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Preface

Three years ago, just after our book “Free convection film flows and heat transfer—
models of laminar free convection with phase change for heat and mass transfer
analysis” was published, our research interests were transferred to the more chal-
lenging field of laminar mixed convection heat and mass transfer. This is a cross
field of free and forced convection with more difficult issues than free or forced
convections. Strictly speaking, all forced convection heat transfer is mixed con-
vection heat transfer. In fact, net forced convection heat transfer does never exist. It
is because in fluid medium of so-called forced convection heat transfer, there should
be temperature difference, which leads to fluid buoyancy. While, the fluid buoyancy
will cause free convection. There have been numerous previous studies on mixed
convection, however, for such a difficult field, engineers still have to deal with
many unresolved problems. Due to these unresolved difficult problems, so far there
is a lack of studies on the development of reliable theoretical or experiment
achievements for heat transfer application of mixed convection. These difficulties
prompted us to think deeply. Finally, we knew that to resolve these problems we
needed to focus on the following issues: (i) developing an advanced theoretical and
mathematical model; (ii) carefully considering and treating the variable physical
properties of fluids; (iii) obtaining systems of rigorous numerical solutions; and
(iv) on these bases, creating optimal formalized equations of heat transfer coeffi-
cient. In fact, these focused issues are interrelated. An advanced theoretical and
mathematical model is the basic condition for successful investigation of mixed
convection heat transfer. To address this issue, our innovative similarity transfor-
mation on velocity field would be taken as a better alternative. While, in our system
of studies on free and forced convection heat and mass transfer, our innovative
similarity transformation was conveniently and reliably applied. On the other hand,
the variable physical properties will be taken into account in this study, and the
polynomial model will be induced for treatment of the variable physical properties
of liquids. Although there could be different models selected for consideration
of the variable physical properties of liquids, the polynomial model should be the
most convenient one combined with the transformed governing ordinary differential
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equations used for simultaneous solutions. Through our comparison on the values of
mixed convection heat transfer coefficient predicted for consideration of coupled
effect of variable physical properties with those for consideration of Boussinesq
approximation, we found their deviations are as high as over 8.4 %. It proves that
proper consideration of the variable physical properties of fluids is very important
for enhancement of the theoretical and practical value of convection heat transfer.
Hence, it is important to face up the variable physical properties of fluids in rigorous
theoretical study on clarification of convection heat transfer. Actually, since two
decades ago, we have been committed to consider effect of fluid’s variable physical
properties on convection heat transfer in our studies. We deeply feel that it is
necessary to consider coupled effect of variable physical properties for assurance
of the theoretical and practical value for research of convection heat transfer. While,
Boussinesq approximation or ignoring fluid’s variable physical properties will
severely weakened the theoretical and practical value of convection heat transfer.
Furthermore, creation of the optimal formalized equations of heat transfer coeffi-
cient will be an important indicator on study with theoretical and application value
for convection heat transfer application.

With this opportunity we thank Springer-Verlag for publishing our book “Heat
Transfer of Laminar Mixed Convection of Liquid”. We hope, based on our above
efforts, this book will have a special theoretical and practical value for mixed
convection heat transfer application, and will be of benefit to engineers, researchers,
professors, and Ph.D. and master students in their engineering design, research
work and teaching courses on thermal fluids and engineering fields related to
convection heat and mass transfer.

Canada De-Yi Shang
August 2015 Liang-Cai Zhong
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Chapter 1
Introduction

Abstract This chapter introduces recent advanced study on laminar mixed con-
vection of liquid with focusing on its hydrodynamics and heat transfer. Taking
water laminar mixed convection as an example enables researchers to targeted study
of this book. On this basis, three activities are performed in order for enhancement
of the theoretical and practical value of the study. First, for simplification of the
study, the governing partial differential equations are equivalently transformed into
the ordinary differential equations by using an innovative similarity transformation
model of velocity field. Based on such simplification, the study can focus on
successive even difficult and complicated issues of heat transfer. Second, coupled
effect of variable physical properties is considered. It is an assurance that the
systems of numerical solutions have their practical value. Third, based on the
theoretical equations and the systems of rigorous numerical solutions, the optimal
formalized equations of Nusselt number are created for convenient and reliable
application of heat transfer, in view of that so far, there is still lack of such reliable
theoretical achievements. These theoretical achievements with the optimal for-
malized equations are base on the systems of reliable numerical solutions with a
better consideration of variable physical properties, they have solidly theoretical
and practical value for heat transfer application.

Keywords Mixed convection - Heat transfer - Innovative similarity transforma-
tion - Mixed convection parameter - Positive flow - Variable physical properties -
Theoretical and practical value

1.1 Universality of Mixed Convection

Free and forced mixed (or combined) convection, for short, mixed convection, is a
coupled phenomenon of free and forced convection. As general case, the mixed
convection is formed simultaneously by an outer forcing flow and inner volumetric

© Springer International Publishing Switzerland 2016 1
D.-Y. Shang and L.-C. Zhong, Heat Transfer of Laminar Mixed Convection
of Liquid, Heat and Mass Transfer, DOI 10.1007/978-3-319-27959-6_1
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(mass) force, while the latter is caused by the no-uniform density distribution of a
fluid medium in a gravity field. In fact, so-called forced convection actually belongs
to mixed convection if there is temperature difference between the wall surface and
fluid bulk. Obviously, there has been much challenge in research of mixed con-
vection over that of net free or forced convection.

For investigation of mixed convection, an important parameter, mixed convec-
tion parameter (i.e. Richardson number Ri) Mc = Gr,/ Reﬁ, where Gr is the Grashof
number and Re the Reynolds number, has been induced for conveniently evaluating
the ratio of intensity of free convection to that of forced convection. Numerically,
the value of mixed convection parameter can be defined in a range
—o0<Mc< +00. As a special case with Mc = 0, the flow becomes net forced
convection. With increasing the absolute value of the mixed convection parameter,
the effect of free convection will increase. Here, it is an interesting issue that how a
big value of the mixed convection parameter will lead to that free convection
dominates whole flow and its heat transfer. Although there has been some studies
involving this issue, it will still be touched in the research of this book as an
interesting topic.

Generally, the mixed convection is divided to two types, positive (adding) and
negative (opposing) flows. For the former flow, free and forced convections are in
the same direction, and the mixed convection parameter Mc is positive. For the
latter flow, free and forced convections are in the opposite directions, and the
combined convection parameter Mc will be negative. In this book, the former
phenomenon will be taken into account in our research area.

1.2 Application Backgrounds

The application of mixed convection flow can be found in several industrial
departments, such as the metallurgical engineering, chemical engineering,
mechanical engineering, energy engineering, electrical engineering and food
engineering, etc. The thermal process on surfaces such as those of boilers, heating
and smelting furnaces, heat exchangers placed in a low-velocity environment,
nuclear reactors cooled during emergency shutdown, solar central receivers
exposed to winds, electronic devices cooled by fans, and other various industrial
and civic equipments are often caused by various forms of mixed convection. The
heat transfer rate affects the related industrial heating process. While, in some
thermal processes, for instance for them of electronic devices, cooling process
occurs with mixed convection on the surface of integrated circuits, and tends to
restrict the surface temperature to below the allowable value. The optimal design of
the corresponding heating equipments as well as the optimal control of the heat
transfer process of the cooling devices depend on correct prediction on heat transfer
of mixed convection.
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1.3 Previous Studies

As a most common form of convective flow, mixed convection has wide appli-
cation in various industrial departments and human life, and the research of its fluid
mechanics and heat transfer has been carried out since a half century years ago. In
the books of Gebhart et al. [1], Bejan [2] and Pop and Ingham [3] the detailed
reviews were done for research of mixed convective flow. Meanwhile, numerous
academic papers were published for investigation of its heat transfer, and only some
of them, such as Refs. [4-79], are listed here for saving space. In these investi-
gations, the mixed convection in a boundary layer flow was analysed. These studies
cover different flow types of mixed convection, for instance mixed convection in
external flow [4-29], with continuously moving surface [30-33], from the sphere
[34—41], along horizontal cylinders [42], towards a plate [43, 44], with suction or
injection [45, 46], on permeable flat plate [47, 48], with utilizing nanofluids [49],
with viscous dissipating fluid [50, 51], with micropolar fluid [52, 53], with MHD
(magneto-hydrodynamic) flow [54, 55], with internal flow [56-58], for experi-
mental investigation [59-65], and in a porous medium [66 —78]. Meanwhile, some
studies such as those in [16, 17, 19, 79] were done for trying creation of the
correlation equations on prediction of mixed convection heat transfer.

1.4 Big Challenge Associated with In-Depth Study on Heat
Transfer of Mixed Convection

1.4.1 Limitation of Traditional Falkner-Skan
Transformation

The aim of this book is to analyze and calculate heat transfer of laminar mixed
convection. Theoretically, there could be different numerical methods that can be
used for dealing with the problem. However, to resolve such problem, similarity
and equivalent transformation (i.e. scaling transformation) of the governing partial
differential equations is a key work in order to simplify the analysis and calculation
of mixed convection. Moreover, the similarity analysis method by means of
dimensionless parameters constituted by dimensional variables can greatly simplify
these analysis and calculations on heat transfer.

However, so far, the related popular approach is still traditional method called
Falkner-Skan type transformation. With this method a stream function and group
theory have to be induced at first, and then, the dimensionless function variable f (1)
and its derivatives are induced for transformation of the governing partial differ-
ential equations. However, with such dimensionless function variable, the tradi-
tional Falkner-Skan type transformation becomes complicated, and even difficult to
consider variable physical properties.



4 1 Introduction

For more description about Falkner-Skan method and its limitations of appli-
cation, please refer to books [80, 81]. Up to now, these limitations of the
Falkner-Skan type transformation have hampered extensive study on mixed con-
vection even with consideration of fluid’s variable physical properties.

1.4.2 Challenge Associated with Consideration of Variable
Physical Properties

Due to the universality of mixed convection with large temperature difference, the
consideration of coupled effect of variable thermo-physical properties is necessary
for enhancement of theoretical and practical value of the related research. To this
end, for study of heat transfer of water mixed convection, in this book, the
temperature-dependent models of the physical properties should be built up, which
is based on the typical values of the experimental measurement. Moreover, the
studies should be further conducted for investigation of coupled effects of the whole
variable thermo-physical properties, such as viscosity, thermal conductivity, and
density on heat transfer of mixed convection. About the more description of
treatment of variable physical properties, please refer to books [80, 81]. It will be
proved that with such approach for treatment of variable physical properties, the
difficult situation caused by consideration of the variable thermo-physical properties
can be resolved well for extensive analysis and calculation of heat transfer of mixed
convection.

1.4.3 Challenge Associated with Practical Value on Study
of Heat Transfer

Another challenge is formulization of a systematic prediction equations for heat
transfer application of mixed convection, which is based on the system of numerical
solution groups on heat transfer with practical application value. The difficult point
for that work is that the various variable physical properties and their interaction
should be taken into account to ensure the practical value of the theoretical analysis
and numerical solutions on fluid flow and heat transfer. Unfortunately, in the
previous study, there has been a lack of such rigorous consideration on these issues,
and then it leads to a lack of the practical value of research on heat transfer
application. Therefore, the current achievements of traditional theory of mixed
convection heat transfer are still not adapted to the practical requirements. For a
simple example, a lot of calculation correlations on mixed convection heat transfer
application are still empirical or semi-empirical from experiment.
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1.4.4 Key Measures to Ensure Theoretical and Practical
Value on Study of Heat Transfer

To ensure theoretical and practical value of study on heat transfer, first, by using our
innovative similarity transformation, the governing partial differential equations of
laminar mixed convection are so similarly transformed that the transformed ordi-
nary differential equations are combined well with the physical property factors.
Second, these physical property factor are transformed to the related theoretical
expressions for matching the governing ordinary differential equations for simul-
taneous solution. Third, the theoretical equations of Nusselt number will be set up
based on our innovative similarity transformation model. It is interesting to see in
such theoretical equations of Nusselt number that the wall similarity temperature
gradient as only unknown variable dominates the heat transfer coefficient evalua-
tion. So, fourth, the investigation will focus on optimal formulization of the wall
similarity temperature gradient based on the systems of the related rigorous
numerical solutions. Through these processes, the optimal formalized equations of
heat transfer coefficient will be created for assurance of theoretical and practical
value of study on heat transfer of mixed convection.

1.5 Focused Studies in This Book

The study of heat transfer of mixed convection in this book focuses on laminar
water mixed convection with positive (adding) flow. Meanwhile, the research
contains consideration of coupled effect of variable physical properties. With
growing importance of mixed convection heat transfer in industry and human life,
the investigation in this book will apply boundary layer method and focus on the
following issues for resolving the big challenges for hydrodynamics and heat
transfer of mixed convection:

(1) On the basis of our advanced similarity (or scaling) analysis method reported
in our book [80] for successful study on forced convection film flows, a big
challenge of research in the present book is to develop the innovative simi-
larity analysis method and models for extensive investigation of heat transfer
with mixed convection.

(i) On the basis of the innovative theoretical models for advanced research on
hydrodynamics and heat and mass transfer of forced convection, another big
challenge of the research is to develop a system of theoretical models for
practical consideration and treatment of coupled effect of fluid variable
thermo-physical properties on mixed convection heat transfer. Meanwhile, the
investigation will be performed for the organic link of the physical property
factors to the complete governing similarly models.



6 1 Introduction

(iii) To obtain systems of numerical solutions for meeting the practical physical
conditions in a wide range of the boundary temperatures, Prandtl number and
mixed convection parameter including consideration of coupled effects of
variable physical properties.

(iv) To develop the theoretical equations of heat transfer for heat transfer coeffi-
cient, so that the problem of prediction of heat transfer will actually become
the issue for evaluation of the wall temperature gradient.

(v) To realize the formulization of the systems of numerical solutions of the wall
temperature gradient meeting the practical physical conditions in the wide
range of boundary temperatures, Prandtl number and combined convection
parameter, in order to realize optimal formalized correlations of Nusselt
number for heat transfer application.

1.6 Research Developments in This Book

The innovative research developments on heat transfer of mixed convection for
dealing with the above difficult points have been realized, and are demonstrated in
this book. They are summarized as below:

1.6.1 Application of Innovative Similarity Transformation
in In-Depth Study of Fluid Mixed Convection

In this book, new similarity analysis methods reported in [81] for innovative study
on hydrodynamics and heat transfer of forced convection boundary layer has been
applied for development on a novel governing system of similarity mathematical
models for mixed convection. Although due to its velocity boundary conditions of
forced convection the transformed governing similarity mathematical models of
mixed convection are nonlinear, they are still simplified more greatly than those
transformed by the popular Fakner-Skan transformation. Such simplification will be
even demonstrated for consideration of coupled effect of variable physical prop-
erties. With our similarity transformation method, all variable physical properties of
the governing partial differential equations can be transformed to the related
physical property factors, and organically combined with the governing similarity
mathematical models. Thus, the system of innovative governing similarity models
are completely obtained for practical analysis and calculation of mixed convection
with consideration of coupled effect of variable physical properties.
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1.6.2 For Treatment of Coupled Effect of Variable Physical
Properties

Since two decades ago, we have been committed to consider effect of fluid’s
variable physical properties on convection heat transfer in our studies. These studies
enable us to deeply recognize that it is necessary to consider coupled effect of
variable physical properties for assurance of the theoretical and practical value for
research of convection heat transfer, and Boussinesq approximation or ignoring
fluid’s variable physical properties will severely weakened the theoretical and
practical value for these studies.

For research in this book, the polynomial formulations [80, 81] are applied for
setting up the model of variable physical properties on liquid mixed convection.
Such model of variable physical properties can describe the fluid physical property
values at any local point with a certain temperature, well coincident to the related
experimental measurement values.

In the transformed system of similarity governing models, all thermo-physical
properties exist in the form of the physical property factors for practical treatment of
the variable physical properties. By means of our similarity analysis method, these
physical property factors are further treated to the functions of the dimensionless
temperature and its derivatives suitable for simultaneous solutions of the complete
similarity governing models.

1.6.3 Systems of Numerical Solutions for Consideration
of Coupled Effect of Variable Physical Properties

By means of our innovative similarity analysis method and variable physical
property model, this book contributed system of the complete similarity governing
model of mixed convection. On this basis, through a huge amount of numerical
calculation, systems of the rigorous numerical solutions on velocity and tempera-
ture fields of water mixed convection were obtained at the broad ranges of Prandtl
number, mixed convection parameter and temperature boundary conditions. These
numerical solutions dominate hydrodynamics and heat transfer of mixed convec-
tion. On the basis of rigorous consideration of complicated physical conditions and
effect of variable thermo-physical properties, definite practical value is realized on
heat transfer application of mixed convection.
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1.6.4 Optimal Formalization for Groups of Numerical
Solutions

For heat transfer application of mixed convection, it is necessary to do two tasks in
order to set up the theoretical equation on heat transfer and formulize its unknown
variable. First, by means of our innovative similarity analysis method, theoretical
equations of Nusselt number are contributed, where only the wall similarity tem-
perature gradient is the unknown variable for evaluation of heat transfer of mixed
convection. Therefore the numerical solutions of the wall similarity temperature
gradient are regarded as key numerical solutions on heat transfer application. The
second work is to formulize the numerical solution groups of the wall similarity
temperature gradient meeting the practical physical conditions including coupled
effect of variable thermo-physical properties. After finishing such two tasks, the
optimal formalized equations on Nusselt number of mixed convection is posted in
this book for heat transfer application.

1.6.5 Theoretical and Practical Value of the Optimal
Formalized Equations on Heat Transfer Coefficient

The optimal formalized equations on Nusselt number only contain one variable to
be determined: the wall similarity temperature gradient. It depends on local Prandtl
numbers and mixed convection parameter. The latter depends on local Reynolds
number and local Grashof number, both of which depend on the related local
physical properties of fluid. Then, the calculation of mixed convection heat transfer
is finally attributed to calculate the algebraic formula with the fluid’s local physical
properties, and thus, it is realized to greatly simplify the evaluation of mixed
convection heat transfer. Meanwhile, the optimal formalized equations of Nusselt
number are based on the systems of numerical solutions groups with consideration
of coupled effect of variable physical properties, and then have definitely theoretical
and practical value on heat transfer application.

1.7 Remarks

Our innovative similarity analysis method is applied in this book with development
of a new local similarity transformation approach for a deep investigation of heat
transfer on mixed convection. The governing mathematical models consider well
the coupled effect of variable thermo-physical properties. It would be found that the
transformed similarity governing models are dominated by boundary Prandtl
numbers and induced mixed convection parameter of fluid. A huge of amount of
numerical calculation is conducted, and the systems of numerical solutions on
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velocity and temperature fields are obtained in the wide arranges of mixed con-
vection parameter and boundary Prandtl numbers of fluid. The theoretical equations
of Nusselt number are derived based on the innovative similarity transformation
model, where it is seen that wall temperature gradient is the only one no-given
variable for heat transfer prediction, so that the heat transfer problem is attributed to
the issue to evaluate the wall similarity temperature gradient. The systems of
numerical solutions of the wall similarity temperature gradient are formulized to the
related formulated equations. Then, the heat transfer evaluation is finally attributed
to an algebraic formula dependent on mixed convection parameter as well as the
fluid physical boundary conditions. Since the governing mathematical models
consider the coupled effect of variable thermo-physical properties, the systems of
numerical solutions, and formulized equations on hydrodynamics and heat transfer
have theoretical and practical value for mixed convection.
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Chapter 2
Theoretical Foundation on Conservation
Equations of Laminar Mixed Convection

Abstract In this chapter, the basic conservation equations corresponding to lam-
inar free and forced mixed convection are introduced. For this purpose, the related
general laminar conservation equations on continuity, momentum and energy
equations are presented by means of theoretical and mathematical derivation for
deeply understanding fluid convection. From these general conservation equations
of convection, the fluid’s variable physical properties are fully taken into account.
By using the quantity grade analysis, the mass, momentum, and energy equations of
laminar mixed convection boundary layer are obtained with consideration of
variable physical properties.

Keywords Control volume - Variable physical properties - Cartesian forms -
Continuity equation - Navier-Stokes Equation - Energy equation - Mixed con-
vection - Quantitative grade analysis - Conservation equations

2.1 Continuity Equation

The conceptual basis for the derivation of the continuity equation of fluid flow is the
mass conservation law. The control volume for the derivation of continuity equa-
tion is shown in Fig. 2.1 in which the mass conservation principle is stated as

Mincrement = Mlin — Moyt (21)

where mjycremens €Xpresses the mass increment per unit time in the control volume,
iy, represents the mass flowing into the control volume per unit time, and r,,; is
the mass flowing out of the control volume per unit time. The dot notation signifies
a unit time.

In the control volume, the mass of fluid flow is given by pdxdydz, and the mass
increment per unit time in the control volume can be expressed as

0
mincrement = 8_/’3 dXdde (22)

© Springer International Publishing Switzerland 2016 15
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e

.
m()M[

dz

m. e dy

mn
/V dx

Fig. 2.1 Control volume for the derivation of the continuity equation

The mass flowing into the control volume per unit time in the x direction is given
by pw,dydz. The mass flowing out of the control volume in a unit time in the
x direction is given by [pw, + O(pwy)/Ox - dx]dydz. Thus, the mass increment per
unit time in the x direction in the control volume is given by Ao W‘) dxdydz.
Similarly, the mass increments in the control volume in the y and z dlrectlons per

unit time are given by ( )dydxdz and 0<” ws) dzdxdy respectively. Thus, we obtain

; o (0pwy) | O(pwy) | O(pw.)
Moyt — Min = ( ax + dy + 02 dxdydz. (23)

Combining Eq. (2.1) with Egs. (2.2) and (2.3) we obtain the following continuity
equation in Cartesian coordinates:

dp  dlpws)  Oow) | opw)

=0 2.4
ot Ox dy 0z (24)
or in the vector notation
ap —
g . = 2.
5 +V-(pwW)=0 (2.5)
or
Dp -
o, TPV (W) =0 (2.6)

where W = iw, 4 jw, + kw, is the fluid velocity.
For steady state, the vector and Cartesian forms of the continuity equation are
given by

2 9 (o) =0 (27)

0
_(pwy) + az
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or

V-(pw)=0 (2.8)

2.2 Momentum Equation (Navier-Stokes Equation)

The control volume for the derivation of the momentum equation of fluid flow is
shown in Fig. 2.2. Meanwhile, take an enclosed surface A that includes the control
volume. According to momentum law, the momentum increment of the fluid flow
per unit time equals the sum of the mass force and surface force acting on the fluid.
The relationship is shown as below:

Gincrement = Fm + Fs (29)

where F,, and F; denote mass force and surface force respectively.
In the system the momentum increment Gim.,emen, of the fluid flow per unit time
can be described as

. D =
Gincrement = E/V 1% W dv (210)

In the system the sum of mass force F,, and surface force F; acting on the fluid is
expressed as

F_,;I—i—I;;:/pF“ dv+/?ndA (2.11)
\%4 A

where V and A are volume and surface area of the system respectively, and T, is
surface force acting on unit area.

Combining Eq. (2.9) with Egs. (2.10) and (2.11), we have the following
equation:

D — - -
f/deV:/deV—l-/rndA (2.12)
Dt Jy 1% A

dy

dx

Fig. 2.2 Control volume for the derivation of momentum equation
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According to tensor calculation, the right side of Eq. (2.12) is changed into the
following form:

/pﬁdv+/ﬂdA:/dev+/V~mdv (2.13)
|4 A |4 |4

where V - [7] is divergence of the shear force tensor.
The left side of Eq. (2.12) can be rewritten as

D — D(pW)
— dv = av 2.14
D1t /v pw /v D1t ( )

With Egs. (2.13) and (2.14), Eq. (2.12) can be simplified as

/{w—pﬁ—v-[ﬂ}dV:O (2.15)
Therefore,
Dpw) _ -
5o =PF V[ (2.16)

This is the Navier-Stokes equations of fluid flow. For Cartesian Coordinates,
Eq. (2.16) can be expressed as

D(pwy) Ot Oty Oy
= - — v 2.17
Dt Ox + Ay + 0z trg (2.17)
D ) , Y
low) _ Ot | Ot | Dty e, (2.18)

Dt Ox Oy 0z

D(pw;) _ 0T, N 01y, . 01,
Dt Ox Oy 0z

+pg. (2.19)

where

D(pws) _ 0lpws) | (Opwy) | (Opws) (Opwy)

Dt ot + ox Oy Wy + 9z °
D(pwy) _ d(pwy) | (9pwy) (Opwy) (Opwy)

Dt Ot + ax + Oy Wyt a7 ¢
D(pw) _ d(pwz) + (Opw.) W+ (apwz)w + (9pw.)

Dt ot Ox ay 7 0z &
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In Egs. (2.17)—~(2.19), g, gy and g, are gravity accelerations in x, y, and z
directions respectively, while, the related shear forces are given below:

S +g aw,urawy+8wZ 49 ow,
w= TIP3 Ty ady 0z K o

2 Owy awy ow, Owy
— _ 2
P+ 305, + 8+8)]+'u8y
B 2 Oow, Ow, Ow, ow,
P+ (8 +8y+5‘z)]+'u€9z
8wy Oow,
Ty = Tyx = M(E Dy )
. Ow; 0w,
Ty = Tzy = :u( Ay 0z )
o (8wx 8wz)
X T oYXz — lu aZ ax

Then, Egs. (2.17)—(2.19) are rewritten as follows respectively:

D(pw,)
Dt
B 8p 2 ow, 2 owy % 0, 0wy Ow,
= o Pl ) T gy MGy g g e T )
8 2 Ow, 8wy ow,
D(pw,)
Dt
B _a_p 2 Ow,  Owy a , Ow, 0. 0wy, Ow,
= T ey T 2, 6y)+8z[ e t o)
8 2 Owy 8wy 8wz
D(pw,)
Dt
__ O 0., 0w Ow, O Owy Ows ,0 Ow
oz Ty, a2 ()
0 2 0w 8w} ow,
6z[ (8x Ay + 8z)]+pgz

(2.20)

(2.21)

(2.22)
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For steady state, the momentum Egs. (2.20)—(2.22) are given as follows
respectively:

owy ow, ow, dp ap ap
p(awx + 8—yWy + 8—WZ) +Wx(Wxa + Wya—y + WZa—Z)

dp 8 8wx 0. Ow, Ow, 0 3w)C ow,

8[2 (awx+8wy+8 5]+
3o Ty T g TP
ow, Owy ow, op op op
(ax wy + o Wy + ——= a )+wy(wxax+wyay+wz&)
B 8p 5‘ 8wx Oow, g % Q % ow,
8 2 Owy 8wy ow,
ow, ow, 8WZ ap ap ap
'D(ax wy + B wy+ —— % )erz(wxa +w ya +WZ8Z)
op O, 0w, Ow, 0. 0w, Ow, a , Ow,
“o T P Tty g ) 22

0 [2 (awx n % n awz)] n
S 9737 ox Oy 0z pe:

Let us compare term  p(Zyw, 4 P oWy T 0(;“‘ w,)  with  term

Ox
8 Owy Owy
—|—w‘ o T 82) In general, derivatives o

8)( ’ dy
Op, Op, Opy ;
oDy and > respectively. In this case, the term

wx(wx and are much larger

Ox

than the derivatives

wx(wxg—i + wy%” +w;, ?)_'Z) is omitted, and (2.23) is rewritten as generally

(% + % + % )
p O Wy y Wy 0z Wz
L dp 0 8wx 0. Ow, Ow, 0. 0wy Ow,

ox 8x
0 2 0wy 6wy ow,
8x[ (8x ady + 0z 1+ pe:

(2.23a)

Similarly, in general, (2.24) and (2.25) are rewritten as respectively
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ow, Ow, Oow,

—_— —} —_—
PG+ G )
Op 0, Ow, Ow, 0, Owy 0, 0wy Ow,
=—— 4+ —|ul=—+ — — (=) + = [u(—== 2.24
aerax[ﬂ(ay )T ay(/l ayHaZ[ﬂ(aZ + ay)] (2.24a)
0 [2 (awx 8wy n ow, 9]+
“o3"ax T ey T o) RS
oWz e, O
:0( ax WX+ ay W}'+ 6Z WZ)
_ Op 0, Ow awz 0. Ow,  Ow, 9, Ow,

0 [2 (8WX n % n 8wz)] n
93" Ty T o T PE

2.3 Energy Equation

The control volume for derivation of the energy equation of fluid flow is shown in
Fig. 2.3. Meanwhile, take an enclosed surface A that includes the control volume.
According to the first law of thermodynamics, we have the following equation:

AE = Q+ W,y (2.26)

where AE is energy increment in the system per unit time, Q is heat increment in the
system per unit time, and W,,, denotes work done by the mass force and surface
force on the system per unit time.

The energy increment per unit time in the system is described as

. D W
AE =2 Zyav 2.27
D Vp(e+ 2) (2.27)

where t denotes time, WTZ is the fluid kinetic energy per unit mass, W is fluid

velocity, and the symbol e represents the internal energy per unit mass.

W, /

dz

AE

in dX

Fig. 2.3 Control volume for derivation of the energy equations of fluid flow
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The work done by the mass force and surface force on the system per unit time is
expressed as

Wom:/pF-VT/dVJr/avT/dA (2.28)
|4 A

where F is the mass force per unit mass, and 1, is surface force acting on unit area.
The heat increment entering into the system per unit time through thermal
conduction is described by using Fourier’s law as follows:

0= / A—dA (2.29)

where n is normal line of the surface, ¢ is temperature and here the heat conduction
is considered only.
With Egs. (2.27)—-(2.29), Eq. (2.26) is rewritten as

D Wo . WdA D (2
Dr Vp(e—l— 2)dV /VpF WdV—i—/Arn W d. +/Aiand (2.30)
where
D[ +W2)dv/D[ et Vv (231)
DT Vpe 2 o VDT pe 2 ’
/Fn-vT/dAz/ [c] - WdA = / 1] W)dA = /v W)av (2.32)
A A
/ 190 aa = / V- (V1) av (2.33)
14

With Egs. (2.31) to (2.33), Eq. (2.30) is rewritten as

/2[/}( Wz)}dv /VPE'VT/‘WJF/VV'([T]";’)dV+/VV~(/Wt)dV.

v Dt 2
(2.34)
Then,
zi [p(e +W72)] —pF-W V- ([1]- W)+ V- (1Vr) (2.35)

where [1] denotes tensor of shear force.
Equation (2.35) is the energy equation.
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Through tensor and vector analysis, Eq. (2.35) can be further derived into the
following form:

D(pe)
Dt

=1 [+ V- (AV1) (2.36)

Equation (2.36) is another form of the energy equation. Here, [7] - [¢] is the scalar
quantity product of force tensor [t] and deformation rate tensor [¢], and represents
the work done by fluid deformation surface force. The physical significance of
Eq. (2.36) is that the internal energy increment of fluid with unit volume during the
unit time equals the sum of the work done by deformation surface force of fluid
with unit volume, [7] - [¢], and the heat entering the system.

The general Newtonian law is expressed as

1= 20l — (o + 27 - W] (237)

where [I] is unit tensor.
According to Eq. (2.37) the following equation can be obtained:

[l = ~pV - W =2 a(V - W) 4+ 200 (2.38)

Then, Eq. (2.36) can be rewritten as

D —

(D,O:) =—pV-W+D+V- (Vi) (2.39)
where @ = — % u(V - VT/)2 + 2/1[8}2 is viscous dissipation function, which is further
described as

Oy, o owy. 5 Ow,o  Ow,  Ow, o, Ow, Ow,,
O = pu{2 (=) 2(== Ny ) z
RGP +2AG 2G5+ G+ G G+ 5
BWZ Ow, 2 2. =
+( o aZ) g[dzv(W)] } (2.40)

Equation (2.6) can be rewritten as

With the above equation, Eq. (2.39) is changed into the following form:

[% +p %(%)] — O+ V- (AVi) (2:41)
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According to thermodynamics equation of fluid

D(ph) _ D(pe) D 1. Dp
= Z () + == 2.42
Dt Dt tre Dt (p) + Dt ( )

Equation (2.41) can be expressed as the following enthalpy form:

D(ph) _ Dp
=— 4+ - (4 2.4
D Dt +V - (AVr) (2.43)
or
D(pcyt) _ Dp
P Llpyv. 2.44
Do De +0+V - (AVi) (2.44)

where h = c,t, while ¢, is specific heat.
In Cartesian form, the energy Eq. (2.44) can be rewritten as

A(pept) d(pept) d(pept) I(pept)
ot L Ox Wy Oy W 0z
_Dp 0 0Ot g ,, 0t o, 0Ot

- Dt Ox 0z
For steady state and nearly constant pressure processes, the viscous dissipation
can be ignored, and then the Cartesian form of the energy equation (2.45) is
changed into

d(pcpt) o O(pept) e O(pept) _ 90 iat n o, 0, 0 iaz

" ox Y Oy © 0z Ox E) 3_y(3_y>+3_z 3_Z)
(2.46)

Above equation is usually approximately rewritten as

(cpt) (cpt) Acpt), 0O, 0t o ,, 0t o, 0t
Pl Ox Wy Oy W 0z 1= 8x( L5’)6)—’_ 8y( 3y)+ 0z (Aaz) (2.46a)

or

ot ot ot o ., 0t o ,. 0t o ., 0t
pcp[wxa_+wy + =

A& Ml 204 2.4
X Oy WZ@Z] 0x(A8x +8y Oy +0z Aaz) (2.46b)

In fact, in Eq. (2.46a) the temperature-dependent density is ignored, and in
(2.46b) both the temperature-dependent density and specific heat are ignored.
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2.4 Conservation Equations of Laminar Mixed
Convection Boundary Layer

2.4.1 Continuity Equation

Based on the Eq. (2.7), the steady state three-dimensional continuity equation is
given by

0 0 0
p (pwx) + ay (pwy) + o (pw:) = 0. (2.47)

While, the steady state two-dimensional continuity equation is given by

0 9]
o (pwx) + ay (pwy) =0 (2:48)

In Egs. (2.47) and (2.48) variable fluid density with temperature is considered.

