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PREFACE 

 
Automatic control plays an important role in the advance of engineering and science. 
It is of extreme importance in most of the engineering fields; such as the aerospace 
engineering, chemical engineering, robotic systems, automotive and mobile 
equipment engineering as well as manufacturing and industrial processes. Automatic 
control provides the means of understanding the problems of stability and precision 
of dynamic systems. Actually most engineers must have good understanding of this 
field. 
 
The majority of textbooks on automatic control are most appropriated for electrical 
engineers. The main problem in designing and analyzing a control loop for non-
electrical systems normally arises when deducing adequate mathematical model for 
the system. Generally, the components cannot readily be represented by simple 
discrete ideal elements. The classical approach based on the transfer function and 
associated techniques of analysis is more easily comprehended and related to 
practice by the beginners than is the modern control theory. Therefore this text is 
prepared for the mechanical engineering students. It deals with the basics of linear 
control theory. The text includes simple examples enabling applicants to understand 
the problems of dynamic systems accuracy and stability. The text includes examples 
and exercises that facilitate the comprehension of the control theory, especially for 
the mechanical engineering students. The text is arranged in ten chapters dealing 
with the following topics: 

1. An introduction giving the basic definitions and methods of system 
representation, Chapter 1. 

2. A revision of selected topics from mathematics, Chapter 2. 
3. Deduction of the transfer functions using mathematical models, block 

diagrams and signal flow graphs, Chapters 3, 4 & 5. 
4. Analysis of the transient and frequency responses of the system and how 

does the response vary with the form of transfer function and the input 
excitation. The text discusses also how a transfer function can be determined 
by practical testing of a system, Chapters 6 & 7. 

5. Analysis of the accuracy and stability of the feedback system, Chapter 8. 
6. Root locus analysis, Chapter 9. 
7. Improvement of the system stability by introducing and designing different 

types of compensators, mainly the P, PI & PID controllers, Chapter 10. 
 
I am indebted to my colleague Prof. Dr. Gamal Ahmed El-Sheikh, for his objective 
comments on the whole text. 

THE AUTHOR 
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1 INTRODUCTION

 

1.1 INTRODUCTION 
 
It is essential for engineers to have an understanding of the nature of the dynamic 
behavior of systems, as well as the available methods for analyzing and improving 
their stability and precision. As for mechanical engineers, they should be able to deal 
with the analysis and design of dynamic systems of different physical nature. A 
simple electro-hydraulic servo-valve, for example, includes electric, magnetic, 
hydraulic and mechanical components. Therefore, an increasing proportion of 
engineers should be acquainted with the modeling of the multi-disciplinary systems 
as well as the fundamentals of control theory. 
 

1.2 SYSTEM DEFINITION 
 
The system can be defined as being that part of the universe in which interest lays. It 
is a combination of components acting together to perform a specific function. A 
system may be an aircraft, a jet engine, the engine fuel pump or even the pump 
controller. A component is a single functioning unit of a system. A single component 
of a large assembly may be looked at as a system. The system should be defined 
carefully and separated from the environment by means of an imaginary boundary. It 
interacts with the environment by means of three types of signals, as shown by in 
Fig.1.1. 
 

 
 

Fig.1.1 Interaction between system and environment  
 
System inputs are the controllable signals passing from the environment to the 
system. 
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System outputs are signals passing from the system to the environment. 
 
Disturbance (Noise) is external, random uncontrollable input. 
 
Linear system:  A system is said to be linear if and only if it obeys the superposition 
principles. This requires that if the separate application of the independent inputs I1(t) 
and I2(t) produces outputs O1(t) and O2(t) respectively, then the application of an 
input I(t) = I1(t) + I2(t) produces an output O(t) = O1(t) + O2(t), Fig.1.2. No real system 
component is completely linear, but sometimes the range of operation is such that 
the linearity can be assumed. 
 

 
 

Fig.1.2 Transient response of a linear system 
 
Continuous and discrete systems: Continuous-time systems are systems in which 
the signals involved are continuous in time. These systems may be described by 
differential equations. If one or more of system variables are changed only at discrete 
instants of time, the system is a discrete-time and it may be described by difference 
equations. 
 
Static system is a system whose outputs depend on the present value of inputs. 
 
Dynamic system is a system whose variables are time dependent and where the 
output depends on the history of its inputs. Actually all of the systems are dynamic. 
But, in some operating conditions, a dynamic system can be treated as a static one 
for simplicity. 
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1.3 SYSTEM CONTROL 
 
The objective of system control is to force the controlled system to produce certain 
required outputs. It is necessary to adjust / select / design the values of one or more 
of the inputs to obtain the required output.  
 
Regulation is the simplest variety of control. It may be defined as maintaining a 
specified quantity characterizing the process at a given level or as variation of this 
quantity in accordance with a specified law (keeping constant engine speed 
corresponding to a throttle lever position or variation of the speed of a jet engine with 
flight altitude according to certain law). 
 
Control is much more comprehensive concept. It is usually understood as automatic 
implementation of a group of actions selected from among a set of feasible actions 
on the basis of available data and intended to maintain or improve the function of a 
system in keeping with the goal of control. All problems of regulation are essentially 
simpler cases of control problems. 
 
There exist two classes of control systems; open loop control system and closed loop 
(feedback) control system. 
 
1.3.1 Open Loop Control 
 
On the basis of knowledge about the system and of past experience, a prediction is 
made of what input should be applied to produce the required output. Thus the 
objective of an open loop control system is to achieve the required output by utilizing 
an actuating device to control the process directly without measuring the system 
output, Fig.1.3. Such control is frequently unsatisfactory because of the effect of 
unexpected disturbances, which can lead to the deviation of the output from the 
required value. However, the open loop control can be satisfactory and cost effective 
for disturbance free applications. 
 

 
 

Fig.1.3 Open loop control structure 
 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

4 
 

 
 

Fig.1.4 Hydraulic cylinder controlled by means of a directional control valve 
 
Figure 1.4 shows an example of an open loop system where a hydraulic cylinder 1 is 
controlled by means of a directional control valve 2. When the spool of the valve is 
displaced by distance e, it connects the pressure line to the upper piston chamber A 
and connects the lower piston chamber B to the drain line T. The throttling area, oil 
flow rate and piston speed are proportional to the displacement e. Therefore, the 
piston speed can be controlled via the valve displacement e. This is a typical 
example of open loop control system. By adjusting the input e(t) the system produces 
a corresponding output, piston speed for example. But, for the same input, if the 
operating pressure, load or internal leakages change, the system output changes, 
while keeping the input unchanged. 
 

 
 

Fig.1.5 Open loop control of a piston engine 
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Another typical example of open loop system is the simple speed control of piston 
engine. The engine speed is controlled by means of the fuel throttle valve, Fig.1.5. By 
displacing the accelerator upwards, the throttle opens and the flow rate of fuel to 
engine increases. Consequently, the engine speed is increased. But the actual value 
of output speed n is not measured and not compared with the required value. If the 
operating conditions are not changed, the speed n is kept constant, corresponding to 
input y. But the disturbance, engine load for example, affect the system output, even 
while keeping the input unchanged. 
 
1.3.2 Closed Loop (Feedback) Control 
 
The system output is measured and compared with the desired value, Fig.1.6. The 
system attempts continuously to reduce the difference (error) between the two 
signals. The measured output value is called feedback (FB) signal. Sometimes, the 
loop is closed through the human being as in the case of motor vehicle control. 
Generally, the feedback reduces the effect of noise and disturbance on the system 
performance. 
 
Closing a loop makes the system more accurate, but it can make the system 
oscillatory or even unstable. Therefore it is necessary to stress more on the analytical 
approach for system analysis, to reach the required system accuracy and stability 
and reduce cost and time. 
 

 
 

Fig.1.6 Closed loop system control 
 
A functional scheme of typical hydraulic servo actuator is shown in Fig.1.7.  It 
consists of a hydraulic cylinder 1, directional control valve 2 and feedback linkage 3. 
The feedback linkage links the spool displacement e to the input displacement x and 
the output displacement y. The operation of the servo actuator is explained in the 
following. 
 
The initial position of the feedback linkage is shown by the centerline connecting 
points 4 & 5, Fig. 1.7(a). When an input displacement x is applied, the feedback 
linkage first pivots about its connection with the piston rod, point 5, Fig.1.7(b). The 
piston is hold temporarily in its position, shown by the dashed line connecting points 
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5 & 6. The spool is thus displaced by distance e. It allows the pressurized oil to flow 
to the upper side of cylinder, A. The piston starts to move downwards by distance y 
which causes the feedback linkage to pivot about the point 6, Fig.1.7(c). The piston 
motion continues until the spool returns back to the original, closing position. This 
position is reached when the piston displacement y causes a spool displacement e 
equal to that caused by the input x, but opposite in direction. The total displacement 
of the spool becomes zero. The final position of the feedback linkage is indicated by 
the line connecting points 6 & 7. 
 

 
(a) 

 
(b) 

(c) 
 

 
 

Fig.1.7 Functional scheme of hydraulic servo actuator 
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Another example of the closed loop control system is the speed control of some 
internal combustion engines (ICE). Figure 1.8 shows a typical speed control system 
of a piston engine 6. The position of the throttle lever sets the desired speed of the 
engine. The speed control is shown at certain reference operating mode. The 
positive direction of motion of the system parts is indicated by the arrows. 
 

Fig.1.8 Closed loop speed control of ICE. 
 
The center of gravity of the flyweights 3 is at a distance (R = Ri + r) from the axis of 
rotation. The flyweights are geared directly to the output shaft 7, so that the speed ω 
of the flyweights is proportional to the engine output speed n. A pivoting lever 4 
transmits the centrifugal force from the flyweights to the lower spring seat. The pivot 
and lever rotate with the flyweights as one unit. If the speed of the engine decreases 
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below its reference value, the centrifugal force of the flyweights decreases, 
decreasing the force exerted on the bottom of the spring. This causes the spring seat 
to move downwards (displacement x), which in turn moves the spool downwards 
(displacement e). The pressurized fluid then flows to the lower piston chamber B, 
which causes an increase of the displacement y and thus opens the fuel flow control 
valve 5 wider. By supplying more fuel, the speed of the engine will increase until the 
equilibrium is reached again. As the throttle lever is moved to a higher speed setting, 
the spring upper-seat moves downwards by distance z. Consequently, the fuel 
control valve opens to increase the fuel flow rate. Then, the engine speed is 
increased. 
 

1.4 SYSTEM REPRESENTATION 

 
The analysis of the system performance necessitates the representation of the 
system in a way visualizing the connection between the system elements and 
enabling the deduction of the necessary mathematical relations describing its 
behavior. The following are the most commonly used methods of system 
representation. These methods are related to each other by the physical laws 
governing the system behavior. 
 
1.4.1 Schematic Diagrams 
 
Figure 1.9 shows a schematic of a quarter-
car. It shows how the system components are 
interconnected, define the system variables 
and form the basis for an analytical study.  

 

 
 

Fig.1.9 Scheme of a quarter-car 

Where: f = Applied force, 

 p = Damper force,  

 q = Spring force, 

 m = Mass, 

 x = Displacement. 
 fr = Friction coefficient, 
 k = Spring stiffness. 

 
1.4.2 Mathematical Model 
 
The mathematical model consists of a set of differential and algebraic equations 
describing the system. By applying physical laws to a specific system, it is possible to 
develop a mathematical model that describes its dynamics.  
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In determining a reasonably simple model, one must decide which physical variables 
and relationships are negligible and which are crucial to the accuracy of the model. 
Neglecting the effect of some parameters and assuming linear relations instead of 
nonlinear ones lead to simpler model. But, if these decisions are not justified, the 
results obtained from this model will not agree with the real system behavior. 
Moreover, there is no guarantee for the controller to be applicable.  
 
The following are the mathematical modeling procedure: 

1. Draw a schematic diagram of the studied system. 
2. Deduce the mathematical model by applying the physical laws, considering 

justified simplifying assumptions. 
3. Check if the deduced model is solvable. 
4. Verify the validity of the model by comparing the model response with 

experimental results. 
 

The following equations describe the car suspension system drawn schematically in 
Fig.1.9. 
 

2

2

dt

xd
mpqf   (1.1) 

dt

dx
fp r  and  xkq   (1.2) 

 
1.4.3 Transfer Function 
 
The transfer function is written for linear system with, for simplicity, zero initial 
conditions. It is defined as the ratio of the Laplace transform of the system output to 
that of the input. The dynamics of car suspension, Fig.1.9, is described by the 
following Differential equation. 
 

f xk
dt

dx
f

dt

xd
m r2

2

  (1.3) 

 
The system input is the driving force f and the output is the displacement x. Then, by 
applying Laplace transform, for zero initial conditions, the following transfer function 
can be obtained. 
 

ksfms)s(F

)s(X
)s(G

r 


2

1
 (1.4) 
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1.4.4 Block Diagram 
 
The block diagram is a pictorial representation of the system clarifying the inter-
relation between its different parts. This diagram can be used for system analysis. In 
this case, it must be supplied by a quantitative description of the relations between 
system variables in the form of appropriate mathematical expressions; usually 
transfer functions. Figure 1.10 shows a block diagram describing the quarter-car 
illustrated by Fig.1.9. 
 

  
 

Fig.1.10 Block diagram of a quarter-car  
 
1.4.5 Signal Flow Graph 
 

 
 

Fig.1.11 Signal flow graph of a quarter-car 
 

The signal flow graph is an alternative pictorial representation of the system. It 
illustrates the passage of signals through the system and enables to deduce, in a 
simple way, the overall system transfer function. The quarter-car, illustrated by 
Fig.1.9, can be represented by the signal flow graph shown in Fig.1.11. 
 
1.4.6 State Space Representation 
 
The state space representation is an alternative method of mathematical 
representation, where the mathematical model includes only first order differential 
equations. Instead of a single nth order differential/difference equation, the problem is 
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turned to solve n simultaneous differential equations of first order. A state space 
model of the quarter-car illustrated by Fig.1.9, system is deduced as follows:  
 

f xk
dt

dx
f

dt

xd
m r2

2

  (1.5) 

Define, 

dt

dx
x1   (1.6) 

then, 

f xkxf
dt

dx
m 1r

1   (1.7) 

 
That is, the second order differential equation is replaced by the following two first 
order differential equations. 
 

 x)kxff(
m

1

dt

dx
1r

1   (1.8) 

 

1x
dt

dx
  (1.9) 

Or, in a matrix form: 

 f

m

1

0

x

x

m

f

m

k

10

x

x

1
r

1 


















































































 (1.10)

 
1.4.7 Bond Graph 
 
The bond graph is an alternative way of pictorial 
representation of the system. It describes the 
transfer, storage and dissipation of energy 
between the basic elements of the system. It 
carries both of the physical and mathematical 
structures of the system. The equations 
describing the system can be deduced 
systematically from the bond graph in a form 
convenient for the computer simulation 
programs. The state space model of the system 
can be deduced from the bond graph in a 
simple way. Figure 1.12 shows a bond graph of 
the quarter car illustrated by Fig.1.9.  

 

Fig.1.12 Bond graph 
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where: SE = Source of effort 
 F = Force; effort 
 v = Speed; flow 
 I = Mass (inertia) 
 C = Capacitance (1/k) 
 R = Resistance (fr) 

 

1.5 SYSTEM ANALYSIS 
 
When the system input changes, the system output varies depending on the nature 
of the input signal, the system design and the disturbance signals. In the absence of 
disturbance signals and for known system structure, the system output depends only 
on the input signals. The most commonly used system input forcing functions are: 

 1. Transient disturbances such as step, ramp or impulse functions. 
 2. Sinusoidal signals. 
 3. Statistical signals of random nature. 
 4. Discrete signals. 
 

This text deals with the first two types of input signals for the time and frequency 
domains analysis. 
 

1.6 EXERCISE 
 
1. What is a system? Give some examples of real systems. 

 
2. Define the different types of signals connecting a system with the environment. 

Give some examples of real systems and define the different types of signals 
for each system. 
 

3. Discuss briefly the open and closed loop control systems; give some examples 
of each type. 
 

4. Define the static and dynamic systems giving some examples for each type. 
 

5. Discuss briefly how to deduce the mathematical model of a real system. 
 

6. State the different ways of system representation. 
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2 MATHEMATICAL
TOPICS 

 

2.1 INTRODUCTION 
 
One of the problems facing engineers is to deduce the equations describing the 
operation of components and systems. Once the equations are determined, they can 
be solved to find the response of the system to various inputs relevant to the way the 
system will be used.  
 
Linear differential equations can be solved using the formal classical methods. 
However, engineers are more comfortable with an automated technique such as 
Laplace transform. This chapter is directed to the revision of selected mathematical 
topics needed for the analysis of control systems performance. 
 

2.2 DIFFERENTIAL EQUATIONS 
 
This part deals with linear differential equations (DE) of constant coefficients. The 
linear differential equation includes neither variables raised to a power different than 
unity nor a product of variables. 
 
Examples of Linear differential equations: 
 

8x
dt

dx
  (2.1) 

 

10 x3
dt

dx
8

dt

xd
2

dt

xd
2

2

3

3

  (2.2) 

 
Examples of Non-Linear differential equations: 
 

10 xt4
dt

dx
x

dt

xd
2

2

  (2.3 

 

8 x2
dt

dx

dt

xd
2

2
















 (2.4) 
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The order of differential equations is the highest time derivative present. For the 
solution of a differential equation, a number of initial conditions are necessary, equal 
to the order of the DE.  
 
The solution of a differential equation yields the system response which consists of 
two parts; steady state response and transient response. 
 
If the variable of the differential equation is x, the solution can be written as: 
 

st xxx   (2.5) 

 
where tx  = Transient part of the response which is time dependent. 

 sx  = Steady state, time independent, part of the response. 

Example 2.1 Solve analytically: 8x2
dt

dx
 , x(0)=0 

8x2x 


 

 

8)xx(2xx stst 


 

 
The right hand side of the differential equation is the input or forcing function. 
Assuming that, after long time, the transient part of the response has decayed while 
the steady state response part remains; xt = 0, then,  
 

8x2x ss 


  To be solved for the steady state response, 

 

and 0x2x tt 


   To be solved for the transient response. 

 

Since xs is time independent, then, 0xs 


 and hence xs = 4 

 

2x/x tt 


,   The integration of this equation yields: 

 

ct2)xln( t   

 
t2ct2

t Aeex    

 

Since  st xx)t(x  ,  
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then, t2Ae4x   

 
The constant, A, can be calculated using the initial conditions; 
 

For  x (0) = 0,  A = - 4  and  )e1(4x t2   

 
The variation of xs, xt and x with time is plotted in Fig.2.1. 
 

