|u(x)|2dx

)1/2

≤ c ‖u‖W m
2
.

By Theorems 1.2.2 and 3.1.4, the exact constant in this inequality is equivalent
to the right-hand side of (16.3.5).

Sufficiency. Since the space Hµ(∂B) is an algebra under the condition
(16.3.2), it follows that

‖γu; Rn × ∂B‖2H0,µ ≤ c

∫

Rn

‖γ; ∂B‖2Hµ
‖u; ∂B‖2Hµ

dx

= c
∑

j

∫

Rn−1
|µ(ξ)|2

∫

Rn

‖γ; ∂B‖2Hµ
|F [νj(φ−1

j (ξ))u(x, φ−1
j (ξ))]|2dxdξ.

Applying Lemma 16.3.1 to the internal integral, one obtains

‖γu; Rn × ∂B‖2H0,µ ≤ c sup
e⊂Rn

∫

e

‖γ(x, ·); ∂B‖2Hµ
dx

C2,m(e)

×
(∫

Rn

∫

Rn

∑
j

∫

Rn−1
|µ(ξ)|2|F∆h∇[m],x

(
νj(φ−1

j (ξ))u(x, φ−1
j (ξ))

)
|2dξdx dh

|h|n+2{m}

+
∫

Rn

∑
j

∫

Rn−1
|µ(ξ)|2|F

(
νj(φ−1

j (ξ))u(x, φ−1
j (ξ))

)
|2dξdx

)
,
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where
∆hv(x, θ) = v(x+ h, θ)− v(x, θ).

Hence, using the definition of Hµ(∂B),we arrive at

‖γu; Rn × ∂B‖2H0,µ ≤ c sup
e⊂Rn

∫

e

‖γ; ∂B‖2Hµ

C2,m(e)
‖u; Rn × ∂B‖2Hm,µ .

The proof is complete. ��

Remark 16.3.1. According to (3.1.14), in Lemma 16.3.1 we may restrict our-
selves to compact sets e satisfying diam(e) ≤ 1.

In order to obtain sharp two-sided estimates for the norm in M(Hm,µ →
H l,µ) for m ≥ l > 0 we should prove some auxiliary assertions which are
derived in the same way as the corresponding assertions on multipliers in the
classes M(Hm

2 (Rn) → H l
2(R

n)) (see Sects. 2.3 and 3.2). When doing this we
should replace |γ(x)| by ‖γ(x, ·); ∂B1‖Hµ

and replace Slu(x) by Dl,µu(x) de-
fined by (16.3.3) and (16.3.4). As a result we arrive at the following description
of the class M(Hm,µ → H l,µ).

Theorem 16.3.1. The equivalence relation holds:

‖γ; Rn × ∂B‖M(Hm,µ→Hl,µ) ∼ sup
e:d(e)≤1

(
∫

e

(Dl,µγ(x))2dx

C2,m(e)

)1/2

+

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

sup
x∈Rn

(∫

B(x)

‖γ(y, ·); ∂B‖2Hµ
dy
)1/2

m > l,

lim sup
x∈Rn

‖γ(x, ·); ∂B‖Hµ
m = l.

(16.3.6)

The restriction d(e) ≤ 1 can be omitted.

Remark 16.3.2. In the same way as for the space M(Wm
2 → W l

2) (cf.
Sect. 4.3.4) we can check that M(Hm,µ → H l,µ) is continuously embed-
ded into M(Hm−l,µ → H0,µ). Since the spaces Hm,µ(Rn × ∂B) form an
interpolation scale in m (see, for instance, [Tr3], Sec.1.18.5), we have for any
j ∈ [0, l]

‖γ; Rn × ∂B‖M(Hm−j,µ→Hl−j,µ)

