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Preface

This is a textbook version of my previous book [190]. Problems and solutions
have been included, Appendix G has been added, more details have been
presented, recent publications on evaluating Feynman integrals have been
taken into account and the bibliography has been updated.

The goal of the book is to describe in detail how Feynman integrals1 can be
evaluated analytically. The problem of evaluating Lorentz-covariant Feynman
integrals over loop momenta originated in the early days of perturbative
quantum field theory. Over a span of more than fifty years, a great variety of
methods for evaluating Feynman integrals has been developed. Most powerful
modern methods are described in this book.

I understand that if another person – in particular one actively involved in
developing methods for Feynman integral evaluation – wrote a book on this
subject, he or she would probably concentrate on some other methods and
would rank the methods as most important and less important in a different
order. I believe, however, that my choice is reasonable. At least I have tried
to concentrate on the methods that have been used recently in the most
sophisticated calculations, in which world records in the Feynman integral
‘sport’ were achieved.

The problem of evaluation is very important at the moment. What could
be easily evaluated was evaluated many years ago. To perform important
calculations at the two-loop level and higher one needs to choose adequate
methods and combine them in a non-trivial way. In the present situation –
which might be considered boring because the Standard Model works more
or less properly and there are no glaring contradictions with experiment –
one needs not only to organize new experiments but also perform rather non-
trivial calculations for further crucial high-precision checks. So I hope very
much that this book will be used as a textbook in practical calculations.

I shall concentrate on analytical methods and only briefly describe nu-
merical ones. Some methods are also characterized as semi-analytical, for
example, the method based on asymptotic expansions of Feynman integrals
in momenta and masses which was described in detail in [186]. In this method,

1Let us point out from beginning that two kinds of integrals are associated with
Feynman: integrals over loop momenta and path integrals. We will deal only with
the former case.
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it is also necessary to apply some analytical methods of evaluation which were
described there only very briefly. So the present book (and/or its previous
version [190]) can be considered as Volume 1 with respect to [186], which
might be termed Volume 2, or the sequel.

Although all the necessary definitions concerning Feynman integrals are
provided in the book, it would be helpful for the reader to know the basics
of perturbative quantum field theory, e.g. by following the first few chapters
of the well-known textbooks by Bogoliubov and Shirkov and/or Peskin and
Schroeder.

This book is based on the course of lectures which I gave in the two winter
semesters of 2003–2004 and 2005–2006 at the University of Hamburg (and
in 2003–2004 at the University of Karlsruhe) as a DFG Mercator professor
in Hamburg. It is my pleasure to thank the students, postgraduate students,
postdoctoral fellows and professors who attended my lectures for numerous
stimulating discussions.

I am grateful very much to A.G. Grozin, B. Jantzen and J. Piclum for care-
ful reading of preliminary versions of the book and numerous comments and
suggestions; to M. Czakon, M. Kalmykov, P. Mastrolia, J. Piclum, M. Stein-
hauser and O.L. Veretin for valuable assistance in presenting examples in the
book; to C. Anastasiou, K.G. Chetyrkin, A.I. Davydychev and A.V. Smirnov
for various instructive discussions; to P.A. Baikov, M. Beneke, Z. Bern,
K.G. Chetyrkin, A. Czarnecki, A.I. Davydychev, L. Dixon, A.G. Grozin,
G. Heinrich, B. Jantzen, A.A. Penin, A. Signer, A.V. Smirnov, M. Stein-
hauser and O.L. Veretin for fruitful collaboration on evaluating Feynman
integrals; to M. Czakon, A. Czarnecki, T. Gehrmann, V.P. Gerdt, J. Gluza,
K. Melnikov, T. Riemann, E. Remiddi, O.V. Tarasov and J.B. Tausk for
stimulating competition; to Z. Bern, L. Dixon, C. Greub, G. Heinrich, and
S. Moch for various pieces of advice; and to B.A. Kniehl and J.H. Kühn for
permanent support.

I am thankful to my family for permanent love, sympathy, patience and
understanding.

Moscow V.A. Smirnov
April 2006
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1 Introduction

The important mathematical problem of evaluating Feynman integrals arises
quite naturally in elementary-particle physics when one treats various quanti-
ties in the framework of perturbation theory. Usually, it turns out that a given
quantum-field amplitude that describes a process where particles participate
cannot be completely treated in the perturbative way. However it also often
turns out that the amplitude can be factorized in such a way that different
factors are responsible for contributions of different scales. According to a
factorization procedure a given amplitude can be represented as a product
of factors some of which can be treated only non-perturbatively while others
can be indeed evaluated within perturbation theory, i.e. expressed in terms of
Feynman integrals over loop momenta. A useful way to perform the factoriza-
tion procedure is provided by solving the problem of asymptotic expansion of
Feynman integrals in the corresponding limit of momenta and masses that is
determined by the given kinematical situation. A universal way to solve this
problem is based on the so-called strategy of expansion by regions [28, 186].
This strategy can be itself regarded as a (semi-analytical) method of eval-
uation of Feynman integrals according to which a given Feynman integral
depending on several scales can be approximated, with increasing accuracy,
by a finite sum of first terms of the corresponding expansion, where each
term is written as a product of factors depending on different scales. A lot of
details concerning expansions of Feynman integrals in various limits of mo-
menta and/or masses can be found in my previous book [186]. In this book,
however, we shall mainly deal with purely analytical methods.

One needs to take into account various graphs that contribute to a given
process. The number of graphs greatly increases when the number of loops
gets large. For a given graph, the corresponding Feynman amplitude is repre-
sented as a Feynman integral over loop momenta, due to some Feynman rules.
The Feynman integral, generally, has several Lorentz indices. The standard
way to handle tensor quantities is to perform a tensor reduction that enables
us to write the given quantity as a linear combination of tensor monomials
with scalar coefficients. Therefore we shall imply that we deal with scalar
Feynman integrals and consider only them in examples.

A given Feynman graph therefore generates various scalar Feynman inte-
grals that have the same structure of the integrand with various distributions
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of powers of propagators (indices). Let us observe that some powers can be
negative, due to some initial polynomial in the numerator of the Feynman
integral. A straightforward strategy is to evaluate, by some methods, every
scalar Feynman integral resulting from the given graph. If the number of
these integrals is small this strategy is quite reasonable. In non-trivial situ-
ations, where the number of different scalar integrals can be at the level of
hundreds and thousands, this strategy looks too complicated. A well-known
optimal strategy here is to derive, without calculation, and then apply some
relations between the given family of Feynman integrals as recurrence rela-
tions. A well-known standard way to obtain such relations is provided by the
method of integration by parts1 (IBP) [66] which is based on putting to zero
any integral of the form

∫
ddk1ddk2 . . .

∂f

∂kµ
i

over loop momenta k1, k2, . . . , ki, . . . within dimensional regularization with
the space-time dimension d = 4−2ε as a regularization parameter [45,51,122].
Here f is an integrand of a Feynman integral; it depends on the loop and
external momenta. More precisely, one tries to use IBP relations in order to
express a general dimensionally regularized integral from the given family
as a linear combination of some irreducible integrals which are also called
master integrals. Therefore the whole problem decomposes into two parts: a
solution of the reduction procedure and the evaluation of the master Feynman
integrals. Observe that in such complicated situations, with the great variety
of relevant scalar integrals, one really needs to know a complete solution of
the recursion problem, i.e. to learn how an arbitrary integral with general
integer powers of the propagators and powers of irreducible monomials in the
numerator can be evaluated.

To illustrate the methods of evaluation that we are going to study in this
book let us first orient ourselves at the evaluation of individual Feynman
integrals, which might be master integrals, and take the simple scalar one-
loop graph Γ shown in Fig. 1.1 as an example. The corresponding Feynman
integral constructed with scalar propagators is written as

FΓ (q2,m2; d) =
∫

ddk

(k2 − m2)(q − k)2
. (1.1)

1As is explained in textbooks on integral calculus, the method of IBP is applied
with the help of the relation

∫ b

a
dxuv′ = uv|ba −

∫ b

a
dxu′v as follows. One tries to

represent the integrand as uv′ with some u and v in such a way that the integral
on the right-hand side, i.e. of u′v will be simpler. We do not follow this idea in
the case of Feynman integrals. Instead we only use the fact that an integral of the
derivative of some function is zero, i.e. we always neglect the corresponding surface
terms. So the name of the method looks misleading. It is however unambiguously
accepted in the physics community.
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Fig. 1.1. One-loop self-energy graph. The dashed line denotes a massless
propagator

The same picture Fig. 1.1 can also denote the Feynman integral with
general powers of the two propagators,

FΓ (q2,m2; a1, a2, d) =
∫

ddk

(k2 − m2)a1 [(q − k)2]a2
. (1.2)

Suppose, one needs to evaluate the Feynman integral FΓ (q2,m2; 2, 1, d) ≡
F (2, 1, d) which is finite in four dimensions, d = 4. (It can also be depicted
by Fig. 1.1 with a dot on the massive line.) There is a lot of ways to evaluate
it. For example, a straightforward way is to take into account the fact that
the given function of q is Lorentz-invariant so that it depends on the exter-
nal momentum through its square, q2. One can choose a frame q = (q0,0),
introduce spherical coordinates for k, integrate over angles, then over the
radial component and, finally, over k0. This strategy can be, however, hardly
generalized to multi-loop2 Feynman integrals.

Another way is to use a dispersion relation that expresses Feynman inte-
grals in terms of a one-dimensional integral of the imaginary part of the given
Feynman integral, from the value of the lowest threshold to infinity. This dis-
persion integral can be expressed by means of the well-known Cutkosky rules.
We shall not apply this method, which was, however, very popular in the early
days of perturbative quantum field theory, and only briefly comment on it in
Appendix F.

Let us now turn to the methods that will be indeed actively used in this
book. To illustrate them all let me use this very example of Feynman integrals
(1.2) and present main ideas of these methods, with the obligation to present
the methods in great details in the rest of the book.

First, we will exploit the well-known technique of alpha or Feynman pa-
rameters. In the case of F (2, 1, d), one writes down the following Feynman-
parametric formula:

1
(k2 − m2)2(q − k)2

= 2
∫ 1

0

ξdξ

[(k2 − m2)ξ + (1 − ξ)(q − k)2 + i0]3
. (1.3)

Then one can change the order of integration over ξ and k, perform inte-
gration over k with the help of the formula (A.1) (which we will derive in

2Since the Feynman integrals are rather complicated objects the word ‘multi-
loop’ means the number of loops greater than one ;-)
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Chap. 3) and obtain the following representation:

F (2, 1, d) = −iπd/2Γ (1 + ε)
∫ 1

0

dξ ξ−ε

[m2 − q2(1 − ξ) − i0]1+ε
. (1.4)

This integral is easily evaluated at d = 4 with the following result:

F (2, 1, 4) = iπ2 ln
(
1 − q2/m2

)
q2

. (1.5)

In principle, any given Feynman integral F (a1, a2, d) with concrete num-
bers a1 and a2 can similarly be evaluated by Feynman parameters. In par-
ticular, F (1, 1, d) reduces to

F (1, 1, d) = iπd/2Γ (ε)
∫ 1

0

dξ ξ−ε

[m2 − q2(1 − ξ) − i0]ε
. (1.6)

There is an ultraviolet (UV) divergence which manifests itself in the first pole
of the function Γ (ε), i.e. at d = 4. The integral can be evaluated in expansion
in a Laurent series in ε, for example, up to ε0:

F (1, 1, d) = iπd/2e−γEε

[
1
ε
− ln m2 + 2

−
(

1 − m2

q2

)
ln
(

1 − q2

m2

)
+ O(ε)

]
, (1.7)

where γE is Euler’s constant.
We shall study the method of Feynman and alpha parameters in Chap. 3.

Another method which plays an essential role in this book is based on the
Mellin–Barnes (MB) representation. The underlying idea is to replace a sum
of terms raised to some power by the product of these terms raised to certain
powers, at the cost of introducing an auxiliary integration that goes from
−i∞ to +i∞ in the complex plane. The most natural way to apply this
representation is to write down a massive propagator in terms of massless
ones. For F (2, 1, 4), we can write

1
(m2 − k2)2

=
1

2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)2+z
Γ (2 + z)Γ (−z) . (1.8)

Applying (1.8) to the first propagator in (1.2), changing the order of inte-
gration over k and z and evaluating the internal integral over k by means of
the one-loop formula (A.7) (which we will derive in Chap. 3) we arrive at the
following onefold MB integral representation:

F (2, 1, d) = − iπd/2Γ (1 − ε)
(−q2)1+ε

1
2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

×Γ (1 + ε + z)Γ (−ε − z)Γ (−z)
Γ (1 − 2ε − z)

. (1.9)
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The contour of integration is chosen in the standard way: the poles with a
Γ (. . . + z) dependence are to the left of the contour and the poles with a
Γ (. . . − z) dependence are to the right of it. If |ε| is small enough we can
choose this contour as a straight line parallel to the imaginary axis with
−1 < Rez < 0. For d = 4, we obtain

F (2, 1, 4) = − iπ2

q2

1
2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

Γ (z)Γ (−z) . (1.10)

By closing the integration contour to the right and taking a series of residues
at the points z = 0, 1, . . ., we reproduce (1.5). Using the same technique, any
integral from the given family can similarly be evaluated.

We shall study the technique of MB representation in Chap. 4 where
we shall see, through various examples, how, by introducing MB integra-
tions in an appropriate way, one can analytically evaluate rather complicated
Feynman integrals.

Let us, however, think about a more economical strategy based on IBP
relations which would enable us to evaluate any integral (1.2) as a linear com-
bination of some master integrals. Putting to zero dimensionally regularized
integrals of ∂

∂k ·kf(a1, a2) and q· ∂
∂kf(a1, a2), where f(a1, a2) is the integrand

in (1.2), and writing down obtained relations in terms of integrals of the given
family we obtain the following two IBP relations:

d − 2a1 − a2 − 2m2a11+ − a22+(1− − q2 + m2) = 0 , (1.11)
a2 − a1 − a11+(q2 + m2 − 2−) − a22+(1− − q2 + m2) = 0 , (1.12)

in the sense that they are applied to the general integral F (a1, a2). Here the
standard notation for increasing and lowering operators has been used, e.g.
1+2−F (a1, a2) = F (a1 + 1, a2 − 1).

Let us observe that any integral with a1 ≤ 0 is zero because it is a massless
tadpole which is naturally put to zero within dimensional regularization.
Moreover, any integral with a2 ≤ 0 can be evaluated in terms of gamma
functions for general d with the help of (A.3) (which we will derive in Chap. 3).
The number a2 can be reduced either to one or to a non-positive value using
the following relation which is obtained as the difference of (1.11) multiplied
by q2 + m2 and (1.12) multiplied by 2m2:

(q2 − m2)2a22+ = (q2 − m2)a21−2+

−(d − 2a1 − a2)q2 − (d − 3a2)m2 + 2m2a11+2− .

(1.13)

Indeed, when the left-hand side of (1.13) is applied to F (a1, a2), we obtain
integrals with reduced a2 or, due to the first term on the right-hand side,
reduced a1.

Suppose now that a2 = 1. Then we can use the difference of relations
(1.11) and (1.12),
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d − a1 − 2a2 − a11+(2− − q2 + m2) = 0 , (1.14)

and rewrite it down, at a2 = 1, as

(q2 − m2)a11+ = a1 + 2 − d + a11+2− . (1.15)

This relation can be used to reduce the index a1 to one or the index a2 to zero.
We see that we can now express any integral of the given family as a linear
combination of the integral F (1, 1) and simple integrals with a2 ≤ 0 which
can be evaluated for general d in terms of gamma functions. In particular,
we have

F (2, 1) =
1

m2 − q2
[(1 − 2ε)F (1, 1) − F (2, 0)] . (1.16)

At this point, we can stop our activity because we have already essen-
tially solved the problem. In fact, we shall later encounter several examples
of non-trivial calculations where any integral is expressed in terms of some
complicated master integrals and families of simple integrals. However, math-
ematically (and aesthetically), it is natural to be more curious and wonder
about the minimal number of master integrals which form a linearly inde-
pendent basis in the family of integrals F (a1, a2). We will do this in Chaps. 5
and 6. In Chap. 5, we shall investigate various examples, starting from sim-
ple ones, where the reduction of a given class of Feynman integrals can be
performed by solving IBP recurrence relations.

If we want to be maximalists, i.e. we are oriented at the minimal number of
master integrals, we expect that any Feynman integral from a given family,
F (a1, a2, . . .) can be expressed linearly in terms of a finite set of master
integrals:

F (a1, a2, . . .) =
∑

i

ci(F (a1, a2, . . .))Ii , (1.17)

These master integrals Ii cannot be reduced further, i.e. expressed as linear
combinations of other Feynman integrals of the given family.

There were several attempts to systematize the procedure of solving IBP
recurrence relations. Some of them will be described in the end of Chap. 5 and
in Appendix G. One of the corresponding methods [16,21,193] is based on an
appropriate parametric representation which is used to construct the coeffi-
cient functions ci(F (a1, a2, . . .)) ≡ ci(a1, a2, . . .) in (1.17). The integrand of
this representation consists of the standard factors x−ai

i , where the integra-
tion parameters xi correspond to the denominators of the propagators, and
a polynomial in these variables raised to the power (d − h − 1)/2, where h
is the number of loops for vacuum integrals and some effective loop number,
otherwise. This polynomial is constructed for the given family of integrals
according to some simple rules. An important property of such a represen-
tation is that it automatically satisfies IBP relations written for this family
of integrals, provided one can use IBP in this parametric representation. For
example, for the family of integrals F (a1, a2) we are dealing with in this
chapter, the auxiliary representation takes the form
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ci(a1, a2) ∼
∫ ∫

dx1dx2

xa1
1 xa2

2

[P (x1, x2)](d−3)/2 , (1.18)

with the basic polynomial

P (x1, x2) = −(x1 − x2 + m2)2 − q2(q2 − 2m2 − 2(x1 + x2)) . (1.19)

As we shall see in Chap. 6, such auxiliary representation provides the
possibility to characterize the master integrals and construct algorithms for
the evaluation of the corresponding coefficient functions. When looking for
candidates for the master integrals one considers integrals of the type (1.18)
with indices ai equal to one or zero and tries to see whether such integrals
can be understood non-trivially. According to a general rule, which we will
explain in Chap. 6, the value ai = 1 of some index forces us to understand
the integration over the corresponding parameter xi as a Cauchy integration
contour around the origin in the complex xi-plane which in turn reduces to
taking derivatives of the factor P (d−3)/2 in xi at xi = 0. If an index ai is
equal to zero one has to understand the corresponding integration in some
sense, which implies the validity of IBP in the integration over xi, or treat
such integrals in a pure algebraic way.

In our present example, let us therefore consider the candidates F (1, 1),
F (1, 0), F (0, 1) and F (0, 0). Of course, we neglect the last two of them be-
cause they are equal to zero. Thus we are left with the first two integrals.
According to the rule formulated above, the coefficient function of F (1, 1)
is evaluated as an iterated Cauchy integral over x1 and x2. It is therefore
constructed in a non-trivial (non-zero) way and this integral is recognized as
a master integral. For F (1, 0), only the integration over x1 is understood as a
Cauchy integration, and the representation (1.18) gives, for the corresponding
coefficient function, a linear combination of terms∫

dx2

xj
2

[
−(m2 − q2)2 + 2(m2 + q2)x2 − x2

2

](d−3)/2−l
, (1.20)

with integer j and non-negative integer l. When j ≤ 0, the integration can be
taken between the roots of the quadratic polynomial in the square brackets.
Thus one can again construct a non-zero coefficient function and the integral
F (1, 0) turns out to be our second (and the last) master integral. We shall see
in Chap. 6 how (1.18) can be understood for j > 0; this is indeed necessary
for the construction of the coefficient function c2(a1, a2) at a2 > 0. We shall
also learn other details of this method illustrated though various examples.
Anyway, the present example shows that this method enables an elegant and
transparent classification of the master integrals: the presence of (only two)
master integrals F (1, 1) and F (1, 0) in the given recursion problem is seen in
a very simple way, as compared with the complete solution of the reduction
procedure outlined above.

One more powerful method that has been proven very useful in the
evaluation of the master integrals is based on using differential equations
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(DE) [137,173]. Let us illustrate it again with the help of our favourite exam-
ple. To evaluate the master integral F (1, 1) let us observe that its derivative in
m2 is nothing but F (2, 1) (because

(
∂/(∂m2)

) (
1/(k2 − m2)

)
= 1/(k2−m2)2)

which is expressed, according to our reduction procedure, by (1.16). Therefore
we arrive at the following differential equation for f(m2) = F (1, 1):

∂

∂m2
f(m2) =

1
m2 − q2

[
(1 − 2ε)f(m2) − F (2, 0)

]
, (1.21)

where the quantity F (2, 0) is a simpler object because it can be evaluated in
terms of gamma functions for general ε. The general solution to this equation
can easily be obtained by the method of the variation of the constant, with
fixing the general solution from the boundary condition at m = 0. Eventually,
the above result (1.7) can successfully be reproduced.

As we shall see in Chap. 7, the strategy of the method of DE in much
more non-trivial situations is similar: one takes derivatives of a master integral
in some arguments, expresses them in terms of original Feynman integrals,
by means of some variant of solution of IBP relations, and solves resulting
differential equations.

However, before studying the methods of evaluation, basic definitions are
presented in Chap. 2 where tools for dealing with Feynman integrals are also
introduced. Methods for evaluating individual Feynman integrals are studied
in Chaps. 3, 4 and 7 and the reduction problem is studied in Chaps. 5 and 6.
In Appendix A, one can find a table of basic one-loop and two-loop Feyn-
man integrals as well as some useful auxiliary formulae. Appendix B contains
definitions and properties of special functions that are used in this book. A
table of summation formulae for onefold series is given in Appendix C. In
Appendix D, a table of onefold MB integrals is presented. Appendix E con-
tains analysis of convergence of Feynman integrals as well a description of a
numerical method of evaluating Feynman integrals based on sector decom-
positions. In Appendix G, a recently suggested method of solving reduction
problems for Feynman integrals using Gröbner bases is presented.

In the end of all main chapters, from 3 to 7, there are problems which
exemplify further the corresponding methods. Solutions are presented in the
end of the book.

Some other methods are briefly characterized in Appendix F. These are
mainly old methods whose details can be found in the literature. If I do not
present some methods, this means that either I do not know about them, or I
do not know physically important situations where they work not worse than
than the methods I present.

I shall use almost the same examples in Chaps. 3–7 and Appendices F
and G to illustrate all the methods. On the one hand, this will be done
in order to have the possibility to compare them. On the other hand, the
methods often work together: for example, MB representation can be used in
alpha or Feynman parametric integrals, the method of DE requires a solution
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of the reduction problem, boundary conditions within the method of DE can
be obtained by means of the method of MB representation, auxiliary IBP
relations within the method described in Chap. 6 can be solved by means of
an algorithm originated within another approach to solving IBP relations.

Basic notational conventions are presented below. The notation is de-
scribed in more detail in the List of Symbols. In the Index, one can find
numbers of pages where definitions of basic notions are introduced.

1.1 Notation

We use Greek and Roman letters for four-indices and spatial indices, respec-
tively:

xµ = (x0,x) ,

q ·x = q0x0 − q ·x ≡ gµνqµxν .

The parameter of dimensional regularization is

d = 4 − 2ε .

The d-dimensional Fourier transform and its inverse are defined as

f̃(q) =
∫

ddx eiq·xf(x) ,

f(x) =
1

(2π)d

∫
ddq e−ix·q f̃(q) .

In order to avoid Euler’s constant γE in Laurent expansions in ε, we pull
out the factor e−γEε per loop.



2 Feynman Integrals:
Basic Definitions and Tools

In this chapter, basic definitions for Feynman integrals are given, ultraviolet
(UV), infrared (IR) and collinear divergences are characterized, and basic
tools such as alpha parameters are presented. Various kinds of regularizations,
in particular dimensional one, are presented and properties of dimensionally
regularized Feynman integrals are formulated and discussed.

2.1 Feynman Rules and Feynman Integrals

In perturbation theory, any quantum field model is characterized by a La-
grangian, which is represented as a sum of a free-field part and an interac-
tion part, L = L0 + LI. Amplitudes of the model, e.g. S-matrix elements
and matrix elements of composite operators, are represented as power series
in coupling constants. Starting from the S-matrix represented in terms of
the time-ordered exponent of the interaction Lagrangian which is expanded
with the application of the Wick theorem, or from Green functions written
in terms of a functional integral treated in the perturbative way, one obtains
that, in a fixed perturbation order, the amplitudes are written as finite sums
of Feynman diagrams which are constructed according to Feynman rules:
lines correspond to L0 and vertices are determined by LI. The basic building
block of the Feynman diagrams is the propagator that enters the relation

Tφi(x1)φi(x2) = : φi(x1)φi(x2) : +DF,i(x1 − x2) . (2.1)

Here DF,i is the Feynman propagator of the field of type i and the colons
denote a normal product of the free fields. The Fourier transforms of the
propagators have the form

D̃F,i(p) ≡
∫

d4x eip·xDF,i(x) =
iZi(p)

(p2 − m2
i + i0)ai

, (2.2)

where mi is the corresponding mass, Zi is a polynomial and ai = 1 or 2
(for the gluon propagator in the general covariant gauge). The powers of the
propagators al will be also called indices. For the propagator of the scalar
field, we have Z = 1, a = 1. This is not the most general form of the prop-
agator. For example, in the axial or Coulomb gauge, the gluon propagator
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has another form. We usually omit the causal i0 for brevity. Polynomials
associated with vertices of graphs can be taken into account by means of
the polynomials Zl. We also omit the factors of i and (2π)4 that enter in the
standard Feynman rules (in particular, in (2.2)); these can be included at the
end of a calculation.

Eventually, we obtain, for any fixed perturbation order, a sum of Feynman
amplitudes labelled by Feynman graphs1 constructed from the given type of
vertices and lines. In the commonly accepted physical slang, the graph, the
corresponding Feynman amplitude and the integral are all often called the
‘diagram’. A Feynman graph differs from a graph by distinguishing a subset
of vertices which are called external. The external momenta or coordinates on
which a Feynman integral depends are associated with the external vertices.

Thus quantities that can be computed perturbatively are written, in any
given order of perturbation theory, through a sum over Feynman graphs. For
a given graph Γ , the corresponding Feynman amplitude

GΓ (q1, . . . , qn+1) = (2π)4 i δ

(∑
i

qi

)
FΓ (q1, . . . , qn) (2.3)

can be written in terms of an integral over loop momenta

FΓ (q1, . . . , qn) =
∫

d4k1 . . .

∫
d4kh

L∏
l=1

D̃F,l(rl) , (2.4)

where d4ki = dk0
i dki, and a factor with a power of 2π is omitted, as we

have agreed. The Feynman integral FΓ depends on n linearly independent
external momenta qi = (q0

i , qi); the corresponding integrand is a function of
L internal momenta rl, which are certain linear combinations of the external
momenta and h = L−V +1 chosen loop momenta ki, where L, V and h are
numbers of lines, vertices and (independent) loops, respectively, of the given
graph.

One can choose the loop momenta by fixing a tree T of the given graph,
i.e. a maximal connected subgraph without loops, and correspond a loop
momentum to each line not belonging to this tree. Then we have the following
explicit formula for the momenta of the lines:

rl =
h∑

i=1

eilki +
n∑

i=1

dilqi , (2.5)

1When dealing with graphs and Feynman integrals one usually does not bother
about the mathematical definition of the graph and thinks about something that
is built of lines and vertices. So, a graph is an ordered family {V,L, π±}, where V
is the set of vertices, L is the set of lines, and π± : L → V are two mappings that
correspond the initial and the final vertex of a line. By the way, mathematicians
use the word ‘edge’, rather than ‘line’.



2.1 Feynman Rules and Feynman Integrals 13

p1

p2

q

µ

Fig. 2.1. Electromagnetic formfactor

where eil = ±1 if l belongs to the j-th loop and eil = 0 otherwise, dil = ±1 if
l lies in the tree T on the path with the momentum qi and dil = 0 otherwise.
The signs in both sums are defined by orientations.

After some tensor reduction2 one can deal only with scalar Feynman in-
tegrals. To do this, various projectors can be applied. For example, in the
case of Feynman integrals contributing to the electromagnetic formfactor
(see Fig. 2.1) Γµ(p1, p2) = γµF1(q2) + σµνqνF2(q2), where q = p1 − p2, γµ

and σµν are γ- and σ-matrices, respectively, the following projector can be
applied to extract scalar integrals which contribute to the formfactor F1 in
the massless case (with F2 = 0):

F1(q2) =
Tr [γµ �p2Γ

µ(p1, p2) �p1]
2(d − 2) q2

, (2.6)

where �p = γµpµ and d is the parameter of dimensional regularization (to be
discussed shortly in Sect. 2.4).

Anyway, after applying some projectors, one obtains, for a given graph, a
family of Feynman integrals which have various powers of the scalar parts of
the propagators, 1/(p2

l −m2
l )

al , and various monomials in the numerator. The
denominators p2

l can be expressed linearly in terms of scalar products of the
loop and external momenta. The factors in the numerator can also be chosen
as quadratic polynomials of the loop and external momenta raised to some
powers. It is convenient to consider both types of the quadratic polynomials
on the same footing and treat the factors in the numerators as extra factors
in the denominator raised to negative powers. The set of the denominators
for a given graph is linearly independent. It is natural to complete this set
by similar factors coming from the numerator in such a way that the whole
set will be linearly independent.

2In one loop, the well-known general reduction was described in [165] (see also
[30,35,162]). Steps towards systematical reduction at the two-loop level were made
in [1]. Within a straightforward tensor reduction, in cases where the number of
external legs is more than four, one encounters complications due to inverse Gram
determinants which cause numerical instabilities when amplitudes are integrated
over the phase space of the final state particles. Therefore, alternative methods of
tensor reduction have been developed for such cases [36,39,73,83,84,87,88,106,141].
These methods are beyond the scope of the present book. See [172] for a recent
review.
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Therefore we come to the following family of scalar integrals generated
by the given graph:

F (a1, . . . , aN ) =
∫

· · ·
∫

d4k1 . . . d4kh

Ea1
1 . . . EaN

N

, (2.7)

where ki, i = 1, . . . , h, are loop momenta, ai are integer indices, and the
denominators are given by

Er =
∑

i≥j≥1

Aij
r pi · pj − m2

r , (2.8)

with r = 1, . . . , N . The momenta pi are either the loop momenta pi = ki, i =
1, . . . , h, or independent external momenta ph+1 = q1, . . . , ph+n = ql of the
graph.

For a usual Feynman graph, the denominators Er determined by some
matrix A are indeed quadratic. However, a more general class of Feynman
integrals where the denominators are linear with respect to the loop and/or
external momenta also often appears in practical calculations. Linear de-
nominators usually appear in asymptotic expansions of Feynman integrals
within the strategy of expansion by regions [28, 186]. Such expansions pro-
vide a useful link of an initial theory described by some Lagrangian with
various effective theories where, indeed, the denominators of propagators can
be linear with respect to the external and loop momenta. For example, one
encounters the following denominators: p · k, with an external momentum p
on the light cone, p2 = 0, for the Sudakov limit and with p2 �= 0 for the
quark propagator of Heavy Quark Effective Theory (HQET) [116, 150, 161].
Some non-relativistic propagators appear within threshold expansion and in
the effective theory called Non-Relativistic QCD (NRQCD) [43,147,207], for
example, the denominator k0 − k2/(2m).

2.2 Divergences

As has been known from early days of quantum field theory, Feynman in-
tegrals suffer from divergences. This word means that, taken naively, these
integrals are ill-defined because the integrals over the loop momenta gener-
ally diverge. The ultraviolet (UV) divergences manifest themselves through
a divergence of the Feynman integrals at large loop momenta. Consider, for
example, the Feynman integral corresponding to the one-loop graph Γ of
Fig. 2.2 with scalar propagators. This integral can be written as

FΓ (q) =
∫

d4k

(k2 − m2
1)[(q − k)2 − m2

2]
, (2.9)

where the loop momentum k is chosen as the momentum of the first line.
Introducing four-dimensional (generalized) spherical coordinates k = rk̂ in
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Fig. 2.2. One-loop self-energy diagram

(2.9), where k̂ is on the unit (generalized) sphere and is expressed by means
of three angles, and counting powers of propagators, we obtain, in the limit of
large r, the following divergent behaviour:

∫∞
Λ

dr r−1. For a general diagram,
a similar power counting at large values of the loop momenta gives 4h(Γ ) −
1 from the Jacobian that arises when one introduces generalized spherical
coordinates in the (4 × h)-dimensional space of h loop four-momenta, plus
a contribution from the powers of the propagators and the degrees of its
polynomials, and leads to an integral

∫∞
Λ

dr rω−1, where

ω = 4h − 2L +
∑

l

nl (2.10)

is the (UV) degree of divergence of the graph. (Here nl are the degrees of the
polynomials Zl.)

This estimate shows that the Feynman integral is UV convergent overall
(no divergences arise from the region where all the loop momenta are large)
if the degree of divergence is negative. We say that the Feynman integral has
a logarithmic, linear, quadratic, etc. overall divergence when ω = 0, 1, 2, . . .,
respectively. To ensure a complete absence of UV divergences it is necessary
to check convergence in various regions where some of the loop momenta
become large, i.e. to satisfy the relation ω(γ) < 0 for all the subgraphs γ of
the graph. We call a subgraph UV divergent if ω(γ) ≥ 0. In fact, it is sufficient
to check these inequalities only for one-particle-irreducible (1PI) subgraphs
(which cannot be made disconnected by cutting a line). It turns out that
these rough estimates are indeed true – see some details in Sect. E.1.

If we turn from momentum space integrals to some other representation
of Feynman diagrams, the UV divergences will manifest themselves in other
ways. For example, in coordinate space, the Feynman amplitude (i.e. the
inverse Fourier transform of (2.3)) is expressed in terms of a product of the
Fourier transforms of propagators

L∏
l=1

DF,l(xli − xlf ) (2.11)

integrated over four-coordinates xi corresponding to the internal vertices.
Here li and lf are the beginning and the end, respectively, of a line l.
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The propagators in coordinate space,

DF,l(x) =
1

(2π)4

∫
d4p D̃F,l(p)e−ix·p , (2.12)

are singular at small values of coordinates x = (x0,x). To reveal this singu-
larity explicitly let us write down the propagator (2.2) in terms of an integral
over a so-called alpha-parameter

D̃F,l(p) = i Zl

(
1
2i

∂

∂ul

)
e2iul·p

∣∣∣∣
ul=0

(−i)al

Γ (al)

∫ ∞

0

dαl α
al−1
l ei(p2−m2)αl .

(2.13)

which turns out to be a very useful tool both in theoretical analyses and
practical calculations.

To present an explicit formula for the scalar (i.e. for a = 1 and Z = 1)
propagator

D̃F (p) =
∫ ∞

0

dα ei(p2−m2)α (2.14)

in coordinate space we insert (2.14) into (2.12), change the order of integra-
tion over p and α and take the Gaussian integrations explicitly using the
formula ∫

d4k ei(αk2−2q·k) = −iπ2α−2e−iq2/α , (2.15)

which is nothing but a product of four one-dimensional Gaussian integrals:
∫ ∞

−∞
dk0 ei(αk2

0−2q0k0) =
√

π

α
e−iq2

0/α+iπ/4 ,

∫ ∞

−∞
dkj e−i(αk2

j−2qjkj) =
√

π

α
eiq2

j /α−iπ/4 , j = 1, 2, 3 (2.16)

(without summation over j in the last formula).
The final integration is then performed using [171] or in MATHEMATICA [221]

with the following result:

DF (x) = − im
4π2

√
−x2 + i0

K1

(
im
√

−x2 + i0
)

= − 1
4π2

1
x2 − i0

+ O
(
m2 ln m2

)
, (2.17)

where K1 is a Bessel special function [89]. The leading singularity at x = 0
is given by the value of the coordinate space massless propagator.

Thus, the inverse Fourier transform of the convolution integral (2.9) equals
the square of the coordinate-space scalar propagator, with the singularity
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(x2 − i0)−2. Power-counting shows that this singularity produces integrals
that are divergent in the vicinity of the point x = 0, and this is the coordinate
space manifestation of the UV divergence.

The divergences caused by singularities at small loop momenta are called
infrared (IR) divergences. First we distinguish IR divergences that arise at
general values of the external momenta. A typical example of such a diver-
gence is given by the graph of Fig. 2.2 when one of the lines contains the
second power of the corresponding propagator, so that a1 = 2. If the mass of
this line is zero we obtain a factor 1/(k2)2 in the integrand, where k is chosen
as the momentum of this line. Then, keeping in mind the introduction of
generalized spherical coordinates and performing power-counting at small k
(i.e. when all the components of the four-vector k are small), we again en-
counter a divergent behaviour

∫ Λ

0
dr r−1 but now at small values of r. There

is a similarity between the properties of IR divergences of this kind and those
of UV divergences. One can define, for such off-shell IR divergences, an IR
degree of divergence, in a similar way to the UV case. A reasonable choice is
provided by the value

ω̃(γ) = −ω(Γ/γ) ≡ ω(γ) − ω(Γ ) , (2.18)

where γ ≡ Γ\γ is the completion of the subgraph γ in a given graph Γ
and Γ/γ denotes the reduced graph which is obtained from Γ by reducing
every connectivity component of γ to a point. The absence of off-shell IR
divergences is guaranteed if the IR degrees of divergence are negative for all
massless subgraphs γ whose completions γ include all the external vertices in
the same connectivity component. (See details in [64,182] and Sect. E.1.) The
off-shell IR divergences are the worst but they are in fact absent in physically
meaningful theories. However, they play an important role in asymptotic
expansions of Feynman diagrams (see [186]).

The other kinds of IR divergences arise when the external momenta con-
sidered are on a surface where the Feynman diagram is singular: either on a
mass shell or at a threshold. Consider, for example, the graph Fig. 2.2, with
the indices a1 = 1 and a2 = 2 and the masses m1 = 0 and m2 = m �= 0 on
the mass shell, q2 = m2. With k as the momentum of the second line, the
corresponding Feynman integral is of the form

FΓ (q; d) =
∫

d4k

k2(k2 − 2q ·k)2
. (2.19)

At small values of k, the integrand behaves like 1/[4k2(q ·k)2], and, with the
help of power counting, we see that there is an on-shell IR divergence which
would not be present for q2 �= m2.

If we consider Fig. 2.2 with equal masses and indices a1 = a2 = 2 at
the threshold, i.e. at q2 = 4m2, it might seem that there is a threshold IR
divergence because, choosing the momenta of the lines as q/2+k and q/2−k,
we obtain the integral
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Fig. 2.3. Sunset diagram

Fig. 2.4. One-loop triangle diagram

∫
d4k

(k2 + q ·k)2(k2 − q ·k)2
, (2.20)

with an integrand that behaves at small k as 1/(q · k)4 and is formally diver-
gent. However, the divergence is in fact absent. (The threshold singularity at
q2 = 4m2 is, of course, present.) Nevertheless, threshold IR divergences do
exist. For example, the sunset3 diagram of Fig. 2.3 with general masses at
threshold, q2 = (m1 + m2 + m3)2, is divergent in this sense when the sum
of the integer powers of the propagators is greater than or equal to five (see,
e.g. [81]).

The IR divergences characterized above are local in momentum space,
i.e. they are connected with special points of the loop integration momenta.
Collinear divergences arise at lines parallel to certain light-like four-vectors. A
typical example of a collinear divergence is provided by the massless triangle
graph of Fig. 2.4. Let us take p2

1 = p2
2 = 0 and all the masses equal to zero.

The corresponding Feynman integral is
∫

d4k

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2
. (2.21)

At least an on-shell IR divergence is present, because the integral is divergent
when k → 0 (componentwise). However, there are also divergences at non-
zero values of k that are collinear with p1 or p2 and where k2 ∼ 0. This
follows from the fact that the product 1/[(k2 − 2p·k)k2], where p2 = 0 and
p �= 0, generates collinear divergences. To see this let us take residues in the
upper complex half plane when integrating this product over k0. For example,

3called also the sunrise diagram, or the London transport diagram.
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taking the residue at k0 = −|k|+i0 leads to an integral containing 1/(p·k) =
1/[p0|k|(1 − cos θ)], where θ is the angle between the spatial components k
and p. Thus, for small θ, we have a divergent integration over angles because
of the factor d cos θ/(1−cos θ) ∼ dθ/θ. The second residue generates a similar
divergent behaviour – this can be seen by making the change k → p − k.

Another way to reveal the collinear divergences is to introduce the light-
cone coordinates k± = k0 ± k3, k = (k1, k2). If we choose p with the only
non-zero component p+, we shall see a logarithmic divergence coming from
the region k− ∼ k2 ∼ 0 just by power counting.

These are the main types of divergences of usual Feynman integrals. Vari-
ous special divergences arise in more general Feynman integrals (2.7) that can
contain linear propagators and appear on the right-hand side of asymptotic
expansions in momenta and masses and in associated effective theories. For
example, in the Sudakov limit, one encounters divergences that can be classi-
fied as UV collinear divergences. Another situation with various non-standard
divergences is provided by threshold expansion and the corresponding effec-
tive theories, NRQCD and pNRQCD, where special power counting is needed
to characterize the divergences.

2.3 Alpha Representation

A useful tool to analyse the divergences of Feynman integrals is the so-called
alpha representation based on (2.13). It can be written down for any Feyn-
man integral. For example, for (2.9), one inserts (2.13) for each of the two
propagators, takes the four-dimensional Gaussian integral by means of (2.15)
to obtain

FΓ (q) = iπ2

∫ ∞

0

∫ ∞

0

dα1 dα2 (α1 + α2)−2

× exp
(

iq2 α1α2

α1 + α2
− i(m2

1α1 + m2
2α2)

)
. (2.22)

For a usual general Feynman integral, this procedure can also explicitly
be realized. Using (2.13) for each propagator of a general usual Feynman
integral (i.e., with usual propagators (2.2)) one takes (see, e.g., [159]) 4h-
dimensional Gauss integrals by means of a generalization of (2.15) to the
case of an arbitrary number of loop integration momenta:

∫
d4k1 . . . d4kh exp


i


∑

i,j

Aijki ·kj + 2
∑

i

qi ·ki






= i−hπ2h(det A)−2 exp


−i

∑
i,j

A−1
ij qi ·qj


 . (2.23)

Here A is an h × h matrix and A−1 its inverse.4
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The elements of the inverse matrix involved here are rewritten in graph-
theoretical language (see details in [44, 159]), and the resulting alpha repre-
sentation takes the form [45]

FΓ (q1, . . . , qn; d) =
i−a−hπ2h∏

l Γ (al)

×
∫ ∞

0

dα1 . . .

∫ ∞

0

dαL

∏
l

αal−1
l U−2ZeiV/U−i

∑
m2

l αl , (2.24)

where a =
∑

al, and U and V are the well-known functions

U =
∑

T∈T 1

∏
l �∈T

αl , (2.25)

V =
∑

T∈T 2

∏
l �∈T

αl

(
qT
)2

. (2.26)

In (2.25), the sum runs over trees of the given graph, and, in (2.26), over 2-
trees, i.e. subgraphs that do not involve loops and consist of two connectivity
components; ±qT is the sum of the external momenta that flow into one of
the connectivity components of the 2-tree T . (It does not matter which com-
ponent is taken because of the conservation law for the external momenta.)
The products of the alpha parameters involved are taken over the lines that
do not belong to the given tree T . The functions U and V are homogeneous
functions of the alpha parameters with the homogeneity degrees h and h+1,
respectively.

The factor Z is responsible for the non-scalar structure of the diagram:

Z =
∏

l

Zl

(
1
2i

∂

∂ul

)
ei(2B−K)/U

∣∣∣∣∣
u1=...uL=0

, (2.27)

where (see, e.g., [182,222])

B =
∑

l

ul

∑
T∈T 1

l

qT

∏
l′ �∈T

αl′ , (2.28)

K =
∑

T∈T 0

∏
l �∈T

αl

(∑
l

±ul

)2

. (2.29)

In (2.28), the sum is taken over trees T 1
l that include a given line l, and qT is

the total external momentum that flows through the line l (in the direction of
4In fact, the matrix A involved here equals eβe+ with the elements of an arbi-

trarily chosen column and row with the same number deleted. Here e is the incidence
matrix of the graph, i.e. eil = ±1 if the vertex i is the beginning/end of the line
l, e+ is its transpose and β consists of the numbers 1/αl on the diagonal – see,
e.g., [159].
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its orientation). In (2.29), the sum is taken over pseudotrees T 0 (a pseudotree
is obtained from a tree by adding a line), and the sum in l is performed
over the loop (circuit) of the pseudotree T , with a sign dependent on the
coincidence of the orientations of the line l and the pseudotree T .

The alpha representation of a general h-loop Feynman integral is useful for
general analyses. In practical calculations, e.g. at the two-loop level, one can
derive the alpha representation for concrete diagrams by hand, rather than
deduce it from the general formulae presented above. Still, even in practice,
such general formulae can provide advantages because the evaluation of the
functions of the alpha representation can be performed on a computer.

Let us stress that this terrible-looking machinery for evaluating the de-
terminant of the matrix A that arises from Feynman integrals, as well as
for evaluating the elements of the inverse matrix, together with interpreting
these results from the graph-theoretical point of view, is exactly the same as
that used in the problem of the solution of Kirchhoff’s laws for electrical cir-
cuits, a problem typical of the nineteenth century. Recall, for example, that
the parameters αl play the role of ohmic resistances and that the expression
(2.25) for the function U as a sum over trees is a Kirchhoff result.

Explicit formulae for Feynman integrals (2.7) with more general propa-
gators which can be linear are not known. In this situation, one can derive
alpha representation for any given concrete Feynman integral using formulae
like (2.13) and performing Gaussian integration as in the case of Feynman
integrals with standard propagators. We will follow this way in Chap. 3.

2.4 Regularization

The standard way of dealing with divergent Feynman integrals is to introduce
a regularization. This means that, instead of the original ill-defined Feynman
integral, we consider a quantity which depends on a regularization parame-
ter, λ, and formally tends to the initial, meaningless expression when this
parameter takes some limiting value, λ = λ0. This new, regularized, quantity
turns out to be well-defined, and the divergence manifests itself as a singular-
ity with respect to the regularization parameter. Experience tells us that this
singularity can be of a power or logarithmic type, i.e. lnn(λ − λ0)/(λ − λ0)i.

Although a regularization makes it possible to deal with divergent Feyn-
man integrals, it does not actually remove UV divergences, because this op-
eration is of an auxiliary character so that sooner or later it will be necessary
to switch off the regularization. To provide finiteness of physical observables
evaluated through Feynman diagrams, another operation, called renormal-
ization, is used. This operation is described, at the Lagrangian level, as a
redefinition of the bare parameters of a given Lagrangian by inserting coun-
terterms. The renormalization at the diagrammatic level is called R-operation
and removes the UV divergence from individual Feynman integrals. It is, how-
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ever, beyond the scope of the present book. (See, however, some details in
Sect. F.5, where the method of IR rearrangement is briefly described.)

An obvious way of regularizing Feynman integrals is to introduce a cut-
off at large values of the loop momenta. Another well-known regularization
procedure is the Pauli–Villars regularization [166], which is described by the
replacement

1
p2 − m2

→ 1
p2 − m2

− 1
p2 − M2

and its generalizations. For finite values of the regularization parameter M ,
this procedure clearly improves the UV asymptotics of the integrand. Here
the limiting value of the regularization parameter is M = ∞.

If we replace the integer powers al in the propagators by general com-
plex numbers λl we obtain an analytically regularized [195] Feynman inte-
gral where the divergences of the diagram are encoded in the poles of this
regularized quantity with respect to the analytic regularization parameters
λl. For example, power counting at large values of the loop momentum in
the analytically regularized version of (2.9) leads to the divergent behaviour∫∞

Λ
dr rλ1+λ2−3, which results in a pole 1/(λ1 +λ2 −2) at the limiting values

of the regularization parameters λl = 1.
For example, in the case of the analytically regularized integral of Fig. 2.2,

we obtain

FΓ (q;λ1, λ2) =
e−iπ(λ1+λ2+1)/2π2

Γ (λ1)Γ (λ2)

∫ ∞

0

∫ ∞

0

dα1 dα2
αλ1−1

1 αλ2−1
2

(α1 + α2)2

× exp
(

iq2 α1α2

(α1 + α2)
− i(m2

1α1 + m2
2α2)

)
. (2.30)

After the change of variables η = α1 + α2, ξ = α1/(α1 + α2) and explicit
integration over η, we arrive at

FΓ (q;λ1, λ2) = eiπ(λ1+λ2)
iπ2Γ (λ1 + λ2 − 2)

Γ (λ1)Γ (λ2)

×
∫ 1

0

dξ
ξλ1−1(1 − ξ)λ2−1

[m2
1ξ + m2

2(1 − ξ) − q2ξ(1 − ξ) − i0]λ1+λ2−2
. (2.31)

Thus the UV divergence manifests itself through the first pole of the gamma
function Γ (λ1 + λ2 − 2) in (2.31), which results from the integration over
small values of η due to the power ηλ1+λ2−3.

The alpha representation turns out to be very useful for the introduction
of dimensional regularization, which is a commonly accepted computational
technique successfully applied in practice and which will serve as the main
kind of regularization in this book. Let us imagine that the number of space–
time dimensions differs from four. To be more precise, the number of space
dimensions is considered to be d − 1, rather than three. (But, of course, we
still think of an integer number of dimensions!) The derivation of the alpha
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representation does not change much in this case. The only essential change
is that, instead of (2.15), we need to apply its generalization to an arbitrary
number of dimensions, d:

∫
ddk ei(αk2−2q·k) = eiπ(1−d/2)/2πd/2α−d/2e−iq2/α . (2.32)

So, instead of (2.22), we have the following in d dimensions:

FΓ (q; d) = e−iπ(1+d/2)/2πd/2

∫ ∞

0

∫ ∞

0

dα1 dα2 (α1 + α2)−d/2

× exp
(

iq2 α1α2

α1 + α2
− i(m2

1α1 + m2
2α2)

)
. (2.33)

The only two places where something has been changed are the exponent of
the combination (α1 + α2) in the integrand and the exponents of the overall
factors.

Now, in order to introduce dimensional regularization, we want to consider
the dimension d as a complex number. So, by definition, the dimensionally
regularized Feynman integral for Fig. 2.2 is given by (2.33) and is a function
of q2 as given by this integral representation. We choose d = 4−2ε, where the
value ε = 0 corresponds to the physical number of the space–time dimensions.
By the same change of variables as used after (2.30), we obtain

FΓ (q; d) = e−iπ(1+d/2)/2πd/2

∫ ∞

0

dη ηε−1

×
∫ 1

0

dξ exp
{
iq2ξ(1 − ξ)η − i[m2

1ξ + m2
2(1 − ξ)]η

}
. (2.34)

This integral is absolutely convergent for 0 < Re ε < Λ (where Λ = ∞ if both
masses are non-zero and Λ = 1 otherwise; this follows from an IR analysis of
convergence, which we omit here) and defines an analytic function of ε, which
is extended from this domain to the whole complex plane as a meromorphic
function.

After evaluating the integral over η, we arrive at the following result:

FΓ (q; d) = iπd/2Γ (ε)
∫ 1

0

dξ

[m2
1ξ + m2

2(1 − ξ) − q2ξ(1 − ξ) − i0]ε
. (2.35)

The UV divergence manifests itself through the first pole of the gamma func-
tion Γ (ε) in (2.35), which results from the integration over small values of η
in (2.34).

This procedure of introducing dimensional regularization is easily gener-
alized [45, 51, 64] to an arbitrary usual Feynman integral. Instead of (2.23),
we use
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∫
ddk1 . . . ddkh exp


i


∑

i,j

Aijki ·kj + 2
∑

i

qi ·ki






= eiπh(1−d/2)/2πhd/2(det A)−d/2 exp


−i

∑
i,j

A−1
ij qi ·qj


 , (2.36)

and the resulting d-dimensional alpha representation takes the form [45,51]

FΓ (q1, . . . , qn; d) = (−1)a eiπ[a+h(1−d/2)]/2πhd/2∏
l Γ (al)

×
∫ ∞

0

dα1 . . .

∫ ∞

0

dαL

∏
l

αal−1
l U−d/2ZeiV/U−i

∑
m2

l αl . (2.37)

Let us now define5 the dimensionally regularized Feynman integral by
means of (2.37), treating the quantity d as a complex number. This is a
function of kinematical invariants constructed from the external momenta
and contained in the function V. In addition to this, we have to take care of
polynomials in the external momenta and the auxiliary variables ul hidden
in the factor Z. We treat these objects qi and ul, as well as the metric tensor
gµν , as elements of an algebra of covariants, where we have, in particular,

(
∂

∂uµ
l

)
uν

l′ = gν
µδl,l′ , gµ

µ = d .

This algebra also includes the γ-matrices with anticommutation relations
γµγν + γνγµ = 2gµν so that γµγµ = d, the tensor εκµνλ, etc.

Thus the dimensionally regularized Feynman integrals are defined as lin-
ear combinations of tensor monomials in the external momenta and other
algebraic objects with coefficients that are functions of the scalar products
qi ·qj . However, this is not all, because we have to see that the α-integral is
well-defined. Remember that it can be divergent, for various reasons.

5An alternative definition of algebraic character [122, 197, 220] (see also [67])
exists and is based on certain axioms for integration in a space with non-integer
dimension. It is unclear how to perform the analysis within such a definition, for
example, how to apply the operations of taking a limit, differentiation, etc. to al-
gebraically defined Feynman integrals in d dimensions, in order to say something
about the analytic properties with respect to momenta and masses and the para-
meter of dimensional regularization. After evaluating a Feynman integral according
to the algebraic rules, one arrives at some concrete function of these parameters
but, before integration, one is dealing with an abstract algebraic object. Let us re-
member, however, that, in practical calculations, one usually does not bother about
precise definitions. From the purely pragmatic point of view, it is useless to think of
a diagram when it is not calculated. On the other hand, from the pure theoretical
and mathematical point of view, such a position is beneath criticism. ;-)
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The alpha representation is not only an important technique for evalu-
ating Feynman integrals but also a very convenient tool for the analysis of
their convergence. This analysis is outlined in Sect. E.1. It is based on de-
compositions of the alpha integral into so-called sectors where new variables
are introduced in such a way that the integrand factorizes, i.e. takes the form
of a product of some powers of the sector variables with a non-zero func-
tion. Eventually, in the new variables, the analysis of convergence reduces
to power counting (for both UV and IR convergence) in one-dimensional
integrals. As a result of this analysis, any Feynman integral considered at
Euclidean external momenta qi, i.e. when any sum of incoming momenta is
spacelike, is defined as meromorphic function of d with series of UV and IR
poles [51,170,182,196,198]. Here it is also assumed that there are no massless
detachable subgraphs, i.e. massless subdiagrams with zero external momenta.
For example, a tadpole, i.e. a line with coincident end points, is a detachable
subgraph. However, such diagrams are naturally put to zero in case they are
massless – see a discussion below.

Unfortunately, there are no similar mathematical results for Feynman
integrals on a mass shell or a threshold which are really needed in practice
and which be mainly considered in this book. However, in every concrete
example considered below, we shall see that every Feynman diagram is indeed
an analytical function of d, both in intermediate steps of a calculation and,
of course, in our results. Still it would be nice to have also a mathematical
theorem on the convergence of general Feynman integrals. On the other hand,
there is a practical algorithm [37] based on some sector decompositions that
can provide the resolution of the singularities in ε for any given Feynman
integral in the case where all the non-zero kinematical invariants have the
same sign (and, possibly, are on a mass shell or at a threshold). This algorithm
is described in Sect. E.2.

2.5 Properties of Dimensionally Regularized
Feynman Integrals

We can formally write down dimensionally regularized Feynman integrals as
integrals over d-dimensional vectors ki:

FΓ (q1, . . . , qn; d) =
∫

ddk1 . . .

∫
ddkh

L∏
l=1

D̃F,l(pl) . (2.38)

In order to obtain dimensionally regularized integrals with their dimension
independent of ε, a factor of µ−2ε per loop, where µ is a massive parameter, is
introduced. This parameter serves as a renormalization parameter for schemes
based on dimensional regularization. Therefore, we obtain logarithms and
other functions depending not only on ratios of given parameters, e.g. q2/m2,
but also on q2/µ2 etc. However, we shall usually omit this µ-dependence for
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brevity (i.e. set µ = 1) so that you will meet sometimes quantities like ln q2

which should be understood in the sense of ln(q2/µ2).
We have reasons for using the notation (2.38), because dimensionally reg-

ularized Feynman integrals as defined above possess the standard properties
of integrals of the usual type in integer dimensions. In particular,

– the integral of a linear combination of integrands equals the same linear
combination of the corresponding integrals;

– one may cancel the same factors in the numerator and denominator of
integrands.

These properties follow directly from the above definition. A less trivial prop-
erty is that

– a derivative of an integral with respect to a mass or momentum equals
the corresponding integral of the derivative.

This is also a consequence (see [64, 182]) of the definition of dimensionally
regularized Feynman integrals based on the alpha representation and the
corresponding analysis of convergence presented in Sect. E.1. To prove this
statement, one uses standard algebraic relations between the functions enter-
ing the alpha representation [51,159]. (We note again that these are relations
quite similar to those encoded in the solutions of Kirchhoff’s laws for a circuit
defined by the given graph.) A corollary of the last property is the possibility
of integrating by parts and always neglecting surface terms:

– ∫
ddk1 . . .

∫
ddkh

∂

∂kµ
i

L∏
l=1

D̃F,l(pl) = 0 , i = 1, . . . , h . (2.39)

This property is the basis for solving the reduction problem for Feynman
integrals using IBP relations [66] – see Chaps. 5 and 6 and Appendix G.

The next property says that

– any diagram with a detachable massless subgraph is zero.

This property can also be shown to be a consequence of the accepted de-
finition [64, 182], by use of an auxiliary analytic regularization, using pieces
of the α-integral considered in different domains of the regularization para-
meters. Let us consider, for example, the massless tadpole diagram, which
can be reduced by means of alpha parameters to a scaleless one-dimensional
integral: ∫

ddk

k2
= −iεπd/2

∫ ∞

0

dα αε−2 . (2.40)

We divide this integral into two pieces, from 0 to 1 and from 1 to ∞, integrate
these two integrals and find results that are equal except for opposite signs,
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which lead to the zero value.6 It should be stressed here that the two pieces
that contribute to the right-hand side of (2.40) are convergent in different
domains of the regularization parameter ε, namely, Re ε > −1 and Re ε < −1,
with no intersection, and that this procedure here is equivalent to introducing
analytic regularization and considering its parameter in different domains for
different pieces.

But let us distinguish between two qualitatively different situations: the
first when we have to deal with a massless Feynman integral, with a zero
external momentum, which arises from the Feynman rules, and the second
when we obtain such scaleless integrals after some manipulations: after using
partial fractions, differentiation, integration by parts, etc. We can also include
in this second class all such integrals that appear on the right-hand side
of explicit formulae for (off-shell) asymptotic expansions in momenta and
masses [28,186].

In the first situation, the only possibility is to use the ad hoc prescription
of setting the integral to zero. In the second situation, we can start with
an alpha representation, introduce an auxiliary analytic regularization [64,
182] and use the fact that it is convergent in some non-empty domain of
these parameters (see Sect. E.1). A very important point here is that all
the properties of dimensionally regularized integrals given above, apart from
the last one, can be justified in a purely algebraic way [64, 182], through
identities between functions in the alpha representation. Then, using sector
decompositions described in Sect. E.1, with a control over convergence at
hand, one can see that all the resulting massless Feynman integrals with zero
external momenta indeed vanish – see details in [64,182].

Let us now remind ourselves of reality and observe that it is necessary to
deal in practice with diagrams on a mass shell or at a threshold. What about
the properties of dimensionally regularized Feynman integrals in this case? At
least the algebraic proof of the basic properties of dimensionally regularized
Feynman integrals is not sensitive to putting the external momenta in any
particular place. However, as we noticed above, a general analysis of the
convergence of such integrals, even in specific cases, is still absent, so that we
do not have control over convergence. Technically, this means that the sectors
used for the analysis of the convergence in the off-shell case are no longer
sufficient for the resolution of the singularities of the integrand of the alpha
representation. These singularities are much more complicated and can even
appear (e.g. at a threshold) at non-zero, finite values of the α-parameters.
However, the good news is that numerous practical applications have shown
that there is no sign of breakdown of these properties for on-shell or threshold
Feynman integrals.

Although on-shell and threshold Feynman integrals have been already
mentioned many times, let us now be more precise in our definitions. We

6These arguments can be found, for example, in [146], and even in a pure math-
ematical book [103]. Well, let us not take the latter example seriously ;-)
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must realize that, generally, an on-shell or threshold Feynman integral is not
the value of the given Feynman integral FΓ (q2, . . .), defined as a function
of q2 and other kinematical variables, at a value of q2 on a mass shell or
at a threshold. Consider, for example, the Feynman integral corresponding
to Fig. 2.2, with m1 = 0, m2 = m, a1 = 1, a2 = 2. We know an explicit
result for the diagram given by (1.5). There is a logarithmic singularity at
threshold, q2 = m2, so that we cannot strictly speak about the value of the
integral there. Still we can certainly define the threshold Feynman integral
by putting q2 = m2 in the integrand of the integral over the loop momentum
or over the alpha parameters. And this is what was really meant and will
be meant by ‘on-shell’ and ‘threshold’ integrals. In this example, we obtain
an integral which can be evaluated by means of (A.13) (to be derived in
Chap. 3): ∫

ddk

k2(k2 − 2q ·k)2
= iπd/2 Γ (ε)

2(m2)1+ε
. (2.41)

This integral is divergent, in contrast to the original Feynman integral defined
for general q2.

Thus on-shell or threshold dimensionally regularized Feynman integrals
are defined by the alpha representation or by integrals over the loop mo-
menta with restriction of some kinematical invariants to appropriate values
in the corresponding integrands. In this sense, these regularized integrals are
‘formal’ values of general Feynman integrals at the chosen variables.

Note that the products of the free fields in the Lagrangian are not required
to be normal-ordered, so that products of fields of the same sort at the same
point are allowed. The formal application of the Wick theorem therefore
generates values of the propagators at zero. For example, in the case of the
scalar free field, with the propagator

DF (x) =
i

(2π)4

∫
d4k

e−ix·k

k2 − m2
, (2.42)

which satisfies (� + m2)DF (x) = −iδ(x), we have

Tφ(x)φ(x) = : φ2(x) : +DF (0) . (2.43)

The value of DF (x) at x = 0 does not exist, because the propagator is singular
at the origin according to (2.17). However, we imply the formal value at the
origin rather than the ‘honestly’ taken value. This means that we set x to
zero in some integral representation of this quantity. For example, using the
inverse Fourier transformation, we can define DF (0) as the integral (2.42)
with x set to zero in the integrand. Thus, by definition,

DF (0) =
i

(2π)4

∫
d4k

k2 − m2
. (2.44)

This integral is, however, quadratically divergent, as Feynman integrals typ-
ically are. So, we understand DF (0) as a dimensionally regularized formal
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Fig. 2.5. Tadpole

value when we put x = 0 in the Fourier integral and obtain, using (A.1)
(which we will derive shortly),

∫
ddk

k2 − m2
= −iπd/2Γ (ε − 1)(m2)1−ε . (2.45)

This Feynman integral in fact corresponds to the tadpole φ4 theory graph
shown in Fig. 2.5. The corresponding quadratic divergence manifests itself
through an UV pole in ε – see (2.45).

Observe that one can trace the derivation of the integrals tabulated in
Sect. A.1 and see that the integrals are convergent in some non-empty do-
mains of the complex parameters λl and ε and that the results are analytic
functions of these parameters with UV, IR and collinear poles.

Before continuing our discussion of setting scaleless integrals to zero, let
us present an analytic result for the one-loop massless triangle integral with
two on-shell external momenta, p2

1 = p2
2 = 0. Using (A.28) (which we will

derive in Chap. 3), we obtain
∫

ddk

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2
= −iπd/2 Γ (1 + ε)Γ (−ε)2

Γ (1 − 2ε)(−q2)1+ε
. (2.46)

A double pole at ε = 0 arises from the IR and collinear divergences.
A similar formula with a monomial in the numerator can be obtained also

straightforwardly:
∫

ddk kµ

(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2
= iπd/2 Γ (ε)Γ (1 − ε)2

Γ (2 − 2ε)
pµ
1 + pµ

2

(−q2)1+ε
.

(2.47)

Now only a simple pole is present, because the factor kµ kills the IR diver-
gence.

Consider now a massless one-loop integral with the external momentum
on the massless mass shell, p2 = 0:

∫
ddk

(p − k)2k2
. (2.48)

If we write down the alpha representation for this integral we obtain the
same expression (2.40) as for p = 0 because only p2, equal to zero in both
cases, is involved there. In spite of this obvious fact, there is still a qualitative
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difference: for p = 0, there are UV and IR poles which enter with opposite
signs and, for p2 = 0 (but with p �= 0 as a d-dimensional vector), there is a
similar interplay of UV and collinear poles.

Now we follow the arguments presented in [160] and write down the fol-
lowing identity for (2.48), with p = p1:
∫

ddk

(k2 − 2p1 ·k)k2

=
∫

ddk

(k2 − 2p1 ·k)(k2 − 2p2 ·k)
−
∫

ddk 2p2 ·k
(k2 − 2p1 ·k)(k2 − 2p2 ·k)k2

,

(2.49)

where p2
2 = 0 and p1·p2 �= 0. We then evaluate the integrals on the right-hand

side by means of (A.7) and (2.47), respectively, and obtain a zero value. This
fact again exemplifies the consistency of our rules.

Thus we are going to systematically apply the properties of dimensionally
regularized Feynman integrals in any situation, no matter where the external
momenta are considered to be. Moreover, we will believe that these properties
are also valid for more general Feynman integrals given by the dimensionally
regularized version of (2.7) which can contain linear propagators.

Let us also point out that the rule to put all scaleless integrals to zero is
rather general and, as far as I know, never causes contradictions. In particular,
it is applied in asymptotic expansions of Feynman integrals in various limits
of momenta and masses within expansion by regions [28, 186], where such
integrals are always put to zero, even if they are not regulated by dimensional
regularization. We will follow this rule also in Chap. 6 where we will put to
zero scaleless integrals which appear in auxiliary parametric representations
when constructing coefficient functions at master integrals.



3 Evaluating by Alpha
and Feynman Parameters

Feynman parameters1 are very well known and often used in practical calcu-
lations. They are closely related to alpha parameters introduced in Chap. 2
so that we shall study both kinds of parametric representations of Feynman
integrals in one chapter. The use of these parameters enables us to trans-
form Feynman integrals over loop momenta into parametric integrals where
Lorentz invariance becomes manifest. Using alpha parameters we shall first
evaluate one and two-loop integrals with general complex powers of the prop-
agators, within dimensional regularization, for which results can be written
in terms of gamma functions for general values of the dimensional regulariza-
tion parameter. We shall show then how these formulae, together with sim-
ple algebraic manipulations, enable us to evaluate some classes of Feynman
integrals.

We then turn to various characteristic one-loop examples where results
cannot be written in terms of gamma functions. In such situations, we shall
be usually oriented at the evaluation in expansion in powers of ε up to some
fixed order. We then introduce Feynman parameters and present the so-called
Cheng–Wu theorem which provides a very useful trick that can greatly sim-
plify the evaluation. Finally, we proceed at the two-loop level by presenting
rather complicated examples of evaluating Feynman integrals by Feynman
and alpha parameters.

3.1 Simple One- and Two-Loop Formulae

A lot of one- and two-loop formulae can be derived, using alpha and Feynman
parameters, for general complex indices with results expressed in terms of
gamma functions. A collection of such formulae is presented in Sect. A.1.

Let us evaluate, for example, the dimensionally regularized massive tad-
pole Feynman diagram of Fig. 2.5 with a general power of the propagator,

FΓ (q;λ, d) =
∫

ddk

(−k2 + m2)λ
. (3.1)

We apply the alpha representation of the analytically regularized scalar prop-
agator given by (2.13) with Z = 1, i.e.

1See, e.g., textbooks [168] and [67].
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1
(−k2 + m2)λ

=
iλ

Γ (λ)

∫ ∞

0

dα αλ−1ei(k2−m2)α , (3.2)

change the order of integration over k and α, take the Gaussian k integral by
means of (2.32), again apply (3.2) written in the reverse order, i.e.

∫ ∞

0

dα αλ−1e−iAα =
Γ (λ) i−λ

(A − i0)λ
, (3.3)

and arrive at (A.1). In particular, this table formula gives (2.45).
Let us now turn to the dimensionally regularized Feynman diagram of

Fig. 2.2 with general powers of the propagators,

FΓ (q;λ1, λ2, d) =
∫

ddk

(−k2 + m2
1)λ1 [−(q − k)2 + m2

2]λ2
. (3.4)

From now on, we shall use the following convention: when powers of prop-
agators are integers we use them with +k2+i0, but when they are non-integral
or complex, we take the opposite sign, i.e. −k2−i0. The second choice is more
natural if we wish to obtain a Euclidean, −q2, dependence of the results (see,
e.g., (3.6) below). We shall also prefer to use al for integer and λl for general
complex indices. In the latter case, the alpha representation is obtained from
(2.37) by replacing al by λl and dropping out the factor (−1)a.

Starting from the alpha representation of Fig. 2.2, with the basic functions
U = α1+α2 and V = α1α2q

2, and using the change of variables α1 = ξη, α2 =
η(1 − ξ) we obtain the dimensionally regularized version of (2.31), i.e.

FΓ (q;λ1, λ2, d) = iπd/2 Γ (λ1 + λ2 + ε − 2)
Γ (λ1)Γ (λ2)

×
∫ 1

0

dξ ξλ1−1(1 − ξ)λ2−1

[m2
1ξ + m2

2(1 − ξ) − q2ξ(1 − ξ) − i0]λ1+λ2+ε−2
. (3.5)

Suppose that the masses are zero. In this case the integral over ξ can be
evaluated in terms of gamma functions, and we arrive at the following result:

∫
ddk

(−k2)λ1 [−(q − k)2]λ2
= iπd/2 G(λ1, λ2)

(−q2)λ1+λ2+ε−2
, (3.6)

where

G(λ1, λ2) =
Γ (λ1 + λ2 + ε − 2)Γ (2 − ε − λ1)Γ (2 − ε − λ2)

Γ (λ1)Γ (λ2)Γ (4 − λ1 − λ2 − 2ε)
. (3.7)

The one-loop formula (3.6) can graphically be described by Fig. 3.1.
In the case where the powers of propagators are equal to one, we have

∫
ddk

k2(q − k)2
= iπd/2 Γ (ε)Γ (1 − ε)2

Γ (2 − 2ε)(−q2)ε
. (3.8)
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λ2

λ1

= iπd/2G(λ1, λ2)×
λ1 + λ2 − d/2

Fig. 3.1. Graphical interpretation of (3.6)

Note that although the indices of the diagrams are integral at the begin-
ning, non-integral indices shifted by amounts proportional to ε appear after
intermediate integration, e.g. after the use of (3.8) inside a bigger diagram.

Another formula that can be derived from (3.5) gives a result for the
integral ∫

ddk

(−k2 + m2)λ1(−k2)λ2
.

Indeed, we set q = 0,m1 = m and m2 = 0, take an integral over ξ and obtain
(A.4).

Consider now the following integral that arises in calculations in HQET
[116,150,161]: ∫

ddk

(−k2)λ1(2v ·k + ω − i0)λ2
.

Since the denominator of one of the propagators is not quadratic we cannot
use the general formula of the alpha representation. Still we proceed by alpha
parameters, i.e. apply (3.2) to the first propagator and a similar Fourier
representation

1
(−A − i0)λ

=
iλ

Γ (λ)

∫ ∞

0

dα αλ−1eiAα , (3.9)

with A = −2v · k − ω, to the second propagator. Changing the order of
integration as above and evaluating a Gaussian integral over k we then apply
(3.3) to take the integral

∫ ∞

0

αλ1+ε−3
1 e−iα2

2v2/α1dα1

and, finally, an integral over α2, and arrive at (A.25).
This formula can be used to calculate the integral

∫
ddk

(−k2)λ1(−2v ·(q − k) − i0)λ2
. (3.10)

The graphical interpretation of the corresponding result is shown in Fig. 3.2,
where the dotted line stands for the propagator 1/(−2v ·k) and Ḡ is the
function that enters the right-hand side of (A.25).
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λ2

λ1

= iπd/2Ḡ(λ1, λ2)(v2)λ1−d/2×
2λ1 + λ2 − d

Fig. 3.2. Result for (3.10) in the graphical form.

The following one-loop integral is typical for the evaluation of the one-loop
static quark potential:

∫
ddk

(−k2)λ1 [−(q − k)2]λ2(−2v ·k − i0)λ3
.

Here v · q = 0. (Typically, one chooses q = (0, q) and v = (1,0).) One of the
propagators is again not quadratic so that we proceed by alpha parameters
and represent each of the three factors as an alpha integral. After taking a
Gaussian integral over k we obtain

iλ1+λ2+λ3+ε−1πd/2∏
l Γ (λl)

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
3∏

l=1

αλl−1
l dαl

)
(α1 + α2)ε−2

× exp
(

i
q2α1α2 − v2α2

3

α1 + α2

)
.

Then the integral over α3 can be evaluated by the change α3 =
√

t and (3.3).
After that the integration over α1 and α2 is taken, as before, by introducing
the variables η = α1 + α2, ξ = α1/(α1 + α2), with the result (A.27).

Using alpha parameters one can also derive the formula (A.42) for the for-
mal Fourier transformation within dimensional regularization. This formula
provides another way to derive (3.6). In fact, the initial integral is nothing
but the convolution of the two functions, f̃i = 1/(−k2 − i0)λi , i = 1, 2. Then
one uses the well-known mathematical formula(

f̃1 ∗ f̃2

)
(q) = (2π)d ˜(f1f2)

for the convolution of two Fourier transforms, applies (A.42) and arrives at
(3.6).

3.2 Auxiliary Tricks

3.2.1 Recursively One-Loop Feynman Integrals

Massless integrals are often evaluated with the help of successive application
of the one-loop formula (3.6). In addition one can use the fact that a sequence
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Fig. 3.3. A recursively one-loop diagram

of two lines with scalar propagators with the same mass and the indices a1

and a2 can be replaced by one line with index a1 +a2. Consider, for example,
the two-loop diagram shown in Fig. 3.3. The internal one-loop integral can
be evaluated by use of (3.8) and is effectively replaced, according to Fig. 3.1,
by a line with index ε. Then the sequence of two massless lines with indices
1 and ε is replaced by one line with index 1 + ε, and the one-loop diagram
so obtained, which has indices 2 and 1 + ε, is evaluated by means of the one-
loop formula (3.6), with the following result expressed in terms of gamma
functions: G(1, 1)G(2, 1+ ε)/(−q2)1+2ε. The class of Feynman diagrams that
can be evaluated in this way by means of (3.6) can be called recursively
one-loop.

Another example where two tabulated one-loop integration formulae can
successively be applied is given by the two-loop scalar diagram of Fig. 3.4
with general complex indices and two zero masses,

∫ ∫
ddk ddl

(−k2)λ1 [−(k + l)2]λ2(m2 − l2)λ3
.

Here one can first apply the one-loop massless integration formula (3.6), then
apply (A.4) and obtain (A.39).

1

2

3

Fig. 3.4. Vacuum two-loop diagram with the masses 0, 0 and m

3.2.2 Partial Fractions

When evaluating dimensionally regularized Feynman integrals one uses their
properties, in particular the possibility of manipulations based on the prop-
erties listed in Sect. 2.5. Here the following standard decomposition proves
to be useful:
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1
(x + x1)a1(x + x2)a2

=
a1−1∑
i=0

(
a2 − 1 + i

a2 − 1

)
(−1)i

(x2 − x1)a2+i(x + x1)a1−i

+
a2−1∑
i=0

(
a1 − 1 + i

a1 − 1

)
(−1)a1

(x2 − x1)a1+i(x + x2)a2−i
, (3.11)

where a1, a2 > 0 and (
n

j

)
=

n!
j!(n − j)!

is a binomial coefficient.
For example, the vacuum one-loop Feynman integral with two different

masses, ∫
ddk

(k2 − m2
1)(k2 − m2

2)
,

can be evaluated by (3.11) and (A.1), with the result

iπd/2Γ (ε − 1)
m2−2ε

2 − m2−2ε
1

m2
1 − m2

2

.

If one of the indices, e.g. a2 is non-positive, a similar decomposition is
performed by expanding (x + x2)−a2 in powers of x + x1. Let us note that if
one proceeds by MATHEMATICA [221], one can use, for given integer values of
a1 and a2, the command Apart to perform partial fractions decompositions.

