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Preface

In many demanding applications such as automotive or aerospace, common engi-

neering materials reaching their limits and new developments are required to fulfill

the increasing demands on performance, characteristics, and functions. The proper-

ties of materials can be increased, for example, by combining different materials to

achieve better properties than a single constituent or by shaping the material or

constituents into a specific structure. Many of these new materials reveal a much

more complex behavior than traditional engineering materials due to their advanced

structure or composition. The purpose of this book is to cover one of the important

physical characteristics, that is thermal properties, in detail from different points of

view. This book aims to provide readers not only with a good understanding of the

fundamentals but also with an awareness of recent advances in properties determi-

nation and applications of multiphase materials. The book contains 14 chapters

written by experts in the relevant fields from academia and from major national

laboratories/research institutes.

The first part of the book covers materials where two or more solid phases form

the composite. The second part is related to porous and cellular materials where two

or more solid phases form certain shapes of cells with an empty or air-filled space.

Typical representatives of this group are foamed polymers or metals, which have a

significant potential in multifunctional applications. The last part of the book covers

problem where fluids in a solid structure fulfill technical functions – such as in the

case of combustion – or significantly determining the overall characteristics of the

material.

The editors wish to thank all the chapter authors for their participation and

cooperation, which made this text possible.

Finally, we would like to thank the team at Springer, especially Dr. Christoph

Baumann, for their excellent cooperation during the whole phase of the project.

January 2011 Andreas Öchsner

Graeme E. Murch
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Continuum Modeling of Diffusive Transport

in Inhomogeneous Solids

Helmut J. Böhm, Heinz E. Pettermann, and Sergio Nogales

Abstract General features of homogenization and localization in studying the

conduction behavior of inhomogeneous materials are introduced and two groups

of methods for solving such problems are presented. First, mean field and bounding

approaches are discussed and comparisons between the predictions of relevant

methods are given. Next, modeling approaches to studying discrete microstructures

are covered, the main emphasis being put on periodic homogenization and window-

ing procedures. Finally, an application of the methods to diamond particle rein-

forced aluminum is presented, in which interfacial effects play an important role.

1 Introduction

The mathematical description of diffusive transport rests, on the one hand, on Fick’s

first law, which postulates that the diffusive flux goes from regions of high values of

some conserved quantity, F, to regions of low values. It can be written formally as

jðxÞ ¼ �D ðxÞ gðxÞ; (1)

where jðxÞ is the vector of the diffusive flux, gðxÞ ¼ rFðxÞ is the gradient of the
conserved quantity (also referred to as intensity), andD ðxÞ is a scalar diffusivity or
a diffusivity tensor of order two describing a position dependent material behavior.

In the absence of sources and sinks, the flux is divergence-free, rjðxÞ ¼ 0; which,
in combination with (1) leads to the description of diffusive phenomena by Laplace

equations of the type

rðD ðxÞrFðxÞÞ ¼ 0: (2)
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In combination with appropriate boundary conditions and, where appropriate,

interfacial conditions, the partial differential equation (2) pertains to steady-state

diffusive transport in both homogeneous and inhomogeneous media.

A number of phenomena in inhomogeneous solids, among them thermal and

electrical conduction, electrostatic and magnetostatic behaviors, species diffusion

(including moisture diffusion giving rise to hygral strains and stresses in polymeric

constituents of composites), and antiplane elasticity can be described by formalisms

of the above type, see, e.g., [22, 42, 59]. In what follows the emphasis is put on the

thermal conduction behavior, i.e., the conserved quantity, F, is enthalpy and the

equations are typically written in terms of the temperature, T. The flux vector then is
the heat flux, q, the gradient vector is the temperature gradient, d ¼ rT, and the

material property tensor is the conductivity tensor,K , its inverse being referred to

as the resistivity tensor, R ¼ K �1. All results pertaining to thermal conduction

can be directly applied to the other diffusion phenomena listed above by switching

in the appropriate variables.

The present chapter provides a basic discussion of models for studying thermal

conduction in inhomogeneous materials showing at least two, well separated, char-

acteristic length scales, viz., a macroscale pertinent to samples, components and

structures, at which the heterogeneity of the media is not evident, and a microscale,

where regions occupied by the different constituents (or phases) are clearly distin-

guishable. Pertinent materials are, e.g., composite materials, which typically dis-

play a matrix–inclusion topology on the microscale, polycrystals, all grains of

which are topologically equivalent, and porous as well as cellular materials, the

void phase of which is usually treated as being non-conducting.

On the one hand, the thermal conductivity of inhomogeneous media that

consist of dissimilar constituents with conductivities K ðpÞ is to be described in

terms of the behavior of an energetically equivalent, homogeneous “comparison

material” that shows an effective conductivity K �. The task of deducing K �

from the spatial arrangement as well as the material properties of the phases (and,

where appropriate, from the behavior of the interfaces between them) is referred

to as homogenization. On the other hand the fluxes and gradients on the micro-

scale (referred to as the microfields) are to be obtained for given conditions on the

macroscale, a task referred to as localization. These two main tasks in analyzing

the behavior inhomogeneous solids are accomplished by applying continuum-

level models.

Estimates of the macroscopic conduction properties of inhomogeneous materials

have elicited scientific interest for some 135 years, and a fair number of theoretical

and semi-empirical models have been devised [22, 52, 59]. In modeling work

published over the past 50 years two strands of development have played important

roles. On the one hand, analytical and semi-analytical estimates and bounds have

been developed that explicitly or implicitly use statistical information on the phase

geometry within some representative volume element. Some of the resulting mean

field estimates and bounding methods will be discussed in Sect. 2. On the other

hand, the thermal fields in specific phase arrangements may be evaluated at high

accuracy, in most cases by using numerical engineering methods. Such “discrete

4 H.J. Böhm et al.



microfield approaches” are presented in Sect. 3 and are discussed in detail in other

chapters of the present work.

All methods discussed in the following have close analogues in continuum

micromechanics of materials, see, e.g., [5, 7], a research field that focuses on

modeling the mechanical behavior of inhomogeneous materials. Due to the lower

order of the tensors involved in describing diffusion phenomena the latter tend,

however, to be somewhat simpler to model than (thermo)mechanical behaviors. In

addition, the effects of material symmetries are less complex in conduction pro-

blems, with, e.g., geometries of cubic symmetry giving rise to macroscopically

isotropic conduction behavior [46].

Throughout the present chapter scalars are denoted by variables typeset in italic

fonts or by Greek letters. For vectors and tensors (of order 2) minor case letters in

bold and upper case letters in calligraphic fonts, respectively, are used. Volume

averages are denoted as

hf i ¼ 1

Os

Z
Os

f ðxÞ dO; (3)

where Os is a suitable volume element. Provided this volume element is sufficiently

large and shows no significant macroscopic gradients of composition or of the heat

flux and intensity fields, the latter can be split into “slow” and “fast” contributions,

qðxÞ ¼ hqi þ q0ðxÞ and dðxÞ ¼ hdi þ d0ðxÞ; (4)

respectively. Here hqi and hdi are the macroscopic (slow) fields, whereas q0ðxÞ and
d0ðxÞ stand for the microscopic fluctuations, for which the relation hq0i ¼ hd0i ¼ 0

holds.

In the present chapter special emphasis is put on interactions between effective

material properties andmicrostructure that go beyond phase volume fraction effects;

in the case of composites they involve the topology of the phase arrangement, the

shapes and positions of inhomogeneities as well as their orientation and size

distributions. The discussion focuses mainly on engineering-relevant issues and is

neither intended to provide a formal review of the state of the art in conduction

modeling nor to go into mathematical details of the methods. Readers interested in

the latter aspects are referred to the books by Torquato [59] and Milton [42] as well

as to [19] and [35].

2 Mean Field Estimates and Bounds for Conduction Properties

Mean field estimates and many bounding methods for studying the thermal con-

duction behavior of inhomogeneous materials are formulated in terms of phase

averaged gradients and fluxes,

Continuum Modeling of Diffusive Transport in Inhomogeneous Solids 5



hdiðpÞ ¼ 1

OðpÞ

Z
OðpÞ

dðxÞ dO and hqiðpÞ ¼ 1

OðpÞ

Z
OðpÞ

qðxÞ dO; (5)

respectively, where the superscript ðpÞ denotes a constituent and OðpÞ the volume

occupied by it. From the definition of phase averaging the relations between the

macroscopic fields and the phase averaged (or mean) microscopic fields follow

immediately as

hdi ¼
X
ðpÞ

xðpÞhdiðpÞ and hqi ¼
X
ðpÞ

xðpÞhqiðpÞ; (6)

provided the interfaces between the phases are perfect. Here xðpÞ ¼ OðpÞ P
ðkÞ O

ðkÞ
.

stands for the volume fraction of constituent ðpÞ and the sums run over all phases.

The phase averaged fields are linked to the macroscopic fields by the (phase

averaged) gradient and flux concentration tensors, A
ðpÞ

and B
ðpÞ
, defined via the

relations

hdiðpÞ ¼ A
ðpÞhdi and hqiðpÞ ¼ B

ðpÞhqi; (7)

respectively. Obviously, the concentration tensors depend on both the phase

arrangement and the phase properties. From (6) and (7) the concentration tensors

can be seen to fulfill the relationships

X
ðpÞ

xðpÞA ðpÞ ¼ U and
X
ðpÞ

xðpÞB
ðpÞ ¼ U ; (8)

where U denotes the unit tensor of rank two.

In the present section linear conduction behavior is assumed at the phase and

macroscopic levels, i.e.,

hqiðpÞ ¼ �K ðpÞhdiðpÞ hdiðpÞ ¼ �R ðpÞhqiðpÞ
hqi ¼ �K �hdi hdi ¼ �R �hqi (9)

in accordance with (1). The superscript asterisk is used to denote effective properties.

With the exception of Sects. 2.6 and 4 the interfaces between phases are assumed

to be perfect, i.e., there are no temperature jumps across interfaces.

2.1 General Relations

By using (6)–(9) the effective conductivity and resistivity tensors of an inhomoge-

neous material can be obtained from the phase properties and concentration tensors as

K � ¼
X
ðpÞ

xðpÞK ðpÞA ðpÞ
and R � ¼

X
ðpÞ

xðpÞR ðpÞB
ðpÞ
: (10)

6 H.J. Böhm et al.



Accordingly, once the phase concentration tensors are known both the homoge-

nization and localization problems are solved within the mean field framework,

which explains the central role of the concentration tensors in the present section.

The gradient and flux concentration tensors of a given phase ðpÞ are linked by the
equations

A
ðpÞ ¼ R ðpÞB

ðpÞ
K � and B

ðpÞ ¼ K ðpÞA ðpÞ
R �: (11)

If the effective and phase conductivity tensors of a two-phase composite are

known, they can be used to generate phase concentration tensors via relations of

the type

xðmÞA ðmÞ ¼ ðK ðmÞ �K ðiÞÞ�1ðK � �K ðiÞÞxðiÞA ðiÞ

¼ ðK ðiÞ �K ðmÞÞ�1ðK � �K ðmÞÞ; (12)

where ðmÞ and ðiÞ denote the matrix and reinforcement (fibers, particles) phases.

2.2 Dilute Inhomogeneities

In order to generate expressions for the gradient and flux concentration tensors

required in mean field methods, recourse is typically made to inclusions or inhomo-

geneities of ellipsoidal shape. When a uniform “free” gradient df is first induced in an

inclusion and the latter is then placed into a gradient-freematrix of equal conductivity,

a uniform in-situ inclusion gradient, dc, results that can be described by the expression

dc ¼ S df ; (13)

by analogy to Eshelby’s [15] relation in elasticity. The tensor S is referred to as the

depolarization tensor, diffusion Eshelby tensor or conduction Eshelby tensor. For

spheroidal inclusions that are embedded in an isotropic matrix or a transversally

isotropic matrix (the out-of-plane axis of which corresponds to the spheroid’s axis

of rotation), the non-diagonal terms of the depolarization tensor vanish in the

material frame of reference and the diagonal components can be expressed as

Sð1; 1Þ ¼ 1� gðtÞ and Sð2; 2Þ ¼ Sð3; 3Þ ¼ gðtÞ
2

; (14)

where g(t) takes the form

gðtÞ ¼ 1þ 1

t2 � 1
1� t

2ðt2 � 1Þ1=2
ln

tþ ðt2 � 1Þ1=2
t� ðt2 � 1Þ1=2
 !" #

(15)

Continuum Modeling of Diffusive Transport in Inhomogeneous Solids 7



for t � 1 and

gðtÞ ¼ 1þ 1

t2 � 1
1� t

ð1� t2Þ1=2
arctan

1� t2

t

� �" #
(16)

for t � 1 [20]. Here the parameter t is defined as

t ¼ a
K

ðmÞ
T

K
ðmÞ
A

; (17)

where K
ðmÞ
A and K

ðmÞ
T are the axial and transverse conductivities of the matrix

material, respectively. a is the aspect ratio of the inclusions, with a > 1 denoting

prolate (or fiber-like) and a < 1 oblate (or platelet-like) ellipsoids of revolution.

For isotropic matrix behavior (17) reduces to t ¼ a, so that the depolarization

tensor depends only on the shape of the inclusion. For the special case of a spherical

inclusion, a ¼ 1, in an isotropic matrix the non-zero terms of the depolarization

tensor are

Sð1; 1Þ ¼ Sð2; 2Þ ¼ Sð3; 3Þ ¼ 1

3
: (18)

Proceeding by analogy to Eshelby’s equivalent inclusion approach [15], the

fields in inhomogeneous inclusions embedded in a matrix — referred to as

inhomogeneities — can be evaluated on the basis of (13). The inhomogeneity

gradient and flux concentration tensors pertaining to a single ellipsoidal inclusion

ðiÞ embedded in a matrix ðmÞ, known as dilute concentration tensors, are then

obtained as

A ði;mÞ
dil ¼ fU þ S ði;mÞR ðmÞ½K ðiÞ �K ðmÞ�g�1

B ði;mÞ
dil ¼ fU þK ðmÞ½U � S ði;mÞ� ½R ðiÞ �R ðmÞ�g�1

(19)

by analogy to Hill [29] and Benveniste [4]. Here the designatorsA ði;mÞ
dil ;B ði;mÞ

dil and

S ði;mÞ are used to stress that the concentration and depolarization tensors pertain to
an inhomogeneity ðiÞ embedded in matrix ðmÞ. The corresponding matrix concen-

tration tensors can be obtained via (8).

When inserted into (10) the above concentration tensors allow describing the

thermal conduction behavior of inhomogeneous materials of matrix–inclusion topo-

logy, non-ellipsoidal inhomogeneities being approximated by suitable ellipsoidal or

spheroidal shapes. However, because the Eshelby formalism pertains to single

inhomogeneities that are not subject to perturbation effects due to the presence of

neighbors, such models are restricted to dilute inhomogeneity volume fractions of a

few percent.

8 H.J. Böhm et al.



2.3 Non-Dilute Inhomogeneities

In order to obtain methods for studying heterogeneous materials with freely

selectable inhomogeneity volume fractions, the interactions between neighboring

inhomogeneities must be accounted for. Within the mean field framework these

interactions are typically dealt with in a collective way. This is done either by

modifying the mean gradient and flux fields individual inhomogeneities are sub-

jected to, which gives rise to effective field methods, or by adapting the behavior of

the embedding medium, which leads to effective medium approaches. Because

individual two- or many-particle interactions are not resolved in such methods, they

are often referred to as non-interacting models.

2.3.1 Mori–Tanaka Methods

Mori–Tanaka methods [43] follow the effective field strategy, i.e., they subject

dilute inhomogeneities to (a-priori unknown) matrix fields that differ from the

macroscopic gradients and fluxes. In terms of concentration tensors this ansatz

translates into the relationships

A
ðiÞ
MT ¼ A ði;mÞ

dil A
ðmÞ
MT B

ðiÞ
MT ¼ B ði;mÞ

dil B
ðmÞ
MT (20)

linking the non-dilute (Mori–Tanaka) inhomogeneity concentration tensors, A
ðiÞ
MT

and B
ðiÞ
MT, the dilute inhomogeneity concentration tensors described in Sect. 2.2,

A ði;mÞ
dil and B ði;mÞ

dil , and the unknown Mori–Tanaka matrix concentration tensors,

A
ðmÞ
MT and B

ðmÞ
MT, respectively [4]. By plugging (20) into (8), the Mori–Tanaka

concentration tensors are obtained as

A
ðmÞ
MT ¼ ½xðmÞU þ

X
ðjÞ6¼ðmÞ

xðjÞA ðj;mÞ
dil ��1 A

ðiÞ
MT ¼A ðiÞ

dil½xðmÞU þ
X

ðjÞ6¼ðmÞ
xðjÞA ðj;mÞ

dil ��1

B
ðmÞ
MT ¼ ½xðmÞU þ

X
ðjÞ6¼ðmÞ

xðjÞB ðj;mÞ
dil ��1 B

ðiÞ
MT ¼B ðiÞ

dil½xðmÞU þ
X

ðjÞ6¼ðmÞ
xðjÞB ðj;mÞ

dil ��1

(21)

from which the effective conductivity and resistivity tensors can be evaluated via

(10) as

K �
MT ¼ ½xðmÞK ðmÞ þ

X
ðiÞ6¼ðmÞ

xðiÞK ðiÞA ði;mÞ
dil � ½xðmÞU þ

X
ðiÞ6¼ðmÞ

xðiÞA ði;mÞ
dil ��1

R �
MT ¼ ½xðmÞR ðmÞ þ

X
ðiÞ6¼ðmÞ

xðiÞR ðiÞB ði;mÞ
dil � ½xðmÞU þ

X
ðiÞ6¼ðmÞ

xðiÞB ði;mÞ
dil ��1:

(22)
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Mori–Tanaka modeling schemes are explicit, fairly simple and obviously distin-

guish between a matrix phase and one or more inhomogeneity phases. Accordingly,

they pertain to materials consisting of a contiguous matrix that is reinforced

by (disconnected) aligned ellipsoidal inhomogeneities, typical examples being

“classical” composites and closed-cell porous materials. Whereas in elasticity

multi-phase Mori–Tanaka models of composites containing aligned reinforcements

of different aspect ratios and different stiffnesses may give rise to invalid effective

elastic tensors [16], no such difficulties are encountered for diffusive behavior due

to the lower order of the tensors involved.

Mori–Tanaka methods were first applied to conduction problems by Hatta and

Taya [27], who obtained scalar expressions of the type

K�
MT ¼ KðmÞ þ 3xðiÞ

KðmÞðKðiÞ � KðmÞÞ
3KðmÞ þ ð1� xÞ ðKðiÞ � KðmÞÞ (23)

for the effective coefficients of conductivity of macroscopically isotropic com-

posites consisting of an isotropic matrix reinforced by isotropic spherical particles.

Mori–Tanaka methods can be extended in an ad-hoc way to studying composites

reinforced by non-aligned inhomogeneities. For this purpose the dilute gradient con-

centration tensors pertaining to individual inhomogeneities, A ði;mÞ
dil , are rotated from

their local coordinate system, which is described by the Euler angles ’, c and y, to the
global coordinate system, to give A ðiÞff

dil ð’;c; yÞ. A concentration tensor pertaining

to dilute inhomogeneities of all orientations present in the material can then be

evaluated by orientational averaging as

hhA ðiÞff
dil ii ¼

Z2p
0

Z2p
0

Zp
0

A ðiÞff
dil ð’;c; yÞ rð’;c; yÞ d’ dc dy; (24)

where the orientation distribution function r is normalized such that hri ¼ 1.

Applying this concept of orientational averaging to (22) gives the effective con-

ductivity tensor as

K �
MT ¼ ½xðmÞK ðmÞ þ xðiÞhhK ðiÞA ðiÞff

dil ii� ½xðmÞU þ xðiÞhhA ðiÞff
dil ii��1; (25)

all inhomogeneities being subsumed into a single phase ðiÞ. The pertinent phase

gradient concentration tensors can be written as

A
ðmÞ
MT ¼ ½xðmÞU þ xðiÞhhA ðiÞff

dil ii��1
and A

ðiÞ
MT ¼ hhA ðiÞff

dil iiA
ðmÞ
MT : (26)

Being an orientational average over all inhomogeneities, the concentration

tensor A
ðiÞ
MT is of limited practical use in localization. However, following [11],

concentration tensors

A
ðiÞff
MTð’;c; yÞ ¼ A ðiÞff

dil A
ðmÞ
MT (27)
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can be introduced to find the temperature gradient in individual inhomogeneities of

any given orientation. Even though “extended Mori–Tanaka models” following

(24)–(27) – like their equivalents formulated in terms of the flux concentration

tensors B ðiÞff
dil ð’;c; yÞ – do not fulfill the condition of aligned inhomogeneities

inherent in the Mori–Tanaka concept, they provide satisfactory results in most

situations. More flexible but more complex modeling schemes were proposed by

Ponte Castañeda and Willis [51] and further developed by other authors [10].

2.3.2 Classical Self-Consistent Schemes

The simplest effective medium approaches are classical self-consistent schemes,

which are based on embedding inhomogeneities directly into the effective medium.

In terms of conductivity, resistivity and concentration tensors the core statement of

such models can be denoted as

K �
SC ¼

X
ðpÞ

xðpÞK ðpÞA ðp;�Þ
dil or R �

SC ¼
X
ðpÞ

xðpÞR ðpÞB ðp;�Þ
dil : (28)

The above relationships are implicit because the dilute concentration tensors of

an ellipsoidal inhomogeneity embedded in the effective medium, A ðp;�Þ
dil and

B ðp;�Þ
dil , as well as the depolarization tensor S ðp;�Þ used in describing them via

(19), must be evaluated with respect to the unknown effective tensors K �
SC and

R �
SC. Solutions can be obtained by self-consistent iteration, in which, e.g., steps

n � 1 and n for the first expression in (28) are linked by the equations

K �
SC;n ¼

X
ðpÞ

K ðpÞ½U þ S ðp;�Þ
n�1 R SC;n�1ðK ðpÞ �K SC;n�1Þ��1

R �
SC;n ¼ ðK �

SC;nÞ�1:

(29)

For aligned spheroidal, but non-spherical inhomogeneities that show transver-

sally isotropic or higher material symmetry, the K �
SC;n are typically transversally

isotropic; this case can be handled by the expressions for S ðp;�Þ given in (15)

and (16).