 
 

Fig.2.1 Plot of the solution of DE 





  8x2

dt

dx
 

 
Example 2.2 The mass suspension system given 
in Fig.2.2, can be represented mathematically by 
the following differential equations: 
 

      f xk
dt

dx
f

dt

xd
m r2

2

  

 

Assuming that the numerical values are such that: 
 

6 x2
dt

dx
3

dt

xd
2

2

  

 
 

Fig.2.2 Scheme of a quarter-
car 
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and      0)0(
dt

dx
 1,x(0)   

 

To solve this equation and find x(t), put  st xx)t(x   

 
The steady state response xs is obtained as follows. 
 

6 x2
dt

dx
3

dt
xd

 x2
dt
dx

3
dt

xd
s

s
2
s

2

t
t

2
t

2

  

 
After long time, the transient part of solution decays; xt=0. The time derivatives of the 
steady state part are zeros, then: 
 

0
dt

dxs  ,  0
dt

xd
2
s

2

  and xs = 3 

 
The transient response xt is obtained by solving: 
 

  0 x2
dt

dx
3

dt

xd
t

t
2

t
2

  

 

Assuming that the transient response is of the form: st
t Aex  , then, by substituting in 

the above equation, the following equation is obtained; 
 

0e2se3es ststst2   

 

Since  0est  , then 02s3s2   

 
The last equation is called the characteristic equation. It can be obtained directly from 
the homogeneous equation by using the following substitution rule. 
 

 1xt  , s
dt

dx t  , 2
2

t
2

s
dt

xd
 , … etc. 

 
The deduced characteristic equation has the following two roots:  
 
 s = -1   or  s = -2 
 

Then,   t2
2

t
1t eAeAx    



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

17 
 

and   t2
2

t
1ts eAeA3xxx    

 
The constants A1 and A2 are calculated considering the following initial conditions; 
 

1x(0)   and 0)0(
dt

dx
 . 

 
A1 + A2 = -2   and  A1 + 2 A2 = 0 
 

Then  A1 = - 4 and A2 = 2 
 

t2t e2e43x    

 
This method becomes very complicated as the order of the differential equation 
increases. Therefore, it would be better to use an algebraic method that combines 
the natural response, forced response and determination of the coefficients in one 
procedure. The Laplace transform method does just that. 
 

2.3 LAPLACE TRANSFORM 
 
When a differential equation expressed in terms of time t is operated on by Laplace 
integral, a new equation results, which is expressed in terms of a complex term (s).  
Laplace transform transforms the time dependent function from the time domain to 
the frequency (or Laplace) domain. The transformed equation is in purely algebraic 
form. 
 
2.3.1 Direct Laplace Transform 
 
The direct Laplace transform is given by the following expression.  
 

)s(X  L  )t(x  = 




0

stdte)t(x  (2.6) 

 
Example 2.3 Laplace transform of a step function, 
 









0tfora

0tfor0
)t(x  
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s

a

s

e
adtae)s(X

00

st
st 




 
  

 
 Example 2.4 Laplace transform of an exponential function, 
 

atke)t(x    where a & k are constants 

 

as

k
dtekdtekedte)t(x)s(X

0 0 0

t)sa(statst


   

  
  

 
Example 2.5 Laplace transform of a trigonometric function, 
 

    2/ee)tcos()t(x titi    where   = constant 

 

 



0

stdte)t(x)s(X    

 









 










0

t)is(

0

t)is(

0

titist dtedte
2

1
dt)ee(e

2

1
)s(X  

 

Or 
22s

s
)s(X


  

 
2.3.2 Inverse Laplace Transform 
 
The inverse Laplace transform is an integral operator, which transforms from the 
Laplace domain to the time domain. It is given by the following expression.  
 







iR

iR
st

R

1

1
dse)s(XLim

i2

1
)t(x  (2.7) 

 
Actually, all functions in the time domain have direct Laplace transform but some of 
the functions in the Laplace domain have no inverse Laplace transform. 
 
2.3.3 Properties of Laplace Transform 
 
Some of the Laplace transforms properties used in this text are summarized as 
follows: 
 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

19 
 

1. 
 

L   )s(F)s(F)t(f)t(f 2121   

 

(2.8)

2. 
 

L   )s(aF)t(af   

 

(2.9)

3. 
 

L   )as(F)t(fe at   

 

(2.10)

4. 
 

Initial value problem )s(sFlim)t(fLim)0(f
s0t 

   

 

(2.11)

5. 
 

Final value problem )s(sFlim)t(fLim)(f
0st 

  

 

(2.12)

6. 
 

L )0(f)s(sF
dt

)t(df 





 

 

(2.13)

 
L )0(f)0(sf)s(Fs

dt

)t(fd 2
2

2



 












; where 

dt

)t(df
)t(f 



 

 

(2.14)

 
L )0(

dt

fd
)0(

dt

fd
s)0(

dt

df
s)0(fs)s(Fs

dt

)t(fd
1n

1n

2

2
3n2n1nn

n

n





 








  

 

(2.15)

7. 
 
L     

0
dt)t(f)s(F

s

1
dt)t(f  

(2.16)

 

Example 2.6 Find L 






 
)t(x  t2e)t(xif,   

 

1)0(xand
2s

1
)s(X 


    

 

L 
2s

2
1

2s

s
)0(x)s(sX)t(x














 


 

 

Example 2.7 Find x (t) after very long time if 
2s

1
)s(X


  

 

0
2s

s
lim)s(sXlim)t(xlim)(x

0s0st






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2.3.4 Partial Fraction Expansion 
 
Case 1: Non-repeated real roots of characteristic equation (i.e. non-repeated real 
roots of the polynomial in the denominator). 
 

Given 
)s(Q

)s(P
)s(X  , where 




m

1i
i )as()s(Q  with real distinct ai and the degree of 

P(s) is less than that of Q(s) then: 
 

 
 m

1i
i

i

as

k
)s(X  Where   )s(Xaslimk i

as
i

i




 (2.17)

 

Example 2.8 Find x(t) given 
)2s(s

1
)s(X


  

 
The inverse Laplace transform of this expression can be obtained after performing a 
partial fraction expansion as follows. 
 

2s

k

s

k

)2s(s

1 21





 

 

5.0)s(sXlimk
0s

1 


 

 

  5.0)s(X2slimk
2s

2 


 

 












2s

1

s

1
5.0)s(X  

 

 t2e15.0)t(x   

 

Example 2.9 Find )t(v , given: 
)2s)(1s(s

5s
)s(V




  

 

2s

k

1s

k

s

k
)s(V 321





     

 

5.2)s(sVlimk
0s

1 

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4)s(V)1s(limk
1s

2 


 

 

5.1)s(V)2s(limk
2s

3 


 

 
t2t e5.1e45.2)t(v    

 
Case 2: Repeated real roots of characteristic equation (i.e. Repeated real roots of 
the polynomial of the denominator). 
 

Given 
)s(Q

)s(P
)s(X  , where 




m

1i
i )as()s(Q  with real ai and the degree of P(s) is less 

than that of Q(s), the root (-a1) is repeated with multiplicity n, then: 
 

  









 )s(Xas
ds

d
lim

!i

1
k n

1i

i

as
in

1

; where 1n,...,0i   (2.18)

 

Example 2.10 Find the partial fractions of 
2)2s)(1s(

4s
)s(Y




  

 

2
321

2 )2s(

k

2s

k

1s

k

)2s)(1s(

4s
)s(Y













  

 

3)s(Y)1s(limk
1s

1 


 

 

2)s(Y)2s(limk 2

2s
3 


 

 

  3
)1s(

)4s()1s(
lim

1s

4s

ds

d
lim)s(Y)2s(

ds

d
limk

22s2s

2

2s
2 




































 


 

 

2)2s(

2

2s

3

1s

3
)s(Y








  

 
Or, calculate k1 and k3 as shown above then calculate k2 as follows. 
 

2
2

2

2
2

2 )2s)(1s(

)1s(2)2s)(1s(k)2s(3

)2s(

2

2s

k

1s

3

)2s)(1s(

4s


















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The value of k2 is found by equating the coefficients of s in the nominator of the two 
equation sides; 
 

 2-3k+12=1 2 , then -3k2   

 
Case 3: Complex roots of characteristic equation.  
 

Example 2.11: Find x(t) given: 
)2s2s(s

8
)s(X

2 
  

 

The equation 02s2s2   has two conjugate complex roots. Therefore, by 

completing the square: 
 

]1)1s[(s

8
)s(X

2 
  

 
Find the inverse Laplace transform, x(t), using the Laplace transform tables. 
 

x(t)=
22

at

22
a

)tsin(ek

a

k









, )a/(tan 1     

 
where 8kand1a,1   

 
2.3.5 Solving Differential Equations Using Laplace Transform 
 
To solve the differential equations using Laplace transform, the following steps are 
followed; 
 

1. Apply Laplace transform to the differential equation. 
2. Solve the resulting algebraic equation to find an expression for the variable in 

terms of Laplace variable s, X(s). 
3. Expand the result into partial fractions. 
4. Find the inverse Laplace transform, x(t). 

EXAMPLE 2.12 Solve 6x2x3x 


 for  x(0)=1 and 0)0(x 


 

 
Step 1: Find Laplace Transform of the DE 
 

L s)s(Xs)0(x)0(sx)s(Xs)]t(x[ 22 

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L 1)s(sX)0(x)s(sX)]t(x[ 


 

 

L 
s

6
]6[   

 

   
s

6
)s(X21)s(sX3s)s(Xs2   

 

 
s

6s3s
s3

s

6
2s3s)s(X

2
2 

  

 

Step 2:  
)2s)(1s(s

6s3s

]2s3s[s

6s3s
)s(X

2

2

2








  

 

Step 3:  2kand4k,3kwhere
2s

k

1s

k

s

k
)s(X 321

321 





  

 

Step 4:  t2t e2e43)t(x    

 

Example 2.13 Solve 8xx2x 


  for  0)0(x   and 0)0(x 


 

 

Step 1:  
s

8
)s(X1s2s2   

 

Step 2:  
2)1s(s

8
)s(X


  

 

Step 3: 8kkkwhere
1s

k

)1s(

k

s

k
)s(X 321

3
2

21 





  

 

Step 4:  tt ete18)t(x    

 

Example 2.14 Solve 8y4y 


  for  0)0(y   and 0)0(y 


 

 

Step 1:  
s

8
)s(Y4s2   
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Step 2:  
)4s(s

8
)s(Y

2 
  

Step 3: 
4s

ksk

s

k
)s(Y

2
321




 , where k1=2, k2=-2 & k3=0 

 

  
4s

s2

s

2
)s(Y

2 
  

 
Step 4:  )t2cos1(2)t(y   

 

2.4 COMPLEX VARIABLES 
 
The following are some of the important relations of complex variables, needed for 
further analysis. 
 

 )sin(i)cos(riyxz   (2.19)
 

 irez  (2.20)
 

 zz  (2.21)

 

 nzz
nn  (2.22)

where 

22 yxr    & )x/y(tan 1  (2.23)

 

r/xcosandr/ysin   (2.24)
 

 sinicosei  (2.25)

 

 sinicose i  (2.26)

 

2

ee
cos

ii  
  (2.27)

 

i2

ee
sin

ii  
  (2.28)

 

...
!n

x
...

!4

x

!3

x

!2

x

!1

x
1e

n432
x   (2.29)
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2.5 LAPLACE TRANSFORM TABLES 
 
The pairs of Laplace transform are given in tables published in textbooks of 
mathematics. The following are the pairs of Laplace transform of some key functions: 
 

No. F(s) f(t) 

1. 1 δ(t) 

2. 
s

k
 k 

3. 
 

1ns

!nk


 ntk  

4. 
as

k


 atek   

5. 2)as(

k


 atetk   

6. 
 

1n)as(

!nk


 atn etk   

7. 22s

k




 tsink   

8. 22s

sk


 tcosk   

9. 22)as(

k




 tsinek at   

10. 22)as(

)as(k




 tcosek at   

11. 
])as[(s

k
22 

 
22

at

22
a

)tsin(ek

a

k









, )a/(tan 1    

 
2.6 EXERCISE 
 

1. Find Laplace transform of the following functions: 

  a)  t21)t(x      b)  )e1(4)t(x t2  

  c)  t4sin2t)t(x 2    d)  t6cose2)t(x t3  

 e) t4sine2)t(x t4   



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

26 
 

2.  Find the partial fraction expansion of the following: 

  a)  
)1s(s

1s3




   b)  
s2s3s

210s 6s
23

2




 

  c)  
)3s)(2s(

6s5




   d)  
)4s(s4

1


 

 

3. Find the inverse transforms, f (t), of the following: 

  a)  
)3s(s

6
)s(F


   b)  

1s

5
)s(F

2 
  

c)  
)9s10s(s

20
)s(F

2 
   d)  

s4s

s24
)s(F

3 


  

  e)  
9s

s3
)s(F

2 
    f)  

1s2s

s
)s(F

2 
  

  g)  
2s2s

s
)s(F

2 
  

 

4. Find F(s) for the following differential equations for 1)0(
dt

)t(df
and2)0(f  . 

  a) 0)0(fwhere5)t(f4
dt

)t(df
3    

 b) t7cos6e)t(f4
dt

)t(df
3

dt

)t(fd
2 t5

2

2

   

 

5. Solve the following differential equations using Laplace transform. 

  a)  0)0(xwhere8x2
dt

dx
  

b)  0)0(
dt

dy
&0)0(ywhere6)t(y3

dt

)t(dy
4

dt

)t(yd
2

2

   

c)  3)0(
dt

dy
&0)0(ywhere0y9

dt

yd
2

2

  

d) 0)0(
dt

dx
&0)0(xwhere10x10

dt

dx
2

dt

xd
2

2

  
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6. Find y(t) if
}25)5s{(s

100
)s(Y

2 
   

 

7. Find the following Laplace transforms 

a) L 2)0(x&
s

2
)s(Xwhere

dt

dx






  

  b)  L 5)0(
dt

dx
and5)0(x,

1s

5
)s(Xwhere

dt

xd
2

2
















  

c) L   0tat
3

1
dt)t(xand

9s

3
)s(Xwheredt)t(x

2



   

 

8. The Laplace transform of error function of a servo system is given by. 

s2s4s5

8ss3
)s(E

23

2




  

a)  Find the initial error value e(0). 

b)  Find the final (steady state) value of error e( ). 

 

9. The given figure shows a mass supported by a 
dashpot and spring. Give the equation of motion of 
mass and solve it by using Laplace transform if the 
exciting force f(t) is: 

a) )t(sina)t(f    

where a = 100 N and ω = 50 rad/s 

b) f(t) is a step function of 100 N magnitude applied at 
t=0. 

Given:   
dt

dx
6000p     

x5000q   

kg1000m   
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3 TRANSFER 
FUNCTIONS

 

3.1 BASIC DEFINITIONS  
 
The static and dynamic behavior of a linear, single-input single-output system (SISO) 
can be described by the transfer function. The transfer function (TF) is defined as the 
Laplace transform of the system output divided by that of its input. It is systematically 
deducible for linear system of zero initial conditions. If the initial conditions are 
different from zero, then, for simplicity of mathematical manipulation, assume zero 
initial conditions by simple transformation of axes and then consider their real values 
during solution. 
 
Conventionally, the symbol G(s) is used for the transfer function, but if the element 
appears in the feedback path, the symbol H(s) is used. 
 
The linear, single-input single-output, system can be described by a single linear 
differential equation of zero initial conditions.  This differential equation (DE), can be 
transformed into Laplace domain by replacing the term (d/dt) by (s). The resulting 
transfer function takes the form: 
 

)s(Q

)s(P

)s(X

)s(Y
)s(G 

 
(3.1) 

 

i
m

0i
isb)s(P 



    and   i
n

0i
isa)s(Q 



  (3.2) 

 
For real systems, the order of P(s) should not exceed that of Q(s); mn  . 
 
Example 3.1 Consider the linear system, of input x(t) and output y(t), described by 
the following differential equation of zero initial conditions. 
 

xb
dt

dx
b

dt

xd
bya

dt

dy
a

dt

yd
a

dt

yd
a

dt

yd
a 012

2

2012

2

23

3

34

4

4   (3.3) 

 
The transfer function (TF) can be deduced by applying Laplace transform as follows. 
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    )s(Xbsbsb)s(Yasasasasa 01
2

201
2

2
3

3
4

4   (3.4) 

 

Then,                
01

2
2

3
3

4
4

01
2

2

asasasasa

bsbsb

)s(X

)s(Y
)s(G




  (3.5) 

 
Characteristic equation is the equation obtained by equating the denominator of the 
overall transfer function to zero. The roots of characteristic equation are referred to 
as the poles of TF since they are the values of s that cause the transfer function 
amplitude to be infinity. 
 

0asasasasa 01
2

2
3

3
4

4   (3.6) 

 
Order of the system is the number of roots of characteristic equation (order of 
characteristic equation). 
 
Matrix transfer function: For a multi-input multi-output system (MIMO), the system 
inputs and outputs can be related by a transfer matrix, Eq. 3.7. The transfer functions 
relating the system inputs and outputs can be directly obtained from this matrix, 
where X and Y are the input and output vectors respectively. 
 











































)s(X

)s(X

)s(G

)s(G

)s(G

)s(G

)s(G

)s(G

)s(Y

)s(Y

)s(Y

2

1

32

22

12

31

21

11

3

2

1

 (3.7) 

 
Example 3.2 In the case of a hydraulic line, Fig.3.1, the inlet pressure Po and the 
volumetric flow rate Qo are related to the outlet parameters, PL and QL by a transfer 
matrix: 
 

 
 

Fig.3.1 Fluid flow in circular transmission line 
 
















 









)s(Q

)s(P

1Cs

RIs1RCsICs

)s(Q

)s(P

L

L
2

o

o  

 
where  R = line resistance. 
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   C = line capacitance. 
   I   = line inertia. 
 

Then LL
2

o Q)RIs(P)1RCsICs()s(P   

 

and LLo QCsP)s(Q   

 
The line end can be closed, QL=0, or open to atmosphere, PL=0. For closed end line, 
QL=0, the transfer functions describing the line are: 
 

 
1RCsICs

1
)s(

P

P
2

o

L


  and 

Cs

1

Q

P

o

L   

 

While for open end line, PL=0, the line transfer functions are: 
 

 
RIs

1
)s(

P

Q

o

L


  and 1

Q

Q

o

L   

 
Gain of transfer function is the proportionality coefficient relating the input and 
output in the steady state, i.e. as t   or s0. 

 
In order to obtain the transfer function of a system it is necessary to define the 
boundaries of the system and the relevant signals (variables). The relationships 
between these variables can be determined by writing down the equations governing 
the system behavior. The variables, which are not of direct interest, can be 
eliminated, leaving the relation between the required input and output. If the 
governing equations are linear, the transfer function can be easily deduced. But in 
the case of nonlinear relations, a linearization procedure or simplifying assumptions 
should be considered to obtain linearized equations. 
 

