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Preface

The prehistory of this book began in the late 1990s, when I was a graduate
student in the Department of History and Philosophy of Science at the
University of Pittsburgh in search of a dissertation topic. I wanted to write
something about problems relating to learning about cause and effect in
social science, but was having trouble finding a topic that hadn’t already
been done almost to death and that didn’t require mastering impossibly
intimidating mathematics. By chance, I stumbled across an edited volume
in the Hillman Library titled Evaluating Welfare and Training Programs
(Manski and Garfinkel 1992), which contained insightful and stimulating
discussions of methodological difficulties relating to extrapolating results
of pilot studies of welfare-to-work programs. One appealing idea that
occurred to me, as well as to some contributors to Evaluating Welfare and
Training Programs,was that reliable extrapolation often relies upon know-
ledge of mechanisms linking cause and effect and of factors capable of
interfering with those mechanisms. But despite, or perhaps because of, its
intuitive obviousness, I had difficulty finding any attempt to elaborate,
clarify, or otherwise work out the details of this idea. Here at last was a
dissertation topic par excellence! I decided to approach the issue by
looking at biological examples that I presumed would best exemplify
how mechanisms-based extrapolation could proceed. Figuring out how
extrapolation worked in biological cases turned out to be a lot more
complicated than I had imagined, and ended up comprising the bulk of
the dissertation. As the thoroughly revised, rewritten, and rethought
descendant of that dissertation, this book retains the central role of bio-
logical examples. Looking back on close to a decade of effort on the topic
of extrapolation, I have a sense both of satisfaction in progress made and
a painful awareness of the many important questions that remain un-
answered. I hope that this book will be a starting point for further pro-
gress on methodological problems relating to extrapolation.

Many people deserve thanks for help without which this book would
never have come to be. The biggest thanks are due to Sandra Mitchell,
who, as my dissertation director, helped me to shape my disorganized
ideas into a coherent research project. I am also grateful to Richard
Scheines for carefully reading and discussing chapter drafts of that dis-
sertation. There are also a number of people who provided essential
assistance in transforming the dissertation into this book. Chief among
these is Kristin Schrader-Frechette, whom I met when she came to present
a paper at the Michigan State University Philosophy Department. It was
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largely thanks to her encouragement and support that Oxford University
Press agreed to review the manuscript. I’m also grateful to Megan Dele-
hanty for alerting me to the existence of the critiques of animal extrapo-
lation written by Hugh LaFollette and Niall Shanks. Although I disagree
with almost all of LaFollette and Shanks’s arguments about animal ex-
trapolation, I found them to be the single most useful philosophical
source on this topic. It was largely through reading their work that I
was able to clearly articulate in simple terms the basic challenges that
any adequate account of extrapolation has to surmount. I am also grateful
to all those who read and commented on various portions of the manu-
script at various stages of completion, including Megan Delehanty, Jason
Grossman, Jim Woodward, and Francesco Guala. I would also like to
thank the two people who refereed the manuscript for Oxford for their
helpful suggestions, and one of those referees especially for suggesting
that I change the title. (The original title was Causality and Heterogeneity.
Try saying that three times fast!) Thanks are also due to audience mem-
bers for helpful questions asked at presentations at Michigan State Uni-
versity, the University of California at Irvine, the Central Division of the
American Philosophical Association, the Center for Philosophy of Science
at the University of Pittsburgh, and the Minnesota Center for Philosophy
of Science. Finally, I would like to thank Peter Ohlin for prompt and wise
editorial advice.

In addition to people, there are some institutions that deserve thanks.
I am thankful for the semester of contractual research leave provided by
the Department of Philosophy at Michigan State University, and for the
Intramural Research Grant Program at Michigan State that enabled me to
extend that semester of leave into a full academic year. Without that
precious time for reading, thinking, and writing, this manuscript would
still be unfinished. I spent that year of research leave as a fellow at the
Center for Philosophy of Science at the University of Pittsburgh, which is
as about as good an environment for writing a book about philosophy of
science as a person could imagine.

Although the bulk of this book is published here for the first time, some
chapters contain material from articles that I have previously published.
Section 4.4.2 is mostly an abridged version of ‘‘Homogeneity, Selection,
and the Faithfulness Condition,’’ Minds and Machines 16: 303–17. � 2006
by Springer ScienceþBusiness Media B.V. All rights reserved. The HIV
replication diagram in Chapter 4 (Figure 4.1) and a good deal of Chapter 7
were originally published in ‘‘Can a Reductionist Be a Pluralist?’’ Biology
and Philosophy 19: 55–73. � 2004 by Kluwer Academic Publishers. All
rights reserved. Most of sections 8.2.1 and 8.3.3 originally appeared in
‘‘Methodological Individualism, Explanation, and Invariance,’’ Philosophy
of the Social Sciences 36: 440–63. � 2006 by Sage Publications. All rights
reserved. Finally, Chapter 9 is a revised and expanded version of ‘‘Social
Mechanisms and Causal Inference,’’ Philosophy of the Social Sciences 34:
55–78. � 2004 by Sage Publications. All rights reserved.
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1

Extrapolation and Heterogeneity

Genuine philosophical problems are always rooted in urgent problems outside
philosophy, and they die if these roots decay.

—Karl Popper1

The best way to introduce the topic of this book is with a few examples.

. Studies find that a particular substance is a carcinogen in rats. We
would like to know whether it is also such in humans.2

. Arandomized controlled experiment has found that a pilotwelfare-
to-work program improved the economic prospects of welfare re-
cipients. It is desired to knowwhether the programwill be similarly
effective inother locationsandwhen implementedona larger scale.3

. On the basis of a controlled experiment concerning outcomes
resulting from initiating anti-retroviral therapies earlier or later
among HIVþ patients, a physician wishes to decide the best time
to initiate this therapy for the patients she treats.

In each of these cases, one begins with some knowledge of a causal rela-
tionship in one population, and endeavors to reliably draw a conclusion
concerning that relationship in a distinct population. I will use the term
extrapolation to refer to inferences of this sort. If the populations in question
were perfectly homogeneous, extrapolation would be easy: the result from
the first population could be directly carried over to the second. But it is not
reasonable to assume that the populations in the foregoing examples are
homogeneous: they almost certainly differ with respect to characteristics
that affect the causal relationship in question. I will use the expression the
problem of extrapolation in heterogeneous populations (or the problem of extrapo-
lation for short) to refer to the challenge of transferring causal generaliza-
tions from one context to another when homogeneity cannot be presumed.

The motivation for extrapolation is that evidence concerning the
model, or base, population is often more accessible than that for the
target with which one is chiefly concerned. For instance, there are many
experiments that can be performed on animal models that cannot, for
obvious ethical reasons, be performed on humans. However, this only
provides a reason why one would want to extrapolate, and does not
explain how experimental results concerning a model can be legitimately
transferred to a target. Causal relationships in biology and social science
typically depend on a variety of conditions that are subject to change, and
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it is rare that all such factors are known and can be measured. As a
consequence, a causal generalization that holds in a given population
may be false of a subpopulation or other related populations. The effect-
iveness of a welfare-to-work program depends on an array of features of
the individuals involved, as well as the economic conditions of their
locality. Likewise, the effect of an anti-retroviral HIV therapy depends
on a range of features of the host as well as of the details of the strain, or
strains, responsible for the infection. In both cases, it is unlikely that all of
the factors upon which the causal relationship depends can be taken into
account in an analysis of the problem. Moreover, the examples provided
above illustrate the relevance of extrapolation to such policy issues as
regulating the use of a chemical or reforming a social program. This book
explores how and under what circumstances reliable extrapolation is
possible in biology and social science, and explores some of the implica-
tions of this topic for issues in philosophy of biology and social science.

There are several strategies that one might take with regard to extrapo-
lation. The most straightforward is what can be called simple induction:
infer that a causal relationship found in one population holds approxi-
mately in other related populations unless there is some reason to sup-
pose otherwise. Although simple induction is an undeniably important
aspect of extrapolation, its limitations are well documented in the toxi-
cology literature (Gold et al. 1992; Hengstler et al. 1999). Simple induction
often yields mistaken extrapolations, and it provides no guidance when
there is some reason to suspect that the extrapolation might be incorrect.
The question is whether there is a more sophisticated account of extrapo-
lation capable of overcoming these limitations.

There are two basic challenges that confront any account of extrapola-
tion that seeks to resolve the shortcomings of simple induction. One
challenge, which I call extrapolator’s circle, arises from the fact that ex-
trapolation is worthwhile only when there are important limitations on
what one can learn about the target by studying it directly. The challenge,
then, is to explain how the suitability of the model as a basis for extrapo-
lation can be established given only limited, partial information about the
target. Critics of animal extrapolation sometimes present this challenge in
the form of a vicious circle: establishing the suitability of the model would
require already possessing detailed knowledge of the causal relationship
in the target, in which case extrapolation would be unnecessary. The
second challenge is a direct consequence of the heterogeneity of popula-
tions studied in biology and social science. Because of this heterogeneity,
it is inevitable that there will be causally relevant differences between the
model and the target population. Thus, an adequate account of extrapo-
lation must explain how it can be possible to extrapolate from model to
target even when some causally relevant differences are present. Both of
these challenges have been posed as general critiques of the methodology
of animal extrapolation (cf. LaFollette and Shanks 1993a, 1993b, 1995,
1996).
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I argue that earlier work has answered neither of these challenges.
There is a small literature that discusses methodological issues relating
to extrapolation by reference to detailed case studies (cf. Burian 1993;
Ankeny 2001; Schaffner 2001; Guala 2005; Alexandrova 2006). These
authors point out that extrapolation is on firmer ground with regard to
highly conserved mechanisms, and that the suitability of a model for a
particular extrapolation is an empirical hypothesis that must be sup-
ported by evidence. But although such methodological observations are
undoubtedly correct, they answer neither of the challenges described
above. Difficult cases of animal extrapolation typically concern causal
relationships—such as the carcinogenic effect of a particular com-
pound—that are not highly conserved. And the observation that the
suitability of a model for extrapolation is an empirical hypothesis does
not answer the extrapolator’s circle. How can that empirical hypothesis be
established without already knowing what one wanted to extrapolate?
Nor do these studies indicate how extrapolation can be justified when
there are some causally relevant differences between model and target.

Others have proposed that capacities or causal powers—understood as
stable influences that are relatively independent of context—can serve as
a basis for extrapolation (Cartwright 1989, 1999; Cheng 1997, 2000). The
difficulty here is that questions of the stability versus context dependence
of a causal relationship are precisely what are at issue in cases of extrapo-
lation. I argue (in Chapter 5) that, when pressed on this matter, existing
proposals concerning capacities and causal powers either to revert to
simple induction or morph into a version of the mechanisms approach.
The mechanisms approach rests on the intuition that knowing how a
cause produces its effect provides can provide a basis for extrapolation.
It proposes that knowledge of the mechanisms running from cause to
effect and of the kinds of things that can interfere with them enhances our
ability to reliably decide whether a causal relationship found in one
population will or will not obtain in another. This thought is second
nature among molecular biologists, and several authors concerned with
philosophical questions regarding the role of mechanisms in science have
suggested it in passing (cf. Wimsatt 1976, 691; Stinchcombe 1991, 367;
Elster 1998, 49; Schelling 1998, 36–37). Yet without further elaboration, the
mechanisms proposal does not answer the two challenges described
above either. It does not answer the extrapolator’s circle, since it is unclear
how one can show that the mechanisms in the model are similar enough
to the target to justify extrapolation, given the limitations on one’s
ability to study the mechanisms in the target directly. Moreover, some
differences in the mechanism in the model and target are inevitable in
biological and social science examples. Thus, the mere invocation of
mechanisms does not explain how extrapolation can be justified in the
presence of causally relevant disanalogies between model and target.

In this book, I further develop the mechanisms approach to extrapola-
tion so as to more adequately respond to these challenges. I endeavor to
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clarify the premises that underlie applications of the approach and the
types of extrapolative inferences these premises can support, as well as
the relevance of extrapolation to some familiar topics in the philosophy of
biology and social science. I believe that this project is valuable for several
reasons. First, the project is of practical relevance to scientific method-
ology. A clear understanding of the premises underlying the mechanisms
approach to extrapolation helps to reveal the possibilities and limitations
of this strategy. If there are circumstances when the requisite premises are
problematic, then it is important to know this so as to avoid unreliable
applications of the approach. On the other hand, there may be inferences
that would be justified by the mechanisms approach that are not being
taken advantage of, and an examination of basic assumptions may show
in what ways this is the case. Second, I believe that the project is of
significant interest for more traditional philosophical topics. As I en-
deavor to show, a variety of familiar philosophical issues in biology and
social science are linked to the problem of extrapolation in heterogeneous
populations, including reductionism, ceteris paribus laws, and causality.

The organization of the book is as follows. Chapter 2 presents and
explicates a set of concepts—intervention, causal effect, and causal rele-
vance—that recur throughout the remainder of the book. Although my
analysis of the first two of these concepts is mostly drawn from other
authors, my discussion of causal relevance makes an original contribution
insofar as proposing a definition of positive and negative causal relevance
that is applicable to cases in which the cause and effect are represented by
quantitative variables. It is sometimes claimed that a definition of positive
causal relevance should include a criterion of contextual unanimity, which
requires that a positive causal factor raise the probability of the effect in all
background contexts. I argue that this is a mistake, and that such criteria
should not be regarded as part of the meaning of causal relevance but
rather as circumstances that may, when present, facilitate extrapolation.

A mechanisms approach to extrapolation requires an account of the
relationship between the qualitative concept of a mechanism and the
probabilistic causal notions described in Chapter 2. Chapters 3 and 4
address this issue. The main proposal of Chapter 3 is an account of how
mechanisms, on the basis of domain-specific arguments, can be identified
with causal structure. Often represented by directed graphs, causal struc-
ture is that which generates probability distributions and provides infor-
mation concerning how these distributions will change under
interventions. An argument for identifying mechanisms with causal
structure in a given context takes the form of an empirical analysis, a
concept that I draw, with some modifications, from Phil Dowe (2000).
A central part of this empirical analysis consists of providing reasons to
think that mechanisms are modular in the sense of having independently
changeable components. I explain how evolutionary theory can be used to
motivate the premise that mechanisms in molecular biology are modular.
But although there is a vibrant literature in evolutionary biology on how
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natural selection may favor modularity, very little has been written on
this topic in social science. I make some suggestions about how this
evolutionary argument might transfer to social science, but conclude
that the case for identifying mechanisms with causal structure is, at
present, less well founded in social science than in molecular biology.
Further discussion of the circumstances under which social mechanisms
can be identified with causal structure is deferred until Chapter 8.

Although the identification of mechanisms and causal structure is an
important element of mechanisms-based extrapolation, it is only a first
step. Many, and perhaps most, applications of the approach require
further, more specific premises about the relationship between probabil-
ity and causal structure, and hence mechanisms. Chapter 4 articulates a
proposition, labeled the disruption principle, which plays a fundamental
role in mechanisms-based extrapolation of probabilistic causal claims.
The disruption principle asserts that interventions on a cause make a
difference to the probability of the effect if and only if there is an undis-
rupted mechanism running from the cause to the effect. After presenting
the disruption principle in the abstract, I illustrate it by means of an
example drawn from HIV research. Next I consider what justification
can be given for the disruption principle. I show that, given the identifi-
cation of mechanisms with causal structure, it can be derived from two
more familiar principles concerning probability and causality, namely,
the principle of the common cause (PCC) and the faithfulness condition (FC).
I argue that the aspect of the PCC relevant to the disruption principle rests
upon very solid ground but that the case of the FC is more complex.
A common objection to the FC is that it is likely to be false when there are
counteracting causal paths. I show that such arguments are valid only
given a further condition that rarely obtains in heterogeneous popula-
tions. Nevertheless, there are some circumstances—such as gene knock-
out experiments—in which exceptions, or at least near exceptions, to the
FC are a more serious concern. Hence, this discussion identifies a poten-
tial limitation of the disruption principle, and thereby of the mechanisms
approach to extrapolation.

Chapters 5 and 6 utilize the concepts articulated in the foregoing
chapters to develop an account of mechanisms-based extrapolation.
Chapter 5 begins by examining the limitations of extrapolation by simple
induction. Next I argue that previously proposed versions of the capaci-
ties and mechanisms approaches do not adequately address the two
challenges mentioned above: the extrapolator’s circle and explaining
how extrapolation can be justified in the presence of causally relevant
differences between model and target. I then proceed to develop the
mechanisms-based answers to these challenges. I begin by explaining
how amechanism in amodel organismmight serve as a basis for inferring
the existence of a corresponding mechanism in the target, by means of
what I call comparative process tracing. Comparative process tracing relies
on background knowledge concerning stages of the mechanism at which
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significant differences are likely to occur, and where such differences are
not likely. In addition, the number of points that must be compared can be
reduced further by focusing on downstream stages of the mechanism.
Comparative process tracing answers the extrapolator’s circle, then, by
showing how limited knowledge of the mechanism in the target can
suffice to establish the suitability of the model as a basis for extrapolation.
I illustrate comparative process tracing by reference to the case of afla-
toxin B1, which concerned the extrapolation of a carcinogenic effect from
rodents to humans. Finally, I briefly discuss the relevance of my proposal
for disputes concerning the ethical justifiability of animal research.

The second basic challenge confronting an account of extrapolation in
heterogeneous populations is that it must explain how extrapolation can
be possible even when there are causally relevant differences between
model and target. My answer to this challenge is first proposed in Chapter
5, in connection with the aflatoxin B1 example, and is developed in further
detail in Chapter 6, in the context of a discussion of ceteris paribus laws.
The central point is that the closeness of match required between model
and target depends upon the specificity of the causal claim that one
wishes to extrapolate. In particular, a total absence of causally relevant
disanalogies is not required for extrapolating claims about positive and
negative causal relevance. That point is illustrated by the aflatoxin ex-
ample in Chapter 5, and Chapter 6 articulates some sufficient conditions
for extrapolating positive or negative causal relevance. Chapter 6 also
discusses a philosophical issue that is closely associated with extrapola-
tion, namely, ceteris paribus laws, which are laws qualified by a clause to
the effect of ‘‘other things being equal’’ or ‘‘so long as nothing interferes.’’
The expression ‘‘ceteris paribus law’’ is in fact highly ambiguous. Some
types of generalizations labeled ‘‘ceteris paribus laws’’ are unproblematic,
while the opposite is true for one common interpretation. I explain how
the infirmities of the most problematic type of ceteris paribus law vanish
if ‘‘ceteris paribus’’ is interpreted as qualifying the extrapolation of posi-
tive causal relevance rather than the truth of a universal generalization.

The mechanisms approach to extrapolation is also linked to a perennial
issue in philosophy of biology, namely, reductionism. The mech-
anisms approach to extrapolation operates on the implicit assumption
that lower-level details are the place to look for explanations of exceptions
to higher-level generalizations. That perspective seems closely tied to
reductionism, yet that connection is potentially worrisome, given that
reductionism is a highly contentious doctrine. In Chapter 7, I explicate
the link between mechanisms-based extrapolation and reductionism.
I begin with the suggestion that there are several possible motives for
reduction and that different versions of reductionism can be distin-
guished on the grounds of which goals they aim to achieve. This discus-
sion is used as a basis for clarifying which types of reductionism are
presently defended. I then propose that mechanisms-based extrapolation
is linked to reductionism just insofar as it implicitly presumes a
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proposition I call corrective asymmetry. Corrective asymmetry obtains
when one level of description plays a special role in correcting general-
izations at another level, a corrective role which is not reciprocated.
I maintain that corrective asymmetry is a criterion of what makes one
level more fundamental than another, and hence is a basis for identifying
which forms of reductionism genuinely deserve the name. But I also
argue that some forms of reductionism that entail corrective asymmetry
are compatible with pluralism. In fact, I suggest that corrective asym-
metry is helpful for explicating the pluralistic idea that there are autono-
mous levels of explanation.

Since the best examples of the mechanisms approach to extrapolation
I know of come from the biological sciences, the account of extra-
polation I propose is developed first in relation to case studies drawn
from that domain. Chapters 8 and 9 take up the question of whether
the mechanisms approach to extrapolation can be fruitfully extended
to social science. There are several challenges confronting this metho-
dological transfer. One is the possibility that social mechanisms do
not satisfy the conditions required of causal structure. Chapter 8
picks up the thread of this discussion from Chapter 3. I articulate the
concept of structure-altering intervention and explore the circumstances
in which interventions are most likely to produce nonmodular changes in
social mechanisms. I then turn to a social science example in which
extrapolation was a serious concern, namely, the attempt from the mid-
1980s to 1990s to estimate the effect of broad-scale changes to the U.S.
welfare system on the basis of demonstration programs. Owing to its
large scale and relatively unprecedented nature, the intervention in
this case was likely to be structure-altering. And in fact, there was a
methodological dispute surrounding these studies concerning the value
of mechanisms for extrapolating results. I show that a thoroughgoing
mechanisms approach, as described in Chapters 5 and 6, is unlikely to be
applicable in this case. Nevertheless, I suggest that examinations of social
mechanisms in the welfare example are an important supplement to
simple induction.

A second challenge for the mechanisms approach to extrapolation in
social science is uncertainty about what mechanisms are present. This
point is illustrated in Chapter 8 by a case study drawn from experimental
economics. The case concerns the extrapolation of a phenomenon known
as ‘‘preference reversal’’ from the laboratory to real-world contexts.
I show how which of two possible mechanisms is correct has significant
implications for how widespread preference reversals are outside the
laboratory walls. Chapter 9 examines the challenge of reliably learning
social mechanisms. Several authors (cf. Darden and Craver 2001, 2002;
George and Bennett 2005) have advanced process tracing as a means for
discovering mechanisms in biology and social science. Several authors
have claimed that process tracing is distinct from and supplements causal
inference from statistical data. I argue that existing accounts of how
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process tracing overcomes challenges confronting causal inference from
statistical data in social science are unsuccessful. I then propose a more
adequate account that is based on the insight that the appropriate contrast
with process tracing is not causal inference from statistical data but rather
what I call direct causal inference.
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2

Interventions, Causal Effects,
and Causal Relevance

This chapter presents several concepts—namely, those listed in the chap-
ter title—concerning causality and probability that play a fundamental
role in the treatment of extrapolation in heterogeneous populations devel-
oped in the remainder of the book. The concept of an intervention has
been discussed at length by other authors (cf. Woodward 1999, 2000, 2003;
Hausman and Woodward 1999; Spirtes, Glymour, and Scheines 2000),
and my presentation of the topic mostly follows these sources. Likewise,
I use Judea Pearl’s (2000) definition of causal effect, according to which a
causal effect of X upon Y in a population P is a function specifying the
conditional probability distribution in P of Y, given interventions that set
X to specific values.

My development of the concepts of positive and negative causal rele-
vance, in contrast, is an original contribution. One important type of
extrapolation problem has the following form: We know that X is a
positive causal factor for Y in the population P, and we want to know
whether it is also such in the distinct population P’. A systematic inquiry
into this inference problem requires a precise and general definition of the
expression ‘‘positive causal factor.’’ However, such a definition is not to
be found in the literature. Philosophical examinations of causal relevance
typically treat causality as a relation between events that occur or do not
occur, or between properties that are present or absent. Yet many causal
relationships of interest to science and ordinary life hold among factors
that are naturally represented as varying on a numerical scale: interest
rates and rate of inflation; years of education and income; LDL cholesterol
level and arterial constriction; fertilizer dosage and plant growth; and so
on. Variables representing features of this sort may be called quantitative,
in contradistinction to those that merely indicate the presence or absence
of a property or occurrence or nonoccurrence of an event, which may be
called qualitative. Christopher Hitchcock (1993, 1995) has shown, though
without quite putting it this way, that some traditional philosophical
puzzles concerning causal relevance arise from attempting to characterize
causal relationships among quantitative variables by means of definitions
of causal relevance that are appropriate only for qualitative variables.
Hitchcock proposes that claims concerning causal relevance should be
understood as providing qualitative information about the causal effect in
question (1993, 350).
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Although I generally agree with Hitchcock’s proposal as far as it goes,
it leaves unanswered several questions that need to be resolved before my
approach to the problem of extrapolation can proceed. In the case of
quantitative variables, just what information concerning the causal effect
is provided by expressions that indicate positive (or negative) causal
relevance? Moreover, how does an account of positive and negative
causal relevance for quantitative variables connect to that for qualitative
variables? Presumably, the definition for qualitative variables should be a
special case of the one for quantitative variables, but just how is that to
work? I undertake to develop an account of causal relevance that answers
the above questions. Finally, I consider the suggestion that a requirement
known as contextual unanimity should be added to any definition of
positive and negative causal relevance. I argue that such an amendment
would be inappropriate.

2.1 INTERVENTIONS

Interventions are manipulations of something, typically with the inten-
tion of bringing about further changes in something else. An intervention
might be a complex surgical procedure, the simple act of flipping a
switch, or the Federal Reserve’s decision to cut interest rates by a quarter
of a percent. The concept of an intervention is very useful for drawing the
distinction between causation and correlation, a point which can be
illustrated by means of an old and familiar example.

We know that there is a statistical association between barometric
readings and the occurrence of storms. Let B, A, and S be variables
representing barometer readings, atmospheric pressure, and the occur-
rence of storms, respectively, and let the arrow represent the relationship
of direct causation. Of course, the notion of direct causation is relative to
the set of variables under consideration, since intermediate causal nodes
could be added indefinitely through a continually finer-grained analysis.
Then we think that the association between B and S is due to their being
effects of the common causeA. Directed graphs consisting of nodes linked
by arrows, as in Figure 2.1, will be used throughout to depict causal
structures. In a directed graph, nodes represent variables (e.g., barometer
reading, atmospheric pressure, etc.), while the arrows represent the rela-
tionship of direct causation and the absence of an arrow indicates the
absence of any causal influence. Thus, the graph in Figure 2.1 says that
atmospheric pressure is a direct cause of both barometer readings and
storms, but that barometer readings have no influence on storms nor
storms upon barometer readings. Causal structures and their relationship
to mechanisms will be the topic of discussion in Chapter 3. For the
moment, however, a rough characterization of causal structures will
have to do. Causal structures refer to complexes of cause-and-effect
relationships, as embodied in such things as the electrical wiring in a
house, the circulatory system of a human body, or an economy. A graph

12 Across the Boundaries



like that in Figure 2.1 claims to accurately represent some aspect of a
causal structure, in this case, one involving a barometer and a meteoro-
logical system.1

Although the barometer reading is correlated with the occurrence of
storms, making it possible to use B to imperfectly predict S, we do not
think that B causes S. Part of what this judgment means is that the
association between B and S would disappear if we were to intervene as
follows. Suppose we place the barometer in a chamber whose air pressure
can be set at will, thus allowing us to fix the barometer’s reading at any
desired level completely independently of A. For example, we could
randomly choose numbers in the range of possible barometric readings,
and then set the reading of the barometer at these values throughmanipu-
lations of the pressure within the chamber. Under these circumstances, we
would expect the probabilistic dependence between B and S to vanish. On
the other hand, if the state of the barometer were (strangely enough) a
cause of storms, then we would expect that we could alter the chance of
storms by manipulating B. This is a commonsense insight regarding
causality: interventions on causes yield changes in effects, but not vice
versa.

The general concept of an ideal intervention can be abstracted from this
simple example. One begins by finding a source of exogenous variation,
such as a purely random process such as a coin toss or a roll of dice. The
source of variation is exogenous in the sense that, except under the special
conditions implemented in the experiment, it is entirely unrelated to the
causal process being studied. It comes, as it were, from the ‘‘outside.’’ For
example, under normal circumstances, barometer readings, atmospheric
pressure, and storms are all completely independent of the outcomes of
coin flips or rolls of dice. The intervention then consists of arranging the
situation so that the source of exogenous variation determines the value of
one of the variables in question. For example, given the intervention
described in the preceding paragraph, the barometer is no longer affected
by the atmospheric pressure, but only by the randomly assigned air
pressure inside the vacuum chamber.

An ideal intervention can be defined in the following way. Let V be a set
of variables relevant to a causal structure of interest. Then:

Definition 2.1 (Ideal Intervention):2 I is an ideal intervention on X 2 V
if and only if it is a direct cause of X that satisfies these three
conditions:

A

B S

Figure 2.1 Correlation due to a common cause

Interventions, Causal Effects, and Causal Relevance 13



(a) I eliminates other influences upon X but otherwise does not alter
the causal relations among V.

(b) I is a direct cause of no variable in V other than X.
(c) I is exogenous.

The intervention is exogenous with respect toV just in case it is neither an
effect of any variable inV nor shares a common cause with any variable in
V. Intuitively, exogenous causes come from ‘‘outside’’ the system. As the
barometer example illustrates, randomization is a common way of ensur-
ing that the intervention is exogenous. The intervention in the barometer-
storm example can be represented graphically, as in Figure 2.2.

The graph in Figure 2.1 can be called the ‘‘pre-manipulation graph,’’
and that in Figure 2.2, the ‘‘post-manipulation graph.’’ Note that all three
requirements of the definition of an ideal intervention are satisfied in this
case. First, the intervention fully determines the value of B, removing all
other causal influences, which is represented in this case by the deletion of
the arrow fromA to B. But aside from obviating any other influences upon
the target variable (in this case, B), the intervention leaves all other causal
relationships in the original graph unchanged. For example, in Figure 2.2,
an arrow from A to S is present, just as in Figure 2.1. Second, the inter-
vention is not a direct cause of any member of the set {B, A, S} besides B.
Finally, the intervention is exogenous, since it is not an effect of any of
these variables nor does it share a common cause with them.

Of course, many actual interventions do not satisfy (a) through (c), and
considerable ingenuity and hard work are often needed to ensure that the
conditions are approximated in an experiment. Hence, it would be a mis-
take to suppose that all interventions are ideal. For instance, the Federal
Reserve’s decision to cut interest rates might be influenced by statistics
indicating slowing economic growth, while one of the desired effects of the
rate cut is to stimulate the economy. Thepost-intervention graph represent-
ing such a case would contain an arrow running from a variable contained
in the pre-manipulation graph to the intervention, in this instance, the rate
cut. Thus, the intervention in this example does not fulfill (c) listed above;
the decisions of the Federal Reserve are not exogenous to the system that is
the target of their interventions. Finally, it should be noted that an inter-
vention need not come about through human activity. An intervention, as
defined above, consists in a particular sort of alteration of a causal structure,
whether it be brought about bydeliberate action or fortuitous circumstance.

A

B S

I

Figure 2.2 An ideal Intervention

14 Across the Boundaries



The concept of an ideal intervention is of interest here primarily in
virtue of its usefulness as a basis for defining other causal concepts, such
as causal effect and causal relevance. It is very compelling that if X is
causally relevant to Y, then ideal interventions on X alter the probability
of Y, but otherwise not. For example, it is precisely this assumption that is
implicit in randomized controlled experiments, which are generally
regarded as the ‘‘gold standard’’ for assessing causal hypotheses. And it
is easy to see that standard ways in which randomized controlled experi-
ments can go wrong correspond to a failure of one or more of items
(a) through (c).

For example, when some subjects in a clinical trial do not follow the
experimental protocol (e.g., do not take the assigned medication as pre-
scribed), then (a) does not obtain. This is problematic, since it allows for
the possibility that there is a common cause of the variable being manipu-
lated and the outcome. The sicker patients, for instance, might be less
likely to follow the protocol, and also less likely to recover. In such
circumstances, there may be a positive correlation between recovery
and following the treatment protocol, even if the treatment is entirely
ineffective. The point is illustrated in Figure 2.3. In the graph, T indicates
treatment; H, health prior to receipt of treatment; and R, recovery.

Likewise, item (b) fails to obtain when the intervention inadvertently
directly affects more than one variable in the system. In well-designed
clinical trials, for example, great care is taken to ensure that both the test
and the control groups are treated identically except that the former
receives the treatment and the latter does not. Clearly, item (b) could fail
if the intervention provided, along with the treatment, increased confi-
dence in recovery only to those in the test group. Placebos and double-
blinds are, of course, standard tactics for avoiding such difficulties. This
type of failure of an intervention to be ideal could be represented graph-
ically as in Figure 2.4. In the graph, C is some measure of the subject’s
confidence of recovery prior to receipt of treatment. In this example,
treatment and recovery may be correlated even though the treatment
itself is entirely inefficacious.

Item (c) is satisfied whenever I is the product of some purely random
process. However, it may fail in the absence of randomization. For ex-
ample, suppose that the researcher deliberately assigns healthier patients
to the test group. Then the intervention is not exogenous, as required by
(c). This situation can be represented in Figure 2.5. In such a case,

T R

I H

Figure 2.3 An intervention that fails (a)
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treatment would be statistically associated with recovery even though the
treatment is entirely ineffective.

The guiding intuition of the definitions of causal effect and causal
relevance provided in what follows is that one variable, X, is causally
relevant to another, Y, just in case ideal interventions onX alter the chance
of Y. The philosophical aspects of this manipulationist view of causation
have been discussed at length in literature on causation (cf. Woodward
2003; Hausman and Woodward 1999). Rather than recapitulate these
discussions here, I make only two points. First, I do not claim that the
manipulationist view of causation is the only fruitful perspective from
which to approach the topic. I choose to rely upon it here because it is a
useful and natural manner in which to interpret a wide range of causal
claims in biology and social science. In these domains, one often wants to
design interventions (e.g., therapies, policies) to achieve desired ends in
complex situations in which the outcomes of such interventions cannot be
predicted with certainty. Causal effects, defined in terms of the probabil-
ity distribution of one variable conditional on an ideal intervention on
another, are natural objects of inquiry in such circumstances.

Second, the account of causality offered in this section is not intended
as a conceptual analysis of causation. A conceptual analysis of causation
would consist of a necessarily true statement of the form ‘‘X causes Y if
and only if . . . ,’’ where the ellipsis would be replaced with a Boolean
combination of terms, all of which can be defined independently of the
notion of causality. Since the term ‘‘ideal intervention’’ is itself defined by
reference to causation, the account given in this section is not intended as
a conceptual analysis.3

2.2 CAUSAL EFFECTS

The problem of extrapolation in heterogeneous populations consists in
the possibility that a causal effect that holds in a given population may be

C

T R

I

Figure 2.4 An intervention that fails (b)

T R

I
H

Figure 2.5 An intervention that fails (c)
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very different from those holding in subpopulations or distinct, related
populations. Thus, the notion of causal effect in a population needs to be
clarified before we can get very far with our discussion. The concept of a
causal effect is exemplified by controlled in experiments. In such experi-
ments, one is interested in learning the probabilities of certain outcomes
(say, recovery and non-recovery) conditional on an ideal intervention that
assigns the value of some other variable, say dosage of a drug. LetX and Y
be variables representing the treatment and outcome variables, respect-
ively. I will follow the convention of using lowercase letters to denote
particular values of variables represented by the same uppercase letters.
For example, if X is a variable representing treatment dosage, then x is a
particular dosage value, say, 200 milligrams. Pearl (2000) introduces the
helpful notation do(X¼ x), or do(x) for short, to denote an ideal interven-
tion that sets the variable X to the particular value x. Thus, the formula
P(Y j do(x)) is shorthand for a function that specifies the probability
distribution of Y conditional on ideal interventions that set X to any
particular value x.4 Given this notation, we can define ‘‘causal effect’’ in
the following way (2000, 70):

Definition 2.2 (Causal Effect): For any two distinct variables X and Y,
the causal effect of X upon Y is P(Y j do(x)).

For example, suppose that that X and Y are each binary. Then the causal
effect of X upon Y could be represented in a chart, as in Figure 2.6. Here
the values of X would be set by an ideal intervention, rather than merely
passively observed. Thus, where X represents treatment and Y recovery,
this table represents the type of information that is desired from a ran-
domized clinical experiment. It is important to remember that the causal
effect P(Y j do(x)) need not equal the probability distribution of Y condi-
tional on X being passively observed to have the value x, P(Y j X ¼ x).
These conditional probability distributions may be distinct if Y is a cause
of X or there are common causes of X and Y. In those cases, an ideal
intervention will eliminate some causal connections between X and Y,
which may thereby result in P(Y j do(x)) being distinct from P(Y j X ¼ x).
That point is illustrated by the barometer-storm example described above.

Hitchcock (1993, 349) proposes a definition that is very similar to
Pearl’s, though with a few differences. In Hitchcock’s version, the expres-
sion defined is not ‘‘causal effect’’ but ‘‘the causal relevance of the variable

X Y=1

1 65%

0 27%

Figure 2.6 The causal effect of X upon Y
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X for E,’’ where X is a random variable and E is an event in the technical
sense of set theory (i.e., a subset of the outcome space). The causal
relevance of the variable X for E is then defined as P(E j X ¼ x), where
this probability function is assumed to represent the relationship between
X and E that holds when all confounding factors have been held fixed. In
spite of the similarities, I shall employ Pearl’s version. I prefer Pearl’s
definition because the expression ‘‘causal effect’’ has greater currency
than the corresponding phrase defined by Hitchcock5 and because Pearl’s
‘‘do(x)’’ notation is very convenient.

For our purposes, one of the most important features of causal effects is
that they are prone to vary according to changes in the distribution of
factors in the population that affect the outcome. For instance, suppose
that we are interested in the causal effect of treatment with penicillin upon
recovery from streptococcal infection. This causal effect depends on,
among other things, the proportion of individuals in the population
who are infected with a resistant strain of the bacteria. In the extreme
case in which everyone in the population is thus afflicted, treatment with
penicillin may have no effect whatsoever. Since the sensitivity of causal
effects to fluctuating features of populations is closely linked to the
problem of extrapolation in heterogeneous populations, it is worthwhile
to clarify how the term ‘‘population’’ is to be understood here.

Consider the statement that chemotherapy is a positive causal factor
for recovery among leukemia sufferers. The most straightforward way to
interpret the expression ‘‘leukemia sufferers’’ in this context is to take it to
denote a set of real human beings who have suffered, are suffering, or will
suffer from leukemia.6 How far we intend our causal generalization to
reach back into the past and extend forth into the future may vary
according to several circumstances that will be considered below. The
important point, however, is that the generalization is relative to some
group of individuals, each of whom exists at some specific time and place
in the history of the actual world. For example, it would be absurd to
object to the proposed generalization by describing a science fiction
scenario of a collection of humans whose physiology differed from
those of actual people so as to reverse the effect of chemotherapy. But
claims about causal effects depend on features of the actual population in
other ways as well. Suppose, for instance, that the population of leukemia
sufferers consists of two subgroups: one in which chemotherapy causes
recovery and one in which it does the opposite. Then the overall effect of
chemotherapy will depend crucially on the proportions of these two
subgroups and the strength of the effect in each. Indeed, this scenario is
hardly far-fetched, given the realworld variability of response to chemo-
therapy. Thus, I do not assume that populations are homogeneous, that
they represent ideal types, or that they constitute natural kinds. It is
important for the project of this book that no such assumptions be made
about populations, since the problem of extrapolation in heterogeneous
populations arises precisely for fields that study populations about which
such assumptions are not appropriate.
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Statements of causal effect, then, are typically made relative to some
actual population of individuals, and the truth of the claim will generally
depend on features of that population and the environment in which it is
located. Unless specifically indicated otherwise, therefore, the popula-
tions of interest for the purposes of this book will be presumed to consist
of individuals existing at some place and time in the actual world. The
claim that chemotherapy is a positive causal factor for recovery among
leukemia sufferers would ordinarily be understood to be relevant not
only to people presently suffering from leukemia, but also past and future
people so afflicted. However, a researcher might be more or less bold in
his or her willingness to extend such a generalization into the future or
past. To choose a different medical example, the effectiveness of an
antibiotic in the present might not be a reliable guide to its efficacy in
the future, since widespread use of it or similar antibiotics would be likely
to stimulate the evolution of resistant strains. In such cases, the relevant
population would be somewhat vaguely bounded in the future direction.
But whether vaguely specified or not, I shall view the populations to
which causal generalizations are relative as finite sets of concrete individ-
uals located in specific environments. The individuals in the population
need not be contemporaries of each other, but each must exist at some
particular time and place in the history of the actual world. Subpopula-
tions, then, are simply subsets of such sets of individuals.

2.3 CAUSAL RELEVANCE

In this section and ensuing subsections, I undertake to develop an account
of the concepts of positive and negative causal relevance. Given the
definition of causal effect presented above, a definition of causal rele-
vance can be provided as follows.7

Definition 2.3 (Causal Relevance/Causal Factor): X is causally relevant
to (is a causal factor for) Y if and only if there are values y of Y and x
of X such that P(y j do(x)) 6¼ P(y).

This definition makes clear that the bare claim that X is causally relevant
to Y is not terribly informative, since it tells us nothing about the manner
of this influence. It might be that X promotes or prevents Y, or affects it in
some other way. Moreover, the mere statement that X is causally relevant
to Y does not tell us which values of X make a difference to Y. For
example, X might have little or no effect in low dosages, but a powerful
effect in higher ones.

In order to be of practical use, then, ascriptions of causal relevance
generally must include some information about the manner in which the
cause acts upon the effect. Expressions indicating positive or negative
causal relevance are two very common ways to do this. Examples of the
first sort of expression are ‘‘promotes’’ and ‘‘contributes to,’’ as well as the
ordinary usage of ‘‘causes.’’ Examples of phrases that can be used to
designate negative causal relevance include ‘‘prevents,’’ ‘‘inhibits,’’ and
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‘‘blocks.’’ First, I consider the most common proposal for explicating
positive and negative causal relevance, namely, the probability-raising
definition. After showing why this definition is appropriate only for the
case of qualitative variables, I propose a general definition that is applic-
able in quantitative and qualitative cases alike. Finally, I explain why an
additional clause concerning contextual unanimity should not be added
to the definition.

2.3.1 The Probability-Raising Definition

Let us begin with the most common probabilistic rendering of such
expressions as ‘‘A promotes B’’ or ‘‘A contributes to B,’’ namely, the
probability-raising definition (cf. Suppes 1970; Eells 1991). In such ap-
proaches, A and B would typically be interpreted as events or proposi-
tions, rather than quantitative variables. Suppose that C represents all
common causes of A and B. Then such theories typically assert that A is a
positive causal factor for B just in case A is temporally prior to B, and P(B j
A & C) is greater than P(B j:A & C). The probability-raising definition is
reasonable in simple examples in which the causes are represented by
binary variables, as in classic treatment/non-treatment clinical experi-
ments, but is less adequate when applied to examples involving quanti-
tative variables. The difficulty in question arises in the form of the
‘‘problem of disjunctive factors’’ (cf. Humphreys 1989, 40–41; Eells 1991,
144–68; Hitchcock 1993).

The problem is that when A represents a quantity, the negation of A,
:A, indicates a disjunction of possible values {A1, . . . , An}. Moreover,
whether P(B j A & C) is greater than, equal to, or less than P(B j :A & C)
can depend on the probabilities P(A1), . . . , P(An). Consider the following
example due to Paul Humphreys (1989, 40–41). We are concerned to test
the effectiveness of treatment with a particular drug, A, in bringing about
recovery, B. We conduct a randomized controlled experiment in which
the subjects are divided into three groups. The first group receives a
placebo (A0); the second, a moderate dose of the drug (A1); and the third,
a large dose (A2). Suppose that the probabilities in the experiment are the
following: P(B jA0) ¼ :2, P(B jA1) ¼ :4, and P(B jA2) ¼ :9. Then, given
that P(A0) ¼ P(A1) ¼ P(A2) ¼ 1=3, we have P(B j :A1) ¼ :55 > P(B jA1).
Hence, according the probability-raising definition, moderate doses of
the drug prevent recovery. However, this result is quite odd, since the
probability of recoverywithmoderate doses is greater thanwith a placebo.
Moreover, in the example, whetherA1 raises or lowers the probability of B
depends on the relative frequency of the treatment assignments. For
instance, if P(A0) ¼ 7=12 and P(A2) ¼ 1=12 while all of the other numbers
in the example remain the same, then A1 raises the probability of B.

In general, the problem of disjunctive factors is motivated by the idea
that whether X is positively or negatively relevant to Y should not
depend upon how frequently particular values of X happen to occur.
This intuition is understandable if claims about positive causal relevance
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are intended to provide information concerning the effects of interventions.
If X promotes Y, then increasing X ought to be an effective strategy for
increasingY. But in order for claims concerningpositive causal relevance to
play this role, it is important that they be invariant under interventions.
Furthermore, it is obvious that an intervention normally will alter the
probability distribution of the cause, since an intervention seeks to change
the distribution of the effect by changing the distribution of the cause. For
example, a government health initiativemight attempt to reduce the preva-
lence of lung cancer by reducing the frequency of smoking.Hence, if claims
aboutpositive andnegative causal relevance are toprovideuseful guidance
concerning the outcomes of interventions, they should be invariant under
changes to probability distribution of the cause.

In addition to posing a difficulty for the probability-raising definition
of positive causal relevance, the problem of disjunctive factors also pro-
vides an argument against using correlation as a measure of positive and
negative causal relevance. The correlation between X and Y, æ(X, Y), is
defined as follows:

æ(X,Y) ¼ cov(X,Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(X) var(Y)

p

In this equation, cov(X, Y) is the covariance of X and Y, which is equal to
E(XY) � E(X)E(Y),8 while var(X) is the variance of X, which equals
E((X � E(X))2). As long as the values of X and Y consist solely of real
numbers, the denominator of the right-hand side of the above equation is
equal to or greater than zero. If it is also the case that neither variable is
constant (i.e., there is some variation in both X and Y), then the denom-
inator is strictly positive. Hence, for all situations that need concern us
here, covariance determines whether the correlation is positive or nega-
tive. Yet whether the covariance is positive or negative can depend upon
the probability distribution of the cause. For example, consider a case in
which X and Y each have three possible values: 0, 1, and 2. Suppose,
moreover, that the values of X and Y tend to coincide when X ¼ 2, but
tend to differ when X ¼ 1. In such a case, whether the overall correlation
is positive or negative may depend upon the probabilities P(X ¼ 2) and
P(X ¼ 1).9

One way to deal with problem of disjunctive factors is to propose that
attributions of causal relevance are always, though sometimes implicitly,
comparisons between probabilities conditional on particular values of the
cause (cf. Humphreys 1989; Holland 1986).10 Hence, in the above ex-
ample, we could say that moderate doses promote recovery because
P(BjA0) < P(BjA1). This proposal is quite sensible when the cause is a
nonbinary, qualitative variable. For example, suppose one is interested
in the influence of race upon employment, where employment is treated
as a binary variable and race is treated as a qualitative variable that can
take more than two values, say, white, black, Hispanic, or Asian. Suppose
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that the rate of employment among Asians is highest of all, and that of
whites is higher than for both blacks and Hispanics. In this case, whether
being white is positively relevant to employment depends on the propor-
tions of the distinct races in the population, in direct analogy to Hum-
phreys’s example. It is plausible in this case to insist that claims about
positive causal relevance are inherently contrastive, so that the claim that
being white is a positive causal factor for employment is understood,
implicitly or explicitly, in contrast to being black or Hispanic.

For quantitative variables, however, it is unreasonable to insist that
attributions of causal relevance must always be relative to a pair of
comparative values of the cause. For example, the claim that smoking
causes lung cancer is not equivalent to the statement that, say, that the
probability of cancer is greater if you smoke two packs a day rather than
just one. The statement that smoking causes lung cancer entails something
in general about the relationship between cigarette smoking and cancer. A
general claim of this sort cannot be identified with a claim about the
effects of smoking a specific number of cigarettes any more than the
claim that all sparrows have wings can be equated with a claim about a
particular bird. Notice that a difference between the smoking example
and cases involving qualitative variables (such as the race-employment
example) is that it is sensible to speak of the consequences of increasing or
decreasing the cause. The number of cigarettes smoked per day may be
raised or lowered; yet it would be nonsensical to speak of increasing or
decreasing a person’s race.

The problem of disjunctive causal factors suggests that comparisons of
the probability of the effect, given specific values of a cause, are at best an
adequate account of causal relevance for qualitative variables. That leaves
us with the problem of explaining what expressions such as ‘‘X inhibits
Y’’ or ‘‘X promotes Y’’ mean when X or Y is a quantitative variable.

2.3.2 Causal Relevance for Quantitative Variables

Stated in terms of the concepts presented above, Hitchcock’s (1993)
proposal is that claims about positive and negative causal relevance
provide qualitative information about causal effects. But what qualitative
information, exactly? Consider expressions that indicate positive causal
relevance, such as ‘‘X promotes Y’’ or ‘‘X causes Y.’’ How should such
statements be understood when X and Y are quantitative variables? An
appealing idea is that such claims are understood to mean that increases in
X produce increases in Y. Likewise, ‘‘X prevents Y’’ means that increases
in X produce decreases in Y. Hitchcock’s discussion of the smoking-cancer
example (1995, 261–62) suggests that he, too, shares this intuition.11 How-
ever, this intuitive idea can be interpreted in more than one way. Both
interpretations involve reference to some interval of values of the cause.
On what I call the comparative interpretation, the claim of positive causal
relevance indicates that the value of Y is greater when X is raised from
some basal, comparison value to any value within the interval. According
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to what I term the monotonic interpretation, positive causal relevance
means that the value of Y increases monotonically with X throughout
the interval. The cause might be positively relevant in one of these senses
but not the other.

Some preliminary clarification is required to explore these ideas in
the present context. In particular, the intuitive idea that positive
causal relevance means that increases in the cause yield increases in the
effect requires modification for cases in which the relationship between
cause and effect is probabilistic. For in that case, increases in the
cause do not always produce increases in the effect. However, the
intuition is naturally extended to probabilistic examples as follows:
increases in the cause yield increases in the expected value of the
effect. Here ‘‘expected value’’ can be understood by means of the notion
of an average causal effect or, in symbols, E(Y j do(x)). In the case in which
Y is discrete, E(Y j do(x)) ¼

P
y yP(y j do(x)). When Y is continuous,

E(Y j do(x)) ¼
Ðþ1
�1 yg(y j do(x))dx, where g(y j do(x)) is a probability

density function defined as P(a#Y# b j do(x)) ¼
Ð b
a g(y j do(x))dx, for any

pair of real numbers a and b.
Notice that the average causal effect omits all information concerning

the variance of Y, which is an important point, since interventions on X
might alter the variance of Y without changing its expected value. For
example, imagine a social program that redistributes wealth from rich to
poor. Such a programwould clearly affect the distribution of wealth in the
society but could leave the average, or expected, wealth unchanged.
Although the program is causally relevant to wealth, it would be odd to
say that the program promotes or inhibits it. However, it would be natural
to say that the program promotes economic equality, a thought which is
easily accommodated by the present proposal.12 Thus, I suggest that
claims about positive and negative causal relevance are insensitive to
changes in the distribution of the effect that leave its mean unaltered.
That of course is not to deny that it is important in some circumstances to
know how X affects the distribution of Y aside from changing its mean.
Rather, the point is merely that such information is not conveyed by
claims about positive and negative causal relevance. Note that this situ-
ation can arise only if the variable representing the effect is not binary.
Given that discussions of causal relevance have tended to focus on binary
events or properties, it is not surprising that this complication has not
been discussed.

Given these preliminaries, the comparative and monotonic interpret-
ations of positive relevance can be stated more precisely. Let � be an
interval of values of X, and let x0 be some appropriate comparative
value ofX such that, for every x in �, x0 < x. ThenX is a comparative positive
causal factor for Y within the interval � of X if and only if, for all x in
�, E(Y j do(x)) > E(Y j do(x0)). In contrast, X is a monotonic positive causal
factor for Y if and only if, for all x in �, @

@x E(Y j do(x)) > 0. In other words,
X is amonotonic positive causal factor forYwithin�when the functionE(Y
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j do(x)) increases throughout �. Definitions of comparative and monotonic
negative causal relevance can be obtained by substituting ‘‘<’’ for ‘‘>’’ in
these two definitions. Likewise, definitions of comparatively and mono-
tonically neutral can be obtained by substituting ‘‘¼’’ for ‘‘>’’ in the same
places.13

It will be helpful to illustrate these definitions with a concrete example.
Suppose that we are interested in the effect of a certain fertilizer on the
growth of a particular species of plant. Let the variable X be a measure of
the dosage of the fertilizer and Y a measure of the height of the plant.
Imagine that the average causal effect is represented by the curve in
Figure 2.7. In the figure, E(Y j do(x)) increases from x0 to x1, where it
reaches its maximum; thereafter, E(Y j do(x)) decreases and ultimately
converges to zero.14 Hence, if x0 is our comparative value, then X is both a
comparative and monotonic positive causal factor for Y within the inter-
val (x0, x1). Similarly, X is both a comparative and monotonic negative
causal factor for Y in any interval to the right-hand side of x3. But within
the interval (x0, x2), X is a comparative positive causal factor for Y, but
neither a positive, negative, nor neutral monotonic factor. And within the
interval (x1, x2), X is a comparative positive causal factor for Y but a
monotonic negative factor.

It would be cumbersome and inconvenient, however, to operate with
two definitions of positive relevance throughout the remainder of this
book. In what follows, I will say that X is a positive causal factor for Y (full
stop) exactly if X is both a comparative and a monotonic causal factor
for Y.

Definition 2.4 (Positive Causal Relevance): Let � be an interval of
values of X, and let x0 be some appropriate comparative value of X
such that, for every x in �, x0 < x. Then X is a positive causal factor for
Ywithin the interval � ofX if and only ifX is both a comparative and
a monotonic positive causal factor for Y within the interval �.

The definition of negative causal relevance can be obtained from Def-
inition 2.4 through a simple reversal of inequalities, as explained above.
So letting X ¼ 0 be our comparative value in the fertilizer example,
Definition 2.4 tells us that X is a positive causal factor throughout the

X
x0 x1 x3

Y

x2

Figure 2.7 The fertilizer example
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open interval (x0, x1). Likewise, X is a negative causal factor for Y within
the interval x3 to infinity. Thus, Definition 2.4 coincides with the natural
judgment that the fertilizer promotes growth in moderate doses but has
the opposite effect in very large doses. Definition 2.4 also nicely treats
Humphreys’s example that served to illustrate the problem of disjunctive
factors. Let Y be a binary variable representing recovery, and let X be a
continuous variable representing the treatmentdosage. LettingY¼ 1 stand
for recovery and Y ¼ 0 for non-recovery, the average causal effect, E(Y j
do(x)), is equal to P(Y ¼ 1 j do(x)). In Humphreys’s example, we know
P(Y¼ 1 j do(x)) for three values of X, ranging from a zero dosage to a large
one. These probabilities suggest that P(Y ¼ 1 j do(x)) increases monoton-
ically, at least for doses no greater than the largest administered in the
experiment. Given that this inference is correct, Definition 2.4 entails that
X is a positive causal factor for Y in the interval (x0, x2], where x0 is the
zero dosage and x2 is the large one.

Definition 2.4, then, can be regarded as delineating unambiguous cases
of positive causal relevance among quantitative variables. For instance,
although the fertilizer is clearly a positive causal factor for growth in
moderate doses and a negative factor in very large doses, it is unclear
how the effect of intermediate doses should be characterized. For ex-
ample, when � is the interval (x1, x2) in Figure 2.7, E(Y j do(x)) is greater
than E(Y j do(x0)) for all x in �, while for all x in �, @

@x E(Y j do(x)) is negative.
Hence, Definition 2.4 indicates that the fertilizer is neither a positive, a
negative, nor a neutral factor for growth in the interval (x1, x2), which is a
way of indicating the ambiguous nature of the situation. Moreover, given
Definition 2.4, any proposition demonstrated concerning conditions in
which claims about positive causal relevance can be extrapolated auto-
matically holds for both the comparative and the monotonic senses of that
notion. Of course, the practical convenience of Definition 2.4 for the
purposes of this book does not show that it represents the one true way
to understand positive relevance for quantitative variables. There might
be contexts wherein causal relevance is most naturally understood in
terms of either comparative or monotonic relevance alone. Nevertheless,
I think Definition 2.4 is a reasonable compromise for the present purposes.

An additional nice feature of Definition 2.4 is that it enables us to treat
negative and positive causal relevance for qualitative variables as a spe-
cial case simply by disregarding the monotonicity condition, which is
clearly inapplicable in the qualitative case, and by having � be a single
value of X rather than an interval. For instance, when X is binary, x0 ¼ 0
and� ¼ [1] (since x0 < x, for all x 2 �).WhenX is a qualitativevariablewith
more than two possible values (as in the race-employment example), the
definition simplifies to the proposal considered in section 2.3.1 that claims
about causal relevance are always, explicitly or implicitly, comparisons
involving two values of the cause. Thus, the probability-raising definition
of causal relevance is a special case of the definition just presented,
namely, the case in which X is a qualitative variable. Hence, any propos-

Interventions, Causal Effects, and Causal Relevance 25



ition that is true of positive, neutral, and negative factors in the case of
quantitative variables is also true for qualitative variables (though not
vice versa).

Definition 2.4 also captures Hitchcock’s (1993, 2003) insight that posi-
tive and negative causal relevance are merely two varieties among many.
In Definition 2.4, positive, negative, and neutral causal relevance are not
collectively exhaustive. For instance, as explained above, in Figure 2.7, X
is not neutral with respect to Y in the interval (x1, x2), but neither is it a
positively nor a negatively relevant causal factor. Note that situations of
this kind can arise only if the function E(Y j do(x)) is nonmonotonic. When
E(Y j do(x)) is constant, monotonically increasing, or decreasing, compara-
tive and monotonic relevance are equivalent.

When E(Y j do(x)) is a nonmonotonic function, the language of positive
and negative causal factors can still be useful (as the fertilizer example
illustrates), but may be incapable of describing important aspects of the
average causal effect. For example, it is useful to know the value of X for
which the function represented in Figure 2.7 reaches its maximum, since
this represents the optimum dosage. But this information cannot be ex-
pressed in the language of positive and negative causal factors. A similar
point can be made with respect to some monotonic cases. For example,
suppose that E(Y j do(x)) increases monotonically and asymptotically con-
verges to the value n. Then it may be important to know the value of n and
how quickly E(Y j do(x)) converges to it, yet such information cannot be
expressed in terms of positive and negative causal relevance. In short, the
language of positive and negative causal relevance can convey useful
information even with regard to nonmonotonic curves, but the more com-
plex the shape of the curve, the more likely that it will be expedient to
supplement, or perhaps even replace, talk of positive and negative causal
relevance with more detailed descriptions of the shape of E(Y j do(x)).

The phrase ‘‘appropriate comparative value’’ in Definition 2.4 requires
some further comment. In many cases it is very natural to let x0 be 0; for
example, a zerodosageof fertilizer.However, I donot insist that there is one
objectively correct choice of the comparative value x0 in each case.Claims to
the effect thatX is a positive causal factor for Y serve to provide qualitative
information about E(Y j do(x)). We may wish to convey different sorts of
information about the same function in different contexts, and different
choices of x0 may sometimes be useful for this purpose. Notice, however,
that in the monotonic case, it makes no difference which value of X we
choose for the comparison. For somenonmonotonic functions, the choice of
x0 may be highly arbitrary aswell as very relevant towhetherX is a positive
causal factor for Y, according to Definition 2.4. In such cases, I suggest that
the language of positive and negative causal factors is of limited utility.

The only constraint placed on x0 in Definition 2.4 is that it be strictly
less than each point in the interval �.15 However, there are cases in which
it is not implausible that the comparative value x0 would be greater than
every member of the interval. For example, Hitchcock writes:
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We can imagine a country in which almost everyone smokes two packs per
day, and in which the surgeon general admonishes citizens to cut back to
one pack per day. In such a context, it might be natural to say that smoking
(only) one pack per day inhibits lung cancer. . . . (1995, 262)

In this example, the comparative point is two packs of cigarettes per
day, while the interval is one pack per day or less. I agree that, in the
imagined context, such a choice of interval and comparison point might
be convenient for conveying the information that reducing the number of
cigarettes smoked from two packs a day to just one reduces the chance of
lung cancer. But does this mean that one should say in Hitchcock’s
example that smoking prevents lung cancer? Let us consider what Defin-
ition 2.4 has to say about this case.

Observe that Definition 2.4 is not applicable in the case in which the
comparative value x0 is greater than every member of �. Let us consider,
then, a modified version of Definition 2.4 in which the comparison point
x0 is greater than every member of the interval. This has the effect of
putting the causal claim in terms of the effect that decreasing X has upon
the expected value of Y. In Hitchcock’s example, the envisioned decrease
in smoking would be expected to produce a corresponding decrease in
the prevalence of lung cancer. The original version of Definition 2.4,
on the other hand, is designed for cases in which causal claims are
expressed in terms of the consequences of increases in the independent
variable. These two modes of expression convey the same information,
since decreases in X produce decreases in Y just in case increases in
X produce increases in Y. Given that the same information about the
function E(Y j do(x)) is being communicated in both cases, it would be
quite misleading indeed to label X’s influence upon Y ‘‘negative’’ in
one case and ‘‘positive’’ in the other. Thus, if we are to modify Definition
2.4 so that the comparison value may be greater than the values in
the interval, we should also reverse the inequality in the definition of
comparative causal relevance. Thus modified, Definition 2.4 would state
that smoking is a positive causal factor for lung cancer in Hitchcock’s
example.

With the definition of positive and negative causal relevance, three
types of causal claims have been described. In descending order of the
precision of the information provided by each type, we have: causal
effects, average causal effects, and claims concerning causal relevance.
Causal effects and average causal effects can be estimated in some con-
texts, but are extremely sensitive to changes in background conditions.
Consequently, qualitative claims about positive and negative causal rele-
vance are useful in that their roughness and imprecision make them less
dependent on the particular circumstances of a specific population. Al-
though it is extremely unlikely that the causal effect found in one hetero-
geneous population is exactly replicated in another, it may be reasonable
to expect that a positive causal factor in one population is also such in
other related populations.
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2.3.3 Contextual Unanimity

It is sometimes insisted that claims about causal relevance can be properly
made only with respect to populations that satisfy a condition called
contextual unanimity (cf. Cartwright 1983; Eells and Sober 1983; Eells
1986, 1987, 1991). Contextual unanimity obtains when the positive causal
factor is such not merely for the population as a whole, but also for every
subset of it.16 However, I shall not include contextual unanimity as a part
of the definition of positive and negative causal relevance.

Writing contextual unanimity into the definition would make it very
hard to see how positive causal relevance could be discovered by the
usual scientific means designed for such purposes, particularly random-
ized controlled experiments (cf. Dupré 1993, 200–1). A randomized con-
trolled experiment may tell us that the cause is positively relevant in the
population overall, but such a result is consistent with that effect being
neutralized or even reversed in subpopulations. Indeed, among hetero-
geneous populations it is quite common that there are unknown factors
capable of disrupting the mechanism linking cause and effect. Conse-
quently, if contextual unanimity is part of the meaning of claims concern-
ing positive causal relevance, then it is unclear how one could establish
that smoking causes cancer, HIV causes AIDS, and so on. In short, if a
definition of positive and negative causal relevance is to be applicable to
typical examples in biology, medicine, and social science, then it is inev-
itable that it must allow such claims to be made with respect to heteroge-
neous populations in which the overall causal effect may be nullified or
even reversed in subpopulations. Since claims of positive and negative
causal relevance are frequently made with respect to heterogeneous popu-
lations, it is quite implausible that contextual unanimity is inherent in the
meaning of such claims.