3.2.3 Dealing with Numerators

As we have agreed we suppose that a tensor reduction for a given class of
Feynman integrals was performed so that we start with evaluating scalar in-
tegrals. Let us, however, mention that one can also evaluate integrals with
Lorentz indices. A lot of one-loop Feynman integrals with numerators can
be found in Sect. A.1. One can reduce evaluating such a one-loop integral
to an integral with a product kα1 . . . kαN . Then one can switch to traceless
monomials and back using (A.43a) and (A.43b). An integral with a traceless
monomial independent of other Lorentz indices is again traceless. If it de-
pends on one external momentum it should be proportional to its traceless
monomial. This is how tabulated integrals for traceless monomials, e.g. (A.8),
can be derived. Then one can turn back to usual monomials using (A.43b).
(In Sect. A.2, one can find also other useful formulae for various traceless
monomials.)

In the case of a general h-loop Feynman integral with standard propa-
gators, let us observe that the function (2.27) in (2.37) can be taken into
account by shifting the space–time dimension d and indices al of a given di-
agram because any factor that arises after the differentiation with respect to
the auxiliary parameters ul is a sum of products of positive integer powers of
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the α-parameters and negative integer powers of the function U . In particu-
lar, the factor 1/Un is taken into account by the shift d → d + 2n. Then the
shift of a power of a parameter αl can be translated into a shift of the power
of the corresponding propagator, in particular, a multiplication by αl can be
described by the operator iall+ where l+ increases the index al by one, the
multiplication by α2

l can be described by the operator −al(al + 1)l++, etc.
This observation enables us to express any given Feynman integral with

numerators through a linear combination of scalar integrals with shifted in-
dices and shifted dimensions. Systematic algorithms oriented towards real-
ization on a computer, with a demonstration up to two-loop level, have been
constructed in [200]. We shall come back to this point in Chap. 5 when solving
IBP recurrence relations.

At the one-loop level, this property has been used [73] to derive a general
formula for the Feynman integrals

F (N)
α1...αn

(λ1, . . . , λN , d) =
∫

ddk
kα1 . . . kαn∏N

i=1[−(qi − k)2 + m2
i ]λi

, (3.12)

depending on the external momenta q1 − q2, . . . , qN − q1 and the general
masses mi:

F (N)
α1...αn

(λ1, . . . , λN , d) =
∑

r,κ1,...,κN : 2r+
∑

κi=n

(−1)r

2r

×{{[g]r[q1]κ1 . . . [qN ]κN }α1...αn

(
N∏

i=1

(λi)κi

)

×F (N)(λ1 + κ1, . . . , λN + κN , d + 2(n − r)) , (3.13)

where {[g]r[q1]κ1 . . . [qN ]κN }α1...αn
is symmetric in its indices and is composed

of the metric tensor and the vectors qi. Tabulated formulae with numerators
presented in Appendix A can be derived by means of (3.13).

Let us now present a simple one-loop example and illustrate the trick
with turning to integrals without numerators. Consider the Feynman integral
corresponding to Fig. 3.5 with a numerator

a2

a1

a3

p1

p2

Fig. 3.5. Triangle diagram with the masses 0, 0, m, external momenta p2
1 = p2

2 = 0
and general indices
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F (q2,m2; a1, a2, a3, n, d)

=
∫

ddk (l·k)n

(k2 − 2p1 ·k)a1(k2 − 2p2 ·k)a2(k2 − m2)a3
, (3.14)

where l is a momentum not related to p1 and p2. The alpha representation
(2.37) takes the form

F (q2,m2; a1, a2, a3, n, d) = (−1)a ia1+a2+a3+ε−1πd/2∏
l Γ (al)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

dα1dα2dα3

∏
l

αal−1
l U−d/2 exp

{
iV/U − im2α3

}

×
(

1
2i

∂

∂r

)n

exp
{

i[2rl·(α1p1 + α2p2) + r2l2]
α1 + α2 + α3

}∣∣∣∣
r=0

, (3.15)

where
U = α1 + α2 + α3 , V = q2α1α2 .

Taking into account the arguments above we see, for example, that

F (a1, a2, a3, 1, d) = − 1
π

[a1l·p1F (a1 + 1, a2, a3, 0, d + 2)

+a2l·p2F (a1, a2 + 1, a3, 0, d + 2)] , (3.16)

F (a1, a2, a3, 2, d) =
l2

2π
F (a1, a2, a3, 0, d + 2)

+
1
π2

[
a1(a1 + 1)(l·p1)2F (a1 + 2, a2, a3, 0, d + 4)

+2a1a2(l·p1)(l·p2)F (a1 + 1, a2 + 1, a3, 0, d + 4)
+a2(a2 + 1)(l·p2)2F (a1, a2 + 2, a3, 0, d + 4)

]
. (3.17)

Such a reduction of numerators can be performed for any Feynman inte-
gral. The corresponding algebraic manipulations can easily be implemented
on a computer.

3.3 One-Loop Examples

Let us present examples of evaluation of Feynman diagrams by means of alpha
parameters with results which are not written in terms of gamma functions
for general d. We first turn to the example considered in the introduction.

Example 3.1. One-loop propagator Feynman integrals (1.2) corresponding
to Fig. 1.1.

We apply (3.5) to obtain



3.3 One-Loop Examples 39

F3.1(q2,m2; a1, a2, d) = iπd/2(−1)a1+a2
Γ (a1 + a2 + ε − 2)

Γ (a1)Γ (a2)

×
∫ 1

0

dξ ξa2−1(1 − ξ)1−a2−ε

[m2 − q2ξ − i0]a1+a2+ε−2 . (3.18)

For example, we have

F3.1(q2,m2; 2, 1, d) ≡
∫

ddk

(k2 − m2)2(q − k)2

= −iπd/2Γ (1 + ε)
∫ 1

0

(1 − ξ)−εdξ

[m2 − q2ξ − i0]1+ε . (3.19)

Suppose that we are interested only in the value of this (finite) integral exactly
in four dimensions. The integral over ξ is then evaluated easily at ε = 0 with
the result (1.5). Similarly, Feynman integrals corresponding to Fig. 1.1 with
various integer indices ai can be evaluated. In particular, we obtain (1.7).

Let us now evaluate

F3.1(q2,m2; 1, 2, d) ≡
∫

ddk

(k2 − m2)[(q − k)2]2

= −iπd/2Γ (1 + ε)
∫ 1

0

ξ−1−ε(1 − ξ)dξ

[m2 − q2(1 − ξ) − i0]1+ε (3.20)

in an expansion in ε up to the finite part. This time, there is an IR pole in
ε which is generated due to integration over small ξ. The standard proce-
dure to extract the pole is to make a subtraction of the integrand, integrate
the subtracted expression by expanding the integrand in ε and integrate the
subtracted term explicitly. In our case, this is achieved by the following de-
composition of the integral:

F3.1(q2,m2; 1, 2, d) = −iπd/2Γ (1 + ε)

×
[∫ 1

0

dξ

ξ1+ε

{
1 − ξ

[m2 − q2(1 − ξ)]1+ε − 1
(m2 − q2)1+ε

}

+
1

(m2 − q2)1+ε

∫ 1

0

dξ

ξ1+ε

]
. (3.21)

The last integral is
∫ 1

0

dξ

ξ1+ε
= −1

ε
ξ−ε

∣∣1
0

= −1
ε

.

When evaluating it we imply that the real part of ε is positive and then obtain
result which is understood, via analytic continuation, to the whole complex
plane of ε. We will later follow such prescriptions in similar situations.
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The first integral is now convergent uniformly in ε and can be evaluated
by expanding the integrand in a Taylor series in ε. Expanding up to ε0 and
evaluating the corresponding integral we obtain the following result:

F3.1(q2,m2; 1, 2, d)

=
iπd/2e−γEε

m2 − q2

[
1
ε
− ln(m2 − q2) − m2

q2
ln
(

1 − q2

m2

)]
.(3.22)

Here and in all the expansions in ε below we pull out the factor e−γEε, with
Euler’s constant γE, per loop in order to avoid γE in our results.

The next one-loop example is

Example 3.2. The triangle diagram of Fig. 3.5.

The Feynman integral for Fig. 3.5 with general integer indices looks like
(3.14) with n = 0, i.e.

F3.2(q2,m2; a1, a2, a3, d)

=
∫

ddk

(k2 − 2p1 ·k)a1(k2 − 2p2 ·k)a2(k2 − m2)a3
, (3.23)

where q = p1 − p2, q2 ≡ −Q2 = −2p1 ·p2. The alpha representation (2.37)
takes the form (3.15) with n = 0.

Introducing variables α1 = ξ1η, α2 = ξ2η and α3 = (1 − ξ1 − ξ2)η and
integrating over η we obtain

F3.2(q2,m2; a1, a2, a3, d) =
iπd/2(−1)a1+a2+a3Γ (a + ε − 2)∏

l Γ (al)

×
∫ 1

0

dξ1

∫ 1−ξ1

0

dξ2
ξa1−1
1 ξa2−1

2 (1 − ξ1 − ξ2)a3−1

[Q2ξ1ξ2 + m2(1 − ξ1 − ξ2)]a+ε−2
. (3.24)

This can be a reasonable starting point for the evaluation of integrals with
any given indices ai. Let us evaluate the integral with a1 = a2 = a3 = 1 at
d = 4. Then the integral is finite:

F3.2(q2,m2; 1, 1, 1, 4) = −iπ2

∫ 1

0

dξ1

∫ 1−ξ1

0

dξ2

Q2ξ1ξ2 + m2(1 − ξ1 − ξ2)
.

A straightforward integration gives the following result:

F3.2(q2,m2; 1, 1, 1, 4)

=
iπ2

Q2

(
Li2(x) − 1

2
ln2 x + ln x ln(1 − x) − π2

3

)
, (3.25)

where Li2(x) is the dilogarithm (see (B.7)) and x = m2/Q2.
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p1

p2

p3

p4

1

2

3

4

Fig. 3.6. Box diagram

Example 3.3. The massless on-shell box diagram of Fig. 3.6, i.e. with p2
i =

0, i = 1, 2, 3, 4.

With the loop momentum chosen as the momentum of line 1, the Feynman
integral takes the form

F3.3(s, t; a1, a2, a3, a4, d)

=
∫

ddk

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3 [(k − p3)2]a4
, (3.26)

where s = (p1 + p2)2 and t = (p1 + p3)2 are Mandelstam variables.
The trees and 2-trees relevant to the functions U and V are shown in

Figs. 3.7 and 3.8. Four more existing 2-trees, for example the 2-tree with
the component consisting of the lines 1 and 2 and the component consisting
of the isolated vertex with the external momentum p4, do not contribute to
the function V because the product α3α4 is multiplied by the corresponding
external momentum squared which is zero.

We have (2.37) with

U = α1 + α2 + α3 + α4 , V = tα1α3 + sα2α4 . (3.27)

Introducing new variables by α1 = η1ξ1, α2 = η1(1 − ξ1), α3 = η2ξ2, α4 =
η2(1− ξ2), with the Jacobian η1η2, and evaluating an integral over η2 due to
the delta function and an integral over η1 in terms of gamma functions we
obtain

F3.3(s, t; a1, a2, a3, a4, d)

Fig. 3.7. Trees contributing to the function U for the box diagram

Fig. 3.8. 2-trees contributing to the function V for the massless on-shell box
diagram
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= (−1)aiπd/2 Γ (a + ε − 2)Γ (2 − ε − a1 − a2)Γ (2 − ε − a3 − a4)
Γ (4 − 2ε − a)

∏
Γ (al)

×
∫ 1

0

∫ 1

0

dξ1dξ2
ξa1−1
1 (1 − ξ1)a2−1ξa3−1

2 (1 − ξ2)a4−1

[−sξ1ξ2 − t(1 − ξ1)(1 − ξ2) − i0]a+ε−2
. (3.28)

where a = a1 + a2 + a3 + a4.
Consider, for example, the master integral2 with all the indices equal to

one. We have

F (s, t; d) ≡ F3.3(s, t; 1, 1, 1, 1, d) = iπd/2 Γ (2 + ε)Γ (−ε)2

Γ (−2ε)

×
∫ 1

0

∫ 1

0

dξ1dξ2

[−tξ1ξ2 − s(1 − ξ1)(1 − ξ2) − i0]2+ε
. (3.29)

Then the integration over ξ2 results in

F (s, t; d) = −iπd/2 Γ (1 + ε)Γ (−ε)2

Γ (−2ε)

×
∫ 1

0

dξ

s − (s + t)ξ
[
(−t)−1−εξ−1−ε − (−s)−1−ε(1 − ξ)−1−ε

]
. (3.30)

The singularity at s− (s+ t)ξ = 0 is absent because the rest of the integrand
is zero at this point. To calculate this integral in expansion in ε one needs,
however, to separate the two terms in the square brackets. In order not to
run into divergence due to the denominator one can perform an auxiliary
subtraction at s − (s + t)ξ = 0. We obtain

F (s, t; d) = −iπd/2 Γ (1 + ε)Γ (−ε)2

Γ (−2ε)
[f(s, t; ε) + f(t, s; ε)] , (3.31)

where

f(s, t; ε) = (−t)−1−ε

∫ 1

0

dξ

s − (s + t)ξ

[
ξ−1−ε −

(
s

s + t

)−1−ε
]

. (3.32)

To expand the function f in a Laurent series in ε one needs to perform
another subtraction, at ξ = 0, which we make by the replacement

1
s − (s + t)ξ

→ (s + t)ξ
s(s − (s + t)ξ)

+
1
s

. (3.33)

Then the integral with the first term can be evaluated by expanding the
integrand in ε while the second term is integrated explicitly. Eventually, we
arrive at the following result:

2We shall see in Chaps. 5 and 6 that this is indeed an irreducible Feynman
integral.
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F (s, t; d) =
iπd/2e−γEε

st

(
4
ε2

− [ln(−s) + ln(−t)]
2
ε

+2 ln(−s) ln(−t) − 4π2

3

)
+ O(ε) . (3.34)

Although we are oriented at calculations in expansion in ε, let us, for
completeness, present a simple result for general ε [160] which can straight-
forwardly be obtained from (3.31):

F (s, t; d) = − iπd/2Γ (−ε)2Γ (ε)
stΓ (−2ε)

[
(−t)−ε

2F1

(
1,−ε; 1 − ε; 1 +

t

s

)

+(−s)−ε
2F1

(
1,−ε; 1 − ε; 1 +

s

t

)]
, (3.35)

where 2F1 is the Gauss hypergeometric function (see (B.1)).

3.4 Feynman Parameters

Let us now present the alpha representation of scalar dimensionally regular-
ized integrals in a modified form by making the change of variables αl = ηα′

l,
where

∑
α′

l = 1. Starting from (2.37) with Z = 1, performing the integration
over η from 0 to ∞ explicitly and omitting primes from the new variables,
we obtain

FΓ (q1, . . . , qn; d) = (−1)a

(
iπd/2

)h
Γ (a − hd/2)∏
l Γ (al)

×
∫ ∞

0

dα1 . . .

∫ ∞

0

dαL δ
(∑

αl − 1
) Ua−(h+1)d/2

∏
l α

al−1
l

(−V + U
∑

m2
l αl)

a−hd/2
. (3.36)

A folklore Cheng–Wu theorem [59] (see also [41]) says that the same formula
(3.36) holds with the delta function

δ

(∑
l∈ν

αl − 1

)
, (3.37)

where ν is an arbitrary subset of the lines 1, . . . , L, when the integration over
the rest of the α-variables, i.e. for l∈ν, is extended to the integration from
zero to infinity. Observe that the integration over αl for l ∈ ν is bounded at
least by 1 from above, as in the case where all the α-variables are involved
in the sum in the argument of the delta function.

One can prove this theorem straightforwardly by changing variables and
calculating the corresponding Jacobian. But a simpler way to prove it3 is

3Thanks to A.G. Grozin for pointing out this possibility!
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to start from the alpha representation (2.37), introduce new variables by
αl = ηα′

l for all l = 1, 2, . . . , L, where η =
∑

l∈ν αl, and immediately arrive
at (3.36) with the delta function (3.37). Let us stress that this theorem holds
not only for (3.36) corresponding to Feynman diagrams with standard prop-
agators but also for the alpha representation derived for Feynman diagrams
with various linear propagators.

As we will see below in multiple examples, an adequate choice of the delta
function in (3.36) can greatly simplify the evaluation. Note that one can use
various homogeneous substitutions which keep the form of the delta function
in (3.36) – see Sect. 3.1of [76] and references therein.

In addition to alpha parameters, the closely related Feynman parame-
ters are often used. For a product of two propagators, one writes down the
following relation:

1
(m2

1 − p2
1)λ1(m2

2 − p2
2)λ2

=
Γ (λ1 + λ2)
Γ (λ1)Γ (λ2)

∫ 1

0

dξ ξλ1−1(1 − ξ)λ2−1

[(m2
1 − p2

1)ξ + (m2
2 − p2

2)(1 − ξ)]λ1+λ2
. (3.38)

This relation is usually applied to a pair of appropriately chosen propagators
if an explicit integration over a loop momentum then becomes possible. Then
new Feynman parameters can be introduced for other factors in the integral,
etc. In fact, any choice of the Feynman parameters can be achieved by starting
from the alpha representation (3.36) and making certain changes of variables.
However, the possibility of an intermediate explicit loop integration of the
kind mentioned above can be hidden in the alpha integral.

The generalization of (3.38) to an arbitrary number of propagators is of
the form

1∏
Aλl

l

=
Γ (
∑

λl)∏
Γ (λl)

∫ 1

0

dξ1 . . .

∫ 1

0

dξL

∏
l

ξλl−1
l

δ (
∑

ξl − 1)

(
∑

Alξl)
∑

λl
, (3.39)

where Al = m2
l − p2

l .
For the evaluation of diagrams with a small number of loops, the choice of

applying either alpha or Feynman parameters is usually just a matter of taste.
In particular, if we apply (3.39) to a two-loop diagram and then integrate over
two loop momenta, with the help of (A.1) and its generalizations to integrals
with numerators, we obtain the same result as that obtained starting from
(3.36).

For completeness, here is a one more parametric representation which is
related to Feynman parameters and is often used in practice:

1
Aλ1Bλ2

=
Γ (λ1 + λ2)
Γ (λ1)Γ (λ2)

∫ 1

0

xλ2−1 dx

(A + Bx)λ1+λ2
. (3.40)
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1

2

3

Fig. 3.9. Vacuum two-loop diagram with the masses m, 0 and m

3.5 Two-Loop Examples

At the two-loop level, we first consider the

Example 3.4. Two-loop vacuum diagram of Fig. 3.9 with the masses m, 0,m
and general complex powers of the propagators.

The Feynman integral is written as

F3.4(m2;λ1, λ2, λ3, d)

=
∫ ∫

ddk ddl

(−k2 + m2)λ1 [−(k + l)2]λ2(−l2 + m2)λ3
. (3.41)

The two basic functions in the alpha representation are U = α1α2+α2α3+
α3α1 and V = 0. We apply (3.36) to obtain

F3.4 =
(
iπd/2

)2 Γ (λ + 2ε − 4)∏
Γ (λl)(m2)λ+2ε−4

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
3∏

l=1

αλl−1
l dαl

)

×δ

(∑
l

αl − 1

)
(α1α2 + α2α3 + α3α1)ε−2

(α1 + α3)λ+2ε−4
. (3.42)

Now we exploit the freedom provided by the Cheng–Wu theorem and choose
the argument of the delta function as α1 + α3 − 1. The integration over α2 is
performed from 0 to ∞. Resulting integrals are evaluated in terms of gamma
functions for general ε and we arrive at the table formula (A.38).

Consider now

Example 3.5. Two-loop massless propagator diagram of Fig. 3.10 with ar-
bitrary integer powers of the propagators,

F3.5(q2; a1, a2, a3, a4, a5, d)

=
∫ ∫

ddk ddl

(k2)a1 [(q − k)2]a2(l2)a3 [(q − l)2]a4 [(k − l)2]a5
. (3.43)

The sets of trees and 2-trees relevant to the two basic functions in the
alpha representation are shown in Figs. 3.11 and 3.12
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Fig. 3.10. Two-loop propagator diagram

Fig. 3.11. Trees contributing to the function U for Fig. 3.10

Fig. 3.12. 2-trees contributing to the function V for Fig. 3.10

Correspondingly, we have

U = (α1 + α2 + α3 + α4)α5 + (α1 + α2)(α3 + α4) , (3.44)
V = [(α1 + α2)α3α4 + α1α2(α3 + α4) + (α1 + α3)(α2 + α4)α5]q2

≡ Vq2 . (3.45)

As we will see in Chaps. 5 and 6, any diagram of this class can be evaluated
for general ε in terms of gamma functions. This is however hardly seen from
its alpha representation. In spite of the fact that the evaluation by alpha
parameters is not an optimal method for this class of integrals, let us evaluate,
for the sake of illustration, this diagram for all powers of the propagators
equal to one, using its alpha representation. It is finite at d = 4, both in the
UV and IR sense. Representation (3.36) takes the form

F3.5(q2; 1, 1, 1, 1, 1, 4) =
(iπ2)2

q2

∫ ∞

0

dα1 . . .

∫ ∞

0

dα5
δ (
∑

αl − 1)
UV

. (3.46)

We exploit the Cheng–Wu theorem by choosing the delta function δ (α5 − 1),
with the integration over the rest of the four variables from zero to infinity.
Then one can delegate the integration procedure to MATHEMATICA [221] and
obtain the well-known result4:

F3.5(q2; 1, 1, 1, 1, 1, 4) =

(
iπ2
)2

q2
6ζ(3) , (3.47)

where ζ(z) is the Riemann zeta function.
4This result was first obtained in [176] by means of expansion in Chebyshev

polynomials in momentum space. In [63], it was reproduced using Gegenbauer poly-
nomials in coordinate space.



3.5 Two-Loop Examples 47

1

2

3

Fig. 3.13. Sunset diagram with the masses m, m, 0

In the rest of this chapter, we shall consider just two more examples which
are, however, more complicated than the previous ones.

Example 3.6. Two classes of two-loop integrals5 with integer powers of the
propagators:

F±(q2; a1, a2, a3) =
∫ ∫

ddk ddl

(k2 + q ·k)a1(l2 + q ·l)a2 [(k ± l)2]a3
. (3.48)

It turns out that the F− is simple. Indeed we rewrite the first denominator
k2 + q ·k as (k + q/2)2 − q2/4 and similarly the second denominator, make
the change of variables k = k′ − q/2, l = l′ − q/2 and recognize F− as a
two-loop vacuum diagram with the mass m2 = q2/4 shown in Fig. 3.9 which
was evaluated in Example 3.4 – see (A.38).

The integrals F+ are, however, not so simple. Using the same manipulation
as above we see that they are graphically recognized as sunset diagrams of
Fig. 3.13 at threshold, i.e. q2 = 4m2. We start from the alpha representation
(2.37) with Z = 1. The two basic functions are

U = α1α2 + α2α3 + α3α1 , V = α1α2α3q
2 . (3.49)

After using the threshold condition m2 = q2/4 we obtain

F+(q2; a1, a2, a3) =
(−1)aia+2ε−2∏

Γ (al)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

(
3∏

l=1

αal−1
l dαl

)
Uε−2 exp

{
−i

q2W
4U

}
, (3.50)

where
W = (α1 + α2)α1α2 + α3(α1 − α2)2 . (3.51)

Proceeding as with the general alpha representation we come to

5They were involved, in particular, in the calculation [27,72] of two-loop match-
ing coefficients of the vector current in QCD and Non-Relativistic QCD (NRQCD)
[43,147,207].
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F+(q2; a1, a2, a3) =
(−1)a

(
iπd/2

)2
(q2/4)a+2ε−4

Γ (a + 2ε − 4)∏
Γ (al)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

δ
(∑

αl − 1
)( 3∏

l=1

αal−1
l dαl

)
Ua+3ε−6

Wa+2ε−4
. (3.52)

We continue to exploit the Cheng–Wu theorem in an appropriate way. We
choose the delta function in (3.52) as δ (α1 + α2 − 1) and obtain an integral
over ξ = α1 from 0 to 1, with α2 = 1− ξ, and an integral over t = α3 from 0
to ∞:

F+(q2; a1, a2, a3) =
(−1)a

(
iπd/2

)2
(q2/4)a+2ε−4

Γ (a + 2ε − 4)∏
Γ (al)

×
∫ 1

0

dξ ξa1−1(1 − ξ)a2−1

∫ ∞

0

dt
ta3−1[t + ξ(1 − ξ)]a+3ε−6

[t(1 − 2ξ)2 + ξ(1 − ξ)]a+2ε−4
. (3.53)

This two-parametric integral representation can be used for the evaluation
of any diagram of the given class in expansion in ε. Let us show how the
integral with all the indices equal to one can be evaluated in expansion in ε
up to the finite part. We start with (3.53) which gives

F+(q2; 1, 1, 1) = −
(
iπd/2

)2
Γ (2ε − 1)

(q2/4)2ε−1

×
∫ 1

0

dξ

∫ ∞

0

dt
[t + ξ(1 − ξ)]3ε−3

[t(1 − 2ξ)2 + ξ(1 − ξ)]2ε−1
. (3.54)

Observe that the integrand is invariant under the transformation ξ → 1 − ξ.
We write the integral as twice the integral from 0 to 1/2 over ξ, change the
variable ξ by

ξ =
1 −

√
1 − x

2
, (3.55)

with the Jacobian 1/(4
√

1 − x), and rescale t → t/4 to obtain

F+(q2; 1, 1, 1) = −
(
iπd/2

)2

Γ (2ε − 1)(q2/2)1−2ε

×
∫ 1

0

dx√
1 − x

∫ ∞

0

dt
[t(1 − x) + x]1−2ε

(t + x)3−3ε
. (3.56)

Remember that our integral is UV divergent. The overall divergence is
quadratic since the UV degree of divergence is ω = 2, and there are three one-
loop logarithmically divergent subgraphs, so that, presumably, there should
be poles up to the second order in ε. One source of the poles is the overall
gamma function Γ (2ε−1). Another power of 1/ε comes from the integration
over t and x in (3.56), namely from the region of small t and x. To have the
possibility to perform an expansion in ε we have to reveal the singularity at
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ε = 0. Similarly to what we did in Example 3.3, let us perform a subtraction
according to the identity

[t(1 − x) + x]1−2ε =
{
[t(1 − x) + x]1−2ε − (t + x)1−2ε

}
+ (t + x)1−2ε .

Now, the integral with the expression in braces can be evaluated by expanding
the integrand in a Laurent series in ε, while the last term can be integrated
by hand with a result expressed in terms of gamma functions which can be,
of course, expanded in ε after the evaluation:

∫ 1

0

dx√
1 − x

∫ ∞

0

dt

(t + x)2−ε
=

√
πΓ (ε)

(1 − ε)Γ (ε + 1/2)
.

The integration of the subtracted part up to order ε0 can straightforwardly
be done by MATHEMATICA [221]. Finally, we obtain the following result:

F+(q2; 1, 1, 1) =
(
iπd/2e−γEε

)2
(

q2

4

)1−2ε

×
[

1
ε2

+
2
ε

+
11π2

12
− 1

2
+ O(ε)

]
. (3.57)

Consider now

Example 3.7. Non-planar two-loop massless vertex diagram of Fig. 3.14
with p2

1 = p2
2 = 0.

The Feynman integral can be written as

F3.7(Q2; a1, . . . , a6, d) =
∫ ∫

ddk ddl

[(k + l)2 − 2p1 ·(k + l)]a1

× 1
[(k + l)2 − 2p2 ·(k + l)]a2(k2 − 2p1 ·k)a3(l2 − 2p2 ·l)a4(k2)a5(l2)a6

, (3.58)

Fig. 3.14. Non-planar vertex diagram
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where Q2 = −(p1 − p2)2 = 2p1 ·p2, and the loop momenta are chosen as the
momenta flowing through lines 5 and 6.

Let us proceed by Feynman parameters following [109] where some in-
tegrals of this class were calculated. (They were also evaluated in [140]
and [160].) We write down Feynman parametric formula (3.38) for the pairs
of the propagators (3, 5) and (4, 6):

1
(k2 − 2p1 ·k)a3(k2)a5

=
(−1)a3+a5Γ (a3 + a5)

Γ (a3)Γ (a5)

×
∫ 1

0

dξ1 ξa3−1
1 (1 − ξ1)a5−1

[−(k − ξ1p1)2 − i0]a3+a5
(3.59)

and, similarly, for the second pair, with the replacements

ξ1 → ξ2, p1 → p2, k → l, a3 → a4, a5 → a6 .

Then we change the integration variable l → r = k + l and integrate over k
by means of our one-loop tabulated formula (3.6):

∫
dk

[−(k − ξ1p1)2]a3+a5 [−(r − ξ2p2 − k)2]a4+a6

= iπd/2 G(a3 + a5, a4 + a6)
[−(r − ξ1p1 − ξ2p2)2]a3+a4+a5+a6+ε−2

. (3.60)

Then we apply Feynman parametric formula (3.39) to the propagators 1
and 2 and the propagator resulting from the right-hand side of (3.60), with
a resulting integral over r evaluated by (A.1):
∫

ddr

[−(r2 − Q2A(ξ1, ξ2, ξ3, ξ4))]a+ε−2

= iπd/2 Γ (a + 2ε − 4)
Γ (a + ε − 2)

1
(Q2)a+2ε−4A(ξ1, ξ2, ξ3, ξ4)a+2ε−4

, (3.61)

where a = a1 + . . . + a6 and

A(ξ1, ξ2, ξ3, ξ4) = ξ3ξ4 + (1 − ξ3 − ξ4)[ξ2ξ3(1 − ξ1) + ξ1ξ4(1 − ξ2)] .

Thus we arrive at the following intermediate result valid for general powers
of the propagators:

F3.7(Q2; a1, . . . , a6, d) =
(−1)a

(
iπd/2

)2
(Q2)a+2ε−4

Γ (2 − ε − a35)Γ (2 − ε − a46)∏
Γ (al)Γ (4 − 2ε − a3456)

×Γ (a + 2ε − 4)
∫ 1

0

dξ1 . . .

∫ 1

0

dξ4 ξa3−1
1 (1 − ξ1)a5−1ξa4−1

2 (1 − ξ2)a6−1

×ξa1−1
3 ξa2−1

4 (1 − ξ3 − ξ4)a3456+ε−3
+ A(ξ1, ξ2, ξ3, ξ4)4−2ε−a . (3.62)
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We use the shorthand notation a35 = a3 + a5, a3456 = a3 + a4 + a5 + a6. As
usually, X+ = X for X > 0 and X+ = 0 otherwise.

This four-parametric integral representation can be used for the evalua-
tion of Feynman integrals of this class with various indices. Let us use it in
the case a1 = . . . = a6 = 1 and evaluate the corresponding Feynman integral
in expansion in ε up to the finite part. We have

F3.7(Q2; 1, . . . , 1, d) =

(
iπd/2

)2
(Q2)2+2ε

Γ (2 + 2ε)Γ (−ε)2

Γ (−2ε)

×
∫ 1

0

dξ1 . . .

∫ 1

0

dξ4
(1 − ξ3 − ξ4)1+ε

+

A(ξ1, ξ2, ξ3, ξ4)2+2ε
. (3.63)

We introduce new variables by ξ3 = ξη, ξ4 = (1 − ξ)η and integrate over ξ2

to obtain

F3.7(Q2; 1, . . . , 1, d) = −
(
iπd/2

)2
(Q2)2+2ε

Γ (1 + 2ε)Γ (−ε)2

Γ (−2ε)

∫ 1

0

dη η−1−2ε(1 − η)ε

×
∫ 1

0

∫ 1

0

dξdξ1

ξ − ξ1

{
ξ−1−2ε[(1 − ξ)η + (1 − η)(1 − ξ1)]−1−2ε

−(1 − ξ)−1−2ε[ξη + (1 − η)ξ1]−1−2ε
}

. (3.64)

The singularity of the denominator at ξ = ξ1 is spurious because the nu-
merator is zero at this point. We notice that, due to the symmetry of the
integrand, the integral over ξ and ξ1 equals twice the integral over the do-
main 0 ≤ ξ1 ≤ ξ ≤ 1. Following [109] again, we turn to the variable z by
ξ1 = zξ, make the changes η → 1 − η, z → 1 − z and come to

F3.7(Q2; 1, . . . , 1, d) = −2

(
iπd/2

)2
(Q2)2+2ε

Γ (1 + 2ε)Γ (−ε)2

Γ (−2ε)
f(ε) , (3.65)

where

f(ε) =
∫ 1

0

dη ηε(1 − η)−1−2ε

∫ 1

0

dξ ξ−1−2ε

×
∫ 1

0

dz

z

{
[1 − ξ(1 − ηz)]−1−2ε − (1 − ξ)−1−2ε(1 − ηz)−1−2ε

}
. (3.66)

At this point it is claimed in [109] that, in principle, it is possible to evaluate
this integral, in expansion in ε up to the finite part, performing appropri-
ate subtractions of the integrand. Still another way was chosen: to expand
various quantities of the type (1−X)λ in a binomial series, with subsequent
integration and summing up resulting multiple series. (This procedure can be
qualified as another method of evaluation.) Let us, however, realize the pos-
sibility of making subtractions. Indeed, the situation is complicated because
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we are dealing with a three-parametric integral so that several subtractions
that would reveal the singularities that generate poles in ε are necessary.

Since the prefactor in (3.65) involves a simple pole in ε we have to evaluate
the function f(ε) given by (3.66) up to order ε1. There are several sources of
the poles: the points ξ = 0, ξ = 1, η = 0, η = 1, and z = 1. The following
strategy of subtractions is suitable for the calculation. Let us first decompose
f into the sum f1 + f2 according to the subtraction of the braces in (3.66) at
η = 0, i.e.

[
(1 − ξ(1 − ηz))−1−2ε − (1 − ξ)−1−2ε

]
+(1 − ξ)−1−2ε

[
1 − (1 − ηz)−1−2ε

]
. (3.67)

Let us start with f1. We perform subtraction of the integrand at η = 1
according to the decomposition of the first part of (3.67) into

[
(1 − ξ(1 − z))−1−2ε − (1 − ξ)−1−2ε

]
+
[
(1 − ξ(1 − ηz))−1−2ε − (1 − ξ(1 − z))−1−2ε

]
. (3.68)

The first term in (3.68) does not depend on η so that the corresponding inte-
gration over η is performed in terms of gamma functions. Then the integral

∫ 1

0

dξ ξ−1−2ε

∫ 1

0

dz

z

{
[1 − ξ(1 − z)]−1−2ε − (1 − ξ)−1−2ε

}

appears. We need a subtraction at ξ = 1 here because when ξ → 1 the factor
z−1−2ε generating a pole in ε arises. So we replace ξ−1−2ε by 1+

(
ξ−1−2ε − 1

)
.

The first term corresponding to unity, after integration over ξ, gives the
following integral evaluated in terms of gamma functions

∫ 1

0

dz

1 − z

(
1 − z−1−2ε

)
= ψ(−2ε) + γE ,

where ψ(z) is the logarithmical derivative of the gamma function, i.e. ψ(z) =
Γ ′(z)/Γ (z). Thus we obtain the following contribution to our result:

f11 = −Γ (1 + ε)Γ (−2ε)
2εΓ (1 − ε)

=
1

8ε3
− π2

24ε
− 3ζ(3)

4
− 3π4

80
ε + O(ε2) . (3.69)

Starting from the second term we obtain an integral which can be eval-
uated by expanding the integrand in ε and performing the integration, e.g.,
in MATHEMATICA [221], with the following contribution:

f12 =
π2

12ε
+ 5ζ(3) +

43π4

180
ε + O(ε2) . (3.70)
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In the second part of (3.68), we make the same replacement (with the
same motivation) as before, i.e. ξ−1−2ε → 1 +

(
ξ−1−2ε − 1

)
. The second part

here again produces an integral which can be evaluated by expanding the
integrand in ε, with the following contribution:

f13 = ζ(3) +
11π4

120
ε + O(ε2) . (3.71)

The unity gives a part where the integration over ξ is explicitly taken. The
corresponding result is proportional to the sum of these two two-parametric
integrals:

∫ 1

0

∫ 1

0

dηdzηε(1 − η)−1−2ε
(
1 − η−1−2ε

)

+
∫ 1

0

∫ 1

0

dηdzηε(1 − η)−1−2ε

[
1 − (ηz)−2ε

1 − ηz
− 1 − z−2ε

1 − z

]
. (3.72)

The first integral can be evaluated in terms of gamma functions, with the
following contribution:

f14 =
Γ (−2ε)

4ε2

[
Γ (1 + ε)
Γ (1 − ε)

− Γ (1 − ε)
Γ (1 − 3ε)

]

= − π2

12ε
− ζ(3) − π4

36
ε + O(ε2) . (3.73)

In the second integral, one can expand the integrand in ε. Here is the corre-
sponding contribution:

f15 = −ζ(3) − π4

72
ε + O(ε2) . (3.74)

Let us now deal with f2 defined by the second part of (3.67). The integra-
tion over ξ is performed explicitly, and the following integral over z arises:

∫ 1

0

dz

z

[
(1 − ηz)−1−2ε − 1

]
.

When z → 1 a factor (1 − η)−1−2ε appears so that we need a subtraction at
z = 1. We make the replacement 1/z → 1 + (1 − z)/z. The unity generates
a part which is integrated explicitly over z and then over η. The resulting
contribution is then

f21 = −Γ (−2ε)2Γ (ε)
Γ (−4ε)

[
1
2ε

(
Γ (−4ε)
Γ (−3ε)

− Γ (−2ε)
Γ (−ε)

)
+

Γ (−2ε)
Γ (−ε)

]

=
1

8ε3
+

1
2ε2

+
π2

12ε
− π2

6
+ 2ζ(3) +

(
29π4

360
− 7ζ(3)

)
ε + O(ε2) .

(3.75)
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Starting from the second term and performing one more subtraction we
obtain the following integral

∫ 1

0

∫ 1

0

dηdzηε(1 − η)−1−2ε 1 − z

z

×
{[

(1 − ηz)−1−2ε − (1 − z)−1−2ε
]
+
[
(1 − z)−1−2ε − 1

]}
. (3.76)

For the part corresponding to the second square brackets, one can explic-
itly integrate over η and then expand the integrand in ε and integrate over z
with the following resulting contribution:

f22 = −Γ (−2ε)3Γ (1 + ε)
Γ (−4ε)Γ (1 − ε)

[
1
2ε

+ 1 − ψ(−2ε) − γE

]

= − 1
2ε2

− π2

6ε
+

π2

6
− 2ζ(3) +

(
π4

90
+ 7ζ(3)

)
ε + O(ε2) . (3.77)

For the part corresponding to the first square brackets in (3.76), one can
expand the integrand in ε and integrate over z and η with the following
resulting contribution:

f23 = −π2

6ε
− 9ζ(3) +

19π4

45
ε + O(ε2) . (3.78)

Collecting all the eight contributions obtained and taking into account
the prefactor in (3.65) we arrive at the well-known analytical result6 [109]

F3.7(Q2; 1, . . . , 1, d) =

(
iπd/2e−γEε

)2
(Q2)2+2ε

×
(

1
ε4

− π2

ε2
− 83ζ(3)

3ε
− 59π4

120

)
+ O(ε) . (3.79)

In [109], a similar algorithm based on Feynman parameters has been de-
veloped for the evaluation of planar massless two-loop vertex diagrams. It
has turned out that the evaluation, by Feynman parameters, in the planar
case is more complicated. As we will see in Chaps. 5 and 6, there is, however,
a better choice of an appropriate method in this situation and the planar
vertex diagrams of this class are in fact much simpler than the non-planar
ones.

Problems

3.1. Evaluate ∫ ∫
ddk ddl

(−k2)λ1(−l2)λ2 [−(k + l)2 + m2]λ3
. (3.80)

6Much more terms of the ε-expansion, up to ε4, of this non-planar diagram were
obtained in [96].
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3.2. Evaluate ∫ ∫
ddk ddl

(−k2)λ1(−l2)λ2 [−(q − k − l)2]λ3
. (3.81)

3.3. Evaluate ∫
ddk

(k2)2(k2 − m2
1)(k2 − m2

2)2
. (3.82)

3.4. Evaluate ∫
ddk

(k2 − 2p1 ·k)2(k2 − 2p2 ·k)(k2 − m2)
(3.83)

at p2
1 = p2

2 = 0 in a Laurent expansion in ε up to ε1.

3.5. Evaluate ∫
ddk

(k2 − m2)[(q − k)2 − m2]
(3.84)

in a Laurent expansion in ε up to ε0.

3.6. Evaluate
∫ ∫

ddk ddl

(−k2 + m2)λ1(−l2 + m2)λ2 [−(k + l)2]λ3 [−2v ·(k + l)]λ4
. (3.85)

3.7. Evaluate
∫ ∫ ∫

ddk ddl ddr

(−k2 + m2)λ1(−l2 + m2)λ2(−r2)λ3 [−(k + l + r)2]λ4
. (3.86)

3.8. Evaluate
∫ ∫ ∫

ddk ddl ddr

(−k2 + m2)λ1(−l2 + m2)λ2(−r2)λ3 [−2v ·(k + l + r)]λ4
. (3.87)

3.9. Derive the α-representation for

F (λ1, . . . , λ5) =
∫ ∫

ddk ddl

(−2v ·k)λ1(−2v ·l)λ2

×
∫

ddr

(−r2 + m2)λ3 [−(k + r)2 + m2]λ4 [−(l + r)2 + m2]λ5
. (3.88)

3.10. Evaluate F (2, 2, 1, 2, 2) up to ε0, where F is defined by (3.88).



4 Evaluating by MB Representation

One often uses Mellin integrals1 when dealing with Feynman integrals. These
are integrals over contours in a complex plane along the imaginary axis of
a product and ratio of gamma functions. In particular, the inverse Mellin
transform is given by such an integral. We shall, however, deal with a very
specific technique in this field. The key ingredient of the method presented
in this chapter is the MB representation used to replace a sum of two terms
raised to some power by the product of these terms raised to some powers.
Our goal is to use such a factorization in order to achieve the possibility to
perform integrations in terms of gamma functions, at the cost of introducing
extra Mellin integrations. Then one obtains a multiple Mellin integral of
gamma functions in the numerator and denominator. The next step is the
resolution of the singularities in ε by means of shifting contours and taking
residues. It turns out that multiple MB integrals are very convenient for this
purpose. The final step is to perform at least some of the Mellin integrations
explicitly, by means of the first and the second Barnes lemma and their
corollaries and/or evaluate these integrals by closing the integration contours
in the complex plane and summing up corresponding series.

In Sect. 4.1 we start with simple one-loop examples. In simplest situa-
tions, MB representation is applied to represent a massive propagator as a
continuous superposition of massless ones. Usually, however, one applies it
starting from alpha or Feynman parametric integrals. In Sect. 4.2 we discuss
general properties of multiple MB integrals we are going to deal with and
formulate general prescriptions of the method. We continue in Sect. 4.3 with
typical one-loop examples. In fact we shall illustrate the method of MB rep-
resentation mainly by the same characteristic examples as in the case of the
method of alpha and Feynman parameters in Chap. 3. Let us stress, however,
that, for double and triple boxes, complete analytical calculations strictly by
means of alpha and Feynman parameters, or, by some other techniques, are
not known. We turn to various two-loop examples of massless and massive
diagrams in Sects. 4.4 and 4.5, respectively. We then consider three- and even
four-loop examples in Sects. 4.6 and 4.7. In Sect. 4.8, we discuss how multi-
ple MB integrals can be used to obtain asymptotic expansions of Feynman

1First examples of application of Mellin integrals to Feynman integrals can be
found in [29,208].



58 4 Evaluating by MB Representation

integrals in various limits and compare this procedure with expansion by re-
gions [28,186]. In the last section, we discuss some other results obtained by
means of MB integrals, review important recent developments and summa-
rize basic characteristic features and perspectives of the method presented in
this chapter.

4.1 One-Loop Examples

Our basic tool is the following formula:

1
(X + Y )λ

=
1

Γ (λ)
1

2πi

∫ +i∞

−i∞
dz Γ (λ + z)Γ (−z)

Y z

Xλ+z
. (4.1)

Here the contour of integration is chosen in the standard way: the poles with
a Γ (. . . + z) dependence (let us call them left poles, for brevity) are to the
left of the contour and the poles with a Γ (. . . − z) dependence (right poles)
are to the right of it. See Fig. 4.1, where a possible contour C is shown in
the case of λ = −1/4− i/2. (This terminology is useful and, although it often
happens that the first right pole is to the left of the first left pole of a given
integrand, this, hopefully, will not cause misunderstanding.)

−λ
−λ − 1−λ − 2

0 1 2-1-2
Re z

1

2

-1

-2

Im z
C

Fig. 4.1. Possible integration contour in (4.1) for λ = −1/4 − i/2
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We shall use decompositions X + Y of various functions in integrals over
Feynman and alpha parameters. But a more transparent way2 to apply this
representation is to write down a massive propagator in terms of massless
ones:

1
(m2 − k2)λ

=
1

Γ (λ)
1

2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)λ+z
Γ (λ + z)Γ (−z) . (4.2)

Our first example is the same as Example 3.1:

Example 4.1. One-loop propagator Feynman integrals (1.2) corresponding
to Fig. 1.1.

We insert (4.2) with λ = a1 into (1.2), apply (3.6) and obtain the following
result:

F4.1(q2,m2; a1, a2, d) =
iπd/2(−1)a1+a2Γ (2 − ε − a2)
Γ (a1)Γ (a2)(−q2)a1+a2+ε−2

× 1
2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

Γ (a1 + a2 + ε − 2 + z)

×Γ (2 − ε − a1 − z)Γ (−z)
Γ (4 − 2ε − a1 − a2 − z)

. (4.3)

The rules for choosing an integration contour that goes from −i∞ to +i∞ in
the complex z-plane are the same as before: the right poles (in Γ (. . . − z))
are to the right of the contour and the left poles (in Γ (. . . + z)) are to left.

This representation can be used to evaluate any integral of this family
in a Laurent expansion in ε. In particular, for F4.1(q2,m2; 2, 1, d), we obtain
(1.9) and, at d = 4 come to

F4.1(2, 1, 4) =
iπ2

q2

1
2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z
Γ (1 + z)Γ (−z)2

Γ (1 − z)
(4.4)

with an integration contour at −1 < Rez < 0. Using properties of the gamma
function we obtain (1.10).

Here is a subtle point: if we look at (1.10) we observe that there is a
product Γ (z)Γ (−z) which would be bad if it was present from the beginning
because we could not satisfy our agreement about choosing the integration
contours. Indeed, here the right and left poles at ε = 0 glue together and there
is no space between them. However, the situation is unambiguous because we
have fixed an integration contour with −1 < Rez < 0 and we are free to
perform identical transformations of the integrand after that. A moral of this
discussion is the recipe to derive the MB representation for general powers
of the propagators al and fix appropriate integration contours at this point.

2Historically, it was first advocated and applied in [49].
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Then, for concrete integer indices al, we are allowed to make transformations
like Γ (1 + z)Γ (−z) = −Γ (z)Γ (1− z), but it is necessary to remember about
the choice of the contours made before this.

The integral (1.10) can be evaluated, according to the Cauchy theorem,
by closing the integration contour to the right and taking a series of residues
(with the minus sign, of course) at the points z = 0, 1, 2, . . .. The residue
at z = 0 gives iπ2 ln

(
−q2/m2

)
/q2 and the residues at z = 1, 2, . . . give the

series

− iπ2

q2

∞∑
n=1

1
n

(
m2

q2

)n

.

As a result, we reproduce (1.5).
In the case of the indices equal to one we use (4.3) to obtain

F4.1(q2,m2; 1, 1, d) =
iπ2Γ (1 − ε)

(−q2)ε

× 1
2πi

∫
C

dz

(
m2

−q2

)z
Γ (ε + z)Γ (−z)Γ (1 − ε − z)

Γ (2 − 2ε − z)
. (4.5)

To evaluate MB integrals in a Laurent expansion in ε the first point is to
analyse how singularities in ε are generated. We know in advance that the
given integral has a pole in ε because the diagram is UV-divergent. There are
no explicit functions with singularities in ε so that the pole is generated by the
MB integration. Indeed, the product Γ (ε + z)Γ (−z) generates a singularity
in ε when ε → 0 because the first left pole, i.e. at z = −ε, and the first right
pole, i.e. z = 0, glue together when ε = 0, and there is no place for a contour
between these poles.

Possible integration contours C in (4.5) in the cases Re ε > 0 and Re ε < 0
are shown in Figs. 4.2 and 4.3, respectively. In the former case, a contour can
be chosen as a straight line parallel to the imaginary axis, while in the latter
case, there is no such choice. However, no matter which value of ε we can
imagine, we shall use the same procedure to reveal the pole in ε: we write
down the integral (4.5) as the sum of a similar integral over a new contour,
C ′, which goes to the left of the pole at z = −ε and the residue at this
point. In the integral over the shifted contour, the nature of the pole at
z = −ε changes, and it becomes right, rather than left, in our terminology.
The crucial point is that, in the integral over C ′, we can safely expand the
integrand in a Laurent series in ε. (In this particular example, this is just a
Taylor series.) As to the residue, it is equal to

iπ2 Γ (ε)
(m2)ε(1 − ε)

and can explicitly be expanded in ε. For the integral over the shifted contour
C ′, with −1 < Rez < 0, we obtain, at ε = 0,
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−ε−ε − 1 1 − ε

CC′

0 1 2-1-2
Re z

1

2

-1

-2

Im z

Fig. 4.2. Possible integration contour in (4.5) in the case Re ε > 0

iπ2 1
2πi

∫
C′

dz

(
m2

−q2

)z
Γ (z)Γ (−z)

1 − z
.

This MB integral can be evaluated by closing the integration contour to the
right in the complex z-plane, as in the previous example. Combining the
corresponding result with the residue calculated above we arrive at (1.7).

In fact, we could similarly proceed by moving the contour C across the
right pole at z = 0 and, correspondingly, taking minus residue at this point.
Then the integral over the new contour C ′ would be at 0 < Rez < 1.

The next example is the same as Example 3.2:

Example 4.2. The triangle diagram of Fig. 3.5.

We again exploit the MB representation in the simplest way, i.e. apply
(4.2) to the only massive propagator in (3.23), and evaluate the resulting
massless triangle integral by (A.28) to obtain the following result:

F4.2(Q2,m2; a1, a2, a3, d) =
(−1)aiπd/2∏

Γ (al)(Q2)a+ε−2

× 1
2πi

∫ +i∞

−i∞
dz

(
m2

Q2

)z

Γ (a3 + z)Γ (a + ε − 2 + z)

×Γ (2 − ε − a1 − a3 − z)Γ (2 − ε − a2 − a3 − z)Γ (−z)
Γ (4 − 2ε − a − z)

, (4.6)

where a = a1 + a2 + a3 and Q2 = −(p1 − p2)2 as above.
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−ε
−ε − 1−ε − 2 1 − ε

0 1 2-1-2
Re z

1

2

-1

-2

Im z
C, C′

C′

C

Fig. 4.3. Possible integration contour in (4.5) in the case Re ε < 0

Consider, as in Chap. 3, the diagram with the powers of the propagators
equal to one:

F4.2(Q2,m2; 1, 1, 1, d) = − iπd/2

(Q2)1+ε

× 1
2πi

∫ +i∞

−i∞
dz

(
m2

Q2

)z
Γ (1 + ε + z)Γ (1 + z)Γ (−ε − z)2Γ (−z)

Γ (1 − 2ε − z)
. (4.7)

If we want to calculate this integral at ε = 0, we observe that we can safely
set ε = 0 in the integrand because the right and left poles in the complex
z-plane are well separated. We obtain

F4.2(Q2,m2; 1, 1, 1, 4) =
iπ2

(Q2)

× 1
2πi

∫ +i∞

−i∞
dz

(
m2

Q2

)z
Γ (1 + z)2Γ (−z)2

z
, (4.8)

where the integration contour can be chosen with −1 < Rez < 0. The integral
can be evaluated by the same procedure as before, with the known result
(3.25).

Any integral (3.23) with integer indices can be evaluated using (4.6). For
example,
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F4.2(Q2,m2; 2, 1, 1, d) =
iπd/2

(Q2)2+ε

1
2πi

∫ +i∞

−i∞
dz

(
m2

Q2

)z

×Γ (2 + ε + z)Γ (1 + z)Γ (−1 − ε − z)Γ (−ε − z)Γ (−z)
Γ (−2ε − z)

. (4.9)

We know in advance that there should be an IR pole in ε because of the second
power of the first massless propagator so that we anticipate that a pole is
generated by the MB integration. Indeed, we observe that the only source of
the singularity in ε is the product Γ (1+z)Γ (−1−ε−z). When ε → 0 the first
left pole (from Γ (1 + z)) and the first right pole (from Γ (−1 − ε − z)) tend
to each other and there is no place for an integration contour to go between
them. To evaluate (4.9) in expansion in ε we apply the strategy formulated
above: we turn to the integral over a shifted contour which goes to the left
of the first pole of Γ (−1 − ε − z) so that this pole changes its nature, i.e.
becomes left. According to the Cauchy theorem, (4.9) equals the integral over
the shifted contour minus residue of the integrand at the point z = −1 − ε.
Then the integral is evaluated by closing the contour (which can again be
taken at −1 < Rez < 0) to the right and summing up a series of residues at
the points z = 0, 1, 2, . . .). We thus obtain

F4.2(Q2,m2; 2, 1, 1, d) = − iπd/2e−γEε

Q2

×
[

1
m2

(
1
ε
− ln m2

)
+

ln(−m2/Q2)
m2 − Q2

+ O(ε)
]

. (4.10)

As before, we again had two options: to change the nature of the first pole
of Γ (−1−ε−z) or the first pole of Γ (1+z). Let us agree, for definiteness, that
we shall always try to obtain MB integrals expanded in ε at −1 < Rez < 0.

The next example is the same as Example 3.3:

Example 4.3. The massless on-shell box diagram of Fig. 3.6, i.e. with p2
i =

0, i = 1, 2, 3, 4.

Up to now we applied MB representation using (4.2). Let us start with
(3.28). The natural idea here is to apply (4.1) to the denominator of the
integrand. We do this with X = −sξ1ξ2. After that we change the order of
integration over z and the parameters ξ1 and ξ2 and evaluate the parametric
integrals in terms of gamma functions:

F4.3(s, t; a1, a2, a3, a4, d) =
(−1)aiπd/2

Γ (4 − 2ε − a)
∏

Γ (al)(−s)a+ε−2

× 1
2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (a + ε − 2 + z)Γ (a2 + z)Γ (a4 + z)Γ (−z)

×Γ (2 − a1 − a2 − a4 − ε − z)Γ (2 − a2 − a3 − a4 − ε − z) , (4.11)

where a = a1 + a2 + a3 + a4.



64 4 Evaluating by MB Representation

One can use this representation to evaluate any box with integer powers
of the propagators in expansion in ε. In particular,

F (s, t; d) ≡ F4.3(s, t; 1, 1, 1, 1, d) =
iπd/2

Γ (−2ε)(−s)2+ε

× 1
2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (2 + ε + z)Γ (1 + z)2Γ (−1 − ε − z)2Γ (−z) . (4.12)

The way how poles in ε are generated is already familiar: we immediately
identify the product Γ (1 + z)2Γ (−1 − ε − z)2 responsible for that. The only
difference with the previous cases is that the left poles in Γ (1 + z)2 and the
right poles in Γ (−1 − ε − z)2 are of the second order. After this analysis we
proceed as before: take minus residue at z = −1− ε and turn to the integral
over the contour which goes to the right of it. The contribution of the residue
is

iπd/2 Γ (1 + ε)Γ (−ε)2

Γ (−2ε)s(−t)1+ε

[
ln

t

s
+ 2ψ(−ε) − ψ(1 + ε) + γE

]
, (4.13)

where ψ(z) is the logarithmical derivative of the Γ -function.
There is no gluing of left and right poles in the integral over the shifted

contour so that it can be expanded safely in a Taylor series in ε. Every term
of this expansion can be integrated by closing the integration contour to
the right, taking residues at the points z = 0, 1, 2, . . ., and summing up the
resulting series. Combining this contribution with (4.13) we obtain

F (s, t; d) = − iπd/2e−γEε

(−s)1+2εt

∑
j=−2

cj(x) εj , (4.14)

where x = t/s. To calculate the first coefficients c−2, . . . , c1, it is enough
to use MATHEMATICA for summing up the series involved. However, starting
from c2, it does not work. In this case, one can use summation formulae
(C.83)–(C.94) [93]. One can also do this automatically, using the package
SUMMER [215] (see also [153]) implemented in FORM [214]. We have

c−2 = 4 , c−1 = −2 ln x , c0 = −4π2

3
, (4.15)

c1 = 2 (Li3 (−x) − ln xLi2 (−x))

+
1
3

ln3 x +
7π2

6
ln x −

(
π2 + ln2 x

)
ln(1 + x) − 34ζ(3)

3
, (4.16)

c2 = 2 (S2,2(−x) − Li4 (−x) + ln(1 + x)Li3 (−x) − ln xS1,2(−x))

+ ln x (ln x − 2 ln(1 + x)) Li2 (−x) − π2

2
(ln x − ln(1 + x))2

+ ln2 x

(
2
3

ln x ln(1 + x) − 1
2

ln2(1 + x) − 1
6

ln2 x

)

+
2
3
(10 ln x − 3 ln(1 + x))ζ(3) − 41π4

360
, (4.17)
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where, in addition to polylogarithms, we encounter generalized polyloga-
rithms Sa,b [86, 136] (see (B.8)).

One indeed needs to know expansions of one-loop Feynman integrals up
to order ε2 if one wants to perform calculations in two loops because some
two-loop contributions factorize and one-loop diagrams enter with coefficients
that have poles up to 1/ε2. On the other hand, the functions that enter ε2-
terms of expansion of one-loop Feynman integrals should be present in gen-
uine two-loop contributions, although the ‘true’ two-loop world is, of course,
much more complicated than the ε2-expansion of the one-loop world so that,
usually, two-loop results involve functions that are not present in one-loop.

Any on-shell massless box with integer indices can be evaluated by a
similar procedure. Generally, one encounters several right and left poles which
tend to each other when ε → 0. For example, we have

F4.3(s, t; 2, 1, 1, 1, d) = − iπd/2

Γ (−1 − 2ε)(−s)3+ε

× 1
2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (3 + ε + z)

×Γ (1 + z)2Γ (−2 − ε − z)Γ (−1 − ε − z)Γ (−z) . (4.18)

Here the first two left poles of Γ (1 + z)2 glue, when ε → 0, with the first two
right poles of the product Γ (−2−ε−z)Γ (−1−ε−z). However the generaliza-
tion of the above procedure to such situations is straightforward: one shifts
the initial contour across the poles at z = −1 − ε and z = −2 − ε and takes
two residues (with the minus sign) at these points. The procedure of evalu-
ating any given Feynman integral from this class can easily be implemented
on a computer.

4.2 Evaluating Multiple MB Integrals

The first step of the method is to derive an appropriate MB representation.
Of course, it is advantageous to have a minimal number of MB integrations.
In every case, we shall derive MB representations for general powers of the
propagators. This is useful and important for several reasons. First, if we
obtain a MB representation for general indices which we might imagine as
complex we will certainly have unambiguous prescriptions for choosing inte-
gration contours. Second, such general formulae can be checked using various
partial simple cases. Finally, starting from a general formula we can derive a
lot of formulae by setting some indices to zero and thereby turning to graphs
where the corresponding lines are contracted to a point. We will illustrate all
these features through multiple examples below.

In the second step, one resolves the singularity structure in ε, taking
residues and shifting contours, with the goal to obtain a sum of integrals
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where one can expand integrands in Laurent series in ε. One can apply two
strategies formulated in [183] and [206] which will be called Strategy A and
Strategy B, respectively. The presentation in this chapter is based on Strat-
egy A. Strategy B will be briefly described in the end of this section. Its
algorithmical implementations will be discussed in the end of this chapter.

Up to now we were dealing with one-parametric MB integrals. To resolve
the singularities in ε we analysed the integrand, and then shifted contours and
took residues, in an appropriate way. In the end of this procedure we obtained
either explicit expressions for general ε or integrals where a Laurent expansion
of the integrand in ε was possible. In fact, Strategy A is a generalization of
this procedure for multiple MB integrals which arise when evaluating more
complicated Feynman integrals. Of course, the resolution of singularities in
ε in such multi-dimensional MB integrals is more complicated than in the
one-dimensional case. Usually, the poles in ε are not visible at once, at a
first integration over one of the MB variables. However, the rule for finding a
mechanism of the generation of poles is just a straightforward generalization
of the rule used in the previous one-loop examples with one-parametric MB
integrals. For example, for the massless master on-shell box, we observed that
the product of Γ (1+z) and Γ (−1−ε−z) generated a pole of the type Γ (−ε)
(this is nothing but the value of one of these gamma functions at the pole of
the other gamma function).

Suppose now that we are dealing with a multiple MB integral and we start
from the integration over one of the variables, z. We shall analyse various
products Γ (a+z)Γ (b−z), where a and b depend on the rest of the variables,
with the understanding that this integration generates a pole of the type
Γ (a + b). Indeed, if we shift an initial contour of integration over z across
the point z = −a we obtain an integral over a new contour which is not
singular at a + b = 0, while the corresponding residue involves an explicit
factor Γ (a + b). (Well, sometimes it turns out that it is cancelled by a factor
in the denominator.)

This observation shows that any contour of one of the next integrations
over the rest of the MB variables should be chosen according to this depen-
dence, Γ (a + b). We continue this analysis, in a similar way, with various
next integrations of the second level, etc. In other words, we consider var-
ious orders of integrations over given MB variables and analyse whether a
singular dependence on ε in the form of some gamma function, e.g. Γ (−ε),
is generated in a given order.

After this first step, we can identify some gamma functions (in the numer-
ator of the integrand) that are essential for the generation of poles in ε. Then
we proceed with one of the MB integrations as in the case of one-dimensional
MB integrals by shifting contours and taking residues. In the integral over
the shifted contour, we continue this procedure by taking care of another key
gamma function etc. The corresponding residue has one integration less. We
deal with it exactly like with the initial integral, i.e. perform an analysis of
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generation of poles and then shift contours and take residues. In the end of
our procedure, we are left with MB integrals which can be expanded in a
Laurent series in ε under the sign of integration.

The third step of the method is to evaluate integrals expanded in ε after
the second step. Here one can use corollaries of the first and the second
Barnes lemmas (D.1) and (D.47). A table of these formulae is presented in
Appendix D. Typically, the integration over the last variable is performed,
as in the previous examples, by shifting the contour to the right (or left)
and taking a series of residues. These series can be summed up by means of
summation formulae of Appendix C.

In fact, we are going to be pragmatic and not bother whether the change
of the order of integration over MB variables is legitimate. 3 Usually, at least
at large values in the complex plane, the convergence of MB integrals is
perfect4 because gamma functions have exponential decrease in both imagi-
nary directions. This property can be used for numerical checks. Moreover,
in complicated situations, one can decompose a given integrand into pieces
and choose an order of integration for every piece in a special way, with the
possibility to integrate explicitly, using table formulae of Appendix D.

We shall apply some standard properties of integration for multiple MB
integrals. We shall use changes of variables of the type z → ±z + z0. When
doing this we shall, of course, trace how the nature of various poles is trans-
formed. Note that, after such a change, z → −z, right poles become left
poles.

The IBP is also possible in multiple MB integrals, although it is reason-
able to apply it in rare situations. Still sometimes it is useful. For example,
tabulated formulae of Appendix D with the factor 1/z2 were derived using
the IBP identity ∫

C

dz
f(z)
z2

=
∫

C

dz
f ′(z)

z
. (4.19)

3The analysis of the validity of the manipulations with MB integrals that we use
is certainly possible in every example — see, e.g., proofs [206] when deriving an MB
representation for the non-planar double box diagram. In fact, the crucial point is
not the convergence of the integral in the basic identity (4.1), but the interchange
of the order of integrations between the Mellin–Barnes integral and the parameter
integrals.

4In some situations, e.g. in a MB integral for the Gauss hypergeometric func-
tion, the asymptotic exponents of gamma functions cancel each other so that the
convergence is defined by the value of the argument x which is present in the MB
integral as xz. Depending on whether |x| < 1 or |x| > 1, one has to close the in-
tegration contour to the right or to the left. Closing the contours to the different
sides corresponds to an analytical continuation with respect to the argument x.

However, there are certainly problems with the convergence in physical regions
of kinematic variables, where factors of the type xz, with x < 0, are present —
see [68].
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The word ‘multiple’ will mean, in examples below, the number of MB
integrations from two to eight (and even ten, in some restricted sense) which
is indeed a big number. Still even in such situations, an explicit integration
becomes possible, probably, because multiple MB integrals arising in the
evaluation of Feynman integrals are very flexible, both in the procedure of
resolving the structure of singularities in ε and when evaluating finite integrals
after expansion in ε.

Let us now turn to Strategy B [206]. First, one chooses a domain of the
regularization parameter ε and values of the real parts of the integration vari-
ables, zi, w, . . . in such a way that all the integrations over the MB variables
can be performed over straight lines parallel to imaginary axis. In fact this is
not always possible. However, in such a situation, one can introduce auxiliary
analytic regularization to provide the existence of such straight contours. (See
also the discussion of the Czakon’s code [68] in the end of this chapter.) Then
one tends ε to zero, and whenever a pole of some gamma function is crossed
one takes into account the corresponding residue. (If the auxiliary analytic
regularization was introduced, one first performs, in a similar way, the ana-
lytic continuation to zero values of the corresponding analytic parameters.)
It is simple to organize this procedure in such a way that no more than one
pole is crossed at the same time. For every resulting residue, which involves
one integration less, a similar procedure is applied, and so on.

4.3 More One-Loop Examples

We now turn to a class of one-loop Feynman integrals with two more para-
meters.

Example 4.4. The massless box diagram of Fig. 3.6 with two legs on shell,
p2
3 = p2

4 = 0, and two legs off shell, p2
1, p

2
2 �= 0.

We proceed like in the pure on-shell case, using alpha parameters, and
obtain

F4.4(s, t, p2
1, p

2
2; a1, . . . , a4, d) = iπd/2(−1)a Γ (a + ε − 2)∏

Γ (al)

×
∫ ∞

0

. . .

∫ ∞

0

(
4∏

l=1

αal−1
l dαl

)
δ

(
4∑

l=1

αl − 1

)

×(−sα1α3 − tα2α4 − p2
1α1α2 − p2

2α2α3 − i0)2−a−ε . (4.20)

We have chosen the delta function of the sum of all the α-variables so that
the factor with a power of the function U is equal to one.

Now we need a generalization of (4.1) to the case of several terms which
is easily obtained by induction:
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1
(X1 + . . . + Xn)λ

=
1

Γ (λ)
1

(2πi)n−1

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dz2 . . . dzn

n∏
i=2

Xzi
i

×X−λ−z2−...−zn
1 Γ (λ + z2 + . . . + zn)

n∏
i=2

Γ (−zi) . (4.21)

We use (4.21) to replace the last factor in (4.20) by a product of four
factors thus separating terms with t, p2

1 and p2
2 from s. After that we introduce

new variables by α1 = η1ξ1, α2 = η1(1− ξ1), α3 = η2ξ2, α4 = η2(1− ξ2) and
arrive at a product of three parametric integrals evaluated in terms of gamma
functions. Eventually we obtain the following threefold MB representation of
a general Feynman integral of the given class:

F4.4(s, t, p2
1, p

2
2; a1, . . . , a4, d) =

iπd/2(−1)a

Γ (4 − 2ε − a)
∏

Γ (al)(−s)a+ε−2

× 1
(2πi)3

∫ +i∞

−i∞

∫ +i∞

−i∞

∫ +i∞

−i∞
dz2dz3dz4

(−p2
1)

z2(−p2
2)

z3(−t)z4

(−s)z2+z3+z4

×Γ (a + ε − 2 + z2 + z3 + z4)Γ (a2 + z2 + z3 + z4)Γ (a4 + z4)
×Γ (2 − ε − a234 − z3 − z4)Γ (2 − ε − a124 − z2 − z4)
×Γ (−z2)Γ (−z3)Γ (−z4) . (4.22)

In this chapter, we continue to use our notation: a124 = a1 + a2 + a4, etc.
with a = a1234. This representation can be, of course, used for evaluating
these Feynman integrals. We shall use it, however, in the next section only
as an auxiliary result when deriving an MB representation for the massless
on-shell double box diagrams.

One of the advantages of general formulae is that they provide a lot of par-
tial cases. For example (4.22) immediately gives a twofold MB representation
for

Example 4.5. The massless box diagram of Fig. 3.6 with three legs on shell,
p2
2 = p2

3 = p2
4 = 0, and one leg off shell, p2

1 �= 0.

Indeed we put p2
2 to zero in the ‘naive’ sense, i.e. in the integrand of the

corresponding Feynman integral or in some parametric representation. This
is equivalent to setting p2

2 to zero in the sense of the leading term of the hard
part of the asymptotic expansion in the limit p2

2 → 0 (see details in [186]),
which corresponds to taking residues (with the minus sign) of the poles of
Γ (−z3). So we just take minus residue of the integrand at z3 = 0. Thus we
obtain

F4.5(s, t, p2
1; a1, . . . , a4, d) =

iπd/2(−1)a

Γ (4 − 2ε − a)
∏

Γ (al)(−s)a+ε−2

× 1
(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz2dz4

(−p2
1)

z2(−t)z4

(−s)z2+z4
Γ (a + ε − 2 + z2 + z4)
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p1

p2

p3

p4

1

2

3

4

Fig. 4.4. On-shell box with two massive and two massless lines. The solid lines
denote massive, the dotted lines massless particles

×Γ (a2 + z2 + z4)Γ (a4 + z4)Γ (2 − ε − a234 − z4)
×Γ (2 − ε − a124 − z2 − z4)Γ (−z2)Γ (−z4) . (4.23)

Let us now turn to massive diagrams.

Example 4.6. The on-shell box with two massive and two massless lines
shown in Fig. 4.4, with p2

1 = . . . = p2
4 = m2.

The derivation of the corresponding MB representation is quite straight-
forward. The combination that is involved in the corresponding integral over
alpha or Feynman parameters has now an additional piece as compared with
the massless case:

V − U
∑

m2
l αl = sα1α3 + tα2α4 − m2(α1 + α3)2 .

This term can be separated from the rest terms at the cost of introducing
one more MB integration according to (4.21). This time, let us introduce new
parametric variables in a slightly different way, α1 = η1ξ1, α2 = η2ξ2, α3 =
η1(1− ξ1), α4 = η2(1− ξ2), in order to make (α1 + α3)2 simpler. Evaluating
the parametric integrals we arrive at the following massive generalization of
(4.11):

F4.6(s, t,m2; a1, a2, a3, a4, d) =
(−1)aiπd/2

Γ (4 − 2ε − a)
∏

Γ (al)(−s)a+ε−2

× 1
(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2

(−t)z1(m2)z2

(−s)z1+z2
Γ (a + ε − 2 + z1 + z2)

×Γ (a2 + z1)Γ (a4 + z1)Γ (−z1)Γ (−z2)Γ (2 − a124 − ε − z1 − z2)

×Γ (2 − a234 − ε − z1 − z2)
Γ (4 − a122344 − 2ε − 2z1)

Γ (4 − a122344 − 2ε − 2z1 − 2z2)
, (4.24)

where a122344 = a1 + 2a2 + a3 + 2a4, etc. Observe that the onefold represen-
tation (4.11) in the massless case follows from (4.24) when we put m to zero.
As it was discussed above we do this by taking the limit m → 0 in the sense
of the leading term of the hard part of the expansion. Here this means that
we just take minus residue at z2 = 0 with respect to the variable z2 which
enters the integrand as the exponent of m2.
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In particular, we have

F4.6(s, t,m2; 1, 1, 1, 1, d) =
(−1)aiπd/2

Γ (−2ε)(−s)2+ε

× 1
(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2

(−t)z1(m2)z2

(−s)z1+z2
Γ (2 + ε + z1 + z2)Γ (−z1)

×Γ (−z2)Γ (−1 − ε − z1 − z2)2
Γ (1 + z1)2Γ (−2 − 2ε − 2z1)

Γ (−2 − 2ε − 2z1 − 2z2)
. (4.25)

The resolution of singularities in ε can be performed here as in the one-
dimensional case because only the product Γ (1 + z1)2Γ (−2 − 2ε − 2z1) is
responsible for the generation of poles. To see this, we use properties of the
gamma function and write Γ (−2−2ε−2z1) as Γ (−1−ε−z1)Γ (−1/2−ε−z1)
up to a factor so that we obtain the product Γ (1 + z1)2Γ (−1− ε− z1) which
involves gluing of the left pole at z1 = −1 and the right pole at z1 = −1 − ε
when ε → 0. We proceed as in Sect. 4.1 by taking minus residue at the point
z1 = −1 − ε and shifting the integration contour over z1 across this point.
The residue gives

− Γ (1 + ε)Γ (−ε)2

2s(−t)1+εΓ (−2ε)
1

(2πi)

∫ +i∞

−i∞
dz2

(
m2

−s

)z2 Γ (1 + z2)Γ (−z2)3

Γ (−2z2)
. (4.26)

This integral can be evaluated by closing the contour to the left and taking
residues at the points z2 = −1,−2, . . . with summing up this inverse binomial
series by the summation formulae of Sect. C.3. As to the integral over the
shifted contour, it does not have poles in ε. If we need to expand (4.25) only
up to ε0 this integral does not contribute because of the overall Γ (−2ε) in
the denominator, so that we are left with the contribution of the residue:

F4.6(s, t,m2; 1, 1, 1, 1, d)

= − 2iπd/2e−γEε

(m2)εt
√

−s(4m2 − s)

[
1
ε
− ln

(
−t

m2

)]
ln

1 − x

1 + x
+ O(ε) , (4.27)

where x = 1/
√

1 − 4m2/s, in agreement with [24].
The general MB representation (4.24) can be used to derive an MB rep-

resentation for the triangle diagram shown in Fig. 4.5. This class of Feynman
integrals is obtained from the corresponding box integrals if we set a4 = 0.
If we do this blindly in (4.24) we obtain a zero result due to Γ (a4) in the
denominator. This is, of course, wrong. Let us think of a4 as a complex num-
ber and analyse the behaviour in the limit a4 → 0 similarly to what we do
when analysing how singularities in ε are generated. We identify the prod-
uct Γ (a4 + z1)Γ (−z1) responsible for the generation of the singularity when
a4 → 0. To reveal this singularity we can take minus residue at the point
z1 = 0 and shift the integration contour over z1. The contribution of the new
integral is indeed zero because of the factor 1/Γ (a4). The contribution of the
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2

1

3

p1

p2

Fig. 4.5. Triangle diagram with the masses m, m, 0 and external momenta on-shell,
p2
1 = p2

2 = m2. A dotted line denotes a massless propagator

residue produces Γ (a4) which cancels this factor in the denominator, and we
put a4 to zero after that. Changing the numbering 2 ↔ 3, for convenience, we
obtain the following onefold MB representation5 for integrals corresponding
to Fig. 4.5:

(−1)aiπd/2Γ (4 − 2ε − a1 − a2 − 2a3)
Γ (4 − 2ε − a1 − a2 − a3)Γ (a1)Γ (a2)(−s)a+ε−2

× 1
2πi

∫ +i∞

−i∞
dz

(
m2

−s

)z

Γ (a + ε − 2 + z)Γ (−z)

×Γ (2 − a1 − a3 − ε − z)Γ (2 − a2 − a3 − ε − z)
Γ (4 − 2ε − a1 − a2 − 2a3 − 2z)

. (4.28)

Observe that if we want to have a representation for massive propagator-
type diagrams by setting a3 = 0 we shall not reduce the number of inte-
grations: there is no Γ (a3) in the denominator and, on the other hand, no
singularities in the limit a3 → 0 are generated. So, one can simply apply
(4.28) with a3 = 0 for this class of diagrams.

The general MB representation (4.24) provides in a very similar way a
MB representation for another triangle diagram obtained from Fig. 4.4. We
shrink the line 3 to a point and obtain Fig. 4.6. The corresponding onefold
MB representation takes the form

(−1)aiπd/2

Γ (4 − 2ε − a)Γ (a1)Γ (a2)Γ (a4)(m2)a+ε−2

× 1
2πi

∫ +i∞

−i∞
dz

(
−t

m2

)z

Γ (a + ε − 2 + z)Γ (−z)

×Γ (a2 + z)Γ (a4 + z)Γ (4 − 2ε − a1 − 2a2 − 2a4 − 2z) , (4.29)

where t = (p1 + p3)2.

5In [79], it was demonstrated that this Feynman integral reduces, for any values
of the three indices, to a two-point function in the shifted dimension d − 2a3.
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4

2

1

p1

p3

Fig. 4.6. Triangle diagram with the masses m, 0, 0 and external momenta on-shell,
p2
1 = p2

3 = m2, obtained from the box of Fig. 4.4

Among other partial cases of the massive on-shell boxes let us mention
the case where a1 = a2 = 0. Then we obtain a massless one-loop propagator-
type diagram which is evaluated by (3.6). On the other hand, one can see
that to perform the limit a1, a2 → 0 it is necessary to take two residues in the
integrand and somehow compensate the corresponding gamma functions in
the denominator. Eventually one arrives at the known result. This procedure
is just an additional check for the initial MB representation (4.24).