3.2 TRANSFER FUNCTION OF SOME BASIC ELEMENTS 
 
3.2.1 Proportional Element 
 

The proportional element has a transfer function of the form G(s)=K, where K is 

constant. The simple coil spring is a typical proportional element. The simple 
equation describing the coil spring can be deduced considering the following 
assumptions: 

1. The force is not so large that the spring coils touch each other and then the 
spring stiffness k is constant. 
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2. The reduced mass of the spring is negligible. 
3. The structural damping of spring material is negligible. 

 

 
 

Fig.3.2 Simple coil spring 
 

)t(kx)t(f   (3.8) 

 
)s(kX)s(F   (3.9) 

 

K
k

1

)s(F

)s(X
)s(G   ; where K is a constant (3.10)

 
3.2.2 Integrating Element 
 

The integrating element has a transfer function of the form G(s)=k/s , where k is 

constant. The following are some examples of integrating members. 
 
3.2.2.1 Ideal hydraulic cylinder 
 
Figure 3.3 shows a scheme of a hydraulic cylinder. Neglecting the inertia of moving 
parts, the effect of oil compressibility and wall elasticity, the relation between the 
system input (flow rate q) and output (displacement x) can be deduced as follows. 
 

 
 

dt

dx
A)t(q  , (3.11)

where A is the piston rod-side area. 

 
 

Fig.3.3 Scheme of a hydraulic cylinder 
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)s(AsX)s(Q   (3.12)

 

A

1
k;

s

k

As

1

)s(Q

)s(X
)s(G   (3.13)

 
This is the transfer function of an integrating element. The output depends on the 
time integral of the input, or: 
 

 dt)t(qk)t(x  (3.14)

 
 
3.2.2.2 Valve controlled actuator 
 
Figure 3.4 shows a typical example of open loop system. The hydraulic cylinder 1 is 
controlled by means of a directional control valve 2. When the spool of the valve is 
displaced by distance e, it connects the pressure line to the upper piston chamber A 
and connects the drain line to the lower piston chamber B. The throttling area and oil 
flow rate are proportional to displacement e. Therefore, for an input e(t), a 
proportional output piston speed (dy/dt) is produced. However, the output changes, 
for the same input, if the operating pressure, load or internal leakage are changed. 
 

 
 

Fig.3.4 Hydraulic cylinder controlled by means of a directional control valve 
 
The transfer function of this system can be deduced considering the following 
assumptions: 

1. No internal leakage and the oil is incompressible. 
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2. Negligible inertia of moving parts. 
3. Constant cylinder load and constant pressure drop across the valve restrictions. 

The flow rate through the valve opening is given by: 
 

 /p2)e(AC)t(q td  (3.15)

 
At(e) = ω e (3.16)

 
Where Cd = Discharge coefficient = 0.611 for sharp edged restriction. 
 At =  Throttling area. For rectangular slot, At =ωe 
 ρ = Fluid density 
 ω = Width of the opened area (ω = constant for rectangular opening). 
 ∆p = Pressure difference across the throttle 
 
For constant pressure difference, the flow rate equation becomes:  
 

)t(ek)t(q   (3.17)

 
where k is the proportionality coefficient 
 
The piston speed is given by: 
 

dt

dy
A)t(q   or A/)t(q

dt

dy
  , where A is the piston area (3.18)

 
The application of Laplace transform to Eqs. 3.17 and 3.18 yields 
 

)s(Ek)s(Q    and  
A

)s(Q
)s(sY   (3.19)

Then 

k
As

1

E

Q

Q

Y

E

Y
)s(G     or   

s

K
)s(G   (3.20)

where K=k/A. 
 

Actually;   
dt

dy
A)t(q  ,then:   dt)t(eKdt)t(e

A

k
dt)t(q

A

1
y  (3.21)

 
Equation 3.21 indicates that the output y(t) is directly proportional to the time integral 

of the input   dt)t(e . Therefore the shown valve controlled actuator is said to be an 

integrating element. 
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3.2.3 First Order Element 

The first order element has a transfer function of the form:  1Ts/k)s(G 1  . It is 

also called simple lag element. The following are some examples of first order 
elements. 
 
3.2.3.1 Hydraulic servo actuator 
 
The hydraulic servo actuator shown in Fig.3.5, is actuated by a low power input 
signal x(t) and produces a corresponding sufficiently high power output signal y(t). 
The construction and operation of this system are explained in sec.1.3.2. 
 

 
 

Fig.3.5 Hydraulic servo actuator with mechanical feedback 
 
The following transfer function was deduced considering the discussion of valve 
controlled hydraulic cylinder, section 3.2.2.2, page 33: 
 

s

K

E

Y
)s(G   (3.22)

 
The displacement e(t) is given by: 
 

y
ba

a
x

ba

b
e





    or   )yx(5.0e   for a=b (3.23)

 
The application of Laplace transform to Eq.3.23 yields: 
 

)YX(5.0E   (3.24)
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The hydraulic servo-actuator is described mathematically by Eqs. 3.22 and 3.24. The 
block diagram shown by Fig. 3.6 was developed using these equations and the 
system transfer function is: 
 

1sT

1

K5.0s

K5.0
)s(

X

Y





  (3.25)

 
This is a unity gain first order transfer function of time constant T=2/K. 
 

 
 

Fig.3.6 Block diagram of the hydraulic servo actuator 
 
The following is the general form of transfer function of first order element, where T is 
the time constant and k1 is the gain 
 

1sT

k
)s(G 1


  (3.26)

 
3.2.3.2 Resistance-capacitance network 
 
The basic elements of the RLC circuits are described by the following expressions: 
 

Resistance R iRv   (3.27)

Inductance L 
dt

di
Lv   (3.28)

Capacitance C 
dt

dv
Ci   (3.29)

 
Where: v = Applied electric potential difference, V. 
 i = Electric current, A 
 
The given R-C circuit, Fig.3.7, can be described by the following equations. 
 

dt

dv
C

R

)t(v)t(v
i ooi 


  (3.30)
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dt

)t(dv
RC)t(v)t(v o

oi   (3.31)

 
Assuming zero initial conditions, the application of Laplace transform to Eq. 3.31, 
yields: 
 

)RCs1()s(V)s(RCsV)s(V)s(V oooi   (3.32)

 

1Ts

1

1RCs

1

)s(V

)s(V
)s(G

i

o





  (3.33)

 

 
 

Fig.3.7 Simple RC Circuit 
 
3.2.4 Second Order Element 
 

The second order element has a transfer function of the form: 
1bsas

k
)s(G

2 
 . 

 

 

 
 
 

Fig.3.8 Quarter car (mass-spring-damper) system 
 
The quarter car model shown by Fig. 3.8, is a typical example of the second order 
element. Assuming ideal linear spring and damper and neglecting the spring inertia, 
the following equation can be deduced. 
 

f xk
dt

dx
f

dt

xd
m r2

2

  (3.34)
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Assuming zero initial conditions, then the application of Laplace transform yields: 
 

)s(F)s(kX)s(sXf)s(Xms r
2   (3.35)

 

ksfms

1

)s(F

)s(X
)s(G

r
2 

  (3.36)

 
The general form of this equation is the second order transfer function, given by: 
 

2
nn

2

2
n1

n
2
n

2
1

s2s

k

1s
2s

k
)s(G













  
(3.37)

 
where n = m/k = Natural frequency of the system (the frequency by which the 

non-damped system oscillates in the absence of external forces). 
 

  = 
km2

fr = damping ratio 

 k1 = 1/k= Gain of transfer function 

 
3.3 EXERCISE 
 
1. Derive the transfer function 

)s(
V

V
)s(G

i

o  of the shown phase 

lag compensating RC circuit. 
  

2. Derive the transfer function 

)s(
V

V
)s(G

i

o  of the given phase 

lead compensator RC circuit. 

 
 

3. Derive the transfer function 

)s(
V

V
)s(G

i

o  of the given RLC 

Circuit. 
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4. 
Derive the transfer function )s(

F

Y
)s(G   of the 

given system and give the mathematical 
expressions for the system gain, natural 
frequency and damping ratio. 
 

 

 

5. Shown is a mechanical phase-lag 
compensator. Its elements are of 
negligible inertia. Derive the 

transfer function )s(
X

Y
)s(G   

 
6. A typical accelerometer is shown in 

the given figure.  
 
a) Derive the mathematical model 

describing its dynamic behavior. 
b) Derive the transfer function  

)s(
A

Y
)s(G  , where 22 dt/xda   

c) Find the accelerometer gain. 
 

 
 

7. 
Derive the transfer function, 

)s(F

)s(X
)s(G  , of each of the given systems. 

 

 
(a) (b) 
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8. Derive the transfer function 
for the given system. 
 
G(s) =X1(s)/F(s) 

 
9. A process plant consists of two tanks with cross-sectional areas A1 and A2. The 

flow rate through the throttle valve is given by: q = ∆h /R, where ∆h is the head 
difference across the valves in meters and R is the throttle valve resistance. 
Write the equations describing the system operation and derive the following 
transfer functions: 
 

2

1
1 Q

H
)s(G  ,   

3

2
2 Q

Q
)s(G     and   

3

1
3 Q

H
)s(G   
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10. The given hydraulic system includes two rigid cylindrical tanks with areas A1 
and A2. Write the equations describing the system operation and derive the 
transfer function G(s) = Q(s) /Q1(s). 
 

 
 

11. Derive the transfer function G(s) = Y(s)/X(s) for the given proportional plus 
integral control system. 
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4 BLOCK 
DIAGRAMS

 

4.1 INTRODUCTION 
 
When dealing with the dynamic behavior of a system, one starts usually by the 
derivation of the equations and the transfer functions describing the behavior of its 
components. These transfer functions are needed for the analysis of the dynamic 
behavior of the components. Therefore, when carrying out the integrated system 
analysis, it is necessary to derive the transfer function of the overall system. This 
derivation becomes easier when representing the system by a block diagram. 
 
Most of the systems consist of several subsystems interconnected in forward and 
feedback paths. The algebraic manipulation of the mathematical relations is 
simplified by the use of a shorthand notation for the transfer function. A popular 
presentation uses G(s) with a suitable subscript for the forward path transfer 
functions and H(s) for the feedback path transfer functions. 
 

4.2 CONVENTIONS FOR BLOCK DIAGRAMS 
 
The following symbols are used as basic structural elements of the block diagrams. 
 
Variable X is represented by a straight line. An arrow indicates the direction of the 
signal transmission. 
 

 Fig.4.1 Variables and 
branching points 

 
 
Branching Points are indicated by heavy point with single incoming signal and one 
or more outgoing signals. All of the out-going lines carry the same signal, Fig.4.1. 
 
Transfer Function is represented by a rectangle (named a block). The mathematical 
expression of the transfer function, or its symbol, is written inside the block. The 
block is connected to the system by means of two lines carrying its input and output 
signals, Fig.4.2. 
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Fig.4.2 Transfer function; block 
X)s(G)s(Y   

 
 
Summation Point is represented by a small circle with more than one in-going signal 
and only one out-going signal. The in-going signal sign is indicated by (+) or (-) signs. 
The value of the out-going signal equals the sum of the in-going signals, each with its 
assigned sign, Fig.4.3. 
 

Fig.4.3 Summation point 

321 XXXY   

 
 
4.3 DEDUCING SYSTEM TRANSFER FUNCTION 
 
The system transfer function can be deduced from its block diagram by extracting 
and manipulating the equations relating the system variables. But, in the case of 
complicated block diagrams, it is might be necessary to simplify the diagram by 
applying the rules of block diagram algebra. 
 
Figure 4.4 shows the block diagram of a typical system with negative feedback. The 
system transfer function can be deduced from the block diagram as follows: 
 

 
 

Fig.4.4 Block diagram of negative feedback system 
 

GEY  ,  HYF    and  FXE   (4.1) 

Or 
)HYX(GY   (4.2) 

Then 

GH1

G

X

Y


  (4.3) 
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It is important to give the following definitions for the closed loop (feedback) system. 
 
Closed loop transfer function 

GH1

G

X

Y
)s(G


  (4.4) 

 
Compensated open loop transfer function 

GH
E

F
)s(Go   (4.5) 

 
Actuating signal ratio 

GH1

1

X

E


  (4.6) 

 
Characteristic equation 

0GH1   (4.7) 
 
Principle of superposition: In the case of multi-input systems, the principle of 
superposition can be applied. According to this principle, the response y(t) of a linear 
system due to simultaneously acting inputs x1(t), x2(t), ....,xn(t), is equal to the sum of 
the responses to each input acting alone. If yi(t) is the response due to the input xi(t), 
then, 
 

 )t(y)t(y i  (4.8) 

 
For Positive feedback, Fig. 4.5, the transfer function is: 
 

GH1

G

X

Y
)s(G


  (4.9) 

 

 
 

Fig.4.5 Block diagram of positive feedback system 
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4.4 BLOCK DIAGRAM ALGEBRA 
 
The block diagrams of complicated control systems can be simplified by applying 
simple rules of block diagram algebra, which are summarized in the Table 4.1. 
 
Example 4.1 shown is the block diagram of a feedback system. Find its transfer 
function, G=Y/X. 
 

)10s(s
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Y


  
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Table 4.1 Rules of Block Diagram Algebra 
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Equation Block Diagram 
Equivalent 

Block Diagram 

1.
 S

er
ie

s 
S

ys
te

m
 

XGGY 21  
  

2.
 P

ar
al

le
l S

ys
te

m
 

X)GG(Y 21   

 

 
 

 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

47 
 

T
yp

e 
Equation Block Diagram 

Equivalent 
Block Diagram 
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T
yp

e 
Equation Block Diagram 

Equivalent 
Block Diagram 

7.
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d

if
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o
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ti
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n
 o

f 
fe

ed
b

ac
k 

an
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 s
u

m
m

at
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n
 p

o
in

ts
  

YXZ   
  

  

 

Example 4.2 Apply the rules of block diagram algebra to deduce the transfer function 
of the system described by the given block diagram.  
 
The following are the individual steps of block diagram reduction. 
 

A 

 

B 

 

C 
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D 

 

 
Example 4.3 Find the system transfer function, G(s)=Y(s)/X(s), by successive block 
diagram reduction. 
 

A 

 

B 

 

C 

 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

50 
 

D 

 

E 

 

F 

 
 
4.5 EXERCISE 
 
1. Derive the transfer function of the following system. 
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2. A closed-loop control system is subjected to a disturbance Y(s) as shown in 
figure. Show by the principle of superposition the effect of input X(s) and 
disturbance Y(s) on the system output Z(s). 
 

 
 

3. Find the transfer function, )s(/)s()s(G io  , of the system described by the 

following block diagram. 
 

 
 

4. Find the transfer function G(s)=Y(s)/X(s) 
 

 
5. Derive the transfer function of the system described by the following block 

diagram; )s()s(G
i

o




 . 
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6. Find an expression for Z(s)= f(W, X, Y) for the following system. 
 

 
 

7. Redraw the following block diagram to obtain the transfer function G(s)=Z/X. 
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5 SIGNAL 
FLOW GRAPH

 

5.1 INTRODUCTION 
 
Signal flow graphs are alternatives to block diagrams. They are drawn either using 
the system of equations or based on the block diagrams. The signal flow graph 
consists of nodes, which represent the system variables and directed line segments 
which carry the relation-ship between the variables. Originally, the signal flow graph 
was introduced by S. J. MASON (1955), for the cause and effect representation of 
linear systems, described by algebraic equations.  
 

5.2 CONVENTIONS FOR SIGNAL FLOW GRAPHS 
 
The signal flow graphs consist of line segments (called Branches) and junction points 
(called nodes). The, nodes represent the variables, summation points and branching 
points. They are connected together by the line segments. The branches have 
associated branch gain and direction. The signal is transmitted through a branch in 
the direction of the arrow. The conventions for signal flow graphs are summarized in 
Table 5.1. 
 

Table 5.1 Conventions for signal flow graphs 
 

Element Convention 

1. Variable X 

 

2. Transfer Function 

GXYOr
X

Y
)s(G    

3. Summation Point 
YGXGZ 21   
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4. Parallel Connection 

XGXGY 21   

X)GG( 21   
 

5. Series Connection 

YGZ 2  

XGY 1  

XGGZ 21  
 

6. Loop 

With loop gain = G1G2H 
 

7. Self Loop 

YGXGY 21   

X
G1

G
Y

2

1


  

 
 
 

 
Example 5.1 Figure 5.1 shows a signal flow graph of a system described by five 

state variables, 54321 XandX,X,X,X . This graph was constructed for a system 

described by the following equations, where ti is a transfer function. 
 

3321122 XtXtX   

 

4432233 XtXtX   

 

4442243344 XtXtXtX   

 

4452255 XtXtX   
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Fig.5.1 Signal flow graph 
 
The transfer function of the system can be obtained from the signal flow graph, in a 
relatively simple way, by applying Mason's formula. For this purpose, it is important to 
give the following definitions, applied to the signal flow graph, Fig.5.1. 
 
Input node (Source): is a node which has only outgoing branches, X1. 
 
Output node (Sink): is a node, which has only ingoing branches X5. 
 
Forward path: is a path from input node to output node along which no node is 
encountered more than once.  
 
Feedback loop: is a path, which originates and terminates at the same node, along 
which no node is encountered more than once. 
 
Path gain: is the product of all gains (transfer functions) along the forward path. The 
following are the path gains of signal flow graph shown in Fig.5.1. 
 

453423121 ttttM    

 

4524122 tttM    

 

25123 ttM    

 
Loop gain: is the product of the gains of branches forming the loop. The following 
are the loop gains of signal flow graph shown in Fig.5.1. 
 

32231 tt     43342 tt  

 

443 t     3243244 ttt  
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5.3 MASON'S FORMULA 
 
Given a signal flow graph, the task of solving for input-output relations by algebraic 
manipulation may be quite tedious. Fortunately, there exists a general gain formula 
available, known as the Mason's formula. It enables to deduce the system transfer 
function on the basis of the signal flow graph. This general formula is:  
 





 

k
1i iiM

)s(G  (5.1) 

 

  
 n

1i
m

1i mr
r

i P)1(1  (5.2) 

Or 

∆ = 1 – Σ (all loops gains) + Σ (gain products of all combinations of two 
mutually non-touching loops) - Σ (gain products of all combinations 
of three mutually non-touching loops) + ..etc. (5.3)

 
and  

∆i = ∆ for all loops that do not touch the ith forward path (5.4)
 
Where k = Number of forward paths. 
  Mi  = Gain of ith forward path. 
 n = Number of loops 
 Pmr = Gain product of m possible combinations of r mutually non-

touching loops. 
 φi = Gain of ith loop. 