Contextual unanimity is best viewed not as a part of the meaning of
claims concerning positive causal relevance, but as a circumstance that
may facilitate extrapolation if present. Adding contextual unanimity to
the definition of causal relevance is not a fruitful strategy with respect to
extrapolation for two reasons. First, as noted above, such an addition
would make it practically impossible to learn causal relevance relation-
ships in many areas of biology and social science. Second, although the
satisfaction of contextual unanimity can aid extrapolation, it is neither
necessary nor sufficient in general for this purpose.

Extrapolation can be possible even when contextual unanimity does
not obtain. In fact, Chapter 6 examines several circumstances that suffice
for extrapolating claims about positive causal relevance, none of which
require contextual unanimity. Consider one very simple example.
Imagine a vaccine that is known to be effective in the general population
P, although there are some rare cases in which the vaccine has the
opposite effect of what is intended. Clearly, contextual unanimity does
not obtain in this case. Now consider a proper subset of P, call it P’. We
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want to know whether the vaccine also inhibits infection in P’. In spite of
the failure of contextual unanimity, we would be able to conclude that the
vaccine is effective in P’ if we knew that the proportion of negative and
positive reactions to the vaccine in P’ is similar to that of the general
population P.17

Contextual unanimity is also not always sufficient for extrapolation.
This is most obviously the case when one wishes to extrapolate quantita-
tive information concerning the causal effect, information that may be of
practical significance. Even if positive contextual unanimity obtains, for
example, the cause may have a strong effect in some populations and a
minuscule effect in others. Moreover, there may also be qualitative fea-
tures of the causal effect that are not expressible in terms of negative and
positive causal relevance. For instance, suppose that E(Y j do(x)) increases
monotonically and asymptotically converges to the value n. The value of
n, and how quickly the function converges to it, may be important infor-
mation. Yet even if the population is contextually unanimous, the value of
n and the rate of convergence in the population as a whole may differ
markedly from that in some subpopulations. This is an extrapolation
problem that contextual unanimity, even if it were an available assump-
tion, would not suffice to resolve.

Contextual unanimity is not the only circumstance that might facilitate
extrapolation in some circumstances. For example, Chapter 6 examines a
condition I call consonance that, put roughly, requires that there not be
counteracting causal paths from cause to effect. Contextual unanimity
and related conditions, such as consonance, should not be viewed as
part of the meaning of claims about causal relevance. Instead, they should
be regarded as premises that can aid extrapolation in certain types of
cases, though not necessarily others. Although I suspect that contextual
unanimity is very rarely a justifiable assumption in interesting biological
or social science examples, I think that consonance is reasonable in some
circumstances. In Chapter 6, I explain consonance in greater detail, con-
sider the circumstances under which it is a reasonable assumption, and
examine how it facilitates extrapolating claims concerning positive or
negative causal relevance.

2.4 CONCLUSION

Heterogeneity poses a challenge for extrapolation because it raises the
possibility that a causal effect in one population might differ in some
significant respect from that found in other, related populations. Conse-
quently, clear definitions of ‘‘causal effect’’ and of common expressions
for indicating qualitative features of causal effects—particularly, positive
and negative causal relevance—need to be given before much progress
regarding this problem can be made. This chapter has endeavored to
provide these definitions. Let us turn, then, to a consideration of the
relation between these probabilistic causal concepts and mechanisms.
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3

Causal Structure and Mechanisms

An important prerequisite for exploring the mechanisms approach to
extrapolation is to explain what the qualitative concept of a mechanism
has to do with probabilistic causal concepts such as causal effect and
causal relevance. That is the task undertaken in this chapter and the
next. In this chapter, I attempt to show that, for a broad range of cases
of interest to the present study, it is reasonable to identify mechanisms
with what is called causal structure in work on the problem of inferring
causal conclusions from statistical data (cf. Glymour and Cooper 1999;
Spirtes, Glymour, and Scheines 2000; Pearl 2000; Neopolitan 2004). Ac-
complishing this necessitates saying something about what causal struc-
ture is, and when and why mechanisms can be identified with it.

Explaining how this works involves reconsidering the manner in
which analytic philosophers have traditionally approached the topic of
causality. One of the primary activities (and perhaps the primary activity)
of traditional analytic philosophy is conceptual analysis. I understand
conceptual analysis to consist of providing necessary and sufficient con-
ditions for the application of an interesting yet somewhat unclear term
(e.g., ‘‘explanation,’’ ‘‘cause’’), where these conditions satisfy the follow-
ing two properties. First, the conditions are stated via concepts that can be
defined independently of the target of the definition. Second, the usage of
the term recommended by the analysis must agree tolerably well with the
intuitions of native speakers in all conceivable circumstances. However,
conceptual analysis has decidedly fallen from favor in recent years in the
philosophy of science. For example, leading accounts of causality in
the recent philosophy of science literature (cf. Hausman 1998; Dowe
2000; Woodward 2003) explicitly disavow any intention to provide a
conceptual analysis in the sense just described. Rather than conceptual
analysis, these authors endeavor to develop an account of causality that is
informed by current scientific theories and methodology. Dowe, whose
approach to causation owes much to Wesley Salmon (1984), strives for
what he terms an empirical analysis of causality, that is, ‘‘to discover what
causation is in the objective world’’ (Dowe 2000, 1). Dowe regards current
physical theory as the most reliable source of information that would
serve as a basis of an answer to this question.

But there is a simple objection to any program that would proceed with
empirical analysis before conceptual analysis is complete: without prior
conceptual analysis it is unclear what basis there is for asserting that the
identified characteristic of the world corresponds to the term derived
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from ordinary language. David Lewis has posed this objection in the
context of a discussion of the philosophy of mind, but it transfers easily
to discussions of causation. In Lewis’s words:

Arbiters of fashion proclaim that analysis is out of date. Yet without it,
I see no possible way to establish that any feature of the world does or
does not deserve a name drawn from our traditional mental vocabulary.
(1994, 415)

After considering and rejecting Dowe’s response to this objection, I pro-
pose that a better answer derives from the view that causal locutions
should be treated as theoretical terms in the sense of the Ramsey-Lewis
account, according to which theoretical terms are a kind of definite
description (cf. Lewis 1970). Given this perspective, an empirical analysis
should be based upon a meaning postulate that specifies a particular role
associated with the term in question. I will concentrate on two roles
ascribed to causal structure; in particular, causal structure is that which
generates probability distributions and indicates how these distributions
change given interventions.

From this starting point, an empirical analysis of causal structure
consists of indicating what fulfills these roles in a particular domain.
Making the case for identifying mechanisms with causal structure
requires some general argument for supposing that mechanisms
are modular, in the sense that it is possible to alter one component
without disrupting the functioning of the others. I explain how evolution-
ary theory can support the claim that modularity is likely to be a perva-
sive feature of mechanisms. However, this argument is, at present, on
firmer ground in molecular biology than in social science, making the
motivation for identifying causal structure with mechanisms somewhat
more tentative in the latter case. An implication of this discussion is that
empirical analyses of causation depend on domain-specific scientific
details and hence may differ for distinct phenomena. The question of
whether social mechanisms should be identified with causal structure,
and under what circumstances, will be explored in further detail in
Chapter 8.

3.1 IT’S NICE, BUT IS IT CAUSALITY?

An empirical analysis of causation proceeds by examining the question of
what causation is in the world. For example, Dowe’s conserved quantity
theory advances the following two propositions as the foundation of an
answer to that question:

CQ1. A causal process is a world line of an object that possesses a
conserved quantity.

CQ2. A causal interaction is an intersection of world lines that
involves exchange of a conserved quantity. (2000, 90)
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It is striking how removed this analysis is from many ordinary discus-
sions of causation. For instance, it is unclear what relevance exchanges of
conserved quantities have to the claim that the vitamin C tablets that Bob
ate did not cause him to recover from his cold.1

Lewis’s objection, then, seems quite apt: the conserved quantity theory
is interesting, but why should one regard it as an account of causality?
And how can this question be answered without presupposing a concep-
tual analysis? Dowe responds to this objection in the following way:

In drawing explicitly on scientific judgments rather than on intuitions about
how we use the word, we nevertheless automatically connect to our every-
day concept to some extent, because the word cause as scientists use it in
those scientific situations must make some historical or genealogical con-
nection to everyday language. (2000, 9)

Thus, basing an analysis of causation on current science connects to
commonsense ideas concerning the meaning of ‘‘cause’’ since the usage
of the term by scientists is linked to that of ordinary folk. But does this
mean that empirical analysis simply amounts to a conceptual analysis of
scientists’ concept of causation? Dowe makes it clear that this is not his
intent: ‘‘The task of empirical analysis . . . is not a conceptual analysis of
scientists’ usage of a term’’ (2000, 10). Rather, he maintains that the
empirical analysis he pursues aims to explicate the concept of causation
‘‘implicit in scientific theories’’ (2000, 11).

The main difficulty I see with this response is that it is highly
questionable whether there is a concept of causation implicit in current
scientific theory. As Dowe observes, no physical theory contains ‘‘cause’’
as an explicitly defined term (2000, 9), and consequently any proposed
empirical analysis of causation must inevitably be a substantive thesis
over and above what is given by science (Bontly 2006, 182–83). Moreover,
there are several ways that one could interpret causation in the light of
current science, and it seems unavoidable that arguments for choosing
one approach over another will appeal to intuitions about the
proper usage of the word ‘‘cause.’’ To take just one issue, consider
whether causation requires determinism. Dowe argues that the answer
is no, on the grounds of an example concerning exposure to radioactive
material.

If I bring a bucket of Pb210 into the room, and you get radiation sickness,
then doubtless I am responsible for your ailment. But in this type of case,
I cannot be morally responsible for an action for which I am not causally
responsible. (2000, 23)

Thus, given the scientifically plausible assumption that the decay of Pb210

is a fundamentally indeterministic process, it follows that indeterministic
causation exists.

Although the above argument is interesting and perhaps even persua-
sive, it is clear that there is more to it than merely explicating a concept
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implicit in physical theory. Dowe’s argument depends crucially on the
thesis that moral responsibility (at least in some unspecified class of
cases of which the present one is an example) entails causal influence.
But what is the basis of any such principle linking moral responsibility
and causation? Surely it is not physical theory. Rather, any grounding
for it would reside in the interconnection of ordinary concepts of
responsibility and causality. As a result, one who maintained that
determinism is a fundamental aspect of the concept of causality (e.g.,
Pearl 2000, 26–27) could avoid the conclusion of Dowe’s argument by
rejecting the claim that moral responsibility implies causal influence.
For example, I might have a moral responsibility to provide assistance
to starving people in a distant land despite the fact that I am in no way
causally responsible for their unfortunate situation. Thus, Dowe’s use of
current physics to argue for indeterministic causation requires an ante-
cedent clarification of the relationship between causation and moral
responsibility.

Physical theory certainly does have implications for the nature of
causation. In the foregoing example, modern physics makes it difficult
to maintain both that causation is inherently tied to determinism and that
moral responsibility entails causal influence. But this does not show that
there is a single account of causality implicit in physical theory, since
several different accounts of causation can be made consistent with mod-
ern science, depending on what position one takes regarding the inter-
connections between causation and such things as responsibility, human
agency, determinism, temporal priority, spatiotemporal contiguity, and
so on. Yet one significant aim of conceptual analysis is to settle questions
concerning such interconnections. Hence, we are led straight back to
Lewis’s objection: empirical analysis cannot fruitfully proceed until mat-
ters of conceptual analysis have been settled.

Let us consider a different account of how an empirical analysis of
causation can proceed even in the absence of a successfully completed
conceptual analysis.

3.2 CAUSALITY AND THEORETICAL TERMS

In this section, I suggest that the cogency of empirical analysis without a
successfully completed conceptual analysis can be defended by consider-
ing causal locutions as theoretical terms in the sense of the Ramsey-Lewis
account (Ramsey 1954; Lewis 1970). The Ramsey-Lewis account proposes
to treat theoretical terms as a type of definite description stated via
antecedently understood concepts:2 the theoretical entity is simply that
(if anything) which satisfies the description. For example, in eighteenth-
century chemistry, phlogiston is that which is present in all flammable
objects and is emitted during the process of combustion. In Lavoisier’s
chemistry, oxygen is that which is absorbed during combustion and is
necessary for the formation of acids.
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Several authors have suggested that the Ramsey-Lewis account, in
addition to applying to deliberately introduced terms of scientific theor-
ies, could also be appropriate with regard to concepts falling more
squarely in the province of philosophy. For example, Michael Tooley
(1987) and Peter Menzies (1996) take such an approach to causation, and
Dowe (2000, 49–51) sympathetically considers the idea with respect to
transference theories of causation.3 In Dowe’s formulation, such an an-
alysis of causation would consist of three components: a meaning postu-
late, a contingent hypothesis, and an a posteriori identity (2000, 49). The
meaning postulate is the definite description that specifies some import-
ant feature of causation: causality is that which does __. For example, one
plausible claim is that causation is that which underlies the possibility of
predicting the consequences of interventions (cf. Menzies and Price 1993;
Woodward 2003). The contingent hypothesis would then be an empirical
claim about what things in the world fulfill this role in a given domain,
while the a posteriori identification would assert that (in the domain in
question) causation is identical to the entity or process indicated in the
contingent hypothesis.

The question, then, is how to decide what the meaning postulate
should be. An agreed-upon conceptual analysis, if one were available,
clearly would be one possible basis for answering this question. For
example, Tooley treats his proposal regarding the meaning postulate as
a conceptual analysis (cf. Tooley 1987, 25–28). If this were the only pos-
sible way to justify one’s choice of meaning postulate, then Lewis’s
argument that empirical analysis cannot proceed until matters of concep-
tual analysis have been settled would be vindicated. But there is another
possibility: the meaning postulate could be derived from empirical obser-
vations of the use of causal language. For example, Thomas Bontly pro-
poses that we regard ‘‘the concept of causation as a concept defined by its
place in an inferential system or network, by the inferences it licenses and
those that license it’’ (2006, 191). Given this perspective, the meaning
postulate should be based on inferences that people actually make to
and from causation. A meaning postulate, then, should indicate some-
thing that is generally regarded as evidence for causal claims as well as
something that is judged to be a consequence of causal claims. A meaning
postulate that focuses on the connection between causation and predict-
ing the outcomes of interventions does both of these things. The connec-
tion between causal claims and effective strategies for achieving ends has
been emphasized by many authors (cf. Cartwright 1983, chap. 1; Mellor
1988, 230; Hoover 2001; Woodward 2003). Moreover, carefully controlled
interventions are generally regarded as the most reliable scientific means
for testing causal claims. There is also experimental evidence that pre-
school-age children regard interventions as an especially effective way of
learning what causes what (Kushnir and Gopnik 2005). Similarly, covar-
iance is generally regarded as a consequence of causal relationships and
as evidence for them, at least under the right circumstances (Cheng 1997).
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Thus, either manipulation or covariance of the right sort is a potential
basis for a meaning postulate in an empirical analysis of causation. In fact,
the meaning postulate that will be discussed below—according to which
causal structure is that which generates probability distributions and
provides information about how they change under interventions—com-
bines both notions. Physical contiguity is a third factor that is often
relevant to causal inferences, and it is presumably the guiding thought
behind Dowe’s conserved quantity theory. However, physical contiguity
alone is rarely sufficient to infer causation, since one event might be
physically adjacent to another without having caused it. Not surprisingly,
in his definition of ‘‘C causes E,’’ Dowe combines the definitions of causal
process and interaction presented above with a requirement that the
cause raise the chance of the effect (2000, 167).

The link between causation and manipulation is doubtful as a concep-
tual analysis of causation, since specifying what a manipulation or inter-
vention is will inevitably involve references to causation. Nevertheless, a
principle linking causation to manipulation can serve as an appropriate
meaning postulate for an empirical analysis that treats causation as a
theoretical term in the sense of the Ramsey-Lewis theory. If it can be
shown that the feature of the world specified in the empirical analysis
makes effective manipulation possible, then there is a straightforward
answer to the question: Why call it causation? Whatever causation is,
knowledge of it is often important for indicating effective and ineffective
strategies for achieving ends. Hence, if one identified a general feature of
the world that fulfilled this function, then one would have a legitimate
claim to be describing causation.

It may be objected that the connection between manipulation and
causation could not serve as a meaning postulate, since manipulation is
a causal concept, whereas the terms in the meaning postulate are sup-
posed to be antecedently understood. In response, I claim that manipula-
tion and intervention are antecedently understood: they are drawn from
the vocabulary of ordinary English and everyday life. (Of course, that
does not preclude the usefulness of introducing a framework for discuss-
ing them more clearly, as done in section 2.1.) The key point is that
antecedently understood is a criterion distinct from independently definable:
we have a reasonably clear idea of what an intervention is, regardless of
whether we can define the term in a manner that eschews all reference to
causation. Consequently, it is legitimate to use intervention as the basis of
the meaning postulate for a Ramsey-Lewis-style definition of ‘‘causal
structure.’’

Another possible objection is that without a conceptual analysis of
causation, there will be several potential starting points for an empirical
analysis of causation. I think it is quite right that there may be several
reasonable choices for starting points for an empirical analysis of caus-
ation, and that different starting points might lead to separate destin-
ations. However, this is a problem only if one supposes that there must be
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a monolithic concept of causation for which a unique empirical analysis
must be given. In contrast, I see no reason to rule out at the start of inquiry
the possibility that the notion of causation is multifaceted.4 Given the
account proposed here, empirical analyses of causation might be plural-
istic in two ways. First, a single meaning postulate might be realized
differently in distinct domains. For instance, that which generates prob-
ability distributions and provides information about how they change
under interventions might be one kind of thing in fundamental physics
and another in molecular biology and something else again in economics.
Second, there may be several reasonable meaning postulates that lead to
distinct empirical analyses even within the same domain of inquiry. For
example, an empirical analysis based on manipulation might lead to
results different from one that emphasizes physical contiguity. The po-
tential for this second type of pluralism raises the question of whether
there are common threads linking the several meaning postulates, or
whether ‘‘causation’’ is simply an ambiguous term with several distinct
meanings. My own view is that the various causal concepts are all closely
linked elements of a network of concepts relating to practical reason.
However, the account of extrapolation developed in this book does not
depend upon the correctness of that overarching vision of causation. All
that I require is that the meaning postulate I associate with causal struc-
ture be a reasonable one.

Despite the pluralistic spirit expressed in the foregoing paragraph, it is
important to stress that not any old thing can be an acceptable meaning
postulate. For instance, it would be absurd to say that causation is that
which is located in the top drawer of my desk. Absurd proposals like this
one would clearly be disqualified by the requirement that a meaning
postulate indicate something that is generally regarded as both evidence
for and a consequence of causation. But some things that are conceptually
linked to causation also fail this criterion. Suppose one proposed this as a
meaning postulate: ‘‘Causation is that which is necessary for moral re-
sponsibility.’’ That there is some conceptual link between moral respon-
sibility and causation seems clear enough. In many cases, one can be
morally responsible for something only if one has some influence on it.
However, moral responsibility is not something that could serve as evi-
dence for causation. Evidence for causation is something that you can
actively search for or produce in order to decide whether a causal rela-
tionship obtains. If you want to know whether A causes B, you might do
an experiment in which you manipulate A and check to see if B varies
concomitantly. Or you might collect statistical data to see if A and B are
correlated even when potential common causes are statistically controlled
for. But there is no analogous way to usemoral responsibility as a basis for
testing causal claims. The same point would go for the suggestion that
causation is that which underlies explanation. Consequently, not every-
thing that is conceptually linked to causation can serve as a good meaning
postulate in an empirical analysis of it.
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3.3 CAUSAL STRUCTURE

A lively body of work on the problem of causal inference from statistical
data uses directed graphs to represent causal structures (cf. Glymour and
Cooper 1999; Spirtes, Glymour, and Scheines 2000; Pearl 2000; Neopolitan
2004). For example, consider Figure 3.1.

As in section 2.1, the nodes of the graph correspond to variables and an
arrow from one node to another indicates the relationship of direct caus-
ation. For instance, Y might represent whether or not a particular power
strip is switched to the ‘‘on’’ position, while X and Z each indicate
whether or not an electrical appliance plugged into the power strip is
on. Using directed graphs to represent causal structures has several
advantages for theories of causal inference, the most significant of
which is that it enables one to draw upon mathematical results which
facilitate computationally tractable methods of deriving predictions about
probabilistic independence and conditional independence from alterna-
tive causal hypotheses.5 Directed graphs in conjunction with probability
distributions are sometimes referred to as Bayesian networks, or Bayes nets
for short.6 For convenience, I shall adopt the label causal Bayes nets to refer
to the approach to causal inference just briefly described.

Causal structures, then, are what directed graphs are intended to
represent in the causal Bayes nets literature. But that does not tell us
very much about what causal structures are; after all, directed graphs
like that in Figure 3.1 can just as easily be used to represent mere correl-
ations. And of course, things other than directed graphs—such as systems
of equations and wiring diagrams—can also be used to represent causal
structures. What is it, then, that these diverse modes of representation
depict? Introductions to treatises on the topic typically emphasize the
importance of causal inference for accurately predicting the consequences
of public policy decisions (cf. Glymour and Cooper 1999, xi–xii; Pearl
2000, 337; Spirtes, Glymour, and Scheines 2000, xiii–xiv). In addition,
significant effort is dedicated to inquiring how knowledge of causal
structure, in varying degrees of precision, can serve as the basis of pre-
dicting consequences of interventions (cf. Spirtes, Glymour, and Scheines
2000, chap. 7). Thus, causal structures provide information concerning the
results of interventions. An additional role is also attributed to causal
structures: causal structures are said to ‘‘generate’’ probability distribu-
tions (cf. Glymour 1997, 206; Spirtes, Glymour, and Scheines 2000, 29).

Y

X Z

Figure 3.1 A directed graph
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Pulling these two strands together, we have the following meaning pos-
tulate:

(CS) Causal structure is that which generates probability distribu-
tions and indicates how these distributions will change given inter-
ventions.

A good understanding of (CS) is evidently dependent on some explica-
tion of interventions and of what it is to ‘‘generate’’ a probability distri-
bution. Since the notion of an ideal intervention was explained in section
2.1, let us consider the second of these two questions.

For our purposes, the concern is with physical probability rather than
probabilities interpreted as personal degrees of belief or confidence. Al-
though the concept of physical probability is nearly as disputed as that of
causation, I think that it is clear enough what sort of phenomena such
probabilities usefully represent, namely, processes whose outcomes ex-
hibit what John Venn described as a combination of ‘‘individual irregu-
larity with aggregate regularity’’ (1962, 4). For example, consider the
simple case of a flipped coin.

So long as we confine our observation to a few throws at a time, the series
seems to be simply chaotic. But when we consider the result of a long
succession we find a marked distinction; a kind of order begins gradually
to emerge, and at last assumes a distinct and striking aspect. We find in this
case that the heads and tails occur in about equal numbers, that similar
repetitions of different faces do also, and so on. In a word, notwithstanding
the individual disorder, an aggregate order begins to prevail. (Venn 1962, 5)

As Venn observed, this type of behavior is found inmany other circumstan-
ces: ‘‘Fires, shipwrecks,yieldsofharvest, births,marriages, suicides; it seems
scarcely tomatter what feature we single out for observation’’ (1962, 6).

For our concerns, it is unimportant whether one wishes to define
probability as the aggregate or macro pattern itself (as frequency inter-
pretations do), or as the causal tendencies underlying that aggregate
pattern (as propensity interpretations do). Probabilities are useful for
representing, or modeling, any phenomenon that displays a combination
of individual irregularity and aggregate regularity. A process can be said
to generate a probability distribution, then, just in case it gives rise to an
aggregate pattern of this sort. This criterion is, admittedly, somewhat
vague, but it will suffice for the present purposes.

Things that generate probability distributions, then, must exhibit be-
havior possessing the combination of individual disorder and aggregate
regularity described by Venn. I maintain that these properties are pos-
sessed by mechanisms that are impinged on by disturbances that are,
from the perspective of human knowledge, largely random. Moreover,
mechanisms often provide information about the effects of interventions.
Consequently, mechanisms are promising candidates for causal structure.
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Let us consider this thought in more detail with regard to a pair of cases:
molecular biology and social science.

3.4 CAUSAL STRUCTURE IN MOLECULAR BIOLOGY

Given a meaning postulate, the next stage of an empirical analysis is a
contingent hypothesis, which specifies a class of entities whose extension,
in a particular domain, is exactly that of the meaning postulate. In this
section, I argue that in molecular biology, causal structure coincides with
mechanisms, yielding the following empirical analysis:

. Meaning Postulate (CS): Causal structure is that which generates
probability distributions and indicates how these distributions
change under interventions.

. Contingent Hypothesis: In molecular biology, mechanisms are what
generate probability distributions and indicate how these distri-
butions change under interventions.

. A Posteriori Identity: In molecular biology, mechanisms are causal
structure.

In this section, I argue in favor of the above contingent hypothesis.
As explained in earlier sections of the chapter, empirical analyses rely
upon established scientific theories of the relevant domain. In this case,
evolutionary biology plays an important role in motivating the claim that
mechanisms in molecular biology provide information about the conse-
quences of interventions by providing a general reason to expect that such
mechanisms are modular.

3.4.1 What’s a Mechanism?

Mechanisms, in a very literal sense of the term, are paradigmatic ex-
amples of causal structures. For example, in Nancy Cartwright’s words:

The car engine is a good case of a stable causal structure that can be expected
to give rise to a probability distribution over the events of the cooperating
causal processes that make it up. That is why it can make sense to ask about
the conditional expectation of the acceleration given a certain level of the
throttle. (1995a, 72)

Given that several authors have proposed that mechanisms play an
important role in the life sciences (cf. Bechtel and Richardson 1993;
Glennan 1996; Machamer, Darden, and Craver 2000), they are a natural
place to turn for an empirical analysis of causal structure in biology.
However, this must be done with some care, since the application of the
word ‘‘mechanism’’ in distinct domains might reflect only a superficial
similarity of subjectmatter. Thus, it is important to examine just what sorts
of things biological mechanisms are and why they should be thought to
fulfill the roles ascribed to causal structure.
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Mechanisms are generally understood as consisting of interacting
components that generate a causal regularity between some specified
beginning and end points. For example, according to a definition pro-
posed by Peter Machamer, Lindley Darden, and Carl Craver, ‘‘Mechan-
isms are entities and activities organized such that they are productive of
regular changes from start or set-up to finish or termination conditions’’
(2000, 3). This general characterization is appropriate for literal examples
of mechanisms, such as the car engine, and is reasonable with regard to
things referred to by the term ‘‘mechanism’’ in biological science. Con-
sider, for example, the mechanism involved in protein synthesis, in which
the series of nucleotide bases in strands of DNA influences the chemical
structure of proteins produced within cells. Nearly any introductory
biology textbook describes this mechanism roughly as follows. First, a
strand of DNA unwinds and the adjoining nucleotide bases separate. The
next step is the transcription of the unwound DNA by messenger RNA
(mRNA), the order of the bases of the mRNA being determined by the
order of the complementary nucleotide bases in the DNA strand. Finally,
the strand of mRNA serves as a template for transfer RNA (tRNA), which
assembles a string of amino acids into a protein. In this case, the inter-
working parts give rise to more readily observed regularities, such as
correlations between genes and specific traits. Some things referred to by
the term ‘‘mechanism’’ may not involve a regular series of changes. For
example, the term ‘‘mechanism’’ is sometimes used to refer to a unique
chain of events leading to a particular effect. However, since this book is
concerned with extrapolating causal generalizations, I will use the term
‘‘mechanism’’ to refer to regularly operating causal relationships rather
than idiosyncratic and unique chains of events. Consequently, I will
restrict the term ‘‘mechanism’’ to processes that satisfy the ‘‘regular
changes’’ clause of the Machamer-Darden-Craver definition.

Other related definitions of mechanisms exist. For example, Stuart
Glennan proposes a definition that is similar to Machamer, Darden, and
Craver’s except that it requires that the interactions among the compon-
ents of the mechanism be governed by ‘‘direct causal laws’’ (1996, 52). The
reference to laws in this definition is problematic, since it is debatable
whether there are genuine laws of nature in biology and social science,
where the term ‘‘mechanism’’ is often used. Consequently, in a subse-
quent revised account of mechanisms, Glennan replaces ‘‘direct causal
laws’’ with ‘‘direct, invariant, change relating generalizations’’ (2002,
S344). The notion of an invariant generalization is borrowed from James
Woodward (2000, 2003). An invariant generalization is one that is invari-
ant under some range of ideal interventions on the allegedly explanatory
variable. For example, the generalization that barometer readings and
storms are correlated is not invariant under ideal interventions on the
barometer readings (as explained in section 2.1). Hence, the barometer
readings do not cause or explain storms, according to Woodward’s the-
ory. In contrast, the generalization that smoking is correlated with lung
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cancer would be invariant under ideal interventions that target smoking.
James Tabery (2004) argues that there is an important difference between
Woodward’s conception of causation and the notion of ‘‘productivity’’
invoked in the definition proposed by Machamer, Darden, and Craver.
The thought is that while invariant generalizations merely point to ways
in which changes brought about by an intervention lead to specific
changes someplace else, productivity pertains as well to cases in which
new entities are constructed (2004, 8–9). However, the ‘‘changes’’ covered
by Woodward’s account of causation should be understood to include
constructing a new product out of disparate parts. For example, imagine a
cellular process that generates a particular enzyme. Let E be a variable
that indicates whether or not this enzyme has or has not been produced
on given occasions. Then there may be invariant generalizations relating
E to other variables that represent, say, the presence of necessary com-
ponents in the cell or the transcription of a particular gene. If there is a real
difference between Glennan’s definition and that proposed byMachamer,
Darden, and Craver, I think it is only that Glennan provides more detail
about his preferred interpretation of causation.

Cartwright’s nomological machine is another mechanism concept. Cart-
wright defines a nomological machine as ‘‘a fixed (enough) arrangement
of components, or factors, with stable (enough) capacities that in the right
sort of stable (enough) environment will, with repeated operation, give
rise to the kind of regular behaviour that we represent in our scientific
laws’’ (1999, 50). Like the definitions of mechanism considered above,
Cartwright’s nomological machine consists of interacting components
that generate causal regularities. The concept of a nomological machine
is distinctive only insofar as it is founded on Cartwright’s concept of a
capacity. A capacity is a stable causal power that exerts its characteristic
influence in a broad range of contexts (Cartwright 1989, Chapter 4). The
pure effects of a capacity can be observed only in special experimental
circumstances in which all other causes have been eliminated, but the
capacity nevertheless makes its contribution to the effect even when other
causes are present. Since Cartwright regards physical laws merely as
descriptions of the behavior of a capacity in the idealized situation in
which no other forces are acting, she regards capacities as ontologically
more basic or fundamental than laws of nature. Cartwright also argues
that interpreting causal relationships by reference to capacities is essential
for understanding how it is possible to extrapolate causal claims from one
context to another (1989, 163). I argue in Chapter 5 that capacities do not in
fact have this special virtue. But for the moment, let us sum up the above
survey of mechanism concepts.

All of the definitions canvassed above characterize mechanisms as
consisting of sets of interacting components that generate a regular series
of causal interactions. To the extent that they disagree, it is with regard to
how to interpret causation. For example, Glennan’s original definition
(1996) characterized causation by reference to ‘‘direct causal laws,’’ while
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Cartwright prefers capacities. Fortunately, pursing an empirical analysis
of causal structure does not require deciding whether laws or causal
powers are more fundamental or insisting that there is one correct way
to interpret causation. Instead, it requires an argument that mechanisms
generate probability distributions and provide information about how
those distributions change under interventions. Given this, I will adopt
the Machamer–Darden–Craver definition, since it is the least specific
about causation, laws, and their relation to one another. The question,
then, is whether mechanisms, so defined, are causal structures. I consider
this question first with regard to molecular biology and then for social
science.

3.4.2 Mechanisms, Modularity, and Evolvability

There is good reason to think that if there is such a thing as causal
structure in molecular biology, it would have to be mechanisms. First,
note what might be called the working assumption of molecular biology:
all causal relationships in living organisms are mediated by molecular
processes. This working assumption rests on the attractiveness of phys-
icalism as a general ontological principle and on the success of molecular
biology as a research program. Thus, if mechanisms are not causal struc-
tures in molecular biology, it is hard to see what could be. However, this
conclusion is only half of the argument. It is also necessary to show that
mechanisms in molecular biology do in fact perform the functions re-
quired of causal structure.

Since causal structure is that which generates probability distributions
and provides information about how those distributions change given
interventions, there are two parts to this argument. Let us begin with the
requirement that causal structure generate probability distributions. Is
this something that mechanisms in molecular biology do? Recall the
features that Venn judged to be characteristic of phenomena to which
the concept of probability can be usefully applied: individual disorder
combined with aggregate regularity. It is obvious that mechanisms in the
sense of the Machamer–Darden–Craver definition will tend to generate
large sample regularities, given the requirement that mechanisms ‘‘are
productive of regular changes’’ from the beginning and end stages of
the process. Moreover, biological mechanisms are invariably subject to an
array of disturbing influences, many of which are not well understood.
Thus, from the perspective of human knowledge, individual cases of the
operation of a given mechanism in molecular biology will inevitably
display a certain amount of random variation, which is an example of
the ‘‘individual disorder’’ that Venn described. Notice that the same sort
of situation is found in the case of human-constructed machines, which
are often given as paradigm examples of causal structure. They produce
regular changes, yet are impinged upon by a variety of disturbing influ-
ences that often cannot be known with any exactitude. Consequently, we
have a straightforward account of why mechanisms in molecular biology
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should display the aggregate regularity and individual disorder that
Venn cited as the characteristic features of probabilistic phenomena. Of
course, these aggregate patterns may themselves change in the course of
evolution, but this simply illustrates the familiar point that probability
distributions themselves can change over time (cf. Venn 1962, 14–17). This
point is illustrated by such social statistics as the marriage rate or average
life span. Indeed, it is exemplified by Cartwright’s case of the car engine;
the probability of a breakdown increases as the engine ages.

However, since knowledge of causal structure also provides informa-
tion about the consequences of interventions, an account of why mechan-
isms in molecular biology should be thought to generate probability
distributions is only half of the story. It is necessary to argue that mechan-
isms in molecular biology generally provide information about the results
of interventions. On the face of it, it is quite plausible that this is the case.
Indeed, this presumption that knowledge of mechanisms can indicate the
consequences of various types of interventions is often the reason for
trying to discover them. But is there some general feature of biological
mechanisms that justifies this presupposition?One answer to this question
has been suggested by Woodward (2002a, S374–76), who maintains that
mechanisms are modular in the sense that it is possible to intervene to
change a feature of one component while leaving the generalizations that
govern the others unaltered. This idea is reflected in the manner in which
interventions are represented in directed graphs. Consider again the case
of the two appliances plugged into the same power strip, represented by
the graph in Figure 3.1. Recall that an ideal intervention takes complete
control of the variable it targets (say, X), so as to eliminate all other
influences that otherwise affect it. Such an intervention, as we saw in
section 2.1, would be represented as shown in Figure 3.2.

Of course, many real-life interventions are not ideal. In our example,
switching on one of the appliances would not be an ideal intervention,
since it does not sever the influence of the state of the power strip. Such an
intervention might be represented as shown in Figure 3.3:

The important point with regard to modularity in figures 3.2 and 3.3 is
that besides possibly eliminating or weakening the influence of Y upon X,
the intervention leaves all other causal relationships unaltered. For
example, modularity would be violated if the intervention eliminated
the influence of Y upon Z or created a causal chain from X to Z. The
interest in modularity stems from the fact that it facilitates predicting the

Y

X Z

I

Figure 3.2 An ideal intervention
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consequences of interventions, since except for the elimination of influ-
ences upon the targeted variable, the causal structure operates as before.
Thus, the persisting causal structure can be used to trace out the inter-
vention’s consequences. Given Woodward’s proposal, the question is
whether there is reason to believe that biological mechanisms are usually
modular. Some classic examples of biological mechanisms do exhibit
modularity. For example, it is possible to alter the sequence of nucleotide
bases in a functional segment of DNA while the other components in the
mechanism of protein synthesis continue to function as before. But is
modularity only an adventitious feature of some restricted class of bio-
logical mechanisms, or is there some reason for supposing that it obtains
in general?

One way to argue that modularity is likely to be a commonly occurring
feature of biological mechanisms is to maintain that modularity is favored
by natural selection. Herbert Simon (1962) was one of the first to suggest a
general explanation of how modularity is adaptively beneficial in envir-
onments in which disruption or interference is common. The proposal can
be illustrated with a modified version of one of Simon’s best-known
examples, the parable of the expert watchmakers Hora and Tempus
(1962, 470).7 Hora constructs her watches by building independently
changeable modules that can be assembled into the final product. In
contrast, Tempus constructs holistic watches in which no part can be
modified independently of any of the others. Hora’s modular production
method gives her an advantage over Tempus as their ever more popular
watches are used in new circumstances. For instance, mountain climbers
find that the watches of Hora and Tempus fail to operate properly at high
altitudes. Hora is able to trace the problem to a specific module, and
through trial and error she develops a new version that operates properly
under high-altitude conditions. In contrast, Tempus must redesign an
entirely new high-altitude watch, which means searching for a solution
through the space of possible watches, which is far vaster than the space
of possible modifications of a specific component. By the time Tempus
has finished his holistic high-altitude chronometer, Hora has already
cornered the mountain climber watch market, as well as that for scuba
divers, mariners, pilots, runners, and several other specialty niches. The
moral of the parable, then, is that modularity facilitates finding quick
solutions to new problems, which is essential for adapting to changing
environments.
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Figure 3.3 A nonideal intervention
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The theme of this parable is nicely illustrated by the HIV replication
mechanism that will be discussed in detail in the next chapter. HIV is
notorious for its ability to evolve resistance to drugs designed to block its
replication. Typically, such drugs interfere with one stage of the replica-
tion mechanism, for example, by binding to and disabling an enzyme
required for a step in the process. In this case, a mutation in the viral
genome can result in a slightly modified version of the enzyme to which
the therapeutic compound no longer binds. Given that the other compon-
ents of the mechanism continue to function as before, HIV has success-
fully evolved resistance; but if the change to the enzyme resulted in
cascading alterations to the other components, it is likely that the mutant
strain would no longer be viable. Thus, the HIV replication mechanism is
analogous to Hora’s production method: since it is modular, alterations to
one component to do not compromise the functionality of the others.
Consequently, evolving resistance to a single drug requires altering only
one component of the replication mechanism, and hence searching
through a smaller space of possibilities. In contrast, if the HIV replication
mechanism were holistic like Tempus’s watches, evolving resistance to
the therapeutic compound would require rebuilding the mechanism from
scratch, and hence searching for a solution in the space of all possible HIV
replication mechanisms. Thus, modularity is an important part of what
enables HIV to quickly evolve resistance.

These examples suggest that modularity enhances fitness by promot-
ing adaptability to changing environments. Moreover, environmental
perturbations of various kinds—new predators, changes in supply of
resources, and so on—are a pervasive fact of life. Hence, evolutionary
theory suggests a basis for expecting that modularity is a typical charac-
teristic of biological mechanisms. In fact, the importance of modularity to
adaptability is a familiar point in evolutionary biology (cf. Wagner and
Altenberg 1996). There is a growing body of theoretical work that at-
tempts to clarify the general mechanisms whereby natural selection
could give rise to modularity (cf. Ancel and Fontana 2000; Lipson et al.
2002; Kvasnicka and Pospichal 2002; Kashtan and Alon 2005). This work
supports the intuition that natural selection favors modularity in chan-
ging environments, but with some refinements. For example, one recent
study suggests that although not all varying environments lead to modu-
larity, modularity is favored in environments with ‘‘modularly varying
goals’’ (Kashtan and Alon 2005, 13777). Goals vary modularly when new
goals share subproblems with preceding goals (ibid., 13775). The HIV
example illustrates this concept. At first, the goal of the enzyme is to
achieve a particular function, say, to reverse transcribe viral RNA to
DNA. After the start of the drug treatment, the enzyme must still perform
its original function while also avoiding being bound to the therapeutic
compound. Hence, reverse transcribing the viral RNA to DNA is a sub-
problem shared by the first and second goals. The situation in the watch-
maker parable is similar. In redesigning the malfunctioning module, Hora
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must preserve its original function while avoiding the disruption that
occurs at high altitudes. Modularly varying goals might drop as well as
add subproblems. For instance, consider a population of fish that has
colonized a network of underground pools: the fish no longer need to
see, but they still need to swim.

There is also a growing number of empirical studies that examine the
role of modularity in the evolution of particular lineages (cf. Beldade et al.
2002; Chipman 2002; Mabee et al. 2002; Friedman and Williams 2003;
Emlen et al. 2005; Fraser 2005).8 These studies provide fascinating con-
crete examples of the ways in which modularity can be manifested in
living beings. For example, one study documents how threshold mech-
anisms allow for developmental modularity in the evolution of beetle
horns (Emlen et al. 2005). Empirical studies can also test hypotheses
about the relationship between modularity and evolvability. For instance,
mixing and matching modules, sometimes called ‘‘compositional evolu-
tion,’’ may often be a more efficient means of finding a solution to a
problem than randomly rearranging basic elements (Watson and Pollack
2005, 456). By analogy, one is more likely to produce a sentence by
randomly combining clauses and phrases than by randomly combining
letters and spaces. An additional potential advantage of compositional
evolution, in contrast to gradual accumulation of slight variations, is that
it can avoid suboptimal local maxima traps, since a rearrangement of
modules constitutes a jump to a nonadjacent point in the fitness landscape
(Kashtan and Alon 2005, 13777). And in fact a recent study finds support
for compositional evolution with regard to protein modules in yeast
(Fraser 2005). In the HIV example discussed above, compositional evolu-
tion would suggest that the resistant variant resulted from rearranging
proteins that compose the enzyme rather than from shuffling the individ-
ual amino acids that make up the proteins.

Mechanisms that are modular in the sense of these biological discus-
sions are ipso facto a useful basis for predicting the consequences of
interventions. Although several modularity concepts can be found in
biology (Schlosser and Wagner 2004), the following is a fairly standard,
rough definition that is appropriate for the present context:

A modular representation of two character complexes C1 and C2 is given if
pleiotropic effects of the genes fall mainly among members of the same
character complex, and are less frequent between members of different
complexes. (Wagner and Altenberg 1996, 971)

According to this definition, modularity states that the multiple effects of
genes tend to focus on discrete trait complexes. This definition makes the
connection between modularity and manipulability straightforward. For
if modularity in the sense just defined obtains, it is possible, by means of
appropriate alternations to the genome, to intervene to alter one compon-
ent of the mechanism without significantly disturbing the others. Thus,
knowledge of modular mechanisms would provide information about the
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consequences of interventions. Of course, it would be amistake to take the
above as a general definition of modularity. Rather, it is a rough specifica-
tion of the physical basis of modularity in molecular biology—in effect, an
empirical analysis of modularity in that context. An empirical analysis of
modularity in social science, for instance, would have to be something
rather different.

In sum, given the meaning postulate that causal structure is that which
generates probability distributions and indicates how such distributions
change given interventions, evolutionary theory plays a central role in an
empirical analysis of causal structure in molecular biology. Evolutionary
theory can be invoked to support the claim that in the context of molecu-
lar biology, mechanisms can be identified with causal structure, since it
provides an account of why it should be expected that biological mech-
anisms are typically modular. Modularity, meanwhile, was linked to the
ability to predict the consequences of interventions. Of course, since
empirical analysis depends on current scientific theory, it is inherently
tentative. New scientific developments might result in significant revi-
sions to the theory, and these developments might have implications for
the empirical analysis. The evolution of modularity in biological systems
is a young and thriving research area, which means that we should expect
surprises yet to come.

3.5 CAUSAL STRUCTURE IN SOCIAL SCIENCE

In this section, I consider the possibility that an empirical analysis iden-
tifying causal structure with mechanisms in molecular biology on the
basis of evolutionary theory could work similarly in social science. On
its face, the argument for the adaptive benefits of modularity in variable
environments seems entirely general, and hence applicable to cultural as
well as to biological evolution. However, the details of these proposals are
at present far less developed in social science than in biological science. In
addition, one common argument against the possibility of laws of social
science can be interpreted as an attempt to show that social mechanisms
will often respond in nonmodular ways to interventions. Thus, I conclude
that although it is likely that the evolutionary account of modularity
described above can be applied to some social mechanisms, the extent
to which this is so is even more of an open question than in the case of
mechanisms in molecular biology.

3.5.1 What’s a Social Mechanism?

In order to consider whether social mechanisms are likely to be modular,
some clarification of ‘‘social mechanism’’ is called for. Earlier, mechan-
isms in general were roughly characterized as sets of entities and activ-
ities organized so as to produce a regular series of changes from a
beginning state to an ending one. Social mechanisms in particular are
usually thought of as complexes of interactions among agents that
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underlie and account for macrosocial regularities (cf. Little 1991, 13;
Stinchcombe 1991, 367; Schelling 1998, 33; Gambetta 1998, 102). The
paradigm example of an agent is an individual person, but coordinated
groups of individuals motivated by common objectives—such as a
corporation, a government bureau, or a charitable organization—may
also be treated as agents for certain purposes (cf. Mayntz 2004, 248). Social
mechanisms are sometimes tied to the assumption that the agents
comprising them are rational, say in the sense of being utility maximizers.
For instance, Tyler Cowen writes, ‘‘I interpret social mechanisms . . . as
rational-choice accounts of how a specified combination of preferences
and constraints can give rise to more complex social outcomes’’ (1998,
125). I shall not adopt this perspective, and hypotheses about social
mechanisms will not be restricted to rational-choice models.

Social mechanisms typically involve reference to some categorization
of agents into relevantly similar groups defined by a salient position their
members occupy vis-à-vis others in the society (cf. Hernes 1998; Little
1998, 17; Mayntz 2004, 250–52). In the description of the mechanism, the
relevant behavior of an agent is often assumed to be a function of the
group into which he or she is classified. For example, consider the an-
thropologist Bronislaw Malinowski’s (1935) account of how having more
wives was a cause of increased wealth among Trobriand chiefs. Among
the Trobrianders, men were required to make substantial annual contri-
butions of yams to the households of their married sisters. Hence, the
more wives a man had, the more yams he would receive. Yams were the
primary form of wealth in Trobriand society, and served to finance such
chiefly endeavors as canoe building and warfare. Although individuals
play a prominent role in this account, they do so as representatives of
social categories: brothers-in-law, wives, and chiefs. The categorization of
component entities into functionally defined types is not unique to social
mechanisms. Biological mechanisms (e.g., that of HIV replication) are
often described using such terms as ‘‘enzyme’’ and ‘‘co-receptor.’’ The
terms ‘‘enzyme’’ and ‘‘co-receptor’’ resemble ‘‘chief’’ and ‘‘brother-in-
law’’ in virtue of being functional: all of these terms provide some infor-
mation about what role the designated thing plays in the larger system of
which it is a part. In sum, social mechanisms can be characterized as
follows. Social mechanisms are complexes of interacting agents—usually
classified into specific social categories—that produce regularities among
macrolevel variables.

This characterization of a social mechanism can be illustrated by an-
other, better-known example. Consider Thomas Schelling’s bounded-
neighborhood model, which is intended to account for persistent patterns
of segregated housing in spite of increased racial tolerance (Schelling
1978, 155–66). In this model, the residents of a given neighborhood
are divided into two mutually exclusive groups (e.g., black and white).
Each individual prefers to remain in the neighborhood, provided that
the proportion of his or her own group does not drop below a given
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threshold, which may vary from person to person. Meanwhile, there is a
set of individuals outside the neighborhoodwhomay choose to move in if
the proportions are to their liking. Clearly, this model divides individuals
into groups with which characteristic preferences and subsequent behav-
ioral patterns are associated, and by these means accounts for macrore-
gularities.

On the face of it, it might seem that the empirical analysis of causal
structure given in section 3.4 easily transfers to social science. As in the
case of molecular biology, it is difficult to see what could constitute causal
structure in social science if not social mechanisms. Moreover, it is plaus-
ible that social mechanisms often produce stable patterns, and hence
generate probability distributions. Finally, just as in the case of biology,
it seems that modularity is a feature that contributes to the adaptability of
social systems. Indeed, the parable of Hora and Tempus illustrates the
advantages of modularity for technology and is analogous to such histor-
ical cases as the IBM PC versus the Apple Macintosh, and General Motors
versus Henry Ford (cf. Langlois 2002, 23–33). However, it is unclear how
far the evolutionary argument for the prevalence of modularity carries
over to the social realm.

3.5.2 Modularity and Social Mechanisms

Let us consider how the evolutionary argument for modularity described
in section 3.4.2 might work with regard to social phenomena. As a first
stab, consider the following suggestion. Modular social mechanisms con-
tribute to the adaptability of the social groups containing them. Such
groups would be able to adapt more quickly to modularly varying envir-
onments by altering one module while leaving the others the same or by
rearranging modules. And, as in biology, modularly varying environ-
ments are a pervasive fact of social life: human social groups often need
to develop the capacity to solve new problems while retaining most of
their prior problem-solving abilities. Thus, groups possessing modular
mechanisms would be more likely to survive and produce ‘‘offspring’’ in
the form of offshoot or copycat groups or organizations. However, there is
reason for skepticism about this scenario.

The unit of selection in the scenario just described is the social group,
and one important type of social group is the organization. In fact, there is
a social science research program inspired by evolutionary biology in
which the units of selection are organizations, namely, organizational
ecology. Organizational ecology attempts to explain characteristics of
various types of organizations—businesses, labor unions, advocacy
groups, churches, and so on—in distinct contexts on the basis of differ-
ential mortality and founding rates (cf. Hannan and Freeman 1989;
Aldrich 1999, 43–48). For example, one important thread in this literature
examines the distinct environments to which generalist and specialist
organizations are best suited, for instance, inquiring into the conditions
in which consolidation among generalist organizations creates resource
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opportunities for specialists (cf. Carroll and Swaminathan 2000). Unfor-
tunately, the scenario sketched in the foregoing paragraph contradicts one
of the basic premises of organizational ecology: the structural inertia of
organizations (Hannan and Freeman 1989, 70; Aldrich 1999, 45). Accord-
ing to this principle, the rate of change of an organization’s structure is
typically much slower than the rate of change in the environment. This
premise is important for a model in which Darwinian selection is the
driving force. Changes in populations of organizations result primarily
from old organizations disbanding and being replaced by new ones that
are better suited to the new environment rather than from individual
organizations adapting themselves to new situations. There are a number
of reasons why organizations would be expected to exhibit structural
inertia (Hannan and Freeman 1989, 67–69). For example, restructuring
often shifts resources away from a segment of the organization, and hence
is likely to be resisted by those members who would be disadvantaged.
Moreover, there is some empirical evidence in support of structural
inertia (Aldrich 1999, 168). Thus, the proposal that highly modular, and
therefore quickly changeable, organizations are favored by social selec-
tion processes is problematic.

Let us try a different approach. Modularity of social mechanisms need
not entail that individual organizations be quick to adapt to changing
circumstances. That point can be appreciated through a consideration of
modular mechanisms in molecular biology. In that case, modularity is a
matter of how the genomemaps onto system components, not a claim that
individual organisms can quickly adapt to new environments. The adap-
tation that modularity engenders, occurs across generations, not in the life
history of a single organism. Thus, perhaps things work similarly in the
social world. Consider two general ways in which this might happen.

First, consider social mechanisms that are internal to organizations.
These mechanisms might include such things as a social hierarchy or an
established production procedure. In this case, the argument would be
that modularity facilitates evolvability because it allows mechanisms to
be modified one component at a time or for solutions to new social
problems to be found by rearranging mechanism components. This scen-
ario is consistent with structural inertia, since the altered versions of the
mechanism might occur in newly founded organizations rather than in
transformed versions of older ones. In this scenario, nonmodular social
mechanisms would be likely to go extinct in modularly varying environ-
ments, while the varied descendants of modular mechanisms would
spread throughout the population of organizations. The plausibility of
this scenario is enhanced by the wide prevalence of certain types of
modular structures found in organizations and social groups in general,
particularly hierarchies. For example, consider the hierarchical structure
of a university: the university is divided into colleges or schools, which
are in turn divided into departments or units. This structure is modular,
since it allows alterations to be made to one unit (say, restructuring the
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philosophy department) while leaving other units as they were before.
Likewise, although it would be difficult for an established university to,
say, eliminate a number of existing departments or to restructure its
colleges, a newly founded university might readily make such changes.

A second scenario concerns social mechanisms that are not internal to
specific organizations, but instead are features of the broader social con-
text in which organizations as well as individuals are embedded and
interact. Forms of economic interaction, such as a market, are examples
of social mechanisms of this kind. Again, the hypothesis would be that
such mechanisms, if modular, are more adaptable to changing environ-
ments. As a result, such mechanisms would be expected to proliferate
more widely than their nonmodular counterparts. An economic system
based upon property rights and market exchange is arguably a modular
mechanism, since it allows owners wide leeway to modify their proper-
ties or enterprises independently of others (cf. Langlois 2002, 26–27). Such
a system also allows for rearrangement of modules in the form of con-
solidation or increasing specialization of industries. A more specific ex-
ample is the contrast between traditional and Silicon Valley models of
research and development (Aoki and Takizawa 2002). In the traditional
model, R&D is carried out in an integrated manner within a particular
firm, which organizes and directs coordinated R&D projects for specific
goals. In this model, it is important that each of the various design teams
knows what the others are doing, so that their results can be assimilated
into the final product. Clearly, communication among design teams be-
comes increasingly cumbersome with the increasing complexity of the
task of each. In the Silicon Valley model, by contrast, the product system is
divided into modules developed by separate firms, often start-ups
funded by venture capitalists. The Silicon Valley model requires stand-
ardized interfaces between modules, so that improvements to the overall
product system result primarily from independent improvements in the
various components (Aoki and Takizawa 2002, 770–71). The advantage of
the Silicon Valley model is that it avoids the onerous communication
among design teams required by the traditional model, thereby facilitat-
ing quicker solutions to new problems. The Silicon Valley model, then, is
an example of a modular mechanism that structures the interactions of a
collection of organizations. But there is nothing in this scenario to require
that individual organizations be highly adaptable.

The two scenarios described above illustrate ways in which the hy-
pothesis about the advantages of modularity with regard to evolvability
might be extended to social mechanisms. But the quantity of both theor-
etical and empirical research on these questions in social science is min-
uscule in comparison to the body of work on modularity and evolvability
in biology. Robert Boyd and Peter Richerson (Richerson and Boyd 2005;
Boyd and Richerson 2005) are the only authors I know of who have
offered anything like a detailed evolutionary explanation of modularity
in social science. Boyd and Richerson argue against the image of culture
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as a tightly integrated, holistic system (Richerson and Boyd 2005, 91–93),
and they hypothesize that culture evolved as an adaptation to rapidly
changing climates in the Pleistocene (ibid., 131–39). They develop models
that illustrate how the cumulative social learning indicative of culture can
be favored by natural selection in changing environments (Boyd and
Richerson 2005, pt. I). The main theme of this account is that culture
enhances adaptability by facilitating quick, though not necessarily opti-
mal, solutions to new problems. Hence, Boyd and Richerson’s hypothesis
is very similar to the evolutionary account of modularity described in
section 3.4.2. Nevertheless, the focus of Boyd and Richerson’s work is
explaining the origin of culture rather than modularity per se, and it is
unclear to what extent their proposals could be developed to support the
claim that specific types of social mechanisms are modular.

In the remainder of this section, I consider some possible reasons for
thinking that social mechanisms may often be nonmodular. The first
concern is based on the point that modularity is adaptively beneficial
only in changing environments. Consequently, nonmodular designs
may be preferable to modular ones in environments that exhibit a high
degree of stability over time. Thus, there would appear to be no particular
reason to expect modular social mechanisms in social contexts that have
persisted without much change for a significant period. Richard Langlois
suggests that certain nonmodular features of medieval European social
structures were well suited to the stable social environment of this period,
but eventually disappeared in the face of changing circumstances (2002,
28–29). Of course, the analogous point holds with regard to biology as
well. Thus, the question here is to what extent past social and biological
environments have been modularly variable rather than stable or simply
chaotic. The next concern, however, is more specifically focused on char-
acteristic features of human society.

A common challenge for social policy is that changes in one feature of a
society may produce unpredictable changes elsewhere in the system, thus
making it extremely difficult to anticipate the consequences of the policy
intervention. One source of this difficulty is that participants in the system
who are not directly targeted by the policy intervention may nevertheless
be aware of it, and may perceive opportunities to advance their interests
by modifying their practices in response to it. Indeed, the complex inter-
relation between social structures and awareness of those structures by
members of the society is a common basis for arguments against the
possibility of laws of social science (cf. Searle 1984; Taylor 1971). Although
such arguments rarely use the term ‘‘modularity,’’ the modularity of
social mechanisms is precisely what they aim to call into question. For if
the objection is correct, it will typically not be possible to change one
component of a social mechanism without producing unpredictable
changes in the others.

This objection to themodularity of social mechanisms will be discussed
in detail in Chapter 8. For the moment, I would like to indicate two points
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that would be relevant to any response to it. Whether a mechanism is
modular with regard to an intervention depends on the intervention itself
and on the manner in which the causal system is represented. For a given
mechanism, some interventions may be modular while others are not. In
Chapter 8, I call interventions that affect mechanisms in nonmodular
ways structure-altering. The second point is that even if an intervention
is structure-altering with regard to a mechanism, it might not be such
with regard to other, more fundamental mechanisms that can explain
why and how the first was altered. Thus, one natural response to the
objection described in the foregoing paragraph is that the unintended
effects of the policy intervention could be explained, and perhaps even
anticipated, by individual-level mechanisms. For example, a rational
choice model might explain why an intervention that inadvertently cre-
ates new incentives leads to systematic but unintended changes of behav-
ior. The thought that more fundamental, modular mechanisms can be
described at finer-grained levels of description is an underlying motiv-
ation of the mechanisms approach to extrapolation. It is also the central
theme of Chapter 7, which discusses the relationship between mechan-
isms-based extrapolation and reductionism.

3.6 CONCLUSION

This chapter began with the question of the relationship between mech-
anisms and the probabilistic causal concepts elaborated in Chapter 2, and
it proposed the first part of an answer to this question. To the extent
possible, mechanisms are to be identified with causal structure on the
basis of domain-specific empirical analyses. Since causal structure is that
which generates probability distributions and provides information about
how they change under interventions, this identification is a basis for
linking mechanisms to probabilistic causal concepts. An important part
of these empirical analyses consists of providing some general reason to
think that mechanisms are modular, and evolutionary theory suggests a
means of doing just this. However, this evolutionary argument is, at
present, on firmer ground in molecular biology than in social science.

Yet the identification of mechanisms with causal structure alone indi-
cates only that there is some connection between mechanisms and prob-
abilistic causal concepts such as causal effect and positive causal
relevance. It provides no indication of what the nature of that relationship
is. Chapter 4 discusses a proposition, which I call the disruption principle,
which says something specific about the link between probability and
mechanisms identified with causal structure.
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4

The Disruption Principle

All of the known mechanisms by which HIV impairs the human immune
system depend on HIV reproduction. Therefore, the development of anti-HIV
replication drugs would appear to be a positive first step in controlling HIV
reproduction.

—Gerald Stine, AIDS Update 2000 (2000, 84)

Implicit in the above quotation is a commonsense idea that I think is
widespread in much of biology and probably in many other areas of
science as well: a causal effect is completely nullified when, and only
when, every mechanism linking cause and effect is severed. This is a
rough statement of what I call the disruption principle, which is the main
topic of this chapter. The disruption principle specifies a relationship
between mechanisms, identified with causal structure as proposed in
Chapter 3, and probabilistic causal concepts such as causal effect and
causal relevance. In virtue of making this connection, the principle plays
an important role in the treatment of extrapolation developed in subse-
quent chapters. The purpose of this chapter is to articulate the disruption
principle, illustrate it by reference to a scientific example, and explore the
range of circumstances in which it can be reasonably presumed.

Since a concrete example greatly facilitates the presentation of the
disruption principle, I begin with a brief description of the mechanism of
HIV replication, and of some of the factors known to interferewith it. I then
turn to a statement of the principle itself. Formulating the disruption
principle in a precise way involves developing a graphical framework
for representing factors that disrupt mechanisms, so this is somewhat
complex. I then illustrate the disruption principle and the graphical frame-
work in question by means of an example drawn from HIV research,
namely, the discovery of a genetic mutation that confers substantial resist-
ance to HIV infection. In the abstract, the problem illustrated by this
example takes the following form. Suppose we know that a certain causal
relationship holds between X and Y in the population P, for example, that
X is a positive causal factor for Y. Wewant to know if there is a subpopula-
tion of P in which this effect is nullified. From the disruption principle it
obviously follows that such a population must be one in which every
mechanism from cause to effect is blocked. The challenge, then, lies in
ascertaining whether such a subpopulation exists, given a lack of full
knowledge of the total set ofmechanisms, a state of incomplete knowledge
common in biological and biomedical contexts.
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Given the important role of the disruption principle, it is worthwhile to
consider what justification there is for assuming it. I show that, given the
identification of causal structure and mechanisms argued for in Chapter
3, the disruption principle can be shown to follow from the conjunction of
two more familiar principles concerning causality and probability: the
principle of the common cause (PCC) and the faithfulness condition. This
suggests that the disruption principle might be false—and hence the
mechanisms approach to extrapolation, unreliable—when one or both of
these principles do not obtain. That point is hardly trivial, since doubts
have been raised concerning both the PCC and the faithfulness condition
(cf. Sober 2001; Cartwright 1999). I argue that the PCC is on firm ground
with respect to the types of cases that concern the disruption principle.
The situation in the case of the faithfulness condition, in contrast, is more
complex. I suggest that there is a strong motivation for the FC when
studying heterogeneous populations, but that this justification collapses
for exceedingly homogeneous populations, such as closely inbred strains
of laboratory mice reared under uniform conditions. This result entails
that special care should be taken to vary genetic or environmental back-
ground conditions in gene knockout experiments, a point which some
researchers in this field have noted. That heterogeneity can be a virtue in
scientific experiment is surprising in light of the common notion that the
ideal experiment is one in which all factors except those subject to inves-
tigation are held constant.