The representation (4.24) can straightforwardly be generalized to various
off-shell cases, similarly to how we obtained the generalizations (4.22) and
(4.23). Here are three results which we shall use in Sect. 4.4. For the box of
Fig. 4.4 with two massive and two massless lines, two legs on shell, p2

3 = p2
4 =

m2, and two legs off shell we obtain the following fourfold MB representation:

(−1)aiπd/2(−s)2−a−ε

Γ (4 − 2ε − a)
∏

Γ (al)
1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 4∏

j=1

dzj Γ (−zj)




× (m2 − p2
1)

z1(m2 − p2
2)

z2(−t)z3(m2)z4

(−s)z1+z2+z3+z4
Γ (a2 + z1 + z2 + z3)Γ (a4 + z3)

×Γ (2 − a124 − ε − z1 − z3 − z4)Γ (2 − a234 − ε − z2 − z3 − z4)

× Γ (4 − a122344 − 2ε − z1 − z2 − 2z3)
Γ (4 − a122344 − 2ε − z1 − z2 − 2z3 − 2z4)

×Γ (a + ε − 2 + z1 + z2 + z3 + z4) . (4.30)

For the box of Fig. 4.4 with two legs on shell, p2
2 = p2

4 = m2, and two legs
off shell, we obtain:

(−1)aiπd/2(−s)2−a−ε

Γ (4 − 2ε − a)
∏

Γ (al)
1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 4∏

j=1

dzj Γ (−zj)




× (m2 − p2
1)

z1(m2 − p2
3)

z2(−t)z3(m2)z4

(−s)z1+z2+z3+z4
Γ (a2 + z1 + z3)Γ (a4 + z2 + z3)

×Γ (2 − a124 − ε − z1 − z2 − z3 − z4)Γ (2 − a234 − ε − z3 − z4)
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× Γ (4 − a122344 − 2ε − z1 − z2 − 2z3)
Γ (4 − a122344 − 2ε − z1 − z2 − 2z3 − 2z4)

×Γ (a + ε − 2 + z1 + z2 + z3 + z4) . (4.31)

Finally, for the box of Fig. 4.4 with two legs on shell, p2
1 = p2

4 = m2, and
two legs off shell, we obtain:

(−1)aiπd/2(−s)2−a−ε

Γ (4 − 2ε − a)
∏

Γ (al)
1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 4∏

j=1

dzj Γ (−zj)




× (m2 − p2
3)

z1(m2 − p2
2)

z2(−t)z3(m2)z4

(−s)z1+z2+z3+z4
Γ (a2 + z2 + z3)Γ (a4 + z1 + z3)

×Γ (2 − a124 − ε − z1 − z3 − z4)Γ (2 − a234 − ε − z2 − z3 − z4)

× Γ (4 − a122344 − 2ε − z1 − z2 − 2z3)
Γ (4 − a122344 − 2ε − z1 − z2 − 2z3 − 2z4)

×Γ (a + ε − 2 + z1 + z2 + z3 + z4) . (4.32)

4.4 Two-Loop Massless Examples

Our first two-loop example is the same as Example 3.7:

Example 4.7. Non-planar two-loop massless vertex diagram of Fig. 3.14
with p2

1 = p2
2 = 0.

We are again dealing with two-loop vertex Feynman integrals (3.58).
We start with the four-parametric representation (3.62) obtained within the
method of Feynman parameters in the previous chapter. Let us turn to the
variables ξ3 = ξη, ξ4 = (1− ξ)η and apply (4.1) to the resulting denominator
in the integrand:

Γ (a + 2ε − 4)
[ηξ(1 − ξ) + (1 − η)(ξξ2(1 − ξ1) + (1 − ξ)ξ1(1 − ξ2))]

a+2ε−4

=
1

2πi

∫ +i∞

−i∞

dz1 Γ (−z1)ηz1ξz1(1 − ξ)z1

(1 − η)a+2ε−4+z1

× Γ (a + 2ε − 4 + z1)
[ξξ2(1 − ξ1) + (1 − ξ)ξ1(1 − ξ2)]

a+2ε−4+z1
. (4.33)

Then we again apply (4.1) to transform the last line of (4.33) into

1
2πi

∫ +i∞

−i∞

dz2 Γ (a + 2ε − 4 + z1 + z2)Γ (−z2)ξz2ξz2
2 (1 − ξ1)z2

(1 − ξ)a+2ε−4+z1+z2ξa+2ε−4+z1+z2
1 (1 − ξ2)a+2ε−4+z1+z2

.

After that all the integrals over the parameters ξ1, ξ2, ξ, η can be evaluated
in terms of gamma functions, and we come to the following twofold MB
representation of (3.58) with general powers of the propagators:
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F4.7(Q2; a1, . . . , a6, d) =
(−1)a

(
iπd/2

)2
Γ (2 − ε − a35)

(Q2)a+2ε−4Γ (6 − 3ε − a)
∏

Γ (al)

× Γ (2 − ε − a46)
Γ (4 − 2ε − a3456)

1
(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2Γ (a + 2ε − 4 + z1 + z2)

×Γ (−z1)Γ (−z2)Γ (a4 + z2)Γ (a5 + z2)Γ (a1 + z1 + z2)

× Γ (2 − ε − a12 − z1)Γ (4 − 2ε + a2 − a − z2)
Γ (4 − 2ε − a1235 − z1)Γ (4 − 2ε − a1246 − z1)

×Γ (4 − 2ε + a3 − a − z1 − z2)Γ (4 − 2ε + a6 − a − z1 − z2) . (4.34)

As in Chap. 3 let us evaluate the integral with all indices equal to one.
We have

F4.7(Q2; 1, . . . , 1, d) =

(
iπd/2

)2
(Q2)2+2ε

F (ε) , (4.35)

with

F (ε) =
Γ (−ε)2

Γ (−3ε)Γ (−2ε)
V (ε)

and

V (ε) =
1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2Γ (2 + 2ε + z1 + z2)Γ (1 + z1 + z2)

× Γ (1 + z2)2Γ (−z1)Γ (−z2)
Γ (−ε − z1)

Γ (−2ε − z1)2

× Γ (−1 − 2ε − z2)Γ (−1 − 2ε − z1 − z2)2 . (4.36)

After the useful change of variables z1 → −1 − z1 − z2, we obtain

V (ε) =
1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2

Γ (1 + z1 + z2)Γ (1 − ε + z1 + z2)
Γ (1 − 2ε + z1 + z2)2

× Γ (−2ε + z1)2Γ (−z1)Γ (1 + 2ε − z1)
× Γ (1 + z2)2Γ (−1 − 2ε − z2)Γ (−z2) . (4.37)

The analysis of the integrand shows that the poles in ε are generated by
the two products Γ (−2ε + z1)2Γ (−z1) and Γ (1 + z2)2Γ (−1 − 2ε − z2) so
that the situation is somehow factorized and we can proceed like in the one-
dimensional cases taking care of the integrations over z1 and z2 separately.
So, let us first deal with the first pole of Γ (−1− 2ε− z2). We have minus the
residue at z2 = −1 − 2ε,

F1(ε) =
Γ (1 + 2ε)Γ (−2ε)Γ (−ε)2

Γ (−3ε)
1

2πi

∫ +i∞

−i∞
dz1Γ (1 + 2ε − z1)

× Γ (−2ε + z1)3

Γ (−4ε + z1)2
Γ (−3ε + z1)Γ (−z1) , (4.38)
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and the integral F0(ε) with the opposite nature of the first pole at z2 =
−1 − 2ε. For (4.38), we analyse how singularities in ε are generated. The
situation is quite familiar and we come to the conclusion that they come from
the product Γ (−2ε+ z1)3Γ (−3ε+ z1)Γ (−z1). We take residues at the points
z1 = 2ε and z1 = 3ε and turn to the integral F10 with the same integrand
as (4.38) but with the opposite nature of these poles. The sum of these two
residues gives, in expansion in ε,

F11 = e−2γEε

(
1
ε4

− π2

ε2
− 211ζ(3)

6ε
+

π4

80

)
+ O(ε) . (4.39)

The integral F10 can be evaluated by expanding the integrand in ε and subse-
quently closing the contour to the right and summing up a series of residues.
Here one can apply summation formulae of Appendix C for summing up this
number series. The result is

F10 = e−2γEε

(
π2

4ε2
+

3ζ(3)
ε

− 41π4

48

)
+ O(ε) . (4.40)

Now we have to calculate (4.37) with the opposite nature of the first pole
of Γ (−1−2ε−z2). Let us take care of the first pole of Γ (−2ε+z1)2. We take
the residue at this point which is an integral F01 over z2 without gluing of
poles of different nature and thereby can be evaluated directly in expansion
in ε. The resulting expanded integral is evaluated similarly to F10. We obtain

F01 = e−2γEε

(
− π2

4ε2
+

9ζ(3)
2ε

+
31π4

60

)
+ O(ε) . (4.41)

The remaining piece is the integral F00 with the integrand of (4.37) where
the first poles of Γ (−2ε+z1)2 and Γ (−1−2ε−z2) have changed their nature.
There is no gluing anymore so that we can expand the integrand in ε:

F00 =
6

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2Γ (z1)2Γ (−z1)Γ (1 − z1)

× Γ (1 + z2)2Γ (−1 − z2)Γ (−z2) + O(ε) , (4.42)

where the integration contours are at −1 < Rez1,2 < 0. The integral is
a product of one-dimensional MB integrals which can be evaluated by the
same procedure as above. We obtain

F00 = −π2

6
+ O(ε) . (4.43)

Summing up the four pieces (4.39), (4.40), (4.41) and (4.43) we reproduce
the result (3.79) obtained in [109].

Let us now consider

Example 4.8. Massless on-shell planar double box diagram of Fig. 4.7.
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p2 p4

p1 p3

2 7 5

3 4

1 6

Fig. 4.7. Double box

As in Example 4.3. we have p2
i = 0, i = 1, 2, 3, 4. Let us consider double

boxes with the irreducible numerator (k + p1 + p2 + p4)2 and the routing
of the external momenta as in [13]. Then the general double box Feynman
integral takes the form

K(s, t; a1, . . . , a8, ε) =
∫ ∫

ddk ddl

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3

× [(k + p1 + p2 + p4)2]−a8

[(l + p1 + p2)2]a4 [(l + p1 + p2 + p4)2]a5(l2)a6 [(k − l)2]a7
, (4.44)

As usual, we consider the factor corresponding to the irreducible numera-
tor as an extra propagator but, really, we are interested only in non-positive
integer values of a8. In fact, there are two possible independent irreducible
numerators but the derivation of the MB representation is simple only when
we take one of them into account.

In order to derive a MB representation for (4.44) it is possible to start
from the alpha representation and then apply (4.1) to the corresponding
functions U and V. This is not, however, an optimal way. In particular, this
was done in the first calculation of the master double box [183] but a resulting
MB representation turned out to be fivefold, with essential complications
in the calculations. We will see that one can proceed using a fourfold MB
representation. Let us mention, however, that in the case of non-planar on-
shell double boxes it was possible to achieve [206] the minimal number of
integrations equal to four starting from the global alpha representation.

So, we follow (as in [13]) the strategy of [210], where MB integrations
were, first, introduced, in a suitable way, after the integration over one of
the loop momenta, l, and complete this procedure after the integration over
the second loop momentum, k. To do this, let us observe that (4.44) can be
represented as

K(s, t; a1, . . . , a8, ε) =
∫

ddk [(k + p1 + p2 + p4)2]−a8

(k2)a1 [(k + p1)2]a2 [(k + p1 + p2)2]a3

×F4.4(s, (k + p1 + p2 + p4)2, k2, (k + p1 + p2)2; a6, a7, a4, a5, d) , (4.45)

where the integral of four propagators dependent on l has been recognized as
the box with two legs off shell. Then we can use (4.22). After inserting it into
(4.45) we obtain the massless on-shell box with the indices a1−z2, a2, a3, a8−
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z4 for which we apply our representation (4.11). After these straightforward
manipulations, we change the variables z2 → z2−z4, z3 → z3−z4, z4 → z1+z4,
and arrive at the following fourfold MB representation of (4.44) (see also [13]):

K(s, t; a1, . . . , a8, ε) =

(
iπd/2

)2
(−1)a∏

l=2,4,5,6,7 Γ (al)Γ (4 − a4567 − 2ε)(−s)a−4+2ε

× 1
(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 4∏

j=1

dzj



(

t

s

)z1

Γ (a2 + z1)Γ (−z1)

× Γ (z2 + z4)Γ (z3 + z4)Γ (a1238 − 2 + ε + z4)Γ (a7 + z1 − z4)
Γ (a1 + z3 + z4)Γ (a3 + z2 + z4)Γ (4 − a1238 − 2ε + z1 − z4)

×Γ (a8 − z2 − z3 − z4)Γ (a5 + z1 + z2 + z3 + z4)Γ (−z1 − z2 − z3 − z4)
Γ (a8 − z1 − z2 − z3 − z4)

×Γ (a4567 − 2 + ε + z1 − z4)Γ (2 − a128 − ε + z2)Γ (2 − a238 − ε + z3)
×Γ (2 − a567 − ε − z1 − z2)Γ (2 − a457 − ε − z1 − z3) . (4.46)

Let us apply (4.46) to the evaluation, in expansion in ε up to the finite
part, of the double box without numerator and with all powers of the prop-
agators equal to one. We know in advance that it has poles up to the fourth
order in ε, due to IR and collinear divergences. In fact, at least the highest
pole can be predicted without calculation. Representation (4.46) gives

K(s, t; 1, . . . , 1, 0, ε) = −
(
iπd/2

)2
(−s)3+2ε

F (x, ε) , (4.47)

where x = t/s and

F (x, ε) =
1

Γ (−2ε)
1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 4∏

j=1

dzj


xz1

×Γ (1 + z1)Γ (−z1)Γ (−1 − ε − z1 − z2)Γ (−1 − ε − z1 − z3)
Γ (1 + z2 + z4)Γ (1 + z3 + z4)Γ (1 − 2ε + z1 − z4)

×Γ (2 + ε + z1 − z4)Γ (1 + z1 + z2 + z3 + z4)Γ (1 + z1 − z4)
×Γ (z2 + z4)Γ (z3 + z4)Γ (−ε + z2)Γ (−ε + z3)
×Γ (1 + ε + z4)Γ (−z2 − z3 − z4) . (4.48)

Observe that, because of the presence of the factor Γ (−2ε) in the denomina-
tor, we are forced to take some residue in order to arrive at a non-zero result
at ε = 0, so that the integral is effectively threefold.

Here is an example of the procedure of generating poles in the integral
(4.48). The product Γ (−1 − ε − z1 − z2)Γ (−ε + z2) generates, due to the
integration over z2, a pole of the type Γ (−1− 2ε− z1). Then the product of
this gamma function with Γ (1 + z1) generates a pole of the type Γ (2ε) due
to the integration over z1.
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After such a preliminary analysis we conclude that the key gamma func-
tions that are responsible for the generation of poles in ε are Γ (−ε + z2),
Γ (−ε + z3) and Γ (1 + z1 − z4). This gives a hint for the construction of a
complete procedure of the resolution of the singularities in ε, with the goal
to decompose the given integral into pieces where the Laurent expansion of
the integrand in ε becomes possible. One can proceed as follows.

We first take care of the gamma functions Γ (−ε + z2) and Γ (−ε + z3),
i.e. take residues at z2 = ε and z3 = ε and shift contours across these poles.
As a result, (4.48) is decomposed as F = F11 + F10 + F01 + F00, where F11

corresponds to taking the two residues, F00 is defined by the same expression
(4.48) but with both first poles of the selected two gamma functions treated in
the opposite way, and the two intermediate contributions defined by taking
one of the residues and changing the nature of the first pole of the other
gamma function.

The contribution F11 takes the form

F11 =
1

Γ (−2ε)
1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz4 xz1Γ (1 + z1)

×Γ (−1 − 2ε − z1)2Γ (−z1)Γ (1 + z1 − z4)Γ (2 + ε + z1 − z4)

×Γ (ε + z4)2Γ (−2ε − z4)
Γ (1 + 2ε + z1 + z4)

Γ (1 − 2ε + z1 − z4)Γ (1 + ε + z4)
. (4.49)

The contributions F10 and F01 are equal to each other because of the
symmetrical dependence of the integrand on z2 and z3. We have

F01 =
1

Γ (−2ε)
1

(2πi)3

∫ +i∞

−i∞

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2dz4 xz1Γ (1 + z1)

×Γ (−1 − 2ε − z1)Γ (−z1)Γ (−1 − ε − z1 − z2)Γ ∗(−ε + z2)

×Γ (1 + z1 − z4)Γ (2 + ε + z1 − z4)Γ (ε + z4)Γ (z2 + z4)
Γ (1 − 2ε + z1 − z4)Γ (1 + z2 + z4)

×Γ (1 + ε + z1 + z2 + z4)Γ (−ε − z2 − z4) , (4.50)

where the first pole of Γ (−ε + z2) is of the opposite nature. We indicate this
by asterisk, as in Appendix D.

For all these contributions, further decompositions are necessary. One can
proceed as follows.

In the case of F11, take care of Γ (−1 − 2ε − z1). We decompose F11

as F111 + F110, where the additional index 1 corresponds to the residue at
z1 = −1− 2ε (with the minus sign) and 0 to the integral where the first pole
of Γ (−1− 2ε− z1) is left. Take care of Γ (z4) and Γ (z4 + ε) by decomposing
F111 as F111 = F1111 + F1110, where the additional index 1 corresponds to
the residues at z4 = 0 and z4 = ε given by an explicit expression in terms of
gamma and psi functions, and 0 to the one-dimensional MB integral where
the first pole of each of these gamma functions is right.
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For F110, take care of Γ (z4 + ε) to obtain F110 = F1101 + F1100, where 1
denotes the residue at z4 = −ε. The F1101 is a one-dimensional MB integral
over z1 which is calculated by expanding in ε. The F1100 starts from ε1 and
therefore gives a zero contribution.

For F01, take care of Γ (−1 − 2ε − z1) and obtain the decomposition F01

as F011 + F010 similar to the case of F11. For F011, let us consecutively take
care of the first poles of the gamma functions Γ (z2 + z4) and Γ (z2 + z4 − ε)
with respect to the variable z2 and obtain F011 = F0111 + F0112 + F0110,
where 1 denotes the residue at z2 = −z4, 2 denotes the residue at z2 =
ε − z4 and 0 denotes the integral with first poles of these gamma functions
to be right. Then we obtain F0111 = F01111 + F01110, similarly taking care
of Γ (ε + z4)2, F0112 = F01121 + F01120 taking care of Γ (ε + z4)Γ (z4), and
F0110 = F01101 + F01100 taking care of Γ (ε + z4). For F010, we turn to the
decomposition F010 = F0101+F0100 where 1 stands for the residue at z4 = −z2

and 0 for the integral with the first right pole of Γ (z2 + z4). Finally, we turn
to F0101 = F01011 +F01010, where 1 stands for the residue at z2 = −1− ε− z1

and 0 for the integral with the first left pole of Γ (−1 − ε − z1 − z2).
For F00, we take care of the first poles of the two key gamma functions

Γ (−1− ε− z1 − z2) and Γ (−1− ε− z1 − z3). The only non-zero contribution
arises when taking both residues.

As a result we obtain either explicit expressions in terms of gamma func-
tions and their derivatives, or one-dimensional integrals over straight lines
parallel to the imaginary axis of ratios of gamma functions which can be of
two types: integrals over z1 or some other z-variable. The integrals over z1

can be calculated by closing the contour to the right, taking residues at the
points z1 = 0, 1, 2, . . . and summing up resulting series with the help of the
table of formulae [93] presented in Appendix C. The one-dimensional MB
integrals over z2 or z3 or z4 can be calculated with the help of formulae of
Appendix D which are all corollaries of the first and the second Barnes lemma
(D.1) and (D.47). For example, this is the twofold MB integral that appears
in F01100:

1
(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz2dz4Γ

∗(z2)Γ (−z2)Γ (1 + z4)Γ (−z4)

×Γ ∗(z2 + z4)2Γ (−z2 − z4)
Γ (1 + z2 + z4)

, (4.51)

where asterisks denote, as in Appendix D, the opposite nature of the first
poles of the corresponding gamma functions, i.e. the poles z2 = 0 and z4 =
−z2 are considered right here. The internal integral over z4 is then evaluated
with the help of (D.51), with λ1 = 1, λ2 = z2, λ3 = 0, λ4 = 1 + z2, and a
resulting onefold MB integral is evaluated as other integrals of this kind.

Collecting all the contributions we reproduce the result of [183]:

K(s, t; 1, . . . , 1, 0, ε) = −
(
iπd/2e−γEε

)2
(−s)2+2εt

f

(
t

s
; ε
)

, (4.52)
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where

f(x, ε) = − 4
ε4

+
5 ln x

ε3
−
(

2 ln2 x − 5
2
π2

)
1
ε2

−
(

2
3

ln3 x +
11
2

π2 ln x − 65
3

ζ(3)
)

1
ε

+
4
3

ln4 x + 6π2 ln2 x − 88
3

ζ(3) ln x +
29
30

π4

−
[
2Li3 (−x) − 2 ln xLi2 (−x) −

(
ln2 x + π2

)
ln(1 + x)

] 2
ε

−4 [S2,2(−x) − ln x S1,2(−x)] + 44Li4 (−x)
−4 [ln(1 + x) + 6 ln x] Li3 (−x)

+2
(

ln2 x + 2 ln x ln(1 + x) +
10
3

π2

)
Li2 (−x)

+
(
ln2 x + π2

)
ln2(1 + x)

−2
3
[
4 ln3 x + 5π2 ln x − 6ζ(3)

]
ln(1 + x) + O(ε) . (4.53)

This result is in agreement with the leading behaviour in the (Regge)
limit t/s → 0 obtained in [194] by use of the strategy of expansion by regions
[28,186,192]. Keeping the two leading powers of x we have

f(x, ε) = − 4
ε4

+
5 ln x

ε3
−
(

2 ln2 x − 5
2
π2

)
1
ε2

−
(

2
3

ln3 x +
11
2

π2 ln x − 65
3

ζ(3)
)

1
ε

+
4
3

ln4 x + 6π2 ln2 x − 88
3

ζ(3) ln x +
29
30

π4

+2x

(
1
ε

(
ln2 x − 2 ln x + π2 + 2

)

−1
3
{
4 ln3 x + 3 ln2 x + (5π2 − 36) ln x + 2[33 + 5π2 − 3ζ(3)]

})

+O(x2 ln3 x, ε) . (4.54)

Using known formulae that relate polylogarithms and generalized poly-
logarithms with arguments z and 1/z [86, 136, 148] one can rewrite this and
similar results for the master double boxes in terms of the same class of
functions depending on the inverse ratio s/t.

Let us now illustrate the point discussed in the end of Sect. 4.2. The gen-
eral fourfold representation (4.46) contains a lot of information. In particular,
it is very easy to derive MB representations for the two classes of Feynman
integrals corresponding to the graphs shown in Fig. 4.8. The integrals for the
box with a one-loop insertion are obtained from the double box integrals at
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(a) (b)
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Fig. 4.8. Boxes with a one-loop insertion (a) and boxes with a diagonal (b) ob-
tained from Fig. 4.7

a4 = a6 = 0. (For simplicity, we consider the case a8 = 0.) There are Γ (a4)
and Γ (a6) in the denominator of (4.46) but, of course, the limit a4, a6 → 0
is not zero. Indeed, we can distinguish the product

Γ (a4567 − 2 + ε + z1 − z4)Γ (2 − a567 − ε − z1 − z2)Γ (z2 + z4)

which generates, due to integration over z2 and z4, the singularity of the
type Γ (a4) – remember our discussion in Sect. 4.2. So, to perform this limit
we take a residue at z4 = −z2 and minus residue at z2 = 2 − a567 − ε − z1

and then set a4 = 0. We still have Γ (a6) in the denominator, but there is
also the product Γ (a567 − 2 + ε + z1 + z3)Γ (2 − a57 − ε − z1 − z3) which
generates the singularity of the type Γ (a6). Therefore, we take minus residue
at z3 = 2 − a57 − ε − z1, then set a6 = 0 and arrive at the following onefold
MB representation:

K(a1, a2, a3, 0, a5, 0, a7, 0) =

(
iπd/2

)2
(−1)aΓ (2 − a5 − ε)Γ (2 − a7 − ε)∏

Γ (al)Γ (4 − a57 − 2ε)Γ (6 − a − 3ε)

× 1
(−s)a−4+2ε

1
2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (a − 4 + 2ε + z)Γ (a57 − 2 + ε + z)

×Γ (a2 + z)Γ (4 − a1257 − 2ε − z)Γ (4 − a2357 − 2ε − z)Γ (−z) . (4.55)

The integrals for the box with a diagonal are obtained from the double
box integrals at a1 = a4 = 0. We start from the limit a4 → 0 as in the
previous case. Then we observe that there is no Γ (a1) in the denominator
and no gluing of right and left poles when a1 → 0. So, we just set a1 = 0.
After that the integration over z3 involves only four gamma functions

Γ (2 − a23 − ε + z3)Γ (a5 + z1 + z3)Γ (2 − a57 − ε − z1 − z3)Γ (−z3) .

The integral is evaluated by the first Barnes lemma (D.1), and we obtain

K(0, a2, a3, 0, a5, a6, a7, 0) =

(
iπd/2

)2
Γ (2 − a23 − ε)Γ (2 − a56 − ε)∏

Γ (al)Γ (4 − a237 − 2ε)Γ (4 − a567 − 2ε)
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× (−1)aΓ (2 − a7 − ε)
Γ (6 − a − 3ε)(−s)a−4+2ε

1
2πi

∫ +i∞

−i∞
dz

(
t

s

)z

Γ (a − 4 + 2ε + z)

×Γ (a2 + z)Γ (a5 + z)Γ (−z)
×Γ (4 − a2357 − 2ε − z)Γ (4 − a2567 − 2ε − z) . (4.56)

So, these two classes of integrals are rather simple because they are given
only by onefold MB representations. Each of them can be evaluated by de-
composing the integral into ‘singular’ and ‘regular’ parts. The singular parts
correspond to the residues necessary to reveal the singular behaviour in ε
while the regular parts are given by integrals where expansion in ε in the in-
tegrand is possible. For the boxes with a one-loop insertion, the singular part
is written as minus the sum of the residues of the integrand at the points j−2ε,
with j = −max{a1, a3}−a257 +4, . . . ,−1, plus the sum of the residues of the
integrand at the points j − 2ε for j = 0, . . . , 4 − a. For the diagonal crossed
boxes, the singular part is written as minus the sum of the residues of the
integrand at the points j−2ε, with j = −max{a3, a6}−a257 +4, . . . ,−1, plus
the sum of the residues of the integrand at the points j−2ε for j = 0, . . . , 4−a.

The regular parts can be written as MB integrals for −1 < Re z < 0
with an integrand expanded in a Laurent series in ε up to a desired order.
Then these integrals are straightforwardly evaluated by closing the contour
of integration to the right and taking residues at the points z = 0, 1, 2, . . ..
At this step, one can use the collection of formulae for summing up series
presented in Appendix C. The evaluation of both the singular and the regular
parts can easily be implemented on a computer.

Let us, for example, present an analytical result [194] for the box with a
diagonal with all indices equal to one:

K(s, t; 0, 1, 1, 0, 1, 1, 1, 0, ε) = −
(
iπd/2e−γEε

)2
s + t

F0(s, t, ε) , (4.57)

where

F0(s, t, ε) = −
(
ln2 x + π2

) 1
2ε2

+
[
2Li3 (−x) − 2 ln xLi2 (−x) −

(
ln2 x + π2

)
ln(1 + x)

+
2
3

ln3 x + ln(−s) ln2 x + π2 ln(−t) − 2ζ(3)
]

1
ε

+4 (S2,2(−x) − ln xS1,2(−x)) − 4Li4 (−x)
+4 (ln(1 + x) − ln(−s)) Li3 (−x)
+2
(
ln2 x + 2 ln(−s) ln x − 2 ln x ln(1 + x)

)
Li2 (−x)

+2
(

2
3

ln3 x + ln(−s) ln2 x + π2 ln(−t) − 2ζ(3)
)

ln(1 + x)

−
(
ln2 x + π2

)
ln2(1 + x) − 1

2
ln4 x − 4

3
ln(−s) ln3 x
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−
(

ln2(−s) +
11
12

π2

)
ln2 x − π2 ln2(−s) − 2π2 ln(−s) ln x

+4ζ(3) ln(−t) − π4

20
, (4.58)

and x = t/s.
Concerning non-trivial checks of general formulae discussed in the end of

Sect. 4.2 let us observe that, if we start from (4.46), we have to obtain, in the
limit a1,3,4,6 → 0 with a8 = 0, the massless sunset diagram with the indices
a2, a5, a7. Indeed, we can start from (4.55) and perform the limit a3 → 0 by
taking minus the residue at z1 = 4− a1257 − 2ε in order to take into account
the singularity of the integral of Γ (a − 4 + 2ε + z1)Γ (4 − a1257 − 2ε − z1).
Then we can set a1 = 0 and reproduce a known result. On the other hand, we
should obtain the product of two one-loop massless propagator-type integrals
with the indices (a1, a3) and (a4, a6) in the limit a2,5,7 → 0 with a8 = 0. Yes,
we do this by a similar analysis and similar manipulations: take minus residue
at z1 = 0 and set a2 = 0, then take minus residue at z4 = −z2 − z3 and set
a5 = 0, then take residues at z2 = 0 and z3 = 0 and set a7 = 0.

4.5 Two-Loop Massive Examples

Our next two-loop example is

Example 4.9. Massive on-shell double box diagrams shown in Figs. 4.9
and 4.10.

This is an important class of Feynman integrals with one more parameter,
with respect to the massless on–shell double boxes. In particular, it is relevant
for Bhabha scattering.

The general double box Feynman integral of the first type (see Fig. 4.9a)
takes the form

BPL,1(s, t,m2; a1, . . . , a8, ε) =
∫ ∫

ddk ddl

(k2 − m2)a1 [(k + p1)2]a2

(a) (b)

p2 p4

p1 p3

2 7 5

3 4

1 6

Fig. 4.9. Planar massive on-shell double boxes: (a) first type, (b) second type. The
solid lines denote massive, the dotted lines massless particles
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2
5 7

3

4

1

6

Fig. 4.10. Non-planar massive on-shell double box

× [(k + p1 + p2 + p4)2]−a8

[(k + p1 + p2)2 − m2]a3 [(l + p1 + p2)2 − m2]a4 [(l + p1 + p2 + p4)2]a5

× 1
(l2 − m2)a6 [(k − l)2]a7

, (4.59)

where we consider a (non-negative) power −a8 of the factor (k+p1+p2+p4)2

in the numerator as in the massless case.
To derive an appropriate MB representation for (4.59) we proceed simi-

larly to the massless case, i.e. recognize the internal integral over l as a massive
box with two legs off-shell for which we use representation (4.30). After that
the integral over k can be recognized as the massive on-shell box represented
by (4.24), and we obtain the following sixfold MB representation [187]:

BPL,1(s, t,m2; a1, . . . , a8, ε) =

(
iπd/2

)2
(−1)a(−s)4−a−2ε∏

j=2,4,5,6,7 Γ (aj)Γ (4 − a4567 − 2ε)

× 1
(2πi)6

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dw

5∏
j=1

dzj

(
m2

−s

)z1+z5 ( t

s

)w

Γ (a2 + w)Γ (−w)

×Γ (z2 + z4)Γ (z3 + z4)Γ (4 − a13 − 2a28 − 2ε + z2 + z3)Γ (a7 + w − z4)
Γ (a1 + z3 + z4)Γ (a3 + z2 + z4)

×Γ (a1238 − 2 + ε + z4 + z5)Γ (a4567 − 2 + ε + w + z1 − z4)
Γ (4 − a46 − 2a57 − 2ε − 2w − 2z1 − z2 − z3)

×Γ (a8 − z2 − z3 − z4)Γ (−w − z2 − z3 − z4)Γ (2 − a238 − ε + z3 − z5)
Γ (4 − a1238 − 2ε + w − z4)Γ (a8 − w − z2 − z3 − z4)

×Γ (a5 + w + z2 + z3 + z4)Γ (2 − a567 − ε − w − z1 − z2)
Γ (4 − a13 − 2a28 − 2ε + z2 + z3 − 2z5)

×Γ (2 − a457 − ε − w − z1 − z3)Γ (2 − a128 − ε + z2 − z5)
×Γ (4 − a46 − 2a57 − 2ε − 2w − z2 − z3)Γ (−z1)Γ (−z5) . (4.60)

This general formula can be used to evaluate various Feynman integrals
of the given family. Let us consider the example of the Feynman integral
without numerator and ai = 1 for i = 1, 2, . . . , 7. Then (4.60) takes the form

B(0)(s, t,m2, ε) ≡ BPL,1(s, t,m2; 1, . . . , 1, 0, ε) = −
(
iπd/2

)2
Γ (−2ε)(−s)3+2ε
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× 1
(2πi)6

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dw

5∏
j=1

dzj

(
m2

−s

)z1+z5 ( t

s

)w

×Γ (1 + w)Γ (−w)Γ (2 + ε + w + z1 − z4)Γ (−1 − ε − w − z1 − z2)
Γ (1 − 2ε + w − z4)Γ (1 + z2 + z4)Γ (1 + z3 + z4)

×Γ (−1 − ε − w − z1 − z3)Γ (−z1)Γ (−ε + z2 − z5)Γ (−ε + z3 − z5)
Γ (−2ε + z2 + z3 − 2z5)Γ (−2 − 2ε − 2w − 2z1 − z2 − z3)

×Γ (1 + ε + z4 + z5)Γ (−z5)Γ (−2ε + z2 + z3)Γ (1 + w − z4)
×Γ (1 + w + z2 + z3 + z4)Γ (−2 − 2ε − 2w − z2 − z3)
×Γ (z2 + z4)Γ (z3 + z4)Γ (−z2 − z3 − z4) . (4.61)

Observe that, because of the presence of the factor Γ (−2ε) in the denomina-
tor, we are forced to take some residue in order to arrive at a non-zero result
at ε = 0, so that the integral is effectively fivefold.

Let us apply our strategy of shifting contours and taking residues, with
the goal to decompose (4.61) into pieces where the Laurent expansion ε of
the integrand becomes possible. We shall evaluate this integral in expansion
in ε up to a finite part. We know in advance that the poles in ε are now only
of the second order because collinear divergences are absent. This is how such
procedure can be performed in this case [187]:

1. Take minus residue at z3 = −2 − 2ε − 2w − z2, then minus residue at
w = −1 − 2ε, then a residue at z4 = 0, then a residue at z2 = 0, expand
in a Laurent series in ε up to a finite part. Let us denote the resulting
integral over z1 and z5 by B1.

2. Take minus residue at z3 = −2 − 2ε − 2w − z2, then minus residue at
w = −1− 2ε, then a residue at z4 = 0, and change the nature of the first
pole of Γ (z2) (choose a contour from the opposite side, i.e. the pole z2

will be now right), then expand in ε. Denote this integral over z1, z2 and
z5 by B2.

3. Take minus residue at z3 = −2 − 2ε − 2w − z2, then minus residue at
w = −1− 2ε, then change the nature of the first pole of Γ (z4), then take
a residue at z2 = −z4, then take a residue at z4 = −ε and expand in ε.
This resulting integral over z1 and z5 is denoted by B3.

4. Take minus residue at z3 = −2 − 2ε − 2w − z2, then minus residue at
w = −1 − 2ε, then change the nature of the first pole of Γ (z4), then
take a residue at z2 = −z4, then change the nature of the first pole of
Γ (2(ε + z4)) and expand in ε. The resulting integral over z1, z4 and z5 is
denoted by B4.

5. Take minus residue at z3 = −2 − 2ε − 2w − z2, then minus residue at
w = −1 − 2ε, then change the nature of the first pole of Γ (z4), then
change the nature of the first pole of Γ (z2 + z4) and expand in ε. The
resulting integral over z1, z2, z4 and z5 is denoted by B5.

6. Take minus residue at z3 = −2− 2ε− 2w− z2, then change the nature of
the first pole of Γ (−2(1+2ε+w)), then take minus residue at z4 = 1+w,
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then minus residue at z2 = −1 − 2ε − w and expand in ε. The resulting
integral over w, z1 and z5 is denoted by B6.

7. Change the nature of the first pole of Γ (−2 − 2ε − 2w − z2 − z3), then
take minus residue at z4 = −z2 − z3, then a residue at z3 = 2ε− z2, then
take a residue at z2 = 2ε and expand in ε. The resulting integral over
w, z1 and z5 is denoted by B7.

One can see that all the other contributions vanish at ε = 0. By a suitable
change of variables, one can observe that B7 = B6. In fact, the dependence
of the first five contributions on the Mandelstam variable t is trivial: they are
just proportional to 1/t.

The two-dimensional integrals B1 and B3 are products of one-dimensional
integrals which can be evaluated by closing the contour to the left and sum-
ming up resulting series with the help of formulae [79] of Appendix C.

To evaluate the three-parametric integral B4 it is reasonable to ob-
serve that the integrand only changes its sign after the transformation
{z4 → −z4, z1 → z5, z5 → z1}. If we take into account that the change of vari-
ables z4 → −z4 implies that the initial integration contour −1 < Rez4 < 0
becomes 0 < Rez4 < 1 we will obtain a simple equation for B4 and conclude
that the value of the integral equals 1/2 times the residue at z4 = 0. The
latter quantity turns out to be a factorized integral over z1 and z5 which is
evaluated like B1 and B3.

The three-dimensional integral B2 is evaluated by closing the integration
contours over z1 and z5 to the left, summing up resulting series and applying
a similar procedure to a final integral in z2. The corresponding result is
naturally expressed in terms of polylogarithms, up to Li3, depending on s
and m2 in terms of the variable

v =

[√
4m2 − s +

√
−s√

4m2 − s −
√
−s

]2

.

The form of this result provides a hint about a possible functional de-
pendence of the result for the four-dimensional integral B5, and a heuristic
procedure which was explicitly formulated in [93] turns out to be successfully
applicable here. First, all the contributions, in particular B4, are analytic
functions of s in a vicinity of the origin. One can observe that any given
term of the Taylor expansion can be evaluated straightforwardly because the
corresponding integrals over z2 and z4 are taken recursively. It is, therefore,
possible to evaluate enough first terms (say, 30) of this Taylor expansion.
Then one takes into account the type of the functional dependence men-
tioned above, turns to a new Taylor series in terms of the variable v − 1
and assumes that the n-th term of this Taylor series is a linear combination,
with unknown coefficients, of the following quantities of levels 1, 2, 3, and 4,
respectively:
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1
n

, (4.62)

1
n2

,
S1(n)

n
, (4.63)

1
n3

,
S1(n)

n2
,
S2(n)

n
,
S1(n)2

n
, (4.64)

1
n4

,
S1(n)

n3
,
S2(n)

n2
,
S1(n)2

n2
,

S3(n)
n

,
S12(n)

n
,
S1(n)S2(n)

n
,
S1(n)3

n
. (4.65)

where Sk(n) =
∑n

j=1 j−k, etc. are nested sums (see Appendix C). Using the
information about the first terms of the Taylor series one solves a system
of linear equations, finds those unknown coefficients and checks this solution
with the help of the next Taylor coefficients.

This experimental mathematics has turned out to be quite successful for
the evaluation of B5. Finally, the contribution B6 is a product of a one-
dimensional integral over z1, which is easily evaluated, and a two-dimensional
integral over w and z5 which involves a non-trivial dependence on t and is
evaluated by closing the integration contour in z5 to the left, summing up a
resulting series in terms of Gauss hypergeometric function for which one can
apply the parametric representation (B.5). After that the internal integral
over w is taken by the same procedure and, finally, one takes the parametric
integral.

The final result takes the following form [187]:

B(0)(s, t,m2; ε) = −
(
iπd/2e−γEε

)2
x2

s2(−t)1+2ε

×
[
b2(x)
ε2

+
b1(x)

ε
+ b01(x) + b02(x, y) + O(ε)

]
, (4.66)

where x = 1/
√

1 − 4m2/s, y = 1/
√

1 − 4m2/t, and

b2(x) = 2(mx − px)2 , (4.67)

b1(x) = −8
[
Li3

(
1 − x

2

)
+ Li3

(
1 + x

2

)
+ Li3

(
−2x

1 − x

)

+Li3

(
2x

1 + x

)]
+ 4(mx − px)

[
Li2

(
1 − x

2

)
− Li2

(
−2x

1 − x

)]

−(4/3)m3
x + 4m2

xpx − 6mxp2
x + (2/3)p3

x + 4l2(mxpx + p2
x)

−2l22(mx + 3px) − (π2/3)(4l2 − mx − 3px) + (8/3)l32 + 14ζ(3) , (4.68)
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b01(x) = −8(mx − px)
[
Li3 (x) − Li3 (−x) − Li3

(
1 + x

2

)

+Li3

(
1 − x

2

)
− Li3

(
2x

1 + x

)
+ Li3

(
−2x

1 − x

)]

+16Li2

(
1 − x

2

)
(Li2 (x) − Li2 (−x))

+4

[
Li2 (x)2 + Li2 (−x)2 + 4Li2

(
1 − x

2

)2
]
− 8Li2 (x) Li2 (−x)

−(8/3)[π2 − 6l22 + 6lxpx − 6mx(lx + px − 2l2)]Li2

(
1 − x

2

)

−(4/3)[π2 − 6l22 + 3m2
x + 6mx(2l2 − 2lx − px) + 12lxpx − 3p2

x]

×(Li2 (x) − Li2 (−x)) + 8(mx − px)
[
(px − mx + 2l2)Li2

(
2x

1 + x

)

+2(lx − mx + l2)Li2

(
−2x

1 − x

)]
− 8(mx − px)(2lx − px − 5mx + 4l2)

×(−mxpx + l2(mx + px) − l22 + π2/6)
−(20/3)m4

x + (164/3)m3
xpx − 40m2

xp2
x − (4/3)mxp3

x − (8/3)p4
x

+8mxlx(m2
x − 3mxpx + 2p2

x)
−4l2(7m3

x + 21m2
xpx − 4mxlxpx − 23mxp2

x + 4lxp2
x − p3

x)
−π2((17/3)m2

x − (4/3)mxlx − 2mxpx + (4/3)lxpx − (7/3)p2
x)

+l22(84m2
x − 8mxlx − 16mxpx + 8lxpx − 44p2

x)
−(8/3)l2(6l22 − π2)(3mx − 2px) − (4/3)π2l22 + 4l42 + π4/9 . (4.69)

The last piece of the finite part comes from B6 and B7:

b02(x, y) = 2(px − mx)
{

4
[
Li3

(
1 − x

2

)
− Li3

(
1 + x

2

)

+Li3

(
(1 − x)y
1 − xy

)
− Li3

(
−(1 + x)y

1 − xy

)
+ Li3

(
−(1 − x)y

1 + xy

)

−Li3

(
(1 + x)y
1 + xy

)]
+ 2

[
Li3

(
(1 + x)(1 − y)

2(1 − xy)

)
− Li3

(
(1 − x)(1 + y)

2(1 − xy)

)

−Li3

(
(1 − x)(1 − y)

2(1 + xy)

)
+ Li3

(
(1 + x)(1 + y)

2(1 + xy)

)]

+2(my + py − mxy − pxy)

×
[
2Li2 (x) − 2Li2 (−x) + Li2

(
−2x

1 − x

)
− Li2

(
2x

1 + x

)]

+4(mxy − pxy)(Li2 (−y) − Li2 (y)) − 4(mx + px − 2l2)Li2

(
1 − x

2

)



90 4 Evaluating by MB Representation

−4(mxy − pxy)Li2

(
1 − y

2

)
− 4(mx + ly − mxy)Li2

(
(1 − x)y
1 − xy

)

+4(px + ly − mxy)Li2

(
−(1 + x)y

1 − xy

)

−4(mx + ly − pxy)Li2

(
−(1 − x)y

1 + xy

)

+4(px + ly − pxy)Li2

(
(1 + x)y
1 + xy

)

+2(mx + px + my + py − 2mxy − 2l2)Li2

(
(1 − x)(1 + y)

2(1 − xy)

)

+2(mx + px + my + py − 2pxy − 2l2)Li2

(
(1 − x)(1 − y)

2(1 + xy)

)

+2p2
x(my + py − mxy − pxy) + 2px(2(myly + mypy + lypy)

+mxy(−my − 2ly − 3py + 3mxy) + pxy(−3my − 2ly − py + 3pxy))
+2mx(2px + my − 2ly + py)(my + py − mxy − pxy) − p2

y(mxy + pxy)

+2py(2m2
xy + p2

xy) + m2
y(2py − mxy − pxy)

+2my(p2
y + m2

xy + 2p2
xy − py(3mxy + pxy)) − 2(m3

xy + p3
xy)

+2l2((4my + 4py − 3mxy)mxy + (2my + 2py − 3pxy)pxy

−2(px + 2mx)(my + py − mxy − pxy) − m2
y − 4mypy − p2

y)

+2l22(3(my + py) − 2(2mxy + pxy))
−(π2/3)(my + py − 8mxy + 6pxy)

}
. (4.70)

The following abbreviations are used here: lz = ln z for z = x, y, 2, pz =
ln(1 + z) and mz = ln(1 − z) for z = x, y, xy.

This result is presented in such a way that it is manifestly real at small
negative values of s and t. From this Euclidean domain, it can easily be
continued analytically to any other domain.

The result (4.66)–(4.70) is in agreement with the leading power behaviour
in the (Sudakov) limit of the fixed-angle scattering, m2 � |s|, |t| which can
be alternatively obtained [187] by use of the strategy of expansion by regions
[28,186]:

B(0)(s, t,m2; ε) = −
(
iπd/2e−γEε

)2
s2(−t)1+2ε

×
{

2
L2

ε2
−
[
(2/3)L3 + (π2/3)L + 2ζ(3)

] 1
ε

−(2/3)L4 + 2 ln(t/s)L3 − 2(ln2(t/s) + 4π2/3)L2

+
[
4Li3 (−t/s) − 4 ln(t/s)Li2 (−t/s) + (2/3) ln3(t/s)

−2 ln(1 + t/s) ln2(t/s) + (8π2/3) ln(t/s) − 2π2 ln(1 + t/s) + 10ζ(3)
]
L

+π4/36
}

+ O(m2L3, ε) , (4.71)
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where L = ln(−m2/s). This asymptotic behaviour is reproduced when one
starts from the result (4.66)–(4.70).

Another check of such a complicated result came from the numerical in-
tegration based on a method of sector decompositions in the space of alpha
parameters [37] (to be discussed in Sect. E.2).

Let us stress that, in the present case with a non-zero mass, there are
no collinear divergences and the poles in ε are only up to the second order,
so that the resolution of singularities in ε in the MB integrals is relatively
simple. Therefore, it looks promising to use the technique presented, starting
from (4.60), for the evaluation of any given master integral. For example, the
integral BPL,1(s, t,m2; 1, . . . , 1,−1, ε) was evaluated in [191]. There is the
same problem as in the massless case [13] (see Problem 4.6) connected with
spurious singularities in MB integrals. It can also be cured in the same way,
by introducing an auxiliary analytic regularization, e.g. with a8 = −1+λ. The
singularities in the corresponding MB integral are first resolved with respect
to λ and then with respect to ε when λ and ε tend to zero. In the result [191],
one meets not only usual polylogarithms but also a harmonic polylogarithm
(HPL) [175] (see Appendix C), H−1,0,0,1 (−(1 − x)/(1 + x)) with x defined
after (4.66).

Let us turn to the massive double boxes of the second type shown in
Fig. 4.9b:

BPL,2(s, t,m2; a1, . . . , a8, ε) =
∫ ∫

ddk ddl

(k2 − m2)a1 [(k + p1)2]a2

× [(k + p1 + p2 + p4)2]−a8

[(k + p1 + p2)2 − m2]a3 [(l + p1 + p2)2]a4 [(l + p1 + p2 + p4)2 − m2]a5

× 1
(l2)a6 [(k − l)2 − m2]a7

. (4.72)

To derive a MB representation for (4.72) let us straightforwardly generalize
the derivation of (4.60). For the subintegral over l we now use representation
(4.31) of the massive box with two legs off-shell in the second variant. Then
the integral over k can be recognized as the massive on-shell box (4.24). We
therefore obtain the following sixfold MB representation [191]:

BPL,2(s, t,m2; a1, . . . , a8, ε) =

(
iπd/2

)2
(−1)a(−s)4−a−2ε∏

j=2,4,5,6,7 Γ (aj)Γ (4 − a4567 − 2ε)

× 1
(2πi)6

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

6∏
j=1

dzj

(
m2

−s

)z5+z6 ( t

s

)z1 6∏
j=1

Γ (−zj)

×Γ (a4 + z2 + z4)Γ (4 − a445667 − 2ε − z2 − z3 − 2z4)Γ (a6 + z3 + z4)
Γ (4 − a445667 − 2ε − z2 − z3 − 2z4 − 2z5)Γ (6 − a − 3ε − z4 − z5)

×Γ (a2 + z1)Γ (8 − a13 − 2a245678 − 4ε − 2z1 − z2 − z3 − 2z4 − 2z5)
Γ (8 − a13 − 2a245678 − 4ε − 2z1 − z2 − z3 − 2z4 − 2z5 − 2z6)
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×Γ (2 − a456 − ε − z4 − z5)Γ (2 − a467 − ε − z2 − z3 − z4 − z5)
Γ (a45678 − 2 + ε + z2 + z3 + z4 + z5)Γ (a1 − z3)Γ (a3 − z2)

×Γ (a4567 + ε − 2 + z2 + z3 + z4 + z5)Γ (a − 4 + 2ε + z1 + z4 + z5 + z6)
×Γ (4 − a1245678 − 2ε − z1 − z2 − z4 − z5 − z6)
×Γ (4 − a2345678 − 2ε − z1 − z3 − z4 − z5 − z6)
×Γ (a45678 − 2 + ε + z1 + z2 + z3 + z4 + z5) , (4.73)

This representation was used in [191] to calculate the master planar double
box of the second type BPL,2(s, t,m2; 1, . . . , 1, 0, ε). The resolution of the
singularities in ε was performed similar to the previous cases. The number
of resulting MB integrals where an expansion in ε can be performed in the
integrand is again equal to six. This time, some of the contributions turned
out to be hardly evaluated in terms of known functions. Some two-parametric
integrals of elementary functions entered the result in [191]. This result was
controlled similarly to the previous case, by numerical evaluation of finite MB
integrals and numerical evaluation by the method of [37] (to be discussed in
Sect. E.2).

To conclude this section let us turn to the non-planar graph of Fig. 4.10.
Its MB representation can again be derived by using an MB representation
for the subdiagram consisting of the lines (4, 5, 6, 7). This time, we can use
(4.32). For the subsequent integral over the second loop momentum, we need
the following MB representation for this auxiliary one-loop integral:

∫
ddk

(k2 − m2)a1 [(k + p1)2]a2 [(k + p1 + p2)2 − m2]a3

× 1
[(k + p1 + p2 + p4)2]a4 [(k − p4)2]a4

=
(−1)aiπd/2(−s)2−a−ε

Γ (4 − 2ε − a)
∏

Γ (al)

× 1
(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 4∏

j=1

dzj Γ (−zj)


 (m2)z2(−t)z3(−u)z4

(−s)z2+z3+z4

×Γ (a + ε − 2 + z2 + z3 + z4)Γ (a5 + z4)
Γ (a245 + z1 + 2z3 + 2z4)
Γ (a245 + z1 + z3 + 2z4)

×Γ (a2 + a4 + z1 + z3 + z4)Γ (−a4 − z1 − z3 − z4)Γ (a4 + z1 + z3)
×Γ (2 − a1245 − ε − z2 − z3 − z4)Γ (2 − a2345 − ε − z2 − z3 − z4)

× Γ (4 − a12234455 − 2ε − 2z3 − 2z4)
Γ (4 − a12234455 − 2ε − 2z2 − 2z3 − 2z4)

, (4.74)

where u = (p1 + p4)2 is a Mandelstam variable. It can be derived similarly
to the previous MB representations for one-loop Feynman integrals.

Using (4.74) one arrives at the following eightfold MB representation [191]:
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BNP(s, t, u,m2; a1, . . . , a8, ε) =

(
iπd/2

)2
(−1)a(−s)4−a−2ε∏

j=2,4,5,6,7 Γ (aj)Γ (4 − a4567 − 2ε)

× 1
(2πi)8

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

8∏
j=1

dzj

(
m2

−s

)z5+z6 ( t

s

)z7 (u

s

)z8
7∏

j=1

Γ (−zj)

×Γ (a5 + z2 + z4)Γ (a7 + z3 + z4)Γ (4 − a455677 − 2ε − z2 − z3 − 2z4)
Γ (a1 − z2)Γ (a3 − z3)Γ (a8 − z4)

×Γ (2 − a567 − ε − z2 − z4 − z5)Γ (2 − a457 − ε − z3 − z4 − z5)
Γ (4 − a455677 − 2ε − z2 − z3 − 2z4 − 2z5)

×Γ (a8 + z1 − z4 + z7)Γ (4 − a2345678 − 2ε − z2 − z5 − z6 − z7 − z8)
Γ (6 − a − 3ε − z5)

× Γ (8 − a13 − 2a245678 − 4ε − z2 − z3 − 2z5 − 2z7 − 2z8)
Γ (8 − a13 − 2a245678 − 4ε − z2 − z3 − 2z5 − 2z6 − 2z7 − 2z8)

× Γ (4 − a1245678 − 2ε − z3 − z5 − z6 − z7 − z8)
Γ (a245678 − 2 + ε + z1 + z2 + z3 + z5 + z7 + 2z8)

×Γ (a4567 + ε − 2 + z2 + z3 + z4 + z5 + z8)Γ (−a8 − z1 + z4 − z7 − z8)
×Γ (a245678 − 2 + ε + z1 + z2 + z3 + z5 + 2z7 + 2z8)
×Γ (a − 4 + 2ε + z5 + z6 + z7 + z8)Γ (a28 + z1 − z4 + z7 + z8) . (4.75)

Representation (4.75) can be checked for various simple partial cases as
it was explained above. Although the number of integrations is rather high
one can proceed also in this case. However, it turns out that the massive non-
planar case is rather complicated. Some preliminary results for the master
non-planar double box can be found in [191].

More results on the massive on-shell double boxes obtained by means of
MB representation can be found in [70]. We shall come back to the discussion
of this problem in the end of Chap. 7.

Let us now again illustrate the fact that general MB representations accu-
mulate a lot of information so that MB representations for various classes of
Feynman integrals can be derived in a very simple way from an initial global
representation.

Suppose we want to consider

Example 4.10. Sunset diagrams of Fig. 3.13 with one zero mass and two
equal non-zero masses at a general value of the external momentum squared.

Remember that we have already considered such Feynman integrals at
threshold, q2 = 4m2 – see Example 3.6. There is no need to derive an ap-
propriate MB representation from the beginning. Let us observe that such
Feynman integrals, with the massive propagators 5 and 7 and the massless
propagator 2, can be obtained from the massive on-shell double boxes of
Fig. 4.9b at a1 = a3 = a4 = a6 = 0. As usual such a limit results in taking
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some residues. We first let a4 → 0 and observe that Γ (a4) in the denomina-
tor can be cancelled only if we take into account the gluing in the product
Γ (a4 +z2 +z4)Γ (−z2)Γ (−z4). Thus we are forced to take the two residues at
z4 = 0 and z2 = 0. Then the limit a6 → 0 can similarly be taken, because of
the presence of Γ (a6 + z3)Γ (−z3)/Γ (a6), by taking minus residue at z3 = 0.
Then we take the limit a1 → 0 by observing that the only way to cancel
Γ (a1) in the denominator is to take into account the gluing in the product
Γ (a123578 − 4 + 2ε + z1 + z5 + z6)Γ (4− a23578 − 2ε− z1 − z5 − z6) and take a
residue, e.g. at z6 = 4 − a23578 − 2ε − z1 − z5 (with the minus sign). Finally,
we let a3 → 0 by distinguishing the product

Γ (a23578 − 4 + 2ε + z1 + z5)Γ (8 − a3 − 2a2578 − 4ε − 2z1 − 2z5)

which generates Γ (a3) and cancels this factor in the denominator.
After relabelling the lines, substituting t → q2 and expressing the irre-

ducible numerator in terms of the loop momenta of the sunset diagram, we
obtain

F4.10(q2,m2; a1, a2, a3, a4, d)

=
∫ ∫

ddk ddl [(k + l)2]−a4

(k2 − m2)a1(l2 − m2)a2 [(q − k − l)2]a3

=

(
iπd/2

)2
(−1)aΓ (2 − a3 − ε)

Γ (a1)Γ (a2)Γ (a3)(m2)a−4+2ε

1
2πi

∫ +i∞

−i∞
dz

(
q2

m2

)z

× Γ (a − 4 + 2ε + z)Γ (a3 + z)Γ (−z)Γ (2 − a34 − ε − z)
Γ (a12 + 2a34 − 4 + 2ε + 2z)Γ (2 − ε + z)Γ (2 − a3 − ε − z)

×Γ (a134 − 2 + ε + z)Γ (a234 − 2 + ε + z) . (4.76)

If we evaluate the integral in (4.76) for general ε by closing the contour
and taking a series of residues we shall reproduce the result of [49] in terms
of the hypergeometric series 4F3. We are oriented, however, at the evaluation
in expansion in ε and will evaluate integrals (4.76), for concrete values of
the indices, by resolving singularities in ε and then closing the contour and
summing up the corresponding series. For example, (4.76) gives

F4.10(q2,m2; 1, 1, 1, 0, d) = −
(
iπd/2

)2

Γ (1 − ε)(m2)1−2ε

× 1
2πi

∫ +i∞

−i∞
dz

(
q2

m2

)z
Γ (2ε − 1 + z)Γ (ε + z)2Γ (1 + z)Γ (−z)

Γ (2ε + 2z)Γ (2 − ε + z)
. (4.77)

The resolution of the singularities in ε is standard: we distinguish the
factor Γ (2ε − 1 + z) as the source of poles. We have to take care of its first
two poles, i.e. take residues at z = 1 − 2ε and z = −2ε. The calculation
of the integral with the opposite nature of these two poles is performed by
closing the integration contour to the right and summing up series, with the
following result which can be found in [79,92]:
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F4.10(q2,m2; 1, 1, 1, 0, d) =
(
iπd/2

)2

(m2)1−2ε

[
1
ε2

+
(

3 − q2

4m2

)
1
ε

+
π2

6
+

11
4

+
13(1 + x2)

8x
+

1 + 2x − x2

2x
ln x

− 2
1 − x

ln x − 1 − x + x2

(1 − x)2
ln2 x + O(ε)

]
, (4.78)

where x = (
√

4m2 − q2 −
√

−q2)/(
√

4m2 − q2 +
√

−q2). (Please, note that
the letter x is used in various ways: this is another function in Examples 4.6,
4.9, while, for massless double and triple boxes, this is simply t/s.)

4.6 Three-Loop Examples

Our next example is already at three-loop level:

Example 4.11. The massless on-shell triple box diagram of Fig. 4.11.

The general planar triple box Feynman integral without numerator takes
the form

T (s, t; a1, . . . , a10, ε) =
∫ ∫ ∫

ddk ddl ddr

(k2)a1 [(k + p2)2]a2 [(k + p1 + p2)2]a3

× 1
[(l + p1 + p2)2]a4 [(r − l)2]a5(l2)a6 [(k − l)2]a7

× 1
[(r + p1 + p2)2]a8 [(r + p1 + p2 + p4)2]a9(r2)a10

. (4.79)

To derive a suitable MB representation for (4.79) we proceed like in the
derivation of (4.46). We recognize the internal integral over the loop mo-
mentum r as a box with two legs off-shell given by (4.22). After inserting it
into (4.79) we obtain an MB integral of the on-shell double box with certain
indices dependent on MB integration variables. These straightforward ma-
nipulations lead [189] to the following sevenfold MB representation of (4.79):

T (s, t; a1, . . . , a10, ε) =

(
iπd/2

)3
(−1)a(−s)6−a−3ε∏

j=2,5,7,8,9,10 Γ (aj)Γ (4 − a589(10) − 2ε)

p2 p4

p1 p3
1

2

3 4

7 5

6

8

10

9

Fig. 4.11. Triple box
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× 1
(2πi)7

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

7∏
j=1

dzj

(
t

s

)z1 Γ (a2 + z1)Γ (−z1)Γ (z2 + z4)
Γ (a1 + z3 + z4)Γ (a3 + z2 + z4)

×Γ (2 − a12 − ε + z2)Γ (2 − a23 − ε + z3)Γ (a7 + z1 − z4)Γ (−z5)Γ (−z6)
Γ (4 − a467 − 2ε + z5 + z6 + z7)Γ (4 − a123 − 2ε + z1 − z4)

×Γ (z3 + z4)Γ (a123 − 2 + ε + z4)Γ (z1 + z2 + z3 + z4 − z7)
Γ (a6 − z5)Γ (a4 − z6)

×Γ (2 − a59(10) − ε − z5 − z7)Γ (2 − a589 − ε − z6 − z7)Γ (a9 + z7)
×Γ (a467 − 2 + ε + z1 − z4 − z5 − z6 − z7)Γ (a5 + z5 + z6 + z7)
×Γ (a589(10) − 2 + ε + z5 + z6 + z7)Γ (2 − a67 − ε − z1 − z2 + z5 + z7)
×Γ (2 − a47 − ε − z1 − z3 + z6 + z7)Γ (−z2 − z3 − z4) , (4.80)

where a =
∑10

i=1 ai, a589(10) = a5 + a8 + a9 + a10, etc.
In the case of the master triple box, we set ai = 1 for i = 1, 2, . . . , 10 to

obtain

T (0)(s, t, ε) ≡ T (1, . . . , 1; s, t, ε)

=

(
iπd/2

)3
Γ (−2ε)(−s)4+3ε

1
(2πi)7

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

7∏
j=1

dzj

(
t

s

)z1

Γ (1 + z1)

×Γ (−z1)Γ (−ε + z2)Γ (−ε + z3)Γ (1 + z1 − z4)Γ (−z2 − z3 − z4)
Γ (1 + z2 + z4)Γ (1 + z3 + z4)Γ (1 − 2ε + z1 − z4)

×Γ (z2 + z4)Γ (z3 + z4)Γ (−z5)Γ (−z6)Γ (z1 + z2 + z3 + z4 − z7)
Γ (1 − z5)Γ (1 − z6)Γ (1 − 2ε + z5 + z6 + z7)

×Γ (2 + ε + z5 + z6 + z7)Γ (−1 − ε − z5 − z7)Γ (−1 − ε − z6 − z7)
×Γ (1 + z7)Γ (1 + ε + z1 − z4 − z5 − z6 − z7)Γ (−ε − z1 − z2 + z5 + z7)
×Γ (1 + ε + z4)Γ (−ε − z1 − z3 + z6 + z7)Γ (1 + z5 + z6 + z7) . (4.81)

Observe that, because of the presence of the factor Γ (−2ε) in the denomina-
tor, we are forced to take some residue in order to arrive at a non-zero result
at ε = 0, so that the integral is effectively sixfold.

Then our standard procedure of taking residues and shifting contours can
be applied, with the goal to obtain a sum of integrals where one may expand
integrands in Laurent series in ε. The analysis of the integrand shows that the
following four gamma functions play a crucial role for the generation of poles
in ε: Γ (−ε + z2,3) and Γ (−1 − ε − z6,5 − z7). The first decomposition of the
integral (4.81) arises when one either takes a residue at the first pole of one
of these gamma functions or shifts the corresponding contour, i.e. changes
the nature of this pole. As a result (4.81) is decomposed as 2T0001 +2T0010 +
2T0011+T0101+2T0110+2T0111+T1010+2T1011+T1111 where the symmetry of
the integrand is taken into account. Here the value 1 of an index means that
a residue is taken and 0 means a shifting of a contour. The first two indices
correspond to the gamma functions Γ (−ε + z2) and Γ (−1− ε− z5 − z7) and
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the second two indices to Γ (−ε + z3) and Γ (−1 − ε − z6 − z7), respectively.
The term T0000 is absent because it is zero at ε = 0 due to Γ (−2ε) in the
denominator.

Each of these terms is further decomposed appropriately and, eventu-
ally, one is left with integrals where integrands can be expanded in ε. These
resulting terms involve up to five integrations. Taking some of these integra-
tions with the help of the table of formulae presented in Appendix D, one
can reduce all the integrals to no more than twofold MB integrals of gamma
functions and their derivatives. In some of them, one more integration can
be performed also in terms of gamma functions. Then the last integration,
over z1, is performed by taking residues and summing up resulting series, in
terms of HPL. Keeping in mind the Regge limit, t/s → 0, let us, for defi-
niteness, decide to close the contour of the final integration, over z1, to the
right and obtain power series in t/s. The coefficients of these series are (up to
(−1)n) linear combinations of 1/n6, S1(n)/n5, . . . , S1(n)S3(n)/n2, . . ., where
Sk(n) =

∑n
j=1 j−k, etc. (see Appendix C). Summing up these series with

the help of tabulated formulae of Appendix C gives results in terms of HPL
of the variable −t/s which can be continued analytically to any domain from
the region |t/s| < 1.

In the twofold MB integrals where one more integration (over a variable
different from z1) can hardly be performed in terms of gamma functions, one
performs it with z1 in a vicinity of an integer point z1 = n = 0, 1, 2, . . ., in
expansion in z = z1 − n, with a sufficient accuracy. Then one obtains power
series where, in addition to nested sums with one index, various nested sums
(see Appendix C) appear. These series are also summed up in terms of HPL.

Eventually one arrives at the following result [189]:

T (0)(s, t; ε) = −
(
iπd/2e−γEε

)3
s3(−t)1+3ε

6∑
j=0

cj(x,L)
εj

, (4.82)

where x = −t/s, L = ln(s/t), and

c6 =
16
9

, c5 = −5
3
L , c4 = −3

2
π2 , (4.83)

c3 = 3(H0,0,1(x) + LH0,1(x)) +
3
2
(L2 + π2)H1(x)

−11
12

π2L − 131
9

ζ(3) , (4.84)

c2 = −3 (17H0,0,0,1(x) + H0,0,1,1(x) + H0,1,0,1(x) + H1,0,0,1(x))

−L (37H0,0,1(x) + 3H0,1,1(x) + 3H1,0,1(x)) − 3
2
(L2 + π2)H1,1(x)

−
(

23
2

L2 + 8π2

)
H0,1(x) −

(
3
2
L3 + π2L − 3ζ(3)

)
H1(x)
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+
49
3

ζ(3)L − 1411
1080

π4 , (4.85)

c1 = 3 (81H0,0,0,0,1(x) + 41H0,0,0,1,1(x) + 37H0,0,1,0,1(x) + H0,0,1,1,1(x)
+33H0,1,0,0,1(x) + H0,1,0,1,1(x) + H0,1,1,0,1(x) + 29H1,0,0,0,1(x)
+H1,0,0,1,1(x) + H1,0,1,0,1(x) + H1,1,0,0,1(x)) + L (177H0,0,0,1(x)
+85H0,0,1,1(x) + 73H0,1,0,1(x) + 3H0,1,1,1(x) + 61H1,0,0,1(x)
+3H1,0,1,1(x) + 3H1,1,0,1(x))

+
(

119
2

L2 +
139
12

π2

)
H0,0,1(x) +

(
47
2

L2 + 20π2

)
H0,1,1(x)

+
(

35
2

L2 + 14π2

)
H1,0,1(x) +

3
2
(
L2 + π2

)
H1,1,1(x)

+
(

23
2

L3 +
83
12

π2L − 96ζ(3)
)

H0,1(x)

+
(

3
2
L3 + π2L − 3ζ(3)

)
H1,1(x)

+
(

9
8
L4 +

25
8

π2L2 − 58ζ(3)L +
13
8

π4

)
H1(x)

− 503
1440

π4L +
73
4

π2ζ(3) − 301
15

ζ(5) , (4.86)

c0 = − (951H0,0,0,0,0,1(x) + 819H0,0,0,0,1,1(x) + 699H0,0,0,1,0,1(x)
+195H0,0,0,1,1,1(x) + 547H0,0,1,0,0,1(x) + 231H0,0,1,0,1,1(x)
+159H0,0,1,1,0,1(x) + 3H0,0,1,1,1,1(x) + 363H0,1,0,0,0,1(x)
+267H0,1,0,0,1,1(x) + 195H0,1,0,1,0,1(x) + 3H0,1,0,1,1,1(x)
+123H0,1,1,0,0,1(x) + 3H0,1,1,0,1,1(x) + 3H0,1,1,1,0,1(x)
+147H1,0,0,0,0,1(x) + 303H1,0,0,0,1,1(x) + 231H1,0,0,1,0,1(x)
+3H1,0,0,1,1,1(x) + 159H1,0,1,0,0,1(x) + 3H1,0,1,0,1,1(x)
+3H1,0,1,1,0,1(x) + 87H1,1,0,0,0,1(x) + 3H1,1,0,0,1,1(x)
+3H1,1,0,1,0,1(x) + 3H1,1,1,0,0,1(x))
−L (729H0,0,0,0,1(x) + 537H0,0,0,1,1(x) + 445H0,0,1,0,1(x)
+133H0,0,1,1,1(x) + 321H0,1,0,0,1(x) + 169H0,1,0,1,1(x)
+97H0,1,1,0,1(x) + 3H0,1,1,1,1(x) + 165H1,0,0,0,1(x)
+205H1,0,0,1,1(x) + 133H1,0,1,0,1(x) + 3H1,0,1,1,1(x)
+61H1,1,0,0,1(x) + 3H1,1,0,1,1(x) + 3H1,1,1,0,1(x))

−
(

531
2

L2 +
89
4

π2

)
H0,0,0,1(x) −

(
311
2

L2 +
619
12

π2

)
H0,0,1,1(x)

−
(

247
2

L2 +
307
12

π2

)
H0,1,0,1(x) −

(
71
2

L2 + 32π2

)
H0,1,1,1(x)
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−
(

151
2

L2 − 197
12

π2

)
H1,0,0,1(x) −

(
107
2

L2 + 50π2

)
H1,0,1,1(x)

−
(

35
2

L2 + 14π2

)
H1,1,0,1(x) − 3

2
(
L2 + π2

)
H1,1,1,1(x)

−
(

119
2

L3 +
317
12

π2L − 455ζ(3)
)

H0,0,1(x)

−
(

47
2

L3 +
179
12

π2L − 120ζ(3)
)

H0,1,1(x)

−
(

35
2

L3 +
35
12

π2L − 156ζ(3)
)

H1,0,1(x)

−
(

3
2
L3 + π2L − 3ζ(3)

)
H1,1,1(x)

−
(

69
8

L4 +
101
8

π2L2 − 291ζ(3)L +
559
90

π4

)
H0,1(x)

−
(

9
8
L4 +

25
8

π2L2 − 58ζ(3)L +
13
8

π4

)
H1,1(x) −

(
27
40

L5 +
25
8

π2L3

−183
2

ζ(3)L2 +
131
60

π4L − 37
12

π2ζ(3) + 57ζ(5)
)

H1(x)

+
(

223
12

π2ζ(3) + 149ζ(5)
)

L +
167
9

ζ(3)2 − 624607
544320

π6 . (4.87)

The above result was confirmed with the help of numerical integration in
the space of alpha parameters [37]. Another natural check of the result is its
agreement with the leading power Regge asymptotic behaviour [188] which
was evaluated by an independent method based on the strategy of expansion
by regions [28,186].

The procedure described above can be applied, in a similar way, to the
calculation of any massless planar on-shell triple box. At a first step, one can
to take care of the following four gamma functions in (4.80):

Γ (2 − a12 − ε + z2), Γ (2 − a23 − ε + z3),

Γ (2 − a59(10) − ε − z5 − z7), Γ (2 − a589 − ε − z6 − z7) .

This procedure gives a decomposition similar to 2T0001 + 2T0010 + . . .. Next
steps would be also generalizations of the corresponding steps in the evalua-
tion of (4.81).

The result presented above shows that analytical calculations of four-
point on-shell massless Feynman diagrams at the three-loop level are quite
possible so that one may think of evaluating three-loop virtual corrections to
various scattering processes. Let us now consider a more complicated four-
point three-loop diagram:
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Example 4.12. The massless on-shell tennis court6 diagram of Fig. 4.12.

p2 p4

p1 p3

1

2

3 4

7 5

6

8
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Fig. 4.12. Three-loop tennis court graph

To derive an appropriate MB representation we can proceed again quite
straightforwardly. Here we need an auxiliary MB representation for the dou-
ble box with two legs off shell applied to the double box subintegral in
Fig. 4.12 and inserted into the MB representation for the on-shell box. As a
result, an eightfold MB representation can be derived for the general diagram
W (s, t; a1, . . . , a11, ε) of Fig. 4.12 with the eleventh index corresponding to
the numerator [(l1 + l3)2]−a11 , where l1,3 are the momenta flowing through
lines 1 and 3 in the same direction:

W (a1, . . . , a11; s, t; ε)

=

(
iπd/2

)3
(−1)a(−s)8−a−3ε∏

j=2,4,5,6,7,8 Γ (aj)Γ (4 − a4567 − 2ε)t2

× 1
(2πi)8

∫ +i∞

−i∞
dw

7∏
j=1

dzj

(
t

s

)w 7∏
j=2

Γ (−zj)

× Γ (a − 8 + 3ε + w)Γ (8 − a − 3ε − w)
Γ (a1 − z2)Γ (a3 − z3)Γ (a9 − z6)Γ (a10 − z4 − z7)

× Γ (a5 + z1 + z4)Γ (a2 + z5 + z6)Γ (2 − w + z5)
Γ (4 − a123 − 2ε + z1 + z2 + z3)Γ (8 − a − 4ε − z5)

×Γ (2 − a457 − ε − z1 − z3)Γ (a10 − 2 + w − z4 − z5 − z7)
Γ (a1234567,11 − 4 + 2ε + z4 + z5 + z6 + z7)

×Γ (2 − a567 − ε − z1 − z2 − z4)Γ (a4567 − 2 + ε + z1 + z2 + z3 + z4)
×Γ (2 − a23 − ε + z1 + z3 − z5)Γ (a9 − 2 + w − z5 − z6)
×Γ (2 − a12 − ε + z1 + z2 − z5 − z6 − z7)Γ (a7 + z1 + z2 + z3)
×Γ (a123 − 2 + ε − z1 − z2 − z3 + z5 + z6 + z7)Γ (z57 − z1)
×Γ (4 − a89,10 − ε − w + z4 + z5 + z6 + z7) . (4.88)

6Well, this is only one half of the court for singles.
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Let us stress again that one can check such a cumbersome representation
in an easy way by considering two partial cases: when one contracts hori-
zontal lines, i.e. in the limit a1, a3, a4, a6, a8 → 0, or vertical lines, i.e. at
a2, a5, a7, a9, a10 → 0. In both cases, one obtains recursively one-loop inte-
grals which can be evaluated in terms of gamma functions for general ε. On
the other hand, taking such limits reduces to calculating residues in some
integration variables.

Feynman integrals corresponding to Fig. 4.12 and many others will be
indeed necessary to perform three-loop calculations of various scattering
processes. It has turned out that one needed to calculate triple boxes right
now in order to check the cross order factorization relations7 in N = 4 su-
persymmetric Yang–Mills theory conjectured in [5].

As was emphasized in [5], one needed, in addition to the result (4.87) for
the ladder triple box considered above, just one more triple box [32], namely,
W (s, t; 1, . . . , 1,−1, ε). For this integral, one obtains [31], from (4.88),

W (s, t; 1, . . . , 1,−1, ε) = −
(
iπd/2

)3
Γ (−2ε)(−s)1+3εt2

× 1
(2πi)8

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dw dz1

7∏
j=2

dzjΓ (−zj)
(

t

s

)w

Γ (1 + 3ε + w)

×Γ (−3ε − w)Γ (1 + z1 + z2 + z3)Γ (−1 − ε − z1 − z3)Γ (1 + z1 + z4)
Γ (1 − z2)Γ (1 − z3)Γ (1 − z6)Γ (1 − 2ε + z1 + z2 + z3)

× Γ (−1 − ε − z1 − z2 − z4)Γ (2 + ε + z1 + z2 + z3 + z4)
Γ (−1 − 4ε − z5)Γ (1 − z4 − z7)Γ (2 + 2ε + z4 + z5 + z6 + z7)

×Γ (−ε + z1 + z3 − z5)Γ (2 − w + z5)Γ (−1 + w − z5 − z6)
×Γ (z5 + z7 − z1)Γ (1 + z5 + z6)Γ (−1 + w − z4 − z5 − z7)
×Γ (−ε + z1 + z2 − z5 − z6 − z7)Γ (1 − ε − w + z4 + z5 + z6 + z7)
×Γ (1 + ε − z1 − z2 − z3 + z5 + z6 + z7) . (4.89)

There is again the factor Γ (−2ε) in the denominator, so that the integral is
effectively sevenfold.

