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Series Preface

Mechanical engineering, an engineering discipline born of the needs of the
industrial revolution, is once again asked to do its substantial share in the call
for industrial renewal. The general call is urgent as we face profound issues of
productivity and competitiveness that require engineering solutions, among oth-
ers. The Mechanical Engineering Series features graduate texts and research
monographs, intended to address the need for information in contemporary
areas of mechanical engineering.

The series is conceived as a comprehensive one the will cover a broad range
of concentrations important to mechanical engineering graduate education and
research. We are fortunate to have a distinguished roster of consulting editors,
each an expert in one of the areas of concentration. The names of the consulting
editors are listed on the first page of the volume. The areas of concentration are
applied mechanics, biomechanics, computational mechanics, dynamic systems
and control, energetics, mechanics of materials, processing, thermal science,
and tribology.

Professor Winer, the consulting editor for applied mechanics and tribology,
and I are pleased to present this volume of the series: High Sensitivity Moiré:
Experimental Analysis for Mechanics and Materials by Professor Post, Dr. Han
and Dr. Ifju. The selection of this volume underscores again the interest of the
Mechanical Engineering Series to provide our readers with topical monographs
as well as graduate texts.

Austin, Texas Frederick F. Ling
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Introduction

1.1 Our Subject

We live in an amazing period of technological and scientific
expansion. The rapid advance of computer modeling and computer
simulation is largely responsible, together with advancing
techniques of physical measurement and efficient data analysis. The
book is devoted to one element in this spectrum, the physical
measurement.

Our purpose is to teach high-sensitivity moiré—principally moiré
interferometry—including its theory and practice. Our focus is on
the mechanics and micromechanics of materials and structural
elements. The applications introduced here are in that category, but
the reader can look beyond these to investigate phenomena in other
disciplines of engineering and science.

The moiré methods taught and illustrated here utilize visible
light. The data are received as contour maps of displacement fields.
Moiré interferometry raises the sensitivity of traditional geometrical
moiré to the level of optical interferometry. For most of the
illustrations in the book, the sensitivity corresponds to moiré with
2400 lines/mm (60,960 lines/in.). The corresponding contour interval
is 0.417 pm (16.4 pin.) per fringe order. For micromechanics, 4800
lines/mm (~122,000 lines/in.) is used and displacement maps of 17.4
nm (0.684 pin.) per contour are produced by computer analysis of
moiré fringe patterns.

The contour maps of moiré interferometry represent in-plane
displacement fields, i.e., the displacements parallel to the surface of
the specimen. They are distinct from the contour maps produced by
classical interferometry and holographic interferometry, which are
most effective for determining the out-of-plane displacements. The
distinction is important for strain and stress analysis, since
engineering strains are determined by in-plane displacements.
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Moiré is often called a method of strain analysis. We prefer to call
it a method of experimental mechanics, since it is not always
necessary to extract the strains. Frequently the displacement field
itself is the desired result, e.g., when experimental and numerical
solutions are compared.

Computer modeling is an instrument of design. Design is the
application of theory, and theory must rest upon a solid physical
foundation. High-sensitivity moiré has emerged as a powerful tool to
strengthen and extend the foundation.

1.2 Scope and Style

The book is divided into two parts, Fundamentals and Applications.
The division is somewhat artificial in that some aspects of each are
found in both parts. Both parts are intended to teach concepts and
practice. The intent, too, is to produce a self-contained treatment, one
that minimizes the need to refer to outside sources.

Part I begins with a review of optics. It covers those aspects that
are pertinent to moiré, and it does so at a level usually found in a first
course on optics at colleges and universities. Physical concepts
(physical models) are emphasized. They are reinforced by,
mathematical derivations, and they are reinforced by numerical
examples of the physical variables.

A review of geometric moiré comes next. An extensive body of
literature exists on this subject, and only a small portion is
addressed. It is the portion that we consider most directly related to
subsequent coverage of high-sensitivity moiré and engineering
practice.

Chapters 4-13 treat moiré interferometry and microscopic moiré
interferometry. The subjects are developed and much attention is
given to their actual practice. Alternative configurations are
described to assure the reader that basic concepts dominate—rather
than push-button apparatus—and to inspire initiative and creative
design of experiments.

Part II addresses diverse applications. Some chapters treat
specific experimental analyses in great detail, discussing special
techniques, procedures, data and results. Others address a broad
array of experiments. Throughout Part II, however, emphasis
continues on the growth of knowledge beneficial to the
experimentalist. It is designed to stimulate inquiry and initiative.
The book should serve engineers and scientists who are concerned
with measurements of real phenomena; and it should provide a
vehicle that stimulates students to understand experimental
analyses and their practical results.
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A special objective is to produce a reader-friendly volume. The
language is natural, uncomplicated. We endeavored to couple words
and equations with abundant and genuinely helpful illustrations.
Conceptual models and analogies are used to aid understanding.
Repetition is admitted where it might aid the connection and
assimilation of ideas.

We learn, too, by imitation. Almost all of the fringe patterns are
excellent examples, with a very high signal-to-noise ratio. They show
the quality of experimental data that can be produced. They
represent a standard that can be and should be achieved by every
experimentalist. Fringe pattern excellence is not merely for aesthetic
pride, but it is a style that yields the maximum extraction of data, and
it is a style that inspires confidence in the validity of the data.

1.3 History

Sources of technical information will be cited by references, but we
will not dwell on history. Tracing contributions to original sources is
outside the scope of the book. History is addressed broadly in other
literature. A recent volume is by Patorski! (1993) who authored a
handbook on moiré that treats a great variety of techniques. It
describes them in mathematical and physical terms. Its coverage of
strain analysis and moiré interferometry is lean, but it states in the
Preface that the subject of strain analysis is found elsewhere.
Patorski's knowledge of the moiré literature emanating from
numerous parts of the world is extensive. The volume is a historical
reference as well as a valuable technical reference.

An article on the history of moiré interferometry was written by
Walker? (1994). It discusses moiré fringe multiplication as a
predecessor of present-day practice. It cites important contributions
in the Japanese literature that parallels and often predates
developments of high-sensitivity moiré in Western countries.

A current volume by Indebetouw and Czarnek® (1992) is one in a
series that collects and reprints important articles on the evolution of
various branches of optics. Like the handbook by Patorski, it
addresses diverse disciplines that utilize moiré phenomena.

The Physics of Moiré Metrology by Kafri and Glatt* appeared in
1990. It is largely a mathematical treatment and highlights the
application of Talbot fringes (Sec. 2.5.3) in a moiré method called
deflectometry.

The definitive monograph by Guild® (1956) is a classic for its
insight and detail. It treats, among other things, the effects of
multiple-beam interference when contributions from numerous
diffraction orders comprise the moiré pattern. The style is largely
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mathematical. It demonstrates moiré with grating frequencies up to
567 lines/mm (14,400 lines/in.).

Many experimentalists concentrated on moiré methods for strain
and stress analysis. Publications that are well known to the
American community include those by: Theocaris® (1969) and Durelli
and Parks’ (1970), who published books addressed to strain analysis
almost simultaneously; Sciammarella® (1982), who produced an
extensive literature review; Dally and Riley,® who addressed moiré
methods in their textbook on experimental stress analysis. The
Society for Experimental Mechanics published two manuals and a
handbook that teaches the techniques of experimental mechanics. In
these, Chiang!? and Parks!! addressed geometrical moiré for in-plane
and out-of-plane measurements, and Post!?!3 addressed high-
sensitivity moiré interferometry. All of these individuals (among
many others), made extensive contributions to the theory, techniques
and application of moiré for strain analysis over many years.

Recent articles by Dally and Read!416 (1993) highlight the potential
of electron beam radiation. Using a scanning electron microscope
(SEM), they produced 10,000 lines/mm gratings on their specimens.
The specimens were loaded by a miniature machine inside the SEM.
The deformed specimen grating was viewed in the SEM, whereby the
scanning roster acted as a pseudo reference grating to produce
fringes of geometrical moiré.

Extremely high-sensitivity moiré is used in a completely different
discipline, namely the study of matter on the atomic level.
Interferometers that are slight variations of those shown later in
Figs. 4.20 and 4.21 are employed. Instead of visible light, however, X-
ray or neutron beams are used. Instead of the fabricated gratings of
Chapters 2 and 4, the lattice structure of single crystals is used to
diffract the beams. The field is called X-ray and neutron
interferometry, and a broad review is given in Ref. 17. Using
wavelengths near 1 Angstrom Unit (10-1°m), the sensitivity is 3 to 4
orders of magnitude higher than that achieved by the moiré
interferometry of Chapter 4. Yet, the principles are basically the
same. Applications include measurements of lattice parameters,
studies of dislocations and lattice defects, nuclear scattering and the
influence of magnetic and gravity fields. The techniques were
reported in 1965, which predates most of the optical techniques of
moiré interferometry described in this book.
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1.4 Comment on Exercises

Numerous exercises are given. Some are routine, but many are
intriguing and challenging. They are posed to develop insights
beyond those extracted from the text. Several exercises are open-
ended, i.e, they have no fixed solution. Instead, they are intended to
stimulate original thought and invention, and the realistic analysis
of options. Experience has shown that diverse correct solutions are
possible, many with special merit.
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Elements of Optics

2.1 The Nature of Light

This introduction is a brief treatment of the concepts and tools of
optics encountered in the following chapters. Standard textbooks on
optics can be consulted for more information. The wave theory of
light is sufficient to explain all the characteristics of moiré. In what
follows, we will describe a model of light consistent with the wave
theory. A parallel beam of light propagating in the z direction is
depicted at a given instant as a train of regularly spaced disturbances
that vary with z as

A = acos 27r% 2.1)

For mathematical convenience, this expression is often replaced by
the real part of the complex equation
i2nZ

A =aqae * (2.1a)
The symbol A describes the strength of the disturbance, which is
usually viewed as the strength of an electromagnetic field at a point
in space, particularly, the electric field strength; A will be called field
strength. The coefficient a is a constant called the amplitude of the
field strength. The field strength varies harmonically along z, where
the distance between neighboring maxima is A, called the
wavelength.

Length z is not endless—that would represent a light that shines
forever—but it is very long compared to A. In the case of laser light,
length z of the wave train may be millions of wavelengths. For
classical light sources (not lasers), many short wave trains coexist
simultaneously in the beam. They overlap along the length of the
beam, such that any cross section of the beam cuts through
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numerous wave trains. Consequently, light from real sources is not
portrayed accurately by Eq. 2.1, but the equation provides a model that
represents light sufficiently well for our purposes.

However, the wave train is not stationary. It travels or propagates
through space with a very high constant velocity C. At any fixed
point along the path of the wave train, the disturbance is a periodic
variation of field strength. There, the field strength varies through
one full cycle in the brief time period T (seconds/cycle), where

A
T = = 2.2
C 2.2)
The frequency of this variation is w (cycles/second), given by
C
= — 2.3
w == 2.3)

During the passage of the wave train through any fixed point z = z,
the field strength varies with time ¢ as

A = acos 2n%t = a cos 2wt 2.4)

or as the real part of
A = g2t (2.4a)

Figure 2.1 offers a graphical interpretation of the equations. At a
fixed time ¢ = ¢,, the field strength A varies along the length of the
light ray as shown by the harmonic curve. The curve represents a
wave train, with the head of the wave train on the right side. At
point z, the field strength is less than a at this instant. However, the
wave train moves along z with the velocity of light, so the field
strength at z, varies with time between *a with the very high
frequency w.

The argument of the cosine function is called the phase of the
disturbance. Here, the phase is 27wt. The phase at a point z( is 27
times the number of wave cycles that passed the point, where the first
cycle is at the head of the wave train. An implication is that ¢ is the
time since the head of the wave train passed zy. In our work we will
be interested in the relative phase of two wave trains of the same
frequency; the relative phase is independent of £. Accordingly, we can
interpret ¢ as the time since an arbitrary starting time, ¢;, during the
passage of the wave train.

We will define a wave front as any continuous surface in space
along which the phase is constant, that is, along which

wt =k (2.5)
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Fig. 2.1 At any instant ¢(, the electric field strength of the light wave varies
cyclically along z. At any fixed point 2, the strength varies cyclically with time
as the wave train propagates with velocity C.

where £ may be any numerical value. In a parallel beam (also called
a collimated beam), the wave fronts are always plane cross sections of
the beam, as illustrated in Fig. 2.2a. These move along the length of
the beam with the speed of light.

In a conical beam (Fig. 2.2b), the wave fronts are spherical and
their radii of curvature increase with distance from the origin. The
shape of the wave front changes constantly along the length of the
beam, but all wave fronts have a fixed shape as they .intercept any
fixed point z;, in their path. In an increment of time, the wave front
through z, moves to a new location in space, while a wave front
further back in the wave train moves to z.

