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Preface
This book was born out of a desire to have a brief introduction to op-

erator theory – the spectral theorem (arguably the most important theorem
in Hilbert space theory), polar decomposition, compact operators, trace-class
operators, etc., which would involve a minimum of initial spadework (avoiding
such digressions as, for example, the Gelfand theory of commutative Banach
algebras), and which only needed simple facts from a first semester graduate
course on Functional Analysis. I believe the cleanest formulation of the spec-
tral theorem is as a statement of the existence and uniqueness of appropriately
homeomorphic (continuous and measurable) functional calculi of one or more
pairwise commuting self-adjoint, and more generally normal, operators on a
separable Hilbert space, rather than one about spectral measures.

This book may be thought of as a re-take of my earlier book ([Sun]) on
Functional Analysis, but with so many variations as to not really look like a
‘second edition’: the operator algebraic point of view is minimised drastically,
resulting in an essentially operator-theoretic proof of the spectral theorem –
first for self-adjoint, and later for normal, operators. What is probably new
here is what I call the joint spectrum of a family of commuting self-adjoint
operators, a new proof of the Fuglede theorem on the commutant of a nor-
mal operator being *-closed, and the extension of the spectral theorem to a
family of commuting normal operators. The third chapter contains, in addition
to everything in the fourth chapter of [Sun], a section about Hilbert-Schmidt
and trace-class operators, and the duality results involving compact operators,
trace-class operators and all bounded operators.

This book is fondly dedicated to the memory of Paul Halmos.
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Chapter 1

Hilbert space

1.1 Introduction

This book is about (bounded, linear) operators on (always separable and com-
plex) Hilbert spaces, usually denoted by H,K,M and variants thereof. Vectors
in Hilbert spaces will usually be denoted by symbols such as x, y, z and their
variants, such as yn, x

′. The collection of all bounded complex-linear operators
on H will be denoted by B(H), whose elements will usually be denoted by
symbols such as A,B,E, F, P,Q, T, U, V,X, Y, Z.

The only prerequisites needed for reading this book are: a nodding ac-
quaintance with the basics of Hilbert space theory (eg: the definitions of or-
thonormal basis, orthogonal projection, unitary operator, etc., all of which are
briefly discussed in this chapter); a first course in Functional Analysis – the
spectral radius formula, the Open Mapping Theorem and the Uniform Bound-
edness Principle, the Riesz Representation Theorem (briefly mentioned in Ap-
pendix) which identifies C(Σ)∗ with the space M(Σ) of finite complex mea-
sures on the compact Hausdorff space Σ, and outer and inner regularity of
finite positive measures on Σ; some basic measure theory, such as the Bounded
Convergence Theorem, and the not so basic Lusin’s theorem (also briefly dis-
cussed in Appendix) which leads to the conclusion – see Lemma A2 in the
Appendix – that any bounded measurable function on Σ is the pointwise a.e.
limit of a sequence of continuous functions on Σ, and also – see Lemma A1 in
the Appendix – that C(Σ) ‘is’ dense in L2(Σ, μ). Also, in the section on von
Neumann-Schatten ideals, basic facts concerning the Banach sequence spaces
c0, �

p and the duality relations among them will be needed/used. All the above
facts may be found in [Hal], [Hal1], [Sun] and [AthSun]. Although these stan-
dard facts may also be found in other classical texts written by distinguished
mathematicians, the references are limited to a very small number of books,
because the author knows precisely where which fact can be found in the union
of the four books mentioned above.

1� Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2015
V.S. Sunder, Operators on Hilbert Space, Texts and Readings in Mathematics 71,
DOI 10.1007/978-981-10-1816-9_1



2 Chapter 1. Hilbert space

1.2 Inner Product spaces

While normed spaces permit us to study ‘geometry of vector spaces’, we are
constrained to discussing those aspects which depend only upon the notion of
‘distance between two points’. If we wish to discuss notions that depend upon
the angles between two lines, we need something more – and that something
more is the notion of an inner product.

The basic notion is best illustrated in the example of the space R
2 that

we are most familiar with, where the most natural norm is what we call || · ||2.
The basic fact from plane geometry that we need is the so-called cosine law
which states that if A,B,C are the vertices of a triangle and if θ is the angle
at the vertex C, then

2(AC)(BC) cos θ = (AC)2 + (BC)2 − (AB)2 .

If we apply this to the case where the points A,B and C are represented by
the vectors x = (x1, x2), y = (y1, y2) and (0, 0) respectively, we find that

2||x|| · ||y|| · cos θ = ||x||2 + ||y||2 − ||x− y||2
= 2 (x1y1 + x2y2 ).

Thus, we find that the function of two (vector) variables given by

〈x, y〉 = x1y1 + x2y2 (1.2.1)

simultaneously encodes the notion of angle as well as distance (and has the
explicit interpretation 〈x, y〉 = ||x|| ||y|| cos θ). This is because the norm can
be recovered from the inner product by the equation

||x|| = 〈x, x〉 1
2 . (1.2.2)

The notion of an inner product is the proper abstraction of this function
of two variables.

Definition 1.2.1. (a) An inner product on a (complex) vector space V is a
mapping V ×V � (x, y) �→ 〈x, y〉 ∈ C which satisfies the following conditions,
for all x, y, z ∈ V and α ∈ C:
(i) (positive definiteness) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0;
(ii) (Hermitian symmetry) 〈x, y〉 = 〈y, x〉;
(iii) (linearity in first variable) 〈αx+ βz, y〉 = α〈x, y〉+ β〈z, y〉.

An inner product space is a vector space equipped with a (distinguished)
inner product.

(b) An inner product space which is complete in the norm coming from the
inner product (as in Equation (1.2.2)) is called a Hilbert space. In this book,
however, we shall only be concerned with Hilbert spaces which are separable
when viewed as metric spaces, with the metric coming from the norm induced
by the inner-product – see Proposition 1.2.4 and Corollary 1.2.5.
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Example 1.2.2. (1) If z = (z1, . . . , zn), w = (w1, . . . , wn) ∈ C
n, define

〈z, w〉 =

n∑
i=1

ziwi ; (1.2.3)

it is easily verified that this defines an inner product on C
n.

(2) The equation

〈f, g〉 =

∫
[0,1]

f(x)g(x) dx (1.2.4)

is easily verified to define an inner product on C[0, 1]. �

As in the (real) case discussed earlier of R2, it is generally true that any
inner product gives rise to a norm on the underlying space via equation (1.2.2).
Before verifying this fact, we digress with an exercise that states some easy
consequences of the definitions.

Exercise 1.2.3. Suppose we are given an inner product space V ; for x ∈ V,
define ||x|| as in equation (1.2.2), and verify the following identities, for all
x, y, z ∈ V, α ∈ C:

(1) 〈x, y + αz〉 = 〈x, y〉 + α〈x, z〉;
(2) ||x+ y||2 = ||x||2 + ||y||2 + 2Re 〈x, y〉;
(3) two vectors in an inner product space are said to be orthogonal if

their inner product is 0; deduce from (2) above and an easy induction ar-
gument that if {x1, x2, . . . , xn} is a set of pairwise orthogonal vectors, then
||∑n

i=1 xi||2 =
∑n

i=1 ||xi||2 .
(4) ||x+ y||2 + ||x− y||2 = 2 (||x||2 + ||y||2); draw some diagrams and

convince yourself as to why this identity is called the parallelogram identity.
(5) (Polarisation identity) 4〈x, y〉 =

∑3
k=0 ik〈x + iky, x + iky〉, where,

of course, i =
√−1.

The first (and very important) step towards establishing that any inner
product defines a norm via equation (1.2.2) is the following celebrated inequal-
ity.

Proposition 1.2.4. (Cauchy-Schwarz inequality)
If x, y are arbitrary vectors in an inner product space V, then

|〈x, y〉| ≤ ||x|| · ||y|| .

Further, this inequality is an equality if and only if the vectors x and y are
linearly dependent.

Proof. If y = 0, there is nothing to prove; so we may, without loss of generality,
assume that ||y|| = 1 (since the statement of the proposition is unaffected upon
scaling y by a constant).
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Notice now that, for arbitrary α ∈ C,

0 ≤ ||x− αy||2
= ||x||2 + |α|2 − 2Re (α〈y, x〉) .

A little exercise in the calculus shows that this last expression is minimised
for the choice α0 = 〈x, y〉, for which choice we find, after some minor algebra,
that

0 ≤ ||x− α0y||2 = ||x||2 − |〈x, y〉|2 ,

thereby establishing the desired inequality.
The above reasoning shows that the inequality becomes an equality only

if x = α0y, and the proof is complete. �
Corollary 1.2.5. Any inner product gives rise to a norm1 via Equation
(1.2.2).

Proof. Positive-definiteness and homogeneity with respect to scalar multiplica-
tion are obvious; as for the triangle inequality,

||x+ y||2 = ||x||2 + ||y||2 + 2 Re 〈x, y〉
≤ ||x||2 + ||y||2 + 2||x|| · ||y|| ,

and the proof is complete. �
Exercise 1.2.6. (1) Show that

∣∣∣ n∑
i=1

ziwi

∣∣∣2 ≤
( n∑

i=1

|zi|2
) ( n∑

i=1

|wi|2
)

, ∀ z, w ∈ C
n .

(In view of the notation used in (2) below, we shall write �2n for C
n with the

‘standard inner product’ defined above.)
(2) Deduce from (1) that the series

∑∞
i=1 αiβi converges, for any α, β ∈

�2 = {γ = (γ1, . . . , γn, . . .) ∈ C
N :

∑
n |γn|2 < ∞}, and that

∣∣∣ ∞∑
i=1

αiβi

∣∣∣2 ≤
( ∞∑

i=1

|αi|2
) ( ∞∑

i=1

|βi|2
)

, ∀ α, β ∈ �2 ;

deduce that �2 is indeed (a vector space, and in fact) an inner product space,
with respect to inner product defined by

〈α, β〉 =

∞∑
i=1

αiβi . (1.2.5)

1Recall that (a) a norm on a vector space V is a function V � x �→ ‖x‖ ∈ [0,∞) which
satisfies (i) (positive-definiteness) ‖x‖ = 0 ⇔ x = 0; (ii) (homogeneity) ‖αx‖ = |α|‖x‖ and
(iii) (triangle inequality) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V and α ∈ C; (b) a vector space
equipped with a norm is a normed space; and (c) a normed space which is complete with
respect to the norm is called a Banach space.
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(3) Write down what the Cauchy-Schwarz inequality translates into in Example
1.2.2 (2).

(4) Show that the inner product is continuous as a mapping from V × V
into C. (In view of Corollary 1.2.5, this makes sense.)

1.3 Hilbert spaces : examples

Our first step is to arm ourselves with a reasonably adequate supply of examples
of Hilbert spaces.

Example 1.3.1. (1) C
n is an example of a finite-dimensional Hilbert space,

and we shall soon see that these are essentially the only such examples.

(2) �2 is an infinite-dimensional Hilbert space – see Exercise 1.2.6(2). Nev-
ertheless, this Hilbert space is not ‘too big’, since it is at least equipped with
the pleasant feature of being a separable Hilbert space – i.e., it is separable as a
metric space, meaning that it has a countable dense set. (Verify this assertion!)

(3) More generally, let S be an arbitrary set, and define

�2(S) = {x = ((xs))s∈S ∈ C
S :

∑
s∈S |xs|2 < ∞} .

(The possibly uncountable sum might be interpreted as follows: a typical
element of �2(S) is a family x = ((xs)) of complex numbers which is indexed
by the set S, and which has the property that xs = 0 except for s coming from
some countable subset of S (which depends on the element x) and which is
such that the possibly non-zero xs’s, when written out as a sequence in any
(equivalently, some) way, constitute a norm-square-summable sequence.)

Verify that �2(S), in a natural fashion, is a Hilbert space.

(4) This example will make sense to the reader who is already familiar
with the theory of measure and Lebesgue integration; the reader who is not,
may safely skip this example; the subsequent exercise will effectively recapture
this example, at least in all cases of interest.

Suppose (X,B, μ) is a measure space. Let L2(X,B, μ) denote the space
of B-measurable complex-valued functions f on X such that

∫
X
|f |2dμ < ∞.

Note that |f + g|2 ≤ 2(|f |2 + |g|2), and deduce that L2(X,B, μ) is a vector
space. Note next that |fg| ≤ 1

2 (|f |2 + |g|2), and so the right-hand side of the
following equation makes sense, if f, g ∈ L2(X,B, μ):

〈f, g〉 =

∫
X

fg dμ . (1.3.6)

It is easily verified that the above equation satisfies all the requirements of an
inner product with the solitary possible exception of the positive-definiteness
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axiom: if 〈f, f〉 = 0, it can only be concluded that f = 0 a.e – meaning that
{x : f(x) �= 0} is a set of μ-measure 0 (which might very well be non-empty).

Observe, however, that the set N = {f ∈ L2(X,B, μ) : f = 0 a.e.} is a
vector subspace of L2(X,B, μ); and a typical element of the quotient space
L2(X,B, μ) = L2(X,B, μ)/N is just an equivalence class of square-integrable
functions, where two functions are considered to be equivalent if they agree
outside a set of μ-measure 0.

For simplicity of notation, we shall just write L2(X) or L2(μ) for
L2(X,B, μ), and we shall denote an element of L2(μ) simply by such symbols
as f, g, etc., and think of these as actual functions with the understanding that
we shall identify two functions which agree μ-almost everywhere. The point of
this exercise is that equation (1.3.6) now does define a genuine inner product
on L2(X); most importantly, it is true that L2(X) is complete and is thus a
Hilbert space. �
Exercise 1.3.2. (1) Suppose X is an inner product space. Let X be a comple-
tion of X regarded as a normed space. Show that X is actually a Hilbert space.
(Thus, every inner product space has a Hilbert space completion.)

(2) Let X = C[0, 1] and define

〈f, g〉 =

∫ 1

0

f(x)g(x) dx .

Verify that this defines a genuine, i.e., positive-definite, inner product on
C[0, 1]. The completion of this inner product space is a Hilbert space – see
(1) above – which may be identified with what was called L2([0, 1],B,m) in Ex-
ample 1.3.1(4), where (B is the σ-algebra of Borel sets in [0, 1] and) m denotes
the so-called Lebesgue measure on [0, 1].

1.4 Orthonormal bases

In the sequel, N will always denote a (possibly empty, finite or infinite) count-
able set.

Definition 1.4.1. A collection {xn : n ∈ N} in an inner product space is said
to be orthonormal if

〈xm, xn〉 = δmn :=

{
1 if m = n
0 if m �= n

∀ m,n ∈ N .

Thus, an orthonormal set is nothing but a set of unit vectors which are
pairwise orthogonal; we shall write x ⊥ y if two vectors x, y in an inner product
space are orthogonal, i.e., satisfy 〈x, y〉 = 0.

Example 1.4.2. (1) In �2n, for 1 ≤ i ≤ n, let ei be the element whose i-
th co-ordinate is 1 and all other co-ordinates are 0; then {e1, . . . , en} is an
orthonormal set in �2n.
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(2) In �2, let en be the element whose n-th co-ordinate is 1 and all other
co-ordinates are 0, for 1 ≤ n < ∞; then {en : n = 1, 2, . . .} is an orthonormal
set in �2.

(3) In the inner product space C[0, 1] – with inner product as de-
scribed in Exercise 1.3.2 – consider the family {en : n ∈ Z} defined by
en(x) = exp(2πinx), and show that this is an orthonormal set; hence this is also
an orthonormal set when regarded as a subset of L2([0, 1],m) – see Exercise
1.3.2(2). �
Proposition 1.4.3. Let {e1, e2, . . . , en} be an orthonormal set in an inner
product space X, and let x ∈ X be arbitrary. Then,

(i) if x =
∑n

i=1 αiei, αi ∈ C, then αi = 〈x, ei〉 ∀i;
(ii) (x−∑n

i=1〈x, ei〉ei ) ⊥ ej ∀1 ≤ j ≤ n;
(iii) (Bessel’s inequality )

∑n
i=1 |〈x, ei〉|2 ≤ ||x||2.

Proof. (i) If x is a linear combination of the ej ’s as indicated, compute 〈x, ei〉,
and use the assumed orthonormality of the ej ’s, to deduce that αi = 〈x, ei〉.

(ii) This is an immediate consequence of (i).
(iii) Write y =

∑n
i=1〈x, ei〉ei, z = x − y, and deduce from (two applica-

tions of) Exercise 1.2.3(3) that

||x||2 = ||y||2 + ||z||2
≥ ||y||2

=

n∑
i=1

|〈x, ei〉|2 .

�
We wish to remark on a few consequences of this proposition; for one

thing, (i) implies that an arbitrary orthonormal set is linearly independent;
for another, if we write

∨{en : n ∈ N} for the vector subspace spanned by
{en : n ∈ N} – this is the set of linear combinations of the en’s, and is the
smallest vector subspace containing {en : n ∈ N} – it follows from (i) that we
know how to write any element of

∨{en : n ∈ N} as a linear combination of
the en’s.

We shall find the following notation convenient in the sequel: if S is a
subset of an inner product space X, let

∨
S (reps., [S]) denote the smallest

subspace (resp. closed subspace) containing S; it should be clear that this could
be described in either of the following equivalent ways: (a) [S] is the intersection
of all closed subspaces of X which contain S, and (b) [S] =

∨
S. (Verify that

(a) and (b) describe the same set.)

Lemma 1.4.4. Suppose {en : n ∈ N} is a countable orthonormal set in a Hilbert
space H. Then the following conditions on an arbitrary family {αn : n ∈ N} of
complex numbers are equivalent:

(i) the sum
∑

n∈N αnen makes sense as a finite sum in case N is a
finite set, and as an ‘unconditionally’ norm-convergent series in H if N is
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infinite, meaning: if φ : N → N is any bijection, and if we define x(φ)k =∑k
n=1 αφ(n)eφ(n), then the sequence {x(φ)k : k ∈ N} is norm-convergent and

the limit of this sum is independent of the bijection φ used; the symbol of a
sum of elements of a Hilbert space, and C, in particular, which is indexed by
arbitrary countably infinite sets (other than N, when, of course, series may be
conditionally convergent) will always be used to denote only such ‘uncondition-
ally convergent series’.

(ii)
∑

n∈N |αn|2 < ∞.
(iii) there is a vector x ∈ [{en : n ∈ N}] such that 〈x, en〉 = αn ∀n ∈ N.

Proof. If N is finite, the first two assertions are obvious, while the third is seen
by choosing x =

∑
n∈N αnen.

So suppose that N is infinite, and that φ, x(φ)k are as above.
(i) ⇒ (iii): Fix a bijection φ as in (i). Condition (i) says that ‖x(φ)k −

x(φ)‖ → 0 for some x(φ) ∈ H. As 〈x(φ)k, en〉 = 〈x(φ)�, en〉 = αn∀k, � ≥ φ−1(n),
we find that 〈x(φ), en〉 = αn ∀n. Since each x(φ)k ∈ [{en : n ∈ N}], it is clear
that also x(φ) ∈ [{en : n ∈ N}].

(iii) ⇒ (ii) is an immediate consequence of Bessel’s inequality.
(ii) ⇒ (i): Condition (ii) is seen to imply that {x(φ)k : k ∈ N} is a

Cauchy sequence and hence convergent in H. The argument given in the proof
of (i) ⇒ (iii) applies with φ replaced by any other bijection ψ. And x(φ)−x(ψ)
would be an element of [{en : n ∈ N}] which would be orthogonal to each en
and hence to a dense subspce of [{en : n ∈ N}], thereby forcing the equality
x(φ) = x(ψ), as asserted. �

We are now ready to establish the fundamental proposition concerning
orthonormal bases in a Hilbert space.

Proposition 1.4.5. The following conditions on a countable orthonormal set
{en : n ∈ N} in a Hilbert space H are equivalent: (in items (ii), (iii) and
(iv), the sums indexed by the set N are to be understood as indicated in Lemma
1.4.4(i)).

(i) {en : n ∈ N} is a maximal orthonormal set, meaning that it is not
strictly contained in any other orthonormal set;

(ii) x ∈ H ⇒ x =
∑

n∈N 〈x, en〉en;
(iii) x, y ∈ H ⇒ 〈x, y〉 =

∑
n∈N 〈x, en〉〈en, y〉;

(iv) x ∈ H ⇒ ||x||2 =
∑

n∈N |〈x, en〉|2.

Such an orthonormal set is called an orthonormal basis of H.

Proof. (i) ⇒ (ii) : It is a consequence of Bessel’s inequality which states that∑
n∈N |〈x, en〉|2 < ∞ and (the implication (ii) ⇔ (i) of) the last lemma that

there exists a vector, call it x0 ∈ H, such that x0 =
∑

n∈N 〈x, en〉en. If x �= x0,
and if we set e = 1

||x−x0|| (x−x0), then it is easy to see that {en : n ∈ N}∪{e}
is an orthonormal set which contradicts the assumed maximality of the given
orthonormal set.
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(ii) ⇒ (iii) : This is obvious if N is finite, so assume without loss of gener-
ality that N = N For n ∈ N, let xn =

∑n
i=1〈x, ei〉ei and yn =

∑n
i=1〈y, ei〉ei,

and note that, by the assumption (ii), continuity of the inner-product, and the
assumed orthonormality of the ei’s, we have

〈x, y〉 = lim
n→∞〈xn, yn〉

= lim
n→∞

n∑
i=1

〈x, ei〉〈y, ei〉

= lim
n→∞

n∑
i=1

〈x, ei〉〈ei, y〉

=

∞∑
i=1

〈x, ei〉〈ei, y〉 .

(iii) ⇒ (iv) : Put y = x.

(iv) ⇒ (i) : Suppose {ei : i ∈ I ∪ J} is an orthonormal set with J a
non-empty index set disjoint from I; then for j ∈ J , we find, in view of (iv),
that

1 = ||ej ||2 =
∑
i∈I

|〈ej , ei〉|2 = 0 ;

hence it must be that J is empty – i.e., the maximality assertion of (i) is indeed
implied by (iv). �

The reason for only considering countable orthonormal sets lies in the
following proposition.

Proposition 1.4.6. The following conditions on a Hilbert space H are equiv-
alent:

(i) H is separable;

(ii) Any orthonormal set in H is countable.

Proof. (i) ⇒ (ii) : Suppose D is a countable dense set in H and suppose
{ei : i ∈ I} is an orthonormal set in H. Notice that

i �= j ⇒ ||ei − ej ||2 = 2 . (1.4.7)

Since D is dense in H, we can, for each i ∈ I, find a vector xi ∈ D such

that ||xi − ei|| <
√
2
2 . The identity (1.4.7) shows that the map I � i �→ xi ∈ D

is necessarily 1-1; since D is countable, we may conclude that so is I.

(ii) ⇒ (i) : If I is a countable (finite or infinite) set and if {ei : i ∈ I} is
an orthonormal basis for H, let D be the set whose typical element is of the
form

∑
j∈J αjej , where J is a finite subset of I and αj are complex numbers

whose real and imaginary parts are both rational numbers; it can then be seen
that D is a countable dense set in H. �
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Corollary 1.4.7. Any orthonormal set in a Hilbert space is contained in an
orthonormal basis– meaning that if {ei : i ∈ I} is any orthonormal set in a
Hilbert space H, then there exists an orthonormal set{ei : i ∈ J} such that
I ∩ J = ∅ and {ei : i ∈ I ∪ J} is an orthonormal basis for H. (If {ei : i ∈ I} is
already an orthonormal basis, then J = ∅.)

In particular, every Hilbert space admits an orthonormal basis.

Proof. This is an easy consequence of Zorn’s lemma. �
Remark 1.4.8. (1) Although we have formally defined an orthonormal ba-

sis only in separable Hilbert spaces, Proposition 1.4.5 is true verbatim
without the countability hypothesis. The details of this generalisation –
which necessitates a digression into what is meant by sums of families of
vectors indexed by arbitrary, possibly uncountable, sets – may be found
in [Sun], for instance. Thus, non-separable Hilbert spaces are those whose
orthonormal bases are uncountable. It is probably fair to say that any true
statement about a general non-separable Hilbert space can be established
as soon as one knows that the statement is valid for separable Hilbert
spaces; it is probably also fair to say that almost all useful Hilbert spaces
are separable. So, the reader may safely assume that all Hilbert spaces in
the sequel are separable; among these, the finite-dimensional ones are, in a
sense, ‘trivial’, and one only need really worry about infinite-dimensional
separable Hilbert spaces.

(2) Every separable non-zero Hilbert space is isometrically isomorphic to ex-
actly one of the family {�2n : n ∈ N}∪{�2}, where N = {1, 2, . . .}. Thus the
cardinality of an orthonormal basis is a complete invariant ‘up to isometric
isomorphism’. It is clear this is an invariant. For finite-dimensional spaces,
the cardinality of an orthonormal basis is the usual vector space dimen-
sion, and vector spaces of differing finite dimension are not isomorphic.
Also, no finite-dimensional Hilbert space can be isometrically isomorphic
to �2 as the unit ball of �2 is not compact. (Reason: the orthonormal
basis{en : n ∈ N} can have no Cauchy subsequence as ‖en − em‖ =

√
2 if

m �= n.)

Remark 1.4.9. (1) It follows from Proposition 1.4.5 (ii) that if {ei : i ∈ I}
is an orthonormal basis for a Hilbert space H, then H = [{ei : i ∈ I}];
conversely, it is true – see Corollary 1.4.14 – that if an orthonormal set is
total (meaning that the vector subspace spanned by the set is dense in the
Hilbert space), then such an orthonormal set is necessarily an orthonormal
basis. (Reason: apply Theorem 1.4.13(ii), with M as the closed subspace
spanned by the orthonormal set.)

(2) Each of the three examples of an orthonormal set that is given in Example
1.4.2, is in fact an orthonormal basis for the underlying Hilbert space. This
is obvious in cases (1) and (2). As for (3), it is a consequence of the Stone-
Weierstrass theorem that the vector subspace of finite linear combinations
of the exponential functions {exp(2πinx) : n ∈ Z} (usually called the set
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of trigonometric polynomials) is dense in {f ∈ C[0, 1] : f(0) = f(1)}
(with respect to the uniform norm – i.e., with respect to || · ||∞); in view
of Exercise 1.3.2 (2), it is not hard to conclude that this orthonormal
set is total in L2([0, 1],m) and hence, by remark (1) above, this is an
orthonormal basis for the Hilbert space in question.

Since exp(±2πinx) = cos(2πnx)± i sin(2πnx), and since it is easily
verified that cos(2πmx) ⊥ sin(2πnx) ∀m,n = 1, 2, . . ., we find easily that

{1 = e0} ∪ {
√
2 cos(2πnx),

√
2 sin(2πnx) : n = 1, 2, . . .}

is also an orthonormal basis for L2([0, 1],m). (Reason: this is orthonormal,
and this sequence spans the same vector subspace as is spanned by the
exponential basis.) (Also, note that these are real-valued functions, and
that the inner product of two real-valued functions is clearly real.) It
follows, in particular, that if f is any (real-valued) continuous function
defined on [0,1], then such a function admits the following Fourier series
(with real coefficients):

f(x) = a0 +

∞∑
n=1

(an cos(2πnx) + bn sin(2πnx) )

where the meaning of this series is that we have convergence of the se-
quence of the partial sums to the function f with respect to the norm in
L2[0, 1]. Of course, the coefficients an, bn are given by

a0 =

∫ 1

0

f(x) dx

an = 2

∫ 1

0

f(x) cos(2πnx ) dx , ∀ n > 0,

bn = 2

∫ 1

0

f(x) sin(2πnx) dx , ∀ n > 0

The theory of Fourier series was the precursor to most of modern func-
tional analysis; it is for this reason that if {ei : i ∈ I} is any orthonormal
basis of any Hilbert space, it is customary to refer to the numbers 〈x, ei〉 as
the Fourier coefficients of the vector x with respect to the orthonormal basis
{ei : i ∈ I}. �

It is a fact that any two orthonormal bases for a Hilbert space have the
same cardinality, and this common cardinal number is called the dimension of
the Hilbert space; the proof of this statement, in its full generality, requires
facility with infinite cardinal numbers and arguments of a transfinite nature,
and may be found in [Sun]; our interest will be confined to separable Hilbert
spaces; the proof in that case of the dimension being an invariant has been
outlined in Remark 1.4.9.
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We next establish a lemma which will lead to the important result which
is sometimes referred to as ‘the projection theorem’.

Lemma 1.4.10. Let M be a closed subspace of a Hilbert space H; (thus M

may be regarded as a Hilbert space in its own right;) let {ei : i ∈ I} be any
orthonormal basis for M, and let {ej : j ∈ J} be any orthonormal set such that
{ei : i ∈ I ∪ J} is an orthonormal basis for H, where we assume that the index
sets I and J are disjoint. Then, the following conditions on a vector x ∈ H are
equivalent:

(i) x ⊥ y ∀ y ∈ M;
(ii) x =

∑
j∈J〈x, ej〉ej .

Proof. The implication (ii) ⇒ (i) is obvious. Conversely, it follows easily
from Lemma 1.4.4 and Bessel’s inequality that the ‘series’

∑
i∈I〈x, ei〉ei and∑

j∈J〈x, ej〉ej converge in H. Let the sums of these ‘series’ be denoted by y
and z respectively. Further, since {ei : i ∈ I ∪J} is an orthonormal basis for H,
it should be clear that x = y+ z. Now, if x satisfies condition (i) of the lemma,
it should be clear that y = 0 and that hence, x = z, thereby completing the
proof of the lemma. �

We now come to the basic notion of orthogonal complement.