4.1 HIV REPLICATION

According to the current standard, AIDS is diagnosed when a person’s
T-helper cell count drops below 200 per microliter of blood (cf. Stine 2000,
132; Kalichman 1998, 78–79).1 Hence, the role of T-helper cells in
the human immune system is a good place to begin in describing HIV
replication.

The primary actors of the immune system are a collection of distinct
types of white blood cells that identify and destroy antigens present in the
body. For example, phagocytes eat bacteria and foreign or infected cells,
while mast cells and eosinophils attack intruders too big for consumption
(e.g.,worms) by emittingpoisonous chemicals in their vicinity (cf. Fan et al.
2000, 26–27). However, the cells of greatest concern for our purposes are
lymphocytes. These come in two basic varieties, the B lymphocytes and the
T lymphocytes. T lymphocytes themselves come in several varieties, the
most important of which for our purposes are T-helpers and cytotoxic
T-cells, or T-killers. The B lymphocytes identify which entities in the
body are to be attacked by phagocytes, mast cells, and eosinophils (ibid.,
32–37). B lymphocytes perform this function by producing antibodies,
which are proteins that attach to particular sorts of intruding agents.
Different B lymphocytes produce different antibodies, the specific anti-
body produced being determined by the result of a random rearrangement
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of DNA within the cell. Once mature, a B lymphocyte will not replicate
itself or emit its antibodies into the bloodstream unless two things happen.
First, it must encounter an antigen to which its antibody attaches. Next, it
must encounter a T-helper cell that also attaches to this antigen; when this
happens, the T-helper chemically signals the B lymphocyte to release its
antibodies and commence replicating. Hence, in the absence of T-helpers,
the immune system is unable to identify which bodies are to be destroyed
(e.g., by phagocytes) and which are not.

T-killer cells differ from B lymphocytes in that they directly attack and
destroy antigens, yet in other respects the functioning of the two types of
cells are very similar (cf. Fan et al. 2000, 42–47). Like B lymphocytes,
different T-killer cells have a chemical affinity for different types of
antigens. Moreover, a T-killer cell that has encountered an antigen to
which it attaches will not replicate until instructed to do so by a T-helper
cell that recognizes the same antigen. Thus, like the B lymphocytes, the
T-killer cells can perform their role within the immune system only in the
presence of T-helper cells. It can easily be understood, then, how a large-
scale reduction in the number of T-helper cells would lead to catastrophic
failure of the immune system and to opportunistic infections.

Given this background, we can proceed to a description of the mech-
anism bywhichHIV infects and destroys T-helper cells. It should be noted
that T-helper cells are not the only cells of the human immune system
that are infected by HIV. For example, a type of phagocyte, namely the
macrophage, is also prone to HIV infection. Indeed, in the early and
nonsymptomatic stages, HIV infection is restricted almost exclusively to
macrophage-tropic (M-tropic) HIV, with widespread infection of T-helper
cells occurring later in the progression of the disease (Zhu et al. 1993).2

Macrophages will play a significant part in the discussion in the following
section. We will see there that a few lucky individuals possess a genetic
mutation that blocks HIV entry into macrophages, thereby conferring a
high degree of resistance to HIV infection. Nevertheless, the mechanism
of HIV replication is typically presented in textbooks at a level of abstrac-
tion that does not distinguish between the two cases (cf. Stine 2000, 64;
Kalichman 1998, 16; Fan et al. 2000, 59). Let us turn now to a description of
this mechanism.

HIV is an example of a retrovirus, which is so called because it reverses
the normal flow of information from DNA to RNA. HIV replication
proceeds according to the usual pattern for retroviruses. The genetic
material of a retrovirus is encoded by RNA, and when a retrovirus infects
a cell, its RNA serves as a template for the transcription of viral DNA,
which is then insinuated into the cell’s nuclear DNA. Once this occurs, the
cell becomes a factory that produces HIV. The viral DNA integrated into
the cell’s genetic material codes for new viral RNA and proteins necessary
for the functioning of the retrovirus. These materials are then assembled
in the cytoplasm and new retroviruses bud from the cell membrane,
ultimately destroying the cell if they do so in sufficiently large numbers.
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The mechanism by which HIV infects T-helper cells and macrophages
is often depicted by diagrams like that in Figure 4.1 (cf. Kalichman 1998,
16; Stine 2000, 64). With the aid of such a diagram, it is possible to
introduce more details about the mechanism than those just sketched
above (cf. Kalichman 1998, 15–17; Stine 2000, Chapter 3). Glycoproteins
(gp120) protruding from the surface of the HIV retrovirus attach to the
T-helper cell at the CD4 (cluster determinant-4) receptor site. Note, there-
fore, that HIV infects only cells, such as macrophages and T-helpers,
which display the CD4 receptor on their outer surface. Next, the viral
RNA, ensconced in a protein coat, is injected into the host cytoplasm.
Along with RNA, several enzymes necessary for the continuation of the
infection are contained within the protein coat—most prominently, re-
verse transcriptase and integrase. The protein coat is quickly dissolved,
and the viral DNA is then transcribed from the viral RNA by means of
reverse transcriptase. The viral DNA is then integrated into the DNA of
the host cell with the aid of integrase.

The cellular machinery of the host then proceeds to transcribe viral
RNA and to synthesize proteins from the intruding DNA, thereby gener-
ating the materials needed to create new HIV viruses. These materials
include new strands of viral RNA as well as several proteins and enzymes
necessary for the functioning of the retrovirus. Besides reverse transcrip-
tase and integrase, the enzyme protease is produced at this stage. Protease
performs the role of splicing long protein strands into small, more usable
pieces from which the internal protein coat can be constructed. Finally,
the materials that constitute the new HIV virus assemble near the cell’s
external border, taking part of the host cell membrane with them as they
bud forth. A large number of budding HIV viruses, therefore, kill the host
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Figure 4.1 HIV replication
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cell by creating numerous perforations in its membrane.3 Shortly after
exiting the host cell, the virus constructs its inner structure of protein
layers that enclose the RNA and vital enzymes. It is now ready to infect a
new host.

Such is the mechanism by which HIV replicates. The evolutionary
argument for why mechanisms can be identified with causal structure
proposed in section 3.4 can be easily applied in this case. The HIV
replication mechanism has clearly been honed by natural selection,
which maintains the ‘‘normal’’ pattern described above as the statistically
typical one. Moreover, the exasperating ability of HIV to evolve resistance
to anti-retroviral therapies is a clear signal of the modularity of HIV
replication. Thus, there is every reason to think that the HIV replication
mechanism is capable of generating probability distribution and provid-
ing information concerning how those distributions will change, given
interventions. In short, it is a causal structure.

The HIV replication mechanism depicted in Figure 4.1 is also easily
represented by a directed graph. For example, consider a collection of
binary variables (1 ¼ yes, 0 ¼ no) defined as follows:

X: exposure to HIV
A: the virus attaches to the CD4 receptor
B: viral material enters the cytoplasm
C: reverse transcription of viral RNA occurs
D: viral DNA is integrated into host DNA
E: viral materials are produced by host cell
F: viralmaterials are assembled inpreparation to formanewHIVvirus
Y: a new infectious virus buds from the cell

Then we can represent the HIV replication mechanism with the graph in
Figure 4.2. Of course, the mechanism could be represented in more or less
detail, but this will suffice for present purposes.

4.2 FORMULATING THE PRINCIPLE

The disruption principle serves as a bridge from knowledge of mechan-
isms and things that interfere with them to qualitative conclusions about
causal effects. Imagine that X is a positive causal factor for Y in the
population P. Now suppose we ask whether there is a proper subset P’
of P in which the effect of X upon Y is nullified, that is, such that X is not
causally relevant to Y within P’. The disruption principle provides a
necessary and sufficient condition for the existence of such a subpopula-
tion: for each member of P’; every mechanism from X to Y is blocked.

X A B C D E F Y

Figure 4.2 A directed graph representing HIV replication
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The disruption principle entails that if interventions on X alter the
probability distribution of Y, there is at least one mechanism from X to
Y. I will assume that directed graphs represent mechanisms as paths in
which all of the arrows point in the same direction, as in the graph for the
HIV replication mechanism given in Figure 4.2. Since that graph was
rather lengthy, it will be convenient to use a shorter one for the purposes
of illustration. For example, consider the simple case of pushing the ‘‘on’’
button of a flashlight. Pushing the button closes the electrical circuit,
causing electricity to flow to the bulb, which in turn lights up. This causal
chain could be represented by the graph in Figure 4.3, where X, A, B, and
Y are binary variables representing, respectively, the button being
pushed, the circuit being closed, electricity reaching the bulb, and the
light shining. Thus the graph in Figure 4.3 depicts the mechanism of the
flashlight.

A factor that nullifies the effect of X upon Y, then, must break this
causal chain at some point. In the present example, such a factor is ready
at hand; namely, the battery being dead. Let the variable Z represent the
state of the battery: Z¼ 1 if the battery is charged and 0 otherwise. Adding
Z to the graph from Figure 4.3, we have Figure 4.4. Notice that this
graph does not indicate that X and Z interactively influence Y. That is,
when Z ¼ 0, X has no influence on Y; but this information is omitted by
the graph in Figure 4.4. Indeed, the graph in Figure 4.4 could represent a
situation in which A and Z influenced B independently of one another.4

Stating the disruption principle, then, is aided by a graphical notation
for representing causal interactions in which an interfering factor severs a
mechanism. I shall presume that each mechanism is represented by one
directed path, such as that from X to Y in Figure 4.4. This is a purely
terminological decision made for the pragmatic reason that it facilitates
stating the disruption principle. Thus, several related causal chains that
might be naturally referred to as a single mechanism would, in my
terminology, be described as several interacting mechanisms. Factors
that disrupt a mechanism, then, can be represented as follows. In the
above example, there is a range of values of the variable Z (in this case

X A B Y

Figure 4.3 The flashlight mechanism

X A B Y

Z

Figure 4.4 The flashlight mechanism and the battery
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{0}) such that, when the value of Z is in that range, the effect of A upon B is
nullified. I represent the elimination of the causal relationship between
these variables by deleting the arrow joining them. Let Z˜ indicate that the
value of Z is such as to break the causal chain (the subscript delta standing
for ‘‘disrupt’’). In the example just described, Z˜ would indicate that the
battery is dead (i.e., Z¼ 0). I shall refer to variables with ‘‘˜’’ subscripts as
disrupting factors. Then the causal structure for the subpopulation com-
posed entirely of otherwise functional flashlights with dead batteries can
be represented by the graph in Figure 4.5. The subscript A appended to B
indicates that there is an arrow from A to B in the graph representing the
causal relationships in the general population. Thus, given the graph in
Figure 4.5, it is possible to unambiguously reconstruct the graph repre-
senting the causal relationships that hold in the general population,
wherein the value of Z is not restricted to the disrupting set of values.

A disrupting factor, then, can be thought of as a switch that, when set to
a particular position, breaks the mechanism connecting the cause and the
effect. A more exact definition can be provided as follows. I shall use the
expression precedent variable of a given node on the mechanism to refer to
the directly prior node. For instance, in the mechanism represented in
Figure 4.3, A is the precedent variable on B. Suppose that M is a mechan-
ism through which X influences Y. Let V ( 6¼ X) be a variable on M. Then

Definition 4.1: Z is a disrupting factor with respect to M just in case
there is a variable V inM such that (1) Z is a cause of V, and (2) there
is a range or interval ˜ of values of Z such that when the value of Z is
in ˜, the variable in M precedent to V is not a direct cause of V.

For example, in Figure 4.4, Z is a cause of B, and when Z ¼ 0, the variable
on the mechanism precedent to B—namely, A—is not a cause of B. A
disrupting factor Z will be said to be active with respect to a particular
individual p if the value of Z for p is in the interval or range ˜ that results
in the mechanism being disrupted.

Since there may be several mechanisms connecting a given cause and
effect in a population, it will be useful to speak of amechanism set for a pair
of variables. The mechanism set from X to Y in a population P consists of
all of the mechanisms through which X influences Y that are found in at
least one member of P. I shall use the notation MXY to represent the
mechanism set from X to Y. Mechanism sets are hence relative to a
population. I shall use the expression ‘‘MXY for p’’ to designate the subset

X A BA Y

ZD

Figure 4.5 A disrupting factor

60 Across the Boundaries



of MXY that is instantiated in the individual p, where p is any member of
the population P of concern. Then:

Definition4.2: MXY forp isdisrupted if andonly if, foreachM inMXY for
p, there is at least one disrupting factor that is active with respect to p.

Notice that, given definition 4.2, ifMXY for p is empty, then it is trivial that
MXY for p is disrupted. Let �0 be the relative frequency of individuals in P
for which MXY is disrupted. Then:

Disruption principle: X is causally relevant to Y in P if and only if
�0 < 1.

The disruption principle, therefore, links mechanisms to the probabilistic
concept of causal relevance from Chapter 2. It may be helpful to quickly
retrace these steps. According to the Machamer-Darden-Craver defin-
ition, ‘‘Mechanisms are entities and activities organized such that they
are productive of regular changes from start or set-up to finish or termin-
ation conditions’’ (2000, 3). Chapter 3 argued that mechanisms so defined
can, at least within the domain of molecular biology, be identified with
causal structure. Causal structure, meanwhile, is defined as that which
generates probability distributions and provides information concerning
how those distributions change given interventions. Directed graphs, in
turn, are one useful means of representing causal structure, and hence
mechanisms if the two are identified. Finally, the disruption principle
uses a slightly modified directed graph framework to state a relationship
between mechanisms and the probabilistic concept of causal relevance
defined in section 2.3.

Recall thatX is causally relevant toY just in case ideal interventions onX
make a difference to the probability distribution of Y. As specified in
definition 2.1, an ideal intervention is an exogenous cause that determines
the value of the variable it targets. In the flashlight example, this could be
something as simple as pushing the switch to ‘‘on.’’ So, suppose our
population P consists solely of flashlights with dead batteries. Then the
graph in Figure 4.5 represents the disrupted mechanism found in
each member of P, which means that �0 ¼ 1. Therefore, by the
disruption principle, X is not causally relevant to Y in P, that is,
P(Y ¼ 1 j do(X ¼ 1)) ¼ P(Y ¼ 1 j do(X ¼ 0)). In other words, when the bat-
tery is dead, moving the switch from ‘‘on’’ to ‘‘off’’ makes no difference to
the probability that the light is shining. On the other hand, if there
are some flashlights in P that possess the undisrupted mechanism, then
�0 < 1, and hence the disruption principle entails that P(Y ¼ 1 j do(X ¼ 1))
is not equal to P(Y ¼ 1 j do(X ¼ 0)). Since P(Y ¼ 1 j do(X ¼ 0)) ¼ 0, this
entails that X is a positive causal factor for Y, that is,
P(Y ¼ 1 j do(X ¼ 1)) > P(Y ¼ 1 j do(X ¼ 0)). The disruption principle,
therefore, can link mechanisms to claims about positive causal relevance.

It should be noted that nullifying the effect of X upon Y does not
necessarily entail determining the value of Y. For example, imagine
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there is a gene that neutralizes the effect of smoking upon lung cancer. In
the population of people possessing this gene, then, smoking would not
be causally relevant to lung cancer. Nevertheless, members of this popu-
lation might develop the disease through exposure to other carcinogens.
On the other hand, neutralizing the effect of HIV in a population is
sufficient for ensuring that nobody develops AIDS. Likewise, if the bat-
tery of the flashlight is dead, then the light does not shine. It is important
to bear in mind, then, that this is a special feature of these two examples. It
is not the case in general that eliminating the effect of X upon Y deter-
mines Y’s value.

Of course, the disruption principle is of little use unless some know-
ledge of relevant mechanisms and disrupting factors is available. Given
the identification of mechanisms with causal structure, learning about
mechanisms can be viewed as a special case of causal inference more
generally conceived.5 There are some discussions in the philosophical
literature that examine strategies specifically suited for learning about
mechanisms (cf. Bechtel and Richardson 1993; Darden 1991, 2002; Darden
and Craver 2001, 2002). One such strategy, known as process tracing, is
described in Chapter 5. Chapter 9 examines the relationship between
process tracing and causal inference from statistical data. But for the
moment, I set aside the concerns about how knowledge of mechanisms
is to be acquired, assuming that the inquiry commences with some infor-
mation on this score. Given such knowledge, the hunt for interfering
factors can proceed by identifying points at which the mechanism is
vulnerable to interference and searching for variables in the population
capable of interfering with the mechanism at the specified points. Our
knowledge of the mechanism need not be perfect for this hunt to com-
mence, and as the example in the following section illustrates, the search
for interfering factors can itself result in significant improvements in our
knowledge of a mechanism.

4.3 RESISTANCE TO HIV INFECTION

Let us examine how the disruption principle comes into play in a realistic
scientific example. Consider the question of whether there is a subpopu-
lation in which the effect of exposure to HIV upon AIDS is nullified. It
might seem that there is a straightforward solution to this problem that is
independent of mechanisms: one need only find those who have been
exposed to HIV but have not become infected. However, such a method,
on its own, is an unreliable means for discovering subpopulations
in which a causal effect is nullified, since there are several possible
explanations for why the effect might not have followed the cause in a
given case, including pure luck, exposure to a very mild form of the virus,
or intrinsic resistance. The first two of these explanations yield very
different predictions than the third about how the individual would
respond to future exposures.
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The disruption principle tells us that a fully resistant subpopulation, if
it exists, is one in which every mechanism from HIV exposure to AIDS is
severed in each individual. Hence, given the disruption principle, the
search for the subpopulation in which the effect of HIV exposure upon
AIDS is eradicated becomes the search for a disrupting factor, or set of
disrupting factors, capable of blocking all mechanisms through which
HIV brings about AIDS. Since all such mechanisms depend on HIV
replication, that mechanism is a good place to look for such disrupters.
That is, the set of mechanisms through which HIV produces the suite of
symptoms associated with AIDS can be thought of as having the shape of
a fan, with replication as its stem. Thus, since each mechanism shares this
stem, blocking replication would sever all of them in one fell swoop. This
thought is the point of the quotation at the head of this chapter. Let us
turn, then, to the story of the discovery of a disrupting factor that seemed
capable of nullifying the effect of HIV.

As described in section 4.1, HIV replication begins with the HIV retro-
virus attaching to the CD4 receptor, which is exhibited on the surface of
T-helper cells and cells of several other types, such as macrophages.
However, the presence of the CD4 receptor is generally sufficient for an
HIV virus to attach to a cell but not sufficient for the entry of the viral core
into the cytoplasm (Maddon et al. 1986). Moreover, HIV strains that are
capable of infecting macrophages are generally not able to infect noncir-
culating T-helper cells found in lymph nodes, and vice versa (cf. Gartner
et al. 1986; Stine 2000, 141). Although these facts were recognized within a
few years of the discovery of HIV,6 an explanation of them was not
forthcoming until nearly a decade later.

In 1996, it was discovered that distinct co-receptors present on macro-
phage and noncirculating T-helper cells play an important role in the
entry of viral material into the host cell (Deng et al. 1996; Dragic et al.
1996). The co-receptor in the case of noncirculating T-helper cells is called
CXCKR4 (X4 for brevity), and its counterpart for macrophages is known
as CC-CKR5 (R5 for brevity).7 M-tropic HIV utilizes R5, while T-tropic
HIV depends upon X4, thereby accounting for the difference in affinities
of the two strains.8 Within the same year, it was discovered that some
individuals who had not become infected with HIV despite repeated
exposures possessed a mutation that inhibited the normal R5 co-receptor
(Samson et al. 1996; Liu et al. 1996). When exposed in vitro to M-tropic
HIV strains, cells from these individuals

. . . required about 1000-fold more virus to establish infection than control
cells from unexposed donors. While a small fraction of the cells did become
infected with this high inoculum, the virus failed to replicate further. (Liu
et al. 1996, 367)

As noted in the foregoing section, M-tropic HIV predominates in the early
and asymptomatic stages of infection. Thus, if replication of M-tropic HIV
is blocked, the progression of the infection is strongly, if not completely,
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inhibited. The absence of the normal R5 co-receptor was linked to a homo-
zygous mutation, in which thirty-two base pairs in the ordinary gene
coding for the co-receptor were deleted. As this mutation appears to pro-
duce no other abnormal phenotypic effect, it is a veritable genetic blessing
for those lucky enough to have inherited it. The homozygousmutationwas
estimated to occur among approximately 1 percent of ‘‘persons with west-
ern European heritage’’ (Liu et al. 1996, 373; Dean et al. 1996). The hetero-
zygous condition, which appears to confer a more attenuated resistance
(Eugen-Olsenet al. 1996), is surprisingly common—with estimates ranging
from about 20 percent (Liu et al. 1996, 373) to 14 percent (Dean et al. 1996,
1860) among Caucasians. The mutant allele was not found in African or
Asian populations (Samson et al. 1996, 722). There was a striking negative
association between HIV infection and the homozygous mutation. In
several large data sets, all of those homozygous for the thirty-two-base-
pair deletion were HIV negative (Samson et al. 1996, 722; Dean et al. 1996,
1860). These data stimulated hope that the homozygous mutation
affecting the R5 co-receptor might confer complete resistance to AIDS.9

The thread of this scientific detective story will be taken up again in
Chapter 7, so for now let us consider what, if the disruption principle is
true, would have to be the case for the hope just described to be realized.
Consider the segment of the M-tropic HIV replication mechanism that is
disrupted by the homozygous mutation affecting the R5 co-receptor,
which is represented in Figure 4.6.

As in Figure 4.2, X and A are binary variables indicating exposure to
HIV and attachment of HIV to the CD4 receptor, respectively, while R is a
binary variable indicating attachment to the R5 co-receptor and V repre-
sents the rate of reproduction of M-tropic HIV. Suppose that the presence
of the homozygous thirty-two-base-pair deletion fully blocks attachment
to the R5 co-receptor. Then we have Figure 4.7. Here Z is a variable
representing the presence of the mutation affecting the R5 co-receptor
that takes three values {homozygous normal; heterozygous; homozygous
mutant}. The subscript ‘‘˜’’ in this case indicates that Z takes on the third
of these values. Thus, given the supposition that the homozygous muta-
tion completely blocks the mechanism in Figure 4.6, it also fully blocks M-
tropic HIV reproduction if there is no path fromX toV that circumvents R.

But even if this is so, it would not necessarily follow that the homozy-
gous mutation confers immunity to HIV infection and AIDS, since
T-tropic HIV does not utilize the R5 co-receptor. However, given that
M-tropic HIV predominates in the early stages of HIV infection, it is
possible that the continuation of infection by T-tropic HIV depends

X A R V

Figure 4.6 M-tropic HIV replication
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upon the replication of M-tropic strains. Letting V˜ indicate V ¼ 0, this
thought can be represented by the graph in Figure 4.8. In this graph, S is a
binary variable indicating entry to the cytoplasm for T-tropic HIV, and T
is some unspecified stage of T-tropic HIV replication that is blocked by
the failure of the M-tropic HIV infection. Precisely what Tmight consist of
depends on how the absence of M-tropic replication inhibits that of
T-tropic, an issue that will be taken up in section 7.1.

From the graph in Figure 4.8, it can easily be seen that, given the
disruption principle, the homozygous mutation inhibiting the R5 co-
receptor completely nullifies the effect of HIV exposure upon AIDS if
and only if there is no path fromHIV exposure to AIDS that bypasses both
R and T. In other words, it must be that the homozygous mutation
completely blocks the M-tropic HIV replication mechanism (or the set of
them, if there are several), and there is no mechanism from HIV exposure
to AIDS that bypasses replication of M-tropic HIV. If it were to be
discovered that the mutation inhibiting the R5 co-receptor did not confer
complete immunity, the disruption principle would entail that at least one
of these two conditions is false.

This example illustrates how the disruption principle captures a rela-
tively commonsense inference concerning mechanisms and nullified
causal effects. But if the role of the disruption principle were limited to
reconstructing such examples, there would hardly seem to be much point
in taking the time to provide a precise articulation of it. However, there is
a twofold value in clearly stating and highlighting the disruption prin-
ciple. First, as will be seen in Chapter 6, there are less obvious conse-
quences of the disruption principle regarding extrapolation of causal
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Figure 4.7 The homozygous mutation
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Figure 4.8 How the homozygous mutation might confer HIV immunity
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claims. Second, a clear statement of the principle facilitates a careful
examination of the circumstances in which it is and is not a reasonable
assumption, a topic addressed in the remainder of this chapter.

4.4 WHY BELIEVE THE DISRUPTION PRINCIPLE?

I hope that the plausibility of the disruption principle has been motivated
by the HIV example examined above. Nevertheless, it is worth consider-
ing whether the principle is supported by other more general, and more
familiar, principles connecting causal structure and probability. In fact,
granting that mechanisms are identified with causal structure, the dis-
ruption principle is a straightforward consequence of two propositions
known as the Principle of the Common Cause (PCC) and the Faithfulness
Condition (FC). This result is of interest in two respects. First, it implies
that any justification for the PCC and the FC is also a justification for the
disruption principle. Second, it suggests that circumstances in which the
PCC or FC fails may be ones in which the disruption principle fails as
well. Since alleged counterexamples have been raised against both the
PCC and the FC, this last observation is far from being an idle point.
However, I show that the PCC is on very firm ground in the type of
experimental context that is of concern here. The case of the FC is
more complex. I argue that the FC is reasonable for heterogeneous
populations—such as naturally occurring biological populations—but
not necessarily for extremely homogeneous ones, such as closely inbred
strains of laboratory mice.

4.4.1 The Disruption Principle and the PCC

Let us begin by considering the connection between the disruption prin-
ciple and the PCC.10 The PCC can be stated in the following way.

PCC: For any two distinct variables X and Y, if X and Y are not
causally connected, then they are probabilistically independent.

Two variables are causally connected just in case one is a cause of the other
or there is a common cause of both. Thus, the PCC says that two variables
are probabilistically dependent only if one is a cause of the other or there
is a third variable that is a common cause of both.

Given the identification of mechanisms with causal structure defended
in Chapter 3, one half of the disruption principle is a direct consequence
of the PCC. That is, the disruption principle is a biconditional that, in
one direction, asserts: If there is no undisruptedmechanism fromX to Y in
the population P, then X is not causally relevant to Y in P. By definition
2.3, X is causally relevant to Y just in case X and Y are probabilistically
dependent under ideal interventions on X. But in the context of an ideal
intervention on X, Y does not cause X and there is no common cause of X
and Y. Thus, if there is no undisrupted mechanism from X to Y, then X
and Y are not causally connected, given an ideal intervention on X. From
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PCC, therefore, it follows that X and Y are probabilistically independent
in such circumstances.

The PCC is itself a consequence of a more general principle connecting
causality and probability known as the causal Markov condition (CMC).
Roughly, the CMC asserts that, conditional on its direct causes, any
variable is probabilistically independent of any set of other variables
that do not include its effects. The CMC, therefore, entails the familiar
‘‘screening-off’’ rule. For example, consider the two directed graphs in
Figure 4.9. If these graphs satisfy the CMC, then X and Y are probabil-
istically independent, conditional on Z in both.

Probably the most common basis provided for the CMC is that it is true
of acyclic, deterministic causal structures in which the exogenous vari-
ables are probabilistically independent (cf. Pearl 2000, 30; Spirtes, Gly-
mour, and Scheines 2000, 32; Glymour 2001, 27).11 This proposition can be
extended to indeterministic causal structures (Steel 2005), leaving only the
other two assumptions—probabilistic independence of exogenous vari-
ables and absence of causal cycles—as matters of concern. The disruption
principle asserts, in part, that if there are no undisrupted mechanisms
from X to Y, then ideal interventions on X make no difference to the
probability of Y. Recall that an ideal intervention is exogenous, that is, it
is neither an effect of, nor shares a common cause with, any of the
variables being studied (in this case, X and Y). The best way to ensure
that this condition is satisfied in practice is to assign the value of the
targeted variable (X, in this case) on the basis of some random process,
such as tossing a coin.

So, consider the relationship between X and Y, when the values of X
are randomly assigned by an ideal intervention, which is represented by
the variable I. It is easy to show that, in the causal structure relating only I,
X, and Y, all exogenous variables are probabilistically independent of one
another and there are no causal cycles. From items (a) and (b) of definition
2.1, we know that I is the sole cause of X and a direct cause only of X.
Moreover, item (c) of definition 2.1 asserts that I is exogenous. Conse-
quently, the only two possible causal structures relating I, X, and Y are
those represented in Figure 4.10. Since there are no causal cycles in either
case, the requirement that the causal structure be acyclic is satisfied. It is
trivial that every exogenous variable is probabilistically independent of
every other in the graph on the left, since in that graph there is only one
exogenous variable, I. In the graph on the right, there are two exogenous
variables, I and Y. But given randomization, we know that the interven-
tion I is probabilistically independent of every other exogenous variable.
Hence, I and Y are probabilistically independent in that graph. Thus, in

YZX X Z Y

Figure 4.9 An illustration of the causal Markov condition
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both graphs the exogenous variables are probabilistically independent.
Consequently, it follows that the CMC, and hence the PCC, is true in
any case involving two variables, one of whose values is randomly
assigned by an ideal intervention. Since randomization is the standard
experimental procedure for ensuring that an intervention is exogenous,
the half of the disruption principle asserting that a causal effect is nullified
when all mechanisms are blocked is on firm ground in the context
of experiments.12

Of course, this does not show that there are no practical challenges
confronting applications of the PCC in the present context. For example,
the statistical problem of reliably drawing inferences concerning probabil-
ities on the basis of data in a sample is ubiquitous. The presence or absence
of a statistically significant correlation coefficient in the data may be the
result of mere chance. In addition, it may be difficult to know whether an
actual experiment satisfied the conditions of an ideal intervention. But
although they are real, these challenges are independent of the PCC; they
are general problems for statistical inference and experiment.13

4.4.2 Genetic Redundancy and the Faithfulness Condition

Consider the relationship between exercise and weight loss. Additional
exercise results in more calories being burned, but it also stimulates one’s
appetite. Letting the variables E, A, and W denote exercise, appetite, and
weight, respectively, this situation can be represented by the graph in
Figure 4.11. Conceivably, the strengths of these two paths from exercise to
weight could exactly cancel out and make E and W probabilistically
independent, thereby contradicting the FC. Nevertheless, it is clear that
modern medicine does not take this possibility seriously: physicians and
others endeavoring to promote public health have long encouraged over-
weight people to get more exercise.

Peter Spirtes, Clark Glymour, and Richard Scheines (hereafter, SGS)
prove that though the exact balancing of strengths of counteracting causal
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Figure 4.10 Two ideal interventions
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Figure 4.11 Counteracting causal paths from exercise to weight
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paths is conceivable, given certain apparently plausible assumptions, it is
monstrously improbable. To see the idea, consider the following linear
causal model. In this model, a, b, and c are linear coefficients representing
quantitative strength of influence. The subscript, lowercase e’s are called
‘‘error terms,’’ and represent any source of variation in the dependent
variable not accounted for by its direct causes. It is assumed that error
terms are independent and are normally distributed with zero means. A
parameterization of a linear causal model consists in specifying numerical
values for the coefficients and for the variances of the error terms. Notice
that X and Z would be uncorrelated, and the FC would be false, for any
parameterization in which b þ ac ¼ 0.

X¼ ex
Y¼ aXþ ey
Z¼ bXþ cYþ ez

SGS’s theorem states conditions under which parameterizations that
result in such precise canceling out have probability zero.14 Take any
model in which effects are linear functions of their causes. Suppose that
this model contains n parameters. For example, n ¼ 6 in the linear causal
model. Consider the n-dimensional space of all parameterizations of this
model, that is, each point in the space corresponds to a parameterization.
Now consider any subset of that space consisting solely of parameteriza-
tions that violate the FC. In the model, an example of such a subset would
be one in which every parameterization makes b þ ac ¼ 0. Then it can be
shown that any subset of the n-dimensional space containing only para-
meterizations that violate the FC is of n � 1 dimensionality or less. Then
the following assumption is made:

L: In an n-dimensional space of parameterizations, any subset ofn�1
dimensionality or less has probability zero.15

Thus, it follows that any subset of the space of parameterizations of a
linear causal model containing only parameterizations that violate the FC
has zero probability.

However, not everyone regards SGS’s theorem as a compelling motiv-
ation for the FC, and some have argued that exceptions to the FC are not
uncommon. For example, according to Cartwright:

Faithfulness will be violated if the two processes are equally effective and
cancel each other out. It is not uncommon for advocates of DAG-techniques
to argue that cases of cancellation will be extremely rare, rare enough to
count as non-existent. That seems to me unlikely, both in the engineered
devices that are sometimes used to illustrate the techniques and in the
economic and medical cases to which we hope to apply the techniques.
For these are cases where means are adjusted to ends and where unwanted
side effects tend to be eliminated wherever possible, either by following an
explicit plan or by less systematic fiddling. (1999, 118)
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A similar argument is made by Kevin Hoover.

Spirtes et al. (1993, 95) acknowledge the possibility that particular parameter
values might result in violations of faithfulness, but they dismiss their
importance as having ‘‘measure zero.’’ But this will not do for macroeco-
nomics. It fails to account for the fact that in macroeconomic and other
control contexts, the policymaker aims to set parameter values in just such
a way as to make this supposedly measure-zero situation occur. To the
degree that policy is successful, such situations are common, not infinitely
rare. (2001, 171)

Cartwright and Hoover both make it clear that they do not mean to say
that the FC is always false, but only that it fails in certain situations,
namely, those in which there is some process that selects for canceling
out causal paths. For instance, in the exercise-weight example it seems
unlikely that there is selection in favor of precisely counterbalancing
parameterizations. Hence, their argument would not support the conclu-
sion that exceptions to the FC are probable in that case. However, they do
think that there is often selection for counterbalancing paths, which
would imply that the FC is problematic as a general principle.16

If this objection is right, then there must be an assumption of SGS’s
theorem that is false in circumstances of the sort Cartwright and Hoover
indicate. It is easy to see that the assumption called into question by
Cartwright and Hoover’s line of argument is L.17 They claim that when
there is selection for parameterizations in which causal paths cancel out, it
is, for instance, probable in the linear model above that b þ ac ¼ 0. But the
subset consisting solely of parameterizations that make bþ ac¼ 0 is a two-
dimensional subset of the three-dimensional parameter space. Hence, if it
is probable that the actual parameterization is within that subset, then it is
false that the probability of every subset of n � 1 dimensionality or less is
zero.

Indeed, it would be unreasonable to maintain that n � 1 dimensional
subsets of n-dimensional spaces must always have zero probability. For
example, such a claim would entail that we must be certain a priori that
no quantity is equal to any other quantity. This point can be appreciated
by reference to the diagram in Figure 4.12. In the diagram, the subset of
pairs of values in which a equals b is represented by the diagonal line in
the square, which of course is one dimension less than the two-dimen-
sional plane. Consequently, SGS’s theorem can serve as a motivation for
the FC only provided there is some explication of the conditions under
which L is true and of why we should think that those conditions hold in
the domain of application of the FC.18 I suggest that L is a reasonable
assumption when parameter values are affected by a large number of
uncontrollable factors, a situation which is the norm in heterogeneous
populations.

Consider a social planner attempting to do what Hoover describes,
that is, to create a compensating mechanism to precisely counteract an
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undesired side effect of some policy. For example, imagine a road im-
provement program that involves resurfacing and widening a number
of large thoroughfares and some smaller side streets. Although
improved, safer roads contribute to fewer traffic accidents, they also
have the unfortunate side effect of increasing speeding, which is a signifi-
cant cause of traffic fatalities. Letting R, S, and T be variables denoting
road improvement, rates of speeding, and traffic fatalities, respectively,
the example is represented by the graph in Figure 4.13. Suppose that,
initially, the net effect of the road improvement is to increase the rate
of traffic fatalities. To offset this problem, more police are hired to patrol
the newly improved roads and the fines for speeding are increased.
However, given a tight budgetary situation, the social planners do not
want to spend more money on speeding prevention than necessary.
They want to do just enough to make the two causal paths cancel out,
and no more.

The strategy of the social planners in this case is to implement changes
in the situation that will weaken the positive influence of R upon S so as to
even the balance between the two paths. In principle, if the strength
of influence of R upon S can be fine-tuned independently of the other
parameters, this would be possible. But the relevant question is
whether the social planners really can reliably make the exact canceling
out occur, or at least be sufficiently approximated for practical purposes.
Their ability to do so depends on being able to establish the following two
things:

Selection of Parameters: A process that tends to concentrate the
weight of the distribution of parameterizations on a subset in
which the FC is violated.
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Figure 4.12 The Subset in which a ¼ b
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Figure 4.13 Road improvement and traffic fatalities
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Homogeneity of Parameters: The absence of factors that perturb
parameter values and thereby alter their distribution in uncon-
trolled ways.

If selection and homogeneity were perfectly accomplished, then the entire
distribution of parameterizations would be restricted to an n � 1 dimen-
sional subset of the parameter space. With regard to the graph in the
linear causal model, an example of this would occur when it is certain
that the parameterization makes b þ ac ¼ 0. Thus, when selection and
homogeneity are perfectly satisfied, assumption L of SGS’s theorem (that
all n � 1 dimensional subsets of the parameter space receive probability
zero) is false. Of course, it is unlikely that selection and homogeneity will
be perfectly fulfilled in real-life examples. But if the distribution of para-
meterizations were tightly focused on an n � 1 dimensional subset of the
parameter space rather than completely restricted to that subset, very
near violations of the FC would be probable even if L were true. More-
over, there is little practical difference between strict and very near failures
of the FC, since in either case, causal connections fail to give rise to
correlations that are detectable in any obtainable sample size. Thus,
Cartwright and Hoover’s objection would be vindicated if very near
exceptions to the FC were common in the principle’s intended domain
of application.

The above considerations show that selection and homogeneity suffice
to make (near) exceptions to the FC probable. And Cartwright and Hoo-
ver’s objection points out that it is not rare that someone or something
endeavors to put a selection process in place. Trying and succeeding,
however, are two very different things. In the road improvement ex-
ample, it was assumed that the policymakers endeavored to make the
causal paths cancel out through an adjustment of the strength of influence
of R upon S. Bringing about the desired balance, then, requires knowing
the requisite value of this parameter and being able to fine-tune it accord-
ingly. Yet it is far from clear that this knowledge or ability is typically
possessed by policymakers. How many additional police cruisers patrol-
ling the streets would be required to reduce the value of the parameter by
a given amount, for instance? For the moment, let us put aside this
concern and suppose that the policymakers can devise a selection process.

Even if there is a process at work that tends to focus the probability
distribution of parameterizations around an FC-violating subset, it does
not follow that exceptions or near exceptions to the FC are probable, since
the distribution of parameters might also be influenced by other trends
that undo the work of the selection process. Suppose that there is a wide
variety of difficult-to-predict or -control factors at play that are capable of
altering the values of the parameters (i.e., that homogeneity does not hold
even approximately). Clearly, these disturbing factors would be expected
to increase the variance of the distribution of parameterizations, thus
increasing the chance that the actual parameterization would fall in a
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region distant from a subset in which the FC is false. In addition to
enlarging the variance of the distribution, factors that alter the values of
parameters can also change its mean if not all parameters are uniformly
susceptible to disturbance. For instance, if some parameters are more
susceptible than others to factors that alter their values in a particular
direction, then the mean of the distribution might be driven away from an
FC-violating subset. In the road improvement example, if the effect of R
upon S is sensitive to factors that tend to increase its value while the other
parameters are relatively stable, then the mean of the parameterizations
will move toward a positive net effect of R upon T.

The simple moral, then, is that the existence of a selection process can
fail to make exceptions or near exceptions to the FC probable when a
variety of uncontrollable factors that perturb parameter values is pre-
sent.19 Consequently, noting the presence of a selection process does not
suffice to show that (near) violations of the FC are likely to occur. Yet
Cartwright and Hoover’s objection merely points out that it is common
for selection processes to be present or at least for some effort to be made
to create them, and then concludes that exceptions or near exceptions to
the FC are likewise commonplace. Consequently, their argument is in-
valid on two grounds. First, effectively designing and implementing a
selection process may be very difficult, so the fact that there is some effort
afoot to create a selection process provides little assurance that one exists.a

Second, even if a selection processes were common, Cartwright and
Hoover’s conclusion would follow only when homogeneity obtains. Yet
it is obvious that the opposite is typically the case for the heterogeneous
populations that are the concern of this book. Causal relationships in
biological and social phenomena generally depend upon variable factors
that are difficult to predict or control. Hence, the intended domain of the
FC for the present purposes consists of causal systems of which it is quite
doubtful that homogeneity is typically true or even approximately true.20

In short, Cartwright and Hoover’s objection has failed to show that
exceptions or near exceptions to the FC are common in its intended
domain of use. Nevertheless, it would be a mistake to conclude that the
FC is always an unproblematic assumption with regard to complex sys-
tems. In particular, near violations of the FC are probable when both
selection and homogeneity are approximated, and it is arguably the case
that this situation is not infrequent in gene knockout experiments.

Although it is not an example that they discuss, genetic redundancies
illustrate the type of situation in which Cartwright and Hoover claim that
exceptions to the FC are probable. For example, imagine a gene that serves
as a template for the transcription of a protein that normally performs a
specific set of functions in a cell, but when that protein is not present in
sufficient quantities, the transcription of a distinct yet functionally similar
protein from a second gene is increased. Moreover, it is plausible that
there would be an adaptive benefit in the quantitative strengths of the two
paths exactly counterbalancing one another. For example, maintaining
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the function may require that the sum of two products be kept within
fairly narrow bounds. Hence, it would not be optimal for both genes to
normally be transcribed together, while it would be beneficial that the
function be maintained at the normal rate when the usual product is not
present in adequate quantities. Thus, natural selection would constitute a
process that favors parameterizations in which the counteracting paths
exactly or very nearly cancel out.21

Moreover, apparent near exceptions to the FC are not rare in gene
knockout experiments. For instance, a recent gene knockout study (Scarff
et al. 2004) examined a particular protease inhibitor, SPI3, believed to
have several important functions which primarily involve preventing
certain proteases from affecting nontarget cell and tissue types. The
investigators produced a strain of mice in which the gene from which
SPI3 is transcribed was disabled, but surprisingly this mutant strain
appeared completely normal and showed no apparent difference in any
of the several functions to which SPI3 is believed to be relevant. Given the
FC, this result would constitute strong evidence that SPI3 is not a cause of
any of the functions in question. However, that was not the conclusion
drawn by the researchers. They noted that among mice in which the SPI3
gene had been knocked out, the presence of a second protease inhibitor,
EIA, was increased. Since EIA is functionally similar to SPI3, this sug-
gested that the failure of the gene knockout to produce any detectable
difference between the mutant and wild-type strains could be explained
by a compensating pathway.

The authors suggested two possible mechanisms through which the
knockout of the gene for SPI3 could stimulate the increased transcription
of EIA (ibid., 4080). In both cases, higher levels of SPI3 inhibit the tran-
scription of the gene from which EIA is synthesized, thereby suppressing
EIA under normal circumstances. The basics of the hypothesis, then, can
be represented in the graph in Figure 4.14. The variables GSPI3 and GEIA

represent the rate of transcription of the genes for SPI3 and EIA, respect-
ively. According to the authors, the results of their experiment ‘‘indicate
that EIA levels are increased in SPI3-deficient mice to compensate for the
loss of SPI3’’ (ibid., 4079).

Nor is the above example an aberration.22 As Sandra Mitchell (2003,
154–55) notes, redundancy is a common challenge for gene knockout
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Figure 4.14 An example of genetic redundancy
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experiments. Indeed, a recent issue of Nature included a news feature on
exactly this topic. It pointed out that:

In many cases, a mutant mouse [produced by the gene knockout] does not
show any obvious characteristics—or phenotype. In others, the phenotype
disappears when the disabled gene is crossed into a different strain of
mouse. Indeed, clear and consistent phenotypes now seem to be the excep-
tion rather than the rule. (Pearson 2002, 8)

A common explanation given for this state of affairs is genetic redun-
dancy: ‘‘These results often reflect the fact that genes acting in parallel
pathways can compensate for the one that is missing’’ (ibid.).23 Moreover,
the journal Molecular and Cellular Biology has, since November 1999, dedi-
cated a section of each issue to the topic of gene knockout studies that find
surprising differences, or lack of differences, between mutants and con-
trols.24 That was where the study described above was published.

As explained above, the presence of a selection process alone is not
sufficient to make exceptions or near exceptions to the FC probable;
homogeneity is also required. But this latter condition is muchmore likely
to be approximated in the context of a gene knockout experiment than in,
say, a wild population of mice. The mice in knockout experiments are
typically generated from extremely genetically homogeneous strains that
have been reared for numerous generations under standard laboratory
conditions. The procedure by which knockout strains are generated fur-
ther enforces this homogeneity. Knockout strains of mice are generated by
disabling the target gene in embryonic stem (ES) cells and then either
injecting these ES cells into a blastocyst or aggregating them with an
embryo at an earlier stage.25 Since they are the product of cells from
more than one individual, such modified embryos are known as chi-
meras. Chimeras formed by blastocyst injection or aggregation at earlier
stages will, if viable, transmit the modified genes through the germ line.
The knockout strain can then be generated from themutant germ line cells
selected from the chimeras (if these can be successfully created). The
knockout strains, therefore, are generated not only from strains that are
quite genetically homogeneous, but also in a way that produces an effect-
ive genetic bottleneck, since the knockout strain ultimately derives from
the chimeras, which descend from the modified ES cells and their zygote
hosts.

Gene knockout experiments, then, are a context in which it is not
unlikely that both selection and homogeneity are satisfied to a reasonably
good approximation, and hence near exceptions to the FC are probable.
This analysis of failures to find effects in gene knockout experiments has
an empirical consequence. In cases in which there is good reason to
believe that a causal mechanism is present, despite the null result of a
knockout experiment, it is likely that a probabilistic dependence between
the suspected cause and effect will appear if the conditions of the experi-
ment are varied. And in fact, surprising absences of difference between
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mutants and controls in one gene knockout experiment often emerge in
other mouse strains, or strains reared in distinct environmental conditions
(Pearson 2002, 8–9).

That the FC is a problematic assumption in the case of gene knockout
experiments does not show that it is an inappropriate assumption gener-
ally. For example, the challenge to the FC arising in gene knockout
experiments should not be expected to transfer to studies involving
more heterogeneous populations, such as human subjects, for the reasons
discussed above. Thus, the lack of genetic and environmental homogen-
eity among experimental subjects, surprisingly enough, can facilitate the
discovery of causal structure in virtue of providing a more hospitable
setting for the FC. Of course, this is not to deny that there are genuine
benefits of uniform populations of experimental subjects, but it does show
that experiments involving such subjects also have some potential down-
sides. It is not too difficult to see how those downsides can be avoided in
the present case: vary the genetic and environmental backgrounds of the
experimental populations. But although this prescription is simple
enough in principle, there are practical obstacles to implementing it in
the laboratory. As the news feature from Nature cited above observes:

Ideally, experiments on knockout mice would routinely include work on
multiple strains. In practice, most researchers in the field ague that this is
not realistic—creating a single knockout strain can take up the majority of a
three-year PhD project. (Pearson 2002, 8)

Barring the development of methods that allow knockout strains to be
created more easily, the FC seems likely to remain a problematic assump-
tion in gene knockout experiments for the foreseeable future.

So, where does all this leave the disruption principle? Recall that the
disruption principle has two parts. First, if there is no undisrupted mech-
anism from X to Y, then ideal interventions on X do not alter the prob-
ability distribution of Y. As explained in section 4.4.1, this part rests on
solid ground. Second, the disruption principle asserts that if there is an
undisrupted mechanism from X to Y, then ideal interventions on X alter
the probability distribution of Y. In this section I have argued that, some
objections notwithstanding, this is normally an appropriate assumption
with respect to complex causal systems wherein the strengths of causal
influences are subject to a wide array of uncontrolled factors. Neverthe-
less, there are some situations, as illustrated by gene knockout experi-
ments, in which this heterogeneity is substantially reduced, and hence in
which near exceptions to the disruption principle are more probable.

4.5 CONCLUSION

This chapter introduced, illustrated, and explored the range of applicabil-
ity of the disruption principle, a central premise of the mechanisms
approach to extrapolation. It was shown how this principle could be
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stated by way of the formalism of directed graphs, and its role was
illustrated by reference to an example drawn from HIV research. It was
also shown that the principle is a logical consequence of two other, more
familiar propositions connecting causality and probability: the Principle
of the Common Cause (PCC) and the Faithfulness Condition (FC). The
aspect of the PCC specifically relevant to the disruption principle was
shown to be unproblematic, but the case of the FC was more complex.
Although there is a good motivation for the FC for heterogeneous, natur-
ally occurring biological populations, that justification does not extend to
extremely homogeneous populations, such as the strains of laboratory
mice typically used in gene knockout experiments. This result delineates
more exactly the conditions under which the FC is and is not an appro-
priate methodological principle of causal inference, and it shows that the
experimental practice of holding all background factors fixed is not al-
ways a virtue in the study of complex systems, since such experimental
arrangements may conceal probabilistic dependencies between cause and
effect that are present in messier, real-world populations.
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5

Extrapolation, Capacities,
and Mechanisms

Imagine that a chemical occurring in some consumer products has been
found to be carcinogenic if administered in large doses in rats, and the
question is whether it is also a carcinogen in humans. The mere repetition
of the experimental result in rats is not sufficient to answer this question,
since the physiology of rats may differ in some relevant respect from that
of humans. This is an example of extrapolation: given some knowledge of
the causal relationship between X and Y in a base population, we want to
infer something about the causal effect of X upon Y in a target popula-
tion.1 For instance, in the example above, we know that the chemical is a
positive causal factor for cancer in rats and we want to know whether it is
also such in humans. Difficult cases of extrapolation are ones in which the
base and target populations may differ in relevant respects and, more-
over, in which ethical or practical considerations prohibit directly testing
the claim at issue by experiment in the human target population.

The most straightforward way to approach extrapolation is to presume
that what is true of one population is also approximately true of other
related populations unless there is some specific reason to think other-
wise. I call this inferential strategy simple induction. However, since simple
induction would inevitably lead to many mistaken extrapolations, a more
sophisticated approach would be highly desirable. Any account of ex-
trapolation that goes beyond simple induction must confront two basic
challenges. The first is what I call the extrapolator’s circle. Simple induction
relies on some criterion of relatedness, such as phylogeny or type of
economic system. The shortcomings of simple induction stem from the
fact that satisfying such criteria is often not sufficient for being a reliable
basis for extrapolation. Consequently, additional information about the
similarity between the model and the target—for instance, that the rele-
vant mechanisms are the same in both—is needed to justify the extrapo-
lation. The extrapolator’s circle is the challenge of explaining how we
could acquire this additional information, given the limitations on what
we can know about the target. In other words, it needs to be explained
how we could know that the model and the target are similar in causally
relevant respects without already knowing the causal relationship in the
target. The second challenge arises from the inevitable presence, in
the biological and social sciences, of causally relevant differences between
the model and the target. Thus, any adequate account of extrapolation in
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heterogeneous populations must explain how extrapolation can be pos-
sible even when such differences are present.

I argue that existing accounts of extrapolation fail to answer these
challenges. One proposal I consider maintains that capacities or causal
powers that exert a characteristic influence independently of context are a
basis for extrapolation. However, this proposal does not adequately ex-
plain how one is to know that one is dealing with a capacity rather than a
context-sensitive causal relationship, aside from already having found
that the causal relationship obtains in all of the contexts in question.
Thus, without some further elaboration, the capacities proposal does not
address the two challenges just described. A mechanisms approach to
extrapolation could be regarded as such an elaboration of the capacities
proposal or as a separate approach. According to this approach, know-
ledge of mechanisms linking cause and effect and knowledge of factors
capable of interfering with these mechanisms can significantly facilitate
extrapolation. As noted in Chapter 1, this idea has been suggested by
several philosophers, social scientists, and biologists. However, a mere
invocation of mechanisms does not resolve the extrapolator’s circle, nor
does it explain how extrapolation can be possible in the face of causally
relevant disanalogies. The mechanism approach needs to explain how the
suitability of the model could be established without already knowing all
of the important details about the mechanism in the target. Moreover,
some differences in the mechanism in the model and the target are
inevitable in biology and social science. Thus, the mechanisms approach
requires an account of how extrapolation can be justified even when such
differences are present.

In this chapter, I develop a more satisfactory version of the mechanisms
approach to extrapolation. The central concept is a mode of inference I call
comparative process tracing, which aims to assess the suitability of the model
as a basis for extrapolation. Comparative process tracing depends upon
background information concerning likely similarities and differences be-
tween themodel and the target. If significant differences between themodel
and the target are likely tobe restricted to a relatively small numberof stages
of the mechanism, then comparisons at those stages may provide good
grounds for the suitability of the model. The number of stages that must
be compared can be reduced further if upstream differences must result in
differences at an observable downstream point in the mechanism. More-
over, knowledge of just a few stages of the mechanism in the target alone
(that is, without knowledge of the model) might not suffice for firm conclu-
sions regarding the existence of a mechanism in the target. Hence, my
proposal provides an analysis of how extrapolation can be justified despite
the extrapolator’s circle while indicating conditions in which it is a genuine
problem. I illustrate my account of comparative process tracing with a case
study concerning the carcinogenic effects of aflatoxin B1. The question of
how useful the mechanisms approach to extrapolation developed here is
likely to be in social science is taken up in Chapter 8.

Extrapolation, Capacities, and Mechanisms 79



The aflatoxin example also illustrates how extrapolation may be justi-
fiable even when there are some causally relevant disanalogies between
the model and the target. I argue that the closeness of the match between
model and target required for extrapolation depends upon the specificity
of the causal claim to be extrapolated. While similarity in all causally
relevant respects may be required for extrapolating an exact, quantitative
causal effect, it is not required for extrapolating qualitative causal claims.
In particular, claims about positive or negative causal relevance can be
extrapolated even when there are causally relevant disanalogies. This
point is illustrated by the aflatoxin example, wherein a causally relevant
difference between the animal model and the human suggests that the
carcinogenic effect is less in the model than in humans. Yet this difference
does not indicate that it would be a mistake to extrapolate the claim that
exposure to aflatoxin B1 increases the chance of liver cancer in humans. A
more general and precise characterization of conditions that suffice for
extrapolating claims about positive and negative causal relevance is given
in Chapter 6.

5.1 SIMPLE INDUCTION

Imagine a case in which one is concerned to decide whether a causal
generalization found in a base population (say, laboratory mice) also
holds true of a target population of interest (say, humans). Simple induc-
tion proposes the following rule for such cases:

Assume that the causal generalization true of the base population
also holds approximately in related populations, unless there is
some specific reason to think otherwise.

In other words, simple induction proposes that extrapolation be treated as
a default inference among populations that are related in some appropri-
ate sense. The advantage of simple induction is that it can be employed in
cases in which relatively little detailed information concerning the mech-
anisms underlying the causal relationship is available. There are, how-
ever, three aspects of the above characterization of simple induction that
stand in obvious need of further clarification. In particular, to apply the
above rule in any concrete case, one needs to decide what it is for a causal
generalization to hold approximately, to distinguish related from unre-
lated populations, and to know what counts as a reason to think that the
extrapolation would not be appropriate. It seems doubtful that a great
deal can be said about these three issues in the abstract—the indicators of
related populations, for instance, can be expected to be rather domain-
specific. But it is possible to give examples of the sorts of considerations
that may come into play.

Simple induction does not enjoin one to infer that a causal relationship
in one population is a precise guide to that in another—it only licenses
the conclusion that the relationship in the related target population is
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‘‘approximately’’ the same as that in the base population. It is easy to see
that some qualification of this sort is needed if simple induction is to be
reasonable. In biology and social science, it is rare that a causal effect in
one population is exactly replicated even in very closely related popula-
tions, since the probabilities in question are sensitive to changes in back-
ground conditions. Nevertheless, it is not rare that various qualitative
features of a causal effect, such as positive relevance, are shared across a
wide range of populations. For example, tobacco smoke is a carcinogen
among many human and nonhuman mammal populations. Other quali-
tative features of a causal effect may also be widely shared; for instance, a
fertilizer may promote growth in moderate dosages and inhibit growth in
large ones across a wide variety of plant species even though the precise
effect differs from one species and variety to the next. In other cases, the
approximate similarity may also refer to quantitative features of the
causal effect—the quantitative increase in the chance of lung cancer
resulting from smoking in one population may be a reasonably good
indicator of that in other closely related populations. In the case of ex-
trapolation from animal models, it is common to take into account scaling
effects due to differences in body size, since one would expect that a
larger dose would be required to achieve the same effect in a larger
organism (cf. Watanabe et al. 1992). Thus, in such cases, the scaling
adjustment would constitute part of what is covered by ‘‘approximately.’’
Depending on the context, the term ‘‘approximate’’ could refer to simi-
larity with regard to any one of the aspects of the causal effect mentioned
above, or other aspects, or any combination of them.

Simple induction is also restricted in allowing extrapolations only
among related populations, a qualification without which the rule
would obviously be unreasonable: no population can serve as a guide
for every other. In biology, phylogenetic relationships are often used as a
guide to relatedness for purposes of extrapolation: the more recent a
shared common ancestor, the more closely related the two species are
(cf. Calabrese 1991, 203–4). A phylogenetic standard of relatedness also
suggests some examples of what might count as a specific reason to think
that the base population is not a reliable guide for the target population.
From the mechanistic point of view, phylogenetic relatedness supports
extrapolation because it increases the likelihood that the pertinent mech-
anisms are shared in the base and target populations as the result of
descent from a common ancestor. But when the causal relationship in
the base population depends on derived features—that is, characteristics
not inherited from the common ancestor—this reasoning is fallacious.

In many biological examples, simple induction requires only some
relatively minimal background knowledge concerning the phylogenetic
relationships among the base and target populations, and its chief advan-
tage lies in this frugality of information demanded for extrapolation. Yet
the weakness of the simple inductive strategy also lies in exactly this
frugality: given the roughcriteria of relatedness, the strategywill inevitably
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produce many mistaken extrapolations. According to one review of
results concerning interspecies comparisons of carcinogenic effects:

Based on the experimental evidence from the CPDB [Carcinogenic Potency
Database] involving prediction from rats to mice, from mice to rats, from
rats or mice to hamsters, and from humans to rats and humans to
mice, . . . one cannot assume that if a chemical induces tumors at a given
site in one species it will also be positive and induce tumors at the same site
in a second species; the likelihood is at most 49%. (Gold et al. 1992, 583)

A related challenge for simple induction is that it is not rare that there are
significant differences across distinct model organisms. For instance,
aflatoxin B1 (discussed in section 5.3.2) causes liver cancer in rats but
has little carcinogenic effect in mice (Gold et al. 1992, 581–82; Hengstler
et al. 2003, 491).

The consequence of these considerations is not that simple induction is
wrong or useless for extrapolation. Rather, what follows is that simple
induction is limited, and that it is highly desirable that it be supplemented
with some more sophisticated inferential strategy. Let us turn to the
question of just what this ‘‘something more’’ should be.

5.2 POWERS AND CAPACITIES

The notion of a causal power or capacity is a very commonsensical one.
For example, in virtue of its hardness and mass, a brick has the capacity to
shatter a glass window. Moreover, this capacity is not tied to a specific set
of background conditions, but is something that the brick can be reason-
ably be expected to possess in whatever circumstance it is likely to be
found. Capacities and causal powers, then, seem like a promising point of
departure from which to address extrapolation. For example, Cartwright
maintains that it is only knowledge of capacities that enables one to
extrapolate context-dependent relationships such as causal effects from
one population to another (1989, 157–58, 163; 1992, 56). According to
Cartwright, a statement about a capacity tells us what would occur
when all other causes are absent (cf. 1992, 49; 1999, 82–83). But it tells us
more than just that, since a capacity exerts its characteristic influence
upon the effect even when other causes are present (ibid.). In this section,
I argue that capacities approaches to extrapolation have failed to over-
come the limitations of simple induction.

The central feature of capacities is their stability across changes in
background conditions. As Cartwright puts it, ‘‘A property carries its
capacities with it, from situation to situation’’ (1989, 146). This stability
need not be absolute (cf. Cartwright 1989, 163), but it is presumably
required to be sufficiently robust to justify the expectation that causal
influence will hold throughout the domain in question. Capacities are
not limited to basic physical properties, such as the mass of a brick.
Cartwright also uses the term ‘‘capacity’’ to refer to causal relationships
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that depend on a complex set of interactions. For instance, ‘‘aspirin’s
capacity to relieve headaches’’ is one of her stock illustrations (1989,
141). A claim about the palliative effects of aspirin is quite similar to a
statement about the carcinogenic effects of a particular chemical com-
pound. Both are claims about positive causal relevance that depend upon
an interaction between a compound and an organism. Thus, the palliative
virtues of aspirin exist only in relation to organisms with a particular type
of physiology, and similarly for the carcinogenic effects of a particular
compound.

Clearly, it will often be difficult to know in advance whether a com-
pound that has a particular effect in one species or class of organisms will
have a similar effect in others. That of course is the extrapolation problem
of concern in this chapter. But by definition, a capacity is a causal influ-
ence that is not tied to a specific context. Hence, if we know only that the
compound is carcinogenic in (say) rats, we do not know whether its
influence can be properly called a capacity. Consequently, if we do not
know whether the extrapolation would be correct, we do not know
whether the causal effect in question is a capacity. The difficulty here,
then, it is that it is not clear how one is to know that something is a
capacity independently of already knowing what one wanted to know
about extrapolation. In other words, to call a causal relationship a capacity
is to say that it is stable across a range of contexts of interest, but questions
of extrapolation arise exactly in those cases in which the stability of the
causal relationship is in doubt.2

The objection that it is unclear how one is supposed to know whether a
causal relationship is a stable capacity ormerely a local, context-dependent
effect has been raised by several authors (Morrison 1995, 165–66; Glennan
1997, 611–13). In response to such concerns, Cartwright writes:

I have claimed that in the central uses of the concept, we assume that
within the specified domain tendencies when properly triggered always
‘‘contribute’’ their characteristic behaviours unless there is a reason why
not. (1995, 180)

This statement amounts to a commitment to the use of simple induction:
within some set of related populations (the domain), one assumes that the
relationship holds unless there is some reason to suppose otherwise.
However, we have seen that simple induction is often highly problematic
in the context of extrapolation from animal models. Hence, without some
further elaboration, the capacities approach will not suffice as a normative
account of extrapolation.