In contrast to Mori–Tanaka methods (28) and (29) are symmetrical in terms of

their constituents. Accordingly, classical self-consistent schemes do not generally

describe a contiguous matrix phase into which inhomogeneities are embedded. As a

consequence, such methods are best suited to modeling heterogeneous materials

that do not show a matrix–inclusion microtopology over at least part of their range

of phase volume fractions, typical examples being polycrystals and composites with

interwoven phase topologies.

Classical self-consistent descriptions for the effective conductivity of inhomo-

geneous materials were introduced by Bruggemann [8]. For the special case of
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a macroscopically isotropic solid consisting of two isotropic constituents, (1) and

(2), the classical self-consistent scheme leads to the nonlinear equation

xð1Þ
Kð1Þ � K�

SC

Kð1Þ þ 2K�
SC

¼ xð2Þ
K�
SC � Kð2Þ

Kð2Þ þ 2K�
SC

(30)

in the effective coefficients of conductivity K�
SC. In (30) either phase percolates

if its volume fraction exceeds a value of 1
3
. This makes classical self-consis-

tent methods unsuitable for describing porous materials with high pore volume

fractions.

2.3.3 Differential Schemes

A further effective medium approach is based on successive steps of homogenizing

dilute volume fractions of inhomogeneities in an effective medium consisting of the

matrix plus previously processed, smaller inhomogeneities. In the resulting differ-

ential schemes the effective conductivity tensor can be described by analogy to [23]

by the system of differential equations

dK �
D

dxðiÞ
¼ 1

xðmÞ ½K ðiÞ �K �
D�A ði;�Þ

dil (31)

using the initial conditions

K �ðxðiÞ ¼ 0Þ ¼ K ðmÞ: (32)

This initial value problem can be integrated numerically by algorithms such as

Runge–Kutta methods and for many cases analytical solutions are available [50].

As the numerical solution proceeds the depolarization tensor S ði;�Þ and the dilute

concentration tensor A ði;�Þ
dil must be re-evaluated at each step to account for the

current, in general anisotropic, effective medium by analogy to the classical self-

consistent scheme.

Being based on multiple successive homogenization steps, differential schemes

implicitly assume a very wide distribution of inhomogeneity sizes. They pertain to

matrix–inclusion composites by construction.

The special case of isotropic spherical particles in an isotropic matrix results in a

scalar initial value problem which can be integrated analytically to give the

nonlinear equation

KðiÞ � K�
D

KðiÞ � KðmÞ
KðmÞ

K�
D

� �1
3

¼ xðmÞ (33)

for the effective coefficients of conductivity K�
D [8].
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2.3.4 Other Estimates

A number of models based on single-inclusion solutions have been proposed that

do not fall into the above categories of mean field descriptions. Probably the best

known of them is the Maxwell–Garnett approximation [39], the results of which

coincide with the Mori–Tanaka solutions for the appropriate phase geometries.

Kerner [33] proposed a generalized self-consistent scheme, in which spherical or

cylindrical inhomogeneities are coated in a layer of matrix material of uniform

thickness, the latter being chosen to obtain the proper phase volume fractions of the

composite, and embedded in the effective medium. The estimates for the effective

conductivity recovered by this approach again coincide with the Mori–Tanaka

predictions.

Advanced effective field estimates, which can include pair interactions of

inhomogeneities, are provided by multi-particle effective field methods [9].

Torquato [58] proposed estimates for the effective conductivity of macroscop-

ically isotropic inhomogeneous materials on the base of expansions. Information on

details of the phase arrangement is introduced into these estimates via the three-

point microstructural parameter zðxðiÞÞ, which is also used in three-point bounds,

compare the following Sect. 2.4.

2.4 Bounds

Bounds on the effective properties of inhomogeneous materials have been based on

minimum energy principles. They introduce statistical information on the micro-

structure via n-point correlation functions, which describe, e.g., the probability of

finding n randomly positioned points simultaneously in the same phase. The more

microstructural information that is incorporated into the bounds, the tighter they

become.

The simplest bounds on the effective conductivity are the Wiener [62] bounds,

X
ðpÞ

xðpÞR ðpÞ

0
@

1
A
�1

� K � �
X
ðpÞ

xðpÞK ðpÞ; (34)

which use constant flux and gradient fields, respectively. Being one-point bounds,

they contain microstructural information only in the form of the phase volume

fractions xðpÞ. They are too slack to be of practical use in most situations.

Considerably tighter bounds, which are sensitive to the macroscopic symmetry of

inhomogeneous materials, can be obtained by combining the variational principle due

to Hashin and Shtrikman [24] with phase-wise uniform trial fields. In their original

form these bounds pertain to macroscopically isotropic materials, such as composites

reinforced by particles or by randomly oriented fibers. They were extended to
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materials containing aligned ellipsoidal inhomogeneities [63] and, for the case of

two-phase solids, were shown to coincide with Mori–Tanaka estimates [61].

Three-point bounds on the effective conductivity [3] can be expressed in terms

of a three-point microstructural parameter zðxðiÞÞ, which depends on the shapes, size
distributions and arrangement of inhomogeneities and has been evaluated for a

number of configurations relevant to two-phase particle and fiber reinforced com-

posites, see, e.g., [59]. Such “improved bounds” are considerably tighter than

Hashin–Shtrikman-type bounds.

Most bounds on the effective conductivities of inhomogeneous materials pertain

to perfect interfaces between the constituents. However, bounds are also available

for the special cases of imperfect and superconducting interfaces [34, 60]. For

porous materials the lower bounds are typically trivial and equal to zero.

2.5 Comparisons of Predictions

In this section selected results are presented on the overall thermal conduction

behavior of two-phase composites in dependence on the reinforcement volume

fraction xðiÞ. For macroscopically isotropic particle reinforced composites the

comparisons are based on spherical particulates of Al2O3 embedded in a matrix

of pure silver, see Table 1 for the material parameters. For these constituents the

thermal conductivity contrast, c ¼ KðiÞ=KðmÞ, takes a value of approximately 0.088.

Figure 1 shows predictions for the effective conductivities obtained for the

above composite. The one-point Wiener bounds can be seen to be very slack,

whereas the two-point Hashin–Shtrikman (H/S) bounds are considerably tighter.

Because the matrix shows a higher conductivity than the reinforcements the Mori–

Tanaka method (MTM) corresponds to the upper Hashin–Shtrikman bound, as do

the generalized self-consistent scheme and Maxwell–Garnet estimates. The three-

point bounds (3PB) and Torquato’s three-point estimates (3PE) were evaluated for

randomly positioned, non-overlapping spherical particles of equal size using

expressions for the statistical parameter zðxðiÞÞ given by Miller and Torquato

[41], which are available for xðiÞ<0:6. The three-point bounds are much tighter

than the Hashin–Shtrikman bounds and the three-point estimates nearly coincide

with the upper three-point bound. The classical self-consistent estimates (CSCS)

show the typical behavior of closely approaching one Hashin–Shtrikman bound at

low inhomogeneity volume fractions and the other for high values of xðiÞ. These
estimates do not fall within the three-point bounds for xðiÞ≳ 0.3 because they do not

describe matrix–inclusion microtopologies for all volume fractions, as noted in

Table 1 Constituent

conductivities of the silver

matrix and the Al2O3 particles

used in generating Fig. 1.

Both constituents are taken to

be isotropic

K (W/mK)

matrix 427.0

particles 37.7
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Sect. 2.3.2. Finally, the differential scheme (DS) leads to predictions that are

markedly lower than the three-point estimates, but do not violate the three-point

bounds for the composite considered. All estimates discussed in Sect. 2.3 can be

seen to comply with the Hashin–Shtrikman bounds.

A second set of comparisons pertains to a polyetherimide matrix reinforced

by aligned short T-300 graphite fibers of aspect ratio a ¼ 10, compare Table 2. This

composite shows a transversally isotropic macroscopic response. The thermal

conduction behavior of the graphite fibers is strongly anisotropic, so that the axial

and transverse thermal conductivity contrasts take values of cA ¼ 38:2 and

cT ¼ 3:82, respectively.
Figures 2 and 3 compare selected estimates and bounds for the effective axial

and transverse conductivities, respectively, of the above composite. Due to the

macroscopic transverse isotropy of the material clear qualitative differences are

evident between the two sets of curves. It is interesting to note that the upper

Wiener bound, which is a rule-of-mixture expression, closely approaches the upper

Hashin–Shtrikman bound for the axial conductivity, i.e., despite the rather
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Fig. 1 Comparison of selected estimates and bounds for the effective conductivity of a silver

matrix reinforced by equiaxed Al2O3 particles (see text for designators of models)

Table 2 Constituent

conductivities of the

polyetherimide matrix and the

T-300 graphite fibers used in

generating Figs. 2 and 3 [21]

KA (W/mK) KT (W/mK)

Matrix 0.22 0.22

Fibers 8.40 0.84
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Fig. 2 Comparison of selected mean field estimates and bounds for the effective axial conductivity

of a polyetherimide matrix reinforced by aligned short fibers (a ¼ 10) (see text for designators of

models)
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moderate aspect ratio of a ¼ 10 the axial conduction behavior of the short fiber

composite is very similar to that of a continuously reinforced material. Because the

axial and transverse conductivities of the graphite fibers exceed that of the matrix,

the Mori–Tanaka estimates coincide with the lower Hashin–Shtrikman bounds in

axial and transverse conduction.

Expressions for the statistical parameter zðxðiÞÞ are not available for configura-

tions of the type studied in Figs. 2 and 3, so that neither three-point bounds nor

three-point estimates are given. The behaviors predicted by the classical self-

consistent and differential schemes are qualitatively similar to the ones shown in

Fig. 1 and these two estimates comply with the Hashin–Shtrikman bounds.

2.6 Imperfect Interfaces and Non-Spherical Inhomogeneities

The mean field and bounding expressions presented in Sects. 2.2–2.4 pertain to

composites with perfect interfaces and give predictions that are independent of the

absolute size of the inhomogeneities. The presence of finite interfacial conduc-

tances, however, is well known to give rise to a marked size effect in the macro-

scopic conductivities [25].

Unless the distribution of the interfacial conductances is confocal with a given

ellipsoidal inhomogeneity, they lead to the loss of the Eshelby property, i.e., the

microfields are inhomogeneous. The same holds for inhomogeneities of non-ellip-

soidal shapes. These two cases can be handled in a two-phase setting by the semi-

analytical “replacement tensor” approach developed by Duschlbauer et al. [12, 13].

This modeling strategy is based on numerically evaluating the effective conductivity,

K �
dil, as well as the gradient and flux fields of a configuration consisting of a single

inhomogeneity that is embedded in the matrix at a very low volume fraction of, say,

xðiÞdil � 10�3. The inhomogeneous fields in the inhomogeneity, which are due to a

non-ellipsoidal shape and/or to finite interfacial conductances, are volume averaged

and the resulting “replacement concentration tensor”, A ði;m;rÞ
dil , is extracted.

Furthermore, a “replacement inhomogeneity conductivity”, K ði;rÞ, must be eval-

uated from the relationship

K ði;rÞ ¼ K ðmÞ þ 1

xðiÞdil
½K �

dil �K ðmÞ�ðA ði;m;rÞ
dil Þ�1; (35)

which ensures that (10) is fulfilled. By replacing K ðiÞ and A ði;mÞ
dil with K ði;rÞ and

A ði;m;rÞ
dil , respectively, in mean field methods of the types presented in Sect. 2.3,

estimates are obtained for the effective conductivity of materials containing non-

ellipsoidal inhomogeneities and/or showing finite interfacial conductivities.

The replacement tensor approach is well suited to Mori–Tanaka methods. For

spherical isotropic inhomogeneities this combination allows to recover the well-

known results of Hasselman and Johnson [26],
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K� ¼ KðmÞ
2xðiÞ KðiÞ

KðmÞ � 2KðiÞ
dh � 1

� �
þ KðiÞ

KðmÞ þ 4KðiÞ
dh þ 2

xðiÞ 1� KðiÞ
KðmÞ þ 2KðiÞ

dh

� �
þ KðiÞ

KðmÞ þ 4KðiÞ
dh þ 2

; (36)

where d stands for the diameter of the particles and h for the interfacial conduc-

tance. Applications of the replacement tensor approach to effective medium models

are feasible but not particularly attractive, because they require carrying out the

numerical evaluation of the replacement tensors with respect to the new reference

material after each iteration.

3 Discrete Microstructure Models for Conduction Properties

Discrete microstructure models of thermal conduction in inhomogeneous solids aim

at precisely evaluating the temperature, gradient and flux fields in specific, well

defined phase geometries. As sketched in Fig. 4, which pertains to a transverse

section of a unidirectionally reinforced composite, there are three major types

of discrete microstructure models, viz., periodic microfield models, embedding

models and windowing models. These methods use different approximations for

PERIODIC APPROXIMATION,
UNIT CELL

PHASE ARRANGEMENT

EMBEDDED CONFIGURATION WINDOW

Fig. 4 Schematic sketch of a random matrix–inclusion microstructure and of the volume elements

used by a periodic microfield method, an embedding scheme and a windowing approach for

studying this inhomogeneous material [6]

18 H.J. Böhm et al.



studying volume elements of limited size and typically employ numerical engi-

neering methods for evaluating the microfields. The following discussion mainly

assumes the use of Finite Element (FE) methods for this purpose; for a more

detailed discussion of its application to problems involving inhomogeneous materi-

als see, e.g., [5, 7]. FE approaches are well suited to describing complex phase

geometries and many implementations are capable of handling finite interfacial

conductances. An alternative solution approach, the Lattice Monte Carlo method, is

discussed in detail in [17].

In the ideal case, the volume elements used in discrete microstructure models are

representative volume elements (RVEs), the size of which is sufficient for contain-

ing all relevant statistical information on the actual phase arrangement to be

studied. In practice, however, limitations in computer power have tended to restrict

simulations to smaller volume elements, which typically are only approximations to

proper RVEs.

Volume elements used for studying composite materials range from very simple,

such as cubic arrays of spherical reinforcements, to highly complex phase arrange-

ments that are generated by computer codes or extracted from experimental data.

Computer generated microstructures may, on the one hand, involve a considerable

number of randomly positioned and, where applicable, randomly oriented inhomo-

geneities, Voronoi cells based on suitable “clouds” of points, or similar constructs.

On the other hand, experimentally determined statistical descriptors of phase

arrangements can be used to generate microstructures that are statistically equiva-

lent to some target material, a process known as statistical reconstruction [53].

Experimental procedures for generating “real structure” phase arrangement have

included serial sectioning, compare [57], and computed tomography, see, e.g., [32].

It is worth noting that identical geometrical models using identical discretizations

can be used for both thermal and mechanical analysis.

3.1 Periodic Homogenization

Periodic microfield (or periodic homogenization) methods describe periodic model

materials, the effective properties of which are used to approximate the behavior of

actual, non-periodic inhomogeneous materials. Such approaches typically represent

a tradeoff between basing the model on a relatively small volume element, the

periodic unit cell, and being restricted to periodic phase arrangements. For unit cells

that are sufficiently large to be RVEs no approximation in terms of phase arrange-

ment statistics is involved.

Unit cells are volume elements with periodic phase arrangements that tile the

computational space by translation and this way provide a complete description of

infinitely extended periodic media. In n-dimensional space each unit cell is asso-

ciated with n linearly independent translation vectors, pi. Whereas the volume of

the smallest unit of periodicity is uniquely defined, the pi describing such volumes
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and the shapes of unit cells of minimal size (“minimum unit cells”) are non-unique.

Figure 5 shows a planar periodic phase arrangement with a minimum unit cell

and the corresponding translation vectors, p1 and p2. The vectors p1 � p2 are also

valid translation vectors and may be used in building other unit cells of different

shapes.

The surface of a unit cell can be split into at least n regions, Gk, each of which

consists of two parallel surface elements, Gk� and Gkþ , that are separated by a vector

of the type
P

i mipi, where the mi are integer numbers. In the case of quadrilateral

or hexahedral unit cells, each region Gk is uniquely associated with the translation

vector pk. For example, in Fig. 5 there are two surface regions, G1 consisting of

faces W and E separated by the periodicity vector p1, as well as G2 consisting of

faces N and S separated by p2. The surface elements do not have to be planar.

Boundary conditions must be prescribed to the unit cells in such a way that the

periodicity of gradients and fluxes is ensured. For quadrilateral or hexahedral unit

cells this is done by coupling the temperatures on corresponding points of the

surface elements Gk� and Gkþ , Tk� and Tkþ , according to the relationship

DTk ¼ Tkþ � Tk� ¼ hdi pk; (37)

i.e., the temperature difference in the direction of a periodicity vector depends

directly on the macroscopic temperature gradient, hdi. The symmetry and antisym-

metry boundary conditions often employed in mechanical analysis of inhomoge-

neous materials [5, 7] are of limited use in periodic homogenization of diffusive

transport.

In typical Finite Element practice (37) can be implemented in terms of “multi-

point constraints” that link four temperature degrees of freedom. For the configura-

tion shown in Fig. 5 one node, say, SW, acts as an “anchor node” the temperature of

which is fixed. The temperature differences according to (37), DT1 and DT2, are
carried by the “master nodes”, SE and NW, which are used to couple the tempera-

tures of nodes on the “slave faces”, E and N, to those of the corresponding nodes on

p1

+

E

p2

W

N

SW

p2
p1

S

NW

SE

NE

Fig. 5 Planar periodic phase

arrangement with unit cell

and periodicity vectors
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the “master faces”, W and S, respectively. In such a scheme the master nodes

control the macroscopic gradients, the master faces handle the microscopic fluctua-

tions, and the slaves are used to enforce periodicity. For example, when local

coordinates ~s are employed on the E and W faces, the constraint equations for

surface region G1 in Fig. 5 result as

TEð~sÞ � TWð~sÞ ¼ TSE � TSW ¼ DT1: (38)

Obviously, the meshing of the two surface elements making up a surface region

Gk must be compatible to allow the application of (38) in terms of nodal constraints.

The above implementation of the periodicity boundary conditions can be easily

extended to three-dimensional unit cells using, e.g., the naming scheme sketched in

Fig. 6.

Once the unit cells have been defined and appropriate periodicity boundary

conditions applied, the volume elements must be subjected to appropriate loads

corresponding to macroscopic gradients or fluxes. This can be done, on the one

hand, by using the mathematical framework known as asymptotic homogenization

or “homogenization theory”, which is based on explicitly introducing macroscopic

and microscopic coordinates into the formulation of the problem, see, e.g., [1, 2, 36,

37, 49]. Such asymptotic homogenization approaches are discussed in detail in [38]

of the present work and have typically required specialized analysis software.

Alternatively, the “method of macroscopic degrees of freedom” [40] can be

adapted to prescribing appropriate thermal conduction load cases to unit cells. It

makes use of the fact that in constraint equations such as (38) the macroscopic fields

are carried by the master nodes, which can, accordingly, be employed to apply

macroscopic gradients and fluxes to the unit cell. Prescribing macroscopic gradients

is straightforward: An appropriate temperature difference DTk is evaluated from

SWT

SWB

SEB

NEB

NET

NWT

Fig. 6 Cube-shaped periodic

unit cell containing 15

randomly positioned

spherical particles of equal

size at a volume fraction of

xðiÞ ¼ 0:15. Designators of
the six faces (East, West,

North, South, Top, Bottom)

and of the vertices are

given [7]
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(37) and applied via appropriate temperatures of the master and anchor nodes in an

equivalent of (38). With analysis codes that can handle concentrated nodal fluxes, a

method proposed by Smit et al. [56] for mechanical unit cell analysis can be adapted

to specify a given far-field flux qa to the unit cell. This encompasses evaluating the

thermal power passing through a slave surface, scaling it for the cell’s cross

sectional area, and applying it as a concentrated nodal flux to the associated master

node. The direction of this nodal flux is normal to the orientation of the slave face.

For example, the concentrated flux in vertical direction to be prescribed to master

node SE of the unit cell sketched in Fig. 5 takes the form

qSE;2 ¼ 1

GN

Z
GN

ðqaÞT nGðxÞ dG: (39)

The volume averaged temperature gradient vector, hdi, set up in a unit cell

loaded by prescribed macroscopic fluxes can be be evaluated directly by inserting

the temperatures of the anchor and master nodes into (37). If loading was done by

prescribed macroscopic gradients, the resulting macroscopic fluxes can be obtained

from the “reaction fluxes” at the master nodes, by surface integration over the nodal

fluxes at the cell boundaries, or by numerically approximating the volume average

of the components of the flux vector as specified by (3). Applications of the method

of macroscopic degrees of freedom to modeling the conduction behavior of com-

posites can be found, e.g., in [6, 14].

For evaluating volume averages of scalars or the components of vectors and

tensors algorithms of the type

hf i ¼ 1

Os

Z
Os

f ðxÞ dO 	 1

Os

XN
l¼1

fl Ol (40)

can be used to advantage with many Finite Element codes. Here fl and Ol are the

function value and the integration weight (in terms of the volume pertaining to the

integration point), respectively, associated with the l-th integration point within a

given integration volume Os that contains N integration points. Equation (40) can

obviously also be used to evaluate phase averages, which is of interest for direct

comparisons between mean field and discrete microfield models.

Both asymptotic homogenization and the method of macroscopic degrees

of freedom require n linearly independent load cases for obtaining the full conduc-

tivity tensor of an n-dimensional unit cell from (9). Because, as stated in (37), the

temperature increments accumulate along the periodicity vectors, models that

combine periodicity boundary conditions with temperature dependent phase con-

ductivities cannot be unequivocally interpreted in terms of infinitely extended

periodic materials.

Periodic homogenization has proved to be a very flexible modeling tool and has

been the most commonly used discrete microstructure approach to studying the

conduction behavior of inhomogeneous solids.
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3.2 Embedding Methods

Embedding methods combine a geometrically highly resolved core with a sur-

rounding outer region that is described by some smeared-out model, compare

Fig. 4 (lower left). Such modeling approaches do not require any periodicity

constraints but give rise to boundary layers of perturbed fields where core and

embedding regions meet.

The conduction response of the outer region may, on the one hand, be approxi-

mated via some analytical method, such as one of the mean field schemes discussed in

Sect. 2.3. The resulting models are well suited to studying the microfields in problems

that involve macroscopic gradients of the microstructure or of the fields, e.g., the

diffusion behavior in gradedmaterials, or nonlinear phase conductivities. On the other

hand, the conduction behavior of the embedding region can be set equal to the

averaged response of the core, which gives rise to self-consistent schemes for

evaluating the effective conductivity of inhomogeneous materials with linear phase

behavior.

