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Preface

Since the publication in 1997 of my previous textbook, Practical Surveying and
Computations, much has changed in the profession of Geospatial Surveying, and yet
nothing has changed! The same basic geometrical principles still apply — as do the
need for instrumental calibration, its proper application, the suitable analysis of data,
and the presentation of results to users. Although the hands-on nature of day-to-day
work has almost vanished and has been replaced by rapid turnkey systems of amazing
sophistication, the geospatial surveyor still has to plan and organize the work and,
above all, to remain responsible to the client for its outcome and able to defend the
working procedures and outcomes to a client or in court if necessary.

Because most practical work is carried out by prescribed systems, and processed by
software packages, this book concentrates on those essential principles that the user
needs to know, if the results are to be verified and assessed with understanding and
wisdom. This change of emphasis is reflected in the new title and the order of
presentation of the material. For example, the chapter on Instrumentation comes last.
In any case, the proper techniques of instrument operation and handling cannot be
learned from a book. The place to obtain detailed information about instrumentation is
the World Wide Web, on which many thousands of relevant sites may be located. (See
Appendix 10.)

The order in which the reader uses this book is very much a matter of choice and
need. Many may wish to consult an appendix as the first port of call. Most of the
examples have been worked in Excel spreadsheets with interim results depicted to
assist the user repeat them to verify if the correct procedures are being used at each
stage. The number of digits listed depends on the space available for printing and does
not necessarily reflect an appropriate precision. Only at the end of a computation is
the result rounded to a justifiable precision.

In compiling this new text, I have been much assisted by emeritus Professor lan
Harley, who also wrote Appendix 5, and by several former colleagues at University
College London; Professor P A Cross, Dr J C lliffe (who allowed me to publish
Figure 9.11) and Mr J V Arthur. Several former students and others also gave of their
time to allow me to visit their production establishments: the Ordnance Survey
(M Havercroft and colleagues); the Severn Partnership (J Walton, N Glenkarn,
R Otto); and the Leica Company (H Anderson and C Osborne). I am also again
indebted to the editor of the Survey Review, Mr J R Smith, for allowing me free reign
to publish material from several of my articles, especially the series written with the
aid of Nigel Atkinson. It must be said, however, the views expressed are my own and
these persons are in no way responsible for the final text.

Finally I wish to express my thanks to my wife, Daphne, for her tolerance of my
neglect of family duties, and to the publisher Keith Whittles and his staff, in particular
Elaine Rowan, for their understanding and support in editing and production.

A L Allan
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Chapter 1

Introduction to Geospatial
Surveying

This book deals with the branch of surveying concerned with the geometry of three
dimensions. Three-dimensional objects, varying in size from small industrial
components to the Earth itself, often need to be measured or described with respect to
a coordinate system. For subsequent manipulation, the results of these measurements
have to be represented in the form of a mathematical model. The results are prepared
and presented graphically, numerically or pictorially for presentation to a client for
subsequent use. What is more, the quality of the measurements, usually expressed in
statistical form, is often of as much interest as the results themselves. Thus the book
concerns itself not only with the measurement and modelling of three-dimensional
objects but also with the quality assessment of measurements and results derived from
them.

A selection of topics from a vast field is presented here, focusing on ground-
based measurement techniques, including the use of photographic images. The
purpose of this introductory chapter is to provide a general introduction to the
technological core of the book. It therefore deals briefly with the geospatial industry,
project planning, quality control, legal liability, project management, the
requirements of clients and the need for archival records.

1.1 The geospatial industry

Since the beginning of civilisation, man has been concerned with the measurement
and recording of spatial parameters. Historically, geospatial technology has evolved
in five areas of interest: land ownership; military requirements; navigation;
engineering operations and the advancement of science.

Recently, the requirement of spatial information for operations made possible by
the computer, such as the location of stock items in a warehouse or the navigational
guidance of motorists, has also become important. Spatial information is therefore
fundamental for much of modern society. It is the job of the geospatial surveyor to
provide proper geometrical data for a wide range of systems serving a vast population
of users. It is instructive to identify the main areas of interest.

Military requirements

It is obvious that to conduct military operations over hostile terrain or to defend
friendly territory, we need to have accurate maps depicting all features of interest,
hence the need for topographical mapping. To navigate ships out of sight of land
requires position fixing systems. To chart the seabed and record ocean currents,
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hydrographic surveying is employed. To fly modern aircraft over the surface of the
Earth, accurate terrrain modelling is required.

Land tenure

From the dawn of land settlement and agriculture came the need to record the limits
and ownership of land plots. There arose in all countries an official mechanism to
establish and maintain records of land ownership, thus various legal systems of
cadastre were established. Some, as in the UK, were based on descriptions of the
terrain itself (descriptive cadastre), while others sought to use spatial coordinates to
establish land plot boundaries (numerical cadastre). Until recent times, the
technological means to establish unambiguously the coordinates of land boundaries,
at economical costs, has not been available. The existence of satellite-based systems
has totally changed matters today. However, the reconciliation of differences between
older, legally established identifiers and modern, accurate geospatial data is a matter
of considerable debate and litigation.

Civil, mining and industrial engineering

Another stimulus to the development of geospatial surveying has been the
construction of works such as canals, bridges, buildings and harbours, the extraction
of minerals from mines and quarries, and the building of ships and aircraft. Generally
such fabrications are designed on the basis of spatial information, and constructed to
geometrical specifications. There is also a need to monitor movement or change of
form of such constructions throughout their lifespan to ensure that they remain safe.
The modern industrial practice of assembling components such as airframes and
wings, which have been prefabricated on widely differing geographical locations,
requires great dimensional fidelity, only established by a vigorous quality control
system.

Scientific applications

Historically, geospatial surveying has played an important role in the furthering of
many lines of scientific discovery such as the determination of the size and shape of
the Earth itself (geodesy), in the prediction of earthquakes and tectonic movements
and more recently in the problems of global warming.

Geographical Information Systems (GIS)

In any modern society there is a constant quest to evaluate and make the most
effective use of a wide range of information related to spatial position. An immense
raft of parameters has been studied statistically to establish trends and correlations to
assist social scientists, commercial interests, researchers and politicians to underpin
their strategies and policies. This manipulation of spatial data has gone apace often
without a proper appreciation of the quality limitations of the data, even spatial data.
Thus a major role of the geospatial surveyor is to ensure that all spatial data is
provided with a properly assigned quality specification.
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Miscellaneous users

There are many other applications for geospatial surveying, in the fields of building
design, archaeology, sport, medicine and forensic matters, to name but a few. If a
problem has a spatial aspect of any kind, it can be the role of a geospatial surveyor to
assist with its solution.

1.2 Clients and their needs

As has been implied above, geospatial surveying and setting out procedures seek to
satisfy the needs of an ever-expanding group of clients. It is imperative that the
special needs of each client are viewed with sympathy so that cost effective solutions
to problems can be found. Typical applications include: land and sea boundary
disputes; data input to geographical information systems including underground
services; the surveys of interiors and buildings; industrial applications such as ship
and aircraft construction; decommissioning of nuclear reactors; measurements in
sport; mining and quarry excavation; medical and surgical aspects; dimensional
evidence in legal cases; map and plan making; scientific studies of ice and tectonic
movements; oil platform location and construction; control for remote sensing and
aerial photographic imagery; monitoring of dam and structural deformations; and the
location of large engineering components and structures.

An understanding of the subsequent use of the spatial data in the computer
processing chain is also needed if the full potential of the value added to the
surveyor’s work is to be realized. This is particularly so in land, building and
engineering information systems.

1.3 Specifications

It is impossible to carry out the wishes of the client if these are not clearly understood
by both parties and if solutions are not written into a sensible specification. Dangers
lie in over-specifying a task just as much as under-specifying it. Issues that should be
made clear include:

1. The legal status of the client requesting the work and their ability to pay,
financial arrangements and any sequential payments.

2. The technical specification. This should concentrate on results and the quality
assurance of these results, or on specific methods of attaining these. Too tight
a technical constraint may prohibit the use of new technology or may stem
from advice from another consultant whose knowledge is out of date.

3. The timescale for the task and any penalty arrangements if it is not kept. The
likely influence of the weather in outdoor work or particular environments,
such as tunnels, should not be ignored.

4. Reasonable provision for sample inspection of the surveyor’s performance by
the client s expert.

5. Prior arrangements for settling disputes, to avoid the need for litigation.

1.4 Planning and documentation

Once the purposes of the work have been agreed, the technical work may begin. This
involves thorough planning and costing. Usually this is left to an experienced
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surveyor who understands the complete time sequence of events and the client’s
needs.

The first stage is to examine existing information about previous survey work
such as old maps and documents, or to seek knowledge of prior matters such as any
mine workings or previous litigation. In this respect, the internet is an invaluable
source of information.

The second stage is to visit the site to see the environment, identify restrictions on
access, likely problems of intervisibility, location of permanent marks, and above all
to propose a detailed technical plan of execution. The degree of detail described in a
report depends on the competence of the surveyors who will actually carry out the
task: more detail being required for less experienced operators.

All documentation should be clearly written and in accordance with the needs of
quality assurance. This will include station descriptions, a statement of methodology,
field books (if any) or records of data loggers. Any changes to original specifications
have to be recorded, and all documentation must be cross-referenced. It should be
borne in mind that all records may have to be submitted to a court of law as evidence
in the event of litigation.

In addition to technical work, especially in major tasks, administrative and logistic
information should also be obtained, such as the availability of accommodation and
sources of fuel, materials and possible labour.

1.5 Site organization

The organization of all operations forms a very important part of the surveyor’s work.
It entails the preparation of an efficient technical programme, which is both cost
effective and acceptable to the workforce. Because surveying practice is still weather-
dependent, work cannot always be scheduled to normal working hours.

The site environment also affects practice. Surveying near an operating railway or
busy motorway is particularly hazardous; work in tropical forests is a potential danger
to health; sub-zero temperatures calls for special clothing; and efficient transport
requires the proper care and maintenance of vehicles, boats or aircraft including
helicopters.

The provision of food, accommodation, transport and fuel has to be attended to,
as has the recruitment and care of temporary staff. Technical operations are often the
easiest part of any surveying task.

1.6 Computations

Previously, the surveyor was required to calculate results, such as coordinates, from
the actual basic measurements. Results were combined by practical methods and the
final data presented, usually in the form of maps, to the client. Today this seldom
happens except in the smallest of tasks. The surveyor has ‘turnkey’ systems that
process, statistically assess and convert data to all manner of outputs compatible with
the client’s needs. The client then processes these data to suit their requirements, such
as road parameters or areas and volumes. Such is the sophistication of available
software that the user need not know how the data are calculated. While this is very
quick and convenient, it places the surveyor in a vulnerable position. There is
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therefore a need to interpret results independently, hence verifying them. For this
reason, the surveyor needs to know, at least in principle, how the data are computed,
and should calculate a few results independently by spreadsheet or other methods.
The theory and worked examples in this book are therefore chosen to be the means of
confirming results.

1.7 Archives

The practice of keeping old records is not always appreciated. Quite apart from the
obvious advantages of leaving reference marks and clear descriptions of their
whereabouts for future use, long term needs such as evidence of ground subsidence,
historical information on development and evidence of land ownership can be
important. With the increasing use of computer data and in some cases where no hard
copy is ever produced, problems are looming for the future unless a proper archival
policy is adopted.

The problem is not confined to mapping. Many large engineering structures, such
as boilers and reactors, have to be assembled with the assistance of a complex
sequence of surveying measurements. If records of these are lost it can be extremely
difficult, if not impossible, to dismantle the structure at a later date. This is
particularly true in the hostile environments of nuclear reactors.

1.8 Example of a tennis court

To help summarize the above and to focus our attention on key stages of surveying
and setting-out, consider the problem of establishing a tennis court.

1. The first stage is to obtain technical information about the subject. This can
easily be obtained from a website, and includes such matters as specifications
for the dimensions of the court, its surrounds, drainage and other construction
advice, as well as accuracy tolerances.

2. The second stage is to make an appraisal of the ownership of the site and plans
of location of services, especially rainwater disposal.

3. A site visit to measure up the dimensions and shape of the existing surface,
especially the exact alignment of the court within the available space, is then
required.

4. Following the presentation of a layout plan, proposals are made to level the
site and make good the surrounds.

5. A design plan is drawn up with volume calculations, setting out arrangements
of cuttings, embankments and drainage channels.

6. The dimensions of the court and its surrounding perimeter netting have to be
set out.

7. After the approved surface has been put in place, the court markings have to
be positioned within tolerated specifications.

8. Finally it is usual practice to supply an as-built survey, or it may even be a
legal requirement to do so, together with photographs, all digitally recorded,
for possible future use and inclusion in a national database used to underpin
Geographical Information Systems, and to establish the legal ownership of the
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site. This implies that the new work has to be tied into the National Coordinate
or Mapping system.

In the next chapter, we introduce the methodology adopted by geospatial surveyors,
concentrating on the geometrical aspects of the work. These include the selection of
a datum and of a working coordinate reference system; the maintenance of a length
standard; the adoption of measurement systems of predictable quality; and the
adoption of suitable mathematical models for computations. A method of presenting
evidence of completion to the client, usually in the form of plans, elevations, cross-
sections and possibly a three-dimensional visualization (which may be in the form of
a video) is also introduced.



Chapter 2
Technical Procedures

This chapter introduces concepts and nomenclature to be developed in more detail in
later chapters. It also discusses several miscellaneous practical matters.

The surface of an object may be thought of, and described as, consisting of a
multiplicity of points. We may define the surface numerically by determining the
three-dimensional coordinates of these points. The more irregular the surface and the
more accurately we wish to represent it, the greater is the number of points required.

Thus the work of the geospatial surveyor can be looked at from two related points of
view:

1. The creation of a mathematical model of a three-dimensional solid from
various types of measurement, the assessment of the quality of this model,
and means of presenting the results to a client. This is usually called
surveying.

2. The controlling of the construction of a three-dimensional solid, described by
its design model, ensuring that it meets a specified accuracy standard. This is
usually called setting out or building.

For example, any housing development requires a preliminary survey of the existing
terrain to be undertaken on which to design the new layout. Building then takes place
under the direction of a geospatial surveyor. To check that the specification has been
met, a second ‘as built’ survey is often made by an independent third party.

Technology now provides a range of methods and procedures with which to meet
various criteria. These criteria include such things as, the size of project, the
environment in which it lies, the speed with which it has to be carried out, and the
documentation which has to be provided to prove that all criteria have been met, and
of course the cost restraint. The basic factors will now be outlined.

2.1 Datum selection

No matter what the survey may be, a suitable reference datum is required on which to
base a coordinate system that provides the mathematical foundation for all
measurement work. In short, a datum must have an origin, an orientation and a scale,
and its parameters should always be clearly and unambiguously defined.

At its simplest, an element of the datum might be an arbitrary starting point,
physically marked on the ground. This is used as the origin of the coordinate system
which is assigned arbitrary values (x, y, z). To orient the axes an arbitrary reference
direction might be adopted, together with the direction of gravity (vertical).
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This arbitrary reference direction will often simply be that between two points on
the ground, marked in some way. In many surveys of small extent it is perfectly
satisfactory to ignore the curvature of the Earth.

A more sophisticated system is to adopt the direction of north for the horizontal
reference. In this case, other directions referred to north are called bearings. Three
different norths can be defined—magnetic, true and projection. These three define
magnetic, true and grid bearings respectively.

A magnetic bearing is that given by a magnetic compass, a true bearing is derived
from star observations or satellite orbits or from a north-seeking gyroscope, and a grid
bearing by calculation from either of these two, depending on the map projection used
as the basis of a mapping system.

It is also usual to align one of the axes of the adopted coordinate system with the
direction of gravity, the local vertical. Any time a gravity sensor such as a bubble is
used to set up an instrument, the direction of gravity is controlling the geometrical
calculations. Over large distances the direction of gravity varies, due to the Earth’s
curvature for example, for which allowances have to be made. In some special cases,
such as on a floating platform, this is not practical and an arbitrary direction has to be
adopted instead.

In many surveys, the absolute height of the land above sea level is of paramount
importance, for example when dealing with the complex infrastructure of fresh water
supply and sewage disposal in maritime countries. In countries far from the sea, it
may be that irrigation and lake levels are more significant. Thus it is clear that careful
attention must be given to the selection of a suitable height datum. Formerly, a long-
period (19.6 years) average height of the sea at some selected point or points was
adopted as the datum for heights in a national system. Today, a satellite-based height
datum with its related gravity model is used.

Arbitrary datums, although sufficient for local works, are quite unacceptable on a
national scale. For example, in the 20th century, it was necessary to adopt local
datums for the title surveys of land plots (cadastral surveys) to enable a register of
ownership to be established. These local surveys were not totally uncorrelated,
however, as they were oriented by true bearings from north obtained by observations
made of the Sun. This practice, governed by the lack of technology at the time,
sometimes gave rise to overlapping claims to land, and land disputes. On an
international scale, the inconsistency of national datums has given rise to many
disputes over international boundaries and to litigation concerning the boundaries of
concessions assigned to oil companies extracting oil offshore.

It might be thought that, with the introduction of a worldwide system of reference
coordinates based on satellite technology, these datum problems would have vanished.
This is only partly true however, as satellite technology cannot provide accurate enough
datums for all applications, for example in navigation. Arising from the various
mathematical models adopted and from the differing levels of accuracy obtained from
instrumentation, great care is needed to ensure that consistent datums are used.

As the results of surveys depend on the adopted datum, it is vital that they are only
used and interpreted within the proper context. Great care must be taken when the
results of two or more surveys are combined. Such a combination usually means that
some transformation of coordinates is required.
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2.2 Scale and length standards

Another vital factor in surveying is the maintenance of a standard of length. A
fundamental part of any object model is its size or scale. Clearly this requires that any
measurement of length is traceable to an acceptable length standard, usually the
international metre. This metre has to be defined in an unambiguous way and by a
process which is reasonably practicable to be repeated anywhere in the world. Today,
the metre is defined in terms of time and the speed of light, to an accuracy of at least
one part in ten million as: the distance travelled by a light beam in vacuo during one
299 792 458th of a second of time.

A most important implication of this fact is that since most electronic distance
measurers actually measure time intervals, an instrumental timing accuracy of at least
1 in 10'2 is required to achieve millimetre accuracy.

This definition of the metre requires advice from a suitable national metrology
institute, such as the National Institute of Standards and Technology (NIST) in the
USA, Physikalisch-Technische Bundesanstalt (PTB) in Germany or the National
Physical Laboratory (NPL) in the UK, which also maintains a service to enable
surveyors to trace the scale of their instruments back to a standard. Most countries
provide a similar service, which many now extend to the calibration of satellite-based
systems.

In many countries, units of length other than the metre are in current use, or were
used in the past. The US foot is one such unit. Rather surprisingly, there were also
many different versions of the metre in common use. It is vital that the surveyor uses
the correct conversion factor when relating old to new work.

Of equal importance is the need for the surveyor to check, at periodic intervals,
that any distance measuring equipment is calibrated against a traceable length
standard.

2.3 Angles and directions

The circle

The circle is surprisingly important and useful in practical life. Just look around your
house to see how many circular objects there are in it: plates, knobs, water pipes,
bottles, tin cans, buttons, wheels and so on. One reason for this popularity is that a
circle is easy to make, say on a lathe, or draw with a pair of compasses. In science
too, the circle is important. It is the basis of goniometers (devices for measuring
angles), it is used to describe sections through spheres and cones, and is the basis for
much theory about the shape of curves. In surveying and mapping the circle is second
in importance only to the straight line.

Angles
Figure 2.1 shows an angle AOB subtended by an arc AB of length s at the centre of a
circle, radius », whose centre is at O. Angles are measured in a variety of units.

First of all, one complete revolution of the radius may be called one cycle. Again,
the whole circle may be divided equally into four parts, called right angles, which are
themselves further divided in different ways.

9
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Figure 2.1

The Sexagesimal angle system

A common method is to divide a right angle into 90 parts or degrees, written 90°.
Each degree is further divided into 60 parts, or minutes of arc, written 60', and finally
each minute of arc is divided into 60 parts or seconds of arc, written as 60".

The Sexagesimal time system

You will have noticed that we used the phrase ‘seconds of arc’ in the above
explanation. This is because of another way to divide up a whole circle into units of
time. The average clock face is divided into twelve parts, one for each hour. Thus a
right angle consists of three hours. Each hour is divided into 60 minutes of time,
written 60™, and further divided into 60 seconds of time, written 60°.

These minutes and seconds are not the same size as their arc counterparts. A
minute of time is 15 times larger than a minute of arc. This follows from the fact that
360/24 = 15. A second of time is 15 times larger than a second of arc. In surveying,
both units are used.

The Centesimal system

Another way to divide up a right angle is into 100 parts, called gons, written &, which is
now the standard method on the continent of Europe and elsewhere. Each gon is divided
into 100 centigons, written ¢, and each centigon is divided into 100 parts, written ¢, This
decimal system greatly simplifies arithmetic. (Note: another name for gon is grad.)

An angle of 47.22458 = 478 22¢ 45¢¢

Thus no arithmetic is needed in a conversion. Compare this to the following algorithm
to convert an angle of 47° 22' 45" in the sexagesimal system to decimals of a degree:

47 + 22/60 + 45/3600 = 47.379 167°

The Radian system

In mathematics, the unit of angle employed is the radian instead of these arbitrary
systems. This quite simple concept can be explained as follows, referring to Figure
2.1. If the angle 6 is such that the arc of the circle AB = s is equal in length to the
radius r, then O is defined to be one radian. The reason for adopting this system of
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angular units is to allow us to relate the angle at the centre of a circle to the length of
arc it subtends in a simple way. When angles are referred to in mathematical
formulae, the unit of measurement is always the radian unless otherwise stated. The
degree and gon systems are used for instruments, such as theodolites or protractors,
and the radian system in mathematics.

There are approximately 57.3°, 3438' or 206 265" in a radian.

The length of arc subtended by an angle of one sexagesimal second of arc (1") on the

surface of the Earth, whose radius is 6 378 140 m, is given by

_ 6 378140X1Xm
180 % 60 X 60

=30.922m (approximately 100ft)

Example In seconds of arc, what angle is subtended at the centre of the Earth by a
distance of 3 mm?

The angle subtended by 30.922 m (= 30922 mm) is 1". Therefore 3 mm subtends
an angle of 3/30922" = 0.0001" (approximately).

The implication of this for the cartographer is that very small angles are involved
in maps and map projections. They require special care in calculations.

2.4 Time, frequency and wavelength

Intervals of time can be measured to accuracies of better than one part in a hundred
million by electronic methods and atomic clocks. Traditional time standards, such as
the rotating Earth, are not regular to such accuracy. All time-keepers are calibrated by
the International Time Service available from National Physical Laboratories or other
sources, such as the Bureau International de I’Heure (BIH), Paris.

There are approximately 366.2422 sidereal days in the solar year, which contains
365.2422 solar days. The one-day difference is due to the fact that the Earth rotates
once around the Sun in a year. Thus each sidereal day is about 4 minutes shorter than
the solar day.

The period T of an oscillation is related to the frequency f in units of cycles per
second, or hertz (Hz), by

The speed of light c is related to the frequency and wavelength A by the relationship

c=f4
where ¢ =300 x 10°m sec™.
The distance s travelled in time # by light on a forward and return trip (double transit

time) from one end of a line to another is given by
s=0.5ct

Because many distance measurement systems are really timing systems, the following
approximate relationships are useful in mental work:
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1. A frequency of 1500 MHz (megahertz) implies a wavelength of A = 0.2 m.
2. The length equivalent of a double transit time of 10~ sec (a nanosecond) is
300 mm.

2.5 Coordinate systems

The common coordinate systems used to model geometrical shapes are (see Figure
2.2):

Cartesian coordinates (x, y, z);

Polar coordinates (U, V, R);

Cylindrical coordinates (U, d, z);

The two-plus-one hybrid on a plane e.g. Easting, Northing and height (E, N, h);
The two-plus-one hybrid on the spheroid e.g. latitude, longitude and height (¢,
A, h).

Al .

2.6 Cartesian coordinates

Cartesian coordinates employing a set of orthogonal axes i.e. at right angles to each
other are most common. Not only do such systems generate obviously convenient
mathematical forms, but they are easy to create in practice. Computer monitors and
TV screens are undoubtedly the most common applications of a grid and coordinate
systems in modern life.

Coordinate Systems
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Two plus one Two plus one
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Figure 2.2
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Euclid described how to set out or draw a right angle 2300 years ago (see Section
2.15), how to set up a grid of squares, and how to take measurements in such a
system. It is equally practicable to construct rectangular plotting devices such as
coordinatographs and digitising tables using such methods.

Because a grid is so fundamental to practical work it is advisable to check it for
size and orthogonality. This can be done by a reversal procedure, such as drawing two
copies of a grid and checking if they match when placing one on top of the other after
rotating one through a right angle.

Three-axis coordinate measuring machines (CMMs) are a mechanical way of
establishing three-dimensional grids in the industrial sector. Other systems create the
necessary right angles optically via pentagonal prisms or mechanically.

The map grid, not only valuable as a reference system and a necessity for plotting,
also provides a key to any distortion of the paper on which the map is drawn. It is
often vital to allow for this distortion when working with old maps, as in legal
disputes or in the construction of a Geographical Information System (GIS) for the
computer handling of map and other data.

Current computational strategy is tending towards a rigorous Cartesian three-
dimensional approach in preference to the older two-plus-one hybrids, even if this
procedure requires more complex mathematical models.

2.7 Polar coordinates

Both the modern theodolite with its integral distance measurement capability (the
total station) and the traditional instrument using optical distance measurement
are based on the polar coordinates system. In two dimensions, the drafting
protractor still has some advantages over Cartesian methods. Mechanical polar
coordinate measurement systems still have some advantages in that they are more
compact than Cartesian systems, as seen for example in an industrial robot and
laser tracker.

Polar coordinates are basic to many mathematical models such as vector geometry
and spherical trigonometry, and the total station (theodolite plus distance measurer)
is a mechanical analogue.

2.8 Cylindrical coordinates

Although not as widely used as the other two systems, the cylindrical system has
advantages when measuring cylindrical and rectangular objects, such as ships, large
pipes, tunnels and oil storage tanks.

2.9 The two-plus-one system

Since the Earth’s surface is comparatively flat, it can be modelled conveniently in two
separate coordinate systems: plan and height. The coordinate system for plan is
reduced to two dimensions, Easting and Northing (£, N) or latitude and longitude (¢,
A), on the spheroid from which the z coordinate or height 4 is separate. This is often
described as a ‘two plus one’ coordinate system. This system is necessary when a
three-dimensional surface is represented on a map or plan. In this case the heights are
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represented in a conventional way as isolines of equal height (contours), or by spot
heights written on the map.

It should be noted that the same separation occurs in most survey methods;
differences in height are often measured independently of measurements in plan. The
most important reason for this, however, is that the Earth’s atmosphere generally
causes much more serious curvature of light rays in a vertical plane than in a
horizontal plane. For practical reasons, height differences are usually required with
greater accuracy than plan positions.

2.10 Fixation of points in space: geometrical
principles

In three-dimensional space, a point can be described uniquely by three independent
pieces of information. This information consists of some form of measurement such
as length, length difference, length sum, direction, direction difference or
combinations of these. The position in space is ultimately determined by the
intersection of at least two vectors (lines), and the accuracy of this fixation depends
on two factors:

1. Their angle of intersection—a feature of the network design,
2. Their likely lateral shift—a feature of measurement accuracy.

The former depends on the design of the measurement system and the latter on the
design and quality of the measuring instruments. Quality may be improved by taking
more measurements, by changing to a better instrument, or by changing to a better-
designed measurement system using the same instruments.

A graphical treatment of a problem can often yield a good idea of the potential
accuracy of a system and especially when presenting results to a client. For
example, lines meeting at right angles are preferable to those intersecting at an
acute angle.

Fundamental to all surveying networks is that they must cover the whole area to
be surveyed, so that all subdivision will be interpolated within a strong framework,
and not extrapolated outside it. This is often described as working from the whole to
the part. With computer software, networks design can be tested without making any
observations at all (see Chapters 5 and 6). Sometimes this principle has to be
abandoned as in tunnelling.

For simplicity we show the various geometrical methods in two dimensions (see
Figure 2.3).

The two most common methods of fixation are:

1. Radiation as from a total station and
2. Lateration as from artificial Earth satellites (GPS, GLONASS etc.).

Radiation

Radiation, for example by total station, is by far the most common ground method to
capture the position of the point in space. It involves the measurement of two angles
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Principal Methods of Fixation in Two Dimensions
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Figure 2.3

in mutually orthogonal planes and a distance from the instrument to the new point:
typically a horizontal and a vertical angle and a slant distance.

A series of radiations joining up a chain of points is called a traverse. This is often
the only way to survey points within an enclosed space such as in a tunnel.

Point fixations
The coordinates of points can be derived by astronomical or satellite methods using some
of the fundamental geometrical methods described above (see Appendix 7 and Chapter 7).

Bearings and azimuths
From astronomical measurements, the direction of a line on the surface of the Earth can
be determined (see Appendix 7). This direction, referred to as true north, is called an
astronomical azimuth. If a north seeking gyroscopic theodolite is used, a similar
azimuth is obtained. By contrast, if a magnetic compass is used, a magnetic azimuth is
obtained which changes with time because of the drift of the Earth’s magnetic pole; this
is not used often in precise surveying. Also, when converted to a projection system via
the grid convergence, a grid bearing is obtained from an azimuth (see Appendix 8).
Azimuth or bearing measurements are treated in Least Squares analysis in a
similar way to a direction but with no added orientation parameter (see Equation
(6.26)).

Direction vectors

The output from GPS software is often a vector (direction and length) which has been
obtained from differential lateration to fix two points. Such a vector is treated in
network analysis as two correlated input measurements: bearing and distance.

15



PRINCIPLES OF GEOSPATIAL SURVEYING

Intersection

A new point can be located by the intersection of two rays from two points of known
location, without the measurement of distances. In photogrammetry, most models are
formed by considering the intersection of lines in space.

Lateration

In a similar manner, two measured distances from two known points will locate a new
point in a plane (three distances are required in three dimensions).

Resection from three points

In two dimensions it is possible to fix a new point from two angle measurements to
three given locations only. This was a favoured method used by mariners from angles
measured by a sextant aboard ship. The principle is also fundamental to the creation
of photogrammetric models.

Resection from two points

It is also possible to fix a new point from angle measurements at two connected
stations to only two known points. This was a method favoured by topographic
surveyors and also has applications in photogrammetry.

2.11 Mathematical modelling

It is not practical to determine the position of every point on an object, nor is it
necessary. For example, a straight line is described fully by two points in theory, one at
each end; a circle by three suitable points and so on. It is more economical to model a
surface or line with the minimum of data. This modelling may be done by the surveyor
by selecting discrete points at changes of direction or slopes on the ground, or by the
cartographer when digitising a map. The process of tracing lines in a photogrammetric
plotter is, by contrast, non-selective. Even in this process, some data condensation has
to take place if, as is usual, a record of the trace is kept in digital form.

Clearly, a limit to the accuracy is implied by the modelling process. In the
traditional line-map a plotting accuracy of 0.2 mm was the accepted error bound.
Hence the real accuracy depends on the map scale. For example at a scale of 1 to 500
the accuracy limit is 0.1 m. With the increased use of computer drafting, such
conventional concepts of accuracy have been ignored—with serious results.

Again, it is reasonable to collect more than the minimum amount of data in order
to provide a means of checking against mistakes, or to control the quality of the work.
A redundancy of data imposes the need to reconcile inconsistencies by a simple
method or by the method of Least Squares, which in turn allows a statistical estimate
of precision to be evaluated and affords an opportunity to detect blunders.

2.12 Algebraic and algorithmic methods

Many fundamental geometrical concepts can be described in simple graphical terms,
and many results can be depicted in graphical form. On the other hand, algebraic
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methods are required if complex problems are to be treated. Although conventional,
matrix and vector algebras are each of value in expressing concepts, and in the
increasing use of spreadsheet computer systems, many numerical problems have to be
recast in suitable algorithmic form to avoid errors arising from the number crunching
itself. These numerical methods need to be robust. Hence it is vital to check any
computer software against standard sets of data to ensure that there are no ‘bugs’ in
the system and that proper theory has been used. In the first analysis, it is the
professional surveyor who is liable for his results, not the software company who
wrote the program.

In the last analysis, there is no substitute for the use of common sense methods to
check all work, be it fieldwork, computations or plotting and setting out. Often a
simple graphical treatment will be the basis of this common sense.

The straight line

Mathematically, a straight line can be defined with reference to a plane by an equation
such as

y=mx+c

This is an ideal or theoretical line which we can say is a model of the real thing, which
is generally assumed to be imperfect. Actual straight lines will always be imperfect
and depart from straightness. The accuracy required varies with circumstances. In
photogrammetry, errors of microns are significant, while in road construction a
centimetre is sufficient (see Section 6.7 for fitting a line to points).

To draw a straight line on a piece of paper all we need to do is to copy the side of
a straight edge in a consistent manner, using a sharp pencil, say. (A straight edge is a
piece of steel like a ruler but without any markings.) This begs the question: how is
the straight edge initially manufactured? To check for straightness it is helpful to draw
a line, then reverse the straight edge and hold it against the line already drawn. With
certain limitations, lack of straightness will show.

Line of sight and laser beams

Another way to establish straightness is by line of sight. How straight then is a line
of sight? Considering that the human eye can resolve an angle of about 20
sexagesimal seconds of arc, this means we can see departures from a line of sight to
a tolerance of 20/206 265 or about 1 part in 10 000. Over a distance of 100 m, this
amounts to 100/10 000, or 10 mm. Telescopic viewing is capable of much greater
precision.

However, the line of sight may bend due to the effect of refraction on light, thus
the line need not be straight at all. In a tunnel, for example, where there are
temperature gradients close to the tunnel walls, this effect can be considerable (as
much as several centimetres). Inside buildings, temperature gradients such as those
found close to heating ducts, should be considered. In the open air, if there is gentle
air circulation, the refracting effect is less. However, in very hot weather, the air
becomes so turbulent that practical lines of sight have to be restricted to about 70 m
due to light shimmer. These statements are equally true of a laser beam.
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Stretched string
Another way to establish a straight line in two dimensions is to pull a fine string or wire
very tightly. Although the string will sag in the middle, it will not deviate from side to
side, unless there is a side wind present. A way to avoid such an effect over a short
distance is to shield the string from the wind. Often a long tube is used for this. It has
been found that nylon thread is very effective for many precise engineering applications.
Strings are often used in construction works to mark a chalk line on a hard surface,
such as a road. Chalk is run along the string, which after being pulled tight in the
correct location is flicked to impart a chalk line to the surface.

Sloping and vertical lines
It should be stressed at this point that much of what has been said above also applies
to sloping or vertical lines, also used in measurement and surveying.

The geodesic line

The geodesic line is the shortest distance between two points (see Appendix 4.6). For
example if A and B are two points on opposite sides of a room, there are two possible
geodesics:

1. down one wall across the floor and up to the second point
2. up to the ceiling which it crosses, and down the wall,

as shown in Figure 2.4. The way to establish the route is to develop (open out) the
three dimensional model of the walls and floor into a plane, and draw the straight line
between A and B on this plane. This defines the geodesic. On the surface of an Earth
ellipsoid, the geodesic is a curved line lying between the two normal sections.

Orthogonality or normality
Second in importance to the straight line are lines which are orthogonal or normal to
each other, usually forming the basic geometrical shapes such as rectangles, squares
etc. Since this orthogonality is vital to many operations in drafting and construction
work, some method of checking for right angles is required. In map making and
precise engineering, mechanical draughting machines and other mechanical
(analogue) devices such as optical prisms are used. From time to time, these devices
should be checked against some standard. For example, to check a grid plotted by
machine, two copies should be drawn and compared with each other with one rotated
through a right angle relative to the other.

Alternatively, another mechanical device such as a set square might be used which
can easily be checked by reversal as shown in Figure 2.5. Graphical and field methods
of setting out right angles are described in the next section.

2.13 Geometrical construction

Figures 2.6(a) and (b) demonstrate how right angles can easily be established
geometrically, either by drawing or, at a larger scale, by sweeping arcs with a tape or
string or rope.
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Geodesic line ACDB

e B
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Figure 2.4

In Figure 2.6(a), the line CD has to be constructed at right angles to the given line
AB through the point P located on AB. From P, points A and B are set out such that
AP =BP. Then arcs of equal circles are drawn from centres A and B to establish points
C and D, giving CPD perpendicular to AB.

In a similar way Figure 2.6(b) shows how to construct the orthogonal line CD
through a point E which does not lie on AB. In this case, the points A and B are
established by sweeping a circular arc to cut the given line at A and B. (Chapter 11
includes more practical details on setting out works.)

Figure 2.5
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(a) (b)

Figure 2.6

Pythagoras’ method

A quick way to establish a right angle is to use a tape to set out a Pythagorean triangle,
the most common one being with sides in the ratio of 3:4: 5, illustrated by Figure 2.7.
Lengths in the ratios 3: 4: 5 units are set out to produce the right angle at point A.

By hand

A crude method in the field, accurate to about 5°, is as follows. Stand on the line with
the hands outstretched and also on line. Then bring the hands rapidly together at an
approximately orthogonal direction. This is quite useful in preliminary location to be
followed up by a more accurate technique.

By instrument

The pentagonal prism has the useful property of establishing two mutually orthogonal
parts of a line of sight which passes through the prism. Field applications normally
use a theodolite or total station to establish right angles. Care is required with centring
and observing techniques. These topics are dealt with more fully in Chapter 13.

C
5
4
3
SRR 3--A
Figure 2.7
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2.14 Paper sizes

Consider the sheets of paper on which maps are drawn and printed. For this purpose
a sheet of paper is laid flat on a table or drawing board. Thus we can say that the paper
lies in a plane. A sheet of paper can be rolled into other shapes such as a cylinder and
cone, folded into boxes and complex shapes in the art of origami. For mapping
purposes we deal with the paper lying in a plane.

Previously, many different sizes of paper were used for drawing and printing
maps, including quarto, foolscap and elephant. However, there has to be some
agreement about paper sizes so that maps fit together and that printing machines can
be constructed to suit them. The accepted international measure for paper sizes is
referred to as the 4 series.

Most people are familiar with the A4 size of paper used for everyday office work
and student note pads, etc. The first thing to note about any paper sheet is that it forms
a rectangle. A rectangle has parallel and equal opposite sides, and equal diagonals.
When the sheet is oriented as in Figure 2.8(a) it is in portrait position, and Figure
2.8(b) represents landscape orientation.

Example Measure the sides and diagonals of an A4 sheet of paper, ABCD, as in
Figure 2.8(a). The results (mm) may be something like:

Short sides (mm) Long sides (mm) Diagonals (mm)
AB =211 BC =296 AC =362.8
CD =210 AD =297 BD =363.5

The reason that we do not have a perfect rectangle is due to errors in the
measurements; see below for the theoretically exact dimensions.

Example Show that the ratio AB/BC = 0.713 is approximately equal to
0.5 x BC/AB = 0.701.

This means that, if the paper is folded in two, the rectangle formed is almost the
same shape as the original but half its size. The smaller paper size is AS. In fact, it

D C
A D
o (0]
B C
A B
(a) (b)
Figure 2.8
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should be exactly the same shape. The way the A paper sizes are devised follows a
pattern. If the paper proportions are chosen so that
AB 0.5xBC BC
=" or AB>=0.5xBC? or AB=—=
BC AB 2
when folded over, the sides will be in exactly the same ratios. The A system of paper
sizes begins with a sheet exactly one square metre in area with sides of these
proportions i.e. such that

ABXBC=1 and AB=

BC
V2
Thus

BC?

\/5_1

therefore

BC=+/+/2 =1.1892 and AB=0.8409

The sheet of paper with these dimensions is referred to as A0 size. Halving and
halving in sequence gives all the other A paper sizes. Thus, A4 is

1.1892/4 = 0.2973 m by 0.8409/4 = 0.2102 m
or 297.3 mm by 210.2 mm

2.15 Reference grid

A network of two sets of regularly spaced parallel lines orthogonal to each other forms
a grid. In surveying and mapping the accuracy of the grid is vital to most operations.
It is therefore important to consider this in some detail both for its own sake and to
introduce some basic geometrical concepts.

It has always been possible to create a right angle by simple methods and therefore
to construct a grid. To capture the spirit of this truth, the reader is invited to perform
the task of drawing a grid as outlined here using only a ruler, pencil and sheet of A4
paper.

Start by drawing two straight lines roughly diagonally across the paper. Let them
intersect at point O. From O mark off four equal lines OA, OB, OC and OD as shown
in Figure 2.9(a), and join across the sides AB, BC etc. You have now drawn a
rectangle.

Check that opposite sides are equal (within a drawing tolerance of 0.2 mm) and
that the diagonals AC and BD are also equal. If not, repeat the task and try to see why
the error has crept in. The opposite sides should also be parallel to each other. Test this
by sliding a set-square against a ruler, as shown in Figure 2.9(b).

Mathematically, ABCD is defined as a perfect rectangle. However, in reality it will
only be a close approximation to one. We say that the perfect rectangle ABCD is a
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Set square

Parallel lines

Set square

(a) (b)

Figure 2.9

mathematical model of the real thing. The differences between the two will be the
subject of statistical and error analysis. In practical surveying, engineering,
woodworking etc. we have to decide on an acceptable tolerance for the practical
creation of the rectangle. For example, a wooden door is probably good to about
5 mm, a tennis court to about 10 mm and the grid of a map to about 0.2 mm.

The rectangle ABCD is now used to construct a grid as in Figure 2.10. Point A is
chosen as the origin of the grid and AD and AB its axes. Along AD and BC mark off
points, a, b,...p, q etc. at multiples of 40 mm apart, say. (Do this first by counting along
at 40 mm intervals and observe how the error accumulates!) The correct method is to
use the ruler to mark off all distances from the origin i.e. 40 mm, 80 mm and so on.

The lines ap, bq etc. are all parallel and equally spaced. Again from the base line
AD mark off the points g, h ...k, 1 etc. and join the lines across to form the grid. Except
by accident, or prior calculation, the original construction rectangle ABCD does not
fit the edges of the grid exactly.

On a building or archaeological site, where the grid is used to set out or measure
the footings of the walls, the grid intersections are marked by pegs or steel plates.
Sometimes, for example in archaeology or botanical sampling, the grid is physically
marked by wires or strings. Computer and cartographic plotters use a mechanical

B . . c
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Figure 2.10
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system of orthogonal rails to establish the grid quickly. Sometimes these rails are
incorrectly aligned and need to be checked.

When setting out a grid by total station, the grid points can be positioned directly
from their coordinates using any point as the origin. The bearings and distance to all
points are calculated and set out directly. Chapter 11 provides more details on this
subject.

Plotting control points

The control points of the survey have to be plotted within the relevant grid square by
measuring fractional distances along pairs of grid lines, and joining opposite pairs of
lines.

For example, in Figure 2.11 we show the relevant square within which to plot a
point A. The fractional part of its Easting is measured along both grid lines above and
below the point, and a north—south line drawn to join them. On this line, the Northing
of the point is plotted. This procedure is often adopted using strings stretched between
grid pegs in setting out. Of course the alternative of first using two north—south lines
is equally acceptable.

Checking computer plotted grids

It is not unknown for an automated plotting system to plot incorrectly. The method of
checking a grid for orthogonality is to make two plots and see if they fit on overlay after
a rotation of 90° with respect to each other. Size has to be verified by a calibrated scale.

Position and orientation

Often the grid is required to be located in a special position. For example, a map may
have to be positioned central to a page which also contains other items such as a title,
a map key, a coordinate list and so on. The map may even have two different grids on
it. In engineering, the site grid will need to be placed correctly in relation to the ground.
In these cases, a coordinate transformation may be required (see Chapter 3). Often
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(a)

Figure 2.12

some simple off-sets from known points, such as page corners (or existing buildings)
will suffice to locate the grid. Clearly these must be checked most carefully.

2.16 Perspective and isometric views

Two non-rectangular ‘grids’ are often used to depict a solid on a two dimensional
page. These are perspective and isometric grids, depicted in Figure 2.12.

The perspective grid (used by artists, Figure 2.12(a)) is that seen when looking at
a grid from an oblique position. Sets of parallel lines converge to vanishing points on
the horizon as shown in the diagram, which might have been a photograph. Although
it is possible to make measurements on such a grid using the technique of anharmonic
ratios, it is not popular.

An isometric grid (Figure 2.12(b)) is created by drawing sets of oblique parallel
lines (i.e. which do not converge to a point). Although disturbing to the eye, it is easy
to make measurements along the parallel lines on such a grid if the sets are drawn at
120° to each other.
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Chapter 3
Coordinate Systems

3.1 Cartesian coordinates

Fundamental to surveying are rectangular Cartesian coordinates: describing the
position of points in a plane in two dimensions, or in space in three dimensions.
Problems arise with the conventions in use. In a two dimensional system (X, ¥) or (N,
E), it has become customary to direct the X-axis to the north and the Y-axis to the east,
because a bearing U is reckoned clockwise from north in surveying. This convention
accords with mathematics, as long as we are working in a plane. In three dimensions
great care is necessary in defining positive directions of axes and rotations (see Figure
3.1). We have
AX =ScosU and AY =SsinU

Ax=Rcosf and Ay=Rsin6

The order x, y is, however, in direct contrast to the conventions of map reading and
cartography, where it is customary to quote Easting £ before Northing N (see Figure
3.1(c)). Here the bearing is commonly denoted by T (especially in German texts),
giving

AE=S8sinT and AN =ScosT
However, the convention to quote geographical coordinates latitude ¢ before

longitude A once more accords with x and y respectively of our convention, so we
have the approximate transformations

Ap=Scosa and Al=Ssina

where « is the azimuth of the line as shown in Figure 3.1(d).
To avoid potential confusion, all listed coordinates should clearly indicate which
definition is being used, as well as the units of measurement.

Example A point may have coordinates:
x=25y=55
E=55N=25
which correspond to values (S, U) in a polar system, of
S§=6.041
U= 65.556°
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The bearings U are reckoned in sexagesimal degrees.

Example The reverse problem of converting Cartesian to polar coordinates is very
important in surveying. Some care is needed to cater for all quadrants. For example,
converting the point with survey coordinates (2.5, —5.5) from a calculator with a
rectangular-to-polar function key, we obtain the values

§=6.041
U=-114.443°

Because all survey bearings are reckoned clockwise from north, this particular value
of U, which was provided by a calculator, is added to 360° to give the survey bearing
of

U =245.556°

The mathematical functions employed are

5% =42 +y2
arctan U =2
X

27



PRINCIPLES OF GEOSPATIAL SURVEYING

The arctan function can accommodate the negative signs of both x and y, ensuring that
an erroneous first quadrant angle is not returned as

—5.5/-2.5 = 2.2, which is the tangent of 65.556°.

A better algorithm function is listed as A7AN2 in contrast with ATAN which does not
deal with all quadrants properly. If no ATAN2 function is available, the following
algorithm may be used:

S =SQRT(x? +?)
IF S+x=0 THEN U=180

ELSE U=2><ATAN( Y )
S+ x

adding 360° if necessary.

Since not all algorithms deal properly with the various quadrants when computing
reverse trigonometrical functions, a check should be made when using a calculator or
computer algorithm for the first time. Also, a check should be made to see if a correct
result is given for the limiting cases of points on the coordinate axes. In other words,
we could check that the correct related data are

x 6 0 -6 0
y 0 6 0 -6
U 0 90 180  -90

The last result has to be added to 360° to give the whole circle bearing of 270°.

Again, most computer algorithms require angles to be converted to radians before
calling a trigonometric function, and in the reverse mode, provide results in radians.
Thus a suitable algorithm in Excel to calculate the sine of 12° 34' 56" is

SIN(PI()*(12-+(34+56/60)/60)/180) = 0.217 840 422

and to convert 12.582 222 22° to traditional form (degrees, minutes and seconds of
arc) might be

x =12.582 222 22

INT(x) = 12°
y = (x — INT (x)) * 60 = 34.933 333
INT(y) = 34'

INT ((y — INT (y)) * 60 + 0.5) = 56"
If no function for PI is available, a convenient algorithm is

PI =4 * ATAN(1)
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Figure 3.2

Precision of plane coordinates

The precision of computed results is examined throughout this book. The treatment
of coordinate conversions in geodesy requires special care because of the very large
numbers and high precision required. Again, any computer system should be tested to
ensure that the required precision is being achieved.

3.2 Cartesian coordinates in three dimensions

Figure 3.2 shows the corner of a room illustrating a system of Cartesian coordinates
in three dimensions (X, Y, Z). The articles of furniture are placed to keep the origin O
appearing away from and not towards the viewer.

The system is called right-handed since if the right hand is held as shown in
Figure 3.3 with the index finger aligned in the direction of the X-axis and the second
finger in the direction of the Y-axis, then the thumb will automatically be aligned with
the Z-axis.

In the isometric view of the orthogonal axes, the X-axis is inclined to OY by 120°,
and unit vectors along each of the three axes appear to be of equal length. Thus it is
possible to read off or measure the Cartesian coordinates from the diagram.

Example The coordinates of the points of Figure 3.2 are listed in Table 3.1 below.
Although lines parallel to the axes are true to scale, measurements cannot be made in
other directions. The table is 2.5 units long and 1.8 units wide. Its diagonals have to

be calculated.
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Figure 3.3
Table 3.1
Point A A’ B B’ c (o D D' o
X 5 0 0 9 0 0 0 0
Y 3 3 5 5 0 0 10 10 0
VA 0 0 5 0 2 2 7 0 0
Example

Distance CD is obtained from
CD? = AX? +AY? +AZ% = (0-9)* + (10— 0)* +(7—2)* =206
CD=1435

3.3 Polar to Cartesian coordinates

The most commonly used field surveying instrument is the total station, in which a
horizontal angle U, a vertical angle 7 and a distance R as shown in Figure 3.4 are
measured.

To obtain Cartesian coordinates (X, Y, Z) from the polar system (R, U, V) we have
the following transformations

x=RcosVcosU; y=RcosVsinU; z=rsinV
R=\1x2 +y2+z2
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tanU =

Nk e

tan) =

A useful check is
R=(xcosU+ ysinU)cosV +zsinV

Example Given that R = 63.64 mm, U = 65.556° and V' = 18.423°, calculate the
Cartesian coordinates (x, y, z).

X = 63.640 X cos18.423° X c0s65.556° = 24.98 mm
¥ =63.640 X cos18.423° X sin 65.556° = 54.97 mm

z=163.640Xsin18.423° = 20.11 mm
Example The coordinates of P in mm are (25, 55, 20). Calculate R, U and V.

tanU = % =22=U =65.556°

tanV = 20 =0.331=>V =18.423°
60.04

R =~252+552 +20% = 63.640 mm
Check
R =(25c0565.556° +555in 65.556°) cos18.423° +205sin18.423° = 63.640 mm

The slight inconsistencies in results arise from limiting the number of decimal points
listed.

Figure 3.4
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3.4 Coordinate differences

In practice, coordinates are seldom referred directly to the origin O. Usually
connections between two points, such as A and B, are required. In this case the above
formulae need only a little modification to put

Ax=xg—xp; Ay=yg—ya; Az=zp—zy
The transformations become
Ax=rcosVcosU; Ay=rcosVsinU; Az=sinV
R=+A? +Ay? +AZ°
Ay Az
tanU = —; tanl) = ———
Ax Ax2+Ay2
A useful check is
R=(AxcosU +AysinU)cosV + AzsinV

Example The coordinates of A and B in mm are (50, 70, 20) and (75, 125, 40)
respectively. Calculate R, U and V.

Ax=75-50=25; Ay=125-70=55; Az=40-20=20
55 °
tanU=2—5=2.2=U=65.556

20

V252 +552

R =+25% +55% +20% = 63.640 mm

tanV = =0.333=>) =18.423°

Check
R =(25c0565.556° +55sin 65.556°) cos18.423° +20sin18.423° = 63.640 mm

3.5 Geographical spherical coordinates

At its simplest, the Earth can be considered as a sphere of radius 6 378 000 m, and points
on its surface described by latitude, longitude and height above or below the sphere. This
simple spherical model is most valuable as a teaching aid, giving insight into geodetic
principles and the theory of map projections. It has practical uses for approximate
calculations such as finding the direction of Mecca or the distance flown by carrier
pigeons. The various calculations involve only the basic formulae of spherical
trigonometry. A more accurate model of the Earth uses an oblate spheroid, discussed later.

Latitude and longitude

In Figure 3.5 the Earth is represented by a sphere, centre O, whose Z-axis coincides
with the Earth’s spin axis passing through the North and South poles. (In practice this
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North Pole
P

Equator

Greenwich

meridian W~ Earth's axis

South Pole

Figure 3.5

is determined from astronomical observations.) The plane of the equator generates a
great circle of the sphere perpendicular to the Z-axis.

A great circle containing the axis and any point A is called the meridian of A. The
angular distance in the meridian plane from the equator to this point is its latitude. It
is sometimes necessary, as in astronomy, to define north latitude as positive and south
latitude as negative. Latitude is usually denoted by the Greek letter phi ¢.

Longitude is the angular distance round the equator between any two meridians:
positive eastwards and negative westwards. Since there is no natural starting
reference line, an arbitrary system for worldwide purposes was adopted based on the
meridian of Greenwich in England. For many purposes, however, only longitude
differences are used. Longitude is usually denoted by the Greek letter lambda A.

It is important to grasp the dimensions involved. One second of latitude subtends
an arc length of about 30 metres on the surface of the Earth, so millimetre precision
demands angular work to 0.0001 second.