 
Example 5.2 Find the transfer function of the system represented by the signal flow 
graph of Fig.5.1. 
 
1. Forward Paths Gains 
 

453423121 ttttM    

 

4524122 tttM    

 

25123 ttM    
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2. Loops Gains 
 

32231 tt  

43342 tt  

 

443 t  

 

3243244 ttt  

 
3. ∆ and ∆i 
 

314321 )(1   

 

4432233243244443343223 ttt)tttttttt(1   

 

 11  , 12    and 444334323 ttt1)(1   

 
4. Transfer Function 
 

 



 332211 MMM

)s(G  

 

 
4432233243244443343223

444334251245241245342312

ttttttttttt1

)ttt1(ttttttttt
)s(G




  

 
Example 5.3 Find the transfer function of the feedback system shown in Fig.5.2. 
 

 
 

GM1  ,     GH1   

 

GH1)GH(1  ,   11   

 

GH1

GM
)s(G 11







  
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Example 5.4 Derive a mathematical model for the following system, draw its signal 
flow graph and derive its transfer function by applying Mason’s formula. 
 

 
 

1. Mathematical Model 
 

)yx(kq   
 

)YX(kQ   

   

2

2

dt

yd
mpq   

 
YmsQP;YsmPQ 22   

   

dt

dy
fp r  

 sf

P
Y;YsfP

r
r   

 
2. Signal Flow Graph 
 

 
 
3. Transfer Function 
 

sf

k
M

r
1  , 

sf

k

r
1   and 

r
2 f

ms
  

 

sf

msk
1

f

ms

sf

k
1

r

2

rr











 ,   11    

 

ksfms

k

sf

msk
1

1
sf

k

M

X

Y
)s(G

r
2

r

2
r11













  
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Example 5.5 Draw the signal flow graph of the system represented by the given 
block diagram and find its transfer function (apply the conversion guide lines on page 
61). 
 

 
 
1. Signal Flow Graph 

 

 
2. Loops and paths gains 
 

3211 GGGM      412 GGM   

 

3211 GGG     2112 GGH  

 

3223 GGH     424 GH  

 

415 GG  

 
3. Application of Mason’s formula 
 

543211    11 21   

 

4142322211321

41321

GGGHGGHGGHGGG1

GGGGG
)s(G




  
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5.4 EXERCISE 
 
1. Draw the signal flow graph for the systems described by the following block 

diagrams and find the closed loop transfer function using Mason's formula. 
 

 a) 

 

 b) 

 
 

 c) 

 
 

2. Find the closed-loop transfer function Vo/Vi of the system described by the 
following signal flow graph. 
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3. Draw a block diagram for the system represented by the following signal flow 
graph and find its transfer function. 
 

 
 

4. Derive the expression relating the output velocity ωo to the load torque TL and 
input signal ωi for the following signal flow graph, given: 
 

s06.01

90
G1 

  
s19.01

5.2
G2 

 25G3   8.3G4   
s1355

1
G5   

4.0G6   4.0G7   001.0H1   4H2    
 

  
NB Guide lines for the conversion of Block diagrams to Signal flow graphs 

 

  Block Diagram Element Equivalent Signal Flow Graph Element 

 a) Block (transfer function) Branch (transfer function) 

 b) Summation point Node with only one outgoing branch 

 c) Branching point Node with only one ingoing branch 

 d) Summation point followed 
by branching point 

Single node (Multi-input multi-output) 

 e) Branching point followed by 
summation point 

Two separate nodes. One having single-
input multi-output followed by a multi-input 
single-output node 
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6 TIME DOMAIN 
ANALYSIS 

 

6.1 INTRODUCTION 
 
In the transient conditions, the variables describing the dynamic systems change with 
time. It is of interest to evaluate how do these variables vary with time. In the analysis 
problem, a reference input signal is applied to the system and the variation of the 
state parameters with time is observed and analyzed (Time Domain Analysis). The 
step, ramp and impulse signals are usually used as input signals for the time domain 
analysis. The step input is most widely used and represents the most possible severe 
excitations to which the system may be subjected. 
 
Step Function 
 









0tfork

0tfor0
)t(f

2

 (6.1) 

s

k
)s(F 2   (6.2) 

  

 
Fig.6.1 Step function

Ramp Function 
 

tk)t(f 2  (6.3) 

 

2
2

s

k
)s(F   (6.4) 

 

Fig.6.2 Ramp function
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Impulse Function 
 

)t(k)t(f 2  (6.5) 
 

2k)s(F    (6.6) 

 

where )t(  is the Delta Dirac 

function; 1dt)t(   

Fig.6.3 Impulse function
 

The response of the dynamic system to the input signal is divided into two parts: 
transient part and steady state part. The transient part decays with time. It becomes 
zero after certain time. The steady state part of response is the part which remains 
constant after the transient part has decayed. Given the transfer function, the 
transient response can be calculated according to the following procedure. 
 

1. Find the Laplace transform of the input signal X(s) 
2. Find the Laplace transform of the output signal; )s(X)s(G)s(Y   

3. Find the system response by applying the inverse Laplace transform; 
 

)t(y  L -1  )s(Y  (6.7) 

 
Example 6.1 Find the response of the system described by the following transfer 
function to a step input of magnitude k2. 
 

 
)3s)(2s)(1s(

5

)s(X

)s(Y
)s(G


  

 

The input x(t) is step function of magnitude k2, its Laplace transform is: 
 

 
s

k
)s(X 2  

 

and 




















)3s(6

5

2s

5.2

1s

5.2

s6

5
k

)3s)(2s)(1s(s

k5
)s(X)s(G)s(Y 2

2  

 

Then: 





   t3t2t

2 e
6

5
e5.2e5.2

6

5
k)t(y . 

 

Figure 6.4 shows the step response, evaluated analytically, where the steady state 

value of y is 6/k5y 2ss  . 
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Fig.6.4 Step response evaluated analytically 

 
6.2 TIME RESPONSE OF BASIC ELEMENTS 
 
Herein, the responses of the basic elements to step, ramp and impulse input signals 
are evaluated.  

 
6.2.1 Integrating Member 
 
The transfer function of integrating member is: 
 

s

k
)s(G 1  (6.8) 

 

6.2.1.1 Response to step input 
 

s

k
)s(X 2  (6.9) 

2s

k
)s(X)s(G)s(Y   (6.10) 

k=k1k2 (6.11) 
 

tk)t(y   (6.12) 

 

Fig. 6.5 Step response of integrating element 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

66 
 

6.2.1.2 Response to ramp input 
 

2
2

s

k
)s(X   (6.13) 

3s

k
)s(X)s(G)s(Y   (6.14) 

k=k1k2 
 

2tk5.0)t(y   (6.15) 

 
Fig. 6.6 Response of integrating 

element to ramp input, k1=k2=1 
 
6.2.1.3 Response to input impulse 
 

2k)s(X   (6.16)

 

s

k
)s(X)s(G)s(Y  , k=k1k2 and   k)t(y   (6.17)

 
6.2.2 First Order Element 
 
The first order element has a transfer function of the following form. 
 

1Ts

k
)s(G 1


  (6.18)

 
6.2.2.1 Step response 
 

s

k
)s(X 2 , a step input of magnitude k2 (6.19)

 

)
T/1s

1

s

1
(k)

1Ts

T

s

1
(k

)1Ts(s

k

)1Ts(s

kk
)s(X)s(G)s(Y 21











  (6.20)

 

21
T/t kkkwhere)e1(k)t(y    (6.21)

 
In the case of unity gain system, the unit step response is given by: 
 

T/te1)t(y   (6.22)
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Fig.6.7 Transient response of first order element to step input 
 
The step response of a first order element is plotted in Fig.6.7. The study of this 
figure shows that: 
 

i) y(T)=0.632 yss 
ii) A tangent drawn at a point on the response curve intersects the yss horizontal 

line T seconds later. 
iii) For ssss y02.0)t(yy,T4t   

iv) If the transfer function gain is k1 and the applied step magnitude is k2 then the 
steady state output is k = k1 k2.  

 
6.2.2.2 Response to ramp input 
 

tk)t(x 2 , 
2
2

s

k
)s(X   (6.23)

 















T/1s

T

s

T

s

1
k

)1Ts(s

k
)s(X)s(G)s(Y

22
, k=k1k2 (6.24)

 

 )e1(Ttk)t(y T/t  (6.25)

 
The response of a first order element to ramp input is plotted in Fig.6.8. The transient 

part of response (kTe-t/T) decays with time. The steady state response is  )Tt(k  .  
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Fig.6.8 Response of first order element to ramp input , k1=k2=1 
 

6.2.2.3 Response to input impulse 
 

)t(k)t(x 2 , 2k)s(X   (6.26)

 

T/1s

T/k

1Ts

kk
)s(Y 21





 , where k = k1 k2 (6.27)

 

T/te
T

k
)t(y   (6.28)

 

 
 

Fig.6.9 Response of first order element to input impulse 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

69 
 

The response decays exponentially to a final zero steady state value after a sudden 
rise to (k/T) at t=0, Fig.6.9. 
 

6.2.3 Second Order Element 
 

The following is the general form of transfer function of a second order element: 
 

1
s2s

k

s2s

k
)s(G

n
2
n

2
1

2
nn

2

2
n1












  

(6.29)

 

where k1 = Gain of transfer function 
 ωn = natural frequency, rad/s 
   = damping ratio 

 

6.2.3.1 Step response of second order element 
 

For a second order system of gain k1, subjected to step input of magnitude k2, the 
step response can be calculated as follows: 
 

s

k
)s(X 2  (6.30)

 




















2

2

1

1
2
nn

2

2
n21

ps

A

ps

A

s

B
k

)s2s(s

kk
)s(X)s(G)s(Y  (6.31)

 

1
s2s

LimB
2
nn

2

2
n

0s 










   (6.32)

 

Assignment: prove that the constants 21 AandA  and the roots of the characteristic 

equation 21 pandp  are as given by the following expressions: 

 




















1
1

2

1
A

21  , 


















1
1

2

1
A

22  (6.33)

 

 1p 2
n1   ,  1p 2

n2   (6.34)

 

The step response is then given by the following relation. 
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 tp
2

tp
1

21 eAeA1k)t(y   (6.35)

 
Assignment: Prove that y(t) is tangent to the horizontal axis at the origin. 
 
Four distinct types of response are possible according to the types of roots, 

21 pandp  as follows: 

 
1.  >1 Gives two real negative unequal roots of the characteristic equation. 

The constants 21 AandA  are real. The transient part of response 

decays exponentially. There are no response overshoot and the 
response is said to be over-damped. 

2.  =1 Gives two equal real negative roots. The transient part of response 
decays exponentially. There are no response overshoot and the 
response is said to be critically damped. 

3. 1> >0 Gives a pair of complex conjugate roots. The response is under-
damped; with overshoot and damped transient oscillations. 

4.  =0 Gives a pair of complex conjugate roots of zero real part and the 
response is oscillatory. 

 

6.2.3.1.1 Step response of over-damped second order element  >1 

 

The over-damped system is characterized by  >1, the roots 21 pandp  are real 

negative and unequal while the coefficients 21 AandA  are real. The step response of 

an over-damped second order system, given by Eq. 6.35, is plotted in Fig.6.10. 
 

 
 

Fig.6.10 Step response of an over-damped second order system. 
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 tp
2

tp
1

21 eAeA1k)t(y   (6.36)

 
The increase in the damping ratio results in an increase of the duration of the 
transient response; the system response slows down.  
 

6.2.3.1.2 Step response of critically-damped second order element  =1 
 

An expression for the step response of critically damped second order, =1, is 

deduced as follows: 
 

s

k
)s(X 2  (6.37)

 

























2
n

n

n
2

n

2
n

2
nn

2

2
n21

)s(s

1

s

1
k

)s(s

k

)s2s(s

kk
)s(X)s(G)s(Y  (6.38)

 

   tn
t

n
t nnn e)t1(1ktee1k)t(y    (6.39)

 
The step response of a critically damped system is shown in Fig.6.11. The same 
figure carries the response of an over-damped element.  
 

 
 

Fig.6.11 Step response of critically damped and over-damped second order systems 

 

6.2.3.1.3 Step response of under-damped second order element  <1 
 

In the case of under damped second order system, 1> >0, the characteristic 
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equation has two complex conjugate roots. An expression for the step response, y(t), 
is deduced as follows: 
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
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Figure 6.12 shows the different components constituting the step response y(t) while 
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Fig.6.13 shows the step response of second order systems with different damping 
ratios. These figures show that the response of under damped system, 1> >0, 

overshoots during the transient period. The maximum overshoot σ is one of the 
parameters characterizing the response of the under damped system. 
 

 
 

Fig.6.12 Step response of under-damped second order system, k1=k2=1 

(A) yss, (B) y(t),  (C) tne  , (D)   22
n 1/t1sin  ,  

(E) 

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
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


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e 2
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Fig.6.13 Step response of under-damped second order systems 

of different damping ratios 
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An expression for the maximum overshoot is deduced as follows. 
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The maximum value of the transient response corresponds to n=1, then: 
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The maximum response overshoot ratio is defined as follows: 
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The maximum percentage overshoot is given by the following expression: 
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The transient response oscillates by a frequency different than the natural frequency 
of the system. The frequency of the transient oscillation of response is called 
damped natural frequency, given by the following expression, see Eq. 6.50. 
 

2
nd 1   (6.62)

The duration of one cycle of transient oscillations, also called the period, is given by: 
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6.2.3.1.4 Step response of un-damped second order element with  = 0 

 

s

k
)s(X 2  (6.64)

 

212
n

22
n

2

2
n kkkwhere;

s

s

s

1
k

)s(s

k
)s(X)s(G)s(Y 














  (6.65)

 

 )tcos(1k)t(y n  (6.66)

 

 
 

Fig.6.14 Step response of second order element of zero damping  
 

In the case of zero damping, the response is oscillatory. The output y(t) oscillates 
harmonically around the steady state value yss as shown in Fig.6.14.  
 

If the damping ratio is negative, the system becomes unstable.  
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Figure 6.15 shows the transient response of second order system to unit step input 
for different values of damping ratio. 
 

  
  

Fig.6.15 Typical step response of over damped, critically damped and 
under damped second order system 

 
6.2.3.2 Response of second order element to ramp input 
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The constants A1, A2, B1 and B2 are: 
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The expression of the transient response is: 
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Where: 

1p 2
nn1   and 1p 2

nn2   (6.72)

 
The transient response, Fig.6.16, depends on the damping ratio as follows: 
 

1. For  >1 The response is over damped. In the steady state, the transient 

part of response decays and )/2t(k)t(y n  

2. For  =1 The response is critically damped. 

3. For 0< <1 The response is of damped oscillatory character with overshoot 

4. For 0  For  = 0, the response is oscillatory and for  < 0, the system 

is unstable, the amplitude of the transient oscillation increase 
with time. 

 

 
 

Fig.6.16 Response of the second order system to ramp input 
 
6.2.3.3 Response of second order element to input impulse 
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The response of a second order element to unit impulse input is plotted in Fig.6.17, 
for different values of damping ratio. This figure shows that: 
 

1. For  >1 The response is over damped. 

2. For  =1 The response is critically damped. 

3. For 0< <1 The response is of damped oscillatory character with overshoot 

 
Moreover, for  = 0, the response is oscillatory and for  < 0, the system is unstable, 

as the amplitude of the transient oscillation increases with time. 
 

 
 

Fiq.6.17 Response of the second order system to an input impulse 
 
6.2.4 Third and Higher Order Systems 
 
The general form of the transfer function is the following: 
 

)s(Q

)s(P

)s(X

)s(Y
)s(G   (6.78)

 
where P(s) and Q(s) are polynomials in the Laplace operator (s). 
 
The order N of polynomial Q(s) should be greater than or equal to that of P(s). The 
polynomial Q(s) has N roots; p1, p2 and pN. Therefore, for a step input, X(s)=k2/s, the 
system response y(t) can be calculated by the following expression: 
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Where A1, A2.and AN are constants, depending on the initial conditions. 
 

The transient part of response consists of the summation of terms of the form tp
i

ieA . 

The contribution which each term makes towards the overall response depends on 
the magnitude and sign of Ai and on the position of the poles in the complex, R-I, 
plane.  
 
6.2.5 Effect of Root Location 
 
A second order element has a transfer function of the form: 
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The roots of the characteristic equation are: 
 

 1p 2
n   (6.81)

 
The effect of location of roots, in the R-I plane, on the step response of a second 
order element, is illustrated by Fig.6.18. The transfer function has either real roots or 
pairs of complex conjugate roots. The responses, plotted in Fig.6.18, are calculated 
for unity gain second order system and unit step input function. This figure shows 
that:  
  

1. If the two roots are located at the origin, the system is simply a double 
integrating member. For bounded input, step input for example, the output 
increases continuously with time. Then the system is unstable due to the 
unbounded output. 

2. For roots located on the left hand side of the real (horizontal) axis, the two 
roots are real negative. The step response has the form: 

 tp
2

tp
1

21 eAeA1k)t(y  . Therefore, if the roots are located on the horizontal 

axis (negative real roots) the step response is damped and non-oscillatory. 
The displacement of the roots to the left decreases the settling time. 

3. If the roots are located at the vertical axis, zero damping, ζ = 0, the system is 
oscillatory. It has two complex conjugate roots with zero real part. The step 

response is of the form  )tcos(1k)t(y n . The displacement of the root 

upwards increases the frequency of oscillations.  
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Fig.6.18 Effect of roots location on the step response 
 

4. If the damping ratio is in the range 1 > ζ > 0, the two roots are complex 
conjugate with negative real part. They are located to the left of the vertical axis. 

 

The roots are;  2
n 1ip  , where the real part and imaginary parts are: 

  nR  and 2
n 1I   
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 Figure 6.19 shows the location of the root in the R-I plane, where )(cos 1  
. In 

this case the step response has an overshoot and damped transient oscillations.  

  

 
 

Fig.6.19 Location of root of under damped second order system 
 

 The farthest poles from the imaginary axis will have contribution to the transient 
response, which decay most rapidly. The system response is influenced mostly 
by the poles closest to the imaginary axis, called the dominant poles. Generally, 
the poles located 5 times far to the left from the vertical axis relative to the 
dominant roots can be neglected. 
 
The increase of the magnitude of imaginary part of root increases the frequency 
of transient oscillations. 
 

5. The presence of any root with positive real part, located to the right of vertical 
axis, increases the magnitude of system output without limit and the system is 
unstable. The instability means that the system output is unbounded for bounded 
input. 