Both of the above approaches have been fairly widely employed in continuum

micromechanics, especially for “zooming in” on regions of interest such as crack

tips. However, little use appears to have been made of embedding schemes involving

complex core regions in studying the conduction behavior of inhomogeneous

materials.

3.3 Windowing Methods

Whereas periodic homogenization aims at describing the macroscopic constitutive

behavior of inhomogeneous materials in the limit of very large samples, windowing

methods concentrate on evaluating the responses of finite sized samples or “win-

dows”, the results being referred to as apparent (rather than effective) properties.

Windows are volume elements of simple shape, are extracted from the inhomoge-

neous medium at random positions and with random orientations, as sketched in

Fig. 7, and are typically too small to be proper representative volumes.

By analogy to [28] the evaluation of the macroscopic properties of a window

may be based on an integral version of the Hill condition [30] in thermal conduc-

tion,

Z
G
½½qðxÞ � hqi�TnGðxÞ�½TðxÞ � hdiTx� dG ¼ 0; (41)

which is a formal statement of the energetic equivalence of microscopic (resolved

at the phase level) and macroscopic (homogenized) descriptions.

The above condition can be fulfilled by applying appropriate boundary condi-

tions to a given window. Two ways of doing so consist of prescribing either uniform
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fluxes, qa, or uniform gradients, da, to the whole surface of the window, so that the

normal fluxes, qn, or the temperatures, T, on the boundaries vary as

qnðxÞ ¼ ðqaÞTnGðxÞ or TðxÞ ¼ ðdaÞTx; (42)

respectively. This way either the first or the second term of (41) is set identically to

zero by the uniform Neumann (UNBC) and uniform Dirichlet (UDBC) boundary

conditions, respectively. Macrohomogeneous boundary conditions following (42)

have been shown to give rise to lower and upper estimates for the thermal conduc-

tivity of a given volume element, and ensemble averages over such estimates

provide bounds on the apparent conductivity tensor [48]. Hierarchies of bounds

can be generated from sets of windows of different sizes [47], bringing out effects

of the size of the volume elements.

Alternatively, the Hill condition (41) can be enforced by making the product

under the integral vanish separately for each face of the volume element. This

can be achieved by prescribing either uniform normal flux components qai or

uniform tangential gradient components dai to each face i of the window. There

are a fair number of possible choices for such mixed uniform boundary condi-

tions (MUBC). One of them provides estimates that have been found to agree

with the results of periodic homogenization for periodic volume elements of

orthotropic or higher symmetry and to tend to provide reasonable results for

lower symmetries. This set of load cases, which was first proposed by Jiang

et al. [31] and has been referred to as “periodicity compatible mixed uniform

boundary conditions” [7], is listed in Table 3. It provides a convenient window-

ing procedure for obtaining estimates of the apparent conductivity tensor from

regularly shaped samples of inhomogeneous solids with linear phase conducti-

vities. Because it is formulated in terms of nonzero tangential gradients and

zero normal fluxes, it is also suitable for handling porous materials, but cannot

deal with phases of infinite conductivity. Furthermore, it was found to be

compatible with models employing finite interfacial conductances [44]. The

applicability of the scheme to nonlinear conduction behavior has not been

investigated in depth yet.

Fig. 7 Schematic depiction

of a planar phase arrangement

and four rectangular windows

of equal size [6]
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It may be noted that for the case of periodic phase arrangements there is a fourth

approach to fulfilling (41). It consists of making the fluctuations of the non-uniform

boundary fields cancel out on paired parallel faces that show identical fluctuations

but face normals of opposite orientations. This strategy leads directly to the

periodicity boundary conditions discussed in Sect. 3.1.

4 Sample Application

Metal matrix composites (MMCs) consisting of diamond particles embedded in

aluminum or copper matrices are of considerable technological interest for use as

heat sink materials, because they promise effective conductivities exceeding those

of the metallic matrices. Due to the presence of finite conductances at the interfaces

between matrix and reinforcements the macroscopic conductivities of such compo-

sites show a marked dependence on the particle size.

Because, on the one hand, the diamond particles are of cubo-octahedral shape

and, on the other hand, there is experimental evidence that the diamonds show

different interfacial conductances on their f100g and f111g faces [54], such

composites are interesting targets for mean field and discrete microfield modeling.

In the following, values of h{100} ¼ 100 MW/m2K and h{111} ¼ 20 MW/m2K are

assumed for the interfacial conductances at the two sets of faces. The isotropic

conductivities of particles and matrix are chosen as k(i) ¼ 1800 W/mK and

k(m) ¼ 237 W/mK, respectively. For particles that are regular tetrakaidekahedra

of 200 mm diameter an “equivalent” homogeneous interfacial conductance of

hhom,200 	 27.7 MW/m2K was evaluated numerically [44].

Discrete microfield studies were carried out with both unit cell and windowing

models. Periodic phase arrangements were generated by first setting up periodic

arrays of 20 randomly positioned, equally sized spherical particles using the two-

step algorithm of Segurado [55]. Randomly oriented regular tetrakaidekahedra

were then inscribed into the spheres. Figure 8 shows three of the resulting unit

cells, the particles being tetrakaidekahedra in two of them and spheres in the third.

The particle centers are identical in the three phase arrangements and the particle

sizes were adjusted to give an inhomogeneity volume fraction of xðiÞ ¼ 0:34 in each

Table 3 The three linearly independent uniform gradient load cases constituting the periodicity

compatible mixed uniform boundary conditions for thermal conduction [7]

Load case 1 Load case 2 Load case 3

East T ¼ da1l1=2 qa1 ¼ 0 qa1 ¼ 0

West T ¼ �da1l1=2 qa1 ¼ 0 qa1 ¼ 0

North qa2 ¼ 0 T ¼ da2l2=2 qa2 ¼ 0

South qa2 ¼ 0 T ¼ �da2l2=2 qa2 ¼ 0

Top qa3 ¼ 0 qa3 ¼ 0 T ¼ da3l3=2
Bottom qa3 ¼ 0 qa3 ¼ 0 T ¼ �da3l3=2

The nomenclature of the faces follows Fig. 6, the window is assumed to be of hexahedral shape and

aligned with the coordinate directions, and the li are the window’s side lengths
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case. Inhomogeneous interfacial conductances were specified for the tetrakaideka-

hedra, whereas the equivalent homogeneous conductance hhom;200 was used for the

spheres. The windowing studies were based on non-periodic volume elements

containing some 26 particles. Such geometries are less prone to geometrical

jamming than are periodic unit cells, so that phase arrangements with higher

particle volume fractions can be generated [18]. A volume element of this type

with a particle volume fraction of xðiÞ ¼ 0:445 is shown in Fig. 9.

Within the mean field framework, the Mori–Tanaka method in combination with

the replacement tensor approach presented in Sect. 2.6 is suitable for handling the

effects of the inhomogeneous interfacial conductances and the polyhedral particle

shape. In order to properly handle the size effect, the replacement tensors must be

evaluated separately for each size of inclusion studied. Because the tetrakaidekahe-

dra with inhomogeneous interfacial conductances show cubic symmetry, the

replacement tensors in conductivity are isotropic, so that no angular averaging is

required for modeling randomly oriented particles.

For spherical inhomogeneities that show a uniform interfacial conductance h the
components of the replacement tensors (which are isotropic diagonal tensors under

these conditions) can be evaluated analytically, the replacement conductivity for

particles of diameter d being given by

Kði;rÞ ¼ KðiÞ dh

dhþ 2KðiÞ : (43)

Fig. 9 Non-periodic volume

element of particle volume

fraction xðiÞ ¼ 0:445 [44]

Fig. 8 Three unit cells of nominal particle volume fraction xðiÞ ¼ 0:34 used for modeling the

thermal conduction behavior of diamond reinforced aluminum [45]
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Furthermore, a critical diameter of the particles, dc, at which the replacement

conductivity of the inhomogeneity is equal to the matrix conductivity, can be

evaluated as

dc ¼ 2

h

KðiÞKðmÞ

KðiÞ � KðmÞ ; (44)

compare, e.g., [6]. Particles exceeding this critical radius improve the effective

conductivity compared to the matrix, whereas smaller particles lead to a deteriora-

tion of the macroscopic conductivity. For the present material parameters this

critical diameter evaluates as dc 	 19.7 mm.

Figure 10 presents various predictions for the dependence of the macroscopic

conductivity of diamond–aluminum composites on the particle diameter [45] at a

particle volume fraction of xðiÞ ¼ 0:34. The Mori–Tanaka results for conductivities

obtained for spheres with ideal interfaces (MTM, perfect) and for fully debonded

reinforcements (MTM/voids), which behave like spherical voids, are independent

of the particle diameter. The three-point bounds of Torquato and Rintoul [60],

evaluated for spherical particles of equal size having a homogeneous interfacial

conductance of hhom;200, are marked as 3PB, hom. The two bounds can be seen to

“cross over” at d 	 dc, and the lower bound approaches the Mori–Tanaka model
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Fig. 10 Predictions of the effective conductivity of diamond–aluminum MMCs [45]. Mori–

Tanaka results for fully debonded (MTM, voids) and perfectly bonded (MTM, perfect) spherical

particles, three-point bounds (3PB, hom) for spherical particles with interfacial conductances,

Mori–Tanaka predictions using the replacement tensor algorithm for particles with homogeneous

(MTM/RT, hom) and inhomogeneous (MTM/RT, inh) interfaces, as well as unit cell results

(UCDA) for tetrakaidekahedral particles are shown. The reinforcement volume fraction is

xðiÞ ¼ 0:34
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with a perfect interface for d 
 dc. The Mori–Tanaka method using the replace-

ment tensor scheme was evaluated both for the homogeneous interfacial conduc-

tance of hhom;200 (MTM/RT, hom) and for the inhomogeneous conductances

(MTM/RT, inh). The latter model can be seen to give slightly higher effective

conductances for values of d of the same order of magnitude as dc. The unit cell

predictions, marked as UCDA, agree closely with the “MTM/RT, inh” results and

tend to lie slightly above them. Taken together, the results shown in Fig. 10 indicate

that the influence of the tetrakaidekahedral particle shape and of the inhomogeneity

of the interfacial conductances on the macroscopic conduction behavior of the

diamond–aluminum composites is rather limited.

The apparent conductivities predicted by windowing models and the effective

conductivities obtained by combining the replacement tensor approach with the

Mori–Tanaka method are compared in Table 4 for different particle sizes and a

fixed particle volume fraction of xðiÞ ¼ 0:445. The windowing studies are based on

the non-periodic volume element shown in Fig. 9 and employ the three types of

boundary conditions discussed in Sect. 3.3, viz., uniform Neumann (UNBC),

uniform Dirichlet (UDBC) and mixed uniform (MUBC) boundary conditions, the

latter being prescribed according to Table 3. All models pertain to tetrakaidekahe-

dral particles of equal size having inhomogeneous interfacial conductances and all

windowing results are directional averages over three load cases.

As expected, the UNBC consistently provide lower and the UDBC upper

estimates. Although among the windowing results the mixed uniform boundary

conditions provide the best agreement with the RT/MTM estimates for all particle

sizes, the difference between the predictions of the two models exceed 10% for the

largest particles considered. An important reason for this rather large difference

probably lies in the small size of the volume element used, the influence of which

becomes more important as the contrast between the inhomogeneities’ replacement

conductivity and the matrix conductivity grows with increasing particle size. This

interpretation is supported by the marked differences between the lower (UNBC)

and upper (UDBC) estimates, which exceed 50% for all particle sizes — for proper

representative volume elements these differences should approach zero. Consider-

ably larger volume elements, which could mitigate this discrepancy, on the one

hand have high requirements for computational resources and, on the other hand,

are expensive in terms of analysts’ time for preprocessing.

Table 4 Comparison of apparent and effective conductivities K (W/mK) of a diamond–aluminum

MMC with tetrakaidekahedral particles of volume fraction xðiÞ ¼ 0:445 at four different particle

sizes [45]

UNBC MUBC UDBC RT/MTM

d = 2 mm < dc 87.2 128.7 277.5 129.2

d = 20 mm 	 dc 189.9 266.7 378.7 253.1

d = 200 mm > dc 337.0 492.0 571.9 466.8

d = 2,000 mm 
 dc 397.2 602.4 669.2 546.2

Windowing results obtained with the volume element shown in Fig. 9 pertain to uniform Neumann

(UNBC), uniform Dirichlet (UDBC) and mixed uniform (MUBC) boundary conditions. RT/MTM

denotes effective conductivities evaluated with a Mori–Tanaka scheme using replacement tensors
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Discrete microstructure approaches can provide detailed information on the

macroscopic responses and microfields of composites provided the sizes of the

reinforcements do not differ drastically. For polydisperse inhomogeneity sizes

spanning more than, say, an order of magnitude the need for discretizations that

are sufficiently fine to resolve the smallest reinforcements makes discrete micro-

structure models based on numerical engineering methods prohibitively expensive.

In many cases, however, estimates of the influence of the size effect in composites

reinforced by polydispersely sized particles with imperfect interfacial conductances

can be obtained with mean field methods.

The different inhomogeneity phases in the Mori–Tanaka expressions for the

effective conductivity, (22), may be interpreted as pertaining to particles of

N different size classes, the inhomogeneity volume fractions xðiÞ being used to

account for the particle size distribution. Judging from Fig. 10, no gross errors are

introduced by approximating the particles of diamond–aluminum MMCs by

spheres with suitable homogeneous interfacial conductances. This allows the

use of simple expressions for the replacement tensors, compare (43), and for the

depolarization tensor, compare (18), which can be plugged into (22) to obtain

a Mori–Tanaka expression for the effective coefficient of conductivity in the

form [6]

K�
MT ¼ KðmÞ þ

PN
i¼1 x

ðiÞðKði;rÞ � KðmÞÞAði;rÞ
dil

xðmÞ þPN
i¼1 x

ðiÞAði;rÞ
dil

; (45)

where the replacement dilute gradient concentration factor is obtained from (19) as

A
ði;rÞ
dil ¼ 3KðmÞ

2KðmÞ þ Kði;rÞ : (46)

Equation (45) is sufficiently simple to allow resolving particle size distributions

by hundreds of size classes. It was used study the influence of monomodal and

bimodal particle size distributions on the overall conduction response of diamond–

aluminum MMCs [6, 44].

5 Closing Remarks

In the present chapter two groups of models were discussed that are capable of

providing estimates of the macroscopic diffusive transport behavior of inhomoge-

neous solids in dependence of the microstructure, the constituent properties and,

where applicable, the behavior of the interfaces between the phases. The different

modeling schemes cover considerable ranges in terms of complexity, flexibility,

spatial resolution, capability and computational cost, allowing a suitable modeling

approach to be found for most problems.
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The majority of the methods are “bidirectional” in terms of the length scales

involved, i.e., they are capable of handling both homogenization and localization.

The input parameters of the models can be neatly separated into geometrical

descriptors and material parameters of the constituents, which is very helpful in

carrying out “virtual experiments”.
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Thermal Residual Stresses in Aluminium

Matrix Composites

F. Teixeira-Dias and L.F. Menezes

Abstract It is well known that residual stresses strongly influence the behaviour of

most materials and, in particular, of composite materials. This chapter presents one

approach to the numerical determination of thermal residual stresses in metal

matrix composites (MMC). The subject of residual stresses is introduced and the

corresponding mathematical and constitutive models are described in detail. It is

considered that the reinforcement material is elastic and that the metallic matrix

may exhibit thermoelastic-viscoplastic behaviour. A progressive gradient based

time-integration algorithm is described that leads to the implementation of the

proposed constitutive models in a finite element analysis code. The corresponding

variational formulation and discretisation into finite elements is also described. In

order to guarantee stabilised convergence and to increase the precision of results,

the authors also propose a time-step optimisation algorithm. All the formalisms are

tested measuring the influence of the reinforcement volume fraction and cooling

rate on the resulting residual stresses.

1 Introduction

Nowadays, metal matrix composite materials (MMC) are highly relevant materials

in the scope of engineering applications mostly due to their mechanical properties

and characteristics. In general terms, these materials often have very high specific

stiffness, strength and low density. Most of the manufacturing processes associated
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to MMC imply that the material must, at some stage, go through high temperatures

and temperature gradients. These temperatures are most of the time close, or even

above, the melting temperature of the metallic matrix material. This fact determines

most of the mechanical properties of the final material. Consequently, it is of utmost

importance that adequate numerical methods and models are developed that can

represent the behaviour of MMC over the whole temperature range. Additionally,

due to the fact that the constituent materials will have distinct coefficients of

thermal expansion (CTE) and their constitutive behaviour will be different it is

possible that residual stresses may arise when the MMC is subjected to high

amplitude temperature changes. These residual stresses (and consequent residual

strains) will affect the final properties and behaviour of the MMC [1–8].

The high specific stiffness and strength of metal matrix composite materials, and

their thermal properties are good enough reasons to justify the high strategic interest

in these engineering materials. Presently there is a wide variety of modelling

approaches to the behaviour of MMC. Most approaches are based on the distinct

properties of the constituent materials – the matrix and the reinforcement materials

[9–11]. Most of these models are micromechanical models and are thus also based

on the topology and geometrical distribution of the reinforcement components.

The overall behaviour of a metal matrix composite material is often dependent

on the temperature and is highly sensitive to its variations. This is due to two main

reasons: (1) the behaviour of the metallic matrix is temperature dependent and (2)

temperature changes induce residual stress and strain fields within the MMC, due to

the mismatch of coefficients of thermal expansion [12, 13]. Nonetheless, residual

stresses in MMC may also have a mechanical origin: these stresses may be due to

the non-homogeneous flow of matrix material around the reinforcement elements.

In general terms, metallic materials used as matrix in metal matrix composites

have coefficients of thermal expansion that are often one order of magnitude higher

than the CTE of the ceramic reinforcement material. It is then predictable that when

cooling down the MMC from fabrication temperature thermal residual stress fields

may arise [14, 15].

2 Mathematical Modelling and Algorithms

The following paragraphs introduce the continua kinematics approach used to

describe the thermal and mechanical behaviour of metal matrix composites. The

constitutive models used for both MMC constituent materials are also presented

and detailed. The section ends with a description of the time-integration procedures.

2.1 Constitutive Modelling

When a multiphase material is submitted to changes in temperature residual stress

fields may be generated. These may be generated by the differences in the
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coefficients of thermal expansion (CTE) of the constituent materials. The behaviour

of materials under these conditions has been studied by many researchers often

using experimental techniques [16–27].

2.1.1 Continua Kinematics

Within this text, an updated Lagrangian approach is proposed in order to continu-

ously follow the evolution and movement of all material points in a particular

medium. The goal is to determine the present configuration of the material, Ct,
starting from the reference configuration on a previous instant, C0. Let P be a

material point in the continuous medium O and p and x the position vectors of

this material point in the configurations C0 and Ct, respectively, then

p ¼ �pðx; tÞ; (1)

x ¼ �xðp; tÞ; (2)

x ¼ pþ uðp; tÞ; (3)

where uðp; tÞ represents the displacement of the material point P between the

configurations C0 and Ct. The gradient F of the point transformation x can be

defined as:

Fðp; tÞ ¼ F ¼: @

@p
�xðp; tÞ ¼ Iþ @

@p
uðp; tÞ; (4)

where I is the second order identity tensor. The velocity field associated with this

transformation is

_�xðp; tÞ ¼ _�xð�pðx; tÞ; tÞ ¼: @

@t
�xðp; tÞ (5)

to which corresponds the velocity gradient L, defined as

Lðx; tÞ ¼: grad½vðx; tÞ� ¼ @

@x
vðx; tÞ ¼ @

@p
_�xðp; tÞ @

@x
�pðx; tÞ (6)

where grad is the gradient operator relative to x, keeping t constant. According to

(4), the previous relation can also be written as

L ¼ _FF�1: (7)
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From this point it is important to distinguish the thermoelastic and viscoplastic

contributions to the transformation gradient F, between instants t0 and t. In order to
do this one must analyse the infinitesimal neighbourhoods of material point P in

both configurations C0 and C0, as shown in Fig. 1. The following configurations

must also be defined: G0 – the configuration of the infinitesimal neighbourhood of P
at instant t0;

^

G
0
– the configuration obtained after elastic relaxation of G0; Gt – the

configuration of the infinitesimal neighbourhood of P at instant t; and
^

G
t
– the

configuration obtained after elastic relaxation of Gt.

Let dp be the position vector of material point P
0
, in the infinitesimal neighbour-

hood of P, relative to P itself. Consequently, d
^

p, dx and dx
^
are the transformations of

vector dp within the configurations
^

G
0
, Gt and

^

G, respectively. Thus, the following

three transformation gradients can be defined in the neighbourhood of P: Fe
0 –

the transformation gradient
^

G
0
; Fp – the transformation gradient

^

G
0
; and Fte – the

transformation gradient
^

G
t
. It is now possible to relate vectors dp and dx based on

these definitions, that is,

dx ¼ FteFpðFe
0Þ�1

dp: (8)

Relating the previous equation to (4) gradient F can be redefined as

F ¼ FteFpðFe
0Þ�1: (9)

Replacing F in (7) it is possible to obtain

L ¼ _F
teðFteÞ�1 þ Fte _FpðFpÞ�1ðFteÞ�1 ¼ Lte þ Lp; (10)

F0
e

P

P ′

P

P

PP ′

P ′

P ′

dp dx

dp̆ dx̆

Γ0

Γt

Γ̆0 Γ̆t

Fte

Fp

F

Fig. 1 Schematic representation of the decomposition of transformation gradient F
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where Lte ¼ _F
teðFteÞ�1

and Lp ¼ Fte _F
pðFpÞ�1ðFteÞ�1

are the thermoelastic and

viscoplastic parts of the velocity gradient tensor L, respectively. However, L can

still be decomposed to its strain rate (D) and rotation rate (W) tensors [28], as

L ¼ DþW: (11)

These tensors correspond to the symmetric (LS) and anti-symmetric (LA) parts

of L, that is,

Dðx; tÞ ¼: LS ¼ 1

2
Lþ LT
� �

; (12)

Wðx; tÞ ¼: LA ¼ 1

2
L� LT
� �

: (13)

2.1.2 Material Behaviour

The goal of this text is to model the development of residual stresses in metal matrix

composites (MMC). These stress fields can arise, for example, from the cooling

down stage that is imposed on the MMC during the manufacturing process. Let _T be

the cooling rate, considered constant. It will also be assumed that the temperature

field TðtÞ is homogeneous within the material. Its evolution can then be described by

TðtÞ ¼ T0 þ _Tt: (14)

T0 is the initial temperature value, at time instant t ¼ t0. The material is considered to

be stress free at t ¼ t0, which is a reasonable consideration due to the manufacturing

temperatures of most metal matrix composites [29]. In technological processes

involving the cooling down of two or more distinct materials (e.g. reinforcement

and matrix) it is important to distinguish each behaviour model. This distinction will

be made relating the melting (decomposition) temperature of each material (Tm) and

the process temperature. This relation is designated by homologous temperature (Th)

and can be defined as

Th ¼ T

Tm
: (15)

2.1.3 Constitutive Modelling of the Reinforcement

The maximum temperature levels reached during the manufacturing processes

of most MMCs are much lower than the decomposition temperature of the
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reinforcement materials, thus the homologous temperature is often Th < 1. Facing

this it is reasonable to consider that the reinforcement material exhibits thermo-

elastic behaviour. As a consequence, the following hypotheses are assumed [30]:

(1) elastic strains are small; (2) elastic behaviour is isotropic; and (3) the influence

of plastic strain on the elastic constants can be neglected. The reinforcement

behaviour can then be described by Hooke’s hyperelastic law [31], i.e.

