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Preface 

Volume Background

A cornerstone of research institutions and agencies around the world is the creation of new knowledge
that often is generated through utilizing quantitative research methods. The dissemination of 
such knowledge through specialized journals, application-oriented outlets, and technical reports is
typically filtered through a rigorous peer review process to ensure work of the highest possible quality.
Reviewers, and the editors they serve, thus operate in the critical role of gatekeeper and must, collec-
tively, be held accountable for the integrity of the research enterprise.

The quantitative skills that reviewers bring to this role tend to fall into two categories—expertise in
methods they use fairly regularly and competently in their own research, and knowledge from aca-
demic or professional training that has largely laid dormant since that initial exposure. This limiting
state of affairs, which is exacerbated as cohorts of new researchers are trained in increasingly advanced
data analysis techniques, can force quantitatively uninitiated reviewers to confine their critical com-
mentary primarily to the content-area portions of a manuscript. In the end, these reviewers are operat-
ing by assuming that someone else is tending the methodological gate, and editors are left in the difficult
position of burdening those few reviewers who are quantitatively current while constantly having to
update their stable of adjunct reviewers with highly specific areas of methodological expertise.

In all fairness, reviewers, whether novice or veteran, should not be expected to have a command of all
data analysis methods used in modern research. We believe that they should, however, maintain some
broad and evolving awareness of methodological developments, and make an honest attempt to evalu-
ate the analytical methods that are at the core of a manuscript’s intellectual contribution. The current
volume, The Reviewer’s Guide to Quantitative Methods in the Social Sciences, was born out of a desire to
assist reviewers in meeting this professional responsibility. In particular, this volume is designed as a ref-
erence tool specifically for reviewers of manuscripts and proposals in the social sciences and beyond,
addressing a broad range of traditional and emerging quantitative techniques and providing easy access
to critical information that authors should have considered and addressed in their submissions. How
this volume’s structure is specifically geared toward reviewers is explained in the next section.

Volume and Chapter Structure 

This volume has 31 chapters arranged alphabetically by title, with each chapter addressing a particu-
lar quantitative method or area. These include the sound practice of research (e.g., research design,
survey sampling, power analysis), the general linear model (e.g., analysis of variance, multiple regres-
sion, hierarchical linear modeling, discriminant analysis), the generalized linear model (e.g., logistic
regression, log-linear analysis), measurement (e.g., item response theory, generalizability theory,
multidimensional scaling), and latent structure methods (e.g., latent class analysis, latent growth
curve models, structural equation modeling). The structure within each chapter is the same, consist-
ing of the following three sections: 

• Method overview
• Table of desiderata
• Explications of desiderata. 
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Method overview. Each chapter starts with a brief introduction and overview of the method(s) being
addressed in the chapter. This is not meant to teach the reader the topic area per se, but rather to pro-
vide an orientation and possible refresher. This section concludes with useful references for the reader
who wants more introductory and/or advanced information on that chapter’s topic.

Table of desiderata. On the second page of each chapter begins a numbered list of key elements
(desiderata) that should be addressed in any study using that chapter’s method(s). This table serves to
provide essential evaluation criteria that a reviewer should consider when judging a manuscript’s
methodological approach to data analysis, including the technique’s key principles, appropriate
usage, underlying assumptions, and limitations. For each desideratum the section(s) of a manuscript
in which the specific issue should most likely be addressed is denoted with (I) Introduction, (M)
Methods, (R) Results, and (D) Discussion.

Typically the desiderata appear in a single table; in some cases this table is partitioned by special
applications of a certain method (e.g., Chapter 20, Multidimensional Scaling). In a couple of cases the
desiderata are presented in two separate tables due to the bifurcated nature of the topic (e.g., Chapter
8, Factor Analysis, with tables for exploratory and confirmatory methods). The user of this volume
will also note that there are many desiderata in common across chapters, including such elements as
making connections between research questions and the analytic method at hand, explicitly address-
ing how missing data and outliers were handled, reporting the software and version used, and so forth.
Although these could have been culled for a separate table at the beginning of the volume, we believe
that having them contained within each chapter as they pertain to the specific method is in keeping
with the reference nature of this guide. In this manner, a chapter’s table(s) of desiderata may be used
by a reviewer as a checklist to evaluate a manuscript’s methodological soundness. Explications of each
desideratum then follow.

Explications of desiderata. Following each chapter’s table(s) of desiderata are corresponding expli-
cations for each numbered desideratum. For a reader already thoroughly familiar with a particular
desideratum, a given explication may be unnecessary; we expect, however, that most readers will ben-
efit from the supporting explanation, elaboration, and any additional references specific to that
desideratum. For example, if a desideratum calls for a manuscript to explicitly examine the assump-
tions underlying a particular analytical technique, the explication might provide a treatment of the
inferential consequences of failing to examine those assumptions as well as the preferred methods for
conducting and presenting the results of such an examination. The explications of the desiderata con-
stitute the main body of each chapter, justifying each desideratum in light of accepted practice and the
supporting methodological literature.

The Future of This Volume 

Any time someone offers recommendations as to proper practice or conduct, reasonable people will
disagree. The current volume, methods, and desiderata are no different. In fact, we are quite certain
that some knowledgeable readers will take issue with particular chapter authors’ portrayal of a given
method’s best practice. That said, in the preparation of this volume we have encouraged chapter
authors to try to convey what each technique’s methodological literature considers to be the most
accepted practices associated with a given method. Further, we understand that even if there is 
currently agreement on a technique’s best practices, the methodological literature might determine
otherwise in the future.

We therefore view this volume as a living resource. As quantitative methodologies evolve, not just
in preferred practice of existing techniques but also in the development of new techniques, we expect
each subsequent edition of this guide to adapt as well. Toward this end we welcome readers’ corre-
spondence with chapter authors and editors in an on-going dialog about specific methods and their
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desiderata, thus helping to keep this volume continually responsive to changes in appropriate prac-
tice. Our hope is that this will create a dynamic resource for reviewers of manuscripts and proposals,
as well as for the authors themselves (e.g., applied researchers, university faculty, and graduate stu-
dents) when designing their own research projects.

Gregory R. Hancock and Ralph O. Mueller
June 2009
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1
Analysis of Variance 

Between-Groups Designs

Alan J. Klockars

Between-groups analysis of variance (ANOVA) is one of the most commonly used techniques to ana-
lyze data when the intent of the research is to determine whether an independent variable (IV), typi-
cally in the form of qualitatively different treatment groups, causes variation in an outcome measure,
the dependent variable (DV). Causal statements rest on the random assignment of subjects to the var-
ious treatment groups defining the levels of the IV. The broad area of ANOVA consists of significance
tests to determine if a non-random relationship exists between IVs and DVs, multiple comparison
procedures to investigate more thoroughly the nature of such a relationship, and measures of the
strength of the relationship. 

The following is an overview of some of the types of designs and experiments that can be analyzed
by between-groups ANOVA. The number of IVs will determine the type of experiment. For example, a
single IV is called a one-way experiment. The levels of the IV in the one-way ANOVA typically have
fixed treatment groups, reflecting specific differences in treatments of interest to the experimenter.
There are also ANOVA experiments that have a number of different IVs. If, for example, there were
three IVs that were completely crossed with one another, it would be called three-way factorial exper-
iments. The term design is related to the nature of the observations collected in the experiment. The
two most common designs covered here are randomized group and randomized block designs.
Repeated measures designs (see Chapter 2, this volume) are also common. 

Crossing additional fixed IVs with the first IV in a factorial experiment typically enriches the major
theory being investigated, providing for additional main effects as well as interactions between the fac-
tors. A random factor is one that has the levels of the treatment groups randomly chosen from some
universe of possible levels, rather than specific treatments of interest. It may be crossed with the fixed
IVs yielding a mixed model, or it may be nested within the fixed IV in a hierarchical experiment. These
experiments relate to the generalizability of the fixed effect over the universe of levels of the random
factor. Individual difference variables may also be incorporated into ANOVA as another factor of the
experiment, as in a randomized block design, or as a continuous control variable with an analysis of
covariance (ANCOVA). These IVs can be used to reduce random variability and explore the interac-
tion between the individual differences and the fixed treatment effects. There is a rich literature in
ANOVA including texts written for experimental design, such as Kirk (1995), Maxwell and Delaney
(2004), and Keppel and Wickens (2004).
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1. Independent Variables

A between-groups analysis of variance (ANOVA) requires that unique, mutually exclusive groups be
created. Typically, the groups reflect (1) differences on fixed treatment variables, (2) levels of an 
individual difference variable, or (3) levels of a random variable. Fixed treatment groups are created
that differ in some aspect of the way the participants are treated. The differences between treatments
capture specific differences of interest and thus are treated as a fixed factor with either qualitatively 
different treatments or treatments having different levels of intensity of some ordered variable. In a
randomized block design, besides treatment differences, the groups differ with regard to levels of an
individual difference variable (see Desideratum 10). When the intent of the experiment is to general-
ize the treatment variable over levels of a random factor, the groups differ with regard to the levels of

Table 1.1 Desiderata for Analysis of Variance: Between-Groups Designs

Desideratum Manuscript

Section(s)*

1. Each independent variable is defined so that discrete groups (treatment or otherwise) exist that are I

related to the research questions, hypotheses, theory, and the literature reviewed.

2. A rationale is given for the simultaneous inclusion of two or more independent variables within the I

research design.

3. The presence of any covariate is justified relative to the research question(s) being addressed. I

4. The validity of the outcome measure is justified relative to the research question(s) being addressed. I

5. A rationale is given for the number of participants, the source of the participants, and any M

selection/exclusion criteria used.

6. The research design is explained in detail, including the nature of the IVs (fixed or random), the M

significance level used, and the method of assignment of participants to groups.

7. Assumptions underlying the tests of significance, as well as psychometric properties of the outcome M, R

measure and any covariate, are discussed.

8. Multiple comparison procedures to be used are indicated and related to the research question(s) M, R

being addressed.

9. Any error term used reflects the unique characteristics of the design. M, R

10. In randomized block designs the number of blocks, treatment of the blocks as fixed or random, and M, R

method of block creation is discussed.

11. In mixed models the use of an IV as a random factor is explained and all analyses are appropriate M, R

considering the type of IVs involved.

12. In hierarchical designs the rationale for nesting is explained, the analysis clearly acknowledges the M, R

dependence in the data, and the data warrant using ANOVA rather than multi-level modeling.

13. In incomplete designs, or complex variants of other designs, sufficient references are provided to M, R

understand the design.

14. Adequate statistical information (e.g., means, effect sizes, confidence intervals) is provided to R

facilitate interpretation of the results.

15. Sufficient information is presented about the results of the test(s) of significance, including error R

terms and degrees of freedom.

16. Statistically significant interactions are analyzed and interpreted to clearly indicate the nature and R

strength of the interaction.

17. Appropriate language relative to the meaning and generalizability of the finding is used. D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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that random factor. For example, in an experiment to test for the effectiveness of differences types of
reading prompts (a fixed treatment factor) the experimenter may group subjects into high, moderate,
and low reading ability (an individual difference variable) and/or may vary a random factor, such as
the specific book studied or the teacher presenting the material, to address the generalizability of the
prompt effect over the levels of this additional, random factor (see Desideratum 11). 

The treatment groups are the operational definitions of the theoretical independent variable of inter-
est. In the report of the research the relations described are generally in terms of the theoretical construct
the groups were created to capture (e.g., stress) not in terms of the operations involved (e.g., group was
told the assignment counted for 50% of their grade). The way the treatments are defined must clearly
capture the essence of the theoretical variable. The authors must defend the unique characteristics of
treatment groups as clearly indicating the crucial differences desired to address the theoretical variable
of interest. The treatments must have face validity in that the reader sees the obvious linkage between the
theoretical variable of interest and the operations used to create that variable.

Where the treatments are levels selected from along a continuum of potential levels (e.g., dosages of
a medication, hours of instruction), the authors must defend the choices made with particular atten-
tion to the extreme levels. The number of levels chosen should be defended, based, in part, on the
expected functional relation between level and outcome. In some instances where the relation is of
greater interest than group mean differences, the authors should be encouraged to explore a regres-
sion-based analysis (see Chapter 21, this volume).

There are a number of common shortcomings in the construction of treatment groups that can
result in low power or confounded interpretations. For example, differences in the wording of read-
ing prompts may have a subtle effect too small to be detected by an experiment unless an extremely
large sample size is used. Low power may be the result of treatments that were implemented for too
short a period or with insufficient intensity to be detected. The power of tests of significance to detect
differences will also be reduced if an experiment includes a large number of levels of the treatment
variable. This is particularly true when many of the levels have similar and moderate treatment effects.
Confounded effects can happen when groups differ in multiple ways, any one of which may produce
observed differences. This may happen inadvertently such as if one type of prompt required the study
period to be longer than any of the other types of prompts. Any difference found might be either the
differences in prompts or the differences in study time. In other experiments the intent is to compare
treatment groups that differ on complex combinations of many differences resulting in uncertainty
regarding the “active ingredient” that actually produced any group differences found. 

2. Inclusion of Two or More Independent Variables 

Many settings use factorial experiments where several different IVs are crossed to facilitate the explo-
ration of both main effects and interactions. Typically one IV is central to an investigator’s research
program with the other IVs included for control and/or to expand upon on the theory being explored.
Authors should defend the inclusion of all IVs relative to their relation to the central theory they are
testing. IVs should not be included if they are irrelevant to that theory. The explanation of an IV’s role
should include both the main and interaction effects anticipated. 

Fixed IVs generally enrich theory. The inclusion of an IV that is a random factor is meant to show
the generalizability of the central findings across levels of the random factor. The choice of the random
factor should be justified relative to the need for greater generalizability concerning the main effect
(see Desideratum 10). 

Factorial experiments provide more information than a single factor experiment but the authors
should recognize the costs involved in terms of complexity of interpretation. In factorial experiments
the authors must continually interpret findings that are summed over many different conditions. The
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more complex the experiment, the more difficult it is to understand what, if anything, really differs.
Interactions alter the interpretation of the main effects, but when an interaction is not statistically sig-
nificant authors often over-generalize main effects ignoring the possibility that the statistically non-
significant interaction may be due to lack of power (i.e., a Type II error). 

Factorial experiments with unequal numbers of observations in treatment groups require special
attention as the main effects and interactions are not orthogonal. The strategy to deal with the
nonorthogonality should be indicated. The most commonly used is to report results based on Type III
Sums of Squares.

3. Covariates

Authors should justify the inclusion of any covariate(s) relative to the theory being tested. Covariates
can increase the power of the statistical tests within the ANOVA but can also increase the Type I error
rate if their selection allows for the capitalization on chance. Multiple covariates and those that have
been selected a posteriori capitalize on random variability and should not be used. Covariate scores
must not be a function of the treatment group and should be available before random assignment
takes place. Experiments in which the covariate is obtained at the same time as the outcome have the
likelihood that the covariate scores will be altered due to treatment. A primary function of the covari-
ate is to provide a way to statistically equate groups to which the treatments are applied; this function
would be invalidated if the treatment changed the covariate score used. 

The use of ANCOVA adds several assumptions to the analysis that are not germane to an ANOVA.
Some, such as the covariate being a fixed factor and measured without error, are likely to be violated
but that is true of almost every use of ANCOVA. Thus, there is little value in requiring every research
paper using a covariate to include a discussion of these. However, authors should have considered and
discuss any likely violation of the assumptions of linear relation between the covariate and the out-
come measure, homogeneous residual variances within treatments, and homogeneity of regression
coefficients within treatments. 

A violation of the assumption of homogeneous regression coefficients is itself a major finding anal-
ogous to an interaction between the covariate and the treatments. In most computer software the test-
ing of homogeneity of regression coefficients requires more steps than the test of the main effects for
treatment and is often not reported. This is unfortunate as the finding of differences in slopes should
be considered an important finding and related to the literature of Aptitude-Treatment Interactions. In
a similar manner the finding that there are differences in the variability of outcome scores about the
regression lines for different treatments may be a finding worthy of reporting and discussion. 

4. Validity of the Outcome Measure

As the treatment groups are the embodiment of the theoretical independent variable, the outcome
measure is the embodiment of the theoretical dependent variable. The authors must defend the meas-
ure used through, for example, establishing sufficient construct validity within the population being
studied. The reader should be able to see the obvious fit between the measure and the construct. The
authors should cite relevant literature to support the use of the measure.

For ANOVA the outcome measure must provide values on which arithmetic computations can be
meaningfully performed (see Desideratum 7). All analyses and decisions made in tests of significance
are about the characteristics of the outcome measure, not directly on the theoretical dependent vari-
able. The outcome variable is the set of numbers that we have collected. If the means for groups differ
statistically significantly on the outcome variable it strongly suggests that treatment had an effect. The
researcher, however, does not typically want to discuss differences on the unique measure used but



Analysis of Variance: Between-Groups Designs • 5

rather about differences on the theoretical construct the test is suppose to tap. Only to the extent that
the outcome measure provides a valid measurement of the theoretical construct will the conclusions
drawn be relevant to the underling theory. The theoretical variable must be sufficiently characterized
so that the appropriate link to the observed variable can be established. 

The overall mean and variance of the outcome measure must be such that potential differences
among groups can be detected. Outcomes where subjects have scores clustered near the minimum or
maximum possible on the instrument provide little opportunity to observe difference. This will
reduce power and obscure differences that might really be present. Authors often employ measures
used in previously published literature. Of concern is the appropriateness of the measure in the new
setting, such as with different age or ability levels. In factorial experiments, particularly with random-
ized blocks designs where one of the factors is an individual difference measure on which subjects have
been stratified, the inappropriateness of the measure at some levels of the blocking variable may incor-
rectly appear as an interaction of the blocks with the treatments. For example, consider a learning
experiment where the impact of the treatment was measured by an achievement test and the subjects
were blocked on ability. If it were true that one treatment was generally superior to the others across
all levels of ability the appropriate finding would be a main effect for treatment. However, if the out-
come measure were such a difficult test that subjects in all but the highest ability group obtained essen-
tially chance scores (which would not show treatment effects) while those in the highest ability group
showed the true treatment effect, the effect would be declared an aptitude-treatment interaction. 

5. Study Participants

The authors must indicate the source of their participants in such a way that readers will be able to eval-
uate the generalizability of their findings. The authors should have a case study as their model for their
description of the participants and setting. To determine if the findings speak to a unique reader’s situ-
ation the reader has to know as much about the participants and the setting as possible. A statistically
significant difference among the mean scores of different treatment groups indicates that, within some
specific population, the additive effects of the different treatments were unlikely to have all been equal.
The concern of the readers is whether those differences apply in a setting of concern to them.

Among the conditions that should be described are the ages of the participants, how they were
recruited, whether inducements were included to obtain participation, and any selection criteria that
were used to exclude some participants. Sample specific demographic information should be
included to better understand the implications of the study. Information about the number of indi-
viduals declining to participate and/or dropping out during the study should be provided along with
a description of any quality check that may have been conducted to detect data deemed unresponsive.

The rationale for the number of participants used should be explained through a priori sample size
determination (see also Chapter 24, this volume). Sample size should reflect the importance of the
question, the expected magnitude of difference, and the cost and availability of subjects. Because of the
direct relation between power and sample size, the number of participants should be considered in
discussing the findings. Where differences that were expected to be statistically significant are non-
significant a post hoc power analysis should be conducted to indicate the sample size that would have
been required given the observed results. On the other hand, authors using extremely large sample
sizes should explain their reasoning as well.

6. Research Design

The Methods section should clearly describe the characteristics of the experiment so that reader 
can easily evaluate the appropriateness of the Results and Discussion sections relative to the actual
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experiment conducted. The Methods section should include a summary of the research design that
allows the reader to review all of the critical elements of the experiment. The information should be
sufficiently complete so that the reader can anticipate the sources of variation in the dependent vari-
able(s) and the degrees of freedom for each source. 

The characteristics summarized should include the following. The authors should indicate that the
research was a true experimental design with random assignment of subjects. It should be clearly indi-
cated in the summary if one group of participants were measured at multiple times (see Chapter 2, this
volume) or if aspects of the research involve a quasi-experimental or non-experimental design where
intact groups were used (see Chapter 26, this volume).

The number of factors and the number of levels of each factor should be stated as well as the result-
ing total number of treatment groups. The summary should provide the abbreviated names of the fac-
tors that will be used in other sections of the paper. If appropriate, the authors should state that the
factors are completely crossed although the readers will assume a completely crossed experiment
unless specifically informed that a factor was either incompletely crossed (as in a lattice design) or was
nested. In some multifactor experiments there are treatment groups that do not completely fit within
the factorial structure. If a reading study varied the types of prompts given to students, a second factor
might be whether the prompts were given immediately prior to reading the passage or immediately
after. A control group having no prompts could not incorporate this placement factor since the factor
presumes the presence of some sort of prompt. The presence of this type of treatment group should be
carefully acknowledged. 

Each factor should be identified as either a fixed or random factor within the experiment. If the
experiment includes random factors the author should clearly indicate the appropriate error term for
the treatment effects and interactions that are impacted by the presence of the random factor. The
author should also provide any technical term that might help summarize the experimental design
(e.g., Latin square).

The number of participants should be indicated, clearly specifying if the cited number refers to
those in a unique cell or in some higher level of aggregation. The authors should additionally indicate
the number of participants on which each mean is based in complex experiments where the number
of observations may be unclear. In experiments involving repeated measures on some factors (see
Chapter 2, this volume) the need for clarity regarding number of participants and number of obser-
vations is particularly important.

The significance level to be used should be clearly indicated. In a factorial experiment where several
main effects and interactions will be tested the authors should indicate if each main effect and inter-
action will be considered a family, with Type I error rate controlled separately at alpha (α) for each
family, or if a more conservative level of control will be used. It should also be stated if the authors are
not reporting omnibus tests for the various factors but rather proceeding directly to multiple com-
parison procedures (see Desideratum 8) that provide the required control over Type I error. While
this approach is perfectly legitimate for controlling Type I error, it is sufficiently unusual at present so
that readers should be informed. The authors should defend any tests, including multiple comparison
procedures, that are to be applied as one-tailed tests. For any one-tailed applications a convincing
argument must be provided for the triviality of any potential findings that are counter to the expected
direction that justifies ignoring their potential existence.

7. Assumptions and Psychometric Properties of Outcome 
Measure and Covariate(s) 

Parametric statistical procedures such as ANOVA have a number of assumptions on which their
mathematical bases are built. In many cases assumptions are difficult if not impossible to completely
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satisfy. However, ANOVA is also relatively robust with regard to violations of assumptions, particu-
larly with equal sample sizes across groups. Authors should scrutinize their studies relative to the
assumptions and discuss any that they believe will be seriously violated along with whatever justifica-
tion they have for continuing with ANOVA. In ANOVA the following assumptions are made: out-
come variables are measured on at least an interval scale and are normally distributed, individual
errors are random and independent, and variances within treatment populations are homogeneous. 

The first assumption of interval scale has attracted considerable debate over the years, with some
maintaining that equal intervals are necessary in order to use ANOVA while others argue that the num-
bers themselves do not necessarily have any properties until one assumes those specific properties. The
first position places the burden on the researcher to prove an interval scale before proceeding. The alter-
native asserts that all analyses are done on the observed scores and those scores do not know what kind
of numbers they are. This second position requires the researcher to be cautious in making the leap
from talking about differences between the numbers to talking about differences on an associated the-
oretical dependent variable. I side with the latter, more liberal, position meaning that the analysis can
be conducted with a scale of relatively unknown properties but caution must be exercised in making the
inferential leap to the dependent variable. Thus, if researchers have an ordered, multi-step scale, they
may proceed with ANOVA but should not imply they have an interval scale but rather that they are
treating the numbers as if they were an interval scale, realizing that the lack of fit affects the degree to
which the research answers the questions that were raised. Additionally, I do not advocate a long state-
ment defending this position as all papers would say essentially the same thing, wasting journal space.

The second assumption, regarding a normal distribution, is routinely violated as the normal curve
a continuous, two-parameter mathematical model while scores are discrete points along a scale. Even
in a more liberal and approximate form—a symmetric, unimodal distribution—it is still routinely
violated. However, simulation studies have demonstrated that violations seldom have any serious
impact on the actual Type I error rate. The critical features needed to allow researchers to ignore this
assumption are equal sample sizes and similar, though potentially non-normal, distributions. Any
author who anticipates that the scores may be seriously non-normal should defend the decision to use
ANOVA based on information regarding the similarity of the shapes and the distribution of subjects
to the groups.

The independence and randomness of errors is crucial for controlling Type I error at the stated α
level. Independence and randomness of errors are typically assumed to have been met when random
assignment to groups is used. In quasi-experimental designs with intact groups the errors may be cor-
related due to factors such as self-selection of group members and groups having a common history.
These factors can result in an underestimate of the random variability and an inflated Type I error rate. 

Homogeneity of treatment population variances is an assumption that has minimal impact when
violated if equal sample sizes are used. When unequal samples are present, the issue has been studied
extensively (the so-called Behrens-Fisher problem). Several modified tests of significance can be used
when heterogeneity of variance might be present, including tests by Brown and Forsythe, James, and
Welch. The authors should discuss their approach to handling this problem if there is a likelihood that
it may exist. Unfortunately, heterogeneity of variance is seldom viewed as a research finding in and of
itself, with a test of significance to determine if the differences are sufficient to reject the null hypoth-
esis of equal population variances. Treatments that systematically compress or expand the distribu-
tion of scores can be interesting apart from whether there are also mean-level treatment effects. 

8. Multiple Comparison Procedures

A multiple comparison procedure (MCP) that controls Type I error rate experimentwise may be con-
ducted without having to conduct an omnibus F test. Of the commonly used methods all but Least
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Significant Difference (which is not recommended) control error-rate experimentwise. Using an
omnibus test as a gateway to conducting multiple comparisons will result in an unnecessarily conser-
vative experimentwise Type I error rate. 

The choice of major strategies to conduct MCPs should be based on the stated research hypotheses.
The MCPs should have a one-to-one correspondence to the hypotheses. There are four general sce-
narios that commonly occur: (1) tests of planned, theory-derived contrasts; (2) tests of all possible
pairs of means; (3) tests of each experimental group against a control group; and (4) tests that were not
planned but rather suggested by the pattern found in the observed means.

The first three scenarios each have several methods that may be used. The authors should clearly
specify which method they chose for the analysis. In general, Bonferroni’s inequality (often called
Dunn’s test) is a potential method for controlling Type I error in any of the first three cases. The advan-
tage of Bonferroni’s approach is that it is conceptually simple and easy to calculate; however, methods
with greater power exist for each strategy. For the second scenario, Tukey’s Honestly Significant
Difference test controls the experimentwise error rate adequately for any number of treatment
groups. For the third scenario, Dunnett’s procedure is most commonly used. And as for the fourth
scenario, involving comparisons/contrasts suggested by the observed data, Scheffé’s test is required to
adequately control Type I error. This is, however, the only scenario for which Scheffé’s method is
appropriate. 

Note that each of the first three strategies also has sequential testing methods available. Sequential
methods redefine the critical value as a result of having rejected previously tested hypotheses. They
control Type I error experimentwise but are subject to a slightly greater number of Type I errors per
experiment. Thus, when a Type I error occurs within an experiment there is a slightly greater likeli-
hood that a second error might occur due to the change in the critical value used. Sequential methods
also are problematic with regard to constructing confidence intervals. Authors especially interested in
creating confidence intervals should avoid using a sequential method. A fairly comprehensive and
critical review of traditional multiple comparison procedures, as well as more modern alternatives,
may be found in Hancock and Klockars (1996).

9. Error Terms

Each test of significance within an ANOVA depends on having a denominator (error term) of the F
ratio whose expected value includes all of the terms in the expectation of the numerator except the one
term whose existence is denied by the null hypothesis. While the correct error term is generally avail-
able in an experimental design text, there are some relatively common scenarios in which researchers
use inappropriate error terms. The primary concern is related to the presence of random factors
within an experiment. If all factors are fixed the variability of subjects within treatment groups (MS

s/a
)

is the appropriate denominator in all but the most complex experiments. The degrees of freedom for
the MS

s/a
is large compared to any other source of variation within the experiment. When a random

variable is introduced to test the generalizability of the fixed factors the random variability of levels of
the random factor becomes the appropriate error term. If the random factor is crossed with the fixed
factors the interaction of the factors will be the error. If the random factor is nested within the levels of
the fixed factor the variability of the levels of the random factor within each level of the fixed factor will
be appropriate. In either case the number of degrees of freedom will be considerably smaller than the
degrees of freedom associated with MS

s/a
. Ignoring the proper error term in experiments with random

factors in favor of MS
s/a 

to capitalize on its greater number of degrees of freedom can seriously inflate
the Type I error rate reported.

Reports of ANOVAs often make it difficult to determine if the proper error term has been used
because the denominator is labeled as the generic “Error MS” or “MS

error
” without any indication of
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what it measures. This problem is partly caused by some statistical software packages such as 
SPSS using the “Error MS” label in the output. While the degrees of freedom will often allow for 
the proper identification, the “Error MS” should be defined in specific terms. Also, the degrees of 
freedom for the Error MS should always be reported. With the exception of sources of variation 
within incomplete designs, all Error MS terms are either measures of variability between elements of
some random factor (e.g., subjects, or randomly selected book to read) or the interaction of the 
elements of that random factor with a fixed factor. These sources are then often pooled over random
groups. The definition of an Error MS should include both the source or interacting sources and the
levels over which it was pooled. The Error MS that is appropriate for the F test of the main effect 
or interaction should also be the basis of the standard error of the contrasts used in multiple 
comparisons. 

10. Randomized Block Designs

The term randomized block will be used to describe the case where an individual difference variable is
used to create levels (blocks) of a factor to be included as part of a mixed factorial experiment (see
Desideratum 11), and where participants are then randomly assigned to treatments from within the
blocks. An alternative usage of the term is found when the blocks have only enough subjects to have a
single subject per block/treatment combination. Our usage of the term is a special type of factorial
experiment and those desiderata appropriate for factorial experiments are also appropriate here (see,
e.g., Desiderata 1, 2, and 6). The rationale for including the individual difference variable should be
clearly stated. This rationale should distinguish between a motive of including the individual differ-
ence variable to remove variability in scores that would otherwise be considered random, and thus
increasing the power of the main effect, and a motive of exploring the relation between the individual
difference variable and the treatment variable via a test of the interaction.

The particular measure of the individual difference variable used to create blocks should also be justi-
fied as a valid measure in the experimental setting. When the motive for including the individual differ-
ence variable is to explore the way that the treatments provide differing effects depending on the level of
the blocks, the purpose is to address a relationship that should be theoretically grounded. The measure
of the individual difference variable must be a valid measure of the theoretical construct in order to make
meaningful interpretations of the interaction. This is less of a concern when reduction of the error vari-
ance is the sole motive for including the individual difference measure as there are no theoretically
grounded tests that depend on the meaning of the individual difference variable. 

The number of blocks used should be justified relative to the motive for including the individual
difference variable, the strength of the relation between the individual difference variable and the out-
come measure, and the quality of the individual difference measure. The method of creating blocks
should be explained with particular attention to whether the blocks were independently defined fol-
lowed by the recruitment of participants who fit into those blocks, or were blocks created post hoc out
of a set of n available participants. If independently defined levels of the blocking measure were used
the authors should explain how the points used to define the levels were determined, with particular
concern for the blocks on both ends of the continuum.

The blocking variable can be considered either random or fixed, depending on how it was created and
the extent to which the results are to be generalized. This distinction is important in determining
whether the subjects-within-treatments (for fixed) or the block-by-treatment interaction (for random)
should be used as the appropriate error term. If subjects-within-treatments is used as the error term, the
generalizations should be carefully limited to the specific levels of the blocking variable created or
observed. However, the block-by-treatment interaction as an error term allows for greater generaliza-
tion across the universe of possible blocks.
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11. Mixed Models 

The term mixed model is commonly used to describe a factorial experiment in which at least one of the
factors is a random variable and at least one of the others is fixed. The primary purpose of a random
factor is to argue for the generalizability of the treatment effect averaged across all levels of the random
factor rather than just over the specific levels sampled. The authors must explain the rationale for the
specific random variable chosen.

The authors should discuss the universe of levels from which the sample of levels of the random 
factor was selected. Some random factors such as “book chosen” in a reading experiment may have a
wide universe and come close to represent a random selection. For other random factors, such as the
clinic within which the experiment is conducted, may be very limited, including only those in a nar-
row geographical region. The degree to which we feel we can generalize is dependent on the breadth of
the universe. The authors should be careful not to interpret the absence of an interaction between the
random and fixed factor as proving that the treatment works equally well in all levels of the random
factor. All generalizations should be averaged across the universe of levels. 

As with the randomized block design discussed in Desideratum 10, the choice of appropriate 
error term depends on the assumptions made about the type of variables in the experiment. In mixed
models one of the factors is assumed to be a random variable and thus the error term for a fixed 
main effect is the interaction between the fixed and random variable. If there are few levels of the 
random factor, this error term will have few degrees of freedom and the associated F test will have lit-
tle power. 

In factorial experiments involving more than one random factor there is generally no mean square
that is a valid error term for the treatment effects of greatest interest. So-called quasi-F tests exist that
can provide an approximate F test but, unless crucial to the question at hand, an experiment should
involve no more than one random factor. 

In some situations the levels of the random variable may be viewed as replications of the fixed portion of
the experiment in a different setting. This leads to separate analyses for each level of the random factor and
the inability to attach a probability level to the possible presence of an interaction between the treatment
and the random factor. When viewed as replications rather than parts of a single, large experiment with
many levels of the random factor, the results may be summarized along with other experiments in a meta-
analysis (see Chapter 19, this volume) 

An ANOVA of a mixed experiment relies on relatively strict assumptions concerning the variabil-
ity of subjects within levels and works best with balanced experiments where there are an equal num-
ber of participants in each cell. In situations where there may be very different variances and
systematically different sample sizes, authors should consider pursuing an analysis method with less
stringent assumptions (e.g., multi-level modeling).

12. Hierarchical Experiments

Hierarchical experiments are similar to mixed models except that the random variable is typically
nested within the levels of the fixed factor rather than crossed with them (see Desideratum 11). For an
experiment that could be conducted either way, the mixed model is preferable in that the levels of the
treatment variable would be repeated within each of the levels of the random variable. However, it is
often the case that a level of the random variable can only be administered within one of the treat-
ments, or that the levels of the random variable are unique to a specific treatment. Consider a study to
determine if listening to jazz, classical, and rock music differentially impacts studying. The random
variable would be particular musical pieces that are unique to a specific genre. Note that a control
group with no music would probably be outside the hierarchical structure (except that subjects would
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still probably be nested in cells). Research involving subjects working together in teams are typically
hierarchical design where the group is the random factor.

The authors should explain the rationale for selecting the nested variable, including the importance
of being able to generalize the treatment effect averaged over all levels of the random variable. The
breadth of the universe of levels from which the levels were chosen should be described including the
procedures for selecting the specific levels.

Authors must acknowledge the dependence in the nested data by using an error term that includes
this dependence. Main effects and interactions of fixed factors typically have error terms that involve
the variability of the levels of the random factor rather than the variability of the subjects with the cells.
In complex designs special care should be taken by authors to clearly indicate the mean square that was
used as the error term for each test along with its number of degrees of freedom.

The analysis of hierarchical experiments with ANOVA is problematic under a number of com-
monly encountered situations. There is an assumption of homogeneity of residual variances within
cells both within levels of the random and fixed factors that, when violated, can lead to inflation of
Type I error rates. Equal sample size lessens the impact. If samples are systematically different in the
number of subjects and the nature of the treatments leads one to believe the assumptions are likely to
be violated, then the researchers should consider reanalysis using a multi-level modeling approach
(see, Chapter 10, this volume).

13. Incomplete and Other Complex Designs

Authors using Latin squares or other incomplete designs for the creation of treatment groups should
provide a rationale to explain the advantage of the reduced number of treatment groups given the
reduced amount of information provided. The rationale should include the authors’ defense of no
interactions between the factors that are incompletely crossed. In the Discussion section, the authors
should acknowledge the confounding of the main effects with higher-order interactions inherent in
the design.

The error term should be identified sufficiently to allow readers to understand the analysis. For
complex experimental designs, where a complete description may take extensive space, references
should be provided.

14. Necessary Statistical Information

A clear distinction should be made between the existence of a relation between the IV and the DV and
the strength/direction of that relation. Tests of significance along with the probability levels might lead
one to infer that a non-chance relation exists, but this does not satisfy our responsibility to describe
both the strength and the direction of the relation. Multiple comparisons provide a description of the
direction or nature of the relation, leaving only a need to present evidence as to the strength of the rela-
tion. In the last 20 years there has been a clear movement by professional organizations such as the
American Psychological Association to require specific information about the strength of hypothe-
sized relations. Effect sizes are commonly used to describe the difference between means scaled using
the standard deviation of the scores (see Chapter 7, this volume). Effect size measures of one type or
another are particularly important in making mean differences comparable in meta-analyses (see
Chapter 19, this volume).

A number of measures of association between the IV and DV have been developed that provide a
way of indicating the proportion of the variance present in the set of DV scores that is related to the
differences introduced by treatment. The more common measures are ε2, ω2, and η2. Each is like a
squared correlation in that the interpretation is related to the proportion of explained variance. At
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present no one index is universally accepted as the standard. Individual fields of study should agree on
a measure so that understanding can be developed through usage. 

15. Test(s) of Statistical Significance

For any test of significance reported, the authors should provide the test statistic (e.g., F, t, q), the 
source used as the error term and its degrees of freedom, and either a statement about the probability
level associated with the observed test statistic or an indication whether the finding was statistically sig-
nificant at the chosen α level. ANOVA summary tables are space consuming and may not be needed for
simple designs. More complex designs should have more complete reporting of the analysis so that the
reader can understand a specific finding from within the context of the total experiment. Because main
effects are averaged over the fixed levels of the other IVs in an experiment, it is important to keep all of
the IVs in mind. Interactions require analyses that are described in Desideratum 16. 

The significance level of a finding, often communicated by asterisks (e.g., * p < .05, ** p < .01),
should not be confused with the magnitude of the finding. Magnitude of effect should be indicated by
effect size (Desideratum 14). If more information is desired specifically about the probability level of
the test statistic under the null hypothesis, the exact probably can be given.

16. Statistically Significant Interactions

Interactions in factorial experiments often contain the most interesting information in the experiment
and should receive comparable analyses to those applied to the main effects. The analysis of interactions
should reflect the multiple comparison strategy that was (or would have been) used to analyze the main
effects. Assume for simplicity that factor A has 3 levels and factor B has 2 levels. If the A main effect was
analyzed by comparing all possible pairs of levels of A (A1 vs. A2, A1 vs. A3, and A2 vs. A3), then the A ×
B interaction should analyze the 2 × 2 tables created by all possible pairs of the levels of A crossed with B
(A1A2 × B, A1A3 × B, A2A3 × B). The test can be conducted with Tukey’s test or any of the other meth-
ods that control Type I error for a family of comparisons. Graphical as well as analytic presentations can
be used to indicate the source of the interaction.

Main effects found along with statistically significant interactions should be carefully described 
to indicate that, while the differences among the means of the main effect (averaged across all levels of
the other variable) are statistically significantly, those differences are altered by the level of the other
variable. Main effects may still be able to be meaningfully interpreted even when their factor is
involved in an interaction, but the interpretation still must acknowledge the complexity in the 
findings.

Higher-order interactions should not be immediately dismissed as Type I errors simply because a
follow-up analysis would require considerable effort. If the finding is not central to the study, the
authors might not be inclined to do an extensive investigation into the nature of the interaction; how-
ever, the authors must provide sufficient descriptive information (i.e., cell means and appropriate
error terms) so that the interested reader could conduct further inquiry. 

Simple main effects provide an alternative approach to analysis following a statistically significant
interaction. In the A × B example above the authors might decide simply to test the difference 
between the two levels of B for each of the three A levels, resulting in three tests of significance. Authors
taking this approach forgo the opportunity to talk about the relative difference between the B levels
across the levels of A. Any implied difference about the relative size of the B effect for different levels
of A based on the B difference being statistically significant in one instance but not in the other must
not be made. 
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17. Language Relative to Meaning and Generalizability

The logic of hypothesis testing presents some challenges in the use of language that authors should
carefully consider. In particular, the nature of an indirect proof causes problems in correctly stating
what the results of a study indicate. All statements should acknowledge the probabilistic nature of
research in the social and behavioral sciences. In other words, we cannot prove anything; we infer
there is a difference among populations because it is highly unlikely that the data we obtained would
have happened if the null hypothesis were true.

A retained null hypothesis should never be taken as proving the null hypothesis is true. While many
researchers would like to show that one method is as good as another, we cannot prove that the treat-
ments have no difference. The researchers can calculate confidence intervals about the observed dif-
ference that can be used to argue that there is no “practical” difference between groups, but that is
quite difference from proving the null hypothesis. In the literature that argues against the use of sig-
nificance tests one of the common complaints is the incorrect usage of language regarding the mean-
ing of a statistically significant difference.

The term significant should never be used in referring to the outcome of a test of significance with-
out the additional word statistical. Statistical significance provides an unambiguous description of the
results of a test of significance, whereas without the statistical qualifier we are left unsure whether the
author is describing the outcome of the test of significance or arguing for the difference having real
world importance. 

Generalizations should be made with great caution. Statistically justified generalizations are made
back to the theoretical population from which random sampling occurred. The problem is that almost
all experimentation is done on samples of convenience. We use volunteers from our university or stu-
dents in schools who have agreed to work with us. In the strictest sense we have no physical set of sub-
jects from which we sampled. Rather, we have available participants whom we have randomly
assigned to treatments. All generalizing is then an extension beyond the actual data. Authors should
make all generalizations as speculative. In the Methods section they should provide the reader with
enough information about all of the conditions under which the experiment was conducted so that
the reader is able to evaluate the similarity of the situation to one of concern to the reader. Similar con-
siderations are germane with mixed models where there is a random selection of levels of a treatment
variable. Here the idea of a random sample may be more defensible, but the reader must be told both
the process used and the extent of the universe of treatment levels from which those used is a sample
in order to be able to evaluate the extent to which generalizations are warranted. 
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2
Analysis of Variance 
Repeated Measures Designs

Lisa M. Lix and H. J. Keselman 

A repeated measures design, also known as a within-subjects design, in which study participants are meas-
ured K times on the same dependent variable, is one of the most common research designs in the social,
behavioral, and health sciences. The design arises in both experimental and observational settings.
Repeated measurements arise when a study participant is exposed to two or more experimental condi-
tions (i.e., factor levels) such as different dosage levels of the same drug, or when a participant is observed
at multiple points in time. A key characteristic of the data is correlation among the measurements for
each study participant.

One advantage of adopting a repeated measures design is that, for a fixed sample size, it will gener-
ally result in greater precision of parameter estimates and more efficient inferential analyses than a
between-subjects design. In addition, research questions about individual growth or maturation can
only be effectively investigated in repeated measures designs. 

This chapter focuses on procedures to analyze repeated measures data that are continuous; a brief
discussion of procedures for discrete data is provided in Desideratum 3. Procedures for continuous
data range from the simple to the complex. A simple procedure is to conduct dependent-sample t tests
for pairs of measurement occasions. The limitation of this approach is that it does not provide infor-
mation about the overall, or omnibus, within-subjects effect(s). The repeated measures analysis of
variance (ANOVA) F test is the conventional procedure for testing hypotheses about omnibus within-
subjects effects. This procedure makes stringent assumptions about the structure of the covariance
matrix of the repeated measurements. Alternatives to the repeated measures ANOVA F test may be
more suitable for many of the data-analytic conditions encountered by researchers in the social,
behavioral, and health sciences. Alternative procedures include: (a) an adjusted degrees of freedom
(df) procedure, which modifies the df of the repeated measures ANOVA critical value using informa-
tion about the covariance matrix, (b) repeated measures multivariate analysis of variance
(MANOVA), which makes no assumptions about the structure of the covariance matrix of the
repeated measurements (except across any between-subjects factors in the design), (c) the multiple
regression model (MRM), which allows the researcher to characterize the variances and covariances
of the repeated measurements using a small number of parameters, (d) the random-effects (e.g.,
mixed-effects) model, which allows the researcher to describe and test subject-specific variation in
repeated measures data, and (e) approximate df procedures, which do not assume that the data follow
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a normal distribution or that covariances are equal (i.e., homogeneous) across any between-subjects
factors in the design. 

Comprehensive resources that discuss procedures for the analysis of continuous repeated measures
data include Hedeker and Gibbons (2006), Fitzmaurice, Laird, and Ware (2004), Littell, Pendergast,
and Natarajan (2000), and Singer and Willett (2003). Several of these sources also discuss procedures
for the analysis of discrete repeated measures data. 

Desiderata for the analysis of repeated measures data are given in Table 2.1. A detailed discussion of
each item is provided below.

1. Types of Repeated Measures Designs

Information about the characteristics of a repeated measures design is used to assess the overall appro-
priateness and validity of the hypothesis-testing strategy. The simplest repeated measures design is one
in which a single group of study participants is measured on one dependent variable at two or more occa-
sions or for two or more experimental conditions. Consider an example in which a study cohort is
observed repeatedly after being introduced to a new therapeutic treatment. Suppose the researcher is
interested in investigating the treatment’s effect on the quality of life of study participants. An appropri-
ate null hypothesis for such a design is that there is no change in average quality of life ratings over time.
If this omnibus hypothesis is rejected, multiple comparisons might be conducted to test for a mean dif-
ference between pairs of measurement occasions. A priori contrasts among the measurement occasions
could be conducted instead of a test of the omnibus hypothesis (see Desideratum 7).

Table 2.1 Desiderata for Analysis of Variance: Repeated Measures Designs

Desideratum Manuscript 

Section(s)*

1. The type of repeated measures design is specified (i.e., number of within- and between-subjects I, M

factors and number of levels of each).

2. Issues of statistical power have been considered and the sample size is reported. M

3. The number and type of dependent (i.e., response) variable(s) is specified. M

4. Assumptions about the distribution of the dependent variable(s) are evaluated and an appropriate M

test procedure is selected.

5. Assumptions about the covariance structure of the repeated measurements are evaluated and used M

to guide the selection of a test procedure. 

6. The pattern and rate of missing observations is considered. The method adopted to handle missing M, R

observations is identified. 

7. The method used to conduct a priori or post hoc multiple comparisons of within-subjects factor M

levels is specified. The method adopted for testing multiple dependent variables, if present, is

specified.

8. The name and version of the selected software package is reported. M, R

9. Exploratory analyses of the repeated measures data are summarized. R

10. The results for omnibus tests of within-subjects effects and multiple comparisons are reported. R

The criterion used to assess statistical significance is specified.

11. Consideration is given to reporting effect sizes and confidence intervals. R

12. The strengths and limitations of a repeated measures design are considered and threats to the D

validity of study findings are discussed.

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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Factorial repeated measures designs contain two or more repeated measures factors. The simplest
factorial design is one in which a single group of study participants is measured on a single dependent
variable for each possible combination of the levels of two factors. For example, suppose that a
researcher investigates psychological well-being of a cohort exposed to experimental stimuli that rep-
resent all combinations of sex (male, female) and facial expression (positive, neutral, negative). The
dependent variable in this example is psychological well-being. The null hypothesis for the within-
subjects interaction effect is that the effect of sex of the stimuli on psychological well-being is constant
at each level of the facial expression factor. If the null hypothesis is rejected, multiple interaction con-
trasts might be conducted to identify the combination of factor levels that contribute to rejection of
the omnibus hypothesis. If the interaction effect is not significant, the researcher can choose to test the
main effects (i.e., sex, facial expression; see Desideratum 10).

A mixed design, also referred to as a split-plot repeated measures design, contains both between-sub-
jects and within-subjects factors. The simplest mixed design contains a single within-subjects factor, a
single between-subjects factor, and a single dependent variable. For example, study participants might
be randomly assigned to control and intervention groups prior to being measured at successive points in
time on their reading comprehension. In a mixed design, the researcher is primarily interested in testing
whether there is a group-by-time interaction, that is, whether the change over time on the dependent
variable (e.g., reading comprehension) is the same for control and intervention groups, although main
effects will be of interest if the interaction is not significant (see Desideratum 10). 

2. Sample Size and Statistical Power

Statistical power and sample size (N) must be considered early on in the design of a study. Statistical
power is the probability that an effect will be detected when it exists in the population. In a repeated
measures design, calculating the sample size to achieve a desired level of statistical power requires
information about the pattern and magnitude of the within- and between-subjects effect(s), the vari-
ances and covariances over the measurement occasions, the number of measurement occasions, the
level of significance (�), and the choice of analysis procedures (Overall & Doyle, 1994). Information
about the magnitude of effects, as well as the pattern of variances and covariances of the repeated
measurements, can often be obtained from previous research. 

Existing statistical software packages can often be used to calculate sample size requirements for
simple repeated measures designs when the repeated measures ANOVA F test or MANOVA proce-
dure are used to analyze the data. Calculating sample size for more complex designs, including those
with multiple dependent variables or for analysis procedures such as the MRM or random-effects
models, is less straightforward and the researcher is advised to consult with a statistician having
expertise in this area. 

Sample size may also dictate the choice of analysis procedures. For example, if N is less than the
number of measurement occasions (K), the repeated measures MANOVA procedure cannot be used
to test within-subjects effects. Furthermore, if the ratio N/K is small, the covariance parameter esti-
mates may be unstable. In mixed designs, the ratio of the group sizes is also an important considera-
tion in the choice of procedures; if group sizes are unequal and equality (i.e., homogeneity) of the
group covariances is not a tenable assumption, then the repeated measures ANOVA and MANOVA
procedures may result in invalid inferences (e.g., too many false rejections of null hypotheses).

3. Number and Type of Dependent Variables

Repeated measures designs may be either univariate or multivariate in nature. A multivariate repeated
measures design is one in which measurements are obtained from study participants on P dependent
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variables at each occasion. In multivariate data there are two sources of correlation: (a) within-
individual within-variable correlation, and (b) within-individual between-variable correlation. The
latter arises because the measurements obtained on the dependent variables at a single occasion are
almost always related.

One approach to analyze multivariate repeated measures data is to conduct P tests of within-sub-
jects effects, one for each dependent variable. This method can be substantially less powerful than a
multivariate analysis, which simultaneously tests within-subjects effects for the set of P outcomes.
Several procedures have been proposed to test multivariate within-subjects main and interaction
effects (Vallejo, Fidalgo, & Fernandez, 2001). Two conventional procedures are the doubly multivari-
ate model (DMM) and multivariate mixed model (MMM) procedures, which are extensions of
repeated measures MANOVA and ANOVA, respectively, to the case of two or more dependent vari-
ables. The choice between these two procedures is a function of sample size and one’s assumptions
about the data. The DMM cannot be applied to datasets in which N/(P × K) is less than one. Moreover,
when this ratio is small, covariance parameter estimates may be unstable. The MMM procedure
makes stringent assumptions about the covariance structure of the repeated measurements and
dependent variables. When these assumptions are not satisfied, the MMM will result in invalid 
inferences. 

The MRM procedure is one alternative to these conventional procedures. It allows the researcher to
define the covariance matrix of the repeated measurements and dependent variables using a small
number of parameters. A parsimonious (i.e., simple) structure for the MRM is a separable structure,
in which the covariance matrix of the repeated measurements is assumed to be the same for each
dependent variable. It is advantageous to assume a separable covariance structure when sample size is
small because it requires estimation of fewer covariance parameters than when an unstructured
covariance is assumed and therefore the estimates will be more stable.

In either univariate or multivariate repeated measures data, the dependent variables may have a
continuous or discrete scale. For the latter, the outcome might be the presence (or absence) of a
response or a count of the number of times a response occurs. Generalized linear models are a unified
class of models for the analysis of discrete data. They have been extended to the case of correlated
observations. Binary repeated measurements can be analyzed using an extension of logistic regres-
sion, repeated counts of rare events can be analyzed using an extension of Poisson regression, and
repeated ordinal measurements can be analyzed using an extension of multinomial regression for
repeated measures data. Two different types of generalized linear models for repeated measurements
are marginal models and random-effects models. The choice between these two approaches is largely
a function of the research purpose; a marginal model is used to make inferences about the average
response in the population while the random-effects model is used to make inferences about the
response of the average individual in the population.

4. Distributional Assumptions

Repeated measures ANOVA, MANOVA, and MRM procedures rest on the assumption of multivariate
normality. If the repeated measurements are distributed as multivariate normal, then the data for each
measurement occasion is normally distributed and the joint distribution of the data for all measurement
occasions is normally distributed. However, even when the data for each measurement occasion are nor-
mally distributed, the set of measurements might not follow a multivariate normal distribution
(Keselman, 2005). 

Assessing potential departures from a multivariate normal distribution is critical to selecting a valid
analysis procedure. The researcher can compute measures of skewness (symmetry) and kurtosis (tail
weight) for the marginal distributions (i.e., for each measurement occasion), as well as measures of
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multivariate skewness and kurtosis. Values near zero (assuming an adjusted measure of kurtosis) are
indicative of a normal distribution. Tests of univariate and multivariate normality, such as the
Shapiro-Wilk test for univariate normality and Mardia’s test for multivariate normality, are sensitive
to even slight departures from a normal distribution. Data exploration tools, such as normal proba-
bility plots, might be useful for assessing departures from a multivariate normal distribution; these are
discussed in further detail in Desideratum 9. Alternatively, one may simply bypass these assessments
of the data distribution in favor of a test procedure that is robust (i.e., insensitive) to departures from
multivariate normality.

Procedures such as the repeated measures ANOVA and MANOVA are sensitive to the presence of
outliers in the data distribution. Outliers inflate the standard error of the mean resulting in reduced
sensitivity to detect within-subjects effects. One approach to overcome the biasing effects of nonnor-
mality is to adopt robust measures of central tendency and variability. Trimmed means and
Winsorized variances have been extensively studied as alternatives to conventional least-squares
means and variances in the analysis of repeated measures data (Keselman, Wilcox, & Lix, 2003). A
trimmed mean is obtained by removing an a priori determined percentage of the largest and smallest
observations at each measurement occasion and computing the mean of the remaining observations.
A commonly recommended trimming percentage is 20% in each tail of the distribution. The trimmed
mean will have a smaller standard error than the least-squares mean when the data are sampled from
a heavy-tailed distribution (i.e., a distribution containing outliers or extreme scores). To compute the
Winsorized variance, the smallest non-trimmed score replaces the scores trimmed from the lower tail
of the distribution and the largest non-trimmed score replaces the scores removed from the upper tail.
These non-trimmed and replaced scores are called Winsorized scores. A Winsorized mean is calcu-
lated by applying the usual formula for the mean to the Winsorized scores; a Winsorized variance is
calculated using the sum of squared deviations of Winsorized scores from the Winsorized mean. The
Winsorized variance is used instead of the trimmed variance, because the standard error of a trimmed
mean is a function of the Winsorized variance. Test procedures based on robust estimators have
demonstrated good performance (i.e., accurate Type I rates and acceptable levels of statistical power
to detect non-null treatment effects) for analyzing repeated measures data. Computer programs that
use the trimmed mean and Winsorized variance to test within-subjects effects are discussed in
Desideratum 8. 

Another approach to deal with the biasing effects of nonnormality is to transform the data prior to
analyzing it. Rank transform procedures, in which observations are ranked prior to applying an exist-
ing procedure for analyzing repeated measurements, are appealing because they can be easily imple-
mented using existing statistical software packages (Conover & Iman, 1981). One limitation is that
they cannot be applied to tests of within-case interaction effects, because the ranks are not a linear
function of the original observations. Therefore, ranking may introduce additional effects into the 
statistical model that were not present in the original data. Ranking may also alter the pattern of 
correlations among the repeated measurements, which can be particularly problematic for the
repeated measures ANOVA procedure, which makes specific assumptions about the correlation
structure of the data. Thus, rank transform procedures, while insensitive to departures from a normal
distribution of responses, must be used with caution.

A nonparametric bootstrap resampling method has also been proposed for the analysis of non-
normal repeated measures data (Berkovits, Hancock, & Nevitt, 2000). Under this methodology, a
normal-theory procedure is used to test within-subjects effects; however, the critical value for evalu-
ating statistical significance is based on the empirical sampling distribution of the test statistic rather
than a theoretical critical value (e.g., a critical value from an F distribution). The method proceeds as
follows: A bootstrap dataset is obtained by randomly sampling with replacement from the original
data. The data are centred using the mean of the within-subjects effects, to approximate the sampling 
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distribution of the null hypothesis. A test of the within-subjects effect is computed from the bootstrap
dataset. This process is repeated B times. The B test statistics are ranked in ascending order. For a test
at the � level of significance, the B × (1–�)th observation in the ranked set of observations, which cor-
responds to the 100 × (1–�) percentile, is used to approximate the critical value. The choice of B
depends on the goals of the analysis; B � 1000 is recommended for constructing confidence intervals
around parameter estimates, while 300 � B � 1000 is sufficient for conducting inferential analyses.

5. Covariance Structure of the Repeated Measurements

Procedures for analyzing repeated measures data vary widely in their assumptions about the structure
of the covariance matrix; evaluation of the covariance structure is therefore critical to the selection of
a valid method of analysis. The repeated measures ANOVA procedure assumes that the covariance
matrix of the repeated measurements has a spherical structure. For sphericity to be satisfied, the 
population variances of the differences between pairs of repeated measures factor levels must be 
equal. Furthermore, for mixed designs, the more stringent assumption of multisample sphericity must
be satisfied; this requires equality of the common variance of the pairwise repeated measures differ-
ences across levels of the between-subjects factor. The sphericity assumption is not likely to be satis-
fied in data arising in social, behavioral, and health sciences research. For example, when
measurements are obtained at multiple points in time, it is often the case that the variance increases
over time. Moreover, a test of the sphericity assumption is sensitive to departures from a multivariate
normal distribution. Therefore, the repeated measures ANOVA procedure cannot routinely be rec-
ommended in practice. 

The approximate df ANOVA procedure is one alternative when sphericity is not a tenable assump-
tion. The repeated measure MANOVA procedure is another alternative; it does not make any assump-
tions about the structure of the common covariance matrix of the repeated measurements. However,
both the adjusted df ANOVA and repeated measures MANOVA procedures do assume homogeneity
of the group covariance matrices across any between-subjects factor levels in the design. These proce-
dures are not robust under departures from covariance homogeneity, particularly when group sizes
are unequal. If the group with the smallest sample size exhibits a larger degree of variability among the
covariances than the group with the largest sample size, then tests of within-subjects effects will tend
to produce liberal Type I error rates, above the nominal � level (i.e., too often inferring there are
within-subjects effects when none are present). Conversely, if the group with the smallest sample size
exhibits the smallest degree of variability of the covariances, then tests of within-subjects effects will
tend to produce conservative error rates, below the nominal � level (i.e., too often failing to detect real
population effects). Unfortunately, a likelihood ratio procedure to test the null hypothesis of covari-
ance homogeneity is sensitive to departures from a multivariate normal distribution, as well as to
small sample sizes. 

When it is not reasonable to assume that covariances are homogeneous, the researcher is recom-
mended to bypass these analysis procedures in favor of an approximate df procedure (Keselman,
Algina, Lix, Wilcox, & Deering, 2008). The approximate df procedure, which is a multivariate and
multi-group generalization of the non-pooled two-group t test, has been extensively studied for both
univariate and multivariate repeated measures designs when covariances are heterogeneous. It will
result in valid inferences about within-subjects effects provided that sample size is not too small.
However, the approximate df procedure does assume that the repeated measures data follows a mul-
tivariate normal distribution. When multivariate normality is not a tenable assumption, then the
approximate df procedure should be implemented by substituting trimmed means and Winsorized
variances for the usual least-squares means and variances. A computer program for this procedure is
described in Desideratum 8.
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The MRM procedure allows the researcher to model the covariance matrix of the repeated 
measurements in terms a small number of parameters. Heterogeneous covariance structures can 
also be accommodated for mixed designs if homogeneity of group covariances is not a tenable
assumption. There are several different covariance structures that can be fit to one’s data.
Autoregressive and Toeplitz structures assume that the correlation among repeated measurements is
a function of the lag, or interval, between two measurement occasions. Some covariance structures
assume that the variances of the measurement occasions are constant, while other structures allow for
heterogeneous variances. For example, the random coefficients structure is a flexible structure 
that models subject-specific variation characterized by non-constant variances and non-constant 
correlations. 

When a parsimonious covariance structure is specified for the repeated measurements, the MRM
procedure will result in a more powerful test of within-subjects effects than the repeated measures
MANOVA procedure. However if the covariance structure is incorrectly specified, tests of within-
subjects effects may be biased, resulting in erroneous inferences. 

Graphic techniques and summary statistics to aid in selecting an initial model(s) for the covariance
structure are described in Desideratum 9. Measures of model fit and/or inferential analyses are used
to select a model for the covariance structure. If the candidate covariance structures are nested, then a
likelihood ratio test can be used to select one of these structures as the final model. Two covariance
structures are nested if one is a special case of another. For example, a compound symmetric covariance
structure, which assumes that all variances are equal and all covariances are equal, is a special case of
an unstructured covariance model, which does not assume that either variances or covariances are
equal. Caution is advised when adopting the likelihood ratio test because it is sensitive to multivariate
non-normality and small sample size. Aikake’s Information Criterion (AIC) and Schwarz’s Bayesian
Information Criterion (BIC) are two well-known criteria for assessing model fit for non-nested
covariance structures. The BIC penalizes models more severely for the number of parameter estimates
than does the AIC, therefore the latter is favored over the former. These information criteria should
only be used for comparing the covariance structures of models that contain the same regression
parameters. 

6. Missing Observations and Loss to Follow-Up

Missing data are a concern in repeated measures designs because of the potential loss of statistical effi-
ciency and/or bias in parameter estimates due to differences between observed and unobserved data.
Although researchers may devote substantial effort to reduce the amount of missing data, some loss of
data is inevitable, particularly in medical research. Therefore an assessment of the amount and type of
missing data is essential in a study involving repeated measurements.

Missing data can be either monotone or intermittent. Both patterns can appear in the same dataset.
A monotone, or drop-out, pattern arises if a participant is observed on a particular occasion but not on
subsequent occasions. Study drop-out may arise for a number of reasons, including death or illness,
or lack of interest in continuing a study. An intermittent pattern is one in which there are “holes” in the
data because a study participant will have at least one observed value following a missing observation.

The rate of missingness is the proportion of missing observations to the total number of observa-
tions in the dataset. As the rate of missingness increases, statistical efficiency decreases and the proba-
bility of biased inference increases. 

Repeated measures ANOVA, adjusted df ANOVA, and repeated measures MANOVA procedures
assume a complete set of measurements for each study participant. If data are incomplete, the
researcher is faced with the following choices. First, one could simply exclude from the analysis all
study participants with at least one missing observation (so called casewise or listwise deletion). The
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final sample size available for analysis can be extremely small if the rate of missing observations is
large. A second option is to choose an analysis procedure based on maximum-likelihood estimation
(e.g., full information maximum likelihood estimation), which does not result in deletion of partici-
pants with missing observations. Another choice is to impute missing values, using single or multiple
imputation methods, in order to obtain a complete data set for subsequent analysis. 

Examples of single imputation methods include mean substitution or last observation carried for-
ward. These methods are not widely recommended, particularly when the rate of missing observa-
tions is large, because they do not account for random variation in the missing observations. Single
imputation will therefore result in model parameters with underestimated error variances. Multiple
imputation, the preferred approach (Little & Rubin, 2002), generates M plausible values for each
missing observation, yielding m pseudo-complete datasets. The M datasets are analyzed using com-
plete-case methods. The results from the M analyses are combined using simple arithmetic formulae.
There is no single value of M that is recommended in practice, although Schafer (1999) suggests that
between three and ten imputations will likely be sufficient for the majority of missing data problems.
The value of M depends on the rate of missing observations. One strategy for choosing M is to conduct
several sets of M imputations, starting with a small value of M and evaluating whether parameter esti-
mates are relatively stable across these independent sets of imputations. If the estimates demonstrate
wide variability, then M should be increased and the stability of the estimates re-evaluated.

Imputation-based analyses will result in unbiased tests of within-subjects effects only if the missing
data are ignorable. There are three mechanisms by which data may be incomplete (Little & Rubin,
2002): (a) missing completely at random (MCAR), (b) missing at random (MAR), and (c) missing not
at random (MNAR). MCAR means the probability that an observation is missing is independent of
either observed or unobserved responses. MAR means the probability that an observation is missing
depends only on the pattern of observed responses. All other missing data mechanisms are MNAR, or
non-ignorable. Unfortunately there are no formal tests of the null hypothesis that the missing data fol-
low a MAR pattern instead of a MNAR pattern. Pattern selection models or pattern mixture models
are recommended to reduce biases when the data are assumed to be MNAR. Pattern selection models
rely on multiple imputations, under a variety of assumptions about the missing data mechanism, to
test effects and/or estimate model parameters. Pattern mixture models develop a categorical predictor
variable for the different patterns of missing data and this predictor variable is included in the statisti-
cal model for testing within-subjects effects. No single missing data model can be uniformly recom-
mended to reduce bias in parameter estimates; the choice depends on the type and rate of missing
observations, the number of measurement occasions, and the magnitude of the within-subjects
effects. Shen, Beunckens, Mallinckrodt, and Molenberghs (2006) proposed using sensitivity analyses
when the missingness is assumed to be non-ignorable, to assess whether the findings for different
missing data models produce consistent results. Sensitivity analysis techniques can also be used to
identify influential observations in analyses of missing data. 

7. Multiple Comparison Procedures and Multiple Testing Strategies

When conducting post hoc or a priori multiple comparisons, such as pairwise contrasts among within-
subjects factor levels, the researcher will typically wish to adopt a procedure to control the familywise
error rate (FWER), the probability of committing at least one Type I error, for the set of tests. The well-
known Dunn-Bonferroni procedure conducts each of C comparisons at the �/C level of significance.
The Bonferroni method is simple to implement, but may not be as powerful as other procedures, such as
Hochberg’s (1988) step-up procedure. This procedure orders the p-values from smallest to largest so
that p

(1)
� p

(2)
� … � p

(C)
, to test the corresponding hypotheses H

(1) 
,…, H

(C)
. The sequence of testing

begins with the largest p-value, p
(C)

, which is compared to �. Once a hypothesis is rejected, then all
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hypotheses with smaller p-values are also rejected by implication. For example, if p
(C) 

� �, then all C
hypotheses are rejected. If the null hypothesis corresponding to the largest p-value, H

(C)
, is accepted, the

next p-value, p
(C–1)

is evaluated using the �/2 criterion. More generally, the decision rule is to reject H
(wø)

(w ø � w; w = C ,…, 1) if p
(w)

� �/(C – w + 1). An assumption underlying Hochberg’s procedure is that
the tests are independent, which is unlikely to be satisfied in a repeated measures design. However,
Hochberg’s procedure will control the FWER for several situations of dependent tests, making this pro-
cedure applicable to most multiple comparison situations that social scientists might encounter (Sarkar
& Chang, 1997). Multiple comparison procedures for correlated data are discussed later in this
Desideratum.

In factorial and mixed designs, multiple comparisons to probe interaction effects should be 
conducted using interaction contrasts (Lix & Keselman, 1996). Tests of simple main effects, which
involve examining the effects of one factor at a particular level of the second factor, may also assist
researchers in examining the interaction. A significant interaction implies that at least one contrast
among the levels of one factor is different at two or more levels of the second factor. Tetrad contrasts
are one type of interaction contrasts that are a direct extension of pairwise contrasts for probing 
marginal (i.e., main) effects. In a two-way design, a tetrad contrast involves testing for the presence of
an interaction between rows and columns in a 2 × 2 sub matrix of the data matrix, or in other words,
of testing for a difference between two pairwise differences. Control of the FWER for a set of 
tetrad contrasts can be achieved using an appropriate multiple comparison procedure as described
previously.

In multivariate repeated measures data, one strategy to conduct multiple comparisons is to follow
a significant omnibus multivariate effect with post hoc multivariate multiple comparisons. For exam-
ple, a significant multivariate within-subjects interaction indicates that the profiles of the repeated
measurements are not parallel for two or more levels of the between-subjects factor for some linear
combination of the dependent variables. Multivariate interaction contrasts are an appropriate choice
for probing this effect.

There are many kinds of comparisons that might be tested in a multivariate design. Bird and Hadzi-
Pavlovic (1983) distinguish among strongly restricted contrasts, which are defined for between- and/or
within-subjects factor levels on a single dependent variable, and moderately restricted contrasts, which
are defined for between-subjects and/or within-subjects factor levels for two or more dependent vari-
ables. A third type, the unrestricted contrast, is defined as the maximum contrast for the first linear dis-
criminant function, that is, the linear combination of coefficients that maximizes the distance
between the means of the dependent variables. Unrestricted contrasts can be difficult to interpret
because the coefficients are usually fractional, while strongly restricted contrasts are the easiest to
interpret because they focus on only a single dependent variable. At the same time, a simultaneous test
procedure (e.g., Bonferroni) to control the FWER for all possible strongly restricted contrasts will
have very low power to detect significant effects because it uses a stringent criterion to evaluate each
test statistic. A more powerful approach is to conduct a small set of a priori multivariate contrasts on
the between-subjects or within-subjects factor levels for the set of dependent variables, using a step-
wise multiple comparison procedure, such as Hochberg’s (1988) procedure, to control the FWER for
the set of tests. 

Another approach to probe multivariate repeated measures data is to conduct tests of within-
subjects effects for each of the P dependent variables, adopting a significance criterion to control the
FWER that is also adjusted for the correlation among the dependent variables. The Bonferroni
method and its stepwise counterparts assume that the dependent variables are independent and will
therefore result in conservative tests of within-subjects effects on the P dependent variables, particu-
larly when P is large. Alternate approaches that adjust for correlation include Roy’s (1958) step-down
analysis and resampling-based methods. 
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In a step-down analysis, the researcher rank orders the dependent variables in descending order of
importance and then conducts tests of within-subjects effects using an analysis of covariance
(ANCOVA) approach in which higher-ranked dependent variables serve as covariates for tests on
lower-ranked variables. Under the null hypothesis and assuming that the data are normally distrib-
uted, the step-down test statistics, F

l
(l = 1 ,…, P) and p-values, p

l
, are conditionally independent. The

FWER for the set of step-down tests is controlled to � using a multiple comparison procedure such as
Hochberg’s (1988) method. A step-down analysis is an appropriate method if the researcher is able to
specify an a priori ordering of the dependent variables; this is often the case when some outcomes have
a greater theoretical importance to the researcher than others. 

Westfall and Young (1993) described a step-down resampling-based multiple testing procedure that
also adjusts for the correlation among multiple dependent variables. Their procedure uses a permuta-
tion method, in which the observations are reshuffled or rerandomized. The permutation procedure is
implemented as follows: A permuted dataset is obtained by reshuffling the original observations. A test
of the within-subjects effect is computed for each of the P dependent variables. The test statistic in the
permutated dataset that corresponds to the maximum test statistic in the original dataset is used to eval-
uate statistical significance for each of the P dependent variables. This process is repeated B times. The p-
value for the mth dependent variable (m = 1 ,…, P) is the proportion of permutations in which the
maximal criterion exceeds the value of the mth test statistic in the original dataset. A critical issue in
implementing this multiple testing procedure is ensuring that the data are re-randomized correctly. For
example, to test the within-subjects interaction effects in a mixed design the data must be doubly ran-
domized, that is, reshuffled among rows as well as among columns of the original data matrix.

8. Software Choices

Procedures for the analysis of repeated measures data are available in software packages commonly
used by researchers in the social, behavioral, and health sciences including SPSS, SAS, Stata, and R.
Reporting the name and version of statistical software is recommended because not all packages will
rely on the same default options for estimating model parameters or testing within-subjects effects.
Options available for imputing missing values and conducting computationally intensive re-sampling
techniques may not be the same in all software packages. As well, potential biases in analytic results can
be more easily detected when the researcher gives full disclosure of the computational details. For
example, Keselman, Algina, Kowalchuk, and Wolfinger (1999) found that the default test statistics
implemented in the MIXED procedure in version 6.1 of SAS could result in liberal or conservative
rates of Type I error even when the covariance structure of the repeated measurements was correctly
specified; this problem has been rectified in more recent versions of the software. 

Syntax to implement repeated measures ANOVA, MANOVA, and MRM procedures are described in
a number of sources. For example, Littell, Pendergast, and Natarajan (2000) provided SAS code to
implement the MRM using PROC MIXED. Singer and Willett (2003) offer downloadable programs to
analyze within-subjects effects in multiple software packages. The approximate df procedure for testing
within-subjects effects in the presence of covariance heterogeneity is not currently available in commer-
cial statistical software packages. A program written in the SAS/IML language to implement this solution
is available at the first author’s website: http://www. usask.ca/sph/faculty_staff/our_faculty/Lisa-
Lix.html. Numeric examples that demonstrate this software for a variety of research designs are pro-
vided, along with documentation about its implementation. Tests can be conducted using least-squares
means and variances or trimmed means and Winsorized variances. The program will evaluate statistical
significance of tests of within-subjects effects using either a critical value from an F distribution or a boot-
strap critical value. As well, it will compute robust effect size estimates and robust confidence intervals;
these are described in more detail in Desideratum 11.
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9. Exploratory Analysis Techniques

Graphic techniques and summary statistics are used to evaluate the tenability of derivational assump-
tions that underlie different methods for the analysis of repeated measures data and to aid in the selec-
tion of an appropriate model for the covariance structure of the repeated measurements under the
multiple regression model (MRM). The results of exploratory analyses should be summarized in a
manuscript; they provide an assurance that the choice of analysis procedures is justified.

Profile plots of the data for individual study participants are used to assess the magnitude of sub-
ject-specific variation in the data and whether that variation is increasing or decreasing across meas-
urement occasions, which could result in violations of the assumption of sphericity. Scatter plots for
pairs of measurement occasions can aid in the identification of potential outliers or influential obser-
vations. A normal probability plot, or normal quantile plot, is a scatter plot of the percentiles of the data
versus the percentiles of a population from a normal distribution. If the data do come from a normally
distributed population, the resulting points should fall closely along a straight line. 

Summary statistics such as correlation coefficients and variances can aid in the selection of a model
for the covariance structure of the repeated measurements. The correlogram, which plots the average
correlation among the measurement occasions against the number of lags (h) between the occasions
(h = 1 ,…, K – 1), can also be used for this purpose. Finally, change scores between pairs of measure-
ment occasions might be useful for identifying informative post hoc contrasts for probing within-
subjects effects.

10. Reporting Test Statistic Results

For completeness, the test procedure(s) used to conduct all analyses should be specified. For example,
when the repeated measures MANOVA procedure is used to analyze data arising from a multi-group
mixed design, there are four different test statistics that can be used to test the within-subjects interac-
tion: the Pillai-Bartlett trace, Roy’s largest root criterion, Wilks’s lambda, and the Hotelling-Lawley
trace. These statistics represent different ways of summarizing multivariate data. When the design
contains two groups, all of these tests reduce to Hotelling’s T2, a multivariate extension of the two-
sample t statistic. All four multivariate criteria rest on the assumption of a normal distribution of
responses and homogeneity of group covariances. Olson (1976) found the Pillai-Bartlett trace to be
the most robust of the four tests when the multivariate normality assumption is not tenable, and is
sometimes preferred for this reason. 

For the MRM, several statistics are available to test hypotheses about covariance structures and
within-subjects effects. Tests about covariance parameters can be made using a Wald z statistic, which
is constructed as the parameter estimate divided by its asymptotic standard error. However, this test
statistic can produce erroneous results when sample size is small. The likelihood ratio test for com-
paring nested covariance structures, which asymptotically follows a �2 distribution when the data are
normally distributed, is sensitive to small sample sizes. Specifically Type I error rates may exceed the
nominal �. For testing hypotheses about within-subjects main and interaction effects, a Wald F sta-
tistic can be used; it has good performance properties in large samples (Gomez, Schaalje, &
Fellingham, 2005). Improved performance in small sample sizes can be obtained either by adjusting
the df of the test statistic or modifying the test statistic value (Kenward & Roger, 1997); this option is
available in SAS software.

11. Effect Sizes and Confidence Intervals

An effect size describes the magnitude of a treatment effect (see Chapter 7, this volume). Reporting
effect sizes in addition to hypothesis testing results is required in some journal editorial policies and is
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supported by the American Psychological Association’s Task Force on Statistical Inference. One com-
monly reported measure of effect size is Cohen’s d. In a repeated measures design, this measure is
computed as the standardized difference of the means for two within-subjects factor levels, taking into
account the correlation between the measurement occasions. A confidence interval should also be
reported for an effect size to provide information about the precision of the estimate. The noncentral
t distribution is used to construct a confidence interval when the data are normally distributed. Effect
size measures need not be limited to the case of only two within-subjects factor levels; Keselman et al.
(2008) discussed this issue in detail. 

When the data are not normally distributed, the coverage probability of the confidence interval is poor
(Algina, Keselman, & Penfield, 2005), and may become worse as the correlation among the measure-
ment occasions increases. One option is to use an empirical method, such as the bootstrap, to construct
a confidence interval. A bootstrap dataset is obtained by randomly sampling with replacement from the
original data. An effect size measure is computed from the bootstrapped dataset. This process is repeated
B times. The B effect sizes are ranked in ascending order. The B × (�/2) and B × (1 – �/2) observations of
the empirical distribution represent the upper and lower limits of the 100 × (1 – �)% confidence inter-
val, respectively. A measure of effect size that is insensitive to departures from a multivariate normal dis-
tribution can be obtained by using the trimmed mean and Winsorized variance in place of the usual
least-squares mean and variance. 

Cohen’s effect size assumes homogeneity of group covariances in mixed designs, because the
denominator, or “standardizer,” of the effect size is based on an estimate of error variance that 
averages across levels of the between-subjects factor. As a result, when covariances are heterogeneous
and group sizes are unequal this measure will be systematically affected by the sample sizes used in 
the study. An alternate approach is to adopt a standardizer for computing Cohen’s effect size that is
not based on a pooled estimate of error variance. The SAS/IML program for the approximate df pro-
cedure that was described in Desideratum 8 can be used to compute an effect size that is insensitive to
covariance heterogeneity. As well, it will compute a confidence interval for an effect size that does not
rest on the assumption of a normal distribution of responses; this is accomplished using a bootstrap
method. 

12. Strengths and Limitations of Repeated Measures Designs

There are several potential threats to the validity of research findings in a repeated measures design
that should be evaluated in a manuscript. The single-group design lacks a control group for compari-
son, therefore maturation effects may be impossible to distinguish from time effects. Adopting a
cohort sequential design, in which the time of entry into the study is staggered, is one approach to esti-
mate these two separate effects. 

Within-subject effects might be a result of respondent fatigue, practice effects, or response shift
(i.e., a change in the meaning of one’s evaluation of the target construct), rather than true change in
the dependent variable. An active area of research in the quality of life literature is around the use of
statistical methods, such as structural equation modeling, to detect response shift in repeated meas-
ures designs (Schwartz & Sprangers, 1999). A cross-over design, in which the provision of treatments is
counter-balanced among study participants, can also be used to test for carry-over effects due to
fatigue or maturation. Another approach is to externally validate the study results in a different 
population than the one from which the study sample was selected.

High rates of participant attrition can also threaten the validity of study findings. As noted in
Desideratum 6, sensitivity analysis is one approach to assess potential bias in study parameters as a
result of missing data. 
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Other threats to validity are not unique to repeated measures designs. Some examples include selec-
tion bias due to lack of random assignment to treatment and control groups and experimenter bias,
when the individuals who are conducting an experiment have an inadvertent effect on the outcome.
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Canonical Correlation Analysis

Xitao Fan and Timothy R. Konold

Pioneered by Hotelling (1935), canonical correlation analysis (CCA) focuses on the relation between
two sets of variables, each consisting of two or more variables. In some applications, the two sets may
be described in terms of independent and dependent variables, although such designations are not
necessary. There are a variety of ways to study relations among groups of variables. The general goal of
CCA is to uncover the relational pattern(s) between two sets of variables by investigating how the
measured variables in two distinct variable sets combine to form pairs of canonical variates, and to
understand the nature of the relation(s) between the two sets of variables. CCA has often been con-
ceptualized as a unified approach to many univariate and multivariate parametric statistical testing
procedures (Knapp, 1978; Thompson, 1991), and even a unified approach to some nonparametric
procedures (Fan, 1996; Knapp, 1978). The close linkage between CCA and other statistical procedures
suggests that the association between two sets of variables often needs to be understood in our statis-
tical analyses: “most of the practical problems arising in statistics can be translated, in some form or
the other, as the problem of measurement of association between two vector variates X and Y”
(Kshirsagar, 1972). From this perspective, CCA has been considered as a general representation of the
general linear model (Knapp, 1978; Thompson, 1984), unless we consider structural equation modeling
(see Chapter 28, this volume) as the most general form of the general linear model that takes meas-
urement error into account (Thompson, 2000). Interested readers are encouraged to consult addi-
tional sources for more technical treatments of CCA (Johnson & Wichern, 2002; Chapter 10), for
more readable explanations and discussions of CCA (Thompson, 1984, 1991), and for understanding
the linkages between CCA and other statistical techniques (Bagozzi, Fornell, & Larcker, 1981; Fan,
1997; Knapp, 1978). Recommended desiderata for studies involving CCA are presented in Table 3.1
and are discussed in the subsequent sections.

1. Appropriateness of Canonical Correlation Analysis

Canonical correlation analysis (CCA) is an analytic technique for examining the multivariate 
relation(s) between two sets of constructs/variables, with each set consisting of two or more variables.
Through CCA, it is hoped that the multivariate relational pattern between the two sets of variables 
can be more parsimoniously understood and described. Early in a manuscript, the link between the
substantive research issue(s) and CCA as the analytic approach for investigating the substantive
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issue(s) should be explicated. The early discussion related to the substantive issue(s) should lay the
foundation for the later introduction of CCA as a logical/rational analytic choice for investigating the
substantive issue(s). In the Methods section of the manuscript, links between the substantive issue(s)
and CCA should be more carefully articulated, and the case for CCA as an appropriate analytical
choice for the research issue(s) should be made explicit. Oftentimes, the link between the substantive
research issue(s) and CCA as the analytic choice is presented or established through discussion of 
how the two sets of constructs/variables are involved in the substantive research, and how the rela-
tional pattern between the two sets of constructs/variables is the focus of the research. For example,
Lewis (2007) laid the foundation for CCA as an appropriate analytic choice through discussion in 
the Introduction of an interest in examining the relation between perception of risk and social 
norms (first set of variables) and alcohol involvement measures (second set of variables) in a college
population. 

Canonical correlation analysis may be used to address a wide range of substantive issues in educa-
tion, psychology, and the social sciences in general. For example, McDermott (1995) examined
canonical relations between children’s demographic characteristics (age, gender, ethnicity, social
class, region, community size, and their interactions) and measures of cognitive ability, academic
achievement, and social adjustment. McIntosh, Mulkins, Pardue-Vaughn, Barnes, and Gridley
(1992) examined canonical relations between a set of verbal and a set of nonverbal measures of abil-
ity; and Dunn, Dunn, and Gotwals (2006) employed CCA in a multivariate validity study for estab-
lishing the construct validity of a new measure on sport perfectionism by relating the subscales of the
new measure to those of an established measure.

Table 3.1 Desiderata for Canonical Correlation Analysis

Desideratum Manuscript

Section(s)*

1. Substantive research issues are presented, and associated reasons why CCA is an appropriate and I, M

rational analytic choice are discussed.

2. Two natural/logical variable sets, each consisting two or more variables, are explicitly justified I, M

within the context of the substantive research issues.

3. Path diagrams, if presented, aid readers’ understanding of the conceptual canonical model and the M

various interpretive facets of the canonical analysis.

4. Summary statistics for the two sets of measured variables are presented, including sample size and R

within-set and between-set correlations.

5. Canonical correlations and statistical testing of these canonical correlations are presented and R

discussed.

6. Canonical function coefficients (standardized and/or unstandardized) are presented and discussed. R, D

7. Canonical structure coefficients are presented and discussed. R, D

8. Based on canonical function and structure coefficients, reasonable interpretations of canonical R, D

functions (canonical variates) are offered.

9. Canonical adequacy and redundancy coefficients are presented and discussed, in light of some R, D

known limitations. (Optional)

10. Canonical functions (variates) are related back to the substantive research issues. R, D

11. Clear presentation of CCA results to facilitate readers’ understanding of CCA findings R, D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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2. Two Logical Sets of Variables

In CCA, two sets of variables are examined with the goal of understanding the multivariate relational
pattern between the two sets as more parsimoniously operationalized by the canonical correlation.
Conceptually, this relation can be described as a bivariate correlation between two “synthetic” vari-
ables, each of which is based on a linear combination of one set of variables involved in the analysis. In
CCA, each of two variable sets consists of two or more variables, and the variables within each set
should form a natural/logical group. In addition, there should be a reasonable expectation that the two
sets of variables are substantively related, and that the relation between the two sets of variables is of
potential research interest. 

Early in the manuscript the two sets of variables should be discussed in terms of why the relation
between them is of research interest. Furthermore, there should be some indication as to why the vari-
ables within each set are included. For example, an industrial psychologist may be interested in under-
standing how a set of employee satisfaction variables (e.g., career satisfaction, supervisor satisfaction,
and financial satisfaction; based on employees’ responses to a survey) relates to a set of employees’ job
characteristics (e.g., variety of tasks required by the position, position responsibility, and position
autonomy; based on supervisors’ responses for the positions held by each employee). In this situation,
the investigator may reason that employees’ satisfaction variables and their position characteristics
form two logical groups of variables, and that there is a reasonable expectation that the two sets of vari-
ables are related in one or more ways. The two sets of variables might have a complicated relational
pattern that would not be obvious through simple inspection of the bivariate correlations. Here, CCA
may help to uncover the relational pattern via a more parsimonious representation of the association
between the two sets.

A possible example of a poorly conceptualized match between two variable sets might involve the
pairing of either of the two sets of variables described above, with a set of employees’ physical meas-
urements (e.g., measurements of height, waist, and pulse rate). Here, it would be a formidable task to
justify why employees’ satisfaction variables and their physical measurements would be naturally and
logically grouped into two inter-related variable sets. Further, it would be harder to justify the expec-
tation that job satisfaction variables are somehow related to the physical measurements. The author(s)
of the manuscript should provide a reasonable justification for the two groups of variables used in
CCA in making the case that CCA is an appropriate analytic choice for the issue(s) at hand. 

3. Path Diagrams

Depending on the nature of the manuscript, path diagrams may be considered to help readers under-
stand CCA and its major interpretive facets. In practitioner-oriented substantive journals that have
little focus on quantitative methods, such path diagrams typically are not needed. However, in more
quantitatively oriented substantive journals, such diagrams can be helpful in aiding readers’ under-
standing of the CCA analytic model and its various interpretive facets.

As an illustrative example, Figure 3.1 presents a model in which one set of observed variables (X)
consists of three variables (x

1
, x

2
, x

3
), and the other set of observed variables (Y) consists of two vari-

ables (y
1
, y

2
). The single-headed arrows from the observed variables to the unobserved canonical vari-

ates (X
1
* and Y

1
*, and X

2
* and Y

2
*) denote the presumed direction of influence, and the canonical

variates are derived by using canonical weights (also called function coefficients) to linearly combine the
observed variables (x

1
, x

2
, x

3
, using the a weights, and y

1
, y

2
using the b weights). In a manuscript, the

standardized weights (see Desideratum 6 below about standardized vs. unstandardized function 
coefficients) may be inserted into the figure so that readers can more easily see the contribution of 
each observed variable to its canonical variate. The curved double-headed arrow linking the pair of
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canonical variates represents the canonical correlation. The total number of canonical correlations
(i.e., the number of pairs of canonical variates) possible is equal to the number of the observed vari-
ables in the smaller of the two sets, though not all of the canonical correlations may be
statistically/practically meaningful. In the example illustrated in Figure 3.1, two canonical correla-
tions (R

C1
and R

C2
) are possible. Here again, actual canonical correlations values can be placed in the

figure. Last, the double-headed arrows, linking the observed variables in each of the two sets, reflect
that the correlations among them are taken into account in the derivation of the canonical function
coefficients. 

Figure 1 depicts the first pair of canonical variates: 

X
1
* = a

1
(x

1
) + a

2
(x

2
) + a

3
(x

3
)

Y
1
* = b

1
(y

1
) + b

2
(y

2
)

The Pearson product-moment correlation coefficient between these two canonical variates is the first
canonical correlation coefficient R

C1
, which is the maximum of all possible canonical correlation coef-

ficients that can be extracted from the variables. In a similar vein, the second pair of canonical variates
(X

2
* and Y

2
*) can be constructed and a second canonical correlation coefficient (R

C2
) can be obtained,

as shown in Figure 3.1. The construction of the second pair of canonical variates is subject to the
orthogonality condition: canonical variates in the second pair (X

2
*, Y

2
*) are subject to the constraint

that they are not correlated with either of the canonical variates in the previous pair (X
1
*, Y

1
*). In other

words, all correlations across pairs (i.e., r
X1*X2*

, r
Y1*Y2*

, r
X1*Y2*

, r
X2*Y1*

) are zero. If additional pairs of
canonical variates can be extracted, as is the case when more observed variables are included in the
design, all subsequent pairs of canonical variates are subject to this orthogonality condition relative to
all previously extracted canonical pairs. 

4. Summary Statistics of Measured Variables

As previously indicated, two sets of logically grouped variables are involved in CCA. It is important
that the summary statistics of the two sets of variables are presented in the manuscript. Both within-
set and between-set correlations of the two sets of variables should be presented in a form that is easy
for readers to see the within-set and between-set relational patterns. Providing such summary statis-
tics serves the general purposes of allowing readers to run secondary data analyses, or allowing read-
ers to replicate the CCA results presented in the manuscript if they have questions regarding the results
presented. 

As an example of providing such summary statistics, an industrial psychologist (same researcher
previously mentioned) is using CCA to investigate how a set of job satisfaction variables (e.g., career
satisfaction, supervisor satisfaction, and financial satisfaction; based on employees’ responses to a 
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a1 b1

b2

a2

a3x2
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Figure 3.1 Graphic Representation of Canonical Correlation Design.
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survey) is related to a set of employees’ job characteristics (e.g., variety of tasks required by the posi-
tion, position responsibility, and position autonomy; based on supervisors’ responses for each
employee on the three aspects of a position). Table 3.2 illustrates how a table of summary statistics for
the two sets of variables could be presented. These summary statistics are informative for the readers
from the perspective that the correlation pattern is organized into within-set correlation matrices
(correlations among variables within each set) and between-set correlation matrix (correlations
among variables from different sets: job satisfaction variables with job characteristics variables).

5. Canonical Correlation Coefficients and Statistical Testing

In CCA, the bivariate Pearson product-moment correlation between two canonical variates within a
pair is the canonical correlation coefficient. Unlike the Pearson correlation between two observed
variables, however, canonical correlation coefficients do not take on negative values. This is because
the direction of a canonical variate [e.g., Y

1
* = b

1
(y

1
) + b

2
(y

2
)] can be reversed by multiplying all

canonical function coefficients (e.g., b
1

and b
2
) by –1. In other words, in the multidimensional space

in which the set of multiple variables reside, directionality is arbitrary. For this reason, all canonical
correlation coefficients are defined as positive, ranging from 0 to 1. 

Like many other statistical techniques (e.g., regression analysis), CCA is a statistical maximization
procedure through which the relation between two canonical variates is maximized. The maximiza-
tion property of the procedure ensures that the first canonical correlation coefficient based on the first
pair of canonical variates is the largest among all possible canonical correlation coefficients, and the
second canonical correlation coefficient from the second pair of canonical variates is smaller than the
previous one, but larger than all remaining canonical correlation coefficients, and so on. 

In CCA, the first question a researcher typically asks is, “Do I have anything?” (Thompson, 2000, p.
301). In other words, the researcher asks if the results appear to indicate that there is some “true” asso-
ciation between the two sets of variables. This question can be addressed from two supplemental per-
spectives, one being statistical, and the other being practical/substantive. 

CCA not only maximizes whatever true population relation may exist between two sets of variables,
but it also maximizes any random relation introduced by sampling error. As a result, canonical corre-
lation coefficients can vary in magnitude as a result of sampling error. For this reason, it is necessary
to statistically test the canonical correlation coefficients to help ensure that the obtained canonical
correlations represent real population relations between the two sets of variables, rather than 
simply chance relations due to sampling error. Statistically, the question of “Do I have anything?” can
be answered by conducting tests of statistical significance for canonical correlation coefficients to

Table 3.2 Summary Statistics of Two Sets of Variables (N = 200)

Job Satisfaction

Career 1.00

Supervisor 0.55 1.00

Finance 0.22 0.21 1.00

Job Characteristics

Task Variety 0.31 0.42 0.39 1.00

Responsibility 0.32 0.42 0.01 0.26 1.00

Autonomy 0.32 0.56 0.37 0.53 0.12 1.00

Std 20.41 31.10 2.20 25.77 27.44 15.82

Note : Variable means have no relevance in CCA, and thus are not presented here.
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determine the probability that the canonical correlation of this or greater magnitude could arise when
no “true” relation exists between the X and Y variable sets in the population). 

Similar to some other multivariate techniques (e.g., discriminant analysis; see Chapter 6, this vol-
ume), as explained elsewhere (e.g., Fan, 1997), because of the complexity of sampling distribution the-
ory of canonical correlation coefficients (Johnson & Wichern, 2002; Kshirsagar, 1972), the likelihood
ratio test in CCA is a sequential testing procedure, instead of testing each individual canonical func-
tion. For example, consider a CCA that yields three canonical functions, with their respective canon-
ical correlation coefficients. Here, there will be three sequential likelihood ratio tests. The first tests all
three canonical functions combined, the second tests the second and third canonical functions com-
bined, and the last tests the third canonical function by itself. Assuming that only the first test is statis-
tically significant, and the latter two are not, this pattern of results leads to the conclusion that the first
canonical function is statistically significant, but the latter two are not. Here, our conclusion sounds
as though we have conducted significance tests for each individual canonical function, when in reality
we have not. Strictly speaking, only the last test in this sequence is a true test for an individual canoni-
cal function. 

Practically and substantively, results based on statistical significance testing should be augmented
by measure(s) of effect size (Wilkinson & APA Task Force on Statistical Inference, 1999). In CCA,
canonical correlation coefficients and their squared values can be taken as a gauge of effect size. In a
manuscript, these canonical correlation coefficients, and their squared values, should be clearly pre-
sented and discussed. This is particularly true for the statistically significant canonical functions. In
general, CCA is a large-sample analytic method, and the validity of the likelihood ratio tests for canon-
ical functions depends on a reasonably large sample size. Large sample size leads to high statistical
power, and as a result, some trivial canonical association(s) may be statistically significant. Although
there is no “rule of thumb” here, there are some general recommendations. For example, Stevens
(2002) recommended the lower limit of sample size of 20 times as many cases as the number of vari-
ables for CCA for the purpose of interpreting the first canonical correlation. Barcikowski and Stevens
(1975) recommended 40 to 60 times as many cases as the number of variables for two canonical 
correlations.

Measures of effect size help temper over-interpreting statistically significant results that may be of
low practical importance. As discussed in Cohen (1988), while squared bivariate correlation coeffi-
cient (r2

xy
) values of 0.02, 0.13, and 0.25 are considered as small, medium, and large effect sizes, for

canonical correlation coefficient, the benchmarks for small, medium, and large effect sizes are
dependent on the number of variables in the two sets (X and Y). For example, for a CCA with two vari-
ables in each of X and Y sets, squared canonical correlation values of 0.04, 0.24, and 0.45 are consid-
ered as small, medium, and large effect sizes. But for a CCA with four variables in each of the two sets,
we need squared canonical correlation coefficient values of 0.06, 0.34, and 0.59 for small, medium,
and large effect sizes. In other words, what is a small or large effect size for canonical correlation coef-
ficient depends on the set sizes used in the CCA. For details concerning effect size benchmarks for
canonical correlation, readers may consult Cohen (1988, Chapter 10).

6. Canonical Function Coefficients

Once we ascertain that there are meaningful canonical correlations between the two sets of variables
(see Desideratum 5), we proceed to examine the nature of the canonical correlations (“Where do what
I have originate?” Thompson, 2000). For this purpose, function coefficients in CCA will help us to
understand the nature of the meaningful canonical correlations. 

Similar to other multivariate techniques (e.g., discriminant analysis; see Chapter 6, this volume), CCA
produces multiple sets of coefficients. It is important that author(s) provide correct interpretations 



Canonical Correlation Analysis • 35

of these coefficients, including canonical function coefficients. For each of the two sets of variables (e.g.,
X or Y in the diagram for Desideratum 3), there is a unique set of function coefficients for each canoni-
cal function (i.e., canonical variate pair). As a result, there are generally multiple sets of function coeffi-
cients, assuming we have more than one canonical function. These canonical function coefficients (i.e.,
canonical weights) are used to linearly combine the observed variables in each set to obtain a canonical
variate for that set, and they are derived to optimize the correlation between the pair of canonical vari-
ates. They are not necessarily derived to extract the maximum variance from the observed variables. In
CCA, the function coefficients serve the primary purpose of determining the canonical variates.

Canonical function coefficients are available in both unstandardized and standardized forms. Both
forms represent the partial and unique contribution of an observed variable to its canonical variate,
after controlling for the variable’s relation with others in the set. In addition to serving as weights for
deriving a canonical variate, these coefficients are often used to gauge individual variables’ relative
importance to the resulting canonical variate. Because the variables in a set are often on different
measurement scales that will affect the values of unstandardized function coefficients, unstandardized
coefficients are generally not useful for assessing the relative importance of the variables. In compari-
son, standardized coefficients and their associated standardized forms of the variables are placed on
the same scale so that they can be more easily compared in terms of their relative contributions. A
larger coefficient is interpreted to indicate that a given variable contributes more unique variance to a
canonical variate than another variable with a smaller coefficient. In a manuscript, it should be clear
that discussions of unique and relative contributions of a variable be based on standardized function
coefficients. 

Because standardized function coefficients are based on a variable’s partial relation with the canon-
ical variate after the variable’s association with other variables in the set has been removed, the overall
variable/variate association might be under- or overestimated through interpretation of the stan-
dardized function coefficients. For example, low standardized function coefficients might underesti-
mate a variable’s association with the canonical variate when the variable under consideration is
strongly related to both the canonical variate and other variables in the set. In addition, suppression
effects can result in sign changes. Because of these issues, function coefficients alone themselves could
lead to ambiguity in our understanding about canonical functions.

7. Canonical Structure Coefficients

Canonical structure coefficients provide another mechanism through which linkages between
observed variables and their canonical variates can be examined. Unlike CCA function coefficients,
which are affected by inter-variable correlations (similar to regression coefficients in regression analy-
sis), a canonical structure coefficient measures the zero-order correlation between a given variable in
a set and a given canonical variate of that set. As such, it reflects the overall degree of association
between each variable and the resulting canonical variate that is at the center of the canonical 
correlation. 

There is a general consensus that it is essential that canonical structure coefficients be considered in
order to develop good understanding about the canonical functions (e.g., Pedhazur, 1997;
Thompson, 2000). Structure and function coefficients of a variable with a canonical variate may be
similar, or they may be quite different. When the function and structure coefficients are consistent,
either both being low (the variable has little to do with the canonical variate) or both being high (the
variable contributes a lot to the canonical variate), it typically does not present any difficulty in inter-
pretation of the results. However, when there is a divergence between function and structure coeffi-
cients, some caution is needed in our interpretation. For example, when the function coefficient is low
while the structure coefficient is high, the low function coefficient should not lead to the conclusion
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that the variable shares little with the canonical variate; on the contrary, the variable shares a lot with
the canonical variate, but its contribution to the canonical variate overlaps with another or other vari-
ables in its own set. In another situation where the function coefficient is moderate or high in absolute
value and the structure coefficient is very low, the high function coefficient should not lead to the con-
clusion that the variable shares a lot with the canonical variate. In this situation, it is very likely that the
variable shares little with the canonical variate, and the high function coefficient is the result of a sup-
pression effect, similar to the phenomenon in regression analysis (e.g., Horst, 1941; Lancaster, 1999).
These situations, and their implications, are summarized in Figure 3.2.

For structure coefficients, values greater than or equal to .32 are often interpreted as practically
meaningful. This comes from the fact that squared structure coefficients represent the amount of
shared variance between the observed variable and its canonical variate, and that .322 represents
approximately 10% common variance. More importantly, however, a coefficient is usually consid-
ered relative to other coefficients in the set, and the relative magnitudes of the coefficients often play
an important role in defining a canonical variate. In a manuscript, CCA structure coefficients should
be routinely reported and interpreted to help derive an understanding of the nature of the canonical
variates. 

8. Interpretation of Canonical Functions (Canonical Variates) 

Understanding and interpreting the canonical correlation (function) is largely dependent on a mean-
ingful explanation of what the canonical variates represent. The meaning of the canonical variate is
usually inferred based on the pattern of coefficients (function and structure coefficients) associated
with each of the variables. Similar to loadings in factor analysis (see Chapter 8, this volume), subsets
of variables within a set with high and low weights help us to understand the nature of the resulting
variate by revealing which variables are most closely associated with it and which variables are not.
Here the researcher is faced with the substantive challenge of understanding the essence of different
coefficients with the goal of providing a more parsimonious description of the canonical variate in
terms of a construct it is attempting to capture based on the observed variables. For this purpose, 
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Figure 3.2 Relational Patterns of Function and Structure Coefficients.
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variable function coefficients with relatively higher absolute values are given greater emphasis, while
lower values are marginalized in the interpretation. The signs of these function coefficients should also
be taken into consideration in relation to the scaling of the measured variables. In other words, nega-
tive relations between the variables and the canonical variate should be considered and discussed in
relation to the substantive labeling of the resulting canonical variate. 

As indicated above (see Desideratum 6), when function coefficients are considered, only the vari-
able’s unique shared variance with the canonical variate is taken into account. By contrast, structure
coefficients consider how a given variable relates to its canonical variate without the interference of
how the variable relates to other variables in the set. In this sense, structure coefficients are not con-
founded by a given variable’s relation with other variables in the set. For the purpose of interpreting
and labeling the canonical variates, both function and structure coefficients should be considered. In
general, when we consider a variable’s function and structure coefficients for the purpose of inter-
preting its canonical variates, the patterns described in both Quadrants A and B in Figure 3.2 would
suggest that the variable contributes little to the substantive meaning of the canonical variate. On the
other hand, the patterns described in both Quadrants C and D in Figure 3.2 would suggest that the
variable has considerable contribution to the substantive meaning of the canonical variate. 

Misinterpretation can easily occur in CCA. For example, unseasoned CCA users may misinterpret
the Quadrant C pattern (low function coefficient and high structure coefficient) to mean that the vari-
able contributes little to the substantive meaning of the canonical variate, because of the low function
coefficient. Similarly, the Quadrant B pattern (high function coefficient and very low structure coef-
ficient) can also be misinterpreted to mean that the variable contributes a lot to the substantive mean-
ing of the canonical variate, when in reality the high function coefficient may be the result of a
suppression effect. In a manuscript, it should be clear that the interpretation of canonical functions
(canonical variates) is based on the joint consideration of both function coefficients and structure
coefficients. As Levine (1977) emphasized, if one wants to understand the nature of canonical associ-
ation beyond the computation of the canonical variate scores (such computation relies solely on func-
tion coefficients), one has to interpret structure coefficients. 

9. Canonical Adequacy and Redundancy Coefficients

CCA is designed to maximize the canonical correlation (i.e., the correlation between two canonical
variates in a pair). It may be of interest to know how much variance a given variate (e.g., X

1
* in Figure

3.1) can extract from the variables of its own set (i.e., x
1
, x

2
, and x

3
in Figure 3.1), or how much vari-

ance a given variate (e.g., X
1
* in Figure 3.1) can extract from the variables of the other set (i.e., y

1
, y

2
,

and y
3

in Figure 3.1). Canonical adequacy and redundancy coefficients, respectively, are designed for
such purposes. 

Canonical Adequacy Coefficients. Structure coefficient measure the correlation between a variable
and its canonical variate, and the squared structure coefficient represents the proportion of variance
in the variable that is shared with its canonical variate. Canonical adequacy coefficients are associated
with each canonical variate, and measure the average of all the squared structure coefficients for one
set of variables as related to a given canonical variate formed from this set. Canonical adequacy coef-
ficients describe how well a given canonical variate represents the original variables in its set, and
quantitatively, it is the proportion of variance in the set of the variables (e.g., x

1
, x

2
, and x

3
in Figure 3.1)

that can be reproduced by a canonical variate of its own set (e.g., X
1
*). 

Related to this adequacy concept described above, we may also be interested in knowing what pro-
portion of variance in a measured variable is associated with the extracted canonical functions. This
percentage of variance in a variable associated with the extracted canonical functions is called com-
munality (h2), which is defined in the same way as in factor analysis (see Chapter 8, this volume). If a



38 • Xitao Fan and Timothy R. Konold

measured variable has very low communality relative to other variables in a CCA analysis, it suggests
that this variable is behaving differently from other variables in the set, and probably does not belong
to this set of variables.

Canonical Redundancy Coefficients. Between a pair of canonical variates, the redundancy index
(Stewart & Love, 1968) measures the percentage of variance of the original variables of one set (e.g., x

1
,

x
2
, and x

3
in Figure 3.1) that may be predicted from the canonical variate derived from the other set

(e.g., Y
1
*). In other words, when we want to describe how much variance the Y

1
* variate shares with

the set of X variables, or how much variance the X
1
* variate shares with the set of Y variables (i.e., y

1
,

y
2
, and y

3
in Figure 3.1), we use canonical redundancy coefficients. A canonical redundancy coefficient

for a canonical variate (e.g., Y
1
*) can be computed as the product of the canonical adequacy coefficient

of its counterpart (i.e., adequacy coefficient for X
1
*) multiplied by the squared canonical correlation.

There is some controversy surrounding redundancy coefficients in terms of whether they should in
fact be interpreted in CCA (Roberts, 1999). The primary concern for redundancy coefficients is that
CCA is designed to maximize the canonical correlation, and it does not attempt to maximize the
redundancy coefficient. As a result, “it is contradictory to routinely employ an analysis that uses func-
tions coefficients to optimize [the canonical correlation], and then to interpret results (Rd) not opti-
mized as part of the analysis” (Thompson, 1991, p. 89). Because of this and some other concerns, we
caution that redundancy coefficient is not always meaningful in CCA. Researchers who use this statis-
tic should present appropriate interpretations within their research contexts (e.g., in a multivariate
concurrent validity study where there is theoretical expectation for high redundancy coefficients). 

10. Substantive Research Issues

CCA provides a variety of interpretive frameworks that should be tied into the substantive question(s)
that were outlined early in the manuscript. In general, license for these interpretations comes by way
of at least one reliable (i.e., statistically significant) canonical correlation; failure to achieve this sug-
gests that the two sets of variables cannot combine in a way to produce a variate pair correlation that
is statistically greater than 0. Assuming the data have passed this threshold, researchers need to relate
the resulting canonical functions to the initially proposed research questions. For each statistically sig-
nificant canonical correlation, the relation between the two variates should be described both in terms
of the resulting effect size and in terms of substantive interpretation of the nature of the variate pair in
terms of what they represent and why this does or does not align with expectations. As described in
previous sections, interpreting and labeling of the variates is best accomplished through the joint use
of function and structure coefficients. Although in practice there is a tendency to focus the discussion
on which variable(s) contribute most to the variates’ definition and how this relates to the substantive
problem, it is also important to consider which variables do not factor into the relations as indicated
by very low coefficients.

11. Presentation of CCA Results

As discussed in, for example, Desiderata 6 and 7, CCA typically produces multiple sets of different
coefficients, which can be quite a challenge for readers to grasp. In a manuscript, it is expected that the
major CCA results are adequately presented in some tabular form such that the readers can easily find
the major outcomes of the analysis. For each statistically significant canonical function, it is typical to
present (1) canonical correlation and/or its squared value, (2) canonical function coefficients, and (3)
canonical structure coefficients. In addition, canonical adequacy, canonical redundancy coefficients,
and communality for each measured variable may also be presented. For the illustrative data previ-
ously presented in Table 3.2, there are three possible canonical functions, with only the first two being
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statistically significant (p < .05). Based on the recommendation of Thompson (2000), Table 3.3 illus-
trates the major CCA results and how they might be presented in tabular form. 

From this presentation, interested readers can more easily find all the relevant CCA statistics, such
as the two canonical correlation coefficients (0.70 and 0.31, respectively), function and structure coef-
ficients for the two functions, adequacy and redundancy coefficients associated with each canonical
variate in each of canonical functions, and so forth. Based on the example data presented in Table 3.3,
one may tentatively infer that the first canonical function probably represents a general positive rela-
tion between job characteristics and employee satisfaction, although Position Autonomy and
Satisfaction With the Ssupervisor appear to play more important role in defining this first canonical
function. The second canonical correlation is primarily defined by the negative relation between
Financial Satisfaction and Job Responsibility, suggesting that there might be a perception that finan-
cial compensation is not in agreement with a position’s responsibility. 

The presentation in Table 3.3 is succinct and reasonably complete. In a manuscript involving CCA
as the major analytic technique, information similar to that presented in Table 3.3 should be expected. 
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4
Cluster Analysis

Dena A. Pastor

The term cluster analysis is generally used to describe a set of numerical techniques for classifying objects
into groups based on their values on a set of variables. The intent is to classify objects into groups such
that objects within the same group have similar values on the set of variables and objects in different
groups have dissimilar values. The objects classified into groups are most typically persons and the vari-
ables used to classify objects can either be categorical or continuous. Cluster analysis can be used as a data
reduction technique to reduce a large number of observations into a smaller number of groups. It can
also be used to generate a classification system for objects or to explore the validity of an existing classifi-
cation scheme. Unlike other multivariate techniques, such as discriminant analysis (see Chapter 6, this
volume), group membership is not known but instead is imposed on the data as a result of applying the
technique. Because objects are classified into groups even if no grouping structure truly exists, analyses
beyond the simple classification of objects into groups are essential. It is through these analyses that
researchers can provide support for the replicability and validity of their particular cluster solution. 

Cluster analytic methods can be classified as being either model based or non-model based. This
chapter focuses primarily on non-model-based cluster analytic methods as these are the most com-
monly used. Model-based clustering methods, such as finite mixture modeling, utilize probability
models, whereas non-model-based cluster analytic methods do not utilize such statistical models.
Because a statistical model is not utilized, non-model-based methods are not formally considered to
be inferential statistics and are more appropriately classified as numerical algorithms. Readers inter-
ested in model-based methods are referred to, for example, Everitt and Hand (1981).

Popular statistical software packages such as SAS and SPSS can be used to perform non-model-
based cluster analysis as well as the replicability and validity analyses. Although a readable overview of
cluster analysis can be found in Aldenderfer and Blashfield (1984), this chapter will more heavily rely
on the more thorough and current treatment of the topic provided by Everitt, Landau, and Leese
(2001). Table 4.1 displays the specific desiderata for applied cluster analytic studies, each of which will
be explained further below.1

1. Target Population and Reasons for Classification

Because the purpose of a cluster analytic study is to classify objects into groups, an important question
to answer at the forefront of a cluster analytic study is: “What objects are being classified?” Although
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the objects or entities to be clustered in the social sciences typically are people, cluster analysis can be
used to classify a wide variety of objects, including schools, countries, or words. The particular objects
to be classified and the target population should be made explicit in the manuscript. For instance, the
objects to be classified may be college students and the target population may be college students at
four-year liberal arts institutions in America.

After defining the objects and target population, the manuscript should provide an answer to the
question of: “What goals are to be accomplished by classifying objects into groups?” Cluster analysis may
be pursued for the purposes of data reduction, to generate a classification scheme, to validate an existing
classification scheme, or to explore the relations among variables. Readers are directed to Romesburg
(1984) for a more thorough list of possible goals in a cluster analytic study. Answering the question of
why objects need to be classified is an important piece of a cluster analytic manuscript since it justifies the
use of the technique and also provides a framework for which the utility of the results can be gauged. 

2. Variables Used to Classify Objects into Groups

In cluster analysis, objects are assigned to clusters based on their values on a set of variables. Because it
is the particular variables chosen by the researcher that drive the resulting classification scheme, read-

Table 4.1 Desiderata for Cluster Analysis

Desideratum Manuscript

Section(s)*

1. The target population of objects to be clustered is described and the reasons for wanting to classify I

these objects into clusters are stated.

2. Justification is provided for the specific variables that were chosen as the basis for classifying objects I, M

into groups; if applicable, reliability and validity evidence for variables is provided.

3. Any transformation of variables is described and justification provided. M

4. Any weighting of variables is described and justification provided. I, M

5. The characteristics of the sample are described and justification for use of the sample is provided. M

6. Outlying cases and missing data are addressed. M

7. If utilized, the proximity measure for capturing the similarity or dissimilarity between objects on M

the set of variables is explicated.

8. The specific cluster analytic method used to classify objects into clusters is described in sufficient M

detail for replication (e.g., hierarchical: single linkage, Ward’s method; non-hierarchical: k-means).

9. The procedures used for choosing the final cluster solution are explained (e.g., dendrogram, M

amalgamation coefficients, statistical indices).

10. The methods and the external variables used to assess the replicability and validity of the final M

cluster solution are described.

11. The software and specific procedures utilized in the software are reported. M

12. Descriptive statistics for all variables are reported. R

13. Indices or figures used in deciding upon the final cluster solution are provided. R

14. The final cluster solution is presented, including a description of the characteristics of each cluster. R

15. Results are provided from the assessment of the solution’s replicability and validity. R

16. The theoretical and/or practical utility of the final cluster solution is addressed and the results are D

interpreted in light of the research questions and target population.

17. Suggestions for future analyses that could be used to provide support for the replicability and D

validity of the cluster solution are provided.

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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ers should be provided with answers to the following questions: “Why were the particular variables
selected for the study?” and “What particular manifestations of the variables were used?”

The authors need to address why the particular variables selected for use in the cluster analysis are
thought to be essential for separating objects into groups. The justification for the use of certain vari-
ables over others should be linked to goals that the authors hope to attain by classifying objects into
groups. This is an important component of a cluster analytic study since it is well known that cluster
solutions are highly dependent upon the variables used; the inclusion of even a single irrelevant vari-
able can complicate the discovery of true clusters (Milligan, 1980). 

Given the dependency of the cluster solution on the variables, it is imperative that the variables are
described in detail in the Methods section. Different classification schemes may result if a different
manifestation of a variable is utilized (e.g., test anxiety measured using self-report vs. galvanic skin
response). When tests or scales are used to measure variables, supporting reliability and validity evi-
dence should be provided (see Chapter 25, this volume). 

If it is not obvious, the level of measurement (categorical, continuous) of the variables should also
be reported. Although reporting the level of measurement is not typical, it is important in this context
because the choice of proximity measure (see Desideratum 7) depends on whether variables are cate-
gorical, continuous, or a mix of both metrics. 

3. Transformation

Many sources advise that variables be transformed prior to their use in a cluster analysis (e.g., to z-
scores). Because there is a wide variety of transformations available and because the cluster solutions
resulting from the use of untransformed versus transformed variables can differ, answers should be
supplied to the following questions: “Were variables transformed and if so, why and how were they
transformed?”

When the variables used to classify objects are on different scales (e.g., age, SAT scores, grade point
average, gender), it is commonly recommended that the variables be transformed in some manner in
order to avoid the overpowering of variables with larger scales on the classification of objects into
groups. Even if all variables are measured on the same scale (e.g., all variables are 7-point Likert items),
transformation is still recommended if the variables differ widely in their variability since variables
with larger variances more heavily influence the cluster solution. Any transformation of the variables
should be reported and justified. Because a wide variety of transformations exist, authors need to
report the particular transformation method employed. For instance, transformation can be achieved
by standardizing the variable or dividing the variable by its range. Other transformation methods are
described by Milligan and Cooper (1988).

Although the cluster analysis literature often advocates for the transformation of variables on differ-
ent scales or with disparate variances, authors need to carefully consider first whether transformation
is even necessary, and if so, the ramifications of transformation. Whether transformation is necessary
or not depends on whether the clustering method (see Desideratum 8) is invariant to transformations
of the data. For instance, some clustering methods will yield the same solution regardless of whether
variables are utilized in their untransformed or transformed forms (e.g., non-hierarchical methods
minimizing the determinant of the within-cluster dispersion matrix, W). If the clustering method is not
invariant to variable transformations, the manuscript would be strengthened by exploring the replica-
bility of the solution using untransformed and transformed variables (see Desideratum 10). 

There is another undesirable side effect associated with variable transformation. To explain this
side effect, it is important to understand that the total variance of a variable consists of both between-
group and within-group variance, with the groups here being the yet to be identified clusters. If a con-
siderable amount of a variable’s variance is between-groups, then the untransformed variable will
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have a strong influence on the cluster solution. Unfortunately, when a variable is transformed by stan-
dardization using the total variance, the influence and discriminating power of the variable is weak-
ened (Fleiss & Zubin, 1969). For this reason, authors may want to consider the use of other
transformation methods that utilize a variable’s within-group variance (with some approximation for
the yet to be identified groups) as opposed to its total variance (see section 3.6 of Everitt et al., 2001).
Authors may also want to consult simulation studies examining the performance of different trans-
formation methods (e.g., Milligan & Cooper, 1988; Steinley, 2004). Regardless of which transforma-
tion is adopted, an examination into the extent to which solutions replicate across different
transformation methods is advised. 

4. Weighting

When variables are equally weighted, each variable influences the resulting classification scheme to
the same degree. When variables are differentially weighted, some variables have a stronger influence
on the resulting classification scheme than others. Sometimes differential weighting of variables is
explicit and intended. Other times, differential weighting occurs implicitly through the use of vari-
ables on different scales, heterogeneous variances, strong variable relations or the transformation
method employed. The manuscript should thus address the question: “Were the variables differen-
tially weighted?”

Sometimes the weighting of the variables is done explicitly, to heighten the influence certain vari-
ables have on the resulting classification scheme. When variables are weighted explicitly, the particu-
lar weighting method should be described in detail and justification provided for the differential
weighting of variables. The differential weighting of variables is related to the discussion in
Desideratum 3 pertaining to the selection of variables. Just as justification needs to be provided for
excluding variables (which essentially is giving such variables a weight of zero), it also needs to be pro-
vided in the Introduction section for included variables that are weighted more heavily than others. In
other words, a case needs to be made as to why the more heavily weighted variables should be allowed
to have a stronger influence on the classification of objects into clusters. 

The differential weighting of objects that occurs implicitly, as opposed to explicitly, should also be
addressed by the authors. In Desideratum 3, it was mentioned that untransformed variables with
larger scales (SAT vs. GPA) or with larger variances will more heavily influence the cluster solution. If
untransformed variables with heterogeneous scales or variances are utilized, the differential weighting
of variables that may result should be addressed. If used, authors should also acknowledge any effects
the transformation method has on variable weighting (see Desideratum 3).

Implicit weighting of variables can also occur when variables that are highly related to one another
are used in the clustering procedure. Related variables are more heavily weighted because the charac-
teristics they share have more of an influence on the resulting classification scheme. If there are strong
relations among variables, the authors should explain how they identified such relations (e.g., bivariate
correlations) and how they chose to handle the multicollinearity. Some options include the elimination
of redundant variables or the representation of related variables through the creation of composites or
factors using principal components analysis or factor analysis, respectively (see Chapter 8, this vol-
ume). If the latter approach is taken, it should be noted that solutions using the composites or factors
may differ in undesirable ways from those using the original variables (Chang, 1983; Green & Krieger,
1995; Schaffer & Green, 1998).

Another option for handling variables that are highly related is to use Mahalanobis distance as the
proximity measure (see Desideratum 10). A pooled within-cluster dispersion matrix, W, is utilized in
the Mahalanobis distance proximity measure to adjust for the relations among variables. Because
Mahalanobis distance is calculated before the clusters are formed, various approximations of W have
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been proposed. When there is little to no relation among variables, Mahalanobis distance equals the
squared Euclidean distance proximity measure computed using standardized variables. Mahalanobis
distance should only be used as a proximity measure if justification can be provided for pooling W
across the unidentified clusters and if both standardization (see Desideratum 3) and an equal weight-
ing of variables is desired. 

5. Sample

The information provided in this desideratum is intended to assist the authors in answering the fol-
lowing questions: “What particular sample of objects was used in the study and why?” and “How were
data collected from that sample?” Even though non-model-based cluster analytic techniques do not
qualify as being inferential statistical procedures per se, care still needs to be placed on sample selec-
tion if the researcher desires to generalize their findings to a larger population. To facilitate the gener-
alizability of the cluster solution, a large sample representative of the target population should be
acquired. Multiple samples should always be sought so that the replicability of cluster solutions across
samples can be explored (see Desideratum 10). As is typical in most manuscripts, the Methods section
should include a detailed description of the sample, including the sample selection method, sample
size and sample characteristics. Giving readers access to this information allows them to judge the ade-
quacy of the sample and the generalizability of the results. 

6. Outlying Cases and Missing Data

Other questions that need to be answered about the data include: “Were there any outlying cases or
missing data and if so, what was their nature and how were they handled?” As with most numerical
techniques, outlying cases (objects) can overly influence the results of a cluster analysis (Milligan,
1980). It is recommended that the Methods section contain an explanation of the methods by which
outliers were identified, including any univariate (e.g., histograms), bivariate (e.g., scatterplots), or
multivariate (e.g., Mahalanobis distance) techniques. The number and nature of the identified outly-
ing cases should be stated and the treatment of outlying objects described. Similarly, the nature and
extent of missing data should be described and methods used to treat missing data, such as listwise
deletion or multiple imputation, should be explicitly stated and justified.

7. Proximity Measures

Proximity measures, which may or may not be used by a clustering method, capture the similarity or
dissimilarity between two objects on the set of variables. Because a wide variety of different proximity
measures exist and because cluster solutions resulting from the use different proximity measures can
differ, answers should be supplied to the following questions: “Was a proximity measure used, and if
so, which proximity measure was used?”

Proximity measures can either be obtained directly, perhaps by acquiring ratings on a Likert 
scale as to the extent to which two objects are similar, or indirectly through calculation of measures
that utilize the variables’ values for the two objects. Regardless of whether the proximity measures
were obtained directly or indirectly, the result is an n × n matrix of such measures, where n equals the
number of objects. A popular dissimilarity measure for continuous variables (x) is the Euclidean 
distance measure. For J variables, the Euclidean distance for objects g and h is calculated as 

d
gh

= ��
J

j = 1

(x
gj

– x
hj
)2, (1)



46 • Dena A. Pastor

with larger values of d
gh

being indicative of less similarity between the two objects on the set of vari-
ables. The Euclidean distances are calculated for all possible pairs of n objects and stored in an n × n
matrix. [Note that sometimes the square root is omitted in Equation 1, the resulting measure being the
squared Euclidean distance.]

The majority of clustering methods (see Desideratum 8) operate on the n × n matrix of proximity
measures. If a proximity measure is used, it should be described in sufficient detail and justification
should be provided for the particular proximity measure chosen. Proximity measures are commonly
classified by whether they are appropriate for only continuous variables, only categorical variables, or
a mix of both.

If proximity measures are calculated for binary variables, the authors should state how the 
proximity measure handles joint absences. For instance, consider a binary variable that is coded 
0 to represent the absence of a characteristic and 1 to represent the presence of a characteristic. Objects
that share an absence of the characteristic are considered to be joint absences and objects that share a
presence of the characteristic are considered joint presences. With binary variables of this type 
it is important to consider whether joint absences should be weighted the same as joint presences. In
other words, is a shared absence of the characteristic just as telling about the similarity between objects
as a shared presence of the characteristic? Because proximity measures for binary variables differ in
not only how they weight joint absences and presences, but also in how they weight matches (0/0, 1/1)
and non-matches (0/1), it is important to describe the proximity measure and justify its weighting
scheme. 

Explanation should also be provided for how proximity measures were calculated for any ordinal
or nominal variables. If variables of mixed levels of measurement are utilized, the authors need to
explicate how the different metrics were handled when creating the proximity matrix. 

Proximity measures cannot only be classified by the kind of variables for which they are best suited,
but also by the kind of clusters they are most inclined to capture. For example, correlations are well
suited for identifying clusters that differ in their shape, which is the cluster’s pattern of values across
variables. Distance measures, on the other hand, are better suited for identifying clusters that differ in
their elevation (the average value of the cluster across variables). A proximity measure should then be
chosen that corresponds well with the unknown clusters’ characteristics. A guess as to what these char-
acteristics are could be provided by theory, previous research, or preliminary visualizations of the data
(see Chapter 2 of Everitt et al., 2001). A manuscript would be strengthened by including a discussion
of the methods used to anticipate the clusters’ characteristics and the ability of the proximity measure
to capture such characteristics. 

8. Cluster Analytic Method

One of the most important decisions made by the researcher executing a cluster analytic study is the
method chosen to separate objects into clusters. Most of the methods available are classified as being
either hierarchical or non-hierarchical. The information necessary to report in a manuscript is first
described for hierarchical methods and then for non-hierarchical methods.

Hierarchical. With hierarchical methods, no set number of clusters is specified a priori. Instead, n
partitions are made of the data, either beginning with all objects in their own cluster and progressing
to a single cluster (agglomerative) or beginning with all objects in a single cluster and progressing until
each object is in its own cluster (divisive). Whether the author is using an agglomerative or divisive
partitioning should be made explicit. All hierarchical methods result in nested clusters, where the
clusters from solutions with more clusters are nested within those with less clusters. If hierarchical
methods are chosen, the authors need to provide a rationale for choosing a method that yields a nested
classification of the data. 
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Hierarchical clustering methods differ in the rules that are used to classify objects into clusters. The
different rules that are used are often reflected in the method’s name. Popular hierarchical methods
include: single linkage, complete linkage, average linkage, centroid linkage, median linkage, and
Ward’s method. The name of the hierarchical method should be provided along with a description of
the method and justification for why a particular hierarchical method was chosen. Any alternative
names for the method (e.g., single linkage is also known as nearest neighbor), should also be provided.
Further information about hierarchical clustering methods can be found in Chapter 4 of Everitt et al.
(2001).

Non-hierarchical. The majority of non-hierarchical methods require the user to specify the number
of clusters before implementing the method. It is typical for this number to remain fixed during
implementation of the procedure, although some non-hierarchical procedures allow the number of
clusters to change (algorithmic methods; see Steinley, 2006). It is therefore important for users to
report if their particular non-hierarchical method required the number of clusters to be specified a
priori and if this number was fixed during the implementation of the procedure.

Non-hierarchical methods use an optimization algorithm to iteratively reallocate objects across
clusters for the purposes of maximizing or minimizing some numerical clustering criterion. There are
various different optimization algorithms and clustering criteria that can be used in non-hierarchical
cluster analysis. An overview of the clustering criteria and optimization methods used in non-hierar-
chical methods is provided below. 

Clustering criteria differ in the type of values that are desirable and in the type of matrix upon which
they operate. If high values of the clustering criterion are associated with desirable cluster properties
(such as high separation among clusters), then the goal is to allocate objects to clusters in order to
maximize the criterion. Conversely, if low values of the clustering criterion are associated with desir-
able cluster properties (such as low heterogeneity within clusters), then the goal is to allocate objects
to clusters in order to minimize the criterion. Some clustering criteria operate on a proximity matrix,
while others, particularly those used with continuous variables, operate on the dispersion matrix of
the variables. 

The dispersion matrix is often represented in matrix form as T, the total multivariate dispersion
matrix, which can be decomposed into within-cluster (W) and between-cluster matrices (B). Objects
are often reallocated to clusters for the purpose of minimizing the sum of the within-cluster or error
sums of squares across all variables, which is equivalent to minimizing the trace of W (or maximizing
the trace of B). This criterion can also operate on a proximity matrix since it happens to be equivalent
to minimizing the sum of squared Euclidean distances between objects and their cluster means. 

Although the criterion of minimizing the trace of W is popular, there are several disadvantages
associated with its use. First, different results are obtained when one uses raw versus standardized vari-
ables. Second, the criterion tends to produce spherically shaped clusters (which is desirable if clusters
are truly spherical in shape, undesirable otherwise). To avoid the dependency of the solution on the
scale of the variables (raw or standardized), Friedman and Rubin (1967) suggested the use of two other
cluster criteria based on the dispersion matrix: minimizing the determinant of W and maximizing the
trace of BW-1. The former criterion is the most popular of their suggestions and is desirable in that it
does not create spherical clusters. Unfortunately, minimizing the determinant of W does share an
undesirable property with minimizing the trace of W: both methods impose clusters on the data of
roughly the same size and shape. To overcome this disadvantage, cluster criterion utilizing W within
each cluster were developed by Scott and Symons (1971), Maronna and Jacovkis (1974), and Symons
(1981). Given the large variety of clustering criterion and the implications associated with their use,
the criterion utilized needs to be described and justified.

Optimization algorithms are the different processes that are used to find the k cluster solution that
maximizes or minimizes the clustering criterion. Optimization algorithms are necessary because it is
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computationally prohibitive to calculate the clustering criterion for all possible partitions of n objects
into k clusters. The process used by optimization algorithms known as hill-climbing algorithms
entails four steps:

1. Initially partitioning the objects into k groups.
2. For each object, computing the change in the clustering criterion that would result if the

object were reallocated to a different cluster.
3. Reallocating those objects whose move results in the largest change in the clustering criterion.
4. Repeating steps 2 and 3 until no object can be moved to improve the clustering criterion.

In the manuscript, each of these four steps needs to be explicated in detail. Describing the first step
is essential due to the vast number of different ways in which objects can be initially assigned to clus-
ters. For instance, the partitioning from a hierarchical clustering method can be used as the initial clas-
sification or objects can be randomly assigned to partitions. Alternatively, cluster centroids (cluster
seeds), which are the multivariate mean of the variables, can be randomly generated or supplied by the
user. Another option is to choose k observations whose cluster centroids serve as cluster seeds. Once
seeds are chosen, objects are initially allocated to the cluster whose seeds they are nearest to in distance
or objects are initially assigned on the basis of optimizing the clustering criterion. Because different
initialization methods are known to lead to different solutions (Blashfield, 1976; Friedman & Rubin,
1967), it is important to describe the initialization method utilized. 

Simulation studies have indicated that several of the initialization methods are prone to producing
locally optimal solutions (Steinley, 2003). Locally optimal solutions are those that prematurely termi-
nate and thus fail to truly maximize or minimize the clustering criterion. Researchers are encouraged
to examine simulation studies such as Steinley’s to investigate if their initialization method has a ten-
dency to terminate at a local optimum. If local optima are commonly encountered with the chosen
initialization method, the authors need to address how that problem was investigated and overcome.
One means by which the problem can be investigated is by examining the extent to which the solution
replicates when different initialization methods are utilized (see Desideratum 10). 

In the second and third steps of the hill-climbing algorithm, the change in the clustering criterion is
computed and objects whose movement results in the most desirable change in the criterion are real-
located. A popular non-hierarchical method, known as the k-means algorithm, alters these steps
somewhat by computing the distance between an object’s set of variable values and each cluster’s 
centroids and allocating the object to the cluster that they are closest to in distance. Under certain con-
ditions, the k-means approach is equivalent to using the four step hill-climbing procedure with the
criterion of minimizing the trace of W. Many of the aforementioned disadvantages associated with
minimizing the trace of W also then apply to the k-means procedure. This relationship between meth-
ods was noted to emphasize the possibility of a correspondence between the different methods.

A detailed description of the second and third steps is necessary since implementations of these
steps vary across non-hierarchical methods. For instance, updates to the clustering criterion (or to
cluster centroids in k-means) may happen after the reallocation of each object, after a fixed number of
object reallocations, or after all objects have been reallocated. This further emphasizes the need for the
steps of a non-hierarchical clustering method to be described in detail. Simply supplying the name of
the procedure (e.g., k-means, hill-climbing) does not provide readers with enough detail to replicate
the study or judge the adequacy of the clustering methods used. 

The most popular clustering method is therefore not always the best. Authors need to demonstrate
that their choice of clustering method was not based on convenience or popularity, but on careful
review of research investigating the properties of the various methods and consideration of their clus-
ter’s anticipated characteristics. In the absence of any knowledge regarding the cluster characteristics, it
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is recommended that authors choose a method (and, if applicable, proximity measures) well suited to
uncover clusters with a variety of characteristics.

9. Choosing Final Cluster Solution

As mentioned previously, the ultimate goal of a cluster analysis is to classify objects into k homoge-
neous groups. Cluster analysis is often criticized because of the subjectivity associated with the num-
ber of clusters to retain; therefore, it is essential that an answer is provided to the following question:
“What methods were used to decide upon the final cluster solution?”