Cartwright does provide some elaboration on the issue of whether
there is a reason why the capacity will not operate in the new context.
This judgment is said to be based upon knowledge of ‘‘how this tendency
naturally operates and how its power to do so is transmitted, what could
distort it, what enhance it, what could damp it and in what ways’’ (ibid.).
This appears to be a reference to Cartwright’s notion of a nomological
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machine, which is one of several related mechanism concepts, as was
discussed in section 3.4.1. On this proposal, then, capacities inhere in
the component parts of a nomological machine or mechanism, while
extrapolation depends upon information about how the component
parts are arranged and interact. That is very similar to the suggestion
that knowledge of mechanisms and interfering factors is a basis for
extrapolation. But merely to invoke mechanisms is not to have explained
how the challenges confront extrapolation. For all we know, the causal
effects of the components of the mechanism might be context-dependent,
and the components in the model might be arranged and interact differ-
ently than those in the target (Alexandrova 2006, 186–87). Demonstrating
the relevant similarity of the model and the target would presumably
require separately studying the mechanisms in both and then comparing
results. But it is not clear how that can be done when the ability to study
the target directly is severely limited. In short, to gesture toward mech-
anisms is not to have answered the challenges confronting extrapolation.

Cartwright’s proposal is not unique in this regard: the same point can
be made in the context of an account of causal powers provided by
Patricia Cheng (1997). Although the aim of Cheng’s approach is primarily
the psychological one of understanding how people actually draw causal
inferences, her proposal is highly interesting from a philosophical per-
spective. Like Cartwright, Cheng stresses the value of causal powers with
regard to extrapolating causal conclusions.

In the reasoner’s mind, causal powers are invariant properties of relations
that allow the prediction of the consequences of actions regardless of the
causes of an effect (those other than the candidate causes) that happen to
occur in a situation. (2000, 127)

Thus, Cheng’s causal powers are very similar to Cartwright’s capacities in
that they are intended to be stable influences that operate independently
of changes in context or background conditions. In its simplest version,
Cheng’s proposal assumes the existence of two types of causes, generative
and preventive, which may be either present or absent (but not vary
otherwise). No event occurs unless it is caused, and causes can influence
their effects only when they are present. An event occurs if and only if at
least one of its potential causes is present and causes it on that occasion.
For a generative cause C, the causal power of C with respect to E, which
we may denote by pce, is the probability that C causes E provided that C
occurs. It need not be the case that pce ¼ P(EjC), since P(EjC) depends not
only upon the efficacy of C but also upon the probability of the presence
and effectiveness of other causes of E.

Cheng’s innovation is to demonstrate that, given certain assumptions,
causal powers can be estimated from statistical data (1997, 373–74). In her
1997 paper, one of these assumptions is that pce is independent of the
occurrence of all other causes of E. This means that C, in affecting E, does
not interact with any other causes. But in biology and social science,
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causes typically influence their effects interactively, so that the impact of
one depends upon the presence or absence of others. Indeed, extrapola-
tion is difficult precisely because the relationship between cause and
effect might depend on some unknown, variable factor. In light of
this limitation, Cheng (2000) develops a concept of interactive causal
power. She points out that when causes interact, the formula described
in her original proposal does not estimate causal powers, but only what
she terms the ‘‘contextual causal power’’ (2000, 235). Cheng also specifies
conditions in which interactive causal powers can be estimated from
statistical data, provided that all the interacting causes have been meas-
ured (2000, 241–46). However, in most interesting biological and social
science examples, it can be expected that the causes under investigation
interact with other causes that have not been measured or otherwise
explicitly taken into account. For such cases, Cheng suggests that one
proceed by first assuming that the causal power is simple (that is, -
independent of all other causes) and then postulate causal interactions
only when necessary to accommodate conflicting data (2000, 232,
238). Yet the proposal that one estimate context- or population-sensitive
causal relationships, and then assume that these hold approximately
in related populations unless there is some evidence to the contrary,
is simple induction. And as explained in the foregoing section, simple
induction is often not a sufficient basis for extrapolation from
animal models. Thus, the proposals considered in this section have
not provided an adequate account of how extrapolation could proceed
even when not justifiable by simple induction. Let us turn, then, to a
distinct proposal.

5.3 MECHANISMS-BASED EXTRAPOLATION

The mechanisms approach to extrapolation suggests that knowledge of
mechanisms and factors capable of interfering with them can provide a
basis for extrapolation. But this proposal must also answer the two chal-
lenges to extrapolation described above. Since causally relevant differ-
ences between model and target are inevitable, some explanation must be
provided of how extrapolation can be justified even when there are some
differences in mechanism between model and target. The extrapolator’s
circle confronts the mechanisms proposal as well. Presumably, justifying
the appropriateness of the model would involve comparing mechanisms
in the model and the target, which would involve independently study-
ing the mechanisms in both and then comparing results. But that makes it
unclear how the suitability of the model can be established without
already knowing what the extrapolation was supposed to tell us. In
this section, I argue that existing discussions of mechanisms do not
adequately address these challenges. Then I present a more adequate
account of mechanisms-based extrapolation that is founded upon what
we call comparative process tracing.
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5.3.1 The Existing Literature on Mechanisms and Extrapolation

There is a small literature that provides detailed case studies of extrapola-
tion in biology or social science, often with particular attention to the role of
mechanisms (cf. Burian 1993; Ankeny 2001; Schaffner 2001; Weber 2005;
Guala 2005; Alexandrova 2006). Essays in this genre point out some circum-
stances that facilitate, and some that hinder, extrapolation. For instance, it
has been observed that extrapolation is on firmer ground with respect to
basic, highly conserved biological mechanisms (Wimsatt 1998; Schaffner
2001; Weber 2005, 180–84). Others have observed that a close phylogenetic
relationship is not necessary for extrapolation and that the use of a
particular animal model for extrapolation must be supported by empirical
evidence (Burian 1993). Similarly, Francesco Guala (2005) emphasizes the
importance in experimental economics of providing empirical evidence to
support the claim that the model is relevantly similar to the target.

These suggestions are quite sensible. The belief that some fundamental
biological mechanisms are very widely conserved is no doubt a motivat-
ing premise underlying work on such simple model organisms as the
nematode worm. And it is certainly correct that the appropriateness of a
model organism for its intended purpose is not something that may
merely be assumed, but a claim that requires empirical support. Yet
such observations do not answer the challenges to extrapolation. Objec-
tions to animal extrapolation focus on causal processes that do not fall
into the category of fundamental, conserved biological mechanisms. For
example, Marcel Weber suggests that mechanisms be conceived of as
embodying a hierarchical structure, wherein the components of a
higher-level mechanism consist of lower-level mechanisms, and that
while lower-level mechanisms are often highly conserved, the same is
not true of the higher-level mechanisms formed from them (2001, 242–43;
2005, 184–86). So, even if one agreed that basic mechanisms are highly
conserved, this would do little to justify extrapolations from mice, rats,
and monkeys to humans regarding such matters as the safety of a new
drug or the effectiveness of a vaccine. Since critiques of animal extrapo-
lation are often motivated by ethical concerns about experimentation on
animals capable of suffering (cf. LaFollette and Shanks 1996), they pri-
marily concern animal research regarding less fundamental mechanisms
that cannot be studied in simpler organisms such as nematode worms or
slime molds. Nor do the observations sketched in the foregoing para-
graph explain how extrapolation can proceed even when there are caus-
ally relevant differences between model and target or how the
extrapolator’s circle is to be avoided. For example, noting that the appro-
priateness of an animal model for a particular extrapolation is an empir-
ical hypothesis does not explain how such a hypothesis can be established
without already knowing what one wishes to extrapolate.

There also are discussions in the philosophical literature of strategies
for learning about mechanisms. A distinction between mechanisms and
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the ‘‘phenomena’’ (Craver and Darden 2001, 113–14) or ‘‘behavioral de-
scriptions’’ (Glennan 2005, 446) those mechanisms explain is helpful for
understanding these proposals and contrasting them with comparative
process tracing. Phenomena are regularities of the system under study
that are more easily observable than the underlying mechanisms. For
example, that HIV exposure causes AIDS is a phenomenon, whereas the
mechanism consists of the molecular processes through which HIV has
this effect. Since phenomena are often more easily discovered than under-
lying mechanisms, several authors have examined strategies for discover-
ing mechanisms, given the phenomenon and some background
constraints on what the components of the mechanism and their inter-
actions could be (cf. Bechtel and Richardson 1993; Craver and Darden
2001; Darden and Craver 2002). Lindley Darden and Carl Craver’s (2002)
discussion focuses on what they term schema instantiation and forward
chaining/backtracking. Schema instantiation begins with a schematic out-
line of the mechanism in which central functional roles are specified, but
important details concerning the entities and activities involved in the
performance of those functions are omitted. For example, the mechanism
of HIV replication instantiates a schema that is common for retroviruses:
attachment to a target cell, insertion of viral RNA into cytoplasm, reverse
transcription, integration of viral DNA into host DNA, and synthesis of
products for the formation of new viruses from this integrated viral DNA
by means of the host cell’s genetic machinery. Next, one attempts to
discover the specific entities and activities that instantiate the schema,
often by means of tracing forward from a known starting point or back-
ward from a known end point (or both at once). For convenience, we will
refer to the joint application of these strategies, schema instantiation and
forward chaining/backtracking, as process tracing.

Glennan points out that process tracing is sometimes unfeasible for
ethical or practical reasons (2005, 459–61). In such cases, one may attempt
to discover the mechanism through more detailed descriptions of the
phenomenon (ibid.). For example, alternative hypotheses concerning the
mechanism may yield differing predictions about how the system would
behave in a new circumstance. But although the strategy that Glennan
suggests differs from process tracing, it is aimed at solving the same
inference problem: given a description of the phenomenon, discover the
mechanism that accounts for it. In extrapolation, by contrast, what one
wishes to infer is a mechanism and phenomenon in a target organism. The
evidence given includes the mechanism and behavioral description for a
model organism, and perhaps some partial information about the mech-
anism in the target. By ‘‘partial information,’’ I mean that the information
concerning the mechanism in the target is not sufficient on its own to infer
the phenomenon (e.g., whether the compound is carcinogenic in hu-
mans). The mechanisms approach to extrapolation must indicate a strat-
egy for solving the following inference problem: given both the
mechanism and the phenomenon in the model, and partial information

Extrapolation, Capacities, and Mechanisms 87



concerning the mechanism in the target, infer the mechanism and/or
phenomenon in the target.

5.3.2 Comparative Process Tracing

Suppose that one is given a description of the mechanism in the model
organism and wishes to use this information as a basis for extrapolation.
Such an inference is a case of reasoning by analogy. The form of argu-
ments by analogy can be represented schematically as follows: the base
(or source or analogue) is known to possess properties 1 through n, while
the target is known to have properties 1 through n�1; therefore, the
target also possesses property n. It is obvious that not all inferences
satisfying this abstract schema are reliable. For instance, Bob and Sue
may both own 2005 Volkswagen Beetles, yet the information that Bob’s
car is iridescent lime green provides little support for the conclusion that
Sue’s car is the same color (cf. Weitzenfeld 1984, 138; Davies 1988, 229).
Arguments instantiating the above schema, then, provide substantial
support for their conclusions only given some additional, perhaps impli-
cit, information. This additional information would consist of generaliza-
tions asserting that objects of specified types typically resemble one
another in certain ways, though not necessarily in others. For instance,
suppose one wanted to know whether the engine in Sue’s Volkswagen
Beetle is in the rear of the car (as in the older models) or in the front. If we
learned that the engine of Bob’s car is front mounted, we readily conclude
that the same is true of Sue’s car. The difference between this analogical
inference and the one above is that cars of the samemake, model, and year
are typically manufactured in a variety of colors yet are generally similar
with regard to basic design features such as the placement of the engine.
Likewise, mechanisms-based extrapolation depends on knowledge of
likely similarities and dissimilarities of the mechanisms between model
and target.

If one peruses a text or review article on animal extrapolation in toxi-
cology, one finds a compendium of information concerning how pertinent
mechanisms differ between humans and various model organisms, and
with respect to which types of compounds.3 In the case of carcinogenesis,
probably the most frequent differences concern metabolism (Calabrese
1991, chap. 5; Hengstler et al. 1999, 918). Since the metabolism of foreign,
potentially toxic compounds consists of chemically transforming them so
as to make them less toxic and more readily excreted, differences with
regard to how a particular compound ismetabolized, and at what rate, can
have implications for its carcinogenic effects. Mechanisms for metabolism
of foreign compounds are typically described in terms of two phases (cf.
Calabrese 1991, 206). In phase I, the compound is chemically altered (often
through the addition of oxygen or hydrogen atoms) in a manner that
makes it more polarized, and consequently more easily excreted. In
phase II, the compound resulting from the modification in phase I is
conjoined with a macromolecule, such as a carbohydrate, which typically
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detoxifies the compound and further facilitates its removal. Metabolic
mechanisms can differ with respect to how the compound is altered at
either phase and in virtue of which enzymes catalyze the process, which
has the result that some mechanisms may be more effective than others at
detoxifying and eliminating a given foreign compound.

The above discussion suggests a procedure for extrapolating a mech-
anism found in the base population to the target population, a procedure
that I call comparative process tracing. First, learn the mechanism in the
model organism, by means of process tracing or other experimental
means. For example, a description of a carcinogenic mechanism would
indicate such things as the product of the phase I metabolism and the
enzymes involved; whether the metabolite is a mutagen, an indication of
how it alters DNA; and so on. Second, compare stages of the mechanism
in the model organism with that of the target organism in which the two
are most likely to differ significantly. For example, one would want to
know whether the chemical is metabolized by the same enzymes in the
two species, and whether the same metabolite results, and so forth. In
general, the greater the similarity of configuration and behavior of entities
involved in the mechanism at these key stages, the stronger the basis for
the extrapolation.

The reliability of comparative process tracing depends on correctly
identifying the points at which significant differences between the
model and the target are likely to arise. Significant differences are those
that would make a difference to whether the causal generalization to be
extrapolated is true in the target. For instance, metabolism is a source of
potentially significant difference in carcinogenesis, since how a com-
pound is metabolized often matters to whether it is carcinogenic or not.
Judgments about where significant differences are and are not likely to
occur are based on inductive inferences concerning known similarities
and differences in related mechanisms in a class of organisms, and on the
impact those differences make. In the present case, the relevant general-
izations would concern the common similarities and significant differ-
ences in carcinogenic mechanisms between humans and rodents.
Comparative process tracing, then, resembles simple induction in relying
upon generalizations concerning the relation between the target and
model organisms. The chief difference concerns what these generaliza-
tions assert. Simple induction depends upon generalizations of the form
‘‘What is carcinogenic for rats is probably carcinogenic for humans, too.’’
In contrast, comparative process tracing depends upon generalizations
like ‘‘Features A, B, and C of carcinogenic mechanisms in rodents usually
resemble those in humans, while features X, Y, and Z often differ signifi-
cantly.’’ The toxicology literature described above is plausibly interpreted
as an effort to provide an empirical basis for generalizations of the latter
but not the former sort. Of course, it might be questioned whether the data
presently available to toxicologists constitute a representative sample.
However, that is a standard problem of statistical sampling rather than
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a difficulty specifically raised by extrapolation, such as the extrapolator’s
circle.

But even given accurate information about the points of likely similar-
ity and dissimilarity, comparative process tracing might still be impracti-
cal if not all likely points of significant difference could be compared.
Fortunately, comparative process tracing often does not require compar-
ing every stage of the mechanism at which significant differences are
likely to be present. In particular, suppose that many points of likely
difference are upstream of a later stage that is relatively easy to measure
and compare. Then it may be possible to omit comparisons of the up-
stream stages and focus on the downstream one. For instance, imagine a
mechanism like the following:

Suppose that X, Y, and Z represent points of the mechanism at which
significant differences between model and target are likely, while A and B
represent points that are likely to be the same. If differences inX or Ymust
result in differences in Z, then it is necessary only to compare the model
and target at Z. That reduces the amount of information about the mech-
anism in the target that is needed to establish the suitability of the model,
which may be very helpful if it is difficult to study the mechanism in the
target directly. Furthermore, comparing a downstream stage of the mech-
anism also renders mistakes about upstream sources of difference less
consequential. For instance, suppose that differences were in fact likely at
A in Figure 5.1, despite our belief to the contrary. Yet if a difference at A
must generate differences at Z, then the mistaken belief about A will not
lead to a faulty extrapolation so long as a comparison is made at Z. Thus,
efficient applications of comparative process tracing can focus on likely
sources of difference in downstream stages of the mechanism.

A few important qualifications about the emphasis on downstream
stages should be noted. First, the strategy could lead to mistaken conclu-
sions if there is a path that bypasses the downstream stage. For instance,
suppose in Figure 5.1 there was a path fromX to E that did not go through
Z. In that case, checking Z would not be sufficient since there might be
significant differences in the mechanisms that would not leave a mark on
Z. Hence, applications of the strategy depend on knowing where to look
for bottlenecks through which any influence upon the outcome must be
transmitted. Second, the mark that upstream stages leave upon the down-
stream stages must be distinctive in the sense that it could not have
resulted from some independent cause. The mark should be, as it were,
a fingerprint whose presence or absence indicates something causally
significant about upstream processes. In examples from toxicology,
the distinctive mark is often a particular chemical compound that retains

C X Y Z EBA

Figure 5.1 Comparing a downstream stage
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a distinctive, identifiable structure even after being metabolized. That
point is illustrated by the aflatoxin B1(AFB1) example that we dis-
cuss now.

Extrapolation of the carcinogenic effects of aflatoxin B1(AFB1) is a good
example of comparative process tracing. Produced by certain species of
fungi that grow on various types of grains and nuts, aflatoxins are now
generally regarded as an important risk factor for liver cancer, a belief
dating back to the 1960s that has its origins in laboratory experiments on
rats and epidemiological studies (Wogan 1992, 123). Jointly, a positive
correlation in epidemiological data between liver cancer and exposure to
aflatoxins through food contamination, and a corresponding experimen-
tal result in rats, provided a prima facie case for the conclusion that
aflatoxins are carcinogenic in humans. However, this evidence alone is
not unequivocal. The epidemiological correlation might result in whole or
in part from an unmeasured common cause of aflatoxin exposure and
liver cancer, while rats might be an inappropriate model for humans with
respect to aflatoxins. The appropriateness of the rat as a model in this
context was hardly an idle concern, given that aflatoxin was found to have
little carcinogenic effect in mice (Gold et al. 1992, 581–82; Hengstler et al.
2003, 491). Differing results among animal models are a clear case of a
‘‘reason to suppose otherwise,’’ blocking extrapolation by simple induc-
tion. Let us consider how comparative process tracing ameliorated this
situation.

Since there are often trans-species differences in the metabolism of
foreign compounds, a natural starting point for this inquiry was to ana-
lyze the metabolism of aflatoxins in humans and in the rodent popula-
tions in which aflatoxins were found to be carcinogenic. It was found that
AFB1, the most common aflatoxin, was converted to the same phase
I metabolite across these groups (Wogan 1992, 124). Given the sharp
differences in carcinogenic effects of AFB1 in rats and mice, it was of
obvious interest to inquire which of these two animal models was a better
guide for humans. It was found that although the phase I metabolism of
AFB1 proceeded similarly among mice, rats, and humans (and in fact at a
higher rate in mice), the phase II metabolism among mice was extremely
effective in detoxifying AFB1 but not among rats or humans (Hengstler
et al. 1999, 928–31). Furthermore, this metabolite bound to DNA in rat
liver cells in vivo at sites at which the nucleotide base guanine was
present to form complexes called DNA adducts (ibid., 927). It was further
found that such cells suffered unusually frequent mutations in which
guanine-cytosine base pairs were replaced with adenine-thymine pairs,
a mutagenic effect found in vivo among rats and in vitro among cells of a
variety of origins, including bacteria and human (ibid., 923, 927). In
addition, guanine-cytosine to adenine-thymine mutations were found in
activated oncogenes present in rats exposed to AFB1 but were absent in
the controls (ibid., 130–33). Thus, comparative process tracing yielded the
conclusion that the rat was a better model than the mouse.
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The example also illustrates that comparative process tracing need not
be restricted to comparisons between a single model-target pair, but may
involve selecting among several candidate model organisms. In fact, rats
and mice were not the only model organisms considered: guinea pigs and
hamsters were also studied. These were compared with humans on the
basis of quantity of AFB1 DNA adducts present per unit of peripheral
blood among individuals exposed to AFB1, with a one strain of rat, the
Fischer rat, bearing the closest similarity to humans (Hengstler et al. 1999,
925–26). However, even in the Fischer rat, the quantity of DNA adducts
was significantly less than in humans, suggesting that even the most
sensitive rodent model provides an underestimate of the human impact
of AFB1. The quantity of DNA adducts provides information about a
downstream stage of the mechanism (like Z in Figure 5.1). Thus, by
focusing on the quantity of DNA adducts, researchers could avoid
the cumbersome task of comparing every likely point of difference. This
example also demonstrates how comparative process tracing can indicate
extrapolative limitations of the best model. In this case, one could
reasonably use the Fischer rat to extrapolate the conclusion that AFB1

exposure increases the chance of liver cancer, and perhaps even use the
effect in the Fischer rat to estimate a lower bound for the strength of that
effect. But it is doubtful that a quantitative estimate of the impact of AFB1

upon liver cancer could be correctly extrapolated from the Fischer rat to
humans.

5.4 CRITIQUES OF ANIMAL EXTRAPOLATION

An account of extrapolation should be able to adjudicate methodological
disputes on this topic, and this section illustrates how the proposal ad-
vanced here can do that. In a book and series of articles, Hugh LaFollette
and Niall Shanks argue that model organisms cannot be reliably used for
extrapolation at all, but only as sources of promising hypotheses to be
tested by clinical or epidemiological investigations (1993a, 1993b, 1995,
1996). They use the term causal analogue model (CAM) to refer to models
that can ground extrapolation, and hypothetical analogue model (HAM) to
refer to those that function only as sources of new hypotheses. According
to LaFollette and Shanks, animal models can be HAMs but not CAMs. A
similar though somewhat more moderate thesis is advanced by Weber.
He maintains that, except for studies of highly conserved mechanisms,
animal models primarily support only ‘‘preparative experimentation’’
and not extrapolation (2005, 185–86). Weber’s ‘‘preparative experimenta-
tion’’ is similar to LaFollette and Shanks’s notion of a HAM, except that it
emphasizes the useful research materials and procedures derived from
the animal model in addition to hypotheses (2005, 174–76, 182–83). In this
section, I argue that these pessimistic claims about the potential of animal
extrapolation are not correct.
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5.4.1 No Relevant Difference

LaFollette and Shanks’s primary argument for the conclusion that model
organisms can function only as HAMs and not as CAMs rests on the
proposition that if a model is a CAM, then ‘‘there must be no causally
relevant disanalogies between the model and the thing being modeled’’ (1995,
147; italics in original).4 It is not difficult to show that animal models
rarely if ever meet this stringent requirement. But an obvious reply is that
LaFollette and Shanks’s criterion of CAM-hood is unreasonably strict. In
light of this, LaFollette and Shanks consider the possibility that a weaker
condition than the complete absence of relevant causal disanalogies could
suffice for extrapolation. They suggest that this proposal be interpreted as
follows:

Begin with two systems, S1 and S2. S1 has causal mechanisms [a, b, c, d, e], S2
has mechanisms [a, b, c, x, y]. When stimulus sf is applied to subsystems [a,
b, c] of S1, response rf regularly occurs. We can therefore infer that were sf
applied to subsystems [a, b, c] of S2, it is highly probable that rf would occur.
(1995, 153)

However, they argue that this inference is valid only if the relationship
between the stimulus and the response is entirely independent of the
differing mechanisms, [d, e] and [x, y] (ibid.). But if these mechanisms
make no difference to the relationship between the stimulus and the
response, then there are no relevant disanalogies between S1 and S2,
which would mean that S1 is a CAM after all. Thus, LaFollette and Shanks
conclude that when it comes to extrapolation, only a CAM in their sense
will do: there must be no relevant causal dissimilarities between model
and target (cf. 1996, 180).

Needless to say, this strict condition is rarely if ever satisfied. Not only
are relevant differences across species inevitable, but dissimilarities are
also extremely common within species and even for a single organism at
different stages of its life. The field of pharmacogenomics, for instance, is
dedicated to the study of genetic differences among humans that produce
divergent responses to drug therapies. Likewise, susceptibility to, say,
harmful side effects of a therapy may be contingent upon factors associ-
ated with age, such as declining kidney functioning. Thus, if the strict
criterion of CAM-hood proposed by LaFollette and Shanks were
accepted, not only would extrapolation from animal to human be illegit-
imate, but so would extrapolation from humans to other humans. Indeed,
even extrapolations from past to future in the life of a single person would
be unjustified.5

The flaw in LaFollette and Shanks’s argument is that it overlooks the
connection between the specificity of the claim to be extrapolated and
the standard of a suitable model. This point is illustrated nicely by the
aflatoxin example. In this case, the Fischer rat would not qualify as a CAM
in LaFollette and Shanks’s strict sense, since the quantity of DNA adducts
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resulting from AFB1 is less in the Fischer rat than in humans. Yet this
difference does not undermine extrapolating the positive causal relevance
of AFB1 for liver cancer. The difference suggests that the effect in the
Fischer rat is less than that in humans. But if the effect in Fischer rats is
positive and less than that in humans, then the effect in humans must be
positive, too. Consequently, although it would be unwise to extrapolate
the exact causal effect of AFB1 upon liver cancer from Fischer rats to
humans, the known difference provides no reason against extrapolating
a claim about positive causal relevance. Thus, a model might provide a
good basis for extrapolating a qualitative, but not a quantitative, claim
concerning a causal effect.

This example suggests that LaFollette and Shanks’s stringent criterion
of CAM-hood is simply a characterization of what a model organism
must be if it is to serve as a basis for the extrapolation of exact causal
effects. Generally, neither animal-model-to-human nor human-to-human
extrapolation can expect such precision. For instance, there is reason to
think that the quantitative effect of AFB1 upon liver cancer varies among
human populations. One important reason is that exposure to the hepa-
titis B virus appears to increase susceptibility to the carcinogenic effects of
AFB1 (cf. Kew 2003), and rates of exposure to that virus vary geograph-
ically. LaFollette and Shanks’s mistake, therefore, is to present their char-
acterization of a CAM as an entirely general condition required for the
extrapolation of any causal claim whatever, when it is in fact only a
criterion for extrapolating an extremely precise causal generalization.
The conditions that suffice for extrapolating claims concerning positive
causal relevance are far less stringent than those needed for extrapolating
the exact probability distribution of the effect, conditional on interven-
tions that set the value of the cause.

Chapter 6 explores in greater generality and precision conditions that
suffice for extrapolating claims concerning positive or negative causal
relevance. In section 6.2.2, I explain how these sufficient conditions are
in fact quite reasonable in the aflatoxin example.

5.4.2 The Extrapolator’s Circle

LaFollette and Shanks also use the extrapolator’s circle as an argument for
their conclusion that animal models can function only as HAMs and not as
CAMs. They claim, reasonably enough, that the appropriateness of amodel
organism for extrapolation must be demonstrated by empirical evidence
(1993a, 120).6 But theyargue that this appropriateness cannot be established
without already knowing what one hopes to learn from the extrapolation.

We have reason to believe that they [animal model and human] are causally
similar only to the extent that we have detailed knowledge of the condition
in both humans and animals. However, once we have enough information to
be confident that the non-human animals are causally similar (and thus, that
inferences from one to the other are probable), we likely knowmost of what
the CAM is supposed to reveal. (1995, 157)7
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LaFollette and Shanks presumably mean to refer to their strict CAM
criterion when they write ‘‘causally similar,’’ but the extrapolator’s circle
can be stated independently of that criterion. Whatever the criterion of a
good model, the problem is to show that the model satisfies that criterion
given only limited, partial information about the target.

However, LaFollette and Shanks’s argument shows that extrapola-
tion from animal to human is never legitimate only if it proves the
same for extrapolation from one human group to another. For suppose
that a particular causal generalization is known to obtain in one human
population, and the question is whether it does so in a second. How is
one to know whether the two populations are sufficiently similar for
the purposes of the extrapolation? According to LaFollette and Shanks,
this similarity can be established only on the basis of independently
learning the causal relationship in each population and then comparing
results. But that would obviate the need for the extrapolation. Thus, the
extrapolator’s circle shows that animal extrapolation is never justified
only if it shows the same about extrapolation in all heterogeneous
populations.

This result suggests that the extrapolator’s circle does not really show
that animal extrapolation can never justify informative conclusions about
humans. An account of extrapolation should be able to specify where
LaFollette and Shanks’s argument goes wrong, while indicating the extent
to which the extrapolator’s circle is a genuine problem. Unlike previous
accounts of extrapolation, the proposal advanced here can do that. LaFoll-
ette and Shanks’s attempt to turn the extrapolator’s circle into a general
critique of animal extrapolation overlooks the role of premises concerning
likely similarities and differences in analogical reasoning. Thus, in com-
parative process tracing, providing evidence for the suitability of the
model requires comparisons only at stages in the mechanism in which
significant differences are likely to occur. Consequently, it may be neces-
sary to compare only a few stages of the mechanism. For example, me-
tabolism is the most common source of difference in carcinogenic
mechanisms among mammals. Thus, showing that phase I and II metab-
olism of AFB1 proceeds similarly in rats and humans strengthens the case
for the rat as a model organism. Yet an understanding of the phase I and II
metabolism of AFB1 in humans, considered on its own, provides little
information regarding the carcinogenic effects of this compound. More-
over, it is not necessary to compare all points of likely significant differ-
ence if there is a downstream stage of the mechanism upon which
upstream differences leave their mark. This point is illustrated in the
AFB1 case by the use of the quantity of DNA adducts to assess several
potential animal models. In sum, making a case for the suitability of the
model may require examining only a few key features of the mechanism
in the target, and knowledge of these features alone would fall far short
of what one hopes to learn from the extrapolation. In such cases, the
extrapolator’s circle is avoided.
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The extrapolator’s circle is a serious challenge if little is known about
likely similarities and differences in relevant mechanisms or if it is known
that the model and the target are likely to differ in almost every relevant
respect. In the latter case, one would effectively know that the organism in
question is in fact a very poor model, which would imply that it ought not
to be used as a basis for extrapolation. The more interesting case, then, is
the first: little is known about likely similarities and differences or their
significance for the causal relationship in question. There can be little
doubt that such cases sometimes arise, and when they do, extrapolation
obviously cannot proceed by comparative process tracing, but would
presumably rely upon simple induction. But transforming the extrapola-
tor’s circle into a general critique of extrapolation from animal models
would require not merely showing that such circumstances sometimes
arise. It would be necessary to show that this situation is almost always
the one faced in animal extrapolation. That is an argument that LaFollette
and Shanks have not made, and it is one that seems difficult to make,
given examples like aflatoxin.

That comparative process tracing can establish the suitability of an
animal model also demonstrates that extrapolation is not restricted to
entrenched mechanisms inherited from distant ancestors. The carcino-
genic mechanism in the AFB1 example is clearly not of this character
since, for instance, it is not present in mice. In short, that a mechanism is
highly conserved is one, but not the only, possible basis for extrapolation.

5.4.3 HAM Versus CAM?

An underlying assumption of LaFollette and Shanks’s argument is that
there is a sharp divide between CAMs, which can support extrapolation,
and HAMs, which only suggest fruitful hypotheses and lines of research.
They write that ‘‘there is a big difference between an animal model being
a good source of hypotheses and its being a good means to test hypoth-
eses’’ (1996, 199). LaFollette and Shanks support the claim that there is
a strict divide between HAM and CAM by appeal to the old distinction
between the contexts of discovery and justification (1996, 194).8 According
to this doctrine, the manner by which a hypothesis is generated has
no relevance whatever to the assessment of its scientific adequacy.
Whether the new hypothesis was inspired by a dream, a poem, or the
floral pattern of a colleague’s Hawaiian shirt makes no difference to its
epistemic virtues, which can be decided only through a careful examin-
ation of the relevant evidence. The sharp contrast between HAM and
CAM drawn by LaFollette and Shanks is simply the context of discovery
versus justification distinction applied to animal models. HAMs are ani-
mal models in the context of discovery, while CAMs are models in the
context of justification.

However, the context of discovery versus justification dichotomy has
been critiqued from awide variety of perspectives (cf. Hanson 1958; Kuhn
1977, chap. 11; Longino 1990; Darden 1991; Kelly 1996; Simon 1998).
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Current discussions of the distinction in the philosophy of science litera-
ture take it as more or less given that aspects of the discovery process can
be relevant to the assessment of hypotheses, and then proceed to consider
the finer points of proposals about how this is so (cf. Darden and Craver
2002; Castle 2001; Elliott 2004). The problemwith the thesis that there is an
unbridgeable chasm between the contexts of discovery and justification
can be appreciated by means of simple examples like the following.
Imagine two procedures for generating hypotheses, the first of which
generates correct hypotheses 95 percent of the time and the second that
generates correct hypotheses 1 percent of the time. Now suppose that the
two procedures have produced conflicting hypotheses. Given this infor-
mation, which hypothesis—the one generated by the first procedure or
the one generated by the second—do you think is more likely to be
correct?

The obvious answer is the hypothesis produced by the first procedure.
Thus, that a hypothesis was generated by a procedure likely to produce
empirically successful hypotheses can be relevant evidence. Although
it is rarely possible to assign exact rates of success to distinct discovery
procedures, the process is nevertheless typically not a matter of ineffable
and mysterious inspiration either. For example, scientific discovery
is typically guided by prior knowledge of constraints that must be satis-
fied by a successful hypothesis in the domain in question. Ignoring these
constraints is likely to lead to a grossly inadequate hypothesis. In sum,
the process by which hypotheses are discovered is amenable to logical
analysis and can be relevant evidence to be considered in assessing
the hypothesis.

A defender of the context of discovery versus justification dichotomy
might object that the mode of discovery is evidentially relevant only
insofar as it suggests that the hypothesis is consistent with particular
observations or experimental results. Consequently, the mode of discov-
ery would be irrelevant to one who knew all of these data and who was
able to directly assess the hypothesis with regard to them. That may be
true, but it is nevertheless the case that information about the mode of
discovery may be evidentially relevant to someone in a less than perfect
epistemic position. One might not know what all of the relevant data are,
or one might not be able to directly assess whether the hypothesis is
consistent with them. In such cases, information regarding the source of
the hypothesis may remain evidentially relevant. This is very much the
situation one faces with regard to animal extrapolation. For instance, to a
person with complete knowledge of carcinogenesis in humans, informa-
tion about animal models would be irrelevant for assessing the accuracy
of any hypothesis about the effects of AFB1. But for ordinary mortals who
lack such perfect knowledge, animal models can be a useful source of
evidence.

These considerations are directly relevant to the supposed sharp
distinction between HAM and CAM. As LaFollette and Shanks observe,

Extrapolation, Capacities, and Mechanisms 97



although hypotheses can be inspired by practically anything, not every-
thing is a good HAM (1996, 195). The most obvious way a model could be
a good HAM is in virtue of being likely to generate hypotheses about the
target that are true, or at least approximately so. Yet this account of what
makes a good HAM entails that the difference between HAM and CAM is
one of degree. Both provide some evidence for the extrapolation; it is just
that the evidence provided by the CAM is stronger and less equivocal. But
LaFollette and Shanks cannot distinguish between good and bad HAMs
in this manner, since that would contradict their claim that only CAMs in
their very strict sense provide any evidence for extrapolation.

So what does make a good HAM, according to LaFollette and Shanks?
They write, ‘‘A HAM is likely to be valuable if there are demonstrable
functional similarities between the model and item modeled’’ (1996, 195).
But it is difficult to see how this could be true, given their persistent claim
that functional similarity is no indicator of similarity of mechanisms.9 For
in that case, there is no reason to think that a functionally similar HAM
will lead to fruitful hypotheses rather than unproductive dead ends. Of
course, model organisms typically share more with their targets than
mere functional similarity. They also share a common ancestor and
some fundamental mechanisms at the level of biochemistry, the cell,
and physiology. These similarities provide some—albeit rather uncertain
and rough—grounds for extrapolation. And that is what justifies regard-
ing them as HAMs.

Rather than a sharp dichotomy between HAMs and CAMs, then, there
is a continuum from models providing weaker to those providing
stronger grounds for extrapolation. A model might be a weak basis for
extrapolation because little is known about likely sources of significant
difference and similarity, or because mechanisms in the model and the
target have not been compared at stages of likely difference. The more
that is known about likely similarities and differences, and the more the
likely differences have been checked and found to be absent, the stronger
the basis for extrapolation. Moreover, exactly how similar the model is
required to be depends upon the claim of interest to the extrapolation, as
noted above and explored in further detail in Chapter 6. From this per-
spective, any sharp HAM versus CAM distinction is inevitably arbitrary
and ultimately unimportant. The pertinent issues are how thoroughly
comparative process tracing has been carried out and what conditions
are required to extrapolate the generalization in question.

Despite disagreeing with LaFollette and Shanks’s methodological cri-
tique of animal extrapolation, I think that they deserve credit for articu-
lating objections that had not been adequately addressed in the literature
on this topic. I also think that they are correct that these methodological
questions matter to ethical issues surrounding animal experimentation,
since animal research is typically justified on the grounds that it provides
knowledge that benefits humans. Thus, the ethical question turns on
whether the benefit to humans outweighs the suffering of the animal
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model. Although an in-depth exploration of these ethical issues is beyond
the scope of this book, I would like to briefly indicate what I regard as the
main ethical implication of the account of extrapolation developed here.
LaFollette and Shanks wish to argue that animal experimentation is
unethical in general, and hence they endeavor to show that extrapolation,
in general, is not a reliable source of new information about humans. And
if animal extrapolation were indeed so utterly incapable of providing
useful information concerning humans, then the standard ethical defense
of animal research would be undermined. In contrast, I suggest that
extrapolation is reliable and informative in some circumstances but not
others, and make some steps toward clarifying what those circumstances
are. This perspective calls across-the-board moral vindications or con-
demnations of animal research into question.10 Whether animal research
is ethically defensible in a given case may depend in part upon the
potential for extrapolating useful information about humans. And the
extent to which this is or is not possible will depend on complex, case-
specific scientific details. I do not pretend to answer the question of
whether and to what extent animal research is ethically defensible. How-
ever, I do think that my account of extrapolation casts doubt on any ‘‘one
size fits all’’ argument on either side of the issue.

5.5 CONCLUSION

This chapter presents a mechanisms approach that addresses some of the
primary methodological challenges confronting animal extrapolation.
I began by considering simple induction, which is an undeniably import-
ant aspect of extrapolation but also limited in important ways. Simple
induction alone would result in many mistaken extrapolations from
animals to humans. In addition, there often is some reason to suppose
that the extrapolation might be inaccurate, and simple induction provides
little guidance about what to do when that is the case. More sophisticated
approaches to extrapolation attempt to indicate how the suitability of a
model for a particular extrapolation could be established. Any proposal of
this sort must confront what I called the extrapolator’s circle. That is, it
must explain how the suitability of the model could be established with-
out already knowing what the extrapolation is supposed to tell us. More-
over, since causally relevant disanalogies between animal models and
human targets are inevitable, it is necessary to explain how extrapolation
can be legitimate even when such disanalogies are present. I argued that
existing proposals concerning extrapolation—either in terms of capacities
or in terms of mechanisms—fail to adequately address either of these
challenges. However, I proposed that the mechanisms approach can be
developed so as to provide an answer to the extrapolator’s circle. The key
proposition in this proposal is what I called comparative process tracing.
Comparative process tracing depends upon possessing information about
the stages at which significant differences in mechanisms are and are not
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likely to occur, and on the directional property of the mechanism which
enables one to focus on downstream stages when looking for relevant
difference. Thus, it may be possible to establish the suitability of a model
organism through a comparison with the target at a small number of
stages in the mechanism. Finally, I examined several general methodo-
logical objections to animal extrapolation that were motivated by con-
cerns about the ethical permissibility of animal research from the
perspective of the approach to extrapolation proposed in this chapter.
Although I think that these objections raise important issues, I argued that
they are unsuccessful. In the next chapter, I explore conditions that can
justify extrapolating claims of positive or negative causal relevance in
greater detail, and suggest that this topic is closely relevant to the issue of
ceteris paribus laws.
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6

Ceteris Paribus and Extrapolation

Laws and generalizations qualified by the expression ‘‘ceteris paribus,’’ a
Latin phrase for ‘‘other things being equal,’’ are argued by some to play
an important role in biology and social science. In contrast, others object
that there is no satisfactory interpretation of ceteris paribus (hereafter, cp)
laws and that they are not useful for understanding characteristic gener-
alizations in the biological or social sciences. This chapter examines the
controversy over cp laws from the perspective of extrapolating claims
about positive or negative causal relevance. I propose that considering the
topic in this light helps to resolve a central puzzle concerning the scientific
role of cp laws.

A survey of the current literature on the topic reveals that the expres-
sion ‘‘cp law’’ is highly ambiguous: several types of generalizations have
been classified under this label. This point has been made explicitly by
Gerhard Schurz (2001b, 2002), and it is also implicit in the variety of
proposals concerning the manner in which cp laws should be understood.
On some of these interpretations, cp laws are in fact illustrated by causal
claims encountered in earlier chapters, such as causal effects and descrip-
tions of mechanisms. The issue of cp laws is also related to extrapolation:
one might say that a causal generalization found in one context will also
obtain in another, provided that nothing interferes or all else being equal.
That is, the expression ‘‘ceteris paribus’’ can serve as a vague, all-purpose
term for indicating whatever conditions are needed for the extrapolation
to be correct. Moreover, extrapolation is an important part of what mo-
tivates discussions of cp laws, since the content of the cp clause is
intended to provide guidance about when the generalization can and
cannot be appropriately applied.

A common type of analysis of cp laws known as the ‘‘completer
approach’’ interprets laws as universal generalizations and the cp clause
as stating conditions in which the law holds without exception. But in
cases in which the conditions that lead to exceptions to the law cannot be
listed exhaustively, the completer approach inevitably violates what I call
the domain specificity criterion. This criterion requires that a law of a
domain should provide information specifically about that domain rather
than merely asserting, say, that determinism is true. I propose that the
failings of the completer approach arise from two sources. First, it inter-
prets ‘‘ceteris paribus’’ as qualifying a generalization in cases in which that
expression should be understood in reference to an inference schema.
Unlike an empirical law, an inference schema (such as modus tollens)
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need not provide domain-specific information. Second, the completer
approach presumes that the generalization in question is a universally
quantified sentence, typically of the form ‘‘All Fs are Gs.’’ When ‘‘cp’’ is
taken to indicate an inference schema that specifies conditions for ex-
trapolating a claim about causal relevance, the problems afflicting the
completer approach disappear.

Making this case requires a more detailed account of the conditions
that suffice for the extrapolation of claims of positive or negative causal
relevance. Relying on groundwork of earlier chapters, such an account is
provided in section 6.2. The sufficient conditions in question are articu-
lated in what I call the extrapolation theorem. I discuss some ways in which
the scope of the extrapolation theorem can be extended, and illustrate its
application by means of the aflatoxin example introduced in Chapter 5.
The extrapolation theorem reinforces the claim made in Chapter 5 that
similarity in all causally relevant respects is not necessary for a model to
serve as a basis for extrapolating claims about positive or negative causal
relevance.

6.1 THE MANY MEANINGS OF CETERIS PARIBUS

The ambiguity of the expression ‘‘cp law’’ is important to the present
discussion, since on some interpretations ‘‘cp law’’ refers to a relatively
unproblematic type of generalization while the opposite is true for other
interpretations. I begin with the less problematic kinds, and then turn to
the particularly troublesome ones, which I group under the heading
‘‘completer approach.’’

6.1.1 Comparative, Normative, and Definite

A striking feature of the philosophical literature on cp laws is the variety
of types of generalization that are referred to by that label. The best
classification of interpretations of ‘‘cp law’’ that I know of is due to Schurz
(2001b, 2002). Schurz divides cp laws into two main types, exclusive and
comparative. An exclusive cp clause indicates an absence of factors that
would produce exceptions to the law, whereas a comparative cp clause
asserts not that interfering factors are absent but that they are distributed
identically between groups that differ with respect to the putative cause.
Thus, the comparative sense of cp can be satisfied while the exclusive
sense is not, for example, if there is a disturbing factor that is distributed
identically in both groups. Causal effects and qualitative descriptions of
them, such as claims about positive causal relevance, are examples of
generalizations that fall into Schurz’s category of comparative cp laws.
Since there is a well-established procedure for estimating causal effects,
namely, the randomized controlled experiment, there is little plausibility
in the claim that such generalizations are somehow scientifically illegit-
imate. In such disciplines as macroeconomics or evolutionary biology,
wherein controlled experiments are often not a practical possibility, there
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is a genuine epistemological challenge of estimating causal effects. But the
fact that in some circumstances it is difficult to ascertain the truth of a
particular type of generalization is no reason for claiming that such
generalizations are meaningless or unworthy of science.

Although it is less frequently encountered in the philosophical litera-
ture than the exclusive interpretation, the comparative interpretation of
cp laws does have some proponents (cf. Morreau 1999). In contrast,
Woodward regards claims about positive causal relevance as a kind of
generalization that cannot be adequately interpreted as cp laws, which he
presumes must be understood in the exclusive sense (2002b, 306–16).1

Whether causal effects should count as cp laws or whether only general-
izations falling in the exclusive category truly deserve that title is, in my
judgment, an uninteresting terminological quibble. Nevertheless, there
are two important points to be made about the distinction between
comparative and exclusive cp laws. First, the comparative interpretation
illustrates that some types of generalizations that philosophers and others
have in mind when they use the term ‘‘cp law’’ are relatively unproblem-
atic. This helps explain the incredulous reaction of many to arguments
that cp laws are meaningless, untestable, and so on, and entails that there
is a sense in which such critiques are certainly mistaken.2 The second
important point is that an account of how comparative cp laws can be
tested and used in science cannot be called upon in defense of exclusive
cp laws. For example, it is not rare to find the scientific legitimacy of
exclusive cp laws defended on the grounds that they can be tested by
randomized controlled experiments (cf. Hausman 1992, 137; Kincaid
1996, 67–68). But, as will be explained in the next subsection, controlled
experiments cannot be used to test the most problematic sort of exclusive
cp laws.

Schurz subdivides exclusive cp laws into three types: normic, definite,
and indefinite. Normic exclusive cp laws are exemplified by simple gen-
eralizations such as ‘‘Birds have wings.’’ This is normally true, although
some birds may be wingless owing to mutation or amputation. Descrip-
tions of mechanisms are another, more scientifically interesting example
of normic generalizations: the description of the HIV replication mechan-
ism given in Chapter 4 is an account of how this process normally tran-
spires. Marc Lange (1993, 2000, 2002) proposes an account of cp laws that
I interpret as falling into the normic exclusive category. At the heart of
Lange’s general account of laws of nature is what he terms the root
commitment: laws are the most reliable rules for making inferences in a
specified domain (2000, 23–28). In the case of a cp law, the qualifying
clause ‘‘need not refer to the complete list of influences in order for the law
to be (in the relevant range of cases) accurate enough for its intended
purposes’’ (2000, 175). Rather, the cp clause includes ‘‘all of the other
influences great enough in such cases to be nonnegligible for certain
purposes’’ (ibid., 175). So, when the conditions specified in the cp clause
hold true, the law is normally accurate enough for the purposes that it is
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intended to serve, though it may break down in some unusual circum-
stances.

Similarly, Schurz argues that it is natural to interpret normic exclusive
cp laws in such a way that accepting one implies an endorsement of a
default inference (cf. Schurz 2001a, 2001b).3 For example, when you learn
that something is a bird, it is justifiable to make the default assumption
that it also has wings, a conclusion that may be revoked upon acquiring
additional information. Evidently, this default inference is reasonable
only if it is the case that most birds have wings. Hence, on Schurz’s
account the normic interpretation of cp laws is closely tied to a statistical
condition: if it is a normic exclusive law that under conditions C, As
are Bs, then most As are Bs when conditions C obtain. The link between
normic exclusive cp laws and statistical regularities makes it easy to
understand how such generalizations can be supported or undermined
by data. Thus, like comparative cp laws, normic exclusive cp laws are
relatively unproblematic. Having implications about what is usually
the case also distinguishes normic exclusive cp laws from the definite
and indefinite exclusive varieties. A law that holds under ideal condi-
tions or when nothing interferes may obtain only rarely if the ideal
conditions are usually not approximated or if interfering factors are
ubiquitous.

Definite exclusive cp laws are illustrated by such examples as the law
of the pendulum or Galileo’s law of free fall: one can specify ideal
conditions in which the laws are true without exception. Presumably
with such examples in mind, Cartwright characterizes cp laws as ‘‘laws
that hold under special conditions, usually ideal conditions’’ (1983, 45).
Like the comparative and normic exclusive varieties, definite exclusive cp
laws are not particularly troublesome. The law can be tested if one can
approximate the ideal conditions in a laboratory setting, for instance.

A single generalization might be interpreted as a comparative or as a
normic or definite exclusive cp law, depending on the context. For in-
stance, the claim that increasing the supply of a commodity leads to a
reduction in its price could be understood as a claim about negative
causal relevance in a particular population (a comparative cp law). Or it
could be understood as asserting that this relationship normally obtains
across some collection of populations. Or it could be understood in
reference to theorems that specify ideal conditions in which the laws of
supply and demand hold without exception. And there are contexts in
which each sort of generalization would be useful. Knowing the relation-
ship between, say, the supply and price of oil in a particular economy can
obviously be of great practical importance. The knowledge that increases
in supply normally produce decreases in price is valuable when consider-
ing the effects of changes in supply in a new situation. And a precise
specification of ideal conditions in which the laws of supply and demand
obtain can be useful for explaining exceptions to the usual pattern. The
fact that generalizations with a cp clause attached can mean so many
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different things helps one understand why there would be confusion and
dissent about what such claims assert.

6.1.2 The Completer Approach

Indefinite exclusive cp laws are far more problematic than any of the three
types of cp laws considered above. Cp laws of this sort are exclusive in
virtue of asserting that the law holds so long as nothing interferes, and
they are indefinite insofar as one is not able to specify a set of conditions in
which nothing interferes and hence in which the law definitely holds.
Furthermore, they differ from normic exclusives, since the cp clause is
intended to specify conditions in which the law holds not just for the most
part but without exception. Several analyses of the truth conditions of
indefinite exclusive cp laws exist (cf. Fodor 1991; Hausman 1992; Pietroski
and Rey 1995). They can be collectively dubbed the ‘‘completer ap-
proach,’’4 as each proposal attempts to identify an appropriate way to
characterize conditions, typically labeled C, that complete the law, that is,
in which the law is true without exception. Since the cp law is presumed
to be indefinite, it is not possible to exhaustively list the factors capable of
interfering with the relationship in question; thus, C must be specified in
some less direct manner. The chief difficulty with existing versions of the
completer approach is that they inevitably violate what I call the domain
specificity requirement, according to which laws of a domain should pro-
vide information specifically about it. For example, laws of economics
should provide information about economic phenomena and not merely
assert a logical truth or a proposition about metaphysics.

The simplest version of the completer approach is to construe the
completing clause as a negated existential that quantifies over all possible
things that could prevent the occurrence of the outcome despite the
presence of the cause. For instance, if the cp law is of the form ‘‘Cp, all
Fs are Gs,’’ then the completed form on this proposal is ‘‘Anything that is
F will also be a G unless some factor is present that causes it not to be a G.’’
Yet as Schurz (2001b) shows, this sort of proposal makes cp laws almost
empty, in the sense that ‘‘Cp, all Fs are Gs’’ is equivalent to the claim that
for everything that is an F, there are deterministic causes of whether it is a
G. Moreover, if there are deterministic causes of whether something is G,
then there are deterministic causes of whether it is not G. Hence, the
negated existential version of the completer approach has the highly
undesirable consequence that ‘‘Cp, all Fs are Gs’’ entails ‘‘Cp, all Fs are
not Gs.’’5

The negated existential interpretation illustrates in a particularly strik-
ing way the fundamental problem that confronts all existing variants of
the completer approach: they all make ‘‘Cp, all Fs are Gs’’ equivalent to
claims asserting the existence of deterministic causes of G conditional on a
thing’s being F (Schurz 2002, 354–64). Distinct versions of the completer
approach differ only with regard to slight variations in what features
those deterministic causes are required to satisfy. For instance, causes
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that prevent an F from being G must be independently identifiable (Pie-
troski and Rey 1995), or for every realization of F, there must be a cause C
such that F and C are jointly but not separately sufficient for F (Fodor
1991).6 What is problematic about these definitions is that they interpret
cp laws as claims that provide no information specifically relevant to the
intended subject matter of the supposed law. That is, the completer
approach violates the following criterion.

Domain Specificity Criterion: Laws should provide information
specifically relevant to their intended domain of application.

For example, the generalization that raising interest rates slows inflation
is intended to provide information about the relationship between these
quantities in economic contexts, and not merely to assert that there are
deterministic causes of inflation. For there may be deterministic causes of
inflation even if interest rates cannot be used to predict inflation, cannot
be used to control inflation, and so on.

The domain specificity criterion seems quite obvious and unassailable.
Indeed, it is similar to Lange’s root commitment, according to which the
laws of a domain are the best rules of inference in that domain. Clearly, a
generalization that provides no specific information about a domain
cannot qualify as one of its laws according to Lange’s criterion. Moreover,
the domain specificity criterion is a reasonable requirement for any gen-
eralization that is intended to express important knowledge characteristic
of some domain, whether or not it is graced with the honorific title ‘‘law.’’
Important generalizations in HIV research, for instance, aim to provide
information about how the virus replicates, its effects on various features
of the immune system, and so forth. Whether one judges such general-
izations to be laws, it is clear that they ought to satisfy the domain
specificity criterion.

In addition to running afoul of the domain specificity criterion, the
completer approach defines cp laws in such a way as to make it very hard
to understand how empirical evidence could provide reason to accept or
reject them. That is, the completer approach transforms cp laws into claims
about the existenceofdeterministic causesofvarious sorts.Yetdeterminism
is a metaphysical doctrine that one can hardly hope to settle by investiga-
tions in such fields as economics ormolecular biology. Typically, advocates
of the completer approach say very little about how cp laws are to be tested.
But one exception is Daniel Hausman, who defines cp laws as follows:

A sentence with the form, ‘‘Ceteris paribus everything that is an F is a
G’’ is a law just in case the ceteris paribus clause determines a prop-
erty C in the given context, and it is a law that everything that is C
and F is also G. (1992, 136)

Hausman does not explain how the cp clause ‘‘determines’’ a completer C
in a given context, nor does he say much about what such a completing
clause would look like. Consequently, it is unclear how Hausman’s
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proposal differs from interpreting ‘‘Cp, all Fs are Gs’’ to mean that for
anything that is F, there are further causes that would suffice to make it G.
Thus, cp laws as defined by Hausman appear to violate the domain
specificity condition, as do the other versions of the completer approach.
But let us consider how cp laws can, according to Hausman, be supported
or undermined by empirical evidence.

Hausman states that cp laws can be tested by controlled experiments
(ibid., 139). Yet it is clear that this is not true if cp laws are interpreted as
he proposes, or according to any other version of the completer approach.
For on every version of the completer approach, cp laws are equivalent to
claims concerning the existence of deterministic causes, but it is obvious
that determinism is not a matter that can be settled by a randomized
controlled experiment. For example, consider a clinical trial in which the
rate of recovery is significantly higher among those who received the
treatment than in the control group. If the experiment was properly
designed and implemented, this result would support the claim that the
treatment is a positive causal factor for recovery, at least within the
population represented by the sample. However, the experimental result
in no way demonstrates that there is a law of nature of the form ‘‘When-
ever the treatment is present in conjunction with the condition C, recovery
invariably ensues.’’ The experimental result is consistent with the world
being fundamentally indeterministic, and hence with the complete ab-
sence of deterministic laws of nature. I suspect that the claim that cp laws,
as construed by the completer approach, can be tested by randomized
controlled experiments results from failing to distinguish the comparative
and exclusive senses of ‘‘cp.’’

Hausman also proposes four standards that a cp law must meet if it is
to be judged acceptable; a cp law candidate must be ‘‘lawlike, reliable,
refinable, and excusable’’ (ibid., 141). Lawlike generalizations can support
counterfactuals, are confirmed by their instances, and can be used in
explanations (ibid., 29–93). A generalization is said by Hausman to be
reliable just in case there is some class of cases in which it usually holds
even if the cp clause is ignored (ibid., 141). The generalization is refinable
when this class of cases in which the generalization is reliable, sans cp
clause, can be extended through the addition of ‘‘qualifications’’ (ibid.,
140–41). Finally, the generalization is excusable if specific factors can be
identified to account for its failures.

The features described by Hausman are certainly desirable ones for a
generalization to have. However, there is little connection between a
generalization satisfying the above requirements and its being a cp law
in Hausman’s sense, or in the sense of the other versions of the completer
approach. Suppose that there is a condition C such that it is a law of
nature that C and F are sufficient for G. It does not thereby follow that that
‘‘All Fs are Gs’’ supports counterfactuals, for even if you had been F, you
might have been in a condition other than C. Nor does it follow that the
generalization ‘‘All Fs are Gs’’ is reliable in Hausman’s sense, since most

Ceteris Paribus and Extrapolation 107



Fs may fail to be Gs if the condition C rarely obtains. In contrast, an
exclusive normic cp law could support counterfactuals and be reliable
and refinable, and it might do so in a fundamentally indeterministic
world in which there are no universal laws of the sort required by Haus-
man’s proposal.

Determinism seems relevant only to the last of Hausman’s four cri-
teria. If the world is deterministic, then there is always some explanation
of why the generalization failed to obtain in a given case. In an indeter-
ministic world, there might arise two cases identical in all relevant
respects, except that the generalization was correct in one and not in
the other. However, with respect to complex systems such as an econ-
omy or an organism, it is extremely rare that a pair of cases is identical in
all relevant respects. Moreover, even if determinism is true, one typically
does not know all of the relevant factors that may be responsible for
accounting for why a generalization held in one case rather than another.
Defining cp laws in the fashion of the completer approach, then, commits
one to hauling around some heavy but not very useful metaphysical
baggage.

In the remainder of this chapter, I suggest a distinct interpretation of
indefinite exclusive cp clauses that focuses on extrapolating positive or
negative causal relevance. That proposal requires some further elabor-
ation about the circumstances that license the extrapolation of probabil-
istic causal claims.

6.2. EXTRAPOLATING PROBABILISTIC CAUSAL CLAIMS

Chapter 5 described how comparative process tracing can be used to
extrapolate a mechanism from a model organism to a target. Establishing
the existence of a mechanism from cause to effect in the target population
is a significant step in extrapolation, yet this alone often fails to tell us
much of what we would like to know. Given the disruption principle, the
presence of a mechanism licenses the conclusion that interventions on the
cause make a difference to the probability of the effect. However, this does
not tell us how this probability is changed—for instance, whether the
probability of the effect is increased or decreased—nor does it provide
information concerning the strength of that effect.7 In the next two sub-
sections, I utilize the conceptual apparatus presented in earlier chapters
to develop a mechanisms approach to the extrapolation of claims of
positive or negative causal relevance. In section 6.2.1, I use the disruption
principle to derive some useful equations linking mechanisms and causal
effects (see equations (6.8) and (6.9)). These equations serve as the basis
of the proposals advanced in the following subsection. In section 6.2.2,
I introduce a concept that I dub consonance, according to which different
combinations of mechanisms do not exert conflicting positive and nega-
tive influences. Given consonance, I prove what I call the extrapolation
theorem, which specifies a set of sufficient conditions for extrapolating
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a causal claim about positive or negative relevance. I then discuss some
ways in which the scope of the extrapolation theorem can be broadened
and explain how the conditions of the theorem are quite plausible in
the example of aflatoxin B1 and liver cancer, which was discussed in
Chapter 5.

6.2.1. From Mechanisms to Causal Effects

The disruption principle, introduced in Chapter 4, provides a connection
between mechanisms and causal effects: interventions on X make a dif-
ference to the probability distribution of Y just in case there is an undis-
rupted mechanism from X to Y in the population. But as useful as the
disruption principle is, it is clear that a more detailed connection between
mechanisms and causal effects is required if the mechanisms approach to
extrapolation is to bear much fruit. In this section, I further develop the
framework expounded in earlier chapters for this purpose.

As before, let MXY be the set of mechanisms from X to Y in the popula-
tion of concern. Let }(MXY) be the power set of MXY (i.e., the set of all
subsets of MXY). For example, if MXY is {M1,M2}, then }(MXY) is
{;,{M1},{M2},{M1,M2}}. Since MXY is finite, }(MXY) is, too, which means
that the members of }(MXY) can be numbered 0, 1, . . . , n. Although
which members of }(MXY) are assigned which numbers is immaterial, I
assume for convenience that 0 always designates the empty set. For ex-
ample, the members of {;,{M1},{M2},{M1,M2}} might be numbered 0, 1, 2,
and 3, respectively. Let �i denote the subset of individuals in the popula-
tion who contain exactly those mechanisms in the ith member of }(MXY).
In the present example,�0 would be the subset of exactly those individuals
who possess no undisrupted mechanisms from X to Y; �1, the subset of
those who possess onlymechanismM1 in an undisrupted state; and so on.

The formalism laid out in the above paragraph enables us to discuss
partitions of the population according to the presence and absence of
the different combinations of mechanisms. The usefulness of this can be
seen from the following familiar theorem of probability (cf. Stirzaker 2003,
128–29):

E(Y) ¼
Xn

i¼0
P(�i)E(Y j �i) (6:1)

where 0, 1, . . . , n is a partition (that is, mutually exclusive and collect-
ively exhaustive).

In the present case, the �is indicate which combination of undisrupted
mechanisms the individual possesses, as explained in the preceding
paragraph. For ease of notation, let Ei(Y) ¼ df E(Y j �i), which is to say
the expected value of Y in �i, the subset of the population consisting
exactly of those individuals who possess all and only the mechanisms in
the ith member of }(MXY). Given this notational convenience, (6.1) can be
abbreviated:
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E(Y) ¼
Xn

i¼0
P(�i)Ei(Y) (6:2)

Yet our interest lies not so much with the expected value, E(Y), but with
the average causal effect, E(Y j do(x)), which tells us how the expected
value of Y changes with interventions on X. But from (6.2), an equation
for the average causal effect can be easily derived simply by conditioning
on do(x).

E(Y j do(x)) ¼
Xn

i¼0
P(�i j do(x))Ei(Y j do(x)) (6:3)

That is, (6.3) specifies the average causal effect in the entire population in
terms of the sums of the products of the average effect in each cell and the
probability of that cell, given the intervention.

Equation (6.3) can be derived for any partition of the population
whatever—the fact that the partition is in terms of which combination of
mechanisms is possessed by the individual has played no role so far. But
it plays an essential role in a crucial simplification of (6.3). Consider
P(�i j do(x)), the probability that the individual possesses all and only
the mechanisms in the ith member of }(MXY) conditional on an ideal
intervention that fixes the value of X. Recall from definition 2.1 that an
ideal intervention eliminates other influences upon X but otherwise
makes no changes to the causal relationships. In particular, an ideal
intervention on X will not eliminate or add any causal paths emanating
from X. Consequently, since �i indicates the combination of mechanisms
fromX to Y present in the individual, P(�i j do(x)) ¼ P(�i). Notice that this
probabilistic independence need not obtain for all possible partitions of
the population; in particular, it will not hold when one partitions by
properties that are effects of X. The premise P(�i j do(x)) ¼ P(�i) allows
equation (6.3) to be simplified to this especially useful form.