Before the quantitative grade analysis on the above equations, it is necessary to
define its analytical standard. A normal quantitative grade is regarded as {1}, i.e.
unit quantity grade, a very small quantitative grade is regarded as {J}, even very
small quantitative grade is regarded as {6}, and so on. The ration of the quantities
is easily defined, and some examples of ratios are introduced as follows:

W 0 0 (b
= W= = e =

According to the theory of laminar free boundary layer, the quantities of the
velocity component w, and the coordinate x can be regarded as unity, i.e.
{w,} = {1} and {x} = {1}. However, the quantities of the velocity component w,
and the coordinate y should be regarded as 9, i.e. {w,} = {0} and {y} = {0}.

For the terms of Eq. (2.48) the following ratios of quantity grade are obtained:

{’E;”}*} = % = {1} and {%"} = % = {1}. Therefore both the two terms of Eq. (2.48)
should be kept, and Eq. (2.48) can be regarded as the continuity equation of the
steady state laminar two-dimensional boundary layers. Of course, Eq. (2.48) is also
suitable for the steady state two-dimensional boundary layers with laminar free

convection.

2.4.2 Momentum Equation (Navier-Stokes Equation)

According to Egs. (2.23a) and (2.24a), the momentum equations for steady
two-dimensional convection are
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(e Ow, L an)

P ax T 5y

Op 0, Ow, 0, 0wy Ow 02 0wy Ow,
N AN Y PPl ARl P e i)

R MU A LG i wl Rl M UG el e R O

(2.49)
awv awy
__a_p g 8wx % 2 % 8 2 ow, 8w)
(2.50)

According to the theory of boundary layer the quantity grade of the pressure
gradient 37 % can be regarded as unity, i.e. { 7} = {1}, but the quantity grade of the
pressure gradrent 5 is only regarded as very small quantity grade, i.e. { } = {6}.

The quantity grades of the terms of Egs. (2.49) and (2.50) are expressed as
follows respectively:

Owy Owy,  Op 0, Ow,
P T ) =~ T2 )

0. Ow, Ow, 02 0w, Owy

gy WG+ gDl = 5 GG + G+ s
(1 {1, {1}, o {1 {1}, o A1) {6}
Wik Hov gy =~ gy + G Gy
e dl} {9}
Gy ey T
(2.49a)

8w} 3w} _Op 0 awx Oow,
0, Owy, 02 0w, Ow
20 5 - 2 2G4 T g,
{o} {0}, _ {1} 1} {oy, {1} oy {0}
{1} {o}

{o }(m + @) +{1}{d}

(A} 7

_{
{o}
(2.50a)



2.4 Conservation Equations of Laminar Mixed Convection Boundary Layer 27

The quantity grades of Eqgs. (2.49a) and (2.50a) are simplified as follows
respectively:

Ow, 8wx7 dp 0, Owy
P T ) =~ T2a: )

0. Owy Ow, 02 0w, Ow

o G+ GO = B + G+ s,
{1 +{1h) = {1} +{0°} + {1} + {5°}
—({ +{*h) +{1}
(2.49b)
Oow, Owy,  Op O Owy  Owy
P(Wxg +Wya—y) = "o a[#( ay W)]

0 6w) o 2 Owx | Owy

{13({o} +{o}) = —{o} + ({0} + {53}) +1{9}

— {or({1} +{1})) + {3}
Observing the quantity grades in Eq. (2.49b) it is found that the terms
Ow, L 0wy
28 (%), and G Sl + G), and £ [Fu(Ge + %)) are very small

and can be ignored from Eq. (2.49). Then, Eq. (2.49) is simplified as follows:

(W%+W wa)_ 8p 8(8wx
P e T8 T T T oy ey

)+ Pgx (2.51)

Comparing the quantity grades of Eq. (2.49b) with those of Eq. (2.50b), it is
found that the quantity grades of Eq. (2.50b) are very small. Then, Eq. (2.50) can be
ignored, and only Eq. (2.51) is taken as the momentum equation of
two-dimensional boundary layer convection.

For consideration of the buoyancy term pg,, Eq. (2.51) actually the momentum
equation of free convection. If free convection is located on inclined plate the
gravity acceleration component g, is expressed as

gy =g coso (2.52)

where g is gravity acceleration and a is the inclined angle of the plate.
With Eq. (2.52), Eq. (2.51) is rewritten as

( %+ 8Wx>_ 8p+6<8wx
P e Ty T T oy My

)+ pg - cosa (2.53)
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Suppose the direction of g - cos « is reverse to that of the velocity component wy,
Eq. (2.53) can be rewritten as

ow, Owy,  Op O, Owy
p(WxE +Wy a—y) = a + 8—y(,u (9y ) pg - cos o (254)

Beyond the boundary layer, where the effects of viscosity can be ignored, the
momentum equation (2.54) is simplified into the following equation:

dp dwy oo

— === P8 " COS U+ P Wy oo ——
odx

o (2.55)

where p_, and w, ., are fluid density and velocity component beyond the boundary

layer.
With Eq. (2.55), Eq. (2.54) becomes

6Wx an 0 6Wx
p(Wy—— +wy—

awy
, =— - .00 : 2.

dx
For constant wy o, the Eq. (2.56) transforms to
Ow, Ow, 0 , Owy
—— —) = — - 2.57
plwx— =+, 8y) o (u o ) +8(ps — p) cos (2.57)

This is the momentum equation of two-dimensional boundary layer on an
inclined plate with laminar convection.
Equation (2.57) can be rewritten as

8wx awx o 6 awx

p(wxa erya—y) = 8_y('u B )+ glps, — p|cosa (2.57a)

In (2.57a), the absolute value of buoyancy factor |p,, — p| shows that the
buoyancy term g|p., — p|cos o has always positive sign no matter which one is
larger between p and p_.. In this case, the buoyancy term g|p,, — p|cos o and the
velocity component w, have same sign.

For the free convection of a perfect gas (ideal gas) the following simple power
law can be used:

’% = TL where T denotes absolute temperature. In fact, for general real gas, this

relation is also available. Therefore,

cos o (2.58)

T
— S = 7—1
|psc — plcosa p‘Too
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Thus, for the laminar free convection of a perfect gas, Eq. (2.57) can be changed
into
( ow, n 8wx) 0 ( wa) n T |
Wy—— +w = —_——
P Ox -y ay K ay &P Ty

cos o (2.59)

If the temperature difference |T,, — Two| is very small, which will lead to a very
small density difference |p., — p,,|, the Boussinesq approximation can be applied.
In this case, buoyancy factor in Eq. (2.57a) becomes |p,, — p| = pp|T — T, and
then, Eq. (2.57a) is changed to

o D0 O Oy
T Ox Y Oy 82

(2.57b)

2.4.3 Energy Equation

According to Eq. (2.46a), the energy equation for steady two-dimensional con-
vection is shown as follows:

o)\, i)y _ 0 o D o

Pl Ox Y 8y] ax( ox’ " By 8y> (2.60)

With the quantity grade analysis similar to that mentioned above, Eq. (2.60) can
be changed into the following form for energy equation of two-dimensional
boundary layer convection.

(cpt) ANept), 0 0t

Up to now it is the time to summarize the basic governing equations for
description of mass, momentum, and energy conservation of two-dimensional
boundary layers with laminar steady state mixed free and forced convection as
follows:

S () + 5 (pw) =0 (2.48)

Oow, Oow, 0 , Owy
Pl G, ) = - (4 g

g(ps — p)cosa (2.57)

Wa(cpt)+w O(cpt), O ,, 0t

plone =52 o, =2 = () 2.61)

with convection boundary condition equations



30 2 Theoretical Foundation on Conservation Equations of Laminar Mixed Convection

y=0:w,=0,w,=0,r=1, (2.62)
Y 00 I Wy = Wyeo, ! = Iso (2.63)

For rigorous solutions of the governing equations, the fluid
temperature-dependent properties, such as density p in mass equation and in
buoyancy factor of momentum equation, absolute viscosity u, specific heat c,, and
thermal conductivity A will be considered in the successive chapters of this book. In
addition, #, is plate temperature, ., is the fluid temperature beyond the boundary
layer, and w, ., denotes the fluid velocity component in x-direction beyond the
boundary layer. Here, the boundary conditions are the isothermal plate boundary
conditions.

It is known from the above governing equations and boundary conditions that
the laminar mixed convection with two-dimensional boundary layer belongs to
two-point boundary value problem.

2.5 Summary

Up to now the related governing partial differential conservation equations can be
summarized as follows:

2.5.1 Governing Partial Differential Conservation
Equations of Laminar Convection with Consideration
of Variable Physical Properties

Governing partial differential conservation equations in rectangular coordinate
system for laminar convection with consideration of variable physical properties are
Mass equation:

0 0 0
e (pwx) + ay (pwy) + P (pw:) =0

Momentum equation:

AL S CLL
Pax M 8ywy 0z ¢

_ _@ +2g (i ow, 0 . Ow, Ow, 0, 0wy Ow,
Ox Ox

o0 [g (8wx L Oowy L ow,
ox 3" ox Oy 0z

ax)+a_y[“(ay sl el U ml s )

)]+ pgx
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Pl Ox Wet Oy Wyt 0z w2)
op 0, 0w, Ow, g, 0w, Ow, 0, Ow,
= T 2= ) i it
oz T oo T g e T I 2 g
02 0w, Ow, Ow,
6Z[ (ax +6—y+ aZ)]+ng
Energy equation:
O(cp - 1) ey - 1) d,-t), 0, 00, 9,0 0,6 0t
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plw: Ox twy Ay W 0z } 8x(/18x)+8y(/{8y)+8z( 3Z)+
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D= ) X o) y 2 2\2 X Ty\2
R 2R 2 (G 5
n (awy Ow, o Ow, Owy,

2=
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2.5.2 Governing Partial Differential Equations of Laminar
Mixed Convection Boundary Layer

with Consideration of Variable Physical Properties

Governing partial differential equations in rectangular coordinate system

for two-dimensional laminar mixed convection boundary layer with consideration
of variable physical properties are

Mass equation:

0 0
Ox (pwx) + y (pwy) =0
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Momentum equation:

(W%—FW %)—2( %)4- |pse — p|cOS
plws e + w5 = g () +elpa =

Energy equation:

O(cpt) o ANept), _ 0 }@

plox Ox Y Oy ]_ay uﬁy)

Boundary conditions:
y=0:w,=0,w,=0,t=1,

Yy — 00 I Wy = Wyoo, I = I

2.5.3 Governing Partial Differential Equations of Laminar
Mixed Convection Boundary Layer for Boussinesq
Approximation

Governing partial differential equations in rectangular coordinate system
for two-dimensional laminar mixed convection boundary layer for Boussinesq
approximation are

Mass equation:

Ow,  Owy

Ox ady

=0

Momentum equation:

O O Oy
Y Ox YOy 0y?

)+ gB|IT — To| cos o

Energy equation:

ot o v &t

Mo Ty T Py

Boundary conditions:
y=0:w,=0,w, =0, =1,

Y= 00 I Wy = Wy, = Ing
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2.6 Remarks

In this chapter, the theoretical foundation of conservation equations on laminar
mixed convection are introduced. For this purpose, first, the conservation equations
of general laminar convection on continuity, momentum and energy are derived
with a series of theoretical and mathematical approaches. On this basis, the cor-
responding conservation equations of mass, momentum, and energy for laminar
mixed convection boundary layer are obtained by the quantity grade analysis. In
these derived conservation equations, variable physical properties are fully taken
into account. These equations are important theoretical foundation of the study for
this book.



Chapter 3
Our Innovative Similarity Transformation
Models of Convection Velocity Field

Abstract Our innovative similarity transformation models for in-depth research of
convection heat and mass transfer are presented in this Chapter. For demonstration
of the theoretical rationality on these similarity transformation models, the related
theoretical derivations are performed. For solving convection heat and mass transfer
issues, the boundary layer analysis method is always used. There could be different
similarity transformation models which are related to different study levels on
convection heat transfer. For example, Falkner-Skan transformation is currently still
popularly used to treat the similarity transformation of core similarity variables of
velocity field. In fact this type of transformation is inconvenient to do this core
work for similarity transformation of velocity field, because it is necessary to first
induce flow function and group theory to derive an intermediate function for an
indirect similarity transformation of the velocity field. This case also causes a
difficult situation on consideration of variable physical properties. However, our
innovative similarity transformation models are based on the laws of physics and
the analysis of convection partial differential equations. Thus, the above difficult
situation caused by derivation of the Falkner-Skan transformation model could be
resolved. Furthermore, with our innovative similarity transformation models, the
velocity components can be directly transformed to the related dimensionless
similarity ones. Then, the similarity analysis and transformation of the convection
governing partial differential equations can have obvious physical significance.
Moreover, our innovative similarity transformation models can conveniently treat
variable physical properties and their coupled effect on convection heat and mass
transfer for enhancement of the theoretical and practical value of the related study.

Keywords Free convection - Forced convection - Mixed convection - Innovative
similarity transformation models - Laws of physics - Analysis of convection partial
differential equations - Similarity variable - Falkner-Skan transformation - Flow
function - Group theory
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3.1 Introduction

3.1.1 Development Background of the Innovative Similarity
Transformation

Since Prandtl proposed his famous boundary layer theory [1], many complex issues
on convective hydrodynamics and heat and mass transfer could be solved more
conveniently. Meanwhile, the similar analysis method is usually used to transform
the dimensional physical variables into the dimensionless physical parameters, and
then the governing partial differential equations are transformed equivalently into
the governing ordinary ones. Since the transformed dimensionless parameter is the
group of the dimensional physical variables, the transformed governing ordinary
differential equations will be greatly simplified. This is the reason why the boundary
layer theory greatly accelerated the development of the research of convection heat
and mass transfer.

Actually, the transformation for velocity field is the core work for similarity
transformation of the governing partial differential equations. However, currently
popular Falkner-Skan transformation [2] is difficult to do this job, especially with
consideration of variable physical properties, because it is necessary to first induce
flow function and group theory to derive an intermediate function for an indirect
transformation of the velocity field. It is a complicated process, and allows a more
complicated issue for consideration of coupled effect of variable physical proper-
ties, which is necessary for assurance of practical value of theoretical study on
convection heat transfer. It is the reason that most of the related traditional theo-
retical research on convection heat and mass transfer by using the traditional
Falkner-Skan transformation did not consider or did not consider well the coupled
effect of variable physical properties. It leads to that a series of traditional related
researches lack practical application value on convection heat and mass transfer, for
a simple example, a lot of reported correlations on convection heat and mass
transfer application are empirical or semi-empirical obtained from experiment.
Therefore, a big challenge is to develop innovative similarity transformation for
enhancement of the practical application value of convection heat and mass
transfer. It is the background for development of the innovative similarity
transformation.

3.1.2 Successful Application of the Innovative Similarity
Transformation in Our In-depth Studies
on Convection Heat and Mass Transfer

The innovative similarity transformation for in-depth research on convection
hydrodynamics and heat and mass transfer is divided to two models. The first model
is for similarity transformation of governing partial differential equations of free
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convection [3], while the second model is for that of forced convection. In this
Chapter, we will give rigorous theoretical and mathematical derivation for
demonstration of their theoretical rationality. So far, the innovative similarity
transformation models have been applied in our investigation of convection
hydrodynamics and heat and mass transfer both without and with phase change, for
instance of the following topics [4—15]:

Free/forced convection;

Free film boiling convection;

Free/forced film condensation convection of pure vapour;
Free/forced film condensation convection of vapour-gas mixture;
Accelerating falling film flows of non-Newtonian power law fluids.

3.1.3 The Extended Application of the Innovative Similarity
Transformation in the International Academic
Community

The innovative similarity transformation has also got its wide application in the
international academic community, for example as below:

Studies applied our formulization equations on heat transfer coefficient of free
convection [5, 7] were applied in the studies [16, 17] for temperature distribution
assessment during radiofrequency ablation related to surgical medical treatment. It
is seen that even for the lead phantom close to the edges, for the maximal dis-
crepancy from their test data, a satisfactory agreement (2 %) was achieved. Our
formulization equations on heat transfer coefficient were just obtained by using the
present innovative similarity transformation.

Our innovative similarity transformation was applied for study on deposition of
SiO, nanoparticles in heat exchanger during combustion of biogas [18]. In this
study, our set of dimensionless similarity physical parameters with their formulae
including our innovative core similarity variables for similarity transformation of
velocity field [4] were applied for similarity transformation of the governing partial
differential equations of a laminar forced convection. Based on our innovative
similarity transformation, the governing ordinary differential equations were
obtained for numerical solution.

Ref. [19] successfully applied our heat transfer equations of free convection of
gas with consideration of variable physical properties [5, 6] for analytical and
experimental study on multiple fire sources in a kitchen. It follows that our for-
mulization equation of Nusselt number combined with the gaseous temperature
parameter has wide application value for evaluation of heat transfer with large
temperature differences. Our formulization equations on heat transfer coefficient
were just obtained by using the present innovative similarity transformation.
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The above examples also reflect that our innovative method has special theo-
retical and practical value and broad application prospects in more industrial
departments.

3.2 Basis Models of the Innovative Similarity
Transformation for Free Convection Boundary Layer

3.2.1 Physical and Mathematical Derivation
of the Similarity Transformation Model

To conduct the derivation of basis model of the innovative similarity transformation
of velocity field for free convection boundary layer, it is suitable to use simple and
typical governing partial differential equations of laminar free convection boundary
layer as below with consideration of variable physical properties:

0 0
o (W) + a—y(PW.v) =0 (3.1)
ow, Owy, 0, Ow,
plws— +W-Va_y) =% (1 ay)Jrg\Poo p|cosa (3.2)
ot ot o ., 0t
Pcp(wxa +wy8—y) = a—y(Aa—y) (3.3)

For derivation of the basis model of the innovative similarity transformation for
free convection, first, we assume the following form for expression of similarity
coordinate variable 7. Because 7 is a function of the coordinate variables x and y,
and then, it can be given as the following form:

y yl _
n= = _x ! (3.4)
Kx" xK
where K is undetermined coefficient, index n is a dimensionless exponent, and
factor £x"*! are dimensionless.

Now, we take a control volume with volume V in the boundary layer, and set the
fluid density in it for p and the fluid density in the fluid bulk for p.,. For steady
state, the kinetic energy %waz of the control volume is balanced to its potential
energy Vgx|p,, — p|coso caused by the buoyancy force, where a is the inclined

angle of the plate. Thus,
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1

2Gw§ = Vgx|p,, — p|cosa

where G is mass of the control volume, and can be expressed as G = p - V. Then,
the above equation is changed to

1
5P+ Vwi = Vexlpy = p| cosa

i.e.

w2

17 X

2gx"”‘°p—_‘0‘ cos o

Taking p,, to replace p, the above equation can be written as

2
A=—""r

2gx % cos o

where A is dimensionless variable. Then,

\/— _ Wy
Poc=Pw
Pw

2gx cos o

It is seen that the dimensionless variable v/A depends on the velocity component
w, and the coordinate variable x. It means that it can be regarded as the repre-
sentative of the velocity component w,. Then, it is reasonable to assume a
dimensionless variable W, as the representative of the dimensionless variable VA
for description of the velocity component w,, i.e.

W, = W (3.5)

Px=Pw
Pw

COS o

2gx‘

where W, is defined as the similarity velocity component W,, dependent on velocity

Poo—Pw

Obviously, W, is ideal similarity variable theoretically related to the velocity
component wy.

component w,, coordinate variable x, and buoyancy force factor cos .
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Now, let us derive the expression of the similarity variable W, related to velocity
component wy,:Consulting Eq. (3.5), we can reasoning that W, depends on the factor

2gx

Poc—Py
Do

w

) cos o too. Then, we can set the following form to describe the velocity

wy = \/ng

where W, is dimensionless variable, B is a coefficient, exponent p is dimensionless
undetermined exponent, and factor Bx” should be dimensionless.

The next work is to investigate the coefficient B and indexes p and n of Egs. (3.4)
and (3.6) by analysis of the momentum Eq. (3.2):

From Eq. (3.4), we have

component wy;:

Poo — Pw

w

cosa - B’ - W, (3.6)

@ =-n Y —m1)c’l
Ox Kxn+1
From Eq. (3.5), we have
awx 1 _1 poo_pw L poo_pw 1 dWx 1
=—x2 o|l—— % 2. W, Dox|2 =W so)? - —
o 3" lefi( g‘ - cosa)? - Wy + left(2gx - cos o) i left(—nnx™")
| Poc — Pw 1 Poc — Pw 1 sz\ 1
— 2 2 L W < 2. . 2 I W 2. — _
5% ( g‘ o cosa)? - W, + (2gx - cos o) a ( nx)
While,
@ — @% — %(—nnx_l)
Ox Onox On
From Eq. (3.6), we have
0 — Py 1 aw, o
Wy _ (zgx‘poopw cos o)t - g M
Oy Py dn Oy
Since
on 1

8_y Kx"’
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Owy 8wydn
dy  Ondy
aw, 1
= ngoc Pul cos o - B +1 422
o dn Kx"
— gtpn(g|Poe T Puw L g1
X ( g' - cos o)) dn K

and

Op _ 0pdn _ 0Op 1
By — Ondy  onKx
ou __ Ou Or] o 1
dy — Ondy  OnKx"

With Eq. (3.5) we have

Oy 2gx(P2 —Pul o o W0 2gu|Poe =Pl oy Mr 1
= X |— — = X So——
dy Sy dn Oy Sy dn Kx'
Then,
Pw o 1 d*w,
X — 2 o0 w X
2 \/ 8 ‘ N cosa K22 dn?
Equation (3.2) is changed to
8Wx + an 8,” an + azwx + | |COS o (3 Za)
Wy —— w =— o — .
With above equations, we further have
pPWy i;w = p4[28x P ™ —Pul o5 och[lx’%(Zg‘pmpTu Pl cos oc)% - W+ (2gx Poo ;/Jw cos cx)é d;’;x (—nn %)]
= px%Zg‘px/:w Pl cos o) Wy [7 HWoxt d;’;,( (—nn)]
Owy Poc — P P — P dw, 1
= Doyl W - BX*W. 2 7’ Tw
pWy By p\/ gx o cos o y\/ gx - cos o dn Ko
— o — dw, 1
= pxl_n+p Zg‘u CcoS o - BWy 2g‘M CcosS —
Pw Pw dn K
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Oudw, _ Ou 1 Poo — P
— =——/2gx|—/————
dy 9y  OnKx" Puw

ou 1 - dw, 1
_ gL [ 1o = ol o AW L
onK Oy dn K
Pw, Do — P 1 d*w,
X _ 2 o) w X
2
_ a2 2 Poo — Pw Ld Wi
Ux gx v COS 025 e
Then, Eq. (3.2a) is changed to
1 aw,
p)ﬂlZg‘pOo Pl cos )Wiox 3 (W +x77 - (—nn)]
W 2 dn
Poo — Pw Poo — Pw dw; 1
+ pxttP Zg‘ cos o - BW, Zg‘ cos o
P ’ w dn K

_ mon 1 2 Poo — Py cosocdwxl
onkK w dn K
d2
+m%‘2”\/2gx Poo pr COS 0 25 dr]zx +8lps — plcosa

i.e.

dw, 1
COS ol ———

B Poo — Pw
— -BW, [ 2g|—
0 cose y\/ g’ dn K

:x%—Zn@l 2g Poo — Pw
onK Py

P — Pw

w

e [2gx

R 8l — pleosa

We compare the exponent of coordinate x among the terms of the above
equation, and have the following equations:
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1-n+p=0
1

The solutions of the above set of equations are n = % and p = —

Then, the similarity coordinate variable is expressed as

N[N

y y vyl 3

A

T K KxA T XK

n

Since factor +x** should be dimensional and contains x*/*, and then, we can

induce the local Grashof number

g pr’ﬂw 3 cos
Gryo = T (3.7)
and reasonably set
1 1
Kx3/4 _ (Z er,oc)l/4

for coincidence of the exponent of the coordinate variable x. Then, we have

y 1 1/4
=2 (=Gryno 3.8
n="(;0r) (3.8)

It is the expression of the similarity coordinate variable to equivalently represent
the coordinate variables x and y.
With p = — %, we further have

wy = \/ng

—3/4

Poo — Pw

_3
coso - Bx 3W,
P

contains x /4, Then, we can induce the local
—3/4

Here, dimensionless factor Bx

Grashof number again as Eq. (3.7), and then, the factor Bx is reasonably set as

1
Bx /4 = (4_1 er,m)71/4

wy, = \/ng

Then,

Poo — Pw
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i.e.
, 1
W, = W G Gryoo)'/* (3.9)
2gx|? xpf” u| cos o

Here, W, is defined as the similarity velocity component corresponding to velocity
component wy,.

For summery, the derived similarity variables of velocity field of laminar free
convection are

W, = i (3.5)
2gx p“p;p‘ cos o
1

Wy = = (5 Gree) (3.9)

ng‘“p—W’ cos o

with the related coordinate similarity variable
n=2C6ra) (3.8)
x4 7

where the local Grashof number Gr, o, is induced as

g|r==22] 33 cos

B P

Gryow=—"—"75—— (3.7)
VOO

In addition, a similarity temperature is induced as

P (3.10)

Ly — o

for transformation of temperature variable z.

3.2.2 An Application Example of the Innovative Similarity
Transformation

Equations (3.1)—(3.3) can be taken as the most typical and simple governing partial
differential equations of laminar free convection for an application example of the
innovative similarity transformation.
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By using the above Egs. (3.5), (3.7)-(3.10), governing partial differential
equations of laminar free convection, Egs. (3.1)—(3.3) are equivalently transformed
into the following related ordinary differential equations respectively:

dw, — dw, 1dp

W, — 4% Ly aw) —o 3.11
dn dn pdn( 2 -1
v dw AW,  d*W, ldpdW, v==—1
= (w, (2w, — x AL P A e A 3.12
y (W 2W, ndn)+ ydn) d172+Md'1d’7 vie—1 12
Voo do  1dirdo d*o
Pr=2(—yW, +4W,) — = -~ + — 3.13
3 (=Wt y)dn )Ldndn_'—dn2 (3.13)

It is indicated that the related transformation processes are omitted for saving
space. Readers interested in the related transformation process can refer to ref. [5].

3.3 Basis Models of the Innovative Similarity
Transformation for Forced Convection Boundary
Layer

3.3.1 Physical and Mathematical Derivation
of the Similarity Transformation Model

To conduct the derivation of basis models of the innovative similarity transfor-
mation for forced convection boundary layer, it is suitable to use typical governing
partial differential equations of laminar forced convection boundary layer as below
with consideration of variable physical properties:

5w+ 5 (o) =0 (3.14)

(W%+W%)__ld_p+2( Owx
UG Yoyl pdx 8y#8y

) (3.15)

1dp _ Wy 00

pdv = Wroo gy (Now, Wy is supposed as constant)

ot ot g, 0t
pep(Wag +Wy6_y) = 8_y(A8_y) (3.16)

According to the boundary layer theory, the velocity component w, can be
regarded to have a quantitative grade equivalent to that of the main stream velocity
Wy.oo» 1.€.
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Wy OC Wy oo

Wx.oo
x

Again, According to the boundary layer theory, the ratio
have a quantitative grade equivalent to the ratio %, ie.

can be regarded to

Wy 00 Wyoo * Y

Wy
X —= Or Wy X
b y X

With above equations, the momentum Eq. (3.15) can be approximately expressed as

Wx,oo Wx,oo WX,OC
Wy 00 + *Wyoo X Voo =5
X y
Then, we have
2 Voo ' X Voo - X
V- x or y x
Wy, 00 Wy, 0
Inducing the local Reynolds number
Wy.0oX
Rey g — Moo (3.17)
Voo

we will have

Inducing an undetermined similarity coordinate variable #, the above equation
becomes

or
1
=2 (Re)'"? (3.18)

It is seen that the induced similarity dimensionless coordinate variable # depends
on the coordinate variables x and y, and then, and then, # is defined as a similarity
coordinate variable. On this basis, we will focus on derivation for core similarity
variables of velocity field as below:

First, set W, and W, to be the core similarity variables to respectively represent
velocity components wy and w,. Since the velocity component w, can be regarded
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to have a quantitative grade equivalent to that of the main stream velocity w, ., we
have

Wy OC Wy oo

Inducing the local Reynolds number of Eq. (3.17), the velocity component w,
can be regarded as

1
Wy OX Wy oo - (ERexﬁoo)p

where p is undetermined dimensionless exponent.
Inducing dimensionless variable C, the above formula is expressed as an

equation
1 P
= CWyoo | 7Rex
w Wy, (2 €x, )

or

w 1 7
c=—. ~Rey «
Wioo \2
where dimensionless variable C is function of the velocity component w,, and then,

can be regarded as similarity variable for it. Then, C can be replaced by the assumed
similarity velocity component W,, and the above equation becomes

W L) (3.19)

W:
* Wyoo 2

Consulting Eq. (3.18), we can set another similarity variable W, to describe the
velocity component w, as below:

1 _
M (CRexe) (3.20)

Wv =
Y Wyoo 2

The following work is to determine the constants p and gq.
From Eqgs. (3.14) we have

817 1 -3/2 lwx,oo 1/2
a2 )
o 1 1y lWx,oox 1/2
=3¢ 1G5
1
:—E_x_ln
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61’] 1,1 1/2
—=—-(zR X,00
ady x(2 exoc)

Owy  O[Wy - Wy - (Revoo )]

Ox ox

1 o dw 1
= Wxo0 'p(ERexﬁOO)p l(i%)wxm) + Wy oo *ReX,OC)
o0

pdWx(n) On
dn  Ox

dW,(n) 1
P X o 1
a ( 5% ")

Iwy oox
2 vy

1 I W ox
)p 1(7 )
2

1
) ’ Wx(”) + Wy oo (ERex,oo)
1 1 aw, 1
= x71Wx~oo p(GRexso) - Wi(n) JFW.r,OO(_Rex‘OO)p d’CJ;n) (= Exiln)

2 2
» AW, (1)

_ 1 1 _ 1
=X lwxoo ’p(iRexm)p - We(n) — Ex 177 : Wx,OO(ERex,OO) dn

= xilwx‘oc p(
o

Then,

Owy 1 1 dWx(n)]

" P
a. — _Rxoo  Wx,o0 'Wx - A
e = GRec ) el Wiln) —5n

With Eq. (3.19) we have

owy OWx 00 (% Rey oo ' W,y

dy dy

awin) 11
dn  x2
dW(n)

X,00 d17

RexA,oo )pr,oo Rexﬁoo) 12

:(E

=- (—Remc)ij 12y,

FPw, 1

1
0y? 7x(§Rex"°°
11
=G
11
)

AR dy
PW(n) 11
Rxoo p+l/2 xooil’f -
eroc) e =7 15
d*W(n)
dn?

)p+l/2w dex(’?) (911

Re/nm ) 1/2

p+1
Rex,oo) Wx,oo

@:d_ﬂ.@:l(llge )I/Zd_“
dy dn 9y x2 % dpy

Then, the momentum Eq. (3.12) is transformed to
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: 1l L _dw,
oo (5 Rexoo ) Wik (G Rewoc ) - Woolp - Waln) =51 dn(n)
: L AW, (n)
*,00 5 R X,00 qW’_ =R voop+1/2 xoo;
+ PWoo (G Rexoo) Wy — (GReco ) P, -
:l(lRe )l/2d_'u.l(lRe )p-H/zW dW.(n)
x 20 dn x2 X,00 X,00 dn
11 d2W (’7)
+ iuxz (2 ex,oo) W00 d172
ie.
! 1 aw,
e R VW™ il W) = Ty
! AW, (n)
e oo(= R q+p+1/2 Z Wy X
+ pw (2 €r.00) W)xw-, in
ldp (lR s dW,(n)
x2d11 o X,00 dn
11 dZW (17)
— (= p+1 x
+'ux2 (2R XOO) X,00 d}’]z

Comparing the exponents of x in different term, we find

2p—1=p—1
1
prtq+-=p—-1
2
The solution of the above two equations are p = 0 and g = — %

In this case, Egs. (3.19) and (3.20) become
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(3.21)

(3.22)

For summery, the derived similarity variables of velocity field of laminar forced

convection boundary layer are

Wx
W, =
Wx,00
wy 1

(3.21)

(3.22)
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with the related similarity coordinate variable

y 1 1/2
=72 (=Rey 3.18
n=">(;Resx) (3.18)

where the Reynolds number Re, o, is induced as

_ WyooX

Reyoo = 3.17
ero =222 (.17)
In addition, a similarity temperature variable is induced as
t—1
0= x 3.10
Pa— (3.10)

for transformation of temperature variable .

3.3.2 An Application Example of the Innovative Similarity
Transformation Model

Equations (3.14)—(3.16) can be taken as the most typical governing partial differ-
ential equations of laminar forced convection for the application example of the
innovative similarity transformation.

By using the above Egs. (3.10), (3.17), (3.18), (3.21) and (3.22), the governing
partial differential equations of laminar forced convection, Eqgs. (3.14)—(3.16) are
equivalently transformed into the following ordinary differential equations
respectively:

, 1
ndWx(n) . L dWy(n) | Ldp

N dn + ;d—n[—n W(n) +2W,(n)] = 0 (3.23)

%’O (=nWi(n) +2Wy(n)) dvﬁ;fn) -4 Z;xz(") %Z_/;d_VZx;n) (3.24)
Voo 2 )

Pr==[(=nW(n) +2W,(n)) dfl;")] = dd(i](f) igjqdfz(:) (3.25)

It is indicated that the detailed transformation processes for the governing
ordinary differential equations of laminar forced convection are omitted for saving
space. The readers interested in the detailed processes can refer to [4].

Through the above theoretical derivations, we have obtained all of similarity
variables both for free and forced convection. These similarity variables constitute
the main body of the innovative similarity transformation models. So far, combined
with the novel models of variable physical properties, the innovative similarity
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transformation models have been used in our series of extensive studies on con-
vection heat and mass transfer [4—15], and accepted by the international scientists
for their different fields of study, such as [16—-19] and more. While, the innovative
similarity transformation model of velocity field on forced convection will be
further applied for extensive study of this present on mixed convection heat
transfer.

3.4 Remarks

For solving convection governing partial differential equations, the similarity
transformation approach is usually performed. Meanwhile, some dimensionless
similarity variables (or parameters) are formed, which as the groups of the
dimensional physical variables reduce the number of the independent variables so
that simplifies the mathematical description of the physical phenomena. Then, these
similarity variables (or parameters) will simplify the convection governing partial
differential equations for getting the solutions more easily. These innovative sim-
ilarity transformation models were developed for in-depth research on convection
hydrodynamics and heat and mass transfer both without and with phase change, and
will be further applied for extensive study in this book on mixed convection heat
transfer.