Definition 1.4.11. The orthogonal complement S⊥ of a subset S of a Hilbert
space is defined by

S⊥ = {x ∈ H : x ⊥ y ∀ y ∈ S} .

Exercise 1.4.12. If S0 ⊂ S ⊂ H are arbitrary subsets, show that

S⊥
0 ⊃ S⊥ =

(∨
S
)⊥

= ([S])
⊥

.

Also show that S⊥ is always a closed subspace of H.

We are now ready for the basic fact concerning orthogonal complements
of closed subspaces.

Theorem 1.4.13. Let M be a closed subspace of a Hilbert space H. Then,
(i) M⊥ is also a closed subspace;

(ii)
(
M⊥)⊥ = M;

(iii) any vector x ∈ H can be uniquely expressed in the form x = y + z,
where y ∈ M, z ∈ M⊥;

(iv) if x, y, z are as in (3) above, then the equation Px = y defines a
bounded operator P ∈ B(H) with the property that

||Px||2 = 〈Px, x〉 = ||x||2 − ||x− Px||2 , ∀x ∈ H .

Proof. (i) This is easy – see Exercise 1.4.12.
(ii) Let I, J, {ei : i ∈ I ∪ J} be as in Lemma 1.4.10. We assert, to start

with, that in this case, {ej : j ∈ J} is an orthonormal basis for M⊥. Suppose
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this is not true; since this is clearly an orthonormal set in M⊥, this means
that {ej : j ∈ J} is not a maximal orthonormal set in M⊥, which implies the
existence of a unit vector x ∈ M⊥ such that 〈x, ej〉 = 0 ∀ j ∈ J ; such an x
will satisfy condition (i) of Lemma 1.4.10, but not condition (ii).

If we now reverse the roles of M, {ei : i ∈ I} and M⊥, {ej : j ∈ J}, we
find from the conclusion of the preceding paragraph that {ei : i ∈ I} is an

orthonormal basis for
(
M⊥)⊥, from which we may conclude the validity of (ii)

of this theorem.
(iii) The existence of y and z was demonstrated in the proof of Lemma

1.4.10; as for uniqueness, note that if x = y1+z1 is another such decomposition,
then we would have

y − y1 = z1 − z ∈ M ∩M⊥ ;

but w ∈ M ∩M⊥ ⇒ w ⊥ w ⇒ ||w||2 = 0 ⇒ w = 0.
(iv) The uniqueness of the decomposition in (iii) is easily seen to imply

that P is a linear mapping of H into itself; further, in the notation of (iii), we
find (since y ⊥ z) that

||x||2 = ||y||2 + ||z||2 = ||Px||2 + ||x− Px||2 ;

this implies that ||Px|| ≤ ||x|| ∀ x ∈ H, and hence P ∈ B(H).
Also, since y ⊥ z, we find that

||Px||2 = ||y||2 = 〈y, y + z〉 = 〈Px, x〉 ,

thereby completing the proof of the theorem. �

The following corollary to the above theorem justifies the final assertion
made in Remark 1.4.9 (1).

Corollary 1.4.14. The following two conditions on an orthonormal set {ei :
i ∈ I} in a Hilbert space H are equivalent:

(i) {ei : i ∈ I} is an orthonormal basis for H;
(ii) {ei : i ∈ I} is total in H – meaning, of course, that H = [ {ei : i ∈

I} ].

Proof. As has already been observed in Remark 1.4.9 (1), the implication (i) ⇒
(ii) follows from Proposition 1.4.5(ii).

Conversely, suppose (i) is not satisfied; then {ei : i ∈ I} is not a maximal
orthonormal set in H; hence there exists a unit vector x such that x ⊥ ei ∀i ∈ I;
if we write M = [ {ei : i ∈ I} ], it follows easily that x ∈ M⊥, whence
M⊥ �= {0}; then, we may deduce from Theorem 1.4.13(2) that M �= H - i.e.,
(ii) is also not satisfied. �

A standard and easily proved fact is that the following conditions on a
linear map T : H → K between Hilbert spaces are equivalent:
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(1) T is continuous; i.e. ‖xn − x‖ → 0 ⇒ ‖Txn − Tx‖ → 0;

(2) T is continuous at 0; i.e. ‖xn‖ → 0 ⇒ ‖Txn‖ → 0;

(3) sup{‖Tx‖ : ‖x‖ ≤ 1} = inf{C > 0 : ‖Tx‖ ≤ C‖x‖ ∀x ∈ H} < ∞.

On account of (3) above, such continuous linear maps are called bounded
operators and we write B(H,K) for the vector space of all bounded operators
from H to K. It is a standard fact that B(H,K) is a Banach space if ‖T‖ is
defined as the common value of the two expressions in item (3) above.

We write B(H) for B(H,H), and note that B(H) is a Banach algebra
when equipped with composition product AB = A ◦B.

It is customary to write H∗ = B(H,C). We begin by identifying this
Banach dual space H∗.

Theorem 1.4.15. (Riesz lemma)
Let H be a Hilbert space.
(a) If y ∈ H, the equation

φy(x) = 〈x, y〉 (1.4.8)

defines a bounded linear functional φy ∈ H∗; and further, ||φy||H∗ = ||y||H .
(b) Conversely, if φ ∈ H∗, there exists a unique element y ∈ H such that

φ = φy as in (a) above.

Proof. (a) Linearity of the map φy is obvious, while the Cauchy-Schwarz in-
equality shows that φy is bounded and that ||φy|| ≤ ||y||. Since φy(y) = ||y||2,
it easily follows that we actually have equality in the preceding inequality.

(b) Suppose conversely that φ ∈ H∗. Since ||φy1 −φy2 || = ||y1−y2|| for all
y1, y2 ∈ H, the uniqueness assertion is obvious; we only have to prove existence.
Let M = ker φ. Since existence is clear if φ = 0, we may assume that φ �= 0,
i.e., that M �= H, or equivalently that M⊥ �= 0.

Notice that the map φ is 1-1 from M⊥ into C; since M⊥ �= 0, it follows
that M⊥ is one-dimensional. Let z be a unit vector in M⊥. The y that we seek –
assuming it exists – must clearly be an element of M⊥ (since φ(x) = 0 ∀x ∈ M).
Thus, we must have y = αz for some uniquely determined scalar 0 �= α ∈ C.
With y defined thus, we find that φy(z) = α; hence we must have α = φ(z).
Since any element in H is uniquely expressible in the form x + γz for some
x ∈ M, and scalar γ ∈ C, we find easily that we do indeed have φ = φ

φ(z)z
. �

It must be noted that the mapping y �→ φy is not quite an isometric
isomorphism of Banach spaces; it is not a linear map, since φαy = αφy; it
is only ‘conjugate-linear’. The dual (à priori Banach) space H∗ is actually a
Hilbert space if we define

〈φy, φz〉 = 〈z, y〉 ;
that this equation satisfies the requirements of an inner product are an easy
consequence of the Riesz lemma (and the conjugate-linearity of the mapping
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y �→ φy already stated); that this inner product actually gives rise to the norm
on H∗ is a consequence of the fact that ||y|| = ||φy||.
Exercise 1.4.16. (1) Where is the completeness of H used in the proof of the
Riesz lemma; more precisely, what can you say about X∗ if you only know that
X is an (not necessarily complete) inner product space? (Hint: Consider the
completion of X.)

(2) If T ∈ B(H,K), where H,K are Hilbert spaces, prove that

||T || = sup{|〈Tx, y〉| : x ∈ H, y ∈ K, ||x|| ≤ 1, ||y|| ≤ 1} .

A mapping B : H ×K → C is called a bounded sesquilinear form if

B
( m∑

i=1

αixi,

n∑
j=1

βjyj

)
=

m∑
i=1

n∑
j=1

αiβ̄jB(xi, yj), ∀αi, βj ∈ C, xi ∈ H, yj ∈ K

(1.4.9)
and

‖B‖ := sup{|B(x, y)| : ‖x‖, ‖y‖ ≤ 1} < ∞ . (1.4.10)

The following is an easy consequence of the Riesz lemma (see Theorem
1.4.15)) and so its proof is omitted.

Proposition 1.4.17. (1) B : H × K → C is a bounded sesquilinear form if
and only if there exists a unique bounded operator T ∈ B(H,K) such that
B(x, y) = 〈Tx, y〉 ∀x, y; furthermore, ‖T‖ = ‖B‖.

(2) Every sesquilinear form defined on H×H satisfies the polarisation iden-
tity:

4B(x, y) =

3∑
j=0

(
√−1

j
B(x+

√−1
j
y, x+

√−1
j
y)

It is a consequence of the open mapping theorem that the following con-
ditions on a T ∈ B(H,K) are equivalent:

(1) There exists an S ∈ B(K,H) such that ST = id, TS = idK.

(2) T is a set-theoretic bijection, i.e., both 1-1 and onto.

We call such an operator T invertible, and write S = T−1. It is a fact
(see [Sun]) that the collection GL(H,K) of such invertible operators is open
in the norm-topology of B(H,K), and that the mapping T �→ T−1 is a norm-
continuous map of GL(H,K) onto GL(K,H).

Recall that the spectrum of a T ∈ B(H) is defined to be σ(T ) = {λ ∈ C :
T − λ /∈ GL(H)}. It follows from the previous paragraph that σ(T ) is a closed
set. It is also true that σ(T ) is a non-empty compact set for any T ∈ B(H).

An elementary fact about spectra that will be needed later is a special
case of a more general spectral mapping theorem.
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Proposition 1.4.18. If p ∈ C[t] is any polynomial with complex coefficients,
and if T ∈ B(H), then σ(p(T )) = p(σ(T )).

Proof. Fix a λ ∈ C. If p is a constant, the proposition is obvious, so we assume
p is a polynomial of degree n ≥ 1. Then the algebraic closedness of C permits
a factorisation of the form p(t)−λ = αn

∏n
i=1(t−μi). Clearly, then p(T )−λ =

αn

∏n
i=1(T − μi) (where the order of the product is immaterial as the factors

commute pairwise). We need the fairly easy fact that if T1, . . . , Tn are n pairwise
commuting operators, then their product T1 . . . Tn is invertible if and only if
each Ti is invertible. (Verify this!) Hence conclude that

λ /∈ σ(p(T )) ⇔ μi /∈ σ(T )∀i
or equivalently, that λ ∈ σ(p(T )) if and only if there exists some i such that
μi ∈ σ(T ). This is equivalent to saying that λ ∈ p(σ(T )); and thus, indeed
σ(p(T )) = p(σ(T )). �

It is a fact that λ ∈ σ(T ) ⇒ |λ| ≤ ‖T‖ and that the spectrum is always
compact. The non-emptiness is a more non-trivial fact. (This statement for all
finite-dimensional H is equivalent to the fact that C is algebraically closed, i.e.,
that every complex polynomial is a product of linear factors.)

Another proof that simultaneously establishes the fact that σ(T ) is non-
empty and compact is the (not surprisingly complex analytic) proof of the
so-called spectral radius formula:

spr(T ) := sup{|λ| : λ ∈ σ(T )} = lim
n→∞ ‖Tn‖ 1

n . (1.4.11)

This says two things: (i) that the indicated limit exists, and (ii) that the value of
the limit is as asserted. Part (ii) shows that the spectral radius is non-negative,
and hence that spectrum is always non-empty. We will shortly be using part
(i) to establish that spr(T ) = ‖T‖ if T is ‘normal’, which is a key ingredient in
the proof of the spectral theorem.

Most of this required background material can be found in the initial
chapters of most standard books (such as [Sun]) covering the material of a first
course in Functional Analysis.

1.5 Adjoints

An immediate consequence of the Riesz lemma (Lemma 1.4.15) is:

Proposition 1.5.1. If T ∈ B(H,K), there exists a unique operator T ∗ ∈
B(K,H) – called the adjoint of the operator T – such that

〈T ∗y, x〉 = 〈y, Tx〉 ∀x ∈ H, y ∈ K.

Proof. Notice that the right side of the displayed equation above defines a
bounded sesquilinear form on K ×H, and appeal to Proposition 1.4.17 to lay
hands on the desired operator T ∗. �
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We list below some simple properties of this process of taking adjoints.

Proposition 1.5.2. (1) For all α ∈ C, S, S1, S2 ∈ B(H,K), T ∈ B(M,H),
we have:

(αS1 + S2)
∗ = ᾱS∗

1 + S∗
2 ;

(S∗)∗ = S ;

(ST )∗ = T ∗S∗ ;

id∗H = idH .

(2) ‖T‖2 = ‖T ∗T‖ and hence, also ‖T ∗‖ = ‖T‖ ;

(3) ker(T ∗) = ran⊥(T ) := (ran(T ))⊥; equivalently, ker⊥(T ∗) = ran(T ).

Proof. (1) Most of these identities follow from the fact that the adjoint is
characterised by the equation it satisfies. Thus, for instance,

〈(αS1 + S2)
∗y, x〉 = 〈y, (αS1 + S2)x〉

= ᾱ〈y, S1x〉+ 〈y, S2x〉
= ᾱ〈S∗

1y, x〉+ 〈S∗
2y, x〉

= 〈(ᾱS∗
1 + S∗

2 )y, x〉.
The other three statements are even more straight-forward to verify.

(2) On the one hand,

‖T‖2 = sup{‖Tx‖2 : ‖x‖ ≤ 1}
= sup{〈T ∗Tx, x〉 : ‖x‖ ≤ 1}
≤ ‖T ∗T‖ ,

while on the other,

‖T ∗T‖ = sup{|〈T ∗Tx1, x2〉| : ‖x1|‖, ‖x2‖ ≤ 1}
≤ sup{‖Tx1‖‖Tx2‖ : ‖x1‖, ‖x2‖ ≤ 1}
≤ ‖T‖2 .

(Observe that the Cauchy-Schwarz inequality |〈x, y〉| ≤ ‖x‖ ‖y‖ has
been used in the proofs of both inequalities above – in the third line of the
first, and in the second line of the second.) The desired equality follows,
and the sub-multiplicativity of the norm then implies that ‖T ∗‖ ≤ ‖T‖.
By interchanging the roles of T and T ∗, we find that, indeed ‖T ∗‖ = ‖T‖.

(3)

y ∈ ker(T ∗) ⇔ T ∗y = 0

⇔ 〈T ∗y, x〉 = 0 ∀x
⇔ 〈y, Tx〉 = 0 ∀x
⇔ y ∈ ran⊥(T ) .

�
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The polarisation identity has the following immediate corollaries:

Corollary 1.5.3. (1) If T ∈ B(H), then

T = 0 ⇔ 〈Tx, x〉 = 0 ∀x ∈ H.

(2)
T = T ∗ ⇔ 〈Tx, x〉 ∈ R ∀x ∈ H .

This corolllary leads to the definition of an important class of operators:

Definition 1.5.4. An operator T ∈ B(H) is said to be self-adjoint (or Hermi-
tian) if T = T ∗.

A slightly larger class of operators, which is the correct class of operators
for the purposes of the spectral theorem, is dealt with in our next definition.

Definition 1.5.5. An operator Z ∈ B(H) is said to be normal if Z∗Z = ZZ∗.

Proposition 1.5.6. Let Z ∈ B(H).

(1) Z is normal if and only if ‖Zx‖ = ‖Z∗x‖ ∀x ∈ H.

(2) If Z is normal, then ‖Z2‖ = ‖Z∗Z‖ = ‖Z‖2; more generally, ‖Z2n‖ =
‖Z‖2n and consequently spr(Z) = ‖Z‖.

Proof. (1)

Z∗Z = ZZ∗ ⇔ 〈Z∗Zx, x〉 = 〈ZZ∗x, x〉 ∀x ∈ H

⇔ ‖Zx‖2 = ‖Z∗x‖2 ∀x ∈ H.

(2) Suppose Z is normal. Then,

‖Z2‖ = sup{‖Z2x‖ : ‖x‖ = 1}
= sup{‖Z∗Zx‖ : ‖x‖ = 1} (by part (1) above)

= ‖Z∗Z‖
= ‖Z‖2

where we have used Proposition 1.5.2(2) in the last step; an easy induction
argument now yields the statement about 2n, which implies that ‖Z‖ =

limn→∞ ‖Z2n‖ 1
2n = spr(Z).

�

We now have the tools at hand to prove a key identity.

Proposition 1.5.7. If X ∈ B(H) is self-adjoint, and p ∈ C[t] is any polynomial
with complex coefficients, then

‖p(X)‖ = ‖p‖σ(X) := sup{|p(t)| : t ∈ σ(X)}. (1.5.12)
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Proof. Notice that q = |p|2 = p̄p is a polynomial with real coefficients, and
hence q(X) is self-adjoint. Deduce from Proposition 1.5.6 (2) and the spectral
mapping theorem (Proposition 1.4.18) that

‖p(X)‖2 = ‖p(X)∗p(X)‖
= ‖p̄(X)p(X)‖
= ‖q(X)‖
= sup{|λ| : λ ∈ σ(q(X))}
= sup{|q(t)| : t ∈ σ(X)}
= ‖q‖σ(X)

= ‖p‖2σ(X) ,

as desired. �
Just as every complex number has a unique decomposition into real and

imaginary parts, it is seen that each Z ∈ B(H) has a unique Cartesian de-
composition Z = X + iY , with X and Y being self-adjoint (these being
necessarily given by X = 1

2 (Z + Z∗) and Y = 1
2i (Z − Z∗), so that, in fact,

〈Xx, x〉 = Re 〈Zx, x〉 and 〈Y x, x〉 = Im 〈Zx, x〉). For this reason, we some-
times write X = Re Z, Y = Im Z.

For future reference, we make some observations on the Cartesian decom-
position of a normal operator.

Proposition 1.5.8. Let Z = X + iY be the Cartesian decomposition of an
operator. Then, the following conditions are equivalent:

(1) Z is normal.

(2) ‖Zx‖2 = ‖Xx‖2 + ‖Y x‖2 ∀x ∈ H.

(3) XY = Y X.

Proof. First notice that for Z = X + iY , we have

‖Zx‖2 = ‖Xx+ iY x‖2
= ‖Xx‖2 + ‖Y x‖2 − 2Re (i〈Xx, Y x〉)

while

‖Z∗x‖2 = ‖Xx− iY x‖2
= ‖Xx‖2 + ‖Y x‖2 + 2Re (i〈Xx, Y x〉),

so that

‖Z∗x‖2 = ‖Zx‖2 ⇔ Re (i〈Xx, Y x〉) = 0 ⇔ ‖Zx‖2 = ‖Xx‖2 + ‖Y x‖2.
Notice finally that

Re i〈Xx, Y x〉 = 0 ⇔ 〈Xx, Y x〉 ∈ R
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and that (since X,Y are self-adjoint)

〈Xx, Y x〉 ∈ R ∀x ∈ H ⇔ XY = (XY )∗ = Y X.

The truth of the lemma is evident now. �

1.6 Approximate eigenvalues

Definition 1.6.1. A scalar λ ∈ C is said to be an approximate eigenvalue of
an operator Z ∈ B(H) if there exists a sequence {xn : n ∈ N} ⊂ S(H) such that
limn→∞ ‖(Z − λ)xn‖ = 0. Here and in the sequel, we shall employ the symbol
S(H) to denote the unit sphere of H; thus, S(H) := {x ∈ H : ‖x‖ = 1}.

The importance – as emerges from [Hal] – of this notion in the context of
the spectral theorem (equivalently, the study of self-adjoint or normal opera-
tors) lies in the following result:

Theorem 1.6.2. Suppose Z ∈ B(H) is normal. Then:

(1) Z ∈ GL(H) ⇔ Z is bounded below; i.e., there is an ε > 0 such that
‖Zx‖ ≥ ε‖x‖ ∀x ∈ H, equivalently, inf{‖Zx‖ : x ∈ S(H)} ≥ ε > 0
(assuming H �= 0).

(2) λ ∈ σ(Z) if and only if λ is an approximate eigenvalue of Z.

Proof. (1) If Z is invertible, then note that

‖x‖ = ‖Z−1Zx‖ ≤ ‖Z−1‖‖Zx‖ ∀x

which shows that ‖Zx‖ ≥ ‖Z−1‖−1‖x‖ ∀x and that Z is indeed bounded
below.

If, conversely, Z is bounded below, deduce two consequences, viz.,

(a) Z∗ is also bounded below (by part (1) of Proposition 1.5.6)) and
hence ker(Z∗)(= ker(Z)) = {0} so that ran(Z) is dense in H (by
part (3) of Proposition1.5.2).

(b) Z has a closed range (Reason: If Zxn → y then {Zxn : n ∈ N}, and
consequently also {xn : n ∈ N}, must be a Cauchy sequence, forcing
y = Z(limn→∞ xn).)

It follows from (a) and (b) above that Z is a bijective linear map of H
onto itself and hence invertible.

(2) Note first that (Z − λ) inherits normality from Z, then deduce from (1)
above that λ ∈ σ(Z) if and only if there exists a sequence xn ∈ S(H) such
that ‖(Z − λ)xn‖ < 1

n ∀n, i.e., λ is an approximate eigenvalue of z, as
desired.

�
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Corollary 1.6.3.

X = X∗ ⇒ σ(X) ⊂ R.

Proof. If there exists a sequence {xn : n ∈ N} ⊂ S(H) satisfying the condition
‖(X − λ)xn‖ → 0, then also 〈(X − λ)xn, xn〉 → 0 and hence

λ = lim
n→∞〈λxn, xn〉 = lim

n→∞〈Xxn, xn〉 ∈ R

(by Corollary 1.5.3 (2)). �

For later reference, we record an immediate consequence of Theorem 1.6.2
(2) and Proposition 1.5.8 (2).

Corollary 1.6.4. Suppose λ = α + iβ and Z = X + iY are the Cartesian
decompositions of a scalar λ and a normal operator Z respectively. Then the
following conditions are equivalent:

(1) λ ∈ σ(Z);

(2) There exists a sequence {xn : n ∈ N} such that ‖(X − α)xn‖ → 0 and
‖(Y − β)xn‖ → 0.

1.7 Important classes of operators

1.7.1 Projections

Remark 1.7.1. The operator P ∈ B(H) constructed in Theorem 1.4.13(4) is
referred to as the orthogonal projection onto the closed subspace M. When it is
necessary to indicate the relation between the subspace M and the projection
P , we will write P = PM and M = ran P (note that M is indeed the range of
the operator P ); some other facts about closed subspaces and projections are
spelt out in the following exercises. �

Exercise 1.7.2. (1) Show that
(
S⊥)⊥ = [S], for any subset S ⊂ H.

(2) Let M be a closed subspace of H, and let P = PM;

(a) Show that PM⊥ = 1− PM ;

(b) Let x ∈ H; the following conditions are equivalent:

(i) x ∈ M;

(ii) x ∈ ranP (:= PH);

(iii) Px = x;

(iv) ||Px|| = ||x||.
(c) Show that M⊥ = ker P = {x ∈ H : Px = 0}.
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(3) Let M and N be closed subspaces of H, and let P = PM, Q = PN; show that
the following conditions are equivalent:

(i) N ⊂ M;

(ii) PQ = Q;

(i)′ M⊥ ⊂ N⊥;

(ii)′ (1−Q)(1− P ) = 1− P ;

(iii) QP = Q.

(4) With M,N, P,Q as in (3) above, show that the following conditions are
equivalent:

(i) M ⊥ N – i.e., N ⊂ M⊥;

(ii) PQ = 0;

(iii) QP = 0.

(5) When the equivalent conditions of (4) are met, show that:

(a) [M ∪N] = M+N = {x+ y : x ∈ M, y ∈ N}; and that

(c) (P +Q) is the projection onto the subspace M+N.

(6) Show, more generally, that

(a) if {Mi : 1 ≤ i ≤ n} is a family of closed subspaces of H

which are pairwise orthogonal, then their ‘vector sum’ defined by∑n
i=1 Mi = {∑n

i=1 xi : xi ∈ Mi ∀i} is a closed subspace and the
projection onto this subspace is given by

∑n
i=1 PMi

; and that

(b) if {Mn : n ∈ N} is a family of closed subspaces of H which are pairwise
orthogonal, and if M = [

⋃
n∈N

Mn], then PM is given by the sum of the
series

∑
n∈N

PMn which is interpreted in the SOT-sense (see Definition
2.2.4): meaning that (

∑
n∈N

PMn)x =
∑

n∈N
PMnx, with the series on the

right side converging in the norm for each x ∈ H.

Self-adjoint operators are the building blocks of all operators, and they
are by far the most important subclass of all bounded operators on a Hilbert
space. However, in order to see their structure and usefulness, we will have to
wait until after we have proved the fundamental spectral theorem. This will
allow us to handle self-adjoint operators with exactly the same facility with
which we handle real-valued functions.

Nevertheless, we have already seen one important special class of self-
adjoint operators as shown by the next result.
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Proposition 1.7.3. Let P ∈ B(H). Then the following two conditions are
equivalent:
(i) P = PM is the orthogonal projection onto some closed subspace M ⊂ H;
(ii) P = P 2 = P ∗.

Proof. (i) ⇒ (ii) : If P = PM, the definition of an orthogonal projection shows
that P = P 2; the self-adjointness of P follows from Theorem 1.4.13 (4) and
Corollary 1.5.3 (2).

(ii) ⇒ (i) : Suppose (ii) is satisfied; let M = ranP , and note that

x ∈ M ⇒ ∃y ∈ H such that x = Py

⇒ Px = P 2y = Py = x ; (1.7.13)

on the other hand, note that

y ∈ M⊥ ⇔ 〈y, Pz〉 = 0 ∀z ∈ H

⇔ 〈Py, z〉 = 0 ∀z ∈ H (since P = P ∗)
⇔ Py = 0 ; (1.7.14)

hence, if z ∈ H and x = PMz, y = PM⊥z, we find from equations (1.7.13) and
(1.7.14) that Pz = Px+ Py = x = PMz. �

Direct Sums and Operator Matrices

If {Mn : n ∈ N} are pairwise orthogonal closed subspaces – see Exercise
1.7.2 (5)(d) – and if M = [

⋃
n∈N

Mn] we say that M is the direct sum of
the closed subspaces Mi, 1 ≤ i ≤ n, and we write

M =
∞⊕

n=1

Mi ; (1.7.15)

conversely, whenever we use the above symbol, it will always be tacitly assumed
that the Mi’s are closed subspaces which are pairwise orthogonal and that M
is the (closed) subspace spanned by them.

To clarify matters, let us first consider the direct sum of two subspaces.
(We are going to try and mimic the success of operators on C

2 being identifiable
with the operation of matrices acting on column vectors by multiplication.)

So suppose H = H1 ⊕H2. We shall think of a typical element x ∈ H as

a column vector x =

[
x1

x2

]
, with xi ∈ Hi. Let Pi = PHi

so Pix = xi in the

above notation. If we think of Pi as being an element of B(H,Hi), then it is
easily seen that its adjoint is the isometric element Vi of B(Hi,H) described
thus:

V1x1 =

[
x1

0

]
and V2x2 =

[
0
x2

]
.
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Given a T ∈ B(H), define Tij = PiTVj ∈ B(Hj ,Hi) and observe that we have

Tx =

[
T11 T12

T21 T22

]
·
[

x1

x2

]
.

If we refer to ((Tij)) as the matrix corresponding to T , then the matrices
corresponding to P1 and P2 are seen to be[

idH1 0
0 0

]
and

[
0 0
0 idH2

]
.

More generally, if H =
⊕

j∈N
Hj ,K =

⊕
i∈N

Ki, there exists a unique
matrix ((Tij)) with Tij ∈ B(Hj ,Ki) such that whenever ξj ∈ Hj satisfy∑

j∈N
‖ξj‖2 < ∞ (so that the series

∑
j∈N

ξj converges in H (to ξ, say), then

Tξ =
∑

i∈N

(∑
j∈N

Tijξj

)
– with the inner series converging inKi for each i ∈ N

to ηi, say, with
∑

i∈N
‖ηi‖2 < ∞ and Tξ =

∑
i∈N

ηi. In the special case when
each Hj and Ki is one-dimensional, this reduces to saying that if T ∈ B(H,K)
and if {xj : j ∈ N} (resp., {yi : i ∈ N}) is an orthonormal basis in H (resp.,
K), then the operator T can be described by matrix multiplication in the fol-
lowing sense: if the vector x ∈ H (resp., y ∈ K) is thought of as the countably
infinite column matrix [x] = [βj ] with βj = 〈x, xj〉 (resp., [y] = [αi] with
αi = 〈y, yi〉), and if [T ] is the matrix ((tij)) with countably infinitely many
rows and columns with tij = 〈Txj , yi〉, then Tx = y ⇔ αi =

∑
j tijβj ∀i.

Exercise 1.7.4. (1) Verify the assertions of the previous paragraphs. (Hint:
The computation in the case of finite direct sums will show what needs to
be done in the infinite case.)

(2) With the notation of the paragraph preceding this exercise, verify that the
familiar Eij matrix whose only non-zero entry is a 1 in the (i, j)-th spot
is the matrix of the operator denoted by (x̄j ⊗ yi) in Exercise 3.2.11, and
defined in the paragraph preceding that exercise.

(3) Verify the following fundamental rules concerning the system {Eij}:
(1) E∗

ij = Eji ;

(2) EijEkl = δjkEil

where the Kronecker symbol is defined by

δpq =

{
1 if p = q
0 otherwise

.