_s ¼ Ce
R : De; (16)

where _s is the time derivative of Cauchy’s stress tensor and Ce
R is the elastic tensor

of the reinforcement material which, assuming isotropic behaviour, can be defined

as [32]

Ce
R ¼ 2mR1þ lRI� I; (17)

where 1 is the fourth order identity tensor. mR and lR are Lamé’s coefficients for the

reinforcement material and De is the elastic part of the thermoelastic strain rate

tensor, given by

Dte ¼ De þ Dt: (18)

The thermal part of the strain rate tensor is Dt ¼ aR _T I and aR is the thermal

expansion coefficient of the reinforcement. Combining and manipulating (16)–(18)

it can be determined that

_s ¼ 2mRD
te þ kR � 2

3
mR

� �
trace Dteð Þ � 3kRaR _T

� �
I; (19)

with

kR ¼ lR þ 2

3
mR: (20)

2.1.4 Constitutive Modelling of the Matrix

The maximum temperature reached during the manufacturing process of the MMC

is often of the same order of magnitude as the melting temperature of the matrix

material. For this reason the matrix homologous temperature is Th � 1. It is then

admitted that the material behaviour is both temperature and strain rate dependent.

Several constitutive models have been proposed for such situations. However, the

authors will focus on a material model that uses an internal state variable that will

allow the description of the static and dynamic recovery of the matrix material.
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This model is developed based on the assumptions that plastic strains are highly

dependent on the strain rate and that the internal state of the material determines its

behaviour. The proposed model will allow the modelling of phenomena such as: (1)

the effects of strain rate and temperature; (2) static and dynamic recovery and

recrystallisation processes; (3) internal damage and its evolution; and (4) crystalline

structure and its evolution.

When formulating the constitutive model it is necessary to identify the internal

state variables. The proposed approach uses only one internal state variable, s,
representing the resistance to plastic flow. This is clearly a limiting approach but it

is nonetheless possible to model both hardening and sensitivity to strain rate and

temperature with such a law [33]. The proposed model is based on the following

decomposition of the strain rate tensor:

D ¼ De þ Dt þ Dvp; (21)

where De and Dt ¼ aM _T I are the elastic and thermal parts of the strain rate tensor,

respectively. aM is the temperature dependent thermal expansion coefficient of the

matrix material. Dvp is the viscoplastic strain rate tensor considered to be isochoric,

that is, traceðDvpÞ ¼ 0.

In the technological processes to be modelled it can be considered that strains are

small when compared to 1 and that rotations can be neglected. Thus, the small

strains approach is used and the evolution law of Cauchy’s stress tensor is consid-

ered identical to the reinforcement material law, that is,

_s ¼ Ce
M : De; (22)

where the evolution of the material tensor Ce
M will be described by

_s ¼ 2mM D� Dvpð Þ þ kM � 2

3
mM

� �
trace Dð Þ � 3kMaM _T

� �
I: (23)

Lamé’s coefficients for the matrix material are temperature dependent, i.e.,

mM ¼ mMðTÞ and lM ¼ lMðTÞ. The constitutive relation for Dvp, or flow law, is

described by [33]

Dvp ¼ 3_�ep

2�s
s 0: (24)

In the previous relation, s0 is Cauchy’s stress deviatoric tensor and �s is von

Mises’ equivalent stress. The equivalent plastic strain rate, _�ep, is

_�ep ¼ f ð�s; s; TÞ: (25)
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It is necessary to define the function governing the evolution of the internal state

variable s. This function is itself dependent on �s, s and T, that is,

_s ¼ gð�s; s; TÞ: (26)

The state variable in (25) can be directly related to the equivalent stress in such a

way that

_�ep ¼ f ð�s
s
; TÞ: (27)

This condition agrees with previous dislocation slipping activation models [34].

It is also assumed that the evolution of the internal state variable can be defined by

[35–37]

_s ¼ gð�s; s; TÞ ¼ _�ephð�s; s; TÞ � _rðs; TÞ: (28)

In this equation, hð�s; s; TÞ is associated with the hardening and dynamic restora-

tion phenomena. Static restoration phenomena are described by _rðs; TÞ.
The independence of function _rðs; TÞ from the equivalent stress reflects the fact

that this function represents phenomena occurring within the material in the

absence of applied stress. After experimental analyses it can be concluded that

different materials have distinct functional dependences of hð�s; s; TÞ and _rðs; TÞ.
Experimental tests done on aluminium show that a power law is the most adequate.

As for Fe-2%Si the best dependence of the strain rate with the stress is exponential.

Based on these observations the following combined exponential and power depen-

dence between strain rate and stress can be stated:

_�ep ¼ Aexp � Q

RgT

� �
sinh x

s
s

� 	h i1=m
; (29)

where A, Q, m and x are material constants: A is the pre-exponential factor, m is

the strain rate sensitivity, Q is the activation energy and Rg is the perfect gas

constant. A relevant consequence of (29) is the proportional relation between the

internal variable s and the equivalent stress �s, that is, �s ¼ cs where

c ¼ 1

x
sinh�1

_�ep

A
exp

Q

RgT

� �� �m( )
: (30)

With the previous relation it is now possible to indirectly determine variable s.
The proportionality between s and �s can be used to determine the static restoration

function _rðs; TÞ and the hardening function hð�s; s; TÞ. However, previous experi-
mental studies have proved that the influence of static restoration phenomena on the

strain resistance is less than 1% of the overall strain resistance. Based on these
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results, _rðs; TÞ will be neglected on the following considerations. The adopted form
for the hardening function is

hð�s; s; TÞ ¼ h0 1� s

s�




 


asgn 1� s

s�
� 	

(31)

with a > 1. Introducing (31) in relation (28) results in

_s ¼ _�ep h0 1� s

s�




 


asgn 1� s

s�
� 	h i

(32)

where h0 is the hardening rate and s� is a saturation value for the scalar variable s,
associated with a determined temperature and strain rate, such that

s� ¼ �s
_�ep

A
exp

Q

RgT

� �� �n
: (33)

The constants h0, a, �s and n are once more material parameters.

2.2 Time-Integration of the Constitutive Model

Differential equations describing the evolution of state variables of most physical

processes with identical complexity of the ones described in this text can only be

integrated numerically [38]. Several numerical integration approaches can be used

with strain rate constitutive laws. These integration methods are often referred to as:

(1) totally explicit or progressive methods; (2) totally implicit or regressive methods;

or (3) semi-implicit or progressive gradient methods.

The constitutive relations used herein are numerically stable. However, when

using a fully explicit Euler-type time integration scheme it is often necessary to

significantly reduce the time step in order to guarantee numerical stability [35].

Using a semi-implicit integration algorithm is one way to overcome this question.

These algorithms approximate the fully-implicit methods using Taylor series’

developments of the constitutive functions and tolerate significantly larger time-

steps [16]. The most relevant disadvantage of the progressive gradient methods is

the fact that their precision deteriorates when large time increments are used in high

gradient stages of the simulation. As a consequence, it is necessary to associate

careful time-step control algorithms with these integration procedures [28, 38].

2.2.1 Progressive Gradient Integration Method

The set of constitutive equations proposed here has, among other, the advantage of

using a scalar parameter s that represents the internal state of the material and
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models the resistance of the material to plastic flow. The time integration of these

equations can be made with a progressive gradient integration method [28, 39].

The main goal of the integration method is to determine the configuration Cnþ1

starting from the initial step configuration Cn, at a time interval Dt. The known state
variables at Cn are sn, sn and Tn. The state variables at Cnþ1 are snþ1, snþ1 and Tnþ1.

The first step is to integrate the viscoplastic strain rate tensor Dvp along the time

increment Dt in order to determine the plastic strain increment Dep, that is,

Dep ¼
Z tnþ1

tn

Dvpdt: (34)

This integration can be made using the approximation

Dep ¼ �D
vpDt (35)

where �D
vp
is the viscoplastic strain rate tensor weighted from the limit time instants

of the increment, that is,

�D
vp ¼ Dvp

n þ F D
vp
nþ1 � Dvp

n

� �
: (36)

F is a scalar parameter defined in the interval [0, 1] and represents the weighting

factor for the integration. D
vp
nþ1 is determined using a first order truncated Taylor

approximation in such a way that

D
vp
nþ1 ¼ Dvp

n þ @Dvp
n

@f
Df þ @Dvp

n

@�s
D�sþ @Dvp

n

@s0
Ds0: (37)

Performing the partial derivatives in the previous relation leads to

D
vp
nþ1 ¼

3fn
2�s

s0n þ
3s0n
2�sn

Df þ 3

2
fns0n � 1

�s2n

� �
D�sþ 3fn

2�sn
Ds0: (38)

where the equivalent viscoplastic strain increment is the increment of the function

f ð�s; s; TÞ, that is,

Df ¼ @fn
@�s

D�sþ @fn
@s

Dsþ @fn
@T

DT (39)

and the equivalent stress increment is

D�s ¼ @�s
@s0

: Ds0: (40)
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Performing the derivatives with respect to s0 one obtains

@�s
@s0

¼ 1

2

3

2
s0n : s

0
n

� ��1=2

ð3s0nÞ ¼
3

2�sn
s0n: (41)

Introducing the previous relation in (40) results in

D�s ¼ 3

2�sn
s0n : Ds

0: (42)

In order to determine the increment of the deviatoric Cauchy stress tensor, Ds0, it
is first necessary to calculate the deviatoric part of the stress rate tensor _s. Introdu-
cing tensor _s and calculating its deviatoric part results in

_s0 ¼ 2mM D
0 � Dvp

� 	
: (43)

Integrating along Dt the increment of the deviatoric Cauchy stress tensor

becomes

Ds0 ¼ 2mM De0 � Depð Þ; (44)

where the total strain increment and its deviatoric part are

De ¼
Z tnþDt

tn

Ddt and De0 ¼ De� 1

3
traceðDeÞI; (45)

respectively. Manipulating relations (35)–(38) it is possible to derive the following

relation to determine the plastic strain increment:

Dep ¼ 3s0n
2�sn

� �
fn þ F

@fn
@�s

D�sþ @fn
@s

Dsþ @fn
@T

DT
� �� �

Dt (46)

þ F
3fn
2�sn

Ds0 � s0n : Ds
0� � 3s0n
2�s2n

� �
Dt; (47)

or, in a more compact form

Dep ¼ D�ep
3s0n
2�sn

� �
þ 3

2h1
Ds0 � s0n : Ds

0� � 3s0n
2�s2n

� �
; (48)
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where the scalar h1 is

h1 ¼ �sn
FfnDt

(49)

and the equivalent plastic strain increment is

D�ep ¼ fn þ F
@fn
@�s

D�sþ @fn
@s

Dsþ @fn
@T

DT
� �� �

Dt: (50)

Performing the scalar product between the deviatoric stress tensor s0n and the

plastic strain increment Dep, defined in (48), leads to

s0n : De
p ¼ D�ep

3s0n : s
0
n

2�sn

� �
þ 3

2h1
s0n : Ds

0 � s0n : Ds
0� � 3s0n : s0n

2�s2n

� �
: (51)

Combining relations (42) and (44) it is possible to derive the following expres-

sion for the equivalent stress increment:

D�s ¼ 3mM
�sn

s0n : De
0 � 3mMD�e

p: (52)

The scalar product s0n : De
0 can be simplified replacing s0n and De0 by its defini-

tions, that is,

s0n : De
0 ¼ sn � 1

3
traceðsnÞI

� �
: De� 1

3
traceðDeÞI

� �
(53)

leading to

s0n : De
0 ¼ sn : De� 1

3
traceðsnÞI : De or s0n : De

0 ¼ s0n : De: (54)

Consequently, relation (52) can be rewritten in the form

D�s ¼ 3mM
�sn

s0n : De� 3mMD�e
p: (55)

Replacing the equivalent stress increment D�s (55) in the formulation of the

equivalent plastic strain increment (50), recalling that the increment of the internal

state variable is Ds ¼ D�eph and performing some algebraic manipulation leads to

D�ep ¼ Dt
1þ vn

fn þ F
3mM
�sn

@fn
@�s

s0n : Deþ F
@fn
@T

DT
� �

; (56)
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where the scalar variable vn is

vn ¼ F
@fn
@�s

GnDT with Gn ¼ 3mM � hn
@fn
@s

=
@fn
@�s

� �
: (57)

Inserting the deviatoric stress increment Ds0, given by relation (44), in (48), that
defines the plastic strain increment, results in

Dep ¼ D�ep
3s0n
2�sn

� �
þ 3

2h1
2mM De0 � Depð Þ � 3mM

�s2n
s0n : Ds

0� �
s0n

� �
: (58)

Finally replacing the deviatoric strain increment De0 and rearranging all terms

leads to

Dep ¼ 3�mn
mM

1þ 3mM
h1

� �
s0n
2�sn

D�ep þ 3�mn
h1

De� 1

3
traceðDeÞ

� �

� 9�mn
h1�s2n

s0n : De
� �

s0n;
(59)

where

�mn ¼
mM

1þ 3mM=h1
: (60)

2.2.2 Elasto-Plastic Secant Modulus

In order to determine the increment of the stress tensor it is necessary to integrate

the previously defined constitutive law along the whole time increment Dt �
½tn; tnþ1�, that is,

_s ¼ 2mMDþ kM � 2

3
mM

� �
traceðDÞI� 2mMD

vp � 3kMaM _TI: (61)

Linearising the previous differential equation along the time increment Dt,
replacing the plastic strain increment (59) and recalling relations (34) and (45), it

is possible to obtain
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Ds ¼ 2mMDe� 2�mn
3s0n
2�sn

þ 9�mn
2h1

s0n
�sn

� �
fn þ F

3mM
�sn

3mM
�s2n

s0n : De
� �

@fn
@�s

�

þ F
@fn
@T

DT
�

Dt
1þ vn

� 2�mn
3mM
h1

De� 1

3
traceðDeÞ

� �

þ 2�mn
9mM
2h1�s2n

s0n : De
� �

s0n þ kM � 2

3
mM

� �
traceðDeÞI� 3kMaMðDTÞI:

(62)

or, in a more compact way,

Ds ¼ 2mMDeþ �ln traceðDeÞI� K1 s0n : De
� �

s0n � K2s0n � 3kMaMðDTÞI: (63)

In the previous relation

K1 ¼ 3

�s2n

vn
1þ vn

3m2M
Gn

� mM � �mnð Þ
� �

; (64)

K2 ¼ Dt
1þ vn

fn þ F
@fn
@T

DT
� �

3mM
�sn

and �ln ¼ kM � 2

3
�mn: (65)

Finally, performing some algebraic rearrangement of (63) leads to

Ds ¼ Msec : De� K2s0n � 3kMaMðDTÞI: (66)

In the previous relation, Msec is the elasto-plastic secant modulus, that can be

defined by its components as

Msec
ijkl ¼ �lndijdklþ �mn dikdjlþ dildjkð Þ � K1s

0
ijs

0
kl; (67)

where dij is the Kronecker delta.

2.3 Variational Formulation and Discretisation

Performing numerical simulations using the finite element method (FEM) is essen-

tially an approximation to determine the behaviour of a real system. This task can

be done solving a limited set of equations that describe the real system.

2.3.1 Equilibrium Equations and Boundary Conditions

The system to be modelled is a solid deformable body that occupies a physical

space designated by O delimited by an exterior surface S. As this work concerns

metal matrix composites (MMC), O is built from zones from distinct materials, one
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metallic – the metal matrix, OM – and the other ceramic – the reinforcement, OR.

O can thus be defined by the following relations:

OR ¼ [iOi
R and O ¼ OM [ OR: (68)

It is supposed that at time instant t, O is subjected to a set of diverse external

loads: volume and surface loads, temperature variations, etc. The exterior surface of

O is divided in a set of surfaces Si such that S ¼ [iSi in which velocities and/or

loads are known and prescribed. Thus, neglecting the effect of volumetric loads, it

is possible to formulate the equilibrium of O as follows:

divs ¼ 0; in O: (69)

The boundary conditions to which the deformable body O is subjected can also

be listed as follows:

v ¼ v� on Sv; t ¼ t� on St and v ¼ v� ^ t ¼ t� on Sv;t (70)

where v and v� are generic and prescribed velocities, respectively, and t and t� are
generic and prescribed Cauchy stress vectors, respectively. If n is the unit external

normal vector that defines S, then t ¼ sn. Boundary conditions are considered to be
unaltered during the whole duration of the process.

2.3.2 Variational Formulation

The generic problem defined by (69) and (70) is satisfied only on the condition that

the principle of virtual work (PVW) is also satisfied whatever the virtual velocity

field dv, that is,

Z
O
s : dDdO ¼

Z
St

t�dvdSþ
Z
Sv;t

t�dvdS: (71)

However, once this work concerns only the development of residual stresses in

MMC due to the cooling down process, the effects of external loads are not

considered. Consequently, the PVW becomes

Z
O
s : dDdO ¼ 0; (72)

where dD is the symmetric part of the virtual velocity gradient tensor. The virtual

velocity field is continuously differentiable and confines to the boundary conditions

defined in Sv.
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The principle of virtual work is written in two distinct forms: (1) total Lagrangian

and (2) updated Lagrangian. On the first approach all integrations of the PVW are

relative to the initial configuration of the system, C0. The updated Lagrangian

approach is computationally more expensive because the integrations are per-

formed relative to a reference configuration Ct, which is the initial configuration

of each time increment ½t; tþ Dt�. This last approach is the one adopted within this

work and will be described on the following paragraphs.

The configuration of the deformable body O at time instant t is the reference

configuration, C0, for the current time step ½t; tþ Dt�. The final configuration at the

end of the current time increment, C, is then the reference configuration for the next
step. Thus, (72) becomes

Z
OðC0Þ

st : dDdO ¼ 0; (73)

where st is Cauchy’s stress tensor at the start of the increment (instant t). Assuming

that only small strains and rotations occur between two consecutive configurations

it is possible to subtract the PVW from the initial and ending instant of the time step,

resulting in

Z
OðCÞ

stþDt : dDdO�
Z
OðC0Þ

st : dDdO ¼ 0: (74)

The previous relation can be simplified as

Z
OðC0!CÞ

Ds : dDdO ¼ 0: (75)

2.3.3 Discretisation of the Principle of Virtual Work

The implementation of the principle of virtual work (PVW) with the finite element

method (FEM) starts by performing the discretisation of the virtual strain rate tensor

dD, in the form

dD ¼ 1

2

@ðdvÞ
@x0

þ @ðdvÞ
@x0

� �T( )
or dD ¼ gradðdVÞ½ �S: (76)

Once the deformable body O is discretised in finite elements the virtual velocity

field dv is discretised as follows:

dvðx; tÞ ¼
XNN
A¼1

NAðxÞdvAðtÞ: (77)
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NN is the total number of nodes in the finite element mesh, NAðxÞ are the shape
functions and dvA are the virtual velocities determined at the mesh nodes. Inserting

the velocity field dv in relation (76) leads to

dD ¼ grad
XNN
A¼1

NAðxÞdvAðtÞ
" #( )S

¼
XNN
A¼1

BAðxÞdvAðtÞ; (78)

where BAðxÞ is the derivative of the shape function matrix.

Introducing the virtual strain rate tensor dD in the principle of virtual work, and

after some algebraic manipulation, results in

XNN
A¼1

dvTA

Z
O
BT
ADsdO ¼ 0: (79)

Once the principle of virtual work is valid whatever the virtual velocity field dvA,
(79) becomes

Z
O
BT
ADsdO ¼ 0 ¼ QA with A ¼ 1; . . . ;NN: (80)

However, once the present work concerns sets of distinct materials, the stress

increment Ds must be determined separately for x 2 OR or x 2 OM. Consequently,

the following two relations are valid distinctly for the two materials:

QR
A ¼

Z
OR

BT
ADsRdO and QM

A ¼
Z
OM

BT
ADsMdO: (81)

2.3.4 Finite Elements

As an example, the deformable body O is discretised in isoparametric 8-node

hexaedric elements with trilinear interpolation functions. This particular finite

element has eight integration points for full integration and one for reduced

integration [40, 41]. However, this isoparametric finite element has deficient beha-

viour when used to solve problems involving plastic strain [42, 43]. Using this finite

element with full integration – using all the integration points – significantly

increases the global stiffness of the element, leading to abnormal hydrostatic

stresses and deteriorating the final solution. This particular phenomenon is asso-

ciated with the fact that plastic strain is isochoric. Nonetheless, it is possible to
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correct this by reducing the number of integration points used in each element. This

technique is designated by uniform reduced integration.

The discretisation of the velocity and virtual velocity fields v and dv, respec-
tively, are given by

v ¼
XNE
a¼1

Ne
av

e
a and dv ¼

XNE
a¼1

Ne
adv

e
a: (82)

vea and dv
e
a on the previous relations are the nodal and virtual nodal velocities of

node a, respectively. From relations (82) it is possible to write the velocity gradient

tensor L and the virtual velocity gradient tensor dL as

L ¼ @v

@x
¼

XNE
a¼1

@Ne
a

@x
vea and dL ¼ @ðdvÞ

@x
¼

XNE
a¼1

@Ne
a

@x
dvea; (83)

respectively. When using full integration, tensors L and dL are determined on all

Gauss integration points. When using uniform reduced integration L and dL are

calculated only on the reduced integration point – the center of the finite element.