Currently popular Fakner-Skan transformation on convection heat transfer has
some inconvenience for similarity transformation of the core variables of velocity
field. By using this transformation, it is necessary to first induce flow function and
group theory to derive an intermediate function for an indirect similarity transfor-
mation of the velocity field. It is a complicated process and also causes difficult
consideration of variable physical properties, and then confines the theoretical and
practical value of research results on convection heat and mass transfer.

Compared the Falkner-Skan transformation, a big advantage of our innovative
similarity transformation models lie that the velocity variables can be directly
transformed to the corresponding similarity velocity variables. Then, all inconve-
nient issues caused by using Falkner-Skan transformation can be avoided. In
addition, our innovative similarity transformation can transform the variable
physical properties into the physical property factors, organically combined with
the transformed governing ordinary differential equations for convenience of
treatment of variable physical properties and getting solution, so that it will be
possible to focus on investigation of more and more complicated and difficult issues
on convection heat and mass transfer.
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Part 11

Hydrodynamics and Heat Transfer
with Consideration of Boussinesq
Approximation



Chapter 4

Pseudo-Similarity Transformation
of Governing Partial Differential
Equations

Abstract With our innovative similarity transformation model on forced convec-
tion, the advanced governing ordinary differential equations of laminar mixed
convection are obtained from the related governing partial differential equations by
using a pseudo-similarity transformation. Here, it contains the following research
investigations: (i) pseudo-similarity analysis and transformation based on our
innovative similarity transformation replacing the traditional Falkner-Skan type
transformation; (ii) delivery of new governing pseudo-similarity mathematical
model, which is first applied in study of laminar mixed convection. This new model
can be more conveniently applied compared with that based on the Falkner-Skan
type transformation for investigation of hydrodynamics and heat transfer of mixed
convection.

Keywords Pseudo-similarity transformation - Similarity transformation vari-
ables - Governing similarity model - Mixed convection parameter - Boussinesq
approximation

4.1 Introduction

The presentation of this book for laminar free and forced mixed convection (For
short, hereinafter referred to as mixed convection) hydrodynamics and heat transfer
is divided to two parts, which are respectively with consideration of variable
physical properties and Boussinesq approximation. In this Part of the book, the
presentation will focus on hydrodynamics and heat transfer with Boussinesq
approximation. In this Chapter, we will present the related process of transforma-
tion of the governing partial differential equations to their ordinary ones. In the
successive chapters of this part, we will continue to present the related hydrody-
namics and heat transfer issues.

© Springer International Publishing Switzerland 2016 55
D.-Y. Shang and L.-C. Zhong, Heat Transfer of Laminar Mixed Convection
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4.2 Governing Partial Differential Equations

In Fig. 4.1 the physical model and co-ordinate system of boundary layer with
two-dimensional mixed convection are shown schematically. A flat plate is verti-
cally located in parallel fluid flow with its main stream velocity wy .. The plate
surface temperature is #,, and the fluid bulk temperature is ¢.,. Then, a coupled
velocity boundary layer is formed near the plate. According to Chap. 2, governing
partial differential Eqs. (4.1)-(4.3) can express the laminar mixed convection
boundary layer with Boussinesq approximation and without viscous thermal
dissipation:

0 0
3_)C(Wx)+ a_y(wy) 0 (4.1)
N owy 0“Wy
Wx p) + wy 9 f 2 +gﬁ(t toc) (42>

with the boundary condition equations
y=0: w,=0,w,=0,1=1, (4.4)
Y00 Wy =Wy, I =1l (4.5)

where Eqgs. (4.1)-(4.3) are continuity, momentum, and energy equations respec-
tively, and the subscript f denotes that the related reference temperature is the
average temperature fy = “~= It shows that so-called combined free and forced

convection is formed by the interaction between free and forced convections.

Fig. 4.1 Physical model and
coordinate system of
boundary layer for laminar t w

3 i W\< X,00
mixed convection on a ’

vertical flat plate
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4.3 Similarity Variables for Pseudo-Similarity
Transformation

As a partial-similarity issue, the governing partial differential equations of laminar
mixed convection do not meet the full similarity. However, according to our studies
in [1, 2], the heat transfer coefficient calculated by using partial-similarity trans-
formation is very coincident to that evaluated by using pseudo-similarity trans-
formation for Newtonian fluid. Therefore, the pseudo-similarity transformation is
here used for transformation of the governing partial differential equations of
laminar mixed convection. It is seen from the governing partial differential equa-
tions (4.1)-(4.5) that the boundary condition Eqgs. (4.4) and (4.5) belong to the
forced convection boundary conditions, and the conservation Egs. (4.1)—(4.3)
belong to the free convection boundary layer ones. In this case, the core similarity
variables for similarity transformation of velocity field should be formation of
forced convection in order for coincidence with the boundary conditions.
Consulting the innovative similarity transformation proposed in [3] and Chap. 3 for
forced convection boundary layer equations, the core similarity variables and their
formulae are induced as below:

For pseudo-similarity transformation of the velocity components w, and w,, the
following forced convection similarity velocity component W,(n) and W,(y) are
induced

Wy = Wy 0o Wi (1) (4.6)
1 _
Wy = Wx oo (EReX,f) I/ZWI)’(']) (47)

Here, W,(n) and W,(y) are core similarity variables denoting the similarity
transformation of velocity field, namely similarity velocity variables. It is expected
that the core similarity variables W,(n,x) and W,(n,x) will dominate the trans-
formed governing ordinary differential equations, while w, and w, are velocity
components in x and y directions respectively.

The similarity coordinate variable #, the local Reynolds number Re,; and local
mixed convection parameter Mc, s with consideration of Boussinesq approximation
are respectively induced as

Rexf = (48)

Y 2

In addition, for the local-similarity analysis of the buoyancy term, with con-
sideration of Boussinesq approximation, the local Grashof number will be set as
follow:
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. 3
Grop = 8Blty = o) > foo ) (4.10)

Vs

With consideration of Boussinesq approximation, local mixed convection
parameter for consideration of variable physical properties is set up as

Mcys = GrogRe} (4.11)

The similarity temperature variable 0(,x) is induced as

t—ty

0(n,x) = (4.12)

twftoo

4.4 Performance of the Pseudo-Similarity Transformation

For similarity analysis on the supposed dimensionless coordinate variable # for the
governing partial differential Egs. (4.1)-(4.3) of combined laminar free and forced
convection, the following transformation will be done.

4.4.1 Transformation of Eq. (4.1)

With Egs. (4.6), (4.8) and (4.9) we have

OW.(17) On

ax = el an o

ow,

where
87’] 1 1 WX,OC 1/2 73/2 1 1
5__5))(57) X ——E’IX
Then,
owy lw - oW, (n)
x 2 Gl on

With Egs. (4.7)-(4.9) we have
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8Wy 1 _1/2(8Wy(7’]) @

By — G Re) TG )

where

i.e.

Then, Eq. (4.1) is transformed to

1 -1 OWx(n)

- E Wy, 00X 811 + Wy 00

i.e.

4.4.2 Transformation of Eq. (4.2)

With Egs. (4.6) and (4.9) we have

Owy OW,(n) On oW (n) (1 i
pr— —_— = —R

Oy Weol on ay] Wroo on o\t

Prwe_ - PWn) (1, ' on

o T o2 27 ) oy

PW(n) (1
= Wyoo i X Z(ERexf)

Then, Eq. (4.2) is changed to

59

(4.13)
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L OWin)

Wy 00 Wx(n) [_ 5 Wy,0o1X (917 ]

1 ~1/2 oW, 1 1/2
+ Wy oo (E Rexf> W)’(’/’)Wx‘oo ixfl (_ Rex,f)

on 2
PW.(n) (1
a;ﬂ(n)x Z(ERex,f) + 8Bt — 1)

= VfWxoo

The above equation should be

1 —1 an(’/l)
Wxﬁoon(”I)[_EWx,ocnx an ]
OWx(n) _
+ W 0o Wy (11, X)Wy 00 o X!

82Wx(17) e
= VWi oo 8—112)6 (ERexf) +gf(t —ts)

The above equation is divided by Jx'w?

X,00°

and changed to

OW,(n) OW,(n) PWe(n) 1

W=, 1 200 =5 5 = w5 )+ 28— 1)

The above equation is changed equivalently to

OW,(n)

Wx(n)(—na—”) +2Wy (1)

OW,(n) _ PWiln) gl — 1) F
= +2 5 SR
w X

2
on on Vi oo

The above equation is further equivalently changed to

oW, (1) aw,(n) W) = 11—ty gB(ty — )X 5
Wx(n)< n an >+2W,(11) - op +tw—toc2 V; Re, ;

i.e.

oW, PW, _
Wx(n)<—n o >+2Wy(n) an(n): 6n2(")+29(n).erfR€xf

or

OWy(n) _ O*W(n)
on on?

[=nWi(nn) +2Wy(n)] +20(n) - Mexy (4.14)
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where
Mcyy = Gry ,fRe;;

is Richardson number or here called local mixed convection parameter with con-
sideration of Boussinesq approximation. It demonstrates the effective rate of the
free convection in the mixed convection. Theoretically, the value for the mixed
convection parameter Mc,y can be in a large range —oo<Mc,s < +o00o. The
free/forced mixed convection can be divided to three types, respectively for
Mc > O(adding flow), Mc,y = O (forced convection) and Mc, s <0 (opposing flow).

In this sense, forced convection can be regarded a special case of free and forced
convection.

4.4.3 Transformation of Eq. (4.3)

With Eq. (4.11) we have

Therefore,

With Eq. (4.11) we have

N [ L
dy " o oy
Therefore,
or 0(n) ;1 12
oy (tyw — 10) o X (2Rex )
ot 1 90 (n
3_)12_x 2(§Rex,f)<lw to) 317(2)

Then, Eq. (4.3) is changed to
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1 190(n)

Wx,ocWX(n) (tw - too)[_ 5’136 T"I]

1 _ 00 1,1
+Wx‘oo(§Rex,f) 1/2Wy(’1)(tw - too)#x 1(§Rex.f)1/2

B Prf

1
S (5 Rewg) (1)

i.e.

Vi 2 AWy
= —)w — o) (5
Pr " ( " )( ) o

The above equation is divided by x'w, o (f,, — £ ), and transformed to

Wi(n)[—n ag(:)] +2W,(17)

0(n) _ 1 &*0(n)
o Prp O

or

a0(n) _ 1 8°0(n)

[=nWeln) +2W(m)] =5, = = Pr, on

(4.15)

Then, for the similarity analysis, Eqs. (4.1)—(4.3) are transformed to the fol-
lowing equivalent governing dimensionless differential equations:

W,
. ()

on on

=0 (4.13)

OW.(n) _ *W(n)
on On?

[=nWx(nn) +2Wy(n)] +20(n) - Mexy (4.14)

d0(n) _ 1 2*0(n)
o Prp O

[—nWa(n) +2W,(n, x)] (4.15)

with the following dimensionless equations on the boundary layer conditions:

n=0: Win) =0, Wy(n) =0, 0(n) =1 (4.16)
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n—00: Wx('/l) =1, 6(’7) =0 (417)

4.5 Rewriting the Governing Ordinary Differential
Equations

From the defined equation of the mixed convection parameter, it is seen that the
independent coordinate variable x is included in local mixed convection parameter
Mc,y. Then, the local mixed parameter Mc, is reasonably taken as the second
independent coordinate variable. In this case, the governing partial differential
Eqgs. (4.13)—(4.15) are equivalently become the following rewriting governing
partial differential equations respectively

. an(”/, Mcx.f) ) awy(”h Mcx.f)

M o

=0 (4.13x)

OWy(n, Mc.y)
on

+20(n, Mcyy) - Mcy g (4.14%)

[7WWX(177MCXJ') + 2Wy(’73Mfo)}
_ *Wi(n, Mc.y)
= 78112

ae(ﬂ,Mfo) Lazg(l’],MCx]f)

— Wi, Mexy) + 2W,y (0, Mcy =
[=nWa(n, Mcys) +2Wy(n, Mcy )] o T

(4.15%)

with the following equivalent dimensionless equations on the boundary conditions
n= 0: Wx(naMCx.f) = 0, Wv(”/aMCx,f) = 07 0(’77Mcxf) =1 (416*)
n—o0: We(n,Mcy) =1, 0(n,Mc,y) =0 (4.17%)

In this case, Egs. (4.6), (4.7) and (4.12) should be equivalently rewritten as
below respectively:

Wy = Wy 0o Wy (17, Mcyr) (4.6%)
- 1 ~12
Wy = Wx,w(EReJaf) Wy (1, Mcy) (4.7%)
t—to
0(n,Mcf) = (4.12x)

ty — I
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4.6 Summary

It is the time to summarize the governing similarity equations of combined free and
forced convection with Boussinesq approximation in Table 4.1.

Table 4.1 Summary of the governing differential equations of laminar mixed convection
boundary layer with consideration of Boussinesq approximation

Term

| Equation

Governing partial differential equations

Mass equation

Owy 3W\
o T =0

Momentum equation

e G +wy%”$ = v 5 4 gt — 1]

Energy equation

Boundary conditions

y=0: w,=0, w,=0,1=1,
Yy — 001 Wy = Wyoo, =1y

Induced similarity variables

Core similarity variable
W.(n)

Wx = Wx oo Wx(”l)

Core similarity variable
W(n)

Wy = Wy o (%Rex,f)_l/zvvy(n)

Dirpensionless coordinate n="2 (% Re f)1/2
variable

Local Reynolds number Reys = w*v'fx

Rex f

Local Grashof number Gr, ¢ Gryy = 8Bty —1:0)x°

0

Local mixed convection
parameter Mc, s

Mcyy = Gry fRe;f

Dimensionless temperature
0(n)

t—t
ty—loo

0(n) =

Governing ordinary differential equations

Mass equation —p ) OW (11) I RdiAv)] BW ('1) -0

Momentum equation (W, (,1) +2W, ( )] 8’7( n _ 32[‘;’_”(2(”) +20(y) - Mcyy

Energy equation [—nW. (i) +2W, ()] 2% 09(’7 plrf 6236;1(2'7)

Boundary conditions n=0: Wy =0, Wy( )=0, 0(n) =
n—oo: Win) =1 0(n)=0

Equivalent governing ordinary differential equations

Mass equation

-n Wy (Y[ML“/) +2

oWy ()1 Mcey)
o =0

(continued)
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Table 4.1 (continued)
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Term

Equation

Momentum equation

an(naMfo)

[—nW.(n, Meyg) +2W, (0, Me. )] o

_ 32Wx(ﬂ7MCx/)

n?
90(n,Mcyz) 1 9*0(nMc.y)

[_an(Vlv Mcx,/) + 2Wv(rla MCXJ')] on = E o

y= 0: Wx(rl7MC)C,f) = 07 Wy(ﬂvMfo) = 0’ O(H’MCx’f) =1
y =001 Wi(n,Mey) =1, 0(n, Meyy) =0
Wy = prch(ﬂv MCX,f)

+260 (11, McXJ-) - Mcys

Energy equation

Boundary conditions

Core similarity variable
Wx(”aMfo)

Core similarity variable
Wx(”? M. fo)
Dimensionless coordinate
variable

Local Reynolds number Rey; = 2=t
RL’X:/'

Local Grashof number Gryy = gl}(tw:rx)Jr3

erf f

Local mixed convection
parameter Mc, s

Mcyy = Gry fRe;f

Dimensionless temperature
0(7]7 Mcx,f)

0("7Mcxf) =Lk

ty—lx

4.7 Remarks

The governing similarity models of laminar mixed convection with consideration of
Boussinesq approximation are obtained in this Chapter by using the innovative
similarity transformation model for velocity field on forced convection. Meanwhile,
a pseudo-similarity transformation is performed for the transformation. Although
the governing partial differential equations of mixed convection do not meet the
complete similarity transformation, based on our previous studies on Newtonian
fluid’s convection heat transfer, the convection heat transfer coefficient calculated
by using pseudo-similarity transformation is very coincident to that evaluated by
using partial-similarity transformation.

For description of the characteristics of forced convection, except Grashof
number, all proposed similarity variables are based on treatment of the similarity
analysis of forced convection. While, for treatment of the characteristics of free
convection, the Grashof number is induced.

The velocity components are described by the related similarity velocity vari-
ables W, and W,, which have definite physical meanings.



66 4 Pseudo-Similarity Transformation of Governing Partial Differential ...

In this Chapter, our work focuses on constitution of similarity mathematical
models of laminar mixed convection. The derived similarity mathematical models
are simple in form and can be conveniently used for investigation of hydrodynamics
and heat transfer of mixed convection with Boussinesq approximation.
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Chapter 5
Hydrodynamics

Abstract In Chap. 4, the complete governing partial differential equations of
laminar mixed convection were transformed equivalently to the corresponding
similarity governing partial differential ones, where the Boussinesq approximation
is considered. On this basis, in this Chapter, the similarity governing partial dif-
ferential equations with the boundary conditions will be solved in the wide range of
averages Prandtl number and local mixed convection parameter with consideration
of Boussinesq approximation. Moreover, the velocity fields and Skin-friction
coefficient will be analyzed and calculated numerically.

Keywords Similarity velocity variables - Similarity governing model
Boussinesq approximation - Mixed convection - Mixed convection parameter -
Numerical solutions - Skin-friction coefficient -+ Wall similarity velocity gradient

5.1 Similarity Governing Partial Differential Equations

In Fig. 5.1 the physical model and co-ordinate system of boundary layer with
two-dimensional combined laminar free and forced mixed convection are shown
schematically. A flat plate is vertically located in parallel fluid flow with its main
stream velocity wy .. The plate surface temperature is f,, and the fluid bulk tem-
perature is ¢,. Then, a velocity boundary layer will occur near the plate. According
to Chap. 4, governing partial differential equations of the laminar mixed convection
boundary layer with Boussinesq approximation are as follows:

LIS EAUSEL (@.1)

wx% Wy aa”;x _— a;yvzx Fgflt — 1) (4.2)
wx%+wyg—;:Pv—f’;§—; (4.3)
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Fig. 5.1 Physical model and

. AX
coordinate system of
boundary layer for combined t, w,
laminar free and forced \4 ’
convection on a vertical flat 4
late
P f
too
Wx
W.’C,OO
0 > Y
with the boundary condition equations
y=0 w,=0, w,=0, =1, (4.4)
Yy — 00 Wy = Wy o (constant), 7 =ty (4.5)

According to Chap. 4, governing similarity differential equations of the laminar
mixed convection boundary layer with Boussinesq approximation are obtained
equivalently as follows:

oW, (n, Mc, oW, (n, Mc,
- (1, Mexy) o OW (1, Mesy)
on on

=0 (4.13%)

5Wx(”l, Mcxf)
on

+29(1’I,MCX‘[) ~MCx_f (414*)

[_WWXO,I’ Mcx,f) + 2Wy(7]7 Mcx,f)]
_ O*Wi(n, Mcyy)
=

00(n, Meyy) _ 1 020(n, Mcyy)

[_an(”/a Mcx,f) + ZWy(VI, Mcx,f)] on - P’Tf 8172

(4.15%)

with the following equivalent dimensionless equations on the boundary conditions

n=0: Wx(’/laMcx,f) =0, Wy(n»MCx.f) =0, B(WaMCx,f) =1 (416*)
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n—oo: Win,Mcy) =1 0(n,Mcyy)=0 (4.17x)

where core similarity variables W, (1, Mc.y) and W, (n, Mc,s) of velocity field are
defined as

Wy = Wx,och('/Ia Mfo) (46*)
e (L Re 12
by = 3 Resy) W, 0, M) @72)

The similarity temperature variable 0(1, Mc,s) is induced as

t— 1t

0(n,Mcy) = Pa— (4.12x)
The included dimensionless coordinate variable # is shown as
n =2 (L Re, )2 (4.9)
x 2 :

Local Reynolds number Re,y, local Grashof number Gr.s, and local mixed
convection parameter Mc, are defined as respectively

Wy 00X

Rexf = (48)
Vr
gﬁ(tw - too)x3
Gr,, =24% =/ .
Tof — (4.10)
G
Mc.s = GrygRe} (4.11)

Here, it is indicated that the subscript f denotes the reference temperature by

using an average temperature f; = 5=

5.2 Ranges of the Numerical Calculation

The similarity governing partial differential Eqs. (4.13*%) to (4.15%) with their
boundary condition Eqs. (4.16*) and (4.17%*) are solved by a shooting method with
fifth-order Runge-Kutta integration. For solving the nonlinear problem, a variable
mesh approach is applied to the numerical calculation programs. It can be seen that
for Boussinesq approximation, the solutions of the core similarity variables
W (1, Mc. ) and W, (1, Mc, ) for similarity transformation of the velocity field and
the dimensionless temperature 0(17, Mc,s) are dependent on Prandtl number Pr; and
mixed convection parameter Mc,,. Then, the accurate numerical results are
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obtained in the wide ranges of Prandtl number Pry (0.3 < Pry <20) and mixed
parameter Mc,y (0 < Mc,; < 10).

5.3 Velocity Fields

From the selected numerical solutions, the similarity velocity field is plotted in
Figs. 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 for different Prandtl number Pr; and mixed
convection parameter Mc with variation of the dimensionless coordinate variable #.

Pl‘f =03

n
Fig. 5.2 Numerical results of similarity velocity field Wy(n, Mc,y) for laminar water fixed

convection on a vertical flat plate at Pry = 0.3 and different Mc,; (Lines / to 8 denote Mc,; =
0,0.1,0.3,0.6,1,3,6 and 10 respectively)

Pr; =0.6

Fig. 5.3 Numerical results of similarity velocity field Wy(n, Mc.s) for laminar water fixed
convection on a vertical flat plate at Pry = 0.6 and different Mc,, (Lines I to 8 denote Mc,y =
0,0.1,0.3,0.6, 1, 3,6 and 10 respectively)
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Fig. 5.4 Numerical results of similarity velocity field Wy(n, Mcys) for laminar water fixed
convection on a vertical flat plate at Pry = 1 and different Mc,; (Lines I to 8 denote Mc,; =

0,0.1,0.3,0.6,1,3,6 and 10 respectively)

Pr,:2

Fig. 5.5 Numerical results of similarity velocity field Wy(n, Mcys) for laminar water fixed
convection on a vertical flat plate at Pry = 2 and different Mc,; (Lines I to 8 denote Mc,; =

0,0.1,0.3,0.6, 1, 3,6 and 10 respectively)

4 -
Pr, =5

3
&
s,
£ 8
ER

14

0 1

0 1 2 3 4 5 6

n

Fig. 5.6 Numerical results of similarity velocity field W, (1, Mc,,) for laminar water fixed
convection on a vertical flat plate at Pry =5 and different Mc,; (Lines I to 8 denote

Mc.y =0,0.1,0.3,0.6,1,3,6and 10respectively)
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Pr,= 10

Fig. 5.7 Numerical results of similarity velocity field W,(y,Mc,,) for laminar water fixed
convection on a vertical flat plate at Pry = 10 and different Mc,; (Lines I to 8 denote Mc,y =
0,0.1,0.3,0.6, 1, 3,6 and 10 respectively)

It is seen that with increasing the average Prandtl number, the velocity and its
boundary layer thickness will decrease monotonically. It shows the effect of
average physical properties. However, with increasing the mixed convection
parameter Mc,y, the velocity and its boundary layer thickness will increase
monotonically, which demonstrates the effect of buoyancy force.

5.4 Skin-Friction Coefficient

So far, the skin friction coefficient has been analyzed by means of Falkner-Skan
type transformation for laminar mixed convection. In this book, we will analyze it
based on our new similarity transformation system. For this analysis, the velocity
gradient at the wall is an important characteristic of the solution, and the local
skin-friction coefficient C,s is a dimensionless measure of the shear stress at the
wall, i.e.

Ow,

e (755 ) y=
fo o Twx _ f( Oy )y 0

S 1 2 1 2
2pfwx,oo 2pfwx,oc

(5.1)

According to the related derivation in Chap. 4, we have

owy
Jy

OW, (1, Mc.y)

( an )n:O

1
)y:O =x! (5 Rex,f) 1/2Wx.oo(
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Therefore, the local skin-friction coefficient Cy  is expressed as

_ 1/2 OW,(n,Mc,
lu’fx 1(% Rex:f) / WX;OC( ((‘1?)1 ’f>)i1:0
Cop = T 5
2 pfwx,oo
Vr 1/2 an(’?aMfo)
=2 Re, —_—),_
\/—xwx,oo ( € f) ( an )nfo

i.e.

8WX(’73 MCX,)")

Cor = V2(Rex) (=

);1:0 (52)

The average skin friction coefficient C, ;s from x = 0 to x is described as

X X
| 1 —12,0Wa(n, Mc.5)
Cyr :;/fodx:;/\/i(Rexf) 1/2(#)’7001)6
0

0

i.e.

_ OW, (1, Me, 17 .
Cop = ﬁ(%)no; / (Revs) ™" dx
0

With definition of Eq. (4.8) for local Reynolds number we have the expression
on the average skin friction coefficient C, s:

oW, (n,Mc, /))
n=0
on
IN o ©

0 2 4 6 8 10
Mc, ;

oWy (WaM"nf))
n

Fig. 5.8 Numerical solutions of wall velocity gradient ( =0 varying with local mixed

convection parameter Mc, at different mean Prandtl number Pr; (Lines / to 8 denote Pry = 0.3,
0.6, 1, 2, 5, 10, 15 and 20 respectively)
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3WV(W~MCA¢))
an

Table 5.1 Numerical solutions of wall similarity velocity gradient ( y—o varying with

local mixed convection parameter Mc, at different mean Prandtl number Pr¢

Prf MCXf
0 0.1 0.3 0.6 1 3 6 10
(@),
o n=0

0.3 |0.4696 |0.710069 |1.116442 | 1.638457 |2.251451 |4.746438 |7.790528 | 11.29826

0.6 |0.4696 |0.675936 |1.029251 | 1.486558 |2.024951 |4.218962 |6.895673 | 9.979574
1 0.4696 |0.652596 |0.96972 | 1.382153 |1.868958 |3.855735 |6.280259 | 9.073102
2 0.4696 |0.623616 | 0.894704 | 1.250539 |1.672377 |3.399484 |5.509253 | 7.939596
5 0.4696 |0.590353 | 0.807129 | 1.095825 |1.440521 |2.861203 |4.60151 6.607166
10 | 0.4696 |0.572616 |0.75227 |0.99557 | 1.288912 |2.503249 |3.996003 | 5.719424
15 10.4696 |0.571656 |0.733078 |0.949119 |1.21391 |2.315243 |3.677123 | 5.247122
20 | 0.4696 |0.571181 |0.726757 |0.92476 |1.170915 |2.198377 |3.468757 | 4.937554

an(nvMCx,f)

Cuy = 2V2(Rey) P,

)=0 (5:3)

Equations (5.2) and (5.3) show that the skin friction coefficient increases with

increasing the wall velocity gradient (%’:fw))nzo. A system of the rigorous

numerical solutions on the wall velocity gradient (%émf)) y—o has been obtained,

and the selected solutions of them are plotted in Fig. 5.8 and listed in Table 5.1 with

variation of Prandtl number Pr; and mixed convection parameter Mc, . Then, itis seen
an(’7~,Mc.\'.f)
on
vection parameter Mc, s, and decreases in an accelerative pace. It shows the effects of
buoyancy force. With increasing Prandtl number Pr¢, the wall velocity gradient

(%’yw))nzo will decrease. It demonstrates the effect of the average physical prop-

that wall velocity gradient ( ),1:0 increases with increasing the mixed con-

erties. As a result, the skin-friction coefficient will decrease with increase in average
Prandtl number Pr; and increase with increase in mixed convection parameter Mc, ;.

If we set Mcyy = 0, the flow is corresponding to net forced convection, and the

wall velocity gradient will be (%‘:’m‘”)nzo = 0.4696 according to the rigorous

numerical results listed in Table 5.1. Then, we have C,; = 0.664(Re, f)fl/ * and

C, s = 1.328 (Re, f)fl/ 2, according with the related derivation in [1] for net forced
convection. Logically, these demonstrate that net forced convection is only the
special case of mixed convection when the mixed convection parameter Mc, s is equal

to zero.

From Egs. (5.2) and (5.3) it is seen that the wall velocity gradient (%}W) §=0

is the only one unknown variable for evaluation of the skin-friction coefficient.
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Then, the selected values listed in Table 5.1 can be used for evaluation of the

skin-friction coefficient by using the interpolation of the wall velocity gradient
(OW‘(mMC,C)f))
o n=0"

5.5 Remarks

The equations for skin-friction coefficient are derived out based on our innovative
similarity transformation model. It is found that the wall velocity gradient
(an(nsMCX«f)
on
coefficient. A system of rigorous numerical solutions of the wall velocity gradient
(%’y‘m)ﬂzo are obtained and provided in wide ranges of average Prandtl number
(0.3 < Pry<20) and local mixed parameter (0 < Mc,r < 10). It is seen that wall
oW (n,Mcyy)
n
convection parameter Mcyy, and decreases with increasing Prandtl number Pry.
Meanwhile, with increasing the average Prandtl number Pry, the wall velocity

gradient (%’y‘m)q:o will decrease slowly. As a result, the skin-friction coeffi-

),1:0 is only one unknown variable for evaluation of the skin-friction

velocity gradient ( )y—o increases with increasing the average mixed

cient will increase with decreasing the average Prandtl number Pr¢. Meanwhile, the
skin-friction coefficient will increase with increasing the mixed convection
parameter Mc,s due to increase of the buoyancy force.

Reference
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Chapter 6
Heat Transfer

Abstract Through the series of studies, the optimal formalization of Nusselt number for
laminar mixed convection on a vertical flat plate is obtained for consideration of
Boussinesq approximation. It contains the following research investigations:
(i) pseudo-similarity analysis and transformation based on our developed innovative
similarity transformation replacing the traditional Falkner-Skan type transformation;
(ii) new governing similarity mathematical model, which is first applied in study of
laminar free/forced mixed convection, and is more conveniently derived and applied
compared with that based on the Falkner-Skan type transformation for investigation of
mixed convection heat transfer; (iii) the system of numerical solutions of wall similarity
temperature gradient; and (iv) optimal formalized equations of Nusselt number of mixed
convection are derived by using a curve-fitting method for multiple variables. The
optimal formalized equations are very coincident to those calculated based on the
numerical solutions. The optimal formalized equations of Nusselt number are suitable for
wide coverage of Prandtl number and mixed convection parameter, and can be used for
calculation of heat transfer coefficient of laminar mixed convection with consideration of
Boussinesq approximation.

Keywords Nusselt number - Theoretical equation - Optimal formalized equation -
Wall similarity temperature gradient - Curve-fitting method - Average Prandtl
number - Local mixed convection parameter - Boussinesq approximation

6.1 Introduction

In Chap. 5, the mathematical model with the similarity governing partial differential
equations and the boundary conditions are solved by a successively iterative pro-
cedure in the wide range of average Prandtl number and mixed convection param-
eter. Meanwhile, the Skin-friction coefficient fields are analysed and a system of its
results are provided. In this Chapter, we will further present heat transfer of mixed
convection. First, the system of temperature fields will be obtained. Moreover, the
theoretical heat transfer equations will be derived by means of heat transfer theo-
retical analysis based on our new similarity transformation model. It is seen that in
the theoretical heat transfer equations the wall similarity temperature gradient is only

© Springer International Publishing Switzerland 2016 77
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one un-known variable for evaluation of Nusselt number, which is dependent on the
mixed convection parameter and average Prandtl number. Based on the system of
the numerical solutions, the optimal formalized equations of Nusselt number are
developed by using a curve-fitting method with multiple variables. Furthermore,
some calculation examples are given for demonstration of heat transfer application
of the developed optimal formalized equations of Nusselt number.

6.2 Temperature Field

With the numerical calculation for laminar mixed convection for consideration of
Boussinesq approximation, the similarity temperature field is obtained together with
the similarity velocity field, and a system of the numerical solutions of similarity
temperature field are plotted in Figs. 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 with variation of
average Prandtl number and mixed convection parameter.

Pr;=0.3
0.8

IR\

Fig. 6.1 Numerical results of similarity temperature 0(1j, Mcy) profiles for laminar water mixed
convection on a vertical flat plate at fluid average Prandtl number Pry = 0.3 and different local mixed
convection parameter Mc, s (Lines / to 8 denote Mc,y = 0,0.1,0.3,0.6,1,3, 6 and 10 respectively)
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Fig. 6.2 Numerical results of similarity temperature 0(1j, Mcy) profiles for laminar water mixed
convection on a vertical flat plate at fluid average Prandtl number Pry = 0.6 and different local mixed
convection parameter Mc, s (Lines / to 8 denote Mc,s = 0,0.1,0.3,0.6,1,3, 6 and 10 respectively)
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Fig. 6.3 Numerical results of similarity temperature 0(y, Mc,s) profiles for laminar water mixed
convection on a vertical flat plate at fluid average Prandtl number Pr; = 1 and different local
mixed convection parameter Mc,, (Lines / to 8 denote Mc,y = 0,0.1,0.3,0.6,1,3,6 and 10
respectively)
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Fig. 6.4 Numerical results of similarity temperature (5, Mcs) profiles for laminar water mixed
convection on a vertical flat plate at fluid average Prandtl number Pry = 2 and different local
mixed convection parameter Mc,; (Lines / to 8 denote Mc,;y = 0,0.1,0.3,0.6,1,3,6 and 10
respectively)

Prf: 5

0@, Mc, ;)

Fig. 6.5 Numerical results of similarity temperature 0(1, Mc,s) profiles for laminar water mixed
convection on a vertical flat plate at fluid average Prandtl number Pry = 5 and different local
mixed convection parameter Mc,; (Lines / to 8 denote Mc,y = 0,0.1,0.3,0.6,1,3,6 and 10
respectively)
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Pr,=10

0(779 Mcx,f )

n

Fig. 6.6 Numerical results of similarity temperature 6(17, Mc,s) profiles for laminar water mixed
convection on a vertical flat plate at fluid average Prandtl number Pry = 10 and different local mixed
convection parameter Mc, s (Lines I to 8 denote Mcy = 0,0.1,0.3,0.6, 1,3, 6 and 10 respectively)

It is seen that with increasing the average Prandtl number, the temperature
profiles will be steeper and steeper, and the temperature boundary layer thickness
will decrease monotonically. Meanwhile, with increasing the mixed convection
parameter, the temperature profiles will be steeper and steeper too, due to increase
of the buoyancy force. However, the steepening trend of temperature profiles will
be weaker and weaker with increasing the Prandtl number.