1.7.2 Isometric versus Unitary

The two propositions given below identify two important classes of operators
between Hilbert spaces.
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Proposition 1.7.5. Let H,K be Hilbert spaces; the following conditions on an
operator U ∈ B(H,K) are equivalent:

(i) if {ei : i ∈ I} is any orthonormal set in H, then also {Uei : i ∈ I} is an
orthonormal set in K;

(ii) there is an orthonormal basis {ei : i ∈ I} for H such that {Uei : i ∈ I} is
an orthonormal set in K;

(iii) 〈Ux,Uy〉 = 〈x, y〉 ∀ x, y ∈ H;

(iv) ||Ux|| = ||x|| ∀ x ∈ H;

(v) U∗U = 1H.

An operator satisfying these equivalent conditions is called an isometry.

Proof. (i) ⇒ (ii) : There exists an orthonormal basis for H.
(ii) ⇒ (iii) : If x, y ∈ H and if {ei : i ∈ I} is as in (ii), then

〈Ux,Uy〉 =

〈
U
(∑

i∈I

〈x, ei〉ei
)
, U

(∑
j∈I

〈y, ej〉ej
) 〉

=
∑
i,j∈I

〈x, ei〉〈ej , y〉〈Uei, Uej〉

=
∑
i∈I

〈x, ei〉〈ei, y〉

= 〈x, y〉 .

(iii) ⇒ (iv) : Put y = x.
(iv) ⇒ (v) : If x ∈ H, note that

〈U∗Ux, x〉 = ||Ux||2 = ||x||2 = 〈1Hx, x〉 ,

and appeal to the fact that a bounded operator is determined by its quadratic
form – see Corollary 1.5.3.

(v) ⇒ (i) : If {ei : i ∈ I} is any orthonormal set in H, then

〈Uei, Uej〉 = 〈U∗Uei, ej〉 = 〈ei, ej〉 = δij .

�
Proposition 1.7.6. The following conditions on an isometry U ∈ B(H,K)
are equivalent:

(i) if {ei : i ∈ I} is any orthonormal basis for H, then {Uei : i ∈ I} is an
orthonormal basis for K;

(ii) there is an orthonormal set {ei : i ∈ I} in H such that {Uei : i ∈ I}
is an orthonormal basis for K;

(iii) UU∗ = 1K;
(iv) U is invertible;
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(v) U maps H onto K.

An isometry which satisfies the above equivalent conditions is said to be
unitary.

Proof. (i) ⇒ (ii) : Obvious.
(ii) ⇒ (iii) : If {ei : i ∈ I} is as in (ii), and if x ∈ K, observe that

UU∗x = UU∗
(∑

i∈I

〈x, Uei〉Uei

)

=
∑
i∈I

〈x, Uei〉UU∗Uei

=
∑
i∈I

〈x, Uei〉Uei (since U is an isometry)

= x .

(iii) ⇒ (iv) : The assumption that U is an isometry, in conjunction with
the hypothesis (iii), says that U∗ = U−1.

(iv) ⇒ (v) : Obvious.
(v) ⇒ (i) : If {ei : i ∈ I} is an orthonormal basis for H, then {Uei : i ∈ I}

is an orthonormal set in H, since U is isometric. Now, if z ∈ K, pick x ∈ H

such that z = Ux, and observe that

||z||2 = ||Ux||2
= ||x||2
=

∑
i∈I

|〈x, ei〉|2

=
∑
i∈I

|〈z, Uei〉|2 ,

and since z was arbitrary, this shows that {Uei : i ∈ I} is an orthonormal basis
for K. �

Thus, unitary operators are the natural isomorphisms in the context of
Hilbert spaces. The collection of unitary operators from H to K will be denoted
by U(H,K); when H = K, we shall write U(H) = U(H,H). We list some
elementary properties of unitary and isometric operators in the next exercise.

Exercise 1.7.7. (1) Suppose that H and K are Hilbert spaces and suppose
{ei : i ∈ I} (resp., {fi : i ∈ I}) is an orthonormal basis (resp., orthonormal
set) in H (resp., K), for some index set I. Show that:

(a) dimH ≤ dimK; and
(b) there exists a unique isometry U ∈ B(H,K) such that Uei = fi ∀i ∈ I.

(2) Let H and K be Hilbert spaces. Show that:
(a) there exists an isometry U ∈ B(H,K) if and only if dim H ≤ dimK;
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(b) there exists a unitary U ∈ B(H,K) if and only if dim H = dim K.

(3) Show that U(H) is a group under multiplication, which is a (norm-) closed
subset of the Banach space B(H).

(4) Suppose U ∈ U(H,K); show that the association

B(H) � T
adU�→ UTU∗ ∈ B(K) (1.7.16)

defines a mapping (adU) : B(H) → B(K) which is an ‘isometric isomorphism
of Banach *-algebras’, meaning that:

(a) adU is an isometric isomorphism of Banach spaces: i.e., ad U is a
linear mapping which is 1-1, onto, and is norm-preserving; (Hint: verify that
it is linear and preserves norm and that its inverse is given by adU∗.)

(b) adU is a product-preserving map between Banach algebras; i.e.,
(adU)(T1T2) =

(
(adU) (T1)

) (
adU)(T2)

)
, for all T1, T2 ∈ B(H);

(c) adU is a *-preserving map between ∗-algebras; i.e.,(
(adU)(T )

)∗
= (adU)(T ∗) ∀T ∈ B(H).

(5) Show that the map U �→ (adU) is a homomorphism from the group U(H)
into the group AutB(H) of all automorphisms (= isometric isomorphisms of
the Banach *-algebra B(H) onto itself); further, verify that if Un → U in
U(H,K), then (adUn)(T ) → (adU)(T ) in B(K) for all T ∈ B(H).

A unitary operator between Hilbert spaces should be viewed as ‘imple-
menting an inessential variation’; thus, if U ∈ U(H,K) and if T ∈ B(H), then
the operator UTU∗ ∈ B(K) should be thought of as being ‘essentially the
same as T ’, except that it is probably being viewed from a different observer’s
perspective. All this is made precise in the following definition.

Definition 1.7.8. Two operators T ∈ B(H) and S ∈ B(K) (on two possibly
different Hilbert spaces) are said to be unitarily equivalent if there exists a
unitary operator U ∈ U(H,K) such that S = UTU∗.

We conclude this section with a discussion of some examples of isometric
operators, which will illustrate the preceding notions quite nicely.

Example 1.7.9. To start with, notice that if H is a finite-dimensional Hilbert
space, then an isometry U ∈ B(H) is necessarily unitary. (Prove this!) Hence,
the notion of non-unitary isometries of a Hilbert space into itself makes sense
only in infinite-dimensional Hilbert spaces. We discuss some examples of a non-
unitary isometry in a separable Hilbert space.

(1) Let H = �2 (= �2(N) ). Let {en : n ∈ N} denote the standard or-
thonormal basis of H (consisting of sequences with a 1 in one co-ordinate and 0
in all other co-ordinates). In view of Exercise 1.7.7(1)(b), there exists a unique
isometry S ∈ B(H) such that Sen = en+1 ∀n ∈ N; equivalently, we have

S(α1, α2, . . .) = (0, α1, α2, . . .).
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For obvious reasons, this operator is referred to as a ‘shift’ operator; in order
to distinguish it from a near relative, we shall refer to it as the unilateral shift.
It should be clear that S is an isometry whose range is the proper subspace
M = {e1}⊥, and consequently, S is not unitary.

A minor computation shows that the adjoint S∗ is the ‘backward shift’:

S∗(α1, α2, . . .) = (α2, α3, . . .)

and that SS∗ = PM (which is another way of seeing that S is not unitary).
Thus S∗ is a left-inverse, but not a right-inverse, for S. (This, of course, is
typical of a non-unitary isometry.)

Further – as is true for any non-unitary isometry – each power Sn, n ≥ 1,
is a non-unitary isometry.

(2) The ‘near-relative’ of the unilateral shift, which was referred to earlier,
is the so-called bilateral shift, which is defined as follows: consider the Hilbert
space H = �2(Z) with its standard basis {en : n ∈ Z} for H. The bilateral
shift is the unique isometry B on H such that Ben = en+1 ∀n ∈ Z. This
time, however, since B maps the standard basis onto itself, we find that B is
unitary. The reason for the terminology ‘bilateral shift’ is this: denote a typical
element of H as a ‘bilateral’ sequence (or a sequence extending to infinity
in both directions); in order to keep things straight, let us underline the 0-
th co-ordinate of such a sequence; thus, if x =

∑∞
n=−∞ αnen, then we write

x = (. . . , α−1, α0, α1, . . .); we then find that

B(. . . , α−1, α0, α1, . . .) = (. . . , α−2, α−1, α0, . . .) .

(3) Consider the Hilbert space H = L2([0, 1],m) (where, of course, m de-
notes ‘Lebesgue measure’) – see Remark 1.4.9(2) – and let {en : n ∈ Z} denote
the exponential basis of this Hilbert space. Notice that |en(x)| is identically
equal to 1, and conclude that the operator defined by

(Wf)(x) = e1(x)f(x) ∀f ∈ H

is necessarily isometric; it should be clear that this is actually unitary, since its
inverse is given by the operator of multiplication by e−1.

It is easily seen that Wen = en+1 ∀n ∈ Z. If U : �2(Z) → H is the unique
unitary operator such that U maps the n-th standard basis vector to en, for
each n ∈ Z, it follows easily that W = UBU∗. Thus, the operator W of this
example is unitarily equivalent to the bilateral shift (of the previous example).

More is true; let M denote the closed subspace M = [{en : n ≥ 1}]; then
M is invariant under W – meaning that W (M) ⊂ M; and it should be clear that
the restricted operator W |M ∈ B(M) is unitarily equivalent to the unilateral
shift.
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(4) More generally, if (X,B, μ) is any measure space and if φ : X → C is
any measurable function such that |φ| = 1 μ-a.e., then the equation

Mφf = φf , f ∈ L2(X,B, μ)

defines a unitary operator on L2(X,B, μ) (with inverse given by Mφ̄). �





Chapter 2

The Spectral Theorem

2.1 C∗-algebras

It will be convenient, indeed desirable, to use the language of C∗-algebras.

Definition 2.1.1. A C∗-algebra is a Banach algebra A equipped with an adjoint
operation A � S �→ S∗ ∈ A which satisfies the following conditions for all
S, T ∈ A

(αS1 + S2)
∗ = ᾱS∗

1 + S∗
2

(S∗)∗ = S

(ST )∗ = T ∗S∗

‖T‖2 = ‖T ∗T‖ (C∗ − identity).

All our C∗-algebras will be assumed to have a multiplicative identity,
which is necessarily self-adjoint (as 1∗ is also a multiplicative identity), and has
norm one – thanks to the C∗-identity (‖1‖2 = ‖1∗1‖ = ‖1‖). (We ignore the
trivial possibility 1 = 0, i.e., A = {0}.)
Example 2.1.2. (1) B(H) is a C∗-algebra, and in particular Mn(C) ∀n, so

also C = M1(C).

(2) Any norm-closed unital *-subalgebra of a C∗-algebra is also a C∗-algebra
with the induced structure from the ambient C∗-algebra.

(3) For any subset S of a C∗-algebra, there is a smallest C∗-subalgebra of
A, denoted by C∗(S), which contains S. (Reason: C∗(S) may be defined
somewhat uninformatively as the intersection of all C∗-subalgebras that
contain S, and described more constructively as the norm-closure of the
linear span of all ‘words’ in the alphabet {1} ∪ S ∪ S∗ := {1} ∪ {x : x ∈
S or x∗ ∈ S}.) The latter description in the previous sentence shows that
C∗({x}) is a commutative ‘singly generated’ C∗-subalgebra if and only if
x satisfies x∗x = xx∗; such an element of a C∗-algebra, which commutes
with its adjoint, is said to be normal.

31� Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2015
V.S. Sunder, Operators on Hilbert Space, Texts and Readings in Mathematics 71,
DOI 10.1007/978-981-10-1816-9_2
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(4) If Σ is any compact space, then C(Σ) is a commutative C∗-algebra – with
respect to pointwise algebraic operations, f∗ = f̄ and ‖f‖ = sup{|f(x)| :
x ∈ Σ}. If Σ ⊂ R (resp., C), then the Weierstrass polynomial approxima-
tion theorem (resp., the Stone-Weierstrass theorem) shows that C(Σ) is a
commutative unital C∗-algebra which is singly generated – with generator
given by f0(t) = t ∀t ∈ Σ.

Definition 2.1.3. A representation of a C∗-algebra A on a Hilbert space H is
just a *-preserving unital algebra homomorphism of A into B(H).

Representations πi : A → B(Hi), i = 1, 2, are said to be equivalent if there
exists a unitary operator U : H1 → H2 such that π2(a) = Uπ1(a)U

∗ ∀a ∈ A.

Remark 2.1.4. It is true that any representation – and more generally, any
unital *-algebra homomorphism between C∗-algebras – is contractive. This is
essentially a consequence of (a) the C∗-identity, which shows that it suffices to
check that ‖π(x)‖ ≤ ‖x‖ ∀x = x∗ (b) the fact that the norm of a self-adjoint
operator is its spectral radius, (see the last part of Proposition 1.5.6 (2)), and
(c) the obvious fact that a unital homomorphism preserves invertibility and
hence ‘shrinks spectra’. Thus,

‖π(x)‖2 = ‖π(x)∗π(x)‖ = ‖π(x∗x)‖

= spr(π(x∗x)) ≤ spr(x∗x) ≤ ‖x∗x‖ = ‖x‖2.
But we will not need this fact in this generality, so we shall say no more about
it.

The observation that sets the ball rolling for us is Proposition 1.5.7.

Proposition 2.1.5. Let Σ ⊂ R be a compact set and let f0 ∈ C(Σ) be given by
f0(t) = t ∀t ∈ Σ. If X ∈ B(H) is a self-adjoint operator such that σ(X) ⊂ Σ,
then there exists a unique representation π : C(Σ) → B(H) such that π(f0) =
X. Conversely given any representation π : C(Σ) → B(H), it is the case that
π(f0) is a self-adjoint operator X satisfying σ(X) ⊂ Σ.

Proof. To begin with, if X ∈ B(H) is a self-adjoint operator such that
σ(X) ⊂ Σ, then it follows from the inequality (1.5.12) that ‖p(X)‖B(H) ≤
‖p‖C(σ(X)) ≤ ‖p‖C(Σ) for any polynomial p. It is easily deduced now, from
Weierstrass’ theorem, that this mapping C[t] � p �→ p(X) ∈ B(H) extends
uniquely to the desired *-homomorphism from C(Σ) to B(H).

Conversely, it is easily seen that f0 − λ is not invertible in C(Σ) if and
only if λ ∈ Σ and as π preserves invertibility, we find that

σ(X) = σ(π(f0)) ⊂ σ(f0) = Σ

as desired. (Strictly speaking, we have only defined spectra of operators, while
we are here talking of the spectra of elements of unital Banach algebras – C(Σ),
to be precise – but the definition is more or less the same.) �
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Remark 2.1.6. Representations πi : C(Σ) → B(Hi) are equivalent if and
only if the operators πi(f0), i = 1, 2 are unitarily equivalent. This is because a
representation of a singly generated C∗-algebra is uniquely determined by the
image of the generator.

2.2 Cyclic representations and measures

Assume, for the rest of this book, that Σ is a separable compact metric space.
Suppose π : C(Σ) → B(H) is a representation of C(Σ) on a separable Hilbert
space.

Definition 2.2.1. A representation π : C(Σ) → B(H) is said to be cyclic
if there exits a vector x ∈ H such that π(C(Σ))x is a dense subspace of H.
In such a case, the vector x is called a cyclic vector for the representation. If
such a vector exists, one can always find a unit vector which is cyclic for the
representation.

Before proceeding, it will be wise to spell out a trivial, but nevertheless
very useful, observation.

Lemma 2.2.2. If Si = {x(i)
j : j ∈ Λ} is a set which linearly spans a dense sub-

space of a Hilbert space Hi for i = 1, 2, and if 〈x(1)
j , x

(1)
k 〉 = 〈x(2)

j , x
(2)
k 〉 for all

j, k ∈ Λ, then there exists a unique unitary operator U : H1 → H2 such that

Ux
(1)
j = x

(2)
j ∀j ∈ Λ.

Proof. The hypotheses guarantee that the equation

U0

( n∑
�=1

α�x
(1)
j�

)
=

n∑
�=1

α�x
(2)
j�

unambiguously defines a linear bijection U0 between dense linear subspaces of
the two Hilbert spaces preserving inner product, and hence extends uniquely
to a unitary operator U with the desired property. Uniqueness of such a U
follows from the fact that the difference between two such U ’s would have a
dense linear subspace in its kernel. �

Proposition 2.2.3. (1) If μ is a finite positive measure defined on the Borel
subsets of Σ, then the equation

(πμ(f)) (g) = fg ∀f ∈ C(Σ), g ∈ L2(Σ, μ)

defines a cyclic representation πμ of C(Σ) with cyclic vector g0 ≡ 1.

(2) Conversely, if π : C(Σ) → B(H) is a representation with a cyclic vector
x, then there exists a finite positive measure μ defined on the Borel subsets
of Σ and a unitary operator U : H → L2(Σ, μ) such that Ux = g0 and
Uπ(f)U∗ = πμ(f) ∀f ∈ C(Σ).
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(3) In the setting of (1) above, there exists a unique representation π̃μ :
L∞(Σ, μ) → B(L2(Σ, μ)) such that (i) π̃μ|C(Σ) = πμ, and (ii) if {fn :
n ∈ N} is such that supn ‖fn‖L∞(Σ,μ) < ∞ and fn → f μ-a.e., then
‖π̃μ(fn)g − π̃μ(f)g‖L2(Σ,μ) → 0 ∀g ∈ L2(Σ, μ).

Further, the measure μ is a probability measure precisely when the cyclic
vector x is a unit vector.

Proof. (1) It is fairly clear that C(Σ) � f �→ πμ(f) ∈ B(H) is a representa-
tion of C(Σ) and ‖πμ(f)‖B(L2(Σ,μ)) ≤ ‖f‖L∞(Σ,μ). Clearly each πμ(f) is
normal, and it follows from Theorem 1.6.2 (2) that

λ ∈ sp (πμ(f)) ⇔ μ({w ∈ Σ : |f(w)− λ| < ε}) > 0 ∀ε > 0,

and in particular, ‖πμ(f)‖ = spr(πμ(f)) = ‖f‖L∞(Σ,μ) ≤ ‖f‖C(Σ). it is a
basic fact from measure theory – see Lemma A1 in the Appendix – that
g0 is indeed a cyclic vector for the representation πμ.

(2) Consider the functional φ : C(Σ) → C defined by φ(f) = 〈π(f)x, x〉. It
is clear that if f ∈ C(Σ) is non-negative, then also f

1
2 ∈ C(Σ) is non-

negative and, in particular, real-valued, and hence

φ(f) = 〈π(f 1
2 )x, π(f

1
2 )x〉 ≥ 0.

Thus φ is a positive – and clearly bounded – linear functional on C(Σ),
and the Riesz representation theorem – which identifies the dual space
of C(Σ) with the set M(Σ) of finite complex measures – guarantees the
existence of a positive measure μ defined on the Borel sets of Σ such that
φ(f) =

∫
f dμ. It follows that for arbitrary f, g ∈ C(Σ), we have

〈π(f)x, π(g)x〉 = 〈π(ḡf)x, x〉
= φ(ḡf)

=

∫
ḡf dμ

= 〈πμ(f)g0, πμ(g)g0〉 .

An appeal to Lemma 2.2.2 now shows that there exists a unitary oper-
ator U : H → L2(Σ, μ) such that Uπ(f)x = πμ(f)g0 ∀f ∈ C(Σ). Set-
ting f = 1, we find that Ux = g0. And for all g ∈ C(Σ), we see that
Uπ(f)U∗πμ(g)g0 = Uπ(f)π(g)x = πμ(f)πμ(g)x0 with the result that,
indeed, Uπ(f)U∗ = πμ(f), completing the proof of (2).

(3) Simply define π̃μ(φ)g = φg ∀g ∈ L2(Σ, μ). Then (i) is clearly true, while
(ii) is just a restatement of the bounded convergence theorem of measure
theory. The uniqueness assertion regarding π̃μ follows from the demanded
(i) and Lemma A2 in the Appendix.

�
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It would make sense to introduce a definition and a notation for a notion
that has already been encountered more than once.

Definition 2.2.4. A sequence {Xn : n ∈ N} in B(H) is said to converge in the
strong operator topology – henceforth abbreviated to SOT – if {Xnx : n ∈ N}
converges in the norm of H for every x ∈ H. It is a consequence of the ‘uniform
boundedness principle’ that in this case, the equation

Xx = lim
n→∞Xnx

defines a bounded operator X ∈ B(H). We shall abbreviate all this by writing

Xn
SOT−→ X.

We record a couple of simple but very useful facts concerning SOT conver-
gence. But first, recall that a set S ⊂ H is said to be total if the linear subspace
spanned by S is dense in H. (eg: any orthonormal basis (onb) is total.)

Lemma 2.2.5. (1) The following conditions on a sequence {Xn : n ∈ N} ⊂
B(H) are equivalent:

(a) Xn
SOT−→ X for some X ∈ B(H);

(b) supn ‖Xn‖ < ∞, and there exists some total set S ⊂ H such that
Xnx converges for all x ∈ S;

(c) supn ‖Xn‖ < ∞, and there exists a dense subspace M ⊂ H such that
Xnx converges for all x ∈ M.

(2) If sequences Xn
SOT−→ X and Yn

SOT−→ Y in B(H), then also XnYn
SOT−→

XY.

Proof. (1) The implication (a) ⇒ (b) follows from the uniform boundedness
principle, while (b) ⇒ (c) is seen on setting M =

∨
S, the vector subspace

spanned by S. As for (c) ⇒ (a), if supn ‖Xn‖ < K(> 0), note that the
equation Xx = limn Xnx defines a linear map X : M → H with ‖Xx‖ ≤
K‖x‖ ∀x ∈ M; the assumed density of M ensures that X admits a unique
extension to an element of B(H), also denoted by X, with ‖X‖ ≤ K and
Xnx → Xx ∀x ∈ M. Now, if x ∈ H and ε > 0, choose x′ ∈ M such
that ‖x− x′‖ < ε/3K, then choose an n0 ∈ N such that ‖(Xn −X)x′‖ <
ε/3 ∀n ≥ n0 and compute thus, for n ≥ n0:

‖(Xn −X)x‖ ≤ ‖(Xn −X)(x− x′)‖+ ‖(Xn −X)x′‖
< (2K)

ε

3K
+

ε

3
= ε.

(2) Begin by deducing from the uniform boundedness principle that there
exists a constant K > 0 such that ‖Xn‖ ≤ K and ‖Yn‖ ≤ K for all n. Fix
x ∈ H and an ε > 0. Under the hypotheses, we can find an n0 ∈ N such
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that ‖(Yn − Y )x‖ < ε/2K and ‖(Xn −X)Y x‖ < ε/2 for all n ≥ n0. We
then see that for every n ≥ n0

‖(XnYn −XY )x‖ = ‖(XnYn −XnY +XnY −XY )x‖
≤ ‖Xn(Yn − Y )x‖+ ‖(Xn −X)Y x‖
< ε,

thus proving that indeed XnYn
SOT−→ XY.

�

The following important consequence of Proposition 2.2.3 is ‘one half’
of the celebrated Hahn-Hellinger classification of separable representations of
C(Σ). (See Remark 2.3.3.)

Theorem 2.2.6. If π : C(Σ) → B(H) is a representation on a separable Hilbert
space H, there exists a countable collection {μn : n ∈ N} (for some countable
set N) of probability measures defined on the Borel-σ-algebra BΣ such that π
is (unitarily) equivalent to ⊕πμn

: C(Σ) → B
(⊕

L2(Σ, μn)
)
.

Proof. Note that H is separable, as is the Hilbert space underlying any cyclic
representation of C(Σ) (since the latter is separable). Also observe that π(C(Σ))
is closed under adjoints, as a consequence of which, if a subspace of M ⊂ H is
left invariant by the entire *-algebra π(C(Σ)), then so isM⊥. It follows from the
previous sentence and a simple use of Zorn’s lemma, that there exists a count-
able (possibly finite) collection {xn : n ∈ N} (for some countable set N) of unit
vectors such that H =

⊕
n∈N (π(C(Σ))xn). Clearly each Mn = (π(C(Σ))xn)

is a closed subspace that is invariant under the algebra π(C(Σ)) and yields a
cyclic subrepresentation πn(·) = π(·)|Mn

. It follows from Proposition 2.2.3 (2)
that

π =
⊕

n∈N πn ∼ ⊕
πμn ,

for the probability measures given by∫
Σ

f dμn = 〈π(f)xn, xn〉 .

�

Lemma 2.2.7. In the notation of Proposition 2.2.3(3), the following conditions
on a bounded sequence {fn} in L∞(μ) are equivalent:

(1) the sequence {fn} converges in (μ-) measure to 0;

(2) π̃μ(fn)
SOT−→ 0.

Proof. (1) ⇒ (2): This is an immediate consequence of a version of the domi-
nated convergence theorem.
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(2) ⇒ (1): Since the constant function g0 ≡ 1 belongs to L2(Σ, μ), it
follows from the inequality

μ({|fn − f | ≥ ε}) ≤ ε−2

∫
{|fn−f |≥ε}

|fn − f |2dμ

≤ ε−2

∫
|fn − f |2dμ

that indeed μ({|fn − f | ≥ ε}) → 0 ∀ε > 0. �
Theorem 2.2.8. Let π : C(Σ) → B(H) and {μn : n ∈ N} be as given in
Theorem 2.2.6. Choose some set {εn : n ∈ N} of strictly positive numbers
such that

∑
n∈N εn = 1, and define the probability measure μ on (Σ,BΣ) by

μ =
∑

n∈N εnμn. Then, we have:

(1) For E ∈ BΣ we have μ(E) = 0 ⇔ μn(E) = 0 ∀n ∈ N . Further, φ ∈
L∞(Σ, μ) ⇒ φ ∈ L∞(Σ, μn) ∀n ∈ N and supn ‖φ‖L∞(μn) = ‖φ‖L∞(μ).

(2) The equation π̃ =
⊕

m∈N π̃μm
defines an isometric representation π̃ :

L∞(Σ, μ) → B(H) such that the following conditions on a uniformly
norm-bounded sequence {φn : n ∈ N} in L∞(μ) are equivalent:

(a) φn → 0 in measure w.r.t. μ.

(b) φn → 0 in measure w.r.t. μm for all m.

(c) π̃(φn)
SOT−→ 0.

Proof. Before proceeding with the proof, we wish to underline the (so far un-
written) convention that we use throughout this book: we treat elements of
different Lp-spaces as if they were functions (rather than equivalence classes of
functions agreeing almost everywhere.).

(1) Since εn > 0 ∀n ∈ N , it follows that μ(E) = 0 ⇔ μn(E) = 0 ∀n ∈ N .

Since a countable union of null sets is also a null set, it is clear that
if φ ∈ L∞(μ), we may find a μ-null set F which will satisfy the condition
‖φ‖L∞(μ) = sup{|φ(λ)| : λ ∈ Σ \ F}. For E ∈ BΣ we have μ(E) = 0 ⇔
μn(E) = 0 ∀n ∈ N . Let Fn = F ∪ {dμn

dμ = 0}. Clearly,

μn(
⋂

m∈N Fm) ≤ μn(Fn) = 0 ∀n

so, also μ(
⋂

m∈N Fm) = 0. Since (
⋂

m∈N Fm) ⊃ F , we see thus that

‖φ‖L∞(μ) = sup
{|φ(λ)| : λ ∈ Σ \⋂m∈N Fm

}
= sup

{|φ(λ)| : λ ∈ ⋃
m∈N (Σ \ Fm)

}
= sup

m
sup{|φ(λ)| : λ ∈ Σ \ Fm}

= sup
m

‖φ‖L∞(μm) .



38 Chapter 2. The Spectral Theorem

(2) If φ ∈ L∞(μ), then

‖π̃(φ)‖ = sup
m∈N

‖π̃μm
(φ)‖

= sup
m∈N

‖φ‖L∞(μm)

= ‖φ‖L∞(μ) by part (1) of this Theorem

so π̃ is indeed an isometry.

Suppose supn∈N ‖φn‖L∞(μ) ≤ C < ∞.

(a) ⇒ (b) : This follows immediately from μm ≤ ε−1
m μ.

(b) ⇒ (a) : Let δ, ε > 0. We assume, for this proof, that the index
set N is the whole of N; the case of finite N is trivially proved. First choose
N ′ ∈ N such that

∑∞
m=N ′+1 εm < ε/2. Then choose an n0 so large that

n ≥ n0 ⇒ μm({|φn| > δ}) < ε/2N ′εm; and conclude that for an n ≥ n0,
we have

μ({|φn| > δ}) ≤
N ′∑

m=1

εmμm({|φn| > δ}) +
∞∑

m=N ′+1

εm

<

N ′∑
m=1

εm
ε

2N ′εm
+

ε

2

= ε.

(b) ⇒ (c): As ‖π̃(φn)‖ ≤ C ∀n, using Lemma 2.2.5 it is enough to
prove that limn→∞ π̃(φn)x = 0 whenever x = ((xm)) ∈ ⊕∞

m=1 L
2(μm) is

such that xm = 0 ∀ m �= k for some one k. By Lemma 2.2.7, the condition
(b) is seen to imply that ‖π̃μk

(φn)xk‖ → 0; but ‖π̃(φn)x‖ = ‖π̃μk
(φn)xk‖

and we are done.

(c) ⇒ (b): If condition (c) holds, it can be seen by restricting to

the subspace L2(μm) that π̃μm(φn)
SOT−→ 0, and it now follows by applying

Lemma 2.2.7 that the sequence φn → 0 in measure with respect to μm for
each m ∈ N.