Rectangular Cartesian coordinates

Most computations are made today using not the geographical system (¢, 1) but a
rectangular system oriented to suit the purposes in hand (Figure 3.6). For a worldwide
system we direct the OX axis along the Greenwich meridian, the OZ axis north—south
and the OY axis towards the east. Longitudes then become positive east and negative
west. The formulae to transform the geographical coordinates of any point 4 into
Cartesian values are therefore:

X =(R+h)cos¢pcos
Y =(R+h)cos¢sin A 3.1)
Z=(R+h)sing
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z

A A
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(R + h) sin ®
(0]
X
A
(R + h)cos ©@ y
Figure 3.6

Example If R = 6 378 000 m, calculate the Cartesian coordinates of the point B
from the following data:

¢ = 15°39'22.5964"
A =35°23'37.454"
h=500.00 m

The reverse transformation is achieved by:

Y

tanl=—
X

ang=—Z__ (3.2)
VX2 +7?

h=Zsec¢—R

= WX Y, 2)=(5 006 777.17,3 557 307.73,1 721 338.52)

As will be seen later, the reverse problem when dealing with ellipsoidal coordinates
is less simple.

3.6 Ellipsoidal coordinates

In worldwide geospatial surveying (geodesy), a spheroid or ellipsoid of reference has
to be used to model the size and shape of the Earth. The ellipsoid of geodesy is the
figure described by the rotation of an ellipse about its minor axis, an oblate spheroid.
(The ellipsoid generated by rotating the ellipse about the major axis is a prolate
spheroid.)

The worked examples in the following section will use the data listed in Tables
3.2 and 3.3.
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Table 3.2 Clarke 1880 Spheroid

semi-major (equatorial) axis a flattening E=12-0
6 378 249.145 1 0.006 802 701 3
293.5

Table 3.3 Data points
Longitude Latitude Height (m)
35°18' 16.7559" 15°52'29.9096" 600
35°23'37.4540" 15°39' 22.5964" 500
35°28'22.7070" 15° 44' 56.7567" 550

3.7 The meridian ellipse

The ellipse that defines an ellipsoid is called the meridian ellipse. The parallels of
latitude are small circles in planes parallel to the equator, which is a great circle. An
ellipse is defined in many ways and has a multiplicity of geometrical properties. We
shall consider it defined with respect to its semi-major axis ¢ and semi-minor axis b
by the equation

2 2
x_2+y_2=1 (3.3)
a b

The coordinates of a point on the ellipse with respect to the origin at its centre are
(x, ¥). The following properties will also be employed:

e =f@2-1) (3.4)
b’ =a’(1-¢e%) (3.5)

where e is the eccentricity of the ellipse, which is about 1/12 for a terrestrial ellipsoid.
The flattening given by

a—b (3.6)

is about 1/300 for the Earth.

Example From a and f(Table 3.2) we calculate the eccentricity e and the semi-minor
axis b

e = SQRT(1/293.5%(2-1/293.5)) = 0.006 802 701 3
b = SQRT(6 378 249/2%(1-0.006 802 701 3)) = 6 356 517.32

Given either of the size parameters a or b, and a shape parameter e or f, the others may
be derived. It is usual to define a meridian ellipse, and therefore an ellipsoid, in terms
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Table 3.4

Ellipsoid Year a 1f
Everest 1830 6377 304 300.9
Bessel 1841 6377397 299.2
Clarke 1858 6378293 2943
Clarke 1866 6378 206 295.0
Clarke 1880 6378 249 293.5
Helmert 1906 6378 200 298.3
Hayford 1910 6378 388 297.0
WGS 1984 6378 137 298.3

of a and f. For historical reasons, there are many reference ellipsoids recommended
for use in different parts of the world, because all previous surveys and maps were
based on them.

The parameters of early ellipsoids were calculated from terrestrial arc
measurements in specific parts of the Earth. With the advent of artificial Earth
satellites, geodesists have been able to use the Earth as a whole to define an ellipsoid.
The basic parameters, obtained from orbital analyses, are the semi-major axis a and
the first harmonic of gravitational potential J,. The latter can be used to derive an
equivalent flattening according to a selected mathematical model. Datums, such as
the world geodetic reference system WGS 84, are used for satellite work. The subject
is one of much complexity, and influences position fixing. It is especially important
in oil exploration, where geodetic cadastral problems arise. Table 3.4 gives
approximate values of a few of these system parameters.

It will be clear that, because the flattening is not listed to the same precision as the
semi-major axis, the semi-minor axis cannot be calculated to the same precision.
Early measurements were unable to establish ellipsoidal shape with sufficient
accuracy. However, the WGS 1984 flattening reciprocal has been quoted with
sufficient precision as

298.257 222 101

Before embarking on important computations involving ellipsoids and datums,
geodetic sources should be consulted to obtain the latest information on parameters.

3.8 Geodetic latitude and longitude

Geodetic latitude

Geodetic latitude ¢, is the angle between the normal to the ellipsoid at a point and
the plane of the equator (see Figure 3.7). The plane of the equator is perpendicular to
the spin axis of the Earth.
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Figure 3.7

Note: Astronomical latitude ¢ , is the angle between the normal to the geoid (see
Chapter 9) at a point and the plane of the equator (see Figure 3.7). It is not used in
ellipsoidal computations.

Geodetic longitude

Geodetic longitude 4 is the angle measured along the equator between the meridian
of Greenwich and the meridian ellipse of the location. Longitude is reckoned positive
east of Greenwich.

3.9 Radii of curvature of the ellipsoid

The double curvature of the surface of the ellipsoid is usually resolved into two
components: p in the plane of the meridian ellipse and v in a plane at right angles to
the meridian i.e. the plane of the prime vertical. The respective radii of curvature in
these two directions, denoted by the Greek letters p and v, are given by
. b 2a(1-é?)

p3 31— e sin® i)

S 59)
P 1-é*sin® f '

3.7

where p2 = 4’ cos? [0} +b?% sin? ¢ and ¢ is latitude. For any given ellipsoid for which

the values of @ and e are defined, both radii are functions of latitude alone.
For an oblate ellipsoid, p is always less than or equal to v, except at the poles where
they are equal. For more details of the geometry of the ellipsoid see Appendix 4.

Example From the data of Tables 3.2 and 3.3, we find at the point B
p =6339570.25 and v = 6 379 829.56
Examples We also calculate v for points A and C, giving

v, =6379 872.89
Ve = 6379 847.38
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3.10 Ellipsoidal Cartesian coordinates

In Figure 3.8, the meridian ellipse shows two points P, and P, at heights %, and #,
above the ellipsoid. Since the length PS in each case is (% + v) and the distance WS is
e?v (see Appendix 4) we have the transformations

z=[(1—e*)w+h]sin¢ (3.9)
u=(v+h)cos¢ (3.10)
where u is a line.
Therefore
x=ucosi (3.11)
y=usinl

These equations are easy to solve in the forward case, i.e. given ¢ and 4, as v is itself
a function of ¢.

Example Computing the Cartesian coordinates of A, B and C (Table 3.3) we find the
following results:

Point X y z

A 5008 373.63 3546 737.05 1733 437.32
B 5008 213.28 3 558 328.08 1710 120.06
C 5001 023.61 3563 637.54 1720 021.60

The reverse computation is not as simple because v is a function of the unknown ¢.
An iterative approach may be adopted using a first approximation

tan¢z5 (3.12)

Figure 3.8
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to give a first value of ¢ and v from Equation (3.8) and then /4 from Equation (3.10).
These parameters in turn use the equation
+h
tan ¢ = Z(V—z) (3.13)
u[(l1—e”)v+h]

derived from Equations (3.9) and (3.10) to calculate an improved value of ¢, and so
on until the solution converges with successive unchanged values for ¢. However,
Bowring and Vicenty (1978) have shown that the following nearly closed formula
provides adequate accuracy. By setting > = x2 + 3% and tan k = Z % | we have the

—_—

working formula ub
. 3
tan ¢ = w (3.14)
u—ae” cos k
where the second eccentricity of the ellipse € is given by
252
e=b 2b (3.15)
b
Once ¢ has been determined, the height / is calculated directly from
h=usec¢—v (3.16)

Having found u and z from ¢ and 4, the coordinates with respect to another meridian
at an angle of longitude A are given by Equation (3.11). To find A, the reverse
calculation poses no problems as

tand =2 (3.17)
X

Example The reverse calculation for point B is as follows:

e =0.006 849 339 834

_ 3558328.08

=———""—=0.71049851=> 1 =35.3937372 =35°23'37".454
5008213.28

tan A

1=4/5008213.282 +3558328.087 = 6143606.35

1710120.06 = 6378249.145

= X =0.27930934 = k =15.6055448" = (0.27236814 rads
6143606.35 6356517.32

tank

According to Equation (3.12),

¢ =0.27325358 rads = 15.6562768° = 15° 39' 22.5964"
According to Equation (3.8),

v =6379 829.56

and h = 500.
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Computation of the surface of the ellipsoid

In the pre-satellite era, networks of points were computed for the surface of the
ellipsoid by complex formulae (see Allan 2004, Torge 2001). Only in a few special
cases would this now be done. See also Appendix 4.
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Chapter 4
Coordinate Transformations

4.1 Introduction

A major problem of geospatial surveying is the establishment of relationships
between different sets of coordinates. A total station, laser scanner or pair of
stereoscopic photographs derive three-dimensional coordinates in a local system
based on the instrument. These have to be transformed in some way into the general
coordinate system used to model the space in question. In a similar way, GPS
coordinates have to be linked with local systems, or vice versa, and in the field of
cadastre, new surveys have to be reconciled with old maps and surveys. The reader is
therefore encouraged to study the elements of matrix algebra before attempting to
master the subject matter of this chapter.

The problem concerns the linking of datums together. This process involves three
basic factors: the origins of the systems, the relative alignments of their axes, and a
possible change of scale between them.

There are two cases to be considered:

(a) When the origin shifts and the rotation of axes and the scale changes are
known.

(b) When these parameters are unknown and have to be calculated from two sets
of points whose coordinates in both systems are known. We refer to this as the
‘Reverse Transformation Problem’.

Often stage (b) is used to determine the parameters from a few selected points, and
used to transform most other points by (a), as in the case of digital mapping.

The reverse problem can be treated in a similar way to that of straight line fitting (see
Chapter 6). There are two cases:

1. When only one set of coordinates is assumed to be observed, and the other
set fixed. This model gives useful simple results. In this method, the
treatment of redundant observations by Least Squares uses the simple form
of equations:

Ax—L=v
We treat most examples by this method for its simplicity and merit.
2. When both sets of coordinates obtained from observations have associated

dispersion matrices. This occurs, for example, when data from GPS
observations are to be matched to a classical triangulation network. This
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model, requiring the application of the general Least Squares process, uses the
more complicated equation of the form:

Ax+Cv=CL

We give one example of the latter form with respect to a two-dimensional case, but
first we deal with the straightforward direct cases.

4.2 Direct transformations in two dimensions

The most common case of the direct transformation in two dimensions will be
considered first. The coordinates used by surveyors are generally orthogonal and
conformal. That is, the grid lines form squares and there is no scale change over the
area of the survey. (Note that if a map projection is used, the scale changes
differentially.)

We consider the points ABC, the origins o (O) and the centroids, sometimes
referred to as centres of gravity, of the points G, all shown in Figure 4.1 whose
various coordinate values are given in Table 4.1.

x(n)

New Origin

Old Origin 5 y(e)
P
Yo

Figure 4.1
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Table 4.1
A B C 0] G
(x, y) system X 2.5 4.5 3.5 2.0 35
y 55 45 8.5 25 6.17
Origin change X' 0.5 2.5 1.5 -2.0 1.5
) 3.0 2.0 6.0 2.5 3.7
Rotated system X 1.5 3.03 3.46 -2.73 2.67
Y 2.65 1.02 5.13 -1.67 2.93
Scaled by K=13 X 1.95 3.939 4.498 -3.549 3.46
Y 3.445 1.326 6.669 -2.171 3.81

The original values (x, y) are changed to a new origin at (2.0, 2.5) giving the (x', y')
set. Then a forward rotation of 20° is applied to give the (X', Y') set (not shown in the
Figure), which is finally scaled by 1.3 to yield the (X, Y) set.

A common practical application of this type of change arises when a survey is first
computed on an assumed position and an assumed bearing, both later to be corrected,
and a foot—metre conversion has to be applied. We have chosen simple numbers by
way of easy illustration.

The various operations are illustrated in Table 4.1.

The change of origin is given by
X0 _ 2.0
vl 125

Thus we obtain a new set of coordinates relative to the new origin, but with the same
orientation. This operation can be expressed as

bz
il il o

X' =X—Xg

or in matrix algebra as

Notice that the vector x, when expressed in bold type, represents both the x and the y
coordinates. The subscript i refers to the points A, B, C and G. The coordinates of the
previous origin o with respect to the new origin O should be noted. This point is
treated just as any other in the new system.

We now rotate the axes through an angle 8 = 20° to give coordinates in the (X', ")
system. The relationship between the two systems is written

X'=Rx’
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X _ cos@ sinf || x 4.2)
Y’ —sinf cos@ ||y
Xa | [ 09397 0.3420](0.5] [1.5
Yx | [-0.3420 0.9397][3.0] [3.0
Finally the scale change K = 1.3 is applied, giving
Xa| [ 195
Yy | 3445

These three operations—translation, rotation and scaling—could be written
simultaneously as

or in full

X=KR(x—xy)=KRx—KRx,

But
KRXO = XO
SO We may write
X=KRx—-X,
or, in full
X _ Kco'se Ksin0 || x | Xo 43)
Y —Ksinf KcosO|| y Y

The transformation for point A is
{XA}_{ 1.2216 0.4446}{2.5} [—3.54}_{1.94}
YA —0.4446 1.2216||5.5| [—2.17 3.44
Note that exact agreement of these calculations is only achieved if all figures are

retained consistently in the spreadsheets throughout. We have rounded all values in
the tables.

4.3 Transformation by polar coordinates

Another way to transform the original (x, y) system into the new (X, Y) system is
through the polar coordinates, by directly altering the survey bearings and
recalculating new coordinates. For example, beginning with the original coordinates
(x, y) we could obtain the distances and bearings (r, U) then change all bearings using

U'=U-60

Thus we can convert all the bearings to the new system. Distances could also be
rescaled if necessary. The coordinates are then moved to the origin at O via (x,, y,).
Although it is always possible to treat these problems by polar coordinates instead of
Cartesian coordinates, the method is tedious.
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4.4 Note on change of scale

When a change of scale is required, a scale factor £ is introduced in such a way that
all lengths, including coordinates, are altered in proportion. For example, if we wish
to plot a map at a scale of 1:500, all sizes are scaled down by this amount. Formally,
we state

r'=Kr; x'=Kx; y =Ky

where K = 1/500, referred to as the nominal scale of the map.

A change of units from metres to feet is another example of coordinate change,
with a scale factor of K = 1/0.3048.

An additional way in which the scale may alter involves only a small change. This
occurs when a reduced distance is plotted on a map projection (see Appendix 8).

However a scale change can arise from the use of incorrect lengths in the survey
itself. The use of a non-standard tape, or the wrong refractive index in

electromagnetic distance measurement (EDM) will cause such a scale change. In such
a case, the scale factor & is approximately equal to one, and we set

k=1+e

where e is called the scale error. This is an unfortunate term because it can be
confused with random errors of observation. It is in fact a deliberate systematic error.
A scale factor of this type is often found when an old survey is repeated with modern
instruments capable of better accuracy and the two have to be combined into a
homogeneous or consistent system.

4.5 Reverse transformations

The reverse problem is to find the parameters (X, Y,)), 0 and K from the two sets of
coordinates x and X. To do so we must rearrange Equations (4.3). Multiplying out,

X =xK cos0+ yK sin 0— X
Y =—xKsin0+ yK cos 0—1 (4.5)
Setting a = K cos0 and b = K sin® we have
X =xa+yb—X,
Y=—xb+ya—Y,
or, in matrix form
a
X x y =1 0] b
{Y}=[J’ —x 0 _1} Xo
%

Clearly we need data from at least one other point for a solution to be obtained.
Further, we have K and 6 from

b
K? =a2+b2; tanQ =—
a
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Example Using the values of the original and new coordinates for points A and B (see
Table 4.1) we have

Xa xp, ya —1 0} a
Yy ya —xx 0 1| b
Xg| |xg v -1 0l X,
_YB y8 —xg 0 1|1
[1.94467876] [25 55 -1 0| a
3.44248813| |55 -25 0 1| b
3.94325339 | |45 45 —1 0] X,
1133163535] (45 —45 0 1] %

Therefore

a 25 55 -1 0 1.94467876 1.2216
b | |55 =25 0 1 3.44248813 | | 0.44463

Xo| |45 45 -1 0 3.94325339 | |3.55477
Y, 45 —45 0 —1| |[1.33163535| |2.16475

We can therefore calculate K and 0 as:

0.44463
1.2216

K =12216% +0.44463> =1.30: tan= = 0=20.0°

In a practical case, the two sets of coordinates are not usually consistent with each
other and so slightly different results will be obtained depending on the points used
for the calculation. To get a best estimate, we use the method of Least Squares
incorporating data from a number of points. This gives the set of equations

AX=L
X=(ATA) 'ATL

See Section 4.7 for an example, where we treat the Method of Centroids. However,
the more correct model is to use the general Least Squares version also in Section 4.7.

4.6 Transformations in three dimensions

The transformation of coordinates in three dimensions is similar to that for the two-
dimensional problem, with an R matrix of dimensions (3 X 3).
We shall consider two applications:

1. Where it is known that there is only one rotation about the vertical (z) axis.

2. When likely rotations about all three axes are small.

Case (1)
When the problem arises in connection with a total station or a laser scanner
application, the unknown orientation angle (i.e. in the horizontal plane) is the only
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one likely to be of some size. If the instruments are levelled properly the z-axis is
assumed untilted. Thus the transformation is of the form

X Kcos® Ksin® 0| x| |X,
Y |=|—-KsinO Kcos® O y|—| Y (4.6)
VA 0 0 K| z Z

Expanding, rearranging and substituting a = K cos0; b = K sin0 as before implies we
have three equations for each of two points, giving the minimum six required for a
solution.

[ X, | x y 0 -1 0 0] a
h| |-y x 0 0o -1 0f 5
z| o o1 0o o 1|k
X | x vy o -1 0 ofx
Ll |-y x0 0 -1 0|¥
2] Lo o1 0 o0 1]7]

Example Refer to Figure 4.2. This shows a wall to be surveyed by a laser scanner. To
incorporate the scan points (of which there can be thousands) into the site coordinate
system, four reference points (A, B, C and D) are surveyed by total station to give
Coordinate Set 1, as listed in Table 4.2.

The scanner is then set up at the same station, in the same approximate plan
position but at a different height. We have offset it by 4 mm in x, 6 mm in y and 120
mm in z. The orientation is also only approximate; we have offset this by 2°.

V4
A 5

p C
A -
Y

/ O
» D
X
Figure 4.2
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Table 4.2 Set 1: Site system coordinates

Point X y z

P 0.000 0.000 0.000
A -5.000 10.000 0.000
B -5.000 10.000 10.000
C 5.000 10.000 10.000
D 5.000 10.000 0.000

The scanner coordinates are given in Set 2 (see Table 4.3). Before the scanner
coordinates can be incorporated into the site system, the orientation and centring
errors have to be identified and allowed for by applying the forward transformation
formula, Equation (4.6).

Equation (4.6) for points B and D are then:

[—4.6539592] [-5 10 0 -1 0 O]

a

10.1724058 | [10 5 0 0 —1 0| b
1012 | |0 0 10 0 0 -1||K
53399491 | |5 10 0 -1 0 0 | X,
9.82341079 | |10 =5 0 0 -1 0| ¥
012 | [0 0 0 0 0 -1)%]

a=Kcos0=0.99939083
b= Ksin0=0.0348995

which implies 8 = 2° and (X;, Y, Z,) = (0.006, —0.004, -0.12)

Check

Having found the necessary parameters, they should be checked back on the original
data. It is usual to make this check using a point which was not involved in their
derivation.

Table 4.3 Set 2: Scanner coordinates

Point X Y zZ

A —4.654 10.172 0.120
B —4.654 10.172 10.120
C 5.340 9.823 10.120
D 5.340 9.823 0.120
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We obtain the result for point A from the equations

X 0.99939  0.03489 0| —4.65395 0.006 =5
y|=1—-0.03489 0.99939 0| 10.17240 |—|—0.004 |=| 10 4.7)
z 0 0 1 0.12 —0.12 0

Case (2)

In geodesy problems, when establishing a connection between two datums, the
orientation angles are likely to be small. Therefore the assumption is made that

cos0 = 1 and sin® = O for each of the three rotations, 0, Gy, 0, giving a simple rotation
matrix of the form

z y
RRR. =0, 1 -0 |=I+e +e,+e,
-0, 6, 1

This can be observed if we multiply the following three matrices and neglect powers
of small angles greater than the first.

1 0 0
R, =0 1 -0, |=I+e,
06, |1
1 06,
R,=| 0 1 0]|=I+e,
-6, 0 1|
1 -6, 0]
R,=[(0, 1 0|=I+g,
0 0 1]

Hence the direct transformation equations for small angles in three dimensions
become

X 1 _ez 6y X XO
ri=kj 6, 1 =0,)v-|hH (4.8)
z -0, 0, 1 |z] |%

Once again, to derive the parameters from two sets of coordinates we have to solve
the equations in seven parameters. This requires data from two points and one
relevant piece of data from a third. We say relevant, because not every point will do
and a singular matrix may result. This occurs if we use the X value of point A.
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(X, ] [-y z 0 x =1 0 0][K6,]
Y x 0 -z y 0 -1 0| K6,
Z 0 —x y =z 0 0 1}Kb6,
Xy |l=l-y z 0 x -1 0 0|l K
Y, x 0 —z y 0 -1 0| X,
Zy 0 —x »y z 0 0 If| X

| 5] [x 0 -z y 0 =1 0] z, |

Applying this method to the data in Tables 4.2 and 4.3 yields the solutions:

K6, =-1.90 (-2.0); KGy =0.01 (0); KB, = —-0.097 (0); X, = —0.009 (-0.006);
Y, = 0.0075 (0.004); Z, = -0.138 (-0.12).

Although the model is inappropriate, the solution is quite good when compared with
the correct results in brackets.

4.7 Method of centroids

Although there are other methods of transformation which will give better results
than the above, we move straight away to the best general method, involving the
centroids. The concept is to move all scaling and rotations to the middle of the areas
concerned. The method has two stages: a translation, and a combined rotation and
scaling.

First the coordinate system is moved to the centroid in each case, giving new

coordinates expressed by
ylG Vi YG

e L
O L] LY
The notation implies the abscissa of point i with the centroid X as origin. For

example, for point A, = Xg = 1.89 — 2.67 = —0.78. See Tables 4.4 and 4.5 for an
example.

(4.9)

Table 4.4

Point A B C G

x 2.50 4.50 3.50 3.50
y 5.50 4.50 8.50 6.17
Xg -1.00 +1.00 0.00 0.00
Y6 —0.67 -1.67 2.33 0.00
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Table 4.5

Point A B’ C’ G'
X 1.89 291 32 2.67
Y 2.74 1.66 4.39 2.93
Xg —0.78 0.24 0.53 0.00
Ys -0.19 -1.27 1.46 0.00

These coordinates, reduced to the centroid, are next transformed by the formula
X% =Rx"®

We now introduce the general notation for the elements of the scaled rotation matrix
Ri.e. 7}, 7|5, etc. where || = r,, = K cosb and —r,, = r,, = K sinf. In terms of R,

G G G 1
X ooy 00
G G G
10 0w ||
G G .G
X3 oo 00y
G G .G
n 0 0 x y [[m]
For points A and B,
-0.78] [-1.0 —-0.67 0 0 1~
—0.19] | 0 0 —1.0 —0.67| r,
024 | |10 =167 0 0 || my
—1.27 0 0 10 =167 m
Therefore,

1 M2 0.6243  0.2286
R= =
M —0.2271 0.6257

The complete transformation can then be written as:

X=X +X% =X; +Rx% =X +R(x—xg) (4.10)
X]_[X],[ 06243 02286 x=xg
Y| | Y5 | [-02271 0.6257 ] y—yg
_|2.67 N 0.6243  0.2286 || x—3.5
1293 —0.2271 0.6257 || y—6.17
Note: The application of this formula to points A, B and C gives perfect agreement

with the original values of Tables 4.4 and 4.5 as expected. The agreement of point C
comes about because the two sets of values are entirely consistent. In practice, the two
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surveys of the points of the triangle would contain errors which would give rise to
slight inconsistencies. In this case, a Least Squares approach is used.

4.8 General case of centroids with Least Squares

We shall now deal with the problem of inconsistent data, and where both sets of
coordinates are associated with known dispersion matrices. The reader who is
unfamiliar with the Least Squares process should read Chapter 6 and/or Appendix 3,
which explain these matters and the notation being used. Although the example is for
a two-dimensional coordinate problem, the method is identical in three dimensions.

The situation is that the triangles ABC and A'B'C' are not exactly similar in shape
as well as being of different sizes. In addition, the coordinates in both systems have
associated dispersion matrices D, and Dy. The method follows similar lines to the
centroid method, except that each centroid is obtained as a weighted operation. We
first set up the observation equations for each set of coordinates separately, in the
form

Ax=L+v
For the (x, y) system:

[1 0] [2.5]

0 1 5.5

1 0] x 4.5

Gl= " 4+

0 1 L’G} 4.5

1 0 35
10 1] 8.5

The dispersion matrix D, could contain many nonzero covariances. However, to
simplify the calculations we assume the upper triangle of this symmetric matrix to be
[0.1 005 0 0 0 0]
01 0 0 0 0
0.1 005 O 0
01 0 0
symmetric 0.1 0.05
0.1

The coordinates of the centroid are then given by
G, =(ATwA) TATwx (4.11)
where
W=Dy

Thus the coordinates of the centroid are
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oo

In the same way, using the coordinates from the (X, Y) system where it should be
noted a change has been made to the coordinate of point C to ensure that the two
triangles are no longer similar, we have the equations

10 [1.897]
0 1 2.74
1 0{[Gy 291
= +v
0 1| Gy 1.66
1 0 3.20
[0 1] 4.00 |

and a dispersion matrix which, we assume for simplicity, is the same as for the (x, y)
system, that is D = Dy.
We obtain the centroid coordinates of

o

New coordinate systems X and X; with respect to these centroids give respective
values for the points in columns two and three of Table 4.6. As before, we wish to find
the matrix R which affects the transformation

XG = RXG

4.9 Simple Least Squares model

A simple solution can be found for R if we assume it is a scaled orthogonal matrix
and only the (x, y) coordinates are treated as observed. We have for the three points
the equations

AX=L

Table 4.6

Point XG Observed X Provisional Xz L
X, -1.00 —0.777 —0.777 0.00
N —0.67 —0.060 —0.190 0.13
Xg 1.00 0.243 0.243 0.00
Vs -1.67 -1.140 -1.270 0.13
Xe 0.00 0.530 0.530 0.00
Yo 2.33 1.200 1.460 —0.26
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where
[ -1 —0.6666667 | [—0.7766667
—0.6666667 1 -0.19
1 —1.6666667 0.24333333
A= and L=
—1.6666667 -1 -1.27
0 2.3333333 0.53333333
| 23333333 0 | | 146
Here we have
ATaAx=ATL

10.667 0 <o 6.667
0  10.667|° |2.437

X=(ATA)'ATL

Therefore

and the solution is:

a=0.6253125; b =0.2284375; K = 0.66573224; cos® = 0.93928529 =
0 = 0.35025486 rad or 6 = 20.0681253 deg

4.10 General Least Squares model

Because both sets of coordinates are observed and have dispersion matrices, and the
equations to be solved are not linear in the unknowns, we proceed by the combined
Least Squares method. This assumes an initial value for the R matrix, and for one of
the sets of coordinates. We assume that

R =R*

For this assumed value, we use the R matrix found previously by the direct method,

that 1s
M1 N2 0.6243 0.2286
R*: =
»1 My —0.2271 0.6257

From the x values in Table 4.6 we compute the provisional values of X, in column
four of the same table. On subtraction of these from the observed values in column
three we obtain the L vector in column five.

The simple Least Squares model can be used. This assumes that only the first set
of coordinates (x, y) is observed and subject to error.

Next, we derive the combined Least Squares model of the form

Ax+Cv=CL
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In this case the x vector consists of the four small corrections to the elements of the
provisional R matrix used to calculate the L vector.

The mathematical model is as before, and for simplicity we have dropped the
superscripts G. Following the usual procedure we have

X ’]1 7]2 X
dX d’]l d’]2 X )]1 )]2 dx

d”ll dx
0 0] dn 7 Iz -1 0 {ld
0={x y } 12 _{11 12 } Ly

or recasting we have

0 0 x y di’z] ny M 0 —1 dX
dr22 dY
which is of the form
0=Ax+Cdx

This is the data available from each point. The full matrix for all three points of the
example with numerical values is therefore

[—1 —0.667 0 0
0 0 -1 —0.667 || dn,
1 —-1667 0 0 drip
AXx=
0 0 1 —1.667 || dr,
0 2333 0 0 dry,
| 0 0 0 2333 |

The vector dx is split into L + v where the L vector consists of the observed-minus-
provisional values of the observed parameters. Because we selected the observed
values of the x system to be their provisional values, and from them computed the
provisional values of the X system, the first part of the column vector L will be zero.
In full, the transposed vector is

LT=(0,0,0,0,0,0,0,0.13, 0, 0.13, 0, =0.26)
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The C matrix has a particular structure for three points as follows

R 0 0 -I 0 O
C=/{0 R 0 0 —-I 0
0 0 R 0 0 -I

The sub-matrices R and I are of dimensions (2 X 2) in a two-dimensional coordinate
system (x, y). In our example, R is the provisional transformation matrix defined
previously.

The full (12 % 12) dispersion matrix of the two observed sets of two-dimensional
coordinates for the three points has the structure

D O 0 O 0 O

D 0O 0 0 O

w-l = D 0O 0 O
D 0 O

D O

symmetric D

Where each submatrix D is of the form
0.10 0.05
D=
0.05 0.10

This gives C W-ICT with the structure

o o =
o m o
N o o

where each submatrix P is of the form

|:17.32 —8.91:|
P=

—-8.91 21.14
and finally
ATcew™Ichy Tax=AT(cw 'cT) !cL
0.1474 —0.0737 0.0621 —0.0310 3.106x107°
0.6387  —0.0311 02692 | _ —5.177x107° 4.12)
0.1208 —0.0604 6.040 %10~
symmetric 0.5235 —1.007%10~3

which gives the solution for x and the final values of the R matrix as shown in Table 4.7.
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Table 4.7

X Provisional R Final R
1.5272 x 10°° 0.6243 0.62430153
—6.433 x 10°° 0.2286 0.22859357
1.6916 x 10°° -0.2271 —0.2270983
—7.125 % 10°° 0.6257 0.62569287

4.11 Added constraints

In the above transformation it has not been assumed that the matrix R consists of a
scaled orthogonal matrix. If we wish this to be so, for example in photogrammetry or
cartography, we can do so by imposing constraints on the solution, such as

fii=hy and jip=—ry
therefore
iy iy =y +dny
fip +driy = =7y —dry
giving the constraint equations
dri; —dryy =y —11 =0.0014
dri, +dry, =7, —7; =—0.0015

When these equations are added to the normal equations (Equations 4.12) we obtain
the hypermatrix, where k is the (1 x 2) Lagrangian column vector (see Appendix 3).

[ 0.1474 —0.0737 0.0629 —0.0310 1 0] 3.106x107°
—0.0737 0.6387 —0.0310 02691 0 1 ~5.177x107°
0.0621 —0.0310 0.1208 —0.0604 0 1 H_ 6.040 10~
—0.0310 02691 —0.0604 05235 —1 O(lk| |_ 107510
: 0 0 b0 —0.0014
L0 : : 0 0 0 0.0015

The solution and final values of the coefficients of R are listed in Table 4.8.

The matrix coefficients are then split into the scale and rotation elements K and 6
from

K =0.62542 +0.2286% = 0.665

0.2286
0.6254)

0= arctan( ) =20.07°
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Table 4.8

X Provisional R Final R
0.0011 0.6243 0.625433
2.841x 107 0.2286 0.228621
—0.0015 —0.2271 —0.228622
—0.0002 0.6257 0.625433
Example

We repeat the above transformation using a scaled orthogonal matrix at the very
outset, instead of the empirical method with a later constraint. Applying a direct
solution without any provisional values and iterations, we have

- —0.6666667] [—0.776667]
—0.6666667 I ~0.19
1 —1.6666667 0.2433333
A= 1 6666667 B Ty
0 23333333 0.5333333
| 23333333 o | | 146

a=0.6253125; b =0.2284375; K = 0.66573224; cos® = 0.93928529 =
6 =0.35025486 rad or 6 = 20.0681253 deg

As expected in this simple case, the results are identical.

4.12 Summary

The various methods of coordinate transformation are all useful, depending on the
accuracy required and the distortions that exist between the two sets of coordinates.

The full Least Squares method is worth programming because of its general
application. It is also possible to obtain error estimates of the parameters, and to carry
out tests for the location of possible blunders in the data.

These matters are discussed in Chapter 5 and Appendix 6. To reduce the working,
the data of the example was kept to a minimum and therefore will not yield useful
statistical data.

Other methods of transforming coordinates have roles to play, such as linear
interpolation within pre-calculated values (see Chapter 10), and polynomial
modelling (Iliffe 2000).
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Chapter 5

Theory of Errors and Quality
Control

Chapter Summary

In this chapter we discuss how to assess the quality of measurements and results
derived from them. This involves an understanding of the theory of errors of
measurement, statistical methods of selecting the best estimates of derived parameters
such as coordinates, ways in which to combine extra observations of various kinds
into a consistent set of data, and whether or not to accept or reject values on the basis
of statistical hypotheses.

Clients now readily demand such information as a means of assessing the quality
of the product presented to them by the surveyor. Quality control forms part of a
wider management system called quality assurance.

Initially, we establish mathematical ways to describe measurements and results
derived from them. We then examine some basic statistical procedures used to handle
data in a consistent manner. Finally, we look closely at the major methods of
reconciling mixed and inconsistent observational data into consistent figures for use
in dimension control and for other purposes.

5.1 Introduction to errors of measurement

At school we were once asked to draw a straight line 300 mm long and then to
measure it, using a 100 mm rule for both processes. We were surprised to discover
that the exercise was not as ridiculous as it first appeared, and that it embodied many
basic concepts to do with the errors of measurement.

Some of the discoveries made were:

(a) Most lines drawn by pupils were of different lengths, as could easily be seen
by direct comparison without the use of rulers. This direct comparison is an
example of an independent checking procedure, something always to be
sought after in surveying, which gives a measure of reliability.

(b) When we measured with a ruler graduated in centimetres only, the same result
was obtained each time, but when we used a ruler with precise millimetre
divisions, the results varied within small limits. This illustrates the need for
sufficient precision in measurement.

(c) Different precise answers were obtained with different rulers, illustrating the
need to calibrate the rulers by comparison with a known standard length. The
calibration process reduces the systematic error of the rulers to within known
limits.
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(d) One pupil had miscounted, and gave the length as 400 mm. Mistakes are the
most serious of all the errors.

(e) In the end we were uncertain as to the exact lengths of all the lines, which were
each supposed to be 300 mm. This is an example of uncertainty in meeting the
defined specification of 300 mm. No measurement folerance was asked for nor
was there a statistical criterion for this tolerance. Arguments about
specifications are often the subject of legal disputes and often arise because
these matters were not defined beforehand.

Thus an apparently simple exercise was full of problems: problems which arise in all
attempts to set out measurements according to a specification, and to measure the exact
value of a quantity. In addition, it raised the issue of what is meant by ‘the exact value’.

Since land and geodetic surveying is almost wholly concerned with measurements
and setting out to specifications, these problems are of paramount importance. Indeed,
in many cases, it is almost as important to know the accuracy of a result as to know
the result itself. Clearly there is a need to define the meaning of ‘quality’ in
unambiguous ways.

5.2 Definition of concepts and terms

The following definitions and symbols are essential for an understanding of
subsequent sections. While there is unfortunately no universally accepted form of
notation for the various quantities used in error theory, we shall adopt a notation in
agreement with most of the main texts and publications. However, readers should be
warned of the general lack of consistency in the literature.

Mathematical and statistical formulae are defined such that problems can be
treated consistently and with computer. Most of the problems ultimately end up as the
near intersection of two lines in space, or combinations of such intersections.

True value T

Just as the concept of ‘truth’ is an abstract idea, so also in most cases is the concept
of true value. In general, the true value of a quantity will never be found, or, if it is
found, we will never know that we have found it. For example, we can only know the
length of a ruler within specific limits set by calibration. This lack of knowledge of
the truth applies to a single observed quantity only, for we often know the true value
of a combination of quantities that are observed singly. For example, the sum of the
three angles of a plane triangle is known to be 180°.

Population and sample means p and x
By population we mean all the possible values that could exist of a particular kind,
such as a measurement of the 300 mm line we described above, made by every
100 mm ruler in the world. This is a very large population indeed.

Our particular small set of measurements drawn from this population is called a
sample. 1t is also a sample of another population consisting of all the measurements
that could be made of the line using one ruler alone.
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The mean or average of all possible values is the population mean usually denoted
by the Greek letter u; the mean or average of the sample is denoted by x. Clearly these
two means will not generally be equal. However, it would be reasonable to think that
if the number of samples increased, the sample average would tend towards the
population mean. Thus we introduce the concept of mathematical expectation.

Expectation E

The mathematical expectation of a quantity is the value to which the average of such
quantities will tend as the number of measured values increases to infinity. Thus the
expectation of the sample mean X, written as E(X), is the population mean p. If we
were able to remove all systematic errors (see below) from the measurements, this
population mean would be the true value T. Some authors define the true value in this
sense. However, the assumption that all systematic errors have been removed is
implausible, and the two concepts should be kept separate.

Observed value x
The observed value is the first numerical information you obtain about a result, for
example: a length from a tape, an angle from a theodolite or a reading from a GPS
receiver. In fact these numerical values are very often derived within an instrument
from a series of other measurements, such as time in an EDM instrument or satellite
receiver, which the user generally does not see. Thus we must settle for the first set
of numerical values as the ‘observations’.

The superscript o is used over a parameter, say x, to indicate that it is the observed
value of x.

True error A

Like true value, the true error A of a single observed quantity can never be found. It
is merely an abstract idea defined to be the difference between the true value and the
observed value i.e.

A=T-x

The best estimate x
The best estimate derived from observations is that value which is more likely than
any other to be the true value, judged on the evidence available. We shall accept that
the best estimate which can be derived from a series of observations is the arithmetic
mean of the set, provided that the observations are independent of each other and that
they are of the same quality. Observations of differing quality will be treated later.
The superscript * is used over a parameter x to indicate that it is the best estimate.
It is widely accepted in literature that using the symbol * to indicate best estimate
implies it has been derived from the principle of Least Squares or (the same thing)
minimum variance (see below).
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Sample Residual v
A residual v is defined to be the difference between the best estimate and the observed
value i.e.

A o
V=X—X
Note that in statistical literature, deviations from the mean, or residuals, are defined
in the opposite sense, i.c.

o A
V=X—X

This makes no difference to any results, provided we are consistent. We use the
definiton common to survey.

Population Residual V
In a similar manner, we define the population residual 7 to be the difference between
the population mean and the observed value i.e.

V=p-x

Corrections

It should be noted that in deriving the best estimates from observed values, in no sense
are these observations ‘corrected’. The observations are simply used to derive best
estimates. A change made to an arbitrary provisional value to give the best estimate
is called an increment and the word ‘correction’ is avoided altogether.

Weight w

The weight w of an observation is a measure of its quality relative to other
observations, usually expressed as a number proportional to the inverse of the
variance (see later). Weights are needed to reduce mixed mode types of observations
e.g. angles and sides, to a dimensionless number for combined work, and to allow for
the differing quality of various instruments and observers.

Precision and accuracy

If a quantity is measured several times, the degree of agreement between the measures
is the precision of the set. Thus if the residuals are small the observations are precise,
and vice versa. The accuracy of the set is the difference between the best estimate and
the true value. A high degree of precision is no indication of great accuracy, however.
For example, an expensive watch may be precise to a second, but could easily be set
at the wrong time.

The efforts to obtain accuracy usually involve a high degree of precision but, more
importantly, they require much effort to remove systematic errors by calibration and
mistakes by a quality control system. For example the watch should be compared
with radio time signals at regular intervals.
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Systematic and random errors
In the classification of errors, two main types are distinguished according to the way
they affect a result:

(a) Errors which have a cumulative or constant effect are systematic errors.
(b) Errors which have a tendency to compensate one another are random errors,
sometimes called accidental errors.

In our example of length measurement, if the ruler is either too long or too short then
clearly it will always give an incorrect answer. This information will have been found
by festing it against a standard. The way to solve the problem is to calibrate the ruler,
that is compare it with a known standard of length and apply a calibration correction
to all readings.

Even after this calibration has been applied, there will be small differences each
time anyone uses the ruler, provided it is precisely graduated. If the chances are even
that these small errors are either too large or too small their effects tend to compensate
and are therefore called random errors. Notice that the calibration process itself is
subject to these random errors, and the calibration figure applied to the measurements
is also affected by random error.

Mistakes or blunders

A third type of error is sometimes distinguished on the basis of the mere size. This is
the gross error, mistake or blunder. Since mistakes may be systematic or random this
is not a genuine third type of error. It is however true to say that they are treated in a
different manner by most surveyors simply because they may be detected by a self-
checking procedure built into the particular survey process involved.

Mistakes are the most serious of all the errors. This fact can easily be forgotten in
the light of the attention paid to small errors by the method of Least Squares, and to
the space taken up by the latter in survey literature, including in this book. The
importance of a topic is not proportional to the number of words written on the subject
nor to the effort required to understand it. Quality assurance techniques are therefore
of paramount importance if reliable work is to be performed.

Mistakes are very serious simply because of their size, and care must be taken to
avoid them. With the advent of automated production line work, for example when
observations made from total stations are recorded by data loggers which give direct
output for processing, there is less likelihood of mistakes in booking, but at the same
time, there are fewer opportunities to check work by common sense methods. It is
therefore necessary to incorporate into computer software various statistical tests to
locate blunders and to incorporate self-checking observational procedures to locate
any mishaps. This means that statistical theory has to be used more than ever.

5.3 Systematic errors and calibration

Systematic errors arise from some physical phenomenon or psychological tendency
on the part of the observer, and may only be eradicated if the laws governing these
contributing factors are known, albeit empirically.
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A troublesome source of systematic error in levelling and distance measurement
is atmospheric refraction, and an example of a personal tendency is visual bias when
observing a vertical angle. Systematic error is often difficult to assess and equally
troublesome to remove. However, it is often practicable to reduce its effect
considerably by calibration or by balancing observations. Systematic error can even
be completely removed by the application of the important principle of instrument
reversal such as changing face in theodolite work.

In dealing with an over-determined set of observations and parameters by the
method of Least Squares, efforts can be made to locate systematic errors by
incorporating a suitable mathematical model, such as a scale factor in an EDM
instrument. In this case, the systematic effect becomes another unknown
parameter. Sometimes, but not always, this error can then be determined and
eliminated.

Processes most likely to be significantly affected are those involving lengthy
repetitive techniques, such as levelling and traversing, where a chain of small errors
can accumulate.

In some cases, although the magnitude of a systematic error may be assessed, its
sign may be unknown. For example, the standardization of a tape is itself subject to
error. If the length of the tape is quoted as 100.025 m, all field measurements will be
corrected by the 0.025/100 x length measured. The standardization itself could be in
error by, say, = 0.0005 i.e. either plus or minus. Whatever its sign it will affect the
measurements in a systematic manner. Generally, this sign is unknown. If + 0.0005 is
the standard error of the calibration measurements, it is a standard systematic error
when affecting the field measurement. Of course, the standard error of the calibration
could be worse than 0.0005. This figure is taken only if no other information is
available.

The propagation of systematic errors
As an example of the propagation of systematic errors, consider a line of n tape
lengths each with a systematic error ey, e,, ... , e,. Then the resultant systematic error
of the whole base is given by

Eg = 2 &

If these values are standard systematic errors, they are either all positive or all
negative.
If the e, are all numerically equal to ¢, then we have

ES =no

It will be seen later that this contrasts with the propagation law for random errors
which gives 6 \n for n equal standard errors G.

The proportional error for the base as a whole does not improve with its length but
remains ¢ / L where L is the tape length. Again this contrasts with the effect of
accidental error, where the proportional error of the base improves with distance
measured.
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5.4 Random or accidental errors

The theory of random errors is now considered at length. However, attention is
redrawn to the importance of mistakes and systematic error, neither of which conform
to the same laws. They must be studied in each particular case, and the treatment of
discrepancies applied accordingly. In theory, random errors remain after mistakes and
systematic errors have been removed. In practice, some systematic errors will remain
and, for want of an alternative, are treated with random errors.

The concepts of error theory are quite simple; it is the notation and algebra
necessary to develop these ideas which can initially be confusing. Although it is quite
possible to develop these ideas without employing matrix algebra, it is very
inconvenient not to use this very effective tool of mathematics. The reader is therefore
encouraged to study the elements of matrix algebra before attempting to master the
subject matter of this chapter.

However, we will develop many basic concepts through the medium of simple
examples, both to assist the beginner and to define terms. A more direct treatment is
given in Appendix 3.

5.5 Statistical analysis of results

The study of random errors is concerned with: probability, presentation of results as
histograms and probability density functions, calculation of sample statistics and
population parameters, and the detection of outliers which do not seem to accord with
the theoretical distributions expected. Typical problems to be handled are:

(a) When should we reject what appears to be a bad observation or, more likely,
what rejection criteria do we write into our computer software?

(b) How can we tell if an instrument is performing to the manufacturer’s
specification?

(c) How can we assess the reliability and precision of work computed by the
method of Least Squares, so that we may inform the client of this and if
necessary defend our results in a court of law?

Probability
Most of our findings are based on probabilities, and very few results are certain.
Because we shall be dealing with levels of statistical significance and probabilities
which are themselves subject to error, it is essential to have a good grasp of some
fundamental concepts. Thus we shall deal with the idea of probability in basic terms.

If there are two balls in a hat, one white and one red, the probability that we shall
draw out a red ball is one in two, or 1/2. This does not mean that we shall draw out a
red ball in one of two chances. We might pick a white ball in the first six attempts. It
means that if we make a very large number of attempts, say 1000, 50 % of the time
we shall draw out a red ball, and 50 % a white ball. Notice that the probability of
drawing any colour of ball is a certainty of 100 %, and that the sum of the probability
of drawing a red plus the probability of drawing a white is also 100 %.

If there are two white and ten red balls in the hat, the probability of drawing out a
white ball is two in twelve or 2/12, and that of drawing out a red ball is ten in twelve,
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where it is again understood that a very large number of chances are involved. Hence
we obtain the rule

_ the number of ways of obtaining a result

P(x) .
the total number of possible results

In this way, the probability of the occurrence of an error is related to the number of
times this particular error can occur and the total possible number of all errors that
could occur. This involves analysing and counting errors of various magnitudes. For
such an analysis to be valid, a very large number of errors should be sampled. A
sample of more than thirty observations can often be taken as large when it comes to
statistical testing.

However, it is seldom practicable to make a very large number of observations,
nor is it necessary. Usually we make samples of ten or so unless the measurement
process is highly automatic.

The theory below will therefore deal mainly with small samples and their
statistics, the mean and the standard deviation, and estimates from these samples of
the population parameters which they represent.

Histograms
The histogram is a diagrammatic way of displaying sets of data which have a
statistical or stochastic distribution about a central value.

This method of analysing results will be explained in terms of the game of ‘shove
halfpenny’. This traditional game, once played in English country pubs with a small coin,
is a useful way to obtain statistical data. Figure 5.1 shows a smooth board on which a
number of parallel lines are ruled at a distance of just over an inch i.e. slightly larger than
the diameter of the coin. The player places his coin at a position just protruding over the
edge of the board. The aim is to strike the coin with the wrist, getting it to land as close
to the middle as possible. The centre of the coin is taken as the reference point.

The figure shows the results of two players A and B, each of whom took 157 shots.
It is obvious that A was a much better player than B, because his observations are
clustered closer to the mean, or we say they show less dispersion than Player B’s.

The bands between the lines are called the class intervals of the analysis. Their
width has to be carefully chosen with respect to the skill of the players if a difference
between them is to be detected. For example, if the class interval had been the
complete depth of the board no difference in the respective skills would have been
found. Again, if the intervals had been very small, an abnormally large number of
shots would have to be played to land more than one shot in each space. The selection
of class intervals always needs care and experiment.

The number of times that a shot lands in each space, or class, is plotted on a block
diagram called a histogram (see Figure 5.2). The histogram for A is bounded by the
solid line and that for B by the broken line. The area of each histogram is the same
since it represents the same number of shots. For a fair comparison to be made this
should always be the case.

It is possible to analyse observational data in the manner of the game. A decision
has to be made about the size of the class interval, selecting about one fifth of the
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range of measurements for this. If the interval proves either too large or too small, it
has to be reselected. For example, the data of Figure 5.3 could have been the results
of measurement with two different EDM instruments A and B.

Mathematical treatment
The statistical information may be expressed mathematically:

(a) An error is denoted by x; and the class interval by dx. Hence x, = x; + dx and
o on.

(b) The height of the column of the histogram can be expressed as y, to correspond
to x;.

Thus we convert the numbers in each class interval into probabilities by dividing each
by the total number of observations made e.g. 55/157 = 0.35.

Notice that the probability of any result at all is 157/157 = 1 i.e. a certainty. The
graph of all these probabilities is called a probability density function graph, which
usually has a bell shape as shown in Figure 5.3. The equations of these bell-shaped
curves are considered later.

Random error and central tendency

Continuing with the shove halfpenny example, if the number of shots is increased to
a very great number i.e. towards infinity, while at the same time the class interval is
decreased, there is a continuous curve towards which the histograms will tend.

The respective curves representing A and B’s performances are given in Figure
5.3. The area contained between each curve and the x-axis represents the total number
of all possible errors in the system, an infinite number in theory. This is true for both
curves: neither curve will meet the x-axis but approach it asymptotically. For any
point on the curve, the ordinate y can be considered as either the number of errors of
abscissa x that occur, or the probability of the occurrence of an error of magnitude x.
Hence the area under the curve represents either (a) the total number of errors 7 or (b)
the probability of all errors occurring with a probability of 1 or 100 %.

From the shape of the curve, which shows central tendency about the mean, the
distribution of random errors is described as follows:

68



THEORY OF ERRORS AND QUALITY CONTROL

(a) Small errors are more frequent than large ones.
(b) Positive and negative errors are equally likely to occur.
(c) Very large errors seldom occur.

These statements are reasonable if systematic errors have been removed and the
observer, or player of the game, has a good degree of skill.

It can be established theoretically by the central limit theorem that the
combination of four or more error distributions approximates to the normal. Since
most survey ‘observations’ are the result of at least four error sources, the normal
distribution is a reasonable statistical model to accept.

Sample deviation curve
More usually than in the case say of triangle closures, where we are dealing with true
errors, we obtain a set of observations distributed about a mean value. We can plot a
histogram of deviations (residuals) about this mean value in just the same way, and
also show their distribution on a smooth curve, which illustrates the degree of
dispersion of the observations.

In this case the abscissae x; become the residuals v, and the ordinates y; the
number of such residuals in each class.

Such a curve is defined by its mean x and general shape, which shows the
dispersion about the mean. A good indicator of this dispersion is the variance s*. This
is defined to be the average of the squares of the residuals about the mean. For n
observations, we have

2
2 E"i _ v12+v%+...+v,2l

S —J
n n
or, in matrix terminology,
T
V'V
st=—
n
where
Vi
T, _ V2
v V—[Vl V) ... Vn] .
v

n

It is stressed that the definition of variance implies nothing at all about the nature of
the distribution of the observations. Variance is a convenient statistic which gives a
measure of the spread or dispersion of results about a mean value. Provided there is
more than one observation, a variance is calculable.

Example An angle was observed nine times obtaining the results tabulated in column
one of Table 5.1. The average is calculated as
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2o
X = =109"25'07.7"
n
Subtracting each observed value x from ¥ gives the positive and negative residuals v;
in columns two and three of Table 5.1. The sum of the residuals should be zero or
approximately zero due to rounding error. The sum of squares of these residuals
calculated from column four is found to be 30.64. The variance s2, defined to be the
average of the squares of these residuals, is therefore given by 30.64/9. The standard
deviation s is therefore V3.4 = 1.8.

This sample statistic can easily be calculated using a direct function key on a
hand-held calculator. However, it is wise to check which formula is being used by the
calculator. As we shall see later another similar formula with a denominator of n—1 is
used to calculate an unbiased estimate of the population variance.

We shall return to this example later and calculate the result a different way to
illustrate the general method of observation equations used in the Least Squares
process.

5.6 Statistical models

We now give a formal treatment which will incorporate all the above ideas and
summarize them in mathematical form. We begin with the Normal or Gaussian
distribution, most generally applied to randomly observed data. This distribution,
which applies to a population, will be treated in rather more detail than the others

Table 5.1
Observed +v —v V2
6.3 1.4 1.96
7.2 0.5 0.25
104 2.7 7.29
4.3 34 11.56
9.6 -1.9 3.61
5.8 1.9 3.61
7.9 -0.2 0.04
8.3 -0.6 0.36
9.1 -1.4 1.96
Sum = 68.9; +7.2 6.8 30.64
w="17.7
remainder = 0.4 2 =30.64/9
=s5s=138
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which follow, and which apply to samples: namely the Student ¢ (see Secton 5.10), the
Fisher ratio, and the > (Chi squared) distributions.