6.3 Theoretical Equations of Nusselt Number

6.3.1 Theoretical Equations of Nusselt Number

The local heat transfer rate g, at position x per unit area from the surface of the
plate without consideration of variable physical properties can be calculated by

Fourier’s law as g,y = —if(%)y:o. The subscript f denotes the case that the
boundary layer average temperature 7y = % is taken as the reference temperature

with with consideration of Boussinesq approximation.
With Egs. (4.9) and (4.11) we have

. 0(n, Mcxy),  On
Grp = —Ap(tw — 1) ( o )n:oay
where
an 1
gy = GRe)”
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Then,

89(’77Mcx.f)

1 _
qxf = }"f(tw - IOO)(EReXf)I/zx 1(_ on )'1:0

The local heat transfer coefficient oy, defined as g5 = o f(tw — 1), Will be
given by

The local Nusselt number, defined by Nu, s = “‘A; L

1
Nuyy = (ERexf)l/z(—

60(177 Mcx.f)

S (6.1)

Equation (6.1) is the theoretical equation of local Nusselt number for consid-
eration of Boussinesq approximation.

Total heat transfer rate Q. from position x = 0 to x with width of s on the plate
for consideration of Boussinesq approximation

Qxf—// qxfdA = /qxfs dx

and hence

00(n, Mc, 1
Orp = 4g - s(tw — o) (— ’77 < J 11 0/ l/zx_ldx
0

With Eq. (4.8) for definition of the local Reynolds number Re,; we obtain

1

Qxs = 2574(t — 1) (5 Rexy) (=

80(77’ Mcxf))
an =0

The average heat transfer rate Qx,f from the per unit plate area related to the plate
area A = x - s is expressed as

[9) 1 00(n, Mc,
Qx_f_Q——zx Af( too)(ERex,f)l/z(—M

x-s on )’7:0
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The average heat transfer coefficient @.r, defined as Qrf =0 f(ty — 1) 18
expressed as

_ 1. 1 1/2 80(7]5MCX, )
Ty = 20 (5 Rexs) / (—a—nf)n:o

The average Nussel number defined as Nu,; = &/—jx will be

00(n, Mcyy)

— 1
Nityy = 2(5 Revy) " (— e

(6.2)

Equation (6.2) is theoretical equation of average Nusselt number for consider-
ation of Boussinesq approximation.

It is seen from the Nusselt number theoretical Egs. (6.1) and (6.2) that the wall
90(n,Mcz)
on
dominating prediction of Nusselt number of laminar mixed convection. Then,
evaluation of the Nusselt number is attributed to evaluate the wall similarity tem-

perature gradient. This work will be performed in next section.

similarity temperature gradient (— )y—o is the only unknown variable

6.3.2 Optimal Formalization of Wall Similarity Temperature
Gradient

It is seen from the Nusselt number theoretical Eqs. (6.1) and (6.2) that the wall
similarity temperature gradient as the only one unknown variable for prediction of
heat dominates the prediction of mixed convection heat transfer. Here, it is nec-
essary to find the prediction equation of wall similarity temperature gradient.

In this present work, a system of rigorous solutions on the wall similarity
temperature gradient have been obtained numerically, and their selected values are
plotted in Fig. 6.7, and listed in Table 6.1, respectively. It is seen that the wall
similarity temperature gradient increases with increasing the mixed parameter
Mc,y, and increases with increasing the Prandtl number Pry.

The system of rigorous numerical solutions of the wall similarity temperature
gradient are formulated by means of an optimal curve-fitting approach for con-
sideration of two variables, and the obtained formulized correlations are shown as
follows with the ranges of Prandtl number between 0.3 and 20 and the mixed
convection parameter between 0 and 10:
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Fig. 6.7 Numerical solutions of wall similarity temperature gradient on the vertical flat plate
surface, varying with average Prandtl number Pr; and mixed convection parameter Mc (Lines / to
8 denote Pry = 0.3, 0.6, 1, 2, 5, 10, 15 and 20 respectively)

Table 6.1 Numerical solutions of wall similarity temperature gradient on the vertical plat surface,
varying with average Prandtl number and mixed convection parameter

Pry | Mc, s
0 0.1 03 0.6 1 3 6 10
(=25 0
0.3 0304010 | 0326674 | 0.357910 |0.390368 | 0.421909 | 0.514989 | 0.594022 | 0.663901
0.6 0391718 |0.419017 | 0.458042 | 0.499082 |0.539374 |0.659147 |0.761145 |0.851321
10469601 |0.500094 |0.544658 | 0.592619 | 0.640063 |0.782055 | 0.903412 | 1.010804
2 10597234 |0.631660 | 0.683822 | 0.741380 | 0.799155 |0.974363 | 1.125256 | 1.259114
5 10815561 |0.854542 |0.915958 |0.986399 | 1.058680 | 1.283084 | 1.479155 | 1.653815
10 | 1.029735 | 1.073799 | 1.140716 | 1.220468 | 1.304086 | 1.568637 | 1.803302 | 2.014039
15 | 1179622 | 1.233357 | 1303399 | 1385543 | 1.474928 | 1762639 |2.021957 |2.255761
20 | 1.298817 | 1336533 | 1437139 | 1.520671 | 1.613732 | 1.917488 | 2.192537 | 2.442278

Table 6.2 Values of wall similarity temperature gradient on the vertical flat plate, predicted by
using Eq. (6.3)

Pry | Mc, s
0 l0.1 0.3 0.6 1 3 6 10
(=250
0.3 0310814 |0.329603 |0.3610318 | 0397437 |0.4334 | 0.530043 |0.611347 | 0.672561
0.6 |0.394316 | 0.416442 |0.4534434 | 0.496433 | 0.539229 | 0.657003 | 0.757442 | 0.836109
1 [04699 049477 0536372 [0.584852 |0.633431 |0.76965 |0.887019 | 0.981589
2 0596141 [0.625125 | 0.6736645 | 073053 | 0.788104 | 0.954002 | 1.098992 | 1.220285
5 0816511 [0.851581 [0.9105103 |0.980226 | 1.051995 | 1.267147 | 1.458866 | 1.627141
10 | 1.03587 |1.075044 | 1.143569 | 1.224386 | 1.308874 | 1.570662 | 1.807496 |2.022818
15 | 1190577 | 1.233674 | 13066538 | 1.304509 | 1.48731 | 1.780877 |2.048873 |2.297494
20 | 1314162 | 1.359418 | 1.4362827 | 1.529363 | 1.628479 | 1.946877 |2.239438 |2.514713
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00(n, Mc,y)

(— on )y—o = aPr} (0.3 < Pry<20) (6.3)
where
(—0.000ZMcﬁ_f + 0.0039Mcif — 0.0262Mc)2c_f +0.6179Mcy s + 0.4699)
a =
(1 _|_Mcxf)0.75
(0<Mc<10)

(0.00009Mc* ,—0.0018Mc3 , +0.0117Mc%, +0.2771Me, ; +0.3433)
1+ MCXf

(0 < Mc,; < 10)

If Mc,y = 0, Eq. (6.3) will become the following related equation corresponding
to laminar forced convection:

0(n,Mc,r =
(- 200n, Mewy =0) o 0)) ) = 0.4699p,23 (6.4)

It is interesting that Eq. (6.4) is equivalent to Eq. (5.12) in Ref. [1] for laminar
forced convection, corresponding to well-known Pohlhausen equation [2] for
consideration of Boussinesq approximation. Therefore, the well-known Pohlhausen
equation can be regarded as the special case of Eq. (6.3) when the local mixed
convection number tends to zero.

With Eq. (6.3), a system of the similarity temperature gradient is obtained, and
plotted in Table 6.2 with variation of average Prandtl number and local mixed
convection parameter. Furthermore, the deviations of the predicted values in
Table 6.2 to the related numerical solutions of the similarity temperature gradient in
Table 6.1 are plotted in Table 6.3. It is seen that the maximal deviation is about 3 %
in the range of average Prandtl number from 0.3 to 20 and the local mixed con-
vection number from 0 to 10. However, as high as 84 % possibility is located under
the deviation value of 2 %.


http://dx.doi.org/10.1007/978-3-319-27959-6_5
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6.4 Optimal Formalized Equations of Nusselt Number

Obviously, the optimal formalized equations of Nusselt number of laminar mixed
convection on a vertical flat plate with consideration of Boussinesq approximation
consist of the follows:

1. Theoretical equations of Nusselt number
(1) Theoretical equation of local Nusselt number
80(’77 Mc,, )
7f);7:0 (61)

on
where the local Nusselt number is defined as Nu,y = “}f/ X

1
Nuys = (ERex,f)l/z(—

(2) Theoretical equation of average Nusselt number

80(11, Mcx,f )
o (62)
where the average Nusselt number is defined as Nu, s = a{/ =

— 1
Nitsy = 2(5 Revy) " (—

2. Formalized equations of the wall similarity temperature gradient for water
laminar mixed convection on a vertical flat plate

60(177 Mcx,f)

(— o )y—o = aPr} (0.3 < Pry <20) (6.3)

where

(~0.0002Mc* ; +0.0030Mc3 ,—0.0262Mc2; +0.6179Me, 5 +0.4699)
(1 + MCXJ)OJS

a =
(0 < Mc, ;s < 10)

(0.00009Mc; ,—0.0018Mc] ; +0.0117Mc; ; +0.2771Me, ;s 4 0.3433)
1+ MCXJ

(0 S Mfo S 10)

Then, Egs. (6.1) to (6.3) are regarded as the optimal formalized equations of
Nusselt number of laminar mixed convection on a vertical flat plate with consid-
eration of Boussinesq approximation.
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6.5 Calculation Examples

6.5.1 Question 1

A flat plate with s = 0.1 m in width and x = 0.10 m in length is suspended vertically
in the space of water. The bulk velocity is 0.1 m/s parallel to plate (see Fig. 4.1).
The bulk temperature is O °C, and the plate temperature is t,, = 20 °C.

Suppose the mixed convection is laminar, please calculate the mixed convection
heat transfer on the plate.

Solution:
(1) Heat transfer analysis

From Sect. 6.3.1, the correlations of mixed convection heat transfer on a flat
plate are

iy = 2(g Rewy) (- 2L ML) (62)
where
(— %}:CW)”_O =aPr] (0.3 <Pry<20) (6.3)
L, (—0.0002Mc , +0.0039Mc3 ,—0.0262Mc? ; +0.6179Mc, s + 0.4699)

(1 +MCXJ)OA75
(0< Mc,y<10)

(0.00009Mc? . —0.0018Mc? , +0.0117Mc% +0.2771Me, s +0.3433)
1+ MCXJ

(0 < Mc,; < 10)

Obviously, for evaluation of heat transfer, first, it is necessary to evaluate
average Reynolds number Re,; and wall similarity temperature gradient

(_ 90(n,Mc.s)
on

the coefficient a and exponent b. Here, the coefficient ¢ and exponent b are
dependent on mixed convection parameter Mc,y;. While Mc is dependent on
average Reynolds number Re, ¢, and average Grashof number Gry.

)y—o- While the latter is decided by the average Prandtl number Pry, and

(2) Data of the related water’s physical properties
The average temperature ¢y = (0+20)/2 = 10°C.

From appendix, the related physical properties of water can be obtained as below:


http://dx.doi.org/10.1007/978-3-319-27959-6_4
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v =1.2996 x 107® m*/s, Pr; =9.30 and p,, =999.9kg/m? at tc = 0 °C;
Jy = 0.586 W/(m °C), f; = 0.87 x 10~*/K and p,, = 998.2kg/m? at 1,, = 20 °C.

(3) Evaluation of the physical parameters Reys, Grys and Mcys

Reys = % =0.1m/s x 0.10m/(1.2996 x 10~ m?/s) = 7694.7
f
fy — 1o)X 9.8 x (0.87 x 1074)(20 — 0) x 0.13
Gryy = 8PUn — )’ 98 (087 x 107)(20 ~0) x 017 _ 559655
v2 (1.2996 x 10-6)

Me.; = GrygRe;} = 10096153 /(7694.7)> = 0.170519

(4) Evaluation of a and b

, _ (Z0.0002Mc" +0.0039Mc? ~0.0262Mc +0.6179Me +0.4699)
(14 Mc)*P
~(=0.0002 x 0.170519* +0.0039 x 0.170519°—0.0262 x 0.170519% +0.6179 x 0.170519 +0.4699)
B (140.170519)*7

= 0.510531

(0.00009Mc*—0.0018Mc> +0.0117Mc? +0.2771Mc + 0.3433)
1+Mc
(0.00009 x 0.170519*—0.0018 x 0.170519° +0.0117 x 0.170519% +0.2771 x 0.170519 +0.3433)
1+40.170519

= 0.333939

(5) Evaluation of the wall similarity temperature gradient

86(175 Mcxf)

(— B )y—o = @Pr} = 0.510531 x 9.3%333%5 — 1.074460

(6) Evaluation of average Nusselt number (defined by Nu, F= &)ff )
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N 1 1/2 a@(n,Mfo)
Nux.f = 2(5 ReX,f) / (_ T);]:O
! 12

= 2(5 X 7694.7) x 1.074460

= 133.29

Then,

Oy =0(ty — 1) X X X S
— A
:Nux_f—f(tw—too) X X XS
X
= Nutxy - Aty — toc) X8

= 133.29 x 0.586 x (20 — 0) x 0.1
=156.2W

6.5.2 Question 2

All geometric and physical conditions in Question 1 are kept except ¢, = 40 °C.
Suppose the mixed convection is laminar, please calculate the mixed convection
heat transfer on the plate.

Solution:

(1) Heat transfer analysis is the same as that in the above solution.
(2) Data of some water’s physical properties

The average temperature fy = (0+40)/2 =20 °C.

From appendix, the related physical properties of water can be obtained as
below:

v =1.0033 x 10°°m?/s, Pr; =6.96, J; =0.602W/(m C),
Br =2.09 x 107*/K

(3) Evaluation of the physical parameters Re,s, Gr.y and Mcys
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Wy.ooX

Reey = === = 0.1m/s x 0.10m/(1.0033 x 107®m?/s) = 9967.1
f
fw — 1o)X 9.8 X (2.09 x 1074)(40 — 0) x 0.13
Gryy = 8P — 1) 98 (2:09 X 1077)(40 = 0) x 017 _ g 3899,
17 (1.0033 x 10-6)

Meyy = GrogRe,? = 81389940/(9967.1)° = 0.819281

(4) Evaluation of a and b

(—0.0002Mc* +0.0039Mc* —0.0262Mc? +0.6179Mc + 0.4699)
a =
(1 +MC)().75
~ (—0.0002 x 0.819281* +0.0039 x 0.819281°—0.0262 x 0.8192812 +0.6179 x 0.819281 +0.4699)
(1+0.819281)"7

= 0.614165

(0.00009Mc* —0.0018Mc> +0.0117Mc* + 0.2771Mc + 0.3433)
14+ Mc
(0.00009 x 0.819281%—0.0018 x 0.8192813 +0.0117 x 0.8192812 +0.2771 x 0.819281 + 0.3433)
1+0.819281

b=

=0.317283

(5) Evaluation of the wall similarity temperature gradient

80(1/’7 Mcx.f)

(=g 0= aPr{ = 0.614165 x 6.96*'7*% = 1.136660

(6) Evaluation of average Nusselt number (defined by Nu, F= ;),/x)
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80(n,Mch))
on n=0

1
=2(; % 9967.1)'/% x 1.136660

_ 1
Nuyy = Z(QRexf)l/z(*

= 160.48

Then,
0, =0ty — o) XX X S
e
= Nuxf—f(tw —Ioo) XXX §
X
= mxf . )uf(tw — too) )

= 160.48 x 0.602 x (40 — 0) x 0.1
— 386.4W

6.5.3 Question 3

All geometric and physical conditions in Question 1 are kept except t,, = 40 °C and
o = 20 °C. Suppose the mixed convection is laminar, please calculate the mixed
convection heat transfer on the plate.

Solution:

(1) Heat transfer analysis is same as that in the above solution.
(2) Data of some water’s physical properties.

The average temperature 7 = (40 +20)/2 = 30 °C.
From appendix, the related physical properties of water can be obtained as
below:

vy = 0.8004 x 10°°m?/s, Pry =54, J=0.617 W/(m °C),
Br =3.05x107*/K

(3) Evaluation of the physical parameters Re,s, Gryy and Mc, s
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Regs =25 0.1 m/s x 0.10 m/(0.8004 x 10~ m?/s) = 12493.75
Vf
“ )X 9.8 % (3.05 x 1074)(40 — 20) x 0.13
Gy — Bl 2r(,o)x _ 9.8 % (3.05 x 10)(40 20) X0 o
V2 (0.8004 x 10-6)

Mes = GryRe;} = 93312914/(12493.75)° = 0.5978

(4) Evaluation of a and b

_ (—0.0002Mc* 4 0.0039Mc>—0.0262Mc? + 0.6179Mc + 0.4699)

a= (1+ M) T
~ (—0.0002 x 0.5978" +0.0039 x 0.5978°—0.0262 x 0.5978> +0.6179 x 0.5978 + 0.4699)
a (1+0.5978)"7

=0.5853

_(0.00009Mc*—0.0018Mc> + 0.0117Mc* + 0.2771Mc +0.3433)

B 1+ Mc

(000009 x 0.5978%—0.0018 x 0.5978" 4+ 0.0117 x 0.5978% +0.2771 x 0.5978 +0.3433)
B 1+0.5978

b

= 0.320915

(5) Evaluation of wall similarity temperature gradient

89(’77 Mcx,f)

(- o )y—o = aPrf = 0.5853 x 5.4%3215 — 1 005575

(6) Evaluation of average Nusselt number (defined by Nu, F= %c)

80(1’], Mcx,f))
an =0

1
=2(3 % 12493.75)'/% x 1.005575

_ 1
Nuyy = 2(§Rexf)l/2(—

= 158.96
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Then,

O, =0ty — t) X X X 8
:]foﬁ(tw — o) XXX §
X

= ]fo . /lf(lw — l‘oo) X s
= 158.96 x 0.617 x (40 — 20) x 0.1
=196.16 W

6.6 Remarks

In this work, the temperature fields of laminar mixed convection on a vertical flat
plate are calculated in the wide range of average Prandtl number (0.3 < Pry <20)
and mixed convection parameter (0 < Mc, r < 10). It is seen that with increasing the
average Prandtl number, the temperature profiles will be steeper and steeper, and
the temperature boundary layer thickness will decrease monotonically. Meanwhile,
with increasing the mixed convection parameter Mc, s, the temperature profiles will
be steeper and steeper too, due to effect of increasing buoyancy force. However, the
steepening trend of temperature profiles will be weaker and weaker with increasing
the Prandtl number or mixed convection parameter.

The theoretical equations of Nusselt number are reported based on the innova-
tive similarity transformation model. Since the wall similarity temperature gradient
is the only one un-known variable of the Nusselt number theoretical equations,
accurately prediction of the wall temperature gradient is the key work to achieve
optimal prediction of Nusselt number. Then, optimal formulated equations of wall
temperature gradient of laminar mixed convection on a vertical flat plate are
obtained by using optimal curve-fitting approach based on the system of numerical
solutions of the wall temperature gradient. The theoretical equations of Nusselt
number of laminar mixed convection combined with the optimal formalized
equations of the wall similarity temperature gradient become the optimal equations
of Nusselt number of laminar mixed convection on a vertical flat plate.
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Heat Transfer for Consideration
of Coupled Effect of Variable
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Chapter 7

Pseudo-Similarity Transformation
of Governing Partial Differential
Equations

Abstract The governing partial differential equations of laminar mixed convection
with consideration of variable physical properties are equivalently transformed into the
similarity governing partial differential equations by our innovative similarity trans-
formation model. Due to our previous study, the pseudo-similarity transformation will
be very coincident to the related partial-similarity transformation for the calculation
results of convection heat transfer. Therefore, a pseudo-similarity transformation can be
performed for the similarity transformation of mixed convection. The similarity
transformation model for forced convection is taken as main model for coincidence of
forced boundary conditions. Meanwhile, Grashof number is induced for treatment of
free convection characteristics. In this similarity transformation, the velocity similarity
variables are taken as the core similarity variables. They have definite physical mean-
ings, and can lead to a better advantage for treating the physical properties factors
compared with those of Falkner-Skan transformation. In addition, by taking water
mixed convection as an example, a polynomial model is induced for treatment of the
coupled effect of liquid variable physical properties, so that the transformed governing
similarity mathematical models have their theoretical and practical value.

Keywords Pseudo-similarity transformation - Innovative similarity transforma-
tion - Similarity variables - Polynomial model - Treatment of variable physical
properties - Theoretical equation of physical property factor - Mixed convection

7.1 Introduction

In Part 1, we reported the pseudo-similarity model of laminar mathematical model
of mixed convection with consideration of Boussinesq approximation. Although the
mixed convection issue does not meet the complete similarity transformation,
according to our study in [1, 2], the pseudo-similarity transformation is very well
equivalent to the related partial-similarity transformation for convection heat
transfer calculation of Newtonian fluids. It is the reason that we perform the
pseudo-similarity transformation for similarity transformation of the governing
partial differential equations of mixed convection, instead of the partial-similarity

© Springer International Publishing Switzerland 2016 97
D.-Y. Shang and L.-C. Zhong, Heat Transfer of Laminar Mixed Convection
of Liquid, Heat and Mass Transfer, DOI 10.1007/978-3-319-27959-6_7
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transformation for the similarity transformation. On this basis in this part, the
hydrodynamics and heat transfer analysis and calculation with consideration of
variable physical properties will be further conducted. At first in this present
chapter, we will focus on derivation of the related mathematical similarity model
with consideration of variable physical properties. Through the pseudo-similarity
transformation, it can be seen that our similarity transformation model is very
conveniently applied for similarity transformation of mixed convection issue with
consideration of variable physical properties.

7.2 Governing Partial Differential Equations

According to Chap. 2, Egs. (7.1)—(7.3) can be taken as governing partial differential
equations of the laminar mixed convection boundary layer with consideration of
variable physical properties:

0 0

gy (pwy) + By (pwy) =0 (7.1)

8Wx 8Wx 0 aWx
M 4y, D) = 2 - 2
(G m 5) = 2 (w%2) +elo = ) 72)

O(cpt) O(cpt) o (. 0ot
. =2 (1= 7.
p {w o +wy Oy o A o (7.3)
with the boundary conditions

y=0: wy=0, wy=0, 1r=r1,, (7.4)
Yy — 001 Wy = Wyoo(constant), =1 (7.5)

Here, temperature-dependent physical properties density p, absolute viscosity g,
thermal conductivity 4, and specific heat ¢, are taken into account.

7.3 Similarity Variables for Pseudo-Similarity
Transformation

Because the boundary conditions are attributed to those of forced convection, we
selected the similarity transformation model of forced convection [3] for coinci-
dence of the forced convection boundary conditions. However, this similarity
transformation model is not coincident to the transformation with buoyancy, i.e. the
mixed convection issue does not meet the complete similarity transformation.
According to our study in [1, 2] for heat transfer of Newtonian fluid convection


http://dx.doi.org/10.1007/978-3-319-27959-6_2
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flow, the pseudo-similarity transformation is very well equivalent to the
partial-similarity transformation. On the other hand, the core similarity variables
will be always those for transformation of the velocity field, and are set up as below
according to our innovative similarity transformation for forced convection [3] and
model derived in Chap. 3.

W) = - (1.6)
W 1/2
W)’(’/I) = Wx)oo (%Rex,oo) (77)

where similarity velocity variables W, (1) and W, (1) are defined as core similarity
of velocity field. While, # and Re, o, are similarity coordinate variable and local
Reynolds number respectively. They are defined as below respectively:

1/2
y (1
n= ; <2Rex,oc> (78)
Wy 00X
Rey o = v7 (7.9)

where v, is local kinetic viscosity. Meanwhile it is necessary to induce local
Grashof number as below for description of buoyancy action:

_ 3
erﬁoo — w (7'10)

2
Voo

where p., and p,, are local densities respectively.
Finally, the temperature similarity variable is induced as

o) = — (7.11)

Here, it is seen that in the equations of above similarity variables, all variables of
physical properties are local in order to consider variable physical properties.

It is emphasized that the similarity variables W, (1) and W,() are core similarity
variables of the similarity transformation, responsible for the similarity transfor-
mation of velocity field. Then, it is expected that they will dominate the transformed
governing ordinary differential equations.


http://dx.doi.org/10.1007/978-3-319-27959-6_3
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7.4 Pseudo-Similarity Transformation of the Governing
Partial Differential Equations

With Egs. (7.6)—(7.11) with the dimensionless similarity variables #, Re, o,
Wi(n), Wy(n), Gryoo and 0(n, x), the governing partial differential equations (7.1)—
(7.3) are transformed as below respectively.

7.4.1 Transformation of Eq. (7.1)

Equation (7.1) is changed to the following form

Owy owy dp Jp
PP 7.1
pax tp Qy T 8x+w' Qy (7.12)

With Eq. (7.6) we have

Ow, dW,(n7) @

ax | wee dn Ox

where with Eq. (7.8) we have

on I
o 2" (a)
Then,
ow, 1 dw,(n)
ox Er]x YWx,00 d (b)

With (7.7) we have

where
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Then,

In addition,

9p _dpon _ _ldp
ox  dnox  2dn"

Op dpon dp _, (1 1/2
A= T A . — 7 X _Rex.oo
dy dndy dnp 2

With Egs.(a)—(f), Eq. (7.1a) is changed to

| dW,(n) dawy(n) ldp _,
-5 X,00 X,00 5. xoon
p[ S Wy, e +wy, o X 2d’711x Wy, (n)

dp /1 1/2 1 ~1/2
er—'Zx l(zRem) wxm(ZRem) W,(n) =0

The above equation is divided by %x’lwxﬁoo, and we have

dW.(n) | dW,(n)] dp dp
— 2 ——n - Wi(n, 2—W, =0
p[ a2 an " (1, %) + i »(17)
The above equation is simplified to
aw,(n aw,(n 1dp
-n () +2 il )+——[—n-Wx(n)+2Wy(n)]:O

dn dn pdn

7.4.2 Transformation of Eq. (7.2)

Equation (7.2) is changed to

8w,rJr aw\ Bzwx+@8wx+( )
Py T ) T h e oy gy TEPe P

With Eq. (7.6) we have

ow, dW.(n) On

- Wx‘oc
dy dn Oy

101

(7.11)

(7.2a)
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Then,

and

i.e.

Additionally,

With Egs. (g)-(1), Eq. (7.2a) is changed to

1 _ aw,
,0|:_Wx,och('7) Erlx 1Wx7c>c dﬂ(n)

1 ~1/2 aw, | 12
F Weoo (ERem> W, (1) - W (n) x—1<_Rex,oo>

d*W, n) (1
- g(poo - p) = HWx00 d’,IZ( )X 2<_Rgxoc>

dp _ (1 12 dwe(n) (1 12
+ (2R W =1( =R
dn X (2 ex,oc) WXAOO dn X exAOO

The above equation is divided by %, and simplified to

d
P [Wx,oc Wi(n) - "xilwx‘oo

aw,
+ 2Wr 0o Wy (1) - Wino (")x“}
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With definition of the local Reynolds number, the above equation is changed to

P |:_Wx,oon(’7) : nx_lwx,oo

+ 2Wx,ooWy(’7) *Wxoo

Wy, 00X
- 2g(poo - p) = HWx 00 dI72 X ( )

du -1 (Wx,oox> dWx(’l) -1
X Wy 00 X
dn ’

+

Voo

The above equation is divided by x~'w?

X,00

£ and simplified to

Yoo dW.(n)
— (—nWx 2W,
S (=Wn) 42w, () =
_ W) | 1dpdWi(n) | v 28(po — P
dn? udy dny Lo Wi
ie.
Yoo AW ()
= (= W) +2W.
y (W) +2W00) =7
J o0 Pw 3
_ W) | 1dpdWiln) | v 5 g(%)x 2
T ap pdn dn v %—1 V2 w2 2
or
Voo dW,(n)
22—y W) +2Wy (1)) =
= (—nWeln) +2W, () =
2 1 Le ]
_dWi(n) | 1duaWe(n) ot G Rt
dw’  pdy dy y o -,

P
The above equation can be rewritten as

0 (CqWi(n) +2W,(n) dv?n(")

v
7.12)
d>W, 1dudw, o = (
— W(n)+_%w—(’/l)+2v_. P

dn? udn dn v %—1. ’
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where

X,00

Mecy oo = Gryoo -Re 2 )

is defined as local mixed convection parameter.

7.4.3 Transformation of Eq. (7.3)

Equation (7.3) is changed to

dep

Oox

+ Wycp a..

= /La—yz + a—ya—y (733)

wcg—&— , 5t+ t&c,, L0 OAOt
p P ox Y Jy Wy Qy

where

d0(n) On
dn Ox

= (t, — tw)%(:) (—%nx1> (k)

Oox (= 1oc)

While,

In addition,
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Similar to Eq. (f), we have

8 di (1 1/2

aiy = %x <2Rex,oo) (0)
Oc, dc, (1 172

—r _Pr ZR

oy —an” \gRe (p)

With above equation, Eq. (7.3a) is changed to

1 do 1 _,dc
p[wx,OCWx(n)cp (—Enx Yt —lw)#) +wx,oon(11)t(—§17x ld—;>

P () e (Sren) ) 200
+Weoo <%R€x’°°) v Wv(’?)ti%)xfl (%R&r,oo) 1/2]
= Jx2 (—Remo> (1 — 100) dzgn(z'?)
+ Z—ix* (;Remc) l/zx*‘ (;Remo> 1/2(;W — 1) dz(n")
The above equation is simplified to
g [W*’“WX(")C” (‘%”x_' (1~ 1) %) +wx,oon<n)t(—%nx—l ”0’1—“’;’)
F Waoa Wy ()epx™ (tw — 1) dzl(:) F Wy Wy(ﬂ)ff;;)xl}

1 d*0(n)
)
= lx (gRemo) (tw — 1) ar

do
+ Z—ixfl (%Rexm)xl(tw — 1) %

With definition of Re, .., the above equation is changed to
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1 _ do 1 _,dc
P |:Wx,oon(’1)cp (_Erlx l(tw - [oo) %) +Wx,oon(77)t(_ Enx : d_l";))

_ do de,

1 Wy poX d*0(n)
- =2 2 "xo0 _
x (2 )(tw foo) ar

oo
dr _(1wesex\ _; dO(n)
s () - G

The above equation is divided by 1 (1, — 7o) C";V‘*—M, and changed to

PV di(n) t 1 dc, do(n)
_p D =P Low () 22U
i {wxw)( 1)+ W () 2w .
oW, (n) t ldc,|  1d%0(n)  11did0(n) '
i te —twcpdn| ¢, dn? cp Adn dn
where
t f—too 1t — 1l fa fo
= = =0
tw - too tw - too tw - toc * tw - too (W’X) - tw - too (q)
Then, Eq. (7.3b) is changed to
PVso dO(n) foo 1 dc, dO(n)
A =22 oW () —
. [%(ﬂ)( " an + We(n)| 0+ )\ e +2W,(n) a
fo 1 dc, 1d*0(n) 1 1dido(n)
2 albund ) alielibadh 4
+2Wy () (6+ ty — toc) Cp dn] ¢ dn? cp Adn dn
or
P ) e\ Lde,
pr_ _ A SV —%p
25 [ T = ) (0 + ) S
do(n) foo 1 dc
2W, () ——= +2W. 0 ——=*
2w G 2wy (00n) + ) 2

_d*0(n)  1dido(n)
dp? Adn dn
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The above equation is further changed to

Voo do(n) di(n) I 1 dc,
i {—ﬂWx(ﬂ)d—n‘Fsz(’?)d—n — nW(n)| 0(n) + b —iv) o dn

t 1 dc
2W, 0 > ——r
o (0 + ) 25

d*0(n)  1did0(n)
dn? Adn dn

i.e.