�

2.3 Spectral Theorem for self-adjoint operators

Throughout this section, we shall assume that X ∈ B(H) is a self-adjoint
operator and that Σ = σ(X). In the interest of minimising parentheses, we shall
simply write C∗(X) rather than C∗({X}) for the (unital) C∗-algebra generated
by X. As advertised in the preface, we shall prove the following formulation of
what we would like to think of as the spectral theorem.
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Theorem 2.3.1. [Spectral theorem for self-adjoint operators]

(1) (Continuous Functional Calculus) There exists a unique isometric *-
algebra isomorphism

C(Σ) � f �→ f(X) ∈ C∗(X)

of C(Σ) onto C∗(X) such that f0(X) = X.1

(2) (Measurable Functional Calculus) There exists a measure μ defined on
BΣ and a unique isometric *-algebra homomorphism

L∞(Σ, μ) � f �→ f(X) ∈ B(H)

of L∞(Σ, μ) into B(H) such that (i) f0(X) = X, and (ii) a norm-bounded
sequence {fn : n ∈ N} in L∞(Σ, μ) converges in measure w.r.t. μ (to f ,
say) if and only if the sequence {fn(X) : n ∈ N} SOT converges (to f(X)).

Proof. (1) It follows from Proposition 2.1.5 that there exists a unique repre-
sentation π : C(Σ) → B(H) such that π(f0) = X. As for the ‘isometry’
assertion, observe that for any p ∈ C[t], the spectral mapping theorem
ensures that

‖π(p)‖B(H) = spr(p(X)) = ‖p‖Σ = ‖p‖C(Σ)

and the Weierstrass approximation theorem now guarantees that

‖π(f)‖B(H) = ‖f‖C(Σ) ∀f ∈ C(Σ)

as desired.

(2) As f �→ f(X) is a representation, say π, of C(Σ), if μ and π̃ are as in
Theorem 2.2.8 (2), the equation π̃(φ) = φ(X) defines a measurable func-
tional calculus with the desired properties. Thanks to Lemma A2 in the
Appendix, there can be at most one isometric (unital) *-homomorphism
of L∞(Σ, μ) into B(H), i.e., a measurable functional calculus, which (i)
extends the continuous functional calculus π and (ii) maps uniformly
bounded sequences converging in measure (w.r.t. μ) to SOT convergent
sequences.‘ So we see that there indeed exists a unique *-homomorphism
from L∞(Σ, μ) into B(H) with the desired property.

�
Corollary 2.3.2. If μi, i = 1, 2 are two probability measures satisfying the
conditions imposed on μ in Theorem 2.3.1, then μ1 and μ2 are mutually ab-
solutely continuous. In particular, the Banach algebra L∞(Σ, μ) featuring in
Theorem 2.3.1 (2) is uniquely determined by the operator X, even if μ itself is
not.

1Recall that Σ ⊂ R – see Corollary 1.6.3 – and that f0 denotes the function f0 : Σ → R

defined by f0(t) = t.
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Proof. Suppose πi : L
∞(Σ, μi) → B(H), i = 1, 2 are isometric *-isomorphisms

which (i) extend the continuous functional calculus (call it π : C(Σ) →
C∗({X})), and (ii) satisfy the convergence in measure – sequential SOT con-
vergence homeomorphism property as in part (2) of Theorem 2.3.1. Define
ν = (μ1 + μ2)/2. Then convergence in measure w.r.t ν implies convergence in
measure w.r.t. μi for 1 = 1, 2 since μi ≤ 2ν.

Suppose μ1(E) = 0 for some E ∈ BC.

Then appeal to Lemma A2 of the Appendix to find a sequence {fn : n ∈
N} ⊂ C(Σ) such that ‖fn‖ ≤ 1 ν-a.e. and such that fn → 1E in measure w.r.t.
ν. Then also fn → 1E in measure w.r.t. μi, 1 = 1, 2. Then the assumptions
imply that

π2(1E) = SOT − lim
n

π2(fn)

= SOT − lim
n

π1(fn)

= π1(1E)

= 0

and hence μ2(E) = 0. By toggling the roles of 1 and 2, we find that μ1 and μ2

are mutually absolutely continuous, thereby proving the corollary.

The last assertion is an off-shoot of the statement that the ‘identity map’ is
an isometric isomorphism between L∞ spaces of mutually absolutely continuous
probability measures. �

Remark 2.3.3. (1) Our proof of the spectral theorem, for self-adjoint opera-
tors, actually shows that if Σ is a compact metric space and π : C(Σ) →
B(H) is a representation, i.e., a unital *-homomorphism, on a separa-
ble Hilbert space, there exists a probability measure μ defined on BΣ –
which is unique up to mutual absolute continuity – and a representation
π̃ : L∞(μ) → B(H) which is uniquely determined by (i) π̃ ‘extends’ π,
and (ii) a norm-bounded sequence {fn : n ∈ N} ⊂ L∞(μ) converges to 0
in (μ) measure if and only if π̃(fn) SOT-converges to 0.

(2) Further, if π is isometric, so is π̃ and in particular, if U is a non-empty
open set in Σ, then μ(U) �= 0, or equivalently π̃(1U ) �= 0.

(3) All this is part of the celebrated Hahn-Hellinger theorem which says: the
representation π is determined up to unitary equivalence by the mea-
sure class (w.r.t. mutual absolute continuity) of μ and a measurable
spectral multiplicity function m : Σ → ({0} ∪ N̄) := {0, 1, 2, · · · ,ℵ0},
which is determined uniquely up to sets of μ measure zero; in fact if
En = m−1(n), n ∈ {0}∪ N̄, then π is unitarily equivalent to the represen-
tation on

⊕
n∈N̄

L2(En, μ|En
) ⊗Hn given by

⊕
n∈N̄

πμ|En
⊗ idHn

, where
Hn is some (multiplicity) Hilbert space of dimension n.
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2.4 The spectral subspace for an interval

This section is devoted to a pretty and useful characterisation, from [Hal], of the
spectral subspace for the unit interval. We first list some simple facts concerning
spectral subspaces (= ranges of spectral projections). We use the following
notation below: for a self-adjoint operator X, let MX(E) = ran 1E(X). We also
use the as yet undefined notions (but only the definition) of order and positivity
– see Proposition 2.8.12, especially part (b) and the final paragraph in it – in
the following Proposition.

Proposition 2.4.1. Let X ∈ B(H) be self-adjoint. Then,

(1) a‖x‖2 ≤ 〈Xx, x〉 ≤ b‖x‖2 ∀x ∈ MX([a, b]);

(2) X1[0,∞)(X) ≥ 0;

(3) ε > 0, x ∈ MX(R \ (t0 − ε, t0 + ε)) ⇒ ‖(X − t0)x‖ ≥ ε‖x‖;
(4) t0 ∈ σ(X) ⇔ MX((t0 − ε, t0 + ε)) �= {0} ∀ε > 0; and

(5) MX({t0}) = ker(X − t0).

Proof. (1) Notice first that *-homomomorphisms of C∗-algebras are order-
preserving since

x ≤ y ⇒ y − x ≥ 0 (i.e., ∃z such that y − x = z∗z)
⇒ π(y)− π(x) = π(y − x) = π(z)∗π(z) ≥ 0

⇒ π(x) ≤ π(y) .

Hence

a1[a,b](t) ≤ t1[a,b](t) ≤ b1[a,b](t) ⇒ a1[a,b](X) ≤ X1[a,b](X) ≤ b1[a,b](X)

and the desired result follows from the fact that 1[a,b](X)x = x ∀x ∈
MX([a, b]).

(2) This follows from (1) since 1[0,∞)(X) = 1[0,‖X‖](X).

(3) It follows from (1) that if x ∈ MX(R \ (t0 − ε, t0 + ε) = M(X−t0)2([ε
2,∞))

(by the spectral mapping theorem), then ε2‖x‖2 ≤ 〈(X − t0)
2x, x〉 =

‖(X − t0)x‖2.
(4) If μ is as in Theorem 2.3.1 (2), observe that

t0 /∈ σ(X) ⇔ (X − t0) ∈ GL(H)

⇔ (f0 − t0) is invertible in L∞(σ(X), μ)

⇔ ∃ε > 0 such that |f0 − t0| ≥ ε μ− a.e.

⇔ ∃ε > 0 such that μ((t0 − ε, t0 + ε)) = 0

⇔ ∃ε > 0 such that MX((t0 − ε, t0 + ε)) = {0} .
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(5) Clearly X commutes with 1E(X) ∀X and hence the subspace MX(E) is
invariant under X for all E,X. It follows from (1) above that 〈X0x, x〉 =
t0‖x‖2 ∀x ∈ MX{t0} where X0 = X|MX({t0}) and hence ker(X − t0) ⊃
MX({t0}). Conversely, if x ∈ ker (X − t0), then for any ε > 0, we have
(X − t0)1R\(t0−ε,t0+ε)(X)(x) = 1R\(t0−ε,t0+ε)(X)(X − t0)(x) = 0, whence
1R\(t0−ε,t0+ε)(X)x = 0 by (3) above. So x ∈ MX(t0 − ε, t0 + ε); since ε
was arbitrary, we have x ∈ ⋂

ε>0 MX(t0− ε, t0+ ε) = MX({t0}), so indeed
ker (X − t0) = MX({t0}).

�
Now we come to the much advertised pretty description by Halmos of

MX([−1, 1]).

Proposition 2.4.2. Let X = X∗ be as above, and let x ∈ H. The following
conditions are equivalent:

(1) x ∈ MX([−1, 1]).

(2) ‖Xnx‖ ≤ ‖x‖ ∀n ∈ N.

(3) {‖Xnx‖ : n ∈ N} is a bounded set.

Proof. (1) ⇒ (2): The operator X leaves the subspace MX([−1, 1]) invariant,
and its restriction X1 to this spectral subspace satisfies −1 ≤ X1 ≤ 1 (by
Proposition 2.4.1(1) and hence ‖X1‖ = spr(X1) ≤ 1 whence also ‖Xn

1 ‖ ≤ 1, as
desired.

(2) ⇒ (3) is obvious.
(3) ⇒ (1): If we let x1 = 1[−1,1](X)x, we need to show that x = x1; for

this, note that

x− x1 = (1− 1[−1,1](X))x

= 1R\[−1,1](X)x

= lim
n→∞ 1R\In(X)x

where we write the symbol In to denote the interval (−1 − 1
n , 1 + 1

n ); so it
suffices to show that 1R\In(X)x = 0 ∀n. Indeed, if there exists some n such
that yn = 1R\In(X)x �= 0, it would follow from Proposition 2.4.1 (3) that

‖Xyn‖ ≥ (1+ 1
n )‖yn‖ and that hence ‖Xmx‖ ≥ ‖1R\In(X)Xmx‖ = ‖Xmyn‖ ≥

(1 + 1
n )

m‖yn‖. So the sequence {‖Xmx‖ : m ∈ N} is not a bounded set if any
yn �= 0. �
Corollary 2.4.3. (1) x ∈ MX([t0 − ε, t0 + ε]) ⇔ {(X−t0

ε

)n
x : n ∈ N} is

bounded.

(2) If a Y ∈ B(H) commutes with X, ie., Y X = XY , then Y leaves MX(I)
invariant for every bounded interval I.

Proof. (1) This follows by applying Proposition 2.4.2 to (X − t0)/ε rather
than to the operator X.



2.5. Finitely many commuting self-adjoint operators 43

(2) If Y X = XY and if I is a compact interval (which can always be written
in the form [t0 − ε, t0 + ε]), it follows from (1) above that

x ∈ MX([t0 − ε, t0 + ε]) ⇒
{(

X − t0
ε

)n

x : n ∈ N

}
is bounded

⇒
{
Y

(
X − t0

ε

)n

x : n ∈ N

}
is bounded

⇒
{(

X − t0
ε

)n

Y x : n ∈ N

}
is bounded

⇒ Y x ∈ MX([t0 − ε, t0 + ε]),

so Y leaves the spectral subspaces corresponding to compact intervals
invariant.

If I is an open interval, there exist an increasing sequence {In :
n ∈ N} of compact intervals such that I =

⋃
n∈N

In. But then 1I(X) =

SOT − limn→∞ 1In(X) and MX(I) = (
⋃

n MX(In)). The previous para-
graph shows that Y leaves each MX(In), and hence also M(I), invariant.

Similar approximation arguments can be conjured up if I is of the
form [a, b) or (a, b]. (For example, [a, b− 1

n ] ↑ [a, b) and [a+ 1
n , b] ↑ (a, b].)

�

2.5 Finitely many commuting self-adjoint operators

We assume in the rest of this chapter that X1, . . . , Xn, . . . are commuting self-
adjoint operators on H.

Definition 2.5.1. Consider the set Σk = Σ(X1, . . . , Xk) consisting of those
(λ1, . . . , λk) ∈ R

k for which there exists a sequence {xn : n ∈ N} of unit vectors
in H such that limn→∞ ‖(Xi − λi)xn‖ = 0 for 1 ≤ i ≤ k. Thus Σk consists
of k-tuples of scalars which admit a sequence of ‘simultaneous approximate
eigenvectors’ of the Xi’s, and will be referred to simply as the joint spectrum
of X1, . . . , Xk.

If (λ1, . . . , λk) ∈ Σk, it is clear that λi ∈ σ(Xi) for 1 ≤ i ≤ k, and in

particular Σk ⊂ ∏k
i=1 σ(Xi) and is hence bounded.

Lemma 2.5.2. (1) Σk is a compact set for k > 0; and

(2) If k > 0 then prk(Σk) = Σ(Xk), where prk : Rk → R denotes the projec-
tion onto the k-th coordinate; in particular, Σk �= ∅.

Proof. (1) We have already seen above that Σk is bounded, so we only need

to prove that it is closed. So suppose (λ
(n)
1 , . . . , λ

(n)
k ) ∈ Σk for each n ∈ N

and λ
(n)
j → λj for each 1 ≤ j ≤ k. Pick any ε > 0. Then (λ

(n)
1 , . . . , λ

(n)
k ) ∈
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Σk ⇒ ∃x ∈ S(H) such that ‖(Xj − λ
(n)
j )x‖ < ε/2 for 1 ≤ j ≤ k (and for

all n). Next, λ
(n)
j → λj ⇒ ∃n such that |λ(n)

j − λj | < ε/2. Thus, for any
ε > 0, we have shown that ∃x ∈ S(H) such that

‖(Xj − λj)x‖ ≤ ‖(Xj − λ
(n)
j )x‖+ |λ(n)

j − λj | < ε for 1 ≤ j ≤ k

and indeed (λ1, . . . , λk) ∈ Σk and Σk is closed.

(2) We shall prove the result by induction on k. For k = 1, assertion (2)
follows from Theorem 1.6.2 (2) and the non-emptiness of σ(X1).

Suppose now that the Theorem is valid for k, and suppose we
are given commuting self-adjoint operators X1, . . . , Xk, Xk+1. Let us
prove that λk+1 ∈ σ(Xk+1) implies that there exists (λ1, . . . , λk) ∈
Σ(X1, . . . , Xk) such that (λ1, . . . , λk, λk+1) ∈ Σ(X1, · · · , Xk, Xk+1).

For each n ∈ N, let Mn = MXk+1
(λk+1 − 1

n , λk+1 + 1
n ), where we

continue to use the notation MX(E) := 1E(X) of the last section. By
Proposition 2.4.1 (4), we see that Mn �= {0} ∀n. By Corollary 2.4.3 (2),
each Xi leaves Mn invariant. Define Xi(n) = Xi|Mn

∀1 ≤ i ≤ k, n ∈ N.
Deduce by induction hypothesis that Σk(n) := Σk(X1(n), . . . , Xk(n)) �=
∅ ∀n. Since {Mn : n ∈ N} is a decreasing sequence of subspaces, it is clear
that also {Σk(n) : n ∈ N} is a decreasing sequence of non-empty compact
sets. The finite intersection property then assures us that we can find a
(λ1, . . . , λk) in the non-empty set

⋂
n∈N

Σk(n). Hence, by definition of
the joint spectrum of commuting self-adjoint operators, we can find unit
vectors xn ∈ Mn such that ‖(Xi−λi)xn‖ = ‖(Xi(n)−λi)xn‖ < 1

n for 1 ≤
i ≤ k, and n ∈ N. On the other hand, it follows from the definition of Mn

that ‖(Xk+1−λk+1)xn‖ < 1
n . Thus, ‖(Xi−λi)xn‖ < 1

n ∀1 ≤ i ≤ k+1 for
every n ∈ N; in other words, (λ1, . . . , λk, λk+1) ∈ Σ(X1, . . . , Xk, Xk+1).
Since Σ(Xk+1) = σ(Xk+1) �= ∅ the proof is complete.

�
Proposition 2.5.3. For any polynomial p ∈ C[t1, . . . , tk], the operator Z =
p(X1, . . . , Xk) is normal, and

(1) σ(Z) = p(Σk); and

(2) ‖p(X1, . . . , Xk)‖ = ‖p‖Σk
, where the p on the right is the evaluation func-

tion on Σk given by the polynomial p.

Proof. (1) Let q = 1
2 (p+ p̄), r = 1

2i (p− p̄) and Xk+1 = q(X1, . . . , Xk), Yk+1 =
r(X1, . . . , Xk). Then clearly q, r ∈ R[t1, . . . , tk], so that Xk+1 and Yk+1

are self-adjoint operators commuting with X1, . . . , Xk and with each other
as well (so Z is indeed normal). Since it follows from Corollary 1.6.4 that
λ = α + iβ ∈ σ(Z) ⇔ α ∈ σ(Xk+1) and β ∈ σ(Yk+1), we see that it
suffices to prove the case when p = q is real-valued and Z = Xk+1 is a
self-adjoint operator which is a real polynomial in X1, . . . , Xk (and hence
commutes with each Xi ).
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Suppose λk+1 ∈ σ(Xk+1). It then follows from Lemma 2.5.2
that there exists (λ1, . . . , λk) ∈ Σk such that (λ1, . . . , λk, λk+1) ∈
Σ(X1, . . . , Xk, Xk+1). Thus there exists a sequence {xn : n ∈ N} of unit
vectors in H such that ‖(Xi−λi)xn‖ → 0 ∀1 ≤ i ≤ k+1. It follows easily
from this requirement for the first k i’s that then, necessarily, we must have
‖[p(X1, · · · , Xk)−p(λ1, · · · , λk)]xn‖ → 0 while also ‖(Xk+1−λk+1)xn‖ →
0, which forces λk+1 = p(λ1, · · · , λk); in view of the arbitrariness of λk+1,
this shows that σ(Xk+1) ⊂ p(Σk). Conversely, it must be clear that if
(λ1, . . . , λk) ∈ Σk, then p((λ1, . . . , λk)) is an approximate eigenvalue of
p(X1, · · · , Xk) and thus, indeed, σ(p(X1, · · · , Xk)) = p(Σ(X1, · · · , Xk)).

(2) This follows immediately from (1) above and Proposition 1.5.6 (2).
�

Corollary 2.5.4. With the notation of Proposition 2.5.3, we have:

(1) The ‘polynomial functional calculus’ extends uniquely to a isometric *-
algebra isomorphism

C(Σ) � f
π�→ f(X1, · · · , Xk) ∈ C∗({X1, . . . , Xk}) ;

(2) There exists a probability measure μ on BΣ and an isometric *-algebra
monomorphism π̃ : L∞(μ) → B(H) such that (i) π̃ ‘extends’ π, and (ii) a
norm-bounded sequence {fn : n ∈ N} in L∞(μ) converges to the constant
function 0 in (μ) measure if and only if π̃(fn) SOT-converges to 0.

Proof. (1) This follows from Proposition 2.5.3(2) and a routine application
of the Stone-Weierstrass theorem, to show that the collection of complex
polynomial functions on a compact subset Σ of Rk, by virtue of being a
self-adjoint unital subalgebra of functions which separates points of Σ, is
dense in C(Σ).

(2) This is a consequence of item (1) above and Remark 2.3.3.
�

2.6 The Spectral Theorem for a normal operator

We are now ready to generalise Theorem 2.3.1 to the case of a normal operator.
This is essentially just the specialisation of Corollary 2.5.4 for k = 2.

Thus, assume that Z = X + iY ∈ B(H) is the Cartesian decomposition
of a normal operator and that Σ = σ(Z). In view of Proposition 2.5.3 (1), we
see that Σ = {s + it : (s, t) ∈ Σ(X,Y )}, and we may and will identify Σ ⊂ C

with Σ(X,Y ) ⊂ R
2.

In the following formulation of the spectral theorem for the normal oper-
ator Z (as above), the functions fi, i = 1, 2 denote the functions fi : Σ → R

defined by f1(z) = Re z, f2(z) = Im z. We omit the proof as it is just Corollary
2.5.4 for k = 2.



46 Chapter 2. The Spectral Theorem

Theorem 2.6.1. (1) (Continuous Functional Calculus) There exists a unique
isometric *-algebra isomorphism

C(Σ) � f �→ f(Z) ∈ C∗(Z)

of C(Σ) onto C∗(Z) such that f1(Z) = X, f2(Z) = Y .

(2) (Measurable Functional Calculus) There exists a measure μ defined on
BΣ and a unique isometric *-algebra homomorphism

L∞(Σ, μ) � f �→ f(Z) ∈ B(H)

of L∞(Σ, μ) into B(H) such that (i) f1(Z) = X, f2(Z) = Y , and (ii)
a norm-bounded sequence {fn : n ∈ N} in L∞(Σ, μ) converges in (μ)-
measure to f if and only if the sequence {fn(Z) : n ∈ N} SOT-converges
to f(Z).

Now we proceed to the conventional formulation of the spectral theorem
in terms of spectral or projection-valued measures P : BC → B(H).

Theorem 2.6.2. Let N be a normal operator on a separable Hilbert space H.
Then there exists a unique mapping P := PN : BC → B(H) such that:

(1) P (E) is an orthogonal projection for all E ∈ BC;

(2) E �→ P (E) is a projection-valued measure; i.e., whenever {En : n ∈ N} ⊂
BC is a sequence of pairwise disjoint Borel sets, and E =

∐
n∈N

En, then
P (E) =

∑
n∈N

P (En), the series being interpreted as the SOT-limit of the
sequence of partial sums;

(3) for x ∈ H, the equation Px,x(E) = 〈P (E)x, x〉 defines a finite positive
scalar measure with Px,x(C) = ‖x‖2;

(4) for x, y ∈ H, the equation Px,y(E) = 〈P (E)x, y〉 defines a finite complex
measure, with the property that

〈Nx, y〉 =
∫
C

λ dPx,y(λ) ; (2.6.1)

more generally for any bounded measurable function f : C → C, we have

〈f(N)x, y〉 =
∫
C

f(λ) dPx,y(λ) ; (2.6.2)

(5) the spectral measure P is ‘supported’ on the spectrum of N in the sense
that P (U) �= 0 for all open sets U that have non-empty intersection with
Σ := σ(N) – or equivalently Σ is the smallest closed set with P (Σ) = 1.
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Proof. Existence: Use the measurable functional calculus to define P (E) =
1N (E). As 1E = 1E = 12E , we see immediately that P (E) = P (E)∗ = P (E)2,
and hence (1) is proved. As for (2), note that the pairwise disjointness assump-
tion ensures that 1∐n

k=1 Ek
=

∑n
k=1 1Ek

, while
∐n

k=1 Ek ↑ ∐
k∈N

Ek implies

P (
∐∞

k=1 Ek) = SOT - limn→∞ P (
∐n

k=1 Ek), thus establishing (2).
Since 〈Qx, x〉 = ‖Qx‖2 ≥ 0 for any projection Q, item (3) follows imme-

diately from item (2). The polarisation identity and the definitions show that

Px,y = 1
4

∑3
j=0 i

jPx+ijy,x+ijy, thereby demonstrating that Px,y is a complex
linear combination of four finite positive measures, and is hence a finite com-
plex measure. To complete the proof of item (4), it suffices to prove equation
(2.6.2) since equation (2.6.1) is a special case (with f(z) = 1Σ(z)z). Equation
(2.6.2) is, by definition, valid when f is of the form 1E , and hence by linearity,
also valid for any simple function. For a general bounded measurable function
f , and an ε > 0, choose a simple function s such that ‖s − f‖ < ε uniformly.
Then,

|〈f(N)x, y〉 − 〈s(N)x, y〉| ≤ ε‖x‖ ‖y‖
and ∣∣∣ ∫ f dPx,y −

∫
s dPx,y

∣∣∣ ≤ ε‖Px,y‖
so ∣∣∣〈f(N)x, y〉 −

∫
f dPx,y

∣∣∣ ≤ ε(‖x‖ ‖y‖+ ‖Px,y‖) .

As ε was arbitrary, we find that equation (2.6.2) indeed holds for any bounded
measurable f .

As for (5), suppose P (U) = 0 for some open U , and z0 ∈ U . Pick ε > 0
such that D = {z ∈ C : |z − z0| < ε} ⊂ U . Then P (U) = 0 ⇒ P (D) = 0 ⇒
‖1D‖L∞(μ) = 0 ⇒ μ(D) = 0 ⇒ 1

f0−z0
∈ L∞(μ) ⇒ z0 /∈ σ(N), so, indeed

P (U) = 0, U open ⇒ U ∩ Σ = ∅.

Uniqueness: If, conversely P̃ is another such spectral measure satisfying the
conditions (1)–(5) of the theorem, it follows from equation (2.6.2) that∫

zmz̄n dP̃x,y(z) = 〈NmN∗nx, y〉 =
∫

zmz̄n dPx,y(z) ∀m,n ∈ Z+ .

Since functions of the form z �→ zmz̄n span a dense subspace of C(Σ), thanks
to the Stone-Weierstrass theorem, it now follows from the Riesz representation
theorem that P̃x,y = Px,y. The validity of this equality for all x, y ∈ H shows,

finally, that indeed P̃ = P , as desired. �

Remark 2.6.3. Now that we have the uniqueness assertion of Theorem 2.6.2,
we can re-connect with a way to produce probability measures in the measure
class of the mysterious μ appearing in the measurable functional calculus. If P
denotes the spectral measure of X, the following conditions on an E ∈ BΣ are
equivalent:
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(1) 1E(X)(= P (E)) = 0.

(2) μ(E) = 0.

(3) Px,x(E) = 0 for all x in a total set S ⊂ H.

Hence, a possible choice for μ is
∑

n∈N
2−nPen,en where {en : n ∈ N} is an

orthonormal basis for H.
Incidentally, a measure of the form Px,x is sometimes called a scalar spec-

tral measure for N .

Reason: (1) ⇔ (2) This is because L∞(μ) � f �→ f(X) ∈ B(H) is isomet-
ric by Theorem 2.3.1 (2).

(1) ⇔ (3) This is because (i) for a projection P – in this case, P (E) –
〈Px, x〉 = 0 ⇔ Px = 0, and (ii) a bounded operator is the zero operator if and
only if its kernel contains a total set.

Remark 2.6.4. To tie a loose-end, we wish to observe that ‖Px,y‖ ≤ ‖x‖ ‖y‖.
This is because

‖Px,y‖ = inf{K > 0 :
∣∣∣ ∫ f dPx,y

∣∣∣ ≤ K‖f‖C(Σ) ∀f ∈ C(Σ)}

and

∣∣ ∫ f dPx,y

∣∣ = |〈f(N)x, y〉∣∣
≤ ‖f(N)‖ ‖x‖ ‖y‖
≤ ‖f‖C(Σ) ‖x‖ ‖y‖.

Remark 2.6.5. This final remark is an advertising pitch for my formulation
of the spectral theorem in terms of functional calculi, in comparison with the
conventional version in terms of spectral measures: the difference is between
having some statement for all bounded measurable functions and only having
it for indicator functions and having to go through the exercise of integration
every time one wants to get to the former situation!

Exercise 2.6.6. Let πμ : L∞(μ) → B(L2(μ)) be the ‘multiplication represen-
tation’ as in Proposition 2.2.3. Can you identify the spectral measure PN where
N = πμ(f)? (Hint: Consider the cases Σ = {z ∈ C : |z| = 1} and f(z) = zn

with n = 1, 2, . . ., in increasing order of difficulty as n varies.)

2.7 Several commuting normal operators

2.7.1 The Fuglede Theorem

Theorem 2.7.1. [Fuglede] If an operator T commutes with a normal operator
N , then it necessarily also commutes with N∗.
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Proof. When H is finite-dimensional, the spectral theorem says that N ad-
mits the decomposition N =

∑k
i=1 λiPi where σ(N) = {λ1, . . . , λk} and

Pi = 1{λi}(N); observe that Pi = pi(N) for appropriate polynomials p1, . . . , pk,
and deduce that T commutes with each Pi and hence also with f(N) for any
function f : σ(N) → C, and in particular with N∗ = f̄0 where f0(z) = z.

We shall similarly prove that T commutes with each spectral projection
1E(N), E ∈ BC and hence also with f(N) for each (simple, and hence each)
bounded measurable function f , and in particular, for f(z) = 1σ(N)(z)z̄. Note

that T commutes with a projection P if and only if T leaves both M and M⊥

invariant, where M = ran(P ).
We shall write M(E) = ran 1E(N). Since M(E)⊥ = M(E′) (where we

write E′ = C \E), we see from the previous paragraph that Fuglede’s theorem
is equivalent to the assertion that if T commutes with a normal N , then T
leaves each M(E) invariant – which is what we shall accomplish in a sequence
of simple steps:

Define F = {E ∈ BC : T leaves M(E) invariant}, so we need to prove that
F = BC.