Beams may acquire irregular shapes (Fig. 2.2¢), for example by
reflection from an irregular mirror. Again the wave fronts
constantly change shape along the beam, and they may even fold and
become double-valued, as shown. This is a consequence of the rule
that light propagates in the direction of the wave normal, that is, in
the direction perpendicular to the wave front; the rule is always true
for light propagation in homogeneous media. The word ray is often
used synonymously with wave normal to describe the path of an
infinitesimally narrow part of the light beam. As before, every wave
front in the beam has the same unique shape as it propagates
through a fixed point z,. Wave fronts of smooth but irregular shapes
are called warped wave fronts.

2.1.1 More Details

Light trains propagate with an astounding velocity of about 3 x 108
meters per second or 186,000 miles per second in free space. The
visible spectrum encompasses the wavelength range from about 400
nm (i.e., nanometers or 10~° m) for blue light to about 700 nm for red
light.
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Fig. 2.2 Beams of light and their corresponding wave fronts: (a) plane; (b)
spherical; (c) irregular, or warped wave fronts.

The visible spectrum is only a tiny portion of the electromagnetic
spectrum in which wavelengths extend at least from 1014 m to 103 m,
a span of 17 decades. All the phenomena discussed here—
interference, diffraction, and so on—apply for the entire electro-
magnetic spectrum.

When a wave train travels through a fixed point in space, its
frequency of oscillation, w = C/ 4, is about 6 x 10'* Hz (cycles per
second) for visible light. No instruments can detect individual cycles
in this frequency range. Instead, receivers like the eye, photographic
film, and photoelectric cells respond to time-averaged energy.

When a wave train, or a beam of light, is intercepted by a receiver
of unit area, the energy available to be dissipated into the receiver is
the intensity of the light multiplied by the exposure time. During the
passage of the wave train in a volume of space, the light has an
intensity everywhere in that space. The energy associated with it is a
potential energy. This potential is realized only when the light is
intercepted by a receiver and its energy is dissipated into the receiver.
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It is shown in electromagnetic theory that the intensity, I, of light
of field strength A = a cos 27wt is proportional to a2. We will assume
that the units chosen for field strength make the factor of
proportionality equal to one, such that

I = a? (2.6)

The intensity of light is the rate of energy flow per unit cross-
sectional area of the beam; it is energy/second/m? (J/s-m2). Power is
the energy output per unit time, measured in watts or milliwatts for
lasers. The energy absorbed by a unit area of a receiver is intensity
multiplied by exposure time and multiplied by the absorption
coefficient of the receiver; photographic films are designed to
maximize the absorption coefficient. The word irradiance is used
synonymously with intensity.

TABLE 2.1 Wavelength and Color

Wavelength range in

nanometers (10-°m) Color
400 - 450 violet
450 - 480 blue
480-510 blue-green
510 - 550 green
550 - 570 yellow-green
570 - 590 yellow
590 - 630 orange
630 - 700 red

Different wavelengths in the visible range each stimulate different
responses in the human eye, and are interpreted as different colors
and shades of color. For the normal human eye, colors are
interpreted approximately as indicated in Table 2.1. Photographic
films are formulated to transmit the same color stimulation to the
eye as the original scene. Light from a source that emits a
continuous spectrum with approximately equal energy for every
wavelength is seen as white light. A monochromatic source is one
that emits light of a single wavelength; a truly monochromatic
source cannot exist, but sources that emit wavelengths within a
narrow range—e.g., a range of a few nanometers and smaller—are
usually called monochromatic sources.

The velocity C' of light propagation in a transparent material is
less than its velocity in free space. The relationship is
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c' == 2.7

where n is a property of the material called the refractive index or
index of refraction. As a rough generalization, n increases with the
density of the material, but there are many exceptions. For visible
light, n is only slightly greater than unity for gasses; for liquids,
values between 1.3 and 1.5 are common,; for solids, values between 1.5
and 1.7 are common.

While n is a material constant at any wavelength, its numerical
value varies slightly with wavelengths in the visible range. This
characteristic is termed dispersion of refractive index with
wavelength, or more simply, dispersion. The change of refractive
index of most transparent solids is of the order of 2% in the visible
range, with the higher values of refractive index occurring at shorter
wavelengths.

Combining Egs. 2.3 and 2.7,

o
n

c -

For any wave train in the electromagnetic spectrum, its frequency w
is invariant, i.e., its frequency is the same in all materials. Therefore,
the wavelength must decrease by the same ratio as the velocity, such
that

(2.8)

S |>

Am=

where A, is the wavelength of light in the refractive material. Light
propagates with shorter wavelengths in transparent materials than
in vacuum.

Optical path length (OPL) is defined as the mechanical path
length of a ray multiplied by the index of refraction of the medium
traversed by the ray. In Fig. 2.3, the optical path length between a and
bis

OPL = D, + nyD, + Dy + nD, + Dy

where D is the length, or mechanical distance, along the ray.
Generalizing, OPL is the summation of nD for each element in the
path, i.e.,

i=g
OPL = YnD; i=123,---,q (2.9)
1
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Fig. 2.3 The optical path length between ¢ and b is the sum of n;D; for the 5
sections.

In refractive materials, the OPL is longer than the mechanical path
length (which is merely the summation of D;).

Path lengths can be measured in units of wavelengths. The
mechanical path length between two points in any material is the
number of wave cycles between the points (as the wave train travels
through the material) times the wavelength in that material. The
OPL is the same number of wave cycles times the wavelength in
vacuum. The concept of OPL is useful because it defines the relative
phase of two wave trains and determines their state of constructive or
destructive interference (Sec. 2.3.8).

Since the number of wave cycles between two wave fronts is a fixed
number, an important corollary is this: all rays between two wave
fronts travel the same optical path length.

Polarization

Sometimes we are interested in the polarization of the light. Light
propagates as a transverse wave, with its wave-like character
confined to a plane called the plane of polarization. More specifically,
the electric field is a two-dimensional phenomenon. The oscillating
electric field acts in the plane of polarization, for example in the y
direction, while it propagates in the z direction.

Most lasers emit wave trains of relatively pure polarized light.
Most other light sources emit each train with a different plane of
polarization; their disturbances, taken together, constitute
unpolarized light. For some applications, Eqs. 2.1 and 2.4 can be
assumed to represent unpolarized light. They show A as functions of
z and ¢, but independent of x and y. With plane-polarized light, the
field strength is unidirectional, say in the y direction, and the
disturbance is written as
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A, = acos 27wt = Re [ae'?7@t] (2.10)

Then field strength in the x direction is zero, or

A =0

X

which means that there is no component of the electrical field
parallel to x.

Circular and elliptical polarizations are special cases. They occur
when plane polarized light is divided into two orthogonally polarized
components (for example, by the action of a photoelastic material or a
birefringent crystal) and the phase of one of the components is shifted
by a fraction of a wave cycle. Then, the combined electric field of the
two components can be represented by a vector. The direction of the
vector varies through 360° for each wave cycle and its tip generates
an ellipse. When the phase shift is 1/4 of a cycle, the vector tip
generates a circle.

Coherence

Ideally, a beam of light is coherent if it emerges from a single
point in space. In addition, it must be comprised to only one wave
train, which means all the waves must have the same frequency and
identical polarization and the wave train must be infinitely long.
True coherence cannot be achieved, but it is approximated to various
degrees by real light sources (Sec. 2.2.1).

Two beams of light are said to be mutually coherent if they have
the same frequency and polarization. In practice, this requirement is
satisfied only when the two beams originate from the same source,
e.g., when the two beams are divided from a single beam by means of
mirrors or other optical elements. Optical interference (Sec. 2.3)
requires beams of mutually coherent light.

2.1.2 Metallic Reflection

When light strikes a metallic surface, a portion is absorbed and a
portion is reflected. The reflectance of a surface is the ratio of the
reflected intensity to the transmitted intensity. It depends upon the
material and the wavelength of the light. Aluminum and silver have
high reflectance (R > 0.9) in the visible range of wavelengths,
although silver tarnishes quickly and loses its high reflectance. The
reflectance of chromium is about 0.6 at normal incidence, but it is
very hard and much more resistant to scratches and wear.
Reflection is illustrated in Fig. 2.4. The incident and reflected rays lie
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Fig. 2.4 For reflection, a' = a. Rays are drawn to represent beams.

in the plane of incidence, defined as the plane containing the incident
ray and the normal to the surface. The angle of reflection is equal to
the angle of incidence, or

o =« (2.11)

The reflectance depends upon the angle of incidence and the
polarization of the incident light. In addition, phase changes occur
upon reflection and the phase changes are different for polarizations
parallel and perpendicular to the plane of incidence. As a
consequence, an incident beam of plane polarized light can be
changed to elliptical polarization by reflection from metals. When the
incident beam is polarized either parallel or perpendicular to the
plane of incidence, however, the reflected beam remains plane
polarized.

Mirrors are frequently made by applying metallic coatings to the
surface of plates. The coatings can be so thin that the mirror reflects
a portion of the incident light and transmits another portion.
Partially reflecting mirrors can be made this way, with reflectance R
and transmittance T related by

R+T+A=1 (2.12)

where A is the absorptance of the metal film. Curiously, the
absorptance can be larger for a partially transparent coating than for
an opaque coating of the same metal.

2.1.3 Dielectric Reflection

When light is incident upon an interface between two dielectric
materials (electrically non-conducting materials, e.g., air, water,
glass), some of the light is reflected at the boundary surface. At
normal incidence, the intensity of reflected light is given by
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2
I = L,R = I, [u) (2.13)
ny, + n,
where Iy and I, are the intensities of incident and reflected light,
respectively, and R is the reflectance. At an air-glass interface,
where the refractive index of the glass is 1.5, the reflected intensity is
4% of the incident intensity; reflectance for a glass window is about
8%, considering reflections from both surfaces.

At oblique incidence, intensities of reflected light vary with the
angle of incidence and the polarization of incident light. Figure 2.5a
shows this variation at an interface where ny/n; = 1.5, including the
case of external reflection in air (n; = 1) when ny = 1.5. External
reflection occurs on the low index side of the boundary, as illustrated
in the figure. Figure 2.5b shows internal reflection. When the plane

Reflectance
o
W
Reflectance
(=]
W

eritical

0 Y I |
0° 30° 60° 90° 0° 30° 60° 90°

(a) Angle of Incidence, o (b) Angle of Incidence, o

0

Fig. 2.5 Reflectance (reflected intensity) at the interface between two dielectric
bodies, when ny/n; = 1.5; (a) external reflection and (b) internal reflection; a,,,
is the polarizing angle and a,,;;.q is the angle of total internal reflection.

of polarization lies in the plane of incidence, the curve marked Il
applies. When the plane of polarization is perpendicular to the plane
of incidence, the curve marked L1 applies. Since any state of
polarization can be resolved into its vector components in these two
directions, all polarizations are treated. Total internal reflection is
indicated in (b) when a exceeds yiticq;-

Another important phenomenon is the phase change upon
reflection. For external reflection, the light experiences a phase
change of & for every angle a between 0 and a,,. For internal
reflection at angles smaller than the polarizing angle, the phase
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change is zero. As a physical model, a phase change of x can be
equated to an increase of OPL by A/2; thus the reflection can be
imagined to occur beneath the actual interface. (Certain textbooks on
optics present a mathematical analysis that yields zero phase change
upon reflection for light polarized parallel to the plane of incidence.
This discrepancy results from a particular sign convention. The
physical interpretation of the mathematical analysis, however,
prescribes the phase change of =z for both the parallel and
perpendicular polarizations.)

2.1.4 Refraction

When light crosses a boundary between materials of different
refractive indices, the direction of propagation changes in accord
with Snell's law of refraction

M n n

sme -t 2.14)
sin a ny

where the variables are specified in Fig. 2.6a. Equation 2.14 applies
for the case illustrated (ny > n1) and also for the case of n; > ng, for
which a" > a. The directions of propagation and the normal to the
boundary surface lie in a common plane. If one medium is air, its
refractive index can be taken as 1.000

(b)

AN

Fig. 2.6 (a) Refraction and reflection at a dielectric interface. (b) Huygen's
construction to derive Snell's law.
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Some portion of the incident light is reflected at the interface,
while the remainder is refracted and transmitted into the second
material. The reflected light is discussed in the previous section.
Total internal reflection is governed by Snell's law, too; the critical
angle occurs when n; > ny and a" = 90°, whereby

sin Oiritical = 'n_2 (215)
ny
For angles of incidence larger than o, no light can be refracted
and total internal reflection prevails.