It is critical that the procedures used to arrive at the particular solution of k clusters are described. It
is recommended that a variety of different methods be used in deciding upon the final solution, with
agreement across methods strengthening the retention of a particular solution. It is strongly suggested
that the interpretability of the solution along with its correspondence to theory and past research also
be considered. Several of the plots and indices that can be used in deciding on the final cluster solution
are described below.

Hierarchical. With hierarchical clustering methods, there are n solutions from which to choose,
meaning there are as many solutions as there are objects. Commonly used procedures to select the final
solution from n solutions include inspection of the dendrogram (a tree-like plot showing the progres-
sion of objects being merged into clusters) or inspection of a graph plotting the number of clusters by
some form of the average within cluster variance (often referred to as the fusion or amalgamation coef-
ficient). The point at which the function flattens in these graphs directs the number of clusters to retain.
Rather than looking at graphs of such coefficients, the coefficients can be listed with a large increase in
the value from one solution to the next indicating that clusters were merged that were quite distinct
from one another and that the solution just prior to the increase should be retained. 

Because use of the dendrogram or procedures based on the average within cluster variance are
highly subjective, other statistical rules for use with hierarchical clustering methods have been created
and investigated. For instance, a simulation study by Milligan and Cooper (1988) examined the abil-
ity of 30 different statistical indices to detect the correct number of clusters. Some of the better per-
forming indices included those of Calinski and Harabasz (1974), Duda and Hart (1973), and Beale
(1969). In 1996, Milligan suggested that two or three of these better performing indices be utilized in
hierarchical cluster analysis, with agreement among the indices providing stronger evidence for reten-
tion of a particular solution. 

Rather than focusing on all n solutions, a researcher typically chooses a smaller, more manageable
number of solutions upon which to focus. For instance, only solutions ranging from 2 to 7 clusters
may be seriously considered. It is important that researchers provide the range of clusters they con-
sidered plausible final solutions, along with justification for focusing on this range.

Non-hierarchical. Although the number of clusters is specified beforehand in non-hierarchical clus-
tering methods, it is strongly encouraged that a variety of different solutions specifying a different k be
examined. Thus, one should avoid examining only a single solution of k clusters and instead explore a
variety of different non-hierarchical solutions. The exact values of k that were examined should be
made explicit in the manuscript. When more than one solution is examined, a flattening of the func-
tion of the final clustering criterion plotted against k can be used to choose among solutions. As with
the plots described for use with the hierarchical methods, the subjectivity associated with the inter-
pretation of such a plot is considered problematic. 

Although not extensively used or studied, the indices examined by Milligan and Cooper (1988) can
be adapted for use with non-hierarchical methods, so long as the index is not limited to use with only
nested clusters or hierarchical clustering methods (Steinley, 2006). Consult Steinley (2006) for a
description of how these indices can be applied for determining k in k-means clustering. 
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Steinley also describes algorithmic methods for arriving at the number of clusters in k-means clus-
tering. With algorithmic methods, the number of clusters specified by the user is allowed to change
during the implementation of the algorithm. The number of clusters may change through the use of
user-supplied criteria, which may dictate the merging of similar clusters, the splitting of heteroge-
neous clusters, or the elimination of small clusters. Other algorithmic methods he describes use crite-
ria whose values are not supplied by the user, but dictated by the data. Any use of algorithmic methods
to generate a final cluster solution warrants their detailed description and justification in the 
manuscript.

While determining the number of clusters, the researcher may also question whether any clustering
structure whatsoever exists in the data. As noted by Everitt et al. (2001), such tests for the absence of
structure are not usually used in practice. The authors point to a review by Gordon (1998) for readers
interested in these tests from a theoretical standpoint. 

In summary, the Methods section should include a description of the plots, indices or algorithms
used to decide upon the final cluster solution and how these procedures were used. Any additional cri-
teria used in determining the number of clusters should also be described, including the inter-
pretability of the solution or its correspondence with previous research or theory. 

10. Replicability and Validity

Even if no structure exists in the data, clusters will be created as a result of implementing the cluster-
ing method. In fact, clustering methods are often criticized because they may create structure, regard-
less of whether structure truly exists. This is similar to exploratory factor analysis, where a solution is
provided even if no true factor structure exists. To address this criticism, it is essential that the classi-
fication scheme resulting from a cluster analysis is shown to be consistent and meaningful. Thus, a
cluster analytic study is not complete until it answers the following questions: “Is the final cluster solu-
tion replicable across conditions (e.g., samples, clustering methods, transformation methods)?” and
“Is the final cluster solution meaningful?” 

Replicability. The replicability of the cluster solution refers to the consistency or the stability of the
solution across different conditions. Throughout this chapter it has been suggested that authors
explore the extent to which their solution replicates across different transformation methods, weight-
ing methods, proximity measures, and clustering methods. Evidence that a particular solution is
robust to changes in such specifics of the cluster analysis procedure should be provided. 

More importantly, the extent to which the final cluster solution replicates across different samples
should be presented. Ideally two samples would be collected for this purpose, although in practice it may
be more feasible to randomly split a single sample into two halves. If sample size permits, replicability
could be examined by independently implementing the clustering method in each sample and then
exploring the extent to which the same cluster solution was found in both samples. More formal proce-
dures for replication are described by McIntyre and Blashfield (1980) and Breckenridge (1989, 2000). 

Validity. If a solution replicates across samples, more faith can be placed in the generalizability and
meaningfulness of the results. Although replicability is necessary for a solution’s validity, evidence
beyond replicability is needed for the solution to be considered meaningful, authentic, and valid.
Validity evidence for the cluster solution can be acquired by showing that the clusters relate to exter-
nal variables in ways anticipated by theory, logic and previous research. Validity thus involves embed-
ding the solution in a program of construct validity.

The variables used to provide validity evidence for the cluster solution are called “external” because
they are not the same variables used to create the clusters. Although it may seem appealing to illustrate
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the meaningfulness of the solution by showing that clusters significantly differ from one another in
their “internal” variable values, it is not useful or surprising information since the clusters were cre-
ated to be maximally different from one another on these variables.

Because the validity of a solution is essential to a cluster analytic study, the external variables need
to be carefully selected. A description of the external variables and a justification for their use in assess-
ing the validity of the cluster solution should be provided early in the manuscript, ideally in the intro-
duction. The Methods section should contain a detailed description of the external variables as well as
the analyses used to assess the relationship between the clusters and external variables. Possible analy-
ses might include a discriminant analysis (see Chapter 6, this volume) or a multinomial logistic regres-
sion (see Chapter 17, this volume), with the clusters regressed on the external variables. Alternatively,
a series of ANOVAs or chi-squares may be used to examine the bivariate relationship between clusters
and continuous or categorical external variables, respectively. For reporting purposes, readers are
encouraged to refer to the chapters in this book corresponding to the statistical methods chosen for
their validity analyses. 

11. Software

Blashfield (1977) found that when different software packages are used, different solutions may be
obtained even if the same clustering method is applied to the same data. Although this finding may not
hold true today, it still underscores the need to provide answers to the following questions: “What is
the name and version of the software program used?” and “If applicable, which specific facility was
used within that software program?”

A variety of different software programs can be used for cluster analysis purposes (see the Appendix
of Everitt et al., 2001). Some programs are limited to cluster analysis (e.g., Clustan), whereas others are
more general statistical software programs (e.g., SAS, SPSS). In the Methods section the author should
report the name and version of software program used. If applicable, the specific facility used within
the software program should also be mentioned. For instance, if SAS is utilized the specific procedure
within SAS (e.g., proc cluster, proc fastclus, proc modeclus) should also be provided. 

12. Descriptive Statistics

A common requirement of almost all quantitative research is the reporting of descriptive statistics.
Descriptive statistics (e.g., means, standard deviations; frequencies for categorical variables) for all
internal and external variables should be reported or made available to the reader. In the context of
cluster analysis, descriptive statistics are important because they can provide information as to the
level of measurement (categorical, continuous) of the internal and external variables. This informa-
tion enables readers to judge the appropriateness of proximity measures (if used) and the analyses
used for validation purposes. The descriptive statistics for the internal variables are particularly useful
because they convey information about the variables for the overall sample, which may be of interest
when the same information is reported by cluster (see Desideratum 14). Measures of association
between all internal variables should also be provided for the purposes of multicollinearity assessment
(see Desideratum 4). 

13. Indices and Figures

In Desideratum 8, authors were instructed to describe the figures and/or indices that were to be used
in deciding upon the final cluster solution. Such figures or indices should be displayed in the Results
section or made available to the reader upon request. It is recommended to report indices for the range
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of cluster solutions considered (not just the final solution) so that readers can judge for themselves the
solution to be favored. The bottom line is that all information used by the researchers to decide on the
final solution should be shared with the reader. In addition to figures or indices, this may include the
interpretability of the solution and its correspondence with previous research and theory. 

The extent to which indices or figures were in agreement should be discussed. If multiple solutions
were considered on the basis of indices or figures, the process used to arrive at the final solution should
be described. For example, suppose indices favored equally a 2-cluster and 3-cluster solution. The 
2-cluster may be selected over the 3-cluster solution if the extra cluster in the latter solution did not
appear to be sufficiently distinct from another cluster or if the extra cluster was not interpretable in
light of theory and previous research. Whenever multiple solutions are favored, each of the solutions
should be described and the process used in selecting the final solution explained. 

This is also a sensible place in the manuscript for the authors to mention if any small or outlying
clusters in the favored solutions were found. Small clusters are those that capture a very minor pro-
portion of the sample and outlying clusters are those capturing objects with extreme values on the
variables. Small or outlying clusters should be described and the authors need to convey whether they
consider these clusters to be theoretically important or irrelevant. Commonly, the presence of a small
or outlying cluster directs which cluster solution is retained. For instance, a small cluster formed when
specifying k clusters may point to retention of the k–1 cluster solution. 

14. Final Cluster Solution

The results section should clearly state which cluster solution was chosen and a thorough description
of the resulting clusters. The clusters can be described by providing a table with the proportion of the
sample in each cluster and relevant descriptive statistics (e.g., means, standard deviations, bivariate
correlations) for the variables by cluster. It may also be useful to provide a figure to illustrate the clus-
ter characteristics. For instance, a graph of the variable means by cluster may nicely convey the cluster
profiles. Other graphs are described in section 8.6 of Everitt et al. (2001).

It is recommended that clusters be referred to by a letter or number (Cluster 1, Cluster 2 or Cluster
A, Cluster B) rather than by a name. Although this recommendation may result in seemingly unin-
formative names for the clusters, it is beneficial in that it allows for a more objective interpretation of
the clusters and helps to avoid the creation of misleading names. For instance, Meece and Holt (1993)
used cluster analysis to classify 5th and 6th grade students on measures of achievement goal orienta-
tion. They labeled their third cluster “low mastery-ego,” because this cluster was lower than other
clusters in their average levels of mastery and ego goals. Although they explained that “low” in the label
meant “low” in relation to the other clusters, “low” could also be interpreted in relation to the scale of
the mastery and ego goals. The label for this cluster could easily be misinterpreted as meaning that the
cluster is characterized by students with low mastery and ego goals, when, in fact, the averages for this
cluster fell at the midpoint of the scale.

15. Replicability and Validity Results

In Desideratum 9 it was recommended that the methods used to assess the replicability and validity of
the final cluster solution be provided. It is in the Results section that the author needs to present the
results of the replicability and validity analyses in enough detail to allow the reader to judge for them-
selves the consistency and meaningfulness of the final solution.

With regard to replicability, the extent to which the same solution was championed across 
different conditions (e.g., samples, transformation methods, weighting methods, proximity meas-
ures, and clustering methods) should be reported, and for each condition the characteristics of 
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the clusters should be described (see Desideratum 14). When different conditions are examined 
using the same sample, it is important to present the extent to which objects were classified in the same
cluster. 

A wide variety of statistical analyses can be pursued to examine the validity of a cluster solution. Any
statistical method appropriate for examining the relation of a nominal variable (e.g., cluster member-
ship) with one or more categorical or continuous variables is appropriate for this purpose. Therefore,
discriminant analysis, multinomial logistic regression, MANOVA, ANOVA, chi-square or log-linear
modeling could be used for validation purposes. When reporting the results of these analyses, 
readers should consult the chapters in this book that correspond to the particular statistical analyses
being utilized.

16. Utility of Final Cluster Solution

A thoughtful examination of the study’s results should be provided in the discussion section. This
examination should provide answers to the following questions: “Did the final cluster solution corre-
spond to the clusters anticipated based on previous research or theory?” and “Do the authors consider
the results of the replicability and validity analyses to be supportive?” Possible explanations should be
provided for any unanticipated results, including any results that do not support the replicability and
validity of the cluster solution. If a meaningful cluster solution was obtained with evidence support-
ing its replicability and validity, then a discussion should ensue as to whether the goals sought in clas-
sifying objects into groups were met. This discussion ties the results of the study back to the purposes
stated in the introduction for classifying objects into groups (see Desideratum 1). The utility of the
cluster solution needs also to be addressed. In other words, the ways in which the classification scheme
can be used in future research or in applied settings should be explicated. 

17. Future Analyses

It is a well-known fact in measurement that the collection of reliability and validity evidence for an
instrument or scale is a never-ending process. The same can be said about cluster analysis. Once a solu-
tion is obtained, continuous evidence needs to be gathered to support the consistency and authentic-
ity of the solution. If a seemingly stable and meaningful cluster solution is found, the authors should
provide next steps in establishing the replicability and validity of the cluster solution. Suggestions may
include the conditions under which the replicability should be further assessed or other external vari-
ables that should be used in future validity studies. 

Note

1 Although this chapter focuses on non-model based clustering methods, many of the desiderata in Table 4.1 also apply
to model-based clustering methods. Desiderata generally pertaining to model-based approaches include: 1–2, 5–6,
8–17. Because the specifics of these desiderata will differ for model-based approaches, the literature on model-based
classification should be consulted.
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5
Correlation and Other Measures 

of Association

Jason W. Osborne

Correlation and, more generally, association is a basic staple of inferential statistics, often easily com-
puted with handheld calculators, simple spreadsheet software, and even by hand. Most modern
researchers compute correlations and other indices of relatedness without thinking deeply about their
choices. Despite being basic in the current pantheon of analytic options, measures of association are
important, almost ubiquitous, and can easily produce errors of inference if not utilized thoughtfully
and with attention to detail.

The goal of correlational analyses is to assess whether two variables of interest covary or are related,
and ultimately, to draw conclusions that allow the researcher to speak to some issue in the “real
world.” In the best of instances, the researcher has: (a) a theoretical rationale for exploring this issue,
(b) high quality measurement of variables of interest, (c) an appropriate analytical approach, 
(d) attention to detail in terms of ensuring assumptions of the analytic approach are met, and 
(e) followed best practices in performing the analysis and interpreting the result(s). 

The primary focus of this chapter will be the most common index of association, Pearson’s Product
Moment Correlation Coefficient, r, but will also include brief discussions of other measures of rela-
tion, such as alternative correlation coefficients and odds ratios. Related but more advanced correla-
tional procedures such as multiple regression, logistic regression, multilevel modeling, and structural
equation modeling are beyond the scope of this chapter (but see Chapters 21, 17, 10, and 28, this vol-
ume). Of course, as modern statistics incorporates these and all ANOVA-type analyses into a single
general linear model (GLM), many of my comments will apply across a broad range of techniques.
Contemporary treatments of issues in this chapter are included in classic textbooks such as Cohen,
Cohen, West, and Aiken (2002), Pedhazur (1997), Aiken and West (1991), Tabachnick and Fidell
(2001) and Osborne (2008b), among others. Specific desiderata for studies using correlation/
relational methodologies are presented in Table 5.1 and explicated subsequently.

1. Substantive Theories and Measures of Association

Conducting “fishing expeditions,” such as examining large correlation matrices to look for ideas to
explore, is really a sub-optimal and limiting way to go about trying to understand the world. Rather,



56 • Jason W. Osborne

good research flows from good theory. Thus, I believe that reviewers should evaluate any type of quan-
titative analysis from within the knowledge base of the discipline that anchors the research.

Of course, data can inform theory just as easily as theory can drive research. Yet, unless we clearly
ground the current research being reported in the context of what has come before and is currently
being discussed (where appropriate), we risk merely reinventing the wheel. It is my position that no
research should occur without clearly articulating how previous knowledge has led to the specific
questions addressed within the study at hand.

Table 5.1 Desiderata for Correlation and Other Measures of Association

Desideratum Manuscript

Section(s)*

1. A succinct literature review clearly situates the current study in the field’s context. The substantive I

theory or rationale that led to the investigated relation(s) is explained.

2. The goals and the correlational nature of the research question(s) are clearly stated. I

3. The variables of interest are explicitly identified and operationalized. I/M

4. The sampling framework and sampling method(s) are clearly defined and justified. M

5. Results from (preferably a priori) power analyses that are in line with the chosen sampling M

strategy are reported.

6. If data to be analyzed are nested, multi-level in nature, or otherwise more appropriate for M/R

multi-level modeling, those methods are used.

7. Relevant psychometric characteristics (preferably of the current data but possibly from previous, M/R

similar studies) are presented and discussed. At minimum this should include reliability and

factor structure (if applicable). Variables with unacceptable reliability should not be

included in analyses.

8. Fundamental descriptive statistics of the variables are presented and discussed (e.g., measurement M/R

scale, mean, variance/standard deviation, skewness and kurtosis).

9. If preliminary analyses suggest that data on variables of interest are not reasonably normally M/R

distributed, appropriate actions are taken to normalize the data or subsequent analytic strategies

that accommodate significant deviations from normality are chosen (and justified as appropriate).

10. Missing data, if present, are appropriately dealt with. M/R

11. Authors report how outliers/fringeliers were defined, identified, and, if any were present, how they M/R

were dealt with.

12. The testing of assumptions underlying the analyses are presented. M/R

13. Where variables violate distributional assumptions of Pearson r, alternative correlational

coefficients are used.

14. Multiple zero-order analyses are not reported unless defensible corrections for increased R

Type I error rates are employed. Multiple analyses should be combined into a single multivariate

analysis where possible.

15. Authors use semipartial and partial correlations where appropriate, and interpret them correctly R/D

16. Where appropriate, an interpretation of results takes variable transformations into account. R/D

17. Appropriate effect size measures are reported and interpreted. R/D

18. p values are interpreted correctly. Effect sizes, not p values, should guide the narrative and R/D

discussion.

19. Curvilinear relationships or interactions, when found, should be presented graphically. R/D

20. Discussion of correlational analyses refrains from making causal inferences. R/D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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Thus, reviewers should see a thorough review of the literature that has led to the current study, and
if citations only go back a decade or two, reviewers should make sure authors are not missing seminal
research in the field. Few lines of research have roots less than 10–20 years old.

2. Goals and Correlational Nature of the Research Question(s)

Reviewers should demand clearly stated, operationalizable goals and objectives that clearly lend them-
selves to correlational/relational analyses. All too often one sees goals for group differences, growth, or
change inappropriately explored through correlational methods (as well as correlational hypotheses
are tested via ANOVA-type designs). Researchers should be encouraged to align their analytic strate-
gies to their goals/data as closely as possible and reviewers need to enforce best practices. In the case of
correlational analyses, the goals and objectives should clearly be focused on the relational nature of
two or more variables. Words such as “group difference” or “causal” should not be included in corre-
lational hypotheses.

3. Operationalizing the Variables of Interest

Researchers interested in the social sciences often intuitively understand the need to explicitly identify
and describe the variables of interest while at the same time being challenged to operationalize impor-
tant, but almost unmeasurable constructs. One can have the most thorough and impressive literature
review, sound theory and rationale, and important goals, but without being able to validly and 
reliably measure the constructs at hand the research is little more than a thought experiment.
Operationalization (defining specifically how one did or will measure the constructs at hand) is the
conditio sine qua non of science, but this is often the place in the logic of the research project where the
scientific quality of the project breaks down. Reviewers must demand high quality operationalization
in order to get high quality research outcomes.

Because we are dealing with variable relations in this chapter, we must know (a) exactly what vari-
ables the researchers were examining for a potential association, (b) how the authors defined each
considered construct, (c) what specific operations the researchers utilized to measure each variable,
and (d) how successfully the researchers measured what they thought they measured. For example,
some researchers have studied whether students’ use of instructional technology is related to student
achievement. But what, exactly, do they mean by “instructional technology” or “student achieve-
ment?” In the modern context, researchers have referred to instructional technology as a catch-all
phrase for computers, the internet, personal data assistants (PDAs), calculators, smartboards, student
response systems, on-line assessment systems, word processors, multimedia learning systems, and so
forth. And, of course, student achievement can refer to many different things, from high-stakes end-
of-grade tests mandated in many states to ephemeral concepts such as change in knowledge or acqui-
sition of skills. One could imagine many different studies purporting to test whether instructional
technology is related to student achievement, all using radically different operationalizations of each
variable, each potentially coming to divergent conclusions at least partly because of a different opera-
tional definition rather than a flaw in the basic premise. Thus, the reader should have a very precise
picture of exactly what was meant by instructional technology, and how and how well student use of
instructional technology was assessed. The last point refers to the quality of measurement, which will
be discussed below.

Finally, it is at this point that the reviewer makes an assessment as to whether the basic measurement
was adequate or not. For example, if I am assessing student use of instructional technology, and I
merely ask the student to indicate on a survey whether they used the internet: 
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a every day, 
b twice a week or more, 
c at least once a month, or 
d less than once a month 

have I measured this construct with high precision and quality? Not at all. Leaving aside the inherent
issues with self-report data, the question—and potential response—is imprecise (we do not know why
students were using the internet or what they did with it). Yet I could easily correlate resulting data
with scores on a high-stakes test and publish conclusions that may be erroneous. It is important that
reviewers disallow poorly operationalized research from becoming part of the knowledge base of the
field, as it can skew results dramatically.

4. Justification of Sampling Method(s)

There are many studies with interesting conceptual frameworks but flawed sampling methodology.
For example, the social science literature contains studies purporting to study working adults but
using adolescent psychology students; or investigations intending to generalize results to school age
children but utilizing college students; or studies of the U.S. population as a whole (with all the
racial/ethnic, chronological, religious, and developmental diversity) but using samples that are quite
homogeneous in nature.

Strong inference requires good sampling. The sample must be representative of the population of
interest in order for the results to generalize. Studies should clearly describe the intended population
and the methods used to recruit and retain participants for the study that are representative of that
population, along with response rates, and so forth. The results should confirm that the sampling
strategy was successful by, where possible, showing that sample characteristics are not meaningfully
different from known population characteristics.

It is not always the case that we want a sample that is purely representative of the population as a
whole. Sometimes a researcher will want to compare different subgroups, and where subgroups are
not equally common within a population, a stratified sampling framework should be used,1 the
rationale for how the strata were chosen and sampled should be defended and the analyses and dis-
cussion of the results should take it into account. For example, if a researcher wanted to explore the
relation between income and life satisfaction across the lifespan, that researcher should be careful to
use stratified sampling to gather equal numbers of people at various ages because random sampling
from the population will not yield equal numbers of individuals of each age range (see also Chapter 30,
this volume).

5. Power Analysis

Statistical power is the probability of rejecting a null hypothesis when indeed it is false given a particular
effect size, alpha level, sample size, and analytic strategy.2 Jacob Cohen (e.g., Cohen, 1962, 1988) spent
many years encouraging the use of power analysis in planning research, reporting research, and in inter-
preting results (particularly where null hypotheses are not rejected). Authors were discussing the issue of
power more than 60 years ago (e.g., Deemer, 1947), yet few authors in the social sciences today (only
about 2% in educational psychology) reported having tested or used power (Osborne, 2008d). The con-
cept of power is complementary to significance testing and effect size and, Cohen and others argued, a
necessary piece of information in interpreting research results (see Chapters 7 and 24, this volume).

Null Hypothesis Statistical Testing (NHST) has been reviled in the literature by many as counter-
productive and misunderstood (e.g., Fidler & Cumming, 2008; Thompson, 2002). The ubiquitous
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p < .05 criterion is probably not disappearing from scholarly social science any time soon despite the
fact that almost all null hypotheses are ultimately false in an absolute sense (e.g., rarely is a correlation
coefficient exactly 0.00; rarely are two means exactly equal to all decimal places), and thus, given suf-
ficient power, even the most minuscule effect can produce a p < .05 (see also Tukey, 1991). Thus, the
reporting of effect sizes (in the case of simple correlation, r and r2 are the effect sizes to report), which
tells us generally how important an effect is, is crucial.

Power is critical in two different aspects of research. First, Cohen and others argued that no prudent
researcher should conduct research without first making a priori analyses to determine the probability
of correctly rejecting the null hypothesis. Researchers who fail to do this risk committing Type II errors
(failing to reject a false null hypothesis), thus wasting the time and effort conducting underpowered
research and worse, risk causing confusion in the field by publishing conflicting results that may not be
conflicting at all, merely a collection of studies that would have all been in accord had all been suffi-
ciently powered. Additionally, researchers who fail to do a priori power analyses risk gathering too
much data to test their hypotheses—if a power analysis indicates that data from n = 100 participants
would be sufficient to detect a particular effect, gathering a sample of n = 400 is a waste of resources.

Second, power analyses are useful in order to shed light on null results. For example, when a
researcher fails to reject a null hypothesis with an a priori power of .90 to detect anticipated effects, s/he
can be fairly confident of having made a correct decision. However, when a null hypothesis is not
rejected, but there is low power, it is unclear as to whether a Type II error has occurred.

Further, something not generally discussed in the social science literature is that low power has
implications for Type I error rates in bodies of literature. In the ideal case of strong power (i.e., almost
all real effects are detected) and the almost ubiquitous alpha of .05 (i.e., few false conclusions of effects
where there are none), a relatively small proportion of studies achieving statistical significance in a field
would result from Type I errors. However, maintaining an alpha of .05 but considering a sub-optimal
situation where a large group of studies have low power (e.g., .20), in fact a much larger relative pro-
portion of published studies would contain Type I errors because so few true effects are being detected
(Rossi, 1990). Thus, ironically, poor power in studies can inflate rates of Type I error across research
domains, meaning many real effects are being missed (and possibly not published as a result), while at
the same time a large number of Type I errors are being published relative to those studies where true
effects are being detected. This may, in turn, lead to seemingly conflicting results in a line of research,
and give rise to apparent controversies in fields that traditionally have poor power to detect effects
which are, in the end, more likely a result of poor power than conflict of a substantive nature.

In sum, statistical power is an important concept, but authors and reviewers tend to neglect this
piece of the empirical puzzle. Authors should report a priori (preferably) or a posteriori power to
detect effects, and reviewers should insist on seeing it.

6. Nested Data

People tend to exist within organizational structures, such as families, schools, business organizations,
churches, towns, states, and countries. In education, students exist within hierarchical social struc-
tures that can include families, peer groups, classrooms, grade levels, schools, school districts, states,
and countries. Workers exist within production or skill units, businesses, and sectors of the economy,
as well as geographic regions. Health care workers and patients exist within households and families,
medical practices and facilities (e.g., a doctor’s practice, or hospital), counties, states, and countries.
Many other communities exhibit hierarchical data structures as well.

In addition, Raudenbush and Bryk (2002) discussed two other types of data hierarchies that are less
obvious: repeated-measures data and meta-analytic data. Once one begins looking for hierarchies in
data, it becomes obvious that data repeatedly gathered on an individual are hierarchical, as all the
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observations are nested within individuals (who are often nested within other organizing structures).
While there are other adequate procedures for dealing with repeated measures data, the assumptions
relating to them being rigorous (see Chapter 2, this volume), the procedures relating to hierarchical
modeling require fewer assumptions (see Chapter 10, this volume). Also, when researchers are
engaged in the task of meta-analysis—the analysis of a large number of existing studies (see Chapter
19, this volume)—it should become clear that participants, results, procedures, and experimenters are
nested within experiment or study.

Hierarchical, or nested, data present several problems for analysis. First, individuals that exist
within hierarchies tend to be more similar to each other than people randomly sampled from the
entire population. For example, students in a particular third-grade classroom are more similar to
each other than to students randomly sampled from the population of third-graders. This is because
students are not randomly assigned to classrooms from the population, but rather are assigned to
schools based on geographic factors. Thus, students within a particular classroom tend to come from
a community or community segment that is more homogeneous in terms of morals and values, fam-
ily background, socio-economic status, race or ethnicity, religion, and even educational preparation
than the population as a whole. Further, students within a particular classroom share the experience
of being in the same environment—the same teacher, physical environment, and similar experi-
ences—which may lead to increased homogeneity over time.

The problem of independence of observations. The previous discussion indicated that, often, study
participants tend to share certain characteristics (e.g., environment, background, experience, demo-
graphics) and hence their data are not fully independent. However, most analytic techniques require
independence of observations as a primary assumption. Because this assumption is violated in the
presence of hierarchical data, ordinary least squares regression produces standard errors that are too
small (unless these so-called design effects are incorporated into the analysis3). When assumptions of
independence are not met, an undesirable outcome is that the smaller standard errors bias significance
testing toward inappropriate rejection of null hypotheses.

The problem of how to deal with cross-level data. Going back to the example of a third-grade class-
room, it is often the case that a researcher is interested in understanding how environmental variables
(e.g., teaching style, teacher behaviors, class size, class composition, district policies or funding, or
state or national variables) affect individual outcomes (e.g., achievement, attitudes, retention). But
given that outcomes are gathered at the individual level whereas other variables are assessed at the
classroom, school, district, state, or nation levels, the question arises as to what the unit of analysis
should be and how one should deal with the cross-level nature of the data.

One way researchers traditionally attempt to deal with such data is to assign classroom or teacher
(or school or district) characteristics to all students, bringing the higher-level variables down to the
student level. The problem with this approach is non-independence of observations as all students
within a particular classroom assume identical scores on a variable.

Another way researchers have attempted to deal with such data has been to aggregate data up to the
level of the classroom, school, or district levels. Thus, one could assess the effect of teacher or class-
room characteristics on average classroom achievement. However, this traditional approach is prob-
lematic in that: (a) much (up to 80–90%) of the individual variability on the outcome variable is lost,
potentially leading to dramatic under- or overestimation of observed relations between variables
(Raudenbush & Bryk, 2002), and (b) the outcome variable changes significantly and substantively
from individual achievement to average classroom achievement.

Neither of these conventional and common strategies for dealing with multilevel data can be 
considered best practice. Neither allows the researcher to examine truly important and interesting
questions, such as the effect of a particular teacher characteristic on student learning. The 
only methodologically sound way to deal with nested data is through multilevel modeling. Both 
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aggregation and disaggregation can lead to wildly mis-estimated effects, with some effects (particularly
in aggregated analyses) overestimated by 100% or more (see Osborne, 2008c). Thus, nested data not
analyzed with multilevel modeling should be treated as suspect and might be rejected by reviewers.

Further, performing multilevel analyses such as hierarchical linear modeling has no drawbacks. If
observations are not independent the results are correct estimates of effects accounting for non-
independence, protecting the researcher from an error of inference or substantially mis-estimated
effects. If observations are truly independent, multilevel analyses will exactly reproduce the results of
simple correlation or Ordinary Least Squares (OLS) regression analyses. 

7. Psychometric Characteristics

In a recent survey of the educational psychology literature in top-tier journals, only about one in four
studies (26%) reported any type of basic psychometric information on the measures utilized in the
research being reported (Osborne, 2008d). Because reliable and valid measurement is a hallmark of
good science and a necessary condition for any statistical analysis such as correlation or regression,
authors should report basic psychometric information on their measures, such as internal consistency
and/or other forms of reliability and validity (see Chapter 25, this volume). Further, reviewers should
ensure that reliability of measurement is acceptable in magnitude.

Acceptable standards for reliability have been debated for decades, and often depend on the type of
reliability being reported. Many authors assume that internal consistency estimates (Cronbach’s
alpha) of .70 and above are acceptable (e.g., Nunnally, 1978), and despite the fact that social science
journals are filled with alphas of .70 and below, this should not be considered quality measurement. In
fact, an alpha of .70 represents measurement that is approximately 50% error variance, and even when
reliability is .80, effect sizes are attenuated dramatically (when alphas are in the .80 to .85 range, corre-
lations can be attenuated approximately 33%; Osborne, 2003). Of course, internal consistency esti-
mates are not always appropriate or ideal (e.g., reliability of behavioral observation data), but
reviewers should have some reasonable indicator of reliability and validity reported in every paper, and
the reviewers should be convinced that the data are sufficiently reliable to be taken seriously.

Where scales are used to measure constructs, authors should be encouraged to present evidence that
the scale structure they are endorsing for further analysis is the best, most parsimonious representation
of that scale via confirmatory factor analysis (see Chapter 8, this volume) or other modern measurement
analysis (e.g., Rasch measurement or IRT, see Chapter 12, this volume).4 Factor structure matters
because if authors are creating composites of items that are not measuring a homogeneous construct,
they are introducing error into their measurement, which significantly attenuates effect size estimates
and power to detect effects.

In sum, authors should research their instruments and, when possible, choose those that tend to
produce highly reliable data. If authors are dealing with data that have less than optimal reliability,
simple analyses such as correlation and regression can be manually disattenuated via common for-
mulae (Cohen et al., 2002; Pedhazur, 1997) or through other, more sophisticated means such as latent
variable modeling (see Chapter 28, this volume).

8. Descriptive Statistics

The presentation and discussion of descriptive statistics is a desideratum because readers should have
basic information about the variables at hand, because it facilitates meta-analyses of studies—a best prac-
tice for a variety of reasons (see Chapter 19, this volume)—and re-analyses of data can be easily accom-
plished if basic statistics are reported. Further, descriptive information helps readers (and authors)
understand the data on which the main analyses are based.
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9. Normality of Data

Normally distributed data are desirable in most cases, even when utilizing nonparametric techniques.
Few authors report normality statistics for their data, and fewer still report correcting for non-nor-
mality despite the fact that it is often relatively easy to do, involving simple mathematical manipula-
tion or removal of outliers. It should be noted that mis-applications of these transformations can
make matters worse, rather than better, so authors and reviewers should not only assess whether data
are acceptably normal (skew between –1.0 and 1.0, closer to 0 is better), but whether authors dealt with
non-normality appropriately. For example, it is often the case that data transformations are most
effective if the minimum value of a distribution is anchored at a value of 1.0 exactly (e.g., Osborne,
2008a). Further, for most simple, common transformations to work, original data need to be posi-
tively skewed. For distributions with a negative skew, the distribution needs to be reflected or reversed
by multiplying each data point by –1.0 and adding a constant to bring the minimum value to 1.0 and
the distribution needs to be reflected again after the transformation is completed to return the data to
their original order. Correlations and most other common statistical analyses benefit significantly
from these practices, making the results more generalizable.

10. Missing Data

Missing data are common in the social sciences, yet perusal of the literature shows that few authors
report whether there were any missing data, how missing data issues were addressed, and perhaps
equally important, whether participants with missing data were significantly different in some way
than those with complete data (i.e., whether the missing data were randomly distributed). Many
authors use listwise deletion, simple removal of participants’ data with any missing score on any vari-
able in the analysis. However, this approach is sub-optimal and can lead to significant changes in the
nature of the data and decreases in generalizability. Another popular approach, mean substitution,
can have unintended consequences (such as artificially decreasing the standard deviation of the vari-
able) and should be avoided. Multiple imputation is a better alternative than either of the aforemen-
tioned options (e.g., Cole, 2008). Irrespective, reviewers should expect to see a discussion and
justification of exactly how authors dealt with missing data, if present.

11. Outliers and Fringeliers

While there has been (and continues to be) great discussion in the methodology literature regarding
the definition of outliers and whether or not they have significant effects on effect estimates (summa-
rized in Osborne & Overbay, 2004), empirical examples of their effects are common. Outliers, and
fringeliers (i.e., extreme scores near z = ±3.00), can have significant effects on the accuracy of effect
estimates. Osborne and Overbay (2004) demonstrated that even in reasonably large samples of up to
400 or more subjects, a handful of outliers with scores that are only slightly outside the distribution (z
scores of 3.00 to 3.50) can cause substantial errors in parameter estimates and in inference. Across
hundreds of simulations, summarized below in Table 5.2, 70–100% of correlation estimates were sta-
tistically significantly more accurate after identification and removal of fringeliers, and errors of infer-
ence were reduced dramatically (note also that errors of inference were disturbingly prevalent with
just a few outliers present).

Thus, reviewers should expect authors to report checking for outliers and fringeliers, and report
how they were handled. There are several ways authors can handle extreme scores such as these,
including deleting them, recoding them to some more reasonable value, selectively weighting cases to
reduce their influence on outcomes, or using data transformations to reduce their influence.
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12. Underlying Assumptions

Many authors are under the erroneous impression that most statistical procedures are “robust” to vio-
lations of most assumptions. Writers such as Zimmerman (1998) have pointed out that violations of
assumptions can lead to serious consequences, and when violations of more than one assumption are
present it is not safe to assume the validity of the analysis results.

Authors routinely fail to report testing assumptions (only 8.3% of top-tier educational psychology
articles reported testing assumptions in 1998–99; Osborne, 2008d), which could indicate that authors
fail to test assumptions or authors fail to report associated results. In either case, this is a serious issue
as the quality of the corpus of knowledge depends on high quality research analyses, and failing to test
assumptions can lead to serious errors of inference and mis-estimation of effects.

For example, failing to use multilevel modeling to test relations when data are nested (independ-
ence of error terms or independence of observations assumption) can cause substantial mis-estima-
tion of effects (see Desideratum 6). Failure to measure variables reliably (see Desideratum 7) can lead
to serious underestimation of effects in simple (zero-order) relations and either under- or overesti-
mation of effects when variables are controlled for depending on the relative reliability of the covari-
ates and variables of interest (e.g., Osborne & Waters, 2002). As Osborne and Waters (2002) pointed
out, failure to test for and account for other issues such as curvilinearity (assumption of linear rela-
tionship) can lead to serious errors of inference and underestimation of effects.

In sum, while authors are ultimately responsible for reporting results from testing underlying
assumptions, reviewers and editors are equally culpable when such results do not appear in published
research reports. Reviewers should demand that authors report results from testing each assumption
of a utilized statistical method. 

13 Pearson r Alternatives

In many textbooks authors prominently discuss alternative correlation coefficients (e.g., Cohen et al.,
2002, pp. 29–31) such as the point-biserial correlation (a simplified Pearson r appropriate for when
one variable is continuous and one is dichotomous), phi (a simplified Pearson r when both variables
are dichotomous), and Spearman rank correlation (r

s
), a simplified formula for when data are sets 

of rank ordered data. Reviewers should not demand authors use these alternative computations of 

Table 5.2 Effects of Outliers on Correlations

Population N: Average Average t % more % errors % errors t

r: initial r cleaned accurate before after

r cleaning cleaning

r = –.06 52 .01 –.08 2.5** 95% 78% 8% 13.40***

104 –.54 –.06 75.44*** 100% 100% 6% 39.38***

416 0 –.06 16.09*** 70% 0% 21% 5.13***

r = .46 52 .27 .52 8.1*** 89% 53% 0% 10.57***

104 .15 .50 26.78*** 90% 73% 0% 16.36***

416 .30 .50 54.77*** 95% 0% 0% —

Source: Osborne & Overbay, 2004.

Note: 100 samples were drawn for each row. Outliers were actual members of the population who scored at least z = 3 on the relevant
variable.
With N = 52, a correlation of .274 is significant at p < .05. With N = 104, a correlation of .196 is significant at p < .05. With N = 416, a
correlation of .098 is significant at p < .05, twotailed.
** p < .01, *** p < .001.
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the Pearson product-moment correlation, as they are archaic. Essentially, before massive computing
power was available in every office, these formulae provided computational shortcuts for people com-
puting correlations by hand or via hand calculator. Researchers using statistical software have no true
use for them.

However, there are other correlation coefficients that might be more desirable than r. For example,
the tetrachoric correlation (Pearson, 1901) is particularly good for examining the relationship between
raters where the rating is dichotomous (presence or absence of some trait or behavior), while the poly-
choric correlation is designed to examine correlations for ordered-category data (e.g., quality of a les-
son plan), another way to measure rater agreement. Importantly, one assumption of these two
measures is that while the ratings are dichotomous or categorical, they assume that the latent or
underlying variable is continuous (e.g., one can have the presence of particular characteristics of
autism to a greater or lesser extent although we might rate them as present/absent). They estimate
what the correlation between raters would be if ratings were made on a continuous scale. 

Robust measures of association, such as Kendall’s tau, Spearman’s rho, and winsorized correlations
have been developed to attempt to measure association in the presence of violation of assumptions
(e.g., presence of outliers), but Wilcox (2008) concluded that none of these measures of association
are truly robust in the face of moderate violations of assumptions. The recommended technique cur-
rently appears to be the skipped correlation coefficient (Wilcox, 2003).

In the case of a truly continuous and dichotomous or polytomous variable (as opposed to a
dichotomous or categorical variable that has an underlying continuous distribution), logistic regres-
sion may be considered a best practice in determining association between two variables (see Chapter
17, this volume). While logistic regression has been slow to be adopted in the social sciences, it does
carry many benefits, including appropriate mathematical handling of discrete categorical data. One
challenge to authors using logistic regression involves the correct interpretation of the measure of
association, the odds ratio (OR) or index of relative risk (RR), the preferred, but more difficult to
obtain statistic. A lengthy treatise on these statistics, best practices, and correct interpretation is
beyond the scope of this chapter, but see Osborne (2006).

Reviewers should be vigilant about authors who have substantial violations of assumptions and
proceed to use these techniques to ameliorate these violations. The best way to deal with violations of
assumptions is to deal explicitly with the violation, such as removal of outliers, transformation to
improve normality, and so forth. Where this is not possible, robust methods such as the skipped cor-
relation coefficient is a good alternative currently. Reviewers seeing authors use archaic correlation
coefficients (e.g., point-biserial, phi, or the Spearman rank order coefficient) should be skeptical as to
the authors’ quantitative prowess, as this seems to be an indicator of outdated training. Finally, in the
specific case of examining inter-rater agreement, alternative nonparametric estimators such as poly-
choric and tetrachoric correlations are good practices and should be recommended to authors if they
are not present (see also Chapter 11, this volume).

14. Univariate vs. Multivariate Analyses

Large zero-order correlation tables are often reported in journals. Since the introduction of signifi-
cance levels (p < .05),5 largely attributed to Fisher (1925),6 one issue has been maintaining a low rate
of Type I errors across an entire set of analyses rather than for each individual analysis. For example, if
one reports a correlation table for five variables, the lower triangular matrix contains 10 separate cor-
relations. Assuming researchers are using the traditional α = .05 criterion to test the correlations, this
means that the Type I error rate across the family of correlations can greatly exceed .05. This seems
unacceptable, but is routinely done. To combat this issue, early statisticians developed corrections for
this expanded Type I error rate.
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Many different types of corrections for this issue are available (e.g., Bonferroni adjustments),
although these types of corrections tend to reduce power and increase the probabilities of a 
Type II error. Reviewers should expect authors to address inflated Type I error rates in some 
way, either through a type of correction such as Bonferroni or, preferably, through reducing the 
number of correlations reported by focusing on the truly important correlations (Curtin & Schulz,
1998) or through the use of multivariate methods. To the extent that p < .05 remains an important 
criterion (and there is a good deal of discussion attempting to reduce reliance on this criterion 
in the methodology literature, e.g., Killeen, 2008), authors should seek to keep a = .05 for each 
major, substantive hypothesis (e.g., familywise or experimentwise error rate) rather than for each 
statistical test.

15. Semipartial and Partial Correlations

A semipartial correlation is a correlation between two variables (variables 1 and 2), controlling 
for a third variable (that is correlated in some significant way to both of the other variables), with the
common notation sr

(12.3)
. Similarly, partial correlations are correlations between two variables with

the effect of a third removed, and use the common notation pr
(12.3)

. However, there is an important
conceptual (and mathematical) difference between the two. For example, consider calculating a 
correlation between an independent variable (IV) such as motivation and a dependent variable (DV)
such as intentions to attend college, controlling for a covariate such as student grades. The semipartial
correlation removes the effect of grades from the IV (motivation) but not from the DV (intentions).
Thus, a semipartial correlation, when squared, communicates the unique variance accounted 
for in the DV by the IV. This is useful when researchers want to examine which variables make unique
contributions to predicting outcomes (e.g., Does motivation predict intentions to attend college once
student grades are accounted for?), or which variables account for the most unique variance once 
others are controlled for (e.g., Does motivation or student grades have a stronger unique effect on
intention to attend college?). The semipartial correlation does not, technically, remove the effect of
the other variable from the analysis, as it is still in the DV, and authors and researchers should 
carefully examine interpretations of semipartials so that they are not mis-interpreted. Partial 
correlations, on the other hand, remove the effect of the covariate (e.g., student grades) from both the
DV and IV, giving you a more “pure” measure of that relationship without the effect of the covariate
in either. This is most commonly used when researchers want to remove the effect of confounding or
extraneous variables to get a measure of the relationship if one could hold other variables 
constant (e.g., Holding grades constant, does motivation have any association with intentions to
attend college?).

Finally, when the underlying assumptions of correlation and regression are not met, partialing or
controlling for other variables, as mentioned above, can yield unpredictable results. For example, if
student grades are not reliably measured, and we try to control for it, only a fraction of the variable can
actually be removed. The rest of the variance attributable to grades is still in the analysis, and thus if
grades and motivation are highly correlated, the effect of motivation may be substantially mis-esti-
mated. As another example, if the effect of grades is curvilinear, and only the linear effect is covaried,
then again part of the effect of grades remains in the analyses, causing mis-estimation of other effects
(curvilinearity is discussed in more detail in Desideratum 19). 

Reviewers should pay careful attention that authors use semipartial and partial correlation when
appropriate and interpret them accurately. If variables to be used in these types of analyses are not reli-
able, reviewers might insist on discussion of this issue, use of alternative analyses that can correct for
low reliability (e.g., structural equation modeling; see Chapter 28, this volume), or reject the analysis
as untenable as it is not testing what the authors believe it is testing.



66 • Jason W. Osborne

16. Data Cleaning and Data Transformation

Data cleaning is often necessary and needs to be considered when interpreting the analysis results. For
example, transformations are tricky to get right computationally (Osborne, 2008a), and also compli-
cate interpretation. First, it is easy to create missing data when doing a transformation (e.g., some
scores might be converted to missing data as it is impossible to take the square root or natural log of a
negative number). Second, some transformations to reduce skew require the data to be reflected (the
order of the scores is reversed with the highest scores becoming the lowest and the lowest scores
becoming the highest) prior to a transformation being applied. If the data are not reflected after the
transformation, the correlation computed afterward will be exactly opposite of what it should be (e.g.,
0.50 rather than –0.50) which could lead to misinterpretation of the results.

Even assuming a transformation is applied successfully, using best practices, the researcher is still
left with one or more transformed variables, an altered version of the original construct. Is it straight-
forward to say that the correlation with log of a variable means the same as the correlation with the
original variable? Not technically, and probably not in practice, either. So authors need to be clear with
readers in interpreting results. 

Reviewers need to see evidence that where data transformations are necessary (e.g., highly skewed
variable), authors use best practices (see Osborne, 2008a for guidelines on best practices in utilizing
some common data transformations) and are mindful that analyses used transformed data when dis-
cussing the implications of their results.

17. Interpretation of p Values

For many decades, p < .05 has been the primary indicator to a researcher that an effect is “important.”
In fact, many authors have been known to place more importance on effects that produce smaller p
values. Terms like “more significant” and “highly significant” are common in published research, as is
the use of different indicators for smaller p values (e.g., using asterisks to indicate significance level: 
* p < .05, ** p < .01, *** p < .001). There are two issues that reviewers need to attend to: misuse of p as
a proxy for importance of an effect and misinterpretation of p.

It may not be surprising that some researchers use p as a proxy for importance of an effect or for
effect size itself (discussed in more detail in Desideratum 18). One of the primary factors in the mag-
nitude of p is effect size. But other factors also help determine p, making it not usable for this purpose:
sample size is a primary determiner of p. Reviewers need to ensure that authors disentangle effect
size/importance with significance level.

Once statistically significant effects are identified, effect sizes and confidence intervals around effect
sizes should guide discussion as to importance of the findings (see Chapter 7, this volume). Authors
should focus on effect sizes in interpreting results, and reviewers should closely monitor manuscripts
for author hyperbole.

Finally, several authors have proposed modern alternatives to p, given that p usually does not pro-
vide the information researchers seek. One of the most promising alternatives is Killeen’s (2008) p

(rep)
,

the probability of replication, a statistic that is directly related to what most researchers are interested
in, and easily calculated from information most statistical software provides.

18. Effect Size Measures

Effect sizes are simple to calculate in the context of correlation and regression analyses. Unlike other
types of analyses such as ANOVA and t tests, correlation coefficients are themselves effect sizes, as are
βs and multiple Rs in regression (for more information on this point, see, e.g., Cohen, 1988; Cohen 
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et al., 2002). Effect sizes tend to come in two general categories: a standardized index of strength and a
percentage of variance accounted for. R, β, sr, pr, and r are all indices of strength (as are analogous
effect size indexes for ANOVA type designs, such as d, f, and ω2). Because indices of strength tend to
be on different scales, it is good practice for authors to report effect sizes that represent the percentage
of variance accounted for. In the case of association, r2, sr2, pr2, and R2 are appropriate. Some authors
(e.g., Thompson, 2002) have argued that effect sizes should be accompanied by confidence intervals
for effect sizes. Since this last technique is not commonly available via statistical packages at this time
(it is available through the R statistical package, freely available at http://www.r-project.org/), its use
should be seen as a suggestion rather than a requirement.

Reviewers should “reality check” authors’ claims about strength of association. Authors might
over-exaggerate the strength of the effects in their research in hopes of making the projects more pub-
lishable. For example, correlations of r = .30 only represent 9% variance accounted for, and as such,
do not generally qualify as “strong” effects or “good” support for consistency. Rules of thumb for what
constitutes a strong, moderate, or weak effect for various effect size indices are widely disseminated
(e.g., Cohen, 1962, 1988; see also Chapter 24, this volume) and are also available on the internet.

19. Curvilinear Relations and Interactions

Few researchers in the social sciences examine or discuss curvilinear effects. Is this because there are so
few curvilinear effects or because researchers fail to look for them? Until recently, it was difficult to test
for curvilinear effects explicitly within statistical software frameworks. However, most popular mod-
ern statistical packages include simple diagnostic options to identify possible curvilinearity (e.g.,
residual plots) and contain curvilinear regression options, both of which allow researchers to test for
curvilinear effects. Further, as human nature is complex and interesting, it is likely that many associa-
tions are curvilinear in nature. Note the well-known association between arousal (or less accurately,
anxiety) and performance, such that increased arousal leads to increased performance. However,
researchers also noted that there is an optimal level of arousal, and beyond that, higher levels tend to
be associated with diminishing performance until, at some theoretical level of extreme arousal, per-
formance would be as low as extremely low arousal. In fact, the classic arousal-performance curve dis-
cussed here will produce correlations close to r = 0.00 if curvilinearity is not accounted for, leaving a
robust and important effect undetected or mis-estimated. Thus, it is in the interest of the researcher,
as well as the scientific community, to examine associations for curvilinearity. When found, these
effects are usually best conveyed to readers as graphs that show the nature of the curvilinearity; thus,
reviewers should expect a graph to accompany the effect description/interpretation, and best practices
in graphing should be followed.

20. Causal Inferences

The “cardinal sin” of correlational analysis is to make causal statements or inferences. For example,
one might read, “Because availability of instructional technology is associated with stronger growth in
student achievement, schools should make stronger efforts to include instructional technology in the
daily life of students.” Anyone having taken a basic research methods course should remember that
any relation could have at least three possible causal bases: (a) variable A could cause B, (b) variable B
could cause A, and (c) the relationship between A and B could be caused by a third variable, C, that is
not measured. Authors should be careful to respect the limits of correlational methodologies and take
care not to make causal inferences or statements. Reviewers should carefully police these same issues.
Too often the lay public and policymakers (who might not be trained to understand these distinc-
tions) are misled into causal thinking by correlational research.7
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Consider the following example. There has long been an assumption that, since individuals with
higher blood cholesterol are more likely to have adverse medical outcomes such as heart attacks,
reducing cholesterol should reduce risk for adverse medical outcomes. There was even some research
suggesting that people who, through change in diet and/or exercise, reduce their cholesterol levels also
reduce their risk for heart attack and other adverse outcomes. Thus, when drug companies developed
drugs that reduce cholesterol without change in diet and exercise, the assumption was that this reduc-
tion would similarly cause decreases in risk of adverse outcomes. Unfortunately, recent trials of cho-
lesterol lowering drugs have failed to show medical benefits in the same way as reducing cholesterol
through other means. This is an example of correlation-based causal inferences (e.g., decreased serum
cholesterol and decreasing risk of adverse outcomes) failing to be supported. This is not merely an eso-
teric methodological issue. Research can have profound implications on real outcomes for real peo-
ple. Imagine a patient taking one of these drugs for years expecting a medical benefit when in fact they
should have been making lifestyle changes instead. How many students around the world are laboring
through educational interventions that are based solely on misapplied correlational data? Reviewers
need to be vigilant that authors correctly avoid causal inferences when reporting results from correla-
tional research. 

Notes

1 Stratified sampling refers to the process of grouping members of the population into relatively homogeneous sub-
groups before sampling. The strata should be mutually exclusive: every element in the population must be assigned
to only one stratum, and ideally, every element of the population should be represented by a stratum.

2 Many authors have acknowledged the significant issues with null hypothesis statistical testing (NHST) and some (see
particularly Killeen, 2008) have proposed alternatives such as the probability of replication as a more interesting/use-
ful replacement. Interested readers should examine Thompson (1993) and Fidler (2005) as an introduction to the
issues.

3 Design effects are often calculated and disseminated in large, standardized surveys with complex sampling designs,
such as government surveys or samples. They are methodologically challenging to calculate, but if known, can be
incorporated into analyses as an adjustment to effect sizes and significance tests so as to account for the artificially
small standard errors present in certain types of samples, such as those with nested data. Multilevel modeling is gen-
erally a more elegant and effective way to deal with this issue.

4 Exploratory factor analysis (see Chapter 8, this volume) is often difficult to defend because of low replicability and
lack of inferential statistics.

5 Those interested in the history leading to the origins of p < .05 should read Cowles and Davis’s (1982) excellent 
history of significance testing.

6 Although the concept of formal, norm-guided significance testing itself is traceable to Gosset (1908) and Wood &
Stratton (1910).

7 Because this chapter is focusing on relatively simple associational analyses, simple associational analyses should not
be couched in causal terms. However, more sophisticated analytic techniques, such as structural equation models
based on strong theory can use correlational data to support or refute hypotheses. However, at some point causal
statements need to be assessed via methodologies (e.g., double blind experimental studies) that are designed to test
causal inference more effectively.
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6
Discriminant Analysis

Carl J Huberty

In the 1930s, Sir Ronald A. Fisher (1890–1962) initiated, in print, discriminant analysis in the context
of classifying a plant into different species using flower measurements as predictor scores. What was
conducted is currently termed a predictive discriminant analysis (PDA). The design of an empirical
study in which a PDA would be conducted involves N analysis units, J groups of units, and p predictor
variables. The basic purpose of such a study is to determine a prediction rule that consists of J com-
posites of the p predictors used to assign each of the N units to one of the J groups. For example, a PDA
might be used to predict whether or not a college student drops out of school using predictors such as
high school and college academic performance, intelligence, family income, age, and anxiety. 

A second aspect of discriminant analysis involves describing separation among J groups based on J
– 1 linear composites of the p outcome variables. This is a descriptive discriminant analysis (DDA) and
is a follow-up to a multivariate analysis of variance (MANOVA; see Chapter 23, this volume). A DDA
might, for example, be used to study the differences among job types (e.g., machinery maintenance,
operator, and mechanic) using several abilities (e.g., ability to prepare written reports, ability to train
others, ability to work with minimum supervision, or ability to learn new skills). 

Details about PDA and DDA can be found in Huberty (2002, 2005), Huberty and Olejnik (2006),
McLachlan (2004), and Rencher (2002). Software packages most often used for PDA and for DDA are
SAS and SPSS; for a discussion on the use of these packages for PDA and DDA, see Huberty and
Lowman (1997). For specific desiderata to help evaluate manuscripts that involve PDA or DDA appli-
cations, see Table 6.1a (PDA) and Table 6.1b (DDA) and the supporting explanations to follow.

P1. Analysis Purpose

A PDA is conducted for the purpose of predicting membership of N analysis units into one of J groups
of units using measures on p predictor variables for each unit. This analysis is done basically for a prac-
tical purpose. For example, a researcher might be interested in predicting J = 3 types of child behavior
disorders using the p = 8 predictor variables of aggression, hyperactivity, anxiety, depression, atten-
tion problems, atypicality, adaptability, and social skills. Here, the purpose of using PDA is to assess
the accuracy of the collection of the eight predictors at predicting group membership (behavior dis-
order). More specifically, here it is of interest to determine the most, and least, important predictors
of the three types of child behavior disorders.
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Table 6.1a Desiderata for Predictive Discriminant Analysis

Desideratum Manuscript

Section(s)*

P1. The selection of PDA as an appropriate analysis tool for predicting group membership based on a I

set of predictor variables is justified based on related literature and the study’s overall practical and

predictive purpose.

P2. The overall research design is described, including the grouping variable, the set of predictor I, M

variables, and the sampling plan.

P3. Preliminary analyses are conducted and their results reported. Specifically, the assumptions of M, R

multivariate normality and homogeneity of dispersion are checked, and missing data and outliers 

are addressed. Also, the name and version of the software package used are reported.

P4. The PDA is conducted by determining appropriate weights to form composites of predictor M, R

variables. These composites—the linear or quadratic classification functions (LCFs of QCFs, 

respectively)—allow for the classification of analysis units into groups.

P5. In addition to descriptive statistics (e.g., means and standard deviations) for each predictor R, D

variable in each group, results from preliminary data-screening analyses should be provided. A 

table of weights for the LCFs or QCFs and a classification table should be presented and discussed 

based on the specific predictive purpose of the study.

* Note: I = Introduction, M = Methods, R = Results, D = Discussion

Table 6.1b Desiderata for Descriptive Discriminant Analysis

Desideratum Manuscript

Section(s)*

D1. The selection of DDA is justified as an appropriate follow-up analysis to statistically significant I

MANOVA results for determining linear composites of outcome variables that produced group 

differences. Justifications are based on related literature and the study’s overall theoretical and 

descriptive purpose.

D2. The overall research design is described, including the grouping and outcome variables, and the I, M

sampling plan.

D3. Preliminary analyses are conducted and their results reported. Specifically, the assumptions of M, R

multivariate normality and homogeneity of dispersion are checked, statistically significant 

MANOVA results are reported, and missing data and outliers are addressed. Also, the name and 

version of the software package used are reported.

D4. The DDA is conducted by determining appropriate weights to form composites of outcome M, R

variables after statistically significant MANOVA results. These composites—the linear  

discriminant functions (LDFs)—assist in the interpretation of the substantive or theoretical  

dimensions on which the groups differ.

D5. In addition to descriptive statistics (e.g., means and standard deviations) for each outcome variable R, D

in each group, results from the MANOVA and other preliminary data-screening analyses should 

be provided. Tables including weights for the LDFs and structure r values should be presented and 

discussed based on the specific descriptive purpose of the study. In particular, structure r values 

should be used to help define the LDFs from a substantive/theoretical perspective as dimensions 

that are responsible for group differences.

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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P2. Study Design

With the study’s purpose in mind, a researcher’s next step is to determine a grouping variable (with
two or more levels) and a collection of predictor variables. Of course, these two variable types would
be considered in connection with the sampling plan used. This plan might involve a random sample,
a convenience sample, or a random subset of analysis units from some data base. Irrespective of sam-
pling method, the sampling plan must be explicitly described and the sample size must be justified.
Two sample size charts for a PDA study are given in Huberty and Olejnik (2006, pp. 310, 356). The
selection of predictors may be based on previous studies and/or a less theoretical and more practical
rationale, especially when an existing data set is used. 

P3. Preliminary Analysis

When considering a PDA, applied researchers should have in mind a data matrix. Such a matrix has N
rows and 1 + p columns, with the first column typically indicating membership in one of the J groups.
Although a data matrix would not be reported in a PDA study, it should be mentioned in the manu-
script that it was examined for missing data and obvious outliers, and how those latter issues were
addressed.

Another preliminary data investigation is the checking of PDA assumptions. First, are the predic-
tors continuous? If so, is there approximate multivariate normality in the J populations? If categorical
predictors are involved, see Huberty and Olejnik (2006, pp. 366–369). Second, are the J matrix deter-
minants approximately equal? A statistical test of determinant equality is available in the SAS and
SPSS programs; authors should clarify which package and which version was used for data analysis.

If one has approximately equal covariance matrices (as assessed, for example, using the Box M test),
then a linear prediction rule is used. This rule involves J linear composites of the p predictors; these are
linear classification functions (LCFs). If, on the other hand, the J matrices are judged not to be approx-
imately equal, then one uses J quadratic composites, or quadratic classification functions (QCFs).

Also, consideration of reliability and validity information of the predictor scores enhances the qual-
ity of a PDA study. As in most empirical research, investigators that utilize PDA are attempting to
make inferences to larger populations, and score reliability and validity are essential for such general-
izations (see Chapter 25, this volume).

Finally, another decision must be made after the data set to be analyzed is established. This decision
pertains to the prior probabilities of group memberships, reflecting the relative sizes of the J popula-
tions. For example, in a two-group context, if one corresponding population is estimated to be one-
half the size of the other, then the two prior probabilities would be .33 and .67. These probabilities
might be based on relative group sizes. Group sizes, however, may not correctly reflect the priors.
Previous research might serve as a determiner. More appropriately, the researcher might refer to some
experts in the connected field of study to set the prior probabilities.

P4. Final Analysis

With the prior probabilities set and judgment made regarding the equality of covariance matrices, a
prediction rule is determined. Using the resulting classification functions (LCFs or QCFs), a (J × J)
classification table would result. This table gives the number of hits (correct classifications) in the
main diagonal cells, and the number of misses (incorrect classifications) in the off-diagonal cells.
Based on this information, a judgment of classification accuracy of the obtained rule—linear or quad-
ratic—can be made, across all J groups or for each group.

It is strongly urged that an external classification rule, rather than an internal rule, be used. An 
internal rule is one that is based on the available data, and is then used to classify the same data set. An
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external rule is built on one data set and then applied to another data set. A popular external rule is the
leave-one-out (L-O-O) rule. With this approach, a classification rule is based on N–1 units, and used
to classify the single left-out unit. As such, N rules and classifications are carried out. This external rule
is easily conducted with the SAS DISCRIM software routine, either linear or quadratic. Note that 
the SPSS DISCRIMINANT routine can also be used for a linear L-O-O rule; but, the SPSS quadratic
L-O-O results are not correct. 

It might be of interest to assess the relative predictive value of the p predictor variables. This can be
easily accomplished by conducting p L-O-O PDAs, each with p – 1 predictors. Thus, one would obtain
p classification results. The hit rate of interest—for all J groups, or for a particular group—that is low-
est when a given predictor is deleted indicates that predictor is most important. Thus, a predictor
ordering may be established. Also, a predictor may be deleted for the final analysis if, when it is deleted,
the hit rate of interest is greater than when that predictor is included in the classification rule. This
method of variable deletion is strongly preferred over the stepwise strategies available in standard 
software packages. 

Finally, there are two types of estimated probabilities, each associated with an analysis unit. One is
a posterior probability, the estimated probability of a unit belonging to a particular group. This prob-
ability is used to assign a unit to a particular group and is equivalent to using a unit-to-group distance
measure, a Mahalanobis distance from a unit score vector to a group mean vector (i.e., a centroid).
The other type of estimated probability is a typicality probability. This probability reflects the propor-
tion of units in a group that have predictor scores near the mean scores for the group; they are reported
in the SPSS DISCRIMINANT output but not in the SAS DISCRIM output. 

P5. Reporting and Discussing PDA Results

As mentioned earlier, the mean and standard deviation (or variance) for each predictor in all groups
should be reported in a table. This table can also include the p × p error (or pooled) correlation matrix
(see, for example, Huberty & Olejnik, 2006, p. 119). Also, the results for the test of equality of the J
covariance matrices should be reported; supplementally, the (natural) logarithms of the determinants
of the J covariance matrices might be reported as well (see Huberty, 2002, pp. 587–588). Finally,
authors should report if one or more of the original p predictors were deleted, based on indications
from the all-but-one variable L-O-O analyses that the hit rate of interest increased when a predictor is
left out of the analysis.

Once the final data set is determined, a PDA is conducted; an abundance of information is available,
much of which is important in reporting results. To start, it should be reported how outliers were dealt
with, if present. The posterior probabilities should also be examined to see if there are some “in-
doubt” analysis units; that is, are there some units that are as close to one group center as to another
group center? The score vectors of such units might lead to the discovery of some particular unit
“types,” that is, the score vectors of a collection of in-doubt units should be examined to determine if
some unique characteristic(s) of these analysis units exist. Also, so that in-doubt units are excluded
from affecting the hit-rates, a THRESHOLD command can be used with the SAS DISCRIM routine
(for more detail, see Huberty & Olejnik, 2006, pp. 307–309). Having addressed any in-doubt units, a
classification table is reported and discussed. The discussion should pertain to hit rates on the main
diagonal, and include a comparison of these values to hit rates expected just by chance (see Huberty &
Olejnik, 2006, Ch. 16). An example of a linear L-O-O classification table is given in Table 6.2. From
this table, the total-group hit rate is (16 + 99 + 13)/264�.485. Only for Group 2 is the hit-rate
respectable (.811).

A reasonable question is whether or not an obtained hit rate, individual-group or total-group, is
better than chance. For details of assessing the effectiveness of classification rules, see Huberty and
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Olejnik (2006, Chapter 16). In general, it is advisable to consider chance assessment in every PDA
study.

The weights for each of J LCFs or QCFs should be also reported, or at least be made available
through the author. The reason for this suggestion is that these weights might be used for predic-
tion/classification by researchers who have data on the same set of p predictor variables. This allows
for potential cross-validation of the PDA results.

Finally, any manuscript in which a PDA is reported should include a restatement of the 
predictive and practical purpose of the study as part of the relevant interpretive discussion. The clas-
sification results should also be summarized and related to previous relevant prediction studies. A
review of some occurring problems in reporting the use of PDA is given in Huberty and Hussein
(2003).

D1. Analysis Purpose

Suppose a researcher has a total of N analysis units contained in J groups drawn respectively from J
populations, and the intent is to infer if there are any differences among the populations with respect
to a collection of p outcome variables. The basic analysis for this context is a multivariate analysis of
variance (MANOVA; see Chapter 23, this volume). Suppose, also, that the MANOVA results indi-
cated that there are, indeed, significant group differences; that is, a small p-value and a large effect-size
are associated with the MANOVA analysis. It should be noted that for J > 2, group differences may be
assessed across all J groups, for pairs of groups, or for some multiple-group contrast(s). It is for any of
these three contexts that a descriptive discriminant analysis (DDA) would be appropriate. The purpose
of this MANOVA/contrast follow-up analysis is to provide a description of the resulting group differ-
ences. Authors should use existing literature to explicate the largely theoretical purpose of DDA, as
opposed to the largely practical purpose of PDA (see Desideratum P.1).

D2. Study Design

The design of a study that involves a DDA is basically the same as that involving a PDA (see
Desideratum P.2), but with three important differences. First, the role of predictors and outcomes 
is reversed relative to PDA, such that the p variables involved are outcome variables while the 
group membership information serves in a predictive role. Second, in a DDA context, there may be
more than one grouping variable as in, for example, a two-factor design (see Chapter 1, this volume).
Third, the collection of p outcome variables in a DDA context, in some way, form a substantive or 
theoretical construct, whereas in a PDA context that is not the case. That is, one purpose of DDA 
is to identify some outcome variable construct or constructs to which group differences may be 
attributed.

Table 6.2 A Linear L-O-O Classification Table

Predicted Group

1 2 3 n
j

1 16 (.211) 55 5 76

Actual Group 2 12 99 (.811) 11 122

3 6 47 13 (.197) 66

Total 34 201 29 264 = N

Note: Group hit rates are in parentheses
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D3. Preliminary Analysis

To start, the data matrix is to be examined for missing and obvious outlying measures on the p outcome
variables. A basic DDA analysis is typically a follow-up to statistically significant MANOVA results. The
DDA techniques discussed here pertain to one-factor MANOVA designs (but see Huberty & Olejnik,
2006, Chapter 8, for multiple-factor designs) with N analysis units, J groups, and p outcome variables.

If there is some interest in outcome variable deletion, stepwise analysis methods should not be used;
see Huberty and Olejnik (2006, pp. 103–106) for a discussion of an appropriate deletion method. For
the original or resulting set of J outcome variables, there are c = min(p, J – 1) linear composites of the
p outcome variables, the linear discriminant functions (LDFs). For example, with p = 8 and J = 3, there
are c = 2 LDFs to consider in describing group differences that were judged to be statistically signifi-
cant based on MANOVA results.

D4. Final Analysis

What is statistically determined to this point is a matrix with p rows and c columns. Entries in this
matrix are the p outcome variables and c sets of LDF weights. [There are statistical tests to determine
the number of LDFs to retain for interpretation purposes (Huberty & Olejnik, 2006, pp. 89–91).]
With p = 8 and J = 3, suppose the c = 2 LDFs are to be retained for interpretation purposes. What is
then examined is a two-dimensional LDF plot of the three group LDF centroids; see Figure 6.1. In this
plot, LDF

1
separates G

1
and G

2
from G

3
, while LDF

2
separates G

1
and G

3
from G

2
.

An important aspect of the final analysis pertains to the definitions of the LDFs that are retained
based on the statistical tests performed. To define or label the retained LDFs, structure r values are
obtained (via SAS DISCRIM or SPSS DISCRIMINANT). These structure r values are the p correla-
tions for each of the LDFs with the outcome variables (see Huberty & Olejnik, 2006, p. 8, for more
detail); they should be reported in manuscripts utilizing DDA (as in Table 6.3).

D5. Reporting DDA Results

For descriptive purposes, the mean and standard deviation (or variance) for each outcome variable in
all groups are to be reported in a table. If some outcome variables were deleted, a rationale should be
given. This information should be supplemented with a p × p error correlation matrix. The computer
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Figure 6.1 LDF Plot.
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results for the test of equality of the J covariance matrices should also be reported; this may include the
determinants or the (natural) logarithm of these J matrices.

A DDA would not be conducted unless statistically significant MANOVA results were found. So,
the MANOVA p-value and effect-size value need to be reported based on the N analysis units and p
outcome variables (unless a rationale is provided for deleting some variables).

It might be of interest to assess certain group contrast effects, such as pairwise group contrasts or
more complex contrasts. The resulting pairwise test statistic and effect-size estimate should be
reported. For a pairwise group comparison there is a single LDF. With J > 2 groups there is a maximum
of J – 1 LDFs. In the latter situation, a test of dimensionality would be conducted and reported. This
determines the number of LDFs to consider in the reporting of DDA results. Suppose two LDFs are to
be considered. Then, an LDF plot should be reported. An example of such a plot is given in Figure 6.1.
For this hypothetical example it seems obvious that LDF

1
accounts for the difference of Group 3 from

Groups 1 and 2. With respect to LDF
2
, Group 2 appears to be different from Groups 1 and 3.

From a substantive or theoretical standpoint, it is of interest to identify the underlying constructs
represented by the two LDFs. Because this identification is based on structure r values, authors should
report and interpret a p × c table of these correlations, as illustrated in Table 6.3. The interpretation is
made by examining the structure r values for each LDF (see the bold values in Table 6.3). For example,
LDF

1
is defined by variables X

2
, X

4
, X

5
, and X

6
, while LDF

2
is defined by variables X

1
, X

3
, and X

8
. The

labeling of LDF
1

is based on what underlying construct is identified by the combination of variables
X

2
, X

4
, X

5
, and X

6
. Likewise, the label for LDF

2
is based on variables X

1
, X

3
, and X

8
. 

Finally, any manuscript in which a DDA is reported should include a restatement of the theoretical
and descriptive purpose of the study as part of the relevant interpretive discussion. The associated
MANOVA results should be summarized, and the resulting LDF structure should be related to previ-
ous theoretical research. 
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1

LDF
2

X
1

–.03 .51

X
2

.58 .03

X
3

.19 –.46

X
4

–.61 .12

X
5

.48 .23

X
6

.63 .18

X
7

.29 .09

X
8

.07 .55





7
Effect Sizes and Confidence Intervals1

Geoff Cumming and Fiona Fidler

An effect size (ES) is simply an amount of something of interest. It can be as simple as a mean, a per-
centage increase, or a correlation; or it may be a standardized measure of a difference, a regression
weight, or the percentage of variance accounted for. Most research questions in the social sciences are
best answered by finding estimated ESs, meaning point estimates of the true ESs in the population.
Grissom and Kim (2005) provided a comprehensive discussion of ESs, and ways to calculate ES 
estimates.

A confidence interval (CI), most commonly a 95% CI, is an interval estimate of a population ES. It is
an interval that extends above and below the point ES estimate; it indicates the precision of the point
estimate. The margin of error (MOE) is the length of one arm of a CI. The most common CIs are sym-
metric, and for these the MOE is half the total width of the CI. The MOE is our measure of precision.
Cumming (2007a) provided a brief overview of CIs and their meaning, and Cumming and Finch
(2005)2 provided an introduction, explained the advantages of CIs, and described a number of rules of
eye to assist the understanding and interpretation of CIs. Smithson (2002) provided a more detailed
account of CIs.

In the social sciences, statistical analysis is still dominated by null hypothesis significance testing
(NHST). However, there is extensive evidence that NHST is poorly understood, frequently misused,
and often leads to incorrect conclusions. It is an urgent research priority that social scientists shift
from relying mainly on NHST to using better techniques, particularly those including ESs, CIs, and
meta-analysis (MA). The best reference on statistics reform is the excellent book by Kline (2004).
Wilkinson and the Task Force on Statistical Inference (TFSI) (1999) is a further source of good advice.
Our aim in this chapter is to assist authors and manuscript reviewers to make the vital transition from
over-reliance on NHST to more informative methods, including ESs, CIs, and MA. 

1. Formulation of Main Questions as Estimation

An astronomer wishes to know the age of the Earth; a chemist measures the boiling point of an inter-
esting new substance. These are the typical questions of science. Correspondingly, in the social sci-
ences we wish to estimate how seriously divorce disrupts adolescent development, or the effect of a
type of psychotherapy on depression in the elderly. The chemist reports her result as, for example,
27.35 ± 0.02°C, which signals that 27.35 is the point estimate of the boiling point, and 0.02 is the 
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precision of that estimate. Correspondingly, it is most informative if the psychologist reports the effect
of the psychotherapy as an ES—the best estimate of the amount of change the therapy brings about—
and a CI (e.g., 95%) to indicate the precision of that estimate. This approach can be contrasted with
the less informative dichotomous thinking (there is, or is not, an effect) that results from NHST.

In expressing their aims, authors should use language such as:

• We estimate the extent of ...
• We will assess the influence of ... on ...
• Our aim is to find how large an effect ... has on ...
• We investigate the nature of the relation between ... and ...
• We will estimate how well our model fits these data ...

Expressions like these naturally lead to answers that are ES estimates. Contrast these with state-
ments like, “We investigate whether the new treatment is better or worse than the old”; “We examine
whether there is a relation between ... and ....” These statements suggest that a mere dichotomous 
yes-or-no answer would suffice. Almost certainly the new treatment has some effect; our real concern
is whether that effect is tiny, or even negative, or is positive and usefully large. It is an estimate of ES
that answers these latter questions.

Examine the wording used to express the aims and main questions of the manuscript, especially in
the abstract and introduction, but also in the title. Replace any words that convey dichotomous think-
ing with words that ask for a quantitative answer.

2. Previous Literature

Traditionally, reviews of past research in the social sciences have focused on whether previously pub-
lished studies have, or have not, found an effect. A review, or the Introduction section to a manuscript,
may reduce to a mere list of studies that found a statistically significant effect, versus those whose

Table 7.1 Desiderata for Effect Sizes and Confidence Intervals

Desideratum Manuscript

Section(s)*

1. The main questions to be addressed are formulated in terms of estimation and not simply null I

hypothesis significance testing.

2. Previous research literature is discussed in terms of effect sizes, confidence intervals, and from a I

meta-analytic perspective.

3. The rationale for the experimental design and procedure is explained and justified in terms of I, M

appropriateness for obtaining precise estimates of the target effect sizes.

4. The dependent variables are described and operationalized with the aim that they should lead to M

good estimates of the target effect sizes. 

5. Results are presented and analyzed in terms of point estimates of the effect sizes. R

6. The precision of effect sizes is presented and analyzed in terms of confidence intervals. R

7. Wherever possible, results are presented in figures, with confidence intervals. R, D

8. Effect sizes are given substantive interpretation. D

9. Confidence intervals are given substantive interpretation. D

10. Meta-analytic thinking is used to interpret and discuss the findings. D

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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results failed to reach statistical significance. That is an impoverished and even misleading approach,
which ignores the sizes of effects observed, and the fact that many negative results are likely to have
been Type II errors attributable to low statistical power.

The American Psychological Association (APA) Publication Manual stated, “It is almost always
necessary to include some measure of effect size in the Results section” (APA, 2010, p. 34). If an edu-
cational intervention increased mean reading age by 6.5 months, then 6.5 is our point estimate of the
ES for that intervention. The Manual further stated, “Confidence intervals ... can be an extremely
effective way of reporting results. Because confidence intervals combine information on location and
precision ..., they are, in general, the best reporting strategy” (APA, p. 34). The above educational
study may have found the increase to be 6.5 months of reading age, with a 95% CI of [6.5 ± 3.0], or
[3.5, 9.5]. Narrow CIs indicate more precise estimates, and so the shorter a CI the better. 

Past research should, wherever possible, be discussed in terms of the point and interval estimates
obtained for the effects of interest. To researchers in many disciplines, that would not need stating. In
the social sciences, however, many articles rely heavily on NHST, omit vital information about ES esti-
mates, and conclude only that some intervention did or did not make a statistically significant differ-
ence (e.g., p < .05). Penetrating criticisms of NHST have been published by leading social scientists
over more than half a century (e.g., Meehl, 1978), and advocacy of alternative techniques has been
growing in volume and detail, especially in recent years (e.g., Fidler & Cumming, 2007). Other disci-
plines, notably medicine, have traveled at least part way along the road of statistical reform (Fidler,
Cumming, Burgman, & Thomason, 2004). Kline (2004) identified 13 erroneous beliefs about p values
and their use, and explained why NHST causes so much damage. He summarized the statistical
reform debate, and proposed a well-informed and balanced approach to improving statistical practice
by shifting from reliance on NHST to widespread use of ESs and CIs, together with MA. We recom-
mend Kline’s book; its position is similar to the position we take in this chapter.

Point estimates of ESs encompass a diversity of types of measures. Most simply, an ES is a mean or
other measurement in the original measurement units: The average extent of masked priming was 27
ms; the mean improvement after therapy was 8.5 points on the Beck Depression Inventory; the regres-
sion of annual income against time spent in education was 3,700 dollars/year. Alternatively, an ES
measure may be unit-free: After therapy, 48% of patients no longer met the criteria for the initial clin-
ical diagnosis; the correlation between hours of study and final grade was .52; the odds ratio for risk of
unemployment in young adults not in college is 1.4, for males compared with females. Some ES meas-
ures indicate percentage of variance accounted for, such as R2, as often reported in multiple regression
(Howell, 2002, Ch. 15), and η2 or ω2, as often reported with analysis of variance (Howell, Ch. 11). An
important class of ES measures are standardized ESs, including Cohen’s d and Hedges’ g, which are dif-
ferences—typically between an experimental and a control group—measured in units of some rele-
vant standard deviation (SD), for example the pooled SD of the two groups. Cumming and Finch
(2001) explained Cohen’s d and how to calculate CIs for d. Grissom and Kim (2005) is an excellent
source of assistance with the calculation and presentation of a wide variety of ES measures.

The introduction to the manuscript should focus on the ES estimates reported in past research, to
provide a setting for the results to be reported. It is often helpful to combine the past estimates, and
meta-analysis (MA) allows that to be done quantitatively. Hunt (1997) gave a general introduction to
MA, and explanation of its importance. Lipsey and Wilson (2001) provided an overview of how a MA
should be conducted, and Chapter 19 of this volume discusses MA in more detail. 

Figure 7.1 is a forest plot, which presents the hypothetical results of six past studies, and their com-
bination by MA. The result of each study is shown as a point estimate, with its CI. The result of the MA
is a weighted combination of the separate point estimates, also shown with its CI. This CI on the result
is usually much shorter, indicating greater precision, as we would expect given that results are being
combined over multiple studies. Some medical journals now routinely require the introduction to
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each article to cite a MA—or wherever possible to carry out and report a new MA if none is available—
as part of the justification for undertaking new research. That is a commendable requirement. Forest
plots summarize a body of research in a compact and clear way; they are becoming common and
familiar in medicine, and should be used more widely. Considering a number of estimates in combi-
nation, eventually including new results, is meta-analytic thinking, which we discuss below.

3. Experimental Design and the Precision of Estimates

Traditionally, statistical power estimates have been used to guide selection of the sample size N
required if a planned study is to have a reasonable chance of identifying effects of a specified size
(assuming they exist). This approach requires an estimate of error variability, preferably based on past
research or a pilot study, and specification of what size of effect is likely, or is of theoretical interest.
The TFSI stated that, “Because power computations are most meaningful when done before data are
collected ..., it is important to show how effect-size estimates [to be used in power calculations] have
been derived from previous research and theory” (Wilkinson et al., 1999, p. 596).

The power approach was advocated by Jacob Cohen, and his book (Cohen, 1988) provided tables
and advice (see also Chapter 24, this volume). An Internet search readily identifies freely available
software to carry out power calculations, including G*Power (http://www.psycho.uni-duesseldorf.
de/aap/ projects/gpower/). The power approach can be useful, but statistical power is defined in the
context of NHST, and has meaning only in relation to a specified null hypothesis. Null hypotheses are
almost always statements of zero effect, zero difference, or zero change. Rarely is such a null hypothe-
sis at all plausible, and so it a great advantage of CIs that no null hypothesis need be formulated. In
addition, CIs offer an improved way to do the job of statistical power.

The TFSI recognized that CI width, or the MOE, is the appropriate measure of precision, or of the
sensitivity of the experiment: “Once the study is analyzed, confidence intervals replace calculated
power in describing results” (Wilkinson et al., 1999, p. 596). An important advance in statistical 
practice is routine use of precision, meaning the MOE, in planning a study, as well as in discussion and

MA1
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Note:  A forest plot, showing the results of six fictitious studies, each as a mean 
ability score, with 95% CI. These are the upper six dots, whose sizes and line 
thicknesses indicate sample size and study variance: Large dots and heavy lines 
signal large sample size and small variance and, therefore, a high weighting in the 
meta-analysis. MA1 is the weighted combination mean for those six studies, with 
its 95% CI. The hypothetical new result is similarly displayed as a mean and CI, 
with size again indicating weight in the meta-analysis. MA2 is the weighted 
combination mean for all seven studies, with its 95% CI.

Figure 7.1 A Forest Plot.
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interpretation of results. Di Stefano, Fidler, and Cumming (2005) described such an alternative
approach that avoids NHST and the need to choose a null hypothesis. It is based on calculation of what
sample size is needed to give a CI a chosen expected width: How large must N be for the expected 95%
CI to be no wider than, for example, 60 ms? Given a chosen experimental design, what sample size is
needed for the expected MOE to be 0.2 units of Cohen’s d? As with power, an estimate of variability is
usually required, but no null hypothesis need be stated. 

Justification of the experimental design and chosen sample size should appear as part of the ration-
ale at the end of the Introduction section, or in the Methods section. It is often omitted from journal
articles, having been overlooked by authors and reviewers, or squeezed out by strict word limits.
Providing such justification is, however, especially important in cases where using too small a sample
is likely to give estimates so imprecise that the research is scarcely worth doing, and may give mislead-
ing results. It is ethically problematic to carry out studies likely to give such inaccurate results. The
converse—studies with such a large sample of participants that effects are estimated with greater pre-
cision than is necessary—are also ethically problematic, although these tend to be less common. The
best way to justify a proposed design and sample size is in terms of the precision of estimates—the
expected MOE—likely to be given by the results.

4. Dependent Variables

Specifying the experimental questions in terms of estimation of ESs leads naturally to choice of the
dependent variables (DVs), or measures, that are most appropriate for those questions. Choose the
operationalization of each DV that is most appropriate for expressing the ESs to be estimated, and that
has adequate measurement properties, including reliability and validity. The aim is to choose meas-
ures that (1) relate substantively most closely to the experimental questions, and therefore will give
results that are meaningful and interpretable, and (2) are most likely to give precise estimates of the
targeted population effects.

In the Introduction section there may be discussion of methods used in past research, and this may
help guide the choice of measures. In the Methods section there may be reference to published articles
that provide information about the development of particular measures, and their psychometric proper-
ties. One important consideration is that the results to be reported should be as comparable as possible
with previous research, and likely future research, so that meta-analytic combination over studies is as
easy as possible. It can of course be a notable contribution to develop and validate an improved measure,
but other things being equal it is advantageous to use measures already established in a field of research.

Choice of measures is partly a technical issue, with guidance provided by psychometric evidence of
reliability and validity in the context of the planned experiment. It is also, and most importantly, a
substantive issue that requires expert judgment by the researchers: The measures must tap the target
concepts, and must give estimates of effects that can be given substantive and useful interpretation in
the research context.

5. Results: Effect Sizes 

The main role of the Results section is to report the estimated ESs that are the primary outcomes of the
research. We mentioned in Desideratum 2 the wide range of possible ES measures, and emphasized
that many of these are as simple and familiar as means, percentages, and correlations. In many cases it
is possible to transform one ES measure into a number of others; Kirk (1996, 2003) provided formu-
las for this purpose. A correlation, for example, can be transformed into a value of Cohen’s d. It is a
routine part of MA to have to transform ES estimates reported in a variety of ways into some common
measure, as the basis for conducting the MA. In medicine, odds ratio or log odds ratio are frequently
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used as the common ES measure, but in the social sciences Cohen’s d, or some other standardized
measure of difference (such as Hedges’ g) is more frequently chosen as the basis for MA. 

The authors of a manuscript need to consider which ES measures to report, bearing in mind ease of
substantive interpretation, and the needs of future researchers wishing to include the results in some
future MA. Often it will be best to present results in the original measurement scale of a DV, for sim-
plicity and ease of interpretation, and also in some standardized form to assist both the comparison of
results over different studies and the conduct of future MA. For example, an improvement in depres-
sion scores might be reported as mean change in score on the Beck Depression Inventory (BDI) because
such scores are well known and easily interpreted by researchers and practitioners in the field. However,
if the improvement is also reported as a standardized score the result is easily compared with, or com-
bined with, the results of other studies of therapy, even where they have used other measures of depres-
sion. Similarly, a regression coefficient could be reported both in raw form, to assist understanding and
interpretation, and as a standardized value, to assist comparison across different measures and differ-
ent studies. In any case, it is vital to report SDs, and mean square error values, so that later meta-
analysts have sufficient information to calculate whichever standardized ES measures they require.

A standardized measure of difference, such as Cohen’s d, can be considered simply as a number of
standard deviations. It is in effect a z score. It is important to consider which SD is most appropriate to
use as the basis for standardization. Scores on the BDI, and changes in BDI scores, could be standard-
ized against a published SD for the BDI. The SD unit would then be the extent of variation in some BDI
reference population. That SD would have the advantage of being a stable and widely available value.
Similarly, many IQ measures are already standardized to have a SD of 15. Alternatively, a change in
BDI score could be expressed in units of the pre-test SD in a sample of participants. That would be a
unit idiosyncratic to a specific study, and containing sampling error, but it might be chosen because it
applies to the particular patient population being studied, rather than the BDI reference population.
As so often is the case in research, informed judgment is needed to guide the choice of SD for stan-
dardization. When a manuscript reports a Cohen’s d value, or any other standardized measure, it is
essential that it makes clear what basis was chosen for standardization; when any reader interprets a
standardized measure it is critical to have clearly in mind what SD units are being used.

It may be objected that much research has the aim not of estimating how large an effect some inter-
vention has, but of testing a theory. However, theory testing is most informative if considered as a
question of estimating goodness of fit, rather than of rejecting or not rejecting a hypothesis derived
from the theory. A goodness of fit index, which may be a percentage of variance, or some other meas-
ure of distance between theoretical predictions and data, is an ES measure, and point and interval esti-
mates of goodness of fit provide the best basis for evaluating how well the theory accounts for the data
(Velicer et al., 2008). 

6. Results: Confidence Intervals

Wilkinson et al. (1999) advised that: “Interval estimates should be given for any effect sizes involving
principal outcomes. Provide intervals for correlations and other coefficients of association or variation
whenever possible” (p. 599). The Publication Manual (APA, 2010) also recommended CIs: “Whenever
possible, provide a confidence interval for each effect size reported to indicate the precision of estima-
tion of the effect size” (p. 34) It specified (p. 117) the following style for reporting CIs in text.

At the first occurrence in a paragraph write: “The mean decrease was 34.5 m, 95% CI: [12.0, 57.0],
and so. ...” On later occasions in the paragraph, if the meaning is clear write simply: “The mean was 4.7
cm [–0.8, 10.2], which implies that ...,” or, “The means were 84% [73, 92] and 65% [53, 76], respec-
tively ...,” or, “The correlation was .41 [.16, .61]. ...” The units should not be repeated inside the square
brackets. Note that in the last example, which gives the 95% CI on Pearson’s r = .41, for N = 50, the
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interval is not symmetric about the point estimate; asymmetric intervals are the norm when the vari-
able has a restricted range, as in the cases of correlations and proportions. 

If an author elects to use the conventional confidence level of 95%, this should be stated the first
time a CI appears in a paragraph, and the simple bracket format used thereafter to signal that the val-
ues in the brackets are the lower and upper limits respectively of the 95% CI. We recommend general
use of 95% CIs, for consistency and to assist interpretation by readers, but particular traditions or spe-
cial circumstances may justify choice of 99%, 90%, or some other CIs. If an author elects to use CIs
with a different level of confidence, then that should be stated in every case throughout the manu-
script, for example: “The mean improvement was 1.20 scale points, 90% CI [–0.40, 2.80].”

In a table, 95% CIs may similarly be reported as two values in square brackets immediately follow-
ing the point estimate. Alternatively, the lower and upper limits of the CIs may be shown in separate
labeled columns.

Altman, Machin, Bryant, and Gardner (2000) explained how to calculate CIs for a range of variables
widely used in medicine, and provided software to assist. The variables covered include correlations,
proportions, odds ratios, and regression coefficients. Cumming and Finch (2001) explained how to
calculate CIs for Cohen’s d. Grissom and Kim (2005) also provided advice on how to calculate CIs for
many measures of ES.

7. Figures with CI Error Bars

Wilkinson et al. (1999) advised that authors should: “In all figures, include graphical representations of
interval estimates whenever possible” (p. 601). We agree, and Cumming and Finch (2005) discussed the
presentation and interpretation of error bars in figures. A serious problem is that the familiar graphic
used to display error bars in a figure, as shown in Figure 7.2, can have a number of meanings. The extent
of the bars could indicate SD, standard error (SE), a 95% CI, a CI with some other level of confidence,
or even some other measure of some variability. Cumming, Fidler, and Vaux (2007) described and dis-
cussed several of these possibilities. The most basic requirement is that any figure with error bars must
include a clear statement of what the error bars represent. A reader can make no sense of error bars 
without being fully confident of what they show, for example 95% CIs, rather than SDs or SEs. 

CIs are interval estimates and thus provide inferential information about the ES of interest. CIs are
therefore almost always the intervals of choice. In medicine it is CIs that are recommended and routinely
reported. In some research fields, however, including behavioral neuroscience, SE bars (error bars that
extend one SE below and one SE above a mean) are often shown in figures. Unless sample size is less than
about 10, SE bars are about half the width of the 95% CI, so it is easy to translate visually between the two.
But SE bars are not accurately and directly inferential intervals, so CIs should almost always be preferred.

Cumming et al. (2007) found that, in leading psychology journals, from 1998 to 2006 there was an
increase from 11% to 38% of articles that included at least one figure with error bars. That is a dramatic
and welcome increase. However, even recently, 47% of those articles showed SE bars, and 34% did not
make clear what the error bars represented. It is encouraging that many more authors are now includ-
ing error bars in figures, but it remains a major problem that they often do not appreciate the desirabil-
ity of using CIs, and the critical importance of making clear in every case what the error bars represent.

Figure 7.2 shows means with CIs for a hypothetical two-group experiment with a repeated measure.
A treatment group was compared with a control group, and three applications of an anxiety scale 
provided pre-test, post-test, and follow-up measures. The figure illustrates several important issues.
First, a knowledgeable practitioner might feel that the CIs are surprisingly and discouragingly wide,
despite the reasonable group sizes (N = 23 and 26). It is an unfortunate reality across the social sciences
that error variation is usually large. CI width represents accurately the uncertainty inherent in a set of
data, and we should not shoot the messenger by being critical of CIs themselves for being too wide. The
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problem is NHST, with its simplistic reject or don’t reject outcome, which may delude us into a false
sense of certainty, when in fact much uncertainty remains. Cohen (1994) said, “I suspect that the main
reason they [CIs] are not reported is that they are so embarrassingly large!” (p. 1002). We should respond
to the message of large error variation by making every effort to improve experimental design and use
larger samples, but must acknowledge the true extent of uncertainty by reporting CIs wherever possible.

Cumming and Finch (2005) provided rules of eye to assist interpretation of figures such as Figure
7.2. For means of two independent groups, the extent of overlap of the two 95% CIs gives a quick visual
indication of the approximate p value for a comparison of the means. If the intervals overlap by no
more than about half the average of the two MOEs, then p < .05. If the intervals have zero overlap—
the intervals touch end-to-end—or there is a gap between the intervals, then p < .01. In Figure 7.2, the 
control and treatment means at pre-test, for example, overlap extensively, and so p is considerably
greater than .05. At post-test, however, the intervals have only a tiny overlap, so at this time point p for
the treatment vs. control comparison is approximately .01. At follow-up, overlap is about half the
length of the average of the two overlapping arms (the two MOEs), and so p is approximately .05.

It is legitimate to consider overlap when the CIs are on independent means, but when two means
are paired or matched, or represent a repeated measure, overlap of intervals is irrelevant to the 
comparison of means, and may be misleading. Further information is required, namely the 
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correlation between the two measures, or the SD of the differences. For this reason it is not possible to
assess in Figure 7.2 the p value for any within-group comparison, such as the pre-test to post-test
change for the treatment group. Belia, Fidler, Williams, and Cumming (2005) reported evidence that
few researchers appreciate the importance of the distinction between independent and dependent
means when interpreting error bars. If CIs in figures are to be used to inform the interpretation of
data—as we advocate—it is vital that figures make very clear the status of each independent variable.
For between-subject variation, or independent means, intervals can be directly compared. For within-
subject variation, a repeated measure, or dependent means, intervals may not be compared. 

This important issue was illustrated further by Cumming and Finch (2005). If it seems puzzling,
think of it in terms of the two familiar t tests: For two independent means, the independent t test is
based on variation within the two groups; this variation determines the two CIs, and so those CIs are
informative about the comparison of the two means. For paired data, by contrast, the paired t test is
based on the variation in the paired differences, which is often in practice much smaller than the vari-
ation within either group. The variation in the differences is not represented by the CIs on the two
means, and so these intervals are irrelevant to assessment of the mean difference—which can, how-
ever, be assessed if we have the CI on the difference, as shown in Figure 7.3 for the difference in each
group between pre-test and post-test.
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It is a problem that many current software packages do not sufficiently support the preparation of
figures with error bars. In Figure 7.2, for example, the means are slightly offset horizontally so that all
CIs can be seen clearly, but few packages make it easy to do this. One solution is to use Microsoft Excel.
Figure 7.2 was prepared as an Excel scatterplot, which requires the horizontal and vertical coordinates
for each point to be specified, so means can readily be displayed with a small horizontal offset.

In summary, the Results section should report point and interval estimates for the ESs of interest.
Figures, with 95% CIs shown as error bars, should be presented wherever that would be informative.
Every figure must make clear what error bars represent, and must describe the experimental design so
a reader can understand whether each independent variable varies between or within subjects.

8. Interpretation of Effect Sizes 

A primary purpose of the Discussion section is to present a substantive interpretation of the main ES
estimates, and to draw out the implications. One unfortunate aspect of NHST is that the term signifi-
cant is used with a technical meaning—a small p value was obtained—whereas in common language
the word means “important.” Kline (2004) recommended the word simply be dropped, so that if a
null hypothesis is rejected we would say “a statistical difference was obtained.” The common practice
of saying “a significant difference was obtained” almost insists that a reader regard the difference as
important, whereas it may easily be small and of trivial importance, despite yielding a small p value.
Judging whether an ES is large or important is a key aspect of substantive interpretation, and requires
specialist knowledge of the measure and the research context. We recommend that, if reporting
NHST, either avoid the term “significant,” as Kline recommended, or make its technical meaning
clear by saying “statistically significant.” When discussing the importance of a result, use words other
than “significant,” perhaps including “clinically important,” “educationally important,” or “practi-
cally important.”

Cohen (1988, pp. 12–14) discussed the need for reference standards for the interpretation of com-
mon standardized and unit-free ES measures. He suggested standards that have become well known
and widely used. For example, for Pearson correlation he suggested that values of .1, .3, and .5 can be
regarded as small, medium, and large, respectively; and for Cohen’s d he suggested similar use of .2, .5,
and .8. An advantage of such standards is that ESs can be compared across different measures. He
argued that the values and labels he chose are likely to be judged reasonable in many situations in the
social sciences, but he stated clearly that they were arbitrary, and “were set forth throughout with
much diffidence, qualifications, and invitations not to employ them if possible” (p. 532). Sometimes
numerically tiny differences may have enormous theoretical importance, or indicate a life-saving
treatment of great practical value. Conversely, a numerically large effect may be unsurprising and of
little interest or use. Knowledgeable judgment is needed to interpret ESs (How large? How impor-
tant?), and a Discussion section should give reasons to support the interpretations offered, and suffi-
cient contextual information for a reader to come to an independent judgment.

9. Interpretation of Confidence Intervals 

The correct way to understand the level of confidence, usually 95%, is in relation to indefinitely many
replications of an experiment, all identical except that a new random sample is taken each time. If the
95% CI is calculated for each experiment, in the long run 95% of these intervals will include the pop-
ulation mean μ, or other parameter being estimated. For our sample, or any particular sample, the
interval either does or does not include μ, so the probability that this particular interval includes μ is 0
or 1, although we will never know which. It is misleading to speak of a probability of .95, because that
suggests the population parameter is a variable, whereas it is actually a fixed but unknown value.
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Here follow some ways to think about and interpret a 95% CI (see also Cumming & Finch, 
2005): 

• The interval is one from an infinite set of intervals, 95% of which include μ. If an interval does
not contain μ, it probably only just misses.

• The interval is a set of values that are plausible for μ. Values outside the interval are relatively
implausible—but not impossible—for μ. (This interpretation may be the most practically
useful.)

• We can be 95% confident that our interval contains μ. If in a lifetime of research you calculate
numerous 95% CIs in a wide variety of situations, overall, 95% of these intervals will include
the parameters they estimate, and 5% will miss.

• Values around the center of the interval are the best bets for μ, values towards the ends (the
lower and upper limits) are less good bets, and values just outside the interval are even less
good bets for μ (Cumming, 2007b).

• The lower limit is a likely lower bound of values for μ, and the upper limit a likely upper
bound.

• If the experiment is replicated, there is on average an 83.4% chance that the sample mean (the
point estimate) from the replication experiment will fall within the 95% CI from the first
experiment (Cumming, Williams, & Fidler, 2004). In other words, a 95% CI is approximately
an 83% prediction interval for the next sample mean.

• The MOE is a measure of precision of the point estimate, and is the likely largest error of esti-
mation, although larger errors are possible.

• If a null hypothesized value lies outside the interval, it can be rejected with a two-tailed test at
the .05 level. If it lies within the interval, the corresponding null hypothesis cannot be rejected
at the .05 level. The further outside the interval the null hypothesized value lies, the lower is
the p value (Cumming, 2007b). 

The last interpretation describes the link between CIs and NHST: Given a CI it is easy to note
whether any null hypothesized value of interest would be rejected, given the data. Note, however, 
the number and variety of interpretations of a CI that make no reference to NHST. We hope these 
will become the predominant ways researchers think of CIs, as CIs replace NHST in many 
situations.

Authors may choose from the options above to guide their use of CIs to interpret their results. They
may, for example, give substantive interpretation of the point estimate, and of the lower and upper
limits of the CI, and thus cover the likely full range of plausible values for the parameter being esti-
mated. Cumming et al. (2007) found that reporting of CIs in leading psychology journals increased
from 4% to 11% of articles, between 1998 and 2005–2006. However, in only 24% of cases where CIs
were reported were the intervals interpreted, or used explicitly to support data interpretation. As the
Publication Manual recommends, “wherever possible, base discussion and interpretation of results on
point and interval estimates” (APA, 2010, p. 34).

Figure 7.3 shows for the two groups the mean differences between pre-test and post-test, for the
data presented in Figure 7.2. The figure includes 95% CIs on those differences, and there are reference
lines that indicate the amounts of improvement judged by the researchers to be small, medium and
large, and of clinical importance. These lines were created by adding further data series, with labels, to
the Excel scatterplot used to present the mean differences with CIs. The CIs in Figure 7.3 allow us to
conclude that, for the control group, the change from pre-test to post-test is around zero, or at most
small; for the treatment group the change is of clinical importance, and likely to be large or even very
large.
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10. Meta-analytic Thinking 

Figure 7.1 shows, as we mentioned earlier, the meta-analytic combination of hypothetical results from
previous research. It also shows the point and interval estimates found in the current experiment, and
a second meta-analysis that combines these with the earlier results. Considering that particular effect,
our experiment has advanced the state of knowledge from the first to the second of the combined ES
estimates, marked with square symbols in Figure 7.1. The Introduction and Discussion sections of the
manuscript should both consider current research in the context of past results and likely future stud-
ies. This is meta-analytic thinking (Cumming & Finch, 2001), and it guides choice of what statistics are
most valuable to report, and how results are interpreted and placed in context. Wilkinson et al. (1999)
made several statements that outline what is needed: 

Reporting and interpreting effect sizes in the context of previously reported effects is essential to
good research. ... Reporting effect sizes also informs ... meta-analyses needed in future research.
... Collecting intervals across studies also helps in constructing plausible regions for population
parameters (p. 599).

...

Do not interpret a single study’s results as having importance independent of the effects reported
elsewhere in the relevant literature. ... The results in a single study are important primarily as one
contribution to a mosaic of study effects (p. 602). 

A forest plot (Figure 7.1) can display point and interval ES estimates expressed in any way—as orig-
inal units, or in standardized form, or as some unit-free measure. For many types of research a forest
plot can conveniently summarize current and past research in terms of estimation, and thus bring
together all the ES, CI, and MA components that we have discussed in this chapter. It is important that
authors, reviewers, and editors work together to help advance the social sciences as much as possible
from the blinkered, dichotomous thinking of NHST to the richer and more informative research
communication described in this chapter.

Notes

1 This research was supported by the Australian Research Council.
2 Cumming and Finch (2001, 2005), Cumming, Williams, and Fidler (2004), and Cumming (2007b) are accompanied

by components of ESCI (“ess-key”; Exploratory Software for Confidence Intervals), which runs under Microsoft
Excel. Components of ESCI are available from www.latrobe.edu.au/psy/esci. 
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8
Factor Analysis 

Exploratory and Confirmatory

Deborah L. Bandalos and Sara J. Finney 

Factor analysis is a method of modeling the covariation among a set of observed variables as a 
function of one or more latent constructs. Here, we use the term construct to refer to an unobservable
but theoretically defensible entity, such as intelligence, self-efficacy, or creativity. Such constructs are
typically considered to be latent in the sense that they are not directly observable (see Bollen, 2002, for
a more detailed discussion of latent constructs). The purpose of factor analysis is to assist researchers
in identifying and/or understanding the nature of the latent constructs underlying the variables of
interest. Technically, these descriptions exclude component analysis, which is a method for reducing
the dimensionality of a set of observed variables through the creation of an optimum number of
weighted composites. A major difference between factor and component analysis is that in the 
latter all of the variance is analyzed, whereas in factor analysis, only the shared variance is analyzed. For
this reason, factor analysis is sometimes referred to as common factor analysis. In many ways, however,
component analysis is very similar to common factor analysis, and many of the desiderata for
exploratory factor analysis presented here apply equally to component analysis. Given that the goal 
of component analysis is to explain as much observed variance as possible via the weighted compos-
ites and not, as in common factor analysis, to model the relations among variables as functions 
of underlying latent variables, those desiderata relating to the importance of theory for factor analysis
do not apply to component analysis (see Widaman, 2007, for a detailed explanation of the conceptual
and mathematical distinction between exploratory factor analysis and principal components 
analysis). 

Two broad classes of factor analytic methods are described in this chapter: exploratory factor analy-
sis (EFA) and confirmatory factor analysis (CFA). Although these two methods both model the
observed covariation among variables as a function of latent constructs, in EFA the purpose of such
models is typically to identify the latent constructs or to generate hypotheses about their possible
structures, whereas the purpose of CFA is to evaluate hypothesized structures of the latent constructs
and/or to develop a better understanding of such structures. Thus, CFA is a specific form of structural
equation modeling (SEM; see Chapter 28, this volume). Whereas EFA can be carried out using con-
ventional statistics software such as SPSS and SAS, CFA requires the use of specialized software such
as AMOS (Arbuckle, 2007), EQS (Bentler, 2006), LISREL (Jöreskog & Sörbom, 2007), or Mplus
(Muthén & Muthén, 2007).
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For more in depth treatment of exploratory factor analysis we recommend texts by Gorsuch (1983),
Comrey and Lee (1992), and McDonald (1985). For a more contemporary treatment, we recommend
Pett, Lackey, and Sullivan (2003). More in-depth treatments of CFA can be found in SEM textbooks
such as those by Byrne (1998, 2001), Bollen (1989), Kline (2005), and Loehlin (2004). Brown (2006)
devotes a complete text to the use of confirmatory factor analysis for applied research. Specific
desiderata are provided for EFA in Table 8.1a and for CFA in Table 8.1b, and are elucidated in the sub-
sequent sections of this chapter.

E1. Theory and/or Previous Research

Many of the decisions made in EFA are, at least to some degree, subjective. Although statistically
and/or mathematically based guidelines exist for some decisions (e.g., determining the number of fac-
tors), many important decisions are made on the basis of congruence with theory and/or previous
research. Familiarity with the theory and research findings regarding the construct to be studied is
therefore essential in EFA studies. Although some may argue that this reliance on prior theory can be
self-serving, it should be kept in mind that EFA is, as its name implies, more an exploratory than an

Table 8.1a Desiderata for Exploratory Factor Analysis

Desideratum Manuscript

Section(s)*

E1. Theory and/or previous research supporting the construct(s) under investigation are synthesized. I

E2. Exploratory vs. confirmatory analysis is justified. I, M

E3. Measured variables that operationalize the construct are presented and thoroughly justified in I, M

terms of both quantity and content. (Here, information on reliability and validity, if appropriate, 

is included.)

E4. Sampling method(s) and sample size(s) are discussed and justified. M

E5. Data are screened for outliers and the method of handling missing data is discussed. The M, R

correlation matrix is presented and/or measures of amenability of data to factoring are presented

anddiscussed. Summary statistics of measured variables are presented. If raw data were analyzed,

information on obtaining access to the data is provided.

E6. Name and version of software package is reported. M, R

E7. Method of extraction is discussed and justified. M, R

E8. Method(s) used to determine the number of factors are discussed and decision is justified. M, R

A number of factor solutions are explored and this is clearly presented. If a model is championed 

over others, there is clear justification as to why this model is superior.

E9. Method of rotation is stated and justified. M, R

E10. Justification is provided for any variables that are eliminated; model is reanalyzed after R

variables are eliminated.

E11. Parameter estimates (e.g., pattern/structure coefficients, factor correlations) are presented R

and discussed for final model.

E12. Percentages of variance accounted for (both total and by each factor) are provided and discussed. R

E13. Appropriate interpretation of factors is provided. R, D

E14. Factor score determinacy is evaluated. R

E15. Factor quality is evaluated using reliability and, if possible, validity evidence. R

E16. Appropriate caveats are provided; importance of replication and limitations of the study D

are discussed.

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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inferential methodology. As such, its role is to generate hypotheses rather than to provide strict infer-
ential tests of a priori hypotheses. Given these purposes, reliance on theory and prior research is not
only appropriate, it is fundamental to the hypothesis-generating process.

In some cases, researchers might argue that the latent construct or scale being analyzed is new and
that no underlying theory is available. Such an argument is implausible unless one is willing to assume
that the variables being analyzed were selected at random. If this is not the case then some theory, how-
ever rudimentary, must have guided the selection of the variables and this theory should be explicated
to the extent possible.

E2. Exploratory vs. Confirmatory

Although exploratory and confirmatory analyses are often referred to as though they represent a
dichotomy, the distinction between the two is really more a matter of degree. Certainly, it is possible
to use EFA in a confirmatory manner or to use CFA in an exploratory manner. However, because the
CFA model is much more restrictive than that of EFA, most experts recommend that EFA be used for
situations in which minimal research has been conducted regarding the structure of the construct or

Table 8.1b Desiderata for Confirmatory Factor Analysis

Desideratum Manuscript

Section(s)*

C1. Theory and/or previous research leading to the model(s) under investigation are synthesized; a I

set of a priori specified competing models, represented by path diagrams, is preferred.

C2. Confirmatory versus exploratory analysis is justified. I, M

C3. Measured variables that operationalize the construct are thoroughly presented and their I, M

relationship with the factor is explained. (Here, information on reliability and validity, if

available, is included.)

C4. Sampling method(s) and sample size(s) are discussed and justified. M

C5. Data are screened for outliers and nonnormality, and the method of handling missing data is M, R

discussed. Summary statistics of measured variables are presented. If raw data were analyzed,

information on obtaining access to the data is given.

C6. Method of estimation is discussed and justified. M

C7. Name and version of software package is reported. M, R

C8. Problems with model convergence, improper estimates, and/or model identification are reported R

and discussed.

C9. Recommended data-model fit indices, including standardized residuals, are presented and R

discussed.

C10. For competing models, comparisons are made using statistical tests (for nested models) or R

information criteria (for non-nested models).

C11. Post hoc model modifications, if made, are justified on the basis of both theoretical and statistical R, D

criteria. If cross-validation is not possible, issues with post hoc model modification are discussed.

C12. If data-model fit is adequate, parameter estimates, standard errors, and measures of variance R, D

accounted for are presented and discussed. Method used to determine saliency of loading 

coefficients is provided and justified, and appropriate interpretation of factors is provided.

C13. Factor quality is evaluated using reliability and, if possible, validity evidence. R, D

C14. Appropriate caveats are provided; importance of replication and limitations of the study, D

including equivalent models, are discussed.

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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measure of interest. Use of CFA in such situations often results in gross misfit of the model to the data.
In situations such as these, there are innumerable ways in which the model can be respecified to
improve fit, and a researcher can easily be overwhelmed and led astray by allowing the estimation of
parameters that do not lead to the generating structure. Alternative EFA models, on the other hand,
typically represent a more finite set of models that differ on criteria such as the number of factors,
method of extraction, and type of rotation. Thus, the choice of models to compare tends to be much
clearer in EFA. In addition, exploring many different models via EFA may uncover interesting and
conceptually plausible structures that may have gone unstudied if CFA were employed. 

A common situation in which one must choose between EFA and CFA is the investigation of 
items that have been written to measure a construct hypothesized to have several dimensions.
Researchers will often claim a priori knowledge of the underlying structure based on the fact that the
items have been written to measure specific aspects of the construct. However, in our experience,
items are rarely aware of the scale for which they have been written and often fail to behave as they
should. So unless there is empirical evidence to support such a claim, it is probably best to begin by
conducting an EFA in such situations. If a clear, interpretable structure emerges, CFA can be
employed, using an independent sample, to further test the structure that was championed from the
exploratory analyses. 

As a general guideline, EFA should be used for situations in which the variables to be analyzed are
either newly developed or have not previously been analyzed together, or when the theoretical basis
for the factor analysis model (i.e., number of factors, level of correlation among factors) is weak. In
such situations, it is not possible to specify the model a priori in sufficient detail to conduct a CFA.
Therefore, in our view, CFA should only be used if the structure of the variables has been previously
studied using EFA with an independent source of data. 

E3. Measured Variables

The number and nature of the factors are dictated by the observed variables that are analyzed. When
conducting an EFA, the researcher should have an in-depth understanding of the construct under
study (see Desideratum E1). This understanding should, in turn, inform the researcher’s justification
of how the observed variables cover the breadth of the construct. The number of variables to be fac-
tored should also be informed by the complexity of the construct. For example, EFA is often used to
assess the dimensionality of newly created measures that represent latent constructs (e.g., motivation,
anxiety). If the latent construct is believed to consist of multiple dimensions, it is imperative that sev-
eral variables that represent these dimensions are included on the measure, and ultimately in the fac-
tor analysis. Again, the author should be clear that the EFA solution is completely dependent on the
variables being factored; an “expected” factor will not emerge if the variables do not capture the con-
struct adequately. 

The variables can take many forms: items from a scale, subscale scores, or direct measures of sub-
ject characteristics (e.g., number of occurrences of behaviors, heart rate). Although some methodolo-
gists recommend against factoring items due to their generally low reliability and lack of a continuous
scale, such analyses should not be problematic if the items have at least five scale points and are rea-
sonably intercorrelated (see Desideratum E5 for more information on this point). If analyzing items
or subscales that are the composite of a set of items, the author should present the actual items or at
least example items whenever possible (if there are no copyright or item security issues). If the specific
items or subscales have been studied previously, any reliability or validity evidence should be pre-
sented. Likewise, if direct measurements are being factored, the manner in which these variables were
gathered and any prior work supporting the manner in which they were gathered should be presented.
Without a clear presentation of each observed variable, it is difficult for a reader to interpret the factor
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solution (i.e., what do the factors represent?). Therefore, the number, type, and examples of the 
variables to be factored must be presented.

E4. Sampling Method(s) and Sample Size(s)

Unlike the vast majority of statistical methods with which quantitative researchers are familiar, EFA is
generally used in a descriptive and exploratory, rather than inferential, manner. This is one reason that
standard errors and statistical tests of fit are generally not available for these methods.1 (The exception
to this is maximum likelihood factor analysis, discussed in Desideratum E7.) Although sampling the-
ory need not be invoked to obtain factor analytic solutions, it is still the case that results can only be
generalized to samples similar to that on which the analyses have been conducted, unless previous
empirical evidence exists for broader generalizations. Therefore, it is important that researchers
describe the makeup of their sample in sufficient detail that readers can determine the degree to which
the results might generalize to populations in which they are interested. 

Although many rules of thumb have been suggested for determining an adequate sample size for
EFA studies, recent studies have found that the sample size necessary to obtain accurate parameter
estimates depends on characteristics of the data. The primary parameter of interest in factor analytic
studies is the factor loading. There are two types of loadings, known as structure coefficients and pattern
coefficients. Structure coefficients represent zero-order correlations between variables and factors.
Pattern coefficients represent the unique effect of a factor on a variable, with the effects of all other fac-
tors partialed out. For situations in which there is only one factor, or in which factors are uncorrelated,
structure and pattern coefficients are equivalent. In other cases, however, both need to be taken into
account in interpreting factors. The sample size needed to obtain accurate estimates of pattern and
structure coefficients depends on the level of communality of the variables, which represents the
amount of variance in the variables that is accounted for by the factor solution, the number of vari-
ables per factor, and the interactions of these two conditions. Specifically, samples of 100 may be suf-
ficient to obtain accurate estimates with three factors measured by three to four variables each if
communalities are at least . 7, but if communalities are lower than .5, sample sizes of at least 300 would
be needed. With more factors, larger samples are needed. For example, in the latter situation (com-
munalities < .5 and three to four variables per factor) a sample size of 500 would be needed if the num-
ber of factors were increased to seven (Hogarty, Hines, Kromrey, Ferron, & Mumford, 2005;
MacCallum, Widaman, Zhang, & Hong, 1999; MacCallum, Widaman, Preacher, & Hong, 2001;
Velicer & Fava, 1998).

E5. Data Screening

Most EFA estimation methods are not based on strict assumptions about the nature of the sample and
how it was obtained. However, this does not mean that these aspects of the study can be safely ignored.
Similar points can be made with regard to the nature of the variables to be analyzed and their distri-
butions. Although use of factor analysis does not assume normality or continuousness of the variables
to analyzed, variables with nonnormal distributions and/or few scale points, as well as outlying obser-
vations, can have substantial effects on the results of EFAs.

It is fairly well known in the factor analytic literature that variables with similar levels of skew and/or
kurtosis can form artifactual factors. This occurs because variables that are similarly distributed are
more highly correlated with each other than variables with different distributions, given that all else is
equal. In the educational literature, such factors are termed “difficulty factors” and occur because easy
(negatively skewed) and difficult (positively skewed) achievement and aptitude items tend to form
factors irrespective of item content. This can result in solutions that are challenging to interpret at



98 • Deborah L. Bandalos and Sara J. Finney

best, and misleading at worst. The severity of such problems increases with the level of nonnormality.
In general, if absolute skewness and kurtosis values are no greater than 2.0 (some researchers suggest
a more liberal standard of 7.0 for kurtosis), little or no distortion should occur. However, it is impor-
tant that researchers provide information on the distributions of the variables to be analyzed so that
readers are alerted to the potential for such problems. Our preference is for a table in which the mean
and standard deviation of each variable, along with values of skewness and kurtosis, are reported. If
the number of variables being analyzed is so large as to preclude this option, the range of values or a
description of the levels of skewness and kurtosis should be provided.

On a related note, the level of measurement associated with the variables should be clearly presented
to readers. Because EFA estimation is typically based on analysis of Pearson Product-Moment (PPM)
correlation matrices, violations of the assumptions underlying PPM correlations can result in bias of
EFA parameters. More specifically, continuousness of the variables and a linear relationship between
the variables and factors are necessary to obtain accurate results. These assumptions are violated when
data are dichotomous or ordinal in nature. Although there should be little bias with five or more ordered
categories, for variables with fewer categories the analysis of the PPM correlation matrix can produce
biased results. Researchers should note how they addressed this issue. A common solution is to use a
correlation matrix that takes the categorical nature of the variables into account, such as a matrix of
tetrachoric (for dichotomous scales) or polychoric (for ordinal scales) correlations (see Finney &
DiStefano, 2006, for a review of this literature), coupled with a special estimator (see Desideratum C6).
However, other methods (full-information; Bolt, 2005; Jöreskog & Moustaki, 2001; McLeod, Swygert,
& Thissen, 2001; Moustaki, 2007; Swygert, McLeod, & Thissen, 2001) can be used as well. 

Outliers can affect EFA results, just as they do other analyses. For this reason, the data should be
screened for multivariate outliers and the results of these analyses reported. If outliers are found, the
researcher may or may not decide to delete these. Although many researchers delete outliers as a mat-
ter of course, our view is that a thoughtful analysis of the nature and possible causes of the outlying
cases should precede any such decision. Such an analysis may provide information on subpopulations
for which the factor model does not hold, or other potential avenues for further investigation. If the
researcher ultimately decides to delete the outlying cases from the analyses, our preference is that the
analyses be conducted with and without the outliers and the results of both sets of analyses reported
(space permitting).

E6. Software

Commonly used software packages differ in terms of default settings, presentation of output, and even
calculations (see Desideratum E12 for an example). Different versions of a given software package
may also differ in terms of these features. For this reason, researchers should provide the name and
version of the package used. 

E7. Method of Extraction

As noted in the introduction to this chapter, our focus is on factor analysis rather than on component
analysis. However, the two types of analyses are often confused; therefore, researchers and reviewers
should ensure the analysis that is most appropriate for the goals of the study has been conducted. In
general, component analysis is recommended for reducing a large number of variables to a smaller,
more manageable number of components, whereas factor analysis is better suited for identifying 
the latent constructs underlying the variable correlations. Thus, although component analysis is 
often used for such purposes as scale development, if the researcher’s intention is to interpret the 
components as latent dimensions or factors then factor analysis is the more appropriate analysis.
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Extraction refers to the process by which the parameters of the factor solution, which include the
factor pattern coefficients and, if appropriate, structure coefficients and factor intercorrelations, are
estimated. A desirable solution is one that accounts for the correlations among the variables in the
sense that these correlations can be accurately reproduced as functions of the estimated parameters.
However, because there is an infinite number of combinations of pattern coefficients and factor cor-
relations that will reproduce the variable correlations equally well, there is no one method of extrac-
tion that can be considered “best” in an absolute sense. Because of this, many methods of extraction
have been proposed, each with a slightly different criterion regarding what is considered “best.”
Within the factor analysis model, principal axis (PA) and maximum likelihood (ML) methods are
most commonly used. Other methods, such as generalized least squares, unweighted least squares,
image analysis and alpha factoring, are also available, although not as widely used. 

PA methods provide a least squares-type solution, attempting to minimize the residuals between
the correlation matrix being analyzed and the matrix implied by the factor model (i.e., pattern coeffi-
cients and factor correlations). ML factor analysis explicitly takes into account the fact that a sample
and not a population matrix is being analyzed, and seeks to obtain the solution that would best repro-
duce the population correlation values. ML factor analysis is thus an inferential method, and standard
errors for model parameters as well as tests of the goodness of fit of the solution can be obtained.
Although some researchers prefer ML for this reason, it should be noted that this method may not
provide accurate estimates of pattern coefficients if the factors are weak and/or if the sample size is
small (Briggs & MacCallum, 2003). In any case, however, the choice of estimation method should not
be arbitrary or dictated by the defaults of the computer package used, but should be justified by the
researcher. 

E8. Number of Factors

A major decision in EFA studies is that of determining the number of factors to retain. Methods of
determining the number of factors can be classified as statistically based (Bartlett’s test, Velicer’s
(1976) Minimum Average Partial [MAP] procedure, Parallel Analysis; Horn, 1965), mathematically
based (the eigenvalue greater than one [K1] “rule”), or more heuristic (scree plot; retaining the num-
ber of factors that account for a pre-specified percentage of variance). In simulation studies, the
Parallel Analysis and MAP procedures have been found to perform best, whereas K1 consistently per-
forms worst. However, the simulations have been based on generated data in which the factors are
known to be orthogonal. With correlated factors, it is likely that methods of determining the number
of factors will be less accurate. In any case, decisions regarding the number of factors to retain should
never be based on one criterion alone. Because EFA is an exploratory technique, it is expected that
researchers will compare solutions that extract various plausible numbers of factors. These solutions
should be obtained from several of the methods mentioned previously, but in making a final decision,
more weight should be placed on solutions obtained from methods that are known to perform well
(such as Parallel Analysis and MAP) relative to those known to provide biased estimates of the num-
ber of factors (such as K1). In addition, solutions on which the various methods converge are typically
preferred to those for which only one method provides an optimum value.

In addition to these methods, researchers should use theory and/or previous research to inform
decisions regarding the number of factors. For example, if previous research or theory suggests that
there should be three factors, this solution should be obtained and compared to other possible solu-
tions, even if it is not suggested by any of the methods used in determining the number of factors. Also,
factors for which only one or two variables have strong pattern/structure coefficients should be care-
fully scrutinized, as such factors are relatively weak and are unlikely to replicate. In situations such as
this, the researcher should obtain a solution with one fewer factor to determine whether the variables
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can be “forced” onto another factor. If this does not occur, it may be the case that the variables do rep-
resent a separate factor but that there are not sufficient variables to capture it. In any case, researchers
should clearly state the criteria and logic used to determine the number of factors, and justify their
choice of model.

E9. Method of Rotation

Although there are many rotational methods, the primary distinction is that between those that pro-
duce orthogonal (uncorrelated) and oblique (correlated) factors. The choice between these should cor-
respond to the researcher’s theory regarding whether the dimensions of the construct being studied are
correlated. In the absence of such theory, our view is that oblique rotations will generally result in more
reasonable representations of the data, because the dimensions that underlie constructs in the social
and behavioral sciences tend to be correlated. In addition, if an oblique rotation is applied to data in
which the factors are not correlated, an orthogonal solution will result, so nothing is lost by such a spec-
ification. On the other hand, specifying an orthogonal solution when the structure is actually oblique
will cause variables to load on more than one factor. This is because specification of an orthogonal solu-
tion in such a situation will force any cross-factor correlations to be manifested through the factor pat-
tern/structure coefficients. However, keeping in mind that EFA is an exploratory procedure, it is
acceptable to obtain both orthogonal and oblique rotations and compare the results. The solution that
is more interpretable and theoretically justifiable can then be chosen. The important point is that the
researcher must provide some justification for the rotational procedure chosen and, if choosing
between different rotations, must explain the basis by which that decision was made.

Once the choice between an orthogonal and an oblique rotation has been made, the researcher has
another choice among the various rotation methods in each category. In general, however, the latter
choice is not as consequential as the former. Although certain rotation methods are more likely to
obtain a general factor than others (e.g., quartimax), in our experience the different rotations within
the orthogonal and oblique categories do not generally have a strong effect on the results. This will not
always be the case, however, so researchers should provide the specific orthogonal (e.g., varimax) or
oblique (e.g., oblimin, promax) rotation method used along with an explanation of why it was chosen. 

E10. Variable Elimination

It is not uncommon for researchers to eliminate variables from the model on the basis of low struc-
ture, pattern, or communality values or because the variable is strongly or equally influenced by mul-
tiple factors (i.e., high multidimensionality). While we are not against such practices in theory, we do
feel that these decisions are often made in a somewhat cavalier manner. It must be kept in mind that
the variables were presumably chosen for some reason and that eliminating some of them changes the
definition of one’s construct(s) to some extent. We therefore feel that researchers should carefully
consider the decision to eliminate variables from the model with an eye toward the validity of the con-
struct(s) being studied. Often, studies are conducted on samples that are not sufficient to support sta-
ble results. Because of this, the lack of saliency or problems with multidimensional variables may be
the result of sampling error or a lack of stability. In such cases, if the variables have not been analyzed
together previously our recommendation would be to retain any questionable variables in order to
determine if their transgressions are repeated upon replication of the study.

If, after careful consideration, a researcher does choose to eliminate one or more variables from the
analysis, the factor model must be re-analyzed with the remaining variables. This is because the 
elimination of even one variable can change the factor structure. Ideally, variables should be removed
one at a time and analyses rerun after each removal. It may be the case that removal of one variable
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eliminates problems with others. Finally, the researcher should provide a summary of the decisions
made regarding variable deletions and the justifications for these.

E11. Parameter Values

After a factor model has been decided upon, the researcher should provide information on the model
parameter estimates. There are potentially four sets of estimates authors should provide and discuss:
communalities, structure coefficients, pattern coefficients, and factor correlations. As noted previ-
ously, communalities represent the proportion of a variable’s total variance that is accounted for by
the factor solution. Thus, low communality estimates can be used to identify variables that are not
explained well by the factor solution. However, if communality values are moderate to high, the struc-
ture and pattern coefficients can be interpreted to more clearly understand the relationship between
the factors and observed variables.

The values that represent the relationships between the factors and the observed variables are often
called loadings in EFA. As mentioned previously, there are two different parameter estimates that are
sometimes referred to as loadings: structure coefficients and pattern coefficients, and thus, the term is
ambiguous. We recommend researchers use the terms structure and pattern coefficients and avoid the
term loading when reporting EFA results. If an orthogonal rotation is used, or if there is only one fac-
tor, these two estimates are equivalent and represent the simple correlation between the factor and the
variable (and range between –1 and +1). Researchers should interpret these coefficients as factor-vari-
able relationships and may note that squaring these values represents the amount of variance in the
variable that is explained by the factor. For oblique rotations, however, structure and pattern coeffi-
cients are not equivalent. Thus, with correlated factors both sets of coefficients should be presented
and a clear distinction between them should be made: the pattern coefficient represents the unique
relationship between a factor and variable, controlling for the other factors; the structure coefficient
represents the simple, zero-order correlation between the factor and the variable. In other words, for
obliquely rotated solutions, pattern coefficients are not correlation coefficients, but are analogous to
standardized (beta) weights in multiple regression analyses (and can fall outside the range of –1 to +1).
Structure coefficients are a function of the pattern coefficients and factor correlations and represent
the total effect of the factor on the variable; that is, structure coefficients represent both the unique
effect of a factor on a variable plus its effect via relationships with other factors. A factor may not have
a strong unique effect on a variable (i.e., small pattern coefficient) but can still have a strong total effect
on the variable (i.e., large structure coefficient) due to strong factor correlations. Thus, in order to
accurately interpret the solution, the factor correlations should be reported and discussed for oblique
solutions. If the factor correlations are very weak, the structure and pattern coefficients will be similar
in magnitude; on the other hand, if the factor correlations are strong, the structure and pattern coef-
ficients may be very different. 

Although there are differing opinions as to which set of coefficients should be used to interpret the
meaning of the factors, we agree with Gorsuch (1983) that “The basic matrix for interpreting the fac-
tors is the factor structure. By examining which variables correlate high with the factor and which cor-
relate low, it is possible to draw some conclusions as to the nature of the factor” (p. 207). Other
methodologists recommend that the focus should be placed on the pattern coefficients; these values
tend to indicate a clearer structure, making it easier to find salient variables. However, one must real-
ize that the pattern coefficients do not represent the complete relationship between the variable and
the factor. Therefore, when interpreting the factor solution, we recommend attending to the structure
coefficients first and then evaluating the pattern coefficients to understand the unique factor-variable
relationships. Both sets of coefficients should be reported in a table to allow readers to best understand
the factor- variable relationships.
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E12. Percentages of Variance

The amount of variance explained by the championed solution and by each factor should be reported.
As noted previously (see Desideratum E8), the amount of variance explained is sometimes used to
determine the number of factors to extract and rotate. In turn, researchers should and often do note
the variance explained by the solution and by each factor before rotation. However, rotating the solu-
tion distributes the variance explained across the retained factors. Therefore, although the total per-
centage of variance explained by the solution before and after rotation remains the same, the amount
of variance associated with each factor will be adjusted after rotation. These adjusted values are only
calculated for orthogonal rotations and should be reported and discussed (e.g., do the retained factors
explain nearly comparable amounts of variance or are certain factors associated with much more
explained variance?). When using an oblique rotation the factors overlap, and each of the correlated
factors is “credited” with any shared variance in the observed variables. Because of this, the total vari-
ance explained in a variable can appear to sum to over 1.00, therefore, the percentage of variance asso-
ciated with each factor is not reported for oblique solutions. Instead, one can report the sum of
squared structure coefficients associated with each factor after rotation. 

Researchers and reviewers should realize that the two most commonly used statistical software 
programs (SPSS and SAS) compute the percentage of variance explained by each factor differently for
EFA (thus, the importance of noting the software used; see Desideratum E6). Both compute the per-
centage/ proportion of variance explained when conducting an EFA, but the two packages use differ-
ent denominators, resulting in values that can potentially be very different. SPSS calculates percentage
of variance as the amount of variance explained out of the total variance, whereas SAS calculates per-
centage of variance explained as the amount of variance explained out of the total amount of common
variance. Therefore, if one conducted an EFA in SPSS and SAS, the eigenvalues, communalities, and
parameter estimates would be the same, but the percentage of explained variance would appear larger
when computed by SAS (because the denominator would be smaller). It is critical that the amount of
variance explained is interpreted with this in mind. In addition, if reviewers re-analyze the data to
check the results, they may produce different values of explained variance than the author because of
this software difference. 

E13. Interpretation of Factors

The factor solution should be interpreted using all of the relevant information. For an oblique solu-
tion, this includes the pattern coefficients, structure coefficients, and factor correlations, whereas for
an orthogonal solution pattern coefficients provide sufficient information. In addition, knowledge of
the variables being factored and the theory surrounding the construct should be incorporated in the
interpretation process. Once factors are interpreted, the factor name is most often used to communi-
cate the identity of the factor, rather than the observed variables themselves. Therefore, naming the
factor is extremely important and the process of naming/interpreting the factor should be clearly
communicated. 