≤ c ‖γ; Rn × ∂B‖(l−j)/l

M(Hm,µ→Hl,µ)
‖γ; Rn × ∂B‖j/l

M(Hm−l,µ→H0,µ)
. (16.3.7)
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The embedding M(Hm,µ → H l,µ) ⊂ M(Hm−l,µ → H0,µ) together with
(16.3.7) implies that the space M(Hm,µ → H l,µ) is continuously embedded
into M(Hm−j,µ → H l−j,µ). From this and Theorem 16.3.1 it follows that
(16.3.6) is equivalent to

‖γ; Rn × ∂B‖M(Hm,µ→Hl,µ)

∼ sup
e:d(e)≤1

( [l]∑
j=0

∫

e

(Dl−j,µγ(x))2dx

C2,m−j(e)
+

[l]∑
j=0

∫

e

(Dj,µγ(x))2dx

C2,m−l+j(e)

)1/2

. (16.3.8)

For m = l the term corresponding to j = 0 in the second sum should be
replaced by

ess sup
x∈Rn

‖γ(x, ·); ∂B‖2Hµ
. (16.3.9)

Clearly, for integer l both sums in (16.3.8) coincide. The restriction d(e) ≤ 1
can be omitted.

Duplicating the proof of Corollary 4.3.8, we arrive at the following
assertion.

Corollary 16.3.1. For 2m > n

‖γ; Rn × ∂B‖M(Hm,µ→Hl,µ)

∼ sup
x∈Rn

(∫

B(x)

(Dl,µγ(y))2dy +
∫

B(x)

‖γ(y, ·); ∂B‖2Hµ
dy
)1/2

. (16.3.10)

One can verify directly that the right-hand side of (16.3.10) is equivalent
to the norm ‖γ;B × ∂B‖Hl,µ .

From Theorem 16.3.1 upper estimates for the norm in M(Hm,µ → H l,µ)
can be obtained, using the lower estimates for the capacity of a compact set
stated in terms of its Lebesgue measure mesn (see Propositions 3.1.2 and
3.1.3).

Corollary 16.3.2. For 2m < n

c ‖γ; Rn × ∂B‖M(Hm,µ→Hl,µ)

≤ sup
e:d(e)≤1

(∫

e

(Dl,µγ(x))2dx
)1/2

(mesne)
1
2−m

n

+ sup
x∈Rn

(∫

B(x)

‖γ(y, ·); ∂B‖2Hµ
dy
)1/2

. (16.3.11)

For 2m = n
c ‖γ; Rn × ∂B‖M(Hm,µ→Hl,µ)
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≤ sup
e:d(e)≤1

(
log

2n

mesne

)1/2(∫

e

(Dl,µγ(x))2dx
)1/2

+ sup
x∈Rn

(∫

B(x)

‖γ(y, ·); ∂B‖2Hµ
dy
)1/2

. (16.3.12)

In the case m = l the second term on the right-hand sides of (16.3.11) and
(16.3.12) should be replaced by (16.3.9).

16.3.3 Main Result

Let σ be a measurable function on R
n with values in L2(∂B). For any u ∈

C∞
0 (Rn) we define the singular integral operator S with symbol σ by the

equality
Su(x) = F−1

ξ→x[σ(x, ξ/|ξ|)(Fu)(ξ)], (16.3.13)

where F is the Fourier transform in R
n and F−1 is its inverse.

In what follows we use the notation

K =
(∫

Rn−1

dτ

µ(τ)2
)1/2

. (16.3.14)

As before, we omit R
n in notations of spaces and norms.

Theorem 16.3.2. Let K <∞ and let

σ ∈M(Hm,µ → H l,µ), m ≥ l ≥ 0. (16.3.15)

Then the operator (16.3.13) maps Wm
2 continuously into W l

2. Moreover, the
estimate

‖S‖W m
2 →W l

2
≤ cK‖σ‖M(Hm,µ→Hl,µ) (16.3.16)

holds.