The evaluation of this integral in expansion in ε was performed in [31].
The corresponding result has the same structure as (4.87). Here are its highest
poles, up to 1/ε3,

W (s, t; 1, . . . , 1,−1, ε) = −
(
iπd/2e−γEε

)3
(−s)1+3ε t2

6∑
i=0

cj

εj
, (4.90)

7The N = 4 theory has attracted considerable interest because of its remarkably
simple structure and central role in the AdS/CFT correspondence. Very recent
results on checking the iteration structure in this theory with the help of Mellin–
Barnes representations have been obtained in [57].
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where

c6 =
16
9

, c5 = −13
6

ln x , c4 = −19
12

π2 +
1
2

ln2 x

c3 =
5
2

[Li3 (−x) − ln xLi2 (−x)] +
7
12

ln3 x − 5
4

ln2 x ln(1 + x)

+
157
72

π2 ln x − 5
4
π2 ln(1 + x) − 241

18
ζ(3) (4.91)

with x = t/s.

4.7 More Loops

One can proceed in the same style even in higher loops. Let us illustrate this
point by considering

Example 4.13. The four-loop ladder massless on-shell diagram shown in
Fig. 4.13.

We start with the derivation of an appropriate MB representation for
general powers of the propagators. As before we use this general strategy
because it provides a lot of checks and gives the possibility to obtain MB
representations for various diagrams which result from the given diagram
when contracting some lines.

As in the previous example, we need an auxiliary MB representation for
the double box with two legs off shell but in a different situation (two left legs
rather than two upper legs off shell). It can easily be derived by the technique
described and takes the form

K2(s, t; a1, . . . , a8, ε) =

(
iπd/2

)2
(−1)a∏

j=2,4,5,6,7 Γ (aj)Γ (4 − a4567 − 2ε)(−s)a−4+2ε

× 1
(2πi)6

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 6∏

j=1

dzj Γ (−zj)


 (−t)z4(−p2

1)
z5(−p2

2)
z6

(−s)z4+z5+z6

× Γ (a4567 + ε − 2 + z1 + z2 + z3)Γ (a5 + z1)Γ (a7 + z1 + z2 + z3)
Γ (4 − 2ε − a1238 + z1 + z2 + z3)Γ (a1 − z2)Γ (a3 − z3)Γ (a8 − z1)

p1

p2

p3

p4

1

2

3 4

7 5

6

8

9

10

11

12

13

Fig. 4.13. Four-loop ladder diagram
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×Γ (a1238 + ε − 2 − z1 − z2 − z3 + z4 + z5 + z6)Γ (a2 + z4 + z5 + z6)
×Γ (2 − ε − a457 − z1 − z3)Γ (2 − ε − a567 − z1 − z2)Γ (a8 − z1 + z4)
×Γ (2 − ε − a128 + z1 + z2 − z4 − z5)
×Γ (2 − ε − a238 + z1 + z3 − z4 − z6) . (4.92)

Then, similarly to the derivation of the multiple MB representation for
the triple box when we inserted the MB representation of the box with two
legs off shell into the MB representation of the on-shell double box, let us now
insert (4.92) instead. We come to the following tenfold MB representation of
the four-loop ladder diagram:

Q(s, t; a1, . . . , a13, ε) =

(
iπd/2

)2
(−1)a(−s)8−a−4ε∏

j=2,5,7,9,11,12,13 Γ (aj)Γ (4 − a9,11,12,13 − 2ε)

× 1
(2πi)10

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞


 10∏

j=1

dzj



(

t

s

)z7 ∏
j=2,3,5,6,7,8,9

Γ (−zj)

× Γ (a12 + z1)Γ (a2 + z7)Γ (z7 − z10)Γ (z10 − z4)Γ (z4 − z1)
Γ (a10 − z2)Γ (a8 − z3)Γ (a6 − z5)Γ (a4 − z6)Γ (a1 − z8)Γ (a3 − z9)

× Γ (2 − ε − a9,11,12 − z1 − z3)Γ (2 − ε − a9,12,13 − z1 − z2)
Γ (4 − 2ε − a5,8,10 + z1 + z2 + z3)Γ (4 − 2ε − a4,6,7 + z4 + z5 + z6)

×Γ (a9 + z1 + z2 + z3)Γ (a9,11,12,13 + ε − 2 + z1 + z2 + z3)
Γ (4 − 2ε − a1,2,3 + z8 + z9 + z10)

×Γ (2 − ε − a5,10 + z1 + z2 − z4 − z5)Γ (2 − ε − a5,8 + z1 + z3 − z4 − z6)
×Γ (a5 + z4 + z5 + z6)Γ (a5,8,10 + ε − 2 − z1 − z2 − z3 + z4 + z5 + z6)
×Γ (2 − ε − a6,7 + z4 + z5 − z8 − z10)Γ (2 − ε − a1,2 + z8 + z10 − z7)
×Γ (2 − ε − a4,7 + z4 + z6 − z9 − z10)Γ (2 − ε − a2,3 + z9 + z10 − z7)
×Γ (a1,2,3 + ε − 2 − z8 − z9 − z10 + z7)Γ (a7 + z8 + z9 + z10)
×Γ (a4,6,7 + ε − 2 − z4 − z5 − z6 + z8 + z9 + z10) , (4.93)

where we separate indices in a9,11,12,13 = a9 +a11 +a12 +a13 etc. by commas
because they are now two-digit.

One can check this monster representation as before, using partial cases:
when we put the indices a2, a5, a7, a9, a12 to zero we reproduce a known
analytical result for the product of four one-loop propagator diagrams with
the indices (a1, a3), (a4, a6), (a8, a10) and (a11, a13). When we put the indices
a1, a3, a4, a6, a8, a10, a11, a13 to zero we reproduce a known analytical result
for the four-loop water melon diagram with the indices a2, a5, a7, a9, a12 and
the external momentum square t.

Representation (4.93) contains a lot of information. Let us use it in or-
der to calculate the ‘N in O’ diagram8 shown in Fig. 4.14 exactly in four

8This diagram was a challenge in the eighties in renormalization group calcula-
tions. In the first result on the five-loop β-function in the φ4 theory [61] (see [132]
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Fig. 4.14. The ‘N in O’ diagram

dimensions, i.e. at ε = 0. This is nothing but

N(q2) = Q(s, t; 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0)

which is, of course, independent of t and proportional to 1/q2. The limit
a2, a12 → 0 is achieved as described above, due to four residues with respect
to some of the integration variables. Then one can simply set a6 = a8 = 0
and obtain

N(q2) =
(
iπ2
)4 C

q2
(4.94)

with the constant C given by a finite fivefold MB integral. Three of these five
integrations can be performed explicitly with the help of tabulated formulae
of Appendix D, and one can obtain the following twofold MB integral:

C =
1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞

dz1dz2

2z2
1z2

Γ (z1 + z2)Γ (1 − z1 − z2)Γ (z2)Γ (−z2)

×Γ (1 − z1)Γ (z1) [z1(ψ(1 − z1) + ψ(z1) − ψ(1 − z1 − z2) − ψ(z1 + z2))
−z2(ψ(1 − z1 − z2) − ψ(−z2) − ψ(z2) + ψ(z1 + z2))]
×
[
ψ(z1)2 − 2ψ(z1)ψ(1 − z1 − z2) + 2ψ(1 − z1 − z2)ψ(z1 + z2)

−ψ(z1 + z2)2 − ψ′(z1) + ψ′(z1 + z2)
]

, (4.95)

where the poles at z1 = 0 and z2 = 0 are considered left so that one can
choose 0 < Rez1,Rez2 < 1 with Rez1 + Rez2 < 1 for the integration contour.
One can check numerically, with a high accuracy, that the known result which
will be presented shortly is successfully reproduced.

The twofold MB integral (4.95) can be converted into a sum of two twofold
series of expressions consisting of nested sums (see Appendix C). The first
of them is obtained by taking residues at the points z2 = 1, 2, . . . and then
at z1 = 1, 2, . . .. The second of them is obtained by taking residues at the
points z2 = 1 − z1 + n2 with n2 = 1, 2, . . . and then at z1 = 1, 2, . . .. Then
one can perform one of the summations using the package SUMMER [215] (see
also [153]) and arrive at the following onefold series:

for a corrected later version) the contribution of this diagram was treated numeri-
cally. The analytical value of this diagram was predicted and later proven in [131]
using a technique based on functional equations – see more details in Appendix F.
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C =
∞∑

n=1

5∑
j=1

cj,n

nj
, (4.96)

where

c5,n = 5π2/6 − 6S2
1 − 27S2 , (4.97)

c4,n = 5π2S1/2 + 3S3
1 − 18S12 + 12S1S2 − 6S3 + 12ζ(3) , (4.98)

c3,n = π4/5 − 4π2S2
1/3 − S4

1/2 − 28S112 + 20S1S12 − 10S13

−19π2S2/6 − S2
1S2 + 37S2

2/2 + 4S1S3 + 11S4 + 6S1ζ(3) , (4.99)
c2,n = π4S1/10 + π2S3

1/6 − 2S1112 − 18S113 − 17π2S12/6 + 16S1S13

+11S14 + 4π2S1S2/3 − 2S3
1S2/3 + 6S12S2 − S1S

2
2 − 13S212

+19S23 − π2S3/3 − 5S2
1S3 + 2S2S3/3 − 6S1S4 − 4S5 − 2π2ζ(3)/3

−3S2
1ζ(3) − S2ζ(3) + 14ζ(5) , (4.100)

c1,n = 61π6/2520 − 16S1113 + π2S112/3 + 4S1S113 + 14S114 − 3S2
12

+10S123 − 3π2S13 − 5S1S14 + 8S15 + 3π4S2/20 − π2S2
1S2/6

+6S112S2 − S1S12S2 + 10S13S2 − 5π2S2
2/6 + S2

1S2
2 + 5S3

2/3 − 8S2112

+S1S212 − 3S1S23 + 18S24 + 10π2S1S3/3 + 2S3
1S3/3 − 4S12S3

−7S1S2S3 + 10S2
3/3 − π2S4/6 − 3S2

1S4 − 31S2S4 − 9S1S5 − 80S6/3
−4S12ζ(3) + 4S1S2ζ(3) + 14S3ζ(3) − 9ζ(3)2 , (4.101)

and we omit the argument n−1 in all the nested sums involved, i.e. S1 stands
for S1(n − 1) etc.

Summation of the terms with 1/n5, . . . ,1/n2 can be performed with the
help of formulae (C.51)–(C.82) implemented in SUMMER [215]. The terms with
1/n are also successfully summed up by SUMMER, and we arrive at the well-
known result [131]:

N(q2) =
1
q2

(
iπ2
)4 441

8
ζ(7) . (4.102)

I cannot say that the derivation of this result outlined above is simpler
than that of [131]. Let me, however, stress that the present derivation involves
a lot of steps that are performed automatically, and a lot of other similar
results (e.g. for diagrams which can be obtained from the four-loop ladder
diagram by shrinking other lines to points) can be obtained quite similarly.

4.8 MB Representation versus Expansion by Regions

To expand a given Feynman integral in some limit, where certain masses
and/or kinematical invariants are large with respect to the rest of these para-
meters, one can successfully apply expansion by regions [28,192], as explained
in the book [186] in detail. An alternative technique for solving the problem
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of asymptotic expansion is provided by multiple MB representations. Let us
see how it works using some of our previous examples.

For Example 4.1, we have derived the MB representation (4.3). Let us use
it to expand such Feynman integrals in the two different limits, m2/q2 → 0
and q2/m2 → 0. Consider, for example, F4.1(2, 1, 4) represented by (4.4).

This is an integral over the variable z, with the ratio m2/q2 present in
the form (m2/q2)z. The initial integration contour is at −1 < Rez < 0. Let
us observe that if we follow the procedure used to evaluate this integral,
i.e. close the integration contour to the right and pick up (minus) residues at
z = 0, 1, 2, . . . , n, . . . we shall obtain terms of the asymptotic expansion in the
limit m2/q2 → 0. Indeed, one can prove that the remainder of this expansion
determined by picking up the (n+1)-st residue is of order (m2)n+1. Thus we
obtain

F4.1(2, 1; 4) =
iπ2

q2

[
ln

−q2

m2
− m2

q2
− m4

2(q2)2
− . . .

]
. (4.103)

If we are interested in the opposite limit, q2/m2 → 0, the natural idea is
to close the integration contour to the left and take residues at the points
z = −1,−2, . . . to obtain

F4.1(2, 1; 4) = − iπ2

m2

[
1 +

q2

2m2
+

(q2)2

3m4
+ . . .

]
. (4.104)

Consider now Example 4.3, where IR and collinear divergences are present.
We can use MB representation (4.11) for expanding Feynman integrals with
various indices in the two different limits, t/s → 0 and s/t → 0. There is
again the typical dependence of the ratio of t and s on z of the form (t/s)z.
The procedure of using (4.11) to obtain an asymptotic expansion in the limit
t/s → 0 is standard: to shift the integration contour to the right. For the
integral with given indices al, the points where it is necessary to take (mi-
nus) residues are given by the right poles of the gamma functions, in our
terminology: at z = 0, 1, 2, . . . and at z = 2 − max{a1, a3} − a2 − a4 − ε + n
with n = 0, 1, 2, . . .. For example, for F (s, t; d) = F4.3(s, t; 1, 1, 1, 1, d) repre-
sented by (4.12), these are the two series of residues at z = 0, 1, 2, . . . and
z = −1−ε,−ε, 1−ε, . . . which reproduce the hard and collinear contributions,
respectively, to the asymptotic expansion within expansion by regions – see
Chap. 8 of [186]. We obtain

F (s, t; d) =
iπd/2

Γ (−2ε)

{
Γ (1 + ε)Γ (−ε)2

s(−t)1+ε

[
ln

t

s
+ 2ψ(−ε) − ψ(1 + ε) + γE

]

−Γ (ε)Γ (1 − ε)2

s2(−t)ε

[
ln

t

s
+ 2ψ(1 − ε) − ψ(ε) − 1 + γE

]

+
Γ (2 + ε)Γ (−1 − ε)2

(−s)2+ε
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+
Γ (ε − 1)Γ (2 − ε)2(−t)1−ε

2s3

[
ln

t

s
+ 2ψ(2 − ε) − ψ(ε − 1) − 3

2
+ γE

]

+
Γ (3 + ε)Γ (−2 − ε)2t

(−s)3+ε

}
+ . . . . (4.105)

To obtain the asymptotic expansion in the opposite limit, s/t → 0, one
shifts the integration contour to the left and takes residues at the left poles
at z = 2 − min{a2, a4} − n and at z = 2 − a − ε − n with n = 0, 1, 2, . . ..
For F (s, t; d), these are the two series of residues at z = −1,−2, . . . and
z = −2 − ε,−3 − ε,−4 − ε, . . .. One can check that the resulting expansion
is nothing but (4.105) with the interchange s → t, t → s – this should be the
case because of the symmetry of the initial integral.

In these two examples, terms of asymptotic expansions were obtained as
residues in onefold MB integrals. As a non-trivial example with a multiple MB
integration let us turn again to Example 4.8 of massless on-shell double boxes.
Let us evaluate the leading asymptotic behaviour of the K(s, t; 1, . . . , 1, 0, ε)
in the Regge limit, t/s → 0, using representation (4.48).

The starting point of the evaluation of this quantity in expansion in ε was
the analysis of gluing of right and left poles which showed the way how the
poles in ε are generated. Now, our starting point is to look at the integration
over the variable z1 which enters as the power of the ratio t/s and try to
understand what right poles with respect to z1 are. One source of such poles
is obvious: this is Γ (−z1) corresponding to the hard part within expansion
by regions – see Chap. 8 of [186]. This part, however, starts only with order
(t/s)0 which is subleading, as we will see shortly. Other sources are not visible
at once, similarly to the poles in ε. However, the experience obtained in our
previous examples when analysing the singular behaviour in ε shows how
the poles in z1 appear after integrating over z2, z3 and z4. Let us use the
rule formulated in Sect. 4.2 and systematically applied in our examples and
analyse the integrand of (4.48) from the point of view of generating right
poles in z1. Apart from Γ (−z1), there are only two gamma functions that
can generate a singularity of the type Γ (. . . − z1):

Γ (−1 − ε − z1 − z2) and Γ (−1 − ε − z1 − z3) .

Indeed, the singularity of the type Γ (−1 − ε − z1) is generated, due to the
integration over z2, because of the presence of Γ (−ε + z2), and, due to the
integration over z3, because of the presence of Γ (−ε+z3). Thus, to reveal this
singularity, we can take a residue at the first pole of Γ (−ε+z2) or Γ (−ε+z3).

Therefore, we start with the same decomposition F = F11+F10+F01+F00

as in Sect. 4.4. Now, in F11 represented by (4.49) and in F01 represented by
(4.50), the function Γ (−1−2ε−z1) is already explicitly present. The term F00

does not contribute now because it cannot generate the leading asymptotic
behaviour in the given limit.

To evaluate the leading asymptotics, let us, first, consider F11 and take
(minus) residue at z1 = −1 − 2ε to obtain
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f11 =
Γ (1 + 2ε)

x1+2ε

1
2πi

∫ +i∞

−i∞
dz4

Γ (1 − ε − z4)Γ (−2ε − z4)2

Γ (1 + ε + z4)Γ (−4ε − z4)

×Γ (ε + z4)2Γ (z4) [2γE + ln x + ψ(−2ε) − ψ(1 + 2ε) − ψ(−4ε − z4)
+ψ(−2ε − z4) + ψ(1 − ε − z4) + ψ(z4)] . (4.106)

Observe that this quantity is nothing but the contribution F111 that we have
met in Sect. 4.4. It was evaluated in expansion in ε by taking residues at
z4 = 0 and z4 = ε and shifting the integration contour over z4.

Starting from F01 and taking (minus) residue at z1 = −1 − 2ε we obtain

f01 = −Γ (1 + 2ε)
x1+2ε

1
(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz2dz4Γ

∗(−ε + z2)Γ (ε − z2)

× Γ (ε + z4)Γ (−2ε − z4)Γ (1 − ε − z4)
Γ (−4ε − z4)

× Γ (z2 + z4)Γ (−ε + z2 + z4)Γ (−ε − z2 − z4)
Γ (1 + z2 + z4)

. (4.107)

where the asterisk denotes, as in Appendix D, the opposite nature of the first
pole of Γ (−ε+ z2). Now we observe that this is nothing but the contribution
F011 of Sect. 4.4, where it was explained how it can be evaluated in expansion
in ε. Summing up results for F111 and F011 we reproduce the leading part of
(4.54), e.g. the terms of order 1/t modulo logarithms.

So, we see that the evaluation of the leading asymptotic behaviour in
the Regge limit, using MB representation, is a (simple) part of the global
evaluation. Observe that the evaluation of the triple box in Example 4.11
is also organized in such a way that the leading Regge asymptotics can be
extracted from this evaluation. On the other hand, it was also evaluated using
expansion by regions [188].

It is not clear in advance which way is simpler: expanding by MB rep-
resentation, or, by regions. My experience tells me that, usually, expanding
by regions is certainly preferable, but sometimes, it looks more convenient
to derive an appropriate MB representation and proceed as described in this
section. But I can imagine that, sometimes, this is just a matter of taste. In
complicated situations, the two strategies can successfully be combined. In
particular, extracting the leading asymptotic behaviour from a general MB
representation can show what kind of contributions one gets and will help
detecting all regions which contribute. For example, the calculation [31] of
the tennis court diagram of Fig. 4.12 provided a hint for finding a non-trivial
contribution within expansion by regions which was, in turn, used to check
the result. See also a recent paper [126], where both strategies to expand
Feynman integrals in the Sudakov limit were combined.

The asymptotic behaviour in various limits was evaluated with the help
of MB representation in many papers – see, e.g., [112] and a very recent
paper [71]. Recently, it was also suggested [95] to apply MB representation
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to expand Feynman integrals in various limits using the so-called converse
mapping theorem . It turns out, however, that all the examples the authors
present in this paper are trivial from the point of view of the introduction
of MB integrations (the formula (4.2) is used in all the cases) so that the
corresponding expansions can be obtained straightforwardly by the technique
described in this chapter. It is hardly believable that the method of [95] can
be applied in non-trivial situations :-(

4.9 Conclusion

Mellin integrals were used for the evaluation of Feynman integrals in various
ways. For example, in [210], the first analytical result for the massless double
box of Fig. 4.7 was obtained in the case where all the external legs are off-
shell so that this is a function depending on many variables, s, t and p2

i for
i = 1, 2, 3, 4. Nevertheless it was possible to evaluate the double box for
all powers of the propagators equal to one exactly in four dimensions. The
following nice mathematical result was obtained9:

F4.7(s, t, p2
1, p

2
2, p

2
3, p

2
4) =

(
iπ2
)2

s2t
C(p2

1p
2
4, p

2
2p

2
3, st) , (4.108)

where

C(x1, x2, x3) =
1
λ

(6 [Li4(−ρx) + Li4(−ρy)]

+3 ln
y

x
[Li3(−ρx) − Li3(−ρy)] +

1
2

ln2 y

x
[Li2(−ρx) + Li2(−ρy)]

+
1
4

ln2(ρx) ln2(ρy) +
π2

2
ln(ρx) ln(ρy) +

π2

12
ln2 y

x
+

7π4

60

)
, (4.109)

λ ≡ λ(x, y) =
√

(1 − x − y)2 − 4xy , (4.110)

ρ ≡ ρ(x, y) =
2

1 − x − y + λ(x, y)
, (4.111)

and x = x1/x3, y = x2/x3.
Moreover, a similar analytical result was obtained [211] also for a general

off-shell h-loop ladder planar diagram, in particular, for the off-shell triple
box.10 In [212], an off-shell result for the non-planar two-loop three-point
diagram was also obtained using the MB representation. Other examples of

9In fact, due to conformal invariance, this is a function of three variables at
d = 4. This can be seen explicitly in this result.

10Well, one can hardly expect that explicit analytical results can be obtained for
other (even double-box) Feynman integrals of this purely off-shell class, in particu-
lar, with a double power of some propagator, with some irreducible numerator, or
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results obtained by this technique are analytical expressions for n-point one-
loop massive Feynman integrals for general d [74].

Let me summarize the basic features that distinguish the technique of
MB representation presented in this chapter and oriented at the evaluation
in ε-expansion from other approaches based on Mellin integrals.

– An appropriate multiple MB representation for a given class of integrals is
derived for general powers of the propagators and irreducible numerators.
In order to achieve the minimal number of MB integrations it is recom-
mended to derive an MB representation for a sub-loop integral, insert it
in the given integral over the loop momenta, etc.

– There is always the possibility to check multiple MB representations,
which are sometimes rather cumbersome, by using simple partial cases.

– Multiple MB integrals are very flexible for the resolution of the singular-
ities in ε. This procedure reduces to shifting contours, in an appropriate
way, and taking corresponding residues.

– After the resolution of the singularities in ε, at least some of the integra-
tions can be performed explicitly by tabulated formulae of Appendix D,
with results in terms of gamma and psi functions.

– One can usually have an easy numerical control on finite (in ε) MB in-
tegrals: in simple situations, when one uses MATHEMATICA, it is enough to
integrate from −5i to +5i along the imaginary axis to have a very good
accuracy. In complicated situations, with multiple finite MB integrals,
much more professional way is turn to a compact integration domain, by
Im z = ln [y/(1 − y)], as it was done in [6, 68].

– When the integration in multiple MB integrals is hardly performed explic-
itly, one can convert them into multiple series and apply such packages
as SUMMER [215] and XSummer [153] for summation.

– Onefold MB integrals can be summed up by closing the integration con-
tour and summing up corresponding residues. Here one can apply sum-
mation formulae of Appendix C and/or SUMMER and XSummer.

– All the manipulations with MB integrals can be done on a computer. (For
example, I use MATHEMATICA for this.)

The technique of multiple MB representations is not always optimal. This
holds at least for non-planar double boxes with one leg off-shell. Although
first analytical results were obtained with its help [184, 185] the adequate
technique here turned out to be the method of differential equations which
will be studied in Chap. 7. On the other hand, massive on-shell double box

where one of the lines other than rungs is contracted to a point. The possibility to
obtain such a nice mathematical result for such a complicated object depending on
so many variables in the case of all indices equal to one was later understood by
making an interesting mathematical link with some problem of conformal quantum
mechanics – see [125].
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diagrams considered in this chapter provide an example of a situation where
an optimal way is to combine these two methods.

After the two strategies to resolve singularities of Feynman integrals in ε
were formulated it became clear that at least Strategy B could be formulated
algorithmically and implemented on a computer. Indeed, two algorithmic for-
mulations have appeared recently [6, 68], and the algorithm of [68] has been
already implemented in Mathematica. So, now one can use it at the second
step of the method of this chapter and obtain, as an output, a sum of MB
integrals expanded up to a desired order in ε. One can check this using any
example of this chapter. Moreover, the application of the Barnes lemmas is
also implemented within this algorithm. In addition, the possibility of nu-
merical integration is also implemented there. For example, for the tennis
court integral discussed above this numerical integration provides excellent
agreement11 with the analytic result of [31]. Numerous examples have shown
that the numerical integration implemented in the code of [68] provides rea-
sonable precision in Euclidean domains of kinematic variables. However, in
typically physical Minkowskian regions, there are problems with stability of
numerical integration — see [68].

Let me illustrate the power of the Czakon’s algorithm [68] combined with
the general strategy described in this chapter, using the example of the off-
shell planar double box diagram discussed in the beginning of this section.
Although the given integral is finite at d = 4, let us first consider it within
dimensional regularization. Derive an MB representation for general powers
of the propagators straightforwardly generalizing derivations of this chapter.
One obtains a tenfold MB representation after that. It can be checked as
described above. (See, e.g., ‘horizontal’ and ‘vertical’ checks for the tennis
court in Sect. 4.6.) Set all the indices to one. Formally, we obtain an expression
which is zero at ε = 0 because of Γ (−2ε) in the denominator. We anticipate,
however, that there should be gluing of poles of different nature which leads
to a non-zero result. So, a resolution of singularities in ε is needed. Apply
the Czakon’s code to perform this job. In the limit ε → 0, we obtain, after
a couple of seconds, just one fourfold MB integral. Using simple changes of
variables, it is easy to see that we have obtained quite straightforwardly just
the fourfold MB integral given by the formula (24) of [210] which arises in
the middle of the calculation of [210].

I believe that the Strategy A can be also automated. Alternatively, the two
strategies can be combined in order to achieve an optimization of calculations.
Anyway, it is clear that at least the code of [68] can be generalized in various
ways: more corollaries of the Barnes lemmas can be included, summation
of series, probably, with an interface with SUMMER can be installed, various

11If such algorithm existed in 2005, the authors of [31] would be satisfied by
this powerful check and would not calculate asymptotic behavior when s/t → 0 by
expansion by regions [28] :-)
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additional tricks, for example, used in the evaluation of triple boxes, can be
implemented.

To summarize, the method of MB representation is a powerful method
which has good chances to be developed and optimized further. It can even
happen that it will provide the first possibility to calculate any individual
Feynman integral, at the high level of complexity of modern calculations,
with a reasonable precision. This will be a very important option in situations
where the reduction to master integrals (see the next chapter) turns out to
be too complicated.

Problems

4.1. Evaluate

F (s, t; d) =
∫

ddk

(k2)2(k + p1)2(k + p1 + p2)2(k − p3)2
, (4.112)

at p2
i = 0, i = 1, 2, 3, 4 and p4 = −p1 − p2 − p3 up to ε1.

4.2. Derive an MB representation for

F (λ1, . . . , λ5) =
∫ ∫

ddk ddl

(−2v ·k)λ1(−2v ·l)λ2

×
∫

ddr

(−r2 + m2)λ3 [−(k + r)2 + m2]λ4 [−(l + r)2 + m2]λ5
. (4.113)

Evaluate F (2, 2, 1, 2, 2) up to ε1.

4.3. Derive a onefold MB representation for

F (λ1, λ2) =
∫

ddk

(−k2 + m2)λ1 [−(q − k)2 + m2]λ2
(4.114)

Evaluate F (1, 1) in a Laurent expansion in ε up to ε0.

4.4. Derive a onefold MB representation for

F (λ1, . . . , λ6) =
∫ ∫

ddk ddl ddr

(−2v · r)λ1(−r2)λ2(−k2 + m2)λ3(−l2 + m2)λ4

× 1
[−(k + r)2 + m2]λ5 [−(l + r)2 + m2]λ6

. (4.115)

4.5. Derive an MB representation for

F (λ1, . . . , λ7) =
∫ ∫

ddkddl

(−k2)λ1(−l2)λ2 [−(k − q)2]λ3 [−(l − q)2]λ4

× 1
[−(k − l)2]λ5(−v · k)λ6(−v · l)λ7

, (4.116)

where v · q = 0.
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4.6. Evaluate K(1, . . . , 1,−1) where K is given by (4.44) in a Laurent ex-
pansion in ε up to ε0.

4.7. Evaluate the massless on-shell non-planar double box diagram shown in
Fig. 4.15 with all the indices equal to one in a Laurent expansion in ε up to
the finite part.

Fig. 4.15. Non-planar double box



5 IBP and Reduction to Master Integrals

The next method in our list is based on integration by parts1 (IBP) [66]
within dimensional regularization, i.e. property (2.39). The idea is to write
down various equations (2.39) for integrals of derivatives with respect to loop
momenta and use this set of relations between Feynman integrals in order to
solve the reduction problem, i.e. to find out how a general Feynman integral
of the given class can be expressed linearly in terms of some master integrals.
In contrast to the evaluation of the master integrals, which is performed,
at a sufficiently high level of complexity, in a Laurent expansion in ε, the
reduction problem is usually2 solved at general d, and the expansion in ε
does not provide simplifications here.

The reduction can be stopped whenever one arrives at sufficiently simple
integrals. On the other hand, one could try to solve the reduction problem
in the ultimate mathematical sense, i.e. to reduce a given integral to true
irreducible integrals which cannot be reduced further.

To illustrate the procedure of solving IBP relations we shall begin in
Sect. 5.1 with very simple one-loop examples. Usually, we shall indeed stop
the reduction if we obtain integrals that can be expressed in terms of gamma
functions for general values of the parameter of dimensional regularization,
d. In Sect. 5.2, we shall proceed in two loops. We shall also study some
general tricks within the method of IBP such as the triangle rule and shifting
dimension. One of the two-loop examples, the reduction of massless on-shell
double boxes, will be considered separately in Sect. 5.3. We shall conclude in
Sect. 5.4 with brief bibliographic remarks and a description of attempts of
making systematic the procedure of solving IBP recurrence relations.

1For one loop, IBP was used in [123]. The crucial step – an appropriate modi-
fication of the integrand before differentiation, with an application at the two-loop
level (to massless propagator diagrams) – was taken in [66] and, in a coordinate-
space approach, in [213]. The case of three-loop massless propagators was treated
in [66].

2At the modern high level of complexity of calculations, an expansion in ε can
be also desirable here. Then it happens natural to turn to a set of master integrals
whose coefficient functions are not singular at ε = 0 – see a discussion of this idea
in [60].
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5.1 One-Loop Examples

The first example is very simple:

Example 5.1. One-loop vacuum massive Feynman integrals

F5.1(a) =
∫

ddk

(k2 − m2)a
. (5.1)

In this chapter, we are concentrating on the dependence of Feynman inte-
grals on the powers of the propagators so that we will usually omit dependence
on dimension, masses and external momenta. Let us forget that we know the
explicit result (A.1) and try to exploit information following from IBP. Let
us use the IBP identity

∫
ddk

∂

∂k
·k 1

(k2 − m2)a
= 0 , (5.2)

with (∂/(∂k))·k = (∂/(∂kµ))kµ. To write down resulting quantities in terms
of integrals (5.1) we just replace k2 by (k2 − m2) + m2. We obtain

(d − 2a)F (a) − 2am2F (a + 1) = 0 . (5.3)

This gives the following recurrence relation:

F (a) =
d − 2a + 2
2(a − 1)m2

F (a − 1) . (5.4)

We see that any Feynman integral with integer a > 1 can be expressed
recursively in terms of one integral F (1) ≡ I1 which we therefore consider as
a master integral. (Observe that all the integrals with non-positive integer
indices are zero since they are massless tadpoles.) This can be done explicitly
here:

F (a) =
(−1)a (1 − d/2)a−1

(a − 1)!(m2)a−1
I1 , (5.5)

where (x)a is the Pochhammer symbol and the only master integral is

I1 = −iπd/2Γ (1 − d/2)(m2)d/2−1 . (5.6)

As in Chap. 3 let us consider

Example 5.2. Massless one-loop propagator Feynman integrals

F5.2(a1, a2) =
∫

ddk

(k2)a1 [(q − k)2]a2
. (5.7)
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(As we have agreed, the dependence on q2 and d is omitted.) For integer
powers of the propagators, these integrals are zero whenever one of the indices
is non-positive. Let us forget the explicit result (3.6) and try to apply the
IBP identity ∫

ddk
∂

∂k
·k 1

(k2)a1 [(q − k)2]a2
= 0 . (5.8)

We recognize different terms resulting from the differentiation as integrals
(5.7) and obtain the following relation

d − 2a1 − a2 − a22+(1− − q2) = 0 (5.9)

which is understood as applied to the general integral F (a1, a2) with the stan-
dard notation for increasing and lowering operators, e.g. 2+1−F (a1, a2) =
F (a1 − 1, a2 + 1). We rewrite it as

a2q
22+ = a21−2+ + 2a1 + a2 − d (5.10)

and obtain the possibility to reduce the sum of the indices a1 +a2. Explicitly,
applying (5.10) to the general integral and shifting the index a2, we have

F (a1, a2) = − 1
(a2 − 1)q2

[(d − 2a1 − a2 + 1)F (a1, a2 − 1)

−(a2 − 1)F (a1 − 1, a2)] , (5.11)

Indeed, a1 + a2 on the right-hand side is less by one than on the left-hand
side. This relation can be applied, however, only when a2 > 1. Suppose now
that a2 = 1. Then we use the symmetry property F (a1, a2) = F (a2, a1) and
apply (5.11) interchanging a1 and a2 and setting a2 = 1:

F (a1, 1) = −d − a1 − 1
(a1 − 1)q2

F (a1 − 1, 1) . (5.12)

This relation enables us to reduce the index a1 to one and we see that the
two relations (5.11) and (5.12) provide the possibility to express any integral
of the given family in terms of the only master integral I1 = F (1, 1) given by
(3.8), i.e. F (a1, a2) = c(a1, a2)I1, and the corresponding coefficient function
c(a1, a2) is constructed as a rational function of d.

Let us now complete the analysis for the example considered in the intro-
duction, i.e. once again consider our favourite example:

Example 5.3. One-loop propagator Feynman integrals (1.2) corresponding
to Fig. 1.1.

We stopped in Chap. 1 at the point where we were able to express any
integral (1.2) in terms of the master integral I1 = F (1, 1) and integrals with
a2 ≤ 0 which can be evaluated for general d in terms of gamma functions by
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means of (A.3). So, for any given indices a1, a2, we obtain, as a result of the
reduction,

F (a1, a2) = c1(a1, a2)I1 +
∑

i1>0,i2≤0

c′(i1, i2)F (i1, i2) , (5.13)

where the sum is finite and c′(i1, i2) are rational functions of q2,m2 and d.
Let us now try to understand what the true master integrals are. We want
to have really irreducible integrals, i.e. that cannot be expressed linearly in
terms of other integrals.

Suppose that a2 ≤ 0, Then we can apply (1.11) to reduce a1 to one. In
the case a1 = 1, we use relation (1.11) multiplied by 2− to express the term
2m2a11+2− in (1.13). Thus, we obtain the following relation

(d − a2 − 1)2− = (q2 − m2)2a22+ + (q2 + m2)(d − 2a2 − 1) (5.14)

that can be used to increase the index a2 to zero or one starting from nega-
tive values. We come to the conclusion that there are two irreducible integrals
I1 = F (1, 1) given by (1.7) and I2 = F (1, 0) which equals the right-hand side
of (5.6), and any integral from our family can be expressed linearly in terms
of them. This reduction procedure to I1 and I2 can easily be implemented
on a computer. Observe that the integrals I1 and I2 cannot be linearly ex-
pressed through each other, with a coefficient which is a rational function of
d, because, at general d, I1 is a non-trivial function of q2 and m2 while I2 is
independent of q2. Explicitly, instead of relation (5.13), we now have

F (a1, a2) = c1(a1, a2)I1 + c2(a1, a2)I2 . (5.15)

Let us now come back to the point where our reduction was incomplete,
in the mathematical sense, and we had (5.13). Suppose that we made the
observation that all the integrals with nonpositive a2 are proportional to
F (1, 0) with coefficients that are rational functions of d. Then we can write
down equation (5.15) immediately and say that the coefficient function at I2

is obtained as

c2(a1, a2) =
1

F (1, 0)

∑
i1>0,i2≤0

c′(i1, i2)F (i1, i2) , (5.16)

where the integrals on the right-hand side are evaluated by (A.3). This ra-
tio can be simplified using well-known properties of gamma functions. If we
proceed with Mathematica we can try to apply the command FullSimplify
at least for smaller values of the indices. Alternatively, one can recursively
apply identities for gamma functions of the form Γ (a + rε) reducing them to
Γ (1 + rε). So, it looks like we can have the desired reduction (5.15) without
the second part of the described procedure. Let us however stress that this
result would obtained with the help of analytical information on the inte-
grals involved, while the second part of the reduction was done using only
algebraical IBP equations, without such additional analytical information.
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This was the last example in this chapter, where we solve the reduction
problem in the maximal way, i.e. in the sense of reduction to irreducible
integrals. In the rest of the examples, we shall not be so curious and will stop
the reduction whenever we arrive at sufficiently simple classes of integrals.
In Chap. 6, however, the reduction will be performed in the ultimate sense.
Some other approaches with this property will be characterized in Sect. 5.4.
and Appendix G.

The next example is again our old one.

Example 5.4. The triangle diagrams of Fig. 3.5 given by (3.23).

Writing down IBP relations with p1,2 · (∂/(∂k)) and (∂/(∂k)) ·k we ob-
tain the following three equations:

a3 − a1 + a11+(3− + m2) − a22+(1− − 3− + Q2 − m2)
−a33+(1− − m2) = 0 , (5.17)

a3 − a2 + a22+(3− + m2) − a11+(2− − 3− + Q2 − m2)
−a33+(2− − m2) = 0 , (5.18)

d − a1 − a2 − 2a3 − (a11+ + a22+)(3− + m2) − 2m2a33+ = 0 , (5.19)

where Q2 = −q2 = −(p1 − p2)2.
Let us observe that the integrals (3.23) can be evaluated in terms

of gamma functions if at least one of the indices is non-positive. In the
case of a1 ≤ 0 or a2 ≤ 0, we can apply (A.6) and, in the case of a3 ≤ 0,
we can apply (A.12). Let us now assume that all the indices are posi-
tive. Let us apply (5.17)–(5.19) to the general integral F (a1, a2, a3) and
solve the corresponding linear system of the three equations with respect
to F (a1 + 1, a2, a3), F (a1, a2 + 1, a3) and F (a1, a2, a3 + 1). We shall obtain
an expression of these quantities in terms of integrals with the sum of the
indices equal to a1 + a2 + a3. Using the first part of this solution we obtain
a relation that expresses F (a1, a2, a3) in terms of integrals with a1 less by
one and can be used in the case a1 > 1. Similarly, the second and the third
parts of the solution give the possibility to reduce a2 > 1 and a3 > 1 to one.
Therefore, we see that any given Feynman integral (3.23) can be reduced to
I1 = F (1, 1, 1) and a family of simple integrals which can be expressed in
terms of gamma functions. For example, we have

F (1, 1, 2) =
(d − 4)(2m2 − Q2)

2m2(m2 − Q2)
I1

+
1

2m2(m2 − Q2)
[
Q2(F (1, 2, 0) + F (2, 1, 0))

−m2(F (0, 1, 2) + F (0, 2, 1) + F (1, 0, 2) + F (2, 0, 1))
]

, (5.20)

where all the integrals with an index equal to zero can be evaluated simply
by (A.4) and (A.7).
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Observe that the coefficient at I1 in (5.20) is proportional to ε. According
to [75], where the reduction in the massless case was performed and in the case
of general masses analysed, this is a general phenomenon, i.e. this property
holds for any F (a1, a2, a3) with a1 +a2 +a3 > 3 in the case of general masses
ml and indices. As a result, such integrals involve only elementary functions
(no polylogarithms) in the expansion in ε up to the finite part – this was
noticed very much time ago [128].

Let us again consider the massless on-shell boxes which we analysed in
Examples 3.3 and 4.3. For convenience, we change the numbering of the lines
as compared with Chaps. 3 and 4.

Example 5.5. The massless on-shell box Feynman integrals of Fig. 5.1 with
p2

i = 0, i = 1, 2, 3, 4 and general integer powers of the propagators.

Let us first observe that whenever one of the indices is non-positive, the
integrals can be evaluated in terms of gamma functions for general ε. In
particular, if some index is zero, e.g., a4 = 0, one can apply (A.28). Suppose
now that all the indices are positive. Starting from the IBP identity with the
operator (∂/∂k)·k acting on the integrand and choosing the loop momentum
k to be the momentum of each of the four lines, we obtain the following four
IBP relations:

sa11+ = a1 + 2a2 + a3 + a4 − d + (a11+ + a33+ + a44+)2− = 0 , (5.21)
sa22+ = 2a1 + a2 + a3 + a4 − d + (a22+ + a33+ + a44+)1− = 0 , (5.22)
ta33+ = a1 + a2 + a3 + 2a4 − d + (a11+ + a22+ + a33+)4− = 0 , (5.23)
ta44+ = a1 + a2 + 2a3 + a4 − d + (a11+ + a22+ + a44+)3− = 0 , (5.24)

where s = (p1 + p2)2 and t = (p1 + p3)2 are Mandelstam variables, as above.
These equations can be used to reduce the indices al to one. For example,
when (5.21) is applied to the general integral, we have, on the right hand
side, terms with a1 less by one, with the exception of one term corresponding
to a11+2−. This term, however, decreases a2. Anyway, the sum of the indices
corresponding to the right-hand side of (5.21)–(5.24) is less by one than
corresponding to the left-hand side.

Therefore we come to the conclusion that any given Feynman integral
F5.5(a1, a2, a3, a4) can be expressed linearly in terms of the master integral

p1

p2

p3

p4

1

3

2

4

Fig. 5.1. Box diagram
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I1 ≡ F5.5(1, 1, 1, 1) and a family of integrals where some indices are non-
positive. We again stop reduction here and do not try to reduce various inte-
grals with non-positive indices to true master integrals. In Chap. 6, however,
we will see what these true master integrals are.

5.2 Two-Loop Examples

Let us now see how IBP relations can be used for the reduction of the massless
Feynman integrals corresponding to Fig. 3.10. We have already considered
these diagrams in Example 3.5 in Chap. 3.

Example 5.6. Two-loop massless propagator Feynman integrals (3.43) of
Fig. 3.10 with integer powers of the propagators.

Let us observe that if a5 = 0 the integrals over k and l decouple and can
be evaluated in terms of gamma functions by use of (3.6):

F5.6(a1, a2, a3, a4, 0) = (−1)a1+a2+a3+a4

(
iπd/2

)2

× G(a1, a2)G(a3, a4)
(−q2)a1+a2+a3+a4+2ε−4

. (5.25)

When some other index al is zero, the integral becomes recursively one-
loop (see Sect. 3.2.1), i.e. it can be evaluated in terms of gamma functions
by successively applying the same one-loop formula, for example,

F5.6(a1, a2, a3, 0, a5) = (−1)a1+a2+a3+a5

(
iπd/2

)2

×G(a3, a5)G(a2, a1 + a3 + ε − 2)
(−q2)a1+a2+a3+a5+2ε−4

. (5.26)

To solve the reduction problem for integrals (3.43) one can apply six IBP
relations corresponding to zero values of integrals of the operators ∂

∂kµ
kµ,

lµ
∂

∂kµ
, ∂

∂lµ
lµ, kµ

∂
∂lµ

, qµ
∂

∂kµ
and qµ

∂
∂lµ

acting on the integrand in (3.43). Taking
derivatives, using identities such as 2k · (k − l) = k2 + (k − l)2 − l2, and
recognizing terms on the left-hand side as integrals (3.43), one arrives at the
relations fi = 0 with i = 1, 2, . . . , 6, where

f1 = d − 2a1 − a2 − a5 − a22+
(
1− − q2

)
− a55+

(
1− − 3−) , (5.27)

f2 = a5 − a1 − a11+
(
3− − 5−)− a22+

(
1− + 4− − 5− − q2

)
−a55+

(
1− − 3−) , (5.28)

f3 = a2 − a1 − a11+
(
q2 − 2−)− a22+

(
1− − q2

)
−a55+

(
1− − 2− − 3− + 4−) , (5.29)

and f4, f5, f6 are obtained from f1, f2, f3 by the replacements {1 ↔ 3, 2 ↔ 4}.
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Suppose that all the indices are positive integers. Let us use the IBP
relation f1 − f2 = 0:

(a1 + a2 + 2a5 − d) − a11+
(
3− − 5−)− a22+

(
4− − 5−) = 0 . (5.30)

Equation (5.30) can be used as a recurrence relation for the given family of
integrals. Indeed, applying it to the general integral, we obtain

F5.6(a1, a2, a3, a4, a5) =
1

a1 + a2 + 2a5 − d

× [a1 (F5.3(a1 + 1, a2, a3 − 1, a4, a5) − F5.3(a1 + 1, a2, a3, a4, a5 − 1))
+{1 ↔ 2, 3 ↔ 4}] . (5.31)

On the right-hand side, we encounter integrals where the sum a3 + a4 + a5

is less by one than that on the left-hand side. Thus, successive application of
this relation reduces any given integral to integrals with some index equal to
zero, where (5.25) and (5.26) can be used.

In fact, in case one of the indices is negative, generalizations of the explicit
formulae (5.25) and (5.26) can be derived. To do this, one applies (A.12).
Therefore we come to the conclusion that any given integral (3.43) with
integer indices can be evaluated in terms of gamma functions for general
values of d. If we are not too curious we can stop our analysis at this point
and not bother about the minimal number of master integrals. We could
consider any integral with a non-positive index as a master integral because
they can be expressed explicitly in terms of gamma functions. Otherwise it
is necessary to continue to exploit IBP relations and obtain a solution of the
reduction problem in the strict sense, i.e. with a minimal family of the master
integrals. Usually, people are lazy and/or pragmatic in such situations and
indeed stop the reduction. In this particular example, we shall see, in Chap. 6,
what the true master integrals are. (See also Problem 5.4 in this chapter.)

For example, the integral with all indices equal to one, is evaluated by
means of (5.31) as follows:

F5.6(1, 1, 1, 1, 1) =
1
ε

[F5.6(2, 1, 0, 1, 1) − F5.6(2, 1, 1, 1, 0)]

=
1
ε
G(1, 1) [G(2, 1) − G(2, 1 + ε)]

(
iπd/2

)2
(−q2)1+2ε

= − (iπd/2e−γEε)2

(−q2)1+2ε

[
6ζ(3) +

(
π4

10
+ 12ζ(3)

)
ε

+
(

π4

5
+ (24 − π2)ζ(3) + 42ζ(5)

)
ε2

]
+ . . . , (5.32)

so that the well-known result [63, 176] at order ε0 is again (as in Sect. 3.5)
reproduced.
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Fig. 5.2. Triangle diagram with general integer indices

In this simple example, it was sufficient to use only one IBP relation which,
in fact, follows from an IBP identity for the triangle diagram of Fig. 5.2 with
general indices, m3 = 0 and general masses m1 and m2. The general Feynman
integral for this graph is

F (a1, a2, a3) =
∫

ddk

[(k + p1)2 − m2
1]a1 [(k + p2)2 − m2

2]a2(k2)a3
. (5.33)

Let us write down the IBP identity with the operator (∂/∂k) · k acting on
the integrand of (5.33). Then we obtain the following ‘triangle’ rule:

1 =
1

d − a1 − a2 − 2a3

×
[
a11+

(
3− − (p2

1 − m2
1)
)

+ a22+
(
3− − (p2

2 − m2
2)
)]

. (5.34)

This identity can be applied to a triangle as a subgraph in a bigger graph.
Suppose that the external upper right line in Fig. 5.2 has the mass m1 and
the external lower right line has the mass m2 but these are internal lines for
the bigger graph. Then the factors (p2

1−m2
1) and (p2

2−m2
2) effectively reduce

the indices of the corresponding lines (with the momenta p1 and p2) by one.
For example, if we consider the triangle rule in the massless case and apply
it to the left triangle in Fig. 3.10 we shall obtain (5.30).

The triangle rule derived above is very well known. Let us derive another
triangle rule from it. Consider the case where (p1−p2)2 = 0 and m1 = m2 = 0.
Starting from the IBP identity with the operator (∂/∂k) · k acting on the
integrand and choosing the loop momentum k to be the momentum of each
of the three lines, we obtain the following three IBP relations:

d − 2a1 − a2 − a3 − a22+1− − a33+(1− − p2
1) = 0 , (5.35)

d − a1 − 2a2 − a3 − a11+2− − a33+(2− − p2
2) = 0 , (5.36)

d − a1 − a2 − 2a3 − a11+(3− − p2
1) − a22+(3− − p2

2) = 0 . (5.37)

We form the combination (5.35) times a11+ plus (5.36) times a22+ minus
(5.37) times a33+ and arrive at the following extra triangle relation:

(d − 2a3 − 2)a33+ = (d − 2a1 − 2a2 − 2)(a11+ + a22+) . (5.38)
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There was a subtle point when multiplying quantities like 3+ and a3 which
have algebraic properties similar to creation and annihilation operators. For
example, the additional terms −2 in the brackets of (5.38) appear due to this
multiplication.

Consider now

Example 5.7. Planar two-loop massless vertex diagrams with p2
1 = p2

2 = 0
and general integer powers of the propagators.

q

p1

p2

1

2

3

4

6 5

Fig. 5.3. Planar vertex diagram

The general scalar Feynman integral corresponding to Fig. 5.3 can be
written as

F5.7(a1, . . . , a7) =
∫

ddl (l2)−a7

(l2 − 2p1 ·l)a1(l2 − 2p2 ·l)a2

×
∫

ddk

(k2 − 2p1 ·k)a3(k2 − 2p2 ·k)a4(k2)a5 [(k − l)2]a6
, (5.39)

where k and l are loop momenta of the box and triangle subgraphs, respec-
tively. There is one irreducible numerator, which cannot be expressed linearly
in terms of the factors in the denominator, chosen as l2. We are interested
only in non-positive values of a7.

As it was mentioned in Chap. 3, the evaluation of such Feynman integrals
by Feynman parameters is rather cumbersome. It turns out that using IBP
provides the possibility to reduce any integral of this family to very simple
integrals. As we will see shortly, any given integral can be expressed in terms
of gamma functions for general values of d.

We shall not, however, write down various IBP relations for (5.39). As it
was noticed in [140] it is enough to use just one tool, the triangle rule (5.34),
for the evaluation of these integrals. Suppose that all the indices a1, . . . , a6

are positive and a7 = 0. Let us apply (5.34) to the triangle subgraph, i.e.
with the lines (1, 2, 6). We obtain
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1 =
1

d − a1 − a2 − 2a6

[
a11+

(
6− − 3−)+ a22+

(
6− − 4−)] (5.40)

as acting on F5.7(a1, . . . , a6, 0). Since the sum a1 + a2 + a6 on the right-hand
side of the corresponding relation is less by one, it provides the possibility
to reduce one of the indices a4, a5, a6 to zero. In the case where a6 = 0 the
Feynman integral factorizes and is evaluated by (A.7) and (A.28):

F5.7(a1, . . . , a5, 0, 0) = (−1)a1+...+a5

(
iπd/2

)2

×G(a1, a2)G3(a3, a4, a5)
(−q2)a1+...+a5+2ε−4

. (5.41)

where the function G3 is defined as the coefficient of the right-hand side of
(A.28) at iπd/2(−q2)−λ1−λ2−λ3−ε+2.

Suppose now that a3 or a4 is zero. Let it be a4 so that the line 4 is
reduced to a point. Then we apply (5.34) to the triangle subgraph, with the
lines (5, 6, 3). We obtain

1 =
1

d − a5 − a6 − 2a3

[
a55+3− + a66+

(
3− − 1−)] (5.42)

as acting on F5.7(a1, a2, a3, 0, a5, a6, 0). (There is one term less as compared
with (5.40) because of the on-shell condition p2

1 = 0.) This relation provides
the possibility to reduce either a1 or a3 to zero. In both cases, resulting
integrals become recursively one-loop and can be evaluated again by (A.7)
and (A.28). We have

F5.7(0, a2, a3, 0, a5, a6, 0) = (−1)a2+a3+a5+a6

(
iπd/2

)2

×G(a2, a6)G3(a3, a2 + a6 + ε − 2, a5)
(−q2)a2+a3+a5+a6+2ε−4

(5.43)

F5.7(a1, a2, 0, 0, a5, a6, 0) = (−1)a1+a2+a5+a6

(
iπd/2

)2

×G(a5, a6)G3(a1, a2, a5 + a6 + ε − 2)
(−q2)a1+a2+a5+a6+2ε−4

. (5.44)

Therefore, any integral with positive indices can be evaluated by this
procedure. For example, we reproduce the well-known result [109, 140, 160]
for F5.7(1, . . . , 1, 0):

(iπd/2)2

(Q2)2+2ε

1
ε

[
1
2ε

G2(2, 2)G3(2 + ε, 1, 1)

−G2(2, 1)
(

1
ε
G3(2, 1, 1 + ε) + G3(1, 1, 1)

)]

=
(iπd/2e−γEε)2

(Q2)2+2ε

(
1

4ε4
+

5π2

24ε2
+

29ζ(3)
6ε

+
3π4

32
+ O(ε)

)
. (5.45)
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(a) (b)
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Fig. 5.4. (a) Box with a one-loop insertion. (b) Box with a diagonal

In fact, a similar reduction procedure can be developed for general Feyn-
man integrals with an irreducible numerator, i.e. for a7 < 0, and with general
integer indices (not only positive). This can be done by using generalizations
of the triangle rule to the case with a numerator. A general recursive proce-
dure for such integrals (and integrals with another off-shell external momen-
tum, p2

1 �= 0 instead of q2 �= 0) with general numerators was developed in [80],
with boundary integrals written in terms of terminating hypergeometric se-
ries of the unit argument. Another possibility in this situation is to get rid of
the numerator and negative indices using the technique of shifting dimension
which we will discuss shortly. Then we shall come back to this point.

We now turn, following [8], to the two classes of integrals already studied
in Chap. 4 which are partial cases of massless on-shell double boxes: the boxes
with a one-loop insertion and the boxes with a diagonal shown in Fig. 5.4.
For convenience, we again change the numbering of the lines: In Fig. 5.4a we
adjust it to that of Fig. 5.1 and, in Fig. 5.4b, to a new numbering for the
double box which will be studied in the next section.

So, the next is

Example 5.8. Reduction of boxes with a one-loop insertion.

Let us, first, assume that we are dealing with the boxes with a one-loop
insertion without numerator, B5.8(a1, . . . , a5) (In the given case, there are
two independent scalar products that cannot be linearly expressed in terms
of the denominators of the propagators.) In fact, the integration in the one-
loop insertion in Fig. 5.4a can be taken explicitly by (A.7) and, graphically,
this insertion can be replaced by a line with the index a4 + a5 + ε − 2 – see
Fig. 3.1. Therefore, the problem reduces to the boxes of Fig. 5.1 in the case
where the index of the line 4 is not integer. Still if one of the first three indices
is non-positive we obtain a quantity evaluated in terms of gamma functions
by (A.28). Suppose now that a1, a2, a3 > 0. Then we can apply (5.21) and
(5.22) to reduce a1 and a2 to one, as in the case of the box with integer
indices.

To take care of a3 let us form the new relation as a44+ times (5.23) minus
a33+ times (5.24):
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(d − a1233)a33+ = (d − a1244 − 2)a44+

+(a3 − a4)(a11+ + a22+) , (5.46)

where we keep our notation of Chap. 4, e.g. a1233 = a1 + a2 + 2a3 etc.
Observe now that (5.46) can be used to reduce the index a3 to one because

a11+ and a22+ in the last term can be replaced immediately according to
(5.21) and (5.22). Let us therefore assume that a1 = a2 = a3 = 1. Now we
can apply (5.24), where the term with a33− gives integrals expressed in terms
of gamma functions, to have control on a4 = a′

4 + ε which has an amount
proportional to ε because of the one-loop integration. For example, one can
shift a′

4 to a′
4 = 0: this choice corresponds to I1 = B5.8(1, . . . , 1).

In the case with numerators, one can get rid of them by shifting indices
and dimension [200], as outlined in Subsect. 3.2.3. Then the previous pro-
cedure provides the possibility to express any given box, with dimension d
shifted by a positive even number, in terms of the master box with a one loop
insertion I1(d + 2n) in the same dimension and a family of simpler integrals
expressed in terms of gamma functions. To complete this reduction procedure
we need to know how to express these integrals in terms of I1(d). To do this,
let us apply the general relation for the operator that shifts dimension by −2,

d− =
ih

π
U(α1, . . . , αL)

∣∣∣∣
αl→iall+

, (5.47)

where U given by (2.25) is one of the two basic functions present in the alpha
representation (2.37). (The factors (−1)h and 1/π come from the overall
coefficient in (2.37).) In particular, for Fig. 5.4a, this gives

d− =
1
π

[
a4a54+5+ + (a11+ + a22+ + a33+)(a44+ + a55+)

]
. (5.48)

We have d−I1(d + 2) = I1(d). On the other hand, applying the right-hand
side of (5.48) to I1(d + 2) we obtain a linear combination of integrals in
dimension d + 2 with shifted indices for which we can use the reduction
procedure described above. As a result, we obtain a desired linear relation of
the type

I1(d) = A(d)I1(d + 2) + B(d) ,

where A(d) is a rational function (of d, s and t) and B(d) comes from various
integrals with some zero indices and can be evaluated in terms of gamma
functions. Thus, any integral I1(d+2n) can be expressed recursively in terms
of the master integral I1(d) and a collection of simpler integrals. This com-
pletes our reduction procedure.

Let us remember about the vertex diagrams of Example 5.7 which we
considered without numerator. Now, we can get rid of any numerator as
described above and then apply our reduction procedure formulated for non-
negative indices. However, since the corresponding results are expressed in
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terms of gamma functions for general d, there is no problem to make any
shift d → d + 2n in them.

We shall consider the reduction of the boxes with a diagonal in the next
section.

5.3 Reduction of On-Shell Massless Double Boxes

Let us turn, following [194], to

Example 5.9. Reduction of on-shell massless double boxes.

Let us follow the strategy [200] characterized in Subsect. 3.2.3 that en-
ables us to express any integral with a numerator as a linear combination of
integrals with shifted indices and dimension d. So, let us deal with Fig. 5.5
and the corresponding Feynman integrals

K(a1, . . . , a7, d) =
∫ ∫

ddk ddl

(k2 + 2p1 ·k)a1(k2 − 2p2 ·k)a2(l2 + 2p1 ·l)a3

× 1
(l2 − 2p2 ·l)a4 [(l + p1 + p3)2]a5 [(k − l)2]a6(k2)a7

. (5.49)

where all indices al are non-negative. For convenience, we have changed the
routing of the external momenta as well as the numbering of the lines in order
to take into account the symmetry of the graph. (In Chap. 4, the numbering
was oriented at insertions of boxes into double boxes.)

Let us first analyse situations, where one of the indices is zero. For a6 = 0,
we obtain a product of two triangles which can be evaluated by (A.28) in
terms of gamma functions. If a5 = 0 or a7 = 0 we obtain planar vertex
diagrams analysed in Example 5.7. They are all evaluated in terms of gamma
functions. Consider now the four symmetrical cases, where one of the other
four indices is zero. Let it be a4; graphically, this means that the line 4 is
contracted to a point – see Fig. 5.5. In this reduced graph, we can apply the
triangle rule (5.34) to the resulting triangle with the lines 5, 6 and 3. After
that we reduce either a3 or a1 to zero. Therefore, we arrive at a box with a
one-loop insertion, in the former case, or a box with a diagonal, in the latter
case – see Fig. 5.4. We conclude that, whenever one of the indices is zero,

p2 p4

p1 p3

7 6 5

2 4

1 3

Fig. 5.5. Double box
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a given integral becomes a linear combination of the boxes with a one-loop
insertion or a diagonal, or integrals expressed in terms of gamma functions.
Let us call all these integrals boundary integrals. For the boxes with a one-
loop insertion, we already know how to perform the reduction further, due
to Example 5.8. Let us forget about this for a while and decide that all these
boundary integrals are simple enough to stop the reduction here (as this was
done in [194]).

To perform the reduction for a given double box with positive indices, let
us start from the IBP relation with ∂

∂k ·(k − p2) which gives

sa11+ = a77+2− + a66+(2− − 4−) + a11+2− − d + a12267 . (5.50)

Three similar relations can be obtained from (5.50) by the two symmetry
transformations: (1 ↔ 3, 2 ↔ 4, 5 ↔ 7) and (1 ↔ 2, 3 ↔ 4):

sa22+ = a77+1− + a66+(1− − 3−) + a21−2+ − d + a11267 . (5.51)
sa33+ = a55+4− + a66+(4− − 2−) + a33+4− − d + a34456 . (5.52)
sa44+ = a55+3− + a66+(3− − 1−) + a44+3− − d + a33456 . (5.53)

These four relations can be used to reduce the indices a1, a2, a3, a4 to one.
To reduce a5 to one we shall need one more IBP relation which is the

difference of the relation obtained with ∂
∂k ·k times a55+ and the relation

obtained with ∂
∂k ·(k − l) times a66+:

(d − a3455 − 2)a55+ = (d − a3466 − 2)a66+ + (a5 − a6)(a33+ + a44+)
+a3a61−3+6+ + a4a62−4+6+ . (5.54)

The symmetrical relation applied to reduce a7 to one is

(d − a1277 − 2)a77+ = (d − a1266 − 2)a66+ + (a7 − a6)(a11+ + a22+)
+a1a61+3−6+ + a2a62+4−6+ . (5.55)

Using the above recurrence relations we can bring the indices of the lines
1,2,3,4,5,7 all to one so that only a6 can now be greater than one.

An appropriate relation for the reduction of a6 is [194]

t(d − 6 − 2a6)(a6 + 1)a66++ =

−(d − 5 − a6)
(

3d − 14 − 2a6 + 2a6
t

s

)
a66+

+
2
s
(d − 4 − a6)2(d − 5 − a6)

+

{
(2+ + 7+)

[
−2

s
(d − 4 − a6)(d − 5 − a6) + 2

t

s
a2
66

+

]

−
[
2t(a6 + 1)a66++ + 2(d − 4 − a6)a66+

]
3+

}
1−

+(d − 6)7−d− , (5.56)
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where d− is the operator that shifts dimension by −2, as before. This relation
is valid only if it is applied to an integral with a1 = . . . = a5 = 1 and a7 = 1
(since some terms that are zero in this case are dropped out). The operator
d− can be substituted explicitly using (5.47) with

U = (α1 + α2 + α7)(α3 + α4 + α5)
+α6(α1 + α2 + α3 + α4 + α5 + α7) , (5.57)

so that

d− =
1
π

[
(a11+ + a22+ + a77+)(a33+ + a44+ + a55+)

+ a66+(a11+ + a22+ + a33+ + a44+ + a55+ + a77+)
]

. (5.58)

The relation (5.56) can be derived as follows. Let us start with an inte-
gral with the numerator 2k ·p2. Since 2k ·p2 = k2 − (k2 − 2p2 ·k), such an
integral is the difference of integrals where a7 or a2 is reduced by one. On
the other hand, we can express this integral with the numerator in terms of
integrals with shifted dimension and indices. Using an exponentiation of this
numerator, similarly to how this is done for polynomials in the propagators
(see (2.13)) and modifying the derivation of the alpha representation for the
scalar double box in this case, we see (similarly to (3.17)) that the insertion
of the numerator and shifting dimension by −2 can be described either by
the difference of the operators 7−−2− times d−, or (up to a coefficient with
π) by the operator

s
[
a11+(a66+ + a44+ + a55+) + a3a63+6+

]
− ta5a65+6+ . (5.59)

On the right-hand side of the so-obtained equation, we apply the reduction
formulae (5.50)–(5.55) to reduce indices increased by the operators in (5.59).
After some transformation, we then arrive at (5.56).

Observe that on the left-hand side of (5.56) there is 6++, rather than 6+.
This means that (5.56) enables us to reduce a6 to 1 or 2. Thus, after the
application of the recurrence relations presented above, we reduce a given
integral, up to our boundary integrals, to a linear combination of the two
integrals, K1(d) = K(1, 1, 1, 1, 1, 1, 1, d) and K2(d) = K(1, 1, 1, 1, 1, 2, 1, d).
However, these integrals generally appear, in the course of the reduction, in
shifted dimensions so that we obtain the two families of integrals instead:
K1(d, n) = K1(d + 2n) and K2(d, n) = K2(d + 2n) with K1(d, 0) = K1(d)
and K2(d, 0) = K2(d). Of course, if we had results for general d for the master
integrals (even expressed in terms of gamma functions), there would be no
problem to shift the dimension in such analytical results. However, we are at
a rather high level of complexity and are able to obtain results (at least for
the master integrals) only in a Laurent expansion in ε, where expansions of
the master integrals at d = 4 − 2ε and, say, at d = 6 − 2ε, when ε → 0, are
not related to each other.
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To derive appropriate relations for the reduction of K1,2(d, n) to K1,2(d, 0),
one can use the same trick with shifting dimension [200] as above, i.e. to write
down equations K1,2(d, n) = d−K1,2(d, n + 1) with d− given by (5.58) and
perform the reduction of the indices, which are increased after the action of
d−, using (5.50)–(5.56). Solving the resulting linear system of equations one
arrives at the following recurrence relations [194] which can be used to come
back to dimension d = 4 − 2ε in the two master integrals:

K1(d, n) =
1
∆

[
a22

(
K1(d, n − 1) − f

(d)
1 K1(d, n)

)

−a12

(
K2(d, n − 1) − f

(d)
2 K2(d, n)

)]
, (5.60)

K2(d, n) =
1
∆

[
−a21

(
K1(d, n − 1) − f

(d)
1 K1(d, n)

)

+a11(K2(d, n − 1) − f
(d)
2 K2(d, n))

]
, (5.61)

where operators f
(d)
j are given by

f
(d)
1 =

{
2
s
(2+3+ + 2+4+ + 2+6+ + 4+6+ + 4+7+ + 3+7+)

+
4
s
(2+5+ + 5+6+ + 5+7+) − 2

s2t
(d − 5)(3s + 2t)(2+ + 7+)

+
2

d − 6
3+6+7+ − 2

st(d − 6)
(3s(d − 5) + t(3d − 14))3+6+

}
1−

+
3
t
7−d− , (5.62)

f
(d)
2 =

{
2
s
(2+3+ + 2+4+ + 3+7+ + 4+7+)6+ +

4
s
(2+ + 4+)6++

+
2(2d − 13)
s(d − 6)

(2+ + 7+ + 26+)5+6+ +
4

d − 6

(
1
s

+ 3+

)
7+6++

− 2(d − 5)(d − 7)
s2t(d − 6)(d − 8)

(s(3d − 20) + 2t(d − 6)) (2+ + 7+)6+

+
2(d − 5)(d − 7)

s2t2(d − 8)
(3s(3d − 20) + 4t(2d − 13))

(
2+ + 7+ +

s

d − 6
3+6+

)

+
4

d − 8

(
5d − 34

s
+

(3d − 20)(2d − 13)
t(d − 6)

)
3+6++

}
1−

+
{

3d − 20
t(d − 6)

6+ − d − 7
st2(d − 8)

(3s(3d − 20) + 4t(2d − 13))
}

7−d− , (5.63)

a11 =
2

s2t
(d − 5)2(3s + 2t), (5.64)
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a12 = −2
s
(4d − 21) − 3

t
(3d − 16), (5.65)

a21 = − (d − 5)2(d − 7)
st(d − 8)

(8(2d − 13)
s

+
6(3d − 20)

t

)
, (5.66)

a22 =
d − 7

s2t2(d − 8)

(
3s2(3d − 16)(3d − 20) + 6st(5d2 − 59d + 172)

+4t2(d − 5)(d − 6)
)
, (5.67)

∆ =
16(s + t)(d − 5)3(d − 6)(d − 7)

s4t(d − 8)
. (5.68)

Thus, we are already able to reduce any double box to the two master
integrals K1(d) and K2(d) and a family of our boundary integrals. For the
first master double box, K1(d), we know the result given by (4.52) and (4.53),
in expansion in ε, derived by MB representation in Chap. 4. To evaluate the
second master double box, K2(d), let us use alpha representation (2.37),
where the function U is given by (5.57) and the second basic function (2.26)
by

V = [α1α2(α3 + α4 + α5) + α3α4(α1 + α2 + α7)
+α6(α1 + α3)(α2 + α4)] s + α5α6α7t , (5.69)

We exploit this very simple dependence of this function on t to derive the
following two relations by differentiating in t and implementing the factor
α5α6α7/U by shifting indices and dimension:

∂

∂t
K(s, t; 1, . . . , 1, d) = − 1

π
K(s, t; 1, 1, 1, 1, 2, 2, 2, d + 2) , (5.70)

∂

∂t
K(s, t; 1, 1, 1, 1, 1, 2, 1, d) = − 2

π
K(s, t; 1, 1, 1, 1, 2, 3, 2, d + 2) . (5.71)

Then we apply the reduction procedure described above and express the right-
hand side of these equations in terms of the two master double boxes and a
family of our boundary integrals (around fifty terms in each case). In fact,
the boundary integrals are simple enough here: a simple procedure based on
the onefold MB representations (4.55) and (4.56) (see comments after these
formulae) implemented on a computer can provide their ε-expansions up to
order ε2 which is necessary here because the boundary integrals sometimes
enter with coefficients involving 1/ε2. Then we insert (4.53) into (5.70) and
use this equation to obtain a similar result for the second master double box.

K(1, 1, 1, 1, 1, 2, 1, d) =
(ie−γEε)2

(−s)2+2εt2
f2(t/s, ε) (5.72)

with
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f2(x, ε) =
4
ε4

− 5 (lnx − 2)
1
ε3

+
(

2 ln2 x − 14 ln x − 5
2
(π2 + 4)

)
1
ε2

+
(

2
3

ln3 x + 8 ln2 x +
(

11
2

π2 + 14
)

ln x − 2 − 3π2 − 65
3

ζ(3)
)

1
ε

−4
3

ln3 x(ln x + 1) − 2
(
3π2 + 4

)
ln2 x +

(
10 + 9π2 +

88
3

ζ(3)
)

ln x

+20 + 12π2 − 29
30

π4 +
4
3
ζ(3)

+x

[
− 7

ε3
+ (8 ln x − 33)

1
ε2

+
(

26 ln x + 6 +
21
2

π2

)
1
ε

+
1
6
(
−32 ln3 x − 4(21 + 26π2) ln x + 180 + 209π2 + 904ζ(3)

)]

+
[
2Li3 (−x) − 2 ln xLi2 (−x) −

(
ln2 x + π2

)
ln(1 + x)

] 2
ε

−4x
[
8 (Li3 (−x) − ln xLi2 (−x)) − 4

(
ln2 x + π2

)
ln(1 + x)

]
+4 (S2,2(−x) − ln xS1,2(−x)) − 44Li4 (−x)
+4 (ln(1 + x) + 6 ln x − 2) Li3 (−x) −

(
ln2 x + π2

)
ln2(1 + x)

−2
(

ln2 x + 2 ln x ln(1 + x) − 4 ln x +
10
3

π2

)
Li2 (−x)

+
(

8
3

ln3 x + 4 ln2 x +
10
3

π2 ln x + 4π2 − 4ζ(3)
)

ln(1 + x) . (5.73)

Proceeding in the same way with the second recurrence relation (5.71)
and inserting there our analytical results for the two master double boxes we
obtain the possibility to check these two results.

Although boxes with a one-loop insertion and a diagonal are simple quan-
tities one can reduce them further. In the former case, the reduction was
described in Example 5.8. Let us now do this for the latter case and consider,
following [8],

Example 5.10. Reduction of boxes with a diagonal shown in Fig. 5.4b.

We imply that we have already got rid of the numerators as before, by
shifting dimension and indices. Applying our auxiliary triangle rule (5.38) to
the triangles (3, 5, 6) and (2, 7, 6) in Fig. 5.4b we obtain

(d − 2a27 − 2)a22+ = (d − 2a6 − 2)a66+ − (d − 2a27 − 2)a77+ , (5.74)
(d − 2a35 − 2)a55+ = (d − 2a6 − 2)a66+ − (d − 2a35 − 2)a33+ . (5.75)

These relations can be used to reduce a2 and a5 to one.
Then the following IBP relations derived in [8] (see also Problem 5.5) can

be used to reduce a3 and a7 to one:
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s(d − 2a35 − 2)a33+ = −(d − a356 − 1)(3d − 2a223567)
+2(d − a356 − 1)a72−7+ + (d − 2a6 − 2)a62−6+ , (5.76)

t(d − 2a27 − 2)a77+ = −(d − a267 − 1)(3d − 2a235567)
+2(d − a267 − 1)a35−3+ + (d − 2a6 − 2)a65−6+ . (5.77)

To reduce a6 to one, the following relation valid for a2 = a3 = a5 = a7 = 1
and derived in [8] can be used:

st(d − 2a6 − 2)a66+ = −(s + t)(d − a6 − 3)(3d − 2a6 − 10)
+2(d − a6 − 3)(t2−7+ + s2+7−) + (d − 2a6 − 2)a66+(t2− + s7−) . (5.78)

Finally, we have to express the master box with a diagonal, B5.10(1, . . . , 1, d+
2n), in the shifted dimension in terms of B5.10(1, . . . , 1, d) which is given by
(4.58) in expansion in ε. This can be done by the same trick with shifting
dimension as above: we write down relation (5.47) for the box with a diagonal,
i.e. where the function U is given by

U = (α2 + α7)(α3 + α5) + α6(α2 + α3 + α5 + α7) , (5.79)

according to (2.25), and apply it to B5.10(1, . . . , 1, d). Then we proceed ex-
actly as in Example 5.8 and arrive at a desired recurrence relation.

The algorithm presented above enables us to reduce any massless double
box in terms of the two master integrals K1 and K2, two master boxes with a
one-loop insertion and a diagonal and a family of integrals (two-loop planar
vertices and products of triangles) expressed in terms of gamma functions.
As was pointed out later [108] the choice of the second master integral K2

as the integral with a dot on the sixth line brought complications in prac-
tical calculations because one obtained a linear combination of K1 and K2

with a coefficient involving 1/ε, but the calculation of the master integrals
in one more order in ε looked rather nasty.3 Two solutions of this problem
have appeared immediately. In [97], this very combination of the master in-
tegrals was indeed calculated using the method of differential equations (to
be studied in Chap. 7), while in [13] another choice of the master integrals
was made: instead of K(1, 1, 1, 1, 1, 2, 1, 0), the authors have taken the inte-
gral K(1, 1, 1, 1, 1, 1, 1,−1) as the second complicated master integral. (See
its evaluation in Problem 4.6.) This was a more successful choice because,
according to the calculational experience, no negative powers of ε occur as
coefficients at these two new master integrals.

3It looked nasty at that time but now, in the time when three-loop calculations
for this class of diagrams are possible, the problem is not complicated — see, e.g.,
the evaluation of the planar on-shell massless double box in expansion in ε up to
ε2 in [31].
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5.4 Conclusion

When solving the problem of the reduction to master integrals, one tries to
use all possible IBP relations. For h-loop Feynman integrals over the loop
momenta ki depending on n independent external momenta pj , all possible
IBP relations with the operators pj · (∂/∂ki) and (∂/∂ki) · kj are used. For
example, for the double box Feynman integrals, this gives 10 IBP relations.
In addition to the IBP relations, one can use the so-called Lorentz-invariance
(LI) identities [98]. They follow from the fact that scalar Feynman integrals
are invariant under infinitesimal Lorentz transformations of the external mo-
menta, pµ

i → pµ
i + εµ

νpν
i . For example, in the case of four-point Feynman

integrals (in particular, double boxes) with three independent external mo-
menta, this provides the following relation, in addition to 10 IBP relations:

(pµ
1pν

2 − pν
1pµ

2 )
3∑

n=1

(
pn,µ

∂

∂pν
n

− pn,ν
∂

∂pµ
n

)
= 0 (5.80)

as well as the other two relations obtained by the cyclic permutations from
(5.80).