P W)+ 20, 0) 0+ () -+ 20, 1) 0

| ldecy] d*0(n)  1dido(n)

ty — I Edn dp? Adn dn

(7.13)
_|_

For summary, governing partial differential equations (7.1)—(7.3) have been
transformed to the following governing ordinary differential equations:

dW,(n) . dW,(n) ldp

— +2 + =Ll W) +2W,(n)] =0 7.11
) S L W)+ 2, ) (7.11)
v aw,(n
== (= W) +2W,(n)) ;,1( )
. 7.12
W) LdpdWln) v S (712)
-~ ap? wdn dn I
where
Mcy oo = Gryoo ~Re;§c )
Voo do(n
P W)+ 20, ) Zo -+ () + 20, 0) O
7.13
ke Tde) _d00) | 1didotn) 71
te—ts' Cpdn | dn? Jdn dn
with the boundary condition equations
n=0: Wi(n) =0, Wy(n) =0, 0(n)=1 (7.14)

n—oo: Wi(n)=1, 0(n)=0 (7.15)
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7.5 Equivalently Rewriting the Transformed Governing
Ordinary Differential Equations

From the defined equation of the local mixed convection parameter Mc, o, it is seen
that the independent coordinate variable x is included in it, which is caused by using
the pseudo-similarity transformation. From the transformed governing Eqgs. (7.11)—
(7.15), it is found that the coordinate variable x exists in the transformed governing
equations in form of the local mixed convection parameter Mcy . Then, the local
mixed parameter Mc, o, is reasonably taken as the second independent similarity
coordinate variable. In this case, the transformed governing ordinary differential
equations (7.11)—(7.15) are equivalent to the following ones respectively

dWX 3 X,00 ) bl X,00
" (n, Mcy ) +2dWy(n Mcy o)
dn dn

N (7.11x)
+ —— U/ Wx naMCx,oc) +2W n’MCX'OC) =0
pdn : ( ! )
) dw,(n,Mc
o (=W, Meyoo) + 2Wy (1, Mex o)) %
7.12
_ W M) | LdpdWe(n Mecoe) | ovee =1 o
= P wdn dn vop-1
- do n,MCx,OO
PrT (7’7Wx(77>MCx,oo) +2Wy(117MCx,oo)) (T)+ (7’7WX(’7’MCX‘OC)
t 1 dc
2Wy (1, Mcyoo)) | 000, Mey o ) edn
+2W, (17, My, ))((’7 Cx, )+twtoc>cl’d’/’}

_ d*0(n,Meyoo) | 1dAd0(n, Mcy o)
N dn? Adn dn
(7.13x)
with the boundary condition equations

n=0: Win,Mco) =0, W,(n,Mcyo) =0, 0(n,Mcroc)=1 (7.14%)

n—o0: Wi(n,Mcyo) =1, 0(n,Mcys)=0 (7.15%)

7.6 Physical Property Factors

It is found in the similarity governing partial differential equations (7.11%)—(7.13%)
of laminar mixed convection that the fluid physical properties density p, absolute
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viscosity u, thermal conductivity / and specific heat ¢, exist in the form of the

- ldp 1dp 1di 145 i i
related physical property factors pdn® udn® idy> o dn respectively. Since these

physical properties are temperature-dependent, their physical property factors
ldp 1ldp 1d) 1499

pdn’ pdn’ Adn’ c, dn
pled effect of variable physical properties on fluid flow and heat transfer of laminar
mixed convection, we have to treat carefully temperature-dependence of these
physical property factors. It is the necessary work to ensure the practical value of
research result of fluid flow and heat transfer of laminar mixed convection.

are temperature-dependent, too. For consideration of the cou-

7.7 Treatment of Variable Physical Properties

7.7.1 Models of Temperature-Dependent Properties
of Water

Our treatment method of variable physical properties was already reported in [2, 3]
for liquid, gas and vapour-gas mixture respectively. Here, we only introduce the
treatment of liquid physical properties. Although there could be different models for
consideration of liquid variable physical properties, according to our study, the
polynomial model is more convenient one for treatment of the variable physical
properties of liquids for extensive investigation of convection heat transfer. Take
water for an example, the following polynomial equations are suggested for the
temperature-dependent expressions of density and thermal conductivity with the
temperature range between 0 and 100 °C:

p=—448 x 10732 +999.9 (7.16)
A= —8.01 x 1072 +1.94 x 10731 4-0.563 (7.17)

For the absolute viscosity of water, the following expression is applied:

1152.7  [/689.58\2
u:103expl—1.6004— T —|—< T )] (7.18)

It can be verified that the above correlations are coincident well to their typical
experiment values for water physical properties.

In addition, for a lot of liquid including water, the specific heat varies very little
with temperature, and can be regarded as constant with temperature.
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7.7.2 Models of Physical Property Factors of Water

Taking water as an example, the above temperature-dependent physical properties
factors are described as
Transformation for density factor %—ﬁ

At first, the density factor %Z—‘Z is expressed as

1dp ldpdr

pdn  pdidy
With Eq. (7.16) the following equation is obtained

dp _ —2 x 448 x 1073
dt

With Eq. (7.11) we obtain

dt—(t , )dG
dn_ s Ocdn

Therefore,
ldp 1 do
“P (2 448 X 10731 (1, — 1) o
pdn p dn
Then,
Ldp  (—2x 4.48 x 107°1)(t, — 1) dO (7.19)
pdy  —448x 105219999  dy '

This is the theoretical equation of density factor for water.
Transformation for viscosity factor %TZ

With (7.18) the viscosity factor can be expressed as

ldu 1d 1152.7  [689.58)\2
“ 2 C L exp | —1.6004 — + x 1073
pdn  pdn T T

u {1152.7 ) 689.582] ar

/R I PP

o
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where
ar do
o Tw - Too 5
dan ( ) dn
Then,
1d 1152.7 689.582 do
2eR_ —2x 2 (T, — To) = (7.20)
wdn T2 73 dn
This is the theoretical equation of viscosity factor for water.
Transformation for thermal conductivity factor %Z—z
With Eq. (7.17) the thermal conductivity factor becomes
1dl 1d
s =-—(—8.01 x 107% +1.94 x 10737 +0.563
Gdn =~ 7dn ( X + X + )
i.e.
ldl 1 dt
== (—8.01 x2 x 107% 4 1.94 x 107%) —
Adn /1( . + . )dn
where
dt do
R (Zw _ toc) _
dn dn
Then,

1dh  (=8.01 X2 x 1075+ 1.94 x 1073) (1, — 1) dO
2dy —8.01 x 10762 +1.94 x 1073t +0.563 dp

(7.21)

This is the theoretical equation of thermal conductivity for water.

It is indicated that the variation of water specific heat is very small with tem-
perature. Then water specific heat factor Cli%’ can be regards as zero, and the
P
deviation caused by such treatment will tend to zero.

7.8 Summary

It is the time to summarize the governing similarity equations of laminar mixed
convection with consideration of coupled effect of variable physical properties in
Table 7.1.
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7.9 Remarks

The complete governing similarity mathematical models of mixed convection with
consideration of variable physical properties are derived out based on our inno-
vative similarity transformation for forced convection [3]. Although the governing
partial differential equations of mixed convection does not meet complete similarity
transformation, according to our studies in ref. [1, 2], the pseudo-similarity trans-
formation is very much equivalent to the partial similarity transformation for
convection heat transfer of Newtonian fluids. Then pseudo-similarity transforma-
tion is used to treat similarity transformation of the present governing partial dif-
ferential equations of laminar mixed convection.

In this similarity transformation of mixed convection, the similarity transfor-
mation model for forced convection is taken as main model for coincidence of
forced boundary conditions. While, for treatment of the characteristics of free
convection, the Grashof number is induced.

In the present similarity transformation, the similarity velocity variables for
similarity transformation of velocity field are taken as the core similarity variables.
Such similarity velocity variables have definite physical meanings, which leads to
that the similarity governing partial differential equations become intuitive physical
models compared with those produced by Falkner-Skan transformation.
Meanwhile, our innovative similarity transformation model leads to that the
transformed governing similarity mathematical models are organically combined
with the physical properties factors, and then, provide convenient condition for
treatment of variable physical properties and for simultaneous solution.

At last, the temperature-dependent physical properties of liquid are treated by the
polynomial model reported in refs. [1, 2]. Although there could be different models
for consideration of liquid variable physical properties, according to our study, the
polynomial model is more convenient one for treatment of the variable physical
properties of liquids for extensive investigation of convection heat transfer. Such
treatment model of liquid variable physical properties ensures that the governing
similarity mathematical models have their theoretical and practical application
value.
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Chapter 8
Velocity Fields

Abstract System of rigorous numerical solutions on velocity fields of laminar
water mixed convection are obtained with consideration of coupled effect of vari-
able physical properties. The similarity velocity field is obviously effected by the
boundary temperatures #,, and 7. It demonstrates clearly also the influence of the
variable physical properties. With increasing the local mixed convection parameter
Mc, ., the level of velocity field will increase, and gradually form the more and
more obvious parabola. It reflects the effect of buoyancy force on mixed convec-
tion. Since the coupled effect of variable physical properties are well considered in
the governing mathematical models, the calculated results of the velocity fields
have theoretical and practical values.

Keywords Velocity field + Numerical solution - Local Prandtl number - Local
mixed convection parameter - Variable physical properties

8.1 Introduction

In Chap. 4, a system of the velocity field of mixed convection was reported with
consideration of Boussinesq approximation, where dependent physical conditions
are treated by the related average physical properties. In this chapter, the aim is to
obtain calculated results of mixed convection with consideration of variable
physical properties, and meanwhile, the related dependent physical properties are
treated by the local physical properties. Because liquid and gas have different
regulation on their physical property variations, in this book, we only investigate
liquid mixed convection for consideration of variable physical properties, and take
water mixed convection flow as an example. By using the complete similarity
mathematical model derived out in the last Chapter for laminar mixed convection,
where the variable physical properties are taken into account, the governing simi-
larity mathematical model with the partial differential equations and the boundary

© Springer International Publishing Switzerland 2016 115
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conditions are solved in this Chapter. Laminar water mixed convection is taken as
an example, and a system of numerical solutions of velocity field are obtained.

8.2 Dependent Variables and Ranges of the Numerical
Solutions

The similarity governing partial differential equations (7.11%)—(7.13*) with the
boundary condition Egs. (7.14*) and (7.15%) combined with the physical property factor
Egs. (7.19)—(7.21) are solved by a shooting method with fifth-order Runge-Kutta
integration. For solving the nonlinear problem, a variable mesh approach is applied to
the numerical calculation programs. It can be seen that with consideration of variable
physical properties, the solutions of the similarity velocity variables W, (1, Mc, ) and
W, (1, Mcy ) and the similarity temperature variable 6(1, Mc, ) are dependent on
local mixed convection parameter Mc, ,, wall temperature #, (or local Prandtl
number Pr,,), and bulk temperature ¢, (local Prandtl number Pr,) for laminar mixed
convection of liquid. For laminar water mixed convection, these ranges can be taken
as 0 <1, <100, 0<1, <100 and 0 < Mc, o < 10.

8.3 Velocity Fields with Variation of Wall Temperature ¢,
8.3.1 For Mcx, =0

Figure 8.1 expresses numerical solutions of velocity fields W, (n, Mc, ) with
variation of wall temperature #,, at Mc, , = 0 and different 7.

8.3.2 For Mc¢x, = 0.3

Figure 8.2 expresses numerical solutions of velocity fields W.(n, Mc, ) with
variation of wall temperature 1, at Mc,, = 0.3 and different 7.

8.3.3 For Mc, = 1

Figure 8.3 expresses numerical solutions of velocity fields W, (n, Mc, ) with
variation of wall temperature ¢, at Mc, ., = 1 and different 7.
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Fig. 8.3 Similarity velocity W, (1, Mc, ) profiles of water mixed convection with variation of
wall temperature #,, at Mc, o = 1 and different 7
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8.3.4 For Mcy, =3

Figure 8.4 express numerical solutions of velocity fields W,(n, Mc, ) with vari-
ation of wall temperature ¢, at Mc, », = 3 and different 7.

8.3.5 For Mcy, = 10

Figure 8.5 expresses numerical solutions of velocity fields W,(n, Mc, ) with
variation of wall temperature f,, at Mc, , = 10 and different ...

8.4 Velocity Fields with Variation of Fluid Bulk
Temperature

84.1 For Mcx, =0

Figure 8.6 expresses numerical solutions of velocity Wy(n, Mc, ) fields with
variation of fluid bulk temperature 7., at Mc, -, = 0 and different ¢,,.

84.2 For Mcy, = 0.3

Figure 8.7 expresses numerical solutions of velocity Wy(n, Mc, ) fields with
variation of fluid bulk temperature ¢, at Mc,, = 0.3 and different #,.

8.4.3 For Mc,,, = 1

Figure 8.8 expresses numerical solutions of velocity W,(n, Mc, ;) fields with
variation of fluid bulk temperature #, at Mc,~, = 1 and different 1,

844 For Mcx, =3

Figure 8.9 expresses numerical solutions of velocity W,(n, Mc, ) fields with
variation of fluid bulk temperature 7., at Mc, ., = 3 and different 7,
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fluid bulk temperature 7, at Mc, , = O different ¢,,
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Fig. 8.7 Similarity velocity W, (1, Mcy ) profiles of water mixed convection with variation of
fluid bulk temperature 7, at Mc, = 0.3 and different #,,
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Fig. 8.8 Similarity velocity Wy (1, Mc, ~) profiles of water mixed convection at with variation of
fluid bulk temperature #o, Mcy~ = 1 and different ¢,
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Fig. 8.9 Similarity velocity W,(n, Mc, ) profiles of water mixed convection with variation of
fluid bulk temperature 7, at Mc,, = 3 and different 7,
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Fig. 8.10 Similarity velocity W, (17, Mcy ) profiles of water mixed convection with variation of
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84.5 For Mcx ., = 10

Figure 8.10 expresses numerical solutions of velocity W, (n,Mc, ) fields with
variation of fluid bulk temperature 7, at Mc, o, = 10 and different 1,

From Figs. 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9 and 8.10 on the variation of
similarity velocity W (1, Mc, ) field, it is seen that with increasing the local mixed
convection parameter Mc, ~, the velocity profile will increase and gradually form a
parabola, which reflects the increasing effect of free convection.

8.5 Remarks

In this chapter, a system of calculated results on similarity velocity fields of laminar
water mixed convection are obtained with consideration of coupled effect of vari-
able physical properties. The effect of the dependent physical variables on velocity
fields is demonstrated clearly with variation of boundary temperature ¢, and 7.
Additionally, with increasing the local mixed convection parameter Mcy ,, the level
of velocity field will increase, and gradually form a parabola. It reflects the effect of
buoyancy force. Since the coupled effect of variable physical properties are well
considered in the governing mathematical models, the calculated results of the
velocity fields have theoretical and practical values.



Chapter 9
Skin-Friction Coefficient

Abstract Skin-friction coefficient is analyzed with consideration of variable
physical properties. The skin velocity gradient is the only one unknown variable for
evaluation of the skin-friction coefficient. Systems of numerical solutions on the
skin velocity gradient are obtained with consideration of variable physical prop-
erties. They have theoretical and practical value due to consideration of coupled
effect of variable physical properties. The skin velocity gradient (or skin-friction
coefficient) depends on local Prandtl numbers Pr,, and Pr.,, as well as the local
mixed convection parameter Mc, ... The former is used for demonstration of the
effect of variable physical properties on velocity fields as well as skin-friction
coefficient. The latter reflects the effect of buoyancy force. The skin velocity gra-
dient will increase with increasing local Prandtl number Pr,, and will decrease with
increasing local Prandtl number Pr,,. The skin velocity gradient will increase with
increasing the local mixed convection parameter. On the other hand, with
increasing the local mixed convection parameter, the effect of the local Prandtl
numbers Pr,, and Pry, on the skin velocity gradient will be stranger and stranger.

Keywords Skin velocity gradient - Skin-friction coefficient - Local Prandtl
number - Local mixed convection parameter - Variable physical properties

9.1 Introduction

In Chap. 3 the skin friction coefficient under Boussinesq approximation has been
analyzed by means of our innovative similarity transformation, and the following
equations are obtained for expression of the local skin-friction coefficient Cr, and
average skin friction coefficient C,:

© Springer International Publishing Switzerland 2016 129
D.-Y. Shang and L.-C. Zhong, Heat Transfer of Laminar Mixed Convection
of Liquid, Heat and Mass Transfer, DOI 10.1007/978-3-319-27959-6_9


http://dx.doi.org/10.1007/978-3-319-27959-6_3

130 9  Skin-Friction Coefficient

on

Cop = 2V2(Reyy) ™ (M)
8’1 n=0

W Mc, ¢
Cx,f = \/E(Rex,f)il/z (a X(YI’ Cx,f))
n=0

Here, the mixed convection parameter Mc,s = Gry fRe;fz, local Reynolds number

Wy ooX _ 8Btv—tx)
= 8RR

Reyy = Y and local Grashof number Grs refer to the case with

Boussinesq approximation, and therefore the physical property vy has the mean
value property. Then, the skin dimensionless velocity gradient (i.e. wall dimen-

OWX(VFMCXJ))

sionless velocity gradient) ( on . is dependent on average physical

properties. In this chapter, we will further analyzed the skin-friction coefficient of
mixed convection with the case of consideration of variable physical properties.

9.2 SKkin-Friction Coefficient

In order to present the skin-friction coefficient on laminar mixed convection with
consideration of variable physical properties, the skin velocity gradient is important,
and the local skin-friction coefficient Cy,, is a dimensionless measure of the shear
stress at the wall, i.e.

awx)
Cow = :Mw(ay =0 (9.1)

=1 2 1 2
2 pWWx.oo 2 pWWx,oo

where variable physical properties are taken into account, and the skin velocity
gradient is expressed as

(8wx> . <8Wx(11,Mcx7oo)> (@)
8y y=0 e 87] n=0 ay y=0

where Mc, , refers to the local mixed convection parameter for consideration of
variable physical properties. While,

(), 7 (3re)
Jdy =0 2

where Re, ., is local Reynolds number for consideration of variable physical
properties. Then, the skin velocity gradient
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1/2
(52 e () ()
/o 2 on 1=0

Therefore, the local skin-friction coefficient C,,, with consideration of variable
physical properties is expressed as

— 1/2 W, (n,Mcy»
H,, X l(_2l Rex_pO) / Wx.oo< (’73 = ))
n=0
Cx,w -

1 2
2 pwwx,oo

=t Y (g y1 (Wl Mero)
Voo XWx 00 e (97] §=0

ie.

) X 7M X,00
Cow = V222 (Rey o) 2 (LW (n, Mes, )> 9.2)
Voo oy 1=0

It should be indicated that the value (%ﬁ;’k“)) here for consideration of
n=0
variable physical properties is different from that for consideration of Boussinesq

approximation reported in Chap. 5. The former numerical solution (%ﬁlf““))

n=0

is variable with the temperatures boundary conditions ¢, and #,, (or Pr,, and Pry,),
while the latter one is variable only with the average Prandtl number Pry.

The average skin friction coefficient for consideration of variable physical

properties from x = 0 to x is described as

X

— 1
Cx,w = _/ Cx,wdx

X
0
LY YR AT ) R
xJ) v ’ on 1o
0
ie.
Ex‘w =2 X \/Eviw(Rex_’oo)il/2 (WM> (93)
Voo 61’] =0

It is seen from Eq. (9.3) that the skin velocity gradient (%Zk“)) . is only
n=

one unknown variable for evaluation of the Skin-friction coefficient with consid-
eration of variable physical properties.
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It is obvious from the governing equations that the skin-friction coefficient of
mixed convection with consideration of variable physical properties depends on
local mixed convection parameter Mc, o, wall temperature #, and fluid bulk tem-
perature 7., (or local Prandtl numbers Pr, and Pr.,). In the successive sections, a
series of numerical solutions of the skin dimensionless velocity gradient will be
presented in order for evaluation of the skin-friction coefficient.

9.3 Numerical Solutions on Skin Velocity Gradient

A system of numerical solutions on skin velocity gradient have been obtained and
listed as in Tables 9.1, 9.2, 9.3, 9.4 and 9.5 with variation of wall temperature 7,
and fluid bulk temperature 7, at different local mixed convection parameter
Mc, , for mixed convection of water.

Table 9.1 Numerical solutions on skin velocity gradient with variation of wall temperature #,, and
fluid bulk temperature at local mixed convection parameter Mc, , = 0

Iso Mcyoo =0

ty

0 | 10 20 40 60 80 100

(awn‘Mq,x))
o =0

0 0.491493 | 0.638057 |0.799717 |1.134992 |1.454051 |1.739215 |1.978215
10 0.372249 | 0.47894 0.607259 |0.866195 |1.124216 |1.363774 |1.565907
20 0.290521 |0.378691 |0.474332 |0.686552 |0.901633 |1.100245 |1.275352
40 0.194 0.254637 |0.322235 |0.470967 |0.62589 0.773801 | 0.906994
60 0.141192 | 0.186605 |0.237293 |0.350337 |0.470296 |0.586396 |0.693227
80 0.11016 0.145795 |0.186076 |0.276621 |0.373691 |0.470134 |0.55896

100 |0.090137 |0.119577 |0.152935 |0.228557 |0.310496 |0.392451 |0.469981

Table 9.2 Numerical solutions on skin velocity gradient with variation of wall temperature #,, and
fluid bulk temperature 7, at local mixed convection parameter Mc, o, = 0.3

too Mcy o =03
by
0 | 10 20 40 60 80 100

OW.(i:Mcy.o0)
an n=0

0 0.747656 | 0.91997 1.121138 | 1.550089 | 1.976968 |2.359943 |2.696265
10 0.617938 | 0.762741 |0.925842 | 1.273549 |1.625563 |1.949049 |2.23148

20 0.518919 |0.643772 |0.782665 |1.076976 |1.375898 |1.656108 |1.903322
40 0.386497 |0.484397 |0.591049 |0.821769 |1.052903 |1.272833 |1.469444
60 0.305976 |0.38653 0.47418 0.662609 | 0.855855 |1.038432 |1.203647
80 0.25371 0.322517 | 0.39753 0.559358 |0.725616 | 0.885765 |1.029359
100 |0.218089 |0.278652 |0.344873 |0.48835 0.636575 | 0.77938 0.910294
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Table 9.3 Numerical solutions on skin velocity gradient with variation of wall temperature #,, and
fluid bulk temperature ¢, at local mixed convection parameter Mc, o, = 1

to Mcy o =1

by

0 | 10 20 40 60 80 100

(r’)wx(qa.Mcw))

n =0

0 1.245402 | 1.485803 |1.769547 |2.394912 |3.027138 |3.612291 |4.132077
10 1.089475 | 1.311718 | 1.550697 |2.080188 |2.615992 |3.119707 |3.56526
20 0.946723 | 1.146341 | 1.368903 | 1.831538 |2.302984 |2.745163 |3.138656
40 0.738336 |0.907666 | 1.089585 |1.477484 |1.859692 |2.22197 2.545189
60 0.601489 | 0.747905 |0.904783 | 1.235786 | 1.568961 |1.880566 |2.160029
80 0.508764 | 0.63808 0.776972 | 1.070944 | 1.367047 | 1.647848 |1.897163
100 |0.443797 |0.560393 |0.686011 |0.953362 |1.224018 |1.480574 |1.710954

Table 9.4 Numerical solutions on skin velocity gradient with variation of wall temperature #,, and
fluid bulk temperature 7., at local mixed convection parameter Mcy o, = 3

fso Mcy o =3

tw

0 110 20 40 60 80 100

<8WX(rgMcmo))

g =0

0 2387813 |2.795485 |3.289471 [4.385324 [5.509233 |6.57375 |7.530324
10 2149154 |2.544042 [2.978276 |3.935274 |4.909894 |5.832577 |6.661961
20 [1.90465 [2275504 [2.68943 [3.545874 |4.417435 [5.238203 |5.972324
40 |1.517906 |1.848380 |2.200507 [2.94487 [3.67212 4360674 |4.975882
60 1253153 |1.54642 | 1.858043 [2.500056 |3.157984 |3.762424 |4.302864
80 [1.069452 1332783 |1.613436 |2.201673 |2.788299 [3.341401 |3.829037
100 |0.938765 | 1.178920 | 1436068 |1.977862 |2.520898 |3.031734 |3.490211

Table 9.5 Numerical solutions on skin velocity gradient with variation of wall temperature ¢#,, and
fluid bulk temperature ¢, at local mixed convection parameter Mc, o, = 10

too Mc, ., =10

ty

0 ’ 10 20 40 60 80 100

(OW\'(’I&y“x‘x)) -
0 5.419557 |6.282821 |7.34707 |9.725169 |12.18231 14.53807 16.6858
10 | 4.953705 |5.819287 |6.768932 |8.875782 |11.02858 13.08402 14.94767
20 |4.427082 |5.256059 |6.180774 |8.086904 | 10.03059 11.86984 13.53374
40 |3.566964 |4.323198 |5.125984 |6.814147 | 8.463305 |10.02342 11.42105
60 [2.964837 |3.644701 |4.364065 |[5.859345 | 7.342989 | 8.723446 | 9.957432
80 |2.542784 |3.158446 |3.811936 |5.174677 | 6.527058 | 7.799583 8.917823
100 |2.240694 |2.805572 |3.40806 |4.67122 5.930805 | 7.111542 | 8.170737
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It should be indicated that these system of numerical solutions have practical
value because they are obtained with consideration of coupled effect of variable
physical properties. In the successive sections, we will further demonstrate the
variation of the skin velocity gradient with the local Prandtl numbers Pr,, and Pr,
as well as local mixed convection parameter Mc, .

9.4 Variation of Skin Velocity Gradient with Local
Prandtl Number Pr,,

With the above numerical solutions, the variation of skin velocity gradient with
local Prandtl numbers Pr,, and Pr,, as well as local mixed convection parameter
Mec, » are plotted as Figs. 9.1, 9.2, 9.3, 9.4 and 9.5.
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It is seen that the skin velocity gradient will increase with increasing Pr,, and
decrease with increasing the local Prandtl number Pr,. Meanwhile, the skin
velocity gradient will increase with increasing the local mixed convection param-
eter due to the increase of buoyancy force. On the other hand, with increasing the
local mixed convection parameter, the effect of the local Prandtl number Pr,, on the
skin velocity gradient will be bigger and bigger.

9.5 Variation of Skin Velocity Gradient with Local
Prandtl Number Pr.,

With the above numerical solutions, the variation of skin velocity gradient with
local Prandtl number Pr,, at different local Prandtl number Pr,, and local mixed
convection parameter Mc, , are plotted as Figs. 9.6, 9.7, 9.8, 9.9 and 9.10.

It is seen from the above figures that the skin velocity gradient will increase with
increasing local Prandtl number Pr., and decrease with increasing local Prandtl
number Pr,,. Meanwhile, the skin velocity gradient will increase with increasing the
local mixed convection parameter due to the effect of stronger and stronger free
convection. On the other hand, with increasing the local mixed convection
parameter, the effect of the local Prandtl number Pr., on the skin velocity gradient
will be stronger and stronger.

9.6 Remarks

In this chapter, skin-friction coefficient is analyzed for consideration of variable
physical properties. It is found that the skin velocity gradient is the only one
unknown variable for evaluation of the skin-friction coefficient. Systems of
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Fig. 9.6 Skin velocity gradient ( o
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Prandtl number Pr,, at the local mixed convection parameter Mcy ., = 0. Note lines I — 7 are
related to Pr,, = 1.73, 2.2, 2.95, 4.32, 6.96, 9.3 and 12.99 respectively
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Prandtl number Pr,, at the local mixed convection parameter Mc, o, = 0.3. Note lines I — 7 are
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Fig. 9.10 Skin velocity gradient ( ) . varying with Prandtl number Pr,, at different
n=l

numerical solutions on the skin velocity gradient are obtained based on consider-
ation of variable physical properties. These numerical solutions have practical value
because they are obtained with consideration of coupled effect of variable physical
properties.

It is seen that the skin velocity gradient (or skin-friction coefficient) depends on
local Prandtl numbers Pr, and Pr.,, as well as the local mixed convection
parameter Mc, o, for consideration of variable physical properties, while, the skin
velocity gradient depends on average Prandtl numbers Pr; and the local mixed
convection parameter Mc,y due to consideration of Boussinesq approximation.

The skin velocity gradient will increase with increasing local Prandtl number
Pro, and will decrease with increasing local Prandtl number Pr,,. The skin velocity
gradient will increase with increasing the local mixed convection parameter due to
the effect of buoyancy force. On the other hand, with increasing the local mixed
convection parameter, the effect of the local Prandtl numbers Pr,, and Pr,, on the
skin velocity gradient will be bigger and bigger.



Chapter 10
Temperature Fields

Abstract A system of rigorous numerical solutions of the temperature fields of
laminar water mixed convection on a vertical flat plate is obtained with variation of
the local mixed convection parameter Mc, ., fluid bulk temperature 7, and wall
temperature #, for consideration of variable physical properties. On this basis, a
analysis is done for the effect of the fluid bulk temperature 7., (or Pr.,), wall
temperature f,, (or Pry,), and local mixed convection parameter Mc,., on the
temperature field. It is seen that although both fluid bulk temperature ¢, (i.e.
decreasing Pr.,) and the wall temperature #,, (i.e. decreasing Pr,,) influence the
temperature field, the effect of the fluid bulk temperature 7., is much stronger than
that of the wall temperature #,,. It demonstrates the effect characteristics of variable
physical properties on the temperature fields of mixed convection. In addition, with
increasing the local mixed convection parameter Mc, ., the temperature gradient
will increase due to the increase of the buoyancy force. It reflects the effect of
buoyancy force on temperature fields and heat transfer of mixed convection. Since
the coupled effect of variable physical properties is well considered and treated, the
obtained temperature fields have theoretical and practical value for mixed
convection.

Keywords Temperature field - Numerical solution - Variable physical properties -
Local Prandtl number - Local mixed convection parameter

10.1 Introduction

Following the velocity fields reported in Chap. 8 with consideration of coupled
effect of variable physical properties, the related temperature fields will be provided
in this chapter for water laminar mixed convection with consideration of variable
physical properties.

The numerical calculation is done under the regions of wall temperature
0°C<1t,<100°C, bulk temperature 0°C<t, <100°C, and local mixed con-
vection parameter 0 < Mc, . < 10 respectively. Then, the variation of temperature
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fields will be investigated with variations of wall temperature #, (or local Prandtl
number Pr,,), fluid bulk temperature ¢, (or local Prandtl number Pr.,), and local
mixed convection parameter Mc, .. These numerical solutions are obtained with
consideration of coupled effect of variable physical properties for laminar water
mixed convection on the isothermal vertical plate flat.

The numerical calculation is done by a shooting method with fifth-order Runge-
Kutta integration. For solving the nonlinear problem, a variable mesh approach is
applied to the numerical calculation programs. A system of numerical solutions of
similarity governing partial differential equations for laminar mixed convection
combined with physical property factors of water are solved and shown as below.

10.2 Temperature Field with Variation of Wall
Temperature ¢,

10.2.1 For Mc¢y,, =0

Figure 10.1 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of wall temperature ¢, at the local mixed con-
vection parameter Mc, , = 0 and different fluid bulk temperatures 7.

(a) (b),
\ Me,, =0 Mc, =0
0e 0.3
\ £, =0°C 1, =20°C
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1
6 6
0 ]
n n
" 1
o (@
(©) Me,. =0 Me,, =0
1, =60°C ' r =100°C
& Lines 1 — 6: . Lines 1+ 6: s
¢, 1 t, = 0,20, 40, —» 60, = 80 and 100 °C | 6 £, =0, 20,40, 60,80 and — 100 °C |
&
o

n ' . n

Fig. 10.1 Temperature profiles of water laminar mixed convection with variation of wall
temperature f,, at Mc, o, = 0 and different 7,
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10.2.2 For Mcy o, = 0.3

Figure 10.2 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of wall temperature 7, at the local mixed con-
vection parameter Mc, o, = 0.3 and different fluid bulk temperature 7.

10.2.3 For Mcy , = 1

Figure 10.3 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of wall temperature #, at the local mixed con-
vection parameter Mcy », = 1 and different fluid bulk temperature 7.

10.2.4 For Mcy o, = 3

Figure 10.4 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of wall temperature ¢, at the local mixed con-
vection parameter Mc, ,, = 3 and at different fluid bulk temperature ..
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n I n
Fig. 10.2 Temperature profiles of water laminar mixed convection with variation of wall
temperature f,, at Mc,, = 0.3 and different 7.,
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10.2.5 For Mcy ., = 10

Figure 10.5 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of wall temperature #,, under the local mixed
convection parameter Mc, ., = 0 and at different fluid bulk temperature 7.
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Fig. 10.3 Temperature profiles of water laminar mixed convection with variation of wall
temperature #,, at Mc,, = 1 and different 7,
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Fig. 10.4 Temperature profiles Mc, o, = 3 of water laminar mixed convection with variation of
wall temperature at Mc, -, = 3 and different 7.,
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Fig. 10.5 Temperature profiles of water laminar mixed convection with variation of wall

temperature f,, at Mc, o, = 10 and different 7,

10.3 Temperature Fields with Variation of Fluid Bulk

Temperature ¢,

10.3.1 For Mcy,, = 0

Figure 10.6 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of fluid bulk temperature 7., at the local mixed
convection parameter Mcy, = 0 and different wall temperature £,

10.3.2 For Mcy o, = 0.3

Figure 10.7 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of fluid bulk temperature ¢., at the local mixed
convection parameter Mc, o, = 0.3 and different wall temperature t,,.

10.3.3 For Mcy o, = 1

Figure 10.8 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of fluid bulk temperature ¢, at the local mixed
convection parameter Mcy, = 1 and different wall temperature .
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(a), (b).

Mcw-=
08
t, =0°C
0E
é 6
A Lines 1 =6
as b1 1, —»0, =20, 40,60, 80 and 100 °C . |
NS NS |
o o
0 1 2 3 4 s 8 0 1 2 3 4 5 ]
n n
(©) (d),
Me, =0 Me, =0
o8+ 08
1, =60°C 1, =100°C
98 LinesT —»6: S Lines1 —6:
8o i 1z =0,20,40, - 60, = 80,and 100 °C 6 .. 1. =0, 20, 40, 60, 80, and — 100 °C
NN AR
02 02
PO B\
o \ 0
0 1 2 3 N 5 ] ] 1 2 3 I 5 8

U L)

Fig. 10.6 Temperature profiles of laminar water mixed convection with variation of fluid bulk
temperature 7, at Mc,,, = 0 and different wall temperature z,,
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Fig. 10.7 Temperature profiles of laminar water mixed convection with variation of fluid bulk
temperature f at Mc, o, = 0.3 and different wall temperature #,,

10.3.4 For Mcy = 3

Figure 10.9 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of fluid bulk temperature ., at the local mixed
convection parameter Mcy, = 3 and different wall temperature £,
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Fig. 10.8 Temperature profiles of laminar water mixed convection with variation of fluid bulk
temperature f,, at Mc, ., = | and different wall temperature ¢,,

1 1
(a) \ Me,, =3 (b) \ Me, =3
oe \ 08
) i =0°C r, =20°C
e Lines 1 — 6 e Tines T 6:
i £, 0, =20, 40,60, 80 and 100°C | @ fo=0, 2
02 02
o4 o4
0 1 4 s 8 0 1 2 3 1 s €
n n
()
\ M e
08
1, =60°C t, =100°C
L Lines 1 —» 6 Lines T = 6:
B 1, =0,20,40, —» 60, = 80 and 100 °C 1, =0, 20,40, 60, 80 and —» 100 °C
6
0z 4
1
0
o 1 2 3 4 L (] 3 4 5 6
n n

Fig. 10.9 Temperature profiles of laminar water mixed convection with variation of fluid bulk
temperature 7, at Mc, ., = 3 and different wall temperature z,,

10.3.5 For Mcy ., = 10

Figure 10.10 expresses numerical solutions of temperature fields of water laminar
mixed convection with variation of fluid bulk temperature ¢., at the local mixed
convection parameter Mc, , = 10 and different wall temperature .
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Fig. 10.10 Temperature profiles of laminar water mixed convection with variation of fluid bulk
temperature f,, at Mc, o, = 10 and different wall temperature #,,

From Figs. 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9 and 10.10 it is seen
that the fluid bulk temperature 7., (i.e. decreasing Pr.,), the wall temperature ¢,, (i.e.
decreasing Pr,,), and local mixed convection parameter Mc, . influence the tem-
perature field of laminar mixed convection for consideration of variable physical
properties. However, with increasing the local mixed convection parameter Mc, o,
the effect of the fluid bulk temperature 7, is much stronger and stronger than that of
the wall temperature ¢,, on the temperature gradient. In addition, with increasing the
local mixed convection parameter Mc, ., the temperature gradient will increase due
to the effect of stronger buoyancy force.