The normal distribution function

Although many of our results and techniques—such as calculation of variance—have
nothing to do with the Normal distribution, this distribution is widely used to
represent the kind of error dispersion met with in practice. This is because most errors
result from the combination of others, which are centrally distributed. It can be shown
by the Central Limit theorem that the combination of only a few such errors leads to
a set of normally distributed errors. The bell-shaped curve, which represents the
frequency of residuals about a mean, derived from randomly observed variables, may
be expressed by the probability density function or PDF given by the formula

() = = = exp(—h2x?) (5.1)

In

To accord with previous definitions and notation, the variable x in this formula is
equivalent to the residual v defined by

X=v=U-X
Such statistical (or stochastic) models are derived from probability theory in
advanced statistical textbooks such as Advanced Theory of Statistics (Kendal and
Stuart 1967) to which the reader may refer. However, to give understanding of this
most important distribution, we will trace this function and show that a bell shaped
curve results.

h
When x=0, =—
T x
giving the maximum height of the curve. A glance at Figures 5.2 and 5.3 will show
that the less dispersed observations made by observer A have a greater height than
those of B. The quantity 4 is therefore known as the index of precision.
Differentiating, we obtain

dy 2
2= 2h2xy=0
dx v

when y =0 and x = £ o,

Therefore
d2
S =—2n?y(1-212x%) =0
dx

when x = =+ oo, or at the points of inflexion, when

1
-+

TR

A rough sketch of the curve can now be made, which clearly follows the general

pattern shown in Figure 5.4. We will now show that the index of precision # is related

to the standard error ¢ by the expression
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1

N2

Since x = v, the variance is defined as the expectation of v* or

E(vz)=02

O=*x—F+

Thus the population variance

P = sum of squares of residuals
total number of residuals

or in mathematical terms

400
fxzydx

2 _ —»

0" =—

J ydx

— 00

(Note that there are y values of each residual x.)
But the value of the denominator is the probability of all residuals being selected,
namely a certainty, therefore

foydx=1

However,
d*y 2 2.2
—2=—2h y(1=2h"x7)

and therefore
-Ifodzydx—4h4 f X ydx 2f hzydx
o dx? Zeo Zw
implying
0=4n*c? —2n?
hence the result

=

We may now express the normal probability distribution function ¢(x) i in terms of the
standard error G, the population mean [ and the observed parameters X as follows

2 02
U exp(—h2x2)= ! exp| — v = 1 exp (1= ) (5.2)

dx)=y=—F4
\/; oV2rm 2062 oN21m 267
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This function is completely defined if the population mean [ and the standard error ¢
are known. However it is convenient to standardize this formula by dividing x and y
by ¢ and moving the origin to the mean p. The new simpler equation is then of the
form

1 1?
¢(l‘)=\/ﬁexp[—2) (5.3)

where t = v/ o =x/ . Hence the variance of ¢ is 1. This reduction to a standard form
has two distinct advantages:

(a) It enables observed quantities of all different kinds to be treated in a general
way, reduced to a common weight.
(b) It allows standard sets of tables to be used for all problems.

For example, a residual of 15" (seconds of arc) belonging to a distribution whose
standard error is 5" is converted to a dimensionless number ¢ = 15"/5" = 3, which is
conveniently tabulated. A residual of 15 mm and standard error of 5 mm is identically
tabulated as 3. A special case is a residual equal to the standard error giving a ratio
of 1.

Although the population standard errors ¢ can be used to bring about this
reduction to a common dimensionless standard, in practice we must allow for errors
in estimating the standard errors themselves, and if necessary reconsider our estimates
in the light of more data becoming available.

5.7 Statistical tests

In statistical literature the standardized normal distribution function is written as
N (0, 1), meaning ‘a normal distribution with zero mean and variance 1’. The
distribution in its original general form of Equation (5.2) would be written

N (1, 6?)

This and other probability distribution functions are used to help decide if we have
made a mistake, if a systematic error has gone undetected or to give statistical limits
within which to expect a result to lie.

Any decision-making is based on the probability of obtaining a result within
selected bounds or limits. The area of the figure bounded by the curve and two
ordinates, with selected abscissae x = a and x = b, or in the standardized table ¢ = ¢,
and ¢ = ¢, gives the probability that a value will lie in this region. This information is
represented by the equation

blo
P(a<x<b)= fydx fq)(x)dx [ o(odr

alo

or

2
P, <t<ty)= \/—fexp[—Jdt (5.4)
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These probabilities will always be <1 (or 100 %).
Equation (5.4) is used in two ways:

(a) From given values of a and b, we have to find P(x). For example, the
probability that a value will lie within selected limits, such as +G about the
mean.

(b) Or, we are given P(x) and have to find ¢ and b. For example we select a
probability such as 95 % as acceptable for the retention of an observed value
and thus find the range of acceptable limits within which to accept or reject
values.

Although it is quite practicable to evaluate the integrals by computer, it is traditional
to tabulate the area under the curve, the cumulative probability function, from minus
infinity to successive values of x, and to interpolate subsequently within these tables.
A required integral is obtained as the difference of two as follows:

Figure 5.4 shows P(a < x < b) in graphical terms, where
area C = area B — area A
or

b b b
Pla<x<b)=[ydr= [ ydr— [ ydx
a

— 00 — 0

1 P 1 (2
P(ta<t<tb)=ﬁfexp 5 dt——%fexp 5 dr
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Table 5.2 Table of cumulative normal probability

t 0 1 2 3 4 5 6 7 8 9

0.0 500 504 508 512 516 520 524 528 532 536
0.6 750

1.0 .841 844 846 848 .851 .853 .855 .858 .860 .862
1.6 950

1.7 960

1.9 975

2.0 977 978 978 979 979 980 981 981 981 982
3.0 999 999 999 999 999 999 999 999 999 999

For numerical work, these areas or integrals are tabulated in a standardized
cumulative probability table as shown in Table 5.2. The specific entries of 0.750,
0.950, and 0.975 have been added for use in the examples which follow.

It will be noticed that when x = 0 the table gives half the total area covered by the
integral from —oo to +oo, or a cumulative probability of 0.5 (or 50%). When x is less
than 0 the required cumulative probability is 1 — the tabular entry.

Thus, if x = -2.05, the cumulative probability from —o to —2.05 is 1-0.980 = 0.02
(or 2 %). This is shown by the dark area in Figure 5.5(a).

We interpret this result in this way: the probability of x being less than —2.05 is
2 %. Likewise, we can also say that the probability of x being greater than +2.05 is
also 2 %, because the function is symmetric. We write these ideas down more
formally as

P(x<—=2.05)=2% or P(x>205=2%

One-sided statements or tests are called one-tailed tests. They arise in dealing with
dimensional problems. For example, the length of a competition swimming pool must
never be shorter than a given length if swimming records are to be recognized. If the
pool is too long however, it is a disadvantage to the competitors but does not
invalidate a record time.

One
tailed
test

Two
tailed
test

98% 96%

(a) (b)
Figure 5.5
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On the other hand we can say that the probability of x being both less than —2.05
and greater than + 2.05 is 4 %. This is a two-tailed test, as shown by the two dark
areas in Figure 5.5(b).

Another way of expressing this last result is to say that there is a 96 % probability
of x falling within in the range —2.05 to +2.05, which is written formally as

P(=2.05< x <2.05) =96 %

This two-tailed test is common when a dimension, such as steelwork, has to be neither
longer nor shorter than a given specification, to within acceptable statistical limits.

Critical tables

Another way to express these probabilities is by critical values only. These critical
tables are much shorter and often give sufficient information by themselves. Table 5.3
gives similar information to Table 5.2 for selected critical values only. The most
common values to be used are the 5 % or 2.5 % cumulative probabilities.

The argument 1 — f{x) of the second row is used in one-tailed tests: for example,
to answer such questions as: ‘What is the value of x such that there is only a 5 %
probability that it will be exceeded?’ Look up the cumulative probability table (Table
5.2), choose the entry at 0.950 and note that its argument is 1.64. Alternatively, from
the critical percentage table (Table 5.3), select the 5.0 % entry from row two for a
one-tailed test, and read off the critical percentage point x = 1.645.

A traditional percentage point in a two-tailed test is 50 % i.e. tabular entry of
75 %, giving x = 0.6745. This relates a ‘probable’ or 50 % error e to the standard error
obye = 0.6745 ©. The 50 % probability is of value when considering the rounding
errors in arithmetic processes.

Example A typical example of the application of some of these ideas and tables is as
follows. An angle of a primary triangulation is 63"47'12.6". During a third order
extension, it is re-measured with a standard error of 5", obtaining a value of
63°47'22". Is this value significantly different from the original?

There are two populations to consider.

(a) The primary angle with its given population mean, say L.

(b) The observed third order population, say with unknown mean W, from which
the known sample mean is drawn. The standard error 6 of this population is
known or it can be estimated from the sample itself.

Table 5.3 Critical percentage points for normal probability

i 1) 95.0 97.5 99.0 99.5 99.9 99.95
2 1= fx) 5.0 2.5 1.0 0.5 0.1 0.05

3 2(1-fx)) 100 5.0 2.0 1.0 0.2 0.1

4 x 1.6459 1960 23263 25758  3.0902  3.2905
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We must now select a level of significance for the test.

A level of 5 % is considered significant.
A 2.5 % level is considered very significant.
A 1 % level is considered highly significant.

It is common practice to deal with the 5 % significance level or the 95 % confidence
level. We must also decide on the nature of the test: one-tailed or two? The question
posed is ‘Is this value significantly different from the original?’ In other words we
wish to know whether the two means are likely to be equal.

Because we are not asking whether one is bigger or smaller, we will apply a two-
tailed test with confidence limits of £1.96 derived from Table 5.3, selecting 5 % from
row three and the limit of 1.96 from row four. The test statistic is

A

]
o 5

=1.88

which falls inside the rejection limit of 1.96. We therefore accept that this sample
could belong to a population which has the same mean as the primary population.
Scaling back to the dimensioned data gives the limits for the mean of

u=x+(5x1.96)=x=9.8

However, because the test statistic is only just within the acceptance criterion we are
concerned that we may have made a mistake in accepting the result of the test, and
that this sample mean really belongs to another population with a different mean, say
m,. If we know what this other mean is we can make a similar, alternative, test on it.

If we assume that the alternative population mean is 5 X ¢ greater than the actual
value i.e. that it is 63°47'37.6", the test statistic is now

3.1
o 5

which is well outside the 1.96 confidence limit and would be rejected from the
alternative hypothesis.

Type | and Type Il errors
Remembering that acceptance or rejection depends upon arbitrary probability limits,
it is possible that a decision is wrong. Suppose that in the first test, the test statistic
=X

o
had been 2.0 i.e. > 1.96; we would have rejected the value of x. But there is a 2.5 %
probability that it really does belong to this population. Thus in rejecting it when it
was actually correct, we would have made what is called a Type I error with a known
probability of 2.5 %. Conversely, if we accept a value that actually belongs to another
population, we have made a Type II error.
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The probability of making this error depends on the value of the alternative
population mean chosen for the alternative hypothesis. Suppose the two means are
separated by an amount given by

A=w—uw=@+n)o

The probabilities associated with ¢ from the first mean and ¢, from the second are o
and P. In Figure 5.6, the probability of making a Type Il error is B, which is equivalent
to the shaded area to the left of the line marked A.

The alternative hypothesis is often selected, as in our example, to differ from the
sample mean by five times the standard error of the sample i.e.

w=uw+A=pytso

The line marked A in Figure 5.6 is selected by the choice of 0.5 o in a two-tailed test
on the null hypothesis. Thus the probability of accepting a value to the left of A i.e.
outside the limit of t; that should rightly belong to the alternative sample is known to
be . It will be seen that the values of (o, ), (B, t,) and A are linked together. Given
any two of these groups, is possible to calculate the remainder.

In accepting values within the range 0 to ¢ we could be wrong by 3. Thus we can say
that we are 3 % sure that no value greater than 5 ¢ from the mean L, has been accepted.

Identical tests can be applied to a residual, scaled by its standard error, to decide
whether to accept or reject the observation from which it was derived, or to assess the
reliability of an observation against an alternative hypothesis. The variance of a
residual is obtained from the dispersion matrix D, calculated as part of the least
squares process (see Appendix 3).

5.8 Formal statement of ideas

Most of the concepts and ideas used in the above arguments have been formalized
into statistical notation which at first sight is rather formidable.

Refer to Figure 5.6 in the following discussion. The test statistic ¢ is first
standardized as described above, to enable us to use normal tables. The outcome of
the test is called a null hypothesis, written H,,. In this case the null hypothesis queries

does | = p,?

Null hypothesis
Alternative
hypothesis T

Figure 5.6
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The alternative hypothesis, referred to as H in this case, is

W# g2
The significance level, such as 5 %, is denoted by o in one-tailed tests and by 0.5 o
in two-tailed tests. The corresponding confidence limits are denoted by 7, in one-
tailed tests and by ¢, 5., in two-tailed tests. In this case, ¢, 5, = 1.96.
All this information is brought together into one statement:
Hy pw=pp Hi: p# 1,
accept H, if s, <<ty s,
because P(~ty 5, <t <tys,)=1—-0
X = L

and 1 —a=95%

o]
This is the general form used to express most statistical tests although the
distributions and tests statistics vary according to the nature of the problem.

where in this case, =

Degrees of freedom

In a mathematical problem, the essential amount of information required for a
solution is called the necessary information. For example, two distinct equations are
needed to solve for two unknowns. If more than sufficient information is available,
say we have five distinct equations in these two variables, we have a degree of
freedom to select the two necessary equations.

If we have m equations in n unknowns (m > n) there are m — n degrees of freedom
in the problem.

To obtain a best estimate of one observed quantity, we obviously need at least one
observation. With only one observation there is no redundant information to yield
residuals or statistical analysis. Therefore the necessary number of observations is
one. Hence if there is more than one observation, say #, there will be n — 1 degrees of
freedom. In statistics, the number of degrees of freedom in a problem enhances the
validity of predictions and calculations. It is usually denoted by the greek letter v.

5.9 Unbiased estimators of o

We have already calculated a sample variance s® from nine observations. The
question now arises whether this sample statistic can be used to estimate the
population parameter G. Is, for example, the expectation, or average of more and more
sample variances likely to be 62? The straight answer is no, because each sample is
biased by its mean. However, as will be shown later, the statistic
n
S2
n—1
does tend to equal the population variance 62. Or, put another way, we say the
expectation, written
n
S2
n—1
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is 2. It is common to use the symbol & for this expected value.

In statistical language, we say that 67 is an unbiased estimator of the population
variance o2. Substituting for s? leads to the well-known formula

2
oo 2
52 2=

-1 n—1

(5.5)

If the population variance is unknown, we can use this formula to estimate it. Hence,
in the case of 9 samples from a calculated sample variance of 3.4, we obtain

o2 =§><3.4 =3.825 and G=1.96

5.10 Pooled variance

If we have several samples and their respective variances, such as from rounds of
angles observed under similar conditions at several stations, is it possible to pool this
information to provide a better estimate of G2? The answer is a qualified ‘yes’.

The formula for the fooled variance from two samples of n, and n, observations,
with variances 312 and s5 respectively, illustrates the general form to be adopted for any
number of samples:

2 2
A ms; +n,s
6% =22 (5.6)
n1+n2—2

Before using this formula for the pooled variance, we should test that each of the
samples could have belonged to populations with equal variances. The Fisher F test
on the variances is applied. Figure 5.7 shows the approximate shape of the F statistic
for degrees of freedom greater than three. The actual shape varies for each degree of
freedom. It is also tabulated in Table 5.4.

Suppose we calculated the sample variance of 9 observations to be 3.4, and that
we have a similar set of results from another station giving a variance of 5.6 from 6
observations. To test whether it is legitimate to derive a pooled variance to estimate
the population variance, we test the ratio of the larger variance to the smaller. The test
statistic is therefore:

2
5.6
1="2=>" =164
& 34

5% points of the F

distribution
0 F
Figure 5.7
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Table 5.4 5% points of Fisher Table

n,—1
n,—1 5 6 7 8
7 3.97 3.87 3.79
8 3.69 3.58 3.50
9 3.48 3.37 3.29
10 3.33 3.22 3.14 3.07
0 221 2.10 2.01 1.94

The respective degrees of freedom are 5 and 8, giving a rejection limit of 3.69 from
the Fisher Table (Table 5.4) at the 5 % confidence level. Since 1.64 is well within the
rejection limit of 3.69, we can accept these samples and pool them, giving the pooled
unbiased estimate of the population variance
62 = (6X5.6)+(9%3.4)
9+6-2

4.9

Testing of sample values
When dealing with less than thirty samples, as is generally the case with surveying,
the normal distribution is not strictly applicable.

Each value in a sample affects its mean and therefore the residuals derived from
it. At least one value is needed, but any subsequent values are not essential. The larger
the sample, the better we are able to estimate the variance derived from it.

Instead of the normal distribution, we use a separate distribution for each sample
size. This distribution is called the Student or ‘¢’ distribution. Although cumulative
probability tables could be used, there would need to be one for each sample size.
Instead, it is perfectly adequate, and a lot simpler, to use critical percentage point
tables, such as Table 5.3. A sample of these points is given in Table 5.5. It will be
noted that when the sample size is very large, the Student distribution is the same as
the normal distribution and gives identical results for the critical values.

This table is used in the same way as for the normal distribution, entering the row
with the appropriate degree of freedom, orn = v — 1, where n is the size of the sample.

Using the data from the earlier example, in which the mean is

x=177
and the sample variance is
s?=34=>5=184
we can check the largest residual (3.4) for acceptability at the 5 % level in a two-tailed
test. The test statistic is
34

—=1.85
1.84
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Table 5.5 Critical points in the Student’s ‘t’ distribution

Probability
two-tail test 10 % 5%
one-tail test 5% 2.5 %
1 6.31 12.7
9 1.83 2.26
10 1.81 2.23
20 1.72 2.09
30 1.70 2.04
) 1.64 1.96
The degrees of freedom are
v=n—1=9

This gives a rejection limit of 2.26 from Table 5.5. Clearly this residual is quite
acceptable. A residual of 2.26 X 1.84 = 4.2 would be on the rejection limit.

5.11 Sample variance: %2 distribution

Just as we wish to know the quality of a value extracted from a sample, we also wish
to know the quality of the sample variance estimate. There is no point in quoting a
standard error to a second of arc if it is uncertain to five seconds. To reach a
conclusion about the quality of an estimated variance, we use the probability
distribution of the standardized residuals i.e. the distribution of the function

v 2
i
One example of this distribution is illustrated in Figure 5.8, which, being a function
of squares, has no negative values.
If the statistic v/ ¢ has a normal distribution about a zero mean i.e. is N(0,1), then
the statistic (v / 6)? has a x> (chi-squared) distribution, which takes the approximate

shape shown in Figure 5.8 for samples with more than three degrees of freedom.
Recalling that the sample variance is defined as

2

n

S2=

it follows that

I’lS2

02

has a 2 distribution. This %2 probability distribution varies for each value of n, and
is tabulated for each degree of freedom v in the problem. Since we use the sample
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A.
Percentage points for Chi-squared
distribution
100-0.500 050 %
A& %
0 t t b
Figure 5.8

mean to calculate the residuals v, there are only n — 1 degrees of freedom in the simple
problem. It is usual to tabulate only the critical percentage points for confidence limits
set by a 95 % probability limit for one or two-tailed tests, as in Table 5.6.
Suppose we wish to know the confidence limits for ¢ for the example of Section
5.1, where
52 =34, n=9;, v=8

Applying a two-tailed test at 97.5 % and 2.5 % probabilities, confidence limits of 2.18
and 17.53 can be extracted from Table 5.6, equivalent to limits of 3.74 and 1.32 for
the standard error.

This can be seen from: 5

2.18< % <1758
O

X34

O2

9%X34 _ 5, _ 9%x34
>0 >

2.18 17.58

14.0> 0% >1.74

3.74>0>132

2.18<9

<17.58

Table 5.6 y? critical percentage points

Probability
n—1 97.5 % 95 % 5% 2.5 %
5 0.83 1.15 11.07 12.83
8 2.18 2.73 15.15 17.53
9 2.70 3.33 16.92 19.02
10 3.25 3.94 18.31 20.48
20 9.59 10.85 31.41 34.17
60 40.48 43.19 79.08 83.30
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The calculated standard deviation of the sample is 1.8" or the estimated population
standard error is

n

x1.8=1.9"
n—1
From the above analysis, this value of 1.9 could be in error by 3.74 — 1.9 = +1.84" or
by 1.90 — 1.32 = —0.68" at the 95 % confidence level. There is therefore no point in
quoting a figure of better than 2" for the standard error, since the extra decimal would
be misleading.

5.12 Creating a random sample from a normal

distribution

Suppose we wish to simulate a sample of ten residuals extracted from a normal
distribution. From a random number table, we selected ten values, entering the table
anywhere at random. These two-digit random numbers are listed in column 1 of Table
5.7.

To convert these two-digit random numbers to a symmetrical set, add 0.5 to all and
multiply by 0.01, thus reducing them to random fractions of 1.00. We then select
values of residuals corresponding to these fractional probabilities taken from a
standardized normal distribution table. These values are given in column 3. Since the
distribution set is chosen to have a standard deviation of 5 mm, these residuals are
scaled up to give the final rounded values in column 5. The set of residuals is slightly
adjusted to make their sum exactly zero, as theory indicates it should be.

Table 5.7 Random sample of residuals

Random To 1.000 Value from Scaled by Rounded
number base N(,1) SD of 5 mm residuals
89 0.895 1.25 6.25 6.2
90 0.905 1.31 6.55 6.6
26 0.265 -0.63 -3.15 -3.2
36 0.365 -0.35 -1.75 -1.8
22 0.225 -0.75 -3.75 -3.7
74 0.745 0.66 3.30 33
71 0.715 0.57 2.85 2.8
13 0.135 -1.10 -5.50 -5.5
74 0.745 0.66 3.30 33
05 0.055 -1.60 -8.00 -8.0
sum = 0.1 sum = 0.0
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Readers may care to verify that the standard deviation computed from the created
residuals is 5.1 mm, i.e. close to the expected 5 mm.

It is not always necessary to adopt this manual procedure, because there are many
software packages which carry out the operation on demand.

5.13 Errors in derived quantities

The real benefits from error analysis arise in the assessment of the likely quality of
results derived from measurements whose errors are known or which are postulated
in design problems.

Consider Figure 5.9 which shows a point P(x, y). The abscissa x and the ordinate
y are measured and plotted at right angles. For the moment we assume that a perfect
right angle is possible. Suppose that these measurements are in error by small
amounts dx and dy respectively. If we plot the new position of P as P' we see that there
are corresponding changes to the angle o, the distance s = OP and the area of the
rectangle 4 = xy. Hence if we know the values of the errors dx and 8y we can
calculate their effects on the derived quantities o, s and 4. Let these effects be da, ds
and JA.

A simple way of finding these changes is to recalculate them using new values
derived from the originals altered by the known changes. Although inelegant, this
procedure should be considered as it can provide quick rough estimates. Consider the
following example:

Letx = 300 mm, y =200 mm, éx = 0.1 mm and dy = 0.1 mm.
Thus s = 360.555 mm, o = 33°41'24" and 4 = 6 x 10* mm?
Recalculation with x = 300.1 mm and y = 199.9 mm gives

s = 360.583 mm, o = 33°40'05" and 4' = 59 989.99 mm?.

P(x,y)

P P'(x +08x , y +8y)

X

Figure 5.9
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Thus, by subtraction, we have the changes:

8s = 0.028 mm, do. = —01'19" and 84 = —10.01 mm?.

However, this procedure does not lend itself to the treatment of random errors in
complex problems nor the statistical assessment of results. To do this, we need a
different approach using differential calculus and matrix algebra, putting this simple
procedure on a much more flexible footing.

The three formulae used in these calculations are

2= =y?=0 or R(six,y)=0

tan a—Z=O or F(o:x,y)=0
X

A—xy=0 or F3(4:x,y)=0

A more general statement is to relate any derived parameter p to the measured
variables x and y by the expression F(p: x, y) = 0.

We find it is helpful to separate the parameters from the observed quantities by a
colon, retain the full notation of the original problem, carry out its partial
differentiation, and convert the expression to the general form suited to matrices. For
example, the partial differentiation of this general expression is written

oF oF oF
- 6 - _ =
(819) r (Bx)8x+(8y)6y 0

which, when applied to these three specific functions, gives
2585 —2x0x— 2ydy =0
1
sec” ado +l2 dx— =93y =0
X X
04— ydx—xdy=0

Putting x = 300 mm and y = 200 mm, and ignoring the fact that the coefficients can
be simplified, the equations become

721%0s —600X dx—400x dy =0
1.444 X 301+ 0.00222 X 0x —0.00333 X0y =0
84—200%X0x—300x 0y =0

On setting dx = 0.1 mm and 8y = —0.1 mm, we obtain the results ds = —0.028 mm,
84 = 3.8435 x 107* radians = 01'19" and 84 = —10.00 mm2. The very slight
disagreement in 84 is due to the approximation in taking first differentials only.

The above equations may be written in matrix form as follows:

7218s —600 —400 5 0
X

144480 |+ 0.00222 —0.00333 L‘) }z 0

04 —200 —300 0

86



THEORY OF ERRORS AND QUALITY CONTROL

or
721 0 0}| ds —600 —400 0
X
0 1.444 0| da [+]0.00222 —0.00333 {6 }= 0
0 0 1] 84 —200 —300 0

which is of the form

Ax+Cs=0

It should be remembered that the coefficients of the variables are the partial
differentials of the various functions, assembled above as a matrix, for example

o R
ox oy

c=|%2 (5.7)
0x ay
OF, OF,
[ ox dy |

It is defined as the Jacobian matrix of the vector F = (F}, F,, F’ 3)T with respect to the
vector X = (x, y).

Very often the coefficients in this matrix can be obtained by a semi-graphic
method with little difficulty. Reconsider the problem illustrated in Figure 5.9. The
error figure for this is given in Figure 5.10. We see at once the effects of the changes
dx and 8y in producing s, da and s which can obtained by inspection as

ds = cos o dx —sin oL dy

500 = sin oLdx+ cos oL dy
These are the same first two equations as before, reduced to their simplest forms. It
can also be observed that these equations are derived by a rotation of the error
coordinates (0x, dy) by an angle o to give the new coordinates (ds, s do). This

illustrates the power of the semi-graphic approach to simple geometrical problems.
Complex mathematical models are best treated by conventional differentiation.

P

VECTOR
~N
ERROR

Figure 5.10
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Chapter 6
Least Squares Estimation

6.1 The theory of Least Squares

Since the nineteenth century, applied scientists have adopted the principle of Least
Squares to select the best estimates of parameters from a series of observations. In
fact, when we accept the arithmetic mean of a number of observations as the best
estimate of an observed parameter, we are making use of this principle.

Most of the theory and procedures developed by Legendre and Gauss have been
applied for over a century, but it has not been until the development of computers that
Least Squares has become commonplace in everyday applications.

The principle provides a method of making the best use of observations when
more than the minimum number has been observed, and also a way of combining
different types of observations to yield best estimates of parameters.

It should be noted that the application of Least Squares does not imply any
statistical distribution of observed variables. However, when an attempt is made to
infer quality from them and derive results, it is usual to assume that a Normal
distribution is involved.

Most of the procedures used to analyse observed data can also be used without
data as a pre-analysis tool when designing control networks, before making any
observations, thus saving much time and money.

Note: Results were calculated using spreadsheets using maximum precision data
in order to avoid rounding errors leading to inconsistencies. It is important, however,
that final results are quoted to a realistic precision. For example, the coordinates of
the point G referred to in Section 6.13 can only be quoted to the nearest mm.

6.2 Application to a single observed parameter

To define terms and explain basic ideas, consider the case of the nine observations of
the angle whose sample variance was computed in Table 5.1. Firstly we relate each
observation, denoted by Xi, to the best estimate of the angle X,by a typical observation
equation

A (0]
x=xjtv;
The equation for the first observation of Table 5.1 is
% =109°25'06.3"+v,

This is only a statement of how much the observed value 109°25' 06.3" differs from
the final best estimate X by the residual v,. The procedure of Least Squares is to find
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this best estimate X. Additionally, if we wish some information about the quality of
the work, we can substitute the best estimate in the observation equations to obtain
the residuals. From these residuals, statistical information such as the variance can be
derived.

Returning to the example, we now introduce a device to reduce the size of the
figures in calculations as follows. Let

Xi=x +L and £=x +6

where x* is some provisional, or base value, close to X and L, is described as the
absolute term. Here the value of x" is chosen to be 109°25' simply for convenience (it
is usual, however, to adopt the first observation as the base value).

In linear problems, that is if the mathematical model only involves linear functions
of parameters such as in levelling, there is no need to adopt this device of a
provisional value. However it is always a good idea to do so, because the sizes of the
numbers used in calculation are thereby greatly reduced. In non-linear problems, as
in distance measurement, it is essential to adopt this procedure, so the Newton’s
method of solution can be used.

Substitution for X reduces the observation equation to

S=xi—x +v, =L +v,
e.g. for the first observation
8 =109°25'06.3" — 109°25'+v, = 6.3+,

The absolute term L is always expressed as ‘observed minus provisional’ provided it
is written to the right of the equality sign in the equations.

Casting all nine observations of Table 5.1 in this way gives equations in matrix
form

1 [637] [v
1 7.2 12}
1 10.4 V3
1 43 Vg
1{10=]9.6 |+]|vs
1 5.8 Ve
1 7.9 2
1 8.3 Vg
1] 191] | ]
These equations are of the form
Ax=L+v (6.1)

which is the standard form adopted for this type of Least Squares problem. In this
simple case there is only one unknown, therefore

x=0
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Because there are more equations than unknowns (in this example, nine equations to
find one parameter) we have to adopt a principle to give a unique result. The most
common principle adopted is the Least Squares, or minimum variance principle. This
principle finds that value of 8 which makes the sum of the squares of the residuals a
minimum. Let the sum of squares of residuals be €. Then we have to make

Q=2vl-2

a minimum. This will be the case when

082
iy
Flo)

The mechanism of applying the Least Squares principle to this simple problem, using
two mathematical methods, is explained below. The reader should follow the left
hand treatment to its conclusion, before considering the matrix equivalent on the
right, which is a restatement of the results derived by ordinary algebra on the left.
There are m observations of one parameter.

Ordinary Algebra Matrix Algebra
Q= Z vl.z Q= VTV
= v12 +v§ +...+v,2,,

=(0—L)? +(O—Ly)* +..+(0—-L,)*

@=2(5—L1)+2(5—L2)+...+2((§—Lm)
90 oQ T
—=2v A
But Therefore
Q2 T

(Note also that
Aly= 0)

The very important result at Equation (6.2) will be derived for the more general case
later. We now proceed to the solution, using the same two parallel mathematical
models.

Adding up the columns of the nine equations we have

Ordinary Algebra Matrix Algebra
mo= Y L+ Y v=>1L ATAx=ATL+ATv=ATL
EL T ov—14T
o=<=— x=(A"A) AL
m
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The inverse (ATA)™! is merely the reciprocal of m, and ATL is ZL. Finally, we obtain
the best estimate of x to be

n *
X=x +6

%
=X +2Lm

o *
* in—ZX
=X +—/m———
m
8]
le' *
—X

m

*
=x +

=X

Thus we have proved that the best estimate is the arithmetic mean of the observations.
Completing the arithmetic as in Table 5.1, we find again that & = 07.7", giving the
final result

£=Xx=109°25'07 7"

Next we obtain the same residuals as in Table 5.1 and the variance as before.

The reader should be completely satisfied that only the arithmetic mean gives the
minimum sum of squares of residuals. A simple exercise to demonstrate this is to
select values slightly greater and slightly less than the mean, find the residuals from
these means, and their sums of squares which both prove to be greater than Q.

6.3 Weighted observations

Suppose that the observed angles of Table 5.1 differ in quality. This could arise for
several reasons: they may have been observed with different instruments, by different
people or under different conditions. We could carry out test measurements under
these different circumstances to find the variances of each angle and thus have an
estimate of their relative quality. The idea is to make allowances for the different
quality of the residuals in a Least Squares process by scaling each residual by its
standard error, thus producing new residuals, each of the same quality. Let the new
residuals u be given by

. (6.3)
o
Clearly the better observations have smaller standard errors and thus their scaled
residuals are given more weight in the solution. To allow for the fact that we can
only estimate the standard errors 6 we introduce an unknown constant G into the
equation:

u v ogv
- == i

(o) o o

If the standard errors have been accurately estimated, we expect this constant G,
(usually known as the standard error of unit weight) to be equal to 1. However, in
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practice, it is evaluated as a routine part of each problem and acts as an indicator of
how well the observational variances were initially estimated, or a priori.

The effect of this modification on the Least Squares procedure is that we now
minimize the sum of squares of the reduced residuals u; that is we minimize

Q=uTu
where
T VI V2 i)
u =00(_,_,...,_
O'l 02 (79

A neater way to introduce these standard errors and the unknown constant is to create
a special matrix containing their squares or variances. This is called the weight matrix
W. It is a diagonal matrix containing the reciprocals of the respective variances,
scaled by the variance of unit weight. By the introduction of this weight matrix we
convert
Q=u'u

into the equivalent expression

Q=viwy (6.4)

where the weight matrix W is a diagonal matrix of dimensions m X m where m is the
number of observations. A typical 3 X 3 weight matrix has the following structure:

0 o Y,

03]
Note that this weight matrix is the scaled inverse of the dispersion matrix. Also, for
independent observations with zero covariances,

1

W_1:—2D
g
because
ol 0 0
1 1 P 1
W =—2 0 0'2 0 =—2D
0 2| 90
0 0 (73

6.4 Example of weighted observations

Reconsider the example of Table 5.1. We now assign different weights to the twelve
observations. Let us assume that each of the first six observations was observed with
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a standard error of 2", and the last three, with standard errors of 5". This could happen
if two different theodolites had been used.
The diagonal dispersion matrix D of the observations is:

4

25
25
25

The scaled inverse of D is the weight matrix W i.e.

W=0g3D"! (6.5)

(Note: All off-diagonal terms are zero.)

For correlated observations, the off-diagonal terms (covariances) are generally
non-zero. In this case the inverse W, though not so easily found, is treated in just the
same way. It is difficult to call such a matrix a ‘weight’ matrix. Generally the term is
retained for a diagonal matrix of uncorrelated observations, and we use the term
‘inverse of the dispersion matrix’ for the general case. In many texts, this matrix W
is denoted by P.

Example In practice we start by making 0(2) =1. In our simple problem converting to
ordinary algebra we have

ATWA = Ew and ATwL= EWL
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giving the result

> owi

xX=

Sow
1 1
_ 4 (63F72+104+4349.6+58)+ - (7.9+83+9.1) 6.6)
6 3
7+7
4725
=7.35"

This result is called the weighted mean. The residuals formed from the weighted mean
are: 1.05, 0.15, 3.05, -3.05, 2.25, —1.55, 0.55, 0.95, 1.75, giving

1 1
VTWVZZ(I.OSZ +'“+1'552)+§(0'552 +..+1.75%)=6.8+0.17=6.97

An estimate of the standard error of unit weight G, is obtained from the weighted
residuals using the formula

T
Wv 697
0f =YY= — 0387
m—1 8
>0y =093

That 6, is close to 1 indicates that the original weights were well estimated. This
very important concept of a weight matrix also enables observations of different
types (e.g. directions and lengths) to be combined in a Least Squares estimate of
parameters.

Summary
The treatment of observations of differing quality is brought about by the use of a
matrix W. It is formed from the inverse of the dispersion matrix of the observed
parameters, scaled by the variance of an observation of unit weight, initially assumed
equal to 1, and later estimated as part of the computation process. The expression to
be minimized is: Q = vIWyv (Equation (6.4)).

The variance of an observation of unit weight is given by:

VIWy

m—n

o =

where there are m equations in # variables, m > n.

6.5 Observations to estimate more than one parameter

The extension of the above theory to deal with more than one parameter follows
similar lines except that A has one column for every parameter to be estimated.
Consider the small levelling net shown in Figure 6.1. There are six lines of levels
connecting four points A, B, C and D. Since only three such lines of levels would be
sufficient to give relative heights between the points, three lines are extra to
requirements. Therefore there are three degrees of freedom in the problem.
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Figure 6.1

Since we only know differences in level, we can only find the relative heights of the
points. We may select any one to be a datum. In this case the height of A is fixed,
hence 84, = 0 leaving the three parameters 4, & and /&, to be estimated.

Consider Table 6.1 in which all the necessary data are listed. Although any three
height differences could be selected as the provisional values, with the proviso that
they are close to the observed values, it is more efficient to select the first three
observed values thus making the first three values of the L vector zero.

In general, when there are m — n degrees of freedom in the problem, we select the
first n observed parameters to be the n provisional values, thus reducing the first »
values of the L vector to zero. The remaining provisional values are derived from
these first z. In this case,

he —hg = he = hp —(hg —hy ) = +69.36—12.00 = 57.36

and so on for the other lines.

In this case of observation equations which are already linear, it is not essential
but however convenient to use the method of approximations. For example, the
observation for the line CD is

hpy — he: = —70.87 =—70.91+0.04

Table 6.1

Line Observation Observed Provisional L
AB hy —hy +12.00 +12.00 0.00
AC he—hy +69.36 +69.36 0.00
AD hy—hy -1.55 -1.55 0.00
BC he —hy +57.28 +57.36 —-0.08
BD hy = hy -13.66 -13.55 -0.11
CD hy = he -70.87 —70.91 +0.04
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thus we have
Ohp —Ohc =+0.04

thereby reducing the sizes of the numbers in the problem. Care must be taken with
signs. These follow strictly from the order in which we write down the parameters in
the equations, as indicated by the arrows on the lines of Figure 6.1. The observation
equations for this problem can then be assembled in matrix form:

1 0 0 0 "
0 1 0 0 | |vn
Shg
0 0 1 0 vy

(3/’lc = +
-1 1 0 —0.08|" | v,
Shp
-1 0 1 —0.11| |[vs
0 -1 1) 1004 ] |v)

These equations are in the standard form of Equation (6.1): Ax=L+v.
Minimizing the sum of squares of weighted residuals i.e. Equation (6.4):

Q=vIWy
means that
£
Differentiating (see Appendix 3),
vVIWA=0
and also
ATWv=0

as the weight matrix W is symmetric.
Multiplying each side of Equation (6.1) by ATW gives
ATWAx=ATWL+ATWYv
=ATWL
which can be written
Nx=b (6.7)

This is a series of n linear equations in » unknowns. In older literature these n
equations are known as the Normal equations. As the name is useful it is retained in
this book.
Here we take the weight matrix to be the unit matrix assuming the observations
are all of the same weight. The normal equations become:
N=ATA

and the absolute term is given by
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b=ATL

We now return to the example of the level net. The normal equations are formed to
give

3 —1 —1][ong 0.19
-1 3 =10k |=|-0.12
-1 -1 3 |[6hy| [—0.07
giving the solution
ohg | [ 0.048
X=|0h |=]-0.030
Shp | | —0.017

Substituting the solution in the original observation equations gives the residuals

[0.048 ]
—0.030
—0.017
0.002
0.045

| —0.027 |

The arithmetic check on the work is that
Alv=0
In this case we find

0.001
ATv=[-0001
0.001

The slight disagreement is due to rounding errors in the arithmetic processes. We can
also compute the variance from

T
vy _ 0.006251 — 0.002084

and the standard error

oo =0.0456
From this result we see that it would have been better to assign weights of 1/0.002084
to each of the observation equations. Although this would not have changed the

solution (as the weight matrix appears on each side of the equations) it would have
altered the estimate of the variance. This would have been calculated from
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vIWy

m-—n

which would just have been

VTV

0.002084 (m —n)

which is clearly 1. Hence in problems, when we assign realistic weights to each
observation, we expect that the estimated variance will be 1.

6.6 Mathematical models with more than one
observed parameter

In the two simple problems considered above, there was only one observed parameter
in each equation. To deal with problems with more than one observed parameter per
equation, we introduce equations of the form

Ax+Cv+CL=0

These equations ultimately lead to the solution of a set of symmetric equations of the
same form as before i.e.

Nx=b, (6.8)
where

N, =ATNTIA

b, =ATN"'b

N=cw!cT

b=CL

W is the weight matrix of the observations.
We will derive these equations in the course of fitting a straight line to observed
data points. (See Appendix 3 for a purely formal derivation.)

6.7 Example of fitting a straight line by Least Squares

In the following sections we use the example of fitting a straight line to data as a
means of explaining the general principles connected with the Least Squares
estimation of parameters. Not only does this particular problem occur in several fields
such as surveying, cartography, engineering surveying and photogrammetry, but the
method of treatment is the same for all manner of curve fitting problems. Thus the
following treatment of the straight line problem is typical of many.

Only two points are needed to define a straight line. For simplicity, we confine our
attention to the two-dimensional problem of fitting a straight line in a plane. Three
cases of fitting the corresponding values of x and y, listed in the first two columns of
Table 6.2, will be treated.
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Table 6.2 Line fitting data

Provisional

X y b o—c=1L % ¥y

1 2.812 2.5 0.312 —0.023 2.789
2 3.066 3.0 0.066 —0.035 3.030
3 3.218 3.5 —0.282 0.053 3.271
4 3.482 4.0 —0.518 0.030 3.513
5 3.713 4.5 —0.787 0.041 3.754
6 4.033 5.0 —0.967 —0.037 3.996
7 4278 5.5 -1.222 —0.040 4237

8 4.445 6.0 —-1.555 0.034 4.478
9 4.783 6.5 -1.717 —0.063 4.720
10 4.920 7.0 —2.080 0.041 4.961

In two dimensions, the equation of a straight line is
y=mx+c (6.9)

Generally the problem is to find values for the gradient m and the intercept ¢ on the
y-axis, from given values of x and y. In the formal functional statement, we adopt the
convention of placing the unobserved parameters first, separated from the observed
parameters by a colon.

Fim,c:x,y)=0
There are two main cases of the line-fitting problem:

1. when only one of the parameters x or y is observed, and
2. when both parameters x and y are observed.

In the first case, the Least Squares model follows the method already considered above.
We shall deal with this briefly to set the scene for the more complex treatment which
follows.

In both cases y is an observed quantity burdened by observational error. If a large-
scale graph is drawn of the values of y and x it will be seen that a straight line cannot
be found to fit the data exactly. This graph is illustrated in Figure 6.2, showing the
eye-balled line 1-10, from which the parameters can be measured as a check to give

c¢=2.5; m=arctan(13°)

The Least Squares process is an analytical method of drawing this graph. It produces
unique results and will not depend on the skill of the person drawing it. The criterion
used is that the sum of squares of the observation residuals is minimum.
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1 2 3 4 5 6 7 8 9 10

Figure 6.2

The first case is similar to a regression analysis of two variables, in which the
small residuals are considered to be only in the direction of the y-axis. The second
requires that the residuals lie perpendicular to the line and thus need to be treated by
the general Least Squares method. In a later section we will deal with another case in
which the solution is constrained in some way, for example to force the line to pass
through a given fixed point. These examples illustrate the basic mechanisms for
tackling a wide range of such problems.

The figures of the example have been selected from an initial line whose equation is

y—0.5x—2.0=0 (6.10)

to which random residuals have been added.

6.8 Case 1: One observable per equation

It must be stressed that because this mathematical equation is non-linear (because of

the product mx), we must use (I)\Iewton’s method to linearize the equations involved.
For each observed value, y , there is an observation equation. Following the usual

method we select provisional values of the parameters to be

m =05 ¢ =20
Ten values of ", listed in column three of Table 6.2, are calculated using Equation
(6.10) and values of x =1 to 10.

The objective is to find the best estimates of the unobserved parameters , ¢ and of
the observed parameters . As usual, the various quantities are related by the equations:
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A~ *
m=m +0m
é=c +dc
N *
y=y +dy

Since there is only one observed parameter )9 in each equation the residuals v are
written

A o o

v=Jy-y=y*-y+6y
therefore

5y=)(3—y*+v=L+v
Because the best estimates and the provisional values satisfy Equation (6.10) we may
write:

F(m,é:x,y)=0

. . (6.11)
F(m ,c :x,y )=0

The connection between these equations and the small correction is given by the
linear part of the expansion applied to Equation (6.11) as follows

A A a « o« o= OF oF aF
F(m,¢:9)=F(m ,c :y )+—50m+—0c+—0dy
om dc ay
Hence from Equations (6.11) we have
oF oF oF
—Om+—0c+—50y=0 (6.12)
om dc ay
Applying (6.12), we obtain
xXom+1Xd0c=L+v (6.13)

It will be remembered that x is considered error free because it is not an observed
parameter. Evaluating Equation (6.13) for each of the ten observation equations gives:

Ax=L+v

(1 1] [ 0.312 ]
2 1 0.066
301 -0.282
4 1 —0.518
5 1|[ém] |-0.787
6 1 [&}: ~0967|""
7 1 -1.222
8 1 ~1.555
9 1 -1.717
10 1] | —2.080 |
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The normal equations, on the assumption that observations are all of equal weight,
are:

ATAx=b or Nx=b
385 55][om] [-69.458
55 10| 6c| | —-8.75
om] [0.25858
dc| | 0.5472

Back substitution in the observation equations provides the residuals of the fifth
column in Table 6.2. Thus we can calculate the variance factor a% from

Giving the solution

viv 0017228
m-—n

=>0p)= 0.044

=0.0021535

o} =

Finally, the best estimates of the derived parameters are obtained from
m=m"+dm=02414; &=13.5716°
¢=c" +de=2.5472
and the best estimates of the observed parameters from
A o]
y=ytv,

These are listed in the final column of Table 6.2. The beginner is encouraged to work
through this problem both by the graphical and computational methods before
proceeding to the next section.

6.9 Case 2: Both x and y observed parameters

We now extend the treatment to the more general case in which both x and y are
observed. The treatment is as before, but we also have to estimate

A (0]
x=x+v,
The functional models to be satisfied are
F(m,¢:x,7)=0 and F(m*,c*:x*,y*)=0
oF oF oF oF

—O0m+—0c+—50x+—50y=0
om dc 0x ay

x* ><5m+1><5c+m*><5x—l><5y=0

The notation indicates that the coefficients of the variables are evaluated using the
provisional values adopted for the problem. Less formally, the equation may be
written without the superscript dots as:
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xXO0m+1Xdc+mXdx—1Xx0y =0 (6.14)

Separating the unobserved from the observed parameters we have:

(v 1][(;’3}[”1 -1]{2;} 0

These equations can be written
Ax+Cs=0

For the line-fitting example, the matrices A and C have the dimensions (10 x 2) and
(10 x 20) respectively, and the vectors x and s have the dimensions (2 x 1) and
(20 x 1) respectively.

Forming ten equations for every one of the ten observed points gives

(1 1] ox
2 1 05 -1 0 O on
0 0 05 -1 ox,

{6m}+ oy
 |Loe . :2

0.5 —1]|dx

110 1] K508

In general there are r equations in m observed parameters to estimate n derived
parameters.

Notice the change in the notation from the ordinary algebra of the problem (in this
case m, ¢, x and y) to that of matrix notation in which we always write the derived
vector as x and the observed vector s.

As usual the small changes to the observed parameters are split into two parts: the
known part L, and the unknown part v. Thus for example

5x1 = Lxl + Vxl
The final equations are of the form
Ax+Cv=-CL
Ax+Cv=b

The reader should now refer to Appendix 3 where it is shown that by minimizing the
sum of squares of weighted residuals, we obtain the normal equations

N;x=b,
where
N, =ATN7!1A; b, =A'N"Tp
N=cwIcT; b=cCL

W is the weight matrix.
Key information is presented only.
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6.10 Approximate solution with weights

We assign weights of 1 to x and 2 to y giving a (20 x 20) weight matrix with these
values alternating down the diagonal.

In this example, because the numbers have been chosen to simplify the arithmetic,
the matrix N (10 x 10) is diagonal with the value 0.75 for all of its diagonal terms. Its
inverse is simply:

-1 4
N =-1I
3
where I is the unit matrix.

L = 0 as the provisional values were chosen to be the same as the observed values.
It must be remembered that the provisional values have to be consistent and

F(m*,c* 1 X, y*)=0

The L values for the y’s are the same as before.
The problem finally reduces to a solution of the normal equations

le = b1

513.33 73.33|(om| [—77.138
7333 1333 || 0c| | —9.086
om| |-0.24686
oc| | 0.676
As would be expected, this solution is not very different from the previous method.

In this case the residuals are perpendicular distances from the observed points to the
line.

1e.

6.11 Solution with additional constraint
Sometimes new measurements have to be constrained to fit previous work upon
which maps have been plotted, or building construction begun.
Suppose that the line just fitted to the data has to pass through a fixed point (x', ").
This means that there is an equation which must be satisfied exactly:
y—mx'—c=0

This is a constraint equation which the estimated parameters must also satisfy exactly
i.e. we have

yr—mx'—c =0

One practical way to treat the problem is to assign a very high weight to the fixed-
point coordinates and treat them as observations in the usual way. If we hold the tenth
point nearly fixed by assigning it a weight of 100, we obtain the solution:
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om| (—0.2901362
dc| | 0.8348
Although this procedure is often acceptable in practice, it is theoretically incorrect

because an infinite weight cannot be handled computationally. However, the solution
is seen to be acceptable when compared with the exact solution which follows.

6.12 Additional constraints

Since theoretically correct treatment is not difficult, it should certainly be employed
in scientific studies. Two methods are available.

A conceptually simple method is to eliminate one parameter from the problem by
expressing it in terms of the other. Although this would be the simplest way to treat
the particular problem of our example, which only has two parameters, it is not
convenient in complex cases. For this reason we present a general alternative method
of treatment.

Constraints by Lagrangian multipliers

As explained in Appendix 3, the use of Lagrange’s method yields equations of the
form:

Nx+E'k =b, (6.15)
Ex—d=0 (6.16)

These can be combined into one hyper-matrix as follows

N, ET|[x] _[b

E 0 [k d
If we hold point 10 fixed, its observation equation becomes the constraint equation E,
and the hyper-matrix is:

51333 7333 1 ||Jm —77.138
73.33 1333 10|| d¢c [=| —9.086
1 10 O]|[ & —2.080

the solution of which is
om| |-0.2922
dc | | 0.8426
This compares very well with the previous weighted solution.

6.13 Example of combined network

We shall now consider an example of a network combining GPS, angle and distance
measurements and make further analyses of results.
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Direction

Distance

Figure 6.3

Figure 6.3 shows a typical surveying network involving seven points A to G
located on a map grid. The position of G was determined from GPS observations.
Points A to F were derived from a traverse. The distances AG and DG were measured
by EDM. Point G was also fixed by angles observed from the traverse (see Chapter
8). For simplicity we consider that the traverse points A to F are fixed, and dwell only
on estimating the best values for the coordinates of G.

Table 6.3 lists the values in metres of the coordinates of points A to F, the bearings
U (in sexagesimal degrees), and their tangents.

The provisional coordinates of G obtained from the rays BG and CG are (516.330,
448.990).

To calculate coordinates of G, any two rays that intersect will suffice. We can select
two rays from six in any of 15 ways which will give 15 different versions of the

Table 6.3
Point Easting E Northing N Ray U= OBS Bg tan U
to G (°)

A 512.402 386.280 AG 3.5588 0.0621928
B 567.895 443.275 BG 276.3248 —9.0220816
C 564.439 487.776 CG 231.1238 1.2403675
D 500.458 507.498 DG 164.8525 —0.2707103
E 457.825 503.912 EG 133.2231 —1.0640318
F 474.929 454.756 FG 98.0069 —7.1091575
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Table 6.4

}zest Bearing Obs Bearing Resia{ual Residual v

Uue) Uc) v=U-U°-U(°) (sec of arc)
AG 3.558302 3.558756 —-0.0004535 -1.6
BG 276.287579 276.324829 -0.0372503 -134.1
CG 231.119795 231.123833 —0.0040380 -14.5
DG 164.857584 164.852482 0.0051026 18.3
EG 133.221335 133.223144 —-0.0018087 —-6.5
FG 97.974722 98.006931 -0.0322095 -115.9

position of G. Using the data from Table 6.4, Figure 6.4 shows a scale diagram of how
the various rays intersect in the vicinity of G. (The intersection of BG with FG cannot
be shown at this scale.) Clearly we can say that there is no unique solution to the
problem as it stands, or that the position of G is overdetermined. This redundancy of
information can be put another way. We say that, because there are six equations,
only two of which are necessary and sufficient, there are 6 — 2 = 4 degrees of freedom
in the problem. In general if we have m equations in #n variables, m > n, the number of
degrees of freedom is m — n.

On Figure 6.4, the reader can verify that rays AG and BG meet at the point whose
coordinates are (516.302, 448.993), and rays BG and CG meet at (516.330, 448.990).
The final objective of our analysis is to select one unique position for G which uses
all the rays in some regular systematic way. The finally accepted position of G,
resulting from the Least Squares process, is

E;=516.300 and N = 448.960

449.00
B

Positions of G
° .

possible
® final

448.90

516.25 A 516.35

Figure 6.4
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Bearing Equations
A full description of Least Squares theory is included in Appendix 3. Note that since
we are considering the points A to F as fixed, the inward bearings are known. In the
computation of a traverse in Section 8.4, allowance has to be made for the unknown
orientation of directions at each station thus introducing an additional orientation
parameter Z for each observation station.