 
6.3 TRANSIENT RESPONSE CHARACTERISTICS 
 
A first order system can be completely described by specifying the time constant and 
gain of transfer function. A second order system can be clearly described by 
specifying its gain, damping ratio and natural frequency. For higher order system, the 
algebraic equation is not very helpful since the form of the response is not readily 
apparent and the plot of the response is not satisfactory since a numerical 
description is required for analysis. Generally, with reference to Fig.6.20, the 
following parameters are used to describe the step response of a system: 
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Fig.6.20 Parameters characterizing the time domain response of a control system 
 
Maximum overshoot is usually expressed in percentage of the steady state value of 
the output. 
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For a second order element, the maximum percentage overshoot is: 
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Delay time is the time required for the response to reach 50% of the final steady 
state value 
 
Rise time is the time required for the response to rise from 5% to 95% (or from 10% 
to 90%) of the step size. This definition avoids the practical difficulty of having to 
determine the exact start of the transient response. 
 
Settling time is the time required for the response to reach an end state within 5% of 
final, steady state, value. For second order system, the settling time is: 
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Equation 6.84 can be used only to estimate the settling time for an under-damped 
second order element. It cannot be used to calculate the damping ratio or the natural 
frequency. As for the first order element, the following expression can be deduced 
systematically. 
 

T3ts   (6.85)

 
Steady state error is the steady state deviation between the actual response y(t) 
and the required steady state value. 
 
Period is the duration of one complete cycle of the transient response oscillations 
 
Sometimes it might be useful to describe the whole transient response by a simple 
numerical value, called performance index. Some frequently used indices are: 
 
Integral of absolute error 
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Integral of error squared 
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Integral of time absolute error 

dt)t(etITAE
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

  (6.88)

 
The best response is that which gives the minimum value of performance index. For 
a second order element, the optimum (best) response is obtained at  = 0.7 for the 

IAE and ITAE. On the other hand, using the IES, the best response is obtained at 
 = 0.5. In practice, a damping factor of 0.7 is preferred. 

 

6.4 STEP RESPONSE TESTING OF PRACTICAL SYSTEMS 
 
A system of unknown internal structure is called black-box system. The dynamic 
characteristics of such system can be obtained by practical testing. The results are 
used to determine a representative / describing mathematical model of the system. 
The general shape of step response gives an idea of the type of transfer function and 
its parameters and can also give some indication of how linear the system is. The 
information about the dynamic performance of a system may be presented in the 
form of transient response curves (non-parametric model). However, usually, a 
parametric model is required. It might be necessary to fit a transfer function to the 
response curve. To do this, it is necessary to select some error criterion to quantify 
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the goodness of fit and then to adjust the model and its parameters values to 
minimize the chosen error index. 
 

6.4.1 Response Apparently of First Order 
 

If the step response apparently rises exponentially to the new steady state, it is likely 
that the system is of first order. The time constant can be found by direct 
measurement on the step response plot, as shown in Fig.6.7. 
 

Superimposing the curve, y(t)=k(1-e-t/T), will show qualitatively whether this is a 
reasonable model, or whether it is necessary to use a higher order model.  
 

The gain of the transfer function (k1) is simply found as: 
 

21 k/kk   (6.89)

 

Where k = Steady state value of response. 
 k2= Magnitude of input step. 

 

6.4.2 Response Apparently of Under Damped Second Order 
 

If the response is apparently of an under damped second order, Fig.6.20, a 
describing transfer function can be found by calculating the damping ratio, natural 
frequency and gain k1. The following calculation steps can be followed: 
  

1. In the case of step input of magnitude k2, if the steady state value is k then the 
gain of transfer function is given by: k1 = k /k2 

 

2. Find the period of one oscillation cycle,   from the plotted response and calculate 

the damped natural frequency,  /2d  rad/s. 

 

3. Find the overshoot ratio σ from the plot then calculate the damping ratio. 
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4. Calculate the natural frequency  
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6.5 EXERCISE 
 

1. Derive an expression for and plot, the transient response of the systems 
described by the following transfer functions to step input of magnitude 4. 
 

5.0s

45.0
)s(G


 ,    

5.0s2

1.0
)s(G


  and    

1s3

1
)s(G


  

 
2. Estimate the transfer function of the system whose step response is given in the 

following figure. Find also, from the graph, the settling time. 
 

 
 

3. Estimate the transfer function of the system whose step response is given in the 
following figure. Find also, from the graph, the settling time, rise time and delay 
time. 
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4. A flywheel driven by an electric motor is controlled to follow the movement of a 
hand wheel. This system is described by the following transfer function: 
 

240s60s15

240
)s(

2
i

o







 

 
Plot the transient response of the system to the input angular displacement )t(  

where 0tat3/)t(and0tat0)t( ii   

5. The following is the characteristic equation of a second order system. 
 

09s6.0s2   

 
Calculate: a) The roots of the characteristic equation. 

b) The natural frequency, damping ratio and the damped natural 
frequency. 

c) The maximum percentage overshoot and settling time. 
 

6. The following are two block diagrams of two control systems. Find the natural 
frequency, damping ratio, damped natural frequency, settling time and 
maximum percentage overshoot for each of them. 
 

 
 

7. Find an expression for the response of the system having the following transfer 
function to a unit step input. 
 

)3s)(2s)(1s(

)s53(s
)s(G




  

 
8. The following figures show the responses of four different systems to step 

inputs of different magnitudes. 
a) Find the settling time, rise time, delay time, period of one oscillation cycle 

and maximum percentage overshoot. 
b) Write the system transfer function. 
c) Calculate the transfer function gain, damping ratio and natural frequency of 

each system. 
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(A) 

         

(B) 

          
 

(C) 
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(D) 

        
9. Find the value of constant K for the critical damping of the system described by 

the following block diagram. 
 

 
 

10. The step response of an under damped second order element is given by the 
following expression.  
 

 





t1sin
1

e
1y 2

n2

tn

 

 
a) Derive an expression for the maximum percentage overshoot. 
 
b) An electro hydraulic proportional valve is described by the following transfer 

function: 
 

400s15s

1
)s(G

2 
  

 
Calculate the natural frequency, damping ratio, gain, damped natural 
frequency, period, maximum percentage overshoot and settling time. 
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11. A hydraulic transmission line of 18 m length (L), 0.01 m diameter (D), 
transmitting oil of density ρ =868 kg/m3, oil bulk modulus B = 1.6 GPa and 

kinematic viscosity s/m1056 26 . The line inlet pressure and flow rate are 

po and qo and the outlet parameters are pL and qL. The following is the transfer 
matrix relating the inlet and outlet parameters of the line. 
 
















 









)s(Q

)s(P

1Cs

RIs1RCsICs

)s(Q

)s(P

L

L
2

o

o  

 

where  R = line resistance=
4D

L128




 

   C= line capacitance=
B4

LD2
 

   I= line inertia=
2D

L4




 

 
a) If the line is open at its extremity, pL= 0, the relation between QL(s) and Po(s) 

will be given by: 
 

RIs

1
)s(

P

Q

o

L


  

 
b) The transfer function relating the pressures at both extremities of a closed 

end line is given by: 
 

1RCsICs

1

P

P
2

o

L


  

 
Calculate the parameters of the transfer functions and plot, in scale, the step 
response of the line in the two cases. 
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7 FREQUENCY 
RESPONSE  

 

7.1 INTRODUCTION 
 
The description of system performance in the frequency domain is given in terms of 
the steady state response to a sinusoidal input; after all initial transients have died 
out, Fig.7.1. If the system is linear, the steady state output is also sinusoidal and has 
the same frequency as the input but with a shift in phase and change in magnitude, 
Fig.7.2. The response is evaluated by the magnitude ratio and the phase shift, 
defined as follows: 
 

 
Fig.7.1 Typical linear system response to sinusoidal input 

 
Input signal 

)tsin()t(x)t(x   (7.1) 

 

where  )t(x  =  magnitude of input signal. 

    = frequency of input signal (rad/s) 

 
Steady state output signal  

)tsin()t(y)t(y   (7.2) 
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AMPLITUDE RATIO is the ratio of the amplitude of the output sinusoidal wave to that 
of the input in the steady state conditions (also called the magnitude or gain).  
 

)t(x

)t(y
Gain   (7.3) 

 
PHASE SHIFT is the shift in phase ( ) between the output sinusoidal wave relative 

to the input (also called the phase). 
 
FREQUENCY RESPONSE Is the variation of amplitude ratio and phase with the 
frequency of the input signal.  
 

 
 

Fig.7.2 Steady state response of linear system to sinusoidal input 
 
In the case of nonlinear systems, the nonlinearity introduces signal components of 
higher frequencies. The output signal will be distorted from the sinusoidal. It consists 
of a basic component and other harmonics. In this case, a signal treatment is 
necessary to separate the basic harmonic, having a frequency equal to that of the 
input signal. The separated basic harmonic is treated as the system output and is 
used to calculate the frequency response. 
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7.2 CALCULATION OF THE FREQUENCY RESPONSE 
 
The following is the general form of the transfer function of a linear system: 
 

)ps()ps)(ps(

)as()as)(as(k
)s(G

n21

m21








 where mn   (7.4) 

 
The frequency response is calculated by applying an input sinusoidal signal; 

)tsin(A)t(x  . The response to this input signal, y(t), can be deduced as follows: 

 

)is)(is(

A

s

A
)s(X

22 






  (7.5) 

 

)ps()ps)(ps)(is)(is(

)as()as)(as(Ak

)is)(is(

)s(GA
)s(X)s(G)s(Y

n21

m21













 (7.6) 

Or 

)ps(

B

)ps(

B

)ps(

B

)is(

A

)is(

A
)s(Y

n

n

2

2

1

121














   (7.7) 

Then: 
tp

n
tp

2
tp

1
ti

2
ti

1
n21 eBeBeBeAeA)t(y     (7.8) 

 
The first two terms of y(t) describe the steady state response, while the other terms 
give the transient part of the response. For a system to be stable, the poles p1, p2,..., 
pn should be real negative or complex of negative real part. In this case, the terms of 
the transient response decay as the time increases. Therefore, after all transients 
have died out, the steady state part of response is: 
 

ti
2

ti
1 eAeA)t(y    (7.9) 

 
The constants A1 and A2 are calculated as follows: 
 

)i(G
i2

A

is

)s(GA
limA is1 











   (7.10)

 

)i(G
i2

A

is

)s(GA
limA is2 











   (7.11)

 

     ie)i(G)i(GIi)i(GR)i(G  (7.12)
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 ie)i(G)i(G  (7.13)

where   

   )i(GI)i(GR)i(G 22   (7.14)

 

 
  )i(G

)i(GR

)i(GI
tan 1 




   (7.15)

 

tiitii ee)i(G
i2

A
ee)i(G

i2

A
)t(y    (7.16)

 

 )t(i)t(i ee)i(G
i2

A
)t(y    (7.17)

 

)tsin()i(GA)t(y   (7.18)

 

The magnitude ratio = )i(G
)t(x

)t(y
g   and the phase shift )i(G   

 

Then, for linear system, the frequency response is independent of the magnitude of 
input signal. The gain (magnitude ratio) and phase (phase shift), can be calculated 
using the transfer function G(s) according to the following procedure: 

1. Find )i(G   by replacing (s) by )i(   in the expression of G(s). 

2. Separate the real and imaginary parts of )i(G  by multiplying both the 

numerator and denominator by the conjugate of the denominator. 
3. Find the expressions for phase and gain. 
4. Substitute for   to find the gain and phase corresponding to different values 

of the frequency of input signal. 
 

Example 7.1 Find the expressions for the gain and phase of the first order element. 
 

1Ts

1
)s(G


   

 

2222 T1

T
i

T1

1

Ti1

Ti1

Ti1

1
)i(G














  

 

22222

22

222
T1

1

)T1(

T

)T1(

1
)i(GGain










  

 

)T(tan)T(tan)i(GPhase 11    
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7.3 POLAR PLOT (NYQUIST DIAGRAM) 
 

The frequency response information for a system can be displayed on an R-I 
diagram (Polar plot). The input sinusoidal is considered to be represented by a unit 
vector lying along the positive real axis. For any frequency, the magnitude and phase 
of the output can be defined by a corresponding output vector. A phase lag is 
represented by the rotation of the vector in the clockwise direction. 
 

The Nyquist diagram is a plot showing the variation of the magnitude and phase in 
polar coordinates. The curve drawn is the locus of the termini of the system output 
vectors. In this locus, numerical values of ω should be indicated against the points. 
 

7.3.1 Polar Plot for First Order Element 
 

The following expressions for gain and phase of first order element were deduced in 
example 7.1. 
 

 
22T1

1
)i(GR


  (7.19)

 

 
22T1

T
)i(GI




  (7.20)

  

22T1

1
Gain


  (7.21)

 

)T(tan)T(tanPhase 11    (7.22)

  

R
T1

1
RI

22
22 


  (7.23)

 

0RRI 22   (7.24)

  
22

2

2

1

2

1
RI 













   (7.25)

 
The frequency response of a first order element is plotted in the polar plot of Fig.7.3. 
The plot is a semi-circle with center (0.5,0) and radius 0.5. For some input signal 
frequencies, the corresponding points on the plot are marked by determining the 

corresponding phase; )T(tanPhase 1   . 
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For 0 , the phase = 0 and for T/1 , the phase = - 45o. The further increase in 

the frequency increases the phase lag up to a maximum value of 90o. Thus, the polar 
plot of a first order element occupies only the first quadrant of the R-I plane. 
 
If the transfer function gain is different from unity, (k1=2, for example), the scale of 
both of I and R axes is multiplied by k1. The frequency response plot starts at the 
point (k1, 0) for 0 . 

 

 
 

Fig.7.3 Polar (Nyquist) plot of a first order element, k1=1 
 
7.3.2 Polar Plot of Second Order Element 
 
The expressions for the gain and phase of second order element are deduced as 
follows: 
 

2
nn

2

2
n

s2s
)s(G




  (7.26)

 

n
22

n

n
22

n

n
22

n

2
n

2i

2i

2i
)i(G








  (7.27)

 

 
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2
n
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n
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i
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/1
)i(G









  (7.28)

 

   2
n

2222
n /4/1

1
)i(GGain


  

(7.29)
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    
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n

n1
2

n

n1

/1

/2
tan

/1

/2
tanPhase  (7.30)

 
The study of the expressions for gain and phase of second order element shows that: 
 
  For 0  Gain = 1  and  Phase = 0 

 

For n  Gain = 2/1  and  Phase = - 90o 

 
For   Gain = 0  and  Phase = -180o 

 
The Nyquist plot of a second order element is shown by Fig.7.4. It occupies the first 
two quadrants of the R-I Plane. 
 
If the transfer function gain is different from unity, (k1 for example), the scale of both 
of I and R axes is multiplied by k1. The frequency response plot starts at the point 
(k1, 0) for 0 . 

 

 
 

Fig.7.4 Nyquist plot of a second order element, k1=1 
 
7.3.3 Polar Plot of Integrating Member 
 

s

1
)s(G   (7.31)
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0R&
1

I;
1

i
i

1
)i(G 










  (7.32) 

 

0R&
1

I;
1

i
i

1
)i(G 










  (7.32) 

 




1
Gain  (7.33) 

 

o1 90
R

I
tanPhase 






   (7.34) 

 
Fig.7.5 Polar plot of integrating 

member 

 
The whole plot lies on the vertical (imaginary) axis. The phase lag is -90o for all 
frequencies. The magnitude is inversely proportional to the input signal frequency . 

 
7.3.4 Polar Plot of Higher Order Elements  
 

 
 

Fig.7.6 Series connected elements 
 
In the case of higher order elements, the frequency response can be calculated from 
the transfer function according to the procedure discussed in sec. 7.2. However, if 
the transfer function appears in factorized form, the phase and gain are obtained 
more easily by thinking of the system as a number of elements connected in series, 
Fig.7.6. The overall phase for any given input signal frequency is obtained by adding 
the individual phase components and the overall system gain is obtained by 
multiplying together the individual gains. 
 

)s(G)s(G)s(G)s(G 321   (7.35)

 

)i(G)i(G)i(G)i(G 321   (7.36)

 

)i(G)i(G)i(G)i(GPhase 321   (7.37)

 

)i(G)i(G)i(G)i(GGain 321   (7.38)

 
If the polar plots of the individual elements are given (From experimental results for 
example), the polar plot of the system can be constructed graphically. 
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Example 7.2 Draw the Nyquist plot of the system described by the following transfer 
function: 

25s10s

25

1s4

1

)25s10s)(1s4(

25
)s(G

22 






  

 
Given the Nyquist plot of the first and second order elements, the frequency 
response of the system described by G(s) can be calculated point by point as shown 
by Fig.7.7.  
 
For certain frequency, find the phases φ1 & φ2 and gains g1 &g2 of the second order 
and first order elements respectively. Then find the resultant gain (g = g1 x g2) and 
resultant phase (φ = φ1 + φ2). Repeat this process point by point to construct the 
resultant plot. The resulting polar plot of a third order element occupies three 
quadrants. Generally, the polar plot of a system of order n occupies the first n 
quadrants of the plane. 

 

 
 

Fig.7.7 Graphical plotting of the Nyquist diagram of a third order element, given the 
plots of its basic elements 

 
7.4 BODE DIAGRAM 
 
7.4.1 Introduction 
 
The Bode diagram is a plot of the frequency response consisting of two different 
plots; magnitude plot and phase plot, against the frequency of input signal, Fig.7.8. 
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The Bode diagram is plotted on a semi-logarithmic paper. The frequency is plotted on 
the horizontal logarithmic scale while the gain and phase are plotted on vertical linear 
scales. The gain is expressed in decibels (dB), where: 
 

dB)i(Glog20Gain 10   (7.39)

 

 
 

Fig.7.8 Typical Bode plot of a commercial electrohydraulic servovalve 
 
Figure 7.6 shows a system consisting of elements connected in series. The Bode 
diagram of the system can be obtained if the Bode plots of its components are 
known, by graphical addition of phase and gain plots. 
 

)i(G)i(G)i(G)i(GPhase 321   (7.40)

 

)i(G)i(G)i(G)i(GGain 321   (7.41)

 

)i(Glog20)i(Glog20)i(Glog20

)i(Glog20)Gain(log20)dB(Gain

310210110

1010




 (7.42)

Or 

     321 GGainGGainGGain)dB(Gain   (7.43)

 
Generally, the transfer function is composed of product combination of the following 
basic types: 
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Therefore, the Bode diagrams of the majority of systems are easily constructed if the 
Bode plots of these typical elements are known. 
 

7.4.2 Bode Plot of Basic Elements 
 

7.4.2.1 Proportional element 
 

K)s(G  , I=0 & R=K (7.44) 

 

dBKlog20Gain 10  (7.45) 

 

0)0(tan)i(GPhase 1    (7.46) 

 Fig.7.9 Bode plot of proportional 
element 

  

The constant term (also called proportional term or gain term) presents a constant 
gain and zero phase as shown in Fig.7.9. 
 