Researchers should note how they used the factor-variable relationships to interpret and name the
factors. Interpreting the factor solution requires a determination of the value a coefficient must reach
to be considered salient, or “high.” Variables with coefficients that reach this value are used to name
the factor. Given the difference in the interpretation of structure and pattern coefficients, one would-
n’t expect the same value to be used for both coefficients. Common values for structure coefficients are
.30 and .40. Although to some extent this choice is arbitrary, some thought should be given to choos-
ing an appropriate value. Realize that, for uncorrelated factors, squaring the structure/pattern coeffi-
cient value represents the amount of variance explained in the variable by the factor. For correlated
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factors, the structure coefficients are affected by the factor correlations, and thus squaring these terms
yields the amount of variance in the variable that the factor can explain uniquely and via relationships
with other factors. Therefore, if approximately 10% is enough shared variance to deem a variable use-
ful for factor interpretation, then a value of .30 or .40 could be used. One practice that should be
guarded against is that in which the researcher chooses the cut-off value in a self-serving manner. For
instance, we have seen published articles in which a value such as .42 was chosen. Although no reason
for such a choice was provided, it appeared to be motivated by the fact that use of this value would
allow the researchers to ignore variables having coefficients of .41 for more than one factor. 

Interpretation and naming of the factor(s) is made easier if the solution exhibits simple structure.
The key criteria for simple structure are that each variable has a large structure coefficient for one fac-
tor and small values for all other factors. This means that each factor has strong relationships with only
some of the variables. Again, strong relationships indicate a high degree of overlap between the factor
and the variables, which facilitates naming the factor. On the other hand, weak relationships between
the factor and the variable or variables that have strong relationships with numerous factors make it
difficult to determine what the factor represents. 

It may be the case that simple structure is not achieved and this should be acknowledged and dis-
cussed. If the solution has many variables that are multidimensional (i.e., variables associated with
multiple large structure coefficients that reflect the influence of multiple factors), this may be an indi-
cation of under-factoring. On the other hand, researchers should be cautious of solutions that extract
too many factors in an effort to “eliminate” multidimensional variables. As noted previously, factors
that are represented by only one or two variables may indicate over-factoring. Such possibilities
underscore the importance of examining several different solutions (see Desideratum E8). When pre-
senting the parameter estimates (see Desideratum E11), researchers should comment on the degree to
which simple structure is achieved and note any variables that contribute to the deviation from sim-
ple structure. Authors should note that variables that have strong relationships with many factors are
multidimensional and this finding should be discussed in the context of the theoretical conceptual-
ization of the construct. 

Finally, researchers should discuss how the factor structure (nature and number of factors) aligns
with the current theoretical conceptualization of the construct. Again, it is important to note that
obtained factors are completely driven by the variables that are factored (see Desideratum E3).
Therefore, failure to include variables that cover the breadth of the construct will result in failure to
represent the construct’s “true” dimensionality. This must be addressed by authors (i.e., this is a
potential problem or can be ruled out as a problem) when discussing “unexpected” or “interesting”
findings, such as obtaining a simpler factor structure than expected. Finally, authors should note that
a clear understanding of the factor necessitates replication and integration of the construct into its
nomological net (see Desideratum E15) because, unfortunately, seemingly “interpretable” factors can
emerge from random data. 

E14. Factor Score Determinacy

In many cases, researchers are interested in computing factor scores to use in other analyses. For exam-
ple, a researcher may want to use the factor scores as variables in an analysis such as ANOVA or regres-
sion. Factor scores are weighted sums of the standardized variables. Factor scores can be either exact
(also called refined) or approximate (also called coarse). The difference is simply that all of the variables
are used to compute exact factor scores, whereas for approximate factor scores only the variables most
associated with each factor are used. In the discussion that follows, we refer to exact factor scores.
Several types of exact factor scores can be obtained; the differences among them have to do with dif-
ferences in the weights used, which in turn result in factor scores with different properties. It should
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be noted that different procedures for obtaining component scores will produce the same results 
for component analysis. However, for common factor analysis the procedures will produce different
factor scores. This is due to the fact that exact factor scores obtained from common factor analysis 
are indeterminate, meaning that there is an infinite number of ways in which factor scores could 
be obtained that would be consistent with a given pattern or structure matrix. The reason for this 
indeterminacy can be seen by considering the common factor model. This model posits that the
observed variables Z are functions of common factors as well as factors that are unique to each 
variable. 

To take a simple example, it might be hypothesized that four standardized variables, z
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In these equations the w and x are weights that quantify the degree to which the variables are related to
the common and unique factors. The problem with such a system of equations is that the number of
common and unique factor scores to be estimated in f and u is greater than the number of equations.
In our example there are four unique factor scores plus two common factor scores, but only four equa-
tions, a situation that is analogous to obtaining a solution for the equation x + y = 10. The problem is
not that there are no values for x and y that will satisfy the equation, but that there is an infinite num-
ber of values that will do so. With regard to the factor scores, the problem is not that there is no set of
factor scores that can be obtained from the variables scores; it is that there are many such sets of factor
scores (see Grice, 2001, for a review of factor indeterminacy and various methods of computing factor
scores). Note that a similar problem does not exist for exact scores in the component model, because
there are no unique factor scores in this model. 

The degree to which factor scores are indeterminate depends on the variable to factor ratio, level of
communality of the variables, and the sample size, with increases in each of these leading to greater
determinacy (Acito & Anderson, 1986; Gorsuch, 1983; Grice, 2001). Of these, the level of communal-
ity has been found to have the greatest effect, whereas the sample size has a relatively minor effect. We
therefore recommend that measures of factor score indeterminacy be reported and discussed for sit-
uations in which factor scores are obtained from data characterized by low communalities and/or
variable to factor ratios. Grice discusses several indices for evaluating the degree of indeterminacy, and
provides SAS code to compute these. These indices include the multiple correlation between each fac-
tor and the variables (r) and the minimum possible correlation between two sets of factor scores com-
puted in different ways (2ρ2 – 1). The former index ranges from 0 to 1, with high values indicating
greater degrees of determinacy. The second index ranges from –1 to +1 and represents the degree to
which two sets of factor scores constructed in different ways will be correlated. Values at or below 0 for
this index indicate that the two sets of scores are unrelated, or negatively correlated, thus higher values
are desirable.

E15. Factor Quality

Reliability estimates for the variables that represent each factor should be reported and interpreted.
Although internal consistency of observed scores is often of interest, the type of reliability that is most
relevant for a given scale will be dictated by its purpose. In many cases, researchers compute
Cronbach’s coefficient alpha for the complete set of variables even though a multidimensional 
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solution emerged, which seems to defeat the purpose of obtaining multiple dimensions. In general,
internal consistency estimates for multidimensional instruments should be obtained for the dimen-
sional level at which the scale will be interpreted and used. If subscales representing separate dimen-
sions of the construct are to be used independently, reliability coefficients should be calculated for
these subscales. If, however, the total scale is conceptualized as a higher-order factor that incorporates
all of the subscales, it may be useful to obtain reliability coefficients at both the total and subscale 
levels.

If reliability is low (less than .70), this should be discussed, rather than simply reported and ignored
(see Lance, Butts, & Michels, 2006, for a discussion of acceptable levels of reliability). Although it is
possible to obtain an interpretable factor structure along with low estimates of internal consistency, it
is more likely that low reliability will result if the factor solution is unstable. For example, the variables
being factored may have weak relationships, in which case the researcher should refer readers to the
variable correlations and discuss this issue. Low internal consistency can also occur when there are few
variables representing a factor. In such a case, the researcher should address the coverage of the con-
struct’s breadth. Whatever the cause, it is incumbent upon researchers to provide a rationale for the
credibility of their interpretation when reliability of a factor is low.

In referring to factor quality, it should be noted that indexes such as Cronbach’s alpha are, strictly
speaking, only appropriate for composites obtained as simple sums of the variable scores in which
each variable is weighted equally. Factor scores, on the other hand, are typically computed using
weights based on the factor pattern or structure coefficients. For this reason, indexes of internal con-
sistency more appropriate for factor models are often used in EFA and CFA (e.g., coefficient H; see
Hancock & Mueller, 2001).

Whenever possible, external validity evidence should be gathered to support the proposed inter-
pretation of the factors. This involves relating the construct under study to theoretically related vari-
ables and/or constructs. This can greatly facilitate the interpretation and naming of the factors because
the meaningfulness of the factor is made apparent through its relationships with other variables (i.e.,
its nomological net). In fact, it is through this process that one really begins to understand what is rep-
resented by the factors (Benson, 1998). In addition, it can provide further evidence of the distinction
or lack of distinction between factors (i.e., do the factors have differential predictive utility which
would support their differentiation?). It is important that researchers note the construct validity evi-
dence associated with the external variables; lack of such evidence severely limits the utility of these
external variables in evaluating the factors under study. In sum, whenever possible reliability and
validity evidence should be reported along with the factor structure results in order to fully interpret
the findings.

E16. Caveats and Limitations

Researchers should acknowledge that the factor structure championed in the study is only one possi-
ble representation of the relationships among the variables. Other models may represent the data just
as well or better than the structure presented; therefore, language that suggests that this model repre-
sents “truth” or is “confirmed” should be avoided. Authors should also acknowledge the exploratory
nature of the analysis. In EFA studies, it is typical to examine many solutions, and often variables are
removed and data re- analyzed. This capitalizes on chance due to fitting the idiosyncrasies of the sam-
ple data. Therefore, authors should note that the results from the EFA represent the structure of the
data for that particular sample and that there is a need for replication (cross-validation) in order to
assess the stability of the factor structure across independent samples from the same population.
Moreover, researchers should not imply that the structure championed will necessarily generalize to
other populations. Further research is needed to support such generalizations.
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C1. Theory and/or Previous Research

As is the case in EFA, a solid understanding of the theory underlying the latent construct being mod-
eled is essential in CFA studies, and the points made previously with regard to EFA are equally relevant
for CFA (see Desideratum E1). In fact, because use of the CFA model requires the researcher to spec-
ify the model to be analyzed in more detail than is the case in EFA, knowledge of theory is even more
important for these analyses. 

Researchers should clearly specify the theoretical and/or empirical basis for the model, and to the
extent possible should provide hypotheses about the expected sign (positive or negative) and magni-
tude of the coefficients to be estimated. Our preference is for researchers to present all models to be
tested in the form of path diagrams (see Chapter 28, this volume, for more detail on path diagrams).
Often, existing theory and research do not converge on a single plausible model. In such cases 
recommended practice is to specify alternative models corresponding to different theoretical per-
spectives (e.g., number of factors, factor relations) a priori, and to evaluate these against each other
appropriately.

C2. Confirmatory vs. Exploratory

The distinction between exploratory and confirmatory analyses was made previously in the context of
EFA (see Desideratum E2), and will not be repeated here. Instead we use this desideratum to empha-
size that the ability of CFA to evaluate and compare different a priori models developed on the basis of
theory is the major strength of this method. Use of CFA should therefore be reserved for situations in
which at least one theory-based model can be hypothesized. Although it is possible to use CFA in an
exploratory manner, such usage often results in gross misfit of the model and it can be very difficult to
“uncover” the structure that best represents the data through the use of CFA output. If theoretically
derived a priori models cannot be specified, it will often be necessary to explore several different mod-
els in an attempt to determine which provides the best representation of the data; this is a task more
suited to the use of EFA. As mentioned in previous desiderata, researchers should not conduct a CFA
to “confirm” the EFA solution using the same sample; this practice results in capitalization on chance
due to fitting the idiosyncrasies of the sample data. However, EFA is often used after CFA if the a pri-
ori specified model(s) results in extreme misfit. Using the same sample and moving to an exploratory
approach (EFA) is completely justified and recommended; if the a priori specified model(s) do not fit,
researchers can use the data to explore the structure that does underlie the observed variables via EFA.
However, researchers should be clear that the analysis has changed from a confirmatory to an
exploratory mode, documenting completely for the reader the different models and decision
processes and including appropriate caveats.

C3. Measured Variables

As noted for EFA in Desideratum E3, the observed variables under study must be clearly presented
with respect to type and number; this speaks directly to the coverage of the breadth of the construct.
Information pertaining to reliability and validity should be presented if available, and, whenever pos-
sible, examples of the variables under study should be presented. An additional consideration in CFA
studies is that there must be a sufficient number of variables per factor to identify the model. In gen-
eral, at least three variables per factor are required, although if there are two or more correlated fac-
tors, two variables per factor can be sufficient. However, it should be noted that these guidelines
pertain only to model identification. More variables are typically required to encompass the scope of
the constructs. 
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The relationship between the factors and the observed variables should be clearly presented when
articulating the model(s) under study (see Desideratum C1). Up until now, we have only discussed
models that specify factors as the causal agents of the observed variables. In such models the observed
variables are hypothesized to be correlated with one another because they are a function of the same
factor. Given this conceptualization of the factor-variable relationship, the factor is deemed latent and
the direct paths flow from the latent variable to the observed variables. It is also possible to conceptu-
alize a factor as being a function of the observed variables (e.g., overall stress is a function of work
stress, spouse-related stress, and children-related stress). The direct paths flow from the observed
variables to the emergent factor. A more detailed description of the emergent factor model and prob-
lems surrounding its estimation can be found in Chapter 28, this volume. When discussing the meas-
ured variables, researchers should clearly present how the variables are related to the factor (we
recommend a figure) and explain why the particular model chosen (latent or emergent factor) is
appropriate. 

C4. Sampling Method(s) and Sample Size(s)

Researchers should specify the type of sampling that was used to obtain the data. Most commonly used
computer packages for structural equation modeling (SEM) analyses now allow the researcher to
specify sampling weights for data obtained via stratified sampling methods, and allow for nested or
hierarchical models that accommodate data obtained from clustered samples. Researchers using such
sampling techniques should therefore employ the proper methodology. 

With regard to sample size, the guidelines presented previously in the context of EFA also apply to
CFA. However, because CFA is an inferential method, researchers should also consider issues of
power and precision in addition to accuracy of parameter estimates when deciding on the necessary
sample size. Power for CFA can be computed for both individual parameter estimates and for the
model as a whole (see Hancock, 2006, and Chapter 28 of this volume, for more discussion of power in
SEM). Finally, some estimation methods used with nonnormally distributed and/or categorized data
(e.g., Asymptotically Distribution Free [ADF], Arbitrary Generalized Least Squares [AGLS],
Weighted Least Squares [WLS]) require sample sizes that are much larger than those needed for nor-
mal theory-based methods.

C5. Data Screening

Unlike EFA, CFA is an inferential methodology and commonly used estimation methods in CFA (e.g.,
maximum likelihood [ML], and generalized least squares [GLS]) are based on the assumption of mul-
tivariate normality. Violations of this assumption can result in underestimation of standard errors
and inflation of chi-square values (fit indices based on chi-square will also be biased). Because of this,
both univariate and multivariate normality should be assessed and reported. Univariate skewness and
kurtosis values of less than |2.0| (some researchers suggest a more liberal standard of less than |7.0| for
kurtosis) and values of Mardia’s normalized multivariate kurtosis coefficient of less than 3.0 have been
suggested as acceptable departures from normality. For levels of nonnormality outside these guide-
lines one of the estimation methods developed for nonnormally distributed data should be used (see
Desideratum C6). 

As with EFA, the scales of the observed variables can also affect results. Specifically, normal theory-
based methods assume that variables are continuous in addition to being multivariately normally dis-
tributed. Variables with five or more scale points should not result in substantial bias, but researchers
working with variables with fewer than five scale points should consider the use of estimation meth-
ods specifically designed for such data (see Desideratum C6).



108 • Deborah L. Bandalos and Sara J. Finney

Screening for univariate and multivariate outliers should be conducted prior to analysis. Univariate
outliers can be identified as cases with large z-scores (e.g., +/–3 standard deviations from the mean).
For multivariate outliers, Mahalanobis D or D2 can be used. Researchers should also determine the
effect of outlying cases on the parameter estimates and fit indexes; with a large sample size these effects
may be quite small. A common practice is to obtain estimates from data with and without the outliers;
if these are similar there is arguably little reason to delete outlying cases.

Recent advances in missing data methodology have called into question the utility of more tradi-
tional missing data methods such as listwise and pairwise deletion. Currently, full information maxi-
mum likelihood (FIML) and methods based on Expectation Maximization (EM) algorithms are
considered to be more acceptable methods for accommodating missing data, and most commercially
available SEM software packages have incorporated at least one of these. In the FIML method, miss-
ing values are not imputed; instead parameter estimates are obtained from the information available
from each case for the variables involved in the parameter being estimated. The cases contributing to
the estimation vary across parameters because different cases may have missing values for different
variables. EM methods, on the other hand, use a two-step process to impute missing values. In the first
step, referred to as the Expectation or E step, regression-based methods are used to obtain the neces-
sary information (variable sums of square and cross-products) to compute a complete covariance
matrix. In the second, Maximation or M step, the information from the E step is used to compute a
covariance matrix using Maximum Likelihood (ML) estimation. The new covariance matrix is then
used in the next E step to obtain new estimates of the missing values, and the two-step process is
repeated multiple times until some pre-set convergence criterion is met. The covariance matrix
obtained at the last step can then be used as input into any SEM software package. Both methods
assume that data are missing at random (MAR), meaning that missing values for each variable are
independent of that variable. Researchers should identify the method used to handle missing data and
address the assumptions underlying the method. In addition, the proportions of missing data across
the variables in the study should be provided.

C6. Estimation Method

Researchers should report the type of estimation that was implemented, along with a justification for
use of the chosen method. Although ML estimation is the default in virtually every SEM computer
package, this method assumes the data are continuous and multivariate normally distributed, as
noted previously. Violations of either or both of these assumptions can result in underestimation of
the standard errors and overestimation of the chi-square values. When data depart from normality,
adjustments to standard procedures such as the Satorra-Bentler (SB) adjustment to the standard
errors and chi-square values can be implemented. For data with fewer than five response categories,
estimators such as the WLS, or mean and variance adjusted WLS (WLSMV) implemented in the
Mplus program should be used. These procedures assume that there is a normally distributed contin-
uous variable underlying the observed categories of the manifest variable. Based on this assumption,
polychoric correlations and thresholds representing the estimated cut-points between the observed
categories are computed from the raw data and used in subsequent parameter estimation. 

C7. Software

Commonly used computer packages for conducting CFA include AMOS, EQS, LISREL, Mplus, Mx,
and SAS Proc CALIS. For basic CFA models, these packages should provide estimates that are essen-
tially identical. However, the packages differ with regard to the estimators available, amount and type
of output provided, and capabilities for advanced features such as incorporation of sampling weights,
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accommodation of nested data, and availability of modern missing data methodology. Researchers
should therefore provide the name of the software package chosen. In addition, because software in
this area is continually being upgraded, the specific version of the software package used should 
always be reported. If the LISREL package is used, researchers should also report the version of the 
pre-processor PRELIS (if used).

C8. Estimation Problems

In some cases CFA estimation can fail. Non-positive definite matrices, convergence failures, and
improper estimates are the most common reasons for such failures. Researchers should carefully
examine their computer output for such problems, because they are not necessarily flagged by soft-
ware packages. These problems are usually the result of model misspecification, collinearity, insuffi-
cient sample size, and/or a lack of identification, and it is incumbent upon the researcher to determine
the cause of the problem and correct it. Failure to do so renders the parameter estimates and other sta-
tistical indexes suspect.

For CFA models, the most commonly encountered problem is the occurrence of negative error
variances (Heywood cases). These can occur because of collinearity between variables, or somewhat
paradoxically, because of a lack of correlation between variables intended to represent the same fac-
tor. Other improper values in CFA include factor correlations greater than 1.0. In addition, parame-
ter values that are of the opposite sign from what was expected, or are much larger than expected (e.g.,
pattern coefficients of 20.0) are usually signs that something has gone wrong in the analysis. As noted
previously, insufficient sample sizes, outliers in the data, underidentification, and model misspecifi-
cation are all possible causes of both improper solutions and convergence failures.

If problems such as these arise during analyses, the researcher should briefly describe the problem
and state what was done about it and why. In many cases, such difficulties in estimation are indicative
of problems with model specification or identification. If this is the case, the model should be respec-
ified. If other steps are taken to overcome estimation problems, these should also be clearly docu-
mented. Researchers sometimes ignore or gloss over such problems, so reviewers and editors should
be mindful that these are potentially serious issues that require explanation and remediation.

C9. Data-Model Fit

A thorough discussion of the plethora of fit indices that have been developed to measure the fit of CFA
models is beyond the scope of this chapter. Instead, we provide here a general discussion of the assess-
ment of data-model fit and focus on those indices that are recommended by methodologists in this
area. CFA models are complex, and it is probably naïve to think that model fit can be properly assessed
by a single index. Therefore, most methodologists agree that fit should be assessed through the use of
several different criteria. Although the chi-square test of goodness of fit has been traditionally used to
assess data-model fit, many methodologists feel that it is overly stringent because (1) the role of the
null and alternate hypotheses is reversed in the logic underlying this test such that the desired outcome
is a failure to reject the null hypothesis, (2) due to null and alternative hypothesis reversal and to the
large sample sizes typically needed for CFA, the test is very powerful, and (3) the null hypothesis itself,
that the model holds exactly in the population, is unrealistic. Despite these shortcomings, the chi-
square test should be reported, along with its degrees of freedom and p-values; however, other fit
indices should be reported as well. These are often categorized into three classes, which we present
along with recommended exemplars and cut-off values in each class. 

Absolute or stand-alone indices are measures of the discrepancy between the observed sample matrix
and that implied by the CFA model being tested. One example of these is the chi-square value. Another
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is the standardized root mean square residual (SRMR), which is based on the average of the residuals
between the observed and implied matrices. SRMR values of .08 or less are considered to be indicative
of good fit.

Parsimony-adjusted indices also measure the discrepancy between the observed and implied matri-
ces, but incorporate some type of penalty for model complexity. Because data-model fit improves as
parameters are added to the model, these indices evaluate the improvement in fit resulting from the
additional parameters relative to the number of parameters needed to obtain this improvement. One
recommended index in this class is the root mean square error of approximation (RMSEA) and its
associated confidence interval. This index (or its 90% confidence limits) should be .05 or below for a
well-fitting model, or .08 or below for an “acceptable” model.

Incremental fit indices measure the fit of the model of interest relative to the fit of a null or baseline
model. The latter model is typically one that posits no correlations among the variables. Recommended
indices in this class include the comparative fit index (CFI) and the non-normed fit index (NNFI; also
known as the Tucker-Lewis Index, or TLI). Values of both indices should be .95 or above.

Decisions regarding data-model fit should be based on an integration of all available information.
Although evaluation of global fit indices is important, the matrix of standardized covariance residu-
als, which represents the discrepancy between corresponding elements of the observed and model-
implied matrices, should be closely inspected to identify any local areas of misfit that were masked by
the global fit indices. At a minimum, the range of these values should be reported when discussing fit.
Large residuals should be taken as indications of areas in which the model does not account for the
data; they should not be ignored but should be used to diagnose and better understand data-model
misfit. Researchers should also examine parameter estimates to determine whether the signs and mag-
nitudes are reasonable. In addition, convergence problems or excessively large standard errors can
indicate model misspecification or collinearity problems, and should be considered indications of
data-model misfit (see Desideratum C8).

Researchers should be aware that CFA models place very strict restrictions on the parameters. In
general, CFA models represent a perfect simple structure in which variables represent one factor and
have no direct relationship (i.e., zero pattern coefficients) with other factors. Such models are more
representative of an ideal than of reality, and it is often the case that they do not fit well. In particular,
CFA models with large numbers of variables often exhibit poor fit, because with more variables there
are more idealized factor-variable relationships of zero that may not satisfy this standard. Another way
of saying this is that the model becomes more falsifiable as the number of factor-variable relationships
that are set to zero increases. We emphasize strongly here that we are not advocating relaxation of
standards for fit of CFA models. Rather, we present these comments in the hope that they will moti-
vate researchers to develop a better understanding of the structure of their data.

C10. Model Comparisons

CFA provides an opportunity to examine the extent to which competing models explain the interre-
lationships among variables. In fact, CFA is most useful when a set of a priori alternative models are
estimated and compared because the researcher is then able to make more informed decisions about
the viability of a target model relative to competing models. This is because testing of alternative mod-
els provides support for a model not only through acceptable fit to the data, but also by the rejection
of competing models. Authors should clearly discuss the utility of testing competing models and
explain the manner in which these models will be compared.

Competing models may be nested or non-nested, and this influences the indices used to compare
models. Models are nested if the simpler model can be derived from the more complex model but by 
fixing parameters. A chi-square difference (Δχ2) test can be used to compare nested models. If the Δχ2 is
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statistically significant, the model with additional parameters is inferred to be better than the simpler
model. A common error in CFA is to treat models with different variables or different numbers of vari-
ables as nested models. However, nested models must have the same variables, as well as nested parame-
ters. Non-nested models can also be compared, although not through the use of the chi-square difference
tests. Instead, information criteria such as the Akaike Information Criterion (AIC) or its rescaled versions
(ECVI, CAK, CAIC), which estimate how well the model would fit in future samples (cross-validate), are
often used to compare non-nested models. Models with lower values of these indices are associated with
better data-model fit and, therefore, are championed over models with higher values. 

Competing models should only be compared to one another if they fit well in an absolute sense, both
globally and locally (see Desideratum C9). If none of the competing models are viable representations
of the data, comparing them can be misleading. For example, if authors make statements such as
“Model A fits better than Model B,” readers may then infer that Model A fits well in an absolute sense.
Furthermore, we believe that if only one model fits the data, there is no need to compare this model with
other models that do not represent the data well.

C11. Post Hoc Model Modifications

There are two forms of post hoc model modification: the removal of nonsignificant paths from a well-
fitting model (“trimming”), and the addition of paths to increase data-model fit for a poorly fitting
model. The former involves simplifying the a priori specified model by removing paths that do not
reach a particular level of statistical significance. We recommend against this practice for several rea-
sons: (1) using the same sample to respecify and test a modified model capitalizes on sampling error
and thus decreases the chance of obtaining replicable results; (2) the model no longer aligns with the-
ory but instead is empirically based or data driven; and (3) respecified models are often presented as
though they were a priori theoretically based models, thus misleading readers as to the initial models
specified and tested. If post hoc model modification is undertaken authors should do the following at
a minimum: (1) clearly present the results from the a priori model before any paths are removed
(including fit indices, parameter estimates, and standard errors); (2) present the full set of results (fit
indices, all parameter estimates, and standard errors) from the modified model, making a clear state-
ment that fit index cutoffs and p-values associated with the parameter estimates do not apply to mod-
ified models estimated on the same data; (3) provide a thoughtful explanation for the lack of empirical
support for that path (e.g., low variability associated with the variables due to the population under
study; issues collecting the data that impacted its validity); (4) provide a clear statement regarding cap-
italization on chance and the possibility of lack of power (i.e., a path may not be significant because
sample size was small but the same path could be found significant if a larger sample was used); and
(5) make a call for replication given the exploratory nature of the model modification. Often
researchers delete indicators that have non-significant or weak relationships with their intended fac-
tors, rather than simply deleting the path from the factor to the variable. The above recommendations
apply to this practice as well. However, this practice is potentially more serious because it may impact
the coverage of the breadth of the construct.

Most often, model modification involves the addition of paths to the model. A priori models often
do not fit the data adequately. Researchers are then often tempted to add parameters based on modi-
fication indices (MIs); MIs provide estimates of the amount by which the chi-square value would
decrease if the parameter were added. A particularly egregious practice is the addition of paths
between measurement error variances. These parameters are often added to models in an attempt to
improve fit. However, the need for such paths indicates that the associated variables have stronger 
correlations that can be accounted for by the factors. This may be due to method effects, similar 
wording, or other artifacts, or may indicate the need for more factors. Regardless of the source, the
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presence of unmodeled covariation is an indication that the hypothesized structure does not hold 
and should be interpreted as such. Unfortunately, many researchers lose sight of the purpose of CFA,
which is to allow the testing of a priori models (see Desiderata C2 and C10). If a model does not fit the
data, that information, along with a diagnosis of the source of the misfit, is useful and should inform
the domain. On the other hand, thoughtlessly modifying a model post hoc in an attempt to make it 
fit the data is not the purpose of CFA and may simply lead to models that do not replicate due to fit-
ting the idiosyncrasies of the sample data. Researchers and reviewers must keep in mind that the pur-
pose of conducting a CFA study is to gain a better understanding of the underlying structure of the
variables, not to force models to fit. The former is a useful scientific endeavor; the latter is not.

If a model does not fit the data, we recommend that this misfit be diagnosed using standardized
residual values (see Desideratum C9) in conjunction with modification indices. Given the sample-
specific nature of model misfit, we encourage replication studies to evaluate the stability of the misfit.
If the same area of misfit is found upon replication, it should be taken seriously and possible theoret-
ical explanations of the misfit should be presented. Given plausible and thoughtful reasons for the
misfit, the model may be modified and treated as an a priori specified model in future studies.

Often researchers do not have multiple samples to evaluate the replicability of model misfit. In such
cases researchers may choose to add parameters suggested by modification indices using the same data
on which the model was originally estimated. Although we discourage such post hoc model modifica-
tions, if these are made researchers should do the following at a minimum: (1) report findings (fit
indices, parameters estimates, and standard errors) from the a priori model and the modified model;
(2) provide substantively meaningful justifications for the modifications; (3) clearly note that the
modifications were done post hoc and explain the issues surrounding this practice (e.g., capitalization
on chance; fit index cutoffs and p-values associated with parameter estimates do not apply); and (4)
present the results as exploratory and make a call for replication of both the original model to assess
the stability of model misfit and the newly proposed model. Until modified models are studied using
independent samples, it is unknown if they will generalize and, in turn, if they are plausible. Thus,
researchers should be very cautious when interpreting the results from modified models and avoid
statements regarding the usefulness or plausibility of the model.

C12. Parameter Estimates

If a model does not fit the data adequately, the parameter estimates may be biased and should not be
reported. In such cases the focus should turn to diagnosing model misfit. When model-data fit has
been deemed adequate, parameter estimates and their corresponding significance tests should be
interpreted. At a minimum, the direct relationships between the factors and the observed variables
(path coefficients) should be reported in standardized form. If an observed variable serves as an indi-
cator to only one factor, the standardized coefficient can be squared to represent variance explained in
the variable by the factor. Given that the variables were specifically chosen to indicate these factors,
one would hope that the variance explained (R2) would be high (at least .50). If these values are low,
implications should be discussed (see Desideratum C13). The unstandardized coefficients, not stan-
dardized coefficients, are tested for significance. Therefore, the unstandardized coefficients should be
presented with their corresponding standard errors. Reporting the unstandardized estimates and
standard errors facilitates comparison of results across independent samples. There is no need to pres-
ent the significance tests; readers can easily compute these values if needed. Instead, a statement
regarding the statistical significance of the path coefficients can be made in the text or in the table note
(e.g., “All unstandardized path coefficients were significant at p < .05”). However, it should be noted
that significance of the path coefficients simply means that these are significantly different from 
zero, not that they are, in some sense, “good” indicators of the factors. Given that the variables were
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specifically chosen to represent the factors, statistical significance of the path coefficients would seem
to be a minimum expectation. However, researchers often interpret significance as though it were evi-
dence of the strength of the indicators. Lastly, if one has tested a multidimensional solution with fac-
tor covariances/correlations freely estimated, these values should be reported along with the
corresponding significance tests. In general, parameter estimates can be reported in tables, on the path
diagram, or a combination of the two. If several competing models fit the data well and are theoreti-
cally plausible, authors should present and interpret results from each model.

C13. Factor Quality

As with EFA, the quality of the factor is assessed by the magnitude of the parameter estimates, reliabil-
ity of scores, and available validity evidence. Given the confirmatory nature of the analyses, one
expects the observed variables to relate strongly to the factor for which they serve as indicators; it is this
assumption that led to the selection and use of the observed variables. Often authors conflate adequate
data-model fit with strong relationships between the factors and corresponding observed variables.
Weak factor-variable relationships can occur despite adequate model-data fit due to such things as
low observed variable correlations. If the majority of the relationships between a factor and its indica-
tors are weak (R2 < .5), the author should acknowledge this and resist the temptation to label the 
factor as consistent with a priori expectations. Weak relationships between variables and the factors
they are meant to measure indicate that the researcher’s hypotheses about the variables are not sup-
ported. In addition, weak factor-variable relationships yield low internal consistency reliability, which
will affect external validity (relationships with theoretically related constructs), making interpretation
of the factor difficult. 

If the factor-variable relationships are strong and reliability is adequate, external validity evidence
should be gathered. The quality of the factor is ultimately dictated by how well observed relationships
with other constructs align with theoretical expectations (e.g., through multitrait-multimethod analy-
sis; see Chapter 22, this volume). If authors are unable to assess these relationships, the quality of the fac-
tors and what the factors represent remains in question; therefore, authors should refrain from making
cavalier statements regarding the meaning of the factor and its utility until such relationships have been
investigated.

C14. Caveats and Limitations

Caveats and limitations for CFA are essentially the same as those for EFA (see Desideratum E16). In
addition, as noted above, if post hoc model modifications are undertaken, the authors must clearly
explain the effect of this practice on the interpretation of resulting model parameters. Furthermore,
researchers may be tempted to use more far-reaching language related to the plausibility of the model
when employing CFA compared to EFA. Finding adequate data-model fit does not imply that the
model represents “truth” but instead that the model is one possible representation of the structure
underlying the observed variables. Moreover, researchers should focus equally on the adequate fit of a
model and the rejection of alternative models when interpreting results. It is the combination of
rejecting competing models and failing to reject a model that provides the most useful insight into the
dimensionality of the construct under study.

Note

1 Although standard errors for factor analytic methods other than maximum likelihood have been derived, the com-
putations are intensive and have not been programmed into most general-use statistical packages. However, the pro-
gram CEFA (Browne, Cudeck, Tateneni, & Mels, 2008) does provide standard errors for coefficients.
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9
Generalizability Theory 

Amy Hendrickson and Ping Yin 

Generalizability theory (G theory) is a powerful tool in educational measurement that can help
researchers and educators conceptualize better and more efficient data collection efforts based on
their needs and requirements. G theory is a statistical theory used to assess the consistency or depend-
ability of scores over randomly parallel replications of a measurement procedure. In order to take full
advantage of the potential of generalizability theory, one must constantly ask the question of what
constitutes the measurement procedure. This is such an important question in any generalizability
study that almost every piece of information in the analysis will depend on it.

G theory provides a conceptual framework and a set of statistical procedures and classical test the-
ory and analysis of variance (ANOVA) can be viewed as its parents. In G theory, one identifies the var-
ious sources of error in observed scores and the relations among such sources and then estimates the
error variance associated with each. The analysis of any generalizability study is important because
there are various choices for procedures and methods for the analysis. The strengths of G theory are
that the relative importance of multiple sources of error can be estimated separately in a single analy-
sis for a given situation as well as be used to help the decision maker to design more efficient measure-
ment procedures for the future. Valid generalization and interpretation of G theory results, however,
depend on a carefully conceptualized design and well-executed analysis, and the authors should 
document and justify each of their decisions, as outlined in this chapter.

Software packages developed specifically for generalizability analyses are GENOVA (for balanced
designs), urGENOVA (for unbalanced designs primarily), and mGENOVA (for multivariate
designs). Other commercially available software packages such as SAS and SPSS may also be used for
the analyses, but have limitations in their applicability. 

For comprehensive descriptions of G theory we recommend texts by Brennan (2001), Cronbach,
Gleser, Nanda, & Rajaratnam (1972), Shavelson and Webb (1991), and Traub (1994). Specific
desiderata for applied studies that utilize G theory are presented in Table 9.1 and explained in detail
subsequently.

1. Measurement of Reliability

Generalizability analyses are particularly appropriate when an investigator is concerned about reliabil-
ity-related issues that involve generalizing over multiple tasks, raters, occasions, and so forth.
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Conceptually, it is useful to think of such analyses in terms of hypothetical replications of the measure-
ment procedure. In the terminology of generalizability theory, replication is usually described in a ran-
domly parallel fashion that involves different but similar instances of the measurement procedure. For
example, a group of persons might be given a set of five items to complete. A randomly parallel replica-
tion of this measurement procedure would involve a different set of five items from the same item pool.
The authors must discuss the need to measure variability (or consistency) over defined replications.

2. The Measurement Procedure

The authors must describe the measurement procedure, including any assessment instruments and
the included tasks, as well as the administration and scoring processes. For example, for an analysis of
rater and task variability over replications, the following questions should be answered: How many
tasks were included? How many score points were used per task? What was the nature of the rubrics—
was holistic or analytic scoring employed? How were tasks assigned to persons? How were tasks
assigned to raters? How were persons assigned to raters? There should be enough detail included
regarding the nature of the measurement procedure, including the assessment and administration, to
support the indicated generalizability study (G study) design.

3. Universes, Objects of Measurement, and Facets

The universe(s) of admissible observations and universe(s) of generalization are part of the conceptual
framework behind generalizability theory. The definition of these universes for a given study lends
support to and aids in understanding the indicated generalizability (G) and decision (D) studies

Table 9.1 Desiderata for Generalizability Theory 

Desideratum Manuscript

Section(s)*

1. The need for measurement of reliability over replications of a measurement procedure is made clear. I

2. The measurement procedure is described in detail. M

3. The objects of measurement, universe(s) of admissible observations, universe(s) of generalization, M

and included facets are defined to aid in the understanding of the generalizability (G) and

decision (D) studies.

4. The design of each G and D study is described, including whether each design is univariate or M, R

multivariate and balanced or unbalanced, and including diagrams and/or tables to facilitate 

the understanding of each design.

5. The name and version of the utilized software package is reported. M, R

6. Summary statistics (n per task, mean, SD) and variance components for all facets and their R

interactions are presented.

7. Problems with estimation are reported and discussed. R

8. A table and discussion of G study variance components are included. R

9. A table and discussion of D study variance components are included. R

10. The D study error variances and generalizability and dependability coefficients are discussed and R, D

included in a table.

11. The practical results are discussed, including (if applicable) a discussion of multivariate results and D

composite scores and including an evaluation of the current assessment design and of the ideal 

design for ensuring valid generalizations.

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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employed. As part of both types of universes, facets, or sets of similar conditions of measurement, must
be identified and described. These facets often include raters, tasks, occasions, and so forth. The uni-
verse(s) of admissible observations defines the instances of the facets as well as the relations among the
facets that are acceptable conditions of measurement. For example, all high school math teachers from
a given state might constitute the universe of admissible raters, any word problem from a given pool
of math items might constitute the universe of admissible tasks, and a pairing of any rater with any task
might constitute an acceptable relationship between these facets (crossed, in this instance).

The objects of measurement represent the population for whom the admissible facets would be
appropriate (often people or groups). Following the high school math test example above, all the 
students who might respond to the math items would be the objects of measurement. 

While the universe(s) of admissible observations defines the facets and relationships as they exist in
a given situation, the universe(s) of generalization defines the facets and relationships to which a deci-
sion-maker wants to generalize based on the results from the given situation. In this way, we can esti-
mate the effect on score variability of modifying the numbers of and relations among the facets (e.g.,
raters, tasks, occasions) and thus improve future designs (for example, finding that we may use fewer
raters or fewer items and still maintain acceptable levels of reliability or identifying ways to obtain
more reliable results from the measurement procedure). Given a particular universe of generalization,
a universe score is defined for each object of measurement in the population as their mean (or
expected) score over all randomly parallel replications of the measurement procedure. Thus, the uni-
verse score is analogous to the true score in classical test theory. The purpose of a measurement is to
accurately estimate this universe score based on a sample of observations.

The authors need to clearly identify and define these concepts as related to their study.
Furthermore, specifics about the facets must be described, including whether they are fixed or random
and crossed or nested. The identification of the facets and universe(s) of admissible observations and
of generalization is crucial. They provide the framework for choosing G study and D study designs,
and for interpreting generalizability results. 

4. Study Designs

Once a population and universe(s) of admissible observations has been defined, the researcher collects
and analyzes data to estimate the variances of the observed scores and of the facets in the universe(s) of
admissible observations associated with the appropriate design. The design of this study, called a gener-
alizability study (or G study), should match the facets and relationships included in the universe(s) of
admissible observations. The variance of the facets in the universe(s) of admissible observations can be
decomposed into several uncorrelated components based on the G study design. Each of the compo-
nents is termed a variance component. The variance component estimates from the G study can then be
used to estimate the variance components and reliability-like coefficients for one or more D studies. In
any particular application of generalizability theory, there is usually only one universe of admissible
observations and one G study (i.e., a univariate design). However, there are often multiple universes of
generalization and multiple decision (D) studies that are of interest to an investigator. These multiple
universes and D studies might differ in terms of sample sizes for facets, which facets are fixed and which
are random, and/or the structure of the D study designs.

In cases where multiple universes of admissible observations, and thus multiple universe scores for
each person, are of interest a multivariate generalizability study should be employed. In a multivariate
G theory design, each universe score is associated with one level of a fixed facet and for each such level
there is a random effects design. These various designs are linked through covariance components. An
example of a multivariate design is the table of specifications model (Brennan, 2001; Yin, 2005). In this
model, a test consists of items from several content areas: a different set of items is nested within each
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content area, and each content area is treated as a level of a fixed facet. The levels are linked because the
same group of persons responded to all questions for each content area. 

The authors need to clearly identify and describe the design of each G and D study, including
whether each design is univariate or multivariate and balanced or unbalanced. The inclusion of Venn
diagrams and/or tables that outline the various variance components help to facilitate the under-
standing of each design. For example, see Figures 9.1 and 9.2 for Venn diagrams that depict designs in
which raters are either crossed or nested within items. The distinctions between the designs are easily
discernible from the diagrams.

Furthermore, the authors need to be aware of and acknowledge that the power and flexibility of
generalizability theory is associated with conceptual challenges in characterizing the designs, espe-
cially those with multivariate designs. Even though there are statistical methods associated with com-
plex generalizability designs, the identification and conception of such designs is never clear-cut. 

5. Software

The choice of computer software for estimating G theory results depends largely on the specific method
desired for estimation. There are various methods for estimating variance components in a generaliz-
ability study. For example, one type of estimation method makes normality assumptions (e.g., 
maximum-likelihood and restricted maximum-likelihood procedures). Another type of procedure
does not require such normality assumptions. For a detailed discussion of various estimation methods
and their implementation in various computer software programs, see Brennan (2001, pp. 241–247).

Relatively few software packages exist for estimating G theory results. These are the suite of 
GENOVA programs, SAS, SPSS, and S-Plus. These packages tend to produce similar results for most
basic designs, though they have various specializations and limitations. 

Items RatersI ×  R

Figure 9.1 Venn Diagram Depicting Items (I) Crossed with Raters (R).

Items

Raters

Figure 9.2 Venn Diagram Depicting Raters (R) Nested within Items (I).
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Considerations to keep in mind when choosing and using software packages are: the estimation
method employed, memory requirements, processing time, sample size, the design implemented (e.g.,
unbalanced vs. balanced) and the interrelatedness of these variables. For example, maximum-
likelihood (ML) and restricted maximum-likelihood (REML) procedures necessarily make heavy
demands on computer resources compared to the other procedures. When using the ML or REML pro-
cedures in combination with more than 10,000 observations, memory requirements and processing
time are likely to be prohibitive. Furthermore, using SPSS for G theory analyses often results in an
“insufficient memory” error message even with moderately large analyses. Finally, of these programs,
only urGENOVA provides G study results for unbalanced designs. 

The authors should identify the software program they used, the version of the software, the 
estimation method employed and any problems with estimation that they encountered.

6. Summary Statistics and Variance Components

Typically, various summary statistics are presented as part of the generalizability analysis related to the
particular G study design. The most important G study statistics are the estimated variance compo-
nents, because they can be used to design more efficient measurement procedures and to provide infor-
mation in various decision studies (e.g., obtain D study variance components and subsequent D study
statistics such as error variances and generalizability coefficients). The estimated variance components
for all facets presented in the G study design are typically reported as part of the summary statistics.

7. Problems with Estimation

In theory, variance components cannot be negative. In practice, however, because sampling error is
likely to be present, the estimates of variance components can sometimes be negative. In particular,
when the number of facets in the design is large while the sample size for a particular facet is small, a
possible consequence of sampling variability related to the facet with the small sample size could result
in one or more negative estimated variance components. 

One obvious solution to this problem is to increase the sample size for the facet with the small sam-
ple size. However, this might not always be feasible in practice, especially when time and resources are
limited. Usually, negative estimates are simply set to zero. If an investigator wants to preclude the pos-
sibility of obtaining negative estimates, Bayesian estimation procedures can be used, but they are often
challenging to implement. The negative estimate issue has theoretical implications because by defini-
tion, variance components cannot be negative. Also, because of the additive property of variance com-
ponents, the negative variance component estimates for one facet may affect the variance components
for other facets and some subsequent D study statistics if using certain estimation methods such as the
expected mean square method (see Desideratum 8). However, the negative variance component esti-
mates seldom make much difference from a practical point of view. 

The authors need to be aware that such estimation problems do occur in generalizability analyses,
especially when the sample size for a facet is small. The authors should also be aware that such estima-
tion problems do not necessarily imply inappropriate study design or estimation procedure. The best
solution for the estimation problem is to increase the sample size if possible. The authors should
report any estimation problems encountered in initial runs and the strategies for solving these prob-
lems, including whether any and which negative estimates were set to zero.

8. G Study Variance Components

As discussed in Desideratum 4, the main purpose of a G study is to obtain variance component esti-
mates associated with a universe(s) of admissible observations. Using the analysis of variance method,
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the variance of the observed scores over the population of objects of measurement and the facets in the
universe(s) of admissible observations can be decomposed into several uncorrelated components,
called variance components, based on the G study design.

Several procedures can be used to obtain the estimated variance components in a G study for 
balanced designs, and these procedures are discussed in detail in Brennan (2001). Only a brief 
summary is presented in this chapter. One method is called the expected mean square (EMS) proce-
dure, in which a series of EMS equations are solved by replacing parameters with estimators
(Cronbach et al., 1972). The most commonly used method is called the ANOVA method. It can be
implemented using matrix procedures or via an algorithm described in Brennan (2001). The ANOVA
method has two important characteristics: (1) it does not make any normality assumptions (which are
often highly suspect in generalizability theory applications), and (2) the estimated variance compo-
nents are unbiased. 

For unbalanced designs, two general types of methods are available to obtain estimated variance
components. One type of method (i.e., maximum likelihood) assumes normality and often involves
computations with large matrices, which might not be appropriate when the normality assumption is
not satisfied, or when the estimation process encounters problems related to the operation with large
matrices. Another type of method does not make assumptions of normality and does not typically
involve operations on large matrices. This method is called Henderson’s Method 1 or the analogous-
ANOVA method by Brennan (2001). It is difficult to mount a compelling theoretical argument for 
one method over another when designs are unbalanced. From a practical perspective, however,
Henderson’s Method 1 is relatively simple and estimated variance components can be obtained quickly. 

The authors should summarize the variance component results in a table, with each G study effect
and estimated variance component clearly listed. For an example of such G study variance component
tables, please see Table 9.3 in Brennan (2001). Information for the estimated G study variance compo-
nents is typically combined with D study results (see Desideratum 9) and presented in one table. 

9. D Study Variance Components

The specification of a universe of generalization is the most important aspect of a D study. It is very
common for G and D studies to have the same structure. However, designs in G and D studies do not
have to be the same. For example, different D study designs can be considered based on one G study
for the purpose of designing more efficient measurement procedures and providing information for
different decision studies. Therefore, D studies in generalizability analyses provide a unique and pow-
erful tool in designing and improving measurement procedures.

The D study variance components are estimated for the universe of generalization. To obtain esti-
mated D study variance component estimates, D study sample sizes need to be specified. Note that D
study sample sizes do not need to be the same as the sample sizes for the G study. Also note that for the
D study, the emphasis is on mean scores for facets considered in the design rather than individual con-
ditions of facets. 

The D study variance component for a facet can be interpreted as the variance of the distribution of
mean scores for that facet, where each of these means is for the population of persons and the ran-
domly parallel instances of the measurement procedure. Statistically, the variance of the mean score
for an effect is simply the variance component for the individual effects divided by the sample size(s).
Let α stand for an effect (e.g., the item effect); the D study variance component for the effect can be
obtained using 

σ 2 (α
_

) = 
σ 2 (α)
n (α)  

, (1)
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where σ 2(α) is the G study variance component for the effect, σ 2(α
_

) is the D study variance compo-
nent for the effect, and n(α) is the product of the D study sample sizes for all facets in the effect except
for the object of measurement (e.g., persons). For instance, if the G study design involves persons,
items, and the person × item interaction (or residual term), the D study variance component for the
person × item interaction effect is simply the G study variance component for the person × item inter-
action effect divided by the D study sample size for items. 

One of the advantages of generalizability theory is the flexibility in D studies. The authors should
make an effort to specify the D study sample sizes and/or D study designs with likely desired scenarios
(for example, using fewer raters while still achieving the same level of reliability) so that better and
more efficient studies can be designed. 

10. D Study Error Variances; Generalizability and Dependability Coefficients

Two types of error variances are typically reported in a D study, relative and absolute. These error vari-
ances are very useful for making norm-referenced and criterion-referenced interpretations of scores.
Specifically, the absolute error variance is the error term involved in using an individual’s observed
mean score as an estimate of the individual’s universe score, and for random models it is obtained by
summing all variance components except the universe score variance in the D study. Absolute error is
often associated with domain- or criterion-referenced interpretations of scores. 

The relative error variance, on the other hand, is associated with using an individual’s observed devi-
ation score as an estimate of the individual’s universe deviation score, which is the difference between a
person’s observed mean score and this person’s universe or true score. For random models it is
obtained by summing all variance components that include the universe score and at least one other
facet in the D study. Relative error is often associated with norm-referenced interpretations of scores. 

Based on the definitions of these two error variances, which indicate that at least the same variance
components are summed in the calculation of absolute error variance, absolute and relative error vari-
ance is at least as large as relative error variance. Because the structure of the D study design often influ-
ences the magnitude of error variance, values of these absolute and relative error variances need to be
considered or compared only in the context of the specific D study design. 

D study coefficients are much like reliability coefficients in classical test theory, and have a range of
zero to one. The two coefficients are generalizability and dependability coefficients. The generalizabil-
ity coefficient is considered when making norm-referenced interpretations of scores:

E (ρ 2) = 
σ 2 (p)

(2)σ 2 (p) + σ 2 (δ)

where E(ρ 2) is used to represent a generalizability coefficient that is considered a squared correlation
between the universe and observed scores. In equation (2), σ 2(δ) is the relative error variance, and
σ 2(p) is the universe score variance. Similarly, the dependability coefficient is used when criterion-
referenced interpretations of scores are to be made:

Φ = 
σ 2 (p)

σ 2 (p) + σ 2 (Δ)
(3)

where Φ is the dependability coefficient, and σ 2(Δ) is the absolute error variance. 
The generalizability coefficient appears similar to the traditional reliability coefficients defined in

classical test theory (e.g., test-rest reliability, Cronbach’s alpha or internal consistency reliability coef-
ficient). However, only in generalizability theory can a researcher specifically define the universe of
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generalization. It is also clear that multiple estimates of generalizability coefficients can be obtained
based on including different facets, D study sample sizes, and even D study designs.

It can be noted from equations (2) and (3) that the only difference between the generalizability and
dependability coefficients is in the error variances. If values for the relative and absolute error vari-
ances are the same, the two coefficients are the same as well. Typically, absolute error variance is larger
than relative error variance because the former involves more variance components for the same
design. Consequently, the dependability coefficient tends to be smaller than the generalizability 
coefficient. 

When discussing different error variances and D study coefficients, the authors should be careful
comparing the magnitude of the two error variances and the two D study coefficients. Depending on
the G and D study designs, the two error variances and the two D study coefficients can be the same,
similar, or different from each other. It is always advisable to discuss the differences instead of focus-
ing simply on the values of these statistics. 

11. Practical Results Are Discussed

The authors should pull together the results of their D study analyses and relate them back to the par-
ticular situation they are working with and the decisions that they set out to make. They should dis-
cuss the implications of the results for their measurement procedure and provide justification for
using their current procedure or rationale for changes that they expect to make to the procedure.
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10
Hierarchical Linear Modeling 

D. Betsy McCoach

In the social sciences, much of the data that we deal with are hierarchical in nature. Examples of natu-
rally occurring hierarchies include students nested within schools, patients nested within hospitals,
workers nested within companies, husbands and wives nested within couple dyads, and observations
nested within people. Most traditional statistical analyses assume that observations are independent
of each other. The assumption of independence means that subjects’ responses are not correlated with
each other. This assumption might be reasonable when data are randomly sampled from a large 
population. However, when people are clustered within naturally occurring organizational units (e.g.,
schools, classrooms, hospitals, companies), the responses of people from the same cluster are likely to
exhibit some degree of relatedness with each other, given that they were sampled from the same orga-
nizational unit. Hierarchical linear modeling allows researchers to adjust for and model this non-
independence.

With clustered data, traditional statistical analyses that assume independence will produce incor-
rect standard errors. In such a scenario, the estimates of the standard errors are smaller than they
should be. Therefore, the Type I error rate is inflated for all inferential statistical tests that make the
assumption of independence. In multilevel analyses, we explicitly estimate and model the degree of
relatedness of observations within the same cluster, thereby correctly estimating the standard errors
and eliminating the problem of inflated Type I error rates. These types of models are often referred to
as hierarchical linear models, multilevel models, mixed models, or random effects models. These terms are
generally used interchangeably, although there are slight differences in the meanings of the terms. For
instance, hierarchical linear model is a more circumscribed term than the others, as it assumes a nor-
mally distributed response variable. 

The advantages of hierarchical linear modeling, however, are not merely statistical in nature.
Multilevel analyses allow us to exploit the information contained in cluster samples to explain both the
between- and within-cluster variability of an outcome variable of interest. These models allow us to use
predictors at both the individual (or lowest) level (level 1), and the organizational (or higher) level
(level 2) to explain the variance in the dependent variable. We can also allow the relation between an
independent variable and the dependent variable to randomly vary across clusters. If we find that the
impact of the independent variable on the dependent variable varies across clusters, we can try to
explain the variability in this relation using cluster-level variables. For example, we can allow the rela-
tion between students’ SES and achievement to vary by school. If we find that the impact of SES does
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Table 10.1 Desiderata for Hierarchical Linear Modeling

Desideratum Manuscript

Section(s)

1. Model theory and variables included in the model are consistent with the purposes of the study and I

the research questions or study hypotheses.

2. The decision to include/exclude random effects should be justified theoretically. The number of M, R

random effects to include should be as realistic and yet as parsimonious as possible. If random effects

are eliminated during the model-building process, this decision should be justified both empirically 

and theoretically.

3. Statistical model is presented, preferably using equations. Otherwise, minimally, the statistical M

model is described in enough verbal detail to be replicable by other researchers, and for the reader to 

determine the fixed effects and the random effects at each level for each model. 

4. Sample size is specified at each level, and is sufficient for conducting the proposed analysis. M

Sampling strategy and mode(s) of data collection are identified and justified. If appropriate, 

weighting methods are described and justified. 

5. Measurement of the outcome/response variable is described and justified. Measurement of all M

explanatory variables is described and justified; evidence of reliability and validity is provided. 

6. Scaling and centering of predictor variables are described and justified. Coding of all categorical M

predictors is fully described. Special attention must be paid to the centering/coding of all lower-level 

independent variables and to the implications of these centering decisions for interpretation 

of the model results. 

7. Extent of missing data is clearly reported for all variables at all levels, and methods for M, R

accommodating missing data are described. Special attention is paid to the issue of missing data at 

higher levels of analysis, as higher level units with missing data are eliminated from the analysis by 

default. The final analytical sample is described.

8. For longitudinal models, the shape of the growth trajectory is described, and the modeling of this M, R

trajectory is described and justified.

9. The software or program used to run the models should be identified. Parameter estimation M, R

strategy (e.g., REML, ML) is identified and justified.

10. Assumptions of the model are described and checked. This may include discussions of normality, M, R

outliers, multicollinearity, homogeneity or heterogeneity of variances, and residual diagnostics.

11. The assumed error covariance structure should be described, and any plausible alternative error M, R

covariance structures should be described and tested. This is especially important for longitudinal 

models.

12. Descriptive statistics for variables at each level of the analysis should be reported. These should R

include means, standard deviations, and correlations.

13. The intraclass correlation coefficient for the unconditional model should be reported and R

interpreted. 

14. Generally, multilevel models are built sequentially, using a series of models: an unconditional M, R

model, a random coefficients model (containing lower-level predictors), and a full model 

(containing predictors at all level of the analysis). This series of models is described.

15. The write-up includes a table that presents the results of the analysis. These results should include R

both fixed effect parameter estimates and variance components.

16. Model fit issues are addressed. Deviance is reported for any estimated models. Additionally, other R

measures of model fit (e.g., AIC, BIC) are reported for all estimated models. Competing nested 

models are compared using the likelihood ratio/chi-square difference test. 
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vary by school, we can try to explain that variability using school-level predictors, such as type of school,
school SES, or average per-pupil expenditures. If a level-2 variable, such as average per-pupil expendi-
ture, moderates the relationship between a level-1 variable (SES) and the dependent variable (achieve-
ment), this is called a cross-level interaction. Thus, hierarchical linear modeling allows us to
simultaneously model the impact of both individual (or lower-level) and institutional (or higher-level)
variables on the dependent variable of interest, as well as to model the cross-level interactions between
higher-level and lower-level variables on the outcome of interest. 

Finally, growth curve and other longitudinal analyses can be reframed as hierarchical linear mod-
els, in which observations across time are nested within individuals. Using this framework, we can
partition residual or error variances into those which are within-person (measurement error) and
those that are between people. In such a scenario, between-person residual variance represents
between-person variability in any randomly varying level-1 parameters of interest, such as the inter-
cept (which is commonly centered to represent initial status in growth models) and the growth slope.

Contemporary expositions of hierarchical linear modeling include textbooks by Raudenbush and
Bryk (2002), Hox (2002), and Snijders and Bosker (1999), and an edited volume by O’Connell and
McCoach (2008). Table 10.1 presents specific desiderata for applied studies that utilize hierarchical
linear modeling, and the remainder of this chapter is devoted to the explication of these desiderata.

1. Model/Theory Alignment

When using modeling techniques such as multilevel modeling, it is important that a coherent con-
ceptual base informs and guides the statistical analyses. The model theory and the variables included
in the model need to be consistent with the purposes of the study and the research questions or study
hypotheses. Of course, any study should be guided by a coherent theory. However, given that exclud-
ing an important potential confounder creates the potential for bias in the estimates, the temptation
with regression-type models is to try to add any variable that might be related to the outcome variable.
While it is true that failing to include important potential confounders can create bias in the estimates
of the effects of other variables, given the complexity of the error structure and the number of poten-
tial cross-level interactions, models that include large numbers of fixed and random effects can
become unwieldy, difficult to interpret, and perhaps even impossible to estimate. Therefore,
researchers should spend a great deal of time determining the variables for inclusion based on theory
and relevant literature prior to undertaking the data analysis. 

2. Random Effects 

As in multiple regression (see Chapter 21, this volume), we estimate a within-cluster residual (r) that
represents the deviation of a person’s score from his or her predicted value. In a multilevel model, the
intercept and the slopes for each of the level-1 variables can randomly vary across the level-2 units. In
general, we allow the intercept to randomly vary across level-2 units. Therefore, we estimate a residual
for each cluster (u

0
). This is the deviation of a cluster’s value from the overall intercept. It is this 

17. Some description/summary of the final model’s predictive ability should be provided. This could R

include a proportion reduction in variance at each level/proportion of variance accounted for at 

each level.

18. Some measure of effect size or practical utility should be reported. R, D

19. Language used in the presentation and discussion of results appropriately reflects the study design. R, D

Causal language is not used except when justified through study design.

Note: I = Introduction, M = Methods, R = Results, D = Discussion
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ability to partition variance into within-cluster variance and between-cluster variance that is the
essence of the hierarchical linear model. For simplicity, imagine a model in which there are no predic-
tors. Each person’s score on the dependent variable is composed of three elements: the overall mean
(γ

00
), the deviation of the cluster mean from the overall mean (u

0j
), and the deviation of the person’s

score from his/her cluster mean (r
ij
). The u

0
term allows us to model the dependence of observations

from the same cluster because u
0j

is the same for every student within school j (Raudenbush & Bryk,
2002). The u

0
term is referred to as a random effect for the intercept because we assume that the value

of u
0
randomly varies across the level-2 units (clusters) and that it has a mean of 0 and a variance of τ

00
. 

Now, imagine a model in which there is one predictor at the lowest level. For this example, assume
that we are predicting reading achievement (Y

ij
) using SES. We continue to allow the intercept to ran-

domly vary across schools. However, now we can allow the SES slope to randomly vary across schools
as well by including u

1
. By allowing the SES slope to randomly vary across schools, we are specifying a

model in which the relation between SES and reading achievement is different for different schools.
Therefore, in some schools, there could be no relation between students’ SES and their reading
achievement, whereas in other schools the relation between students’ SES and their reading achieve-
ment could be quite strong. The set of equations for this model is 

Y
ij

= β
0j

+ β
1j

(SES)
ij

+ r
ij

β
0j

= γ
00

+ u
0j

(1) 

β
1j

= γ
10

+ u
1j

Generally speaking, in multilevel modeling, fixed effects represent the average effect across an entire
population and are expressed by the regression coefficient (Snijders, 2005). In contrast, a random
effect varies randomly across the population of level-2 units and is estimated as a residual for each of
level-2 units (Snijders, 2005). Generally, we are interested in estimating, modeling, and testing the
variances (and covariances) for these random effects. The variances and covariances of the random
effects are referred to as variance components. In the set of equations above (1), the γ terms are the fixed
effects and the u terms are the random effects.

In a two-level model, the number of possible random effects is equal to the number of variables at
level 1 plus 1 (the random effect for the intercept). Therefore, in a model that contains 10 different
level-1 variables, there could be up to 11 random effects. The number of random effects included
should be as realistic and yet as parsimonious as possible. At first glance, it might seem desirable to try
to allow the slopes for all level-1 variables to vary randomly across the level-2 clusters and then to
empirically eliminate any random effects that are not statistically significant. However, Raudenbush
and Bryk (2002) cautioned against this practice: “If one overfits the model by specifying too many ran-
dom level-1 coefficients, the variation is partitioned into many little pieces, none of which is of much
significance” (p. 256). Instead, researchers should make the decision to include/exclude random
effects based on theoretical grounds, rather than blindly allowing all level-1 slopes to randomly vary
across level-2 clusters. 

Even when using theory as a guide, sometimes analysts make changes to the random portion of the
model during the model-building process. If random effects are eliminated during the model build-
ing process, this decision should be justified both empirically and theoretically. One common reason
for eliminating random effects is that the level-2 variables in the model are able to explain the between-
cluster variability in the slopes. For example, imagine a model in which prior vocabulary is a predictor
of reading achievement and the prior vocabulary slope is allowed to randomly vary across schools.
However, when the level-2 model includes the SES of the school and the proportion of English 
language learners as predictors of the vocabulary/reading achievement slope, the between-school



Hierarchical Linear Modeling • 127

variability in the slope is greatly reduced, and it is no longer statistically significant. In such a scenario,
the variability in the impact of vocabulary knowledge on reading achievement is explained by school-
level variables. Therefore, the slope of vocabulary on reading achievement is neither fixed nor 
randomly varying. Instead, it systematically varies as a function of the two level-2 variables. 

3. Presentation of the Statistical Model 

It is important for readers to be able to understand and potentially replicate the reported multilevel
analyses. Therefore, the full hierarchical linear model must be specified clearly within the Methods
section. There are many decisions that a researcher must make when building a multilevel model. Are
the slopes of the level-1 coefficients allowed to randomly vary across the level-2 units? Which cross-
level interactions between level-1 variables and level-2 variables are specified? Given the complexity of
most multilevel models, the clearest and easiest way to communicate the exact specification of the
model is by presenting the statistical model using equations. The equations for the multilevel model
can be presented in one of two ways: using separate equations for the level-1 and level-2 variables or
using a combined model. 

To illustrate the multilevel and combined specifications, imagine a model in which the researcher
wants to predict the reading achievement scores for students nested within schools. The level-1 inde-
pendent variable is socio-economic status (SES), and the effect of SES is assumed to randomly vary
across schools. The level-1 intercept is also allowed to randomly vary across schools. The level-2 inde-
pendent variable is percentage of students receiving free lunch (FREELNCH), which serves as an indi-
cator of School SES. The multilevel, multiple equation notation is: 

Y
ij

= β
0j

+ β
1j

(SES)
ij

+ r
ij

β
0j

= γ
00

+ γ
01

(FREELNCH)
j
+ u

0j
, (2)

β
1j

= γ
10

+ γ
11

(FREELNCH)
j
+ u

1j 

The γ
00

term is the intercept of the school intercepts, indicating the predicted value of reading achieve-
ment when all other variables in the model are held constant at 0. The γ

01
term represents the unit

change in the predicted value of the intercept per unit change in the free-lunch variable. The γ
10

term
is the intercept of the SES slope, indicating the relationship between SES and achievement when
FREELNCH = 0. Finally, γ

11
is the cross-level interaction between FREELNCH and SES, indicating the

degree to which the percentage of free-lunch students in a school moderates the effect of SES on read-
ing achievement. The u

0j
term indicates that the intercept (β

0j
) is allowed to randomly vary across

schools. The u
1j

term indicates that the slope of the SES variable (β
1j
) is allowed to randomly vary

across schools. The combined model is the same model and contains the same information as the mul-
tilevel, multiple equation notation. However, in the combined model, we substitute the expressions to
the right of the equals sign for β

0
and β

1
. Thus, the combined notation for the same model would be: 

Y
ij

= γ
00

+ γ
01

(FREELNCH) + u
0j

+ γ
10

(SES)
ij

+ γ
11

(FREELNCH)
j

(SES)
ij

+ u
1j

(SES)
ij

+ r
ij
. (3)

Generally, these terms are regrouped so that the fixed effects are in the beginning of the equation and
the random effects are at the end of the equation. So the standard combined form would be as follows: 

Y
ij

= γ
00

+ γ
01

(FREELNCH)
j
+ γ

10
(SES)

ij
+ γ

11
(FREELNCH)

j

(SES)
ij

+ u
0j

+ u
1j
(SES)

ij
+ r

ij
. (4)
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In reality, the model that is estimated is the combined model. Users of SAS and SPSS must specify the
combined model, whereas users of the software package HLM (Raudenbush, Bryk, Cheong,
Congdon, & du Toit, 2004) must use the multiple equation notation to estimate multilevel models.
Thus, certain multilevel modelers prefer to use the combined notation while others prefer the 
multiple equation notation. Either convention is acceptable, as both sets of equations are equivalent
and contain the same information. 

There might be audiences who would be confused by the multilevel equations. In such a situation,
a reasonable solution is to present the equations and then to explain them verbally within text.
Occasionally, a researcher might present research findings to an audience who would be completely
overwhelmed by the presentation of equations, and the editor may request that the equations be
removed from the manuscript. In such a circumstance, the statistical model should be described in
enough verbal detail to be replicable by other researchers based on the description. The reader should
be able to determine the fixed effects and the random effects at each level and the cross-level interac-
tions. Some models are so complex that describing them verbally might actually be more difficult than
describing them using equations. Even so, the author should make every effort to present his or her
multilevel models both verbally and through the use of combined or multilevel equations.

4. Sample Size Issues 

Issues related to sample size are critically important in hierarchical linear models. Further, sample size
issues are complicated by the multilevel nature of the data. In a sense, there are two sample sizes in a
two-level model. Consider an organizational model in which people (level 1) are nested within organ-
izations (level 2). The number of individuals represents the level-1 sample size, and the number of
organizations represents the level-2 sample size. In a longitudinal model, on the other hand, observa-
tions across time are nested within people. Therefore, the number of observations across time (and
people) is the level-1 sample size, and the number of people is the level-2 sample size. So, for example,
in a longitudinal model where 100 people are each measured across four time points, the level-1 sam-
ple size would be 400 (4 × 100), and the level-2 sample size would be 100.

Generally speaking, the overall sample size is less important than the number of level-2 units and
average number of level-1 units within each of the level-2 units. Thus, it is important to report the
sample size at each level. At a minimum, the researcher should report the number of level-1 units, the
number of level-2 units, and the mean and standard deviation of the average cluster size. If there are a
small number of clusters (N < 50), including a frequency table that shows the number of observations
within each cluster can be useful (Ferron et al., 2008). In addition, the researcher should identify and
justify the sampling strategy and the mode of data collection. When using sample weights, it is impor-
tant to describe the method for weighting the data and justify the decision to use sample weights. For
more information on the use of sampling weights see Stapleton and Thomas (2008).

There are two important considerations related to sample size. First, the number of units at each
level of analysis must be large enough to estimate the multilevel model. Second, the analysis should be
adequately powered to detect the effect of interest. 

The average sample size at each level should be sufficient for conducting the proposed analysis.
While small average numbers of level-1 units within level-2 clusters may limit the number of random
effects that a researcher can estimate, the number of level-2 units is the more important sample size to
consider when conducting or evaluating multilevel analyses. The sample size must be large enough to
produce estimates, and these estimates must be reasonably free from bias. Maximum likelihood esti-
mation is a large-sample technique that provides asymptotically unbiased estimates. However, in
multilevel modeling, having a large overall sample size is not sufficient. The number of clusters (or the
sample size at the highest level) must be large enough to support the estimation technique and to 
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produce relatively unbiased estimates of the parameters and standard errors. What is the minimum
number of clusters for a multilevel analysis? Certainly, it seems clear that multilevel analyses require a
bare minimum of 10 clusters (Snijders & Bosker, 1999). However, such small sample sizes at level 2
might still produce biased estimates. The number of clusters impacts the estimates of the variance
components and the standard errors, as well as the parameter estimates themselves.

Maas and Hox (2005) conducted a series of simulation studies to determine the smallest level-2
sample size that would produce unbiased parameter estimates and standard errors. With only 10
level-2 units, the regression parameters and the level-1 variance components exhibited little bias.
However, the level-2 variance components were overestimated by approximately 25%, and the stan-
dard errors for all parameter estimates were underestimated. With at least 30 clusters, the parameter
estimates for the regression slopes and both the level-1 and level-2 variance components tended to
exhibit very little bias in samples. However, there were issues with the estimation of the standard
errors. While the standard errors for the fixed effects and the level-1 variance components seemed to
exhibit reasonable coverage with as few as 30 clusters, the standard errors for the level-2 variance com-
ponents tended to be underestimated when there were fewer than 100 groups (Maas & Hox, 2005).
This means that studies with small to moderate numbers of clusters might have a higher Type I error
rate for the level-2 variance components, which could lead to concluding mistakenly that the
between-group variance is more pronounced than it actually is. Therefore, while it is possible to pro-
duce unbiased estimates of the fixed effects with as few as 10 higher-level units, at least 30 clusters are
required to produce unbiased estimates of the variance components and at least 100 clusters are nec-
essary to have reasonable estimates of the standard errors of the level-2 variance components. In con-
clusion, while it may be possible to estimate a model with as few as 10 clusters, models with at least 30
clusters should provide reasonable estimates of variance components. Standard errors for higher-
level variance components will be underestimated with small to moderate sized samples.

In addition, number of level-1 and level-2 units must be large enough to detect the effect of interest.
In the simplest scenario, power in multilevel modeling is a function of the number of clusters, the
number of units per cluster, the intraclass correlation coefficient (see Desideratum 13), and the effect
size. Sample size at both levels increases power. However, increasing the number of clusters increases
power more than increasing the number of units per cluster does. This effect is even more pronounced
as the intraclass correlation increases. Several free software programs are available to conduct a priori
power analyses for multilevel models. The Optimal Design software program and manual are freely
available from http://sitemaker.umich.edu/group-based/optimal_design_ software.

5. Measurement Issues

As with any analysis, it is important to describe the scale of measurement of the outcome variable.
Hierarchical linear models are appropriate for analyzing continuous, normally distributed outcome
variables whereas hierarchical generalized linear models allow for the estimation of non-normal
response variables (O’Connell, Goldstein, Rogers, & Peng, 2008; Raudenbush & Bryk, 2002). 

In addition, the Methods section should include a description of the scale of measurement for all of
the explanatory variables in the model. As with any statistical analysis, the researcher should provide
evidence of reliability and validity of each of the variables in the model. Because hierarchical linear
modeling is a regression-based technique, the assumptions of linear regression models continue to
apply (see Chapter 21, this volume). One commonly overlooked assumption of linear regression is
that the independent variables are measured reliably. When one or more predictor variables are 
measured with error, the results of the analysis might be misleading. The likelihood of Type II errors
increases for the measures that exhibit low reliability, while the likelihood of Type I errors increases 
for the other variables in the model (e.g., Osborne & Waters, 2002). Therefore, it is especially 
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important to provide evidence of reliability of scores for all of the continuous independent variables
in the model.

6. Centering

In multilevel modeling, it is especially important to describe and justify the scaling and centering of all
the predictor variables. Decisions about centering impact the interpretation of the parameter esti-
mates. Centering decisions are especially important for the lower-level continuous independent vari-
ables because the choice of centering at the lower level(s) impacts the interpretation of both the lower-
and higher-level parameter estimates. For organizational models, the two main centering techniques
for lower-level independent variables are grand mean centering and group mean centering. In grand
mean centering, the overall mean of the variable is subtracted from all scores. Therefore, the new score
captures a person’s standing relative to the full sample. In group mean centering, the cluster mean is
subtracted from the score for each person in that cluster. As such, the transformed score captures a
person’s standing relative to his or her cluster. Whereas grand mean centering is a simple transforma-
tion of the raw score, group mean centering is not. There is some debate within the multilevel litera-
ture about whether grand mean centering or group mean centering is preferable from a statistical
point of view. However, most experts in hierarchical linear modeling agree on three issues related to
centering. First, the decision to use grand mean or group mean centering should be based on substan-
tive reasons, not just statistical ones. For instance, if the primary research question involves under-
standing the impact of a level-2 variable on the dependent variable and the level-1 variables serve as
control variables, grand mean centering may be the most appropriate choice. On the other hand,
when level-1 variables are of primary research interest, group mean centering may be more appropri-
ate. This is because group mean centering removes between cluster variation from the level-1 covari-
ate and provides an estimate of the pooled within cluster variance (Enders & Tofighi, 2007). Second,
it is important to explain the centering decision and to interpret the parameter estimates accordingly.
Third, when using group mean centering, it is important to introduce an aggregate of the group mean
centered variable (or a higher-level variable that measures the same construct) into the analysis.
Without an aggregate or contextual variable at level 2, all of the information about the between-clus-
ter variability is lost. See Enders and Tofighi (2007) for an excellent discussion of centering in organi-
zational multilevel models.

In growth models, the time or age variable also needs to be centered so that the intercept represents
an interpretable value. For linear growth models, the most common technique is to center time at ini-
tial status or age at the beginning of the study. When time is centered at initial status, then the inter-
cept represents an individual’s starting value. However, the time variable can be centered at any point
in the data collection period. For certain research problems, analysts may prefer to center time at the
final time point or at the middle of the data collection cycle. As Biesanz, Deeb-Sossa, Papadakis,
Bollen, and Curran stated: 

The choice of where to place the origin of time has to be substantively driven. Because this choice
determines that point in time at which individual differences will be examined for the lower
order coefficients, the answer to which coding(s) of time to examine in detail lies with the
researcher’s specific substantive questions of interest. (2004, p. 37)

In addition to describing the centering and scaling of continuous variables, it is also important to
describe the coding of all categorical predictors. Researchers should use the same conventions that
they would use when conducting multiple regression to code the categorical variables in their models.
Thus, researchers should use dummy coding, weighted or unweighted effects coding, or contrast 
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coding for all categorical variables (see Cohen, Cohen, West, & Aiken, 2003, for an excellent discus-
sion of coding for multiple regression analyses). The decision about the type of coding scheme is less
important than the description of the coding scheme used and the correct interpretations of the
parameter estimates that result from such a coding scheme. Finally, researchers need to create all
same-level interactions among categorical and/or continuous variables in the same manner as they
would if they were conducting a multiple regression analysis. Again, the interpretation of the interac-
tion parameter estimates depends on the coding schemes used for the lower-order variables. See Aiken
and West (1991) for an excellent discussion of creating and interpreting same-level interactions
within a multiple regression framework.

7. Missing Data

The extent of missing data needs to be reported for all variables at all levels, and the author should
describe the methods used to address the issue of missing data. Missing data is a problem for any
analysis. However, in hierarchical linear modeling, missing data can be especially problematic at the
higher levels of analysis. In most software programs, higher-level units with missing data on any of the
covariates are eliminated from the analysis by default. For example, any school with missing data on
any of the school-level covariates (e.g., percentage of free-lunch eligible students, average per pupil
expenditures) is eliminated from the multilevel model. Thus, it is easy to see how even small amounts
of missing data at the higher levels of analysis could drastically reduce the size of the sample as well as
the generalizability of the results. 

Several modern data techniques exist for dealing with the problem of missing data. These include
multiple imputation (MI; Rubin, 1987, 1996), and expectation maximization (EM; Dempster, Laird, &
Rubin, 1977; also see Enders, 2001), which are considered the best methods of dealing with missing
data. Ideally, multiple imputation of either the dependent variable or lower-level covariates should
take the clustered nature of the data into account (Black, 2008). Less desirable methods of dealing with
missing data include listwise deletion and single-imputation techniques. Unfortunately, although
both MI and EM are considered the most appropriate methods for handling missing data, these meth-
ods are not routinely employed in multilevel studies. When describing the sample, the author should
explicitly describe the amount of missing data and justify his or her method of handling missing data. 

8. Fitting Growth Trajectories

Fitting longitudinal growth models using hierarchical linear modeling techniques is becoming
increasingly popular. In such a model, the person is at level 2, and observations across time are nested
within person. The unconditional linear growth model is 
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+ π
1i
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ti
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= β
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As the name implies, a linear growth model assumes a straight-line growth trajectory. However, many
growth processes do not follow a linear trajectory. Assuming a linear growth trajectory is very limit-
ing, and it may result in a serious misspecification of the model. Other shapes are accommodated eas-
ily using a variety of strategies. These include estimating piecewise models, polynomial models, or
other non-linear models, as well as introducing time-varying covariates (see Singer & Willett, 2003,
for an excellent discussion of these strategies). Therefore, the researcher should empirically examine
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the shape of the individual and average growth trajectories descriptively prior to fitting any statistical
models. This information, in combination with the theory, can help guide decisions about the shape
of the growth trajectory. When using multilevel modeling to fit longitudinal models, it is imperative
that the researcher describe the shape of the growth trajectory, describe the level-1 model, and justify
how the modeling procedure used at level-1 was able to capture the shapes of the growth trajectories
for the sample. 

9. Software and Parameter Estimation

The write-up should mention the program or software package used to conduct the analysis. Many
computer programs have multilevel capabilities. Some of the most common programs used to conduct
multilevel analyses include SAS, SPSS, HLM, MLWin, Stata, R/SPlus, and MPLUS. All of these pro-
grams handle straightforward two-level models with normal response variables with ease. Where the
programs differ is in their ability to handle more complicated models such as cross-classified models,
three-level models, multilevel meditational models, or models with non-normal outcome variables.
For an overview and comparison of these different software programs, see Roberts and McLeod, 2008.

The two most common estimation techniques for hierarchical linear models with normal response
variables are maximum likelihood (ML) and restricted maximum likelihood (REML). The two methods
should produce similar results in terms of the fixed effects (regression parameters); however, they do pro-
duce different estimates of the variance components (Snijders & Bosker, 1999). In ML estimation the esti-
mates of the variance and covariance components are conditional upon the point estimates of the fixed
effects, whereas in REML they are not (Raudenbush & Bryk, 2002). Whereas REML estimates of vari-
ance-covariance components adjust for the uncertainty about the fixed effects, ML estimates do not.
When estimating the variance components, REML takes “into account the loss of degrees of freedom
resulting from the estimation of the regression parameters, whereas the ML method does not” (Snijders
& Bosker, 1999, p. 56). Thus, the ML estimates are downwardly biased (Snijders & Bosker), especially
when the number of level-2 units (clusters) is small. When the number of clusters is very large, REML and
ML results should produce similar estimates of the variance components. However, when the number of
level-2 units is relatively small, the ML estimates of the variance components (τ

qq
) are underestimated by

a factor of (J–F)/J, where J is the number of level-2 units and F is the number of fixed effects (Raudenbush
& Bryk, 2002). Thus, REML is the preferred estimation strategy for models with few level-2 units. 

While REML may be preferable to ML for estimating the variance components, ML is often prefer-
able to REML for testing model fit. The deviances of any two nested models that differ in terms of their
fixed and/or random effects can be compared when using ML. However, REML only allows for com-
parison of nested models that differ in their random effects (Snijders & Bosker, 1999, p. 89). In addi-
tion, information criteria, such as the AIC and BIC, should be based on the ML estimates of the
deviance (see Desideratum 16 for information about deviance and model fit.)

10. Assumptions and Residual Analyses

As with any statistical analysis, it is important to check the assumptions of the model and to describe
any violations of the assumptions. Many regression diagnostics for single-level models are applicable
within the multilevel framework as well. These may include discussions of normality, linearity, out-
liers, multicollinearity, homogeneity or heterogeneity of variances, and residual diagnostics.
However, because the regression model is operating on multiple levels, tests of the assumptions
become a bit more complex and time consuming. First, most residual analyses can and should be con-
ducted at each level of the analysis. For example, in a two-level model where, say, students are nested
within schools, it is possible to have an outlier at the student level. However, it is also possible to have
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an outlier at the school level. A school-level outlier would be a school “with implausible regression
intercepts or slopes” (Raudenbush & Bryk, 2002, p. 252). Researchers should carefully check the
assumptions of their models, and they should include a short description of the procedures that they
used to check their assumptions. In addition, they should describe any violations of the assumptions
and the procedures that they used to rectify those violations (e.g., Were any outliers deleted? Were any
variables transformed?).

11. Error Covariance Structure

The researcher should briefly describe the assumed error covariance structure. Any plausible alterna-
tive error covariance structures should be described and tested. Generally, the assumed error covari-
ance structure is quite reasonable for organizational models. The simplest error structure for a
two-level model with a random intercept is depicted in equation (6). In this matrix, there are as many
rows and columns as there are level-1 units. In this example, the first six level-1 units are shown. The
first three level-1 units belong to cluster 1 and the second three units belong to cluster 2. The total resid-
ual variance for each person in the model is the sum of the within cluster residual (σ2) and the between-
cluster residual (τ

00
). The covariance between any two people who are members of the same cluster is

accounted for by τ
00

, the between cluster residual. Finally, the residual covariance between 2 members
of two different clusters is assumed to be 0. 
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Describing the error covariance structure is especially important for longitudinal models. Models that
fail to adequately account for the covariances among repeated measurements may result in mislead-
ing inferences (Fitzmaurice, Laird, & Ware, 2004). On the other hand, when modeling these longitu-
dinal covariances, the analyst’s goal should be to “select the most parsimonious covariance structure
that reasonably fits the data” (Wolfinger, 1996, p. 208). 

The standard multilevel linear growth model imposes a very particular structure on the composite
within-person/across time covariances (the composite of the covariances across waves). The structure
is dependent on the number of random effects in the model. The maximum number of random effects
that can be estimated in a repeated measures model is the number of waves of data minus 1. The stan-
dard multilevel linear growth model estimates a random effect for the intercept, a random effect for
the linear growth slope, and a covariance between the intercept and the slope. Using the standard mul-
tilevel model, the model-implied variance-covariance matrix for a model with four waves of data is 
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Thus, all 10 unique elements of the variance covariance matrix for the four repeated measurements
are estimated using four parameters: τ

00
, the between person variance in the intercept, τ

11
, the between

person variance in the linear growth slope, τ
01

, the covariance between the slope and the intercept, and
σ2, the within person residual variance. Other options for estimating the covariance structure of the
repeated measurements include fitting models with heterogeneous σ2 across the time points, first
order autoregressive models, first order moving average models, and unrestricted covariance matri-
ces, to name a few. A complete treatment of this topic is beyond the scope of this chapter. However,
researchers who are interested in learning more about covariance structures for repeated measures
multilevel models should consult Hedeker and Gibbons (2006), Singer and Willett (2003), and
Wolfinger (1996).

12. Descriptive Statistics

As in any research study, it is important to provide the reader with tables of descriptive statistics.
Minimally, the author should provide a table of means and standard deviations for all of the continu-
ous level-1 variables used in the analysis as well as a table of means and standard deviations for all of
the continuous level-2 variables in the model. Dichotomous variables should be reported as propor-
tions or percentages. In addition, the write-up should include a table of correlations corresponding to
each level in the analysis. So, for a two-level model, one correlation matrix should detail the correla-
tions among the level-1 variables, whereas another correlation table should provide the correlations
among the level-2 variables. 

13. Intraclass Correlation Coefficient 

The intraclass correlation coefficient (ICC) is the proportion of variance that is between clusters, that is,
the proportion of variance that can be explained by the clustering or grouping structure (Hox, 2002).
Alternatively, one may interpret the ICC as the “expected correlation between any two randomly cho-
sen units that are in the same group” (Hox, 2002, p. 15). The formula for the ICC is

ρ =
τ

00 . (8)
τ

00
+ σ2

where τ
00

represents between cluster variance and σ2 represents within cluster variance. The ICC is
important to report because it indicates the degree of non-independence in the data. The higher the
ICC, the more homogeneity there is within clusters (or the more heterogeneity there is between clus-
ters). An ICC of 0 indicates independence of observations, and any ICC above 0 indicates some degree
of dependence in the data. The smaller and more homogeneous the cluster is, the higher the expected
ICC is. For example, in school effects research, ICCs typically range from .10 to .20. In dyadic research,
on the other hand, ICCs above .50 are not uncommon.

The computation of the design effect, which indicates the degree to which the parameter estimates’
standard errors are underestimated when assuming independence, utilizes the ICC (ρ) and the aver-
age number of units per cluster (n˝

j
): 

design effect = √1 + ρ (n˝
j
– 1). (9)

Generally, design effects below 2.0 are considered fairly small. However, keep in mind that even with
a design effect as low as 1.5, the standard errors in a model that assumes independence of observations
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are underestimated by a factor of 1.5. Therefore, the Type I error rate is already noticeably inflated,
even with such a small design effect.

14. Model Building

Generally, multilevel models are built sequentially, using a series of models. First, researchers estimate
an unconditional (or null) model, which contains no predictors. The purpose of this model is to obtain
estimates of the level-1 and level-2 variance components for comparison to later, more parameterized
models and to estimate the ICC. The second model estimated is a random coefficients model, which
contains the level-1 predictors. Depending on the researcher’s theoretical framework as well as the
sample size at level-1, the slopes for some of the level-1 predictors may be estimated as randomly vary-
ing across level-2 units, or they can be estimated as fixed across all level-2 units. Raudenbush and Bryk
(2002) cautioned against the “natural temptation,” which “is to estimate a ‘saturated’ level-1 model …
where all potential predictors are included with random slopes” (p. 256). Any level-1 slopes that do
not have statistically significant variability across level-2 units should be fixed prior to conducting the
full contextual analysis. The next model to be estimated is the full contextual model, which contains
both level-1 and level-2 predictors. Level-2 predictors can be used to predict the intercept or the mean
value of the dependent variable (when all of the level-1 variables are held constant at 0). Level-2 pre-
dictors also can help explain the variability of level-1 slopes across clusters. In such a scenario, the
level-2 variable is used to predict the level-1 slopes, or the relationship of the level-1 predictor and the
dependent variable across level-2 units. For example, imagine that SES is a level-1 predictor of math
achievement. Sector, a level-2 variable that indicates whether a school is public or private, can be
added as a predictor of the relation between SES and math achievement. This cross-level interaction
indicates whether sector moderates how SES relates to math achievement. Finally, if any fixed or 
random effects are eliminated from the full model, a final contextual model should be estimated. 

It is important to describe the process of building these sequential models. Analysts differ some-
what in their approaches to building multilevel models. Thus, authors must be sure to describe the
model building process in enough detail that another analyst could replicate the entire model and
decision sequence. 

15. Tables

The Results section should include a table that presents the results of the analyses. If space allows, pre-
senting the results of the series of models can be quite informative; however, minimally, the table
should include the complete results from the final, full contextual model. These results should include
the fixed effect parameter estimates, the random effect parameter estimates (the variances of the ran-
dom effects), the standard errors for all parameter estimates, and tests of statistical significance for
both the fixed and random effects. Also, the table may include covariances among the random effects. 

16. Deviance and Model Fit 

It is important to address model fit issues as part of the model building and testing process. The
deviance compares the log-likelihood of the specified model to the log-likelihood of a saturated model
that fits the sample data perfectly (Singer & Willett, 2003, p. 117). Specifically, deviance = –2LL, where
LL is the log-likelihood of the current model minus the log-likelihood of the saturated model.
Therefore, deviance is a measure of the badness of fit of a given model; it describes how much worse
the specified model is than the best possible model. Deviance statistics cannot be interpreted directly
since deviance is a function of sample size as well as the fit of the model.
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When one model is a subset of the other, the two models are said to be “nested” (e.g., Kline, 1998).
In nested models, “the more complex model includes all of the parameters of the simpler model plus
one or more additional parameters” (Raudenbush, Bryk, Cheong, & Congdon, 2000, pp. 80–81).
When two models are nested, their deviance can be compared directly using the chi-square difference
test. The deviance of the simpler model (D

1
), which has p

1
degrees of freedom, minus the deviance of

the more complex model (D
2
), which has p

2
degrees of freedom (p

2 
< p

1
), provides the change in

deviance (ΔD = D
1
–D

2
). As the number of parameters in a model increases, the deviance value

decreases. In sufficiently large samples, the difference between the deviances of two hierarchically
nested models is distributed as an approximate chi-square distribution with degrees of freedom equal
to the difference in the number of parameters being estimated between the two models (e.g., de
Leeuw, 2004).

In evaluating model fit using the chi-square difference test, the more parsimonious model is pre-
ferred, as long as it does not result in statistically significantly worse fit. In other words, if the model
with the larger number of parameters fails to reduce the deviance by a substantial amount, the more
parsimonious model is retained. However, when the change in deviance (ΔD) exceeds the critical
value of chi-square with p

2 
– p

1
degrees of freedom, then the additional parameters have resulted in sta-

tistically significantly improved model fit. In this scenario, the more complex model (i.e., with p
1

degrees of freedom) is favored. 
In ML, the number of reported parameters includes the fixed effects (the γ terms) as well as the vari-

ance/covariance components. When using REML, the number of reported parameters includes only
the variance and covariance components. To compare two nested models that differ in their fixed
effects, it is necessary to use ML estimation, not REML estimation. REML only allows for comparison
of models that differ in terms of their random effects but have the same fixed effects. Because most
programs use REML as the default method of estimation, it is important to remember to select ML
estimation to use the deviance estimates to compare two nested models with different fixed effects. 

17. Predictive Ability of the Model 

In single-level regression models, an important determinant of the utility of the model is the propor-
tion of variance explained by the model, or R2. Unfortunately, there is no exact multilevel analog to the
proportion of variance explained. Variance components exist at each level of the multilevel model;
therefore, variance can be accounted for at each level of the multilevel model. In addition, in random
coefficients models, the relation between an independent variable at level 1 and the dependent vari-
able can vary as a function of the level-2 unit or cluster. Consequently, there is no constant proportion
of variance in the dependent variable that is explained by the independent variable. Instead, the vari-
ance in the dependent variable that is explained by the independent variable varies by cluster. Finally,
because the variance components are estimated using ML estimation, the estimation of the variance
can differ slightly from model to model. Therefore, it is impossible to compute an R2 value for the
entire model. However, both Raudenbush and Bryk (2002) and Snijders and Bosker (1999) have pro-
posed multilevel analogs to R2. In both cases, the authors provided two separate formulas: one to
explain variance at level-1 and another to explain variance at level-2. 

Perhaps the most common statistic used to estimate the variance explained is the proportional
reduction in variance statistic (Raudenbush & Bryk, 2002). The proportional reduction in variance can
be estimated for any variance component in the model. This statistic compares the variance in the
more parameterized model to the variance in a simpler baseline model. To compute the proportional
reduction in variance, subtract the remaining variance within the more parameterized model from the
variance within a baseline model. Then divide this difference by the variance within the baseline
model. That statistic is computed
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where τ̂
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b
is the estimated variance of slope q in the base model and τ̂

qq
f
is the estimated variance of

slope q in the fitted model. 
It should be noted, however, that the proportion reduction in variance statistic does not behave like

the familiar R2. First, the proportional reduction in variance statistic proposed by Raudenbush and
Bryk (2002) represents a comparison of one model to another model, and as such it cannot be inter-
preted as an explanation of the absolute amount of variance in the dependent variable. In addition, the
proportion reduction in variance statistic can be negative. This actually happens with some regularity
when comparing the level-2 intercept variance of a completely null model (a random effects ANOVA
model which includes no predictors at level-1 or level-2) to the level-2 intercept variance of a model
that includes a group mean centered predictor at level 1.

The second method of deriving a multilevel R2 type statistic (Snijders & Bosker, 1994, 1999) pro-
duces measures of proportional reduction in prediction error for level 1 (the prediction of Y

ij
) and level

2 (the prediction of Y
˝

Kj
). These statistics are only available for models that include random intercepts

but not for random coefficients models, which include randomly varying slopes. Like the propor-
tional reduction in variance static presented above, the proportional reduction in prediction error for
level 1 (the prediction of Y

ij
) compares the amount of residual variance in the more parameterized

model to a simpler baseline model. However, this formula uses the total estimated variance, �̂2 + τ̂
00

,
to compare the two models. The rationale is that �̂2 + τ̂

00
provides a reasonable estimate of the total

sample variance of the outcome variable Y (Snijders & Bosker, 1994). Because �̂2 + τ̂
00

is being used as
a proxy for the total variance in the dependent variable, this formula is only appropriate for models
without randomly varying slopes. Given a random intercepts only model, the prediction error for
individual outcomes (Y

ij
) is equal to the sum of the level-1 and level-2 variance components, �̂2 + τ̂

00
.

The proportional reduction of prediction error at level 1 compares the total residual variance of a
fitted (or more parameterized) model, f, to that of a baseline (or less parameterized) model, b. The for-
mula for R

1
2 is

R
1
2 = 1 – 

(�̂2 + τ̂
00)f

(�̂2 + τ̂
00)b

(12)

Where the fraction’s numerator is the prediction error for the fitted model and the fraction’s denom-
inator is the prediction error for the baseline model.

With respect to level 2, Snijders and Bosker’s (1999) explained proportion of variance at level 2 is
the proportional reduction in the mean squared prediction error for the cluster mean “Y

˝

Kj
for a 

randomly drawn level-two unit j” (p. 103). The prediction error for the group mean is 



138 • D. Betsy McCoach

�̂2

+ τ̂
00

.n
j

(13)

Thus, the level-2 proportional reduction in the prediction error, R
2
2, is 

(14)

Where the fraction’s numerator is the prediction error variance for the fitted model and the fraction’s
denominator is the prediction error variance for the baseline model. In this case, n˝

j
is a representative

value for average group size. 
The various multilevel R2-type statistics described above provide heuristics to compare models in

terms of their ability to “explain variance.” However, it is important to remember their shortcomings.
First, these estimates do not provide unequivocal estimates of the variance explained by a model.
Instead, they compare two models in terms of their ability to reduce some type of variance at one of
the levels of the hierarchy. Second, when a model contains random slopes, R2 does not have a unique
definition (Hox, 2002; Kreft, deLeeuw, & Aiken, 1995). The relation between the level-1 predictor and
the dependent variable varies across level-2 units, and the level-2 variance estimate is not constant in
these models (Snijders & Bosker, 1999). Finally, these statistics can produce negative estimates, which
effectively demonstrates that they are not actually proportions of variance explained. However, even
given these shortcomings, multilevel R2 analogs do help researchers to compare predictive ability of
various multilevel models. Therefore, they should be reported within the Results section of a multi-
level paper. When reporting their R2 results, researchers should be sure to specify whether they used
Raudenbush and Bryk’s (2002) or Snijders and Bosker’s (1999) method to compute these propor-
tional reduction in variance estimates, and they also should clearly specify which model they used as
the baseline model and which model they used as the fitted (or more parameterized model) for each
of their computations. 

18. Effect Size 

As with any statistical analyses, it is important to report effect size measures for multilevel models. The
R2 analogs described above can help researchers and readers to determine the impact that a variable or
a set of variables has on a model. In addition, researchers can compute Cohen’s d-type effect sizes to
describe the mean differences among groups (see Chapter 7, this volume). To calculate the equivalent
of Cohen’s d for a group-randomized study (where the treatment variable occurs at level-2), use the
following formula: 

δ = 
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01

√�̂2 + τ̂
00

(15)

(Spybrook, Raudenbush, Liu, Congdon, & Martinez 2006). Assuming the two groups have been
coded as 0/1 or –.5/+.5, the numerator of the formula represents the difference between the treatment
and control groups. The denominator utilizes the σ2 and τ

00
from the unconditional model. In the

unconditional model, the total variance in the dependent variable is divided into two components: the
between-cluster variance, τ
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, and the within-cluster variance, γ
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To facilitate understanding among readers, researchers should consider including figures that illus-
trate cross-level interactions among variables. Just as plotting same level interactions facilitates an
understanding of interaction effects (Aiken & West, 1991), similar visual graphics of interactions
between two variables at different levels of the data hierarchy can effectively display cross-level mod-
eration. In addition, researchers should include predicted values for prototypical participants. These
predicted values also can help the reader to make sense of the magnitude of the effects that are being
reported. Thus, they serve as a form of “unstandardized” effect size. 

19. Causal Claims

Multilevel modeling solves certain statistical issues that arise from non-independent or clustered data,
and it allows for more nuanced analyses of variables that occur at different levels of the hierarchy.
However, any causal claims that can be made from a multilevel analysis are determined by the strength
of the research design. As Kelloway (1995) stated, “No amount of sophisticated analyses can
strengthen the inference obtainable from a weak design” (p. 216). It is common to refer to “effects” in
multilevel modeling. In fact, the entire lexicon of the technique is replete with references to fixed
effects, random effects, cross-level interaction effects, and so forth. However, none of these “effects”
imply causation. When writing the Results and Discussion sections of a multilevel article, researchers
should choose their language carefully so as not to imply causal claims that cannot be substantiated or
defended given the design of the study.
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11
Interrater Reliability

and Agreement 

William T. Hoyt

When researchers make use of observer ratings (where observer may refer to acquaintances such as
peers, family members, and teachers, or to trained observers not previously acquainted with the
research participants), they provide evidence of dependability or replicability of ratings by reporting
coefficients of reliability (for continuous scores) or agreement (for categorical ratings). Many meth-
ods have been recommended for quantifying dependability of ratings, and investigators (for whom
this task is often only a peripheral issue) might not be aware of well-documented limitations of some
of these approaches. Interrater reliability (for continuous rating scales) is best quantified as an intra-
class correlation coefficient (ICC). Shrout and Fleiss (1979) provided a primer on the different types of
ICCs and how to choose among them. For interrater agreement (for nominal scales) Cohen’s (1960)
kappa coefficient is recommended when there are exactly two raters, or Fleiss’s (1971) extension for
three or more raters. Tinsley and Weiss (1975) offered a helpful introduction to reliability and agree-
ment, including critiques of inferior approaches to estimation. Hoyt and Melby (1999; see also Lakes
& Hoyt, 2009) noted that multiple sources of error (e.g., instability of scores over time, internal 
inconsistency of rating scales, as well as rater variance) contribute to unreliability of ratings, and
researchers may find it useful to report generalizability coefficients (Brennan, 2001; Shavelson &
Webb, 1991) as a means of quantifying dependability with respect to multiple sources of error simul-
taneously. Schmidt and Hunter (1996; see also Schmidt, Le, & Ilies, 2003) offered a helpful discussion
of the impact of measurement error on study findings, and the importance of reporting coefficients
that reflect the relevant sources of error in scores. Hoyt (2000; see also Hoyt & Kerns, 1999) discussed
issues for interpretation of findings in the presence of rater errors. Feldt and Brennan (1989) provided
a technical treatment of the relation between reliability and generalizability coefficients.

I consider three possible contexts in which interrater reliability should be reported (Contexts A, B,
C in Table 11.1). Investigators who are using established rating scales (Context A) will wish to report
the dependability of scores for their own sample. Investigators who create a rating scale for a unique
purpose (e.g., coding open-ended responses from participants; coding studies in a meta-analysis;
Context B) will likewise wish to provide evidence that similar ratings would have been obtained using
a different set of coders. Finally, investigators who are developing a new rating scale intended to be
used in future substantive inquiries (Context C) should provide more detailed conceptual and 
psychometric information, to assist future users of this scale.
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1. Definition of Construct (Context C)

It is always desirable for investigators to provide clear definitions of latent constructs intended to be rep-
resented by measured variables, and theoretical linkages among these constructs that lead to the research
hypotheses for the study. This consideration is particularly important in instrument development studies
(Context C), because the nature of the construct determines the type of validity and reliability evidence
that should be sought. For example, when a construct is conceptualized as a trait, it is expected to be rela-
tively stable over time, so that high coefficients of stability will be one characteristic of a valid measure,
whereas valid measures of psychological states can be expected to have more modest stability coefficients.
Thus, a careful analysis of the nature of the latent construct provides a rationale for choosing among types
of evidence that bear on the validity of the scale. In the language of generalizability theory (see Chapter 9,
this volume), this analysis assists the investigator in identifying the facets of measurement (i.e., the types of
error) relevant to assessment of dependability of measurement.

Of special concern for developers of rating scales are questions about the level of inference required
to judge a target’s standing on this construct, and the consistency with which this construct will be
embodied in target behaviors over time and across situations. Constructs requiring low levels of infer-
ence (e.g., smiling; talking time in a conversation) can usually be reliably rated by a single rater,
whereas higher level constructs (e.g., shyness; manipulativeness) will likely yield lower levels of con-
sensus among raters. For such constructs, reliable ratings may be obtained by computing the mean of

Table 11.1 Desiderata for Interrater Reliability and Agreement

Desideratum Context Manuscript

A B C Section(s)*

1. Construct is clearly defined, with theory-based predictions related to establishment • I

of reliability and validity of the measure.

2. Justification is provided for use of ratings as a source of data, with reference to the • • • I, M

nature of the construct and past research in the area. 

3. Procedures for generating items (or other rating instructions) are described. • • M

4. Reports of interrater reliability in previous research include brief description of both • M

targets and rater characteristics (including training procedures) in that study. 

5. Rater selection and training procedures for the current study are described. • • • M

6. Procedures for computing coefficients of interrater reliability or agreement are • • • M

clearly described. 

7. Reported interrater reliability (or generalizability) coefficients are congruent with • • • M, R

the rating design (number of raters per target; raters crossed or not crossed with

targets) used to produce the scores to be analyzed in Results section.

8. Dependability of ratings is appropriately considered in interpretation of findings. • • • R, D

9. Dependability of ratings based on current study leads to recommendations for • R, D

appropriate use of scale in future research (e.g., rating design, rater training).

10. Dependability of ratings is considered in discussing study limitations and • • • D

suggestions for future research. Authors acknowledge that interrater errors are one

of multiple sources of error that may affect ratings data.

Note : Context A refers to investigations using established rating scales; Context B refers to “rough and ready” rating scales created
uniquely for a particular study (e.g., coding systems for studies included in a meta-analysis); Context C refers to studies designed to
establish reliability and validity for a new rating measure that will be used in future substantive research.

* I = Introduction, M = Methods, R = Results, and D = Discussion
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ratings provided by multiple raters, and an important question concerns the number of raters that will
be necessary to provide scores that dependably reflect the construct.

Behavioral consistency varies from construct to construct, and may also vary from person to per-
son for a given psychological construct. For example, consensus on target extraversion tends to be
substantial even after brief acquaintance with the target person, and may be adequate even among
raters who view the target person in different settings. So extraversion is a medium-inference con-
struct (i.e., there are observable behaviors that many raters agree constitute cues about a person’s level
of extraversion), and people may be relatively consistent about the level of extraversion they display in
different situations. Many psychological constructs, however, are likely to be context-sensitive, so that
observation in multiple situations would be important for validity of scores. Relatedly, behavioral
indicators of some constructs (e.g., cheating) have relatively low base rates, so that valid ratings may
not be obtainable without protracted periods of observation. 

2. Ratings as a Source of Data (Contexts A, B, and C)

For ratings to be a source of valid information on psychological states (or traits), these states (or traits)
must be reflected in observable behaviors to which the raters will have access. Investigators should
provide a theory-based rationale for the types of behavioral cues to which observers have access as a
basis for judgments about the construct(s) of interest. These theoretical linkages between observable
behaviors and psychological characteristics can assist readers to evaluate the face validity of the rating
system. For low-inference rating scales, justification of ratings as a valid data source may include the-
oretical explanations for typical behavioral cues (e.g., talking time in group, for ratings of extraver-
sion) to which raters will be referred in evaluating participants’ status on the rating dimension of
interest. For high-inference rating scales, researchers rely on raters’ global judgments’ of participants’
status. A rationale for the use of high-inference rating scales might include theoretical considerations
(e.g., an evolutionary argument that people are attuned to social cues signaling important interper-
sonal dimensions such as dominance and affiliation) and reference to past empirical findings that
attest to the accuracy of these social perceptions.

3. Item Generation (Contexts B and C)

Investigators creating a new coding system should describe how the coding instructions were created,
with attention to how these operationalize the behavior-construct linkages noted in Desideratum 2.
When creating a rating scale for future substantive use (Context C), investigators might want to attend
in more detail to content validity of the proposed scale, perhaps including an evaluation of proposed
scale items for relevance and domain coverage by experts in the area, pilot testing, or similar procedures.

4. Previously Obtained Reliability or Agreement Estimates (Context A)

Users of existing rating scales (Context A) should report evidence of interrater reliability (for contin-
uous scales) or agreement (for nominal scales) from past studies. (Evidence of the validity of scores on
the rating scale should also be reported, as available.) Reports of dependability of ratings in past stud-
ies should be accompanied by a description of the populations under study, characteristics of the
raters, and training of the raters. When multiple reliability or agreement estimates are available, it is
desirable to select one from a study as similar as possible to the present rating context on these three
dimensions.

One challenge that can arise regarding this desideratum is that previous users of the measure might
have reported indicators of reliability or agreement that are not optimal estimators of rater consensus.
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For example, past users of a nominal rating scale might have quantified rater agreement as percentage
agreement (rather than reporting Cohen’s kappa, which corrects for agreements expected due to
chance). In such a case, investigators might wish to include a caveat about the limitations of available
past data. To address comparability of current rater training procedures with those of the previous
study, one could then report both percentage agreement and the kappa coefficient for the ratings
made in the present study.

5. Rater Selection and Training (Contexts A, B, and C)

By describing salient characteristics of those selected as raters, and also procedures for training those
raters, investigators provide important information for future potential users of the rating scale, as
well as some indication of the generalizability of these ratings. Raters in some studies are selected
because of their previous acquaintance with the target person (e.g., spouse ratings, parent ratings of
children), whereas in other studies raters are initially unacquainted with targets. This feature has
important implications for the rating design (discussed in Desideratum 6). Unacquainted observers
might be selected for their special expertise with the construct being rated (e.g., experienced clinicians
versus trained undergraduate research assistants as raters of participant diagnostic category).
Description of training should include approximate hours of training and brief description of train-
ing procedures (e.g., rating of standardized stimuli, criterion for determining levels of accuracy or
consensus sufficient for involvement with actual study data).

6. Estimating Dependability of Ratings (Contexts A, B, and C)

Investigators should select an index of agreement (e.g., kappa, reflecting the proportion of agreement
among raters corrected for chance) or reliability (e.g., the intraclass correlation coefficient, or ICC,
representing the proportion of consensual variance in scores) that is appropriate to the rating scale.
Coefficients of agreement are appropriate for nominal rating scales but are generally less useful for
ordinal or interval scales. Coefficients of reliability are appropriate for interval or ratio scales, and are
also recommended for use with ordinal scales as long as there is no reason to believe that the scale
grossly violates the assumption of equal intervals between scale points. Users of interval, ratio, and
most ordinal scales also have a second set of options available for quantifying dependability of ratings
by reporting one or more generalizability coefficients (see Desideratum 7).

Depending on the measure being evaluated, investigators will make some decisions about how to
compute a coefficient of reliability or agreement. For example, there might be a choice about the level
of reliability analysis (i.e., reliability of item scores, subscale scores, or full scale scores). For some
measures, scores of a single rater are expected to demonstrate adequate reliability, and only a subset of
targets will be coded by a second rater for purposes of demonstrating this reliability in sample data.
The research report should indicate what choices the investigator has made about these and other
issues that will affect the interpretation of the reliability or agreement coefficients. In general, it is
essential to document the dependability of scores (or categorical ratings) that will actually be used in
the analyses in the Results section, and computational procedures should be selected with this consid-
eration in mind (see Desideratum 7). 

When computing interrater reliability coefficients, a potentially confusing issue concerns whether 
the mean squares used to compute the ICC are derived from a one-way ANOVA (with targets as the 
lone factor) or a two-way ANOVA (including targets and raters as factors, as well as the target × rater
interaction). As Shrout and Fleiss (1979) noted, the choice of models depends on the rating design.
When raters are nested within targets, the one-way ANOVA should be used. For example, if each 
participant is rated on trustworthiness by three acquaintances, then each target has a unique set of raters
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(a nested rating design), and the ICC should be computed with mean squares derived from the one-way
ANOVA.

In a crossed rating design (raters crossed with targets), one set of raters evaluates all targets in the
data set, and a two-way ANOVA should be used to compute the ICC. For example, if a set of five
trained observers rates videotapes of family interactions on dimensions of cooperation and hostility,
then each target is evaluated by the same set of raters (a crossed rating design), and the ICC should be
computed from mean squares derived from a two-way ANOVA. When raters are crossed with 
targets, but the one-way ANOVA is used to derive mean squares for the ICC, reliability is generally
underestimated.

Some rating studies use a “mixed” rating design. For example, the investigator might have 10
trained raters available, but will randomly assign two of these to each target. This is not a nested design,
because each rater judges multiple targets, but it is not crossed either, because different targets are
judged by different sets of raters. If Shrout and Fleiss’s (1979) formulas are used to determine inter-
rater reliability in a mixed rating design, a one-way ANOVA should be used (similar to the nested
design).

Finally, the interrater reliability coefficient estimates the proportion of observed score variance that
is attributable to targets, rather than to biases of the rater(s) used in the study. It is not sufficient to
report a different type of reliability coefficient (e.g., coefficient alpha, which assesses error variance
attributable to differential interpretation of items) that tells nothing about rater-based errors. Further,
to compute the ICC, it is necessary to have multiple targets in the reliability study (so that there will be
target variance). Although novel procedures have occasionally been recommended for computing reli-
ability or agreement of ratings for a single target person (e.g., Cicchetti, Showalter, & Rosenheck, 1997;
James, Demaree, & Wolf, 1984), these coefficients are not comparable to those that examine agreement
across multiple targets (see Schmidt & Hunter, 1989 for a detailed explanation). It is the latter type of
coefficient that is preferred for almost all research applications in the social and behavioral sciences.

To summarize, there are many methods to compute coefficients reflecting interrater agreement
and especially interrater reliability. For readers to be able to interpret reported coefficients, it is desir-
able that investigators be specific about how the data were derived (full sample or subsample, rating
design, model for deriving mean squares and computing the coefficient). Although such a description
conveys a lot of useful information, it can usually be relatively brief. An example is provided in the next
section (Desideratum 7).

7. Dependability Coefficients and Rating Design (Contexts A, B, and C)

The material in this section applies to coefficients of reliability, and also to coefficients of generaliz-
ability. I discuss options for computing reliability coefficients first, then briefly present an argument
for considering generalizability coefficients as useful global summaries of dependability of ratings. I
then present some recommendations for computing and reporting generalizability coefficients for
scores involving ratings. Further discussion of generalizability theory may be found in Chapter 9, this
volume.

Intraclass correlation coefficient (ICC). Table 11.2 lists the six different ICCs discussed by Shrout and
Fleiss (1979). The choice of the correct coefficient depends upon three questions. First, is the rating
design nested (Case 1) or crossed (Cases 2 or 3)? Second, if the rating design is crossed, does rater vari-
ance count as error (Case 2) or not (Case 3)? Third, considering the actual scores to be analyzed (which
will not necessarily be the same as those produced for the reliability study), will they be based on judg-
ments of a single rater per target (n'

r
= 1) or on k raters per target (n'

r
= k)?

The first question, which concerns the distinction between nested and crossed rating designs, is dis-
cussed in Desideratum 6. The second question (when raters are crossed with targets) asks whether
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rater variance should count as error. Shrout and Fleiss (1979) related this decision to the issue of
whether raters are treated as fixed (Case 3; rater variance does not count as error) or random (Case 2;
rater variance counts as error). 

In generalizability theory, this decision is framed in terms of the type of decision (absolute or rela-
tive) that will be based on the scores. An absolute decision will be based on the actual score, such as
when examinees must score above a predetermined cutoff in order to pass a qualifying examination.
In this case (or in any other case in which obtained ratings will be compared to ratings derived from
other sets of raters or to criterion scores), rater variance counts as error, and the ICC should be com-
puted using Shrout and Fleiss’s Case 2. A relative decision will be based on the participant’s relative
standing within the sample rather than the actual score. For example, when scores derived from the
ratings will be correlated with scores on another variable, only the relative standing is relevant. (The
correlation coefficient would not be altered if a constant value were added to all scores in the data set.)
For relative decisions, rater variance does not count as error, and Shrout and Fleiss’s Case 3 should be
used to compute the ICC. I return to the question of whether to count rater variance as error below, as
part of the discussion of generalizability approaches.

Finally, for constructs involving little or no inference, basing each target’s score on the judgment
provided by a single rater might yield scores that are adequately reliable. To estimate the reliability of
these scores, it will of course be necessary to have at least a subset of targets evaluated by two or more
raters. Nonetheless, if the scores to be analyzed in the study are based on only a single rater, then the
relevant reliability coefficient is the estimate based on n'

r
= 1: for example, ICC(3,1) in Table 11.2. For

constructs that involve some inference on the part of raters, bias variance will be larger, and it is likely
that scores based on a single rater will be relatively unreliable. To achieve adequate reliability, it will be
necessary to aggregate scores across raters, using the mean or the sum of scores from multiple raters in
the analysis. The reliability of this composite score will be greater than that of scores based on judg-
ments of a single rater. Assuming that the interrater reliability analysis is conducted on data from all
the raters whose data contribute to the composite scores (i.e., that n'

r
= k), then Shrout and Fleiss’s

coefficient for multiple raters—e.g., ICC(3,2)—gives the correct reliability estimate. 
When raters are crossed with targets, the RELIABILITY procedure in SPSS can be used to compute

ICC(3,1) or ICC(3,k). The data file should be set up so that each row contains data from a single tar-
get, with ratings from the k raters (which must be assigned different variable names) occupying k
columns. Using the pull-down menus, select Analysis → Scale → Reliability Analysis. The variable
names corresponding to the ratings must be entered into the “Items” box, and “Intraclass correlation
coefficient” must be checked as an option under “Statistics.” For Case 1 and Case 2 coefficients, it is
necessary to run the appropriate ANOVA model and compute the ICC from the mean squares pro-
vided in the output (see formulas in Table 11.2).

Advantages of generalizability coefficients. The reason for reporting an interrater reliability coeffi-
cient is to inform readers (and to remind the investigator) of the proportion of replicable variance in
the scores derived from the ratings, which shows the likelihood that an independent set of raters, eval-
uating the same target behaviors, would arrive at a similar relative ranking of the targets (ICC Cases 1
and 3) or at similar absolute scores for all targets (ICC Case 2). The complement of the reliability coef-
ficient (1 – ICC) quantifies the proportion of measurement error, defined as rater error plus random
error, in the scores used in the analysis. 

In classical test theory, replicable variance was conceptualized as true score (valid) variance, so that
the reliability coefficient estimated the proportion of score variance attributable to actual differences
between targets on the construct of interest. Because at least some of the variance in observed scores is
error variance, the correlation between these scores and other variables will be attenuated relative to
(hypothetical) correlations between error-free measures of the same constructs (assuming independ-
ence of error terms for the measures of these constructs). Thus, the coefficient of reliability has 
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important implications for interpretation of findings, in that it provides a means to estimate the mag-
nitude of attenuation in effect size estimates (e.g., correlation coefficients, regression coefficients)
derived from scores based on ratings. In many research contexts, it is useful to report effect sizes cor-
rected for attenuation, to enhance comparability of these findings with effect sizes derived from other
studies using different measurement methods.

By the 1940s, psychometricians were in widespread agreement that the idealized interpretation of
reliability coefficients as estimates of the proportion of true score variance in scores represented a sim-
plification, because of the difficulty of finding a replicated measure that is truly parallel (meaning that
all covariance between replicated scores is attributable to true scores) in the classical sense. In practice,
replicable variance in a reliability analysis usually includes variance attributable to one or more
sources of error that were not varied in the reliability study. 

To illustrate this principle for ratings measures, consider the case of a team of observers who rate
videotaped family interactions, where the ratings will be used to derive a score on hostility for each
family. The ICC for these hostility scores quantifies the extent to which raters who observe the same
set of family behaviors agree in their judgments of hostility (i.e., the generalizability over raters of
scores based on the same videotape), which provides an estimate of the effects of rater error on hostil-
ity scores. However, there are other sources of error that might contribute to the generalizability of
ratings, depending on the use that will be made of these scores. For example, we could ask how scores
derived from these videotaped interactions would compare with scores from other videotapes at a dif-
ferent time, or in a different setting (i.e., generalizability over occasions or settings). We might also be
curious about errors attributable to the wording of items to which the raters responded (i.e., general-
izability over items on the rating measure).

Because these other sources of error (occasions, settings, items) were held constant in our study of
interrater reliability, any variance attributable to these sources is replicable variance in these studies.
The ICC estimates the proportion of replicable variance in ratings, but this replicable variance is not
all true score variance (i.e., valid variance between families in their levels of hostility). If the goal is to
obtain a dependability coefficient that estimates the proportion of valid variance in ratings (and there-
fore can be used to estimate the degree of attenuation in effect sizes derived from these scores), then
the investigator needs to think carefully about which sources of measurement error are important in
this rating design. If the research hypothesis concerns the general level of hostility in family interac-
tions, then it is important to know whether scores obtained from a given set of raters, using the spe-
cific items on the rating scale as applied to a videotaped family interaction on a single occasion,
generalize to scores obtained from different raters, using different but still relevant items, applied to
family interactions on different (but presumably temporally proximate) occasions. 

Generalizability theory (GT; Cronbach, Gleser, Nanda, & Rajaratnam, 1972; see Chapter 9, this vol-
ume) is a set of techniques for simultaneously evaluating generalizability (dependability) of measure-
ment across multiple sources of error, and yields generalizability (G) coefficients that are interpreted
as ICCs representing the proportion of valid (i.e., generalizable) variance in ratings that would be
expected in a number of possible future rating designs. Because multiple sources of error are likely to
be a concern for users of observer ratings, GT may be preferable to the standard approaches for deter-
mining interrater reliability. G studies yield dependability coefficients that take multiple sources of
error into account, and can provide important guidance for improving dependability in future
research applications, as well as understanding the likely impact of measurement error in attenuating
study findings.

Computing and reporting G coefficients. G studies are designed to estimate the proportion of vari-
ance attributable to differences among targets, and also variance attributable to other facets (sources)
that contribute to variability in observed scores. The investigator determines which facets (usually
sources of error variance) are of interest for a given measure. Typically, facets such as raters, items, and
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occasions all contribute to non-target (i.e., error) variance in scores. In general, interactions between
these facets and the targets (e.g., target × rater interactions), along with random error, are the largest
sources of error variance, although facet main effects may also be important for some rating designs.

Data for the G study often are collected using a crossed design. For example, each target could be
judged by all raters, using the same set of items, on several occasions. The first step in data analysis is
variance partitioning, in which observed score variance is partitioned into components attributable to
targets, facet main effects, and all possible interactions. (The highest-level interaction component is
always confounded with random error in a G study.) Providing a table of variance components is very
helpful for readers, as it allows them to compute G coefficients relevant to a variety of different rating
designs that could be used in future investigations. For example, a researcher might be interested in
the consequences for score dependability of using a nested rating design, or of including more or fewer
levels of some facet in a future study.

Once the variance components have been estimated, G coefficients can be computed for the scores
that will be analyzed in the present study. Because many different G coefficients can be estimated from
the same set of variance components (depending on how scores are computed), it is generally helpful
to provide the formula used in computing this coefficient. In general, G coefficients are computed as
a ratio of target variance [usually notated σÎ

p

2 or var(p)] to total variance. The total variance is com-
puted as a sum of variance components that contribute to observed scores for that rating design, usu-
ally with multipliers to correct for aggregation (when scores are computed as means or sums across
multiple levels of some or all facets of measurement). Which variance components appear in the
denominator of the G coefficient, and which multipliers are used, will depend on how the scores are
computed from the available ratings. 

For many applications, the data from the study conducted to compute the G coefficient (the G
study) are also the data that will be analyzed to test substantive hypotheses (the decision study, or D
study). But sometimes investigators conduct a separate G study (perhaps on a subset of cases using a
larger number of raters with a crossed design) to establish dependability for a different rating design
(e.g., a smaller number of raters, and not crossed with targets) to be used in the D study. In such cases,
the G coefficient for the G study rating design will be different (and higher) than that for the D study.
Investigators should report the G coefficient for the rating design used in the D study (i.e., the estimate
of dependability for the scores that will actually be analyzed), and should describe the computational
procedures and justify them based on this design. For researchers who are creating rating measures to
be used in future D studies (Context C in Table 11.1), GT is a particularly attractive approach, as they
can use the variance components from the G study to forecast G coefficients for a variety of possible
rating designs that might be used by future investigators. It can be helpful to tabulate the predicted
coefficients for different designs (e.g., varying the number of raters and occasions) to illustrate how
these choices on the part of future scale users are likely to impact dependability of scores.

Notational issues: ICCs and G coefficients. One challenge for researchers interested in using GT may
be unfamiliarity with the standard notation developed by Cronbach et al. (1972) to elucidate this
framework. A helpful reference point for gaining comfort with GT notation is provided in Table 11.2,
where formulas derived from basic (one-facet) G study designs are compared to the equivalent for-
mulas in the more familiar ANOVA notation employed by Shrout and Fleiss (1979). All of these coef-
ficients are derived from one-facet G studies, because raters (r) are the only source of error that is
varied in the G study. For example, Shrout and Fleiss’s Case 1 corresponds to a G study where raters
are nested within targets. In this design, var(r), var(pr), and var(e) are confounded and cannot be
decomposed into separate variance estimates. This is indicated by denoting the error component as
var(r,pr,e) or σÎ

r

2

, pr, e
. The G coefficient for a single rater is computed as the ratio var(p)/[var(p) +

var(r,pr,e)], and the expression for this ratio in terms of the mean squares from the one-way ANOVA
is identical to that provided by Shrout and Fleiss, except for notational differences.
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When scores are computed as aggregates based on judgments of multiple raters, the contribution of
rater variance to observed scores is reduced. This increases the relative contribution of target variance
to observed score variance, which means an increase in dependability of measurement. This is repre-
sented in the G coefficient for multiple raters by a multiplier (1/n'

r
) for variance components involv-

ing raters, where n'
r
is the number of raters for each target in the D study. This procedure can be used

to forecast the dependability of ratings for any value of n'
r
. Table 11.2 uses the value of n'

r
= k (i.e., the

number of raters in the D study will be the same as that for the G study), and shows how this ratio 
using mean squares is again identical to that provided by Shrout and Fleiss (1979), except for nota-
tional differences.

G coefficients for Shrout and Fleiss’s (1979) Cases 2 and 3 are based on a crossed rating design. In
this design, rater variance [var(r), or σÎ

r

2] can be estimated separate from the target × rater interaction
[which is confounded with random error: var(pr,e) or σÎ2

pr, e
]. A GT perspective sheds some light on the

choice between Cases 2 and 3, for studies with the crossed design. As Shrout and Fleiss pointed out, the
choice between Cases 2 and 3 focuses on whether rater variance counts as error. The two main uses of
Case 2 coefficients [which include var(r) in the denominator of the G coefficient] are (a) when deci-
sions for the study will be based on absolute scores (such as comparing observed ratings to a pre-estab-
lished cutoff score) and (b) when raters are crossed with targets in the G study, but the investigator
wishes to provide an estimated G coefficient for a future (D) study using a nested rating design. Thus,
when investigators are mainly interested in providing an estimate of dependability for the current
study (as in Contexts A and B from Table 11.1), it is usually appropriate to exclude var(r) from the

Table 11.3 Recommendations for Reporting ICCs and G Coefficients

ICCs

1. Note whether the rating design used to compute the ICC was nested (each target is judged by a different set of raters),

crossed (all targets are judged by the same set of raters) or mixed.

2. If using Shrout and Fleiss’s (1979) formulas (see Table 11.2), be sure to use the correct ANOVA model—one-way

ANOVA for nested designs, two-way for crossed. SPSS RELIABILITY can also be used for crossed designs (Case 3).

3. If raters are crossed with targets, determine whether Case 2 (rater variance included in error term) or Case 3 (rater

variance not included) is appropriate. 

4. Report the ICC that reflects the level of aggregation for the scores you will be analyzing. For example, ICC(3,1) if

scores are based on judgments of a single rater for each target, or ICC(3,k) if scores are composites based on k raters.

G Coefficients

1. Determine which facets of measurement contribute to error variance, based on the intended application of scores.

For many rating scales, scores are sought that generalize over raters, items, and observation occasions.

2. In the G study, vary each of these facets (e.g., each target could be judged by multiple raters, using a set of multiple

relevant items, on several occasions).

3. Tabulate the results of the variance partitioning, so that readers will have access to variance estimates for facet main

effects and interactions.

4. Report a G coefficient appropriate for the rating design used in the D study (actual data to be analyzed); this may be

a different design than that used in the G study. Specify which sources (facet main effects and interactions) contribute

to the total variance estimate for this coefficient, and the level of aggregation (e.g., number of raters per target) for

each facet.

5. If the rating measure is being created for use in future substantive (D) studies, consider tabulating estimated G coef-

ficients for possible future rating designs (e.g., crossed versus nested, and different levels of aggregation for the

facets), to inform future users about the likely effects of these choices on score dependability.
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denominator of the G coefficient [i.e., to report ICC(3,k)], because var(r) does not contribute to vari-
ability observed scores in a crossed rating design. 

For investigators who are developing a new rating measure for use in future (D) studies (Case C in
Table 11.1), it may be helpful to report both the Case 2 and Case 3 coefficients (either G coefficients or
ICCs), so that future users of the scale will have an indication of what the consequences will be for
dependability of measurement if a nested, rather than a crossed rating design is used. When raters are
nested within targets, var(r) contributes to error variance, which generally results in some decrease in
dependability of measurement. The difference between the Case 2 and Case 3 coefficients shows the
likely magnitude of this decrease.

Summary. Because there are many types of ICCs (see Table 11.2), investigators using this method
for reporting interrater reliability need to be explicit about which coefficient they are reporting and
why. Users of rating measures should be aware that other sources of variance (e.g., items, occasions)
contribute to error of measurement in many applications. Thus, they might opt to report a G coeffi-
cient from a G study including several facets of measurement that may contribute to measurement
error, to give a clearer indication of the impact of measurement error on the findings to be reported.
For investigators developing new rating measures, this approach might be particularly attractive,
because it allows for tabulation of predicted G coefficients under a number of different future meas-
urement designs. Table 11.3 provides a summary of recommendations for studies reporting either
ICCs or G coefficients as indices of interrater reliability.

8. Interpretation of Findings (Contexts A, B, and C)

Methodologists have offered rules of thumb for describing the degree of agreement or reliability,
based on the magnitude of the obtained coefficients. Fleiss (1981, p. 218), following Landis and Koch
(1977, p. 165) recommended that kappa coefficients in the ranges .75 and higher, .40 to .75, and below
.40 be characterized as evidence of excellent, fair-to-good, and poor agreement, respectively.
Typically, reliability coefficients of .80 and above have been considered to reflect good dependability
of scores, with coefficients between .70 and .80 reflecting marginal dependability. Recall, however,
that because multiple sources (e.g., raters, items, observation occasions) contribute to error in ratings,
conventional reliability coefficients overestimate the dependability of ratings (see Desideratum 7).
The rules of thumb just discussed can be useful in encouraging consistency in the labels applied to
coefficients by different investigators, but ultimately the importance of these coefficients lies in what
they reveal about the effects of error of measurement on the effect sizes obtained in the study.

The effects of error of measurement on study findings are complex. In general, however, when pre-
dictor and criterion variables are measured with less than perfect reliability, effect sizes involving these
variables are attenuated (i.e., are smaller than they would have been under hypothetical error-free
conditions). The smaller the dependability coefficient, the greater is the expected degree of effect size
attenuation. Thus, interpretation of observed effect sizes should take account of the reliability of the
measures that contributed to those effect sizes. This may be particularly important for comparison
with effect sizes using different measurement procedures. For example, a psychotherapy process
researcher may compare working alliance scores during the third session of brief psychotherapy with
outcome measured at the end of treatment. If working alliance is measured via client reports, and out-
come via judgments of trained interviewers, then error of measurement in each measure acts to atten-
uate the observed effect size. Suppose that this effect size is compared with that of an earlier study that
used client report measures for both constructs and found to be smaller. It is important to ask whether
this represents a substantive difference in findings, or whether it may be explained by the fact that meas-
urement errors for the two constructs are uncorrelated in the present study, but correlated (i.e., method
covariance between the two sets of client reports) in the earlier investigation. Thus, the present 
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study may be viewed as stronger evidence for the hypothesis (despite its smaller effect size) because
method covariance can be ruled out as a plausible alternative explanation for the observed correlation.

One option for quantifying the impact of measurement error is to publish effect sizes corrected for
unreliability of measurement. As noted by Schmidt and Hunter (1996), it is important for investiga-
tors who use this correction to be sure that it is based on a dependability coefficient that quantifies the
proportion of replicable variance taking all relevant sources of error into account (see Desiderata 7
and 10).

9. Recommendations for Future Users (Context C)

For investigators who are creating a new rating measure, it is important to provide guidance for future
researchers about how to use the scale. Unlike self-report questionnaires, which are relatively stan-
dardized, rating measures offer multiple options for future users regarding the number of raters who
will provide judgments of each target, the assignment of raters to targets (i.e., nested versus crossed
design), and the procedures used to train raters. As noted above (see Desideratum 7), for continuous
scales, a generalizability approach (reporting variance estimates and G coefficients for multiple possi-
ble rating designs) offers investigators maximum flexibility to provide guidance for future users.

10. Limitations and Suggestions (Contexts A, B, and C)

Finally, when reliability or agreement is weak or marginal, this fact should be noted as a limitation of
the study in the Discussion section. Low dependability of measurement indicates that rather different
scores would probably have been obtained under different rating conditions (and especially, in the
case of interrater reliability or agreement, if a different set of raters had been used). As noted in
Desideratum 8, the likely consequence of unreliability in a continuous predictor or criterion variable
is attenuation in the obtained effect size, so it would be expected that a replication with more reliable
measures would show a stronger association. However, the impact of measurement error in other
(e.g., statistical control) variables in the equation is not straightforward to predict, so that weak meas-
urement procedures generally reduce confidence in the obtained results.

For continuous measures, investigators who report interrrater reliability coefficients should
acknowledge that these do not reflect the contribution of other sources of error that are relevant to
evaluating dependability of measurement (see discussion of GT in Desideratum 7). Unless a general-
izability analysis is undertaken, it is generally not possible to be very precise about the contribution of
multiple sources of measurement error to distortion of study findings. 
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Item Response Theory 

R. J. De Ayala

Item response theory (IRT) is a psychometric modeling paradigm used for the measurement of psy-
chological constructs that is typically based on continuous latent variables. In its simplest form an IRT
model contains a single continuous latent variable that represents the construct of interest (e.g., math-
ematics proficiency, depression, social anxiety), which in turn is believed to determine persons’
responses to a series of binary and/or polytomous questions. Both items and people are located on this
continuous latent continuum. In general, a person’s location on this latent continuum is estimated as
a function of his or her responses to those questions and the items’ location on the latent variable.
From this basic model one can generalize to multiple latent construct variables and/or multiple item
characterizations. 

A typical IRT application produces an estimate of a person’s location on the latent construct’s 
continuum. However, IRT may also be used for other purposes, such as the design of an instrument
with specific properties. For example, an instrument may be designed to provide highly accurate per-
son proficiency estimates across a particular range of the latent continuum. IRT may also be used for
creating an item bank for use with computerized adaptive testing or to facilitate creating alternate
forms of an instrument. This latter use points toward another purpose of IRT, the equating of 
alternate forms of an instrument. In the desiderata and explications that follow, I distinguish 
between item-focused studies (e.g., item bank construction) and person-focused studies (e.g., diag-
nostic testing).