Consider first the functional model linking the coordinates of two points A and G
and its bearing U. In its general form, the connection is expressed as

F(EA,]\,}A,EG,NG,&)=O

This equation is exactly satisfied by the Least Squares estimates indicated by the hat
A It is also exactly satisfied by a set selected or provisional consistent values
identified by the asterisk *, i.e.

F(Ex,Na,EG,NG. U )=0

Specifically, these equations for a bearing are

(Ng —Ny)tanU —Eg +E, =0 (6.17)
and
(NG —Nu)tanU" —EG +Ey =0 (6.18)

There are two ways of dealing with the expression linking the provisional values:

1. We can calculate a provisional value of the ‘observable’ U so that
* sk £ * & .
F(EA,Np,EG,Ng,U )=0. Then obtain K from
K=U-U"
2. %ltematively, we use the provisional values along with the observed bearing
Uto find K more directly
* * * x O
F(EA’NA’EG’NG’U)=K
We shall use the second method for the moment because it is slightly the easier to
calculate. Normally in this calculation we use the given coordinates of A, the
provisional coordinates of G and the observed value of U. However, in this case, since
we used the observed value of U to obtain the provisional coordinates of G, K will be

zero (the reader should verify this). To illustrate the general method, we will select
other provisional values close to the computed ones. We select

Eé =516.302—-0.102=516.200 and NE =448.993—0.093 = 448.900

Then
F(ERNA. B NG Ung) =
(448.900 —386.28) X 0.0621928 — 516.200+ 512.402 = 0.09651 = K 5
Similarly, for the ray BG,
FUEL N G N Usg) = (Vo — Noytan U™ — Efy + Efy = 0.94579 = K
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The K values for the other four rays are

Kcg = 0.01847307; Kpg = 0.12108216; K = 0.15951738; K = 0.36022632

All that remains is to evaluate the partial differentials. We proceed as follows by
partially differentiating the equation for the ray AG i.e. the equation

o
(NG—NA)tanUAG—EG-i-EA:O (619)
Thus we obtain

oF oF o oF

— =1 —=—tanUpg; —=-1

TN AN 0EG

oF o oF 5 0
——=tanUpg; —=(Ng—N,)sec"U

NG AG> oo (NG —Ny) AG

giving the Equation

o o o]
6EA —6EG _5NA tanUAG+5NG tanUAG+(NG —]VA)SQC2 UAG 6UAG +KAG =0
(6.20)

The similar equation for the ray BG is

) o o
0Eg —OEg — 0N tan Upg+ONg tanUgg + (NG — N )sec” Upg 0Upg +Kpg =0
(6.21)

Equations (6.20) and (6.21) are the general expressions for the bearings AG and BG
in terms of all the parameters. In the case of simple intersection, the points A and B
are kept fixed so

and we have

—(SEG +6NG tanUAG+(NG —]VA)SCC2 UAG 6UAG +KAG =0 (622)

—0EG +ONg tanUgg+ (NG — Ng)sec> Upg 0Upg +Kpg =0 (6.23)
G G BG G B BG BG BG

Where we have only two rays necessary to fix the point G, the bearings U will not be
changed so

(3UAG=O and 6UBG=0
hence Equations (6.22) and (6.23) simplify greatly to

—0EG +0Ng tanUpg+Kpg =0 (6.25)
The numerical versions of these are
—0EG +0.0621928 X ONG +0.09651=10
—0Eg —9.0220816 X ONg +0.94579=0
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The solution is
0Eg =0.102 and ONg =0.093
And the final coordinate values are
Eg = Eg +0Eg = 516.200+0.102 = 516.302
Ng = NG +0Ng = 448.900+0.093 = 448.993

which, as expected, are the same as those obtained by the direct solution.

Least Squares application

We form observation equations like (6.20) for all the observed bearings. Although
these coefficients can be recast in simpler forms for computation, and we will do so
later in Chapter 8, they can be expressed in algebraic form as

alléEG +a12(5NG +L1 = Vl (626)
where for AG
1 tanUAG
ay = 2 sod2 = 2 ’
(NG —Np)sec™Ung (NG = Np)sec™Upg
KaG

L1=

(NG —Np)sec? Upg

In the same way we can form equations for the other rays and obtain the full array of
six equations as follows:

a110EG +a1,0Eg + Ly = v,
ay10EG +ay,0Eg + L, = vy
a310EG +a3p0Eg + Ly = vy
ag10EG +agdEG + 1Ly =vy (6.27)
a510EG +as,0EG + Ls = vs
ag10EG +agr0EG + Lg = vg
which are neatly expressed in matrix form as
Ax+L=v
i.e. Equation (6.1). (Note that this equation can be written either in the above form or

as Ax = L + v where A is the (6 X 2) matrix of coefficients, x is the (2 X 1) column
vector of variables (3£, ESNG)T and v is the (6 X 1) column vector of residuals (v, v,,

T
V3, V4, VS’ v6) )
Table 6.5 shows the calculations of the coefficients for all six equations.

Normal equations
The observation equations (6.27) can be written in full:
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ajy ap Li| I
ay; ap Ly| |»
a3 axp {?ﬁ}: Ly 4%
ag ag |[X2] |La| |va
asy  asp Ls | |vs
L q61 962 [ L6 | V6]

where m = 6 and n = 2, and the variables x, = 8E; and x, = ON;. The solutions of
these normal equations give the required parameters, and are of the form

ATAx+ATL=0 (6.28)
ATA has dimensions (2 x 2) and ATL (2 x 1). The equations in full are
0.000 697 87 O +0.000122 8 ON; =7.6929%107
0.000122 8 0E5 +0.00118912 NG = 8.3487 x107°
with solution 8E; = 0.100 and 6N = 0.060 and as before
Eq = E¢ +0Eg =516.2+0.100 = 516.300
Ng = NG +0Ng = 448.9+0.060 = 448.960

(6.29)

Calculation of the residuals

Once the variables 0E; and 3N, are defined we substitute them in the observation
equations (6.27) to obtain the residuals. As a numerical check, we show that ATv = 0.
Table 6.6 shows these residuals in radians and seconds of arc obtained by back
substitution in the observation equations of Table 6.5.

Distance and point measurements
We now extend the analysis to include two further situations:

1. when distances have been measured;
2. when coordinates have been measured directly.

Table 6.5

i Ray OE ON Dist K. a; a,; L.

1 1

1 AG 3798 62.620 62.735 0.09651314  0.015911 -0.000965  0.001535
BG -51.695 5.625  51.600 0.94579100  0.002080  0.019118  0.002005
CG —48.239 -38.876 61954 0.01847307 -0.010128  0.012567 —0.000187
DG 15.742 -58.598  60.675 0.12108216 -0.015917 -0.004276 —0.001933
EG 58375 -55.012 80.212 0.15951738 —0.008550 —0.009073 —0.001364
FG 41271 5856 41.685 0.36022632 -0.003370 -0.023752 —0.001193

AN AW
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Table 6.6 Residuals

Radians Seconds of arc
-7.915x 1076 -1.6
—-6.501 x 107~ —134.1
~7.048 x 107 -14.5
8.9057 x 1073 18.3
~3.157 x 107 -6.5
-5.622 x 107 -115.9

First, we derive the equation to be solved if the length of AG has been measured to
fix the position of G. The functional model is

SAG —(Eg —Ep)* —(NGg —Na)* =0 (6.30)

In the statement of Newton’s method of solution we obtain the general functional
equation for a distance measurement as

oF oF oF oF oF
——OE\ +——0Np +——0EG +——0ONg +——0S+F(Ex,Nn,EG.NG.S ) =0
1N INp 0EG NG as
6.31)
Since
oF oF oF
T =2Eg—Ep); o =2(Ng = Na) ——=—2Eg —Ep);
IEA N, IEG
(6.32)
i——Z(N —Ny): ok e F(Ex,Nx,EG, N, 8 )=K
aNG G AJ> EXS AG> A>YASEGHIYGo AG
the explicit observation equation can be written
2EG—EA)OEx +2(Ng = Np)ONs —2(Eg — Ex)OEG —2(Ng — Na)ONg

Dividing by 2§, ; gives the final form as
Es—E Ng—N Eg—E Ng —N
(Eg A)aEA_l_( G A)aNA_(G A)éEG—( G A)(SNG
SAG AG AG SAG (6.34)
+VAG +LAG =0

i.e. of the form. Ax+L=v
Evaluating the coefficients of Equations (6.34), the distance observation equations
become

0.0605403 8EG +0.99816575 ONG —0.085 = v (6.35)
0.25944504 OE +0.96575787 SNG +0.070 = vpg
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We derive now the observation equations representing the position of G measured by
a GPS satellite receiver. In this simple case, there is no functional model, but merely

an observational model. The residuals are defined as
0

v=E—E
We let
E=E +0E
therefore
* 8]
OE+E —E=v
Thus the observation equations are of the form

(SEG +LEG = VEG

(6.36)
ONg +Lyg = VNG
If the measured GPS values are
EG =516.285; NG =448.988
then
O0EG = Lgg, +vEg =0.085+vg, 637)

6NG = LNG +VNG = 0088+VNG

6.14 Combined Least Squares estimation

We now have the theory to tackle the problem of combining observed parameters of
different quality and of a different type, and of estimating the quality of the results. We
shall employ the data in Table 6.3, incorporating distance and GPS measurements into
the original intersection problem. These extra equations are Equations (6.35) and (6.37).

One might argue that the GPS positions are not ‘observations’ since measurements
are derived from a great many observations which have been digitally processed. The
same thing can also be said of distances and angles. However, we refer to the
numerical output of the systems as ‘observations’, although many authors refer to
them instead as ‘observables’.

We have already dealt with the six direction equations, and there are also two
distance and two position equations giving ten equations in two variables i.e. m = 12
and n = 2 as shown in Table 6.7.

We must now select suitable elements for the dispersion matrix. Assume that the
directions are uncorrelated, each with a standard error of 20 seconds of arc. Also
assume that the distances are uncorrelated with a standard error of 0.01 m and that the
position of point G is obtained by differential GPS relative to point A with a standard
error of 0.014 m in Easting and a more accurate 0.0014 in Northing.

The value of O‘% will be investigated. However we must also include a value for
the covariance of the GPS results, say —0.000 006. Also, since we worked the
directions in radians, their standard error of 20 seconds has to be converted to radians.
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Therefore
20X

— " =970x107° =S, say
180X 60 X 60

And the variance
S5 =9.4012x10"° = P, say

The dispersion matrix, D, is therefore defined as

PO OO OO0 0 0 0 0
0O PO OO O 0 0 0 0
00 P 00 O0 0 0 0 0
00 0P 00 0 0 0 0
{0000 P00 0 0 0 0
D=1y 0000 pr o 0 0 0
00 0 0 0 0 0001 0 0 0
00 0 0 0 0 0  0.0001 0 0
000 00 O0 0 0 0.0002  —0.000006
000000 O 0 —0.000006 —0.000006

where P is as defined as above.

The remainder of the process is purely arithmetical. The various stages are shown
in the following equations:

The weight matrix W is defined as the inverse of the dispersion matrix i.e.

wW=D_!

Table 6.7
Residuals* Shifts

Obs a; a;, L \% Sv
AG 0.015911 —0.000965 0.001535 -9.485x1073 —0.0059502
BG 0.00208 0.019118 0.002005 —2.247x1074 —0.0116832
CG —0.010128 0.012567 ~1.87x10~* 2.5913x10~* 0.01605399
DG —-0.015917 —0.004276 —0.001933 5.8688x1073 0.00356095
EG —0.00855 —0.009073 —-0.001364 -2.034x1074 —-0.0163144
FG —0.00337 —0.023752 —0.001193 —0.0010939 —0.0455997
Dist AG 0.0605403 0.99816575  0.085 0.00336109
Dist DG 0.25944504  —0.9657579  —0.070 0.0148884
Easting 1 0 0.085 0.01053062
Northing 0 1 0.088 —0.0052706

* The residuals are computed later from the solution.
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1/P 0 0 0 0 0 0 0 0 0
0 1/P 0 0 0 0 0 0 0 0
0 o 1/P O 0 0 0 0 0 0
0 0 0 1/P 0 0 0 0 0 0
| o 0 0 0o 1/P 0 0 0 0 0
1o o o o o 1/P 0 0 0 0
0 0 0 0 0 0 10000 0 0 0
0 0 0 0 0 0 0 10000 0 0
0 0 0 0 0 0 0 0 5494.5 16483.51
| 0 0 0 0 0 0 0 0 16483.51 549450.54 |
The normal equations are
Nx=b

80436.277 27645.6036 | | 9971.23131
27645.6036 695226.164 ¥ 60156.6311

where
Nl 12604107 =5.012x1077
—5.012%10"7  1.4583x107°

giving the solution
—1 0.09553062
=N"b=
0.08272938

The final position of point G is (E, Ng) = (516.296, 448.983).

Note: The diagonal elements of the inverse N~! are the variances of the
coordinates of G, and the off-diagonal term is their covariance. Hence the coordinate
variances are in Easting 1.2604 x 10~ and in Northing 1.4583 x 107, giving
corresponding standard errors 0.0355 m and 0.0012 m. See Appendix 6 for a
discussion on error ellipses.

We calculate the residuals from Ax + L = v which are placed in Table 6.7. From
these residuals we calculate sg, an estimate of O'% , from the formula

VTWV

m-—n

(6.38)

3=

In this case, s3 = 20.237100.
The fact that this is not close to unity indicates either that the mathematical model
is imperfect or that the dispersion matrix has not been modelled correctly.

6.15 Statistical tests for outliers

As discussed in Chapter 5, the huge benefit arising from a Least Squares estimation of
results is the statistical information available as a by-product. Some of these will now be
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A

Point of inflexion

- v

Tanger/ S * a
alo t=vio

cl/o=1

Figure 6.5

described. We start by assuming that residuals have a Normal distribution. It is stressed
that for most tests to be valid, the sample must contain more than approximately 30
individual measurements. In our simple example we only have ten observations, in
which case we should be discussing the Student’s ¢ distribution. However, since most
Least Squares problems involve much more than 30 variables, our assumption is valid.

From the Least Squares process we obtain the residuals v. We assume these are
normally distributed about an origin x. A theoretical graph of the residuals about an
origin at x is shown in Figure 6.5.

In order to calculate the probability of the existence of a residual with value
greater than the standard error 6, we look up the tables with = v/ ¢ = 1. In this case,
P = 0.8413. Complete Normal distribution tables are readily available in many
textbooks on surveying or elsewhere. Table 6.8 shows selected values from such a
table, where e.g. the probability of 1= 1.02 is 0.846.

Table 6.8 Cumulative Normal probability

t 0.00  0.01 0.02 003 004 005 006 007 008 0.09

0.0 500 504 508 512 516 5200 524 528 532 .536
0.5 .674

0.6 750

1.0 .841 844 846  .848 851 853 855 858  .860 .862
1.6 950

1.7 .960

1.9 975

2.0 977 978 978 979 979 980 .98l 981 981 982
3.0 999 999 999 999 999 999 999 999  .999 .999
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The chance of a residual being > ¢ is therefore
1-P=1-0.8413=0.16

or 16 %. The probability of the residual either having a value > +6 or < —c is 32 %.
Consideration of the Normal distribution is used to detect outliers in the data i.e. a
suspect observation or result.

Not all of the directions in Figure 6.4 appear to be correct. A non-arbitrary test is
required which can be applied automatically, to decide whether or not to reject an
observation. Although we can use a simple test such as: reject residuals greater or less
than three times the standard error, such tests have limited applications. It is almost
as easy to test the probability of a residual exceeding a particular value, or the value
outside a given probability. Suppose, for example, that we decide to reject all
residuals with probability of occurrence =5 %. This means that a two-sided test for
2.5 % is applied. The table value corresponding to 97.5 % is 1.96. We then apply the
test:

ist=v/o =1.96?

If so, we reject the observation.

To apply this test to our example we first have to calculate the standard error of
each residual. The variance of the residuals are readily obtained as the diagonal terms
of the matrix

-D (6.39)
where
D =AD A" (6.40)

D, is the dispersion matrix of the observables, and D  the originally estimated
dispersion matrix of the observations. The square roots of the diagonals of D, are the
required standard errors. (See Appendix 3 for derivation of this formula.)

The definitions of these matrices and parameters are listed in Table 6.9.

In calculating

D, =02N"!

we will use ag =] instead of the clearly incorrect value of sg .

Table 6.9
Parameter Matrix Variance Standard error
(matrix diagonal) (square root of variance)
2
observed, s D, o o
o o
2
best, s D, oy oy
2
unobserved, x D, oy ¥
. 2
residuals, v D, o, v
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The dispersion matrix of observables is defined as
D,=AD A"

[ 321 0238 -215 -3.16 —-1.63 —0454 280 612 201 —9.38]
0238 0.547 0.168 —0.379 —0.385 —0.693 277 -21.6 166 268
-2.15 0.168  1.65 203 0933 —0.104 152 —573 —134 234
-3.16 —037  2.03 3.15 1.68  0.627 —102 —53.1 —198 1.74
—1.63 —0385 0933 168 0963 0.560 —151 —18.1 —103 —8.94
—0.454 —0.693 —0.104 0.627 0560 0.885 —347 238 —30.5 -—32.9
2.8 27.7 152  —102 —151 =347 1430 —1300 262 1420
612 =216 -573 =531 —181 238 —1300 2450 3750 —1530
201 166 —134 —198 —103 —30.5 262 3750 12600 —501
| —9.38 2638 23.4 1.74  —894 —329 1420 -—1530 —501 1450 |

To calculate 6,, hence ¢, we extract the diagonals of D and D, as displayed in Table 6.10.

These ratios ¢ will be used to detect blunders in the observations, assuming that
the observations are Normally distributed. We select a suitable rejection level of
significance, usually 0.01 %, and test to see if any observations lie outside this level.
From a Normal distribution table, we see that this critical value is 2.57, exceeded by
three values in Table 6.10. We do not reject them all.

We reject the observation with the largest rejection ratio (¢ = 11.8), the direction
from the sixth point F, and repeat the analysis. This is a simple task if using a
spreadsheet, since all that is required is to set the coefficients of equation six to 0
while retaining the original weight matrix.

After recalculating, the value for the variance of unit weight is an improved 2.67.
Table 6.11 displays the test ratio calculations for the new situation, highlighting how
two directions fail to meet the test.

Table 6.10 Diagonal elements

D, D, D =D D, o, = /Dv v t=v/o,
9.4x107° 3.21 x 107 6.19 x 107 7.87 x 1075 9.48 x 1073 1.21
9.4x107° 5.48 x 10710 8.85 x 107 941 %105  225x10™ 2.39
9.4x107° 1.65 x 107 7.75 x 1070 8.80x 105  2.59x10* 2.94
9.4x107° 3.15x 107 6.25 x 107 7.91 x 1075 5.87 x 107 0.74
9.4 %107 9.64 x 10710 8.44 x 107 9.19%x10°  2.03x10% 221
9.4x107° 8.86 x 10710 8.52 x 107 9.23 x 107 1.09%x 103 11.85
1.0x 10 1.44 x 1070 9.86 x 107 9.93 x 1073 3.36 x 1073 0.34
1.0x 10 2.46 x 1070 9.75 x 107 9.88 x 1073 1.49 x 1072 1.51
2.0x 10 -1.26 x 107 2.01 x 104 1.42 x 1072 1.05x 1072 0.77
2.0x 107 1.46 x 1076 5.42 x 1077 736%x10%  527%x1073 7.17
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Table 6.11 Diagonal elements for calculation with direction from point F removed

D, D, D,=D-D, o,= ,/Dv v t=v/o,
9.4x107° 3.23 x 107 6.17x107°  7.85%x 1075 3.64 x 107 0.46
9.4x107° 6.04 x 10710 8.80x 107  9.38x 1075 1.36 x 107 1.45
9.4 %107 1.65 x 107 7.75 x 1079 8.80x 105  273x10* 3.10
9.4x107° 3.20 x 1070 620x 1070  7.88x105  2.19x10°5 0.28
9.4 %107 1.00 x 10710 840x107°  9.17x10°  275x10* 3.00
9.4 %107 0.00 940x 10  9.70x 1075  0.00 0.00
1.0x 107 1.58 x 1070 9.84 x 1073 9.92 x 1073 7.82 x 1073 0.79
1.0x 10 2.53x 1070 9.75 x 1073 9.87 x 1073 1.18 x 102 1.20
2.0x%x 104 —3.83x 1077 2.00 x 104 1.42 x 102 1.45 x 1072 1.02
2.0x10° 1.59 x 1076 414x107  6.44x10% 1.04x 1073 1.61

There are now two options: to remove the three directions from F, C and E, or
investigate the circumstances of the observations to see if there may be some
explanation for these large residuals.

Adopting the latter approach, it is discovered that at the time of the GPS fix, the
EDM distances to A and D were measured, so there is no likelihood of mis-centring
at G (see Figure 6.6). However, for use as a reference object later, a flagpole was
erected at G and kept in place by guy wires. The inward angle observations were
taken at different times, those at A and D in the same field visit as the EDM and GPS.
The observations from B, C, E and F were acquired at a different time when running
the loop surround traverse. The centring of the pole was not checked. (The field
books should have been closely inspected at the outset.) However, we could still go

Length DG
E D __—T 44900
o i\ B
Length|AG
GPS
G .
position
F
@ Least Squares
position
448.90
516.25 A 516.35
Figure 6.6
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into the field and inspect the flagpole. In this particular case it was found that the pole
could wobble by about 2-3 cm about the vertical, so we should assign standard errors
to the four poor observations in inverse proportion to the lengths of lines, say by
0.025/distance?.

The respective variances for directions BG, CG, EG and FG are

BG CG EG FG
Distances 52.000 61.954 80.212 41.684
Variances 2311 x 107 1.628 x 1077 9.714 x 1078 3.597 x 1077

Repeating the calculations provides the test results as listed in Table 6.12, and
sg =1.07, an acceptable value. All the values of the 7 test ratios are also acceptable.
Therefore, in practice, when the statistical ratio shows a problem in some of the
residuals (and therefore in the original observations), it should be investigated
whether the problem is due to a blunder or an incorrect estimation of weights.

Common blunders include mixing up the order of the stations for an angle, or mis-
identifying a station. Correcting this often makes the network solution converge. Over-
or under-estimating the observation weights (in this case due to faulty equipment) can
similarly cause major problems. The statistical test outlined here will point us towards
the cause of the error, and we can make a better estimate of relevant weights.

6.16 Reliability testing

Reliability concerns the ability to check work. For example the reliability of a
position fix is a measure of the ease with which gross errors may be detected: the

Table 6.12 Diagonal elements for calculation when standard errors assigned to poor
observations

D, D, D =D-D, o,=,D, v t=v/o,
9.40x 109  4.19x107 522x10°  722x10°  628x10° 087

231 %1077 6.67 x 10710 230 x 1077 4.80x 104 1.30x 10 0.27

1.63 x 1077 2.12x 107 1.61 x 107 4.01 x 10 2.95 % 1074 0.74
9.40 x 107 4,12 x 107 528x 107  7.27x1075 2.01 x 1076 0.03
9.71 x 1078 1.26 x 107 9.59%x 108  3.10x 10 2.66 x 107 0.86
3.60 x 1077 1.08 x 107 3.59%x 107 5.99x 10 1.21x 1073 2.03
1.00 x 1074 1.74 x 1070 9.83 x 1073 9.91 x 1073 8.20 x 1073 0.83
1.00 x 1074 3.04 x 1070 9.70 x 105 9.85x 1073 1.09 x 102 1.11
200%x 104 —589x 1077 2.01 x 10 1.42 x 102 1.28 x 102 0.91
2.00 x 1070 1.76 x 107° 242x107 492x10% 546 %1074 1.15
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greater the ease of detection, the more reliable is the system. Reliability also depends
on the amount of redundancy in the problem. Imagine a point fixed by only two
measured distances from two known points. There are no redundant measurements,
so we have no residuals. Thus the test =V / G, is indeterminate and a check for gross
errors is not possible. We consider such a fix as unreliable. It could in fact be very
good, but there is also the chance that it could be very wrong! We need as much
redundancy as is practicable. In our example, we have eight degrees of freedom so the
fix should be reliable. With this example, we can make some other useful reliability
statements to assess quality in comparative terms.

In Section 6.15 we described how outliers are detected, based on a boundary
statistic of 2.57 X ¢ with a confidence limit of 99 % (o = 1 % significance level)
obtained from a Normal Distribution Table. We now extend this idea to consider the
marginal error with respect to two hypotheses: (1) that there is no gross error in a
measurement (the null hypothesis) and (2) that there is a gross error (the alternative
hypothesis), assuming there is only one outlier in the data. See Figure 6.7.

[llustrated below are these two hypotheses. Residuals are distributed normally
about a particular observation, referred to as the ith observation. The preferred
hypotheses (called the Null Hypothesis) shows the dispersion of residuals in this ith
observation about a zero mean, and the other hypothesis (called the Alternative
Hypothesis) about a mean 8. The latter distribution is believed to arise from the
existence of a maximum gross error in the ith observation of A';, where

_A

g

5

1

(6.41)

and o, is the standard error of the ith residual. The u indicates the upper limit.
Considering the null hypothesis, rejecting residuals outside the bound (defined by o)
includes good data and a Type I error is said to have been made. According to
statistical theory, very small or very large residuals are possible, but unlikely. A Type
I error is a small price to pay for the detection of bad data.

However, outliers may sometimes be so small that the test is passed and data
containing outliers are accepted. When this occurs, we say a Type II error has

Acceptance region Rejection region

o] —
Q

Null hypothesis u=0 Alternative
| hypothesis n=g"

Figure 6.7
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occurred. Considering the alternative hypothesis, the probability of such an event is
B, or the probability of detecting the outlier is 1-f. This probability is referred to as
the Power of the Test. To quantify the extent to which outliers can be detected, the
power of the test is selected (usually 80 %) and we calculate the magnitude of the
outlier that may be detected with this probability. This magnitude is called the
Marginal Detectable Error (MDE). The 80 % probability is selected so that we can
say the magnitude of the outlier can be found with reasonable certainty.

The choice of o determines the rejection limit and so affects our actions. The
choice of B has no real effect on the rejection process; it merely affects any statement
about the data quality. To make comparisons between different sets of data, it is usual
to accept these probability levels for both distributions.

For example, in Figure 6.7 we select both o and B, find @ and b from Normal
Tables and calculate the MDE from

MDE = A} =60, =(a+b)0; (6.42)

where o; is the standard error of the residual Vi

6.17 Internal reliablity

The internal reliability is expressed in terms of MDEs. It is common to test the
hypothesis that only one observation has a gross error and we calculate the MDE for
each observation.

Columns 4, 5, and 6 of Table 6.12 list values of 6, v and 7. We have already shown
that since no value of ¢ exceeds the test statistic 2.57, no further data are rejected.
From Normal Distribution Tables o = 0.01, the entry of 99.5 % (two-tailed) yields
a = 2.57 and 80 % (one-tailed) b = 0.84. Hence, we obtain the MDEs for each
observation. The first MDE is given by Equation (6.42) i.e.

MDE for AG = (a+b)0; =(2.57+0.84)x7.22x107> =2.47x10™*

All the MDE:s are listed in Table 6.13.

The quality is an assessment of the size and nature of undetected errors that remain
in the solution. In this case, the largest MDE is 4.84 x 10~2 or approximately 5 mm
in the GPS Easting. Such a low figure indicates a high internal reliability. We can say
of the quality when outlier detection is carried out with a level of significance of 1 %,
there is an 80 % chance an outlier of 5 mm will be detected.

6.18 External reliability

External reliability is a more useful concept because a large undetected outlier may
have little effect on the solution. External reliability is assessed by the largest effect
of an observational MDE on the solution, in this case on the coordinates of G. We
compute the separate effect of each MDE on the solution, and quote the largest to
describe the quality of the fix. We make a series of computations to find the
contribution of each MDE in turn, using the formula

dx=N"'ATwdL (6.43)
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Table 6.13
MDE dL dE dN

AG 247 x 107 247 x 107 6.89 x 1073 —2.90x 10
BG 1.64 x 1073 0.00 x 1070 1.63 x 104 230x 107
CG 1.37x 1073 0.00 x 1070 —-1.46 x 103 236x 10
DG 248 x 104 0.00 x 1070 —6.85x 1073 4.89 x 1075
EG 1.06 x 1073 0.00 x 1070 -1.47x 1073 -1.19 x 10
FG 2.05% 1073 0.00 x 1070 —2.36x 107 —2.26 x 107
Dist AG 3.39x 102 0.00 x 1070 1.38 x 104 5.82x 10
Dist DG 3.36 x 102 0.00 x 1070 1.63 x 1073 —6.22 x 107
Easting 4.84 x 1072 0.00 x 1070 3.90 x 1073 1.25x 1073
Northing 1.68 x 1073 0.00 x 1070 —8.78 x 1075 1.61 x 1073

Note: Note the third column is typical only for the calculation of the effect of dL from AG. The
values in columns four and five are from successive calculations for each individual
contribution d in turn

where dL. = MDE (column 2, Table 6.13) is zero except in the case of observation
AG. dx is calculated:

dET | 1.6454x107° —5.887x1077 | . 6.89%1073
dx = = ATWdL = )
dV| |-5887x1077 1.7579x10°° —2.90%10~

Thus the effects of the MDE in the first observation on the coordinates of G are
approximately 7 mm in Easting and 0.3 mm in Northing. Columns three and four of
Table 6.13 show the MDEs in position caused by the MDE of each observation in
turn. It can therefore be seen that the external reliability is also good, as the largest
MDE:s in position are 6 mm in Easting and 2 mm in Northing.

6.19 Variance (Fisher F) test

Although this test has a wide application, it is used mainly in Least Squares problems
to investigate if the value calculated for the unit variance is close to the expected
value of unity.

In a Least Squares problem, the sample statistic is the unit variance calculated
from the weighted residuals i.e. from

VIWy

m-—n

This is compared with the theoretical value for the population variance. Thus the test
statistic is given by
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Since 0(2) =1, in theory the test is

To check if the value for the unit variance of 1.07 is acceptable, we compare the value
from r; = 8 degrees of freedom with the theoretical value of 1.0 from an infinite
number of values i.e. r, = c. From Table 5.4 we have the bound of 1.94. Thus the
tested value is acceptable.

6.20 Test for normality: %2 test

In addition to or as an alternative to the F test, most software packages incorporate the
2 test on the residuals to determine if the error distribution of the observations is
Normal. The test statistic is

_(m=m)sg

ot

Since 0(2) =1 in theory, the test becomes

t= (m—n)sg

Since | = 8 degrees of freedom from Table 5.6, the acceptable bounds are 2.18 and
17.53. In this case ¢ = 8.56 and so passes the test.

In practice this test can be misused to authenticate the quality of work, by
removing observations with large residuals from the data until the test is passed.
Many surveyors prefer to treat the test with a degree of suspicion.

6.21 Dispersion matrices of derived quantities

So far we have assumed or obtained measures of precision: variances found as the
diagonal terms of the dispersion matrices and co-variances as their off-diagonal
terms. It is also possible to extend the analysis to obtain measures of precision of any
parameter derived from the final coordinates of a network. This parameter could be
an important dimension such as the location of bridge piers, or a bearing on which to
base a tunnel drive.

Suppose we want to calculate the standard error in the length of the side BG which
has not been directly measured. Its length is calculated from the coordinates in the
usual way. We can also obtain its standard error by setting up the coefficients of an
observation equation for this length BG. The elements of the A matrix are

Eq —E Ng — N
(B —Ep) , (NG —Np)

BG BG
We then apply the formulae

D,=AD AT (6.44)

124



LEAST SQUARES ESTIMATION

Table 6.14

Point E N

B 567.895 443.275
G 516.2 448.9

A -51.695 5.625

BG 52.000

A —0.9941321 0.1081728

Consider the following example, referring to Table 6.14.
The dispersion matrix of the calculated coordinates derived by the Least Squares
method is:

e 1.6454x107>  —5.887x107/
Dx=00N =1X

—5.887x1077 1.7579x107°

The variance of the length of BG is then obtained from (6.39)

) 1.6454x107°  5.887%x1077 |[=0.9941328
0% =[-0.9941328 0.1081728]

5.887x1077  1.7579x107¢ |L 0.1081728

i.e. the standard error of the length of BG is 0.00405.
In the same way we could estimate the standard error of a bearing such as AG
using the formula for the coefficients in the A matrix

E~—FE -
(Eg—Ey) and Ng —Ny)
AG AG

The rule is to derive the coefficients of the equation as if for an observed direction. In
fact any function of the coordinates, such as an area (or in the case of three
dimensions, a calculated volume), can be treated in this way. Many of the procedures
described here can be completed without any observations at all. A pre-analysis can
be made when designing a measurement programme, before even going into the field.
Such an analysis can usually save money and wasted effort.

Note: A graphical way to display statistical results is by error ellipses, as described
in Appendix 6.
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Chapter 7
Satellite Surveying

7.1 Introduction

So far we have been dealing with surveying systems that are local and ground based
over which the surveyor generally has complete control. Among other issues, he or
she has to make decisions about the following:

1. what measurements to make;
2. what quality to accept;
3. how to process results.

Even with the use of commercial software packages, the surveyor usually has to make
choices.

Alternatively, when a global surveying system such as Global Positioning System
(GPS) is used, the situation is different. The surveyor operates instruments and
processing software supplied by manufacturers which exploit the commercial
opportunities of satellite systems provided by the governments of the USA, Russia (and
in future by the EEC) following internationally agreed protocols. GPS is generally
referred to as the most typical. At various stages, there is some element of choice based
on cost of equipment, operation time in the field, availability of post-measurement
analysis and a choice of coordinate system output, to achieve a quality of output to suit
the particular needs of the survey. Although in making these choices the surveyor is
guided by the equipment supplier, he or she is also responsible to the client.

It is therefore good practice to adopt a careful, standard survey approach and
incorporate some measure of checks into the work, such as also measuring a few lines
by conventional Electronic Distance Meter (EDM) as part of a GPS survey and
checking on marked points at different times of the survey. It is also good practice to
carry out a sample field check for quality of results before leaving the site, and to
accept the coordinates output to the basic International Terrestrial Reference Frame
(ITRF) system as an archival backup for possible future reference, even if the current
output is in some derived form such as plane projection coordinates.

Although in the latter case, positions are determined from measurements of length
made in three dimensions, there is a very significant difference between them and
static work, in that the distance measurements are time related. This aspect of relating
time from site to site is continually being addressed by the provision of radio links
between reference ground stations and the roving stations used by surveyors to carry
out their work. It must be realized that each time a receiver begins to determine
position, an iterative process takes place to establish a good starting point for the
subsequent relative calculations.
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Global Positioning System—GPS
To guide the surveyor in making sensible choices, a basic understanding of GPS is
required. GPS is available on a worldwide basis to provide coordinated positions for
many purposes. It consists of about 24 satellites and some ground control stations
from which a receiver can measure its position to varying degrees of accuracy, from
a few metres to better than a centimetre.

Each satellite has its own signature and carries its position for use by the ground
receiver. This information can be updated later for more precise calculations.

The satellite to ground distance S is obtained from the equation

S=VrT

where V is the speed of radio signals and T the time taken to travel the distance (only
about 0.1 sec). T is measured in two ways, one approximate and the other very
accurate as described in Chapter 13 where it is shown that the above equation can be
written in the form

S=ni+AL

where n is the integer number of wavelengths A contained in the line and AA
represents the fractional part. Using a coarse acquisition code (C/A), an attempt is
made to find » by directly timing the interval between the satellite and the receiver.
This gives an approximate value for S which is accurate to about 50 m. All that is then
needed to fix a point is at least three distances from three satellites intersecting at an
angle between 30° and 150°.

Since the receiver clock does not function according to the satellite atomic clock,
its error has to be determined. This is carried out by measuring distance to a fourth
satellite at the same time. (Receivers can operate on several channels simultaneously.)
The redundant length enables the receiver clock error to be eliminated by subtraction
(see below). To achieve greater accuracy in timing, the two carrier waves of the radio
signals are employed, as described in Chapter 13.

The receiver position in terms of the ITRF is found by variation of coordinates as
described below.

Before proceeding further, it is important to stress that several things can go wrong
with the measurements which do not normally apply to traditional EDM. The
technology depends on matching the wave patterns of two signals by tuning circuits
to each other just as when tuning a radio receiver to a station. When they are matched
they are said to be locked. The radio signals can ‘lose lock’ so that the initiation
process (C/A code) fails and has to be repeated. The satellites may be positioned in
such a way to give a bad intersection at the receiver. The signals may be reflected
from surrounding structures or be subject to interference from other radio sources. It
is therefore vital that the set of field procedures and processing techniques
recommended by the instrument manufacturers are strictly adhered to in all GPS
work.

Traditionally, point positions on the surface of the Earth were established from
observations made of the stars (especially the Sun), planets and the Earth’s moon by
optical instruments at known times. With the advent of artificial Earth satellites
different systems came into use, including stellar photography, electromagnetic
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distance measurement (Sequential Collation of Range, SECOR and GPS), laser
ranging, range difference measurements (Transit Doppler) or interferometric systems
(Minitrack or Very Long Baseline Interferometry). Direct heights are also obtained by
satellite radar and from the stereoscopic analysis of remote sensing imagery and aerial
photography.

These have been superseded by GPS which provides three-dimensional
coordinates of points worldwide on the ITRF (see Iliffe 2000 for more details).

Most instrument providers will also output results in a wide variety of formats to
suit users, such as a local datum or a national map projection. The ITRF values should
always be archived for security.

The Earth and its artificial satellites are in constant motion, so to give any meaning
to distance measurements between them we must give serious consideration to timing
and its possible errors. To set the scene, a point on the Earth’s equator is moving
through space at a speed of 464 m s~! and a GPS surveying satellite is moving in orbit
at 7 km s~!. Combining the two with an accuracy of one millimetre therefore requires
a timing accuracy of 10710 sec.

Unlike ground based EDM, which uses the time for a signal to travel to and from
each end of a line, GPS uses the single time of flight measured by two separate clocks.
It is clear that a receiver clock cannot achieve the accuracy attainable by an atomic
clock or by selective ground stations controlling the operation. Since it is assumed
that each receiver clock is wrong, this error has to be eliminated by some observing
technique, usually differencing.

Other phenomena affect the whole operation, such as time delays in passing
through the Earth’s atmosphere, also dealt with by mathematical modelling. Some
means of timing links have to be established between ground stations, and roving
surveyors fixing the points of a survey in their work. With the most sophisticated
modelling it is possible to yield the coordinates of points on the ground to a relative
precision of a millimetre within a particular reference system.

The satellites are monitored by a control segment consisting of ground stations
which transmit positional information (ephemerides) back to the satellites. These in
turn relay this information to the receivers at the roving stations. Depending on the
mode of operation (one or two frequencies), datum consideration and observational
routines, the system is capable of a maximum accuracy of 2-3 mm. Simpler
arrangements with single receivers provide position with an accuracy of about 50 m.

However, there remain two problems for the geospatial surveyor. The first is how
to relate the satellite coordinate reference system to historically established systems
used for mapping and other civil purposes such as land certification. The second is
how to relate heights to the Earth’s level surface and sea level.

The former problem is resolved by coordinate transformation (see Chapter 4) and
the latter by knowledge of the geoid-spheroid separation (see Chapter 9).

7.2 How GPS satellites are used by the surveyor

The Global Positioning System is adopted by many commercial system providers
serving a wide variety of users, ranging from professional geospatial surveyors and
map makers, environmentalists, public services such as police, ambulance and fire
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services, to motorists and ramblers. These providers are generally commercial
companies producing a range of products of varying sophistication. The geospatial
surveyor usually operates at the upper end of this technical spectrum. The aim of this
chapter is to explain the basic principles of the GPS and other related phenomena.

Point fixation

The position of a single point is of very little use to a surveyor. At least two are
normally required, giving direction (azimuth/bearing) as well as position and inter-
point distance i.e. a vector.

A GPS survey, based on a control network covering the area within which minor
points are interpolated (see Chapter 2), normally consists of pairs of vectors forming
the basic design unit. These vector pairs are derived from three receivers fixing from
the same satellites at the same time. For consistency, these vectors link together into
a connected network, with most stations visited at least twice.

Once the control has been established, the breakdown proceeds with single visits
to points, referenced to a site based receiver, part of a reference network of receivers
established by large organizations, usually governments, via a real time radio link.
Such practices are continually being improved. See the Summary of Operational
Practice at the end of this chapter.

Basic geometrical principles of point positioning

Figure 7.1 illustrates part of the GPS system in which the known positions of satellites
S, to S, are shown in orbit round the Earth. The 24 satellites, at heights of about
20 000 km, are spread in six evenly spaced almost circular orbits with orbital periods
of 12 hours. Their Ascending nodes have Right Ascensions evenly spaced at 60°

1

North Pole

GPS Orbit 2

Equator plane

Earth's axis

Figure 7.1
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intervals round the equator. (Note that one sidereal day is about 4 minutes shorter than
a solar day.)

To establish the coordinates of a point A on the surface of the Earth, distances are
measured simultaneously from at least four satellites to A. Four distances are
required, as the receiver clock is not sufficiently accurate for the timing process. Its
error on GPS time has to be resolved for each determination of position. There are
four equations linking the five points in space, described in a three dimensional
Cartesian system XYZ. These are of the form

ST =AX?+AY?+AZ? or SP—AX?-AY?-AZ*=0 (7.1)
Specifically, the equations for all four distances are
(1S +E+K) = (4A%)° = (4 A1) = (4A2))* =0
(48 +E+K) =(4AX,)” = (4AY,)* =(4AZ,)* =0
(483 +E+K)? = (4AX3)” —(4A1)’ = (4AZ3)* =0
(4Sa+E+K) = (4AXy)* = (4AY,)* = (48Z4)* =0

(7.2)

where S, is the measured distance between ground station 4 and satellite number
1, ,AX, = X, - X, etc., E is the unknown receiver clock error and K is a
refraction error. (Note: A distance such as ,S; + E + K is known as a pseudo
range.)

Since the coordinates of the four satellites can be calculated from the time of
observation (see below) and the four pseudo-ranges are known from the measurement
system, to obtain the coordinates of A we solve the simultaneous Equations (7.2). To
simplify the arithmetic, the examples given here deal with a two-dimensional
treatment.

7.3 Differential ranging

Figure 7.2 illustrates two new points A and B. Ranges S to satellites are measured and
reduced to a common epoch. Clock index and residual tropospheric errors at points A
and B are denoted by K, and Kj; respectively. Clock and ionospheric errors at the
satellites are represented by K!8 etc. Since the ground distance AB (60 km) is very small
compared to the Earth—satellite distances (26 000 km), the error model is representative.
For example, the range from A to satellite 18 can be expressed in the form

S =r+K,+K'® (7.3)

Subscripts are used for ground stations and superscripts for high satellites. The range
r}f is the crude distance measurement, often called the pseudo-range. This would be
the same as measuring an EDM distance without applying index and refraction
corrections.

The measurement and computation is usually carried out in three dimensions (X, ¥,
Z). Here we reduce the problem to two dimensions (£, N) as listed in Table 7.1 below,
for simplicity. The principles involved are valid in either two or three dimensions.

130



SATELLITE SURVEYING

A I R R

Figure 7.2

Adopting the usual procedure for Least Squares estimation based on provisional
coordinates according to Equation (6.1)
Ax=L+v

where L; represent the ‘observed minus provisional” terms and v; the residuals about
the mean. Usually, the satellite coordinates are considered fixed, so we have the
typical observation equation. We obtain linear equations of the form:

(dE'® —dE, )sinURE + (N8 —dN ) cosUE =K, —KB =3+ )18 (7.4)

Table 7.1

Data points Horizontal distances from

N E  Satellite/Point A B
3431.47 3730.53 18 1783.5079 1781.4292
2946.97 3011.82 19 1013.2087 1009.3850
1824.27 739.19 24 1723.9440 1722.7334
3521.06 829.67 16 1281.0838 1286.6094
885.13 2000.00 6 2114.8700 2109.2740
3000.00 2000.00 A 0 6.6304
2994.40 2003.55 B 6.6304 0
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where U is the bearing of the line. Usually, the satellite coordinates are considered
fixed, so we have

—dEA sinUR —dNy cosUR =K, —K'8 = 1}$ +V13 (7.5)
In the example below, the following error values in metres have been assigned:
K, =02; Ky =-03; K!8 =10, K!? = 11; K? = 12; K16 = 13; K6 = 14

Table 7.1 gives the standard coordinates from which the other data such as bearings
are calculated.

Table 7.2 demonstrates how the errors are applied to the horizontal distances. For
example, the range from A to satellite 18 is changed by

Kx+K'®=02+10

We will demonstrate that the effects of such errors can be eliminated from the solution
by the method of differencing.

Provisional coordinates adopted for A and B are: (3000.1, 2000.1) and (2994.4,
2003.55) respectively, in the (E, N) reference frame.

The observation Equations (7.5) provide the direct solution for (d&,, dV,) and
(dE}, dNp) from the pseudo ranges given in Tables 7.3 and 7.4.

Table 7.2
Distance error ~ Obs A Obs B Obs §,= Obs A Obs S = Obs B
+K,+ K + Ky + K5

K, 0.2

K, -0.3

K!8 +10 1783.5079 1781.4292 1793.7079 1791.1292

KY +11 1013.2087 1009.3850 1024.4087 1020.0850

K% +12 1723.9440 1722.7334 1736.1440 1734.4334

K16 +13 1281.0838 1286.6094 1294.2839 1299.3094

K° +14 2114.8700 2109.2740 2129.0700 2122.9740

Table 7.3 Values of observation equations (Equations 7.5)

Satellite —cos U, —sin U, Obs S, L,

18 —0.241 9881 —-0.970 2792 1793.707 9 10.272 8332
19 0.052 2454 —0.998 6343 1024.408 7 11.305 0924
24 0.681 9402 0.731 4079 1736.144 0 12.195 0590
16 —0.406 7699 0.913 5307 1294.283 9 13.067 9709
6 1 4.7286 x 107 2129.070 0 14.299 9976
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Table 7.4 Values of observation equations (Equations 7.5)

Satellite —cos Uy —sin Up Obs Sy Lg
18 -0.24534790 —0.9694351 1791.1292 9.7
19 0.04698901 —0.9988954 1020.0850 10.7
24 0.67922871 0.73392667 1734.4334 11.7
16 -0.40933930 0.91238223 1299.3099 12.7
6 0.99999858 0.00168304 2122.9730 13.7

The solutions are of the form as given in Equation (6.7):

Nx=b

which can be written as a series of # linear equation in #» unknowns (see Chapter 6).
For point A,

[dEA] [1.69179189 030984896 '[15.40537747 [ 9.2874
*A T dN, | 71030984896 3.30820811| |—0.3989376 | | —0.9904

and for point B

[dEg] [1.691311 0317625 '[14.5712547] [ 8.7674
BT ang 0.1055529 | | —0.8097

0.317625 3.308690

Summarizing these results,

A =(3000.1 +9.29 = 3009.39, 2000.1 — 0.99 = 2000.01)

B =(2994.4 + 8.77 =3003.17, 2003.55-0.81 = 2002.74)

Unsurprisingly, there are considerable errors in coordinates due to the length errors
and the failure to model them.

7.4 Single differences
To eliminate the effect of the large errors at each satellite, the equations for A and B
are differenced before solving, giving a typical range-difference equation:
: 18 18 : 18 18
—dE, sinUj —dNj cosU, +dEgsinUg’ +dNg cosUg — K +Kp
18 _ ;18 , 18 _ 18 7.6
=LA _LB +VA —VB ( )

18 18

= LAB + VAB

The observation equations of this type are given in Table 7.5.
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Table 7.5 Single difference

Satellite —cos U, —sin Uy —cos Uy —sin Uy L

AB
18 —0.241 988 —0.970 279 0.245 347 0.969 435 0.5728
19 0.052 245 —0.998 634 —0.046 989 0.998 895 0.6051
24 0.681 940 0.731 407 —0.679 228 —0.733 926 0.4951
16 —0.406 769 0.913 530 0.409 339 -0.912 382 0.3679
6 1.000 000 472 x 107 —0.999 998 —0.001 683 0.5999

Solutions are of the form Nx = b, where

1.691791  0.309848 —1.691525 —0.313451
0.309848  3.308208 —0.314027 —3.308443
—1.691525 —0.314027 1.691311  0.317625
—0.313451 —3.308443 0.317625  3.308688

therefore

dE, 23878.098 30322.594 23821.688 30295.636 || 0.680913 137.526

_[dNA | [30322.594 331639.785 29620.216 331644.309 | —0.461803 | | —7.478
YAB T g, |T123821.688 29620216 23767.371 29593.180 || —0.673519| | 137.161
dNg | [30295.636 331644309 29593.180 331649.176]| 0.459671 —7.477

Summarizing these results,

A =(3000.1 +137.53 =3137.63,2000.1 —7.48 = 1992.63)

B =(2994.4 + 137.16 = 3131.56, 2003.55 —7.48 = 1996.07)

The very large changes are due to the assigned errors at A and B being large in relation
to the short line AB and no attempt being made to model them. Such large errors
occur in practice on account of the uncertainties in ionospheric and tropospheric
refraction in satellite systems, or instability of reference marks in monitoring surveys.

This indicates the magnitude of the positional errors that can be present in single
simple receiver results.

However, the differences in coordinates between A and B are preserved and are
little affected by the large errors introduced.

7.5 Double differences

If each equation for the single difference is now subtracted from one reference
equation at a station, in this case the first, the remaining un-modelled station errors
are eliminated. These double difference equations are given in Table 7.6.
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Table 7.6 Each row is obtained by subtracting the first row of Table 7.7 from each individual
row of Table 7.7

18 0 0 0 0 0

19 0.294 23 —0.028 35 —0.2923 0.029 46 0.032 25
24 0.923 92 1.701 68 —0.9245 -1.703 36 0.07777
16 —0.164 78 1.883 80 0.1639 —1.881 81 0.20486
6 1.241 98 0.970 32 —-1.2453 -0.971 11 0.027 16

Solutions are of the form Nx = b as before, where

2.509904  2.458610 —2.513986 —2.461143
2458610  7.386816 —2.464515 —7.386712
—2.513986 —2.464515 2.518084  2.467052
—2.461143 —7.386712 2.467052  7.386616

therefore

dE, 120999.3 —28692.7 120891.1 —28753.7|| 0.005129 0.100865

_|dNa | [—28692.7 2185159 —28988.1 218640.4 || —0.492825| |[—0.101241
*AB = dEg T 11208911 —28988.1 120784.1 —29049.5 || —0.004947 | | 0.000865
dNg —28753.7 218640.4 —29049.5 218765.1 || 0.492561 —0.001241

In this case, the solution is almost perfect, exactly as predicted, showing that the
effects of the very large imposed errors have been eradicated.

In practice, it is important to make simultaneous measurements with two or more
receivers to allow the differencing process to proceed, and to ensure that a sufficient
number of satellites have been observed to secure the necessary redundancy of
measurement.

Guidance as to potential accuracy is obtained from the pseudo-range pre-analysis
using the orbital prediction methods outlined below. Practical systems include
computer software for this prediction.

Other differencing strategies could be adopted, such as swapping the receivers
over and repeating measurements at a later epoch, or differencing the double
differences between two epochs i.e. triple differencing. The latter helps to isolate an
individual error in a line due to an integer miscount (also referred to as cycle slips;
see Chapter 13).

Summary

In addition to the differencing strategies, the various schemes to reduce timing errors
by comparison with base stations linked by radio, and to the field by Blue Tooth
technology, has improved the accuracy of GPS and other similar systems to the 5 mm
mark.
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GPS receivers are now employed in a wide variety of hosts, such as aircraft to
determine tilts, ships to relate to sea-bed transponder calibration, and in many direct
ways for simple navigation.

New systems (such as Galileo) are being developed which, having stronger
signals, will penetrate within buildings and into shallow tunnels, thus opening up new
applications and reducing even further the need for total stations.

7.6 Basic orbital mechanisms

Background

We now use a simple spherical model to explain those mechanisms which underlie
past, present and future satellite systems. A brief study of the Earth—Sun relationship
assists with an understanding of basic concepts, if only for the reason that the Sun and
stars are readily visible, whereas most artificial satellites are generally not. The Sun’s
position is also of interest for general civil use, such as finding the direction of Mecca
and studying the regime of sunlight on buildings.

The parameters (the ephemerides) needed to locate the positions of various
satellites are available on the internet or from system providers, and stellar
information from the Star Almanac for Land Surveyors (SALS). Satellite information
is also transmitted by satellite systems in real-time (broadcast ephemeris), or can be
obtained later as a precise ephemeris.

Rotating systems

A spinning wheel, such as a child’s top or gyroscope, maintains its axis of spin at
a constant direction in space unless subjected to any other forces which disturb
this direction. This can be verified by moving a toy gyroscope around, always
keeping the axis of spin parallel to its original direction. Thus the Earth spins
around its axis while moving round the Sun in an orbital plane (the ecliptic),
always keeping its north—south axis in the same direction (within about one
second of arc).

Thus we see the stars apparently rotating round on a 24-hour cycle (the Sidereal
Day) maintaining relatively identical positions throughout the year defined by one
orbital trip, in approximately 366 sidereal days.