It is instructive to view refraction in terms of Huygen's wavelet
principle. It states that each point in a wave front can be assumed to
act as a new source, with light radiating from each point. In Fig.
2.6b, let w represent a plane wave front approaching the boundary
surface obliquely, at angle a. Wavelets originating along w have a
radius of one wavelength A,, or by Eq. 2.8, A/n,; the surface tangent to
these wavelets defines the new wave front. In succeeding time
intervals of 1/ w, the wavelets and corresponding wave fronts advance
by increments of one wavelength to new positions. In the medium of
refractive index n,, however, the wavelet radius becomes A5 and this
leads to a discontinuity of slope of the wave surface at the boundary.
From the geometry of the two shaded triangles, the ratio of the sines
of @ and a" gives Snell's law, Eq. 2.14.

2.2 Optical Elements
2.2.1 Light Sources

The choice of a light source for a given application involves three
main variables: its spectrum, or band of wavelengths present in the
light; its delivered power, or energy per unit time; and its physical
size, or the area of the light emission region. Representative spectra
are illustrated in Fig. 2.7. A thermal source, such as an
incandescent tungsten filament lamp, radiates light of about equal
intensity for all the visible wavelengths. The spectrum can be
narrowed by color filters, which transmit a band of wavelengths and
absorbs the energy of the remaining wavelengths. Interference
filters can isolate very narrow spectral bands; in this case, the
rejected light is not absorbed, but instead it is reflected back while the
narrow spectral band is transmitted. Of course, a great amount of
light energy is lost when filters are used to isolate a narrow part of a
broad spectrum.
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Fig. 2.7 Schematic graphs illustrating the spectrum of various light sources.
The spectral bandwidth is A, — A;.

The mercury-vapor lamp is a common laboratory light source.
Light of the mercury spectrum is emitted when an electric current
passes through a mercury gas. Strong emission bands are centered
at 435.8 nm (violet) and 546.1 nm (green), and at the doublet 577.0 and
579.1 nm (yellow). The spectral bands are sufficiently far apart that
they can be isolated by color or interference filters. The spectral
width of the individual bands depends upon the pressure and
temperature of the mercury gas. The half-width A, — A, is about 5 nm
for high-pressure mercury lamps, 0.1 to 1 nm for medium-pressure
lamps, and about 10~% nm for low-pressure lamps. The high-pressure
lamps are brightest, whereas the light output of low-pressure lamps
is relatively weak.

Before the advent of the laser, the cadmium-vapor lamp was noted
for its very narrow spectral bandwidth. It was used with an
interferometric technique to determine the number of wavelengths in
the length of the standard meter bar, and its wavelength became a
standard unit of measurement. Today, laser wavelengths have
become standard units of measurement.

The bandwidths of continuous-wave gas lasers, such as the
helium-neon laser and the argon-ion laser, can be of the order of 10-¢
nm (or 10715 m). This is so small that the output can be considered to
be a single wavelength for most practical purposes. Popular
wavelengths are 632.8 nm (red) for the helium-neon laser, and 514.5
nm (green) and 488.0 nm (blue-green) for the argon-ion laser. Other
choices are becoming increasingly available as laser technology
advances.
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The issue of delivered power puts the classical thermal and metal-
vapor lamps at a disadvantage for two reasons. Light is emitted in all
directions, while only a small part of the total can be channeled into
most optical systems. Secondly, many applications require a small
source size, such that light from only a small part of the emission
region can be used. On the other hand, the stimulated emission that
takes place in a laser cavity gives the light strict directional
properties and nearly all the output can be channeled into the optical
system.

For many applications, a point source or a reasonable
approximation to a point source of light is needed. The classical
thermal and metal-vapor sources are considered to be extended
sources, since light emerges from a broad emission region. Even the
small tungsten filament of an incandescent lamp and the short arc
length of a mercury-vapor arc lamp are in the millimeter size scale.
They are broad sources compared to the micrometer size scale that is
often required. Again the laser offers superiority. The output beam
is so well directed that the light can be focused virtually to a point; the
laser can be treated as a point source.

The remarkable qualities of laser light stem from self-stimulated
emissions within the laser cavity. Successive emissions are
stimulated by light already propagating within the cavity. It is
stimulated in such a way that the additional light propagates in the
same direction and with the same phase as the original light beam.
This action creates the very long wave trains of laser light, with
extremely narrow spectral bandwidth and extremely smooth wave
front surfaces.

Laser light is said to be coherent light. Temporal coherence
relates to time. It refers to the extremely narrow spread of period or
frequency of laser light waves (i.e., the high monochromatic purity)
and the concomitant narrow wavelength spread and long wave
trains. Spatial coherence relates to space. It refers to the systematic
directional properties whereby laser light can be considered to
emerge from a point in space. Laser light has high temporal and
spatial coherence.

Is high coherence always desirable? While it is a great asset for
most techniques of optical interferometry, it creates certain problems
too. Ghost patterns, or faint unintentional interference patterns
superimposed upon the intended patterns, are frequently
encountered when coherent light is used. They must be eliminated
by careful laboratory practices or accepted as optical noise in the field
of view.
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2.2.2 Wedges, Prisms, Mirrors

Wedges, prisms, and mirrors are used to change the direction of an
incident beam by refraction, reflection, or both. All have plane
surfaces, as illustrated in Fig. 2.8. The direction of emergence is
determined by applying the simple laws of reflection and refraction,
Eqgs. 2.11 and 2.14 to the rays encountered at each surface.

@ vy O] ®

Fig. 2.8 Wedges, prisms, and mirrors.

Refracting elements that deviate the beam through relatively
small angles are called wedges, as in (a). Larger deviations are
accomplished with prisms by refraction (b) or internal reflection (c
and d); reflecting surfaces of prisms can be coated with thin metal
films, or they can be bare and depend upon total internal reflection.
A front-surface mirror is illustrated in (e), where the reflecting
surface can be the polished surface of a metal plate, but more usually
it is a polished glass plate coated with a metallic film. The common
household mirror, or rear-surface mirror (f), is a glass plate with a
metal film applied to its back surface; these often suffer from double
imagery as a result of the light reflected from the front surface.

2.2.3 Partial Mirrors

A partial mirror is a mirror that reflects a fraction, R, of the light
intensity incident upon it and transmits a fraction, T, as illustrated
by rays in Fig. 2.9. Such mirrors are also called beam splitters or
semi-transparent mirrors. Metallic coatings of controlled thickness
can be applied to polished glass by vacuum deposition. The coating
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can be so thin that it is semi-transparent; the transmittance
decreases with coating thickness.

Vacuum deposition, or evaporation, is depicted in Fig. 2.10. The
operation takes place in a chamber evacuated to a low absolute
pressure. The plate is supported with its surface to be coated facing a
reservoir of coating material. The coating material is heated
electrically and it evaporates rapidly. In the absence of air
resistance, the vapor travels long distances in the chamber and
deposits on the plate, where it sublimes (or else condenses and
freezes) to solid particles. With metallic coatings, coating thickness
is usually a small fraction of a wavelength of visible light.
Uniformity of thickness is nearly perfect, and surface smoothness
duplicates the substrate smoothness.

IT
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Fig. 2.9 Partial mirrors split the incident light into transmitted and reflected
parts.

Nonmetallic partial mirrors are widely used. Dielectric coatings
produce excellent partial mirrors, since absorption is practically
zero. A single layer of a high refractive index coating is illustrated in
Fig. 2.11, where beams a and b are reflected at the air/coating
interface and the coating/glass interface, respectively. If the coating
thickness is controlled such that the phase difference between a and b
is 27 or an integral multiple of 27, then ¢ and b will combine in
constructive interference (Sec. 2.3) and enhance the reflected
intensity. Here, S includes both the change of OPL and the phase
changes upon reflection, where a phase change of x is equal to a path
length of A/2 (Sec. 2.1.3). As an example, if a coating of zinc sulphide
(ng = 2.32) is applied to an optical glass (ng = 1.52), constructive
interference between beams a and b in Fig. 2.11 provides a reflectance
of about 35%.
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Fig. 2.10 Metallic and dielectric coatings can be produced by evaporation. The
coating material is heated in a high vacuum environment; it evaporates and
deposits onto the substrate.

Multilayer dielectric coatings can produce virtually any
reflectance. The coatings are illustrated schematically in Fig. 2.12,
where alternating layers of high and low refractive index coatings
are applied. Magnesium fluoride (n; = 1.38) is an example of a
suitable low index material. A portion of the advancing incident
beam is reflected at each interface. When these reflected beams
combine in constructive interference the total reflected intensity can
be very large, approaching 100% reflectance. Multilayer dielectric
coatings are used extensively for laser cavity mirrors and many other
diverse applications.
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Fig. 2.11 Single layer dielectric mirror coating.
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Fig. 2.12 Multilayer dielectric mirror with alternating layers of high and low
refractive index.

2.24 Antireflection Coatings

The dielectric reflection at air/glass interfaces is frequently
detrimental. Examples are reflections from air/glass interfaces of
lenses and reflection from the second (nonmirror) surface of beam
splitters. Such reflections can be suppressed by dielectric coatings
similar to those used for partial mirrors, but the coating thickness
and the distance S in Figs. 2.11 and 2.12 must be controlled to produce
destructive interference (Sec. 2.3).

An alternative approach for beam splitters is to apply the partial
mirror coating to one surface of a wedge. Then, the unwanted
reflection from the back surface of the wedge becomes inclined to the
main reflected beam and the unwanted light becomes separated from
the primary beam.

2.2.5 Lenses

Lenses change the direction of light by refraction. Snell's law, Eq.
2.14, determines the path of every ray as it crosses a lens. Figure 2.13
depicts a lens that changes a divergent beam to a collimated beam.
The spherical wave fronts of the divergent beam are converted to
plane wave fronts. Since the optical path lengths of all rays between
two wave fronts are identical (Sec. 2.1.1), rays oa and oa' have equal
OPL. Obviously their mechanical path lengths are different, but the
optical thickness of the lens varies in just the right way to
compensate for the changes of mechanical path length. An
important property is the constant OPL of all rays through a lens
between an object point and its image.
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The required variation of lens thickness can be accommodated by
spherical surfaces (almost always). This allows the manufacture of
lenses with relatively simple generating and lapping machines. For
special applications, lenses with nonspherical surfaces may be
required, and these aspheric lenses are made by more sophisticated
machinery or manual methods.

Lens action should be explained differently for matte objects and
specular objects. However, the explanations are supplementary, not
conflicting. Matte objects have rough surfaces when viewed on the
wavelength scale. When illuminated, each local region of the surface
reflects or (for transparent objects) refracts the light in all directions,
just as each region of a classical light source radiates in all
directions. The law of reflection (Eq. 2.11) and Snell's law (Eq. 2.14)

Fig. 2.13 A lens introduces systematic changes in wave fronts.

remain effective on a microscopic scale, but the surface is so rough
that the local angle a changes randomly within any small region.
The reflected or refracted light is nearly the same as light from a self-
luminous object, where light diverges from every point with spherical
wave fronts, each with random phase relative to its neighbors.

A specular object has smooth, mirror-like surfaces. It reflects or
refracts light in a systematic way, again governed by Eqs. 2.11 and
2.14. When a beam with a smooth wave front is incident upon a
specular object, the reflected or refracted beam also exhibits a smooth
wave front.

The two cases are pertinent to our studies. The techniques of
geometric moiré utilize objects with matte surfaces, while moiré
interferometry deals mostly with specular objects.
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Fig. 2.14 illustrates the focusing properties of a lens. In Fig. 2.14a,
the illuminated matte object reflects light from each point. The
portion of the light emerging from a that is collected by the lens is
redirected to converge to point a'. Point a'is the image of a; they are
called conjugate points, a word that implies they are equivalent or
interchangeable. Light from any off-axis point b in the object is
collected and converged (or focused) to point 4'. Thus, all points on
the object are focused to conjugate points in the image plane, where
‘an image or visual replica can be seen. In the case of a camera, a
photographic film is located in the image plane to record the image.

When the object is at infinity, the lens converges the light to a
point a'. Its distance from the lens is defined as the focal length, FL,
of the lens. This condition is illustrated in (b) and (c) of Fig. 2.14, but
in (c) a virtual image is formed. The light is not concentrated at a',
but rays that emerge on the right side of the negative lens appear to
come from a'. Of course, the objects we will consider do not lie at
infinity, but in the common optical system illustrated in (d) the light
received by the second lens appears to come from infinity. The
system depicts a point light source that is collimated by a first lens
and decollimated or converged by the second lens.

Note that the lenses in Fig. 2.14 are drawn with their larger
curvature facing the side of smallest obliquity of rays. To reduce
aberrations, simple lenses should be oriented such that the two
surfaces of the lens refract a ray by approximately equal angles.