E(Y j do(x)) ¼
Xn

i¼0
P(�i)Ei(Y j do(x)) (6:4)

Let ˜E(Y j do(x)) be defined as E(Y j do(x))� E(Y j do(x0)), where, as
before, x0 is a comparative value of X that is smaller than every value of
X in the interval � of concern (see section 2.3.2). From equation (6.4),
Ei(Y j do(x)) and Ei(Y j do(x0)) equal

E(Y j do(x)) ¼
Xn

i¼0
P(�i)Ei(Y j do(x))

E(Y j do(x0)) ¼
Xn

i¼0
P(�i)Ei(Y j do(x0)) (6:5)

Subtracting the bottom equation from the top one and collecting terms
gives
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˜E(Y j do(x)) ¼
Xn

i¼0
P(�i)˜Ei(Y j do(x)) (6:6)

It is natural to identify theprobability of a given combinationofmechanisms
with its relative frequency in the population, since themost straightforward
way to understand this probability is as the chance that an individual
chosen at random from the populationwould possess just that combination
ofmechanisms. Let �i be the relative frequency of�i. Hence, in the example
described above,�0 wouldbe the relative frequencyof thosewhopossess no
undisrupted mechanism from X to Y; �1, the proportion of those who
possess onlyM1 in an undisrupted state; and so forth.

Thus, equation (6.6) can be rewritten as

˜E(Y j do(x)) ¼ �0˜E0(Y j do(x))þ
Xn

i¼1
�i˜Ei(Y j do(x)) (6:7)

Recall that 0 indicates that no undisrupted mechanisms are present in the
individual. Consequently, the disruption principle entails that the first
term on the right-hand side of (6.7) is zero—that is, since there are no
undisrupted mechanisms from X to Y in �0, interventions on X make no
difference to the probability distribution of Y within that subpopulation.
Equation (6.7) therefore simplifies to the following:

˜E(Y j do(x)) ¼
Xn

i¼1
�i˜Ei(Y j do(x)) (6:8)

In the special case in which X and Y are both binary variables,
˜E(Y j do(x)) equals P(Y ¼ 1 j do(X ¼ 1))� P(Y ¼ 1 j do(X ¼ 0)) ¼ df ˜P.
Hence, in this case equation (6.8) takes the following concise form:

˜P ¼
Xn

i¼1
�i˜Pi (6:9)

Equations (6.8) and (6.9), which were derived from (6.4), the disruption
principle, and the definition of an ideal intervention, are the basis of the
extrapolation theorem demonstrated in the following section.

6.2.2 Consonance and Causal Relevance

Consider again the example in which it is desired to know whether a
particular substance found by experiment to be carcinogenic in rats is also
a carcinogen in humans. This case can be phrased in the abstract as
follows: X is known to be a positive causal factor for Y in one population,
and we want to know whether it is also such in another. In this section
I introduce a circumstance, which I dub consonance, that greatly facilitates
judgments concerning extrapolation. The best way to grasp this concept is
by means of an example in which it is not satisfied. Consider the classic
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example of birth control pills and thrombosis: the pills promote the illness
but also prevent pregnancy, which is itself a cause of thrombosis (cf.
Hesslow 1976; Cartwright 1989, 99–103). Since pregnancy is a more ef-
fective cause of thrombosis than oral contraceptives, the pills have a net
preventive effect when both mechanisms are at work. However, among
women who stand no chance of becoming pregnant, the pills would be
positively relevant to thrombosis.

In contrast, consonance holds when distinct combinations of mechan-
isms do not exert conflicting positive and negative influences. More
precisely, the mechanism set MXY is positively consonant with respect to
the population P just in case there is no subpopulation �i of P such that
�i > 0 and X is a negative causal factor for Y in �i. The term negatively
consonant is defined in the same manner, but switching ‘‘negative’’ and
‘‘positive.’’ A mechanism set is consonant just in case it is positively or
negatively consonant. Recall that �i is the subpopulation of individuals in
P who possess exactly those mechanisms in the ith member of }(MXY), the
power set ofMXY, and that �i is the relative frequency of�i. Thus, positive
consonance asserts that X is not negatively relevant to Y for any combin-
ation of mechanisms found in the population.

Consonance is similar but not equivalent to a condition sometimes
called ‘‘balance’’ (cf. Selten 2001, 31–32). A mechanism set is positively
balanced if each mechanism individually exerts a positive influence upon
the effect; negatively balanced if every mechanism exerts a negative effect;
and unbalanced otherwise. There are circumstances in which consonance
entails balance, namely, when (a) �i > 0 for each �i ; (b) every causally
relevant factor is either positively or negatively relevant; and (c) the
disruption principle is true. To see that positive consonance entails posi-
tive balance when (a)–(c) hold, consider an arbitrary mechanism in MXY.
Let �a be the subpopulation of P consisting of individuals who possess
only this mechanism from X to Y, and let �a be the relative frequency of�a

in P. By (a), �a is greater than zero. Thus, given positive consonance, X is
not a negative causal factor for Y in �a. But then from (b) it follows that X
is either a positive causal factor for Y or not causally relevant. Yet since
there is a mechanism from X to Y in �a, the disruption principle rules out
the second of these two possibilities.

However, conditions (a) through (c) do not suffice for balance to entail
consonance. The reason for this is that positive balance requires only that
each mechanism acting individually exert a positive influence, but is
silent about what occurs when two or more mechanisms operate in
tandem. It is possible that two mechanisms that promote an effect separ-
ately have the opposite effect when operating jointly. For example, two
chemicals might each separately tend to relieve headaches but interact so
as to cause headaches when taken together. Balance would entail conson-
ance if an additional assumption were added to (a) through (c) to rule out
such contrary interactions, for instance, that the joint effect of two or more
mechanisms is always the sum of effects in isolation.

112 Across the Boundaries



Furthermore, consonance may be true, yet balance false if condition (a)
does not obtain. Imagine that there are conflicting causal paths, a stronger
positive one and aweaker negative one. In this case, owing to the existence
of counteracting causal pathways, the mechanism set is unbalanced. But if
the negative mechanism occurs only in conjunction with the positive
mechanism, positive consonance can still obtain. That is, in a subpopula-
tion in which only the negative mechanism was present, the cause would
tend to prevent the effect. Yet consonance could nevertheless be true if the
relative frequency of this negative-mechanism-only subpopulation is zero.

Let us consider how consonance can facilitate extrapolation. Suppose
thatX is a binary variable that indicates whether or not the individual was
exposed to a particular substance, and Y is a binary variable indicating
whether the individual develops cancer. Since X and Y are binary, defin-
ition 2.4 of positive and negative causal relevance simplifies to the fol-
lowing: if P(Y ¼ 1 j do(X ¼ 1)) > P(Y ¼ 1 j do(X ¼ 0)), then X is a positive
causal factor for Y; if the inequality is reversed, then X is a negative causal
factor for Y; and if the two conditional probabilities are equal, X is not
causally relevant to Y. The important point here is that when X and Y are
binary, there are just three possibilities: X is positively relevant, nega-
tively relevant, or irrelevant with regard to Y.

Suppose P is the human population of concern to the extrapolation.
Thus, the question is whether X is a positive causal factor for Y in P, given
that it is such among rats. Suppose we know that the mechanism set from
X to Y is positively consonant. Then X is a positive causal factor for Y
exactly if the relative frequency in P of those who possess an undisrupted
mechanism is greater than zero. More formally:

Extrapolation Theorem: LetX and Y be binary variables and letMXY be
the mechanism set from X to Y in P. Let �0 be the proportion of
members of P for whom all mechanisms in MXY are disrupted.
Suppose that MXY is positively consonant with respect to P. Then
X is a positive causal factor for Y in P if and only if �0 < 1.

The proof of the extrapolation theorem is straightforward. If X is a
positive causal factor for Y in P, then it is an immediate consequence of
the disruption principle that �0 < 1. On the other hand, suppose that
�0 < 1. Then there is a subset of P, call it �a, such that a > 0 and �a > 0.
Frompositive consonance, it follows that˜Pa isnotnegative, andsince a>0
(i.e., �a is a subset of individuals possessing a mechanism from X to Y ),
the disruption principle entails that ˜Pa is not equal to zero. Therefore,
˜Pa is strictly positive, and so is �a˜Pa. But since positive consonance
entails that no �i˜Pi is negative, it immediately follows from equation
(6.9) that ˜P is strictly positive, that is, X is a positive causal factor for Y.

Comparative process tracing, as described in Chapter 5, would be the
basis for the claim that there is a mechanism from X to Y in P, that is,
for �0 < 1. Thus, the extrapolation theorem illustrates how the step from
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extrapolating a mechanism to extrapolating positive causal relevance
can be made. However, the extrapolation theorem is limited not only
insofar as it assumes consonance, but also in presuming that X and Y
are binary. For instance, in the example of the substance found to be
carcinogenic in laboratory rats, it is likely that X would represent
quantity of dosage rather than exposure versus non-exposure. Let us
begin with the question of what basis there might be for presuming
consonance.

There is a circumstance in which positive consonance must be true,
namely, if X is a necessary cause of Y. We can say that X is a necessary
cause ofY just in case it is causally relevant toY andP(Y¼ 0 j do (X¼0))¼ 1.
For instance, if you have not been exposed to HIV, then you certainly do
not have AIDS. If X is a necessary cause, it is clear that positive conson-
ance obtains, since a necessary cause can never be a negative causal factor.
Besides the special case of necessary causes, there seem to be two general
considerations that are relevant to assessing whether consonance is a
reasonable assumption. A consistently null or positive impact in several
populations in varied circumstances would support positive consonance.
Knowledge of likely mechanisms through which X affects Y can also
play an important role in assessing whether consonance is a reasonable
assumption. Positive consonance may be a reasonable assumption
when there is no plausible mechanism of any significance whereby the
cause prevents the effect. Both of these motivations for consonance are
present in the aflatoxin case, which may explain why researchers in
this field seem to implicitly regard consonance as obvious. Of course,
there are cases in which consonance is either highly uncertain or known
to be false. Most apparently, if X is positively relevant to Y in some
experiments and negatively relevant in others, there is clear evidence
against consonance. Similarly, consonance is obviously not reasonable
when it is likely that X is positively relevant to causes that exert opposite
influences upon Y. In Appendix B, I examine how extrapolation of
positive or negative causal relevance might be possible without assuming
consonance.

Let us turn to a second limitation of the extrapolation theorem, namely,
its restriction to binary variables. The assumption that X and Y are binary
has the consequence that if X is causally relevant to Y, it is either posi-
tively or negatively relevant. As explained in section 2.3.2, the possible
varieties of causal relevance are not so narrowly restricted when X and Y
are quantitative variables. Recall the intuitive idea behind the general
definition of causal relevance from Chapter 2 (definition 2.4): X is
positively relevant to Y when increases in X yield increases in Y. Con-
versely, X is negatively relevant to Y when increases in X produce de-
creases in Y. When the relationship between X and Y is probabilistic, this
intuitive idea requires some modification, since in that case, increases in a
positive causal factor do not always result in increases in the effect. The
most natural way to extend the proposal is to say that X is positively
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causally relevant to Y when increases in X yield increases in the expected
value of Y.

If Y is not binary, then it is possible that X alters the probability
distribution of Y without changing its expected value. In such a case, X
would be causally relevant to Y while being neither positively nor nega-
tively relevant. For example, a wealth redistribution program might
change the distribution of income without changing its mean. Even set-
ting aside such cases as these, when X is a quantitative variable, it may be
causally relevant to Y without being either positively or negatively rele-
vant. That point was illustrated by the fertilizer example (see Figure 2.7),
in which the expected height of the plant increased with moderate dos-
ages of fertilizer, reached a maximum, and then decreased with any
further dosage elevation. In this case, the fertilizer is a positive causal
factor for growth within moderate dosage intervals, and a negative causal
factor in very high dosages. However, within an interval that spans both
sides of the maximum, the fertilizer, though causally relevant to growth,
is neither positively nor negatively relevant.

Thus, extending the extrapolation theorem to cases in which X or Y (or
both) is a quantitative variable requires an additional premise. Given
definition 2.4, one premise that would suffice is that E(Y j do(x)) is a
monotonic function. A standard example of this occurs when the depend-
ence of Y upon X satisfies the conditions of ordinary least-squares regres-
sion. In that case, Y is a linear function of X, the distribution of Y is
normal, and the variance of Y is independent of X. Under these circum-
stances, if X is relevant to Y, it must be either positively or negatively
relevant.

The fertilizer example illustrates that there are cases in which the
average causal effect, E(Y j do(x)), is not monotonically increasing or de-
creasing for all values of X. In that example, the expected value of the
height of the plant conditional on fertilizer increases monotonically with
moderate dosages but decreases with higher ones. Thus, an application of
the extrapolation theorem in this case requires strict attention to an
interval of values of the candidate cause in which it may be reasonably
presumed that E(Y j do(x)) is monotonically increasing or decreasing. For
example, in the fertilizer example, we may be confident that within a
moderate range of dosages the effect of fertilizer is monotonic. Clearly,
disregarding the dosage interval in such a case could lead to mistaken
extrapolations. For instance, the maximum point of the function E(Y j
do(x)) might occur much earlier in some varieties or species than in others.
In such a case, the fertilizer might promote growth for one plant variety
within a given interval of dosages and inhibit growth within that same
interval in another variety.

A consequence of the above analysis, then, is that careful attention
must be paid to dosage levels in extrapolation when E(Y j do(x)) is non-
monotonic. One sometimes finds this same point expressed in discussions
of animal extrapolation in the toxicology literature. For instance, a common
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theme in the literature concerning results of studies that aim to identify
carcinogens in animal models for the purpose of making extrapolations to
humans is that experimental animals are often exposed to far higher doses
of the substance than humans would ever be likely to encounter. One
article on this topic points out that:

A linear dose response has been the dominant assumption in regulating
carcinogens for many years, but this may not be correct. If the dose re-
sponses are not linear but are actually quadratic or hockey-stick shaped or
show a threshold, then the actual hazard at low dose rates might be much
less than the HERP [Human Exposure dose/Rodent Potency dose] values
would suggest. (Ames et al. 1987, 272)8

The ‘‘dose response’’ is readily identified with the average causal effect,
and the authors’ point is that the reliability of an inference from high
doses to low doses is very sensitive to the shape of this function. For
example, if the function is linear, then the inference is unproblematic.
However, the inference from high to low dosages is not reliable if the
average causal effect is, say, ‘‘hockey-stick shaped,’’ that is, is flat at low
doses but sharply rising after a threshold is crossed. Some carcinogens,
such as aflatoxin and the carcinogenic agent in tobacco smoke, appear to
have linear dose response rates, while others, such as vinyl acetate, exhibit
a well-marked threshold effect (Hengstler et al. 2003). Thus, it is an
advantage of the present analysis of extrapolation that it implies that the
interval of the cause under considerationmatters when the average causal
effect is nonmonotonic.

The aflatoxin example illustrates that the conditions specified by the
extrapolation theorem are sometimes quite plausible in practice. As
explained in Chapter 5, comparative process tracing provides good
grounds for inferring that there is a mechanism from AFB1 exposure to
liver cancer among humans. Moreover, positive consonance is plausible
in this case, because the carcinogenic effects of AFB1 are consistently
nonnegative (usually strictly positive) for a variety of animal models,
and there appears to be no plausible mechanism whereby AFB1 could
prevent liver cancer. In addition, the effect of AFB1 on liver cancer ap-
pears to be linear, which secures the key assumption of the extrapolation
theorem that causally relevant factors are either positively or negatively
relevant. Furthermore, the extrapolation theorem does not require that
the model and target resemble one another in every causally relevant
respect. There may be differences in one or more of the mechanisms
linking cause and effect, as is indeed the case between Fischer rats and
humans with regard to AFB1. In fact, there may be some mechanisms
present in one population that are completely absent in the other. Thus,
the extrapolation theorem provides a more precise demonstration of the
point that claims about positive or negative causal relevance can be
extrapolated even when there are some causally relevant disanalogies
between the model organism and the target.
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Given this account of extrapolation of qualitative claims about positive
or negative causal relevance, let us return to the subject of indefinite
exclusive cp laws, which seem to play some role in science, yet for
which no defensible interpretation has been suggested.

6.3 CETERIS PARIBUS AND EXTRAPOLATION

One reaction to the difficulties facing indefinite exclusive cp laws would
be to say that the completer approach should be cast upon the junk pile of
failed ideas and that to the extent that the expression ‘‘ceteris paribus’’
means anything, it must be interpreted according to one of the less
problematic senses of ‘‘cp law.’’ With regard to laws or empirical gener-
alizations, I think that this is basically correct. But without further elab-
oration, this proposal fails to adequately address the role of ‘‘ceteris
paribus’’ as it pertains to extrapolations. In the two subsequent subsec-
tions, I explain how this is so and how the analysis of extrapolation
presented above helps to clarify this aspect of ceteris paribus.

6.3.1 Extrapolation in Extant Accounts of Ceteris Paribus

The relationship between cp laws and extrapolation is easily appreciated:
‘‘The law will hold, provided nothing interferes,’’ is a hedged answer to
the question of whether extrapolation is legitimate. The connection be-
tween ceteris paribus and extrapolation is noted by some philosophers.
For example, Mitchell states that the challenge raised by cp laws is one of
using knowledge about the circumstances in which the generalization has
obtained to support inferences about whether it will also hold in a new
situation (1997, S477; 2000, 256–57). Moreover, several accounts of cp laws
explicitly connect the issue to extrapolation. But although there is merit to
these proposals, none of them adequately address the type of extrapola-
tion problem illustrated by the aflatoxin example. In that case, the gener-
alization in question could not be transformed into a definite exclusive cp
law in any nontrivial way, and it could not be presumed in advance that
the generalization usually holds true with regard to the target populations
of interest in the extrapolation.

Cartwright addresses the issue of cp laws in a way that draws attention
to the extrapolation problem. According to Cartwright, cp laws are regu-
larities derived from statements about capacities, which in her view are
more fundamental. For instance, on her account, the law of universal
gravitation asserts that massive objects have the capacity to attract one
another with a force proportional tom1m2=r

2 (1999, 82–83). This statement
about capacities is taken to entail the regularity that any pair of massive
objects will attract one another with a force proportional tom1m2=r

2 in the
ideal situation in which no force other than the mutual gravitation of the
two objects is present. This is where ‘‘ceteris paribus’’ enters: ‘‘The regu-
larities to be explained only hold ceteris paribus; they hold relative to the
implementation and operation of a machine of an appropriate kind to
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give rise to them’’ (Cartwright 1995c, 279). Thus, the idea is that cp laws
are statements about regularities that result from very particular and ideal
arrangements wherein capacities can reveal their true natures.9 This is a
version of the definite exclusive interpretation of cp laws, but it is in-
tended to have the virtue of explaining how such generalizations can be
relevant even when the ideal conditions do not obtain, since the capacities
endeavor to bring about their characteristic effects even when conditions
are not ideal (Cartwright 1999, 82). According to Cartwright, then, cp laws
are understood in terms of capacities, which in turn are said to underwrite
extrapolation. Cartwright’s capacity approach to extrapolation was crit-
ically examined in Section 5.2.

Glymour (2002) also approaches the issue of cp laws with an eye
toward the problem of reliably extrapolating generalizations, but with
formal learning theory10 rather than capacities as his touchstone. Gly-
mour sets up the problem as follows (2002, 400–401). We imagine a
learner who makes conjectures about whether a certain generalization,
call it X, will hold true in a sequence of instances. The learner may be an
individual person or a group, such as a scientific community. The learner
issues conditional conjectures of the form ‘‘If A, then X’’ or ‘‘If A, then not
X.’’ Let us call the first sort of sentence a positive conjecture, and the second
sort a negative conjecture. Glymour proposes a criterion for whether a
learner in such circumstances can effectively conjecture whether X will
hold (2002, 401). The learner has verified ‘‘cp, X’’ if, in an infinite sequence
of conjectures, the sum of false and negative conjectures is finite. Other-
wise, the learner has falsified ‘‘cp, X.’’11

Thus, the learner verifies ‘‘Normally, X’’ or ‘‘cp, X’’ just in case there is
a point in the infinite sequence after which she issues only true, positive
conjectures. Hence, verifying a cp generalization on this proposal requires
eventually developing some means for identifying conditions in which
the generalization holds without exception. Another way to put Gly-
mour’s proposal, then, is that verifying a cp law is a matter of ultimately
transforming an indefinite exclusive cp law into a definite one. Regarding
an indefinite exclusive cp generalization as legitimate on this proposal
would amount to conjecturing that this transformation will someday
occur. This proposal has some plausibility with respect to examples
from the history of physics. When such generalizations as the law of the
pendulum, Boyle’s law, and Galileo’s law of free fall were originally
proposed and used, it was known that they did not always obtain, yet
the conditions in which they held without exception could not be
specified in any exact way. As physical science progressed, it became
possible to articulate such conditions on the basis of more fundamental
theories. However, it is questionable whether comparable theoretical
developments will occur in, say, cell biology and sociology, since it
maybe that certain features of these fields make general unified theories
very unlikely.12 In any event, one would not want to make the legitimacy
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of generalizations in biology and social science contingent on the devel-
opment of fundamental theories comparable to those in physics.

Finally, there is a straightforward connection between extrapolation
and the interpretation of cp laws as normic generalizations. For if normally
entails usually, then the proposition that, say, increases in the supply of
labor normally produce decreases inwages supports extrapolations of this
relationship to new cases. In fact, normic generalizations are quite closely
related to the simple inductivist approach to extrapolation described in
Chapter 5. Like normic generalizations, simple induction involves a
default inference that is revocable under a set of somewhat open-ended
conditions. But as was argued in section 5.1, extrapolation from animal
models often cannot be justified on the basis of simple induction, a point
illustrated by the aflatoxin example. For instance, it is not true that
compounds carcinogenic at a particular site in rodents are usually also
carcinogenic at that same site in humans. Moreover, the carcinogenic
effect of aflatoxin B1 varied considerably between distinct animal models,
significantly promoting liver cancer in rats but having little or no effect in
mice. In such a case, the reliability of the extrapolation cannot be settled
by reference to generalizations asserting that what is true in a model
organism is normally true of the target population. So, although normic
generalizations are certainly an important part of extrapolation, they are
far from being the whole story.

Existing proposals concerning cp laws, then, have addressed some
aspects of the connection between extrapolation and ceteris paribus
while leaving others relatively untouched. In particular, none of these
proposals have explored the role of ceteris paribus in cases in which
neither normic nor definite exclusive cp laws suffice for extrapolation.
In the next subsection, I argue that an investigation of this territory reveals
that the failings of the completer approach result from assuming that
indefinite exclusive cp clauses qualify laws that are interpreted as uni-
versally quantified sentences. I show that the infirmities of the completer
approach vanish if the indefinite exclusive sense of ‘‘ceteris paribus’’ is
understood in relation to an inference schema that specifies sufficient
conditions for extrapolating claims about positive or negative causal
relevance.

6.3.2 Completers and Inference Schemas

Imagine a scientist who is the lead investigator of a recently published
study showing that a particular compound is a cause of pancreatic cancer
in rats. She is being interviewed by a science journalist who asks a
question that will obviously occur to readers: Does this mean that the
compound causes pancreatic cancer in humans, too? The scientist con-
fronted with this question is likely to be in just the sort of situation carved
out by Schurz’s indefinite exclusive category. She cannot provide any
nontrivial list of conditions in which it is always the case that the
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compound causes pancreatic cancer. Nor does she know that this causal
generalization normally holds among mammals or whether it depends on
special characteristics of rats. She has an idea of some factors that are
likely to be important with regard to whether the extrapolation is correct,
but she suspects that there may be others of which she is presently
ignorant. In light of her own uncertainty and sensing that the journalist
isn’t really in the mood for a lecture on oncology, she responds, ‘‘Other
things being equal, it would have the same effect.’’

Given the completer approach, we would say that the above utterance
expresses the scientist’s belief in a sentence of the form ‘‘Cp, all Fs are Gs,’’
wherein ‘‘F’’ indicates exposure to the compound and ‘‘G,’’ occurrence of
pancreatic cancer; and ‘‘cp’’ means something like ‘‘as long as nothing
interferes.’’ The shortcomings of this proposal were discussed in section
6.1.2. In brief, when interpreted according to the completer approach, the
scientist’s claim ends up not being about the relationship between
the compound and pancreatic cancer at all, but merely an assertion about
the metaphysical doctrine of determinism. In other words, the completer
approach would interpret the scientist as asserting a putative law that
does not satisfy the domain specificity requirement.

Yet the scientist’s claim cannot be plausibly interpreted according to
any of the other types of cp law in Schurz’s categorization either. The claim
is not a comparative cp law. The statement that the compound causes
pancreatic cancer in rats is indeed such a claim. But the statement that this
effect would transfer to humans, ‘‘other things being equal,’’ is not a claim
that a particular causal relationship obtains, but rather a gesture at condi-
tions under which it would. And the ‘‘other things being equal’’ is sup-
posed to refer (albeit vaguely) to those conditions. Thus, the claim in this
example is notmerely a comparative cp law. And since the scientist cannot
specify nontrivial conditions in which the causal relationship holds with-
out exception, and does not know that it is typical among mammals, the
claim is neither a definite exclusive nor a normic exclusive cp law.

At this point one might be inclined to say that the scientist’s statement
really is just a bit of insignificant fluff whose purpose is to brush off the
reporter. But I think that this is too quick. After all, such expressions seem
quite natural in the context of extrapolation problems like the one just
described and in the aflatoxin example. Moreover, the problems that
undermined the completer approach can be made to disappear if two
modifications are made. First, take the generalization of concern to be a
claim about positive causal relevance and not a universal generalization
(our old friend ‘‘All Fs are Gs’’). Second, interpret the cp clause as
referring to an inference schema concerning extrapolation rather than to
an empirical law.

‘‘All Fs are Gs’’ is a singularly inappropriate format in which to repre-
sent the claim that exposure to the compound causes pancreatic cancer.
The causal claim does not entail that everyone exposed to the compound
develops pancreatic cancer, and this is presumably not the case. It does
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not even entail that there is some condition C such that it is a law of nature
that everything that is both F and C is also G. The causal claim is
consistent with the world being indeterministic or with there being no
laws of nature concerning F, C, and G. The most natural way to interpret
the claim that the compound causes pancreatic cancer is as an attribution
of positive causal relevance. For instance, if exposure to the compound
and the occurrence of pancreatic cancer are represented by the binary
variables X and Y, respectively, then the scientist’s research has shown
that P(Y ¼ 1 j do(X ¼ 1)) > P(Y ¼ 1 j do(X ¼ 0)) among rats. That is, when
exposure and non-exposure to the compound are determined by an ideal
intervention, the exposure increases the chance of pancreatic cancer. If X
and Y were quantitative variables, then positive causal relevance would
mean (roughly) that interventions that increase the value of X also in-
crease the expected value of Y.

It is not only more plausible to interpret the claim of interest to the
extrapolation in terms of positive causal relevance rather than as a uni-
versal generalization. Doing so also eliminates the problem that the com-
pleter approach transforms generalizations qualified by a cp law into
claims about determinism. Consider the difficulties involved in extrapo-
lating a claim of the form ‘‘All Fs are Gs.’’ A single F that is not G suffices
to render this extrapolation incorrect. Furthermore, it assumed that no
general theory is available that allows one to specify conditions in which
the law holds without exception. There is no definite exclusive cp law
waiting in the wings. In this situation, there is little more that can be said
other than that the extrapolation will be correct unless there is something
that causes an F not to be a G. Suppose, in contrast, that the generalization
of interest is a claim concerning positive causal relevance. When the
variables are binary, the extrapolation theorem (section 6.2.2) specifies
conditions that suffice for the correctness of the extrapolation. And the
conditions of the extrapolation theorem do not require the existence of
deterministic causes. Thus, the argument that the completer approach
makes cp laws equivalent to a claim about determinism depends upon
the premise that the cp clause attaches to a universal generalization. If one
supposes instead that the generalization is a claim about causal relevance,
then the connection between determinism and indefinite exclusive cp
clauses vanishes.

But simply replacing ‘‘All Fs are Gs’’ with a claim about positive causal
relevance and leaving all other aspects of completer approach unchanged
fails to resolve its fundamental shortcoming, namely, that it violates the
domain specificity criterion. The domain specificity criterion stated that
laws should provide information specifically relevant to their intended
domain of application. Transforming cp laws into claims about the
metaphysical doctrine of determinism is one way to violate the domain
specificity criterion, but it is not the only way. For example, suppose that
one interpreted the scientist’s statement that the compound would cause
pancreatic cancer among humans, other things being equal, as follows:
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Cp, X is a positive causal factor forY, (6:10)

where X and Y are binary variables indicating exposure to the compound
and pancreatic cancer, respectively, and the ‘‘cp’’ states that positive
consonance obtains and that some members of the target population
possess an undisrupted mechanism from X to Y. There is no commitment
to determinism lurking in (6.10), but interpreting cp laws in this manner
would nevertheless contradict the domain specificity criterion. For (6.10)
follows directly from the disruption principle; its truth is utterly inde-
pendent of the relationship between the compound and pancreatic can-
cer. In short, (6.10) provides no information specifically about the subject
matter of interest (the carcinogenic effects of the compound), but simply
reflects a commitment to the disruption principle.

However, the conflict with the domain specificity criterion is avoided if
the cp clause is understood in reference to an inference schema rather
than to an empirical law or generalization. That is, suppose that, in the
present context, ‘‘ceteris paribus’’ is interpreted as an all-purpose term for
referring to conditions that would suffice for the extrapolation to be
correct. In the case of extrapolating a claim asserting positive causal
relevance, ‘‘ceteris paribus’’ could refer to the conditions articulated in
the extrapolation theorem. On this way of understanding the matter, one
has a claim about positive causal relevance made with respect to a base
population and an abstract inference schema that indicates conditions
that would suffice for the extrapolation of this claim to the target popu-
lation. There is no violation of the domain specificity criterion here: claims
about positive causal relevance provide domain-specific information
about particular populations, while an inference schema is not an empir-
ical law and need not be domain-specific.

An analogy with deductive logic may be helpful to convey the idea
here. Suppose that Fred wishes to show that a particular hypothesis about
the relationship between federal budget deficits and economic growth is
false. For convenience, let us call this hypothesis H. Sue points out to Fred
that he can disprove H if he can establish premises of the form ‘‘not-E and
if H, then E.’’ Thus, Sue is indicating a strategy for establishing the desired
conclusion. However, it would be absurd to interpret Sue as suggesting
that ‘‘If H entails E, and E is false, then H is false, too’’ is a cp law of
economics. For this logical schema is a tautology, and hence says nothing
specifically about economics at all. Tautologies may be laws of logic, but
they are certainly not laws of economics, nor empirical laws of any kind.
Similarly, it is a mistake to interpret (6.10) as a law about some scientific
discipline: like modus tollens, it is not an empirical law but an inference
schema. Whereas a law of economics must provide information specific-
ally about economic phenomena, an inference schema may abstract en-
tirely from the details of particular subjects. Of course, domain-specific
information would be required to establish the premises needed to in-
stantiate the inference schema in any given case, and providing this
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evidence is typically the hard part of extrapolation. The usefulness of an
inference schema is that it indicates just what premises would suffice.

Wolfgang Spohn is the only writer I know who explicitly points out
that some of the standard problems confronting cp laws evaporate if one
treats cp clauses as something other than empirical generalizations.13

Spohn writes:

It is commonplace by now that laws or their applications are often to be
qualified by some kind of ceteris paribus condition. As long as a law is
conceived of as a proposition, the nature of this qualification is hard to
understand. It seems to make the proposition indeterminate or trivial. But
when we conceive of belief in a law as more than belief in a proposition, at
least some of these mysteries dissolve in a quite natural way. (2002, 383–84)

Spohn develops an innovative version of the normic interpretation of cp
laws that is rather different from my own account of extrapolation. But
the above quotation is very much in the spirit of my diagnosis of the
completer approach: a central failing of this proposal is that it interprets
‘‘ceteris paribus’’ as a qualification of a law in circumstances in which it
indicates an inference schema, in particular, one specifying conditions that
suffice for extrapolation. This is not to say, of course, that it is never
appropriate to understand cp clauses as qualifications of laws. In terms
of Schurz’s categorization of cp laws, my claim concerns indefinite exclu-
sive cp clauses that are not plausibly interpreted as saying usually, typic-
ally, or normally. This sort of situation is illustrated by the aflatoxin
example and the imaginary example given at the head of this subsection.
The completer approach fails in virtue of attempting to interpret such cp
clauses as qualifications of laws construed as universally quantified gen-
eralizations. The difficulties confronting the completer approach go away
if ‘‘ceteris paribus’’ is understood in reference to an inference schema
indicating conditions that suffice for the extrapolation of a claim about
causal relevance.

6.4 CONCLUSION

The expression ‘‘ceteris paribus’’ can be used to mean a remarkable
variety of different things. Not only does the ambit of ‘‘cp law’’ encom-
pass a diverse collection of generalizations, but cp clauses can also be
used to qualify inferences, especially extrapolations. In this chapter,
I have endeavored to show that considering ceteris paribus from the
perspective of extrapolation sweeps away the failings of a common and
quite problematic proposal on this topic, namely, the completer approach.
The infirmities of the completer approach stem from two features. First, it
interprets ‘‘ceteris paribus’’ as a qualification of laws in contexts where
that expression refers to an inference schema that articulates sufficient
conditions for extrapolation. Second, it assumes that the laws in question
are universally quantified generalizations, archetypically of the form ‘‘All
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Fs are Gs.’’ The consequence of these two characteristics is that the
completer approach transforms cp laws into claims about the existence
of deterministic causes of the effect. Hence, existing versions of the com-
pleter approach violate the domain specificity criterion, according to
which laws or other important empirical generalizations of a domain
should provide information specifically about it. For instance, laws of
economics should provide information specifically about economic phe-
nomena. However, I showed that the failings of the completer approach
can be avoided if indefinite exclusive cp clauses are understood as indi-
cating an inference schema that specifies sufficient conditions for extrapo-
lating claims about positive or negative causal relevance. Determinism is
not an issue if the generalization in question is a probabilistic causal claim,
and unlike an empirical law, an inference schema need not provide
domain-specific information. Developing this proposal involved articu-
lating sufficient conditions for extrapolating claims about positive and
negative causal relevance, which was done in the extrapolation theorem.
The extrapolation theorem rested upon the groundwork of the foregoing
chapters, particularly the disruption principle. I explained how the ex-
trapolation theorem applied to the aflatoxin example introduced in Chap-
ter 5. Moreover, the extrapolation theorem reinforces the point that
similarity in all causally relevant respects between model and target is
not necessary for extrapolating claims about positive or negative causal
relevance. In the next chapter, I turn to a philosophical issue that is
intertwined with the mechanisms approach to extrapolation, namely,
reductionism.
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7

Reduction and Corrective Asymmetry

In the broadest terms, reductionism maintains that there are some levels
of description of nature that are more fundamental than others. Accord-
ing to the reductionist, the more fundamental level of description and
theorizing explains why generalizations at higher levels hold to the extent
that they do, and accounts for their failures. In biology and social science,
the fundamental realm would typically be conceived of in terms of part-
whole relationships: descriptions of the basic components explain and
correct generalizations concerning the behaviors of the systems con-
structed from them. These components would be macromolecules in the
case of biology and individual agents in social science. Such a reductionist
perspective fits snugly with the mechanisms approach to extrapolation.
This proposal suggests that knowledge of underlying mechanisms and
factors that interfere with them is especially valuable for specifying con-
ditions in which a causal generalization will and will not obtain.

Yet reductionism is a highly controversial doctrine. The most common
objection to it is known as the multiple-realizability argument. This argu-
ment rests on the premise that systems differing significantly with regard
to basic causal mechanisms may nevertheless display some surprisingly
similar behaviors. In such cases, the reasoning continues, an explanation
given in terms of underlying mechanisms would miss important patterns
displayed by an explanation that abstracts from those details. Thus, the
multiple-realizability argument concludes, scientific explanation some-
times requires that details of basic mechanisms be omitted and that
characteristics of systems be accounted for by way of higher-level de-
scriptions. Such higher-level explanations are often said to be autonomous
of the causal mechanisms formulated in terms of the basic components of
the system. This train of thought is taken to support a position known as
pluralism, according to which there is no level of description capable even
in principle of achieving all scientific aims; rather, there are distinct forms
of representation suitable for distinct purposes. If the mechanisms ap-
proach to extrapolation is linked with reductionism, then critiques of
reductionism such as the multiple-realizability argument may be relevant
to it. This leads to two questions. First, is the mechanisms approach to
extrapolation indeed committed to reductionism? And second, if it is, do
objections to reductionism undermine or at least substantially limit the
applicability of the mechanisms approach?

Answering these two questions requires clarifying what is meant by
‘‘reductionism.’’ I propose that reduction is an explanatory strategy that
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can be pursued in order to achieve a variety of goals, and what form the
reduction should take depends on its purpose.1 I argue, therefore, that
there are no uniformly correct constraints on the form of reductions, since
different types of reductive explanation might be suited to different
objectives. I introduce four possible goals of reduction: ontological parsi-
mony, unification, decomposition, and correction. I show how these four
potential reductive goals can be used as the basis for a categorization of
distinct varieties of reductionism and to specify which reductionisms are
appropriately associated with the ‘‘reductionist anti-consensus.’’2 Since
this reductionist position is significantly weaker than some commonly
critiqued versions of reductionism, I consider whether it has a legitimate
claim to the title. My strategy is to connect reductionism to the notion of
explanations drawn from a level of description that is more fundamental
than others, to explicate the relevant sense of ‘‘fundamental’’ in terms of
what I call corrective asymmetry, and to show that the reductionism in
question satisfies this condition.

I propose that the motivation for the mechanisms approach rests upon
the assumption that mechanisms are correctively asymmetric with regard
to the claims of interest to the extrapolation. This proposition is the basis
of the answers to the two questions posed above. First, the mechanisms
approach to extrapolation is tied to reductionism insofar as it presumes
the existence of mechanisms that are correctively asymmetric with regard
to the generalizations to be extrapolated. Thus, the answer to the first
question is a qualified yes: mechanisms-based extrapolation is committed
to a form of reductionism. However, the answer to the second question—
whether objections to reductionism threaten the mechanisms approach to
extrapolation—is no. This is because the presence of correctively asym-
metric mechanisms is entailed by a version of reductionism that is not
undermined by the multiple-realizability argument.

An interesting consequence of this discussion is that the form of reduc-
tionism to which the mechanisms approach to extrapolation is linked is
compatible with pluralism. There are three principles that I associate with
this doctrine: that there are multiple legitimate strategies for representing
nature (principle of multiple perspectives); that there is no ideal representa-
tion that is sufficient for all explanatory purposes (non-completeness);
finally, that distinct levels of explanation are autonomous (autonomy of
levels). I argue that the principle of multiple perspectives is consistent with
even the most extreme version of reductionism, while non-completeness
and autonomy of levels are consistent with the existence of correctively
asymmetric mechanisms. Indeed, I suggest that corrective asymmetry is
helpful for explicating the notion of autonomous levels.

7.1 ABSTRACTING FROM THE GORY DETAILS

Let us begin with a concrete example tomotivate themultiple-realizability
argument and pluralism. In the foregoing chapters, I have discussed
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how attention to mechanisms—often described in molecular terms—can
aid in the refinement and extrapolation of such generalizations as ‘‘HIV
causes AIDS’’ or ‘‘aflatoxin B1 causes liver cancer.’’ Such examples are
surely grist for the reductionist’s mill. But a critic of reductionism would
be quick to point out that scientific understanding often requires repre-
sentations that systematically ignore enormous amounts of gory detail
concerning causal mechanisms.3 That, in effect, is the point of the mul-
tiple-realizability argument. An illustration of this argument is provided
by a continuation of the HIV example discussed in section 4.3.

As described there, M-tropic strains of HIV normally predominate in
the early stages of HIV infection, while T-tropic strains become more
prevalent in the later, symptomatic stage. The change in prevalence
from M-tropic to T-tropic HIV is known as a ‘‘phenotype switch,’’ and
there is evidence that the switch is not merely a side effect but rather a
contributing factor to immune failure and the onset of AIDS symptoms
(Connor and Ho 1994; Glushakova et al. 1998). The phenotype switch is
intimately related to the extent of resistance conferred by mutations that
prevent the expression of the R5 co-receptor and thereby potentially block
M-tropic HIV replication. In this context, Stine writes: ‘‘One of the great
unsolved puzzles of HIV disease is why, during disease progression,
does HIV lose its ability to infect macrophage and become T-cell tropic?’’
(2000, 140).

I found three hypotheses mentioned in the literature to account for
why HIV infection almost always begins with M-tropic HIV (Zhu et al.
1993, 1180–81). The first, and least promising, is the low inoculum model.
The essential idea here is something like the founder effect in evolution-
ary biology: an infection commences with an inoculum drawn at random,
which is unlikely to exhibit much variation owing to its small size. The
obvious difficulty with this proposal is that it fails to explain why the
early and nonsymptomatic stages of HIV infection are invariably domin-
ated by a particular type of HIV. At best, the low inoculum model can
explain a trend from lesser to greater variability among the viral popula-
tion present in a host as the infection progresses. But the hypothesis
provides no explanation of why HIV in early stages of infection would
nearly always be predominantly M-tropic.

A somewhat more promising hypothesis is the selective transmission
model. According to this hypothesis, M-tropic HIV is more readily trans-
mitted, through mucous membranes, for example, than T-tropic strains.
One difficulty with this hypothesis is that the occurrence of the phenotype
switch does not appear to depend on the mode of transmission, as one
would expect if the selective transmission model were correct. For
example, the same pattern of M-tropic-then-T-tropic prevalence has
been found among hemophiliacs infected by HIV through direct blood
transfusions (Zhu et al. 1993, 1180). In such cases, it is very doubtful that
M-tropic HIV would be selectively transmitted vis-à-vis T-tropic HIV.
Another puzzle for the selective transmission model is the long period
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in which M-tropic HIV predominates, followed by a rapid switch to T-
tropic strains. The fact that the switch occurs, suggests that T-tropic
strains can arise from M-tropic ones, which would hardly be surprising,
given the high mutation rate of HIV. Thus, there is apparently something
that keeps the proliferation of the T-tropic mutants in check until the later
stages in the progression of the disease. But the selective transmission
model seems incapable of specifying what this check might be or why it
ultimately ceases to be effective.

Finally, there is the selective amplification model. According to this
hypothesis, M-tropic HIV possesses a selective advantage in the earlier
stages of infection, but—perhaps owing to the gradual exhaustion of the
immune system—the fitness of T-tropic strains increases as the infection
proceeds. The selective amplification model has the advantage of predict-
ing a predominance of M-tropic HIV in the early and asymptomatic
stages of infection, regardless of the mode of transmission. Moreover,
Duncan Callaway, Ruy Ribeiro, and Martin Nowak (1999) have devised
a mathematical model that shows how the selective amplification hypoth-
esis can explain the phenotype shift. The most important premise in the
model is that T-tropic HIV infects cells at a higher rate than M-tropic
strains, but that the immune system mounts a more effect assault against
the T-tropic variety.4 Hence, the rough idea is that while M-tropic strains
have a selective advantage at the start of the infection, their replication
slowly weakens the immune system and ultimately tips the balance in
favor of the more virulent T-tropic strains.

More specifically, let um and ut be parameters representing the effect-
iveness of immune response to M-tropic and T-tropic strains, respect-
ively, per unit of activated HIV specific T-helper cells. Thus, the overall
effectiveness of the immune response to T-tropic strains depends upon
both ut and the quantity of T-helper cells that target HIV. Likewise, let �m
and �t represent the replication rates of M-tropic and T-tropic strains. In
the model, if ut=um > �t=�m, then T-tropic HIV can proliferate only if the
stock of HIV specific T-helper cells is sufficiently depleted by M-tropic
infection (Callaway et al. 1999, 2525). As would be expected, the more
ut=um exceeds �t=�m, the longer the time before the switchover. The
proportion of activated T-helper cells at the time of infection also affects
the duration of M-tropic predominance. The larger the background of
activated T-cells, the larger the target pool for HIV infection, and hence
the more swiftly the T-helper cell stocks are depleted (Callaway et al.
1999, 2526–27).5 For some values of these parameters, the switch from M-
tropic to T-tropic strains never occurs, while for others, T-tropic strains
predominate from the beginning. However, Callaway et al. report that the
phenotype switch is a robust phenomenon that occurs in a broad range of
the parameter space of their model (1999, 2527).

The selective amplification model, therefore, provides a plausible
explanation of the phenotype switch. It is also a good example of the
multiple realizability argument. According to the Callaway et al. model,
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the key factor implicated in the delay of T-tropic HIV proliferation is that
ut=um > �t=�m, and the key factor in the switchover is that ut=um not
exceed �t=�m beyond a critical point. Clearly, this situation is multiply
realized. A wide range of parameterizations suffices for the phenotype
switch, which is important, since it is obvious that immune response
varies from one individual to the next and that replication rates vary
among HIV strains. Moreover, much of the detail concerning the causal
mechanisms of HIV replication is irrelevant to Callaway et al.’s explan-
ation. The exact process by which HIV attaches to T-cells, by which the
viral RNA is reverse transcribed, and so forth could change without
altering the basic pattern of the phenotype switch so long as the crucial
circumstances identified by Callaway et al. continued to obtain. More-
over, the model entails that the phenotype switch does not depend on the
relative proportions of M-tropic and T-tropic strains at the very beginning
of infection, as the low inoculum and selective transmission models
propose (Callaway et al. 1999, 2526).

The Callaway et al. model also suggests fruitful hypotheses with re-
gard to other puzzling features of HIV disease. For instance, there are
several studies noting that the phenotype switch occurs less frequently
among individuals infected with HIV C, a strain common in some parts of
Africa and the Indian subcontinent (Abebe et al. 1999; Cecilia et al. 2000).6

If the Callaway et al. model is correct, one would expect that ut=um
typically exceeds �t=�m by a greater amount among individuals infected
with HIV C than among those infected with other HIV strains. The model
is also suggestive with regard to the issue, discussed in section 4.3,
of whether the homozygous thirty-two- base-pair deletion in the gene
for the R5 co-receptor nullifies the effect of HIV exposure upon AIDS.
Even if that mutation effectively blocks the replication of M-tropic HIV,
it would not confer immunity if the values of the key parameters in
the model were such as to allow proliferation of T-tropic HIV from
the start of the infection. For example, this could occur in individuals
whose immune systems did not mount an effective response to T-tropic
strains. Since there is now at least one known case of an HIV-positive
individual who is homozygous for the thirty-two-base-pair deletion in
the gene for the R5 co-receptor (Biti et al. 1997), such a possibility seems
worthy of exploration.

In sum, Callaway et al.’s explanation of the phenotype switch is an
example of how advances in scientific understanding can ensue from
abstracting from the nitty-gritty causal mechanical details. That of course
is not to suggest that abstracting from such detail is always the best way
to proceed. Rather, it is to say that the examination of complex systems
in terms of the intricate details of the causal interactions of their compo-
nents is not always the route to scientific discovery and explanation.
With this motivating exemplar in hand, let us turn to an examination of
reductionism, the doctrine that the multiple-realizability argument seeks
to undermine.
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7.2 WHAT’S REDUCTIONISM?

Whether the multiple-realizability argument is an effective objection to
reductionism depends on just what that doctrine asserts. I characterized
reductionism above as the thesis that there is some fundamental level
of representation from which generalizations at higher levels can be
explained and corrected. In the case of biology, the fundamental level
would be what Sahotra Sarkar terms ‘‘macromolecular physics’’ (1998,
146–50). In the case of social science, the fundamental level would be
interactions among individual persons. The multiple-realizability argu-
ment calls reductionism into question by pointing out that there are cases
in which explanations given at less than fundamental levels are prefer-
able. And this challenge to reductionism might also seem to cast doubt
upon the mechanisms approach to extrapolation. However, I maintain
that reductionism comes in several varieties, only some of which are
subject to the multiple-realizability objection. And the version of reduc-
tionism that is not undermined by the multiple-realizability argument is
all the reductionism that the mechanisms approach to extrapolation
needs.

7.2.1 Four Motives and Three Desiderata

Reduction is an explanatory strategy that can, in different contexts, be
pursued to achieve distinct goals. The four potential motives for reduc-
tion that I shall consider are the following:

Ontological Parsimony: To show that where there appear to be two
types of entity there is in fact only one, more fundamental type

Decomposition: Given a feature possessed by a certain set of systems,
to show that the systems’ parts and their interactions, described at
a specified level of detail, are sufficient to explain the feature

Unification: To demonstrate that a wide array of distinct generaliza-
tions and observations can be explained by a small number of more
fundamental generalizations

Correction: To identify and explain exceptions to less fundamental
generalizations, using generalizations and details drawn from a
more fundamental realm.7

These motives are not intended to be exhaustive. Nor do I suggest that all
of these four goals are always reasonable ones to pursue. In deciding
whether a reductive research strategy is appropriate in a particular sci-
entific context, one should ask whether the intended goal of the reduction
is worthwhile and, if it is, whether reduction is an effective way to achieve
it. Clearly, the answers to these questions can vary from case to case.

The classic example of a reduction that achieves the goal of ontological
parsimony is the kinetic theory of heat, which is usually taken to show
that heat is not a distinct substance, as Carnot’s caloric theory maintained.
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A stock example of a reduction that accomplishes unification is the
explanation by Newtonian mechanics of a range of less fundamental
laws such as Galileo’s law of free fall and Kepler’s laws of planetary
motion. This case also illustrates correction, since Newtonian mechanics
can be used to identify and explain exceptions to Kepler’s laws. Reduc-
tions that aim to attain decomposition correspond closely to what Sarkar
terms ‘‘strong reduction’’ (1998, 43–45). Sarkar defends the proposition
that strong reductions are in the process of being carried out in molecular
genetics (1998, chap. 6).

It will be helpful to examine the four reductive motives listed above
along with conditions often demanded of reductions. Consider the fol-
lowing three:

1. The distinct concepts of the more and less fundamental realms
must be linked by biconditional bridge laws or ‘‘synthetic iden-
tities.’’

2. Reduction must be a relation that holds among theories, where
theories are understood as consisting of, or at least being associ-
ated with, a relatively small number of generalizations capable of
accounting for a broad range of phenomena.8

3. Aside from correspondence rules linking the two realms,
a reduction must explain the aspect of the less fundamental
realm solely in terms of concepts and principles drawn from the
fundamental one. For instance, a molecular explanation that
presupposes various aspects of cellular context that are not
described in molecular terms is not a reduction.

The model of reduction that anti-reductionists often take to be the
standard account satisfies all of these conditions. This is what might be
called the ‘‘layer-cake model.’’9

The classic presentation of the layer-cake model of reduction is found
in Paul Oppenheim and Hilary Putnam’s (1958) essay, ‘‘The Unity of
Science as a Working Hypothesis.’’ The layer-cake model presupposes
that contemporary science justifies depicting nature in terms of a series of
levels from most to least fundamental. In Oppenheim and Putnam’s
essay, these levels are elementary particles, atoms, molecules, cells, multi-
cellular organisms, and social groups (1958, 9–10). The levels are intended
to be such that the entities at any level above the fundamental one are
fully decomposable into the entities at the level below. For example,
molecules are decomposable into atoms, and atoms into elementary par-
ticles. It is presumed, in addition, that there is (or would eventually be) a
set of theories for each level and that the terms in the theories at each level
would refer exclusively to the entities at that level. Given this framework,
the layer-cake model asserts that reduction consists of a deduction of the
higher-level theory from the lower-level one with the aid of bridge laws
that equate any distinct higher-level kinds with complexes of lower-level
kinds. The layer-cake model, then, endorses all of 1 through 3; that is,
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according to it, reduction is a relation between theories, requires synthetic
identities, and only resources drawn from the fundamental realm may be
used in the derivation.

Although the layer-cake model has been called ‘‘the standard account of
reduction’’ (Kincaid 1990, 576), it is rather different from that proposed by
Ernest Nagel, whose account of reduction is often cited as the classic source
on the topic.10 Indeed, of requirements 1 through 3, Nagel’s model insists
only upon 2.Nagel didnot require that the correspondence rules connecting
the reducing to the reduced theory be synthetic identities or biconditionals;
he is in general rather flexible as towhatmight qualify, and explicitly allows
one-way conditionals (cf. Nagel 1979, 105–7). The insistence on synthetic
identities was a modification of Nagel’s model introduced by subsequent
commentators, particularly Kenneth Schaffner (1967).11

Nagel’s model also differs from the layer-cake model in not requiring
that the more fundamental theory exclusively refer to entities that are
proper parts of those referred to by the less fundamental theory. This is
most evident in the case of what Nagel refers to as homogeneous reduc-
tions, that is, reductions in which the reduced theory contains no terms
not already present in the reducing theory (1961, 342). Nagel’s stock
examples of homogeneous reductions are the derivations of Galileo’s
law of free fall and Kepler’s laws of planetary motion from Newtonian
mechanics (cf. 1979, 98). Moreover, there is nothing in Nagel’s model to
rule out the possibility that the reducing theory might span several levels
of description, and thus violate requirement 3.12

Consider how the differences between Nagel’s model and the layer-
cake model regarding requirements 1 through 3 translate into differences
with respect to the four reductive motives. A reduction that fit the form of
the layer-cake model would succeed in achieving the first three of the
motives listed above.13 Synthetic identities would support the claim that
any entity referred to by the reduced theory is identical to a complex of
entities, or features of such complexes, described at the more fundamental
level. Hence, such a reduction would achieve ontological parsimony,
since it would show that no entity referred to by the higher-level theory
constitutes an independent type of substance. Likewise, since the explan-
ation proceeds solely from a more fundamental level of description,
which is so characterized in virtue of referring to proper parts of the
entities of the higher-level theory, the goal of decomposition would also
be achieved. Since the layer-cake model assumes that reduction is a
relationship between theories, understood as a reasonably small number
of principles that encompass a broad range of phenomena, the goal of
unification is met as well. In contrast, a reduction that fulfilled the stric-
tures of Nagel’s model would achieve the goal of unification—since what
does the reducing is a theory—but not necessarily ontological parsimony
or decomposition. For instance, these two motives are clearly irrelevant
to the reduction of Kepler’s laws of planetary motion to Newtonian
mechanics.
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In addition, a consideration of distinct motives for reduction illumin-
ates the inherent implausibility of treating the layer-cake model as the
only model of reduction.14 Since not all attempts at reduction intend to
achieve the goals of ontological parsimony, decomposition, and unifica-
tion, it is unreasonable to insist that reductions in general must satisfy
conditions relevant to the attainment of all of these goals. For instance,
requirement 1, which demands that the terms of the reduced and redu-
cing theories be connected by synthetic identities, is closely tied to the
goal of ontological parsimony. Yet reductionists and anti-reductionists
are united in their rejection of vitalism; the standard anti-reductionist
position is physicalist anti-reductionism. Synthetic identities, furthermore,
have little relevance to the other three reductive goals. Hence, there is no
reason to suppose that reductions in molecular biology must in general
have ontological parsimony as one of their goals, and consequently it is
unreasonable to insist upon synthetic identities or biconditional bridge
laws in biological discussions of reduction.15

7.2.2 Reductionisms

By the term ‘‘reductionism’’ I understand a substantive thesis about what
sorts of reductions are possible in which areas of science. Thus, reduc-
tionism should be distinguished from models of reduction, which make
claims about what characteristics an explanation must have in order to
qualify as a reduction. A model of reduction might be judged correct or
incorrect independently of any particular stance on reductionism. For
example, the dispute between David Hull (1972; 1974) and Schaffner
(1969; 1993b, 437–45) concerning the alleged reduction of Mendelian
genetics to molecular genetics assumed Schaffner’s (1967) model but
turned on its application in this particular case. Given the four motives
for reduction presented above, a variety of possible versions of reduc-
tionism can be distinguished. The most extreme is what can be called
hegemonic reductionism, according to which the capacity of an explanation
given at a higher level to achieve any of the four goals is equaled, or
surpassed, by an explanation provided at a more fundamental level.
Although Oppenheim and Putnam’s classic (1958) paper is plausibly
interpreted as an endorsement of hegemonic reductionism, it is doubtful
that the position has any current philosophical defenders. An example of
a more restrained version of reductionism would be the claim that the
unifying power of any higher-level explanation can be matched or
exceeded by an explanation at a more fundamental level. This position
is naturally labeled unifying reductionism. Unlike hegemonic reduction-
ism, unifying reductionism does not require that the more fundamental
theory describe entities that are proper parts of those referred to by the
theory to be reduced.

The standard objection to reductionism, the multiple realizability ar-
gument, provides a good basis for rejecting hegemonic and unifying
reductionism. Although this argument can be expressed in various
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ways (cf. Fodor 1975; Kitcher 1984, 1999; Rosenberg 1985, 93–96), I pro-
pose that it be interpreted as endeavoring to show that molecular explan-
ations are sometimes (perhaps often) less unified than explanations
provided at a higher level. Putting the matter in somewhat different
language, the central claim is that heterogeneous collections of molecular
mechanisms sometimes underlie what are, from a higher-level perspec-
tive, single generalizations. Hence, an explanation that replaced the
higher-level generalization with its underlying molecular detail would
suffer a loss of unifying power. Putnam’s classic exposition of the mul-
tiple-realizability argument maintains that a geometrical explanation of
why a round peg 1 inch in diameter won’t fit into a 1-inch diagonal square
hole is superior to one couched in terms of molecular structure in virtue of
being more general (1975, 296). Robert Batterman (2000, 2002) proposes
that multiple realizability be interpreted with regard to the physical
concept of ‘‘universality,’’ which concerns physical systems that exhibit
similar patterns of behavior in spite of being constituted of distinct ma-
terials. For example, the law of the pendulum holds (approximately) of
pendulums whether they are constructed of iron, copper, or plastic. In
Batterman’s formulation, universal phenomena are characterized by the
following two features:

1. The details of the system (those details that would feature in a
complete causal-mechanical explanation of the system’s behav-
ior) are largely irrelevant for describing the behavior of interest.

2. Many different systems with completely different ‘‘micro’’
details will exhibit the identical behavior. (2002, 13)

So, just as with Putnam’s example of the round peg and the square hole,
although an explanation at the level of microdetail might be possible in
principle, such an explanation would miss the common pattern seen in
the simple geometrical explanation. Likewise, attempting to explain the
phenotype switch at the level of molecular interactions would obscure the
key importance of the ratios ut=um and �t=�m in accounting for the phe-
nomenon. The multiple-realizability argument, then, is aptly summed up
in Harold Kincaid’s statement ‘‘Attempts to explain in purely biochemical
terms will tend to see diversity where there is important unity’’
(1990, 587).

The multiple-realizability argument has attracted a great deal of criti-
cism. One line of objection is that anti-reductionists have exaggerated the
extent to which multiple realizability is a genuine problem, and thereby
have overstated the heterogeneity of molecular explanations in biology.
For example, Joseph Robinson (1992, 465) takes this line of argument in
his response to Kincaid (1990). The response is also pursued by Sarkar
with respect to the relationship between molecular and Mendelian gen-
etics (1998, 159–68), while William Bechtel and Jennifer Mundale (1999)
make an analogous argument for neuroscience and psychology. For
instance, Bechtel and Mundale argue that despite obvious variations in
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neurological details within and across species, there are nevertheless
important similarities in neurological structure that play a fundamental
role in explaining such things as visual perception. The theme of this line
of objection, therefore, is that multiple realizability is not a challenge to
reduction so long as it is possible to identify relevant commonalities at the
level of the reducing theory (cf. Hooker 2004, 442–43, 470–75). Differences
in molecular detail are consistent with similarities that can be character-
ized in molecular terms and are capable of accounting for general pat-
terns. For example, in the case of the phenotypic switch, it is presumably
not a coincidence that T-tropic strains tend to replicate at a more
rapid rate, while the immune system mounts a less effective response to
M-tropic strains. It seems likely that there are general molecular features
of these two strains of HIV that account for the difference.

I think that the sources cited in the foregoing paragraph make a good
case for a doctrine that one might call mitigated unifying reductionism:
molecular explanations of higher-level biological phenomena are often,
though not necessarily always, unified. However, the objection does not
show that multiple realizability fails to pose a genuine objection to uni-
fying (and hence hegemonic) reductionism. Unifying reductionism en-
tails that the unification attainable from any higher-level explanation can
be equaled or surpassed by an explanation given at a more fundamental
level. In contrast, mitigated unifying reductionism does not assert this.
Most obviously, it allows that there are cases in which there is no unified
lower-level explanation corresponding to a higher-level one. A more
interesting point, however, is that even if there is a unified explanation
at a fundamental level, the higher-level explanation may nevertheless be
simpler, have greater scope, and be more efficient. In a word, the higher-
level explanation may be more unified. That would contradict unifying
reductionism, which requires not only that the explanation at the funda-
mental level be unified, but also that it be at least as unified as any other
explanation. In Putnam’s example of the round peg and the square hole, it
seems quite doubtful that an explanation in terms of the common mo-
lecular features of wooden, plastic, and metal pegs and boards punched
with holes could match the geometrical explanation in the small number
of generalizations required to account for the phenomena. A similar point
seems plausible with respect to the explanation of the phenotype switch
provided in the foregoing section.

A second line of criticism of the multiple-realizability argument is that
reduction, and explanation in general, can serve purposes other than
unification. I take this to be Kenneth Waters’s point when he asserts
‘‘The unificationist criterion for explanation is implausible when invoked
within the nitty-gritty details of genetics’’ (1990, 136). More recently,
Elliott Sober has argued in a similar vein (1999, 549–51), maintaining
that while the lower-level account may not be unified, it nevertheless
explains. Sober asserts,moreover, that it is ‘‘amatter of taste’’ as towhether
the unified but shallow or the heterogeneous but deep explanation is
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preferable (1999, 550–51). Sober also argues that there are sometimes
sound reasons for preferring an explanation that includes molecular
detail at the expense of unity, especially if this detail makes it possible
to correct the higher-level generalization (1999, 555–56).