The Earth ‘spinning’ round the Sun is also a gyroscopic system maintaining the
orbital plane at a fixed direction in space. Any attempt to change these directions of
spin brings into action forces which resist this change. This fact gives rise to very
small changes in the Earth’s behaviour (daily wobble) and a rotation of the orbital
plane (annular precession).

In a similar way, natural satellites such as the Earth’s Moon, or artificial Earth
satellites such as GPS vehicles, orbit around their central attracting mass.

The most important elementary fact about all these spinning systems is that they
maintain axes with relatively fixed directions in space. This fact is used to establish
the primary mathematical models used for various calculations. In most professional
applications, these simple models have to be modified to yield the necessary accuracy
for geospatial surveying.
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Orbits

It was established by Kepler and others that an object orbiting around a central mass
behaves as follows:

1. The orbit lies in a plane approximately fixed in direction in space. It is usually
defined by the inclination i of its orbital plane to the plane of the equator.

2. The shape of the orbit is an ellipse with the central mass at one focus.

3. The period T of the rotating object is directly linked to its distance » from the
central attracting mass and a constant C by the expression:

% =Cp

4. The radius vector r, joining the focus of the ellipse to the satellite, sweeps out
an area at a constant rate. The areal velocity is constant.

Practical departures from these Keplerian rules arise from the action of other forces
on satellites and the fact that the Earth’s gravity field is irregular. Since most satellites
used for geodetic purposes lie in nearly circular orbits, whose treatment is simple and
illuminating, we shall adopt a very simple model for our discussions here.

7.7 Elliptical orbits

According to the Keplerian theory of idealized orbits, a satellite moves in an ellipse (i.e.
a plane curve) in such a way that the rate of change of the area, swept out by the vector
joining the satellite to a focus, is constant. That is, the areal velocity is constant.

Consider a satellite moving with constant speed through space unaffected by
gravity. In Figure 7.3, the satellite S moves from A to B in unit time and from B to C
in unit time. Relative to a reference point P the vector PS sweeps out an area at a
constant rate, as the areas of triangles PAB and PBC are equal.

Consider now the satellite at B moving towards P, under the influence of gravity
alone. Suppose in unit time it moves through a distance BD. The net effect of both
motions on the satellite is to move it along BE. The area of triangle PBE = area of
triangle PCB = area of triangle PAB. Since each of these triangles is swept out in unit
time, this means that the areal velocity is constant.

Referring to Figure 7.4, the satellite S moves around the orbital ellipse with the
Earth located at the focus F. The point of closest approach (perigee) is at P. The

Figure 7.3
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Figure 7.4

satellite’s period 7 and the time of observation ¢ (when the satellite is at position B)
can be measured.

To derive the Cartesian coordinates of the satellite referred to the Earth at F, we
require to calculate the angle E corresponding to the time of observation ¢. Notice that
E is the angle AOF where A is the projection of CB on to the auxiliary circle. Once
we have obtained £ we may obtain the coordinates of B (x', )') relative to the origin
at F from

x'=a(cosE—e) (7.7)

y' =bsinE (7.8)

The connection between the eccentric anomaly E and the time of observation ¢ is
given by Kepler’s equation
M =FE—esinE (7.9)
where the mean anomaly
_ 2wt

M=
T

Equation (7.9) is transcendental since we wish to find £ from M using
E=M+esinE (7.10)
Equation (7.10) is solved by iteration, starting from
E'=M+esinM (7.11)

Note: This is the most significant equation in the whole orbital calculation, and its
solution has been given much attention in the past. Today, the computer has made it
commonplace.

138



SATELLITE SURVEYING

Kepler’s equation
To derive Kepler’s key equation, consider Figure 7.4. Let the area of triangle BFP =
A. From the areal velocity law, we have

M_2n =28 (7.12)
A  mab ab

Since the ellipse is a circle uniformly flattened in the ratio b/a and OF = ae,

b b b(1 1
A = —area AFP = —(area OAP —area OAF) = —(—azE——azesinE
a a a\2 2

Substituting for A in (7.12) gives Kepler’s Equations (7.9) and (7.10).

7.8 Cartesian coordinates

Readers unfamiliar with positional astronomy should refer to Appendix 7 before
reading further.

Once the position of the satellite (x', ') in the plane of the orbit has been found,
its Earth-centred Cartesian coordinates (X, Y, Z) oriented on the equator and
Greenwich (see Figure 7.5) are given in terms of the perigee argument ®, the
inclination of the orbit i and the right ascension of the ascending node Q by the
transformation:

X cosQ sin@Q 0|1 0 0 cosw sinw O] x'
Y|=|—sinQ cosQ 0|0 cosi sini||—sinw cosw 0]
VA 0 0 1{{0 —sini cosi 0 0 110

The orbital parameters a, e, Q, m, i and T form the ephemeris (plural ephemerides) of
the satellite. These are usually transmitted to the receiver at the time of observation,
or are obtained later in a more precise form.

Figure 7.5
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7.9 Motion in a circular orbit

Following Kepler’s law of areal velocity, if the orbit is a circle with constant radius
r, then the satellite of mass m moves around the central mass M, the Earth, with a
constant angular speed of ® radians per second. Thus the force ' away from M due
to the motion is

F = ma’r

But o = 27t/T, where T is the period of rotation, so

2
F= 47" mr (713)
T2
Newton’s law of gravitational attraction states that F is also given by
kMm
F=— (7.14)
r

where k is the gravitational constant and M is the mass of the Earth. When » = R (the
radius of the Earth), F = mg and hence kM = gR?, where g is the gravitational
constant. Thus we have the useful relationship
2 4ﬂ2;3 (7.15)
gR
Substituting g = 9.81 m s and 7 and converting time to minutes we obtain the
useful working formulae:

3

r\/2
T =84.6 (—)
R (7.16)
[Sisis)
r=Rexp|-In——
3 84.6

Setting R = 6.4 x 103 km, we calculate the distance » for a GPS satellite from
Equations (7.16) with a 12-hour orbit as 26 678 km, giving the height # = r — R
=2.02 x 10* km. The Earth’s moon with a 28-day period is about 384 000 km distant.

Likewise we find from Equations (7.16) that an earlier system Doppler satellite
with 108-min period was at a height of about 1000 km.

7.10 Example of satellite prediction

Although Earth satellites are no longer observed by angular methods, their positions
relative to the measurement station are required to calculate good geometry for range
or range-difference measurements.

The declinations and right ascensions (see Appendix 7) of satellites vary more
quickly than those of the stars (which only vary slowly) or the Sun. The period of a
GPS satellite is 12 hours, and its angle of inclination is 55°.

The key information about a satellite is the right ascension of its ascending node
(AN). This relates the orbit to the meridian of Greenwich via the right ascension of
Greenwich, better known as Greenwich Sidereal Time (GST).
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Figure 7.6

Figure 7.6 shows the basic elements of a simple model to predict GPS satellite
positions for use in an error prediction model. If a satellite’s geocentric
(corresponding to an observer situated at the centre of the Earth) altitude 4 and its
azimuth z are known at a position whose zenith is at Z, (latitude ¢), its declination &
and hour angle ¢ (see Appendix 7 for definitions) can be calculated from

sind =sin ¢ sink+cos¢coshcos z

cost = sin sec ¢ sec O — tan ¢ tan &

(see Appendix 2) and the GST is found from the Universal Time (UT): GST=UT + R
where R (Right Ascension of the Mean Sun, not to be confused with the Earth’s
radius) is obtained from the Sun’s ephemeris tabulated by SALS (see Appendix 7.2).
The final missing link is the position of the ascending node, AN. This is found
from the inclination of the orbit i in the right-angled spherical triangle formed by AN,
S, and A (see Appendix 2). The distances labelled x and w are derived from the
following equations using Napier’s rule for circular parts (see Appendixes 2 and 7):

sin x = tan d cot (7.17)

sinw = sind cosec i (7.18)

Thus the right ascension of the ascending node is the RA of the satellite minus x. The
angle o is the distance along the orbit which the satellite has travelled since the node.
After a known time At, the satellite will travel a further angular distance Aw given by

At
Aw =—

T
where T is the period of the satellite (approx 12 hours ST for a GPS satellite). Thus
the new value of its declination and RA can be calculated from a second right-angled
triangle using formulae (7.17) and (7.18).
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Table 7.7

ur H(°) z(°) h() o(°) «) x(°) o(°)

07.30 60 116 67 36 26 31 46
08.00 61 93 68 44 31 42 58
09.00 48 60 57 55 55 84 87
10.00 18 58 31 43 91 138 123

The zenith of the observing position has moved to Z, during time At. Finally the
new altitude and azimuth of the satellite are calculated from

cos ¢ tan 0 — cos(f + At) sin ¢
sin(? + At)
sin 2" = sin ¢psin 0 + cos ¢p cos d cos(t + At)

cotz' =

The topocentric altitude is computed via

tan H =tanh —

rcosh

(see Appendix 7.5). The range to the satellite is computed from the radius of the Earth
R and the known orbital distance r. This range is then compared with the measured
range to give the absolute term of a variation of coordinates estimation process. An
example in two dimensions is given in Table 7.7, illustrating the basic principles of
position determination by range difference used by GPS. The data in Table 7.7 are for
successive positions of the GPS satellite vehicle number 19 on 30th March 1992.

Sky charts
The azimuth and altitude data for a satellite or star are often used to compile a sky
chart depicting the geometry of the observation period. Figure 7.7 depicts the data in
Table 7.8 for satellite 19 together with four others used in a GPS fixation.

The cuts of the position lines meet at various azimuths at an angle between 30°
and 150°, giving planimetric strength, and the different altitudes indicate good height
fixes.

Positional dilution of precision (PDOP)

The quality of a GPS position is often described in terms of the square root of the
trace of the dispersion matrix of the final coordinates, or by

2, 2,2
oy toy,+o;

o

referred to as the positional dilution of precision. A factor of 3 is often taken as the
upper bound of acceptability, or, in other words, if the positional variance is three
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Altitude and azimuth sky plot

Figure 7.7
Table 7.8
Satellite ur H) Z(°)
18 07.30 47 70
08.00 37 76
25 08.45 15 145
09.00 21 143
10.00 44 123
24 07.30 47 239
8.00 39 227
09.00 15 210
16 07.30 43 296
08.00 53 294
09.00 74 248
10.00 56 185
4 07.45 18 179
08.00 25 180
09.00 55 182
10.00 84 121
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times worse than the observational variance, the work is unacceptable. Clearly the
geometry of the intersecting lines is critical. The PDOP can be pre-computed in
planning a network (see Appendix 6).

Summary of operational practice
It is clear that to obtain reliable coordinates from the GPS or other systems, great care
is needed by the surveyor. All suppliers of equipment as well as professional
institutions issue user guidance on best practice.

Advice on how best to proceed with GPS surveys is bound to change over time
(see RICS Guidance Notes), however the basic principles are:

1.

w

Independent checking should always be carried out, even if it is merely an
overview of the consistency of results, such as establishing points on an
obvious straight line.

Attention to point initialisation is always worthwhile even if it delays the
survey and results in the moving of reference points until an acceptable quality
is obtained e.g. to avoid multi-path degradation of results.

Always archive the ITRF values upon which the system operates.

When building up a network of control vectors between pairs of points, in
groups of three receivers for example, avoid using correlated vectors as if they
are independent when incorporating results into a network. If a dispersion
matrix is available, then it should be incorporated in the network (see Chapter
8 for an example).

Keep clear records of the events of the field observations e.g. times at which
lock of signal occur, and meteorological data.

Control points should always be fixed from at least five satellites.

Note whether or not the integer ambiguity has been resolved i.e. if a floating
point solution is being used to get a better value to an integer. Points should be
marked for revisiting in case of any problems with post processing and
unacceptable quality of results.
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Chapter 8
Survey Computations

8.1 Introduction

Although the computation of coordinates from measured data is almost always
carried out with the help of software packages and turnkey systems, Excel
spreadsheets can be very useful for immediate computations of small tasks. There is
the occasional need to resort to the hand calculator, if only to check key results. Also,
it is important to be able to verify that a software package is correct.

Therefore, knowledge of the procedures involved is paramount, especially if the
geospatial surveyor is called upon to act as an expert witness in a legal case. We
outline here some basic concepts. Most of the examples have been calculated using
spreadsheets.

GPS results, which are output from a complex processing package, include a
quality assessment in the form of a dispersion matrix. Refer to Chapter 6 for how to
incorporate such results into a survey.

Map projections are much less used than previously. Computations involve the
distortion of directions by the arc to chord (t — T) corrections, and distances by line
scale factors (see Appendix 8). Once these corrections have been applied, the
formulae are the same as for the plane computations treated here.

Computations on the surface of the spheroid (Allan 1997) have also largely been
replaced by three-dimensional plane geometry.

In this chapter, we cover the following topics:

1. Traverses (simple two-dimensional traverse; Least Squares treatment; blunder
detection);

2. Intersection;

3. Lateration;

4. Resection.

8.2 Traverse computation

Simple Traverse

The traverse is a series of points joined together by a chain of distances and directions.
Figure 8.1 depicts the layout of the plan view of a typical traverse. It is usual to
calculate the plan positions (Eastings and Northings) separately from the heights. For
the separate calculation of heights see Chapter 9. A strictly three-dimensional
treatment is usually reserved for high precision industrial work (see Chapter 12).
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Figure 8.1

Coordinate system and datum

Figure 8.1 shows a typical loop traverse, commencing at point (2), progressing
through points (3)—(7) before closing back on itself. If the traverse is an isolated one,
for example to control the mapping of a building site, an arbitrary system of
coordinates is used.

The longest line (2)—(3) is adopted as the reference direction, here called Easting
assumed at a bearing of 90°, and one terminal at point (2) is adopted as the origin of
coordinates, here (2000 m, 1000 m).

Note: 1. It is good practice to select such widely differing values for Eastings
and Northings in order to avoid confusion when copying down figures. 2. There is
a case for not using ‘Eastings’ and ‘Northings’ unless the grid is actually oriented
on these directions, but the use of X and Y can be even more confusing because
there is no universal convention for the direction of the X-axis. Whatever system
is used, it is wise to state on any documentation the convention that has been
adopted.

We also adopt an arbitrary point (1) in the direction of ‘North’, which is clearly at
90° from the direction of line (2)—(3). The length of (1)—(2) is of no interest but for
convenience we adopt 1000 m.

This device has been introduced to suit software that may allow for a traverse to
be linked into an existing network, where points (2) and (1) will have given
coordinates on the existing system.

We now treat the following topics:

The simple traverse computation;

A modification to deal with the misclosures by Least Squares;
An example to show how a mistake in a bearing can be detected;
An example to show how a mistake in a length can be detected.

bl e
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8.3 Example 1: Simple traverse

The first stage is to prepare the crude measurements for calculation. Thus we reduce
all observed angles to the final values to be used in the computation. By this we mean
that any corrections for tilted axes, or projection distortions (t — T) have been applied,
and also perhaps the rejection of bad observations, before the final means are taken.
Slope distances are also reduced to the horizontal, amended for instrument
calibration, and possibly for projection scale factors. The final reduced data are then
ready for use either in some customized software system or, as here, in a spreadsheet.

Note on precision of calculation

Computer and spreadsheet systems operate to far more decimals of precision than the
original measurements warrant. The angles involved in this traverse are recorded to
one second of arc or 0.0003 degree and the distances to 0.001 m. Hence it has some
meaning to record results to this precision. The spreadsheets work to very many more
figures than this. Hence the intermediate results tabulated here, which have been
truncated, may be a little inconsistent if used separately by a reader as the basis for
further calculation.

Tables 8.1 and 8.2 show the reduced internal clockwise angles 4, e.g. at station (2)
between (1) and (3) as 123, and horizontal distances S tabulated in a spreadsheet, with
calculation of the coordinate differences AE = S cos U and AN = § sin U
providing accumulated coordinates E and N, discussed in detail below.

Table 8.1 Simple traverse computation

Internal angle A (sexag.deg.) Bearings U

2—-1 0

1-2 180
123 90.0000 253 90
234 59.7200 354 329.7200
345 127.2489 45 276.9689
456 166.3600 556 263.3289
567 183.3817 6—7 266.7106
672 42.8619 72 129.5725
723 140.4008 257 309.5992
Sum 719.9733
Theory 720.0000 Comp 309.5725
Misclosure 0.0267 c-0 —0.0267
Seconds 96.12 -96.12
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Table 8.2
Distances S Easting E Northing N Station
2000 2000 1
2000 1000 2
263.209 2263.2090 1000 3
41.593 2242.2367 1035.9185 4
90.828 2152.0797 1046.9387 5
118.03 2034.8489 1033.2272 6
70.294 1964.6707 1029.1938 7
45.829 1999.9966 999.9982 2%
0.0034 0.0018 closure
0.00385648 vector

Analysis of angle closure XA
For N stations, the sum of the internal angles X4 should be 2N — 4 right angles or
720°. (In this case, N = 6 because station (1) is not part of the loop traverse.) The
misclosure is 0.0267° short of this ideal, or 96.12 seconds of arc. Does this indicate a
mistake or is it to be expected on statistical grounds? See ‘Checks for blunders’ below
for how to answer such a question. Suffice it to say that we are satisfied with this
result and can proceed without hesitation.

Note For approximate calculation in the field, the angular misclosure can be
spread equally to the angles to make them consistent with theory. In the proper
treatment by Least Squares Estimation no such ‘corrections’ are made.

Calculation of bearings U
The next stage is to obtain the bearings of all lines (see Table 8.1) commencing with
the assumed bearing of the line (2-3), U, ; = 90°. Then the reverse bearing,

U, = U, ; + 180° = 270°
The next bearing
Us 4 = Uy, + Ay = 270 + 59.7200 = 329.7200°
The reverse bearing
U, ; = Uy, + 180° = 329.7200 + 180 = 509.7200°

Since this exceeds one cycle we can subtract 360° to give U, ; = 149.7200°. (Notice
this is the same as 329.7200 — 180 = 149.7200.)

However, computer software is capable of calculating the trigonometrical
functions of many cycled functions such as 509.7200° so there is often no need to
subtract 360° except for visual inspection.
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This process is repeated until all bearings are obtained, including the last bearing
(2—-7) carried through the traverse.

U, , = 309.5725°.

Since this bearing will be used later to compute the provisional coordinates of
point (2) carried round the traverse, it is called the ‘computed value’ of the bearing
U,_, denoted by U*, .. Since the angle (723) was also observed we can get a second
value for the bearing from

Uy, = Uy ;3 — Apyy + 360° = 309.5992°

This observed bearing will not be used to compute provisional coordinates so is called
the observed value denoted by U°, . The two versions of this bearing clearly differ
by the angular misclosure (Table 8.1):

U#*, ., - U% , = C — O = 309.5725° — 309.5992° = -0.0267

Calculation of coordinates

We are now in a position to compute the coordinates of all points (Table 8.2),
including the starting point (2) taken round the traverse. The coordinate differences
are obtained from equations

E3 = EZ +S2_3 COSU2_3 (81)

N3 = N2 + S2_3 sin U2_3 (82)
For example,

0=10004+263.209 X cos 90
2263.2090 = 2000+ 263.206 X sin 90
Note: If using Excel, angles must first be converted to radians via SIN(U*PI()/180).

This concludes the simple traverse computation; no attempt is made to ‘distribute’
the misclosure of 0.0034 in Eastings and 0.0018 in Northings.

Analysis of positional closure

The two values of point (2) indicate the quality of the work. In this case these values
of 3 and 2 mm are very good indeed. In ordinary work, closures of cm are more
common. In this particular case, the fieldwork was carried out to very stringent
standards for a deformation study so the high quality result is not unexpected.

Checks for blunders
There are two checks which can be carried out:

1. That the bearings taken round in a loop agree to within an expected limit.
2. That the extra distance connecting the last two points agrees within expected
limits.
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Simple traverses are therefore not very reliable in a statistical sense (see Chapter 6).

As a guide in the field, bearings usually have to be within + 36+(2n) where there
are n observation stations, and a direction standard error is 6. This value of sigma is
selected from previous experience, or from a computer simulation of the task in hand.
For example if » = 6 and 6 = 10", bearings have to agree to 104". If they do not, a
blunder is suspected, and search made for the likely source. In this case the misclosure
of 96" gives no cause for investigation.

In fact the traverse ran along a sea front from (2-3), and along a cliff top from
(3-7). Both of the short legs (3—4) and (7-2) were very steep (about 41°) and could
be a source of cross tilt error (i tan H; see Section 13.5) even although this was
guarded against by careful levelling. If a mistake is made in recording a direction at
one station, it can be detected by computing the traverse clockwise and anticlockwise.
(See example 3 below). The station containing the mistake will have identical
coordinates in both calculations.

The distance check should meet the criterion of 36Vn, where o is the standard
error of a typical length. For example if ¢ = 2.5 mm and n = 6, the limit of
tolerance is 18 mm.

If a blunder has been made in one length, and no other mistakes are present, the
final compared distances will differ by a vector which has the same direction as the
line in which the blunder lies (see example 4).

8.4 Computation by Least Squares

The principle of Least Squares estimation is used to resolve what to do with redundant
information, such as the bearing and position misclosures. If a Least Squares
treatment is to be given, no alteration of the observation data should be made, because
the hand computation is only to provide provisional coordinates.

There is some justification for reconciling small discrepancies within the closure
bounds, such as distributing the bearing error, recalculating and then distributing the
final vector misclosure (Bowditch method). If this so-called adjustment makes a
material difference to the result, it should not be done, and the work should be
repeated to a proper standard.

Some software systems require that the theodolite circle be set to an approximate
bearing at each station as the work proceeds, as it helps to identify quadrants.

Example 2

Consider the traverse of Figure 8.1. Two fixed points are assumed to be (2), the initial
traverse point, and (1), a fictitious point not actually observed. The reason for
adopting this procedure is that the software was written on the assumption that the
traverse would always be tied to a fixed control point to give it orientation, as in
cadastral work. This computational device does not affect the relative results in any
way. In this example the traverse is oriented by an arbitrary direction.

All directions have been assigned an optimistic 10" standard error, being the
means of three rounds taken on a fotal staton. All distances have been reduced for
slope and index and have been given standard errors of 5 mm.

When approximate coordinates have been calculated via the simple computation
described above, direction and distance equations are formed, and the solution obtained.
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The direction equation for AG developed in Chapter 6 (Equation 6.20) is
(o] (o] 2 o
6EA —6EG —éNA tanUAG+(3NG tanUAG+(NG —NA)SCC UAG 6UAG +KAG =0

(6.20)
where
* * * % O
Kpg = F(Ep,Np,EG,Ng,U)

and K, is obtained by substituting the provisional coordinates and the observed
bearing into the expression

AE = AN tan U

A simpler alternative form of coefficients of Equation (6.20)
Defining L = computed — observed parameter as usual, we have in this case

* o o *
L=U -U or U=U —-L
By definition,
K=AE —AN"tanU
=AE —AN tan(U" —L)
Now since L is small, expanding by Taylor’s theorem we have
* * * * * * 0
K=AE —AN" tan(U —L)=AE" —AN" tanU" +ANsec’ U L
But
2 (&)
K=ANsec“UL
for
AE" = AN tanU" =0

Thus Equation (6.20) can be written

] ) o
6EA —6EG —6NA tanUAG+(3NG tanUAG+(NG —]\]A)SCC2 UAG 6UAG

(&)
+(Ng —Np)sec? Upg Lag =0

(8.3)
Putting the length of the line AG = S, ; Equation (8.3) is easily simplified to
U U inU inU
cos 6EA—COS 6EG +&6NA—&6NG +LAG =VAG (84)
SAG SAG SAG SAG
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because
_6UAG =U_U ='VAG

is the residual.

Equation (8.4) is the more commonly used version of a direction equation.

Since the direction of the example in the above Equations (8.3) and (8.4) was
derived from angles measured relative to a direction between fixed points, there is no
unknown orientation parameter Z at the observation station.

This situation applies only to station (2) of the traverse where there is a fixed
direction to station (1). At the five stations (3—7), allowance has to be made for an
error in orientation by adding a parameter Z at each observed station. For example,
the direction equation from (3—4) with the addition parameter Zj is

cosU 6E3 B cosU 8E4 + sinU 6N3 B sinU
S S
34 34

Ny +Zy+ Ly =Vay (8.5)

S34 S 34

Since the point (2) is held fixed there are no variables for its coordinates. Also, since
the bearing (2—1) is fixed, there is no unknown orientation parameter Z at point (2).
The equation for the line (2-3) is therefore

cosU sinU
OE; ——— 8Ny + Lyy =Vyy (8.6)

S23 S23

Finally, since we have decided to calculate the bearings in the sexagesimal system,
the values of L are in seconds of arc. Thus all coefficients of the coordinate variables
have to be scaled by 206265 (the number of seconds in a radian). For example, the
coefficient of 6N, in Table 8.3 below is

sin 90
263.209

206265 X

=783.654814

Distance Equations

The distance equations are of the form of Equations (6.28), no allowance being made
for an instrument index (see Chapter 13). The equation for the line (3—4) is therefore

(E4—E3)5E +(N4_N3)6N _(E4_E3)6E _(N4_N3)5N (87)
s 3 : s !
34 34 34 4
iyt L34 =0

The coordinates of the other five points are free to change giving ten variables, and
each station has an unknown orientation parameter Z i.e. 15 variables in total (V).

152



SURVEY COMPUTATIONS

Table 8.3

ij OF,; ON; 5Ej 8Nj L
Direction coefficients

23 -1.74x 10713 783.654814 1.7401 x 10713 -783.65481 0
27 —2868.8394 —3467.9297 2868.83938 3467.92969 0
32 -1.74x 10713 783.654814 1.7401 x 1013 ~783.65481 0
34 —4282.5619 -2500.5222 4282.56193 2500.52219 0
43 —4282.5619 -2500.5222 4282.56193 2500.52219 0
45 —275.53454 —2254.1633 275.534536 2254.16332 0
54 —275.53454 —2254.1633 275.534536 2254.16332 0
56 203.014123 —1735.7321 -203.01412 1735.73207 0
65 203.014123 —1735.7321 —-203.01412 1735.73207 0
67 168.369236 —2929.4843 -168.36924 2929.48428 0
76 168.369236 —2929.4843 -168.36924 2929.48428 0
72 2867.22301 3469.2662 -2867.223 3469.2662 -96.12
Distance coefficients

23 -1 22204 x 10716 1 —2.22x 10716 0
34 0.50422621 —-0.8635716 —-0.5042262 0.86357161 0
45 0.99261216 —-0.1213306 -0.9926122 0.12133057 0
56 0.99322937 0.11616977 -0.9932294 —-0.1161698 0
67 0.99835245 0.05737933 —-0.9983524 —-0.0573793 0
72 —-0.7708191 0.6370541 0.7708191 —-0.6370541 0.0015

There are 12 observed directions and 6 observed distances, giving 18 observation
equations (M). Thus the redundancy is M — N = 3.

The coefficients of all the variables are listed in Table 8.3.

Since we used the observed measurements to obtain the provisional
coordinates, only the last direction and last distance exhibit absolute terms L
other than zero (see last column). As it is not possible to display the coefficients
of this (18 x 15) matrix in full form, we simply show its pattern in Table 8.4. The
coefficients of Z’s are all 1, the asterisks * show where the numbers from Table
8.3 are located and the values of L are listed in Table 8.3. All other terms are
Zero.

Table 8.5 shows the actual values of the first and last three columns of
Table 8.4.
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Table 8.4

E, N, Z, E, N, Z, E; Ny Z; E; N, Z, E, N, Z, L

27 P n
23 * N
32 % x| "
3405 x| x s N
43 % P N
4s bk s N
54 N b N
56 bk s N
65 - b N
67 b s N
76 - b
72 b
23 * N
34 % N N
45 N - N
56 - - N
67 - - N
72 - N

Weighted equations

The observation equations are of the form Ax = L + v and the normal equations are
AMwax = A"wL

where W is a weight matrix. In this case W has no covariance terms so this weight
matrix is a diagonal matrix. Also the weight of a direction is 1/10? and of a distance
is 1/0.0052.

The standard error of unit weight is computed via

T
Std Error=l(v WVJ=1.64
2\M—-N

The station corrections Z are of little interest. The initial coordinates E’, N', their
corrections and final estimates are listed in Table 8.6.

Finally the set of coordinates submitted to a client are rounded to a realistic
precision of 1 mm. The estimate of the standard error or unit weight of 1.64 indicates
a reasonable estimate of original weights.
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Table 8.5 Observation Equations

E, N, Z, E, N, z, L
2 0 0 0 2868.83938  3467.92969 0 0
1.7401 x 10713 —783.65481 0 0 0 0 0
3 1.7401x 10713 —783.65481 1 0 0 0 0
3 —4282.5619 -2500.5222 1 0 0 0 0
4 —4282.5619 -2500.5222 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
6 0 0 0 168.369236  —2929.4843 0 0
7 0 0 0 168.369236  —2929.4843 1 0
7 0 0 0 2868.83938  3467.92969 1 96.12
23 1 —2.22x10716 0 0 0 0 0
34 0.50422621 -0.8635716 0 0 0 0 0
45 0 0 0 0 0 0 0
56 0 0 0 0 0 0
67 0 0 0 -0.9983524  —0.0573793 0 0
72 0 0 0 0.7708191  —0.6370541 0 0.0015
Table 8.6
Stat E' dE E N dN N
2 2000 0 2000 1000 0 1000
3 2263209  —0.0013 2263.2076 1000 0.0071 1000.00711
4 224223672 -0.0015 224223518 103591853  0.0071 1035.92564
5 2152.07974 —4.85x107% 2152.07969  1046.93875  0.0102 1046.94899
6 2034.84888 —0.0006 2034.84821  1033.22723  0.0227 1033.25000
7 1964.67069 0.0013 1964.67202  1029.19381  0.0014 1029.19522
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Since there is little redundancy, the reliability of a simple traverse is never high. If,
however, additional intersections are made to a visible “up station’ such as a church
tower, the reliability can be vastly improved even if these extra observations add
nothing to the accuracy of the actual traverse. This practice is never possible in many
cases, however, such as inside a tunnel or oil pipe (see Chapter 6).

Note on simplifying the calculations

It is possible to simplify the calculation of the normal matrix by first scaling the
observation equations by the reciprocals of their standard errors, and forming the
normals directly from these scaled equations. This stems from the fact that the weight
matrices are diagonal. We can write

ATwa = ATJw/wa

Thus the diagonal terms of weight matrix YW will be either ¥(1/102) or v(1/0.0052)
i.e. 0.1 or 200. If we multiply each direction equation by 0.1 and each distance
equation by 200 we obtain scaled observation equations

\/WAx=\/WL+\/WV

Operating on these new equations in the same way as the original observation
equations gives the weighted normal equations, for

ATJW YWAx = ATVW VWL +ATJW ' YWy

As W is a diagonal matrix, so also is W, therefore

NN

Therefore we have once more

ATwax = A"wL
as ATW v =0.
It is also possible to reduce the number of equations to be solved by applying
Schreiber’s method described in Section 8.10 below.

8.5 Traverse blunders

By downloading data directly to a laptop or other data logger, the chances of a blunder
in the work are greatly reduced. However, if they do occur, the following
computational strategies are useful to detect single mistakes.

Traverse blunder in distance
If a mistake is made in measuring one leg, the effect can usually be detected and the
line checked. Table 8.7 shows the effect of introducing a metre error into the line
(3—4). The misclosure vector is one metre plus random error, and at the same bearing
as the line (3-4).

The process can therefore be used in reverse to locate the likely leg in which a
mistake is made. The bearing of the misclosure is arctan(—0.862, 0.508) = 329°.
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Table 8.7
U U S E N
1 2000.000 2000.000
1-2 180.0000 2000.000 1000.000
2-3  90.000 90.0000 263.209 2263.209 1000.000
34 59.7200 329.7200 42.593 2241.732 1036.782
4-5  127.2489 276.9689 90.828 2151.576 1047.802
5-6  166.3600 263.3289 118.03 2034.345 1034.091
6-7  183.3817 266.7106 70.294 1964.166 1030.057
72 428619 129.5725 45.829 1999.492 1000.862
2-7  309.5992 309.5725 closure 0.508 —0.862
Bg closure 0.0267 vector 1.002

96.12"

Traverse blunder in bearing

In a similar manner, the effect of a mistake of 1 degree at station (4) swings the rest
of the traverse to create a 4 m misclosure perpendicular to the line (4-2); see Table
8.8. Thus the perpendicular bisector of the vector misclosure passes through the point
at which the mistake was made, and so the blunder station can be found.

Table 8.8
U t S E N
1 2000.000 2000.000
1-2 180.0000 2000.000 1000.000
2-3  90.0000 90.0000 263.209 2263.209 1000.000
3-4  59.7200 329.7200 41.593 2242.236 1035.919
4-5 128.2489 277.9689 90.828 2152.286 1048.511
5-6  166.3600 264.3289 118.03 2034.833 1036.847
6-7  183.3817 267.7106 70.294 1964.596 1034.039
72 428619 130.5725 45.829 1999.407 1004.231
309.5992 310.5725 vector 0.593 —4.231
Bg closure -0.9733 4.273

—3503.88
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Another way to locate this mistake is to compute the traverse in the reverse
direction, from (2—7) and so on, clockwise back to (2). Only point (4) will have the
same coordinates in both calculations, thus proving it is the guilty point. Some
surveyors compute every traverse in both directions to give some idea of its
intermediate consistency.

Traversing is often the only way to fix control, particularly inside buildings,
tunnels or large pipes and in urban streets and forests. It therefore has to be done with
care and a system of quality checking the basic data. If it is inevitable that the traverse
cannot be closed, another return route should be taken to close back on the starting
point. Inside a tunnel this should be a mirror image of the inward route, to balance the
effects of refraction on lines of sight, which can be as much as 10" per station in a
systematic manner.

8.6 Error propagation in traverses

The precise way to determine the errors propagated through a traverse or any network
is by considering the error ellipses at points and between points. The former are
dependent upon the choice of datum, usually the starting point of the traverse, while
the latter give information between pairs of points.

For example, the positional error ellipses, for a straight unclosed traverse of n
equal legs starting at a fixed point 4 with a fixed bearing, grow larger from zero at the
fixed starting point to a maximum at its end. All directions and lengths are assumed
of the same weight (Figure 8.2).

As a rough guide in the field, the simple analysis of a straight traverse can be of
assistance in planning work. Consider a straight traverse of n legs each of length S
along the x-axis with angular errors at each station of - The linear standard error in
x between the ends of the traverse is

o,=0,\n

N
0,=80,sinl gn(n+1)(2n+l)

RO Positional error ellipse

and in y is

RO

Relative error ellipse

Figure 8.2
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Suppose the standard error of a leg is 2.5 mm, the 16 legs are each 50 m long and the
standard error in an angle is 10", then we have 6, = 10 mm and c,= 9.4 mm.

8.7 Intersection

Intersection is when a point is fixed by two intersecting angles from known points. In
most ordinary work, the problem is treated in two parts: plan (£, N) followed by
height AH. In very precise industrial work the problem has to be treated properly in
three dimensions (see Chapter 12).

We consider plan only. If only two rays are present there is no redundancy. If
several rays are used, a Least Squares approach is employed. In this case, the
observation equation to be used is Equation (8.3) above. Generally, the treatment is
identical, but the orientation error Z should be very small as a known bearing is used
as the reference direction. Many surveyors set the theodolite circle to a bearing for
this purpose and to ease the arithmetic. An example of this type of equation was given
for the traverse computation above.

The provisional coordinates of an intersected point can be obtained graphically or
by direct solution using two fixed points.

Consider Figure 8.3 in which the new point P is to be fixed by intersection from
the known points A and B. The points are listed in clockwise order ABP. The known
quantities are angles «, 8, E,, N, Eg and Np.

Figure 8.3
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The computation is carried out in the following stages.
(a) Obtain the bearing of AB from

Upp=arctan(Ng — N, Eg —E )
(b) Obtain the bearings of AP and BP from
Upp=Upgta
Ugp =Up+180—-p
(c) Calculate the coordinates of P from the formulae

_ NA tanUAP _NB tanUBP _EA +EB
tan UAP tan UBP

P (8.4)

_ EA COtUAP _EB COtUBP _NA +NB
cot UAP cot UBP

. (8.5)

These formulae are derived from rearranging the expressions:
Ep —Ep

Ep —Egn
tanUpp =—— and tanUgp =——
Np—Ny Np — Ng

Example 3
We use the data of Table 6.3 for points B and C to fix G by intersection using bearings
U. In the notation of Equations (8.4) and (8.5), point C of Table 6.3 becomes A, B
remains B and G is the new intersected point P. Hence in the notation of Figure 8.3,
the data are

E N U U (deg) tan U cot U
A 564.439 487.776 AP 231.1238 1.2403675 1.24036751
B 567.895 443.275 BP 276.3248 -9.0220816  —9.0220816

Hence the coordinates of P(G) are (£}, Np) = (516.330, 448.990).

Alternative formulae for angles
Alternative formulae for intersection in terms of the angles  and 3 are:

+E),—FE
Np = Ny cotff+Ngcota+Ey —Eg (8.6)
cota+cot 3
E)cotf+Egcota— Ny +N
Ep = A COt B+ Ep At N (8.7)
cota+cot 3

Again, we adopt a clockwise convention when listing the points. Note also that the
various products involve data from both points, unlike in the bearings formulae e.g.
compare N, cot B with N, tan U,,.
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Example 4
The data for the above example are
E N Angle Angle (deg) cot
A 564.439 487.776 a 55.5645 0.68562362
B 567.895 443.275 B 79.2344 0.19013702

giving as before the coordinates of P(G) to be (£}, Np) = (516.330, 448.990).

Error analysis
As mentioned already, guidance in the analysis of error can be derived from a simple
graphic treatment, considering the angle of cut between the rays, and their likely lateral
shifts. A precise calculation can then be done, by the Least Squares method, to examine
the error ellipses in the most interesting areas, such as close to the base line AB.
Figure 8.4 shows the usable space within which a satisfactory result may be
obtained from the intersection of points from the two fixed stations A and B. The
plotted criterion is usually the sum of the variances in £ and N, called the Positional
Dilution of Precision, or PDOP.

PDOP =02 +0% = a* +b*

where a and b are the semi-axes of the error ellipse. Sometimes the maximum error,
a, 1s used as an alternative criterion to illustrate the bounds of the area within which
the required precision will be achievable.

For a complete example of the error ellipse see Section 8.10 below.

8.8 Fixation by distances only (lateration)

Fixing position by lengths alone is called lateration. It is more usually known as
trilateration when three sides are measured to fix a triangle. The computational
procedure is similar to other methods once the measured distances have been reduced
to a common reference system, usually the ellipsoid or on a projection. The treatment
of distance equations by Least Squares can be read in Chapter 7.

Figure 8.4
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Direct solution of lateration coordinates
Although provisional coordinates may be obtained from a solution of the triangle
ABBP, the following direct formulae are convenient.

1
2p2

1 2A
Ep =2 (Ex+Ep)+—— (a® =b*)(E ~Ea) =7 (VA= Np) (8.8)

. 1 2A
Np =§(NA+NB)+2_2("2—192)(NA ~Np) =5 (EamEp)  (39)
» p

where

A=S(S—a)S—b)S—p) and 2S=a+b+p

For a proof of these formulae refer to Figure 8.3 in which C is the mid-point of AB,
AB = p and PC = gq. The coordinates of P are given by

Ep = Ec +¢gsin(6— o)

Np =N¢ +gcos(6—¢) (8.10)
and the area of the triangle ABP = A is calculated as
1
A =— pasin
5 pasinf
Then we have
2D 2—p? Ep—E Ny —N
sinf=-"—, cosf=-— , sinp=—2—"B  (osp=——~A "B
rq 2pq p p

Substituting these expressions into Equations (8.10), remembering that C is the
midpoint of AB, we obtain Equations (8.8) and (8.9).

Example 5

Using the same basic datai.e. (E, N,) = (564.439, 487.776) and (E}, N) = (567.895,
443.275) the point P is fixed from A and B by the distances AP and BP. The
calculations are displayed in the following extract from a spreadsheet.

AB=p AP=5» BP=a 28 S
44.6349968 61.7960237 51.8802233 158.311244 79.1556219
S-p S—-b S—a A
34.5206251 17.3595982 27.2753986 1137.45859
Term 1 Term 2 Term 3
566.167 0.97766536 -50.814113
E 516.330
465.5255 —12.588856 —3.9462838
N 448.990
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8.9 Resection in two-dimensions

If directions in the horizontal plane of a theodolite circle are observed at an unknown
station P to three known points A, B, and C, the coordinates of P in the horizontal
plane can be calculated, provided all four points do not lie on a vertical cylinder.
Considering only the horizontal plane through the theodolite, this condition means
that all four points, P and the projections of A, B and C on this plane, must not lie on
a circle.

Before the widespread availability of total stations, this surveying technique,
known as resection, was very convenient in the field when fixing photo control
points, positions at sea or on engineering sites where sudden decisions have to be
made to fix a point with reference to visible controls without visiting them.
Coordinated points such as church spires are excellent for this control. It has less
importance with the advent of reflectorless EDM, but is still worth considering.

The computation is usually effected by Least Squares and coordinate variation, if
software is available, and more than three control points are observed, as a check. We
shall give a full example of this technique as a further illustration of the Least Squares
method, and for the purposes of

1. demonstrating the use of a device, Schreiber s method, to remove unwanted
parameters from a solution, and
2. computing a positional error ellipse in full.

Table 8.9 lists the coordinate data to be used and shown in Figure 8.5. The problem
is to find the coordinates of A by angles only.

The observation equation for a direction is (see Equation (8.3))
PdE+QdAN+Z=L+v (8.11)

For convenience, the value of L for the reference direction, A to 18, is set as zero, by
assuming the initial observed bearing to be the same as the computed bearing. Other
observed bearings are obtained by adding the observed angles to this initial bearing.
Using the provisional coordinates of A we compute the bearings to the controls as
shown in column 2 of Table 8.10. These bearings are reduced to a zero setting at

Table 8.9 Plan coordinates of data points

Point x (N) v (E)

18 3431.47 3730.53
19 2946.97 3011.82
24 1824.27 739.19
16 3521.06 829.67
6 885.13 2000.00
A 3001.00 2001.00
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»

20

Figure 8.5

station 18 in column 3, and converted to sexagesimal values in column 4. The
observed directions referred to a zero setting on station 18 are shown in column 5. The
absolute vector L (computed — observed bearings) is shown in column 6.

The full observation equation coefficients and the absolute vector are given below,
computed from Equation (8.11). Note that the precision of the figures for the
coefficients can be misleading: the equations are not linear to this precision.

It will be noticed there is a sixth equation, marked with asterisks. This Schreiber
equation is explained in Section 8.10. The normal equations i.e. Nx = b (see Chapter
6) are given on the assumption that the directions are all of an equal weight still to be

found.

Table 8.10

Station  Bearing With ref. Sexagesimal Observed Absolute vector
to station 18 values directions L=C-0

18 76.0234 0 0 0° 00' 00" 00.00

19 93.0597 17.0363 17° 02' 10.46" 17° 00" 32" -98.46

6 180.0271  104.0037 104° 00" 13.23" 104° 00' 05" -8.23

24 226.9982  150.9748 150° 58' 29.36" 151° 00" 04" 94.64

16 293.9408 2179174 217° 55' 02.60" 217°59'59"  296.40
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Table 8.11

1(P) 2(0) 3(2) 4(L)

—27.951 112.304 1 0

10.876 203.476 1 —-98.46

97.485 —0.046 1 -8.24

81.535 —87.430 1 94.64

—65.310 —147.098 1 296.40

*43.216 *36.316 *2.236 *127.16

Table 8.12

1 2 3 4 5
21316.22 1547.78 96.63 -13514.98 -0.979
1547.78 83296.26 81.21 —71909.17 —-0.934
96.63 81.21 5 284.34 90.95

Table 8.12 shows the normal equations in columns 1 to 4, and the solution in column 5.

The final coordinates are:
(E4, N,) =(2001.00 - 0.979 = 2000.021, 3001.00 — 0.934 = 3000.066).

The residuals, in seconds of arc, are

13.43
—11.12
v=| 3.73
—1.88
—4.77

giving the standard error 2.603" (see Chapter 6).

8.10 Schreiber reduction

The orientation parameter Z is of very little interest to the surveyor. At every station
where horizontal angles are observed, one such parameter has to be included, thus
increasing the size of the matrix of normal equations unnecessarily. The parameter
can be eliminated by Schreiber’s method, as follows.

Compile an additional observation equation whose coefficients are the respective
sums of all coefficients in each column, including the absolute term, divided by the
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square root of the number of directions. For example, the first coefficient of this
Schreiber equation marked in the previous section is

—27.951+10.876+97.485+81.535—65.310

J5

The Schreiber normal equations are formed from the Schreiber observation equation
in the usual way, giving

43.216 =

1867.63 1569.45 96.63 5495.44
1569.45 1318.87 81.21|x=|4618.04
96.63 81.21 5 284.34

If the Schreiber normal matrix is subtracted from the original normal matrix, the
equation with the orientation correction Z is eliminated, as shown:

19448.59 —-21.67 O —19010.42
—21.67 81977.39 0|x=|—76527.21
0 0 0 0

Solving the smaller 2 X 2 matrix (neglecting the zero terms) provides the same answer
as before, as illustrated below. The inverse of the 2 x 2 matrix is given to show that
the error ellipse parameters are unchanged.

X =
—0.934

_|5.1418%107° 1.359x107° [—0.979}
1.359%107%  1.2198x107°

Schreiber’s method can be used in all cases where such a parameter is present, such
as in distance measurement. It is useful where the capacity of the computer is being
stretched to the limit.

8.11 Error ellipse and pedal curve

The quality of the fixation may be represented graphically by an error ellipse and its
pedal curve. First we find the direction T of the maximum variance from

2T = arctan (ZOEN,OJZV —O%)
= arctan (2x1.359x107%,1.2198 107> —5.1418X10™°)
=180.0°

Therefore T = 90°.
Now a and b, the semi-major and semi-minor axes of the error ellipse, are given by

24° =0?\, +0}25+A and 2b° =0%\, +0,2§—A
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where A is given by either of the equations
A=20pycosec2T or A= (O‘%V —a%)secZT

From the second equation we find A = 3.922 x 107. Therefore, a and b can be
derived from the above equations. We find @ = 0.072 and b = 0.035.
The equation of the standard error o, at any direction U is given by

_ \/6.3616><10_5 +5.1418 x107° cos 2 (U — 90)
- 1.414

oy

8.12 Direct resection solution

The Snellius method has been found to give the most universal solution to the
resection problem. Because the once-popular Tienstra solution fails in the
common important case when the three control points are collinear, it is not
advocated.

The angles a, § and y observed at P to three control points A, B and C and the
side lengths a and b are known. The problem is first to find an unknown orienting
angle such as x or y, then to solve for the coordinates of P. From Figure 8.6 we
have

x+y=360"—(a+pB+C)=S
say, which is known.

bsinx _pC= asin y

x=8—y and ; :
sinb sina

therefore

sinx asinb
- =— =K, say
siny bsina

Figure 8.6
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which is also known, therefore

(S — ‘
K= M= sinScot y—cos S
sin x
and finally
K+cosS
coty=——— (8.12)
sin S
Note that although it is possible to set
sind a
sinB b

this ratio, calculated from angles, is indeterminate when C lies on AB but not if the
sides are used. Once y, and therefore angle PCB, has been found, we calculate the
coordinates of P by intersection from B and C.

Example 6

The control points A, B and C to fix point P are:
Point E N
A 3730.53 3431.47
B 2000.00 885.13
C 829.67 3521.06

The extract from a spreadsheet calculation of (E, N) is displayed below.

Angles a b C x+y=S8
Deg 113.998333 142.000278 64.2902377 39.7111512
Rad 1.98964626 2.47837239 1.12207632 0.69309034
K asinb/bsina

K 0.66969017

coty (K + cos S)/sin S

coty 2.25219262

tan y 0.44401176 deg

y 0.41786295 23.9417837 check

x 0.27522738 15.7693675 15.7693675

PC PC= asiny/sina

PC 1281.11838

angle PCA 0.38799288 22.2303547
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Bearing CP 113.999312

Rad 1.98966334
dE 1170.36613 2000.036 E Final Solution
dN —521.06374 2999.996 N

It is most important to be systematic about the signs of the various angles, particularly
if a computer algorithm is written. When the new point P lies outside the control
triangle ABC, special care is needed. The following convention is acceptable:

1. Letter the triangle ABC in a clockwise manner.
2. Assign the angles &, 8 and y also clockwise. For example « is the clockwise
angle between the directions PB and PC (i.e. those not involving A).

It is also prudent to anticipate what will happen to the arithmetic process when the
point P lies on the danger circle through ABC. In this case, x =y, K=1and § =0,
therefore sin § = 0 and cot y is indeterminate. No unique solution is possible.

8.13 Error analysis

Combining a graphic figural treatment, to obtain general information, with a Least
Squares analysis of the interesting cases, is the best method of performing an analysis
of resection errors.

Resection consists in general of the intersection of two circles defined by the
angles subtended at two control points. In Figure 8.7 we have the two angles ¢ and
subtended by the pairs of points A and B and C and D.

The angle a defines the circle, centre O, radius 7, through the controls A and B.
The other circle is defined by . The point P lies at the intersection of these two
circles. There are two solutions, one of which is correct. Usually this can be chosen
from other information such as estimated distances. Of course, if the angle BPC is
also observed, there is no ambiguity. At sea, two angles are usually observed by two
different sextants. The two position-circles aid the error analysis.

At P, the solution consists of the intersection of the two tangents, which are
perpendicular to their radii. Thus in the detailed diagram on the right of Figure 8.7 we
see that P is fixed by two lines intersecting at an angle 8. This angle is subtended by
P at the two centres, O, and O,. Thus the resection problem has been reduced to an
equivalent distance intersection problem. If we decrease the angle a by da the tangent
at P moves away from the centre by dr, given by

dr= a—bdasinl"
p

where a, b and p are the lengths of the sides of the triangle ABP. In this way we can
calculate the shifts to the radii, and estimate the strength of the positioning of P. If
some close comparison is required of two values, the numerical Least Squares method
is needed.

The figural approach is useful as a management tool in the field. It is also a useful
way to locate a buried mark for which previous angles to the controls are known.
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0,

0, .
\ centres of circles

tangents at P

Figure 8.7

Angles are taken at a likely point P close to the mark. The tangents can be marked out
by strings because the angle BPO;, = BAP — 90°. The shift is computed from the
change in the angle between the old and new, and thus the position line for the mark
laid out by an offset string. The same approach to the other angle 8 gives a second
string line and the location of the mark. This procedure is much easier and more
accurate than coordinating the new point and calculating the bearing and distance to
the old mark. It should also be noted that the coordinates of the control points are not
required, only the old angles to them.
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Chapter 9
Heights and Levels

9.1 Introduction

Knowledge of the heights and levels of points on the surface of the Earth is required
to:

1. enable survey measurements, aerial photographs and satellite imagery to be
reduced to a datum surface such as sea level, or a reference ellipsoid;

2. create digital terrain models (DTMs) to be used to solve such problems as
inter-visibility between points on the ground,;

3. enable drainage and other water works to be surveyed so that water may flow
in desired directions;

4. enable relief to be depicted on topographical and air maps;

5. enable roads and railways to be constructed in such a manner that steep hills
are avoided;

6. provide information for scientists concerning the shape and structure of the
Earth, and tectonic movements on its surface.

The vertical and levels

The vertical is the direction which a plumb line takes when it hangs freely under the
effect of the Earth’s gravitational pull. A horizontal surface is a level surface at right
angles to the vertical. The height of a point may be defined as the linear distance from
the point up or down the vertical through the point, to a reference horizontal surface
or datum. Later in this chapter height is defined purely in terms of gravitational force.
If the horizontal datum surface covers a small portion of the Earth it may be sufficient
to consider it as a plane surface throughout its entirety, but when treating the surface
of the Earth as a whole, the horizontal surface will be curved and be everywhere at
right angles to the verticals, as in Figure 9.1.

The horizontal datum surface for heights is one which closely approximates to
mean sea level (MSL), determined from observations on tide gauges averaged over a
period of 19 years. This period allows the various tide-raising forces to repeat.
Allowance also has to be made for long-term trends.

Since most vertical angles between ground stations are of the order of 1° or less,
computational approximations are usually permissible. Most heighting processes deal
with differences in height, observed over comparatively short lines, carried forward
over long distances by a chain of many measurements. For this reason, small
systematic errors may often accumulate in serious proportions and must be avoided
where possible. Accuracies of 2 mm km™! are possible by levelling.
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Verticals

Figure 9.1

Artificial Earth satellites can provide geometrical height differences to about 3 mm
accuracy but need to be connected to a level datum, either by transformations to fit
levelled points, or to lower accuracy, by a knowledge of the Earth’s gravity field.

Before the advent of the GPS system of position fixing, lines of levels were run
very carefully over whole countries and continents between tide gauges where sea
level was determined. Permanent bench marks were established to which surveyors
fixed their heights by the means described below. Today, however, the GPS system,
together with knowledge of the Earth’s gravity field, enables absolute heights to be
determined replacing these reference bench marks. See Chapter 7 and Section 9.10
below.

Methods of determining relative heights

The following four ground surveying methods are used to determine the relative
heights of survey points:

1. hydrostatic levelling;

2. spirit levelling;

3. trigonometrical heighting;
4. barometric heighting.

Depending on the flying height of the aircraft and other factors, topographic stereo-
photogrammetry, the principal method of deriving heights covering large tracts of
land, can regularly achieve practical accuracies of about 0.1 m. Ground survey
heights are usually needed to control this technique (see Appendix 5).