An extremely valuable relationship between object and image
distances is the thin lens formula

1 + 1 1

Fl —l')—l‘ = FL (2.16)

where D; and D, are distances from the lens to the object plane and
image plane, respectively. D; and D, are positive when they lie on
opposite sides of the lens. The relationship is not exact since real
lenses have thickness, but where the distances are large compared to
the lens thickness the approximation is valid. This relationship
applies for all the cases illustrated in Fig. 2.14. In (b) for example, D,
is infinity, its reciprocal is zero, and Dy = FL. In (c), the focal length of
a negative lens is a negative distance, which is equal to D,.
Magnification M of the image, or the ratio of length a'b' to ab, is given
by
D,

M = D, (2.17)
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Fig. 2.14 Images formed by lenses.
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Equations 2.16 and 2.17 can be applied, too, for compound lens
systems, or a series of thin lenses. The equations are applied
individually for each thin lens element, with the image produced by
the first element becoming the object for the second element, etc. For
example, in Fig. 2.14d, the image distance D, from the first lens is
determined by Eq. 2.16 to be infinity. This becomes the object plane for
the second lens; for the second lens D, is minus infinity, its reciprocal
is zero, and by Eq. 2.16 the image distance equals FL, the focal length

of the second lens. (See Exercise 2.3.)



30 2 Elements of Optics

These relationships apply equally to images of specular objects
and images of matte objects. Additional lens properties that bear
mentioning involve the quality or fidelity of the image. One pertains
to the finite aperture of the lens. The lens in Fig. 2.14a intercepts only
a portion of the wave front radiating from point a. The light that
strikes the lens aperture (or lens boundary) is diffracted and some of
it falls outside the geometric projection of a. As a result, the image of
point @ is not simply a mathematical point a', but instead, it is a
distribution of light across a finite area surrounding point a' in the
image plane; most of the energy is concentrated within a zone called
Airy's disk. This limits the resolution of the lens, or its ability to
resolve fine details. The size of Airy's disk becomes smaller as the
lens size is increased, i.e., as the solid angle of the cone of light
accepted by the lens is increased. Thus, lenses with large apertures
provide higher resolution than smaller lenses, when all other
variables are kept constant.

Image degradation also results from inherent imperfections in
the lens, called aberrations. Light from a matte object point is spread
in the image plane across an area called the circle of confusion. For
high quality focusing lenses, designers minimize the circle of
confusion until it is smaller than Airy's disk. Such lenses are called
diffraction limited lenses. Their design and fabrication is increas-
ingly difficult as the aperture inceases. The resolution of high quality
focusing lenses is usually specified by the manufacturer in terms of
the contrast of closely spaced line pairs. The resolution limitations of
a lens apply to images of matte objects, not specular objects.

Specular Objects

With specular objects, the performance is different. Consider the
arrangement in Fig. 2.15, where the object is a plane mirror. Let a
beam of light with plane wave fronts approach the object at normal
incidence. To accomplish this, a beam splitter is used to direct the
light toward the object. The object reflects the light as indicated by
arrows attached to it, without distorting the wave fronts. However, at
the boundaries of the object and also at scratches or marks on the
object, light is reflected as it would from a matte object.

Light from the boundaries of the object radiates out and fills the
entire lens. It is then focused by the lens to display an image of the
boundaries in the image plane. The image of the boundaries suffers
the resolution limitations discussed above.

Light from all non-boundary parts of the specular object advances
toward the lens as a collimated beam with plane wave fronts. The
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Fig. 2.15 Light from a point on a specular (mirror-like) object traverses the lens
along a single line. Boundary points on the object are exceptions; light emerges
from each boundary point in all directions, it fills the lens, and some of it is
diffracted by the lens boundaries.

lens converges the beam through an apex at the focal plane of the
lens, whereupon the beam diverges with spherical wave fronts that
cross the image plane. Within the image of the boundary of the
object, the image plane is uniformly illuminated; no detail is seen.

Why are we interested in these images, which now seem blank?
The answer lies in Sec. 2.3.6, which treats image formation when two
specular beams emerge from the object, each with differently warped
wave fronts. The two beams interfere constructively and destruc-
tively with each other and form an interference fringe pattern in the
image plane. The light comprising such patterns can travel through
the lens without intercepting the lens aperture or boundary, so it is
not influenced by boundary effects of the lens. Consequently, the
interference fringe pattern projected on the image plane exhibits full
fringe contrast. The only requirement is that the two beams with
warped wave fronts pass through the lens.

The task of an imaging lens is very different for specular objects,
compared to the task for matte objects. With matte objects, light from
each object point fills the lens, and the lens must bend all these rays
to reunite them at the image point. With specular objects
(illuminated by light having smooth wave fronts), the light from each
object point emerges as a single ray; it enters the lens at a single
point and it traverses the lens along a single path as it travels to the
image point. In Fig. 2.15, all the light that emerges from the object
point a travels along the singular path aa'to reach the image point.
The task is much less complex.
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2.2.6 Laser-beam Expander, Spatial Filter, Optical Fibers

The output of a typical gas laser is a narrow, intense beam of
coherent light. Being narrow, the beam is often called a pencil of
light. A beam-expander is used to enlarge it into a divergent beam.
As illustrated in Fig. 2.16a, a beam expander is a small, short-focal-
length lens. Microscope lenses are frequently used and the power of
the lens determines the angular divergence of the beam.

A spatial filter (Fig. 2.16b) is a beam expander with a pinhole
aperture at the node (or waist) between the convergent and divergent
light. The diameter of the aperture is small, usually 10 - 50 times the
wavelength. The pinhole passes light from the main beam of the
laser, but it blocks light from extraneous sources such as light
scattered from dust particles on the laser window and beam
expander lens, and light that experiences multiple reflections at the
lens surfaces. By filtering out the extraneous light, the spatial filter
provides a clean beam, i.e., without random variations of intensity
across its field. Instead the intensity distribution within the beam
approaches the theoretical Gaussian distribution, which prescribes a
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Fig. 2.16  Schematic illustrations of (a) a beam expander, which converts a
narrow laser beam into a diverging beam; (b) a spatial filter, which is a beam
expander plus a pinhole aperture; (c) an optical fiber, which conducts light to a
new location where it emerges as a divergent beam; (d) spliced fibers, which
provide two mutually coherent beams.
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smooth variation of intensity near the center of the beam. Usually,
only the central part of the divergent beam is admitted into an optical
system, providing a nearly uniform beam intensity; the remainder of
the beam is wasted.

The optimum pinhole aperture size depends upon the power of the
beam expander. The lens and pinhole arrangement is available in
sets, with mounting fixtures and fine adjusting screws to position the
aperture at the node.

A single-mode optical fiber (Fig. 2.16¢) acts very much like a
pinhole filter, while at the same time it conducts the light to a new
location. Special adjustment fixtures are used to align the fiber with
the concentrated laser beam. Optical fibers are often used to separate
a bulky laser from the rest of the optical system. In addition to
convenience, this separation can isolate the optical system from
troublesome vibrations that are sometimes produced by water cooled
or forced-air cooled lasers.

Single-mode fibers preserve the temporal and spatial coherence of
the laser light. Single-mode polarization-preserving fibers are also
available, which preserves the state of plane polarization when
polarized light is input.

Optical fibers can be spliced together, as illustrated in Fig. 2.16d, to
provide two mutually coherent output beams. These spliced fibers
are very useful for the assembly of various two-beam interferometer
systems.

2.2.7 Parabolic Mirrors

A parabolic mirror provides an efficient way to form a collimated or
parallel beam of light. Parabolic mirrors are usually fabricated from
glass or pyrex (for its low thermal expansion). The mirror surface is
polished to a smooth contour that matches a paraboloid within a
fraction of a wavelength, e.g. A/8, and the surface is coated with
aluminum for high reflectance.

As illustrated in Fig. 2.17, a diverging beam from a light source
located in the focal plane of the mirror is reflected as a parallel beam.
The source could be one of the configurations of Fig. 2.16. In Fig.

2.17a, the mirror is slightly inclined so that the source does not
obstruct the collimated beam. In (b), the mirror is used on-axis,
which means the collimated beam is parallel to the axis of the
paraboloidal surface of the mirror; large parabolic mirrors are
manufactured as indicated by the dashed lines, but then they are cut
into smaller mirrors for use as shown in the diagram. The wave
front distortion of the on-axis design is smaller, but when angle 6
(Fig. 2.17a) is minimized, the small distortion from an off-axis mirror
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Fig. 2.17 A collimated beam can be produced by (a) an off-axis parabolic mirror
and (b) an on-axis parabolic mirror.

is acceptable for most applications and it is the configuration that is
used most often.

The alternative is a collimating lens. That option is usually the
most expensive, with the on-axis mirror less expensive and the off-
axis mirror least expensive. When parabolic mirrors are purchased
from vendors that supply the amateur telescope market, mirrors of
fractional wavelength surface accuracy are economical.

2.3 Coherent Superposition

2.3.1 Pure Two-beam Interference

Consider the scheme of Fig. 2.18a to achieve superposition of two
beams. Let the source be a laser that emits light of wavelength A and
polarization perpendicular to the plane of the diagram. Let the light
be collimated by a lens or parabolic mirror to produce a parallel beam
with a plane wave front w,. At a later time, wave front wy appears as
wave fronts w; and w,. After division by the beam splitter, one beam
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travels along path 1 and a portion of it is reflected at the second beam

splitter toward the camera. Assuming perfect optical elements, the
beam emerges with a plane wave front w;. The second beam
traverses path 2. Since it travels at a lower velocity through the
medium of refractive index n, it emerges later than beam 1 and its
wave front w, lags w; by a distance S.

A generic diagram of two-beam interference is shown in Fig.
2.18b. The shaded box represents any one of various two-beam
interferometers. The optical system within the box divides the input
beam into mutually coherent beams; it alters the optical path length
of one or both beams to create a relative phase difference.
Consequently, the beams emerge with one leading the other by a
distance S.

Consider the number of wave cycles that occurred at an arbitrary
point z, as the two beams (i.e., the two wave trains) propagate through
the point. At a given instant, the head of the lagging wave train
advanced beyond z, by a smaller distance. Therefore, the lagging
beam experienced S/A fewer wave cycles. Its phase is 2xS/A less
than that of the leading beam. This phase difference persists for all
time during the passage of the two beams.
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Interferometer

Fig. 2.18 (a) Superposition of mutually coherent beams with optical path
difference S. Note: refractions that occur at the beam splitters are not shown. (b)
Generic representation of two-beam interference.
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If at 2, the field strength of wave train 1 is assumed to vary with
time as

A, = acos2nwt (2.18)

then the strength of wave train 2 is
S
A, = acos 2n| ot - - (2.19)

These equations assume the two waves have the same peak strength
a. Since the phase difference at z; is the same for all time, and since
the sum of two harmonic functions having the same frequency is
another harmonic of that frequency, the resultant field strength is

A=A + A, = Kcos 2n(wt + ¢)

where

1/2
K = l:2a2(1 + cos 27:%”

By Eq. 2.6, the resultant intensity of the recombined wave trains is K?,
or

I = 24 (1 + cos 27:—2-‘-) = 4a? cos? It-‘zs—' (2.20)

This is a fundamental relationship, called the intensity
distribution of pure two-beam interference. It is derived in Sec. 2.3.8.
The intensity of the combined beams is persistent, or independent of
time. It varies cyclically from maximum to zero to maximum, and so
on, as a function of the difference S of path lengths traveled by the two
beams.

In the schematic arrangement of Fig. 2.18, S might have any
value. If S is an integral number of wavelengths, i.e. S/A=0, 1, 2, 3,---,
the intensity at arbitrary point z, is maximum and constructive
interference occurs. If S =A/2 plus an integral number of
wavelengths, or S/A =1/2, 3/2, 5/2,---, the intensity reaches a minimum
value of zero and destructive interference occurs.

This example is called pure two-beam interference. It occurs
when two mutually coherent beams of equal amplitude (and
intensity) travel different optical path lengths and then recombine. It
is characterized by a maximum intensity that is equal to twice that
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obtained by incoherent superposition (Sec. 2.4), and by a minimum
intensity of zero (i.e., complete destructive interference).

Since w; and w, are parallel and they travel with identical
velocities, and since 2, is an arbitrary point, the intensity—or the
condition of constructive or destructive interference—is the same at
every point in space where beams 1 and 2 coexist. The case of
nonparallel wave fronts will be considered later.

2.3.2 Conservation of Energy

Referring again to Fig. 2.18a, assume that the beam splitters and
mirrors are made with dielectric coatings of zero absorption. Let the
beam splitters have 50% reflectance and 50% transmittance, which
means that the intensity in each path is half the intensity of the
incident light. Let the two full mirrors have 100% reflectance. Let
the incident intensity be 4a2.