7.4.2.2 Integrating Element 
 

s

1
)s(G   (7.47)

 





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1
i

i

1
)i(G ,  




1
I  & R=0 (7.48)

 




1
)i(G  (7.49)

 

)log(20Gain  (7.50)
 

o1 90
R

I
tanPhase 






   (7.51)

 

The Bode plot of an integrating member, G(s)=1/s, is shown in Fig.7.10. The gain plot 
is a straight line inclined by -20 dB/decade, (one decade is the distance on the 
horizontal axis along which the frequency is increased by 10 times). The plot is a 
straight line of slope – 20 dB/decade passing by the point (1,0). It presents a 
constant phase of -90 degrees. 
 
Assignment: Derive the expressions for the gain and phase of integrating and 
differentiating members of different powers and discuss their plots given in Fig.7.10. 
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Fig.7.10 Bode plots of Integrating and differentiating members 
 
7.4.2.3 First order element (simple lag) 
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2222 T1

T
i

T1

1

Ti1

Ti1

Ti1

1
)i(G














  (7.53)

 

22222

22

222
T1

1

)T1(

T

)T1(

1
)i(GGain










  (7.54)

 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

103 
 




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)T(tan)T(tan)i(GPhase 11    (7.56)

 

 
 

Fig.7.11 Bode plot of first order element (Simple lag) 
 

The gain and phase plots of the first order elements are shown in Fig.7.11. These 
plots can be simplified by asymptotic approximation lines as follows: 
 
for 1T ; (Low frequency portion)  

 

  01log20Gain  dB  and Phase = 0o 

 
The gain plot is a line segment along the horizontal axis. 
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 for 1T ; (High frequency portion) 

 

 Tlog20Tlog20Gain 22 




   and Phase = -90o 

 
The gain plot is a straight line inclined by -20 dB/decade, intersecting the 
horizontal line at ω=1/T. 

 

These two lines intersect at a corner frequency (Break point) T/1c  . The real plot 

rounds off the junction. The maximum difference is 3 dB at ω=ωc, as shown in 
Fig.7.11. At a frequency of ω = 0.5/T and ω = 2/T, the difference between the 
straight-line approximation and real plot is 1 dB. Therefore, for simplicity, the straight-
line approximation can be used. 
 
A linear approximation may be also plotted for the phase as shown in Fig.7.11. But, 
the real phase plot is frequently used. 
 
7.4.2.4 Simple lead element 
 

G(s) = 1+Ts (7.57)
 
Assignment: Prove that the gain and phase of the simple lead element are given by 
the following expressions and plot the Bode diagram; real plot and straight line 
approximation.  Show that the plots are mirror image of the simple phase-lag plots 
around the zero gain and zero phase lines 
 

22T1log20)i(Glog20Gain   (7.58)

 

)T(tanPhase 1    (7.59)

 
7.4.2.5 Second order element 
 

2
nn

2

2
n

s2s
)s(G




  (7.60)

 

   2
n

2222
n /4/1

1
)i(G


  (7.61)

 

   dB/4/1log20Gain 2
n

2222
n   (7.62)
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  














 

2
n

n1

/1

/2
tanPhase  (7.63)

 
The Bode plots of a second order element are shown in Fig.7.12, for different values 
of damping ratio. A straight line approximation of the gain is also plotted. 
 

 
 

Fig.7.12 Bode plot of second order element 
 

For n  0Gain  dB   and Phase = 0o 

 
The gain plot is a line segment along the horizontal axis. 
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For n   n/log40Gain   dB and Phase = -180o 

 
The gain plot is a straight line inclined by - 40 dB/decade. 
 

These two straight lines intersect at n ; this is called the corner frequency 

(Break point). At this frequency the phase = -90o and the gain depends only on the 
damping ratio. 
 
 )2(log20gain   

 
There is no convenient straight-line approximation for the phase. 
 
7.4.2.6 Quadratic lead element 
 

  2
n

2
nn

2 /s2s)s(G   (7.64)

 
Assignment: Prove that the gain and phase of the quadratic lead element are given 
by the following expressions and plot the Bode diagram; real plot and straight line 
approximation.  
 

   dB/4/1log20Gain 2
n

2222
n   (7.65)

 

  














 

2
n

n1

/1

/2
tanPhase  (7.66)

 
The magnitude and phase have the same numerical values as those of second order 
element, but have opposite sign. They are represented on the Bode plot by families 
of curves which are mirror image of those of the second order element, with respect 
to the zero gain and zero phase lines. 
 
Example 7.3 Plot the Bode diagram of the system described by the following transfer 
function: 
 

  
)s004.01)(s004.01)(s25.01(

)s05.02)(s5.05(
)s(G




  

 

2)s004.01(

1

)s25.01(

1
)s025.01()s1.01(10)s(G





  
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The Bode plot of the system can be drawn by plotting the frequency response of the 
individual elements, by straight line approximation and finding out the gain plot of the 
system by graphical summation as shown in Fig.7.13. The real gain plot of the 
system and the straight-line approximation are shown in Fig.7.14. The point by point 
plot is directly calculated by using the gain expression deduced from the transfer 
function. 
 

 
 

Fig.7.13. Graphical construction of Bode plot 
 

 
 

Fig.7.14 Real and straight-line approximation gain plots 
 
Example 7.4 Find the transfer function of the subsystem whose straight-line 
approximation of the Bode gain plot is given in Fig.7.15. 
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7.5 NICHOL'S CHART 
 

 
 

Fig.7.16 Nichol's chart 
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The Nichol's chart enables to find, in a simple way, the frequency response of the 
closed loop, if the open loop response is known. The open loop frequency response 
is plotted on the horizontal and vertical coordinates; the horizontal is for the phase in 
degrees while the vertical is for the gain in decibels. The values of frequency of the 
input signal (ω) should be indicated on the plot in a way similar to the polar (Nyquist) 
plot. The gain of the closed loop response can be read off directly from the 
intersection of the open loop frequency response plots with the contours encircling 
the point (-180o, 0 dB). The phase of the closed loop response is found at the 
intersection with the contours radiated from the point (-180o, 0 dB). The Nichol's chart 
is of special interest for the analysis of system stability. 
 
7.6 EXERCISE 
 

1.Draw the polar plots of the following systems. 
 

(a) 
s21

1
)s(G


  (b) 

)s21(s

1
)s(G


  

(c) 
)1ss(

1
)s(G

2 
  (d) 

)1ss(s

1
)s(G

2 
  

(e) 
)1ss)(s21(

1
)s(G

2 
  (f) 

)s01.01)(s02.01(s

1
)s(G


  

 
2.Draw the Bode plot; magnitude only, for the following systems using the straight-

line approximations. 
 

(a) 
10s

s100
)s(G


  (b) 

1ss

1
)s(G

2 
  

(c) 
)1s125.0)(1s5.0(

2
)s(G


  (d) 

)16s3s)(2s)(1s(

2
)s(G

2 
  

(e) 2)10s(
100

s
)s(G   

 

 

3.Plot the Bode and Nyquist diagrams for the compensated open loop of the 
system described by the following block diagram, assume three different values
for k<20. 
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4.Draw the magnitude and phase Bode plots for the system (c) of problem 1.  
 

5.Shown is the frequency response
plot of a system, write down its
transfer function. 

 
 

6.Find the transfer functions for the systems having the following magnitude Bode
plots. 
 
a) 

 
 

b) 
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c) 
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8 FEEDBACK SYSTEM 
ACCURACY AND STABILITY

 

8.1 INTRODUCTION 
 
In the case of open loop systems, the system output is not compared with the 
required value (which is determined by the input signal). The external disturbances, 
or deterioration with increasing age, may cause changes of the system parameters 
and its transfer function. Therefore the actual output may deviate far from the 
required one. Introducing a feedback path allows the actual system output to be 
compared with the input signal (required output), Fig.8.1. An error signal is generated 
and forms the actuating signal. An element, of transfer function H(s), is inserted in 
the feedback path. It represents the dynamic characteristics of the transducer which 
measures the output signal and converts it to the same type as the reference input 
signal. The main reason for introducing the feedback is to minimize the error between 
the actual and desired system outputs.  
 

 
 

Fig.8.1 Block diagram of feedback control system 
 
The magnitude of the steady state error is a measure of the system accuracy. 
Closing the loop should reduce or eliminate the steady state error. But the system 
can be very oscillatory or even unstable. 
 

8.2 STEADY STATE ERROR 
 
The steady state error is a measure of the system accuracy. It is the value to which 
the error signal tends as the transient disturbances die out.  
 
Considering the system shown in Fig.8.1, the error signal is given as follows: 
 

)s(E)s(G)s(H)s(X)s(Y)s(H)s(X)s(E   (8.1) 
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)s(H)s(G1

)s(X
)s(E


  (8.2) 

The steady state error ess is the limiting value of e(t); 
 

)s(sELim)t(eLime
0st

ss


  (8.3) 

Or, 

)s(H)s(G1

)s(Xs
Lime

0s
ss 




 (8.4) 

 
Equation 8.4 shows that the steady state error depends on the compensated open 
loop transfer function, G(s)H(s) and input signal X(s). 
 
8.2.1 Steady State Error with Step Input 
 

s

k
)s(X 2  (8.5) 

 

)s(H)s(G1

k
Lim

)s(H)s(G1

)s(Xs
Lime 2

0s0s
ss 







 (8.6) 

 

)s(H)s(GLim1

k
e

0s

2
ss




  (8.7) 

Or 

p

2
ss k1

k
e


 , where   )s(H)s(GLimk

0s
p


  (8.8) 

 

Where    2k = Magnitude of applied step input. 

pk = Position error coefficient. 

 
It is evident that, in the case of a step input, the steady state error becomes zero only 

if pk . This condition is satisfied if G(s)H(s) includes an integrating element (a 

factor sn in the denominator, 0n  ). 

 
If the compensated open loop transfer function contains no integral term, the system 
response has a nonzero steady state error ess.  
 
It is more convenient to define the relative steady state error rather than the absolute 
error. The relative steady state error is defined as: 
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outputquiredRe

errorstatesteadyActual

k

e
e

2

ss
ss   (8.9) 

Or 

p

ss
k1

1
e


  (8.10)

Then  

ss

ss

ss

ss2
p

e

e1

e

ek
k





  (8.11)

 
The position error coefficient equals the gain of the compensated open loop transfer 

function, )s(H)s(GLimk
0s

p


 . Generally, greater open loop gain results in smaller 

steady state error. 
 
Example 8.1 Find the required position error coefficient kp if the maximum allowable 

relative steady state error %1ess  . 

 

01.0ess   or 01.0
k1

1

p




  then  99kp   

 
Example 8.2 The following system, Fig.8.2, is excited by a step input of magnitude 5, 
calculate the steady state error then find the required gain of the open loop if the 
maximum allowable steady state error is less than 2% of the required output. 
 

 
 

Fig.8.2 
 

5k,
)10s)(2s(

60
)s(H)s(G 2 
   

 

3)s(H)s(GLimk
0s

p 


 

 

%2525.0
31

1

k1

1
e

p

ss 





  
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2

ss
ss

k

e
e   or 25.125.05eke ss2ss   

 
For a maximum steady state error of 0.02k2, 

 

02.0ess   or 02.0
k1

1

p




  then  49kp    

 
Therefore, the gain of the open loop should be increased K times by introducing a 
proportional element (where; 3/49K  ). Figure 8.3 shows the system after adding a 

gain within the recommended range. 
 

 
 

Fig.8.3 
 
8.2.2 Steady State Error with Ramp Input 
 

2s

k
)s(X   (8.12)

  

)s(H)s(sGs

k
Lim

)s(H)s(G1

)s(Xs
Lime

0s0s
ss 







 (8.13)

 

 )s(H)s(GsLim

k
e

0s

ss



  (8.14)

Or  

v
ss k

k
e  , where   )s(H)s(GsLimk

0s
v


  (8.15)

 
Where   k = Proportionality coefficient of the ramp input. 

vk = Velocity error coefficient;  
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In the case of ramp input, the steady state error becomes zero, only if vk . This 

condition is satisfied if, G(s)H(s), includes a factor sn in the denominator, where 
2n  . 

 

8.3 STABILITY OF FEEDBACK SYSTEMS 
 
8.3.1 Routh-Hurwitz Stability Criterion 
 
Routh-Hurwitz stability criterion judges the stability of a system, given its 
characteristic equation. It determines whether the system is stable or unstable. 
 
A system is said to be stable if its response to any bounded input is also bounded. 
For a system to be useful, it should be stable. It has been shown (sec. 6.2.5), that the 
transient response of a dynamic system is highly affected by the location of the roots 
of the characteristic equation in the R-I plane. For a system to be stable, the roots 
should take place in the left half of the s-plane, or, in other words, the roots should be 
real negative or complex with negative real part and none of them is of zero real part. 
Therefore, a decision about the system stability can be reached if the locations of the 
roots of the characteristic equation of the closed loop in the R-I plane are known. 
 
The characteristic equation of the closed loop system, Fig.8.1, is: 
 

0asasasasa)s(H)s(G1 n1n
2n

2
1n

1
n

o  
   (8.16)

 
The roots of the first and second order characteristic equations are easily found. 
However, in the case of higher order characteristic equation, finding out the roots is 
too complicated. Therefore, around 1880, Routh and Hurwitz developed 
independently a method for determining whether any root of the characteristic 
equation has positive real part.  
 
A necessary but not sufficient condition for the polynomial roots to have non zero 
negative real parts is that all of the coefficients of the characteristic equation should 
have the same sign and that none of them is zero. If this condition is satisfied, then 
the necessary and sufficient condition of stability is that the Hurwitz determinants of 
the polynomial must be positive, where the determinants are given by: 
 

.etc,

aa00

aaa0

aaaa

aaaa

D,

aa0

aaa

aaa

D,
aa

aa
D,aD

42

531

6420

7531

4

31

420

531

3
20

31
211   (8.17)
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The arithmetic’s involved in evaluating these determinants can be avoided by 
producing the following Routh array: 
 

n a0 a2 a4 a6 …
n-1 a1 a3 a5 a7 …
n-2 b1 b2 b3 b4 …
n-3 c1 c2 c3 …  
n-4 d1 d2 …   
… … …    
0 …     

 
The first two rows are formed by the coefficients of the characteristic equation, while 
the subsequent rows are calculated as follows: 
 

1

3o
21 a

aa
ab   

1

5o
42 a

aa
ab   

1

7o
63 a

aa
ab  , … (8.18)

 

1

21
31 b

ba
ac              

1

31
52 b

ba
ac   

1

41
73 b

ba
ac  , … (8.19)

 

1

21
21 c

cb
bd              

1

31
32 c

cb
bd  , … (8.20)

 
The values of the elements of the second column of this array (ao, a1, b1, c1, d1, ..) 
should be positive. Every change of sign means that there exists a root with positive 
real part. 
 
Example 8.3 Apply the Routh-Hurwitz stability criterion to check the stability of the 
system having the following characteristic equation: 
 

s4 +2s3 +s2 +4s +2 = 0 
 

All of the coefficients are positive and none of them is zero. The Routh array is 
constructed as follows: 

 
4 1 1 2 
3 2 4 0 

2 -1 2 0 
1 8 0  
0 2   
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There are two sign changes in the second column, which indicates that the 
characteristic equation has either two real positive roots or a pair of complex-
conjugate roots with positive real part. Actually, this characteristic equation has four 
roots, two real roots and one pair of complex conjugate roots. 
 
 515589.0p1  , 1877.2p2  , 

   
 i3.134.0p3       and i3.134.0p4   

 
Consequently, this system is unstable. 

 
When constructing the Routh array, two kinds of difficulties can occur because of 
existence of zeros in the second column of the array: 

 A zero appears in the second column 
 A complete row of zero elements appear 

 
If a zero appears in the first column, the division by zero should be avoided as 
follows. Replace s by 1/σ in the characteristic equation and apply the Routh-Hurwitz 
criterion to the new equation in σ. If the polynomial in σ has neither real positive roots 
nor complex roots with positive real parts then, the polynomial in s also has neither 
real positive roots nor complex roots with positive real parts. 
 
Example 8.4   s5 +s4 +4s3 +4s2 +2s +1 = 0 
 

5 1 4 2
4 1 4 1

3 0 1  
2    
1    
0    

 
By replacing s by 1/ σ, then, after arrangement, the following equation results: 
 
  σ 5 +2 σ4 +4 σ3 +4 σ2 + σ +1 = 0 
 

5 1 4 1
4 2 4 1

3 2 0.5  
2 3.5 1  
1 -0.07   
0 1   
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There are two changes in sign in the first column then the characteristic equation has 
two roots of positive real parts. Then as σ has a positive value, s also will have a 
positive value, since s=1/ σ. 
 
If a complete row of zero elements appears, the equation having the row just above 
that one is to be differentiated. The coefficients of the resulting equation replace the 
zero values of the row and the construction of the array can be continued. 
 
Example 8.5  s3 +10s2 +16s +160 = 0 
 

3 1 16     

2 10 160   equationtheWrite 10s2+160   ds/d  20s+0 

1 0  20 0  0     placeRe  20    0 

0 160      
 

The system having this characteristic equation is stable. 
 

Example 8.6  s6 +3s5 +5s4 +12s3 +6s2 +9s +1 = 0 
 

6 1 5 6 1
5 3 12 9  
4 1 3 1  
3 3 6   
2 1 1   
1 3    
0 1    

 
There exist no sign changes in the second column then the system having this 
characteristic equation is stable.  

 
8.3.2 Nyquist Stability Criterion 
 
Nyquist stability criterion judges the stability of closed loop system on the basis of its 
compensated open loop frequency response. It decides if the system is stable or not 
and determines the degree of stability. 
 
8.3.2.1 Stability analysis using Nyquist plot 
 
The Routh-Hurwitz criterion determines if the system is stable or unstable, but it does 
not give any information about the degree of its stability. The system may be stable, 
but if the roots of its characteristic equation are too close to the vertical axis of the R-I 
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plane, the transient oscillations may take too long time to decay, Fig.6.18. On the 
other hand, the polar plot (Nyquist diagram) of the compensated open loop transfer 
function, G(iω)H(iω), enables to determine whether any of the roots of the 
characteristic equation of the closed loop system have positive real part, without 
actually evaluating them. This plot shows also the degree of system stability and how 
to improve it. The experimental results of the frequency response evaluation can be 
directly used without any need to determine the system transfer function. 
 
The Nyquist stability criterion states that if the compensated open loop of a 
system is stable then the system with closed loop is also stable provided that 
the open loop polar plot does not enclose the critical point (-1,0). 
 
Figure 8.4 shows the case of an unstable system whose open loop polar plot 
encircles the point (-1, 0) and a stable system whose open loop polar plot does not 
encircle this critical point. 
 