9.2 Hydrostatic levelling

This is probably the oldest form of levelling. A tube containing water will readily
define two points A and B at the same height due to the balance set up by the water
under the force of gravity (see Figure 9.2). The heights found by this method are
referred to as dynamic heights.

This method of levelling was much used in Holland where differences in height
are very small and great accuracy is essential. Pipes of up to 10 km long have been
used. For convenience, flexible pipes are laid out along the bed of a canal by a survey
ship. The main problems associated with this method are to do with eliminating air
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Figure 9.2

bubbles from the pipe when filling it with water or dual liquids, and controlling the
temperature of the fluids.

Miniature versions of high accuracy hydrostatic levelling are employed in
industrial surveying and an ordinary water hose is useful for work in forested areas,
for example to mark the future shoreline of an artificial lake.

9.3 Spirit levelling

In this method, a horizontal line of sight is established by the observer with the aid of
a spirit bubble, plumb line or a freely suspended compensator system, which enables
the line to be sighted through a telescope in a horizontal direction. Although
compensators have replaced bubbles in all but the most precise work, the term spirit
levelling is retained here. The height of the instrument station is generally not
determined in the procedure.

For ease of operation, spirit levelling is used in conjunction with one or two
graduated rods or staves to determine the difference in height between two points. In
Figure 9.3 the height of B with respect to that of A is found by taking readings R, and
Ry on the vertical staves at A and B. For

RA +HA =RB +HB
therefore

Since A is the backward point if we are moving from A to B, the reading on Ai.e. R,
is referred to as the ‘back sight reading’ or simply the backsight. The reading on B i.e.
Ry is called the foresight. It will be noted that the height difference between A and B

DATUM LINE

Figure 9.3
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is given both in magnitude and sign. We always consider the height difference in the
sense

Difference in height = Backsight — Foresight

After making a reading on B, the staff at B is turned round to face the new
instrument position and the staff at A is moved forward to the new instrument
position C. Thus the new backsight and foresight readings are r and r.. The foot
of the staff at B should not change height in turning the staff round, hence it is
necessary that some point whose height is well defined should be chosen for the
change point B. Such a point would be e.g. the head of a rivet on a drain cover or
a kerbstone. In open fields a large screwdriver driven into the ground makes a good
change point. Special plates are also available. If a point is heighted but not used as
a change point, it is called an intermediate point, and the sight to it is an
intermediate sight (IS).

When the height of a ceiling or roof is required the staff is held upside down and
pressed hard against the surface. In this case the backsight reading is recorded as
negative.

9.4 Trigonometrical heighting
In Figure 9.4 the difference in height between the points A and B is given by

AH = Stan6

where S is the horizontal distance AC, and 6 is the vertical angle recorded by a
theodolite circle against a horizontal datum, determined by a bubble or compensator.
Since tan 6 is negative when 6 is negative and positive when it is positive, for 6 <
90° the equation gives both the magnitude and sign of AH. If the height of either A
or B is known, the height of the other may be calculated. In precise work, vertical
angles are observed at both ends of the line i.e. at both A and B. The distances
sighted in this method may be anything up to 50 km, though accurate results are
limited to lines of 10 km or less. If lines are restricted to 200 m accuracies of 2 mm
can be maintained.

B
A
0
A T S C H, B
HA
l DATUM LINE v

Figure 9.4
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9.5 Barometric heighting

This method of measuring height differences depends on the variation of atmospheric
pressure with height above sea level. Pressure P is related to the acceleration due to
gravity g, the density of the air p and the height H by the functional expression

P=tn (g.p. H)

If P is measured at two places, where g and p are sensibly constant, the pressure
height relationship for two points is

P
AH = Hy—H, =KIn—
B

where K is a constant. If one height is known we may find the other.

The barometric method of heighting is especially convenient where points are not
intervisible, such as in forested country, or where rapid, but relatively inaccurate
results are required. Accuracies of about 1 m are attainable with care (Allan 1997).

9.6 Accuracies of heighting methods

It is impossible to give figures for the accuracy attainable by a survey technique
which will apply to all circumstances. The accuracy of the method depends, to some
extent, on the care with which the survey is carried out, the time spent on the
operation and various factors such as the weather conditions at the time of the
measurements. However, as a guide, the following accuracies may be expected if a
normal technique is adopted.

1. Hydrostatic and geodetic levelling: a standard error of 1.5 VK mm, where K
is the length of the line in kilometres.

2. Ordinary spirit levelling: a standard error of 6 VK mm.

3. Trigonometrical heighting: a standard error of 60 VK mm, although accuracies
as high as for geodetic spirit levelling can be obtained with special care.

4. Barometric heighting: about 1.5 m, provided operations are limited to an area
of about 10 km? and elevation difference to not more than 500 m.

Benchmarks

A benchmark is a permanent survey mark whose height is known, and from which
levelling and height are controlled. Wherever possible a line of levels or series of trig
heights should be tied into benchmarks; but it is essential that barometric heighting is
controlled by benchmarks. Great care is needed in the siting of these marks on ground
that is thought to be stable and relatively free from vandalism. With GPS it is possible
to establish these benchmarks provided the geoid-spheroid separation is known
accurately, say to 5 mm.

9.7 Spirit levelling: principles and procedures

The principle of levelling with the aid of a staff or staves has been explained above.
The same simple technique is common to all types of spirit levelling irrespective of
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the accuracy required. The following section explains the basic fieldwork involved,
the manner in which the observations are booked in the field, and the various simple
checks that are applied to the arithmetical operations required to produce the final
heights of the stations. In many books, the subject of geodetic levelling is described
after that of simple or engineering levelling. Since these have so much in common,
we shall treat the most accurate work first and highlight those operations that are
unnecessary if a lower standard of result is sufficient.

Types of level instrument

The various types in common use are described in Section 13.6. It should be
remembered that a theodolite and a total station may be used as a level on occasion.

Types of staff

A large number of different types of staff are available to the surveyor. Folding or
telescopic staves are easier to carry, however rigid staves are more accurate since they
maintain their length better over a period of time. Geodetic levelling staves are
constructed of wood with the graduations on a strip of invar held securely at the
bottom of the staff but which is free to expand elsewhere along its length. The
coefficient of expansion of invar is so small that temperature corrections need not be
applied as a rule. The figuring of staves is not consistent. Modern staves with bar-
coded scales have revolutionized levelling, by making it consistently more accurate
and cost effective.

Some geodetic staves have two different scales side by side so that a gross error
in reading the staff may be immediately detected and the reading repeated. To ensure
that the staff height at a change point is not altered when it is turned around, a special
steel foot with a dome-shaped top is employed.

For high precision industrial work, a short rule is often used.

Booking of readings

The process of levelling requires a very orderly approach to recording data because
so many readings are taken. Data recorders are widely used with robust software to
detect omissions and assess quality as the work proceeds. However, the principles are
the same for hand booking which is now outlined with respect to the example shown
in Figure 9.5 and Table 9.1.

Figure 9.5 shows a cross-section and plan along the route taken by a surveyor
levelling from point 1 to point 11. The instrument positions are at A, B, C, and D, and
the change points are 5, 9 and 10. Table 9.2 shows a typical set of readings for the
levelling illustrated in Figure 9.5. The algebraic version given in Table 9.1 is to assist
in the explanation.

The instrument is set up at A and carefully levelled. A staff is held at point 1 and
the reading R, is taken. The staffman then moves in turn to points 2, 3, 4 and 5 where
readings R,, R;, R, and R, are made.

The intermediate sights are booked in the second column of Table 9.1, with the
change points in columns 1 and 3 for backsights and foresights respectively. The
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Figure 9.5

Table 9.1 Rise and Fall Method: algebraic version

Backsight Intermediate sight  Foresight Rise Fall RL
R, H,
2 R~ R, H,

3 Ry— Ry Hy

R, Ry~ R, H,

Ts Rs Ry—Rs H
Ts T's—Ts Hy

7 Fe—T7 H;

s =Ty Hy

Ry Ty 3= 7y Hy
10 ST Ry= Ry H,
M Ryg— Ry, Hyy
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Table 9.2 Rise and Fall Method: numerical version

Backsight  Intermediate sight Foresight  Rise Fall RL Notes
1.198 36.469 BM1
0.811 0.387 36.856
1.305 0.494 36.362
1.283 0.022 36.384

0.920 1.588 0.305 36.079 Cp
0.884 0.036 36.115
1.109 0.225 35.890
0.655 0.454 36.344
1.393 2.097 1.442 34.902 Cp
1.603 1.015 0.378 35.280 Cp
0.887 0.716 35.996 BM,
Checks
5.114 5.587 2.193 2.466 0.473
0.473 0.473

differences in height between each point are recorded in the ‘rise” and ‘fall’ columns
where appropriate.

The instrument is then changed to position B while the staff is kept at point 5.
Readings from position B are denoted by rs, 7¢, 75, g and r, with the staff at points 5,
6, 7, 8, and 9 respectively. The backsight reading is 5 and the foresight reading is .

Note that only the change points (CP) have two readings. The reduced level of
each point in turn is obtained by adding the rise or subtracting the fall from the height
of the point to which the difference of height was related i.e. the point above it in the
field book. At the foot of each field book page an arithmetical check is made.

The following four columns are summed separately and the totals entered at the
foot of each column:

the sum of backsight readings;
the sum of foresight readings;
the sum of rises;
the sum of falls.

bl e

The difference in height between points 1 and 11 in this example is
Hll _Hl =0473
The various checks then are:

H,, — H, = sum of the backsights — sum of the foresights
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H,, — H, = sum of the rises — sum of the falls
This can easily be proved from the algebraic example.

The totals at the foot of one levelling page are carried forward to the top of the
next page, taking great care not to make a mistake in the transfer. It must be stressed
that these checks in no way verify the readings but merely their abstraction into
heights.

Normally the line of levels will start and close on a benchmark, although a loop
may be run which begins and ends on the same point. The adjustment of any
misclosure is considered below. The method of booking given above is the ‘rise and
fall’ method.

Another method worthy of mention is the ‘height of collimation’ method. In this
method we book the height of the line of sight and from it subtract the individual
readings to obtain each ground height. For example, in Figure 9.5 the line of sight of
the instrument in position A is H, + R,.

A typical booking by height of collimation of the readings of Tables 9.1 and 9.2 is
given in Table 9.3. The sole arithmetical check on the booking is

H,, — H, = sum of the backsights — sum of the foresights
There is no arithmetical check on calculating the heights of the intermediate

points. For this reason, this method is less favoured than the rise and fall method. It

Table 9.3 Height of Collimation Method

Backsight  Intermediate sight  Foresight Height of RL Notes
collimation
1.198 37.667 36.469 BMI
0.811 36.856
1.305 36.362
1.283 36.384
0.920 1.588 36.999 36.079 CP
0.884 36.115
1.109 35.890
0.655 36.344
1.393 2.097 36.295 34.902 CP
1.603 1.015 36.883 35.280 Cp
0.887 35.996 BM,
Checks
5.114 5.587 0.473
0.473
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is however more convenient in the setting out of height points on the ground and in
recording heights below roofs or arches in engineering work.

9.8 Errors in levelling

Because levelling is a chain process in which small errors accumulate, attention has
to be paid to errors which, although small in themselves, are significant in total. The
following are the various sources of error in levelling.

Gross reading error

In precise work each staff has two scales engraved upon it so that a mistake will be

detected by the booker at once. Alternatively, the readings to the stadia hairs are used

for the same purposes. Bar-coded staff reading levels result in few mistakes, if any.
In all levelling it is standard practice to close the work, either out and back or

round in loops, to detect mistakes. The prudent surveyor identifies semi-permanent

change points to avoid having to re-level too much work.

Staff datum error

A staff may have a small datum or zero error. This means that the complete scale on
the staff is moved through a small amount with respect to the base of the staff. If a
staff becomes badly worn at the base, such an error is introduced. If only one staff is
used to height two points, the staff error from this source will not affect the difference
in height since it is common to both readings. If two staves are used for speed, as in
geodetic levelling, the error in the difference in height of one set-up is the difference
between the two datum errors of the staves. After every pair of set-ups the error is
eliminated if the back staff is leap-frogged to the forward position. Hence if two
staves are used, there should be an even number of set-ups between each benchmark.

Graduation error

In precise work, the errors in the graduations of each staff are determined and applied
to the staff readings where applicable. Each staff is placed upon a specially designed
bench along which is a very accurately divided tape or scale and against whose
graduations those of the staff are compared with the assistance of a travelling
microscope. For best results a polynomial is fitted to the calibration data and
corrections are applied to every reading: not an arduous task if the bookings are
originally by data logger.

Non-verticality of the staff
If a staff is held at an angle 6 to the vertical the reading is Sec instead of S. Hence
the reading error is approximately

Ssec@—S=%S€2

This is a serious source of error in all types of levelling. In ordinary work, the
staff is swung backwards and forwards about its base so that it moves through the
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vertical position at some stage. The observer then obtains a correct minimum reading
at this point. In most staves a bubble is fitted to the back of the staff to enable it to be
held vertically. The adjustment of a staff bubble should be checked every week
against a plumb line. A geodetic levelling stave is provided with two rods which allow
it to be held vertically for some time. Some surveyors prefer a staff clamped to an
adapted survey tripod for precise work.

Warpage of the staff

If the staff becomes warped the effect is similar to non-verticality; a reading becomes
too high by an amount proportional to the reading itself.

Temperature errors

In refined work, the graduations are engraved or painted on a strip of invar attached
to the bottom of the staff. Thus the scale is free to expand and contract without
stresses being set up. Since the coefficient of linear expansion of invar is very small
(of the order of 14 x 10~7 °C) temperature corrections need not be applied as a rule,
although in the tropics they may be significant.

Staff illumination
It has been found that engraved staves may exhibit a small systematic error under certain
conditions. If one staff is constantly illuminated by the sun, while the other is constantly
shaded, a small error of about 60 pum per shot can arise. The reading on the illuminated
staff is too low because the bottom portion of the graduation is not seen. If a line of
levelling is run from south to north, the south-facing staves (the foresight staves) are
consistently read too low and the difference in height (back — fore) is therefore too large
if positive and too small if negative. Thus the northern benchmarks give too great a
height. The same effect will be obtained when running a line of levels east to west,
although the effect will tend to be balanced if the line is levelled in one direction
throughout the day. Painted staves do not exhibit this effect to any marked extent.

The illumination of bar coded staves may also have a systematic effect, for
example in a tunnel illuminated by artificial light.

Bubble and compensator sensitivity

In a level, the bubble or compensator should be sufficiently sensitive to permit staff
readings of the required accuracy to be read, while at the same time they should not
be so sensitive that much time is wasted in levelling the bubble. In a geodetic level
the bubble is capable of being levelled with a standard error of 0.25", equivalent to
0.1 mm at about 100 m. Vibration can be a nuisance in a workshop floor.

Temperature effects
Most good instruments are designed so that temperature does not affect their
performance to any extent. However, in precise work, the instrument is always shaded
from the sun by a survey umbrella to prevent errors arising from differential heating
and twisting of the tripod.
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Collimation errors

If a level has a collimation error of 6 the reading error on a staff will depend on the

length of the line of sight. In Figure 9.6 the backsight distance B is less than the

foresight distance F with the result that the staff errors in reading are B6 and F6.
The error dAH in the height difference is given by

dH =0(B-F)

If the lengths of the back and foresights are equal there is no error in the height
difference. Hence in all types of levelling these sights should be equated where
possible, and the collimation error should be made as small as possible by adjusting
the level by the two-peg test described in Section 13.6.

Sinking or rising of the staff

If the staff is set up on soft ground it will gradually sink while the observer is working.
In Figure 9.7 the levelling staff was at a position F when the reading Ry was taken
from position I, but it had sunk to position F' by the time that the reading was taken
from position i to give a reading 7 which is in error by e.

There is therefore a strong argument for reading onto a staff in quick succession
to minimize the time during which the staff may sink. As will be seen below, this
conflicts with the effect of the sinkage of the instrument. Both effects can be
avoided if all precise work is carried out along a hard surface such as the kerbstones
of a road. In hot weather, a tarred surface will permit the staff to sink, while pegs

F }e
-

Ry Rg 7,

Figure 9.7
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driven into the ground will rise for a time after being driven, producing the opposite
effect.

Sinking of the instrument

In a similar manner to staff sinkage, the instrument may sink into the ground while
the observations are being made. In Figure 9.8 the instrument sinks a distance e, in
position 1 and e, in position 2. If the same degree of sinking occurs at both positions
and the observer takes the same time to take the reading, there is a strong argument
for reading first to the backstaff at A then to the forestaff at B, during which time the
error e, has occurred. After changing to position 2, the first reading should be to the
forestaft at C and finally to the backstaff at B, during which the error e, has occurred.
The chances are that these errors e; and e, will be nearly equal and therefore the
height difference between A and C will be correct.

The consequence of this effect means that there should be an even number of set-
ups between the benchmarks. Since it is argued that the instrument is more likely to
sink than the staff on account of its greater weight, the procedure is to read alternately
to back and fore staves in precise work, or (which is the same thing) to always read
to the same staff first, the staves being leap-frogged forward.

Effect of the Earth’s curvature

In Figure 9.9, AB' is a horizontal line with line of sight at A. Due to the curvature of
the surface of the Earth, a staff reading at B will be too great by BB'. This is a very
small amount compared with R, the radius of the Earth. To explain the geometry of

the figure, refer to Figure 9.9, but remember that the true dimensions are more similar
to those shown on the right. Let AB = AB' =S and BB' = x. Then in triangle AB'O
B'0% = AO? + 52
(R+x)> =R?>+85?
R? +2Rx+x* =R? + 52
S2
>X=—
2R

2

since x* is negligible.
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It will be obvious that if the instrument is set up halfway between the two staves
both the backsight and foresight readings will be in error by the same amount, and
therefore the height difference is free from error. However, the instrument need not be
set up each time at the mid-point of the staves to eliminate this error; if the total sum
of the backsights equals the total sum of the foresights, the total curvature error over
the whole line of levelling will be nil.

Effect of refraction
Two points B and F in Figure 9.10 are at the same height for simplicity, and R, Sy
etc. are the staff readings and distances. We neglect the curvature of the Earth. Since
the light ray from the instrument to the staff is refracted as it passes through the
atmosphere, a recorded staff reading is too low. The errors on the backsight and
foresight due to refraction are ey and e, respectively.

If o is the angle subtended by AB = S at the centre of the Earth, whose radius is R
(Figure 9.9), and the coefficient of refraction is K, the angle of refraction 6y is given
by
2
0g=Ka=K 5

R

The coefficient of refraction K, about 0.07, varies considerably and in some cases can
even be negative. The main factor affecting its value is the rate of change of

»
»

€B €f

Figure 9.10
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temperature with height above the ground. The greater this rate of change, the smaller
the refraction. If K is constant during the time that both sights are observed, the effect
on the difference in height will be nil if the instrument is positioned mid-way between
the staves. In many cases, however, K is not constant over a given period, hence a
small systematic error will be introduced into the line of levels. If a line is levelled
from early morning to noon, the refraction becomes progressively less. In this case,
always reading to the same staff first will help to eliminate the refraction error since
the change in refraction will alternately affect each height difference with an opposite
sign, each even number of height differences being relatively free of error.

Combined curvature and refraction
It is usual to combine the curvature and refraction corrections into one formula

S2
C+r=—(@1-2K 9.1
r=2z( ) ©.1)

Taking average values and converting S to km, this correction is 67 S> mm. Normally
it does not need to be applied because backsights and foresights are equated. In some
special cases and in trigonometrical heighting it will be applied.

9.9 Practical levelling

As a result of considering the above sources of errors in levelling, it is apparent that
for all types of work, most errors will be avoided if the following three rules are
adopted.

1. To detect gross errors, a line of levels should be run between two points of
known height, twice over the same line or using a staff with two scales.

2. The staff should be vertical when a reading is taken; this is achieved either by
swinging it through the vertical position, or with the aid of a bubble, which
should be tested.

3. The length of the backsight should equal the length of the foresight at every
set-up.

In ordinary work on engineering sites it is not feasible to have backsights and
foresights exactly equal, and in intermediate sights no compensation for curvature,
refraction and collimation takes place. Hence it is imperative that the level has very
little collimation error, otherwise tedious corrections will have to be applied.

Errors due to curvature and refraction are negligible for most work with sights not
exceeding 100 m. Again it is important to avoid soft muddy ground, but for obvious
reasons this is not possible on an engineering site. Pegs knocked into the ground will
continue to rise up for several minutes afterwards.

The future of geodetic levelling

It is difficult to predict how much geodetic levelling will be carried out in the
future. On one hand the GPS system can be used to interpolate between
benchmarks and trigonometrical heighting can achieve equal standards. On the
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other hand, the new bar-coded staff reading levels are so quick and accurate that
they must be given serious consideration. The likely outcome is a hybrid of all
three methods.

Booking and recording readings

With conventional levels and staves, modern practice is to use data loggers to book
readings. These loggers process the data for statistical rejection in real-time to alert
the observer. Generally several readings are taken, following an orderly scheme, to
produce sufficient redundancy for these tests.

9.10 Spheroidal, orthometric and dynamic heights

It should be noted that levelling takes place on the surface of the Earth affected by
gravity and has nothing directly to do with the reference spheroid adopted by GPS.
However, it is now regular practice to link satellite-determined spheroidal heights to
levelling via the geoid-spheroid separation N.

Spheroidal to orthometric heights

As was stated in Chapter 7, heights based on a reference spheroid can now be
determined to a relative accuracy of a few millimetres by satellite systems. To link
them to a level surface datum (geoid) requires knowledge of the separation N between
the two surfaces. This information is available with varying accuracies from national
and international sources.

Figure 9.11 shows the contours of N with respect to a reference spheroid for the
United Kingdom. Here the differences are of the order of 50 m.

In the UK the Ordnance survey can provide values of N to 0.02 m as a general
rule. This data often comes in the form of values for every intersection on a 5-
minute graticule from which individual values can be interpolated by the user.
The interpolation may be carried out by the method described in detail in Section
10.9.

Example

Values of the geoid-spheroid separation N and their tabular differences are listed
below for points at the intersections of a 5S-minute graticule within which N for a point
A has to be interpolated. The arguments are n = 0.2 in the north—south direction and
m = 0.6 east-west. The scheme shows the values of N in bold type and their first and
second differences (see Section 10.9). The origin of coordinates is at the bottom left
(N =47.153).

45.001
-0.885
0.382 45.886 1.234 47.120
-1.267 0.023 -1.244
47.153 1.211 48.364 0.415 48.779

-0.796
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Figure 9.11

Applying the standard interpolation formula for two dimensions,

1 1
Ny=Nr+nAN+mAE'+nmAE "+5n(n—1)AN"+5m(m—l)AE"
1
= 47.153+0.2><(—1.267)+0.6><1.211+0.2><0.6><0.023+5><0.2X(—0.8)><0.382

1
+5X0.6X(=0.4)X(=0.79)

=47.69392

If the spheroidal height of A is 500.000 m, its orthometric height is 547.693 m.
The following sections do not relate at all to spheroidal heights.
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Orthometric and dynamic heights

Earlier we defined the height of a point to be the linear distance from a datum surface
at mean sea level to the point. However, the concept of ‘height’ may be considered
from yet another different point of view in terms of the force of gravity acting on a
mass situated near the surface of the Earth. Before we had detailed knowledge of the
Earth’s gravity field, allowance was made for its shape by the use of theoretical
models. The following is a brief treatment of this classical approach.

The gravitational potential at a point at a distance D from the centre of the Earth
is given by dP = g dD, where g is the acceleration due to gravity. An equipotential
surface is one on which all the points have the same gravitational potential i.e. the
potential P is constant. Since g varies with latitude, being greater at the poles than at
the equator, an equipotential surface is closer to the centre of the Earth at the poles
than at the equator.

Figure 9.12 shows the shape of two equipotential surfaces defined by their
potentials P, and P,. If H,, H,5 and H,, are the linear separations between these
equipotential surfaces at the latitudes of 0°, 45°, and 90° respectively; g, g45 and gy,
their respective gravities, we can define a constant ‘height’ difference by

dP = constant

8o Hy = 45 Hys = &y Hyg
Since no work is done against gravity, if a point moves over an equipotential surface,
such a surface is dynamically flat. For example if a pipeline followed P, in Figure
9.12, no water would flow along it under the action of gravity. But if the pipeline took
the path of the broken line, equidistant from P,, water would flow from A to B under
the force of gravity due to the difference of potential at these points. Thus, although
A and B are at the same /inear height above P, in a dynamic sense there is a slope
from A to B. Points defined by linear distances along the vertical are called

Figure 9.12
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orthometric heights, and those defined in terms of potential are called dynamic
heights.

To relate the concept of potential to a linear system of height, a standard latitude is
chosen (45° for a world system, 53° for England and Wales) at which both types of
height are defined to be equal. For example in Figure 9.12 the linear separation %
between P, and P, at latitude 45° is used to define the potential surface P, with respect
to P, as datum in linear units. Hence the dynamic heights of points E, M, and N all equal
h, the orthometric height of M above P, at the standard latitude 45°. The orthometric
height of E is H, and of N is H,. The orthometric height at the equator is greater than
the dynamic height, and vice versa at the poles, the two being equal at 45°.

Relation between orthometric and dynamic heights

To relate the two concepts we use the fact that g, Hy = g45 Hys = &gy Hyp
Then

Hy
h=Hys=gy—
245

It can be shown that theoretical gravity g; at latitude ¢ is related to the gravity g at
the equator by the simplified expression

gr = go(1+0.0053sin? )
therefore
~_Ho
~1.00265

and for any point at an intermediate latitude

, H 5(140.0053sin” ¢)
- 1.00265

(9.2)

If the orthometric height H;is known, its equivalent dynamic height 4 may be derived
from this expression.

Example
If the orthometric height of a point on the equator is 1000 m its dynamic height is
997.4 m i.e. there is a difference of 2.6 m.

Orthometric heights from levelling
In the actual process of levelling, the bubble sets itself tangential to the equipotential
surface through the instrument, while the readings on the staves are orthometric operations.
In Figure 9.13 the divergence between the orthometric and dynamic surfaces
through the instrument gives rise to an error d# in the backsight reading 75 such that
the correct reading is
Rg = +dH

when levelling from north to south in the northern hemisphere.
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Direction of levelling
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Figure 9.13

Defining the difference in latitude over the line d¢ = pp — ¢y i.e. in the same sense
as dH, d¢ is positive; from south to north it is negative. Over the equipotential
surface, gH is constant, therefore

Hdg+gdH =0
Hd
arr——Hd
g
=0.0053H sin® ¢ d¢p

Thus to obtain the orthometric height difference from the levelled height difference,
a correction of +dH is applied. Because this correction is very small for one set-up, it
is normally applied to lines of levels at about every 10 km or at convenient section
points along the line. The total effect for the line is the summation of all the individual
corrections i.e. the corrections are applied by numerical integration over the whole
line.

Example

If the average height of a section of levels, 10 km long running from south to north at

latitude 10°N, is 1000 m, and the indicated height of the northern benchmark was

1026.9384 m, calculate its orthometric and dynamic heights, assuming that the height

of the southern bench mark was orthometric. In this case d¢ is negative and
—1000x%0.0053x0.3420 10

dH = =-0.0028 m
6400

Hence the orthometric height of the required benchmark is 1026.9356 m, and the
dynamic height is given by

_1026.9356(1+0.0053%x0.03014)
1.00265

h =1024.3850

Geopotential numbers

The acceleration due to gravity varies not only with latitude ¢ but with height above
sea level 4 and with the composition of the Earth. Allowance is made for these factors
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in the form of a system of heights referred to as geopotential numbers. The system,
devised by the International Association of Geodesy, defines the geopotential number
of a point A to be

A
Cp = [ gAh
0
The units to be used are the kilogal/metre i.e. g is in kilogals and A% in metres above
sea level (one gal is an acceleration of 1 cm s72). It is desirable that observed values
of g are used, although theoretical values based on some hypothesis concerning the
structure of the Earth may be used for want of observational data (Torge 2001).

9.11 Trigonometrical heighting

A common method of determining height difference AH is to observe the vertical
angle 0 to a target or object and compute the difference in height between the
theodolite and the target by the relationship

AH = Stan6
where S is the horizontal distance between the stations, or from
AH = S'sin0

where S' is the slant range as measured by EDM.

In Figure 9.14, H, and Hy are the heights of the stations A and B above a
horizontal datum line DE which is considered straight, i, is the height of the trunnion
axis of a theodolite at A with respect to some reference mark on the station at A, g
the height of the target at station B, the vertical angle observed at A is 6, and the
horizontal distance DE is S. These quantities are related by the expression

or, setting AH = Hy — H,,

AHziA +Stan9A—gB (93)
I — 1 s
- — A <
B
N
in S
“A
H,
Hy 8
Datum
N
D S E

Figure 9.14
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Note that this equation holds for all values provided the following conventions are
adopted:

1. heights above a station are considered positive, those below are negative;
2. the height difference AH from A to B is defined as Hy — H,;
3. an angle of elevation is positive, and a depression is negative.

These conventions are commonly used in everyday life and should not cause any
difficulty.

Example
IfHy, = 100 m, § = 1000 m, 8, = 1° 25" 57" i.e. an elevation, i, = 1.5 m and
gg = 10.00 m, the height Hy is derived as follows:

Hpg =100+1.5+(1000%0.02501)—10.00 =116.51

It should be noted that although i, and gy are normally positive they can have
negative values, for example, if an instrument or beacon is erected below the
reference mark on a ceiling or tunnel roof.

It is usual to observe a vertical angle on face left and on face right so that the effect
of the vertical index error of the theodolite is eliminated on taking the mean. Whenever
possible, observation should be taken from A to B, and from B to A. It is always better
to compute the height difference by two separate computations using Equation (9.3),
rather than a formula which combines the observations from both ends. The reason for
this is that a gross error may be detected from any discrepancy between the two values.
Great care should be taken to avoid mistakes in recording beacon and instrument heights.

Earth curvature
The reference datum line DF is not straight but is curved as in Figure 9.15. The linear
amount of the Earth’s curvature FE = x is given by
52
x=——
2R

where R is the radius of the Earth. This curvature effect may also be considered as an
angular correction « to the observed angle of

Q= —=—

S 2R

a' = 206265i
2R

We then use the effective angle & + « in calculations to allow for the Earth’s curvature.
Note that  is always positive, whereas 8 may be either positive or negative.

Refraction effect

In Figure 9.16 the light path from theodolite to target J is shown as a curved line
instead of a straight line. This is so in practice, due to the refractive effect of the
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Figure 9.15

atmosphere. The telescope points to G in the direction of the tangent to the curved
refracted ray instead of along the direction of the chord, and therefore records an
angle which is greater than that used in the computation. To obtain the equivalent
angle free from refraction, the angle 8 has to be subtracted from the observed angle
0. The refraction angle § is given by

KS
F=%
The coefficient of refraction K is approximately 0.07, although it varies according to
the density of the air through which the light passes and should be determined for the

average conditions of the survey area.

Curved line of sight

Curved Datum

S\
= e E
D —_—— o

—JF

Figure 9.16
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Combined curvature and refraction

To reduce an observed angle 6 to its equivalent plane angle ¢ we have:
Corrected plane angle = observed angle + curvature — refraction

p=0+a—p

or
S
§ = 0+206265(1-2K) (9.4)

In topographical surveying, the combined correction is approximately 14" per km,
setting K = 0.07 and R = 6400 km. This combined curvature and refraction correction
is normally positive because the curvature correction exceeds the refraction
correction. Since the latter varies with the prevalent air conditions, the combined
correction will also vary with location and with time of day. Since refraction is lowest
at the mid-day period, usually taken from 12:00 to about 15:00, and since its value
during this period varies little from one day to the next, vertical angles are best
observed during these hours. However, if two observers are situated at each end of the
line, truly simultaneous vertical angles may be observed, which enables the mean
value to be almost free of refraction error. Such observations may be taken at almost
any time of the day.

In practical computation of trigonometrical heights a few reliable observations,
taken over several long lines, are used to compute the combined curvature and
refraction correction in seconds of arc per kilometre, and thereafter this value is used
to compute all heights by single rays.

In some industrial locations, such as a tunnel, the coefficient of refraction can be
negative due to unusual heat gradients. An empirical analysis should be carried out to
locate such anomalies.

Example
A line EG observed between two pillars is chosen from which to compute the
combined curvature and refraction correction. The height difference from E to G is
computed without applying a correction for curvature and refraction. This is repeated
for the direction G to E; see Table 9.4 below.

The variation in these two height difference values is due to twice the effect of
curvature and refraction, which is calculated from

8.644 206265

2x8024.90 Hr
Table 9.4
Line Vertical angle 0 Distance S (m) i g AH
EG +00° 07' 39" 8024.90 0.207 0 +18.065
GE —00° 11' 33" 0.253 0 -26.709
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Table 9.5
Line Vertical angle 6 Distance S (m) i g AH
EG +00° 07" 39" 0.207 0

+00° 01" 51"
Cn +00° 09' 30" 8024.90 22.383
GE —00° 11" 33" 0.253 0

+00° 01" 51"
Cn —00° 09' 42" 8024.90 22.390

This is the correction to be applied to a single ray observation over the line. The value
of the correction to be used for the area of the survey is therefore 13.843" per 1000 m.
As a check on the arithmetic and to illustrate the method of single ray calculation,
these two observations are recalculated separately using this value for the combined
correction (see Table 9.5). The combined correction is

13.843x8024.90=111"=01'51"

The accepted mean difference in height is 22.387 m. It will be noticed that this same
value is obtained from the mean of the two values 18.065 and 26.709 computed
without recourse to the correction at all. To adopt this latter method is dangerous
because there is no clear indication that the results are free from gross error. The
method of single ray computation, with an applied curvature and refraction
correction, allows the quality to be assured.

Linear value of the curvature and refraction correction

It is useful to evaluate the linear effect of the combined curvature and refraction over
the distance S. The linear correction, in metres, is
1-2K
S(a—p)=S> A=28) _ 067252 (9.5)
2R

where S is in kilometres.

This formula is useful in working out intervisibility problems. For example, if the
distance S is 8 km, the combined correction is approximately 4.3 m.

Precision of measurements
We now consider briefly the precision required in the various measured quantities to

achieve a given result for the difference in height. Denote tanf by ¢, the distance by S
and the height difference AH by 4, then

h=St

Since the height of instrument and beacon directly affect the value obtained for /4 they
must be measured to at least the same precision desired in the final result. In normal

195



PRINCIPLES OF GEOSPATIAL SURVEYING

work, these quantities are measured to 0.005 m by taking readings to a tape held
vertically as with a level staff, and by direct measurement of the height of theodolite
from the secondary axis, applying a small alignment offset if necessary.

Consider small changes d¢ in ¢, dS in S and d4 in 7, related by

dh=Sdt+¢tdS
Ifde=0,0 =1°and di is to be 0.01 m,

0.01=§ and dS=0.6m
60

Thus distances are not required to any great accuracy.
Again, if dS = O and if S = 1000 m,

0.01X206265
1000

”

de” —

To guard against mistakes in reading the vertical angle, one reading should be taken
on each of the stadia hairs, thus obtaining an independent check from the mean.

9.12 Least Squares estimation of heights

The estimation of trigonometrical heights and of level networks by the method of
Least Squares is similar. The difference in height brought through a line of levels is
treated in the same manner as a height difference computed for a long line from
vertical angle observations. The ends of such a line of levels are referred to as junction
points. The method is to obtain best estimates for these junction points or trig stations,
and in the case of a line of levels, to adjust the individual points along the line by
proportion if required.

Dispersion matrix or weights

Some thought has to be given to an estimation of the quality of the observations, or
to the a priori dispersion matrix of the height differences. For each line of levels or
trig height difference, expectations are taken of the error equation d# = Sdt + «dS
giving variance estimates

a% = Szot2 +t20§ (9.6)

Assigning reasonable values for the variances in the angles and distances yields the
initial dispersion matrix elements. In levelling, the distance error does not matter
because ¢ = 0, so we have

0% = S20,2

The degree of sophistication chosen for the error model depends on circumstances,
but normal practice is to work with a reasonable estimation per set up between staves
of, say, 2 mm in ordinary work. It is further assumed that the length of sight is kept
more or less constant. The line has 7 set-ups yielding a line estimate of variance 2Vn
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mm yielding, for 25 set-ups per km, about 10 mm km™! for ordinary work. Geodetic
levelling can achieve 1.5 mm km™!. In trigonometrical work, the side length S is
crucial. It is usual to calculate variances for every line according to the variance
formula Equation (9.6).

In Chapter 6, Section 6.5, the Least Squares treatment of a small network of levels
by the observation equations method is given. Although these problems can be
handled very simply by the method of condition equations (see Appendix 3.4),
observation equations have been preferred because of their generality and the ease of
computer programming.

After the heights of junction points have been estimated, the heights of individual
set-up points, if required, are obtained by adjusting the change to the observed line
height difference in proportion to the number of set-ups in the line.

9.13 Intervisibility problems

Initially we adopt a simple model which neglects curvature and refraction. Figure
9.17 shows two stations A and C whose heights above a horizontal straight line datum
are H, and H respectively. Considering for the moment that the line of sight from A
to C is straight, we wish to establish the height H}; of an intermediate point B lying
on this line.

This problem arises when a survey reconnaissance is being carried out or when a
tower has to be erected to a computed height above datum so that observations may
be made along a line, such as a traverse. Equating values of tanf,

A'C A'B' B'C

Datum

x4 =0.068  AR2 xc = 0.068 BC?

Co

Figure 9.17
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Example
IfH, =100 m, H,= 50 m, AC =10 000 m and BC = 8000 m, the height of B is given
by
H),—H 508000
ATHe g _

Hp—Hp =
B 7C AC 10000

Therefore Hp is 90 m above datum. If the hill at B' lies below this height, say at 85 m,
line of sight will pass from A to C and vice versa. To erect a tower on line AC, its
height has to be BB' =5 m.

In practice, because of refraction of the line of sight and the curvature of the datum
surface, the simple case above has to be modified.

Figure 9.17 illustrates how the net effect of these factors — curvature and refraction
—is to lower the datum at A and C with respect to B by x, and x... Hence, if the heights
of A and C are decreased by their respective corrections, the problem is reduced to the
simple model treated above.

Example
If the heights of A, B and C are 417.27 m, 273.10 m, and 214.58 m respectively and
AB =24.30 km, BC = 12.23 km, what height of tower should be erected at C so that
the line of sight from a theodolite at A, 1.2 m above ground, will clear the ground at
B by 6.1 m?

The effective height at B is 279.2 m. The curvature and refraction corrections to
be applied to H, and H, are respectively 40.15 m and 10.17 m.

The effective height at A is then 417.27 + 1.2 — 40.15 = 378.32. The effective
height C is then given by

A'B' 24.30

Since the ground height of C is 214.58 m above datum and x- is equal to 10.17 m, the
tower should be 18.8 m tall.

Practical applications

In practice, a section has to be drawn from map contours and a likely position for a
station is chosen. Any doubtful intervisibility problems are solved as above.
Intervisibility problems, now tackled by computer software, are of some interest in the
production of maps of visibility and obscurity required for optical communications,
flight paths into airports, planning applications and military purposes.

Comment on heights and levels

The importance of very precise heights and levels to engineering and hydrological
work has to be stressed. Geometrical methods such as satellite, photogrammetric and
theodolite systems cannot directly compete for accuracy in the previous analysis
because of uncertain knowledge of the Earth’s gravity field at the millimetre level.
Combinations of systems can be effective in which the geometrical systems are used
to interpolate values controlled by levelling.
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The two-plus-one coordinate system will continue to be of importance, while
some purely geometrical applications in engineering and construction may be treated
in a three-dimensional Cartesian coordinate system which ignores the vertical
altogether.
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Chapter 10
Maps and Map Data Processing

10.1 Reconnaissance

The first, and perhaps the most important stage of survey is the reconnaissance, or
‘recce’. Experience of the full technical and administrative factors of surveying is
required to carry out an effective recce. This experience includes the whole
production chain subsequent to fieldwork so that potential problems and difficulties
can be avoided.

A pre-analysis of any information related to the task or its specification is
valuable, such as knowledge of any previous surveys, availability of controls and
datum information and copies of old maps and aerial photography. The site is visited
to make decisions about how to carry out the work, where to locate points and marks,
the availability of accommodation and possible labour and services.

A computer simulation of the technical proposal may also be feasible if software
is available. A final decision has to be taken on how the task will be executed, by
whom, and with what equipment. Suitable documentation has to be prepared for the
surveyors who will actually carry out the task.

Documentation

Clear documentation of surveys is required at all times. This includes station
descriptions, field books or records of data loggers used and any changes to
original objectives. The whole data set should be clearly cross-referenced and
kept in a clear form. This documentation may be the only evidence that the work
was properly carried out and may have to be submitted to a court of law as
evidence. The copying of field notes without retention of the originals is
tantamount to fraud.

Station marking

There is much wisdom in marking stations, even though it may not be part of the
specification to do so. Certainly, while the task is in progress, marks should be located
if only with wooden pegs. It is also wise to reference any station marks by witness
marks. This will enable the station point to be recovered should it be damaged or
removed, as happens frequently on engineering sites as construction work progresses.
It has become common practice to place reference marks on walls rather than on the
ground since they are far less likely to be disturbed. Although two marks are sufficient
to re-establish a point, a third acts as a check.
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10.2 Introduction to detail surveying

The methods described here are those used to make plans at large scales from given
control, to revise existing plans and to complete plans made in part by air survey
methods. Every survey is based on a rigid framework which is regarded as correct
until proved to be in error. Generally speaking, all details such as structures and
natural features can be shown to scale on a plan but not on a map.

This rule is often broken in special cases, for example when a forester wishes
named trees which are too small to plot to scale to be located in position. They have
to be depicted by conventional signs. Map detail is classified under the following
headings:

1. Soft detail: has an outline incapable of exact definition, or is likely to change,
such as vegetation and crops.

2. Hard detail: is clearly defined, such as a building line where the building
enters the ground. A useful rule is that anything that would obstruct the normal
passage of a bicycle is shown as a full line, while that would not, such as a road
kerb, is shown by a pecked line.

3. Overhead detail: constitutes no obstruction at ground level, such as power
lines, or tree canopies shown by conventional signs.

4. Interior detail: is surveyed if it is of special interest, such as a party boundary
delimiting ownership. Building interiors have separate plans for each floor
linked together by vertical correlation.

Depiction of detail

The manner of depicting features varies a great deal according to map scale and
purpose, for example from topographic maps, building interiors and archaeological
maps to thematic plans of a rail network. The reader should inspect a range of these
plans to see the symbols used, many of which are obvious. Special plans showing
street furniture (lamps, gullies, man-holes, etc.) are drawn to the specification of the
client. Every user has particular requirements which must be discussed and agreed
upon, particularly whether the item is to be shown to scale or not.

10.3 Detail surveying

In surveying detail point positions we need to record sufficient information to enable
a map to be plotted from them. As the dot plot of Figure 10.1 is the only information
from which to plot the map it needs to be completely comprehensive and intelligible.
When operating in the field, the plotting process must be kept in mind, so that points
can be plotted from a minimum of two position lines. The most common method of
data capture is by radiation.

Points need to be classified as well as positioned, so that their common identity
can be used to delineate special features such as house corners. It is important to know
how the map is to be plotted, before embarking on the capture of field data.

If the plotting is to be manual, the collection of data can be flexible and
inconsistent. If the data collection serves a computer software system, a rigorously
ordered approach is essential.
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Figure 10.1

Figure 10.1 shows a typical part of an urban area to be mapped by radiation from a
traverse station B. It will be seen that nodes, where two or more lines meet, are recorded
by a different key from single point features which lie on a s#ring, such as marks the
road kerbs. Some points will be both nodes and string points. The curved corners of the
road kerb, to be drawn by a circular arc, are marked by the curve end points, which are
shown as special nodes. Even when a computer plotting system is used, most surveyors
prefer to draw field sketches to label the points and identify their types.

Not all details need be picked up by radiation. The enlarged diagram depicted in
Figure 10.2b shows detail such as lamp posts, which can be tied in by taking
rectangular off-sets to a straight line, such as the kerb. This /ine and off-set method
uses a local x, y coordinate system based on the kerb.
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Ancillary methods of detail fixing

In addition to the radiation and line and off-set methods of fixing details, other
geometrical principles can be used to advantage, particularly as check measurements.
These methods include:

1. Theodolite intersection of inaccessible points such as trees, and corners of
buildings.

2. Sighting tangents to irregular or rounded shapes such as tanks, ponds and
clumps of trees.

3. Off-sets from radiation to the left or to the right, or plus on-line measurements
to reach inaccessible points such as hedge centres.

4. Intersecting rays to already established lines such as building frontages, useful
when mapping building elevations.

5. Direct taped measurements of key dimensions such as buildings, spaces
between buildings and gates.

6. Dimensions to points where face-lines cut out on others.

Field completion

No matter how much care is taken to avoid mistakes and omissions in map-making,
some do escape the checking systems used by the surveyor and cartographer. It is
important that a map should be given a final field check, mounted either on a plane
table or small board such as that used for map revision. The checker works
systematically round the horizon at selected key stations, noting all plotted features
and looking for those that are omitted. Graphic methods usually suffice to make
corrections.

Plots compiled from aerial photographs show the roofline instead of the building
line. A tedious but necessary process of measuring the roof overhangs has to be
carried out to complete the map by off-setting from the plot. Parts of ground not
visible from the air, such as forest paths, also have to be added by ground methods.

10.4 Graphic map revision

Laptop computers are now commonly used for map completion and revision in the
field, where the traditional graphic has been replaced by a flat screen computer
display. However, the methods employed are still fairly traditional, although the
addition of a hand-held reflectorless laser ranger has proved to be an effective asset.

The principle of lining in and cutting back from established points is basic to the
simple graphic method of completing or revising maps. Instruments used are an
optical square, a plastic tape or a laser ranger, a lightweight field drawing board or
laptop computer and a set square and ruler. The reviser works alone on the original
map, or part of it, fixed to a small board or displayed on the computer screen.
Although the following explanation may seem complicated, the actual process is
rather easy and interesting to carry out once the idea has been grasped. The technique
is best learned by experiment, rather than from a book.

Suppose the new building A of Figure 10.3 has to be drawn on the map which
already shows buildings B, C, D and E and fence lines BF and FG. The reviser checks

203



PRINCIPLES OF GEOSPATIAL SURVEYING

— — — -Sightline

~a—p Taped line

C
@ Resected point
\

@ Intersected point

Figure 10.3

the original map to ensure that these buildings are as plotted. Suppose it is found that
building E has been demolished. It will be recorded as missing. Otherwise the map is
correct. To fix building A, lines of sight to others will be used with the minimum
distance measurement. Points which can be occupied on the ground are established by
the intersection of identifiable lines. For example, the surveyor can occupy point P by
cutting in from C to the line BD using the optical square. By moving to Q, the
perpendicular off-set to corner R can be drawn after measuring the short distance PQ
shown with a heavy line. A similar process allows a line to be drawn to S. If the
distance QR is more than a tape length, or outside the range of the EDM it will not be
measured to fix R. However, before leaving this place it was noticed that the building
face line VR cuts out on BD at W, so distance QW is measured.

A perpendicular off-set from T to R will be used to fix R, after locating T on the
line BF produced and FT measured. To fix the direction of RS, the point at which this
line cuts the fence BF in U is established and FU taped. Then S is fixed by UR
produced. Usually the building dimension RS will be taped to check. The direction of
RV was already noted while at Q.

10.5 Plotting details

If the detail points are plotted by computer, their coordinates are converted to
rectangular Cartesian form for output to a coordinate plotter. The most accurate
plotters employ a flat-bed system in which the x—y slides move over a table at great
speed responding to the commands of the software.
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Other plotters use a rotating drum carrying the paper to create the abscissa x and a
fixed slide for the ordinate y. Although satisfactory for most work, these drum plotters
are not good enough for multicoloured map-making for which accurate colour
registration is essential.

Map digitising
Much input to a geographical information system (GIS) is from maps digitised on
special tables which operate like plotters in reverse. A cursor is worked over the map
to digitise selected discrete points in much the same way as a surveyor would capture
the original points and features. A coding system is also adopted with nodes and
points, as well as any attributes such as tree types.

A key procedure in digitising is the control of scale and distortion by digitising four
grid corner points or more if necessary. Within the software, transformation formulae (see
Chapter 4) are set up. In this way, the digitised shapes can be corrected geometrically.

Mapping at small scales

Because many important features such as roads, buildings, etc. cannot be plotted at the
scale of the survey, conventional signs have to be used to depict them. Wherever
possible, the centre of the sign is used to indicate the exact map position of the feature.
For example, if a road is represented on a map at a scale of 1:25 000 by two lines
1.5 mm apart, the corresponding ground width is 37.5 m. The centre-line is in the
correct position. However, there is a knock-on effect. A house at the side of the road has
to be misplaced laterally with respect to the road centre-line. In urban areas, this process
is impossible, so the whole set of buildings has to be conventionalized into a block.

Plan information
All maps and plans should bear the following information:

title;

scale;

grid;

key to map symbols;

datum information (plan and height);
sheet history (date sources etc.);
orientation (possibly with magnetic north);
8. graticule, if relevant.

NNk Wb =

Although it has been customary in the past to write the map scale in words or as a
representative fraction, there is a trend away from this practice because of the dangers
arising from the widespread use of inferior photocopying devices. Grids show the
correct scale irrespective of the distortion and scale change, while line scales give
some indication of the effect in one direction only.

10.6 Heights and contours

A contour line is a line drawn on a map through points at equal heights above some
datum or reference point. If we imagine the land surface to be flooded to some height
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above sea level, say 100 m, the shore line of the flooded area will trace out the 100 m
contour line. The task of the surveyor is to fix enough points on this line to enable it
to be drawn on a map. The mathematical modelling process consists of selecting as
few discrete points as possible to carry out this mapping. The density of points will
depend on how complex the ground is, and how accurate a result is required.

The specification for contours has to be discussed with the client. Matters of
importance are:

1. the datum to be adopted (national levelling or arbitrary);
2. the vertical interval between contours;
3. the accuracy of contours, often expressed as a fraction of the vertical interval.

Contouring methods
There are five methods of producing contours:

1. tracing out the contour by direct levelling;

2. interpolating contours between spot heights at the corners of a grid,

3. interpolation from spot heights at carefully chosen positions at changes of
slope and direction;

4. plotting by stereo-photogrammetry;

5. plotting from airborne laser rangers.

The first method is used in engineering works where great accuracy is required, such
as in irrigation and other water-related problems. A point on the contour is established
by levelling from a benchmark (reference height point) and thereafter the staff is
located by trial and error on the contour. The contour is pegged out on the ground. In
forested arcas sometimes a hosepipe is used to augment levelling and to avoid
excessive tree cutting.

In the second method, a grid of spot heights is set out on the ground at intervals
according to the complexity of the surface and accuracy required, and the grid
intersections are levelled or heighted. Figure 10.4 shows such points at the numbered
grid intersections. Since both plan and heights are known, the contours can be
interpolated within the grid.

In the third method, the surveyor anticipates how the interpolation from a dot plot
will be carried out, and supplies spot heights by total station at carefully selected
locations. This is a more efficient process than the grid method, which requires more
skill from the surveyor.

The photogrammetric and laser ranging techniques usually require some height
control points fixed by ground methods to relate the stereo-models to the ground.
Photogrammetry, as with the first method, has the great advantage of tracing out
contours directly, thus giving much better shape. The practical limit of accuracy by
this method is about 0.1 m. The laser rangers produce clouds of points within which
contours are selected.

Contour drawing
Except in photogrammetry or direct surveying, contours have to be interpolated from
discrete points. This can be done manually or by computer software. To draw the
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Figure 10.4

contours, the approach is to join up the spot heights, such as A, B and C of Figure
10.4, by a series of non-overlapping triangles and interpolate linearly along all sides
to give a series of points on the required contours, marked by dots in the figure. When
plotting by hand, the position of a contour on a sectional line, between two points not
on contours (shown by the open circles in Figure 10.4), can be interpolated with the
assistance of an elastic band marked at even intervals to act as a convenient analogue
computer. Otherwise the process is carried out by linear or non-linear numerical
interpolation.

These discrete points on contours are joined up by curves, paying due regard to
the actual shape of the ground, which will have been recorded in a field sketch.

Because it is much easier for computer software to operate on a grid, heights may
be captured in grid form; alternatively, a grid of points may be interpolated from the
points of the selective method. The selection of most nearly equilateral triangles to fit
the surveyed points can be made automatically by the Delaunay triangulation
algorithm. Thereafter, the contours are interpolated according to various schemes of
varying complexity. An important test of computer software is that the contours must
preserve the integrity of the original heights from which they have been derived. In
other words, a spot height must be on the correct side of a contour line.

10.7 Calculation of areas

The area contained within a closed figure is of interest in engineering and cadastral
surveying. Basic to most methods is the calculation of A, the area of a triangle ABC,
from one of the following formulae:

1
A=5bcsinA (10.1)
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A= s(s—a)(s—b)(s—c) (10.2)

The area of a polygon is evaluated as the summation of a series of adjacent triangles,
as indicated in Figure 10.5.

Instead of summing up the determinants (10.3) of each triangle individually, we
use the Rule of Sarrus to cross-multiply the coordinates taken in clockwise order
around the figure according to the scheme

n 1 1 n
2A=_2EizNi+in2Ni (10.4)
i=l =2 i=2 =l
To minimize the numbers in the calculation it may be necessary to transform all
coordinates to the centroid before evaluating the area.