The point of these arguments is that one can have reduction without
unification, and that there is sometimes good reason to desire such re-
ductions. The type of reduction in question can be characterized as fol-
lows: for any feature of a complex system, there is a reduction of that
feature which achieves decomposition, though not necessarily unifica-
tion. This is similar to what Jerry Fodor calls ‘‘token-token reductionism.’’
Token-token reductionism asserts that in each particular case, the parts
and their interactions can, in principle, explain the features of the whole.
One important reason why token-token reductionism is of interest is, as
Sober observes, that it entails that knowledge of the underlying details
will allow for corrections to higher-level generalizations. This point
brings up a further species of reductionism, namely, corrective reduction-
ism, which states that the resources of the more fundamental level are
always capable of correcting higher-level generalizations. Token-token
reductionism entails corrective reductionism, since if every instance can
be explained by way of components and their interactions, then any
exception to any higher-level generalization can also be thus explained.
The entailment does not go in the opposite direction, however, since
correction might be had without decomposition—as the example of New-
tonian mechanics and Kepler’s laws of planetary motion illustrates.

In sum, the reductionist anti-consensus can be interpreted as maintain-
ing the conjunction of mitigated unifying reductionism and token-token
reductionism, along with the observation that token-token reductionism
entails corrective reductionism. But it might be objected that the only
reductionism that should count as such is hegemonic reductionism. For
example, according to Kincaid, the only legitimate interpretation of re-
duction is one that asserts that:

One theory reduces another when it can do all the explanatory work of the
reduced theory. . . . If there were good reasons to think that molecular biol-
ogy and statistical mechanics could not do all the explanatory work of their
higher-level counterparts (and there is), then whatever they have achieved,
it is not reduction. To claim reduction while admitting explanatory incom-
pleteness is to make the issue a trivial semantic one. It is not. (1997, 5)

Although Kincaid is right that it would be pointless to defend reduction-
ism merely through a redefinition of terms, it is equally the case that one
ought not to criticize reductionism by knocking down a strawman. As we
saw above, the layer-cake model of reduction, which Kincaid assumes as
the standard account (1990, 576; 1997, 50), is more stringent than Nagel’s
model, has few if any current defenders, and is implausible considered on
its own merits. Once one distinguishes between causal-mechanical ex-
planations that aim to elucidate underlying processes from theoretical
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explanations designed to achieve unification, it is plausible that a reduc-
tion might accomplish one of these explanatory purposes but not the
other.

But if one can be a reductionist without advocating hegemonic reduc-
tionism, it is fair to ask what distinguishes reduction from other sorts of
explanatory relationships that might hold between distinct levels of in-
quiry. Surely, examinations of a phenomenon from diverse perspectives
can be mutually illuminating in a variety of ways, but not all of this can
count as reduction if the term ‘‘reduction’’ is to mean anything. On what
basis, then, can a nonhegemonic reductionism lay a genuine claim to the
title?

7.2.3 Corrective Asymmetry

Reduction rests on the idea that some levels of explanation are more
fundamental than others; for example, hegemonic reductionism asserts
that there is a level of explanation that is most fundamental in virtue of
being able to equal or surpass any goal attainable by any explanation
provided at any other level. Clearly, one who rejects hegemonic reduc-
tionism but nevertheless claims to defend a reductionism of some sort
requires a different interpretation of ‘‘fundamental.’’ I propose that the
key notion here is corrective asymmetry. Roughly put, corrective asym-
metry means that resources from the fundamental level are necessary to
correct explanations provided at other levels, but not vice versa.

A bit more needs to be said about the term ‘‘level’’ in order to make
this rough statement of corrective asymmetry more precise.16 I shall
assume that levels are distinguished on the basis of the resources associ-
ated with them. These resources include concepts and entities posited,
together with generalizations and other statements formulated in terms
of these concepts and entities. For instance, the resources of molecular
biology would include such concepts as hydrogen bonding, various
important macromolecules such as DNA, and such generalizations as
the standard account of protein synthesis. In contrast, classical genetics
would invoke distinct concepts (e.g., gene, dominance, etc.), would not
mention the characteristic entities of molecular biology, and would rely
upon distinct generalizations. When the entities of one level constitute
the parts from which the entities of a second level are composed, then the
second level is said to be higher than the first. Thus, Mendelian genetics is
a higher level than molecular genetics. However, the difference between
levels need not correspond to a part-whole relationship. For example,
consider the relationship between Newtonian mechanics and what might
be called phenomenological planetary astronomy, which would promin-
ently include Kepler’s laws of planetary motion. Newtonian mechanics
contains concepts (e.g., gravitational force, mass), and refers to entities
(e.g., absolute space) and generalizations (e.g., the law of universal
gravitation) not found in phenomenological planetary astronomy. But
the relationship of the entities referred to at the two levels is not one of
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part to whole. It is likely that there is often some overlap between levels
and, moreover, that the exact boundaries of levels are somewhat vague.
Nevertheless, I think that there are frequently cases in which tolerably
clear distinctions can be drawn between levels, as the above examples
illustrate.

Consider two levels, which we may for convenience label L1 and L2.
I will say that L1 is correctively asymmetric with respect to L2 if and only if
the resources of L1 can correct L2 in some situations in which L2’s own
resources would not suffice for this purpose, but the reverse is never the
case. If L1 is correctively asymmetric with regard to L2, then I shall judge
L1 to be more fundamental than L2. For example, Newtonian mechanics
explains many exceptions to Kepler’s laws of planetary motion, such as
those that arise from the perturbing gravitational force of a second planet,
yet Kepler’s laws do not explain failures of Newtonian mechanics. That
function is performed by a more fundamental theory, namely, general
relativity.

If token-token reductionism is true, then molecular biology is correct-
ively asymmetric with respect to higher levels of biological description. In
the case of HIV replication, for example, the molecular details correct
higher-level descriptions of the process. As we saw, the ability of molecu-
lar biology to correct and refine generalizations stated at higher levels,
even when no unified molecular explanation is in the offing, was the basis
of one criticism of the multiple-realizability argument. Of course, this
does not mean that corrections can never be made on the basis of anything
other than molecular biology. Rather, the claim is that it is at least
sometimes, and probably often, the case that the correction can be had
no other way. In contrast, token-token reductionism entails that resources
drawn from higher levels are never necessary to correct molecular ex-
planations of particular biological events. Notice that this does not mean
that such corrections could never be stated in higher-level terms; rather,
the claim is that any correction stated in such terms could be replaced by
one drawing solely upon molecular resources. Let us consider this more
carefully.

Consider how one might explain why a certain strain of HIV is resist-
ant to a particular anti-retroviral drug, for example, a class known as non-
nucleoside reverse transcriptase inhibitors (cf. Stine 2000, 85–87). These
drugs interfere with HIV replication by binding to the enzyme reverse
transcriptase, which catalyzes the reverse transcription of the viral RNA
to viral DNA that is then incorporated into the DNA of the host cell. By
binding to reverse transcriptase, non-nucleoside reverse transcriptase
inhibitors prevent it from carrying out its normal function. However,
there are strains of HIV that are resistant to such drugs as a result
of possessing mutations that alter the molecular structure of reverse
transcriptase, and in some cases the relevant changes in the base pairs
of the viral RNA are known. It is clear that there is a straightforward
selective explanation of the prevalence of such mutant strains in
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individuals treated with non-nucleoside reverse transcriptase inhibitors.
Does this constitute a counterexample to corrective asymmetry?

It is not difficult to argue that the answer to this question is no. Consider
the biological events of which one would claim amolecular explanation in
this case, for instance, how a particular change in the viral genome results
in the synthesis of a distinct version of reverse transcriptase. The evolu-
tionary explanation described above does not claim to correct such ex-
planations, since, if token-token reductionism is true, then they depend
solely on the molecular facts of the case. The same is true of particular
cases of infection or failures of infection of individual cells by particular
HIV. The prevalence of one strain of HIV over another in an HIVþ person
results from the summation of a large number of such events, each
molecularly explicable. Of course, the explanation that appeals to natural
selection is more unified than the one that provides the gory molecular
details of each case, but that does not conflict with token-token reduction-
ism or corrective asymmetry.

Another concern is that molecular explanations presume a context that
is characterized in higher-level (e.g., cytological) terms. For example, a
description of HIV replication presupposes the existence of cells of sev-
eral types and their organelles, as well as the larger organ systems (e.g.,
lymphatic) in which they occur. But variations in these contextual features
might account for exceptions to the usual molecular processes. However,
there is a simple response to this concern. If token-token reductionism is
true, then the relevant contextual features can be described in molecular
terms in each individual case; hence, the higher-level description is not
necessary to explain the exception.17

Corrective asymmetry is also exhibited by reductions that achieve
explanatory unification. Newtonian mechanics explains exceptions to
Kepler’s laws of planetary motion, but Kepler’s laws do not return the
favor. Thus, corrective asymmetry explicates a shared sense of ‘‘funda-
mental’’ operative in reductions that achieve unification and those that
accomplish decomposition. In both the Newtonian and the HIV replica-
tion examples, the fundamental level is the one that has, as it were, the last
word about what happens. Consequently, using corrective asymmetry as
a criterion for what distinguishes reduction from other sorts of explana-
tory relationships between distinct levels has the appealing feature of
being able to account for how genuine reductions may come in several
forms. Notice that such a plurality of forms of reductive explanations does
not fit comfortably with hegemonic reductionism.

Hence, an advocate of token-token reductionism would qualify as a
reductionist if corrective asymmetry is taken as a mark of what makes one
level more fundamental than another. However, the same cannot be
said of mitigated unifying reductionism. The fact that some molecular
explanations achieve a significant measure of unification does not entail
that there is a corrective asymmetry between molecular biology and other
levels of biological description. But that is not to say that mitigated
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unifying reductionism is unimportant or of no interest. Mitigated unify-
ing reductionism blunts the effect of the multiple-realizability argument.
Furthermore, mitigated unifying reductionism is important for the mech-
anisms approach to extrapolation. Recall that mechanisms, as defined in
section 3.4.1, exhibit regular patterns of behavior, a point illustrated by
the HIV replication mechanism described in chapter 4. Thus, mechan-
isms-based extrapolation in biology is founded not only on the premise
that the molecular level is correctively asymmetric with regard to higher
levels. It also presumes that processes at the molecular level can be
characterized as mechanisms, which requires that regular patterns of
behavior be discernible in these molecular processes. Fortunately, there
is good reason to think that this is indeed the case and that claims of
‘‘wildly disjunctive’’ molecular processes are wild exaggerations.

In the subsequent section, I argue that the conjunction of token-token
and mitigated unifying reductionism is consistent with pluralism. More-
over, I endeavor to show that mitigated unifying reductionism and cor-
rective asymmetry are important for clarifying and defending the
pluralistic doctrine of autonomy of levels.

7.3 CAN A REDUCTIONIST BE A PLURALIST?

At the end of his classic statement of the anti-reductionist position in
biology, Philip Kitcher wrote, ‘‘Despite the immense value of the molecu-
lar biology that Watson and Crick launched in 1953, molecular studies
cannot cannibalize the rest of biology’’ (1984, 373). Kitcher’s use of the
word ‘‘cannibalize’’ gives an indication of the consequences that anti-
reductionists fear would ensue were reductionism correct. Apparently, if
reductionism were right, then all provinces of biology other than molecu-
lar biology would be, in principle at least, superfluous—of practical use
only because of limitations in computing power and knowledge of initial
conditions. To one strongly attached to these allegedly superfluous dis-
ciplines, this would be a dire consequence indeed. Not surprisingly, then,
philosophers who advocate pluralism—roughly, the thesis that there is a
plurality of legitimate and autonomous levels of description and explan-
ation of a given phenomena—often see themselves as staking out a
position that stands in direct opposition to reductionism. In this section,
I argue that pluralism is consistent with reductionism and corrective
asymmetry, and that the latter concept helps to clarify the notion that
higher levels of may be autonomous.

7.3.1 Core Principles of Pluralism

Several authors have defended pluralism (cf. Dupré 1993; Cartwright
1999; Longino 2000, 2002a, 2002b; Kitcher 2001; Mitchell 2002b, 2003),
and although there are some differences of detail and emphasis among
them, I think that the following three principles are a good characteriza-
tion of their core position.
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Principle of Multiple Perspectives: There are multiple legitimate strat-
egies for representing nature.

Non-Completeness: There is no ideal representation that is sufficient
for all explanatory purposes.

Autonomy of Levels: Distinct levels of explanation are autonomous.

The first two of these principles are succinctly articulated by Kitcher, who
writes:

The pluralism I propose consists of the following claims: (1) there are many
different systems of representation for scientific use in understanding na-
ture; (2) there is no coherent ideal of a complete account of nature . . . .18

(2002, 570)

Clearly, (1) is a statement of the principle of multiple perspectives, while
(2) is non-completeness. John Dupré encapsulates pluralism as follows:

The most general positive doctrine I shall advocate is pluralism: first, in
opposition to an essentialist doctrine of natural kinds, pluralism as the claim
that there aremany equally legitimateways of dividing theworld into kinds,
a doctrine I refer to as ‘‘promiscuous realism’’; and second, in opposition to
reductionism, pluralism as the insistence on the equal reality and causal
efficacy of objects both large and small. (1993, 6–7)

Dupré’s ‘‘promiscuous realism’’ is a version of the principle of multiple
perspectives, while I interpret the second of his two claims as a statement
of autonomy of levels.

There are, I believe, two primary motivations for pluralism: one prag-
matic and the other ontological. The pragmatic motivation rests upon the
sensible notion that, owing to differences in goals and interests, one
phenomenon can be legitimately studied from a variety of perspectives.
Given that there is no one objectively correct set of goals and interests to
have (cf. Kitcher 2001, chaps. 4–6), it follows that there is no one object-
ively correct perspective from which to pursue one’s inquiries and that it
is doubtful that a complete representation of the world is possible. A
‘‘complete representation’’ in the sense at issue in non-completeness
would be one that would suffice (in principle) for the achievement of
any purpose that any other representation could accomplish. Kitcher
supports non-completeness via an analogy with maps (2001, 55–63).
Maps are representations designed to serve certain purposes, and al-
though there may be a map that is sufficient for a given set of aims, it is
implausible that there could be a map of (say) the Earth that would suffice
for all goals that an earthbound traveler might conceivably have (2001,
60). By analogy, scientific representations are devised for particular ends,
so we should be likewise skeptical that there is, even as an ideal, a single
representation that would serve all ends. The ontological motivation for
pluralism appeals to features of the world, especially, its complexity.
If the world were very simple, it might be feasible to devise a single

Reduction and Corrective Asymmetry 141



representation of it that could answer any question one might ask, but
since the actual world is staggeringly complex, no such ideal representa-
tion is possible. For example, according to Mitchell, ‘‘The complexity of
nature and the idealized character of our causal models to explain that
complexity conspire to entail an integrated pluralistic picture of scientific
practice’’ (2002b, 67). The idealized character of representations is pre-
sumably related to the complexity of the phenomena (it is not possible to
include all relevant factors) as well as pragmatic concerns (one might be
interested in only one aspect of the phenomenon).

So, can one consistently be both a reductionist and a pluralist? The
answer depends on the type of reductionism one has in mind. Let us
begin with hegemonic reductionism; clearly, this ought to be inconsistent
with pluralism. And it is easy to see that it conflicts with non-complete-
ness, the proposition that there is no one complete representation of
nature. For if hegemonic reduction is correct, then any legitimate explana-
tory purpose that one wishes to achieve can (in principle) be attained via
the most fundamental level. Hence, the representation provided at the
fundamental level would constitute the complete account whose exist-
ence (and coherence) is denied by non-completeness.

Notice, however, that hegemonic reductionism is consistent with the
principle of multiple perspectives. The hegemonist could happily agree
that, for obvious practical reasons, various representational strategies are
expedient, and hence legitimate. Consequently, the hegemonic reduction-
ist can accept that there are many distinct, legitimate ways of conceptu-
alizing nature. Of course, hegemonic reductionism maintains that there is
one most fundamental level of description, but there is no apparent
reason why only the most fundamental description should be regarded
as legitimate. In sum, hegemonic reductionism is inconsistent with plur-
alism, but not in virtue of conflicting with the principle of multiple
perspectives. Since hegemonic reductionism is logically stronger than
both mitigated unifying and token-token reductionism, this is a useful
conclusion, for if P entails R, and P is consistent with Q, then R is also
consistent with Q. As a result, both mitigated unifying and token-token
reductionism are consistent with the principle of multiple perspectives.

The issue, then, is whether these two versions of reductionism are
consistent with non-completeness and autonomy of levels. There is a
straightforward argument that they are consistentwith non-completeness.
Token-token reductionism asserts, in effect, that it is always possible
(in principle) to provide a causal explanation of a particular biological
event at the molecular level. This does imply that representations at this
level are sufficient for a particular set of explanatory purposes, namely,
causal explanations of particular biological events and such things
(e.g., correction) that might ensue from these explanations. However, it
does not entail that all explanatory aims can be thus achieved. Likewise,
mitigated unifying reductionism claims only that some molecular explan-
ations are unified. This is consistent with some not being unified or being

142 Across the Boundaries



less so than explanations given at other levels. For example, an explan-
ation of the prevalence of a drug-resistant strain of HIV provided in terms
of natural selection is more unified than one provided exclusively in
terms of the molecular details of the replication, or failure of replication,
of each particular virus. Hence, mitigated unifying and token-token re-
ductionism are compatible with non-completeness. To return to Kitcher’s
‘‘many maps’’ analogy, the claim that there is no map that suffices for all
purposes does not rule out the possibility that there is a map that suffices
for some particular purpose.

7.3.2 Autonomy and Unification

Let us turn, then, to the autonomy of levels. In order to decide whether
this principle is consistent with mitigated unifying and token-token re-
ductionism, it will be necessary to clarify just what ‘‘autonomy’’ amounts
to in this context. Fodor defines autonomy as follows: ‘‘I will say that a
law or theory that figures in bona fide empirical explanations, but that is
not reducible to a law or theory of physics, is ipso facto autonomous’’ (1997,
149). Thus, autonomy involves two things: not being reducible and serv-
ing as a basis for ‘‘bona fide empirical explanations.’’ Let us consider
these two aspects of autonomy more carefully.

On the face of it, it seems easy to argue that autonomy of levels is
consistent with token-token and mitigated unifying reductionism. That is,
one need only interpret the ‘‘reduction’’ in the definition of autonomy as
reduction that aims to achieve unification. This interpretation is reason-
able, given that the primary motivation for the autonomy of levels is the
multiple-realizability argument, which attempts to show that higher-level
explanations are sometimes more unified than those formulated at lower
levels. But this conclusion is consistent with both token-token and miti-
gated unifying reductionism. Rejecting token-token reductionism, in
contrast, requires maintaining that there are strongly emergent proper-
ties, that is, properties of a whole that cannot be explained by its parts
and their interactions even on a case-by-case basis. There are well-known
puzzles associated with the proposition that there are strongly emergent
properties,19 and at least one pluralist, namely Kitcher, is clearly uncom-
fortable with such metaphysical excrescences (cf. 2002, 571). Likewise,
rejecting mitigated unifying reductionism would require making the
implausible claim that explanations given at a fundamental level are
never or very rarely unified. In contrast, rejecting unifying reductionism
only requires maintaining that lower-level explanations are sometimes
less unified than higher-level ones. So, by interpreting the claim
that there is no level to which all others are reducible to be a claim
about unifying reductionism, a pluralist can agree with the reductionist
anti-consensus.

But this reconciliation of reductionism and pluralism is illusory if an
influential argument due to Jaegwon Kim (1992) is sound. Kim argues
that if unifying reductionism fails, then higher-level generalizations
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cannot serve as a basis for genuine scientific explanations. In other words,
Kim’s claim is that if ‘‘reduction’’ means unifying reductionism, then the
two defining features of autonomy are mutually incompatible. Kim’s
argument begins with the premise that a generalization can underwrite
scientific explanations only if it is projectible, that is to say, positive
instances of the generalization provide evidence for further positive
instances in the future (1992, 11). From here the argument proceeds as
follows (cf. 1992, 15, 18–20). Suppose that unifying reductionism fails as a
result of multiple realizability, as the pluralist claims. Then higher-level
expressions correspond not to a single physical kind but to a heteroge-
neous collection of them. Yet if this is so, there is no reason to expect that
characteristics of one instance of the multiply realized higher-level kind
will recur in future instances. But that is just to say that higher-level
generalizations are not projectible after all, and hence, from the initial
premise, not a potential basis for genuine scientific explanation.

Kim’s argument does indeed point out a problem for some versions
of the multiple-realizability argument that (as noted in section 7.2.2) tend
to exaggerate the ‘‘wildly disjunctive’’ nature of physical realizations of
biological and psychological phenomena. Moreover, Kim surely is cor-
rect that heterogeneity poses challenges for projecting generalizations;
that is what the problem of extrapolation in heterogeneous populations
is all about. Nevertheless, I think that Kim’s argument is unsound. The
problem centers on just what the conclusion of the multiple-realizability
argument is. Consider these two possible interpretations:

1. Unifying reductionism is false.
2. Mitigated unifying reductionism is false.

Kim’s argument would be quite reasonable if multiple realizability
were understood according to (2). Suppose that (2) was the conclusion
of the multiple-realizability argument. Then explanations from the more
fundamental level would nearly always be extremely heterogeneous, and
the sort of ‘‘wild disjunction’’ imagined by some advocates of multiple
realizability would be the general rule. In this situation, Kim’s argument
seems quite compelling. But things are otherwise if (1) and not (2) is the
conclusion of the multiple-realizability argument.

The Callaway et al. model described in section 7.1 is an example of how
(1) is consistent with projectible generalizations. In that model, the pheno-
type switch was shown to be largely independent of all but a few crucial
features, in particular, the relative replication rates and effectiveness of
immune response to M-tropic and T-tropic HIV strains. In this example,
the higher-level explanation of the phenotype switch is simpler and more
efficient, and makes one less likely to lose sight of the forest for the trees.
Thus it is reasonable in this case to say that the explanation provided by
the Calloway et al. model is more unified than one given in molecular
terms. Nevertheless, mitigated unifying reductionism is reasonable with
regard to HIV research, wherein there are known molecular mechanisms
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of some generality. Thus, the phenotype switch appears to be an example
in which the truth of mitigated unifying reductionism suffices for
projectible higher-level generalizations despite the failure of unifying
reductionism.

The above diagnosis of Kim’s argument is reinforced by the discussion
of extrapolation from chapters 5 and 6. Following Nelson Goodman
(1954), Kim and his commentators think of projectibility in terms of
universally quantified conditional sentences of the form ‘‘All Fs are Gs.’’
In this situation, projectibility means that an F that is also G provides
support for the expectation that subsequent Fs are G as well. But their
examples are almost exclusively claims about positive or negative causal
relevance; for instance, ‘‘Pains cause anxiety reactions’’ (Kim 1992, 16) or
that ibuprofen ameliorates rheumatoid arthritis symptoms (Block 1997,
113). As explained in section 6.3.2, ‘‘All Fs are Gs,’’ is an unsuitable format
for representing claims concerning positive causal relevance. But an F that
is also G is not properly regarded as an ‘‘instance’’ of a claim concerning
positive causal relevance, since the individual might be both F and G
solely by coincidence. The most natural way to interpret projectibility
with respect to claims of positive or negative causal relevance is in
terms of extrapolation. One learns (e.g., by randomized controlled experi-
ment) that X is a positive causal factor for Y in one population and infers
that it is also such in another. More specifically, a causal claim is projectible
with regard to a set of populations if and only if learning that the causal
claim is true of one population in the set provides evidence that it also
true of the others.

Chapters 5 and 6 explored how mechanisms might play a role in
justifying extrapolations. Extrapolation on the basis of mechanisms is
pertinent to Kim’s argument that multiple realization undermines pro-
jectibility, since extrapolation on this basis would be precluded if the
mechanisms in the two populations were totally dissimilar. Nevertheless,
mechanism-based extrapolation can proceed even in cases in which there
are causally relevant differences in mechanism between the populations
in question (see sections 5.4.2 and 6.2.2). In particular, how similar model
and target must be depends upon the specificity of the causal claim to be
extrapolated. This point was illustrated by the aflatoxin example in which
differences between rat and human suggested that the effect of AFB1 on
liver cancer in rats is less than that in humans. Thus, although it would be
unwise to extrapolate the exact causal effect from rat to human in this
case, extrapolating positive causal relevance is quite reasonable. In short,
neither extrapolation nor projectibility requires perfect homogeneity with
regard to mechanisms.

7.3.3 Autonomy and Causal Reality

The upshot of the foregoing discussion is that by rejecting unifying
reductionism, a person who accepts mitigated unifying and token-token
reductionism can also agree to the autonomy of levels. However, this
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reconciliation of autonomy and reductionism might seem to be overly
dependent on inevitably subjective judgments of relative unifying power.
Autonomy is often thought to involve an attribution of real causal powers
to the autonomous level, not merely to express a pragmatic preference for
unified explanations. Dupré’s statement, cited above, that pluralism
entails ‘‘the equal reality and causal efficacy of objects both large and
small,’’ is naturally interpreted as an expression of this sentiment.20 The
equality of causal efficacy is apparently intended as an objective feature of
the world, and not just a reflection of human interests. On the other hand,
it is unclear that a more robust autonomy of this sort can be countenanced
without postulating strongly emergent properties and thereby abandon-
ing physicalism (cf. Rosenberg 1997, 2001). In this section, I argue that
there is a very sensible way to understand what it is for properties at
higher levels to be causally real that is consistent with token-token and
mitigated unifying reductionism.

One straightforward way to interpret what it is for a property to be
‘‘causally efficacious’’ or to have ‘‘real causal powers’’ is the following.
The property p is causally real just in case there are accurate generaliza-
tions asserting that p is a cause of something.21 But higher-level properties
could be causally real in this sense even if hegemonic reductionism were
true. For if p is equivalent to some more fundamental property that is
related to other properties by causal laws, then p must be causally real in
the sense just given. Thus, a pluralist like Dupré might regard this sense of
‘‘causally real’’ as insufficiently robust. What more might ‘‘causally real’’
mean, then?

Let us approach this question in terms of what is typically treated as
the ‘‘fundamental’’ level for the purposes of discussions of reduction in
biology, namely, what Sarkar terms ‘‘macromolecular physics.’’22 Note
that macromolecular physics is not quantum mechanics or even chemis-
try, as Sarkar makes clear (1998, 146–50). For instance, macromolecular
physics generally ignores the subatomic structure of atoms, often treating
atoms as solid spheres, an assumption which, although usually good
enough for the purposes of molecular biology, is clearly not accurate
according to modern chemistry, much less quantum mechanics. What,
then, justifies styling macromolecular physics a ‘‘fundamental’’ level of
description? My answer to this question was provided above in section
7.2.3. Molecular biology is fundamental to the extent that it is correctively
asymmetric with regard to other levels of biological description, such as
classical genetics. But macromolecular physics is obviously not correct-
ively asymmetric with regard to chemistry or quantum mechanics. One
would suppose that the reverse is the case.

But in spite of the fact that molecular biology is hardly fundamental
physics, it is unreasonable to deny that properties described at this level
are causally real. The justification for the causal reality of molecular
properties seems to consist in two things: there are accurate causal gen-
eralizations that can be stated at this level, and this level is correctively
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asymmetric with regard to some other levels. Yet these two features can
be possessed bymany other levels as well, such as evolutionary biology or
microeconomics. Thus, if accurate causal generalizations and corrective
asymmetry make properties characterized at the level of macromolecular
physics causally real, why shouldn’t the same go for other levels, too?

Consider how all of this connects to the mechanisms approach to
extrapolation. The underlying premise of this approach is that know-
ledge of mechanisms and of factors that interfere with them is a guide for
the correction and extrapolation of positive causal relevance and other
probabilistic causal claims. The motivation for this premise is that the
mechanism is characterized at a level that is correctively asymmetric with
regard to the claims of interest to the extrapolation. But the requisite
corrective asymmetry might be attained at any one of several levels,
and there may often be sound scientific reasons for not delving more
deeply than necessary. Chief among these reasons are the following:
(1) the details required for the fundamental explanation are unknown;
(2) even if these details were known, the fundamental explanation would
be computationally intractable; (3) the fundamental explanation, even if it
could be carried through, would obscure significant patterns exhibited in
the higher-level explanation. All three of these considerations are relevant
in motivating macromolecular physics rather than quantummechanics as
a basic level of biological explanation. Such considerations can also
justify characterizing some biological mechanisms at a level higher than
macromolecular physics. For instance, the Callaway et al. model is
correctively asymmetric with regard to a description of the phenotype
switch. Moreover, both (1) and (3) can be invoked in this case. Not all of
themoleculardetails areknown,and theexclusivelymolecularexplanation
might obscure the important causal pattern displayed in the Callaway
et al. model.

Yet some levels will have a more extensive range of corrective asym-
metry than others. For instance, molecular biology is correctively asym-
metric with regard to a broader range of generalizations than the ‘‘level’’
consisting solely of the resources employed by the Callaway et al. model.
There is an important practical implication of this simple observation. If
one wants to know at what level to seek a mechanism for a particular
correction or extrapolation, it is reasonable to choose a level that one is
confident is correctively asymmetric with respect to the generalization of
concern. In biology, this translates into a general justification for empha-
sizing the search for molecular mechanisms. Nevertheless, a general
prescription of this kind is compatible with often describing mechanisms
at levels other than the molecular one, for the reasons given above. In
sum, the mechanisms approach to extrapolation is linked to reductionism
through its connection to corrective asymmetry, but it is pluralistic insofar
as corrective asymmetry may be had at several distinct levels. And there
may be good scientific reasons for preferring mechanisms characterized
at some level higher than that of fundamental physics, macromolecular
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physics, or, in social science, higher than the level of interactions among
individual agents.

No doubt, some pluralists would be unsatisfied with this brand of
pluralism. There are certainly some pluralist perspectives that are utterly
incompatible with reductionism of any sort.23 However, that is consistent
with there being reasonable interpretations of reductionism and plural-
ism according to which both may be true.

7.4 CONCLUSION

Debate between defenders and critics of reductionism is a perennial
theme in the philosophy of biology. Moreover, this topic is intimately
linked to the mechanisms approach to extrapolation. The privileged role
attributed to mechanisms by this approach depends upon their being
correctively asymmetric with respect to the causal claims of interest to
the extrapolation. Corrective asymmetry in turn can be used to explicate
the concept of ‘‘fundamental level’’ inherent in reductionism, and to do so
in a way that identifies a version of reductionism that is consistent
with the multiple-realizability argument and with pluralism. Corrective
asymmetry can often be had at more than one level of description, and
there are often sound scientific reasons—including those emphasized
by the multiple-realizability argument—for not descending more deeply
than necessary.

The discussion so far has tended to focus on biological examples, with
social science receiving little attention. That is reversed in the subsequent
two chapters, which explore the prospects of utilizing the mechanisms
approach to extrapolation in social science.
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8

Extrapolation in Social Science

The foregoing chapters have examined the mechanisms approach to
extrapolation mainly from the perspective of examples drawn from
biology. This chapter and the next address the question of whether
mechanisms-based extrapolation can be usefully employed in social sci-
ence. I begin with an examination of the only extensive methodological
examination of extrapolation that I know of in the philosophy of social
science, namely, Francesco Guala’s book The Methodology of Experimental
Economics (2005). Although I think that there is much of value in Guala’s
discussion, I argue that his account fails to address the basic challenges to
extrapolation described in Chapter 5. Specifically, his account provides no
answer to the extrapolator’s circle and no explanation of how extrapola-
tion can be possible even when there are causally relevant differences
between the model and the target. Since the proposals advanced in
Chapters 5 and 6 were intended to address these challenges, I examine
the applicability to social science of the mechanisms approach to
extrapolation described there.

In this chapter, I discuss two challenges to this methodological transfer:
first, that the contemplated intervention might be likely to alter the rele-
vant mechanisms, and second, that there may be a great deal of uncer-
tainty about what the mechanisms are. These two issues are illustrated by
a pair of case studies. One premise of the mechanisms approach to
extrapolation, discussed in Chapter 3, is that mechanisms can be identi-
fied with causal structure. Making the case for this identification requires
defending the claim that mechanisms provide information about how
probability distributions change under interventions. But the possibility
that policy interventions will restructure social mechanisms is a com-
monly posed challenge for social science. I provide an explication of the
concept of a structure-altering intervention, and explore the circumstan-
ces under which an intervention is more likely to be structure-altering and
how such changes can be anticipated.

This discussion leads directly to the first case study, which concerns
extrapolation from experiments designed to evaluate the effectiveness of
welfare-to-work programs. A central methodological disagreement con-
cerning the evaluation of welfare-to-work programs in fact turned on the
usefulness of social mechanisms for extrapolation. I argue that there were
indeed good reasons to be skeptical of the prospects of a thoroughgoing
mechanisms approach to extrapolation in this case, one of the most
important of which is that the mechanisms, even if they could be
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accurately ascertained, would likely be altered by the proposed policy
intervention. Nevertheless, insofar as they provided some qualitative
indication of ‘‘reasons to suppose otherwise,’’ attention to mechanisms
was important for a conscientious application of simple induction. The
welfare reform example, then, is a case in which mechanisms are useful
for extrapolation, but not in the thoroughgoing way of the aflatoxin
example described in Chapters 5 and 6. The second case study derives
from experimental economics and examines the extrapolation to real-
world settings of a now well-established result concerning ‘‘preference
reversals.’’ In this case the chief obstacle to extrapolation is not structure-
altering interventions, but rather uncertainty about which mechanism
explains the result. I describe two possible mechanisms and explain
how they lead to very different conclusions about the prevalence of
preference reversals outside the laboratory walls.

I see no reason in principle that mechanisms-based extrapolation can-
not be successfully utilized in social science. Nevertheless, these case
studies show that the extent to which this is in fact possible depends on
how stable social mechanisms are under interventions and to what extent
accurate knowledge of these mechanisms is attainable, which are matters
that cannot be settled by philosophy alone.

8.1 GUALA ON EXTERNAL VALIDITY

Since the mid-1950s, experimental economics has enjoyed an enormous
growth in research output and, correspondingly, in the collection of
established results (cf. Roth 1995; Guala 2005). From the beginning,
extrapolation—often referred to as ‘‘external validity’’—has been a central
methodological problem for experimental economics. In fact, until rela-
tively recently, mainstream economists often dismissed the results of
economic experiments as irrelevant to the behavior of real-world markets
(Guala 2005, 2–3). Experimental economics, therefore, is a rich source of
social science examples in which extrapolation is a genuine issue. Yet
there is surprisingly little in the way of a methodological analysis of
extrapolation issues with regard to this field. As Guala puts it:

To write on external validity is challenging. Philosophers of science, sur-
prisingly, have very little to say about it. Experimental economists also tend
to ignore or downplay the relevance of external validity; they typically say
that it is not a particularly useful concept and, moreover, that worrying too
much about it may turn attention away from more important issues of
experimental design. (2005, 142)

Consequently, an examination of Guala’s proposal is a good way to begin
this chapter. I argue that although much of what Guala says about ex-
trapolation in experimental economics is very sensible, his account fails to
answer the basic challenges to extrapolation described in Chapter 5. In
particular, his account does not answer the extrapolator’s circle, nor does
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it explain how extrapolation might be possible even when there are
causally relevant differences between the model and the target.

Guala provides several detailed case studies of extrapolation from
economic experiments. One of these examples is the case of auctions of
broadcasting licenses conducted by the Federal Communications Com-
mission (FCC) in 1993–94 that were designed with the aid of experimental
economics (2005, chap. 8). The task was to design and implement, on short
notice, an auction mechanism that would satisfy several desiderata spe-
cified by the FCC (2005, 162–63). One of these desiderata was the gener-
ation of revenue for the FCC, which meant attempting to award licenses
to those willing to pay the most for them. Due to several complexities
inherent in the broadcast license auction, the optimal auction mechanism
could not be inferred from existing theory (2005, 166). Consequently,
researchers proceeded by evaluating a small number of proposed mech-
anisms in the laboratory, in an effort to find which one worked best and to
identify likely sources of difficulty in attempting to implement a particu-
lar mechanism (2005, 170–78). One mechanism was selected and imple-
mented in the real auction in October 1994, with results that conformed to
expectations based upon experiments, and which were generally
regarded as successful (2005, 179–81).

Generalizing from this and other examples, Guala makes several sug-
gestions about the conditions under which extrapolation from experiment
to the real world is justified. For example, one of his main themes is that
improving the internal validity of an experiment often makes it less
similar to the real-world systems it is intended to model (2005, 144).
Guala also notes that the claim that the experimental model is relevantly
similar to the target is an empirical hypothesis (2005, 195). Concerning the
nature of this empirical hypothesis and the means by which it is to be
tested, Guala writes the following:

In this case, the evidence is the correspondence between observed features
of the target and observed features of the experimental system; the external
validity hypothesis is that the relata belong to similar causal mechanisms.
(2005, 197)

This is an endorsement of a mechanisms approach to extrapolation.
However, as explained in Chapter 5 (see section 5.3), an invocation of
mechanisms does not suffice to answer the extrapolator’s circle. Extrapo-
lation is motivated by ethical or practical limitations on directly studying
the target system. Yet comparing mechanisms presumably requires
studying both the model and target populations separately, and it is
unclear how that can be done, given the limitations on what can be
learned about the target by studying it directly. One of the chief goals of
the proposal concerning comparative process tracing presented in section
5.3 was to answer this challenge. The central theme of comparative
process tracing is that extrapolating a mechanism from model to target
depends upon antecedent knowledge of stages of the mechanism at
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which significant differences are and are not likely to arise. Moreover, it is
often possible to restrict attention to downstream stages of the mechanism
upon which upstream differences must leave their mark. Thus, compara-
tive process tracing explains how limited, partial information about the
target can establish the model as a basis for extrapolation.

Although Guala does not explicitly describe comparative process tra-
cing, one might suppose that this was what he intended. For example, the
design of the FCC broadcasting license auction is arguably a case of
comparative process tracing, since one of the experimenters’ aims was
to identify ‘‘fragile’’ points in mechanisms at which things were like to go
awry (2005, 173). Thus, special attention would have to be paid to those
fragile points when implementing the real auction.1 But whatever his
intentions, there are some aspects of Guala’s proposal that are not com-
patiblewith the account of comparative process tracing given inChapter 5.
In particular, Guala endorses LaFollette and Shanks’s criterion for a
causal analogue model (CAM). Recall that in LaFollette and Shanks’
terminology, a CAM is a model that can serve as basis for extrapolation
to a specified target. According to LaFollette and Shanks, a model is a
CAM only if there are no causally relevant disanalogies between it and
the intended target of the extrapolation (see section 5.4.2). Guala cites
LaFollette and Shanks approvingly (2005, 195) and reiterates their criter-
ion of CAM-hood in more than one place (cf. 2005, xi, 199). For example,
Guala writes, ‘‘The inference from experiment to real world is a special
kind of analogical argument, in which the inference is strengthened by
making sure that the two systems are similar in all relevant (causal)
respects’’ (2005, xi).

LaFollette and Shanks use their strict criterion of CAM-hood to argue
that animal models can never serve as a basis for extrapolation to humans,
since there is always bound to be some causally relevant disanology. As
pointed out in section 5.4.1, LaFollette and Shanks’s criterion, if accepted,
would not only rule out extrapolation from animal models to humans but
also extrapolation from one human group to another. After all, there are
bound to be some causally relevant disanalogies between any pair of
human groups one might choose. Thus, one inclined to be the least bit
optimistic about extrapolation in biology and social science cannot con-
sistently accept LaFollette and Shanks’s criterion of CAM-hood. Fortu-
nately, we saw that there is a good reason to reject their criterion, namely,
that it overlooks the connection between the specificity of the causal claim
to be extrapolated and the criterion of similarity required of the model.
Thus, extrapolating a claim about positive or negative causal relevance
does not require a model that is similar in all causally relevant respects
(see sections 5.4.1 and 6.2.2). In the aflatoxin example, for instance, the
relevant mechanism in the Fischer rat differs from that in humans in
way suggesting that the carcinogenic impact of AFB1 is less severe in
rats than in humans. This difference in mechanisms is surely a causally
relevant disanalogy, but it does not suggest that extrapolating the positive
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causal relevance of AFB1 to liver cancer from rats to humans would be a
mistake.

At some points, Guala appears to retreat from LaFollette and
Shanks’s strict CAM criterion. For example, he writes, ‘‘The trick is to
make sure that the target and the experimental system are similar in
most relevant respects so as to be able to generalize from the laboratory
to the outside world’’ (2005, 217; my italics). Guala does not comment
upon the switch from ‘‘all’’ to ‘‘most,’’ nor does he explain how some
causally relevant disanalogies might be unproblematic. Answering this
question requires distinguishing those causally relevant disanalogies
that indicate it would be an error to extrapolate a particular type of
causal generalization. That is the distinction illustrated by the aflatoxin
example: there is a causally relevant disanology, but it does not suggest
that it would be an error to extrapolate a claim that exposure to AFB1 is
a positive causal factor for liver cancer. The key point is that similarity
in all causally relevant respects is not a necessary criterion for extrapo-
lating qualitative causal claims, such as claims about positive or negative
causal relevance.

Causally relevant differences are inevitable between and within popu-
lations studied by biologists and social scientists. Thus, a fundamental
challenge for any account of extrapolation in these fields is to explain
how extrapolation can be possible even in the presence of causally
relevant disanalogies. Although there is much wisdom and good sense
in Guala’s account of extrapolation, his proposal has failed to meet this
challenge and has not adequately responded to the extrapolator’s circle.
In contrast, the approach to extrapolation advanced in this book is
intended to address those challenges. So, let us consider the prospects
of extrapolation in social science from the perspective of the account
developed here.

8.2 ARE SOCIAL MECHANISMS CAUSAL STRUCTURE?

The underlying premises of mechanisms-based extrapolation were traced
in Chapters 2 through 6. One fundamental premise is the disruption
principle: a causal effect is nullified just in case every mechanism from
cause to effect is severed. Since a nullified causal effect means that ideal
interventions on the cause make no difference to the probability of the
effect, the disruption principle links mechanisms to probabilities. That
connection was mediated by the identification of mechanisms and causal
structure discussed in Chapter 3. But Chapter 3 left the basis for the
identification of social mechanisms and causal structure unresolved.
While a general, default argument for this identification was suggested
for mechanisms in molecular biology on the basis of evolutionary theory,
the prospects of an analogous argument in social science are, at least for
the present, uncertain. I take up the thread of this discussion again in the
following two subsections.
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8.2.1 Structure-Altering Interventions

A standard challenge to social science focuses on the ability of human
beings to alter their own social organization (cf. Taylor 1971; Fay 1983;
Searle 1984, chap. 5). Nagel concisely expressed the concern as follows:

A third difficulty confronting the social sciences, sometimes cited as the
gravest one they face, has its source in the fact that human beings frequently
modify their habitual modes of social behavior as a consequence of acquir-
ing fresh knowledge about the events in which they are participating or the
society of which they are members. (1961, 466)

In economics, the concern that interventions might alter the institutional
structures or social practices upon which predictions of the policy’s
effects are based is associated with the ‘‘Lucas critique’’ (Lucas 1981).
Robert Lucas argued that econometric models capable of making accurate
short-term economic forecasts would often fail to correctly predict the
consequences of policy interventions, since the intervention would
change ‘‘the decision rules of agents’’ (1981, 110–11). Since social mech-
anisms are patterned complexes of interactions among agents that gener-
ate macrosociological regularities (see section 3.5.1), such changes amount
to alterations in social mechanisms.

The potential for social mechanisms to change in response to interven-
tions challenges their identification with causal structure, and thereby the
extension of mechanisms-based extrapolation to social science. Recall that
causal structure is that which generates probability distributions and
provides information regarding how those probability distributions
change under interventions. As discussed in section 3.4.2, modularity is
an important feature of causal structure. Modularity requires that inter-
ventions at a given point in the structure leave downstream causal rela-
tionships unaltered. The question, then, is whether social mechanisms are
modular in this sense.

I shall call interventions that violate modularity structure-altering.
Structure-altering interventions are best understood in contrast to ideal
interventions. Recall that an ideal intervention is an exogenous direct
cause of exactly one variable in a system, eliminates all other causal
influences that would ordinarily affect the variable it targets, but directly
changes nothing else (see item (a) in definition 2.1). For example, suppose
that the graph in Figure 8.1 represents the causal relationships among
participation in an abstinence-only sex education program (P), attitudes
about sex (A), and having children out of wedlock (W). An ideal inter-
vention on the variable P is represented in Figure 8.2. An ideal interven-
tion erases all arrows pointing into P but otherwise leaves the structure
unchanged. For example, in Figure 8.2, the causal relationship between
A and W is exactly as before.

A structure-altering intervention, in contrast, makes changes in
the causal relationships besides blocking the usual influences upon the
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targeted variable. The concept can be defined more precisely as follows.
Suppose the variable X is a member of a set of variables V that represent
features of the system of interest. An intervention on X is structure-
altering with respect to V just in case it changes causal relationships
among the variables of V in addition to eliminating the causes of X. In
Figure 8.2, V ¼ {P, A, W} and the intervention is on P. The intervention in
this case would be structure-altering if, for example, it modified the
relationship between A and W. Notice that an intervention that directly
affects more than one variable is not necessarily structure-altering, since
targeting more than one variable need not entail altering the causal
relationships among them.

It is also important to distinguish structure-altering interventions from
the difficulty of differentiating causation frommere correlation. As Figure
8.2 illustrates, a correlation between two variables might result from the
presence of a common cause of both, rather than from one being a cause of
the other. Thus, the correlation between P and W in Figure 8.2 is a mere
correlation: it is not invariant under any ideal intervention that targets P.
One of the primary challenges to causal inference from statistical data is
distinguishing between correlations due to unmeasured common causes
and those resulting from a direct causal relationship. However, that
problem is distinct from the possibility that a causal relationship might
breakdown under certain types of intervention. For instance, the ideal gas
law is invariant under some ideal interventions, and hence is a causal
generalization. Nevertheless, the ideal gas law breaks down under
interventions that set the pressure to a very high value. In this case, the
fragility of the generalization is due to its rough and approximate
character. But even a generalization that precisely describes a causal
relationship in a given context might be subject to structure-altering
interventions. Causal relationships typically depend upon background
conditions too numerous and complex to fully and explicitly incorporate
into a model. Consequently, interventions that change such background
conditionsmay be structure-altering. Even if the generalization accurately
described the causal relationship under the original set of background
conditions, it might be an inaccurate representation of that relationship in
the new circumstances brought about by the intervention.

P A W

Figure 8.1 A common cause

P A W

I

Figure 8.2 An ideal intervention
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Consider James Scott’s account of the effects on the social structure of a
Malaysian village of a government-sponsored irrigation project that made
it possible to grow two rice crops per year rather than just one (1985,
74–85). Initially, the project significantly improved the economic situation
of villagers, from the land-poor who relied on wage labor to the larger
landowners. The increase in the supply of rice sharply reduced the threat
of famine and, initially, the additional rice production doubled the de-
mand for field labor, thereby significantly raising the income of poorer
villagers. However, landowners soon discovered that renting combine-
harvester machines was better than hiring field labor under the new
system, since double-cropping required quickly harvesting one crop so
that the next could be planted. Not only did this turn of events adversely
affect the wages of land-poor villagers, it also undermined traditional
demonstrations of generosity through which wealthy farmers attempted
to ensure reliable sources of labor in the future. These practices included
sumptuous feasts to which all in the village were invited, bonuses for
laborers at the end of the harvest, and tenancy agreements that made
allowances for poor harvests. In short, the innovation of double-cropping
fundamentally altered the economic structure of mutual dependence
between poor and wealthier villagers and all of the practices that went
along with it.

Let R indicate the annual rice production,D the demand for field labor,
and E the wage earnings of villagers. Finally, let I represent the interven-
tion, that is, the government-sponsored double-cropping program. This
example can be represented by the graphs in Figure 8.3. The intervention
on R is structure-altering with respect to {R, D, E}. The intervention
significantly attenuated the influence of rice production upon demand
for field labor, which is represented in 8.3(B) by the deletion of the arrow
from R to D. An arrow directly from the intervention to D is included in
the graph in 8.3(A) because the intervention affected the demand for labor
through a path not passing through R. That is, growing two crops per year
rather than one placed a higher premium on a quick crop harvest, thereby
increasing the use of combine-harvester machines and undermining the
demand for field labor. Notice that the causal relationship in 8.3(A) would
be invariant under many interventions on R that did not increase the
number of crops per year. But the graph in 8.3(A) implicitly treats the
harvesting of one crop per year as a stable background condition, and

(A) (B)

R D E

I

R D E

Figure 8.3 A structure-altering intervention
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hence no longer correctly represents the influence of rice production upon
the demand for field labor when that background condition is changed.2

8.2.2 Anticipating Changes in Mechanisms

The possibility that a policy intervention may be structure-altering, then,
is far from an idle concern. Let us consider the circumstances relevant to
whether structure-altering interventions are a serious concern and what
might be done when they are. Whether a given intervention is structure-
altering depends in part on the nature of the intervention itself. For
instance, in the Malaysian example described in the foregoing section,
an intervention that consisted solely of making fertilizer more readily
available to rice cultivators would have been unlikely to significantly
alter the structure represented in Figure 8.3(A). Furthermore, whether
an intervention is structure-altering may depend upon the level of detail
at which the mechanisms are represented. Recall that an intervention is
said to be structure-altering with regard to a set of variables used to
represent a causal system. Consequently, a single intervention may be
structure-altering with regard to one set of variables but not another.
Thus, although double-cropping was structure-altering with regard to
the set of variables {R, D, E}, it might not have been structure-altering
with regard to a finer-grained causal model that represents the motiv-
ations and decisions of individual cultivators. In general, some types of
interventions are more likely to be structure-altering than others, and
whether a given intervention is structure-altering may depend upon the
variables chosen to represent the causal system. Let us consider these two
points in turn.

Smaller-scale interventions are less likely to be structure-altering than
large scale-ones. The category of ‘‘large-scale’’ intervention is rather
vague, but examples would include such things as basic reforms of
important organizations and the implementation of some major new
social program. The government-sponsored irrigation projects and
double-cropping in Malaysia, described in section 8.1.1, would thus qual-
ify as a large-scale intervention. Large-scale interventions are contrasted
with interventions that simply tweak some preexisting feature within an
established structure. Examples of such smaller-scale interventions in-
clude a 10 cent increase in liquor tax or providing funding for a city to
hire twenty new police officers. The scale of an intervention is not the only
consideration pertinent to its structure-altering potential. Another rele-
vant feature is the extent to which it is new or unprecedented. Interven-
tions of a familiar type—say, the Federal Reserve raising the federal funds
rate by a quarter percent—are less likely to generate new social structures
for the simple reason that such reactive practices are already well en-
trenched. Lucas notes that our ability to predict changes in the decision
rules of agents resulting from an intervention depends on whether the
intervention follows some familiar, established pattern (1981, 119–20). In
sum, large-scale interventions without recent precedents have the greatest
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potential to be structure-altering. Although this criterion is vague, it
nevertheless can distinguish some cases, for example, a large-scale irriga-
tion scheme versus a quarter-percent hike in interest rates. The welfare
reform example, discussed in section 8.3, also illustrates that this rough
criterion can be useful.

Suppose, then, that one is confronted with a contemplated intervention
that is likely to be structure-altering with regard to a mechanism at a
specific level of description. In this situation, the obvious thing to do is to
attempt to anticipate, on the basis of some more fundamental theory, the
potential changes in causal structure likely to be wrought by the inter-
vention (cf. Nagel 1961, 471; Lucas 1981, 124–26). In the case of social
phenomena, that more fundamental theory might be one that focuses on
individual interactions. The most fully developed theory of this sort is
based on the notion of rational choice, in the sense of maximizing
expected utility: changes in the mechanism can be anticipated by consid-
ering how rational actors would respond to the incentives created by the
new policy.3 This suggestion appears quite plausible in the Malaysian
example described above. Rational choice theory could predict that land-
owners would switch to combine-harvester machines in the double-
cropping regime that placed a higher premium on a quick harvest.

I think that there is some merit to the suggestion that changes to social
mechanisms resulting from policy interventions can sometimes be antici-
pated by rational choice theory. However, I also think that it is important
to recognize the significant limitations of rational choice in this regard.
Most apparently, it is questionable to what extent rational choice theory
provides an accurate representation of human decision making (cf. Kah-
neman, Slovic, and Tversky 1982; Gigerenzer 2000). Experimental results
concerning something known as ‘‘preference reversal’’ are particularly
relevant to the issue here. The claim that rational choice theory can be
used to predict changes to social mechanisms made by policy interven-
tions seems to rest on the following sort of reasoning (cf. Woodward 2000,
220). It is assumed that policy interventions function by changing the
information or incentives of agents. Then the claim is that an accurate
rational choice model would be invariant under any such intervention.
That is because such models presume that any changes to information or
incentives affect only agents’ beliefs or the consequences associated with
particular actions. Meanwhile, agents are assumed to possess stable
preferences that are independent of the decision task that reveals these
preferences. This assumption is sometimes called ‘‘procedure invariance’’
(Tversky et al. 1990, 204) or ‘‘context-free preferences’’ (Cubitt et al. 2004,
709). Given that one can model changes in incentive structure and
the manner in which agents accommodate new information, agents’
choices can be derived from their invariant, context-free preference rank-
ings.4 Thus, the argument concludes, an accurate rational choice model
will be invariant under any intervention that targets information or
incentives.
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The primary weakness of this argument is the assumption of proced-
ure-invariant, context-free preferences. This assumption has been called
into doubt by a tradition of experiments on preference reversals (cf.
Hausman 1992, chap. 13; Slovic 1995; Guala 2005, 91–108). Classic prefer-
ence reversal experiments offer subjects a choice between pairs of bets,
one that offers a small payoff with high probability and another that offers
a large payoff with low probability (cf. Slovic 1995, 365–66). After subjects
choose their bet, they are asked to provide a monetary valuation of each.
The surprising result is that among those who choose the high probability
bet, a substantial proportion gives a higher monetary valuation of the
low probability bet. That is, they choose the high probability bet but then
say that the low probability bet is worth more to them. Given the natural
assumption that people prefer more money to less, such experiments
seem to show that a subject’s preferences, far from being context-
independent, depend on how a choice or task is framed. Some economists
have attempted to make preference reversals go away in modified
versions of the experiment (cf. Grether and Plott 1979). Others have
endeavored to show that the preference reversals are not due to a failure
of procedure invariance but can be pinned on some less fundamental
assumption implicitly built into the experimental set up (cf. Holt 1986;
Segal 1988). However, preference reversals have proved to be an
extremely persistent phenomenon, and such attempts to explain them as
an experimental artifact have not been successful (cf. Tversky et al. 1990;
Camerer 1995, 658–65; Cubitt et al. 2004; Guala 2005, 121–28).

Thus, preference reversal experiments suggest that people often do not
have invariant, context-free preferences, but that preferences are fre-
quently constructed on the basis of considerations relevant to particular
situations (cf. Slovic 1995; Seidl 2002, 646). If this is correct, then prefer-
ences could be affected by changes in information and incentives, since
significant changes of these kinds might change the contexts in which
preferences are expressed. Thus, interventions affecting information and
incentives may change preferences, and without a good understanding of
how preferences are constructed in new circumstances, there is no way to
predict what the changes will be. However, generalizations about prefer-
ence reversal phenomena should be made with caution, since questions
remain about the relevance of preference reversal experiments to markets
and other contexts outside the laboratory walls. Difficulties involved
in extrapolating the results of preference reversal experiments will be
examined in section 8.3.3.

Even if rational choice theory were a completely accurate representa-
tion of human decision making, changes to social mechanisms resulting
from policy interventions would still often be difficult to anticipate. That
is because changes in social institutions often alter incentives in unex-
pected ways. Indeed, it is often difficult to accurately characterize the
incentives that an existing institution or policy presents to individuals.
Thus, even if we can assume that individuals obey rational choice theory,
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we may nevertheless be ignorant of the mechanisms. The difficulties
inherent in attempting to reconstruct a social mechanism from the incen-
tives faced by individuals in a specific social context are amply illustrated
by the welfare-reform example discussed in the next section.

Structure-altering interventions, then, are most likely to arise with
regard to large-scale, unprecedented policy interventions. Although ra-
tional choice theory may sometimes enable one to anticipate changes to a
social mechanism that will result from a policy intervention, there are
good reasons to suspect that this will often not be possible. Of course,
there may be some more adequate theory of human decision making that
can address this problem more effectively. But for now, structure-altering
interventions are a serious challenge in social science.

8.3 TWO CASE STUDIES

In this section, I examine two cases of extrapolation in social science. The
first example is the series of social experiments performed from the 1980s
to mid-1990s to assess proposals to change the emphasis of the U.S.
welfare system from cash entitlements to temporary assistance and fos-
tering entry into the workforce. This example provides fertile ground for
the question of whether mechanisms-based extrapolation is feasible in the
social sciences. In fact, the most politically influential methodology did
not emphasize mechanisms, focusing instead on randomized experi-
ments that endeavored to evaluate the effects of welfare-to-work pro-
grams (cf. Gueron and Pauly 1991; Friedlander and Burtless 1995).
Given these experimental results, extrapolation proceeded by simple
induction. However, this procedure was challenged by some social scien-
tists who advocated a more traditional econometric approach that endea-
vored to discover the structure of relationships among the various causes
of the outcomes of interest (cf. Manski and Garfinkel 1992). Given the
practical impossibility of performing experimental manipulations on any
but a few of the variables in such models, this approach invariably relies
on inferring causes from observational data.

In section 8.3.1, I propose that the disagreement between the advocates
of the structural and experimental approaches is clarified by amore careful
distinction between the challenges of (1) estimating a causal effect in
a given population and context and (2) extrapolating a causal effect from
one population or context to others. The advantages of a randomized
controlled experiment are relevant only to (1). Similarly, challenge
(2) would still exist even if the causal effect were correctly estimated by
nonexperimental means. In short, the dispute is less about the relative
merits of experimental and observational methods than about the useful-
ness of mechanisms for extrapolation in social science. Despite the genu-
ine obstacles to mechanisms-based extrapolation in the present context,
inquiries into social mechanisms can provide important qualitative infor-
mation regarding factors upon which the causal relationship is likely to
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depend. But such information alone is insufficient for mechanisms-based
extrapolation as described in chapters 5 and 6, and is best regarded
as providing reasons-to-suppose-otherwise that conscientious simple
induction must take into account.

The second case study returns to preference reversal experiments,
which were briefly discussed above in section 8.2.2. In this example,
there are at least two possible mechanisms that could explain the experi-
mental result, and these mechanisms differ about how pervasive prefer-
ence reversals are outside the laboratory. Hence, this case study illustrates
the simple point that utilizing a mechanisms approach to extrapolation in
social science requires greater certainty about mechanisms than often
currently exists. The purpose of these two case studies is not to suggest
that a mechanisms approach to extrapolation is misguided or unfruitful in
social science. Rather, the goal is to clarify the obstacles that must be
overcome if mechanisms-based extrapolation is to be useful there.

8.3.1 Extrapolation and Welfare Reform

Imagine that one wishes to evaluate the effectiveness of a welfare-to-work
pilot program without the aid of a randomized experiment. One would
likely proceed as follows. Suppose that the pilot program is to be imple-
mented at a particular site, wherein a certain number of welfare recipients
will participate. One would then search for some suitable comparison
group thought to be similar in many relevant respects but not participat-
ing in the program. If the two groups were exactly similar except for
participation in the pilot program among one and not the other, then the
effect the program on, say, earnings could be estimated by the difference
in average earnings during the evaluation period. Inevitably, however,
there would be differences in the composition of the two groups. The
challenge, then, is how to take these into account. The structural approach
proceeds by formulating a model that represents the relevant factors
influencing earnings and program participation among the groups in
question. If this can be done correctly, then the impact of the program
can be estimated from statistical data.

Formulating a model of causes of earnings and decisions to participate
in a welfare-to-work program requires that thought be given to social
processes involved in such things as a person’s employment prospects.
For example, constructing a model to represent causes of earnings would
involve consideration of the labor market in which individuals will be
searching for work, what characteristics contribute to success in that
market, and so on. As two commentators on this topic put it:

. . . structural evaluation is feasible if one is able to characterize the environ-
ment of interest andone understands the social processes atworkwell enough
to permit forecasting with confidence. (Manski and Garfinkel 1992, 11)

There is an obvious similarity between the social processes referred to in
this quotation and social mechanisms: both are structured interactions
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among agents that underlie macrolevel, statistical relationships. More-
over, these authors emphasize the importance of social processes for
extrapolation:

Extrapolation is possible if one is able to characterize the environment of
interest and if one understands the social processes that generate program
outcomes in this environment. (Ibid.)

The thought here is easy to grasp. The effectiveness of a welfare-to-work
program, for instance, depends upon the ability of program participants
to find work, and that in turn depends upon such things as the educa-
tional level of the participants and the local labor market. And since such
factors are likely to vary from one location to another and over time,
extrapolating the results of a pilot program by simple induction is prob-
lematic. There is, then, a close resemblance between the structural
approach to policy evaluation and the mechanisms approach: both insist
that attention to processes linking causes to effects is of utmost import-
ance to extrapolation.

But it is questionable whether structural approaches can reliably esti-
mate treatment effects. One objection is that there are typically several
models yielding distinct estimates, many of which differ significantly
from estimates from randomized experiments (cf. LaLonde 1986; Fraker
and Maynard 1987). Models rely on assumptions about such things as the
functional form of the relationships between causes and effect, upon the
probability distribution of the error terms, and upon whether the error
terms are independent. Since the accuracy of such assumptions is often
quite uncertain, it is often difficult to assess which model one should
choose. A response to such objections is that specification tests can be
performed to assess whether the assumptions in the model are accurate
(cf. Heckman and Hotz 1989). An example of such a test monitors the
matched groups for some time prior to the implementation of the pro-
gram to see if any significant differences in outcomes emerge. If not, the
model passes the specification test. However, some object that such spe-
cification tests depend upon questionable assumptions,5 and are not
always effective in weeding out models that generate inaccurate estimates
(Friedlander and Robins 1995). Moreover, some studies find that some
statistical methods intended to produce balanced comparison groups are
often ineffective at reducing bias, and sometimes significantly increase it
(Michalopoulos, Bloom, and Hill 2004). Others find that sophisticated
matching techniques do far less to reduce bias than simply selecting the
comparison group from an adjacent locality (ibid.; Friedlander and
Robins 1995).

Consider, then, how an evaluation of a welfare-to-work program
would proceed by means of a randomized controlled experiment. From
a sample of individuals eligible for the program, some would be ran-
domly selected to participate in it while the remainder would constitute
the controls barred from the program. Inevitably, some of those assigned
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to the programwould fail to participate in the activities associated with it.
Since restricting attention to the actual participants would undermine the
benefits of random assignment, these randomized experiments follow
what is known as the intent-to-treat methodology. All those assigned to
the program are counted among the experimental group whether they
participate or not (cf. Friedlander and Burtless 1995, 7). The intent-to-treat
methodology makes the variable whose impact is estimated not partici-
pation in the program but being officially required to do so. It is arguable
that this is not unreasonable, since official requirements are, after all, what
policymakers are able to control directly.