Well, if we turn to alpha or Feynman parameters, the Lorentz invariance
becomes manifest and the equations (5.80) trivially hold (in contrast to the
IBP relations), so that one might think that the LI equations follow from
the IBP relations. However, explicitly, this statement has not been proven.
Anyway, the LI identities can be certainly practically very useful. One can
consider them together with the IBP relations and not bother about whether
they are linear combinations of some IBP relations.

There are a lot of papers where reduction problems for various classes of
Feynman integrals were solved, in some way, with the help of IBP relations.
Here is a very short list of some of them, starting from the two-loop level.

Historically, IBP relations were first successfully applied in [66] to three-
loop massless propagators diagrams shown in Fig. 5.6. The corresponding
algorithm [110] called MINCER was implemented in FORM [214]. In [53,77,
94,111], the problem of reduction for two-loop on-shell diagrams was solved: in
[111], relevant recurrence relations were derived and used to find all necessary
integrals, and, in [53], a general algorithm implemented in the REDUCE [118]
package Recursor was constructed. The reduction in the three-loop case was

Fig. 5.6. Three-loop massless planar, non-planar and Mercedez–Benz propagator
diagrams
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developed in [145] and, completely, in [152] with an implementation in FORM
[214] (although no details of the reduction procedure were presented, as in
many other cases).

The reduction of two-loop bubble integrals with different masses was
solved in [82]. Three-loop vacuum diagrams with one mass were considered
in [14, 53, 199]. The corresponding computer package MATAD was developed
in [199].

The reduction problem for the massless on-shell double boxes in the non-
planar case (Fig. 4.9b where all lines are massless) was solved, using IBP and
LI relations, in [7] and, in the case of (simpler) pentabox diagrams, in [8]. The
general algorithm for the massless on-shell double boxes resulted in a series
of NNLO calculations of various scattering processes – see, e.g., [107] for a
review. The reduction of two- and three-loop propagator diagrams in HQET
was solved in [55, 114]. A pedagogical introduction to recursion problems
oriented at HQET can be found in a recent review [115].

Unfortunately, the way how IBP relations are solved is not often ex-
plained. A typical example of such a situation is solving the reduction prob-
lem for two-loop vertex diagrams at threshold, q2 = 4m2: two independent
algorithms were constructed [27,72] but never published.

The examples presented in this chapter and the papers cited above show
how IBP relations can be solved without systematization. In other words, if
it is necessary to solve a new problem, one can use the experience obtained
in these examples and then analyse the new situation with the hope to solve
somehow corresponding IBP relations. Still the complexity of unsolved cal-
culational problems requires a systematization in this field.

One might hope that a systematization can be achieved within the tech-
nique based on shifting dimension [200]. Typical tricks were described in
the previous section. Some prescriptions of this technique were presented
in [202, 203]. Another example of its applications [177] is provided by the
calculation of Feynman integrals relevant to the two-loop quark potential
(to be considered within another technique in Chap. 6). It was also used to
solve the reduction problem for two-loop propagator integrals with arbitrary
masses [201] and obtain new results for the two-loop sunset diagram with
equal masses [205]. Anyway, this technique provides the possibility to get rid
of the numerators (which, of course, make the problem of the reduction more
complicated) from the beginning.

Another attempt of a systematization was initiated in [99, 143, 145]. It is
based on the observation that the total number of IBP and Lorentz invariance
equations grows faster than the number of independent Feynman integrals,
labelled by the powers of propagators and the powers of independent scalar
products in the numerators, when the total dimension of the denominator
and numerator in Feynman integrals associated with the given graph is in-
creased. Therefore this system of resulting equations sooner or later becomes
overdetermined, and one obtains the possibility of performing a reduction to
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master integrals. To be formal let us modify our notation for the Feynman
integrals a little bit. Consider now, as a general Feynman integral,

F (a1, . . . , aN1 ; b1, . . . , bN2) =
∫

· · ·
∫

ddk1 . . . ddkh

Hb1
1 . . . H

bN2
N2

Ea1
1 . . . E

aN1
N1

, (5.81)

instead of the dimensionally regularized version of (2.7). Now, we consider
all the indices ai and bi to be positive or zero, both in the denominator and
numerator. As before, all the quantities Ei and Hi are considered linear or
quadratic with respect to the loop momenta.

So, the idea [143, 145] is to write all possible IBP and LI relations for
Feynman integrals (5.81) with a fixed N1 + N2 = N . Our experience tells
us that starting from some large N this will be an overdetermined linear
system of equations which will be solved successfully (using a computer, of
course). A breakthrough in the implementation of this idea came due to
the following two publications: the first practical successful implementation
was achieved for the reduction of massless double box diagrams with one
leg off-shell [99] (which was applied for NNLO calculations of the process
e+e− → 3jets – see [156] for a review), and detailed prescriptions for the
implementation of this method in a general situation were presented in [143].
These two important works have resulted in a series of various calculations
at the two-loop level – see, e.g. [3, 4, 33,40,47,48,69,96,178].

The implementation of this method on a computer in non-trivial situa-
tions was hardly possible, say, ten years ago. Indeed, for example, in the case
of the double boxes with one leg off-shell, it was necessary [99] to solve linear
systems of dozens of thousands of equations for dozens of thousands of vari-
ables. It is not clear at the moment what the practical limits of applications of
this algorithm are, for example, whether it can be applied successfully to such
problems as the reduction of triple boxes or four-loop massless propagator
diagrams.

This method is rather pragmatic and is a kind of experimental mathe-
matics because its analysis from the mathematical point of view is absent. In
particular, it is not known which linear equations of the method are really
independent. It is not clear in advance which will be master integrals in a
given problem: this becomes clear after solving the corresponding system of
equations. The authors of [3,4,33,40,47,48,69,99,178] and some other authors
constructed various computer implementations of this method. Moreover, a
first public version4 called AIR has recently appeared [9]. Now, to solve a new
reduction problem, one can try to adjust this general computer algorithm,
rather than solve IBP relations oneself. Well, if it turns out that this algo-
rithm does not work, for some reasons (e.g. the lack of time or computer
memory), then one could still try to solve the reduction problem in some
way. Two more options are described in the next chapter and Appendix G.

4However, modern ‘private’ versions are, presumably, more powerful that this
public version.
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The explicit and detailed recipes for solving overdetermined systems of
equations presented in [143] are more optimal than the simple Gauss elim-
ination. In fact, the Gauss elimination is present there, but only after the
initial system is ordered according to some criteria. Then different terms of
the equations are characterized by a relative weight of their complexity, and
the equations are solved starting from the most complicated terms.

Problems

5.1. Solve the reduction problem for the integrals

F (a1, . . . , a5)

=
∫ ∫

ddk ddl

(−2q ·k)a1(k2 − m2)a2(−2q ·l)a3(l2 − m2)a4 [(k − l)2]a5
. (5.82)

5.2. Solve the reduction problem for the integrals

F (a1, . . . , a5) =
∫ ∫

ddk ddl

(k2)a1(−2q ·k − y)a2(l2)a3(−2q ·l − y)a4

× 1
[−2(q ·k + q ·l) − y]a5

. (5.83)

5.3. Solve the reduction problem for the two-loop vacuum integrals with the
masses m, M and 0:

F (a1, a2, a3) =
∫ ∫

ddk ddl

(k2 − m2)a1(l2 − M2)a2 [(k + l)2]a3
. (5.84)

5.4. Solve the reduction problem for Example 5.6 in the maximal way, i.e.
find an algorithm to express any integral corresponding to Fig. 3.10 with
given integer powers of the propagators as a linear combination of a minimal
number of master integrals.

5.5. Derive (5.76) and (5.77).



6 Reduction to Master Integrals
by Baikov’s Method

In the previous chapter, we solved IBP relations [66] in a non-systematic
way. Now we are going to do this systematically following Baikov’s method1

[16, 20,21,193].
Our goal is to solve the reduction problem, i.e. to develop an algorithm

that would enable us to express any Feynman integral of a given family of
Feynman integrals which are labelled by powers of the propagators (indices)
as a linear combination of some master integrals. A characteristic feature of
this method is the reduction to a minimal number of master integrals.

In Sect. 6.1, the basic parametric representation which is an essential
ingredient of this method will be described. In Sect. 6.2, this representation
will be applied to formulate a strategy for identifying master integrals and
constructing the corresponding coefficient functions. As usual, we shall end
up, in Sects. 6.2 and 6.3, with a lot of instructive examples starting from
very simple ones. We shall continue to use mainly the examples considered in
the previous chapters. In conclusion, applications and open problems of the
method will be characterized.

6.1 Basic Parametric Representation

Suppose that we are dealing with a family

F (a) =
∫

· · ·
∫

ddk1 . . . ddkh

Ea1
1 . . . EaN

N

(6.1)

of h-loop dimensionally regularized Feynman integrals, where the factors in
the denominator are given by

Er =
h∑

i≥j≥1

Aij
r ki · kj +

h∑
i=1

Bi
r · ki + Dr , (6.2)

1In [16], it was characterized as a ‘non-recursive’ solution of IBP recurrence
relations. As we will see shortly, solving some recurrence relations is necessary
within this method. However, these auxiliary recurrence relations are simpler than
the initial IBP recurrence relations for a given family of Feynman integrals.
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the ai are integer indices and underlined letters denote collections of variables,
i.e. a = (a1, . . . , aN ), etc. So, the denominators are quadratic or linear with
respect to the loop momenta ki, i = 1, . . . , h. The functions Bi

r are build
from some vectors. For the usual Feynman integrals, where the functions Er

are of the form (2.8), these are the independent external momenta q1, . . . , qn

so that r = 1, . . . , N = h(h+1)/2+hn. For more general Feynman integrals,
for example, taken from NRQCD or HQET, these functions can be build also
from the heavy quark velocity, v, or other vectors.

Some of the factors in the denominator are associated with irreducible
numerators (which cannot be expressed linearly in terms of the given set of
the denominators), so that the corresponding indices ai are considered only
non-positive.

We are going to solve the reduction problem in a maximal way, i.e. to
be able to represent a given Feynman integral as a linear combination of a
minimal number of some true master (or, irreducible) integrals,

F (a) =
∑

i

ci(a)Ii , (6.3)

with the natural normalization conditions

ci(Ij) = δij (6.4)

which simply mean that any master integral cannot be expressed in terms of
other master integrals. In fact, the master integrals are integrals of the given
family, Ii = F (ai), where ai = (ai1, . . . , aiN ) are some concrete sets of the
indices, and, by definition, ci(Ij) = ci(ai1, . . . , aiN ). In the approach under
consideration, the master integrals have indices air equal to one, or zero, or
a negative value.

Mathematically, if the reduction problem has been solved, we know a basis
in the linear space of the given Feynman integrals. Then we could turn to
some other basis. In particular, we could choose all the master integrals which
have only positive indices. Consider, for example, the propagator integrals
of Example 5.3 and choose, instead of I1 = F (1, 1) and I2 = F (1, 0), say,
I1 = F (1, 1) and I2 = F (2, 1), why not? Well, practically, this is an unnatural
choice. According to our experience of solving IBP relations and our standard
attempts to reduce complicated integrals to simpler integrals, we imply that
the master integrals must have as many non-positive indices as possible, so
that we always keep this hierarchy in mind. Therefore, when we say that a
given integral is irreducible, we omit the words to simpler integrals, in this
sense, i.e. that have more non-positive indices.

Our experience of solving IBP recurrence relations, in particular, the ex-
amples of Chap. 5, shows that the coefficient functions ci(a) are rational
functions of everything, i.e. of dimension, masses and external kinematical
invariants. This property is a useful postulate that can be used in the cal-
culation of the coefficient functions. Within the approach of [16, 193], every
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coefficient function in (6.3) satisfies, by construction, the initial IBP rela-
tions for (6.1) so that these relations for the given Feynman integrals are
automatically satisfied.

Let us start with the case of vacuum Feynman integrals which are func-
tions of some masses and are defined by (6.1) with

Er =
∑

h≥i≥j≥1

Aij
r ki · kj − m2

r , (6.5)

with r = 1, . . . , N = h(h + 1)/2.
The IBP relations in the vacuum case originate from the following N

equations:
∫

· · ·
∫

ddk1 . . . ddkh
∂

∂ki
·
(

kj

Ea1
1 . . . EaN

N

)
= 0, i ≥ j . (6.6)

We proceed, in this general situation, like in multiple examples in the previ-
ous chapter, i.e. perform differentiation and then express the resulting scalar
products ki ·kj in terms of the denominators Er. When we invert the relations
(6.5) we obtain a matrix which is inverse, in some sense, to the matrix Aij

r .
So, we write down the IBP relations in the following form:

∑
r,r′,i′

Āi′i
r Ãji′

r′

(
r′− + m2

r′

)
arr+ = (d − h − 1)δij/2 , (6.7)

where Āij
r = Aij

r for i = j, Aij
r /2 for i > j and Aji

r /2 for i < j. The matrix
Ã is defined as follows. Take the quadratic N × N matrix A, where the first
index is labelled by pairs (i, j) with i ≥ j, and the second index is r. The
corresponding inverse matrix (A−1)ij

r (with i ≥ j) satisfies

N∑
r=1

Aij
r (A−1)i′j′

r = δii′δjj′ . (6.8)

Then Ãij
r is the symmetrical extension of (A−1)ij

r to all values i, j.
Moreover, the operators r+ and r− in (6.7) are our usual operators that

increase and lower indices:

r+F (. . . , ar, . . .) = F (. . . , ar + 1, . . .) , (6.9a)
r−F (. . . , ar, . . .) = F (. . . , ar − 1, . . .) . (6.9b)

We extensively exploited these operators in Chap. 5 for various concrete
values of r.

To construct the coefficient functions ci(a) in the vacuum case, the fol-
lowing basic representation [16] is applied:

∫
. . .

∫
dx1 . . . dxN

xa1
1 . . . xaN

N

[P (x′)](d−h−1)/2
, (6.10)
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where the parameters x′ = (x′
1, . . . , x

′
N ) are obtained from x = (x1, . . . , xN )

by the shift x′
i = xi + m2

i .
Integration over the parameters xi is understood in some way, with the

requirement that the IBP in this parametric integral is valid. In this case,
such objects satisfy the initial IBP relations (6.7). This property can be
verified straightforwardly if we take into account that the operator arr+

is transformed into the differential operator ∂/∂xr and the operator r− is
transformed into the multiplication by xr.

Now, the basic polynomial P of x which enters (6.10) is [16]

P (x) = det
ij

(
N∑

r=1

Ãij
r xr

)
. (6.11)

Here are simple practical prescriptions for evaluating the basic polynomials:

1. Solve the system
∑

i≥j≥1

Aij
r ki · kj = Er, r = 1, . . . , N

with respect to ki · kj , i ≥ j;
2. Replace Er by xr on the right-hand side of this solution;
3. Extend this expression to all values of i and j in the symmetrical way;
4. Take the determinant of this matrix to obtain P .

In fact, the basic polynomial is defined up to a normalization factor in-
dependent of the variables xj . This will be clear when constructing the coef-
ficient functions which will be themselves normalized at some point.

For general Feynman integrals, the problem can be reduced to the vacuum
case [16,20]. If there is one external momentum, q, so that we are dealing with
a family of propagator-type integrals, one involves into the game coefficients
of the Taylor expansion of F (a) in q2,

F (q2; a1, . . . , aN ) ∼
∞∑

aN+1=1

(q2 − m2
N+1)

aN+1−1F (a1, . . . , aN , aN+1) .

(6.12)

It turns out [16, 20] that the so defined objects F (a1, . . . , aN , aN+1) (with
some overall rescaling factor which is not important in the examples in this
chapter) satisfy vacuum IBP relations.

To formulate a prescription for corresponding basis polynomials in the
non-vacuum case, we need first to present a preliminary discussion of con-
structing master integrals. To identify candidates for master integrals in a
first approximation, we shall analyse integrals where the indices correspond-
ing to irreducible numerators are set to zero and other indices are either zero
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or one. Let F (ai) with aij = 1 or 0 be a candidate to be considered as a
master integral.

Let us remember the examples of Chap. 5, where the reduction always
goes down: our experience tells us that a master integral Ii = F (ai) =
F (ai1, . . . , air, . . . , aiN ) never appears in the decomposition of a given Feyn-
man integral in terms of master integrals

F (a) = . . . + ci(a1, . . . , ar, . . . , aN )Ii + . . .

if ar ≤ 0 and air > 0. Therefore, we come to the natural condition for the
coefficient function ci(a) of F (ai): if air = 1 then ci(a1, . . . , ar, . . . , aN ) = 0
for ar ≤ 0.

This condition can be realized easily [16] in an automatic way by treating
the integration over xj as a Cauchy integral around the origin in the complex
xj-plane,

1
2πi

∮
dxj

x
aj

j

∫
. . . [P (x)](d−h−1)/2

. (6.13)

According to the Cauchy theorem, this expression reduces to the Taylor ex-
pansion of order aj − 1 of the integrand in xj so that it becomes a linear
combination of terms∫

. . .

∫
[Pi(x)]z−nd

∏
j:aij≤0

dxj

x
nj

j

, (6.14)

where z = (d − h − 1)/2, and Pi(x) is obtained from P (x) by setting to zero
all the variables xj with j such that aij = 1. We shall use nj instead of aj for
powers of xj in auxiliary parametric integrals. Observe that the parameter
nd in such integrals plays the role of the shift of the dimension.

Suppose that we are not interested in higher terms of the Taylor expansion
in powers of (q2−m2

N+1) in (6.12), i.e. we need just the value at q2 = m2
N+1,

i.e. the term with aN+1 = 1. Then the integration over xN+1 should be un-
derstood in the sense of Cauchy integration so that, effectively, xN+1 is set to
zero. So, if P̂ (x1, . . . , xN , xN+1) is the basic polynomial for the corresponding
vacuum problem, then the basic polynomial for the initial propagator-type
problem is obtained as

P (x) ≡ P (x1, . . . , xN ) = P̂ (x1, . . . , xN , 0) . (6.15)

In the case of n independent external momenta q1, . . . , qn, one includes
into the procedure all the terms of the formal Taylor expansions in the scalar
products qi ·qj . One is usually interested only in the value at some qi ·qj and
not in the derivatives at these points. (Otherwise, it would be necessary to
deal with a generalization of (6.12), where the initial Feynman integrals are
rescaled by the Gram determinant det(pi · pj) which is raised to the power
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(h + n + 1− d)/2 – see [16,20].) Then the transition to the vacuum problem,
which effectively increases the number of loops, h → h+n, can be performed
as follows:

1. Introduce a complete set of invariants by considering, in addition to ki ·kj ,
i ≥ j and ki · qj , also invariants generated by the external momenta, i.e.
the scalar products qi · qj , i ≥ j. Let pi = ki, i = 1, . . . , h and pi = qi, i =
h + 1, . . . , h + n so that the total number of the kinematical invariants
becomes N̂ = (h + n)(h + n + 1)/2.

2. Introduce, in some way, the corresponding new propagators.
3. Solve the system

∑
i≥j≥1

Aij
r pi · pj = Er, r = 1, . . . , N̂

with respect to pi · pj .
4. Evaluate the basic polynomial P̂ for such a vacuum problem.
5. Obtain P (x) ≡ P (x1, . . . , xN ) = P̂ (x1, . . . , xN , 0, . . . , 0).

Let us stress that this strategy is applicable not only to usual Feynman
integrals with quadratic denominators but also for more general Feynman
integrals with the denominators (6.2): one treats additional vectors, like the
quark velocity, on the same footing as the true external momenta and con-
siders Feynman integrals as functions of various scalar products. We shall see
how this is done in the examples below.

Observe that the method under consideration is based only on the IBP
relations so that the LI identities discussed in Sect. 5.4 are not used at all.

6.2 Constructing Coefficient Functions.
Simple Examples

Now, we want to apply the basic parametric representation for two closely
related purposes:

– identifying master integrals,
– constructing the corresponding coefficient functions.

According to the discussion above, let us consider integrals where the
indices corresponding to irreducible numerators are set to zero and other
indices are either zero or one. Let Ii = F (ai) = F (ai1, . . . , air, . . . , aiN ). For
indices equal to one, we understand the corresponding integration over xj in
the basic parametric representation (6.10) in the Cauchy sense. This leads to
a Taylor expansion of order aj − 1 of the integrand in xj and gives a linear
combination of (6.14).

Let us try to understand whether a given candidate can be considered as
a master integral. Suppose that Pi = 0. Then there is no other way as to
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consider the coefficient function equal to zero. Therefore, this integral cannot
be a master integral and has to be recognized as a reducible integral within
the reduction problem.

Let us assume a weaker condition: the parametric integral involves an
integral without scale which we put, by definition, to zero. Then, again, we
cannot construct the coefficient function in a non-trivial way so that the cor-
responding integral is considered reducible. Let us stress that such a scaleless
integral can appear not only immediately but also after some preliminary
non-trivial integrations.

After such analysis, we obtain a preliminary list of master integrals. Some-
times one has to consider master integrals which differ from F (ai) by some
indices aij < 0. The number of such additional master integrals is connected
with the degree of the polynomial Pi with respect to some of the para-
meters xj .

Let us now turn to examples and see how the basic parametric represen-
tation enables us to solve the reduction problem. Many examples will be the
same as in Chap. 5, in particular, the first one.

Example 6.1. One-loop vacuum massive Feynman integrals given by the
right-hand side of (5.1).

We have one propagator with the denominator E = k2 − m2 and one
kinematical invariant k2. The equation E = k2 is solved as k2 = E. Therefore,
the resulting basic polynomial is P (x) = x and the polynomial that enters
(6.10) is P (x′) = x + m2. There is one master integral I1 = F6.1(1) given by
the right-hand side of (5.6). According to (6.10) the corresponding coefficient
function is

c(a) ∼
∫

dx

xa
(x + m2)(d−2)/2 =

1
2πi

∮
dx

xa
(x + m2)(d−2)/2 . (6.16)

At a = 1 we have

1
2πi

∮
dx

x
(x + m2)(d−2)/2 = (x + m2)(d−2)/2

∣∣∣
x=0

= (m2)(d−2)/2 .

To satisfy the normalization condition c(1) = 1 we normalize the coefficient
function:

c(a) =
(m2)(2−d)/2

2πi

∮
dx

xa
(x + m2)(d−2)/2

=
(m2)(2−d)/2

(a − 1)!

(
∂

∂x

)a−1 [
(x + m2)(d−2)/2

]∣∣∣
x=0

. (6.17)

for a = 1, 2, . . .. So, we have F6.1(a) = c(a)I1, in agreement with (5.5) and
the explicit result (A.1).

As in Chaps. 3 and 5 let us consider
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Example 6.2. Massless one-loop propagator Feynman integrals given by the
right-hand side of (5.7).

The transition to the corresponding vacuum problem reduces to adding
a new propagator, 1/(q2 − m2)a3 , with an effective mass m. The effective
number of loops that is involved in the exponent in (6.10) is h = 2. We want to
consider the value of our diagram at some general point and are not interested
in higher terms of the Taylor expansion in q2. Therefore, we consider only the
value a3 = 1 so that, according to our agreements, the integration contour for
the corresponding variable x3 is taken as a Cauchy contour around the origin,
and x3 is set to zero. Thus, using (6.15), we obtain the basic polynomial

P (x1, x2) = (q2)2 − 2q2(x1 + x2) + (x1 − x2)2 . (6.18)

The only possible candidate for a master integral is

I1 = F6.2(1, 1) = iπd/2(−q2)d/2−2 Γ (2 − d/2)Γ 2(d/2 − 1)
Γ (d − 2)

. (6.19)

because integrals with one non-positive index are zero. The corresponding
coefficient function is

c1(a1, a2) =

(
q2
)(d−3)

(a1 − 1)!(a2 − 1)!

×
(

∂

∂x1

)a1−1(
∂

∂x2

)a2−1

[P (x1, x2)]
(d−3)/2

∣∣∣∣∣
xi=0

, (6.20)

where the normalization condition c1(1, 1) = 1 was immediately implemented.
One can check that this result is in agreement with what we had in Exam-
ple 5.2 when explicitly solving recurrence relations.

Let us now turn to

Example 6.3. One-loop diagram for the heavy quark static potential shown
in Fig. 6.1.

The corresponding general Feynman integral is

F6.3(a1, a2, a3) =
∫

ddk

(k2)a1 [(k − q)2]a2(v ·k + i0)a3
, (6.21)

with v ·q = 0.
In addition to k2, q ·k and v ·k, we consider q2, v ·q and v2 as external

kinematical invariants so that the effective loop number is h = 3. The choice
of additional propagators is arbitrary. We choose the following extended set
of the denominators:

E1 = k2, E2 = (k − q)2, E3 = k ·v + v2,

E4 = v2, E5 = q2, E6 = (q + v)2 . (6.22)
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1

3 2

Fig. 6.1. One-loop diagram for the heavy quark static potential. A wavy line
denotes a propagator for the static source

The basic polynomial is given by the determinant of the matrix
 x1 (x1 − x2 + x5)/2 x3 − x4

(x1 − x2 + x5)/2 x5 (−x4 − x5 + x6)/2
x3 − x4 (−x4 − x5 + x6)/2 x4


 . (6.23)

The variables xi are then shifted by the corresponding effective masses, x3 →
x3 + v2, x4 → x4 + v2, x5 → x5 + q2, x6 → x6 + (q + v)2.

We are not interested in higher order Taylor coefficients of the additional
kinematical invariants so that, effectively, we set x4 = x5 = x6 = 0. Thus, we
obtain

P (x1, x2, x3) = (q2)2v2 + v2 (x1 − x2)
2 + 2q2

[
v2 (x1 + x2) − 2x2

3

]
,

Observe that integrals (6.21) are zero whenever a1 or a2 are non-positive.
After analysing various integrals with the indices 1 and 0 and corresponding
reduced polynomials we see that the coefficient functions can be constructed
non-trivially for the following two integrals which can be evaluated by (A.27)
and which we consider as master:

I1 = F6.3(1, 1, 1)

= −iπd/2 (−q2)d/2−5/2
√

π

v

Γ (5/2 − d/2)Γ (d/2 − 3/2)2

Γ (d − 3)
, (6.24)

I2 = F6.3(1, 1, 0) = iπd/2(−q2)d/2−2 Γ (2 − d/2)Γ (d/2 − 1)2

Γ (d − 2)
. (6.25)

The coefficient function c1 is simply calculated without integration. For the
coefficient function c2, we need the following integrals:

g1(k3, α) =
∫ a

−a

dx3 xk3
3

(
a2 − x2

3

)α
. (6.26)

Here k3 is an integer but α depends on d. This integral can be interpreted in
the sense of the principal value, with

g1(k, α) =



(
a2
)α+k/2+1/2 Γ (k/2 + 1/2)Γ (α + 1)

Γ (α + k/2 + 3/2)
for even k

0 for odd k
.(6.27)
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Let us imply that these and similar integrals below are understood as con-
vergent integrals in an appropriate domain of analytical parameters, such as
α in (6.27), with analytic continuation to the whole complex plane of α on
the right-hand side.

We obtain the following decomposition of the general integral of the given
class:

F6.3(a1, a2, a3) = c1(a1, a2, a3)I1 + c2(a1, a2, a3)I2 . (6.28)

One can check that this procedure is in agreement with the explicit result
(A.27) evaluated in Sect. 3.1.

Let us now consider again

Example 6.4. Two-loop massless propagator Feynman integrals of Fig. 3.10
with integer powers of the propagators given by the right-hand side of (3.43).

The transition to vacuum integrals is similar to Example 6.2. Now we
have h = 3.

The basic polynomial can be obtained straightforwardly:

P (x1, . . . , x5) = −x1x2x3 + x2
2x3 + x2x

2
3 + x2

1x4 − x1x2x4

−x1x3x4 − x2x3x4 + x1x
2
4 + x1x3x5 − x2x3x5

−x1x4x5 + x2x4x5 + q2[−x1x2 + x2x3 + x1x4

−x3x4 + x1x5 + x2x5 + x3x5 + x4x5 − x2
5] + (q2)2x5 .

(6.29)

After analysing various candidates with the indices 1 and 0 we conclude
that the corresponding integrals (6.14) with reduced polynomials Pi can be
interpreted non-trivially only in the following three cases two of which are
symmetrical to each other:

F6.4(1, 1, 1, 1, 0) = I1 , F6.4(0, 1, 1, 0, 1) = F6.4(1, 0, 0, 1, 1) = I2 .

Thus, we qualify them as master integrals. The values of these integrals can
be obtained from (5.25) and (5.26), respectively:

I1 = (iπd/2)2(−q2)d−4 Γ (2 − d/2)2Γ (d/2 − 1)4

Γ (d − 2)2
, (6.30)

I2 = −(iπd/2)2(−q2)d−3 Γ (3 − d)Γ (d/2 − 1)3

Γ (3d/2 − 3)
. (6.31)

The corresponding coefficient functions are constructed using the values
of the following integrals that appear in (6.14). For c1, we use

g2(α, β) =
∫ q2

0

dx5 xα
5 (q2 − x5)β

=
(
q2
)α+β+1 Γ (α + 1)Γ (β + 1)

Γ (α + β + 2)
. (6.32)
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For c2, we use

g3(α1, α4, β) =
∫ ∞

0

∫ ∞

0

dx1 dx4 xα1
1 xα4

4 (q2 + x1 + x4)β

=
(
q2
)α1+α4+β+2 Γ (α1 + 1)Γ (α4 + 1)Γ (−α1 − α4 − β − 2)

Γ (−β)
. (6.33)

The decomposition of an arbitrary integral is

F6.4(a1, a2, a3, a4, a5) = c1(a1, a2, a3, a4, a5)I1

+ [c2(a1, a2, a3, a4, a5) + c2(a2, a1, a4, a3, a5)] I2 . (6.34)

One can check that this algorithm provides the same results for the coefficient
functions as the algorithm described in the solution of Problem 5.4.

We again consider

Example 6.5. Two-loop massless vertex Feynman integrals (5.39) of Fig. 5.3
with integer powers of the propagators.

This is also a relatively simple example which can be treated almost like
the previous examples. We shall deal with the following extended set of the
denominators of the propagators:

E1 = l2 − 2l·p1 + p2
1 , E2 = l2 − 2l·p2 + p2

2 ,

E3 = k2 − 2k ·p1 + p2
1 , E4 = k2 − 2k ·p2 + p2

2 ,

E5 = k2 , E6 = k2 − 2k ·l + l2 , E7 = l2 , (6.35)
E8 = p2

1 , E9 = p1 ·p2 , E10 = p2
2 . (6.36)

The basic polynomial is straightforwardly evaluated, as a determinant
of the corresponding 4 × 4-matrix (6.11). The effective number of loops to
be used in (6.10) is h = 4. Since we are not interested in higher terms of
expansion in the external kinematical invariants2 p2

1, p2
2 and p1 ·p2, as usual,

the parameters x8, x9 and x10 are set to zero, and we obtain the following
basic polynomial, according to the last rule in Sect. 6.1:

P (x) = x2
2x

2
3 − 2x1x2x3x4 + x2

1x
2
4 + 4Q2x1x2x5 − 2Q2x2x3x5

+2x1x2x3x5 − 2x2
2x3x5 − 2Q2x1x4x5 − 2x2

1x4x5 + 2x1x2x4x5

+(Q2)2x2
5 + 2Q2x1x

2
5 + x2

1x
2
5 + 2Q2x2x

2
5 − 2x1x2x

2
5 + x2

2x
2
5

+2Q2x2x3x6 + 2Q2x1x4x6 − 2(Q2)2x5x6 − 2Q2x1x5x6 − 2Q2x2x5x6

+(Q2)2x2
6 − 2Q2x2x3x7 − 2x2x

2
3x7 − 2Q2x1x4x7 + 4Q2x3x4x7

+2x1x3x4x7 + 2x2x3x4x7 − 2x1x
2
4x7 − 2(Q2)2x5x7 − 2Q2x1x5x7

−2Q2x2x5x7 − 2Q2x3x5x7 − 2x1x3x5x7 + 2x2x3x5x7 − 2Q2x4x5x7

2Observe that this is a formal expansion for p2
1 and p2

2 and a Taylor expansion
for p1 ·p2.
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+2x1x4x5x7 − 2x2x4x5x7 − 2(Q2)2x6x7 − 2Q2x3x6x7 − 2Q2x4x6x7

+4Q2x5x6x7 + (Q2)2x2
7 + 2Q2x3x

2
7 + x2

3x
2
7 + 2Q2x4x

2
7

−2x3x4x
2
7 + x2

4x
2
7 , (6.37)

where Q2 = −(p1 − p2)2 as before.
After a straightforward analysis of candidates we identify the following

set of the master integrals: F (1, 1, 0, 0, 1, 1, 0) = I1, F (1, 1, 1, 1, 0, 0, 0) = I2

and F (0, 1, 1, 0, 0, 1, 0) = F (1, 0, 0, 1, 0, 1, 0) = I3.
To construct the coefficient function c1 we have to deal with integrals

(6.14), where the reduced polynomial is

P1(x3, x4, x7) = x7

[
((Q2)2 + (x3 − x4)2

+2Q2(x3 + x4))x7 + 4Q2x3x4

]
. (6.38)

One can observe that in the cases, where n4 ≤ 0 (n3 ≤ 0) in the corresponding
integral (6.14), one can straightforwardly integrate over x4 (x3) and then over
x3 (x4) and x7, using

g4(α, β) =
∫ ∞

0

dx xα (x + a)β

= aα+β+1 Γ (1 + α)Γ (−α − β − 1)
Γ (−β)

. (6.39)

Suppose now that n3, n4 > 0 in (6.14). Then we can use a trick based
on the following integration formula obtained by IBP in a one-parametric
integral:

∫ ∞

0

dx

xn+γ
(Ax + B)z−n′

=
(z − n′)B

z − n − n′ − γ + 1

∫ ∞

0

dx

xn+γ
(Ax + B)z−n′−1 . (6.40)

Applying it to the integration over x7 we can reduce either n3 or n4 to zero
because here B = 4Q2x3x4.

The coefficient function c2 can easily be constructed because the corre-
sponding integral (6.14) over x7 can be evaluated by means of the following
explicit formula

g5(k, α1, α2) =
∫ x2

x1

dx xk(x − x1)α1(x2 − x)α2

=
k∑

r=0

xk−r
1 (x2 − x1)α1+α2+r+1 k!

(k − r)!r!
Γ (1 + α2)Γ (1 + α1 + r)

Γ (α1 + α2 + r + 2)
,(6.41)

and then over x5 and x6 by means of (6.39).
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A similar procedure, without tricks, can be developed for the coefficient
function c3. If I3 = F (0, 1, 1, 0, 0, 1, 0), this is achieved by integrating over x7

(which always can be done because n7 ≤ 0), and then over x5, x1 and x4.
For the second copy of I3, the coefficient function is symmetrically obtained.

Let us again turn to our favourite example which illustrates all the basic
methods.

Example 6.6. One-loop propagator Feynman integrals (1.2) corresponding
to Fig. 1.1.

The transition to the corresponding vacuum problem reduces to adding
a new propagator, 1/(q2 − s)a3 . We again consider these integrals at general
q2 and are not interested in derivatives so that, effectively, the corresponding
index will be a3 = 1 and the corresponding variable x3 is set to zero. The
resulting basic polynomial is

P (x1, x2) = −(x1 − x2 + m2)2 − q2(q2 − 2m2 − 2(x1 + x2)) . (6.42)

Of course, at m = 0 it coincides with the polynomial (6.18) for Example 6.2.
There are two master integrals F6.6(1, 1) = I1 given by (1.5) and

F6.6(1, 0) = I2 given by the right-hand side of (5.6). We want to construct the
corresponding coefficient function with the normalization conditions (6.4), i.e.

c1(1, 1) = 1 , c1(1, 0) = 0 , c2(1, 1) = 0 , c2(1, 0) = 1 .

The coefficient function of I1 is simply obtained similar to the massless
case

c1(a1, a2) =

(
q2 − m2

)(d−3)

(a1 − 1)!(a2 − 1)!

×
(

∂

∂x1

)a1−1(
∂

∂x2

)a2−1

[P (x1, x2)]
(d−3)/2

∣∣∣∣∣
xi=0

. (6.43)

For the coefficient function c2(a1, a2) of I2, we obtain linear combinations
of one-parametric integrals

f(n1, n2) =
∫

dx

xn1
[P2(x)](d−3)/2−n2 , (6.44)

where
P2(x) = P (x1, x)|x1=0 = αx2 + βx + γ (6.45)

with α = −1, β = 2(m2 + q2), γ = −(m2 − q2)2.
Consider first the case a2 ≤ 0. Then n1 is always non-positive here, and

f(n1, n2) can be understood as an integral between the roots

x(1,2) =
(
m ∓

√
q2
)2
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of the quadratic polynomial P2(x), using (6.41).
The evaluation at a1 = 1 and a2 = 0 provides a normalization factor to

satisfy the normalization condition c2(1, 0) = 1, and we obtain the following
expression for c2(a1, a2) at a2 ≤ 0:

c0
2(a1, a2) = c0

2(a1, a2) ≡
Γ (d − 1)

4d−2(m2q2)(d−2)/2Γ ((d − 1)/2)2

× 1
(a1 − 1)!

∫ x(2)

x(1)

dx

xa2

(
∂

∂x1

)a1−1

[P (x1, x)](d−3)/2

∣∣∣∣∣
x1=0

. (6.46)

In the case a2 > 0, the integrals f(n1, n2) appear also with n1 > 0. When
taken seriously they can be evaluated in terms of a Gauss hypergeometric
function. Instead of doing this, let us apply IBP to our parametric integrals
f(n1, n2). This gives the relation

f(n1, n2) =
(d − 3)/2 − n2

n1 − 1
×(2αf(n1 − 2, n2 + 1) + βf(n1 − 1, n2 + 1)) (6.47)

which can be used to reduce n1 to one or zero. Moreover, the identity

P
(d−3)/2−n2
2 = P

(d−3)/2−n2−1
2 P2

leads to the relation

f(1, n2) =
1
γ

(f(1, n2 − 1) − αf(−1, n2) − βf(0, n2)) (6.48)

which can be used to reduce n2 to zero.
This means that we can express any f(n1, n2) as a linear combination of

an auxiliary master integral f(1, 0) and integrals f(n1, n2) with n1 ≤ 0 which
can be evaluated in terms of gamma functions. We believe that the coefficient
functions are rational functions of everything. The only chance to satisfy this
property here is to construct c2(a1, a2) as a linear combination of c0

2(a1, a2)
and the first coefficient function c1(a1, a2):

c2(a1, a2) = c0
2(a1, a2) + Ac1(a1, a2) . (6.49)

The constant A is determined by the normalization condition c2(1, 1) = 0:

A = −c0
2(1, 1) . (6.50)

After this, the dependence on f(1, 0) drops out and c2(a1, a2) indeed turns
out to be a rational function.

Observe that integrating over some real domain, in particular between the
roots of a quadratic polynomial when constructing coefficient functions, with
a subsequent normalization, is in fact equivalent to solving IBP relations for
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our auxiliary parametric integrals. If there is such a possibility to understand
a given parametric integral it is reasonable to use it. If there is no such possi-
bility, e.g. one meets a polynomial of the third degree, or, an integration over
one of the x-variables leads to inconvenient integrals over the rest variables,
then there is no other way as to treat the auxiliary parametric integrals in
a pure algebraic way by solving the corresponding IBP relations. We shall
meet such situations in the examples below. As to the example above, the
situation with a2 ≤ 0 could be treated algebraically, by IBP in the initial
two-parametric integral, but integrating over x2 has simplified the situation.

6.3 General Recipes. Complicated Examples

Let us extend what was done in the previous example to the general situation.
After a preliminary analysis, with the help of (6.10), we obtain a preliminary
list of candidates for the master integrals. Let us define the relation of partial
ordering of the master integrals as follows:

F (a1) < F (a2) if a1j ≤ a2j for all j ,

and the strict inequality holds at least for one index.
The master integrals can be grouped into families characterized by their

maximal integrals. Let us start from the master integrals which have most
non-negative indices. Usually, the corresponding parametric integral for the
coefficient function can be understood in such a way that it results in inte-
grations in terms of gamma functions.

Consider now a situation with two master integrals with F (a2) < F (a1),
and suppose that we already know c1. If a2i = 1 we have also a1i = 1. To
construct an algorithm for the coefficient function c2(a) we start with the
case of negative indices aj for those indices j where a1j = 1 since in this case
we have c1(a) = 0. Experience shows that the integrations for c2(a) result
in ratios of gamma functions which in particular can be used to satisfy the
normalization c2(a2) = 1.

In a next step one considers the case aj > 0. Then the corresponding
parametric representation usually leads to integrals which cannot be evalu-
ated in terms of gamma functions. (See the previous example.) Thus at first
sight it looks hopeless to achieve that the coefficient functions have to be
rational functions of d. The way out is to look for an expression for the co-
efficient function c2(a) which is a linear combination of c1(a) and the basic
parametric representation for c2(a) denoted by c0

2(a)

c2(a) = c0
2(a) + Ac1(a) . (6.51)

The constant A is determined by the normalization condition c2(a1) = 0
which gives
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A = −c0
2(a1) . (6.52)

Then IBP is applied to the parametric integrals and the corresponding
relations are used to express any given parametric integral in terms of aux-
iliary (parametric) master integrals and expressions which are straightfor-
wardly evaluated in terms of gamma functions. The dependence on the new
auxiliary master integrals has to drop out3 in order to provide a rational
dependence of the coefficient functions on d.

In fact, this strategy can be generalized to the case of several master
integrals with more complicated hierarchies. Let us proceed with examples,
where we shall meet such situations. These will be mainly our old examples
considered in Chaps. 3–5.

Example 6.7. Feynman integrals (3.23) corresponding to the triangle dia-
gram of Fig. 3.5.

Almost all the steps can straightforwardly be performed, as above. The
basic polynomial is

P (x1, x2, x3) = (x1 − x3)(x2 − x3) − Q2x3

−m2(Q2 + x1 + x2 − 2x3) + m4 , (6.53)

where again Q2 = −(p1 − p2)2 with p2
1 = p2

2 = 0.
We obtain the following list of the master integrals: F (1, 1, 1) = I1,

F (1, 1, 0) = I2 and F (0, 0, 1) = I3. When testing various candidates to be
master integrals we consider, in particular, F (1, 0, 1) with the corresponding
reduced polynomial P1,0,1(x2) = m2 −Q2 − x2 linearly dependent on x2. Let
us try to understand the corresponding integrals (6.14)

∫
(m2 − Q2 − x2)z−nd

dx2

xn2
2

(6.54)

in a non-trivial way. (Here we have z = (d− 4)/2 = −ε because the effective
number of loops is h = 3.) We do not consider the Cauchy integration around
the origin in the complex plane because this choice corresponds to the value
a2 = 1 in the master integral so that we are looking for other options. We
cannot integrate from x2 = 0 because we have integer negative powers of x2.
Still it looks like there is a chance to obtain a new non-trivial understanding
of the integral by choosing to integrate from −∞ to m2−Q2 Here we suppose
that m2 − Q2 < 0 in order to have no singularity in the integration domain.
However, this choice brings nothing new! One can check that, after the nor-
malization by the equation c1,0,1(1, 0, 1) = 1, one obtains the same expression
as in the case of the Cauchy integration corresponding to other values of the

3This cancellation serves as a good check of the algorithm, similarly to cancella-
tions of spurious poles in ε on the right-hand side of various asymptotic expansions
in momenta and/or masses [28].
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index a2. Therefore, we conclude that we cannot interpret (6.54) in a new
non-trivial way so that the integral F (1, 0, 1) is not a master integral.

A more general recipe is that, whenever we obtain in a linear dependence
of a reduced polynomial in (6.14) on some variable, we shall usually4 conclude
that this cannot be a master integral.

The coefficient function of I1 can be constructed trivially because it does
not involve integration. The coefficient function of I2, with the corresponding
polynomial P2 = (m2 + x3)(m2 − Q2 + x3), is also simple (at least simpler
than in Example 6.6). If n3 ≤ 0 in the corresponding integral (6.14), we can
integrate between the roots of this polynomial using (6.41). In the case of
n3 > 0, one can use the IBP relation with respect to x3 in order to reduce
n3 to one and the relation following from the identity P z−nd

2 = P z−nd−1
2 P2

to adjust the dimension.
For the coefficient function of I3, we obtain integrals (6.14) with

P3(x1, x2) = x1x2 − m2(Q2 + x1 + x2) + m4 .

If one of the indices n1 and n2 in this integral is non-positive the integra-
tion over the corresponding variable, e.g. over x2, can be performed but one
obtains a power of (m2 − x1) not regularized by z. So, in this situation, it
is necessary to proceed in a pure algebraic way and solve the correspond-
ing IBP relations, together with the relation that follows from the identity
P z−nd

3 = P z−nd−1
3 P3, in order to reduce any given integral to auxiliary master

integrals.
There is, however, one more option5: to use the package AIR [9] based

on the algorithm of [143] and designed to solve genuine IBP relations for
Feynman integrals as discussed in the end of the previous chapter. It turns out
that this program can be applied to the auxiliary IBP relations for integrals
(6.14). As a result of this procedure, an algorithm for c3 can be constructed.
In particular, we obtain

F (1, 1, 2) =
1

m2(m2 − Q2)

[
1
2
(d − 4)(2m2 − Q2)I1

+(d − 3)I2 +
2 − d

2m2
I3

]
, (6.55)

in agreement with (5.20), where several integrals expressed in terms of gamma
functions were involved on the right-hand side.

Let us again consider massless on-shell boxes which we have already
analysed in Examples 3.3, 4.3 and 5.4.

4Well, up to some pathological situations, where one has chances to obtain a new
meaning for such integrals by considering the integration over xi in the sense of a
distribution with respect to the variables on which coefficients of the corresponding
linear polynomial depend.

5Thanks to J. Piclum who implemented the corresponding algorithm on a com-
puter, also for the Example 6.10 below.
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Example 6.8. The massless on-shell box Feynman integrals of Fig. 5.1 with
p2

i = 0, i = 1, 2, 3, 4 and general integer powers of the propagators.

The basic polynomial is now

P (x1, x2, x3, x4) = s2t2 + t2(x1 − x2)2 − 2st2(x1 + x2)
+s2(x3 − x4)2 − 2s2t(x3 + x4)
−2st[2x1x2 + 2x3x4 − (x1 + x2)(x3 + x4)] . (6.56)

The effective number of loops to be used in (6.10) is now h = 4. Using the
strategy formulated above, we reveal the following three master integrals:
F (1, 1, 1, 1) = I1 and F (1, 1, 0, 0) = F (0, 0, 1, 1) = I2. The coefficient function
of I1 can be constructed trivially. In the case of I2 (the first of the two
symmetric variants), the integration in the corresponding integral (6.14) over
x4 and then over x3 can be performed in terms of gamma functions if n4 ≤ 0,
and, in the opposite order, in the case of n3 ≤ 0. One can then proceed
similarly to Example 6.6 by introducing an auxiliary parametric integral and
using IBP relations to reduce n3 or n4 to one or zero. Then, to define the
coefficient function c2, one involves a linear combination with the coefficient
function c1 so that the dependence on this auxiliary integral drops out.

Now we turn to a massive generalization of this example.

Example 6.9. The on-shell boxes with two massive and two massless lines
shown in Fig. 6.2, with p2

1 = . . . = p2
4 = m2.

As in Example 6.8, we have changed the numbering of the lines with
respect to Chap. 4.

The procedure is again straightforward. One can identify the master inte-
gral with four lines, F (1, 1, 1, 1) = I1, two symmetrical master integrals with
three lines, F (1, 0, 1, 1) = I21, F (0, 1, 1, 1) = I22, two master integrals with
two lines, F (1, 1, 0, 0) = I31, F (0, 0, 1, 1) = I32 and two symmetrical master
integrals with one line, F (1, 0, 0, 0) = I41, F (0, 1, 0, 0) = I42. These master
integrals are graphically shown in Fig. 6.3. We have the following hierarchy
relations: I41, I42 < I31 < I1 and I32 < I21, I22 < I1.

The coefficient function c1 is trivial. The coefficient function c21 can be
constructed, using (6.14), first in the case of n2 ≤ 0, where it can be obtained

p1

p2

p3

p4

1

3

2

4

Fig. 6.2. On-shell box with two massive and two massless lines. The solid lines
denote massive, the dotted lines massless particles
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I1 I2 I31 I32 I4

Fig. 6.3. Master integrals for Fig. 6.2

by an explicit integration. Then, for n2 > 0, one applies IBP to these auxiliary
integrals, introduces an auxiliary master integral and mixes such a solution
with c1.

To construct the coefficient function of I31, one uses a straightforward
integration in the case n1 ≤ 0 and general n2 and, similarly, for n2 ≤ 0 and
general n1. In the case of n1,2 > 0, one can apply auxiliary IBP relations
with the introduction of an auxiliary master integral for n1 = n2 = 1 which
is cancelled when mixing the so constructed coefficient function with c1.

In the cases of the master integrals I32, I41 and I42, we have a tower of
three hierarchical master integrals. Still the case of I32 is quite similar to
I31 and does not provide complications. To construct the coefficient function
of I42 one uses a straightforward integration over x1, x3, x4 in the case of
n1 ≤ 0, n3 ≤ 0, and over x1, x4, x3 in the case of n1 ≤ 0, n4 ≤ 0. In the case
of n1 ≤ 0, n3,4 > 0, one integrates over x1 and uses, for resulting integrals over
x3 and x4, auxiliary recurrence relations, with an introduction of a master
integral for n3 = n4 = 1 which cancels when mixing with the coefficient
function c22. Quite similarly, one can explicitly integrate over x3 or x4 when
n3 ≤ 0 or/and n4 ≤ 0 and reduce resulting integrals. Finally, in the case of
n1,3,4 > 0, one solves corresponding auxiliary IBP relations and introduces a
master integral for n1 = n3 = n4 = 1 which cancels when mixing with the
coefficient function c1.

Here is an example of the reduction of massive boxes to the master inte-
grals:

F (2, 1, 1, 1) =
d − 5

4m2 − s
I1 +

(d − 4)(4m2 − t)
2m2(4m2 − s)t

I2 −
d − 3

m2(4m2 − s)t
I32

− (d − 4)(d − 2)
2(d − 5)m4(4m2 − s)t

I4 . (6.57)

We shall consider another example with a tower of three hierarchical mas-
ter integrals in the next section.

The last example in this section is

Example 6.10. Sunset diagrams of Fig. 3.13 with one zero mass and two
equal non-zero masses at a general value of the external momentum squared.
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We are dealing with the following family of integrals:

F6.10(a) =
∫ ∫

ddkddl (2q ·k)−a3(2q ·l)−a4

(k2 − m2)a1(l2 − m2)a2 [(q − k − l)2]a5
, (6.58)

where a = (a1, a2, a3, a4, a5) with a3,4 ≤ 0.
The strategy presented above reveals the following preliminary list of the

master integrals: F (1, 1, 0, 0, 1) = I1 and F (1, 1, 0, 0, 0) = I2.
The coefficient function c2 can be constructed using the strategy described

above: for n5 ≤ 0, an integration in terms of gamma functions is used and,
for n5 > 0, a simple recursion is applied. It turns out that one can use the
package AIR [9] to solve the recurrence relations for the auxiliary parametric
integrals (6.14) corresponding to c1,

f(n3, n4, nd) =
∫ ∫

[P1(x3, x4)]
z−nd

dx3 dx4

xn3
3 xn4

4

, (6.59)

where z = (d − 4)/2 = −ε and

P1(x3, x4) = m2(x3 + x4 − 2q2)2

−(x3 − q2)(x4 − q2)(x3 + x4 − q2) . (6.60)

Remember that we have n3, n4 ≤ 0 so that we can perform a useful change of
variables, x3,4 = x′

3,4 +q2 and deal with integrals in these variables where the
basic polynomial looks simpler. When solving the corresponding IBP relations
(together with the relation following from the identity P z−nd

1 = P z−nd−1
1 P1)

it is useful to apply Euler’s theorem to the factor [P1(x3, x4)]
z−nd which is

a homogeneous functions of the four variables, x3, x4, q
2,m2 (although it is

clear that the resulting relation is nothing but a special combination of the
IBP relations). A general solution to these relations is determined by the two
auxiliary master integrals, f(0, 0, 0) and f(−1, 0, 0). Therefore, it is necessary
to introduce an extra master integral, Ī1 = F (1, 1,−1, 0, 1).

As a result, an algorithm for the evaluation of all the three coefficient
functions, c1, c̄1 and c2, can be constructed. The dependence on the auxiliary
master integrals drops out in expressions for the coefficient functions. We
have, in particular,

F (2, 1, 0, 0, 1) =
1

m2(4m2 − q2)
[(

(d − 3)m2 − (d − 2)q2
)
I1

+
3
2
(d − 2)Ī1 +

1
2
(d − 2)I2

]
, (6.61)

F (2, 1,−1, 0, 1) =
2

4m2 − q2

[
−
(
2(d − 3)m2 + (d − 1)q2

)
I1

+3(d − 2)Ī1 + (d − 2)I2

]
. (6.62)
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F (2, 1, 0,−1, 1) =
1

m2(4m2 − q2)
[(

4(d − 3)m4 − (d − 2)(q2)2
)
I1

+
3
2
(d − 2)q2Ī1 − (d − 2)(2m2 − q2)I2

]
. (6.63)

Let us consider, following [193], a more complicated example in a separate
section.

6.4 Two-Loop Feynman Integrals
for the Heavy Quark Static Potential

Example 6.11. Two-loop Feynman integrals for the heavy quark static po-
tential corresponding to Fig. 6.4.

The numbering of the lines in Fig. 6.4 is changed as compared with
Fig. 3.10 in order to take into account the symmetry. There are two classes
of such Feynman integrals which we denote A and B:

FA(a) =
∫ ∫

ddkddl

(k2)a1(l2)a2 [(k − q)2]a3 [(l − q)2]a4 [(k − l)2]a5

× 1
(v ·k)a6(v ·l)a7

, (6.64)

FB(a) =
∫ ∫

ddkddl

(k2)a1(l2)a2 [(k − q)2]a3 [(l − q)2]a4 [(k − l)2]a5

× 1
(v ·k)a6 [v ·(k − l)]a7

, (6.65)

where v ·q = 0.
The Feynman integrals necessary for the evaluation of the two-loop quark

static potential were calculated in [169]. In [177], a procedure for the evalu-
ation of arbitrary integrals (6.64) and (6.65) was developed, using the tech-
nique of shifting dimension [200] discussed in Chap. 5. However, not all the

1 2

3 4

5

6 7

(A)

1
2

3 4

5

6

7

(B)

Fig. 6.4. Feynman diagrams corresponding to case A and case B. Wavy lines
denote propagators for the static source
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necessary relations were published. Another version of partial calculation of
integrals (6.64) and (6.65) was used in [134] for the evaluation of 1/m correc-
tions to the two-loop quark static potential. In this algorithm, IBP was used
without systematization, as in Chap. 5, and the reduction always stopped at
integrals expressed in terms of gamma functions so that a lot of boundary
integrals, sometimes involving up to fourfold finite summations, entered the
reduction. Now, we are going to apply the method of this chapter to these
integrals. We will, therefore, obtain a minimal set of master integrals.

The basic polynomials are straightforwardly obtained:

PA(x1, . . . , x7) = −[x2x6 − x4x6 + (−x1 + x3)x7]2

+v2{x2
1x4 + x3(x2

2 + x2(x3 − x4 − x5) + x4x5)
−x1[x2(x3 + x4 − x5) + x4(x3 − x4 + x5)]}
+(q2)2[v2x5 − (x6 − x7)2] + q2{v2[(x3 + x4 − x5)x5

+x2(x3 − x4 + x5) + x1(−x3 + x4 + x5)]
+2[x2x6(−x6 + x7) + x4x6(−x6 + x7)
+x7(x1x6 + x3x6 − 2x5x6 − x1x7 − x3x7)]} , (6.66)

PB(x1, . . . , x7) = PA(x1, x2, x3, x4, x5, x6, x6 − x7) . (6.67)

The two cases A and B are considered separately.
Case A.
The application of the procedures described above to case A leads to

the following families of master integrals which are shown in Fig. 6.5. As
far as the notation is concerned the first index labels the different master
integrals. In case the master integrals are equal we introduce a second index
for further specification. If Ij is a master integral with indices 1 and 0 then

Family A1:
I1 I21 I22 I3

Family A2:
I51 I71 I81 I41

Family A4:
I61

Fig. 6.5. Feynman diagrams corresponding to the master integrals of case A. In
addition to I61, there is also a master integral Ī61 containing an irreducible numer-
ator
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we shall denote by Īj the master integral which differs from Ij by one index
−1 instead of 0.

– Family A1 consists of the four master integrals with the hierarchy I1 >
{I21, I22} > I3:

I1 = FA(1, 1, 1, 1, 0, 1, 1) ,

I21 = FA(1, 1, 1, 1, 0, 0, 1) ,

I22 = FA(1, 1, 1, 1, 0, 1, 0) ,

I3 = FA(1, 1, 1, 1, 0, 0, 0) .

– Family A2 consists of the four master integrals with the hierarchy I51 >
{I71, I81} > I41:

I51 = FA(1, 0, 0, 1, 1, 1, 1) ,

I71 = FA(1, 0, 0, 1, 1, 0, 1) ,

I81 = FA(1, 0, 0, 1, 1, 1, 0) ,

I41 = FA(1, 0, 0, 1, 1, 0, 0) .

– Family A3 is symmetrical to Family A2 with respect to the transformation
1 ↔ 2, 3 ↔ 4, 6 ↔ 7. It contains the master integrals I52, I72, I82 and I42.

– Family A4 contains the master integrals

I61 = FA(0, 1, 0, 1, 1, 1, 0) ,

Ī61 = FA(0, 1, 0, 1, 1, 1,−1) .

– Family A5 is symmetrical to Family A4 with respect to the transformation
1 ↔ 2, 3 ↔ 4, 6 ↔ 7. It contains the master integrals I62 and Ī62.

As has already become clear from the examples discussed so far, one ex-
pects the appearance of complicated expressions for the coefficient functions
of simplest master integrals. Indeed, in the case of the coefficient function
c1, six out of seven indices can be treated with the help of differentiations
and the remaining one-dimensional integral can be understood in the sense
of integration (6.32).

The situation is similar for c22 (and c21 which can be obtained by exploit-
ing the symmetry) where the remaining two-fold integration over x7 and x5

can be understood with the help of the integrals (6.41) and (6.27).
To construct c3 we have to understand, in some way, three integrations,

over x5, x6, x7. In case one of the indices n5, n6 or n7 is less or equal to zero
one can use various combinations of the auxiliary integrals gi (i = 1, . . . , 4)
listed above. Thereby it is advantageous to perform the integration corre-
sponding to the negative index first. If, on the contrary, n5, n6 and n7 are
positive an immediate integration seems not to be possible. However, from the
corresponding three-parametric integral representation it is simple to derive
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recurrence relations which shift at least one of the indices to zero, eventually
at the cost of increasing the dimension nd. The latter does not constitute
a problem since the whole formulation of our procedure is in d dimensions.
Thus, also in this case the integration can be performed in terms of gamma
functions. In principle one could be forced to introduce three auxiliary mas-
ter integrals and build the proper linear combinations with c1, c21 and c22.
However, it turns out that the corresponding constants in such combinations
are zero.

For the coefficient function c51, only two non-trivial integrations over x2

and x3 are involved which can be performed with the help of (6.33).
For c81, one can use the symmetry:

c81(a1, a2, a3, a4, a5, a6, a7) = c71(a4, a3, a2, a1, a5, a7, a6) .

The most complicated coefficient function is certainly c41 since there are
four non-trivial integrations over x2, x3, x6 and x7 left. If n6 or n7 are less
than or equal to zero the integrations can be performed in terms of gamma
functions with the help of the formulae provided above. However, for n6 ≥ 1
and n7 ≥ 1 this is not possible. In this case, the idea is to use IBP in order
to reduce the four-parametric auxiliary integrals

IA,aux
41 (n2, n3, n6, n7, nd) =

∫
. . .

∫
dx2 dx3 dx6 dx7

xn2
2 xn3

3 xn6
6 xn7

7

× [P41(x2, x3, x6, x7)]
z−nd (6.68)

(with z = (d − h − 1)/2 = (d − 5)/2) to the auxiliary master integral
IA,aux
41 (1, 1, 1, 1, 0). Here P41 is obtained from PA by setting x1, x4 and x5

to zero.
Observe that the corresponding recurrence procedure is significantly sim-

pler than the original one which involves seven denominators. Furthermore,
if during the recursion either n6 or n7 becomes negative the corresponding
expressions can immediately be expressed in terms of gamma functions. The
five IBP relations which are useful for the reduction to IA,aux

41 (1, 1, 1, 1, 0)
can be obtained by either differentiating the integrand with respect to xi

(i = 2, 3, 6, 7) or by writing down the identity P z−nd
41 = P z−nd−1

41 P41 and in-
serting the explicit result for the last factor. The proper combination of these
relations leads to new ones which allow the following steps to be performed
in an automatic way:

1. Reduce n6 and n7 to one.
2. Reduce n2, n3 > 0 to n2, n3 ≤ 0.
3. Use IBP recurrence relations to obtain n2 = n3.
4. Reduce n2 = n3 < 0 to n2 = n3 = 0.
5. Adjust the dimension, i.e. reduce nd to zero.

A simple relation transforms IA,aux
41 (0, 0, 1, 1, 0) to IA,aux

41 (1, 1, 1, 1, 0).
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At this point one constructs the final coefficient function c41 by consider-
ing the linear combination with c51, c71 and c81. Since c41(a71) = c41(a81) =
0, we are left with

c41(a) = c0
41(a) − c0

41(a51)c51(a) , (6.69)

where

c0
41(a51) = − 1

q2v2

4(d − 3)(3d − 14)(3d − 10)(3d − 8)
(d − 4)2(3d − 13)(3d − 11)

+
(d − 5)2

(3d − 13)(3d − 11)
(q2)2IA,aux

41 (1, 1, 1, 1, 0) .

In this combination the auxiliary master integral IA,aux
41 (1, 1, 1, 1, 0) can-

cels and c41(n) turns out to be a rational function in d.
The master integral I61 forms a family by its own. However, as the poly-

nomial P61 is quadratic in x7 and thus the corresponding recurrence relation
shifts n7 only in steps of two, it is necessary to introduce in addition the
master integral Ī61 where a7 = −1. The very calculation of the coefficient
function is identical for I61 and Ī61. For n3 ≤ 0, it can be done in terms of
gamma functions with the integration order x3, x1, x7. On the other hand,
for n3 > 0, a simple one-step relation reduces n3 to zero.

Let us now turn to
Case B.
As one can see from (6.67) the basic polynomial is quite similar to the

one of case A which can be used while computing the coefficient functions.
However, the symmetry can only be exploited if n7 ≤ 0 as for n7 > 0 the
factor (x6 − x7) would appear in the denominator.

Altogether there are four families which, however, show a more compli-
cated structure than in case A – see Fig. 6.6. More precisely one has

– Family B1. There are twelve master integrals which obey the hierarchies
IB
1 > {IB

2 , I22} > I3 and IB
1 > IB

2 > {I6i, Ī6i} (i = 3, 4, 5, 6) and are given
by

IB
1 = FB(1, 1, 1, 1, 0, 1, 1) ,

IB
2 = FB(1, 1, 1, 1, 0, 0, 1) ,

I22 = FB(1, 1, 1, 1, 0, 1, 0) ,

I3 = FB(1, 1, 1, 1, 0, 0, 0) ,

I63 = FB(1, 1, 1, 0, 0, 0, 1) ,

I64 = FB(1, 1, 0, 1, 0, 0, 1) ,

I65 = FB(1, 0, 1, 1, 0, 0, 1) ,

I66 = FB(0, 1, 1, 1, 0, 0, 1) .

There are four master integrals with a6 = −1:
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Family B1:
IB
1 IB

2 I22 I3

I63 I64 I65 I66

Family B2:
I9 I82 I81 I41

Family B3:
I53 I83 I72 I42

Family B4:
I67

Fig. 6.6. Feynman diagrams corresponding to the master integrals of case B. In ad-
dition to I6i (i = 3, . . . , 7) there are also master integrals Ī6i containing irreducible
numerators

Ī63 = FB(1, 1, 1, 0, 0,−1, 1) ,

Ī64 = FB(1, 1, 0, 1, 0,−1, 1) ,

Ī65 = FB(1, 0, 1, 1, 0,−1, 1) ,

Ī66 = FB(0, 1, 1, 1, 0,−1, 1) .

– Family B2. There are four master integrals which obey the following hi-
erarchy: I9 > {I82, I81} > I41 with

I9 = FB(1, 0, 0, 1, 1, 1, 1) ,

I82 = FB(1, 0, 0, 1, 1, 0, 1) ,

I81 = FB(1, 0, 0, 1, 1, 1, 0) ,

I41 = FB(1, 0, 0, 1, 1, 0, 0) .

– Family B3. Similarly to Family B2, there are four master integrals obeying
the hierarchy I53 > {I83, I72} > I42 with

I53 = FB(0, 1, 1, 0, 1, 1, 1) ,
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I83 = FB(0, 1, 1, 0, 1, 0, 1) ,

I72 = FB(0, 1, 1, 0, 1, 1, 0) ,

I42 = FB(0, 1, 1, 0, 1, 0, 0) .

– Family B4 consists of the two master integrals

I67 = FB(0, 1, 0, 1, 1, 1, 0) ,

Ī67 = FB(0, 1, 0, 1, 1, 1,−1) .

It is similar to the Families A4 and A5 of case A.

The construction of the coefficient functions cB
1 , cB

2 and c22 of the fam-
ily B1 proceeds along the same lines as in case A. In the case of c3, we have to
deal with integrals IB,aux

3 (n5, n6, n7, nd) which are defined similarly to (6.68).
There is a slight complication as, in contrast to case A, c3(a1) �= 0. As a con-
sequence an auxiliary master integral, IB,aux

3 (0, 1, 1, 0), has to be introduced
which is only cancelled after considering the proper linear combination with
c1. The reduction to IB,aux

3 (0, 1, 1, 0) is straightforward.
Family B1 has four more members, I63, I64, I65 and I66, which belong to

the four hierarchies IB
1 > IB

2 > I6i (i = 3, 4, 5, 6). Thus, in order to obtain
the coefficient functions c6i one has to consider the linear combination

c6i = c0
6i − c0

6i(a
B
1 )cB

1 (a) − c0
6i(a

B
2 )cB

2 (a) . (6.70)

Let us in the following restrict the discussion to c63 since the results for the
other three coefficients can be obtained by exploiting the symmetry. The
corresponding auxiliary integrals are given by an integral representation of
the form

c0
63 ∼

∫
. . .

∫
[P63(x4, x5, x6)]

z−nd
dx4 dx5 dx6

xn4
4 xn5

5 xn6
6

, (6.71)

with

P63 = (q2)2v2x5 + q2v2
(
x4x5 − x2

5

)
− 4q2x5x

2
6 − x2

4x
2
6 . (6.72)

For n4 ≤ 0, where we have cB
1 (n) = cB

2 (n) = 0, the integrals in (6.71) can
be taken analytically in the order x4, x5, x6 using (6.41) for x4, the formula
(6.41) for x5 and (6.27) extended to non-integer k3 for x6.

Let n4 > 0. Then we need to introduce two auxiliary master integrals,
IB,aux
63 (1, 0, 0, 0) and IB,aux

63 (1, 0, 1, 0). The reduction of the auxiliary para-
metric integrals (6.71) can be performed as follows:

1. Reduce n4 to one.
2. Reduce n5 to zero.
3. The reduction of n6 can only be performed in steps of two. Thus one ends

up with n6 = 0 or n6 = −1.
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4. Adjust the dimension, i.e. reduce nd to zero.

The corresponding recurrence relations are derived easily from (6.72). It
is interesting to note that in (6.70) the master integral IB,aux

63 (1, 0, 1, 0) is
cancelled from cB

1 and IB,aux
63 (1, 0, 0, 0) from cB

2 . Observe that, due to the
structure of the reduced polynomial (6.72), in addition to I63 also a master
integral with n6 = −1, Ī63, has to be introduced which, however, has the
same coefficient function as I63. Observe also that, for c63 and c65, the master
integrals I6 and Ī6 are needed, while for c64 and c66, the integrals I6 and ĪB

6

are necessary.
Families B2, B3 and B4 are similar to the families A2, A3 and A4, re-

spectively, so that the corresponding coefficient functions are similarly con-
structed.

The procedure described above was implemented in a MATHEMATICA pack-
age [193].

Let us now list all occurring master integrals in both cases A and B.
They have been obtained with the help of the program package developed for
the calculation performed in [134] where IBP recurrence relations have been
‘nonsystematically’ solved.

I1 =

(
iπd/2

)2
π

Q2+4εv2

Γ (5/2 − d/2)2Γ (d/2 − 3/2)4

Γ (d − 3)2
,

I2 = −
(
iπd/2

)2 √
π

Q1+4εv

Γ (2 − d/2)Γ (5/2 − d/2)Γ (d/2 − 1)2Γ (d/2 − 3/2)2

Γ (d − 3)Γ (d − 2)
,

I3 =
(
iπd/2

)2 Γ (2 − d/2)2Γ (d/2 − 1)4

Q4εΓ (d − 2)2
,

I4 = −
(
iπd/2

)2

Q2−4ε Γ (3 − d)Γ (d/2 − 1)3

Γ (3d/2 − 3)
,

I5 =
(
iπd/2

)2 π2e−2γEε

Q4εv2

[
− 2

3ε
− 4 +

(
−24 +

7
9
π2

)
ε + O(ε2)

]
,

I6 =
(
iπd/2

)2
√

πQ1−4ε

v

×2d−2Γ (3 − d)Γ (7/2 − d)Γ (d/2 − 1)Γ (d − 5/2)2

Γ (2 − d/2)Γ (2d − 5)
,

Ī6 = −
(
iπd/2

)2 √
πQ2−4ε 2d−2Γ (3 − d)2Γ (d/2 − 1)Γ (d − 2)2

Γ (3/2 − d/2)Γ (2d − 4)
,

I7 =
(
iπd/2

)2
√

πQ1−4ε

v

×Γ (7/2 − d)Γ (d/2 − 1)2Γ (d/2 − 3/2)Γ (d − 5/2)
Γ (d − 2)Γ (3d/2 − 4)

,

I8 = I7 ,

I9 = I5 ,
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IB
1 =

1
2
I1 ,

IB
2 =

(
iπd/2

)2 π2e−2γEε

Q1+4εv

×
[
−4 ln 2 + ε

(
5
3
π2 − 16 ln 2 − 4 ln2 2

)
+ O(ε2)

]
,

ĪB
6 = −Ī6 ,

where Q =
√
−q2. The fact that I5 = I9 and I7 = I8 can be seen immediately

by a simple change of the loop momenta. Since I7 = I8, we have in both
cases one master integral less. So, in case A, we have eight master integrals,
I1, . . . , I7 and Ī6, and, in case B, ten master integrals I2, . . . , I7, I9, Ī

B
6 , IB

1

and IB
2 , Only two of the master integrals are not known in terms of gamma

functions. Their results are given in expansion in ε up to ε1. For example, they
can be evaluated by the method of MB representation described in Chap. 4.
(For the corresponding MB representation, see Problem 4.5.)

Here are some examples of results for the coefficient functions:

FA(2, 2, 1, 1, 1, 1, 1) = c1I1 + c3I3 + (c41 + c42)I4 + (c51 + c52)I5

+(c61 + c62)Ī6

=

(
iπd/2

)2
Q8+4εv2

(
2
3ε

+
4
3ε

π2 − 16
9

+
368
45

π2 − 8ζ(3) + O(ε)
)

,

with

c1 =
2(d − 5)(d − 4)

q6
, c3 =

8(d − 5)(d − 3)2

(d − 4)q8v2
,

c41 = c42 =
−3(d − 3)(3d − 16)(3d − 14)(3d − 10)(3d − 8)

(d − 9)(d − 8)(d − 7)(d − 6)2(d − 4)2q10v2

×(5d3 − 93d2 + 588d − 1264) ,

c51 = c52 =
−3(3d − 17)(3d − 13)(3d − 11)

(d − 9)(d − 7)q8
,

c61 = c62 =
−32(2d − 13)(2d − 11)(2d − 9)(2d − 7)(2d − 5)

(d − 9)(d − 7)(d − 6)(d − 4)q10v2
.

FB(2, 2, 1, 1, 1, 1, 1) = c1I
B
1 + c3I3 + (c41 + c42)I4 + c53I5

+(c63 + c65)Ī6 + (c64 + c66 + c67)ĪB
6 + c9I9

=

(
iπd/2

)2
Q8+4εv2

(
− 1

3ε
+

4
3ε

π2 +
8
9

+
368
45

π2 + 4ζ(3) + O(ε)
)

,

with
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cB
1 =

2(d − 5)(d − 4)
q6

, c3 =
−4(d − 5)(d − 3)2

(d − 4)q8v2
,

c41 =
3(d − 3)(3d − 16)(3d − 14)(3d − 10)(3d − 8)
(d − 9)(d − 8)(d − 7)(d − 6)2(d − 4)2q10v2

×(7d3 − 117d2 + 654d − 1232) ,

c42 =
−6(d − 3)(3d − 16)(3d − 14)(3d − 10)(3d − 8)

(d − 9)(d − 8)(d − 7)(d − 6)2(d − 4)2q10v2

×(d3 − 12d2 + 33d + 16) ,

c53 =
−3(3d − 17)(3d − 13)(3d − 11)

(d − 9)(d − 7)q8
,

c63 = c64 = − 4(2d − 7)(2d − 5)
(d − 9)(d − 7)(d − 6)(d − 4)q10v2

×(15d4 − 304d3 + 2240d2 − 7093d + 8118) ,

c65 = c66 =
4(2d − 7)(2d − 5)(d2 − 17d + 55)

(d − 7)(d − 4)q10v2
,

c67 =
−32(2d − 13)(2d − 11)(2d − 9)(2d − 7)(2d − 5)

(d − 9)(d − 7)(d − 6)(d − 4)q10v2
,

c9 =
−3(3d − 17)(3d − 13)(3d − 11)

(d − 9)(d − 7)q8
.

FA(1, 1, 2, 1, 1,−1, 1) = c3I3 + (c41 + c42)I4 + c62Ī6

=

(
iπd/2

)2
Q4+4ε

(
− 1

2ε
+

3
2
− 2ζ(3) + O(ε)

)
,

c3 =
2(d − 3)
(d − 4)q4

, c41 =
−3(3d − 10)(3d − 8)(d2 − 5d + 2)

2(d − 6)(d − 5)(d − 4)2q6
,

c42 =
3(d − 5)(d − 2)(3d − 10)(3d − 8)

2(d − 6)(d − 4)2q6
,

c62 =
4(2d − 9)(2d − 7)(2d − 5)

(d − 5)(d − 4)q6
.

FB(1, 1, 2, 1, 1,−1, 1) = c3I3 + (c41 + c42)I4 + (c63 + c65)Ī6

+(c64 + c66)ĪB
6

=

(
iπd/2

)2
Q4+4ε

(
− 1

2ε
+

1
2

+ O(ε)
)

,
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c3 =
(d − 5)(d − 3)

(d − 6)q4
, c41 =

−3(3d − 10)(3d − 8)(d2 − 9d + 22)
2(d − 6)2(d − 5)(d − 4)q6

,

c42 =
3(3d − 10)(3d − 8)(d2 − 11d + 26)

2(d − 6)2(d − 4)q6
,

c63 =
(2d − 11)(2d − 7)(2d − 5)

(d − 6)(d − 5)q6
,

c64 =
−(2d − 7)(2d − 5)
(d − 6)(d − 5)q6

, c65 =
(2d − 7)2(2d − 5)
(d − 6)(d − 5)q6

,

c66 =
−(2d − 7)(2d − 5)(4d − 19)

(d − 6)(d − 5)q6
.

6.5 Conclusion

The method presented in this chapter provides the possibility to solve the
‘global’ reduction problem for a given family of Feynman integrals by solving
several ‘local’ reduction problems for coefficient functions of the master inte-
grals. Such auxiliary reduction problems are simpler that the initial problem
because they involve less variables (indices). When solving local reduction
problems, the natural way is to interpret corresponding auxiliary parametric
integrals (6.10) in the sense of repeated integrations over some regions. It
might seem that this procedure is similar to evaluating Feynman integrals
in terms of gamma functions for general d, instead of ‘honestly’ solving cor-
responding IBP relations to the very end (see the discussion in the end of
Example 5.3). There is however an essential difference: when integrals (6.10)
are treated and evaluated in some way, no additional analytic information is
used, in contrast to the second case where Feynman integrals are evaluated,
e.g., by formulae of Appendix A.