Although IRT typically requires larger sample sizes than those used for classical test theory 
(CTT) implementations, given satisfactory model-data fit IRT offers a number of advantages over the
traditional CTT approach to measurement. For instance, the IRT person location estimate is not
dependent on the specific instrument used for person measurement, the IRT item characterization(s)
are independent of the sample of respondents, and the IRT model may be used to predict 
response behavior. Moreover, unlike CTT’s global measure of observed score accuracy (i.e., the stan-
dard error of measurement), with IRT one knows the accuracy with which each person’s location is
estimated.

Because IRT models are nonlinear, obtaining estimates of the latent person and item parameters
involves numerically intensive (and typically iterative) algorithms. Various software packages, such as
BILOG-MG (Zimowski, Muraki, Mislevy, & Bock, 2003), MULTILOG (Thissen, Chen, & Bock,
2003), NOHARM (Fraser & McDonald, 2003), PARSCALE (Muraki & Bock, 2003), and WINSTEPS
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(Linacre, 2001) are available to provide parameter estimates. Technical treatments of IRT are pro-
vided by Baker and Kim (2004), Lord and Novick (1968), and van der Linden and Hambleton (1997).
Readable introductions may be found in Hambleton, Swaminathan, and Rogers (1991), as well as De
Ayala (2009). The desiderata for IRT applications are presented in Table 12.1 and are explicated in the
remainder of this chapter.

1. Defining the Construct of Interest

In any application of IRT one needs to define the construct(s) of interest. Because IRT is a latent vari-
able modeling approach the authors should make clear to the reader why they believe that one or more
latent variables underlie the observed behavior. In some statistical contexts (e.g., exit polling) it is
unnecessary to posit the existence of a latent variable; in other cases, however, convention or theory
dictates that one or more latent variables are the most meaningful conceptualization of the research
questions at hand. In these cases, the operational definition of the construct should be clearly speci-
fied. Stated in other words, the linkage between, for example, a latent variable and its observed mani-
festations needs to be explicated.

Table 12.1 Desiderata for Item Response Theory

Desideratum Manuscript

Section(s)*

1. The construct of interest is defined. I

2. IRT is justified as the appropriate measurement approach (e.g., I

continuous latent variable vs. categorical latent variable).

3. The specific model(s), with description and justification, are provided. I, M

4. The response data are fully described, including sampling, sample size(s), M

demographics, and testing environment (if appropriate).

5. All instruments are fully described, including length, response format, M

and validity evidence (if appropriate).

6. Software and estimation approach(es) are fully specified. M

7. Estimation problems are documented, as are details as to how they were addressed. R, D

8. A complete description is provided of how missing data were addressed. R, D

Item-focused studies (linking, item bank construction, instrument construction)

9. Details regarding model fit analysis are provided, including those related M, R, D

to dimensionality, fit statistics, invariance, and model selection (if appropriate). 

10. Details regarding item fit analysis are provided, including those related to R, D

conditional independence, functional form, fit statistics, invariance, predicted vs. observed item

response functions, and handling of misfitting items.

11. Instrument calibration results are presented (item parameter estimates R, D

and/or summary statistics, total information function).

Person-focused studies (CAT, diagnosis, equating, vertical scaling)

12. Person fit analysis results are presented, including fit statistics and appropriateness measurement. R, D

13. Person location estimate results are described, including relevant standard errors. R, D

14. Methods of equating scores on different metrics are described in detail. M, R

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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2. Appropriateness of IRT

Although a latent variable may be invoked to explain individuals’ responses to binary and/or polyto-
mous items, this latent variable may be conceptualized as categorical, continuous, or even some com-
bination of the two. In the case of a categorical conceptualization of the latent variable, then the use of
Latent Class Analysis (see Chapter 13, this volume) is the recommended psychometric technique.
However, if the latent variable is conceptualized as continuous, then an IRT model is warranted. If the
latent variable is believed to have categorical and continuous facets, then a mixture IRT model, such
as the mixed Rasch model, may be used. Authors must make clear, by virtue of the hypothesized
nature of the construct(s) of interest, that IRT is indeed the appropriate approach.

3. Specifying the Model(s)

After presenting the study’s context, theory, purpose, and justification of why IRT is an appropriate
technique, the researcher should present the IRT model(s) that will be used and a description of the
model parameters. Because in some cases there may be multiple IRT models that may be applicable
the researcher should justify the models selected and articulate the implication of the selection. To elu-
cidate this statement I will first present a taxonomy of IRT models followed by a brief discussion of the
implication(s) of selecting particular models over other models.

IRT models may be classified in multiple ways. One taxonomy uses the type of response to classify
the models into two broad categories, those designed solely for dichotomous (binary) response data
and those for polytomous response data (e.g., from Likert response scales or rater judgments). A sec-
ond classification approach reflects differences in intent. Specifically, is the researcher’s intent simply
to model the data or to gauge if it is possible to construct an instrument in an attempt to measure the
construct of interest? This latter purpose is associated with the Rasch family of IRT models, Guttman
Scalogram, and Coombs Unfolding. In Table 12.2 these two classification approaches are used to
cross-classify several commonly used IRT models. Specifically, the IRT models are classified into
whether the researcher’s intent is to describe or model the data as oppose to using the model to con-
struct the instrument and whether the model is or is not restricted to dichotomous responses; note this
is a non-exhaustive list of IRT models. This grid should not be interpreted as consisting of imperme-
able cells. For instance, all polytomous models simplify to one of the dichotomous models and all the
models listed in the first row may be seen as special cases of the models in the second row.
Nevertheless, the taxonomy is a useful organizational scheme and presents two questions that need to
be answered in an IRT application: (1) is the researcher primarily concerned with modeling the data

Table 12.2 Example IRT Models

Intent Response Type

Dichotomous Polytomous

Construct Rasch/One-parameter model Rating Scale model

Linear Logistic Test Model (LLTM) Partial Credit model

Mixed Rasch model

Describe Data Two-parameter model Generalized Rating Scale model

Three-parameter model Generalized Partial Credit model

Multidimensional two-parameter model Graded Response model

Nominal Response model

Multidimensional three-parameter model Multiple-choice model
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(i.e., the second row) or in using the model to determine whether or not it is possible to construct an
instrument to measure the latent variable (i.e., the first row), and (2) what type or types of response
data will the researcher be working with. 

If the researcher adopts the perspective that the model determines whether it is possible to measure
the construct (i.e., the first row), then there are a number of implications. Specifically, the models in
the first row require that all items on an instrument to be approximately equally good at discriminat-
ing among respondents located at different points along the latent variable continuum. As a result,
these models characterize an item only in terms of its location or, in terms of polytomous data, loca-
tions on the latent continuum. Therefore, when applying a Rasch model to empirical data one might
have greater difficulty in obtaining model-data fit for some of the items because these items discrimi-
nate differently than other items and/or because of chance success on the item. 

Another implication of using a model in the Rasch family involves parameter estimation. In gen-
eral, with Rasch family models it is possible to obtain reasonably good item parameter estimates with
smaller sample sizes than would be needed with non-Rasch models. Moreover, because there is less
difficulty in estimating the item’s location(s) than the other item parameter(s) (which are discussed
below), convergence problems are less likely to occur with Rasch family models. 

A third implication of using a Rasch family model is that results are comparatively easy to present
and explain to a lay audience. For instance, two individuals with the same observed score (i.e., the sum
of item responses on an instrument) will obtain the same location estimate on the latent variable. In
contrast, with non-Rasch models these two individuals may receive different location estimates
depending on their respective response patterns. Some individuals refer to the Rasch model as the
one-parameter logistic (1PL) model, whereas others believe that because the Rasch model represents
a philosophical approach to measurement not embodied in the 1PL model that the terms should not
be interchanged. 

The non-Rasch models in the second row may be viewed as focusing on describing the response
data. To accomplish this objective these models contain one or more discrimination parameters and,
in the case of the three-parameter models, an additional parameter representing the chance (so-called
guessing) success on an item is called the pseudo-guessing or pseudo-chance parameter. These addi-
tional item parameters allow greater flexibility in modeling the data. One commonly seen multi-item
parameter model is the three-parameter model (e.g., the three-parameter logistic [3PL] model). In the
3PL model each item is characterized by a discrimination parameter (α), a location parameter (δ), and
a pseudo-chance parameter (χ). If one constrains χ to be zero, then the 3PL model simplifies to
another common model the two-parameter model (e.g., the two-parameter logistic [2PL] model). As
can be seen from Table 12.2 these models may be extended to have multiple latent variables (e.g., the
multidimensional two-parameter model). 

In an application’s write-up the researcher should always present the model and define its parame-
ters rather than relying on the model’s name because some models have multiple names. For example,
some individuals refer to the generalized partial credit model as the two-parameter partial credit model.
Moreover, presenting the model makes it clear whether a probit or a logit link function is being used.
Although the difference in link functions does not affect model-data fit, which link function is used
and whether any rescaling is done (e.g., the use of the D scaling constant) affects the latent contin-
uum’s metric. 

4. Describing the Response Data

In the Methods section the researcher should specify how the respondents were selected (i.e., random
sampling, convenience sampling, matrix sampling, etc.) along with the sample’s demographics and
size. Regarding the latter, although there are a number of sample size guidelines (e.g., 100, 500, 1000,
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depending on the model, estimation method, and assumption tenability), these should not be inter-
preted as hard and fast rules. This is due, in part, to the number of the factors that need to be consid-
ered and are at times data specific; these include a researcher’s model-data misfit tolerance (i.e.,
acceptable level of risk of failing to reject an inappropriate model), ancillary technique sample size
requirements (e.g., principal component analysis), the amount of missing data, the model, the appli-
cation context, the use of prior distributions for estimation as well as the estimation algorithm. An
additional factor may be the number of items being calibrated. For instance, the joint maximum like-
lihood estimation procedure provides more accurate estimates when used with more than 25 items
than with fewer items. As may be surmised, from this example some of these factors interact with one
another. For instance, the greater the amount of missing data the larger the overall sample size needs
to be in order to compensate for the missing data. In general, it behooves the researcher to provide a
rationale for the sample size used.

Depending on the study’s context the environment in which the instrument is administered should
also be described. This includes any time constraints, administration medium (paper-and-pencil,
computerized, etc.), and whether the administration was to an individual or a group. 

5. Describing the Instrument(s)

Each instrument’s purpose, the number of items, as well as any available validity information should
be presented. Because IRT models do not require a particular item response format (e.g., multiple-
choice, open-ended, ratings) it is customary to specify how the response data arose. For instance, if
responses to open-ended questions are coded, a description of the rubric and an example of its appli-
cation should be provided. In addition, if multiple raters are using the rubric to score the same item,
then the researcher should provide a description of the rater training process, an assessment of inter-
rater reliability, and how rating contradictions are resolved. If a Likert response scale is used, then the
category labels should be specified along with whether items were reversed scored due to negative
wording. 

Although it is common to consider the dichotomous models as only applicable for proficiency
assessment, the models are applicable for dichotomous data regardless of whether data represent cor-
rect/incorrect responses. For example, a response of 1 may be a correct response on an examination
question, the successful completion of a task, a rater’s judgment, or a response of TRUE on an attitude
or personality item using a TRUE/FALSE response format. As such, the phrase “a response of 1” will
be used herein rather than “correct response” to emphasize the generalizability of the models. 

With some instruments multiple IRT models may be used to estimate the parameters (e.g., a
dichotomous model for some items and the partial credit model for other items). In these cases the
researcher should specify which items are calibrated by each model. Similarly, if an instrument con-
tains subscales, then how the multiple subscales are treated should be presented. As an example, if a
unidimensional model is used with an instrument containing multiple scales, then in general each
subscale should be separately calibrated. However, if the subscales are highly interrelated, then it
might not be appropriate to treat each subscale individually. The researcher should make clear the
approach that was used and why.

6. Estimation Approach(es)

Several estimation algorithms are available to estimate item and person parameters. The researcher
should specify the estimation approach for items and, if necessary, for respondents. Furthermore, the
researcher needs to indicate whether the estimation used the program’s default approach or whether
the defaults were changed and, if so, what the changes were.
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Some of the estimation approaches make assumptions of the data, whereas others do not make
these assumptions but work best in certain situations. Moreover, because certain estimation pro-
grams allow the user to select from various estimation approaches one cannot simply rely on the esti-
mation program’s name to convey information about the estimation algorithm used. Therefore, both
the program name and the estimation technique used need to be specified. For instance, three com-
monly used approaches are joint maximum likelihood estimation (JMLE), conditional maximum likeli-
hood estimation (CMLE), and marginal maximum likelihood estimation (MMLE). These latter two
approaches are available in the estimation program OPLM (Verhelst, Glas, & Verstralen, 1995). A
fourth estimation strategy uses unweighted least squares to fit a polynomial that approximates a two-
parameter normal ogive model (i.e., a two-parameter model using a probit link function). This strat-
egy is typically used for estimating item parameters for a dichotomous multidimensional model,
although it may also be used with dichotomous unidimensional models. 

Although IRT itself does not make any distribution assumptions, MMLE makes an assumption
about the respondent distribution. Typically, this assumption is that the respondents come from a
normally distributed population. In contrast, JMLE does not make assumptions about the respon-
dents’ distribution. It should be noted, however, that JMLE has known inherent weaknesses that are
exacerbated under certain conditions (e.g., short instruments and small samples) and, as a conse-
quence, may encounter estimation difficulties with certain data sets and certain IRT models.

Some of the estimation strategies, including MMLE and unweighted least squares, only provide item
parameter estimates. Therefore, if one needs estimates of the respondents’ locations it would be neces-
sary to perform a second step. Some of the commonly available person estimation approaches are max-
imum likelihood estimation (MLE) and Bayesian estimation such as maximum a posteriori (MAP) or
expected a posteriori (EAP). The Bayesian approaches make a respondent distribution assumption and,
as a result, the degree of regression of the person location estimate toward the mean will, in part, be
dependent on the (prior) distribution’s parameters. However, unlike using MLE for estimating an indi-
vidual’s location the Bayesian approaches will provide a person location estimate for each individual.
Therefore, the estimated person locations will differ across the estimation procedures (although they will
be highly linearly related with one another). Again, because some programs (e.g., BILOG-MG) provide
multiple person estimation algorithms, simply specifying the program’s name would be insufficient to
inform the reader of which person estimation approach was used. As a result, both the estimation pro-
gram and the estimation algorithm used for persons should be made clear in the Methods section. 

The decision of which algorithm to use depends on a number of factors, including the model being
used, the instrument length, available calibration software. For instance, CMLE is only an option with
the Rasch family of models. With other models one could use JMLE, MMLE, or unweighted least
squares. However, if one’s instrument is 10 items long, then JMLE would not be the best approach to
use because research has shown that instruments should be at least 25 items long. Moreover, when
performing JMLE calibrations for the two- and three-parameter models there should be at least 1000
respondents to reduce bias in the parameter estimates. For the Rasch model family this bias can be
ameliorated with certain JMLE programs. In general, most calibrations for non-Rasch family models
are currently being performed using MMLE.

7. Addressing Estimation Problems

Estimation problems are more likely to occur with models that include a discrimination parameter
and/or a pseudo-guessing parameter. Therefore, the following will apply primarily to non-Rasch
models and the use of MMLE.

In some situations it is possible to experience difficulty in estimating an item’s discrimination
parameter (α). For example, for some items the estimate of α may drift off to infinity; this is 
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sometimes referred to as an example of a Heywood case. There are several approaches that one might
use to aid in estimating an item’s discrimination. One approach uses a prior distribution (e.g., a log-
normal distribution) for the estimation of α. Although, in general, the use of a prior distribution pro-
duces estimates that may be regressed toward the prior distribution’s mean, the use of a prior
distribution with discrimination parameter estimation has a less serious impact than in the case of
person and item location parameters. Unless otherwise specified by the user, BILOG imposes a log-
normal prior distribution when estimating α for the two- and three-parameter models. An alternative
strategy is to impose an upper limit on the values that the estimated discrimination parameters may
take on. This is the approach used in some JMLE programs. 

Difficulty in estimating an item’s lower asymptote or pseudo-guessing parameter (χ) may occur
because of (1) problems in estimating an item’s other parameters, (2) because of the other parameters’
estimates (e.g., a low estimated α parameter), (3) because the item is located at the lower end of the
continuum (i.e., a very easy test item), and/or (4) because there are insufficient data at the lower end
of the continuum with which to estimate an item’s χ. In this latter case, there may be several different
combinations of an item’s parameters that produce item response functions (IRFs) whose lower
asymptotes are similar to one another even though the item parameter estimates may be vastly differ-
ent from one another. 

Different approaches for handling these estimation difficulties involve using a prior distribution or
fixing χ to a specific value. In this latter case, this constant (common) value for χ may be set arbitrar-
ily (e.g., 1/m – 0.05, where m is the number of item options), by averaging the non-problematic χ esti-
mates, by averaging the χ estimates for items located at the lower end of the continuum (i.e., the easy
items), or by fixing the lower asymptote to some nonzero value determined by inspecting the lower
asymptote of empirical item response function. In addition, a “stability” criterion may be invoked to
determine whether an item’s χ parameter should be estimated at all (or assigned a constant value).
That is, χ is estimated only when δ –2/α > –2.5, where δ is the item location.

As mentioned above, we may also use a prior distribution for estimating the items’ χ parameters.
The use of a prior distribution for estimation of χ can lead to reasonable parameter estimates for the
model. Moreover, the regression toward the mean phenomenon that typically occurs when using a
prior distribution is not as problematic in estimating χ as it is when estimating person and item loca-
tion parameters. The use of a prior distribution is recommended as the first strategy to facilitate the
estimation of χ. By default BILOG uses a beta distribution as a prior for estimating the IRF’s lower
asymptote, χ, for the three-parameter model. 

With polytomous data it is possible that one or more of an item’s response categories may not be
attractive and may never be chosen by respondents. These are sometimes referred to as null categories.
In general, it is not possible to estimate the parameters for a category that does not have any observa-
tions. However, some software packages may provide “estimates” for the null category. If a null cate-
gory occurs, then one should ignore the null category’s parameter estimates and re-calibrate the item
set specifying the appropriate number of categories actually observed for each item.

The preceding has been concerned with item parameter estimation problems. However, it is possi-
ble to experience problems when estimating person locations. If this occurs it is typically associated
with using MLE. Although it is possible with MLE to obtain nonfinite person location estimates with
poorly behaved likelihood functions, the most common problem to occur with binary response
strings is an infinite person location estimate due to either responses of all 1s or responses of all 0s.
There are several strategies that may be used to perform MLE with response strings consisting of all 1s
(i.e., perfect response strings) or all 0s (i.e., zero response strings). The gist of these strategies is to
modify the response strings to introduce some nonuniformity. One approach, the “half-item rule,”
assigns 0.5 to the item with the smallest location value for a uniformly 0 response vector and to the
item with the largest location value for a uniformly 1 response vector. For example, assuming five
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items in increasing order of their locations, then a zero response string would become [0.5 0 0 0 0] and
a perfect response string would be [1 1 1 1 0.5]. The strategy used for addressing perfect response or
zero response strings should be specified in the write-up of the study. In contrast and as mentioned
above, with EAP and MAP, person location estimates are available for all response vectors. 

8. Missing Data

IRT is concerned with modeling observed responses. However, in working with empirical data one
will, at times, encounter situations where some items do not have responses from all individuals in the
calibration sample. Some of these missing data situations may be considered to be missing by design or
structurally missing. For example, one may administer an instrument to one group of people and an
alternate form of the instrument to another group. If these two forms have some items in common,
then the calibration sample can consist of both groups. As a result, the data contain individuals who
have not responded to all the items on both forms. In situations where the nonresponses are missing
by design, these missing data may be ignored because of the IRT properties of person and item param-
eter invariance. However, when nonresponses are not structurally missing, then one needs to consider
how to treat these nonresponses. 

In general, missing data (e.g., omitted responses) may be classified in terms of the mechanism that
generated the missing values: missing completely at random (MCAR), missing at random (MAR), and
nonignorable. MCAR refers to data in which the missing values are statistically independent to the val-
ues that could have been observed as well as to other variables. In contrast, when data are MAR then
the missing values are conditionally independent on one or more variable(s). Nonignorable missing
values are data for which the probability of omission is related to what the response would be if the
person had responded. 

In the IRT context there are various reasons why an individual’s response vector might not contain
responses to each item. For instance and as mentioned above, in the missing by design case one has
not-presented items. This missingness due to not-presented items arises in, for example, adaptive test-
ing or the simultaneous calibration of multiple forms. These nonresponses represent conditions in
which the missingness may be ignored for purposes of person location estimation. Therefore, the esti-
mation is based only on the observed responses. 

A second situation that will produce missing data occurs when an individual has insufficient 
time to answer the item(s). These not-reached items are (typically) identified as collectively occurring
at the end of an instrument (this assumes the individual responds to the test items in a serial fashion)
and represent speededness. Although IRT should be applied to unspeeded tests, if we knew which 
items the examinee did not have time to consider, then these not-reached items could be ignored for
person location estimation because they contain no readily quantifiable information about the 
individual’s proficiency (Lord, 1980). Therefore, when one has (some) missing data due to not-
reached items, then the person’s location can be estimated using only the observed responses. This
should not be interpreted as indicating that IRT should be applied to speeded instruments, nor 
that the item parameter estimates for the not-reached item(s) are unaffected by being speeded. In 
fact, speeded situations may lead to violation of the unidimensionality assumption and biased 
item parameter estimates. For example, research has shown that the speeded items’ α and δ
parameters are overestimated and the χ parameters are underestimated. Because of the α
overestimation the corresponding item information, and therefore the instrument’s total informa-
tion, are inflated. Identifying the speeded items as not-reached mitigates the bias in item parameter 
estimation.

The third situation that will produce missing data occurs when an examinee intentionally chooses
not to respond to an item for which he or she does not have an answer. These omitted responses
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represent nonignorable missing data. Again, assuming that an individual responds in a serial fashion
to an instrument, omitted responses may be distinguished from not-reached items by appearing
throughout the response vector and not just at its end. Omitted responses may not be ignored because
individuals could obtain, for example, as high a proficiency estimate as they wished by simply answer-
ing only those items they had confidence in correctly answering. 

Research has shown that with dichotomous data omits should not be treated as responses of 0 nor
should they be ignored. In these cases using a fractional value of 0.5 in place of omitted values leads to
improved person location estimation compared to treating the omits as responses of 0 or using some
other fractional value. By using this fractional value one is simply imputing a “response” for a bino-
mial variable and thereby attempting to “smooth irregularities” in the likelihood function.
Additionally, SAS’s PROC MI or SPSS’s MISSING VALUE ANALYSIS—EM may be used to impute
values for the omitted responses and the resulting complete data calibrated. 

The useful and accuracy of either of these approaches depends on the flexibility of the practioner’s
calibration software. That is, these approaches will yield decimal values and with some calibration
software these values will need to be converted to integers. An alternative approach is to perform hot-
decking. That is, for each case with missing data another case is found that is similar in characteristics
to the case with the missing value(s), but has responses for the item(s) in question. The responses from
this second case are substituted for those in the case with missing values. If one has multiple matching
cases, then one selects the matching case at random. A third strategy that may be fruitful in some situ-
ations is to treat the omission as its own response category and apply a polytomous model such as the
multiple choice or the nominal response models. 

There are some issues in the treatment of omits that the practitioner should be aware of. For instance,
in the context of proficiency assessment all the imputation procedures that produce “complete” data
for analysis are, in effect, potentially giving credit (partial or otherwise) for an omitted response. With
the substitution of a fractional value for the omitted response (e.g., 0.5) a second issue is the use of the
same imputed value for all omits assumes that individuals located at different points on the latent vari-
able continuum can all be treated the same. These issues are mentioned so that the practitioner under-
stands the assumptions that are being made with some of the missing data approaches discussed above.
However, they may or may not be of concern to an individual practitioner. Moreover, when IRT is used
in personality testing or with attitude or interest inventories these may be nonissues. A third issue that
should also be noted is that omits tend to be associated with personality characteristics and demo-
graphic variables as well as proficiency level. As such, in those situations where information on these
variable(s) is available one might wish to use this information as covariate(s) in the imputation process;
use of these covariate(s) might or might not have any meaningful impact on the person location 
estimates.

It is good practice when calibrating a data set to identify items without responses by some code. For
instance, in the data file not-reached items may be identified by a code of, say, 9, not-presented items
by a code of 8, omitted items by a code of 7. With certain calibration programs (e.g., BILOG 3, BILOG-
MG, MULTILOG) any ASCII character may be used (e.g., the letters “R” for not-reached, “P” for not-
presented, and “O” for omit). For BILOG omitted responses must be identified as such, whereas with
other programs (e.g., MULTILOG) any response code encountered in the data file that was not iden-
tified as a valid response is considered to reflect an omitted item. 

In practice, the user should report the strategy used to address nonignorable omitted responses as
well as the rationale for why it was selected. As an aid in deciding on a strategy the practitioner may
want to perform the estimation with and without the missing data strategy and compare the results to
determine the impact of the strategy. Furthermore, this comparison (e.g., determining the impact of
the strategy) may be facilitated by simulating data using the calibration model and the estimated item
parameters
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9. Model Fit

Ignoring the socio-political factors that in practice may determine which model is used, model selection
would, in general, involve considering the latent structure (e.g., the number of latent variables, whether
the latent variables are continuous and/or categorical), response data characteristics (e.g., dichotomous,
polytomous), and the importance and necessity of modeling chance success as well as differential dis-
crimination across items. Therefore, model selection would initially involve each of these factors as well
as assessing the tenability of the corresponding assumptions (e.g., a model’s dimensionality assump-
tion). However, after selecting one or more models there remains the issue of model-data fit.

If the dimensionality analysis suggests that one or more models based on a single latent variable are
appropriate, then one approach to assessing model-data fit is by using the likelihood ratio statistic, G2.
A statistically nonsignificant G2 provides evidence supporting that the data are consistent with what a
model would predict. In some cases the sample size and the typical instrument length will yield signif-
icant G2 values. However, in these situations convention has been to still use G2 to compare (nested)
models of varying complexity. (Calibration programs typically produce the log likelihood value that
would be used in calculating G2.) For instance, because the one-parameter model is nested within the
two-parameter model one may use the G2 statistic to determine if the two-parameter model’s varying
discrimination parameter is necessary. If the G2 is not statistically significant, then this would indicate
that it is not necessary to provide each item with its own discrimination parameter and the simpler
one-parameter model would be favored. Conversely, if G2 is statistically significant, then the addi-
tional item parameter in the two-parameter model would be necessary. Similarly, the necessity of
including a pseudo-guessing parameter for each item (i.e., the three-parameter model) could be
assessed by comparing the model’s fit with that of models without this item parameter (i.e., the one-
or two-parameter models). The degrees of freedom for G2 would be the difference in the number of
item parameters between the two models.

With regard to polytomous response data, all the models listed in Table 12.2 (except for the graded
response model) may be viewed as nested within the multiple-choice model. As such, the rating scale
model is subsumed by the generalized rating scale, partial credit, and generalized partial credit models,
the partial credit model is nested within the generalized partial credit model, the generalized partial
credit model is nested within the nominal response model, and the nominal response model is nested
within the multiple-choice model. Therefore, and as was the case with the dichotomous unidimensional
models, the G2 statistic can be used to compare various polytomous models; degrees of freedom associ-
ated with G2 would be the difference in the number of item parameters between the compared models.

With multidimensional data the G2 model comparison strategy is currently difficult to implement
because the most popular software for parameter estimation does not produce a log likelihood value
for the model solution. As a consequence, selecting between the multidimensional two- and three-
parameter models would be based on a more heuristic approach. In general, instruments that contain
items without a correct answer, such as, those found on a personality scale, should be adequately mod-
eled using the multidimensional two-parameter model because there is no reason to believe that a
respondent would guess at a response. However, for instruments that contain items on which chance
success is a possibility, then one might use the unidimensional three-parameter model to get a sense of
the degree to which chance success is evident by examining the χparameter estimates. If this degree is
very small, then using the multidimensional two-parameter model may be adequate for modeling the
data; otherwise, a multidimensional three-parameter model would be called for.

10. Item Fit Analysis 

Although one might have evidence of model-data fit this does not necessarily mean that one has evi-
dence of fit for each item. Stated another way, if one has item-data fit for each item, then one will have
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model-data fit; however, the converse does not have to be true. Whether or not one or more misfitting
items adversely affect the model-data fit analysis depends on the number of problem items and the
instrument’s length. For instance, one may have satisfactory overall model fit, but upon further inves-
tigation finds that a couple of items exhibit differential performance across the manifest groups of
males and females. Therefore, after selecting a model and/or obtaining overall model-data fit one pro-
ceeds to perform item level analyses. In addition, in some cases, model-level misfit may be diagnosed
by examining the item-level fit statistics (e.g., chi-square, INFIT, OUTFIT).

Item level fit analyses should involve both statistical indices and graphical analyses. The statistical
analyses depend, in part, on the calibration program because different programs provide different sta-
tistics or none at all. The graphical analyses allow an examination of IRT’s functional form assump-
tion as well as certain model assumptions (e.g., constant discrimination). In the following I begin with
some statistical indices and then proceed to graphical methods.

Most statistical indices are variants of a chi-square statistic. Programs such as WINSTEPS produce
two fit statistics, INFIT and OUTFIT, for examining fit; these statistics may also be used for model-
data fit analysis. Other programs such as BILOG-MG produce a chi-square fit statistic. I will first dis-
cuss INFIT and OUTFIT.

INFIT is a weighted fit statistic based on the squared standardized residual between what is
observed and what would be expected on the basis of the model. These squared standardized residu-
als are information weighted and then summed across observations for the jth item; the weight is 
p

j
(1 – p

j
) where p

j
is the probability of a response of 1 according to, for example, the Rasch model.

OUTFIT is also based on the squared standardized residual between what is observed and what would
be expected, but the squared standardized residual is not weighted when summed across observations.
As such, OUTFIT is an unweighted standardized fit statistic. Both statistics are averaged to produce
mean-square statistics. INFIT and OUTFIT each have a range from 0 to infinity with an expectation
of 1; their distributions are positively skewed.

These two statistics differ in their sensitivity to where the discrepancy between what is observed and
what is expected occurs. For instance, responses by persons located near an item’s location estimate
that are consistent with what would be expected according to the model produce INFIT values close to
1 (given the stochastic nature of the model). However, responses on items located near the item’s loca-
tion estimate that are inconsistent with what would be expected lead to large INFIT values. In short,
INFIT is sensitive to unexpected responses near the item’s location. In contrast, OUTFIT has a value
close to its expected value of 1 when responses by persons located away from an item’s location esti-
mate are consistent with what is predicted by the model (again, given the stochastic nature of the
model). However, unexpected responses by persons located away from an item’s location estimate lead
to OUTFIT values substantially greater than 1. Therefore, OUTFIT is sensitive to, say, a high ability
person incorrectly responding to an easy item or a low ability person correctly responding to a hard
item. 

Although there are various interpretation guidelines, one guideline states that values from 0.5 to 1.5
are “acceptable” with values greater than 2 warranting closer inspection of the associated item.
However, using a common cutoff value does not necessarily result in the fit statistic (either INFIT or
OUTFIT) having correct Type I error rates. Some have suggested taking sample size (N) into account
when interpreting INFIT and OUTFIT. Specifically, for INFIT and OUTFIT one would use 1 ± 2/��N
and 1 ± 6/��N as cutoff values, respectively. Alternatively, given INFIT and OUTFIT’s expectation and
their range it is clear that there is an asymmetry in their scales. Therefore, INFIT and OUTFIT can be
transformed to have a scale that is symmetric about 0.0. The result of this transformation is a stan-
dardized (0, 1) fit statistic, ZSTD. On this metric good fit is indicated by INFIT ZSTD and OUTFIT
ZSTD values close to 0. Because the ZSTD values are approximate t statistics, as sample size increases
they approach z statistics. As such, values of +2 are sometimes used for identifying items that warrant 
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further inspection. See Linacre and Wright (2001) and Smith (2004) for more information on the
INFIT and OUTFIT statistics and their transformations.

As mentioned above, BILOG-MG produces a chi-square fit statistic. This statistic is unreliable
when calculated on instruments with less than 20 items (Zimowski et al., 2003). These chi-square sta-
tistics are based on combining individuals into, by default, 9 intervals on the basis of their Bayes loca-
tion estimates; the user may change the number of intervals. The chi-square statistic tests the null
hypothesis that an item’s data are consistent with the model. In other words, item fit is associated with
statistically nonsignificant chi-square values. As is generally true, failure to reject the null hypothesis
does not imply that the model is correct, but only that there is insufficient evidence to reject the model. 

In addition to using item fit statistics one should also compare the agreement between the empiri-
cal IRF with the model predicted IRF; for polytomous models one would compare the empirical and
predicted option response functions (ORFs). This graphical examination should be viewed as a com-
plementary approach to assessing item fit with fit statistics and not a replacement for fit statistics. 

What defines agreement between the predicted and empirical IRFs is not absolute. One may use
error bands to define reasonable agreement between the two IRFs. That is, if the empirical IRF falls
within the error bands, then there is agreement between the empirical and the predicted IRFs (i.e.,
item-data fit). Because the width of these error bands is a function of the standard error one needs to
decide on the number of standard error units that would indicate agreement. For example, the error
bands might reflect two standard errors above and below the predicted IRF.

It should be noted that the agreement between the empirical and predicted IRFs is a matter of
degree and only informs our judgment of fit. For instance, sometimes we find that the empirical IRF
reflects an ogival pattern that shows close agreement with the predicted IRF for a substantial range of
the continuum, but disagreement at, for example, the lower end of continuum (say below –2).
Depending on the application this lack of fit at and below –2 may not be reason for concern. In short,
different situations may be more amenable to or accepting of a certain degree of less than perfect fit.
Another consideration is the number of intervals used in creating the empirical IRFs. For example,
with a small number of intervals we might observe strong agreement between the empirical and the
predicted IRFs, but with a larger number of intervals the degree of agreement is not as strong all other
things being equal. Also, in making our judgment of fit we recognize that the choice of say, two, stan-
dard errors for defining the error band width is a reasonable, but arbitrary, decision. Again, all of this
information is used to inform our judgment of fit along with the context (e.g., the number of items on
the instrument, the number of items exhibiting “weak agreement,” the number of respondents, the
amount of missing data, the purpose of the application, and so forth). 

So far we have been concerned with assessing item-level fit. However, we can also use item-level
information to assess the conditional independence assumption that all IRT models make. The gist of
this assumption is that responses to two items are statistically independent of one another after con-
ditioning on the latent person variable(s). Although there are a number of different statistics that may
be used for determining the tenability of this assumption, one simple approach is to use the Q

3
statis-

tic. The Q
3
statistic is the correlation between the residuals for a pair of items. The residual for an item

is the difference between the individuals’ observed responses and their corresponding expected
responses on the item. Therefore, after fitting the model the Pearson correlation coefficient is used to
examine the linear relationship between pairs of residuals. For instance, with dichotomous data the
observed response on the jth item (x

ij
) is either a 1 or 0 and the expected response is the probability (p

j
)

given by the IRT model. Symbolically, the residual for person i for item j is d
ij

= x
ij

– p
j
(�Î

ii
) and for item

k it is d
ik

= x
ik

– pk(�Î
i
); �Î is the person location estimate. The Q

3
statistic is the correlation between d

ij

and d
ik

across persons (i.e., Q
3jk

= r
djdk

). 
If |Q

3
| equals 1.0, then the two items are perfectly dependent. A Q

3
of 0.0 is a necessary, but not a suf-

ficient condition for independence because one may obtain a Q
3

= 0 because the items in an item pair
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are either independent of one another or because they exhibit a nonlinear relationship. Therefore, Q
3

is useful for identifying items that exhibit item dependence. Under conditional independence Q
3

should have an expected value of –1/(L – 1), where L is the number of items on the instrument.
In some situations one may explain item dependence in terms of multidimensionality. That is, the

dependency between two items is due to a common additional latent variable (e.g., test-wiseness in
achievement testing). If two items are conditionally independent, then their interrelationship is com-
pletely explained by the latent structure of the model. However, it has been shown that if one applies a
unidimensional model to bidimensional data, then items that are influenced by both latent variables
will show a negative local dependence and items that are affected by only one of the two latent variables
will show a positive local dependence. If only one of the latent variables is used, then the items that are
influenced only by that underlying variable will show a slight negative local dependence. To obtain a
large Q

3
value one needs to have similarity of items parameters for the items in question and the items

need to share one or more unique dimensions. Therefore, similarity of parameters is a necessary, but
not a sufficient condition, for obtaining a large Q

3
value. To summarize, if one determines that the var-

ious item pairs are exhibiting conditional independence, then one also has evidence support model-
data fit.

Another facet of item-level fit analysis involves obtaining evidence of item parameter invariance. In
the current context, invariance refers to one or more sets of item parameters that are interchangeable
within a linear transformation. Although, theoretically, IRT item parameters are invariant, whether
invariance is realized in practice is contingent on the degree of model-data fit. Therefore, obtaining
evidence of invariance can be used as part of a model-data fit investigation. The quality of model-data
fit may be assessed by randomly dividing the calibration sample into two subsamples. Each of these
subsamples is separately calibrated and their item parameter estimates compared to determine their
degree of linearity. This comparison can simply involve calculating the correlation coefficients
between the subsamples’ calibration results. One would have invariance evidence if the correlation
coefficients are large (e.g., greater than 0.9). This approach would be applied across items for each of
the items’ parameters (i.e., a correlation coefficient for item discrimination across subsamples,
another for item difficulty, etc.). 

The correlation coefficient approach for invariance assessment has its disadvantages. One potential
disadvantage is that the coefficient does not identify individual problem item(s). This issue may be
addressed by obtaining the scatterplot for each coefficient. Another disadvantage is that it is not pos-
sible to simultaneously examine the interaction of the item’s parameter estimates because the correla-
tion is calculated for each item parameter. However, more sophisticated approaches for comparing an
item’s response functions based on each subsample’s estimates allow one to simultaneously evaluate
an item’s multiple parameter estimates.

To simultaneously compare an item’s multiple parameter estimates across subsamples one can use
some of the differential item functioning (DIF) methods. DIF methods are used to detect items that
are functioning differently across manifest groups of individuals. Typically, these manifest groups
reflect majority/minority groups (e.g., males and females, African Americans and Caucasian,
Hispanics and non Hispanics). However, these manifest groups can also be two randomly created
subsamples. Some DIF approaches that could be used for this purpose are the likelihood ratio method
of Thissen, Steinberg, and Wainer (1988), Lord’s Chi-Square (Lord, 1980), and the Exact Signed Area
and H Statistic methods (Raju, 1988, 1990). 

11. Instrument Calibration 

Which calibration results one presents and the completeness of the presentation depends on 
the study’s purpose. In general, it is good practice to describe one’s instrument statistically and/or
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graphically. At a minimum one should provide descriptive statistics for each type of item parameter.
For example, one would provide the mean, range, the standard deviation, and so forth for the item
parameter estimates. Moreover, one can graphically present the instrument’s total (i.e., test) infor-
mation function to show where on the continuum the instrument is expected to provide the most
accurate person location estimates. 

When the purpose of the study involves linking different metrics (see Desideratum 14) then the
researcher should provide information about the metric transformation coefficients. Similarly, in
those cases where person location estimates are transformed to the total score metric then the
researcher should provide the total (i.e., test) characteristic function (TCF). In some cases, the item
parameter estimates for all the items can be presented in a table either in the body of the paper or in an
appendix; the corresponding standard errors should also be provided. 

With the Rasch family of models it is possible to present an Item-Person Map (also known as a
Variable Map). The Item-Person Map shows how the distributions of respondents and items relate to
one another. By comparing the item locations to the person distribution one can obtain an idea of how
well the items are functioning in measuring persons’ latent trait(s). In short, this graph allows one to
see not only how well the respondents’ distribution matches the range of the instrument, but also pro-
vides an idea of how well the items are distributed across the continuum. Using this information one
may anticipate where on the continuum one may experience greater difficulty in estimating person as
well as item locations.

12. Person Fit Analysis 

Analogous to item fit analysis, different calibration programs provide different person fit informa-
tion. For instance, some of the calibration programs for the Rasch family of models produce the INFIT
and OUTFIT statistics (Desideratum 10). In terms of person fit, these statistics are interpreted in a
fashion analogous to their use with item fit. Specifically, responses on items located near the person’s
estimated location, �Î, that are consistent with what would be expected produce INFIT values close to
1. However, responses on items located near the person’s �Î that are inconsistent with what would be
expected lead to large INFIT values. That is, INFIT is sensitive to unexpected responses near the per-
son’s �Î. In contrast, OUTFIT has a value close to its expected value of 1 when responses on items
located away from a person’s �Î are consistent with what is predicted by the model. Conversely, OUT-
FIT values substantially greater than 1 arise because of unexpected responses on items located away
from a person’s �Î.

Other fit statistics include, but are not limited to, the UB statistic (Smith, 1985) and Klauer and
Rettig’s (1990) chi-square statistic. The UB statistic may be standardized and a standard normal table
can be used to provide screening values that would aid in identifying individuals that warrant further
scrutiny. For example, a large UB statistic would indicate a person that is behaving inconsistent with
the model (i.e., a misfitting person). The Klauer and Rettig chi-square statistic is asymptotically dis-
tributed as a chi-square. Therefore, the standard chi-square table of critical values would be used to
identify a misfitting person. Klauer and Rettig have evaluated the significance of their statistic with a
α level of 0.10. In general, if one or more persons are found to be misfitting, then at the very least they
should be removed from the sample and the response data re-calibrated to determine their impact on
the item parameter estimation. If it is determined that misfitting persons have minimal impact on the
calibration results, then the researchers may choose to report the results that include the misfitting
people.

A complementary graphical approach for person-fit assessment is the person response function
(PRF). The PRF presents the relationship of the probability of a person’s response pattern and the item
locations. In addition to being used for identifying misfitting individuals, the PRF may be used to
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identify a particular item or set of items for which person-item fit is problematic as well as for provid-
ing diagnostic information, such as inattention, guessing, identifying copying, and so on (Trabin &
Weiss, 1983). Typically, the PRF is assumed to be a nonincreasing function of the item locations.
Departures from this monotonicity assumption are taken as indicators of person-model misfit for all
or some subset of the instrument’s items. To examine person fit, one compares a person’s observed
PRF (OPRF) with his or her expected PRF (EPRF). To obtain an individual’s EPRF one uses his or her
�Î and the item parameter estimates to calculate the person’s probability of a response of 1. To obtain
the individual’s OPRF we first group the items in terms of the similarity of their locations and then
determine the proportion of items in each group for which the individual has a response of 1. Large
discrepancies between the individual’s OPRF and EPRF reflect an individual who is behaving incon-
sistently with the model. 

An alternative to the fit statistics’ perspective (i.e., is the person behaving consistent with the model)
is appropriateness measurement. In appropriateness measurement one asks, “What is the appropriate-
ness of a person’s estimated location as a measure of his or her true location (�)?” For example, assume
that a person has a response pattern of missing easy items and correctly answering more difficult
items. One might ask, “Did this pattern arise from the person correctly guessing on some difficult
items and incorrectly responding to easier items or does this reflect a person that was able to copy the
answers on some items?” Various statistically based indices have been developed to measure the
degree to which an individual’s response pattern is unusual or is inconsistent with the model used for
characterizing his or her performance. 

One appropriateness index, l
z
, has been found to perform better than other measures. This index is

based on the standardization of the person log likelihood function, and allows the comparison of indi-
viduals at different � levels on the basis of their l

z
values. Although l

z
is purported to have a unit nor-

mal distribution, this has not been found to be the case for instruments of different lengths. As a result,
it is not advisable to use the standard normal curve for hypothesis testing with l

z
. Nevertheless, various

guidelines exist for using l
z
for informed judgment. In general, a “good” l

z
is one around 0.0. An l

z
that

is negative reflects a relatively unlikely response vector (i.e., inconsistent responses), whereas a posi-
tive value indicates a comparatively more likely response vector than would be expected on the basis
of the model. 

13. Person Location Estimate Results

In a classification or certification situation the decision about the individual is provided. For non-clas-
sification or non-certification contexts one typically presents the person location estimates on a trans-
formed metric to eliminate negative person estimates and to make the scores more easily interpreted
than they would be on the untransformed metric. This transformed metric may be a total score scale
(e.g., a number correct scale) that ranges from 0 to the number of items on the instrument, or another
metric that has been adopted (e.g., T-scores, College Board Score Scale, a proprietary scale). In other
situations, particularly when not presenting the person estimate to the public, the person’s location
estimates may be left on the standard score-like metric that allows for both negative and positive loca-
tion estimates. It is good practice to provide the estimate’s standard error. How one transforms the �
standard metric to another metric is discussed next in Desideratum 14.

14. Metric Definition and/or Transformation

Because of the indeterminacy of the parameter estimate metric, programs typically use either 
person-centering or item-centering to identify the calibration model. The net effect of this approach
is that the metric is defined relative to the sample used for the parameter estimation. Assuming 
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acceptable model-data fit, then the administration of an instrument to two distinct samples will more
than likely result in parameter estimates that are not identical because each sample defines its own
metric. However, these two metrics are linearly related to one another (i.e., the metric is determined
up to a linear transformation). As such, it is possible to transform one metric to another so that the
interpretation of the estimates is freed from the particular sample used for estimation. 

To linearly transform one metric to another involves using metric transformation coefficients (also
known as equating coefficients). In general, the linear transformation from one metric to another for
both person and item locations (or their estimates) is

ξ* = ζ (ξ) + κ, (1)

where ζ and κ are the unit and location coefficients, respectively. The ξ term represents the parameter
(or its estimate) on the untransformed or initial metric and ξ* represents the same parameter trans-
formed to the target metric. The target metric (sometimes called the common metric) is the metric
onto which all other metrics are transformed. For example, ξ can represent the item location param-
eter, δ

j
(or its estimate, δÎj), on the initial metric and ξ* is δ j

* (or δÎj
* ) on the target metric. 

To transform the initial metric’s item discrimination parameter, α
j
, to the target item discrimina-

tion parameter metric, α
j
*, we use 

α
j
* =

α
j

ζ
. (2)

(The discrimination parameters’ estimates may be used in lieu of α.) The IRFs’ lower asymptote
parameters (or their estimates) are on a common [0, 1] metric and do not need to be transformed. 

In those cases where either a proprietary scale (e.g., the College Board scale) or a commonly defined
scale (e.g., the T-score) is the target metric, then ζ and κ are given by the target metric’s definition. For
instance, for the T-score scale, ζ = 10 and κ = 50. However, when ζ and κ are not given by the target
metric then it is necessary to estimate ζ and κ. For example, this would be the case when we are link-
ing two metrics to one another. 

Multiple approaches for determining the values of ζ and κ have been developed. One approach
obtains the metric transformation coefficients by using the mean and standard deviations of the com-
mon items; this approach is sometimes called linear equating. Specifically, the coefficient ζ is obtained
by taking the ratio of the target to initial metric standard deviations (s) of the locations: 

ζ = 
s
�*
s
�

, (3)

where s
�*

is the standard deviation of the item locations (or their estimates) on the target metric and s
�

is the standard deviation of the item locations (or their estimates) on the initial metric. Once ζ is deter-
mined the other coefficient, κ, is obtained by 

κ = �
–

j

* – ζ�
–

j
. (4)

where �
–

j

* is the mean of the item locations on the target metric and �
–

j
is the mean of the item locations

on the initial metric. Once the metric transformation coefficients are obtained, then the linking of the
separate metrics is performed by applying equations (1) and (2) item by item to the item parameter
estimates. To place the person location estimates onto the target metric we apply �

i

* = ζ(�
i
) + κ to each

individual’s person location or its estimate. 
In contrast to linear equating, a second approach, total characteristic function equating, uses all the

item parameter estimates to determine the values of ζ and κ. The objective in this method (also known
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as true score equating, test characteristic curve equating) is to align as closely as possible the initial met-
ric’s total characteristic function with that of the target metric. The metric transformation coefficients
are the values of ζ and κ that satisfy this objective. This approach requires that the two metrics to be
link have either all or a subset of items in common.

As mentioned above, another use of a metric transformation is to transform a metric to make it
more meaningful or interpretable. One target metric that has intrinsic meaning for people is the total
score metric. For instance, rather than informing a respondent that his or her �Î is 1.2, which may or
may not have any inherent meaning to the respondent, we can transform the respondent’s �Î to the
more familiar total score metric. That is, a respondent with a �Î of 1.2 is told his or her score on the 20-
item instrument is 15 (or 15/20 = 0.75). This transformation is performed through the total charac-
teristic function. The gist of this approach is to sum, across an instrument’s items, the response
probabilities for a given person location estimate. In a proficiency assessment situation the total score
metric indicates the expected number of correctly answered items. A variant of this approach divides
this sum by the number of items on the instrument to obtain an expected proportion equivalence for
� (i.e., the proportion of responses of 1), which, in proficiency assessment, is the expected proportion
of correct responses.
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Latent Class Analysis (LCA) is a statistical method for identifying unobserved groups based on cate-
gorical data. LCA is related to cluster analysis (see Chapter 4, this volume) in that both methods are
concerned with the classification of cases (e.g., people or objects) into groups that are not known or
specified a priori. In LCA, cases with similar response patterns on a series of manifest variables are clas-
sified into the same latent class although membership in latent classes is probabilistic rather than
deterministic. In addition, LCA can be viewed as analogous to factor analysis (see Chapter 8, this vol-
ume), with the former examining categorical variables and the latter continuous ones; however, this
comparison is less direct than in the case of cluster analysis. Although both LCA and factor analysis
utilize manifest variables to gain insights into latent constructs, the focus of conventional factor analy-
sis is on the structure of the variables as opposed to the structure of the cases. However, both LCA and
factor analysis are based on the principle that observed variables are (conditionally) independent
assuming knowledge of the latent structure. Finally, LCA is related to item response theory (see
Chapter 12, this volume) and can be viewed as a generalization of discrete response models such as the
Rasch model (Lindsay, Clogg, & Grego, 1991).

LCA has been applied in the health and medical fields for the identification of disease subtypes and
for the assessment of diagnostic agreement (e.g., Albert, McShane, & Shih, 2001; Rindskopf &
Rindskopf, 1986; Uebersax & Grove, 1990) as well as for studying dietary patterns (Patterson, Dayton,
& Graubard, 2002). In addition to many other research areas, LCA has been applied to modeling jury
verdicts (e.g., Gelfand & Solomon, 1974), market segmentation research (Wedel & Kamakura, 2000),
and psychology (e.g., Kendler, Karkowski, & Walsh, 1998). 

Overviews of LCA can be found in McCutcheon (1987), Dayton (1999), and Heinen (1996).
Related and more complex models are discussed in Hagenaars (1993), Langeheine and Rost (1988),
and Hagenaars and McCutcheon (2002). An excellent web-based resource is provided by Uebersax
(2008). In addition, selected seminal papers on the subject include: Clogg and Goodman (1984),
Dayton and Macready (1976), and Goodman (1974). For an extended bibliography, see the Uebersax
website. Finally, as discussed in Desideratum 8, various software programs are available for estimation
and analysis of latent class models. 
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1. Theories and Models 

Like factor analysis and its generalized formulation, structural equation modeling, latent class analy-
sis (LCA) uses manifest variables to provide information regarding hypothesized latent variables. In
the case of LCA, one or more unobserved, or latent, categorical variables are assumed to be responsi-
ble for observed, or manifest, response patterns. LCA can be either exploratory or confirmatory. In the
exploratory mode, LCA can be considered to be a special case of cluster analysis with categorical vari-
ables. In the confirmatory mode, LCA can be used to fit scaling models to categorical data and, in fact,
to fit the equivalent of structural equation models (Hagenaars, 1993). In the absence of an explicit the-
ory regarding the latent variables the researcher is still expected to discuss prior experiences that lead
to the choice of latent class models to compare. When in a confirmatory mode, it is incumbent on the
researcher to explain, in some depth, the choices made vis-à-vis the models chosen.

In either an exploratory or confirmatory mode, one issue that needs to be addressed is how the
hypothesized latent classes represent qualitative differences among subjects. For example, it is possi-
ble that there are different latent classes of shoppers and that membership in those classes is predicated
on the basis of motivational considerations behind those shoppers’ purchases (e.g., fashion, price, and
quality). What experience, literature, or theory supports the existence of these classes? 

In the previous example, the latent classes simply represented different categories of shoppers. It is
possible that in a different situation the latent classes could be ordered in some way. An example

Table 13.1 Desiderata for Latent Class Analysis

Desideratum Manuscript

Section(s)*

1. Substantive theories guiding the choice of models to be evaluated are synthesized. I

2. Theoretical connections among the manifest variables, covariates, and potential latent classes are I

explicated.

3. The assumption of local independence is discussed and evidence is offered as to why the manifest I

variables would be independent of each other within latent classes.

4. Manifest variables are defined and their appropriateness is justified. M

5. Categorical and continuous covariates used in the analysis are discussed and a rationale for their M

inclusion is provided.

6. Sampling method(s) and sample size(s) are explicated and justified. The impact of sample size on M

cell frequencies and model fit statistics should also be discussed.

7. The mathematical model(s) being considered are presented along with a substantive justification of M, R

the constraints (if any) placed on the allowable values of the parameters to be estimated.

8. The name and version of the utilized software package are reported. The parameter estimation M, R

method is justified and its underlying assumptions are addressed.

9. Problems with model convergence and model identification are reported and discussed. R

10. Recommended fit indices are presented and evaluated using literature-based criteria. R

11. For competing models comparisons are made using statistical tests and/or information criteria. R

12. Latent class proportions and conditional probabilities are reported. R

13. Evidence is provided that global versus local maxima have been reached. R

14. Boundary value parameter estimates are highlighted and implications are discussed. R, D

15. Meaningfulness of the latent class proportions is considered. R, D

16. Membership of the latent classes is discussed. R, D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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would be latent classes predicated on cigarette smoking behavior, where the latent classes are com-
prised of initiators, experimenters, regular users, and daily/dependent smokers (Flaherty, 2008).
Once again, the question of what experience, literature, or theory substantiates that ordering must be
addressed.

Finally, it is possible that one or more unscalable classes might be necessary to adequately model the
data (Dayton & Macready, 1980; Goodman, 1975). For example, when young children are asked to
select personality statements that best describe themselves, they may have neither a command of the
vocabulary needed nor the cognitive understanding when questions are not concrete in nature
(Meijer, Egberink, Emons, & Sijtsma, 2008). These children will tend to provide inconsistent response
patterns because they resort to guessing or lack understanding. If one or more unscalable classes 
are included, the researcher must explain why certain respondents’ responses could be inconsistent.

2. Linking Variables and Covariates to Potential Latent Classes 

Many important questions in the social sciences involve comparisons among manifest groups. As an
example, consider the data set concerning academic cheating reported by college students that were
examined by Dayton and Scheers (1997). When considering academic cheating it may be interesting
to compare groups such as: (1) males and females; (2) juniors and seniors; or (3) students in different
academic programs. In the Introduction section of the manuscript, the researcher should discuss why
the grouping or covariates included in the analysis should be linked to membership in the latent
classes. What literature supports this linkage and if the literature is sufficiently detailed, what differ-
ences have been shown to exist between the manifest groups?

3. Local Independence 

In LCA, it is assumed that: (1) the model correctly specifies the number of classes, (2) each respondent
belongs to only one latent class, and (3) respondents within a class are homogeneous. Building on
these, the fundamental concept of LCA is that of local (i.e., conditional) independence meaning that
the observed manifest responses are independent given that latent class membership is known.
Although, in theory, latent class models may include dependencies among residual terms (e.g.,
Hagenaars, 1988), this is quite uncommon in the research literature and it should only be done for
substantive reasons, not to improve model fit (Flaherty, 2008). In either case, when local independ-
ence is assumed or when dependencies among residuals are allowed, the researcher should discuss
these assumptions.

4. Manifest Variables 

Relatively few assumptions underlie latent class analyses, particularly with regard to the manifest vari-
ables under consideration; however, these variables merit some discussion in the Methods section.
The most obvious characteristic that should be highlighted is whether they are dichotomous, polyto-
mous, or ordered polytomous in nature. If polytomous variables are employed there should be some
justification for the number of scale points used. For example, if manifest variables were based on 5-
point Likert scales, the researcher should verify and report that all scale points were chosen by respon-
dents. If not, it might be appropriate to reduce the number of categories for some or all of the scales as
well as to consider whether or not the variables are more appropriately modeled as dichotomous.
Simple descriptive statistics can verify that scale points were used, but need not be shown in the docu-
ment. If scale points are ordered (as for a Likert scale), then appropriate ordinal modeling methods
should be employed (see Rost, 1988).
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For confirmatory scaling models (and related models), permissible response patterns for a specific
latent class model are also of interest. For example, the Lazarsfeld-Stouffer questionnaire data set
(Lazarsfeld, 1950) was based on responses by non-commissioned officers to four dichotomous items
regarding attitudes toward to the Army. These items were intended to express increasingly more
favorable attitudes such that the permissible response vectors were {0000}, {1000}, {1100}, {1110}, and
{1111}, where 0 is a negative response and 1 is a positive response. Thus, for example, the implication
is that when a respondent agrees with the fourth item, one highly favorable toward the Army, the
respondent also agrees with the three other items. Theoretically, all other response patterns are not
permissible, however this does not mean that they will not occur since response errors and other fac-
tors may affect responses (additional discussion of these models is presented in Desideratum 7).

5. Covariates 

Concomitant variables can be incorporated into LCA in two different manners: (1) as grouping (strat-
ification) variables; or (2) as covariates that are modeled in a manner similar to logistic regression (see
Dayton & Macready, 2002). In either case, some rationale should be provided for the choice of specific
concomitant variables and their manner(s) of being included in the latent class model. When group-
ing variables are used, it is possible to explore homogeneous, partially homogeneous, and heteroge-
neous models. When fully heterogeneous models are not included, some rationale for this omission
should be provided. When covariates are used, the form of the regression component of the model
(e.g., logistic) should be described. In addition, the rationale for including, or not including, higher-
order terms such quadratic functions of continuous covariates should be addressed. Finally, if group-
ing variables are used as covariates (e.g., by including indicator or dummy variables), the rationale for
including, or not including, product terms for continuous and grouping covariates should be
addressed. Whenever possible, some form of graphical display for the relation between the covari-
ate(s) and latent class membership should be included. 

6. Sampling Method(s) and Sample Size(s) 

The inferences that can be drawn from LCA are limited by the sample available for analysis. Samples
that are not representative of the population of interest to the researcher will severely limit the infer-
ences that may be drawn from the analysis. Virtually all theoretical treatments of LCA have been based
on the notions of simple random sampling, with, perhaps, the inclusion of manifest grouping (strati-
fication) variables. In practice, however, data sets are often based on complex survey designs that
involve clusters of respondents and disproportionate sampling. While it is relatively straightforward
to incorporate sampling weights to make adjustments for disproportionate sampling, corrections for
cluster sampling are more difficult. Failure to take clustering into account can result in severe under-
estimation of standard errors and can distort results from significance tests. Patterson, Dayton, and
Graubard (2002) discussed these issues and provided some guidance for these situations. In any case,
when complex sample designs are involved, these issues should be explicitly discussed in a manu-
script.

Sample size is an important consideration in LCA, especially as it relates to observed cell frequen-
cies. For the dichotomous case with V manifest variables, the possible number of unique response vec-
tors is 2V. While for four variables there are only 16 patterns, for 10 variables there would be 1024
possible response vectors. Thus, with larger numbers of variables, analyses based on frequencies of
response vectors are not practical. In addition, goodness-of-fit tests are not applicable unless sample
sizes are truly enormous given that frequency tables will be sparse (i.e., contain large numbers of 0 fre-
quencies). In general, analyses with large numbers of manifest variables are possible using raw data
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(i.e., responses for individual cases rather than frequency data). Note that identification and conver-
gence issues become more critical in these situations and need to be discussed in a manuscript. 

7. Mathematical Model

In the notation formalized by Goodman (1974), manifest variables are denoted by capital letters (A,
B, C, etc.) and, in the dichotomous case, the variables have levels i = {1,0}, j = {1,0}, k = {1,0}, and so
forth, respectively. Latent variables are denoted X and have levels t = {1, ..., T}. Therefore, for the tth

latent class, the conditional probabilities are represented by π
it
A
˝

X, π B
jt

˝

X, π
kt
C
˝

X etc. Assuming three mani-
fest variables and a latent class t, the conditional probability of a response vector y for the sth case asso-
ciated with the tth class can be written as:
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Assuming local independence and latent class proportions for a total of T latent classes, the probabil-
ity of obtaining a response vector can be expressed as the weighted sum across classes: 
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This simple model is generally presented in any article using LCA and provides a frame of reference from
which to discuss any constraints placed on the model. These constraints depend upon the purpose of the
analysis (exploratory or confirmatory), whether the models under consideration are restricted, and how
response errors are modeled (e.g., Proctor, intrusion-omission), as described below.

Typically, exploratory LCA is conducted with no restrictions on the values of conditional 
probabilities or latent class proportions. In confirmatory analyses, however, the researcher must 
specify the hypotheses of interest and, typically, constraints are imposed that reflect these hypotheses.
For example, the Proctor (1970) scaling model proposes permissible response vectors that represent
“true types” in the population and incorporates equal rates of response error for all manifest variables.
In a Proctor model with three dichotomous variables (A, B, C) and a linear (i.e., Guttman) scale, the
permissible response vectors are {000}, {100}, {110}, and {111}, reflecting membership in the four
latent classes of the latent variable X (classes 1, 2, 3, and 4, respectively); the other possible manifest
vectors, {001}, {010}, {011}, and {101}, reflect some sort of response error. Assuming equal rates of
response error for the three variables, as in the Proctor model, the following constraints would be
imposed: 
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The purpose of this brief explanation of the Proctor model is to show the necessity for discussing the
general model in an article. In practice, more complex models may also be investigated that are gener-
alizations of the Proctor model. For example, the intrusion-omission error model (Dayton &
Macready, 1976) relaxes the assumption of equal error rates and allows for errors of intrusion (i.e., the
occurrence of an observed response of 1 when a permissible vector calls for a 0 response) and errors of
omission (i.e., the occurrence of an observed response of 0 when a permissible vector calls for a 1
response).
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8. Software Package 

There are many good software programs for LCA. These typically include Latent Gold (Vermunt &
Magidson, 2005), LEM (a free program also by Vermunt, 1997), MPlus (Muthén & Muthén, 2006),
PANMARK3 (van de Pol, Langeheine, & de Jong, 1996), and WINMIRA2001 (von Davier, 2001). SAS
also has two procedures, PROC LCA and PROC LTA, to handle latent class analyses. Note that this is
not meant to be an exhaustive list, but rather a sample of the widely used LCA programs. The name
and version of the software package must be reported in any manuscript using LCA. This indirectly
provides the reader with some information like whether standard errors are available for parameter
estimates, multiple start values are automatically tested, and if local dependence can be handled. All
other things being equal, we would recommend using programs that provide standard errors and
multiple start values; however the choice of exactly which program to use depends upon many other
factors as well (e.g., expense, type of model(s), user experience).

In addition, the parameter estimation method used within the chosen software program, along
with its underlying assumptions, should be discussed. Parameters will generally be found using either
maximum likelihood (ML) estimation or Bayesian methods such as those available in Latent Gold
(Vermunt & Magdison, 2005). Markov Chain Monte Carlo (MCMC) methods can also be applied to
latent class models; however, this methodology requires special software, original programming, and
extensive knowledge of the techniques. Therefore, we would not recommend these methods for any-
one but the most advanced users. 

9. Model Convergence and Model Identification 

Most LCA programs use ML estimation which is an iterative procedure that continues until the 
change in the log likelihood between successive iterations is less than some pre-set criterion. The value
of that convergence criterion affects the likelihood that local, rather than global, maxima are 
identified, and thus this criterion should be reported (see Desideratum 13 for more on local and global
maxima).

An identified model is one for which there is a single “best” solution. Non-identified models have
multiple “best” solutions. For information on the reasons models may be non-identified, see
Uebersax (2008). From a practical standpoint a researcher needs to know that the number of param-
eters to be estimated is limited by the number of unique response vectors minus one, which equals the
degrees of freedom. Unfortunately, this is a necessary but not sufficient check for an identified model,
because models may be non-identified due to the observed data and their match with a particular
model. For this reason it is also common to report that the estimated variance-covariance matrix is of
full rank. Note that this matrix contains estimated values for the sampling variances and covariances
for the ML parameter estimates.

10. Fit Indices 

The goodness of fit of a particular latent class model to the observed data can be assessed using some
form of a chi-square test. Two familiar versions of this significance test are the Pearson statistic, χ2, and
the likelihood ratio statistic, G2. The former is based on the differences between observed and expected
frequencies, while the latter is based on the logarithm of the ratio of the observed and expected fre-
quencies. In theory, with dichotomous response variables for an unrestricted full-rank model, the
degrees of freedom are 

df = 2V– m –1, (4)
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where V is the number of dichotomous manifest variables and m is the number of independent
parameters estimated in the model. This equation must be modified appropriately if the rank of the
estimated covariance matrix is less than m. This occurs for models with restrictions on the conditional
probabilities (e.g., scaling models), for models with conditional probabilities that approach 0 or 1, and
for models that are not identified (see Dayton, 1999, for more information regarding these situations).
Under most situations, χ2 and G2 goodness-of-fit statistics yield similar numerical results and lead to
the same conclusions. In general, both statistics are reported along with degrees of freedom. When
some cell frequencies are small, both χ2 and G2 tend to not follow the appropriate reference chi-square
distribution and, thus, become inaccurate. Under this scenario the Read-Cressie statistic is recom-
mended (see Dayton, 1999). 

One problem with all goodness-of-fit chi-square tests is that, when fitting models based on large
sample sizes, the null hypothesis of perfect fit tends to be rejected. This may happen even though the
residuals (i.e., differences between observed and expected frequencies) indicate that fit seems satisfac-
tory from a substantive point of view. To complement the limited amount of information provided by
chi-square tests, other indices of model fit may be used. Two such indices are the index of dissimilar-
ity, I

D
(Dayton, 1999), and π * (Rudas, Clogg, & Lindsay, 1994). For I

D
, defined in terms of observed

and expected frequencies, values that are less than 0.05 are generally considered satisfactory. For π *,
which is based on the number of cases that would need to be deleted to achieve perfect model fit, val-
ues must be interpreted with reference to the application although .10 is a commonly recommended
value (Dayton, 1999). Typical LCA programs do not provide estimates for π *; however, a spreadsheet
procedure for estimating π * for two-class models with dichotomous response variables is described
and illustrated in Dayton (1999). Given that programs do not provide π * we recommend that authors
include I

D
with their results, supplementing with π * should they choose to. 

An indication of how well the model fits the data can also be gained by examining the standard
errors, and confidence intervals constructed from them, for the latent class proportions and condi-
tional probabilities. Researchers should, when possible, utilize LCA computer programs that provide
estimated standard errors for latent class proportions and conditional probabilities. The accuracy of
these estimates has not been widely investigated, especially for small sample sizes; this is one reason for
favoring large samples in LCA. If a program is used that does not provide standard errors, it is possi-
ble to use resampling methods, such as the jackknife or parametric bootstrap, to estimate standard
errors from frequency data. This, however, requires original programming that can be carried out,
albeit somewhat tediously, in a spreadsheet as illustrated in Dayton (1999).

11. Statistical Tests and Information Criteria

In addition to testing the absolute fit of a model, as discussed in Desideratum 10, it is often of interest
to researchers to compare alternate models. For nested models the chi-square difference test can be
used in certain circumstances. In those situations one computes the difference between the G2 statis-
tics for the two models and uses the difference between the degrees of freedom to evaluate whether the
more complex model provides statistically significantly better fit. There are, however, technical issues
surrounding the use of chi-square difference tests (see Dayton, 1999, for an overview), and for that
reason it is often recommended that they are used in concert with measures of relative fit based on
information criteria which do not require the models to be nested. Also, it should be noted that chi-
square difference tests cannot be used to compare models based on differing numbers of latent classes.
Although this comparison is almost always of interest in exploratory LCA, such tests are, in theory,
invalid and in practice are known to yield misleading results. 

The Akaike (1973, 1987) Information Criterion (AIC) includes terms for the log likelihood and the
number of independent parameters to be estimated. This index, because it does not include a term for
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the sample size, lacks asymptotic consistency (Bozdogan, 1987). Schwarz (1978) included a penalty
term that reflects sample size in his Bayesian Information Criterion (BIC) and Bozdogan (1987) pro-
posed a Consistent Akaike Information Criterion (CAIC) that, in practice, performs virtually the
same as BIC. For all of these information criteria, the decision procedure entails selecting the model
with the lowest value of the criterion as the best fitting model. Often, the strategy is to decide on the
preferred model based on multiple information criteria and to report those criteria for all models
within a journal article. However, it should be noted that AIC tends to select more complex models
(that is, models with more parameters) and BIC (or, CAIC) tends to select simpler models with the
choice between them, to some extent, being a matter of philosophy with respect to the model-fitting
enterprise (see Bozdogan, 1987, for more discussion). 

12. Latent Class Proportions and Conditional Probabilities 

When relatively few response patterns are possible, it is helpful to present those patterns, the condi-
tional probabilities, and the latent class proportions in one table. The frequency of each response pat-
tern and total sample size can also be reported. As shown in Table 13.2 (adapted from Dayton, 1999),
arranging data in this manner provides the reader with a comprehensive summary of the analysis in
question. 

When the number of unique response patterns becomes large it is more convenient to show how the
responses to individual items differ across the classes. In this example in Table 13.3 (adapted from
Dayton, 1999), four dichotomous items (A, B, C, and D) were examined. The conditional probabili-
ties for both the positive response (1) and negative response (0) are shown even though that informa-
tion is redundant. In this case it is obvious that the first latent class (labeled LC 1) was much larger than
the second (approximately 85% to 15%), that for LC 1 there are boundary value estimates (see
Desideratum 14) for variable B, and that the conditional probabilities of a positive response differ sub-
stantially across classes for all of the items. The standard errors included in parentheses also indicate
to the reader which parameters were estimated with greater precision. A similar table could be created
for polytomous items with 0 through the number of response options shown for each item. This rep-
resentation could also be used to show similarities and differences among manifest groups. 

For exploratory analyses when models are estimated based on differing numbers of classes, a sim-
ple graphical display of the conditional probabilities can be included. A rationale for why these graphs
are valuable can be seen in Figure 13.1 from a six-item dataset regarding attitudes toward abortion
(Dayton, 2006). The first three items (labeled 1, 2 and 3 on the x-axis) deal with favoring abortions for
reasons such as mother’s health, rape or incest and birth defect whereas the last three items (labeled 4,
5 and 6) deal with favoring abortions for reasons such as being unmarried, being poor or having too
many children already. The first class in the 4-class model includes individuals who are strongly pro-
abortion without restriction. The individuals in the second and third classes put conditions on their

Table 13.2 Latent Class Structure for Two Hypothetical Items

Conditional Probabilities

Response Pattern Frequency Latent Class 1 Latent Class 2

{0 0} 516 0.004 0.512

{1 0} 144 0.016 0.128

{0 1} 164 0.036 0.128

{1 1} 176 0.144 0.032

Total 1000 0.200 0.800
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support of abortion with relatively strong support for items 1–3 but weaker support for items 4–6. The
fourth class includes individuals who express fairly negative opinions about abortion regardless of the
situation. The 5-class model shows these same four classes plus another class that seems to include
individuals who may be responding randomly to the items. Given that the responses do appear ran-
dom, and that this class only represents 1% of the respondents, it would be appropriate to choose the
4-class model over the 5-class model even if the more complex showed better fit.

Table 13.3 Cheating Data for Males Only (Standard Errors in Parentheses)

LC 1 LC 2

0.8545 (0.0595) 0.1455 (0.0595)

A 0 0.9775 (0.0281) 0.4299 (0.1702)

A 1 0.0225 (0.0281) 0.5701 (0.1702)

B 0 1.0000 (0.0000) 0.5486 (0.1943)

B 1 0.0000 (0.0000) 0.4514 (0.1943)

C 0 0.9944 (0.0184) 0.6817 (0.1341)

C 1 0.0056 (0.0184) 0.3183 (0.1341)

D 0 0.8553 (0.0364) 0.5457 (0.1425)

D 1 0.1447 (0.0364) 0.4543 (0.1425)
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Figure 13.1 Profiles for 4- and 5-Class Models.
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13. Global vs. Local Maxima

Because of the mathematical form of the equations that must be solved to conduct maximum-
likelihood estimation with latent class models, the ordering of latent classes is arbitrary. For example,
for a two-class solution where the first latent class proportion is .68 there is an equivalent two-class
solution where the first class proportion is .32 (and the item conditional probabilities are correspond-
ingly switched). In the technical literature, this is known as “label switching.” Although, in practice,
this is merely a bookkeeping issue, it must be kept in mind when comparing solutions with varying
number of latent classes or solutions with different sets of restrictions given that the classes may not
directly correspond across different solutions.

Another issue is that local maxima might exist. Ideally, the algorithm being used to estimate model
parameters should seek out the global maximum. However, existing algorithms using ML or Bayesian
estimation cannot, in general, distinguish between the global maximum and locally optimal solutions.
Thus, when reporting LCA solutions it is necessary to provide evidence that, in fact, a global maximum
was reached. There are several types of evidence that are suitable. First, the LCA program should be exe-
cuted several times with different sets of start values. If all of these runs result in the same solution, this is
strong evidence that the global maximum has been reached. If those runs reach different maxima, it may
be defensible to select an analysis with the largest log-likelihood but this requires explicit discussion as it
is possible that the model is not identified. An article should also include the minimum convergence cri-
teria used; stringent criteria (e.g., the change in the log-likelihood between iterations is 10–8 or less) will
lend more credence that a global maximum has been reached when multiple LCA solutions identify that
same maximum. Parameters whose estimates approach boundary values of 0 or 1 should be cause for
suspicion. As discussed by Uebersax (2008), the greater the number of parameter estimates at the bound-
ary values, the greater a researcher should be concerned that the solution is a local, rather than global,
maximum. Desideratum 14 provides a more in-depth discussion of boundary values.

14. Boundary Value Parameter Estimates 

When estimated conditional probabilities approach 0 or 1, computational issues arise with respect to
estimated variances and covariances for the parameter estimates that render the associated confidence
intervals and significance tests of questionable meaning (Garre & Vermunt, 2006). Therefore, in the
Results section, one should be very specific regarding which conditional probabilities, if any, went to
boundary values of 0 or 1. 

Because estimates approaching boundary values might indicate that the data have been overfit, 
the researcher generally seeks to simplify or restrict the model in some way. One recommendation 
is to restrict these parameters to 0 or 1 (as appropriate), re-estimate the remaining parameters, 
and reduce the degrees of freedom for chi-square goodness-of-fit tests by 1 for each such restriction. 

Certain LCA programs, notably Latent Gold (Vermunt & Magidson, 2005), incorporate Bayesian
methods with Dirichlet prior probabilities for latent class parameters so that the boundary value issue is,
for practical purposes, eliminated. Also, there is evidence that this assists in avoiding local maxima with-
out distorting results (Uebersax, 2008). In general, Bayesian estimates will not be the same as ML estimates
for identified models and, hence, justification for their use should be provided. For identified models with
the weak priors as incorporated as defaults in Latent Gold, Bayesian parameter estimates tend to be
“shrunken” relative to conventional ML estimates (i.e., tend to be further from the 0/1 boundaries).

15. Meaningfulness of Latent Class Proportions 

Researchers need to not only consider which models fit best based on statistical indices, but on the
sizes of the classes as well. This is especially true if one of the identified classes is extremely small
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(although the definition of “small” depends upon context). For example, with a sample size of 200, a
latent class proportion of .05 represents only 10 cases, whereas with a sample size of 20,000 it repre-
sents 1000 cases. In essence, the question is whether or not a class is substantively meaningful or an
artifact of the particular sample being analyzed. When a latent class proportion is extremely small, it
is incumbent upon the researcher to offer a substantive rationale, based on past research or theory, for
the inclusion of the class. 

16. Latent Class Membership 

A posteriori probabilities for each response vector and latent class can be computed and used to clas-
sify respondents into one of the latent classes. The specificity of the discussion regarding latent class
membership will depend on the number of response vectors and how those correspond with the latent
classes. If a few different response vectors were responsible for latent class membership it would be
informative to state exactly what those vectors were. For example, with academic cheating data for
four items, Dayton and Scheers (1997) found that all response vectors, except {0000}, {0010}, {0001},
and {0011}, resulted in classification in a latent class identified as representing persistent cheaters. It
appears, then, that classification as a non-persistent-cheater hinged on responding “no” (i.e., 0) to the
first two items. In situations with more items, on the other hand, if dozens of response vectors were
associated with each class it would be of little value to enumerate those vectors. Instead, it would be
more informative to discuss the items that seemed to be most predictive of class membership.

The interpretation of latent classes can be enhanced by post hoc analyses that involve concomitant
variables. This may be viewed as a type of construct validation for the naming of latent classes. For
example, the analysis of academic cheating data by Dayton and Scheers (1997) incorporated student
grade point average as a covariate and resulted in an interpretation of the two classes as persistent
cheaters and non-persistent-cheaters. Note that it is reasonable to expect that the probability of
respondents being classified in these latent classes would be related to academic success in college.
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14
Latent Growth Curve Models 

Kristopher J. Preacher

Structural equation modeling (SEM) is one of the most flexible and commonly used tools in the sta-
tistical toolbox of the social scientist. Latent growth curve modeling (LGM), the subject of this chapter,
is one application of SEM to the analysis of change. In LGM, repeated measures of a variable 
(hereafter, Y) are treated as indicators of latent variables, called basis curves, that represent aspects of
change—typically intercept and linear slope factors. Values of the time metric (e.g., age, day, or wave
of measurement) are built into the factor loading matrix to reflect the form of the hypothesized 
trajectory, or trend over time. There are many extensions of this idea, but these are the basic elements
common to all applications of LGM. LGM contains elements of both variable-centered and person-
centered approaches (Curran & Willoughby, 2003), in that a sample-level summary of change is pro-
vided, yet individual differences in initial status and change are also considered.

The advantages of LGM over rival techniques for modeling change are numerous. A primary
advantage is that LGM affords the researcher the ability to model aspects of change as random effects;
that is, the means, variances, and covariances of individual differences in intercepts and slopes can be
estimated. Because LGM is a special case of SEM, all of the benefits of SEM apply to LGM as well. These
include the ability to assess the fit of the model to data, the ability to assess change in latent variables,
and the ability to examine the antecedents and sequelae of change. Missing data (assuming they are
missing at random) pose no problem for LGM. Perhaps the greatest advantage of LGM is its flexibil-
ity. Cases need not be measured at the same occasions, or even at equally spaced intervals. Complex
nonlinear trajectories can be modeled. LGM can be adapted in creative ways to address new problems.

There are currently four book references devoted exclusively or primarily to LGM (Bollen & Curran,
2006; Duncan, Duncan, & Strycker, 2006; Preacher, Wichman, MacCallum, & Briggs, 2008). In addi-
tion, there exist many accessible articles and chapters on the subject (e.g., Byrne & Crombie, 2003;
Chan, 1998; Curran, 2000; Curran & Hussong, 2003; Hancock & Lawrence, 2006; Singer & Willett,
2003;  Willett & Sayer, 1996). Any SEM software capable of accommodating mean structures and 
multiple groups (e.g., AMOS, EQS, LISREL, Mplus, Mx) may be used to specify these models.

Because LGM is a special application of SEM, the reader may notice some degree of overlap between
the desiderata enumerated here and those described in Chapter 28 of this volume. Table 14.1 of the
present chapter addresses some of these in the context of LGM, and includes additional desiderata spe-
cific to the case of LGM. To get the most out of this chapter, it should be read in conjunction with
Chapter 28.
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1. Substantive Theories and Latent Growth Curve Models 

LGM is intended as a way to test the a priori predictions of a theory of change against observed data.
Therefore, it is critical that the researcher have a well-articulated theory of change before attempting
to use LGM. The Introduction section of an article using LGM should build a case for testing specific
hypotheses of change. Typically this involves stating a theoretical reason for specifying individual tra-
jectories that are characterized by aspects of change (intercept, slope, and so on) that, in turn, are
expected to vary across sampling units. The point of most applications of LGM is to obtain estimates
of the means, variances, and covariances of these trajectories, and these parameters should have con-
sequences for the theory under scrutiny. The lack of strong theoretical predictions can lead to the mis-
use of LGM to generate theory from data in an exploratory, inductive fashion. As with SEM in general,
testing alternative models of change provides a more comprehensive survey of competing ideas—and
is more scientifically sound—than testing a single model of change.

Table 14.1 Desiderata for Latent Growth Curve Models

Desideratum Manuscript

Section(s)*

1. Substantive theories motivating the model under scrutiny are described; a set of a priori specified I

competing models is generally preferred.

2. The metric of time (or, more generally, the substrate of change) should be described. I

3. The functional form of the hypothesized trajectory of change is described. I

4. Path diagrams are presented to facilitate the understanding of the conceptual model of change and I

the specification of the statistical model.

5. The scope of the study is outlined; if the study delineates a theory of change over time, enough time I

must be permitted to elapse for the phenomenon of interest to unfold.

6. Repeatedly measured variables are defined and their appropriateness for inclusion in the study is M

justified.

7. How any theoretically relevant control variables are integrated into the model is explained. M

8. The sampling method(s) and sample size(s) are explicated and justified. M

9. The treatment of missing data and outliers is addressed. M, R

10. The name and version of the utilized software package are reported; the parameter estimation M, R

method is justified and its underlying assumptions are addressed.

11. Problems with model convergence, offending estimates, and/or model identification are reported R

and discussed.

12. Summary statistics for measured variables are presented; if raw data were analyzed, information on R

how to gain access to data is provided.

13. Recommended data-model fit indices from multiple classes are presented and evaluated using R

literature-based criteria.

14. If incremental fit indices are used, an appropriate null model is specified and fit rather than relying R

on incorrect estimates provided by software.

15. For competing models, comparisons are made using statistical tests (for nested models) or R

information criteria (for non-nested models).

16. For any post hoc model respecification, theoretical and statistical justifications are provided and the R

model is fit to a new sample.

17. Parameter estimates, together with information regarding their statistical significance, are provided. R

18. Appropriate language regarding model tenability and structural relations is used. D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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Given that the researcher has in mind a strong theory of change that makes LGM an appropriate
analytic strategy, then attention must be given to the question “change in what?” Most applications of
LGM involve modeling change in the same variable over time, but this is a questionable undertaking
if the nature or meaning of the variable itself changes over time. Change in the fundamental meaning
of the variable could be mistaken for change in mean level. For example, common age-appropriate
aggressive behaviors in 6-year-old children may decrease in frequency over time not because levels of
the aggression construct decline, but rather because other aggressive behaviors take their place. One
way to address this problem is by invoking theory or past findings to support the stability in interpre-
tation of the repeatedly measured variable. Another way is to replace directly observed repeated meas-
ures with repeated latent variables, each of which has multiple indicators at each measurement
occasion. This approach permits tests of longitudinal factorial invariance, a way to assess stability in the
meaning of a construct over time. Applications that use repeated latent variables should formally
address longitudinal invariance.

2. The Metric of Time 

The overwhelming majority of applications of LGM involve some metric of time as the substrate of
change. Time can be measured in units ranging from milliseconds to decades. Quasi-time metrics
such as wave of study, developmental stage, or school grade may be used. In fact, the data analyzed
with LGM need not be longitudinal at all. For example, there is theoretically no hindrance to replac-
ing the time metric with, for example, stimulus intensity, distance, or dosage, assuming these repeated
measures are assessed or administered in a within-subject fashion and ordered in some logical way. In
the case of stimulus intensity, the “origin” measure (typically time 0 in a longitudinal study) could
represent the absence of a stimulus; it could represent the baseline dosage of a drug in a repeated-
measures medical trial. For the remainder of this chapter I refer to the metric as “time,” but this is not
meant to exclude other substrates of change.

Two factors should be considered in any application of LGM: origin and scale. The origin of the time
metric refers to the zero-point. The location of the zero-point (e.g., age 37, initial wave of measure-
ment, or time of intervention) has implications for the interpretation of model parameters related to
the intercept. For example, the first occasion of measurement is often chosen as the origin to permit
interpretation of the intercept as “initial status,” although other choices are feasible and more appro-
priate in different circumstances (e.g., “time of death” as the last measurement occasion). The scale of
a metric refers to the unit of time (e.g., year, minutes since treatment, or developmental stage). Scale
is important mainly for interpreting parameters related to the slope, because (linear) slopes are inter-
preted as the model-implied change in the outcome per unit increase in time. The choice of origin and
scale either should be justified by the researcher or should be obvious from the context, and should not
be chosen arbitrarily.

3. Functional Form 

Most applications of LGM involve testing linear trends. That is, the researcher hypothesizes that
scores on the repeated measures proceed upward or downward in a linear fashion. Individuals may
vary around this mean linear trend if intercept and slope variances are also estimated, meaning that
the basic growth curve model provides for variability in level and rate of change. In LGM, values rep-
resenting the trend are entered into columns of a matrix of factor loadings (ΛΛ) in the following way.
The first column of ΛΛ always consists of a column of 1s to act as multipliers for the intercept factor. The
remaining columns represent functions of the values of the time metric. For example, for a simple 
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linear trend with four equally spaced repeated measurements, ΛΛ could be represented in any of the 
following equivalent ways: 
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where the first column is always the constant 1 and the second column (containing actual values of the
time metric) represents linear growth. The factor loadings in the ΛΛ matrix often are represented in dia-
gram form as path values on arrows connecting intercept and slope factors to the repeated measures
of the outcome variable. In Figure 14.1, the loadings in ΛΛ

A
, ΛΛ

B
, ΛΛ

C
, and ΛΛ

D
are depicted in simplified

path diagram form (path diagrams are treated at greater length under Desideratum 4). Notice that the
location of the zero-point, and thus the occasion at which the intercept is interpreted, changes from
specification to specification, as does the metric of time. The choice of both the origin and scale of the
time metric should be consistent with theory and with the research context. The origin should be cho-
sen carefully to correspond with a theoretically important occasion—for example, the time of initial
assessment, time of intervention, or time of death—so that time can be thought of as time since (or
until) that event. In the first loading matrix (ΛΛ

A
), the origin is placed at the first occasion of measure-

ment. In the second (ΛΛ
B
), the origin occurs at the second occasion of measurement, and so on. The

scale is always chosen to correspond to a theoretically important metric. For example, change over
time in ΛΛ

B
might be measured in two-month intervals, with an intervention imposed at the second

occasion of measurement, whereas in ΛΛ
D

the unit of time is age in years, and the origin (i.e., birth) 
falls 10 years before the first assessment. It is usually not necessary to explicitly provide the ΛΛ matrix,
especially if an appropriately labeled path diagram is provided (see Desideratum 4), but it often can be
helpful as an aid to understanding.

The basic linear LGM can be extended in numerous creative ways. For example, the first ΛΛ matrix
below (ΛΛ

E
) specifies quadratic growth for four equally spaced repeated measurements—the first 

column provides multipliers for an intercept factor, the second for a linear factor, and the third for 
a quadratic factor. The ΛΛ

F
loading matrix provides for linear growth over four unequally spaced 
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measurement occasions (the second occasion being 4 time units since the initial occasion, the third 5
units, and the fourth 7 units). The Λ

G
loading matrix represents an unspecified trajectory, in which the

researcher has no specific trajectory in mind, but is willing to let the data determine the shape of
change over time. 

ΛΛ
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= �
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1 0
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1 0

�1 1 1 1 4 1 λ
2,2
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There are two major points that should be addressed concerning functional form. The first is that nei-
ther the functional form of the hypothesized trajectory nor the measurement schedule need to con-
form to a rigid and limited set of options. Flexibility is a hallmark of LGM. The second point is that,
regardless of what trend is hypothesized and fit, it must be explicitly justified on the basis of theory. It
is rarely a good idea to use LGM in a theoretical vacuum, or to use it to approximate a trend of
unknown shape for descriptive purposes. The option to approximate a functional form rather than
test an a priori hypothesized one does exist, as the ΛΛ

G
matrix above demonstrates, but this practice is

exploratory, not confirmatory, so conclusions should be worded to reflect the partly atheoretical
nature of such trends.

4. Path Diagrams

The use of path diagrams is explained in Chapter 28 of this volume. Everything said about path dia-
grams in Chapter 28 applies here as well, because LGM is a special case of SEM. Path diagrams are not
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Figure 14.2 Path Diagram of a Linear Latent Growth Curve Model with Random Intercepts, Random Slopes, and Unconstrained Residual
Variances.
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required in applications of LGM, but they almost always greatly facilitate interpretation, especially for
readers unacquainted with the method.

Very spartan diagrams were used to illustrate loadings under Desideratum 3. An example of a full
latent growth curve path diagram is given in Figure 14.2. As in other SEM path diagrams, circles rep-
resent latent variables, squares are measured variables (here, repeated measures), single-headed
arrows are path coefficients (regression-type weights), and double-headed arrows are variances or
covariances. Aspects of change (intercepts, slopes, and so on) are considered latent variables because
they cannot be directly observed. They usually are permitted to vary across people and to covary with
one another (e.g., initial status may covary with rate of change), so parameters representing those vari-
ances and covariances are often included in the diagram (therein labeled as ψ). Together, the Intercept
and Slope factors comprise the latent trajectory. In addition to the information provided in Chapter 28
in this volume, there are several noteworthy features specific to diagrams used in LGM. The triangle
represents a constant 1.0, and is otherwise treated as a variable. Therefore, the path coefficients labeled
as α

1
and α

2
represent the means of the Intercept and Slope latent variables, respectively. Occasion-

specific residual variances, labeled as θε(1–5)
in Figure 14.2, are included to represent the portion of the

variance in the outcome not explained by the latent trajectory.
The other noteworthy feature of Figure 14.2 is the set of loadings connecting the latent trajectory

factors with the outcomes. Unlike most applications of SEM or confirmatory factor analysis (see
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Chapter 8), all of these factors are typically fixed to point values that reflect the hypothesized trajec-
tory. In Figure 14.2, that trajectory is linear, but that can be changed by altering the elements of the ΛΛ
matrix (see Desideratum 3). If any elements of ΛΛ are freely estimated, the researcher is approximating
an unknown trend rather than testing a hypothesis about a specific trend.

Growth curve models do not have to conform to the linear model depicted in Figure 14.2. For
example, more latent trajectory factors may be added (e.g., quadratic, cubic). The equality constraint
on residual variances can be freed, within certain limits (see Desiderata 5 and 11). The observed
repeated measures can be replaced with latent variables. Because LGM is a special application of SEM,
Intercept and Slope factors may serve as independent or dependent variables in larger path diagrams.
Multiple latent growth curves may be included in the same model. Figure 14.3 depicts an elaborate
example of hypothesized linear growth in a latent aggression construct from ages 6 through 9, where
the effects of Intercept and Slope on Delinquency at age 14 are of interest. Residuals of similar indica-
tors (i.e., those of y

11
, y

21
, y

31
, and y

41
) are permitted to covary in this example.

5. Scope of the Study 

Scope in this context refers to the number and range of repeated measurements. These models find
their greatest use when there are only a few repeated measurements per case (but usually at least 4 or
5), and when the sample size is large (see Desideratum 8), although LGM is by no means limited to
such situations. The three most important questions to consider about the scope of a study are:

1. Were a sufficient number of occasions chosen to identify the model? A model is identified if the type
and number of constraints is sufficient to guarantee a unique solution for every model parameter. For
time-balanced data (in which data are collected over a limited number of discrete occasions), there
must be at least k + 1 repeated measures for the model to be identified, where k is the number of basis
curves (i.e., growth trajectory factors). This rule applies regardless of whether or not the residual 
variances are constrained to equality over time. For example, because a cubic trend requires four 
basis curves (intercept and linear, quadratic, and cubic slope components), there must be at least 
five repeated measures. If there are exactly five repeated measures and residual variances are con-
strained to equality, then df = 5. If residual variances are freely estimated, then df = 1. This rule is sim-
ply an elaboration of the assertion that two points define a line. At least two repeated measures are
required in order for linear growth to be defined, but in order to test hypotheses about linearity, at
least one more occasion is required. Identification rules become more complicated as the model
departs from a basic growth curve. Fewer repeated measures may be required if some parameters are
further constrained.

2. Were a sufficient number of occasions chosen to adequately estimate the mean trend? Even if the
model is identified, k + 1 repeated measures are only barely enough to estimate parameters for a model
with k basis curves. More than the bare minimum are generally preferred. Three occasions are
required to test a hypothesis of linearity, but six occasions provide a far superior test of linearity. A
large number of repeated measures becomes particularly important as the complexity of the hypoth-
esized trend increases. It is also important to concentrate measurements around the part of the trend
likely to show the greatest changes. For example, if the hypothesized trend is a negative quadratic curve
(in which levels of Y are expect to start low, reach a maximum, and then decrease again), and the
researcher has control over when measurements are scheduled, it is sensible to time the measurements
such that they are more highly concentrated in the region of the maximum than in the extremes
(although these are also necessary). Doing so generally reduces the likelihood of encountering esti-
mation problems.

3. Does the study span an interval sufficiently long to capture the process? It is important to ensure that
enough time elapses over the course of the study to adequately capture the process of interest. For
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example, if growth in the height of elementary school children is measured on seven occasions 
spanning five weeks, clearly not enough time has elapsed to observe meaningful growth, and error of
measurement likely will eclipse actual growth. If the trend under study is actually S-shaped (e.g., a
learning curve) but data are collected during only a brief window of this process, the trend may appear
to be linear. In such cases, a linear LGM might provide spuriously good fit, whereas a more appropri-
ate nonlinear LGM may appear to overfit the data. By the same token, extending measurement beyond
what is necessary to capture a trend can waste resources. If a simple linear trend is assessed across 18
occasions, the researcher may be better served to collect data from more cases at fewer occasions.

The key points regarding the scope of the study are that the number, spacing, and range of repeated
measurements all need to be considered and justified on the basis of theory and minimum identifica-
tion requirements. The number of repeated measurements should exceed the minimum, but should
not be so numerous as to be wasteful. Measurements should be concentrated around regions of great-
est expected change. Finally, the interval spanned by the first and last measurement must be sufficient
to permit the process under study to unfold.

6. Repeatedly Measured Variables 

As in any application of SEM, all measured variables in the model should be defined clearly, or else ref-
erences should be provided. Some basic requirements of the repeatedly measured variables are that
they be reliable and valid, and they should represent some attribute or characteristic that is able to
change in level over time, but not meaning. The repeatedly measured Y should not represent stable
attributes for which there is no theory of systematic change. In addition, it is necessary to provide a
theoretical rationale for expecting not only growth, but growth of a particular form in a particular
direction. If intercept and slopes factors are expected to vary across individuals, this expectation
should have its roots in theory. In short, it should be realistic and theoretically appropriate to expect
change in the chosen Y variable, and Y should be demonstrably reliable and valid.

As in other applications of SEM, special estimation procedures are required for variables that are
ordinal, binary, or censored. Application of standard LGM to discontinuous or nonnormally distrib-
uted variables violates key assumptions necessary for legitimate statistical inference. Special proce-
dures must be invoked.

7. Control Variables 

Often researchers may want to examine the effects of some variables on others after controlling for
covariates. Chapter 28 in this volume outlines some rules that should be followed in including covari-
ates in SEM, and these rules largely apply in LGM as well. In LGM, two kinds of covariates are distin-
guished based on their location in the model. Time-varying covariates (TVCs), as their name implies,
are predictor variables modeled at the level of the repeated measurements. They may be included in
the model either as distinct variables predicting Y at each occasion of measurement, or as additional
loading columns in the ΛΛ matrix in the same way that the variable time is included in the ΛΛ matrix. The
first method is traditional practice in applications of LGM. The second is identical to how TVCs are
included in hierarchical linear models (see Chapter 10, this volume). The LGM framework is flexible
enough to permit either specification. Using the first approach, it is probably wise to permit TVCs to
covary with other exogenous variables in the model (e.g., the latent trajectory factors).

Time-invariant covariates (TICs), on the other hand, are included at the subject level. TICs are
exogenous predictor variables used to predict individual differences in aspects of change. For exam-
ple, in Figure 14.3 we might introduce gender as a predictor of the Intercept and Slope factors. For
both kinds of covariate (TVC or TIC), interest may be in controlling for the effects of covariates, that
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is, removing them from consideration so that effects of more substantive interest may interpreted
more “purely.” Or, interest may be in interpreting the effects of the covariates directly.

8. Sampling Method and Sample Size

The requirements regarding sampling method and sample size stated in Chapter 28 still hold when the
model in question is a latent growth curve. If stratified or cluster sampling is used, it is crucial that this
be considered in the modeling stage by employing sampling weights or multilevel SEM, or else the
researcher should justify why these advanced procedures are not employed.

It is also essential that studies reporting latent growth curve analyses explicitly address the issue of
sample size. As in non-LGM applications of SEM, there are several things to consider when choosing
a sample size. First, N needs to be large enough to support the estimation of potentially many free
model parameters. Maximum likelihood (ML) is a large-sample technique, and alternative estimation
algorithms may require sample sizes much larger than ML. Second, the sample must be large enough
to achieve adequate power for rejecting poor models by some criterion of fit. The criterion most com-
monly used for this purpose is RMSEA. Applications of LGM tend to have high power, but this does
not release the researcher from the obligation to demonstrate that power is adequate in a given appli-
cation. Third, the sample must be large enough for parameters of interest to have small standard errors
(and thus narrow confidence intervals and high power). This is a very important consideration in
LGM, where interpretation of parameters is of central interest. Finally, longitudinal studies are typi-
cally characterized by missing data due to attrition, death, late entry into the study, and other causes.
The total sample size must be large enough to accommodate the amount of missing data. Although
missing data techniques such as imputation may be used to fill the gaps in a data set to permit easy
analysis, they cannot create information lost to attrition.

Ideally, the researcher should not only meet the minimum sample size suggested by these consider-
ations, but exceed it by a considerable margin. The sample size may be just large enough to exceed the
minimum required to achieve adequate power for tests of individual parameters, yet still fall short of
the N required to yield usefully narrow confidence intervals. If the sample size is beyond the
researcher’s control, such as when samples of convenience or archived data are used for analysis, the
researcher should still demonstrate that N is large enough to support estimation of a growth curve
model and valid interpretation and testing of parameters. The important point here is the sample size
should be justified on reasoned grounds, not simply reported.

9. Missing Data and Outliers 

Very few studies have complete data on all variables for all cases. In long-term longitudinal studies,
where the same individuals are followed over time, there are particularly many reasons some observa-
tions may be missing for some cases, and missing data in turn may threaten the generalizability of
results. These reasons may include attrition due to illness, incarceration, death, data management
errors, late entry into the study, lack of subject motivation to follow through, and cancellation of
research funding. Late entry and attrition are particularly dangerous in LGM studies, as data missing
due to late entry or attrition are typically not missing at random. Longitudinal studies with nontrivial
amounts of missing data at the beginning or end of the studied trajectory are subject to severe bias in
intercept and slope mean and variance estimates.

Four broad strategies for dealing with missing data may be identified: prevention, deletion, full-
information, and imputation. The best strategy to address missing data is to preemptively prevent data
loss by design. Researchers should make every reasonable effort to minimize the proportion of 
missing data. Data deletion strategies (i.e., pairwise and listwise deletion) use only those cases with
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complete data for all or some of the variables, and are usually to be avoided. Full-information strate-
gies involve estimating model parameters using all available information, even if some of that infor-
mation comes from cases with incomplete data. Usable information can be gleaned even from cases
with a single valid data point. Imputation strategies use information from existing data about the rela-
tionships among variables, and then fill in, or impute, reasonable values for the missing data.
Complete-case methods are then applied to the imputed data set. Mean imputation, in which missing
values of a variable are replaced with the sample mean, should be avoided because it often results in a
distribution with unrealistically many cases at the mean value. If imputation is used, multiple impu-
tation (in which several data sets are imputed and the results are averaged across imputations) usually
gives the best results. There are other, less often used strategies but these account for the majority of
them. Full-information and multiple imputation methods are those most often recommended by
methodologists to deal with missing data. Pairwise and listwise deletion and mean imputation should
not be used without extraordinarily compelling reasons.

In LGM, data may be missing by design. For example, in research that combines multiple overlap-
ping cohorts, one cohort may be measured at occasions 1, 2, 3, and 4, while “missing” the fifth occa-
sion of measurement, whereas another may be measured at occasions 2, 3, 4, and 5, while “missing”
the first occasion of measurement. Combined, all five occasions are represented, but the first and fifth
occasions are not as well represented as the other three. This kind of data collection strategy can save
time, but it obliges the researcher to assume that it is legitimate to combine cohorts to form a single
trajectory. This assumption can and should be tested rather than assumed. If multiple cohorts are
included, data missing by design from one cohort should not be imputed because it can lead to the cre-
ation of extrapolated data that are unrealistically congruent with those from other cohorts.

In summary, some general guidelines for reviewing studies with missing data can be developed. The
amount and kind of missing data should be explicitly addressed, as should the likely reasons missing
data were missing, the steps taken to address missingness in the analysis, and the likely impact of miss-
ing data on statistical analyses, the study’s conclusions, and generalizability. Full-information and
multiple imputation strategies are usually the best choices for dealing with missing data. Regardless of
the strategy chosen to address missing data, the researcher should justify that choice. In reporting
missing data, it is helpful to report the percentage of missing data for each variable at each occasion.
Reporting only the percentage of complete cases does not provide enough information.

10. Software and Estimation Method 

For key software considerations the reader is referred to Chapter 28 in this volume. Not all SEM soft-
ware packages can fit growth curve models. Because the key parameters in LGM include the means of
latent variables, the software must be capable of modeling means. Currently, the major SEM software
packages capable of employing LGM are AMOS, EQS, LISREL, Mplus, Mx, and OpenMx. Because
SEM software is regularly updated and improved, it is important to list the name and version of 
the software used to fit models and obtain parameter estimates.

11. Problems with Convergence, Estimates, and Identification 

All of the advice in the corresponding section of Chapter 28 applies to LGM. Errors of identification,
convergence, and estimation occur routinely in specifying and fitting models. Accurate documenta-
tion of these problems, and the steps taken to remedy them, is essential in reporting results.

It takes a fair amount of skill to properly specify a standard structural equation model, but LGM
often requires even greater facility with software and knowledge of the mathematics behind the model.
It is easy to make mistakes in specifying a model, and often these mistakes go unnoticed because the
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software is incapable of distinguishing sensible models from nonsensical ones, or because software
will cheerfully provide reasonable-looking results despite serious problems. Here three examples of
problems that sometimes occur in the application of LGM, and which may go unnoticed by inexperi-
enced researchers, are described.

First, if a model is underidentified, some SEM software applications (e.g., LISREL and Mplus) may
automatically and unobtrusively add constraints to some parameters to render the model identified.
Occasionally the researcher is unaware that this automatic identification occurs, and parameters that
should not be interpreted are interpreted nevertheless.

Second, negative or boundary values of variance parameters may be reported. Latent growth curve
models are fairly robust to estimation problems, but if the model is severely misspecified some very
strange things may happen. For example, residual variances may sometimes be estimated as negative
(or, depending on the software, constrained to a boundary value of zero). This kind of result is a seri-
ous and common estimation error known as a Heywood case, and is usually indicative of serious model
misspecification or, sometimes, a sample that is too small. If a residual variance of zero is reported, it
is likely a Heywood case rather than a true zero. This kind of error may go unnoticed and unreported
because the parameters of central interest in LGM are those related to the intercept and slope factors,
not typically the residuals. Thus, if residual variances are not reported, they should be.

Third, covariances among aspects of change (intercept, slopes) may correspond to correlations that
lie outside of the logical bounds of –1.0 and +1.0. This problem may not be immediately recognizable
if only variances and covariances are reported. For example, both covariance matrices below, labeled
as ΨΨ

A
and ΨΨ

B
, may appear to be legitimate covariance matrices at first glance, but only ΨΨ

A
is acceptable

or “proper.” The covariance in ΨΨ
A

equates to a reasonable correlation of .28/(.19½ × .64½) = .80, but
the covariance in ΨΨ

B
equates to an impossible correlation of .38/(.19½ × .64½) = 1.09. 

ΨΨ
A

= �.19 .28� ΨΨ
B

= �.19 .38�.
.28 .64 .38 .64

If an improper matrix is reported, this indicates that an undetected estimation error has probably
occurred. Such errors sometimes can be addressed by correcting coding errors, removing outliers
from the data, or providing better starting values for the estimation procedure. Sometimes the prob-
lem cannot be solved, which usually indicates that specified growth model is not appropriate for the
data.

12. Data Display and Accessibility 

Fitting latent growth curve models requires access either to raw data or to a covariance matrix and
mean vector. In line with recommendations endorsed in Chapter 28 of this volume, the data should
be reported or made available to permit other researchers to verify or reexamine reported results.
Whenever possible—given the constraints of the study, journal space, and proprietary issues—sum-
mary information in the form of a covariance or correlation matrix, mean vector, and standard devi-
ations for complete data typically are sufficient to permit reanalysis. If some data are missing or if
journal space does not permit reporting summary data, authors should provide instructions inform-
ing readers how they may obtain the data.

13. Data-Model Fit 

A primary advantage of SEM is that it permits the assessment of fit between the model and data. The
advice offered in Chapter 28 of this volume is reiterated here. The χ2 statistic by itself has only limited
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usefulness as a fit index because of its sensitivity to sample size and trivial departures from perfect fit.
It is usually wise to report multiple (at least three) fit indices drawing from the three broad classes
(absolute indices, parsimonious indices, and incremental indices). SRMR, RMSEA, and TLI (NNFI) are
perhaps the best representatives of these classes, but individual researchers may choose not to 
limit themselves to these, or to include all of them. If RMSEA is reported, its associated 90% confi-
dence interval should also be reported and interpreted. Models may also be compared on the basis of
relative fit.

14. Appropriate Null Model 

Incremental fit indices like those discussed in Chapter 28 (NFI, NNFI/TLI, and CFI) constitute an
important class of fit indices. They express the fit of a substantive model as falling somewhere between
the fit of a highly restrictive “null” model and that of a saturated (perfectly fitting) model. The appro-
priate null model must satisfy two requirements: (a) it must be nested within the most restrictive sub-
stantive model to be tested and (b) it must constrain all covariances among observed variables to zero
(Widaman & Thompson, 2003). The null model typically used in SEM is one in which only the means
and variances of the observed variables are estimated, constraining the covariances to zero. In ordi-
nary applications of SEM, this null model is perfectly appropriate. LGM, however, requires a different
null model. Specifically, if the model to be tested is any growth curve model in which the residual vari-
ances are all freely estimated, the appropriate null model is an intercept-only model in which the only
free parameters are the intercept mean and the free residual variances—a model with p + 1 free param-
eters that implicitly constrains the variables’ means to equality but permits them to have different vari-
ances, and constrains their covariances to zero. On the other hand, if the model to be tested is any
growth curve model in which the residual variances are constrained to equality, then the appropriate
null model is an intercept-only model in which the only free parameters are the intercept mean and
the constrained-equal residual variance (only two parameters). Thus, the incremental fit indices
reported by default by most SEM programs are incorrect for latent growth curve models. They must
be computed by hand by explicitly fitting the appropriate null model, obtaining the resulting χ2

statistic, and manually computing the desired incremental fit index.

15. Model Comparisons

Investigating alternative models of change is a sound and recommended approach to theory evalua-
tion. Compared to the evaluation of individual models in isolation, the comparison of rival models of
change has a better chance of eliminating some theories from consideration. For recommendations
regarding model comparison, the reader is referred to Chapter 28, Desideratum 14. Model compari-
son proceeds exactly the same way in LGM as in the more general SEM. Examples of the kinds of mod-
els one might wish to compare in LGM could include linear vs. quadratic models, or models in which
residual variances are constrained to equality vs. freely estimated.

16. Model Respecification

Latent growth curve models are notoriously poor-fitting by traditional criteria. This poor fit arises not
because LGM is unrealistically restrictive, but rather because most other applications of SEM have rel-
atively many free parameters and show unrealistically good fit. The trajectories specified in LGM are
highly constrained and are not likely to arise by chance in nature. Like any model, growth curve 
models are merely approximations to reality, and cannot be expected to fit perfectly. However,
because tradition and publication pressures have made good fit a necessary component of publishing
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applications of SEM, the researcher may be tempted to counter instances of poor fit by freeing param-
eters identified by modification indices (see Chapter 28, Desideratum 15) and fitting the modified
model to the same data, resulting in better fit. This temptation should be resisted. A good rule of
thumb is that a model may be modified to any degree on the basis of modification indices, but (a) the
modifications must be theoretically appropriate and (b) the modified model should be fit to new data
to avoid the possibility of capitalizing on chance characteristics of the sample.

Using modification indices is especially discouraged in LGM because relaxing constraints on the
model can severely compromise the interpretation of the model as a specific trajectory. For example,
if the model in Figure 14.2 were fit to data and the software reports a large modification index for 
the loading connecting Y4 to the Slope factor, freeing the loading may improve fit, but the resulting
model can no longer be interpreted as a linear growth curve. Furthermore, the model no longer 
represents a test of the original, theoretically prescribed hypothesis. Even when not fit to new data,
modified models nevertheless have use as descriptive tools. The main point of this desideratum is 
that modified models may be useful, but tests of such models should not be treated as confirmatory or
as strict tests of hypotheses about growth over time.

17. Parameter Estimates and Significance 

The end product of model-fitting is a collection of parameter estimates and fit indices. Assuming that
model fit is reasonable and that no convergence, estimation, or identification problems persist, it is
important to report the magnitude and significance of all model parameters—not only those that are
of central interest, but all of them. In typical applications of LGM this number is not large. In the basic
linear LGM with homoscedastic residuals, for example, there are only six parameters to report: the
mean intercept and slope, intercept and slope variances, their covariances, and a common residual
variance. More complicated models result in more parameter estimates to report.

A simple way to report parameter estimates is to place the point estimates in the appropriate loca-
tions in a path diagram (see Desideratum 4) along with some indication of significance or precision,
such as confidence intervals, standard errors, p-values, or a system of asterisks indicating levels of sig-
nificance. The method by which significance is determined is an important and often overlooked con-
sideration. For some parameters—path coefficients and latent variable means—the traditional z-tests
(dividing the point estimate by its standard error) usually are appropriate. However, for variance and
covariance parameters, z-tests are not appropriate because such tests require the assumption that 
the tested parameter is normally distributed over repeated sampling, an untenable assumption for
variances. A better test for variances and covariances is the likelihood ratio test (see Chapter 28,
Desideratum 14), in which the fit of a model that fixes the parameter to zero is compared to the fit of
a model in which the parameter is freely estimated. Depending on the parameter’s role in the model,
this test may not always be possible or appropriate. Alternatives are to obtain bootstrap confidence
intervals for parameter estimates (an option available in several SEM software applications) or 
likelihood-based confidence intervals (available in Mx).

18. Interpretive Language 

Several important points from Chapter 28 regarding interpretive language are reiterated here. First,
latent growth curve models, and the theories of change they represent, are never literally “true,” nor
can they ever be confirmed empirically. Such statements are extremely misleading and should be dis-
couraged at every opportunity. Models represent formal hypotheses, and hypotheses may fail to be
rejected for many reasons, among them low statistical power. In fact, any structural equation model
(LGM included) can be made to fit perfectly by freeing a sufficient number of parameters, but perfect
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fit does not imply a confirmed model. The outcome variable Y is not observed as a continuous func-
tion of time, so there is no foolproof way to confirm that Y values corresponding to unobserved values
of time would similarly conform to the trend followed by the observed values, even if perfect fit is
observed in the sample. Similarly, growth curve models with zero or negative degrees of freedom
would fit any data equally well (i.e., perfectly), regardless of what process generated the data. In nei-
ther case can perfect fit be taken as support for the researcher’s theory of growth. Even identified mod-
els with good fit can be described only as tenable in light of the data.

Second, causal language should be used sparingly if at all. A theory’s predictions may be causal in
nature, but a model’s results can never completely support a conclusion that a process is causal,
regardless of how well-designed the study may be. Alternative explanations can always be devised.
However, confidence that a process is causal may be strengthened by experimental manipulation (e.g.,
treatment vs. control), temporal precedence (causes must always precede effects in time), and strong
theory that prohibits or limits plausible alternative explanations (e.g., kindergarten may “cause”
growth in verbal knowledge, but never the reverse). In applications of LGM, the data are naturally lon-
gitudinal, but this does not grant a license to use causal language with impunity. At most, findings may
be supportive of a causal process, but can never definitively demonstrate causality.
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15
Latent Transition Analysis 

David Rindskopf

Social science theories refer to characteristics (and associated measured variables) that are either con-
tinuous (or nearly so) or categorical. For categorical characteristics, we may then distinguish among
theories that refer to measurement at a single time point (static) or measurements at two or more time
points (dynamic). For dynamic theories, interest centers around the initial distribution of people
across categories, and how people transition from a category at each time point to a category (either
the same or different) at another time point. The measurements at different time points might be of
the same characteristic or of different characteristics (e.g., how does personality type measured at an
early age relate to whether a person ends up in a white-collar or blue-collar job later). To complicate
the situation further, observed measurements may be thought to be imperfect indicators of an under-
lying (latent) characteristic. We may now define latent transition analysis (LTA) as a statistical model
in which (i) latent categorical constructs are defined at two or more time points, (ii) parameters are
included that assess initial status and transition probabilities from time i to time i + 1 (for most mod-
els; for others, we predict further into the future), and (iii) observed variables are imperfect indicators
of the hypothesized latent variables. As a simple example, we might theorize that at each age, children
either can or cannot conserve volume (in accordance with Piaget’s theory). We could give a three-item
test to each of a large number of children at ages 3, 4, 5, 6, and 7, and then see whether the data are con-
sistent with the theory, and if so, assess the rate at which children transition from being nonconservers
to conservers at each age. The distinguishing characteristics of this study are that (i) the model allows
children to be in one of two true states at each time, (ii) the observed test items are categorical (scored
right/wrong), and (iii) each child is measured several times (here, over a four-year period).

The roots of latent transition analysis are in (i) latent class analysis (see Chapter 13, this volume),
conceptually originated by Lazarsfeld (1950a, 1950b, 1959) and systematically developed by
Goodman (1974a, 1974b) and Haberman (1974, 1977), and (ii) panel analysis, developed originally
by Lazarsfeld and expanded on by Wiggins (1973). The ideas of latent transition analysis then grew in
several independent but closely related strands, sometimes under different names. General references
include Collins and Flaherty (2002), Collins and Wugalter (1992), and Lanza, Flaherty, and Collins
(2003). More advanced works include Böckenholt (2005), Humphreys and Janson (2000),
Langeheine and van de Pol (1994), Molenberghs and Verbeke (2005), Mooijaart (1998), van de Pol,
and Langeheine (1990), and Vermunt, Langeheine, and Böckenholt (1999). Example applications
include: Chung, Park, and Lanza (2005), who studied substance use among females as they went
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through puberty (ages 12–15); Graham, Collins, Wugalter, Chung, and Hansen (1991), who studied
alcohol and tobacco use among adolescents and the effects of a substance abuse prevention program
on that use; and Reboussin, Reboussin, Liang, and Anthony (1998), who studied health risk behavior
(in this case, carrying weapons) of schoolchildren over a five-year period. 

Computer programs available for estimation of latent transition models include WinLTA (Collins,
Lanza, Schafer, & Flaherty, 2002), LEM (Vermunt, 1997), and Panmark (Van der Pol, Langeheine, &
De Jong, 1991), all of which are either free or inexpensive. Commercial packages such as Mplus
(Muthén & Muthén, 2007) and LatentGOLD (Vermunt & Magidson, 2000, 2003, 2005a, 2005b) and
SAS PROC LTA and LCA (Lanza & Collins, 2008; Lanza, Collins, Lemmon, & Schafer, 2007);
Lemmon, Bray, & Chung, 2007) are also available.

Table 15.1 lists desirable characteristics of studies that use latent transition analysis. These are dis-
cussed in more detail in the corresponding sections of this chapter.

1. Theoretical Structure

The theoretical structure delineation begins with a consideration of the possible discrete states in
which a person might be at each time of measurement. For a single construct measured repeatedly,
these states (and the nature of the latent variable) will be the same at each time point. For example,

Table 15.1 Desiderata for Latent Transition Analysis

Desideratum Manuscript

Section(s)*

1. A theoretical structure is presented that hypothesizes I

(i) discrete latent variables occurring at more than one time/age;

(ii) conditional/predictive relations of earlier to later times/ages;

(iii) discrete observed measures of latent variables.

2. Explicit consideration is given to plausible alternative structures. I

3. Diagrams of models, if useful for communication of structures, or I

comparisons among them, are included.

4. Equations representing the model(s) are included. I

5. Parameter identification (unique estimation) is proved or demonstrated. I

6. A rationale is provided for any restrictions (e.g., equality constraints) I

used to make model(s) identified.

7. Software used to estimate parameters is described. M

8. Fit statistics used to evaluate model(s) are described. M

9. A tabular presentation is included of model fit statistics for each model R

tested, and (where feasible) cell frequencies are provided for possible reanalysis.

10. Tabular or graphical presentation of parameter estimates and standard R

errors (where appropriate) are provided.

11. Models retained (as plausible) and rejected (as implausible) are discussed, D

and a rationale based on fit statistics is provided.

12. Any implausible or unusual results in any models not rejected on D

statistical basis (fit statistics) are discussed.

13. Parameter estimates for each retained model are discussed. D

14. Implications of each retained model are discussed, and a comparison among them is provided. D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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developmental psychologists might want to know whether a child has reached the stage where s/he can
conserve volume, and might measure each child at three ages. In other cases, the constructs might be
different at different ages: A reading theory might indicate that a child who develops certain word
decoding skills by the time of entry into kindergarten will be more likely to be able to read aloud flu-
ently by the end of second grade.

Part of the theory might concern possible versus impossible transitions from one age to another.
Without illness or injury, one might expect that a child who can conserve volume at one age will not
lose that skill at a later age, so the transition from a more advanced to a less advanced stage would be
constrained to have probability zero. 

It is the authors’ responsibility to make sure that all assumptions are explicitly discussed. These
include the number of latent classes, which observed variables measure which latent variables (if there
is more than one latent variable), and any restrictions on parameter estimates.

2. Plausible Alternative Structures

As reasonable as our favorite theory might seem, one must always entertain the possibility that it is
wrong in some minor (or even major) aspect. Therefore, alternative plausible theories should be
explicitly considered. The ideas of “multiple working hypotheses” and “strong inference” should be in
every empirical researcher’s repertoire; see Chamberlain (1890/1965) and Platt (1964) for a detailed
explanation and rationale.

Some alternative structures will also be in the form of latent transition models, and should be tested
as described here. Others might have a different structure; most commonly this will be due to some
variables (either latent or observed) being continuous or count instead of discrete with a few cate-
gories. The researcher should therefore explicitly discuss all plausible alternative structures for the
data.

3. Model Diagrams

Diagrams of models can often indicate the main qualitative features in a more easily comprehensible
fashion than can equations, although equations will contain the full quantitative specification of the
model. Diagrams are also useful when comparing features of two or more models. For latent transi-
tion analysis there are no standard methods of representing models, but two methods are generally
used. One such method uses the conventions of path analysis models; in this type of diagram there is
no explicit differentiation between latent and observed variables. Curved lines with arrowheads at
both ends are used to represent unexplained relations among variables; straight lines with an arrow-
head on one end are used to represent hypothesized causal inferences. 

The other common method is similar to structural equation model diagrams (see Chapter 28, this
volume); in these diagrams, circles are used to represent latent variables, and rectangles are used to
represent observed variables. The other aspects of path diagrams (curved and straight lines) are
retained in these diagrams. When feasible, a diagram should be presented for each distinct type of
model tested.

4. Equations Representing the Model(s)

The simplest latent transition models can generally be represented notationally by three categories of
parameters. First, there are the (unconditional) probabilities of being in each category of the latent 
measure at the first time point. For example, at the first time of measurement, children might be con-
servers or nonconservers of volume; the probability of being in each category must be estimated. Next
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are the transition probabilities, which are the probabilities of being in particular states at each future time
point given the state at the previous time points. Quite often each state is hypothesized to depend only
on the immediately preceding state, which results in a latent Markov model. Finally, parameters are
needed to account for the probability of being in each category of each observed variable as a function of
a person’s state in the latent variable underlying the observed variable. Sometimes these latter probabil-
ities are considered to characterize the measurement properties of the observed variables, much as fac-
tor loadings indicate how well continuous observed variables measure factors (see Chapter 8, this
volume). 

In some cases, LTA models are written in terms of equations related to logistic regression or log-
linear modeling (see Chapters 17 and 18, this volume). These models are then translated back after
estimation into probabilities. Although a model written in the logistic form is perfectly proper and
valid, it is often not easily understood even by specialists, let alone researchers in subject matter areas
who are not methodologists. For this reason, it is desirable to translate results of applications of LTA
into probabilities (either in text, tables, or figures) when feasible.

The basic LTA model can be extended in various ways. The most frequent such extension is to mul-
tiple populations. For example, one might theorize that males and females either have different distri-
butions among latent statuses at the first time of measurement, or that they have different
measurement properties or transition probabilities. More than one such characteristic may be
included in a model (e.g., gender, race, and SES, along with possible interactions), and should be when
there are strong theoretical grounds for doing so.

5. Identifiability of Model Parameters

Some statistical techniques never (or rarely) encounter problems in estimating parameters. For exam-
ple, multiple regression weights are always estimable if there are enough data, and if predictors are not
overly (multi)collinear. Models with latent variables, however, are not the same; sometimes parame-
ters are not estimable no matter how many subjects one has in a sample. Such parameters are not iden-
tified, to use technical terminology. A nonstatistical example might give the general idea: Consider the
equation x + y = 10. One cannot solve uniquely for x or y; there are too many unknowns and not
enough (independent) equations. 

The rules for determining whether each parameter in a model is identified, which would result in
the whole model being identified, are not simple to apply. Luckily, there are numerical techniques that
in most cases will discover for any particular data set whether each parameter is estimable. Also, many
special cases have already been explored, and if one stays within these cases one always knows that (in
principle) the model is identified.

Some models that are not identified can be made so by imposing restrictions on parameters. For
example, if the same latent variable is measured at several times by the same observed variable, it is
sometimes reasonable to presume that the measurement properties of the observed variable do not
change over time. In this case, one would impose restrictions of equality on the conditional probabil-
ities of responses at each time. By imposing restrictions, one is estimating fewer parameters, and in
many cases this will be enough to make identified an otherwise unidentified model.

Another common type of restriction occurs when there are several times of measurement, and the
conditional probabilities of changing from time i to time i + 1 are restricted to be the same for all tran-
sition times. This type of restriction is less often theoretically justifiable than measurement restric-
tions, although if one can argue that a process has reached a steady state then there is more hope for it
to be true.

Because most researchers will not be able to prove algebraically that a model is identified, they will
have to rely on software to establish empirical identification. They should examine the standard error



Latent Transition Analysis • 203

of each parameter; if any is suspiciously large (under most circumstances, bigger than 3 for the log-
linear version of a model), they should suspect problems. If this occurs, and if any observed frequency
is zero, one can add .5 to all cells and retest for identifiability. If all standard errors now look reason-
able, the model can be considered identified.

6. Restrictions/Constraints Used for Identification

Just because one can impose restrictions to make a model identified does not mean that it is right to do
so. In the case discussed in Desideratum 5, one might not be justified in assuming that an observed
measure is equally good at every age. For example, at lower ages there might be more chance of mis-
understandings by the child, which results in greater likelihood of errors. Such possibilities should
always be considered, rather than just accepting model restrictions merely because they achieve iden-
tification. At the same time, if such restrictions are plausible (or of theoretical interest) they should be
tested. Presuming both restricted and unrestricted versions of the model are over-identified, one can
compare the fit of the models with and without restrictions of probabilities across groups or times of
measurement. 

In other cases, restrictions might be more plausible. For example, in comparing males and females,
it will frequently be the case that conditional response probabilities to items will be equal for both
groups, but unconditional probabilities of class membership or for transition probabilities may differ
for the two groups. One can frequently test this assumption by relaxing restrictions one item at a time,
searching for what is called differential item functioning (DIF) in the psychometrics literature. In the
end, it is incumbent upon the authors to justify whatever restrictions or constraints were used to
achieve identification of the model(s) being investigated. 

7. Software

Although each computer program should provide the same estimates, not all programs will use the
same terminology and structure. Authors of research manuscripts should describe the program and
its use in a manner that aids those not familiar with it to fully understand what the program calculates.
The major differences among programs are in the notation they use. Not only will most substantive
researchers be unfamiliar with the concepts of latent transition analysis (which should be explained in
the Introduction and Methods sections), but even more so they will be unfamiliar with notation used
by different researchers who have developed these models. Therefore one should thoroughly explain
the notation that was chosen. As mentioned in Desideratum 4, additional differences might occur in
how the model is parameterized (in terms of probabilities or in terms of logistic or loglinear models).

8. Fit Statistics

Fit statistics are used for two main purposes. The first is to test whether a model is in reasonable agree-
ment with the observed data patterns. This is the typical application, which is an extension of the usual
chi-square tests of independence in two-way tables with which most researchers are familiar. The
problem with such an extension is that if there is a large number of observed variables, the number of
people in some (or possibly most) cells of the cross-tabulation will be so small that the usual test sta-
tistics will not follow a chi-square distribution. Some programs contain procedures for constructing
bootstrap tests that circumvent this problem.

A second use of fit statistics is to compare the fit of different models. When one model is a special
case of another (obtained by imposing restrictions on the more general model), then the likelihood-
ratio fit statistics may be subtracted, and referred to a chi-square distribution with degrees of freedom
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equal to the number of restrictions made. This test has a chi-square distribution even though neither
of its constituent fit statistics does. Although it would appear that models varying only in the number
of latent classes would be nested (e.g., the two-class model is a special case of the three-class model),
the comparison of such models is not straightforward, as the difference in likelihood-ratio statistics is
not a chi-square distribution. Research on the comparison of such models is discussed in Nylund,
Asparouhov, and Muthén (2007).

When models are not nested, one may compare any of a number of fit statistics that are adjusted for
model complexity. These include the AIC (Akaike Information Criterion), BIC (Bayesian or Schwarz
Information Criterion), and other modifications of these. For these statistics, like the chi-square sta-
tistics, smaller values indicate better fit. But unlike chi-square statistics, which always decrease as more
parameters are added, the AIC and BIC can increase for more complex models due to the penalty that
is added. For these statistics, the lowest value indicates the best fit.

Often the AIC will favor more complex models than the BIC, and one should inspect not only the
overall fit statistic (to see if the BIC is penalizing complexity too much, or the AIC too little), but also
the parameter estimates. Sometimes it will be obvious that a model may seem to fit well by one of these
criteria, but not be easily interpretable (due to odd parameter estimates), and therefore can be
rejected. 

One must also take into account that sample size can influence some fit statistics; all unadjusted
goodness-of-fit statistics (Pearson, Likelihood-Ratio, and Cressie-Read) will become large when sam-
ple sizes are large, even when a model is incorrect in only a minor way. Like all statistical tests, increas-
ing sample size will result in high power to detect small differences from a null hypothesis (in this case,
the hypothesis that a model fits the data in the population). The penalty for a BIC is also a function of
sample size, and therefore heavily penalizes the addition of parameters (removal of degrees of free-
dom); this is why it tends to favor simpler models. As much as we would prefer to have absolute stan-
dards for model selection, it remains an art: One must consider the sample size, the fit statistics, the
adjusted fit statistics, and the parameter estimates for plausible models. With small sample sizes, more
than one model may remain plausible, and all such plausible models should be discussed.

9. Tables of Model Fit Statistics

When several models are tested, a table is the most useful way to display the fit statistics for each model.
Degrees of freedom for each model should always be included, and if the sample size is large enough
(and the observed table has few enough cells) one should include a p-value for each model. Similar
rules apply here as for the usual cross-tabulation; if all expected cell frequencies are greater than five,
there is no problem. If most are bigger than one or two, then the chi-square distribution should apply
reasonably well. Some programs will print out various forms of the statistic (Pearson, Likelihood
Ratio, and Cressie-Read); if all are reasonably similar, then most likely the fit statistic and associated
p-value can be taken seriously.

10. Retained and Rejected Models

Referring to the table of fit statistics, the author should discuss why some models are retained as plau-
sible, and other models are rejected as implausible. Here, overall fit statistics and comparisons of these
statistics are used; later, more refined (though idiosyncratic) decisions can be made on the basis of spe-
cific aspects of a model (see Desideratum12).

When it is reasonable to do so, one might use a combination of judgments about the fit of each
model in isolation and the comparison of fits of sets of models. Sometimes only comparisons are rea-
sonable due to small expected frequencies. As in logistic regression, with large cross-tabulated tables
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many small cell frequencies occur, in which case the usual fit statistics do not have a chi-square distri-
bution even when the model is correct. Comparisons of nested models are still valid under these con-
ditions. Using only p-values from fit statistics (without comparisons) is never wise; one may find that
Model A (just barely) fits according to some criterion, and Model B (just barely) does not, but there is
no way to decide statistically that Model A fits better than Model B without a direct comparison. One
can make qualitative comparisons of AIC and BIC statistics, even for nonnested models, but there is
no statistical test comparing the AIC or BIC values for different models.

11. Tabular/Graphical Presentation

Typically only a small number of models fit the data (sometimes we are lucky just to get one!); in this
case either tabular or graphical display of the results will be reasonable. Standard errors are usually
produced, along with z-statistics (parameter estimates divided by standard errors), by most software.
But one must be cautious with these: If standard errors are large, and the parameter estimates are also
large, never take the ratio seriously because it will be wrong. Unlike linear models (including factor
analysis and structural equation models), nonlinear models such as logistic regression (of which latent
transition models can be considered a special case) can have parameters that go to boundaries. If the
parameters are probabilities, zero and one are the boundaries, and the parameter estimates do not
have a normal distribution (so standard errors do not tell us anything useful); if the parameters are on
the logistic scale, probabilities of zero and one (or other, more complicated, effects) can make some
parameters go to infinity, and again standard errors are not useful.

12. Implausible or Unusual Model Results

If there is reason to believe that an observed measure is not perfect (and in most cases this is true), then
one should suspect any results that show no error of measurement, even if the overall model fit is
excellent. Similarly, if one has good reason to believe that no one should go from state A at time i to
state B at time i + 1, but a large proportion are estimated to do so (e.g., children who can conserve vol-
ume at time 1 but cannot at time 2), then one should suspect the model’s truth. Another tipoff is if two
constructs (e.g., measures at two adjacent times) should be strongly related, and they are only weakly
related. In the end, there are only a few good general rules here. Knowing which results are plausible
and which are not is mostly a matter of knowing (or thinking you know) the subject matter and the
model characteristics very well.

13. Parameter Estimates

Even sophisticated quantitative models are often best summarized in simple qualitative terms. For
example,

The observed measures are quite accurate reflections of the latent variables, as indicated by con-
ditional probabilities greater than .8 for each item that a person in a mastery latent class will
answer that item correctly, and that a person in a nonmastery latent class will answer the item
incorrectly.

One need not discuss each individual parameter (which, in any case, would not be a summary).
Instead make broad general statements and list exceptions to these generalities.

In most models, two general aspects are important. First, how well do the observed measures tap the
latent classes? Second, what are the relations in the latent structure? This would include initial proba-
bilities of being in each class, as well as transitional probabilities from each time point to the next. In
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models that have multiple groups, a comparison of the parameter estimates across groups should be
made for those parameters that are not constrained equal across groups. These estimates should make
sense in terms of the original theory from which the model was derived.

14. Implications and Comparisons of Retained Models

If there is more than one model that is consistent with the data, authors should discuss the ways in
which their implications are similar, and the ways in which they are different. In some cases, it will be
apparent what data would be necessary to distinguish the plausible models (refer again to Platt, 1964);
if so, next steps for research that would help resolve remaining issues should be suggested. In some
cases, larger sample sizes may be necessary to distinguish the fit of alternative models. In other cases,
perhaps more times or different spacings of measurement points may be needed to elicit different pre-
dictions of competing models. Another possibility is that more measurements are needed at some (or
all) time points. 
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16
Latent Variable Mixture Models 

Gitta Lubke

Latent variable mixture models serve to investigate heterogeneous populations consisting of two or
more clusters of subjects. For instance, a population may consist of subjects who master a study topic
and are therefore prepared to take an exam, and subjects who are not well-prepared. Similarly, in a
longitudinal setting, there may be groups of subjects who differ with respect to their developmental
trajectories. The observed data from a potentially heterogeneous population are modeled using a mix-
ture distribution rather than a single distribution. A mixture distribution is a weighted sum of compo-
nent distributions, and each of the component distributions is usually assumed to correspond to a
cluster of subjects. Model parameters can be specific for each component distribution, and can there-
fore be used to model differences between the clusters. 