10.4 Remarks

In this chapter, a system of numerical solutions of the temperature fields is
described with variation of the local mixed convection parameter Mc, o, fluid bulk
temperature f,, and wall temperature f, for consideration of variable physical
properties. On this basis, a analysis is done for the effect of the fluid bulk tem-
perature f,, (or Pry), wall temperature ¢, (or Pr,), and local mixed convection
parameter Mc, , on the temperature field. It is seen that although both fluid bulk
temperature 7., (i.e. decreasing Pr.,) and the wall temperature ¢, (i.e. decreasing
Pr,,) influence the temperature field, the effect of the fluid bulk temperature ¢, is
much stronger than that of the wall temperature ¢,,. In addition, with increasing the
local mixed convection parameter Mc, ., the temperature gradient will increase due
to the increase of buoyancy force.
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Since the coupled effect of variable physical properties is well considered, and
simulated for solution of laminar water mixed convection, the numerical solutions
for velocity and temperature fields have practical value.



Chapter 11
Procedure for Optimal Formalization
of Nusselt Number

Abstract Theoretical equations of Nusselt number are derived out based on our
innovative similarity transformation model. Such theoretical equations show that
the wall similarity temperature gradient is the only one unknown variable domi-
nating the evaluation of the Nusselt number. Then, it is key work to develop
optimal formalization of the wall similarity temperature gradient for reliable for-
mulaic calculation of the Nusselt number of mixed convection. To this end, a
procedure for investigation of optimal formalization of wall similarity temperature
gradient is planned in this chapter for complete optimal formalization of Nusselt
number. Such formalized equations contain the independent physical variables such
as the local Prandtl numbers Pr, and Pro and the local mixed convection
parameter Mc, « for description of effect of fluid variable physical properties and
buoyancy force on mixed convection heat transfer.

Keywords Nusselt number - Theoretical equations - Optimal equations - Wall
similarity temperature gradient - Heat transfer analysis - Local Prandtl number -
Local mixed convection parameter

11.1 Introduction

Based on the calculation of the temperature fields, from the last chapter on, we will
investigate the issue for available prediction of heat transfer of laminar mixed
convection. To this end, the theoretical equation of heat transfer will be set up in
this chapter, where we can find the wall temperature gradient is the only one
unknown variable for heat transfer. Then, investigation of the prediction correlation
equations on the wall temperature gradient is the only one duty for available pre-
diction of heat transfer of laminar mixed convection.

It can be found from the heat transfer analysis that the wall temperature gradient
of laminar mixed convection depends on local mixed convection parameter Mc, co,
local Prandtl number Pr,, (or t,) and local Prandtl number Pre (Or foo). Then, in
this work, it is important to decide the dependent correlation between these
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variables according to the systems of numerical solutions. From now on, this work
will be completed successively.

11.2 Theoretical Equation of Nusselt Number

Derivation of the theoretical equation of Nusselt number is the first step of inves-
tigation of reliable prediction of heat transfer coefficient of mixed convection. Its
derivation is as follows.

Here, the analysis will be conducted for heat transfer of laminar mixed con-
vection for consideration of coupled effect of variable physical properties.

The local heat transfer rate g,,, at position x per unit area from the surface of the
plate to the fluid with consideration of variable physical properties is calculated by

. 5 o " (")t
Fourier’s law as gy,, = — A, (Fy) o

While, with our innovative similarly tansformation model we have

ot (1 /2 90(n, Mcy )
(3,0 () 0o ()

Then,
1 V2 1 ae("aMCx oo)
Gow = Il — 1 )<_Re, ) - <_7>
w w\fw oo 2 X,00 81’, ":0
where (— %ﬁ) . is wall similarity temperature gradient for consideration of
n=

variable physical properties.
The local heat transfer coefficient a,,,, defined as q,,, = @, (t, — feo), Will be

given by
1 1/2 d0(n, Mcx
Oxw = j~w (_ Rex“oo) x_l <_ M)
, 2 )
The local Nusselt number defined by Nuy,, = “‘Ax will be
1 Y20 00(n, Mc,
Nu,,, = <_Rex,oc> <_ M) (11.1)
2 on =0

This is the theoretical equation of local Nusselt number.
Total theoretical heat transfer rate for position x = 0 to x with width of b on the
plate is a integration Qx,, = [, gxwdA = [; qx,bdx and hence
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[ 1 12 90(n, Mey.)
ew = | Aty — tso) | = Reyx oo x! (— 77“)@) bdx
Q ’ 0/ ( ) (2 , ) 877 n=0

1/2
Qo = /(i — 1) (lR%> ( M)
n=0

2 an
re) Quw :
The average heat transfer rate defined as Q, ,, = 72 is
_ 1 1/2 90 M. -
Q""W = 2x71)’w(tw - too) (_R€x700> (_ M)
2 87, n=0

i.e.

@XW = ﬁxiliw(l’w — tOO)ReJIC/OZC _M
, , on -

The average heat transfer coefficient @,,, defined as [ U (tw — too) 18
expressed as

o = VR 2t (- 2 )
n=0

on
The average Nusselt number is defined as W&W = &)x and hence
— 1 V21 90(n, Mc, o
Nux’W = 2<_Rgx"oo) ( M) (11.2)
2 on =0

This is the theoretical equation of average Nusselt number.

11.3 Procedure for Optimal Formalization of Nusselt
Number

From the above theoretical heat transfer Eqs. (11.1)-(11.3), it is seen that the

temperature gradient on the wall (— %;;W“)) o (for short, wall similarity tem-
]’,:

perature gradient) is the only one unknown variable dominating the heat transfer.
Then, it is necessary to investigate the convenient and reliable formulation equa-
tions that predict the wall temperature gradient for heat transfer application of the
laminar mixed convection.
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It is clear that the wall similarity temperature gradient (— %}1}”‘)) of mixed
n=0

convection depends on the physical and boundary conditions, i.e. the local mixed

convection parameter Mc, c, as well as the boundary temperatures ¢,, and tw(or Pr,,
and Pre) shown as

<— w) = f(Mcy 00, Pry - Pryo)
n n=0

In this analysis, it is seen that a key work is to investigate the correlation
equations on prediction of the wall temperature gradient, in order for heat transfer
formulization with theoretical and practical value. Obviously, such heat transfer
formulization should be based on a system of reliable numerical solutions with
consideration of coupled effect of variable physical properties.

In order to decide the dependent correlation among the wall temperature gra-
dient, local mixed convection parameter Mc, o, local Prandtl number Pr,, (or t,)
and local Prandtl number Pro (Or foo), the mathematical model should be selected at
first. To this end, first, the following model is set up for description of the relation of

the wall temperature gradient (— %ﬂﬂ”‘)) o with local Prandtl number Pr,,:
]’,:
o0(n, M Pr,’
<_ M) —g (11.3)
on y—o  Prw

where the coefficient a and exponent b are respectively assumed with relation to
local Prandtl number Pro as

a = aPro,® (11.4)
Pry
bzmé} (11.5)

where the coefficients and exponents a;, a,, b; and b, can be regarded as those only
depend on the local mixed convection parameter Mc, co, i.€.

ar =f, (Mcx.,OO)
b :fbl (Mcx,oo)
a :faz (Mcx,oo)
by :sz (Mcxm)

From the theoretical equation of Nusselt number it is seen that investigation of
optimal formalization of Nusselt number for accurate heat transfer evaluation is
attributed to creation of optimal formalized equation for the wall similarity



11.3  Procedure for Optimal Formalization of Nusselt Number 153

temperature gradient. To this end, our work will be divided into the following three
steps:

In step 1, the work is to investigate the effect of the local Prandtl number Pro on
the wall similarity temperature gradient by means of Eq. (11.3). Then, the coeffi-
cient a and exponent b should be determined with variation of the local Prandtl
number Pro at different values of the local mixed convection parameter Mc, co.

In step 2, the work is to investigate the effect of the local Prandtl number Pro on
the coefficient @ and exponent b by means of Eqs. (11.4) and (11.5) at different
values of the local mixed convection parameter Mc, co.

In step 3, the work will focus on decision of correlation equations of the coef-
ficients and exponents a,, a,, by and b, with the local mixed convection parameter
Mc;, co.

The work of the above steps will be performed in the successive chapters.

11.4 Remarks

In this chapter, theoretical equations of Nussel number are derived out through heat
transfer analysis. Such theoretical equations are based on our innovative similarity
transformation model. From the theoretical equations of Nussel number it is shown
that the wall similarity temperature gradient is the only one unknown variable
dominating prediction of the Nusselt number. Then, it is key work to develop
optimal formalized equations of wall similarity temperature gradient for formulaic
calculation of Nusselt number of mixed convection, To this end, a procedure is
planned for creation of the optimal formalized equations of the wall similarity
temperature gradient in this chapter. The work of such formalization is to investi-
gate the relation of the wall similarity temperature gradient to local Prandtl numbers
Pr,, and Proo and the local mixed convection parameter Mc, o, which demonstrate
the effect of fluid variable physical properties and buoyancy force on heat transfer of
mixed convection.



Chapter 12
A System of Numerical Solutions of Wall
Similarity Temperature Gradient

Abstract A system of numerical solutions of wall similarity temperature gradient

(_ 90(n,Mcy )

o ) is obtained and shown for creation of the optimal formalization of
n=0

the wall similarity temperature gradient. It is seen that with increasing local mixed

convection parameter Mcy o, the wall temperature gradient (— %) will
n=0

increase obviously. It demonstrates the coupled effect of Buoyancy force on heat
transfer coefficient. Meanwhile, both of the local Prandtl numbers Pr,, and Pr,
influence the wall similarity temperature gradient, although the effect of local
Prandtl number Pr, is stronger than that of the local Prandtl number Pr,,. It reflects
the effect of fluid’s variable physical properties on heat transfer of mixed convec-
tion. The work of the present chapter has completed the first step for creation of
Nusselt number formalization. According to the numerical solutions of the wall

similarity temperature gradient (— 89("()—1\,476‘*)) ; effect of the local Prandtl number
n=(

Pr,, was first considered. Then, a system of optimal formalized equations are
obtained where the coefficient a and exponent b are regarded as the functions of
local Prandtl number Pr., at local mixed convection parameter Mc, . In next
chapter, the optimal equations of the coefficient a and exponent b will be obtained
with variation of Prandtl number Pr,, at the mixed convection parameter Mcy .

Keywords Numerical solution . Wall similarity temperature gradient - Local
Prandtl number - Local mixed convection parameter

12.1 Introduction

In Chap. 11 the theoretical heat transfer equations were reported, where it is seen

09('77MC,\‘.3<)
— )
variable for prediction of heat transfer of laminar mixed convection. In this present

that the wall similarity temperature gradient ( ) o is the only unknown
r]:
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chapter, a system of numerical solutions of wall similarity temperature gradient are
obtained for laminar water mixed convection on a vertical flat plate with consid-
eration of coupled effect of variable physical properties. It is seen that with
increasing local mixed convection parameter Mc, o, the wall temperature gradient

(7 89("371‘,476”)) . will increase obviously. Meanwhile, both of the local Prandtl
n=

numbers Pr,, and Pr., influence the wall similarity temperature gradient. However,
the effect of local Prandtl number Pr,, on the wall temperature gradient is stronger
than that of the local Prandtl number Pr,,.

The work in the present chapter will be completed as the first step for creation of
the correlation equations of heat transfer for water laminar mixed convection on a
vertical flat plate. This work is described as below.

The systems of numerical solutions on the wall similarity temperature gradient

(— %W) o will be provided in the present chapter. Then, the effect of the
n=
local Prandtl number Pr, on the wall similarity temperature gradient will be
investigated and the related correlations will be formulated with a system of
exponent functions, where the coefficients and exponents will be regarded as the
functions of local Prandtl number Pr., and local mixed convection parameter
Mcy . In the successive Chapters, the relationship of the system of coefficients and
exponents to local Prandtl number Pr, and mixed convection parameter Mc, », will

be further investigated.

12.2 Numerical Solutions of Wall Similarity Temperature
Gradient at Mc, . = 0

Table 12.1 expresses the system of numerical solutions on the wall temperature
_ 90(n.Mey)

gradient ( o ) of water laminar mixed convection with variation of
n=0

local Prandtl numbers Pr, and Pr,, and at local mixed convection parameter
Mcy o = 0.
For convenient analysis of effect of the local Prandtl number Pr,, on the wall
temperature gradient, the numerical solutions in Table 12.1 are plotted to Fig. 12.1.
With a curve-fitting method, the data of coefficient a and exponent b for the

: 90(n,M b . .
formulated equations (—%) = a% are obtained and shown in
n=0

Table 12.2 to describe the effect of local Prandtl number Pr,, on the wall similarity

- M) . at Mc, o, = 0 with different local Prandtl
n=

temperature gradient ( o

number Pr, for water laminar mixed convection on a vertical flat plate.
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Table 12.1 Numerical solutions of wall similarity temperature gradient (— M) . of
=

on
water laminar mixed convection with variation of local Prandtl numbers Pr,, and Pr,, at local
mixed convection parameter Mc, o, = 0

1o (°C) | Pry Mcyoo =0
Pr,,
1299 |93 | 6.96 14.32 12,97 |22 | 173
tw (OC)
0 |10 |20 140 | 60 | 80 | 100
_ 200 Meyn)
( on )n:()
0 12.99 | 1.138156 | 1.189996 | 1.238782 | 1.321261 | 1.386246 | 1.439942 | 1.485546
10 9.3  |0.975751 |1.012365 |1.054936 | 1.121192 | 1.176783 | 1.224346 | 1.263996
20 6.96 |0.853798 |0.886771 |0.916650 | 0.974311 |1.022599 | 1.062722 | 1.097854
40 432 |0.691774 |0.715126 |0.737547 | 0.778212 |0.814021 | 0.844545 |0.871452
60 297 |0.591948 |0.609447 |0.626077 |0.656926 |0.684133 |0.707876 |0.729085
80 22 |0.527981 |0.540749 |0.553387 |0.577076 |0.598323 | 0.617327 |0.634314
100 1.73 | 0.484708 |0.494315 |0.503927 |0.522399 |0.539293 |0.554553 | 0.568601
2.500000
Mc, . =0
L 2.000000
i
O 7
= | = 1.500000
g” %
)
g p——
. 1.000000 = =
0.500000 = ‘ , ‘ :
0 2 1 14 6 8 10 12 14
Pr,,
Fig. 12.1 Wall similarity temperature gradient <—%) o with variation of local Prandtl
=

numbers Pr,, and Pr, at local mixed convection parameter Mc,, = 0. Note Lines 1 to 7 are
corresponding for Pro, = 1.73, 2.20, 2.97, 4.32, 6.96, 9.3 and 12.99 respectively

12.3 Numerical Solutions of Wall Similarity Temperature
Gradient at Mc, ., = 0.3

In order to investigate the effect of local Prandtl number Pr, on wall similarity

temperature gradient (789("’87%

)y—o at Mcy oo = 0.3 and with variation of local
Prandtl number Pr.,, a system of numerical solutions ( — 89("6—}‘;‘”)) o for the wall
n=

similarity temperature gradient is listed in Table 12.3 corresponding to the laminar
water mixed convection on a vertical flat plate.
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Table 12.2 Coefficient a and exponent b of the formulated correlations (— o i

for the wall similarity temperature gradient with different local Prandtl numbers Pr,, at local
mixed convection parameter Mc, o, = 0

DO(W.MCX,%)) —a ﬂb
=0

For Mc, o, =0

Formulation equation (— 30("’37%)":0 =a };,rr‘yh

Pry a b

1.73 0.5901 0.9207
22 0.6631 0.9087
2.97 0.768 0.8964
4.32 0.9246 0.8851
6.96 1.1734 0.8746
9.3 1.3562 0.8704
12.99 1.6002 0.8676

Table 12.3 Numerical solutions of the wall similarity temperature gradient <— %ﬁ) o at
n=

local mixed convection parameter Mc, o, = 0.3 and with variation of local Prandtl numbers Pr,,
and Pry

t, (°C) | Pry Mcyo =0.3

Pr,,

1299 [93 [ 6.96 1432 [2.97 [2.2 | 1.73

1y (°C)

0 | 10 [20 |40 | 60 | 80 | 100

A0(nMcy o

(7 (78’7 >)17:()
0 1339 | 1245278 | 1.282377 | 1.325292 | 1.403844 | 1.470944 | 1525295 | 1.573716
10 9.46 | 1.089597 | 1.118682 | 1.152112 | 1.212847 | 1.266958 | 1.312429 | 1.352090
20 6.96 | 0.969594 |0.994532 | 1.020738 | 1.070514 | 1.114789 | 1.153357 | 1.187269
40 432 |0.803851 |0.822172 |0.840743 |0.876616 | 0.908015 |0.935894 |0.960833
60 297 ]0.699321 [0.712991 |[0.726756 |0.753051 |0.776779 | 0.797807 | 0.816843
80 22 ]0.630252 | 0.640499 |0.650883 |0.670842 | 0.689018 | 0.705396 |0.720205
100|173 [0.583201 |0.590836 |0.598709 |0.614023 | 0.628158 |0.640978 |0.652915

For convenient analysis of effect of local Prandtl number Pr, on the wall
90(n,Mcy )

temperature gradient (— o

) o the numerical solutions in Table 12.3 are
=

plotted in Fig. 12.2.
With a curve-fitting method, the data of coefficient a and exponent b for the

on - Y Pry,
Table 12.4 to describe the effect of local Prandtl number Pr,, on the wall temper-

— BG("’TAW) at Mc, . = 0.3 with different local Prandtl number
n=0 i

. b . .
formulated equations (— M) =af>” are obtained and shown in
=0

ature gradient (

Pr., for water laminar mixed convection on a vertical flat plate.
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2.500000
Me,. =03
& 2.000000
5 7
= |5 1.500000 bl
E
I p—
= — —
1 1.000000 —_Z==
=
0.500000 , - : : : :
0 2 4 6 8 10 12 14
Pr,
Fig. 12.2 Numerical solutions of wall similarity temperature gradient <— W} . at local
n=

mixed convection parameter Mc, ., = 0.3 and with variation of local Prandtl numbers Pr, and
Pro. Note Lines 1-7 denote Pr,, = 1.73, 2.20, 2.97, 4.32, 6.96, 9.3 and 12.99 respectively

Table 12.4 Coefficienta and p,. _ 53
exponent b of the formulated —

. - b
correlations Formulation equation (7 OH("T’V:X)) =a I;r‘:’
90(n,Mcy.~c) _ Prwb £ =0
T, o P 10T Pry a b
the wall temperature gradient .73 0.6698 0.9439
with different local Prandtl 22 0.7430 0.9336

numbers Pr,, at local mixed

convection parameter 297 0.8477 0.9226

Mc o, =03 4.32 1.0036 0.911
6.96 1.2485 0.8986
9.3 1.4288 0.8914
12.99 1.6739 0.8819

12.4 Numerical Solutions of Wall Similarity Temperature
Gradient at Mc, ., = 0.6

In order to investigate of the effect of local Prandtl number Pr,, on wall similarity

temperature gradient (— 09('707]‘:“*)) at local mixed convection parameter
n=0

Mcy = 0.6 with different local Prandtl number Pry, a system of numerical

_ ag(”ﬁMCX.OC)

solutions of wall similarity temperature gradient ( an

) is listed in
n=0

Table 12.5 corresponding to the laminar water mixed convection.
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Table 12.5 Numerical solutions of the temperature gradient on the wall (— 00(%*;“) N at local
=

mixed convection parameter Mc, », = 0.6 with variation of local Pranstl numbers Pr,, and Pry

ty °C) |Pro  [Mcoo = 0.6

Pr,,

1299 [93 [6.96 [4.32 [2.97 [22 [1.73

ty (°C)

0 |10 [20 [ 40 | 60 [ 80 | 100

(_ avoi.gf’c,\.g) .
0 1299 | 1.324697 [ 1.357077 | 1.394806 | 1.471306 | 1.536780 |1.593853 | 1.643213
10 93 | 1172831 | 1.197755 | 1.225978 | 1.283964 | 1336823 | 1.382704 | 1.422534
20 6.96 | 1.049989 | 1.071250 | 1.095464 | 1.142251 | 1185019 | 1.222765 | 1.256127
40 432 [0.877660 | 0.894116 |0.911169 |0.945431 |0.974910 | 1.001844 | 1.026065
60 297 |0.767034 [0.779605 | 0.792464 |0.817310 | 0.840093 | 0.860016 | 0.878295
80 22 ]0.693268 |0.702813 |0.712591 |0.731492 | 0.748744 | 0.764271 |0.778384
100 [ 173 [0.642774 [0.649904 |0.657325 | 0.671802 | 0.685151 |0.697227 |0.708492

For convenient analysis of effect of local Prandtl number Pr,, on the wall sim-

ilarity temperature gradient (— 60("’57[‘:7%) , the numerical solutions in Table 12.5
n=0

are plotted to Fig. 12.3.
With a curve-fitting method, the data of coefficient a and exponent b for the

_ 00(7]‘Mcx_x)> — g Prwb
on =0 Pry

Table 12.6 to describe the effect of local Prandtl number Pr,, on the wall similarity

are obtained and shown in

formulated equations (

temperature gradient <— %}f"”) o at Mc, o, = 0.6 with different local Prandtl
=

number Pr,, for water laminar mixed convection on a vertical flat plate.

2.500000
Mec,.. =0.6
% 2.000000
E 7
= |~ 1.500000 A
=2(® _
g R
3 E———
1 1.000000 % =
- 7
0.500000 — . . . .
0 2 4 6 8 10 12 14
Pr

Fig. 12.3 Numerical solutions of the wall similarity temperature gradient (— M"TAZC‘*)) . at
=

local mixed convection parameter Mc, o, = 0.6 with variation of local Prandtl numbers Pr,, and
Pro. Note Lines 1-7 denote Pry, = 1.73, 2.20, 2.97, 4.32, 6.96, 9.3 and 12.99 respectively
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Table 12.6 Coefficient a and exponent b of the formulated correlations (f "H(Y’TIZC“» 0
=

b C . . .
al;:TW for the wall similarity temperature gradient with different local Prandtl numbers Pr,, at
local mixed convection parameter Mc, o, = 0.6

Mc, o, = 0.6
Formulation equation <— %ﬂ) = I::rwb

e w
Pry a b
1.73 0.7242 0.9516
22 0.7995 0.9424
2.97 0.9067 0.9325
432 1.0650 0.922
6.96 13115 091
9.3 1.4910 0.9026
12.99 1.7329 0.8911
12.5 Numerical Solutions of Wall Similarity Temperature

Gradient at Mc, , = 1

In order to investigate the effect of local Prandtl number Pr, on wall similarity
temperature gradient at Mc, o, = 1 with variation of Pry, a system of numerical
solutions of wall similarity temperature gradient is listed in Table 12.7 corre-
sponding to the water laminar mixed convection.
For convenient analysis of effect of local Prandtl number Pr,, on the wall sim-
00(n,Mcy )

ilarity temperature gradient ( o

) o the numerical solutions in Table 12.7
n=

can be plotted to Fig. 12.4.

Table 12.7 Numerical solutions of wall similarity temperature gradient <—{M(”"37Azc““)) o with
n=

local mixed convection parameter Mc, ., = 1 and different local Prandtl numbers Pr,, and Pr,

1y (°C) | Pry Mcyoo =1

Pr,

1339 [9.46 [ 6.96 [4.32 [2.97 [22 [ 1.73

1y (°C)

0 |10 120 140 |60 180 | 100

(_ ag(nﬁh“))ﬂzo
0 1299 | 1.411392 | 1.436096 | 1.471559 | 1.546635 | 1.613940 | 1.670774 | 1.721265
10 93 | 1.258770 | 1.280533 | 1305437 | 1.361296 | 1.412980 | 1.458847 | 1.499218
20 696 | 1.131936 | 1.150628 | 1.173549 |1.217622 | 1.259709 | 1.296912 | 1.330407
40 432 0951124 [0.966240 |0.982416 | 1.015251 | 1.044104 | 1.070502 | 1.094392
60 297 | 0.833557 [0.845477 | 0.857826 | 0.881887 | 0.903746 |0.923487 |0.941365
80 22 0754669 |0.763840 |0.773306 | 0.791676 | 0.808447 | 0.823479 |0.837236
100 173 [0.700488 | 0.707357 |0.714555 [ 0.728617 | 0.741553 |0.753213 | 0.764037
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2500000
Mec, . =1

T 2.000000
3 7
S| = 1.500000 —
gl T T— /T ————————=
I —=
IS ——

1 1.000000 —

—
7
0.500000 : : : : : :
0 2 4 6 8 10 12 14

Fig. 12.4 Numerical solutions of the wall similarity temperature gradient (f 66(”071\;17‘*)> . at
n=

local mixed convection parameter Mc,, = 1 with variation of local Prandtl numbers Pr,, and
Pry. Note Lines 1-7 denote Pr,, = 1.73, 2.20, 2.97, 4.32, 6.96, 9.3 and 12.99 respectively

Table 12.8 Coefficienta and —p,.
exponent b of the formulated 2=

correlations Formulation equation (— %) =a [;:Wh
p n n=0 Tw
_ D0(n,Mcy ) _ mb £
on =0 pr, T Pry a b
the wall similarity 1.73 0.7791 0.9568
temperature gradient with 29 0.8575 0.9483
variation of local Prandtl - - -
numbers Pr,, at local mixed 297 0.9683 0.9394
convection parameter 4.32 1.1308 0.9299
Meyoo =1 6.96 1.3811 0.9189
9.3 1.5616 09117
12.99 1.8070 0.8987

With a curve-fitting method, the data of coefficient a and exponent b for the

. b . .
formulated equations (f M) =a % are obtained and shown in
=0 '

on w
Table 12.8 to describe the effect of local Prandtl number Pr,, on the wall similarity
temperature gradient (— ae("diﬂz%“)) o at Mc,,, = 1 with variation of the local
n=

Prandtl number Pr., for water laminar mixed convection on a vertical flat plate.

12.6 Numerical Solutions of Wall Similarity Temperature
Gradient at Mc, , = 3

In order to investigate the effect of local Prandtl number Pr,, on the wall similarity

_ 90(n,Mcy )

temperature gradient ( o

) at local mixed convection parameter
n=0
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Table 12.9 Numerical solutions of wall similarity temperature gradient with Mc,,, = 3 and
variation of Pr,, and Pr.,

t (°C) | Proo | Mcyoo =3

Pr,,

1339 [9.46 1 6.96 1432 12,97 122 [ 1.73

tw (°C)

0 |10 120 140 | 60 180 100

(7 89(17{%&.&)

on =0

0 12.99 | 1.689363 | 1.701487 |1.732472 | 1.805956 | 1.876759 | 1.938181 |1.993063
10 93 | 1.526040 | 1.538685 | 1.560539 | 1.613947 | 1.666495 | 1.714052 | 1757043
20 6.96 | 1383498 | 1396828 |1.417259 |1.458756 |1.500655 | 1538772 | 1573565
40 432 | 1171466 | 1.184569 | 1.199826 | 1.231601 |1.260278 | 1.286671 | 1.310911
60 297 | 1.030731 [ 1.041781 | 1.054023 | 1.077783 | 1.099158 | 1.119203 | 1.137099
80 22 0935332 |0.943883 | 0.953678 | 0.971998 |0.988683 | 1.003294 | 1.017149
100 173 |0.869444 | 0.875656 | 0.883361 |0.897379 |0.910168 |0.921572 | 0.931840

Mcy =3 with variation of local Prandtl number Pr, a system of numerical
solutions of wall similarity temperature gradient is listed in Table 12.9 corre-
sponding to the water laminar mixed convection.

For convenient analysis of effect of local Prandtl number Pr,, on the wall sim-

_90(n,Mey o)

ilarity temperature gradient ( o

) o the numerical solutions in Table 12.9
1’]:

can be plotted to Fig. 12.5.
With a curve-fitting method, the data of coefficient a and exponent b for the

0(n,Mc o b . .
— M) =al%’ are obtained and shown in
n=0

on Pry,

Table 12.10 to describe the effect of local Prandtl number Pr,, on the wall similarity

00(n,Mcy)
On

Prandtl number Pr,, for water laminar mixed convection on a vertical flat plate.

formulated equations (

temperature gradient <— ) at Mcy o, = 3 with variation of the local
n=0

2.500000
Mc, . =3
j‘ 2.000000 7
i -
S| = 1.500000 = ==_
2| — /=
g -
1 1.000000 D 4
1
0.500000 . . . . . .
0 2 4 6 8 10 12 14
Pr,
Fig. 12.5 Numerical solutions of wall similarity temperature gradient (— OO(”TA’?"v . at local
n=

mixed convection parameter Mcy », = 3 with variation of local Prandtl number Pr,, and Pr,. Note
Lines 1-7 denote Pry, = 1.73, 2.20, 2.97, 4.32, 6.96, 9.3 and 12.99 respectively
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Table 12.10 Coefficient Mc. . —3

a and exponent b of the 2 - B

formulated correlations Formulation equation (7 80("87":‘“)) = l;fr‘:’

(7 aH(Y],MCx,oc)> —a pr,b for =0

n p=0  Prv Pry a b

wall similarity temperature 1.73 0.9467 0.9651

gradient with variation of 22 1.0367 0.9582

local Prandtl numbers Pr., at 2' . 5 .

local mixed convection 97 1.1626 0.951

parameter Mc, o, = 3 4.32 1.3437 0.9437
6.96 1.6170 0.935
9.3 1.8105 0.9281
12.99 2.0680 0.9145

12.7 Numerical Solutions of Wall Similarity Temperature
Gradient at Mc, ., = 6

In order to investigate the effect of local Prandtl number Pr,, on the wall similarity
_ 90(n,Mcy )

temperature gradient ( o

) at local mixed convection parameter
n=

Mc, = 6 and with variation of local Prandtl number Pr,,, a system of numerical
solutions of wall similarity temperature gradient is listed in Table 12.11 corre-
sponding to the water laminar mixed convection.

For convenient analysis of effect of local Prandtl number Pr,, on wall similarity
temperature gradient, the numerical solutions in Table 12.11 can be plotted to
Fig. 12.6.

With a curve-fitting method, the data of coefficient a and exponent b for the

. 90(n.Mcno b . .
formulated equations (— %) = a% are obtained and shown in
Y]:O w

Table 12.12 to describe the effect of local Prandtl number Pr,, on the wall similarity

Table 12.11 Numerical solutions of wall similarity temperature gradient with local mixed
convection parameter Mc, ., = 6 and with variation of local Prandtl numbers Pr,, and Pr,,

tno (°C) | Proe [ Mc,oo =6

Pr,

1339 [9.46 | 6.96 432 12,97 [22 | 173

ty (°C)

0 [ 10 [20 |40 | 60 | 80 | 100

(_ ao(n,Mc,,x))

n =0

0 12.99 | 1.938635 | 1.942276 | 1.971920 |2.048034 |2.122693 |2.189365 |2.249323
10 93 | 1761284 | 1.769569 | 1.789273 | 1.843362 | 1.898253 | 1.948682 | 1.994996
20 6.96 | 1.601050 | 1.612009 | 1.632205 | 1.673618 | 1717207 | 1757250 | 1.794318
40 432 | 1.359453 [1.372332 | 1.387534 | 1.420909 | 1.450005 | 1.477742 | 1.503249
60 297 [ 1.197727 [ 1.209234 | 1.221610 | 1.246339 | 1.268849 | 1.289587 | 1.308310
80 22 [1.087681 |1.096989 | 1.106759 | 1.125930 | 1.143351 | 1.158834 | 1.172946
100 1.73 | 1.011472 [ 1.018527 | 1.025976 | 1.040637 | 1.053941 |1.065724 | 1.076720
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2.500000
\f7 Mc, . =6

& 2.000000 % —
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U’ ——
i = 1.500000 —_ L ="
I _
2 —= 7=

L 1.000000 gl'

0.500000 :
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o
Mcy » = 6 and with variation of Pr,, and Pr.,. Note Lines 1 to 7 denote Pro, = 1.73, 2.20, 2.97,
4.32, 6.96, 9.3 and 12.99 respectively

Fig. 12.6 Numerical solutions of wall similarity temperature gradient (f M) . at
=

Table 12.12 Coefficient Moo, =6
a and exponent b of the : - )
formulated correlations Formulation equation (— %) =a I;rrw
00 Mern)\  _ Pryb =0 .
(7 T> r]:()_ “pr Proo a b
for wall similarity 1.73 1.0921 0.9689
temperature gradient with 22 1.1934 0.9624
variation of local Prandtl
numbers Pr., at local mixed 297 1.3346 0.956
convection parameter 432 1.5368 0.9496
Meyoo =6 6.96 1.8367 0.9424
9.3 2.0450 0.9362
12.99 2.3208 0.9225
1 90(n.Mcx.o) _ . .o
temperature gradient (— T) o at Mc, o, = 6 together with variation of the

local Prandtl number Pr,, for water laminar mixed convection on a vertical flat plate.