(1) Write D(z0, r) = {z ∈ C : |z − z0| < r} and simply D = D(0, 1), so the
closure D̄ = {z ∈ C : |z| ≤ 1} . We shall need the following analogue
of Proposition 2.4.2 for normal operators: The following conditions on an
x ∈ H are equivalent:

(1) x ∈ M(D̄).

(2) ‖Nnx‖ ≤ ‖x‖ ∀n ∈ N.

(3) {‖Nnx‖ : n ∈ N} is a bounded set.

Reason: (a) ⇒ (b):

z̄z1
D
(z) ≤ 1 ⇒ N∗N1

D
(N) ≤ idH ⇒ ‖Nx‖2 ≤ 1 ∀x ∈ M(D̄) .

(b) ⇒ (c) is obvious.

(c) ⇒ (a) Let xm := 1{z:|z|≥1+ 1
m}(N)x ∀m ∈ N; then, for all n ∈ N,

we have, by Proposition 2.4.2,

‖N2nx‖ = ‖(N∗N)nx‖ ≥ ‖1{[(1+ 1
m )2,∞)(N ∗N)(N∗N)nx‖

≥
(
1 +

1

m

)2n

‖xm‖ ;

and now, the assumed boundedness condition (c) implies that we must
have xm = 0 ∀m and hence that x = x − limm→∞ xm ∈ M(D̄); and the
proof of the normal analogue of Proposition 2.4.2 is complete.

Since
‖NnTx‖ = ‖TNnx‖ ≤ ‖T‖‖Nnx‖,

condition (c) above implies that if x ∈ M(D̄), then also Tx ∈ M(D̄); so
D̄ ∈ F.
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(2) D(z, r) ∈ F ∀z ∈ C, r > 0.

Reason: This follows by applying item (1) above to
(
N−z
r

)
.

(3) F is closed under countable monotone limits, and is hence a ‘monotone
class’.

Reason: If En ∈ F ∀n and if En ↑ E (resp., En ↓ E), then

1En
(N)

SOT→ 1E(N) so that M(E) = (
⋃
M(En)) (resp., M(E) =⋂

M(En)) whence also E ∈ F.

(4) F contains all (open or closed) discs.

Reason: The assertion regarding closed discs is item (2) above, and
open discs are increasing unions of closed discs.

(5) F contains all (open or closed) half-planes.

Reason: This is because (i) every open half-plane is an increasing
union of closed discs (for example, Ra := {z ∈ C : Re z > a} =

⋃∞
n=1{z ∈

C : |z − (a + n)| ≤ n}); and (ii) every closed half-plane is a decreasing
intersection of open half-planes (eg: {Re z > a− 1

n} ↓ {Re z ≥ a}.)
However, we will only need this fact for the special half-planes

Ra, Lb = {z ∈ C : Re z ≤ b}, Uc = {z ∈ C : Im z > c}, Dd = {z ∈
C : Im z ≤ d}.

(6) F is closed under finite intersections and countable disjoint unions.

Reason: 1∩n
i=1Ei =

∏n
i=1 1Ei ⇒ M(

⋂n
i=1 Ei) =

⋂n
i=1 M(Ei) so if

E1, . . . En ∈ F, and x ∈ M(
⋂n

i=1 Ei), then x ∈ M(Ei) ∀i and Tx ∈
M(∩n

i=1Ei), so
⋂n

i=1 Ei ∈ F. Similarly M(
∐∞

n=1 En) = [
⋃∞

n=1 M(En)] im-
plies that F is closed under countable disjoint unions.

(7) F = BC.

Reason: It follows from items (5) and (6) above that F contains
(a, b]× (c, d] = Ra ∩Lb ∩Uc ∩Dd and the collection A of all finite disjoint
unions of such rectangles. Since A ∪ {∅,C} is an algebra of sets which
generates BC as a σ-algebra, and since F is a monotone class containing
A∪ {∅,C}, the desired conclusion is a consequence of the monotone class
theorem.

�

Remark 2.7.2. Putnam proved – see [Put] – this extension to Fuglede’s theo-
rem: if Ni, i = 1, 2 is a normal operator on Hi and if T ∈ B(H1,H2) satisfies
TN1 = N2T , then, we also necessarily have TN∗

1 = N∗
2T . (A cute 2 × 2 ma-

trix proof of this – see [Hal2] – applies Fuglede’s theorem to the operators on

H1 ⊕H2 given by the operator matrices

[
0 0
T 0

]
and

[
N1 0
0 N2

]
.)
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2.7.2 Functional calculus for several commuting

normal operators

This section addresses the analogue of the statement that a family of com-
muting normal operators on a finite-dimensional Hilbert space can be simul-
taneously diagonalised, equivalently, that an arbitrary family {Nj : j ∈ I}
of pairwise commuting normal operators admits a joint functional calculus –
i.e., an appropriate continuous and measurable ‘joint functional calculus’ iden-
tifying (algebraically and topologically) appropriate closures of the *-algebras
generated by the family {Nj ; j ∈ I}.

Suppose {Xi : i ∈ I} is a (possibly infinite, maybe even uncountable)
family of self-adjoint operators on H. For each finite set F ⊂ I, let ΣF be
the joint spectrum of {Xj : j ∈ F}. Recall that ΣF ⊂ ∏

i∈F σ(Xi). Let prF :∏
i∈I σ(Xi) →

∏
i∈F σ(Xi) denote the natural projection.

We start with a mild generalisation of Lemma 2.5.2(2).

Lemma 2.7.3. If F ⊂ E ⊂ I are finite sets, and if prEF :
∏

i∈E σ(Xi) →∏
i∈F σ(Xi) is the natural projection, then ΣF = prEF (ΣE).

Proof. This assertion is easily seen to follow by induction on |E \ F | from
the special case of the Lemma when |E \ F | = 1. (Reason: If the result is
known for Fn ⊂ E, |E \ Fn| = n and if |E \ F | = n + 1, we can find Fn

such that F ⊂ Fn ⊂ E, |E \ Fk| = k, and observe that πE
F = πFn

F ◦ πE
Fn

,
and deduce the truth of the assertion for n + 1 from that of n and 1, thus:
ΣF = prFn

F (ΣFn
) = prFn

F (prEFn
(ΣE)).)

So suppose E = {1, 2, . . . , k + 1} and F = {1, 2, . . . , k}. Suppose
(λ1, . . . , λk) ∈ ΣF . If ε > 0, it is seen from Corollary 2.5.4 and Remark
2.3.3(2) that M(ε) := π̃(1{(t1,...,tk)∈ΣF :|ti−λi|<ε ∀i∈F}) �= 0 and is invariant un-
der each Xi, 1 ≤ i ≤ k + 1. If Xk+1(ε) = Xk+1|M(ε) and λk+1 ∈ σ(Xk+1(ε)),
it is seen that ∃x(ε) ∈ S(M(ε)) such that ‖(Xk+1 − λk+1)x(ε)‖ < ε. Since
‖(Xi − λi)x‖ < ε ∀x ∈ S(M(ε)), we see that {x( 1n )} is a sequence of unit
vectors such that ‖(Xi − λi)x(

1
n )‖ < 1

n ∀n, and indeed (λ1, . . . λk+1) ∈ ΣE so
ΣE ⊂ prEF (ΣE). The reverse inclusion is obvious, and the proof is complete.

�

For each finite F ⊂ I, let Σ(F ) = pr−1
F (ΣF ) and let Σ =

⋂
F Σ(F ).

Theorem 2.7.4. With the foregoing notation, we have:

(1) Σ is a non-empty compact set, which we shall refer to as the joint spectrum
of {Xj : j ∈ I}.

(2) There exists a unique isomorphism π : C(Σ) → C∗({Xj : j ∈ I}) such
that π(pr{j}) = Xj ∀j ∈ I.

(3) There exists a probability measure μ defined on BΣ, unique up to mutual
absolute continuity, such that the continuous functional calculus π above
‘extends’ to an isometric *-algebra monomorphism π̃ of L∞(Σ,BΣ, μ) →
B(H) with the property that a norm-bounded sequence {fn : n ∈ N} ⊂
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L∞(Σ,BΣ, μ) converges in (μ) measure if and only if the image of this se-
quence under this ‘joint measurable functional calculus’ is SOT-convergent.

Proof. (1) It is clear that Σ is the closed subset of R
I consisting of those

tuples ((λi))i∈I such that for any finite F ⊂ I, it is possible to find a
sequence of unit vectors xF

n , n ∈ N such that ‖(Xi−λi)x
F
n ‖ → 0 ∀i ∈ F so

that, in particular Σ is a closed subset of
∏

i∈I σ(Xi) and hence compact.
It is not hard to see (from Lemma 2.7.3 and Lemma 2.5.2) that {Σ(F ) :
F a finite subset of I} is a family of non-empty compact sets with the
finite intersection property, and that hence, their intersection, i.e., Σ, is
also non-empty and compact.

(2) On the one hand, the family {prF : F a finite subset of I} linearly spans
a self-adjoint subalgebra of functions which separates points of Σ, which
is dense in C(Σ). It then follows from Proposition 2.5.3 (2) that there is
a unique isometric *-algebra isomorphism π : C(Σ) → C∗({Xi : i ∈ I})
such that π(pr{j}) = Xj .

(3) This follows immediately from Remark 2.3.3.
�

Suppose now that Nj = Aj + iBj (resp., λj = αj + iβj) is the Cartesian
decomposition of Nj as in the last paragraph (resp., λj ∈ σ(Nj)), and denote
their joint spectrum by the set Σ = {λ = ((λj))j∈I ∈ C

I – or alternatively
{((αj , βj))j∈I ∈ (R2)I} – of those tuples for which it is possible to find a
sequence {xn : n ∈ N} of unit vectors such that

lim
n→∞ ‖(Nj − λj)xn‖2 = lim

n→∞
(‖(Aj − αj)xn‖2 + ‖(Bj − βj)xn‖2

)
= 0 ∀j ∈ I.

In view of Fuglede’s theorem, we see that commutativity of the family
{Nj : j ∈ I} of normal operators is equivalent to that of the family {Aj , Bj :
j ∈ I} of self-adjoint operators. It must be clear that {((αj + iβj)) ∈ C

I :
(((αj , βj))) ∈ Σ({Aj , Bj : j ∈ I} may be defined as the joint spectrum of the
family {Nj : j ∈ I} of normal operators, and the exact counterpart of Theorem
2.7.4 (with mild modifications, usually involving changing R to C and self-
adjoint to normal) for a family of commuting normal operators is valid.

Exercise 2.7.5. (1) Formulate and prove the precise statement of the ‘nor-
mal version’ of Theorem 2.7.4.

(2) Also state and prove a formulation of the ‘joint spectral theorem’ for a
family of commuting normal operators in terms of projection-valued mea-
sures.

2.8 Typical uses of the spectral theorem

We now list some simple consequences of the spectral theorem (i.e., the func-
tional calculi) for a normal operator.
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Proposition 2.8.1. 1. Let T ∈ B(H) be a normal operator. Then

(a) T is self-adjoint if and only if σ(T ) ⊂ R.

(b) T is a projection if and only if σ(T ) ⊂ {0, 1}.
(c) T is unitary if and only if σ(T ) ⊂ {z ∈ C : |z| = 1}.

2. The following conditions on an operator A ∈ B(H) are equivalent:

(a) There exists some Hilbert space K and an operator T ∈ B(H,K)
such that A = T ∗T .

(b) 〈Ax, x〉 ≥ 0 ∀x ∈ H.

(c) A is self-adjoint and σ(A) ⊂ [0,∞).

(d) A is normal and σ(A) ⊂ [0,∞).

(e) There exists a self-adjoint operator B ∈ B(H) such that A = B2.

Such an operator A is said to be positive, and we write A ≥ 0, and more
generally, we shall write A ≥ C if and only if A,C are self-adjoint opera-
tors satisfying A− C ≥ 0.

3. If A ≥ 0, there exists a unique B ≥ 0 such that A = B2, and we denote
this unique positive square root of A by A

1
2 .

4. Let U ∈ B(H) be a unitary operator. Then there exists a self-adjoint oper-
ator A ∈ B(H) such that U = eiA, where the right hand side is interpreted
as the result of the continuous functional calculus for A; further, given any
a ∈ R, we may choose A to satisfy σ(A) ⊂ [a, a+ 2π].

5. If T ∈ B(H) is a normal operator, and if n ∈ N, then there exists a normal
operator A ∈ B(H) such that T = An.

6. Any self-adjoint operator T admits a unique decomposition T = T+ − T−,
where T± ≥ 0 and T+T− = 0 = T−T+

7. Any self-adjoint contraction (i.e., an operator T satisfying T = T ∗ and
‖T‖ ≤ 1 is expressible as the average of at most two unitary operators,
and hence any operator is expressible as a linear combination of at most
four unitary operators.

Proof. (1) A normal operator T is self-adjoint (resp., a projection, resp., unitary
precisely when it satisfies T = T ∗, or T = T ∗ = T 2, or T ∗T = 1 respectively.
while the function f0 ∈ C(Σ), for Σ ⊂ C, defined by f0(z) = z satisfies f0 = f0
(resp., f0 = f0 = f2

0 , resp., f0f0 = 1) precisely when Σ ⊂ R (resp., Σ ⊂ {0, 1},
resp., Σ ⊂ {z : |z| = 1}).

(2) The implications (e) ⇒ (a) ⇒ (b) and (c) ⇒ (d) are obvious. As for
(d) ⇒ (e), note that (d) implies that A is self-adjoint by 1(a). If the function

defined on [0,∞), by f(t) = t
1
2 , denotes the positive square-root, then the

condition (c) implies that f ∈ C(σ(A)), and we see that B = f(A) works.
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(Notice that B ∈ C∗(A) by construction). As for (b) ⇒ (c), the self-adjointness
of A follows from Corollary 1.5.3 (2), and the positivity of elements of σ(A)
follows then from Theorem 1.6.2(2).

(3) Suppose B1 is another prospective positive square root of A. Since
B ∈ C∗(A) ⊂ C∗(B1) ∼= C(σ(B1)), there must be a non-negative g ∈ C(σ(B1))
such that B = g(B1). As B2 = A = B2

1 , we must have g(t)2 = t2 ∀t ∈ σ(B1),
and we must have g(t) = t so B = B1.

(4) Let φ : C \ {0} → {z ∈ C : Im z ∈ [a, a + 2π)} be any (measurable)
branch of the logarithm - for instance, we might set φ(z) = log|z| + iθ, if
z = |z|eiθ, a ≤ θ < a + 2π. Setting A = φ(U), we find - since eφ(z) = z - that
U = eiA.

(5) This is proved like 4 above, by taking some measurable branch of the

logarithm defined everywhere in C\{0} and choosing the z
1
n as the exponential

of 1
n times this choice of logarithm.

(6) Define T± = f±(T ) where f± are the obviously continuous functions
f± : R → R defined by f± = (|f0| ± f)/2. Then indeed

f0 = f+ − f−, f± ≥ 0 and f+f−(= f−f+) = 0

and hence

T0 = T+ − T−, T± ≥ 0 and T+T− = 0 = (T+T−)∗ = T−T+.

As for uniqueness, if T = A+ − A− with A± ≥ 0, A+A− = 0, note first
that

A+A− = 0 ⇒ A−A+ = (A+A−)∗ = 0

and hence that

(A+ +A−)2 = A2
+ +A2

− = (A+ −A−)2 = T 2 = |T |2

where |T | represents the image, under the functional calculus for T , of the
function f(t) = |t|; and we may deduce from the uniqueness of the positive
square root of a positive operator that (A+ + A−) = |T | and hence we must
have

A± = 1
2 (|T | ± T ) = T± ,

as desired.
(7) Consider v± ∈ C([−1, 1]) defined by v±(t) = t ± i

√
1− t2. Note that

t = 1
2 (v+(t) + v−(t)) and |v±(t)| = 1 for t ∈ [−1, 1]. Define U± = v±(T ).

As U± are unitary with average T , it follows, by scaling, that every self-
adjoint operator is a linear combination of at most2 two unitary operators, and
the Cartesian decomposition completes the proof of the proposition. �

2The reason for the ‘at most’ is that T might have already been self-adjoint and unitary
(i.e., satisfying T 2 = 1)
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Beyond normal operators

3.1 Polar decomposition

In this section, we establish the very useful polar decomposition for bounded
operators on Hilbert space. We begin with a few simple observations and then
introduce the crucial notion of a partial isometry.

Lemma 3.1.1. Let T ∈ B(H,K). Then,

ker T = ker (T ∗T ) = ker (T ∗T )
1
2 = ran⊥T ∗ . (3.1.1)

In particular, also
ker⊥T = ran T ∗ .

(In the equations above, we have used the notation ran⊥T ∗ and ker⊥T ,
for (ran T ∗)⊥ and (ker T )⊥, respectively.)

Proof : First observe that, for arbitrary x ∈ H, we have

||Tx||2 = 〈T ∗Tx, x〉 = 〈(T ∗T )
1
2x, (T ∗T )

1
2x〉 = ||(T ∗T )

1
2x||2 , (3.1.2)

whence it follows that ker T = ker(T ∗T )
1
2 .

Notice next that

x ∈ ran⊥T ∗ ⇔ 〈x, T ∗y〉 = 0 ∀ y ∈ K

⇔ 〈Tx, y〉 = 0 ∀ y ∈ K

⇔ Tx = 0

and hence ran⊥T ∗ = ker T . ‘Taking perps’ once again, we find – because of
the fact that V ⊥⊥ = V for any linear subspace V ⊂ K – that the last statement
of the Lemma is indeed valid.

Finally, if {pn}n is any sequence of polynomials with the property that
pn(0) = 0 for all n and such that {pn(t)} converges uniformly to

√
t on σ(T ∗T ),

it follows that ||pn(T ∗T )− (T ∗T )
1
2 || → 0, and hence,

x ∈ ker(T ∗T ) ⇒ pn(T
∗T )x = 0 ∀n ⇒ (T ∗T )

1
2x = 0
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and hence we see that also ker(T ∗T ) ⊂ ker(T ∗T )
1
2 ; since the reverse inclusion

is clear, the proof of the lemma is complete. �

Proposition 3.1.2. Let H,K be Hilbert spaces; then the following conditions
on an operator U ∈ B(H,K) are equivalent:

(i) U = UU∗U ;

(ii) P = U∗U is a projection;

(iii) U |ker⊥U is an isometry.

An operator which satisfies the equivalent conditions (i)–(iii) is called a partial
isometry.

Proof. (i) ⇒ (ii) : The assumption (i) clearly implies that P 2 = U∗UU∗U =
U∗U = P , while P is clearly self-adjoint.

(ii) ⇒ (iii) : Let M = ran P . Then notice that, for arbitrary x ∈ H,
we have: ||Px||2 = 〈Px, x〉 = 〈U∗Ux, x〉 = ||Ux||2; this clearly implies that
ker U = ker P = M⊥, and that U is isometric on M (since P is identity on M).

(iii) ⇒ (ii) : Let M = ker⊥U . For i = 1, 2, suppose zi ∈ H, and xi ∈
M, yi ∈ M⊥ are such that zi = xi + yi; then note that

〈U∗Uz1, z2〉 = 〈Uz1, Uz2〉
= 〈Ux1, Ux2〉
= 〈x1, x2〉 since U |M is isometric)

= 〈x1, z2〉 (since 〈x1, y2〉 = 0),

and hence U∗U is the projection onto M.

(ii) ⇒ (i) : Let M = ran U∗U ; then (by Lemma 3.1.1) M⊥ = ker U∗U =
ker U , and so, if x ∈ M, y ∈ M⊥, are arbitrary, and if z = x+ y, then observe
that Uz = Ux+ Uy = Ux = U(U∗Uz). �

Remark 3.1.3. Suppose U ∈ B(H,K) is a partial isometry. SettingM = ker⊥U
and N = ran U(= ran U), we find that U is identically 0 on M⊥, and U maps
M isometrically onto N. It is customary to refer to M as the initial space, and
to N as the final space, of the partial isometry U .

On the other hand, upon taking adjoints in condition (ii) of Proposition
3.1.2, it is seen that U∗ ∈ B(K,H) is also a partial isometry. In view of the
preceding lemma, we find that ker U∗ = N⊥ and that ran U∗ = M; thus N is
the inital space of U∗ and M is the final space of U∗.

Finally, it follows from Proposition 3.1.2(ii) (and the proof of that propo-
sition) that U∗U is the projection (of H) onto M while UU∗ is the projection
(of K) onto N. �

Exercise 3.1.4. If U ∈ B(H,K) is a partial isometry with initial space M and
final space N, show that if y ∈ N, then U∗y is the unique element x ∈ M such
that Ux = y.



3.1. Polar decomposition 57

Before stating the polar decomposition theorem, we introduce a convenient
bit of notation: if T ∈ B(H,K) is a bounded operator between Hilbert spaces,
we shall always use the symbol |T | to denote the unique positive square root

of the positive operator |T |2 = T ∗T ∈ B(H); thus, |T | = (T ∗T )
1
2 . (If T is self-

adjoint – in fact, even normal – for which, of course, we would need H = K, this
notation/definition is consistent with that yielded by the continuous functional
calculus.)

Theorem 3.1.5. (Polar Decomposition)
(a) Any operator T ∈ B(H,K) admits a decomposition T = UA where
(i) U ∈ B(H,K) is a partial isometry;
(ii) A ∈ B(H) is a positive operator; and
(iii) ker T = ker U = ker A .

(b) Further, if T = V B is another decomposition of T as a product of a
partial isometry V and a positive operator B such that ker V = ker B, then
necessarily U = V and B = A = |T |. This unique decomposition is called the
polar decomposition of T .

(c) If T = U |T | is the polar decomposition of T , then |T | = U∗T .

Proof. (a) If x, y ∈ H are arbitrary, then,

〈Tx, Ty〉 = 〈T ∗Tx, y〉 = 〈|T |2x, y〉 = 〈|T |x, |T |y〉 ,
whence it follows – see Exercise 2.2.2 – that there exists a unique unitary
operator U0 : ran |T | → ran T such that U0(|T |x) = Tx ∀ x ∈ H. Let M =
ran |T | and let P = PM denote the orthogonal projection onto M. Then the
operator U = U0P clearly defines a partial isometry with initial space M and
final space N = ran T which further satisfies T = U |T | (by definition). It follows
from Lemma 3.1.1 that kerU = ker|T | = kerT .

(b) Suppose T = V B as in (b). Then V ∗V is the projection onto
ker⊥V = ker⊥B = ran B, which clearly implies that B = V ∗V B; hence,
we see that T ∗T = BV ∗V B = B2; thus B is a, and hence the, positive square
root of |T |2, i.e., B = |T |. It then follows that V (|T |x) = Tx = U(|T |x) ∀x; by
continuity, we see that V agrees with U on ran |T |, but since this is precisely
the initial space of both partial isometries U and V , we see that we must have
U = V .

(c) This is an immediate consequence of the definition of U and Exercise
3.1.4. �
Exercise 3.1.6. (1) Prove the ‘dual’ polar decomposition theorem; i.e., each
T ∈ B(H,K) can be uniquely expressed in the form T = BV where V ∈
B(H,K) is a partial isometry, B ∈ B(K) is a positive operator and ker B =
ker V ∗ = ker T ∗. (Hint: Consider the usual polar decomposition of T ∗, and
take adjoints.)

(2) Show that if T = U |T | is the (usual) polar decomposition of T , then
U |ker⊥T implements a unitary equivalence between |T | |ker⊥|T | and |T ∗| |ker⊥|T∗|.
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(Hint: Write M = ker⊥T, N = ker⊥T ∗, W = U |M; then W ∈ B(M,N) is
unitary; further |T ∗|2 = TT ∗ = U |T |2U∗; deduce that if A (resp., B) denotes
the restriction of |T | (resp., |T ∗|) to M (resp., N), then B2 = WA2W ∗; now
deduce, from the uniqueness of the positive square root, that B = WAW ∗.)

(3) Apply (2) above to the case when H and K are finite-dimensional,
and prove that if T ∈ L(V,W ) is a linear map of vector spaces (over C), then
dim V = rank(T ) + nullity(T ), where rank(T ) and nullity(T ) denote the
dimensions of the range and kernel (or null-space), respectively, of the map T .

(4) Show that an operator T ∈ B(H,K) can be expressed in the form
T = WA, where A ∈ B(H) is a positive operator and W ∈ B(H,K) is unitary if
and only if dim(ker T ) = dim(ker T ∗). (Hint: In order for such a decomposition
to exist, show that it must be the case that A = |T | and that the W should agree,
on ker⊥T , with the U of the polar decomposition, so that W must map ker T
isometrically onto ker T ∗.)

(5) In particular, deduce from (4) that in case H is a finite-dimensional
inner product space, then any operator T ∈ B(H) admits a decomposition as the
product of a unitary operator and a positive operator. (In view of Proposition
2.8.1 1(c) and 2(c), note that when H = C, this boils down to the usual polar
decomposition of a complex number.)

Several problems concerning a general bounded operator between Hilbert
spaces can be solved in two steps: in the first step, the problem is ‘reduced’,
using the polar decomposition theorem, to a problem concerning positive oper-
ators on a Hilbert space; and in the next step, the positive case is settled using
the spectral theorem. This is illustrated, for instance, in Exercise 3.1.7(2).

Exercise 3.1.7. (1) Recall that a subset Δ of a (real or complex) vector space
V is said to be convex if it contains the ‘line segment joining any two of its
points’; i.e., Δ is convex if x, y ∈ Δ, 0 ≤ t ≤ 1 ⇒ tx+ (1− t)y ∈ Δ.

(a) If V is a normed (or simply a topological) vector space, and if Δ is a
closed subset of V , show that Δ is convex if and only if it contains the mid-point
of any two of its points – i.e., Δ is convex if and only if x, y ∈ Δ ⇒ 1

2 (x+y) ∈
Δ. (Hint: The set of dyadic rationals, i.e., numbers of the form k

2n is dense in
R.)

(b) If S ⊂ V is a subset of a vector space, show that there exists a smallest
convex subset of V which contains S; this set is called the convex hull of the set
S and we shall denote it by the symbol co(S). Show that co(S) = {∑n

i=1 θixi :
n ∈ N, xi ∈ S, θi ≥ 0,

∑n
i=1 θi = 1}.

(c) Let Δ be a convex subset of a vector space; show that the following
conditions on a point x ∈ Δ are equivalent:

(i) x = 1
2 (y + z), y, z ∈ Δ ⇒ x = y = z;

(ii) x = ty + (1− t)z, 0 < t < 1, y, z ∈ Δ ⇒ x = y = z.
The point x is called an extreme point of a convex set Δ if x ∈ Δ and if x
satisfies the equivalent conditions (i) and (ii) above.

(d) It is a fact, called the Krein-Milman theorem – see [Yos], for instance
– that if K is a compact convex subset of a Banach space (or more generally, of
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a locally convex topological vector space which satisfies appropriate ‘complete-
ness conditions’), then K = co(∂eK), where ∂eK denotes the set of extreme
points of K. Note that the above equality can hold even without the compact-
ness assumption as in the case K = ball(H) = {x ∈ H : ||x|| ≤ 1}, where H is
a Hilbert space, by showing that ∂e(ball H) = {x ∈ H : ||x|| = 1}. (Hint: Use
the parallelogram law – see Exercise 1.2.3(4).)

(e) Show that ∂e(ball X) �= {x ∈ X : ||x|| = 1}, when X = �1n, n > 1.
(Thus, not every point on the unit sphere of a normed space need be an extreme
point of the unit ball.)

(2) Let H and K denote (separable) Hilbert spaces, and let B = {A ∈
B(H,K) : ||A|| ≤ 1} denote the unit ball of B(H,K). The aim of the following
exercise is to show that an operator T ∈ B is an extreme point of B if and only
if either T or T ∗ is an isometry. (See (1)(c) above, for the definition of an
extreme point.)

(a) Let B+ = {T ∈ B(H) : T ≥ 0, ||T || ≤ 1}. Show that T ∈ ∂eB+ ⇔ T
is a projection. (Hint: suppose P is a projection and P = 1

2 (A+B), A,B ∈ B+;
then for arbitrary x ∈ ball(H), note that 0 ≤ 1

2 (〈Ax, x〉 + 〈Bx, x〉) ≤ 1; since
∂e[0, 1] = {0, 1}, deduce that 〈Ax, x〉 = 〈Bx, x〉 = 〈Px, x〉 ∀ x ∈ (ker P ∪
ran P ); but A ≥ 0 and ker P ⊂ ker A imply that A(ran P ) ⊂ ran P ; similarly
also B(ran P ) ⊂ ran P ; conclude (from Exercise 1.4.16) that A = B = P .
Conversely, if T ∈ B+ and T is not a projection, then it must be the case –
see Proposition 2.8.1(1)(b) – that there exists λ ∈ σ(T ) such that 0 < λ < 1;
fix ε > 0 such that (λ− 2ε, λ+ 2ε) ⊂ (0, 1); since λ ∈ σ(T ), deduce that P �= 0
where P = 1(λ−ε,λ+ε)(T ); notice now that if we set A = T − εP,B = T + εP ,

then the choices ensure that A,B ∈ B+, T = 1
2 (A+B), but A �= T �= B, whence

T /∈ ∂eB+.)

(b) Show that the only extreme point of ball B(H) = {T ∈ B(H) : ||T || ≤
1} which is a positive operator is 1, the identity operator on H. (Hint: Prove that
1 is an extreme point of ball B(H) by using the fact that 1 is an extreme point
of the unit disc in the complex plane; for the other implication, by (a) above,
it is enough to show that if P is a projection which is not equal to 1, then P
is not an extreme point in ball B(H); if P �= 1, note that P = 1

2 (U+ + U−),
where U± = P ± (1− P ).)