The intensity of beam 1 (i.e., the beam with wave front w;) is
halved at each beam splitter to become a?; its maximum amplitude is
a. Similarly the intensity of beam 2 (with wave front w;) becomes a?
and its maximum amplitude is a. These two emergent beams can be
represented by Eqs. 12.18 and 2.19. Their resultant intensity is
given by Eq. 2.20.

However, Eq. 2.20 shows that the output intensity of the combined
horizontal beams can be as high as I = 4a®. For certain values of S,
the output intensity is equal to the input intensity. Then, can we
extract energy from the output intensity I' in the perpendicular path?

Of course not! When I = 4a2, interference in the perpendicular
path must give I' = 0. In fact, I and I' are always complementary,
that is,

I' = 4a? sin? n§
A
This shift is caused by the phase changes of x that occur upon
external reflection (Sec. 2.1.3). The two beams that emerge in the
direction of the camera experience two external reflections in each
path, so there is no relative phase change induced by reflection. For
output in the direction of I', path 1 encounters one external reflection
(with its phase change of x) while path 2 encounters two external
reflections (27 change) and one internal reflection (zero phase
change). The relative phase change is n and therefore I' is the
complement of I. Thus, I +I'= I, for every value of S. If not for the
phase changes upon reflection, the output intensity could be double
the input and we could create energy!
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2.3.3 Impure Two-beam Interference

Impure interference occurs when beams 1 and 2 (Fig. 2.18) have
unequal amplitudes a; and a; and thus unequal intensities I; and I,.
The resultant intensity at arbitrary point z is

I = Il + I2 + 2'\,[1 I2 COS 2”“;‘ (2.21)

This is the general expression for interference, or superposition of
any two coherent wave trains; the relationship is derived in Sec. 2.3.8.
The resultant intensities are plotted in Fig. 2.19 as a function of path
difference N =.S/A. Curve 1 is for pure two-beam interference and the
other curves apply for the specified ratios of input beam intensities.
Interference of beams of unequal strengths is impure because
destructive interference is incomplete, or Iy, = 0.

2.3.4 Fringe Patterns and Walls of Interference

The apparatus represented by Fig. 2.20 is similar to that of Fig. 2.18,
but here collimated beams 1 and 2 emerge with a relative angle 26.
This would occur, for example, if wedge-shaped optical elements are
inserted in paths 1 and 2 of Fig. 2.18a. As always (in free space and
isotropic media) their wave fronts w; and w, are perpendicular to the
beams and they, too, intersect at angle 26.

Wave fronts w; and w4 originated from division of wave front w.
Consequently, w; and w, have identical phase. By Eq. 2.20 or 2.21,
their separation S,y determines the local intensity at every x,y point.
Where their separation S is an integral number of wavelengths,
interference is constructive; midway between neighboring locations
of constructive interference, the interference is destructive.

Visualization of the intensity distribution in the space where the
two beams coexist is aided by Fig. 2.21. The figure illustrates the two
wave trains and it depicts wave fronts w; and w; and neighboring
wave fronts. The separation between wave fronts in each train is A.
The harmonic curves with ordinates labeled A; and A, represent the
field strengths of the two wave trains in space at the given instant.
These curves have equal amplitudes, indicating conditions for pure
two-beam interference. Phases marked ¢; and ¢, are identical since
wave fronts w, and w, have equal phase. Consequently, when w;
reaches point a, w, has already advanced five wavelengths beyond a.
Point b lies 2.5 wavelengths ahead of w; and 2.5 wavelengths behind
wg, so the path difference at b is 5 wavelengths. In fact, the path
difference is 5 wavelengths at every point along ac; in Eq. 2.20, S/A=5
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Fig. 2.19 Resultant intensity versus path difference, S/ A, for two-beam
interference, where I; and I, are the intensities of the two input beams.

at these points. The result is constructive interference at every point
along ac.

By the same argument, along de the difference S of optical path
lengths traveled by the two wave trains is 4.5 wavelengths, or S/A =
4.5. Along gr, S/A=4. This explains the formation of constructive and
destructive interference at the given instant, but why is the effect
persistent, or independent of time?

Wy

Beam 0

N\

Interferometer

Fig. 2.20 In this case, the interferometer causes the two output beams to emerge
with a relative angle 26.
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At a later instant these two wave fronts have advanced, but their
velocities are identical and the distances traveled are identical.
Therefore, the phase difference at point a remains five cycles, and the
phase difference at all other points remains unchanged. A steady-
state condition of constructive and destructive interference is formed.
It is clear from the figure that these lines of interference lie parallel
to the bisector of the incoming beams.

Furthermore, the wave fronts of Fig. 2.21 are not merely the lines
shown, but they are planes that stand perpendicular to the diagram.
The optical interference occurs in the three-dimensional space where
the two beams intersect. Constructive and destructive interference
occurs in a series of parallel planes that stand perpendicular to the
diagram and contain the lines labeled constructive and destructive
interference.

The planes of constructive interference lie within thin volumes of
space where the resultant intensity is relatively high. The planes of
destructive interference lie within intermediate thin volumes of
space where the resultant intensity is relatively low. One can
visualize these thin volumes of space surrounding the planes of
constructive interference as walls of constructive interference—walls
in which light intensity exists. These walls are separated by voids
that represent the (relative) absence of light intensity. The conceptual
model is that of three-dimensional space occupied by parallel,
uniformly spaced walls of light intensity. They will be designated by
that name and, more simply, by walls of interference.

Such walls can be visualized wherever two beams of mutually
coherent light intersect in space, regardless of the angle of
intersection. Of course, the walls do not obstruct anything. Other
beams of light can pass through them and emerge uninfluenced by
their presence, just as two beams of light can cross in space and
emerge from the intersection zone unimpaired.

A photographic plate that cuts this space absorbs energy from the
walls of light intensity and records their presence. It receives no
energy where it cuts through the voids. Thus, the photographic plate
exhibits dark and light bands such as those in Fig. 2.22. The bands
are called fringes, and the array of fringes is called an interference
fringe pattern.

Let the photographic plate be interposed along BB in Fig. 2.21. A
fundamental relationship defines the distance G between adjacent
fringes on the plate, or between adjacent walls of interference in
space. From the shaded triangle in Fig. 2.21, whose hypotenuse is G
and short leg is A/2, we find
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Fig. 2.21 Regions of constructive and destructive interference in space where
two equal coherent beams intersect. A; = A, at points a, b, ¢, so constructive
interference is produced. A; = -A; at d and e, resulting in destructive
interference.

Fig. 2.22 Interference fringes recorded by a photographic plate installed in
plane BB of Fig. 2.21.
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. Al2
0 = =2 2.22
sin G (2.22)

The frequency of the fringes, or the fringe gradient on the plate (e.g.,
fringes/mm), is F, where

F = (2.23)

Q=

The fringe gradient is determined by

F = 2 sin 6 (2.24)
A
Like Eq. 2.20 or 2.21, the relationship of Eq. 2.24 pertains to every case
of optical interference; it will arise repeatedly in our studies. The
relationship applies for any value of 8 between 0 and 90° and it applies
for any separation S, except that S must be small compared to the
length of the wave train or the coherence length of the light source.

If a photographic plate is interposed along BB, it would record a
pattern similar to Fig 2.22; this represents a positive print and shows
destructive interference as black, or the absence of light. The bright
bands (or bright fringes) represent zones of constructive interference.
The fringes are given numerical values according to the
corresponding wave front separations, namely

(2.25)

where N is called fringe order. In Fig. 2.22, the centers of bright
fringes are loci of points of integral values of N(,y), i.e., points of N(x,y)
=0,1,2,3,---. At other points, N is a noninteger; every point in the field
has a value of N. Equation 2.25 shows that the fringe pattern is a
contour map of the separation S(x,y) between wave fronts w; and w,
where the contour interval is one wavelength per fringe.

The fringe pattern of Fig. 2.22 has a rather low frequency
(fringes/mm). How small was the angle 26 between the beams that
created the pattern? What are the limits on fringe frequency and
angle 6? Table 2.2 provides numerical values for fringe frequency F
versus angle 0, according to Eq. 2.24. The red light of the helium-
neon laser, A = 632.8 nm, is assumed for the calculation. When 6is in
the range of one part per 10,000 to one part per 1000 (0.006° to 0.06°),
the pattern exhibits 0.3 to 3.2 fringes per mm (8 to 80 fringes per inch).
That range of fringe frequencies is common in practical applications
of optical interferometry for deformation and surface contour
measurements. For such measurements, the angle between
interfering beams is extremely small. On the other hand, high
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TABLE 2.2 Fringe Frequency for Various Angles of Interfering Beams

Angle of F F
6 intersection (26) fringes/mm  fringes/in.
1/10,000 2/10,000 0.3 8
171000 2/1000 32 80
1/100 2/100 316 803
1° 2° 55.2 1,400
5° 10° 275 7,000
20° 40° 1,080 27,500
40° 80° 2,030 51,600
60° 120° 2,740 69,500
80° 160° 3,110 79,000
90° 180° 3,160 80,300

for A = 632.8 nm

frequency diffraction gratings are made by recording the interference
pattern created by two beams that have large angular separation
(Fig. 4.32). Practical values of angle 6 can be as large as 80° to
produce gratings of 3000 lines/mm or 75,000 lines/in.

Figure 2.22 illustrates a case of pure two-beam interference. If the
two interfering beams had unequal intensities, the resultant
intensity at each point (in plane B-B) would be governed by Eq. 2.21
and Fig. 2.19. The dark fringes would be photographed as shades of
gray instead of black. Table 2.3 lists parameters relating to the
visibility of the fringes for different relative intensities of the input
beams. The output is given by the ratio of maximum to minimum
intensities, I,,q;/Inin, for impure interference (Eq. 2.21), and also by
contrast, where

% contrast = —I"“’-"IM x 100% (2.26)

max

It becomes clear that pure two-beam interference is not required for
good fringe visibility. If the intensities of two interfering beams are
in the ratio of 4:1, the resultant fringe contrast is good, namely 89%.
Two beams with a 100:1 intensity ratio produce a discernible
interference pattern with a contrast of 33%. (This, incidentally, is
why extraneous interference patterns or "ghost patterns" are so
commonly observed when coherent laser light is used. Small
amounts of extraneous light that reflect accidentally from a local
zone, e.g., from the frame of an optical element, combines with the
main beam to produce low-contrast but noticeable interference
fringes).
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TABLE 2.3 Two-beam Interference for Coherent Beams
of Unequal Intensities

Two-beam Output:
input result of coherent summation

I or a? ) Contrast (%)
I, = af Luin Eq. 2.26

1 Y 100

2 A 97

4 9 89

9 4 75

16 28 64

25 2.2 5

100 1.5 33

2.3.5 Warped Wave Fronts

Referring again to Fig. 2.20, let wave front w,; emerge as a surface
that is not flat, but deviates from flatness in a smooth continuous
manner. It is smoothly warped, e.g., in the manner sketched in Fig.
2.23. Wave front w;remains plane in this example. If a photographic
plate is installed in the two output beams, it would record the
nonuniform interference fringe pattern of Fig. 2.23b, which is a
contour map of separation S,y between the two wave fronts.

The wave front separation S and the distance between neighboring
fringes both vary systematically with x and y. Along any continuous
bright contour, S,y /A has the constant value given by fringe order N,
where N is an integer. N is constant at all x,y points along any dark
contour; N is constant at all points along a continuous contour of any
intermediate intensity, so N assumes all values: integer, half-order,
and intermediate or decimal values.

Since wj is smoothly warped, fringe orders must vary in a smooth,
continuous manner. Fringes must be smooth contours and the
change of fringe order between adjacent fringes must be either 1 or 0.

In moiré interferometry, both beams usually have warped wave
fronts. However, the interpretation is the same—the fringe pattern
recorded on the photographic plate is a contour map of the separation
between wave fronts w; and ws, that is, between wave fronts of equal
phase in the two output beams.

Two-beam interference with coherent light is said to be
nonlocalized. This means that the predictions of Eqs. 2.20 and 2.21
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Fig. 2.23 When one or both of the wave fronts is smoothly warped, the
interference fringes are continuous curves. The interference pattern is a
contour map of the separation S(x,y) between the wave fronts, where fringe orders
Nx,y) = S(x,y)/A.

remain effective at every point in the space where the two beams
coexist. The contrast of interference fringes recorded on a
photographic plate is essentially the same at every location in this
space.