However, this technique leads to reduced stiffness, may lead to the appearance of

eigenmodes and deteriorates the final solution. One way to avoid all these problems

is to implement a reduced selective integration approach [44–47]. In the process,

frequently designated by �B, reduced integration is selectively applied only to some

terms of the stiffness matrix. The hydrostatic components of tensors L and dL are

considered constant within the whole element and are thus calculated only on the

reduced integration point. For this purpose, L is decomposed on its deviatoric and

hydrostatic components as

L ¼ L0 þ Lh where Lh ¼ 1

3
traceðLÞI: (84)

The tensor L can then be replaced by a tensor designated by �L, such that

�L ¼ Lþ �L
h � Lh; (85)

and �L
h
is determined only on the central integration point. Thus, the discretisation

of �L leads to

�L ¼
XNE
a¼1

@Ne
a

@x
vea þ

1

3

@Ne
a

@x
trace vea

� �� @Ne
a

@x
trace vea

� �� �� �
(86)

where �N
e
a corresponds to Ne

a determined at the central point of the finite element.
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2.3.5 Element Equations

Integrating (19) along the whole time increment ½t; tþ Dt� and considering relation

(45) it becomes possible to determine the stress increment in the reinforcement

material DsR, that is,

DsR ¼ 2mRDeþ kR � 2

3
mR

� �
traceðDeÞ � 3kRaRðDTÞ

� �
I: (87)

After some algebraic manipulation the previous relation becomes

DsR ¼ Ce
RDe� 3kRaRðDTÞI (88)

where Ce
R, defined in (17), is time- and temperature-independent. Inserting the

stress increment DsR in the formulation of the principle of virtual work leads to

QR
a ¼

Z
OR

BT
a Ce

RDe� 3kRaRðDTÞI
 �

dO: (89)

The discretisation of the incremental strain field De results in

De ¼
XNE
b¼1

BbDub: (90)

Introducing De given by the previous relation in expression (89) one obtains

QR
a ¼

XNE
b¼1

Z
OR

BT
aC

e
RBbdO

� �
Dub � 3kRaRðDTÞ

Z
OR

BT
a IdO; (91)

or, written in a compacted form,

QR
a ¼ 0 ¼

XNE
b¼1

kRabDub � DfRa : (92)

Expression (92) is the generic equilibrium system of equations of a finite

element of reinforcement material, where

kRab ¼
Z
OR

BT
aC

e
RBbdO and DfRa ¼ 3kRaRðDTÞ

Z
OR

BT
a IdO: (93)

are the stiffness matrix and the second member for the reinforcement material finite

elements, respectively.
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According to previous sections, the matrix material exhibits thermoelastic-

viscoplastic behaviour. Thus, the increments of plastic strain Dep and stress DsM
were determined in Sect. 2.2.1. Inserting this stress increment in the principle of

virtual work, as given in (81), leads to

QM
a ¼

Z
OM

BT
a MsecDe� K2s0n � 3kMaMðDTÞI
 �

dO: (94)

Performing once again the discretisation of the incremental strain field De in

accordance to (90) and accounting for relation (94) leads to

QM
a ¼

XNE
b¼1

Z
OM

BT
aM

secBbdO
� �

Dub (95)

� K2

Z
OM

BT
as

0
ndO� 3kMaMðDTÞ

Z
OM

BT
a IdO; (96)

or, written in a compacted form,

QM
a ¼ 0 ¼

XNE
b¼1

kMabDub � DfMa : (97)

The previous expression is the generic equilibrium system of equations of a

finite element of matrix material, where

kM
ab ¼

Z
OM

BT
aM

secBbdO (98)

and

DfMa ¼ K2

Z
OM

BT
as

0
ndOþ 3kMaMðDTÞ

Z
OM

BT
a IdO (99)

are the stiffness matrix and the second member for the matrix material finite

elements, respectively.

According to the previously described formulations and considering the element

equilibrium equation systems (92) and (97), the global system of equations that

must be solved is

QR þQM ¼ 0: (100)
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This system of equations can still be solved as

XNN
B¼1

KABDuB ¼ DFA (101)

where KAB is the global stiffness matrix, DuB is the increment displacement vector

at the current time instant and DFA is the global second member vector. A and B
designate the global numbering of the nodes in the finite element mesh.

2.4 Time-Step Optimisation

The constitutive equations described in previous sections, relative to the matrix

material, are highly non-linear. As a consequence, using a constant time-step size

can be an inadequate approach to obtain good numerical results. Doing so, the time-

step should be sufficiently small to guarantee the stability of the numerical approach

during the whole process simulation. Thus, it is of utmost importance to use a variable

time-step size algorithm when implementing the formulations described [35].

The progressive gradient integration method is relatively simple to implement due

to the fact that it is not necessary to iterate to determine the state variables on each

increment. However, when rapid changes in the plastic strain rate occur, the results

obtained with the progressive gradient integration method can become inaccurate.

Nonetheless, this problem can be minimised by implementing an additional and com-

plementary algorithm to automatically control the time-step size on each increment.

The proposed control algorithm is based on the variations of the plastic strain rate.

The control parameter in this automatic time-step algorithm is the maximum

increment of plastic strain in all the integration points of the finite element dis-

cretisation during the current time increment. Two distinct criteria are defined in

order to do so. The first criterion is based on rC, which is the parameter that controls

the variations on the equivalent plastic strain rate, that is,

rC ¼ Cmax

Ctol

with Cmax ¼ max
i¼1;ng

_�epi;nþ1 � _�epi;n



 


 (102)

where Cmax is the maximum equivalent plastic strain rate variation in the current

time increment among all the integration Gauss points. Ctol is a predefined (user-

defined) control parameter that can be determined as

Ctol ¼ d
s0
EM

: (103)

ng and d 2�0; 1� on the previous relations are the total number of Gauss points of the

domain and a scalar parameter, respectively. EM and s0 are the elastic modulus and

the initial value of the state variable s, respectively.
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The second criterion limits the equivalent plastic strain rate increment directly in

such a way as to avoid too large plastic strain increments. To achieve this rD is

defined as

rD ¼ Dmax

Dtol

with Dmax ¼ max
i¼1;ng

D�epi (104)

where Dtol is a predefined (user-defined) control parameter.

Based on the previously defined criteria, it is now possible to choose the

dominant criterion, calculating the parameter rmax ¼ maxfrC; rDg and determining

if the solution from the current increment is acceptable or not, modifying the time-

step size whenever needed.

In order to perform this optimisation automatically it is possible to use an

algorithm in which each increment is optimised for the following increment. The

parameters that control this optimisation algorithm are the scalars w0 < 1, wi > 1

and qj < 1 with i ¼ 1; . . . ; n. If these parameters are chosen correctly it is possible

to reach a compromise between total CPU simulation of the process and the

precision of the obtained results.

With the proposed time step optimisation algorithm it is possible to adjust the

increment size to be small in the stages where strong gradients are developed and to

be large enough when the strain rate does not change significantly. Scalar values qi
define a finite set of intervals in which the correction factors wi are applied, with

i ¼ 1; . . . ; n. Additionally, it is even possible to develop a continuous step optimi-

sation process, performing a numerical fitting to the set of values ðqi;wiÞ. The
following generic equation leads to the referred numerical adjustment and to the

generation of several optimisation profiles controlling only the scalar parameter Fc

w ¼ w1 þ ðwn � w1Þ
exp Fc

rmax�q1
qn�q1

� 	
expðFcÞ � 1

8<
:

9=
;: (105)

3 Implementation and Results

The models and approaches proposed in previous sections are now tested in the

determination of residual stresses in specific metal matrix composite materials. For

the sake of example, these models are tested using an Aluminium matrix composite,

with SiC reinforcement.

It is natural to suppose that technological questions associated with the

manufacturing of metal matrix composites (MMC) may influence their response

in service within a particular structural application. Thus, it is of utmost importance

and relevance to study and investigate the role of the manufacturing technological

parameters on the final properties and characteristics of MMC and in particular on
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the development and elimination of residual thermal stress fields. The particular

aspects studied and presented on this section are: (1) the effect of the reinforcement

volume fraction, Fv, on the final distribution of residual stresses and other state

variables; and (2) the effect of the cooling rate, _T, on the levels of residual stresses.
Other tecnological issues such as, for example, those related to the distribution,

orientation, and morphology of the reinforcement are also very important and have

been studied by other authors, such as Stautter et al. [48], Sorensen et al. [49], Watt

et al. [50] and Pettermann et al. [51].

As an example of application of the models proposed and described in previous

sections a set of numerical simulations was performed to test their the numerical

efficiency. Results are shown concerning (1) the effect of the metal matrix compos-

ite reinforcement volume fraction and (2) the effect of the cooling rate. Numerical

simulations are performed on a unidirectional fibre reinforced MMC. The geomet-

rical model of this MMC and the corresponding representative unit cell are sche-

matically represented in Fig. 2a, b, respectively.

Boundary conditions are such that the coordinate planes in the representative

unit cell (RUC) are planes of symmetry. All finite element simulations were

performed considering an Al-SiC composite. The material properties – elastic

modulus, Lamé coefficients and CTE – for the aluminium matrix are temperature

dependent and given as [14]

EM ðTÞ ¼ 73474� 43:48T½MPa�;
mM ðTÞ ¼ 27041� 17:057T½MPa�;
aM ðTÞ ¼ 28:7� 10�6 þ 2:47� 10�8T½K�1�;

(106)

a b

Fig. 2 Unidirectional fibre reinforced metal matrix composite (MMC): (a) geometrical model and

(b) representative unit cell (RUC)
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respectively, where T is the temperature in degrees Kelvin. The elastic modulus,

Lamé coefficients and CTE for the reinforcement material are

ER ¼ 41� 104 MPa;

mR ¼ 16:532� 104 MPa;

aR ¼ 0:43� 10�5 K�1;

(107)

respectively. Material parameters used in the constitutive model are given by

Tei-xeira-Dias and Menezes [14]. A constant cool rate is considered in all simula-

tions and the resulting homogeneous temperature field is given by

TðtÞ ¼ Ti þ _Tt; (108)

where t is the time. The initial and final temperatures are Ti ¼ 933 K and Tf ¼ 293 K,

respectively.

3.1 Reinforcement Volume Fraction

The reinforcement volume fraction Fv is one of the manufacturing and technologi-

cal parameters that influences most the mechanical and thermal characteristics of

the composite material [26, 29, 52, 53]. Thus, the study of the influence of this

parameter is particularly interesting as it can be defined and controlled both on the

design and on the manufacturing stages in such a way as to achieve a set of desired

mechanical properties for the MMC.

Numerical simulations were made on the referred representative unit cell using

the constitutive models and numerical approaches described on previous sections.

The sxx and syy stress profiles alongOy are shown in Figs. 3 and 4 for reinforcement

volume fractions in the range of 5–35%. A constant cooling rate j _Tj ¼ 100 Ks�1

was considered. These results concern a representative unit cell (RUC) of a

unidirectional fibre metal matrix composite, such as the one represented in Fig. 2.

Directions Ox and Oy are the length and width of the RUC.

As expected, both the sxx and the syy stress components are compressive within

the reinforcement material and correspond to an hydrostatic stress state. It can also

be observed that the compressive levels of sxx in the reinforcement decrease for

increasing volume fraction. The same tendency can be observed for syy. However,
the levels of sxx increase with the volume fraction, that is, as the distance between

reinforcement elements decreases. It can be seen that the equivalent stress that

arises from the results presented is almost independent of the reinforcement volume

fraction, reaching its maximum values near the matrix-reinforcement interface. The

maximum value of the equivalent stress is close to 70 MPa at room temperature.

This value is above the yield stress of the matrix material, which is close to 40 MPa.
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Fig. 3 sxx stress profiles along Oy for reinforcement volume fractions in the range of 5–35% at a

constant cooling rate j _Tj ¼ 100 Ks�1
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Fig. 4 syy stress profiles along Oy for reinforcement volume fractions in the range of 5–35% at a

constant cooling rate j _Tj ¼ 100 Ks�1
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This fact reflects the presence of hardening effects during the cooling down stages

of the manufacturing process, as a consequence of the development of plastic

strain.

3.2 Cooling Rate

As was stated before, most of the manufacturing processes used in the production of

metal matrix composites (MMC) induce high temperature levels and gradients in

the metallic matrix, often close to (or even above) its melting temperature. During

the posterior cooling down stage, residual stresses may arise due to the mismatch

between the coefficients of thermal expansion (CTE) of the constituent materials.

Consequently, the cooling down stage is expected to have a determinant effect on

the levels of residual stresses at room temperature within the MMC. Absolute

cooling rates in the range of 0:1 to 500 Ks�1 were tested considering that

the material is stress-free at fabrication temperature ðTiÞ. The dependence of the

equivalent stress seq, internal parameter s and equivalent plastic strain _�ep on the

cooling rate are shown in Fig. 5.

In these results it can be clearly observed that there is a gradual decrease of both

seq and s with j _Tj and also that this effect increases for absolute cooling rates below
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Fig. 5 Dependence of the equivalent stress seq, state variable s and equivalent plastic strain _�e p on
the cooling rate ( _T)
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50 Ks�1. Nonetheless, in global terms, it can be stated that the cooling rate has a

limited effect on the residual stress levels at room temperature. The effect of

changing the cooling rate is mostly felt on the relatively low stresses generated at

higher temperatures.

4 Final Remarks

The authors presented a full numerical approach to the determination of residual

stresses in dual-phase microstructured materials, with applications to metal matrix

composites (MMC). The model is applied in a finite element algorithm and tested

with some numerical examples in order to prove its effectiveness and evaluate the

effect of the reinforcement volume fraction and of the cooling rate on the levels of

residual stresses at room temperature. Residual stress fields are determined in

a representative unit cell (RUC) associated with a unidirectional fibre reinforced

Al-SiC composite with volume fractions ranging from 5 to 35%.

It is shown that both normal stress components sxx and syy are compressive in

nature resulting in a hydrostatic stress state in the reinforcement. The levels of

compressive stress decrease for the higher volume fractions. Nonetheless, the ten-

dency is opposite in the metallic matrix with higher values of sxx for increasing

reinforcement volume fractions. The equivalent stress reaches values above the

yield limit, leading to the development of plastic strain near the matrix-reinforcement

interface.

The influence of the cooling rate on the residual stresses at room temperature is

not evident. This influence is only significant for absolute cooling rates under

50 Ks�1. This can be explained by the fact that the residual stresses at room

temperature are mostly generated at the lower temperature range, that is, under

600 K, where the viscoplastic behaviour of the aluminium matrix is less sensitive to

the strain rate.
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Heat Conduction in Two-Phase Composite

Materials with Three-Dimensional

Microstructures and Interfacial

Thermal Resistance

Carlos Frederico Matt and Manuel Ernani Cruz

Abstract The goals envisioned for the current chapter are threefold. First, it gives a

general overview of heat conduction in two-phase composite materials with three

dimensional microstructures and interfacial thermal resistance. Second, it describes

the application of homogenization theory to the multiscale heat conduction problem

in the composite medium in order to derive the boundary-value problem defined on

a representative volume element of the composite microstructure (the cell problem)

and an expression for the composite effective thermal conductivity. Third, it

describes a finite-element-based computational scheme to calculate the effective

thermal conductivity of composite materials with general 3-D microstructures and

interfacial thermal resistance. Numerical results for the effective conductivity are

presented and, when possible, compared with available analytical predictions. The

numerical results reported here confirm that computational approaches are a helpful

tool for understanding the complex macroscopic thermal behavior of composite

materials.

1 Introduction

Two-phase composite materials are a special class of multicomponent or hetero-

geneous media defined as systems composed of two constituents (or phases)

with distinct macroscopic properties. In general, one of the constituents may

be dispersed as particles (as in particulate composites) or fibers (as in fibrous or
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short-fiber composites) inside a continuous matrix of the other constituent; the

former constituent is referred to as the dispersed phase whereas the latter one is

simply referred to as the matrix. The constituents may be a solid, a liquid, a gas or a

combination thereof; nevertheless, only two-phase composites with solid constitu-

ents are discussed in this chapter.

The size, shape, distribution and orientation of the dispersed phase inside the

matrix define the microstructure of a composite material. The dispersed phase in

particulate composites are generally modeled as spheres. The spheres may be

orderly or randomly distributed within the matrix. Hence, depending on the particle

distribution, the microstructure for a particulate composite is represented by an

ordered or a random array of spheres. The dispersed phase in fibrous or short-fiber

composites comprises geometrical shapes slender in one direction; it is usually

approximated by cylinders or ellipsoids of revolution. The fibers may also be

orderly or randomly distributed within the matrix as in particulate composites;

nevertheless, in fibrous or short-fiber composites, fiber orientation also plays an

important role in the composite microstructure. During the manufacturing process

of a fibrous or short-fiber composite, the matrix and the fibers are compressed

together such that the fibers tend to distribute themselves in planes normal to the

applied pressure. If all the fibers have the same orientation in those planes, one says

that they are longitudinally-aligned; otherwise, they are transversely-aligned.

Generally, three characteristic length scales may be identified in a composite

material, namely, the size of the dispersed phase (the microscale); the size of the

microstructure (the mesoscale) and the physical dimensions of the composite itself

(the macroscale). The size of the microstructure is also referred to as the character-

istic length of the representative volume element of the composite microstructure.

Frequently, these length scales possess widely different orders of magnitude; one

says that they are well-separated. There are a variety of transport phenomena in

composite materials with wide engineering applicability, such as heat conduction,

fluid dynamics, forced and natural convection, and radiation, to name just a few.

The discussion addressed here will be restricted to heat conduction. Heat conduc-

tion in composite materials with well-separated length scales are mathematically

described by partial differential equations with rapidly-varying coefficients. Even

with the actual computational resources, classical analytical and/or numerical

treatments to these equations are difficult. Hence, developments of analytical and/

or numerical schemes that alleviate the difficulties (stiffness) associated with the

well-separated length scales are desirable and have been the subject of research

efforts during recent years.

The application of composite materials in industry has remarkably increased in

recent years, due to their ease and low cost of fabrication, and the tailorability of

their mechanical and thermal properties. Composite materials are generally classi-

fied as organic matrix composites, metal matrix composites or ceramic matrix

composites, depending on the matrix material. In organic matrix composites,

reinforcements with high thermal conductivity are embedded in an electrically

insulating matrix, such as polymers and thermoplastics. They have become attrac-

tive materials for electronic packaging applications due to a combination of
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properties like high thermal conductivity, low thermal expansion coefficient, ther-

mal stability and low dielectric constant [18]. Metal matrix composites have also

been widely used in electronic packaging applications because of their high thermal

conductivity and the tailorability of their coefficient of thermal expansion [9, 38].

An adjustable coefficient of thermal expansion is a desirable feature because a

mismatch of that property between heat sink and substrate gives rise to thermally

induced stresses, which contribute to device failure. Furthermore, the recent minia-

turization of electronic components with increasingly higher energy densities

requires highly conducting materials as the performance of those electronic devices

depends on maintaining appropriate environment temperatures [9]. Ceramic matrix

composites represent a new class of refractory composites for high-temperature

environments in which glasses, glass-ceramics and ceramic matrices are reinforced

with fibers [16]. Ceramic matrix composites are attractive materials because they

possess improved fracture toughness, impact resistance, greatly increased tolerance

to mechanical damage compared to many single brittle materials and wide versatil-

ity of thermal properties [16]. In a high-temperature environment, materials with

superior thermal properties become desirable. For instance, heat exchangers

operating at high temperatures require materials with high thermal conductivity

and high thermal diffusivity in order to improve resistance to thermal shock; on the

other hand, other equipments require materials with extremely low thermal con-

ductivity in order to minimize heat losses.

As stated previously, owing to the usual complex microstructures, the detailed

(local) study of heat conduction in composite materials is a hard task. Therefore,

engineering analyses focus on the macroscopic behavior of such materials, dictated

by the so-called effective properties, such as the effective thermal conductivity. The

determination of the latter in terms of the microstructure, individual properties of

the phases, and other relevant physical parameters has scientific and practical

importance [13, 27, 37]. Because most fabrication processes of composite materials

do not ensure a perfect thermal contact between the constituent phases, the effective

thermal conductivity depends on the interfacial thermal resistance between the

matrix and the dispersed phase. This interfacial, or contact, resistance is due to

poor chemical and/or mechanical adherence, caused by different thermal expansion

coefficients of the phases, and presence of roughness, waving and impurities at the

interface [6, 9, 10, 14, 28]. Physically, the contact resistance tends to thermally

insulate the dispersed phase, and may dramatically reduce the composite effective

conductivity. Manufacturing processes of composite materials may also lead to

other defects such as voids inside the matrix which also contribute to reduce their

effective conductivities.

Recent reviews of analytical [10, 13, 27, 28], computational [7, 19, 22, 33], and

experimental [8, 28] techniques for the study of heat conduction in composite

materials are available. Analytical [15, 27] and phenomenological [5, 11] treat-

ments of heat conduction in composites are generally restricted to single spheroidal

particles embedded in an infinite matrix, to dilute dispersed-phase volume fractions,

or to the validity of ‘ad-hoc’ assumptions; the majority of analytical and phenome-

nological approaches neglects the interfacial thermal resistance and the ones which
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account for it are usually restricted to the above-mentioned simple microstructures.

Accurate results for the effective conductivity of ordered arrays of spheres (low-to-

moderate volume fractions) without interfacial thermal resistance may be obtained

from the works of Sangani and Acrivos [34] and McPhedran and McKenzie [26].

For ordered and random arrays of spheres with uniform interfacial thermal resis-

tance the reader should consult, respectively, the works of Cheng and Torquato [6]

and Benveniste [5]. The works of Hatta and Taya [17], Furmañski [12] and Dunn

et al. [8] provide analytical expressions for the effective thermal conductivity of

arrays of perfectly-aligned and misoriented short fibers without interfacial resis-

tance. The vast majority of computational approaches [19, 21, 22, 33], despite their

increased flexibility to treat more complex physics and microstructural geometries,

calculate the effective thermal conductivity exclusively in terms of the individual

properties of the constituents, and the volume fraction, shape, and spatial distribu-

tion of the dispersed phase. There are numerical approaches which account exactly

for an interfacial thermal resistance (see, for example, the works of Duschlbauer

and his co-workers [9, 10]); however, some of them are not flexible enough to also

account for other complexities, such as dispersed voids in the matrix and large

volume fractions, close to the maximum packing.