(c) Suppose T ∈ ∂eB; if T = U |T | is the polar decomposition of T , show
that |T | |M is an extreme point of the set {A ∈ B(M) : ||A|| ≤ 1}, where
M = ker⊥|T |, and hence deduce, from (b) above, that T = U . (Hint: if |T | =
1
2 (C +D), with C,D ∈ ball B(M) and C �= |T | �= D, note that T = 1

2 (A+B),
where A = UC,B = UD, and A �= T �= B.)

(d) Show that T ∈ ∂eB if and only if T or T ∗ is an isometry. (Hint:
suppose T is an isometry; suppose T = 1

2 (A+B), with A,B ∈ B; deduce from
(1)(d) that Tx = Ax = Bx ∀x ∈ H; thus T ∈ ∂eB; similarly, if T ∗ is an
isometry, then T ∗ ∈ ∂eB. Conversely, if T ∈ ∂eB, deduce from (c) that T is a
partial isometry; suppose it is possible to find unit vectors x ∈ kerT, y ∈ kerT ∗;
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define U±z = Tz ± 〈z, x〉y, and note that U± are partial isometries which are
distinct from T and that T = 1

2 (U+ + U−).)

3.2 Compact operators

Definition 3.2.1. A linear map T : X → Y between Banach spaces is said
to be compact if it satisfies the following condition: for every bounded sequence
{xn}n ⊂ X, the sequence {Txn}n has a subsequence which converges with re-
spect to the norm in Y .

The collection of compact operators from X to Y is denoted by B0(X,Y )
(or simply B0(X) if X = Y ).

Thus, a linear map is compact precisely when it maps the unit ball of X
into a set whose closure is compact – or equivalently, if it maps bounded sets
into totally bounded sets1; in particular, every compact operator is bounded.

Although we have given the definition of a compact operator in the context
of general Banach spaces, we shall really only be interested in the case of Hilbert
spaces. Nevertheless, we state our first result for general Banach spaces, after
which we shall specialise to the case of Hilbert spaces.

Proposition 3.2.2. Let X,Y, Z denote Banach spaces.
(a) B0(X,Y ) is a norm-closed subspace of B(X,Y ).
(b) If A ∈ B(Y, Z), B ∈ B(X,Y ), and if either A or B is compact, then

AB is also compact.
(c) In particular, B0(X) is a closed two-sided ideal in the Banach algebra

B(X).

Proof. (a) Suppose A,B ∈ B0(X,Y ) and α ∈ C, and suppose {xn} is a bounded
sequence in X; since A is compact, there exists a subsequence – call it {yn}
of {xn} – such that {Ayn} is a norm-convergent sequence; since {yn} is a
bounded sequence and B is compact, we may extract a further subsequence -
call it {zn} - with the property that {Bzn} is norm-convergent. It is clear then
that {(αA+B)zn} is a norm-convergent sequence; thus (αA+B) is compact;
in other words, B0(X,Y ) is a subspace of B(X,Y ).

Suppose now that {An} is a sequence in B0(X,Y ) and that A ∈ B(X,Y )
is such that ||An − A|| → 0. We wish to prove that A is compact. We will do
this by a typical instance of the so-called ‘diagonal argument’. Thus, suppose
S0 = {xn} is a bounded sequence in X. Since A1 is compact, we can extract a

subsequence S1 = {x(1)
n } of S0 such that {A1x

(1)
n } is convergent in Y . Since A2

is compact, we can extract a subsequence S2 = {x(2)
n } of S1 such that {A2x

(2)
n }

is convergent in Y . Proceeding in this fashion, we can find a sequence {Sk}
such that Sk = {x(k)

n } is a subsequence of Sk−1 and {Akx
(k)
n } is convergent in

1Recall that a subset F of a metric space is said to be totally bounded if for every ε > 0,
it is possible to find a finite subset S such that dist(x, S) < ε ∀x ∈ F ; and that a subset of a
metric space is compact if and only if it is complete and totally bounded.
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Y , for each k ≥ 1. Let us write zn = x
(n)
n ; since {zn : n ≥ k} is a subsequence

of Sk, note that {Akzn} is a convergent sequence in Y , for every k ≥ 1.

The proof of (a) will be completed once we establish that {Azn} is a
Cauchy sequence in Y . Indeed, suppose ε > 0 is given; let K = 1 + supn ||zn||;
first pick an integer N such that ||AN −A|| < ε/3K; next, choose an integer n0

such that ||ANzn −ANzm|| < ε/3 ∀ n,m ≥ n0; then observe that if n,m ≥ n0,
we have:

||Azn −Azm|| ≤ ||(A−AN )zn||+ ||ANzn −ANzm||
+ ||(AN −A)zm||

≤ ε

3K
K +

ε

3
+

ε

3K
K

= ε .

(b) Let B denote the unit ball in X; we need to show that (AB)(B)
is totally bounded; this is true in case (i) A is compact, since then B(B) is
bounded, and A maps bounded sets to totally bounded sets, and (ii) B is
compact, since then B(B) is totally bounded, and A (being bounded and linear)
maps totally bounded sets to totally bounded sets. �

Corollary 3.2.3. Let T ∈ B(H1,H2), where Hi are Hilbert spaces. Then

(a) T is compact if and only if |T | (= (T ∗T )
1
2 ) is compact; and conse-

quently,

(b) T is compact if and only if T ∗ is compact.

Proof. If T = U |T | is the polar decomposition of T , then also U∗T = |T | – see
Theorem 3.1.5; so each of T and |T | is a multiple of the other. Now appeal to
Proposition 3.2.2(b) to deduce (a) above. Also, since T ∗ = |T |U∗, we see that
the compactness of T implies that of T ∗; and (b) follows from the fact that we
may interchange the roles of T and T ∗. �

Exercise 3.2.4. (1) Let X be a metric space; if x, x1, x2, . . . ∈ X, show that
the following conditions are equivalent:

(i) the sequence {xn} converges to x;

(ii) every subsequence of {xn} has a further subsequence which converges
to x.

(Hint: for the non-trivial implication, note that if the sequence {xn} does not
converge to x, then there must exist a subsequence whose members are ‘bounded
away from x’.)

(2) Show that the following conditions on an operator T ∈ B(H1,H2) are
equivalent:

(i) T is compact;

(ii) if {xn} is a sequence in H1 which converges weakly to 0 – i.e, 〈x, xn〉 →
0 ∀ x ∈ H1 – then ||Txn|| → 0.

(iii) if {en} is any infinite orthonormal sequence in H1, then ||Ten|| → 0.
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(Hint: for (i) ⇒ (ii), suppose {yn} is a subsequence of {xn}; by compactness,
there is a further subsequence {zn} of {yn} such that {Tzn} converges, to z,
say; since zn → 0 weakly, deduce that Tzn → 0 weakly; this means z = 0, since
strong convergence implies weak convergence; by (1) above, this proves (ii). The
implication (ii) ⇒ (iii) follows form the fact that any orthonormal sequence
converges weakly to 0. For (iii) ⇒ (i), deduce from Proposition 3.2.7(c) that
if T is not compact, there exists an ε > 0 such that Mε = ran 1[ε,∞)(|T |) is
infinite-dimensional; then any infinite orthonormal set {en : n ∈ N} in Mε

would violate condition (iii).)

Recall that if T ∈ B(H,K) and ifM is a subspace ofH, then T is said to be
‘bounded below’ on M if there exists an ε > 0 such that ||Tx|| ≥ ε||x|| ∀ x ∈ M.

Lemma 3.2.5. If T ∈ B0(H1,H2) and if T is bounded below on a subspace M

of H1, then M is finite-dimensional.

In particular, if N is a closed subspace of H2 such that N is contained in
the range of T , then N is finite-dimensional.

Proof. If T is bounded below on M, then T is also bounded below (by the same
constant) on M; we may therefore assume, without loss of generality, that M

is closed. If M contains an infinite orthonormal set, say {en : n ∈ N}, and if
T is bounded below by ε on M, then note that ||Ten − Tem|| ≥ ε

√
2 ∀n �= m;

then {en} would be a bounded sequence in H such that {Ten} had no Cauchy
subsequence, thus contradicting the assumed compactness of T ; hence M must
be finite-dimensional.

As for the second assertion, let M = T−1(N)∩ (ker⊥T ); note that T maps
M 1-1 onto N; by the open mapping theorem, T must be bounded below on
M; hence by the first assertion of this Lemma, M is finite-dimensional, and so
also is N. �

The purpose of the next exercise is to convince the reader of the fact that
compactness is an essentially ‘separable phenomenon’, so that our restricting
ourselves to separable Hilbert spaces is essentially of no real loss of generality,
as far as compact operators are concerned.

Exercise 3.2.6. (In the following problem and in the sequel, while discussing
the continuous functional calculus of self-adjoint operators, we shall blur the
distinction between bounded continuous functions defined on all of R or only
on σ(T ) for some self-adjoint T ; this should lead to no confusion, since f(T )
depends only on f |σ(T ).)

(a) Let T ∈ B(H) be a positive operator on a (possibly non-separable)
Hilbert space H. Let ε > 0 and let Sε = {f(T )x : f ∈ C(σ(T )), f(t) = 0 ∀t ∈
[0, ε]}. If Mε = [Sε] denotes the closed subspace generated by Sε, then show that
Mε ⊂ ran T . (Hint: let g ∈ C(σ(T )) be any continuous function such that
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g(t) = t−1 whenever t ≥ ε/2; for instance, you could take

g(t) =

⎧⎪⎪⎨
⎪⎪⎩

1

t
if t ≥ ε/2

4t

ε2
if 0 ≤ t ≤ ε/2

;

then notice that if f ∈ C(σ(T )) satisfies f(t) = 0 ∀t ≤ ε, then f(t) =
tg(t)f(t) ∀t; deduce that Sε is a subset of N = {z ∈ H : z = Tg(T )z}; but
N is a closed subspace of H which is contained in ran T .)

(b) Let T ∈ B0(H1,H2), where H1,H2 are arbitrary (possibly non-
separable) Hilbert spaces. Show that ker⊥T and ran T are separable Hilbert
spaces. (Hint: Let T = U |T | be the polar decomposition, and let Mε be associated
to |T | as in (a) above; show that U(Mε) is a closed subspace of ran T and deduce
from Lemma 3.2.5 that Mε is finite-dimensional; note that ker⊥T = ker⊥|T | is
the closure of

⋃∞
n=1 M 1

n
, and that ran T = U(ker⊥T ).)

We now return to our standing assumption that all Hilbert spaces are
separable.

Proposition 3.2.7. The following conditions on an operator T ∈ B(H1,H2)
are equivalent:

(a) T is compact;
(b) |T | is compact;
(c) ran 1[ε,∞)(|T |) is finite-dimensional, for every ε > 0;
(d) there is a sequence {Tn}∞n=1 ⊂ B(H1,H2) such that (i) ||Tn−T || → 0,

and (ii) ran Tn is finite-dimensional, for each n;
(e) ranT does not contain any infinite-dimensional closed subspace of H2.

Proof. For ε > 0, let us use the notation 1ε = 1[ε,∞) and Pε = 1ε(|T |).
(a) ⇒ (b) : See Corollary 3.2.3.
(b) ⇒ (c) : Since t ≥ ε1ε(t) ∀ t ≥ 0, we find easily that |T | is bounded

below (by ε) on ran Pε, and (c) follows from Lemma 3.2.5.
(c) ⇒ (d) : Define Tn = TP 1

n
; notice that 0 ≤ t(1 − 1 1

n
(t)) ≤ 1

n ∀ t ≥ 0;

conclude that || |T |(1− 1 1
n
(|T |))|| ≤ 1

n ; if T = U |T | is the polar decomposition

of T , deduce that ||T − Tn|| ≤ 1
n ; finally, the condition (c) clearly implies that

each (P 1
n
and consequently) Tn has finite-dimensional range.

(d) ⇒ (a) : In view of Proposition 3.2.2(a), it suffices to show that each Tn

is a compact operator; but any bounded operator with finite-dimensional range
is necessarily compact, since any bounded set in a finite-dimensional space is
totally bounded.

(a) ⇒ (e) : See Lemma 3.2.5.
(e) ⇒ (c) : Pick any bounded measurable function g such that g(t) =

1
t , ∀t ≥ ε; then tg(t) = 1 ∀t ≥ ε, whence tg(t)1ε(t) = 1ε(t) ∀t, and |T |g(|T |)Pε =
Pε; hence ran Pε is a closed subspace of (ran |T |, and consequently of) the initial
space of the partial isometry U ; deduce that U(ran Pε) is a closed subspace of
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ran T ; by condition (e), this implies that U(ran Pε) is finite-dimensional. As U
is isometric on ran Pε, we see that ran Pε is finite-dimensional, as desired. �

We now discuss normal compact operators.

Proposition 3.2.8. Let T ∈ B0(H) be a normal (compact) operator on a
separable Hilbert space, and let E �→ P (E) = 1E(T ) be the associated spectral
measure.

(a) If ε > 0, let Pε = P ({λ ∈ C : |λ| ≥ ε}) denote the spectral projection
associated to the complement of the ε-neighbourhood of 0. Then ran Pε is finite-
dimensional.

(b) If Σ∗ = σ(T ) \ {0}, then
(i) λ ∈ Σ∗ ⇒ λ is an eigenvalue of finite multiplicity; that is,

0 < dimker(T − λ) < ∞;
(ii) With P (λ) = 1T ({λ}), the subspaces {ran P (λ) : λ ∈ Σ∗} are

pairwise orthogonal finite-dimensional subspaces, so Σ∗ is a countable set and
ran

(∑
λ∈Σ∗ P ({λ})) = ker⊥(T );

(iii) the only possible accumulation point of Σ∗ is 0; and
(iv) there exist a countable set N and scalars λn ∈ Σ∗, n ∈ N such that

Tx =
∑
n∈N

λn P ({λn}) .

Proof. (a) Note that the function defined by the equation

g(λ) =

{ 1
λ if |λ| ≥ ε

0 otherwise

is a bounded measurable function on σ(T ) such that g(λ)λ = 1Fε(λ), where
Fε = {z ∈ C : |z| ≥ ε}. It follows that g(T )T = Tg(T ) = Pε. Hence ran Pε is
contained in ran T , and the desired conclusion follows from Proposition 3.2.7(e).

(b) (i) By Theorem 1.6.2 (2), if λ ∈ Σ∗, there exists a sequence of unit
vectors xn such that limn→∞ ‖Axn − λxn‖ = 0. By compactness, there is
some subsequence {xnk

} such that y = limk→∞ Axnk
exists. Since ‖y‖ =

limk→∞ ‖Axnk
‖ = |λ| �= 0 it follows that xnk

→ x ( so ‖x‖ = 1) and that
Ax = λx. So λ is an eigenvalue of T . Also, it follows from Proposition 2.4.1(5)
that ran P (λ) = ker(T − λ). Since A is clearly bounded below (by |λ|) on
ker(A− λ), it is seen from Lemma 3.2.5 that λ is an eigenvalue of finite multi-
plicity.

(ii) If λ ∈ Σ∗, and x ∈ ker(A− λ), note that also

‖(A∗ − λ̄)x‖ = ‖(A− λ)∗x‖ = 0

since (A − λ) inherits normality from A. Hence if λ, μ ∈ Σ∗, if λ �= μ and if x
and y are eigenvectors of A corresponding to λ and μ respectively, then

λ〈x, y〉 = 〈Ax, y〉 = 〈x,A∗y〉 = μ〈x, y〉
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and we find that {ker(A − λ) = ran P ({λ}) : λ ∈ Σ∗} is a set of pairwise
orthogonal non-zero subspaces of the separable space H. Hence Σ∗ must be
countable. It follows that( ∑

λ∈Σ∗
P ({λ})

)
= P (Σ∗)

= P (C \ {0})
= projection onto ker⊥(T ) .

(iii) For any ε > 0, Lemma 3.2.5 implies that ran Pε is finite-dimensional.
But clearly Pε =

∑
λ∈Σ∗,|λ|>ε ran P ({λ}); so it must be that {λ ∈ Σ∗ : |λ| > ε}

is finite, thereby establishing (iii).
(iv) T = TP (C) = TP (Σ∗) =

∑
λ∈Σ∗ TP ({λ}) = ∑

λ∈Σ∗ λP ({λ}). �

Exercise 3.2.9. Let X be a compact Hausdorff space and let BX � E �→ P (E)
be a spectral measure; let μ be a measure which is ‘mutually absolutely contin-
uous’ with respect to P – thus, for instance, we may (see Remark 2.6.3) take
μ(E) =

∑ ||P (E)en||2, where {en} is some orthonormal basis for the underlying
Hilbert space H – and let π : C(X) → B(H) be the associated representation.

(a) Show that the following conditions are equivalent:
(i) H is finite-dimensional;
(ii) there exists a finite set F ⊂ X such that μ = μ|F , and such that

ranP ({x}) is finite-dimensional, for each x ∈ F .
(b) If x0 ∈ X, show that the following conditions on a vector x ∈ H are

equivalent:
(i) π(f)x = f(x0)x ∀ f ∈ C(X);
(ii) x ∈ ranP ({x0}).
(Hint: See Corollary 2.4.3.)

By piecing together our description in Proposition 3.2.8 – applied to |T |
– and the polar decomposition, we arrive at the useful ‘singular value decom-
position’ of a general compact operator.

Proposition 3.2.10. Suppose T ∈ B0(H1,H2) has polar decomposition T =
U |T |. Then, with P ({λ}) = 1|T |({λ}) (as in Proposition 3.2.8 applied to |T |),
we have

(1) σ(|T |) = Σ∗∐{0} where Σ∗ admits an enumeration Σ∗ = {λn : n ∈ N}
for some countable set N ; if Σ∗ is finite, then T has finite rank; and if N
is infinite, we may assume without loss of generality that N = N and that
λ1 > λ2 > · · · > λn > λn+1 > · · · and λn ↓ 0

(2) T =
∑

n∈N λnUP ({λn}); more explicitly, if {x(n)
k : k ∈ In} is an or-

thonormal basis for ranP ({λn}) and y
(n)
k = Ux

(n)
k , then

Tx =
∑
n∈N

λn

( ∑
k∈In

〈x, x(n)
k 〉y(n)k

)
. (3.2.3)
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Here, and in the rest of this chapter the symbol N will always denote one
of the sets {1, 2, . . . , n} 2

The sequence {sn = sn(T ) : n < dim(H1) + 1} defined by

sn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 if 0 < n ≤ card (I1)

λ2 if card (I1) < n ≤ (card (I1) + card (I2))
· · ·
λm if

∑
1≤k<m card (Ik) < n ≤ ∑

1≤k≤m card (Ik)

0 if
∑

k∈N card (Ik) < n

(3.2.4)

{sn(T )}n is the non-increasing arrangement (counting multiplicity) of the
eigenvalues of |T |, and the sn’s are called the singular values of the compact
operator T .

The proof is essentially spelt out in the statement of the Proposition
itself, and is left as an exercise to the reader. A less verbose – and slightly
less informative – way to rephrase the content of Proposition 3.2.10 uses the
following notation: for x ∈ H, y ∈ K, write (x̄⊗ y) for the rank one operator in
B(H,K) given by (x̄⊗ y)x′ = 〈x′, x〉y.
Exercise 3.2.11. If x ∈ H, y, y′ ∈ K, z ∈ M, then verify that (ȳ′ ⊗ z)(x̄⊗ y) =
〈y, y′〉(x̄⊗ z).

Singular value decomposition: If s1, s2, . . . are the singular values of a
compact operator T , then T admits a so-called singular value decomposition
(sometimes abbreviated to SVD)

T =
∑
n∈N

sn(T ) (x̄n ⊗ yn) (3.2.5)

where {xn : n ∈ N} (resp., {yn : n ∈ N}) is an orthonormal basis for ker⊥(T ),
(resp., ker⊥(T ∗)). (Note that even if dim ranT < dim(H), the singular values
sn are defined for n < dim(H) + 1.)

Note that while the singular values are uniquely determined, this is no
longer true for the SVD, since, for instance, ker(|T | −λ) might have dimension
more than one for some λ. Some more useful properties of singular values are
listed in the following exercises.

Exercise 3.2.12. (1) Let T ∈ B(H) be a positive compact operator on a
Hilbert space. In this case, we write λn = sn(T ), since (T = |T | and
consequently) each λn is then an eigenvalue of T . The purpose of this set
of exercises is to prove and study some consequences of

λn = max
dimM≤n

min{〈Tx, x〉 : x ∈ M, ||x|| = 1} , (3.2.6)

2Note that n = 0 ⇔ N = ∅ ⇔ T = 0.
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where the the maximum is to be interpreted as a supremum, over the
collection of all subspaces M ⊂ H with appropriate dimension, and part
of the assertion of the exercise is that this supremum is actually attained
(and is consequently a maximum); in a similar fashion, the minimum is to
be interpreted as an infimum which is attained. (This identity is called the
max-min principle and is also referred to as the Rayleigh-Ritz principle.)

(2) Define Mn = [{xj : 1 ≤ j ≤ n}], where {xk : k ∈ N} are as in Equation
(3.2.5); observe that λn = min{〈Tx, x〉 : x ∈ Mn, ||x|| = 1}; this proves the
inequality ≤ in (3.2.6). Conversely, if dimM ≤ n, argue that there must
exist a unit vector x0 ∈ M∩M⊥

n−1 (since the projection onto Mn−1 cannot
be injective on M ), to conclude that min{〈Tx, x〉 : x ∈ M, ||x|| = 1} ≤ λn.

(3) If T : H1 → H2 is a compact operator between Hilbert spaces, show that

sn(T ) = max
dimM≤n

min{||Tx|| : x ∈ M, ||x|| = 1} . (3.2.7)

(Hint: Note that ||Tx||2 = 〈|T |2x, x〉, apply equation (3.2.6) above to
|T |2, and note that sn(|T |2) = sn(|T |)2.)

(4) T ∈ B0(H) ⇒ s1(T ) = ‖T‖. (Hint: This is the case n = 1 of Equation
(3.2.7) above.)

(5) If T is compact, show that

sn(T ) = min{‖T − F‖ : dim(ran (F )) < n} ∀n ≥ 1 .

(Hint: If sn(T ) = 0, then dim(ran (T )) < n and this equality is
obvious. So assume sn(T ) > 0.

Prove two inequalities. Let Equation (3.2.5) be the SVD of T . If

Fn =
∑n−1

k=1 skx̄k ⊗ yk, then dim(ran (Fn)) < n and ‖T − Fn‖ = sn(T )
since {sn(T )} is a non-increasing sequence; so indeed

sn(T ) ≤ inf{‖T − F‖ : dim(ran (F )) < n} ∀n ≥ 1} .

Conversely suppose F is an operator whose range (call it M) has
dimension less than n. Let N = ker(F ). Note first that ran(F ) and
ran (F ∗) have the same dimension (by polar decomposition) and hence
dim(N⊥) = dim(ran(F ∗)) < n . Let Mn = [{x1, . . . , xn}]. The assump-
tion sn(T ) > 0 implies that dim(Mn) = n. If P denotes the projection
onto N⊥, it follows that P |Mn

cannot be injective; since ker(P ) = N, we
can find a unit vector x ∈ Mn ∩N. Then,

‖(T − F )x‖ = ‖Tx‖
≥ min{‖Tz‖ : z ∈ S(Mn)}
= sn(T ) ,
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thus yielding the reverse inequality.

Since limn→∞ sn(T ) = 0, this exercise also gives another proof of
Proposition 3.2.7 (d).)

(6) If T ∈ B0(H1,H2) and if sn(T ) > 0, then show that n ≤ dim(H2) (so
that sn(T

∗) is defined) and sn(T
∗) = sn(T ). (Hint: Use Exercise 3.1.6 (2)

or the polar decomposition; in fact if T =
∑

sn(x̄n ⊗ yn) is an SVD of T ,
then T∗ =

∑
sn(ȳn ⊗ xn) is an SVD of T ∗ .)

3.3 von Neumann-Schatten ideals

We begin with a brief survey of this section which might help to motivate the
notation and development of this section. This section may be regarded as
containing non-commutative analogues of their ‘commutative counterparts’ of
facts regarding classical sequence spaces c0, �

2, �1, �∞ and finally also �p, 1 < p <
∞ as well as the duality relations among them. Specifically, we shall establish
the following facts in this section:

(1) The following conditions on an operator T ∈ B(H,K) are equivalent,
where we assume that H,K are infinite-dimensional and separable:

(1) There exists an orthonormal basis {xn : n ∈ N} (resp., {yn : n ∈ N})
for ker⊥(T ) (resp., ker⊥(T ∗)) such that Txn = snyn ∀n ∈ N for a
sequence s(T ) = {sn : n ∈ N} of positive scalars such that s(T ) ∈ c0
(resp., s(T ) ∈ �p where p ∈ [1,∞)).

(2) T ∈ B0(H,K) (resp., T ∈ Bp(H,K)) 3

(2) With the notation of item (1) above, the sets Bp(H,K) are Banach spaces
– called the von Neumann-Schatten classes – when equipped with the

norms given by ‖T‖p = (
∑

sn(T )
p)

1
p .

(3) B0(H)∗ = B1(H) (where B0(H) is viewed as a subspace of B(H)), and
there exist natural identifications Bp(H)∗ = Bq(H) for 1 < p, q < ∞ with
1
p + 1

q = 1, and B1(H)∗ = B(H).

(4) Each Bp(H) is a (non-closed) two-sided ideal in B(H) and the Schatten
p-norm ‖ · ‖p is unitarily invariant in the sense that ‖UTV ‖p = ‖T‖p
whenever U and V are unitary.

(5) The space B00(H) of finite rank operators on H is a dense linear subspace
of each Banach space Bp(H), 1 ≤ p < ∞( all of which are, in turn, dense
subspaces of the Banach space B0(H).

3Thus Bp(H,K) = {T ∈ B0(H,K)}; s(T ) ∈ �p} where p ∈ [1,∞).
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3.3.1 Hilbert-Schmidt operators

Lemma 3.3.1. The following conditions on a linear operator T ∈ B(H1,H2)
are equivalent:

(i)
∑

n ||Ten||2 < ∞ , for some orthonormal basis {en} of H1;
(ii)

∑
m ||T ∗fm||2 < ∞ , for every orthonormal basis {fm} of H2.

(iii)
∑

n ||Ten||2 < ∞ , for every orthonormal basis {en} of H1, with
this sum being independent of the chosen orthonormal basis.
If these equivalent conditions are satisfied, then the sums of the series in (ii)
and (iii) are independent of the choice of the orthonormal bases and are all
equal to one another.

Proof. If {en} (resp., {fm}) is any orthonormal basis for H1 (resp., H2), then
note that ∑

n

||Ten||2 =
∑
n

∑
m

|〈Ten, fm〉|2

=
∑
m

∑
n

|〈T ∗fm, en〉|2

=
∑
m

||T ∗fm||2 ,

and all the assertions of the proposition are seen to follow. �
Definition 3.3.2. An operator T ∈ B(H1,H2) is said to be a Hilbert-Schmidt
operator if it satisfies the equivalent conditions of Lemma 3.3.1, and the Hilbert-
Schmidt norm of such an operator is defined by

||T ||2 :=
( ∑

n

||Ten||2
) 1

2

, (3.3.8)

where {en} is any 4 orthonormal basis for H1. The collection of all Hilbert-
Schmidt operators from H1 to H2 will be denoted by B2(H1,H2).

Some elementary properties of the class of Hilbert-Schmidt operators are
contained in the following proposition.

Proposition 3.3.3. Suppose T ∈ B(H1,H2), S ∈ B(H2,H3), where H1,H2,
H3 are Hilbert spaces.

(a) T ∈ B2(H1,H2) ⇒ T ∗ ∈ B2(H2,H1); moreover, ||T ∗||2 = ||T ||2 ≥
||T ||∞, where we write || · ||∞ to denote the usual operator norm;

(b) if either S or T is a Hilbert-Schmidt operator, so is ST , and

||ST ||2 ≤
{ ||S||2||T ||∞ if S ∈ B2(H2,H3)

||S||∞||T ||2 if T ∈ B2(H1,H2) ;
(3.3.9)

(c) B2(H1,H2) ⊂ B0(H1,H2);

4This adjective is justified by Proposition 3.3.1(iii).
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(d) if T ∈ B0(H1,H2), then T is a Hilbert-Schmidt operator if and only
if
∑

n sn(T )
2 < ∞; in fact,

||T ||22 =
∑
n

sn(T )
2 .

Proof. (a) The equality ||T ||2 = ||T ∗||2 was proved in Lemma 3.3.1. If x is any
unit vector in H1, pick an orthonormal basis {en} for H1 such that e1 = x, and
note that

||T ||2 =
( ∑

n

||Ten||2
) 1

2 ≥ ||Tx|| ;

since x was an arbitrary unit vector in H1, deduce that ||T ||2 ≥ ||T ||∞, as
desired.

(b) Suppose T is a Hilbert-Schmidt operator; then, for an arbitrary or-
thonormal basis {en} of H1, we find that∑

n

||STen||2 ≤ ||S||2∞
∑
n

||Ten||2 ,

whence ST is also a Hilbert-Schmidt operator and that ||ST ||2 ≤ ||S||∞||T ||2;
if T is a Hilbert-Schmidt operator, then, so is T ∗, and by the already proved
case, also S∗T ∗ is a Hilbert-Schmidt operator, and

||TS||2 = ||(TS)∗||2 ≤ ||S∗||∞||T ∗||2 = ||S||∞||T ||2 .