Suppose that we do not want to solve the reduction problem but only
want to know whether a given Feynman integral of some family is irreducible
or not. However, to answer this question, it is reasonable to start to solve
the reduction problem by the method under consideration. Suppose that
the given integral has the indices for ‘true’ denominators equal to one, i.e.
a1 = . . . = al = 1 and the indices corresponding to ‘true’ numerators equal
to zero, i.e. al+1 = . . . = aN = 0. Then we can test this integral as a
candidate to be a master integral, as it was explained in this chapter, and
analyse the corresponding reduced polynomial P1 which can be obtained,
from the basic polynomial (6.11) associated with the given family, by setting
x1 = 0, . . . , xl = 0. If we can understand the resulting integral (6.14) over the
rest of the x-variables, xl+1, . . . , xN , (corresponding to the numerators) in a
non-trivial way, we make the conclusion that the given integral is irreducible.
In this case, one obtains the corresponding coefficient function c1(a1, . . . , aN )
that satisfies the following properties: c1(a1, . . . , aN ) = 0 if there is such
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i = 1, . . . , l that ai ≤ 0, and c1(1, . . . , 1, 0, . . . , 0) = 1, where the first l
arguments are equal to one. The existence of such a solution of the IBP
relations was crucial [17] in obtaining a sufficient condition that shows the
irreducibility of a given integral.

As an illustration, consider the Feynman integral evaluated in Exam-
ples 3.7 and 4.7. It belongs to the family of Feynman integrals corresponding
to Fig. 3.14 given by (3.58). Let us choose the numerator as (2k · l)−a7 . The
basic polynomial can straightforwardly be evaluated. The reduced polynomial
for the given integral is then

P1(x7) = (Q2 − x7)2x2
7 . (6.73)

Then the corresponding integral can be understood naturally using (6.32)
and we obtain a solution of the IBP relations which shows that the given
integral is irreducible.

However, if we are dealing with an integral which has some zero indices
corresponding to ‘true’ denominators and if we want to know if it is irre-
ducible, we have to perform more steps in solving the whole reduction prob-
lem. On the other hand, it can be very important to test the irreducibility
of a given Feynman integral without following the strategy described in this
chapter, in particular, within another branch of the present method based on
an expansion at large d which is somehow introduced when constructing the
coefficient function of the master integrals starting from (6.10). (Some de-
tails of this branch can be found in [18].) For this purpose, another sufficient
condition that can show the irreducibility of any given integral was suggested
in [18]. It is based on an analysis of stable points of the basic polynomial P .

Let us observe that since a given problem of solving IBP relations is
always reduced, in the present method, to the corresponding problem for
vacuum Feynman integrals, it turns out that different initial problems can
have the same vacuum ‘image’. As it was demonstrated in [20], this property
can be used when a solution of some reduction problem is known and another
reduction problem has the same vacuum image with it. For example, solving
IBP relations for the two-loop massless vertex diagrams (of Fig. 5.3, Fig. 3.14
and the Mercedez–Benz type) can be reduced to solving IBP relations for
the three-loop propagator diagrams that was done in [66] and implemented
in [110].

The method of this chapter has a feature opposite to the method of shift-
ing dimension [200] discussed in Chap. 5. Indeed, the first point in the latter
is to get rid of numerators, with the primary idea to simplify the situation.
In contrast to this, the numerators play a crucial role in the present method:
each irreducible numerator results in an integration over the corresponding x-
variable in the basic parametric representation. One more difference of these
two methods is that master integrals with indices ai > 1 usually appear in a
reduction with shifting dimension, while there are no such master integrals
in the present method. (The same feature holds for the modern realization of
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the method of differential equations to be discussed in the next chapter.) On
the other hand, shifting dimension is also an intrinsic feature of the present
method because the dimension d enters the basic representation in a very
simple way and it is necessary to put the shift of dimension under control
when solving the auxiliary IBP relations.

The method of this chapter was successfully applied, due to the reduction
presented in Sect. 6.3, in [135], where various two-loop diagrams associated
with the two-loop quark static potential were necessary. It was recently also
applied in [133] to solve the reduction problem for a class of two-loop Feynman
integrals at threshold. A breakthrough in another direction – the evaluation
of general four-loop propagator diagrams (i.e. one loop above [66]) was also
achieved with its help [19], within expansion at large d.

This method is now at the level of experimental mathematics, as well
as many other techniques discussed in this book. One tries to follow the
prescriptions formulated in this chapter and, hopefully, arrives at a solution of
a given reduction problem. One always believes in the rational dependence of
the coefficient functions on everything, and this is one of possible consistency
checks. The validity of the reduction so obtained can be checked by explicit
evaluation of various Feynman integrals of the given class. On the other
hand, one can check that the initial IBP equations are satisfied for the so
constructed coefficient functions. Anyway, after successful checks, one can
conclude that the obtained solution of the IBP relations is valid and apply it
for practical purposes.

I hope, however, that this method can be put on a solid mathematical
ground and, moreover, some interesting mathematics is behind it.

Problems

6.1. Solve the reduction problem for the two-loop vacuum integrals with the
masses m, M and 0 defined by (5.84) in the sense of reducing any given
integral to a minimal number of master integrals.

6.2. Construct the reduction procedure for Example 6.8 and apply it to the
integrals F (1, 1, 1, 2), F (1, 1, 0, 2) and F (1, 0, 1, 2).

k

l

r

Fig. 6.7. Three-loop non-planar propagator diagram
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6.3. Find out whether the massless Feynman integral corresponding to
Fig. 6.7 with all powers of the propagators equal to one and the numera-
tor equal to one is irreducible.



7 Evaluation by Differential Equations

The method of differential equations (DE) suggested in [137] and developed
in [173] and later works (see references below) is a method of evaluating
individual Feynman integrals. We have agreed that, at the present level of
complexity of unsolved important problems, it looks unavoidable to decom-
pose the problem of evaluating Feynman integrals of a given family into the
reduction to some master integrals and the problem of evaluating these mas-
ter integrals. Thus, this basic method is oriented at the evaluation of the
master integrals. Moreover, in contrast to other methods of evaluating indi-
vidual Feynman integrals, it is assumed within this method that a solution
of the reduction problem is already known.

The idea is to take some derivatives of a given master integral with respect
to kinematical invariants and masses. Then the result of this differentiation
is written in terms of Feynman integrals of the given family and, according to
the known reduction, in terms of the master integrals. Therefore, one obtains
a system of differential equations for the master integrals which can be solved
with appropriate boundary conditions.

To illustrate basic recipes of this method we shall consider only four ex-
amples. The fact is that, for complicated examples, all the calculations can
be done only on a computer and intermediate formulae usually happen to be
very cumbersome.

We shall consider typical one-loop examples in Sect. 7.1 and a two-loop
characteristic example in Sect. 7.2. The status of the method, i.e. its perspec-
tives and open problems will be discussed in Sect. 7.3. together with a brief
review of its applications.

7.1 One-Loop Examples

Of course, we start with our favourite example.

Example 7.1. One-loop propagator diagram corresponding to Fig. 1.1.

After solving the corresponding reduction problem in Chaps. 5 and 6, we
know that there are two master integrals, F (1, 1) = I1 and F (1, 0) = I2.
The second one is a simple one-scale integral given by the right-hand side of
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(5.6). We have started to evaluate I1 in Chap. 1, by differentiating in m2 and
arrived at the equation (1.21) for f(m2) = F (1, 1). To be very pedantic, let
us rewrite it in terms of our true master integrals,

∂

∂m2
f(m2) =

1
m2 − q2

[
(1 − 2ε)f(m2) − 1 − ε

m2
I2

]
, (7.1)

although this does not make an essential difference here.
Let us turn to the new function by f(m2) = iπd/2(m2)−εy(m2). We obtain

the following differential equation for it:

y′ − m2(1 − ε) − εq2

m2(m2 − q2)
y = − Γ (ε)

m2 − q2
. (7.2)

It can be solved by the method of the variation of the constant. The general
solution to the corresponding homogeneous equation, with a zero on the
right-hand side of (7.2), is

y(m2) = C(m2 − q2)1−2ε(m2)−ε . (7.3)

Then we make C = C(m2) dependent on m2, solve this equation and obtain

f(m2) = iπd/2(m2 − q2)1−2ε

[
−Γ (ε)

∫ m2

0

dx x−ε

(x − q2)2−2ε
+ C1

]
, (7.4)

where the constant C1 can be determined from the boundary value f(0) which
is a massless one-loop diagram evaluated by means of (A.7). This gives

f(m2) = −iπd/2(m2 − q2)1−2εΓ (ε)

×
[∫ m2

0

dx x−ε

(x − q2)2−2ε
− Γ (1 − ε)2

Γ (2 − 2ε)(−q2)1−ε

]
. (7.5)

If we turn to expansion in ε and take terms up to ε0 into account we shall
reproduce (1.7).

The next example is also an old one.

Example 7.2. The triangle diagram of Fig. 3.5.

The reduction problem was solved in Examples 5.4 and 6.7. The only
master integral that is not expressed in terms of gamma functions for general
d is F (1, 1, 1) = I1 = f(m2). We have already calculated it in Examples 3.2
and 4.2. Let us now do this by DE. As in the previous example, we take the
derivative ∂

∂m2 f(m2) and obtain F (1, 1, 2) for which we apply the relation
(6.55), according to our reduction procedure. Let us again, as above, confine
ourselves to the evaluation up to the finite part in ε. Then the first term on
the right-hand side of (6.55) is irrelevant because it is proportional to ε. So,
we obtain, at ε = 0,
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∂

∂m2
f(m2) = iπ2 ln(m2/Q2)

m2(m2 − Q2)
. (7.6)

Thus, the evaluation of I1 at d = 4 reduces to taking an integral of the right-
hand side of (7.6). The boundary condition is simple: this function vanishes
in the large mass limit. This can be seen, for example, by examining this
behaviour using the MB representation (4.7) as explained in Sect. 4.8. (To
do this, one takes a residue at the point z = −1.) Consequently, the known
result (3.25) is once again reproduced.

If one needs to evaluate I1 at general ε, or obtain higher terms of expansion
in ε by DE, one can start from (6.55) and solve the so-obtained differential
equation, applying the method of the variation of the constant quite similarly
to Example 7.1.

Let us now turn, following [47], to

Example 7.3. The on-shell box diagram with two massive and two massless
lines shown in Fig. 6.2, with p2

1 = . . . = p2
4 = m2.

These are functions of the three variables s, t and m2. The following com-
binations arise naturally in the problem:

x =
√

4m2 − s −
√
−s√

4m2 − s +
√
−s

, y =
√

4m2 − t −
√
−t√

4m2 − t +
√
−t

. (7.7)

We again assume that we know a solution of the corresponding reduction
problem. It was briefly described in Example 6.9. The reduction based on the
algorithm of [99, 143, 145] which was discussed in Sect. 5.4 also leads [47] to
the same family of the master integrals shown in Fig. 6.3: I1 = F (1, 1, 1, 1),
I2 = F (1, 0, 1, 1) = F (0, 1, 1, 1), I31 = F (1, 1, 0, 0), I32 = F (0, 0, 1, 1) and
I4 = F (1, 0, 0, 0) = F (0, 1, 0, 0), where I2 and I4 are present in two copies.

Suppose that we want to evaluate I1 by DE. Therefore, we assume that
all the master integrals with the number of lines less than four are already
known. The integrals I4 and I32 are given by (2.45) and (3.8). The value of the
master integral I31 = F (1, 1, 0, 0) is very well-known and can be obtained by
various methods. To be self-consistent, let us observe that one can apply MB
representation (4.28), set a1 = a2 = 1, a3 = 0 and evaluate this integral by
closing the integration contour and summing up the resulting series. Within
the method of DE, it is important to present this and later results in terms
of the variables (7.7):

I31 =
iπd/2e−γEε

(m2)ε

[
1
ε

+ 2 − 2
(

1
2
− 1

1 − x

)
H0(x)

]
+ O(ε) . (7.8)

Here and in subsequent formulae, usual logarithms and polylogarithms are
written in terms of HPL [175] – see Appendix B. Moreover, it is necessary
to rewrite the quantity q2 in (3.8) in terms of these variables, i.e. make the
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substitution q2 → t → −(1−y)2/(m2y) in the factor (−q2)ε and then expand
it in ε.

Finally, we need I2 which can be obtained using (4.29) at a1 = a2 = a4 = 1
and evaluating this integral by closing the integration contour to the right.
In [47], this result was obtained by DE. It is also naturally written in terms
of the variables (7.7):

I2 =
iπ2

2m2

[
1

1 + y
− 1

1 − y

] [
2
3
π2 + H0,0(y) + 2H0,1(y)

]
+ O(ε) . (7.9)

Observe that higher terms of this and other expansions in ε can be found
in [47].

The starting point is to take derivatives in s or t and write them down
as linear combinations of integrals of the given class. In order to do this, one
observes that taking derivatives in the external momenta reduces to taking
derivatives in s and t:

pi ·
∂

∂pj
=

6∑
r=1

pi ·
∂sr

∂pj

∂

∂sr
, (7.10)

where si = p2
i , i = 1, 2, 3, 4, are invariants with the on-shell condition,

si = m2, and s5 = s, s6 = t. This linear system of six equations can easily
be solved, i.e. the derivatives ∂/∂sr can be expressed linearly in terms of the
derivatives pi·∂/∂pj with i, j = 1, 2, 3 – see [47]. One can use here the follow-
ing expressions [69] which are equivalent to that of [47] due to the on-shell
conditions:

s
∂

∂s
=

1
2

[
p1 + p2 −

s

4m2 − s − t
(p2 + p3)

]
· ∂

∂p2
, (7.11)

t
∂

∂t
=

1
2

[
p1 + p3 −

t

4m2 − s − t
(p2 + p3)

]
· ∂

∂p3
. (7.12)

So, we take partial derivatives of I1 = f(s, t) with respect to s and t, using
(7.11) and (7.12), and obtain, on the right-hand side, a linear combination of
integrals corresponding to Fig. 6.2. Every integral can be written in terms of
the master integrals, according to the reduction procedure, and we obtain

∂f

∂s
= −1

2

(
1
s

+
d − 5

4m2 − s
− d − 4

4m2 − s − t

)
f + g1, (7.13)

∂f

∂t
=

1
2

(
d − 6

t
+

d − 4
4m2 − s − t

)
f + g2, (7.14)

where

g1 = −(d − 4)

[
1

4m2s
− 4m2 − t

4m2t(4m2 − s)
+

1
t(4m2 − s − t)

]
I2
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+
2(d − 3)

t

[
1

(4m2 − s)2
+

1
t(4m2 − s)

− 1
t(4m2 − s − t)

]
I31

− d − 3
2m2 − t

[
1
s

+
1

4m2 − s

]
I32

+
d − 2
m2t

[
1

(4m2 − s)2
+

1
t(4m2 − s)

− 1
t(4m2 − s − t)

]
I4 , (7.15)

g2 = − d − 4
4m2 − s

[
1
t

+
1

4m2 − s − t

]
I2

− 2(d − 3)
(4m2 − s)2

[
1
t

+
1

4m2 − s − t

]
I31

− d − 2
m2(4m2 − s)2

[
1
t

+
1

4m2 − s − t

]
I4 . (7.16)

It is sufficient to use one of the two equations to evaluate f(s, t). Let it
be (7.13). Then (7.14) can be used for a non-trivial check. One needs also
a boundary condition when solving (7.13): it can be obtained using the fact
that the function f(s, t) is regular at s = 0. Multiplying (7.13) by s and
taking the limit s → 0 one obtains

f(0, t) = −d − 4
2m2

I2 +
d − 3
m2t

I32 . (7.17)

Equation (7.13) can be solved in a Laurent expansion in ε,

f(s, t) =
∑

j=−1

fj(s, t)εj . (7.18)

As a result, one obtains a set of nested differential equations from (7.13),

dfj

ds
= −1

2

(
1
s

+
1

4m2 − s

)
fj + hj , (7.19)

where the functions hj involve, in addition to the corresponding term of the
expansion of the function g1, a piece coming from fj−1. These equations can
be solved by the method of the variation of the constant.

The homogeneous equation corresponding to (7.19), which is the same for
all fj , takes the following form in the new variable x given by (7.7):

(
d
dx

− 1
x

+
1

1 + x
− 1

1 − x

)
f (0)(x) = 0 , (7.20)

with the solution
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f (0)(x) =
x

(1 − x)(1 + x)
. (7.21)

Then the solution of the j-th differential equation in (7.19) can be written
as

fj(x, y) = f (0)(x)
[
Aj +

∫
dx

hj(x, y)
f (0)(x)

]
, (7.22)

where Aj is a constant which can be fixed by imposing the boundary condition
(7.17) expanded in ε.

Observe that the combinations of the kinematical invariants involved on
the right-hand side of (7.13) and (7.15) and, therefore, present in hj can be
represented as

4m2 − s = m2 (1 + x)2

x
, 4m2 − s − t = m2 (x + y)(1 + xy)

xy
. (7.23)

After that the integration in (7.22), order by order in ε, becomes straight-
forward. All the quantities are prepared in such a form that the integration
is taken in terms of HPL of the next level, also of the arguments x and y.
So, one arrives at (4.27). However, keeping in mind that this very master
integral can be needed when evaluating other master integrals in two loops,
also by the method of DE, it is reasonable to present it in the same form as
its ingredients were presented:

I1 =
iπd/2e−γEε

(m2)2+ε

[
1

1 + x
− 1

1 − x

] [
1

1 − y
− 1

(1 − y)2

]
H0(x)

×
[
1
ε

+ H0(y) + 2H1(y)
]

+ O(ε) . (7.24)

Further terms of this expansion in ε can be found in [47].

7.2 Two-Loop Example

We turn again to Feynman integrals considered in Examples 4.10 and 6.10.

Example 7.4. Sunset diagram of Fig. 3.13 with one zero mass and two equal
non-zero masses at a general value of the external momentum squared.

The general Feynman integral of this class is given by (6.58), so that there
are two irreducible numerators in the problem. According to Example 6.10,
we know a solution of the reduction problem, and that there are three master
integrals, I1 = F (1, 1, 0, 0, 1), Ī1 = F (1, 1,−1, 0, 1) and I2 = F (1, 1, 0, 0, 0).
The last of them is the square of the massive tadpole given by the right-hand
side of (2.45). Let us now evaluate I1 and Ī1 by DE. For convenience, let us
use, instead of Ī1, the integral with a1 = a2 = a5 = 1 and the numerator
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equal to the product of the momenta (flowing in the same direction) of the
massless and one of the massive lines,

Ĩ1 =
1
2
(
q2I1 − Ī1 − I2

)
. (7.25)

We start with taking derivatives. We use the homogeneity of the integrals
I1 and Ĩ1 with respect to q2 and m2, with the help of Euler’s theorem, set
q2 = s and obtain

sf ′(s) = (1 − 2ε)f(s) − ∂

∂m2
f(s) , (7.26)

sf̃ ′(s) = 2(1 − ε)f̃ ′(s) − ∂

∂m2
f̃(s) , (7.27)

where f(s) = I1 and f̃(s) = Ĩ1, and we have already put m2 = 1 after differ-
entiating with respect to the mass which results in indices equal to 2 instead
of 1 on one of the massive lines. We apply (6.61)–(6.63) to these integrals with
the indices equal to two in order to obtain only the master integrals on the
right-hand side. Therefore, we arrive at the following differential equations
for the functions f(s) and f̃(s):

sf ′(s) =
1

s − 4
[(3s − 2 − 4ε(s − 1)) f(s)

+4(ε − 1)(h(s) + 3f̃(s))
]

, (7.28)

sf̃ ′(s) =
1
2
(ε − 1)

[
h(s) − sf(s) + 2f̃(s)

]
, (7.29)

where h originates from I2.
As in the previous example, it is convenient to turn to the new variable

x given by (7.7), or, vice versa,

s = − (1 − x)2

x
. (7.30)

Then we obtain the following equations:

f ′(x) =
1

x(x2 − 1)
[(

3 − 4x + 3x2 − 4ε(1 − x + x2)
)
f(x)

−4(ε − 1)x(h(x) + 3f̃(x))
]

, (7.31)

f̃ ′(x) =
1

2x2(x − 1)
(ε − 1)(1 + x)

×
[
(x − 1)2f(x) + x(h(x) + 2f̃(x))

]
. (7.32)

The second function f̃(x) can be eliminated from this system in order to
obtain a separate equation for the first one:
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f ′′(x) +
(3ε(x − 1)2 + 6x − 2)

x(x2 − 1)
f ′(x)

+
(2ε − 1)(2x + ε(1 − 4x + x2))

x2(x − 1)2
f(x) +

2(ε − 1)2

x(x − 1)2
h(x) = 0 . (7.33)

Then we turn to solving this equation in expansion in ε, as in the previous
examples,

f(x) =
f−2(x)

ε2
+

f−1(x)
ε

+ f0(x) + . . . . (7.34)

As usual, we need a general solution of the corresponding homogeneous equa-
tion at ε = 0:

f ′′(x) +
2(3x − 1)
x(x2 − 1)

f ′(x) − 2
x(x − 1)2

f(x) = 0 . (7.35)

Two independent solutions are

φ1(x) =
1 − x + x2

(x − 1)2
, (7.36)

φ2(x) =
4x(1 − x + x2)H0(x) − 1 + 7x − 3x2 − x3 + x4

x(x − 1)2
, (7.37)

with the Wronskian

w(x) =
(x + 1)4

x2(x − 1)2
. (7.38)

The solutions are presented in a form similar to the previous example, in
terms of HPL.

The equation for f−2 has the inhomogeneous term

r−2(x) = − 2
x(x − 1)2

. (7.39)

Its solution is written as

f−2(x) =
[
c1 −

∫
dx

φ2(x)r−2(x)
w(x)

]
φ1(x)

+
[
c2 +

∫
dx

φ1(x)r−2(x)
w(x)

]
φ2(x) , (7.40)

where c1 and c2 are integration constants. We obtain

f−2(x) =
1

x(x − 1)2
[
x(c1(1 − x + x2) − x) − c2(1 − 7x + 3x2 + x3 − x4)

+4c2x(1 − x + x2)H0(x)
]

. (7.41)

The integration constants are evaluated from the regular behaviour of the
solution at x → 0 so that 1/x and

√
x in the asymptotic expansion of (7.41)

are forbidden. This gives the values c1 = 1 and c2 = 0, with
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f−2(x) = 1 . (7.42)

The inhomogeneous term for f1(x) is

r−1(x) =
1 − 8x + x2

x2(x − 1)2
. (7.43)

Proceeding in a similar way we obtain the following solution:

f−1(x) =
1

2x(x − 1)2
[
1 − 6x − x2 − 2x3 + 2c1x(1 − x + x2)

−2c2(1 − 7x + 3x2 + x3 − x4) + 2(4c2 − 1)x(1 − x + x2)H0(x)
]

. (7.44)

The regularity condition at x = 0 gives c1 = 13/4 and c2 = 1/4, with

f−1(x) =
1 + 10x + x2

4x
. (7.45)

Finally, for f0, we have the inhomogeneous term

r0(x) = −3 − 9x + 2(48 + π2)x2 − 9x3 + 3x4

6x3(x − 1)2
. (7.46)

Similarly, we obtain the following solution:

f0(x) =
1

24x(x − 1)2
[
(x − 1)2(39 + 66x + 4π2x + 39x2)

+12(1 − 4x + 4x3 − x4)H0(x) − 48x(1 − x + x2)H0,0(x)
]

. (7.47)

The second function

f̃ =
f̃−2(x)

ε2
+

f̃−1(x)
ε

+ f̃0(x) + . . . . (7.48)

can be now obtained in a pure algebraic way, with the following results:

f̃−2(x) = −1 + x2

4x
,

f̃−1(x) = −1 + 11x + 11x3 + x4

24x2
,

f̃0(x) =
1

48x2(x − 1)2
[
−(x − 1)2

(
(2π2 − 11)x(1 + x2)

+13(1 + x4) + 44x2
)
− 4

(
1 − 9x(1 − x2)(1 − x + x2) − x6

)
H0(x)

+24x(1 − 2x + 4x2 − 2x3 + x4)H0,0(x)
]

. (7.49)

The corresponding result for the master integral Ī1 can be obtained easily
from (7.42), (7.44), (7.47) and (7.49), using (7.25). It can be evaluated also
using the onefold MB representation (4.76) (with another choice of the nu-
merator). These results are in agreement with [79, 92], where another choice
of the master integrals was used (with higher powers of the propagators,
instead of integrals with numerators).
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7.3 Conclusion

At first sight, the method of DE cannot be applied to integrals dependent on
one scale since the dependence on the only scale parameter is trivial and can
be obtained immediately by power counting. However, one can introduce, for
a one-scale integral, an additional scale parameter, apply the corresponding
differential equation, get the boundary condition at a different, more suitable
point and then return to the single scale value. An example of this strategy
can be found in [15].

I admit that it might seem, from the previous examples1, that the method
of DE is not optimal. In particular, the results for Example 7.4 can be, prob-
ably, derived by MB representation in a simpler way. However, the method of
DE is indeed very powerful and, in some situations, the very best one. An im-
portant feature of the strategy outlined above is that it can straightforwardly
be generalized to more complicated classes of multiloop Feynman integrals,
with a computer implementation of all the steps. The method of DE, cou-
pled with solving the reduction problem by use of IBP and LI relations by
means of the algorithm of [99, 143, 145], has become, by now, a powerful in-
dustry for obtaining results for various phenomenologically important classes
of Feynman integrals – see, e.g., [3,4,33,40,47,48,98,178]. The method of DE
was also successfully applied [58,174] for the analytical evaluation of various
(generalized) sunset diagrams.2

However, the first impressive example of this technique was evaluating
master integrals by DE for the massless double boxes with one leg off-shell,
p2
1 �= 0, p2

2 = p2
3 = p2

4 = 0, performed in [99]. Another important feature of
the method of DE is that it provides a natural solution in the situation where
results obtained can be hardly expressible in terms of known special functions
of mathematical physics. The very form of results obtained when applying
DE, by means of iterative integrations, naturally leads, in such a situation,
to the idea to introduce new functions which would be adequate to express
the results for the given class of the integrals. This is how two-dimensional
HPL (2dHPL) [99], new special functions of mathematical physics introduced
and studied by physicists, have appeared. They are natural generalizations
of HPL to the case of functions of two variables. To define them [99] one
uses, instead of the functions (B.10), the following set of functions of the two
variables x and y labelled by the four indices 0, −1, −y and −1/y:

1Simple instructive examples can be found also in the review [2].
2For generalized sunset diagrams (i.e. with an arbitrary number of lines between

two external vertices), a successful alternative technique is based on the coordinate
space representation, where any such diagram is just a product of the propagators in
coordinate space given by a Bessel function – see (2.17). Then, in order to go back to
momentum space, it is necessary to evaluate a one-dimensional (but complicated)
integral of this product of the Bessel functions with one more Bessel function –
see [113] and references therein.
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g(0;x) =
1
x

, g(−1;x) =
1

1 + x
, g(−y;x) =

1
x + y

, (7.50)

g(−1/y;x) =
1

x + 1/y
. (7.51)

Then 2dHPLs are defined as the set of functions generated by repeated inte-
grations with these functions similarly to (B.9).

Some basic properties of these new functions were studied and packages
for the numerical evaluation were provided [100,101]. These are 2dHPL that
have turned out to be adequate functions to express results for the double
boxes with one leg off shell [99].

This strategy of inventing new special functions, in situations where one
fails to express results in terms of the known functions3, has already become
standard. In 2004, at least two types of new functions were introduced: gen-
eralized HPL in [4] which were necessary to evaluate some two-loop massive
Feynman diagrams and some generalized 2dHPL [40] which were necessary
to evaluate two-loop massless diagrams with three off-shell legs.

Pragmatically, the introduction of new functions is just a way to para-
meterize the results obtained. Then one has at least a definite procedure for
the numerical evaluation of any of the calculated integrals with a reasonable
accuracy. Mathematically, if one introduces a new class of functions, there is
an implicit obligation to describe their properties and present procedures for
their numerical evaluation.

Of course, it is natural to try to represent results in known functions. Ob-
serve that, in the above examples where the new functions were introduced,
at least some of the new functions can be expressed in terms of the standard
special functions. Consider, for example, the generalized HPL of various types
which were defined in [4] similarly to the HPL, with other basic functions, in
particular 1/

√
t(t + 4). Observe that the new generalized HPL

H(−r,−1;x) =
∫ x

0

dt√
t(t + 4)

(7.52)

equals
1
3
Li2

(
−y3

)
− Li2 (−y) +

1
2

ln2 y − π2

18
, (7.53)

where y = (
√

4 + x −√
x)/(

√
4 + x −√

x).
For more complicated generalized HPL, similar representations can hardly

be found. Still nobody has proven a no go theorem for this situation. More-
over, it is not clear how to take into account all possible choices of special
combinations of the initial variables such as the y(x) above. Anyway, physi-
cists are naturally impatient to report on their results and apply them for
the evaluation of physical quantities, so that, I hope, mathematicians will

3Of course, we already consider HPL and 2dHPL as known functions.
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not blame them for this, keeping in mind that the mathematicians them-
selves seem not to bother about these interesting mathematical problems at
the moment.

Let us now remember about the evaluation of the massive on-shell QED-
type double boxes of Figs. (4.9) and (4.10). Two of our four examples were
in fact oriented at this problem: its one-loop prototype and the sunset dia-
grams that can be obtained from the massive double boxes – see Sect. 4.5.
In [69], it was reported about the solution of the reduction problem, by an
authors’ implementation of the algorithm of [99, 143, 145]. The number of
master integrals is 22 in the first planar case, 35 in the second planar case,
and 47 in the non-planar case. The diagrams with three reduced lines and
some of the diagrams with two reduced lines have been calculated by DE [69].
When applying the method of DE to diagrams with six and seven lines, one
encounters differential equations of third order and higher. In this situation,
the natural way is to combine the method of DR with the method of MB
representation — see [70]. In the planar case, explicit results for the master
integrals were obtained in the leading power of the expansion in the limit
m → 0 [71] using the strategy of MB representation (as outlined in Sect. 4.8)
and the code of [68]. Hopefully, the problem of the evaluation of the massive
on-shell double boxes will be completely solved4 in the nearest future, as well
as other phenomenologically important calculational problems at least at the
two-loop level.

Problems

7.1. Evaluate the master integral

I1 = F (1, 1, 1) =
∫ ∫

ddk ddl

(k2 − m2)(l2 − M2)(k + l)2
. (7.54)

by differential equations using the solution of the reduction problem obtained
in Problem 6.1.

7.2. Evaluate the master integral I1 = F (1, 1, 1, 1) in Example 6.8, in a Lau-
rent expansion up to ε1, by differential equations using the reduction obtained
in Problem 6.2.

4For some of the practical applications, the asymptotic behaviour of Feynman
integrals contributing to Bhabha scattering in the leading order of m2 might be
sufficient. In this approximation, it became possible [167] to avoid evaluating four-
point Feynman integrals at a non-zero mass, by taking into account the evaluation
of two-loop vertex diagrams [46].
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A.1 Table of Integrals

Each Feynman integral presented here can be evaluated straightforwardly by
use of alpha or Feynman parameters. Results are presented for the ‘Euclidean’
dependence, −k2, of the denominators, which is more natural when the pow-
ers of propagators are general complex numbers. As usual, −k2 is understood
in the sense of −k2 − i0, etc. Moreover, denominators with a linear depen-
dence on k are also understood in this sense, e.g. 2p ·k → 2p ·k− i0, although
sometimes this i0 dependence is explicitly indicated to avoid misunderstand-
ing. ∫

ddk

(−k2 + m2)λ
= iπd/2 Γ (λ + ε − 2)

Γ (λ)
1

(m2)λ+ε−2
. (A.1)

∫
ddk

kα1 . . . kα2n

(−k2 + m2)λ
= iπd/2 Γ (λ − n + ε − 2)

2nΓ (λ)
(−1)ngα1...α2n

s

(m2)λ−n+ε−2
, (A.2)

where gα1...α2n
s = gα1α2 . . . gα2n−1α2n +. . . (with (2n−1)!! terms in the sum) is

a combination symmetrical with respect to the permutation of any pair of in-
dices. If the number of monomials in the numerator is odd, the corresponding
integral is zero.∫

ddk
(2l·k)2n

(−k2 + m2)λ

= iπd/2(−1)n(2n − 1)!!
Γ (λ − n + ε − 2)

Γ (λ)
(l2)n

(m2)λ−n+ε−2
. (A.3)

∫
ddk

(−k2 + m2)λ1(−k2)λ2

= iπd/2 Γ (λ1 + λ2 + ε − 2)Γ (−λ2 − ε + 2)
Γ (λ1)Γ (2 − ε)

1
(m2)λ1+λ2+ε−2

. (A.4)

∫
ddk

kα1 . . . kα2n

(−k2 + m2)λ1(−k2)λ2

= iπd/2 (−1)n

2n
gα1...α2n
s

Γ (λ1 + λ2 − n + ε − 2)Γ (n − λ2 − ε + 2)
Γ (λ1)Γ (n − ε + 2)(m2)λ1+λ2−n+ε−2

. (A.5)
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∫
ddk

(2l·k)2n

(−k2 + m2)λ1(−k2)λ2
= iπd/2(−1)n(2n − 1)!!

×Γ (λ1 + λ2 − n + ε − 2)Γ (n − λ2 − ε + 2)(l2)n

Γ (λ1)Γ (n − ε + 2)(m2)λ1+λ2−n+ε−2
. (A.6)

∫
ddk

(−k2)λ1 [−(q − k)2]λ2

= iπd/2 Γ (2 − ε − λ1)Γ (2 − ε − λ2)
Γ (λ1)Γ (λ2)Γ (4 − λ1 − λ2 − 2ε)

Γ (λ1 + λ2 + ε − 2)
(−q2)λ1+λ2+ε−2

. (A.7)

Let k(α1...αn) = kα1 . . . kαn + . . . be traceless with respect to any pair of
indices, i.e. gαiαj

k(α1...αn) = 0 – see (A.43b) below. Then
∫

ddk
k(α1...αn)

(−k2)λ1 [−(q − k)2]λ2
= iπd/2 AT(λ1, λ2;n)q(α1...αn)

(−q2)λ1+λ2+ε−2
, (A.8)

where

AT(λ1, λ2;n) =
Γ (λ1 + λ2 + ε − 2)Γ (n + 2 − ε − λ1)Γ (2 − ε − λ2)

Γ (λ1)Γ (λ2)Γ (4 + n − λ1 − λ2 − 2ε)
.

(A.9)

For pure monomials, the corresponding formula has one more finite sum-
mation:∫

ddk
kα1 . . . kαn

(−k2)λ1 [−(q − k)2]λ2

=
iπd/2

(−q2)λ1+λ2+ε−2

[n/2]∑
r=0

ANT(λ1, λ2; r, n)
1
2r

(q2)r{[g]r[q]n−2r}α1...αn ,

(A.10)

where

ANT(λ1, λ2; r, n)

=
Γ (λ1 + λ2 + ε − 2 − r)Γ (n + 2 − ε − λ1 − r)Γ (2 − ε − λ2 + r)

Γ (λ1)Γ (λ2)Γ (4 + n − λ1 − λ2 − 2ε)
,

(A.11)

and {[g]r[q]n−2r}α1...αn is symmetric in its indices and is composed of the
metric tensor and the vector q.

∫
ddk

(2l·k)n

(−k2)λ1 [−(q − k)2]λ2
=

iπd/2

(−q2)λ1+λ2+ε−2

×
[n/2]∑
r=0

ANT(λ1, λ2; r, n)
n!

r!(n − 2r)!
(q2)r(l2)r(2q ·l)n−2r , (A.12)
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∫
ddk

(−k2)λ1(−k2 + 2p·k)λ2

= iπd/2 Γ (λ1 + λ2 + ε − 2)Γ (−2λ1 − λ2 − 2ε + 4)
Γ (λ2)Γ (−λ1 − λ2 − 2ε + 4)

1
(p2)λ1+λ2+ε−2

.

(A.13)

∫
ddk

k(α1...αn)

(−k2)λ1(−k2 + 2p·k)λ2
= iπd/2BT(λ1, λ2;n)

p(α1...αn)

(p2)λ1+λ2+ε−2
,

(A.14)

where

BT(λ1, λ2;n) =
Γ (λ1 + λ2 + ε − 2)Γ (−2λ1 − λ2 + n − 2ε + 4)

Γ (λ2)Γ (−λ1 − λ2 + n − 2ε + 4)
. (A.15)

∫
ddk

kα1 . . . kαn

(−k2)λ1(−k2 + 2p·k)λ2
=

iπd/2

(p2)λ1+λ2+ε−2

×
[n/2]∑
r=0

BNT(λ1, λ2; r, n)
(−1)r

2r
(p2)r{[g]r[p]n−2r}α1...αn , (A.16)

where

BNT(λ1, λ2; r, n)

=
Γ (λ1 + λ2 + ε − 2 − r)Γ (−2λ1 − λ2 + n − 2ε + 4)

Γ (λ2)Γ (−λ1 − λ2 + n − 2ε + 4)
. (A.17)

∫
ddk

(2l·k)n

(−k2)λ1(−k2 + 2p·k)λ2
=

iπd/2

(q2)λ1+λ2+ε−2

×
[n/2]∑
r=0

BNT(λ1, λ2; r, n)(−1)r n!
r!(n − 2r)!

(p2)r(l2)r(2p·l)n−2r . (A.18)

Let p·q = 0. Then
∫

ddk
(p·k)b1(q ·k)b2

(−k2)λ1 [−(l − k)2]λ2

=
iπd/2

(−l2)λ1+λ2+ε−2

[(b1+b2)/2]∑
r=0

ANT(λ1, λ2; r, b1 + b2)
b1!b2!

4r
(l2)r

×
min{r,[b1/2]}∑

r1=max{0,r−[b2/2]}

(p·l)b1−2r1(q ·l)b2−2r+2r1(p2)r1(q2)r−r1

r1!(r − r1)!(b1 − 2r1)!(b2 − 2r + 2r1)!
, (A.19)
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and ∫
ddk

(p·k)b1(q ·k)b2

(−k2)λ1(−k2 + 2q ·k)λ2

= iπd/2 (p2)b1/2

(q2)λ1+λ2+ε−2−b1/2−b2
Bpq(λ1, λ2; b1, b2) , (A.20)

for even b1 (and are equal to zero for odd b1), where

Bpq(λ1, λ2; b1, b2)

=
b1/2+[b2/2]∑

r=b1/2

(−1)r

4r

b1!b2!
(b1/2)!(r − b1/2)!

BNT(λ1, λ2; r, b1 + b2) . (A.21)

∫
ddk

(−k2 + m2)λ1(2p·k)λ2

=
iπd/2

(p2)λ2/2(m2)λ1+λ2/2+ε−2

Γ (λ2/2)Γ (λ1 + λ2/2 + ε − 2)
2Γ (λ1)Γ (λ2)

. (A.22)

∫
ddk

k(α1,...,αn)

(−k2 + m2)λ1(2p·k)λ2

= iπd/2 Γ ((λ2 + n)/2)
2Γ (λ1)Γ (λ2)

Γ (λ1 + (λ2 − n)/2 + ε − 2)
(m2)λ1+(λ2−n)/2+ε−2

p(α1,...,αn)

(p2)(λ2+n)/2
.

(A.23)

∫
ddk

(−k2 + 2p·k)λ1(2p·k)λ2

=
iπd/2

(p2)λ1+λ2+ε−2

Γ (λ1 + λ2 + ε − 2)Γ (2λ1 + λ2 + 2ε − 4)
Γ (λ1)Γ (2λ1 + 2λ2 + 2ε − 4)

. (A.24)

∫
ddk

(−k2)λ1(2v ·k + ω − i0)λ2

= iπd/2 Γ (2 − λ1 − ε)Γ (2λ1 + λ2 + 2ε − 4)
Γ (λ1)Γ (λ2)

(v2)λ1+ε−2ω−2λ1−λ2−2ε+4 .

(A.25)

∫
ddk

k(α1,...,αn)

(−k2)λ1(2v ·k + ω − i0)λ2
= iπd/2ω−2λ1−λ2+n−2ε+4

× v(α1,...,αn)

(v2)−λ1+n−ε+2

Γ (2 − λ1 + n − ε)Γ (2λ1 + λ2 − n + 2ε − 4)
Γ (λ1)Γ (λ2)

.

(A.26)
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Let v ·q = 0. Then
∫

ddk

(−k2)λ1 [−(q − k)2]λ2(−2v ·k − i0)λ3

= iπd/2 Γ (−λ1 − λ3/2 − ε + 2)Γ (−λ2 − λ3/2 − ε + 2)
Γ (−λ1 − λ2 − λ3 − 2ε + 4)

× Γ (λ1 + λ2 + λ3/2 + ε − 2)Γ (λ3/2)
2Γ (λ1)Γ (λ2)Γ (λ3)(−q2)λ1+λ2+λ3/2+ε−2(v2)λ3/2

. (A.27)

Let p2
1 = p2

2 = 0, q = p1 − p2. Then
∫

ddk

(−k2 + 2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3

= iπd/2 Γ (−λ1 − λ3 − ε + 2)Γ (−λ2 − λ3 − ε + 2)
Γ (λ1)Γ (λ2)Γ (−λ1 − λ2 − λ3 − 2ε + 4)

×Γ (λ1 + λ2 + λ3 + ε − 2)
(−q2)λ1+λ2+λ3+ε−2

, (A.28)

∫
ddk

(−k2 + 2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(2p2 ·k)λ3
= iπd/2 Γ (−λ1 − ε + 2)

Γ (λ1)Γ (λ2)

× Γ (λ1 + λ2 + ε − 2)Γ (−λ2 − λ3 − ε + 2)
Γ (−λ1 − λ2 − λ3 − 2ε + 4)(−q2)λ1+λ2+λ3+ε−2

, (A.29)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2 + m2)λ3

= iπd/2 Γ (λ2 − λ1)Γ (λ2 + λ3 + ε − 2)Γ (−λ2 − ε + 2)
Γ (λ2)Γ (λ3)Γ (−λ1 − ε + 2)(−q2)λ1(m2)λ2+λ3+ε−2

, (A.30)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2 + m2)λ3(Q2 − 2p1 ·k)λ4

= iπd/2 Γ (λ2 − λ1)Γ (λ2 + λ3 + ε − 2)Γ (−λ2 − λ4 − ε + 2)
Γ (λ2)Γ (λ3)Γ (−λ1 − λ4 − ε + 2)

× 1
(Q2)λ1+λ4(m2)λ2+λ3+ε−2

, (A.31)

∫
ddk

(2p1 ·k + m2)λ1(2p2 ·k + m2)λ2(−k2)λ3

= iπd/2 Γ (λ1 + λ3 + ε − 2)Γ (λ2 + λ3 + ε − 2)Γ (−λ3 − ε + 2)
Γ (λ1)Γ (λ2)Γ (λ3)(−q2)−λ3−ε+2(m2)λ1+λ2+2λ3+2ε−4

. (A.32)

Let p2
1 = 0, p2

2 = −m2, q = p1 − p2. Then
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∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k + m2)λ2(−k2)λ3
= iπd/2 Γ (λ2 + λ3 + ε − 2)

(m2)λ2+λ3+ε−2

× Γ (−λ1 − λ3 − ε + 2)Γ (−λ2 − ε + 2)
Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − 2ε + 4)(−q2)λ1

, (A.33)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k − m2)λ2(−k2)λ3(−q2 − 2p1 ·k)λ4

= iπd/2 Γ (λ2 + λ3 + ε − 2)
(m2)λ2+λ3+ε−2

× Γ (−λ1 − λ3 − ε + 2)Γ (−λ2 − λ4 − ε + 2)
Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − λ4 − 2ε + 4)(−q2)λ1+λ4

. (A.34)

Let P 2 = M2, p2 = 0, (P − p)2 = 0. Then
∫

ddk

(−k2 + 2P ·k)λ1(−k2 + 2p·k)λ2(−k2)λ3

= iπd/2 Γ (−λ1 − λ2 − 2λ3 − 2ε + 4)Γ (λ1 + λ2 + λ3 + ε − 2)
Γ (λ1)Γ (−λ1 − λ2 − λ3 − 2ε + 4)

× Γ (−λ2 − λ3 − ε + 2)
Γ (−λ3 − ε + 2)(M2)λ1+λ2+λ3+ε−2

. (A.35)

Let p2
1 = 0, p2

2 = m2, Q2 = 2p1 ·p2. Then
∫

ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3(Q2 − 2p1 ·k)λ4

= iπd/2 Γ (λ3 − λ4)Γ (−λ1 − λ2 − 2λ3 − 2ε + 4)
Γ (λ2)Γ (λ3)Γ (−λ1 − λ2 − λ3 − λ4 − 2ε + 4)

× Γ (λ2 + λ3 + ε − 2)
(Q2)λ1+λ4(m2)λ2+λ3+ε−2

, (A.36)

∫
ddk

(2p1 ·k)λ1(−k2 + 2p2 ·k)λ2(−k2)λ3
=

iπd/2

(Q2)λ1(m2)λ2+λ3+ε−2

×Γ (λ2 + λ3 + ε − 2)Γ (−λ1 − λ2 − 2λ3 − 2ε + 4)
Γ (λ2)Γ (−λ1 − λ2 − λ3 − 2ε + 4)

. (A.37)

The following integrals are related to two-loop diagrams:
∫ ∫

ddk ddl

(−k2 + m2)λ1 [−(k + l)2]λ2(−l2 + m2)λ3

=
(
iπd/2

)2 Γ (λ1 + λ2 + ε − 2)Γ (λ2 + λ3 + ε − 2)Γ (2 − ε − λ2)
Γ (λ1)Γ (λ3)

× Γ (λ1 + λ2 + λ3 + 2ε − 4)
Γ (λ1 + 2λ2 + λ3 + 2ε − 4)Γ (2 − ε)(m2)λ1+λ2+λ3+2ε−4

, (A.38)



A.2 Some Useful Formulae 191

∫ ∫
ddk ddl

(−k2)λ1 [−(k + l)2]λ2(m2 − l2)λ3

=
(
iπd/2

)2 Γ (λ1 + λ2 + λ3 + 2ε − 4)
(m2)λ1+λ2+λ3+2ε−4

×Γ (λ1 + λ2 + ε − 2)Γ (2 − ε − λ1)Γ (2 − ε − λ2)
Γ (λ1)Γ (λ2)Γ (λ3)Γ (2 − ε)

, (A.39)

∫ ∫
ddk ddl

[−2v ·(k + l)]λ1(−k2 + m2)λ2(−l2 + m2)λ3

=
(
iπd/2

)2 Γ (λ1/2 + λ2 + ε − 2)Γ (λ1/2 + λ3 + ε − 2)
Γ (λ1 + λ2 + λ3 + 2ε − 4)

× Γ (λ1/2)Γ (λ1/2 + λ2 + λ3 + 2ε − 4)
2Γ (λ1)Γ (λ2)Γ (λ3)(m2)λ1/2+λ2+λ3+2ε−4(v2)λ1/2

, (A.40)

∫ ∫
ddk ddl

[−2v ·(k + l)]λ1 [−(k + l)2]λ2(−k2 + m2)λ3(−l2 + m2)λ4

=

(
iπd/2

)2
Γ (λ1/2 + λ2 + λ3 + ε − 2)Γ (λ1/2 + λ2 + λ4 + ε − 2)

2Γ (λ1)Γ (λ3)Γ (λ4)Γ (λ1 + 2λ2 + λ3 + λ4 + 2ε − 4)

×Γ (λ1/2)Γ (λ1/2 + λ2 + λ3 + λ4 + 2ε − 4)Γ (2 − λ1/2 − λ2 − ε)
Γ (2 − λ1/2 − ε)(m2)λ1/2+λ2+λ3+λ4+2ε−4(v2)λ1/2

. (A.41)

This is the (inverse) Fourier transformation of (−q2 − i0)−λ in d dimen-
sions:

1
(2π)d

∫
ddq

e−ix·q

(−q2 − i0)λ
=

iΓ (d/2 − λ)
4λπd/2Γ (λ)

1
(−x2 + i0)d/2−λ

. (A.42)

A.2 Some Useful Formulae

To traceless expressions and back:

kα1 . . . kαN =
1

N !

[N/2]∑
r=0

1
2r(d/2 + N − 2r)r

(k2)r{[g]r[k](N−2r)}α1...αN ,

(A.43a)

k(α1...αN ) =
1

N !

[N/2]∑
r=0

1
2r(2 − N − d/2)r

(k2)r{[g]r[k]N−2r}α1...αN ,

(A.43b)

where {[g]r[k]N−2r}α1...αN is defined after (A.11) and (a)n is the Pochhammer
symbol (B.2).
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Furthermore,

(k ·p)N =
[N/2]∑
r=0

aN,r(k2)r(p2)r(k ·p)(N−2r) , (A.44)

(k ·p)(N) =
[N/2]∑
r=0

bN,r(k2)r(p2)r(k ·p)N−2r , (A.45)

k(α1...αN )k
(α1...αN ) =

(d − 2)N

2N ((d − 2)/2)N

(k2)N , (A.46)

where (k · p)(N) = k(α1...αN )p
(α1...αN ) and

aN,r =
N !

4rr!(N − 2r)!(d/2 + N − 2r)r
, (A.47)

bN,r =
1

4rr!(N − 2r)!(2 − N − d/2)r
. (A.48)

Summation formulae:

[(k1)m(k2)n ∗ gs] ≡ kα1
1 . . . kαm

1 k
αm+1
2 . . . k

αm+n

2 gs, α1...αm+n

=
min{m,n}∑

j≥0, j+min{m,n} even

m!n!
2(m+n)/2−j((m − j)/2)!((n − j)/2)!j!

×(k2
1)

(m−j)/2(k2
2)

(n−j)/2(k1 ·k2)j , (A.49)

[(k1)m(k2)n ∗ {[g]r[k3]m+n−2r}]

=
min{2r,m}∑

r1=max{0,2r−n}

min{r1,2r−r1}∑
j≥0, j+r1 even

1
(m − r1)!(n − 2r + r1)!

× m!n!
2r−j((r1 − j)/2)!(r − (r1 + j)/2)!j!

(k2
1)

(r1−j)/2 (k2
2)

r−(r1+j)/2

×(k1 ·k2)j (k1 ·k3)m−r1 (k2 ·k3)n−2r+r1 . (A.50)

In particular,

[(k1)m(k2)n ∗ {[g]r[k3]N−2r}]

=
(

n

N − 2r

)
(k2 ·k3)N−2r[(k1)m(k2)n−N+2r ∗ gs] , (A.51)

where k1 ·k3 = 0, N = m + n, and

[pb1qb2 ∗ {[g]r[l]n−2r}]

=
b1!b2!

2r

min{r,[b1/2]}∑
r1=max{0,r−[b2/2]}

(p·l)b1−2r1(q ·l)b2−2r+2r1(p2)r1(q2)r−r1

r1!(r − r1)!(b1 − 2r1)!(b2 − 2r + 2r1)!
,

(A.52)
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where p·q = 0 and n = b1 + b2.

[(k1)m(k2)n(k3)l−m−n ∗ gs]

=
∑

j1≥0, j1+m even

∑
j2≥0, j2+n even

∑
j3≥0, j3+l−m−n even

a(l,m, n, j1, j2, j3)

×(k2
1)

(m−j1)/2(k2
2)

(n−j2)/2(k2
3)

(l−m−n−j3)/2

×(k1 ·k2)(j1+j2−j3)/2(k1 ·k3)(j1−j2+j3)/2(k2 ·k3)(−j1+j2+j3)/2 ,

a(l,m, n, j1, j2, j3) =
2(j1+j2+j3−l)/2m!n!(l − m − n)!

((m − j1)/2)!((n − j2)/2)!((l − m − n − j3)/2)!

× θ(j1 + j2 − j3)θ(j1 − j2 + j3)θ(−j1 + j2 + j3)
((j1 + j2 − j3)/2)!((j1 − j2 + j3)/2)!((−j1 + j2 + j3)/2)!

, (A.53)

where θ(n) = 1 for n ≥ 0 and θ(n) = 0 otherwise.
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The Gauss hypergeometric function [89] is defined by the series

2F1(a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn , (B.1)

where
(x)n = Γ (x + n)/Γ (x) (B.2)

is the Pochhammer symbol. This power series has the radius of convergence
equal to one. It is analytically continued to the whole complex plane, with a
cut, usually chosen as [1,∞). The analytic continuation to values of z where
|z| > 1 is given by

2F1(a, b; c; z) =
Γ (c)Γ (b − a)
Γ (b)Γ (c − a)

(−z)−a
2F1

(
a, 1 − c + a; 1 − b + a;

1
z

)

+
Γ (c)Γ (a − b)
Γ (a)Γ (c − b)

(−z)−b
2F1

(
b, 1 − c + b; 1 − a + b;

1
z

)
. (B.3)

Another formula for the analytic continuation is

2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c − b; c;

z

z − 1

)
. (B.4)

This is a useful parametric representation:

2F1(a, b; c; z) =
Γ (c)

Γ (b)Γ (c − b)

∫ 1

0

dx xb−1(1 − x)c−b−1(1 − zx)−a . (B.5)

MB representations for the Gauss hypergeometric function can be found in
Sect. D.3.

The polylogarithms [148] and generalized (Nielsen) polylogarithms [86,
136] are defined by

Lia (z) =
∞∑

n=1

zn

na
(B.6)

=
(−1)a

(a − 1)!

∫ 1

0

lna−1 t

t − 1/z
dt (B.7)
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and

Sa,b(z) =
(−1)a+b−1

(a − 1)!b!

∫ 1

0

lna−1 t lnb(1 − zt)
t

dt , (B.8)

where a and b are positive integers.
The harmonic polylogarithms [175] Ha1,a2,...,an

(x) (also denoted by
H(a1, a2, . . . , an;x)) (HPL), with ai = 1, 0,−1, are defined recursively by

Ha1,a2,...,an
(x) =

∫ x

0

fa1(t)Ha2,...,an
(t) dt , (B.9)

where

f±1(x) =
1

1 ∓ x
, f0(x) =

1
x

, (B.10)

H±1(x) = ∓ ln(1 ∓ x), H0(x) = ln x , (B.11)

and at least one of the indices ai is non-zero. For all ai = 0, one has

H0,0,...,0(x) =
1
n!

lnn x . (B.12)

Up to level 4, HPL with the indices 0 and 1 can be expressed in terms of
usual polylogarithms [175]:

H0(x) = lnx , (B.13)
H1(x) = − ln(1 − x) , (B.14)

H0,0(x) =
1
2!

ln2 x , (B.15)

H0,1(x) = Li2 (x) , (B.16)
H1,0(x) = − ln x ln(1 − x) − Li2 (x) , (B.17)

H1,1(x) =
1
2!

ln2(1 − x) , (B.18)

H0,0,0(x) =
1
3!

ln3 x , (B.19)

H0,0,1(x) = Li3 (x) , (B.20)
H0,1,0(x) = −2Li3 (x) + ln xLi2 (x) , (B.21)
H0,1,1(x) = S1,2(x) , (B.22)

H1,0,0(x) = −1
2

ln(1 − x) ln2 x − ln xLi2 (x) + Li3 (x) , (B.23)

H1,0,1(x) = −2S1,2(x) − ln(1 − x)Li2 (x) , (B.24)

H1,1,0(x) = S1,2(x) + ln(1 − x) Li2 (x) +
1
2

ln x ln2(1 − x) , (B.25)

H1,1,1(x) = − 1
3!

ln3(1 − x) , (B.26)

H0,0,0,0(x) =
1
4!

ln4 x , (B.27)
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H0,0,0,1(x) = Li4 (x) , (B.28)
H0,0,1,0(x) = lnxLi3 (x) − 3Li4 (x) , (B.29)
H0,0,1,1(x) = S2,2(x) , (B.30)

H0,1,0,0(x) =
1
2

ln2 xLi2 (x) − 2 ln xLi3 (x) + 3Li4 (x) , (B.31)

H0,1,0,1(x) = −2S2,2(x) +
1
2
Li2 (x)2 , (B.32)

H0,1,1,0(x) = lnxS1,2(x) − 1
2
Li2 (x)2 , (B.33)

H0,1,1,1(x) = S1,3(x) , (B.34)

H1,0,0,0(x) = −1
6

ln3 x ln(1 − x) − 1
2

ln2 xLi2 (x)

+ ln xLi3 (x) − Li4 (x) , (B.35)

H1,0,0,1(x) = −1
2
Li2 (x)2 − ln(1 − x)Li3 (x) , (B.36)

H1,0,1,0(x) = 2 ln(1 − x)Li3 (x) − ln x ln(1 − x)Li2 (x) − 2 ln xS1,2(x)

+
1
2
Li2 (x)2 + 2S2,2(x) , (B.37)

H1,0,1,1(x) = − ln(1 − x)S1,2(x) − 3S1,3(x) , (B.38)

H1,1,0,0(x) =
1
4

ln2 x ln2(1 − x) − ln(1 − x)Li3 (x)

+ ln x ln(1 − x)Li2 (x) + ln x S1,2(x) − S2,2(x) , (B.39)

H1,1,0,1(x) =
1
2

ln2(1 − x)Li2 (x) + 2 ln(1 − x)S1,2(x) + 3S1,3(x) , (B.40)

H1,1,1,0(x) = −1
6

ln x ln3(1 − x) − 1
2

ln2(1 − x) Li2 (x)

− ln(1 − x)S1,2(x) − S1,3(x) , (B.41)

H1,1,1,1(x) =
1
4!

ln4(1 − x) . (B.42)

Analytic properties of HPL (and 2dHPL) which allow to continue them
to any domain are described in [101]. A Mathematica package dealing with
HPL is presented in [149]. The HPL are partial cases of the so-called Z- and
S-sums which are defined similarly to the nested sums (see Appendix C) but
with the factor xj – see, e.g., [154]. The set of Z- or S-sums can be equipped
with an operation of multiplication in such a way that they (as well as HPL)
form a Hopf algebra – see, e.g., [42, 175].
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Nested sums are defined as follows [215]:

Si(n) =
n∑

j=1

1
ji

, Sik(n) =
n∑

j=1

Sk(j)
ji

, (C.1)

Sikl(n) =
n∑

j=1

Skl(j)
ji

, Siklm(n) =
n∑

j=1

Sklm(j)
ji

, (C.2)

etc. Properties and algorithms for the nested sums (also for negative indices
which are defined with (−1)j) are presented in [215]. In particular, for positive
indices, we have

Sj,k(n) + Sk,j(n) = Sj(n)Sk(n) + Sj+k(n) . (C.3)

The nested sums are closely connected with multiple ζ-values – see, e.g.,
[42, 50,154,218] and the reviews [115,219].

The sums with one index are connected with the ψ function (the loga-
rithmical derivative of the gamma function) as

ψ(n) = S1(n − 1) − γE , (C.4)
ψ(k)(n) = (−1)kk! (Sk+1(n − 1) − ζ(k + 1)) , k = 1, 2 , . . . , (C.5)

where ζ(z) is the Riemann zeta function

ζ(z) =
∞∑

n=1

1
nz

. (C.6)

All the summation formulae of this Appendix, apart from the inverse
binomial series1, are implemented in the package called SUMMER [215] which
is written in FORM [214]. This powerful package was successfully used in non-
trivial calculations – see, e.g., [155, 157, 158]. There is also another package
operating with the nested sums [217].

1The authors of SUMMER are planning to include the inverse binomial series into
this package.
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Nested sums are closely connected with expansions of hypergeometric
series in its parameters – see, e.g., [78, 79, 154]. For example, the expan-
sion of the Gauss hypergeometric function 2F1 (1 + a1ε, 1 + a2ε; 3/2 + bε; z)
is connected with inverse binomial series [79]. A classification of functions ap-
pearing in Laurent expansions of the Gauss hypergeometric function around
integer and half-integer values of its parameters was presented in [129].
A Mathematica package for expanding hypergeometric functions around
integer-valued parameters was developed in [124]. A similar FORM package
called XSummer is presented in [153].

C.1 Some Number Series

These are series up to level 6 with at least 1/n2 dependence:

∞∑
n=1

1
n2

=
π2

6
, (C.7)

∞∑
n=1

1
n3

= ζ(3) , (C.8)

∞∑
n=1

S1(n − 1)
1
n2

= ζ(3) , (C.9)

∞∑
n=1

1
n4

=
π4

90
, (C.10)

∞∑
n=1

S1(n − 1)
1
n3

=
π4

360
, (C.11)

∞∑
n=1

S1(n − 1)2
1
n2

=
11π4

360
, (C.12)

∞∑
n=1

S2(n − 1)
1
n2

=
π4

120
, (C.13)

∞∑
n=1

1
n5

= ζ(5) , (C.14)

∞∑
n=1

S1(n − 1)
1
n4

= 2ζ(5) − π2ζ(3)
6

, (C.15)

∞∑
n=1

S2(n − 1)
1
n3

=
π2ζ(3)

2
− 11ζ(5)

2
, (C.16)

∞∑
n=1

S1(n − 1)2
1
n3

=
π2ζ(3)

6
− 3ζ(5)

2
, (C.17)
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∞∑
n=1

S3(n − 1)
1
n2

=
9ζ(5)

2
− π2ζ(3)

3
, (C.18)

∞∑
n=1

S1(n − 1)3
1
n2

=
π2ζ(3)

6
+

15ζ(5)
2

, (C.19)

∞∑
n=1

S1(n − 1)S2(n − 1)
1
n2

=
7ζ(5)

2
− π2ζ(3)

6
, (C.20)

∞∑
n=1

S12(n − 1)
1
n2

= 9ζ(5) − 2π2ζ(3)
3

, (C.21)

∞∑
n=1

1
n6

=
π6

945
, (C.22)

∞∑
n=1

S1(n − 1)
1
n5

=
π6

1260
− ζ(3)2

2
, (C.23)

∞∑
n=1

S2(n − 1)
1
n4

= −4
π6

2835
+ ζ(3)2 , (C.24)

∞∑
n=1

S1(n − 1)2
1
n4

=
37π6

22680
− ζ(3)2 , (C.25)

∞∑
n=1

S3(n − 1)
1
n3

= − π6

1890
+

ζ(3)2

2
, (C.26)

∞∑
n=1

S4(n − 1)
1
n2

=
5π6

2268
− ζ(3)2 , (C.27)

∞∑
n=1

S13(n − 1)
1
n2

=
61π6

45360
, (C.28)

∞∑
n=1

S2(n − 1)2
1
n2

=
59π6

22680
− ζ(3)2 , (C.29)

∞∑
n=1

S1(n − 1)3
1
n3

= −11π6

5040
+ 2ζ(3)2 , (C.30)

∞∑
n=1

S1(n − 1)S2(n − 1)
1
n3

= −121π6

45360
+ 2ζ(3)2 , (C.31)

∞∑
n=1

S12(n − 1)
1
n3

=
41π6

22680
− ζ(3)2 , (C.32)

∞∑
n=1

S1(n − 1)S3(n − 1)
1
n2

=
167π6

45360
− 3ζ(3)2

2
, (C.33)
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∞∑
n=1

S1(n − 1)2S2(n − 1)
1
n2

=
23π6

3780
− ζ(3)2 , (C.34)

∞∑
n=1

S1(n − 1)4
1
n2

=
859π6

22680
+ 3ζ(3)2 , (C.35)

∞∑
n=1

S112(n − 1)
1
n2

=
17π6

4536
− ζ(3)2 , (C.36)

∞∑
n=1

S1(n − 1)S12(n − 1)
1
n2

=
313π6

45360
− 2ζ(3)2 . (C.37)

Series up to level 6 with the factor 1/n where the convergence is provided
by other factors:

∞∑
n=1

ψ′(n + 1)
1
n

= ζ(3) , (C.38)

∞∑
n=1

ψ′(n + 1)S1(n)
1
n

=
7π4

360
, (C.39)

∞∑
n=1

ψ′′(n + 1)
1
n

= − π4

180
, (C.40)

∞∑
n=1

ψ′(n + 1)S1(n)2
1
n

=
π2ζ(3)

3
, (C.41)

∞∑
n=1

ψ′(n + 1)2
1
n

=
5π2ζ(3)

6
− 9ζ(5) , (C.42)

∞∑
n=1

ψ′′(n + 1)S1(n)
1
n

= −2π2ζ(3)
3

+ 7ζ(5) , (C.43)

∞∑
n=1

ψ′′′(n + 1)
1
n

= −π2ζ(3) + 12ζ(5) , (C.44)

∞∑
n=1

ψ′′′′(n + 1)
1
n

= −2π6

105
+ 12ζ(3)2 , (C.45)

∞∑
n=1

ψ′′′(n + 1)S1(n)
1
n

=
π6

1512
, (C.46)

∞∑
n=1

ψ′′(n + 1)S1(n)2
1
n

=
π6

90
− 8ζ(3)2 , (C.47)

∞∑
n=1

ψ′(n + 1)2S1(n)
1
n

= − π6

432
+ 2ζ(3)2 , (C.48)
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∞∑
n=1

ψ′(n + 1)S1(n)3
1
n

=
269π6

22680
, (C.49)

∞∑
n=1

ψ′(n + 1)ψ′′(n + 1)
1
n

=
61π6

22680
− 2ζ(3)2 . (C.50)

Series of level 7 with at least 1/n2 dependence:

∞∑
n=1

1
n7

= ζ(7) , (C.51)

∞∑
n=1

S1(n − 1)
1
n6

= 3ζ(7) − π2ζ(5)
6

− π4ζ(3)
90

, (C.52)

∞∑
n=1

S2(n − 1)
1
n5

= −11ζ(7) +
5π2ζ(5)

6
+

π4ζ(3)
45

, (C.53)

∞∑
n=1

S1(n − 1)2
1
n5

= −ζ(7) +
π2ζ(5)

6
− π4ζ(3)

180
, (C.54)

∞∑
n=1

S3(n − 1)
1
n4

= 17ζ(7) − 5π2ζ(5)
3

, (C.55)

∞∑
n=1

S1(n − 1)3
1
n4

=
119ζ(7)

16
+

π2ζ(5)
3

− 11π4ζ(3)
120

, (C.56)

∞∑
n=1

S1(n − 1)S2(n − 1)
1
n4

=
61ζ(7)

16
− π2ζ(5)

3
+

π4ζ(3)
, (C.57)

∞∑
n=1

S12(n − 1)
1
n4

=
141ζ(7)

8
− 5π2ζ(5)

4
− π4ζ(3)

24
, (C.58)

∞∑
n=1

S4(n − 1)
1
n3

= −18ζ(7) +
5π2ζ(5)

3
+

π4ζ(3)
90

, (C.59)

∞∑
n=1

S13(n − 1)
1
n3

= −73ζ(7)
4

+
5π2ζ(5)

3
+

π4ζ(3)
72

, (C.60)

∞∑
n=1

S1(n − 1)S3(n − 1)
1
n3

= −85ζ(7)
8

+
11π2ζ(5)

12
+

π4ζ(3)
72

, (C.61)

∞∑
n=1

S2(n − 1)2
1
n3

=
13ζ(7)

8
− 5π2ζ(5)

6
+

11π4ζ(3)
180

, (C.62)

∞∑
n=1

S1(n − 1)S12(n − 1)
1
n3

= −113ζ(7)
16

+
7π2ζ(5)

12
+

π4ζ(3)
72

, (C.63)
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∞∑
n=1

S1(n − 1)2S2(n − 1)
1
n3

= −77ζ(7)
8

− π2ζ(5)
3

+
7π4ζ(3)

60
, (C.64)

∞∑
n=1

S1(n − 1)4
1
n3

= −109ζ(7)
8

− 5π2ζ(5)
6

+
37π4ζ(3)

180
, (C.65)

∞∑
n=1

S112(n − 1)
1
n3

= −61ζ(7)
4

+
5π2ζ(5)

4
+

π4ζ(3)
40

, (C.66)

∞∑
n=1

S1(n − 1)S4(n − 1)
1
n2

=
173ζ(7)

16
− 3π2ζ(5)

4
− π4ζ(3)

60
, (C.67)

∞∑
n=1

S1(n − 1)S13(n − 1)
1
n2

=
61ζ(7)

4
− 3π2ζ(5)

2
+

π4ζ(3)
36

, (C.68)

∞∑
n=1

S1(n − 1)2S3(n − 1)
1
n2

=
301ζ(7)

16
− 3π2ζ(5)

4
− π4ζ(3)

15
, (C.69)

∞∑
n=1

S1(n − 1)S2(n − 1)2
1
n2

= −77ζ(7)
16

+
13π2ζ(5)

12
− π4ζ(3)

30
, (C.70)

∞∑
n=1

S1(n − 1)2S12(n − 1)
1
n2

=
423ζ(7)

16
− π2ζ(5)

6
− 37π4ζ(3)

360
, (C.71)

∞∑
n=1

S1(n − 1)3S2(n − 1)
1
n2

=
307ζ(7)

16
+

5π2ζ(5)
12

− 13π4ζ(3)
180

, (C.72)

∞∑
n=1

S1(n − 1)5
1
n2

=
1855ζ(7)

16
+

19π2ζ(5)
4

+
11π4ζ(3)

30
, (C.73)

∞∑
n=1

S1(n − 1)S112(n − 1)
1
n2

=
73ζ(7)

4
− 3π2ζ(5)

4
− π4ζ(3)

30
, (C.74)

∞∑
n=1

S5(n − 1)
1
n2

= 10ζ(7) − 2π2ζ(5)
3

− π4ζ(3)
45

, (C.75)

∞∑
n=1

S14(n − 1)
1
n2

=
141ζ(7)

8
− 19π2ζ(5)

12
− π4ζ(3)

360
, (C.76)

∞∑
n=1

S2(n − 1)S3(n − 1)
1
n2

=
19ζ(7)

16
+

5π2ζ(5)
12

− 7π4ζ(3)
180

, (C.77)

∞∑
n=1

S23(n − 1)
1
n2

= −131ζ(7)
16

+
4π2ζ(5)

3
− 7π4ζ(3)

180
, (C.78)
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∞∑
n=1

S2(n − 1)S12(n − 1)
1
n2

= −141ζ(7)
16

+
5π2ζ(5)

3
− 19π4ζ(3)

360
, (C.79)

∞∑
n=1

S113(n − 1)
1
n2

=
113ζ(7)

16
− π2ζ(5)

2
, (C.80)

∞∑
n=1

S212(n − 1)
1
n2

=
169ζ(7)

16
− π2ζ(5)

2
− 7π4ζ(3)

180
, (C.81)

∞∑
n=1

S1112(n − 1)
1
n2

=
141ζ(7)

8
− π2ζ(5) − 7π4ζ(3)

180
. (C.82)

C.2 Power Series of Levels 3 and 4
in Terms of Polylogarithms

The formulae of this section can be found in [93].

∞∑
n=1

S2(n − 1)
zn

n
= −2S1,2(z) − ln(1 − z)Li2 (z) , (C.83)

∞∑
n=1

S1(n − 1)2
zn

n
= −2S1,2(z) − ln(1 − z)Li2 (z) − 1

3
ln3(1 − z) , (C.84)

∞∑
n=1

S1(n − 1)
zn

n2
= S1,2(z) , (C.85)

∞∑
n=1

zn

n3
= Li3 (z) , (C.86)

∞∑
n=1

S3(n − 1)
zn

n
= −1

2
Li2 (z)2 − ln(1 − z)Li3 (z) , (C.87)

∞∑
n=1

S12(n − 1)
zn

n
= 3S1,3(z) − ln(1 − z)Li3 (z) − 1

2
Li2 (z)2

+
1
2

ln2(1 − z)Li2 (z) + 2 ln(1 − z)S1,2(z) , (C.88)
∞∑

n=1

S1(n − 1)S2(n − 1)
zn

n
= −1

2
Li2 (z)2 + ln(1 − z)(S1,2(z) − Li3 (z))

+
1
2

ln2(1 − z)Li2 (z) , (C.89)
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∞∑
n=1

S1(n − 1)3
zn

n
= −1

2
Li2 (z)2 +

3
2

ln2(1 − z)Li2 (z)

+ ln(1 − z)(3S1,2(z) − Li3 (z)) +
1
4

ln4(1 − z) , (C.90)
∞∑

n=1

S2(n − 1)
zn

n2
= −2S2,2(z) +

1
2
Li2 (z)2 , (C.91)

∞∑
n=1

S1(n − 1)2
zn

n2
= 2S1,3(z) − 2S2,2(z) +

1
2
Li2 (z)2 , (C.92)

∞∑
n=1

S1(n − 1)
zn

n3
= S2,2(z) , (C.93)

∞∑
n=1

zn

n4
= Li4 (z) . (C.94)

C.3 Inverse Binomial Power Series up to Level 4

The formulae of this section (as well as other similar formulae) can be found
in [79]. See a table of formulae for the corresponding number series in [130].
Let

y =
√

4 − z −
√
−z√

4 − z +
√
−z

.