The areas of plots bounded by curved boundaries are calculated by combining the
areas of polygons and irregular shapes. Off-sets from the polygon sides are taken at
regular intervals to compute the excess areas by Simpson’s rule for approximate
integration. Figure 10.6 illustrates a method of calculating the area of a typical field.
To the area of polygon ABCDE are added the extra small areas measured by regular
off-sets y from the perimeter lines such as AB.

Successive application of Simpson’s rule to the n off-sets y separated by even
intervals x gives the area 4 as

1
A=gx(y0+4y1+2y3 +..)

until the end of the line. If 7 is odd, the last term is y,, but if n is even the area of the
last figure, a trapesium, is

1
Ex(yn—l +yn)

E3N;

Figure 10.5
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E

Figure 10.6

Planimeters

Irregular areas on maps are also measured by digital planimeters. The operator traces
the boundary of the parcel whose area is recorded. Planimeters have to be calibrated
from time to time.

10.8 Subdivision of land parcels

In cadastral and planning surveys, problems arise with the subdivision of plots. These
problems vary from simple to very complex. A general approach is to obtain a
solution by variation of coordinates. At its simplest, the problem might be to divide
the plot ABCDEF depicted in Figure 10.7 into two agreed portions and the road
frontage AF equally at G. Suppose the portions have to be equal. Let the total area be
A+ Since point G is given, the variables are the coordinates of H. The first stage is to
find which line of the plot is cut by GH. This is carried out by calculating the areas
of the triangles with sides radiating from G. Suppose we find that area GABC is less
than 0.5 4 and that area GABCD is greater than 0.5 4. In that case, we know that
H lies on CD. This process of selection can be programmed.

Although this simple problem has a particular direct solution obtained by
remembering that H lies on the line CD and that the area GABCH = 0.5 4., a more general
approach to the solution of such problems is needed. If we assign approximate coordinates
to H, selected perhaps as the mid-point of CD, the general method is as follows.

Suppose the equation of the line CD, in which both m and c are known, is given by

E-mN-c=0
Then we have
dE-mdN=0 (10.5)

The provisional computed area of figure GABCH subtracted from the known required
value gives the absolute term k of the differential area equation

PAE+QdN=k (10.6)
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Figure 10.7

where
P=—(Ng;—Ng)and Q = (E; - E()

Equations (10.5) and (10.6) provide the solution dE and dN. If the changes to the
provisional coordinates are very large, iteration may be needed.

Complex example

In a more complex example where the sub-division may include a new road (2 units
wide) occupying an unknown area Ay, the solution is more difficult. Consider the
coordinate data of Table 10.1. We assume that the subdivision has to be made from
GH and LM preserving these as parallel roadsides (at a provisional bearing of zero),
and that the areas of the triangles GCH and LMD have to be equal. From the initial
coordinates of G and H these areas are 40 and 26.4 square units respectively, giving
a difference of 13.6.

Table 10.1 provides the solution for G and H, together with the checks that the
roadsides have the same gradient, that M and H lie on CD (whose gradient is 1.25)
and that the required areas are equal.

The method is to form the observation equation for area difference, and to link it
with the constraints of the problem by Lagrange’s method, as explained in Appendix
3. The observation equation is formed by considering the changes to be made to the
areas of the provisional triangles GCH and LMD to equate them, that is

(Ng = NOAE, — (Eg — EQAN, + (N, — Np)AEy, — (E, — Ep)dN,,

= 2Agen — A (10.7)

Two constraint equations ensure that the points H and M lie on CD, that is
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Table 10.1

Point E N

G 5.00 0.00
C 0.00 12.00
D 10.00 20.00
L 7.00 0.00
H* 5.00 16.00
M* 7.00 17.60
Solution

H 4.23 15.38
M 6.15 16.92
Check bearings

HG ML MH
—0.05 —0.05 1.25
Check areas

GCH 33.85

LMD 33.85

where ATA = N. These are

dE, —1.25 dN,; =0

dEy —1.25 ANy, =0

dE, —m dNyj + Ny dm =0

dEy — m dNy, + Ny, dm =0

Nx+E'k=b
constrained by the equations

Ex—d=0
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(10.8)

Two other constraints preserve equal changes dm to the gradients of GH and LM,
originally assumed zero. That is

(10.9)

The numerical values of the coefficients and absolute term are given in Table 10.2.
To obtain a solution we introduce Lagrange’s method (see Appendix 3, Equations
(3.15) and (3.16)). The normal equations plus the Lagrangian additive with vector k
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Table 10.2

Observation equation ABS
-12 -5 -20 3 0 272

Constraint equations

1 0 0 0 16 0
0 0 1 0 17.6 0
1 -1.25 0 0 0 0
0 0 1 -1.25 0 0
which can be put together as the hypermatrix
N ET([x]_[b
E 0 |k “ld
or
(144 60 240 36 0 1 0 1| [—326.4]
60 25 100 -15 0 0 0 -125 -136
240 100 400 -60 0 0 1 0 —544
-36 -15 -60 9 0O 0 0 0 81.6
X
0 0 0 0 0 16 176 0 L:|= 0
1 0 0 0 16 0 O 0 0
0 0 1 0 176 0 0 0 0
1 -125 0 0 0O 0 0 0 0
| 0 0 1 =125 0 0 O 0 | | 0 |

The solution is:
dEy =-0.77; dNg = -0.61
dEy = -0.84; dNy = —0.67
Giving the final coordinates of Table 10.1 as
Ey=4.24; Ng=15.39
Ey=6.16; Ny = 16.93

The areas of the triangles GCH and LMD both equal 33.85 square units as required,
and the bearings preserved.

10.9 Interpolation within a grid

If a function F is dependent on two variables tabulated at regular grid intersections,
usually in cartography E and N, or latitude and longitude i.e. F = fn (£, N),
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intermediate values of F may be interpolated from a double entry table or spreadsheet
from its regular arguments. As an example we find the Universal Transverse Mercator
projection Eastings interpolated from the intersections of a five minute graticule in the
vicinity of a point A with coordinates: longitude A = 35°18'16.7559" and latitude ¢
= 15°52'29.9096". The nearest tabular entry below A is at (35° 15", 15° 50").

The various differences between the tabulated values for the ‘square’ in which A
lies follow the scheme

F3
AN
AN" F, AE' F,
AN AEN" AN
F, AE' F, AE F,
AEH

where

AFE' is the first difference in the table in the Eastings direction,
AN is the first difference in the table in the Northings direction,
AE" is the second difference in the Eastings direction,

AN" is the second difference in the Eastings direction,

AEN" is the second difference in the Eastings direction between the first differences
to the left and right. (Note: it is also the second difference in the northings direction
between the first differences above and below it.)

The corresponding numerical values for UTM Eastings at the five-minute
graticule containing point A is:

740789.1
AN' = -99.6
AN" = 0.4 740888.7 AE 749814.7

AN = 992 AEN'= -36 AN = -102.8
740987.9 AE" = 8929.6 749917.5 AE = 8930.1 758847.6
AE" = 0.5

The interpolating fractions are

n= 2'29.9096" 2.498493

: =0.499699
= 3 16.57559 _ 3.279265 — 0655853

Setting the nearest tabular entry to A (35°15', 15°50") by E. the interpolation formula
is

1 1
Ep = Er+nAN "+ mAE'+nmAEN "+ ~n(n = DAN "+ —m(m —1)AE"=746793.7
(10.10)
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Ey = Ep +T, +T,+T,+T, +Ts= 740987.9 — 49.570108 + 5856.50495
11798239 + 0.10006027 — 0.0860368 = 746793.7

10.10 Calculation of volumes

The calculation of volumes of earthworks is of major importance in civil engineering
work. The topic is dealt with by various commercial computer packages which model
the problem with as little intervention from the user as possible. However, the
irregularities encountered in civil engineering operations and the complex nature of
the ground surface, mean that the imposition of some a priori constraints is necessary,
such as the break lines marking the edge of an embankment or cutting.

Although the accuracy with which ground surfaces can be modelled is a matter of
current investigation, there is no escaping the fact that it depends on the density of
points used to describe the surface. A very varied surface needs many points, but only
a few are needed for smooth surfaces. Accuracy is also related to costs and need. The
surfacing of an airfield runway, or motorway paving and their related volumetric-cost
calculations demand much tighter geometrical accuracy than in ordinary roadwork, or
in quarrying.

In this chapter, we concentrate upon traditional roadwork calculations which
illustrate many of the basic problems involved, both in the calculation of volumes and
in the setting out of formations.

Prismoidal and end-area formulae
Because land surfaces are invariably irregular, all earthwork calculations must of
necessity be approximate, the precision obtained being entirely dependent on the
density of the measured ground heights in relation to the nature of the surface.
Volumes are usually obtained by calculating the volume of the regular
geometrical solid whose surfaces most nearly represent the actual ground surfaces.
The geometrical solid most frequently used for this purpose is the prismoid, which is
defined as a solid figure having plane parallel ends and plane sides (see Figure 10.8).
It will be clear that the area A of a cross-section, parallel to the ends, will be a
function of the perpendicular distance x of the cross-section from one of the ends, and

Figure 10.8
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Figure 10.9

that if the cross-section area A4 is plotted against the distance x (see Figure 10.9), the
volume will be equal to the area under the curve i.e.

V=[Adx

An approximation to the area under the graph can be found using Simpson’s rule,
by taking three ordinates, 4,, 4, and 4, equally spaced at a distance L/2 apart i.e.

L

where 4, is the cross-section area midway between 4, and 4, (not the mean of 4,
and 4,).

For a true prismoid, the cross-sectional area is a quadratic function of x, the
distance from one end, so that the above relationship is exact and the equation is
known as the prismoidal rule. When this rule is applied to the portion of a normal
road or railway cutting or embankment, between two parallel cross-sections as shown
in Figure 10.10 where three of the side faces are planes, if the ground surface is also
a plane then the figure is a true prismoid. Since the rule is also exact when the cross-
sectional area is a cubic function of x, the rule will also give the true volume, if either:

1. the slope of the ground at right angles to the centre-line is uniform (i.e. PQ is
a straight line) and the central height / is a quadratic function of x (i.e. the
longitudinal profile on the centre-line is parabolic), or

2. the transverse profile PQ is parabolic, and 4 is directly proportional to x (i.e.
the longitudinal profile is a straight line).

Thus it will be seen that, provided the ground surface curves smoothly, the rule will
give a very good approximation to the true volume for this type of solid.

A less accurate estimate of the volume of a prismoid can be obtained by using the
trapezoidal rule to find the approximate value of the area under the curve in Figure
10.10 i.e.

1

which, when applied to volumes, is known as the end-area rule. The best accuracy
will be obtained from this rule when A4, is approximately equal to 4, and the accuracy
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P,

Q

Figure 10.10

will decrease as the difference between 4, and 4, increases. As an extreme example,
for a pyramid or cone where one end-area is zero, and the true or prismoidal volume
is base X height/3, the rule gives base x height/2 i.e. an error of 50 %.

10.11 Determination of volumes from contours

This accuracy of this method depends largely on the contour vertical interval and on
the accuracy with which the contours have been determined and plotted. It is
extremely valuable where very large volumes are involved e.g. reservoirs, land
reclamation schemes, open-cast mining etc., and is also very useful in the preliminary
stages of route projects (roads, railways and canals) for making initial estimates of
cost, comparison of alternative routes and selection of best profile.

The method consists of splitting the solid along the contour planes into a series of
horizontal slabs, each slab then being regarded as a prismoid whose length is the
contour vertical interval, and whose end-areas are the areas enclosed by the contour
lines at the height in question, the areas being taken off the map or plan by planimeter
or by calculation from coordinates.

If the prismoidal rule is to be applied to each slab individually, it will be necessary
to interpolate the contour lines midway between those already plotted, in order to
obtain the mid-area of each slab. It is usually adequate, however, to take the slabs in
pairs and find the volume by Simpson’s rule. Any portions of the solid which are not
embraced by two contour planes will have to be treated separately and the volume of
the nearest appropriate geometrical solid (usually a pyramid or wedge) found.
Referring to Figure 10.11 (vertical interval = 10 m) by end-area rule,

10 7
V= ?(A120 +2(A130 + Aja0 + Ai50) + A160)+§A160
By prismoidal (or Simpson’s) rule,
10 7
V= ?(Alzo +44130 +24149 +4 450 +A160)+§A160

If the new profile (i.e. the ground profile after the works have been carried out) is
anything other than a horizontal plane, the new contour lines for the finished work
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Figure 10.11

will have to be superimposed over the existing ground contours, and the end-areas of
the prismoids will then be the areas on the plan enclosed between the new and the old
contour lines for the height in question.
In Figure 10.12 (not to scale) the new contours for the benching shown in the
cross-section have been superimposed onto the contours for a natural hillside, and the
prismoidal end-areas at heights 20 m and 25 m above datum indicated by hatching.

Section
Slope 1/3
30 \an i ‘\ 30
25 25
20 20
15 15
10 10
m A.O.D.
10 <30 25 20 15 10
~—
15
20
25
30
30
25

Plan

Figure 10.12
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In all but the simplest earthwork projects, the plotting of the contours for the
finished work may require some thought, and Figure 10.12 also illustrates some of the
principles involved.

It will be assumed that the embankment surrounding the benching on sides AB,
BC and CD has a slope of 1/3 (i.e. 1 vertical in 3 horizontal) and that the vertical
interval is 5 m as shown. If at any point of known height on the plan we move away
along the line of greatest slope for a distance of 3 X 5 = 15 m, the level will have
dropped 5 m and a point on the next contour line will have been found. For example,
if from points B and C (both at 20 m above datum) we move out 15 m in a direction
normal to BC, two points on the 15 m contour will have been found; if we move out
30 m, two points on the 10 m contour will have been found, and so on. As for a plane,
the contours will be a series of equidistant parallel lines, and the contours for the
embankment falling away from the line BC can now be plotted.

Similarly, if we move away 15 m from C in a direction normal to CD, and 45 m
away from D in the same direction, two further points on the 15 m contour for the
embankment will have been found. Since the normal to CD at D, in this case, lies
along the 30 m contour, the point we have just located on the 15 m contour for the
embankment lies below existing ground level, and the 15 m contour for the finished
work will only extend part of the way along the line between the two points by which
its position has been established. Clearly at the point where the new and the old 15 m
contours intersect, the new and existing ground levels are the same and the actual new
contour line will not extend beyond this point.

By linking up all such points where new and existing contours of the same value
intersect, the position of the toe of the embankment can be established. This is also
shown in the figure.

Figure 10.13 shows the same principle applied to a section of road running in
cutting and on embankment, with again some of the prismoid end-areas marked to
indicate the areas that will have to be calculated or taken off with a planimeter. It
should be noted that, in both these cases, the cross-sectional view is not required for
the purposes of the volume calculations, and is only included to illustrate the meaning
of the construction lines on the plan. A very small part of a project, drawn to a large
scale, has been used for the sake of clarity, but it must be realized that in the ordinary
way, due to the difficulty of obtaining sufficiently accurate contours, the accuracy of
the volumes obtained under these conditions would be considerably inferior to those
obtained by the cross-section method described below.

In the road example illustrated in Figure 10.13, the road gradient is uniform, and
the plan centre-line straight. If the vertical profile of the road is laid to a vertical
curve, the new contours crossing the road will no longer be equidistant, and the side-
slope contours will cease to be equidistant parallel lines and become instead
equidistant parallel curves. Unless the change in gradient is very acute, the curvature
of the side-slope contours is very slight.

The case where the road centre-line is curved on plan is different, as will be seen
from Figure 10.14. The line of greatest slope of the side-slope is usually normal to the
edge of the road, so that the same technique of stepping off intervals of » times the
vertical interval (where the side-slope is 1/n) from points of known height on the edge
of the road still applies, as shown in Figure 10.14.
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Figure 10.13

Figure 10.15 demonstrates one further application of contour geometry to the solution
of earthwork volume problems. Here a tunnel 16 m in diameter, and with its axis
horizontal, is to be driven into a hillside with contours as shown.

In order to be able to plot the position of the interpenetration curve between the
tunnel and the hillside and the shape of the end-areas of the horizontal slabs on the
plan view, it is necessary in this case to draw the front elevation of the mouth of the
tunnel. From this view, the true-length (such as ab) of the horizontal distances from
the centre-lines to the lines of intersection of the contour planes with the walls of the
tunnel can be obtained. In the figure, this has been achieved by drawing the auxiliary
view of the tunnel mouth, so that these intersection lines can be obtained by simple

Straight T.P.

o
Edge of road L
ge of roa ("l]/‘?t S

Figure 10.14
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Figure 10.15

projection. The positions of points on the plan view of the tunnel mouth denoted by
the intersection of the old and new contour lines at 58 m above datum, and the shape
of the slab end-area at the same height, are marked on the diagram. The embankment
carrying the road up to the tunnel mouth has been omitted, as the construction for this
would be similar to that shown in Figure 10.15.

10.12 Determination of volume from spot heights

The accuracy of this method depends only on the density of the levels taken and is
usually used for large open excavations such as reservoirs, for ground levelling
operations such as parks or playing fields or for building sites. The use of
photogrammetric methods of heighting from air photographs and advanced data
processing techniques has opened up a field in which, by enormously increasing the
number of spot heights that can be used, the method can be extended to almost any
earthwork project for which photogrammetrical heights are sufficiently accurate.
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The coordinates and heights of points may also be rapidly obtained by total
station, usually from carefully selected points at changes of slope or bends in plan.
Efficient gathering of data by field methods is still a skilled task. Because such points
appear at irregular intervals over the ground, it has become common to describe them
as random points. This terminology is most unfortunate because they are
systematically selected to model the ground and its break lines and are certainly not
random. The technique of gathering height data from a regular grid is statistically
random.

In normal ground methods, the site is gridded by a series of lines forming squares
(or occasionally rectangles) and the ground levels are determined at the intersections
of the grid lines, together with such additional points (referenced to the grid by offsets
or tie lines) as may be necessary to pick up break lines: special boundaries or
exceptional ground irregularities or discontinuities. The spacing of the grid lines will
depend on the nature of the ground, and should be sufficiently close for the ground
surfaces between the lines to be reasonably regarded as planes.

There are two reasons for using grids:

1. they are simple to use in the field, and
2. subsequent computer calculations are regularized.

The proposed formation levels at the corners of the grid squares are obtained from the
designer’s drawings, and the volume within each square is taken as being the plan
area of the square, multiplied by the average of the depths of excavation (or fill) at the
four corners of the square. The volumes of the portions lying between the outermost
grid lines and the random boundaries of the site are taken as the plan areas of the
nearest equivalent trapezia or triangles, each multiplied by the average of their corner
depths (see Figure 10.16).

Because all the depths at the internal intersections of the grid lines are used in the
calculation of the volume of more than one square, a formula can be developed of the
form

12

where / is the length of side of square, /4, the depths such as at @ and e which are used
once, /4, the depths such as at b, ¢ and d which are used twice, /4, the depth such as at
Jf which is used three times, 4, the depth such as g, 4 etc. which are used four times,

AT bl N\

7’

—

Figure 10.16
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Figure 10.17

and R the volume of extra-peripheral trapezia and triangles, which must, of course, be
calculated individually.

Certain difficulties will arise if there is a changeover from cut to fill, or vice versa,
within one grid square (see Figure 10.17).

If h, = —h, and h, = —h,, the calculation

. I (hy +hy + 3+ hy)
4
will produce zero volumes for the square which is patently incorrect, and whatever
the values of the depths the calculation will only produce the net volume cut or fill:

whichever is the larger.
If the grid lines are fairly close together, the formulae

Py +hy +0+0)

cht - 4
I(0+0+hy +hy)
Van = 2

will not produce excessive inaccuracy.

To avoid mistakes and to assist in the tabulation of the figures, it is often
convenient to extract the ground levels from the field book and the formation levels
from the drawings, and to record them in colour on a gridded plan of the site in the
manner indicated in Figure 10.18.

The first figure is the ground level, the second below it is the proposed formation
level, the difference where positive (red) indicates cut, and where negative (blue)
indicates fill.
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128.00 black 128.00 ground level
116.25 green 120.32 formation level
+11.75 + red +7.68 difference + red
124.00 124.00
121.13 124.87
+2.87 +red 087  —blue

Figure 10.18

10.13 Determination of volume from cross-sections

This method is widely used for engineering projects of all types, and lends itself
particularly well to route projects such as roads, railways and waterways. It illustrates
general principles and has applications in small tasks. Much work formerly
undertaken in the field, such as cross-sectioning after the centre-line has been set out,
can now be achieved from the computer model provided it is sufficiently accurately
formed. Work practices vary according to the technology available.

Cross-sections are taken on lines at right angles to the main job centre-line and the
volume between adjacent cross-sections is found for a prismoid with the areas of the
cross-sections as its end and, if necessary, its mid-areas. For route surveys it is usually
convenient to take the cross-sections at the round number chainage points, with
additional sections at points of unusual irregularity or discontinuity.

When the ground is very irregular it is best to plot the profiles of the existing
ground and the proposed formation to a convenient scale and obtain the areas of the
cross-sections by planimeter or counting squares. In this connection it is important to
note that it is customary, for clarity, to plot cross-sections to an exaggerated vertical
scale, and suitable allowance must be made for this if the areas of the cross-sections
are to be found by any of the above methods.

When the ground surface is reasonably regular and the ground profiles at the
cross-sections can be represented by uniform slopes, it is more expeditious to make
use of suitable formulae for calculating the cross-sectional areas.

As referred to in the previous section, photogrammetrical heighting, coupled with
computer processing, can greatly assist with this method. In such cases, the area of
the cross-sections can be obtained from a series of equidistant spot heights. As will be
seen from Figure 10.19, if the depths are determined at sufficiently close intervals d/,
the areas will be given by

A= dl (for +ve h); A = dl (for —ve h)
cut fill

and because depths taken beyond the end of the section will be zero, there is no need
to determine the overall width of the cross-section independently.

When normal ground methods of survey are employed and the ground slopes can
be regarded as uniform, the following calculation methods will be found useful.
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Figure 10.19

It will be noted that the general case considered here is the three-level cross-section,
in which the ground slopes are assumed to be uniform from A to E and from E to D,
as in Figure 10.20.

Although a sudden change of slope exactly on the route centre-line will rarely
occur in practice, this assumption gives a much closer approximation to the true
ground profile when this is a smooth curve, as shown in Figure 10.20, than would
be given by the assumption of a straight line from A to D. Where the ground
surface approximates to a plane, however, the two-level cross-section is quite
justifiable.

In Figure 10.20 slopes are expressed as tangents i.e. 1 vertical in # or s horizontal,
the rest of the symbols being self-explanatory.

Calculation of half breadths

Unless the field method of slope staking has been used, the half breadths w, and w,
and the corresponding #, and h, will not be known, and they will have to be
determined from the other data. The ground slopes can be obtained by direct
measurement with a clinometer or gradienter, or by calculation from two spot heights
at known positions on the slope. The formation breadth and level, and the values of
the side slopes will have been supplied by the designer.
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Figure 10.20
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therefore
1 1 b
R
mo5 m
giving
b
(h + O)Slnl
n
w=—"-—
S1Tm

applying when the ground rises from the centre-line, and similarly

b
(h + O) Syny
= i’
"2 = 8o + ny

applying when the ground falls away from the centre-line.

It will be realized that, if a slope falling away from the centre-line is regarded as
being negative, one equation will suffice; e.g. for slopes as shown in the figure, if the
formation breadth is 40 m, the central depth is 7 m, both the side slopes are 1/5, and

the ground slopes are both 1/20, we have

(7+250)><20><5
w=——-"—"——=733
20-5
(7+250)x20><5
Wy = =44.0
20+5

10.14 Calculation of cross-sectional areas

Once the half breadths w,, w, and the side heights 4, 4, have been found, the area 4
of the cross-section can be found by inspection, or from coordinates taking the origin
at any point such as F, giving

24 = h(Wl +W2)+b0(h1 +h2)

It should be clear that by turning the diagrams upside down, all the above equations
apply equally to embankments having the same characteristics.

In addition to the above, an additional type of cross-section (shown in Figure
10.21) must be considered.

It should be noted that in this case it is more common for 7, and 7, to be unequal,
the slope for the fill usually being flatter than for the cut. Referring to Figure 10.21,
for the left-hand side we have the same equation as before i.e.

b
(}l + 0)s1n1
n

Wl = _
S1—m
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and for the right-hand side

SaMy

b
_h+70
n

W2 =
Sy~

Clearly, if P lies to the left of the centre-line, the above equations will be
interchanged. Since FP = £ s,, the coordinates of all points with respect to an origin
at F are known, and therefore the areas of the cut and of the fill can be evaluated to
give

24, = —bohy —wih—h’s,
ZAﬁll = —b0h2 + hS2h2

It should be clear, by inverting Figure 10.20, that if P lies to the left of the centre-line,
all these equations for cut and fill must be interchanged.

10.15 Curvature correction

When the centre-line of a road or railway is curved in plan, the portion between two
adjacent cross-sections is no longer a true prismoid, and a correction is required.
Consider first a portion of cutting or embankment of constant but unsymmetrical
cross-section area 4 having an arcual length L, and whose centre-line has a constant
horizontal radius R, as illustrated in Figure 10.22.

If the cross-section is unsymmetrical, its centroid G will be situated at a horizontal
distance e from the centre-line, where e (referred to as the eccentricity) is regarded as
being positive if G lies on the opposite side of the centre-line from the centre of
curvature.

If 6 is the angle subtended at the vertical axis at the centre of curvature by the two
vertical planes containing the identical cross-sections at the ends of the solid, then the
volume of the solid will be that generated by rotating the cross-section A4 through an
angle 6. By the theorem of Pappus, the volume of this solid will be the product of the
area 4 and the length of the path of the centroid i.e.

AeL
V=A(R+e)0=AL+%

Figure 10.22
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In this expression, AL is the volume of a prismoid of length L, and the curvature
correction is AeL/R, being positive or negative according to whether e is positive or
negative. If the cross-section is symmetrical, G lies in the centre-line and the
correction is zero. In the general case, the shape of the cross-section will not be
constant, so that neither 4 nor e will be constant, and if the horizontal curve is a spiral,
the radius R will not be constant.

As in practice the ratio e/R will always be comparatively small, it is usually
sufficient to calculate the correction for each cross-section and then to use either
Simpson’s rule, the prismoidal rule or the end-area rule as appropriate, to determine
the volume in the normal manner.

In calculating the value of the correction, it is useful to remember that for the
clothoid spiral the radius of curvature is inversely proportional to the distance round
the spiral from the origin, and that the product of these two quantities is equal to the
LR value for the curve.

Calculation of eccentricity

Because the correction term to be applied to the cross-sectional area 4 is Ae/R,
equations for 4e are derived in this section. If the actual eccentricity itself is required
for any purpose, it can always be obtained numerically by dividing Ae by 4, which
will already have been found.

Three cases only will be considered: the three-level cross-section with unequal
side-slopes, the same with equal side-slopes, and the part cut-part fill cross-section.
All other cross-sections can be very simply derived from these. In each of these cases,
the expressions will be found in terms of the half-breadths, which themselves can be
found as before.

It will be remembered that the perpendicular distance of the centroid of a triangle
from its base is 1/3 of its height, and that the area is half the base times the height; see
Figure 10.23.
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Figure 10.23
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Assuming e to be positive when G lies to the right of the centre-line, taking moments
about the centre-line we have

If n; = n, = n this simplifies to

Ae=l(h—b—0)(w1 +wy) (W —wy)
6 n

For the part cut-part fill section in Figure 10.24, by the same process, we have

Aegy, h—9 W_l__0+sg_

7’1] 6 67[1 6

2 3 3

oo =|pBo |2 _ b0 27
fill = 52

I12 6 6112 6

10.16 Earthworks from computer models

Where points have been carefully selected at breaks of slope or changes of direction
in plan, more efficient estimates of volume can be obtained by forming a system of
triangles connecting these points together, and calculating the volume for each
triangular column from the formula:

A
V=§(hl+h2 +h3)

where 4 is the area of the triangle. The volumes of all triangular columns are added
to give required cuts and fills.

The selection of triangles has been automated by an algorithm devised by
Delauney, which selects a network of the most nearly equilateral triangles from any
given set of points, according to the rule that the circum-circle of any triangle cannot

Wy

\ 4

X
=

Figure 10.24
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contain another point. The system produces a unique set of triangles except where
there are four con-cyclic points. In this case, an arbitrary rule makes the automatic
choice from two possibilities. The algorithm starts at any outside point, proceeds to
find the nearest two neighbours by examining distances, then moves to one of them
to proceed to finding nearest neighbours. The selection of triangles is easy to do
manually, but takes a little thought and much calculation to program for a computer
(see Section 12.7).

If the surface of the ground has been modelled by computer, the volumes of
earthworks are calculated in a different manner. The surface model, described by a
series of triangles, is intersected by the geometrically primitive surfaces of the
formation, usually consisting of planes and lines. Figure 10.25 illustrates a typical
problem. It shows ABC, a typical triangular facet of the ground surface, intersected,
in the line ST by the side slope plane of the embankment. This side slope is part of
the plane PQR, which is defined by the road design. The plane ABC is given by its
coordinated points. There are three objectives:

1. to calculate the coordinates of S and T;

2. to find the equation of the line ST, for plotting by computer, and setting-out in
the field from coordinates;

3. to calculate the volume of the solid RABTS, a portion of the embankment.

The complete task consists of many similar calculations. All data recorded by
coordinates in the computer files can then be used to create cross-sections and three-
dimensional visualizations as required. The whole process is converted to a computer
algorithm based on the transformation of the coordinates of the solid. Equations are
written for the projecting lines, and the coordinated points on the plane of the drawing
are determined.

Alternatively, isometric views may be drawn using skew coordinate axes as in
Figure 10.26.

Side slope
e

T < Ground surface
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Figure 10.25
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Figure 10.26

Example

The procedure is best explained by an example using the data of Table 10.3 in which
the coordinates of the ground surface triangle ABC and of the formation plane PQR
are listed. See Figures 10.25 and 10.26.

Equation of the plane PQR

The first stage is to find the equation of the plane PQR from the coordinates of these
points. This equation is written

Ax+By+Cz=D

Table 10.3

Point X y z
P 50 0 0
Q 0 100 10
R 0 0 10
A 10 10 0
B 0 50 5
C 70 30 10
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where the coefficients 4, B, C and D are given by the determinants

ypoozp 1 zp xp | xpoyp |1 Xp Yp Zp
yJR R 1 zg xR 1 xR 1 YR VR 7R

Substituting the above values,

0 0 1 0 50 1 50 0 1 50 0 O
A=|100 10 1j; B=10 O 1;C=(0 100 1; D=|0 100 10
0 10 1 10 0 1 0 0 1 0 0 10

from which we obtain the equation of the plane PQR as

1000x+0y+5000z = 50000
Note that, although this equation can be simplified to

x+5z=50

and normalized to

0.1961x+0.9806z =9.8058

it has been retained in the above form taken within the computer software.

The reader may like to verify, from the section ORP, that the perpendicular
distance ON from the origin of coordinates O (Figure 10.25) to the plane is 9.8058,
and that its direction cosines are 0.1961 and 0.9806.

Coordinates of T and S

The equations of the line BC are
x+(xg —xc)t=xg
y+(g—yc)t=yp
z+(zg —zc)t=1zp

where t is the ratio BT/BC. Since this line also intersects the plane PQR at T, the
coordinates of T also satisfy the equation

1000x+ 0y + 5000z = 50000

These four equations are solved to give the coordinates of T and the scalar t. The
numerical values of the coefficients and their solution are given in Table 10.4 for the
two points T and S.

Example The coefficients of these equations, listed in Table 10.4, are used to find the
coordinates of point T on BC and S on AC. Each set of four equations is solved
separately. The points are

T(12.07, 46.55, 5.86) and S(25.00, 15.00, 2.50)
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Table 10.4

Point T Equations  Soln T

x 1 0 0 =70 0 12.07
y 0 1 0 20 50 46.55

z 0 0 1 -5 5 5.86
Plane PQR 1000 0 5000 0 50000 t=0.17
Point S Equations  Soln S

x 1 0 0 —-60 10 25

y 0 1 0 -20 10 15

z 0 0 1 -10 0 2.5
Plane PQR 1000 0 5000 0 50000 t=0.25

Calculation of volumes

The volume of fill is calculated from the addition of a series of tetrahedra such as
RABS, RBTS etc. Taking the example for RABS, the volume V is evaluated from the

determinant

YR

XA
6V =

XB

Xs

JR
YA
VB
s

ZR
ZA
ZB
Zs

e G ry

The numerical values are given in Table 10.5, giving V= 1375 cubic units.

Equations of line ST

To plot points on the toe of the new embankment, or set them out in the field, we use

the equations of the line ST.

x+(xg—x7)t =Xxg

y+(rs—yr)t=ys

z+(zg —z7)t = zg
x+12.931=25.0
y—=31.55t=15.0
z—=336t=2.5

Thus the coordinates of a point on a cross-section perpendicular to the centre-line at

y =20 can be found from

=
—31.55
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Table 10.5

y z
R 0 10
A 10 10 0
B 0 50 5
S 25 15 2.5

giving x =22.95 and z = 3.03. From these coordinates, the bearing and distances from
an instrument set-up can be calculated for setting out. Normally all these
computations are carried out by menu-driven software mounted on portable
computers for use on site.

10.17 Mass-haul diagrams

Mass-haul diagrams are used for route earthwork projects to assist in designing the
best profile and in organizing the actual work in the most economical manner. Such
diagrams relate only to the longitudinal movement of earth along the route, and take
no account of transverse movement of material. The mass-haul diagram is a graph
showing the cumulative volume of excavation (as ordinate) plotted against the centre-
line chainage (as abscissa) and is usually (although not necessarily) plotted to the
same horizontal scale as, and projected up from, the longitudinal section (see Figure
10.27).

The ordinate (aggregate volume) can be regarded as a measure of the volume of
earth contained in the bowl of a hypothetical scraper of infinite capacity, as it moves
in the direction of increasing chainage, along the route centre-line.

When this imaginary machine is cutting, the volume of earth in the bowl increases,
and the greater the depth and/or width of the cut, the greater will be the rate of

v —\ Balance line ey
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Formation level Sk
Longitudinal section

P Distance

Figure 10.27
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increase of volume of material in the bowl, and the steeper will be the gradient of the
plotted curve. When the machine stops cutting, and starts spreading, the ordinate will
cease to increase and commence to decrease, and a local maximum (zero gradient)
will occur on the curve. Similarly, when the machine changes over from filling to
cutting, a local minimum will occur on the curve.

From the above, it will be apparent that a positive gradient to the curve indicates
cut, and a negative gradient indicates fill, and in fact, since

V=[Adx

the gradient of the mass-haul curve at any point will be equal in sign and magnitude
(subject to a possible scale factor) to the cross-sectional area of the cutting or
embankment.

The shape of the curve for a particular project i.e. a horizontal line when there is
no cut or fill, an inclined straight line when the cross-sectional area is constant and a
curve with a changing gradient when the cross-sectional area is varying, will soon
become apparent from the table of cross-sectional areas from which the volumes and
hence the cumulative volume, are calculated.

Although certain indications i.e. whether it is cut or fill (hence the sign of the
mass-haul curve gradient), the position of changes from cut to fill and hence the
position of local maxima on the curve, may be obtained from the longitudinal section,
care must be taken in trying to relate gradients on the curve with the depths of cut and
fill on the section. If cuttings and embankments with side slopes are used, the areas
of the cross-sections will not be directly proportional to the depths of cut and fill, and
if the formation width on the value of the side slopes varies, there will be even less
correspondence between the gradients of the mass-haul diagram and the ordinates of
the longitudinal section.

Since the ordinates on the mass-haul diagram represent cumulative volumes, it
will be further apparent that for any two points on the curve having the same ordinate,
the volume in the bowl of the hypothetical machine will be the same, and therefore
the volumes that have been dug and spread between these two chainages will be
equal.

Two points on a continuous curve that have the same ordinate must, of course,
embrace at least one local maximum or minimum, and the vertical distance between
the points and this highest or lowest point will represent the volume which has been
dug and deposited again i.e. is equal to the volume of the embankment between the
two chainages. Two points on the curve having the same ordinate will, of course, be
indicated by the points at which a horizontal line drawn on the diagram cuts the curve.
Any such horizontal line is referred to as a balance line since there is a balance of cut
and fill between the chainages of all the points where it cuts the curve (see Figure
10.27).

Since a positive gradient indicates cut, and a negative gradient indicates fill, it
should be clear that when the curve lies above the balance line the direction of the
movement of the earth is forwards (i.e. increasing chainage) and when the curve lies
below the balance line, the direction of movement is backwards. Thus for a
continuous balance line, as in Figure 10.27, the points where it cuts the curve also
indicate the chainages at which the direction of haul changes.
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If two, or more, balance lines are drawn on the diagram, as shown in Figure 10.28,
the earth from the cutting A is moved forwards and just fills the embankment B.
Similarly the spoil from cutting C is moved backwards and just fills embankment D.
If this scheme is adopted, there is no material available to fill the embankment E
between chainages X and Y, and filling will have to be obtained from a borrow pit
alongside the route in the vicinity of E, or otherwise imported on to the job. Similarly,
as the spoil from cutting F when run forward will be sufficient to fill G, the earth that
is excavated from cutting H will have to be dumped alongside the route adjacent to
H, or otherwise removed from the job.

Borrowing and wasting

When material is either brought on to or removed from the job, it is customary to refer
to this as borrowing or wasting, respectively. It will be seen that when the balance line
jumps down (as from ab to ef) borrowing must take place, and when it jumps up (as
from ef to gh) wasting must occur.

If the borrowed material is brought into the embankment E, transversely, all along
the route between the chainages X and Y, no balance lines need be drawn for this
portion. If, however, the material is imported at one point, the appropriate lines can
be drawn. The continuation of the balance line ab to c, and then jumping down to e,
would indicate that a volume equal to the ordinate ec was being imported at Y, and
since the curve between X and Y lies below the balance line ac the direction of haul
would be backwards.

If, however, the line ab jumps down to d, and then continues to ¢ and f, the
material is being imported at X and since the curve now lies above the balance line,
is being moved forwards. The material could, of course, be brought in at any single
point between X and Y, which would be represented by a balance line somewhere
between ac and df.

It has been seen that drawing more than one balance line on the diagram
introduces the necessity to waste or borrow, which apart from that required at one end
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of the job to accommodate any overall imbalance in the cut and fill, will involve an
additional amount of excavation and filling, and before this can be justified some
further factors will have to be investigated.

The area under the mass-haul curve, the product of volume and distance hauled,
is known as the haul A, where

H=[Vd
The units of ¥ are cubic metre-metres (m*).

Examples

Two simple examples will demonstrate how the mass-haul curve can be used to find
out whether intermediate borrowing or wasting is desirable, and if so, the best
positions for it to be carried out.

Referring to the material that has to be imported to fill embankment E in Figure
10.29, the total volume required is given by the ordinates db or ec. If it is brought in
at x and run forwards, the haul will be given by the area bde, enclosed between the
curve and the balance line de. If it is brought in at y and run backwards, the haul will
be given by the area bce, enclosed between the curve and the balance line bc. As the
second of these two areas (due to the shape of the curve) is smaller, importing at y
and running backwards is the more economical procedure. It should be noted that the
average haul distance for this work can be found (if required) by dividing the haul by
the volume i.e. dividing the area bee by the ordinate ec.

The whole job is represented by the curve in Figure 10.30, which has an overall
excess volume of cut over fill equal to the ordinate gs, which will have to be wasted
somewhere. If the single balance line pq is used, the direction of haul will be
forwards, the whole of the excess will be wasted at the end of the job, and the haul
will be given by the area enclosed between the curve and the balance line pq. If,
however, the balance line rs is used, the directions of haul will be both backwards and
forwards from x, the whole of the excess volume will be wasted at the beginning of
the job, and the haul will be given by the sum of the two areas enclosed between the
curve and the balance line rs, which is considerably less expensive than if the balance
line pq were used. The area of the rectangle prsq represents the haul involved if the
whole of the excess volume were moved from one end of the job to the other.
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Figure 10.29
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Costing
In this project the most economical scheme, from the point of view of haul, is one
employing the balance line tu, in which the sum of the areas enclosed between the
curve and the balance line is the minimum possible. This, however, involves
increasing the volume to be wasted by the ordinate rt, and introducing an equal
volume (su) to be borrowed at the end of the job. To decide whether this will in fact
produce a cheaper scheme than that of employing the balance line rs will require a
knowledge of the actual costs of borrowing, wasting, and hauling so that the cost of
an increase in borrow and waste can be compared with the saving arising from a
decrease in haul.

In looking for the most economical scheme a further factor must be taken into
account.

Free haul and overhaul
When the excavated material is loaded into lorries and dumpers for transport, the cost
is not directly proportional to the haul (i.e. product volume X distance) since the cost
of loosening, getting out, loading, dumping, spreading and consolidating will be
constant per cubic metre regardless of the distance run by the vehicles. When the earth
has to be moved short distances, it may not be loaded into vehicles at all, or only into
short-run vehicles.

For these reasons, it is common practice to divide the material into two categories.

1. Material that is to be moved through distances less than an agreed amount
known as the free-haul distance (fixed by the type of plant envisaged for the
job), such material being charged at a unit price per cubic metre, regardless of
the distance moved (provided of course it is less than the free-haul distance).
This volume of material is known as the free-haul volume.

2. Material that has to be moved through distances greater than the free-haul
distance, and which is charged at the same rate per cubic metre as the free-haul
volume, plus an extra charge at a unit rate per m* of haul for the distance it is
moved in excess of the free-haul distance. This volume of material is known
as the overhaul volume and the product of the volume and the excess distance
through which it is moved is referred to as the overhaul.
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Example

Refer to Figure 10.30 on which an additional balance line equal in length to the free-
haul distance (FHD) (say 100 m) has been drawn. Between chainages X and Y the
total volume of material to be moved is given by the ordinate ac (1000 m?) at P
pounds sterling per m3. Of this volume bc (300 m?) is the free-haul volume and ab
(700 m3) is the overhaul volume.

The total haul between X and Y is given by the whole area between the curve and
the balance line pq. Of this, the area A (21 000 m?) represents the free-haul for the
free-haul volume bc, all of which is moved a distance less than 100 m, the average
haul distance for this material being 21 000 / 300 = 70 m.

The area B represents the free-haul for the overhaul volume ab, being the haul for
moving it the first 100 m of the journey, and included in the rate of P pounds per m>.
The areas C and D (43 000 m* in total) represent the haul for the overhaul volume ab,
being moved through a distance beyond the first hundred metres, and so the overhaul,
which is charged at £Q per m3. The total cost of this part of the job therefore
comprises:

Free-haul volume + overhaul volume = 1000 at £P per m® = 1000 x £P
Overhaul = 43 000 at £Q per m* = £43 000 Q

Total cost = £(1000 P + 43 000 Q)

If required, the average distance moved by the overhaul volume is

(43000+70000) _
700

161 m

The average overhaul distance is

43000
———=61m
700

Therefore, 161 m minus FHD = 161 — 100 = 61 m and the average distance moved
by all the material is
(43000+ 70000+ 21000)
1000

=134 m.

Bulking and consolidation
In practical earthwork projects, one further factor has to be taken into account, which
however does not in any way affect the foregoing arguments. If 1 m? of solid rock is
excavated and subsequently used as fill, however carefully the consolidation is
carried out it will occupy a larger volume, perhaps 1.3 m? in its new position. This is
known as bulking, and the material is said to have a bulking factor of 1.3. If, on the
other hand, 1 m? of clay is excavated and is consolidated carefully at its optimum
moisture content when used as filling, it may only occupy, say, 0.9 m? in which case
it is said to have a consolidation factor of 0.9.

All material, of course, when loosely loaded into a vehicle for transport, will
occupy a greater volume than it did on the ground, and this is also referred to as
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bulking, the bulking factor in this case being somewhat larger than that referred to
above. This bulking of material in transit, however, although it affects the constructor
in deciding his haulage costs, does not affect the mass-haul curve, for which only
volumes in the ground are considered.

The bulking and consolidation factors first referred to affect the mass-haul
diagram, which aims at balancing cut and fill. All that is necessary to allow for this
phenomenon is, prior to calculating the cumulative volumes from which the curve is
plotted, to convert all volumes of fill into equivalent cut. This is most conveniently
done by dividing all the cross-sectional areas for fill by the bulking or consolidation
factor, since to fill a void of 1 m? with rock fill having a bulking factor of 1.3 will
only necessitate 1/1.3 = 0.77 m> of virgin rock being excavated. Similarly, to fill a
void of 1 m? with earth having a consolidating factor of 0.9, it will be necessary to
excavate 1/0.9 = 1.11 m3 of virgin soil.

Conclusion
From the foregoing discussions, it can be seen that the mass-haul diagram can be used
in two ways.

1. To assist the designer in determining the most suitable profile and horizontal
layout for the job. In this case, a diagram is drawn for a trial profile and layout,
the curve is analysed, trial balance lines are drawn and modifications made to
the profile and/or lay-out (as far as controlling heights and ruling gradients
allow) in order to obtain balances of cut and fill, keep the total volume of earth
moved to a minimum and, in particular, keep the overhaul as small as possible.
It must be realized that any modification of the profile or lay-out will
necessitate the recalculation of the individual and cumulative volumes and the
re-plotting of the curve.

2. To assist the constructor in planning and organizing the actual work. In this
case the profile has been settled and the volumes calculated and plotted. Trial
balance lines and the resultant calculation of haul volumes, hauls, haul
distances and directions of haul are then carried out in order to find the most
economical sequences of construction, determine the requirements for plant
and transport and locate the best positions for borrow pits and spoil heaps.

The treatment of all complex issues of design, setting-out and costing is available to
the designer and surveyor as suites of computer software to carry out the tasks
described in this chapter. Computer software is also available to create three-
dimensional models which may be viewed from any vantage point for the illustration
of projects to prospective clients or to support arguments in public enquiries.
Animated videos of sequential graphics are also used to advantage. However, if the
ground has been described in terms of triangular facets of a sufficiently small size to
describe the ground adequately and volumes are calculated from three-dimensional
coordinates, accurate results can be obtained.
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Chapter 11
Construction and Curves

This chapter is concerned with the use of ground methods to locate points in pre-
designed positions on engineering structures and works. The geometrical part of the
task usually occurs in three stages: (1) site survey; (2) planning and design, and (3)
setting out or building. At all stages the tolerances of measurement have to be
assessed and controlled. This is now possible with on-line data processing from
electronic total stations linked by radio to a site office computer.

It is common practice to base all dimensional problems on a numerical coordinate
system developed and processed by computer software, and to present results in
digital form for future use. Methods of working have become very versatile as a
result. Essential principles, enabling the surveyor to apply common sense to a
computer-dominated working medium with a special relationship with the
construction industry, will be described here.

11.1 Setting out works

Setting out engineering works involves the siting on the ground of the various
elements of the works in accordance with the dimensioned plans and drawings
supplied by the designer. Most significant dimensions are readily available, as are
coordinates from a computer model, although on-the-spot calculations performed by
field computers are not unheard of.

Since it is often not possible to set out the whole of the works before construction
commences, the accurate positioning of each element independently is highly important
and errors or mistakes can be very expensive. It is important to remember that inaccurate
preliminary surveys are not unknown, nor are dimensions scaled from distorted drawings
or prints, so it is advisable to check all leading dimensions on the site before commencing
any setting out. Calibrated EDM and tapes are essential for these checks.

Normally the dimensions of individual elements (buildings, roads, bridges etc.)
will be fully figured on drawings, and their relative positions given in computer
output. However, it is advisable to look for any controlling factors that will influence
the actual positioning of the element. For example, if space is to be left between two
houses for two prefabricated garages, each 2.5 m wide, then these houses must be set
out 5.0 m apart against a possible scaled dimension of 4.9 m.

11.2 Marks

The usual practice is to mark key points (corners of buildings, centre-lines or kerbs of
roads) with semi-permanent marks such as wooden pegs. A small nail in the top of
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the peg can be used for greater precision. A pipe nail can be driven into tarmac or
asphalt, while it may be necessary to cut a cross with a cold chisel on stone or
concrete or drive in a nail. Attaching bright fluorescent tape to buried marks greatly
assists in finding them again.

Much wasted labour can be avoided by establishing permanent reference points
(by a peg surrounded with concrete or by driving a short length of small diameter
tube) adjacent to the works but secure from damage by excavating machinery or
construction traffic, from which the marks can be re-established quickly and easily if
they are lost. Generally GPS fixation plus radial survey by total station enables marks
to be placed away from works.

11.3 General procedures

The general procedure in setting out is to establish a main control framework (a single
base line will often suffice), usually by GPS and traversing, from which the detail can
be set out by means of off-setting, tie lines, radiation or intersection. In the case of
‘route’ works (railways, roads, waterways or pipe-lines) the control framework is
usually a traverse and it is convenient to utilize the main intersecting straights for this
purpose, leaving only the curves to be established by other means.

For small sites, or when a high precision is not required, line and offset methods
will often be adequate. The 3:4:5 triangle for setting out right angles and the
principles of equality of diagonals for checking the squareness of rectangles can be
employed. Where greater precision is required, instrumental methods are preferred.

Basic techniques
No matter what the structure may be, whether railway line, sports stadium, complex
building or harbour wall, the task consists of:

1. the setting up of the instrument at a known position from which the radial data
are known, and

2. the actual positioning of the formation points which the builder uses to
complete the work.

If the instrument station has to be in a predetermined position whose coordinates
are given, the process is iterative. The instrument is set up in approximately the
correct location and surveyed in from the fixed starting points. The shifts to the
correct position are calculated and a new point established. This can then be marked
using a large peg with a nail in approximately the final position, say. Fresh
measurements are then taken for a final calculation to verify if the nail is correctly
located. If not, it has to be moved until the coordinates are within specified limits.
For precise work, the setting out can be assisted by a special tripod mounted
tribrach capable of small X-Y movements. The height can then be established above
the correct point.

Care should be taken not to mix up slope and horizontal distances, both of which
are readily available from a total station.

Several rounds of angles and values of the distances will probably be required in
precise work. The centring should be carried out with great care, with full attention
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paid to the levelling process (simply looking through the plummet is no check). The
effects of tilts on the line of sight should also be remembered, and key points should
be set out on both faces.

If the software is available, it is much quicker to establish an initial point to
specification then compute the radials from this new point.

Setting out the detail is again iterative, depending on the accuracy required. A
provisional position is established, resurveyed and the point moved by small offsets
to its correct location. If a large component is to be positioned, which has to jacked
into position, the surveyor prefers to get the base at the right height first, then move
the component on the level base to its correct plan position. This procedure may not
always be possible.

A far as possible, points should be set out individually, and not from one another
as in a chain, otherwise errors will accumulate.

To guard against blunders, whatever the feature to be set out, common sense
should be used to see if the expected shapes are developing.

Structures to be set out vary enormously, from simple rectangles to complex
three-dimensional surfaces such as the Sydney Opera House. Typically the most
common works deal with communication lines such as pipelines, roads and railways.
We shall now consider some aspects of curve surveying to illustrate some general
principles.

11.4 Curve surveying

In route surveying, it is usual to treat the horizontal shape separately from the vertical.
In all setting out, a system of coordinates is obviously called for e.g. rectangular
coordinates for off-setting methods and polar coordinates for radiation methods.
Setting out elements consisting of straight lines and curves are based on rectangular
coordinates converted to radials from any suitable station. Many instruments now
have a speech modulation system or a digital display to enable the operator to
communicate with the prism holder.

In setting out road and railway works it is usual to establish pegs at 10 or 20 m
intervals along the actual centre-line of the route, these pegs being consecutively
numbered from the commencement of the route. Thus any point on the centre-line
may be identified by its chainage i.e. its distance along the centre-line from the
commencement. In setting out curves it is convenient that some of the pegs preserve
running chainage. In all examples presented here, the chainage is assumed to be
increasing from left to right.

Proceeding in the direction of increasing chainage, the first tangent to a curve is
known as the running-on tangent, and the second as the running-off tangent. The
junction of a straight line and a curve is known as a tangent point (TP), the junction
of two portions of a compound or combined curve as a junction point (JP), the point
at which the running-on and running-off tangents meet as the intersection point (IP)
and the external angle between the tangents as the intersection angle. (The internal
angle, known as the apex angle, is rarely used in curve calculations.) These terms are
illustrated in Figures 11.1.

242



CONSTRUCTION AND CURVES

Running-on TP

tangent

JJo-Suruuny
(\%

=
v}

(d)

) N\
\ N 3N
§ \
\5 ; \
TP \
\
3 (e) \
Ed \
g \
~
_ \oap
Running-on tangent Transition, \

Figure 11.1

243



PRINCIPLES OF GEOSPATIAL SURVEYING

11.5 Types of horizontal curve

The types of horizontal curve which the surveyor normally has to deal with in
connection with building and civil engineering works are (see Figure 11.1):

(a) Simple curves: circular curves of constant radius.

(b) Compound curves: two or more consecutive simple curves of different radii.

(c) Transition curves: curves with a gradually varying radius (often referred to as
‘spirals’).

(d) Reverse curves: two or more consecutive simple curves of the same or
different radii with their centres on opposite sides of the common tangent.

(e) Combined curves: consisting of consecutive transition and simple circular
curves. This is the usual manner in which transition curves are used in road and
railway practice, to link a straight and a circular curve or two branches of a
compound or reverse curve.

The problems connected with horizontal curves are: firstly the design and fitting of
curves of suitable radius or rate of change of radius to suit site conditions, vehicle
speeds, etc., and secondly the setting out of the designed curves in the field. The first
of these problems is generally the concern of the design engineer. The computation of
setting out data and the field setting out falls to the surveyor. For this reason, these
last two areas of the work will be dealt with first, but design and fitting will also be
considered briefly.