The concept of walls of interference applies in the three-
dimensional space where any pair of coherent light beams coexist,
including beams with warped wave fronts. The walls are flat,
parallel, and uniformly spaced only for the special case of
interference between beams with plane wave fronts. In the general
case of warped wave fronts, the walls have irregular shapes. As a
consequence of the wave front changes depicted in Fig. 2.2, each wall
of interference has a continuous but warped shape, with its warpage
systematically different from that of the neighboring wall. A
photographic plate that cuts the wall at one location might record the
fringe pattern of Fig. 2.23, but at a different location the fringe pattern
would be somewhat different. Clearly, as these two wave fronts
propagate, the warpage of w, changes, the wave front separation S,y
changes, and the interference fringe pattern representing S(x,y)
changes.

2.3.6 The Camera

A predicament is arising. The fringe pattern is not unique—the
pattern changes with the location where it is observed. Where in
space must the fringe pattern be recorded?
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The fringes are nonlocalized, i.e., the fringes of two-beam
interference exhibit the same fringe contrast everywhere in space.
Consequently, the answer is not some special location where the
fringes are clearest.

Instead, the answer is this: in two-beam interferometric
techniques for metrological purposes, including moiré
interferometry, the fringe pattern must be recorded in the plane
where the information beam (or beams) exit from the object or
specimen under study. It is in this plane that the separation S,y
between emergent wave fronts is coordinated with the object points
from which the rays (and thus the wave fronts) emerge. As a warped
wave front propagates away from the object, its warpage changes and
the x,y coordinates in the wave front no longer corresponds to x,y
positions in the object. Thus, to capture the most meaningful
interference map of wave front separation S(,y), the two wave trains
(beams) must be photographed by focusing the camera precisely on
the plane of the object.

y
w \§§§§§§§§§§§ 1and 2 )

Beam 0

Camera Image or
lens film plane
Interferometer

Fig. 2.24 A camera reproduces the wave front separation, S(x,y), in the image
plane; S(x) is the same at corresponding object and image points, regardless of
image magnification.

Figure 2.24 represents a generic interferometer in which AA is
the plane of the object under study. The warped wave front emerging
from the object is illustrated as w,;. Depending upon the type of
interferometer under consideration, the wave front w; might not lie
in the object space. In that case, the wave front shown in the figure is
the virtual image of w;. (For example, in Fig. 2.27, w; is the virtual
image of wy).

Wave front w, propagates toward the camera. It is warped; since
light propagates normal to the wave front, the rays comprising beam
2 are inclined to the optical axis. However, its warpage is greatly
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exaggerated; it was noted in Table 2.2 and the related discussion that
the largest off-axis angle of these rays is very small. Accordingly, a
camera lens that is somewhat larger than the object will intercept all
the rays and direct them to the image plane.

In Fig. 2.24, wave front w; remains plane as its beam propagates
to the camera lens. The lens converges the beam to a node, where it
diverges to the image plane. The wave front has a spherical surface
as it crosses the image plane; it is labeled wj. But, what is the shape
of w, as it crosses the image plane?

The OPL between any object point and its image point is constant,
regardless of the paths of rays through the lens. In addition, the OPL
between any pair of wave fronts in a wave train is always constant. It
follows, therefore, that separation S,y of wave fronts as they cross
the image plane equals their separation as they emerge from the
object plane. The shape of w, corresponds to the shape of ws, plus an
additional spherical warpage. In the image plane, the original shape
of each wave front is modified by the same spherical warpage.

The key feature is the equality of wave front separation S(x,y) at
corresponding points in the object and image planes. Thus, a camera
reproduces in the image plane the phase relationships of the light
that emerges from the object plane. The interference pattern
representing S(x,y is produced faithfully in the image plane when the
camera is focused on the object.

I Field lens

Stey) Camera

Al\\ Image or
Object plane film plane

Fig. 2.25 A camera system suitable for large fields.

It is interesting to notice that the lateral magnification of the
image does not influence the nature of the interference patterns. The
wave fronts that are reconstructed in the image plane can be
magnified in the x,y directions, but S(x,y—which lies in the z
direction—is independent of magnification.

Figure 2.25 illustrates an alternative camera system that is useful
for large fields of view. A large collecting lens, or field lens, directs
the two interfering beams into a smaller camera lens. Again, the
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wave front separation S,y is preserved and the interference pattern
in the image plane is a faithful map of S@,y). In practice, the
collecting lens should be located as close to the object as possible to
minimize the effect of lens aberrations.

Two mutually coherent beams with warped wave fronts produce
full-contrast interference fringes wherever they coexist, including
the space inside a camera. The finite camera lens aperture does not
degrade the fringe contrast (Sec. 2.2.5). An excellent way to assure
correct focus of the camera is to scratch a fine mark on the object and
critically focus the camera on that mark. Then, the intensity
distribution seen in the camera is given by Eq. 2.20 (or 2.21), and the
fringe order at each point is given by Eq. 2.25, repeated here,

S(x,y)
A

Another practical matter is the camera shutter, which sometimes
can vibrate the optical system. A convenient alternative is to locate a
separate shutter just ahead of the laser to control the exposure time.
If a mechanical shutter is used, it is best to mount it from a separate
stand that rests on the floor and does not touch the optical table.
Otherwise, an electronic shutter can be used, which does not
introduce vibrations.

A question could arise on how to cope with low light levels when
using a sheet-film camera. When modest laser power is used and
larger image magnifications are demanded, the light coming from
the ground-glass camera screen might be too weak for effective
viewing. An easy modification circumvents the problem. Replace the
ground-glass screen with a clear glass of the same thickness. Adjust
a focusing magnifier to focus on a mark on the inside surface of the
clear glass. Then, view the moiré pattern through the focusing
magnifier. The image will be much brighter, because all the light
that reaches the screen is directed into the observer's eye. With a
ground-glass screen, the light is spread in all directions and only a
small portion reaches the eye.

A video camera is convenient when fringes are not too closely
spaced, i.e., when the image contains several pixels per fringe pitch
G. Otherwise, a photographic film camera is advantageous.

N(x,y) =

2.3.7 Two-beam Interferometers

The optical arrangement of Fig. 2.18a is called a Mach-Zehnder
interferometer. Light that passes through path 1 is called a reference
beam and light that passes through path 2 is called an active or
information beam. It has been used extensively for wind tunnel tests
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Fig. 2.26 Fizeau interferometer to measure surface topography. (a) Small
oblique incidence and (b) normal incidence arrangements.

of flow over objects. Visualize the shaded box in Fig. 2.18a as the
cross-section of a wind tunnel, with glass windows normal to the
optical axis on each side of the tunnel. When an object such as an
airfoil is mounted in the tunnel, it induces a distribution of increased
and decreased pressure in the surrounding air. The pressure is
related systematically to the density and refractive index of the air,
and thus to the optical path length across the tunnel. Interference
between the reference and information beams creates a fringe
pattern that provides the pressure distribution.

Surface topography can be measured by various methods, but one
that involves very simple apparatus is the Fizeau interferometer
illustrated in Fig. 2.26a. Suppose it is important to measure the
topography of a slightly warped specular surface, e.g., a wear pattern
in a polished steel plate. An uncoated optical flat can be placed on the
plate. If it is illuminated by a collimated beam of monochromatic
light as shown, interference fringes can be observed in the reflected
light. About 4% of the incident intensity is reflected by the optical flat,
and about 40% by the steel plate (reflectance ~ 0.4). Impure two-beam
interference (Eq. 2.21) would produce fringes of adequate contrast,
about 73% (Eq. 2.26). The difference of optical path lengths of the
reflected beams is
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S(x,y) = 2h(x,y) cos 6

where h(xy) is the thickness of the gap at every x,y point between the
specimen and optical flat. Accordingly, the fringe pattern is a
contour map of h(xy) whereby, by Eq. 2.25,

h(x,y) = N(x,y) 2.27

A
2 cos 6

and where N(zy) is the fringe order at each point. The contour
interval is A/2 cos 0) per fringe order. Angle 6 would typically be
small, whereby cos 6 =~ 1. An alternative arrangement utilizes a
beam splitter, to achieve 6 = 0, as illustrated in Fig. 2.26b.

When the optical flat rests on the specimen and A is small, a
laboratory light source such as a mercury vapor lamp can be used.
The requirement for monochromatic purity is greatly relaxed when
S(x,y) is small. Of course, a laser (and beam expander) which
provides high monochromatic purity could be used instead. The
Fizeau interferometer is not a true two-beam interferometer;
multiple reflections occur between the two partially reflective
surfaces, but they have relatively low intensities and may be
neglected.

Figure 2.27 illustrates an interferometer that is frequently used
for measurements of surface topography. It is called a Twyman-
Green interferometer. The optical arrangement is the same as the
well-known Michelson interferometer, except a collimated input
beam is used in the Twyman-Green whereas an extended (or diffuse)
source is used in the Michelson. This arrangement is more
complicated than the Fizeau system, but it is especially useful when
the reference plate cannot be located near the specimen because of
size or shape limitations, environmental limitations, or otherwise.

In this case, an optically flat beam splitter directs half the light to
the specimen and the other half to a flat reference mirror. After
reflection from the specimen and reference surfaces, the beams meet
again at the beam splitter and a portion of each propagates
horizontally to be collected by the observer. When focused on the
specimen, the interference pattern seen by the observer is the contour
map of separation S(x,y) between the warped wave front w, and the
plane wave front wj, which is the virtual image of w;. The warpage
of wy is twice the warpage of the specimen surface. Thus, the
interference pattern is a contour map of the z coordinate of the
specimen surface, where the contour interval is A/2 per fringe order.

The surface topography can be represented by different patterns.
For example, let Fig. 2.28a be the interference pattern of the surface of
a body that was plastically deformed by pressing a punch into the
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Fig. 227 The Twyman-Green interferometer. The arrangement is the same as
a Michelson interferometer, but the Michelson uses an extended source.
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Fig. 2.28 (a) Interference pattern depicting a depression in an anisotropic plate
caused by a spherical punch. (b) Carrier fringes detect the ridge along the
boundary of the depression; observe the optical illusion of three-dimensional
shape by viewing the pattern at oblique incidence from the top or bottom.
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body. If the reference mirror is adjusted to give it a slight tilt, the
interference pattern is transformed to that of Fig. 2.28b. The new
pattern is the contour map of the separation between w; and wj, but
now, w; is slightly inclined.

The adjustment introduced carrier fringes (sometimes called
wedge fringes), which are straight, uniformly spaced fringes when
the specimen surface is plane. These carry the added information
when the specimen surface is deformed. Carrier fringes frequently
provide details that are otherwise ambiguous. In this case, for
example, the depression in the body is bounded by a ridge, but that
fact cannot be extracted from Fig. 2.28a.

The fringe order N represents the out-of-plane position W of each

point on the surface by

A
Wix,y) = 2 N(x,y) (2.28)

where W is measured relative to a datum plane, which is the plane of
the virtual image of the reference mirror. In Fig. 2.28a, the datum
plane corresponds to the undeformed portion of the specimen
surface; in (b) the datum plane is slightly inclined to the surface, with
its lowermost edge nearly coincident with the undeformed surface. N
and W are negative when the surface is in the —z direction relative to
the datum plane.

With the Fizeau interferometer (Fig. 2.26), the reference plane
cannot lie inside the specimen. Nevertheless, the fringe patterns can
be interpreted in the same way if Ay is interpreted as

h(x,y) = W(x,y) + D

where D is the distance from the selected datum plane to the optical
flat.

It is often necessary to inspect surface topography on a
microscopic scale. Various interference microscopes and various
microscope accessories are available. One rather simple attachment
is suitable for measurement of scratch profiles, cleavage steps, or
similar isolated details. Let the specimen illustrated in Fig. 2.29 have
a fairly smooth reflective surface with a narrow groove or blemish. If
a plane wave front is incident upon the surface, the reflected wave
front will have the form depicted by w,. The microscope attachment
utilizes a doubly-refracting crystal to generate a second wave front
w1, which has the same shape as w; but is laterally displaced as
shown. Interference then provides the contour map of separation
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Sy between the wave fronts, which closely approximates the depth
contours of the groove or blemish. The method is called wave front
shearing interferometry, since the wave front is divided into two
equal parts and one of these is displaced (or sheared) laterally with
respect to the other.

S(xy)

) ! "

—~—"

R

Specimen

Fig. 2.29 A wave front shearing microscope produces two mutually displaced
images of the emergent wave front. Interference reveals the separation, S(x,y),
which provides a depth measurement of isolated features.