To sum up, purely analytical treatments of heat conduction in composite

materials provide important expressions for the effective conductivity, from

which the effects of dispersed-phase volume fraction, shape, and spatial distribu-

tion are easily quantified, but they are restricted in most cases to simple micro-

structures, and to dilute and moderate volume fractions. Phenomenological

approaches are a valuable aid to investigate complex physics and microstructural

geometries, nevertheless they adopt heuristic assumptions regarding the tem-

perature distribution inside the matrix, which are not easily verified in practice.

Computational methodologies, in principle, appear now to be the most appropri-

ate means to treat heat conduction in composites, because their inherent flexibility

permits gradual improvement of the physical and geometrical modeling of such

materials. On the other hand, the composite microstructure must be prescribed a

priori, and it remains nontrivial to reproduce computationally all the details of an

actual composite microstructure.

The goals envisioned for the current chapter are threefold. First, it gives a general

overview of heat conduction in two-phase compositematerials with three dimensional

microstructures and interfacial thermal resistance. Second, it describes the application

of homogenization theory to the multiscale heat conduction problem in the composite

medium in order to derive the boundary-value problem defined on a representative

volume element of the composite microstructure (the cell problem) and an expression

for the composite effective thermal conductivity. Third, it describes a finite-element-

based computational scheme to calculate the effective thermal conductivity of com-

posite materials with general 3-D microstructures and interfacial thermal resistance.

Numerical results for the effective conductivity are presented and, when possible,

compared with available analytical predictions. The numerical results reported here

confirm that computational approaches are a helpful tool for understanding the

complex macroscopic thermal behavior of composite materials.
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2 Formulation of Heat Conduction Problem

Here a statistically homogeneous composite [37] is considered, illustrated in Fig. 1,

whose continuous and dispersed phases are, respectively, a solid homogeneous

matrix of thermal conductivity kc occupying domain Oc, and solid homogeneous

particles/fibers of tensorial thermal conductivity kdij, i; j ¼ 1; 2; 3, occupying domain

Od. The particles/fibers have arbitrary shapes and orientations, and are orderly or

randomly distributed within the matrix. An interfacial thermal resistance function

RI is present at the interface @Os (a disconnected set) between the matrix and

the dispersed phase. The composite extends throughout a macroscale region

O ¼ Oc [ Od of characteristic dimension L, over which an external temperature

gradient DT=L is imposed. The representative volume element (RVE) of the

composite microstructure is the locally-periodic cell Opc, which contains several

particles and/or fibers of characteristic dimension ‘ (the microscale). The charac-

teristic dimension of the RVE is referred to as the mesoscale, and denoted by l. The
composite length scales are assumed to be well-separated and, given statistical

homogeneity, one can define the small parameter e � l=L � 1 for the medium.

2.1 Strong Form

For steady state heat conduction in the medium described above, the non-

dimensional strong form of the boundary value problem is given by [32]

� @

@yi

@yc

@yi

� �
¼ Gc in Oc; (1)

x*
2

x*
1

x*
3

L

Wd , kd
ij

¶Ws

¶W

Wc , kc

Fig. 1 Statistically homogeneous composite with 3-D microstructure
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� @

@yi
kij

@yd

@yj

� �
¼ Gd in Od; (2)

� @yc

@yi
nci ¼ �kij

@yd

@yj
nci on @Os ; (3)

� @yc

@yi
nci ¼ Bi yc � yd

� � ¼ Bi ye½ �@Os
on @Os ; (4)

where summation over repeated indices is implied; y � x�=l, and x�, x� 2 IR3, is the

macroscale coordinate or slow space variable, whose components are x�j , j ¼ 1; 2; 3;

ye � Te=DT, G � _gl2=ðkcDTÞ, and Te and _g are, respectively, the temperature field

and the volumetric rate of heat generation at the microscale; yc ¼ yejOc
, yd ¼ yejOd

,

Gc ¼ GjOc
, and Gd ¼ GjOd

; nc is the unit vector locally normal to @Os and pointing

to the outside of Oc; kij � kdij=k
c is the conductivity ratio, i; j ¼ 1; 2; 3; Bi � hl=kc

is the Biot number, and h � 1=RI is the interfacial thermal conductance function

(also referred to in the literature as the interface parameter or skin constant), which

specifies locally the ratio of the heat flux to the temperature jump at the interface

@Os. The current definition of the Biot number is based on l rather than on ‘ as done
by other researchers [5, 6]; moreover, it is related to the Kapitza radius, kc=h,
defined in [11]. The notation ½f�@Os

denotes the jump fc � fd of the function f at

@Os. It is typical in measurements of thermal conductivity with macroscopic

samples of composite materials, to impose different temperatures at @O, the

external boundaries of O, such that the field ye can be regarded as subjected to

Dirichlet boundary conditions. Later on, it will be demonstrated that the composite

effective conductivity does not depend upon the boundary conditions applied at

@O, which is physically reasonable.

2.2 Weak Form

For subsequent treatment by the finite element method, it is more convenient to

work with the equivalent weak form of the heat conduction problem, which

naturally enforces the continuity of the heat flux at @Os, (3). Following the detailed

derivation in [32] for isotropic composites, one arrives at the following weak form:

given zij, i; j ¼ 1; 2; 3, Bi and G, find ye 2 X0ðOÞ such that

Z
O
zij

@v

@yi

@ye
@yj

dyþ
Z
@Os

Bi ½v�@Os
ye½ �@Os

ds ¼
Z
O
v G dy 8v 2 XðOÞ ; (5)

where zijðyÞ ¼ dij if y 2 Oc and zijðyÞ ¼ kij if y 2 Od, i; j ¼ 1; 2; 3; X0ðOÞ ¼
fw jwjOc

¼ wc 2 H1ðOcÞ;wjOd
¼ wd 2 H1ðOdÞ; ½w�@Os

¼ b 2 IRg; XðOÞ ¼ fw 2
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X0ðOÞg \ H1
0ðOÞ; H1ðOÞ is the space of all functions for which both the function and

derivative are square-integrable over O [31], and the functions in H1
0ðOÞ � H1ðOÞ

vanish on @O. It is clear from (5) that the formulation permits that the Biot number, in

general, will vary spatially over the interface @Os, i.e., Bi ¼ BiðyÞ.

2.3 Application of Homogenization Theory

Even with the actual computational resources, traditional analytical and/or numeri-

cal methods have difficulties in solving the weak form (5). The coefficients zijðyÞ,
BiðyÞ and GðyÞ are rapidly-varying functions of the space coordinate y due to the

well-separated length scales and to the large number of particles/fibers within the

matrix. Analytical and/or numerical methods able to decouple such a multiscale

boundary-value problem into a boundary-value problem defined on an equivalent

homogeneous medium that behaves identically as the original multiscale medium

are thus suitable to handle partial differential equations with rapidly-varying coef-

ficients, as (5); homogenization theory is one of such methods. To apply homo-

genization theory [1, 4] to (5), asymptotic developments for the temperature field in

terms of characteristic length scales of the phenomenon under investigation have

revealed itself as an attractive strategy.

The first task in applying the homogenization theory to the weak form (5) is to

write ye and v as functions of two space variables, namely, the fast or microscopic

variable y and the slow or macroscopic variable x � x�=L ¼ ey. Note that for the

problem under investigation, only spatial scales enter the formulation. The second

task is to introduce multiple-scale asymptotic expansions, here needed up to the

second-order term in e only; in other words, the temperature field and the weight

function are expanded as

ye ¼
X2
k¼0

ek ykðx; yÞ and v ¼
X2
k¼0

ek vkðx; yÞ: (6)

Substituting the asymptotic expansions given by (6) into the weak form (5) and

then applying the chain rule for differentiation, one derives the following expres-

sion [32]
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þ e2
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@xi

þ e2
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��
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@yj

þ e
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@xj

þ e
@y1
@yj

þ e2
@y1
@xj

þ e2
@y2
@yj

�
dyþ

Z
@Os

Bi

�
v0þ ev1þ e2 v2

�
@Os

�
y0þ ey1þ e2 y2

�
@Os

ds

¼
Z
O

�
v0þ ev1þ e2 v2

�
G dy 8v0;v1;v2 2 XðOÞ:

(7)
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Five different homogenization processes are possible [1], corresponding to five

different orders of magnitude for the Biot number: Bi ¼ OðeaÞ, a 2 f�1; 0; 1; 2; 3g.
Here, only the physically relevant model corresponding to a ¼ 0 will be discussed;

such a model is associated with a finite value of the interfacial thermal resistance RI,

i.e., 0 � Bi < 1. Note that Bi ¼ 0 represents a perfect insulating interface, while

Bi ! 1 represents perfect interfacial thermal contact.

The third task in applying the homogenization theory is to collect systematically

equal powers of e in (7). For instance, by collecting equal powers of e0 in (7) one

arrives at the following equation

Z
O
zij

@v0
@yi

@y0
@yj

dyþ
Z
@Os

Bi v0½ �@Os
y0½ �@Os

ds ¼ 0 8v0 2 XðOÞ: (8)

Note that (8) is valid for all weight functions v0 2 XðOÞ. Hence, one may choose

a weight function such that ½v0�@Os
¼ 0. By substituting ½v0�@Os

¼ 0 into (8) one

immediately concludes that @y0=@yj ¼ 0. Now, by substituting @y0=@yj ¼ 0 into

(8), one immediately has ½y0�@Os
¼ 0, from which one concludes that y0 ¼ y0ðxÞ,

i.e., y0 does not depend on the microscopic space variable y. Physically, the

temperature expansion coefficient y0ðxÞ represents the macroscopic temperature

field defined on the equivalent homogeneous medium.

By collecting equal powers of e1 and by taking into account the previous con-

clusions, one arrives at the trivial identity 0 ¼ 0; in other words, no new informa-

tion is gained when collecting equal powers of e1. Finally, by collecting equal

powers of e2 in (7) and by taking into account all the aforementioned conclusions,

one derives the following equation

Z
O
zij

�
@y0
@xj

@v0
@xi

þ @y1
@yj

@v0
@xi

þ @y0
@xj

@v1
@yi

þ @y1
@yj

@v1
@yi

�
dy

þ
Z
@Os

Bi ½v1�@Os
½y1�@Os

ds ¼
Z
O
v0Gdy (9)

8v0 2 X00ðOÞ; 8v1 2 XðOÞ. The function space X00ðOÞ is a subset of XðOÞ in which

a member function has no jump across the interface @Os. Equation (9) may be

broken into two equations. Firstly, by arbitrarily choosing v1 ¼ 0 2 XðOÞ one

derives

Z
O
zij

@y0
@xj

þ @y1
@yj

� �
@v0
@xi

dy ¼
Z
O
v0Gdy 8v0 2 X00ðOÞ: (10)

Secondly, by arbitrarily choosing v0 ¼ 0 2 X00ðOÞ one derives
Z
O
zij

@y0
@xj

þ @y1
@yj

� �
@v1
@yi

dyþ
Z
@Os

Bi v1½ �@Os
y1½ �@Os

ds ¼ 0 8v1 2 XðOÞ: (11)
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As one shall demonstrate in the next paragraphs, (10) and (11) will give rise

to the homogenized and cell problems, respectively. The next step is to assume a

separation of variables for y1ðx; yÞ in the form

y1ðx; yÞ ¼ �wpðyÞ
@y0
@xp

ðxÞ: (12)

By substituting (12) into (11) yields

Z
O
zij

@y0
@xj

� @wp
@yj

@y0
@xp

� �
@v1
@yi

dy�
Z
@Os

Bi
@y0
@xp

v1½ �@Os
wp
� 	

@Os
ds ¼ 0 (13)

or, alternatively,

Z
O
zij

@y0
@xp

djp �
@wp
@yj

� �
@v1
@yi

dy�
Z
@Os

Bi
@y0
@xp

v1½ �@Os
wp
� 	

@Os
ds ¼ 0 (14)

8v1 2 XðOÞ. If the composite microstructure is further assumed to be periodic

then one may apply the periodicity property [1, 32]. The periodicity property relates

the integral of a quantity over the composite multiscale domain O with the integral

of the average of such quantity over a representative volume element of the

composite microstructure (the periodic cell). The periodicity property for compo-

sites with finite interfacial thermal resistance is mathematically described by [32]

lime!0

Z
O
f ðx;yÞdyþ

Z
@Os

gðx;yÞds
� �

¼
Z
O

1

jOpcj
Z
Opc

f ðx;yÞdyþ
Z
G
gðx;yÞds

" #
dy

(15)

where the functions f and g are periodic in y 2 IR3; the function g has dis-

continuities across @Os; Opc denotes the periodic cell and G is the portion of

@Os inside Opc. The symbol jOpcj denotes the volume of the periodic cell, i.e.,

jOpcj ¼
R
Opc

dy.

By subsequently applying the periodicity property given by (15) into (14) yields

Z
O

1

jOpcj
Z
Opc

zij
@y0
@xp

djp �
@wp
@yj

� �
@v1
@yi

dy

( )
dy

¼
Z
O

1

jOpcj
Z
G
Bi

@y0
@xp

v1½ �G wp
� 	

G
ds


 �
dy (16)

8v1 2 XðOÞ. Note that the macroscopic temperature gradient @y0=@xp depends
only on the macroscopic space variable x; hence, it may be put outside

the integrals over Opc and G. Equation (16) must hold for all weight functions
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v1 2 XðOÞ; hence, one must have (henceforth, the subscript under the weight

function is abandoned)

Z
Opc

zij djp �
@wp
@yj

� �
@v

@yi
dy ¼

Z
G
Bi ½v�G wp

� 	
G
ds 8v 2 YðOpcÞ (17)

or, alternatively,

Z
Opc

zij
@wp
@yj

@v

@yi
dyþ

Z
G
Bi ½v�G wp

� 	
G
ds ¼

Z
Opc

zip
@v

@yi
dy 8v 2 YðOpcÞ: (18)

The unknown function wp, p 2 f1; 2; 3g, is a periodic solution corresponding to

a unit temperature gradient imposed in the x�p direction; the function space YðOpcÞ
defined as

YðOpcÞ ¼ fw jwjOpc;c
¼ wc 2 H1

#ðOpc;cÞ;wjOpc;d
¼ wd 2 H1

#ðOpc;dÞ; ½w�G ¼ b 2 IRg

is the space of all triply-periodic functions in Opc with period Cj l along the yj
direction, Cj 2 IR, j ¼ 1; 2; 3, for which both the function and derivative are square-
integrable over Opc; Opc;c and Opc;d are the continuous and dispersed subdomains of

Opc. Equation (18) represents mathematically the cell problem for composites with

finite interfacial thermal resistance. Note that due to the interfacial thermal resis-

tance both the temperature and weight functions have jumps across the interface G.
Note that the coefficients zijðyÞ and BiðyÞ are not rapidly-varying functions inside

Opc. Note also that the solution of the cell problem depends neither on the boundary

conditions prescribed at @O nor on the rate of volumetric heat generation GðyÞ; it
depends only on the geometry of the periodic cell, the particles/fibers-to-matrix

conductivity ratios and the magnitude of the interfacial thermal resistance. The

function wp in (18) is determined up to a free constant; thus, it is further required for

uniqueness that wp has zero volumetric average, i.e.,Z
Opc

wp dy ¼ 0: (19)

Now, substituting (12) into (10) one arrives at the following expression

Z
O
zij

@y0
@xp

djp �
@wp
@yj

� �
@v0
@xi

dy ¼
Z
O
v0Gdy 8v0 2 X00ðOÞ: (20)

Finally, by applying the periodicity property to (20) one derives the following

expression for the weak form of the homogenized problem

Z
O

1

jOpcj
Z
Opc

zij djp�
@wp
@yj

� �
dy

( )
@y0
@xp

@v0
@xi

dy¼
Z
O

1

jOpcj
Z
Opc

v0Gdy

( )
dy (21)
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8v0 2 X00ðOÞ. From inspection of (21), one identifies the term inside brackets on

the left-hand side as the (tensorial) effective thermal conductivity ke;pq,
p; q ¼ 1; 2; 3; hence,

ke;pq � ke;pq
kc

¼ 1

jOpcj
Z
Opc

zpi

�
diq �

@wq
@yi

�
dy ¼ 1

jOpcj

(Z
Opc;c

dpi

 
diq �

@w c
q

@yi

!
dy

þ
Z
Opc;d

kpi diq �
@wdq
@yi

 !
dy

)
ð22Þ

where wcq ¼ wqjOpc;c
and wdq ¼ wqjOpc;d

. Note that, once the cell problem is solved,

the composite effective conductivity is computed with the aid of (22). The main

goal of the next section is to discuss in detail the finite element solution of cell

problem (18). The solution of the homogenized problem, given by (21), will not be

addressed here. Once the composite effective conductivity has been computed, the

solution of the homogenized problem for a given volumetric rate of heat generation

G and boundary conditions at @O is straightforward.

3 Finite Element Solution

Numerical solution of the cell problem, a boundary-value problem with periodic

boundary conditions, by the finite element method requires three steps: (1) domain

and mesh generation, (2) finite-element discretization of (18), and (3) solution

of the resultant linear system of algebraic equations. Each of these three steps is

described in what follows.

3.1 Domain and Mesh Generation

Domain generation comprises the construction of the geometry of the periodic cell.

The microstructures discussed in this chapter are ordered arrays of spheres, ordered

arrays of perfectly-aligned prolate ellipsoids of revolution, ordered arrays of

circular cylinders, random arrays of spheres, and random arrays of misoriented

circular cylinders. Mesh generation comprises the subdivision of the cell domain

Opc into NE nonoverlapping conforming finite elements, each with domain Oe ,

e ¼ 1; . . . ;NE, such that Opc;h � [NE

e¼1Oe is the discrete approximation to the

domain Opc; the total number of global mesh nodes is denoted by NGN.

Over each finite element, the solution of the cell problem is approximated by the

interpolation of its values at the nodes. An isoparametric discretization implies that

both the geometry Opc and the periodic temperature field wp are approximated by

the same interpolation functions [31]. Here, quadratic polynomials are employed as
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the interpolants; hence, the finite element meshes are composed of ten-node qua-

dratic tetrahedra, a generic example of which is illustrated in Fig. 2a. The use of

quadratic interpolation functions provides an improved representation of 3-D

curved surfaces (spherical, ellipsoidal, and cylindrical) and an accurate numerical

solution, especially for composites with a high thermal contrast between the

constituent phases [23]. The adopted domain and mesh generation procedures,
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and mesh quality evaluation, are described in detail elsewhere [20–22], and exploit

the resourceful third-party 2-D/3-D mesh generator NETGEN [35].

3.2 Isoparametric Second-Order Discretization

The isoparametric second-order discretization applied to solve the cell problem is a

modification of the usual Galerkin method, in order to account for the disconti-

nuities of v and wp across the interface G; the cell problem weak form is repeated

here for convenience,

Z
Opc

zij
@v

@yi

@wp
@yj

dyþ
Z
G
Bi ½v�G wp

� 	
G
ds ¼

Z
Opc

zip
@v

@yi
dy 8v 2 YðOpcÞ : (23)

Two remarks should be highlighted. First, the usual continuity of the primary

variable (here, the temperature) at nodes shared by adjoining tetrahedra must be

enforced, only if those nodes are not at G; on the other hand, the balance of the

secondary variable (the heat flux) at a surface shared by two adjoining tetrahedra

must always be enforced. Second, in order to account for the interfacial resistance

effect, each global mesh node at G must store two values of wp: one corresponding
to the continuous phase, wcp, and the other corresponding to the dispersed phase, w

d
p,

such that the jump wp
� 	

G
is given by wcp � wdp. Thus, it is necessary to duplicate the

degrees of freedom corresponding to global nodes (corner and midside) at G: as
shown in Fig. 2b, a duplicate A

0
of the generic node A is created, such that A and A0

correspond to the same geometric point in 3-D space, but store two different values

(degrees of freedom) for the temperature, wA ¼ wpjnodeA and wA0 ¼ wpjnodeA0 . The

connectivities of the tetrahedra belonging to Opc;d and having at least one node at G
must then be modified accordingly, to correctly assemble the elemental equations.

After the duplication procedure, the number of degrees of freedom increases by NG,

where NG is the number of global finite element mesh nodes at G; the total number

of degrees of freedom (i.e., values of the solution wp to be calculated) is NDOF.

3.2.1 Numerical Treatment of the Volume Integrals

The cell problem may be written on an elemental level as

Z
Oe

zeij
@ve

@yi

@wep
@yj

dyþ
Z
GOe

Bie ½ve�GOe
wep
h i

GOe

ds ¼
Z
Oe

zeip
@ve

@yi
dy ; (24)

where Oe, e ¼ 1; 2; . . . ;NE, is a quadratic tetrahedron of the mesh, zeij ¼ zijjOe
,

i; j ¼ 1; 2; 3 (zeij ¼ dij if Oe � Opc;c and zeij ¼ kij if Oe � Opc;d); Bie ¼ BijGOe
;

ve ¼ vjOe
and wep ¼ wpjOe

; and GOe
is the portion of the boundary of Oe on G (i.e.,
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GOe
¼ @Oe \ G). In the finite element solution of (24), one seeks to approximate ve

and wep by

ve ¼
X10
b¼1

vebc
e
b and wep ¼

X10
a¼1

wep;ac
e
a (25)

where ce
aðyÞ, ce

bðyÞ, a; b ¼ 1; 2; . . . ; 10, are the Lagrange interpolation functions

for Oe, and wep;a is the value of the temperature wp at the local node a of Oe. The

usual practice with finite elements [31], as shown in the following paragraphs,

is to express the Lagrange interpolation functions in terms of a reference

coordinate system, related explicitly to the original system y. Each local node

a of each ten-node tetrahedron Oe is associated with a corresponding global

node A, A 2 f1; 2; . . . ;NGNg. Equation (24) applies for all tetrahedra of the

mesh (with zero, one, two, or three corner nodes at G); the surface integral in

(24), however, must be computed only for those tetrahedra with exactly three

corner nodes at G.
For tetrahedra with zero, one, or two corner nodes at G (i.e., tetrahedra for which,

respectively, GOe
is an empty set, a point, or a straight line segment in 3-D), ds ¼ 0;

hence, (24) is simplified to

Z
�Oe

zeij
@ve

@yi

@wep
@yj

dy ¼
Z
�Oe

zeip
@ve

@yi
dy ; (26)

where �Oe, e ¼ 1; 2; . . . ; �NE, is a generic tetrahedron with at most two corner nodes

at G, and �NE ( �NE < NE) is the number of such tetrahedra in the mesh. Substituting

the finite element approximations for ve and wep, one arrives at the following system
of linear algebraic equations for each tetrahedron �Oe,

X10
a¼1

k
0e
ba w

e
p;a ¼ f ep;b ; (27)

b ¼ 1; 2; . . . ; 10. In (27), k
0e
ba and f

e
p;b are, respectively, the elemental stiffness matrix

and elemental forcing vector, given by

k
0e
ba ¼

Z
�Oe

zeij
@ce

b

@yi

@ce
a

@yj
dy and f ep;b ¼

Z
�Oe

zeip
@ce

b

@yi
dy ; (28)

note that k
0e
ba is symmetric.