12.8 Numerical Solutions of Wall Similarity Temperature
Gradient at Mc, ., = 10

In order to investigate the effect of local Prandtl number Pr,, on the wall similarity
A0(n,Mcy )

temperature gradient (— o

) at local mixed convection parameter
n=0

Mc, . = 10 with variation of local Prandtl number Pr.,, a system of numerical
solutions of the wall similarity temperature gradient is listed in Table 12.13 cor-
responding to the water laminar mixed convection.
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Table 12.13 Numerical solutions of wall similarity temperature gradient with local mixed
convection parameter Mc, ., = 10 and with variation of local Prandtl numbers Pr,, and Pr.,

1o °C) | Proe [ Meoo = 10

Pr,,

1339 [9.46 1 6.96 1432 12,97 122 [ 1.73

tw (°C)

0 |10 120 140 | 60 180 100

(7 89(17{%&.&)

on =0

0 1299 |2.162470 [2.161279 [2.190115 [2.269429 [2.349104 |2.421264 |2.486405
10 93 | 1.970982 |1.976324 | 1.995383 |2.051343 |2.109247 |2.163301 |2.212687
20 6.96 [ 1794022 |1.803662 |1.823833 | 1.866800 | 1.912610 | 1.954919 | 1.994458
40 432 | 1.525487 [ 1.538481 | 1.554106 | 1.588478 | 1.619660 | 1.648960 | 1.676034
60 297 | 1.344910 | 1.356893 | 1369831 | 1.395861 | 1.419450 | 1.441429 | 1.461163
80 22 [1.221738 | 1231550 | 1.241809 | 1.262047 | 1.280401 | 1.296648 | 1.311470
100 173 | 1136342 | 1.143815 | 1.151612 | 1.167074 | 1.181052 | 1.193372 | 1.205014

For convenient analysis of effect of the local Prandtl number Pr,, on wall sim-
ao(anCx.oc)

— e

Table 12.13 can be plotted to Fig. 12.7.
With a curve-fitting method, the data of coefficient a and exponent b for the

_ 00(1n,Mcx)
on

ilarity temperature gradient ( ) , the numerical solutions in
n=0

. b . .
formulated equations ( =ap are obtained and shown in

Table 12.14 to describe the effect of local Prandtl number Pr,, on the wall similarity
temperature gradient (— ‘36("07]‘:7’““)) . at Mc, o, = 10 together with variation of the
r]:

local Prandtl number Pr,, for water laminar mixed convection on a vertical flat plate.

2.500000

= 2.000000 _ =—"
g L=~
= ~— -
S| s 1.500000 — 7
=
I 7/\//
° 7
L 1.000000 !
0.500000 : , : : : :
0 2 4 6 8 10 12 14

Fig. 12.7 Numerical solutions of wall similarity temperature gradient <— 19’)(*11871";@.3@)) o at local
=

mixed convection parameter Mc, ., = 10 and with variation of local Prandtl numbers Pr, and
Pro. Note Lines 1 to 7 denote Pry, = 1.73, 2.20, 2.97, 4.32, 6.96, 9.3 and 12.99 respectively
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Table 12.14 Coefficient Mc, o = 10

a and exponent b of the ’ oot P

correlated correlations Formulation equation <7 %) =a Prr‘z]

W Meen)\  _ Pryb 1=
- on ’1:07 a Pry Prm a b

of wall temperature gradient 1.73 1.2211 0.9708

for Mc, ~, = 10 and different 22 1.3330 0.9647

Prandd numbers Pro, 2.97 14885 0.9587
4.32 1.7105 0.9528
6.96 2.0367 0.9464
9.3 2.2622 0.9405
12.99 2.5571 0.9269

It is seen from Figs. 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 and 12.7 that with local
mixed convection parameter Mc, o, the wall temperature gradient

_ 09(”7MC,\',30)
M

numbers Pr,, and Pr,, influence the wall temperature gradient. However, the effect
of local Prandtl number Pr, is stronger than that of the local Prandtl number Pr,,.

) o will increase obviously. Meanwhile, both of the local Prandtl
n=

12.9 Remarks

A system of numerical solutions of wall similarity temperature gradient is obtained
through the numerical calculation. It is seen that with increasing local mixed
convection parameter, the wall temperature gradient will increase obviously.
Meanwhile, both of the local Prandtl numbers under the boundary temperature
conditions influence the wall similarity temperature gradient. However, the effect of
local Prandtl number at the fluid bulk temperature is stronger than that at the wall
temperature.

The work of the present chapter has completed the first step for formalization for
water laminar mixed convection on a vertical flat plate. According to the system of
rigorous numerical solutions of the wall similarity temperature gradient, effect of
the local Prandtl number Pr, was first investigated for formalization of the wall
similarity temperature gradient. Then, a system of the optimal formalized equations
are obtained where the coefficient a and exponent b are regarded as the functions of
local Prandtl number Pry, at the local mixed convection parameter Mc, . It is
verified that the obtained present correlation equations of the wall similarity tem-
perature gradient are reliable.

In next chapter, the optimal formalization of the coefficient a and exponent b
with Prandtl number Pr,, at the mixed convection parameter Mc, ., will be
investigated.



Chapter 13
Effect of Local Prandtl Numbers on Wall
Temperature Gradient

Abstract For investigation of effect of local Prandtl numbers on wall similarity
gradient, in this chapter the work on step 2 is performed for obtaining the system of
data on coefficients and exponents ay, by, a; and b, respectively at different value of
local mixed convection parameter Mc, .. The coefficients and exponents ay, by, as
and b, are rigorously obtained with the optimal curve-fitting approach based on the
system of the data on coefficient a and exponent b. On this basis, the coefficients
and exponents a;, by, a; and b, are attributed to the function of the local mixed
convection parameter Mcy o, respectively. In the next Chapter, our work will focus
on investigation of correlation equations of the coefficients and exponents ay, b, a;
and b, with variation of the local mixed convection parameter Mc, , respectively.

Keywords Curve-fitting method - Wall similarity temperature gradient - Local
Prandtl number - Local mixed convection parameter

13.1 Introduction

For clarification of effect of local Prandtl numbers on wall similarity gradient, in
Chap. 12, we obtained the systems of data on the coefficients a and b corresponding

to the assumed correlation equation (— %W) = a%bj for description of

n=0
effect of local Prandtl number Pr,, on the wall temperature gradient of water laminar
mixed convection. While, the coefficient a and exponent b are respectively assumed
Prl:g
Pro
local Prandtl number Pr, at the special values of local mixed convection parameter
Mec, . In this present chapter, the work will focus on determination of the system
of data a;, by, ap and b;. On this basis, the coefficients and exponents ay, by, a; and
b, will be attributed to the functions of the local mixed convection parameter Mc, o,
respectively.

with correlation equations a = aPr22 and b = b, regarded as the function of
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13.2 Correlation Equations for the Coefficient
a and Exponent b

In this section, we will investigate the correlation equations for the coefficient a and
exponent b with variation of local Prandtl number Pr,, at different values of local
mixed convection parameter Mc, .. To this end, we assume the models a = a; PrZ?

hz . . .
and b = b, %. On this basis, the coefficients a; and b, as well as exponents a; and

b, will be regarded as functions of local mixed convection parameter Mc
respectively.

13.2.1 For Mcy, =0

For convenient analysis of the correlation equations, the relationship of coefficient
a and exponent b with variation of local Prandtl number Pr,, at local mixed
convection parameter Mc, o, = 0 in Table 12.2 is plotted in Figs. 13.1 and 13.2
respectively.

Fig. 13.1 Variation of the ~ 2.0000
coefficient a with the local ® Points of numerical calculation
Prandtl number Pr, at —Eq. 13.1

Me,.. =0 1.5000
> Mcx,w =0 /
S 1.0000

0.5000
0.0000 t t + + t t
0 2 4 6 8 10 12 1
Pr,
Fig. 13.2 Variation of the 1.00
exponent b with the local ® Points of numerical calculation
——Eq. 13.2
Prandtl number Pr., at 0.95 a4
Mcyo =0 ' pp09707
X, T, =
. b=0.9294""= Me, =0
< 0.90 . Pr.,
[ ]
[ ]
0.85
0.80 : : : t t t
0 2 4 6 8 10 12 14
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By using a curve-fitting method, we have the following equations respectively
for expression of the relations of local Prandtl number Pr,, to coefficient a and
exponent b respectively at local mixed convection parameter Mc, o, = 0.

a = 0.4478pPr9. 0%

Pr0‘9707

b=10.9294 —=>—
P

13.2.2 For Mcx o, = 0.3

Foo

(13.1)

(13.2)

For convenient analysis of the correlation, the relationship of coefficient @ and
exponent b with variation of local Prandtl number Pr., at local mixed convection
parameter Mc, ~, = 0.3 in Table 12.4 is plotted in Figs. 13.3 and 13.4 respectively.

By using a curve-fitting method, we have the following equations respectively
for expression of the relations of local Prandtl number Pr,, to coefficient a and
exponent b respectively at local mixed convection parameter Mc, o, = 0.3.

Fig. 13.3 Variation of the
coefficient a with the local
Prandtl number at

Mcyo =0.3

Fig. 13.4 Variation of the
exponent b with the local
Prandtl number Pr., at
Mcyo =0.3

0.95

0.9

0.85

0.8

3.0000

Mec, =03
2.5000 :
2.0000
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a= 0.518Prx,0'4549
1.0000
0.5000
0.0000
2 4 6 8 10 12 14
Pr
Mc, =03
PI' 0.9671
b=0.9583—=
4 6 8 10 12 1.
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a=0518P/%% (13.3)
Pr049671

b =0.9583 —>— 13.4

Pry ( )

13.2.3 For Mcx ., = 0.6

For convenient analysis of the correlation, the relationship of coefficient ¢ and
exponent b with variation of local Prandtl number Pr,, at local mixed convection
parameter Mc, », = 0.6 in Table 12.6 is plotted in Figs. 13.5 and 13.6 respectively.
By using a curve-fitting method, we have the following equations respectively
for expression of the relations of local Prandtl number Pr,, to coefficient a and
exponent b respectively at local mixed convection parameter Mc, o, = 0.6.

_ 0.4334
a = 0.5671Pr_ (13.3)
Pr0‘9688
b =0.9663 —==— (13.6)
Pr,
Fig. 13.5 Variation of the 3.0000
coefficient @ with the local 25000 Me, .06
Prandtl number Pr., at
Mcyoo = 0.6 2.0000
a 15000 220567170
1.0000
0.5000
0.0000
0 2 4 6 8 10 12 14
Pr,
Fig. 13.6 Variation of the 1
exponent b with the local Mc, =06
Prandtl number Pr,, at 0.95
MC ! _ 0 6 PI'W 0.9688
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Pr,
b 09
0.85
0.8
0 2 4 6 8 10 12 14
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13.2.4 For Mc o, =1

For convenient analysis of the correlation, the relationship of coefficient @ and
exponent b with variation of local Prandtl number Pr,, at local mixed convection
parameter Mc, . = 1 in Table 12.8 is plotted in Figs. 13.7 and 13.8 respectively.
By using a curve-fitting method, we have the following equations respectively
for expression of the relations of local Prandtl number Pr,, to coefficient a and
exponent b respectively at local mixed convection parameter Mc, o, = 1.

a = 0.6159P/2417 (13.7)
0.9706
b= 0.9714”% (13.8)

13.2.5 For Mc¢x o, =3

For convenient analysis of the correlation, the relationship of coefficient a and
exponent b with variation of local Prandtl number Pr,, at local mixed convection
parameter Mc, o, = 3 in Table 12.10 is plotted in Figs. 13.9 and 13.10 respectively.

Fig. 13.7 Variation of 3.0000
coefficient a to the local 25000 Me, =1
Prandtl number Pr, at ’
Mcyoo = 1 2.0000
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Fig. 13.8 Variation of the 1
exponent b to the Prandtl bonoe Mc, =1
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Fig. 13.9 Variation of 3 Mo =
coefficient a with the local o5 Cre™
Prandtl number Pr., at
2
Mcyoo =3 a=0.7626Pr."*"
a5
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0.5
0
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Pr,
Fig. 13.10 Variation of the 1
g. 13.10 Mec, =3

exponent b with the local

Prandtl number Pr, at pr 095
Moo =3 0.95 b= 09782 =
b -

0.9

0.85

By using a curve-fitting method, we have the following equations respectively
for expression of the relations of local Prandtl number Pr., to coefficient ¢ and
exponent b respectively at local mixed convection parameter Mc, o, = 3.

a = 0.7626Pr%87 (13.9)
P 0.9753
b= 0.9782;)L (13.10)
rOC

13.2.6 For Mc,, =6

For convenient analysis of the correlation, the relationship of coefficient @ and
exponent b with variation of local Prandtl number Pr,, at local mixed convection
parameter Mc,,, = 6 in Table 12.12 is plotted in Figs. 13.11 and 13.12
respectively.

By using a curve-fitting method, we have the following equations respectively
for expression of the relations of local Prandtl number Pr,, to coefficient a and
exponent b respectively at local mixed convection parameter Mc, o, = 6:
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Fig. 13.11 Variation of
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Fig. 13.12 Variation of
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Pr 0.9781
b =0.9803 —= (13.12)
Pry

13.2.7 For Mcy o, = 10

For convenient analysis of the correlation, the relationship of coefficient a and
exponent b with variation of local Prandtl number Pr,, at local mixed convection
parameter Mc, ., = 10 in Table 12.14 is plotted in Figs. 13.13 and 13.14

respectively.

By using a curve-fitting method, we have the following equations respectively
for expression of the relations of local Prandtl number Pr,, to coefficient a and
exponent b respectively at local mixed convection parameter Mc, o, = 10.
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13.3 Remarks

In this chapter the work on step 2 is completed for obtaining the system of data on
coefficients and exponents ai, by, a, and b, respectively with variation of local
Prandtl number Pr, at different value of local mixed convection parameter Mc, .
The coefficients and exponents a;, by, a; and b, are rigorously obtained with the
curve-fitting approach based on the system of the data on coefficient a and
exponent b. On this basis, the coefficients and exponents a;, by, a, and b, are
attributed to the function of the local mixed convection parameter Mc, , respec-
tively. In the next Chapter, our work will focus on investigation of correlation
equations of the coefficients and exponents a;, by, a and b, with variation of the
local mixed convection parameter Mc, o, respectively.



Chapter 14
Formalized Equations

Abstract By using the data obtained in the last chapter for the coefficients a; and
b, as well as exponents a, and b,, only dependent on the local mixed convection
parameter, in this present chapter, the optimal formalization of the coefficients a;
and b; as well as exponents a, and b, is investigated with variation of the local
mixed convection parameter. On this basis, complete optimal formalized equations
are created for the wall similarity temperature gradient, and for Nusselt number of
laminar water mixed convection on a vertical flat plate. Such complete optimal
formalized equations depend on three physical variables, namely local Prandtl
numbers at the boundary temperatures as well as local mixed convection parameter,
where all fluid’s variable physical properties and physical conditions are included.
On the other hand, since the coupled effect of variable physical properties on mixed
convection and its heat transfer is well taken into account, such optimal formalized
equations not only have theoretical value, but also application value for heat
transfer application of laminar mixed convection.

Keywords Nusselt number - Theoretical equation - Formalized equation
Curve-fitting method - Local Prandtl number - Local mixed convection parameter

14.1 Introduction

In the previous chapters, we investigated correlation equations for coefficient a and
exponent b with variation of the local Prandtl number Pr,, at different local con-
vection parameter Mc, o, according to the assumed correlation equations a =

a Pr? and b = b, %. Meanwhile, we obtained the system of data for the coeffi-
cients a; and b; as well as exponents a, and b,, which depend on the local mixed
convection parameter Mc, o, respectively. In this present chapter, we will investi-
gate the correlation equations for the coefficients a; and b; as well as exponents a;
and b, with variation of the local mixed convection parameter Mcy o, for com-
pleting the derivation of the formulized correlation equations for practical predic-
tion of the wall temperature gradient.
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Table 14.1 Summary the

) ; ~ Coefficients a; and b; as well as exponents a, and b,
correlation equations obtained

in Chap. 13 for coefficient Mey oo a=aPrg b=b P;;‘f

nqmber Pro aF different local 0.3 a = 0.518Pr04% b — 0.9583 P;}iiﬂ

mixed convection parameter 06 @ = 0.5671P/4% b — 0.9663 p;?ixx
1 a = 0.6159Pr%7 b= 09714 P;;i%
3 a = 0.7626Pr%387 b= 0.9782 P;ﬁli“
6 a= 0.8877Pr2§’744 b = 0.9803 %‘Z‘“
10 a = 0.9974pr%367 b= 09817 P;}’i‘”

14.2 Summary of Data for Coefficients a; and b; as Well
as Exponents a, and b;

Now it is necessary to summarize as below the correlation equations obtained in
Chap. 12 for coefficient a and exponent b, which vary with local Prandtl number
Pry at different local mixed convection parameter Mcy . With the assumed cor-
relation equations

a = alprgé (114)
Pro b

b=0>b 11.5

! Pry ( )

The coefficients a; and b; as well as exponents a, and b, with variation of
different local mixed convection parameters Mc, , are summarized in Table 14.2
according to Table 14.1. While, the data in Table 14.1 came from those in Chap. 13.

14.3 Correlation Equations for Coefficients a; and b;
as Well as Exponents a, and b, with Local Mixed
Convection Parameter Mc, .

14.3.1 For Coefficient a,

For convenient analysis of relation of coefficient a; with variation of the local
mixed convection parameter Mc, o, the data on the coefficient a; in Table 14.2 is
plotted as curve in Fig. 14.1.
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1.0 °
® Ponits of numerical calculation
——Equ. (14.1)
0.8
s 0.0003Mc} . - 0.0053Mc?, +0.583Mc, ., +0.455
a =
! (1+Mc, )"
0.6
0.4 t t t t } }
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Mc, .

Fig. 14.1 Variation of coefficient a;, with the local mixed convection parameter Mc, o

By using a curve-fitting method, we have the following equation for expression
of coefficient a; with the local mixed convection parameter Mcy .

0.0003Mc3 _ — 0.0053Mc2 _ +0.583Me, , +0.455
a = 0.75
(14 Mcy o)

(14.1)

14.3.2 For Exponent a,

For convenient analysis of relation of exponent a, with variation of the local mixed
convection parameter Mc, ., the data on the coefficient a, in Table 14.2 is plotted
as curve in Fig. 14.2.

Table 14.2 Coefficients a; and b; as well as exponents a, and b, at different local mixed
convection parameters Mcy o,

P2
a= alPr“Oé and b = by 5=

Proo
Mceoo |0 0.3 0.6 1 3 6 10
a 04478  |0.518 0.5671  |0.6159 07626  |0.8877  |0.9974
@ 04963 04549 04334  |04175 |03879  |0.6344  |0.3673
by 09294 09583  |0.9663 |09714 |09782  |0.9803 |0.9817
b, 09707 [0.9671 09688 |0.9706 |0.9753 |0.9781 |0.9794
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0.5 ®
® Points of numerical calculation
——Equ. (14.2)
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- 1+Mc,,
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00
Fig. 14.2 Variation of exponent a, with the local mixed convection parameter Mc, o

By using a curve-fitting method, we have the following equation for expression
of exponent a, with variation of the local mixed convection parameter Mcy .

—0.0002Mc3 __ +0.0024Mc? _ + 0.3465Mcy o + 0.4895
a = : ; (14.2)
1+ Mcy

14.3.3 For Coefficient by

For convenient analysis of the variation of coefficient b; with the local mixed
convection parameter Mc, ., the coefficient b; with different local mixed convec-
tion parameter in Table 14.2 is plotted as curve in Fig. 14.3.

By using a curve-fitting method, we have the following equation for expression
of exponent b; with variation of the local mixed convection parameter Mcy .

0.0003Mc? . — 0.0047Mc?2  + 1.005Mcy . +0.9392
by = S (14.3)

14.3.4 For Exponent b,

For convenient analysis of the variation of exponent b, with the local mixed
convection parameter Mc, ., the data of exponent b, with variation of the local
mixed convection parameter in Table 14.2 is plotted as curve in Fig. 14.4.

By using a curve-fitting method, we have the following equation for expression
of exponent b, with variation of the local mixed convection parameter Mcy .
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Fig. 14.4 Variation of exponent b, with the local mixed convection parameter Mc,

) 0.0003Mc; 4 0.9782Mcy o 4 0.9652
2 1+ Mc,

(14.4)

14.4 Summary for Optimal Formalization of Nusselt
Number

The optimal formalized equations of Nusselt number of laminar mixed convection
on a vertical flat plate with consideration of variable physical properties are sum-
marized as below:
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1. Theoretical equations of Nusselt number of laminar mixed convection

(a) Theoretical equation of local Nusselt number

1/2
Nuy,, = <1R€x.oo) <_ 80(1’],1\/16‘,600)) (11'1)
’ 2 7 on §=0

where the local Nusselt number is defined as Nuy,, = =

(b) Theoretical equation of average Nusselt number

Nity,, = ﬁ(Rex,m)‘/z(— M) (11.2)
on 1=0

where the average Nusselt number is defined as Nuy,,, = 2

2. Optimal formalized equations of the wall similarity temperature gradient

(— ag("b—%) for water laminar mixed convection on a vertical flat plate
n=0
90(n, Mcy,o _
(("’ “ )) = aprt™! (11.3)
on 1=0
where
a:alprgé (114)
b= b Pr2! (11.5)

where the coefficients a; and b; as well as exponents a, and b, are evaluated by the
following equations respectively:

0.0003Mc} , — 0.0053Mc2 . +0.583Mey . +0.455

a = 14.1
l (14 Me, )" (14.1)
—0.0002Mc?  +0.0024Mc?  + 0.3465Mcy o« + 0.4895

a = * (14.2)

1+ Mc,
0.0003Mc, 2 — 0.0047Mc2 _ + 1.005Mcy », +0.9392

by = ~r : (14.3)

1+ Mcy
0.0003Mc?2 . +0.9782Mc, ~ +0.9652
by = : (14.4)

1+ Mcy

The theoretical Eqs. (11.1) and (11.2) of laminar mixed convection combined
with the optimal formalized Eqs. (11.3)—(11.5) and (14.1) to (14.4) consist of the
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complete optimal formulated equations of Nusselt number for evaluation of heat
transfer for water laminar mixed convection on a vertical flat plane. These for-
malized equations are optimal, and have theoretical and practical application value,
because they are obtained by means of a system of rigorous numerical solutions,
optical curve-fitting method, better similarity transformation model, consideration
of coupled effect of variable physical properties.

14.5 Remarks

The data obtained in last chapter are used for creation of optimal formalization of
the coefficients a; and b, as well as exponents a, and b, for the third step of the
formalization of the Nusselt number. The coefficients a; and b; as well as expo-
nents a, and b, only depend on the local mixed convection parameter Mc,
respectively. On this basis, the work in this present chapter is to investigate the
optimal formalized equations of coefficients a; and b; as well as exponents @, and
b, with variation of the local mixed convection parameter Mc, ... The complete
optimal equations for Nusselt number of laminar mixed convection on a vertical flat
plate are created by combination of the optimal formalization of the wall similarity
temperature gradient of laminar mixed water convection on a vertical flat plate with
the theoretical equations on Nusselt number. It is seen that the Nussel number
depends on the three physical variable, namely local Prandtl numbers Pr, and Pr,,
as well as local mixed convection parameter Mc, ,. While, all variable physical
properties and physical conditions are involved in the three physical variables. The
formalized equations are optimal, and have theoretical and practical application
value, because they are obtained by means of a system of rigorous numerical
solutions, optical curve-fitting method, better similarity transformation model,
consideration of coupled effect of variable physical properties. Although the present
provided formalized equations of Nusselt number are only suitable for water
laminar mixed convection on vertical plate, we are sure, all corresponding study
methods and investigating procedure in this book will be benefit to the whole
research field of laminar mixed convection.



Chapter 15
Verification and Application of Optimal
Formalized Equations

Abstract A series of calculations are performed for verification of the optimal
formalized equations of Nusselt number. While, such optimal formalized equations
are based on the rigorous numerical solutions of the wall similarity temperature
gradient. The calculated results are very well coincident to the related numerical
solutions on the wall similarity temperature gradient. Then, the optimal formalized
equations of Nusselt number, which are based on consideration of coupled effect of
variable physical properties have solid theoretical and practical value. Three cal-
culation examples are given for evaluation of water mixed convection heat transfer,
and demonstrate that the deviations of heat transfer rate with consideration of
Boussinesq approximation is up to over 8.4 % to that with consideration of coupled
effect of variable physical properties.

Keywords Verification - Formalized equation - Nusselt number - Calculation
examples - Wall similarity temperature gradient - Heat transfer - Mixed convec-
tion - Variable physical properties

15.1 Introduction

In the previous chapters, we have done two works: First, the theoretical equations of
Nusselt number are derived out, for heat transfer application where the wall tem-
perature gradient is only one unknown variable for prediction of heat transfer
coefficient. Second, according to the systems of numerical solutions, the correlation
equations for the wall temperature gradient of laminar water mixed convection on a
flat plate are created by means of a series of processes based on the curve-fitting
approach. Then, it is realized to achieve optimal equations of Nusselt number for
practical calculation of heat transfer coefficient of laminar water mixed convection
by combination of the theoretical equations of Nusselt number with the correlation
equations of the wall similarity temperature gradient. Since the numerical solutions
for the wall similarity temperature gradient are obtained with consideration of
coupled effect of variable physical properties, the complete optimal equations of
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Nusselt number on laminar mixed convection have theoretical and practical value
on heat transfer application. In this chapter, we further verify the accuracy of the
formulated correlation equations on the temperature equations in order to confirm
the practical value of the optimal equations of Nusselt number of laminar mixed
convection. At the end of this chapter, some practical calculation examples by using
the optimal formalized equations of Nusselt number of laminar water mixed con-
vection are applied for the practical calculation of heat transfer of laminar water
mixed convection. On the other hand, these calculation examples also proved the
importance of consideration of variable physical properties for enhancement of
theoretical and practical value on in-depth study of convection heat transfer.

15.2 Verification Steps of the Formalized Equations

For verification of the formulated equations on wall similarity temperature gradient,
the following steps of work will be processed:

Step 1: To evaluate a;, a», by, and b, by using Egs. (14.1)—-(14.4), i.e.

0.0003Mc3 _ — 0.0053Mc2_ + 0.583Me, o, + 0.455

a) = =0455 (14.1)
(1 +MCX700)0.75
—0.0002M¢c3 4 0.0024Mc? 4 0.3465Mcy o + 0.4895
a = * ; ' =0.4895 (14.2)
1+ Mcy
0.0003Mc? _ — 0.0047Mc2 _ + 1.005Mcy », +0.9392
by = ’ ’ =0.9392 (14.3)

1+ Mcy

0.0003Mc3 , +0.9782Mc, . +0.9652
= 1+ Mcy

=0.9652 (14.4)

Step 2: To evaluate a and b by using Egs. (11.4) and (11.5), i.e.
a=aPre (11.4)

b =bPri! (11.5)

Step 3: To evaluate the wall similarity temperature gradient by using Eq. (11.3), i.e.

(_ 00(n, Mc,. )

) =aPr’' (0.3<Pr, <20) (11.3)
oy 1=0
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Step 4: Compare the evaluated results on the wall similarity temperature gradient
with the related numerical solutions.

Here, the work for steps 1-3 is for evaluation of the wall similarity temperature
gradient actually.

15.3 Verification

By using formalized equations in above steps 1-3, the prediction and verification
results are obtained for the wall similarity temperature gradient, and listed in the
following tables respectively for Mc, o, =0, 0.3, 0.6, 1, 3, 6 and 10, with variation
of local Prandtl numbers Pr,, and Pr..

15.3.1 For Mc¢x, = 0

For Mcy », = 0, the calculation results for coefficients and exponents a;, a,, b; and
b, as well as for the wall similarity temperature gradient are listed in Table 15.1.

Compared with the corresponding numerical solutions at Mc, », = O reported in
Chap. 12, the deviations of the predicted data in Table 15.1 for the wall similarity
temperature gradient of laminar mixed convection of water on a vertical flat plate
are predicted, and the prediction deviations are shown in Table 15.2.

It is seen from Table 15.2 that the maximum predicted deviation by using the
present correlation equations for laminar mixed convection of water on a vertical
flat plate is less than 2.76 % at Mc, o, = 0.

15.3.2 For Mcyx o, = 0.3

For Mc, , = 0.3, the coefficients and exponents a;, a, by and b, as well as the
calculation results for the wall similarity temperature gradient are listed in
Table 15.3.

Compared with the corresponding numerical solutions at Mc, , = 0.3 reported
in Chap. 12, the deviations of the predicted data in Table 15.3 for the wall similarity
temperature gradient of laminar mixed convection of water on a vertical flat plate
are evaluated, and shown in Table 15.4.

It is seen from Table 15.4 that the maximum predicted deviation by using the
present correlation equations for laminar mixed convection of water on a vertical
flat plate is less than 2.98 % at Mc, o, = 0.3.


http://dx.doi.org/10.1007/978-3-319-27959-6_12
http://dx.doi.org/10.1007/978-3-319-27959-6_12
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15.3.3 For Mc o, = 0.6

For Mc, ~, = 0.6, the coefficients and exponents a;, az, b; and b,, as well as the
calculation results for the wall similarity temperature gradient are listed as below.

Compared with the corresponding numerical solutions at Mc, . = 0.6 reported
in Chap. 12, the deviations of the predicted data in Table 15.5 for the wall similarity
temperature gradient of laminar mixed convection of water on a vertical flat plate
are evaluated, and shown in Table 15.6.

It is seen from Table 15.6 that the maximum predicted deviation by using the
present correlation equations for laminar mixed convection of water on a vertical
flat plate is less than 1.72 % at Mc, o, = 0.6.

15.3.4 For Mcy o, = 1

For Mc,, = 1, the coefficients and exponents a;, az, by and b,, as well as the
calculation results for the wall similarity temperature gradient are listed in
Table 15.7.

Compared with the corresponding numerical solutions at Mc, », = 1 reported in
Chap. 12, the deviations of the predicted data in Table 15.7 for the wall similarity
temperature gradient of laminar mixed convection of water on a vertical flat plate
are evaluated, and shown in Table 15.8.

It is seen from Table 15.8 that the maximum predicted deviation by using the
present correlation equations for laminar mixed convection of water on a vertical
flat plate is less than 1.71 % at Mc, o, = 1.

15.3.5 For Mcy, = 3

For Mc, ., = 3, the coefficients and exponents a;, az, by and by, as well as the
calculation results for the wall similarity temperature gradient are listed in
Table 15.9.

Compared with the corresponding numerical solutions at Mc, ,, = 3 reported in
Chap. 12, the deviations of the predicted data in Table 15.9 for the wall temperature
gradient of laminar mixed convection of water on a vertical flat plate are evaluated,
and shown in Table 15.10.

It is seen from Table 15.10 that the maximum predicted deviation by using the
present correlation equations for laminar mixed convection of water on a vertical
flat plate is less than 1.92 % at Mc, ., = 3.


http://dx.doi.org/10.1007/978-3-319-27959-6_12
http://dx.doi.org/10.1007/978-3-319-27959-6_12
http://dx.doi.org/10.1007/978-3-319-27959-6_12
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15.3.6 For Mcx, = 6

For Mc, ~, = 6, the coefficients and exponents a;, ap, b; and b, as well as the
calculation results for the wall similarity temperature gradient are listed in
Table 15.11.

Compared with the corresponding numerical solutions at Mc, », = 6 reported in
Chap. 12, the deviations of the predicted data in Table 15.11 for the wall tem-
perature gradient of laminar mixed convection of water on a vertical flat plate are
evaluated, and shown in Table 15.12.

It is seen from Table 15.12 that the maximum predicted deviation by using the
present correlation equations for laminar mixed convection of water on a vertical
flat plate is less than 1.95 % at Mc, o, = 6.

15.3.7 For Mcy o, = 10

For Mc, , = 10, the coefficients and exponents a;, a,, b; and b,, as well as the
calculation results for the wall similarity temperature gradient are listed in
Table 15.13.

Compared with the corresponding numerical solutions at Mc, o, = 10 reported in
Chap. 12, the deviations of the predicted data in Table 15.13 for the wall similarity
temperature gradient of laminar mixed convection of water on a vertical flat plate
are evaluated, and shown in Table 15.14.

It is seen from Table 14.14 that the maximum predicted deviation by using the
present correlation equations for laminar mixed convection of water on a vertical
flat plate is less than 2.1 % at Mc, o, = 10.

It is seen that the prediction of the wall similarity temperature gradient of laminar
mixed convection of water on a vertical flat plate is so reliable that the maximum
evaluation deviation is lower than 3 % for 0 <Mc,, <10 compared with the
related systems of numerical solution. Meanwhile, there are 94 % of the evaluated
values of the wall similarity temperature gradient with the predicted deviation
which is located under 2 %.

On the other hand, all such systems of numerical solutions are based on con-
sideration of coupled effect of variable physical properties, and then, have solid
theoretical and practical value. Therefore the provided optimal formalized equations
of Nusselt number based on the systems of numerical solutions have solid theo-
retical and practical value too.


http://dx.doi.org/10.1007/978-3-319-27959-6_12
http://dx.doi.org/10.1007/978-3-319-27959-6_12
http://dx.doi.org/10.1007/978-3-319-27959-6_14
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15.4 Calculation Example 1
15.4.1 Question

A flat plate with b = 0. 1 m in width and x = 0.10 m in length is suspended vertically
in the space of water. The bulk velocity is wy o, = 0.1 m/s parallel to plate (see Fig. 3.
1). The bulk temperature is ¢z, = 0 °C, and the plate temperature is t,, = 20 °C.
Suppose the mixed convection is laminar, please calculate the mixed convection heat
transfer on the plate.

15.4.2 Solution

1. Analysis of heat transfer calculation

The theoretical equations of average Nusselt number of laminar water mixed
convection are expressed as follows:

Dy X

The average Nusselt number with definition Nu,,, = == is expressed as

Nt = V3(Rey ) /2 — 2001 Meroc)
X,W X,00 a'/l }1:0

_ 90(n,Mc)
on

unknown variable. Then, evaluation of Nusselt number is attributed to the issue for

evaluation of the wall similarity temperature gradient. It can be expressed as

(_ ae(naMCx,oc)> — aPrb’l
n=0 "

Here, the wall similarity temperature gradient ( ),720 is the only

on
where
a=aPr
b= blPrgé

where the coefficients and exponents a;, ay, b; and b, are evaluated by the fol-
lowing equations:

0.0003Mc; , — 0.0053Mc; 4 0.583Mcy o + 0.455
a = 075
(1+Mc, )

*0-0002Mci,oo + 0.0024Mc)2c‘Oo +0.3465Mcy o +0.4895
1+ Mcy

ay =
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0.0003MC)3C o = 0.0047Mc)zc o +1.005Mc, o, +0.9392
b = : -
14 Mcy

0.0003Mc2 . +0.9782Mc, +0.9652
2 1+ Mc, .

From the above complete correlation equations for optimal equations of Nusselt
number, it is clear how to calculate heat transfer of laminar water mixed convection.

2. Decision of physical properties and parameters, namely local Prandtl number
Pr,,, local Prandtl number Pr,, and local mixed convection parameter Mc, ..