 
 

Fig.8.4 Open loop polar plots of stable and unstable systems 
 
When the system is excited by a harmonic signal, the phase shift varies with the 
frequency of input signal. The polar plot of the compensated open loop intersects 
with the negative part of the real, horizontal, axis at certain input frequency, called 
the phase cross-over frequency. At this frequency, the phase lag is 180o and the gain 
is g, Fig.8.4. The Nyquist stability criterion can be explained as follows. 
 

If the reference input to the closed loop is a sine wave )tsin(A)t(x  , then the 

signal returning to the error detector will have a different amplitude and phase, 
Fig.8.5(a). At the phase cross-over frequency, the phase lag is 180o and the 
magnitude ratio is (g); f(t)=ge(t). Then, in the steady state, the returning signal is 
inverted and added to reference input, Fig. 8.5(b) and the steady state error is given 
as follows: 
 

)t(eg)t(x)t(e   (8.21)
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)tsin(
g1

A

g1

)t(x
)t(e 





  (8.22)

 
There are three different stability cases, depending on the magnitude ratio at the 
phase cross-over frequency:  
 The amplitude of the returning signal is less than that of the input signal, 1g  . 

The amplitude of the error signal, converges to a constant value of )g1/(A  . 

Consequently, the system output converges to a steady state bounded value 
and the system is stable, Fig.8.5(c).  

 The magnitude ratio at the phase cross-over point is equal to one ( 1g  ). The 

open loop polar plot intersects the horizontal axis at the critical point (-1, 0). 
The amplitude of the error signal tends to infinity and the system becomes 
unstable. Moreover, if the input signal is removed, the error signal and system 
output will continue to oscillate. 

 The amplitude of the returning signal is greater than one, 1g  . The open loop 

polar plot intersects the horizontal axis at a point (-g, 0). The locus encloses 
the point (-1,0). The amplitude of error signal will build up continuously and the 
system is unstable, Fig.8.5(d). Moreover, if the input signal is removed, the 
error signal continues to increase or grow up (for 1g  ). 

 

  
Fig.8.5(a) Typical feedback system Fig.8.5(b) System exited by sinusoidal 

input at the phase cross-over point 
 

 
Fig.8.5(c) Steady state input, feedback 
and error signals for feedback system, 
excited by harmonic input at the phase 

cross-over point, 1g   

Fig.8.5(d) Steady state input, feedback 
and error signals for feedback system, 
excited by harmonic input at the phase 

cross-over point, 1g   
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The magnitude ratio g depends on the gain k of the compensated open loop. The 
effect of open loop gain on the system response is illustrated by example 8.7. 
 
Example 8.7 Plot the open loop Nyquist diagram, the closed loop response to unit 
step input and the closed loop Bode diagram of the following system, for open loop 
gain k=1, 5, 8 & 10. Find the relative steady state error for each case. 
 
Apply Routh-Hurwitz stability criterion to find the limiting value of the open loop gain, 
for system stability and discuss the obtained results. 
 

Fig.8.6 

The closed loop characteristic equation is: 
 

0k1s3s3s 23   

 
3 1 3 
2 3 1+k 

1 
3

k1
3


  0 

0 1+k  
 

The system is stable if  
3

k1
3


 >0  and  1+k>0 

 
Or 8 > k > -1 

 

Fig.8.7 Nyquist plot of the 
open loop of transfer function 
for different values of gain; 

1+3s+3s+s

k
)s(GH

23
    
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The relative steady state error is 
p

ss
k1

1
e


 , Where  )s(H)s(GLimk

0s
p


  

 
k kp sse  %ess

1 1 0.5 50 
5 5 0.1667 16.67 
8 8 0.1111 11.11 

10 10 0.0909 9.09 
 

The closed loop gain is k/(1+k). Figure 8.7 shows the Nyquist plot of the open loop 
for different values of open loop gain k. The step response of closed loop to unit step 
input is plotted in Fig.8.8 and its Bode plot is shown in Fig.8.9. 
 

 
 

Fig.8.8 Response of the closed loop to unit step input  for different values of open 
loop gain k 

 
The study of Figs. 8.7, 8.8 and 8.9 shows the following: 
1. For k=1, the open loop Nyquist plot intersects the real axis at (-0.125,0); far 

enough from the critical point. The transient response is stable with considerable 
steady state error and slight overshoot. The closed loop Bode plot shows low 
magnitude ratio at resonance frequency. 

2. For k=5, the open loop Nyquist plot intersects the real axis at (-0.625,0); nearer to 
the critical point. The system is still stable since the locus does not enclose the 
critical point. The transient response presents considerable transient damped 
oscillations, overshoot and smaller steady state error. The Bode plot shows higher 
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magnitude ratio at resonance and the slope of the phase curve becomes steeper. 
It is evident that this system is less stable than the preceding case. 

3. For k = 8, the open loop Nyquist plot passes through the critical point. The step 
response is oscillatory. The gain plot of Bode diagram shows that the closed loop 
magnitude ratio tends to infinity at resonance, which indicates clearly the system 
instability.  

4. For k = 10, the open loop Nyquist plot encloses the critical point and the system is 
unstable. The step response becomes unbounded. The closed loop Bode plot 
shows finite resonance gain and the phase becomes positive for frequencies 
greater than the resonance frequency. 

 

 
 

Fig.8.9 Bode diagram of the closed loop for different values of open loop gain. 
 
Generally, it is not sufficient to have a stable system, but the system should have 
certain degree of stability, relative stability. In the time domain, the relative 
stability can be measured by the maximum percentage overshoot, settling time and 
damping ratio. In the frequency domain, the relative stability can be evaluated, on the 
basis of the Nyquist stability criterion, by means of the compensated open loop polar 
plot; G(iω)H(iω). The closeness of the compensated open loop polar plot to the 
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critical point gives an indication of the degree of stability. The gain margin and 
phase margin are measures of the degree stability, Fig.8.10. These margins are 
defined as follows: 
 

 
 

Fig.8.10 Definition of the gain margin and phase margin in the polar coordinates 
 
Phase cross-over point is a point at which the Nyquist plot of )i(H)i(G   intersects 

the negative real axis where o
cpcp 180)i(H)i(G  . 

 

Phase cross-over frequency, cp  is the frequency at the phase crossover point. 

 
Gain cross-over point is a point on the compensated open loop polar plot at which 

the magnitude of )i(H)i(G  is unity, 1)i(H)i(G  . 

 

Gain cross-over frequency, cg  is the frequency at the gain crossover point. 

 
Gain margin (GM) is the allowable increase in the open loop gain in decibels (dB) 
before the closed loop system becomes unstable.  
 

)i(H)i(G

1

g

1
)GM(inargMGain

cpcp 
  (8.23)

Or  

 dB)i(H)i(Glog20
)i(H)i(G

1
log20)GM(inargMGain cpcp

cpcp




  (8.24)

 

Generally, a minimum recommended gain margin is within 6-12 dB. 
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The gain margin can be determined analytically as follows: 

 Solve o
cpcp 180)i(H)i(G   for cp  

 Calculate the gain margin  )i(H)i(Glog20 cpcp   dB 

 

Phase margin is the angle in degrees through which the compensated open loop 
polar plot can be rotated about the origin, in the clockwise direction such that the gain 
crossover point on the locus reaches the critical point (-1,0). 
 

o
cgcg 180)i(H)i(G)PM(inargMPhase   (8.25)

 

Generally, a minimum recommended phase margin is in the range of 40o to 60o. 
 

The phase margin can be determined analytically as follows: 

 Solve 1)i(H)i(G cgcg   for cg  

 Calculate the phase margin o
cgcg 180)i(H)i(G   

 

Example 8.8 For the system described by the following block diagrams: 
 

(a) Find the values of constant k for a steady state error sse = 0.1 and for 

sse = 0.05.  

(b) Derive the expressions for the open loop gain and phase. 
(c) Calculate the phase cross-over frequency and find the value of constant k if the 

gain margin is 10 dB 
(d) Calculate the gain cross-over frequency and phase margin for the value of k 

calculated in (c) 
(e) Give your comment on the calculation results. 
 

 
 

(a)  
 

k
1s

k
Lim)s(H)s(GLimk 30s0s

p 





 

 

ss

ss

p
e

e1
k


    

 

For sse = 0.1, kp = 9 = k or k = 9 
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For sse = 0.05, kp =19 = k or k = 19 

 

The increase in gain reduces the steady state error. For sse = 0.05, the open loop 

gain k should be: k =19 
 

(b)  321

k
)i(GGain


   

 

)(tan3)i(GPhase 1    

 

(c) At the phase cross-over frequency, cp  the phase φ=-180o 

 

 )(tan3180 cp
1o     Or s/rad3cp   

 

  8
k

1

k
gGain 3

2
cp




  

 
For a gain margin of 10 dB;  GM=10=20 Log (1/g) 
 

Or 10/1g  , Then 53.210/8k   

 
For gain margin GM=10 dB, the open loop gain should be k=2.53 
 

(d) At the gain cross-over frequency, cg , g=1 

 

  1
1

k
)i(Gg

3
2
cg

cg 


  

 

For k=2.53, s/rad926.0cg   

At this frequency, the phase φ is calculated as follows. 
 

o
cg

1 36.128)(tan3    

 

The phase margin PM=180o+ )i(G cg  

 

Or ooo 64.5136.128180PM   
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(e) To achieve the required stability level, the open loop gain should be 53.2k  . 

Meanwhile, to achieve the required precision, the open loop gain should be 
19k  . The two demands are in contradiction. They cannot be satisfied 

simultaneously without implementation of a convenient controller.  
 

8.3.2.2 Stability analysis using Bode plot 
 

 
 

Fig.8.11 Gain and phase margins on the open loop Bode plot 
 
The Bode plot of the open loop frequency response )i(H)i(G  is a powerful tool for 

the stability analysis, Fig.8.11. It enables to find the phase and gain margins by direct 
readings on the plot. The phase margin is determined as follows: 
 

1. Find the gain crossover point on the gain plot; the point on the plot 

corresponding to gain = 0 dB. Then find the gain crossover frequency cg . 

2. Find the corresponding phase, on the phase diagram )i(H)i(G cgcg  . 

3. The phase margin can be directly obtained from the phase diagram as shown in 
Fig.8.11. 
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The gain margin can be found from the Bode diagram as follows: 
1. Find the phase crossover point on the phase diagram; the point at which the

phase equals –180o. Then find the phase crossover frequency cp . 

2. Find the corresponding gain on the gain plot. 
3. The gain margin can be directly found from the gain plot as shown in Fig.8.11.

)i(H)i(Glog20)GM(inargMGain cpcp   

 
8.3.2.3 Stability analysis using Nichol's chart 
 
When plotting the compensated open loop frequency response on Nichol's chart, the 
gain and phase margins can be directly obtained as shown in Fig.8.12.  
 

 
 

Fig.8.12 Gain and phase margins on the Nichol's chart 
 
The phase margin is given by the horizontal distance from the origin (-180o, 0) to the 
intersection point of the open loop plot with the horizontal (zero dB) axis.  
 
The gain margin is given by the vertical distance from the origin (-180o, 0) to the 
intersection point of the open loop plot with the vertical (-180o) axis. 
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8.4 EXERCISE 
 

1. Consider a system having the following compensated open loop transfer 
function. Calculate the steady state error if a step input of magnitude 5 is 
applied. 
 

)10s)(2s(

60
)s(H)s(G


  

 

2. A servo system controlling an angular displacement o is described by the 

following equations. 
 










 


2
o

2

em
dt

d
k004.0t    Nm 

oie   

 m
o

2
o

2

t
dt

d
f

dt

d
J 





 

 

The system has a moment of inertia 25 mkg10J  , a friction coefficient 

rad/Nms10f 4  and its input is i . 

 
 (a) Draw the block diagram of this system. 
 (b) Determine the value of k if the system is critically damped.  
 (c) Find the steady state error if a unit step input rotation angle is applied. 

3. The following is the compensated open loop transfer function of a position 
control servo. Calculate the steady state error if the Laplace transform of the 
input is )s/10( . 

 

 
)10s)(2s(

2000
)s(H)s(G


  
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4. For the system represented by the following block diagram, find the 
positional error coefficient, the steady state error ess and the steady state 
value of y(t) if a step input of magnitude k2 is applied. 
 

 
 

5. Applying the Routh-Hurwitz stability criterion, investigate the stability of the 
systems having the following characteristic equations. 
 

 (a) 0kss1.0 23   

 (b) 0  1  k  s 1.1  s 0.1 2   

 (c) 0  k  s  s  s 0.1 23   

 (d) 0  k  s  s )T(T  s TT 2
21

3
21   

 (e) 0  k  s 8  s 6  s 2  s 234   

 (f) 0.  15  s k)(10  s 5  s 20k  s 234   

 

6. The open loop transfer function of control system with unity feed back is 
given by: 
 

 
)s21)(Ts1(s

)1s(k
)s(G




  

 
Find the closed loop transfer function then apply the Routh-Herwitz stability 
to find the conditions of system stability. 

7. Applying the Routh-Hurwitz criterion to calculate the values of A for which 
the control system shown in the following figure is stable. 
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8. Plot the Bode diagrams for the system described by the given compensated 
open loop transfer function then determine the phase margin and gain 
margin. 
 

)s1.01)(s6.01(s

5
)s(GH


  

 

9. The open loop transfer function of a unity feedback system is 
 

 
)s4.01)(s1.01(s

)s01.01(k4
)s(G




  

 
Plot  the bode diagrams and hence find: 

(a) The value of k for a gain margin of 22 dB. 
(b) The value of k for a phase margin of 45o. 

NB You can use the CODAS or MATLAB for the plot. 
 

10. The following is the open loop transfer function of a unity feedback system. 
 

)s01.01)(s1.01(s

k
)s(G


  

 
 (a) Find the limiting range of k for stability. 
 (b) Check the result by applying Routh-Hurwitz criterion. 
 (c) Find the phase margin and gain margin if k is half the limit value. 
 

11. For the shown block diagrams of control systems: 

(a) Find the values of constant K for a steady state error sse = 0.1 and for 

sse = 0.01. Comment on the obtained results. 

(b) Give the expressions for the open loop gain and phase of the systems. 
(c) Calculate the phase cross-over frequency and find the value of constant 

K if the gain margin is 8 dB 
(d) Calculate the gain cross-over frequency and phase margin for the value 

of K calculated in (c) 
(e) Give your comment on the calculation results. 
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12. Given the frequency plot of the compensated open loop of a control system. 
Find the phase and gain cross-over frequencies, the gain and phase 
margins and the gain of the closed loop transfer function if H(s)=1. 
 

 
 

13. The Bode diagram of the compensated open loop of a unity feedback 
control system is given in the following figure. Deduce the forward path 
transfer function for the system and sketch the phase plot of the frequency 
response. Hence comment on the stability and the transient and steady 
state performance of the system when operating in the closed-loop mode. 
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14. Sketch the Nyquist diagrams and check the stability of systems with the 
following open loop transfer functions. 
 

 (a) 
)1s(s

1
)s(H)s(G


                 (b) 

)1s(s

1
)s(H)s(G

5 
  

 

15. Plot the open loop frequency response of the following system and find the 
gain margin and phase margin. 
 

 
)s02.01)(s2.01(s

10
)s(H)s(G


   

16. The following figure shows the asymptotic gain Bode plot of a third order 
system having a transfer function of the form: 
 

 
)sT1)(sT1(s

k
)s(G

21 
  

 
(a) Find the numerical values of the constants k, T1 and T2. 
(b) Plot the phase diagram. 
(c) Find graphically the gain and phase margins. 
(d) Find analytically the gain margin. 
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9 ROOT LOCUS
ANALYSIS 

 

9.1 INTRODUCTION 
 
The discussions of the transient response of a linear system, chapter 6, showed that 
the system stability depends on the location of the roots of the characteristic equation 
in the R-I plane. The root locus is a plot of the location of roots of the characteristic 
equation of the closed loop system.  
 
The process of constructing the root locus includes: 
 Finding out the characteristic equation of the closed loop. 
 Derivation of expressions for the characteristic equations, considering the 

proportional gain K, Fig.9.1. 
 Plotting the roots locations on the R-I plane for different values of gain K; 

 K0 . The plot indicates the loci of the different roots, for varying values 

of K as shown in Figs 9.2 and 9.6. 
 
This process is illustrated by plotting the root locus of the system described by 
Fig.9.1. 
 

Fig.9.1 closed loop system

 
 

The characteristic equation of the closed loop system is:  0K5s3s2   

 

This equation has the following two roots:   )K5(25.25.1s   

 

For K=0, the two roots are      75.2i5.1s   

 
The roots location in the R-I plane is plotted in Fig.9.2 for different values of K in the 
range  K0 . This plot is called root locus. The response of the closed loop 

system to a unit step input is given in Fig.9.3. The study of Figs 9.2 and 9.3 shows 
that: 
 The closed loop is always stable for all values of K. 
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 The increase in K increases the frequency of the transient oscillations, 
decreases the damping ratio and decreases the steady state error. 

 

 

Fig.9.2 Root locus of 0K5s3s2   

 

 
 

Fig.9.3 Unit step response of closed loop system  
 

9.2 INTERPRETATION OF ROOT LOCUS 
 
The complete root loci are symmetrical with respect to the real axis of the R-I plane 
and the number of branches of the root loci is equal to the order of the characteristic 
equation. The construction and analysis of root loci gives good support to the system 
analysis as well as to the synthesis and design of closed loop systems. There are 
several available computer programs for roots evaluation and for the plot of the root 
loci such as the MATLAB and CODAS. This section presents several examples of 
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closed loop control systems with different types of controllers. Their root loci are 
plotted and analyzed. The block diagrams of these systems are of the form given in 
Fig.9.4. 
 

 
 

Fig.9.4 Block diagram of a typical closed loop system 
 
The closed loop transfer function and characteristic equation are given by the 
following expressions: 
 

)s(G)s(KG1

)s(G)s(KG
)s(G

pc

pc


  (9.1) 

 
The characteristic equation is: 
 

0)s(G)s(KG1 pc   (9.2) 

 
The case of proportional controller, Gc =1, is demonstrated by example 9.1. The 
following examples show the root loci of the system with different types of controllers 
and the effect of these controllers on the closed loop transient response.  
 
It is important for a control engineer to build up knowledge that enables him to relate 
root position to the transient behavior of the system. Moreover, it is necessary to 
know the effect of altering the position of poles and zeros or introducing new poles or 
zeros on a root locus plot and hence on the system dynamic behavior.  
 