The integrals in (28) are evaluated with the help of an isoparametric mapping

between the actual tetrahedron �Oe, e ¼ 1; 2; . . . ; �NE, and the standard (or master)

quadratic tetrahedron Om : fðx; �; #Þ 2 IR3 j0 � x � 1; 0 � � � 1� x; 0 � # �
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1� x� �g, as illustrated in Fig. 2a; ðx; �; #Þ are the volume coordinates [3] of the

standard tetrahedron, related to the spatial coordinates ðy1; y2; y3Þ over �Oe by

ye1ðx; �; #Þ ¼
X10
a¼1

ye1ðaÞ ~caðx; �; #Þ ; (29)

ye2ðx; �; #Þ ¼
X10
a¼1

ye2ðaÞ ~caðx; �; #Þ ; (30)

ye3ðx; �; #Þ ¼
X10
a¼1

ye3ðaÞ ~caðx; �; #Þ ; (31)

where ye
1ðaÞ, y

e
2ðaÞ, and y e

3ðaÞ are, respectively, the y1, y2, and y3 coordinates of local

node a, a ¼ 1; 2; . . . ; 10, belonging to the tetrahedron �Oe. The isoparametric

mapping F�1ðx; �; #Þ : Om 7!�Oe thus yields

k
0e
ba ¼

Z 1

0

Z 1�x

0

Z 1�x��

0

zeij

�
@~cb

@x
@x
@yi

þ @~cb

@�

@�

@yi
þ @~cb

@#

@#

@yi

�

	
�
@~ca

@x
@x
@yj

þ @~ca

@�

@�

@yj
þ @~ca

@#

@#

@yj

�
detJe d#d�dx ; (32)

f ep;b ¼
Z 1

0

Z 1�x

0

Z 1�x��

0

zeip
@~cb

@x
@x
@yi

þ @~cb

@�

@�

@yi
þ @~cb

@#

@#

@yi

�
detJe d#d�dx ;

 

(33)

where the abbreviated symbols ~ca ¼ ce
aðy1ðx; �; #Þ; y2ðx; �; #Þ; y3ðx; �; #ÞÞ, ~cb ¼

ce
bðy1ðx; �; #Þ; y2ðx; �; #Þ; y3ðx; �; #ÞÞ, a; b ¼ 1; 2; . . . ; 10, are the standard

Lagrange interpolation functions, or shape functions, of the master tetrahedron,

and Je stands for the elemental Jacobian matrix of the isoparametric mapping,

Je � @ðy1;y2;y3Þ
@ðx;�;#Þ [31]. The shape functions are given by the following expressions in

the coordinate system ðx; �; #Þ [3]:

~c1ðx; �; #Þ ¼ ð1� 2x� 2� � 2#Þð1� x� � � #Þ
~c2ðx; �; #Þ ¼ xð2x� 1Þ ; ~c3ðx; �; #Þ ¼ � ð2� � 1Þ ; ~c4ðx; �; #Þ ¼ #ð2#� 1Þ
~c5ðx; �; #Þ ¼ 4xð1� x� � � #Þ; ~c6ðx; �; #Þ ¼ 4x�
~c7ðx; �; #Þ ¼ 4� ð1� x� � � #Þ ; ~c8ðx; �; #Þ ¼ 4#ð1� x� � � #Þ
~c9ðx; �; #Þ ¼ 4x# ; ~c10ðx; �; #Þ ¼ 4�#:
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The components of the Jacobian matrix, Je1j, J
e
2j, and Je3j, j ¼ 1; 2; 3, are thus

given by:

Je1j ¼
X10
a¼1

ye1ðaÞ
@~ca

@xj
; Je2j ¼

X10
a¼1

ye2ðaÞ
@~ca

@xj
and Je3j ¼

X10
a¼1

ye3ðaÞ
@~ca

@xj
(34)

with x1 ¼ x, x2 ¼ �, and x3 ¼ #.
The integrals appearing in (32) and (33) are evaluated numerically using the

Gauss quadrature rule with five points [3]. The derivatives of x, � and #with respect

to y1, y2 and y3 are computed from the inverse of the Jacobian matrix. The elemental

stiffness matrices and elemental forcing vectors are finally assembled to construct

the global matrix K0 and forcing vector Fp. The assembling, or direct stiffness

summation, procedure enforces (1) continuity of the temperature at nodes shared by

adjoining tetrahedra, provided that such nodes are not located at G, (2) balance of
the heat flux at the surfaces shared by adjoining tetrahedra, and (3) periodicity at

corresponding boundary nodes lying on the external surfaces of the cell Opc.

3.2.2 Numerical Treatment of the Surface Integral

For a generic tetrahedron ~Oe with exactly three corner nodes at G, e ¼ 1; 2;:::; ~NE,

NE ¼ �NEþ ~NE, (24) can be rewritten as

Z
~Oe

zeij
@ve

@yi

@wep
@yj

dyþ
Z
G~Oe

Bie ½ve�G~Oe
wep
h i

G~Oe

ds ¼
Z
~Oe

zeip
@ve

@yi
dy : (35)

The finite element discretization of the two volume integrals in (35) follows the

procedure described in the previous section, and using (32) and (33), will give rise

to the corresponding elemental stiffness matrices and elemental forcing vectors.

However, for tetrahedron ~Oe, one must still discretize the surface integral on the

left-hand side of (35), which accounts for the discontinuities of the weight function

and temperature at G~Oe
, e ¼ 1; 2; . . . ; ~NE. Henceforth, the Biot number is assumed

to be constant over the interface G and it will be written outside the integrals.

Differently from the treatment of the volume integrals, as a much smaller

number of elements are involved (i.e., only those tetrahedra with three corner

nodes at G), it is more convenient to discretize the surface integral in (23) globally,

rather than elementally using (35). Therefore, it is more computationally efficient to

sum directly the surface integral contributions to the appropriate entries of the

global matrix K0, rather than to incorporate elemental contributions into the ele-

mental stiffness matrices, and then perform direct stiffness summation with these

elemental data structures. Once all surface integral contributions are incorporated

into K0, one finally obtains the global stiffness matrix K.
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For the degrees of freedom corresponding to global nodes at G, discontinuous
weight functions are used, for which the jump b at the interface is nonzero. It will be

seen that, for a generic global node at G, the resulting surface integrals depend on the
Biot number and on the areas of the tetrahedra faces lying onG and sharing that node.

For example, for the generic corner nodeA shown in Fig. 2b, located on the continuous

phase side ofG and shared by five tetrahedra (denoted in Fig. 2b by ~Oe, ~Of , ~Og, ~Oh and
~Oi, e; f ; g; h; i 2 f1; 2; 3; . . . ; ~NEg, the resulting surface integrals depend on Bi and

on the areas of the faces G~Oe
, G~Of

, G~Og
, G~Oh

and G~Oi
shared, respectively, by the pairs

of tetrahedra ~Oe and ~Oe0 , ~Of and G~Of 0
, ~Og and G~Og0

, ~Oh and ~Oh0 , and ~Oi and ~Oi0 . In the

unstructured tetrahedral meshes generated by NETGEN, the number of tetrahedra

with exactly three nodes at a surface and sharing a common corner node varies from

four to seven. In the following, for the sake of completeness, the scheme to calculate

the contributions arising from the surface integral in (23) is described for both a

generic corner node A and a generic midside nodeM at G (see Fig. 2b).

The finite dimensional subspace YhðOpc;hÞ of YðOpc; hÞ, in which the weight

function v lies, is defined such that YhðOpc;hÞ ¼ YðOpc;hÞ \ P2ðOeÞ, e ¼ 1; 2; . . . ;
NE, and P2ðOeÞ is the space of all quadratic polynomials defined on tetrahedron Oe.

The weight function vA for a generic corner node A is thus vA ¼ bfA 2 YhðOpc;hÞ,
where fA is the standard quadratic interpolant. For implementation simplicity and

without loss of generality, it is convenient to choose b ¼ 1, so that ½vA�G ¼ 1. Now,

defining fAjG~Oe
¼ vAjG~Oe

as the restriction of vA to the surface G ~Oe
of tetrahedron

~Oe, e 2 f1; 2; . . . ; ~NEg (note that fAjG~Oe
¼ ce

ajG~Oe
, where a is the local node of

tetrahedron ~Oe corresponding to global node A), the restriction of the temperature

wp to G~Oe
can be written as

wpjG~Oe
¼ wAfAjG~Oe

þ wBfBjG~Oe
þ wCfCjG~Oe

þ wMfMjG~Oe
þ wNfNjG~Oe

þ wPfPjG~Oe
:

(36)

To compute the jumps of the weight function and temperature across the surface

G~Oe
, one must also consider the tetrahedron ~Oe0 2 Opc;d, e

0 2 f1; 2; . . . ; ~NEg, which
shares with ~Oe the surface G~Oe

or, equivalently, the surface G~Oe0
. From the definition

of vA, it follows that vAjG~Oe0
¼ 0. Similarly to (36), the expression for the tempera-

ture wp restricted to the surface G~Oe0
is

wpjG~Oe0
¼ wA0 fA0 jG~Oe0

þ wB0 fB0 jG~Oe0
þ wC0 fC0 jG~Oe0

þ wM0 fM0 jG~Oe0

þ wN0 fN0 jG~Oe0
þ wP0 fP0 jG~Oe0

: (37)

From (36) and (37), the jumps of vA and wp across the surface G~Oe
are respec-

tively deduced to be
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½vA�G~Oe
¼ vAjG~Oe

� vAjG~Oe0
¼ vAjG~Oe

¼ fAjG~Oe
; (38)

½wp�G~Oe
¼ wAfAjG~Oe

þ wBfBjG~Oe
þ wCfCjG~Oe

þ wMfMjG~Oe
þ wNfNjG~Oe

þ wPfPjG~Oe
� wA0 fA0 jG~O

e0
� wB0 fB0 jG~O

e0
� wC0 fC0 jG~O

e0

� wM0 fM0 jG~O
e0
� wN0 fN0 jG~O

e0
� wP0 fP0 jG~O

e0
: (39)

As dictated by (23), one must now integrate the product of the jumps of vA and wp
across G~Oe

, yielding

Z
G~Oe

Bi ½vA�G~Oe
½wp�G~Oe

ds¼Bi wA

Z
G~Oe

fAjG~Oe
fAjG~Oe

dsþwB

Z
G~Oe

fAjG~Oe
fBjG~Oe

ds

(

þwC

Z
G~Oe

fAjG~Oe
fCjG~Oe

dsþwM

Z
G~Oe

fAjG~Oe
fMjG~Oe

ds

þwN

Z
G~Oe

fAjG~Oe
fN jG~Oe

dsþwP

Z
G~Oe

fAjG~Oe
fPjG~Oe

ds

�wA0

Z
G~Oe

fAjG~Oe
fA0 jG~Oe0

ds�wB0

Z
G~Oe

fAjG~Oe
fB0 jG~Oe0

ds

�wC0

Z
G~Oe

fAjG~Oe
fC0 jG~O

e0
ds�wM0

Z
G~Oe

fAjG~Oe
fM0 jG~O

e0
ds

�wN0

Z
G~Oe

fAjG~Oe
fN0 jG~O

e0
ds�wP0

Z
G~Oe

fAjG~Oe
fP0 jG~O

e0
ds

)

¼Bi
X

L2fA;B;C;M;N;Pg
wL

Z
G~Oe

fAjG~Oe
fLjG~Oe

ds

8<
:

�
X

L02fA0;B0;C0;M0;N0;P0g
wL0
Z
G~Oe

fAjG~Oe
fL0 jG~O

e0
ds

9=
;

(40)

For the generic corner node A depicted in Fig. 2b, four more expressions similar

to (40) must be written, due to the jumps of vA and wp across the neighboring

surfaces G~Of
, G~Og

, G~Oh
, and G~Oi

shared, respectively, by the pairs of tetrahedra ~Of

and ~Of 0 , ~Og and ~Og0 , ~Oh and ~Oh0 , and ~Oi and ~Oi0 (in general for a node at G, one must

generate as many expressions as the number of tetrahedra in the mesh that share that

node). For an interested reader, the remaining four expressions for node A are

presented in Matt and Cruz [24]. The complete procedure just described for the

generic corner node Amust be repeated for all the corner nodes of the mesh lying at

G, including the duplicates. The resulting surface integrals, such as the ones
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appearing in (40), must be summed to the appropriate components of the global

matrix K0 so as to form K, as explained next.

Three auxiliary data arrays for the construction of the global stiffness matrix

K and forcing vector F are used: (1) the array IENða; eÞ, a ¼ 1; 2; . . . ; 10,
e ¼ 1; 2; . . . ;NE, which associates to each local mesh node a of a tetrahedron Oe

the corresponding global node (this array is first provided by the mesh generator

NETGEN, and later altered according to the duplication procedure illustrated in

Fig. 2b); (2) the vector IDðAÞ, A 2 f1; 2; . . . ;NGN þ NGg, which associates to each

global node the corresponding equation number IDðAÞ, IDðAÞ 2 f1; 2; . . . ;NDOFg,
where NDOF is the total number of equations or degrees of freedom (for generic

periodic nodes G and H lying on distinct external surfaces of Opc, IDðGÞ ¼ IDðHÞ
is enforced); and (3) the array LMða; eÞ ¼ IDðIENða; eÞÞ, which associates to each

local mesh node a of a tetrahedron Oe the corresponding equation number.

From the equations associated with corner node A, one must sum to the compo-

nents of the global matrix K0
IDðAÞ IDðAÞ and K

0
IDðAÞ IDðA0Þ, respectively, the contributions

Bi


 Z
G~Oe

fAjG~Oe
fAjG~Oe

dsþ
Z
G~Of

fAjG~Of
fAjG~Of

ds

þ
Z
G~Og

fAjG~Og
fAjG~Og

ds þ
Z
G~Oh

fAjG~Oh
fAjG~Oh

dsþ
Z
G~Oi

fAjG~Oi
fAjG~Oi

ds

�
;

(41)

�Bi


 Z
G~Oe

fAjG~Oe
fA0 jG~Oe0

dsþ
Z
G~Of

fAjG~Of
fA0 jG~Of 0

ds

þ
Z
G~Og

fAjG~Og
fA0 jG~O

g0
dsþ

Z
G~Oh

fAjG~Oh
fA0 jG~O

h0
dsþ

Z
G~Oi

fAjG~Oi
fA0 jG~O

i0
ds

�
:

(42)

To the components K0
IDðAÞ IDðBÞ and K0

IDðAÞ IDðB0Þ, one must sum, respectively, the

contributions

Bi


 Z
G~Oe

fAjG~Oe
fBjG~Oe

dsþ
Z
G~Oi

fAjG~Oi
fBjG~Oi

ds

�
; (43)

� Bi


 Z
G~Oe

fAjG~Oe
fB0 jG~O

e0
dsþ

Z
G~Oi

fAjG~Oi
fB0 jG~O

i0
ds

�
: (44)

The remaining 28 expressions to be summed to the components of the global

matrix K0 associated with corner node A are easily derived, similarly to (41)–(44).

With reference to Fig. 2b, eight expressions are associated with the neighboring

corner nodes C, D, E, F and corresponding duplicates; ten expressions are asso-

ciated with the midside nodesM, P, R, T, V and corresponding duplicates, shared by
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two neighboring tetrahedra; and, finally, ten more expressions are associated with

the midside nodes N, Q, S, U, W and corresponding duplicates.

For a generic midside node at G, the computations of the jumps of the weight

function and temperature are analogous to the ones just described for a generic

corner node. All midside nodes at G are always shared by only two tetrahedra with

exactly three corner nodes at G, thus reducing significantly the number of equations.

For the generic midside node M depicted in Fig. 2b, one must only compute the

jumps of vM and wp across the surfaces G~Oe
and G~Oi

, shared, respectively, by

the pairs of tetrahedra ~Oe and ~Oe0 , and ~Oi and ~Oi0 . The two resulting expressions

for the integrals of the products of the jumps are

Z
G~Oe

Bi ½vM�G~Oe
½wp�G~Oe

ds ¼ Bi


 X
L2fA;B;C;M;N;Pg

wL

Z
G~Oe

fMjG~Oe
fLjG~Oe

ds

�
X

L02fA0;B0;C0;M0;N0;P0g
wL0
Z
G~Oe

fMjG~Oe
fL0 jG~O

e0
ds

�
; (45)

Z
G~Oi

Bi ½vM�G~Oi
½wp�G~Oi

ds ¼ Bi


 X
L2fA;F;B;V;W;Mg

wL

Z
G~Oi

fMjG~Oi
fLjG~Oi

ds

�
X

L02fA0;F0;B0;V0;W0;M0g
wL0
Z
G~Oi

fMjG~Oi
fL0 jG~O

i0
ds

�
: (46)

Hence, from (45) and (46), it is clear that one must sum to the components

K0
IDðMÞ IDðMÞ and K0

IDðMÞ IDðM0Þ, respectively, the contributions

Bi

Z
G~Oe

fMjG~Oe
fMjG~Oe

dsþ
Z
G~Oi

fMjG~Oi
fMjG~Oi

ds

( )
; (47)

� Bi

Z
G~Oe

fMjG~Oe
fM0 jG~O

e0
dsþ

Z
G~Oi

fMjG~Oi
fM0 jG~O

i0
ds

( )
: (48)

To the components K0
IDðMÞ IDðPÞ and K0

IDðMÞ IDðP0Þ one must sum, respectively, the

contributions

Bi

Z
G~Oe

fMjG~Oe
fPjG~Oe

ds and� Bi

Z
G~Oe

fMjG~Oe
fP0 jG~O

e0
ds : (49)

The remaining 14 expressions to be summed to the components of the global

matrixK0 associated with midside nodeM are easily derived, similarly to (47)–(49).

With reference to Fig. 2b, six expressions are associated with the neighboring
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midside nodes V, N, W and corresponding duplicates; and eight expressions are

associated with the neighboring corner nodes A, B, C, F and corresponding dupli-

cates. The procedure described above for node M must be repeated for all the

midside nodes of the mesh lying at G, including the duplicates.

To close this section, it is important to remark that surface integrals such as the

integral over G~Oe
are evaluated numerically through a 12-point Gauss quadrature

rule [3], by employing an isoparametric mapping between G~Oe
(actual domain

of integration) and the standard quadratic triangle (computational domain of

integration).

3.3 Iterative Solution of Discrete System

The resulting linear system of algebraic equations may be cast in the following

form

Kwp ¼ F ; (50)

whereK ¼ ½KIJ�, F ¼ ½FI�, I; J ¼ 1; 2; . . . ;NDOF, are the previously obtained global

stiffness matrix and forcing vector, and wp ¼ ½wp;J� is the vector of unknown nodal

values of the temperature wp. The uniqueness condition, given in continuous form

by
R
Opc

wp dy ¼ 0, is imposed discretely by requiring that wp has zero algebraic

average. The system given by (50) is solved iteratively using the minimum residual
method, described in detail in [30]. The minimum residual method is suitable for

symmetric semi-definite systems of linear equations. After the incorporation of all

contributions which result from the surface integral in (23) to the appropriate

components of the global stiffness matrix, the latter remains symmetric, but not

necessarily positive-definite for arbitrary choices of Bi. The iteration proceeds until

the square of the ratio of the Euclidean norm of the residual to the Euclidean norm

of the initial residual falls below a user-prescribed tolerance, s2.
Finally, after the numerical determination of the field wp, p ¼ 1; 2; 3, the com-

ponents of the effective thermal conductivity tensor, kNe;pq, are computed numeri-

cally through the equivalent discrete form of (22), i.e.,

kNe;pq ¼
1

jOpc;hj
Z
Opc;h

zpiðyÞ diq �
@wq
@yi

� �
dy

¼ 1PNE

e¼1 jOej
XNE

e¼1

Z
Oe

zepi diq �
@weq
@yi

� �
dy

¼ 1PNE

e¼1 jOej
XNE

e¼1

Z
Oe

zepi diq �
X10
a¼1

weq;a
@ce

a

@yi

 !
dy;

(51)
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where zepi ¼ dpi if Oe � Opc;c, zepi ¼ kpi if Oe � Opc;d, and jOej denotes the volume

of tetrahedron Oe, e ¼ 1; 2; . . . ;NE.

4 Numerical Results for the Effective Conductivity

In this section, numerical results for the effective thermal conductivity of ordered

and random arrays are presented and, when possible, validated against previous

analytical predictions. The results demonstrate the accuracy and flexibility of the

computational approach previously discussed. For the ordered and random arrays

investigated here, it is assumed that the dispersed phase is thermally-isotropic, i.e.,

kij ¼ kdij, i; j ¼ 1; 2; 3; thus, henceforth, the symbol k denotes the phase conduc-

tivity ratio.

4.1 Particulate Composites

Particulate composites are a special class of composite materials designed for

applications that do not require strong directionality. The dispersed phase is usually

modeled as spheres. The spheres may be orderly or randomly distributed within the

matrix; in the former case, one has the ordered arrays of spheres, among which

the most widely known are the simple cubic (SC), the body centered (BCC) and the

face centered (FCC); in the latter case, one has the random arrays of spheres.

Analytical and semi-analytical expressions for the effective conductivity of ordered

and random arrays of spheres are available in the literature; many of them may be

encountered in the works of Batchelor and O’Brien [2], McPhedran and McKenzie

[26], McKenzie et al. [25], Sangani and Acrivos [34], Hasselman and Johnson [15],

Cheng and Torquato [6], to name just a few. There are expressions for the effective

conductivity of ordered arrays of spheres with uniform interfacial thermal resis-

tance; on the other hand, for the random arrays of spheres, the majority of expres-

sions developed for the effective conductivity assumes perfect thermal contact at

the particle/matrix interface. The numerical results for the effective conductivity of

particulate composites are presented and validated for the simple cubic array of

spheres and for random arrays of spheres.