Proof. Let x, ξ ∈ R
n, θ = ξ/|ξ| and let u be an arbitrary function from

C∞
0 (Rn). We write the operator S as

Su(x) =
∫

∂B

∫ ∞

0

e2πixξσ(x, θ)Fu(ξ)|ξ|n−1d|ξ|dθ

or, briefly,

Su(x) =
∫

∂B
σ(x, θ)v(x, θ)dθ, (16.3.17)

where
v(x, θ) =

∫ ∞

0

e2πixξFu(ξ)|ξ|n−1d|ξ| (16.3.18)

and
Fu(ξ) =

∫

Rn

e−2πiyξu(y)dy.
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Using the C∞ structure on ∂B introduced above, we have

Su(x) =
∑

k

∫

Rn−1
νk(ϕ−1

k (t))σ(x, ϕ−1
k (t))v(x, ϕ−1

k (t))|Jk(t)|dt,

where Jk is the Jacobian of the mapping ϕ−1
k . Let ηk ∈ C∞

0 (Uk) be such that
ηkνk = νk. We put

σk(x, t) = νk(ϕ−1
k (t))σ(x, ϕ−1

k (t))

and
vk(x, t) = ηk(ϕ−1

k (t))v(x, ϕ−1
k (t))|Jk(t)|.

By Parseval’s theorem,

Su(x) =
∑

k

∫

Rn−1
σk(x, t)vk(x, t)dt

=
∑

k

∫

Rn−1
Fσk(x, τ)F−1vk(x, τ)dτ, (16.3.19)

where F is the Fourier transform in R
n−1.

By (16.3.18), we obtain

F−1vk(x, τ) =
∫

Rn−1
e−2πiτtηk(ϕ−1

k (t))v(x, ϕ−1
k (t))|Jk(t)|dt

=
∫

∂B
e−2πiτϕk(θ)ηk(θ)v(x, θ)dθ

=
∫

Rn

e2πixξηk(θ)e−2πiτϕk(θ)Fu(ξ)dξ. (16.3.20)

The last integral can be interpreted as a family of singular integral convolution
operators Ek(τ), depending on a parameter τ ∈ R

n−1, with symbols

ηk(θ)e−2πiτϕk(θ), k = 1, 2, . . .

Now, it follows from (16.3.19) and (16.3.20) that S can be represented in the
form

Su(x) =
∑

k

∫

Rn−1
Fσk(x, τ)Ek(τ)u(x)dτ. (16.3.21)

Let l be a noninteger and let

Dlw(x) =
(∫

Rn

|∆h∇[l]w(x)|2 dh

|h|n+2{l}

)1/2

.
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We have
|DlSu(x)|2

≤ c

[l]∑
j=0

∑
k

(∫

Rn

(∫

Rn−1
|F∇j,xσk(x+h, τ)| |∆h∇[l]−j,xEk(τ)u(x)|dτ

)2 dh

|h|n+2{l}

+
∫

Rn

(∫

Rn−1
|F∆h∇[l]−j,xσk(x, τ)| |∇j,xEk(τ)u(x)|dτ

)2 dh

|h|n+2{l}

)
.

The right-hand side does not exceed

c

[l]∑
j=0

∑
k

(∫

Rn

∫

Rn−1
|µ(τ)F∇j,xσk(x+ h, τ)|2dτ

×
∫

Rn−1
|∆h∇[l]−j,xEk(λ)u(x)|2 dλ

µ(λ)2
dh

|h|n+2{l}

+
∫

Rn

∫

Rn−1
|µ(τ)F∆h∇[l]−j,xσk(x, τ)|2dτ

×
∫

Rn−1
|(∇j,xEk(λ)u(x)|2 dλ

µ(λ)2
dh

|h|n+2{l}

)
. (16.3.22)

Consequently,
‖DlSu‖2L2

≤ c

[l]∑
j=0

∑
k

(∫

Rn

‖∇j,xσk(x, ·); Rn−1‖2Hµ

∫

Rn−1
|(Dl−jEk(λ)u)(x)|2 dλ

µ(λ)2
dx

+
∫

Rn

(∫

Rn

‖∆h∇[l]−j,xσk(x, ·); Rn−1‖2Hµ

dh

|h|n+2{l}

)

×
(∫

Rn−1
|(∇jEk(λ)u)(x)|2 dλ

µ(λ)2
)
dx
)
.