2.3.8 Derivation of the Interference Equations

The following derivation is for two beams of mutually coherent light.
Figure 2.24 is used as a model of the optical systems. Changes of path
lengths are incurred in or near the object plane and the interference
fringe pattern is revealed in the image plane. The information beam
travels from a point source to each x,y point in the object, and then
through the camera lens to the corresponding x,y points of the image.
The reference beam travels from the same source, through the
camera lens and to each x,y point of the image. The notation ¢,y is
deleted in the equations, but it is to be understood that the analysis
applies to every x,y point.

The two interfering beams have a common plane of polarization,
e.g., the yz plane, where their field strengths are A,; and A,,. The
common polarization does not change, and the subscript denoting the
polarization is deleted in the following equations.

The fringe pattern is governed by the difference of optical path
lengths from the source to the image. In the general case the two
interfering beams reach each image point after traveling different
optical path lengths §; and 8, from the source. (Symbols § and OPL
represent the same quantity; 6 is used here for convenience.) At the
image plane the strengths of the two disturbances are, at a
representative point,
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8,
A, =a,cos2m| 0wt - 7
5 (2.29)
A, = a,cos 2m ((ot - TZJ
and their intensities are, by Eq. 2.6,
I = 2
L (2.30)
2 = Oy

The resultant field strength is
A=A +A,

2 S 2wt - 2n£2-
= a, cos | 2wt - 7:7 + a, cos N

The following trigonometric identities should be recalled (where «
and f are unrelated to symbols used elsewhere)

cos (@ -p) = cos acos B + sin asinf (2.31a)

sina + cos’f =1 (2.31b)
Then, using the identity of Eq. 2.31a,

é . . )
A = a,cos 2nwt cos ZnTI + a, sin 2rwt sin 27:-71

é é
+ @, cos 27wt cos 2::72 + a, sin 27wt sin 2::72

Combining terms,
6
A= (al cos 27r—l—l-+ a, cos 27:%] cos 2mwt
(2.32)
( o O . 62J :
+ |@,sin 27—+ a, sin 27 —= | sin 27wt
A A
Since the terms in parentheses are constants for any x, y point, they
can be equated to new constants as follows, provided that the

equations can be satisfied simultaneously. Let

[
(al cos 27:—/1l + a,cos 27 %J = Kcos ¢ (2.33)

é
[al sin 271:—/1—1 + a, sin 27 %J = Ksin ¢ (2.34)

By squaring and adding these equations, and reducing them by Eqgs.
2.31, we obtain
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K? = a% + d% + 2a,a, cos-2—}:'7E (61 - 62) (2.35)
and by division,

. 8, . 8,
a,sin 27— + a, sin 27—
tan ¢ = A (2.36)

PLE 27 22
a,C08 2T — + Q4 COS 27T —
! A 2 A

Thus, Egs. 2.33 and 2.34 are satisfied simultaneously.
By substituting Egs. 2.33 and 2.34 into Eq. 2.32,

A = K (cos ¢ cos 27wt + sin ¢ sin 2wwt)
and by Eq. 2.31a
A = K cos (270t - ¢) (2.37)
The intensity of the combined beams is, by Eq. 2.6 and from Eq. 2.35

I = K* = d% + a + 2a,a,cos 2A—n(61 - 62) (2.38)

Since the difference of optical path lengths is the separation S of the
respective wave fronts of equal phase,

61 - 52 =S (239)

Therefore,
2 2 S
I =a% + a% + 2a,a,cos 27rx (2.40)

By substitution of Egs. 2.30, and remembering that the analysis
applies to the whole field,

Itx,y) = I, + I, + 21, I, cos 2nS(x—A'y)- (2.21)

which is the intensity equation of impure two-beam interference. If
at=a2 =a® =1
Eq. 2.40 becomes

Iz, = 2I, (1 + cos 27:“—9%) = 41, cos® 7r§(jl'—y) (2.20)

which applies to pure two-beam interference; I, is the intensity of
each of the two interfering beams.

These equations define the intensity distributions graphed in Fig.
2.19. By substituting Eq. 2.25 (N = S/4), they define the intensity
distributions of two-beam interference patterns in terms of their
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fringe orders (Fig. 2.23b). For pure two-beam interference
Itx,y) = 21, (1 + cos 2wN(x,y)) = 4I, cos® *N(z,y) (2.41)
and for impure two-beam interference

Ix,y) = I + I, + 24/, I, cos 2aN(x,y) (2.42)

Complex Notation

The same intensity equations can be derived by use of complex
notation. Recall the complex identities

2= -1 (2.43a)
H =¢% =cos 0 +i sin 6 (2.43b)
H =¢" =cos6-i sin6 (2.43¢)

where H is the complex conjugate of H (i.e., its complex equivalent).
Thus,

H+ H =¢° + ¢ = 2cos 0 (2.43d)

A harmonic wave can be expressed as the real part of a complex
quantity
Z = ae*’
Its intensity I = a? can be determined by
I1=-2Z 2.44)
since
2

ZZ = ae'®-ae*® = a%e® = a

which is a real quantity.
Accordingly, the two waves represented by Egqs. 2.29 can be
expressed as the real parts of the following complex quantities

zZ, = aleizit(wt-Slll) = alexp|:i27z [wt - -i—l)]

Z, = azexp[i27r (wt - %H

where A; = Re [Z;] and A, = Re [Z,]. Their complex conjugates are

(2.45)
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— ) &,
Z, = aexp|-i2n| 0t - N

5 (2.46)
Z, = azexp[—i27t (a)t - —f—ﬂ
The resultant field strength is
A=A + A,
which is the real part of
Z=2Z +2
= alexp[iZn (wt - %H + azeXp[i27r (a)t - —Efﬂ 247)

The intensity I is the product of Z and its complex conjugate Z,
1=-2Z

_ {alexp[iZE (a)t , %H N azexp|:i27r[wt . i_“’]]} (2.48)
fomffe- 2] ]

which reduces to
I=ad%+ad+ alaz{exp[i —2%(51-62)] + exp[—i %(61—62)]}
Since
8, -6, =8
we obtain
2 2 i2nSIA |, i2nS/A

I-aj+ay+aa,le

and by Eq. 2.43d

I = a% + a? + 2a,a,cos 2n% (2.49)

The individual intensities are
I, - sz = a21

— (2.50)
I, = 2,Z, = %
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Thus, the equation of impure two-beam interference is derived as

Itx,y) = I, + I, + 2+/I, I, cos 2n§(—;y—) (2.21)

2.3.9 Interference with Broad Spectrum Light and
White Light

The interference phenomena also occurs with light that is not
monochromatic, but useful data is obtained only when the path
difference S(x,y) of interfering beams is a small number of
wavelengths. Figure 2.30 illustrates what happens when an
interferometer is used with light of a broad continuous spectrum. As
indicated in (a), interference occurs for each individual wavelenth in
the spectrum, producing a simple harmonic intensity distribution.
For any given value of path difference S, the intensity varies with the
wavelength; when S is large enough, the curves overlap and zones of
constructive interference for one wavelength coincide with zones of
destructive interference for another wavelength.

The resultant intensity distribution is obtained by scalar
summation of the intensities contributed by each wavelength. That
distribution is shown in Fig. 2.30b. A few cycles of constructive and
destructive interference fringes of high contrast occur, where
constructive interference corresponds closely to integral values of
fringe order Nj and destructive interference to half orders.

In the case illustrated here, the light source was assumed to emit
a spectral band of constant intensity in the wavelength range of A, +
5%. Under these circumstances, only a few fringes are useful for
most metrological purposes. As the spectral band is narrowed, good
fringe contrast is maintained for increasingly large fringe orders.

The contrast or visibility at which interference fringes cease to be
useful is a subjective issue. For most practical purposes the contrast
is sufficiently good in regions where

1
N, = N, + 5 (2.51)
where N; and N, are fringe orders corresponding to wavelengths A;
and A,, respectively, at the half-intensity points of the spectrum (Fig.
2.7). We will use this criterion as a limit for interference fringes of
good contrast. Fringe orders are related to the wave front separation

S by
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Fig. 2.30 Interference with broad spectrum light: A = 550 nm * 5%. (a) Intensity
distribution for specific wavelengths. (b) Total intensity by scalar summation of
intensities from all wavelengths in this range.

By Eq. 2.51, and approximating 4,4, by A¢%, we obtain

Ao

2.52
2(A, - A, (252)

NO(max) =

Thus, the fringe order at which good contrast ceases (by this
criterion) can be calculated for different light sources. For high
pressure mercury vapor lamps (4 = 546 nm; Ay — A; =5 nm), Nj is
approximately 55; for medium pressure, Ny = 500.

Equation 2.51 is an arbitrary criterion for good fringe contrast, but
it is a suitable choice. Figure 2.30 can be used to corroborate the
choice. For the conditions of Fig. 2.30, Eq. 2.52 yields N, = 5. Observe
that at Ny = 5 the curves for the shortest and longest wavelengths
experience 5.25 and 4.75 cycles, respectively, which means N; = 5.25
and N, = 4.75. Equation 2.51 is satisfied. The contrast at Ny =5 is
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determined from Fig. 2.30b as 72%. We realize, furthermore, that the
analysis corresponds to a rectangular spectral distribution instead of
the peaked function of Fig. 2.7. A peaked function yields an
appreciably higher contrast, since the intensity is concentrated near
the central wavelength. Consequently, the criterion corresponds to a
fringe contrast appreciably higher than 72%, the exact figure being
dependent upon the shape of the spectral intensity curve of the light
source.
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Fig. 2.31 Interference with white light. (a) Intensity contributions for several
wavelengths between 400 and 700 nm. (b) Distribution of total intensity; this is
the distribution perceived by a color-blind receiver.

The visible spectrum spans the wavelength range from 400 to 700
nm. Interference with white light, i.e., the entire visible spectrum,
produces the intensity distributions illustrated in Fig. 2.31. In (a), the
intensity versus fringe order curves are drawn for the limiting
wavelengths and several intermediate wavelengths. The resultant
intensity distribution is the scalar summation of all the individual
intensities, which is represented by the intensity curve in (b). Only
one interference cycle is visible before the intensity fluctuation
becomes irregular.
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Figure 2.31 illustrates the fringes as they would be perceived by a
colorblind receiver, like a black and white video camera or an
orthochromatic photographic film. However, the human eye and
other color sensitive receivers discriminate between intensities
produced by different wavelengths. A color sensitive receiver would
see white light where S = N = 0, since constructive interference
occurs there for all wavelengths. Where S ~ 650 nm, red light
experiences its second cycle of constructive interference, while other
colors contribute relatively little intensity. At about S ~ 860 nm, where
yellow experiences its second cycle of destructive interference, the
most luminous part of the spectrum is extinguished; however, red
and blue combine here and form a narrow band of purple, called the
tint of passage. For slightly higher values it becomes predominately
blue. With higher values, predominate colors become green, orange,
and red. The progression continues until the colors overlap so
thoroughly that they merge into white light. About eight cycles of red
fringes can usually be detected, the color becoming pale pink in the
later cycles. A full-field interference pattern would exhibit
continuous curved bands, as in Fig. 2.23, but they would appear as
bands of different colors instead of bands of high and low intensities.

White light fringes have the special property that the zero order
fringe is distinguishable from all the others, since it has no color.
They can be used, for example, to achieve precision alignment of two
mirror surfaces, as illustrated in Fig. 2.32. In the alignment
procedure, the optical path lengths to each mirror are adjusted to
equal the reference path length, whereupon the zero order fringe

White light
®  source
=
Mirror 1
/ ,
Q ="
. Reference

Mirror 2 pa th

Fig. 2.32 Precision alignment of mirrors 1 and 2 by white light fringes.
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appears across both mirrors. Then the reference mirror is tilted
slightly to form a few wedge fringes or carrier fringes. Mirrors 1
and 2 are coplanar when the white light wedge fringes cross the
boundary between them with no discontinuity of fringe position or
angle.

Notice that the reference mirror is shown in Fig. 2.32 as a rear
surface mirror. True white light fringes are produced when equal
portions of refractive materials lie in the information and reference
paths. This follows from the requirement for equal information and
reference path lengths for every wavelength of the white light. Since
refractive materials exhibit dispersion, i.e., variations of refractive
index with wavelength (Sec. 2.1.1), the requirement is satisfied by
equal amounts of refractive materials in the two paths.

2.4 Superposition of Incoherent Light Waves

Persistent optical interference—as distinguished from instantaneous
effects—requires mutually coherent light. As implied in the
derivation of the interference equations, the wave trains that interfere
must have the same frequency and the same polarization. To achieve
this, the two wave trains must come from the same source. Why?
The answer lies in the nature of light. We remember that light is
emitted as numerous wave trains of finite lengths. The individual
wave trains are emitted randomly in time, so they are not
synchronized; instead their phases vary randomly. (This applies for
lasers, too. If the wave trains are 3 meters long, a single train passes
a fixed point in only 10-8 seconds, which is too brief for persistence.
The following wave train is not synchronized with the proceeding
one, so again their phase relationship is random.) As a result of
their random phases, the wave trains from two different sources
interfere randomly. Some pairs of wave trains produce constructive
interference while other pairs produce intermediate and destructive
interference. Any interference effect that is present in a single pair
of wave trains is washed out.