(c) Let Mε = ran 1[ε,∞)(|T |); then Mε is a closed subspace of H1 on
which T is bounded below, by ε; so, if {e1, . . . , eN} is any orthonormal set in

Mε, we find that Nε2 ≤ ∑N
n=1 ||Ten||2 ≤ ||T ||22, which clearly implies that

dim Mε is finite (and can not be greater than (||T ||2/ε)2). We may now infer
from Proposition 3.2.7 that T is necessarily compact.

(d) Let Tx =
∑

n sn(T )〈x, xn〉yn for all x ∈ H1, as in Equation (3.2.5),
for an appropriate orthonormal (finite or infinite) sequence {xn} (resp., {yn})
in H1 (resp., in H2). Then notice that ||Txn|| = sn(T ) and that Tx = 0 if
x ⊥ xn ∀n. If we compute the Hilbert-Schmidt norm of T with respect to an
orthonormal basis obtained by extending the orthonormal set {xn}, we find
that ||T ||22 =

∑
n sn(T )

2, as desired. �
Remark 3.3.4. (1) B2(H) is a two-sided ideal in B0(H). (This follows from

Proposition 3.3.3 (b), (d) and the fact that �2(N) is a vector space.)

(2) The set B00(H) of all finite rank operators is the smallest non-zero (two-
sided) ideal of B(H). (Reason: If I is any non-zero ideal in B(H), there
exists a T ∈ I and x0, y0 ∈ H \ {0} such that Tx0 = y0. Then, for any
0 �= x, y ∈ H, we have

x̄⊗ y = ‖y0‖−2(ȳ0 ⊗ y)T (x̄⊗ x0) ∈ I

and we are done, because B00(H) is linearly spanned by operators of the
form (x̄⊗ y).)



3.3. von Neumann-Schatten ideals 71

(3) B2(H,K) is a Hilbert space with respect to the inner product given by

〈S, T 〉ε =
∑

〈Sen, T en〉

for an orthonormal basis ε = {en} of H; and this definition is independent
of the orthonormal basis ε. (Reason: For any orthonormal basis ε ofH, this
series is convergent (by two applications of the Cauchy-Schwarz inequality,
once in K and then again in �2) and is easily seen to define a sesquilinear
form Bε on B2(H,K) with associated quadratic form qε being independent
of the orthonormal basis ε. It follows from the polarisation identity that
Bε is also independent of ε. As qε(T ) ≥ ‖T‖∞, any qε-Cauchy sequence
{Tn : n ∈ N} in B2(H,K) is also a Cauchy sequence in B(H,K). If
T ∈ B(H,K) and ‖Tn − T‖ → 0, it follows from the boundedness of
{qε(Tn) : n ∈ N} that also T ∈ B2(H,K) and that qε(Tn − T ) → 0.
If H̄ denotes the ‘conjugate Hilbert space’ of H - with an anti-unitary
operator H � f �→ f̄ – it is not hard to show that {(ēi ⊗ fj) : i, j ∈ N}
is an orthonormal basis for B2(H,K) whenever {en : n ∈ N} (resp.,
{fn : n ∈ N}) is an orthonormal basis for H (resp., K), and hence we have
a natural identification B2(H,K) ∼= H̄ ⊗K.)

(4) B00(H) is dense in the Hilbert space B2(H) as well as in the Banach space
B0(H). (The SVD of a compact operator is the fastest way to see this.)

(5) B0(H) is the only non-trivial closed ideal in B(H). (Reason: If I is any
non-zero closed ideal in B(H), it follows from items (2) and (4) above
that B0(H) ⊂ I. It suffices to show that B0(H) is the largest ideal in
B(H). (This requires separability of H.) Suppose I is a two-sided ideal
containing a non-compact operator T . Then, by Proposition 3.2.7 (e), we
can find an infinite-dimensional closed subspace M contained in ran(T ).
Let N = T−1(M) ∩ ker⊥(T ). Then T is a bijective bounded operator of
N onto M and hence there exists an S ∈ B(M,N) such that TS = idM.
Since M is infinite-dimensional, there exists an isometry V ∈ B(H) such
that ran(V ) = M. It is seen that idH = V ∗TSV ∈ I, whence the ideal I
must be all of B(H).)

Probably the most useful fact regarding Hilbert-Schmidt operators is their
connection with integral operators. (Recall that a measure space (Z,BZ , λ) is
said to be σ-finite if there exists a partition Z =

∐∞
n=1 En, such that En ∈

BZ , μ(En) < ∞ ∀n. The reason for our restricting ourselves to σ-finite measure
spaces is that it is only in the presence of some such hypothesis that Fubini’s
theorem is valid.)

Proposition 3.3.5. Let (X,BX , μ) and (Y,BY , ν) be σ-finite measure spaces.
Let H = L2(X,BX , μ) and K = L2(Y,BY , ν). Then the following conditions
on an operator T ∈ B(H,K) are equivalent:

(i) T ∈ B2(K,H);
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(ii) there exists k ∈ L2(X × Y,BX ⊗BY , μ× ν) such that

(Tg)(x) =

∫
Y

k(x, y)g(y) dν(y) ν − a.e. ∀ g ∈ K . (3.3.10)

If these equivalent conditions are satisfied, then,

||T ||B2(K,H) = ||k||L2(μ×ν) .

Proof. (ii) ⇒ (i): Suppose k ∈ L2(μ × ν); then, by Tonelli’s theorem, we can
find a set A ∈ BX such that μ(A) = 0 and such that x /∈ A ⇒ kx (= k(x, ·) ) ∈
L2(ν), and further,

||k||2L2(μ×ν) =

∫
X\A

||kx||2L2(ν)dμ(x) .

It follows from the Cauchy-Schwarz inequality that if g ∈ L2(ν), then kxg ∈
L1(ν) ∀ x /∈ A; hence equation (3.3.10) does indeed meaningfully define a func-
tion Tg on X \A, so that Tg is defined almost everywhere; another application
of the Cauchy-Schwarz inequality shows that

||Tg||2L2(μ) =

∫
X

∣∣∣ ∫
Y

k(x, y)g(y) dν(y)
∣∣∣2 dμ(x)

=

∫
X−A

|〈kx, g〉K|2 dμ(x)

≤
∫
X−A

||kx||2L2(ν)||g||2L2(ν) dμ(x)

= ||k||2L2(μ×ν)||g||2L2(ν) ,

and we thus find that equation (3.3.10) indeed defines a bounded operator
T ∈ B(K,H).

Before proceeding further, note that if g ∈ K and f ∈ H are arbitrary,
then, (by Fubini’s theorem), we find that

〈Tg, f〉 =

∫
X

(Tg)(x)f(x) dμ(x)

=

∫
X

( ∫
Y

k(x, y)g(y) dν(y)
)
f(x)dμ(x)

= 〈k, f ⊗ g〉L2(μ×ν) , (3.3.11)

where we have used the notation (f ⊗ g) to denote the function on X × Y
defined by (f ⊗ g)(x, y) = f(x)g(y).

Suppose now that {en : n ∈ N} and {gm : m ∈ M} are orthonormal
bases for H and K respectively; then, notice that also {gm : m ∈ M} is an
orthonormal basis for K; deduce from equation (3.3.11) above that∑

m∈M,n∈N

|〈Tgm, en〉H|2 =
∑

m∈M,n∈N

|〈k, en ⊗ gm〉L2(μ×ν)|2

= ||k||2L2(μ×ν) ;
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thus T is a Hilbert-Schmidt operator with Hilbert-Schmidt norm agreeing with
the norm of k as an element of L2(μ× ν).

(i) ⇒ (ii) : If T : K → H is a Hilbert-Schmidt operator, then, in particular
– see Proposition 3.3.3(c) – T is compact; let

Tg =
∑
n

λn〈g, gn〉fn

be the singular value decomposition of T (see Proposition 3.2.10). Thus {gn}
(resp., {fn}) is an orthonormal sequence in K (resp., H) and λn = sn(T ). It
follows from Proposition 3.3.3 (d) that

∑
n λ

2
n < ∞, and hence we find that the

equation

k =
∑
n

λn fn ⊗ g

defines a unique element k ∈ L2(μ×ν); if T̃ denotes the ‘integral operator’ asso-
ciated to the ‘kernel function’ k as in Equation (3.3.10), we find from equation
(3.3.11) that for arbitrary g ∈ K, f ∈ H, we have

〈T̃ g, f〉H = 〈k, f ⊗ g〉L2(μ×ν)

=
∑
n

λn〈fn ⊗ gn, f ⊗ g〉L2(μ×ν)

=
∑
n

λn〈fn, f〉H〈gn, g〉K

=
∑
n

λn〈fn, f〉H〈g, gn〉K

= 〈Tg, f〉H ,

whence we find that T = T̃ and so T is, indeed, the integral operator induced
by the kernel function k. �

Exercise 3.3.6. If T and k are related as in Equation (3.3.10), we say that T
is the integral operator induced by the kernel k, and we shall write T = Int k.

For i = 1, 2, 3, let Hi = L2(Xi,Bi, μi), where (Xi,Bi, μi) is a σ-finite
measure space. Let h ∈ L2(X2×X3,B2⊗B3, μ2×μ3), k, k1 ∈ L2(X1×X2,B1⊗
B2, μ1 × μ2), and let S = Int h ∈ B2(H3,H2), T = Int k, T1 = Int k1 ∈
B2(H2,H1); show that

(i) if α ∈ C, then T + αT1 = Int (k + αk1);
(ii) if we define k∗(x2, x1) = k(x1, x2), then k∗ ∈ L2(X2×X1,B2⊗B1, μ2×

μ1) and T ∗ = Int k∗;
(iii) TS ∈ B2(H3,H1) and TS = Int (k ∗ h), where

(k ∗ h)(x1, x3) =

∫
X2

k(x1, x2)h(x2, x3) dμ2(x2)

for (μ1 × μ3)-almost all (x1, x3) ∈ X ×X.
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(Hint: for (ii), note that k∗ is a square-integrable kernel, and use equation
(3.3.11) to show that Int k∗ = (Int k)∗; for (iii), note that |(k ∗ h)(x1, x3)| ≤
||kx1 ||L2(μ2)||hx3

||L2(μ2) to conclude that k ∗h ∈ L2(μ1×μ3); again use Fubini’s
theorem to justify interchanging the orders of integration in the verification that
Int (k ∗ h) = (Int k)(Int h).)

3.3.2 Trace-class operators

Proposition 3.3.7. 1. The following conditions on an operator T ∈ B(H)
are equivalent:

(a) T is compact and
∑

n∈N sn(T ) < ∞.

(b) There exist Hilbert-Schmidt operators H1, H2 such that T = H1H2.

(c)
∑ |〈Txn, yn〉| < ∞ for any pair {xn} and {yn} of orthonormal sets
in H.

The collection of operators satisfying the three equivalent conditions above
is denoted by B1(H).

2. B1(H) is a self-adjoint two-sided ideal in B(H).

Due to the next property the class B1(H) is called the Trace Class and its
elements are said to be trace class operators.

3. If T is of trace class, the sum
∑〈Txn, xn〉 is absolutely convergent for any

orthonormal basis {xn}n of H; this sum is independent of the orthonormal
basis {xn}n, is called the trace of T , and is denoted by Tr (T ).

4. If T ∈ B1(H), A ∈ B(H), then Tr (AT ) = Tr (TA). (Note that both
sides of this equation make sense in view of (3) above.) And, in particular
Tr (UTU∗) = Tr (T ) for any unitary U .

Proof. (1) (a) ⇒ (b) : Let T =
∑

n∈N sn(T )x̄n ⊗ yn be the SVD of T . Let

H1 =
∑

n∈N sn(T )
1
2 (ȳn ⊗ yn) and H2 =

∑
n∈N sn(T )

1
2 (x̄n ⊗ yn). Then

the Hi’s are Hilbert-Schmidt operators (these defining equations are, in

fact, the SVD’s of the Hi’s, and hence sn(Hi) = sn(T )
1
2 , i = 1, 2 and so,∑

sn(Hi)
2 =

∑
sn(T ) < ∞) and clearly T = H1H2.

(b) ⇒ (c) : It follows from (two applications of) the Cauchy-Schwarz
inequality (once in H2 and once in �2) and Proposition 3.3.3 that∑

|〈Txn, yn〉| ≤
∑

|〈H2xn, H
∗
1yn〉|

≤
∑

‖H2xn‖ · ‖H∗
1yn‖

≤ ‖H2‖2‖H∗
1‖2

< ∞ ,

as desired.
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(c) ⇒ (a) : We first wish to show that the assumption (c) implies
that T is compact. For this, it suffices to prove that |T | is compact, or
equivalently that ran(1[ε,∞)(|T |) is finite-dimensional, for any ε > 0.

Assertion: Let Mε = ran(1[ε,∞)(|T |). Suppose Mε is infinite-
dimensional for some ε > 0. Then there exist orthonormal sets {xn} in
Mε and {yn} in T (Mε) such that 〈Txn, yn〉 = ‖Txn‖ ∀n.

Reason: Pick a unit vector x1 ∈ Mε. Then ‖Tx1‖ = ‖|T |x1‖ ≥ ε,
so |T |x1 �= 0. Let z1 = 1

‖Tx1‖ |T |x1. Note that z1 ∈ Mε since 1E(|T |)
commutes with |T | for any Borel set E ⊂ R. Let V1 = [{x1, z1}].
As V1 is a finite-dimensional subspace of Mε, we may find a unit vec-
tor x2 ∈ Mε ∩ V ⊥

1 . As before, let z2 = 1
‖Tx2‖ |T |x2. Under the as-

sumed infinite dimensionality of Mε, we may keep repeating this pro-
cess to find an infinite orthonormal set {xn} ⊂ Mε such that the sub-
spaces Vn = [xn, zn] are pairwise orthogonal subspaces of Mε, where
zn = 1

‖Txn‖ |T |xn. Define yn = Uzn where T = U |T | is the polar de-

composition of T . Since {zn} is an orthonormal set in Mε and hence in
the initial space of U , it follows that {yn} is an orthonormal set. The
construction implies that 〈Txn, yn〉 = 〈|T |xn, U

∗yn〉 = 〈|T |xn, zn〉 =
‖|T |xn‖ ≥ ε, so there is no way the infinite series

∑ |〈Txn, yn〉| can
converge; hence the assumed infinite-dimensionality of Mε is unten-
able.

So |T |, and hence T , must be compact.

As T is compact, let {xn}, {yn} be as in Equation (3.2.5). The desired
result follows by applying condition (3) to this choice of of {xn}, {yn}.

(2) That it is a vector space and is a two-sided ideal follow from 1(c) and 1(b)
of this Proposition, and from Proposition 3.3.3.

(3) The first assertion on absolute convergence of the series follows at once
from 1(c) of this Proposition. For the other assertions in (3), we consider
three cases of increasing levels of generality:

Case (i) T ≥ 0: In this case, it follows from Proposition 3.3.7 (1)

and Proposition 3.3.3 (c) that T
1
2 ∈ B2(H), and the desired conclusions

are consequences of Lemma 3.3.1.

Case (ii) T = T ∗: Observe that T+ = 1[0,∞)(T )T and T− =
−1(−∞,0](T )T are also trace-class operators, by (2) above. It follows from
the already established Case (i) that both T±, and consequently also T ,
have a well-defined trace independent of the orthonormal basis.

Case (iii): T arbitrary: This follows from Case (ii) and the Cartesian
decomposition (since part (2) of this proposition shows that B1(H) is
closed under taking real and imaginary parts.

(4) We prove this also in three stages like (3) above.
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Case (i) T ≥ 0: In this case, the SVD decomposition or the spectral
theorem will yield decomposition T =

∑
sm(T )(x̄m ⊗ xm) for some or-

thonormal basis {xm} for ker⊥T . Extend this orthonormal set {xm} to an
orthonormal basis{en} for H, and note that en /∈ {xm} ⇒ en ∈ ker(T ) ⇒
Ten = 0; we then find that

Tr (AT ) =
∑
n

〈ATen, en〉

=
∑
m

〈ATxm, xm〉

=
∑
m

sm(T )〈Axm, xm〉

while also

Tr (TA) =
∑

〈TAen, en〉
=

∑
〈Aen, T en〉

=
∑

sm(T )〈Axm, xm〉 .

Case(ii) T = T ∗: Apply the already proved Case (i) for T± and use
T = T+ − T−.

Case(iii) T arbitrary: Use the Cartesian decomposition.
�

The next Exercise outlines an alternative proof of part 4 of Proposition
3.3.7.

Exercise 3.3.8. (1) If U is unitary and T ∈ B1(H), deduce from part 3 of
Proposition 3.3.7 that Tr (UTU∗) = Tr (T ).

(2) Show that for unitary U and arbitrary S ∈ B1(H), we have Tr (US) =
Tr (SU). (Hint: Put T = SU in part 1 above.)

(3) Show that for A ∈ B(H) and arbitrary S ∈ B1(H), we have Tr (AS) =
Tr (SA). (Hint: Use Proposition 2.8.1 (7) and part 2 of this Exercise.)

3.3.3 Duality results

In this section, we shall establish the non-commutative analogues of �1 ∼= (c0)
∗

and �∞ ∼= (�1)∗.
For T ∈ B1(H), define its trace norm ‖T‖1 by

‖T‖1 =
∑

sn(T ) . (3.3.12)
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Proposition 3.3.9. There exists a linear bijection T ↔ φT of B
1(H) onto

B0(H)∗ such that ‖T‖1 = ‖φT ‖B0(H)∗ , and hence B1(H) is a Banach space
with respect to ‖ · ‖1 such that B1(H) ∼= B0(H)∗.

Similarly, there exists a bijection A ↔ ψ(A) of B(H) onto B1(H)∗ such
that ‖A‖B(H) = ‖ψA‖B1(H)∗ , and hence B(H) ∼= B1(H)∗.

Proof. For T ∈ B1(H), and A ∈ B0(H) (resp., A ∈ B(H)), define φT (A) =
Tr(AT ) (resp., ψA(T ) = Tr(AT )).

Suppose T = U |T | is the polar decomposition of T and T =
∑

sm(x̄m ⊗
ym) is an SVD of T . Let {en} be a completion of {xn} to an orthonormal
basis of H. Then,

|Tr (TA)| = |Tr (AT )|
= |

∑
〈ATen, en〉|

≤
∑

sm|〈Aym, xm〉|
≤ ‖T‖1‖A‖∞ .

Conclude that (i) φT ∈ (B0(H))
∗
and ‖φT ‖ ≤ ‖T‖1 and (ii) ψA ∈ (

B1(H)
)∗

and ‖ψA‖ ≤ ‖A‖∞.
For T as above, define Wn =

∑n
k=1 ȳk ⊗xk. Then W is a partial isometry

with finite-dimensional range, so Wn is compact and ‖Wn‖ ≤ 1. Clearly

‖φT ‖ ≥ sup
n

|φT (Wn)| = sup
n

|Tr(WnT ))| = sup
n

n∑
k=1

sk = ‖T‖1

so indeed ‖φT ‖ = ‖T‖1. And if A ∈ B(H), then

‖A‖ = sup{|〈Ax, y〉| : x, y ∈ S(H)}
= sup{|ψA(ȳ ⊗ x))| : x, y ∈ S(H)}
≤ ‖ψA‖ ,

whence indeed ‖ψA‖ = ‖A‖.
On the other hand, if φ ∈ (B0(H))

∗
, (resp., ψ ∈ (

B1(H)
)∗
, notice that the

equation Bφ(x, y) = φ(ȳ⊗x) (resp., Bψ(x, y) = ψ(ȳ⊗x)) defines a sesquilinear
form on H and that |Bφ(x, y)| ≤ ‖φ‖ ‖x‖ ‖y‖ (resp., |Bψ(x, y)| ≤ ‖ψ‖ ‖x‖ ‖y‖)
– since ‖(ȳ⊗x)‖ = ‖(ȳ⊗x)‖1 = 1. Deduce the existence of a bounded operator
T (resp., A) such that Bφ(x, y) = 〈Tx, y〉 (resp., Bψ(x, y) = 〈Ax, y〉).

It follows that φ(F ) = Tr (TF ) and ψ(F ) = Tr (AF ) whenever F ∈
B00(H). It follows easily from the SVD that B00(H) is dense in B1(H),
which then shows that ψ = ψA. To complete the proof, we should show that
T ∈ B

1(H) and that φ = φT . For this, suppose {xn} and {yn} are a pair of
orthonormal sets. Define

αk =

⎧⎨
⎩

|〈Txk, yk〉|
〈Txk, yk〉 if 〈Txk, yk〉 �= 0

1 otherwise
.
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and Fn =
∑n

k=1 αk(ȳk ⊗ xk). Observe now that for each n, the operator Fn is
a partial isometry of finite rank n (and operator norm at most 1) and that

n∑
k=1

|〈Txk, yk〉| =

n∑
k=1

αk〈Txk, yk〉

= Tr(TFn)

= φ(Fn)

≤ ‖φ‖ ,

so
∑∞

k=1 |〈Txk, yk〉| < ∞.
In particular, we may deduce from Proposition 3.3.7 (1c) that T ∈ B1(H).

Since φ and φT agree on the dense subspace B00(H) of B0(H), we see that
φ = φT , as desired. �
Corollary 3.3.10. If T ∈ B1(H), then

‖T‖1 = sup
{∑ |〈Tun, vn〉| : {un} and {vn} are orthonormal sets

}
.

Proof. ≥: If T =
∑

sn(T )x̄n ⊗ yn is a SVD of T , then

‖T‖1 =
∑

sn(T )

=
∑

〈Txn, yn〉

so indeed the inequality ≥ is valid.
≤: Suppose {un} and {vn} are orthonormal sets. It is clearly enough

to prove the desired inequality under the added assumption that both these
orthonormal sets are infinite. Let γn be a number of unit modulus such that
|〈Tun, vn〉| = γn〈Tun, vn〉. If {en} is an orthonormal basis for H, define partial
isometries U, V by Uen = γnun, V en = vn. Then observe that∑〈|Tun, vn〉| =

∑
γn〈Tun, vn〉

=
∑〈TUen, V en〉

= Tr (V ∗TU)

= Tr (TUV ∗)
≤ ‖T‖1,

since ‖UV ∗‖ ≤ 1. �
Remark 3.3.11. The so-called von Neumann-Schatten p-class is the (non-
closed) two-sided self-adjoint ideal of B0(H) defined by Bp(H) = {T ∈ B0(H) :
((sn(T ))) ∈ �p}, 1 ≤ p < ∞. (To see that Bp(H) are ideals in B(H), notice that
sn(UTV ) = sn(T ) so that T ∈ Bp(H) ⇔ UTV ∈ Bp(H) whenever U, V are
unitary, then appeal to Proposition 2.8.1 (7).) These are Banach spaces w.r.t.
‖T‖p = ‖((sn(T )))‖�p , and the expected duality statement (Bp(H))

∗
= Bq(H)

where q = p
p−1 is the conjugate index to p. (In thee previous line, if p had been
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1, q should be interpreted as ∞.) These may be proved by using the classical
fact (�p)∗ = �q and imitating, with obvious modifications, our proof above of
B1(H) = (B0(H))

∗
.

3.4 Fredholm operators

Recall (see Remark 3.3.4 (5)) that B0(H) is the unique closed two-sided ideal
in B(H). This section is devoted to invertibility modulo this ideal.

Proposition 3.4.1. (Atkinson’s theorem) If T ∈ B(H1,H2), then the follow-
ing conditions are equivalent:

(a) there exist operators S1, S2 ∈ B(H2,H1) and compact operators Ki ∈
B(Hi), i = 1, 2, such that

S1T = 1H1
+K1 and TS2 = 1H2

+K2 .

(b) T satisfies the following conditions:
(i) ran T is closed; and
(ii) ker T and ker T ∗ are both finite-dimensional.
(c) There exists S ∈ B(H2,H1) such that both idH1

− ST and idH2
− TS

are projections with finite-dimensional range.

Proof. (a) ⇒ (b): Begin by fixing a finite-rank operator F such that ||K1−F || <
1
2 (see Proposition 3.2.7(d)); set M = ker F and note that if x ∈ M, then

||S1|| · ||Tx|| ≥ ||S1Tx|| = ||x+K1x|| = ||x+ (K1 − F )x|| ≥ 1

2
||x||,

which shows that T is bounded below on M; it follows that T (M) is a closed
subspace of H2; note, however, that M⊥ is finite-dimensional (since F maps
this space injectively onto its finite-dimensional range). It is a fact – see [Sun]
Exercise A.6.5 (3) – that the vector sum of a closed subspace and a finite-
dimensional subspace (in any Banach space, in fact) is always closed; and hence
T satisfies condition (i) thanks to the obvious identity ran T = T (M)+T (M⊥).

As for (ii), since S1T = 1H1 +K1, note that K1x = −x for all x ∈ ker T ;
this means that ker T is a closed subspace which is contained in ran K1 and the
compactness of K1 now demands the finite-dimensionality of ker T . Similarly,
ker T ∗ ⊂ ran K∗

2 and condition (ii) is verified.
(b) ⇒ (c) : Let N1 = ker T, N2 = ker T ∗ (= ran⊥T ); thus T maps N⊥

1

1-1 onto ran T ; the condition (b) and the open mapping theorem imply the
existence of a bounded operator S0 ∈ B(N⊥

2 ,N
⊥
1 ) such that S0 is the inverse of

the restricted operator T |N⊥
1
; if we set S = S0PN⊥

2
, then S ∈ B(H2,H1) and

by definition, we have ST = 1H1
−PN1

and TS = 1H2
−PN2

; by condition (ii),
both subspaces Ni are finite-dimensional.

(c) ⇒ (a) : Obvious. �
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Remark 3.4.2. (1) An operator which satisfies the equivalent conditions of
Atkinson’s theorem is called a Fredholm operator, and the collection of Fred-
holm operators from H1 to H2 is denoted by F(H1,H2), and as usual, we
shall write F(H) = F(H,H). It must be observed – as a consequence of
Atkinson’s theorem, for instance – that a necessary and sufficient condition
for F(H1,H2) to be non-empty is that either (i) H1 and H2 are both finite-
dimensional, in which case B(H1,H2) = F(H1,H2), or (ii) both H1 and H2

are infinite-dimensional (under the standing assumption of only considering
separable Hilbert spaces in the discussion).

(2) The quotient Q(H) = B(H)/B0(H) (of B(H) by the ideal B0(H)) is
a Banach algebra, which is called the Calkin algebra. If we write πB0

: B(H) →
Q(H) for the quotient mapping, then we find that an operator T ∈ B(H) is a
Fredholm operator precisely when πB0

(T ) is invertible in the Calkin algebra;
thus, F(H) = π−1

B0
(G(Q(H))) – where the symbol G(A) stands for ‘group of

invertible elements of the unital algebra A’. (It is a fact, which we shall not need
and consequently do not go into here, that the Calkin algebra is a C∗-algebra
– as is the quotient of any C∗-algebra by a norm-closed *-ideal.)

(3) It is customary to use the adjective ‘essential’ to describe a property
of an operator T ∈ B(H) which is actually a property of the corresponding
element πB0

(T ) of the Calkin algebra, thus, for instance, the essential spectrum
of T is defined to be

σess(T ) = σQ(H)(πB0(T )) = {λ ∈ C : (T − λ) /∈ F(H)} . (3.4.13)

�
The next exercise is devoted to illustrating the notions of Fredholm oper-

ator and essential spectrum at least in the case of normal operators.

Exercise 3.4.3. (1) Let T ∈ B(H1,H2) have polar decomposition T = U |T |.
Then show that

(a) T ∈ F(H1,H2) ⇔ U ∈ F(H1,H2) and |T | ∈ F(H1).
(b) A partial isometry is a Fredholm operator if and only if both its initial

and final spaces have finite co-dimension (i.e., have finite-dimensional orthog-
onal complements).
(Hint: for both parts, use the characterisation of a Fredholm operator which is
given by Proposition 3.4.1(b).)

(2) If H1 = H2 = H, consider the following conditions on an operator
T ∈ B(H):

(i) T is normal;
(ii) U and |T | commute.

Show that (i) ⇒ (ii), and find an example to show that the reverse implication
is not valid in general.
(Hint: if T is normal, then note that

|T |2U = T ∗TU = TT ∗U = U |T |2U∗U = U |T |2 ;



3.4. Fredholm operators 81

thus U commutes with |T |2; deduce that in the decomposition H = kerT ⊕
ker⊥ T , we have U = 0 ⊕ U0, |T | = 0 ⊕ A, where U0 (resp., A) is a unitary
(resp., positive injective) operator of ker⊥ T onto (resp., into) itself; and infer
that U0 and A2 commute; since U0 is unitary, deduce from the uniqueness of
positive square roots that U0 commutes with A, and finally that U and |T |
commute; for the ‘reverse implication’, let T denote the unilateral shift, and
note that U = T and |T | = 1.)