Then
∞∑

n=1

1(
2n
n

) zn

n
=

1 − y

1 + y
ln y, (C.95)

∞∑
n=1

1(
2n
n

) zn

n2
= −1

2
ln2 y, (C.96)

∞∑
n=1

1(
2n
n

) zn

n3
= 2Li3 (y) − 2 ln y Li2 (y) − ln2 y ln(1 − y)

+
1
6

ln3 y − 2ζ(3) , (C.97)
∞∑

n=1

1(
2n
n

) zn

n4
= 4S2,2(y) − 4Li4 (y) − 4S1,2(y) ln y

+4Li3 (y) ln(1 − y) + 2Li3 (y) ln y − 4Li2 (y) ln y ln(1 − y)

− ln2 y ln2(1 − y) +
1
3

ln3 y ln(1 − y) − 1
24

ln4 y

−4 ln(1 − y)ζ(3) + 2 ln y ζ(3) + 3ζ(4) , (C.98)
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∞∑
n=1

1(
2n
n

) zn

n
S1(n − 1) =

1 − y

1 + y

×
[
−2Li2 (−y) − 2 ln y ln(1 + y) +

1
2

ln2 y − ζ(2)
]

, (C.99)

∞∑
n=1

1(
2n
n

) zn

n
S1(n − 1)2 =

1 − y

1 + y

[
8S1,2(−y) − 4Li3 (−y)

+8Li2 (−y) ln(1 + y) + 4 ln2(1 + y) ln y − 2 ln(1 + y) ln2 y

+
1
6

ln3 y + 4ζ(2) ln(1 + y) − 2ζ(2) ln y − 4ζ(3)
]

, (C.100)

∞∑
n=1

1(
2n
n

) zn

n
S2(n − 1) = − 1 − y

6(1 + y)
ln3 y , (C.101)

∞∑
n=1

1(
2n
n

) zn

n2
S2(n − 1) =

1
24

ln4 y , (C.102)

∞∑
n=1

1(
2n
n

) zn

n
S3(n − 1) =

1 − y

1 + y

[ 1
24

ln4 y + 6Li4 (y) + ln2 y Li2 (y)

−2ζ(3) ln y − 4 ln y Li3 (y) − 6ζ(4)
]

,

∞∑
n=1

1(
2n
n

) zn

n
S1(n − 1)S2(n − 1) =

1 − y

1 + y

[1
3

ln3 y ln(1 + y) − 1
24

ln4 y

+
1
2
ζ(2) ln2 y + ln2 y Li2 (−y) + ln2 y Li2 (y) + ζ(3) ln y − 4 ln y Li3 (−y)

−4 ln y Li3 (y) + ζ(4) + 8Li4 (−y) + 6Li4 (y)
]

, (C.103)
∞∑

n=1

1(
2n
n

) zn

n2
S1(n − 1) = 4Li3 (−y) − 2Li2 (−y) ln y

−1
6

ln3 y + 3ζ(3) + ζ(2) ln y , (C.104)
∞∑

n=1

1(
2n
n

) zn

n2
S1(n − 1)2 = −8S1,2(−y) ln y + 4Li3 (−y) ln y

−2Li2 (−y) ln2 y + 4Li2 (−y)2 − 1
24

ln4 y + 4ζ(2)Li2 (−y)

+ζ(2) ln2 y + 4ζ(3) ln y +
5
2
ζ(4) , (C.105)

∞∑
n=1

1(
2n
n

) zn

n3
S1(n − 1) = 4H−1,0,0,1(−y) + S2,2

(
y2
)

−4S2,2(y) − 4S2,2(−y) − 6Li4 (−y) − 2Li4 (y) + 4S1,2(−y) ln y

+4S1,2(y) ln y − 2S1,2

(
y2
)
ln y + 4Li3 (−y) ln(1 − y)
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+2Li3 (−y) ln y + 2Li3 (y) ln y − Li2 (y) ln2 y

−4Li2 (−y) ln y ln(1 − y) − 1
3

ln3 y ln(1 − y) +
1
24

ln4 y

+2ζ(2)Li2 (y) − 1
2
ζ(2) ln2 y + 2ζ(2) ln y ln(1 − y)

+6ζ(3) ln(1 − y) − 3ζ(3) ln y − 4ζ(4) , (C.106)
∞∑

n=1

1(
2n
n

) zn

n
S1(n − 1)3 =

1 − y

1 + y

[
−48S1,2(−y) ln(1 + y) − 48S1,3(−y)

+24S2,2(−y) − 12ζ(2) ln2(1 + y) − 24 ln2(1 + y)Li2 (−y)
+24ζ(3) ln(1 + y) + 24 ln(1 + y)Li3 (−y) − 8 ln y ln3(1 + y)
+12ζ(2) ln y ln(1 + y) + 6 ln2 y ln2(1 + y) − ln3 y ln(1 + y)

+
1
24

ln4 y − 3
2
ζ(2) ln2 y + 3 ln2 y Li2 (−y)

+ ln2 y Li2 (y) − 5ζ(3) ln y − 12 ln y Li3 (−y) − 4 ln y Li3 (y)

+
3
2
ζ(4) + 12Li4 (−y) + 6Li4 (y)

]
. (C.107)

C.4 Power Series of Levels 5 and 6 in Terms of HPL

∞∑
n=1

zn

n5
= H0,0,0,0,1(z) , (C.108)

∞∑
n=1

S1(n − 1)
zn

n4
= H0,0,0,1,1(z) , (C.109)

∞∑
n=1

S2(n − 1)
zn

n3
= H0,0,1,0,1(z) , (C.110)

∞∑
n=1

S1(n − 1)2
zn

n3
= H0,0,1,0,1(z) + 2H0,0,1,1,1(z) , (C.111)

∞∑
n=1

S3(n − 1)
zn

n2
= H0,1,0,0,1(z) , (C.112)

∞∑
n=1

S1(n − 1)3
zn

n2
= H0,1,0,0,1(z) + 3H0,1,0,1,1(z)

+3H0,1,1,0,1(z) + 6H0,1,1,1,1(z) , (C.113)
∞∑

n=1

S1(n − 1)S2(n − 1)
zn

n2
= H0,1,0,0,1(z) + H0,1,0,1,1(z)

+H0,1,1,0,1(z) , (C.114)
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∞∑
n=1

S12(n − 1)
zn

n2
= H0,1,0,0,1(z) + H0,1,1,0,1(z) , (C.115)

∞∑
n=1

S4(n − 1)
zn

n
= H1,0,0,0,1(z) , (C.116)

∞∑
n=1

S13(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,1,0,0,1(z) , (C.117)

∞∑
n=1

S1(n − 1)S3(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,0,0,1,1(z)

+H1,1,0,0,1(z) , (C.118)
∞∑

n=1

S2(n − 1)2
zn

n
= H1,0,0,0,1(z) + 2H1,0,1,0,1(z) , (C.119)

∞∑
n=1

S1(n − 1)S12(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,0,0,1,1(z)

+H1,0,1,0,1(z) + 2H1,1,0,0,1(z) + H1,1,0,1,1(z) + 2H1,1,1,0,1(z) , (C.120)
∞∑

n=1

S1(n − 1)2S2(n − 1)
zn

n
= H1,0,0,0,1(z) + 2H1,0,0,1,1(z)

+2H1,0,1,0,1(z) + 2H1,0,1,1,1(z) + 2H1,1,0,0,1(z)
+2H1,1,0,1,1(z) + 2H1,1,1,0,1(z) , (C.121)

∞∑
n=1

S1(n − 1)4
zn

n
= H1,0,0,0,1(z) + 4H1,0,0,1,1(z) + 6H1,0,1,0,1(z)

+12H1,0,1,1,1(z) + 4H1,1,0,0,1(z) + 12H1,1,0,1,1(z)
+12H1,1,1,0,1(z) + 24H1,1,1,1,1(z) , (C.122)

∞∑
n=1

S112(n − 1)
zn

n
= H1,0,0,0,1(z) + H1,0,1,0,1(z) + H1,1,0,0,1(z)

+H1,1,1,0,1(z) , (C.123)
∞∑

n=1

zn

n6
= H0,0,0,0,0,1(z) , (C.124)

∞∑
n=1

S1(n − 1)
zn

n5
= H0,0,0,0,1,1(z) , (C.125)

∞∑
n=1

S2(n − 1)
zn

n4
= H0,0,0,1,0,1(z) , (C.126)

∞∑
n=1

S1(n − 1)2
zn

n4
= H0,0,0,1,0,1(z) + 2H0,0,0,1,1,1(z) , (C.127)
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∞∑
n=1

S3(n − 1)
zn

n3
= H0,0,1,0,0,1(z) , (C.128)

∞∑
n=1

S1(n − 1)3
zn

n3
= H0,0,1,0,0,1(z) + 3H0,0,1,0,1,1(z)

+3H0,0,1,1,0,1(z) + 6H0,0,1,1,1,1(z) , (C.129)
∞∑

n=1

S1(n − 1)S2(n − 1)
zn

n3
= H0,0,1,0,0,1(z) + H0,0,1,0,1,1(z)

+H0,0,1,1,0,1(z) , (C.130)
∞∑

n=1

S12(n − 1)
zn

n3
= H0,0,1,0,0,1(z) + H0,0,1,1,0,1(z) , (C.131)

∞∑
n=1

S4(n − 1)
zn

n2
= H0,1,0,0,0,1(z) , (C.132)

∞∑
n=1

S13(n − 1)
zn

n2
= H0,1,0,0,0,1(z) + H0,1,1,0,0,1(z) , (C.133)

∞∑
n=1

S1(n − 1)S3(n − 1)
zn

n2
= H0,1,0,0,0,1(z) + H0,1,0,0,1,1(z)

+H0,1,1,0,0,1(z) , (C.134)
∞∑

n=1

S2(n − 1)2
zn

n2
= H0,1,0,0,0,1(z) + 2H0,1,0,1,0,1(z) , (C.135)

∞∑
n=1

S1(n − 1)S12(n − 1)
zn

n2
= H0,1,0,0,0,1(z) + H0,1,0,0,1,1(z)

+H0,1,0,1,0,1(z) + 2H0,1,1,0,0,1(z)
+H0,1,1,0,1,1(z) + 2H0,1,1,1,0,1(z) , (C.136)

∞∑
n=1

S1(n − 1)2S2(n − 1)
zn

n2
= H0,1,0,0,0,1(z) + 2H0,1,0,0,1,1(z)

+2H0,1,0,1,0,1(z) + 2H0,1,0,1,1,1(z) + 2H0,1,1,0,0,1(z)
+2H0,1,1,0,1,1(z) + 2H0,1,1,1,0,1(z) , (C.137)

∞∑
n=1

S1(n − 1)4
zn

n2
= H0,1,0,0,0,1(z) + 4H0,1,0,0,1,1(z)

+6H0,1,0,1,0,1(z) + 12H0,1,0,1,1,1(z) + 4H0,1,1,0,0,1(z)
+12H0,1,1,0,1,1(z) + 12H0,1,1,1,0,1(z) + 24H0,1,1,1,1,1(z) , (C.138)

∞∑
n=1

S112(n − 1)
zn

n2
= H0,1,0,0,0,1(z) + H0,1,0,1,0,1(z)

+H0,1,1,0,0,1(z) + H0,1,1,1,0,1(z) , (C.139)
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∞∑
n=1

S1(n − 1)S4(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+H1,1,0,0,0,1(z) , (C.140)
∞∑

n=1

S1(n − 1)S13(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+H1,0,1,0,0,1(z) + 2H1,1,0,0,0,1(z)
+H1,1,0,0,1,1(z) + 2H1,1,1,0,0,1(z) , (C.141)

∞∑
n=1

S1(n − 1)2S3(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 2H1,0,0,0,1,1(z)

+H1,0,0,1,0,1(z) + 2H1,0,0,1,1,1(z) + H1,0,1,0,0,1(z)
+2H1,1,0,0,0,1(z) + 2H1,1,0,0,1,1(z) + 2H1,1,1,0,0,1(z) , (C.142)

∞∑
n=1

S1(n − 1)S2(n − 1)2
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+2H1,0,0,1,0,1(z) + 2H1,0,1,0,0,1(z) + 2H1,0,1,0,1,1(z)
+2H1,0,1,1,0,1(z) + H1,1,0,0,0,1(z) + 2H1,1,0,1,0,1(z) , (C.143)

∞∑
n=1

S1(n − 1)2S12(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 2H1,0,0,0,1,1(z)

+2H1,0,0,1,0,1(z) + 2H1,0,0,1,1,1(z) + 3H1,0,1,0,0,1(z)
+2H1,0,1,0,1,1(z) + 3H1,0,1,1,0,1(z) + 3H1,1,0,0,0,1(z)
+4H1,1,0,0,1,1(z) + 4H1,1,0,1,0,1(z) + 2H1,1,0,1,1,1(z)
+6H1,1,1,0,0,1(z) + 4H1,1,1,0,1,1(z) + 6H1,1,1,1,0,1(z) , (C.144)

∞∑
n=1

S1(n − 1)3S2(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 3H1,0,0,0,1,1(z)

+4H1,0,0,1,0,1(z) + 6H1,0,0,1,1,1(z) + 4H1,0,1,0,0,1(z)
+6H1,0,1,0,1,1(z) + 6H1,0,1,1,0,1(z) + 6H1,0,1,1,1,1(z)
+3H1,1,0,0,0,1(z) + 6H1,1,0,0,1,1(z) + 6H1,1,0,1,0,1(z)
+6H1,1,0,1,1,1(z) + 6H1,1,1,0,0,1(z)
+6H1,1,1,0,1,1(z) + 6H1,1,1,1,0,1(z) , (C.145)

∞∑
n=1

S1(n − 1)5
zn

n
= H1,0,0,0,0,1(z) + 5H1,0,0,0,1,1(z) + 10H1,0,0,1,0,1(z)

+20H1,0,0,1,1,1(z) + 10H1,0,1,0,0,1(z) + 30H1,0,1,0,1,1(z)
+30H1,0,1,1,0,1(z) + 60H1,0,1,1,1,1(z) + 5H1,1,0,0,0,1(z)
+20H1,1,0,0,1,1(z) + 30H1,1,0,1,0,1(z) + 60H1,1,0,1,1,1(z)
+20H1,1,1,0,0,1(z) + 60H1,1,1,0,1,1(z)
+60H1,1,1,1,0,1(z) + 120H1,1,1,1,1,1(z) , (C.146)
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∞∑
n=1

S1(n − 1)S112(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,0,1,1(z)

+H1,0,0,1,0,1(z) + 2H1,0,1,0,0,1(z) + H1,0,1,0,1,1(z)
+2H1,0,1,1,0,1(z) + 2H1,1,0,0,0,1(z) + H1,1,0,0,1,1(z)
+2H1,1,0,1,0,1(z) + 3H1,1,1,0,0,1(z)
+H1,1,1,0,1,1(z) + 3H1,1,1,1,0,1(z) , (C.147)

∞∑
n=1

S5(n − 1)
zn

n
= H1,0,0,0,0,1(z) , (C.148)

∞∑
n=1

S14(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,1,0,0,0,1(z) , (C.149)

∞∑
n=1

S2(n − 1)S3(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,1,0,1(z)

+H1,0,1,0,0,1(z) , (C.150)
∞∑

n=1

S23(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,1,0,0,1(z) , (C.151)

∞∑
n=1

S12(n − 1)S2(n − 1)
zn

n
= H1,0,0,0,0,1(z) + 2H1,0,0,1,0,1(z)

+H1,0,1,0,0,1(z) + H1,0,1,1,0,1(z)
+H1,1,0,0,0,1(z) + 2H1,1,0,1,0,1(z) , (C.152)

∞∑
n=1

S113(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,1,0,0,1(z)

+H1,1,0,0,0,1(z) + H1,1,1,0,0,1(z) , (C.153)
∞∑

n=1

S212(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,1,0,1(z)

+H1,0,1,0,0,1(z) + H1,0,1,1,0,1(z) , (C.154)
∞∑

n=1

S1112(n − 1)
zn

n
= H1,0,0,0,0,1(z) + H1,0,0,1,0,1(z) + H1,0,1,0,0,1(z)

+H1,0,1,1,0,1(z) + H1,1,0,0,0,1(z) + H1,1,0,1,0,1(z)
+H1,1,1,0,0,1(z) + H1,1,1,1,0,1(z) . (C.155)



D Table of MB Integrals

D.1 MB Integrals with Four Gamma Functions

This is the first Barnes lemma:

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

=
Γ (λ1 + λ3)Γ (λ1 + λ4)Γ (λ2 + λ3)Γ (λ2 + λ4)

Γ (λ1 + λ2 + λ3 + λ4)
. (D.1)

Results for integrals with ψ(λ1 + z), . . . are obtained from (D.1) by dif-
ferentiating with respect to λ1, . . .. Second derivatives give, in a similar way,
results for integrals with products of two different functions ψ(λi ± z) and
with the combinations ψ′(λi ± z) + ψ(λi ± z)2.

Various corollaries can be derived from (D.1). For example,

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3) [ψ(λ1 − λ2) − ψ(λ1 + λ3)] , (D.2)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3) [ψ(λ2 + λ3) − ψ(λ1 + λ3)] . (D.3)

The asterisk is used to indicate that the first pole of the corresponding gamma
function is of the opposite nature, i.e. the first pole of Γ (λ2 + z) in (D.2) is
considered right and the first pole of Γ (−λ2 − z) in (D.3) is considered left.

These are four formulae with the psi function with the same condition as
in (D.2):

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(λ1 + z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)
[
ψ(λ1 − λ2)2 − ψ(λ1 − λ2)ψ(λ1 + λ3)

+ψ′(λ1 − λ2) − ψ′(λ1 + λ3)] , (D.4)
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1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(λ2 + z)

= −1
2
Γ (λ1 − λ2)Γ (λ2 + λ3)

[
ψ(λ1 − λ2)2 − ψ(λ1 + λ3)2

+2ψ(λ1 − λ2)(γE − ψ(λ2 + λ3)) − 2ψ(λ1 + λ3)(γE − ψ(λ2 + λ3))
+ψ′(λ1 − λ2) + ψ′(λ1 + λ3)] , (D.5)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(−λ2 − z)

=
1
2
Γ (λ1 − λ2)Γ (λ2 + λ3)

[
ψ(λ1 − λ2)2 + 2γEψ(λ1 + λ3)

+ψ(λ1 + λ3)2 − 2ψ(λ1 − λ2)(γE + ψ(λ1 + λ3))
+ψ′(λ1 − λ2) − ψ′(λ1 + λ3)] , (D.6)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (λ3 − z)ψ(λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3) [ψ(λ1 − λ2)ψ(λ2 + λ3)
−ψ(λ1 + λ3)ψ(λ2 + λ3) − ψ′(λ1 + λ3)] . (D.7)

These are four formulae with the psi function with the same condition as
in (D.3):

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(λ1 + z)

= −Γ (λ1 − λ2)Γ (λ2 + λ3)
× [ψ(λ1 − λ2)(ψ(λ1 + λ3) − ψ(λ2 + λ3)) + ψ′(λ1 + λ3)] , (D.8)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(λ2 + z)

=
1
2
Γ (λ1 − λ2)Γ (λ2 + λ3)

[
(ψ(λ1 + λ3) − ψ(λ2 + λ3))2

+2γE(ψ(λ1 + λ3) − ψ(λ2 + λ3)) − ψ′(λ1 + λ3) + ψ′(λ2 + λ3)] , (D.9)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(−λ2 − z)

=
1
2
Γ (λ1 − λ2)Γ (λ2 + λ3)

× [2(ψ(λ1 − λ2) − γE)(ψ(λ2 + λ3) − ψ(λ1 + λ3))
+ψ(λ1 + λ3)2 − ψ(λ2 + λ3)2 − ψ′(λ1 + λ3) − ψ′(λ2 + λ3)

]
, (D.10)
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1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (λ3 − z)ψ(λ3 − z)

= Γ (λ1 − λ2)Γ (λ2 + λ3)
[
ψ(λ2 + λ3)2 − ψ(λ1 + λ3)ψ(λ2 + λ3)

−ψ′(λ1 + λ3) + ψ′(λ2 + λ3)] , (D.11)

This is an example with the gluing of two poles:

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗∗(−1 − λ2 − z)Γ (λ3 − z)

= Γ (λ1 − λ2 − 1)Γ (λ2 + λ3) [1 − λ1 + λ2

+(λ1 + λ3 − 1)(ψ(λ1 + λ3 − 1) − ψ(λ2 + λ3))] , (D.12)

where the first two poles of Γ (−1−λ2−z), i.e. z = −λ2 and z = −λ2−1, are
considered left, with the corresponding change in notation. Here it is implied
that λ1 + λ3 �= 1.

In the case λ1 + λ3 = 1, we have

1
2πi

∫ +i∞

−i∞
dz Γ (1 − λ1 + z)Γ (λ2 + z)Γ ∗∗(−1 − λ2 − z)Γ (λ1 − z)

= (λ1 + λ2 − 1)Γ (λ1 + λ2)Γ (−λ1 − λ2) . (D.13)

Here is one more example of such an integral:

1
2πi

∫ +i∞

−i∞
dz Γ (1 − λ1 + z)Γ ∗(λ2 + z)Γ ∗(−1 − λ2 − z)Γ (λ1 − z)

= Γ (λ1 + λ2)Γ (−λ1 − λ2)
× [(λ1 + λ2)(ψ(−λ1 − λ2) − ψ(1 + λ1 + λ2)) − 1] . (D.14)

Furthermore, we have

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)

= Γ (λ1 − λ2)Γ (λ2 − λ1) [2γE + ψ(λ1 − λ2) + ψ(λ2 − λ1)] , (D.15)

where the poles z = −λ1 and z = −λ2 are right. These are four more formulae
with these conditions:

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(λ1 + z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4ψ(λ1 − λ2)ψ(λ2 − λ1)

+4γE(ψ(λ2 − λ1) − 2ψ(λ1 − λ2)) − 4ψ(λ1 − λ2)2 − 4ψ′(λ1 − λ2)
+2ψ(λ2 − λ1)2 + 2ψ′(λ2 − λ1)

]
, (D.16)
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1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(λ2 + z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 2ψ(λ1 − λ2)2

+4ψ(λ1 − λ2)(γE − ψ(λ2 − λ1)) − 8γEψ(λ2 − λ1) − 4ψ(λ2 − λ1)2

+2ψ′(λ1 − λ2) − 4ψ′(λ2 − λ1)] , (D.17)

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(−λ2 − z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 2ψ(λ1 − λ2)2

−4ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) − 2ψ′(λ1 − λ2)] , (D.18)

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ (−λ1 − z)ψ(−λ1 − z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 2ψ(λ2 − λ1)2

−4(γE + ψ(λ1 − λ2))ψ(λ2 − λ1) − 2ψ′(λ2 − λ1)] . (D.19)

There are similar formulae with different understanding of the nature of
the poles:

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ ∗(−λ1 − z)

= 2Γ (λ1 − λ2)Γ (λ2 − λ1) [γE + ψ(λ1 − λ2)] , (D.20)

where the pole z = −λ1 is left and the pole and z = −λ2 is right, and

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)

= 2Γ (λ1 − λ2)Γ (λ2 − λ1) [γE + ψ(λ2 − λ1)] , (D.21)

where the pole z = −λ1 is right and the pole and z = −λ2 is left. These are
four more formulae with these conditions:

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(λ1 + z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 4γEψ(λ2 − λ1) + 2ψ(λ2 − λ1)2

−8ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) + 2ψ′(λ2 − λ1)] , (D.22)
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1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(λ2 + z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4γEψ(λ2 − λ1)

−6ψ(λ2 − λ1)2 − 6ψ′(λ2 − λ1)
]

, (D.23)

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(−λ2 − z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 4γEψ(λ2 − λ1) + 2ψ(λ2 − λ1)2

−8ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) + 2ψ′(λ2 − λ1)] , (D.24)

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ (−λ1 − z)ψ(−λ1 − z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4γEψ(λ2 − λ1)

−6ψ(λ2 − λ1)2 − 6ψ′(λ2 − λ1)
]

. (D.25)

Furthermore, we have

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)

= Γ (λ1 − λ2)Γ (λ2 − λ1) [2γE + ψ(λ1 − λ2) + ψ(λ2 − λ1)] , (D.26)

where the poles z = −λ1 and z = −λ2 are left. These are four more formulae
with these conditions:

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(λ1 + z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 2ψ(λ1 − λ2)2

−4ψ(λ1 − λ2)(γE + ψ(λ2 − λ1)) − 2ψ′(λ1 − λ2)] , (D.27)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(λ2 + z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4(γE + ψ(λ1 − λ2))ψ(λ2 − λ1)

−2ψ(λ2 − λ1)2 − 2ψ′(λ2 − λ1)
]

, (D.28)



218 D Table of MB Integrals

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(−λ2 − z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 − 4ψ(λ1 − λ2)2

+4γEψ(λ2 − λ1) + 2ψ(λ2 − λ1)2 − 4ψ(λ1 − λ2)(2γE + ψ(λ2 − λ1))
−4ψ′(λ1 − λ2) + 2ψ′(λ2 − λ1)] , (D.29)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)ψ(−λ1 − z)

= −1
4
Γ (λ1 − λ2)Γ (λ2 − λ1)

[
2γ2

E + π2 + 2ψ(λ1 − λ2)2

+4ψ(λ1 − λ2)(γE − ψ(λ2 − λ1)) − 8γEψ(λ2 − λ1)
−4ψ(λ2 − λ1)2 + 2ψ′(λ1 − λ2) − 4ψ′(λ2 − λ1)

]
. (D.30)

We also have

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2

= −Γ (λ1 − λ2)ψ′(λ1 − λ2) , (D.31)

where the pole z = −λ2 is right. These are three more formulae with this
condition:

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2ψ(λ1 + z)

= −Γ (λ1 − λ2) [ψ(λ1 − λ2)ψ′(λ1 − λ2) + ψ′′(λ1 − λ2)] , (D.32)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2ψ(λ2 + z)

= Γ (λ1 − λ2)ψ′(λ1 − λ2) [2γE + ψ(λ1 − λ2)] , (D.33)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)2ψ(−λ2 − z)

=
1
2
Γ (λ1 − λ2) [2γEψ′(λ1 − λ2) − ψ′′(λ1 − λ2)] . (D.34)

We also have

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)2

=
1
4
Γ (λ1 − λ2)

[
π2 + 2(γE + ψ(λ1 − λ2))2 − 2ψ′(λ1 − λ2)

]
, (D.35)
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where the pole z = −λ2 is left,

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ ∗(−λ1 − z)Γ (λ2 − z)

= −Γ (λ1 + λ2)ψ′(λ1 + λ2) , (D.36)

where the pole z = −λ1 is left, and

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)

=
1
4
Γ (λ1 + λ2)

[
2(γE + ψ(λ1 + λ2))2 + π2 − 2ψ′(λ1 + λ2)

]
, (D.37)

where the pole z = −λ1 is right. These are three more formulae with this
condition:

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)ψ(λ1 + z)

=
1
6
Γ (λ1 + λ2)

[
ψ(λ1 + λ2)3 + 3ψ(λ1 + λ2)

(
ψ′(λ1 + λ2) − γ2

E +
π2

6

)

−2γ3
E − γEπ2 + 6γEψ′(λ1 + λ2) − 4ζ(3) − 2ψ′′(λ1 + λ2)

]
, (D.38)

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)ψ(−λ1 − z)

= − 1
12

Γ (λ1 + λ2)
[
12γEψ(λ1 + λ2)2 + 2ψ(λ1 + λ2)3

+3ψ(λ1 + λ2)
(

6γ2
E +

π2

3
− 2ψ′(λ1 + λ2)

)

+2(4γ3
E + 2γEπ2 − 6γEψ′(λ1 + λ2) + 8ζ(3) + ψ′′(λ1 + λ2))

]
, (D.39)

1
2πi

∫ +i∞

−i∞
dz Γ ∗(λ1 + z)2Γ (−λ1 − z)Γ (λ2 − z)ψ(λ2 − z)

=
1
4
Γ (λ1 + λ2)

[
4γEψ(λ1 + λ2)2 + 2ψ(λ1 + λ2)3 + 4γEψ′(λ1 + λ2)

+ψ(λ1 + λ2)(2γ2
E + π2 + 2ψ′(λ1 + λ2)) − 2ψ′′(λ1 + λ2)

]
. (D.40)

In some situations, it is possible to evaluate MB integrals with higher
derivatives of the ψ function. Here are some examples:

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)

=
Γ (λ1 + λ2)4

Γ (2(λ1 + λ2))
[2ψ(λ1 + λ2) − ψ(2(λ1 + λ2))] , (D.41)
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1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)2

=
Γ (λ1 + λ2)4

Γ (2(λ1 + λ2))
[
4ψ(λ1 + λ2)2 − 4ψ(λ1 + λ2)ψ(2(λ1 + λ2))

+ψ(2(λ1 + λ2))2 − ψ′(2(λ1 + λ2))
]

, (D.42)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ′(λ1 + z)

= 2
Γ (λ1 + λ2)4

Γ (2(λ1 + λ2))
ψ′(λ1 + λ2) , (D.43)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)ψ(λ2 − z)

=
Γ (λ1 + λ2)4

Γ (2(λ1 + λ2))
[
4ψ(λ1 + λ2)2 − 4ψ(λ1 + λ2)ψ(2(λ1 + λ2))

+ψ(2(λ1 + λ2))2 + ψ′(λ1 + λ2) − ψ′(2(λ1 + λ2))
]

, (D.44)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ(λ1 + z)2ψ(λ2 − z)

=
Γ (λ1 + λ2)4

Γ (2(λ1 + λ2))
[
8ψ(λ1 + λ2)3 − 12ψ(λ1 + λ2)2ψ(2(λ1 + λ2))

+2ψ(λ1 + λ2)(3ψ(2(λ1 + λ2))2 + 2ψ′(λ1 + λ2) − 3ψ′(2(λ1 + λ2)))
+ψ(2(λ1 + λ2))(3ψ′(2(λ1 + λ2)) − 2ψ′(λ1 + λ2))
−ψ(2(λ1 + λ2))3 − ψ′′(2(λ1 + λ2))

]
, (D.45)

1
2πi

∫ +i∞

−i∞
dz Γ (λ1 + z)2Γ (λ2 − z)2ψ′(λ1 + z)ψ(λ2 − z)

=
Γ (λ1 + λ2)4

Γ (2(λ1 + λ2))
[4ψ(λ1 + λ2)ψ′(λ1 + λ2)

−2ψ(2(λ1 + λ2))ψ′(λ1 + λ2) + ψ′′(λ1 + λ2)] . (D.46)

D.2 MB Integrals with Six Gamma Functions

This is the second Barnes lemma:

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ (λ4 − z)Γ (λ5 − z)
Γ (λ6 + z)
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=
Γ (λ1 + λ4)Γ (λ2 + λ4)Γ (λ3 + λ4)Γ (λ1 + λ5)
Γ (λ1 + λ2 + λ4 + λ5)Γ (λ1 + λ3 + λ4 + λ5)

×Γ (λ2 + λ5)Γ (λ3 + λ5)
Γ (λ2 + λ3 + λ4 + λ5)

, (D.47)

where λ6 = λ1 + λ2 + λ3 + λ4 + λ5.
Here is a collection of its corollaries:

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ ∗(−λ3 − z)Γ (λ4 − z)
Γ (λ5 + z)

=
Γ (λ1 − λ3)Γ (λ2 − λ3)Γ (λ3 + λ4)

Γ (λ1 + λ2 − λ3 + λ4)
[ψ(λ1 + λ2 − λ3 + λ4)

+ψ(λ3 + λ4) − ψ(λ1 + λ4) − ψ(λ2 + λ4)] , (D.48)

where λ5 = λ1 + λ2 + λ4 and the pole z = −λ3 is considered left,

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ ∗(λ3 + z)Γ (−λ3 − z)Γ (λ4 − z)
Γ (λ5 + z)

=
Γ (λ1 − λ3)Γ (λ2 − λ3)Γ (λ3 + λ4)

Γ (λ1 + λ2 − λ3 + λ4)
[ψ(λ1 − λ3) + ψ(λ2 − λ3)

−ψ(λ1 + λ4) − ψ(λ2 + λ4)] , (D.49)

where λ5 = λ1 + λ2 + λ4 and the pole z = −λ3 is considered right,

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ3 + z)Γ (λ3 − z)2

Γ (λ4 + z)

= −Γ (λ1 + λ3)Γ (λ2 + λ3)
Γ (λ1 + λ2 + 2λ3)

[ψ′(λ1 + λ3) + ψ′(λ2 + λ3)] , (D.50)

where λ4 = λ1 + λ2 + λ3 and the pole z = λ3 is considered right,

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ ∗(λ2 + z)2Γ (−λ2 − z)Γ (λ3 − z)
Γ (λ4 + z)

=
Γ (λ1 − λ2)Γ (λ2 + λ3)

2Γ (λ1 + λ3)

[
π2

2
+ (γE − ψ(λ1 − λ2) + ψ(λ1 + λ3)

+ψ(λ2 + λ3))2 + ψ′(λ1 − λ2) + ψ′(λ1 + λ3) − ψ′(λ2 + λ3)
]

, (D.51)

where λ4 = λ1 + λ2 + λ3 and the pole z = −λ2 is considered right,

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)2Γ ∗(−λ2 − z)Γ (λ3 − z)
Γ (λ4 + z)

=
Γ (λ1 − λ2)Γ (λ2 + λ3)

Γ (λ1 + λ3)
[ψ′(λ1 + λ3) − ψ′(λ2 + λ3)] , (D.52)

where λ4 = λ1 + λ2 + λ3 and the pole z = −λ2 is considered left.
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The integrals (D.47) can be evaluated recursively in the case where the
difference λ6 − (λ1 + λ2 + λ3 + λ4 + λ5) is a positive integer. In particular,
we have

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ (λ4 − z)Γ (−z)
Γ (λ5 + z)

=
(Γ (1 + λ2 + λ3 + λ4))−1Γ (λ1)Γ (λ3)Γ (λ2 + λ4)

Γ (1 − λ1 − λ3 − λ4)Γ (1 + λ1 + λ2 + λ4)Γ (λ1 + λ3 + λ4)
× [Γ (1 + λ2)Γ (1 − λ1 − λ3 − λ4)Γ (λ1 + λ4)Γ (λ3 + λ4)
−Γ (λ2)Γ (−λ1 − λ3 − λ4)Γ (1 + λ1 + λ4)Γ (1 + λ3 + λ4)] , (D.53)

where λ5 = λ1 + λ2 + λ3 + λ4 + 1, and

1
2πi

∫ +i∞

−i∞
dz

Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 + z)Γ (λ4 − z)Γ (−z)
Γ (λ5 + z)

=
(Γ (2 + λ2 + λ3 + λ4))−1Γ (λ1)Γ (λ3)Γ (λ2 + λ4)

Γ (1 − λ1 − λ3 − λ4)Γ (2 + λ1 + λ2 + λ4)Γ (λ1 + λ3 + λ4)
× [Γ (2 + λ2)Γ (1 − λ1 − λ3 − λ4)Γ (λ1 + λ4)Γ (λ3 + λ4)
−2Γ (1 + λ2)Γ (−λ1 − λ3 − λ4)Γ (1 + λ1 + λ4)Γ (1 + λ3 + λ4)
+Γ (λ2)Γ (−1 − λ1 − λ3 − λ4)Γ (2 + λ1 + λ4)Γ (2 + λ3 + λ4)] , (D.54)

where λ5 = λ1 + λ2 + λ3 + λ4 + 2.
Here are more corollaries of the second Barnes lemma:

1
2πi

∫ +i∞

−i∞

dz

z
Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

=
Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (λ1 + λ3 − 1)Γ (λ2 + λ3)

Γ (1 − λ1)Γ (1 − λ2)
× [Γ (1 − λ1)Γ (1 − λ2) − Γ (2 − λ1 − λ2 − λ3)Γ (λ3)] , (D.55)

where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered left,

1
2πi

∫ +i∞

−i∞

dz

z
Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

= −Γ (λ1)Γ (λ2)Γ (2 − λ1 − λ2 − λ3)Γ (λ3)

+
Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (λ1 + λ3 − 1)Γ (λ2 + λ3)

Γ (1 − λ1)Γ (1 − λ2)
× [Γ (1 − λ1)Γ (1 − λ2) − Γ (2 − λ1 − λ2 − λ3)Γ (λ3)] , (D.56)

where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered right,

1
2πi

∫ +i∞

−i∞
dz

Γ ∗(λ + z)2Γ ∗(z)Γ (−z)Γ (−λ − z)
Γ (λ + 1 + z)
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= − 1
2πi

∫ +i∞

−i∞

dz

z
Γ (λ + z)Γ (z)Γ ∗(−z)Γ ∗(−λ − z)

=
1
6λ

Γ (λ)Γ (−λ)
[
12(γE + ψ(λ)) + 2λπ2

+3λ((ψ(λ) − ψ(−λ))2 − ψ′(λ) + ψ′(−λ))
]

, (D.57)

where the nature of the poles at z = 0 and z = −λ is indicated by asterisks,
according to our conventions,

1
2πi

∫ +i∞

−i∞
dz

Γ (λ + z)2Γ (z)Γ ∗(−z)Γ ∗(−λ − z)
Γ (λ + 1 + z)

= − 1
2πi

∫ +i∞

−i∞

dz

z
Γ ∗(λ + z)Γ ∗(z)Γ (−z)Γ (−λ − z) =

1
λ2

Γ (λ)Γ (−λ)

×
[
1 + λ(ψ(λ) + ψ(−λ) + 2γE) − λ2

(
ψ′(λ) − π2

6

)]
, (D.58)

1
2πi

∫ +i∞

−i∞
dz

Γ (λ + z)2Γ ∗(z)Γ (−z)Γ ∗(−λ − z)
Γ (λ + 1 + z)

= − 1
2πi

∫ +i∞

−i∞

dz

z
Γ (λ + z)Γ ∗(z)Γ (−z)Γ ∗(−λ − z)

=
1
λ

Γ (λ)Γ (−λ)
[
2(γE + ψ(λ)) − λ

(
ψ′(λ) − π2

6

)]
. (D.59)

We also have

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

=
Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (2 − λ1 − λ2 − λ3)Γ (λ3)

Γ (2 − λ1)Γ (1 − λ2)
×Γ (λ1 + λ3 − 1)Γ (λ2 + λ3) [1 + (λ1 − 1)(ψ(2 − λ1) + ψ(1 − λ2)
−ψ(2 − λ1 − λ2 − λ3) − ψ(λ3))] , (D.60)

where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered left,

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ1 + z)Γ (λ2 + z)Γ (λ3 − z)Γ (λ4 − z)

= Γ (2 − λ1 − λ2 − λ3)Γ (λ3) [−Γ (λ1)Γ (λ2)(ψ(λ1) + ψ(λ2)
−ψ(2 − λ1 − λ2 − λ3) − ψ(λ3))

+
Γ (2 − λ1 − λ3)Γ (1 − λ2 − λ3)Γ (λ1 + λ3 − 1)Γ (λ2 + λ3)

Γ (2 − λ1)Γ (1 − λ2)
× [1 + (λ1 − 1)(ψ(2 − λ1) + ψ(1 − λ2)
−ψ(2 − λ1 − λ2 − λ3) − ψ(λ3))]] , (D.61)
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where λ1 + λ2 + λ3 + λ4 = 2, and the pole at z = 0 is considered right,

1
2πi

∫ +i∞

−i∞

dz

z
Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ ∗(−λ1 − z)

= − 1
λ2

1λ2
Γ (λ1 − λ2)Γ (λ2 − λ1) [2λ1 − λ2

+λ1(λ1 + λ2)(γE + ψ(λ1 − λ2)) − λ1(λ1 − λ2)
×(ψ(−λ1) − ψ(−λ2) + ψ(λ2 − λ1) − ψ(1 − λ1 + λ2))] , (D.62)

where the pole at z = 0 is left and the nature of the first poles of the gamma
functions is shown by asterisks,

1
2πi

∫ +i∞

−i∞

dz

z
Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)

=
1

λ2
1λ

2
2

Γ (λ1 − λ2)Γ (λ2 − λ1)
[
λ2

1 − λ1λ2 + λ2
2

−λ1λ2(λ1 + λ2)γE + λ1(λ1 − λ2)λ2(ψ(−λ1) − ψ(−λ2))
−λ1λ2(λ2ψ(λ1 − λ2) + λ1ψ(λ2 − λ1))] , (D.63)

where the pole at z = 0 is left,

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ1 + z)Γ ∗(λ2 + z)Γ (−λ2 − z)Γ ∗(−λ1 − z)

=
1

λ3
1λ

2
2

Γ (λ1 − λ2)Γ (λ2 − λ1)
[
2(λ2

1 + λ1λ2 − λ2
2)

+λ1(λ2
1 + λ2

2)(ψ(λ1 − λ2) + γE)
−λ1(λ2

1 − λ2
2)(ψ(−λ1) − ψ(−λ2) + ψ(−λ1 + λ2) − ψ(1 − λ1 + λ2))

−λ2
1λ2(λ1 − λ2)(ψ′(−λ1) − ψ′(−λ2))

]
, (D.64)

where the pole at z = 0 is left,

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ1 + z)Γ (λ2 + z)Γ ∗(−λ2 − z)Γ ∗(−λ1 − z)

= − 1
λ3

1λ
3
2

Γ (λ1 − λ2)Γ (λ2 − λ1)
[
(λ1 + λ2)(2λ2

1 − 3λ1λ2 + 2λ2
2)

−λ1λ2(λ2
1 + λ2

2)γE + λ1λ2(λ2
1 − λ2

2)ψ(−λ1)
−λ1λ

3
2(ψ(λ1 − λ2) − ψ(−λ2)) − λ3

1λ2(ψ(−λ2) + ψ(λ2 − λ1))
+λ3

1λ
2
2(ψ

′(−λ1) − ψ′(−λ2)) − λ2
1λ

3
2(ψ

′(−λ1) − ψ′(−λ2))
]

, (D.65)

where the pole at z = 0 is left,

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ + z)Γ (z)Γ ∗(−z)Γ ∗(−λ − z)
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= − 1
6λ3

Γ (λ)Γ (−λ) [12 − 6λ(2γE + ψ(−λ) + ψ(λ))

+λ2(π2 − 6ψ′(−λ)) − 3λ3(ψ′′(−λ) + 2ζ(3))
]

, (D.66)

where the pole at z = 0 is left,

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ + z)Γ ∗(z)Γ (−z)Γ ∗(−λ − z)

=
1

6λ3
Γ (λ)Γ (−λ)

[
−12 + 6λ(2γE + ψ(−λ) + ψ(λ)) − λ2(π2 − 6ψ′(−λ))

−λ3(π2(ψ(−λ) − ψ(λ)) + (ψ(−λ) − ψ(λ))3 − 2ψ′′(−λ) − ψ′′(λ)
+3(ψ(−λ) − ψ(λ))(ψ′(−λ) + ψ′(λ)) − 6ζ(3))] , (D.67)

where the pole at z = 0 is right,

1
2πi

∫ +i∞

−i∞

dz

z
Γ (λ + z)2Γ ∗(−λ − z)2

= − 1
6λ4

[
6 + λ2(π2 − 6ψ′(−λ)) + 12λ3ζ(3)

]
, (D.68)

where the pole at z = 0 is left,

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ + z)2Γ ∗(−λ − z)2

=
1

3λ5

[
12 + λ2(π2 − 6ψ′(−λ)) − 3λ3(ψ′′(−λ) − 2ζ(3))

]
, (D.69)

where the pole at z = 0 is left,

1
2πi

∫ +i∞

−i∞

dz

z2
Γ (λ + 1 + z)2Γ (−λ − z)2

= 2Γ (1 + λ)2Γ (−λ)2(ψ(−λ) − ψ(1 + λ)) − ψ′′(−λ) , (D.70)

where the pole at z = 0 is right.

D.3 The Gauss Hypergeometric Function
and MB Integrals

The Gauss hypergeometric function can be defined in terms of MB integrals:

2F1(a, b; c;x)

=
Γ (c)

Γ (a)Γ (b)
1

2πi

∫ +i∞

−i∞

Γ (a + z)Γ (b + z)Γ (−z)
Γ (c + z)

(−x)zdz (D.71)

=
Γ (c)

Γ (a)Γ (b)Γ (c − a)Γ (c − b)

× 1
2πi

∫ +i∞

−i∞
Γ (a + z)Γ (b + z)Γ (c − a − b − z)Γ (−z)(1 − x)zdz . (D.72)
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Combining these two formulae with (B.4) gives the following useful for-
mula (which is often applied when evaluating Feynman integrals — see,
e.g. [74]):

1
2πi

∫ +i∞

−i∞
Γ (a + z)Γ (b + z)Γ (c − z)Γ (−z)xzdz

= Γ (a + c)Γ (b + c)
1

2πi

∫ +i∞

−i∞

Γ (a + z)Γ (b + z)Γ (−z)
Γ (a + b + c + z)

(x − 1)zdz . (D.73)



E Analysis of Convergence
and Sector Decompositions

In this appendix, the analysis of convergence of Feynman integrals based on
the alpha representation is briefly described. The UV divergences come from
the region of small values of the α-parameters in (2.37), while the off-shell
IR divergences arise from the integration over large αl. To reveal these diver-
gences, the integration region is divided into so-called ‘sectors’, where new
integration variables are introduced, with the goal to obtain a factorization
of the integrand. Then the analysis of convergence reduces to power counting
in one-dimensional integrals.

However, this mathematical analysis of convergence is restricted to the
cases where the external momenta are Euclidean. Generalizations of these
results connected with the analysis of convergence and dimensional regular-
ization to Feynman integrals at a mass shell or at a threshold are not known.
On the other hand, it turns out that, in these important cases, one can in-
troduce some practical sector decompositions and corresponding sectors [37]
that give the possibility to have control on the convergence and, in particu-
lar, provide a powerful method of evaluating Feynman integrals in situations
with strong UV, IR and collinear divergences. The corresponding algorithm
is described in Sect. E.2.

E.1 Analysis of Convergence

We obtain the alpha representation of an analytically and dimensionally reg-
ularized Feynman integral corresponding to a graph Γ starting from the
alpha representation (2.37) and substituting the powers of propagators al by
al + λl with general complex numbers λl. For simplicity, let us assume the
scalar case and that the powers of propagators are equal to one. (If al > 1,
one can represent such a line by a sequence of al lines.) In this case the alpha
representation takes a simpler form

FΓ (q,m; d, λ)

=
∫ ∞

0

dα
∏

l

αλl

l U(α)−d/2 exp

(
iV(q, α)/U(α) − i

∑
l

m2
l αl

)
, (E.1)
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where the functions U and V are given by (2.25) and (2.26), and from now
on we omit the coefficient

(−1)Leiπ(
∑

λl+h(1−d/2))/2πhd/2/
∏

l

Γ (λl + 1) ,

which is irrelevant to the analysis of convergence. In this appendix (as in
Chap. 6), families of variables are denoted by underlined letters, i.e. q =
(q1, . . . , qn), m = (m1, . . . ,mL), λ = (λ1, . . . , λL), α = (α1, . . . , αL), etc.,
with dα = dα1 . . . dαL. Let us also assume here and later that the limit of
integration refers to all of the integration variables involved.

The alpha parameters have dimension −2 in mass units. By making the
change of variables αl → µ−2αl, where µ is a massive parameter, we can
transform to dimensionless alpha parameters. For simplicity, let us take µ = 1
in this appendix. To separate the analysis of the UV and IR convergence as
much as possible let us decompose the integration from 0 to ∞ over each
alpha parameter into two regions: from 0 to 1 and from 1 to ∞. The inte-
gral (E.1) is then divided into 2L pieces, each of which is determined by a
decomposition of the set of lines L of the given graph into two subsets, Lα

and Lβ , corresponding to the integrations over the UV region (from 0 to 1)
and the IR region (from 1 to ∞), respectively. For a given piece generated by
a subset Lα, let us change the variables αl for l ∈ Lβ according to αl = 1/βl.
The corresponding integral then takes the form

FLα

Γ (q,m; d, λ) =
∫ 1

0

dα dβ
∏

l∈Lα

αλl

l

∏
l∈Lβ

β−λl−ε
l U(α, β)−d/2

× exp


iV(q, α, β)/U(α, β) − i

∑
l∈Lα

m2
l αl − i

∑
l∈Lβ

m2
l /βl


 . (E.2)

For brevity, the new functions U and V are denoted by the same letters,
although they are now of the form

U(α, β) =


∏

l∈Lβ

βl


 U(α)|αl→1/βl,l∈Lβ

=
∑

T∈T 1


 ∏

l∈Lα\T

αl




 ∏

l∈Lβ∩T

βl


 , (E.3)

V(q, α, β) =


∏

l∈Lβ

βl


 V(q, α)

∣∣
αl→1/βl,l∈Lβ

=
∑

T∈T 2


 ∏

l∈Lα\T

αl




 ∏

l∈Lβ∩T

βl


(qT

)2
. (E.4)
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Remember that ±qT is the sum of the external momenta that flow into one
of the connectivity components of a 2-tree T .

For a given piece FLα

Γ , let us change the numbering of the lines in such
a way that the UV lines (i.e. those with αl ≤ 1) have smaller numbers.
Thus we perform integration in the domain 0 ≤ αl ≤ 1, 1 ≤ l ≤ l̄ and
0 ≤ βl ≤ 1, l̄ + 1 ≤ l ≤ L, where l̄ = |Lα|. If S is a finite set, we denote by
|S| the number of its elements.

As we shall see, the analysis of UV and IR convergence is now decoupled.
To analyse the UV convergence let us divide the domain of integration over αl

into sectors. In the following, we shall use sectors of two types associated with
nests and forests, respectively. The sectors connected with nests of subgraphs,
(i.e. that γ ⊂ γ′ or γ′ ⊂ γ for any pair of the subgraphs of any nest; let us
call them N -sectors) [120] are defined by

α1 ≤ . . . ≤ αl̄ (E.5)

and similar inequalities obtained by permutations. Without loss of generality,
let us consider only the sector (E.5). Let us then change the integration
variables according to

αl = tl . . . tl̄ . (E.6)

The new (N -sector) variables tl are expressed in terms of αl by

tl =
{

αl/αl+1 if l < l̄
αl̄ if l = l̄

. (E.7)

The corresponding Jacobian equals
∏

tl−1
l .

The decomposition of the IR integration, over βl, is performed in a quite
similar way. The following are the corresponding analogues of N -sectors and
sector variables:

βL ≥ . . . ≥ βl̄+1 , (E.8)
βl = τl̄+1 . . . τl , (E.9)

τl =
{

βl/βl−1 if l > l̄ + 1
βl̄+1 if l = l̄ + 1 , (E.10)

and the corresponding Jacobian is
∏

τL−l
l .

So, the initial integral is eventually divided into (L + 1)! sectors

απ(1) ≤ . . . ≤ απ(l̄) ≤ 1 ≤ απ(l̄+1) ≤ απ(L) , (E.11)

which are labelled by permutations π of the numbers 1, . . . , L and the num-
ber l̄. As we have stated, we consider only the contribution of the identical
permutation, i.e. π(l) = l, l = 1, . . . , L.

Although these sectors provide a resolution of the singularities of the
integrand, they can turn out to be too rough for analysing convergence. A
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more sophisticated set of sectors corresponds to the maximal UV and IR
forests. A set f of 1PI subgraphs and single lines with non-coincident end
points is called a UV forest [51, 170, 198] if the following conditions hold: (i)
for any pair γ, γ′ ∈ f , we have either γ ⊂ γ′, γ′ ⊂ γ or L(γ ∩ γ′) = ∅;
(ii) if γ1, . . . , γn ∈ f and L(γi ∩ γj) = ∅ for any pair from this family,
the subgraph ∪iγ

i is one-vertex-reducible (i.e. can be made disconnected by
deleting a vertex).

Let F be a maximal UV forest (i.e. there are no UV forests that include
F) of a given graph Γ . An element γ ∈ F is called trivial if it consists of
a single line and is not a loop line. Any maximal UV forest has h(Γ ) non-
trivial and L − h(Γ ) trivial elements. Let us define the mapping σ : F → L
such that σ(γ) ∈ L(γ) and σ(γ) �∈ L(γ′) for any γ′ ⊂ γ, γ′ ∈ F . Its inverse
σ−1 uniquely determines the minimal element σ−1(l) of the UV forest F that
contains the line l. Let us denote by γ+ the minimal element of F that strictly
includes the given element γ.

For a given maximal UV forest F , let us define the corresponding sector
(F -sector) as

DF =
{
α|αl ≤ ασ(γ) ≤ 1, l ∈ γ ∈ F

}
. (E.12)

The intersection of two different F -sectors has zero measure and the union of
all the sectors gives the whole integration domain of the UV alpha parameters
(i.e. αl ≤ 1) (see [51, 170, 182, 198]). For a given F -sector, let us introduce
new variables labelled by the elements of F ,

αl =
∏

γ∈F : l∈γ

tγ , (E.13)

where the corresponding Jacobian is
∏

γ t
L(γ)−1
γ . The inverse formula is

tγ =
{

ασ(γ)/ασ(γ+) if γ is not maximal
ασ(γ) if γ is maximal . (E.14)

Consider, for example, the two-loop self-energy diagram of Fig. 3.10 and
the following maximal UV forest F consisting of γ1 = {1}, γ2 = {2}, γ3 =
{3}, γ4 = {1, 2, 5}, γ5 = Γ . The mapping σ is σ(γ1) = 1, σ(γ2) =
2, σ(γ3) = 3, σ(γ4) = 5, σ(γ5) = 4. The sector associated with this maximal
UV forest is given by DF = {α1,2 ≤ α5 ≤ α4, α3 ≤ α4} and the sector vari-
ables are tγ1 = α1/α5, tγ2 = α2/α5, tγ3 = α3/α4, tγ4 = α5/α4, tγ5 = α4.

The IR F -sectors and variables are introduced in a quite analogous way.
New variables τγ are associated with maximal IR forests composed of IR-
irreducible subgraphs – see [182]. (A subgraph γ of Γ is called IR irreducible
[65, 182] if the reduced graph Γ/γ is one-vertex-irreducible. (As in Chap. 2,
Γ/γ is obtained from Γ by reducing every connectivity component of γ to
a point.) The UV and IR maximal forests Fα and Fβ , composed of lines
Lα and Lβ , respectively, are then combined in pairs to generate ‘generalized
maximal forests’, with corresponding variables {tγ , τγ′}, γ ∈ Fα, γ′ ∈ Fβ . As
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a result, the initial integration domain is divided into F -sectors associated
with generalized maximal forests.

In each of the N - or F -sectors, the function (E.3) takes a factorized form
in the new variables [51,170,182,198,222]:

U =


 l̄∏

l=1

t
h(γl)
l




 L∏

l=l̄+1

τ
L−l+1−h(Γ/γl−1)
l


 [1 + PN(t, τ)] (E.15)

=


 ∏

γ∈Fα

th(γ)
γ




 ∏

γ∈Fβ

τL(γ)−h(Γ/γ)
γ


 [1 + PF(t, τ)] , (E.16)

where PN and PF are non-negative polynomials, γl denotes the subgraph
consisting of the lines {1, . . . , l}, and again γ = Γ\γ. The factorization of the
function (E.4) in the N -sector variables is of the form

V =


 l̄∏

l=1

t
h(γl)
l


 L∏

l=l̄+1

τ
L−l+1−h(Γ/γl−1)
l

(
τl̄+1 . . . τl0

)−1

×
[(

qT0
)2

+ P0(q, t, τ)
]

, (E.17)

where l0 denotes the number such that all the external vertices belong to the
same connectivity component of the subgraphs γl for l ≥ l0. In the Euclidean
domain, where (∑

i∈I

qi

)2

< 0 (E.18)

for any subset I of external lines, we have
(
qT0
)2

< 0 and P0(q, t, τ) ≤ 0.
These factorization formulae are proven by constructing an appropriate

tree or a 2-tree. In particular, in the case of pure α-variables, one uses the
formula ∏

l∈Lα\T

αl =
∏

γ∈Fα

th(γ)+c(γ∩T )−c(γ)
γ , (E.19)

where T is a tree or 2-tree and c(γ) is the number of connectivity components
of γ, so that the factorization reduces to constructing a (2-)tree that provides
the minimal value of the non-negative quantity c(γ∩T )− c(γ). In particular,
the unity term in the square brackets in (E.15) corresponds to the tree which
is constructed as follows: one considers the lines l = 1, 2, . . . consecutively
and includes the given line in the tree if a loop is not generated. In (E.16),
the minimal power of the sector variables is achieved for the tree which is
composed of all trivial elements of the given maximal UV-forest F .

The 2-tree T0 that gives q2
T0

in (E.17) is constructed by a similar procedure
with the additional requirement that a line is not included when it could
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connect all the external vertices of the graph. The factorization in the F -
sector variables is a little bit more complicated (see [182]); instead of the
contribution of the 2-tree T0, there is a sum of contributions from some
family of 2-trees.

These formulae provide a factorization of the integrand of the alpha rep-
resentation and make manifest the analysis of the UV and IR convergence.
The contribution of the N -sector (E.11) takes the form

F l̄
Γ (q,m; d, λ) =

∫ 1

0

dt dτ


 l̄∏

l=1

t
λ(γl)+h(γl)ε−[ω(γl)/2]−1
l




×


 L∏

l=l̄+1

τ
λ(γ′

l)−h(Γ/γl−1)ε+[(ω(Γ )−ω(γ′
l)+1)/2]−1

l




× [1 + PN(t, τ)]ε−2 exp

(
i
q2
T0

+ P0(q, t, τ)
1 + PN(t, τ)

(
τl̄+1 . . . τl0

)−1

−i
l̄∑

l=1

m2
l αl(t) − i

L∑
l=l̄+1

m2
l /βl(τ)


 , (E.20)

where
λ(γ) =

∑
l∈γ

λl , (E.21)

and, in addition to γl, we have introduced the notation γ′
l ≡ Γ\γl−1 for the

subgraph composed of the lines {l, l + 1, . . . , L}. The general case l̄ < l0 is
assumed. The square brackets in the exponents denote the integer parts of
numbers, and h(γ) and ω(γ), as before, denote the number of loops and the
UV degree of divergence, respectively. This factorization is given here for a
general graph. In the scalar case, on which we are concentrating, the degrees
of divergence are even numbers so that one can avoid the need to take those
integer parts.

The structure of the factorized representation in the F -sector variables is
similar, where the product of powers of the sector variables now takes the
form 

 ∏
γ∈Fα

tλ(γ)+h(γ)ε−[ω(γ)/2]−1
γ




×


 ∏

γ∈Fβ

τλ(γ)−h(Γ/γ)ε+[(ω(Γ )−ω(γ)+1)/2]−1
γ


 . (E.22)

So the factorized N -sector integrals take the same form as the F -sector in-
tegrals if we let the UV subgraph γ be any graph of type γl and the IR
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subgraph γ be any graph of type γ′
l, no matter whether they are UV/IR

irreducible. Therefore, to analyse the UV and IR convergence, the F -sectors
are certainly preferable because it suffices to check convergence in a smaller
family of integrals.

The analysis of convergence has therefore been reduced to counting powers
in products of one-dimensional integrals over the sector variables. Note that
(IR) convergence in the variables τl is guaranteed if τ−1

l is present in the ex-
ponent. This property can be explained by the fact that the one-dimensional
integral

∫∞
0

dτ e−im2/ττλφ(τ), with an infinitely differentiable function φ and
a sufficient decrease at infinity, is well defined even at arbitrary values of
Re λ ≤ −2 (where it is, strictly speaking, divergent): this is true both in
the sense of the analytic continuation from the domain Reλ > −1 and in
the sense of the limit δ → +0 with m2 → m2 − iδ (with identical resulting
prescriptions in both these variants). In particular, such integrals are well
defined for the integer values λ = −1,−2, . . .

Thus we have IR convergence when either the subgraph γ′
l (or just γ)

has at least one non-zero mass or its completion γl−1 (or γ) does not have
all the external vertices in the same connectivity component. Therefore it is
sufficient to check the IR convergence for the other IR-irreducible subgraphs.
The domain of the regularization parameters λl and ε where these sector
integrals are convergent is determined by the inequalities

Re λ(γ) + h(γ)Re ε > [ω(γ)/2] , (E.23a)
Re λ(γ) − h(Γ/γ)Re ε < [(ω(Γ ) − ω(γ) + 1)/2] , (E.23b)

which correspond, respectively, to UV-irreducible subgraphs and massless IR-
irreducible subgraphs whose completions γ contain all the external vertices
in the same connectivity component.

It turns out that this domain is non-empty for any graph without massless
detachable subgraphs, i.e. massless subgraphs with zero external momenta.
This statement can be proven [198] by observing that the parameters

λ
(0)
l = (2 − ε)

(
1 + δ − |T 1

l |
|T 1|

)
− 1 , (E.24)

where T 1
l is the set of trees containing the line l, satisfy (E.23a) and (E.23b)

for sufficiently small δ > 0. (As before, | . . . | is the number of elements in
the corresponding finite set.) Here again the scalar case is assumed. The gen-
eralization to a general diagram is straightforward: one adds nl/2 to the
right-hand side of (E.24), where nl is the degree of the polynomial in the
numerator of the lth propagator.

In order to see that the Feynman integral can be continued from the
above domain of mutual convergence to the whole hypercomplex plane of the
variables (λ, ε) let us use the well-known property of the integrals

F (λ) =
∫ ∞

0

dx xλφ(x) . (E.25)
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(In distributional language, this is the analytic property of the distribution
xλ

+ – see [103].) Indeed, the integral (E.25) with an infinitely differentiable
function φ which has a compact support (or, a fast decrease at large values
of x – see details in [103]) is absolutely convergent for all complex values of
λ with Reλ > −1 so that it defines an analytic function of λ in this domain.
This function can be continued analytically to the whole complex plane of λ
with simple poles at λ = −1,−2, . . .. To perform the analytical continuation
to the domain Reλ > −2 one decomposes the integral (E.25) into the two
integrals, from 0 to 1 and from 1 to ∞, and uses an appropriate subtraction
in the first of them, i.e. represents φ(x) in (E.25) as (φ(x)−φ(0))+φ(0) and
takes the integral with the second term explicitly to obtain

F (λ) =
∫ 1

0

dxxλ(φ(x) − φ(0)) +
φ(0)
λ + 1

+
∫ ∞

1

dxxλφ(x) . (E.26)

The first integral on the right-hand side is now absolutely convergent at
Re λ > −2 so that we obtain, from (E.26), an explicit analytic continuation
of the function F (λ) to this domain. We also see that this function has a
simple pole at λ = −1 with the residue φ(0).1

This procedure can naturally be generalized for the analytic continuation
to the whole complex plane. To do this, one makes more subtractions2:

F (λ) =
∫ 1

0

dx xλ


φ(x) −

n∑
j=0

φ(j)(0)
j!

xj


+

n∑
j=0

φ(j)(0)
j!(λ + j + 1)

+
∫ ∞

1

dx xλφ(x) . (E.27)

Let us come back to our sector integrals. It follows from the factorizations
(E.20), when they are written for all the sectors, that the Feynman integral
can be continued from the above domain of mutual convergence to the whole
hypercomplex plane of the variables (λ, ε) as a meromorphic function, with

1In distributional language, this means that the functional xλ
+ has the pole at

λ = −1 with the residue δ(x). By the way, in the domain −2 < Re λ < −1, the
value φ(0)/(λ+1) can be rewritten as −φ(0)

∫∞
1

dx xλ. After we combine it with the
last integral in (E.26) we obtain the following compact expression for the analytic
continuation of (E.25) to this band: F (λ) =

∫∞
0

dx xλ(φ(x) − φ(0)). However, in
our case of factorized expressions resulting from sector integrals, this is not relevant
because we are dealing with finite regions of integration.

2With the help of this procedure, the analytic continuation of (E.25) to the
band −n − 1 < Re λ < −n − 1 takes the form [103]:

F (λ) =

∫ ∞

0

dx xλ

[
φ(x) −

n∑
j=0

φ(j)(0)

j!
xj

]
.
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series of UV and IR poles. It is also clear that, in the case where there is no
non-empty mutual-convergence domain, the contribution from any sector can
be made convergent by choosing the absolute values of the real parts of the
UV/IR analytic-regularization parameters to be sufficiently large (positive
and negative for l ≤ l̄ and l > l̄, respectively). The analytic regularization can
then be switched off, by analytic continuation, and one obtains [64] a dimen-
sionally regularized Feynman integral as the sum of its sector contributions,
which were defined in their own initial analyticity domains using the auxil-
iary analytic regularization. Therefore, we obtain a definition of dimensional
regularization for any Feynman integral at Euclidean external momenta.

E.2 Practical Sector Decompositions

The sector decompositions of the previous section are simpler than the sectors
of [198]. However, if we want to apply sectors for the numerical evaluation
of Feynman integrals the initial decomposition of the integration domain
over every alpha parameter in the two regions is not optimal at all because
we obtain 2L pieces from the beginning. So, the natural idea is to apply
the sectors of [198]. Presumably, this procedure can be implemented on a
computer, but no such examples are known.

The bad news is that, although the sector decompositions discussed
above can successfully be used for proving theorems on renormalization
[120,195,222] and on asymptotic expansions in limits of momenta and masses
typical of Euclidean space (see [181,182] and Appendix B of [186]), they are
not sufficient for resolving the singularities of the integrand in the case of
Feynman integrals on a mass shell or at a threshold. Let us consider again
Example 3.3 of Sect. 3.3, with the basic functions U and V given by (3.27),
and try to apply the N -sectors to resolve the singularities of the alpha integral
in the region of large αl. To do this, let us turn to the variables βl = 1/αl,
as in the previous section, where we obtain the functions

U(β) = β1β2β3 + β1β2β4 + β1β3β4 + β2β3β4 , (E.28)
V(β) = tβ2β4 + sβ1β3 . (E.29)

Consider now the N -sector β2 ≤ β1 ≤ β3 ≤ β4 and introduce the variables
(E.10), i.e. by means of the relations

β2 = τ1τ2τ3τ4 , β1 = τ2τ3τ4 , β3 = τ3τ4 , β4 = τ4 . (E.30)

In these sector variables, the function (E.28) factorizes, in a suitable way,
according to (E.15), but the function (E.29) does not:

V(τ) = τ2τ3τ
2
4 (sτ1 + tτ3) . (E.31)

Such a phenomenon would never happen for Feynman integrals considered
at Euclidean external momenta – see the general result (E.17).
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So, we do not have a nice factorization property similar to (E.17) for
the contribution of the sector under consideration. In order to perform the
analysis of convergence, the factor sτ1 + tτ3 raised to some power dependent
on ε has to be further factorized. The natural idea here is to perform a
next sector decomposition, using N -sectors, then proceed further if we do
not immediately succeed, etc. However, this procedure looks awful from the
practical point of view: to have L! contributions at the first step, then (L!)2 at
the second step is a very bad idea if we think of a computer implementation.

Still the idea to introduce, recursively, more and more sectors has turned
out to be quite successful and easily implemented in practice. A suitable
algorithm based on sector decompositions for resolving singularities of general
Feynman integrals, in particular, considered on a mass-shell or at a threshold,
possibly, with severe UV, IR and collinear divergences, was developed in [37].
On the one hand, this algorithm makes the analysis of the singularities in
ε possible for any given Feynman integral. On the other hand, it gives a
powerful universal numerical method for evaluating Feynman integrals.

The starting point of the algorithm of [37] is representation (3.36), where
the sum of all the parameters αl is implied in the δ-function. It is supposed
that all the kinematical invariants and the masses have the same sign, i.e. if
there is a non-zero mass, all the invariants are non-positive. Then one intro-
duces the following primary sectors ∆l labelled by the number l = 1, . . . , L:

αi ≤ αl , l �= i = 1, 2, . . . , L (E.32)

and turns, in a given sector ∆l, to the variables

ti =
{

αi/αl if i �= l
αl if i = l

. (E.33)

Then the integration over tl is taken due to the δ-function, and one obtains
the integral

Fl =

1∫

0


∏

i�=l

dti


 UL−(h+1)d/2

VL−hd/2

∣∣∣∣
tl=1

. (E.34)

Here we used the fact that the functions U and V are homogeneous functions
of the alpha parameters with the homogeneity degrees h and h + 1, respec-
tively. The goal of the introduction of the sector decompositions is to obtain
a perfect factorization, i.e. of the form (E.15) for U and of the form (E.17) for
−V+U

∑
m2

l αl, where, instead of
(
qT0
)2, there is some positive combination

of the kinematical invariants and masses.
So, if the perfect factorization is not achieved, for the contribution of the

given sector ∆l, the next natural step is to introduce a second decomposition
in a similar way, i.e. over L − 1 sectors ∆lj ,

ti ≤ tj , i = 1, 2, . . . , L , i �= j, l , j �= l . (E.35)
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and new variables t′i similarly to (E.33). One may hope that sooner or later
a perfect factorization will be achieved. If this is the case, one obtains a sum
of parametric integrals, over some sector variables ti, where the singularities
are factorized, i.e. the integrand is a product of ti raised to some powers
λi = ni + hiε, with integer ni and hi �= 0, and the two functions (also
raised to similar powers) which result from U and V and are positive in the
integration region.

In such a ‘perfect’ situation, the analysis of convergence reduces to count-
ing powers of the variables ti. This reminds again, as in the end of the previous
section, the analysis of the distribution xλ

+ – see [103]. Explicitly, we have
integrations over sector variables (of some level of iterations) of the form

G(ε) =
∫ 1

0

dt tn+hεφ(t) , (E.36)

where t is one of the sector variables, n and h �= 0 are integer numbers and
φ(t) is a function with φ(0) �= 0 which involves similar factorized integrations
over the rest of the sector variables. If n ≥ 0, the integration over t does not
generate poles in ε. Suppose that n is negative. The procedure outlined in
the end of the previous section suggests a similar subtraction:

G(ε) =
∫ 1

0

dt tn+hε


φ(t) −

−n−1∑
j=0

φ(j)(0)
j!

tj




+
−n−1∑
j=0

φ(j)(0)
j!(n + hε + j + 1)

. (E.37)

After performing such manipulations with integrations over all the sector
variables ti with ni < 0 one obtains a linear combination of integrals where
one can perform an expansion in a Laurent series in ε. This provides the
possibility to formulate an algorithm for the numerical evaluation of any
term of expansion of the given Feynman integral in ε.

Numerous practical calculations have shown [37] that this algorithm works
for complicated Feynman integrals with multiple IR and collinear divergences.
For example, analytical results for double and triple boxes [13, 184, 185, 187,
189,191,206] were numerically confirmed by means of this algorithm.

Once again, this is a method with experimental mathematics. It is not
guaranteed, as in a mathematical theorem, that the process of the recur-
sive introduction of the sector decompositions described above will stop at
some point with a perfect factorization. Moreover, practical calculations have
shown that one has to avoid possible closed loops in the algorithm. How-
ever, this is the only working general algorithm at the moment, applicable
at any loop order, with applications restricted only by the computer time.
One may hope that the algorithm can be generalized to the cases without



238 E Analysis of Convergence and Sector Decompositions

restrictions on the signs of the kinematical invariants and the masses. Ob-
serve, however, that another important generalization, to the case of phase-
space integrals, was already developed and successfully applied in practice
in [12,38,102,119,151].



F A Brief Review of Some Other Methods

In this appendix, some methods which were not considered in Chaps. 3–7 are
briefly reviewed. The method based on dispersion relations was successfully
used from the early days of quantum field theory. The Gegenbauer Polyno-
mial x-Space Technique [63], the method of gluing [66] and the method based
on star-triangle uniqueness relations [85,131,213] are methods for evaluating
massless diagrams. The method of IR rearrangement [216], also in a gener-
alized version based on the R∗-operation [65, 182], is a method oriented at
renormalization-group calculations.

The recently developed method of difference equations [143] is also briefly
described. It is not analytical, although based on non-trivial mathematical
analysis. It enables us to obtain numerical results with extremely high pre-
cision, with hundreds of digits. Finally, some methods which could be char-
acterized as based on experimental mathematics are discussed. In particular,
this is the integer relation algorithm called PSLQ [90] which provides the
possibility to obtain a result for a given one-scale Feynman integral, when
we strongly suspect that it is a linear combination of some transcendental
numbers with rational coefficients, provided we know the result numerically
with a high accuracy.

F.1 Dispersion Integrals

A given propagator scalar Feynman integral can be written as

F (q2) =
1

2πi

∫ ∞

s0

ds
∆F (s)

s − q2 − i0
, (F.1)

where the discontinuity ∆F (s) = 2i Im(F (s + i0)) is given, according to
Cutkosky rules, by a sum over cuts in a given channel of integrals, where the
propagators i/(k2 −m2 + i0) in the cut are replaced by 2πi θ(k0)δ(k2 −m2),
while the propagators to the left of the cut stay the same, and the prop-
agators to the right of the cut change the causal prescription and become
−i/(k2 − m2 − i0).

Let us again consider our favourite example of Fig. 1.1, with the indices
equal to one. This time, let us include al the necessary factors of i from each
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propagator and the factor −i corresponding to the definition of the Feynman
integral with i on the right-hand side of (2.3). We have

∆F (q2) = 4π2

∫
ddk θ(k0)δ(k2 − m2)θ(q0 − k0)δ[(q − k)2]

=
2π2

q0
Ωd−1

∫ q0

0

dr rd−2 δ

[(
q2
0 − m2

2q0

)2

− r2

]

=
24−dπ(d+3)/2

Γ ((d − 1)/2)
(q2 − m2)d−3

+

(q2)(d−2)/2
, (F.2)

where X+ = X for X > 0 and X+ = 0 otherwise, as usual. We have chosen
q = (q0,0) and introduced (d−1)-dimensional spherical coordinates with the
surface of the unit sphere in d dimensions equal to

Ωd =
2πd/2

Γ (d/2)
. (F.3)

For d = 4, this gives

∆F (s) =
2π3(q2 − m2)+

q2
. (F.4)

Integrating from the threshold s0 = m2 in the dispersion integral (F.1)
(where a subtraction is needed) leads to the finite part of (1.7) (where the
factors of i mentioned above were dropped) up to a renormalization constant.

In this calculation, a phase-space integral corresponding to a two-particle
cut with the masses m and 0 was evaluated. The evaluation of three- and four-
particle phase-space integrals is much more complicated. Although we have
less integrations in integrals corresponding to cuts, because of the δ-functions,
resulting integrals are still rather nasty so that the evaluation of Feynman
integrals via their imaginary part by means of Cutkosky rules (see [160] for
a typical example) was successful only up to some complexity level. On the
other hand, the phase-space integrals are needed for the calculation of the
real radiation. It has turned out that the development of methods of eval-
uating Feynman integrals resulted in similar techniques for the phase-space
integrals. Now, one applies, for the evaluation of the phase-space integrals,
the strategy of the reduction to master integrals, using IBP, and DE applied
for the evaluation of the master integrals – see, e.g., [10, 11]. Moreover, the
technique of the sector decompositions of [37] (see Sect. E.2) is also applica-
ble here and was successfully applied in NNLO calculations – see references
in the end of Appendix E.

F.2 Gegenbauer Polynomial x-Space Technique

The Gegenbauer polynomial x-space technique (GPXT) [63] is based on the
SO(d) symmetry of Euclidean Feynman integrals. According to (A.42), the
dimensionally regularized scalar massless propagator in coordinate space is
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DF (x1 − x2) =
1

(2π)d

∫
ddq

e−ix·q

q2
=

Γ (1 − ε)
4πd/2[(x1 − x2)2]1−ε

, (F.5)

where x2 = x2
0 + x2. It can be expanded in Gegenbauer polynomials [89] as

1
[(x1 − x2)2]λ

=
1

(max{|x1|, |x2|})2λ

×
∞∑

n=0

Cλ
n (x̂1 ·x̂2)

(
min{|x1|, |x2|}
max{|x1|, |x2|}

)n/2

, (F.6)

where |x| =
√

x2, λ = 1 − ε and x̂ = x/|x|. The polynomials Cλ
n are orthog-

onal on the unit sphere [89]:
∫

dx̂2C
λ
n (x̂1 ·x̂2) Cλ

m (x̂2 ·x̂3) =
λ

n + λ
δn,mCλ

n (x̂1 ·x̂3) . (F.7)

The normalization is such that
∫

dx̂ = 1. So, the strategy of GPXT is to turn
to coordinate space, represent each propagator by (F.6), evaluate integrals
over angles by (F.7) and sum up resulting multiple series.

First results for non-trivial multiloop diagrams within dimensional regu-
larization were obtained by GPXT: for example, the value of the non-planar
diagram (see the second diagram of Fig. 5.6 with all the powers of the prop-
agators equal to one), with the famous result proportional to 20ζ(5) [63].

The GPXT as well as the method of gluing (see below) were crucial in
many important analytical calculations, for example, of the three-loop ratio
R(s) in QCD [62] and the five-loop β-function in the φ4 theory [61]. More
details on the GPXT can be found in the review [139].See also [25] where the
application of GPXT is reduced systematically to the evaluation of nested
sums (see Appendix C).

F.3 Gluing

The dependence of an h-loop dimensionally regularized scalar propagator
massless Feynman integral corresponding to a graph Γ on the external mo-
mentum can easily be found by power counting:

FΓ (q; d) =
(
iπd/2

)h

CΓ (ε)(q2)ω/2−hε , (F.8)

where ω is the degree of divergence given by (2.10) and CΓ (ε) is a meromor-
phic function which is finite at ε = 0 if the integral is convergent, both in the
UV and IR sense. (Of course, there are no collinear divergences in propagator
integrals.)

It turns out that the values CΓ (0) are the same for graphs connected by
some transformations based on gluing. The gluing can be of two types: by
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Fig. F.1. The graph Γ̂ obtained by gluing of vertices

vertices and by lines. Let Γ be a graph with two external vertices. Let us
denote by Γ̂ the graph obtained from it by identifying these vertices, and
by Γ̄ the graph obtained from it by adding a new line which connects them.
Then the following properties hold [66]:

– Gluing by vertices. Let us suppose that two UV- and IR-convergent
graphs, Γ1 and Γ2, have degrees of divergence ω1 = ω2 = −4 and that Γ̂1

and Γ̂2 are the same. Then CΓ1(0) = CΓ2(0).
– Gluing by lines. Let us suppose that two UV- and IR-convergent graphs,

Γ1 and Γ2, have degrees of divergence ω1 = ω2 = −2 and that Γ̄1 and Γ̄2

are the same. Then CΓ1(0) = CΓ2(0).

For example, the first and the second diagrams in Fig. 5.6 with all the
indices equal to one produce the same graph after the gluing the external
vertices. It is shown in Fig. F.1. Therefore, one could obtain the value of
the more complicated non-planar diagram (proportional to 20ζ(5)) from a
simpler planar diagram [66].

The method of gluing was successfully applied in the combination with
GPXT – see the references above.

F.4 Star-Triangle Relations

The method based on star-triangle uniqueness relations can be applied to
massless diagrams. As in the case of GPXT, the coordinate space language
is used, where the propagators have the form 1/(x2)λ up to a coefficient
depending on ε – see, e.g., (F.5).

The basic uniqueness relation [85, 213] connects diagrams with different
numbers of loops. It is graphically shown in Fig. F.2, where λ′

i = d/2 − λi

and

v(λ1, λ2, λ3) = πd/2
∏

i

Γ (d/2 − λi)
Γ (λi)

. (F.9)

This equation holds when the vertex on the left-hand side is unique, i.e.
λ1+λ2+λ3 = d. The triangle on the right-hand side, with λ′

1+λ′
2+λ′

3 = d/2, is
also called unique. Remember that, in coordinate space, the triangle diagram
does not involve integration and is just a product of the three propagators,

[(x1 − x2)2]−λ3 [(x2 − x3)2]−λ1 [(x3 − x1)2]−λ2 ,
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λ1

λ2 λ3
= v(λ1, λ2, λ3) ×

λ′
1

λ′
3 λ′

2

Fig. F.2. Uniqueness equation

while the star diagram is an integral over the coordinate corresponding to
the central vertex.

The relation (F.9) can be used to simplify a given diagram. Almost unique
relations introduced in [209], with λ1 + λ2 + λ3 = d − 1, can be also useful.
Sometimes one introduces an auxiliary analytic regularization, to satisfy (al-
most) unique relations, which can be switched off in the end of the calculation.
For example, using (almost) unique relations, the general ladder massless
scalar propagator diagram with an arbitrary number of loops, h, with all the
indices ai equal to one (see the first diagram of Fig. 5.6 and imagine a general
number of rungs), was evaluated [26] with a result proportional to ζ(2h− 1).

Another example of applications of the uniqueness relations is the eval-
uation of the diagram of Fig. 4.14 where they were coupled with functional
equations [131]. In this calculation, the initial problem was reduced to the
problem of expansion of the propagator diagram of Fig. 3.10 with the indices
a1 = . . . = a4 = 1, , a5 = 1 + λ in a Taylor series in λ up to λ4. This dia-
gram, at various indices, was investigated in many papers starting from the
old result for all indices equal to one [176] which was later reproduced [63] by
GPXT, an analytical result for this diagram with general values of the indices
a1 and a2 and other integer indices [63], an analysis of this diagram from the
group-theoretical point of view [52], an extension of the previous results with
the help of GPXT [138], etc. As a more recent paper, with updated references
to the previous works, let us cite [34], where the expansion of this diagram
at indices ai = ni + hiε, with integer hi, in ε was further studied.