11.6 Circular curve geometry

Circular curves can be defined by radius which is self-explanatory, or by degree. The
degree D of a circular curve is defined as being the angle in degrees, subtended at the
centre by a chord 100 m long, so that in Figure 11.2 we have

50

50
D=2arcsin— or R=——
R sin(D/2)

IfR (inm)is large, D = 180 / ® = 5729.6 / R.

From Figure 11.3 we have:

1. Since A=C =90°, ABCO is a cyclic quadrilateral CBD = AOC = 260

Figure 11.2
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Figure 11.3

2. In the right-angled triangles ABX and OBA, angle ABO is common, therefore
the triangles are similar and hence, AOB = BAX = 6. (NB for 100 m chord,
06=D/2)

3. From triangle AOX,

sinf = <
2R

From Figure 11.4 we have ABO = CBO = (90 — 6), therefore
¢ = 180 — (180 — 20) = 260

The above relationships are used often in curve surveying.

11.7 Transition curves

A transition curve is one in which the curvature varies uniformly with respect to arc,
in order to allow a gradual change from one radius to another (a straight being merely
a circular curve of infinite radius) and to permit a gradual change in the super-

Figure 11.4
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elevation (see 11.18). It must, of course, have the same radius of curvature at its ends
as the circular curves that it links.

By definition, the transition curve must have a constant rate of change of curvature
with respect to arc i.e. if ¢ is the tangential angle and s is the arc,

d%¢

dgz
where K is a constant. Consider the case of a transition curve linking a straight and a
circular curve of (constant) radius R (see Figure 11.5) where

=K

de
a-=des=Ks+K1

Since the curvature at the origin O is zero,

d
@ _,
ds
when s = 0 and therefore K; = 0 and
d
@ _
ds

Integrating again,

1
¢=[Ksds=Ks* +K,

but, since ¢ =0 when s = 0, K, = 0. The fundamental equation of the transition curve
therefore becomes that of the mathematical curve, the clothoid

¢=%K& (11.1)

Variable
radius

End of curve

Constant

radius

Figure 11.5
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This may also be written

s=C\/$

where
2
C=,|—
K
If L is the total length of the curve, then when s = L,
9 _1 ¢ - k=L
ds R LR
and the equation of the curve becomes
§2
?=2Ir
or
s =+/2LR¢ (112)
Note that since dp s |
_— = KS = =
ds LR p

where p is the radius of curvature corresponding to the arc s, then
s p=LR= constant (11.3)

This is an important and very useful property of the clothoid.
When s = L (i.e. at the end of the curve) the total tangential, or ‘spiral” angle for
the curve @ is given by
L

D =—
2R

This is half the tangential angle turned through by a circular curve of the same length,

and of radius R. The above equations do not lend themselves readily to the

computation of curve components or to the field setting out of the curves and it is

necessary to arrange them in a more convenient form. Three methods of representing

the curve are commonly used for these purposes, namely systems:

1. of rectangular coordinates;
2. of polar coordinates;
3. utilizing deflection angles and chords.

All of these systems involve the use of approximations, the extent of the
approximation being dependent upon the degree of accuracy required.

In this connection it must be remembered that even the maximum curvature of a
practical transition curve is comparatively small and that the curvature shown in the
diagrams is grossly exaggerated for the sake of clarity.
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11.8 Rectangular coordinates

It is customary to use the tangent point as the origin, the continuation of the tangent
as the X-axis, and offsets from this continuation as the Y-axis. Considering a small
element of arc ds at a distance s from the origin, it will be clear from Figure 11.6 that

x= fcosgbds and y= fsinq)ds

In order to perform these integrals it will be necessary to substitute for ¢ in terms of
s or vice versa. The choice of the most convenient substitution depends on the
relationship we require to establish. One illustration should suffice.

2
N

?=2Ir

therefore

2LR

2 2
s | s
x=fcos(ﬁ)ds and y=fsm —)ds

Since x = 0 whens = 0,

s s

- 11.4
40(LR)? " 3456 (LR)* " a4

Il
(e}

Since y = 0 when s

S3 S7 Sll

T6LR 3 5T
6LR 336(LR)’  42240(LR)

s =+2LR¢
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expressions can be found for x and y in terms of ¢p. The power series for x and y, since

s is less than L, approximate to

S3

x=s and =—
YT 6LR

or

_J _
tan@—x and L =xsecl (11.6)

This is the cubic parabola, which is commonly used, without correction, as a
transition curve where the final curvature is small. It should be noted, however, that
it has a very important limitation. When the ratio y / x exceeds about 0.15 (equivalent
to a deflection angle of 8° 34") the curvature ceases to increase as the distance round
the curve increases and begins to decrease again, so that the cubic parabola is useless
as a transition curve outside this range.

The coordinate system actually used for the setting out may be based on any
suitable point to which the curve based coordinates (x, y) are transformed by the
methods of Chapter 3. This procedure gives great flexibility if field software is
available.

11.9 Polar coordinates

It is convenient to take the tangent point as the origin and the continuation of the
tangent as the initial line. The amplitude 6 is then referred to as the deflection angle,
and the radius vector L as the long chord. It can be seen from Figure 11.6 that

tan(9=Z and L = xsecl
x

In practical problems, 6 and L can be calculated from x and y.

11.10 Computation of curve components

The initial conditions for setting out any curve involve:

1. the location of the straights and their intersection points; and
2. the determination of the intersection angles.

This information may be supplied by the planning engineer, determined in the field
by direct measurement or determined indirectly from field measurements (e.g. a
traverse). It will be necessary for some of the curve components (e.g. radius or
tangent length) to be fixed, and these again will normally be supplied by the engineer
or must be determined from traffic considerations or by site controls (e.g. property
boundaries).

The present section assumes that the above data has been obtained, and will deal
with the determination of the remaining components and the location of the tangent
points, junction points and, where necessary, subsidiary intersection points.
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11.11 Circular curves

If the intersection angle f is fixed, the only ‘free’ components are the radius R, the
length of the curve L and the two equal tangent lengths T, and IT,. Figure 11.7 shows
that L = Rf and that

Tll = IT2 =R tang
The following examples illustrate the necessary computations.

Example 1

Suppose § = 75°, R = 1000 m and chainage of intersection point I = 28 + 63.2
(Figure 11.7). The chainage is the total distance in metres from the starting point of
the works. It is the total running length of the centre-line, and is used for further
calculations, especially volumes. In this case the chainage of 2863.2 m is purely
arbitrary. We have to determine tangent length, curve length and chainage of tangent
points. The first tangent point will be at a lower chainage than that given for the
intersection. The convention is to work in units of ‘chains’ of 100 m e.g.
28 + 63.2 = 2863.2 m. The practice stems from the early use of a measuring chain
(66 ft) in the 19th century.

T,I=1T,=7673 and L = RB = 1309.0

Chainage [ =28 + 63.2; T\I= 7 + 67.3
Chainage T, = 20 +959;L=13+9.0
Chainage T, = 34 + 04.9

Example 2
Suppose that 8 = 75° (see Figure 11.7), chainage I = 28 + 63.2 m and chainage T,
=24 + 36.6 m.

Determine R, the length of curve, and the chainage of T,.

(Chainage 1 =28 + 63.2) — (Chainage T, = 24 + 36.6) = 2863.2 — 2436.6 = 426.6

L
|
B } C
AN | / \
\ /
A ROBs1bsy R b
v
v
Figure 11.7
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Tl 4266

tan(f/2) tan37.5

L=RB=7278 m
Chainage T, = chainage T, + L =31 + 64.4

Example 3

Suppose that ABC = 149° 44' 40", BCD = 137° 43' 40", BC = 1023.3 m (Figure
11.7). A circular curve of radius 850 m is to be inserted, tangential to AB and CD. If the
chainage of B is 30 + 15.6 m, find the chainages of the initial and final tangent points.

IBC = 180° — 149° 44' 40" = 30° 15' 20"
ICB = 180° — 137° 43" 40" = 42° 16' 20"

B =72°31' 40"
inICB
BI=BCX" _7216m

Sin

inIBC
1c=BcY Y _5405m

Sin

L=RB = 1076.0 m
IT = 623.6 m
Chainage T, = 31 +13.6
Chainage T, = 41 + 89.6

11.12 Compound circular curves

As can be seen from Figure 11.8, the centres O, and O, lie on a straight line O,J
which is perpendicular to the common tangent PJQ. Note that in general, O,J does not
pass through 1.

Figure 11.8
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Assuming that the main intersection angle § is fixed, there are eight remaining
components, R, R,, T|I, T,1, B, B,, L, and L,. Any three of these must be fixed for
the curve to be defined uniquely. Five equations must therefore be established in order
to obtain the remaining components. Three are obtained simply from

B =8 +5
Ly = Rp,
L, = Ry,

Consider the polygon O,0,T,IT , in which the algebraic sum of the projections of the
sides onto any one side must be zero.
Consider first the projection onto O,T,. We have

R, +0-1IT, sinf — R, cos — (R, — R)) cosf, = 0
and
IT, sinf = R, — R, cosp — (R, — R)) cosp,
Similarly, projecting onto O, T,
IT, sinf = R, — R, cosp + (R, — R,) cosp,

Example 4
Given 8 = 75°, 8, = 30°, R; = 800 m and R, = 1000 m, determine 3,, L, L,,
IT, and IT,,.

B, = 45°,L, = 4189,L, = 785.4,IT, = 674.5 and IT, = 739.6

11.13 Reverse circular curves

From traffic considerations it is desirable to introduce a section of straight and
transition curves between the branches of a reverse curve, so the pure reverse curve
is rarely used in practice. It must be considered, however, as the treatment is the same
in principle as applied to compound curves.

It will be seen from Figure 11.9 that the centres O, and O, lie on the straight line
0,JO, which is perpendicular to the common tangent PJQ. O,JO, does not in general,
pass through the main intersection point I of the running-on and running-off tangents
T,P and QT,. Note that I may be at some considerable distance (infinite if TP and
QT, are parallel) from the curves, and will commonly be inaccessible. The value of
the main intersection angle will be known, being the difference in bearing between
the lines PT, and QT,.

There are eight remaining components of the compound curves (R, R,, T,I, T,I,
B, By, L, and L,) of which three must be fixed to define a unique curve system. Five
equations must be established to obtain the remaining components. From triangle IPQ
(Figure 11.9),

ﬂz :ﬁl +ﬁ
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In all cases 8 will be the difference (+ve) between 3, and f3,.
As before,

Ly = R

Ly = R,
As with compound curves, the sum of the projections of the sides of the polygon

0,0,T,IT, onto any one side will be zero, leading, by an exactly similar process as
that used for the compound curve, to the equations

IT, sinf = R, + R cosf — (R, + R|) cosf,

IT, sinf = R, + R, cosf — (R, + R,) cosp,
One particular case of reverse curves, when the running-on and running-off tangents are

parallel, requires special treatment because the standard equations are not applicable.
From Figure 11.10, the following relationships can be derived.

Figure 11.10
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B, =B, =B;Al = R/(1 — cosp)
JB = Ry (1 — cosp)
AB = AJ + JB; T,A = R, sinf
BT, = R, sin
T,C = T,D = (R, + R,) sinf

T,J = 2R, sin(B/2); JT, = 2R, sin(B/2)

T,T, = T,J +IT,

11.14 Transition and combined curves

Once the rate of change of curvature of a transition curve (hereafter referred to as a
spiral) has been fixed (by the methods discussed later), the only component remaining
to be found to define the curve uniquely is its length. Consequently, the components
of combined curves will be investigated in this section. The following notation will

be used in the following discussion, referring to Figure 11.11.

Apex distance
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Figure 11.11
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TJ = L is the total length of each spiral;

R is the radius of the central circular arc (and of course the radius of curvature of
the spiral at its junction with the circular arc);

c is the shift;
T denotes springing point of spiral from straight;

J denotes the junction point between spiral and circular arc;
¢ is the angle between two tangents to the curve separated by an arc of length s;

x,y (0, [) are the Cartesian (polar) coordinates of a point on the curve relative to the
initial springing point as origin and the original straight as x-axis;

@, X, Y, and O refer to the particular values of ¢, x, y, 0 at the point J (i.e. when s =
L).

To avoid confusion with the tangent lengths for purely circular curves, the distances
IT,, IT, etc. will be referred to as ‘apex distances’.

In this section, the spiral used will be the true transition curve (the clothoid),
which, if the correction terms are ignored, becomes the cubic parabola. Some of the
relationships developed below are true whatever curve is used. Where this is so it will
be indicated in the text.

Shift

For it to be possible to insert a spiral between a straight and a circular curve it is
necessary to move the circular curve away from the straight by an amount known as
the shift. Similarly, in order to insert a spiral between two branches of a compound
curve, it is necessary to move the circular curve with the smaller radius inwards or the
circular curve with the largest radius outwards i.e. to separate the two curves. It
should be noted that in this latter case, the effect of inserting a spiral is to change the
position of the common tangent. In the unusual circumstances that this is not
practicable, it will be necessary to substitute a completely new curve system.

For the single circular curve it will be seen at once from Figure 11.11 that

R+c=Rcos®+Y

therefore
c=Y—R(1—cos®) (11.7)
This is true whatever spiral is used. For the clothoid,
3
y= S + higher order terms
6LR
so that when s = L,
L2
Y=—+...
6R
But E
P30k
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therefore
L
O=—
2R
But
o> I’
l—cosP=—=—+
2 8R?
Thus we get
2
o= L (11.8)
24R
Notice when s = L/2,
_ _c
YT 48R 2

Thus the shift and curve approximately bisect each other: a useful check when setting
out.

Apex distance
For the circular curve it can be seen from Figure 11.11 that

TI =X+ (R + ¢) tan(/2) — Rsin® (11.9)
This is true whatever spiral is used. For the clothoid,

x = s + higher order terms

therefore
X =L + higher order terms
and
ook
2R
giving
X —Rsind = % + higher order terms
T,I =T, =L/2 + (R + c)tan(B/2) + higher order terms (11.10)
It can be shown (Allan 1997) that the first small term in Equation (11.10)
L3
240R*

is generally negligible.
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Length of combined curve

It has been shown that the angle consumed by one (clothoid) spiral ® = L / 2R so
that the angle consumed by two identical spirals 2d& = L / R, leaving the angle
available for the central circular curve as (8 — L / R). The length of the central
circular arc is therefore

RB - LR)=RB - L
and the total length of the combined curve is
RB + L

Example S
Referring to Figure 11.11 and employing the notation of the previous sections, assume
B=75°,R=500 m,L = 400 m (LR =200 000) and chainage I = (28 + 63.20) m.

It is required to find the position and chainage of the tangent points, and the
chainage of the junction points.

Shift:

2
e=L <1333
24R

The omitted correction is —0.076.
Apex distance:

3

L L
TI=T,I= —+(R+c)tané— 5 =200+393.84—1.07=592.77
2 2 240R

Length of circular arc:

RB+ L = 654.50 — 400 = 254.50
Chainages:
T, =28+63.20 - (5+92.77) =22 + 70. 43
J,=22+70.43+(4+0)=26+70.43
J,=26+70.43 + (2 + 54.50) = 29 + 24.93
T,=29+24.93 + (4 +0)=33+24.93

11.15 Wide roads and dual carriageways

For roads having a large formation width, in particular for dual carriageways, it will
be necessary to set out the individual kerbs and embankment edges independently as
the method of off-setting from the centre-line is only applicable to narrow roads. This
makes no difference to the setting out of the curves themselves, but does affect the
calculations of the curve components. Examples include:

1. where the carriageway retains constant width throughout;

2. where the carriageway is widened gradually along the spiral but maintains
constant (increased) width round the circular portion. This is to meet traffic
engineering considerations.
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In both cases, the circular arcs remain truly concentric. (It should be noted that these
have the effect that spirals used for each kerb utilize different speed (LR) values;
methods which use the same speed values are possible but do not satisfy the other
conditions set out above.) These matters are mentioned to illustrate the highly
complex design of motorway interchanges. The provision of the setting out data is
something for which computer processing is necessary to calculate coordinates for
use by the setting out surveyor.

11.16 Field setting out

As mentioned at the beginning of the chapter, a system of coordinates is required for all
setting out. The three most convenient are rectangular coordinates, polar coordinates
and chords and deflection angles. Each of these will now be considered briefly.

Although in practice route curves are nearly always combined curves, in the
following sections the setting out procedure for circular curves and spirals will be
kept separate as they are set out separately. The procedure at the junctions between
them will be dealt with in the section relating to spirals.

Circular curves by rectangular coordinates

These methods are convenient for simple equipment using tapes and optical squares
for short curves, and are particularly useful for such situations as urban road
intersections where the centres are inaccessible. The disadvantage of using tapes,
however, is that the chords are not equal in length.

With total stations, rectangular coordinates are converted to local polar
coordinates referred to any suitable reference target.

Taped offsets from the tangent
From Figure 11.12 using the tangent point as the origin, the distance along the tangent

as the x coordinate and the rectangular off-set as the y coordinate,
Rz—x2:(R—y)2:R2+y2—2Ry

x2

YT or

When R is large compared with chord length C, x = C and

C2

YToR

and the correction for x is

x=C——

2C

258



CONSTRUCTION AND CURVES

If R =100 m and C = 20 m, then y = 2 and x = 19.90. The approximation gives 1.98,
an error of 0.02 m. This is a suitable method for small tasks or infilling detail already
set out.

Taped off-sets from the chord
This method is particularly useful for infilling additional chord points on any circular
curve once the main chord points have been established. Refer to Figure 11.13; the
midpoint of the chord is taken as origin, distances along the chord as the X
coordinates, and rectangular off-sets as the Y coordinates.

From the previous method,

o
YT oR
Since y' =Y whenx=C/ 2,
C2
Y'=—
8R
and any value of y
Ry b
y=Y'-y'=

(R-y)
R
20
(0]
Figure 11.12
Y, T,
=
Y, c, c, Y 3
cod / p———x ——
C2 Y] C \

Figure 11.13
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Then since chord C; = C / 2,

Y'
Yl ~
4
and so on for
— Yn—l
n 4

giving the general rule of ‘halving the chord and quartering the offsets’.

11.17 Circular curve ranging by theodolite

The first step in setting out the curve must be to establish the tangent points, which
will involve measuring or deriving the intersection angle, calculating the tangent
distances and pegging the tangent points and determining their chainage, as has
already been described.

Ranging the curve

The basic geometry shown in Figure 11.14 applies to three methods of setting out a
circular curve:

1. From one theodolite situated at a tangent point such as T, and taping chords C
along the curve;

2. From two theodolites situated at each tangent point;

3. By radial survey from a total station at either tangent point.

Figure 11.14
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The last two methods can be used from any points whatsoever, as stated earlier. The
traditional methods of working close to the curve will be described, as they are still
useful and also serve to describe the general procedure.

We will focus the description on the first method, by one theodolite and taped
chords. It will be assumed that running chainage is to be maintained, and that the
theodolite is to be set up at one of the two tangent points. Not shown in Figure 11.14
are C; = T\P, and C, = T,P,, the initial and final subchords. All the remaining
chords are equal to C. The deflection angles J are referred to the running-on tangent
T,L, and P, P, etc. are the chord points. Only 0 is shown in the figure.

The deflection angles have to be calculated so that the theodolite circle may be set
on I and each angle turned as the chords are taped from a previously fixed point. This
chain process is bound to accumulate some slight error, but if a mistake is made, a
clear indication of it will be given. Thus the work is quality assured and controlled.
(If intersection point I is not visible, a reference point at a calculated bearing from I
is used instead.)

The fact that the sum of deflection angles is equal to half the intersection angle is
useful as a check on the arithmetic of the calculations.

If the circular curve is defined by its ‘degree’ instead of its radius, and C = 100
m (which is common) then as previously shown 6§ = 0.5 D and the calculation of the
deflection angles is considerably simplified. This is the main advantage of the degree
method. From Figure 11.14,

T,0P, = 6, =arcsin(C; / 2R)
P,OP, = 6 = arcsin(C / 2R)

P,OT, = 6, = arcsin(C, / 2R)
Then the deflection angles 0 are

0,=06,
0,=0,+0
0,=10,+ 20

and so on until all sum to /2. From the above equations, a table of deflection angles
for setting out the curve can be prepared as in the following example.

Example 6

Two straights making a deflection angle of 75° intersect at I (chainage 28 + 6.32 m).
A circular curve of 100 m radius, deflecting left, is to be set out in 10 m chords.
Tabulate the setting out data assuming that the instrument is set up at T, and that the
initial reading of the horizontal circle, when the instrument is bisecting I, is zero.

Tangent length = 60.88
Arc length = 130.90
Chainages: T, =22 +5.44, T, =35+ 6.34
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6 =2°51"58"
Cl = 10-5.44 =4.56; C2 =6.34
C o
6, =01 =1718"23"
C
C o
0, =0—2=1°48'59"
C

The curve can be set out from the data displayed in Table 11.1.

Once the instrument has been set up over the tangent point and the intersection
point bisected, it is advisable to bisect the other tangent point, and measure the total
deflection angle to check that it is in fact equal to half the intersection angle before
proceeding any further.

This having been done, lay off the first deflection angle, stretch the tape a distance
C, from T, line in the end of the tape and drive in a peg at P,. Lay off the second
deflection angle, stretch the tape a full chord’s length C from P, line in the end of the
tape and drive in a peg at P,. Proceed in this manner until the last peg has been driven,
and then measure the final subchord C,. The amount by which this differs from the
calculated value will be a measure of the accuracy with which the curve has been set
out.

Table 11.1

Chainage 10 m chords Deflection angles
22 +5.44

23 1°18'23"
24 4°10' 16"
25 7°02' 09"
26 9° 54' 02"
27 12° 45' 55"
28 15° 37" 48"
29 18°29' 41"
30 21°21' 34"
31 24°13' 27"
32 27° 05' 20"
33 29° 57" 13"
34 32°49' 06"
35 35°40' 59"
35+6.34 37°39' 00"
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The accuracy of the method is obviously dependent on the care which is taken in
taping the chords and in lining in the pegs, and by the angle at which the two locating
position lines meet. During the actual setting out the surveyor has an immediate idea
of accuracy. If unhappy about the cut, a remedy has to be used such as moving the
theodolite to another station.

Setting out by theodolite intersection

If the ground is unsuitable for taping it may be preferable to use two theodolites (one
at each tangent point), lay off the deflection angles from both tangent points
simultaneously and locate the chord points by intersection. This of course
presupposes that the chord points are all visible from both tangent points. Where the
ground is undulating and accurate lining is difficult (whether using one theodolite or
two), it will be preferable to change the position of the instrument as in the procedure
for obstructed curves. This procedure is also necessary when the intersection angle
between the line of sight and the tape becomes small. When the theodolite is set up at
T, a fresh tabulation of deflection angles must be made, using, of course, the same
values of 6, 6, and 6.

Setting out by polar coordinates

Circular curves can of course be set out using polar coordinates with the tangent point
as the origin and the tangent as the reference direction. This is obviously the most
convenient method when using a total station. It must be remembered that the design
horizontal chords / have to be obtained from the slant EDM distances S i.e. from S' =
! seca where « is the slope angle. Many instruments incorporate suitable computer
algorithms for this calculation directly in the field, and some permit the prism holder
to read the distance at their end of the line. Increasingly, GPS differential fixes are
being used to assist conventional methods with total stations in the setting out of
planimetric data such as curves. It is most important to tie into a base station surveyed
on the same datum as the general design, and transform the GPS coordinates into the
same reference system.

Setting out transition and other curves

Although it is feasible to set out complex curves by deflection angles in a similar
manner to that described for the circular curve, modern practice is to use a total station
and a system of polar coordinates from almost any convenient position close to the
site but free from the actual works themselves. These polar coordinates are computed
from the Cartesian values of the curves. It should be remembered that mistakes may
occur so checks on key points from a second position are desirable and completing a
visual check of the curve should be common practice.

Where numerous obstructions exist, or where earthworks or construction plant
prevent the use of any permanent ground marks on the curve itself, it is more
convenient to set out the curve from stations remote from the curve. In such cases,
once the calculations have been made and tabulated, the curve can be quickly re-
established whenever required.
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The rectangular coordinates of all the chord points on the curve must be
calculated, and the coordinates of the permanent stations on the same axes obtained,
usually by traversing or by resection. The curve can then be set out either by
intersection, or by radiation.

11.18 Design and fitting of horizontal curves

It has already been mentioned that the design of road and railway layouts is the
province of the specialist engineer so only general principles are discussed here. It has
also been shown that both circular curves and clothoid spirals are defined uniquely if
any two of their properties are fixed. For circular curves these two will usually be
selected from radius (or degree), length of arc, intersection angle, or tangent length.
For spirals they will be selected from minimum radius, length of curve, maximum
spiral angle and shift. The combined curve, consisting of two identical spirals and a
central circular arc, is the case most commonly met in practice, and as purely circular
curves are very much simpler to deal with, such a combined curve only will be
assumed in general in this section.

On severely restricted sites, curves may have to be designed from purely
geometric considerations, but design is based on traffic requirements for safety and
comfort, possibly modified by aesthetic considerations or site restrictions. In most
practical cases, the overall intersection angle is predetermined by the general layout,
and the problem is finally resolved to determining a suitable radius for the circular
arc, and length for the spiral, from the traffic viewpoint.

It will be obvious that from traffic considerations the largest possible radius and
longest possible spiral are desirable, but that some restriction will always arise from
site conditions or cost. The first problems to tackle, therefore, are the determination
of suitable minima for the central radius and the length of the spiral for given traffic
speeds.

As the speed of vehicles using a particular road or railway is a variable quantity,
a ‘design speed’ must be defined, which is normally taken as the 85 percentile speed,
i.e. the speed that will not be exceeded by 85 % of the vehicles using, or are expected
to use, the road.

Minimum safe radius for circular curves

A vehicle travelling round a curve will be subject to a centrifugal acceleration, which
must be combated by the super-elevation of the track combined with the reaction of
the rails on the wheel flanges in the case of a railway, or by the frictional force
between the tyres and the road surface.

In general, the track will have to accommodate vehicles travelling at a wide range
of speeds, so the super-elevation (tanf)) cannot be so large that it will be
uncomfortable for slow-travelling or stationary vehicles. For railways, where the
vehicles have a low centre of gravity, a maximum value of 0.1 is often adopted, and
for roads 1/14.5 (= 0.069).

In Figure 11.15, we resolve the normal force N and the tangential force F
horizontally and vertically to give
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cF= W
Rg
w
Figure 11.15
wv2
—;=Nsin0+Fcos(9 and W = NcosO—Fsin6 (11.11)
&

Replacing F by u N = N tand (where u is the coefficient of friction and 4 the angle
of friction) and dividing gives

ﬁ_sin9+cos9tan/l (11.12)
gR cosf—sinfBtan A

Dividing top and bottom of the right hand side by cos6 leads to

2
Y= tan(6+ 1) (11.13)
gR

An ideal situation arises if, for a given speed, there is no tangential force i.e. F = 0

iie.u = 0andA = 0, where )

v
tanf = —
gR
In practice, some assistance from the frictional force can be expected, and use is made
of the empirical formula

2
tanf = ~——0.15
gR

For design speed 64 km hr!, and maximum super-elevation 1/14.5, a minimum safe
radius is R = 147 m.
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Minimum length of spiral
Various theories have been put forward for finding a suitable length of spiral, but the
most widely accepted is one that limits the rate of change (with respect to time) of
centrifugal acceleration to a value between 0.15 m s and 0.6 m s>, depending on
the degree of comfort required. A value of 0.3 m s is most commonly used.
For the clothoid spiral the rate of change of curvature (1/p) is constant, so that for
constant speed the rate of change of centrifugal acceleration a, where a is given by
V2
a=—
,
will be constant and equal to the change in acceleration divided by the time in which
the change takes place i.e.

where R is the radius at the end of the curve and ¢ is the time taken by a vehicle
travelling round the curve at constant speed v. But t = L/v, so that

da_ v
dt LR
3
‘cli_f=_(V/L3If) (11.14)

where V is in kilometres per hour. It has already been shown that the product of arc
and radius LR is constant for the spiral, and fixes the shape of the curve. It is known
as the ‘speed value’ of the curve.

Once the central radius R has been fixed, the minimum length of the curve can be
found from the minimum LR value (or speed value). Assuming da/dt = 0.3 m s for
v=64km hr!, LR =18 728 m = 18 800 approximately.

If the radius of central circular curve is 300 m, the minimum length of
spiral = 62.7 m. If the radius of central circular curve is the minimum for
64 km hr™! = 147 m, the minimum length of spiral is

18800

—=127.6 m
147

Provided site conditions allow, it will always be preferable for both L and R to exceed
the minima.

11.19 Other design considerations

The intersection angle being assumed fixed, and the minimum values of R and LR
having been found, the problem remaining is to find a combination of L and R to suit
the particular case. Two factors will influence the final choice of L and R.
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If there are no site restrictions, the ideal combined curve is one in which the
central circular arc is approximately equal to the length of each of the spirals. In this
case, we have the angle consumed by one spiral is L / 2R and by the circular arc is
L / R so that the intersection angle 3 is given by

L L L 2L
B=—+—4—==
2R R 2R R

If there are site restrictions, there may not be space for a central circular arc, in which
case the angle consumed by the spirals will equal the intersection angle i.e.

L
P=%

11.20 Vertical curves

Whenever two gradients intersect on a road or railway it is obviously necessary from
the traffic point of view that they should be connected by a vertical curve, so that the
vehicles can pass smoothly from one gradient to the next. Although in practice road
and rail gradients are comparatively flat and it is therefore relatively unimportant
what type of curve (circular, parabolic or sinusoidal) is used, it is usually assumed that
a curve having a constant rate of change of gradient (i.e. a parabola) is the most
satisfactory, and it so happens that this is the easiest to calculate. For modern high-
speed roads, some engineers prefer a curve in which the rate of change of gradient is
uniform along the curve, but as roads designed to these standards have also very flat
gradients, this is usually regarded as an unnecessary refinement. The simple parabola
only will be considered.

Gradients are expressed as percentages, for example a +4 % gradient is one in which
the level rises 4 units vertically in 100 units horizontally. A positive gradient indicates a
rising slope and a negative gradient a falling slope. This method of representing
gradients not only has the advantage of simplifying the calculation of rises and falls in
level (e.g. a +4 % gradient 260 m long rises 0.04 x 260 = 10.4 m), but also, apart from
a factor of 1/100, such gradients are identical with those used in coordinate geometry or
calculus. For example, if the X axis denotes the horizontal and the Y axis the vertical,
then a 4 % gradient is a mathematical gradient of 0.04 or dy/dx = 0.04.

Figure 11.16
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Because of the well-known simple geometry of the parabola, many different
methods are put forward for calculating the properties of vertical curves, but the
approach here is selected because it is felt that it is the simplest to understand and
because it will readily yield a solution to any problem that arises. In some cases a
quicker solution can be found to a particular problem by utilizing simple geometry,
but the same methods applied to another problem may become very involved.

11.21 Types of vertical curve

Vertical curves can take various different forms depending on the sign and magnitude
of the intersecting gradients, passing from left to right over the curves (Figure 11.16).

It will be observed that when there is a decrease in gradient, a curve convex
downwards is formed, and when there is an increase in gradient a curve concave
upwards is formed. The former are known as ‘summit’ curves, and the latter as
‘valley’ curves. It should be noted, however, that a true summit (highest point), or a
true valley (lowest point), can only occur when there is a change of sign between the
two gradients. It will be obvious that the gradient at the highest or lowest point is zero.

11.22 Simple parabola
Assume rectangular coordinates, with X-axis horizontal and Y-axis vertical as in
Figure 11.17.

The basic requirement for the curve is that the rate of change of gradient (with
respect to distance) is constant. This can be expressed in two different ways:

2
. 9y _¢
e
2. 17P _¢
L

To explain (1), since the rate of change of gradient is constant, it is given by

the change in gradient

the distance over which it takes place

where the initial and final gradients dy/dx are denoted by p and g respectively, and the
horizontal length of the curve by L.

Figure 11.17
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The gradient at any point on the curve can be found from
dy  pd?
Y =[S dr= [Kdr=Ky+4
dx dx?

If point T, is taken as the origin for the X axis, then at T}, x = 0 and dy/dx = p, where
A = p and the equation of the curve becomes

dy
—=Kx+
& p
or
d —
dy_ (g p)x+p
dx L

Note that whenx =L, g =KL +p, i.e.

The level of any point on the curve can be found from

dy 1
y=fadx=f(Kx+p)dx=EKx2+px+B (11.15)

If T, is taken as the origin for the Y-axis, then at T, x =0,y = 0, and so B = 0. It is
usually more convenient to take the level datum as the origin for the Y-axis, so that
when x =0, y = B = reduced level of T, H say.

In this case, the equation becomes

=w—mﬂ

+px+H (11.16)
2L

y

This is an equation of the form y = ax? + bx + ¢ (a parabola with its axis vertical)
where a is 0.5 X rate of change of gradient, b the initial gradient at T, and c the
reduced level of T,. In evaluating these coefficients, care must be taken with their
signs. The sign of b and ¢ will be perfectly obvious in a practical problem, but the
following will be of use in ensuring the correct sign for a.

The equation y = bx + ¢ (= px + H) is the equation of the straight line passing
through the point T, with a gradient p i.e. the equation of the initial gradient tangent.
If the curve is a summit curve it will fall away from this tangent and so the sign of a
will be negative. If the curve is a valley curve, it will rise above the initial tangent and
so the sign of a will be positive. This will be demonstrated by numerical examples for
each case, illustrated in Figures 11.16.

(a) If p =+4 %, g = +3 %, then

3-4 2 4
K=>" and y=———+— 4
100L 200L ' 100
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) If p=+4 %, g = -3 %, then

—-3-4 7x°  4x
100L 200L 100
(c) If p=-3 %, g =—4 %, then
—4-3 23
=——— and y=—x—+—x+H
100L 200L 100
(d) If p=-4%, g =-3 %, then
_ —3+4 X 4x
100L 772004 100
(e) If p=—4 %, g =+3 %, then
3+4 X2 4x
=—— and y=————
100L 200L 100
®) If p =43 %, g = +4 %, then
4-3 23
K=—— and y=x—+—x+H
100L 200L 100

11.23 Setting out data for vertical curves

It will be clear from the above derivation of equations that when the gradients have been
fixed, only one other factor (either the horizontal length of the curve or the rate of change
of gradient) is required to define the curve uniquely. The choice of these factors is dealt
with later and for the remainder of the present section it will be assumed that the curve
has been defined, and that all that remains is to determine the setting out data.

Two properties of the parabolic vertical curve must be established to assist in
calculating the data. In Figure 11.18, let the horizontal distance from T, to the
intersection point I be / and the equation of the curve be as given in Equation (11.16) i.e.

2
(g—p)x
="+ px+H
y 2L Pp.
Substituting L for x, the reduced level of point T, becomes
1

> (p+q)L+H

1 Highest point
p q
T T,
/4— | —
< D »

L

Figure 11.18
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But the reduced level of T, is also given by
H+pl+q(L-1])

Equating these two expressions for the reduced level of T, gives

This very important relationship, that the horizontal distances from the tangent points
to the intersection point are equal, is of considerable use in solving vertical curve
problems, and yet is often overlooked.

For the two cases where there is either a true summit or valley i.e. where the
gradients are zero, we derive another useful property. In Figure 11.18, D denotes the
distance to the highest point of the curve (or the lowest if the curve is a valley). (It
should be noted that this will not coincide with I unless p = —¢.) Remembering that
the gradient at the highest (or lowest) point is zero and making use of the definition
that the rate of change of gradient (which is constant) is given by the change of
gradient divided by the distance in which the change takes place

0-p_49=0_gq-p
D L-D L

from which

p=—t1 and L-D=—0—1
qg—p qg—p
can be derived.

It will have been seen (Figure 11.16) that a true summit (highest point) or true
valley (lowest point) only occurs when there is a change of sign between p and ¢, so
that the term ¢ — p in the above equations will always be given by the numerical sum
of the two gradients, and that the signs in the two equations are consistent.

If at a summit, p = +4 % and ¢ = -3 %, then

D=EL and L—D=§L
7 7

and at a valley, p =—4 % and g = +3 %, then

4
D=—-L and L—D=§L
7 7

I 103.29
T, 98.79
A 9657
¢ 1 (7+50)

— 150 m —e——150m

(4400) (4474)  (6+24) (T+74)

Figure 11.19
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Location of tangent points
This is best illustrated by numerical examples; refer to Figure 11.19 in each case.

Example 7
A rising gradient of +3 % and a subsequent falling gradient of —4 % are to be
connected by a parabolic vertical curve of horizontal length 300 m. The reduced level
of a point A at chainage 4 + 00 on the first gradient is 96.570 m, and the reduced level
of a point B at chainage 7 + 50 on the second gradient is 98.250 m. Find the chainage
and reduced levels of the tangent points.

Let the horizontal distance from A to the intersection point I be s. Then since the
distance AB is 750 — 400 = 350 m, the reduced level of I is given by

96'570+137S0 —98.250+4 308

s =224.0 and 350 — s = 126.0
Chainage [ =4 + 00 +224.0 =6 + 224.0
Chainage T, = 6 +224.0 —5/2 =4 + 74.0
Chainage T, = 6 +224.0 +5/2=7+74.0

Reduced level of 1 =96.570+ % =103.290
Check from T, = 98.250+% =103.290
Reducedlevel of T; =103.290 — 3x150 _ 98.790
Reducedlevel of T, =103.290— 4 TOIOSO =97.290

Example 8
Points A, B, C and D, data for which are given below, lie on two intersecting
gradients which are to be connected by a parabolic vertical curve of horizontal length

D893 __—

A81.83 C 89%
B 77.33

200 m 300 m Pre 300 m

(12+00) (14+00) (17+00) (20+00)
Figure 11.20
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D 98.93

200 m

I’ I (13456)
(11406)  (12+00) (14+00) (16+06) (17400)  (20+00)

Figure 11.21

500 m (see Figure 11.20). Determine the chainage and reduced level of the tangent
points.

Point Chainage Reduced level
A 12 + 00 81.830
B 14 + 00 77.330
C 17 + 00 89.330
D 20 + 00 98.930

Horizontal distances are AB =200 m, BC =300 m and CD = 300 m, thus the gradients
are AB = -2.25 % and CD = +3.2 %. Let the distance from B to I be s, then the
reduced level of I from two points gives

. 2 X -
77.330- 225 _ g9 330 22X %0 =5)
100 100

and
s =—44.0 and 300 — s = 344.0

Since s turns out to be negative the point I lies to the left of B as in Figure 11.21.
Chainage [ = 14 + 00 — 44.0 = 13 + 56.0

Chainage T; = 13 + 56.0 — 250.0 = 11 + 06.0

Chainage T, = 13 + 56.0 +250.0 = 16 + 06.0

Reduced level of I = 77.330 + 2.25 x 44.0 / 100 = 78.320

Reduced level of T; = 78.320 + 2.25 X 250.0 / 100 = 83.940

Reduced level of T, = 78.320 + 3.2 X 250.0 / 100 = 86.320

11.24 Reduced levels on curve

Once the chainage and reduced level of the tangent points have been determined, it
remains to determine the values of the spot levels along the curve. This is normally
done for a series of equidistant points, usually referred to as ‘chord’ points, although
the horizontal distances between them are in fact the horizontal components of the
chords.
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The calculations are simplified if the curve is set out in equal chords, and the total
horizontal length of the curve is an exact multiple of the chord length. In general, both
these conditions cannot be satisfied if running chainage is to be preserved, but a
convenient compromise can be obtained if the length of the curve is chosen to make
the final chord only a short chord.

It should be noted that, for a parabola, second differences are constant, and this
provides an alternative method of calculating the curve levels. For practical purposes,
however, it is usually suitable to calculate levels to the nearest 0.005 m but to achieve
this by the difference method it is usually necessary to calculate the second
differences to two further decimal places, so that very little time is saved, unless the
second difference is exact to 0.005. The calculation of the second differences acts as
a valuable check.

Example 9

In this example the running chainage is preserved, and the curve length is not
adjusted. The levels are calculated for the 50 m even chainage points for the curve
used in the example of Figure 11.19 in which p = +3 %, ¢ =—4 % and L = 300.
Chainage T, =4 + 74

Chainage [ =6 + 24

Chainage T, =7 + 74

Reduced level of T; = 98.79

Reduced level of I = 103.29

Reduced level of T, = 97.29

The equation of the curve is

y=ax2+bx+c

Table 11.2

Chainage x ax? bx ax’+ bx  Reduced  First Second
levels differences  differences

4+ 74 0 0 0 0 98.79

5+ 00 26 —0.08 0.78 0.70 99.49 0.91

5+50 76 —0.67 2.28 1.61 100.40 0.32 —-0.59

6+ 00 126 -1.85 3.78 1.93 100.72 —0.26 —0.56

6+ 50 176 -3.61 5.28 1.67 100.46 —0.85 —0.59

7 + 00 226 —5.96 6.78 0.82 99.61 -1.43 —0.58

7+ 50 276 -8.89 8.28 -0.61 98.18

7+74 300 -10.50 0.00 -1.50 97.29
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where
q=p _ _—4-3

= =1.166x10"%
2L 200%300

a=

and

3

b=p=—— and c=H =98.79
100

The levels of the curve are tabulated in Table 11.2, where columns 6, 7 and 8 represent

the reduced levels of points on the curve and the first and second differences between

these levels respectively.

11.25 Choice of design constants for vertical curves

It has been shown that once the value of the two intersecting gradients and the
(vertical and horizontal) position of their intersection point have been fixed, only one
further property is required to define a vertical curve uniquely. For the purposes of
comparison, the most convenient additional property to fix is the (horizontal) length.
The determination of a suitable length for a particular vertical curve is the
responsibility of the road engineer, but the principles influencing the choice are
included here. It will be appreciated that when the length of the curve is derived from
traffic considerations, these will be minimum lengths, and the actual curves will
usually be longer even if only to obtain a whole number of chords or to preserve
running chainage. Consequently, any calculations made to assist in the choice of
length need only be approximate.

Safety and free flow of traffic are the first considerations in traffic engineering.
With this in view, comfort and prevention of stress on vehicle and driver are the main
objectives for valley curves. While these are still of importance for summits, visibility
over the crest must also be taken into account. In most practical cases a longer curve
will be required, where visibility is the overriding criterion.

Design by limitation of vertical acceleration

A rational method of design takes into account the design speed of the road i.e. the 85
percentile speed or the speed that is not exceeded by 85 % of the vehicles using the road.
For safety and comfort the vertical acceleration must be limited to a reasonable value.

Design by vision distance

For summits, in addition to applying other criteria, the question of visibility over the
brow of the hill must also be considered as mentioned above. The vision distance D
is defined as being the length of the sight line between two points at the driver’s eye
level & above the road (see Figure 11.22), # normally assumed to be 1.143 m (2.75 ft).
Assuming a circular arc for the vertical curve we have its radius R limited to a
minimum value given by:

_0.5D?
2R

h
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Vision distance = D

Figure 11.22

therefore

p—q_1_38h _D’(p—9)

A L

L R p? 8h

L cannot be less than the vision distance D for an acceptable curve at a given design
speed. The required length of this sight line for two-way roads (single carriageway)
is based on the minimum distance required for overtaking, and for one-way roads
(dual carriageway) on the minimum stopping distance, both of these being dependent
on the design speed. Typical values are given in Table 11.3.

Curve controlled by fixed level
In certain cases none of the above criteria will apply and the curve may have to be
designed to pass above or below some point of fixed level, for example, under or

over a bridge. A numerical example can demonstrate this problem (see Figure
11.23).

Table 11.3 Vision distance

Design speed Two-way One-way

mph kph ft m ft m
40 65 950 290 300 91
50 80 1200 366 425 129
60 96 1400 427 650 198
70 113 1650 503 950 290

90.4 curve
T 265.1 curve
1
\P

Figure 11.23
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Example 10
A falling gradient of 1.8 % is followed by a rising gradient of 2.5 %, their intersection
occurring at chainage 8 + 73.2 and RL 72.56. In order to provide sufficient clearance
under an existing bridge, the RL at chainage 7 + 95.8 on the curve must not be higher
than 74.20.

Find the greatest length of simple parabolic vertical curve that can be used. Let P
be the control point under the bridge. Distance PI is given by

PI=(8 +73.2)— (7 +95.8)=77.4

1.8L
RLof Ty = 7256+ =H

The equation of curve is
1.8x  (2.5+1.8)x?
— _+ A

—H
Y 100 2007

0.5L—77.4)
RL of P =74.20 = 72.56+0.009L —0.018(0.5L — 77.4) + 0.0215 0L 7747

Hence

[*—355.50+23963=0
which yields the solution
L=265.10r904

Since 0.5 x 90.4 is less than 77.4, the second solution is impracticable. In problems
of this kind a quadratic equation will always occur, producing two solutions as shown
in Figure 11.23. Common sense, aided where necessary by a rough sketch, will
indicate which solution is applicable.

11.26 Excavations for setting out curves

Obviously, curves to be set out to a design that does not follow the existing ground
will require the ground to be excavated or filled as part of the process. The detail of
formations and their establishment on the ground are based on the shapes of
horizontal and vertical curves.

>
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Figure 11.24
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Slope staking

Slope staking is a trial-and-error process for locating and staking, in the field, the
points at which the proposed side slopes of cuttings or embankments will intersect the
existing ground surface. It will be seen that the depths of cut and fill at these points,
as well as the cross-section half-breadths, are calculated as part of the procedure. The
limits of the earthworks are not only defined on the ground, but data for the
calculation of the earthwork volumes is provided. It will be obvious that the proposed
formation levels, the formation breadth, and the values of the side slopes must have
been settled before any work can be done.

The alternative to slope staking is to set out points from coordinates, itself an
iterative process, made easier by the ability of the prism holder to read the setting out
measurements and data at their end of the line. Since slope staking can be carried out
with simple equipment, it may be a fall back position if other equipment fails.

Principle
In Figure 11.24, any point on the side slope will be defined by the equation

x=by+ny

Consequently, at A the values of x = w, and y = &, will also satisfy this equation.
The field procedure consists of placing the staff at a series of points on the cross-
section such as P, determining the values of x' and )' at P (by taping and levelling)
and finding out whether they satisfy the equation. When they do, P is at the point A,
and w; and 4, are found. A is marked by a peg or batter rail (see following section).
This procedure may sound laborious, but in fact, after a few hours’ experience, very
few trials are required to locate the correct point. It must be appreciated that even on fairly
smooth ground, a correspondence of levels of 0.01 m is all that can be expected, which at
a ground slope 1/10 is equivalent to a variation in x of 0.1 m. By evolving a suitable system
for the fieldwork, calculation and booking, the work can be made to proceed quite rapidly.

Calculation

Once the level has been set up (Figure 11.25) and the height of the horizontal plane
of collimation HPC has been found, then G, known as the grade staff reading, can be
calculated from the formation level FL as follows.

1. For cuttings, G = HPC — FL
2. For embankments, G = FL — HPC

Centre-line
HPC Centre-line
,—A\\ s
G FL
- y / AN 6
FL N %Ly HPC \

Figure 11.25
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This is a constant for one cross-section and one instrument position. From this, the
values of y' can be found corresponding to the various values of S, the staff reading.
1. For cuttings, y) =G - S
2. For embankments, y' = G + S

If the ground is horizontal, the half-breadth will be given by
w=by+nh

(where £ is the depth at central-line), and it is convenient to calculate this for each
cross-section, as a starting point for estimating w; which will be greater or less than
this value according to whether the ground slopes upwards or downwards away from
the centre-line (vice versa for embankments).

11.27 Field work and batter rails

The cross-sections are usually taken at equidistant intervals along the centre-line of
the route, often at the round-number chainage points, and the work will be easier if
the ground levels on the centre-line have been determined first. Since slope staking
cannot be carried out until the formation levels have been decided, the centre-line
ground levels will almost certainly have been found at some previous time. A plentiful
supply of temporary benchmarks is also desirable, and the chainage pegs can be
conveniently used for this purpose.

If the values of w are all expected to be less than 30 m, the level can be set up at
a convenient point for reading the staff on several cross-sections. The distance from
the centre-line is measured with a tape, the staff holder calling out the distance x' for

Rail

Detail

sl

| | Foundation

Wall

Figure 11.26
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each point where the staff is set. If the values of w are greater than 30 m, it will often
be more convenient to measure x' tacheometrically using the stadia hairs or by EDM
although this, of course, requires the levelling instrument to be set up on the centre-
line for each cross-section.

Clearly if pegs are left in the ground at the toe of the slope, they are immediately lost
at the beginning of excavation. Therefore repere marks in the form of batter rails are
erected for each cross-section following the slope staking or other form of setting out.

Setting out markers or reperes

The points of the design are usually set out by trial and error. Because these key positions
are likely to be disturbed from the very nature of the task, a complex system of repere
marks is adopted to recover them throughout the lifetime of the task. The technique is
used extensively in setting out works to control such operations as the excavation of
trenches for the footings of buildings, pipe laying, pile driving, tunnel or alignment.

A typical arrangement of reperes to control trench digging for the footings of a
building is shown in Figure 11.26. The cross rails are marked by saw-cuts which are
easy to position, and difficult to remove. When needed, the lines are established by
strings between the boards. Excavation depths are also controlled from these strings,
although this may be controlled separately by levelling if the ground is steep. All
dimensions are measured by tape, giving many checks.

Much use is also made of reperes in a vertical plane to control the slopes of
cuttings and embankments in road works, and the fall of a pipe. The latter has to be
particularly accurate to preserve the direction of flow. Typical arrangements using
fixtures, variously called batter boards, sight rails, boning rods and travellers, are
shown in Figures 11.27 and 11.28. The sight rails define the slope of the pipe and its
trench, which is different from the ground slope. The traveller acts as a template to

Bottom of trench

Figure 11.27
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—HOC —

Side slope 1 : n

~-Existing ground

Figure 11.28

control the depths of the trench and of the inside of the bottom of the pipe. The rails
are set out with a level using a height of collimation carried in from a benchmark.

Where practical, more than the minimum number of reperes should be used so that
the work can be verified as it proceeds. As they can easily be disturbed, reference to
semi-permanent control marks is essential. Such marks will be concrete blocks cast
in situ, or positioned after casting. Important primary blocks are best guarded on site
by protective fences. It is not always easy to persuade a site engineer to co-operate in
their construction.

To control slopes, the arrangements of Figures 11.27 and 11.28 are typical. The
upper diagram shows how the slope is controlled during the excavation of
construction. The required line of sight is established by a rail on which the traveller
is lined. The lower diagram of Figure 11.28 indicates how the rails are set in position
using a level. The holding nails should be hammered through the sloping member
before trying to locate them on the uprights.

Lines may also be established by visible lasers or by invisible systems using
special detectors. Laser safety on site needs to be considered when using these
devices. A similar procedure arises in industrial surveying in which the required
alignment is established by a collimator, or components are located on-line by auto-
collimation or auto-reflection in a mirror mounted on a component to be positioned.
See Chapter 12 for more details. The floor plans of buildings have to be correlated
vertically using any of the vertical alignment methods described in Chapter 12.

Comment

It is vital that thorough records are maintained describing the location of points and the
nature of any reperes used in a construction process. These will enable work to be
checked independently, or to be presented as evidence in the case of dispute or litigation.
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Chapter 12

Industrial and Engineering
Surveying

12.1 The objectives of industrial and engineering
surveying

The fabrication and assembly of complex engineering structures such as oil rigs and
ships, often from parts made elsewhere and brought together for assembly, poses
severe problems of dimension control. Tolerances vary from a few micrometers in
industrial work to a few millimetres in civil engineering structures. For example:
drive shafts have to be carefully aligned if engine life is to be adequate; magnets of
large particle research accelerators have to be positioned to provide a smooth path
of, say, 1 mm over distances in excess of 20 km; the antennae of radio telescopes
require to be constructed to sub-millimetre tolerances; and nuclear reactor boilers,
weighing hundreds of tonnes, have to be placed in position to within centimetres.

Often this demanding work has to be carried out in a hostile and difficult
environment. To avoid extra costs, speed may also be required, so that corrective
measures may be taken with the minimum delay. This demand for immediate results
sometimes rules out some systems of measurement, such as photogrammetry,
although it and television systems are now being used to effect.

It is common practice to base problems of many dimensions on a numerical
coordinate system developed and processed by computer software, and to present
results in digital form for future use. Methods of working have become very versatile
as a result. It is not possible to describe particular systems here. We deal only with the
essential principles which enable the surveyor to apply common sense to a working
medium dominated by computers and which enjoys a close relationship with the
construction industry.

Although many principles are common to both industrial and engineering
surveying (with the exception of the tolerances demanded) the working environments
differ, as do the instruments required and the terminology used. The site and setting-
out of civil engineering become the workpiece and building of large-scale metrology.

For various reasons, metrology requires immediate results, which can only be
obtained with direct measurements. These require to be almost free of systematic
error, and must give real-time results without the need for complex numerical
processing. The tooling telescope typifies this principle, in contrast with the standard
theodolite. This situation is changing considerably with the advent of on-line
processing.

On completion of the site plan for an engineering survey, the design work has to
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be completed. Eventually the design has to be implemented in the field. If possible,
the same control points are used to maintain consistency and design fidelity.

Before beginning the setting out, a field check is essential. In particular it is vital
to see that new works such as road alignments match up with the existing terrain. For
instance, the alignment of an existing road has to be established. This is done by
marking several centres of the road over a distance of about 100 m, then visually
checking a best mean fit