This inequality and Lemma 16.3.1 imply that

‖DlSu‖2L2

≤ c

[l]∑
j=0

∑
k

(
sup

e

∫

e

‖∇j,xσ(x, ·); Rn−1‖2Hµ
dx

C2,m−l+j(e)

∫

Rn−1
‖Ek(λ)u‖2W m

2

dλ

µ(λ)2

+ sup
e

∫

e

‖Dl−jσk(x, ·); Rn−1‖2Hµ
dx

C2,m−j(e)

∫

Rn−1
‖Ek(λ)u‖2W m

2

dλ

µ(λ)2
)
.

Since the operators Ek(λ) are uniformly bounded in Wm
2 , it follows that

‖DlSu‖L2 does not exceed
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K sup
e

( [l]∑
j=0

∫

e

(Dj,µγ(x))2dx

C2,m−l+j(e)
+

[l]∑
j=0

∫

e

(Dl−j,µγ(x))2dx

C2,m−j(e)

)1/2

‖u‖W m
2
,

which together with Remark 16.3.2 gives

‖DlSu‖L2 ≤ cK‖σ‖M(Hm,µ→Hl,µ)‖u‖W m
2
. (16.3.23)

For integer l the proof is similar and somewhat easier. In particular, the
counterpart of (16.3.22) is

c

l∑
j=0

∑
k

∫

Rn−1
|µ(τ)F∇j,xσk(x, τ)|2dτ

∫

Rn−1
|∇l−j,xEk(λ)u(x)|2 dλ

µ(λ)2
.

Duplicating the above arguments, we arrive at an analogue of (16.3.23)
with Dl replaced by∇l on the left-hand side. This together with the inequality

‖Su‖L2 ≤ cK‖σ‖M(Hm,µ→H0,µ)‖u‖W m
2
,

corresponding to l = 0, completes the proof.

Remark 16.3.3. We show that Theorem 16.3.2 is sharp in a sense.
Let the symbol of S have the form a(x)b(θ), where x ∈ R

n and θ ∈ ∂B,
and let b ∈ Hµ(∂B) and |b(θ)| ≥ const > 0. Clearly, the mapping

S : Wm
2 →W l

2

is continuous if and only if the operator of multiplication by a is a continu-
ous operator from Wm

2 into W l
2. In other words, (16.3.15) follows from the

continuity of S.
Now let S be the operator (16.3.13) with symbol b(θ), where θ ∈ ∂B. Its

continuity from Wm
2 into W l

2 is equivalent to the inequality

|b(θ)|(1 + |ξ|2)(l−m)/2 ≤ const

which gives the boundedness of b. Therefore, if the operator S : Wm
2 →W l

2 is
continuous for any b ∈ Hµ(∂B), then Hµ(∂B) ⊂ L∞(∂B), which is equivalent
to K <∞.

16.3.4 Corollaries

Now, we give sufficient conditions for the continuity of the operator S : Wm
2 →

W l
2, which follow from Theorem 16.3.2 and from either necessary and sufficient

or sufficient conditions for a function to belong to M(Hm,µ → H l,µ) (see
Sect. 16.3.2).

The next assertion is a direct corollary of Theorems 16.3.1 and 16.3.2.
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Corollary 16.3.3. The estimate (16.3.16) is equivalent to

‖S‖W m
2 →W l

2
≤ cK

(
sup

{e⊂Rn:d(e)≤1}

∫

e

(
Dl,µσ(x)

)2
dx

C2,m(e)

+ sup
x∈Rn

∫

B(x)

‖σ(y, ·); ∂B‖2Hµ
dy
)1/2

(16.3.24)

for m > l ≥ 0. For m = l the second term on the right-hand side of (16.3.24)
should be replaced by

lim sup
x∈Rn

‖σ(x, ·); ∂B‖2Hµ
. (16.3.25)

Theorem 16.3.2 and Corollary 16.3.1 imply the following assertion.