Generally, the addition of a pole (located in the left half of the R-I plane) to the 
transfer function pushes the root loci towards the right half-plane and reduces the 
system relative stability. This is illustrated by example 9.1 and 9.2. Example 9.1 
shows the effect of introducing a pole at the origin and example 9.2 shows the effect 
of introducing a pole at s = -1. The effect of adding a pole on the transient response 
is shown in Figs. 9.5 to 9.10. The study of these figures shows that the addition of a 
pole slows down the response and reduces the system stability or even makes it 
unstable. 
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Example 9.1 
s

1
Gc  (Simple integrator, introducing a pole at s=0)  

 

          
 

Fig.9.5 Introducing a pole at s=0 
 

 

Fig.9.6 Root locus of 0K)5s3s(s 2   

 

 
 

Fig.9.7 Unit step response of closed loop system 
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Example 9.2 
1s

1
)s(G


 (Simple lag; introducing a pole at s= -1)  

 

         
 

Fig.9.8 Introducing a pole at s= -1 
 

 

Fig.9.9 Root locus of 0K)5s3s)(1s( 2   

 

 
 

Fig.9.10 Unit step response of closed loop system 
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Example 9.3 )2s(Gc  (Proportional plus differential controller PD)  

 

         
 

Fig.9.11 Introducing a PD controller 
 

 
 

Fig.9.12 Root locus of 0)2s(K5s3s2   

 

 
 

Fig.9.13 Unit step response of closed loop system 
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Example 9.4 





 




s

2
1

s

2s
Gc (Proportional plus integral controller, PI)  

 

      
 

Fig.9.14 Introducing a PI controller 
 

 
 

Fig.9.15 Root locus of )2s(K)5s3s(s 2   
 

 
 

Fig.9.16 Unit step response of closed loop system 
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The effect of adding a zero to the open loop function is illustrated by example 9.4, 
where a zero (at 2s  ) is added. Generally, the addition of a left-half plane zeros to 

the open loop transfer function has the effect of moving and bending the root loci 
toward the left-half of R-I plane, Figs. 9.11 thru 9.13, which tends to make the system 
more stable and of faster response.  
 
Finally, the effect of implementation of a proportional plus integral controller is 
explained by example 9.4 and Figs. 9.14 1o 9.16. 
 

9.3. EXERCISE 
 
1. Plot the root locus of the following system and sketch the response of the closed 

loop to unit step input for K=1 & K=100. 
 

          
 

2. Find the transfer function of the systems whose closed loop root loci are plotted in 
the following figures. Sketch the closed loop response for three different values of 
gain K. 
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3. Plot the root locus for the given system and find the location of roots and value of k 
for a damping ratio ζ = 0.5 
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10 COMPENSATION OF
CONTROL SYSTEMS

 
10.1 INTRODUCTION 
 
The control system should satisfy simultaneously the performance specifications of 
limited steady state error and relative stability. The specification of steady state error 
requires certain minimum value of open loop gain K1. To insure the recommended 
relative stability, the phase and gain margins should be greater than the pre-
determined minimum values. This defines certain maximum value of the open loop 
gain K2. If K1 > K2 then these two requirements are in contradiction. The 
specifications of steady state error and relative stability cannot be both satisfied 
unless some form of compensation is introduced. 
 
where K1 = Minimum compensated open loop gain recommended to satisfy 

the system accuracy specifications. 
 K2 = Maximum compensated open loop gain recommended to satisfy 

the relative stability specifications. 
 
Example 10.1 Find the open loop gain K needed to produce a steady state position 
error < 5%. Find the value required to give a gain margin of 6 dB and a phase margin 
of 27o. 
 

 
 

Fig.10.1 
 
When applying a step input of magnitude k2, the steady state error ess is given as 
follows. 
 

 
p

2
ss k1

k
e


  or 

p

ss
k1

1
e


  

 
Where   k2 = Magnitude of the applied step input. 
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kp = Position error coefficient; )s(H)s(GLimk
0s

p


  

sse = relative steady state error = 2ss k/e  

 

 K
)1s(

K
Limk

30s
p 





 

 

for  19Kand05.0
k1

1
,05.0e

p

ss 


  

 
Then, to reach the required precision, K should be greater than or equal 19 ( 19K  ). 

However, the Nyquist plot of the open loop frequency response, Fig.10.2 shows that 
the system is unstable for 19K  . 

 
The value of K needed to satisfy the relative stability requirements is K=4; for a 
gain margin = 6 dB and a phase margin = 27o. Naturally, decreasing the value of K 
below this value improves the relative stability. Then, in order to satisfy the stability 
requirements, K should be smaller than or equal 4 ( 4K  ). 
 

 
 

Fig.10.2 Effect of open loop gain K on the system stability 
 
The requirements of the steady state error are satisfied if K>19. But the requirements 
of the relative stability are satisfied only if K<4. Then the two requirements are in 
contradiction. Therefore, the addition of compensator is required to reshape the open 
loop frequency response so that the low frequency gain is high enough, in addition, 
the plot avoids the critical point (-1,0) insuring the required gain and phase margins. 
 
The Nyquist plot can be reshaped to satisfy these requirements by one of the 
following methods: 
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1. Start with gain K=19 (to satisfy the precision requirement) and introduce a phase 
lead at high frequencies in order to attain the required phase and gain margins 
(phase lead compensation) 

2. Start with gain K=4 (Satisfying the stability requirement) and introduce a phase lag 
at low frequencies to meet the steady state error requirements (phase lag 
compensation). 

3. Start with a gain between the two limits; 4<K<19, then introduce phase lag at low 
frequencies and phase lead at high frequencies (lag-lead compensator). 

 
The compensator is frequently included as an additional dynamic element in the 
system. The compensating element can be connected in the system in different 
ways; series, parallel or feed-forward connection 
 
Series Compensation 
 
 

 
 

Fig.10.3 Series connection of compensator  
 

The compensated open loop transfer function is given by: )s(G)s(G pc  

 
Parallel, Feedback, Compensation 
 

 
 

Fig.10.4 Parallel connection of compensator 
 

The compensated open loop transfer function is given by:
c2

21

GG1

GG


 

 
Formally, the parallel compensator can be always selected to obtain the same results 
as in series compensation. 
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Feed Forward Compensation 
 
 

 
 

Fig.10.5 Connection of feed forward compensator 
 
The compensating unit is included in a supplementary feed forward loop; along which 
the disturbance signal is introduced in the system. 
 
10.2 PHASE LEAD COMPENSATOR 
 
The transfer function of the phase lead compensator is of the following form: 
 

Ts1

aTs1

a

1
Gc 


 ; a >1 (10.1)

 
The gain can be kept unity by connecting a proportional element (gain = a), in series 
with the compensator. The compensator transfer function becomes: 
 

Ts1

aTs1
Gc 


  (10.2)

 
The frequency response of a typical phase lead element is given in Fig.10.6. This 
figure shows that the phase lead element presents a phase lead within certain range 
of frequency associated with permanent gain increase at high frequency range. The 
phase lead can be calculated as follows. 
 

22
1

aT1

)1a(T
tan




   (10.3)

 

The maximum phase shift is at m , where m is given by: 

 

 























T

1
log

aT

1
log

2

1
log m  (10.4)

 



M Galal RABIE, Automatic Control for Mechanical Engineers 
 

151 
 

Or  

Ta

1
m   (10.5)
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Fig.10.6 Bode plot of a phase lead element, T=0.02 sec & a=25 
 
For a phase lead element having T =0.02 sec and a =25, the frequency response 
parameters are calculated as follows.  
 
 .sec02.0T,25a   

 

sec)/1(50
T
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1
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Example 10.2 Plot the Nyquist and Bode plots of the open loop of the following 
system with and without compensation and discuss the effect of introducing a phase 
lead compensator having the following transfer function: 
 

1s02.0

1s5.0
Gc 


  
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Fig.10.7 
 

 
 

(1) K=4, Stable with GM=6 dB and PM=27o (2) K=19, Unstable without compensator 
(3) K=19, Stable with phase lead compensator, GM=15 dB and PM=22o

 

 

Fig.10.8 Nyquist plot of the non-compensated open loop system and of the system 
with series connected phase lead compensator. 

 

 
 

Fig.10.9 Bode plot of the non-compensated open loop system and system with 
series connected phase lead compensator. 
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The open loop frequency response plots of the system with K=19, with and without 
compensation are given in Figs. 10.8 and 10.9. The study of these figures shows the 
following: 
 
 The non-compensated system is unstable. 
 The compensator introduces significant phase lead in the range of frequency 

ω = 0.5 to 200 rad/sec. The maximum phase lead is at ω = 10 rad/sec. 
 The system with compensator is stable with a phase margin of 22o and a gain 

margin of 15 dB. 
 
Assignment: Figure 10.10 shows a 
mechanical phase-lag compensator. Its 
elements are of negligible inertia. Derive 
the transfer function X/Y)s(G   and 

show that it is a phase lead element with 

21 kk

f
T


 & 

1

21

k

kk
a


 .  

  
  

 
Fig.10.10 Mechanical phase-lag 

compensator 

 
10.3 PHASE LAG COMPENSATOR 
 
The phase lag element has a transfer function of the following form: 
 

aTs1

Ts1
Gc 


 ; a >1  (10.7.)

 
The Bode plot of a typical phase lag element is shown in Fig.10.11. This phase lag 
element presents a phase lag associated with gain reduction (negative gain in dB). It 
permits the gain of the original system to be increased without affecting the stability. 
The time constant T can be chosen such that the phase margin of the non-
compensated system is not much changed. 
 
The phase lag compensator is used when the phase margin is acceptable but the 
gain is too low to satisfy the steady state error requirements.  
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Fig.10.11 Bode plot of a phase lag element, T=4 s & a=37.5 
 
Example 10.3 Plot the Bode diagram of the open loop of the following system with 
and without compensation and discuss the effect of introducing a phase lag 
compensator having the following transfer function: 
 

 
1s150

1s4
Gc 


  

 

 
 

Fig.10.12 
 
The open loop frequency plots of the system, for K= 100, with and without 
compensation are given in Fig.10.13. The study of this figure shows the following: 
 
 The non-compensated system is unstable. 
 The compensator introduced significant phase lag in the range of frequency 

ω = 0.001 to 1 rad/sec. The maximum phase lag is at ω = 0.041 rad/sec. 
 The system with compensator is stable with a phase margin of 45o and a gain 

margin of 14.3 dB. 
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Fig.10.13 Bode plot of the non-compensated open loop system and system with 
series connected phase lag compensator 

 
10.4 LAG-LEAD COMPENSATOR 
 
The lag-lead element has a transfer function of the following form: 
 

sT1

saT1

sT1

sbT1
G

1

1

2

2
c 







 , where   a >1, b<1 and T1<T2  (10.8)

 

 
 

Fig.10.14 Bode plot of a lag lead element,  T1 =0.01 sec, T2 = 30.5 sec, a=14 and 
b=0.0667 
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The Bode plot of the frequency response of a typical lag-lead element is shown in 
Fig.10.14. The phase lag-lead compensator combines the advantages of the phase 
lead and phase lag compensators. 
 
The lag-lead compensator can be thought of as a separate phase lag compensator 
and a phase lead compensator. Lag compensation permits an increase in gain to 
reduce steady state error while a phase lead compensator permits an increase in 
response time without loss of stability. 
 
Example 10.4 Plot the Bode plot of the open loop of the following system with and 
without compensation and discuss the effect of introducing a lag-lead compensator 
having the following transfer function: 
 

 
s01.01

s4.01

s6.301

s21
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

  

 

 
 

Fig.10.15 
 

 
 

Fig.10.16 Bode plot of the non-compensated system and system with series 
connected lag lead compensator. 
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The open loop Bode plots of the system, for K= 100, with and without compensation 
are given in Fig.10.16. The study of this figure shows the following: 
 
 The non-compensated system is unstable. 
 The compensator introduced significant phase lag in the range of frequency 

ω = 0.004 to 1.5 rad/sec and significant phase lead in the range ω = 2.5 to 
850 rad/sec. The maximum phase lag is 60.4o at ω = 0.123 rad/sec. The 
maximum phase lead is 59o at ω = 27.8 rad/sec. The compensator introduces 
significant gain attenuation. The maximum gain attenuation is 23.11 dB at 
ω = 2 rad/sec. 

 The system with compensator is stable with a phase margin of 45o and a gain 
margin of 24 dB. 

 

10.5 P, PI AND PID CONTROLLERS 
 

The proportional integral derivative controller (PID) is the most common form of 
feedback. It was an essential element of early governors. Today, more than 95% of 
the control loops are of PID or PI type. The PID controllers are found in all areas 
where control is used. They have survived many changes in technology, from 
mechanics and pneumatics to microprocessors via electronic tubes, transistors and 
integrated circuits. The microprocessor has had a dramatic influence on the PID 
controller. Practically all the PID controllers made today are based on 
microprocessors. This has given opportunities to provide additional features like 
automatic tuning, gain scheduling and continuous or online adaptation. 
  

The PID algorithm is described by: 
 









 
t

0 d
i dt

)t(de
Td)(e

T

1
)t(eK)t(u  (10.9)

 

The error signal e(t) is the difference between the instantaneous values of the input 
signal, x(t) and the feedback signal f(t); as illustrated by Fig.10.17.  
 

)t(f)t(x)t(e   (10.10)

 

The control signal is the sum of three terms:  

 Proportional-term; proportional to the error, )t(Ke)t(P  , 

 Integral-term; proportional to the integral of the error,  
t

0
i

d)(e
T

1
K)t(I , 

 Derivative-term; proportional to the derivative of the error, 
dt

)t(de
KT)t(D d . 
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Fig.10.17 Connection of the PID controller in the feedback loop 
 

 
The controller parameters are the proportional gain K, the integral time Ti and the 
derivative time Td. The most well-known methods for estimating and tuning the PID 
parameters are those developed by Ziegler and Nichols. They have had a major 
influence on the practice of the PID control for more than half a century. The 
estimation methods are based on characterization of process dynamics by a few 
parameters and simple equations for the controller parameters. The PID controllers 
can be designed, according to Ziegler-Nichols rule as explained by the following 
example. The process of design of a PID controller is illustrated by replacing the 
proportional controller, Fig.10.18, by the PID controller, Fig.10.17.  
 

 
 

Fig.10.18 Feedback system with proportional controller of gain K 
 
The Implementation of the PID controller is carried out according to the following four 
steps: 
 

a) Find the limiting open loop gain for the stability. 
b) Design P, PI and PID controller  
c) Implementation of the P, PI and PID controllers 
d) Tuning of the controllers parameters 

 
a) Find the limiting open loop gain for the stability 

 
 Connect the system as shown in Fig.10.18 then apply a step input (with gain 

K=1, for example).  
 Calculate the step response then change the proportional gain K until 

continuous oscillations are observed. The resulting step responses are shown 
in Fig.10.19. For proportional gain K = 1, the calculated step response shows 

that the system response has considerable steady state error ( %50eSS  ). 
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For K=8, the transient response converged to sustained oscillations. The 
limiting value of gain K, which makes the system marginally stable (the 
response is oscillatory), is called the ultimate gain KL. The duration of one 

complete cycle is the ultimate period  . For the studied system, KL=8 and 
 =3.63 s.  

 

 
 

Fig.10.19 Step response of the closed loop system for open loop gain K=1 and for 
the limiting gain KL=8 

 
b) Design P, PI and PID controller  
 
The transfer functions of the proportional P, proportional integral PI and proportional 
integral derivative PID controllers are the following: 
 
P-Controller 

LK5.0K)s(D   (10.11)

PI-Controller 
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



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1
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i

 (10.13)

 
The first estimate of the PID controller parameters is calculated by applying Ziegler 
and Nichols rule, table 10.1. The calculation results are given in table 10.2. 
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Table 10.1 Summery of formulae used to calculate a first estimate of the P, PI and 
PID controllers, according to Ziegler-Nichols rules. 

 

Controller Symbol Gain Ti [s] Td [s] 

Proportional P K = 0.5 KL - - 

Proportional Integral PI K = 0.45 KL 0.8   - 

Proportional Integral Derivative PID K = 0.6 KL 0.5   0.125   
 
 

Table 10.2 First estimate and tuned parameters of the P, PI and PID controllers 
according Ziegler-Nichols rules. 

 

Controller 
First estimate Tuned parameters 

K Ti [s] Td [s] K Ti [s] Td [s] 
P 4 - - 4 - - 

PI 3.6 2.9 - 1.5 3.03 - 

PID 4.8 1.815 0.454 1.3 2.5 0.08 

 
c) Implementation of the P, PI and PID controllers 
 
Connect the controllers as shown in Fig.10.20 and calculate the step response. The 
resulting response is shown in Fig.10.21. This figure shows that the P-controller 
response has great steady state error. The PI and PID controllers stabilized the 
system, with no steady state error.  The controller setting according to Ziegler-
Nichols rule improved the closed loop system stability and precision. But a final 
tuning of the controller parameters must be done iteratively until satisfactory 
response is obtained. 
 

 
 

Fig.10.20 Closed loop system equipped with PID controller. 
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Fig.10.21 Step response of the closed loop system, with P, PI and PID controllers.  

 
d) Tuning of the controllers parameters 
 
The tuning of the gain of the proportional controller does not improve the system 
behavior, due to the contradiction between the stability and precision requirements. 
The tuning of the PI and PID controllers improved radically the system stability. 
Figure 10.22 shows that the responses of the system with PI and PID controllers 
converge rapidly to the required steady state value, without steady state error. 
 

 
Fig.10.22 Step response of the closed loop system, equipped with P, PI and PID 

controllers, with tuned parameters. 
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10.6 EXERCISE 
 

1. Consider the system described by the following open loop transfer function: 
 

)s125.01)(1s(s

K
)s(H)s(G


  

 

(a) Find the limiting value of K for system stability. 
(b) Design PI and PID controllers for this system, tune the parameters and 

calculate the step response controlled by the PI and PID controllers. 
 

2. Consider the system described by the following open loop transfer function: 
 

2)1s5.0(s

K
)s(H)s(G


  

 

(a) Plot the Bode diagrams for K=1 and K=10 and discuss the system stability. 
(b) A series phase lag compensator having the following transfer function is 

introduced:  
 

s1001

s101
)s(Gc 


   

 
Plot the Bode plot of the compensated system and discuss the results for 
K=1 and K=10. 
 

3. Consider the system described by the following open loop transfer function: 
 

2)1s5.0(s

K
)s(H)s(G


  

 

(a) Find the limiting value of K for system stability. 
(b) Design a PI and a PID controller for this system, tune the parameters and 

calculate the step response of the system controlled by the PI and PID 
controllers. 

 
4. Consider the system described by the following open loop transfer function: 

 

)1s5.0)(1s3.0)(1s2.0(s

K
)s(H)s(G


  

 

(a) Find the limiting value of K for system stability. 
(b) Design a PI and a PID controller for this system, tune the parameters and 

calculate the step response of the system controlled by the PI and PID 
controllers. 
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