A striking feature of this approach is that it does not require that any
thought be given to mechanisms relating to employment and earnings of
welfare recipients. Likewise, it does not depend upon questionable mod-
eling assumptions, which is a very desirable feature. A related motivation
for randomization is that it significantly alleviates the concern that some
of the association between cause and effect may be due to the action of an
unmeasured common cause (cf. Friedlander and Burtless 1995, 7, 46).
These are genuine motivations for using randomized experiments to
estimate the impact of pilot welfare-to-work programs. Such consider-
ations were politically influential enough to find their way into a 1988 bill
allowing waivers to be granted to states to experiment with welfare-to-
work programs: these were to be evaluated by randomized controlled
experiments (cf. Manski and Garfinkel 1992, 1). Many of these experi-
ments were carried out by the Manpower Demonstration Research Cor-
poration (MDRC). The MDRC published several studies analyzing the
results of these experiments, particularly From Welfare to Work (Gueron
and Pauly 1991) and Five Years After: The Long-Term Effects of Welfare to
Work Programs (Friedlander and Burtless 1995). These studies formed a
major part of the relevant empirical evidence available to policymakers
prior to the 1996 change in the federal welfare program.

The advantages of randomized controlled experiments are relevant to
the issue labeled (1) above: the estimation of a causal effect in a population
in a particular context. However, the advantages cited in favor of ran-
domization do not pertain to (2), the challenge of extrapolating an esti-
mated causal effect from one population and context to another. The
advocates of the experimental approach in the case of welfare reform
explicitly note the distinction between estimating a causal effect in a
particular context and extrapolating that effect (cf. Gueron and Pauly
1991, 69–70). Nevertheless, they do not attempt to address extrapolation
by means of social mechanisms, which is not surprising, given that
knowledge of such mechanisms would be difficult to acquire from ex-
periments. Thus, to the extent that their studies license extrapolation, it is
only by means of simple induction. Let us consider what motivation there
might be for not pursuing a mechanisms approach to extrapolation.

The proposal that mechanisms be used as a basis for extrapolation
presumes that information concerning mechanisms can be reliably
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obtained and that the interventions contemplated will not be structure-
altering. Both of these premises are doubtful in the present context. My
concern with the welfare reform case is chiefly with the possibility that the
policy intervention in question would not be structure-altering. In section
8.2.2, I suggested that interventions that are both large-scale and without
recent precedents have the greatest potential to be structure-altering. A
nationwide, fundamental change in 1996 of welfare programs implemen-
ted in the late 1960s is a clear example of such an intervention. Thus, even
if reliable knowledge of relevant social mechanisms were present, it is
unclear how useful it would be as a basis for extrapolation. In such a
context, not relying on mechanisms to ground extrapolation might plaus-
ibly be regarded as a virtue. Extrapolating the overall effect of the reforms
from the experimental outcomes by simple induction could be reliable
even if the intervention were structure-altering, just so long as structures
were altered in the same manner in the experiment as in the full-scale
implementation of the program. If the selection of demonstration sites
were also representative of the nation as a whole, then one would have
good grounds for an extrapolation by simple induction.

Advocates of the structural approach, however, have argued that the
randomized experiment might alter structure differently than the full-
scale implementation of the program. James Heckman (1992) suggests
that randomization itself might alter the way in which the program is
implemented, thereby making the impact in the randomized experiment
an unreliable guide to the effect of the program when implemented. For
example, this ‘‘randomization bias’’ could arise from the need to expand
recruitment of potential program participants in order to achieve suffi-
ciently large experimental and control groups, thereby including ineli-
gible individuals in the program (Heckman 1992, 220–21). A related issue
concerns the intent-to-treat methodology employed in the experiments.
This procedure undermines extrapolation when rates of non-compliance
differ systematically between experiment and implementation of the
program. Other authors have noted that important scale effects of
the program might not be detectable in experiments evaluating pilot
programs. For instance, introducing large numbers of new, unskilled
workers into the labor force might make it more difficult for such workers
to find employment (Garfinkel, Manski, and Michalopoulos 1992). Yet
this ‘‘displacement effect’’ would be unlikely to be detected in a smaller-
scale demonstration of the program. The concern about scale effects
coincides with observation in section 8.1.2 that large-scale interventions
have greater potential to be structure-altering. Given this general rule, it
follows that smaller-scale demonstrations of social programs may fail to
have the structure-altering characteristics of a full-scale implementation.

There were also some reasons to doubt whether the sample of demon-
stration sites was indeed representative. Ideally, site selection would have
been randomized. However, this was not possible, since sites could not be
compelled to perform a randomized experiment to evaluate programs,
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and many refused to do so for ethical reasons (Hotz 1992, 110–11). The
sites that participated in randomized evaluations were those at which
officials were willing or could be induced through incentives to do so. Of
course, such a sample may fail to be representative. Similarly, the views of
those willing to take the time to respond to a survey might not accurately
reflect the general state of opinion in a population. In order to assess
whether the sample of demonstration sites was representative, one
would need to have some understanding of the factors relevant to the
effectiveness of the program and their regional distribution.

The concerns outlined in the two foregoing paragraphs raise legitimate
questions about extrapolation by simple induction from randomized
experiments in the present context. However, the manner in which the
issue is framed obscures the important difference between the task of
reliably estimating a causal effect in a given context and extrapolating a
causal effect. Proponents of the structural approach tend to present ex-
trapolation as the challenge of extending results from experiments to the
real world (cf. Manski and Garfinkel 1992, 14–17).6 Yet barring Heckman’s
concern about randomization bias and difficulties relating to the intent-
to-treat methodology, the challenges for extrapolation described in the
foregoing paragraphs arise whether pilot programs are evaluated by
observational studies or randomized experiments. The goal of the dem-
onstration evaluations was to provide guidance for policymakers regard-
ing the effects of implementing welfare reform on a national scale.
Regardless of how programs at specific sites are assessed, this involves
an inference from smaller to larger scales and from specific sites to the
nation generally.

In sum, the dispute between the advocates of the structural and ex-
perimental approaches to program evaluation is not ultimately about the
relative merits of observational studies and randomized experiments for
estimating causal effects. Let us suppose, not implausibly, that random-
ized experiments are indeed superior for this purpose. Even granting this,
the central issue that remains is whether the mechanisms-based approach
to extrapolation can be usefully employed in social science (and in this
context in particular) or whether one is better off relying on simple
induction. In the next subsection I consider whether mechanisms-based
extrapolation, as described in chapters 5 and 6, would have been feasible
in the welfare reform case.

8.3.2 Conscientious Simple Induction

Chapters 5 and 6 explained in detail howmechanisms-based extrapolation
can proceed, and illustrated the proposal by means of the aflatoxin ex-
ample. In this section, I explain how this approach to extrapolationwas not
likely to have been successful in the welfare reform case. However,
this does not entail that mechanisms were irrelevant to extrapolation,
since they were necessary for a conscientious and judicious use of simple
induction.
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A central question about any proposed change to the existing welfare
program was whether it would, in general, make those served by the old
system better or worse off. Hence, it is plausible to interpret the general-
ization of interest to extrapolation as a claim about positive causal rele-
vance. The demonstration experiments generally found positive, though
rather modest, impacts on income (cf. Friedlander and Burtless 1995). But
would these positive impacts extrapolate to a nationally implemented
program in potentially less favorable future economic circumstances?
The central question in this case, then, is similar to that in the aflatoxin
example, wherein the basic question was whether a carcinogenic effect in
an animal model could be extrapolated to humans. Recall that the ex-
trapolation in that case was analyzed into two general steps. First, a
mechanism through which AFB1 causes liver cancer was extrapolated
from rat to human via comparative process tracing. Next, given that
mechanism and some other circumstances plausible in that case—chiefly
positive consonance—the extrapolation theorem entailed that the claim
concerning positive relevance could be extended to humans. But it is
doubtful that either of these steps could proceed similarly in the welfare
reform example.

A mechanism found in one population might be significantly different
or entirely absent in another. The aim of comparative process tracing,
therefore, is to support the inference from the mechanism in the model to
the existence of a corresponding (although not necessarily identical)
mechanism in the target. This inference proceeded by comparing model
and target at stages in the mechanism at which significant differences
would likely be present; the greater the similarity at these stages, the
firmer the ground for extrapolating the mechanism. Hence, comparative
process tracing depends upon reliable background knowledge concern-
ing likely similarities and differences between the model and the target,
and a great deal of research in toxicology is consecrated to the acquisition
of such information. But carrying out process tracing in the welfare case
would run into several obstacles. Not only is it questionable that reliable
knowledge concerning likely similarities and differences is available in
this case, but it is also unclear how the comparison of stages would
proceed. In the aflatoxin example, one could study the metabolism of
AFB1 in rats and compare this with human metabolism of AFB1 by way of
in vitro studies involving cultures of liver cells or blood samples taken
from exposed individuals. In the welfare case, one is concerned about
extrapolating to larger scales as well as to locales in which some relevant
circumstances may differ. The simple problem here is that the operation
of a program can be examined only where it is implemented, so that it is
unclear that comparative process tracing can facilitate extrapolation to
new locations or larger scales.

It is also unlikely that the extrapolation theorem would be of much
use in the welfare example. One of the antecedent conditions of that
theorem is that the set of mechanisms from cause to effect is positively
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consonant. Roughly, this means that distinct combinations of mechan-
isms do not produce conflicting positive and negative effects. Although
it is a reasonable assumption in the aflatoxin example, positive conson-
ance is not at all plausible in the case of changes to welfare programs. It
is very probable that the new programs would exert a positive impact in
some ways and a negative impact in others, and it would be very
difficult to specify which of those conflicting impacts would be domin-
ant. Combining these concerns about the applicability of comparative
process tracing and the extrapolation theorem with the more general
difficulties of structure-altering interventions and reliable learning
mechanisms, the prospects of a thoroughgoing mechanisms approach
to extrapolation appear rather dim in the case of changes to welfare
programs.

However, this does not entail that mechanisms have no relevance to
extrapolation whatever in this case. Recall that simple induction was
restricted to ‘‘related populations’’ and qualified by a ‘‘so long as there
is no reason to suppose otherwise’’ clause. Even if a thoroughgoing
mechanisms approach to extrapolation is not possible in the welfare
example, examinations of mechanisms may nevertheless help to clarify
these aspects of simple induction. For example, it is obvious that the
ability of a program to move welfare recipients into stable employment
depends crucially upon the local demand for low-skilled labor. Moreover,
local labor markets vary significantly from one region to another, as well
as over time, in accordance with the business cycle. For example, studies
have found very different effects of welfare reform programs in rural and
urban contexts (Brown and Lichter 2004). It is also well established that
employment among low-skilled workers is more sensitive to the ups and
downs of the business cycle than among higher-skilled workers (Hoynes
2000). In addition, there is the possibility of a displacement effect. The
displacement effect refers to the consequences for the labor market of
introducing large numbers of new, low-skilled job seekers into the work-
force. Although unlikely to have much impact on the overall labor mar-
ket, this infusion of workers may adversely affect wages of less educated
women (Bartik 2000, 109). Thus, local supply and demand for low-skilled
labor influences the effectiveness of welfare-to-work programs, and the
displacement effect points out that the reforms themselves may alter local
labor markets to the detriment of those leaving welfare. These consider-
ations place significant limitations on extrapolation by simple induction,
and hence must be taken into account in any conscientious application of
that inferential strategy.

Neither the influence of local labor markets nor the displacement upon
the effectiveness of welfare-to-work programs can be studied by means of
randomized controlled experiments. Instead, these topics have been
examined by way of observational data analyzed by means of the struc-
tural approach described in section 8.3.1. Yet there is reason to think that
the primary concerns about social mechanisms as a basis for extrapolation
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do not undermine the general points described above regarding local
labor markets and the displacement effect. Those concerns were that
detailed, trustworthy knowledge of mechanisms is often unattainable
and that the intervention in question would be structure-altering. How-
ever, these concerns are certainly less acute with respect to the claim that
the effectiveness of a welfare-to-work program on earnings depends on
the local demand for labor. This claim is a simple consequence of the laws
of supply and demand, which is about as well established as anything in
social science and is unlikely to be altered by a welfare reform program.
The proposition that employment among low-skilled labors is more sen-
sitive to the fluctuations of the business cycle, though not a fundamental
economic principle, is nevertheless a consistently obtained result (Hoynes
2000, 25, 56–59). Moreover, there seems little reason to suppose that this
relationship would be significantly altered by welfare reform. Models
predicting the displacement effect do require assumptions regarding
some rather uncertain parameters, most importantly concerning the ex-
tent to which the infusion of low-skilled female workers would stimulate
economic growth and thereby increase demand for such laborers. How-
ever, the occurrence of the effect (though not its size) is stable under a
range of distinct modeling assumptions. According to Timothy Bartik, the
conclusion that the displacement effect is a consequence of welfare reform
‘‘can only be avoided if one is willing to assume a labor market that
quickly clears and has unusually large labor demand elasticities for less
educated women’’ (2000, 109).

The above discussion illustrates several points about how inquiries
concerning social mechanisms can be used to identify important factors
upon which a causal relationship depends even when accurate, detailed
knowledge of mechanisms is difficult to come by. First, the relevance of
some features, such as the local demand for low-skilled labor and
sensitivity to the business cycle, is readily derivable from firmly estab-
lished economic relationships that are unlikely to be altered by welfare
reform. The analysis of the displacement effect does depend upon as-
sumptions about difficult-to-estimate elasticities in the demand for low-
skilled female labor. But in this case, the displacement effect is robust
under a wide range of likely values of this parameter. Second, the
implications of the analyses for welfare reform are qualitative. Welfare-
to-work programs have a smaller positive impact on earnings in de-
pressed labor markets; large-scale reductions in welfare rolls will exert a
downward pressure on wages for less educated women. Any quantitative
estimate of the size of these effects would inevitably require debatable
assumptions of the sort described in section 8.3.1. Nevertheless, the
qualitative information about how the effects of the welfare reform
program are likely to vary according to local labor market conditions
and fluctuations in the business cycle has clear implications for
responsible policymaking.7
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8.3.3 Preference Reversals in the Real World

Experiments concerning preference reversals are one of the examples
used by Guala to illustrate methodological problems relating to extrapo-
lation. Guala writes:

Economists nowadays generally agree that PRs [preference reversals] are a
real laboratory phenomenon rather than amere illusion of the instruments of
observation. The secondphase of research beganwhen experimenters turned
their attention to the robustness of reversals outside the laboratory. (2005, 225)

In this section, I examine this extrapolation problem from the perspective
of the mechanisms approach proposed here. Unlike the welfare reform
example, questions about the extrapolation of results of preference rever-
sal experiments are not tied to an unprecedented, large-scale policy
intervention. Thus structure-altering interventions are a less acute prob-
lem in the preference reversal than in the welfare reform case. The pri-
mary challenge confronting the extrapolation of the results of preference
reversal experiments is uncertainty about the explanation of those results.
Some plausible mechanisms suggest that preference reversals are wide-
spread in real life contexts, while others suggest that preference reversals
are far more limited. I illustrate this point by reference to two possible
explanations of preference reversals.

Recall that ‘‘preference reversal’’ refers to the following sort of situ-
ation. A subject is asked to consider a pair of bets: one that has a high
probability of a small payoff (the P-bet) and another that has a low
probability of a high payoff (the $-bet). The subject is asked to choose
one of the pair, and then to provide a monetary valuation of each. A
preference reversal is said to occur if the bet not chosen is given a higher
monetary valuation than the one that was chosen. The ‘‘expected’’ or
‘‘predicted’’ preference reversal occurs when the subject chooses the
P-bet but gives a higher monetary valuation to the $-bet. It is important
to notice that, without further elaboration, such an outcome is not neces-
sarily anomalous or even particularly surprising. For example, it is hardly
news that a merchant might overprice her goods in the hopes of garnering
additional profits. Hence, if the subject were actually selling a bet on the
market, it might be rational for her to strategically overprice it.

A number of procedures have been designed to avoid such strategic
pricing effects. The most commonly utilized method in preference rever-
sal experiments is what is known as the Becker-DeGroot-Marschak
(BDM) elicitation method. The BDM elicitation method works in the
following manner (cf. Roth 1995, 19–20). The subject is given a lottery
(e.g., the $-bet) and asked the price at which she would be willing to sell it,
on the following conditions:

(1) The asking price a will be compared with a randomly generated
buying price b;
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(2) If b $ a, then the subject exchanges the lottery for b;
(3) If a> b, then the subject keeps and immediately plays the lottery.

The rationale for the BDM elicitation method is characterized by Alvin
Roth as follows:

It is not hard to see that the dominant strategy for a utility maximizer faced
with such a mechanism is to state his true selling price (i.e., the price that
makes him indifferent between keeping the lottery and selling it). (1995, 20)

To see the reasoning here, let p represent the subject’s true selling price.
Suppose that the subject chooses an asking price a strictly greater than
p. But then if a > b > p, the subject forgoes the opportunity for an
advantageous exchange. Suppose then that the subject sets a < p. Then
if p > b > a, the subject must sell the lottery for less than its value to her.
Thus, the subject should set a ¼ p, that is, her asking price should reveal
her true selling price. Notice that it is important that the buying price b is
randomly generated. This means that the asking price has no effect on
howmuch the buyer will offer to pay, something that is usually not true in
real markets. Moreover, the subject is not allowed to search for further
buyers if the initial buying price is not to her liking. In contrast, a real-life
merchant may continue to search for other buyers if initial offers do not
meet the price she demands.

Much of the initial response to preference reversal experiments con-
sisted of ingenious proposals about how the BDM elicitation method itself
might be responsible for the effect. However, since the results of prefer-
ence reversal experiments were subsequently replicated with a variety of
elicitation methods, such explanations of the preference reversal experi-
ment are no longer regarded as very promising (Seidl 2002, 634). Accord-
ing to a different explanation proposed by Amos Tversky, Paul Slovic,
and Daniel Kahneman, ‘‘The primary cause of PR [preference reversal] is
the failure of procedure invariance, especially the overpricing of low-
probability, high-payoff bets’’ (1990, 204). Procedure invariance ‘‘requires
strategically equivalent methods of elicitation to yield the same prefer-
ence order’’ (ibid.). Thus, in the context of the experiment, the choice
between the P-bet and the $-bet is strategically equivalent to providing a
monetary valuation (or monetary ranking) of the bets. In such a context, to
choose one bet while giving a higher monetary valuation to the other is a
violation of procedure invariance. Both of the explanations that I consider
associate preference reversals with failures of procedure invariance,
but they differ about how widely the phenomenon should be expected
outside the laboratory walls.

The first explanation I will discuss is the one proposed by Tversky,
Slovic, and Kahneman, namely, that preference reversals are due to scale
compatibility (1990, 211). In general, scale compatibility is the hypothesis
that ‘‘the weight of any aspect (for example, probability, payoff) of an
object of evaluation is enhanced by compatibility with the response (for
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example, choice, pricing)’’ (ibid.). Thus, when choosing between the P-bet
and the $-bet, subjects focus on the probability, and accordingly take the
P-bet. But when asked to provide a monetary valuation, subjects focus on
the monetary scale, and hence rank the $-bet more highly. If this explan-
ation is correct, then preference reversals certainly cannot be dismissed as
some oddity of the laboratory with no relevance to real life. Preferences
are expressed in various ways, of which overt choices and prices are
merely two common examples. Thus, if preference orderings are indeed
so closely linked to the scale on which the options must be ranked, then
preference reversals should be a prevalent feature of everyday life.

But scale compatibility is not the only possible explanation of prefer-
ence reversals. Consider a person in a preference reversal experiment. If
the person is risk-averse, then she will choose the P-bet when given the
choice of playing one or the other. But now consider this question: Which
bet has a higher monetary value? The subject might naturally interpret
this question as a request for an estimate of the market value of each bet.
Indeed, outside the laboratory walls, questions about prices normally are
requests for information about market rather than personal value. For
concreteness, suppose that the P-bet gives a 99 percent chance of winning
$10, while the $-bet gives a 0.099 percent chance of winning $10,000.
While it is obvious that no one will pay more than $10 for the P-bet, it is
likely that some risk-seeking individuals will agree to pay more than $10
for the $-bet. Hence, in a real market, a seller can expect to obtain a higher
price for the $-bet than for the P-bet. Consequently, it is understandable
that the subject might give a higher monetary valuation for the $-bet, even
if she would play the P-bet when given a choice between the two.

The possibility that this simple insight might explain preference re-
versals is developed in a paper by Xiaoyong Chai (2005). Let us use the
expression ‘‘market price reversal’’ to refer to the hypothesis that subjects
in preference reversal experiments often interpret questions about the
prices of bets as questions about their market value. Market price reversal
can explain a puzzling aspect of the data found from some of the earliest
experiments. It turns out that expected preference reversals are far more
common when subjects are asked to specify a selling price rather than a
buying price (cf. Seidl 2002, 622–23), a result that Chai replicates (2005,
190). A question about the selling price is very likely to be interpreted as a
question about market value, whereas a question about buying price is
more likely to suggest an assessment of personal value to the subject.
Moreover, as Chai observes, a prospective buyer of the $-bet might hope
to find a risk-averse person who possesses it and who is willing to sell it
for less than its expected value (2005, 182). Consequently, market prefer-
ence reversal predicts that ‘‘unexpected’’ preference reversals (in which
the subject chooses the $-bet but prices the P-bet higher) should be more
common when a buying rather than a selling price is asked for, which is
indeed correct (Seidl 2002, 623; Chai 2005, 191). In contrast, the scale
compatibility hypothesis does not explain why the frequency of expected
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and unexpected preference reversals is linked to whether a selling or a
buying price is requested. For posing a question about price in terms
of selling rather than buying does not change the scale on which the
valuation is made.

The primary objection to the market price reversal hypothesis is that
elicitation procedures like BDM are designed precisely for the purpose of
eliminating market-based considerations. A utility-maximizing subject
will, in response to the BDM procedure, give her own true price of the
lottery, rather than an estimate of its market price. And indeed, the rate of
expected preference reversals is significantly less in the BDM elicitation
method than when subjects are merely asked to specify a selling price (cf.
Seidl 2002, 623). However, there are several reasons why BDM and other
such elicitation methods might not eliminate market pricing effects. The
first is simply that many subjects may not appreciate the strategic impli-
cations of the BDM procedure. The subject is required to quickly learn the
new rules of the game played in the experiment, andmay not have time to
carefully devise an optimal strategy in response to them. Under such
circumstances, a subject might follow a heuristic that works reasonably
well in a real-world context that appears similar to the experimental
situation. Thus, many subjects may still propose selling prices that are
estimates of market values. Moreover, as Chai observes, in the BDM
procedure ‘‘the absence of a human buyer is unverifiable to the subjects’’
(2005, 185). That means that the independence between posted selling
price and offered buying price is not something that the subject can
directly verify herself. In light of this, Chai modifies the BDMmechanism
so that the buying price offered is present as physical money in a sealed
envelope placed before the subject (2005, 186–87). The subject, therefore,
can easily see that what selling price she posts has no effect on what
buying price is offered. Chai found that the difference in relative fre-
quency between expected and unexpected preference reversals was not
statistically significant when the envelope method was used (2005, 191).

Market price reversal, therefore, attributes preference reversals to a
systematic difference between real markets and experimental circumstan-
ces. In real markets it is normally the case that (a) sellers are free to search
out buyers (and vice versa) and (b) the posted selling price is not inde-
pendent of the buying price offered. Under these circumstances, choosing
between options is not strategically equivalent to specifying prices for
them. In contrast, neither (a) nor (b) obtains in the experimental context,
and choosing and pricing are strategically equivalent. According to
the market price reversal hypothesis, then, preference reversals in ex-
periments can in fact be regarded as violation of procedure invariance,
since subjects do give conflicting rankings to strategically equivalent
options. But that result does not entail that violations of procedure
invariance are widespread in economic or other social contexts. For if
market price reversal is the correct explanation, these experiments show
only that it is possible to trick people with decision scenarios that differ
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strategically from the situations in ordinary life that they superficially
resemble.

At present it remains an open question whether scale compatibility or
market price reversal is the better explanation of the results of preference
reversal experiments. The pertinent point for the purposes of this book is
that the extent to which these results can be extrapolated outside of the
laboratory depends crucially on which explanation is correct. Of course,
that conclusion should hardly be surprising from the perspective of a
mechanisms approach to extrapolation. If extrapolation relies on infor-
mation about mechanisms, then what can be extrapolated may depend on
what the relevant mechanisms are.

8.4 CONCLUSION

In this chapter, I have inquired into the prospects of utilizing mechan-
isms-based extrapolation in social science by reference to a pair of
extended case studies. These case studies illustrated two central chal-
lenges to this extension of methodology, which have to do with the
difficulty of obtaining reliable information concerning social mechanisms
and the potential that interventions will be structure-altering. The poten-
tial for interventions to be structure-altering is prominent in the welfare
reform example, wherein one wished to extrapolate the impact of a large-
scale policy reform on the basis of pilot experiments. I argued that mech-
anism-based extrapolation along the lines of the aflatoxin example was
unlikely to have been feasible in this instance. Nevertheless, inquiries into
social mechanisms are helpful in the welfare reform case insofar as they
provide information needed for a conscientious application of simple
induction. The case study concerning preference reversals highlighted a
second challenge for mechanisms-based extrapolation in social science,
namely, uncertainty about the operative mechanisms. In that example,
one plausible mechanism suggests that preference reversals are wide-
spread outside the laboratory, while another suggests that they are
more limited. In the next chapter, I further explore the discovery of social
mechanisms and its relation to causal inference more generally.
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9

Social Mechanisms and Process Tracing

The examples discussed in the previous chapter illustrated that uncer-
tainty about mechanisms is a central challenge for a mechanisms ap-
proach to extrapolation in social science. The discovery of mechanisms
is part of the broader issue of causal inference, but at the same time
several authors have maintained that examining social mechanisms can
significantly ameliorate the challenges confronting causal inference in
social science (Elster 1983, 47–48; Little 1991, 24–25; Hedström and Swed-
berg 1998, 9). The discovery of social mechanisms, therefore, can be
properly addressed only in the context of causal inference in social science
more generally. Claims about the importance of mechanisms for causal
inference rest on the observation that in social science, it is often impos-
sible to discern the correct causal hypotheses on the basis of statistical
data alone. Thus, process tracing, a method specifically devised for the
discovery of mechanisms, is sometimes advanced as an additional means
for narrowing the set of possible causal explanations (cf. George and
Bennet 2005, 214–15, 223). But it is far from clear that process tracing
differs from causal inference from statistical data in any significant way,
and if so, just how. For a mechanism is more than a collection of contigu-
ous objects: a mechanism essentially involves a pattern of causal inter-
actions. And how is one to distinguish causal interaction from mere
physical contiguity except by reference to statistical regularities? In this
chapter, I develop an account of process tracing that addresses these
concerns.

I begin by explaining the challenge for causal inference from observa-
tional data. Next, I critically examine accounts concerning the manner in
which mechanisms allegedly assist causal inference in social science. It is
sometimes asserted that reliable causal inference in social science is im-
possible without knowledge of mechanisms, a proposition that Kincaid
(1996, chap. 5) has disputed. Although I agree with Kincaid in rejecting
the claim that mechanisms are always required for causal inference in
social science, I also maintain that the proposal can be made independ-
ently of that proposition. On the interpretation I suggest, the account of
how mechanisms assist causal inference in social science has a positive
and a negative aspect. On the positive side, we can infer that X is a cause
of Y if we know that there is a mechanism through which X influences Y.
The negative flip side is that if no plausible mechanism running from X to
Y can be conceived of, then it is safe to conclude that X does not cause Y.
As I explain, neither of these two theses entails that mechanisms are
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necessary for causal inference in social science, and consequently they are
not undermined by the criticisms raised by Kincaid. Nevertheless, I argue
that this account of how mechanisms assist causal inference in social
science is not successful as it stands. The positive account is not helpful
unless some explanation is given of how it is possible to learn about social
mechanisms despite the challenges for causal inference from observa-
tional data. Yet no such explanation has hitherto been provided. On the
other hand, the effectiveness of the negative side is undermined by
the ease of imagining mechanisms connecting nearly any two variables
representing aspects of social phenomena.

I provide an analysis of process tracing that aims to shore up the
positive side of the argument. It is sometimes claimed that process tracing
is fundamentally distinct from causal inference from statistical data (cf.
George and Bennett 2005, 207). However, the appropriate contrast with
process tracing is not inference from statistical data, but rather what I call
direct causal inference. Suppose one wishes to learn the causal relationships
among a set of variables that represent macrofeatures of a complex
system, for instance, the impact of federal deficits on interest rates and
economic growth. One strategy is to collect a large sample of statistical
data concerning these variables; given these data, one attempts to draw
conclusions about the causal relationships among them. In contrast, pro-
cess tracing attempts to use knowledge of causal generalizations about the
system’s components together with information concerning their config-
uration to infer mechanisms relating macrolevel variables. Process tra-
cing, then, presumes that the macrobehavior of the system can be
reconstructed from interactions of its parts and that causal knowledge
about the components may be more directly accessible than about macro-
features of the system. On this account, process tracing is not separate
from inference from statistical data, since statistical data are needed to
discover causal generalizations concerning the mechanism components.
Nevertheless, process tracing may be able to produce results when direct
causal inference alone is unable to yield informative conclusions.

9.1 CONFOUNDERS AND INSTRUMENTAL VARIABLES

A great deal of social science involves collecting statistical data relevant
to some phenomena of interest (e.g., through government records or
surveys) and performing tests to decide whether pairs of variables are
probabilistically dependent conditional on sets of other variables. In some
cases, the purpose of such inquiries might be solely to identify factors
that can serve as useful forecasting tools, but often the goal is to dis-
cover what variables cause which others. In the social sciences, this leads
to the thorny problem of making causal inferences without the aid of
experiment. The obstacle to such inferences is that there are often several
possible causal hypotheses capable of explaining the statistical data.
In particular, without experiment a probabilistic dependence between
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two variables might be explained either by one variable being a cause
of the other or by the existence of a common cause of both. We can call
this the problem of confounders, where the term ‘‘confounders’’ refers
to common causes, often unmeasured, that might explain an observed
correlation.

There are several proposals concerning how one can reliably learn
causal relationships from statistical data even when unmeasured com-
mon causes may be present. Such proposals identify a specific set of
favorable conditions in which causal structure may be reliably inferred
from statistical data, the problem of confounders notwithstanding. The
question concerning such proposals is twofold. First, how commonly do
the favorable circumstances specified by the method occur? Second, how
could one know whether those circumstances obtained in a given case?
The first question asks how useful the method can be in general, while the
second asks how the method’s suitability in a particular instance can be
assessed. A comprehensive survey of methods of causal inference from
observational studies is obviously far beyond the scope of this chapter.
I consider one example that illustrates the issues, namely, the method of
instrumental variables.

One important issue in discussions of causal inference concerns prem-
ises linking causation and things that serve as evidence for it. If the
evidence consists of statistical data, then these premises primarily con-
cern the relationship between probability and causality. That is, one
estimates probabilities from statistical data and then draws inferences
about causal relationships from the probabilities. One of the most import-
ant principles relating probabilities and causation is the causal Markov
condition (CMC). The CMC asserts that, conditional on its direct causes, a
variable is probabilistically independent of any set of other variables that
does not include any of its effects. We encountered the CMC in section
4.4.1 when discussing the disruption principle. As noted there, an import-
ant consequence of the CMC is the ‘‘screening-off’’ rule. In the graph on
the left in Figure 9.1, X and Y are related only as effects of the common
cause Z. Thus, the CMC entails that X and Y are probabilistically inde-
pendent, conditional on Z in the graph on the left, and likewise in the
graph on the right. The CMC also entails the principle of the common
cause, which asserts that if X and Y are probabilistically dependent, then
X is a cause of Y, Y a cause ofX, or there is a common cause of the two. For
example, the CMC entails that X and Y are probabilistically independent
in the graph in Figure 9.2.

However, the CMC does not entail that X and Y are independent
conditional on Z in Figure 9.2. In general, conditioning on a collider

X Z YYZX

Figure 9.1 An illustration of the causal Markov condition
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(that is, a node with two arrows pointing into it) or an effect of a collider
may induce probabilistic dependence where it would otherwise be ab-
sent. To see intuitively why this should be so, suppose that X indicates the
quantity of gasoline in your car’s tank; Y, whether the battery is charged;
and Z,whether your car starts. Without knowing anything about Z,X and
Y are independent. However, suppose that your car does not start. In this
situation, the information that there is gas in the tank suggests that the
battery is likely the culprit.1 There is a graphical concept called d-separ-
ation that enables one to read off the independence relationships entailed
by the CMC from any directed acyclic graph. (D-separation is explained
in the Appendix, and may be helpful for understanding some of the
ensuing discussion.)

The motivation for the CMC is that it is true of any acyclic causal
system with independent error or disturbances (Steel 2005). The second
of these conditions—independent error terms—is of the greatest concern
for our purposes. Typically, it is not satisfied for sets of variables that one
actually measures in an observational study, owing to the existence of
unmeasured common causes. Thus, the CMC would generally be in-
voked in the following way: the causal structure relating the measured
variables can be embedded in a more extensive structure that satisfies the
CMC. This assumption entails, for instance, that any probabilistic de-
pendence among measured variables not arising from causal connections
among themselves indicates the presence of an unmeasured common
cause.

A second important principle relating probability and causality is the
faithfulness condition (FC), which asserts that the only probabilistic inde-
pendence relationships in acyclic causal structures are those entailed by
the CMC. For instance, the FC entails that X and Y are probabilistically
dependent in each graph in Figure 9.1, and that X and Y are probabilis-
tically dependent, conditional on Z in the graph in Figure 9.2. The
grounds for the FC were discussed in section 4.4.2. The CMC and FC
are rarely explicitly stated in scientific research, but they are pervasively
assumed. For example, in observational studies it is standard practice to
statistically control (e.g., by linear regression) for possible common causes
of a pair of variables of interest. The residual correlation is then tentatively
attributed to the direct influence of the suspected cause. Clearly, such a
procedure assumes the screening-off rule illustrated in Figure 9.1. Simi-
larly, the FC is implicit in nearly any study claiming that there is ‘‘no link’’
between a certain pair of pair variables. That is, such studies typically
report that no statistically significant association was found among a pair
of variables, and thus conclude that neither is a cause of the other.

YZX

Figure 9.2 A collider
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The CMC and FC are also implicit in the method of instrumental
variables. Suppose that one wishes to assess the effect of X upon Y, but
suspects that unmeasured common causes are present. In that case, the
effect of X upon Y cannot be directly inferred from the probabilistic
dependence between them, since some or even all of that dependence
might be due to the confounders. However, suppose it is known that the
variable Z is a cause of X but otherwise unrelated to Y, as in the two
graphs in Figure 9.3. The variable U represents unmeasured common
causes of X and Y (squares indicate measured variables; circles, unmeas-
ured ones). Both graphs predict a probabilistic dependence between X
and Y, but the presence of Z makes it possible to distinguish between
these two alternatives by means of statistical data. If graph (A) is correct,
then it follows from the CMC that Z and Y are independent. In contrast, if
graph (B) is right, then the FC entails that Z and Y are probabilistically
dependent.

In the above example, Z is an instrumental variable with respect to X
and Y. The concept of an instrumental variable can be defined as follows.
Let us say that Z is exogenous with respect toX and Y just in case Z is neither
an effect of nor shares a common cause with either of these two variables.
Then Z is an instrumental variable with respect to X and Y exactly if (1) Z
is a cause of X, (2) Z is exogenous with respect to X and Y, and (3) any
directed path from Z to Y passes through X. Condition (3) is sometimes
called the exclusion restriction (Angrist, Imbens, and Rubin 1996, 447;
Rosenbaum 2002, 181). In the two graphs in Figure 9.4, Z fails conditions
(2) and (3), respectively. In graph (A), there is a common cause of Z and Y,
and hence Z is not exogenous. In graph (B), there is a directed path from Z
to Y that does not pass through X (namely, Z ! U ! Y), so Z fails the

(A) (B)

Z

X Y

U Z

X Y

U

Figure 9.3 An instrument variable

(A) (B)

Z

X Y

UZ

X Y

U

Figure 9.4 Not an instrument variable

178 Across the Boundaries



exclusion restriction. Given the FC, both graphs predict that Z and Y are
probabilistically dependent, despite the fact that X is a cause of Y in
neither. Consequently, a probabilistic dependence between Z and Y
does not show that X is a cause of Y if either condition (2) or (3) fails.

The presence of an instrumental variable, therefore, is an example of a
favorable circumstance that facilitates causal inference from statistical
data. Indeed, under appropriate conditions, the covariance between Z
and Y divided by the covariance between Z andX is a consistent estimator
of the impact of X upon Y.2 But the difficulty lies in establishing a bona
fide instrumental variable. Uncertainty about the exclusion restriction is
the most significant problem in this regard.

One common application of the method of instrumental variables
occurs in randomized experiments with non-compliance. Recall that in
the experiments designed to evaluate welfare-to-work programs, not all
those assigned to participate in the program actually did so. Nevertheless,
assignment might be an instrumental variable with respect to program
participation and income. Assignment to the program is clearly a cause of
participation in it, and assignment is exogenous thanks to randomization.
However, the exclusion restriction is more problematic. For example,
recipients might interpret assignment to the program as an indication
that their benefits will soon be terminated, and this perception might
stimulate them to search more actively for employment.

In a double-blind randomized experiment, the exclusion restriction
is on much firmer ground. For instance, a placebo ensures that any
psychological impact resulting directly from treatment assignment is
distributed equally among control and experimental groups. But when
double-blinds are absent, as is the case in welfare-to-work experiments,
the exclusion restriction is often uncertain. Concerns about the exclusion
restriction are also prominent in examples of putative instrumental vari-
ables outside of randomized experiments. One well-known alleged in-
strumental variable is draft number with respect to military service in
Vietnam and subsequent income. Since Vietnam era draft numbers were
assigned randomly, they satisfy items (1) and (2) of the definition of an
instrumental variable, but the exclusion restriction is again uncertain
(cf. Angrist, Imbens, and Rubin 1996, 452). For instance, since draft
deferments could be obtained by attending university, it is plausible
that draft number might influence the choice to attend college, and
hence earnings (cf. Angrist 1990, 330).

Is there, then, any statistical test for whether a putative instrumental
variable Z satisfies the exclusion restriction with regard to a pair of
variables X and Y? One approach is to provide data against particular
hypotheses about how the alleged instrumental variable might fail the
exclusion restriction (cf. Angrist 1990, 330; Angrist and Krueger 1992,
334–35). The problem with this strategy is that it is difficult to know
whether all of the ways the exclusion restriction could fail have been
considered. A different suggestion is that if Z is a genuine instrumental
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variable, then it should be independent of Y, conditional on X and meas-
ured causes of Y (cf. Heckman 1996, 460). To see the idea, consider the two
graphs in Figure 9.5. In graph (B), Z is an instrumental variable with
respect to X and Y, but not in graph (A), owing to the arrow from Z to
Y, which violates the exclusion restriction. However, given the CMC and
the FC, these two graphs make differing predictions about conditional
probabilities. Since X is a cause of Y, both graphs predict that Z and Y are
probabilistically dependent. Moreover, both predict that Z and Y are
dependent conditional on X. This is because X is a collider on the path
Z ! X  C ! Y, and hence conditioning on it induces probabilistic
dependence, as noted with regard to Figure 9.2. However, conditional
on both X and C, graph (A) predicts that Z and Y are probabilistically
dependent, while graph (B) predicts the opposite. Thus, it seems that the
exclusion restriction should be accepted if Z and Y are independent,
conditional on X and C, and rejected otherwise.

Unfortunately, there is a serious problem with this test. In particular, a
genuine instrumental variable can be expected to fail the test when there
is an unmeasured common cause of X and Y. To see why, consider the
DAG in Figure 9.6. Owing to the path Z!X U! Y, this graph predicts
that Z and Y are probabilistically dependent conditional on X and C
(recall that conditioning on colliders induces probabilistic dependence,
as explained with regard to Figure 9.2). Nevertheless, Z is an instrumental
variable with regard to X and Y. Thus, the problem of confounders is a
significant obstacle for causal inference from statistical data without
experiment. When unmeasured common causes are present, association
and conditional association are unreliable indicators of causal influence.

(A) (B)

Z

X Y

C

Z

X Y

C

Figure 9.5 Testing the exclusion restriction

Z

X Y

C

U

Figure 9.6 An instrument variable that fails the test
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Moreover, the presence of unmeasured common causes makes it very
difficult to decide whether a putative instrumental variable satisfies the
exclusion restriction.

9.2 MECHANISMS TO THE RESCUE?

Advocates of social mechanisms are motivated in large measure by con-
cern about the problem of confounders, a difficulty sometimes referred to
as ‘‘spurious correlation’’ (cf. Elster 1983, 47). Mechanisms are sometimes
advanced as the basis of a partial solution of this problem. For example,
according to Daniel Little:

We can best exclude the possibility of a spurious correlation between
variables by forming a hypothesis about the mechanisms at work in the
circumstances. If we conclude that there is no plausible mechanism linking
nicotine stains to lung cancer, then we can also conclude that the observed
correlation is spurious. (1991, 24–25)

The argument in this passage rests upon the following principle:

(M) X is a cause of Y if and only if there is a mechanism from X to Y.3

Clearly, (M) is not intended as a universally true principle regarding
causality, since there is presumably some ‘‘rock bottom’’ level of phys-
ical causation below which no mechanisms lie. Thus, (M) should
be understood as being restricted to complex systems composed of
multiple, interacting components, for instance, an organism or a soci-
ety. In effect, (M) amounts to the claim that mechanisms are equivalent
to causal structure. Although a very natural assumption, this identifi-
cation is by no means self-evident, as discussions in chapters 3 and
8 show.

Given (M), if there is a mechanism from X to Y, then X is a cause of Y.
Conversely, if there is no mechanism from X to Y, then X is not a cause of
Y, regardless of any statistical association between them. The latter of
these two corollaries of (M) is illustrated by Little’s example about nico-
tine stains and lung cancer. Peter Hedström and Richard Swedberg make
the same point with a different example:

Some epidemiological studies have found an empirical association between
exposure to electromagnetic fields and childhood leukemia. However, the
weight of these empirical results is severely reduced by the fact that there
exists no known biological mechanism that can explain how low-frequency
magnetic fields could possibly induce cancer. . . . The lack of a plausible
mechanism increases the likelihood that the weak and rather unsystematic
empirical evidence reported in this epidemiological literature simply
reflects unmeasured confounding factors rather than a genuine cause
relationship. (1998, 9)

Jon Elster (1983, 47–48) provides a similar example, though with a slight
twist that we will consider below.
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9.2.1 Kincaid’s Objections

Although the proposal just outlined maintains that inquiries into social
mechanisms can significantly ameliorate the problem of confounders, it
did not assert that they are the only means for resolving this problem.
However, that claim is sometimes made in close association with the
argument described above. For example, according to Little, ‘‘It is only
on the basis of hypotheses about underlying causal mechanisms that
social scientists will be able to use empirical evidence to establish causal
connections’’ (1995a, 53–54; italics added). Kincaid raises two objections
to the claim that causal inference is possible in social science only when a
mechanism has been identified (1996, 179–82). The first of these objections
takes the form of a reductio ad absurdum.

In Kincaid’s discussion, the proposition at issue is that ‘‘we need to
identify individualist mechanisms to confirm causal relations between
social variables’’ (1996, 179).4 Let us formulate this proposition in the
following way:

(M*) One knows that X is a cause of Y only if at least one mechanism
from X to Y can be identified.

Kincaid’s reductio ad absurdum then proceeds as follows. Suppose that
a mechanism relating two macrolevel social variables is demanded to
support the claim that one of the variables is a cause of the other.

Do we need it at the small-group level or the individual level? If the latter,
why stop there? We can, for example, always ask what mechanism brings
about individual behavior. So we are off to find neurological mechanisms,
then biochemical, and so on. (Ibid.)

Given (M*), therefore, demands for mechanisms can be pressed all the
way down to fundamental physics, yielding the absurd result that no
causal claim can be established unless such impossible amounts of detail
are provided.5

One might try to defend (M*) from such objections by maintaining that
it is intended to apply only to fields in which controlled experiment is not
possible and not all common causes can be measured (Little 1998, 10–12).
Since controlled experiments are routine in such fields as psychology,
neuroscience, and molecular biology, Kincaid’s reductio ad absurdum
would be blocked. Although there is some merit to this response to
Kincaid’s reductio ad absurdum, (M*) is nevertheless quite problematic.
For example, it is sometimes possible to perform good randomized, con-
trolled experiments in social science, and it is sometimes the case that one
has a bona fide instrumental variable (cf. Angrist and Krueger 1991, 1992).
Thus, it is better to simply agree with Kincaid that (M*) is false, but to
point out that it is not required for the proposal described in the foregoing
section. That proposal rested on the proposition (M), which stated that X
is a cause of Y if and only if there is a mechanism fromX to Y. The target of
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Kincaid’s reductio ad absurdum, meanwhile, is (M*). But does (M) entail
(M*)? Defenders of mechanisms in social science sometimes seem to
presume that it does. Consider the following statement by Little:

I maintain that the central idea of causal ascription is the idea of a causal
mechanism: to assert that A causes B is to assert that A in the context of
typical causal fields brings about B through a specific mechanism (or in-
creases the probability of the occurrence of B). This may be called ‘‘causal
realism,’’ since it rests on the assumption that there are real causal powers
underlying causal relations. This approach places central focus on the idea
of a causal mechanism: to identify a causal relation between two kinds of events or
conditions, we need to identify the typical causal mechanisms through which the
first kind brings about the second. (1995, 34; italics added)

Notice that the first sentence in this quotation is a statement of (M): there
is a causal relationship just in case there is an underlying mechanism. In
contrast, the italicized sentence is a statement of (M*): mechanisms must
be identified before we can claim to know that one variable is a cause of
another. However, (M) does not entail (M*).

To see the point, imagine a person who accepts (M) but also regards
randomized controlled experiments as a reliable means of learning about
cause and effect. Suppose that a randomized controlled experiment
establishes that X is a cause of Y. Then the person concludes from (M)
that there is a mechanism from X to Y. Nevertheless, the person may not
be able to identify any mechanism from X to Y; in short, she knows that
there is a mechanism, but not what this mechanism is. Therefore, such a
person would not be committed to the proposition that is the basis of
Kincaid’s reductio ad absurdum, that is, she would not be committed to
(M*). Her inability to identify a mechanism is compatible with her know-
ledge that there is a mechanism and, hence, with her knowledge of a
causal relationship. In general, one can consistently accept (M) while
rejecting (M*) by holding, reasonably enough, that tracing mechanisms
is not the only possible way to learn about cause and effect.

Kincaid’s second objection to (M*) is that there are ways of distinguish-
ing between cause and mere correlation available to social scientists that
have nothing to do with mechanisms, particularly by conditioning on
potential confounders (1996, 179–80). As the discussion of instrumental
variables illustrated, there are indeed favorable circumstances in which
causal conclusions can be inferred from statistical data without experi-
ment and perhaps without knowledge of mechanisms linking cause and
effect. However, that does not undermine the proposal that mechanisms
significantly aid causal inference in the social sciences, since the favorable
circumstances may occur rarely and be difficult to recognize when pre-
sent. Furthermore, the suggestion that one statistically control for all
common causes is not very helpful, given that the inability to exhaustively
consider all potential common causes is a basic element of the problem
of confounders.
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Indeed, evidence regarding conditional dependencies and independ-
encies may fail to unambiguously identify causal structure even when all
potential common causes have been measured. For example, consider the
two graphs in Figure 9.1. Both of these graphs predict that X and Y
are probabilistically dependent. Moreover, they both predict that X and
Y are independent conditional on Z. So measuring Zwould not enable us
to decide whether X is a cause of Y, even if there were no other confoun-
ders.6 Elster’s argument for the importance of mechanisms to causal
inference in social science is motivated by an example that illustrates the
same point (1983, 48). In Elster’s example, the variable X represents
‘‘the percentage of female employees who are married’’ and Y represents
‘‘the average number of absences per week per employee’’ (ibid.). Elster
supposes that X and Y are positively correlated but that they are
independent conditional on a third variable Z, ‘‘the amount of housework
performed per week per employee’’ (ibid.). Both causal graphs in Figure
9.1 can explain this imagined statistical evidence; hence, we are unable to
decide from that evidence alone whether X is a cause of Y. However,
Elster suggests, since there is no plausible mechanism through which Z
could influence X, we can conclude that Z is not a cause of X, and hence
not a common cause of X and Y. The only remaining alternative, there-
fore, is that X is a cause of Z, which in turn is a cause of Y. Thus, this
example illustrates how (M) might be used to establish a positive causal
conclusion that could not have been reached through the examination of
statistical data alone.

In sum, although Kincaid is correct that (M*) is false, that proposition is
not required for the account presented above of how inquiries into mech-
anisms play a central role in causal inference in the social sciences.
Nevertheless, that proposal leaves much to be desired.

9.2.2 The Positive and Negative Sides

There is, as was noted above, a positive side and a negative side of the
account of the importance of mechanisms to causal inference in the social
sciences. The positive side rests on the premise that we can show that X is
a cause of Y if we can discover a mechanism from X to Y. The negative
side relies on the premise that we can infer that X is not a cause of Y if we
know that there is no mechanism fromX to Y. It was the negative side that
was illustrated by Little’s nicotine-stains-and-lung-cancer example, Hed-
ström and Swedberg’s example concerning electromagnetic fields and
childhood leukemia, and Elster’s example about the proportion of female
employees and number of missed workdays. But the negative side of the
account of the importance of mechanisms to causal inference in social
science is very problematic.

The problem lies in the ease of imagining social mechanisms through
which nearly any macrolevel social variable can influence another. It is
rarely the case that no plausible mechanism can be imagined that
could connect two variables representing aspects of social phenomena.
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Consider, for instance, a well-known example from the sociological lit-
erature discussed by one of the contributors to Hedström and Swedberg’s
(1998) volume, Diego Gambetta. The example is the negative correlation
between satisfaction and opportunity for advancement among military
personnel, reported in Samuel Stouffer’s The American Soldier (1949).
Surprisingly, soldiers in branches of the military offering little opportun-
ity, such as the military police, were on average more satisfied with their
positions than those in branches with greater chances for advancement,
such as the Army Air Corps. Gambetta describes five mechanisms pro-
posed by sociologists over the years to account for how greater oppor-
tunity could cause less satisfaction (1998, 114–19). However, he does not
consider the alternative possibility that opportunity has little or no nega-
tive influence on happiness, and that the association found by Stouffer is
due to an unmeasured common cause. For example, it is possible that
ambitious people are much more likely to embark on career paths that
promise greater opportunities for advancement and that their lofty aspir-
ations are also more likely to make them dissatisfied with their current
station in life. Listing possible mechanisms through which opportunity
could produce unhappiness does nothing to rule out this plausible alter-
native. Indeed, this case illustrates how an overabundance of plausible
mechanisms is a major source of difficulty for causal inference in the
social sciences.

No doubt there are some pairs of variables X and Y representing
collective aspects of social phenomena such that no plausible mechanism
through which X causes Y can be imagined. However, I suspect that such
cases are too few and far between for the no-plausible-mechanism strat-
egy to be of much use in distinguishing cause from mere correlation in
social science. Although Elster, Little, and Hedström and Swedberg each
illustrate their argument with an example, only Elster’s—a toy example
not based on actual research—has any relation to social science. Despite
their interest in doing so, these authors apparently found it difficult to
produce a serious example of actual social research in which the inability
to imagine a plausible mechanism from one social variable to another
significantly aided causal inference.7

As we saw, (M) can be used to generate a positive as well as a negative
account of the value of mechanisms to causal inference in social science.
Having found the negative proposal wanting, let us turn to the positive
one. From (M) it follows that if we know that there is a mechanism from X
to Y, we can infer that X is a cause of Y. The difficulty is that it is unclear
howwe are to learn about mechanisms in a way that does not run directly
into the problem of confounders, which was the problem that mechan-
isms were supposed to help us overcome. For example, consider Little’s
discussion of how one acquires knowledge of mechanisms:

To credibly identify causal mechanisms we must employ one of two forms
of inference. First, we may use a deductive approach, establishing causal
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connections between social factors based on a theory of the underlying
process. . . . Second, we may use a broadly inductive approach, justifying
the claim that a caused b on the ground that events of type A are commonly
associated with events of type B. . . . But in either case the strength of the
causal assertion depends on the discovery of a regular association between
event types. (1991, 30)

Thus, according to Little, the identification of causal mechanisms depends
on prior knowledge of probabilistic dependencies among variables.8 But
the problem of confounders immediately rears its ugly head at this
juncture, since the probabilistic dependence might result from a common
cause rather than from A being a cause of B.

The same difficulty confronts an account of process tracing given by
Alexander George and Andrew Bennett (2005, chapter 10). George and
Bennett use an analogy about a row of dominoes to illustrate their account
of process tracing (2005, 206–7). Imagine that you are shown a series of
dominoes lined up in a row. You then leave the room, and when you
return, the first and last dominoes are lying flat and the intermediate ones
are concealed behind a screen. In order to know whether the toppling of
the first domino caused the last to fall, it is necessary to lift the screen to
see if the intermediate dominoes are also toppled in the appropriate
direction. Lifting the screen to check the positions of the intermediate
dominoes is the analogue to process tracing as understood by George and
Bennett. According to this proposal, process tracing is a method for
testing hypotheses about the causes of a particular event, what would
be called ‘‘token’’ or ‘‘actual’’ causes in the philosophical literature (cf.
Eells 1991; Pearl 2000; Halpern and Pearl 2005). The domino example
draws attention to the fact that hypotheses about the actual causes of a
particular outcome often have implications for what events occurred
between the (alleged) cause and effect. In George and Bennett’s account,
then, process tracing is a method of testing hypotheses about actual
causes by investigating whether the predicted sequence of intermediate
events indeed occurred.

George and Bennett’s proposal is very sensible, but leaves precisely
same issue unresolved that Little’s did. That is, the presence of the
sequence of predicted events between the alleged cause and the effect
is not sufficient to establish actual causation—it is also necessary to show
that the sequence is not a coincidence. In other words, the chain of inter-
mediate events must be causal: each event in the chain is the actual cause
of the subsequent one. But to show that the sequence of events is not
merely coincidental, as Little observes, one needs to appeal to some
causal generalization. And it is difficult to see how causal generalizations
could be learned without some type of inference from statistical data.
Thus, George and Bennett’s account of process tracing does not indicate
how mechanisms can be discovered without already having resolved the
challenges confronting causal inference from statistical data in social
science.
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The positive side of the proposal, then, stands in need of some explan-
ation of why the problem of confounders is less acute when it comes
to learning mechanisms than it is for macrocausal relationships in the
system. That is the task that I undertake in what follows.

9.3 PROCESS TRACING

In Chapter 5, process tracing was characterized as instantiating a mech-
anism schema by means of tracing forward or backward, where the
components and interactions at one stage place restrictions on those at
preceding and subsequent stages. For example, if one discovers that a
particular type of cancerous tumor results from a specific mutation, then
an earlier stage of the mechanism must involve something capable of
producing a mutation of just that sort. At this level of description, how-
ever, it is not clear how process tracing differs from other methods of
inferring causal relationships from statistical data, possibly in conjunction
with background knowledge. Consequently, it is not clear how process
tracing ameliorates the problem of confounders. In this section, I provide
an account of process tracing that aims to address these concerns.

9.3.1 Direct Versus Indirect Causal Inference

In order to properly understand process tracing, it is important to be clear
about its intended contrast. It is sometimes said that process tracing is
utterly distinct from methods that endeavor to draw causal inferences
from statistical data. For example, George and Bennett write, ‘‘Process-
tracing is fundamentally different from methods based on covariance or
comparisons across cases’’ (2005, 207). In the foregoing section, I argued
to the contrary that process tracing is inextricably intertwined with causal
inference from statistical data. The appropriate distinction, I suggest, is
not between one method that relies on statistical data and another that can
proceed independently of such information. Rather, the distinction is
between what I call direct and indirect causal inference. Direct causal
inference attempts to infer the causal relationships among a set of vari-
ables by examining the probabilistic relations among those same variables.
By contrast, indirect causal inference attempts to learn the causal rela-
tionships among a set of variables by examining the causal relations
among a distinct yet related set. In process tracing, the distinct yet related
variables represent features of component parts of the larger system of
interest. The usefulness of process tracing, then, rests on the possibility
that the causal relationships among the components are more directly
accessible than those among the macrofeatures of the system. Let us
consider this idea in more detail.

Suppose that one is interested in the causal relationships among a set
of variables V that represent macrofeatures of a system S. The system
might be an economy, an organism, or a machine. The variables in V
might represent such things as inflation and unemployment if S is an
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economy, or exposure to aflatoxin B1 and liver cancer if S is a person. One
strategy for learning about the causal relationships among the variables
in V is by means of statistical data concerning those variables. I call this
direct causal inference (or direct inference for short), since the strategy
focuses directly on the variables of interest and the probabilistic relations
among them. Direct inference can be represented schematically as shown
in Figure 9.7.

For example, suppose that V contains variables representing federal
deficits, inflation, economic growth, interest rates, and unemployment.
Suppose, moreover, that the chief concern is to estimate the effect of
federal deficits on economic growth. Then direct causal inference might
proceed by comparing carefully matched periods that differ with respect
to federal deficits. Attempting to infer the causal relationships among the
variables in V from statistical data concerning them together with the
CMC and FC would also fall into the category of direct causal inference.
Themethod of instrumental variables is direct inference with one wrinkle:
an instrumental variable is sought, and if a promising candidate is found,
it is added to V.

Process tracing does not focus directly upon the statistical relationships
among the variables in V, but rather upon the components of S and their
configuration. This can be depicted schematically as in Figure 9.8.

Of course, direct inference and process tracing are not mutually exclu-
sive: both could contribute to knowledge of the causal relationships
among the variables in V.9 Moreover, direct inference will almost cer-
tainly be an important source of knowledge of causal generalizations
concerning the components. However, that inference would involve a
set of variables distinct from V. Let C be a set of variables representing
features of the components. Process tracing, then, exploits the possibility
that the causal relationships among C may be more easily learned than
those among V. One way this could be is if it is possible to perform
experiments on the components, but not the system as a whole. For
example, experimental economists can perform randomized experiments
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Figure 9.7 Direct causal interference
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Figure 9.8 Process tracing
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involving individuals or small groups but not entire economies. Similarly,
ethical considerations prohibit an experiment in which persons are ex-
posed to aflatoxin B1, yet it is possible to experimentally study, say, the
metabolism of that compound in vitro by means of cell cultures. Even
when experiments cannot be performed on the component parts of the
system, there may be better observational data with regard to the relevant
features of the components than for the system as a whole. Or it may be
that the possible confounders have been more exhaustively listed and
measured with regard to the components than for the macrofeatures of
the system. In short, there may be a variety of practical reasons why
the causal relationships among the variables in C can be more directly
ascertained than among those in V.

Let us examine a case of process tracing in social science. For example,
consider Malinowski’s hypothesis that the possession of many wives was
a cause of wealth and influence among Trobriand chiefs (1935). Mali-
nowski’s evidence for this hypothesis is primarily nonstatistical; it con-
sists of descriptions of social processes in Trobriand society. First, there is
a custom whereby brothers contribute substantial gifts of yams to the
households of their married sisters—gifts that are larger than usual when
the sister is married to a chief. Second, political endeavors and public
projects undertaken by chiefs are financed primarily with yams. As this
case illustrates, process tracing in social science often provides evidence
for the existence of several prevalent social practices that, when linked
together, constitute a mechanism. Supposing that Malinowski was right
about the two features of Trobriand society just described, the conclusion
that the number of wives had an influence upon wealth among Trobriand
chiefs is unavoidable.

Let us consider how this example fits into the abstract outline of
process tracing depicted in Figure 9.8. The system in this case would be
Trobriand society of the early twentieth century, and the set V would
include variables indicating social status, wealth, and number of wives.
The components would be the individual Trobrianders, categorized as
brothers-in-law, wives, and chiefs. Given these components, process tra-
cing utilizes causal generalizations concerning them and information
about their configuration to infer a mechanism. The causal generaliza-
tions in this case would mostly be psychological, for instance, concerning
human aspirations for wealth and social status. The configuration of the
components would include the salient relationships among the relevant
groups (e.g., brothers-in-law are required to give yams to sister’s house-
hold) as well as the preferences and beliefs typical of members of these
groups (e.g., Trobriand men wish to be regarded as good farmers and
generous in giving yams). Such a configuration constitutes what one
might call a practice or custom. In the Trobriand case, for example, it
was a custom for brothers-in-law to provide a sizable contribution of
yams to the households of their married sisters. Recall that a social
mechanism consists of agents grouped into categories associated with
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characteristic modes of behavior in such a way as to generate a macrolevel
regularity.10 Identifying a set of practices that link together to form a
social mechanism, then, constitutes a successful application of process
tracing.

Process tracing is most noticeable in cases in which good statistical data
are not available. Consider Brian Ferguson’s account of the effect of the
introduction of such manufactured items as steel tools upon indigenous
warfare in the context of colonial expansion and in the political consoli-
dation of postcolonial states, particularly among the Yanomami.11 Fergu-
son has long argued that European colonial expansion profoundly
reshaped indigenous warfare in the Americas and elsewhere (cf. Fergu-
son 1990). One of the ways in which European contact influenced warfare
was through introduction of manufactured valuables, particularly such
steel tools as machetes, axes, and knives. These items were often quick to
become necessities of life, but they differed significantly from their indi-
genous analogues in that they could not be manufactured locally. More-
over, in more than a few cases, these precious items were available only
from a limited number of peripheral source points. Ferguson argues
(1984, 1995) that in such circumstances, groups close to the source often
attempted to establish a local monopoly on the flow of manufactured
goods so as to trade on advantageous terms with their neighbors. Natur-
ally, such monopolizing efforts often generated resentment among more
remote groups, which might attempt to circumvent the monopolists or
dislodge them by force. Likewise, the would-be monopolists might resort
to violence to maintain their privileged position.

Ferguson’s proposals concerning the effect of manufactured valuables
on indigenous warfare, although controversial, have been taken ser-
iously,12 and the major themes of his arguments have been taken up by
other authors (cf. Reedy-Maschner and Maschner 1999; Steel 1999). The
data in such ethnohistorical studies are typically of a very fragmentary
nature: reports of missionaries, explorers, ethnographers, and recollec-
tions of elderly informants. Even when such information is reliable, it
rarely suffices for anything resembling a sophisticated statistical analysis.
Not surprisingly, then, process tracing plays an important role in the
causal arguments in such circumstances.