Due to the complexity of latent variable mixture models, researchers need to make a large number
of decisions during the specification of a model. Decisions include those regarding distributional
assumptions, class-specific vs. class-invariant parameters, and/or estimating variance parameters
within class rather than constraining variances to zero. These choices should ideally be theory driven,
but in practice they are often related to practical considerations such as model convergence. In order
to permit an evaluation of the quality of a given mixture analysis it is essential that a paper covering a
mixture analysis includes a description of the decisions as well as the arguments that support the
choices. Such a description places considerable emphasis on the methodological details of a given
analysis; however, it is a mandatory aspect of using complex statistical methods for the analysis of
empirical data.

Literature describing basic and more complex latent variable mixture models include Arminger,
Stein, and Wittenberg (1999), Bartholomew and Knott (1999), Dolan and van der Maas (1998), Heinen
(1996), Jedidi, Jagpal, and DeSarbo (1997), McCutcheon (1987), Muthén and Shedden (1999),
Vermunt and Magidson (2003), and Yung (1997). The current chapter focuses on general guidelines
for conducting and evaluating latent variable mixture modeling analyses. Details related to analyses
using specific types of mixture models can be obtained by consulting the corresponding literature. 

It should be noted that mixture modeling is a rapidly evolving area, and that numerous aspects of
model estimation and model performance are still under investigation. The table of desiderata is based
on the current state of knowledge, and summarizes the different issues that reviewers and researchers
should consider in a substantive study using mixture models. Details are provided in the subsequent
explications.
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1. Conceptual Description of Models

Following the usual outline of the theoretical context of a study, the Introduction of a paper using a
latent variable mixture model (LVMM) should provide a clear description how the particular research
questions translate into the set mixture models that the researcher proposes to fit to the data. LVMMs
permit the specification of a wide variety of submodels that can be related to quite different concep-
tual interpretations. For example, traditional latent class models (see Chapter 13, this volume) are
based on the assumption that the latent classes represent typologies and that members of a given class
only vary with respect to random error. Models that specify continuous latent factors within classes

Table 16.1 Desiderata for Latent Variable Mixture Models

Desideratum Manuscript

Section(s)*

1. A conceptual description of the models is given and their theoretical I

underpinnings are explained.

2. Information regarding the exploratory and/or the more confirmatory I

parts of the used models is provided as are the general assumptions.

3. The description of observed measures emphasizes item (or subscale) properties. M

4. Arguments for a stepwise approach are given when fitting more complex mixture models. M

5. A detailed description and justification of within-class measurement M

models is provided, especially with respect to class-specific and class-invariant parameters.

6. Model equations are provided (and at least briefly explained) and path M

diagrams may be included to illustrate within class models.

7. Explanation is provided as to how and why covariates and class-predicted M

outcomes (if any) are integrated into the fitted models as proposed.

8. Sufficient sets of random starting values are provided to afford the M

replication of the likelihood of the accepted solution with different sets.

9. A priori expectations of the power to distinguish between alternative M

models are described taking into account expected class proportions, class separation, sample

size, and the difference between models in the number of estimated parameters.

10. Model fit assessment includes tests to decide on the number of classes, M/R

information criteria (ICs) and a discussion of relevant parameter estimates.

11. Assumptions regarding missing data should be clearly stated. M/R

12. For competing models, results are summarized in tables showing likelihood values, number R

of estimated parameters, ICs, relevant parameter estimates, and their standard errors.

13. If applicable, a justification of additional models is provided. R

14. If possible, an attempt to validate the class structure using external criteria R

is provided to strengthen confidence in the results.

15. Post hoc class comparisons are prone to assignment errors, and should R

be interpreted with great caution.

16. Input files and information how to access the data (if possible) are provided. R

17. The interpretation of results should acknowledge the fact that the number D

of classes may not reflect the number of distinct groups in the population.

18. A section detailing the limitations includes a discussion of specific alternative explanations D

of the results and the potential of lack of power to distinguish between models.

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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permit structural variation, which in turn can be used (for instance) to model severity differences of a
disorder within a class, or differences in initial status in a growth model. Due to the conceptual differ-
ences of different LVMMs, it is helpful if the Introduction of a paper using LVMM provides clear argu-
ments supporting the choices regarding the type of mixture models used in a particular analysis. 

2. Exploratory and Confirmatory Aspects of Model(s)

Mixture models require specification of the number of latent classes as well as specification of the
within-class model structures. Mixture analyses of empirical data commonly compare models with an
increasing number of classes, and are therefore exploratory regarding the cluster structure of the sam-
ple. In addition, the within-class structure (or aspects thereof) may be unknown a priori. For instance,
from an exploratory perspective, in a growth mixture analysis it might be part of an investigation to
evaluate the necessity of including quadratic effects to model the shape of the growth trajectories,
and/or to assess measurement invariance over time or across classes. In more confirmatory applica-
tions, questionnaires with a known factor structure are used, and choices regarding the measurement
part of the mixture model are more theory driven. The Introduction of a manuscript describing a mix-
ture analysis should indicate which aspects of the model have a more exploratory or a more confirma-
tory character, and which aspects of the model are based on assumptions or on prior research.

3. Description of Measures and Measurement Properties of Items

The basic part of any mixture model used in behavioral research is the measurement of the behavior
of interest. The observed measures are usually indicators of traits and/or typologies that are not
directly observable. As in any other latent variable analysis, distributional assumptions regarding the
observed measures should be clearly described, and ordered categorical data should be handled
appropriately. Apart from the distributional assumptions, it is important to realize that the psycho-
metric properties of the scales have a direct impact on the results of a mixture analysis. The basic
requirements regarding the measurement model for latent variables in mixture models are similar to
those in other latent variable models. In order to adequately cover the construct of interest, factors
should have more than the minimum number of indicators necessary to identify the model, and it is
advantageous to use highly reliable items. In the mixture context, it is important to realize that item
means or thresholds are directly related to class detection. This is illustrated in Figure 16.1. 

Figure 16.1a shows a mixture distribution of a latent factor or trait with two components. The dot-
ted curves correspond to a set of items that measure the trait, and each of the individual curves depicts
the probability of answering that item correctly. The set of items in panel A covers the whole range of

Six items located across
both component
distributions of the
underlying trait.

A. B. C.Two items located in the
area of overlap between the
first and second component
distributions.

Two items located in the
second component
distribution. The first
component is not well
measured.

Figure 16.1 Probability of Answering Items Correctly Conditional on a Trait or Factor Following a Mixture Distribution.
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the underlying trait, that is, the items are located such that there is variability in item scores within each
class. Figure 16.1b shows two items in the overlap between the two component distributions. These
items may be especially important for the estimation of class proportions. Figure 16.1c shows items
that are located in the second class. This situation might be representative of a scale, questionnaire, or
behavior checklist that is designed to distinguish between more or less affected individuals (e.g.,
checklists used to identify individuals with psychiatric disorders). The depicted items primarily dis-
criminate between the affected individuals. If such a scale is used in a sample drawn from the general
population, then unaffected individuals will score zero on these items, and estimation of variance
parameters in the unaffected class is going to be problematic. Conversely, if item locations cover
mainly the part of the distribution of the unaffected majority, then the detection of differences in the
affected class may be problematic.

In sum, when describing the measures used in a particular analysis it is important to mention for
which type of population the scales were originally designed, and whether it can be expected that the
items actually measure the full range of the trait in the population that is investigated. 

4. Stepwise Model Building

Estimating complex models can be problematic for at least two reasons. First, as the complexity
increases, there is usually an accompanying increase in the number of potential misspecifications.
Misspecifications can lead to convergence problems and/or to biased results. Second, fitting complex
models is computationally intensive, and unusable results are especially unpleasant after a time-con-
suming estimation attempt. 

It is therefore preferable to start a mixture analysis with simpler models that are easier to estimate
but that might nonetheless reveal parts of the structure that can be incorporated in a final set of more
complex models. For instance, second order growth mixture models (i.e., multivariate growth mix-
ture models) have the advantage that measurement invariance can be tested across time. However, fit-
ting an unconstrained second order growth mixture model as a first step to obtain a baseline model
might be impractical. A model where class loading, factor variances and covariances, and residual
variances are specified to be class-specific may not converge or may result in unacceptable parameter
estimates. In such a case it is useful to evaluate the measurement model at each time point separately
before combining the time points. The separate results from the different time points should give an
idea whether the measurement model is appropriate, and also which parameters may be constrained
to be equal across time points when combining time points in a more complex model.

A similar stepwise approach can be followed when fitting factor mixture models (FMMs). In case
questionnaire data are analyzed that serve to indicate multiple factors, it might be useful to carry out
an initial exploratory factor analysis (EFA; see Chapter 8, this volume). EFA is based on assuming a
single homogeneous population, which is incorrect if the population is in fact clustered. It is therefore
important to keep in mind that the EFA results are based on the unweighted pooled covariance matrix,
that is, covariances between items may in part be due to mean differences between classes and not ade-
quately reflect a factor structure within classes. However, an EFA can still provide some indication of
the item properties. Items with very low reliabilities can be detected and removed from the main
analysis. In addition, if the EFA shows that the items have a simple structure, one might consider fit-
ting models to the different factors separately as a first step in order to investigate the cluster structure
without having to invest considerable computation time trying to fit multifactor models. Especially
with ordered categorical observed data, fitting multifactor models is computationally intensive.

A manuscript describing a mixture analysis should outline the analysis strategy and the steps the
lead to the specification of the set of models used in the main part of the analysis. Providing the results
of initial analyses will often enhance the confidence in the final results. 
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5. Measurement Models, and Class-Specific vs. Class-Invariant 
Parameters

One aspect of model building that deserves special consideration is the choice of class-specific and
class-invariant parameters. In the absence of prior knowledge, it would be desirable to fit models with
the majority of parameters specified to be class-specific, especially given that incorrectly imposing
equality constraints across classes may results in accepting models with too many classes. However,
there is a bit of a Catch-22. It might be necessary to impose constraints in addition to those that are
mandatory to identify the model simply because there are practical limitations to estimating class-
specific parameters. Models without any equality constraints across classes on loadings, factor
(co)variances, residual variances or thresholds might not converge, or result in unacceptable param-
eter estimates. 

The choice of the additional constraints may be theory driven, or based on the results of the step-
wise model building described above. It is important to realize that most constraints correspond to
some level of measurement invariance, and have direct conceptual implications. Consequently, it is
essential to clarify the decisions made in any given analysis. 

As an example, consider the following set of models fitted to observed variables that are multivari-
ate normally distributed within classes.1 Although it might be subject to discussion whether to start a
series of models with the most lenient or the most restrictive model, in the context of mixture models
the practical limitations mentioned above often do not leave much choice but to start with con-
strained models. An example of a highly constrained model is the latent profile class model,2 which has
one of the most simple within-class structures. The within-class model specification reflects the
assumption that observed continuous variables are uncorrelated within classes (e.g., local independ-
ence). This means that non-zero covariation of the observed variables in the total sample (i.e., in the
unweighted pooled covariance matrix) is entirely due to mean differences between the classes. On a
conceptual level, this is equivalent to assuming that there is a latent variable underlying the observed
variables, but that subjects within a class do not differ (have zero variance) with respect to the latent
variable. The model parameters of the latent class model are the residual variances, the observed vari-
able means within each class, and the class proportions. Although this model is usually unproblematic
and very fast to estimate, it is a highly constrained model, and might be a too crude approximation in
case subjects within a cluster actually vary with respect to the latent variable. 

A smoother approximation of the true data generating process in the population can be obtained by
allowing non-zero factor variances within classes. One can choose to specify a full factor model within
classes, in which case one has to decide whether factor variances, loadings, residual variances, and the
means of observed variables are class-specific or class-invariant. Instead of class-specific means of the
observed variables, one can also chose to estimate factor mean differences between classes. Following
the strategy of fitting increasingly lenient models, one can first fit latent class models, and then proceed
to fit models that have class invariant observed variable means, loadings, and residual variances. Such
a model accounts for non-zero factor variance within a class, but it also assumes that observed vari-
ables are measurement invariant across classes. 

To test whether measurement invariance is tenable, one can proceed to free the observed variable
means, loadings, and residual variances in a stepwise fashion. Note that it is useful to include models
with fewer classes in the comparison given that more lenient models usually require fewer classes.
Note also that it is informative to check the change in the parameter estimates across models. The
process of successively freeing parameters to be class-specific can stop whenever it can be shown that
class-invariance is tenable. In case the process is limited by convergence problems or unacceptable
parameter estimates, this should be reported to permit the reader to put the results into an appropri-
ate context. For instance, if fitting a model with class-specific residual variances in addition to 
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class-specific loadings does not converge, then it is apparently not possible to test invariance of resid-
ual variances. Results would have to be interpreted taking into account that residual variances were
assumed to be invariant. Given the direct impact on the conceptual interpretation, choices regarding
class-specific and class-invariant parameters have to be described in detail. 

6. Model Equations and Path Diagrams

Although the narrative of a mixture paper should provide a clear description of the models that are fit-
ted to the data, due to the complexity of mixture models it is helpful to include the precise model equa-
tions. One should pay particular attention to the subscripts of the parameters given that subscripts
provide the necessary information regarding class specificity or class invariance of the parameters.
The parts of the paper describing the different models that are fitted to the data can then be linked to
the model equations. The combination of equations and narrative can provide an unequivocal expla-
nation of the analysis that is carried out. In addition to the equations, researchers may choose to
include path diagrams depicting the within-class measurement models. Path diagrams provide a
quick visual reference and can enhance the readability of the manuscript. As with the equations, path
diagrams should clarify which parameters are class-specific and which are class-invariant. 

7. Covariates and Class Predicted Outcomes

In general, the inclusion of covariates with substantive effects is helpful because it increases the sepa-
ration between classes. As a thought experiment, suppose we have two classes and a binary covariate
that perfectly predicts class membership. All subjects scoring, say, zero on the covariate will have zero
probability of belonging to one of the classes and a probability of 1 to belong to the other class. This
means that the classes are completely separated on the covariate. As a result, the multivariate distance
between the latent classes computed for the observed variables and the covariate jointly will be larger
than the distance computed for the observed variables only. Increased separation between classes is
directly related to improved class assignment and increased power to distinguish between alternative
models.

A second advantage of integrating covariates is that the model is embedded in a larger conceptual
context. Latent classes can be characterized in reference to covariate effects, which may enhance con-
fidence in the results. The same argument holds for integrating distal outcomes that are predicted by
class membership and/or within-class factors. 

The selection of covariates should be theory driven. Covariates can be specified to have effects on
class membership, and/or on factors and observed variables within classes. It is important to realize
that omission of direct covariate effects on within-class factors or variables can lead to biased results,
which is very similar to the omission of direct effects in measured or latent variable path analysis. Class
proportions, as well as even the direction of covariate effects, can be incorrect if important direct
effects are omitted. It is therefore necessary to provide arguments supporting the choice of covariate
effect incorporated in the set of mixture models. In case of lack of prior knowledge, direct effects
should be tested. When reporting the results, it should be mentioned whether covariate effects or
effects on distal outcomes are based on a priori expectations or whether integration of the effects is
exploratory.

8. Random Starts

It is well-known that the likelihood surface of latent variable mixture models has numerous local 
maxima. As a result, it is necessary to start the estimation using different sets of random starting 
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values. The number of starting values that is necessary to obtain stable results can depend heavily on
the psychometric properties of the items (e.g., reliability, variance, location with respect to the trait),
the complexity of the fitted model, and the degree of misspecification. It is useful to start with a lower
number of sets of starting values, and check the likelihood and the stability of parameter estimates
when increasing the number of sets. Replication of the likelihood using different sets of starting values
enhances confidence in the solution; however, replication of the likelihood value is neither a sufficient
nor a necessary requirement to ensure that a global rather than a local maximum has been found.

Some software packages first compute a limited number of iterations for a given number of sets of
starting values, subsequently select a user-specified number of solutions with the best-ranked likeli-
hoods, and then iterate those until a convergence criterion is met. Software packages differ in how
starting values can be manipulated by the user, hence it is necessary to clearly mention the software
package and version number in addition to how starting values were used. 

9. Power to Discriminate Between Alternative Models, and Sample Size

Not all mixture analyses are exploratory and consist of comparisons of models with alternative within-
class structures. Most analyses, however, compare models with an increasing number of classes. Model
comparisons are usually based on information criteria such as the BIC that penalize for the number of
parameters in the fitted model. Model choice therefore depends, in part, on the number of additional
parameters that are estimated when fitting a model with an additional class. This is especially important
when models are compared that use ordered categorical data. For instance, cases where it is unrealistic to
assume that the item thresholds are class-invariant, models with class-specific thresholds are compared
with an increasing number of classes. If items have a 5-point Likert response format, for example, then
adding a class can imply a substantive increase in the number of parameters, and can have the conse-
quence that a model with fewer classes is selected (Lubke & Neale, 2008). On the other hand, a researcher
might want to compare a model with measurement invariance constraints to more lenient models with
class-specific measurement parameters. In this case the measurement-invariant model with k classes
might actually have fewer parameters than the non-invariant model with k – 1 classes (see the empirical
example in Lubke & Neale, 2008), making the model with more classes more likely to be selected.

In addition to the number of parameters, sample size is clearly an important factor in class detec-
tion and discrimination between alternative models. Unfortunately, it is difficult to provide rules of
thumb given that sample size requirements depend on class separation, model complexity, response
format, and, as illustrated in Figure 16.1, on item properties. Depending on these factors, analyses for
very simple latent class models may be carried out probably with as few as 30 subjects, whereas other
analyses require thousands of subjects.

Bootstrapping provides an indication of the expected power to discriminate between alternative
models. A large number of data sets may be generated under a given model, say Model A. Next, 
Model A and an alternative Model B, for instance a model with one additional class, are fitted to the
data sets. Model comparisons are carried out for each pair of Model A and Model B fitted to an indi-
vidual data set, and then the relative proportions may be determined in which Model A and Model B
are preferred. Bootstrap options are integrated in some software packages for mixture analyses. 

An important caveat of bootstrapping methods is that results are based on the fact that at least one
of the fitted models (i.e., the data generating model) is a true model. In practice, the set of fitted mod-
els is unlikely to contain the true model. The true data generating process in the population underly-
ing most human behavior is obviously very complex, and the data generation for bootstrapping is a
crude simplification. Researchers should be aware that model comparisons between two models that
are fitted to real data where both models contain various degrees of misspecifications do not neces-
sarily have the same properties as bootstrap comparisons.
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10. Model Fit Assessment

Model fit should be assessed in the context of the power to detect potentially small classes and to dis-
criminate between alternative within-class models. Model comparisons can be based on information
criteria and other indices, such as the bootstrapped likelihood ratio test statistic. In exploratory set-
tings models with more or less constrained within-class structures should be compared. A difficulty in
choosing a “best-fitting model” is related to the fact that that less constrained models (i.e., model with
a large number of class-specific parameters) may be incorrectly rejected when compared more con-
strained models due to lack of power (Lubke & Neale, 2008). Given the fact that issues of power, class
detection, and detection of class-specific parameters are highly dependent on the particular data and
models under consideration, it may be desirable to refrain from narrowing the choice to a single best-
fitting model, and rather present a small set of models that may be equally adequate to describe the
structure of the data at hand.

11. Missing Data

Literature covering the effects of data not missing (completely) at random in mixture models is sparse.
Missingness in data from heterogeneous population may be class-specific, for instance, drop-out in
longitudinal studies may be higher for high-risk trajectories. Ongoing research aims at providing
more insight in bias of class proportions and within-class parameters in growth mixture models in
case missingness depends on class membership and/or growth factors (Yang, Lu, & Lubke, in prepa-
ration). While clear results regarding bias of parameter estimates for non-random missingness are not
available, assumptions regarding missingness should be clearly stated.

12. Presentation of Results

The standard errors of the parameter estimates provide an indication of the stability of a given fitted
model. This is especially true for the estimates of factor and residual variances within classes.
Parameter estimates should be reported together with their standard errors.

Results of model comparisons should be summarized in tables. Preferably, one table provides the
information criteria together with the number of estimated parameters and the log-likelihood values.
In addition, a table showing class proportions and parameter estimates of interest is usually a useful
reference. 

13. Justification of Additional Models

Based on the results of a priori planned models, an analysis is often extended and additional models
are fitted to the data. As in any other statistical analysis these additional models should be presented as
post hoc exploratory analyses. Additional models can be a very useful source of information, for
instance, planned analyses can be extended with additional covariates, or the necessity may arise to fit
models with within factor structures that differ from the planned models. However, it is helpful to
provide a clear justification why these models are included in the analysis.

14. Validation

As mentioned in Desideratum 7, effects of class predicting covariates and distal outcomes provide a
conceptual context for a given mixture model, and can be useful to validate the class structure. When
designing a study, one might therefore consider collecting data on potentially interesting covariates or
outcome variables, and generating hypotheses about how latent classes are related to these supporting
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variables. Validation in a different sample drawn from the same population is of course desirable.
Unless the original sample size is extraordinarily large, splitting the sample for validation purposes is
discouraged given that sample size plays a crucial role in class detection and discrimination among
models with alternative within-class structures. The sensitivity of mixture models to sampling fluctu-
ation has not been thoroughly investigated, and generalizations of a given cluster structure may be
highly sample-specific. Unless a validation is carried out, interpretation of results has to acknowledge
this limitation.

15. Post Hoc Class Comparisons

Published studies sometimes report post hoc tests using posterior probabilities. Subjects are assigned
to their most likely class based on the highest posterior class probability, thus transforming the latent
classes into groups, and subsequent group comparisons are carried out with respect to variables that
were not included when fitting the mixture model. This type of post hoc class comparisons can be
problematic due to the error rates in assigning subjects to classes. This is especially true in the case of
unbalanced class size. As illustrated in Figure 16.2, small classes have a high prior probability of incor-
rect assignment even if classes are relatively well separated. The left panel shows the distribution of a 
factor in two classes of equal size with a Mahalanobis distance of 1.5. The expected probability of
incorrect assignment is symmetric. However, if one class contains only 25% of the subjects, as shown
in the right panel, then the a priori probability of incorrect assignment in the small class is substantially
higher, namely .5. 

In addition to expectations related to class size, it should also be noted that posterior class proba-
bilities are computed using parameter estimates, and therefore contain the accumulated uncertainty
from those estimates. Studies have shown that assignment error rates can be considerable (Tueller &
Lubke, in press), and studies examining the effect of assignment error on post hoc class comparisons
are underway. Given the current uncertainty concerning the validity of post hoc testing, results should
be interpreted with caution.

16. Input Files and Data

It is usually helpful to provide annotated input files of at least one of the fitted models in an 
appendix. If possible, one should provide (a link to) the empirical data so other researchers can repeat
the analyses or fit alternative models. In the event that the empirical data may not be made public, a
(link to the) full set of parameter estimates should be provided so that other researchers can simulate
data.
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Figure 16.2 The Effect of Class Size on Expected Incorrect Class Assignment.
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17. Interpretation of Results

The interpretation of any given mixture analysis should be placed into the context of the psychometric
properties of the items or scales, sample size, class separation, and response format of the items, since all
of these factors influence the power to detect classes, to detect class-specific parameters, and to obtain
stable results. 

Mixture models are often used to detect qualitatively different clusters of subjects. However, it is
important to note that the latent classes correspond to the components of a mixture distribution, and
that the component distributions are used to approximate the joint distribution of the observed vari-
ables. Figure 16.3 illustrates the approximation of a distribution of a single continuous variable that is
slightly skewed. The three normal mixture components in the right-hand panel have equal variance.
It is easy to visualize that two components with unequal variance might provide a similarly good
approximation. 

Translating the idea to multivariate observed variables, suppose the observed distribution is multi-
variately skewed. Depending on the degree of multivariate skewness, a mixture of two or more multi-
variate normal component distributions can approximate the skewed distribution better than a single
multivariate normal distribution. In other words, mixture components correspond to areas under 
the joint distribution of observed variables that contain subjects with similar response patterns. An
interpretation along this conceptualization of latent classes is desirable.

18. Limitations

A number of journals have the standard of requesting a paragraph detailing the limitations of the cur-
rent study. Such a section should be a staple especially in the context of latent variable mixture mod-
els due to the number of assumptions and potentially subjective decisions involved in the model
building and model fitting process. It is useful to discuss the reasonableness of meeting model
assumptions, the tenability of imposed constraints, and the potential detrimental effects of these deci-
sions. The section on the limitations can also include a discussion of potential alternative interpreta-
tions of the current results (e.g., lack of power to detect small classes, overextraction of classes due to
skewness).

Notes

1 Measurement invariance for categorical data has been discussed in the multi-group context by, for instance, Muthén
and Asparouhov, 2004, and Millsap and Tein, 2004. Some aspects that are specific to the mixture settings are
described in Lubke and Neale (2008).

2 Latent profile models are latent class models for continuous outcome variables.

Figure 16.3 Approximation of a Skewed Distribution Using a Mixture of Three Normal Component Distributions with Equal Variance.
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17
Logistic Regression

Ann A. O’Connell and K. Rivet Amico

Logistic regression (LR) is a type of regression analysis in the family of models more broadly known as
generalized linear models (GLMs). LR provides a versatile and flexible modeling strategy for the analy-
sis of binary data in the form of dichotomous outcomes, typically designated as either Y = 1 for success
or Y = 0 for failure. Binary data appropriate for LR may also be grouped to represent the proportion of
successes across multiple trials. The LR model is used to predict the probability of success, also known
as the response probability, conditional on one or more predictors. Letting x

|i
represent the collection

of predictors for the ith person in the sample, we can write this response probability P(Y = 1 | x
|i

) as
π(x

|i
). LR uses a logit link function to transform these conditional response probabilities into the nat-

ural log of their odds, called logits, where the odds are a quotient comparing the probability of success
to the probability of failure. Thus,

logit(π(x
|i

)) = ln � π(x
|

i
)

1–π(x
|i

)�.

Logits are useful in regression modeling because they form a continuous measure that spans the real
line, unlike probability which is bounded between 0 and 1, or the odds, which have a lower bound of
zero. The logits serve as the outcome being modeled in logistic regression, and a model’s estimated
logits can be easily back-transformed into estimated probabilities. Like standard linear regression
models for continuous outcomes, LR models use single or multiple predictors that may be categorical
or continuous, allow for polynomial terms or interactions between predictors, permit user-driven
entry decisions or iterative methods (e.g., forward or stepwise), and provide model fit diagnostics and
residual analyses. 

Examples of LR are readily found in nearly all research areas in the social sciences, as variables that are
appropriately understood or defined as dichotomies exist in virtually any substantive area of study—
dropping out of, or persisting in, school; presence or absence of a chronic condition or risk behavior;
attendance; pregnancy; incarceration; recidivism; completion of a program; and intervention success
versus failure. LR modeling also can readily be extended to address other kinds of discrete or polytomous
responses such as those obtained from ordinal (Clogg & Shihadeh, 1994; O’Connell, 2006) or multino-
mial (Long, 1997) variables, or discrete time-to-event data (Snyder & O’Connell, 2008). 

The book by Hosmer and Lemeshow (2000) is widely regarded as the classic text on LR. We also rec-
ommend the texts by Agresti (2002, 2007), Allison (1999), Collett (2003), and McCullagh and Nelder
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Table 17.1 Desiderata for Logistic Regression

Desideratum Manuscript

Section(s)*

1. Measurement of the outcome/response variable as dichotomous, multinomial, or ordinal is I

described and justified.

2. Literature supporting design of the study as well as the proposed model of the outcome/response is I

reviewed and summarized; model theory is consistent with the purposes of the study and the 

research questions or study hypotheses.

3. Core elements of generalized linear model are presented: sampling model (distribution of interest); M

link function (transformation linking predicted values to observed values); structural model 

(expression of transformed outcome as a function of a set of predictor variables).

4. Choice of link function is described and justified: logit, probit, complementary log-log, M

multinomial, cumulative logit, etc.

5. Sample size is identified and justified; sampling strategy and mode(s) of data collection are fully M

described.

6. Software package is identified; response to be modeled is clarified; weighting methods, if necessary, M

are described and justified. 

7. Predictor variables are identified, and their measurement is described and justified; evidence for M

reliability and validity is provided. Selection process explained/justified.

8. Coding of all categorical predictors is fully described. M

9. Parameter estimation strategy is identified. M, R

10. Extent of missing data is clearly reported for all variables, and methods for accommodating M, R

missing data are described.

11. Choice for standardization of predictors (none, partial, full) is explicated and justified; limitations M, R

to any standardization strategy must be noted.

12. Overdispersion is investigated and adjusted for as necessary. M, R

13. Preliminary model assessment strategies are provided, including investigation of multicollinearity, R

linearity in the logit, and existence of outliers; in situations where separation or complete 

separation occurs, offending variables are identified and corrective measures undertaken.

14. Results of residual diagnostics are reported; impact of outliers and extreme or unusual observations R

are clarified.

15. Choice for hypothesis testing for variable effects is justified (Likelihood Ratio Tests, Wald’s u2); if R

appropriate for the study design, the justification for trimming of variables is provided and 

the resulting competing models are statistically compared.

16. Multiple summary statistics of model fit are presented. These include results of the R, D

Hosmer-Lemeshow test; Model Deviance; Chi-square difference tests for Goodness of Fit and 

comparisons of competing models; and pseudo R2 values. 

17. Categorical assessment of model fit is provided, via classification tables and associated statistics. R, D

Percent of correct predictions cannot be the only criteria for classification accuracy; 

stronger supporting statistics include, for example, τ
p

or λ
p
.

18. Final model presented is credible, addresses the research questions/hypotheses, and is supported M, R, D

through literature and theory. Causal language is not used except when justified 

through study design. 

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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(1989). Three relatively brief but excellent descriptions of applied LR can be found in Harlow (2005),
Tabachnick and Fidell (2007), and Wright (1995). More advanced treatment on the GLM can be
found in Dobson (2002) and McCulloch and Searle (2001). In each section below we cover specific
desiderata for applied studies utilizing traditional logistic regression models for binary phenomena,
but we note in appropriate sections where adjustments can be made to accommodate extensions of the
model. 

1. Nature of the Response Variable 

The response variable in LR refers to the outcome dichotomy of interest. Discussions regarding the
response variable in LR must occur early in the manuscript and address whether the variable’s
dichotomy is a natural binary phenomenon (e.g., voting in the next election or not) or the result of an
artificial dichotomization of an underlying scale or measure (e.g., categorizing children as overweight
or not based on a cutoff BMI percentile rank, using median splits, or basing cutoff decisions on a cer-
tain number of standard deviations above or below the mean). Creating artificial dichotomies is an
approach that is poorly regarded in most areas of inquiry. In fact, a recent examination of this practice
upholds what historical reviews have long argued: forced dichotomization yields a crude categoriza-
tion of a potentially useful continuous measure, subsequent loss of information, and a flawed under-
standing of the phenomena being studied (MacCallum, Zhang, Preacher, & Rucker, 2002). In terms
of the impact of this process on logistic regression models, Taylor, West, and Aiken (2006) docu-
mented the loss of statistical power that occurs under different categorizations of a continuous
response variable, and found that the loss was actually greatest when the outcome was dichotomized.
Thus, from a substantive as well as a statistical perspective, the response variable for logistic regression
should be based on a true underlying binary phenomenon. The application of LR to coarsely derived
dichotomies needs to be accompanied by a carefully articulated justification and understanding of the
limitations and consequences of this practice.

In addition to a qualitative description of the response variable, the Introduction section of manu-
scripts based on results of LR should contain a discussion of the prevalence or expected prevalence of
the target response within the population of interest. This base-rate information is critical for
informed understanding of the complex interplay between sample size, the number and measurement
of covariates, the expected relations between covariates and response probability, and the use of the
model for explanation or classification (or both). While the sample-based distribution of the
dichotomy and the independent variables should be provided in the Methods and Results sections
(see Desiderata 5, 7, and 13, below), the introduction of research using LR must address the antici-
pated distribution of events based on an articulated theory or previous research in the content area. As
the targeted response probability becomes more extreme (closer to 0 or 1), there is an increased like-
lihood of the model being affected by numerical problems in the data including complete or quasi-
complete separation or the presence of zero-cells (see Desideratum 13). Both of these numerical
problems tend to be readily identifiable by extremely large standard errors for variable effects. Thus,
because the conceptual and operational definition of the dichotomous outcome and its anticipated
and real distributions given a set of hypothesized predictors have critical implications in research
design and the statistical and substantive interpretations of results, these aspects of LR modeling
should be clearly addressed beginning in the Introduction section of the manuscript. 

2. Support for Model Theory

Models fit through LR should be guided by the same philosophical framework as other regression or
prediction models. Thus, the capacity to inform the field and the credibility of the model depends on
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the theoretical underpinning of the model in relation to the investigated phenomena. A thorough
introductory discussion of the LR model will clearly define the theoretical basis of the operationaliza-
tion of the variables under study and the manner in which the constellation of variables modeled co-
exist. Moreover, because LR models, like standard regression models, evaluate the effect of predictors
relative to other variables specifically included in the model, careful consideration of the literature and
theory of the phenomenon in question must also address inclusion criteria for variables in the LR
model and why some may be excluded. 

Interestingly, LR deviates from multiple regression in a critical way regarding decisions on 
inclusion or exclusion of variables in the final regression model. In most purely exploratory 
prediction models, an initial analysis might include all available predictors, targeting for elimination
from the model any variables that are not statistically significant, generally at an alpha level of .05 or,
more conservatively, at .01. Use of this strategy in LR may lead to erroneous elimination of covariates
that confound the relationship between a critical risk factor and the outcome. Consequently, 
elimination of model variables on the basis of their level of significance can lead to flawed interpreta-
tions of variable effects, particularly if a confounder is inappropriately removed (Tabachnick & 
Fidell, 2007). 

Hosmer and Lemeshow (2000) detailed a careful model-building approach that begins with identi-
fication of a collection of theoretically or scientifically relevant variables, and then uses results from
univariate analyses between each predictor and the outcome as an initial variable inclusion strategy.
They recommended using a liberal level of significance in both univariate and a series of multivariable
models to protect against removal or non-identification of confounders. Overall, their argument was
for the researcher to use his or her best discretion as to the development of the model and the inclu-
sion of all scientifically relevant explanatory variables. Clearly, these decisions can be made only with
strong theoretical support drawn from existing literature or through adequately conceptualized stud-
ies framed around a body of previous research. The support developed in the Introduction of a study
should make specific reference to the variables anticipated to be relevant in understanding the
dichotomous outcome and in answering the research questions or study hypotheses. Later decisions
to modify the resulting LR model should be articulated and reasonably justified.

3. Elements of the Generalized Linear Model

Generalized linear models have been used to represent the behavior of a wide variety of discrete out-
comes in practice, and their theoretical connection with standard linear regression models simplifies
their application. This simplicity is evident by considering the general structure of the GLM (McCullagh
& Nelder, 1989; Nelder & Wedderburn, 1972), formally identified through three specific features: (1) a
random component describing the anticipated distribution of the response variable and based on the
exponential family (e.g., Normal, Binomial, Poisson); (2) a linear component describing how a trans-
formation of the expected value of the response variable can be written as a linear predictor based on a
given collection of covariates or explanatory variables; and (3) a link function specifying the connection
between the original and the transformed responses. 

In LR, the binomial distribution is typically used to describe the behavior of binary data or propor-
tions and thus forms the random component. The distribution of a binary random response variable,
Y

i
, in logistic regression is generally expressed as Y

i
~ B(1, π

i
), where B indicates the binomial distri-

bution, 1 indicates the number of trials (which equals 1 because each individual forms his or her own
trial), and π

i
represents the probability of a successful outcome on the ith case or trial. The mean and

variance of this Bernoulli (single-trial binomial) random variable are given by π
i

and π
i
*(1 – π

i
),

respectively. Thus, the probability of success is heteroscedastic across cases—for each observation, the
variance is different and depends on the expected value.
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The linear component of the LR model describes how a transformation of the expected values can
be written as a linear function of a set of predictors (covariates): 

η
i
= β

0
+ β

1
X

i1
+ β

2
X

i2
+ ... β

p
X

ip
. (1)

The corresponding link function, η
i
, describes the connection between the observed responses 

and the transformed responses. If we were to base this connection on the identity link by letting 
η

i
= π(x

|i
), where π(x

|i
) represents the success probability for the ith case given the set of x

|

covariates,
the model’s predictions could potentially fall well outside the 0,1 range for probability. Further, the
errors for binary data are non-normal and heteroscedastic, invalidating this linear probability model
on several grounds. Thus, a suitable transformation of the expected values is required in order to con-
struct the linear component of the model and honor the bounded nature of the binary responses.
Several transformations are possible, but the logit link is often selected due to the simple and straight-
forward interpretation of model results in terms of odds and odds ratios (McCullagh & Nelder, 1989). 

The logit link function is the natural log of the odds of success, or logit(π(x
|i

)), where the odds of
success is a quotient comparing the probability of success to the probability of failure. Thus, the linear
component of the logistic regression model can be written as: 
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The logit maps the expected values onto the real line from –� to +�. Within the logistic regression
model, each slope (holding all other effects constant) represents the change in the logit that is expected
to occur given a one-unit change in the predictor. Exponentiating a regression coefficient (i.e., eβ) 
yields an odds ratio (OR) that describes the association between that variable and the outcome in
terms of odds. An OR of 1.0 implies that the predictor has no associative effect on the odds of positive
response. Small values of the OR (< 1.0) indicate that the odds of success tend to decrease as the pre-
dictor increases by one unit; larger values of the OR (>1.0) indicate that the odds of success tend to
increase as the predictor increases by one unit. Odds ratios are routinely reported by statistical pack-
ages, and represent a measure of association between each predictor and the binary outcome; they are
non-negative and range from 0 to �. The ORs can be interpreted directly, or they can be used to cal-
culate a percentage change in the odds given a one-unit increase in a predictor based on the following
formula: 100%*(OR – 1). 

In LR, the linear model describes how the log of the odds of success varies by the set of predictors.
For predictions based on the logit link, the antilog (or inverse) will provide a prediction for the odds
conditioned on that set of predictors: 
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Using this expression to solve for probability shows how the probability of success tends to vary as an
inverse logistic function of the collection of covariates (McCullagh & Nelder, 1989):
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Although LR modeling has many nuances in addition to the primary features of GLMs, these three
aspects are the basic building blocks for understanding the LR model. Appropriate use and presenta-
tion of LR modeling strategies need not make extensive detailed description of the theory involved in
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GLM, but reference to the key features (random component, linear component, and link function)
should be present in a manuscript’s Methods section.

4. Declaration of Link Function

The logit link function for dichotomous data yields what is commonly called the binary logistic regres-
sion model. Given the simple interpretation of this model in terms of odds and probability, it is often a
researcher’s preferred choice. Another frequently used model for binary data is the probit regression
model. Probit regression uses a transformation of the probability of success based on the normal
cumulative density function rather than log-odds; the inverse of the probit link is the cumulative stan-
dard normal distribution. Parameter estimates and standard errors will be different between probit
and logit models given that they are based on different transformations of the data, but their overall
interpretations of substantive effects will tend to be similar. Given their similarity, choice between
logit or probit is often based on a researcher’s familiarity with one of the two approaches. Fox (2008)
described several advantages of the logit model over the probit model, emphasizing the simplicity of
the logit model. However, a pragmatic investigator may want to compare and contrast goodness-of-
fit statistics across competing options. A third link option for binary data is the complementary log-
log (clog-log) transformation of the success probabilities. The inverse of the clog-log function is the
extreme value distribution. Unlike the logit or probit transformation, the clog-log link is asymmetri-
cal which becomes advantageous when analyzing discrete time-to-event data. Such data can be con-
sidered discrete and dichotomous when for each case in the sample it is known whether an event
occurred or did not occur within a specific interval. Analyses for multinomial or ordinal data utilize
these as well as other link options, such as cumulative logits or adjacent category logits (Long, 1997;
O’Connell, 2006). Regardless of the choice for link function, it is incumbent upon the researcher to
clearly identify the decision process used in making their choice, as well as consider how alternative
approaches might impact on the substantive interpretation of the data. 

5. Sample Details 

Parameter estimation for GLMs and thus LR are based on maximum likelihood estimation, a large-
sample methodology. Consequently, larger sample sizes are typically required for logistic regression
than might be expected based on a standard linear regression. In addition, there are several interre-
lated factors that can impact the sample size necessary for reliable estimation of model coefficients or
detection of an experimental effect. These include the base rate or response probability within the
population of interest (rareness of the event), the difference in sample size between the two response
categories (success versus failure), the number of observations per covariate pattern (sparseness of the
data), the type of covariates included in the model (continuous versus categorical), and the expected
number of events per covariate. Freeware or commercial sample size and power analysis packages are
available that can estimate a desired sample size for given effects in LR. However, it is the rare case in
which the desired statistical model can be adequately represented by the assumptions imposed by
power software. Hosmer and Lemeshow (2000) reported that the type and number of covariates cov-
ered in power programs for LR are often limited, and the situation has not changed very much in
recent years. As a first step in determining sample size, however, researchers could use power software
or hand- calculations based on straightforward assumptions regarding factors related to sample size,
and adjust the results as necessary to mimic the actual design.

As an event becomes increasingly unusual or rare within a given population, larger samples must be
taken to ensure an adequate capture of sufficient cases to submit to a logistic regression analysis.
Hosmer and Lemeshow (2000) and Allison (1999) described how sampling on the dependent variable
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in LR is protected against the selection bias inherent in standard linear regression models when sam-
pling disproportionately on the outcome. Oversampling can help ensure sufficient numbers of events
without biasing the odds ratios, although the intercept needs to be adjusted for the sampling fraction
within both outcome groups. For analyses of extremely rare events (say, that occur with probability in
the range of .05 or smaller), King and Zeng (2001a, 2001b) described a related oversampling selection
adjustment that enhances the data collection process as well as improves understanding of uncom-
mon occurrences.

When classification is the focus of the logistic regression procedure, additional attention must be
paid to the relative sizes of the two outcome groups, given that LR tends to place participants into the
larger group (Finch & Schneider, 2006). As a result, the misclassification rate for smaller groups can
become extremely large when the two groups are very unequal in size. 

Data sparseness is a problem that frequently plagues LR. The reliability of estimation weakens when
sample sizes are small or when there are few observations per similar covariate pattern in the model.
Sparse data patterns are particularly likely to occur when the LR model includes continuous covari-
ates, given that there is expected to be a different covariate pattern for each individual in the sample.
Evidence of estimation problems due to sparseness of data from small samples or in samples with con-
tinuous covariates are reflected in very high standard errors. 

Some researchers have recommended minimum sample sizes of at least 50 observations per pre-
dictor for logistic regression (Aldrich & Nelson, 1984). Hosmer and Lemeshow (2000) discussed an
extension of the minimum sample size criteria suggested by Peduzzi, Concato, Kemper, Holford, and
Feinstein (1996) and recommended that for multivariable logistic models the sample size of the small-
est response group be at least as large at 10(p + 1), where p is the number of predictors in the model.
Thus, the sample size of the smaller response group, and not the overall sample size, should be the
main consideration in issues pertaining to power, including the number of appropriate parameters
for a given model in a given sample or, alternatively, determining sufficient sample sizes to approach
a priori models of a given complexity.

For readers to fully understand the quality of the research study, the Methods section of a manu-
script also must provide information on the mode of data collection (mail survey, face-to-face inter-
view, observation) and the sampling strategy utilized (simple random, cluster, etc.). In summary,
manuscript authors should always provide sufficient methodological detail to demonstrate the utility
of their desired and obtained sample sizes, carefully describing the impact of sample construction on
generalizability of results and the impact of sample size on the capacity to detect statistically significant
effects. 

6. Software and Weighting

Under the assumption that data are drawn using a simple random sample, software packages are rel-
atively comparable in their logistic regression procedures. However, analysis of complex survey data
involving stratification, multi-stage, or cluster sampling often requires software capable of a design-
based rather than a model-based approach. A design-based approach incorporates sample design fea-
tures in the form of weights for each observation’s primary sampling unit (PSU), strata, and cluster,
into the analysis and adjusts the standard errors of variable effects accordingly. Sampling weights pro-
vide protection against potential bias inherent in the unweighted estimator and allow researchers to
make valid inferences from the sample to the population the sample was designed to represent.
Sudaan, Stata, AM, and SAS (Proc SURVEY LOGISTIC) can conduct logistic regression analyses
based on complex survey data. There are some differences across these packages in estimation or sta-
tistical testing procedures and in how missing data are accommodated; thus, the software and version
used should be reported by manuscript authors. 
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Software packages also may differ in how they internally refer to the dichotomous responses (e.g., 1
versus 2, or 1 versus 0), or in the designation of either outcome as the success response. Given that the
odds for the complement of an event is simply the inverse of the odds for that event, the regression
weights would retain the same magnitude but the signs would be reversed if the outcome codes were
reversed (e.g., for modeling failure rather than modeling success). Thus, the choice has little impact on
how the model is interpreted, although the researcher should clearly indicate which outcome is being
modeled through the LR. 

Finally, LR models based on data from case-control studies, in which the sampling process depends
on the response variable, can proceed as if the data were collected through a simple random sample.
Case-control studies are generally undertaken to ensure sufficient numbers of a rare event; conse-
quently, event cases are oversampled at a rate much higher than that of controls. While the intercept
is affected by sampling on the response variable, the remaining regression coefficients in the logistic
model are not. Breslow’s (1996) review of case-control studies remains one of the critically important
ones in this field and should be read and cited by researchers employing this design. Extensions to the
simple case-control design, including complex surveys involving stratification or one-to-one match-
ing, induce several estimation and inferential complexities (Scott & Wild, 2003). Manuscript authors
should justify and explain their sampling methods and adjustments in sufficient detail to allow 
critical examination of the validity of published results. 

7. Identification and Measurement of Predictors

As with any type of statistical modeling, careful examination of each predictor or covariate is essential.
Identification of potential predictor variables should be predicated primarily on theoretical grounds
and supported through the literature review (see Desideratum 2). Procedures for investigating bivari-
ate relationships between variables as well as between each potential predictor and the dependent vari-
able should also be described. Decisions to consider interaction terms (products of predictor
variables) should be justified based on prior knowledge of relationships among variables within the
domain being studied. All relevant study variables including background and demographic variables
should be clearly described; a summary of these variables for the study sample can be succinctly pre-
sented in a table or other summary form within the Methods section of the manuscript. 

In LR models, predictors can be continuous, dichotomous, or categorical. The description of clas-
sification and coding systems used for dichotomous or categorical predictors must be complete (see
Desideratum 8). The measurement of continuous predictors should be clearly articulated in the
Methods section, including previous support for validity of the measurement process and careful
evaluation and description of the predictor within the sample data in terms of distribution and relia-
bility. As with most modeling strategies, unreliability in measures of predictor variables introduces
error into the model and such measurement errors can attenuate estimated LR slope coefficients
(Stefanski, 2000). 

In research studies where a large number of variables may be considered for their potential as pre-
dictors, the procedures for determining variable selection for inclusion or exclusion during the mod-
eling process need to be described and justified in sufficient detail for other researchers to be fully
informed regarding validity of the intended approach and the resulting regression model. Variables
may be included a priori based on defined or anticipated relationships with the outcome, or they may
be selected through computer-driven approaches (stepwise, backwards elimination, forward selec-
tion, etc.). Reliance on computer-driven approaches, however, does not guarantee a credible final
model. In all selection procedures, care must be taken so that inclusion or exclusion decisions are not
made solely on the basis of a bivariate relationship between each potential predictor and the depend-
ent variable, since assessment of individual contribution of a given predictor within a multivariable
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regression model is established relative to all other predictors in the model. Including irrelevant pre-
dictors that share association with other predictors can inflate the standard errors associated with
these regression coefficients, and excluding relevant predictors can lead to cases where “third vari-
able” effects are inappropriately attributed to the predictor set included. Proposed methodology for
building the LR model must include consideration of complex variable relationships, the theoretical
justification for each variable’s expected contribution as a potential predictor within a multivariable
model, and evidence of strong psychometric properties supporting the measurement of each variable. 

8. Coding of Categorical Predictors

Within the Methods section, authors should include a clear description regarding their treatment of
all categorical variables. For example, a description of a categorical variable for “education level” of a
study participant must identify the specific education levels assigned to each category. In addition, the
coding scheme corresponding to each categorical predictor when included in the regression model
must be explicit. 

Coding schemes are used within all regression-based analyses to completely identify group mem-
bership on a given categorical predictor. Depending on the software package used for analysis, there are
quite a few options available for the coding of categorical predictors in LR, mirroring similar strategies
for inclusion of categorical variables in standard linear regression. Some of the major statistical soft-
ware packages have default coding schemes along with choices for alternative systems built into their
logistic regression procedures that will automatically recode categories of a predictor when prompted
by subcommand requests. Different coding schemes can easily be selected and applied to categorical
data based on the needs of a particular analysis; alternatively, researchers can choose to do their own
coding of categorical data within their data file based on a system that represents critical questions of
interest regarding differences between categories. Most often, researcher-constructed schemes involve
the creation of a series of dummy (or indicator) codes, effect codes, or a series of orthogonal contrast
codes. As with all coding decisions it is incumbent upon the researcher to ensure that the final result for
representation of category differences clearly represents the intended questions of interest. 

9. Estimation of Parameters

The parameters of interest in most LR models are the regression weights and their associated signifi-
cant departure from zero. The method used most often for estimation of model parameters in LR is
maximum likelihood (ML). The ML estimates are the values for the parameters that maximize the
likelihood function and thus provide the largest probability of producing the observed data.
Mathematically, it is more convenient to maximize the log-likelihood (LL) rather than the likelihood
itself; multiplying the LL by (–2) creates a quantity called the deviance that can be used for hypothesis-
testing purposes to compare competing models (Hosmer & Lemeshow, 2000). The larger the
deviance, the less well the fitted model reproduces the actual data; thus, smaller deviances are pre-
ferred. Statistical tests for model comparison are discussed in Desiderata 15 and 16. 

ML estimation is based on large-sample theory, and estimates will typically be biased in small sam-
ples. Non-convergence of the iterative ML process generally occurs in cases where separation or com-
plete separation is encountered, when zero-cells are present in the data, or when the data are sparse
(see Desideratum 13). These problems become more likely when sample sizes are small. Another
cause for non-convergence involves overfitting by including more parameters in the model than the
data can adequately support. Alternatives to ML include exact methods, which can be applied in small
samples or when non-convergence prevents parameter estimation. Hosmer and Lemeshow (2000)
described two additional alternatives: iterative weighted least squares, and the use of discriminant
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analysis (see Chapter 6, this volume) which was relied on in early work on logistic regression.
However, ML is the method predominantly used today. 

In terms of manuscript preparation, the Methods and Results sections should identify the estima-
tion strategy used for determination of parameter estimates. If alternatives to ML estimation are used,
the selected procedure should be explained and justified. It may be helpful, but not necessary, for
researchers to identify the numerical strategy used during the ML estimation process. Commercial
statistics packages differ in the numerical procedures used to iterate and converge on the ML esti-
mates. For example, SAS uses a Fisher Scoring algorithm (equivalent to iteratively reweighted least
squares), while SPSS uses the Newton-Raphson technique. However, for logit models on binary data,
these procedures provide equivalent parameter estimates.

10. Missing Data

Logistic regression is susceptible to the same potential biasing effects of missing data on model covari-
ates as are other statistical models. The default method used in statistical packages for cases with miss-
ing data is listwise deletion, affecting the sample size as well as the sample’s validity. For the most part,
generalizability of statistical results hinges on the match between the obtained sample and the popu-
lation from which it was drawn. Even when samples are drawn at random, missing data interferes with
this match—particularly if the missingness follows a non-random pattern. Several excellent sources
offer detailed information on analysis options in the presence of missing data; a historical review of
missing data procedures and a comprehensive evaluation of approaches can be found in Schafer and
Graham (2002). 

Missing data on an entire case—often referred to as unit non-response— is often addressed at the
analysis stage through the application of sample-weights for non-response or through post-stratifica-
tion on known population characteristics such as age or gender distributions. Neither method, how-
ever, guarantees that the effects of non-response have been eliminated (Korn & Graubard, 1999).
Thus, efforts to eliminate unit non-response should begin at the sample design and data collection
stage, rather than at the analysis stage. The strategies taken to limit unit non-response (e.g., repeat call-
backs, or the use of proxy-based information) should be clearly described in the Methods section, and
if the research calls for sample weighting or post-stratification approaches to compensate for unit
non-response, this process also must be articulated in detail within the Methods section. During the
presentation of results, the degree of unit non-response (e.g., percentage refused, percentage unavail-
able) must be provided, and results of any analytic procedures (weighting schemes, post- stratification
methods) or design-based approaches (percentage completed after callbacks, percentage completed
by proxy) to adjust for unit non-response must be described with sufficient information to allow read-
ers to evaluate the research findings in light of the approaches taken and to anticipate and understand
the limitations involved in these strategies. 

A second kind of non-response occurs when individual cases are missing responses on one or more
items. Item non-response could occur for predictors or for the dependent variable of interest. Schafer
and Graham (2002) pointed out that the procedures for dealing with missing dependent variables do
not differ significantly from procedures for missing predictors; however, missing dependent variables
in a study utilizing LR could seriously affect the patterns observed in the data and consequently our
understanding of the phenomenon under study—particularly if the missingness is related to that
dependent variable. For dependent variables that might be considered rare or hidden within a popu-
lation (under-age drinking and driving; thoughts of suicide), care must be taken to prevent missing
occurrences as much as possible. Disproportionate sampling (Desideratum 5) may be utilized here to
assist in replacing cases with missing outcomes, as well as in attempts to model why certain persons in
the sample offer differential response (present versus missing) on the outcome of interest. 
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There are many imputation methods available for estimating a replacement value or substitute 
for a missing item, some more reasonable than others. For example, mean-substitution is generally
considered one of the weakest forms of imputation and is not recommended (nor is retention 
and analysis of cases containing only complete information on all variables). The text by Little and
Rubin (1987) is likely the definitive resource on the analysis of incomplete data, but the treatment 
of missing data remains a rich and evolving research area. The current “state of the art” for working
with studies involving missing data, according to Schafer and Graham (2002), assumes the data
are missing at random (or completely at random) and include maximum likelihood procedures in

missing data problems such as the EM algorithm (Dempster, Laird, & Rubin, 1977; Little & Rubin,
1987) or multiple imputation methods. In the case that items are not missing at random, sensitivity
analyses can be used to gauge the bias that might result under certain prescribed and relevant 
situations. 

Strategies for protecting against or limiting the effects of unit or item non-response need to be
clearly described and detailed in the Methods and Results sections of a research manuscript. Sufficient
information is required so that readers can evaluate the results and potential biases in model estimates,
and anticipate any limitations to the research findings based on the approaches taken by the
researcher. 

11. Standardized Regression Coefficients 

In LR, the raw (or unstandardized) regression coefficient, b
j
, for a predictor variable, X

j
, can be inter-

preted as the expected change in the log odds of success given a one-unit change in X
j
, controlling for

other variables in the model. Similar to linear regression, comparing the absolute size of the raw
regression weights across multiple predictors and using the size of these raw weights as a marker for
relative influence is not a reasonable practice, particularly when the predictor variables are measured
in different scales or metrics. Mirroring concerns regarding the use of standardized regression coeffi-
cients in ordinary least squares (Bring, 1994), options for creating and interpreting standardized
regression coefficients in LR continues to be a topic of interest among researchers. Specifically, coeffi-
cients in LR can be either partially or fully standardized, or be derived based on information theory
(Menard, 2002, 2004a, 2004b). Insufficient knowledge or awareness about the estimates produced by
different standardization processes can lead to their misuse and inappropriate substantive conclu-
sions. Statistical packages vary in terms of options for standardization methods. For example, SAS
offers a partially standardized regression coefficient, while SPSS no longer reports a standardized
result. In any case, if a researcher decides to standardize regression coefficients, sufficient justification
for the selected approach as well as a summary of the advantages and disadvantages of that approach
for identification of relative importance of a predictor must be adequately presented in the Methods
and Results. 

An alternative use of the unstandardized coefficients in LR is to interpret them in terms of their
odds ratios. Menard (2002) recommended basing substantive results for categorical variables or vari-
ables with definitive units of measure (length, cost, counts, etc.) on unstandardized regression coeffi-
cients or their corresponding odds ratios, and reserving the use and interpretation of fully
standardized LR coefficients for other kinds of variables, such as those measured on a scale like self-
concept or attitudes. Likewise, Hosmer and Lemeshow (2000) emphasized interpretation of variable
effects in terms of clinical and theoretical importance, rather than in terms of relative contribution to
a prediction model. Overall, in situations where researchers report and interpret standardized coeffi-
cients, principled reasons supporting the selected standardization method must be described in the
Methods and used to clarify interpretation of results. 
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12. Overdispersion

The LR model for binary response data models the dispersion of the dichotomous outcome, Y, as a
binomial random variable, or more simply, as following a Bernoulli distribution, given that the out-
come of success or failure is observed on only a single trial for each participant in the study. The gen-
eral form of the binomial variance is σ 2 = m(π)(1 – π), where π is the probability of success, and m
refers to the number of trials. If the response Y is observed on a single trial, m = 1 and the mean, π,
alone determines the variance. Overdispersion can occur in situations where m>1; these are models
for which the response probability for the ith unit is determined by summing the number of successes
observed over m trials. When the linear logistic regression model is applied to such proportion or per-
centage data, the data often exhibit more variability than would be expected based on the binomial
variance. This overdispersion is sometimes referred to as extra-binomial variation, and its presence
suggests heterogeneity in the data that is not accounted for by the model. 

Overdispersion is quite common in practice, and can also occur when there is unaccounted for
clustering or correlation within the data. Other causes include the presence of extreme observations
or outliers, or when the underlying probability of success across each of the m trials is not constant.
Unfortunately, contributions to overdispersion cannot easily be distinguished (Collett, 2003). The
impact of overdispersion is revealed in standard errors for LR coefficients that are smaller than they
should be, leading to increased Type I errors for tests of variable effects and subsequent flawed under-
standing of the relationships being examined.

Dobson (2002) reported that overdispersion may be present if the deviance from a fitted model
exceeds its degrees of freedom (generally determined as J – (p + 1), where J is the number of replicated
covariate patterns and p is the number of predictors in the model); however, this appraisal assumes
that the model is correctly specified and that suspected outliers or other issues have been appropriately
addressed. McCullagh and Nelder (1989) described how the covariance matrix for the regression coef-
ficients can be rescaled based on the ratio of the deviance to degrees of freedom. The scaling factor or
dispersion parameter, α, reflects the degree to which the model variance should be inflated relative to
the binomial variance: Var(Y) = α[m(π)(1 – π)]. This same strategy can be used for overdispersed
multinomial or ordinal models as well.

Tests for the scaling factor are available through statistical software packages, and models can be
adjusted by incorporating α as a weighting factor on the variance estimates to compensate for the
degrading effects of overdispersion. Alternatively, models that assume a specific form for the overdis-
persion may also be applied, such as the beta-binomial model for the analysis of proportions (Collett,
2003; McCullagh & Nelder, 1989). However, McCullagh and Nelder argued against the selection of a
statistical model based on a specific assumed form for observed overdispersion on the grounds that
mathematical convenience should not take precedence over the scientific plausibility of a chosen
model. In support of this argument, they reported that models including an adjustment based on the
dispersion factor generally perform better than beta-binomial models.

Overdispersion must be investigated for any logistic regression models of proportions or percent-
ages (i.e., when m > 1). However, all manuscripts utilizing LR should include at least a brief discussion
within the Methods section describing how overdispersion is to be investigated and identifying poten-
tial factors that might contribute to potential overdisperion (e.g., sampling design, omitted variables).
If scaling is required, the Results section of the manuscript should report the size of the estimated scal-
ing factor, and results should be clearly interpreted in light of any adjustments for overdispersion. 

13. Preliminary Model Assessment

Preliminary assessments should focus on investigating linearity in the logit for continuous model pre-
dictors, the extent of multicollinearity, the presence of outliers or influential observations (see
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Desideratum 15), and on locating zero-cells as well as evidence for separation or complete separation.
The goal of the preliminary assessments is to develop support for the specification and validity of the
model, and these issues should be investigated prior to determination of model fit and interpretation
of effects for the final model. A summary of the results of these preliminary assessment procedures as
well as decisions for dealing with any problems that were identified should be presented in the Results
section of the manuscript.

Linearity in the logit refers to the relation between continuous predictors and the log-odds of the
dependent variable. Departure from linearity affects statistical power and tends to underestimate the
relationship between a predictor and the outcome. Linearity in the logit can be assessed graphically, or
through orthogonal polynomials for categorical predictors. For continuous predictors the Box-
Tidwell test might be used or orthogonal polynomials might be applied to a categorization of that pre-
dictor, in addition to graphical assessment (Hosmer & Lemeshow, 2000; Menard, 2002). If
non-linearity in the logit is evident, adjustments include combining categories, or categorizing con-
tinuous variables so that separate parameter estimates might be obtained for different levels of the pre-
dictor. 

Multicollinearity among predictors tends to inflate the standard errors for the estimated regression
coefficients, which in turn affects the validity of statistical tests of these estimates. Multicollinearity
also can lead to increased size of the regression coefficients. Multicollinearity is only a property of the
predictors; thus, investigations for the presence of multicollinearity proceed as they would with stan-
dard linear regression. There is currently no single best practice in terms of dealing with multi-
collinearity in LR, other than its detection followed by review and potential elimination of redundant
variables within a multivariable model. Thus, a correlation matrix for the predictors should be
included in the results section so that the degree of collinearity can begin to be assessed. A brief dis-
cussion of statistical tolerance for the predictors in a multivariable regression model should form part
of the Results section, as well. Menard (2002) suggested that as tolerance drops towards .10 (or less),
the multicollinearity may be unreasonably large.

The problem of zero-cells occurs when all responses for a particular category of a nominal predic-
tor are exactly the same; this invariance means that one of the two response categories does not occur
in the sample data. Depending on the pattern of responses (either all success, or all failure), the esti-
mated logit would be infinitely large or infinitely small, and the standard errors for the estimated log-
its will be extremely large as well. Options for dealing with zero-cells include collapsing categories of
the predictor, eliminating the zero-cell category completely, weighting the data and assigning a par-
ticularly small weight to the zero-cell category, or rescaling the nominal variable in some fashion to
represent an ordinal variable which can then be included in the model as if it were continuous (with
one degree of freedom). These strategies may improve the numerical processes of the model, but will
also affect the substantive interpretation of the predictors. An alternative approach uses exact logistic
regression methods to determine the parameter estimates based on a conditional likelihood function
rather than the standard approach utilizing the ML function (Collett, 2003). 

Separation (also referred to as quasi-separation) and complete-separation are conditions that refer 
to near perfect or perfect predictions, respectively, of the response variable. As with zero-cells and
multicollinearity, standard errors and the coefficients themselves will be extremely large and tend
towards infinity. Separation and complete separation tend to occur for smaller sample sizes, and par-
ticularly when the number of participants experiencing the event of interest is small (Hosmer &
Lemeshow, 2000). The risk of separation increases for increasing numbers of covariates and whenever
the number of covariates becomes close to the sample size. Separation is not likely with continuous
predictors, but complete separation can occur with any type of data (So, 1995). Although perfect 
prediction may seem like a great result for any model, separation hinders understanding of the effects
of variables within a model since researchers may wish to determine the effect of a particularly 
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strong variable and under conditions of separation the ML estimate for that regression coefficient no
longer exists (the parameter estimate will be infinite). Adjustments for separation or complete sepa-
ration mirror some of the options for zero-cells such as collapsing or eliminating categories; more
advanced strategies are reviewed by Heinze and Schemper (2002), including exact logistic regression.
However, they caution that there may be situations in which the requirements of the exact approach
may not work well.

Overall, multicollinearity, zero-cells, and separation or complete separation manifest as the same
problems within a logistic regression model: inflated standard errors and, often, inflated regression
coefficients. Thus, the ability to distinguish among these issues and adequately adjust the analysis for
their problematic effects requires generous preliminary assessments of the data. In addition, non-lin-
earity in the logit affects the parameter estimates and thus the interpretation of effects. Thus, it is
essential for statistical validity of the final model that any offending variables or combinations of vari-
ables be identified, and that all corrective measures are made explicit in the Results section of the man-
uscript.

14. Residual Diagnostics

Any regression model should be evaluated not only in terms of overall model fit (Desiderata 16 and
17), but also in regard to the distribution of fit (and ill-fit) of the model’s predicted values to the val-
ues actually observed. These analyses are referred to as residual diagnostics in that they focus on
aspects of that which remains “unpredicted” or in error after accounting for the model’s predictions.
In terms of methodology for residual diagnostics in LR, Pregibon (1981) remains the most influential
reference in this field. Additional practical strategies for residual diagnostic evaluation in LR can be
found in Hosmer and Lemeshow (2000) and Collett (2003).

Plots of residual statistics and corresponding visual assessment of extreme cases is the evaluation
approach that is strongly relied upon during LR, due to the fact that the distributional properties of
many of the LR residual statistics are largely unknown (Hosmer & Lemeshow, 2000). Thus, casewise
or index-plots of residual statistics can often present a persuasive visual assessment of cases that are
poorly fit by a model or that have undue influence in the model’s parameter estimates. 

In LR, residuals can be defined in terms of a single case or groups of cases that share the same covari-
ate pattern. Software documentation should be reviewed to clarify the method used to calculate case
residuals. In addition, standardized or Studentized residuals from a LR may not appropriately follow
a normal or approximately normal distribution, and researchers should be cautious about interpret-
ing the size of these residual statistics in the same way as one might interpret them from an OLS regres-
sion. Similarly, influence statistics such as leverage values or Cook’s Distance should be evaluated in
terms of relative size given values for other cases in the sample. This process of comparing residual sta-
tistics across cases can be used to locate extreme or unusual cases based on change statistics, such as the
change in deviance or in the regression coefficients when a case (or cases with the same covariate pat-
tern) is removed. 

Due to the intensity of residual analyses, specific results or graphs are often not included in a man-
uscript but the findings from these analyses are discussed more generally. Of import when presenting
the results of an LR analysis is the specific mention of having attended to these types of diagnostics and
whether or not such evaluations led to manipulation of the data set. Decisions to delete cases on the
basis of large residuals or unusual influence on the fitted model should be well-justified. Deletion of
extreme cases will necessarily improve the model fit for the sample but unjustified or unexplained
deletion on the basis of an extreme residual is unwarranted and tantamount to “stacking the deck” in
favor of the given model’s fit to that sample’s data. Justification of deletion of extreme cases can
include suspected error in data entry or in measurement completion, or conceptual impossibility or
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improbability of an observed value, but should never rest solely on the size of the residual or influence
statistic. A detailed explanation in the Results section should always accompany any manipulation to
the raw data. At minimum, results should make specific reference to having completed residual diag-
nostics, their general results, and any subsequent steps taken. 

15. Variable Effects and Hypothesis Testing

For j = 1 to p independent variables, the regression weights in the LR model represent the change in the
logit for each one-unit increase in X

j
, controlling or adjusting for the effects of the other independent

variables in the model. The regression weights can be exponentiated to yield the odds ratio for each
variable (OR = exp(β

j
)). Strong associations between independent variables and the outcome typi-

cally are represented by ORs further from 1.0, in either direction (see Desideratum 3). Statistical sig-
nificance of an OR typically is assessed by testing if the regression coefficient, β

j
, is statistically different

from zero through one of three tests: Wald, score, or likelihood ratio. 
In the Wald test, the parameter estimate for the effect of each independent variable in a logistic

model is divided by its respective standard error, and the results are squared to represent a value from
the chi-square distribution with one degree of freedom under the null hypothesis of no effect. Most
major statistical packages report Wald chi-square statistics for each variable in the fitted model.
However, Wald statistics can be problematic in small samples, samples with sparse cells, or samples
with many covariate data patterns including samples with continuous independent variables. In these
situations, statistical tests based on the likelihood function are preferred. The score test for the contri-
bution of an independent variable in the model relies on derivatives of the likelihood function but is
not directly available in many statistical packages. However, SPSS does use a score test in stepwise pro-
cedures to determine when variables enter or exit a developing model. Finally, the likelihood ratio test
is generally regarded as the most reliable test for the contribution of an independent variable to a
model, and is based on the difference in deviances between a model which contains that variable and
a model that does not. 

The general form for the likelihood ratio test is derived through comparisons of deviances of nested
models (see Desideratum 16). The difference in deviances between nested models that differ only in
the addition of a single variable approximates a chi-square distribution with one degree of freedom.
While the likelihood ratio test is arguably the strongest test of a predictor’s statistical contribution to
a model, it may be time consuming to fit the appropriate one- variable-added models for each variable
in a multivariable LR. The potential intensity of this process is the primary reason why results of the
Wald test are often reported and interpreted in manuscripts and reports. However, for studies that do
contain continuous predictors or that are based on small samples, results of the Wald tests should be
supplemented by the likelihood ratio tests and appropriately included in the Results section of the
manuscript. 

Given the ready availability of Wald’s test statistics, they are sometimes relied on for decisions on
trimming non-statistically significant variables from a LR model. Support for these decisions rests
strongly on the adequacy of the data structure as well as on the assumption of appropriate model spec-
ification, including the absence or incorporation of salient interactions. That is, all appropriate vari-
ables and interactions prior to trimming—from a substantive or theoretical perspective—have been
considered. As in the development of all statistical models, variables scientifically critical to the
research topic, including relevant interactions, should always be included in the final model, regard-
less of statistical significance. In situations where the data structure is questionable, decisions on trim-
ming should be supplemented with the likelihood ratio test. Once a final model is decided on, the
trimmed model can be compared to the final model using the general likelihood ratio test to assess
model fit, described below. 
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16. Model Fit and Measures of Association

As described in Desideratum 9, the deviance for a fitted model is defined as D = –2LL and can be
thought of as representing “poorness” of fit. A perfect fitted model would have a likelihood of 1 and
thus a deviance of 0; values of the deviance further from 0 represent worse fit. With grouped data
(when specific covariate patterns can be grouped together into J finite sets by their frequency of occur-
rence within the data), the deviance D can be compared to a chi-square test statistic with J – (p + 1)
degrees of freedom, where p + 1 refers to the number of parameters in the model including the con-
stant. With grouped data or a relatively small number of replicated covariate patterns, the deviance
provides a test of goodness of fit. A good fitting model closely reproduces the observed data. In gen-
eral, if D exceeds the critical chi-square statistic, this suggests that the model does not provide a rea-
sonable representation of the data. 

Unfortunately, when the number of unique covariate patterns in the data becomes close to the sam-
ple size, which typically occurs when continuous covariates are present, D cannot be assumed to fol-
low a chi-square distribution, not even approximately. However, the difference in deviances between
two nested models forms a general likelihood ratio statistic which will follow a chi-square distribu-
tion, and model comparisons can be approached from that perspective. Thus, G = D

reduced
– D

full
is a

quantity that represents improvement in fit, where the reduced model contains a subset of variables
included in the full model. The degrees of freedom for this general likelihood ratio test is the difference
in the number of estimated parameters between the two models. When the reduced model is the null
or constant only model, this test is an omnibus test of the fitted model containing p predictors.
However, comparing nested models only provides information on whether the model with more
parameters yields a statistically significant improvement (reduction) in the deviance relative to the
reduced model. Statistical significance could occur even if a better model might still be found. Thus,
additional options for describing model fit should be used to supplement the general likelihood 
ratio test. 

The Hosmer-Lemeshow (H-L) test can be used to approximate a goodness-of-fit test when sparse
cells are present in the data (which will nearly always occur when continuous variables are included in
the model). The H-L test is based on formation of several groups referred to as “deciles of risk” that
represent ordinal groupings of the estimated probabilities from the model. For most samples, ten
groups are formed, but there may be fewer groups depending on the similarity of estimated probabil-
ities across different covariate patterns. The frequencies of cases within the deciles are compared to
expected frequencies using a Pearson Chi-square statistic with degrees of freedom equal to the 
number of groups (deciles) minus two. If the model fits well, there will be agreement between the
observed and expected frequencies, and the null hypothesis of a good fit between the fitted values of
the model and the actual data is retained. 

There have been some concerns voiced in the literature regarding the power of the H-L test, but
Hosmer and Lemeshow (2000) pointed out themselves that decisions on the adequacy of a model
should be supported through a combination of criteria rather than on just a single statistical test. In
addition to the likelihood ratio test and the H-L test, strategies for considering the quality of a model
also include measures of association similar to R2 values, and categorical fit measures representing
predictive efficiency (Desideratum 17).

There are several logistic regression analogs to the familiar model R2 from ordinary least squares
regression that may be useful for informing about strength of association between the collection of
independent variables and the outcome. However, there is some disagreement among researchers
regarding which of these pseudo R2 measures is best. The likelihood ratio R2 (R

L
2; also called

McFadden’s R2) seems to provide the most intuitive measure of improvement in fit and is determined
by computing the proportion reduction in deviance obtained from the fitted model (D

m
) relative to
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the null (or empty) model (D
0
) : R

L
2 = 1 – (D

m
/D

0
). This statistic is not routinely reported by com-

mercial statistics packages but is easily computed from available output which will contain deviances
for both the null and the full model. Two other measures of association that also are based on model
likelihoods and commonly reported in statistical output are the generalized R2, also called the Cox and
Snell R2, and the Nagelkerke R2, which in SAS is labeled Max-rescaled R2. Menard’s (2000) article com-
paring six different coefficients of determination for logistic regression models is an excellent resource
on these pseudo R2 statistics. As there is not agreement among researchers favoring one statistic over
another, results of several of these measures of association should be reported and interpreted in the
results section of manuscripts.

Finally, information criteria such as Akaike’s Information Criterion (AIC) or Schwarz’s Bayesian
Information Criterion (BIC) provide model fit information through different adjustments to the
–2LL of a fitted model, based on sample size and the number of predictors. As with the deviance, lower
values are more acceptable. These statistics are particularly useful when comparing non-nested mod-
els for a set of data. As noted above, however, good model fit in logistic regression is best assessed
through a collection of evidence rather than relying on a single criterion. 

17. Classification

In addition to measures of association and statistical tests for model fit, quality of a model can also be
gauged through classification accuracy. Classification is based on the probabilities estimated from the
model, such that if the estimated probability of response for a particular case is greater than .50 (for
example), the case is assigned to the “success” outcome; otherwise, it is assigned to the “failure” out-
come. Most software packages allow users to choose different cutpoint options for the classification
probabilities; two-way tables showing correspondence between actual and predicted outcomes based
on various cutpoints can offer additional information about quality of the model. If classification is
the goal of the analysis, justification of these decisions must be clearly identified in the Results section.
Often, this justification is empirical and based on the relative severity of Type I (classifying a non-
event individual as having the event) versus Type II (classifying an event case as a non-event) error.
The impact of cutpoint decisions on evaluation of the overall model should be included as part of the
Discussion.

Accuracy of classification depends on the match between the classification frequency and the
observed frequencies. Note that there are many situations where model fit is considered good but clas-
sification may be poor, particularly if there is a low observed percentage for one of the outcome vari-
able groups. Thus, appropriate language should be adopted in presentation and discussion of results.
In cases where classification is not reported or is poor, language suggestive of a model’s ability to iden-
tify or predict group membership should be avoided in preference for language that describes model
fit to the sample data.

Percentage correct is, by default, reported most often in most major statistical packages, yet is the
least effective way in which to describe accuracy of classification because it does not accommodate
either base rate or chance classification. Two excellent resources for information on alternative
indexes of predictive efficiency are Menard (2000, 2002) and Long (1997). In particular, Menard
reviewed and compared an extensive collection of classification measures. Among these are τ for pre-
diction tables, τ

p
; the adjusted count R2 or R2

adjCount
(also called λ

p
due to its similarity to the Goodman-

Kruskal λ as applied to prediction tables); and, for selection models, φ
p
. All three of these measures can

be interpreted as proportional reduction in error statistics and can be tested for statistical significance.
Given a researcher’s extensive choice for predictive efficiency measures, it is important that the
selected measure or measures be explicitly defined and that the choice matches the nature of the
model. For classification models, Menard (2002) suggested that τ

p
is the most appropriate measure,
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and φ
p

is recommended for selection models. Unfortunately, these statistics are not directly pro-
grammed into commercial LR statistics packages and must be calculated from the classification table
provided by the software. Whatever choice is made for determination of classification accuracy, suffi-
cient detail and data must be presented in the results section to ensure reasonable and fair interpreta-
tion during discussion of the overall effectiveness of the model. 

18. Credibility of the Model

The strength and utility of a statistical model rests on more than just global assessments of model fit.
To effectively contribute to research and practice, model development must be guided by relevant
research questions matched to rigorous methods that are appropriately designed to address those
questions. The credibility of all statistical models and the research contributing to their development
is, in large part, based on this connection whether for attempting to gather support for a hypothesized
causal link or for identifying and describing patterns of associations between variables and an out-
come. Thus, reviewers of LR studies should be cautious of methods or results that do not sufficiently
address the proposed research questions or hypotheses, or that ignore or brush aside critical issues and
factors affecting a LR analysis such as those discussed here. Long (1997) argued that measures of fit
provide “only partial information that must be assessed within the context of the theory motivating
the analysis, past research, and the estimated parameters of the model being considered” (p. 102).
Accordingly, it is the researchers’ responsibility to situate their work within a well-defined body of lit-
erature or preliminary research, to accurately describe their methodology and the measures/variables
used, to responsibly justify their statistical decisions when addressing research questions or hypothe-
ses, and to honestly interpret the results and resulting implications in support or refinement of rele-
vant theory. This includes identifying and discussing impacts of limitations to the design, sample, and
statistical methodology. Finally, as stated several times throughout this chapter, causal language
should only be used when the research design supports such claims.
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Log-Linear Analysis 

Ronald C. Serlin and Michael A. Seaman

Log-linear analysis is a technique for both exploratory and confirmatory analysis of variable relations
when all the variables of interest are classification (i.e., categorical) variables. Researchers who are
familiar with contingency-table analysis will recognize log-linear analysis as a tool for assessing
higher-order relations among two or more classification variables that cannot be achieved with tradi-
tional two-variable chi-square analysis. The term log-linear refers to the use of the logarithms of fre-
quencies to create linear models that parallel the linear modeling in analysis of variance (see Chapter
1, this volume). In analysis of variance the response variable, measured on a quantitative scale, is
viewed as a function of effects of explanatory classification variables. For log-linear analysis, the
response is actually a log of expected frequencies associated with a specified model. Rather than
effects, the explanatory variables are the classification variables of interest, so that the test of the model
is one of structural relations, rather than effect. A special case of log-linear analysis, logistic regression
(see Chapter 17, this volume), has a more direct parallel to analysis of variance, in that there are estab-
lished response and explanatory variables, as well as a linear function of effects to explain the response.
Log-linear analysis involves testing of hypotheses about the interaction among variables of interest.
Results provide an understanding of relations and partial relations among these variables.
Computations for log-linear analysis can be performed on most major statistical software packages,
such as S-Plus, SAS, and SPSS, though the level of user input required varies among the packages.
Default settings in software subroutines often do not address hypotheses of interest, so that software
use might require a relatively high level of user sophistication. We recommend texts by Agresti (1990),
Christensen (1997), and Fienberg (1980). Specific desiderata for applied studies that include log-lin-
ear analysis are presented in Table 18.1 and explained in the following sections.

1. Identification of Categorical Factors 

The literature review should identify factors in previous studies that are clearly suited for classification
of the units of analysis. Often the researcher has a choice of measurement scale, and arbitrary classifi-
cation of intervals on a quantitative scale can result in categorical analysis that is less powerful for iden-
tifying relations than if the original scale was maintained. When the classification is not natural and
obvious, the researcher should justify the use of a categorical variable. Similarly, log-linear analysis
does not take advantage of the full information when the classification can be ordered, such as with
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Likert scales, but is best suited for unordered categorical data. For log-linear analysis to be appropri-
ate, all variables of interest should be unordered classification variables. 

To examine relations among the identified factors there must be cross-classification. That is, the
researcher should focus on multiple factors that can be identified with a single sample or one or more
factors identified for multiple samples (see Desideratum 4). The utility of log-linear analysis is most
obvious when there are more than two of these factors. Prior to the development of log-linear meth-
ods, the common technique used for studying relations among two categorical variables (contingency
table analysis with chi-square statistics) was often used for larger numbers of variables by studying
multiple bivariate relations. Studies referenced in the literature review might have used this technique.
The statement of purpose in the manuscript should identify a research question about the relations
among two or more of the identified factors. The question(s) can be about full or partial associations
(see Desiderata 8 and 9). Exploratory studies will be conducted for the purpose of identifying the
structural nature of the relations, but confirmatory studies should clearly identify the nature of the
relations.

2. Defining Categorical Variables 

Once the factors of interest have been specified, the specific operational variables must be identified.
These are unordered categorical variables (see Desideratum 1), so that the operational definitions
consist of the classes or categories that will be identified for each unit in the sample. It is important that
every unit fits into one and only one category for a single variable. That is, the categories are mutually
exclusive and exhaustive. All units must also be amenable to cross-classification on the other factors
to accommodate a complete study of the relations and partial relations. If this is not possible, full study
is confined to those units that can be completely cross-classified, and other units can contribute to the

Table 18.1 Desiderata for Log-Linear Analysis

Desideratum Manuscript

Section(s)*

1. A literature review and statement of purpose refer to factors that are best represented as I

categorical variables.

2. Categorical variables and the levels of these variables are clearly defined. I, M

3. Hypotheses are proposed regarding relations (or lack of relations) among the categorical variables. I, M

4. The methods of sampling and data collection are described. M

5. Log-linear models are developed to correspond to hypotheses of interest. M

6. Tables are constructed to display frequencies and proportions of cross-classified variables. R

7. Expected values, odds, and odds ratios are computed. R

8. Hypotheses are tested by comparing model fit statistics. R

9. Partial tests of association are conducted to avoid Simpson’s paradox. R

10. The name and version of the utilized software package is reported, along with subroutine choices R

and justification.

11. Planned and post hoc contrasts are tested using log-odds ratios, where relevant. R

12. Methods for dealing with cells with sparse or missing data are explicated. R

13. Effect size measures are reported to assess substantive importance of effects. R, D

14. Model performance is discussed in the context of theoretical understanding of the factors of interest. D

15. Results of hypothesis tests are discussed, including unexpected outcomes. D

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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study of a more restricted set of questions. If there are too many categories relative to the number of
units in the sample, this can result in sparsely populated cells in the cross-classification (see Desiderata
6 and 12). The number of units classified in each category or cell (i.e., cross-classification) can be
increased by combining categories, though this will decrease the information that can be deduced
from the analysis. For example, collapsing low-frequency categories together into an “other” or “mis-
cellaneous” category will increase the number of units within the category, but some of the informa-
tion available with the original data is hidden. As with other types of analysis, larger numbers of units
at each level of the variable will lead to a more powerful study of those levels, so the researcher must
strike a balance between the specificity of the categories and the power available for studying these 
categories.

3. Proposing Hypotheses Regarding Relations 

The manuscript should include hypotheses about the relations among the variables of interest. These
hypotheses are of several types, some of which are usually trivial: (1) a hypothesis of equal (or unequal)
proportions across all cross-classifications of the factors, (2) a hypothesis of equal (or unequal) pro-
portions across all categories within a single factor (which can be repeated for some or all of the vari-
ables), (3) a hypothesis about independence (or association) among two of the factors, (4) a
hypothesis about higher-order associations (i.e., more than two factors), and (5) a hypothesis about
partial associations (i.e., an association among two or more factors within some or all levels of a sepa-
rate factor or factors; see Desideratum 9). The most common of these is the hypothesis of association
between two factors. Traditional analysis involved chi-square tests of two-factor data, but even when
multiple two-factor relations are of primary interest, log-linear analysis provides error control that is
typically ignored when multiple two-factor tests are conducted. In exploratory analysis, the hypothe-
ses might not be explicit, but rather the focus is on ascertaining whether relations exist among the fac-
tors. For this reason, some common software packages have default settings to conduct all tests or
conduct stepwise testing based on hypotheses with statistically significant results. Stepwise
approaches are data driven and thus unreliable and sample-size dependent. If these methods are
accepted, cross-validation and replication should be encouraged, if not required. Explicit hypotheses
are preferred so that model testing can focus on the questions of interest (see Desideratum 5).
Hypotheses are frequently stated in terms of research hypotheses, rather than statistical hypotheses. 

4. Describing Sampling and Data Collection 

There are three common sampling models that result in data collection best suited for log-linear mod-
eling: (1) multinomial sampling, (2) product-multinomial sampling, and (3) Poisson sampling.
Multinomial sampling is the process of selecting a sample of individuals from a single population and
then cross-classifying every member of the sample on two or more factors. Product-multinomial sam-
pling is the process of selecting a fixed number of units from each of two or more populations that dif-
fer in terms of classification on a single factor. Each unit within each of the multiple samples is then
classified on the basis of one or more additional factors. The result of data tabulation from these two
sampling methods looks identical: cross-tabulated frequency data for multiple factors, with each unit
represented in one and only one cross-classification. The Poisson sampling model, though less com-
mon in social research, also results in data that can be analyzed using log-linear analysis. In this model,
the possible cross-classifications, but not the number of observations, are known in advance.
Observations during a fixed time period yield cell frequencies. These three sampling models do not
form an exhaustive list, but they do encompass most of sampling types that lead to cross-tabulated
data in published research.
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A serendipitous property of these sampling models is that all three types asymptotically lead to the
same log-linear analysis (Fienberg, 1980). More advanced so-called “exact methods,” which derive con-
fidence sets or critical values from permutations of observations, differ for each sampling method, but
these methods are rarely found in the applied literature and will not be discussed here. Asymptotic meth-
ods are reasonable when the standard rule of thumb is observed that no more than 20% of the cross-
classified cells have expected values less than 5 (see Desideratum 12 for more precise sample size rules).

Researchers often do not discuss the sampling method, presumably because the common sampling
models asymptotically lead to the same statistical results. This is problematic. It is important to expli-
cate the method, because the interpretation of the findings is directly linked to the sampling method.
For example, in one model (product-multinomial sampling) the findings relate to the homogeneity
(or lack thereof) of multiple populations on one or more factors. By contrast, when the sampling is
multinomial the findings refer to the relationship of factors for a single population.

An advantage of these types of data collection is that there is often little or no ambiguity regarding
the classification of the unit on the factors of interest. Thus, validity of the “measurement” is not an
issue. If classification is ambiguous, construct validity is an issue that must be addressed. The
researcher must clearly define classifications that are not widely known and accepted. If units are clas-
sified by judges, interrater reliability must be established (see Chapter 11, this volume). If classifica-
tions are created using intervals on a scale or otherwise ordered categories, the researcher must defend
the choice of unordered classification, because typically this choice results in less specific results
and/or a loss of power.

5. Log-Linear Models and Hypotheses of Interest

As with all research, the proposed hypotheses’ truth or falseness is assessed by examining how well the
collected data accord with them. The relationship (or lack of relationship) among measures of theo-
retical constructs that is specified in a hypothesis posits that a nonzero (or zero) value, respectively, of
a log-odds or log-odds ratio exists in the population sampled. Analogous to analysis of variance, log-
linear analysis is used to evaluate whether the data seem unlikely to have been sampled from a popu-
lation in which the null hypothesized relations exist; if the data seem unlikely, given the hypotheses,
then the null hypotheses are declared false. The hypothetical relations among the variables that are
examined in the study must be clearly delineated in the manuscript.

The determination of the likelihood of the data, given the relevant hypotheses, is achieved through
the use of a linear model. As in analysis of variance, the model includes an intercept (or grand mean)
and main effect and interaction terms that are consistent with the specified hypotheses. For instance,
in analysis of variance, one can test whether a population’s mean on a continuous dependent variable
is equal to a theoretically specified value. In log-linear analysis, because the variables are categorical,
the analogous test would examine whether the log-odds, the logarithm of the ratio of the probabilities
of the population falling into one category or another, is equal to a theoretically specified value. 

In both instances, the data are speculated to arise as if generated at random according to an under-
lying linear model that includes terms whose magnitudes are theoretically specified by the hypotheses
of interest. This model must be clearly delineated in the research report. In the example of analysis of
variance, a null hypothesis regarding a population mean is specified as 

H
0
: μ

t
= μ

0
,

where μ
t
denotes the true expected value of the population from which the sample was drawn, and μ

0

denotes the theoretically specified expected value of the population. Equivalently, in log-linear analy-
sis the null hypothesis concerns log-odds, the ratio of probabilities of members of the population
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falling into one or another category of the dependent variable, leading to the null hypothesis 

H
0
: lnO

ti1i2
= lnO

0i1i2
,

where lnO
ti1i2

denotes the ratio of the true probability of members of the population falling into cate-
gory i

1
or i

2
, and lnO

0i1i2
denotes the theoretically specified ratio of the probability of members of the

population falling into category i
1

or i
2
.

With a specified sample size, N, the null hypothesis can equivalently be written in terms of expected
frequencies, F

i
, where F

i
= Np

i
, where p

i
denotes the probability of a member of the population falling

into category i. In particular, log-linear analysis deals with models that specify logarithms of expected
frequencies in terms of values of parameters that are determined by the hypothesized relations. 

Most generally, if the hypotheses specify relations among variables i, j, k, …, then the log-linear
model would be written 

In p
ijk...

= μ + α
i
+ α

j
+ α

k
+ ... + γ

ij
+ γ

ik
+ γ

jk
+ ... + γ

ijk
+ ... 

where in direct analogy with analysis of variance, μ denotes a grand mean, α denotes a main effect, and
γ denotes an interaction. As main effects, the α terms represent differences in logarithms of probabil-
ities, equivalent to the logarithms of ratios of probabilities, or log-odds. As interactions, the γ terms
represent differences of differences of logarithms of probabilities, equivalent to the logarithms of
ratios of odds, or log-odds ratios. The hypothetical relations among the variables must be clearly spec-
ified in terms of parameters in the log-linear model, whereby those log-odds and log-odds ratios that
are nonzero according to the hypothesized relations must correspondingly have nonzero effects in the
model, and those log-odds and log-odds ratios that are zero according to the hypothesized relations
must have the corresponding effects set to zero, thereby not having those terms included in the model.

6. Cross-Classification Tables 

A cross-classification table, also known as a crosstabs or contingency table, is a display of the frequencies
or proportions for all of the possible cross-classifications. The number of cross-classifications is 

Factor A, Category 1 Factor A, Category 2

Factor C Factor B, 

Category 1

Factor B, 

Category 2

Factor B, 

Category 1

Factor B, 

Category

Category 1

Category 2

Category 3

Category 4 f114

f111

f112

f113

f124

f121

f122

f123

f214

f211

f212

f213

f224

f221

f222

f223

Figure 18.1 A 2 × 2 × 4 Cross-Classification Table.
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simply the product of the numbers of categories identified for each factor. Figure 18.1 contains a 
sample table for three factors, with two categories for two of the factors and four categories for the
third factor.

It is more useful, alternatively or additionally, to display proportions or percentages, where the 
proportion is defined as f / N

h
. Here f is the frequency for a category or a cross-classification cell and 

N
h

is the appropriate sample size for the hypothesis of interest. It is unfortunately common for
researchers to ignore the hypothesis (and therefore the research question) of interest when creating a
cross-classification table. Proportions should be clearly defined and match interest. For example,
using the total sample size for N

h
is misleading when the question is one of homogeneity of multiple

populations on a response variable. In this case, N
h

should be the individual sample sizes for the 
samples drawn from each of the populations. Researchers should be clear about defining the propor-
tions in the table, rather than requiring the reader to infer this by looking for the set of proportions 
that sum to one. The researcher should also make use of the descriptive information provided by 
the cross-classification table prior to focusing on the model-testing results. A well-constructed 
cross-classification table clearly leads to preliminary results, such as homogeneity (or heterogeneity)
of samples, independence (or association) of factors, and partial independence (or association) of 
factors.

7. Expected Values, Odds, and Odds Ratios 

Tests of log-linear models are based on the values one might expect to appear in cross-classification
tables if the model is correct. Various terms of the model suggest contributions to the expectation of
frequencies within categories or cross-classifications of categories. Essentially, a log-linear model
should be retained or rejected depending on how close a match exists between the expectations pro-
vided by the model and the actual frequencies observed in the data. The calculation of an expectation
is based on the marginal frequencies in the data and the hypothesis of interest, as reflected by terms in
the model. For example, the common hypothesis of independence of two factors suggests that the
expectations for the cross-classification of these factors can assume factor independence. Thus, 
E(f

ij
) = f

..
p

i.
p

.j
, where E(f

ij
) is the expectation of the frequency for the ith category of Factor A and the jth

category of Factor B given the total sample size (f
..
) and the proportion of the units that are in category

i of Factor A (p
i.
) and category j of Factor B (p

.j
). Similar calculations are available for both simpler and

more complex hypotheses, though the complexity of the calculation for higher-order interactions and
multiple interactions might require iterative processes. 

Interactions should be descriptively examined using odds and odds ratios. An estimate of the odds
of appearing in one category is given by p

1
/p

0
, where p

1
is the proportion of units in the category and p

0

is the proportion of units not in the category. With count data, interactions among factors are exam-
ined with odds ratios using contingent odds. That is, the odds of a unit appearing in a category for one
factor might be contingent on the category the unit is in for a second factor. Ratios of these odds for
different categories of one of the factors provide an estimate of the strength of association of the two
factors. 

Figure 18.2 illustrates a simple two-factor design with two categories in each factor. The estimate of
odds of being in Category 1 of Factor B for units in Category 1 of Factor A is f

11
/f

21
. Similarly, the esti-

mate of odds of being in Category 1 of Factor B for units in Category 2 of Factor A is f
12

/f
22

. The odds
ratio is then (f

11
/f

21
)/(f

12
/f

22
). If the odds of being in Category 1 of Factor B are not contingent on the

categories of Factor A, then the odds will be the same and the ratio will be 1. Departures from 1 indi-
cate a relation between Factors A and B, and the distance from 1 indicates the strength of this relation.
With more factors and categories, contrasts of odds ratios should be used to study specific interactions
related to the research questions.
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8. Hypothesis Tests and Model Comparison 

In order to test hypotheses of interest, test statistics are computed to assess how well the observed fre-
quencies, f

ijkl…
, match the expected frequencies, F

ijkl…
. The two statistics most commonly used for this

purpose are Pearson’s chi-square statistic, 

χ 2 = ∑
(f

ijk...
– F

ijk...
)2

i, j, k, ... F
ijk...

,

and the likelihood ratio statistic, 

G 2 = 2 ∑ f
ijk...

ln�f
ijk...�, 

i, j, k,...
F

ijk...

both of which approximately follow (with large samples) a chi-square distribution. Research has
shown that in most small-sample conditions, the Pearson statistic controls the Type I error rate better
than the likelihood statistic. Nevertheless, when testing the effects of specific hypothesized relations,
as reflected by tests of model parameters, the additive property of the likelihood statistic suggests that
tests based on G2 should be conducted and values of G2 and associated p-values should be reported, as
is typically done in log-linear analysis.

Both χ 2 and G 2 are known as goodness of fit statistics, in that they quantify how well a model seems
to fit the data, but in log-linear analysis they might better be referred to as “badness-of-fit” statistics,
in that they get larger (and p-values smaller) as the fit between model and data becomes worse. This is
especially salient in log-linear analysis, because there are many potential models (e.g., with 3 variables
there are 19 models, not counting the model containing only the grand mean), and many of these
models yield a statistically significantly bad fit between observations and expectations. If one focused
solely on the fit between models and data, one would somehow have to determine that one signifi-
cantly bad model is better than another significantly bad model. Furthermore, one would be search-
ing for a model whose G2 indicates a lack of significantly bad fit, which would lead a researcher to
attempt to draw a conclusion on the basis of the lack of significance of a null hypothesis test, well
known to be logically invalid. 

Finally, it is only by focusing on the comparison in pairwise fashion of a much smaller set of mod-
els that one is able to draw conclusions about the original hypotheses of interest. For example, con-
sider an investigation that involves only two variables, Factors A and B, and assume that one’s

Factor A

Category 1 Category 2

Category 1 f11

f21

f.1

f12

f22

f.2

f1.

f2.

f..

Factor B
Category 2

Figure 18.2 Frequencies in a Two-Factor Study.
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hypotheses of interest involve both of the main effects and the interaction. Then there are five 
models possible:1

ln F
ij

= μ
ln F

ij
= μ + α

A

ln F
ij

= μ + α
B

ln F
ij

= μ + α
A

+ α
B

ln F
ij

= μ + α
A

+ α
B

+ γ
AB

If the fit of the second model is statistically significantly better than the first, then one would conclude
that the main effect of Factor A is nonzero in the population, because the fit of a model in which this
term is nonzero has fit the data better than one in which the term is zero. It is here that the additive
property of the G2 statistic becomes essential, because the difference in the two models’ G2 statistics is
itself distributed as chi-square. By comparing the reduction in G2 to a critical value obtained from the
chi-square distribution, one can test the null hypothesis that the A main effect is zero, that is, G 2

A
= 

G 2
μ – G2

μ +αA
, where G 2

A
is a sample statistic testing the null hypothesis H

0
: α

A
= 0, and G 2

μ and G2
μ +αA

are
likelihood ratio statistics assessing the goodness of fit of log-linear models including only the grand
mean, μ, or including both the grand mean and the main effect of Factor A, α

A
, respectively.

One can test the main effect of B and the interaction of Factors A and B in a similar fashion. The last
of these models, which includes all of the parameters, is known as the saturated model. In a saturated
model the expected frequencies are equal to the observed frequencies, and so the G2 statistic is equal to
zero. The test of the highest-order interaction is identical to the test of the “goodness” (badness) of fit
of the model in which all lower-order terms are included. The G2 statistics used for testing the
hypotheses of interests and their associated p-values should be reported in the manuscript. 

9. Marginal and Partial Tests and Simpson’s Paradox 

Referring again to the two-factor example and the five associated models of interest (see Desideratum
8), notice that the main effect of Factor A can be tested by comparing the fit of the second and first
models, as described, but also that the main effect of Factor A could be tested by comparing the good-
ness of fit of the fourth and third models, the former containing the main effect of A and the latter not.
In the case of testing main effects, both approaches yield identical results, regardless of how many fac-
tors are included in the design. The same cannot be said when testing interactions in designs involv-
ing three or more factors. In such cases, one must distinguish between two approaches.

For one of these approaches, a marginal test of the interaction under examination, the researcher
compares the G2 statistic for a model in which only the interaction in question and the requisite lower-
order terms are included to the G2 statistic for a model that includes the same lower-order terms but not
the interaction under examination. This test is conducted as if all factors not included in the interaction
do not exist in the design, and the test is performed as if the data table had been collapsed across all other
factors. For example, consider testing the hypothesis that the AB interaction is zero in a design that
includes three factors, A, B, and C. The marginal test statistic would be calculated as

G2
AB

= G2
μ +αA+αB

– G2
μ +αA+αB +γ

AB
,

comparing the goodness of fit of models that do not include Factor C.
The other approach, a partial test of the interaction, includes all of the factors in the design. The par-

tial test is conducted by comparing the G2 of the model in which all interactions of the same order as
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the one of interest are included, to the G2 of the model in which all interactions of the same order as the
one of interest, but not the interaction of interest itself, are included, or 

G2
AB. C

= G2
μ +αA+αB +αC+γAC +γBC

– G2
μ +αA+αB +αC+γAB+γAC +γBC

,

where G2
AB C

represents the likelihood ratio test of the AB interaction from which Factor C has been par-
tialled,γΑB. C

. 
Partial tests should always be conducted and reported, because marginal tests may fall prey to what

is known as Simpson’s paradox, resulting in erroneous conclusions due to the confounding influence
of other variables that the marginal tests exclude from the analysis. As an example, consider again the
design that includes Factors A, B, and C, and assume that each factor has two levels and that the data
are as shown in Figure 18.3. In level C

1
, the odds of falling in level A

1
versus level A

2
equal 0.4286 for

level B
1

and 0.8182 for level B
2
, and similarly in level C

2
, the corresponding odds equal 2.3333 for level

B
1
and 9 for level B

2
; that is, in both levels of C, the odds are greater in level B

2
than in level B

1
, and they

are statistically significantly so. Yet, if one collapsed the table across levels of C, one would find that the
corresponding odds in level B

1
, 1.7273, are greater than the odds in level B

2
, 1.1739, and statistically

significantly so! Thus, one would draw a conclusion from the collapsed, marginal table that is oppo-
site those found in the separate levels of variable C; this is an instance of Simpson’s paradox.

The explanation for such an occurrence is that variable C is associated with both variables A and B,
and this so-called third-variable influence can result in a spurious result if it is not accounted for.
When the odds are compared in the separate levels of variable C, this variable’s influence is controlled,
or partialled, and the relationship between A and B thus cannot be due to variations in C. Because it is
desirable that our conclusions be unconfounded, the tests reported in log-linear analysis should
examine partialled effects.

10. Computer Programs 

Researchers should specify which statistical computer program was used to perform the analyses and
which default and custom options were selected, in order to indicate how estimates and test statistics

B1 B2

A1 30 180

C1

A2 70 220

B1 B2

A1 350 90

C2

A2 150 10

Figure 18.3 Example Illustrating Simpson’s Paradox.
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were obtained. Most statistical packages perform log-linear analysis, with the notable exception of
Minitab, and some programs offer several routines that do so. For instance, the SPSS routines GEN-
LOG, HILOGLINEAR, and LOGLINEAR can all be used in this endeavor (although LOGLINEAR can
only be accessed through a syntax window), and in SAS both PROC CATMOD and PROC GENMOD
can yield log-linear analyses. 

If a researcher is interested in testing partialled effects, then the procedure to use in SPSS is 
HILOGLINEAR, selecting “Model Selection” from the Analyze > Loglinear tabs and choosing the
“Association Table” option with a default saturated model. SPSS adds a constant, denoted delta and
equal to 0.5, to all cells when performing this analysis, and the researcher is encouraged to set delta
equal to a very small number, say 0.00001. These options should be delineated in one’s manuscript. To
test partialled effects in SAS, PROC GENMOD should be used. A saturated model should be specified
with a Poisson distribution, a LOG link, and a TYPE3 analysis should be requested. Again, these spec-
ifications should be indicated in the manuscript.

11. Planned and Post Hoc Contrasts 

In analysis of variance, a statistically significant F statistic whose numerator degrees of freedom exceed
unity leads one to infer only that the complex null hypothesis under examination is false—that the
means, for example, differ but not in precisely what way. Similarly, a statistically significant G2 test of
a main effect or interaction with degrees of freedom of two or more does not indicate the manner in
which odds ratios differ from unity or from one another. In both kinds of analyses, planned or post
hoc comparisons are examined to provide more detailed information regarding the model parameters
and, consequently, about the research questions that the analysis is intended to address. 

Analogous to analysis of variance interaction contrasts, written in terms of differences of mean dif-
ferences, contrasts in log-linear analysis constructed to examine interactions among design factors are
written in terms of differences in logarithms of population proportions and are tested in terms of cor-
responding sample statistics. As an example, say a design contains two factors, Factor A having two
levels and Factor B having three levels. Then the complex null hypothesis would be written as H

0
: γ

AB

= 0. This hypothesis is equivalent to H
0
: γ

(1,2)(1,2)
=γ

(1,2)(1,3)
=γ

(1,2)(2,3)
= 0, where the first pair of subscript

values indicates that both levels of Factor A are involved in the interaction contrast, and the second
pair of values indicate that particular levels of Factor B are involved. For example, we would write the
first of these interactions as

γ
(1,2)(1,2)

= (ln p
A1B1

– p
A1B2

) – (ln p
A2B1

– ln p
A2B2

).

It has been shown (Gart & Zweifel, 1967) that this interaction is best estimated in terms of sample cell
frequencies as 

γÎ
(1,2)(1,2)

= ln(f
A1B1

+ .5) – ln(f
A1B2

+ .5) – [ln(f
A2B1

+ .5) – ln(f
A2B2

+ .5)],

and that the variance of this contrast is best estimated as 

According to Goodman (1964), in its most general form the omnibus null hypothesis is equivalent to
writing that all linear combinations of tetrad interaction contrasts are equal to zero. 

σ 2
γÎ(1,2)(1,2)

= 1 + 1 + 1 + 1 .
f
A1B1

+ .5 f
A1B2

+ .5 f
A2B1

+ .5 f
A2B2

+ .5
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Most commonly, interaction contrasts are most interpretable when they involve a fourfold table.
Consider again the data presented in Figure 18.3. The contrast that would be used to test the partialled
AB interaction would be written as 

γÎ
AB. C 

= 1 [γÎ
(1,2)(1,2)(1)

+ γÎ
(1,2)(1,2)(2)

]
2

= 1 [ln(30.5) – ln(180.5) – ln(70.5) + ln(220.5) + ln(350.5) – ln(90.5) 
2

– ln(150.5) + ln(10.5)]

= 1 [(–0.6377) + (–1.3086)]
2

= –0.9731

The variance of this contrast would be calculated as 

σ 2
γÎ
AB. C

= 1 [σ 2
γÎ
(1,2)(1,2)(1)

+ σ 2
γÎ
(1,2)(1,2)(2)

] = 0.0432,
4

and the test of this interaction, which is asymptotically normally distributed, would equal 

Standard multiple comparison procedures can be applied to tests of log-linear contrasts. Goodman
(1964) showed that Scheffé’s method is applicable, with the associated contrast tests having apprecia-
bly lower power than tests of the same contrasts using other multiple contrast procedures such as the
planned contrast methods due to Dunn, Holm, or Shaffer. Dunn’s procedure provides less power
than the Holm sequentially rejective method, which in turn has lower power than the improved
sequentially rejective method due to Shaffer. Except in those cases for which all but one of the factors
possess two levels, the Shaffer method is much more difficult to apply than the Holm procedure, and
so in general one would do best to rely on the Holm method to control Type I error rate. Regardless of
choice of multiple comparison procedure, interpretable log-odds ratios should be tested and
reported.

12. Sparseness 

Traditionally, and correctly, concern has been expressed about the adequacy of the chi-square distri-
bution to approximate tail probabilities of statistics when sample sizes are not large. Over the last 70
years, a number of suggestions have been offered regarding the minimum expected cell frequencies
required for the approximation to be reasonably good (with suggested minima ranging between 1 and
20). More recently, however, researchers have found that both the magnitude of the expected fre-
quencies and the ratio of total sample size to the number of cells involved in the interaction under
study seem to relate to the adequacy of the approximation to the distribution of either the Pearson chi-
square or the likelihood ratio statistics in sparse tables (i.e., those in which there are a number of cells
with small frequencies). For instance, Agresti and Yang (1987) suggested that the chi-square approx-
imation to the distribution of the likelihood ratio statistic performs poorly when testing the fit of a 
log-linear model when tables have cells with small expected frequencies, and that the chi-square

z γÎ
AB. C

= –0.9731 = –4.6816.
√0.0432
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approximation to the distribution of the Pearson statistic is adequate when N � 10�—
K, where N is the

total sample size and K is the number of cells in the table. When testing hypotheses regarding partialled
effects via subtraction of likelihood ratio statistics, however, these authors found that the chi-square
distribution worked well in an r × c × k table in approximating the distribution of the likelihood sta-
tistic for partialled tests when N > 5[max(rc, rk, ck)]. On the other hand, the chi-square approxima-
tion to the distribution of the difference in Pearson fit statistics was inadequate throughout. The
results also showed that adding a constant to all cell frequencies, typically 0.5, made both the Pearson
and likelihood ratio statistics overly conservative for larger tables in testing both the fit of the log-
linear model and the statistical significance of partialled effects (recall, however, that adding 0.5 to cell
frequencies in the estimation of log-odds ratios and their variances yields unbiased estimators).
Authors should comment on the likely adequacy of the chi-square approximation when testing the fit
of the log-linear model, and they should note whether a constant has been added to cell frequencies in
calculating the test statistics.

13. Power Analysis and Measures of Effect Size 

In addition to reporting the results of statistical tests of parameters of interest, an assessment of the
substantive importance of the design factors should be provided. There are a number of such meas-
ures available, but it might be most useful to provide measures that are directly analogous to the more
familiar measures of effect size used to describe results of an analysis of variance or a multiple regres-
sion analysis. When assessing the importance of an effect in analysis of variance, the measure summa-
rizing the size of mean differences among two or more groups is η2, the ratio of the between-group and
total variances. When assessing the strength of the relation between two variables, one often uses
Pearson’s correlation coefficient, and the natural extension to the relation between a set of predictors
and a dependent variable yields the squared multiple correlation coefficient, R2. These measures have
analogs in log-linear analysis. Indeed, the measures in log-linear analysis have the same use in calcu-
lating prospective power of a test as do their counterparts in analysis of variance, so that the results of
the power calculation can be reported in the manuscript.

The underlying conceptualization of the measures of effect size can be presented in terms of the
Pearson chi-square statistic and the measure of the effect size for a contingency table, Cramer’s V,
whereby χ2 = N V2. The measure analogous to η2 can be defined similarly in terms of the likelihood
ratio statistic, namely, G2 = N ⎣2 Σ pÎ

1k
(ln(pÎ

1k
/ pÎ

0k
)⎦ = NηÎ2, where pÎ

1k
is the observed value of a cell pro-

portion and pÎ
0k

is the value of the cell proportion specified under the truth of the null hypothesis.
Clearly, the easiest way to calculate this effect size measure is to divide the G2 test of a factor by N.

In similar fashion, a measure analogous to the Pearson contingency coefficient can be obtained
from the same relationship for a four-fold table. More particularly, the specific relationship between
a one-degree of freedom χ2 variate and the square of a standard normal variate is χ2

1
= z2 = Nφ 2, where

φ is the Pearson contingency coefficient, and z = γÎ / σγÎ. From this, an analog to φ is given by 

These measures of effect size relate in a natural way to power calculations, allowing a researcher to cal-
culate the sample size required to detect an effect of a particular magnitude with sufficient power. In
the case of the test of a main effect or interaction via G2, one would need to specify the true probabili-
ties in each cell of the design, p

1k
, and the probabilities expected in each cell under the null hypothesis,

p
0k

, resulting in a noncentrality parameter λ where 

φγ =
ln[(p

11
p

22
) / (p

21
p
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� 1 + 1 + 1 + 1
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λ = N ⎣2Σp
1k

ln(p
1k

/ p
0k

)⎦ .

Similarly, when performing a power analysis for a test of a log-odds ratio in a fourfold table, one would
calculate λ as 

These parameters would be used to perform the power analysis using a computer program such as
G*power or NCSSCALC.

14. Model Performance Linked to Theory 

The factors of interest are originally conceived as theoretical constructs that represent broad ideas and
definitions about what underlies observable outcomes. These constructs are not themselves observ-
able, but are inventions that define the researcher’s understanding. The choice of specific variables
moves the study from theory to practice and the definitions of mutually exclusive and exhaustive cat-
egories for each of the variables gives full operational form to the study. Log-linear models posit rela-
tions among the variables. When models do not fit well with the observations it is because terms are
absent from the model that would have changed the expectations for cell frequencies. The relative
importance of missing terms can be examined by determining how the addition of a term changes the
fit of a model. These salient terms indicate operational variable relations that translate into relations
among theoretical constructs. Researchers should describe both model performance and what this
suggests about the factors of interest. This link between the outcomes of the study and theoretical
understanding can be strengthened through reference to similar outcomes in other studies, but is
restricted in a single study by both sampling and ecological considerations, primarily because of the
inherent specificity that must be associated with the operational form of a single study.

15. Discussion of Hypotheses, Outcomes, and Expectations 

The discussion about study findings will differ for exploratory and confirmatory studies. In
exploratory studies, most or all models will be tested and the emphasis will be on terms that most con-
tribute to fit of the model. A hypothesis of model fit will be rejected when these terms are absent from
the model, thus suggesting a specific interaction among some or all of the variables. The exploratory
nature of the study compels the researcher to discuss both statistically significant and non-significant
contributions to the model. Statistical significance is a function of sample size and the reliability of the
categorizations, so it is important for the researcher to also consider effect size (i.e., strength of associ-
ations) when discussing the results (see Desideratum 13). Statistically non-significant terms in model
fit do not confirm the lack of relations, nor do statistically significant terms establish importance with-
out the assessment of the size of relations. In confirmatory studies the focus is on specific models that
highlight relations of interest. The researcher should test those models that highlight relations of inter-
est and should discuss test outcomes regardless of whether results are anticipated or anomalous. In the
case of anomalies, the researcher should provide further discussion and suggestions for future studies
that would address the theoretical problems posed by the findings. For all relations of a higher order
than two factors, the researcher should be careful to distinguish among non- contingent and contin-
gent relations (see Desideratum 9).

Note 

1 It might seem that there are other models possible, such as lnF
ij

= μ + α
A

+ γ
AB

, but log-linear models are hierarchical
in nature, so that an interaction term such as γ

AB
cannot enter a model unless all lower level terms, here both main

effects, are also entered, because an interaction cannot be defined without reference to the associated main effects.
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19
Meta-Analysis 

S. Natasha Beretvas

Meta-analysis entails a set of analytical techniques designed to synthesize findings from studies inves-
tigating similar research questions. While meta-analysis includes narrative integration of results, the
current chapter will focus only on quantitative meta-analysis. Meta-analysis permits summary of
studies’ results and is designed for scenarios in which the primary studies’ raw data are not available.
The meta-analytic process involves summarizing the results of each study using an effect size (ES), cal-
culating an overall average across studies of the resulting ESs, and exploring study- and sample-related
sources of possible heterogeneity in the ESs. The overall average ES provides a single best estimate of
the overall effect of interest to the meta-analyst. Meta-analysis can be used to explore possible differ-
ences in ESs as a function of study or sample characteristics. In the seminal article in which the term
meta-analysis was coined, Smith and Glass used meta-analysis to summarize results from studies that
had assessed the effectiveness of psychotherapy (1977). Thus, treatment effectiveness results provided
the first type of ES to be synthesized using meta-analysis. Since the 1970s, the field of meta-analysis has
grown to include methods for conducting the synthesis of other types of ESs including correlations,
transformations of odds-ratios, validity coefficients, reliability coefficients, and so forth. 

Many textbooks provide detailed descriptions of the meta-analytic process. Texts by Lipsey and
Wilson (2001) and Rosenthal (1991) provide excellent introductions to meta-analysis. Hunter and
Schmidt’s (1990) textbook provides the seminal resource for meta-analysts interested in correcting
ESs for artifacts (see Desideratum 11). Books by Cooper and Hedges (1994) and Hedges and Olkin
(1985) are recommended for readers with more technical expertise. Meta-analysts interested in a text
devoted to description of ways to assess and correct for publication bias should refer to Rothstein,
Sutton, and Borenstein (2005). Desiderata for studies that involve use of meta-analysis are contained
in Table 19.1 and thereafter they are discussed in further detail.

1. Theoretical Framework and Narrative Synthesis

As with any manuscript, a summary of past research must justify the selection of the study’s research
question. Similarly, a meta-analysis must be prefaced by a narrative synthesis summarizing results
found in previous studies that are to be integrated in the meta-analysis. The narrative synthesis must
clarify the specific research question associated with the effect size (ES) that is being synthesized. The
narrative synthesis summarizes in words what previous research has found in terms of the patterns of
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results relevant to the ES of interest. While many studies might investigate the same basic research
question, the studies can be distinguished by various sample and study composition descriptors.
Examples of descriptors include demographic variables such as gender, ethnicity and age, and charac-
teristics of the study’s design such as the type and duration of an intervention, the outcome measure
used, the research context, and the experimental design. The review of previous literature should clar-
ify and identify the importance and relevance of these descriptors to the ES of interest. This then lays
the groundwork for investigation of relations between these descriptors (termed moderators) and the
ES in the ensuing meta-analysis.

2. Effect Size

The fundamental unit of any meta-analysis is the effect size (ES). An ES provides a parsimonious
descriptor containing information about the direction and magnitude of the results of a study. The
most commonly used meta-analytic ESs include the standardized mean difference, the correlation
(representing the relation between two variables), and the odds ratio. A meta-analytic ES describes the
relation between a pair of variables. Operationalization of each of the two variables should be clarified

Table 19.1 Desiderata for Meta-Analysis

Desideratum Manuscript

Section(s)*

1. A theoretical framework is provided that supports the investigation of the effect size (ES) of interest I

and includes a narrative synthesis of previous findings.

2. Type of ES of interest in the study is specifically detailed (e.g., correlation, standardized mean I, M

difference).

3. Databases searched and keywords used to find relevant studies are listed, as well as criteria for M

deciding whether to include a study in the meta-analysis. 

4. Formulae used to calculate ESs are provided or referenced, and any transformations used (e.g., to M

normalize or stabilize ES sampling distributions) are made explicit.

5. The coding that is used to categorize study and sample descriptors is provided. M

6. Estimates are provided that describe the inter-rater reliability of the information coded in each M, R

study.

7. If study quality is assessed, a description is provided detailing how it is assessed and how study M

quality is incorporated into the meta-analysis.

8. For weighted analyses, the type of weights used is provided. M

9. Methods used to handle within-study ES dependence (e.g., multiple ESs per study) are described. M

10. Methods used to access, assess, and handle missing data are detailed. M

11. If relevant, the method used to correct for artifacts is described. M, R

12. Homogeneity of ESs is assessed. M, R

13. Statistics describing the resulting meta-analytic dataset that was gathered and including pooled R

estimates of the effect size of interest are provided along with associated standard errors (and/or 

confidence intervals).

14. Inferential statistics describing the relation between the study and sample descriptors and the R

effect size are presented.

15. Interpretation is offered describing the practical significance of the ES magnitude and direction D

and the relation between moderators and the ES.

* Note : I = Introduction, M = Method, R = Results, D = Discussion
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and justified. For example, if student achievement is one of the pair of variables of interest in a meta-
analysis then the sorts of test scores that qualify as student achievement should be clarified.
Description of the research question of interest in the meta-analysis should clarify the ES being inves-
tigated both in terms of the statistical type as well as the operationalization of each of the relevant two
variables.

3. Study Inclusion Criteria

The Introduction (see Desiderata 1 and 2) should have clarified the components necessary for decid-
ing to include a study’s results in the meta-analysis. A section in the Methods section of a meta-
analysis must detail how the relevant studies and results were found. The databases (e.g., PsycInfo,
ERIC) that were searched, the types of studies (e.g., peer-reviewed publications, dissertations, confer-
ence presentations) and the keywords used must be identified. Any additional means used for finding
relevant studies that were not initially identified should also be described (e.g., using the References
section in studies that had been identified in the database search). In addition to emphasizing the
acceptable operationalizations of the constructs relevant to the ES, the population of interest should
be described. For example, a researcher might solely be interested in an ES for adults and thus 
data would be excluded from any study that had investigated the relevant variables for adolescent
respondents. 

Meta-analysts must also decide on the types of study designs that qualify for inclusion. Some meta-
analysts include only results from studies employing purely experimental designs while others also
include quasi-experimental studies’ results. Some studies necessitate the use of single subject designs
for which there is still controversy in terms of how to meta-analytically synthesize the results. If a more
general inclusion strategy is used, then meta-analysts should code the relevant design features and
summarize descriptively or inferentially the potential differences in resulting ESs (see Desiderata 13 
and 14). 

4. Calculation of Effect Sizes 

The (statistical) type of ES being synthesized should have been clarified in the Introduction (see
Desideratum 2). Results reported in the primary studies being synthesized are not all in the same for-
mat. For example, a meta-analyst might be interested in synthesizing a treatment’s effectiveness using
a summary of standardized mean differences across studies. Some studies might provide the treat-
ment and control groups’ means and standard deviations for the relevant outcome. Other studies
might instead provide the results of an independent samples t-test comparing the treatment and con-
trol groups on the outcome score. Results in both formats can be converted into a standardized mean
difference ES metric. Authors should clarify any conversion formulas they use to convert studies’
results into a common ES metric. 

In addition, some estimators of the most commonly used ES (the standardized mean difference)
have been found to be biased. There are a number of ways that this ES is calculated (including, most
commonly, Cohen’s d, Glass’s Δ, and Hedges’ g). The meta-analyst must clarify and justify which esti-
mate of the standardized mean difference is being used. 

Sampling distributions of most of the typical untransformed ESs (e.g., standardized mean differ-
ence, correlation, odds ratio) have been found to be non-normal. One of the purposes of quantitative
meta-analysis is to use statistical tests of the ES and its relation with sample and study descriptors.
Thus, it is important to use the transformations that normalize (and stabilize the variances) of the
sampling distributions of these ESs. Meta-analysts should detail the formulas that are used to trans-
form the resulting ESs estimates for ensuing statistical analyses. 
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5. Coding of Study and Sample Descriptors 

A host of variables typically distinguish the studies and samples being synthesized and might be related
to the resulting ESs. Sources of the possible heterogeneity in ESs across studies can and should be
explored using these variables. When gathering primary study data to be used for calculating the ESs,
meta-analysts should also gather information associated with the samples in each study. Sample size
is an essential variable that must be coded as it provides information about the precision of each
study’s ES and can be used as a weight in resulting ES analyses (see Desideratum 8). Demographic
information (such as age, gender, and ethnicity composition of the sample) can also be coded and
used in the meta-analysis. Characteristics of each of the two variables whose relation is being synthe-
sized should also be coded and captured. For example, in a study summarizing a family-based treat-
ment’s effectiveness in reducing internalizing disorders, the meta-analyst might have multiple
constructs such as depression and anxiety that qualify as internalizing disorders. Each type of outcome
could be coded to explore possible differences in the treatment’s effectiveness for the more specific
kinds of internalizing disorders. This can lead to multiple ES estimates being gathered per study and
thus some dependence that must be handled (see Desideratum 9). There might also be characteristics
of the implementation of the treatment that distinguish the primary studies and define the resulting
ESs. In the current internalizing disorders example, interventions might be designed to involve both
parents and children or they might be designed only for parents. Thus, categories distinguishing inter-
ventions could also be coded and collected. In addition, and specifically for intervention effectiveness
meta-analyses, some studies might report results for more than one intervention. As with a study
reporting multiple outcomes, the dependence resulting from multiple ESs per study needs to be
appropriately handled (see Desideratum 9). 

Facets of a study’s design can also be gathered and included in the meta-analysis (as described in
Desideratum 14). As mentioned in Desideratum 3, a study’s design should be coded as it can later be
used to explore potential differences in ESs resulting from differing experimental designs. Some meta-
analysts code “study quality” and evaluate its relation to the ES values. Some meta-analysts correct
their ESs for artifacts. They correct their ESs to match what the ESs would be for a perfect study that
used an infinitely large sample with access to perfectly reliable and valid test scores. If interested in cor-
recting for artifacts, the meta-analyst would gather relevant information including, for example, the
reliability of scores on the measures of interest (see Desideratum 11). Additional selection of study and
sample descriptors should be founded in the meta-analysts’ research questions in terms of what they
hypothesize might explain variability in ESs. 

Values for some of the descriptors might differ for samples within a study. Group sample size in a
meta-analysis of a treatment’s effectiveness (i.e., using the standardized mean difference ES to summa-
rize the difference in means between a treatment and control group) provides a simple example of a sam-
ple-level descriptor. Other descriptors might only vary across studies (e.g., whether the population being
assessed were college students). The coder must clarify the distinction between such sample-level
descriptors and study-level descriptors that differ across, but not within, studies. This information is
essential to inform selection of the analytic technique that best matches the data’s structure. 

One last piece of information about coding must also be provided. Unfortunately, the information
sought by meta-analysts is not always presented in the primary studies. It is important for meta-ana-
lysts to clarify how they attempted to gather this kind of missing data as well as to detail the methods
used to handle the missingness (see Desideratum 10).

6. Inter-Rater Reliability

Given the amount of information that needs to be gathered and coded in a meta-analysis, it is typical
to involve at least a couple of researchers as coders. It is thus important to provide a description of the
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reliability of the coding that was conducted. If data indicate that coding is not reliable, further coding
training should be conducted and consensus about each study’s codes must be reached. At the very
least, the average (median) percentage agreement for each variable should be reported in the meta-
analysis. Use of kappa, weighted kappa, or the intraclass correlation to provide additional measures of
inter-rater agreement is also encouraged (see Orwin, 1994, for additional details; see also Chapter 11,
this volume). While it would be optimal for at least two coders to code every study in the meta-analy-
sis, that sometimes is not feasible. If this is the case, then at least a reasonable proportion of studies
should be coded by at least two raters with sufficient justification provided for not having two raters
code all studies. Given a lack of complete agreement in the coding that is done by the two raters, the
meta-analyst must describe how differences were resolved and consensus reached through discussion
and possible respecification of codes used. 

7. Study Quality

Since the introduction of the term meta-analysis in the 1970s (Glass, 1976), researchers have argued
about how to handle differences in research designs’ quality when synthesizing studies’ results.
Researchers agree that, at the outset, meta-analysts must select and justify a research design quality cri-
terion for study inclusion. In addition, meta-analysts are encouraged to gather and code information
(see Desideratum 5) on a study’s design that might differentiate studies’ ES results. 

All sorts of factors might impact the quality of a study’s design and thus also affect the ES results.
Those factors include group selection and assignment, experimenter expectations (e.g., whether a
study is blinded), psychometric properties of measures, and many more. It is up to the researcher to
select the pool of possible design quality variables of relevance to the meta-analysis. Meta-analysts can
use the resulting variables descriptively or use them as moderating variables in ensuing analyses (see
Desiderata 13 and 14). 

8. Weights 

As with any consistent estimator, the precision of an ES estimate is greater when it is based on larger sam-
ple sizes. Thus, when pooling ES estimates, meta-analysts typically weight ESs by some function of their
associated sample sizes (see Desideratum 13). When testing models (see Desideratum 14) designed to
explore the variability in ESs using study and sample descriptors as moderators, meta-analysts frequently
estimate models involving these same N-based weights. In either scenario, more weight is assigned to
estimates based on larger sample sizes. The most commonly used weights are either the inverse of N or
the inverse of the variance of the ES of interest (which will also be a function of N). The weight entailing
the inverse of the conditional variance results in the most efficient pooled estimate of the population ES
and thus is recommended here. However, the meta-analyst should clarify the function of N that is being
used as the weight. 

9. Handling Dependent ESs 

Studies can frequently contribute multiple ESs to a meta-analysis. These multiple ESs can be consid-
ered dependent if they are based on the same sample. For example, in meta-analyses designed to assess
intervention effectiveness (i.e., comparing two groups on an outcome), a study can provide results
from comparing the two groups on each of multiple outcomes. Given that sufficient data are provided
in the study for each outcome that corresponds to the construct of meta-analytic focus (e.g., depres-
sion and anxiety might both qualify as internalizing outcomes), an ES can be calculated. The resulting
two standardized mean difference ESs are assumed dependent because the ESs describe a common
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sample. As important, the ESs are based on measures that are themselves correlated (e.g., depression
and anxiety).

Alternatively, in a meta-analysis of the correlation between two variables, multiple dependent ESs
would result from a study that provided correlation estimates between pairs of variables both of which
matched the constructs of interest. This study would qualify as a multiple-endpoint study. For example,
the meta-analyst might be interested in the correlation between internalizing disorders and academic
achievement. If a study reports the correlation between, say, depression and SAT scores and the correla-
tion between anxiety and SAT scores, then both correlations could be used to calculate ESs for later
analysis. The dependence would again originate in the use of a common sample for estimation of the 
two ESs. 

Another example of the source of possible dependence commonly found in meta-analyses of inter-
vention research might originate in a study reporting results from comparing three groups on an out-
come. This study would be an example of a multiple-treatment study. For example, a meta-analyst might
be interested in summarizing the effectiveness of parental involvement interventions for improving
internalizing disorders. A primary study might evaluate the internalizing disorders of three groups, two
of which involve differing implementations of a parental involvement treatment and a control group.
Two effect sizes could be calculated with one comparing the internalizing disorder scores of the first
intervention group with the control group. The second ES would describe the difference in internalizing
disorders between the second intervention group and control group. Given the involvement of the same
control group in the calculation of the two ESs, the ESs would be considered dependent. 

Meta-analysts have a choice of methods they can use to handle this dependence. Some choose to
ignore the dependence which will negatively impact the validity of the associated statistical conclu-
sions. Others might choose a single effect size to represent each study. For example, this “best” ES
might be based on the measure with the best psychometric functioning in each study. Still others
might calculate a weighted or simple average of each study’s multiple ESs and use the result as the sin-
gle ES for each study. While use of a single ES per study (selected via aggregation or deletion of the
study’s multiple ESs) does result in an analysis of independent ESs, it overly reduces the available data-
base thereby reducing ensuing statistical power. It also unnecessarily reduces the possible heterogene-
ity in the ESs.

Another option available for handling dependent ESs involves modeling the multivariate nature of
the dataset. Several options are available with use of generalized least squares (GLS) estimation proce-
dures being the most commonly used method. The primary problem with the use of multivariate mod-
eling to handle possible dependencies is that additional data must be gathered from the primary studies.
For example, to use GLS for synthesizing results from multiple-endpoint studies, meta-analysts must use
values for the correlation among scores on the multiple endpoints. However, it is possible to impute rea-
sonable values for this correlation and, despite their complexity, GLS methods have been found to work
very well for handling meta-analytic dependence. Meta-analysts are encouraged to consider using GLS
methods and are referred to Gleser and Olkin (1994) for further details. Regardless of the method used,
the meta-analyst must note the types of dependence that they encountered in their dataset. They must
also describe and justify their choice of method used to handle this dependence.

10. Methods for Handling Missing Data 

As with most social science datasets, analysis of meta-analytic datasets is also hampered by missing-
ness. This can result from primary studies not reporting sufficient statistical information permitting
calculation of an effect size. Alternatively, primary studies might not have gathered or not reported all
information of interest to the meta-analyst. For example, a meta-analyst might be interested in
explaining heterogeneity in an ES using a variable representing the percentage of participants who
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were female. Not every study will necessarily provide the percentage of participants who are female.
Meta-analysts need to detail and justify how they handled missing data. 

As with primary study analyses, there are a host of options that meta-analysts can use to handle
missingness. There are similar caveats associated with these techniques when used in a meta-analytic
context. For example, use of listwise or pairwise deletion still requires the assumption that data are
missing completely at random and frequently results in large reductions in data available for a meta-
analysis. These methods are not strongly recommended for use with meta-analytic data. Use of single-
value imputation is not uncommon in meta-analysis (e.g., using a mean of reported values’
information, or using a value that is reasonable based on patterns of values reported in other studies
with similar participants). Single-value imputation can be recommended although its use inappro-
priately reduces the associated variability. Use of multiple imputation (MI) is still rare in meta-analy-
sis but if it is used, then the missingness is assumed to be missing at random. Further methodological
research is needed to assess the functioning of MI, however, it would seem likely to function best as a
method for handling missing meta-analytic data. 

Meta-analysis is also criticized for another form of missingness peculiar to this technique, namely,
missingness due to publication bias. Publication bias is a term that refers to the scenario where only
studies with statistically significant results are reported (“published”) and only studies that are pub-
lished (i.e., available) can provide data that can be synthesized in a meta-analysis. Clearly this kind of
missingness will bias resulting ESs. There are many different ways researchers use to assess whether
publication bias might exist. Graphical displays, such as the funnel plot, are sometimes used. ES esti-
mates based on smaller sample sizes would be expected to vary more than for studies based on larger
sample sizes although the average ES should not depend on sample size. Funnel plots involve graph-
ing ES estimates against their associated sample sizes and provide a graphical way of assessing whether
this pattern holds. If the plots are skewed, then this can be inferred as evidence of publication bias. 

Indices are also available to assess potential publication bias. The fail-safe number, modifications
thereof and trim-and-fill estimates can also be used to evaluate the potential for publication bias. Last,
some meta-analysts use inferential tests of publication bias (e.g., Begg’s rank correlation test, Egger’s
regression, and funnel plot regression). The reader is strongly encouraged to refer to any of the meta-
analytic texts (especially Cooper & Hedges, 1994, and Rothstein et al., 2005) to find out further details
about these different procedures. Meta-analysts are encouraged to use multiple methods for assessing
publication bias including at least the trim-and-fill method and one of the regression methods despite
their limited statistical power. 

Meta-analysts should try to contact the primary study authors to obtain information that may not
have been reported. In the absence of this information and if evidence supports the possibility of pub-
lication bias, meta-analysts are encouraged to use any of the variety of methods available for correct-
ing for publication bias. In particular, the trim-and-fill correction and the use of weighted distribution
theory-based approaches are recommended. 

11. Correction for Artifacts 

Some meta-analysts use artifact correction procedures to correct for artifactual errors resulting from
imperfect research scenarios. These correction procedures are designed to correct resulting ES esti-
mates so that they represent results under ideal research scenarios (for example, they can be used to
correct an ES estimate so that it represents the ES estimate based on perfectly reliable and valid test
scores). The most commonly used correction is the correction for attenuation that can result from the
lack of perfect reliability of scores on social science measures. Other corrections include correction for
dichotomization of continuous variables and for restriction of range. Use of these procedures involves
obtaining additional information (e.g., internal consistency reliability estimates for the relevant 
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outcomes) to correct the relevant ES as well as its associated variance estimate. Use of artifact correc-
tion can also affect the sampling distributions assumed for the resulting ESs. Meta-analysts must spec-
ify which artifacts they might be correcting for and how. There is no consensus in the field about the
use of these artifact correction procedures. Given the difficulties encountered in terms of gathering
realistic values to calculate the corrections and their effects on the ESs’ sampling distributions, the
validity of the resulting corrections and of analyses conducted using the corrected ESs seems 
questionable. 