According to the Appendix we have Pr,, = 6.96 at 1, = 20 °C, Pro, = 12.99 at

ts = 0 °C for water.
For local mixed convection parameter Mc, ., we have

-2
Mc = G}’X_C,CRex’oc

where

— 1)’
Rex,oo _ Wy 00X and Gry . = g(poc//);; )
Voo : vZ

Here, some telated local physical properties need to be determined.

According to the Appendix we have A, = 0.602W/(m°C) and p,, = 998.2
kg/m? at £, = 20 °C, and p., = 999.9 kg/m? and v,, = 1.7527 x 10~°m?/s at
t = 0 °C. Then,

WyooX 0.1 x0.1 _
Rewe = T 17527 x 1076 212
— 1) 9.8x(999.9/998.2 — 1) x 0.1°
Grom — 8(Poc/pywy — )X 9.8 % (999.9/ ) X017 _ < 433,031

v (1.7527 x 10-6)*
Mcy oo = GryooRe, > = 5,433,031.9/5705.5% = 0.1669

3. Evaluation of the wall similarity temperature gradient.
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0.0003Mc3 _ — 0.0053Mc2 . +0.583Mc . +0.455
ar = (1 + Meyo )"
_0.0003 x 0.1669% — 0.0053 x 0.1669% 4+ 0.583 x 0.1669 + 0.455
B (140.1669)"7

0.507137
—0.0002Mc;  +0.0024Mc2 | + 0.3465Mc o + 0.4895

- 1+Mc, o

—0.0002 x 0.1669 +0.0024 x 0.1669% + 0.3465 x 0.1669 + 0.4895

- 1+0.1669

= 0.469103
0.0003Mc>  — 0.0047Mc2 _ + 1.005Mcy ~ + 0.9392
b = ’ 1 —|—Mcx,oo
0.0003 x 0.1669° — 0.0047 x 0.1669% + 1.005 x 0.1669 + 0.9392
- 1+0.1669

= 0.948500
0.0003Mc; , + 0.9782Mc; o 4 0.9652
2 14+ Mcy
0.0003 x 0.1669% +0.9782 x 0.1669 + 0.9652
- 1+0.1669

= 0.9670665
Then,

a=aPr2 =0.507137 x 12.99"401% = 1.688584

Prbz 12‘990.9670665
b blProo 0.9 8500><12.99 0.87169
M. P b . 0.871692
(— M) — P _ ) g88584 % 020 — 1.316465
on n—o  Pru 6.96

4. Evaluation of heat transfer from the plate

The average Nusselt number with definition Nu,,, = Tx is calculated by

w

Nityyy = \/E(Rem)‘/z( M)
an =0

Then,
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s = Va(Rer0) (- 200 e
n=0

on
= V/2(5705.5)"/% x 1.316465
= 140.6278
Oy = 0y(ty —tso) X x X b
Jow

=2 Ny (ty —10) X x X b
X

= AwNityy(ty — 1oo) X b
= 0.602 x 140.6278 x (20 — 0) x 0.1
=169.3W

Question 1 here in this chapter is actually same as the question 1 in Chap. 6. From the
calculated results it is seen that the deviation of heat transfer rate Q. for consideration of
Boussinesq approximation is 8.39 % to that for consideration of fluid’s variable
physical properties. It clearly proves that Boussinesq approximation or ignoring
fluid’s variable physical properties will severely weaken the theoretical and practical
value for study of convection heat transfer, and only reasonable consideration of
coupled effect of variable physical properties has the theoretical and practical value.

15.5 Calculation Example 2
15.5.1 Question

All geometric and physical conditions in example 1 are kept in the present question
except t,= 40 °C. Suppose the mixed convection is laminar, please calculate the
mixed convection heat transfer on the plate.

15.5.2 Solution

1. Heat transfer analysis is same as that in the above solution.
2. Decision of some local physical properties and parameters.

According to the Appendix we have Pr,, = 4.32 at t,, = 40 °C, Pro, = 12.99 at
ts = 0 °C for water.
For local mixed convection parameter Mc, o, we have

-2
Mc = G}’X_OCReX’oc

where
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_ g(poc/pw B 1))‘3

Voo ’ v

According to the Appendix we have 4, =0.630W/(m°C) and p, =
992.2kg/m? at ,, = 40 °C, and p,, = 999.9kg/m’ and v,, = 1.7527 x 10-®m?/s
at t,o = 0 °C. Then,

Wy 00X 0.1 x0.1
Rey oo =——— = = 5705.5
& v 17527 x 10-©
=D 9.8x%(999.9/992.2 — 1) x 0.1
er’oc :g(pOC/pw )x — X ( / ) X :24’757’250

V4 (1.7527 x 10-6)?
Mey o = GryooRe 2 = 24,757,250/5705.5% = 0.760528

3. Evaluation of the wall similarity temperature gradient.

0.0003Mc? . — 0.0053Mc? _ +0.583Mcy c +0.455
ar = (1 + Me,o )"
~0.0003 x 0.760528% — 0.0053 x 0.7605287 + 0.583 x 0.760528 + 0.455
B (140.760528)"7

= 0.585883
—0.0002Mc; 4 0.0024Mc;  + 0.3465Mc; o, + 0.4895
1+ Mcy o

~—0.0002 x 0.760528° +0.0024 x 0.7605282 + 0.3465 x 0.760528 + 0.4895
- 14 0.760528

a; =

— 0.428464
- 0.0003Mc3 , — 0.0047Mc2 _ + 1.005Mc, . +0.9392
: 1+ M, o,
~0.0003 x 0.760528% — 0.0047 x 0.760528% + 1.005 x 0.760528 +0.9392
- 1+0.760528

= 0.966156
0.0003Mc3 4 0.9782Mc;. o +0.9652
2= 1+Mc, o
0.0003 x 0.7605282 4+ 0.9782 x 0.760528 -+ 0.9652
- 1 +0.760528

=0.970914
Then,
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a = aPr2 = 0.585883 x 12.99°42846 — 1757731

Prbz 12-990.970914
b =0b—==0.966156 = 0.89672
P *12.99
90(n, Mc, o prh 4.3208972
_ 900 Meroe )\ _ Py 757731 1 232 L s11102
on n—0  Prw 4.32
4. Evaluation of heat transfer from the plate
The average Nusselt number defined as Nu,,, = Tx is evaluated by

m} _ \/E(Re )1/2 786(”,Mcx,oo)
X,W X,00 877 1o

Then,

— 00(n, M
Nux,w = \/_2(Rex,c3)1/2 (— M)
n=0

on
= V/2(5705.5)"/% x 1.511192
= 161.429
Oy = 0y(ty —too) X x X b
Jow

=2 Ny (ty —10) X x X b
X

= ANty (ty — 1o0) X b
= 0.630 x 161.429 x (40 — 0) x 0.1
= 406.8W

Question 2 here in this chapter is actually same as the question 2 in Chap. 6.
From the calculated results it is seen that the deviation of heat transfer rate Q, for

consideration of Boussinesq approximation is 5.28 % to that for consideration of
fluid’s variable physical properties.

15.6 Calculation Example 3
15.6.1 Question

All geometric and physical conditions in example 1 are kept except ¢, = 40 °C and
o = 20 °C. Suppose the mixed convection is laminar, please calculate the mixed
convection heat transfer on the plate.
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15.6.2 Solution

1. Heat transfer analysis is same as that in the above solution.
2. Decision of some local physical properties and parameters.

According to the Appendix we have Pr,, = 4.32 at t,, = 40 °C, Pr,, = 6.96 at
ts = 20 °C for water.
For local mixed convection parameter Mc, o, we have

Mc, o = ermRe;iC
where

— D3
_ WX Gren = g(poc/p;v )x
: v

o0

Here, the physical properties p.., p,, and v, need to be determined.

According to the Appendix we have 4, =0.630W/(m°C) and p, =
992.2kg/m? at t,, = 40 °C, and p._ = 998.2kg/m* and v, = 1.0033 x 10-°m?/s
at t,, = 20 °C. Then,

Wy oo X 0.1 x 0.1
R = > = = 7
e = T T0033 x 106 0
— 1) . 2/992.2 —1 13

v (1.0033 x 10-6)?
Me, oo = GryocRe, o, = 58,873,042/9967° = 0.5926

3. Evaluation of the wall similarity temperature gradient.
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0.0003Mc3 _ — 0.0053Mc>_ +0.583Mc, . + 0.455
ap = ' 075
(1+Mc, )
_ 0.0003 x 0.5926° — 0.0053 x 0.5926% + 0.583 x 0.5926 + 0.455
(1+0.5926)°7

0.563374
—0.0002Mc3  +0.0024Mc2 _ +0.3465Mc; . +0.4895
- 1+Mc, o
~0.0002 x 0.5926 +0.0024 x 0.59262 +0.3465 x 0.5926 + 0.4895
- 1+0.5926

= 0.436793
0.0003Mc>  — 0.0047Mc2 _ + 1.005Mcy ~ + 0.9392
b = ’ 1 —|—Mcx,oo
0.0003 x 0.5926% — 0.0047 x 0.59267 + 1.005 x 0.5926 +0.9392
- 140.5926

= 0.962687
0.0003Mc; , +0.9782Mcy o, +0.9652
2= 1+ Mcy oo
0.0003 x 0.5926% +0.9782 x 0.5926 + 0.9652
- 1+0.5926

=0.970103
Then,

a=aPr2 =0.563374 x 6.96"%%7% = 1314238

0.970103

b— b, £7% _ 0.062687 x & —0.908434
R - 696
b 0.908434
(—M) o aa03s x 2 14003
an o Pr, 432

4. Evaluation of heat transfer from the plate

From Chap. 11, we have

Oy X

The average Nusselt number defined as Nu,,, = == can be calculated by

00(n, Mcy.0o0)

mxﬁw = \/E(Rex,oc)l/z(i (c)’,l )ﬂ:O

Then,


http://dx.doi.org/10.1007/978-3-319-27959-6_11
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_ 00(n, Mcy
Nuty,y = \/i(Rex,m)l/z(_(arl))qO
= v/2(9967)"% x 1.14903

=162.23
Oy = Oy(ty — tx) Xx X b

= A—me.w(tw — o) XX X b
Vi

= ANty (ty — too) X b
= 0.630 x 162.23 x (40 —20) x 0.1
=204.41W

Question 3 here in this chapter is actually same as the question 3 in Chap. 6.
From the calculated results it is seen that the deviation of heat transfer rate Q, for
consideration of Boussinesq approximation is 4.2 % to that for consideration of
fluid’s variable physical properties.

Comparing the evaluated results on heat transfer by using the optimal formalized
equations in this chapter for consideration of variable physical properties with those
in Chap. 6 evaluated by using the optimal formalized equations for consideration
Boussinesq approximation, the following conclusions can be obtained:

Boussinesq approximation will lead to the evaluation deviation of heat transfer
because the variable physical properties are not taken into account. Such evaluation
deviation of heat transfer will increase with decreasing the bulk temperature 7,
(i.e. increasing Pr,), and can be up to over 8 % for a lower bulk temperature 7.,. In
addition, the evaluation deviation of heat transfer will increase with decreasing the
wall temperature #, (i.e. increasing Pr,) also. However, the effect of the bulk
temperature f,, on heat transfer coefficient much higher than that of the wall
temperature #,. It clearly proves that Boussinesq approximation or ignoring fluid’s
variable physical properties will severely weaken the theoretical and practical value
for study of convection heat transfer, and only reasonable consideration of coupled
effect of variable physical properties has the theoretical and practical value.
Therefore, it is necessary to consider coupled effect of variable physical properties
for assurance of the theoretical and practical value of the research on convection
heat transfer.

15.7 Remarks

In this chapter, the accuracy of the formulated correlation equations on the wall
similarity temperature gradient was verified by using the comparison to the system
of numerical solutions. Furthermore, since such correlation equations are based on
the numerical solutions related to consideration of coupled effect of variable
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physical properties, it can be confirmed that the formulated correlation equations on
the wall similarity temperature gradient and heat transfer of laminar water mixed
convection have practical application value.

At the end of this chapter, a calculation example by using the formalized
equations of Nusselt number on laminar water mixed convection was performed,
and the following conclusions are obtained:

1. Boussinesq approximation will lead to evaluation deviation of heat transfer due
to the variable physical properties are not taken into account. With increasing
the difference Pry, — Pr,, such deviation will increase. The detailed regulation
of the effect of the difference Pr,, — Pr,, on the evaluation deviation of heat
transfer need to be further investigated.

2. Boussinesq approximation or ignoring fluid’s variable physical properties will
severely weaken the theoretical and practical value for study of convection heat
transfer, and only reasonable consideration of coupled effect of variable physical
properties has the theoretical and practical value.



Appendix A

Tables with Physical Properties

Appendix A.1

Physical Properties of Gases at Atmospheric Pressure

TK) |pkgm®) |c, ux10°  |vx10° 2 ax10® |pPr
[kJ/(kg °C)] | [kg/(m s)] |(m?/s) [W/(m °C)] | (m%s)

Air [1]

100 |3.5562 1.032 7.11 1.999 0.00934 254 |0.786
150 | 2.3364 1.012 10.34 4.426 0.0138 584 [0.758
200 | 1.7458 1.007 13.25 7.59 0.0181 103 |0.737
250 | 1.3947 1.006 15.96 11.443 0.0223 159  |0.720
300 | 1.1614 1.007 18.46 15.895 0.0263 225 |0.707
350 | 0.9950 1.009 20.82 20.925 0.0300 299 |07
400 |0.8711 1.014 23.01 26.415 0.0338 383 |0.69
450 | 0.7740 1.021 25.07 32.39 0.0373 472 |0.686
500 | 0.6964 1.030 27.01 38.785 0.0407 567 |0.684
550 |0.6329 1.040 28.84 45.568 0.0439 66.7 | 0.683
600 | 0.5804 1.051 30.58 52.688 0.0469 769 | 0.685
650 |0.5356 1.063 3225 60.213 0.0497 873  |0.69
700 | 0.4975 1.075 33.88 68.101 0.05240 98 0.695
750 | 0.4643 1.087 35.46 76.373 0.0549 109 0.702
800 | 0.4354 1.099 36.98 84.933 0.0573 120 0.709
850 | 0.4097 1.11 38.43 93.8 0.0596 131 0.716
900 | 0.3868 1.121 39.81 102.921 0.0620 143 0.720
950 | 0.3666 1.131 41.13 112.193 0.0643 155 0.723
1000 | 0.3482 1.141 42.44 121.884 0.0667 168 0.726
1100 |0.3166 1.159 44.9 141.819 0.0715 195 0.728
1200 | 0.2920 1.175 473 161.986 0.0763 224 0.728

(continued)
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TK) |pkgm®) |c, ux10°  |vx10° yl ax10® |Pr
[kJ/(kg °C)] | [kg/(m s)] |(m?/s) [W/(m °C)] | (m%/s)
Monoxide, CO [1]
200 | 1.6888 1.045 127 7.5201 0.017 9.63 |0.781
220 | 1.5341 1.044 13.7 8.9303 | 0.0190 11.9  [0.753
240 | 1.4055 1.043 14.7 10.4589 | 0.0206 14.1 0.744
260 | 1.2967 1.043 15.7 12.1077 | 0.0221 163 |0.741
280 [1.2038 1.042 16.6 13.7897 | 0.0236 18.8  |0.733
300 | 1.1233 1.043 17.5 15.5791 0.025 213 [0.730
320 | 1.0529 1.043 18.4 17.4755 | 0.0263 239  [0.730
340 |0.9909 1.044 193 194772 | 0.0278 269 0725
360 |0.9357 1.045 20.2 21.5881 0.0291 298  [0.729
380 | 0.8864 1.047 21 23.6913 | 0.0305 329 0719
400 | 0.8421 1.049 21.8 258877 | 0.0318 360 0719
450 | 0.7483 1.055 237 31.6718 | 0.0350 443 |0714
500 | 0.67352 1.065 25.4 377123 | 0.0381 53.1 0.710
550 | 0.61226 1.076 27.1 442622 | 0.0411 624  |0.710
600 | 0.56126 1.088 28.6 50.9568 | 0.0440 72.1 0.707
650 |0.51806 1.101 30.1 58.1014 | 0.0470 824  |0.705
700 | 0.48102 1.114 315 65.4858 | 0.0500 933  |0.702
750 | 0.44899 1.127 329 73.2756 | 0.0528 104 0.702
800 | 0.42095 1.140 343 81.4824  [0.0555 116 0.705
Helium, He [1]
100 | 0.4871 5.193 9.63 19.77 0.073 289  |0.686
120 | 0.406 5.193 10.7 26.36 0.0819 388  [0.679
140 |0.3481 5.193 11.8 33.90 0.0907 502 |0.676
160 | 0.30945 5.193 12.9 41.69 0.0992 632 |0.6745
180 |0.2708 5.193 13.9 51.33 0.1072 762 |0.673
200 | 0.2462 5.193 15 60.93 0.1151 91.6  |0.674
220 | 0.2216 5.193 16 72.20 0.1231 107 0.675
240  |0.20455 5.193 17 83.11 0.13 124 0.6785
260 | 0.1875 5.193 18 96 0.137 141 0.682
280 | 0.175 5.193 19 108.57 0.145 160.5 | 0.681
300 | 0.1625 5.193 19.9 122.46 0.152 180 0.68
350 | 0.1422 5.193 221 155.42 0.17 2375 | 0.6775
400 |0.1219 5.193 243 199.34 0.187 295 0.675
450 [0.10972 5.193 26.3 239.70 0.204 3645 | 0.6715
500 | 0.09754 5.193 283 290.14 0.22 434 0.668
600 | 0.083615 | 5.193 32 382.71 0.252 601 0.661
700 | 0.06969 5.193 35 502.22 0.278 768 0.654
800 5.193 38.2 0.304
900 5.193 41.4 0.33
1000 | 0.04879 5.193 44.6 914.12 0.354 1400 0.654

(continued)
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TK) |pkgm®) |c, ux10°  |vx10° yl ax10® |Pr
[kJ/(kg °C)] | [kg/(m s)] |(m?/s) [W/(m °C)] | (m%/s)
Hydrogen, H, [1]
100 |0.24255 |11.23 421 19.77 0.067 24.6 0.707
200 |0.12115 |13.54 6.81 26.35 0.131 79.9 0.704
300 |0.08078 | 14.31 8.96 33.90 0.183 158 0.701
400 |0.06059 | 14.48 10.82 41.69 0.226 258 0.695
500 |0.04848 | 14.52 12.64 51.33 0.266 378 0.691
600 | 0.0404 14.55 14.24 60.93 0.305 519 0.678
700 | 0.03463 | 14.61 15.78 72.20 0.342 676 0.675
800 | 0.0303 14.7 17.24 83.11 0.378 849 0.67
900 |0.02694 |14.83 18.65 96 0.412 1030 0.671
1000 [0.02424 | 14.99 20.13 108.57 0.448 1230 0.673
1100 |0.02204 | 15.17 21.3 122.46 0.488 1460 0.662
200 | 0.0202 15.37 22.62 155.41 0.528 1700 0.659
1300 |0.01865 |15.59 23.85 199.34 0.569 1955 0.655
1400 |0.01732 | 15.81 25.07 239.70 0.61 2230 0.65
1500 |0.01616 |16.02 26.27 290.14 0.655 2530 0.643
1600 | 0.0152 16.28 27.37 382.70 0.697 2815 0.639
Nitrogen, N, [1]
100 |3.4388 1.07 6.88 2.000 0.0958 2.6 0.768
150 | 2.2594 1.05 10.06 445 0.0139 586 |0.759
200 | 1.6883 1.043 12.02 7.126 0.0183 10.4 0.736
250 | 1.3488 1.042 15.49 11.48 0.0222 15.8 0.727
300 | 1.1233 1.041 17.82 15.86 0.0259 22.1 0.716
350 | 0.9625 1.042 20 20.78 0.0293 29.2 0.711
400 | 0.8425 1.045 22.04 26.16 0.0327 37.1 0.704
450 |0.7485 1.05 23.96 32.01 0.0358 45.6 0.703
500 | 0.6739 1.056 25.77 38.24 0.0389 547 0.7
550 | 0.6124 1.065 27.47 44.86 0.0417 63.9 0.702
600 | 0.5615 1.075 29.08 51.79 0.0416 73.9 0.701
700 | 0.4812 1.098 32.1 66.71 0.0499 94.4 0.706
800 | 0.4211 1.122 34.91 82.91 0.0548 116 0.715
900 | 0.3743 1.146 37.53 100.27 0.0597 139 0.721
1000 | 0.3368 1.167 39.99 118.74 0.0647 165 0.721
1100 | 0.3062 1.187 4232 138.21 0.07 193 0.718
1200 | 0.2807 1.204 44.53 158.64 0.0758 224 0.707
1300 |0.2591 1.219 46.62 179.93 0.081 256 0.701
Oxygen, O, [1]
100 | 3.945 0.962 7.64 1.936629 | 0.00925 244 |0.796
150 [2.585 0.921 11.48 4.441006 |0.0138 5.8 0.766
200 |1.93 0915 14.75 7.642487 |0.0183 10.4 0.737

(continued)
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TK) |pkgm®) |c, ux10°  |vx10° yl ax10® |Pr
[kJ/(kg °C)] | [kg/(m s)] |(m?/s) [W/(m °C)] | (m%/s)
250 | 1.542 0915 17.86 11.58236 | 0.0226 16 0.723
300 | 1.284 0.92 20.72 16.13707 | 0.0268 227 0.711
350 | 1.1 0.929 23.35 21.22727 |0.0296 29 0.733
400  |0.962 0.942 25.82 26.83992 | 0.033 364 0737
450  |0.8554 0.956 28.14 32.89689 | 0.0363 44 0741
500 | 0.7698 0.972 30.33 39.39984 | 0.0412 55.1 0.716
550 | 0.6998 0.988 32.4 46.29894 | 0.0441 63.8 0.726
600 | 0.6414 1.003 3437 53.58591 | 0.0473 73.5 0.729
700 | 0.5498 1.031 38.08 69.26155 | 0.0523 93.1 0.744
800 | 0.481 1.054 41.52 86.32017 | 0.0589 116 0.743
900 | 0.4275 1.074 4472 104.6082 | 0.0649 141 0.74
1000 |0.3848 1.09 477 123.9605 0.071 169 0.733
1100 | 0.3498 1.103 50.55 144.5111 0.0758 196 0.736
1200 | 0.3206 1.115 53.25 166.0948 0.0819 229 0.725
1300 | 0.206 1.125 58.84 285.6311 0.0871 262 0.721
Carbon dioxide, CO, [1]
220 [2.4733 0.783 11.105 4.490 0.010805 592 0818
250 |2.1675 0.804 12.59 5.809 0.012884 7.401 |0.793
300 | 1.7973 0.871 14.958 8.322 0.016572 10.588 [0.77
350 | 1.5362 0.9 17.205 11.200 0.02047 14.808 |0.755
400 | 1.3424 0.942 19.32 14.392 0.02461 19.463 |0.738
450 | 1.1918 0.98 21.34 17.906 0.02897 24813 |0.721
500 | 1.0732 1.013 23.26 21.67 0.03352 30.84 | 0.702
550 | 0.9739 1.047 25.08 25.752 0.03821 375 0.695
600 | 0.8938 1.076 26.83 30.018 0.04311 44.83 | 0.668
Ammonia, NH; [2]
220 |0.3828 2.198 7.255 18.952 0.0171 20.54 |0.93
273 | 0.7929 2.177 9.353 11.796 0.022 13.08 |09
323 |0.6487 2.177 11.035 17.011 0.027 192 |0.88
373 |0.559 2.236 12.886 23.052 0.0327 26.19 | 0.87
423 |0.4934 2315 14.672 29.736 0.0391 3432 |0.87
473 |0.4405 2395 16.49 37.435 0.0476 4421 |0.84
Water vapor [2]
380 | 0.5863 2.06 1.271 2.168 0.0246 2036 | 1.06
400 |0.5542 2.014 1.344 2425 0.0261 2338 [1.04
450 |0.4902 1.98 1.525 3.111 0.0299 30.7 1.01
500 | 0.4405 1.985 1.704 3.868 0.0339 387 0996
550 | 0.4005 1.997 1.884 4704 0.0379 47.5 0.991
600 | 0.3652 2.026 2.067 5.660 0.0422 57.3 0.986
650 |0.338 2.056 2.247 6.648 0.0464 66.6  |0.995
700 | 0.314 2.085 2.426 7.726 0.0505 71.2 1

(continued)
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TK) |pkgm®) |c, ux10°  |vx10° yl ax10® |Pr
[kJ/(kg °C)] | [kg/(m s)] |(m?/s) [W/(m °C)] | (m%/s)

750 | 0.2931 2.119 2.604 8.884 0.0549 88.3 1.05
800 |0.2739 2.152 2.786 10.172 0.0592 100.1 1.01
850 | 0.2579 2.186 2.969 1151221 | 0.0637 113 1.019
Gas mixture [3]

0 1.295 1.042 15.8 12.2 0.0228 12.2 0.72
100 |0.95 1.068 20.4 21.47 0.0313 21.54 |0.69
200 |0.748 1.097 245 3275 0.0401 32.8 0.67
300 |0.617 1.122 28.2 45.71 0.0484 4581 |0.65
400 |0.525 1.151 31.7 60.38 0.057 60.38 | 0.64
500 | 0.457 1.185 34.8 76.15 0.0656 76.3 0.63
600 | 0.405 1.214 37.9 93.58 0.0742 93.61 |0.62
700 | 0.363 1.239 40.7 112.12 0.0827 112.1 0.61
800 |0.33 1.264 43.4 131.52 0.0915 131.8 0.6
900 | 0.301 1.29 459 152.49 0.1 152.5 0.59
1000 | 0.275 1.306 48.4 176 0.109 174.3 0.58
1100 |0.257 1.323 50.7 197.28 0.1175 197.1 0.57
1200 |0.24 1.34 53 220.83 0.1262 221 0.56
Water vapor [2]

380 | 0.5863 2.06 12.71 21.68 0.0246 2036 | 1.06
400 |0.5542 2.014 13.44 24.25 0.0261 2338 |[1.04
450 |0.4902 1.98 15.25 31.11 0.0299 30.7 1.01
500 | 0.4405 1.985 17.04 38.68 0.0339 387 0.996
550 | 0.4005 1.997 18.84 47.04 0.0379 47.5 0.991
600 | 0.3652 2.026 20.67 56.6 0.0422 573 0.986
650 |0.338 2.056 22.47 66.48 0.0464 66.6 0.995
700 | 0.314 2.085 24.26 77.26 0.0505 71.2 1
750 | 0.2931 2.119 26.04 88.84 0.0549 88.3 1.05
800 | 0.2739 2.152 27.86 101.72 0.0592 100.1 1.01
850 |0.2579 2.186 29.69 115.12 0.0637 113 1.019
380 | 0.5863 2.06 12.71 21.68 0.0246 2036 | 1.06
400 |0.5542 2.014 13.44 24.25 0.0261 2338 |1.04
450 |0.4902 1.98 15.25 31.11 0.0299 30.7 1.01
500 | 0.4405 1.985 17.04 38.68 0.0339 387 0.996
550 | 0.4005 1.997 18.84 47.04 0.0379 47.5 0.991
600 | 0.3652 2.026 20.67 56.6 0.0422 57.3 0.986
650 | 0.338 2.056 22.47 66.48 0.0464 66.6 0.995
700 | 0.314 2.085 24.26 77.26 0.0505 71.2 1
750 | 0.2931 2.119 26.04 88.84 0.0549 88.3 1.05
800 | 0.2739 2.152 27.86 101.72 0.0592 100.1 1.01
850 |0.2579 2.186 29.69 115.12 0.0637 113 1.019
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Appendix A.2
Physical Properties of Some Saturated Liquid

t(°C) |p ¢ ux 108 vx10° |24 ax10” | Pr
(kg/m*) | [kI/(kg °C)] | [kg/(m s)] | (m*s) | [W/(m °C)] | (m’/s)
Ammonia, NH; [4]
=50 703.69 | 4.463 306.11 0.435 0.547 1.742 26
—40 691.68 | 4.467 280.82 0.406 0.547 1.775 2.28
-30 679.34 | 4.467 262.9 0.387 0.549 1.801 2.15
-20 666.69 | 4.509 254.01 0.381 0.547 1.819 2.09
-10 653.55 | 4.564 247.04 0.378 0.543 1.825 2.07
0 640.1 4.635 238.76 0.373 0.54 1.819 2.05
10 626.16 | 4714 230.43 0.368 0.531 1.801 2.04
20 611.75 | 4.798 219.62 0.359 0.521 1.775 2.02
30 596.37 | 4.89 208.13 0.349 0.507 1.742 2.01
40 580.99 | 4.999 197.54 0.34 0.493 1.701 2
50 564.33 | 5.116 186.23 0.33 0.476 1.654 1.99
Carbon dioxide, CO, [4]
=50 1156.34 | 1.84 137.61 0.119 0.085 0.4021 2.96
—40 1117.77 | 1.88 1319 0.118 0.1011 0.481 245
-30 1076.76 | 1.97 125.98 0.117 0.1116 0.5272 222
-20 103239 | 2.05 118.72 0.115 0.1151 0.5445 2.12
-10 983.38 | 2.18 111.12 0.113 0.1099 0.5133 22
0 926.99 | 247 100.11 0.108 0.1045 0.4578 2.38
10 860.03 | 3.14 86.86 0.101 0.0971 0.3608 28
20 77257 | 5 70.3 0.091 0.0872 0.2219 4.1
30 597.81 |36.4 47.82 0.08 0.0703 0.0279 | 28.7
Sulphur dioxide, SO, [4]
=50 1560.84 | 1.3595 755.45 0.484 0.242 1.141 424
-40 1536.81 | 1.3607 651.61 0.424 0.235 1.130 3.74
=30 1520.64 | 1.3616 564.16 0.371 0.230 1.117 3.31
-20 1488.60 | 1.3624 482.31 0.324 0.225 1.107 293
-10 1463.61 | 13628 421.52 0.288 0.218 1.097 2.62
0 1438.46 | 1.3636 369.68 0.257 0.211 1.081 2.38
10 141251 | 1.3645 3277 0.232 0.204 1.066 2.18
20 1386.40 | 1.3653 291.14 0.210 0.199 1.050 2.00
30 135933 | 1.3662 258.27 0.190 0.192 1.035 1.83
40 1329.22 | 1.3674 229.96 0.173 0.185 1.019 1.70
50 1299.10 | 1.3683 21045 0.162 0.177 0.999 1.61

(continued)
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t°C) |p ¢ u % 108 vx10% |4 ax10" | Pr
(kg/m® | [kJ/(kg °C)] |[kg/ms)] | (m%s) | [W/(m °C)] |(m%s)

Freon 12, CCL,F, [4]

-50 1546.75 | 0.8750 479.49 0.310 0.067 0.501 6.2
—40 151871 | 0.8847 423.72 0.279 0.069 0.514 5.4
-30 1489.56 | 0.8956 376.86 0.253 0.069 0.526 4.8
-20 1460.57 | 0.9073 343.23 0.235 0.071 0.539 4.4
-10 142949 | 0.9203 315.92 0.221 0.073 0.550 4.0

0 1397.45 | 0.9345 299.05 0.214 0.073 0.557 3.8
10 1364.30 | 0.9496 276.95 0.203 0.073 0.560 3.6
20 1330.18 | 0.9659 263.38 0.198 0.073 0.560 3.5
30 1295.10 | 0.9835 251.25 0.194 0.071 0.560 3.5
40 1257.13 | 1.019 240.11 0.191 0.069 0.555 3.5
50 121596 | 1.0216 231.03 0.190 0.067 0.545 3.5

C,H4(OH), [4]

0 1130.75 | 2.294 65052.05 | 57.53 0.242 0.934 | 615
20 1116.65 | 2.382 2141735 | 19.18 0.249 0.939 | 204
40 110143 | 2.474 9571.427 | 8.69 0.256 0.939 93
60 1087.66 | 2.562 5166.385 | 4.75 0.260 0.932 51
80 1077.56 | 2.650 3211.129 | 2.98 0.261 0.921 324

100 1058.50 | 2.742 2148.755 | 2.03 0.263 0.908 22.4
Mercury, Hg [4]

0 [1362822 | 0.1403 1689.9 0.124 8.2 42.99 0.0288
20 |13579.04 | 0.1394 1548.01 0.114 8.69 46.04 0.0249
50 | 13505.84 | 0.1386 1404.61 0.104 9.40 50.22 0.0207

100 [13384.58 | 0.1373 1242.09 0.0928 |10.51 57.16 0.0162
150 [13264.28 | 0.1365 1131.44 0.0853 | 11.49 63.54 0.0134
200 |13144.94 | 0.1570 1054.22 0.0802 |12.34 69.08 0.0116
250 | 13025.60 | 0.1357 996.46 0.0765 | 13.07 74.06 0.0103
315.5 | 12847.00 | 0.134 864.6 0.0673 | 14.02 81.50 0.0083
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Temperature Parameters of Gases

Gas n, n % ne, Temperature range (K) | Recommended Pr
Ar 072 |0.73 |0.7255 |0.01 220-1500 0.622
He 0.66 |0.725 |0.69575 |0.01 273-873 0.675
H, 0.68 0.8 0.746 0.042 220-700 0.68
Air 0.68 |0.81 |0.7515 |0.078 230-1000 0.7
CO 071 |0.83 |0.776 0.068 220-600 0.72
N, 0.67 |0.76 |0.7195 |0.07 220-1200 0.71
0, 0.694 |0.86 |0.7853 |0.108 230-600 0.733
Water vapor | 1.04 |1.185 | 1.11975 |0.003 380-800 1

Gas mixture |0.75 [1.02 |0.8985 |0.134 273-1173 0.63
CO, 088 |13 1.111 0.34 220-700 0.73
CH, 078 | 1.29 |1.0605 |0.534 273-1000 0.74
CCly 0912 |1.29 |1.1199 |0.28 260-400 0.8
SO, 091 |1.323 |1.13715 |0.257 250-900 0.81
H,S 1 1.29 | 1.1595 |0.18 270-400 0.85
NH; 1.04 | 1.375 |1.22425 |0.34 250-900 0.87
References

1. Incropera, F.P., Dewitt, D.P.: Fundamentals of Heat Transfer. Wiley, New York

(1981)

2. Eckert, E.R.G., Drake, R.M.: Heat and Mass Transfer, 2nd edn. McGraw-Hill
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