Corollary 16.3.4. Let 2m > n. The inequality (16.3.16) is equivalent to

‖S‖W m
2 →W l

2
≤ cK sup

x∈Rn

‖σ;B(x)× ∂B‖Hl,µ . (16.3.26)

Combining Theorem 16.3.2 with Corollary 16.3.2 we can remove the ca-
pacity from inequality (16.3.24) as follows.

Corollary 16.3.5. Let 2m < n. Then

‖S‖W m
2 →W l

2
≤ cK

(
sup

e⊂Rn:diam(e)≤1

∫

e

(
Dl,µσ(x)

)2
dx

(mesne)1−2m/n

+ sup
x∈Rn

∫

B(x)

‖σ(y, ·); ∂B‖2Hµ
dy
)1/2

. (16.3.27)

For 2m = n the expression (mesne)1−2m/n should be replaced by

(
log(2n/mesne)

)−1
.

In the case m = l the second term on the right-hand side of (16.3.27) should
be replaced by (16.3.25).

Remark 16.3.4. Theorem 16.3.2 and its corollaries can be directly extended
to classical pseudo-differential operators with symbols of the form

ζ(ξ)
N∑

k=1

σk(x, ξ/|ξ|)|ξ|rk ,

where r1 > · · · > rN and ζ ∈ C∞(Rn−1) with ζ(ξ) = 1 for |ξ| > 2 and
ζ(ξ) = 0 for |ξ| < 1 (see [KN] for a theory of these operators).
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[LR] P.G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Prob-
lem, Chapman and Hall, Research Notes in Math. 431 (2002).
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Akademie-Verlag, 1980.

[Mir] C. Miranda, Partial Differential Equations of Elliptic Type, Springer, 1970.
[MT1] M. Mitrea and M. Taylor, Boundary layer methods for Lipschitz domains

in Riemannian manifolds, J. Funct. Anal., 163 (1999), 181-251.
[MT2] M. Mitrea and M. Taylor, Potential theory on Lipschitz domains in Rie-

mannian manifolds: Lp, Hardy, and Hölder space results, Comm. Anal.
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[ST] W. Sickel and H. Triebel, Hölder inequalities and sharp embeddings in
function spaces of Bs

p,q and F s
p,q type, J. Anal. Appl., 14:1 (1995), 105-140.

[SY] W. Sickel and A. Youssfi, The characterization of the regularity of the Ja-
cobian determinant in the framework of potential spaces, J. London Math.
Soc., 59:1 (1999), 287-310.
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Sjödin, 16
Smirnov, 209
Sobolev imbedding theorem, 56,

70, 99, 111, 112, 331
Sobolev integral representation,

36, 45, 214
special Lipschitz domain, 325, 326,

329–331, 336, 337, 356, 481,
482, 484, 490, 496, 511, 515,
542, 559

spectrum, 2, 115, 116, 118, 575
Stegenga, 211
Stein, 87
Strichartz, 2, 79, 98, 113, 114, 239

trace inequality, 7, 25, 28, 30, 69,
143, 179, 187, 441

transmission problem, 534, 536,
548, 549, 552, 553, 556, 557

Triebel, 114, 208, 239
Triebel-Lizorkin space, 208, 209,

267
Trudinger, 17

Valent, 239
Verbitsky, 28, 45, 89, 113
Vodop’yanov, 358

Wheeden, 432
Whitney covering, 417

Yabuta, 212
Ye, 239, 352
Young’s inequality, 17
Youssfi, 239, 352
Yudovič, 17
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