12. Homogeneity of ESs 

Meta-analysis is used to synthesize results from a multitude of studies designed to assess the same
research question. While replication is encouraged in research, most studies do not exactly mimic
each other. Studies tend to involve some subtle (or not so subtle) variation on a previous but similar
study. Samples from different populations might be used (e.g., adults versus adolescents or college
students, clinical versus non-clinical respondents, populations with different demographic informa-
tion). Different implementations of an intervention might be tested. Different measures of a related
but distinct construct might be investigated. This means that the resulting effect sizes might not come
from a single population (sampling distribution of effect size estimates) with a single true effect size.
Instead, it is more likely that while some of the variability in effect size estimates is due to sampling
error, some of the variability is also attributable to random effects. In other words, the estimates do not
come from a single population. 

Meta-analysts should test the heterogeneity of the effect size estimates they gather. Methodological
researchers have consistently supported use of the Q-test statistic designed to test the null hypothesis
of homogeneous ESs. If the variability in the effect sizes is found to be more than could be solely attrib-
uted to sampling error, then this affects the model that should be assumed when conducting ensuing
statistical analyses. Excess heterogeneity means that a random effects model should be assumed. If the
effect sizes can be assumed homogeneous, then a fixed-effects model can be assumed. A meta-analytic
researcher should clearly identify which model was assumed for all analyses including estimation of
both pooled estimates as well as for analyses designed to investigate sources of variability in effect size
estimates using the moderating variables detailed in Desideratum 5. 

13. Descriptive Statistics

Meta-analysts should describe the resulting data that were gathered. This includes the availability of
sample and study descriptors as well as information that could be used to calculate ESs. Some meta-
analysts provide a table listing each study and associated descriptive information (such as the sample
size underlying an ES as well as other study and sample descriptors as noted in Desideratum (5). This
table usually also provides every ES or an overall ES for each study (see Desideratum 9). All meta-ana-
lysts present ES estimates pooled across studies for each outcome of interest and usually for levels of
categorical moderating variables of interest. Along with all pooled estimates, associated standard error
estimates (and/or confidence interval) should be provided. The (random- or fixed-effects) model that
is assumed for the synthesis of estimates should already have been noted (see Desideratum 12). 

14. Inferential Statistics

Results summarizing the tests of relation between moderators (see Desideratum 5) and the ES should
be presented. Meta-analysts testing a number of moderating variables should consider use of
(weighted) multiple regression as a model for testing the concurrent inter-relations. Conducting a
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multitude of statistical tests can lead to inflated Type I error for meta-analytic data as with any other
kind of data. Controls such as the use of Bonferroni’s correction to the nominal alpha level should be
considered. Last, meta-analysts should appropriately model the meta-analytic data’s structure. For
example, in a meta-analysis involving multiple ES estimates per study, some of the moderators might
be sample-level descriptors while others might be at the study level. Multilevel modeling suitable for
use with meta-analytic data should be considered with this kind of clustered meta-analytic data. 

15. Practical Significance

As with any empirical study, detection of statistical significance (or non-significance) should be inter-
preted within a context. While some researchers might cite rules of thumb for cutoffs representing
small, moderate, and large effect sizes, interpretation of an effect size’s magnitude should be made in
the explicit context in which the effect size is calculated. For example, an ES estimate of 0.01 would
qualify to most researchers as minuscule. However, in a test of aspirin for reducing heart attacks an ES
estimate (R2) of 0.011 was deemed sufficiently large that the trial was prematurely halted to stop
“harming” placebo recipients who were not being given the aspirin (cited in Rosenthal, 1994). Thus,
rules of thumb for describing an effect’s size should be used with caution. Instead, the researcher
should consider the magnitude and direction of the ES estimates in the context in which they are being
assessed. Similarly, the strength (and direction) of the relation between the moderating variables and
the ES should be interpreted at a practical rather than solely a statistical significance level. 
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20
Multidimensional Scaling

Mark L. Davison,1 Cody S. Ding, and Se-Kang Kim

Multidimensional scaling (MDS) is a multivariate statistical method for estimating the scale values
along one or more continuous dimensions such that those dimensions account for proximity meas-
ures defined over pairs of objects. It has been used to study such things as dimensions underlying per-
ceptions of human speech, patterns of vocational/academic interests, and growth over time in reading
and math achievement. We will limit ourselves to discussion of analyses based on Euclidean distance
models. While this list is not exhaustive, there are three major applications of MDS which differ in the
nature of the objects, the proximity measure defined over those objects, and the purpose. In perception
studies, perhaps the most typical form of MDS, the objects are stimuli (e.g., speech samples), the prox-
imity measures are judgments about the similarity of stimulus pairs (e.g., a rating of similarity), and
the purpose is to identify the attributes (dimensions) along which stimuli are perceived to vary and
that account for the similarity judgments. In cross-sectional studies, the objects are (typically continu-
ous) variables measured at a single time point (e.g., score on a vocational interest scale). The proxim-
ity measure is an index of association defined over pairs of variables, such as a squared Euclidean
distance or correlation coefficient. The purpose of the analysis of these proximity measures is to iden-
tify dimensions that point toward one or more within-person patterns needed to account for the asso-
ciations among the variables. In longitudinal studies, which are a relatively recent extension of
cross-sectional studies, the objects are occasions, and thus the data consist of a single variable (e.g.,
math achievement) measured at several time points. The proximity measure is an index of association
among the occasions. The goal is to find patterns of growth, decay, or change that account for the asso-
ciations among the occasions.

Most applications of MDS are exploratory; that is, they are designed to uncover dimensions
accounting for the proximity data rather than test a priori hypotheses about dimensions that account
for the proximity data. There are constrained versions of MDS designed for fitting a priori hypothe-
ses, but not all of these constrained methods have well developed fit measures with which to evaluate
the dimensional hypotheses. The cross-sectional and longitudinal applications of MDS can serve to
generate hypotheses that will later be assessed for confirmation through methods discussed in other
chapters (e.g., structural equation modeling, hierarchical linear modeling). 

Kim, Frisby, and Davison (2004) described the application of MDS to cross-sectional data; Ding,
Davison, and Petersen (2005) described the application to longitudinal data; and Kim, Davison, and
Frisby (2007) discussed the translation of hypotheses generated by MDS into structural equation
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Table 20.1 Desiderata for Multidimensional Scaling

Desideratum Manuscript

Section(s)*

General

1. Describe the competing theories and prior research results leading to the study, including I

predictions about the dimensions or spatial configuration of stimuli needed to account for the data.

2. State the purpose to which MDS will be put; for example, investigate perceptual dimensions of I, M, R

stimuli, recover within-person patterns in cross-sectional data, or explore patterns of growth

and change in longitudinal data.

3. Describe the sample of respondents; describe and justify the population to which results may M

be generalized.

4. Describe the model of the proximity data. I, M, R

5. Describe the measures of fit that will be used to compare models or to decide on the R

dimensionality of the final solution.

6. Describe and, if possible, justify the rotation of the reported solution. M, R

Perception Studies

7. Describe the sample of stimuli; describe and justify the population of stimuli to which results M

can be generalized.

8. Describe the judgment task by which proximity judgments were obtained. M

9. Explain how missing data, if any, were handled. M, R

10. Describe stimulus measurements collected for purposes of empirically confirming or disconfirming M

potential interpretations of dimensions or spatial configurations.

11. Justify the final model selected, including the dimensionality of that model. R

12. Report the scale values of the final solution in tabular and/or graphical form. Explain and justify the R

interpretation of the dimensions or the spatial configuration of stimuli using additional 

analyses as needed.

Within-Person Patterns in Cross-Sectional Studies

13. Describe and justify the variables under study and the population of variables to which results M

can be generalized.

14. Explain how missing data, if any, were handled. M, R

15. Describe and justify the proximity measure (measure of association between pairs of variables) M, R

selected for the study. Report descriptive statistics on the variables and report the proximity matrix.

16. State and justify the model (if any) for the observed variables, the model for the proximity measures, M, R

the method of estimating the parameters in the model for the proximity measures, and the

fit measure(s).

17. Justify the proximity model selected, including the dimensionality of that model. R

18. Report the scale values of the final solution in tables or graphs. Explain and justify the interpretation R

of the dimensions or the spatial configuration of stimuli on which the final conclusions are based.

19. Justify MDS over alternative analyses. Report or discuss parallel results from methods related to M, R

MDS (e.g., Q-factor analysis, cluster analysis.).

Growth Patterns in Longitudinal Studies

20. Describe and justify the variable, the time points under study, and the population of time points M

to which results can be generalized.

21. Explain how missing data, if any, were handled. M, R

22. Describe and justify the proximity measure (measure of association between pairs of time points) M, R

selected for the study.
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models. More thorough treatments can be found in Borg and Groenen (2005), Cox and Cox (2001),
and Davison (1991). SAS and SPSS contain MDS programs (ALSCAL, Takane, Young, & deLeeuw,
1977; PROXSCAL, Commandeur & Heiser, 1993). Other programs include MULTISCALE (Ramsay,
1977), and SMALLEST SPACE ANALYSIS (Lingoes, 1989). 

In describing key methodological issues in MDS studies, we begin the table of desiderata and sub-
sequent elaborations by describing those common to all three application types (perception, cross-
sectional, longitudinal), followed by a discussion of issues specific to perceptual, cross-sectional, and
longitudinal applications.

1. Theory and Prior Research

While MDS is usually exploratory, a solid grounding of the study in theory and prior research is still
necessary. Existing theory is often insufficiently precise for purposes of specifying hypotheses to the
degree of precision required by confirmatory analyses, hence the need for exploration.

The theory and prior research leading to the current study need to be explained. Competing theo-
ries, if any, should be included in the explanation. The explanation should include any dimensions or
any spatial configuration suggested by that prior literature. The prior literature might be used to guide
the number of dimensions included and the substantive interpretation of the final solution. It might
also guide the selection of a respondent population or a variable population to be sampled. Further, it
might suggest additional data to be collected for the purpose of confirming interpretations of the
dimensions or the spatial configuration.

2. Purpose

In their write-up, authors need to explain the intended purpose for utilizing MDS. The stated purpose
will differ depending on whether MDS is being used to study perceptions of stimuli, variables collected
in a cross-sectional study, occasions in a longitudinal study, or some other entities. In perception
studies, the researcher often intends to recover dimensions accounting for the perceptual judgments
as well as a description of individual differences in the use of those dimensions. In cross-sectional
studies, the researcher is often interested in describing dimensions that account for within-person
variation, in which case, the researcher should so indicate. If the cross-sectional data are being col-
lected for some other purpose, that other purpose should be described. Likewise, longitudinal data are
often collected for the purpose of uncovering patterns of growth, decay, or change, and if so, that
intent should be stated. If the data are being collected for purposes of hypothesis generation, any sub-
sequently planned confirmatory analysis might also be described.

3. Sampling of Respondents 

The Methods section must include a description of the respondent population sampled and the 
sampling method used. This will determine the limits of generalizability with respect to respondents.

23. State and justify the model for the variable at each of the several time points, the model for the R

proximity measures, the method of estimating parameters in the model for the proximity

measures, and the fit measure(s).

24. Explain and justify the interpretation of the dimensions or the spatial configuration of stimuli on R

which the final conclusions are based.

* Note : I = Introduction, M = Methods, R = Results, D = Discussion



268 • Mark L. Davison, Cody S. Ding, and Se-Kang Kim

The description should include a discussion of important subsamples that might vary in their percep-
tions of stimuli, their patterns of scores on cross-sectional variables, or their growth trajectories in lon-
gitudinal studies. In perception studies for which individual differences in perception are a focus, the
subpopulations and the reasons for their inclusion may need particular attention. Selection of the
respondents may indirectly influence the selection of stimuli, variables, or occasions and any such
effects should be mentioned.

4. Model of Proximity Data 

The researcher needs to describe the model, or models if several were tried, for the proximity data.
This description should indicate whether the model is nonmetric and assumes that the proximity data
form an ordinal scale, metric and assumes that the data constitute an interval scale, or metric and
assumes that the data constitute a ratio scale. Individual differences parameters, if any, should be
described. The description should indicate whether the model assumes that the data are related to
Euclidean or non-Euclidean distances, and if Euclidean, whether Euclidean or squared Euclidean dis-
tances. Any constraints on parameter estimates should also be described. If models with varying num-
bers of dimensions were fitted to the data, the range of dimensionalities should be reported. 

Consider the two models below: 
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The first is a nonmetric model which assumes that the proximity datum (judged a dissimilarity) for
stimuli i and i� is a monotonically increasing function f of Euclidian distances between points for stim-
uli i and i�whose locations in a K-dimensional space are given by the coordinates x

ik
and x

i�k
respectively.

The second assumes that the proximity datum for person p is a weighted Euclidean distance function
with individual differences weights w

pk
representing individual differences in the salience of the per-

ceived dimensions. Inclusion of the monotone function in Equation (1) implies weaker, ordinal
assumptions about the proximity data, but the model does not accommodate individual differences in
the stimulus perceptual process. The model of Equation (2), however, makes stronger, ratio scale
assumptions about the data but allows for individual differences in the perceptual process through
inclusion of the weight parameter w

pk
. Models vary in several respects, such as their assumptions about

the measurement scale of the proximity data δ
ii�

and their assumptions about individual differences.
In cross-sectional or longitudinal applications, there may be two models, one for the variables from

which measures of association were computed and a second model for the measures of association
serving as proximity data. Ideally, the second model will be derived from and fully consistent with the
first, and both the assumptions embodied in the model of the raw data and the model of the proxim-
ity measures will be explained.

5. Fit and Dimensionality 

The various fit measures used to evaluate and compare solutions should be described. Criteria used to
evaluate those fit measures should also be described. For instance, Kruskal (1964a, 1964b) provided
guidelines for the least squares fit measure STRESS. A scree plot of the fit measure may also be used in
deciding the number of dimensions to retain. In most multidimensional scaling applications in which
global fit measures are employed, the number of dimensions to retain is the number at or above the
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elbow, not the number above the elbow as in factor analytic plots of eigenvalues. A distinctive “C” or
“U” shape of the two dimensional configuration can be an indication that only one dimension is really
needed to account for the data.

Because most authors have suggested that at least five stimuli are needed per dimension in order to
estimate scale values with satisfactory precision, the number of stimuli will place an upper limit on the
number of dimensions in the solution. Despite this guideline, some seemingly meaningful solutions
have been obtained with as few as three stimuli per dimension in cross-sectional and longitudinal
applications. Some computer programs print a warning if there are few stimuli per dimension and will
not compute a solution if there are too few.

Like most iterative algorithms, MDS algorithms may fail to reach an optimal solution for several
reasons, including local minima, solution degeneracy, or an inadequate number of iterations.
Researchers should familiarize themselves with these problems, methods for detecting such problems,
and methods for avoiding them. Obviously, non-optimal solutions should not be reported and steps
taken to avoid such problems should be described.

6. Rotation of the Solution 

Except in certain special cases, MDS solutions are subject to the same rotational indeterminacy as are
exploratory factor solutions. Unfortunately, there are no widely accepted algorithms for optimizing
the interpretability of the solution through rotation as in factor analysis. When interpreting the spa-
tial configuration of stimuli, the rotation may not matter. For instance, if the stimuli have a circular
configuration in two dimensions, that circular configuration is invariant with respect to rotation and,
consequently, the rotational indeterminacy poses no limitation. On the other hand, when interpret-
ing dimensions, the dimensional interpretation applies only to a particular rotation.

In some MDS models, most notably those based on the weighted Euclidean model, the rotation is
determinate except in certain special cases. When the solution is based on a model in which rotation
cannot be performed without loss of fit, this rotational determinacy should be noted.

When interpreting dimensions of the solution, rather than the more general spatial configuration
of the stimuli, the researcher needs to justify the chosen rotation or acknowledge its indeterminacy as
a limitation. Alternative dimensional interpretations corresponding to rotations of the solution need
to be recognized. In perceptual studies, the researcher may wish to employ an analysis based on an
individual differences model in which the rotation is generally determined by fit to the data in order
to avoid the rotational problem. 

7. Sampling of Stimuli in Perception Studies 

The Methods section must describe and justify the sample of stimuli included in the study. MDS
dimensions are those along which stimuli vary. In a study of occupational perceptions, for instance,
the resulting dimensions are likely to include a dimension of occupational safety only if the sample of
occupations includes both safe and dangerous occupations. The description should indicate whether
the sample of stimuli is considered fixed (i.e., all stimuli of interest) or random (i.e., only a sample of
stimuli of interest). Because the selection of stimuli can seriously influence the nature of dimensions,
possible effects of stimulus selection may need consideration in the Discussion section.

8. Proximity Judgment Task in Perception Studies 

In the most common form of perception studies, the respondent is shown a pair of stimuli and asked
to judge the similarity of the two stimuli. For instance, the respondent might be shown two stimuli and
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asked to rate them on 7-point scale ranging from highly similar to highly dissimilar. Rating scales, how-
ever, are not the only possible task. For instance, the respondent can be shown three stimuli and then,
from among the three stimuli, asked to select the two which are most alike and the two which are least
alike. Indirect judgment tasks can also be used. For instance, the researcher can briefly present pairs of
stimuli and then ask the respondent to indicate whether they were the same or different. The number
of times two stimuli are confused, that is, incorrectly identified as being the same, can be considered a
measure of their similarity. Whatever task is chosen, the researcher must describe the task and how
responses were scored to obtain a proximity measure for each possible pair. This description should
include the directions given to respondents or, at least, a summary of those directions. Because the
order of stimulus presentation, both within and across pairs, can potentially have an effect on judg-
ments, any steps taken to control order effects should be described. If the MDS analysis algorithm
assumes that, within the limits of random error, similarity is symmetric (i.e., the similarity of pair (A,
B) is the same as the similarity of (B, A) and that the order of presentation does not matter), the
researcher would need to describe any asymmetries in the data and the method of handling such
asymmetries.

9. Missing Data in Perception Studies 

As the number of stimuli increases, the number of stimulus pairs increases rapidly. If n is the 
number of stimuli, the number of stimulus pairs is n(n–1)/2. If the number of pairs is large, an 
incomplete data collection design can be employed to reduce the number of judgments by any one
respondent. For any one respondent then, some judgments will be missing by design. Such missing-
ness needs to be described, and its potential impact on the results should be discussed. Data may also
be missing not by design. This missingness should also be described along with any steps to handle the
missingness.

10. Additional Data in Perception Studies

Researchers often collect additional data to help confirm or disconfirm interpretations of dimensions.
For instance, if the researcher suspects that perceived salary may be a dimension considered by
respondents in making similarity judgments about occupations, the researcher may collect data on
the salaries of the various occupations. These additional data may be objective (e.g., mean salaries of
job incumbents) or subjective (e.g., perceived salary as rated by a sample of respondents). The
Methods section should include a description of any such variables collected for the purpose of poten-
tially confirming the interpretation of one or more MDS dimensions. 

11. Final Model in Perception Studies

Often, the analysis will include a comparison of several models. Almost all research includes a com-
parison of models of varying dimensionalities. It may include models with and without constraints on
scale values, models that do and do not include individual differences parameters, or models that are
metric and nonmetric. Generally, the models are compared in terms of parsimony, fit to the data,
interpretability of the dimensions, and replicability of dimensions across samples. All other attributes
being equal, a model is preferred if it contains fewer dimensions or freely estimated parameters 
(parsimony), better fit to the data (fit), dimensions all of which are substantively interpretable or an
interpretable spatial configuration of stimuli (interpretability), and dimensions or configurations
that appear in the solutions of several samples (replicability).
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12. Final Solution in Perception Studies

The scale values of the final solution should be reported in tabular form, graphical form, or both.
When the solution is interpreted in terms of the stimulus configuration (e.g., a circular formation),
graphical presentation is essential. Reported results should also include one or more fit measures. If an
individual differences algorithm has been employed, estimated individual differences parameters
should be reported in graphical or tabular form. If the sample size is large, however, these individual
differences results may be reported in summary form (e.g., means and standard deviations of esti-
mated individual differences parameters). 

Following the presentation of the solution itself, the Results section should include results of any
analyses that aid in the interpretation of the solution. Often these include various correlational analy-
ses. For instance, in our hypothetical study of job perceptions, the scale values along Dimension 1
might be correlated with the median salary associated with each job in an attempt to determine
whether Dimension 1 can reasonably be interpreted as reflecting salary. A cluster analysis of estimated
dimension scale values might reveal distinct groupings of occupations. While the interpretation of the
solution is ultimately subjective, it can be aided by additional data and analyses.

13. Variables in Cross-Sectional Studies 

MDS can be used to study stimulus perceptions as described above, but it can also be used to study pat-
terns of scores in cross-sectional data. A pattern is defined over a set of variables. Changing the vari-
able set can alter the score patterns in the data. Therefore, the Methods section must describe the
variables included in the set of measures analyzed and explain the rationale for their selection. Often
the variables are scales which constitute an assessment inventory or test battery. The scales are com-
monly administered together and are often reported as a profile of scores in clinical, counseling, edu-
cational, or industrial/organizational psychology (e.g., the scales in an interest inventory or the scales
in an intelligence test battery).

In some cases, the possible effects of changing the composition of the variable set will need to be dis-
cussed. Where the composition of the variable set is an issue, the researcher may want to empirically
study the effect of adding or deleting variables. For instance, a researcher might examine the stability
of Big Five personality scale patterns across two personality inventories, one of which included only
Big Five personality scales and one of which included Big Five scales embedded in a larger set. If the
variables have been sampled from a larger domain, the researcher will need to describe the larger
domain from which the variables originate and discuss the generalizability of patterns to variable sets
in the larger domain. 

14. Missing Data in Cross-Sectional Studies 

For any given person, data on some variables might be missing. The MDS proximity measures can
often be computed within existing computer packages (e.g., SAS, SPSS), and these packages often
include listwise and pairwise options for handling missing data. Such options can be justified if the
data are missing completely at random (MCAR). When the MCAR assumption is satisfied, pairwise
deletion uses larger samples for computing the results and therefore yields sample estimates of prox-
imity measures with smaller standard errors. When the sample size is large, however, listwise deletion
should yield proximity measures with sufficiently small standard errors and will ensure that every
proximity measure is computed on the same sample of data.

If the MCAR assumption is not defensible, however, the researcher may want to employ some form
of data imputation (usually multiple imputation), before the proximity measures are computed.
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Existing statistical packages typically offer several imputation options. The option chosen should be
described and justified. 

15. Proximity Measure in Cross-Sectional Studies 

Even casual inspection of the proximity module in any of the common statistical packages will reveal
that there are many statistical measures of association that might be employed. The correlation and
covariance statistics are probably the two most widely known in the social, behavioral, and education
sciences. 

The choice of proximity measure must be justified. In our opinion, the strongest basis for justifica-
tion begins with a model of the raw data from which a proximity measure can be derived. An example
of such a model is given in Equation (5).

In MDS, one plausible proximity measure is the squared Euclidean distance, which can be com-
puted from the raw data for variable pair (v, v ′) as follows: 

δ 2
vv�

= 
�

p
(y

pv
– y

pv�
)2

.
(3)

P

In words, the squared Euclidean distance measure of proximity for variables v and v� is the squared
difference between the score of person p (p = 1, …, P) on variable v and v� averaged across all persons
(however, SPSS computes the sum over all persons, not the average). 

The most well-known measure of association, the Pearson product moment correlation coefficient,
is closely related to the squared Euclidean distance. If the variables are in z-score form (i.e., variables
z

pv
and z

pv�
), then the squared Euclidean distance proximity measure has the following form: 

δ 2
vv�

= 2 – 2r
vv�

. (4)

Equation (4) says that, when the squared Euclidean distance proximity measure is computed from
standardized variables, the squared Euclidean distance proximity measure is linearly but inversely
related to the correlation coefficient. In MDS, this means that an MDS of correlations among variables
will yield exactly the same solution as an analysis of squared Euclidean distances computed from vari-
ables in standardized form if two conditions hold: (1) the correlations are treated as similarities
whereas the squared Euclidean distances are treated as dissimilarities, and (2) both proximity meas-
ures are treated as ordinal or both are treated as interval level data points. 

In our opinion, unless there is very good reason to do otherwise, researchers should base analyses of
cross-sectional data on squared Euclidean distances or correlation coefficients, at least if the
researcher intends to analyze a variables-by-variables matrix rather than a persons-by-persons
matrix. Either of these measures can be justified from a plausible, explicit model of the original vari-
ables, Y

v
. That model is described in the next section. An explicit model of the original variables can

not only serve as the basis for justification of a proximity measure, but also it can enrich the interpre-
tation of the resulting MDS dimensions. A table of proximity measures should be reported in the
results section to facilitate later re-analysis of the data and meta-analysis.

16. Model of the Observed Variable in Cross-Sectional Studies 

In cross-sectional applications of MDS, the phrase “model of the data” can mean one of two things: a
model for the original variables Y

pv
or a model of the proximity measure. In this section, we are 

primarily concerned about a model of the original variables Y
pv

, but in some cases the model of the
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original variables can be used to derive a model for the proximity measure. If the researcher has a
model for the original data, the model should be stated. The model constitutes a statement of the
assumptions on which the analysis is based. If there is no such model, and frequently there has not
been one in cross-sectional applications, then the conditions under which the analysis is appropriate
are unstated, seemingly unknown, and impossible to evaluate. Without such a model, there is no for-
mal connection between the resulting MDS scale values and the original data, thus precluding formal
explanations of the original variables in terms of the MDS solution.

One possible model from which a proximity measure can be derived is the Profile Analysis via
Multidimensional Scaling (PAMS) model: 

y
pv

= c
p

+ �k
w

pk
x

vk
+ e

pv
(5)

where y
pv

is the observed score of person p (p = 1, …, P) on variable v (v = 1, …, V), which represents the
element in row p column v of the data matrix; cp is a level parameter which indexes the overall height

of person p’s profile, c
p

=
�

v
y

pv

V  
; the scale values x

vk
along dimension k constitute a row vector x

k
of 

contrast coefficients that depict a pattern of scores; w
pk

is a weight for person p on dimension k that
indexes the degree of match between the pattern of person p’s observed scores and the pattern of the
scale values in vector x

k
; and e

pv
is an error term. In essence, the PAMS model in Equation (5) repre-

sents each person’s row vector of data as a linear combination of the patterns x
k
represented as vectors

of MDS scale values: 

y
p

= c
p
1 + �k

+ w
pk

x
k
+ e

p
(6)

where 1 is a row vector of 1’s and e
p

is a vector of error terms for person p. Readers familiar with factor
analysis will recognize this as a linear model similar to that in factor analysis except that it includes an
intercept term. In words, Equation (6) states that each person’s row of data is a linear combination of
pattern vectors x

k
. While multidimensional models including a person-specific intercept have long

existed in the scaling literature, factor models with a random coefficient intercept are a more recent
development.

Given appropriate assumptions (Kim et al., 2007) and if computed from the raw data according to
Equation (3), the squared Euclidean distance proximity measure for each variable pair will have the
following form: 

δ 2
vv�

= �k
(x

vk
– x

vk�
)2 + 2σ2 = d2

vv�
+ 2σ2 (7)

where σ2 is the variance of the errors in Equation (5). Hence, the proximity measures are a squared
Euclidean distance function of parameters x

vk
in the model; a MDS of such proximity measures can be

used to estimate the parameters; and the scale values in the MDS will constitute estimates of those
parameters. Having estimated the parameters x

vk
through MDS, one can use the scale value estimates

and regression to estimate the individual differences parameters w
pk

and c
p
.

17. Proximity Model and Dimensionality in Cross-Sectional Studies 

One must decide whether to consider the proximity data as ordinal, interval, or ratio in order to select
an appropriate metric or nonmetric analysis. If there is a formal model of the original data from which
the proximity measure has been derived, then the derived form of the proximity measure may deter-
mine the appropriate analysis. For instance, consider the model of the proximities in Equation (7)
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derived from the model for the raw data in Equation (5). According to Equation (7), the proximity
data are not proportional to distances and therefore should not be treated as ratio data. It does, how-
ever, suggest that the proximity data are linearly related to squared distances and therefore could be
treated as interval (or ordinal) level data for purposes of any analysis, such as that of ALSCAL, for
which metric analyses include those based on the assumption of proximity data linearly related to
squared distances. In most MDS analyses, however, the proximities would have to be treated as ordi-
nal because most analytic models assume the data are monotonically but nonlinearly related to dis-
tances (rather than squared distances).

Final selection of a model also means deciding on the number of dimensions to retain. As described
earlier, the decision can be based on the number of data points, parsimony, dimension interpretabil-
ity, fit to the data, and dimension replicability across samples. 

18. Final Solution in Cross-Sectional Studies 

The Results section should contain a table, such as Table 20.2, showing the scale values for the final
solution, and preferably with estimates of standard errors for those scale values (Kim et al., 2004).
Table 20.2 shows a two-dimensional solution from an analysis of squared Euclidean distances for all
possible pairs of the Woodcock-Johnson Psychoeducational Battery—Revised (Woodcock &
Johnson, 1989) cognitive ability cluster scales in a sample of 357 respondents. In Table 21.2, scale 
values that are significantly different from zero are indicated by asterisks. Various plots can visually aid
understanding of the dimensions.

When the analysis is based on the PAMS model (see Desideratum 16) and dimensions are inter-
preted in terms of score patterns, plots of dimension scale values against variables (Figure 20.1) can be
used to portray the dimension patterns. The top figure, Dimension 1 scale values, shows a pattern
marked by relative strengths in Speed of Processing (SPR) and Comprehension Knowledge (CKW),
coupled with relative weaknesses in Long Term Retrieval (LTR), Auditory Processing (APR), and
Visual Processing (VPR). The second dimension shows a pattern with relative strength in Speed of
Processing (SPR) coupled with a relative weakness in Short Term Memory (STM). Note that only
variables with scale values significantly different from zero in Table 20.2 were used to identify relative
strengths and weaknesses along dimensions. Plots of scale values against variables (e.g., Figure 20.1)
may only be useful when dimensions can be interpreted as patterns of relative strength and weakness.
In other situations, other graphical forms may prove more informative.

The scale values can be interpreted either in terms of each dimension separately, as in Figure 20.1,
or in terms of the overall configuration. For instance, theories positing a circumplex structure of 

Table 20.2 Woodcock-Johnson Revised Ability Cluster Coordinates and Standard Errors: Standard Errors Estimated from 200 Bootstrap

Replicated Samples

Observed Variables Dimension 1 Dimension 2

LTR –1.44* (.35) .17 (.09)

STM .01 (.14) –1.43* (.37)

SPR 1.04* (.27) .51* (.19)

APR –1.10* (.27) .06 (.09)

VPR –1.01* (.25) .46* (.13)

CKW 2.46* (.60) .08 (.09)

FRE .03 (.09) .15 (.12)

Note : Statistically significant scale value estimates are indicated by *. LTR = Long-term Retrieval; STM = Short-term Memory; SPR = Speed
of Processing; APR = Auditory Processing; VPR = Visual Processing; CKW = Comprehension-Knowledge; FRE = Fluid Reasoning.
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variables lead to the prediction that the stimuli will fall in a circular two-dimensional arrangement. In
such circumstances, Dimension 1 and Dimension 2 scale values are graphed against each other in a
scatter plot and the overall configuration in the resulting plot is visually examined to evaluate whether
the variables fall in a circular arrangement and whether they fall along the circle in the order predicted
by theory. Whether in terms of separate dimensions or the overall stimulus configuration, the MDS
scale values in the final solution should to be interpreted and related to theory.

19. Other Related Methods in Cross-Sectional Studies

In thinking about alternative analyses of cross-sectional data, to what analyses should MDS be com-
pared? Because MDS and factor analysis (see Chapter 8, this volume) both yield representations of
variables in a continuous space, it is rather natural to compare them. Davison (1983) described a
seemingly common, if not universal, relation between unrotated components and MDS solutions in
which the first (or general) component has no counterpart among the MDS dimensions but remain-
ing unrotated components do have counterparts among the MDS dimensions. It can be argued, how-
ever, that MDS dimensions primarily describe within-person variation. This is consistent with
Davison’s finding that MDS dimensions contain nothing resembling a general component as the gen-
eral factor primarily reflects between-persons, not within-person, variation. Because of its focus on
within person variation, MDS and typical factor analysis would seem to serve somewhat different 
purposes.
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Q-factor analysis, cluster analysis (see Chapter 4, this volume), or methods that combine the two
(modal profile analysis) have often been used to describe within-person variation. For comparison
purposes, researchers may want to present alternative solutions derived with clustering or Q-factor-
ing either to corroborate or to complement the MDS solution. Alternatively, the researcher may wish
to describe why MDS was chosen over other possible analyses of within-person variation. Kim et al.
(2004) contrasted cluster, Q-factor, and MDS analyses of cross-sectional data.

MDS can be used to generate hypotheses about dimensions of within-person variation, hypotheses
that are subsequently tested using structural equation modeling or mixed effects modeling in a later
sample (Kim et al., 2007). This approach seems especially promising in the study of variables that dis-
play patterned covariance or correlation matrices (e.g., a circumplex matrix, a simplex matrix) given
that such patterning arises from factors/dimensions of within-person variation. Repeated measure-
ments of a single variable often display a simplex structure. The analysis of such repeated measures is
the topic of our next section.

20. Sampling of Time Points in Longitudinal Studies 

Whereas cross-sectional data consist of V variables measured at a single occasion, longitudinal data
consist of a single variable measured at V time points. Equations (5) and (6) express the model on
which the longitudinal analysis is based. When applied to longitudinal data, however, y

pv
is the meas-

urement of person p at time v ; c
p

is an intercept for person p; w
pk

and e
pv

are interpreted as before; and
x

vk
is a dimension scale value which is the score at time v in the kth pattern of change. The scale values

along each dimension are interpreted as a vector describing a pattern of growth, change, or decay.
Each person’s longitudinal vector of scores y

p
= {y

pv
} is represented as a linear combination of K change

patterns x
k
= {x

vk
}. When the scale values for a given dimension are plotted against time, the plot visu-

ally displays one of the K change patterns.
The Methods section should describe and justify the sample of time points selected for study.

Typically, at least four time points or measurement occasions should be present per dimension.
Because the selection of time points can seriously influence the form of the growth or change patterns,
possible effects of time point selection may need to be considered in the Discussion section. Time
points need not be equally spaced. For instance, in a study of gains in reading achievement, there could
be a two-month interval between times 1 and 2, but a four month interval between adjacent time
points thereafter. In any graphical representation of a change pattern plotted against time, the unequal
spacing of time points should be displayed along the horizontal axis. Failing to accurately represent
the unequal intervals between time points will distort the graphical representation of change rates
over intervals.

21. Missing Data in Longitudinal Studies 

Because longitudinal data are often incomplete, the researcher must describe and justify the method
of handling missing observations. Some programs offer the researcher the option of listwise or pair-
wise deletion in the computation of a proximity measure, such as the squared Euclidean distance.
Either pairwise or listwise is readily justified when data are missing completely at random (MCAR). In
our opinion, however, data are seldom missing completely at random, and the MCAR assumption is
even more difficult to justify for longitudinal data than for cross-sectional data. When the intervals
between time points are long, there tends to be more missing data in longitudinal studies, often sys-
tematically related to variables inside or outside the study. For instance, in longitudinal studies of
school achievement, at time 2 and beyond, data are more likely to be missing for low income students
and low scoring students at time 1 because such students tend to change schools more frequently.
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Therefore, researchers might want to apply some model-based, multiple-imputation technique
before computation of the proximity measure. Model-based imputation may be necessary to account
for the systematic nature of the missingness. The method of handling missing data needs to be
described and justified.

22. Proximity Measure in Longitudinal Studies 

Researchers must also describe their choice of proximity measure and explain why that particular
proximity measure was chosen over the numerous other possibilities. As with cross-sectional data, the
best justification, in our view, is one that starts with a model of the raw data, such as Equation (5), from
which one can derive a proximity measure linearly or monotonically related to a distance function of
the parameters to be estimated with MDS, the x

vk
in the case of Equation (7). Other forms of justifica-

tion are presumably possible, however.
The model in Equation (5) leads to the choice of the squared Euclidean distance proximity measure

defined over all possible pairs of time points and computed according to Equation (3). Under plausi-
ble assumptions, the squared Euclidean distance proximity measure computed from the raw data will
be linearly related to the squared distance function of the parameters to be estimated, the x

vk
, leading

to the conclusion that MDS will provide plausible estimates of those parameters. Because the param-
eters have a natural interpretation in terms of change patterns, and the MDS scale values are estimates
of those parameters, the MDS dimensions can be interpreted as estimates of change pattern vectors.

23. Model in Longitudinal Studies 

Model justification can have several aspects. First, if the proximity measure is derived from a model of
the raw data, then the plausibility of the raw data model needs to be considered. Second, model justi-
fication involves an explanation of the assumed form for the proximity measure. If, however, the
researchers have no model of the raw data or no way of deriving a proximity measure from it, some
other form of justification must be provided. In either case, the explanation must include a justifica-
tion for the assumed measurement level of the proximity data. That is, does the researcher assume the
proximity measures to be ordinal (i.e., monotonically related to a distance function of the scale val-
ues), interval (i.e., linearly related to a distance function of scale values), or ratio (i.e., proportional to
a distance function of scale values)? This assumption will determine whether the MDS analysis will be
of the nonmetric or metric form.

Finally, in explaining the model, the researcher must justify the number of dimensions retained in
that MDS solution. As explained earlier, the justification may be based on the number of time points,
model fit, parsimony, dimension interpretability, and dimension replicability across samples of
respondents.

24. Interpretation of Dimensions in Longitudinal Studies 

Interpretability depends primarily on whether what is known about the change process is consistent
with the change patterns represented by scale values. For instance, if change is thought to be monoto-
nically increasing with time, then a dimension along which scale values do not increase with time
would be implausible and uninterpretable.

In longitudinal applications, the zero point along a dimension can be set in different ways without
loss of fit to the data, and the different ways of setting the zero point lead to different interpretations
of the intercept term. For instance, the zero point can be set so that the scale value at time 1 equals 0 for
every dimension, in which case, c

p
becomes the model-based estimate of initial (time 1) status for 
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person p. This alternative seems most useful in studies of growth or studies of decay, that is, studies in
which change increases/decreases monotonically over time. If the measured variable oscillates non-
monotonically over time, the zero point can be set so that the mean scale value equals zero along each
dimension. In such cases, each dimension is interpreted as a pattern of oscillating change about per-
son p’s “typical” level of performance represented by the intercept, c

p
. In longitudinal applications,

researchers need to explain and justify how the zero point along each dimension was set and the result-
ing interpretation of the intercept parameter.

While we have not discussed the correspondence weight parameters w
pk

in the model, they may
sometimes enhance the interpretability and plausibility of a dimension. That is, if they enter into rela-
tions with external variables (e.g., individual differences in weights w

vk
are correlated with individual

differences in ability, personality, or interests), then the correspondence weights may help understand
the relation between individual differences in growth patterns and individual differences in the exter-
nal variable(s). This explanatory power of the weights enhances the interpretability of the dimensions.
The interpretability of a dimension depends on the explanatory power of both the dimensions’ scale
values and their corresponding weights. 

As in cross-sectional applications, MDS can be used as an exploratory analysis by itself or as a way
of generating hypotheses about longitudinal patterns needed to account for change in a particular
variable, hypotheses that will be subsequently tested in a second sample using structural equation
modeling or mixed effects growth modeling techniques (see Chapters 28 and 14, this volume). Theory
may be too imprecise to generate the detailed growth curve hypotheses required by confirmatory
methods, and therefore a combination of theory and exploratory analyses may be necessary for
hypothesis generation. In comparison to other methods, advantages of MDS include: (1) no need for
a priori growth trend specifications (e.g., linear or quadratic), (2) simultaneous estimation of multi-
ple growth curves, (3) estimation of a growth rate for each time interval in each change pattern
(dimension), and (4) ready accommodation of unequally spaced time points. Whether used to study
perceptions, cross-sectional variables, or repeated measures, interpretation of the dimensions and/or
the configuration need not rely solely on subjective judgment. Associations of dimension scale values
with external variables and cluster analytically defined groupings of stimuli (or variables) in the solu-
tion space are just two examples of procedures that can be used to more objectively confirm or dis-
confirm interpretations of the solution. Purely subjective interpretations of solutions are to be
avoided. 

Note 

1 During the preparation of this chapter, the first author was partially supported by a grant from the U.S. Department
of Education, grant number R305C050059.
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21
Multiple Regression

Ken Kelley and Scott E. Maxwell

Multiple regression (MR) has been described as a general data analytic system (e.g., Cohen, 1968)
because many commonly used statistical models can be regarded as its special cases. Furthermore,
many advanced models have MR as a special case. The ubiquity of MR makes this model one of the
most important and widely used statistical methods in social science research. In general, the idea of
the MR model is to relate a set of regressor (independent or predictor) variables to a criterion
(dependent or outcome) variable, for purposes of explanation and/or prediction, with an equation
linear in its parameters. More formally, the MR model is given as 

Y
i
= β

0
+ β

1
X

1i
+ ... + β

k
X

ki
+ ε

i
(1)

where β
0
is the population intercept, β

k
is the population regression coefficient for the kth regressor (k

= 1, ..., K), X
ki

is the kth regressor for the ith individual (i = 1, ..., N), and ε
i
is the error for the ith indi-

vidual, generally assumed to be normally distributed with mean 0 and population variance σε
2. For

contemporary treatments of MR applied to a wide variety of examples, we recommend Cohen,
Cohen, West, and Aiken (2003), Pedhazur (1997), Harrell (2001), Fox (2008), Rencher and Schaalje
(2008), and Muller and Fetterman (2002). Specific desiderata for applied studies that utilize MR are
presented in Table 21.1 and explicated subsequently. 

1. Research Goals

Standard textbook treatments of MR often emphasize that MR can be used for prediction or explana-
tion. Depending on the goals of the researcher, prediction, explanation, or both might be desired.
Although the MR model itself is exactly the same in both cases (i.e., Equation (1) does not change
based on the goal), the distinction is nevertheless important because different statistical considera-
tions arise for the two purposes. To clearly communicate the purpose of the study, it is important for
authors to be clear about whether their purpose in using MR is prediction, explanation, or both. 

The ultimate goal of explanation is to identify the causes of the outcome variable Y. Under ideal
conditions, MR can identify such causes as having non-zero regression coefficients. To understand
how a regression coefficient can potentially reflect a causal effect, we need to say what a regression
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coefficient represents. For example, when the model is correctly specified, the coefficient β
k

for X
k

reflects the relation between Y and X
k

at a fixed value of all other regressors included in the model. In
this sense the regression coefficient for X

k
is a measure of the extent to which X

k
and Y are related when

all other regressors in the model are held constant. Because the other regressors are held constant, any
association between X

k
and Y cannot be attributed to the other regressors. Thus, it is tempting to con-

clude that β
k
reflects the extent to which X

k
causes Y, in which case we have at least partly succeeded in

explaining variation in Y. In fact, this reasoning is sometimes correct, but only under a set of restric-
tive conditions (e.g., Kenny, 1979). Unfortunately, it is difficult to justify these conditions unequivo-
cally except in randomized experiments. 

Predicting the value of a criterion variable given one or more regressors is another reason why MR
is commonly used, especially in applied research. For example, a psychologist might use MR to predict
how well pre-kindergarten children will be able to read at the end of first grade. The psychologist
would use historical data (often called training data) containing scores on reading at the end of first
grade as well as scores on a number of possible regressors. MR is then used to create a model where the
value of the criterion is predicted based on one or more of the regressors. One of the real benefits of
prediction is that the parameter estimates (i.e., the regression coefficients) obtained from the training
data can be used to predict the value of an unknown (or yet to occur) criterion variable Y based on the
complete set of regressors used in the training data. There are many cases in which it is desirable to pre-
dict a criterion variable when it is as yet unknown (e.g., college grade point average or reading ability
at the end of first grade) from a set of known regressors (e.g., high school grade point average, SAT
scores, or pre-kindergarten measures of cognitive functioning). The ultimate goal is often selection, as

Table 21.1 Desiderata for Multiple Regression

Desideratum Manuscript

Section

1. The goals of the research and how multiple regression (MR) can be useful are explicitly addressed. I

2. The inclusion of each of the independent variables should be justified on I

theoretical and/or practical grounds.

3. Each criterion and regressor variable should be described in detail, including scales of M

measurement, coding scheme, reliability etc., to convey how the MR model should be interpreted.

4. Specific procedures for the computation and interpretation of effect sizes are delineated. M

5. Assumptions underlying the MR analyses and resulting inference are explicitly addressed. M

6. Variable selection techniques are justified. M

7. Sample sizes for all analyses are justified in terms of power, accuracy, and reproducibility of results. M

8. Methods of dealing with missing data are addressed. M

9. For models examining moderation, issues of interpretation, role of R

centering, and visualization are addressed.

10. For models examining mediation, issues of interpretation and limitations R

due to cross sectional designs are addressed.

11. Visual examination of data is addressed in order to assess model R

appropriateness and assumptions.

12. Measurement error in predictor and/or outcome variables is addressed. D

13. Potential limitations of multiple regression in the current applied research D

context are explicitly stated.

14. Alternatives to the MR model are given. D

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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in the college example, but can also be identifying at-risk individuals who might benefit from a rele-
vant intervention. 

Although we believe that recognizing the difference between explanation and prediction is critically
important, there need not be such a rigid dichotomy between the two goals. In studies seeking to
explain relations there can be prediction, and in studies that seek a way to predict there can be attempts
at explanation. Pedhazur (1997) described predictive research having as its main emphasis “practical
applications,” whereas in explanatory research the main emphasis is “understanding phenomena” (p.
196). Huberty (2003) provided a discussion of the similarities and differences in research goals and
reporting strategies when interest is primarily in prediction or explanation.

Statistical inference is important when a desire exists to generalize information obtained in a sam-
ple to the population from which the sample was drawn. Inference can be of two forms, confidence
interval formation for the population effect sizes of interest and/or hypothesis testing for effect sizes.
For purely predictive purposes, inferential procedures are not strictly necessary, but nevertheless pro-
vide information about the population of interest.

2. Justification of Regressors

MR can be applied along a continuum of research approaches anchored by confirmatory and
exploratory research. The confirmatory anchor corresponds to a well-defined research question with
a few theoretically justified variables, whereas the exploratory anchor corresponds to a diffuse
research question with many variables included in one or more different analyses without explicit the-
oretical justification. Both confirmatory and exploratory analyses are beneficial, but care must be
taken so that an exploratory analysis is not presented as if it were a confirmatory analysis. Provided the
assumptions of the model are satisfied in the context of confirmatory studies, the probability values
(i.e., the p-values) from null hypothesis significance testing and confidence interval coverages associ-
ated with the different effect sizes are meaningful. However, because exploratory analyses generally
consist of systematic testing and retesting until settling on a satisfactory model, the process of test-
retest renders the probability values and confidence interval coverages associated with the effect sizes
as approximate at best, with such values being the starting point for future confirmatory research. 

The reason probability values and confidence interval coverages are not correct in exploratory
analyses where multiple models are evaluated is because of what is known as the multiplicity problem.
The multiplicity problem describes the problem of multiple statistical tests being performed, where
the effect sizes with small p-values are selected for inclusion in the presented statistical model. An out-
crop of the multiplicity problem is that the obtained p-values are suspect, due to the sheer number of
null hypothesis significance tests conducted. When many null hypothesis significance tests are con-
ducted, even when all the null hypotheses are true, there is a high probability of finding some small p-
values by chance. Thus, because of the suspect p-values and the associated confidence interval
coverages associated with statistical inference in exploratory studies, it should be made clear if the
study was confirmatory in nature or exploratory. In particular, exploratory approaches sometimes
effectively are based on an informal variation of a formal variable selection method (such as stepwise
regression, to be discussed in Desideratum 6), which may be fine for prediction but raises serious con-
cerns about the meaningfulness of any claims regarding explanation. That is, some researchers reject
the idea of stepwise regression, but themselves perform a more intuitive version of stepwise regression
where many models are fitted, even when their purpose is explanation. 

3. Descriptions of Criterion and Regressor Variables

A statistical model in and of itself is not very useful unless the variables in the model are understood in
their appropriate context and have been discussed in enough detail to convey an understanding of the
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information they contribute to the research question. At a minimum, means and the covariance
matrix or the correlation matrix (with accompanying standard deviations) should be provided for all
variables used in the analysis. Furthermore, the type of variable (e.g., categorical or continuous) and
the range over which values of the scale can vary (i.e., the limits of the scale) should be discussed. When
categorical variables (e.g., grouping variables) are used, the coding scheme should be explicitly dis-
cussed. Without an explanation of the coding scheme, the estimated model parameters cannot be
readily interpreted by others (e.g., for the “Sex” variable are females coded as 0 and males 1, females as
1 and males 0, or females –1 and males 1, etc.). Continuous variables should almost never be
dichotomized (or polytomized more generally) but should instead be left in their continuous form.
Examples of situations where it may sometimes be reasonable to polytomize continuous variables is
when there are clear types or taxons of individuals or when the distribution of a count variable is highly
skewed (MacCallum, Zhang, Preacher, & Rucker, 2002). It is clear, however, that median splits, a
commonly used procedure for dichotomizing continuous data, is essentially never statistically justi-
fied. Where appropriate, the reliabilities of the variables should be given (see Desideratum 12). 

4. Effect Sizes

As has been discussed a great deal in the methodological literature, effect sizes and their corresponding
confidence intervals are widely recommended and should almost always be reported (e.g., Wilkinson
& the American Psychological Association Task Force on Statistical Inference, 1999; see also Chapter
7, this volume). In MR, like many other statistical models, there are two types of effect sizes: omnibus
and targeted. 

The most widely used omnibus effect size in MR, and one of the most common in social science
research in general, is the squared multiple correlation coefficient, whose population value is denoted
P2 (rho squared). The value of P2 quantifies the proportion of variance in Y that can be accounted for by
the K regressor variables. The typical estimate of P2, R2, is positively biased. Although confidence inter-
vals and significance tests for P2 are based on R2, the adjusted value of R2, denoted R2

A
, should also be

reported and used as the best estimate of P2. The typical adjusted estimate (e.g., Cohen et al., 2003;
Harrell, 2001) is given as

R2
A

= max�0, �1 – (1 – R2)� ���, (2)

where max{.,.} implies that the larger of the two values is taken. 
Darlington (1968) explained that the adjustment shown in Equation (2) (developed by Ezekiel,

1930) will tend to overestimate the population validity of the sample regression equation. The idea
here is that the adjustment estimates the population validity of the population regression equation. In
other words, if the population regression coefficients were known, what proportion of the variance in
Y would this equation explain in the population? This makes sense when the goal is explanation,
because one purpose here is to estimate the extent to which the regressors completely explain the vari-
ance in Y. However, this makes less sense when the goal is prediction, because in this context the sam-
ple regression equation derived in the training sample will be used to make predictions in a new
sample. The key point is that the regression coefficients to be used for prediction are the values
obtained in the training sample. However, these values will not be exactly the same as the optimal pop-
ulation values, thus lowering the resultant R2 to some extent. For this reason, in prediction the popu-
lation parameter of most interest is sometimes referred to as the population cross-validity, Ρ

C
, or the

squared population cross-validity, Ρ
C

2. Raju, Bilgic, Edwards, and Fleer (1999) described a variety of
estimators of the population cross-validity and recommended an adjustment developed by Burket
(1964): 

N – 1
N – K – 1
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R
C

= NR2 – K  . (3)
R(N – K)

Although effect size estimates are beneficial, an observed effect size is simply a point estimate that
might differ considerably from the population value it estimates. Confidence intervals should be
reported for any estimate that is itself deemed important enough to report. Confidence intervals for Ρ2

are not straightforward to construct and the appropriate confidence interval depends on whether or
not regressors are regarded as fixed or random. Steiger (2004; see also Steiger & Fouladi, 1992), Algina
and Olejnik (2000), and Kelley (2007), discussed methods of confidence interval construction and
provided software solutions to implement such intervals. 

Researchers should consider the squared semi-partial correlation coefficient, which is a targeted
effect that describes the change in R2 when the kth regressor is added to the MR model that already
contains the other K – 1 regressors. Thus, the squared semi-partial correlation coefficient quantifies
the proportion of variance of Y that is accounted for uniquely by a particular regressor in a model with
other regressors. Such an effect size is useful when conveying the contribution of a regressor in a model
with K – 1 other regressors. Squared semi-partial correlation coefficients can also be used to quantify
the proportion of variance of Y that is accounted for by a particular set of regressors instead of just a
single regressor.

Regression coefficients come in two forms: unstandardized and standardized, both of which represent
targeted effects, which may or may not be causal in nature. Unstandardized regression coefficients can
be transformed into standardized regression coefficients by multiplying the unstandardized regression

coefficient by the quantity
sXk

s
Y 

, which removes the scale of X
k

and Y, where s denotes the standard 

deviation of the subscripted quantity. The process can be reversed by multiplying a standardized 

regressioncoefficient by
s

Y
sX

k

. In general, either unstandardized or both unstandardized and standardized 

regression coefficients should be given, along with their corresponding confidence intervals. The kth
regression coefficient quantifies the degree of linear relation between Y and X

k
, while holding constant

the remaining K – 1 regressors. Standardized regression coefficients are often an effective way of describ-
ing the effect of a regressor on the criterion variable when the scale of the measurements are not inher-
ently meaningful. When standardized solutions are used in place of or in addition to their
unstandardized counterparts, the measure of association is in terms of standard deviation units of the
particular sample. For example, a standardized regression coefficient of .25 for X

k
in a standardized solu-

tion implies that a 1 standard deviation unit difference in X
k

is associated with a .25 standard deviation
difference in Y in the same direction, holding constant all other regressors. 

Confidence intervals for unstandardized regression coefficients are easy to obtain and formulas 
are available in essentially all modern regression books and can also be obtained with popular 
statistical software. However, confidence intervals for standardized regression coefficients require the
use of noncentral t-distributions and are more difficult to obtain (e.g., see Kelley & Maxwell, 2008, or
Kelley, 2007, for a review and software solutions). In general, standardized regression coefficients 
are provided when there is a desire to remove the scaling of the measurement instrument so that 
each variable (regressors and criterion) has a mean of 0 and a standard deviation of 1. Doing so allows
for relations to be framed in standard deviation units (as previously noted) and regression 
coefficients to be more directly comparable within an equation. That being said, there is no 
guarantee that the regressor with the largest regression coefficient is the “most important” independ-
ent variable in the equation (even when all variables are standardized). The meaning of “most impor-
tant” might be different depending on the particular situation and goals of the study (Azen & Budescu,
2003). 
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5. Addressing Assumptions 

Standard approaches to regression rely on ordinary least squares (OLS) to estimate model parameters.
The OLS regression coefficients in MR minimize the sum of squared deviations between the model
implied scores, denoted Y

i
Î for the ith individual, and the observed scores (i.e., regression coefficients

are chosen that minimize ∑
N

i = 1

(Y
i
– Y

i
Î )2). Estimation of the regression coefficients themselves does not

require any parametric assumptions (although optimality properties of OLS depend on the validity of
underlying assumptions). However, inferences from coefficient estimates do depend on assumptions.
In particular, p-values and confidence intervals for regression coefficients from the regression model
as specified in Equation (1) depend on four statistical assumptions: (a) errors (i.e., e

i
= Y

i
– Y

i
Î ) follow

a normal distribution; (b) error variance is homogeneous across all values of the regressors
(homoscedasticity); (c) observations are independent of one another; and (d) the relation between Y
and the K regressors is linear. It is important to note that no distributional assumptions are made
about the regressors, meaning that, for example, skewness in a predictor is not by itself a problem.
Also, the model does not assume that regressors are measured without error, but as we will discuss
later, results obtained using regressors measured with error may differ substantially from results
obtained when regressors are measured perfectly, so measurement error in the regressors often
becomes an important consideration. 

Although the linearity assumption (assumption d above) is fundamental, it is often overlooked in
discussions and applications of MR. We agree with Gelman and Hill (2007) that, “The most impor-
tant mathematical assumption of the regression model is that its deterministic component is a linear
function of the separate predictors” (p. 46). This assumption is especially important in explanation
because if this assumption is not true, then the regression coefficients in the model do not generally
accurately reflect the relation between Y and X

k
at a fixed value of the other regressors. As a result, the

regression model might fail to hold the other regressors constant in attempting to estimate the relation
between Y and a specific X variable. If linearity does not hold, then the model as specified in Equation
(1) may not be appropriate for inferences, as Equation (1) is necessarily linear in form. When linear-
ity does not hold, there are essentially three strategies: (a) transform one or more variables (one or
more X

k
and/or Y) so that linearity in an additive model is a good approximation (e.g., �	X

k
or X

k

2); 
(b) include an additional theoretically justified variable (e.g., X

k

2 in addition to X
k
) that correlates with

the outcome variable, in an attempt to explain some of the unaccounted for variability and/or (c) fit a
nonlinear regression model (e.g., a negative exponential, Gompertz, logistic) instead of the traditional
linear MR model (Seber & Wild, 1989). 

6. Variable Selection Techniques Are Justified

In many situations, more regressor variables are initially included in the model than are ultimately
desirable in the final model to be presented for interpretation. The way in which the researcher arrives
at the final model should be made explicit. There are four common ways of selecting variables to be
included in the analysis: (a) all analyses are theory driven, (b) model comparisons are performed, (c)
stepwise methods are used, or (d) a variety of exploratory models and methods are fitted. 

In many ways the ideal variable selection method is entirely theory driven and the regressors
included are based on a priori theoretical arguments and/or previous literature. This method is ideal
because a one-to-one mapping exists between the targeted nature of the research question and the tar-
geted statistical analyses.

A model comparison approach (e.g., Maxwell & Delaney, 2004), where the inclusion of one or more
variables is evaluated against a more basic model, is often the most straightforward way to evaluate
competing nested models. The idea of the model comparison approach is to statistically compare
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nested models, where the models are compared most commonly in terms of R
K

2 and R
K

2

+ M , where 
R

K

2 is the model based on the K regressors and R
K

2

+ M
is based on a richer model with an additional M

regressors. 
A special type of model comparison is implemented through what is often termed hierarchical

regression (not to be confused with hierarchical linear modeling, HLM; see Chapter 10, this volume).
In hierarchical regression, not only are the variables selected by the researcher, so too is the order in
which they enter the model. At each step of the procedure, the variables previously included remain in
the analysis. When hierarchical regressions are performed, a series of fitted models should be provided
as part of the reported results that shows the estimated model improvement when comparing the
richer models to the simpler models. The improvement is generally gauged in terms of the change in
R2 when a single regressor variable is added, which again is the squared semipartial correlation coeffi-
cient, along with confidence intervals and significance tests for the change. It is also common to add a
block of regressors in a hierarchical fashion. In such situations the change in R2 is still of interest, but
there the additional variability accounted for is due to the block of regressors. 

When a large number of possible regressors exist, possibly for more than one criterion variable,
data-driven selection methods are sometimes used. Whenever data-driven selection methods are
used, a clear indication should be made that the study is not attempting to explain phenomena in a
confirmatory fashion, but rather that the study is exploratory in nature. The type of data-driven selec-
tion procedure performed (e.g., forward selection, backward elimination, all possible subsets), and
the selection criteria (e.g., a statistically significant change in R2, or a change in R2 of some specified
magnitude, say .05) should be given. Also the particular computer program/package and its version
should be provided, because different programs/packages and versions may implement data-driven
selection procedures in different ways. 

In short, there are many methodological problems that can arise when implementing a data-driven
selection procedure. As Rencher and Pun (1980) illustrated, values of R2 can be highly inflated and
thus the obtained probability values can differ substantially from those reported as output in statisti-
cal software. When a large number of possible regressors exist in the context of a data-driven selection
procedure, a model that accounts for a statistically significant proportion of variance in Y can often be
obtained even if the null hypothesis is true that all of the regression coefficients, less the intercept, are
zero. 

Vittinghoff, Glidden, Shiboski, and McCulloch (2005) provided an especially interesting perspective
on model building by distinguishing three different purposes for selecting predictors: (1) evaluating a
regressor of primary interest in the context of other possibly relevant regressors, (2) identifying the
important regressors of an outcome, and (3) prediction. They emphasized that issues involved in pre-
dictor selection differ according to the purpose of the analysis. For example, suppose that two regressors
X

1
and X

2
are highly correlated with one another. When the goal is prediction, it will generally be desir-

able to include only one of these two regressors in the model, and it may make little difference in the
accuracy of prediction which of the two is included. Ironically, however, including both of the regres-
sors will often worsen prediction because any gain in bias reduction is more than offset by an increase in
the variance of predicted values. On the other hand, suppose the goal is to explain the relation between
X

1
and Y. Should X

2
be controlled for and thus included in the model? We agree with Vittinghoff et al.

(2005) that this question cannot be answered simply from knowing that X
1
and X

2
are highly correlated.

Instead, for explanatory models it becomes necessary to consider a theoretical causal model for how the
various regressors and Y relate to one another. In particular, X

2
should be included in the model if it is a

confounder, but not all variables highly correlated with the regressor of primary interest (i.e., X
1
) are

necessarily confounders. Vittinghoff et al. (2005), Jaccard, Guilamo-Ramos, Johansson, and Bouris
(2006), and Hernan, Hernandez-Diaz, Werler, and Mitchell (2002) discussed various approaches for
identifying whether a variable is a confounder and thus should be included in the regression model. 
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7. Sample Sizes Are Justified

Sample size is an important component to any research study. “Rules of thumb” that were once widely
recommended for planning sample size are not generally appropriate and should not be used as justi-
fication (see Green, 1991, for a review). Instead, researchers should justify their sample size from
either or both of two general approaches: power analysis and accuracy in parameter estimation
(AIPE). The goal of the power analytic approach is to plan sample size so that a false null hypothesis
can be rejected with some desired probability (i.e., power), whereas the goal of the AIPE approach is
to obtain an accurate estimate of the population value, which is operationalized by a sufficiently nar-
row confidence interval with some desired degree of assurance (i.e., probability). In addition to decid-
ing on whether power or AIPE is most appropriate, researchers also need to state whether primary
interest is in an omnibus effect (i.e., the squared multiple correlation coefficient) or one or more tar-
geted effects (i.e., regression coefficients), which is necessarily based on the question(s) of interest. In
particular, questions of prediction are more likely to involve omnibus effects, whereas questions of
explanation are more likely to involve targeted effects. Additional details are provided in Kelley and
Maxwell (2008), who discussed sample size planning methods in a MR context in a 2 × 2 (power or
AIPE × omnibus or targeted effect) framework. 

In some cases existing/archival data become available to a researcher. Because the data have already
been collected, sample size planning cannot be done as previously discussed, as it is implemented a
priori in the design phase of the study. In general, power and AIPE are not often discussed for exist-
ing/archival data. However, power and AIPE can still be addressed, albeit in a different manner. In
particular, for a specified value of an effect size at the size of the sample in the existing data, power and
expected confidence interval width can be given. An appropriate value for the effect size to use is what
can be termed the parameter of minimal importance (POMI), which is the parameter of smallest mag-
nitude that is deemed to have scientific, clinical managerial, or practical importance/interest. 

8. Missing Data

Missing data is a perplexing issue. There are three broad categories of missingness: (a) missing com-
pletely at random (MCAR), (b) missing at random (MAR), and (c) missing not at random (MNAR).
MCAR is where missingness does not depend on either observed or missing values, whereas MAR is
where missingness does not depend on the missing values but may depend on observed values. MNAR
implies that missingness depends on an outside variable not in the model or depends on the variable
itself (see Little & Rubin, 2002, for a summary of types of missing data and appropriate methods for
dealing with the different types of missing data). 

Although the specifics of the situation will differ, researchers should do their best to ensure the
amount of missing data is minimized (e.g., remind participants about follow-up visits, check evalua-
tions for blank responses before the participants leave, clearly state that sensitive data will remain con-
fidential if appropriate). Generally, whenever missing data arises in a research study, it opens the
possibility for criticism in the way it was (or was not) dealt with. Whenever there is a nontrivial
amount of missingness, the data should be interrogated for patterns of missingness (Harrell, 2001).
When apparent patterns are found, they should be reported and, if possible, a plausible explanation
provided with a cautionary reminder given that exploratory methods were used to uncover any appar-
ent patterns in the data. Regardless of the way in which missing data is dealt with, the method and the
rationale for choosing the method should be discussed. That being said, some methods, in particular
mean substitution and/or pairwise deletion, should not be used unless there is a good reason to do so
with a clear explanation of why. We will briefly discuss three methods of dealing with missing data (see
Schafer & Graham, 2002, for a thorough review). 
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When missing data does occur, casewise deletion is often recommended; however, casewise dele-
tion can be problematic. Casewise deletion is when a participant is completely excluded, regardless of
the amount of data available for the participant, if any data are missing for the analysis of a particular
model. Casewise deletion generally yields unbiased estimates only under the very strong assumption
that data are MCAR. At best, estimates obtained using casewise deletion are inefficient, implying less
statistical power and estimation accuracy than would otherwise be the case. The reason casewise dele-
tion is inefficient is because the sample size is reduced to only those with complete data sets, which
tends to increase the sample standard error(s) and necessarily does so in the population. More impor-
tant, however, is that estimates obtained using casewise deletion will often be biased, unless plausible
arguments can be advanced for why missingness is likely to be MCAR. 

Imputation or multiple imputation provides a reasonable way to deal with missing data in many sit-
uations. Imputation is when a plausible value is substituted for a missing value and multiple imputa-
tion is when this process is performed multiple times. The “plausible values” come from an
imputation model that uses other data that are available to estimate the data that are not available. At
first the idea of estimating data might seem problematic, but it is often better to estimate what is usu-
ally a small amount of data than to disregard valuable data with deletion (e.g., casewise) strategies
(Harrell, 2001, section 3.4). 

Full information maximum likelihood (FIML) and restricted maximum likelihood (REML) esti-
mation are the most popular methods for dealing with missing data in multilevel models and struc-
tural equation models, likely because main-stream multilevel model and structural equation
modeling programs can easily implement them (and usually do so by default). These maximum like-
lihood methods for dealing with missing data require that data are MCAR or MAR. Because FIML
does not consider the degrees of freedom and uses the standard normal distribution instead of the t-
distribution, sample size should not be small with this approach. Small sample sizes being used with
the FIML approach to missing data will tend to yield differences in the empirical and nominal Type I
error rates. REML, however, does consider the issue of degrees of freedom and is more appropriate in
smaller samples. Another issue is that maximum likelihood estimation assumes multivariate normal-
ity, which might not always be reasonable (recall that the standard MR assumption is only that the
errors are normally distributed). Enders (2001) provided a review and evaluation of maximum likeli-
hood estimation when missing data exists in the context of MR. Our recommendation is to use either
multiple imputation or maximum likelihood estimation when faced with missing data. 

9. Models Examining Moderation

The regression model shown in Equation (1) assumes that the effects of each X
k

on Y are additive. 
For example, with two regressors, this model assumes that the relation between X

1
and Y is the 

same for every value of X
2

and similarly the relation between X
2

and Y is the same for every value 
of X

1
. In reality, however, the strength of the relation (or even the direction of the relation) between 

X
1
and Y might depend on X

2
, in which case X

1
and X

2
are said to interact. As a consequence, the regres-

sion model shown in Equation (1) might seem very restrictive, because it does not seem to allow for
the possibility of an interaction between X

1
and X

2
. Fortunately, this restriction is illusory, because

modifications to the model allow X
1

and X
2

to interact. The ability to modify this model is critical
because many theories in the social and behavioral sciences stipulate that the relation between a pair
of values (e.g., Y and X

1
) depends on a third variable (e.g., X

2
), which corresponds to an interaction

effect. 
The standard way of modifying the model in Equation (1) so as to allow for the possibility of an

interaction (or equivalently, a moderator) is to add cross-product terms. For example, with two
regressors, the model becomes 
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Y
i
= β

0
+ β

1
X

1i
+ β

2
X

2i
+ β

3
X

1i
X

2i
+ ε

i
(4)

The inclusion the product term allows the relation between either X and Y to depend on the value of
the other X. In particular, this model stipulates that the slope relating X

1
to Y is given by 

dY
dX

1

= β
1

+ β
3
X

2
, (5)

where dY/dX
1

is the derivative (instantaneous slope) of Y with respect to X
1
. If β

3
is non-zero, the 

relation between X
1
and Y depends on X

2
, so X

2
moderates the effect of X

1
on Y, or equivalently, X

1
and

X
2

interact. However, many researchers might not realize that the product term represents a very spe-
cific type of interaction, namely a bilinear effect. In particular, Equation (5) shows that if β

3
is positive,

the slope becomes increasingly higher for larger values of X
2
. Similarly, if β

3
is negative, the slope

becomes increasingly lower for larger values of X
2
. Thus, researchers should consider whether this is

the type of interaction they truly desire to detect. If not, more complicated models can be constructed,
such as including quadratic terms for some or all regressors. Interested readers can consult Cohen et
al. (2003) for additional details. 

The best way to begin to interpret effects in moderator models is generally to plot the interaction.
For example, suppose the primary interest involves the extent to which X

2
moderates the relation

between X
1

and Y. Cohen et al. (2003) recommended plotting regression lines relating Y and X
1

at
three values of X

2
(typically at the mean of X

2
and also at scores one standard deviation below the mean

and one standard deviation above the mean). We recommend that such a plot be included in a pub-
lished paper involving moderator effects. Alternatively, what can be helpful is a three-dimensional
representation of the relations, where Y is plotted as a function of all possible scores on X

1
and X

2

within an appropriate range.
A point of some confusion historically has been how to interpret the β

1
and β

2
coefficients in the

model in Equation (4). Some researchers have interpreted these coefficients as if they corresponded to
main effects, but this is not generally true. Instead, they are conditional (i.e., simple) effects. For exam-
ple, Equation (5) shows that β

1
is the slope of Y on X

1
when X

2
equals 0. Unless the range of values of

X
2

happens to include 0, the conditional effect in the interaction model will be meaningless. For this
reason, it is often recommended that X

1
and X

2
be recoded so that a value of 0 takes on some meaning.

Most commonly, both variables are centered by subtracting the sample mean from all scores (mean-
centering), yielding a new coding with a mean of 0. In any event, it is critical that authors explain how
regressors in interaction models have been coded, in order to facilitate interpretation of the corre-
sponding regression coefficients. 

Because of perceived complications of interpreting interactions between continuous regressors,
some researchers decide to simplify analyses by categorizing either or both regressors. We strongly
recommend that researchers avoid the temptation to categorize continuous variables. One reason to
leave variables as continuous is that categorization can decrease power. Interestingly, Maxwell and
Delaney (1993) have also shown that in some situations categorization can have the opposite effect of
producing spurious effects, thus inflating the Type I error rate. Thus, statistically significant interac-
tion effects based on artificially categorized variables cannot necessarily be trusted, strengthening the
argument for leaving continuous variables as continuous. 

Researchers should also be aware that several other factors affect the ability to detect interactions in
regression models. First, when X

1
and X

2
are measured with error, the product term X

1
X

2
will gener-

ally be much less reliable than either X
1

or X
2
, thus lowering power to detect an interaction.

Researchers who use regression to investigate interactions need to consider carefully the reliability of
regressors. Second, McClelland and Judd (1993) showed that the distribution of regressors in obser-
vational studies will often reduce power, especially when regressors correlate substantially with one
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another. Third, Lubinski and Humphreys (1990) showed that when regressors correlate substantially
with one another, the Type I error for testing an interaction can be badly inflated if curvilinear effects
exist but are not included in the regression model. Including higher order effects such as X

1

2 and X
2

2 can
guard against spurious interaction effects, but also runs the risk of greatly lowering power to detect
true interaction effects. There is no consensus among methodologists at this point about how best to
resolve this dilemma. At the very least authors who want to investigate interactions in regression mod-
els should be clear about the extent to which their regressors correlate with one another as well as the
extent to which theoretical considerations either do or do not rule out possible curvilinear effects.
Given the scope of the topic of interactions, we recommend that readers consult such sources as Aiken
and West (1991) and Jaccard and Turrisi (2003) for further information. 

10. Models Examining Mediation

Baron and Kenny (1986) clarified the distinction between moderation and mediation. Both involve a
role that X

2
(for example) may play in the relation between X

1
and Y, leading some researchers to con-

fuse moderation and mediation. Thus, it is incumbent on authors of papers reporting either modera-
tion or mediation to provide a clear theoretical rationale for their study. 

The variable X
2

mediates the relation between X
1

and Y when X
1

causes X
2

and X
2

in turn causes Y.
Thus, mediation can be represented by a pair of regression models: 

X
2i

= β
0

* + β
1

*X
1i

+ ε
i

* (6)

Y
i
= β

0
+ β

2
X

1i
+ β

3
X

2i
+ ε

i
, (7)

where the asterisk represents values from the model where X
2

is the dependent variable with X
1

as its
regressor. From this perspective, X

2
is a mediator when both β

1
and β

3
are non-zero. In the special case

where β
2

equals 0, X
2

is said to completely (or fully) mediate the relation between X
1

and Y; otherwise,
X

2
partially mediates the relation. 
Baron and Kenny (1986) suggested a four-step procedure for establishing mediation. Subsequent

research has studied their approach as well as a variety of alternatives. This is an area of continuing
methodological research, and at this point either of two different approaches seems advisable for
establishing mediation. One approach involves bootstrap methods (Shrout & Bolger, 2002). The
other involves the distribution of the product variable β

1
β

3
(MacKinnon, Lockwood, & Williams,

2004). We recommend that authors use either of these two methods to test mediation. Authors should
also report coefficients and corresponding confidence intervals for relevant parameters as shown in
Equations (6) and (7). 

Several other factors should be considered in a mediation analysis. First, it is well known that error
of measurement in the mediator causes biased estimates of regression coefficients. In three-variable
models such as those in Equations (6) and (7), random measurement error will tend to result in an
underestimate of the mediated effect and an overestimate of the direct effect of X

1
on Y. Researchers

should address this likely bias in any interpretation of their results unless the mediator is measured
without error. Alternatively, a latent variable model might be used in order to address measurement
error and its biasing effects. Second, Maxwell and Cole (2007) have shown that cross-sectional esti-
mates of mediation can be seriously biased when mediation occurs over time. Researchers who rely on
cross-sectional analyses need to interpret their results with appropriate caution, and should be
encouraged to consider longitudinal designs instead of cross-sectional designs. Third, researchers
should carefully consider necessary sample size to obtain adequate power. Fritz and MacKinnon
(2007) provided useful guidelines. Fourth, further information about mediation, especially for more
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complicated models with more than three variables, may want to consult MacKinnon, Fairchild, and
Fritz (2007) and MacKinnon (2008). 

11. Checking Assumptions Visually

The assumptions of the MR model should be considered and evaluated whenever the model is used.
As Anscombe (1973) noted, graphs can help researchers appreciate broad features of data and look
beyond broad features to literally see potentially unexpected relationships, outliers, and violations of
assumptions, et cetera. Anscombe went on to show four very different figures, three of which have
gross violations of MR assumptions, yet where the results from the regression model were the same
(i.e., estimates, p-values, confidence intervals, etc.). Recall that the linearity assumption is that the
expected value of Y given the K regressors is a linear function of the K variables. We recommend a con-
ditioning plot (also referred to as a coplot) for examining the critical assumption of linearity. Another
useful set of plots for this purpose are residual versus predictor (RVP) and component plus residual
(CPR) plots. One way to evaluate violations of this assumption for “obvious” violations is by plotting
the residuals as a function of the model implied values. An obvious nonlinear relationship is evidence
that the linearity assumption does not likely hold. When such is the case, there might be an important
variable not included in the model, an interaction term might be appropriate, or the relation between
the K regressors and the criterion might be nonlinear in nature. As previously noted, the latter, in our
opinion, is not considered frequently enough, and correspondingly nonlinear models are not applied
in many areas as often as it seems they should be, based on theory and empirical evidence. For exam-
ple, sigmoidal forms or asymptotic values cannot adequately be modeled with linear models. We sug-
gest readers consult Seber and Wild (1989) for a discussion of nonlinear regression models.

Recall that the errors in a MR model are assumed to be normally distributed for the validity of the
significance test and confidence intervals. A normal quantile—empirical quantile plot (generally
termed a qq-plot) is a two-dimensional plot where theoretical quantiles from the normal distribution
are compared to the empirical quantiles of the observed errors. The qq-plot allows a visual evaluation
of the assumption of normality of the errors. Gross violations of the normality assumption of the
errors can often easily be seen with the use of a qq-plot. Although there are formal statistical tests to
evaluate normality, visual displays are often extremely effective at identifying potential problems and
are often easier to implement and interpret. 

Matrix scatterplots (sometimes called pairs plots) are helpful to examine the bivariate relations
among the K + 1 variables. These plots can also reveal observations that might be miscoded or identify
potential outliers. Further, those cases that might not be considered outliers on either of two variables
individually might be an outlier in a bivariate sense (which could heavily influence estimation and
inference). For example, if there is a strong positive relation between X

1
and Y, yet one observation has

a very low X
1

value and a very high Y value, that point would disproportionally affect the estimate of
the line of best fit (e.g., Cohen et al., 2003, for a review). Such a case would not be readily identified
without visualization (or more formal outlier/influential data point checks), which could allow the
possibility of further investigating such a unique case. Cases in such situations are said to be leveraging
points. In general, formally operationalizing what constitutes an outlier and appropriately dealing
with them can be difficult, but it is nevertheless important. Cohen et al. (2003, chapter 10) provided a
detailed discussion of possible causes and possible remediations when outliers are believed to exist.
Regardless of the exact way in which outliers are dealt with, transparency to the reader is key.
Transparency is especially important because two researchers analyzing the same data might come to
different conclusions when fitting the same model based only on how outliers are addressed. 

In published work, space is often at a premium, which has the effect that figures that evaluate the
model assumptions (e.g., RVP, CPR, qq-plots) are often unable to be printed. Nevertheless, even if
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such figures are not part of the published version of a work, there is little question that they can be very
beneficial for authors, as well as satisfying reviewer curiosity on model fit and appropriateness, and
can help to convey relationships to the reader more easily in visual form rather than in verbal form. We
think it is generally wise for authors to include a brief discussion of the (published or unpublished) fig-
ures and the reasons why the model may seem either appropriate or inappropriate. Of course, if the
figures help to identify weakness in the appropriateness of the model, other models should be consid-
ered and such a finding noted in the work. In short, visualization techniques should help justify the
model chosen and this information should be conveyed to readers.

We are sensitive to the amount of journal space that such plots can consume. Due to limited journal
space, editors may be reluctant to allow several pages of figures, even if they are informative. We believe
a reasonable solution is for authors to produce supplemental material that can be referenced in the arti-
cle but stored on a journal’s supplemental materials web page, which many journals now make available. 

12. Measurement Error

Measurement error can be conceptualized in a 2 × 2 × 2 array, where depending on the specific con-
ditions the effect of measurement error has different implications. The dimensions of the array are (a)
type of measurement error (random or nonrandom), (b) type of variable (regressor or criterion), and
(c) type of coefficient (unstandardized or standardized). We will briefly describe each dimension of
the array below. 

Random measurement error, which is omnipresent in research, is uncontrolled error that tends to
have a mean of zero. Nonrandom measurement error will tend to have a mean that is not zero and/or
to be correlated with errors. In short, nonrandom measurement error in the criterion and/or the
regressor is problematic and can lead to biased estimates of model parameters. Because nonrandom
measurement errors often represent a flaw in the measurement procedure, instrument, or design, we
will simply say that MR is not generally appropriate in circumstances of nonrandom measurement
error, with the exception being when the nonrandom error is so small that it has essentially no effect
on the mean and covariance structures of the variables. 

We will assume the random measurement errors have a mean of zero and are uncorrelated with
measured variables, with their corresponding true scores, and with all other errors. Provided the
regressors are unstandardized, any measurement error in Y is absorbed into the model error term, ε
from Equation (1), and has no effect on the expected value of the regression coefficients. Thus, under
the standard MR assumptions, the regression coefficients remain unbiased. However, because the
model error variance increases, the estimate of the squared multiple correlation coefficient is system-
atically lowered. Because R2 decreases—it is attenuated due to a larger error variance—the standard
errors of the regression coefficients will also be larger, implying that statistical power and the accuracy
of parameter estimates are reduced via a decrease in precision. However, in the situation where the
regression model is standardized, the regression coefficients will be attenuated when the criterion is
measured with error (Kenny, 1979). The attenuation occurs when the criterion is measured with error
because for standardized regression coefficients the multiplier (i.e., s

xk
/s

Y
for the kth regressor) of the

unstandardized regression coefficient that yields the standardized regression coefficient has a denom-
inator whose expected value is larger than the true value. The expected value of s

Y
is larger than σYT

, the
population standard deviation of the true scores of Y. From a classical test theory context for random
measurement errors, the variance of Y is the sum of the true score variance (σ 2

YT
) and the error vari-

ance (σ 2
YE

). Thus, s
Y

will tend to be larger than σYT
, which leads to observed standardized regression

coefficients smaller than their corresponding true values (Kenny, 1979, chapter 5). 
In observational research the case of random measurement error in one or more regressors will 

generally lead to biased regression coefficients, regardless of whether or not the regressors are 
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standardized. As Fox (2008) showed, in simple regression (i.e., when K = 1) when measurement error
occurs in the (only) regressor, its regression coefficient is generally attenuated. However, with one
exception, no general statement can be given for the effect of measurement error in one regressor on
the regression coefficient for the other regressors in a MR model (i.e., when K > 1). As Kenny (1979)
pointed out, measurement error in one regressor can attenuate regression coefficients, make the esti-
mate of a regression coefficient that is zero be nonzero, and can change the sign of a regression coeffi-
cient (p. 104). The exception noted is for designed experiments, where the randomly assigned variable
is uncorrelated with other regressors in the model. When the randomly assigned variable has meas-
urement error, the regression coefficient is less accurate—unbiased, but less precise. Because the
regression coefficient is less precise, the corresponding confidence interval tends to be wider and the
test of the null hypothesis will not be as powerful. 

In general, the difficulty in saying what happens when measurement error occurs in an observa-
tional application of MR lies in the multivariate nature of MR, as the properties of one regressor influ-
ence the regression coefficients of all other regressors. In short, when a regressor is measured with
error in an observational application, its effects are not partialled out as fully as when it is measured
without error. This concept is easiest to understand when one regressor is perfectly unreliable, and
thus the effects of the true regressor have not been partialled in any way (Kenny, 1979). As a result, the
coefficients for other regressors in the model are generally biased because the perfectly unreliable
regressor has not been controlled for at all. The important point is that whenever a regressor is meas-
ured with error, not only is the coefficient associated with that regressor biased, but typically so are all
of the other coefficients in the model, including even coefficients for any regressors that happen to be
measured without error. Because the value of the regression coefficient for the variable that is meas-
ured with error is biased, being smaller in magnitude than it otherwise would have been if the variable
were perfectly reliable, the bias will generally lead to an error variance larger than it would have been,
which then leads to a negatively biased estimate of P2 (i.e., R2 is, on average, smaller than it should be),
ultimately leading to larger standard errors for all of the regression coefficients in the model. 

It is generally desirable to minimize measurement error in all uses of multiple regression. However,
measurement error is especially problematic when the primary goal is explanation, because theoretical
explanations virtually always relate to constructs, not to variables measured with error. When con-
fronted with nontrivial measurement error, it is often advisable to obtain multiple measures of each 
construct and use structural equation modeling (see Chapter 28, this volume) instead of multiple regres-
sion. Measurement error can be less problematic when the goal is prediction, because the practical goal
is often to determine how well regressors as measured can predict the criterion as measured. When the
goal is explanation and nontrivial measurement error is likely to occur, we generally recommend obtain-
ing multiple measures of each construct so that structural equation modeling can be used. 

13. Statement of Limitations

MR is a flexible system for linking K regressor variables to a criterion variable of interest. In many
cases, MR is an appropriate statistical model for addressing common research questions, whether they
be for purposes of explanation, prediction, or both. Nevertheless, MR has limitations that are defined
in part by the model and its assumptions as well as by the research design. The limitations of MR in the
specific context should be discussed. 

MR has limitations, like other statistical models, when attempting to infer causality from a research
design that was not experimental in nature (i.e., when random assignment of levels of the regressors
to the participants was not part of the design). Although including additional regressors that are
thought to be correlated with the regressor of interest adds a form of statistical control, with regard to
causality there is no way to “control” all possible confounders unless randomization is an explicit part
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of the design. In purely observational designs, claims of causality should generally be avoided. The
benefits of randomization cannot be overemphasized, even if for only some of the variables in the
design, because randomization implies that the participants have equal population properties (e.g.,
mean and covariance structures) on all outside variables.

Variables termed “control” variables are often included in MR, as previously noted. However,
including a control variable in the model in no way implies that the variable can literally be “con-
trolled”—use of such a term is based on a precise statistical meaning and is not literal in the sense of
everyday language. When something is “controlled for” it allows for the linear effect of each regressor
on the criterion variable to be evaluated (i.e., a regression coefficient estimated), while holding constant
the value of the other regressor variables. In practice, however, many variables cannot be controlled by
the researcher, even in the most carefully designed studies. Thus, there is not literally any control by the
researcher in an observational design over the variables said to be “controlled for.” Rather, an effect can
be examined while holding constant the other variables. 

The reasonableness of temporal ordering of variables needs to be considered, as MR can be applied
in ways such that an explanatory variable is nonsensically used to model a criterion variable. Although
the MR model may account for a large proportion of variance, it might not make theoretical sense. For
example, MR could be used to model “Time Spent Studying” as a function of “Test Score.” However,
such a model is nonsensical in the sense that “Time Spent Studying” would be an explanatory variable
of “Test Score.” This is a simple example of a causality problem, in the sense that the model itself does
not make a distinction between what causes what. Theory, of course, should be the guiding principle
of the specification and direction of causal relationships. Inferring causality can be difficult, especially
because there technically needs to be some passage of time that occurs in order for a regressor to liter-
ally cause some change in a criterion. 

14. Alternatives to Multiple Regression

When the assumption of normality of errors is violated, nonparametric approaches to inference for
MR should be considered (e.g., Efron & Tibshirani, 1993; Györfi, Kohler, Krzyzak, & Walk, 2002). MR
assumes that outcome variables are continuous and observed. However, when the criterion variable is
censored, truncated, binary/dichotomous, ordinal, nominal, or count, an extension of the general lin-
ear model termed the generalized linear model, where a link function (e.g., exponential, Poisson,
binomial, logit) relates the linear regression equation (analogous to the right hand side of Equation
(1)) to a function of the criterion variable (e.g., probability of an affirmative response) can be used
(e.g., Agresti, 2002; Long, 1997; McCullagh & Nelder, 1989). 

Linearity is an assumption that is not reasonable in some situations, either based on theoretical or
empirical evidence. Spline regression models allow different slopes over ranges of one or more regres-
sors, in what has appropriately been termed a piecewise model (e.g., Fox, 2008; Ruppert, Wand, &
Carroll, 2003). In spline regression multiple “knots” exists, where the slope of the regression line
(potentially) changes over specified ranges (note that the slopes can be discontinuous in that they need
not overlap at a knot). Another nonparametric regression procedure is known as lowess (locally
weighted scatterplot smoothing) (also denoted loess; e.g., Cleveland, 1979; Fox, 2008), where MR
models are fitted to areas/regions of the regressor(s) with “local” points receiving more weight than
more distant points. The definition of “local” changes as a function of the width of the span selected,
which is a parameter in the control of the analyst. For short spans the line of best fit can differ dramat-
ically over a small range of a predictor, whereas a wide span tends to have a relatively smooth relation-
ship between the regressor(s) and the criterion. Lowess techniques are most often used when K = 1.
More general than lowess models are generalized additive models that allow some regressors to enter
the model linearly and some to enter as splines (Ruppert et al., 2003, p. 215). 
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Applications of the general linear model are not robust to violations of the assumption of inde-
pendent observations. Even for the simple case of the two independent group t-test, which can be con-
sidered a special case of MR, it is known that the nominal and empirical Type I error rate can be
drastically different when the assumption of independence is violated (e.g., Lissitz & Chardos, 1975).
When observations are not independent (e.g., students nested within classrooms, clients nested
within therapists, observations nested within person), appropriate methods to explicitly control for
the lack of independence should be used. A general approach to handling such nonindependence is
multilevel models (also termed hierarchical linear models, mixed effects models, or random coefficient
models; see Chapter 10, this volume).

When measurement error is serious, MR may not be an appropriate technique and latent variable
models should be considered, especially when the primary goal is explanation instead of prediction.
In particular, confirmatory factor analysis (see Chapter 8, this volume) and structural equation mod-
eling (see Chapter 28, this volume) allow for explicitly incorporating error into the model of interest,
which has the effect of separating the “true” part of the model from the “error” part.
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22
Multitrait-Multimethod Analysis 

Keith F. Widaman1

As Campbell and Fiske (1959) emphasized, every measurement we ever obtain in psychology is a trait-
method composite—a measure purportedly of a particular trait construct obtained using a certain
method of measurement. Campbell and Fiske introduced the multitrait-multimethod (MTMM)
matrix as a tool for evaluating systematically the correlations among a set of measures. The primary
utility of the MTMM matrix approach is the opportunity such a study affords to determine the pre-
ponderance of trait-related and method-related variance in measures in a battery. To aid in this eval-
uation, Campbell and Fiske argued that researchers should measure each of t traits (e.g., Extraversion,
Neuroticism, Fluid Intelligence) using each of m methods (e.g., self-report, objective tests, observer
ratings), so that each trait is measured using each method. By arranging trait measures in the same
order within methods, the MTMM matrix should exhibit clear patterns to satisfy the dictates of con-
vergent and discriminant validation. Convergent validation is satisfied if the researcher finds high cor-
relations among measures of putatively the same construct, and discriminant validation is satisfied if
low correlations are found among measures of presumably different constructs. Campbell and Fiske
described several rules of thumb for evaluating patterns of correlations in a multitrait-multimethod
(MTMM) matrix. Specifically, (a) correlations between measures of the same construct obtained
using different methods of measurement should be large; (b) correlations between measures of the
same construct obtained using different methods of measurement should be larger than correlations
of those measures with measures of different constructs obtained using the same or different methods;
and (c) the same pattern of trait correlations should hold for all methods and all combinations of
methods. 

Among others, Jöreskog (1971) pioneered the fitting of confirmatory factor (CFA) models to mul-
titrait-multimethod data. The CFA approach circumvented several problems associated with the
Campbell and Fiske (1959) rules of thumb. In particular, the CFA approach (a) yielded clear signifi-
cance tests of differences between alternative models and of specific parameter estimates, whereas the
ordinal comparisons involved in the Campbell–Fiske rules of thumb relied on dependent compar-
isons that compromised statistical tests; (b) allowed for tests of the amount of trait-related and
method-related variance in the MTMM matrix; and (c) led to estimates of the amount of trait-related
and method-related variance in each measure. Widaman (1985) systematized earlier work on CFA
models and provided an informative taxonomy of models for MTMM data by cross-classifying avail-
able trait factor structures and method factor structures. In addition, Widaman discussed alternate
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analytic strategies for exploring the magnitude of effects of trait and method constructs underlying
manifest variables in an MTMM matrix. Building on earlier work by Kenny (1976), Marsh (1989) dis-
cussed an additional CFA method specification, using correlated uniquenesses to represent method
effects. At about this time, Browne (1984) described a multiplicative model for fitting MTMM data.
Reichardt and Coleman (1995) provided an advanced discussion of the relative fit of linear and mul-
tiplicative models. Recently, Eid, Lischetzke, Nussbeck, and Trierweiler (2003) discussed an approach
leaving out one method factor to improve identification of model parameters. Lance, Noble, and
Scullen (2002) and Eid and Diener (2006) provided overviews of the strengths and weakness of 
different analytic models. Stacy, Widaman, Hays, and DiMatteo (1985) and Widaman, Stacy, and
Borthwick-Duffy (1993) conducted empirical studies with non-standard method factor 

Table 22.1 Desiderata for Multitrait-Multimethod Analysis

Desideratum Manuscript

Section(s)*

1. Authors identify and justify nature of trait constructs under consideration. I

2. The ways in which the methods of measuring traits might influence measurements are discussed. I

3. The usefulness of trait and method variance estimates for understanding the underlying nature of I

measurements included in study is discussed.

4. Path diagrams are presented for alternative models to be considered or for a general model within I

which alternative models are nested.

5. The general strategy to be followed when comparing competing models is described. I

6. A description of the nature and size of participant sample, along with basic descriptive data, is M

presented.

7. For each manifest variable a description is provided of the number of items, response scale, etc. M

8. The manifest variables associated with each trait and method factor are noted, verifying that each M

factor has a sufficient number of indicators and note method of identification.

9. The name and version of program used is given, the method of estimation used is stated explicitly, M

and assumptions are addressed.

10. The origins of missing data or outliers on manifest variables are described, and how they are handled M, R

is addressed explicitly.

11. A description is provided of how problems (lack of convergence, improper estimates) are to be M, R

handled.

12. The MTMM matrix is provided, along with means and standard deviations of manifest variables. R

13. Analytic strategy should dictate that certain (not all) models are evaluated. R

14. Likelihood ratio chi-square and practical fit indices are used, justifying any needed “fixes” to R

circumvent problems in the model fitting.

15. Any needed post hoc modifications are described and justified theoretically and statistically. R

16. Parameter estimates are evaluated for statistical significance and with regard to interval estimates R

(i.e., considering standard errors for each estimate).

17. The proportion of variance is computed due to trait, method, and unique factors. R

18. The quality of the different manifest variables for representing trait and/or method influence is D

discussed.

19. A discussion is provided of how current results might impact future research on the traits and the D

substantive domain.

20. Any limitations of the current study are addressed. D

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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specifications. Specific desiderata for studies that utilize CFA models for MTMM data are presented
in Table 22.1 and then discussed. This chapter deals only with the structural equation modeling
approach to evaluating MTMM matrices. Readers interested in other approaches can consult other
references for more traditional or historical approaches. For the original approach involving compar-
ing correlations, readers should refer to Campbell and Fiske (1959) or Ostrom (1969). Hubert and
Baker (1978) presented a nonparametric approach for testing the patterns of differences among cor-
relations in an MTMM matrix that improved statistically on prior methods. Analysis of variance
(ANOVA) approaches have also been proposed, and the relative strengths and weaknesses of ANOVA
relative to CFA modeling were discussed by Millsap (1995). An overview of alternative methods for
analyzing MTMM data was provided by Eid (2006).

1. Substantive Context and Measurement Implications

One initial and important goal of any investigation that uses the multitrait-multimethod (MTMM)
matrix is to identify and justify carefully the nature of the trait constructs that are the focus of the
study. Trait constructs employed in psychology come in many different forms. In the mental ability
domain, constructs such as fluid and crystallized intelligence or spatial ability can be studied, and
researchers typically assume that these dimensions represent characteristics of persons that are rather
stable across time. In the personality domain, researchers have recently emphasized the Big Five con-
structs of Extroversion, Agreeableness, Conscientiousness, Neuroticism, and Openness, which are
also hypothesized to be stable characteristics. However, theory associated with certain other person-
ality dimensions, such as State Anxiety, presumes that individual differences on these dimensions will
exhibit notable fluctuation across time. In still other areas of study, the trait constructs may represent
internal psychological processes, behavioral interaction styles, and so forth. Regardless of the con-
structs under investigation, the nature and definition of the constructs must be considered carefully,
especially whether assessing each construct with each method of measurement is appropriate and the-
oretically justified.

Most state-of-the-art approaches to analyzing MTMM data involve confirmatory factor analysis
(CFA; see Chapter 8, this volume) or other sophisticated approaches to analyses, which fall within the
general family of methods of structural equation modeling (SEM; see Chapter 28, this volume). As will
be discussed later (see Desideratum 9), the most common method of estimating parameters in CFA or
SEM is maximum likelihood estimation, which requires that data satisfy certain assumptions. As a
result, the researcher should verify that the measures of the trait constructs under study have been pre-
viously subjected to exploratory or confirmatory factor analyses or other forms of psychometric
analysis to verify their basic psychometric properties. Chief among these properties are normal distri-
butions of manifest variables and linearity and bivariate normality of relations among manifest vari-
ables. If data fail to satisfy these assumptions, other methods of estimation (e.g., robust weighted least
squares) can be used that require less stringent assumptions. In addition, as discussed below (see
Desideratum 9), the study should include at least three trait constructs in the MTMM matrix, to
ensure identification of latent variables.

2. Methods of Measurement and Their Potential Impacts

To conduct an MTMM study, the investigator must select a set of methods, preferably three or more,
to ensure identification of latent variables (see Desideratum 9). The researcher should also consider
and discuss the ways in which the methods of measurement included in the study might influence
those measurements of individual differences on trait dimensions. This is a difficult task, as a general
theory of method effects, specifically in the context of MTMM studies, has never been developed.
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Despite the lack of a general theory of method effects, researchers have used many different ways of
operationalizing measurement methods, and the brief summary below is offered to assist in the chal-
lenging but essential task of understanding and interpreting method effects.

Many different types of measurement methods have been used in MTMM studies. In early studies
of multiple dimensions of attitude (e.g., Ostrom, 1969), the methods included different ways of for-
matting items and/or developing scales (e.g., Guttman scaling, Thurstone scaling, rating scales). Some
studies utilize different reporters as representing the different methods, and these can take any of sev-
eral forms: (a) self, parent, and teacher report methods; (b) self, friend, and observer report methods;
(c) mother, father, and teacher report; and so on. Still other studies survey methods more broadly,
using life history (L), observer ratings (O), self-report (S), and objective test (T) indicators to serve as
methods. These LOST indicators clearly represent a much broader selection of methods, as most
researchers select multiple methods within a single LOST category to serve as the methods.

Methods may have many impacts on the trait measurements, an underemphasized aspect of most
studies using the MTMM matrix. Self reports may be contaminated by notable amounts of response
biases such as acquiescence, social desirability, or extremity bias. Observer reports are likely to reflect
halo bias, or the tendency to rate a particular target similarly across trait ratings, particularly if the trait
constructs have close connections (e.g., effort and performance). Objective tests are highly influenced
by motivation to perform well at the time of the assessment, and such motivation may wax and wane
over time. Life history data are more indicative of typical levels of performance than of maximal per-
formance, which may lead to lower levels of convergence with objective test scores. The list of poten-
tial influences of methods on measurements is large, and research studies will be improved in the
future if they are designed to shed light on the alternative sources of method effects.

3. Utility of Trait and Method Variance Estimates

Any findings regarding the trait and method variance in each of a set of measures is, of itself, an impor-
tant contribution to the literature, especially if such estimates are not widely available from prior
research. High levels of trait-related variance in measures support conclusions that the measures
reflect the processes or constructs hypothesized, whereas low levels of trait-related variance should
signal the need to revise measures to capture more adequately the underlying constructs. Either way,
the use of the MTMM matrix can provide crucial information for the interpretation of research
beyond the scope of the current study.

The researcher should discuss the usefulness of trait and method variance estimates for under-
standing the nature of measurements included in study. The history of every area of psychology is a
history strewn with examples of theories built upon measures that were presumably reflective of spec-
ified underlying processes or theoretical constructs, measures later shown to be only weakly related to
the underlying processes hypothesized. Much wasted effort might have been avoided if researchers
had utilized MTMM matrix studies to investigate the properties of their measures.

Most research in psychology has a built-in confirmation bias, as researchers tend to search out and
highlight positive correlations among measures of similar constructs. Some of these positive correla-
tions are statistically significant, but fall in the range of .30 to .40, and correlations of this magnitude
are not strong evidence that the measures are indicators of the same construct. Furthermore, finding
low correlations between disparate measures can be just as important as, or more important than,
finding high correlations between similar constructs. If a researcher found a .40 correlation between
two measures of Construct 1, but found that both of these measures also correlate .40 with a measure
of Construct 2, the researcher should be wary of the strength and importance of the former correla-
tions. Use of the MTMM matrix approach forces researchers to confront research outcomes of 
this sort.
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4. MTMM Path Diagrams

A path diagram or structural modeling diagram is a graphical presentation of the form of a statistical
model. Most common linear models can be formulated as diagrams, and the statistical model repre-
sented by the diagram is often isomorphic with the diagram. In a path diagram, we typically denote
manifest or measured variables as squares or rectangles and latent (or unmeasured) variables as circles
or ellipses. Straight, single-headed arrows are used to indicate dependence or directed relations
between variables, with the variable at the tail of the arrow a predictor of the variable at the head of the
arrow. Finally, double-headed (and often curved) arrows are used to denote undirected relations,
such as the covariance between two variables or the variance of a variable. In particular, a curved, dou-
bled-headed arrows from a variable to itself represents a residual variance, with effects of all unidirec-
tional influences on the variable controlled statistically. For example, in Figure 22.1, the curved,
double-headed arrow from Trait Factor 1 to itself represents the entire variance of this trait factor
because no unidirectional arrows are drawn toward the trait factor. In contrast, the curved, double-
headed arrow from the manifest variable “Trait 1 Method A” to itself represents the unique variance
of this indicator, which reflects variance in the indicator remaining after accounting for variance due
to Trait Factor 1 and Method Factor A.
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Trait 2
Method A

Trait 3
Method A

Trait 1
Method B

Trait 2
Method B

Trait 3
Method B

Trait 1
Method C

Trait 2
Method C
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Factor A

Method
Factor B

Method
Factor C

Figure 22.1 The Correlated Trait–Correlated Method (CTCM) Linear CFA Model for MTMM Data.
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In a study using the MTMM matrix, the researcher can and usually should present one or more 
path diagrams for alternative structural models to be investigated in the study. Two alternative path
diagrams are shown in Figures 22.1 and 22.2. In Figure 22.1, nine manifest variables are shown in the
rectangles in the middle of the figure: Traits 1, 2, and 3 each assessed using Methods A, B, and C. In the
standard correlated-trait, correlated-method (CTCM) model, the researcher can hypothesize the
presence of three trait latent variables, each associated with the manifest variables aligned with the trait
construct and shown in the circles on the left side of the figure. Thus, Trait Factor 1 is shown having
direct linear relations on the three manifest indicators of Trait 1, Trait Factor 2 has direct linear rela-
tions on the three manifest indicators of Trait 2, and so forth. The potential influence of three method
factors is also represented by the three ellipses at the right side of Figure 22.1. Method Factor A is pre-
sumed to have direct linear effects on all manifest variables measured using Method A, and similar
direct relations hold for Method Factors B and C. The double-headed arrows among the three trait
factors reflect covariances (or correlations) among these latent trait factors, and the double-headed

Figure 22.2 The Correlated Trait–Correlated Uniqueness (CTCU) CFA Model for MTMM Data.
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arrows among the three method factors reflect covariances among the latent method factors. The
absence of double-headed arrows between trait and method factors indicates that these covariances
are presumed to be nil and are typically forced to be zero. 

The model in Figure 22.2 is often termed the correlated-trait, correlated-uniqueness (CTCU)
model. As with the first model, nine manifest variables are shown in the rectangles in the figure. The
trait factor specification in Figure 22.2 is identical to that in Figure 22.1, with trait factors having direct
effects on their respective manifest variables and covariances posited among the trait factors. The
major difference between the two figures is that method factors have been deleted in Figure 22.2 and
have been replaced by covariances among unique factors or uniquenesses. That is, covariances have
been specified among all measures obtained using Method A, among all measures obtained using
Method B, and among all measures obtained using Method C. Note that the absence of double-headed
arrows between measures obtained from different methods (e.g., no double-headed arrows between
measures under Method A with measures under Method B) means that method effects are hypothe-
sized to be statistically uncorrelated under the CTCU model and such effects are therefore fixed at zero.

5. Analytic Strategy for Comparing Models

Next, the researcher could describe a general analytic strategy that will be followed when comparing
competing models. Analytic strategies have long been discussed for multiple regression analysis, and
readers typically expect to read about the analytic strategy a researcher used in a complicated study
employing regression analysis. In small studies, simultaneous regression—with all predictors
included in a single regression model—is frequently used. But, if sample size is rather large and the
number of potential predictors is also large, some form of theoretically or empirically driven hierar-
chical strategy is often used to understand the unique impacts of various sets of predictor variables.

Analogous analytic strategies should be used when evaluating the fit of a structural model to an
MTMM matrix. Widaman (1985) outlined three alternative strategies, each based on a common strat-
egy under multiple regression analysis. One strategy was akin to simultaneous regression analysis;
under this approach, one might fit all of the models in the Widaman (1985) taxonomy and compare
the importance of particular estimates whenever and wherever possible. A second strategy had simi-
larity to forward selection in regression analysis. Under this strategy, one would start with the simplest
model that might reasonably account for the data (i.e., a model with correlated traits and no method
factors) and then add method factors and finally correlations among method factors if these were
required to explain patterns in the MTMM matrix. The third strategy was similar to methods in
regression analysis in which one partials out the influence of nuisance variables before testing the pri-
mary effects of interest. Here, the researcher could begin with a model that contains only correlated
method factors and then adds trait factors and finally correlations among trait factors if needed to rep-
resent the relations in the MTMM matrix. Regardless of which analytic strategy is selected, the
researcher should describe and justify the analytic approach taken in the study.

6. Sampling Method and Sample

As in any empirical study, the researcher should carefully and fully describe the nature and size of the
sample of participants. Studies that utilize an MTMM matrix are oriented toward evaluating meas-
urement properties, and measurement properties (e.g., reliability) are known to vary across samples,
especially if a sample exhibits any restriction of range. Therefore, the researcher is advised to consider
carefully the sample selection methods used, to arrive at as representative a sample from a population
as possible. Samples of convenience are to be avoided in MTMM matrix studies, because the
researcher intends to give general conclusions regarding the trait- and method-related variance in
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measures. Further, if any variables might be confounded in the correlations in the MTMM matrix, the
effects of these should be estimated and, if large, controlled statistically. Potential confounding vari-
ables include nesting of participants within groups (e.g., students within classrooms), which can lead
to failure to meet the assumption of independence of observations. With such effects, multilevel
approaches to model fitting can be utilized. Or, if socioeconomic status, sex, or other background
variables are related to the measures in an MTMM matrix, these variables could be included as control
variables or covariates within the CFA model for the MTMM data.

The size of the sample of participants is of particular interest when structural equation modeling
techniques are used. Monte Carlo studies of SEM have generally found that sample sizes of 150–200 or
more should be used to estimate parameters and their standard errors (SEs) accurately if maximum
likelihood (ML) estimation is used. If manifest variables fail to exhibit univariate and multivariate
normality, then some more advanced methods of estimation (e.g., asymptotically distribution free
[ADF], weighted least squares [WLS]) or robust adjustments to ML statistics (Satorra-Bentler correc-
tions) might have to be used to ensure accurate estimation of parameter estimates and their SEs, and
these methods typically require more substantial sample sizes (e.g., 1,000 for ADF). If a researcher has
reasonable a priori estimates of trait and method factor loadings, along with correlations among the
trait and among the method factors, the investigator should explore power analyses to ensure that s/he
has sufficient power to detect the parameter estimates expected and/or to detect meaningful differ-
ences between competing MTMM models. 

7. Identify and Describe Manifest Variables

Every empirical study in the social and behavioral sciences should have a clear description of the man-
ifest variables included in the study. However, because the focus of any study featuring the use of the
MTMM matrix is a full evaluation of the psychometric properties, particularly the trait and method
decomposition, of manifest variables, the need to provide a careful description of all manifest vari-
ables is heightened. Most commonly, the manifest variables in an MTMM matrix study are not indi-
vidual items, but are scale scores composed as the sum (or average) of multiple items. In a typical
study, the researcher should separate out the description of each manifest variable in its own brief
paragraph, so readers can easily identify the part of the Methods section that pertains to each manifest
variable.

For each manifest variable, the researcher should provide a complete description of the way in
which the manifest variable score was derived. This description should include the number of items in
the scale, the response scale used for each items (i.e., the number of scale points and the scale end-
points), and the way in which the score on the manifest variable was derived. The scale or manifest
variable score is usually obtained as the simple, equally weighted sum of all items that comprise the
scale. However, if any differential weighting or other unusual method of arriving at a total scale score
for the manifest variable is used, this must be clearly described and justified.

8. Latent Variables and Their Indicators 

The manuscript should have a clear description of the manifest variables associated with each trait and
method factor. As noted earlier, any MTMM matrix study should strive to have measures of at least
three traits obtained using at least three methods to ensure adequate identification of all trait and
method latent variables. Because the focus of an MTMM matrix study is on the measurement proper-
ties of manifest variables, the delineation of which variables load on which latent variables is usually a
straightforward matter. Regardless of its often pro-forma nature, these relations should be clearly
stated. Note that some researchers have formulated second-order MTMM designs (e.g., Marsh &
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Hocevar, 1988). To employ a second-order MTMM design, one must have multiple indicators for
each of the trait-method combinations in a study. Then, first-order factors are specified as having
direct effects on appropriate manifest variables, and the MTMM matrix would be found in the matrix
of correlations among first-order factors. Second-order factors would then be specified as having
direct effects on appropriate first-order factors. The complexity of a second-order MTMM design
underscores the importance of outlining carefully the relation of manifest variables to their associated
latent variables and the place of measurements within the MTMM matrix.

The researcher should also clarify and justify how the latent variables in the model were identified.
Many experts on SEM recommend fixing to 1.0 the factor loading of one indicator for each latent vari-
able. This specification is usually sufficient to identify the scale of each latent variable and allow the
estimation of all additional parameters of the model. However, this choice of identification constraint
usually leads to latent variables with variances that depart from unity, so covariances among trait fac-
tors and among method factors are in a metric that can be difficult to interpret. Thus, it is often advis-
able to fix to 1.0 the variance of all latent variables in the model, which ensures that covariances among
latent variables will be scaled in the metric of correlations, making them much easier to interpret. In
addition, this choice for model identification leads to the estimation of all trait factor and method fac-
tor loadings and their associated SEs, enabling a more informative set of estimates for these key model
parameters.

9. Analytic Methods

Many different SEM programs can be used to fit the standard structural models for MTMM 
data. These programs are listed in Chapter 28 in this volume. Most structural models for MTMM 
data are relatively simple to specify, so virtually all SEM programs will give identical parameter 
estimates and SEs for these models. Still, the researcher should provide the name and version number
of the program used for analyses, as SEM programs are in a continual state of revision and readers
should be informed of the specific program used for analyses. The researcher should also clearly 
state the method of estimation used. ML estimation is the default in virtually all SEM programs and 
is often the method used for analyses of MTMM data. However, ML estimation rests on stringent
assumptions, including the assumption of multivariate normality of manifest variables. Thus, the
researcher should address whether the MTMM data meet these assumptions; for example, the
researcher should report univariate and multivariate indices of kurtosis, as departures from 
optimal kurtosis can lead to bias in model fit statistics. If the data exhibit either platykurtosis or lep-
tokurtosis, then some method other than ML may be more appropriate and should be explored.
Readers are referred to the chapter on SEM in the current volume (Chapter 28) for more details on this
point.

In addition to other technical details on analytic methods, the researcher should note clearly
whether the structural models were fit to the MTMM matrix in a correlational or covariance metric.
Most structural models are covariance structure models, not correlation structure models. As a result,
fitting covariance structure models to correlational data can lead to inaccurate estimation of many sta-
tistics, including the overall chi-square index of fit, factor loadings, factor intercorrelations, and SEs
of all parameter estimates. Even when all other statistics are estimated accurately, the SEs of parame-
ter estimates will almost always be biased if covariance structure models are fit to a correlation matrix.
Unfortunately, this matter received too little attention in the analysis of MTMM data; indeed, most
studies in which structural models have been fit to such data apply covariance structure models to the
MTMM matrix in correlational metric. To ensure proper estimation of parameter estimates and SEs,
it is strongly recommended that models be fit to MTMM data in covariance metric, and standardized
estimates can still be reported to allow less complicated interpretation. 
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10. Missing Data and Outliers

In many types of study (e.g., longitudinal studies), missing data are more the norm than the exception.
In contrast, given the fact that studies that use the MTMM matrix approach usually require only a sin-
gle time of measurement, many such studies do not have missing data. Regardless, the researcher
should describe the extent and the origins of any missing data in a study. Researchers often avoid miss-
ing data by using listwise deletion of participants, which leads to the dropping of participants with
missing values on any manifest variable. This is not a generally recommended practice, because it leads
to bias in the estimation of correlations among manifest variables. Instead, researchers should explore
the use of full information maximum likelihood (FIML) estimation, in which models are fit directly
to raw data matrices with missing data, or multiple imputation (MI), which analyzes and aggregates
results from several datasets containing randomly varying imputed values. These approaches should
lead to less bias in the estimation of the initial relations among manifest variables and then less bias in
estimates of model parameters and standard errors.

The researcher should also discuss the presence of any univariate or multivariate outliers on mani-
fest variables and how such outliers are to be handled. Outlier detection is rarely discussed in studies
that use the MTMM matrix approach, yet outliers can distort relations in the MTMM matrix, so are
not a trivial issue. Greater detail on outlier detection and how to handle outliers is provided in the SEM
chapter (Chapter 28) so will not be discussed in further detail here. Suffice it to say that optimal results
in MTMM matrix studies will be obtained only if the influence of outliers is minimized, so researchers
are strongly encouraged to use state-of-the-art methods of detecting and handling outliers. 

11. Problems with Model Fitting 

Studies that use SEM frequently encounter problems in the fitting of models to data. These problems
in model fitting can be of several forms, including lack of convergence and the presence of improper
parameter estimates. The investigator should describe how any problems in model fitting will be han-
dled. Lack of convergence arises when the iterative estimation routines in an SEM program fail to meet
the convergence criterion and therefore fail to arrive at the ML solution within a specified number of
iterations. Each SEM program has a default number of estimation iterations, which are often a func-
tion of the size of the problem or of the number of estimates in the model. The output from the SEM
program should indicate in some fashion why the program failed to converge, although the user might
have to be especially attentive to note whether convergence was achieved or whether iteration halted
because the default number of iterations was exceeded. If the default was exceeded, the user can
increase the number of iterations. If this does not solve the convergence problem, the model may
requirerespecification because the model may not be sufficiently well identified empirically.

The presence of improper parameter estimates is the second major class of problems that often arise
when fitting models to MTMM data. The most common types of improper estimates are (a) estimated
correlation coefficients that fall outside the range from –1.0 to +1.0 and (b) negative variances. At
times, the estimated correlation between a pair of trait or method factors falls outside the mathemat-
ically acceptable range from –1.0 to +1.0, because latent variable variances and covariances are esti-
mated separately and no joint constraints are automatically imposed to ensure that correlations
remain within mathematically acceptable bounds. If unacceptable estimates of this nature occur, the
factors with unacceptably high correlations cannot be distinguished empirically, and the model must
be respecified so that all model estimates are acceptable. For example, if Trait Factor 1 and Trait 
Factor 2 are estimated to correlate +1.1, one could either respecify the model so that all indicators for
both Trait Factors 1 and 2 load on a single trait factor that subsumes the two domains of content or
constrain the estimate of the correlation between Trait Factors 1 and 2 to fall on or within the bound-
ary of the acceptable parameter space (i.e., fall between –1.0 and +1.0). 
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With regard to the second class of problematic estimates, the estimate of a variance parameter can
be negative, and a negative variance is unacceptable because a variance is the square of the correspon-
ding SD so must be greater than or equal to zero. Various possible bases for negative variances have
been discussed (van Driel, 1978); regardless of the basis, a negative variance is unacceptable. In
responding to this problem, one can either (a) fix the variance estimate to a value that is on or within
the boundary (e.g., fix the variance to zero or to some small positive value) or (b) constrain the vari-
ance estimate to be greater than or equal to zero or to some small positive value. If the negative vari-
ance is a unique variance, then an appropriate model constraint may be employed. Suppose the
researcher has an estimate of the reliability of the manifest variable, where r

yy
is used to denote the reli-

ability of variable Y. The researcher could then constrain the unique variance for the manifest variable
to be greater than or equal to s2

y
(1 – r

yy
), where s2

y
is the variance of variable Y. The quantity s2

y
(1 – r

yy
)

for a manifest variable represents its estimated error variance, which is a lower bound estimate of
unique variance for the manifest variable. Regardless of how the problem is handled, a negative error
variance is often a symptom of a larger problem with the model, so some form of model respecifica-
tion is typically needed.

12. Descriptive or Summary Statistics

The key set of descriptive statistics for any MTMM study is the matrix of correlations among the man-
ifest variables, along with the means and SDs of the manifest variables. Following the original presen-
tation by Campbell and Fiske (1959), researchers usually array the measures of the t trait factors in the
same order within each of the m methods. That is, the rows and columns of the correlation matrix are
arranged so that the first t measures are the trait measures obtained using the first method of meas-
urement, the next set of t measures are the trait measures obtained using the second method, and so
forth. Arrayed in this fashion, the several key parts of the MTMM matrix—including the validity diag-
onals that contain the convergent validities—will be in the expected places that will ensure easy inter-
pretation of the MTMM matrix by readers.

In addition to the simple presentation of a table with the MTMM matrix of correlations, the 
investigator should offer some summary observations on the correlations contained in the matrix. For
example, Campbell and Fiske (1959) argued that convergent validities should be statistically 
significant and sufficiently large to encourage further research with the manifest variables. Campbell
and Fiske then discussed how one should compare the validity diagonal elements to other elements in
the matrix to evaluate the discriminant validity of the measures. As a result, prior to fitting 
structural models to the data, the investigator should describe the general levels of convergent and dis-
criminant validity exhibited by manifest variables in the MTMM matrix. This would include noting
both the general magnitude of the convergent validities and the degree to which the convergent validi-
ties tend to exceed the magnitudes of other relevant correlations and thereby exhibit discriminant
validity.

13. Fit Relevant MTMM Models

The researcher should next select an analytic strategy for fitting relevant structural models to the
MTMM data. Widaman (1985) discussed three general analytic strategies, the first of which is a simul-
taneous strategy, which involves the fitting of the entire set of models in the taxonomy of models he
proposed. With four trait structures and four method structures, this would entail the fitting of 16 dif-
ferent structural models to the MTMM data. The investigator could supplement this set of models
with additional models proposed by Marsh (1989), who incorporated a fifth method structure—the
correlated uniqueness method specification—into the taxonomy proposed by Widaman (1985).
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Rather than fitting all possible models discussed by Widaman (1985), research in a given area may
be sufficiently advanced that only a subset of models should be considered. If a more restricted set of
models should be of interest, one could implement one of two stepwise analytic strategies. The first of
these is a forward selection strategy, in which one would first fit a model with correlated trait factors,
then add to this model orthogonal method factors, and finally allow the method factors to correlate.
The second approach is based on first partialing irrelevant sources of variance. Under this approach,
one might first fit a model with correlated method factors (because these represent construct-irrele-
vant variance) and then subsequently add trait factors and correlations among the trait factors to
determine whether the addition of trait factors leads to improved representation of the data over and
above the estimation of method factors. The primary factor guiding the choice of an analytic strategy
is this: Prior research and theory should dictate which sources of variance—trait factors and/or
method factors—might be expected to explain correlations among the manifest variables, and these
considerations should, in turn, dictate the set of models to be fit to the data.

14. Evaluate Relative Overall Fit of Competing Models

Once the set of MTMM structural models are fit to the data, the researcher should evaluate the relative
fit of alternative models. The Widaman (1985) taxonomy, supplemented with the Marsh (1989)
method structure, can be employed to determine which model comparisons are legitimate when testing
statistical differences in fit between models. Statistical differences in fit between two models can be
tested if one model is nested within the second model. The latter, more highly parameterized, model
must have all parameter estimates in the first, more restricted model; the more restricted model can be
obtained from the more highly parameterized model by fixing one or more parameter estimates in the
latter model to zero. For example, a model that contains correlated trait and correlated method factors
is a highly parameterized model, which can be designated Model 3. One could obtain one more
restricted model, Model 2, by fixing correlations among method factors to be zero; a researcher could
obtain a still more restricted model, Model 1, by fixing all method factor loadings to zero and thereby 
eliminating method factors. With this set of models, Model 1 would be nested within Model 2, and
Model 2 would be nested within Model 3. Given this set of nesting relations, differences in fit between
the various models can be studied.

Differences in the fit of nested models can be evaluated in several ways. The most common tool for
investigating the differences in fit of nested models is to use the likelihood ratio (chi-square difference)
test. Basically, if one model is nested within another, the difference in chi-square values is distributed
as a chi-square variate with degrees of freedom equal to the difference in degrees of freedom for the
two models. The likelihood ratio chi-square test of a model, and any related chi-square difference tests
comparing nested models, are heavily influenced by sample size. In such situations, researchers often
rely on practical fit indices to evaluate the difference in fit between models. Certain practical fit indices
are termed measures of parsimony-corrected absolute fit because they contain a correction or adjust-
ment for model complexity, yet index fit for a given model without regard to other, more restricted
models; among these measures, the root mean square error of approximation (RMSEA) is perhaps the
most useful. Other practical fit indices are termed measures of relative or incremental fit because they
involve the comparison of fit of a given model to that of a more restricted, null model. Of the relative
fit indices, the comparative fit index (CFI) and the Tucker-Lewis index (TLI) appear to be optimal
indices of fit. The interested reader is referred to Widaman and Thompson (2003) for a more 
in-depth consideration of these measures. 

Finally, model comparisons can be made among models that have no nesting relations. The most
common measures used for such comparisons are information indices, such as the Akaike
Information Index (AIC) and the Schwarz Bayesian Information Criterion (BIC). For the AIC and
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BIC, the model with the smaller value of the index is the preferred model. These information criteria
are also useful if two trait factors or two method factors are merged because the correlation between
the two factors nears 1.0. Although the merging of two factors does lead to nesting of models under
typical definitions of nesting, the resulting likelihood ratio difference test statistic does not follow a
chi-square distribution because the correlation between factors is fixed at a boundary value (i.e., 1.0).

15. Post Hoc Model Modifications 

The investigator should clearly describe and justify any post hoc modifications to the a priori 
specification of models to fit the MTMM matrix. The specification of trait factor and of method fac-
tors is a relatively simple and straightforward enterprise. However, the correlated trait—correlated
method (CTCM) is often poorly identified empirically, so is prone to problems of lack of convergence
and improper estimates. To counter identification problems, modifications to the a priori specifica-
tion of a model can lead to a more well-conditioned model that converges and has acceptable esti-
mates of all parameters. One example of a post hoc modification is the constraining to equality of all
factor loadings on each method factor (presuming all variables to be in the same metric). Many 
times, method factor loadings are not large, and estimation problems can arise in such situations.
These estimation problems can be avoided by constraining to equality all factor loadings on a given
method factor.

A second class of post hoc modifications is the respecification of the nature of method factors. The
studies by Stacy et al. (1985) and Widaman et al. (1993) exemplify principled respecifications of
method factors. In the latter study, the authors used three methods—standardized instrument, day
shift ratings, and evening shift ratings—of four trait dimensions of adaptive behavior—cognitive
competence, social competence, social maladaption, and personal maladaption. The original method
factor specification had all four measures from a given method of measurement loading on a single
factor for that method, but this method failed to achieve proper estimates. Based on examination of
model fit, Widaman et al. respecified the method structure with two method factors for each method
of measurement—one factor with loadings from the two dimensions of competence (cognitive and
social) and a second factor with loadings from the two dimensions of maladaption (social and per-
sonal)—and allowing these method factors to correlate within methods, but not between methods.
This respecified model fit the data very well. Regardless of the form of post hoc respecification, any
altered specification of a model must be justified on both theoretical and empirical grounds.

16. Evaluate Fit of Optimal Model to Manifest Variables

Once a final, acceptable model is selected to represent the MTMM matrix, the researcher should care-
fully interpret and evaluate all parameter estimates in the model. Evaluation of estimates is usually
done in several ways. First, the point estimates of the factor loadings should be noted, at least with
regard to their mean (or median) value and range. Thus, the investigator might say that the trait fac-
tor loadings were moderate to strong, with a mean loading of .65 and a range from .55 to .80. Similar
comments can be made regarding the method factor loadings and the correlations among the trait
and/or method factors.

The researcher should also evaluate each parameter estimate for statistical significance and likely
population value. The critical ratio of the parameter estimate divided by its standard error yields a
large-sample z statistic, and the common practice in the field is to require a z statistic to be 2.0 or
greater to declare the associated parameter estimate significant at the p < .05 level. The investigator
could also provide an interval estimate of each parameter estimate or of certain, key selected parame-
ter estimates. An approximate 95% confidence interval can be constructed as the parameter estimate
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plus or minus twice its standard error, and this interval estimate is often more useful as an indication
of likely population values of a given parameter than is the simple z statistic. 

As discussed by Widaman (1985), certain parameter estimates in the CTCM model are directly
related to the stipulations regarding convergent and discriminant validity discussed by Campbell and
Fiske (1959). The following estimates are of particular interest: (a) trait factor loadings are the primary
indicator of convergent validity, because they represent the relation of the trait latent variable to its
indicators, so higher trait factor loadings indicate higher levels of convergent validation; (b) correla-
tions among trait factors are the principal basis for representing discriminant validity, as the correla-
tions among trait factors indicate how discriminable the latent factors are empirically, so correlations
among trait factors that tend toward zero indicate better discriminant validity than do high correla-
tions among trait factors; and (c) method factor loadings are the primary indicator of the how strongly
methods affect or influence manifest variables, so lower method factor loadings are preferred. The
investigator should discuss these different sets of parameter estimates to provide the interested reader
with a concise description of the degree to which the manifest variables in the MTMM matrix exhibit
optimal patterns of convergent and discriminant validity.

17. Report Estimates of Trait and Method Variance

The investigator should compute and report the proportion of variance in each manifest variable due
to trait, method, and unique factors. This is a relatively simple task if the manifest variables are in stan-
dardized, or correlational, metric. Provided that no correlations are allowed between trait and method
factors and that each manifest variable loads on only its appropriate trait and method factors, then 
the proportions of variance explained by trait and method factors are simply the squares of the stan-
dardized trait and method factor loadings, and the sum of trait, method, and unique variance should
be unity.

By default, structural equation modeling programs typically fit covariance structure models to data,
and these models should be fit to covariance matrices. Unfortunately, most analyses of MTMM data
involve the fitting of models to correlation matrices, as noted in Desideratum 9 above. If a researcher
performs analyses in an optimal fashion and fits MTMM structural models to the MTMM matrix of
covariances among manifest variables, the computation of variance due to trait, method, and unique
factors is somewhat, but only slightly more complicated. That is, the variance of each manifest variable
is represented in such a model as the additive sum of the square of the trait factor loading, the square
of the method factor loading, and the unique variance, a total variance that usually departs from unity.
Dividing each source of variance (e.g., the squared trait factor loading) by the total variance will pro-
vide the desired estimate of variance due to that source. Alternatively, the researcher can fit an MTMM
CFA model to the covariance matrix and then present parameter estimates from the standardized
solution. The researcher could additionally report a confidence interval for each variance estimate to
supplement the point estimate of variance that is usually reported.

18. Implications of Modeling for Manifest Variables

The investigator should discuss the results of the MTMM analyses for the manifest variables included
in the matrix. One of the key points made by Campbell and Fiske (1959) was that evidence for con-
vergent validation of measures should be sufficiently strong to encourage further research in a given
domain and, presumably, with the particular manifest variables in the analysis. The results of fitting
structural models to MTMM data provide estimates of trait-related and method-related variance.
Although no hard-and-fast rules for adequacy of trait-related variance in measures, some guidelines
can be suggested. In much Monte Carlo work on factor analysis, standardized factor loadings of .4, .6,
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and .8 have been used to represent low, medium, and high levels of communality. After squaring these
loadings, this means that researchers generally consider explained variance figures of .16, .36, and .64
to reflect low, medium, and high levels of saturation of the manifest variable with the factor. Whether
these guidelines are acceptable in any particular application of structural modeling to MTMM data is
a subject matter concern. Thus, in some domains, saturation of .16 with a trait factor for one or more
manifest variables may be considered adequate; in other domains, minimal levels of trait factor satu-
ration might be .25 or .30. Prior research in the area—and prior research using the manifest variables
used in the current study—would be very valuable information when interpreting results.

The investigator should keep in mind the fact that, in the typical MTMM structural model, each
manifest variable is influenced by two factors—one trait factor and one method factor. As a result,
higher levels of factor saturation (e.g., above .60) are unlikely to be achieved routinely for saturation
with a trait factor because the trait and method factors are each attempting to explain variance of the
manifest variables. Still, the guidelines listed above may prove useful when interpreting the magnitude
of effects of trait factors and method factors on the manifest variables.

19. Implications of Modeling for Future Research

The researcher should also discuss the implications or impacts of the results of the current study for
future research on the traits and the substantive domain. Provided that very strong convergent vali-
dation of measures was obtained (see, e.g., Stacy et al., 1985), the researcher might suggest that little is
gained by inclusion of many methods of measurement in the future. Still, to avoid bias associated with
any particular method of measurement, one might reasonably recommend the use of several 
methods of measurement in any future study in order to triangulate in the assessment of key con-
structs of interest.

In many areas of research in the social and behavioral sciences, researchers continue to use favorite
ways of assessing constructs because these approaches have been widely used in the past. But, if
MTMM studies have not been performed in a particular domain, questions may linger regarding
whether the results obtained are closely related to the trait construct presumably assessed by a meas-
ure or whether method influences on the measure might represent a major contaminant on scores.
Because of this, research in any domain of investigation should be supplemented with MTMM data
collection to verify the amounts of trait- and method-related variance in manifest variables. Successful
MTMM studies will buttress traditional measures of constructs, adding important measurement-
related information to the existing literature. On the other hand, MTMM studies that yield rather low
levels of trait-related variance for key manifest variables can lead to important reorientations in fields
of inquiry. Regardless of the degree of success in confirming high amounts of trait-factor saturation in
measures, the results of MTMM studies have important implications for research on the trait 
constructs and the methods of assessing these constructs, implications that should be drawn out with
clarity.

20. Limitations 

As a final note, the researcher should discuss any limitations of the current study. Limitations may
arise at many levels. For example, use of a sample of participants from a university subject pool may
result in a rather restricted sample, and the results obtained may not generalize to the population. Or,
the precise manifest variables included in the study may be problematic in some ways. Because
MTMM studies often include more variables than typical studies, researchers may use shortened
forms of measures due to the need to assess a large number of constructs. If these shortened forms fail
to exhibit high amounts of trait-related variance, the problem may be due more to the use of shortened
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forms with lowered levels of reliability than to the problematic nature of assessing the constructs
under study.

Sample size is always a consideration when using structural equation modeling, and studies using
MTMM data and models are no exception. Preferably, sample size should be rather large, generally
with a minimum sample size of 150 or 200 participants, and larger samples should be sought as the size
of the model increases. MTMM structural models tend to be somewhat less stable and therefore more
prone to lack of convergence than do typical structural models. Therefore, a researcher should be
encouraged to obtain as large a sample of participants as possible. Regardless of any limitations, the
use of the MTMM approach to construct validation is still considered one of the strongest approaches
one can take, and the results of MTMM studies will always represent important contributions to the
research literature.

Note

1 This research was supported by grants from the National Institute of Child Health and Human Development, the
National Institute on Drug Abuse, and the National Institute of Mental Health (HD047573, HD051746, MH051361,
and DA017092) (Rand Conger, PI).
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23
Multivariate Analysis of Variance

Stephen Olejnik

Multivariate analysis of variance (MANOVA) is a statistical model that is appropriate for both experi-
mental and non-experimental research contexts where the relations between one or more explanatory
(independent) variables and multiple outcome (dependent, response) variables are of interest. While
in general explanatory variables may be quantitative or qualitative (see Chapter 3, this volume, on
canonical correlation), this chapter focuses on the analysis and interpretation of statistical models
involving only qualitative explanatory variables, that is, variables that are used to group the available
units, typically human participants. As presented here, MANOVA is viewed as an extension of the uni-
variate general linear model (see Chapter 1, this volume, on between-groups ANOVA) to examine pop-
ulation differences on one or more linear composites of correlated outcome variables. The correlations
among the outcome variables suggest that one or more constructs might underlie the observed meas-
ures (here, “constructs” are conceptualized somewhat differently than in a structural equation model-
ing context; see Chapter 28, this volume). Composites are weighted combinations of the observed
variable scores with the estimated weights chosen to maximize group separation. These composites are
called linear discriminant functions and each function defines an independent construct. It is the differ-
ence between populations on these constructs that is of primary interest to the researcher. The purpose
of a multivariate analysis of variance therefore is to identify, define, and interpret the constructs deter-
mined by the linear composites separating the populations being compared. The careful selection of the
outcome variables to study is essential for a meaningful analysis. A researcher may begin a study having
some idea regarding the underling constructs, but often unanticipated constructs are identified.
MANOVA can be used to support the researcher’s beliefs regarding the assessed constructs as well as to
reveal hidden constructs underlying the observed outcome measures.