(3) Suppose T = U |T | is a normal operator as in (2) above. Then show
that the following conditions on T are equivalent:

(i) T is a Fredholm operator;
(ii) there exists an orthogonal direct-sum decomposition H = M⊕N, where

dim N < ∞, with respect to which T has the form T = T1 ⊕ 0, where T1 is an
invertible normal operator on M;

(iii) there exists an ε > 0 such that 1Dε
(T ) = 1{0}(T ) = P0, where (a)

E �→ 1E(T ) denotes the measurable functional calculus for T , (b) Dε = {z ∈
C : |z| < ε} is the ε-disc around the origin, and (c) P0 is some finite-rank
projection.
(Hint: For (i) ⇒ (ii), note, as in the hint for exercise (2) above, that we have
decompositions U = U0 ⊕ 0, |T | = A ⊕ 0 – with respect to H = M ⊕ N,
with M = ker⊥ T and N = kerT finite-dimensional under the assumption (i) –
where U0 is unitary, A is 1-1 and positive, and U0 and A commute; deduce from
the Fredholm condition that N is finite-dimensional and that A is invertible;
conclude that in this decomposition, T = U0A ⊕ 0 and U0A is normal and
invertible. For (ii) ⇒ (iii), if T = T1 ⊕ 0 has polar decomposition T = U |T |,
then |T | = |T1| ⊕ 0 and U = U0 ⊕ 0 with U0 unitary and |T1| positive and
invertible; then if ε > 0 is such that T1 is bounded below by ε, then argue that
1Dε

(T ) = 1[0,ε)(|T |) = 1{0}(|T |) = 1{0}(T ) = PN.)

(4) Let T ∈ B(H) be normal; prove that the following conditions on a
complex number λ are equivalent:

(i) λ /∈ σess(T );
(ii) there exists an orthogonal direct-sum decomposition H = M⊕N, where

dim N < ∞, with respect to which T has the form T = T1 ⊕ λ, where (T1 − λ)
is an invertible normal operator on M;

(iii) there exists ε > 0 such that 1Dε+λ(T ) = 1{λ}(T ) = Pλ, where Dε + λ
denotes the ε-disc around the point λ, and Pλ is some finite-rank projection.
(Hint: apply (3) above to T − λ.)

We now come to an important definition.

Definition 3.4.4. If T ∈ F(H1,H2) is a Fredholm operator, its (Fredholm)
index is the integer defined by

ind T = dim(kerT )− dim(kerT ∗).

Several elementary properties of the index are discussed in the following
remark.
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Remark 3.4.5. (1) The index of a normal Fredholm operator is always 0. (Rea-
son: If T ∈ B(H) is a normal operator, then |T |2 = |T ∗|2, and the uniqueness of
the square root implies that |T | = |T ∗|; it follows that kerT = ker |T | = kerT ∗.)

(2) It should be clear from the definitions that if T = U |T | is the polar
decomposition of a Fredholm operator, then ind T = indU .

(3) If H1 and H2 are finite-dimensional, then B(H1,H2) = F(H1,H2)
and indT = dimH1 − dimH2 ∀ T ∈ B(H1,H2); in particular, the index is
independent of the operator in this case. (Reason: let us write ρ = dim(ran T )
(resp., ρ∗ = dim(ran T ∗)) and ν = dim(kerT ) (resp., ν∗ = dim(kerT ∗)) for
the rank and nullity of T (resp., T ∗); on the one hand, deduce from Exercise
3.1.6(3) that if dimHi = ni, then ρ = n1 − ν and ρ∗ = n2 − ν∗; on the other
hand, by Exercise 3.1.6(2), we find that ρ = ρ∗; hence,

ind T = ν − ν∗ = (n1 − ρ)− (n2 − ρ) = n1 − n2 .)

(4) If S = UTV , where S ∈ B(H1,H4), U ∈ B(H3,H4), T ∈ B(H2,H3),
V ∈ B(H1,H2), and if U and V are invertible (i.e., are 1-1 and onto), then S
is a Fredholm operator if and only if T is, in which case, ind S = ind T . (This
should be clear from Atkinson’s theorem and the definition of the index.)

(5) Suppose Hi = Ni ⊕ Mi and dimNi < ∞, for i = 1, 2; suppose
T ∈ B(H1,H2) is such that T maps N1 into N2, and such that T maps M1

1-1 onto M2. Thus, with respect to these decompositions, T has the matrix
decomposition

T =

[
A 0
0 D

]
,

where D is invertible; then it follows from Atkinson’s theorem that T is a
Fredholm operator, and the assumed invertibility of D implies that ind T =
ind A = dimN1 − dimN2, see (3) above. �

Lemma 3.4.6. Suppose Hi = Ni⊕Mi, for i = 1, 2; suppose T ∈ B(H1,H2) has
the associated matrix decomposition

T =

[
A B
C D

]
,

where A ∈ B(N1,N2), B ∈ B(M1,N2), C ∈ B(N1,M2), and D ∈ B(M1,M2);
assume that D is invertible – i.e, D maps M1 1-1 onto M2. Then

T ∈ F(H1,H2) ⇔ (A−BD−1C) ∈ F(N1,N2) ,

and ind T = ind (A−BD−1C); in particular, if dim Ni < ∞, i = 1, 2, then T
is necessarily a Fredholm operator and ind T = dimN1 − dimN2.
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Proof. Let U ∈ B(H2) (resp., V ∈ B(H1)) be the operator which has the
matrix decomposition

U =

[
1N2

−BD−1

0 1M2

]
, (resp., V =

[
1N1

0
−D−1C 1M1

]
)

with respect to H2 = N2 ⊕M2 (resp., H1 = N1 ⊕M1).
Note that U and V are invertible operators, and that

UTV =

[
A−BD−1C 0

0 D

]
;

since D is invertible, we see that ker(UTV ) = ker(A − BD−1C) and that
ker(UTV )∗ = ker(A−BD−1C)∗; also, it should be clear that UTV has closed
range if and only if (A − BD−1C) has closed range; we thus see that T is a
Fredholm operator precisely when (A−BD−1C) is Fredholm, and that ind T =
ind (A−BD−1C) in that case. For the final assertion of the lemma (concerning
finite-dimensional Ni’s), appeal now to Remark 3.4.5(5). �

We now state some simple facts in an exercise, before proceeding to es-
tablish the main facts concerning the index of Fredholm operators.

Exercise 3.4.7. (1) Suppose D0 ∈ B(H1,H2) is an invertible operator; show
that there exists ε > 0 such that if D ∈ B(H1,H2) satisfies ||D − D0|| < ε,
then D is invertible. (Hint: let D0 = U0|D0| be the polar decomposition; write
D = U0(U

∗
0D), note that ||D−D0|| = ||(U∗

0D−|D0|)||, and that D is invertible
if and only if U∗

0D is invertible, and use the fact that the set of invertible
elements in any Banach algebra (B(H1) in this case) form an open set.)

(2) Show that a function φ : [0, 1] → Z which is locally constant, is neces-
sarily globally constant.

(3) Suppose Hi = Ni ⊕Mi, i = 1, 2, are orthogonal direct sum decomposi-
tions of Hilbert spaces.

(a) Suppose T ∈ B(H1,H2) is represented by the operator matrix

T =

[
A 0
C D

]
,

where A and D are invertible operators; show, then, that T is also invertible
and that T−1 is represented by the operator matrix

T−1 =

[
A−1 0

−D−1CA−1 D−1

]
.

(b) Suppose T ∈ B(H1,H2) is represented by the operator matrix

T =

[
0 B
C 0

]
,
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where B is an invertible operator; show that T ∈ F(H1,H2) if and only if
C ∈ F(N1,M2), and that if this happens, then ind T = ind C.

Theorem 3.4.8. (a) F(H1,H2) is an open set in B(H1,H2) and the function
ind : F(H1,H2) → C is ‘locally constant’; i.e., if T0 ∈ F(H1,H2), then there
exists δ > 0 such that whenever T ∈ B(H1,H2) satisfies ||T − T0|| < δ, it is
then the case that T ∈ F(H1,H2) and ind T = ind T0.

(b) T ∈ F(H1,H2),K ∈ B0(H1,H2) ⇒ (T+K) ∈ F(H1,H2) and ind (T+
K) = ind T .

(c) S ∈ F(H2,H3), T ∈ F(H1,H2) ⇒ ST ∈ F(H1,H3) and ind (ST ) =
ind S + ind T .

Proof. (a) Suppose T0 ∈ F(H1,H2). Set N1 = kerT0 and N2 = kerT ∗
0 , so

that Ni, i = 1, 2, are finite-dimensional spaces and we have the orthogonal
decompositions Hi = Ni ⊕Mi, i = 1, 2, where M1 = ran T ∗

0 and M2 = ran T0.
With respect to these decompositions of H1 and H2, it is clear that the matrix
of T0 has the form

T0 =

[
0 0
0 D0

]
,

where the operator D0 : M1 → M2 is (a bounded bijection, and hence) invert-
ible.

Since D0 is invertible, it follows – see Exercise 3.4.7(1) – that there exists
a δ > 0 such that D ∈ B(M1,M2), ||D−D0|| < δ ⇒ D is invertible. Suppose
now that T ∈ B(H1,H2) and ||T − T0|| < δ; let

T =

[
A B
C D

]

be the matrix decomposition associated to T ; then note that ||D − D0|| < δ
and consequently D is an invertible operator. Conclude from Lemma 3.4.6 that
T is a Fredholm operator and that

ind T = ind (A−BD−1C) = dimN1 − dimN2 = ind T0 .

(b) If T is a Fredholm operator and K is compact, as in (b), define Tt =
T + tK, for 0 ≤ t ≤ 1. It follows from Proposition 3.4.1 that each Tt is a
Fredholm operator; further, it is a consequence of (a) above that the function
[0, 1] � t �→ ind Tt is a locally constant function on the interval [0, 1]; the
desired conclusion follows easily – see Exercise 3.4.7(2).

(c) Let us write K1 = H1 ⊕H2 and K2 = H2 ⊕H3, and consider the op-
erators U ∈ B(K2), R ∈ B(K1,K2) and V ∈ B(K1) defined, by their matrices
with respect to the afore-mentioned direct-sum decompositions of these spaces,
as follows:

U =

[
1H2

0
−ε−1S 1H3

]
, R =

[
T ε1H2

0 S

]
,
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V =

[ −ε1H1
0

T ε−11H2

]
,

where we first choose ε > 0 to be so small as to ensure that R is a Fredholm
operator with index equal to ind T + ind S; this is possible by (a) above, since
the operator R0, which is defined by modifying the definition of R so that the
‘off-diagonal’ terms are zero and the diagonal terms are unaffected, is clearly a
Fredholm operator with index equal to the sum of the indices of S and T .

It is easy to see that U and V are invertible operators – see Exer-
cise 3.4.7(3)(a) – and that the matrix decomposition of the product URV ∈
F(K1,K2) is given by:

URV =

[
0 1H2

ST 0

]
,

which is seen – see Exercise 3.4.7(3)(b) – to imply that ST ∈ F(H1,H3) and
that ind (ST ) = ind R = ind S + ind T , as desired. �

Example 3.4.9. Fix a separable infinite-dimensional Hilbert space H; for the
sake of definiteness, we assume thatH = �2. Let S ∈ B(H) denote the unilateral
shift – see Example 1.7.9(1). Then, S is a Fredholm operator with ind S = −1,
and ind S∗ = 1; hence Theorem 3.4.8 (c) implies that if n ∈ N, then Sn ∈ F(H)
and ind (Sn) = −n and ind (S∗)n = n; in particular, there exist operators with
all possible indices.

Let us write Fn = {T ∈ F(H) : ind T = n}, for each n ∈ Z.
First consider the case n = 0. Suppose T ∈ F0; then it is possible to find

a partial isometry U0 with initial space equal to kerT and final space equal to
kerT ∗); then define Tt = T + tU0. Observe that t �= 0 ⇒ Tt is invertible; and
hence, the map [0, 1] � t �→ Tt ∈ B(H) (which is clearly norm-continuous) is
seen to define a path – see Exercise 3.4.10(1) – which is contained in F0 and
connects T0 to an invertible operator; on the other hand, the set of invertible
operators is a path-connected subset of F0; it follows that F0 is path-connected.

Next consider the case n > 0. Suppose T ∈ Fn, n < 0. Then note that
T (S∗)n ∈ F0 (by Theorem 3.4.8(c)) and since (S∗)nSn = 1, we find that T =
T (S∗)nSn ∈ F0S

n; conversely since Theorem 3.4.8(c) implies that F0S
n ⊂ Fn,

we thus find that Fn = F0S
n.

For n > 0, we find, by taking adjoints, that Fn = F∗
−n = (S∗)nF0.

We conclude that for all n ∈ Z, the set Fn is path-connected; on the other
hand, since the index is ‘locally constant’, we can conclude that {Fn : n ∈ Z}
is precisely the collection of ‘path-components’ (= maximal path-connected
subsets) of F(H). �

Exercise 3.4.10. (1) A path in a topological space X is a continuous function
f : [0, 1] → X; if f(0) = x, f(1) = y, then f is called a path joining (or
connecting) x to y. Define a relation ∼ on X by stipulating that x ∼ y if and
only if there exists a path joining x to y.
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Show that ∼ is an equivalence relation on X.
The equivalence classes associated to the relation ∼ are called the path-

components of X; the space X is said to be path-connected if X is itself a path
component.

(2) Let H be a separable Hilbert space. In this exercise, we regard B(H) as being
topologised by the operator norm.

(a) Show that the set Bsa(H) of self-adjoint operators on H is path-
connected. (Hint: Consider t �→ tT .)

(b) Show that the set B+(H) of positive operators on H is path-connected.
(Hint: Note that if T ≥ 0, t ∈ [0, 1], then tT ≥ 0.)

(c) Show that the set GL+(H) of invertible positive operators on H form a
connected set. (Hint: If T ∈ GL+(H), use straight line segments to first connect
T to ||T || · 1, and then ||T || · 1 to 1.)

(d) Show that the set U(H) of unitary operators on H is path-connected.
(Hint: If U ∈ U(H), find a self-adjoint A such that U = eiA – see Proposition
2.8.1 (4) – and look at Ut = eitA.)

We would like to conclude this section with the so-called ‘spectral theorem
for a general n’. As a preamble, we start with an exercise which is devoted
to ‘algebraic (possibly non-orthogonal) direct sums’ and associated non-self-
adjoint projections.

Exercise 3.4.11. (1) Let H be a Hilbert space, and let M and N denote closed
subspaces of H. Show that the following conditions are equivalent:

(a) H = M+N and M ∩N = {0};
(b) every vector z ∈ H is uniquely expressible in the form z = x+ y with

x ∈ M, y ∈ N.

(2) If the equivalent conditions of (1) above are satisfied, show that there exists
a unique E ∈ B(H) such that Ez = x, whenever z and x are as in (b) above.
(Hint: note that z = Ez+(z−Ez) and use the closed graph theorem to establish
the boundedness of E.)

(3) If E is as in (2) above, then show that
(a) E = E2;
(b) the following conditions on a vector x ∈ H are equivalent:
(i) x ∈ ran E;
(ii) Ex = x.
(c) ker E = N.

The operator E is said to be the ‘projection on M along N’.

(4) Show that the following conditions on an operator E ∈ B(H) are equivalent:
(i) E = E2;
(ii) there exists a closed subspace M ⊂ H such that E has an operator-

matrix (with respect to the decomposition H = M⊕M⊥) of the form:

E =

[
1M B
0 0

]
;
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(iii) there exists a closed subspace N ⊂ H such that E has an operator-
matrix (with respect to the decomposition H = N⊥ ⊕N) of the form:

E =

[
1N⊥ 0
C 0

]
;

(iv) there exist closed subspaces M,N satisfying the equivalent conditions
of (1) such that E is the projection on M along N.
(Hint: (i) ⇒ (ii) : M = ran E (= ker(1 − E)) is a closed subspace and
Ex = x ∀ x ∈ M; since M = ran E, (ii) follows. The implication (ii) ⇒ (i) is
verified by easy matrix-multiplication. Finally, if we let (i)∗ (resp., (ii)∗) denote
the condition obtained by replacing E by E∗ in condition (i) (resp., (ii)), then
(i) ⇔ (i)∗ ⇔ (ii)∗; take adjoints to find that (ii)∗ ⇔ (iii). The implication
(i) ⇔ (iv) is clear.)

(5) Show that the following conditions on an idempotent operator E ∈ B(H),
i.e., E2 = E, are equivalent:

(i) E = E∗;
(ii) ||E|| = 1.

(Hint: Assume E is represented in matrix form, as in (4)(iii) above; notice that
x ∈ N⊥ ⇒ ||Ex||2 = ||x||2 + ||Cx||2; conclude that ||E|| = 1 ⇔ C = 0.)

(6) If E is the projection onto M along N – as above – show that there exists
an invertible operator S ∈ B(H) such that SES−1 = PM. (Hint: Assume E
and B are related as in (4)(ii) above; define

S =

[
1M B
0 1M⊥

]
;

deduce from (a transposed version of) Exercise 3.4.7 that S is invertible, and
that

SES−1 =

[
1M B
0 1M⊥

] [
1M B
0 0

] [
1M −B
0 1M⊥

]

=

[
1M 0
0 0

]
.

(7) Show that the following conditions on an operator T ∈ B(H) are equivalent:
(a) there exists closed subspaces M,N as in (1) above such that
(i) T (M) ⊂ M and T |M = A; and
(ii) T (N) ⊂ N and T |N = B;
(b) there exists an invertible operator S ∈ B(H,M⊕N) – where the direct

sum considered is an ‘external direct sum’ – such that STS−1 = A⊕B.

We will find the following bit of terminology convenient. Call oper-
ators Ti ∈ B(Hi), i = 1, 2, similar if there exists an invertible operator
S ∈ B(H1,H2) such that T2 = ST1S

−1.
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Lemma 3.4.12. The following conditions on an operator T ∈ B(H) are equiv-
alent:

(a) T is similar to an operator of the form T0 ⊕Q ∈ B(M⊕N), where
(i) N is finite-dimensional;
(ii) T0 is invertible, and Q is nilpotent.

(b) T ∈ F(H), ind (T ) = 0 and there exists a positive integer n such that
ker Tn = ker Tm ∀ m ≥ n.

Proof. (a) ⇒ (b) : If STS−1 = T0 ⊕ Q, then it is obvious that STnS−1 =
Tn
0 ⊕ Qn, which implies – because of the assumed invertibility of T0 – that

kerTn = S−1({0} ⊕ kerQn), and hence, if n = dimN, then for any m ≥ n,
we see that kerTm = S−1({0} ⊕N).

In particular, kerT is finite-dimensional; similarly ker T ∗ is also finite-
dimensional, since (S∗)−1T ∗S∗ = T ∗

0 ⊕Q∗; further,

ran T = S−1(ran (T0 ⊕Q)) = S−1(M⊕ (ran Q)) ,

which is closed since S−1 is a homeomorphism, and since the sum of the closed
subspace M ⊕ {0} and the finite-dimensional space ({0} ⊕ ran Q) is closed
in M ⊕ N – see the remark at the end of the first paragraph of the proof of
(a) ⇒ (b) of Atkinson’s theorem. Hence T is a Fredholm operator.

Finally,

ind (T ) = ind (STS−1) = ind (T0 ⊕Q) = ind (Q) = 0.

(b) ⇒ (a) : Let us write Mk = rani T k and Nk = ker T k for all k ∈ N;
then, clearly,

N1 ⊂ N2 ⊂ · · · ; M1 ⊃ M2 ⊃ · · · .

We are told that Nn = Nm ∀ m ≥ n. The assumption ind T = 0 implies
that ind Tm = 0 ∀ m, and hence, we find that dim(ker T ∗m) = dim(ker Tm) =
dim(ker Tn) = dim(ker T ∗n) < ∞ for all m ≥ n. But since ker T ∗m = M⊥

m, we
find that M⊥

m ⊂ M⊥
n , from which we may conclude that Mm = Mn ∀ m ≥ n.

Let N = Nn, M = Mn, so that we have

N = kerTm and M = ranTm ∀ m ≥ n . (3.4.14)

The definitions clearly imply that T (M) ⊂ M and T (N) ⊂ N (since M and N

are actually invariant under any operator which commutes with Tn).
We assert that M and N yield an algebraic direct sum decomposition of H

(in the sense of Exercise 3.4.11(1)). Firstly, if z ∈ H, then Tnz ∈ Mn = M2n,
and hence we can find v ∈ H such that Tnz = T 2nv; thus z − Tnv ∈ ker Tn;
i.e., if x = Tnv and y = z − x, then x ∈ M, y ∈ N and z = x+ y; thus, indeed
H = M+N. Notice that T (and hence also Tn) mapsM onto itself; in particular,
if z ∈ M ∩ N, we can find an x ∈ M such that z = Tnx; the assumption
z ∈ N implies that 0 = Tnz = T 2nx; this means that x ∈ N2n = Nn, whence
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z = Tnx = 0; since z was arbitrary, we have shown that N∩M = {0}, and our
assertion has been substantiated.

If T0 = T |M and Q = T |N, the (already proved) fact that M ∩ N = {0}
implies that Tn is 1-1 on M; thus Tn

0 is 1-1; hence T0 is 1-1; it has already
been noted that T0 maps M onto M; hence T0 is indeed invertible; on the other
hand, it is obvious that Qn is the zero operator on N. �
Corollary 3.4.13. Let K ∈ B0(H); assume 0 �= λ ∈ σ(K); then K is similar
to an operator of the form K1 ⊕A ∈ B(M⊕N), where

(a) K1 ∈ B0(M) and λ /∈ σ(K1); and
(b) N is a finite-dimensional space, and σ(A) = {λ}.

Proof. Put T = K − λ; then, the hypothesis and Theorem 3.4.8 ensure that T
is a Fredholm operator with ind (T ) = 0. Consider the non-decreasing sequence

ker T ⊂ ker T 2 ⊂ · · · ⊂ ker Tn ⊂ · · · . (3.4.15)

Suppose ker Tn �= ker Tn+1 ∀ n; then we can pick a unit vector
xn ∈ (ker Tn+1) ∩ (ker Tn)⊥ for each n. Clearly the sequence {xn}∞n=1 is
an orthonormal set. Hence, limn ||Kxn|| = 0 (by Exercise 3.2.4(3)).

On the other hand,

xn ∈ ker Tn+1 ⇒ Txn ∈ ker Tn

⇒ 〈Txn, xn〉 = 0

⇒ 〈Kxn, xn〉 = λ

contradicting the hypothesis that λ �= 0 and the already drawn conclusion that
Kxn → 0.

Hence, it must be the case that ker Tn = ker Tn+1 for some n ∈ N; it
follows easily from this that ker Tn = ker Tm ∀ m ≥ n.

Thus, we may conclude from Lemma 3.4.12 that there exists an invertible
operator S ∈ B(H,M⊕N) – where N is finite-dimensional – such that STS−1 =
T0 ⊕Q, where T0 is invertible and σ(Q) = {0}; since K = T +λ, conclude that
SKS−1 = (T0 + λ)⊕ (Q+ λ); set K1 = T0 + λ,A = Q+ λ, and conclude that
indeed K1 is compact, λ /∈ σ(K1) and σ(A) = {λ}.

�

We are finally ready to state the spectral theorem for a compact operator.

Theorem 3.4.14. Let K ∈ B0(H) be a compact operator on a Hilbert space H.
Then,

(a) λ ∈ σ(K) \ {0} ⇒ λ is an eigenvalue of K and λ is ‘isolated’ in the
sense that there exists ε > 0 such that 0 < |z − λ| < ε ⇒ z /∈ σ(K);

(b) if λ ∈ σ(K) \ {0}, then λ is an eigenvalue with ‘finite algebraic multi-
plicity’ in the strong sense described by Corollary 3.4.13;

(c) σ(K) is a countable set, and the only possible accumulation point of
σ(K) is 0.
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Proof. Assertions (a) and (b) are immediate consequences of Corollary 3.4.13,
while (c) follows immediately from (a). �



Appendix

Some measure theory

We briefly recall here the two non-trivial theorems from measure theory that
we used in this book. They are the Riesz representation theorem and Lusin’s
theoem. We shall only consider compactly supported probability measures de-
fined in BC here.

The former identifies positivity-preserving linear functionals on C(Σ).
with Σ a compact Hausdorff space, as being given by integration against pos-
itive regular measures defined on the Borel σ-algebra BΣ. Recall that a finite
positive measure μ defined on BC is said to be regular if it is both inner and
outer regular in the sense that for any E ∈ BΣ and any ε > 0, there exists a
compact set K and and open set U such that K ⊂ E ⊂ U and μ(U \K) < ε.
We spell out a consequence of this regularity below.

Lemma A1. C(Σ) is dense in Lp(Σ, μ) for each p ∈ [1,∞).5

Proof. Since simple functions are dense in Lp, it is enough to show that func-
tions of the form 1E , E ∈ BC are in the Lp-closure of C(C). If E ∈ BC

and ε > 0, pick a compact K and open U as in the paragraph preceding
the lemma. Next invoke Urysohn’s lemma to find an f ∈ C(C) such that
1K ≤ f ≤ 1U . Observe that {z ∈ C : f(z) = 1E(z)} ⊃ K ∪ (C \ U) and
hence {z ∈ C : f(z) �= 1E(z)} ⊂ (U \K), and since 0 ≤ 1E , f ≤ 1, we see that∫

|f − 1E |pdμ ≤ μ(U \K) < ε ,

as desired. �

Lusin’s theorem says that if φ is any bounded Borel measurable function,
and if ε > 0 is arbitrary, then there exists an f ∈ C(C) such that μ({x ∈ C :
φ(x) �= f(x)}) < ε. We shall need the following consequence:

5Strictly speaking, C(Σ) is not contained in Lp(Σ, μ), but there is a natural mapping -
sending an element of C(Σ) to the equivalence class (mod μ) that it defines, which satisfies
‖f‖Lp(Σ,μ) ≤ ‖f‖C(Σ) - from C(Σ) onto a dense subspace of Lp(Σ, μ).

91� Springer Science+Business Media Singapore 2016 and Hindustan Book Agency 2015
V.S. Sunder, Operators on Hilbert Space, Texts and Readings in Mathematics 71,
DOI 10.1007/978-981-10-1816-9



92 Chapter 3. Appendix

Lemma A2. For any function φ ∈ L∞(C,BC, μ), there exists a sequence {fn :
n ∈ N} ⊂ C(C) such that sup{|fn(z)| : z ∈ C} ≤ ‖φ‖L∞(μ) for all n and
fn → φ in (μ-) measure.

Proof. By Lusin’s theorem, we may, for each n ∈ N, find an fn ∈ C(C) such
that μ({z ∈ C : fn(z) �= φ(z)}) < 1

n . Let r : C → {z ∈ C : |z| ≤ ‖φ‖L∞(μ)}
denote the radial retraction defined by

r(z) =

⎧⎨
⎩

z if |z| ≤ ‖φ‖L∞(μ)(‖φ‖L∞(μ)

|z|
)
z otherwise

and set gn = r ◦fn. Then notice that |gn(z)| ≤ ‖φ‖L∞(μ) for all z ∈ C and that
{|φ| ≤ ‖φ‖L∞(μ)} ∩ {fn = φ} ⊂ {gn = φ}; or equivalently, {gn �= φ} ⊂ {|φ| >
‖φ‖L∞(μ)} ∪ {fn �= φ} so that μ({gn �= φ}) < 1

n and so indeed the continuous
functions {gn : n ∈ N} are uniformly bounded by ‖φ‖L∞(μ) and converge in (μ)
measure to φ. �

Some pedagogical subtleties

I believe the natural stage to discuss the measurable functional calculus is in
the language of von Neumann algebras. The more symmetric formulation of the
spectral theorem is to say that the continuous (resp., measurable) functional
calculus is an isomorphism of C(σ(T )) (resp., L∞(σ(T ), μ) for appropriate μ)
onto C∗(T ) (resp., W ∗(T )) in the category of C∗-algebras (resp., W ∗-algebras).
This is what was done in [Sun], but that approach necessitates a digression into
C∗-algebras and W ∗(= von Neumann) algebras.

But my goal here was to convey the essence of the spectral theorem in
purely ‘operator-theoreric’ terms (not making too many demands of a graduate
student just getting introduced to functional analysis). This is made possible
thanks to the considerations described in the next paragraphs.

One of many equivalent definitions of a von Neumann algebra is as a
unital *-subalgebra of B(H) which is closed in the SOT. In fact, I never even
defined the acronym SOT properly. In fact the strong operator topology is the
smallest topology on B(H) for which B(H) � T �→ Tx ∈ H is continuous for
each x ∈ H. More formally, the collection of sets of the form {T ∈ B(H) :
‖Tx− T0x‖ < ε}, with (T0, x, ε) ranging over B(H)×H× (0,∞), yields a sub-
base for this topology. If one carried this formal process just a little further, one
finds, fairly quickly, various unpleasant pathologies (even when H is separable,
but infinite-dimensional) such as: (i) this topological space does not satisfy
‘the first axiom of countability’, as a result of which sequential convergence
is generally insufficient to describe the possible nastiness that this topological
algebra is capable of exhibiting, and one needs to deal with nets or filters
instead; (ii) the product mapping B(H)×B(H) � (S, T ) �→ ST ∈ B(H) is not
continuous, contrary to what Lemma 2.2.5 (2) might lead one to expect; and
(iii) the adjoint mapping B(H) � T �→ T ∗ ∈ B(H) is not continuous.
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Fortunately, it is possible to not have to deal with the unpleasant features
of the SOT that were advertised above, thanks to the useful Kaplansky Density
Theorem which ensures that if a *-algebra A is SOT-dense in a von Neumann
algebra M, then it is sequentially dense; more precisely, the theorem says that

if T ∈ M, then one can find a sequence {Tn : n ∈ N} ⊂ A such that Tn
SOT−→

T ; and such an approximating sequence can be found so that, in addition,
‖Tn‖ ≤ ‖T‖ ∀n ∈ N. Our interest here lies naturally in the case A = C∗(T )
and M = W ∗(T ), for a normal T .
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