F.5 IR Rearrangement and R∗

The method of IR rearrangement is a special method for the evaluation of
UV counterterms which are necessary to perform renormalization. The coun-
terterms are introduced into the Lagrangian, i.e. the dependence of the bare
parameters (coupling constants, masses, etc.) of a given theory on a regu-
larization parameter (e.g., d within dimensional regularization) is adjusted
in such a way that the renormalized physical quantities become finite when
the regularization is removed. The renormalization can be described at the
diagrammatic level, i.e. the renormalized Feynman integrals can be obtained
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by applying the so-called R-operation which removes the UV divergence from
individual Feynman integrals. Thus, for any R-operation, the quantity RFΓ

is UV finite at d = 4.
As is well known, the requirement for the R-operation to be implemented

by inserting counterterms into the Lagrangian leads to the following structure
[44]:

RFΓ =
∑

γ1,...,γj

∆(γ1) . . . ∆(γj)FΓ ≡ R′ FΓ + ∆(Γ )FΓ , (F.10)

where ∆(γ) is the corresponding counterterm operation, and the sum is over
all sets {γ1, . . . , γj} of disjoint UV-divergent 1PI subgraphs, with ∆(∅) = 1.
The ‘incomplete’ R-operation R′, by definition, includes all the counterterms
except the overall counterterm ∆(Γ ). For example, if a graph is primitively
divergent, i.e. does not have divergent subgraphs, the R-operation is of the
form RFΓ = [1 + ∆(Γ )] FΓ .

The action of the counterterm operations is described by

∆(γ)FΓ = FΓ/γ ◦ Pγ , (F.11)

where FΓ/γ is the Feynman integral corresponding to the reduced graph Γ/γ,
and the right-hand side of (F.11) denotes the Feynman integral that differs
from FΓ/γ by insertion of the polynomial Pγ in the external momenta and
internal masses of γ into the vertex vγ to which the subgraph γ was reduced.
The degree of each Pγ equals the degree of divergence ω(γ). It is implied that
a UV regularization is present in (F.10) and (F.11) because these quantities
are UV-divergent. The coefficients of the polynomial Pγ are connected in a
straightforward manner with the counterterms of the Lagrangian.

A specific choice of the counterterm operations for the set of the graphs of
a given theory defines a renormalization scheme. In the framework of dimen-
sional renormalization, i.e. renormalization schemes based on dimensional
regularization, the polynomials Pγ have coefficients that are linear combi-
nations of pure poles in ε = (4 − d)/2. In the minimal subtraction (MS)
scheme [121], these polynomials are defined recursively by equations of the
form

Pγ ≡ ∆(γ)Fγ = −K̂εR
′ Fγ (F.12)

for the graphs γ of the given theory. Here K̂ε is the operator that picks up
the pole part of the Laurent series in ε. The modified MS scheme [23] (MS)
is obtained from the MS scheme by the replacement µ2 → µ2eγE/(4π) for
the massive parameter of dimensional regularization that enters through the
factors of µ2ε per loop.

If Γ is a logarithmically divergent diagram the corresponding counterterm
is just a constant. To simplify its calculation it is tempting to put to zero
the masses and external momenta. This is, however, a dangerous procedure
because it can generate IR divergences. Consider, for example, the two-loop
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(a) (b) (c)

q q q

q

q

Fig. F.3. (a) A two-loop graph contributing to the mass renormalization. (b) A
possible IR rearrangement. (c) A three-loop graph contributing to the β-function

graph of Fig. F.3a. It contributes to the mass renormalization in the φ4 theory.
To evaluate the corresponding counterterm it is necessary to compute R′ Fγ ,
according to (F.12). Here R′ = 1+∆1, where ∆1 is the counterterm operation
for the logarithmically divergent subgraph of Fig. F.3a. We consider each of
the two resulting terms separately. The last term is simple. The first one is
just the pole part of the given diagram. If we put the mass to zero we shall
obtain an IR divergence. There is another option which is safe: we put the
mass to zero and let the external momentum q flow in another way through
the graph: from the bottom vertex, rather than from the right vertex – see
Fig. F.3b. Then the resulting Feynman integral is IR-convergent and, at the
same time, much simpler because it is now recursively one-loop and can be
evaluated in terms of gamma functions.

This is a simple example of the trick called IR rearrangement and invented
in [216]. In a general situation, one tries to put as many masses and external
momenta to zero as possible and, probably, let the external momentum flow
through the graph in such a way that the resulting diagram is IR-convergent
and simple for calculation. Consider now the three-loop graph of Fig. F.3c
contributing to the β-function in the φ4 theory. It is also logarithmically
divergent. When calculating its counterterm, it is dangerous to put the masses
to zero and let the external momentum flow from the bottom to the top
vertex, because we run into IR divergences either due to the left or the right
pair of the lines. Still there is a possibility not to generate IR divergences:
to put the masses of the central loop and the external momentum to zero.
The resulting three-loop Feynman integral is evaluated in terms of gamma
functions, first, by integrating the massless subintegral by (A.7) and then by
(A.38).

At a sufficiently high level, such a safe IR rearrangement is not always
possible. However, there is a way to put as many masses and momenta to
zero and still have control on IR divergences. Formally, we have

Pγ = −K̂εR
′∗ Fγ(q) , (F.13)

where it is implied that all the masses are put to zero, and one external
momentum is chosen to flow through the diagram in an appropriate way.
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(Another version is to put all the external momenta to zero and leave one
non-zero mass.)

The operation R∗ removes not only UV but also (off-shell) IR divergences
in a similar way [65], i.e. by a formula which generalizes (F.10). Now, it
includes IR counterterms ∆̃(γ) which are defined in a full analogy to the
UV counterterms ∆(γ). They are defined for subgraphs irreducible in the
IR sense, with the IR degree of divergence given by (2.18). Now, they are
local in momentum space. For example, the IR counterterm corresponding
to the logarithmically divergent (in the IR sense, i.e. with the IR degree
of divergence ω̃(γ) = 0) factor 1/(k2)2 for the two lower lines in Fig. F.3a
(when they are massless) is proportional to δ(d)(k)/ε. More details on the
R∗-operation can be found in [182]. So, according to (F.13), one can safely
put to zero all the momenta and masses but one, in a way which is the
simplest for the calculation, at the cost of generating IR divergences which
should be removed with the help of IR counterterms. Finally, the problem
of the evaluation of the UV counterterms for graphs with positive degrees of
divergence can be reduced, by differentiating in momenta and masses, to the
case ω = 0.

The R∗-operation was successfully applied in renormalization group cal-
culations – see, e.g., [61].

F.6 Difference Equations

A new method based on difference equations has recently appeared. Basic
prescriptions of this method can be found in [143] and an informal intro-
duction in [144]. It is analytical in nature but is used to obtain numerical
results with extremely high precision. The starting point of this approach is
to choose a propagator, in an arbitrary way, treat its power, n, as the basic
integer variable and fix other powers of the propagators (typically, equal to
one). Then the general Feynman integral (5.81) of a given family is written
as

F (n) =
∫

· · ·
∫

ddk1 . . . ddkh
H

En
1 E2 . . . EN

, (F.14)

where H is a numerator. After combining various IBP relations, one can
obtain a difference equation for F (n):

c0(n)F (n) + c1(n)F (n + 1) + . . . + cr(n)F (n + r) = G(n) , (F.15)

where the right-hand side contains Feynman integrals F1, F2, . . . which have
one or more denominators E2, E3, . . . less with respect to (F.14). These inte-
grals are treated in a similar way, by means of equations of the type (F.15) so
that one obtains a triangular system of difference equations. This system is
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solved, starting from the simplest integrals that have the minimum number
of denominators, with the help of an Ansatz in the form of a factorial series,

µn
∞∑

l=0

bl n!
Γ (n − K + l + 1)

, (F.16)

where the values of parameters µ, bl and K are obtained from these values
for the factorial series corresponding to the right-hand side of (F.15).

This method was successfully applied, with a precision of several dozens
up to hundreds of digits, to the calculation of various multiloop Feynman
integrals [142,143].

Observe that, although this method is numerical, it requires serious math-
ematical efforts. The same feature holds for any modern method of numerical
evaluation. One can say that the boarder between analytical and numerical
methods becomes rather vague at the moment. Remember about new results
obtained in terms of new functions discussed in the end of Chap. 7 – in a
narrow sense, these new functions can be regarded as tools to obtain numeri-
cal results at various points. Another numerical method based on non-trivial
mathematical analysis was described in Sect. E.2. For completeness, here
are some references to modern methods of numerical evaluation of Feynman
integrals: [105, 163, 164]. Observe that such methods are often called semi-
analytical.

Sometimes it is claimed that sooner or later we shall achieve the limit in
the process of analytical evaluation of Feynman integrals so that we shall be
forced to proceed only numerically (see, e.g., [163]). However, the dramatic
progress in the field of analytical evaluation of Feynman integrals shows that
we have not yet exhausted our abilities. So, the natural strategy is to combine
available analytical and numerical methods in an appropriate way.

F.7 Experimental Mathematics and PSLQ

When evaluating Feynman integrals, various tricks are used. One usually does
not bother about mathematical proofs of the tricks, partially, because of the
pragmatical orientation and strong competition and, partially, because, now,
there are a lot of possibilities to check obtained results, both in the physical
and mathematical way.

An example of such ‘experimental mathematics’ suggested in [93] was
described in Sect. 4.5, where it was supposed that the nth coefficient of the
Taylor series cn of a piece of the result for the master massive double box is
a linear combination of the 15 functions (4.62)–(4.65) of the variable n. Then
the possibility to evaluate the first 15 coefficients c1, c2, . . . , c15 was used
and the corresponding linear system for unknown coefficients in the given
linear combination was solved. At this point, a pure mathematician could
say that there is no mathematical proof of this procedure and its validity
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is not guaranteed at all even after we (successfully) check it by calculating
more terms of the Taylor expansion, starting from the 16th and comparing
it with what we have from the obtained solution. Still I believe that this
pure mathematician will believe in the result when he/she looks at some
details of the calculation. Indeed, suppose that we forget about just one
of the functions in (4.62)–(4.65) and follow our procedure. Then we indeed
obtain a different solution of our system of 14 equations but it blows up and
looks so ugly, in terms of rational numbers with hundreds of digits in the
numerator and denominator, that this pure mathematician will say that our
previous solution, with nice rational numbers, is true and there is no need
for mathematical proofs.

Of course, an important point here is to understand what we can expect
in the result. Another example is given by taking a sum when going from
(4.95) to (4.96) when evaluating the diagram of Fig. 4.14. Instead of using
SUMMER [215], we can suppose that the general term of the Taylor series
(4.96) is a linear combination, with unknown coefficients, of (4.62)–(4.65)
and similar terms up to level 7. (For example, at level 7, one can use the
structures with a 1/n2 dependence present on the left-hand side of (C.51)–
(C.82).) Then one obtains a system of 63 linear equations for these coefficients
and solves it using information about the first 63 terms which can be obtained
from the two-fold series following from (4.95).

There are a lot of other elements of experimental mathematics in dealing
with Feynman integrals. Indeed, we never hesitate to change the order of in-
tegration over alpha and Feynman parameters and over MB parameters, it is
not known in advance which IBP equations within the algorithm formulated
in [143] are really independent, there is no mathematical justification of the
prescriptions of Chap. 6, etc. One more example of experimental mathemat-
ics1 is provided by the so-called PSLQ algorithm [90]. It can be applied when
we evaluate a one-scale Feynman integral in expansion in ε. Let us suppose
that, in a given order of expansion in ε, we understand which transcendental
numbers can appear in the result and that we can obtain the result numeri-
cally with a high accuracy. For example, in the finite part of the ε-expansion
in two loops we can expect at least xi−1 = ζ(i) with i = 2, 3, 4 or, equiva-
lently, x1 = π2, x2 = ζ(3) and x3 = π4. Then the PSLQ algorithm could be
of use. In this particular example, it gives the possibility to estimate whether
or not a given number, x can be expressed linearly as x = c1x1 + c2x2 + c3x3

with rational coefficients ci.
The PSLQ is an example of an ‘integer relation algorithm’. If x1, x2, · · · , xn

are some real numbers, it gives the possibility to find the n integers ci such
that c1x1+c2x2+ · · ·+cnxn = 0 or provide bounds within which this relation
is impossible. (In the above situation, we consider our numerical result as x4,
in addition to the xi, i = 1, 2, 3.) More formally, suppose that xi are given

1The very term ‘experimental mathematics’ can be found on the web page
where, in particular, the PSLQ algorithm is described [223].
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with the precision of ν decimal digits. Then we have an integer relation with
the norm bound N if

|c1x1 + . . . + cnxn| < ε , (F.17)

provided that max|ci|<N , where ε>0 is a small number of order 10−ν . With
a given accuracy ν, a detection threshold ε and a norm bound N as an input,
the PSLQ algorithm enables us to find out whether the relation (F.17) exists
or not at some confidence level (see details in [90]).

The PSLQ algorithm has been successfully applied in the evaluation of
various single-scale Feynman integrals – see, e.g., [22, 54, 91, 130]. The expe-
rience obtained in these calculations shows that one needs around ten digits
for each independent transcendental number.



G Applying Gröbner Bases to Solve
IBP Relations

One more approach to solve reduction problems for Feynman integrals is
based on the theory of Gröbner bases [56] that have arisen naturally when
characterizing the structure of ideals of polynomial rings. The first attempt
to apply this theory to Feynman integrals was made1 in [202,204], where IBP
relations were reduced to differential equations. To do this, one assumes that
there is a non-zero mass for each line. The typical combination aii+, where
i+is a shift operator, is naturally transformed into the operator of differentia-
tion in the corresponding mass. Then one can apply some standard algorithms
for constructing corresponding Gröbner bases for differential equations. An-
other attempt was made in [104] where Janet bases were used.

In this appendix, an approach [180] based on constructing Gröbner bases
for polynomials of shift operators is presented. In the next section, Gröbner
bases and Buchberger algorithm (as a tool to construct Gröbner bases) in
the classical problem of characterizing the structure of ideals of polynomial
rings are briefly described. In Sect. F.2, we turn to the approach of [180].
The notion of Gröbner bases is modified, within this approach, in various
respects. Examples of applying this approach to solve reduction problems for
some families of Feynman integrals are presented in Sect. F.3.

G.1 Gröbner Bases for Ideals of Polynomials

The notion of Gröbner bases was invented by Buchberger [56] when he con-
structed an algorithm to answer certain questions on the structure of ideals
of polynomial rings.

1As an application of the method of [202], the solution of the reduction problem
for two-loop self-energy diagrams with five general masses was obtained in [204],
with an agreement with an earlier solution [201]. Moreover, the solution of the
reduction problem for massless two-loop off-shell vertex diagrams (which was first
obtained in [40] within Laporta’s algorithm [143,145]) was reproduced in [127].
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Let A = C[x1, . . . , xn] be the commutative ring2 of polynomials of n
variables x1, . . . , xn over C and I ⊂ A be an ideal3. A classical problem4 is
to construct an algorithm that shows whether a given element g ∈ A is a
member of I or not. A finite set of polynomials in I is said to be a basis
of I if any element of I can be represented as a linear combination of its
elements, where the coefficients are some elements of A. Let us fix a basis
{f1, f2, . . . , fk} of I. The problem is to find out whether there are polynomials
r1, . . . , rk ∈ A such that g = r1f1 + . . . + rkfk.

Let n = 1. In this case any ideal is generated by one element f = a0 +
a1x + a2x

2 + . . . + amxm. Now if we want to find out whether an element
g = b0 + b1x + b2x

2 + . . . + blx
l can be represented as rf we first check if

l ≥ m. If this property holds, we replace g with g − (bl/am)xl−mf , ‘killing’
the leading term of g. This procedure is nothing but the well-known division
of polynomials with a remainder. It is repeated until the degree of a ‘current’
polynomial obtained from g becomes less than m. It is clear that the resulting
polynomial (the remainder) is equal to zero if and only if g can be represented
as rf .

Now let n > 1. Let us consider an algorithm that will answer this problem
for some bases of the ideal. (We will see later that this problem can be solved
if we have a so-called Gröbner basis at hand.) To describe it, one needs the
notion of an ordering of monomials cxi1

1 . . . xin
n where c ∈ C and the notion of

the leading term (an analogue of the intuitive one in the case n = 1). In the
simplest variant of the lexicographical ordering, a set (i1, . . . , in) is said to be
higher than a set (j1, . . . , jn) if there is l ≤ n such that i1 = j1, i2 = j2, . . . ,
il−1 = jl−1 and il > jl. The ordering is denoted as (i1, . . . , in) � (j1, . . . , jn).
We shall also say that the corresponding monomial cxi1

1 . . . xin
n is higher than

the monomial c′xj1
1 . . . xjn

n .
One can introduce various orderings, for example, the degree-lexicographi-

cal ordering, where (i1, . . . , in) � (j1, . . . , jn) if
∑

ik >
∑

jk, or
∑

ik =
∑

jk

and (i1, . . . , in) � (j1, . . . , jn) in the sense of the lexicographical ordering.
The only two axioms that the ordering has to satisfy are that 1 is the only
minimal element under this ordering and that if f1 � f2 then gf1 � gf2 for
any g.

An ordering can be defined by an ordered set of n linearly independent
combinations

2A ring is a set with two operations: multiplication and addition. Associativity
and distributivity are usually implied.

3A non-empty subset I of a ring R is called a left (right) ideal if (i) for any
a, b ∈ I one has a + b ∈ I and (ii) for any a ∈ I, c ∈ R one has ca ∈ I (ac ∈ I
respectively). In the case of commutative rings there is no difference between left
and right ideals.

4A closely related problem is to find out whether any solution of the equation
g(x1, . . . , xn) = 0 is also a solution of the system of the equations fi(x1, . . . , xn) = 0,
i = 1, . . . , k.
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n∑
l=1

Cklil , k = 1, . . . , n (G.1)

and, therefore, by an n × n matrix C with a non-zero determinant and non-
negative elements. When defining the corresponding ordering of two given
monomials, one compares, first, (G.1) for k = 1, then for k = 2, etc. We have
Ckl = δkl for the lexicographical ordering, while for the degree-lexicographical
ordering, the corresponding matrix has 1 in the first row and Ckl = δk−1,l

for k = 2, . . . , n. For the reverse degree-lexicographical ordering, we have
Ckl = 1 for k ≤ l and 0 otherwise. Other variants of the (reverse) degree-
lexicographical are obtained from these two by permutations of the numbers
{1, . . . , n}. In practice, an ordering is often characterized by a matrix con-
sisting of ones and zeros.

Let us fix an ordering. The leading term (under this ordering) of a poly-
nomial

P (x1, . . . , xn) =
∑

ci1,...,in
xi1

1 . . . xin
n

is the non-zero monomial ci01,...,i0n
x

i01
1 . . . x

i0n
n such that the degree (i01, . . . , i

0
n)

is higher than the degrees of other monomials in P . Let us denote it by P̂ .
We have P = P̂ + P̃ , where P̃ is the sum of the remaining terms.

Let us return to the problem formulated above. Suppose that the leading
term of a given polynomial g is divisible by the leading term or some polyno-
mial of the basis, i.e. ĝ = Qf̂i where Q is a monomial. Let g1 = g −Qfi. It is
clear that the leading term of g1 is lower than the leading term of g and that
g1 ∈ I if and only if g ∈ I. One can go further and proceed with g1 as with
g, using the same fi or some other element fj of the initial basis, and obtain
similarly g2, g3, . . .. The procedure is repeated until one obtains gl ≡ 0 or an
element gl such that ĝl is not divisible by any leading term f̂i. We will say
that g is reduced to gl modulo the basis {f1, f2, . . . , fk}.

A basis {f1, f2, . . . , fk} is called a Gröbner basis of the given ideal I if
any polynomial g ∈ I is reduced by the described procedure to zero for any
sequence of reductions. If we have a Gröbner basis we obtain an algorithm
to verify whether an element g ∈ A is a member of I. There are many other
questions on the structure of the ideal that can be answered constructively
if one has a Gröbner basis — see [56].

Generally a basis is not a Gröbner basis. Let g1 = x1 and g2 = 1+x2
2 and

let I be generated by g1 and g2. It is easy to verify that {g1, g2} is a Gröbner
basis of I. Now let f1 = x1x2 and f2 = g2. The set {f1, f2} is again a basis
of I (indeed, f1 = x2g1 and g1 = −x2f1 + x1f2). However, {f1, f2} is not a
Gröbner basis because the element x1 ∈ I cannot be reduced to zero modulo
{f1, f2}.

On the other hand, for any given initial basis {f1, f2, . . . , fk} of the ideal
I one can construct a Gröbner basis starting from it and using the so-called
Buchberger algorithm that consists of the following steps.
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Suppose that f̂i = wqi and f̂j = wqj where w, qi and qj are monomials
and w is not a constant. Define the so-called S-polynomial

S(fi, fj) = fiqj − fjqi . (G.2)

Reduce this polynomial modulo the set {fi} as described above. If one obtains
a non-zero polynomial by this reduction, add it to the initial basis as the
element fk+1. Consider then the S-polynomials for other pairs of elements
(including the new element) with f̂ ′

i = wq′i and f̂ ′
j = w′q′j for some non-

constant w′ and reduce them modulo the ‘current’ basis. If there is nothing
to do according to this procedure one obtains a Gröbner basis. It has been
proven by Buchberger [56] that such a procedure stops after a finite number
of steps.

In the above example, with the initial basis {f1 = x1x2, f2 = 1 + x2
2},

one obtains S(f1, f2) = −x1 which cannot be reduced so that we include it
into the given basis as f3 = x1 (the sign is, of course, irrelevant). Then we
calculate S(f1, f3) and obtain a zero result. The elements f2 and f3 do not
have a non-constant common divisor, so that the algorithm stops here and
we obtain a Gröbner basis {f1, f2 , f3}. (Then one can observe that f1 can be
removed from the basis which can defined just by the two elements, {f2 , f3}.)

Buchberger algorithm can take much computer time to construct a
Gröbner basis, but once it has been constructed, one can use the reduction
procedure which works generally much faster.

To conclude, a reliable criterion that shows whether a given element of
the ring belongs to the given ideal or not can be obtained by constructing a
Gröbner basis. To do this, one chooses an ordering and applies Buchberger
algorithm. This reduction procedure, modulo the so constructed Gröbner
basis, applied to a given element g gives a representation for it as a linear
combination of the elements gi plus a ‘remainder’ which is a sum of monomials
that are not divisible by leading terms of the elements of the basis. Let us
consider an element g that is a monomial. Reducing it modulo Gröbner basis
we obtain

g = xa1
1 . . . xan

n =
N∑

i=1

rigi +
∑

ci1,...,in
xi1

1 . . . xin
n , (G.3)

where the second sum runs over a finite set of multi-indices and the corre-
sponding monomials are not divisible by leading terms of gi. Since {g1, . . . , gN}
is a Gröbner basis, the second sum is absent if and only if g ∈ I. If g does
not belong to I, the second sum is non-zero, and the part of g belonging to
I is ‘completely included’ in the first sum.

In the next section, when dealing with Feynman integrals and operators
which shift indices, we shall arrive at a relation similar to (G.3).
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G.2 Constructing Gröbner-Type Bases
for IBP Relations

Let F (a1, . . . , an) be a family of dimensionally regularized Feynman integrals
labelled by the indices a1, . . . , an. The corresponding IBP relations discussed
in Chapters 5 and 6 can be written as

∑
ciF (a1 + bi,1, . . . , an + bi,n) = 0 , (G.4)

where bi,j are integers, ci are polynomials in the indices aj , dimension d,
masses mi and kinematic invariants. These relations can be written in terms
of shift operators i+ and i− given by (6.9b). Let us turn from the ‘physical’
shift operators i± to ‘mathematical’ shift operators, Yi. (The physical nota-
tion can be sometimes ambiguous: for example, it is not immediately clear
whether the operators are applied to a function of the indices, or to some of
its values.) We shall also use capital letters for operators of multiplication by
the indices. Explicitly, let us consider the following operators which act on
the function F (a1, . . . , an) of integer arguments:

(Yi · F )(a1, a2, . . . , an) = F (a1, . . . , ai−1, ai + 1, ai+1, . . . , an) , (G.5)
(Ai · F )(a1, a2, . . . , an) = aiF (a1, a2, . . . , an) .

The shift operators have inverse elements, Y −1
i .

Let us consider the algebra generated by the elements Yi, Y −1
i and Ai

with the following relations:

YiYj = YjYi, AiAj = AjAi, YiAj = AjYi + δijYi . (G.6)

The left-hand sides of IBP relations (G.4) can be represented as elements of
this algebra, i.e. as polynomials5 in the operators Y ±1

i and Ai. Let us denote
these polynomials by f1, . . . , fN . We have

fi · F = 0 or (fi · F )(a1, . . . , an) = 0 (G.7)

for all i. Let us denote by I the left ideal generated by the elements f1, . . . , fN .
(We shall omit the word ‘left’ below.) We will call I the ideal of the IBP
relations. Obviously, (G.7) holds for any element f of this ideal. Let us stress
that we can multiply the elements of this ideal by the operators Y ±1

i from
the left.

As discussed in Chaps. 5 and 6, to solve IBP relations is to express the
value of F at an arbitrary point (a1, a2, . . . , an) in terms of the values of F
in a few specially chosen points, i.e. master integrals. This problem can be
solved similarly to the algebraic problem described in Sect. G.1. For example,
let us consider the case, where all the indices ai are positive. Then we have

5Strictly speaking, the word ‘polynomial’ is usually applied only in the case of
commutative variables.
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F (a1, a2, . . . , an) = (Y a1−1
1 . . . Y an−1

n · F )(1, 1, . . . , 1) . (G.8)

In this case it is reasonable to turn to a basis of the ideal I which does
not involve operators Y −1

i . To do this, it is sufficient to multiply (of course,
from the left) the operators fi by sufficiently large powers of the operators
Yi (taking into account commutation relations (G.6)). Let us assume that we
are dealing with such fi which do not involve operators Y −1

i .
Let us now recall the solution of the algebraic problem discussed in the

previous section and let us observe that the situation is quite similar: in-
stead of polynomials in the variables x1, . . . , xn, we have ‘polynomials’ in the
shift operators Y1, . . . , Yn. Of course, we have now a more complicated sit-
uation because we are dealing with polynomials in Yi whose coefficients are
polynomials in the operators Ai which do not commute with Yi. Still let us
concentrate ourselves, in a first approximation, at the operators Yi.

Quite similarly to the problem discussed in the previous section, where
we had the relation (G.3) with a Gröbner basis at hand, the natural idea
is to construct a Gröbner basis {g1, . . . , gN ′} starting from the initial basis
{f1, . . . , fN}. Indeed, it is known that this can be done similarly to the above
case: one introduces an ordering and the notion of the leading term that
define the reduction modulo a basis, then one can apply a generalization
of the Buchberger algorithm to this case and construct a Gröbner basis.
The motivation for doing this is the same: this is the Gröbner basis that
characterizes the given ideal in the ‘best’ way. After the reduction, one obtains
a relation similar to (G.3),

Y a1−1
1 . . . Y an−1

n =
N∑

i=1

rigi +
∑

ci1,...,in
Y i1−1

1 . . . Y in−1
n , (G.9)

where the indices were shifted by one for convenience and the second sum
goes over a finite set of the multi-indices i1, . . . , in.

Let us apply this relation in (G.8) and use the fact that the operators of
the ideal of IBP relations give zero when applied to F . We obtain

F (a1, . . . , an) =
∑

ci1,...,in
F (i1, . . . , in) . (G.10)

The integrals which are present on the right-hand sides of such relations
written for various a1, . . . , an are naturally recognized as master integrals.

However, any implementation of this similarity with the classical algebraic
problem using a generalization of classical Buchberger algorithm, meets a
number of difficulties. First of all, the straightforward generalizations turn
out to be absolutely impractical because the corresponding routines require
huge amounts of memory even for examples with small numbers of indices.
For example, not so straightforward strategy where Janet bases were used
gave the possibility [104] to solve a simple reduction problem with two indices
(see Example G.1 below) but failed, for these very reasons, for examples with
n = 3.
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The next point where this problem becomes much more complicated is
that one has to consider not only positive values of the indices ai but also non-
positive values. Mathematically, it is natural to believe that if the problem
can be solved for positive indices, with the help of constructing a Gröbner
basis, then this knowledge of the ‘evolution’ in this region can be used to
obtain results for any indices, by extending the evolution. However, this idea
turns out to be rather naive when applied to our physical problems.

Another complication is the presence of the variables ai as non-commuta-
tive operators Ai. The coefficients at monomials in the shift operators, Yi, can
vanish at some points, and this also has to be taken into account. Therefore,
we shall deal not with relations like (G.9) but with analogous relations where
the monomial on the left-hand side is multiplied by some polynomial in the
operators Ai. In fact, it is possible to transform elements of the ideal I into
the so-called proper form [180] where the operators Ai are placed to the left
of the operators Yi. For convenience, such form is always implied.

Still let us imagine a situation where one can apply Buchberger algorithm
to construct a generalization of Gröbner basis for solving a reduction problem
in the case of positive indices. Then simple examples show that the number
of the master integrals associated with this region can be greater than the
number of the ‘true’ master integrals obtained by some method.

These complications lead to the natural idea to change the strategy based
on Gröbner bases, and these are the most essential modifications introduced
in [180].

For a given family of Feynman integrals, F (a1, . . . , an), the whole region
for each integer variable ai is decomposed into the region of positive in-
dices and the region of negative indices. So, the whole region of multi-indices
a1, . . . , an is decomposed into 2n regions σν called6 sectors7 and labelled by
subsets ν ⊆ {1, . . . , n}:

σν = {(a1, . . . , an) : ai > 0 if i ∈ ν , ai ≤ 0 if i �∈ ν} . (G.11)

The intersection of any two different sectors is an empty set, and the union
of all the sectors gives the whole region of the indices ai.

According to the above analysis, in the sector σ{1,...,n} where all ai are
positive, the operators Yi are naturally considered as basic operators. Quite
similarly, in a given sector σν it is natural to consider the operators Yi for
i ∈ ν and Y −1

i for other i as basic operators.
Another important point in extending Buchberger algorithm to the case

of IBP relations, is taking into account boundary conditions, i.e. specify the
sectors where the Feynman integrals of the given family are equal to zero.

6The same word is used in this book to denote regions in the space of α-
parameters. Hopefully, this does not cause misunderstanding.

7Such a decomposition is typical when solving IBP relations ‘by hand’. It is
also present in the Laporta’s algorithm [99,143,145] (using the word topology) and
Baikov’s method (see Chapter 6).
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Such sectors are called trivial. In particular, the sector σ∅, i.e. where all the
indices are nonpositive, is always trivial. In fact, a sector should have at least
h non-negative indices (where h is the number of loops) to be non-trivial.

According to the strategy suggested in [180], one has to construct some-
thing similar to a Gröbner basis for each non-trivial sector σν . The basic
operations for constructing it are the same as in the classical Buchberger
algorithm, i.e. calculating S-polynomials and reducing them modulo current
basis, with a chosen ordering. However, the goal is to construct a so-called
sector basis [180] (s-basis). In contrast to a Gröbner basis, it provides the
possibility of a reduction to master integrals and integrals whose indices lie
in lower sectors, i.e. σν′ for ν′ ⊂ ν. In fact, this point of the strategy is
based on multiple examples of solving IBP relations by hand (see examples
in Chapter 5), where one tries to reduce indices to zero and thereby turns to
a reduction problem with one more non-positive index.

It turns out that, within this strategy, one would construct a true Gröbner
basis only in the case of the sector σ∅ but this is not necessary because this
sector is always trivial. In all other cases, this is not a true Gröbner basis
because the goal of the reduction is achieved once an index is reduced to zero
and the corresponding element ‘falls’ into a lower sector.

After constructing s-bases for all non-trivial sectors one obtains a recur-
sive (with respect to the sectors) procedure to evaluate F (a1, . . . , an) at any
point. Eventually any given integral is reduced to the master integrals. Details
of this algorithm of constructing s-bases can be found in [179].

G.3 Examples

Let us illustrate some points of the algorithm outlined in the previous section
by considering our ‘standard’ example:

Example G.1. One-loop propagator Feynman integrals (1.2) corresponding
to Fig. 1.1.

The corresponding IBP relations (1.11) and (1.12) generate the following
elements:

f1 = d − 2A1 − A2 − 2m2A1Y1 − m2A2Y2 + q2A2Y2 − A2Y2Y
−1
1

f2 = A2 − A1 − m2A1Y1 − q2A1Y1 − m2A2Y2 + q2A2Y2

−A2Y2Y
−1
1 + A1Y1Y

−1
2 . (G.12)

Since the integrals are zero for a1 ≤ 0, we have to consider the two sectors,
σ{1,2} and σ{1}.

Using the lexicographical ordering, the s-basis consisting of the following
two elements for the sector σ{1,2} was constructed [180]:
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g11 = Y 2
1 + A1Y

2
1 + 3Y1Y2 − dY1Y2 + A1Y1Y2 + 2A2Y1Y2 + m2Y 2

1 Y2

−q2Y 2
1 Y2 + m2A1Y

2
1 Y2 − q2A1Y

2
1 Y2 ,

g12 = −3Y1Y2 + dY1Y2 − 2A1Y1Y2 − A2Y1Y2 − 2m2Y 2
1 Y2 − 2m2A1Y

2
1 Y2

−Y 2
2 − A2Y

2
2 − m2Y1Y

2
2 + q2Y1Y

2
2 − m2A2Y1Y

2
2 + q2A2Y1Y

2
2 .

For the sector σ{1}, the following s-basis was obtained:

g21 = 1 − A2 + m2Y1 − q2Y1 − m2A2Y1 + q2A2Y1 − Y1Y
−1
2 + dY1Y

−1
2

−2A1Y1Y
−1
2 − A2Y1Y

−1
2 − 2m2Y 2

1 Y −1
2 − 2m2A1Y

2
1 Y −1

2 ,

g22 = −2m2 + 2m2A2 − 2m4Y1 + 2m2q2Y1 + 2m4A2Y1 − 2m2q2A2Y1

−2Y −1
2 + A2Y

−1
2 + 2m2Y1Y

−1
2 + 2q2Y1Y

−1
2 + 2m2A1Y1Y

−1
2

−m2A2Y1Y
−1
2 − q2A2Y1Y

−1
2 + 2m4Y 2

1 Y −1
2 + 2m2q2Y 2

1 Y −1
2

+2m4A1Y
2
1 Y −1

2 + 2m2q2A1Y
2
1 Y −1

2 − dY1Y
−2
2

+2A1Y1Y
−2
2 + A2Y1Y

−2
2 .

The reduction based on the two constructed s-sectors reveals two master
integrals, F (1, 1) and F (1, 0), in accordance with results obtained in Chaps. 5
and 6.

Reduction problems for other examples of Chaps. 5 and 6 can be also
solved using the algorithm of [179,180], in particular, two-loop massless prop-
agator Feynman integrals of Fig. 3.10 considered in Example 6.4 and Prob-
lem 5.4 — see [180]. Here the same conclusion about three master integrals
two of which are equal to each other due to the symmetry is obtained.

A non-trivial example with seven indices was considered in [180].

Example G.2. Two-loop Feynman integrals corresponding to Fig. 6.4 with
the index of the middle line a5 + ε

Such integrals are obtained from the corresponding two-loop diagrams
with integer indices by inserting a one-loop diagram into the central line.
Indeed, the integration over the loop-momentum of the insertion can be per-
formed explicitly, by means of (3.6), and one obtains, up to a factor expressed
in terms of gamma functions, Feynman integrals of the first graph of Fig. 6.4,
where the index of the central line is a5 + ε ≡ a5 + (4− d)/2 with integer a5.

The integrals are symmetrical:

F (a1, a2, a3, a4, a5, a6, a7) = F (a2, a1, a4, a3, a5, a6, a7)
= F (a3, a4, a1, a2, a5, a7, a6) .

They are equal to zero, if a1, a3 ≤ 0, or a2, a4 ≤ 0, or a1, a2, a6 ≤ 0, or
a3, a4, a7 ≤ 0.

Within the algorithm of [179, 180], s-bases correspond to the follow-
ing sectors: σ{1,2,3,4,5,6,7}, σ{2,3,4,5,6,7}, σ{1,2,3,4,5,7}, σ{3,4,5,6,7}, σ{2,3,5,6,7},
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σ{2,3,4,5,7}, σ{2,3,4,5,6}, σ{1,2,3,4,5}, σ{2,3,4,5}, σ{2,3,5,6} and other sectors ob-
tained by the symmetry transformations.

The following master integrals were revealed within this algorithm: I1 =
F (1, 1, 1, 1, 0, 1, 1), I21 = F (1, 1, 1, 1, 0, 0, 1), I22 = F (1, 1, 1, 1, 0, 1, 0), I3 =
F (1, 1, 1, 1, 0, 0, 0) . We have I21 = I12 = I2 because of the symmetry.
We also obtain I51 = F (1, 0, 0, 1, 1, 1, 1), I71 = F (1, 0, 0, 1, 1, 0, 1), I81 =
F (1, 0, 0, 1, 1, 1, 0), I41 = F (1, 0, 0, 1, 1, 0, 0). We have I71 = I81 = I7 because
of the symmetry. Moreover, we have other copies, I52, I72, I82, I42, of this last
family of the master integrals which are obtained by the symmetry trans-
formation (1 ↔ 2, 3 ↔ 4). We also obtain I61 = F (0, 0, 1, 1, 1, 1, 0), Ī61 =
F (0, 0, 1, 1, 1, 2, 0) as well as the corresponding symmetrical family.

The values of these master integrals obtained by the method of MB repre-
sentation can be found in [180]. Here are some examples of the corresponding
reduction to these master integrals:

F (1, 1, 1, 1, 1, 1,−1) = − 2Q2v2

3d − 10
Ī2 − 3I3 −

8(d − 3)(2d − 7)(11d − 46)
(d − 4)2(3d − 14)Q4

I4

+
4(3d − 11)(7d − 30)v2

(d − 4)(3d − 14)(3d − 10)Q2
Ī6 ,

F (2, 1, 1, 1, 1, 1, 1) = −3d − 14
2Q2

I1

− 4(d − 3)(d − 2)(2d − 7)(3d − 10)(9d − 40)
(d − 5)(d − 4)(2d − 11)(3d − 16)(3d − 14)Q8v2

I4

−3(d − 4)(4d − 17)(4d − 15)
2(d − 5)(2d − 11)Q6

I5 −
16(3d − 13)(3d − 11)

(2d − 11)(3d − 16)(3d − 14)Q6
Ī6 .

It has turned out that this algorithm can certainly work for higher-
dimensional problems. In [117], it was applied to two-loop calculations within
HQET [116,150,161].

Example G.3. Feynman integrals corresponding to the HQET graph shown
in Fig. G.1.

These integrals depend on nine indices, and a9 corresponds to the irre-
ducible numerator so that one always has a9 ≤ 0:

1 2

3 4

5

6

7 8

Fig. G.1. Three-loop HQET diagram. Dotted lines denote heavy-quark propaga-
tors and wavy lines massless propagators
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F (a1, . . . , a9) =
∫ ∫

ddk ddl

(−2v ·k)a1(−2v ·l)a2(−k2)a3(−l2)a4 [−(k − l)2]a5

×
∫

(2v ·r)−a9ddr

(−r2 + m2)a6 [−(k + r)2 + m2]a7 [−(l + r)2 + m2]a8
. (G.13)

Here v is the HQET quark velocity with v2 = 1.
The integrals are symmetric with respect to (1 ↔ 2, 3 ↔ 4, 7 ↔ 8); they

vanish if one of the following sets of lines has non-positive indices: {5, 7},
{5, 8}, {6, 7}, {6, 8}, {7, 8}, {3, 4, 6}.

The algorithm of [179,180] has revealed the following family of the master
integrals:

I1 = F (1, 1, 0, 1, 1, 1, 1, 0, 0), I2 = F (1, 1, 1, 1, 0, 0, 1, 1, 0),
I3 = F (1, 1, 0, 0, 0, 1, 1, 1, 0),
I4 = F (0, 1, 1, 0, 1, 1, 0, 1, 0), Ī4 = F (−1, 1, 1, 0, 1, 1, 0, 1, 0),
I5 = F (0, 0, 0, 1, 1, 1, 1, 0, 0), I6 = F (0, 1, 0, 0, 0, 1, 1, 1, 0),
I7 = F (0, 1, 0, 0, 1, 1, 1, 0, 0), Ī7 = F (0, 2, 0, 0, 1, 1, 1, 0, 0),
I8 = F (0, 0, 0, 0, 0, 1, 1, 1, 0).

These are some examples of reduction to these master integrals:

F (1, . . . , 1, 0) = −3(d − 4)(3d − 10)
8(d − 5)(2d − 9)

I1 −
3(d − 4)(3d − 10)
16(d − 5)(2d − 9)

I2

− (d − 3)(3d − 10)(3d − 8)
8(d − 5)(3d − 13)(3d − 11)

I3 −
3(d − 2)(3d − 11)(3d − 10)(3d − 8)
64(d − 5)(2d − 9)(2d − 7)(3d − 13)

Ī4

+
9(d − 4)(d − 2)(3d − 10)(3d − 8)

64(d − 5)(2d − 9)(2d − 7)(3d − 13)
I5 −

3(3d − 10)(3d − 8)
32(d − 5)(2d − 9)(2d − 7)

Ī7 ,

F (1, . . . , 1,−1) =
3(d − 3)(3d − 11)

16(d − 5)(d − 4)(2d − 9)
I4

− (d − 2)(2d − 7)(2d − 5)
8(d − 3)(2d − 9)(3d − 13)

I6 −
3(2d − 7)2(2d − 5)(3d − 11)(3d − 7)

256(d − 4)2(d − 3)(2d − 9)
I7 .

G.4 Perspectives

First results have shown that the algorithm of [179,180] works successfully at
the level of modern calculations. Still to perform more sophisticated calcu-
lations, further modifications and optimizations are needed. One of possible
ways to improve the algorithm is to combine its basic points with that of
algorithms based on Janet bases [104]. On the other hand, there are various
open practical and mathematical problems connected with the algorithm. In
particular, it is desirable to know in advance which orderings are optimal for
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a given sector, what is the order of CPU time needed for the construction of
the corresponding s-basis, and whether the algorithm will work at all. Hope-
fully, these problems will be solved in the future and this algorithm, in an
updated form, will be applied to solving reduction problems for important
families of Feynman integrals.
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Problems of Chapter 3

3.1 Change the integration variables by l = r − k, then integrate over k
using (A.7) and over r using (A.4). The result is given by (A.39).

3.2 Change the integration variables by l = r− k, then integrate over k and
r using (A.7). The result is

iπd/2 Γ (2 − ε − λ1)Γ (2 − ε − λ2)Γ (2 − ε − λ3)
Γ (λ1)Γ (λ2)Γ (λ3)Γ (6 − λ1 − λ2 − λ3 − 3ε)

×Γ (λ1 + λ2 + λ3 + 2ε − 4)
(−q2)λ1+λ2+λ3+3ε−6

. (S.1)

3.3 Apply partial fractions to write down the integrand as a linear combi-
nation of terms 1/(k2 − m2)ai , with m = m1,m2 and m = 0. The zero-mass
terms are zero, while the rest of the terms can be evaluated by (A.1) with
the following result

−iπd/2

[
(m2

1)
−1−ε + (2m2

1 − 3m2
2)(m

2
2)

−2−ε

(m2
1 − m2

2)2
Γ (ε − 1)

+
(m2

2)
−2−ε

m2
1 − m2

2

Γ (ε)
]

. (S.2)

3.4 Apply (3.24) to obtain

F3.2(q2,m2; 2, 1, 1, d)

= iπ2Γ (2 + ε)
∫ 1

0

dξ1

∫ 1−ξ1

0

ξ1dξ2

[Q2ξ1ξ2 + m2(1 − ξ1 − ξ2)]2+ε
.

The integration over ξ2 gives

−iπ2Γ (1 + ε)
∫ 1

0

ξdξ

(1 − ξ)1+ε

ξ−ε(Q2)−1−ε − ξ(m2)−1−ε

Q2ξ − m2
.

The UV pole in ε comes from the integration over ξ ∼ 1 due to (1−ξ)−1−ε.
To make it manifest one can subtract the rest of the integrand at ξ = 1.
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The subtraction term can be evaluated easily for general d. The subtracted
integrand can be integrated straightforwardly in expansion in ε. Eventually,
one arrives at

F3.2(q2,m2; 2, 1, 1, d) = iπd/2e−γEε(m2)ε

[
1 + x

ε
− ln x

+ε

(
Li2(x) +

1
2

ln2 x + ln x ln(1 − x) − (1 + x)
π2

12

)
+ O(ε2)

]
,

where x = Q2/m2.

3.5 Using alpha or Feynman parameters (in particular, one can start from
(3.5)) one can obtain

iπd/2Γ (ε)
∫ 1

0

dξ

[Q2ξ(1 − ξ) + m2]ε
,

where Q2 = −q2. Then one can proceed as described after (3.54) and intro-
duce the new variable x by (3.55) to obtain

iπd/2Γ (ε)
22ε−1

(Q2)ε

∫ 1

0

dx√
1 − x(x + u)ε

,

where u = 4m2/Q2. Then one can expand in ε and integrate with the follow-
ing result:

iπd/2Γ (ε)e−γEε 22ε

(Q2)ε

[
1
ε

+ 2 − ln u −
√

1 + u ln
√

1 + u + 1√
1 + u − 1

]
. (S.3)

3.6 Use alpha parameters, then integrate over α4, then turn to Feynman
parameters and choose the delta function δ (α1 + α2 − 1), integrate over α3

and then over the last variable. The result is
∫ ∫

ddk ddl

(−k2 + m2)λ1(−l2 + m2)λ2 [−(k + l)2]λ3 [−2v ·(k + l)]λ4

=
(
iπd/2

)2 Γ (λ1 + λ3 + λ4/2 + ε − 2)Γ (λ2 + λ3 + λ4/2 + ε − 2)Γ (λ4/2)
2Γ (λ1)Γ (λ2)Γ (λ4)(m2)λ1+λ2+λ3+λ4/2+2ε−4(v2)λ4/2

×Γ (2 − ε − λ3 − λ4/2)Γ (λ1 + λ2 + λ3 + λ4/2 + 2ε − 4)
Γ (2 − ε − λ4/2)Γ (λ1 + λ2 + 2λ3 + λ4 + 2ε − 4)

. (S.4)

3.7 Apply (A.7) to integrate over r and then (A.38) to integrate over the
rest loop momenta.

3.8 Apply (A.25) to integrate over r and then (A.40) to integrate over the
rest loop momenta.

3.9 Use alpha parameters to obtain
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F (λ1, . . . , λ5) =
iλ+3ε−3π3d/2∏

Γ (λi)

∫ 1

0

. . .

∫ 1

0

∏
i

(
αλi−1

i dαi

)
(α3α4α5)

ε−2

× exp
{
−i
[
v2

(
α2

1

α4
+

α2
2

α5
+

(α1 + α2)2

α3

)
+ m2(α3 + α4 + α5)

]}
. (S.5)

3.10 Starting from (S.5), one can introduce the new variables α1 = ηξ, α2 =
η(1−ξ), integrate over η, introduce the new variables α3 = η′(1−ξ1−ξ2), α4 =
η′ξ1, α5 = η′ξ2 and integrate over η′ to obtain

F (2, 2, 1, 2, 2) =

(
iπd/2

)3
Γ (1 + 3ε)

2(v2)2(m2)1+3ε

×
∫ 1

0

dξ ξ(1 − ξ)
∫ 1

0

dξ1

∫ 1−ξ1

0

dξ2(1 − ξ1 − ξ2)ε (ξ1ξ2)
1+ε

×
[
ξ2ξ2(1 − ξ1 − ξ2) + (1 − ξ)2ξ1(1 − ξ1 − ξ2) + ξ1ξ2

]−2
.

Then one can introduce new variables, ξ2 = (1 − ξ1)t and obtain an integral
over ξ, ξ1 and t which is finite at ε = 0. The integration over ξ1 is straight-
forward. It gives an integral over ξ and t with a spurious singularity at ξ = t
which is in fact absent due to a numerator. Then one can use the symmetry
of the integral and write it as twice the integral at x ≤ t. Eventually, one
arrives at the following result

F (2, 2, 1, 2, 2) =

(
iπ2
)3

(v2)2m2

(
π2

18
− 1

3
+ O(ε)

)
. (S.6)

Problems of Chapter 4

4.1 Apply (4.11) at a1 = 2, a2 = a3 = a4 = 1 and obtain (4.18). As was
mentioned in the end of Sect. 4.2, the poles in ε are generated by the product
Γ (1 + z)2Γ (−1 − ε − z)Γ (−2 − ε − z). Take the residues at z = −2 − ε and
z = −1−ε (with the minus sign), turn to the contour parallel to the imaginary
axis at −1 < Re < 0 and expand the integrand in ε. The resulting integral
is evaluated by closing the integration contour to the right and summing up
residues. This is the result:

F4.3(s, t; 2, 1, 1, 1, d) =
iπd/2e−γEε

(−s)2+2εt

∑
j=−2

cj(x) εj , (S.7)

where

c−2 = 4 , c−1 = −2 ln x + 8 +
2
x

, (S.8)

c0 = −4 ln x − 4π2

3
− 2

x
(ln x − 1) , (S.9)
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c1 = 2 (Li3 (−x) − ln xLi2 (−x))

+
1
3

ln3 x +
7π2

6
ln x −

(
π2 + ln2 x

)
ln(1 + x) − 34ζ(3)

3
− 8π2

3

+
1
x

(
ln2 x − 2 ln x − 2 − π2

6

)
(S.10)

and x = t/s.

4.2 Apply (4.2) to the last two factors in the integrand. Evaluate the two
resulting integrals over k and l by (A.25) and the resulting integral over r by
(A.22) to obtain

F (λ1, . . . , λ5) =

(
iπd/2

)3
4
√

π(m2)λ12/2+λ345+3ε−6(v2)λ12/2
∏

Γ (λi)

× 1
(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞
dz1dz2 Γ (λ12/2 + λ345 + 3ε − 6 + z1 + z2)

×Γ (λ1/2 + λ4 + ε − 2 + z1)Γ (λ2/2 + λ5 + ε − 2 + z2)
Γ ((λ12 − 7)/2 + λ45 + 2ε + z1 + z2)

×Γ ((λ1 − 3)/2 + λ4 + ε + z1)Γ ((λ2 − 3)/2 + λ5 + ε + z2)
×Γ (2 − λ4 − ε − z1)Γ (2 − λ5 − ε − z2)Γ (−z1)Γ (−z2) . (S.11)

To evaluate F (2, 2, 1, 2, 2) use (S.11). The resulting twofold MB integral
can be expanded immediately in ε because there is no gluing of poles of
different nature when ε → 0. Them one can close the integration contours
over z1 and z2 to the right and obtain a double series. Its summation gives
the following result:

F (2, 2, 1, 2, 2) =

(
iπd/2e−γEε

)3
(v2)2(m2)1+3ε

(
π2

18
− 1

3
− π2

9
ε + O(ε2)

)
. (S.12)

4.3 Straightforwardly replacing both propagators by (4.2) one obtains two
MB integrations (one of which can be then, presumably, performed by the
first Barnes lemma (D.1)). One can, however, immediately obtain a onefold
MB representation introducing alpha or Feynman parameters and separating
two terms in the resulting expression m2 − q2ξ(1 − ξ). This gives

F (λ1, λ2) =
iπd/2

Γ (λ1)Γ (λ2)(m2)λ1+λ2+ε−2

1
2πi

∫ +i∞

−i∞
dz

(
−q2

m2

)z

Γ (−z)

×Γ (λ1 + z)Γ (λ2 + z)Γ (λ1 + λ2 + ε − 2 + z)
Γ (λ1 + λ2 + 2z)

. (S.13)

As was mentioned in Sect.4.3 a similar result (up to a change of the integra-
tion variable) can be obtained from (4.29).

To evaluate F (1, 1), apply (S.13). The poles in ε in the resulting integral
are generated by the product Γ (ε + z)Γ (−z). Take the residue at z = −ε
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and shift the contour to −1 < Re < 0. The expanded integral is evaluated by
closing the integration contour to the right and summing up series of poles,
with the result (S.3).

4.4 One can start from representing the subintegral over l by (S.13) and
then apply (A.41) to obtain the following onefold MB representation:

F (λ1, . . . , λ6) =

(
iπd/2

)3
Γ (λ1/2)(v2)−λ1/2

2
∏

l �=2 Γ (λl)Γ (2 − λ1/2 − ε)(m2)λ1/2+λ23456−6+3ε

× 1
2πi

∫ +i∞

−i∞
dz

Γ (λ4 + z)Γ (λ6 + z)Γ (−z)Γ (λ1/2 + λ235 + 2ε − 4 − z)
Γ (λ46 + 2z)Γ (λ12235 + 2ε − 4 − 2z)

×Γ (2 − λ1/2 − λ2 − ε + z)Γ (λ46 + ε − 2 + z)
×Γ (λ1/2 + λ23 + ε − 2 − z)Γ (λ1/2 + λ25 + ε − 2 − z) . (S.14)

4.5 As in the case of double box diagrams, the optimal way is to intro-
duce MB integrations loop by loop. First, one can derive straightforwardly
a threefold MB representation for the subloop integral over l using alpha or
Feynman parameters and separating terms with q2, k2, q · k and v · k. Then
one takes the final integral over k by (A.27) and obtains [180]

F (λ1, . . . , λ7) =

(
iπd/2

)2
2λ7−1(v2)−λ67/2∏

l=3,4,5,7 Γ (λl)Γ (4 − λ3457 − 2ε)(Q2)λ12345−4+2ε+λ67/2

× 1
(2πi)3

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
dz1dz2dz3

Γ (λ12345 + λ67/2 + 2ε − 4 + z3)
Γ (λ1 − z1)Γ (λ2 − z2)

×Γ (λ3 + z1 + z3)Γ (λ4 + z2 + z3)Γ (λ345 + λ7/2 + ε − 2 + z1 + z2 + z3)
Γ (λ345 + λ67/2 + ε − 3/2 + z1 + z2 + z3)

×Γ (λ345 + λ7/2 + ε − 3/2 + z1 + z2 + z3)Γ (−z1)Γ (−z2)Γ (−z3)
Γ (8 − λ1267 − 2λ345 − 4ε − z1 − z2 − 2z3)

×Γ (4 − λ1345 − λ67/2 − 2ε − z2 − z3)Γ (2 − λ345 − ε − z1 − z2 − z3)
×Γ (4 − 2λ34 − λ57 − 2ε − z1 − z2 − 2z3)
×Γ (4 − λ2345 − λ67/2 − 2ε − z1 − z3) . (S.15)

4.6 As was first noticed in [13], straightforward application of (4.46) leads
to a spurious singularity in the corresponding fourfold MB integral, due to
the product

Γ (1 + z1 + z2 + z3 + z4)Γ (−1 − z2 − z3 − z4)Γ (−z1) ,

which can be cured by introducing an auxiliary analytic regularization. Then
the singularities in the MB integrals are first resolved with respect to the
parameter of analytic regularization and then with respect to ε. The resolu-
tion of the singularities within Strategy B was done in [13]. Here is a brief
description of how this can be done within Strategy A.
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Let us introduce a regularization by a5 = 1 + λ. A singularity at λ = 0 is
generated by the product

Γ (1 + z1 + z2 + z3 + z4 + λ)Γ (−1 − z2 − z3 − z4)Γ (−z1) .

Let us decompose the given integral as K = K(1) +K(0), where K(1) denotes
minus residue at z4 = −1−z2−z3 given by a threefold MB integral and K(0)

is the fourfold MB integral where the first pole of Γ (−1− z2− z3− z4) is left.
Observe that after the residue at z4 = −1−z2−z3 was taken, the ‘dangerous’
product Γ (1 + z1 + z2 + z3 + z4 + λ)Γ (−z1) becomes Γ (z1 + λ)Γ (−z1) and
stays as the source of the singularity at λ = 0. However, the factor Γ (−z1)
is cancelled, at z4 = −1 − z2 − z3, by the factor Γ (−1 − z1 − z2 − z3 − z4)
of the denominator. So we can just set λ = 0 in K(1). After a useful change
of variables, z2 → z2 − 1, z3 → z3 − 1, z1 → z1 + 1 one obtains an integral
where key gamma functions responsible for the generation of poles in ε are
Γ (−1 − ε − z1 − z2) and Γ (−1 − ε − z1 − z3). One obtains K(1) = K

(1)
11 +

K
(1)
01 + K

(1)
10 + K

(1)
00 , with K

(1)
01 = K

(1)
10 , where the index 1 denotes a residue

and 0 shifting the contour, similarly to what we had for the double box (4.48).
Resulting integrals are evaluated also in a similar way.

In the contribution K(0), one can set immediately λ = 0 and apply the
identity Γ (1 + z1 + z2 + z3 + z4)Γ (−z1 − z2 − z3 − z4) = −Γ (2 + z1 + z2 +
z3 +z4)Γ (−1−z1−z2−z3−z4) for the simplification of the integrand. Then
one decomposes the resulting integral taking residues at the first poles of the
same gamma functions, Γ (−1 − ε − z1 − z2) and Γ (−1 − ε − z1 − z3), as in
the case of K(1). Eventually, one arrives at the following result [13]:

K(s, t; 1, . . . , 1,−1, ε) =

(
iπd/2e−γEε

)2
(−s)2+2ε

f

(
t

s
; ε
)

, (S.16)

where

f(x, ε) =
9

4ε4
− 2 ln x

ε3
− 7π2

3ε2

+
[
8 (Li3 (−x) − ln xLi2 (−x)) +

4
3

ln3 x

−4(π2 + ln2 x) ln(1 + x) +
14
3

π2 ln x − 16ζ(3)
]

1
ε

+20(S2,2(−x) − ln x S1,2(−x)) − 28Li4 (−x)
+8 ln xLi3 (−x) + 20 ln(1 + x)Li3 (−x)

+6 ln2 xLi2 (−x) − 20 ln x ln(1 + x)Li2 (−x) − 4π2

3
Li2 (−x)

−4
3

ln4 x +
16
3

ln3 x ln(1 + x) − 5 ln2 x ln2(1 + x)

−13
3

π2 ln2 x +
26π2

3
ln x ln(1 + x) − 5π2 ln2(1 + x)

+28ζ(3) ln x − 20ζ(3) ln(1 + x) − 7π4

45
+ O(ε) . (S.17)
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4.7 One can derive the alpha representation and then introduce four MB in-
tegrations in a straightforward way — see [206]. (Alternatively, one can intro-
duce Feynman parameters for pairs of lines incident to right external vertices
in Fig. 4.15 and then integrate explicitly over one loop momentum, similarly
to what was done in Chap. 3 in the case of the non-planar two-loop massless
vertex diagram of Fig. 3.14.) In contrast to the planar case, the non-planar
double boxes have a nontrivial imaginary part for any real Mandelstam vari-
ables s and t. To simplify the situation it is natural to evaluate the non-planar
double box in the (non-physical) region s < 0, t < 0, u = (p1 + p4)2 < 0 and
consider all the three variables s, t, u as independent, without implying the
physical condition s+ t+u = 0. (In fact, if we impose this condition we shall
not simplify the evaluation at all.) After a result is obtained, one can switch
to physical values of the Mandelstam variables by analytic continuation.

Separating the terms with s, t and u in the alpha representation, one can
arrive at the following MB representation [206]:

N(s, t; 1, . . . , 1, 0, ε) =
−
(
iπd/2

)2
Γ (−ε)2

(−s)3+2εΓ (−1 − 3ε)Γ (−2ε)
F (x, y, ε) , (S.18)

where x = t/s, y = u/s and

F (x, y, ε) =
1

(2πi)4

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞
xw1yw2dw1dw2dz1dz2

×Γ (2 + ε + w1 + w2 + z1 + z2)Γ (3 + 2ε + w1 + w2 + z1 + z2)
Γ (2 + w1 + w2 + z1 + z2)2

×Γ (1 + w1 + z1)Γ (1 + w1 + z2)Γ (1 + w2 + z1)Γ (1 + w2 + z2)
×Γ (−2 − 2ε − w1 − w2 − z1)Γ (−2 − 2ε − w1 − w2 − z2)
×Γ (1 + w1 + w2)Γ (−w1)Γ (−w2)Γ (−z1)Γ (−z2) . (S.19)

The resolution of the singularities in ε by Strategy B was done in [206] (where
this strategy was suggested). Here are some instructions to do this within
Strategy A.

It turns out that the key gamma functions responsible for the generation
of poles in ε are

Γ (−2 − 2ε − w1 − w2 − z1) and Γ (−2 − 2ε − w1 − w2 − z2) .

Therefore the primary decomposition needed to resolve the singularity struc-
ture in ε is F = F11+F10+F01+F00 where 1 in the first (second) place denotes
minus residue at z1 = −2−2ε−w1−w2 (respectively, z2 = −2−2ε−w1−w2)
and 0 stands for changing the nature of the first pole of the corresponding
gamma function.

For F10, one can integrate over z1 and z2 due to the first Barnes lemma
(D.1). For F10, the natural way is to take care of the resulting gamma func-
tions Γ (−1−2ε−w1) and Γ (−1−2ε−w2). For F01 = F10, one can take care
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of the first pole of Γ (−ε + z1). Eventually, one arrives at the result obtained
in [206].

Problems of Chapter 5

5.1 The integrals with non-positive a2, a4 or a5 turn out to be recursively
one-loop and can be evaluated easily in terms of gamma functions by means
of (A.22), (A.23), (A.25) and (A.26). The boundary integral with a1 = a3 = 0
can be evaluated by means of (A.38) and more general integrals with a1, a3 ≤
0 by a tensor reduction and (A.38).

Suppose now that all the indices are positive. The difference of IBP rela-
tions corresponding to the operators ∂/∂k ·k and l ·∂/∂k gives the following
recurrence relation:

d − a1 − a2 − 2a5 + a11+3− + a22+(4− − 5−) = 0 (S.20)

as well as symmetrical relation. Use it to reduce either a3 or a4 or a5 to zero.
In the last two cases, we obtain an expression in terms of gamma functions.
If a3 = 0 we use the symmetrical relation and reduce either a2 or a5 to zero.
So, we obtain a solution of the reduction problem in the ‘minimal’ sense,
i.e. we arrive at an algorithm which reduces any given integral to a linear
combinations of integrals expressed in terms of gamma functions.

5.2 If we want to reduce any integral to integrals expressed in terms of
gamma functions for general ε there is no need to apply IBP. Using the
identity

1 =
1
y

[(−2q ·k − 2q ·l − y) − (−2q ·k − y) − (−2q ·l − y)]

reduces one of initial positive values a2, a4, a5 to zero. Then (A.26) is applied,
with the results in terms of gamma functions.

5.3 One obtains the following IBP relations corresponding to the operators
∂/∂k ·k and l·∂/∂k:

d − 2a1 − a3 − 2m2a11+ − a33+(1− − 2− + m2 − M2) = 0 , (S.21)
a1 − a3 − a11+(3− − 2− − m2 − M2)

+a33+(1− − 2− + m2 − M2) = 0 . (S.22)

Two more relations are obtained by the replacements 1 ↔ 2,m2 ↔ M2.
The given integrals are zero if a1 ≤ 0 or a2 ≤ 0. If a3 ≤ 0, they can

be evaluated in terms of gamma functions by (A.1) and (A.3). Suppose that
a3 > 0. Use the sum of (S.21) and (S.22) to express the term (m2−M2)a11+.
This relation provides the possibility to reduce a1 to one. The corresponding
symmetrical relation reduces a2 to one. If a1 = a2 = 1, apply (S.21) to express
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the term proportional to a33+. This relation makes it possible to reduce a3

to one or zero so that we come to the conclusion that any integral can be
reduced to I1 = F (1, 1, 1) and integrals with a3 ≤ 0 which can be evaluated
in terms of gamma functions.

5.4 If all the indices are positive one can apply (5.30) to reduce one of the
indices a3, a4, a5 to zero. Similarly, the corresponding symmetric relation can
be used to reduce either a1, a2 or a5 to zero. Therefore, we have to consider
further reduction in the case a5 ≤ 0 (and positive a1, . . . , a4) and the two
symmetric cases a1, a4 ≤ 0 (and positive a2, a3) and a2, a3 ≤ 0 (and positive
a1, a4).

If a5 ≤ 0, use (5.27) to express q2a22+ in terms of other operators. This
relation can be applied to reduce the index a2 to one. Similarly, the relation
(5.27) can be applied to reduce a4 to one, the relation f1 − f3 = 0 to reduce
a1 to one, and the relation f4 − f6 = 0 to reduce a3 to one. To reveal the
evolution in a5 at a1 = . . . = a4 = 1 use (5.30), where the terms with 3− and
4− can be dropped and the terms with 1+5− and 2+5− can be identified.
Then one can use the f1 − f3 = 0 to express the operator 1+ and insert it
into the previous relation. As a result one can obtain the relation

1 = −q2

2
d − 2a5 − 4
d − a5 − 3

5+ , (S.23)

which can be used to increase the index a5 to zero. Therefore, in the case a5 ≤
0 all the integrals are proportional to the master integral I1 = F5.6(1, 1, 1, 1, 0)
with coefficients which are rational functions of d.

In the case a1, a4 ≤ 0, one can proceed as follows. Take the two equations

1− [(f1 + f4 − f3 − f6) − (q2 − 4−)(f4 − f5)
]

= 0 (S.24)

4− [(f1 + f4) − (q2 − 1−)(f1 − f2)
]

= 0 , (S.25)

(where such undesirable terms as 1−3+ are absent) which are linear in the
operators 1− and 4− up to terms with 2−,3− and 5−, and solve this system
with respect to the pure terms 1− and 4−. The resulting relations give the
possibility to increase the indices a1 and a4 to zero.

To reduce a2 and a3 to one take the combination a33+(f1−f2)+a22+(f1+
f4−f3−f6) and express q2a2a32+3+ in terms of 2+,3+ and 2+3+5−. Using
the symmetry with respect to a2 ↔ a3 write down a similar identity with a
symmetrical right-hand side. Since these two right-hand sides are equal use
this equation to obtain the following simple relation:

(2a2 − d + 2)a22+ = (2a3 − d + 2)a33+ . (S.26)

Insert this relation into the previous relation for q2a2a32+3+. As a result we
obtain the following two relations which can be used for the desired evolution
of a2 and a3 at a1 = a4 = 0:
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q2a22+ =
(2a2 + 2a3 + 4a5 − 3d)(a2 + a3 + 1 − d)

2a2 + 2 − d
+ a22+5− , (S.27)

q2a33+ =
(2a2 + 2a3 + 4a5 − 3d)(a2 + a3 + 1 − d)

2a3 + 2 − d
+ a33+5− . (S.28)

Finally, if a1 = a4 = 0 and a2 = a3 = 1, write down the relation f1−f3 = 0
as well as a previous relation used to increase the index a4 to zero. Multiply
this second relation by 5+ and use the so-obtained two relations to exclude
the term 4−5+. As a result we obtain the relation

a55+ =
(2 + a5 − d)(2a5 + 6 − 3d)

(2 + 2a5 − d)q2
(S.29)

which can be used, at a1 = a4 = 0, a2 = a3 = 1, to reduce the index a5 to
one.

We see that in the case a1, a4 ≤ 0 all the integrals are proportional to
the master integral I2 = F5.6(0, 1, 1, 0, 1) with coefficients which are rational
functions of d.

Therefore any given integral F5.6(a1, a2, a3, a4, a5) can be represented, ac-
cording to the above reduction procedure, as a linear combination of the mas-
ter integrals I1 and I2 the second of which appears also as F5.6(1, 0, 0, 1, 1).

5.5 One can proceed as follows.8 Add (5.50) multiplied by (a33+ + a55+)
and (5.50)+(5.52) multiplied by a66+ (so that the terms with 4− drop out).
Observe that the terms without a66+ cancel. Divide by a6 and then multiply
the resulting relation by 6− (do not forget to shift explicit factors of a6).
Obtain (5.76). The relation (5.77) is symmetrical.

Problems of Chapter 6

6.1 The basic polynomial can be obtained straightforwardly:

P (x1, x2, x3) = (M2 − m2)2 + x2
1 + x2

2 + x2
3 − 2(x1x2 + x1x3 + x2x3)

−2(M2 − m2)(x1 − x2) − 2(M2 + m2)x3 . (S.30)

Let us recall the boundary conditions: F (a1, a2, a3) = 0 if a1 ≤ 0 or/and a2 ≤
0 so that we shall always understand the integration over x1 and x2 in the
basic parametric integral (6.10) as Cauchy integrals. The natural candidates
to be master integrals are I1 = F (1, 1, 1) and I2 = F (1, 1, 0). The basic
polynomial equals (M2−m2)2 at x1 = x2 = x3 = 0 so that the corresponding
coefficient function can be constructed using (6.10) and interpreting all the
integrations in the Cauchy sense.

8I asked the authors of [8] to explain how they had derived (5.76) and (5.77) but
they failed to remember details :-), so that this solution presumably differs from
their derivation.
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For I2, the corresponding reduced polynomial is

P2 = P |x1=x2=0 = (M2 − m2)2 − 2(M2 + m2)x3 + x2
3 . (S.31)

In fact, the situation is similar to Example 6.6. First, one can construct
an algorithm for non-positive values of a3 choosing the integration over x3

between the roots of this quadratic polynomial. For the case a3 > 0, one treats
integrals over x3 algebraically, uses the corresponding IBP relations and the
relation corresponding to the identity P2/P2 = 1. These relations are solved
in the same way, with an introduction of an auxiliary master integral. Then
the second coefficient function is defined using relations similar to (6.49) and
(6.50). In such a combination, the dependence on the auxiliary parametric
master integral drops out and c2(a1, a2, a3) turns out to be a rational function.

For example, one obtains the following reduction to the master integrals
I1 and I2:

F (2, 1, 1) = − d − 3
M2 − m2

I1 +
d − 2

2m2(M2 − m2)
I2 . (S.32)

6.2 The reduction procedure is constructed according to the instructions in
Example 6.8. These are the results:

F (1, 1, 1, 2) =
5 − d

t
I1 −

4(5 − d)(3 − d)
(6 − d)s2t

I2 , (S.33)

F (1, 1, 0, 2) =
4(d − 3)
(d − 6)s2

I2 , F (1, 0, 1, 2) =
2(d − 3)

t2
I3 , (S.34)

where I1 = F (1, 1, 1, 1) and

I2 = iπd/2 Γ (ε)Γ (1 − ε)2

Γ (2 − 2ε)(−s)ε
, I3 = iπd/2 Γ (ε)Γ (1 − ε)2

Γ (2 − 2ε)(−t)ε
. (S.35)

6.3 Let us choose the numerator as (2(k+l)·(r+l))−a9 . The basic polynomial
is evaluated straightforwardly. The reduced polynomial for the given integral
is

P1(x9) = (q2 − x9)2x2
9 . (S.36)

The corresponding integral over x9 can be understood naturally using (6.32)
and we obtain a solution of the IBP relations which shows that the given
integral is irreducible.

In fact, the irreducibility of this integral corresponds to the irreducibil-
ity of the integral Fig. 3.14 which was discussed in Sect. 6.5 because these
two family of integrals have the same ‘vacuum image’, as discussed also in
Sect. 6.5.



274 Solutions

Problems of Chapter 7

7.1 Take the derivative in m2 and apply (S.32):

∂I1

∂m2
= F (2, 1, 1) = − 1 − 2ε

M2 − m2
I1 +

1 − ε

m2(M2 − m2)
I2 , (S.37)

where

I2 = F (1, 1, 0) =
(
iπd/2

)2

Γ (ε − 1)2(m2)1−ε(M2)1−ε . (S.38)

This differential equation can be solved by the method of the variation of the
constant. The general solution to the corresponding homogeneous equation
is (

iπd/2
)2

C(M2 − m2)1−2ε . (S.39)

From (S.37), one obtains the following simple equation for C(m2):

C ′(m2) = −Γ (ε − 1)Γ (ε)(M2)1−ε(M2 − m2)−2ε(m2)−ε . (S.40)

For the boundary condition, one can take the point m2 = 0 and relate the
corresponding constant to the value of the integral F (1, 1, 1) with the masses
M, 0 and 0 that can be evaluated by (A.39). Eventually, the following result
is obtained in expansion in ε:

I1 =
(
iπd/2

)2

(M2)1−2ε

{
1 − x

2ε2
+
(

3
2
(1 + x) − x ln x

)
1
ε

+
7
2
(1 + x) +

π2

12
(3 − x) − 3x ln x − (1 − x) ln(1 − x) ln x

+
1
2
x ln2 x − (1 − x)Li2 (x) + O(ε)

}
, (S.41)

where x = m2/M2.

7.2 Take the derivative of

I1 = f(s, t) =
∫

ddk

k2(k + p1)2(k + p1 + p2)2(k − p3)2
(S.42)

in t using (7.12) in the massless case, i.e.

∂

∂t
=

1
2t

[
p1 + p3 +

t

s + t
(p2 + p3)

]
· ∂

∂p3
, (S.43)

and express the integrals obtained as a linear combination of the integrals
corresponding to Fig. 5.1. Apply the reduction to the master integrals I1,
I2 and I3 obtained in Example 6.8 and Problem 6.2 to obtain the following
differential equation:
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∂f

∂t
=
(
−1 + ε

t
+

ε

s + t

)
f + g, (S.44)

where

g(s, t) =
2(1 − 2ε)
st2(s + t)

(s I3 − t I2) . (S.45)

The differential equation can be solved, in a Laurent expansion in ε, by
the method of the variation of the constant. The expansion in ε starts from
1/ε2:

f(s, t) =
∑

j=−2

fj(s, t) εj . (S.46)

This is the corresponding set of nested differential equations:

dfj

dt
= −1

t

(
fj +

s

s + t
fj−1

)
+ gj , (S.47)

where gj comes the ε-expansion of (S.45). The general solution to the corre-
sponding homogeneous equation is C/t. The procedure of solving recursively
the differential equations for f−2, f−1, . . . is straightforward. For a boundary
condition, one can take the point t = 0 which is, however, singular. Still such
choice is possible with the qualification that one takes the leading power as-
ymptotic behaviour, with all the logarithms, up to ln0(t/s), rather than the
‘true’ value at t = 0. This asymptotic behaviour can be found using either
expansion by regions (see Chapter 8 of [186]) or expansion using MB repre-
sentation (as explained in Sect. 4.8). Anyway, it is given by (4.13). Eventually,
one obtains (4.17).
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List of Symbols

Aij
r – matrix which defines denomina-

tors of the propagators

al – power of a propagator (index)

ci(a1, . . . , aN ) – coefficient function of
a master integral Ii

D̃F – propagator in coordinate space

DF , DF,i – propagator in momentum
space

d – space-time dimension

Er – denominator of propagator

FΓ – Feynman integral

2F1(a, b; c; z) – Gauss hypergeometric
function

G(λ1, λ2) – function in one-loop
massless integration formula

gµν – metric tensor

Ha1,a2,...,an(x) – harmonic polyloga-
rithm (HPL)

h – number of loops

Ii – master integral

k – loop momentum

L – number of lines

Lia (z) – polylogarithm

l – loop momentum

m – mass

P (x1, . . . , xN ) – basic polynomial

p – external or internal momentum

Q2 = −q2 – Euclidean external
momentum squared

q – external momentum

Sa,b(z) – generalized polylogarithm

Sj , Sjk,. . . – nested sums

s = (p1 + p2)
2 – Mandelstam variable

T – tree, 2-tree, pseudotree
t = (p1 + p3)

2 – Mandelstam variable
tl – sector variable
U – function in the alpha representation
u = (p1 + p4)

2 – Mandelstam variable
ul – auxiliary parameter
V – number of vertices
V – function in the alpha representation
w – variable in MB integrals
x – coordinate
xi – variable in the basic parametric

representation
Zl – polynomial in propagator
z, zi – variable in MB integrals

αl – alpha parameter
βl = 1/αl – inverse alpha parameter
Γ – graph
Γ (x) – gamma function (first Euler

integral)
γ – subgraph
γE = 0.577216 . . . – Euler’s constant
δ(x) – delta function
ε = (4 − d)/2 – parameter of

dimensional regularization
ζ(z) – Riemann zeta function
λl – parameter of analytic regularization
ξ, ξi – Feynman parameter
τl – sector variable
ψ(x) = Γ ′(z)/Γ (z) – logarithmical

derivative of the gamma function
ω – degree of UV divergence
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Feynman amplitude 12
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Feynman parameters 43
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technique (GPXT) 240
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method of differential equations (DE)

8, 173
momentum

Euclidean 231
external 12
internal 12
loop 12
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polylogarithm 195
propagator 11
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recursively one-loop diagrams 35
regularization 21

analytic 22
dimensional 22, 24
Pauli–Villars 22
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second Barnes lemma 220
sectors 229
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