Additional discussions of the application and interpretation of MANOVA that are less technical
can be found in Hair, Anderson, Tatham, and Black (2005), Huberty and Olejnik (2006), and Stevens
(2009). More mathematical discussions of MANOVA can be found in Anderson (2003), Johnson and
Wichern (2007), and Rencher (2002). Guidelines for preparing or evaluating studies using MANOVA
are presented in Table 23.1. These guidelines are elaborated upon in subsequent sections.

1. Research Questions and Design

The substantive questions that motivated the research study should be explicitly stated and justified
based on theory, previous research findings, and/or the researcher’s experiences. The research 
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questions of interest provide the first indication as to whether a multivariate analysis is appropriate.
Research questions answered through MANOVA examine the relations between one or more group-
ing variables (e.g., participation in an Exercise Program emphasizing Strength, Aerobics, or a
Combination of Strength and Aerobics Training) and two or more outcome variables (e.g., Heart
Rate, Blood Pressure, Oxygen Uptake, Mood, Attitude). It is essential then, as part of the explication
of the research questions, that researchers explicitly define both sets of variables.

A multivariate analysis might be justified if the questions raised involve examining sets of outcome
variables which in some sense “hang” together to measure a construct that cannot be adequately rep-
resented by a single outcome variable. If the research questions are stated in terms of individual out-
come variables, a multivariate analysis will be inappropriate and multiple univariate analyses may be
justified (see Chapter 1, this volume). But when multiple outcome variables are considered together
through the formation of one or more composites, a multivariate analysis is justified. A composite is
a weighted combination of outcome variable scores that represents a theoretical construct. The deter-
mination of those weights and their interpretation are critical steps in MANOVA.

Table 23.1 Desiderata for Multivariate Analysis of Variance

Desideratum Manuscript

Section(s)*

1. Specific research questions and the research design are explicitly stated. I

2. A rationale for the use of a multivariate analysis is provided. M

3. Constructs of interest are discussed and the selection of the outcome variables as indicators of M

those constructs is presented.

4. In a series of preliminary analyses, data are screened and the appropriateness of the statistical M

model is verified. Any modifications of the original data are reported.

5. The versions of the statistical software packages and the specific programs used in the analyses M, R

are stated.

6. Hypothesis tests on the relations between the grouping and outcome variables implied by the R

research questions are reported.

7. The strength of the observed relations between the grouping and the outcome variables R

are reported.

8. Outcome variables are ordered on the basis of their importance for establishing a relation between R

the grouping and the outcome variables.

9. The number of meaningful constructs that underlie the observed set of outcome measures is R

determined and reported.

10. The linear discriminant function (LDF) coefficients are presented along with both the group-mean R

centroids in LDF space and a plot of these centroids.

11. The identified constructs are defined on the basis of the relation between the LDFs and the R

outcome variables.

12. Focus tests examining specific relations or group differences specified by the research questions R 

are reported.

13. Relations between grouping variables and the linear composites of the observed outcome variables D

which define the constructs that underlie the observed measures are discussed. Unanticipated 

constructs identified are highlighted.

14. The current findings are generalized and related to previous findings. Limitations are recognized D

and additional questions are raised.

* Note: I= Introduction, M=Methods, R=Results, D=Discussion



Multivariate Analysis of Variance • 317

The research questions under investigation should involve a construct (in MANOVA, “constructs”
are often operationalized differently than in structural equation modeling; see Chapter 28, this vol-
ume). An example of a construct that cannot be easily measured by a single outcome variable is
Wellness. This construct may be defined many ways and might include both physical and psycholog-
ical indicators. No single indicator can be expected to adequately define Wellness, but taken together
the construct can be better assessed. The appropriate weighting of these indicators is, in part, the role
of a multivariate analysis.

The number, definition, and formation of the grouping variables determine the research design and
must be explicitly stated for an appropriate interpretation of the relations stated in the research ques-
tions. Research questions stating or implying causal relations require the formation of groups through
the random assignment of units (e.g., college students) to the levels of the grouping variable. For
example a group of 60 college student volunteers may be recruited to participate in a study comparing
the benefits of three types of exercise programs. From this group, 20 students might be assigned at ran-
dom to each program. But random assignment alone does not guarantee causal inference. Causal infer-
ence requires that no confounding variables are present. That is, no other variable(s) can be identified
that offer a convincing alternative explanation for an observed relation or difference between popula-
tions. If all confounding variables are eliminated or controlled, the design may be described as exper-
imental. On the other hand, when groups are formed by selecting units from existing populations,
(e.g., students are identified who have self selected an exercise program that emphasizes strength, aer-
obics, or a combination of strength and aerobics) the research design is non-experimental or correla-
tional and relations identified are functional rather than causal. Random selection of units from the
target populations, while desirable, is rarely achievable and is not required for appropriate application
of MANOVA. The selection process used in the study does not determine the nature of the relation
found but does determine the generalizability of the relation. It is important for researchers to
describe in some detail the units involved in the study in order to provide some guidance as to the
appropriateness of generalizing the findings.

Research questions may reflect conditional, omnibus (main effect), or specific focused relations.
Conditional relations are examined through the interaction of two or more grouping variables. Only
explanatory (e.g., grouping) variables may interact. It is inappropriate to refer to an interaction
between a grouping variable and a set of outcome variables. An omnibus relation is a main effect,
examining the relation between a grouping variable and the outcome variables generalized across all
levels of the additional grouping variables. And specific relations are examined through focused tests
or contrasts, comparing specific levels or combination of levels of a single grouping variable.

The research questions and design therefore lay the foundation for the appropriate analysis and
presentation of the study’s findings. The need for an explicit statement of the research questions can-
not be over-emphasized.

2. Rationale for a Multivariate Analysis

Researchers, when describing the statistical models used, should provide a rationale for choosing
MANOVA. The inclusion of multiple outcome variables is a necessary but insufficient justification for
choosing a multivariate analysis. An appropriate justification for MANOVA is an interest in the study
of one or more constructs defined by linear composites of the observed outcome measures. When
multiple outcome variables are examined individually, chances increase that one or more relations
will be judged to be real when in fact they are simply functions of sampling error (i.e., Type I error).
That is, when testing group differences on each outcome variable individually, the risk of making one
or more Type I errors (α) increases as the number of outcome variables studied increases. Some
researchers believe that the use of MANOVA will avoid making such errors. But this “protection” will
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be provided only for the unusual situation where none of the outcome variables are related 
to the grouping variables. That is, MANOVA controls the experimentwise Type I error rate to its nom-
inal α level only under the complete null condition. However, if there are p outcome variables and m
of these variables are in fact related to a grouping variable, then the overall MANOVA test will gener-
ally be statistically significant. Following the significant MANOVA test with p separate univariate
ANOVA tests will offer no protection from the experimentwise Type I errors over the p – m true null
hypotheses, whose risk of at least one false rejection will be 1 – (1 – α

v
)p–m (where α

v
is the statistical cri-

terion used for each of the univariate tests on the p outcome variables). So for example, if the relation-
ship between a grouping variable and each of eight outcome measures (p = 8) are tested with α

v
=.05

but only three outcomes are related to the grouping variable (m = 3), the familywise error rate or 
probability of at least one Type I error among the five non-related outcome measures is .226 [i.e., 
1 – (1 – .05)5].

If multiple univariate hypothesis tests are truly of interest and there is a concern regarding a prob-
lem with the experimentwise Type I error rate, MANOVA does not provide an adequate solution and
the use of this model is not justified. To control the experimentwise Type I error rate a Bonferroni or
modified Bonferroni approach may be used for the multiple univariate tests (see, e.g., Shaffer, 2002).

3. Selecting Multiple Outcomes

Because the purpose of conducting a MANOVA is to examine the construct(s) that separate the pop-
ulations, the selection of outcome variables to be included in the analysis is a critical step in the plan-
ning of the inquiry. A rationale for including the selected variables should be provided. Too frequently
researchers include outcome variables simply because they are easily obtainable or happen to be avail-
able at the time of data collection. Inclusion of such variables can reduce statistical power, add little to
the understanding of population differences, and make the interpretation of the results much more
difficult. Outcome variables selected for analysis should cluster into one or more groupings. These
groupings should reflect the constructs that the researcher believes to be relevant for the determina-
tion of group separation with a single grouping variable or in the case of multiple grouping variables,
population differences. The final analysis of the selected variables may or may not support the
researcher’s belief. Discovering unanticipated constructs supported by the data may be among the
most interesting findings of the study.

4. Preliminary Analyses

While a researcher might be tempted to proceed directly to answering the stated research questions by
testing specific hypotheses and examining the linear composites or identified constructs, such temp-
tation must be avoided. Before the statistical model can be examined in depth, it is important for
researchers to examine basic characteristics of their data set and report their findings. Before compar-
ing groups, the data within groups must be examined first. Data should be examined to determine if
they are complete (i.e., there are no missing observations or scores) and whether they include unusual
or outlying observations. Within each group, score reliability for each measure (see Chapter 25, this
volume) and the shape of the data distributions should also be examined. The results of these analyses
should be reported and any action taken to correct or alter the original data must be reported. The
results of these analyses might justify deleting some measures, or perhaps when sample sizes are rela-
tively small (e.g., the number of outcome measures is similar to or greater than the error degrees of
freedom) or if after examining the within-group correlation matrices it might be judged that too many
highly related outcomes are included in the data set, it may be desirable to combine measures through
a principal components analysis (see Chapter 8, this volume).
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Once the researcher is satisfied that the data adequately represent the variables of interest within the
groups, some preliminary comparisons among groups is appropriate. For each group the sample size,
outcome means, and standard deviations must be reported. Initial insight on the constructs underling
outcome variables and support for justifying the use of a multivariate analysis can be gained by report-
ing and interpreting the pooled within-group correlation matrix. Note that this matrix is not the total
sample correlation matrix among outcome variables ignoring group membership; ignoring group
membership can result in spuriously high or low correlations among variables because of differences
among group means. If the outcome variables are uncorrelated, then multiple univariate analyses
would likely be more appropriate than a multivariate analysis.

Univariate analysis of variance comparing outcome means may also be useful in providing an ini-
tial understanding on how the groups differ. As a preliminary analysis, the univariate F-tests can pro-
vide an indication of the relationship between individual outcome variables and the grouping
variable(s). This analysis is for description only and provides insights similar to those gained by exam-
ining of the univariate pooled-within-group correlation matrix. Further if there is no indication that
an individual outcome variable is related to the grouping variable(s) the researcher might consider
dropping that measure from further analyses. Because this is a preliminary analysis, an increased risk
of a Type I error might be tolerable and a Bonferroni-type adjustment would not be necessary.

The within-group covariance matrices should be examined and compared across groups. Such a
comparison is particularly important when group sample sizes are substantially different from each
other (say, by a factor of 2). A statistical test for covariance equality (e.g., Box, 1949) may be used to for-
mally compare the matrices, but these tests tend to be overly sensitive to small departures from covari-
ance homogeneity because: (1) they are sensitive to distributional non-normality, (2) they involve a
large number of degrees of freedom, and (3) the number of variances and covariances being compared
is generally large. An alternative strategy to a formal statistical test is a comparison of the log-determi-
nants for the separate group-covariance matrices. The determinant of a covariance matrix is referred to
as the generalized variance, a measure of total variance in the outcome variables, and taking the loga-
rithm helps to put that value on a useful metric for comparison. Comparing the individual group log-
determinants along with the log-determinant of the pooled covariance matrix provides an indication as
to whether the assumption of equal covariance matrices is reasonable. If the determinants are in the
same “ballpark” the researcher may be justified in pursuing the multivariate analysis. The correlation
between group size and the log-determinant of the group-covariance matrix may also be examined. A
strong negative correlation would indicate a liberal MANOVA test for the relation between the group-
ing variable and the linear composites while a positive relation would indicate a conservative hypothe-
sis test. While a violation of the covariance homogeneity assumption is less serious for MANOVA
hypothesis tests when sample sizes are approximately equal, covariance inequality is still a potentially
serious problem when examining the constructs underlying the observed outcome measures even when
sample sizes are equal. If the researcher judges that covariance matrices are problematically unequal,
several options exist. A statistical test for comparing the populations on the outcome measures that does
not assume equal covariance matrices are available (e.g., Johansen, 1980; Yao, 1965). Alternatively, the
researcher might examine the covariance matrices within groups and identify one or two variables that
contribute disproportionately to the covariance inequality. It might be reasonable to analyze these vari-
ables separately and continue the multivariate analyses with a slightly smaller set of outcome variables,
if the analysis of the remaining variables is still meaningful. Still another alternative might be to reduce
the number of groups being compared. Perhaps there are several subsets of the grouping variable that
do have similar covariance matrices but the subsets’ covariance matrices deviate greatly from each
other. Separate multivariate tests might make sense to compare those groups that have similar covari-
ance matrices. If only one group differs from the others, focused tests involving that group using the Yao
procedure may be used to address the research questions. 
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5. Computer Software

Both SPSS and SAS computing software packages include several analytic procedures that are useful
for carrying out a MANOVA analysis. Huberty and Olejnik (2006, p. 123) summarized the output
provided by five of the analysis procedures in these packages. It is highly unlikely that any single pro-
cedure will provide all of the analyses needed for a complete MANOVA analysis. Further, because
these procedures are revised on occasion, the version of the software and the specific programs used
by the data analyst should always be reported.

6. Examining Group Differences 

Once the researcher is satisfied that the necessary data conditions for MANOVA have been reasonably
well satisfied, the analyses to answer the researcher’s stated questions may proceed. Answers to the
research questions are stated as hypotheses and these hypotheses are tested statistically using the
MANOVA model. For example, a hypothesis in the null form might be stated as: There is no relation
between participation in an Exercise Program (Strength Training, Aerobic Training, Combined
Strength and Aerobics Training) and Wellness as measured by five outcome measure (Heart Rate,
Blood Pressure, Oxygen Uptake, Mood, Attitude). While a univariate analysis compares the popula-
tions represented by the available groups on each individual outcome measure separately, the
MANOVA tests the hypothesis on the construct (e.g., Wellness) by comparing the group means on the
set of outcome measures simultaneously. The set or vector of outcome means is called a mean centroid
and the null hypothesis could be stated as: There are no differences in the mean centroids among indi-
viduals participating in Strength, Aerobics or Combined Strength and Aerobic training program.

Conditional tests. If multiple grouping variables are included in a factorial research design, it is likely
that the research questions include inquiries into group differences among levels of one grouping vari-
able conditioned or depending on the level of a second grouping variable. These inquiries should be
addressed first. For example, consider a 3 × 3 factorial design to investigate the relation between three
Exercise Programs (e.g., Strength, Aerobics, Combined Strength and Aerobics), three levels of
Exercise Intensity (e.g., Twice a Week, Three Times a Week, or Daily), and Wellness as measured by
several physiological and psychological measures (e.g., Heart Rate, Blood Pressure, Oxygen Uptake,
Mood, Attitude). One research question may ask whether the relation between Exercise Program and
Wellness varies for different levels of Exercise Intensity. This question is one of an interaction between
the two grouping variables. Alternatively several research questions might ask about the relation
between one of the grouping variables and the outcome variables at each (or at a specific) level of a sec-
ond grouping variable. For example, a researcher may be interested specifically in the relation between
Exercise Program and Wellness for each level of Exercise Intensity. These alternative questions are
referred to as simple effects. Both interaction and simple effect questions are conditional, meaning that
a relation between a grouping variable and the outcome variables may vary with specific levels of a sec-
ond grouping variable.

Generally, when multiple grouping variables are included in a factorial design the interaction tests
precede tests of simple effects but that need not be the case. The number of interactions that may be
tested is determined by the number of grouping variables being considered and the meaningfulness of
such analyses. All interactions need not be tested however. Interactions involving more than three
grouping variables are often difficult to interpret and often lack statistical power. In those cases the
sum-of-squares associated with higher order interactions may be pooled with the within-group or
error sum-of-squares.

If an interaction is statistically significant, the factorial design may be simplified into a series of sim-
pler designs. For example, given a statistically significant interaction between Exercise Program and
Exercise Intensity, the research questions may focus on the relationship between Exercise Program
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and Wellness for each level of Intensity. Or the comparison of two specific Exercise Programs at each
level of Exercise Intensity might be examined. These are questions that are answered with tests of sim-
ple effects. Three points might be made regarding simple effects. First, simple effects are simplifica-
tions of a factorial design. They are alternative conceptualization of the linear model that combines the
effect of a grouping variable with an interaction effect. A three factor design can be simplified to three
two-factor designs; a 3 × 3 factorial factor design can be simplified to two sets of three one-factor
designs. An interaction test need not precede the simplification of a factorial design. The research
questions raised may call for the simplification of the design.

Second, a simple effect resulting from the simplification of a two-factor design to a number of one fac-
tor designs is not equivalent to a MANOVA with one grouping variable. A simple-effect hypothesis test
uses the pooled error sum-of-squares across all groups in the factorial study when computing the test
statistic of interest and determining the constructs underlying the outcome variables, whereas a
MANOVA for a single grouping variable pools the error sum-of-squares for only those groups being
compared. When the MANOVA assumptions are met, the difference between a simple effect and a
MANOVA with one grouping variable is statistical power. The simple effect will have greater error
degrees of freedom and therefore greater sensitivity to identify population differences.

And third, when simple effects are considered the researcher may want to adjust the criterion used
to judged statistical significance to limit the overall Type I error rate. While a good argument may be
made for not making any adjustments, the problem of increasing the risk of a Type I error across all of
the tests conducted should at least be addressed.

Omnibus or main-effect tests. An omnibus or main-effect test examines the relation between the
outcome measures and one grouping variable generalized across all levels of additional grouping vari-
ables. If an interaction has been identified, such tests although valid are not likely to be meaningful.
However, if Exercise Program and Intensity do not interact, a more general question on the relation-
ship between Program and Wellness can be addressed. That is, across all levels of Exercise Intensity is
there a relation between Exercise Program and Wellness. The answer to this question requires the
simultaneous comparison of all three identified Exercise Programs. If the relation is found to be sta-
tistically significant the results do not identify which Program(s) best promotes Wellness. Specific
comparisons through focused tests would be needed. Focused tests are discussed in some detail in
Desideratum 12.

In a factorial study when the number of observations per group is unequal and disproportional, the
research design is nonorthogonal. In this case, the hypothesis tests on the grouping variables in the
model are not independent of one another. For the results to be interpreted appropriately it is essen-
tial that the method used to compute group means on the outcome variables be explicitly stated. For
example, in a two-factor design a marginal column mean may be computed as the average of all obser-
vations in a column or as the average of the cell means in the column. The first approach is a weighted
(also referred to as type I or hierarchical sum-of-squares) approach, where each cell mean in the col-
umn is weighted by the ratio of the number of units in the cell to the number of units in the column.
Thus, the contribution a cell mean makes to the calculation of the column mean is in proportion to the
number of observations in the cell. The second approach is an unweighted (also referred to as type III
or regression sum-of-squares) approach where cell means within a column contribute equally to the
calculation of the column mean, regardless of group size. The weighted and unweighted approaches
for computing marginal group means test somewhat different hypotheses but both are valid. Unless
the method used to compute the marginal means is explicitly stated, it is not clear what relations are
tested (Carlson & Timm, 1974; Pendleton, Von Tress, & Bremer, 1986). Generally, in a multi-factor
nonorthogonal research design the unweighted approach is preferred when the inequality in sample
sizes is unintended and do not represent true differences in population sizes but rather reflect a ran-
dom loss of participants. This may occur in experiments when an equal number of participants are
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randomly assigned to each condition but participants are lost due to reasons unrelated to the condi-
tions studied (e.g., illness). The unweighted solution is also preferred because the effect of each
explanatory variable can be tested after controlling or considering the effect of the additional factors
and interactions in the model. Occasionally the weighted solution might be used if the differences
group sample sizes are proportional to differences population sizes they represent.

Four different multivariate test criteria have been developed and are reported on computer print-
outs to evaluate interaction, simple effects, main effects, and focused hypothesis tests. The SPSS
MANOVA procedure reports these criteria as: Wilks, Pillais, Hotellings, and Roys while the SAS and
SPSS GLM procedures reports these criterion as Wilks’s Lambda (Λ), Pillai’s Trace, Hotelling-Lawley
Trace, and Roy’s Greatest Root. These four criterion provide exact tests of hypotheses with identical F
and significance values when the hypothesis degrees of freedom equals one or when only two out-
comes are measured. For other contexts the four criteria are approximate tests that provide slightly
different results but generally the same conclusion. While there is no consensus as to which criterion
is best, Rencher (2002) recommended Roy’s criterion if the outcome variables represent a single con-
struct and he recommends Pillai’s criterion when multiple constructs are assessed. Olson (1974)
examined the robustness of the four multivariate criteria and recommended Pillai’s criterion because
it is less sensitive to covariance inequality and provides adequate statistical power. Researchers should
be explicit regarding the MANOVA criterion used by stating its numerical value, F(df

num
, df

den
)-value,

and p-value (e.g., Pillai’s = .164, F(4,126) = 2.840, p = .027). 

7. Strength of Relations

Using one of the four multivariate test criteria mentioned in the previous section researchers might
infer whether an observed relation between a grouping variable and the outcome variables appears to
reflect a true relation or whether the relation can be explained by sampling error. The identification of
true relations, however, is generally not sufficient for interpretation purposes. In addition to meeting
statistical criteria, the strength of the association is needed to judge the meaningfulness of the results.
A number of multivariate effect-size measures have been suggested. For contexts when the grouping
variable has only two levels and situations involving a multi-level grouping variable where two or
more of the levels are compared using a pairwise or complex contrast, the Mahalanobis D statistic can
be useful. Mahalanobis D is a measure of distance between two mean centroids that is analogous to
Cohen’s standardized mean difference statistic, d.

When three or more levels of a grouping variable are examined simultaneously a measure of asso-
ciation between the grouping variable and the outcome variables can be useful. Several multivariate
measures of association have been proposed with the most popular ones being associated with each of
the multivariate test criteria discussed in the previous section (see Huberty & Olejnik, 2006, pp.
62–65). While the SAS computing package does not report these multivariate measures of association,
the SPSS MANOVA procedure computes them and refers to them using the same label as the test cri-
terion (i.e., Pillais, Hotellings, Wilks). The GLM procedure in SPSS refers to these measures of associ-
ation as partial eta squared. While the four measures of association are identical for multivariate
comparisons of two groups or for complex one-df contrasts involving multiple groups, they provide
slightly different estimates of relation when multiple levels of a grouping variable are assessed simul-
taneously. Kim and Olejnik (2005) discussed the different definitions of effect used by these measures
of association. In addition, these measures of association overestimate the strength of relation. An
adjustment for the overestimation provided by the effect estimated by using Pillai’s test criterion was
suggested by Serlin (1982) based on an adjustment for the squared multiple correlation in a multiple
regression context by Ezekiel (1930). Kim and Olejnik (2005) showed that Serlin’s adjustment also
works well for measures of association based on Wilks’s and Hotelling’s test criteria. The multivariate
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measure of association reported should be consistent with the researcher’s multivariate test criterion
choice. However from an interpretation perspective the effect-size measure associated with Pillai’s
criterion may be the most useful. Pillai’s criterion is based on the sum of squared canonical correla-
tions. A canonical correlation is a measure of association between the grouping variable and an esti-
mated construct measured by the outcome measures composite. Generally two or more constructs are
estimated (not all are necessarily meaningful) in any set of outcome measures. Pillai’s effect-size meas-
ure reports the average squared canonical correlation. That is, it reports an average association
between the constructs measured and the grouping variable. In a sense it is similar to eta-squared
often reported in ANOVA, but in MANOVA the focus is on the estimated constructs while ANOVA
the focuses on an individual outcome variable. 

One difficulty with the multivariate measures of association lies in the interpretation of the com-
puted values. In the case of univariate analyses, guidelines have been suggested by Cohen for inter-
preting d, eta-squared, omega-squared, and R2. Further, over the past ten years these statistics have
been increasingly reported in the empirical literature and so they have become somewhat familiar to
the applied researcher. In the case of MANOVA, guidelines have not been proposed nor have these
effect-size measures been consistently reported along with multivariate hypothesis tests. Another
problem with multivariate effect-size measures is that they are influenced by the number and choice
of outcome variables included in the study. Consequently, it is not clear how to characterize the
strength of relations in MANOVA. It is unlikely that Cohen’s univariate guidelines would be useful in
multivariate contexts. Because several outcome variables generally reflect a construct in a multivari-
ate analysis, one might expect a stronger relation between the grouping variable and a construct than
might be expected when the relation is based on an individual variable.

Up to this point the analyses of multiple outcome variables with MANOVA parallels what is typi-
cally done in a univariate ANOVA context. However, while similar in procedure, MANOVA’s focus is
uniquely multivariate. Researchers should generally not follow the MANOVA by examining the uni-
variate relations between each outcome variable and the grouping variable after identifying a signifi-
cant multivariate relation. This is an error because such a strategy ignores the relations among the
outcome variables, it ignores the relations between the identified constructs and the grouping vari-
ables, and the questions answered by the univariate analyses are inconsistent with the multivariate
analyses just conducted.

8. Variable Importance 

Frequently, when there is some evidence to indicate that there is a relation between a grouping vari-
able and the outcome variables studied, researchers are interested in determining which of the out-
come variables are primarily responsible for determining the relation. Several options have been
considered for determining variable importance. One option that should not be used to identify vari-
able importance is the order in which variables are entered as a result of stepwise discriminant analy-
sis (see Chapter 6, this volume). Like stepwise multiple regression, stepwise discriminant analysis has
several serious limitations, including (1) inflated Type I errors, (2) inappropriate use of the F distri-
bution, and (3) lack of reproducibility. Alternatively, some methodologists prefer to examine the
standardized discriminant function weights while others prefer to examine structure r values
(Huberty & Wisenbaker, 1992); both of these statistics are discussed under Desideratum 11. But for
variable importance, Huberty and Olejnik (2006) preferred to rank variables based on the numerical
value of Wilks’s Λ for group differences when the ith variable is deleted. Wilks’s Λ is one of the criteria
used to test for statistical relation between the outcome variables and a grouping variable. Small 
values for Wilks’s Λ indicate a strong relation between the grouping variable and the construct. Thus,
a relatively large Wilks’s Λ value upon deletion of a variable indicates a relatively important variable;
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as such, variables with the largest deleted Wilks’s Λ values would be judged at the most important 
variables. 

It should be recognized that the approached outlined here only provides one strategy to guide
researchers in the identification of relatively “important” outcome measures. It is not intended to be
prescriptive. Concluding that one variable is more important and another based solely on the numer-
ical value of Wilks’s Λ or the F statistic is not recommended. Some judgment on the part of the
researcher is needed to determine whether the difference between two or more Wilks’s Λ values is
meaningful. It might be that several deleted variables result in “similar” values for Wilks’s Λ, in which
case such variables would be judged to be of comparable importance. It must also be remembered that
a statistic like Wilks’s Λ is a random variable subject to sampling error. A replication of the study 
could very well alter the ordering of variables and the identification of the “most important” outcome
measure.

9. Determining Constructs 

A statistically significant relation between a grouping and the outcome variables suggests that there is
a relation between the grouping variable and at least one construct. It is not clear on the basis of the
omnibus test, however, how many constructs or what variables define the construct(s). Here, the
determination of the number of constructs is considered while the next desideratum considers the
process for defining them. The univariate analysis of each outcome variable is not useful in determin-
ing the number of constructs underlying the variable space, but univariate analyses are related to a
procedure considered in the next section for defining the constructs. 

The number of constructs or linear discriminant functions (LDF) that can be estimated is deter-
mined by the degrees of freedom (J – 1) for the grouping variable with J levels or the number of out-
come variables (p), whichever is smaller. Generally, there are fewer between-group degrees of freedom
than outcome variables. For example, when there are only two levels of a grouping variable or when
focused tests of pairwise or complex contrasts are of interest, the between-group degrees of freedom
equal one. Regardless of the number of outcome variables studied, only one LDF is formed. For a two
factor (J × K) interaction, the number of degrees of freedom is the product of the degrees of freedom
for each factor [df

J×K
= (J – 1)(K – 1)], yielding as many LDFs (if sufficient outcome variables exist).

Each LDF represents a separate, independent construct that underlies the observed outcome vari-
ables. Typically, not all of the estimated constructs are meaningful or statistically significant.

The number of meaningful constructs that underlie the observed variables can be determined using
a two step process. In the first step a series of statistical tests are conducted. Wilks’s Λ was mentioned
as one of the four criteria useful for testing the overall relation between a grouping and outcome vari-
ables. Statistical significance here suggests that at least one construct underlies the observed variables.
To determine whether additional constructs are represented by the observed variables, the variation
associated with the first construct is removed and Wilks’s criterion is modified. The modified Λ is then
used to test whether the remaining variation among the outcomes is statistically significant. If this test
is statistically significant, it suggests that group separation exists on at least two constructs. Testing
continues by further partitioning or adjusting Wilks’s criterion and testing stops when the remaining
variation in the variables is no longer statistically significant.

The second step in determining the number of meaningful constructs represented by the outcome
variables is to examine the proportion of variation in the outcome variables that is explained by each
statistically significant construct or LDF identified in step one. Not all statistically significant LDFs
explain a meaningful amount of variation in the outcome variables. Guidelines for defining meaning-
ful proportions of variations do not exist but the original research questions and the earlier justifica-
tion given for variable selection should be influential in the decision process.
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10. Linear Discriminant Functions 

Linear discriminant functions (LDFs) are weighted combinations of the outcome variables to repre-
sent underlying constructs. These LDFs are useful to describe how groups differ. They are not used,
however, for predictive or classification purposes. Because some computer software programs do not
clearly distinguish between descriptive and predictive discriminant functions researchers often con-
fuse them and sometimes refer to them interchangeably. Chapter 6 of this volume discusses in detail
differences between these two types of discriminant functions, but briefly predictive discriminant (or
classification) functions (PDF) differ from LDFs in (1) purpose, (2) number, (3) calculation, (4) equal
covariance matrices requirement (DDF requires it, PDF does not), and (5) application. Researchers
should be clear that when presenting MANOVA results, LDFs are interpreted as descriptive and not
predictive (PDFs).

11. Defining Constructs 

Once the number of constructs underlying the observed variables has been determined, attention
must then be given to defining the constructs. Constructs are believed to be real, yet are unobservable.
The outcome variables, on the other hand, are observable and interpretable. The definition of the
latent construct relies on the relation between the construct and the outcome variables (here, “latent
constructs” are conceptualized differently than in structural equation modeling; see Chapter 28, this
volume). The relation between the each identified construct and the outcome variables is obtained by
correlating each outcome variable with the discriminant function composite score (computed by
summing the products of the raw discriminant function weights and the outcome variable scores).
The correlation between an outcome variable and the composite score is called a structure r. While the
sign for r is arbitrary, it must reflect the theoretical direction of the relation between the construct and
each outcome variable. For example, in measuring Wellness, three variables—Heart Rate, Blood
Pressure, and Oxygen Uptake—might be expected to define the physical aspect of Wellness. The signs
of the structure r values should reflect a theoretically reasonable pattern. One might expect Heart Rate
and Blood Pressure to be related to a common construct in the same direction while Oxygen Uptake
should be related in an opposite direction (e.g., low heart rate and low blood pressure are associated
with Wellness while high oxygen uptake is associated with Wellness). If all structure r values were pos-
itive or all negative, it might be difficult to explain and could raise some question regarding the con-
struct being measured. A relatively high value for |r| indicates that the latent construct shares some
meaning with the outcome variable. When several outcome variables have relatively high |r| values,
the composite is measuring the latent variable believed to be common with the outcome variables. The
construct definition therefore is determined by whatever is common to the outcome variables that are
correlated with the composite score. A table of structure r values therefore is very useful when inter-
preting the nature of group differences and should be reported as part of the study’s findings. 

While structure r values provide a useful approach to define latent constructs, one problem with
using structure r values is that they are highly related to the univariate F statistics for testing group dif-
ferences on each of the outcome variables. The absolute value of the structure r will be large for an out-
come variable that has a large computed univariate F statistic. This relation between r and F can be
interpreted to mean that the structure r is not a true multivariate statistic and consequently should not
be used to define the constructs (see Rencher, 2002, p. 317).

An alternative approach advocated by some is to examine standardized discriminant function
weights. Similar to multiple regression contexts, the numerical value of a raw (unstandardized) dis-
criminant weight is determined to a great extent by the scale or variance of the outcome variable: gen-
erally, the greater the variance the smaller the raw discriminant function weight. Standardizing each
of the outcome variables creates a common scale for all outcome variables and consequently makes it
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possible to compare the weights associated with the outcome variables. Constructs are sometimes
interpreted based on the variables that have the greatest standardized weights. One problem with
using standardized weights to define constructs is that their numerical values are influenced to some
extent by the degree of correlation among the outcome variables. This problem is analogous to the
multicollinearity issue in multiple regression analysis. The standardized discriminant function
weights provide an index of the unique contribution individual outcome variables make to the com-
posite score. If some outcome variables are highly related, the unique contribution those variables
make will be small and consequently the weights will be small. Variables that contribute to construct
formation may thus be overlooked.

Both structure r values and standardized discriminant function weights should be reported when
interpreting the results of MANOVA. They address different issues regarding the identified constructs
underlying the variable space created by the outcome variables. A structure r provides an index for
relating an outcome to a composite score and a standardized weight reflects the unique contributions
an individual variable makes to the composite score. Both are useful for interpreting the discriminant
functions separating the groups.

12. Focused Tests

Examining conditional relations and omnibus relations are generally the starting point for most
MANOVA analyses. But ultimately in most research studies the questions asked will focus on pairwise
or complex contrasts between specific levels of a grouping variable. As was stated earlier but is worth
repeating, in many research contexts after determining that the data meet the necessary model condi-
tions, it may very well be the case that the only analyses needed are those accomplished through con-
trast analyses. The results of a specific contrast can be substantially different than the results from
omnibus analyses. First, while the omnibus analysis may result in the identification of more than one
construct, a contrast has only one degree of freedom and consequently only one construct may be
identified. Second, with omnibus tests the separation among all levels of the grouping variable is con-
sidered simultaneously, thus all levels of the grouping variable are compared on constructs defined by
the same outcome variables. With contrasts, on the other hand, the outcome variables that define con-
struct which separates the groups being compared can differ depending on which groups are being
compared. For example the difference between Strength and Aerobics Training may be identified as
Physical but the difference between Strength and the Combined Strength and Aerobics Training
might be identified as Psychological. And third, if variable importance is of interest, the “most 
important” variables that separate all levels of the grouping variable can be different from the “most
important” variables that separate the groups identified in the contrast.

Both the simultaneous comparisons of multiple levels of the grouping variable and specific com-
parisons through contrasts provide useful information regarding differences among the populations
studied. The results of MANOVA will typically include both sets of analyses.

13. Answering Research Questions 

Following the analyses of the data, the results should be summarized in relation to the research ques-
tions stated at the beginning of the article. The original research questions were introduced in the con-
text of theory, practice, and/or previous research so the current findings must again be presented
within those contexts. Outcome variables were chosen to reflect anticipated constructs and the extent
to which the results support those constructs should be discussed. Equally important unanticipated
constructs, if identified, must be discussed. Differences in construct formation obtained in omnibus
and focused tests between specific populations might also be highlighted.
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14. Generalizing Findings 

It is important that the researcher relate the current results to those previously reviewed. Both consis-
tencies and inconsistencies with theory and previous research should be highlighted. Inconsistencies
merit additional discussion with possible explanations. All research studies impose a number of limi-
tations on the scope and execution of the inquiry. These limitations should be made explicit. While
care must be given not to overstate the implications of the current findings, it is also important not to
minimize the contribution of the current findings as well. Being overly cautious with the interpreta-
tion can also be a serious mistake. Finally, directions for future research should be explicitly stated. It
may be a trite statement but it is nevertheless true: good research introduces at least as many questions
as it answers.
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24
Power Analysis 

Kevin R. Murphy

One of the most common applications of statistics in the social and behavioral science is in testing null
hypotheses. For example, a researcher wanting to compare the outcomes of two treatments will usu-
ally do so by testing the hypothesis that in the population there is no difference in the outcomes of the
two treatments. If this null hypothesis can be rejected, the researcher is likely to conclude that there is
a real difference in treatment outcomes. The power of a statistical test is defined as the likelihood that
a researcher will be able to reject a specific null hypothesis when it is in fact false. One of the key deter-
minants of power is the degree to which the null hypothesis is false; if treatments in fact have a very
small effect, it may be difficult to reject the hypothesis that they have no effect whatsoever. However,
effect size is not the only determinant of power. The power of statistical tests is a complex function of
the sensitivity of the test, the nature of the treatment effect, and the decision rules used to define sta-
tistical significance. 

There are several statistical models that have been used in defining and estimating the power of sta-
tistical effects. Kramer and Thiemann (1987) derived a general model for statistical power analysis
based on the intraclass correlation coefficient, and developed methods for evaluating the power of a
wide range of test statistics using a single general table based on the intraclass correlation. Lipsey
(1990) used the t-test as a basis for estimating the statistical power of several statistical tests. Murphy
and Myors (2003) developed a model based on the noncentral F distribution and showed how it could
be used with virtually all applications of the general linear model.

Cohen (1988), Lipsey (1990), and Kraemer and Thiemann (1987) provided excellent overviews of the
methods, assumptions, and applications of power analysis. Murphy and Myors (2003) extended tradi-
tional methods of power analysis to tests of hypotheses about the size of treatment effects, not merely
tests of whether or not such treatment effects exist. All of these sources describe the two main applica-
tions of power analysis, in designing studies (e.g., determining sample sizes, setting criteria for signifi-
cance) and in evaluating research (e.g., understanding why particular studies rejected or failed to reject
the null hypothesis)

Desiderata for studies that apply power analysis are described in Table 24.1, and are explained in the
sections that follow.
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1. Defining the Null Hypothesis 

The first step in power analysis is to define the specific hypothesis that is tested (the null hypothesis)
and to define the alternative hypothesis that will be accepted if a statistical test leads the researcher to
reject the null. The term null hypothesis is typically used to refer to a specific point hypothesis (e.g., that
the population difference between experimental and control conditions is zero) that can be tested and
potentially rejected on the basis of data collected in a sample. There is considerable debate in behav-
ioral and social sciences about the value and relevance of null hypothesis tests (Cohen, 1994; Cortina
& Dunlap, 1997; Hagen, 1997; Harlow, Mulaik, & Steiger, 1997; Morrison & Henkel, 1970); one of the
principal objections to this type of test is that the null hypothesis that is most likely to be tested (e.g.,
that the population correlation between two variables is zero, or that the difference between two treat-
ments is zero) is often one that is very unlikely to be true (Murphy, 1990). 

Numerous alternatives to traditional null hypothesis testing have been suggested. Serlin and
Lapsley (1985) laid out procedures for creating and testing hypotheses that the effects of treatments or
interventions are sufficiently close to those predicted on the basis of substantive theory to justify the
conclusion that the theory is supported. Rouanet (1996) described Bayesian models for hypothesis
testing. Murphy and Myors (1999, 2003) described methods for forming and testing hypotheses that
the effects of treatments or interventions exceed some minimum value. They also examined in detail
the power of tests of the hypothesis that the effects of treatments are either trivially small or are large
enough to be of substantive interest. 

Statistical analysis should not normally be limited to tests of the traditional null hypothesis, in part
because of the very low likelihood that this hypothesis is correct (Meehl, 1978; Murphy & Myors,
2003). At a minimum, studies that test traditional null hypotheses should also report information
about the importance and accuracy of results (e.g., effect size estimates, confidence intervals).
Alternatives to traditional null hypothesis tests should be carefully considered and used where 
applicable.

2. Factors That Affect Power 

The power of a statistical test is a function of its sensitivity, the size of the effect in the population, and
the standards or criteria used to test statistical hypotheses. Tests have higher levels of statistical power
when studies are highly sensitive, when effect sizes (ES) are large, and/or when the criteria used to
define statistical significance are relatively lenient. Studies should, if possible, be designed so that they

Table 24.1 Desiderata for Power Analysis

Desideratum Manuscript 

Section(s)*

1. The hypotheses being tested are defined, alternative hypotheses are laid out I, M

and analytic methods are chosen.

2. Three factors that determine statistical power—effect size, sensitivity, and I, M

decision criteria—are examined.

3. Statistical power is estimated, sample size requirements are determined, and M

decision criteria are evaluated.

4. The results of power analysis are reported. M, R

5. Statistical power is considered in evaluating existing research and in planning future studies. D

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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achieve power levels of .80 or greater (i.e., so that they have at least an 80% chance of rejecting a false
null hypothesis; Cohen, 1988; Murphy & Myors, 1993). When power is less than .50, it is not always
clear whether statistical tests should be conducted at all, because of the substantial probability that
they will lead to Type II errors (Murphy & Myors, 2003). 

Sensitivity refers to the ability of a study to consistently detect relatively small deviations from the
null hypothesis. Researchers can increase sensitivity by using better measures, or using study designs
that allow them to control for unwanted sources of variability in their data. The simplest and most
common method of increasing the sensitivity of a study is to increase its sample size (n). Large sam-
ples should be used wherever possible; as n increases, statistical estimates become more precise and the
power of statistical tests increases.

The formula for the standard error of the mean helps to illustrate how and why sample size affects
sensitivity. The standard of the mean (SE

X
_) is given by:

SE
X
_ =  

σ
√n

(1)

where: σ is population standard deviation of scores on this test. As this formula shows, as sample size
(n) increases, the size of the standard error decreases, indicating smaller and smaller differences
between population values and sample values (i.e., more precision). This formula also illustrates one
of the most challenging barriers to achieving high levels of precision and sensitivity in a study, the
curvilinear relationship between sample size and precision. For example, doubling the sample size
does not usually double the precision of sample estimates. Because the size of the standard error is usu-
ally a function of the square root of n, one implication is that in order to double the precision of esti-
mates, one must often increase the n by a factor of four. The nature of the relationship between n and
precision reinforces the recommendation that the largest possible samples be used. 

The second factor that influences power is the size of the effect of treatments or interventions. If
treatments have large effects, it is relatively easy to reject the null hypothesis that the effect of treat-
ments is zero, whereas small treatment effects might be difficult to detect reliably. Effect sizes are often
measured in terms of statistics such as the standardized mean difference (d, the difference between
treatment means divided by the pooled standard deviation) or the percentage of variance explained by
treatments, interventions, and so forth (see Chapter 7, this volume). Lipsey and Wilson (1993)
reviewed effect sizes typically reported in the social and behavioral sciences. Effect size estimates may
be obtained from meta-analyses of research literature (see Chapter 19, this volume), or may be derived
from a substantive theory about the phenomenon being studied, but most power analyses depend on
conventions of particular research communities to define the size of the effect that is expected or that
is used in designing studies.

On the basis of surveys of research literature, Cohen (1988) suggested a number of conventions for
describing treatment effects as “small,” “medium,” or “large.” Table 24.2 presents conventional val-

Table 24.2 Some Conventions for Defining Effect Sizes

PV r d f 2 Probability of a higher

score in treatment group

Small effects .01 .10 .20 .02 .56

Medium effects .10 .30 .50 .15 .64

Large effects .25 .50 .80 .35 .71

From: Cohen (1988), Grissom (1994)

Note: Cohen’s f2 = R2/(1–R2) = η2/(1–η2) = PV/(1–PV), where η2 = SS
treatments

/SS
total
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ues for describing large, medium, and small effects, expressing these effects in terms of a number of
widely used statistics. 

For example, a small effect might be described as one that accounts for about 1% of the variance in
outcomes, or one where the treatment mean is about one fifth of a standard deviation higher in the
treatment group than in the control group, or as one where the probability that a randomly selected
member of the treatment group will have a higher score than a randomly selected member of the con-
trol group is about .56. In the absence of an acceptable estimate of the effect size expected in a partic-
ular study, it is common practice to assume that the effect will be small (e.g., d = .20, 1% of the variance
accounted for by treatments) and to plan studies accordingly. Unless you have a good reason to believe
that the effects of treatments are moderately large or larger, it is always best to design studies so that
they have sufficient power for detecting small effects. Studies designed to detect small effects will also
have sufficient power for detecting larger effects.

Very large samples are often needed to yield adequate power for detecting small effects. For exam-
ple, if the expected difference between control and treatment means is about one fifth of a standard
deviation (i.e., d = .20), a sample of n = 777 will be needed to achieve power of .80 for rejecting the null
hypothesis. In a study where subjects are randomly assigned to one of five treatments and where treat-
ment differences are expected to account for 1% of the variability in outcomes, a sample of n = 1170
will be needed to achieve this same level of power. The smaller the expected effect of treatments or
interventions, the more important it is to consider power in the design of studies.

Third, the power of statistical tests is affected by the standards or criteria used to define statistical
significance, usually defined in terms of the alpha (α) level. Alpha is defined as the conditional prob-
ability that a statistical procedure will reject a null hypothesis, given that this null hypothesis is in fact
true; conventional approaches to null hypothesis testing define statistical significance criteria in such
a way that the maximum value of α will be small. In the behavioral and social sciences, differences in
treatment outcomes are usually regarded as statistically significant if the results obtained in a sample
are outside of the range of results that would have been obtained in 95% of all samples drawn from a
population in which the null hypothesis is true (i.e., α = .05 is the most common threshold for “statis-
tical significance” in the behavioral and social sciences). Some researchers use more stringent criteria
when defining statistical significance, for example demanding that the alpha level should be set at .01
or smaller before sample results are declared statistically significant. The use of stringent criteria (e.g.,
α = .01 or lower) for defining statistical significance is not recommended. Unless there are good rea-
sons to believe that the null hypothesis might be true (because the null hypothesis is a point hypothe-
sis, this is rarely the case; Cohen, 1994; Meehl, 1978), use of stringent criteria for defining statistical
significance will normally lead to reductions in power without providing substantial benefits.

3. Power, Sample Size, and Criteria for Significance 

The power of a null hypothesis test is a function of n, ES, and α, and the equations that define this rela-
tion can be easily rearranged to solve for any of four quantities (i.e., power, n, ES, and α), given the
other three. The two most common applications of statistical power analysis are in: (1) determining
the power of a study, given n, ES, and α, and (2) determining how many observations will be needed
(i.e., n required), given a desired level of power, an ES estimate, and an α value. Both of these analyses
are extremely useful in planning research, and are usually so easy to do that they should be a routine
part of designing a study. 

Both of these applications of power analysis assume that a decision has been made about the signif-
icance criterion to be used (e.g., α = .05) and that there is some basis for estimating the size of treat-
ment effects, or the degree to which the null hypothesis is likely to be wrong. It is best to be
conservative in estimating effect size; as noted earlier, if you have no credible a priori basis for making
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this estimate, it is best to base power analyses on the assumption that treatment effects will be small. In
some studies, observed treatment effects are used to make an estimate of population treatment effects,
but such post hoc power analyses are usually discouraged (Hoening & Heisey, 1971), in part because
they tend to provide overestimates of power.

Once ES has been estimated and α has been chosen, it is easy to either determine the power a par-
ticular study will provide or to determine the sample sizes needed to reach specific levels of statistical
power. The equations that define the power of various statistical tests are not complex, but the calcu-
lation of power is somewhat tedious, and it is common practice to use power tables or power analysis
software to perform the necessary calculations. Given a particular sample size (n) and alpha level, the
power of a statistical test is a nonlinear monotonic function of the effect size (ES) that asymptotes at
or near 1.0. That is, the likelihood that a study will reject any particular null hypothesis approaches
unity as the gap increases between the null hypothesis (e.g., that treatments have no effect) and the
reality that they might have large effects. Cohen (1988) provided among the most complete sets of
power tables readily available, based on calculations of power for a variety of different statistical tests,
whereas Murphy and Myors (2003) provided a smaller set of tables that can readily be adapted to most
of the statistical tests discussed by Cohen.

An example may clarify the two main applications of power analysis. Suppose a researcher is com-
paring two different methods of instruction. Table 24.3 displays the results of a power analysis in two
different ways, first showing the level of power for statistical comparisons (α = .05) of two groups
given various values of n and ES (expressed in terms of the percentage of variance in the dependent
variable explained by treatments), then showing the values of n that would be needed to yield power
of .80 given different ES values.

If the percentage of variance in outcomes explained by treatments is relatively small (e.g., PV = .02),
a relatively large sample (n = 387) will be needed to attain power of .80. This power analysis shows that
when n = 200 and PV = .02, the probability that the null hypothesis will be (correctly) rejected is .50,
suggesting that with a sample of 200 cases, null hypothesis tests will essentially be a coin flip. On the
other hand, when the effect of treatments is large (e.g., PV = .10), samples with n = 75 will have an 80%
chance of correctly rejecting the null hypothesis.

Table 24.3 can also be used to estimate the types of effects that could be detected with a fixed level of
power, given n and α. For example, assume that 100 subjects are available for a study and that the
researcher desires a power of .80 or greater for statistical tests that employ a .05 α level. Table 24.3
makes it clear that this level of power will only be achieved if the ES is a bit greater than PV = .05, but
less than PV = .10 (a PV of approximately .066 is required to achieve power of .80).

Finally, power analyses may be used to aid in making rational decisions about the criteria used to
define statistical significance (Cascio & Zedeck, 1983; Nagel & Neff, 1977). For example, suppose
researchers are comparing two treatments with 200 subjects assigned to each treatment. The
researchers expect a relatively small treatment effect of, say, PV = .02. Using α = .05, power would 
be 0.64. If α = .01 is used, power drops to 0.37 (Cohen, 1988). The trade-off between Type I error 

Table 24.3 Two Ways of Displaying the Outcomes of a Power Analysis

Power Levels n Required for Power of .80

n PV = .02 PV = .05 PV = .10 PV n

100 .27 .61 .92 .02 387

200 .50 .91 .999 .05 153

500 .90 .999 .999 .10 75
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protection and power suggests that a researcher must balance risk and consequences of a Type I error
with risk and consequences of a Type II error. 

In general, the choice of a more stringent α level (e.g., choosing .01 rather than .05) will lead to
reductions in power. This choice might make sense if researchers are more concerned with the possi-
bility of falsely rejecting the null hypothesis (Type I error) than with the possibility of failing to reject
the null hypothesis when it is indeed false (Type II error). Cascio and Zedeck (1983) presented equa-
tions for estimating the relative weight given to Type I vs. Type II errors in various research designs,
which can help researchers evaluate these tradeoffs. They showed that the apparent relative serious-
ness (ARS) of these errors implied by a study design can be estimated using:

ARS = 
p(H

1
)(1 – power)

(2)
(1 – p(H

1
))α

where: p(H
1
) = probability that H

0
is false.

For example, if the researcher believes that the probability that treatments have some effect is .7, and
α = .05 and the power is .80, the choice of the α = .05 significance criterion implies that a mistaken
rejection of the null hypothesis (i.e., a Type I error) is 9.33 times as serious [i.e., (.7*.2)/(.3*.05) = 9.33]
as the failure to reject the null when it is wrong (i.e., a Type II error). In contrast, setting α = .10 leads
to a ratio of 4.66 [i.e., (.7*2)/(.3*.10) = 4.66], or to the conclusion that Type I errors are treated as if
they are 4.66 times as serious as a Type II error (see also Lipsey, 1990).

The first advantage of Equation (2) is that it makes explicit the values and preferences that are usually
not well understood, either by researchers or by the consumers of social science research. In the scenario
described above, choice of an α level of .05 makes sense only if the researcher thinks that Type I errors are
over nine times as serious as Type II errors. If the researcher believes that Type I errors are only four or
five times as serious as Type II errors, he or she should set the significance level at .10, not at .05.

4. Reporting Results 

There is no standard format for reporting the outcomes of a power analysis, but it is relatively simple,
on the basis of the known determinants of power, to determine what information should be reported.
Because power is a function of three variables (i.e., n, ES, and α), it is best to include information about
all three in discussions of statistical power. For example, one might report,

On the basis of our review of the literature, we expected that the difference between two treatments
would correspond to a medium-sized effect (i.e., d = .50). Our study included 120 subjects who
were randomly assigned to treatment and control conditions. We used a two-tailed test (α = .05)
to compare group means. The power of this test for detecting medium effects, under assumed
conditions (normality, independence of observations, homogeneity of variance), is .77.

It is also important to report the method or the statistical software used to estimate power. Power
analyses are included as part of several statistical analysis packages (e.g., SPSS provides Sample Power, a
flexible and powerful program) and it is possible to use numerous websites to perform simple power
analyses. Some power analysis textbooks (e.g., Murphy & Myors, 2003) include software for performing
these analyses. Three notable software packages designed for power analysis are: 

• G*Power (Faul, Erdfelder, Lang, & Buchner, 2007; http://www.psycho. uni-duesseldorf.de/
abteilungen/aap/gpower3/) is distributed as a freeware program that is available for both
Macintosh and Windows environments. It is simple, fast, and flexible. 
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• Power and Precision, distributed by Biostat, was developed by leading researchers in the field
(e.g., J. Cohen). This program is very flexible, covers a large array of statistical tests, and pro-
vides power analyses and confidence intervals for most tests.

• PASS, distributed by NCSS, this program covers a wide of range of tests and provides particu-
larly useful graphical output. 

5. Evaluating Existing Research and Designing Future Studies 

Power analyses are extremely valuable for understanding the outcomes of significance tests in the
published literature. For example, suppose a researcher reports a statistically significant correlation
between pre-employment drug tests and subsequent job performance. If the study uses very large
samples, a statistically significant finding might not be very meaningful. If n = 5000, the power for
detecting a correlation as low as .04 exceeds .80. Similarly, a researcher who reports that there is no sta-
tistically significant correlation between mothers’ health and the health of children, based on a sample
of n = 30, might lead readers seriously astray. If n = 30, power is less than .80 for detecting correlations
as large as .45, and it is possible that a sample this small could miss a substantial correlation between
these two variables. Both of the examples illustrate a key point about null hypothesis testing.
Describing the correlation between two variables as “statistically significant” does not necessarily
mean that it is large or important, and describing this same correlation as “statistically nonsignificant”
does not necessarily mean that it is small and unimportant. It is recommended that whenever inter-
preting the results of statistical significance tests, power should be considered. When tests or the null
hypothesis are carried out with either very high levels of power or very low levels of power, the out-
comes of these tests are virtually a foregone conclusion, and the power of these tests should be rou-
tinely considered when evaluating their results.

Power analyses can be useful in understanding the likelihood that the results in a particular study
will replicate well in future studies. For example if a power analysis indicates that power is quite low
(e.g., .60), it is still possible that a study will reject the null hypothesis. However, if the estimates of
effect size are reasonably accurate, one should not expect that replications of that study will consis-
tently reject the null hypothesis. On the contrary, if effect size estimates are accurate and there are ten
replications of a study, the best guess is that only six of these will reject the null hypothesis. The alpha
level is often misinterpreted as an indication of the likelihood that test results will replicate.
Assessments of power are recommended as a much more accurate barometer of whether future tests
conducted in similarly designed studies are likely to lead to the same outcomes.

Power analyses can be quite useful in settings where one wants to argue that the null hypothesis is at
least close to being correct. For example, if one wanted to argue that a new type of training has no real
effects, one way to make this argument is to design a study that has a high level of power. If a powerful
study is conducted and it still fails to reject the null hypothesis, one might conclude that this null is at
least reasonably close as an estimate of the true state of affairs. Whenever researchers want to use the
failure to reject the null hypothesis as evidence that this hypothesis is at least approximately true, they
should first demonstrate that their studies have sufficient power to reject the null when it is meaning-
fully wrong.

Finally, power analysis should be carefully considered when designing future studies, particularly
when making choices about sample size. There are times when practical constraints make it impossi-
ble to obtain the large samples needed to reliably detect small but potentially important effects. If there
are constraints on the maximum sample size that can be attained, power analysis can be used to deter-
mine the type of effect that can be detected, given a fixed level of power, or the level of power that can
be attained given a fixed effect size. For example, suppose a research team is interested in comparing
the effects of two drugs and uses a two-tailed t test (e.g., α = .05) to determine whether there are 
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differences in the drug effects. They expect a relatively small difference in the effectiveness of the drugs
(e.g., d = .15), and a power analysis shows that a sample of at least n = 1398 will be needed to reach
power of .80 for tests of the null hypothesis that the drugs have identical effects. They can afford to
sample only 800 subjects. With a sample this large, they will have power of .80 or above for detecting
somewhat larger effects (d = .20), and will have to make a decision about whether it is realistic to expect
effects this large. If they are confident that the effect will be approximately d = .15 and they are limited
to a sample of 800 participants, power for testing the null hypothesis will be only .56, suggesting that
they almost as likely to conclude that there is no detectable difference between the drugs than they are
to conclude that there is a small, but potentially important difference in the effects of the drugs.

In sum, power analysis is extremely useful as a tool for planning and evaluating research studies.
Studies in the behavioral and social sciences are often conducted with low levels of power (Cohen,
1988; Murphy & Myors, 2003). Researchers who pay careful attention to power analysis are less likely
to make Type II errors or to misinterpret the outcomes of null hypothesis tests.
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25
Reliability and Validity of Instruments

Thomas R. Knapp and Ralph O. Mueller

Both reliability and validity are essential parts of the psychometric properties of a measuring instru-
ment.1 The reliability of an instrument is concerned with the consistency of measurements: from time
to time, from form to form, from item to item, or from one rater to another. On the other hand, the
validity of an instrument is usually defined as the extent to which the instrument actually measures
“what it is designed to measure” or “what it purports to measure.” Validity is therefore concerned with
the relevance of an instrument for addressing a study’s purpose(s) and research question(s). Both reli-
ability and validity are context-specific characteristics: for example, researchers are often interested in
assessing if a measure remains reliable and valid for a specific culture, situation, or circumstance (e.g.,
a psychological test might be highly reliable and valid in a population of Caucasian adults but not in
one of African American children). The conceptualization and specific definitions of reliability and
validity have changed over time, as reflected in the various editions of Educational Measurement
(Cronbach, 1971; Cureton, 1951; Feldt & Brennan, 1989; Haertel, 2006; Kane, 2006; Messick, 1989;
Stanley, 1971; Thorndike, 1951). Table 25.1 contains a list of desiderata regarding reliability and valid-
ity of measuring instruments that should be followed in any empirical research report.

1. Instrument Description and Justification 

Empirical data for analysis during research studies are collected with the aid of measuring instru-
ments, be they laboratory equipment or, more common in the social and behavioral sciences, surveys,
achievement batteries, or psychological tests. Because study results should only be trusted when inves-
tigators collect good data, authors should ensure that readers can judge the “goodness” of the data for
themselves. Thus, at a minimum, a full description of the instrument(s) used is necessary (and should
be followed by an assessment of reliability and validity; see Desiderata 2 and 3, respectively), including
the purpose(s) and intended use(s), item format(s), and scales of measurement (i.e., nominal, ordi-
nal, interval, or ratio). Obviously, a specific instrument is appropriate for use in some contexts, but
not necessarily in others (e.g., a high school reading test is likely to be inappropriate to measure a mid-
dle schooler’s intelligence). Authors must take care in justifying the choice of instrument(s) and mak-
ing explicit the link to the study’s purpose(s) and research question(s). Often, the description and
justification for a particular instrument is presented in a manuscript’s Instrumentation subsection of
the Methods section but could also be accomplished in the Introduction.
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2. Reliability Indices

Several approaches exist to assess an instrument’s reliability, whose appropriateness is dependent on
a study’s specific purpose. Four traditional strategies often found in the literature are briefly discussed
below: test-retest, parallel forms, internal consistency, and rater-to-rater. All four are based on classi-
cal test theory, but alternative conceptualizations of reliability exist that are based on other analytical
frameworks: generalizability theory (see Chapter 9, this volume), item response theory (see Chapter
12, this volume), and structural equation modeling (see Chapter 28, this volume). 

Test-Retest Reliability. If a study’s purpose is to assess measurement consistency of one instrument
from one time point to another, a straightforward way to collect reliability evidence is to measure and
then re-measure individuals and determine how closely the two sets of measurements are related (i.e.,
the test-retest method). In studies assessing psychological constructs such as attitude, a question with
often serious ramifications is how much time should be allowed between the first and second testing.
If the interval is too short, measurement consistency might only be due to the fact that individuals
being tested “parrot back” the same responses at Time 2 that they gave at Time 1. If the interval is too
long, some items might no longer be developmentally appropriate (e.g., academic achievement items
on a middle school test administered to students entering high school) which could impact the valid-
ity of the instrument as well. Even in studies with physical variables, the length of time between meas-
urements might be crucial for some (e.g., repeated weight measurements during a health-awareness
program might fluctuate widely, depending on weight loss/gain), but not for other variables (e.g.,
repeated height measurements of adult participants are likely to remain consistent, irrespective of the
time-lag between measurements). In general, authors should defend their choice of time intervals
between measurements as the “correct” amount of time is situation specific and somewhat subjective.
An assessment of test-retest reliability can be accomplished in either an absolute manner (e.g., the
median difference between corresponding measurements) or relative manner (e.g., the correlation
between the two sets of measurements) with the latter approach being more common than the former. 

Parallel Forms Reliability. If a measuring instrument is available in two parallel (i.e., psychometri-
cally equivalent and interchangeable) forms, say Form A and Form B, with measurements having been
taken on both forms, reliability evidence can be obtained by comparing the scores on Form A with the
scores on Form B, again either absolutely or relatively. The time between the administrations of the
two forms is still an important consideration, but because the forms are not identical there is no longer
the concern for “parroting back” if the time interval is short.

Internal Consistency Reliability. Given the disadvantage of multiple test administrations for test-
retest and parallel forms reliability (e.g., increased costs, time lag between measurements, and missing

Table 25.1 Desiderata for Reliability and Validity of Instruments 

Desideratum Manuscript 

Section(s)*

1. Each instrument used in the study is described in sufficient detail. The appropriateness of the I, M

instrument to address the study’s purpose(s) and research question(s) is made explicit.

2. Appropriate reliability indices are considered: The study’s purpose(s) guide the choice of indices M, R

calculated from current data and/or examined from previous research.

3. Suitable validity evidence is gathered: The study’s purpose(s) determine the type of validity support M, R

gathered from current data and/or consulted from related literature.

4. Applicable reliability and validity evidence is reported and interpreted. The study’s conclusions are D

placed within the context of such evidence (or lack thereof).

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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data due to non-participation during the second testing), a commonly used alternative is the estima-
tion of the internal consistency of an instrument. Here, an instrument consisting of multiple items meas-
uring the same construct is administered only once, but now treating the items as forming two parallel
halves of the instrument. The two half-forms are created after the actual measurement, traditionally by
considering the odd-numbered items as one form and the even-numbered items as the other form
(though other ways to split an instrument are certainly possible, e.g., random assignments of items to
halves). The scores on the two forms are then compared, usually relatively by computing the correla-
tion between the scores on the odd numbered items with the scores on the even numbered items. But
the correlation must be “stepped up” by using the Spearman-Brown formula (Brown, 1910; Spearman,
1910), in order to estimate what the correlation might be between two full-forms as opposed to two
half-forms. That estimate is obtained by multiplying the correlation coefficient by two and then divid-
ing that product by one plus the correlation. The type of reliability evidence thus produced is strictly
concerned with internal consistency (from half-form to half-form) since time has not passed between
obtaining the first set of measurements and obtaining the second set of measurements.

Another type of internal consistency reliability is from item to item within a form. Such an
approach was first advocated by Kuder and Richardson (1937) for dichotomously scored test items,
and was subsequently extended to the more general interval measurement case by Cronbach (1951).
Their formulae involve only the number of items, the mean and variance of each, and the covariances
between all of the possible pairs of items. Cronbach called his reliability coefficient alpha. It is still
known by that name and is by far the most commonly employed indicator of the reliability of a meas-
uring instrument in the social sciences.2

Rater-to-Rater Reliability. When the data for a study take the form of ratings from scales, the type of
reliability evidence that must be obtained before such a study is undertaken is an indication of the
extent to which a rater agrees with him(her) self (intra-rater reliability) and/or the extent to which one
rater agrees with another (inter-rater reliability). Several options exist to assess rater-to-rater consis-
tency, with the intraclass coefficient and Cohen’s kappa (1960) being among the most popular (see
Chapter 11, this volume).

Norm- vs. Criterion-Referenced Settings. Literature devoted to reliability assessment within norm-refer-
enced versus criterion-referenced frameworks is plentiful. Most users of norm-referenced tests—where
scores are primarily interpreted in relation to those from an appropriate norm or comparison
group—have adopted approaches to reliability assessment similar to those summarized thus far, with
particular emphasis on correlations that are indicative of relative agreement between variables. Criterion-
referenced (or domain-referenced) measurement is concerned with what proportion of a domain of items
has been answered successfully and whether or not that portion constitutes a “passing” performance (e.g.,
“John spelled 82% of the words on a spelling test correctly, which was below the cut point for progressing
to the next lesson.”). Here, reliability assessment concentrates on measurement errors in the vicinity of the
cut point with a particular interest on the reliability of the pass-or-fail decision. In parallel-form situations,
for example, the matter of whether a person passes both Form A and Form B or fails both Form A and
Form B takes precedence over how high the correlation is between the two forms. 

3. Validity Evidence 

In physical science research the usual evidence for the validity of measuring instruments is expert
judgment and/or validity-by-definition with respect to a manufacturer’s specifications. For example,
“For the purpose of this study, body temperature is the number of degrees Fahrenheit that the Smith
thermometer reads when inserted in the mouths of the persons on whom the measurements are being
taken.” As evidence of validity, the researcher might go on to explain that the Smith thermometer is
regarded as the ‘gold standard’ of temperature measurement.
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In the social and behavioral sciences, investigators are often urged to provide evidence for content
validity (expert judgments of the representativeness of items with respect to the skills, knowledge, etc.
domain to be covered), criterion-related validity (degree of agreement with a “gold standard”), and/or
construct validity (degree of agreement with theoretical expectations) of the measuring instruments
used in their substantive studies. More recently, all three validity types have been subsumed under an
expanded concept of construct validity, but not without controversy. Whatever conceptualization is
used, researchers must be clear that instrument validity is not context free: a measure might be valid in
one situation or for one population, but not in or for another (e.g., the Scholastic Aptitude Test, 
SAT, is often argued as being valid to assess high school seniors’ potential for success in undergradu-
ate higher education, but not for measuring their intelligence or potential to succeed in vocational
training).

Criterion-related Validity. When a measure is designed to relate to an external criterion, its validity
is judged by either concurrent or predictive assessments (i.e., degrees to which test scores estimate a
specified present or future performance). For example, a passing score on a driver’s permit test with
acceptable concurrent validity will allow the test taker to immediately drive motor vehicles, assuming
an associated road test has been passed. On the other hand, evidence of predictive criterion-related
validity is often helpful for judging instruments that are designed to measure aptitude, with passing
achievement scores serving as the standards for whether or not the aptitude tests are predictive of
achievement. But, herein also lies an interesting dilemma: How does one know that the achievement
tests themselves are valid? Do the standards need to be validated against an even higher standard? Or,
if the standards’ validity is established by expert judgment, why not appeal to experts directly for valid-
ity assessments of the aptitude measure? Furthermore, if expert judgment is to be the ultimate arbiter,
who are the experts and who selects them?

Construct Validity. In order to judge the degree to which a theoretical construct accounts for test
performance, a researcher must assess the test’s construct validity. Supportive evidence usually comes
from exploratory or confirmatory factor analyses (see Chapter 8, this volume) in which the dimen-
sionality and the degree of correlation of the variables comprising the instruments are investigated.
The most popular approach is the convergent/discriminant strategy first recommended by Campbell
and Fiske (1959): researchers determine the extent to which measurements obtained with the instru-
ments in question correlate with variables with which they are theoretically expected to correlate (con-
vergent) and the extent to which those measurements correlate with other variables with which they
are theoretically not expected to correlate (discriminant). See also Chapter 22, this volume, on multi-
trait-multimethod analysis.

4. Reporting and Interpreting Reliability and Validity Results 

Before reporting a study’s main findings, investigators should discuss evidence of the reliability and
validity of the instrument(s) used. Ideally, such evidence should come from both a thorough search of
the related literature and an assessment based on current study participants. A comparison of present
reliability and validity information with that gleaned from related literature is helpful to readers, espe-
cially when such information might be contradictory, as, for example, when earlier reliability/validity
evidence could not be reproduced based on the current sample’s data. 

Certainly when no previous reliability and validity information is available—as is the case when
investigators construct their own instruments— authors must report psychometric properties of the
instrument(s) based on an analysis of the current data. But even if reliability/validity evidence is iden-
tified from previous studies, it is often the case that it does not generalize to the current population
under study. Thus, it is incumbent upon each investigator to provide a thorough justification for why
the instruments used are appropriate for the current sample of participants. 
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In the social and behavioral sciences, reliability and validity coefficients in the .70 or .80 or above
range are often considered acceptable with values below these cut-offs being acknowledged as study
limitations. However, the acceptability of coefficients should be judged with caution as value ade-
quacy certainly depends on the particular phenomenon under study. Nevertheless, the interpretation
of main results should commence from within the context of reliability and validity results as unreli-
ability and/or invalidity usually attenuate the magnitudes of expected findings and lead to wider con-
fidence intervals and less likelihood of the detection of effects and relationships in the data.

Notes

1 This chapter does not deal with the internal and external validity and reliability of a chosen research design (but see
Chapter 26, this volume). Also, in fields outside the social/behavioral sciences, validity and reliability are sometimes
known by different names. For example, in epidemiology, reproducibility is generally preferred over reliability. In
engineering and related disciplines, equipment is said to be reliable if it does not, or is very unlikely to, break down.
Also, the ambiguous term accuracy is sometimes used in lieu of either reliability or validity.

2 Kuder and Richardson actually derived several formulae for internal consistency by making successively relaxed
assumptions, and they numbered them accordingly. The formula that is most frequently used to compute Cronbach’s
alpha is actually a direct extension of Kuder and Richardson’s Formula #20 for dichotomous data.
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26
Research Design

Sharon Anderson Dannels

The definition of research design is deceptively simple: it is a plan that provides the underlying struc-
ture to integrate all elements of a quantitative study so that the results are credible, free from bias, and
maximally generalizable. “Research design provides the glue that holds the research project together”
(Trochim, 2006, Design, ¶ 1). The research design determines how the participants are selected, how
variables are manipulated, data are collected and analyzed, and how extraneous variability is con-
trolled so that the overall research problem can be addressed. Regardless of the sophistication of the
statistical analysis, the researcher’s conclusions might be worthless if an inappropriate research design
has been used. Thus, design decisions both constrain and support the ultimate conclusions (Miles &
Huberman, 1994). 

Research designs may be identified as a specific design (e.g., a pretest-posttest control group design or
a nonequivalent control group design) or by the broader category of experimental or nonexperimental.
Experimental designs are used in experiments to investigate cause and effect relationships. In contrast,
nonexperimental designs are used in more naturalistic studies or in situations where the primary purpose
is to describe the current status of the variables of interest. The latter designs are distinguished by the
absence of manipulation by the researcher, with an emphasis on observation and measurement. 

The adequacy of the research design to produce credible results, most notably to make causal infer-
ences, is evaluated in terms of two primary types of validity: internal and external (Campbell &
Stanley, 1963). Internal validity refers to the confidence that the specified causal agent is responsible
for the observed effect on the dependent variable(s). External validity is the extent to which the causal
conclusions can be generalized to different measures, populations, environments, and times. In addi-
tion, statistical conclusion validity is considered with internal validity and refers to the appropriate use
of statistics. Construct validity, the ability to generalize the research operations to hypothetical 
constructs is a companion to external validity (Cook & Campbell, 1979).

Campbell and Stanley (1963) and Cook and Campbell (1979) produced the seminal works defining
quasi-experimental design (see Desideratum 3) from which much of the literature on research design is
extrapolated. Shadish, Cook, and Campbell (2002) revisited the initial works, providing greater atten-
tion to external validity, randomized designs, and specific design elements rather than prescribed
research designs. Also, a contemporary white paper prepared for the American Educational Research
Association (AERA) by Schneider, Carnoy, Kilpatrick, Schmidt, and Shavelson (2007) specifically
addressed the issue of causal inferences using large-scale datasets, experimental, and nonexperimental
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designs. Texts by Keppel, Saufley, and Tokunaga (1998), Fraenkel and Wallen (2006), or Huck,
Cormier, and Bounds (1974) provide more thorough introductory treatments, whereas the text by
Keppel and Wickens (2004) presents more advanced coverage. Table 26.1 contains specific desiderata
to guide reviewers and authors as they make decisions regarding quantitative research design.

1. The Research Design is Foreshadowed 

From within a quantitative social and behavioral science research framework, the discussion of
research design usually begins with the methods or procedures used to conduct the study (e.g., the
selection and/or assignment of participants, the operationalization of the variables, the procedures for
data collection and analysis) and the subsequent implications for conclusions. However, the research
design and methods utilized should not come as a surprise at the end of the Introduction, but rather
should be an extension of the foundation that has been developed therein. 

In describing research design for qualitative research, Maxwell (2005) identified five components
that comprise his model for research design, much of which is applicable, yet has remained only
implicit, for quantitative research design. The five interacting components that Maxwell identified
include the goals, conceptual framework (which includes the theoretical framework and research lit-
erature), research question(s), methods, and validity. Although Maxwell included elements within
these that are not appropriate to quantitative research (e.g., the inclusion of personal experience
within the conceptual framework), and he envisioned these elements dynamically interacting rather
than the more sequential linear procedure of quantitative research, he did make explicit the need to
evaluate the conclusions of a study within this larger context. It is in the Introduction that researchers
should identify what variables will be attended to and which will be ignored. The congruence of the
Introduction, including its review of the literature, with the research design is necessary to evaluate the
overall contribution of the study.

Table 26.1 Desiderata for Research Design

Desideratum Manuscript

Section(s)*

1. The research design is foreshadowed and follows logically from the general problem statement and I

associated research questions.

2. The research problem is clearly articulated and researchable. I

3. The research design is appropriate to address the research problem and is clearly articulated. M

4. Variables are identified and operationalized; sampling, instrumentation, procedures, and data M, R

analysis are detailed.

5. The research design is internally consistent (e.g., the data analysis is consistent with the M, R, D

sampling procedures).

6. The design is faithfully executed or, if applicable, explanations of necessary deviations are provided. I, M, R

7. Extraneous variability is considered and appropriately controlled. M, R

8. Potential rival hypotheses are minimized. Threats to internal validity and statistical conclusion M, D

validity, and the adequacy of the counterfactual, are considered.

9. Conclusions as to what occurred within the research condition are appropriate to the design. M, D

10. Generalizations, if any, are appropriate. External validity and construct validity are considered M, D

elements of the design.

11. The limitations of the design are articulated and appropriately addressed. D

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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2. The Research Problem 

It is impossible to evaluate the adequacy of a particular research design if there is no clearly articulated
statement of the research problem. The research problem may be expressed in the form of research
question(s) and/or hypotheses, and serves to formalize the research topic into an operational guide for
the study, connecting the conceptual framework to the methods (Fraenkel & Wallen, 2006; Maxwell,
2005). The description of the research problem should identify the target population, the variables,
and the nature of any anticipated relation between the variables and thereby focus the data collection
and presage the data analysis. Hypotheses are not necessary, but are often stated when a specific pre-
diction to be tested is made. 

Terms used in the research problem must be defined in such a way that the questions are focused
and testable. For example, What is the best treatment for anxiety? is not a testable question. Without
defining “best” there is insufficient information to guide the study. Does “best” mean the most eco-
nomical, the most consistent, or possibly the most permanent? The question also does not identify the
population (e.g., children, teens, adults), or what types of treatment will be evaluated (e.g., psy-
chotherapeutic, pharmacological, social behavioral), or what type of anxiety (e.g., self-report, clini-
cally diagnosed, theoretically defined, physiologically measured). Without these further
clarifications, it is not possible to assess whether or not the research design is appropriate to address
the research problem.

Not only does the research problem suggest the appropriate research design, it also clarifies the spe-
cific type of data to be collected and thereby influences the data collection procedures. Questions can
be classified as instrumentalist or realist (Cook & Campbell, 1979; Maxwell, 2005). Instrumentalist
questions rely on the utilization of observable measures and require direct observation or measure-
ment. Realist questions are about feelings, attitudes, or values that cannot be directly observed. The
type of question, instrumentalist or realist, should connect the purpose of the study with the type of
data collected. For example, if the purpose of the study is to provide information about teaching effec-
tiveness, an instrumentalist question would be posed. It then would not be appropriate to collect the
data using a survey within a survey research design to garner information from teachers as to their per-
ceived effectiveness. 

Designs developed for use with instrumentalist questions require greater inference and therefore
might be more susceptible to bias. Yet as Tukey (1986) stated, and is often quoted, “Far better an
approximate answer to the right question which is often vague, than an exact answer to the wrong
question, which can always be made precise” (p. 407). Within the quantitative paradigm authors
should clearly state their efforts to minimize bias and/or include appropriate caveats urging caution
when interpreting and generalizing the results.

3. Articulation of the Research Design 

The type of question(s), realist or instrumentalist (see Desideratum 2), will determine the type of data
collected (e.g., self-report or performance). However, more fundamentally the research question(s)
will determine the appropriate type of research design. Questions about relations among variables or
questions about the current status of variables can be answered with a nonexperimental design. To
answer questions about cause and effect, an experimental research design provides the stronger evi-
dence. 

The types of research design are distinguished by the degree to which the researcher is able to con-
trol the research environment. Four types of control are evaluated: (a) the researcher’s ability to con-
trol the selection and/or assignment of participants to groups, (b) the manipulation of the
independent variable(s), (c) how any dependent variables are measured, and (d) the timing of the
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measurement(s). The types of experimental designs vary significantly with regard to the type of con-
trol that the researcher is able to exert. Nonexperimental designs offer very little control, and experi-
mental designs require more control. 

Questions of cause and effect should be addressed using experimental designs. They are experiments
in the sense that the researcher is able to control or deliberately manipulate conditions in order to
observe the varying outcomes. As Shadish et al. (2002) stated: 

Experiments require (1) variation in the treatment, (2) posttreatment measures of outcomes, (3)
at least one unit on which observation is made, and (4) a mechanism for inferring what the out-
come would have been without treatment—the so-called “counterfactual inference” against
which we infer that the treatment produced an effect that otherwise would not have occurred. 
(p. xvii)

Within the category of experimental designs, randomized designs (sometimes referred to as true exper-
imental designs), are distinguished by the researcher’s ability to control the experimental conditions,
most specifically the random assignment of participants to conditions. Quasi-experimental designs
comprise a separate category because, although the researcher can manipulate the proposed causal
variable and determine what, when, and who is measured, he/she lacks the freedom to randomly
assign the experimental units or participants to the treatment conditions. Without this random
assignment the researcher must be more circumspect when making causal inferences (Cook &
Campbell, 1979; Shadish et al., 2002). 

In addition to the randomized and quasi-experimental designs, methodologists have referred to
pre-experimental or pseudo-experimental designs (Cook & Campbell, 1979; Huck et al., 1974) as forms
of experimental designs. These designs are separated from quasi-experimental because of their lack of
experimenter control and subsequent weaker claims of causality. It is imperative that researchers and
reviewers attend to how the various types of control (and more specifically, the lack of control) can
impact both the internal validity (see Desideratum 8) and external validity (see Desideratum 10). 

Questions of cause and effect require a comparison. The ideal, but impossible, comparison is the
counterfactual (Cook & Sinha, 2006). Whereas the experimenter is able to measure what occurs when
a treatment is introduced, he/she cannot say what would have occurred to that individual had the
treatment not been introduced—the counterfactual. Thus, any experiment requires an approxima-
tion of the true counterfactual. “The better the counterfactual’s approximation to the true counter-
factual, the more confident causal conclusion will be” (Cook & Sinha, 2006, p. 551).

Specific experimental research designs are distinguished by how this counterfactual is constructed.
Some designs use a control group and/or an alternate treatment, whereas others use a pretest measure
to compare to the outcome measure. Some designs combine more than one approach (e.g., pretest-
posttest control group design) to improve the quality of the counterfactual. The logic of this approach
is that the counterfactual represents what would be in the absence of the treatment. Unfortunately,
this belief cannot always be justified. For example, the use of a control group presumes that this group
is identical to the treatment group in all ways except for the existence of the treatment. Similarly, the
use of a pretest presumes that all else remains the same, except the exposure to the treatment. Clearly,
these assumptions cannot always be defended and the researcher should provide as much evidence as
is reasonable to support his/her claims of the adequacy of counterfactual that serves as the compara-
tive. Additional variables should be tested to further support the argument of equivalence of a control
group to which the participants have not been randomly assigned.

Nonexperimental designs are usually restricted to descriptive or associational research, where the
main purpose is at most to provide evidence of relations between two or more variables. However,
there are two classes of research that use nonexperimental designs to explore causal relationships: 
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ex post facto or causal-comparative (Fraenkel & Wallen, 2006) and studies utilizing statistical modeling
procedures. Due to the absence of researcher control over not only the assignment of participants, but
also the manipulation of a hypothesized causal agent, casual conclusions can only be tenuously
advanced from studies that use a causal comparative design. Studies that utilize some form of statisti-
cal modeling (e.g., structural equation modeling; see Chapter 28, this volume) rely upon an a priori
theory and stochastic assumptions to make causal claims. Despite the statistical sophistication,
methodologists remain divided on whether nonexperimental designs can provide convincing evi-
dence that warrant claims of causality (see, for example, Shaffer, 1992).

Researchers who rely upon extant databases should be attentive to the quality of the original
research design and how the design decisions impacted the data collected. For example, large datasets
frequently result from sampling strategies that have implications for how the data should be evaluated
(see Chapter 30, this volume). Researchers using existing data, including those performing statistical
modeling, should (a) disclose information relevant to how the data were obtained, (b) provide suffi-
cient detail of the a priori theory or theories, (c) faithfully execute the chosen statistical procedure after
adequately addressing associated underlying assumptions, and (d) acknowledge the limitations of the
study to make claims of causality. 

The selection of the research design should consider the research problem within the larger context
of the research topic. Careful consideration should be given to whether a longitudinal within-subjects
design (see Chapter 2, this volume) or a cross-sectional between-subjects design (see Chapter 1, this
volume) would be better suited to address the research problem. For example, either design can
answer the question of whether or not there is a difference in performance on some defined measure
of knowledge of teenagers and septuagenarians. However, if the hypothetical construct being meas-
ured is long-term memory, the longitudinal design will enable greater confidence that the difference
in test performance is due to memory rather than learning. If however, the hypothetical construct rep-
resented by the test performance is learning, the less time and cost consuming, cross-sectional
between subjects design would be adequate and consistent with research in this field.

Once determined, the research design helps authors to coordinate how participants are selected,
how variables are manipulated, how data are collected and analyzed, and how extraneous variability
is controlled. Discussion of specific designs can be found in Cook and Campbell (1979), Huck et al.
(1974), Shadish et al. (2002), or Creswell (2005). Each element of the research design (sampling,
instrumentation, experimental procedures and data collection, and data analysis) should be described
with sufficient detail that the study can be replicated. All variables (i.e., independent, dependent,
moderator, mediator, or control) should be defined, and the measurement should be congruent with
the presentation in the Introduction. The type of design (i.e., experimental, or nonexperimental) or
the specific design (e.g., groups × trials mixed between-within design, or nonequivalent control group
design) should be stated. Adherence to a specific design is not required and the inclusion of additional
procedures to control extraneous variability is encouraged (e.g., the inclusion of a pretest or a control
group). In their follow-up text to Campbell and Stanley (1963) and Cook and Campbell (1979),
Shadish et al. (2002) emphasized the value of design elements rather than designs per se. In essence the
design is constructed rather than being limited to selection from a prescribed list. The inclusion of
each design element should be evaluated in terms of the potential impact on both internal and exter-
nal validity (see Desiderata 8 and 10). 

It is not uncommon for the researcher to omit any explicit reference as to what research design or
design elements are used. Yet as Maxwell (1996) noted, “Research design is like a philosophy of life; no
one is without one, but some people are more aware of theirs and thus able to make more informed
and consistent decisions” (p. 3). When design elements have not been explicated, the degree to 
which the researcher has made conscious design decisions is unknown. In this case, not only must 
the reviewer be vigilant in evaluating the credibility of what is reported, but he/she must also try to
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reconstruct the design that was used by what is reported in the Methods and Results sections. Without
the aid of the author to define the counterfactuals used, the reviewer and reader are left to not only
evaluate their effectiveness, but to also identify what they are. This is essential to determining whether
the research design can support the stated conclusions.

4. Specific Design Elements 

The first element of the research design is a description of the participants. The selection of partici-
pants should be consistent with the identified design. The type of design will determine first whether
group assignment is necessary, and second, if so does assignment precede or follow selection. If a sam-
ple is used, the sampling frame and the population should be identified. The sampling procedure
should be specified and there should be a justification of the sample size (see Chapter 24, this volume).
An appropriate sample, in size and composition (i.e., representativeness), is foundational to the con-
clusions of the study (see Desideratum 9). In addition, how participants are assigned to treatment
conditions (if appropriate) is important to the determination of the strength of any inference of
causality (see Desideratum 8). Not only is it important to report what definition or instrument is used
to select or assign participants, it is also important to report the reliability, validity, and cut scores of
that instrument. This provides confidence that the participants met the criterion established and
allows comparison to previous research. For example, “extraverts” as defined by the Eysenck
Personality Inventory (EPI) are not the same as “extraverts” defined by the Myers-Briggs Type
Indicator®. Defining extraverts as those scoring above the sample mean on the EPI may not be the
same as extraverts defined as those scoring above a normed score. The method by which participants
are placed into groups (i.e., no groups, randomly assigned, or pre-existing groups) is essential to the
type of research design being used and therefore to the conclusions that can be drawn (see Desiderata
8 and 9).

An integral element to the integrity of any study is the reliability and validity of the instrument(s)
used to collect the data (see Chapter 25, this volume, for specifics on validity and reliability assess-
ments). Not only is it necessary to provide evidence of the appropriate types of reliability and validity
that have been established, but to make the case for why the author would expect that this evidence
would apply to his/her use of the instrument. Citing extensive previous use is not sufficient evidence
of reliability or validity.

The experimental and/or data collection procedures comprise the next element of the research
design. There should be a detailed description of any experimental conditions, including any control
conditions, if a treatment is introduced. This should include precise details of time intervals—dura-
tion of exposure to the treatment as well as time lapse between exposure and data collection, dosages,
equipment settings, and research personnel. How and when the data are collected should be clearly
described, making special note if the timing or the mode of collection could affect the response. For
survey research designs this should include the number of reminder contacts, the timing of the
reminders, and the mode of contact.

The final element of the research design before the discussion of study results is the presentation of
the data management and data analysis. Data reduction and transformations, including the treatment
of missing values, should be articulated, highlighting any deviations from standard procedures. The
data analysis should explicitly address demographic data that are useful for the discussion of appro-
priate generalizations (see Desideratum 10) or the equivalency of groups (see Desideratum 3). Data
from instruments with total or scale scores should be analyzed for internal consistency reliability and
compared to previous uses of the instrument. The specific test(s) used to address each research ques-
tion and/or hypothesis should be named, including any information necessary for the reader to deter-
mine the appropriateness of the test or decision (e.g., degrees of freedom, alpha level, p values). Post
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hoc tests for the interpretation of omnibus test results (e.g., post hoc comparisons following an
ANOVA) must be included and should be identified by name (see Chapters 1 and 2, this volume).
When using samples, there should be a test at every point of decision. Evidence should be presented to
confirm that the assumptions of statistical tests were met or that appropriate adjustments were made.

5. Internal Consistency of Research Design 

A research design that lacks internal coherence creates problems for the interpretation of the results.
This problem emerges particularly when the research design has not been explicated. Beginning with
the Introduction, which should establish the need for the study and what precisely will be studied,
through the statement of the research problem and research question(s), the way the sample is
selected, the independent variable(s) are manipulated, the data collected, and how the data are ana-
lyzed, each design element should logically follow. If the researcher claims that a randomized design is
used, it then follows that participants must be randomly assigned to the experimental conditions. The
most blatant example of inconsistency is when the statistical analysis is not appropriate for the type of
research question or how the data were collected (e.g., using a test of correlation to answer questions
of cause and effect, especially when no temporal order has been established). Similarly, if participants
are selected because they represent the two extremes of a grouping variable, it would be inappropriate
to use correlation to evaluate the relationship between the two variables.

6. Design Execution 

Details that researchers present in the Methods section must be consistent with what they intended at
the outset of the research, as expressed in the Introduction. The procedures detailed in the Methods
section should be evaluated to verify that they were faithfully executed. Small departures from the
original design are often unavoidable—even anticipated, however, they require explanation. 

A common problem is that the number of anticipated observations is not equal to the sample size
upon which the conclusions are based, likely reducing the desired power level (see Chapter 24, this
volume). This issue is particularly prevalent in survey research. Even in studies where researchers
over-sample in an effort to achieve the desired sample size, the total response rate is often less than
desired; the response rate for an individual survey item (i.e., missing response) may be considerably
lower (Jackson, 2002). Often, studies are designed with equal or proportional sample size in each cell,
yet frequently when the results are reported the cells are uneven. This has implications for how miss-
ing data are treated, for statistical assumptions, for the power of the test (see Chapter 24, this volume),
as well as for other design implications. It is therefore incumbent upon the researcher to account for
missing values and evaluate the implications for the design. One consideration is whether the nonre-
sponses adversely affect the representativeness of the sample. More specifically, consideration must be
given to whether missing values represent a threat to internal validity (see Desideratum 8). The dis-
proportionate loss of participants from one treatment condition might suggest a threat to internal
validity (Cook & Campbell, 1979). This is not only true of quasi-experimental designs but also of ran-
domized designs, which by virtue of random assignment of participants are protected from most
other threats.

Reviewers of manuscripts should be vigilant for evidence suggesting that procedures were counter to
stated claims. For example, if a researcher claims that participants were randomly assigned, but then 
later suggests that the treatment was assigned to pre-existing groups, this changes the design from a 
randomized design to a quasi-experimental design with all the attendant issues that must be addressed.

Valid conclusions about a causal relation between treatment and outcome are dependent upon the
treatment (and control) condition(s) being faithfully delivered and the dependent variable reliably
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measured. There should be evidence that the researcher (or whoever is providing the treatment) has
been trained and dependably delivered the specified treatment. Evidence in the form of manipulation
checks should be provided to verify that experimental manipulations were effective. For example,
experiments that rely on deception require that the participants are indeed deceived, and a well-
designed study will provide evidence to this effect. In addition to ensuring that the experimental condi-
tions are consistent with what is reported there should be evidence that the researcher has sufficient
training to collect the data (e.g., training for interviewers, inter-rater reliability). 

In addition to considering whether the researcher has delivered treatment successfully, the
researcher and the reviewer should consider the plausibility of participant noncompliance with treat-
ment. Drug trials are dependent upon participants actually consuming the prescribed dose; training
is dependent upon participant attendance. Without evidence of participant compliance there is insuf-
ficient evidence that the research design has been implemented.

7. Control of Extraneous Variability 

Without appropriate control of extraneous variability it can be difficult to isolate and observe the
effect(s) of the hypothesized causal variable(s) on the dependent variable(s). Control of extraneous
variability is therefore one of the primary functions of a research design. Rigorous adherence to care-
fully designed research procedures can help to minimize the effect of unintended influences.
However, the design element that has the greatest impact on the control of extraneous variability is the
selection and/or assignment of participants. Random assignment to treatment conditions is the prin-
cipal means by which a research design avoids the systematic influence of unintended variables. The
advantage of this method is that it controls for the influence of a number of variables, even those
unidentified. However, it alone might be insufficient if an extraneous variable has a stronger effect
than the causal variable that is being considered. Manuscript reviewers should note any mention of
one or more variables in the Introduction (or from previous content knowledge) that is known to have
a strong relation to any of the dependent variables, and ensure that its influence is considered in the
research design chosen by the study’s authors. In fact, an alternative research design might have been
more appropriate. For example, the effect of an extraneous variable might be controlled by including
it as an additional variable in the design (i.e., randomized block design) or by restricting the popula-
tion of the study to only one level of the extraneous variable (e.g., only include women in the study). 

Matching is a procedure whereby participants are paired on their scores for a specific variable(s) and
then each member of the pair is assigned to a different treatment condition. The intent of using this
procedure is to equate the groups in terms of this specific variable, a variable that is believed to influ-
ence the dependent variable. This procedure should be used judiciously. Although it might equate the
groups on that one specific variable, matching interferes with the ability to randomly assign partici-
pants, and thereby forfeits the benefit of randomization. The implications for the data analysis also
must be considered. The matched pairs cannot be treated as independent observations and the data
analysis must reflect this. The use of these procedures must be considered within the larger context of
the overall design to ensure that their use is reflected in other design decisions (e.g., data analysis) and
conclusions.

Sometimes, statistical procedures can also be used to control extraneous variability. The use of
covariates can help adjust the scores on the dependent variable before testing for group differences if
the extraneous variable is measured as a continuous variable. Propensity scores from a logistic regres-
sion (see Chapter 17, this volume) might also be used to evaluate the equivalence of treatment groups,
improve matching, or be used as a covariate (Pasta, 2000). Although the use of propensity scores is a
means of controlling for the effect of more than one extraneous variable, it is still limited to the con-
trol of only those variables that are identified and quantitatively measured. Rather than attempt to
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improve the equivalence of groups, Rosenbaum (1991) suggested a procedure (hidden bias sensitivity
analysis) to assess how much bias would be necessary between the treatment and control groups for
bias to be a viable alternative explanation for the treatment outcome. Shadish et al. (2002) warned that
the use of these, or other advanced statistical procedures, is not a substitute for good design. Where
possible, extraneous variability should be controlled by the research design, and then if appropriate
augmented by available statistical procedures.

8. Internal Validity and Statistical Conclusion Validity 

The careful construction and faithful execution of the research design provides the foundation for the
research conclusions. Each element of the design relates to the validity of the study. Research con-
ducted to test causal relations relies on the adequacy of the constructed counterfactual to represent the
true counterfactual (see Desideratum 3). The adequacy is evaluated in terms of the ability to rule out
rival hypotheses or alternative explanations for the outcome. In 1957, Campbell first coined the term
internal validity, which was further elaborated by Campbell and Stanley (1963) as the confidence that
the identified causal variable is responsible for the observed effect on the dependent variable and not
due to other factors. They identified a list of threats to internal validity, which should be considered
when constructing the design as well as when evaluating the conclusions. The list of threats to internal
validity, with some modifications, can be found in most research design textbooks (also see Shadish et
al., 2002; Shadish & Luellen, 2006; for discussions on threats relevant to specific designs see Cook &
Campbell, 1979; Huck et al., 1974).

Threats to internal validity are usually discussed in terms of quasi- experimental designs because
they result from the inability to randomly assign participants to treatment conditions. That is, random
assignment reasonably protects the study from most threats to internal validity; however, such threats
should be considered for any study that seeks to make causal inferences, with or without random
assignment. Some threats (e.g., mortality or attrition, the disproportional loss of participants from
one condition) occur after the assignment to experimental condition or as a result of something that
occurs during treatment delivery, which thereby jeopardize causal interpretations of even a random-
ized design. 

The potential of a threat to internal validity in and of itself is insufficient to dismiss a researcher’s
claims of causality. When evaluating the potential threats, Shadish and Luellen (2006) advocated the
consideration of three questions: 

(a) How would the threat apply in this case? (b) Is the threat plausible rather than just possible?
and (c) Does the threat operate in the same direction as the observed effect so that it could 
partially or totally explain that effect? (p. 541) 

If it can be conceived how a specific threat would offer a rival hypothesis, which is probable—not just
possible, and explains the direction of the outcome, only then would the internal validity be chal-
lenged. The careful researcher will consider these threats in the design of the study, anticipating those
with potential relevance. If considered prior to the execution of the study, it may be possible to alter a
design element(s) to avoid a potential threat, or additional data may be collected to provide evidence
to argue against a threat’s explanatory ability (see Desideratum 3). 

Cook and Campbell (1979) further refined the discussion of internal validity by introducing statis-
tical conclusion validity as a distinct form of validity related to internal validity. Statistical conclusion
validity refers to the “appropriate use of statistics to infer whether the presumed independent and
dependent variables covary. Internal validity referred to whether their covariation resulted from a
causal relationship” (Shadish et al., 2002, p. 37). Threats to statistical conclusion validity provide 
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reasons why the researcher might be wrong about (a) whether a relationship exists and (b) the strength
of the relationship. A list of threats to statistical conclusion validity can be found in Shadish et al.
(2002, p. 45). Attention to statistical power, assumptions of the statistical tests, inflated Type I error,
and effect size, as well as issues related to the measurement and sampling, fall within the purview of
statistical conclusion validity. 

Generally, it is not appropriate to refer to the internal validity of nonexperimental designs, with one
exception: specific designs that are being used to make causal inferences (e.g., causal comparative).
However, the validity of conclusions reached still requires evaluation. Each design decision affects the
validity, with decisions regarding the appropriate sampling, instrumentation, and statistical analysis
of particular importance for the nonexperimental design. The sample size and representativeness of
the population, the reliability and validity of measurement, and the appropriate statistical analysis are
key to the conclusions of a nonexperimental study.

Authors and reviewers must keep in mind that “Validity is a property of inferences. It is not a prop-
erty of designs or methods, for the same design may contribute to more or less valid inferences under
different circumstances” (Shadish et al., 2002, p. 34). Executing a prescribed design does not guaran-
tee valid inferences, nor does the rigid adherence to a checklist of potential threats to validity. Neither
are adequate substitutes for the researchers’ sound logic. 

9. Conclusions Are Appropriate 

Miles and Huberman (1994) noted that design decisions both support and constrain the conclusions
of research. Just as the genesis of the research design is before the Methods section, its influence
extends beyond the Results. Researchers are responsible for presenting conclusions that are consistent
with and appropriate to the design. The adage “correlation is not causation” is just one example for the
necessity to ensure that claims in the Discussion do not exceed what the research can support. Design
decisions, such as the decision to control extraneous variability to only one level of an extraneous vari-
able (e.g., women only) restrict the conclusions to only that group. 

Careful articulation of the research design elements, with attention to potential threats to internal
and statistical conclusion validity (see Desideratum 8), prepares the researcher to present the conclu-
sions within the context of the existing literature. Causal claims should not be made without ruling out
threats to internal validity. With a nonexperimental design utilizing only descriptive statistics to
report the findings from a sample, it is inappropriate to make comparisons between groups (e.g.,
“women scored higher than men”). There must be a test at the point of decision. 

Without appropriate supporting evidence it is inappropriate to draw conclusions from statistical
nonsignificance. For example, when testing for mean differences between treatment populations,
nonsignificance should not be interpreted to imply that there is no difference between the popula-
tions’ means or that the population means are therefore equal. Statistical nonsignificance means that
the researcher has failed to show a difference of sufficient magnitude that cannot be reasonably
explained by chance alone. That the population means are equal is only one possible explanation. It is
also possible that the sample size was insufficient or the measurement not sensitive enough to detect
true differences. 

The tendency to overstate findings is not limited to misrepresenting statistical conclusions or fail-
ing to recognize threats to internal validity, but also includes making claims beyond what was studied.
For example, if a study using a survey to measure the level of teacher satisfaction shows that 65% of
teachers report being slightly dissatisfied with teaching, it is inappropriate for the researcher to con-
clude that his/her study found that teachers will be leaving their schools, or that teachers should be
paid higher salaries. The author should be diligent to ensure that recommendations from the study are
not presented in such a manner that they can be construed as findings.
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10. External Validity and Construct Validity 

Technically, the external validity of a research design refers to the degree to which a study’s observed
causal relations are generalizable; that is, it helps characterize “to what populations, settings, treat-
ment variables, and measurement variables can this effect be generalized” (Campbell & Stanley, 1963,
p. 5). Internal and external validity are considered to be complementary: whereas the former
addresses the question of what can be inferred about cause and effect from this instance, the latter
assesses the degree to which the causal findings can be generalized. Frequently what will increase inter-
nal validity may decrease external validity and vice versa. In their 1979 work, Cook and Campbell
extended their dichotomous discussion of validity into the typology that comprised internal, statisti-
cal conclusion, external, and construct validity. Whereas internal and statistical validity (see
Desideratum 8) are relevant to the inferences that derive from the specifics of the study procedures,
construct and external validity relate to whether the inferences can be extended beyond the current
situation. Construct validity generalizations refer to “inferences about the constructs that research
operations represent” and external validity generalizations are “inferences about whether the causal
relationship holds over variation in persons (or more generally: units), settings, treatment, and meas-
urement variables” (Shadish et al., 2002, p. 20). From these definitions it becomes apparent that with
nonexperimental designs that are used to describe the current status or noncausal relations between
variables, it is inappropriate to discuss external validity. Instead, construct validity is the more appro-
priate consideration. Thus, nonexperimental designs that are not used to test causality should be eval-
uated for construct validity, and nonexperimental designs that are used to evaluate causal relations
and experimental designs should be evaluated for both construct and external validity.

Construct validity is inherent in social and behavioral research and as an issue is twofold: definition
and measurement. Every construct has multiple facets or features, with some being more central than
others. Thus, defining the construct requires identifying multiple components, with the core being
those features to which there is the greatest agreement. Once defined, the question becomes one of
how to represent the construct, and more specifically how to measure it. Determining how multi-
faceted constructs can be reduced to a manageable size, yet still represent the higher order construct,
is the dilemma of construct validity. Each study uses a limited set of conditions in terms of the popu-
lation, the treatment, the setting, and the outcome; from which the desire is to make statements about
the higher order construct. Each element of the research design should be evaluated for the con-
struct(s) it represents. Researchers tend to focus on only the treatment variable, if there is one, and the
outcome measure. Clearly, discussions limited to the construct validity of the outcome measure are
insufficient as they address only one of the constructs in the study. How will the sample selected reflect
the larger construct that it represents? For example, how does a sample consisting of students two
grades below reading level represent a population of “students at risk”? How does conducting the
study in the laboratory represent the larger construct of the settings where the conclusions would
apply? These questions need to be considered in addition to the more obvious examination of how the
treatment and outcome constructs are operationalized. There is no one-to-one correspondence of the
operationalization of the study and the constructs; the question is: How great is the disparity? A list and
further discussion of potential threats to construct validity is presented in Shadish et al. (2002).

External validity refers specifically to whether or not observed causal relations can be extended
across individuals, settings, treatments, and/or outcome measures. The use of probability sampling is
the foundation for external validity. Probability sampling requires that each item in the domain has a
nonzero chance of being randomly selected. This condition is infrequently met when sampling par-
ticipants for a study, much less when sampling from the domains that describe the other elements of
an experiment (i.e., the setting, treatment conditions, outcome measures). Shadish et al. (2002) expli-
cated a more heuristic approach to determine causal generalizations. They proposed five principles
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for consideration: surface similarity, ruling out irrelevancies, making discriminations, interpolation
and extrapolation, and causal explanation. Too frequently external validity is only discussed in terms
of generalizing to populations, either those internal or external to the study, and the ability to gener-
alize to the other elements receives scant attention. With a design seeking to establish evidence of a
causal relationship, the researcher and reviewer should examine the degree to which the design ele-
ments that are included represent a random sampling of the construct domain, be it the population,
setting, treatment, or outcome. In the absence of random sampling, the principles described by
Shadish et al. provide a systematic means to evaluate external validity. Shadish et al. also present a list
of common threats to external validity. 

11. Design Limitations 

The diligent researcher will acknowledge weaknesses in the research design and present the implica-
tions of the shortcomings. For example, by recognizing in advance that the use of pre-existing groups
compromises the internal validity (see Desideratum 8), the researcher has the opportunity to offer
explanations, possibly even statistical evidence (see Desideratum 7), to argue the equivalence of the
groups prior to the introduction of the treatment. By ignoring any reference to this design decision,
the reviewer and reader are left to decide whether the potential pre-existing group differences are suf-
ficient to explain the outcome. More significantly, this can create a lack of confidence. The question
becomes: If the researcher does not know enough to discuss the implications of the use of pre-existing
groups, what other relevant information might he/she not recognize the necessity to reveal? Does the
researcher understand enough about the research design to adequately convey the information neces-
sary for the reader to make an independent decision as to the appropriateness of the conclusions? 

In theory, many of the weaknesses can be avoided by assiduous attention to the research design, yet
this is not always the case. Weaknesses result from a lack of feasible alternatives, unforeseen occur-
rences during the study, and/or from poor research design. The credibility of the researcher is
enhanced if he/she is able to eliminate him/herself from the latter category by anticipating and
addressing criticism from the knowledgeable reviewer or reader. 
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27
Single Subject Design and Analysis1

Andrew L. Egel and Christine H. Barthold

Single subject research is a form of rigorous investigation in which the individual is the unit of analy-
sis. Individual variability of each participant is measured as opposed to the mean performance of
groups. This allows for the examination of individual responding of participants during and follow-
ing an intervention using previous performance (baseline measures) as a control (Sidman, 1960).
Variability and experimental control are evaluated through visual inspection of graphed data
(Skinner, 1938) and confirmed through independent and systematic replication both within and
across research studies. Therefore, it is a misnomer that single subject designs have an N of 1; in fact,
most studies have three or more participants. 

Single subject designs can be used to study any construct defined so that it can be observed and
measured over time, such as methods for effective teaching in higher education (Saville, Zinn, Neef,
Van Norman, & Ferreri, 2006), teaching math skills to at-risk children (Mayfield & Vollmer, 2007), or
psychological phenomena such as severe phobias (Jones & Friman, 1999). The results of single subject
designs are often the identification of effective interventions for heterogeneous populations where
random assignment can be compromised or when information is needed about variable performance
within groups (e.g., students with learning disabilities or autism). Kennedy (2005) suggested that sin-
gle subject designs can be used to demonstrate the effectiveness of interventions, to compare two or
more interventions, and to complete parametric and component analyses. Some useful resources for
those new to single subject designs are Alberto and Troutman (2003), Kennedy (2005), Bailey and
Burch (2002), and Horner et al. (2005). 

1. Review of the Literature

Those who do not learn from history are doomed to repeat it. 
George Santayana

As with most studies, a review of the literature for a single subject design informs the reader of the theo-
retical importance of the study as well as what dimensions of the research question have been studied in
the past. Almost all single subject studies are built upon previous applied, basic, or theoretical findings. 

The literature review should end with a statement of the current research question(s) in light of the
existing literature. Null hypotheses are rarely articulated in single subject designs; instead, studies are
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built around one or more research questions. Good research questions should be stated in observable
and measurable terms (Johnston & Pennypacker, 1993). These questions are usually very specific to a
problem that needs to be addressed, such as increasing appropriate behavior (Kennedy, 2005). 

2. Participants and Setting

Careful description of the participants’ characteristics and where the intervention is carried out is of
high importance in any type of study. However, more emphasis is placed on participants and setting in
single subject research because of the emphasis placed on understanding individual variability. Several
factors have been identified in the literature that influence selection of settings and participants. 

Important factors in choice of setting. Settings must have face validity relative to the settings in which
the intervention is likely to be adopted. For example, research designed to increase social interactions
between children with autism spectrum disorders and typical children should be conducted in schools
if teachers and classroom staff are the intended audiences. Conducting the same study in a child’s
home would not have face validity. 

Settings should also be stable and flexible throughout the study. Settings with rapidly changing
schedules or ongoing issues (e.g., a classroom with substitute teachers) present confounding variables
that are not easily controlled. Settings with little flexibility in scheduling and/or choices of interven-
tion might make data collection difficult or impossible (Bailey & Burch, 2002). 

Factors that affect the selection of participants. Care must be taken to provide a detailed description
of the participant, including characteristics that might be related to the study’s outcomes (e.g., com-
munication ability, psychiatric diagnoses, age). Complete subject descriptions can, at times, provide
possible explanations for failure in replication and lead to a greater understanding of the generality of
results (Kazdin, 1981).

Table 27.1 Desiderata for Single Subject Design and Analysis 

Desideratum Manuscript

Section(s)*

1. A description of the purpose(s) of the present study is provided within the context of a review of the I

literature describing and evaluating research that has been conducted previously.

2. For purposes of future replication, participants and setting(s) are described in detail. M

3. All independent and dependent variables are operationally defined. M

4. The experimental procedures utilized are described in enough detail to allow for replication and M

control for threats to internal validity.

5. The experimental design is selected based on the specific research question(s) investigated. M

6. Data collection procedures are selected based upon the dimensions of behavior recorded as per the M

operational definition. 

7. Inter-observer agreement coefficients are presented, together with associated formulae used M, R

(dependent on the dimension of behavior recorded). The inter-observer agreement is sufficient to

indicate reliable interpretation of operational definitions.

8. Results are independently replicated at least twice across participants, settings, and/or behaviors. R

9. Data are presented graphically to allow for visual inspection and decisions on when to alter variables R

are based on level, trend, variability, and overlap.

10. Data are interpreted relative to the research question(s) and available literature. Limitations of the D

research and directions for future investigations are proposed. 

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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Bailey and Burch (2002) identified several characteristics that will affect selection of participants.
They noted that participants must reflect the dimensions of the general population that are being
addressed in the study. For example, if the investigation is designed to increase interview skills, then
the participants should be individuals who are struggling with those behaviors. In addition, the
authors noted that participants need to be readily available over the course of the study, and demon-
strate stability with respect to health, cooperation, and attendance. 

3. Independent and Dependent Variables

Researchers using single subject research designs must implement the independent or treatment vari-
able (IV) repeatedly over time. Ensuring that the IV is delivered reliably requires that it be opera-
tionally defined. Operationally defining an IV requires researchers to describe all components in
concrete, observable, and measurable terms. An IV that is not operationally defined increases the like-
lihood that it will not be implemented with consistency and, as a result, the ability to demonstrate
functional control might be compromised. The quality of an operational definition can be determined
by collecting data on the implementation of the IV. High treatment integrity would be evidence that
the IV was well defined. 

It is also critical that researchers using single subject designs provide operational definitions for
dependent variables (DV). Describing DVs in concrete, observable terms allows observers to agree on
whether the behavior is occurring or not occurring. Furthermore, operational definitions of the DV
also facilitate replication by other investigators because they know exactly what was measured during
the original study.

4. Experimental Procedures

Experimental procedures should be selected so that functional relations between the dependent 
and independent variable can be demonstrated, threats to internal validity controlled, and social
validity (i.e., the extent to which the change in the target behavior improves the participant’s 
quality of life) maximized. Most research studies using single subject designs will have, at a minimum,
a baseline and intervention phase. Baseline refers to the experimental condition that precedes the
intervention phase. Baselines allow for a contextual evaluation of the effects of the independent 
variable. Although baseline is often thought of as a control condition, another experimental 
condition might serve as baseline as well. For example, if a person with heart disease is participating 
in a study to determine the effects of an experimental medication, baseline might be taken on 
symptoms while the participant is on a more well-established medication. All aspects of both the base-
line and intervention conditions, including the exact materials used, any instructions provided, and
levels of feedback for correct/incorrect responding, must be described in enough detail to permit
replication. 

It should also be clear that the researchers designed the experiment to control for threats to internal
validity. Like all research designs, the validity of single subject designs can be threatened by variables
such as history and maturation. Conversely, threats such as regression to the mean, participant selec-
tion bias, and selective attrition are not considered threats to internal validity given the single subject
nature of the designs (Kennedy, 2005). However, there are some threats to internal validity that are of
particular concern to the single subject researcher, as described below. 

Testing, or repeated exposure, is of concern because the frequent number of measurements charac-
teristic of single subject designs could result in the participant learning the response(s) independent
of intervention. Testing effects can be minimized by spacing out observations and/or choosing an
experimental design in which the number of data points needed is minimized. 
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Multiple treatment interference occurs when participants receive more than one intervention in a
condition and it is a serious threat to the internal validity of a single subject design. Multiple treatment
interference does not allow a researcher to determine which of the interventions, alone or in combi-
nation, were responsible for changes in behavior. 

Sequence effects can also influence interpretation of data collected within a single subject design.
They occur when a variable is introduced or removed in a particular order and affect responding in
subsequent conditions. Sequencing the introduction and removal of variables is crucial in single sub-
ject designs and a researcher must be sensitive to the possibility of their occurrence. Counterbalancing
or randomizing the sequence of conditions across participants is one way to control for sequence
effects. 

5. Experimental Design / Research Question Correspondence

There are several single subject designs that can be used to analyze the effects of an intervention. The
design a researcher selects will depend on the specific question asked as well as the resources that are
available at the time. In each of the designs discussed below the individual serves as his or her own con-
trol and the experimenter replicates the effect(s) of the independent variable in order to establish
experimental control.

The reversal design has, historically, been one of the most frequently used single subject design. This
design requires that the experimenter implement both the baseline and treatment phases multiple
times in order to demonstrate experimental control. An A-B-A-B reversal design is typically used
because it allows researchers to replicate both the baseline (“A”) and intervention (“B”) conditions.2

Experimental control is established when the data patterns in each condition co-vary with the intro-
duction and removal of an independent variable. The effects must be replicated across each condition.
An A-B-A-B reversal design is illustrated in Figure 27.1 as well as in the study by Ahearn, Clark,
MacDonald, and Chung (2007). Ahearn et al. used a reversal design to evaluate the effects of response
interruption and redirection (RIRD) on the occurrence of vocal stereotypy in four children with
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autism spectrum disorder (ASDs). The authors found substantial decreases in vocal stereotypy for
each participant when RIRD was implemented. 

Although reversal designs can be used to demonstrate the effects of an independent variable, there
are circumstances where it would be inappropriate to use such a design, including cases where the
behavior in question is irreversible or cases where reversing the specific behavior puts the participant at
risk of injury. In these circumstances, other single subject designs would be more appropriate. A multi-
ple baseline design is one of the design alternatives. Multiple baseline designs require the concurrent col-
lection of two or more baselines (across participants, behaviors, or settings). When responding is
consistent across baselines, the intervention is introduced systematically to one baseline at a time.
Experimental control is demonstrated when the behavior changes only when the intervention is imple-
mented and the effects of intervention are replicated across participants, behaviors, or settings. An
example of a multiple baseline design across participants is presented in Figure 27.2 and can be seen in
the investigation by Reeve, Reeve, Townsend, and Poulson (2007). Reeve et al. examined the extent to
which a multicomponent intervention package could be used to teach generalized helping responses to
four children with ASDs. The authors introduced the intervention successively across participants, in a
multiple baseline fashion. The results showed that all participants acquired the helping responses. The
responses also generalized to discriminative stimuli that were not used during training.

Figure 27.2 Sample Multiple Baseline Graph.
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Horner and Baer (1978) introduced a variation of the multiple baseline design for situations in
which baseline responding will be zero or when extended baselines can result in high rates of prob-
lematic behavior (e.g., tantrums, noncompliance). The multiple probe design requires that baseline
sessions be collected intermittently rather than continuously as in the multiple baseline design.
According to Horner and Baer (1978), implementation of a multiple probe design requires that an ini-
tial baseline probe be collected across each behavior, participant, or setting. One to two additional
probes are conducted on the first tier of the multiple baseline design. Intervention is subsequently
implemented on the first tier, while no data are collected on any of the remaining tiers. Once the data
in the first tier show an effect or reach criterion, an additional probe is implemented on each remain-
ing tier. Additional baseline probes are collected on tier two until there is at least one more probe ses-
sion than occurred in tier one. Horner and Baer (1978) referred to these consecutive probes as the
“true” baseline sessions and they always preceded the implementation of intervention. Thus, each tier
has at least one more “true” baseline session than the preceding tier. An example of a multiple probe
design is presented in Figure 27.3 and can be seen in the study by Secan, Egel, and Tilley (1989). Secan
and her colleagues used a multiple probe design to assess the impact of an intervention using pictures
as a referent on the acquisition, generalization, and maintenance of wh-question answering skills in
four students with ASDs. The results of the study showed that each student learned how to answer 

Figure 27.3 Sample Multiple Probe Graph.
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wh-questions, although generalization was affected by whether or not the relevant cue was visible in
the generalization pictures.

Multiple probe designs are more efficient than a multiple baseline design because baseline data are
collected intermittently. However, this also presents a problem because a researcher would not see
abrupt changes that might occur during baseline.

A second variation of the multiple baseline design is a changing criterion design (Hartman & Hall,
1976; Tawney & Gast, 1984). The design is typically used to evaluate behaviors that will increase in a
gradual, stepwise fashion. Implementation of the design requires a baseline phase during which data
are collected to show both the pre-intervention level of the behavior and to determine an initial crite-
rion level (e.g., the average level of responding). Intervention is implemented subsequently until the
target behavior reaches the first criterion level. Once the first criterion level has been reached, a more
stringent criterion is established and intervention continues until that second criterion has been met.
This pattern continues until responding is at the terminal criterion. The data collected at each crite-
rion level serve as a baseline for the subsequent phase. Experimental control is demonstrated when
behavior changes to the new criterion level each time the criterion is changed. The change should
occur rapidly and responding should stabilize at the specific criterion level before the criterion is
changed. An example of a changing criterion design is found in Figure 27.4. An example from the lit-
erature can be found in the study by Warnes and Allen (2005). Warnes and Allen assessed whether
electromyographic (EMG) biofeedback could affect paradoxical vocal fold motion (PVFM) in a 16-
year-old participant. Baseline levels of muscle tension were recorded initially followed by intervention
with EMG biofeedback. Once lower muscle tension had occurred and was maintained at the criterion
level, the criterion was changed and treatment continued until the new criterion level was met. This
continued in a changing criterion design format until typical levels of muscle tension were attained.
The results demonstrated that the intervention was effective in reducing muscle tension. 

Alternating treatments designs (ATDS), also known as multi-element designs, multiple schedule
designs, or randomized designs, are also considered to be an extension of the reversal design. In an alter-
nating treatments design, two or more independent variables are alternated rapidly so as to compare

Figure 27.4 Sample Changing Criterion Design.
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their differential effects. A distinct stimulus is always associated with each condition to facilitate the
participant’s discrimination. This helps reduce the possibility of carryover effects and increases the
likelihood that differences in responding are a function of different levels of effectiveness and not the
participant’s inability to discriminate the presence of the different conditions. Unlike the designs dis-
cussed above, an ATD does not require baseline data, a reversal, or stability in order to demonstrate
experimental control. Fractionation, or salient changes in level between the two conditions, signifies
effects (Barlow & Hayes, 1979; Tawney & Gast, 1984).

When alternating between conditions, it is best to randomize the presentation of the two conditions
to avoid sequence effects. Ulman and Sulzer-Azaroff (1975) recommended that the presentation be
random with no more than two of the same conditions presented in succession. 

Other concerns for researchers include multiple treatment interference, generalization, and con-
trast effects. With generalization or carryover effects, responding is diffused among conditions by
virtue of exposure. This is likely to occur when participants do not discriminate between the condi-
tions. In contrast effects, the presence of one condition serves to suppress responding in another con-
dition. Generalization and contrast effects can be avoided by making conditions salient. The
researcher might assign certain uniforms or colors of stimuli to each condition. A classic article that
utilizes an ATD is by Iwata, Dorsey, Slifer, Bauman, and Richman (1994). Iwata et al. sought to deter-
mine the relation between self-injurious behavior (SIB) and specific environmental events in an effort
to identify the function of different forms of SIB prior to intervention. Participants were observed in
four different conditions that were introduced in an ATD fashion: social disapproval, academic
demand, unstructured play, and a final condition where the participants were placed in a room with-
out access to any materials or persons. The results showed that, for the majority of participants, SIBs
were consistently associated with one of the conditions listed above. These findings provided evidence
that SIB may be a function of different sources of reinforcement.

Experimental designs are selected based upon the salient aspects of the research question(s). In
addition, dimensions of the operational definition as well as the constraints of the setting should be
considered when selecting a particular research design. Ethical factors, such as the feasibility of with-

Figure 27.5 Sample Alternating Treatments Graph.
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drawing the independent variable, should be considered as well. A sample alternating treatments
graph is presented in Figure 27.5.

6. Data Collection Procedures

There are several methods that have been used by single subject researchers to collect data. Selection of
the method should be based upon the specific research question, the operational definition of the tar-
get behavior(s), and practical/environmental factors. If a data collection procedure is selected that
does not reflect the operational definition and research question, is difficult to record (such as the
number of times a child taps his or her pen), or there are restrictions on data collection (such as not
having the ability to videotape a language sample), data taken might not be representative of the envi-
ronment. Therefore, data collection procedures should be selected that maximize the probability that
the data collected are representative of the actual environmental events.

The length of the observation will be dependent upon the probability that the behavior will be
observed. If the response is occurring consistently throughout the day, then a shorter sample will more
likely be representative of environmental events. Data collection can also be restricted to times when
behavior is most likely to occur (e.g., if a child is most likely to have a tantrum after getting off of the
bus, then data collection can be restricted to that particular time). If responding is more diffuse or less
probable, then the researcher will need to lengthen the data collection period to insure a representa-
tive sampling of the dependent variable.

One form of data collection used by single subject researchers is frequency. Frequency data are col-
lected on behaviors that have discrete onset and offset and occur at a distinct moment in time, in other
words, behaviors that are “countable.” For example, the number of times a person checks email dur-
ing office hours is an example of a behavior that would be measured using frequency data. Sometimes
a researcher will know in advance that the target behavior occurs more/less frequently during a spe-
cific time period within an observation. In this situation, the time period would be broken into equal
intervals, and the frequency of the behavior would be measured within each interval. 

Duration data can be used to measure how long a behavior occurs. Tawney and Gast (1984) sug-
gested that duration data could be collected in two ways depending on the characteristics of the target
behavior. Total duration refers to the total amount of time a participant is engaged in a defined behav-
ior and can be used when the target behavior occurs continuously. For example, one might be inter-
ested in recording the total amount of time a student spent studying in an evening. Duration per
occurrence is a measure of all contiguous occurrences of behavior. In the last example, a researcher
would use duration per occurrence if studying was constantly interrupted, and s/he was interested in
the duration of each discrete study period. 

Latency data collection is used when an investigator is concerned with the length of time between
the cue to respond and how long it takes for responding to begin, as opposed to how long it takes to
complete a task. In the latter scenario, duration recording would be more appropriate. Latency
recording would be appropriate, for example, if the researcher were interested in measuring the
amount of time it took for a student to begin lining up at the door following a teacher’s direction to
engage in that behavior.

In some cases, the dependent variable might not have a clear onset or offset, or might occur too rap-
idly for reliable data collection using the methods mentioned previously. For example, if an experi-
menter is taking data on conversational skills with multiple components, it can be difficult to discern
precisely where the interaction begins and where it ends. In this case, recording methods such as par-
tial interval, whole interval, or time sampling might be appropriate. Interval measures require that
observation periods are broken down into equal intervals (sometimes also known as bins). For partial
and whole interval, time is split between observation intervals that are typically 10–20 seconds in
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length, and recording intervals that are typically 3–5 seconds in length. During observation intervals,
the observer is monitoring for the occurrence of the dependent variable. No data are recorded until
the end of the observation interval; conversely, no responses emitted during the recording interval are
applied to the observation interval. If the observer is using a partial interval system, the dependent
variable is recorded as occurring if it is emitted at any time during the observation interval. For whole
interval data collection, responses are recorded only if the response is emitted for the entire observa-
tion interval. 

Time sampling is used when continuous observation of the dependent variable is either impractical
or unnecessary. In time sampling, time is also broken into equal intervals. Data are only recorded in
the instant that the interval expires. The observer marks a “+” on the data sheet if the participant is
engaged in the response at that moment. If the participant is not engaged, the observer marks a “–”.
Time sampling is often recommended when the observer is taking data simultaneously with other
responsibilities, such as teaching. However, time sampling is not recommended in situations where
the response occurs infrequently due to the lack of continuous observation. 

When using any of the above interval measures, the length of observation per session will depend
upon the topography of the behavior. For example, high frequency behaviors of short duration would
require shorter time intervals (10–20 seconds) while behaviors that are of low frequency with long
durations would require longer observation intervals. However, intervals larger than 2 minutes have
been shown to decrease the validity of the data (Cooper, Heron, & Heward, 2007).

7. Inter-Observer Agreement Coefficients

Researchers employing single subject designs have historically used human observers to record the
occurrence or nonoccurrence of behavior. Human observers, however, increase the likelihood of vari-
ability during observations (Kazdin, 1977). As a result, procedures were developed for measuring
whether or not independent observers record data in a reliable manner (i.e., the operational definition
is interpreted consistently). Inter-observer agreement scores are typically reported as an overall per-
centage of agreement together with the range across experimental sessions. The literature recom-
mends that inter-observer agreement be assessed on at least 30% of sessions, although this figure did
not evolve from any research investigations. An acceptable level of observer agreement is usually 80%
or above; however, this figure has also not been established through systematic research.

Different formulas have been developed for calculating inter-observer agreement depending on the
type of data collected (see Chapter 11, this volume). Occasionally, an agreement coefficient such as
kappa (Cohen, 1960) is calculated in single subject research; however, the following formulae are seen
most frequently in the single subject literature. Total agreement (Kennedy, 2005) is typically used for
frequency, duration, and latency data. The formula used to calculate total agreement between two
observers is:

(Smaller total of behavior recorded / Larger total of behavior recorded) × 100%

One major limitation of this formula is that it does not take into account whether or not two observers
ever agreed on the occurrence of individual instances of behavior. As a result, high levels of agreement
between observers may occur, even though they have never agreed on the occurrence of a single
behavior. Bailey and Burch (2002) suggested that calculating a block by block percentage agreement
and then averaging the scores would be one way to correct for the above problem. 

Calculating percentage agreement scores for data collected using interval measures (e.g., partial
interval, whole interval, and time sample) involves a different formula that compares observer record-
ings interval by interval. The formula used to calculate percentage agreement in this manner is:
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(Agreements / Disagreements) × 100% 

An agreement was scored if both observers recorded the occurrence or nonoccurrence of a behavior
in the same interval; disagreements occurred when one observer recorded an occurrence of a behav-
ior and the second observer did not. 

A more stringent method for determining agreement for interval type data is to use the same for-
mula to calculate reliabilities for the occurrences and nonoccurrences separately. For example, per-
centage agreement for occurrence data would be calculated using the formula:

[(Agreements of Occurrence) / (Agreements of Occurrence + Disagreements)] × 100%

Percentage agreement for nonoccurrence data would be calculated using the same formula except the
focus would be on agreements of nonoccurrence.

8. Replication

Replication is a critical feature of single subject designs because it is through replication that both
internal and external validity are demonstrated. Replication can take many forms. Direct replication is
the replication of the procedures by the same experimenter using the same procedures either within
or across participants. Sidman (1960) stated that there are two types of direct replication – intrasub-
ject, where a participant is exposed to the intervention at multiple points in time (e.g., a reversal
design), and intersubject, where a new participant is introduced to the study to replicate effects. 

Systematic replication is a form of replication in which some part of the original study is altered to
increase the generality of the results. For example, a conflict-resolution strategy that has been shown
in the literature to be effective with adults might be applied to an adolescent population. Systematic
replication typically occurs in a new study and with new researchers. 

Replication in investigations using single subject designs is also used to establish the external valid-
ity of experimental findings. Birnbrauer (1981) argued that the external validity of data from single
subject designs is established through systematic replication of effects by other researchers in settings
different from the site in which the original study occurred. The focus in research using single subject
designs is to not only demonstrate the replicability of findings but to also establish the parameters of
the intervention.

9. Presentation and Summarization of Data 

The visual analysis of graphic data both within and across conditions of a research study represents the
most frequently used data analysis strategy employed by researchers using single subject designs. Each
single subject design requires a specific pattern of data in order for an investigator to conclude that
implementation of the independent variable is responsible for changes in the dependent variable.
Researchers typically evaluate several factors when visually analyzing data: Trend, level, variability,
immediacy of effect, and percentage of overlap. Trend refers to the slope of the data, and should not be
confused with trend analysis typically used with inferential statistics. The trend of the data should be
evaluated both within and between conditions. 

A minimum of three data points must be collected in each condition in order to establish level and
trend. This is especially true in baseline, which Birnbrauer (1981) equated to the descriptive data often
seen in group designs. That is, baseline describes the participants’ responding under naturalistic condi-
tions before the application of the dependent variable. More data might be taken in cases where level
and/or trend are not easily evaluated (such as with highly variable data) or in the case where extended
baselines show the independence of baselines, such as in a multiple baseline or multiple probe design.
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Fewer than three data points might be taken in cases where extending a baseline or treatment condition
might result in physical or psychological harm, such as in the case of severe self-injury. 

Data should be stable (that is, three data points with little change in slope) or trending in the oppo-
site direction to the desired effect before moving to another condition. Whether the desired trend is
ascending or descending depends upon the conditions in place and the operational definition. For
example, if a reversal design is used to determine the effects of praise on homework completion, one
would want a stable or descending trend in baseline before proceeding. If homework completion was
ascending during baseline and continued to increase during intervention, it would be difficult to
determine whether the treatment per se was responsible for changes in responding. However, if the
dependent variable was calling out, the investigator would want to have a stable or ascending baseline
before proceeding. 

The investigator should also see changes in trend between conditions as well. For example, few con-
clusions about the effectiveness of the dependent variable can be made if an ascending trend is
observed in baseline and continues in treatment. However, if baseline responding is stable or descend-
ing and treatment results in an increasing trend, the independent variable clearly had an effect on the
dependent variable. 

Level refers to the height of the data on the y axis. Kennedy (2005) referred to level as “the average of
the data within a condition” (p. 197). Level of data is often used to make a comparison between two
phases. Immediate changes in level upon changes in condition suggest that the application of the
treatment variable(s) is responsible for changes in the dependent variable. 

Variability refers to the patterns observed between individual data points. Most data will not have a
clean ascending or descending trend; however, the less variable the data, the more clear the pattern.
Occasionally, data will be variable/ stable, in which case a pattern of variability can be easily seen. For
example, if two data points are ascending and one is descending, and this same pattern is observed at
least once more, the data are considered to be variable/stable. It would be appropriate to move to the
next phase of the investigation if this were the case. When data points are scattered in such a way that
no pattern can be discerned, the researcher must attempt to control for the variability in the data.
Unless the source of variability cannot be determined, the investigator should avoid moving to the
next phase of the investigation. 

The visual analysis of data requires the researcher to evaluate carefully each of these factors to deter-
mine whether any changes in behavior from baseline to intervention can be attributed to the inde-
pendent variable. For example, one could conclude that the independent variable was effective only if
a clear change in trend and/or level occurred from baseline to intervention. Conclusions may also be
affected/limited the more time that passes between implementation of the intervention and changes
in behavior. The percentage of overlap between baseline and intervention data also will affect conclu-
sions. In general, stronger statements about the effectiveness of the intervention can be made if there
is very little overlap between baseline and intervention data. 

It is crucial that changes in treatment conditions (e.g., moving from baseline to treatment) are
made based upon careful analysis of the trend, level, and variability of the data. Inferential statistics are
rarely used in single subject designs; instead, visual inspection of data is used. Functional relationships
are documented and analyzed by looking at patterns in the data. Statements such as “data were col-
lected for three days for all participants” suggest that the schedule of the application of the independ-
ent variables were determined before the study began, and that changes in data patterns were not
considered. 

The description of the data in the narrative should match the graph, but be written with enough
detail that it can stand by itself. Any changes in trend and level of the data should be described in detail.
The mean and range of responding per condition is typically presented, and can help the researcher
understand how responding changes over time. 
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10. Discussion of Data 

The Discussion sections of single subject manuscripts do not differ significantly from those using
other types of research designs. The results of data collection are discussed relative to the research
question. The research question should be answered in this section; that is, the authors should address
whether the data support that the intervention(s) was effective in producing behavior change.
Previous literature should be cited as it relates to the interpretation of the research question; however,
introducing new literature not previously cited in the Introduction should be avoided unless
absolutely necessary. The researcher is free to make generalizations and suppositions based upon the
data, but should do so with care, and on the basis of the data collected.

New data, aside from anecdotal evidence collected during the study, should not be introduced in
this section. Relevant and/or idiosyncratic variables for replication that might not be addressed in the
procedures should be presented in the discussion section. Limitations to the study should also be
addressed. For example, if a participant withdrew from the study and their results were counter to the
results collected from full participants, that information should be discussed. Possible uncontrolled
threats to internal and external validity should be described in detail (see Chapter 26, this volume).

Most single subject research leads to information that informs some sort of systematic replication.
New research based upon some dimension of the study (e.g., using basic findings to investigate an
innovative treatment) is occasionally observed as well. Suggestions for future research and replication
should be presented at the end of the Discussion. 