Of course, process tracing is not limited to situations in which no
reliable statistical data are available. Consider John Donohue and Steven
Levitt’s (2001) essay, ‘‘The Impact of Legalized Abortion on Crime.’’
Donohue and Levitt argue that the legalization of abortion in the United
States following the 1973 Roe v. Wade decision is the most significant factor
responsible for the decline in U.S. crime rates in the 1990s. Although it
may seem surprising that legalizing abortion could affect crime rates two
decades later, Donohue and Levitt suggest a plausible mechanism linking
the two (2001, 386–89). Women choose to have an abortion when the child
would be unwanted, for example, because they would be unable to
adequately care for and economically support it. Donohue and Levitt
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cite a variety of studies that report correlations between being raised in
adverse family situations and criminality in early adulthood (2001,
388–89). Thus, they propose that the legalization of abortion in 1973
resulted in a birth cohort that, when entering its prime crime age eighteen
to twent-four years later, contained a smaller proportion of individuals
disposed to criminal behavior. Donohue and Levitt give several lines of
statistical evidence for this hypothesis. For example, they show that the
drop in crime rates occurred earlier in states that legalized abortion prior to
Roe v. Wade, and that the initial decrease occurred in categories of crime
disproportionately committed by those in the eighteen-twenty-four age
group (2001, 395–99). Not only does Donohue and Levitt’s study illustrate
the combination of process tracing and causal inference based on statistical
data, it also illustrates the role of statistical data in process tracing itself. For
example, the causal generalization that unwanted children aremore likely
to become criminals is obviously a proposition that must be tested by
reference to statistical data. Moreover, the relevant evidence with regard
to this generalization is not limited to data relating to the relationship
concerning the legalization of abortion in the United States in 1973 and
the subsequent drop in crime rates there in the 1990s. For example, Dono-
hue and Levitt cite several studies from eastern Europe and Scandinavia
which found that children born to women who were denied access to
abortions were more likely to engage in criminal behavior (2001, 388).
This is an example of how a more extensive set of data may be available
with regard to the behavior of components of a system than with regard to
themacrolevel features of the system.As explained above, that is one of the
chief motivations for process tracing as a research strategy.

I regard process tracing as both a procedure for developing, or formu-
lating, causal hypotheses and for providing evidence for them.13 Process
tracing is not intended merely as a means of inventing intriguing new
hypotheses, and it is clear that it must be more than this if it is to
ameliorate the problem of confounders. For if the only evidence for hy-
potheses generated through process tracing consisted of statistical tests
concerning macrolevel variables, the problem of confounders would be
confronted anew with no progress having been made toward its reso-
lution. After all, the difficulty lies not in imagining hypotheses concerning
the causes of social phenomena, but in deciding which among the large
number of such conceivable hypotheses is correct. Therefore, it is import-
ant to address concerns that a skeptic might have concerning the ability of
process tracing to provide compelling evidence for causal claims.

9.3.2 Objections Considered

A striking feature of Malinowski’s account of the relationship between
number of wives and chiefly power in Trobriand society is that it is
compelling, yet utterly lacking in statistical sophistication of any kind.
No large sample of data is produced to demonstrate a positive correlation
between wealth and number of wives among Trobriand chiefs. Nor is any
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thought given to alternative hypotheses that could generate such a prob-
abilistic dependence if it existed. For example, it might be that wealth is a
cause of having many wives, and not vice versa. Or perhaps establishing
alliances with other chiefs results both in having more wives (used as a
means of cementing political bonds) and in greater wealth. As if by magic,
Malinowski seems to have established that one variable is the cause of
another without the aid of any experimental or statistical technique for
dealing with the possibility of unmeasured common causes. All this
might make a skeptic wonder whether process tracing is too good to be
true. Surely, the skeptic might object, the problem of alternative hypoth-
eses capable of accounting for the available evidence is not made to
disappear through a description of social institutions. Moreover, the
skeptic could continue, the obstacles to reliably learning social institutions
and the implications of their joint operation through process tracing
appear at least as formidable as the challenges confronting direct causal
inference. Let us consider these objections.

To begin with, it is important to emphasize how modest the accom-
plishments claimed for process tracing often are. Without the aid of
statistical data, the best one can hope to establish by means of process
tracing are purely qualitative causal claims. For instance, in the Mali-
nowski example, all we can conclude is that there is at least one path
through which the number of wives exerts a positive influence upon
wealth among Trobriand chiefs. Not only does this conclusion fail to
specify anything about the strength of the influence generated by this
mechanism, it does not even entail that the overall effect of the number of
wives upon wealth is positive. One would naturally presume that having
more wives would mean having more members of the household to
provide for, which would be expected to exert a downward influence
upon wealth. Statistical data concerning the average cost-benefit ratio in
yams of acquiring additional wives would be needed to decide which of
these two conflicting influences was predominant, and no such data is
provided byMalinowski. Thus, a successful application of process tracing
allows one to conclude that a mechanism is present from one variable to
another, but this information alone tells one very little about probabilistic
causal relationships. This situation is very similar to a case in which one
has successfully extrapolated a mechanism from a model organism by
means of comparative process tracing (see section 5.3). Given only that
there is a mechanism from cause to effect in the target population, one
knows very little about the probabilistic impact of the cause—for instance,
whether it raises or lowers the probability of effect overall.

Yet that process tracing, on its own, is only intended to establish
qualitative causal conclusions may not fully allay the skeptic’s suspicions.
Section 9.1 illustrated just how difficult causal inference from statistical
data can be. Can such formidable challenges really be overcome by a
relatively unsophisticated method like process tracing? The answer to
this concern, I suggest, lies in the fact that it may be possible to learn
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causal relationships concerning the components of a system even when
the causal relationships among the macrofeatures of that system cannot
be discovered by direct inference. Consider the difficulties confronting
direct causal inference in the Malinowski example. Suppose that V ¼ {W,
S,N}, whereW, S, andN are variables indicating wealth, social status, and
number of wives, respectively. It is quite plausible that there is a causal
connection between each pair of these variables that is unmediated by the
third. For example, status is likely causally linked to wealth as cause or
effect independently of number of wives. Likewise, it is likely that status
and number of wives are linked by a path that is not mediated by wealth.
Finally, it is likely that greater wealth and number of wives would be
linked by a path unmediated by status. If all this were indeed the case,
then the FC would entail that there are no (nontrivial) probabilistic inde-
pendencies among these variables. That is, W and S would likely be
probabilistically dependent both marginally and conditional on N, and
likewise for the other two combinations of variables. The point here may
be clarified by reference to causal graphs representing plausible alterna-
tives in this case. Given the FC, each of the graphs in Figure 9.9 predicts
that there are no marginal or conditional independencies among the
measured variables. For example, all predict that W and N are probabil-
istically dependent conditional on S, that S and W are dependent condi-
tional on N, and so on. Yet the graphs disagree about the causal
relationship between number of wives and wealth. So, if one of these
graphs were the correct one, no amount of statistical data concerning the
variables W, S, and N could tell us whether number of wives is a cause of
wealth.

What this example illustrates is that ability of direct inference to yield
informative conclusions depends upon which causal structure is actually
present. Some structures generate patterns of independence and condi-
tional independence not generated by alternatives that differ with regard
to the question at issue. Such structures have, as it were, a probabilistic
fingerprint that reveals useful information about causal relationships.
Other structures generate patterns of independence and conditional in-
dependence that are also generated by a class of alternatives. In such
cases, direct inference is unable to produce informative causal conclu-
sions. The Malinowski example seems likely to be an instance of this
latter, thornier sort.

W S

N

W S

N

W S

NU

Figure 9.9 Statistically indistinguishable alternatives
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One might try to remedy this situation by means of an instrumental
variable. For instance, the British colonial authorities banned polygamy
for moral reasons, so one might attempt to assess the effect of N upon W
through comparing the wealth of the chiefs before and after the ban went
into effect. However, it is highly questionable whether the ban would
qualify as an instrumental variable. Although the ban was certainly a
cause of N and possibly exogenous with respect to N and W, it is very
doubtful that the exclusion restriction is satisfied, since the ban was
accompanied by a variety of actions aimed at undermining the chiefs,
who after all were rivals to the British colonial authorities. In sum, it is
doubtful that Malinowski or anyone else would have been able to draw
informative conclusions by direct inference alone, even if a large sample
of good statistical data had been available.

Underdetermination also confronts process tracing, but with regard to
a distinct set of variables whose causal relations can often be studied by
distinct means. In the case of Malinowski’s hypothesis concerning mar-
riage, yams, and chiefly power, the central difficulty is that of interpreting
a social practice. Malinowski faced the challenge of making an inference
about a social practice of which he had no initial inkling from beginning
observations of large quantities of yams being moved to and fro. No
doubt, multiple possible explanations occurred to Malinowski at this
point. Evidence relevant to distinguishing between these alternatives
would typically consist of observing people’s behavior and asking them
about what they are doing and why, and what would happen to someone
who behaved differently. Thus, Malinowski makes observations about
the quantity of yams produced by several apparently typical men, and he
makes observations about the quantity that is contributed to the house-
holds of sisters. In addition, he questions native informants about the
process, relying in part on what-would-happen-if questions such as
‘‘What would people say if so-and-so did not contribute a significant
portion of his crop to the households of his sisters?’’ Since the two under-
determination problems are distinct, it is possible that there are situations
in which one of them is resolved while the other is not. Hence, Mal-
inowski might have successfully used process tracing to establish the
existence of a social mechanism through which the number of wives
influenced wealth among Trobriand chiefs while having no solution to
the challenges confronting direct inference.

Of course, inferences concerning which interpretation is best depend
on substantive causal generalizations about human psychological and
cognitive tendencies. The usefulness of process tracing, therefore, de-
pends upon knowledge of such generalizations being more directly ac-
cessible than those concerning variables in V. Some simple psychological
generalizations can be plausibly regarded as obvious background know-
ledge, and I suspect that such generalizations often suffice for relatively
straightforward interpretations of social practices as in the Malinowski
example. But I agree with Todd Jones (1999, 356–58) that there are
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interpretations inwhich less obvious psychological generalizationswould
be called for. In such cases, Jones’s proposal is that one should turn to
modern cognitive psychology for assistance. Although generalizations
from such a source cannot be regarded as obvious background know-
ledge, controlled experiments are much more frequently a practical pos-
sibility in cognitive psychology than in social science. This illustrates the
point made in the foregoing section that process tracing relies upon causal
relationships among the components being more directly accessible than
those at the macrolevel.

Nevertheless, the skeptic is certainly correct that process tracing can be
hampered by uncertainty concerning interpretation. There is no denying
that trustworthy understandings of social practices are sometimes hard to
come by. In broad outlines, the situation of process tracing that relies on
interpretation of social practices resembles that for direct inference insofar
as it is it is most effective under certain favorable circumstances. With
respect to interpreting social practices, these favorable circumstances
would include the following:

(1) The practice in question is exhibited in publicly accessible set-
tings.

(2) There is no prohibition, taboo, or other obstacle to open discus-
sion of the practice.

(3) The practice is transparent to participants, in the sense that
participants have a reasonably clear understanding of its func-
tioning.

Conditions (2) and (3) facilitate learning what participants regard as
the rules and practices, while (1) allows for comparisons with actual
behavior. All of these three conditions appear to be satisfied in the Mal-
inowski example, but circumstances in other cases are not as favorable.
Philosophical worries about interpretation in social science often focus on
attributions of symbolic meaning that would not occur to the participants,
and hence in which (3) is not satisfied (cf. Martin 1993; Jones 1998, 1999).
In Ferguson’s account of Yanomami warfare (described in the preceding
section), failures of (1) and (2) pose real difficulties. Those planning
violent acts often deliberate in private and attempt to carry out assassin-
ations in as clandestine a manner as possible. Moreover, they typically
insist upon socially acceptable, self-serving justifications of their actions,
for example, that an assassination was retribution for some past wrong
inflicted by the victim. Of course, those committing acts of violence may
come to believe their own rationalizations, in which case failures of
(2) shade into failures of (3).

Whether the favorable circumstances that facilitate process tracing in
social science are more or less widespread than their counterparts in
the case of direct inference is difficult to know. But the important point
for our purposes is that these two sets of favorable circumstances are
potentially independent. Favorable conditions for process tracing may be

Social Mechanisms and Process Tracing 195



present while those for direct causal inference are absent, and vice versa.
In some especially fortuitous cases, favorable circumstances for both may
co-occur, while in other unlucky situations both may be lacking. Process
tracing, then, extends the class of cases in which informative causal
conclusions can be drawn in social science into not uncommon situations
in which direct inference alone would bear little fruit. That is what I think
is right about the intuition that mechanisms are of central importance to
causal inference in social science. However, that conclusion does not
support the claim that mechanisms are a sine qua non for causal inference
in social science. For there are some cases in which favorable circumstan-
ces allowing for direct causal inference are present in social science.
Moreover, direct inference may be applicable in some cases in which
process tracing is not particularly helpful. Thus, the correct image is not
of one method that is more fundamental than the other, but rather of two
mutually supporting approaches.

9.4 CONCLUSION

This chapter has two closely interrelated aims: to explore how social
mechanisms can be discovered, and how such inquiries can ameliorate
challenges confronting causal inference from statistical data in social
science. I proposed that accounts hitherto provided for the usefulness of
mechanisms for causal inference in social science can be interpreted so as
to be independent of the proposition that causal inference is never possible
without mechanisms, a proposition rightly critiqued by Kincaid. Never-
theless, I argued that even given this more charitable interpretation, the
proposal still faces serious challenges. The negative side of the argument
is undermined by the ease of imagining plausible mechanisms that could
link nearly any two macrolevel social variables. The positive side of the
argument is ineffective unless some explanation is provided of how
knowledge of mechanisms can be acquired in a way that avoids the
challenges facing causal inference from statistical data in social science,
particularly the problem confounders. Yet advocates of socialmechanisms
have not provided any such explanation.

Consequently, I developed an account concerning how the positive
side of the argument could be improved, based on the notion of process
tracing. Process tracing was distinguished from what I termed direct
causal inference, wherein one endeavors to discover causal relationships
among a set of variables by examining the statistical relationships among
them. In contrast, process tracing endeavors to infer mechanisms under-
lying those statistical relationships from the configuration of components
of the system and causal generalizations concerning those components.
Thus, process tracing exploits the possibility that causal knowledge con-
cerning the components of a system may be more directly accessible than
of its macrofeatures. Both process tracing and direct inference are useful
when certain favorable circumstances are present. But since the favorable
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circumstances of the two approaches are potentially independent, process
tracing may enable informative causal conclusions to be drawn in cases in
which direct inference alone would not. Claims about the importance of
mechanisms for causal inference in social science, therefore, are best
understood as maintaining that this type of situation is quite common.
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10

Looking Back and Ahead

In this brief concluding chapter, I encapsulate some take-home messages
of this work and sketch some open questions. I begin with the most
general themes, and then turn to main conclusions regarding more
specific topics.

Extrapolation in heterogeneous populations is a pervasive challenge in
the biological and social sciences that is linked to policy questions about
the regulation of toxic substances and the reform of social programs.
Although extrapolation is of obvious methodological interest in toxicol-
ogy and experimental economics, I hope to have demonstrated that it is
also deeply intertwined with philosophical issues associated with biology
and social science, including causation, ceteris paribus laws, and reduc-
tionism. There are several ways of approaching extrapolation, of which
simple induction, capacities or causal powers, and mechanisms were
considered in detail. Simple induction is certainly a part of the story,
but it is also limited in some crucial respects, as was illustrated by
reference to cases of animal extrapolation in toxicology. Hence, it is
desirable to find some means of extrapolation capable of surmounting
obstacles confronting simple induction. Any such proposal must confront
the extrapolator’s circle and must explain how extrapolation can be justi-
fied even when there are some causally relevant differences between the
model and the target. I argued that hitherto proposed versions of the
capacities and mechanisms proposals do not adequately address either of
these challenges. Consequently, I tried to do better by means of a further
development of the mechanisms approach.

Chapters 3, 4, 5, and 6 were dedicated to exploring and clarifying the
premises that underlie the mechanisms approach and how they are cap-
able of supporting extrapolation in particular cases. The take-home mes-
sages here are more specific than the broad themes just adumbrated.
Some underlying premises of mechanisms-based extrapolation are what
might be called basic presuppositions: conditions without which the enter-
prise would stand little chance of success. Among these I would include
the identification of mechanisms with causal structure and the disruption
principle. According to the first of these, mechanisms are that which
generate probability distributions and indicate how those distributions
change given interventions. This identification, however, does not pro-
vide any details about the nature of the link between mechanisms and
probability, nor about how and when interventions change probabilities.
The disruption principle provides an important link of this kind. It says
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that interventions on X change the probability distribution of Y just in
case there is an undisrupted mechanism from X to Y. The disruption
principle, therefore, is an important premise in an account of how
mechanisms can ground the extrapolation of probabilistic causal claims.

In addition to these basic presuppositions, there what can be called
facilitating conditions: circumstances that, when present, facilitate extrapo-
lation. Several circumstances of this kind were discussed. The most im-
portant, I think, is knowledge of likely sources of similarity and difference
between mechanisms in model and target. This information is needed for
comparative process tracing, which aims to use a mechanism in a model
as a basis for inferring the existence of a corresponding mechanism in a
target. Given that such an inference is possible, one typically still desires
to know whether the overall impact of the cause in the target is to raise or
lower the chance of the effect. Consonance asserts that distinct combin-
ations of mechanisms present in the target population do not generate
conflicting positive and negative influences. When available, this condi-
tion greatly facilitates extrapolation of claims about causal relevance, for
instance, that exposure to a compound increases the chance of liver
cancer. In Chapters 5 and 6, I examined a biological example—the case
of aflatoxin B1—in which both the basic presuppositions and the facilitat-
ing conditions were very plausible. Chapter 8 considered prospects of
utilizing mechanisms-based extrapolation in social science. The mechan-
ism designed for the FCC broadcasting license auctions with the aid of
experimental economics (briefly discussed in section 8.1) is probably one
of the best social science cases of comparative process tracing. However,
the two other case studies examined in Chapter 8 illustrated obstacles that
can confront mechanisms-based extrapolation in that domain. In
the welfare reform example, there was a very serious possibility that the
intervention of interest would be structure-altering with regard to the
mechanisms. In the preference reversal case, uncertainty about the mech-
anism made extrapolation similarly uncertain, since one mechanism sug-
gests that the phenomenon is widespread outside the laboratory while the
other suggested that it is far less so.

The preference reversal example led directly to the discussion, in
Chapter 9, of process tracing, which has been proposed by several authors
as a means for discovering mechanisms. It is sometimes claimed that
without mechanisms it is rarely (if ever) possible in social science to
distinguish cause from mere correlation. I argued that preexisting ac-
counts of how inquiries into mechanisms aid causal inference are inad-
equate as they stand. I maintained that the appropriate contrast with
process tracing is not causal inference from statistical data, but rather
what I termed direct causal inference. Suppose one wishes to learn the
causal relationships among a set of variables, say, education, socioeco-
nomic status of parents, and income. Direct inference endeavors to esti-
mate those relationships from statistical relationships among the variables
in question. In contrast, process tracing examines the components of the
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system whose features those variables represent. Process tracing is mo-
tivated by the possibility that causal generalizations concerning the com-
ponents may be more easily learned than those representing macrolevel
properties. Given this, process tracing attempts to reconstruct macrolevel
relationships from the configuration and interactions of the components.
Both direct inference and process tracing can yield informative conclu-
sions under certain favorable circumstances. But since the favorable cir-
cumstances in each case are potentially independent, process tracing may
enable informative causal conclusions to be drawn in cases where direct
inference alone could not (and vice versa).

An account of extrapolation should provide insight into related meth-
odological and philosophical issues. One obviously relevant methodo-
logical dispute concerns whether animal models can serve as a basis for
extrapolation to humans, or merely as sources of interesting hypotheses to
be tested by clinical and epidemiological studies. I showed how my
account of extrapolation provides a diagnosis of flaws in arguments
claiming to show that animal models cannot support informative causal
conclusions about humans. A consequence of my position is that, to the
extent that the ethics of animal research depends upon methodological
questions, across-the-board ethical arguments vindicating or condemning
it are not likely to be cogent. Rather, such arguments must pay careful
attention to case-specific details. Extrapolation is also intimately linked to
the question of ceteris paribus laws, generalizations qualified by a clause
to the effect of ‘‘other things being equal’’ or ‘‘so long as nothing inter-
feres.’’ I showed how difficulties confronting the most problematic inter-
pretation of ‘‘ceteris paribus’’ stem from the assumption that this phrase
qualifies a universal generalization. These difficulties vanish if ‘‘ceteris
paribus’’ is understood in reference to an inference schema specifying
sufficient conditions for extrapolating a claim about causal relevance. The
mechanisms approach to extrapolation is also linked to reductionism
insofar as it is committed to what I termed corrective asymmetry. I also
explained how corrective asymmetry can be used as a criterion for a form
of reductionism that is consistent with pluralism.

Finally, I would like to close by sketching some open questions that are
suggested by the discussions contained in the foregoing chapters of this
book. Although many such questions may have occurred to the reader,
I mention only these.

. The aflatoxin B1 example nicely fit the account of mechanisms-
based extrapolation expounded here. How representative is this
example of other biological cases? To what extent do the chal-
lenges confronting mechanisms-based extrapolation described in
Chapter 8 also arise in biology?

. What is the potential usefulness of the mechanisms approach
to extrapolation in social science? Would the approach work, pro-
vided there was more adequate knowledge of social mechanisms,
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perhaps combined with advances in cognitive and social
psychology? Will one ultimately have to conclude that this is a
methodological approach that, though valuable in biology, is ill
suited to social science?

. Comparative process tracing was presented in Chapter 5 in an
entirely informal manner. Is there someway to integrate compara-
tive process tracing within a more general and precisely articu-
lated approach to causal inference, such as Bayesian networks?
What new insights about extrapolation would ensue from this?

As these questions indicate, this book has hardly answered all of the
issues related to extrapolation in the biological and social sciences. But
I do hope that the present work will be a useful point of departure for
those interested in extrapolation and interconnected methodological and
philosophical topics.
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Appendix

A. CORRELATION AND THE PROBLEM OF DISJUNCTIVE CAUSAL FACTORS

As explained in section 2.3.1, the problem of disjunctive factors is an
objection to the probability-raising definition of positive causal relevance.
The essential point is that when X is a variable that may take more than
two values, whether a particular value of X raises or lowers the probabil-
ity of Y may depend upon the relative frequency of the other values of X
in the population. Yet it seems that whether X promotes or inhibits Y
should not depend on how frequently different values of X happen to
occur. I argued in section 2.3.1 that this intuition makes sense, given the
reasonable assumption that claims about positive relevance aim to pro-
vide information concerning the consequences of interventions on the
cause. Humphreys’s (1989, 40–41) example illustrates how the problem
of disjunctive causal factors can arise with regard to the probability-
raising definition of positive causal relevance. In fact, the problem of
disjunctive factors would also arise if positive causal relevance were
defined in terms of positive correlation. That is, whether X and Y are
positively or negatively correlated can depend on the frequency with
which particular values of X occur.

Recall that the correlation between X and Y is defined thus:

æ(X,Y) ¼ cov(X,Y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(X) var(Y)

p

Hence, so long as the variances of X and Y are strictly greater than zero,
whether the correlation is negative or positive is determined by the
covariance. Consequently, it is necessary only to show that differences
in the probabilities of distinct values of X can switch the covariance of X
and Y from positive to negative. In particular, suppose that X and Y each
have three values: 0, 1, and 2. Now consider these two joint distributions:

X Y p X Y p

2 2 .5 2 2 .005
2 1 .05 2 1 .0005
2 0 .05 2 0 .0005
1 2 .003 1 2 .3
1 1 .00001 1 1 .001
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1 0 .00299 1 0 .299
0 2 .15 0 2 .15
0 1 .15 0 1 .15
0 0 0.94 0 0 .094

Distribution 1 Distribution 2

These two distributions are identical except that in the first P(X ¼ 2) ¼ .6
and P(X¼ 1)¼ .006, while in the second P(X¼ 2)¼ .006 and P(X¼ 1)¼ .6.
In other words, the two distributions differ only with regard to the
probabilities of these two values of X. In both distributions, the values
of X and Y tend to coincide when X¼ 2 but not when X¼ 1. As a result, X
and Y are positively correlated in distribution 1 but negatively correlated
in distribution 2.

This can be seen through calculating the covariance of X and Y in
distributions 1 and 2. Recall that the covariance of X and Y, cov(X, Y),
equals E(XY)—E(X)E(Y). In distribution 1, we have:

E(X) ¼ (2� :6)þ :006 ¼ 1:206

E(Y) ¼ (2� :653)þ :20001 ¼ 1:50601

E(XY) ¼ (4� :5)þ (2� :05)þ (2� :003)þ :00001 ¼ 2:10601

cov(X,Y) ¼ 2:10601� (1:206� 1:50601) ¼ :28976194

Thus, X and Y are positively correlated in distribution 1. But in distribu-
tion 2 we have:

E(X) ¼ (2� :006)þ :6 ¼ :612

E(Y) ¼ (2� :455)þ :1515 ¼ 1:0615

E(XY) ¼ (4� :005)þ (2� :0005)þ (2� :3)þ :001 ¼ :622

cov(X,Y) ¼ :622� (:612� 1:0615) ¼ �:027638

In distribution 2, therefore, X and Y are negatively correlated.
This example illustrates that the problem of disjunctive causal factors

that Humphreys and others raised as an objection to the probability-
raising definition of causal relevance is also pertinent to correlation. That
is, consider the claim that X is positively causally relevant to Y exactly if
X is positively correlated with Y (in a context in which there is no
confounding and in which Y cannot cause X). Just like the probability-
raising definition, this proposal entails that whether X is positively or
negatively causally relevant to Y can depend upon the probabilities of
the various values of X. But as explained in section 2.3.1, from the
perspective of a manipulationist account of causation, this is a highly
undesirable characteristic.

204 Appendix



B. QUANTITATIVE EXTRAPOLATION WITHOUT CONSONANCE

The extrapolation theorem presented in section 6.2.2 was limited insofar
as it specified conditions only for extrapolating claims about positive or
negative causal relevance and in presupposing consonance. Yet one
might wish to extrapolate a quantitative claim about a causal effect, and
one might also wish to extrapolate probabilistic causal claims in cases in
which counteracting mechanisms may be present. Of course, quantitative
extrapolation is easy when the base population is representative of the
target, but it is often the case that this assumption is doubtful or known to
be false. But even when the base population fails to be representative of
the target, it may nevertheless be what I call cell-representative. The base
population is cell-representative of the target when there is a partition of
the base population into cells such that the strength of the causal effect
within each cell in the base population is a good approximation of the
strength of the effect in the corresponding cell in the target. A base
population can be cell-representative without being representative if the
relative frequencies of the cells differ between the two populations.

Elaborating this idea requires a measure of strength of causal effect.
One commonly used measure of causal efficacy is the mean difference,1

according to which the impact of X upon Y is given by
E(Y j do(x))� E(Y j do(x0)) ¼df ˜E(Y j do(x)). Recall that x0 is the comparative
value ofX, usually zero. For simplicity, I restrict attention to the special case
in which the cause and effect are binary. In this case, the mean difference is
P(Y ¼ 1 j do(X ¼ 1))� P(Y ¼ 1 j do(X ¼ 0)) ¼ df ˜P. A partition of a popu-
lation consists of amutually exclusive andcollectively exhaustive collection
of subsets of that population, in the simplest case, those who possess a
particular property and those who do not. The cells of partitions will be
numbered1, 2, . . . , n. Theprobability function for the ith cell of the partition
is represented by Pi. So, for example, ˜P2 is P2(Y ¼ 1 j do(X ¼ 1))
�P2(Y ¼ 1 j do(X ¼ 0)). In this context, the populationP’ is cell-representative
of P with respect to X and Y, given the partition i ¼ 1, 2, . . . , n just in case
˜P

0

i � ˜Pi for all i, where P’ and P are the probability functions for the
populations P’ and P, respectively. Thus, the idea is that strengths of the
causal effects are approximately equal within the cells in the two popula-
tions, and that differences in the overall effect between the two populations
result only from differences in the proportions of these cells.

Clearly, whether it is reasonable to assume that the base population is
cell-representative of the target depends on the choice of partition. In
section 6.2.1, it was presumed that the partition was by the particular set
of undisrupted mechanisms possessed by the individual. If practically
possible, this would be a promising way to partition, since differences
in the strength of the causal effect presumably result from differences in
mechanisms. However, it will generally be difficult, if not impossible, to
accurately decide precisely which combination of mechanisms is present
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in a given individual. The presence or absence of detectable factors that
promote or interfere with the mechanisms in question would provide
some guidance for such purposes. In the case of the effect of HIV
exposure upon AIDS, this would include such things as availability of
anti-retroviral therapies or host resistance factors (such as the mutation
affecting the R-5 co-receptor). But it is doubtful that the subgroups
identified by such indicators will consist of individuals possessing the
precisely same combinations of mechanisms.

This might seem like a serious problem, since equations (6.8) and
(6.9) were derived on the assumption that one was partitioning by combin-
ations of mechanisms. For instance, equation (6.9) told us that ˜P ¼Pn

i¼1 �i˜Pi, where each i indicates a specific combination of mechanisms
from X to Y. Fortunately, however, these equations can be derived for
different partitions, so long as the properties by which one partitions are
independent of the causewhen it is set by an intervention. That is, if the cells
in the partition are i ¼ 1, 2, . . . , n, then the key premise is that
P(i j do(x)) ¼ P(i), for each i. Given the definition of an ideal intervention,
this premise is reasonable so long as the properties by which one partitions
are not effects of X. For example, possession of the mutation inhibiting
the expression of the R-5 co-receptor is presumably not an effect of HIV
exposure.

Consider how quantitative extrapolation on the basis of a cell-repre-
sentative base population could work in the AFB1 example. Susceptibility
to the carcinogenic effects of AFB1 is known to depend on exposure to the
hepatitis B virus (HBV).2 There is also evidence that heightened sensitiv-
ity to mutagens is also a co-factor (Wu et al. 1998), although the basis of
these variations in AFB1 susceptibility remains somewhat unclear (cf.
McGlynn et al. 2003). It is likely due in part to HBV exposure (Sohn et al.
2000), but the importance of other factors, such as congenital genetic
variations, is still uncertain. At present, then, HBV exposure is the most
firmly established factor for susceptibility to AFB1 carcinogenesis as well
as something that can be measured reliably. Hence, given that it is likely
that HBV exposure is not an effect of exposure to AFB1, HBV would
appear to be a good property by which to partition.

Imagine that one is interested in estimating the strength of the causal
effect of AFB1 on liver cancer in North America from data from China,
where exposure to AFB1 is more common and consequently where there
are more extensive data sets. Thus, P’ and P in this case would be the
populations of China and North America, respectively. Letting X repre-
sent exposure to AFB1 and Y, occurrence of liver cancer, ˜P is the strength
of the causal effect in the North American population, and similarly for
˜P0. Since HBV is much more common in China than in North America, it
is obvious that it would be unreasonable to regard ˜P0 as a good estimate
of ˜P. Nevertheless, the Chinese population might serve as an approxi-
mate guide to the North American one if we partition by those who have
been exposed to HBV and those who have not. Labeling these two groups
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1 and 2, respectively, ˜P1 ¼ P1(Y ¼ 1 j do(X ¼ 1))� P1(Y ¼ 1 j do(X ¼ 0))
is the strength of the causal effect among those in the North American
population exposed to HBV, and similarly for ˜P2. Let �1 and �2, respect-
ively, be the relative frequencies of those exposed and not exposed to
HBV. Then if AFB1 is not a cause of HBV exposure, we can derive (as
explained in section 6.2.1) the following equation.

˜P ¼ �1˜P1 þ �2˜P2 (6:10)

Thus, if the Chinese population is approximately representative of the
North American one with regard to the strength of the carcinogenic effect
of AFB1 among those exposed to HBV and those not exposed (i.e., ˜P

0
1 and

˜P
0

2 provide reasonably good estimates of˜P1 and˜P2, respectively), then
the strength of the overall causal effect in the North American population,
˜P, can be computed, given the relative frequency of exposure to HBV in
North America.3

Notice that the above reasoning does not depend on assuming conson-
ance: if it is possible to estimate the strength of the causal effect in each cell
of a cell-representative base population, then the overall effect in the target
population can be estimated as explained above. For example, one could
imagine a case like the above but in which ˜P1 is positive and ˜P2 is
negative. However, consonance would be a useful assumption if it were
possible to estimate the strength of the causal effect only in some cells and
not others or if the base population were representative of the target for
only some cells. For instance, suppose that in the aflatoxin example the
strength of the causal effect could be estimated only for those who have
been exposed to HBV. Then, given consonance, ˜P$ �1˜P1, which means
that a lower bound can be placed on˜P. This inferencewould not be valid,
however, if consonance did not obtain, since in that case the second term
on the right-hand side of (6.10) could be negative.

But what if only some cells of P’ are representative of those in P and
consonance is not plausible? Informative extrapolations may be possible
even in this unfavorable situation. Since themaximum andminimum values
of˜P are 1 and�1, it is possible to compute extremeupper and lower bounds
from �1˜P1 when consonance is not assumed. That is, given that �1˜P1

is estimated, �1˜P1 � (1� �1)#˜P# �1˜P1 þ (1� �1). In other words, the
lower bound is what results from the assumption that the strength of the
effect is �1 in the remainder of the population (whose relative frequency is
1� �1), while the upper bound results from the assumption that the strength
of the effect in the remainder of the population is 1. The breadth of the range
contained within these upper and lower bounds obviously varies inversely
with the size of �1, that is, the greater the proportion of the population for
which a causal strength is estimated, the narrower the interval of possible
values of˜P. If one is primarily concerned to knowwhether the overall effect
is positive or negative, the value of˜P1 also has a bearing onhow informative
the interval is, since for a given �1, the farther ˜P1 is from zero, the more
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the interval is skewed to the positive or negative side of the scale. Of course,
some areaswithin the intervalmay reasonably be judged to bemoreprobable
thanothers. For instance, the strengthof the causal effect is 1when the cause is
both necessary and sufficient for the effect, and one might have good reason
to think it extremely improbable that this would be the case.

C. D-SEPARATION

D-separation is a graphical concept whose interest lies in the following,
highly nontrivial fact: for directed acyclic graphs, d-separation indicates
exactly those conditional and marginal probabilistic independencies
entailed by the causal Markov condition (CMC) (cf. Pearl 2000, 18).4 A
graph consists of a set of nodes, some or all of which are linked by lines, or
edges. Typically, the nodes are understood to represent variables. A graph
is said to be directed if each edge has an arrowhead at exactly one end. For
example, consider the graphs in Figure A.1.

Graph (A) is directed, but (B) and (C) are not: (B), because of the
undirected edge betweenW andN, and (C), because of the double-headed
arrow betweenW and S. A graph is said to be acyclic if it does not contain
any sequence of arrows all aligned head to tail that begin and end at the
same node. For example, the graph in Figure A.2 contains a cycle.

In contrast, graph (A) in Figure A.1 is both directed and acyclic.
D-separation, then, is defined as follows:

A path p is said to be d-separated (or blocked) by a set of nodes S if and
only if

1. p contains a chain i ! m ! j or a fork i  m ! j such that the
middle node m is in S, or

2. p contains an inverted fork (or collider) i ! m  j such that the
middle nodem is not in S and such that no descendant ofm is in S.

A set S is said to d-separate X from Y if and only if S blocks every path
from a node in X to a node in Y. (Pearl 2000, 16–17).
XandYare said tobed-connectedbyasetS ifSdoesnotd-separate them.

Notice that item 1 of the definition corresponds to the screening-off rule
(see sections 4.4.1 and 9.1). Meanwhile, item 2 corresponds to the rule that

(A) (B) (C) 

W S

N

W S

N

W S

N

Figure A.1 Directed versus undirected graphs
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conditioning on colliders (or their descendants) may induce probabilistic
dependence (see Figure 9.2 in section 9.1).

As an illustration, consider the directed acyclic graph in Figure A.3.
In this graph there are four paths between V and Z:

(1) V W Y! Z
(2) V W! X Z
(3) V X W Y! Z
(4) V X Z.

Suppose that S is the empty set. Then paths (1), (3), and (4) are not blocked
by S, though (2) is owing to the collider at X. Therefore, V and Z are d-
connected by the empty set. Recall that the faithfulness condition (FC)
asserts that the only probabilistic independence relations are those
entailed by the CMC. Thus, if the graph satisfies the FC, V and Z are
probabilistically dependent when no variables are conditioned upon (i.e.,
they are marginally dependent).

Suppose that S ¼ {X, Y}. Then paths (1), (3), and (4) are blocked by S.
However, path (2) is not, since X is a collider on that path and X is S.
Hence, V and Z are d-connected by {X, Y}. Thus, if the graph satisfies the
FC, then V and Z are probabilistically dependent conditional on this set of
variables.

Finally, suppose thatS¼ {W,X,Y}. In this case, all fourpathsareblockedby
S. Thus, {W,X,Y} d-separatesV from Z. Consequently, if the graph in Figure
A.3 satisfies the CMC, then V and Z are probabilistically independent condi-
tional on {W,X,Y}.

D-separation also characterizes exactly those probabilistic independ-
encies entailed by linear cyclic structures with independent error terms
(Richardson and Spirtes [1999]). That result is of particular interest be-
cause d-separation and the CMC do not coincide for cyclic directed
graphs. To see how this is so, consider the graph in Figure A.4.

W S

N

Figure A.2 A directed graph with a cycle

W

V

Z
X

Y

Figure A.3 An illustration of d-separation
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Note that Z is not a descendant of X, and the only parent of X is Y. Hence,
if this graph satisfied the CMC, then X would be probabilistically inde-
pendent of Z conditional on Y. However, {Y} does not d-separate X from
Y, since Y is a collider on the path X ! Y  Z. Given the proof that d-
separation characterizes exactly those independence relationships
entailed by linear cyclic structures with independent error terms, the
natural conclusion is that d-separation is a more trustworthy guide for
cyclic graphs than the CMC.

YX Z

Figure A.4 How d-separation and the CMC differ for cyclic graphs
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Notes

Notes to Chapter 1

1. The passage is from Conjectures and Refutations (1989 [1963], 72).
2. This is, of course, a classic problem in toxicology; cf. Calabrese (1991).
3. For example, see Manski and Garfinkel (1992).

Notes to Chapter 2

1. It is often assumed that causal structures are ‘‘causally complete’’ in the
sense that no common causes of the variables have been omitted (Scheines 1997,
188). However, this assumption is not required for the account of extrapolation
developed in this book.

2. See Woodward (2003, 98) for a similar definition.
3. However, see Menzies and Price (1993) for an attempt to transform a

manipulationist account of causation into a reductive definition. See Hausman
and Woodward (1999) and Dowe (2000) for a critique of this argument. See
Woodward (2003, 20–22) for a defense of the claim that an account of causation
can be illuminating without being a conceptual analysis (or, in his term,
‘‘reductive’’).

4. When X is a continuous variable, this function would be more
naturally replaced by one indicating the probability distribution of Y conditional
on an ideal intervention setting the value of X within some narrowly circum-
scribed interval, rather than to a specific value. However, I set aside this
complication.

5. As is illustrated by such journal article titles as ‘‘The Estimation of Causal
Effects from Observational Data’’ (Winship and Morgan 1999) and ‘‘Identifica-
tion of Causal Effects Using Instrumental Variables’’ (Angrist, Imbens, and
Rubin 1996).

6. Ellery Eells (1991, 24–25), who also interprets causal generalizations as
being relative to populations, understands the notion of population in a rather
different way than proposed here. For example, Eells requires that causal
generalizations be relative not only to a flesh-and-blood population, but also
to an abstract population type. I choose not to follow this approach, since I think
it leads to unnecessary complications (cf. Eells 1991, 28–33). See Dupré (1993,
194–201) for a discussion of some the difficulties with Eells’s approach to
populations.

7. See Woodward (2003, 40) for a similar definition of causal relevance.
8. That is, the expected value of the product of X and Y minus the product of

the expected value of X and the expected value of Y. The expected value of X
equals �xP(X ¼ x).

9. See section A of the Appendix for a numerical illustration of this point.
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10. Humphreys’s proposal differs from Holland’s in requiring that there be an
objectively correct neutral comparison term. As Hitchcock (1993, 344–45) points
out, there are difficulties with this proposal.

11. This intuition is shared by others as well (cf. Selten 2001, 31).
12. For example, for each individual in the population, define the variable E

such that the closer the individual’s wealth to the mean, the higher the value of E.
Then increases in the redistribution of wealth from rich to poor yield increases in
the expected value of E.

13. Note that it is possible for X to be both comparative and monotonic neutral
with respect to Ywithin an interval Łwhile being causally relevant to Y. This could
occur in two ways: changes of X might alter the distribution of Y only outside of
the interval Ł, or changes in X might alter the distribution of Y without changing
its expected value. Note that neither of these two scenarios is possible if both X
and Y are binary variables. This point will turn out to be surprisingly important to
the discussion of extrapolation in Chapter 6.

14. This is an example of what is known as ‘‘hormesis.’’ Similar response
patterns occur widely in toxicology (cf. Calabrese and Baldwin 1999).

15. Observe that this condition entails that x0 is not in Ł, which is the one
universal constraint on the choice of x0 that I would insist on.

16. Brian Skyrms (1980, 108–9) suggests a weaker version of this requirement,
which demands only that a positive causal factor not lower the probability in any
subpopulation. Skyrms’s concept is similar to consonance, discussed in Chapter 6.

17. Examples of this sort are examined in more detail in section B of the
Appendix.

Notes to Chapter 3

1. See Hausman (1998, 13–17) for a critique of the conserved quantity theory
on the grounds that it fails to distinguish causally relevant and irrelevant inter-
actions and fails to account for causal asymmetries.

2. In Carnap’s (1936) version of this account, the antecedently understood
terms were presumed to be drawn from an ‘‘observation language.’’ I follow
Lewis (1970) and others (cf. Papineau 1996) in rejecting this requirement.

3. The transfer theory is, together with Salmon’s (1984) proposal, one of the
ancestral sources of Dowe’s position. It is presented in Aronson (1971) and in Fair
(1979). The transfer theory differs in some important respects from the conserved
quantity theory, and unfortunately Dowe does not elaborate on how the Ramsey-
Lewis approach would work in the case of his own theory.

4. For instance,Hitchcock (2003) advocates a pluralistic approach to causation.
5. Probably the most important graphical concept for this purpose is

d-separation (cf. Pearl 2000, 16–20).
6. The term ‘‘Bayesian network’’ derives from the original (and continuing)

use of directed graphs and probability distributions to implement expert learning
and judgment in artificial intelligence (cf. Pearl 1988). In the context of causal
inference, the name does not indicate a commitment to a Bayesian methodology.

7. In Simon’s original parable, Hora and Tempus are interrupted by tele-
phone calls, so that Tempus must continually restart construction from scratch,
while Hora need only restart the last module. As Watson and Pollack (2005, 448)
point out, it is difficult to interpret the original parable as an example of how

212 Notes to pp. 21–44



modularity enhances evolvability, since it does not involve a search through a
space of possibilities for a solution to a problem.

8. A number of further empirical case studies concerning modularity and
evolution can be found in Schlosser and Wagner (2004).

Notes to Chapter 4

1. The T-helper count in a healthy person is usually between 900 and 1200 per
microliter.

2. M-tropic HIV can also infect T-helper cells circulating freely in the blood-
stream, but not those present in lymphoid tissue. This latter category constitutes
the vast majority of T-helper cells (Stine 2000, 129, 141).

3. HIV can also destroy T-helper cells in several other ways (cf. Kalichman
1998, 20).

4. SGS note this limitation of the standard, directed graph formalism (2000,
24–25). Geiger and Heckerman (1991) suggest a rather different device for repre-
senting interactions via causal graphs than that developed here.

5. For more on this topic, see Pearl (2000), SGS (2000), Shipley (2000), Rosen-
baum (2002), and Neopolitan (2004). For commentary, see McKim and Turner
(1997) and Glymour and Cooper (1999).

6. The first published account of the isolation of the HIV virus is Barre-
Sinoussi et al. (1983).

7. T-helper cells circulating in the bloodstream typically express both the R5
and X4 co-receptors, and hence are susceptible to infection by both strains (Stine
2000, 141). However, the vast majority of lymphocytes occur in lymphoid tissue
(ibid., 129).

8. M-tropic and T-tropic HIV are also often distinguished on the grounds that
the latter, but not the former, produce syncytia (multinucleate masses of proto-
plasm not separated into distinct cells). Thus, M-tropic HIV is often labeled NSI
(nonsyncytium-inducing) and T-tropic HIV, SI (syncytium-inducing).

9. For example, see the article ‘‘Immune to a Plague: Gene for Immunity to
AIDS Discovered,’’ in Discover magazine (Radetsky 1997). This article also pro-
vides a lively recounting of the path to the discovery of the thirty-two-base pair
deletion in the gene for the R5 co-receptor.

10. First articulated, in a somewhat different form, by Hans Reichenbach (1956,
157).

11. This proposition can be extended to cyclic systems, at least for linear
models, by employing a generalized version of the CMC (cf. Spirtes 1995; Koster
1996; Richardson and Spirtes 1999; SGS 2000, 297–99).

12. It is an interesting question whether, in the absence of randomization, an
intervention might be exogenous, yet not probabilistically independent of other
exogenous variables. Some have argued that such a thing occurs for pairs of
causally unrelated variables both of which exhibit a time trend (cf. Sober 2001).
Hoover (2003) argues that such cases are not in fact genuine counterexamples to
the PCC, while Steel (2003, 316) points out that such problems cannot arise in
randomized controlled experiments.

13. The same point is made by Scheines et al. (1998, 171–73) in response to
Woodward (1998, 129–35).

14. See their theorem 3.2 (2000, 41–42) and its proof (2000, 383–84).
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15. In mathematical jargon, L says that any subset of the space of parameter-
izations of Lebesgue measure zero has probability zero. The ‘‘L’’ tag of the
assumption is for ‘‘Lebesgue measure.’’

16. Glymour (1999, 161) responds to Cartwright by claiming that reliable
causal inference is impossible without the FC. Even if this claim were true, it
would not follow that the objection is mistaken, but only that the reliable causal
inference is more narrowly restricted than one might have hoped.

17. One might also ask whether SGS’s theorem extends to cases in which causal
relationships are nonlinear. SGS conjecture that it does (2000, 42), and Meek (1995)
shows that the theorem holds for causal models with discrete variables.

18. That it would be unreasonable to insist that sets of Lebesgue measure
zero must always have probability zero is noted by Pearl (1998, 121). SGS
also acknowledge the point (2000, 66) but do not explain why sets of Lebesgue
measure zero should have zero probability in the sorts of cases relevant to their
theorem.

19. This conclusion bears some similarity to Pearl’s (1998, 121) and Wood-
ward’s (1998, 142–47) suggestion that the FC is a reasonable assumption when
parameters vary independently of one another while causal structure remains
constant. For more detailed examination of this matter, see Steel (2006).

20. A consequence of this point is that examples of relatively simple techno-
logical devices in which near violations of the FC can be made probable do not
show that near exceptions to the FC are likely more generally. In regard to this, see
Cartwright’s ‘‘solition’’ example, which she uses to motivate her objection to the
FC (1999, 30–31, 118).

21. Chu et al. (2003) demonstrate an obstacle to the screening-off rule (e.g.,
variables related only as effects of a common cause C are independent conditional
on C) in studies that aim to infer gene regulatory networks from microarray data.
However, as they observe (Chu et al. 2003, 1147), this difficulty is not relevant to
gene knockout experiments, which are my concern here.

22. For additional cases, see Liljegren et al. (2000) and Kurihara et al. (2001).
23. The same point is also noted in Tymms and Kola (2001, 5–6).
24. This section is titled ‘‘Mammalian Genetic Models with Minimal or Com-

plex Phenotypes.’’
25. See Joyner (2000, chapters 3, 4, and 5, for a detailed description of such

procedures.

Notes to Chapter 5

1. Although the term ‘‘extrapolation’’ suggests a situation in which there is no
overlap between the target and base populations, the proposals advanced in this
book are pertinent to cases in which the two populations are not disjoint. For
example, the target population might be a proper subset of the base population, as
in a medical example in which a physician wishes to judge whether a treatment
that is effective with regard to the general population is also effective for some
subgroup. Thus, the discussion in this chapter is relevant to all three of the
examples of the problem of extrapolation in heterogeneous populations listed at
the start of Chapter 1.

2. I thank Jim Woodward (personal communication) for suggesting this
concise formulation of the issue.

3. See especially Calabrese (1991) and Hengstler et al. (1999).
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4. They reiterate this criterion of CAM-hood in several places (cf. 1996, 113;
1993a, 122; 1993b, 326). LaFollette and Shanks’s definition of a CAM is also
adopted by Ankeny (2001, S256) and Guala (2005, 199).

5. I owe this objection to LaFollette and Shanks’ definition of a CAM to
Megan Delehanty.

6. They also claim—not very reasonably, in my judgment—that the opposite is
accepted opinion among scientists conducting animal research (1993a, 119). See
Hengstler et al. (1999, 919) for a clear statement that evidence is needed to establish
the appropriateness of an animal model. Likewise, see Schaffner (2001) for a de-
scription of debates among scientists regarding the appropriateness of several
animal models for specific extrapolations.

7. LaFollette and Shanks reiterate the extrapolator’s circle at various points in
their book (1996, 23, 27, 169).

8. LaFollette and Shanks cite Hempel (1965, 441). For other classic statements
of distinction, see Popper (2002 [1959], 7–8) and Reichenbach (1938, 6–7).

9. They coin the term ‘‘modeler’s functional fallacy’’ to refer to the belief that
similarity in function entails similarity of mechanism.

10. I thank Fred Gifford for pointing out this ethical implication of my account
of extrapolation.

Notes to Chapter 6

1. Mitchell (2002a) also argues that generalizations of the biological sciences
do not follow the pattern of exclusive cp laws.

2. See Earman and Roberts (1999) and Earman, Roberts, and Smith (2002) for
arguments that cp laws, owing to their open-ended escape clauses, can serve no
legitimate scientific purpose. For an example of an economist dismissing such
arguments as a ‘‘foolish’’ case of throwing the baby out with the bathwater, see
(Persky 1990, 192–93).

3. Spohn’s (2002) approach to cp laws in terms of ranking functions is similar
to both Lange’s and Schurz’s proposals.

4. I borrow this label from Woodward (2002b).
5. Morreau (1999, 164) observes that it is a common problem for the completer

approach that it allows both a sentence and its contrary to count as cp laws.
6. See Earman and Roberts (1999) and Schurz (2001b, 2002) for critiques of

these versions of the completer approach. For criticisms of Fodor’s proposal, see
Schiffer (1991) and Mott (1992).

7. I do not explore the extrapolation of quantitative probabilistic causal claims
in this chapter. See section B of the Appendix for some preliminary exploration of
this topic.

8. The same concern is explored in Gold et al. (1992), Calabrese and Baldwin
(1999), and Hengstler et al. (2003).

9. Lipton (1999) andKincaid (1996, 63–70) offer accounts of cp laws that take their
inspiration fromCartwright. See Smith (2002) for an argument that physical examples
such as the law of universal gravitation in fact provide little support for Cartwright’s
analysis. See Cartwright (2002a) for a defense of her interpretation of cp laws.

10. The classic text in this genre is Kelly (1996).
11. This is a reformulation of Glymour’s proposal, which appears to contain a

typographical mistake. He writes: ‘‘The learner verifies that normally X for a data
sequence if only a finite number of these conjectures are in error or is of the form if
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An then�X, and falsifies that normally X for a data sequence if only a finite number
of these conjectures are in error or is of the form if An then X’’ (2002, 401). The
verification case is equivalent to my formulation. But the falsification case is rather
odd, since it entails that a learner could avoid falsifying normally X by issuing
infinitely many erroneous conjectures. Yet an infinite sequence consisting solely of
incorrect conjectures would seem to be as clear a case of falsifying normally X as
one could imagine. My guess is that the passage was intended to say that the
learner ‘‘falsifies that normally X for a data sequence if an infinite number of these
conjectures are in error or of the form if An then �X.’’ This makes falsifying
normally X equivalent to not verifying it.

12. That grand theoretical unification is an inappropriate ideal for biological
sciences is one of the main themes of Mitchell (2003).

13. Since Lange interprets laws in general as inference rules, one might also
attribute this insight to him. However, his defense of cp laws is primarily based
on the Wittgensteinian notion that the meaning of a phrase (e.g., ‘‘nothing
interferes’’) can be implicit in practice and need not depend on explicit necessary
and sufficient conditions for its application (cf. Lange 1993, 2002).

Notes to Chapter 7

1. This insight was expressed by William Wimsatt (1976).
2. I borrow this delightful turn of phrase fromSterelny andGriffiths (1999, 149).
3. The expression ‘‘gory details’’ is taken from a memorable line in Kitcher

(1984, 370).
4. The authors cite research suggesting that these premises are correct

(Callaway et al. 1999, 2525).
5. Callaway et al. note that this implication of their model is supported by

empirical data (1999, 2528). Recall that M-tropic strains can infect circulating
T-cells (which display the R5 co-receptor) but not those residing in lymphatic
tissue.

6. The extent of the difference and whether it will persist have been ques-
tioned, however (Cilliers et al. 2004).

7. Nagel (1979, 99), Wimsatt (1979, 352), and Rosenberg (2001, 157) cite
correction as a goal of reduction.

8. My use of the term ‘‘theory’’ is intended to presuppose no specific analysis
of what theories are (cf. Suppe 1974).

9. See Fodor (1975, 10–12), Kincaid (1990, 576), and Dupré (1993, 88) for
succinct presentations of the layer-cake model of reduction.

10. For example, see Rosenberg (2001, 136).
11. See Schaffner (1993a, 328) for an acknowledgment of this point. Sarkar also

emphasizes that synthetic identities were never a requirement in Nagel’s model of
reduction (cf. 1998, 25).

12. Schaffner also rejects requirement 3 as a desideratum of reductions
(cf. 1993a, 340).

13. Correction would seem to be precluded, since the layer-cake model
presumes that the higher-level theory is deduced from the lower-level one (so
the higher-level theory must be true if the lower-level one is). However, correction
could be brought into the layer-cake picture if one supposed that what is deduced
is not precisely the higher-level theory, but some modified, corrected version of it
(cf. Schaffner 1967).
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14. Not even Oppenheim and Putnam claimed that the layer-cake model
represented the only possible type of reduction (cf. 1958, 8). Rather, they advanced
the layer-cake model as an account of reduction capable of explicating the intui-
tive notion of the unity of science.

15. Sarkar rejects synthetic identities as a necessary condition for biological
reductions on these grounds (1998, 36, 62).

16. My use of the term ‘‘level’’ is similar to Sarkar’s use of ‘‘realm’’ (cf. Sarkar
1998, 39–47).

17. See Delehanty (2005) for a defense of token-token reductionism against the
‘‘context objection.’’

18. Kitcher includes two additional claims on this list: (4) states that the repre-
sentations accepted by science at any given timemay not all bemutually consistent,
while (3) asserts that any such inconsistencies are the result of the imperfections of
the current state of science (2002, 570). There is a minor controversy between
Kitcher and Longino regarding (3) (cf. Longino 2002a, 184; 2002b, 575–76; Kitcher
2002, 571), but that disagreement is immaterial to our concerns here.

19. See Kim (1999) and Delehanty (2005) for critiques, and Humphreys (1997)
for a defense of strongly emergent properties.

20. Likewise, see his statement that higher-level properties are not ‘‘causally
inert’’ (1993, 101).

21. See Steel (2004, 69).
22. Rosenberg also identifies macromolecules as the fundamental level of

biological description (2001, 162).
23. For example, Cartwright’s pluralism is more overtly ontological than

Kitcher’s, and she makes a point of criticizing token-token reductionism (cf.
1999, 32–33). For a critique of Cartwright’s pluralism from a perspective that is
sympathetic to Kitcher’s, see Ruphy (2003).

Notes to Chapter 8

1. Of course, the task is made easier in this case by the fact that it was possible
to choose which mechanism to implement: the robustness of a mechanism is one
factor in favor of selecting it.

2. This example suggests that structure-altering interventions directly affect
more than one variable, and hence violate item (b) in definition 2.1.

3. This is a way to interpret the main thrust of the Lucas critique (cf. Wood-
ward 2000, 220–21).

4. Of course, additional assumptions about preferences, such as transitivity
and completeness, would typically be made. See Hausman (1992, chap. 1) for an
accessible discussion of the standard conditions that preferences are assumed to
satisfy in rational choice models.

5. For instance, this specification test assumes that groups evenly matched at
the earlier time will continue to be evenly matched the later time (cf. Heckman and
Hotz 1989, 666).

6. These authors also refer to ‘‘selection bias’’—the existence of common
causes of program participation and the outcome of interest, say, earnings—as
an extrapolation problem (Manski and Garfinkel 1992, 13). Yet selection bias is a
challenge for estimating a causal effect in a given context, and not a problem
having to do with extrapolating a causal effect from one population and context to
others.
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7. For assessments of the effects of the 1996 welfare reform on the incomes of
former recipients, see Danziger et al. (2002), Wolfe (2002), DeParle (2004, chap. 17),
Robbins and Barcus (2004), and Ozawa and Yoon (2005).

Notes to Chapter 9

1. See Pearl (2000, 17) and SGS (2000, 24–25) for further discussion of this type
of example.

2. See Angrist, Imbens, and Rubin (1996) and Rosenbaum (2002, 180–88) for a
discussion of details.

3. See Little (1991, 25).
4. Kincaid attributes this claim to Elster (cf. Elster 1989, 4) and to Little (cf.

Little 1991, 25).
5. A very similar argument is found in Papineau (1978, 54).
6. See Spirtes, Glymour, and Scheines (2000, chap. 4) for a thorough discus-

sion and more complex examples of statistically indistinguishable causal graphs.
7. There is a basis for ruling out the possibility that X is a cause of Y that is

frequently appealed to in social research, namely, that Y is temporally prior to X.
However, this reasoning depends only on the principle that an effect cannot
precede its cause in time, which one might maintain independently of any con-
victions regardingmechanisms. Of course, that Y is prior in time toX does not rule
out the possibility of common causes of Y and X.

8. Little reiterates the same position in more recent writings (cf. 1998, 213–14).
9. Danks (2005) gives an interesting normative proposal for how, given the

CMC and FC, conclusions about the causal relationships among distinct yet
related sets of variables can be integrated.

10. See section 3.5.1.
11. Since Ferguson’s account of Yanomami warfare is so different from the

popular perception of the topic—according to which the supposed incessant
violence of the Yanomami is a grim portrait of our primitive ancestors—some
background comments are in order. The popular view of the Yanomami is pri-
marily due to Napoleon Chagnon’s famous depiction of them as the ‘‘fierce
people’’ (1968, 1974, 1988). Most lay people, I think, would be surprised to learn
that nearly every anthropologist who has seriously studied the Yanomami rejects
Chagnon’s portrayal of them (see Sponsel 1998 for a good literature review).

12. I located eight reviews of Ferguson’s book. Four are positive (Rivière 1996;
Chernella 1997; Pollock 1997; Harris 1996). One of these positive reviews was
written by Marvin Harris, a longtime champion of ecological explanations of
Yanomami warfare (1977, 1984). In his review, Harris abandons his ecological
hypothesis in favor of Ferguson’s—at least as far as the Yanomami are concerned
(Harris 1996, 416). A fifth review is generally positive in tone, but offers no clear
verdict of approval or disapproval (Heinen and Illius 1996). One review is mixed,
acknowledging that Ferguson had made a major contribution to the issue and
granting that he had shown that conflicts regarding steel tools have been an
important cause of Yanomami warfare (Colchester 1996). Nevertheless, this re-
viewer remained skeptical about the importance of this cause in comparison to
others. The only negative review by an anthropologist that I found was Chagnon’s
(1996). I also found one very negative, brief, and sarcastic review written by a
historian (Bellesiles 1998). In sum, aside from Chagnon, the reaction to Ferguson’s
book among anthropologists has been mostly positive. Moreover, Yanomami
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specialists generally appear to regard his book as making a significant contribu-
tion that should reshape anthropological discussions of warfare. For example, in a
review of the Yanomami warfare literature, Leslie Sponsel states that Ferguson’s
‘‘work should force anthropologists to reevaluate previous ethnographies as well
as to evaluate and design future research in light of the distinct possibility that
what was formerly believed to be chronic, endemic ‘primitive’ or tribal warfare
may actually have been triggered (or at least intensified) and transformed by
contact (indirect or direct) with Western ‘civilization’ ’’ (1998, 110).

13. Thus, I follow many current philosophers of science in rejecting the sharp
distinction between the context of discovery and the context of justification drawn
by logical empiricists. See section 5.4.3 for further discussion of this topic.

Notes to the Appendix

1. For example, the mean difference is often used as a measure of treatment
impact in randomized controlled experiments. That is illustrated by the experi-
mental evaluations of welfare-to-work programs discussed in section 8.2. How-
ever, other measures exist (for example, ratios) and may be preferable for some
purposes.

2. See Kew (2003) for a good literature review on this topic.
3. This procedure bears an obvious similarity to stratification in observational

studies (cf. Rosenbaum 2002, 77–82). However, there is an important difference,
since stratification is a method for estimating a causal effect in a population from
statistical data concerning that same population. In contrast, the inference of con-
cern here is an extrapolation: given the causal effect in one population, one wishes
to draw conclusions about the effect in another population.

4. The CMC was discussed in sections 4.4.1 and 9.1.
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Dupré, John (1993). The Disorder of Things: Metaphysical Foundations of the Disunity
of Science. Cambridge, MA: Harvard University Press.

224 References



Earman, John (ed.) (1992). Inference, Explanation, andOther Philosophical Frustrations.
Berkeley: University of California Press.

Earman, John, and John Roberts (1999). ‘‘Ceteris Paribus, There Is No Problem of
Provisos.’’ Synthese 118: 439–78.

Earman, John, John Roberts, and Sheldon Smith (2002). ‘‘Ceteris Paribus Lost.’’
Erkenntnis 57: 281–301.

Eells, Ellery (1986). ‘‘Probabilistic Causal Interaction.’’Philosophy of Science 53: 52–64.
——— (1987). ‘‘Probabilistic Causality: A Reply to John Dupré.’’ Philosophy of
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Ruphy, Stéphanie (2003). ‘‘Is the World Really ‘Dappled’?: A Response to
Cartwright’s Charge Against ‘Cross-Wise Reduction.’’’ Philosophy of Science
70: 57–67.

Salmon, Wesley (1984). Scientific Explanation and the Causal Structure of the World.
Princeton, NJ: Princeton University Press.

Samson,Michel,FrédéricLibert,BenjaminDoranz,JosephRucker,CorinneLiesnard,
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