On the other hand, when light from a single source is divided into
two beams, each original wave train is divided into two wave trains
that are synchronized with respect to each other. Consider a beam
from a source of monochromatic light. Let it be divided into two
beams, let them experience a relative phase shift of 27S/A, and let
them subsequently be reunited into a single beam. Then, every
original wave train is divided into a mutually coherent pair that
experiences the same 2aS/A shift. The equations of interference
prescribe the same interference effect for all the mutually coherent
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pairs of wave trains. The output intensity is the sum of all the
intensity contributions from these pairs. It is a function of 24S/A and
it is persistent.

Thus, for mutually coherent light, i.e., light from a single source,
the random phase of each original wave train relative to the others is
irrelevant. Aside from the physical size of the source, the only
limitations for interference are that the shift S must be small
compared to the length of the wave trains and the light must be
sufficiently monochromatic.

In the previous section, Interference with Broad Spectrum Light,
we considered a case where some components of the light were
mutually coherent while others were not. When the broad spectrum
light passed through an interferometer, the reunited wave trains of
each unique frequency produced interference. Then their intensities
at each point were summed arithmetically.

The arithmetical summation might seem arbitrary, since we
know that incoherent waves (of equal polarization) interact on an
instantaneous basis. However, the rationale can be appreciated from
the following argument.

Imagine two beams of different frequencies (and wavelengths) to
occupy the same space as they propagate through a fixed point z,.
Consider only two wave trains of equal amplitudes that travel
together through z,;, and let them have a common plane of
polarization. Their electric field strengths at z, are graphed as
functions of time in Fig. 2.33, (a) and (b). Their frequencies are
denoted by w; and w,. At any instant, the field strength at z, is their
sum, which is graphed in (¢). At some instants, the field strengths
have the same sign and reinforce each other; at other times they have
opposite signs and cancel each other. The result is the beat-like
oscillation of field strength at z,. The instantaneous intensity can be
defined as the square of the amplitude of the envelope of A; + Ay; it is
graphed in (d). Thus, the intensity of z; varies with time with the beat
frequency of A; and A,.

The instantaneous intensity varies from 0 to 4a2, and its average
value over many cycles is 2a2. Normally,” the beat frequency is so
high that measurements give the average intensity, 2a2. We note that
the intensities of the individual beams are each a? and their sum is
the same as the average or measured intensity. Thus, the intensity of

* So-called heterodyne methods extract phase information from the beat patterns.
The heterodyne techniques use extremely small w;- w; (produced by Doppler
shifting from a coherent beam) to obtain low frequency beats. Photoelectric
detectors are used to sense the relative phase of beat patterns at various
individual points in the field of view.
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Fig. 2.33 Superposition of two beams of unequal frequencies and wavelengths.
The amplitudes and intensity at a fixed point z, vary with time.

(any number of) superimposed beams of unequal frequencies is equal
to the scalar sum of the intensities of the individual beams.

The rule is more general. The intensity of any number of
superimposed incoherent beams is equal to the scalar sum of the
individual intensities.

Coherence involves polarization, too. Equal polarizations are
required for persistent constructive and destructive interference. The
field strength of a polarized beam is a vector quantity. In Fig. 2.34
vectors a; and @, represent two plane polarized beams of equal
frequency that travel together in space. Vector @, can be resolved into
its x and y components, as shown. Then beams with field strengths
a, and a,, combine by optical interference. The remaining light with
amplitude a@,, cannot interfere; instead, it contributes a background
intensity (ay,)? that adds arithmetically to the interference pattern.

ar

Fig. 2.34 Vector representation of polarized beams.
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Again, incoherent superposition of two beams requires scalar
addition of their intensities; the result is independent of the phase of
the two beams. On the other hand, coherent superposition is
controlled by the equations of optical interference, which prescribe
constructive and destructive interference according to the relative
phase of the two beams. In Fig. 2.34, a,, is combined with a, by
coherent superposition and a@g, is combined with that result by
incoherent superposition.

2.5 Diffraction Gratings and Diffraction

Moiré interferometry uses diffraction gratings. The method depends
on diffraction of light as well as interference. Diffraction gratings
are illustrated in Fig. 2.35, where (a) indicates that a grating is a
surface with regularly spaced bars or furrows. In the case of
transmission gratings, the incident light passes through the grating;
the incident and diffracted beams appear on opposite sides of the
grating. With reflection gratings, they are on the same side and the
substrate may be opaque. Amplitude gratings consist of opaque bars
and transparent spaces, or else reflective bars and nonreflective
spaces. These are usually low frequency gratings (e.g., 10 to 50
lines/mm or 250 to 1250 lines/in.) and they are used for geometric
moiré. Phase gratings have furrowed or corrugated surfaces, with
either symmetrical or nonsymmetrical furrow profiles. They are
usually high frequency gratings (e.g., 300 to 2400 lines/mm or 7500 to
60,000 lines/in.) and they are used for moiré interferometry. The
period or pitch of a grating is the distance g between corresponding
features of adjacent bars or furrows. A cross-line grating has the
same repeating arrangement of bars or furrows in two orthogonal
directions. The SEM image of a cross-line phase grating shows that
the surface consists of an orthogonal array of hills. In fact, a
uniformly spaced arrangement of features of any shape produces
diffraction and is considered to be a diffraction grating.

Frequency f of a grating is the number of bars or furrows per unit
length, usually expressed as lines per millimeter, meaning
repetitions or cycles per millimeter. Frequency and pitch are related

by
f== 2.53)

This notation applies for high frequency as well as low frequency
gratings.
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Fig. 2.35  Diffraction gratings are comprised of regularly spaced bars or
furrows. Cross-sectional views (b), (c), and (d) illustrate transmission gratings,
while (e), (), and (g) illustrate reflection gratings; (b) and (e) represent bar and
space gratings called amplitude gratings; (c) and (f) represent symmetrical
phase gratings; (d) and (g) represent blazed phase gratings; (h) illustrates a
cross-line grating, which can be either amplitude or phase type. (i) Scanning
electron microscope image of the surface of a 1200 lines/mm cross-line
symmetrical phase grating; courtesy of D. Mollenhauer (Wright-Patterson AFB)
and J. P. Williams (UES, Inc.)

A grating divides every incident wave train into a multiplicity of
wave trains of smaller intensities, and it causes these wave trains to
emerge in certain preferred directions. This is indicated in Fig. 2.36a
and (b) for transmission and reflection gratings, respectively. The
incident and diffracted beams are represented by rays. When a
parallel beam is incident at angle «, the grating divides it into a
series of parallel beams which emerge at preferred angles: ---, B_;, Bo,
B1i, B2, ---. These beams are called diffraction orders and are
numbered in sequence beginning with the zero order. The zero
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Fig. 2.36 A grating divides an incident beam of light into a number of
diffracted beams, where the diffracted beams lie in a systematic array of
preferred directions. The beams are represented by rays. (a) Transmission
grating; (b) reflection grating; (c) the intensity of light diffracted into each
preferred direction depends upon furrow shape (for phase gratings) or ratio of
bar-to-space widths (for amplitude gratings).

diffraction order is an extension of the incident beam for
transmission gratings and the mirror reflection of the incident beam
for reflection gratings. In the zero order, a grating acts either as a
window or a mirror.

The angles of diffraction are determined by the grating equation

sinB,, = sina + miAf (2.54)

where m is the diffraction order, f is the grating frequency, ais the
angle of incidence and S, is the angle of the mth diffraction order.

Figure 2.36¢ is a graph of intensity versus diffraction angle B, for
the emergent light. Light is diffracted into beams with preferred
directions, with very little light emerging in other directions. For
high quality gratings the angular spread AB within a diffraction
order is exceedingly narrow and can be assumed to be zero for our
purposes.
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Sign Convention: Diffraction orders whose angles are
counterclockwise with respect to the zero order are considered
positive for diffracted beams that propagate in a direction having a
positive z component. Clockwise and counterclockwise are assessed
by viewing from the positive direction of the axis parallel to the
grating lines (from the +y direction in Figs. 2.36-2.39). For
diffracted beams that propagate in a direction having a negative z
component, positive diffraction orders are clockwise with respect to
the zero order. The angles @ and B are measured from the normal
to the grating surface. Counterclockwise angles are positive when
the beams have a component in the +z direction; clockwise angles
are positive for beams with a component in the —z direction.

Figure 2.36 illustrates diffraction in two dimensions, where the
plane of incidence (i.e., the plane containing the incident ray and the
grating normal) is perpendicular to the grating lines. This special
case is violated if the grating is rotated by an angle y about the z axis,
and three-dimensional diffraction must be considered. The general
case is illustrated in Fig. 2.37, where A and B,, represent unit vectors
that define the directions of incident and diffracted beams,

Fig. 2.37 The general case of three-dimensional diffraction is illustrated, where
A and B,, are unit vectors that define the directions of incident and diffracted
rays (beams), respectively.
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Radius =1

Fig. 2.38 The angles of diffraction vary systematically with fixed increments

M.

respectively.’” For generality, both the reflected system of diffracted
beams (in the +z space) and the transmitted system (in the —z space)
are shown here. The x,y axes are assumed to rotate with the grating.

Consider the projections of unit vectors A and B,, that lie parallel
to the xy plane. Their x and y components in that plane are A,, A,,
B,,. and B,, respectively, as shown in the figure. Since A and B,, are
unit vectors, their x,y components fully define the directions of
incident and diffracted light.

In terms of these vector components, the three dimensional
grating equations are very simple. They are

B, = A, + mAf
B = A

Y Yy

(2.55)

The frequency f of the grating is a vector quantity, too, as defined later
in Sec. 3.1.6. The vector mAf is shown in the figure for m = +1 (on
reflection side).

The equivalent scalar relationships can be expressed if the angle
of diffraction B, is divided into two components, B, and Bn,; let By,
be defined as the angle between the unit vector B,, and the yz plane
and let B,, be the angle between B,, and the xz plane. Angle f,, is
the same for all diffraction orders. The scalar relationships are

sin acos Yy + mAf

sin B,

sin B,,,

(2.56)

sin a sin
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When the angle of in-plane rotation y of the grating with respect to
the plane of incidence is zero, these equations reduce to the two-
dimensional form, Eq. 2.54.

The diffraction angles illustrated in Fig. 2.37 can be demonstrated
easily by a desk-top experiment. Place a grating (transmission or
reflection type) upright on a white sheet of paper and illuminate it
obliquely by an unexpanded laser beam. A small helium-neon laser
that is held by hand is suitable. Narrow beams of diffracted light will
intercept the paper as a set of bright dots that lie on a circle.

Notice in Fig. 2.37 that the x component of the distance between the
tips of neighboring diffraction vectors is a constant, namely Af. Of
course, this characteristic is implicit in the diffraction equations, too.
Figure 2.38 emphasizes the point for a less complicated case, where a
grating is illuminated at normal incidence. The diffracted rays are
unit vectors (length = 1). The angles between neighboring diffraction
orders are not constant. Instead, they vary systematically whereby
the dimension Af is constant.

The angle of diffraction f,,. cannot exceed 90°. Equations 2.54 and
2.56 prescribe that the number of diffraction orders that emerge
within the range + 90° is a large number when f is small (i.e., for a
coarse grating), and conversely, m,q, is a small number when f is
large. With normal incidence (a = 0), the maximum diffraction order
is the whole number calculated by m,,,,. = 1/(Af). The number of
diffraction orders in the 180° arc in the transmission or reflection
space is given in Table 2.4 for various grating frequencies; normal
incidence (a = 0) and a red helium-neon laser (1 = 632.8 nm) are
assumed. For the larger grating frequencies, only three orders exist:
m=-1,0, +1.

The angle between neighboring diffraction orders is small for a
coarse grating and it is large for a fine grating. Table 2.4 also lists
the angle of first-order diffraction for several grating frequencies.

A special case of interest is illustrated in Fig. 2.39. It is where the
zeroth diffraction order and its neighbor, the -1 order, are
symmetrical with respect to the grating normal. If the angle of
incidence is @, we have By = a and _; = -a. Equation 2.54 reduces to

sina = % f (2.57)

This defines the angle of incidence a to achieve the special condition
of symmetry.

When « is large enough (Fig. 2.39b), only two diffraction orders
can exist. The others would be "over the horizon" (diffraction angles
> 90° and they cannot exist). Under what conditions do only two
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