Notes

1 Preparation of this chapter was supported in part by USDE OSEP grant #H355A040025.
2 An A-B-A is the basic form of the reversal design. Although experimental control can be established using this form

of the design, researchers prefer to use the A-B-A-B because it allows for additional replication and ends on an inter-
vention phase.
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28
Structural Equation Modeling

Ralph O. Mueller and Gregory R. Hancock 

Structural equation modeling (SEM) represents a theory-driven data analytical approach for the eval-
uation of a priori specified hypotheses about causal relations among measured and/or latent variables.
Such hypotheses may be expressed in a variety of forms, with the most common being measured vari-
able path analysis (MVPA) models, confirmatory factor analysis (CFA) models, and latent variable path
analysis (LVPA) models. For analyzing models of these as well as more complex types, SEM is not
viewed as a mere statistical technique but rather as an analytical process involving model conceptual-
ization, parameter identification and estimation, data-model fit assessment, and potential model
respecification. Ultimately, this process allows for the assessment of fit between correlational data
(obtained from experimental or non-experimental research) and one or more competing causal the-
ories specified a priori; SEM is explicitly not designed for exploratory purposes. Software packages
such as AMOS, EQS, LISREL, and Mplus are utilized to complete the computational, but not the sub-
stantive aspects of the overall SEM process. For contemporary treatments of SEM we recommend
texts by Byrne (1998, 2001, 2006), Kline (2005), and Loehlin (2004), or, for more advanced readers,
books by Bollen (1989), Hancock and Mueller (2006), and Kaplan (2000). Specific desiderata for
applied studies that utilize SEM are presented in Table 28.1 and explicated subsequently.

1. Substantive Theories and Structural Equation Models 

Early in a manuscript, each model under investigation must be thoroughly justified by a synthesis of
the theory thought to underlie that model. In typical SEM applications, an operationalized theory
assumes the form of a measured variable path analysis (MVPA), confirmatory factor analysis (CFA), or
latent variable path analysis (LVPA), although the analysis of more complex models (e.g., latent
means, latent growth, multilevel, or mixture models) is becoming more popular in the applied behav-
ioral and social science literatures. Regardless of model type, there must be strong consonance
between each model and the underlying theory, as a lack thereof can undermine the modeling process.
SEM’s main strength lies in its ability to help evaluate a priori theories, not to generate them post hoc
(equally, not to evaluate theories derived through prior exploration of the same data, for example 
with an exploratory factor analysis). Often, the articulation, justification, and testing of competing
alternative models strengthens a study as it provides a more complete picture of the current thinking
in a particular field (also see Desideratum 14). Thus, authors must convey a firm overall sense of what
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theoretical and/or prior empirical evidence has led to the initial conceptualization of the model(s)
under study.

2. Path Diagrams

A path diagram is a graphical depiction of a theory relating measured and possibly latent variables and
is helpful not only in representing the conceptual links among those elements but also in the specifi-
cation of the statistical model. By convention, measured variables are represented by rectangles/
squares and unobserved factors are expressed by ellipses/circles (and, in the case of mean structure
models, occasionally a triangle is used to facilitate the modeling of means and intercept terms).
Directional (one-headed) arrows point from hypothesized causes to effects, while non-directional

Table 28.1 Desiderata for Structural Equation Modeling

Desideratum Manuscript

Section(s)*

1. Substantive theories that led to the model(s) being investigated are synthesized; a set of a priori I

specified competing models is generally preferred.

2. Path diagrams are presented to facilitate the understanding of the conceptual model(s) and the I

specification of the statistical model(s).

3. If applicable, latent factors are defined and their status as latent (vs. emergent) is justified. I, M

4. Measured variables are defined and, if applicable, their appropriateness as indicator variables of M

associated factors is justified.

5. Latent factors are indicated by a sufficient number of appropriately measured variables; how the M

latent factors are given scale within the model(s) is addressed.

6. How theoretically relevant control variables are integrated into the model is explained. M

7. Sampling method(s) and sample size(s) are explicated and justified. M

8. The treatment of missing data and outliers is addressed. M, R

9. The name and version of the utilized software package is reported; the parameter estimation M, R

method is justified and its underlying assumptions are addressed.

10. Problems with model convergence, offending estimates, and/or model identification are R

reported and discussed.

11. Summary statistics of measured variables are presented; if raw data were analyzed, information on R

how to gain access to the data is provided.

12. For models involving structural relations among latent variables, a two-phase (measurement, R

structural) analysis process is followed and summarized.

13. Recommended data-model fit indices from multiple classes are presented and evaluated using R

literature-based criteria.

14. For competing models, comparisons are made using statistical tests (for nested models) or R

information criteria (for non-nested models).

15. For any post hoc model re-specification, theoretical and statistical justifications are provided. R

16. Latent factor quality is addressed in terms of validity and reliability. R

17. Standardized and unstandardized parameter estimates together with information regarding their R, D

statistical significance are provided; R2 values for key structural outcomes are presented.

18. Appropriate language regarding model tenability and structural relations is used. D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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(two-headed) arrows represent non-causal covariation between elements of a model (or a variance of
an element, when the non-directional arrow returns directly to the element of origin).

In investigations proposing models that involve structural relations among factors (whether those
factors are latent or emergent; see Desideratum 3), a distinction should be made between the measure-
ment and structural phases of the modeling process (see Desideratum 12). Often, the structural portion
of such a model is the focus of the study as it represents the main theory to be tested; thus, a path dia-
gram of the structural portion should be presented and justified early in a manuscript (see Figure
28.1a). The model may be depicted with the associated measurement portion which focuses on how
latent variables are manifested in observable data, that is, it explicates the hypothesized relations
between latent factors and their chosen measured indicators. A model with both structural and meas-
urement portions is shown in Figure 28.1b (assuming three indicators per factor for simplicity),
although details of the measurement model might be better presented and explained in the Methods
section of a manuscript where specifics about the instrumentation are typically discussed. In sum,
authors are encouraged to utilize appropriately detailed path diagrams to complement and illustrate
their written explanations of the theory being tested.
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Figure 28.1 (a and b) Path Diagrams.
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3. Latent vs. Emergent Factors

Structural equation modeling (SEM), in its common forms of confirmatory factor analysis (CFA) and
latent variable path analysis (LVPA), addresses theory-based relations among latent variables (fac-
tors). Here, the term latent adds meaning to its popular definition of being unobserved or unobserv-
able: it connotes a factor hypothesized to have a causal bearing on one or more measured indicator
variables. This causal relation implies that the latent factor explains variance in its measured indicator
variables and induces covariance among them. That is, individuals vary on the measured indicators in
part because they vary on the underlying factor and their indicator scores covary because they have a
common latent cause. SEM analyses involving factors typically assume them to be latent, and
researchers must explain and justify that the factors are indeed causal agents of their observable effect
indicators (see Figure 28.2a).

On the other hand, theory and/or the nature of the available data occasionally dictate that measured
variables serve as cause indicators of constructs therefore described as emergent (rather than effect
indicators of constructs considered latent). Variation in such measured cause indicators (which
themselves might or might not covary) is now hypothesized to cause and partially explain variation in
the emergent factor (see Figure 28.2b). For example, the construct socioeconomic status (SES)—meas-
ured by indicators such as parental income, education, and occupational prestige—should be modeled
as emergent, not latent: It seems to make little theoretical sense, for instance, to propose that SES is the
cause of parents’ education level. More sensible seems an emergent system, whereby changes in one’s
SES are caused (at least in part) by changes in parental income, education, and occupational prestige.
The analysis of models involving emergent constructs is certainly possible but generally more chal-
lenging (for example, parameter estimation difficulties can occur) than models involving latent vari-
ables only. It is incumbent upon the researcher to justify each factor’s status as latent (or emergent)
rather than simply presume a latent status for all factors. The latter could lead to a misspecified meas-
urement model and, in turn, to incorrect inferences regarding the relations between the construct in
question and other variables (latent or measured) within the model. For a more detailed discussion on
latent vs. emergent variable systems, consult Kline (2006).

Effect
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Effect
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Effect
Indicator 3

Cause
Indicator 1

Cause
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Indicator 3

Emergent
Factor

Latent
Factor

Error 1

Error 2

Error 3

(a). Latent Factor with Effect Indicators

(b). Emergent Factor with Cause Indicators

error

Figure 28.2 (a and b) Latent vs. Emergent Variables.
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4. Measured Variables

All measured variables in a model should be defined clearly, or if they are previously established meas-
ures, an accessible reference to their description should be provided. Measured variables may be
exogenous (independent; having no causal inputs) or endogenous (dependent; having one or more
causal inputs) within a model. Each may serve as (a) an effect indicator of a latent factor (where it is
theoretically clear that the factor has a causal bearing on the measured variable); (b) more rarely, a
cause indicator of an emergent factor (where it is theoretically clear that the variable has a causal bear-
ing on the factor; see Desideratum 3); or (c) a stand-alone variable, not serving as an indicator of any
factor in the model (e.g., sex of respondent).

Measured variables can be individual items from larger scales or scores obtained by summing across
several response items. Exogenous variables may be dichotomous (two categories) or continuous
without requiring any special model estimation procedures. The analysis of ordinal variables with
fewer than five scale points (exogenous or endogenous, including effect indicators of latent factors)
typically requires special estimation procedures and/or input data consisting of alternate measures of
association (e.g., polychoric correlations, see Chapter 5, this volume). Other measured variable types
that might warrant accommodation, or a defense as to why no such accommodation was made,
include count variables and censored variables (e.g., an income variable with an upper category of
$50,000 and up).

5. Indicator Variables of Latent Factors

Without context, latent factors may have any number of measured variable indicators, but in order to
determine if an adequate number was utilized in a particular application, three key issues should be
considered. First, overall model identification (the ability to estimate all model parameters) can be
helped or hindered by the chosen number of indicators per latent factor. With three or four indicators,
the factor does not require the estimation of more parameters (e.g., loadings, error variances) than the
data supplied from its measured indicators. Having fewer than three indicators is certainly possible
and occasionally even necessary due to limited availability. Using a single indicator variable of a factor
may be accomplished by setting the error variance of the indicator variable to zero (effectively equat-
ing the variable with the factor) or to some portion of the measured indicator’s variance, depending
upon known reliability of the indicator variable (e.g., a reliability coefficient of .80 for a measured vari-
able implies that 20% of its variance is residual, unexplained by its latent factor). Using two indicator
variables for a latent factor typically requires no fixing of error variances to known constants as long
as the factor relates to one or more other factors in the model. This case does run the risk, however, of
creating an empirical under-identification problem should the relation of the factor to others within
the model be estimated as zero or near zero.

Second, having three or more indicators tends to enhance the quality of the construct (its theoreti-
cal breadth as well as its ability to replicate across samples, that is, construct validity and reliability).
Contrary to early methodological literature, having additional indicators does not appear to burden
estimation even for relatively modest sample sizes. At some point, however, diminishing returns are
expected. Our experience is that having four to six indicators of reasonable quality (e.g., standardized
loadings exceeding .6 or .7 in absolute value) is practically ideal, although more indicators of slightly
lesser quality can be feasible as well. Researchers with many indicators at their disposal might consider
forming composites (parcels) of items to serve as indicators.

Third and finally, as factors are latent, they have no inherent metric. Hence, they must be assigned
units within the model. For an exogenous factor, this can be accomplished by either fixing its variance
(typically to 1, giving the factor standardized units) or by keeping the variance freely estimated and
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instead fixing a path to one of its indicator variables (typically to 1, giving the factor the metric of the
indicator variable). For an endogenous factor, assigning units is typically accomplished by the latter
method, although some software programs allow the specification of the former as well. Researchers
should be explicit in how latent factors were scaled and if their software package handled the assign-
ment automatically.

6. Control Variables

Researchers might examine parameter estimates in a model of theoretical interest after controlling for
the effects of specific variables, thus ensuring that the estimates are above and beyond the linear effects
of external elements (including background variables capturing individual characteristics, such as IQ,
and/or environmental conditions, such as family income or parental education). Although some
applied researchers have attempted such control by a priori partialing the variables from the data, the
practice of analyzing such residualized data with structural equation modeling is questionable.
Instead, incorporating the control variables directly into the model is the preferred strategy. Typically
all control variables (measured and/or latent) are allowed to covary as exogenous predictors within
the model. Each has a structural path to all exogenous and endogenous factors (and stand-alone vari-
ables) within the structural, but not the measurement portion of the model. Interpretation of the
paths within the structural portion proceeds normally, now acknowledging that they have been
purged of the linear effects of the control variables.

Two additional points of elaboration are worthwhile. First, control variables should not generally
be modeled as indicators (cause or effect indicators) of a single factor (e.g., a demographic factor)
unless indeed the factor makes sense as a continuum in its own right. Second, the type of control
described here is linear, not nonlinear or multiplicative. Thus, for example, if a researcher believes the
structural paths of interest actually differ as a function of the control variables (i.e., that the control
variables moderate the structural relations), then a model with multiplicative predictor terms or, in
some cases, a multisample analysis (see Chapter 29, this volume) should be considered. Either way, the
researcher should clarify the expected nature of the control variables’ relations with the structural ele-
ments of the theoretical portion of the model, and how the modeling strategy employed exacts the
proper type of control. 

7. Sampling Method and Sampling Size

Sampling methods (e.g., random, stratified, cluster) must be made explicit in the text. Stratified sam-
pling techniques typically yield sampling weights (see Chapter 30, this volume) whose purpose, when
applied to the sample data, is to weigh individual cases more or less in order to maximize the sample’s
representativeness of the target population. In such cases researchers should delineate how these
weights were incorporated into their modeling. Cluster sampling approaches, where groups of indi-
viduals are sampled at a time, will yield a hierarchical (nested) structure to the data (e.g., students
within classrooms within schools). This introduces some dependence among observations in the
sample, thereby violating the assumption of independence of observations. In this case researchers
should utilize a multilevel structural equation modeling approach or present evidence of sufficiently
small effect of the dependence among clusters of cases (e.g., a small design effect) to justify not pursu-
ing the more complex multilevel approach.

In order to determine the sample size required for a structural equation modeling (SEM) analysis,
researchers should consider both adequacy for correct parameter estimation and for desired level of
statistical power. A common guideline for obtaining trustworthy maximum likelihood (ML) estimates
is to have at least five cases per model parameter (not per variable); when employing other estimation
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methods that require less stringent distributional assumptions and/or that are tailored specifically for
ordinal data (e.g., Asymptotically Distribution Free; Arbitrary Generalized Least Squares; Weighted Least
Squares; Satorra-Bentler rescaling corrections), more cases are generally needed. If the available sample
size is substantially smaller, researchers must provide justification from the SEM methodological liter-
ature (e.g., sample size necessary for sound parameter estimation can be reduced by having latent fac-
tors of high quality; see Desideratum 16). Regarding power, sample size should be justified on two
fronts. First, authors should explain how the available sample size provides adequate power for relevant
tests of the data-model fit as a whole (e.g., using the confidence interval for the Root Mean Square Error
of Approximation, RMSEA; see Desideratum 13). Second, the sample size should provide sufficient
power to detect individual model relations of key theoretical interest (e.g., structural connections
among latent factors). For a detailed discussion of statistical power in SEM, consult Hancock (2006).

8. Missing Data and Outliers

Within the context of structural equation modeling (SEM), classic missing data techniques (e.g., list-
wise or pairwise deletion, mean substitution) are generally considered inadequate unless the amount
of missing data is so small as to be trivial. Methods currently considered acceptable include full-infor-
mation maximum likelihood (FIML) estimation and multiple imputation (MI), but their availability
varies across SEM software packages (for details, see Enders, 2006). The former implicitly allows all
subgroups of individuals, defined by differing patterns of available data, to contribute to those param-
eters’ estimation which their data are able to inform. The latter, on the other hand, imputes values for
those missing but does so multiple times to determine average parameter estimates from across sev-
eral possible sets of partially imputed data. Both methods assume that data are missing at random, that
is, that the missing data mechanism for each variable is independent of that variable (e.g., people fail-
ing to provide income information has nothing to do with their income). Authors must identify and
justify which missing data algorithm was utilized (FIML or MI) and report the proportions of cases
missing for each applicable variable.

With regard to cases that were not missing but were otherwise aberrant, criteria for the detection
and possible removal of such outliers from further analysis must be addressed. To start, if descrip-
tive/background data led the researcher to conclude that specific cases were inappropriate for gener-
alizing to the population of interest (e.g., some data came from foreign students in otherwise
English-speaking classrooms), such preliminary (but post hoc) exclusion criteria should be made
explicit. From a univariate statistical perspective, outliers can be determined by comparing cases’
standard (z) scores against some reasonable threshold, such as ±3; cases exceeding that threshold
could be removed. Multivariate outliers (where a case’s scores on individual variables may not be
unusual but its combination of scores sets it apart) may be diagnosed using Mahalanobisdistance (D)
or squared distance (D2). Because D2 values follow a χ2 distribution in large samples, each case has an
associated p-value; cases with extreme values, say p < .001, could be removed as outliers. Finally, cases
may be evaluated in terms of their influence on the overall multivariate kurtosis (to which normal-
theory estimation methods such as maximum likelihood are particularly sensitive); criteria for cases’
removal are relative to the metric of kurtosis employed by the software. Thus, with regard to outliers,
authors are responsible for detailing the criteria used for outlier removal or for addressing other meth-
ods automatically employed by software packages (such as down-weighting extreme cases).

9. Software and Estimation Method

Typical structural equation models may be estimated using a wide variety of software packages,
including, but not limited to, AMOS, EQS, LISREL, Mplus, Mx, and SAS PROC CALIS. These 
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packages tend to produce very similar if not identical results for most common applications. As mod-
eling needs become more demanding, however, either in terms of addressing assumption violations
(e.g., nonnormality; categorical data) or model complexity (e.g., multilevel models), packages differ in
their capabilities and/or the manner in which they meet such needs. Authors should report which soft-
ware package was used and the specific version of that software, as these packages are constantly evolv-
ing. If a package was chosen to meet specific modeling needs, an explanation thereof is warranted.

Regarding estimation methods specifically, although maximum likelihood (ML) is a default in vir-
tually all packages, it should not be chosen without an understanding of its limitations (e.g., inflated
parameter z-values and model χ2 values under nonnormality), an explicit rationale for its selection,
and data-based justification thereof. Summary statistics detailing a lack of skewness (e.g., < 2) and
kurtosis (e.g., < 7) for measured variables can help assuage concerns regarding nonnormality at a uni-
variate level. Addressing more directly the multivariate assumption underlying normal-theory meth-
ods (e.g., ML; Generalized Least Squares), Mardia’s normalized coefficient of multivariate kurtosis
should also be reported. Although no universal guideline exists, values around 3 or less can be reas-
suring. By extension, authors utilizing an alternate estimation procedure (e.g., Asymptotically
Distribution Free; Weighted Least Squares) should fully justify the selection, including a discussion of
its assumptions (or specific lack thereof) and its applicability to the data and model(s) at hand.

10. Problems with Convergence, Estimates, and Identification

In practice, structural equation modeling (SEM) analyses seldom proceed smoothly. Whether by pro-
gramming error or uncooperative data, problems involving convergence, estimation, and/or identifi-
cation inevitably occur. The estimation process may fail to converge within a default number of
iterations; linear dependencies may occur that prevent some parameters’ identification and hence
estimation; offending estimates such as negative error variances (Heywood cases) may arise; matrices
may be reported as nonpositive-definite; and so forth. As SEM is a process, documenting the steps fol-
lowed is necessary just as in other scientific endeavors. To facilitate model convergence, perhaps it was
necessary to specify start values other than the default (typically derived from Two Stage Least
Squares), or some variables needed to be rescaled to make their variances less extreme relative to oth-
ers. Perhaps an error variance needed to be constrained (e.g., to zero or slightly above) to eliminate a
Heywood case, or a ridge regression correction was necessary to address a nonpositive-definite covari-
ance matrix. Regardless of the issues faced, whether those described above or others, authors are
responsible for detailing challenges that arose and the corrective actions taken, or for stating explicitly
that no such problems were encountered.

11. Data Display and Accessibility

In order to facilitate verification of study results, and allow for exploration of competing explanations
for those results, the American Psychological Association (APA) requires that in their manuscripts,
authors present “informationally adequate statistics.” Although, clearly, not all journals containing
structural equation modeling analyses are governed by APA, the rationale for this requirement is
sound and is herein endorsed. Authors should provide adequate summary information for readers to
be able to verify the presented results (e.g., sample size, covariance matrices or correlation matrices
with standard deviations, and possibly other relevant statistics such as means and reliabilities). In
instances where the number of variables modeled prohibits tabling summary information economi-
cally, information as to how to acquire such information should be provided. Where advanced esti-
mation methods are used that draw directly from raw data and cannot be accomplished using
summary statistics, authors should provide information as to how readers may gain access to the data.
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12. Two-Phase Modeling Approach

For the analysis of latent variable path models, a two-phase modeling process is generally recom-
mended to facilitate the diagnosis and potential remediation of data-model misfit. In the first or meas-
urement phase, the model is temporarily respecified such that all latent variables are allowed to freely
covary (along with stand-alone and control variables). If the data satisfactorily fit this measurement
model (see Desideratum 13), the second phase can commence; if not, respecification of the measure-
ment model may be entertained. Such modifications are typically informed by theoretical considera-
tions, Lagrange multiplier tests (modification indices), and/or relatively large residuals, and most often
take the form of either error covariances or cross-loadings (paths from factors to secondary measured
indicators) not already in the model; see Desideratum 15. If satisfactory data-model fit was not
achieved even after such modification(s), further modeling should be terminated. If, however, rea-
sonable fit is achieved, the second phase of modeling is entered.

In the second or structural phase, the originally hypothesized structural relations are re-inserted
among the factors (and stand-alone and control variables) while preserving whatever measurement
model modifications might have been made during the first phase. Poor data-model fit for this initial
structural model can no longer be due to the measurement portion of the model but to the structural
portion. At this point, both statistical and practical evaluation of the overall model should occur.
Because this initial structural model is nested within the final measurement model, a χ2 difference test
should be conducted to assess the statistical difference between the two (see Desideratum 14). Ideally,
fit would not degrade statistically significantly, however a fit difference in the final measurement
model and initial structural model is typically expected since structural perfection is unlikely. If the
data do not fit the initial structural model to a satisfactory degree, it should be rejected and authors
should explicitly acknowledge so. If, on the other hand, authors respecified the conceptual structure,
strong statistical and theoretical justifications must be provided and the now exploratory nature of the
analysis acknowledged (see Desideratum 15).

13. Data-Model Fit

A central issue addressed by any structural equation modeling analysis is the assessment of the fit
between observed data and the hypothesized model (for a now classic overview, see Bollen & Long,
1993). While a χ2 test is commonly reported for this purpose, it is viewed by most as overly strict given
its power to detect even trivial deviations of a data from the proposed model. Researchers should
therefore report multiple fit indices, typically drawing from three broad classes (while many indices
are available, only recommended ones are listed together with empirically derived target values to
retain a model): 

• Absolute indices evaluate the overall discrepancy between observed and implied covariance
matrices (and possibly means); fit improves as more parameters are added to the model: the
Standardized Root Mean Square Residual (SRMR) should fall below .08.

• Parsimonious indices evaluate the overall discrepancy between observed and implied covari-
ance matrices (and possibly means) while taking into account a model’s complexity; fit
improves as more parameters are added to the model, as long as those parameters are making
a useful contribution: the Root Mean Square Error of Approximation (RMSEA) and its associ-
ated 90% confidence interval should fall below .05.

• Incremental indices assess absolute or parsimonious fit relative to a baseline model, usually the
null/independence model (which specifies no relations among observed variables): the
Normed Fit Index (NFI), Nonnormed Fit Index (NNFI; also referred to as Tucker-Lewis Index,
TLI), and/or Comparative Fit Index (CFI) have .95 as a minimum target value.
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Because absolute, parsimonious, and incremental data-model fit indices can lead to inconsistent con-
clusions, reviewers should insist on fit results from different classes. If, after considering several
indices, data-model fit is deemed acceptable (and judged best compared to competing models, if
applicable), the model is retained as tenable and individual parameter estimates may be interpreted.
If, however, evidence suggests unacceptable data-model fit, it might be appropriate to respecify the
model (see Desideratum 15) to improve fit. 

14. Model Comparisons

In as much as authors follow the recommendation to propose and test competing theories in their
investigations (see Desideratum 1), they are then obligated to offer comparative judgments regarding
the relative tenability of these alternative explanations of what gave rise to the observed data. These
judgments can be based on statistical and/or descriptive evidence, depending upon the nested (hierar-
chical) nature of the structural equation models. When two models, say Model 1 and Model 2, are
nested (such as when the estimated parameters in the former are a proper subset of those associated
with the latter), fit comparisons can be accomplished with a formal χ2 difference test (also referred to
as a likelihood ratio test). That is, if Model 1 (with df

1
) is nested within Model 2 (with df

2
), their χ2 fit

statistics may be statistically compared by Δχ2
(df1 – df2)

= χ2
(df1)

– χ2
(df2)

, which itself follows a χ2 distribution
with df = df

1
– df

2
(under conditions of multivariate normality and reasonable models). For example,

an orthogonal CFA model (factors are specified to be independent) is nested within an oblique one
(factors are allowed to covary), and data will fit the former less well than the latter as evidenced by a
larger model χ2. However, if the χ2 difference test indicates no statistically significant difference in fit,
a researcher focusing on model parsimony might prefer an orthogonal over an oblique explanation as
no statistical distinction has been established.

When Model 1 and Model 2 do not have a nested relation, researchers must then compare the 
models descriptively, often using an information criterion such as the Akaike Information Criterion
(AIC), which expresses the expected ability of models to cross-validate: Models associated with
smaller AIC values are preferred over models with larger AIC values. Descriptive comparisons of 
other data-model fit indices are also possible to discern practical differences in fit, but irrespective 
of comparison approach, authors must be clear that these results are relative, not absolute: 
while data might be judged to fit one model better than another, both models might exhibit unsatis-
factory data-model fit as gauged by indices designed to evaluate each model individually (see
Desideratum 13).

15. Model Respecification

In a strict sense, any hypothesized model is, at best, only an approximation to reality; the remaining
question is one of degree of that misspecification. With regard to external specification errors—when
irrelevant variables were included in the model or substantively important ones were left out—reme-
diation can only occur by respecifying the model based on additional relevant theory. On the other
hand, internal specification errors—when unimportant paths among variables were included or when
important paths were omitted—can potentially be diagnosed and remedied using Wald statistics (pre-
dicted increase in χ2 if a previously estimated parameter were fixed to some known value, e.g., zero)
and Lagrange multiplier statistics (also referred to as modification indices; estimated decrease in χ2 if a
previously fixed parameter were to be estimated). As these tests’ recommendations are directly moti-
vated by the data and not by theoretical considerations, any resulting respecifications must be
acknowledged as data driven and exploratory in nature and might not lead to a model that resembles
reality any more closely than the one(s) initially conceptualized.
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For example, a statistically nonsignificant path could merely be the result of insufficient statistical
power, and its removal from a model could become theoretically misleading. We believe authors
should leave nonsignificant paths in the model, as it preserves the originally theorized model while still
communicating that, within the model’s context, a hypothesized relation did not establish itself
beyond chance. On the other hand, implementing suggestions from modification indices to add paths
to the measurement or structural portion of a model could in fact merely be a capitalization on ran-
dom covariation in the current sample and not be indicative of true population relations. In the case
of measurement model modifications (e.g., cross-loadings, error covariances), statistical support
(e.g., change in χ2 values) should be supplemented by a theoretical rationale for each parameter addi-
tion. For structural model modifications, such as adding paths among factors not originally 
hypothesized, statistical and theoretical support should be strengthened by an explicit discussion
addressing the tension between the original hypotheses and the exploratory and apparently contrary
respecifications.

16. Validity and Reliability of Latent Factors

Each latent factor should be evaluated in terms of its validity, that is, its ability to represent the con-
struct it is hypothesized to represent, as well as its reliability, that is, the ability to replicate across new
sets of data. With regard to the former, researchers should address the extent to which the factor
relates to elements it should, and does not relate to elements it should not. Those elements first and
foremost are the factor’s own effect indicators; researchers should observe patterns of loadings that are
relatively high for measured variables expected to reflect the factor, and relatively low (ideally zero) for
variables intended to reflect other factors. One validity index commonly recommended is the variance
extracted (the average squared standardized loading for a factor’s indicators) with target values
around .50 and above. Another gauge of a factor’s validity worth addressing is the degree to which its
relation to other factors matches theoretical expectations.

With regard to reliability, while in theory a factor is perfectly reliable as it is an error-free entity, in
practice a factor would not be expected to replicate perfectly should the same individuals provide new
scores on the factor’s indicators (assuming no recollection of the prior measurements). Thus, reliabil-
ity reflects the extent to which a factor is expected to replicate (i.e., correlate with itself), given that it is
indicated by data containing error. Although some researchers report Cronbach’s α based on the sum
of a factor’s indicators (typically after standardization), this index is inappropriate as it reflects relia-
bility of a composite rather than the reliability of the factor as reflected in its measured indicators.
Thus, we recommend instead that authors report maximal reliability (Coefficient H; e.g., Hancock &
Mueller, 2001) for each factor, as it is an estimate of the correlation the factor is expected to have with
itself over repeated administrations. Values above .70 would be considered desirable in order to estab-
lish the stability of each hypothesized factor.

17. Results for Specific Structural Equations

For either measured or latent variable path analysis models, once the overall data-model fit has been
assessed and deemed satisfactory (see Desideratum 13) and, if applicable, evidence of the quality of
latent variables has been presented (e.g., construct validity and reliability; see Desideratum 16), more
detailed results regarding the structural relations of interest should be offered. Individual parameter
estimates (i.e., the direct structural effects from one variable to another) should be listed in standard-
ized and unstandardized form to facilitate comparisons to results obtained in subsequent studies
(though technically, one set of estimates might be acceptable, given that it is derivable from the 
other if sufficient information is provided). Statistical significance information for key parameters is
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essential, in the form of symbolic designations (e.g., asterisks) or actual test statistics (e.g., z-values),
and authors should present coefficients of determination (R2 values) for each measured or latent out-
come of theoretical interest. Depending on the study’s purposes, a presentation of the indirect and
total structural effects, along with their statistical significance information, might also prove useful in
understanding and interpreting associations among structurally related measured and/or latent vari-
ables. Note, however, that structural equation modeling software packages do not indicate the statis-
tical significance of individual indirect effects but only of the cumulative indirect effect via all
potentially intervening mediators, and of the overall total structural effect of one variable on another.

18. Interpretative Language

Readers should be wary of authors’ claims that acceptable data-model fit implies a model was “con-
firmed” or that a particular theory was proven to be “true,” especially after post hoc respecifications
(see Desideratum 15). Such statements are grossly misleading given the typically nonexperimental
nature of the data’s origins, and given that alternative, structurally different, yet mathematically
equivalent models always exist that would produce identical fit results and thus would explain the data
equally well. At most, a model with acceptable fit may be interpreted as one tenable explanation for the
associations observed in the data.

Following satisfactory data-model fit, the interpretation of individual parameter estimates is per-
mitted to involve explicit causal language, as long as this is done from within the context of the particu-
lar causal theory proposed and the possibility/probability of alternative explanations is raised
unequivocally. Though some might disagree, we think that explicit causal statements are more honest
than implicit ones and are more useful in articulating the study’s practical implications within the
guiding theoretical framework (for more on the role of causality in structural equation modeling and
other statistical analyses, consult Mulaik, 1987, or Pearl, 2000). In the end, structural equation mod-
eling is a powerful tool at the researcher’s disposal for testing and interpreting theoretically derived
causal hypotheses from within an a priori specified causal system of measured and/or latent variables.
However, we urge reviewers to continually remind authors to resist the apparently still popular belief
that the main goal of SEM is to achieve satisfactory data-model fit results; rather, it is just to get one
step closer to the truth. If it is true that a proposed model does not reasonably approximate reality,
then reaching a conclusion of misfit between data and model should be a desirable goal, not one to be
avoided by careless respecifications until satisfactory levels of fit are achieved.
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Multisample Covariance and Mean Structures

Richard G. Lomax

This chapter represents an extension to Chapter 28 in this volume on basic structural equation mod-
eling (SEM). Here we consider the development and testing of theoretical models in two more
advanced contexts. First, multiple sample SEM (MS-SEM) considers the invariance (or equality) of
parameters across populations (i.e., equivalence of covariance structures). For example, Jöreskog and
Sörbom (1993, Example 10) tested whether the same factor structure of the SAT verbal and math sec-
tions is present in two groups of students (e.g., by examining invariance of factor loadings, the factor
correlation, and the measurement error variances). Second, structured means SEM (SM-SEM) addi-
tionally assesses mean differences between populations (i.e., intercept parameters). For example,
Jöreskog and Sörbom (1993, Example 13) examined mean differences between academic and non-
academic boys on the latent variables of verbal ability at grades 5 and 7.

The hypothesized models can be tested utilizing SEM software such as AMOS (Arbuckle, 2007),
EQS (Bentler, 2006), LISREL (Jöreskog & Sörbom, 2006), or Mplus (Muthén & Muthén, 2006) with
data from experimental, quasi-experimental, cross-sectional, or longitudinal studies. For full-length
descriptions of basic SEM analyses, including some discussion of MS-SEM and SM-SEM, we recom-
mend the following textbooks: Byrne (1998, 2001, 2006), Kline (2004), Loehlin (2004), Maruyama
(1998), and Schumacker and Lomax (2004). Examples of multiple sample and structured means
models are described in the SEM software manuals as well as in articles such as Aiken, Stein, and
Bentler (1994), Lomax (1983, 1985), and Shumow and Lomax (2002). Table 29.1 indicates the
desiderata for MS-SEM and SM-SEM around which the remainder of this chapter is organized.

1. Justification for Theoretical Model 

In reading an SEM application, it is often difficult to determine exactly where the theoretical model(s)
tested come from. Here we are specifically talking about the structural model, that is, the model where
the relations among the latent variables are hypothesized. We often come to the Results section of an
SEM study and suddenly theoretical model(s) appear, seemingly out of thin air. Where exactly do
these theoretical models come from? Does some bird or deity whisper them into the researcher’s ear?
Assumedly not, but the reader often has no knowledge of the basis of the models, just that they are 
presented as a path diagram in one or more figures of the Results section.
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The theoretical model(s) should be developed from the available theory and research in the sub-
stantive area being studied. This is the major purpose of the literature review in research utilizing
SEM. More specifically, the literature review should compile the research on each of the specified rela-
tions among the latent variables (i.e., the path or structure coefficients). Each path or structure coeffi-
cient is essentially a mini-hypothesis of the relation between two latent variables. Evidence could be
drawn from whatever types of research are available (e.g., correlational, experimental, non-experi-
mental, qualitative), as well as theoretical work. After reading the literature review, the reader should
be presented with the theoretical models to be tested and knowledge about where the models came
from. In short, the literature review should guide the reader from the available literature to the theo-
retical models to be tested.

For MS-SEM and SM-SEM, the literature review should also lead up to whether the researcher
expects to find group differences in the theoretical model(s). For example, the research might suggest
that male and female adolescents develop differently for specified constructs. This would then lead to
hypotheses that certain parameters in the SEM model(s) will behave differently by gender. In MS-
SEM we can test whether specific parameters appear to be invariant (the same) across populations or
not invariant (different) across populations. In SM-SEM we can also test whether there appear to be

Table 29.1 Desiderata for Structural Equation Modeling: Multisample Covariance and Mean Structures

Desideratum Manuscript

Section(s)*

1. Justification for theoretical model(s) to be tested, including the latent factors therein, is made based I

on the available theory and research in the substantive area.

2. Path diagram(s) are presented to display the theoretical model(s) to be tested. I

3. Populations and samples are described, including sampling method(s) and sample sizes. M

4. The measured variables that are used to indicate the latent factors are fully described (e.g., scales, M

reliability, validity).

5. Name and version of the software utilized is reported. In addition, the method of parameter M, R

estimation is discussed.

6. Methods of treating missing data and outliers are described. M, R

7. Table(s) of correlations, means, and standard deviations for each sample are presented, and possibly M, R

access to raw data is facilitated.

8. Problems with identification, convergence, non-positive definite matrices, and inadmissible R

solutions are reported and resolved.

9. Parameter estimates and statistical significance (including expected direction, such as positive or R

negative directionality for positive and negative relationships, respectively) are reported in tables, 

path diagrams, and/or text.

10. Various global goodness-of-fit indices are reported for each model and chi-square difference tests R

are reported to compare nested models, if applicable.

11. Model modifications (if any) are reported, including theoretical and statistical justifications. R

12. Series of models are tested to check for invariance of parameter estimates in multiple sample R

modeling (MS-SEM) (i.e., the covariance structure portion of the model).

13. Mean structure parameter estimates are reported in structured means modeling (SM-SEM; i.e., the R

mean or intercept portion of the model), including effect size measures where relevant.

14. Results are discussed in the context of assessing the (non)invariance of the theoretical model(s) D

tested.

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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latent mean differences across the populations. As an example, in the Lomax model of schooling
(1985), a series of MS-SEM models determined that the factor loadings and structure coefficients
appeared invariant for the public and private school populations. In subsequent analyses, an SM-SEM
model inferred that there were several latent mean differences due to school type, such as for con-
structs relating to home background, academic orientation, and extra-curricular activity.

2. Path Diagrams 

A path diagram should be included for each theoretical model tested. Such path diagrams can be pre-
sented in at least two different forms depending on their intended purpose. One purpose of a path dia-
gram is to present the theoretical model in the literature review. This “conceptual diagram” will not
include any results or estimates, but merely displays the latent variables and how they are theorized to
relate to one another. In other words, this type of path diagram describes the theoretical structural
model only. The measurement model is implied by the description and/or list of observed variables and
which latent variables they assess (see Desideratum 4). The conceptual path diagram can either be
depicted at the beginning of the literature review for framing purposes, or at the end of the literature
review for summative purposes. Details of the observed variables are contained in the Methods section.

A second purpose of a path diagram is to display the results of the analysis. In other words, key
parameter estimates (perhaps even including standard errors, or z values, or statistical significance, in
parentheses) are shown in the diagram. Thus, in one diagram the most important results of a particu-
lar model can be shown. Unless the model is quite small and simple in nature, only the structural
model is usually depicted in this type of path diagram. In other words, the measurement model is not
included unless there is sufficient space in the figure. Finally, in the situation where there are multiple
samples, the estimates for each sample should be shown. 

3. Sampling Issues 

Sampling is an area where reporting in SEM studies tends to be less than adequate. More specifically,
a typical SEM study states the sample size used in the analysis but little else. This is not a sufficient level
of reporting for sampling related issues. There is additional information about three issues that the
reader should be made aware of in terms of the sampling frame of the study. This information allows
for judging the sampling adequacy of the sample as well as which populations the results can be gen-
eralized to.

First, information about the definition of the populations must be included (e.g., males and females
aged 13–17 in the U.S. who are attending public schools and receiving regular education). Second, the
type of sampling procedure utilized needs to be described (e.g., random, cluster, stratified, conven-
ience). That is, authors should describe how these particular sample observations were selected from
their respective populations (e.g., a strategy of stratified random sampling by ethnicity was followed
to ensure adequate representation of different ethnic groups). And finally, precisely how the data were
collected from these samples needs some attention (e.g., assessments were individually administered
to subjects over two days by a trained specialist); that is, details need to be presented on how the data
were actually collected from each of the samples. Information about these sampling issues will also be
useful when discussing missing data (see Desideratum 6).

4. Latent Variables and Observed Variables 

A key portion of the Methods section for any SEM study is the selection and preparation of the
observed variables (for an example, see Shumow & Lomax, 2002). There are at least five measurement
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issues that need to be considered. First, for each latent variable or factor, one or more observed vari-
ables are utilized. One method for dealing with this is in the form of a table listing the latent variables
and each of their associated observed measures. Alternatively, the measurement of the latent variables
through the observed variables can be described in the text (e.g., a section for each latent variable, with
a subsection for each observed variable). This information helps to define the measurement model in
terms of latent variables and observed variables. Second, the types of measures actually being used
should be described. Are the observed variables individual items, composites of items (i.e.,
unweighted or weighted sums of individual items in a subscale, such as item parcels), or factor scores?
In other words, the type of measures being utilized should be discussed.

Third, what are the psychometric properties of the observed variables? Except for the most com-
monly used and well-known measures, information should be given on the reliability and validity of
each observed variable. This information needs to include some basic evidence through reliability
and/or validity coefficients, which often can be documented in a sentence or two for each observed
variable. 

Fourth, what is known about the measurement scales being used? More specifically, it would be use-
ful to the reader to have some information about the possible scale values (e.g., minimum/maximum
or range), type of measurement scale (i.e., nominal, ordinal, interval, ratio), the number of categories
for ordinal measures, and whether any rescaling or recoding of the variable values has been under-
taken. Oftentimes the scale of an original variable has been altered to fit the needs of the individual
study (e.g., to rescale an observed variable when there is a negatively worded item; or to generate a
more normally distributed observed variable through the use of a statistical transformation, see
Desideratum 5).

Finally, how are the observed variables distributed? In other words, are the measures reasonably
normally distributed, what do the distributions look like in terms of skewness and kurtosis (univari-
ate and multivariate), and how is any non-normality taken into account (e.g., statistical transforma-
tions; or the use of an estimation procedure more robust to non-normality)? This information is also
particularly relevant for the selection of an appropriate method of estimation, discussed next (see
Desideratum 5). 

5. Software and Method of Estimation 

There are a number of software packages available for conducting SEM analyses; thus, it is useful to
report the name and version of the software utilized. All of the packages are somewhat comparable,
and thus no overarching recommendation can be made. However, each program does have certain
features that distinguish it from the others. As well, because the field of SEM has changed so rapidly
over the past two decades, utilizing a recent version of the software is recommended.

As in any quantitative research study involving the use of inferential statistics, applicable statistical
assumptions must be evaluated and potential violations dealt with in an appropriate manner. In other
words, statistical assumptions form part of the foundation for any inferential statistic. Without rea-
sonably meeting those assumptions we cannot count on our results having much value.

In SEM studies, most methods of estimation make some assumption about the distribution of the
observed variables. Maximum likelihood estimation is the most commonly used method of estima-
tion in SEM and assumes that the variables are multivariate normal. Thus, it is crucial to determine
whether the data meet this distributional assumption. If evidence (e.g., skewness, kurtosis, statistical
test of normality) suggests that the data are not reasonably multivariate normally distributed, then
maximum likelihood may not be appropriate. Here the offending observed variables could be (a)
transformed into a new variable that is somewhat better behaved, (b) deleted if there are a sufficient
number of observed variables to assess each latent variable, or (c) a method of estimation more robust
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to non-normality be utilized instead of maximum likelihood. Note that this only addresses univariate
distributional issues; two or more variables would have to be considered simultaneously to address
multivariate distributional issues.

Maximum likelihood is typically recommended unless the data deviate substantially from multi-
variate normality and/or include categorical variables. Thus, the choice of a method of estimation
needs to be tied to the distributional properties of the data, as well as to the measurement scales of the
variables, all of which need to be reported. In other words, an SEM study needs to describe the distri-
bution of the data, the method of estimation, and the measurement scales of the observed variables.
With multiple samples, this also means that each of these needs to be described for each sample. As
described in the Shumow and Lomax (2001) model of school safety, the observed variables were fairly
well normally distributed in a univariate sense (e.g., in terms of skewness and kurtosis) in each of the
ethnic group samples, thus maximum likelihood was selected as the method of estimation.

6. Treatment of Missing Data and Outliers 

While the final sample size is generally reported, in many studies little, if any, information is provided
about the presence and treatment of missing data. We find this curious because rarely does a social or
behavioral scientist have a dataset with absolutely no missing data. The inclusion of sampling frame-
work information can easily lead into a discussion of how missing data were treated. Were only com-
plete cases used (i.e., listwise deletion), were complete cases included for each pair of observed
variables (i.e., pairwise deletion, where different pairs of variables could have different sample sizes),
was some sort of missing data replacement method utilized (e.g., mean imputation, similar response
pattern imputation, multiple imputation), or was a method used that works around the missing data
(i.e., does not impute the missing data, but works with the available data, such as full-information
maximum likelihood)? A description of how the missing data were treated and a justification for that
method should be included, in addition to the initial and final sample sizes. For example, Arbuckle
and Wothke (1999, Example 17) considered a dataset with a sample of 73 girls on six psychological
tests. Approximately 27% of the data were missing, complete data were only available for seven cases,
and thus full-information maximum likelihood was selected as the method for dealing with the 
missing data. 

Another data treatment issue deals with outliers. An outlier is an observation that is quite different
from the rest (e.g., often defined in a univariate sense as more than 2 or 3 standard deviations beyond
the mean). Outliers can cause normality problems, improper solutions (see Desideratum 8), correla-
tions being reduced in strength or magnitude (i.e., closer to zero), among other serious issues. Thus,
it is always important to examine the data to detect outliers. Outliers can be a function of any of the
following: (a) a malfunctioning instrument (e.g., a computerized testing or tape recorder problem);
(b) a data recording error (e.g., recorded a 60 instead of a 6 when the data were gathered); (c) a data
entry error (e.g., typed a 60 into the data file instead of a 6 when the data were entered); (d) an error in
observation (e.g., observed and coded an incorrect behavior); (e) an inappropriate use of administra-
tion instructions (e.g., gave subjects more time than the directions called for); or (f) an accurate obser-
vation (i.e., a true outlier). Obviously errors should be corrected whenever possible. Otherwise, a
rationale should be made for the treatment of outliers, and the number of outliers deleted should be
reported.

7. Data Table for Samples 

Once the data have been fully prepared, then the analysis can proceed accordingly. An initial piece of
information to present to the reader is a summary table of correlations, means (for SM-SEM), and
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standard deviations (or variances) for the set of observed variables. This is typically presented through
a table in matrix form. In the case of multiple samples, then either (a) separate tables can be shown for
each sample, or (b) pairs of samples can be given in one table with one sample being shown above the
main diagonal of the matrix and a second sample below the main diagonal (e.g., see Tables 2 and 3 in
Shumow & Lomax, 2002). 

The summary table allows readers to examine the data from a descriptive perspective and even to
conduct their own analyses (i.e., either to verify the results or to test additional models). The complete
matrix should be given in the data table for each sample, unless there are too many observed variables
to include for practical purposes. In this case the table should be made available by some other means
(e.g., website, e-mail). In summary, there should be sufficient information in any SEM application to
allow the reader to be able to replicate the results (e.g., theoretical model, sampling information,
measures, software and method of estimation, data tables, and results).

8. Problems in Obtaining a Proper Final Solution

Researchers who have utilized SEM have likely run across various and sundry error messages, such as
“model not identified,” “model did not converge after 100 iterations,” or “matrix not positive defi-
nite.” In other words, a proper final solution does not result 100% of the time even after a theoretically
justifiable model has been specified. These error messages need to be taken quite seriously. For exam-
ple, if a variance estimate is found to be negative (i.e., a Heywood case), then this is not a proper result
(and this will generate the non-positive definite matrix message). Similarly, correlations beyond 1.00
(in either the positive or negative direction) are not admissible. Most methods of estimation in SEM
are iterative, meaning they take many steps or iterations before reaching a final solution. When a final
solution is not generated, the convergence error message will be shown, in which case the estimates
cannot be taken seriously (e.g., obtaining a standardized factor loading of 500,000).

If any of these problems come up, then they must be dealt with rather than be ignored. Otherwise
the results will be less than meaningful. Solutions to these problems might include the following: (a)
allowing the SEM program to run through more iterations; (b) constraining (i.e., forcing) negative
variances to be positive or eliminating the offending observed variable; and (c) solving identification
problems (e.g., if an attempt is made to estimate more parameters than there are non-redundant ele-
ments in the covariance matrix of the observed variables). The use of multiple samples will certainly
not alleviate these kinds of problems; in fact, they might even be more likely to occur. Overlooking
these serious errors and not reporting them is not sound research, as the results of the analysis cannot
be trusted. Thus these errors need to be reported as well as resolved. 

9. Parameter Estimates and Statistical Significance 

One of the most important parts of the Results section is a complete reporting of the estimates, standard
errors, and statistical significance for every individual free parameter (e.g., through a z value, and/or
some sort of notation regarding statistical significance). With MS-SEM, this means that all of the results
need to be reported for each sample. With multiple samples, the rows of the table can be the individual
parameter estimates and the columns can be the samples (e.g., Tables 4 and 5 in Shumow & Lomax,
2002). For SM-SEM, the estimates of the mean difference parameters will also need to be reported (e.g.,
either in the bottom portion of the results table, such as Table 7 of Lomax, 1985, or alternatively in a sep-
arate table just of structured means results, such as Table 2 of Lomax, 1983). 

Key results of the structural model can be reported in the form of a path diagram. A full reporting
of the results from both the measurement and structural models usually requires one or more tables.
For ease of reading these tables, we recommend that the results be presented using observed and latent
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variable names, rather than Greek symbols, and that the different types of parameters be clearly
labeled (e.g., factor loadings, measurement error variances, path or structure coefficients). More
specifically, it is recommended that the unstandardized results be reported because it is those esti-
mates that are being tested for invariance in MS-SEM and SM-SEM.

10. Global Goodness-of-fit Indices and Model Comparisons 

Another essential part of the SEM results that must be reported are the global goodness-of-fit indices
selected and the criteria used to evaluate those indices. Of the issues described in this chapter, the
reporting of global fit has seen the greatest research and development over the past twenty years. As a
result, there are well over 50 fit indices currently available in SEM software. Numerous simulation
studies of fit indices have been conducted over those years and lead us to make the following two rec-
ommendations: (a) the chi-square measure can be greatly influenced by several characteristics,
including sample size, model complexity, and non-normality, and thus should never be used as the
sole measure of model fit; and (b) no other single fit measure has been shown to be “best” in all con-
texts. In short, it is always recommended that multiple fit indices be reported in SEM studies, typically
three to five measures.

Not only is it important to select several different fit indices that are in common usage, but it is also
essential to evaluate those indices according to known criteria (e.g., Schumacker & Lomax, 2004).
Although most criteria are subjective in nature (e.g., fit indices that are scaled from 0 to 1.00, requir-
ing a criterion value of at least .90 or .95), some movement toward more empirically based criteria has
occurred in recent years (e.g., Hu & Bentler, 1999). Most researchers tend to have a short list of favorite
fit indices that they prefer for assessing the fit of a single theoretical model. Our particular favorites
include chi-square (with the chi-square value, degrees of freedom, and p value being reported), GFI
(goodness-of-fit index), SRMR (standardized root mean square residual), and RMSEA (root mean
square error of approximation). No blanket recommendation of any particular set of indices has yet
been accepted in the SEM literature. See the Shumow and Lomax (2002) example for the fit indices
and criteria that they utilized with the parental efficacy model. 

When using MS-SEM and SM-SEM, the chi-square difference test is one fit index that is always 
recommended in order to examine a series of nested models (i.e., one model is nested within another
model when the variables are the same, but one or more parameters are either included or deleted).
For example, to compare an initial model with no parameters invariant across populations to a second
model with only factor loadings invariant across populations, a difference in chi-square statistic can
show the extent to which the fit of the second model has deteriorated. If the chi-square value does not
decrease by a statistically significant amount, then the factor loadings have been shown to be statisti-
cally invariant across the samples tested; as such we would retain a hypothesis of loading invariance
across populations. If the chi-square value does decrease by a statistically significant amount, then the
factor loadings have been shown to be statistically different across the samples tested; we would thus
infer some degree of loading noninvariance across populations. Thus, the chi-square difference test
can help assess whether the factor loadings appear the same or different across populations. The
invariance of other types of parameters (e.g., path or structure coefficients) can also be evaluated by
comparing two nested models.

11. Model Modification 

In contrast to model fit, model modification is probably one of the most poorly reported aspects in
SEM studies. When the initial model does not have adequate model fit, then modifications to that
model are often considered. There are four questions in the area of model modification that need to



392 • Richard G. Lomax

be addressed in all SEM studies. First, were relevant parameters statistically different from zero (typi-
cally evaluated through z values) at some nominal α level and in the expected direction (see also
Desideratum 9)? In other words, do the expected relations in the model have coefficients that are sta-
tistically different from zero and in the expected direction based on previous research and theory? 

Of greatest interest are the path or structure coefficients and the factor loadings. For example, we
may see an SEM application where the fit of the theoretical model is seen as acceptable, but no infor-
mation is provided about the significance of the estimates. We have even seen several instances where
the model fit was quite strong, but the estimates did not make sense and/or were not significant. Thus,
an adequate model fit means little if the parameter estimates do not support the hypothesized model
(i.e., when the estimates do not make sense and are not statistically significant).

Second, what portions of the resultant SEM output were considered for possible model modifica-
tion? For example, SEM software generates considerable information useful for model modification,
such as residual matrices (e.g., raw and standardized residual matrices), as well as various types of
indices and statistics (e.g., z values, modification indices, expected parameter change statistics,
Lagrange multiplier statistics). Unfortunately, rarely is such modification information reported in
applications. Even a description of which information was used to make model modification would
be an improvement.

Third, was the initial theoretical model modified in some way and how? That is, were new relations
added to the initial model, were non-significant relations trimmed from the original model, and what
were those modifications? In most SEM applications, only the results of the final model are presented
to the reader. Without further information, the implication is that only one model was ever tested.
Experienced modelers know that this is rarely the case. In the interest of journal space, while only the
final model results should commonly be fully reported, a brief overview of the models tested and the
modifications made should be included. 

Lastly, what is the basis for each of the model modifications made? Any modifications made need to
be justified both statistically (based on modification information given in the SEM output) and sub-
stantively (based on the modifications making substantive theoretical sense). No modification should
be made without a substantive rationale, that is, with only a statistical justification (which is simply
number crunching). In addition, experience has taught us that only one modification should be made
at a time in an SEM model. The rationale is that all of the parameters and potential parameters in an
SEM model are related in some fashion. So it is difficult to predict what effect the first modification
will have on subsequent modifications. Thus, making an initial single modification will better inform
the modeler where to go for a second modification, instead of simultaneously making two modifica-
tions. 

For the Shumow and Lomax (2002) example, all of the hypothesized structure coefficients and fac-
tor loadings were significantly different from zero (p < .05) and in the expected direction. In terms of
model modification, the standardized residual matrix and the modification indices were examined.
The original model was maintained, without any parameter trimming or deletion, but with the addi-
tion of two measurement error covariance terms (due to shared method variance, where the exact
same method of measurement was utilized for those observed variables). Only three total models were
tested, the original model and two modified models, each with one additional measurement error
covariance term included due to shared method variance.

12. Multiple Sample Modeling 

An initial question to pose is when multiple sample MS-SEM should be considered. It is often the case
that the researcher has a dataset consisting of various subsamples of the overall sample (e.g., by age,
ethnicity, SES, gender). The idea is to evaluate each subsample against each of the theoretical model(s)
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to be tested. Here the researcher wants to know whether a particular model holds for each of these sub-
samples, or whether there are some differences among the subsamples for various parameters. For
example, does the same model of learning apply across different age, or gender, or ethnic group sub-
populations? In particular, we might want to know whether the factor loadings are invariant (the
same) across the groups when developing a scale, and/or whether the path or structure coefficients are
invariant across the groups when testing the generalizability of a theory. These are the types of research
questions that MS-SEM can answer.

It should also be mentioned that in MS-SEM, one group serves as the reference group (e.g., females)
and the unstandardized parameter estimate(s) in the other group(s) (e.g., males) are constrained or
forced to be equal to the values obtained in the reference group. These constraints are part of the input
to the SEM software. This also needs to be done in SM-SEM.

To be more specific about the conduct of MS-SEM, a prescribed series of nested models is typically
evaluated. The initial model tested, Model 1, is one in which none of the parameters are invariant
across populations. As an example using gender, this would mean that none of the parameters in the
female population model are constrained to be equal to their respective parameters in the male popu-
lation model. The second model tested, Model 2, constrains the factor loadings to be the same across
the populations, but not other model parameters (i.e., parameters other than the loadings are free to
vary across populations). If the fit according to the chi-square difference test substantially deteriorates
from Model 1 to Model 2, then the factor loadings are statistically different for the samples and we
infer some degree of noninvariance across populations. If the fit does not deteriorate substantially,
then the factor loadings are not statistically different for the samples, and a hypothesis of population
noninvariance is retained.

The following additional models can then be tested. Keep in mind though that once particular
parameters have been deemed to be invariant (by virtue of no statistical differences across samples),
they remain as such throughout the analyses. Model 3 considers whether the measurement error vari-
ances are invariant (which occurs only on rare occasions, in our experience). In Model 4 we assess
whether the latent independent variable variances and covariances are invariant. Model 5 is used to
determine whether the path or structure coefficients are invariant. Finally, Model 6 examines whether
the structure or prediction error variances are invariant (also rare).

The idea is to test a series of nested models to determine which sets of parameters are invariant and
which are not. Thus, MS-SEM is a method for determining whether the same covariance structure is
operating across the populations. In addition, tests can be done at the individual parameter level, for
example, if a researcher wants to assess whether or not one particular factor loading is invariant across
populations as opposed to all factor loadings being invariant. A table of results should be provided that
lists each model tested, including the chi-square value (with degrees of freedom and p values
reported), chi-square difference tests, and some indication of the statistical significance for each chi-
square difference test (e.g., see Table 6 of Lomax, 1985).

Unfortunately, over the years we have not seen many applications of MS-SEM in the social and
behavioral science literature, although the numbers are on the rise. One reason why MS-SEM results
can be so valuable lies in their assistance in validating theoretical models across different populations
or subgroups. This would indicate that a particular theoretical model applies rather broadly across
those populations. Alternatively, the researcher might find that different theoretical models are in
operation for different groups. For example, perhaps a model of learning should look different for dif-
ferent groups, that is, all individuals do not learn in the same fashion. Thus MS-SEM can be quite use-
ful in exploring the generalizability of a particular theoretical model across different populations.

In the Shumow and Lomax (2002) model of parental efficacy, three major ethnic groups were rep-
resented in the original sample. As it was believed theoretically that parental efficacy operated differ-
ently by ethnicity, MS-SEM was conducted. As the overall sample was sufficiently large, such analyses
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were reasonable to consider (i.e., 319 European Americans, 187 African Americans, and 200
Hispanics). While the observed measures performed similarly across these groups (i.e., the factor
loadings were deemed invariant across the ethnic groups), there were some relationships in the struc-
tural model that differed by ethnic group. The results of the structural model were depicted in a path
diagram using abbreviations for each of the groups to indicate statistical significance (see Figure 1 of
Shumow & Lomax, 2002). 

13. Structured Means Modeling 

In many multiple sample settings, the researcher is also interested in examining mean difference 
(or intercept) parameters. This requires the use of structured means structural equation modeling
(SM-SEM). For example, we might want to know if there is a mean difference in an SES latent 
variable for public versus private school populations (as in Lomax, 1985). Or we might want to know
whether there is a significant mean difference in a student achievement latent variable for these same
two samples, controlling for SES (Lomax, 1985). These are the types of questions that SM-SEM can
answer.

A typical single sample SEM model does not assume anything about the means of either the latent
variables or the observed variables. In fact, all of the means are typically fixed at zero in both the struc-
tural and measurement models by the SEM software, mainly because there is no way to estimate mean
parameters (for an exception, though, see latent growth curve models in Chapter 14, this volume).
However, once we include multiple groups, this then allows the researcher the possibility of estimat-
ing mean parameters. Thus, if one is interested in the estimation of mean parameters, then there needs
to be multiple groups where a particular mean parameter of a reference group (e.g., male achieve-
ment) is fixed to zero in order to allow the estimation of the corresponding mean parameter in
another group (e.g., female achievement). This is basically what happens in SM-SEM where concep-
tually this latent mean parameter is estimating a gender difference. 

Unfortunately, we have seen even fewer applications of SM-SEM in the social and behavioral sci-
ences literature than MS-SEM. In part this is because these kinds of models are a little more challeng-
ing to consider, although they have been greatly simplified in the more recent versions of the SEM
software. However, these types of models can be quite informative, as we see next.

In Lomax (1985), a series of MS-SEM models indicated that the same model of schooling appeared
to apply equally well to both public and private schools (i.e., the same covariance structure existed
both for the factor loadings and for the structure coefficients). Subsequently, the following results
were found in a SM-SEM model: (a) private school students had a significantly better home back-
ground than their public school counterparts; (b) academic orientation and level of extra-curricular
activity were both significantly higher for private school students when controlling for home back-
ground; and (c) aspirations (educational and occupational) and achievement were all lower for pri-
vate school students when controlling for academic orientation, level of extra-curricular activity, and
home background (all p < .05). While the first two findings supported previous research, the third
finding was not something that had been previously investigated. Thus, the superiority of the private
school students was not a consistent finding in this study. 

The SM-SEM results can either be presented in the text, or in some sort of a table (see Desideratum
8) when there are a substantial number of mean difference parameters. In addition, to determine the
strength of any effect in SM-SEM, an effect size measure can be computed. For example, a standard-
ized effect size measure can be determined where the intercept of an equation for the second group is
divided by the square root of the disturbance or error variance of that equation (see, for example,
Hancock, 2001). These effect sizes can then be judged in accordance with guidelines such as those 
provided by Cohen (1988).
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14. Discussion of Results in Context of Theoretical Model(s) 

One of the main purposes of the Discussion section of an SEM study is to relate the results of the the-
oretical model(s) tested to the literature reviewed. The following questions could be considered in the
Discussion. What evidence is there that a particular model has been supported for one or more popu-
lations? Are there some portions of the model that fit the data rather well and others that are not?
Should additional latent variables be included and/or other latent variables eliminated based on the
analysis? Do we need to refine our list of observed variables in terms of seeking out higher quality
measures? Do some of the paths need to be eliminated? These are just some of the issues that the
Discussion section can address in the examination of a single sample.

Additionally, the study of multiple samples allows us to perform a form of model validation as to
whether a particular model fits well for different samples (e.g., for males and females), or in different
contexts (e.g., for different countries or for different cohorts). The Discussion section could also
describe future methods for validating a model or models in other samples or contexts. For example,
does the same model of schooling apply in the United States, Estonia, and Japan? 

It should also be noted that MS-SEM is only one way in which models can be validated. Other
approaches available to researchers include the following methods: (a) traditional cross-validation where
the researcher splits a single sample in half and cross-validates one half against the other half (meaning
larger samples are necessary to start); (b) expected cross-validation on a single sample without splitting
the sample in half (meaning smaller samples can be used); (c) simulation methods (where a large num-
ber of sample datasets is generated by the computer; thus the data are computer-generated rather than
actually being collected); (d) the bootstrap method (where the resampling of observations is done from a
single sample); and (e) the jackknife method (where resampling of observations is done by leaving 
one observation out of each sample, sometimes known as the leave-one-out method of sampling). For
more details of these methods, the reader is referred to, for example, Schumacker and Lomax (2004).
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30
Survey Sampling, Administration, 

and Analysis 

Laura M. Stapleton

The use of surveys in social science research is abundant and may appear straightforward, but can
involve a complex set of procedures. Total survey error refers to all of the errors that could occur in
researchers’ attempts to gain valid information about a population with the use of surveys. These
errors have been placed into five categories: coverage error, nonresponse error, editing and process-
ing errors, measurement error, and sampling errors (Groves, 1989). Coverage error refers to the failure
to provide some members of the population the chance to be selected into the sample, nonresponse
error refers to the failure to obtain responses from all members of the selected sample, editing and
process errors refer to the failure to capture data accurately from the respondents, measurement error
represents the failure of the observed response to reflect the true opinion of the sample member, and
sampling error refers to the fact that sample statistics are not expected to exactly reflect population
parameters.

Methods to acknowledge and address each of these types of errors are covered in this chapter and
should be, to the extent possible, addressed in research manuscripts. Specifically, this chapter addresses
three main areas of the survey process: appropriate methods of sampling from a specified population,
developing survey items and administering the survey, and undertaking appropriate evaluations of
data and analyses based on the sampling design. The sampling design defines how one obtains a sample
intended to be representative of the population to which researchers would like their results to gener-
alize. Sampling is discussed in Lohr (1999, 2008), and for the more advanced reader, Kalton (1983) and
Kish (1965). Development of survey items, and the appropriate methods of administering the survey in
order to obtain high response rates and quality responses, is multifaceted and development strategies
depend on the topic to be measured and the target population of the survey. An excellent, comprehen-
sive resource with practical guidelines is provided by Dillman (2000) and Forsyth and Lessler (1991).
More theoretical treatment regarding the cognitive response process is provided by Tourangeau, Rips,
and Lapinski (2000). Finally, analysis of data is straightforward if a simple random sample has been
taken (analysis covered in most behavioral and social science textbooks assume such a sampling strat-
egy). However many surveys are not conducted with a simple random sampling technique and thus
special analytic procedures must be undertaken and these procedures might include sampling weights,
and strata and/or cluster indicators. Analyses undertaken using such sampling design elements are
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detailed at a basic level in Lohr (1999) and Stapleton (2008), and at a more advanced level in Lee,
Forthofer, and Lorimor (1989), Kalton (1983) and Kish (1965). A simple list of best practices for the
entire survey research process is provided by the American Association of Public Opinion Research
(2008) and a new text edited by de Leeuw, Hox, and Dillman (2008) contains accessible chapters that
relate to every step of the survey process. Specific desiderata for studies that incorporate the use of sur-
veys for collection of behavioral and social science data are presented in Table 30.1 and are described in
detail in the following sections.

1. Population for Generalization 

Although the term survey has been used to connote different things across people and disciplines, at its
heart, the term should imply that a questionnaire has been administered to a sample of members from
a given population to which researchers would like to generalize; a questionnaire that is administered
to all members of a given population is considered to be a census and not a survey. Therefore it is
imperative that in an applied study involving the administration of a survey, authors specify the pop-
ulation to which results are intended to generalize. It is from this target population that the sampling
frame is developed (see Desideratum 3). There are times when researchers would like to generalize to
a large population, such as all U.S. adults aged 18 to 65, but the sampling procedures do not allow such
a broad generalization; for example, if a telephone survey is administered based on random digit 
dialing, the actual population from which the sample is drawn only includes adults with a cellular or

Table 30.1 Desiderata for Survey Sampling, Administration, and Analysis

Desideratum Manuscript

Section(s)*

1. The population for generalization is described and justified. I, D

2. The survey or questionnaire development process is described and M

includes a discussion of the evaluation of item validity.

3. The sampling frame is defined and the procedures for obtaining it are described. M

4. The type of sampling process utilized is explained (such as multistage, M

random, systematic) and defended as to why it is appropriate for use with the target population.

5. The survey administration method is outlined including the mode (such as M

face-to-face, phone interview, web survey, or mailed survey), use of incentives, and number of 

contacts. The administration process is defended as to why it is appropriate for use with the 

particular sample and questionnaire content. 

6. The response rate is provided and discussed. R

7. An analysis of possible sources of non-response is conducted and the possibility of the creation M, R

of post-stratification weights is addressed.

8. The data analysis includes components to address any disproportionate selection probabilities M, R

(or non-response adjustments). 

9. If probability sampling other than simple random sampling is used, the estimated design effects of R

the means of key variables are provided.

10. The analysis includes an appropriate method to adjust for any dependencies resulting from  M, R

multistage sampling or efficiencies gained from stratified sampling. 

11. A discussion of the limitations with regard to questionnaire item validity, sampling strategy, D

response rate and analysis decisions is provided.

* Note: I = Introduction, M = Methods, R = Results, D = Discussion
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land-line telephone. This narrowed population, then, is referred to as the sampling frame population.
If there is a discrepancy between the target population and sampling frame, authors should carefully
describe the members of the target population who will be excluded by sampling from only the nar-
rower sampling frame (in terms of both numbers and characteristics). To the extent that the members
of the target population and sampling frame differ in their behaviors and attitudes measured on the
survey, this discrepancy is termed coverage error.

2. Questionnaire Development Process 

The questionnaire development process is one that is poorly defined in many research manuscripts, if
not totally ignored. It can be argued, however, that it is one of the most important aspects of survey
research; if validity of the measures obtained from the survey cannot be assured then any subsequent
data analysis and interpretation of parameter estimates is questionable. Given research findings with
regard to the effect of item wording on response quality, it is essential that authors describe the process
undertaken to develop and evaluate the questionnaire. If using a previously developed questionnaire,
authors should cite a reference to the development and validation information for that questionnaire.
If using a newly developed questionnaire, authors should provide a description of how the items were
generated and whether items were reviewed by outside parties. Additionally, a discussion should be
provided of the pilot testing process and the results shared from reliability assessments (both internal
consistency for scales and test-retest reliability of specific items and scale scores, as appropriate) and
validity assessments (such as cognitive interviewing results or statistical estimates of relations with
external criteria).

Specific issues in item development that have been found to affect response quality and thus induce
measurement error and that should be considered in questionnaire development include, for rating
scale measures, the valence of the item stem (whether the stem is phrased negatively or positively), the
number of response options, and whether anchors are provided for those options. Although surveys
often include the “strongly agree” to “strongly disagree” Likert format, this type of measurement has
been found to be problematic for two reasons: without extreme statements there usually is limited
variability in the obtained responses, and the responses are difficult to interpret across individuals due
to the vague quantification of response options.

Not only the wording and structure of the actual items are of concern but the format of the ques-
tionnaire has been found to affect response rate and response quality. Dillman (2000) provided excel-
lent suggestions for the actual page layout and construction. Authors should provide a copy of the
questionnaire used or provide an internet link to allow readers to evaluate the survey for possible
order or questionnaire construction effects, as well as item wording effects.

3. Sampling Frame 

To obtain a representative sample of a given population of interest, a sampling frame needs to be
determined. As specified in Desideratum 1, given a target population of interest, the researcher must
then attempt to identify a list of all members of that population from which to sample. If a list is indeed
available (e.g., all students at a particular university of interest) then the concept of a sampling frame
is fairly simple (although the definition of “enrolled at the university” on a specific date would need to
be determined and reported). Often, however, no list of members of the target population exists; in
this case a sampling frame might have to be pieced together from separate sources (and duplicate and
missing units identified and addressed), or the sampling frame might have to be built as part of the
sampling process. For example, if researchers were interested in a target population of all undergrad-
uate students at 4-year U.S. colleges and universities, they would be quick to note that no such list 
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currently exists. However, each of the 2,000+ colleges and universities in the population of interest
does have a list of its own students. Therefore, the sampling frame might exist in theory and can only
be practically accessed once specific higher level units (the institutions in this example) are contacted.
Whether the list already exists or must be constructed as sampling takes place, authors should delin-
eate the process of building the sampling frame from which the final sample was determined. 

4. Sampling Design

There are several types of sampling designs that are appropriate for generalization to a target popula-
tion. A few sampling strategies exist that might be less appropriate and are discussed briefly at the end
of this section. For generalization, especially with correlational research designs, it is best to have what
is referred to as a probability sample where each member of the sampling frame has a known probabil-
ity of being selected into the sample. 

One probability sampling scheme is simple random sampling (SRS) in which each unit in the sam-
pling frame has an equal chance of selection. SRS can only be achieved if the researcher has a list of the
entire sampling frame (either physically or theoretically as in random digit dialing whereby a com-
puter can generate all possible combinations of numbers). Another SRS-equivalent sampling strategy
is referred to as systematic sampling. In this process, a sampling interval is determined to arrive at a
final sample number. For example, if there are 5,000 students at a university and a sample of 200 stu-
dents is desired, then a list of the students sorted in random order can be created and every 5,000/200
= 25th student on this list is selected for the sample. Note that each population member’s probability
of selection (π) is the inverse of this interval (e.g., π = 1/25 = .04). Systematic sampling can also be used
when a list is not available, by selecting, for example, every 10th shopper to enter a store or every 20th
voter to arrive at a polling place. In order to use this systematic sampling strategy, an estimated size of
the population coming to the location would be needed, along with a desired sample size; these two
values would provide the appropriate sampling interval.

Another probability sampling design is termed stratified sampling. In this sampling method, mem-
bers of the sampling frame are split into mutually exclusive categories (strata) and then elements are
sampled from each category to ensure specific representation of members of each stratum; the selec-
tion rate might or might not be proportional to the population size within each stratum depending on
the researchers’ needs. The resulting sample will be more representative based on the strata as com-
pared to the use of SRS and systematic sampling, but this result has implications for assumptions
underlying sampling error estimates as will be discussed in Desideratum 10.

Multistage sampling designs refer to the selection of primary sampling units (PSUs) as a first stage of
sampling (such as the random selection of U.S. colleges and universities) and then sampling of one or
more lower level units within each of the selected PSUs (such as faculty or students within those
selected universities). Multistage sampling is usually undertaken when a list of units in the population
is not available or it is more efficient to collect data within clusters. For example, it would be easier to
collect opinions of 10 students at each of 20 college and universities than to go to possibly 200 differ-
ent campuses to reach 200 randomly selected students.

As part of multistage sampling, a technique called probability proportionate to size sampling can be
used where the probability of selection of the PSU depends on the size of the PSU. If an equal number
of final elements is intended to be drawn from each PSU (such as 10 students at each campus), then if
PSUs are drawn with equal probability, students at small institutions will have a higher probability of
being in the sample and the final sample will over-represent students at small campuses. Therefore, a
sampling design to result in approximately equal probabilities of selection of lowest level units involves
selecting PSUs directly proportionate to the size of the PSU, such that small PSUs have smaller chances
to be in the sample and vice versa. This technique is further discussed in Desideratum 8.



Survey Sampling, Administration, and Analysis • 401

Sampling designs can incorporate any one or all of the previously mentioned strategies. For exam-
ple, a stratified, multistage systematic sample might be used by researchers wanting to survey fresh-
men at colleges and universities in the U.S. First, a list of 4-year institutions would be obtained and
each might be identified by sector (public/private). Researchers might specifically select institutions
using SRS from each sector to guarantee that the sample would include a specified number or per-
centage of the sample within each sector. Once institutions are selected, and assuming the registrars
were not permitted to provide lists of all enrolled students, the sample of students could be selected
using stratified systematic sampling by day and time. On specific selected days and times researchers
would be on campus and approach every ith student who passes a certain location or locations. 

Because the statistical analysis approach taken depends on the sampling strategy used with proba-
bility samples, authors should report the specific sampling strategy taken and at each level if a multi-
stage sample is drawn. Authors also should report the selection rate either overall, with SRS, or at each
level of the selection process for more complex designs. If a stratified sampling design was used, the
strata should be defined. 

Two additional sampling strategies, both non-probability designs, are prevalent in current litera-
ture. Convenience sampling and chain-referral sampling are both seen, with the latter being a more
defensible strategy under some circumstances. Convenience sampling is a process by which respon-
dents are identified in a manner that is convenient to the researcher: undergraduate students at a uni-
versity, patients in a given clinic, people on the street. With this sampling approach, the sample is not
drawn from the full population of interest to the researcher and therefore the generalizability of any of
the researcher’s findings is questionable. If researchers indicate that they want to generalize findings
to all U.S. university students and then report on a sample of psychology students who participate in
required subject pool research at University X, then there is a severe disconnect between the target
population and the sample; coverage errors would be extremely likely. Authors who report studies
based on convenience samples should defend why they believe that the findings can be generalized to
the population of interest and also provide information regarding the similarity of the sample partic-
ipants with target population characteristics. Even if such a similarity can be demonstrated (such as
with commonly available data such as age and race/ethnicity), there are other ways that the conven-
ience sample might not be similar to the target population. For example, subjects might differ on
motivational or attitudinal characteristics not often measured. In general, convenience sampling is
more acceptable with experimental designs, given that the desire usually is not to report on the finite
population relations among measures but rather to examine the effect of a manipulated variable
under the control of researchers.

The second non-probability sampling strategy, referred to as chain-referrals (including snowball
sampling), has recently gained in use and opinion. With this sampling strategy, a representative sam-
ple of some given population is first found, and those individuals with the characteristic of interest are
asked to refer the researcher to similar individuals. Such a strategy can be used to determine popula-
tion estimates of “hidden” populations such as drug users or the homeless (Frank & Snijders, 1994). If
chain-referrals are used, authors should describe the method used to obtain the initial sample and
demonstrate that it obtained a fairly representative initial group and provide information about the
number of waves or links in the chain referral collection. 

5. Survey Administration 

Because the method of survey administration has been found to influence both the survey response
rate (and thus non-response error) and the responses themselves (and thus measurement error),
authors should provide information about the administration process, including the mode of admin-
istration, the number and type of contacts, and whether anonymity or confidentiality was ensured. 
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The most typical survey modes include paper and pencil, face-to-face interview, phone interview,
and web-based administration. There is no preferred survey administration mode, as its success
depends on such considerations as the content area of the survey, the target population for which the
survey is intended to be used, the anonymity, the length, and the time and labor resources available to
administer the survey. Researchers should take care to determine whether the chosen mode might
pose a problem in terms of response rate or response bias. For example, for sensitive topics, a face-to-
face interview, in which an interviewer might gain rapport with the respondent, can yield more valid
data, as can an anonymous web survey. A web survey also can be efficient and inexpensive, but is sub-
ject to a specific non-response bias for those lacking access and/or familiarity with the internet. A
paper and pencil mail survey tends to yield poorer response rates but is a fairly inexpensive mode and
can accommodate longer surveys. Phone surveys provide quick turnaround but can be limited to
shorter surveys and require a sizable labor force to administer. 

In addition to the mode of survey used, authors should provide information about the survey
administration process. Dillman (2000) expressed many practical suggestions for obtaining high
response rates and valid information from each item response. Particularly, a multi-contact system is
viewed as necessary, which includes possible pre-notification that a survey is coming, the sending of
the survey, and multiple non-response contacts with the final contact being of a different mode than
the initial contact (for example, by phone if the initial survey was attempted to be administered by
mail). An additional consideration in the survey administration process is the anonymity of the sur-
vey. If anonymous, responses have been found to have less bias under some contexts, however
researchers lose the ability to track respondents and thus typically must send non-response contacts
to all members of the sample or use a method whereby respondents send back a postcard indicating
that they have responded. If survey response is desired to be tracked, researchers must put an identi-
fying number or code on each survey; note that a name is not necessary.

For surveys that involve interviewer interaction with the respondent (such as with a face-to-face or
telephone interview), authors should indicate the level of training that interviewers received or expe-
rience that they have and whether interviewer effects might have yielded bias in measurement (for
example, having male interviewers ask female adolescents about depressive symptoms). 

Survey administration also includes the process of transcribing data into a data set and this data-
processing step can involve error. In the case of web surveys and computer-assisted telephone inter-
views, the data are already entered, although authors should verify that testing of the system has
occurred prior to use. For other types of surveys, the data entry process should be outlined, 
including methods of quality control such as double entry and random quality checking. 

6. Response Rate 

Response rates inform researchers about the possibility for nonresponse bias as a potential compo-
nent in survey error. Although the calculation of response rates may appear simple on the surface, it is
actually fairly complex. In the late 1990s a group of survey research organizations agreed upon a set of
standards in calculating survey outcome rates including contact rates, refusal rates, and eligibility
rates. These definitional standards were published by the American Association for Public Opinion
Research (2006). To illustrate the definitional complexities in reporting response rates, consider the
following example. With a telephone survey, calls are made but when there is no answer, a message on
an answer machine or voicemail is not left. Should that household or person be considered a non-
respondent? Did he or she have the opportunity to respond to the survey? The standards are particu-
larly helpful in determining how to report rates under complex sampling schemes. Researchers should
use these reporting standards to inform their readers of the amount of non-response and thus the 
possibility of non-response error.
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Although a common concern in survey administration is the level of response rate that is needed for
appropriate inference to the population, such standards do not exist. In the late 1970s, the U.S. Office
of Management and Budget (OMB) indicated that data collection needs a minimum response rate of
75% and proposed federal projects with anticipated response rates less than 50% should not be
approved. The current OMB guidelines, however, have been altered to indicate that surveys need to
yield “reliable results” and indicate that a high response rate is one source of reliability (Smith, 2002). 

7. Sources of Non-Response 

Non-response can be at an item or a unit (person) level. Issues influencing possible non-response
should be delineated. Groves and Couper (1998) grouped the influences on non-response into four
categories, two of which are under the control of the researcher and two that are not. The first two
include survey protocols and interviewer training as addressed in Desiderata 4 and 5. The second two
include the social climate for surveys in general (sometimes referred to as “survey fatigue”) and the
personal characteristics of the respondent. 

As an example of the latter influence, suppose that a researcher wanted to report the average alco-
hol consumption of university students and finds that disproportionately more women than men
responded to a survey. Such disproportionate non-response rates would likely result in non-response
bias in parameter estimates. Assuming men consume more alcohol than women, the average in the
obtained sample likely would be lower than the average in the population because women are over-
represented in the sample due to their higher response rate. 

Non-response does not necessarily indicate that estimates from the sample will be biased or not
accurately reflect population parameters. A challenge to the researcher, then, is to determine whether
non-response bias exists. Several approaches can be taken to evaluate possible non-response bias,
including examining disproportional response rates using sampling frame information, analyzing
external data to evaluate whether the sample is distributed similarly to the population, dissecting
information from interviews about possible reasons why item and/or unit non-response exists, and
examining whether the number of contacts needed to convert a sample element to a responder is
related to sample characteristics. Additionally, one may conduct a subsequent survey of non-respon-
ders; although difficult to implement, it can provide valuable information about why some members
of the selected sample did not participate in the survey. Authors should share results from these non-
response analyses with the reader.

If a possible non-response bias exists, post-stratification weighting can be used to compensate for
the disproportionate non-response rate. For the alcohol consumption survey example, sampling
weights for responses from men would be adjusted higher to account for their lower response rate (see
Desideratum 8 for a discussion of the creation and use of weights in an analysis).

8. Sampling Weights

The sampling weight is the inverse of the selection probability, 1/π
i
, where π

i
is the selection probabil-

ity for the ith sample member, as introduced in Desideratum 4. The sampling weight can be thought
of as the number of people in the population that this specific sample member is representing. If a SRS
has been used in selecting the sample, then all sampling weights for observations will be equal and can
be ignored in the analysis. However, if the sampling design includes stratification, multiple stages, dis-
proportionate selection probabilities across strata, or adjustments for non-response, then inclusion of
sampling weights in the analysis typically will be necessary to obtain unbiased estimates of population
parameters. Care should be taken in understanding how the selected software utilizes the sampling
weights. Some software (such as SPSS) uses weights as frequency weights and assumes that the sample
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size is equivalent to the sum of the weights and therefore the raw sampling weight will need to be
scaled. 

If not properly accounted for in the analysis, disproportionate selection of elements into the sam-
ple can adversely affect the resulting population estimates from an analysis. There are many reasons
for the use of disproportionate sampling rates, and three situations that result in sampling weights that
differ across sample members are discussed here: multistage sampling, over-sampling by stratum, and
post-stratification adjustments. First, consider the example of a simple two-stage sampling design.
Suppose we want to obtain a sample of 5,000 freshmen from 4-year colleges and universities in 
the U.S., and that there are 2,000,000 freshmen in about 2,000 institutions in the population. One 
way to obtain the desired sample would be to randomly sample 5,000 students out of the total pool of 

5,000
2,000,000 students. To do this, we would use a selection probability of π =

2,000,000 
= .0025 (or 25

out of every 10,000 students). We could, for example, take a randomly sorted list of the 2,000,000
students, select every 400th name on the list, and we would obtain a sample of 5,000 names; each of the
names had a .0025 chance of being selected into the sample. The sampling interval of 400 was obtained
by dividing the total population (2,000,000) by the number of desired sample elements (5,000). Note

that this sampling interval is the reciprocal of the selection probability:     1
.0025

= 400, or the sampling

weight. Each person in our hypothetical sample represents 400 people from the original population. 
In actuality, we do not have a list of all freshmen in the U.S., so it is not feasible to simply randomly

sample 5,000 of the 2,000,000 students. We might, instead, draw a multistage sample (as discussed in
Desideratum 4) by selecting institutions and then sampling students within each selected institution.
The difficulty with this approach, however, is that we now need to determine two selection probabili-
ties, one for the institutions (π

j
) and one for the freshmen within the selected institutions (π

i|j
). In

order to obtain a sample of 5,000 students, the product of these two probabilities must equal the over-
all desired selection probability of .0025. We can arbitrarily select a value for one of these probabilities
and the other value will therefore be determined. For example, suppose we decide to sample 5% (or
.05) of the students within each selected college. We would then need to select 5% of the colleges
because .05 × .05 = .0025. Sampling 5% of the colleges (π

j
= .05) and sampling 5% of the freshmen at

each selected college (π
i|j

= .05), we would obtain a sample with an expected size of 5,000 and each ele-
ment in the population would have an overall selection rate of .0025 (π

ij
= π

j
× π

i|j
= .05 × .05 = .0025).

But note that the number of freshmen typically varies across colleges and with this proposed process
we might sample a relatively large number of students in very large colleges (for example, with a 
sampling rate of 5% and 5,000 freshmen in a college we would have a sample of 250 freshmen at that
college) and we might sample only 1 freshman at another college (because there might be only 20
freshmen in total at the college). For the sake of efficiency, it is more typical to conduct surveys in 
a standardized manner across PSUs and with this sampling plan of using a fixed sampling rate within
all institutions we could not guarantee a specific size of the sample at each college. An alternate plan
might be to sample institutions at a fixed selection rate and then to sample a specified number of fresh-
men at each college, for example, 20 students. With this sampling design of taking a specified number
of participants at each site, in a two-stage sample, the students in small schools have a very high 
probability of selection into the sample if their college is selected (given the example numbers above,

the conditional selection rate would be π
i|j

= 20
20

=1.00). Conversely, students who are in very large col-

leges have a relatively small chance of being selected for the sample if their college is chosen (for

example, π
i|j

=   20
5000

= .004). If the colleges are sampled with equal probabilities, then students

from these two different colleges would have very different overall rates of selection: π
ij

= π
j
× π

i|j
= .05

× 1.00 = .05 for students in small colleges and π
ij

= π
j
× π

i|j
= .05 × .004 = .0002 for students in large 
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colleges. Therefore, freshmen in small schools would be over-represented in the sample, selected at a 
rate 250 times that of the students in the larger colleges. This overrepresentation can be handled in
analyses by using sampling weights. Students in our example small college would have a weight of

ws .
1
05 = 20 and for students in our larger college, w

l
=      1

.0025
= 500.

A way to avoid having unequal numbers of selected students per colleges or vastly unequal overall
probabilities of selection for individual students across colleges is to sample colleges not with equal
probability but rather to select them with a method that samples larger institutions at higher rates and
smaller institutions at lower rates. This method, called probability proportionate to size (PPS) sampling,
was introduced in Desideratum 4 and is commonly used in national data collection. With PPS sam-
pling, the overall selection probabilities for sample members (π

ij
) will tend to be similar, but their con-

ditional probabilities (π
i|j

) within their respective PSUs will differ, as will the selection probability for
their PSU. For example, suppose with our previous example that we want to select about 20 freshmen
at each college no matter the size. A college with 20 freshmen would need to have a .0025 chance of
selection into the sample (that is, π

j
= .0025), to result in an overall probability of inclusion for a stu-

dent in that college of .0025 (π
ij

= π
j
× π

i|j
= .0025 × 1.0 = .0025). Alternately, a college with 5,000 fresh-

men would need to have a chance of selection of .625 in the sample (π
j
= .625), to result in an overall

selection probability for the students in those colleges of .0025 (π
ij

= π
j
× π

i|j
= .625 × .004 = .0025). The

use of PPS is one source of obtaining sample members with approximately equal sampling weights but
this equivalency is not guaranteed.

Disproportionate sampling rates across strata may also be used, and are employed to obtain suffi-
cient numbers of elements to undertake subgroup reporting. When the desire is to report estimates by
subgroup, sample designers might employ a higher rate of sampling in certain strata than the rate used
in other strata. For example, continuing our example, special interest might lie in reporting estimates
for African American freshmen and, therefore, instead of selecting 20 freshmen at random at each
institution, researchers might select 5 African American freshmen and 15 freshmen of other race/eth-
nic groups. This method of selection will likely result in conditional sampling rates for African
American students that are greater than that of other students within the same institution (for exam-
ple, if there are 100 African American freshmen and 900 non African American freshmen at the col-

lege, then the conditional sampling rate for African American students is π
i|j

= 5
100 

= .05 and for other

students in the same institution the sampling rate would be π
i|j

=  15
100 

= .017. These differing con-

ditional probabilities will lead to different sampling weights.
Finally, as suggested in Desideratum 7, post-stratification weighting adjustments might be

employed by the survey designers to adjust for non-response. Although equal selection probabilities
might have been used for all elements in the initial sampling plan, some groups typically respond at
lower rates than others. After survey data are collected, sampling weights for responses from under-
represented groups (given their response rate) would be set higher to reflect their true proportion in
the population (if it is known or can be approximated) and the sampling weights for proportionately
over-represented groups would be adjusted lower. It is important to note that the use of post-stratifi-
cation weighting for non-response can be somewhat controversial (Lohr, 1999) and several methods
exist to adjust for the non-response including cell weighting, raking, regression estimation, and more
complex modeling approaches. 

Statistically, the use of sampling weights to address non-response reduces bias in parameter esti-
mates but it should be noted that bias is reduced at the expense of precision. If the non-response in fact
is not related to the variable of interest, the parameter estimate will not be biased and weights to adjust
for disproportional non-response will not be needed. However the use of weights (either developed
through post-stratification adjustment or due to initial disproportionate selection probabilities) in
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this situation will result in estimated standard errors that will be larger than if they had been estimated
as if from an equal probability of selection sample. Therefore, the weighted analysis becomes less pow-
erful. Authors should be explicit about the sampling weights available for their data and whether and
how they were included in the analysis. Some authors may opt to analyze the data both weighted and
unweighted to examine the effects of the inclusion of weights and provide both pieces of information
in their manuscript.

9. Design Effects 

A design effect refers to an inflation or deflation in the sampling variance (or square of the standard
error) of a statistic due to the chosen sampling design. Under an assumption of simple random sam-
pling (SRS), the sampling variance (sv) for the estimate of a population mean is typically defined in
textbooks and in software packages as 

sv(μÎ) =
s2
y (1)n

where 

s 2
y
= 

�
i= 1

n

(y
i
– μÎ)2

. (2)
(n – 1)

Thus, as the sample size increases, the estimate of the sampling variance of μÎ decreases and the esti-
mate of μÎ becomes more efficient. Technically, Equation (1) assumes that observations were sampled
with replacement, which is not typically the case in practice. However, when sampling has been under-
taken without replacement, the use of Equation (1) to obtain an estimate of the sampling variance can
be acceptable if the sampling fraction is small. The procedure of determining the precision of a param-
eter estimate is referred to as variance estimation. It is more typical in applied research, however, for
authors to refer to the estimate of the standard error (se) for the parameter estimates. This se is just the
square root of the sampling variance: 

se(μÎ) = �sv(μÎ) =
�s2

y =
s

y . (3)
�n �n

When analyzing data that have been collected through some sampling designs described in
Desideratum 4, one of the main problems is that the estimates of sampling variances (and thus stan-
dard errors) will be biased when using the traditional formulas in Equations (1) and (3). Use of these
formulas includes the important assumption that observations are independent. When data have
been collected using complex sampling designs, the observations often are not independent and thus
sampling variances calculated via Equation (1) will be biased. A measure of how biased a traditional
sampling variance estimate will be is called the design effect (DEFF). DEFF is the ratio of the correct
sampling variance of a statistic under the complex sampling design over the sampling variance that
would have been obtained had SRS been used (Kish, 1965). The square root of DEFF (termed DEFT)
is the estimate of the bias in the standard error estimate. If the complex sampling design has no effect
on the sampling variance, the value of the DEFF would be 1.0. If the sample design improves the pre-
cision of the parameter estimate (such as with stratification), the DEFF will be less than 1.0, and if the
design lessens the precision (as found with multistage sampling), the DEFF will be greater than 1.0. To
estimate the DEFF for a sample mean, one must obtain an estimate of the appropriate sampling 
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variance using software that can accommodate the sampling design (such as STATA, SUDAAN,
WesVar, and select procedures in SAS) and calculate the “naïve” sampling variance assuming SRS
with any typical software. The estimate of DEFF for the sample mean, then, is 

DEFF = 
sv(μÎ)

complex . (4) 
sv(μÎ)

SRS

Authors can provide these DEFFs for key variables in analyses to allow the reader to determine
whether statistical procedures to accommodate the sampling designs should be used or whether tra-
ditional statistical procedures will yield sufficiently robust standard error estimates.

If software that can accommodate survey design information is not available to the researcher, it is
still possible to obtain an estimate of the appropriate sampling variance of the sample mean for select
sampling designs. Under multistage sampling with no stratification, an estimate of the DEFF of the
sample mean can be obtained based on the intraclass correlation (ICC). The ICC is a measure of the
amount of variability in the response variable y that can be explained by the fact that sample members
were selected from within PSUs as opposed to selected randomly. The ICC typically ranges from 0 to
1 and a value close to 1 indicates that all of the elements in the PSU are nearly identical and therefore
most variance is found between the PSU means as opposed to within PSUs. An ICC value near zero
indicates that, within PSUs, the individuals differ on the response variable and the PSU means do not
differ greatly. An estimate of the ICC for a given sample, ρÎ, can be obtained using components from
an analysis of variance on the variable of interest using the PSU identifier as the between subjects 
factor:

ρÎ = 
MS

B
– MS

W (5)MS
B

+ (n. – 1)MS
W

.

Where MS
B

is the model mean square, MS
W

is the mean square error, and n. is the sample size per
group if balanced. The design effect of the mean is thus 

DEFF = 1 + (n. – 1)ρÎ. (6)

Providing DEFF information for key variables in the analysis alerts the reader to information about
possible violation (or lack of violation) of independence assumptions.

10. Variance Estimation 

Variance estimation refers to the estimation of appropriate sampling variances (or standard errors) for
a given sample statistic (such as a mean, regression coefficient, or factor loading). When data are not
collected with SRS, typical formulas for sampling variance and standard error estimations are not
appropriate.

The first decision that a researcher must make is whether the sampling strategy is to be part of the
analytic model or whether the sampling strategy will be accounted for in the analysis. The former,
referred to as a model-based analysis, presumes that the sampling information is helpful in explaining
the hypothesized relations within the data. For example, if a two-stage survey of students within uni-
versities was conducted and students were asked about alcohol consumption and location of resi-
dence (on-campus housing, fraternity or sorority, off-campus with friends, off-campus with parents),
a researcher might posit that the relation between location of residence and alcohol consumption
actually depends on the type of university the student is attending, referred to as a cross-level 
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moderation. In that case, the researcher might want to include university information (sampling
information) into the analytic model. Techniques such as hierarchical linear modeling (see Chapter
10, this volume) allow the researcher to model the nested structure of the data resulting from the 
two-stage sampling design. 

For those researchers who do not hypothesize that the sampling information is part of the analytic
model, that information can be used to appropriately estimate the sampling variances (or standard
errors) for the traditional single-level analysis. Such analyses are referred to as design-based analyses.
The remainder of this section will refer to sampling variance estimation in design-based analyses.

When a sample has been collected via multistage sampling, the estimates of parameters (such as
regression coefficients, means, or correlations) typically will be less precise than had a sample of the
same size been collected through SRS. Therefore, if a researcher analyzes the data assuming inde-
pendence of observations, the standard errors for estimates and thus the confidence intervals around
the estimates will be underestimated or too narrow; the degree of this bias will depend on the homo-
geneity of the response variable(s) across clusters as can be measured by the design effect (see
Desideratum 9). 

If stratification is used as part of the sampling design and the response variable is homogeneous
within strata, the estimates from the sample will be more precise than had a sample of the same size
been obtained through SRS and thus DEFF is less than 1.0. Therefore, if a researcher analyzes the data
ignoring the fact that stratification was used in the sampling design, standard errors associated with
parameter estimates will be overestimated and the researcher will lose power and increase the likeli-
hood of making Type II errors. If a sampling design includes both stratification and multistage sam-
pling, the increase in precision of estimates resulting from stratification tends to be smaller than the
decrease in precision found with multistage sampling. 

Several methods are available to estimate sampling variances, standard errors, and test statistics
when analyzing data collected through complex sampling designs. Design effect adjustments, lin-
earization, and replication techniques are some of these methods, and while some of these methods
can be estimated by hand, most will depend on having access to software that can accommodate the
sampling information. 

A simple method to adjust for a complex sampling design is to inflate the standard errors obtained
from a conventional weighted analysis by the square root of the design effect (DEFT) of the mean of
the dependent variable(s) in the analysis. Equivalently, a design effect adjusted sampling weight could
be calculated and used in the analysis. The procedures of adjusting a standard error estimate by the
DEFT or using an adjusted sampling weight result in accurate adjustments of the standard error for a
simple statistic such as the mean. However, these procedures often result in conservative estimates of
the sampling errors in more complex statistical procedures such as regression and structural equation
modeling. Additionally, the researcher needs very good estimates of DEFF, which would require soft-
ware that can accommodate the sampling design information. Therefore, it is suggested that
researchers plan to use one of the more advanced techniques as described below.

Estimating sampling variances using a linearization method is a more appropriate approach.
Because complex sample statistics are actually nonlinear functions, their sampling variances are often
obtained by creating an approximate linear function, and then the variance of the new function is used
as the sampling variance estimate. This approach to variance estimation is referred to by several addi-
tional terms in statistical analysis literature: the delta method, Taylor Series approximation, and propa-
gation of variance. In the specific case of complex sample data derived from a stratified multistage
sample, linearization results in a variance estimate that is a combination of the variation among PSUs
within the same stratum. For example, for a stratified multi-stage sample with equal sample sizes
within each PSU in a stratum, the standard error of the mean would be estimated in two steps. First,
the sampling variance within each stratum would be estimated 
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s2
h

= �
a

α = 1
(y˝

hα – y˝
h
)2

(7)
a – 1

where α represents the PSU, a is the total number of PSUs within the stratum, y˝
hα is the mean on the

response variable in PSU a within stratum h, and y˝
h

is mean of the response variable within stratum h
across all PSUs. Then these estimates of sampling variance within each stratum are combined to
obtain the overall standard error 

seμÎ = �
h = 1
�
H s 2

h

n (8)

where h represents the stratum, H is the total number of strata, n is the total sample size, and s 2
h

is the
variance of PSU means within stratum h as calculated in Equation (7).

There are many options to determine an approximate linear estimate and the choice of these
depend on the complexity of the sampling design and the complexity of the parameter being esti-
mated. Equations for linearized estimates for sampling variances for a range of different sampling
schemes are available in Kalton (1983). Most researchers, however, use computer software that has
been specially designed for complex sample data to provide these linearized estimates; information
about software options is provided at the end of this section.

Another option for appropriate estimation of standard errors when using complex sample data is
to use a replication method. The phrase “replication method” means that repeated samples are taken
of the elements in the original sample to constitute new samples. For each of these new samples, the
statistic of interest (a mean, a regression coefficient, etc.) is calculated. Then, the empirical distribu-
tion of those statistics is used to determine the estimated sampling distribution. With complex sam-
ple data, researchers most often use the following replication methods: Jackknife Repeated Replication,
Balanced Repeated Replication, and bootstrapping. A very nice description of each of these methods is
available in Rust and Rao (1996). The choice of any of these methods can depend on the statistical soft-
ware available, whether replicate weights are already provided with the data, and the nature of the
complex sample design. 

Jackknife repeated replication (JRR) entails temporarily dropping one or more observations from
the original dataset, obtaining the estimated statistic based on this subsample, and repeating this
process until each observation has been dropped once. With multistage data, this process is usually
accomplished by dropping all of the elements in one PSU at a time: the first-stage sampling unit, the
PSU, is seen as the “dropped” observation. Sampling weights for elements from the other PSUs in the
same strata are then adjusted to account for the dropped observation(s) yielding a sum of weights that
is the same as the original sum of weights. 

The standard error of the statistic is then calculated as a function of the variability of replicate esti-
mates from the original estimate, although the calculation depends on whether a stratified sample was
taken at the first-stage of selection. On some national and international data sets that are publicly
available, the adjusted weights are already provided for the analyst. For example, a dataset might
include 90 jackknife weights, called JACK1, JACK2, …, JACK90, indicating that the analyst might
choose a replication method for standard error estimation, running the analysis 90 times, each time
with a different weight. Those 90 estimates will then be used to determine the sampling variability of
the original full sample estimates.

Balanced repeated replication (BRR), also referred to as half-sample replicates, is an approach where
each replicate is created using half of the PSUs in the sample, one from each stratum. A second repli-
cate, the complement replicate, can then be created out of the remaining PSUs. BRR can only be
accomplished when the sampling design has been undertaken with the selection of two PSUs from
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each stratum. If the sample design did not include two PSUs from each stratum, similar strata and/or
PSUs can be grouped to obtain such a design but such realignment must be done with caution. The
term “Balanced” in the name BRR refers to the need to choose orthogonal replicates. There is a com-
plication creating replicates using half of the PSUs (chosen at random) because dependent replicates
can result, providing estimated statistics that are correlated across replicates. For example, if we have
four strata in our sampling design (strata 1–4) and within each stratum sampled two universities (with
IDs of 1 to 8 continuous across strata), we could obtain the following replicates with selected univer-
sity IDs:

Replicate 1: 1, 3, 5, 7
Replicate 2: 1, 4, 5, 8
Replicate 3: 2, 4, 5, 8 

Because replicates 2 and 3 share three of the same universities in the replicate sample, the estimated
statistic in these two replicates will be very similar. For this reason, design matrices are used to select
the appropriate PSUs for each BRR replicate sample; they are not chosen at random). The standard
error of the statistic is then determined based on the variability of the estimate across replicates.

Bootstrapping is similar to JRR and BRR in that the observations from the original sample are used
to form replicate samples. In bootstrapping, however, observations from the original sample are sam-
pled with replacement to obtain a dataset that can be of the same size as the original dataset and no
reweighting of the observations is typically undertaken. Bootstrapping is not an easy task with com-
plex sample data but is a very flexible method. The process of creating bootstrapped replicates will
depend on the complex sampling design. The standard error of the estimate will be a function of the
variability of the estimate across the many bootstrap replicate samples. Bootstrap methods typically
require many more replications than JRR or BRR. Additionally, while JRR and BRR estimation are
available in many survey software packages already, bootstrapping must usually be programmed by
the researcher. 

There are several software options for the researcher who would like to use linearization or
replication techniques, in conjunction with their sampling design information, to appropriately 

estimate sampling variances of statistics. Starting with version 8, SAS has included linearized 
sampling variance estimates for select procedures (such as means, regression coefficients, and 
frequency tables.) The WesVar software was developed specifically for analyzing complex sample data
and relies on replication techniques to variance estimation; both BRR and JRR are accommodated 
in this software. SUDAAN supports both JRR and BRR replication methods, as well as linearized 
variance estimates. Stata, like SAS, is a full data base management and statistical package that also
includes a complex sample modeling component, relying on linearization for variance estimation.
Unfortunately, the base version of SPSS does not have complex sample variance estimation functions
available. An add-on module, called COMPLEX, allows researchers access to advanced functions.
Finally, specialized statistical software packages, such as LISREL and Mplus for structural equation
modeling, are starting to include estimation techniques for data that arise from complex sampling
designs.

If authors have used data from a complex sampling design, at a minimum they should alert 
readers to the violation of assumptions for traditional statistical analyses and the likely effects on stan-
dard errors and inference that these violations would present. With the many software programs that
are available to appropriately analyze complex sample data, authors really should attempt to accom-
modate the sampling design using one of the sampling variance estimation techniques identified
above.
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11. Limitations in Survey Data Collection 

Researchers are encouraged to remark about anything in the survey data collection and analysis that
was not in line with the guidelines above. The context of the survey, however, is the most important
consideration and decisions pertinent to this context can easily override the desiderata and other
guidelines presented. Remarks about the likely effects of each of the problems or issues that arise for
each desideratum would be appropriate, including coverage error in the discussion of the sample
frame, measurement error in the discussion of questionnaire development and measures used, non-
response error in the discussion of the procedures and response rate, editing and process errors, and,
of course, sampling error in the statistical analysis portion.
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Survival Analysis

Paul D. Allison

Survival analysis is a collection of statistical methods that are used to describe, explain, or predict the
occurrence and timing of events. The name survival analysis stems from the fact that these methods
were originally developed by biostatisticians to analyze the occurrence of deaths. However, these same
methods are perfectly appropriate for a vast array of social phenomena including births, marriages,
divorces, job terminations, promotions, arrests, migrations, and revolutions. Other names for sur-
vival analysis include event history analysis, failure time analysis, hazard analysis, transition analysis,
and duration analysis. Although some methods of survival analysis are purely descriptive (e.g.,
Kaplan-Meier estimation of survival functions), most applications involve estimation of regression
models, which come in a wide variety of forms. These models are typically very similar to linear or
logistic regression models, except that the dependent variable is a measure of the timing or rate of
event occurrence. A key feature of all methods of survival analysis is the ability to handle right censor-
ing, a phenomenon that is almost always present in longitudinal data. Right censoring occurs when
some individuals do not experience any events, implying that an event time cannot be measured.
Introductory treatments of survival analysis for social scientists can be found in Teachman (1983),
Allison (1984, 1995), Tuma and Hannan (1984), Kiefer (1988), Blossfeld and Rohwer (2001), and
Box-Steffensmeier and Jones (2004). For a biostatistical point of view, see Collett (2003), Hosmer and
Lemeshow (2003), Kleinbaum and Klein (2005), or Klein and Moeschberger (2003). Specific desider-
ata for applied studies that use survival analysis are presented in Table 31.1 and later explained in
detail. 

1. Definition of the Event

The first step in any application of survival analysis is to define, operationally, the event that is to be
modeled. Ideally, an event is a qualitative change that occurs at some specific, observed point in time.
Classic examples include a death, a marriage, or a promotion. In such cases, where there is little ambi-
guity, there may be no need to explicitly define the event. Other applications may not be so clear cut,
however. Some changes (e.g., menopause) take a while to “occur,” so it is necessary to make decisions
about criteria for determining the timing of the event. It is also possible to define events with respect
to quantitative variables, especially if they undergo sharp, sudden changes. For instance, a “stock 
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market crash” could be said to occur if a particular market index falls more than 30% during a single
week. Clearly, this definition involves some arbitrary choices that must be carefully considered and
justified. A person could be said to “fall into poverty” if his income falls below some specified thresh-
old. But this demands a rationale for choosing that threshold. 

Another decision that must be made is whether to treat all events the same or to distinguish 
different types of events. If the event is an arrest, for example, one could either treat all arrests the 
same or distinguish between arrests for misdemeanors and arrests for felonies. All deaths could 
be treated alike, or one could distinguish between different kinds of deaths according to reported
causes. Of course, such distinctions are only possible if data are available to differentiate the event
types. Why do it? Usually, it is done because there are reasons to believe that predictor variables have
different effects on different event types. In such cases, the prevailing strategy is to estimate competing
risks models (see Desideratum 9). The downside of distinguishing different event types is that fewer
events are available to estimate each set of parameters, which might substantially reduce statistical
power. 

Lastly, when events are repeatable for each individual, one must decide whether to focus on a single
(usually the first) event for each individual, or to use a method that incorporates all the repeated
events. If the average number of events per individual is small, say, less than two, it is usually better to
restrict attention to the first event. 

Table 31.1 Desiderata for Survival Analysis

Desideratum Manuscript

Section(s)*

1. The event is defined in a clear and unambiguous way. I

2. The observation period is specified with careful consideration of origin time and possible late entry. M

3. Censoring is discussed, with indications of amount, type and reasons for censoring. M

4. An appropriate choice is made between a discrete versus a continuous time method. M

5. An appropriate choice is made between a parametric versus a semi-parametric method. M

6. Choice of covariates is discussed and justified. Possible omitted covariates are considered. M, D

7. Any time-varying covariates are appropriately defined, and a method for handling them is chosen. M

8. If there are multiple events per individual, an appropriate method is chosen to handle the possible M

dependence among those events.

9. If there are competing risks, an appropriate method is chosen and appropriate tests are reported. M

10. Sampling method and sample size are explained and justified. M

11. The treatment of missing data is addressed. M, R

12. The name and version of the software package is reported. M,R

13. Summary statistics of measured variables are presented; information on how to gain access to the R

data is provided.

14. Graphs of the survivor function(s) are presented. R

15. The proportional hazards (or equivalent) assumption is evaluated. R

16. For competing models, comparisons are made using statistical tests (for nested models) or R

information criteria (for non-nested models). 

17. Coefficients (or hazard ratios) are reported, together with standard errors, confidence intervals and R

p-values.

18. Conditional survivor and/or hazard functions may be presented. R

19. Potential methodological limitations are discussed. D

* Note : I = Introduction, M = Methods, R = Results, D = Discussion
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2. Observation Period

Survival analysis requires that each individual be observed over some defined interval of time; if events
occurred during that interval, their times are recorded. If events are not repeatable, observation is
often terminated at the occurrence of an event. Decisions about the starting and stopping times for the
observation period should be reported and justified. 

Most methods of survival analysis (e.g., Cox regression) require that the event time be measured
with respect to some origin time. The choice of origin time is substantively important because it
implies that the risk of the event varies as a function of time since that origin. In many cases, the choice
of origin is obvious. If the event is a divorce, the natural origin time is the date of the marriage. In other
cases, the choice is not so clear cut. If the event is a retirement, do you model age at retirement or time
in the labor force? 

Ideally, the origin time is the same as the time at which observation begins, and most software pro-
grams for survival analysis presume that this is the case. Frequently, however, observation does not
begin until some time after the origin time. For example, although we may use date of marriage as the
origin time in a study of divorce, couples may not be recruited into the study until years later. This is
called late entry or left truncation. Because individuals are not at risk of an observed event until obser-
vation begins, special methods are necessary to take this into account. For more details, see Allison
(1995, pp. 161–165)

3. Censoring

Censoring is endemic to survival analysis data, and any report of a survival analysis should discuss the
types, causes, and treatment of censoring. By far the most common type of censoring is right censoring,
which occurs when observation is terminated before an individual experiences an event. For example,
in a study of divorce, couples that do not divorce during the observation period are right censored. All
survival analysis software is designed to handle right censoring, and it is essential to include the right
censored observations in the analysis. 

Standard methods for dealing with right censoring presume that such censoring is non-informative.
Roughly speaking, that means that the fact that an individual is censored at particular point in time
does not tell us anything about that individual’s risk of the event. That assumption is necessarily satis-
fied if the censoring time (or potential censoring time) is the same for everyone in the sample.
However, the censoring could be informative if it occurs at varying times because individuals drop out
of the study, which could lead to biased estimates of the parameters. Unfortunately, there is no test for
the non-informative assumption and little that can be done to correct for bias due to violation of this
assumption. But the lesson is that survival studies should be designed and executed so as to minimize
censoring due to drop outs. In any case, the proportion of censoring cases due to drop outs should be
reported. 

A slightly less common type of censoring is interval censoring, which means that an individual is
known to have an event between two points in time, but the exact time is unknown. For example, if a
person reports being unmarried at wave 1 of a panel study but married at wave 2, then the marriage
time is interval censored. If the censoring times are regularly spaced, interval censoring can often be
handled by discrete-time methods (see the next section). However, most survival analysis software
cannot handle irregular patterns of interval censoring. 

The least common type of censoring is left censoring, which happens when an event is known to have
occurred before some particular time, but the exact time is unknown. For example, in a study of first
marriage, if a person is known only to have married before age 20, that person’s marriage age is left
censored. Note that the term left censoring is often used with a quite different meaning in the social
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science literature. In this alternative meaning, left censoring is said to occur when we begin observing
an individual at some arbitrary point in time, but we do not know the origin time (i.e., how long it has
been since the individual has been at risk of the event). 

4. Discrete-Time vs. Continuous-Time Methods

If you know the exact times at which events occur, it is appropriate to use methods that treat time as
continuous. If, on the other hand, you know only the month or the year of the event, you might be bet-
ter off using discrete-time methods. One of the best indications of the need for discrete-time methods
is the presence of large numbers of ties. A tie is said to occur if two individuals experience an event at
the same recorded time. Occasionally, time is truly discrete in the sense that events can only occur at
certain discrete points in time. For example, in most universities, faculty can only be promoted at the
end of an academic year. 

Most survival analysis software is designed for continuous-time data. If you want to go the discrete-
time route, you must choose between a logit model and a complementary log-log model. Logit is more
appropriate for event times that are truly discrete, while complementary log-log is more appropriate
for events that can happen at any time but are only observed to occur in discrete intervals. In practice,
the choice is usually not consequential. 

Having chosen a model, you must then choose an estimation method. Some Cox regression programs
(e.g., SAS, Stata, S-Plus) have options for estimating either of the two models using partial likelihood
estimation. But partial likelihood can be very computationally intensive for large samples with lots of
ties. The alternative is to do maximum likelihood using conventional binary regression software. The
trick is to break up each individual’s event history into a set of distinct records, one for each unit of time
in which the individual is observed, with a dependent variable coded 1 if an event occurred in that time
unit, otherwise 0. One can then estimate the logit model using standard logistic regression software
(Allison 1982, 1995). Many packages also have options for estimating the complementary log-log model. 

5. Parametric vs. Semi-parametric Methods

By far, the most popular method for regression analysis of survival data is Cox regression, which com-
bines the proportional hazards model with the partial likelihood method of estimation. Cox regres-
sion is sometimes described as semi-parametric because, although it is based on a parametric
regression model, it does not make specific assumptions about the probability distribution of event
times. By contrast, parametric regression models assume particular families of probability distribu-
tions, such as exponential, Weibull, Gompertz, lognormal, log-logistic, or gamma. 

Although Cox regression is probably the better default method, there are two goals that are easily
accomplished with parametric methods but difficult or impossible with Cox regression. First, para-
metric methods are much better at handling left censoring or interval censoring (especially if the inter-
vals differ across individuals). Second, it is easy to generate predicted times to events with parametric
methods, but awkward (and sometimes impossible) to do so with Cox regression. Sometimes people
choose parametric methods because they worry that their data do not satisfy the proportional hazards
assumption (see Desideratum 15). However, parametric models typically make assumptions that are
at least as restrictive as the proportional hazards assumption. 

6. Covariates

Issues regarding covariates (also known as predictor variables, independent variables, regressors) are
mostly the same in survival analysis as in linear regression and logistic regression (with the important
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exception described in Desideratum 7). Although it is desirable to provide a rationale for the inclusion
of each covariate in the regression model, it is not essential. The consequences of including a variable
that actually has no effect are minimal. The real danger, as with any regression analysis of observa-
tional data, comes from omitting variables that really have an effect on the outcome. This can lead to
severe bias, especially if the omitted variable is moderately to strongly correlated with included vari-
ables. So any report of a survival regression should discuss the possibility of important variables that
have not been included. 

As with other kinds of regression, it is important to consider whether the covariates have nonlinear
effects on the outcome and whether there are interactions among the covariates in their effects on the
outcome. Strategies for testing and including such nonlinearities and interactions are basically the
same as in linear regression, except that there are some special graphical diagnostics available for non-
linearities in Cox regression (Therneau & Grambsch, 2001). Multicollinearity is also a potential prob-
lem. Although survival analysis programs typically don’t provide collinearity diagnostics, one can
simply do a preliminary check with a linear regression program, while specifying the event time as the
dependent variable. Because multicollinearity is all about linear relations among the covariates, it is
not necessary to evaluate it within the context of a survival analysis. 

7. Time-Dependent Covariates

One major difference between survival regression and conventional linear regression is the possibility
of time-dependent (time-varying) covariates. These are predictor variables whose values may change
over the course of observation. For example, suppose that over a five-year period, information is
recorded on any changes in marital status. Then, marital status (updated on a daily basis) could be
used as a time-varying predictor of some other event, such as an arrest. 

Not all survival analysis methods and/or software can handle time-dependent covariates. For exam-
ple, most programs for parametric survival models do not allow for time-dependent covariates
(although that feature is available in recent releases of Stata). On the other hand, such variables are usu-
ally easy to incorporate into discrete-time methods based on logistic (or complementary log-log) regres-
sion. That is because each discrete time point is treated as a separate observation, so that any
time-dependent covariates can be updated for each observation. 

Cox regression is also well known for its ability to handle time-dependent covariates. However,
there are two quite different approaches for implementing this capability in software packages. The
“episode splitting” method requires that the data be configured so that there is a separate record for
each interval of time during which all the covariates remain constant. The “programming statements”
method expects one record per individual, with the time-varying covariates appearing as separate
variables for each time at which the variables are measured. The time-dependent covariates are then
defined in programming statements prior to model specification. Properly implemented, these two
methods will give identical results. 

One potential issue with time-dependent covariates is that the frequency with which they are 
measured may not correspond to the precision with which event times are measured. For example, 
we may know the exact day on which person died of a heart attack. Ideally, a time-dependent 
covariate, like smoking status, would also be measured on a daily basis. Instead, we may only 
have annual reports. Some form of imputation is necessary in such cases. The simplest and most 
common form of imputation is “last value carried forward,” although other methods should be 
considered. 

One should also keep in mind that there may be several plausible ways of representing a time-
dependent covariate. For example, smoking status could be coded as “person smoked on this day,”
“number of days out of the last 30 in which the person smoked,” or “number of years of smoking prior
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to the current day,” and so forth. Decisions among the alternatives should be carefully considered, and
may be based on empirical performance. 

8. Repeated Events

If the data contain information on more than one event for each individual, special methods are
needed to take advantage of this additional information and to deal with the problems that may arise.
If repeated events are observed for an individual, the standard strategy is to reset the clock to 0 each
time an event occurs and treat the intervals between events as distinct observations. Thus, if a person
is observed to have three arrests over a five-year interval, four observations would be created. The last
observation would be a right-censored interval, extending from the third arrest until the end of the
observation period. 

Repeated events provide more statistical power, and also make it possible to control or adjust for
unobservable variables that are constant over time. However, whenever there are multiple observa-
tions per individual, there is also likely to be statistical dependence among those observations. Unless
some correction is made for this dependence, standard errors and p-values will be too low. There are
four widely available methods for repeated events that provide appropriate corrections for depend-
ence. 

1. Robust standard errors (also known as Huber-White or sandwich estimates) yield accurate
standard errors and p-values, but leave coefficient estimates unchanged. 

2. The method of generalized estimating equations (GEE) also gives corrected standard errors
and p-values but, in addition, produces more efficient coefficient estimates. 

3. Random effects (mixed) models provide the same benefits as GEE, but also correct the coeffi-
cients for “heterogeneity shrinkage.” This is the tendency of coefficient estimates to be atten-
uated toward zero because of unobserved heterogeneity. 

4. Fixed effects methods also correct for dependence and heterogeneity shrinkage. In addition,
they actually control for all stable characteristics of the individual.

For more details, see Allison (1995). 
Some of these methods may not be available for some survival regression models or software. For

example, Stata will estimate random effects models for Cox regression but SAS will not. Also, note that
while fixed effects methods seem to offer the most advantages, they also come with important disad-
vantages. First, one cannot estimate the effects of variables that are constant over time, like sex or race,
although such variables are implicitly controlled. Second, standard errors may be substantially larger
because the estimates are based only on variation within individuals. 

9. Competing Risks

If a decision has been made to distinguish different kinds of events, an appropriate method must be
chosen to handle the different event types. In the competing risks approach, a separate model is spec-
ified for the timing of each type of event. These could be any of the models already discussed. If one has
continuous time data, each of these models can be estimated separately using standard software for
single kinds of events. The trick is that events other than the focal event type are treated as though the
individual is censored at that point in time. For example, suppose you want to estimate Cox regression
models for job terminations, while distinguishing between quittings and firings. You would estimate
one model for quittings, treating firings as censored observations. Then you would estimate a model
for firings, treating the quittings as censored observations. 
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Test statistics are available for testing whether coefficients for a particular variable are the same
across event types (Allison, 1995). There are also statistics for testing whether all variables have the
same coefficients across event types. These statistics can be helpful in determining whether it is really
necessary to distinguish the event types. As noted earlier, one disadvantage of distinguishing event
types is that the number of events may be small for each event type, leading to a loss of statistical power. 

If event times are discrete, maximum likelihood estimation requires that models for competing
risks be estimated simultaneously rather than separately. An attractive model that can be estimated
with conventional software is the multinomial logit model, also known as the generalized logit 
model. Unfortunately, there is no comparable multinomial model for the complementary log-log
specification. 

In some situations with multiple event types, a “conditional” approach may make more sense than
competing risks (Allison, 1984). In this approach, the first step is to estimate a model for event timing
without distinguishing the different event types. Then, restricting the sample to those individuals who
experienced events, the second step is to estimate a binary or multinomial logit model predicting the
type of event. This approach is attractive when the event types represent alternative means for achiev-
ing a single goal. For example, the event might be the purchase of a computer, and computers are dis-
tinguished by whether the operating system is Windows, Linux, or Macintosh. 

10. Sampling Issues

There are three questions about sampling that should be addressed: What kind of sample is used? Are
the analysis methods appropriate for the sampling method? Is the sample big enough? With regard to
the first question, the ideal is a well-designed and executed probability sample. Nevertheless, many
survival analyses are carried out on a complete population (e.g., the 50 states in the U.S.) or on con-
venience samples (e.g., students who volunteered to participate). Although others may disagree, I take
the position that survival analysis—including the calculation of confidence intervals and hypothesis
tests—is perfectly appropriate for analyzing a complete population. The statistical models that under-
lie such analyses are based on a hypothesis of inherent randomness in the phenomenon itself, and they
do not require any randomization in the study design to justify the application of inferential tech-
niques. The same argument could be made about convenience samples, although any conclusions
might only apply to the sample at hand. 

Regarding analysis, most survival analysis packages presume, by default, that the sample is a simple
random sample. For many samples, however, there will be a need to adjust for clustering, stratifica-
tion, and/or weighting. Although some packages are explicitly designed for survival analysis with
complex samples (e.g., SUDAAN), conventional software can often do the job. Clustering can be
accommodated by the methods described above for dependence with repeated events (although it
might be difficult to adjust for both repeated events and cluster sampling). Stratification can usually
be handled by including the stratification variables as covariates. Finally, most packages allow for dif-
ferential weighting of observations. However, even if the sampling design involved disproportionate
weights, it may not be necessary or desirable to incorporate those weights into the analysis (Winship
& Radbill, 1994). This is most likely to be the case if the goal is to estimate an underlying causal model
rather than some population regression function. 

With regard to sample size, the most important thing to keep in mind is that censored observations
contribute much less information than uncensored observations (events). Conventional wisdom has
it that there should be at least five (some say 10) events for each parameter in the model, in order for
maximum likelihood (or partial likelihood) estimates to have reasonably good properties. As for
power considerations, there are numerous software packages and applets that will calculate power 
and sample size for a single dichotomous covariate. Vaeth and Skovlund (2004) showed how these
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programs can be easily extended to handle more complex regression problems. Some packages (e.g.,
Stata, PASS) have routines that will do power calculations for Cox regression analyses. 

11. Missing Data

Reports of survival analysis should say something about the extent of missing data and the methods
used to handle it. Of course, the default in virtually all survival packages is to do listwise deletion (com-
plete case analysis). And if the proportion of cases lost to missing data is small (say, 10% or less), list-
wise deletion is probably the best choice. Other conventional methods, like (single) imputation or
dummy variable adjustment, typically lead to biased parameter estimates, biased standard error esti-
mates, or both.

For larger fractions of missing data, much better results can be obtained with multiple imputation
(Allison, 2001). In this method, imputed values are random draws from the predictive distribution of
the missing values given the observed values. Several data sets are created (typically five or more), each
with slightly different imputed values. The analysis is performed on each data set using standard soft-
ware. Then, using a few simple rules, the results are combined into a single set of parameter estimates,
standard errors, and test statistics. Multiple imputation uses all the data to produce parameter esti-
mates that are approximately unbiased and efficient. In calculating standard errors and test statistics,
multiple imputation, unlike conventional imputation, also incorporates the inherent uncertainty
about the values of the missing observations. 

Although there are many stand-alone packages for doing multiple imputation, the process is much
easier if the imputation is done within the same package used to do the analysis. Software for doing this
is available for Stata, SAS, and S-Plus. These also happen to be great packages for survival analysis.
Nearly all standard multiple imputation routines are based on the assumption that data are missing at
random. This means, roughly, that the probability of missingness may depend on variables that are
observed but does not depend on the values of the variables that are missing. Multiple imputation can
be done under other assumptions, but the implementation is tricky and must be carefully tailored to
each application. 

For survival analysis, multiple imputation should only be done for missing values on the predictor
variables. Cases that have missing values on the dependent variable should simply be deleted because
conventional imputation software is not suited for missing data on event timing and censoring. In set-
ting up the imputation model, however, it is generally a good idea to include both the (logged) event
time and the censoring indicator variable so that the relations between these variables and the predic-
tors are adequately reproduced for the imputed variables. 

12. Software

Nearly all the major statistical packages have programs for doing Cox regression and Kaplan-
Meier estimation of survivor functions. And all can do discrete-time maximum likelihood estimation
via logistic regression. Not all can estimate parametric regression models, however, and those that 
do may vary widely in their capabilities. For example, SAS can estimate parametric models with 
left and interval censoring but cannot handle time-dependent covariates. With Stata, it is just 
the reverse. Cox regression programs may also vary widely in their features and capabilities. SPSS, 
for instance, can handle time-dependent covariates, but its programming functions for defining 
those covariates are rather limited compared with SAS. As of this writing, I would rate SAS, Stata, 
and S-Plus as the three best packages for doing survival analysis. Although they vary to some degree 
in their capabilities, all three have a wide array of programs, functions and options for survival 
analysis. 
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Some survival regression programs allow for the incorporation of unobserved heterogeneity 
into the model. In my judgment, this is a useful feature if individuals have repeated events because 
it allows for dependence among the multiple observations. However, I would caution against using
this option in the more typical case of non-repeated events. In that situation, unobserved heterogene-
ity models are only weakly identified, and results may depend too critically on the particular 
specification. 

13. Summary Statistics and Data Accessibility

As with other regression methods, it is good practice to report summary statistics for the predictor vari-
ables, usually their means and standard deviations. There is a potential complication, however, with
time-dependent covariates. If you are using a method that requires multiple records per individual, like
discrete-time maximum likelihood or Cox regression using the episode splitting method, you can sim-
ply calculate the means and standard deviations over the multiple records. On the other hand, if you are
doing Cox regression with programming statements, the time-dependent covariates are created during
the estimation process and are not available for calculating descriptive statistics. In that case, I would
simply report such statistics for the baseline measurements of the variables. 

14. Survivor and Hazard Functions

Although not essential, it is commonplace and informative to present a graph of the survivor function,
usually estimated via the Kaplan-Meier method. Such graphs are helpful in giving the reader a sense of
the rates of event occurrence and censoring, and how those change over time. In some fields, a cumu-
lative failure graph is preferred over a survivor graph. The two graphs give the same information, how-
ever, because the failure probability is just 1 minus the survivor probability. 

Even more informative than the survivor function is a graph of the estimated hazard function
because it more directly quantifies the rate of event occurrence and how that rate changes over time.
But the problem with the hazard function is that non-parametric estimates based on Kaplan-Meier
require smoothing, and different smoothing algorithms can yield markedly different graphs.
Therefore, if hazard graphs are to be presented, I recommend using the actuarial (life table) method.
Although this requires an arbitrary choice of time intervals, results tend to be more stable than those
produced by smoothing methods. 

15. Proportional Hazards Assumption

Cox regression is based on the proportional hazards model. The proportional hazards assumption
says, in essence, that the dependence of the hazard on time has the same basic shape for everyone, even
as the magnitude of the hazard varies across individuals as a function of their predictor values. A cru-
cial implication of this assumption is that predictor variables have the same effects at all points in time,
that is, there are no interactions with time.

Although many researchers get very concerned about whether their data satisfy this assumption, I
believe that those concerns are often unwarranted. If the assumption is violated for a particular pre-
dictor variable, it simply means that the coefficient for this variable represents a kind of “average”
effect over the period of observation. For many applications, this may be sufficient. In some cases,
however, the violations may be so severe that they lead to biases in the effects of other variables. In
other cases, there may be direct interest in how the effect of a variable on the hazard changes over time. 

A quick check of the proportional hazards assumption can be obtained by computing correlations
between time (or some function of time) and “Schoenfeld residuals” which are calculated separately
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for each predictor. Non-zero correlations are evidence against the proportionality assumption.
Several Cox regression software packages have an option to compute these statistics. 

A more definitive check is to directly include interactions between predictors and time, which are
specified as time-dependent covariates. Significant interactions indicate violation of the assumption.
However, in this case the method of diagnosis is also the cure. By including the interactions, the Cox
model is extended to allow for non-proportional hazards. 

Another way to allow for non-proportional hazards is the method of stratification, which allows for
different hazard functions for different categories of a categorical variable (like sex or marital status).
This is a good method for controlling for a variable without imposing the proportional hazards
assumption. But it does not yield any estimates of the effect of that variable, nor does it give a test of
the proportional hazards assumption. 

16. Model Comparisons

Researchers typically want to know how well their statistical models fit the data. Unfortunately, 
global or absolute measures of fit are generally not available for survival analysis models. Usually, 
the best we can do is to compare the relative fit of different models. If the models are nested (i.e., 
one model can be obtained from another by imposing restrictions on the parameters), likelihood 
ratio tests can be calculated by taking twice the positive difference in the log-likelihoods for the 
two models. Such tests can tell you whether the more complicated model is significantly “better” than
the simpler model. These tests are especially useful when estimating parametric models because 
some of the better-known parametric distributions are nested within the generalized gamma 
distribution. 

If two models are not nested, informal comparisons can be accomplished with Akaike’s informa-
tion criterion (AIC) or Schwarz’s Bayesian Information Criterion (SBC or BIC). These statistics
“penalize” the log-likelihood for the number of covariates in the model, enabling one to validly com-
pare models with different sets of covariates. Many software packages report one or both of these sta-
tistics, both for parametric models and for Cox regression models. Preference is given to models with
lower values of these statistics, although no p-values can be calculated. 

17. Reports of Coefficients and Associated Statistics

Results for Cox regression may be reported as either beta (β ) coefficients or hazard ratios (a few
authors report both). Beta coefficients are more easily interpreted with respect to sign (positive, 
negative, or zero). However, their numerical magnitudes are difficult to interpret. Hazard ratios
(which are always positive) may confuse some readers because a value of 1 means no effect. But 
the numerical magnitude has a more straightforward meaning: if HR denotes the hazard ratio,
100(HR–1)% is the percentage change in the hazard for a one-unit increase in the predictor. In this
respect, they behave just like odds ratios in logistic regression. In the biomedical sciences, there is a
clear preference for reporting hazard ratios, and this preference seems to be spreading to other fields as
well. 

If you report β coefficients, you should also report either standard errors or 95% confidence inter-
vals. Because hazard ratios have asymmetric distributions, standard errors are not generally reported.
Instead, the convention is to report 95% confidence intervals. It is optional but desirable to report 
p-values for testing the null hypothesis of no effect for each coefficient. Also desirable is a chi-square
test for the null hypothesis that all coefficients are zero. Many authors ritualistically report the log-
likelihood for each model, but this is usually not informative (unless it can be used to compare nested
models). 
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18. Conditional Survivor or Hazard Functions

In Desideratum 14, I discussed the use of survivor or hazard functions as a descriptive device. After
estimating a regression model, it is often desirable to illustrate its implications by displaying a model-
based survivor function or hazard function. For example, if interest centers on the effect of some treat-
ment, one could plot survivor functions for the treated vs. control groups in such a way that the plots
embody any model assumptions (e.g., proportional hazards) and also control for any covariates in the
model. If the variable of interest is quantitative, one can produce plots for several selected values of
that variable, again while adjusting for any covariates.

19. Potential Methodological Limitations

Any application of statistical methods to real-world data is vulnerable to errors of one sort or another.
Researchers need to be acutely aware of potential problems with their data and with the analytic meth-
ods they apply to those data. They also need to be upfront with their readers regarding any problems
that they suspect could compromise their conclusions. 

As noted in Desideratum 6, the most serious potential problem with survival analysis regression
methods is the same as that for any other regression method applied to observational (non-
experimental) data: the omission of variables (confounders) that affect the outcome and that are also
correlated with the included variables. The omission of confounders can produce biases so severe that
they lead to conclusions that are the exact opposite of the true state of affairs. 

A problem peculiar to survival analysis is informative censoring (see Desideratum 3). Once the data
are in hand, there is not much that can be done about this. But, if the number of randomly censored
cases is substantial, research reports should discuss their potential impact. A sensitivity analysis can
help to discern the potential direction of biases resulting from informative censoring. 

Another potential danger comes from fitting an incorrect model. Some of the comparative
statistics discussed in Desideratum 16 can be helpful in finding a good model. But it is also 

desirable to fit rather different models to the data and see if the results are consistent across 
models. For example, there is no good way to compare the fit of a Cox regression model with para-
metric gamma model. But it can be quite useful to fit both models to see if they lead to the same con-
clusions. If they do, well and good. If not, then your confidence in the results should be appropriately
reduced. 
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