4.1.1 Simple Cubic Array of Spheres

The first set of results has been computed for the simple cubic array of spheres with

an uniform interfacial resistance. The periodic cell is composed of a cubic matrix of

side l, at which geometric center lies one sphere of diameter d, as illustrated in

Fig. 3a. For a given concentration c, l and d are related by c ¼ ðpd3Þ=ð6l3Þ.

84 C.F. Matt and M.E. Cruz



Because, by symmetry, ke;11 ¼ ke;22 ¼ ke;33 ¼ ke and ke;pq ¼ 0, p 6¼ q, p; q ¼
1; 2; 3, for the simple cubic array of spheres, the effective conductivity tensor is

completely described by the scalar ke.
Table 1 shows the mesh refinement analysis performed in order to set the

nominal mesh spacing, h�0 � h0=l, for subsequent numerical computations of the

effective conductivity. The mesh-independence study reported in Table 1 has been

a

b

c

Fig. 3 Ordered arrays of (a) spheres: illustration of geometry (left), and finite element mesh for

c ¼ 0:50 (right), with 247,857 global mesh nodes and 177,502 quadratic tetrahedra; (b) prolate

ellipsoids of revolution: geometry (left), and mesh for c ¼ 0:30 and rf ¼ 1:30 (right), with 72,401
global nodes and 48,582 tetrahedra; (c) circular cylinders: geometry (left), and mesh for c ¼ 0:30,
rp ¼ 2 and rf ¼ 3 (right), with 237,820 global nodes and 169,361 tetrahedra
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done for the simple cubic array of spheres with c ¼ 0:30, k ¼ 100 and for three

distinct values of the Biot number, Bi 2 f10�2; 100; 102g.
After the numerical convergence study reported in Table 1, the nominal mesh

spacing chosen for all subsequent computations of the effective conductivity is

0.05. The chosen tolerance s2 of the minimum residual method is 10�8. These

values ensure the numerical results are correct to the significant digits presented,

and that the incomplete-iteration error is much less than the discretization error

[20–22].

In Table 2, the numerical predictions, kNe , are shown together with the semi-

analytical ones by Cheng and Torquato [6], kCTe , and by Sangani and Acrivos [34],

kSAe , for three values of c, c 2 f0:10; 0:30; 0:50g, k ¼ 100, and several values of Bi.

Cheng and Torquato [6] derived an approximate equation for the effective conduc-

tivity of the simple cubic array of spheres as a function of c, k, and a contact

resistance parameter R, related to the Biot number by R ¼ ð2l=dÞðk=BiÞ. Sangani
and Acrivos [34] also derived an approximate expression for the effective

Table 2 Numerical, kNe , and semi-analytical, kCTe and kSAe , results for the effective conductivity of

the ordered array of spheres as a function of Bi, for three values of c, c 2 f0:10; 0:30; 0:50g, and
k ¼ 100

Bi c ¼ 0:10 c ¼ 0:30 c ¼ 0:50

kNe kCTe kNe kCTe kNe kCTe
107 1.3227 1.3227 2.275 2.272 5.350 4.651

105 1.3227 1.3226 2.275 2.272 5.348 4.650

103 1.3190 1.3190 2.261 2.258 5.202 4.583

10�1 0.8629 0.8629 0.6269 0.6269 0.412 0.412

10�3 0.8572 0.8572 0.6059 0.6058 0.374 0.373

10�5 0.8571 0.8571 0.6057 0.6056 0.374 0.373

10�7 0.8571 0.8571 0.6057 0.6056 0.374 0.373

0 0.8571 0.8571 0.6057 0.6056 0.374 0.373

kSAe ðk ¼ 0Þ kSAe ðk ¼ 100Þ kSAe ðk ¼ 0Þ kSAe ðk ¼ 100Þ kSAe ðk ¼ 0Þ kSAe ðk ¼ 100Þ
0.8571 1.3227 0.6057 2.274 0.376 4.892

Table 1 Numerical convergence analysis for the finite element computation of the effective

conductivity of the simple cubic array of spheres with c ¼ 0:30, k ¼ 100 and

Bi 2 f10�2; 100; 102g
h�0 NE NGN kNe

Bi ¼ 10�2 Bi ¼ 100 Bi ¼ 102

0.20 786 1,381 0.6088 0.788 2.1450

0.15 1,344 2,405 0.6085 0.791 2.1460

0.10 3,634 6,209 0.6084 0.793 2.1485

0.08 5,938 9,891 0.6083 0.794 2.1490

0.06 26,414 38,837 0.6078 0.795 2.145

0.05 39,667 58,920 0.6078 0.795 2.145

0.04 67,002 98,233 0.6078 0.795 2.145
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conductivity of the same array as a function of c and k, but for composites with a

perfect thermal contact between the phases (i.e., Bi ! 1). It is observed from the

analysis of Table 2, that the numerical predictions kNe agree very well with kCTe for

c ¼ 0:10 and c ¼ 0:30, for all values of Bi. Furthermore, for these concentration

values, as Bi is increased to larger and larger values, both kNe and kCTe approach kSA
e .

Also, for c ¼ 0:10 and c ¼ 0:30, when Bi ¼ 0, both kNe and kCTe match kSAe for

k ¼ 0, i.e., for thermally-insulating spheres. This behavior is expected, because

Bi ¼ 0 means an infinite thermal resistance at the surface of the spheres, which

prohibits heat transfer between the matrix and the spheres.

On the other hand, when c ¼ 0:50, the numerical predictions show that the

analytical values of Cheng and Torquato [6] for Bi 2 f103; 105; 107g significantly

underestimate the effective conductivity; the maximum relative deviation encoun-

tered, Er � jkNe � kCTe j=kCTe , is approximately 15% for c ¼ 0:50 and Bi¼ 107. Also,

for Bi¼ 107, a large discrepancy is verified between kNe and kSAe . First, it is well

known that the approximate expression of Cheng and Torquato [6] for the effective

conductivity does not provide accurate results for large values of Bi in the moder-

ate-to-high range of concentration values. Second, as previously pointed out in [21],

the approximate expression of Sangani and Acrivos [34] is inaccurate for c > 0:45
and k > 10. Therefore, while a fairly good agreement is verified between kNe and

kSAe for k ¼ 0, the same is not observed for k¼100. Finally, because analytical

predictions are available for this array geometry, some of the data in Table 2 are

plotted in Fig. 4 to further substantiate the validation of the numerical calculations.
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Fig. 4 Analytical and numerical values for the effective thermal conductivity as a function of the

volume fraction of spheres; k ¼ 100 and Bi 2 f0; 10�1;1g. The right plot is a magnification of

the left plot for the Bi 2 f0; 10�1g curves
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It is clearly seen from the plots that the present scheme leads to correct values for

the effective thermal conductivity over the entire ranges of the volume fraction and

Biot number.

4.1.2 Random Array of Spheres

The second set of results has been computed for random arrays of spheres without

voids and with voids. The random array of spheres without voids comprises a cube

of side l containing in its interior three identical nonoverlapping whole spheres of

diameter d 0, d ¼ OðdÞ. On the other hand, the random array of spheres with voids

comprises a cube of side l containing in its interior six nonoverlapping whole

spheres, three of diameter d0 representing the particles, and three of diameter d0=3
representing the voids inside the matrix. The spatial positions of the centers of the

spheres in both random arrays are sequentially and randomly chosen from a

uniform distribution over the available (inner) space of the cube. The periodic

cells for the random arrays of spheres without and with voids are illustrated in

Fig. 5.

For both random arrays of spheres, the numerical results for the effective

conductivity have been obtained for samples of ten different cell configurations

each, C 2 f1; . . . ; 10g. Each cell configuration corresponds to different positions of
the centers of the spheres. Table 3 provides the numerical results, kNe ðCÞ, for such
arrays, together with the mean and standard deviation for each sample, respectively

denoted by kNe and SkNe . Table 3 also shows the results by Benveniste [5], kBe , for
random arrays of spheres without voids and with finite interfacial thermal resis-

tance. The value of the concentration for all the arrays is fixed, c ¼ 0:15, and the

void content of the arrays with voids is 0.56%.

Based on a phenomenological model, Benveniste [5] derived the following

analytical expression for the effective thermal conductivity, nondimensionalized

with respect to kc,

y1

y2

y3

Fig. 5 Random arrays of spheres without and with voids (smaller, darker spheres) and associated
Cartesian coordinate system
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kBe ¼ 2ð1� cÞ þ ~b ½1þ 2cþ 2�2 c
k �

2þ cþ ~b ½1� cþ 2þc
k � ; (52)

where ~b � ðhdÞ=ð2kcÞ. It should be emphasized that the parameter ~b defined by

Benveniste [5] is related to the contact resistance parameter R defined by Cheng and

Torquato [6] and, consequently, to the Biot number Bi. In general terms, the results

presented in Table 3 show the combined effects on the effective thermal

Table 3 Numerical results for the effective thermal conductivities of random arrays of spheres

without voids and with 0.56% voids, for c ¼ 0:15 and for various combinations of values of k and

R, k 2 f50; 10000g, R 2 f30; 60; 5000; 20000g. Each sample is made up of ten different cell

configurations, C 2 f1; . . . ; 10g
Values of kNe ðCÞ for c ¼ 0:15

k ¼ 50; Rc ¼ 49

Without voids With 0.56% voids

C R ¼ 30 R ¼ 60 R ¼ 30 R ¼ 60

1 1.0163 0.9253 1.0133 0.9217

2 1.0162 0.9242 1.0129 0.9213

3 1.0164 0.9269 1.0130 0.9238

4 1.0163 0.9255 1.0130 0.9225

5 1.0164 0.9265 1.0133 0.9234

6 1.0163 0.9260 1.0131 0.9227

7 1.0162 0.9240 1.0130 0.9205

8 1.0164 0.9263 1.0131 0.9223

9 1.0162 0.9228 1.0131 0.9194

10 1.0161 0.9211 1.0129 0.9180

kNe 1.0163 0.925 1.0131 0.922

SkNe 0.0001 0.002 0.0001 0.002

kBe 1.0187 0.927 – –

Values of kNe ðCÞ for c ¼ 0:15

k ¼ 10000; Rc ¼ 9999

Without voids With 0.56% voids

C R ¼ 5000 R ¼ 20000 R ¼ 5000 R ¼ 20000

1 1.0497 0.8789 1.0469 0.8751

2 1.0492 0.8761 1.0457 0.8733

3 1.0505 0.8831 1.0470 0.8802

4 1.0498 0.8795 1.0465 0.8766

5 1.0503 0.8821 1.0472 0.8790

6 1.0500 0.8807 1.0469 0.8774

7 1.0492 0.8758 1.0460 0.8721

8 1.0502 0.8816 1.0473 0.8772

9 1.0487 0.8724 1.0457 0.8688

10 1.0480 0.8678 1.0448 0.8646

kNe 1.0496 0.878 1.0464 0.874

SkNe 0.0008 0.005 0.0008 0.005

kBe 1.0522 0.880 – –
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conductivity due to varying microstructures, particle size, and the presence of voids

inside the matrix; these effects are noticeable, despite the rather low values of both

the particle and void volume fractions. The results in Table 3 also highlight the

physical and geometrical flexibility of the previously described computational

approach.

By comparison between the results reported on Table 3 and the ones for

the simple cubic array of spheres with c ¼ 0:15 one may verify that, for fixed

values of k and Bi (or, equivalently, R or ~b), the presence of three spheres inside
the cube, as opposed to one in the simple cubic array, tends to reduce the

composite effective conductivity. This tendency is expected, because, for a

fixed value of c, as the number of spheres inside the cube increases the

diameters of the spheres decrease, thus increasing their surface area to volume

ratio, equal to 6=d. Therefore, the contribution of the interfacial resistance

towards reducing the composite effective conductivity increases. It should

be emphasized that this particle size effect in composites with imperfect inter-

face has been verified by previous researchers [11, 15]. As to the presence of

voids inside the matrix, they clearly tend to reduce the effective conductivity,

because they act as barriers to heat flow, not unlike the interfacial thermal

resistance. Finally, it is interesting to note that, with our three-sphere random

arrays of simple construction (leading to low values of SkNe ), the numerical

results kNe agree rather well with the results kBe by Benveniste [5], particularly

for the higher value of the resistance parameter R for a given value of the

conductivity ratio k.

4.2 Short-Fiber Composites

Short-fiber composites are a special class of composite materials designed for

applications that require strong directionality. Short-fiber composites possess a

highly anisotropic thermal behavior even when both the matrix and the fibers

behave as thermally isotropic materials. The fibers possess elongated shapes

which are usually approximated by prolate or oblate ellipsoids of revolution, or

by circular cylinders. Optical micrographies taken from fabricated short-fiber

composites reveal that circular cylinders are indeed a better representation of the

geometrical shape of an actual fiber [28].

Compared with particulate composites, there are fewer works in the literature

that provide analytical expressions for the effective conductivity of short-fiber

composites; the reader should consult the works by Nomura and Chou [29], Hatta

and Taya [17], Furmañski [12], Dunn et al. [8], Duschlbauer et al. [9, 10], Mirmira

and Fletcher [28] to name just a few. Although the expressions obtained for the

effective conductivity account for relevant geometric parameters in short-fiber

composites such as fiber distribution, orientation and aspect ratio, the majority of

them neglects the interfacial thermal resistance. On the other hand, computational

approaches based on finite-element schemes (see, for example, Duschlbauer et al.

90 C.F. Matt and M.E. Cruz



[9], Matt and Cruz [24]), have the advantage of being flexible enough to account

for the aforementioned geometric parameters as well as for an interfacial thermal

resistance at the fibers’ surface. Numerical results for the effective conductivity of

ordered arrays of prolate ellipsoids of revolution (perfectly-aligned) and circular

cylinders (perfectly-aligned and misoriented) are presented in the last sections of

the chapter.

4.2.1 Ordered Array of Prolate Ellipsoids of Revolution

The third set of results, summarized in Table 4, has been computed for the ordered

array of perfectly-aligned prolate ellipsoids of revolution with an uniform inter-

facial resistance. It is composed of a cubic matrix of side l, at which geometric

center lies one prolate ellipsoid, as illustrated in Fig. 3b. The semi-axes of the

ellipsoid along the y1, y2 and y3 directions have lengths ‘, d and d, respectively,
and the ellipsoid aspect ratio is defined by rf ¼ ‘=d. For a given concentration

c, l, d and ‘ are related by c ¼ ð4pd2 ‘Þ=ð3l3Þ. Because, by symmetry, ke;22 ¼
ke;33 � ke;T, ke;11 � ke;L, and ke;pq ¼ 0, p 6¼ q, p; q ¼ 1; 2; 3, the effective conduc-

tivity tensor for the ordered array of ellipsoids is completely described by the two

scalars ke;L and ke;T, respectively designated henceforth as the longitudinal and

transverse effective conductivities.

Previous analytical expressions for the longitudinal and transverse conductiv-

ities were developed for random, rather than ordered, arrangements of perfectly-

aligned ellipsoids without interfacial thermal resistance [8, 12, 17]. Thus, to check

the accuracy of the present numerical predictions, the adopted procedure is to fix

the concentration, and gradually decrease the ellipsoid aspect ratio from a value

close to the maximum, rf ;max, to rf ¼ 1, when the ellipsoid becomes a sphere. The

maximum value rf ;max corresponds to the value of rf for which the surface of the

ellipsoid touches two opposite faces of the cube; e.g., for c ¼ 0:30, rf ;max 
 1:32.

Table 4 Numerical results for the longitudinal, kNe;L, and transverse, kNe;T, effective conductivities
of the ordered array of prolate ellipsoids of revolution as functions of rf , for c ¼ 0:30, k ¼ 100,

and Bi 2 f107; 105; 103; 10�1; 10�3; 10�5; 10�7; 0g; the symbol kCTe denotes the analytical predic-

tion provided by Cheng and Torquato [6] for the simple cubic array of spheres

Bi rf ¼ 1:3 rf ¼ 1:2 rf ¼ 1:1 rf ¼ 1

kNe;L kNe;T kNe;L kNe;T kNe;L kNe;T kNe;L kNe;T kCTe
107 4.113 2.041 2.957 2.103 2.538 2.178 2.275 2.275 2.272

105 4.111 2.041 2.957 2.103 2.538 2.178 2.275 2.275 2.272

103 3.989 2.031 2.926 2.091 2.519 2.166 2.261 2.261 2.258

10�1 0.6743 0.5952 0.6607 0.6067 0.6452 0.6169 0.6269 0.6269 0.6269

10�3 0.6520 0.5738 0.639 0.5857 0.6239 0.596 0.6059 0.6059 0.6058

10�5 0.6518 0.5736 0.6388 0.5854 0.6237 0.5958 0.6057 0.6057 0.6056

10�7 0.6518 0.5736 0.6388 0.5854 0.6237 0.5958 0.6057 0.6057 0.6056

0 0.6518 0.5736 0.6388 0.5854 0.6237 0.5958 0.6057 0.6057 0.6056

Heat Conduction in Two-Phase Composite Materials 91



In Table 4, the numerical predictions for the longitudinal, kNe;L, and transverse,

kNe;T, conductivities are presented as functions of rf , for c ¼ 0:30 and k ¼ 100, and

for several values of Bi. Also presented are the semi-analytical predictions of

Cheng and Torquato [6], kCTe . Two important behaviors are noted from the analysis

of Table 4. First, as rf is progressively decreased to 1, kNe;L approaches kNe;T, as
expected. Second, for the limiting case rf ¼ 1, both numerical predictions kNe;L and

kNe;T agree very well with kCTe for all values of Bi; hence, the accuracy of the

numerical predictions for the ordered array of ellipsoids is ascertained.

4.2.2 Ordered Array of Circular Cylinders

The fourth set of results, summarized in Table 5, has been computed for the ordered

array of circular cylinders with an uniform interfacial resistance. It is composed of a

parallelepiped of sides H, l, and l along the y1, y2 and y3 directions, respectively,
and at which geometric center lies one circular cylindrical fiber of diameter d and

length ‘ along the y1-axis, as illustrated in Fig. 3c. The fiber and parallelepiped

aspect ratios are defined, respectively, by rf ¼ ‘=d and rp ¼ H=l. For a given

concentration c, l, H, d and ‘ are related by c ¼ ðpd2‘Þ=ð4l2HÞ. Again, the

effective conductivity tensor is completely described by two scalars only: the

longitudinal, ke;L, and the transverse, ke;T, effective conductivities. This

Table 5 Numerical results for the longitudinal, kNe;L, and transverse, kNe;T, effective conductivities
of the ordered array of circular cylinders as functions of rf , for c ¼ 0:30, rp ¼ 2, k ¼ 100, and

Bi 2 f107; 105; 103; 10�1; 10�3; 10�5; 10�7; 0g
Effective longitudinal conductivity kNe;L, c ¼ 0:30, rp ¼ 2, k ¼ 100

Biot number Bi

rf 107 105 103 10�1 10�3 10�5 10�7 0

1:5 2.249 2.249 2.242 0.6422 0.5855 0.5849 0.5849 0.5849

2:0 2.964 2.964 2.951 0.6950 0.6308 0.6301 0.6301 0.6301

2:5 4.246 4.245 4.217 0.7343 0.6601 0.6594 0.6594 0.6594

3:0 8.165 8.164 8.046 7.727 0.6870 0.6862 0.6862 0.6862

rf ;max 
 3:24 30.70 30.70 30.70 30.70 30.70 30.70 30.70 30.70

Effective longitudinal conductivity kRMe (rule of mixtures), c ¼ 0:30, k ¼ 100

kRMe ¼ 30:70

Effective transverse conductivity kNe;T, c ¼ 0:30, rp ¼ 2, k ¼ 100

Biot number Bi

rf 107 105 103 10�1 10�3 10�5 10�7 0

1.5 2.399 2.399 2.383 0.6279 0.6053 0.6051 0.6051 0.6051

2.0 2.145 2.145 2.133 0.6056 0.5834 0.5832 0.5832 0.5832

2.5 2.007 2.007 1.997 0.5881 0.5662 0.5659 0.5659 0.5659

3.0 1.892 1.892 1.884 0.5717 0.5495 0.5493 0.5493 0.5493

rf ;max 
 3:24 1.836 1.836 1.827 0.5598 0.5380 0.5376 0.5376 0.5376

Effective transverse conductivity kHJe (square array), c ¼ 0:30, k ¼ 100

1.833 1.833 1.826 0.5600 0.5387 0.5385 0.5385 0.5385
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parallelepipedonal array has been studied in detail by Matt and Cruz [22] from the

perspective of conductivity enhancement, when the Biot number is infinite.

An analytical expression for the effective conductivities of arrangements of

finite-length circular cylinders is available for random distributions of the fibers

only, and not accounting for an interfacial thermal resistance [12]. Thus, to check

the accuracy of the present numerical predictions, the procedure is now to fix the

concentration c and the parallelepiped aspect ratio rp, while the fiber aspect ratio is
gradually increased to the maximum value possible, rf ;max [22]. In this limiting

configuration, the two planar surfaces of the cylinder touch the parallelepiped faces

normal to the y1-axis, and the ordered array of circular cylinders becomes thermally

equivalent to the square arrangement of infinite-length circular cylinders. The latter

was previously studied by Hasselman and Johnson [15] and by Rocha and Cruz [32]

far from the maximum-packing limit. Furthermore, for the square arrangement, the

longitudinal conductivity is predicted by the rule of mixtures, kRMe ¼ 1� cþ kc,
independently of the interfacial resistance.

In Table 5, the numerical predictions for the longitudinal, kNe;L, and transverse,

kNe;T, conductivities are presented as functions of rf , for c ¼ 0:30, rp ¼ 2 and

k ¼ 100, and for several values of Bi. Also presented are the analytical predictions

derived from the rule of mixtures, kRMe (exact), and those of Hasselman and Johnson

[15], kHJe (approximate). Two important facts are obtained from the analysis of

Table 5. First, as rf approaches rf ;max, k
N
e;T approaches kHJe , as expected physically

and confirmed numerically. Second, for the limiting case rf ¼ rf ;max, the numerical

predictions kNe;L and kNe;T agree very well with kRMe and kHJe , respectively, for all

values of Bi. The abrupt increase in kN
e;L when rf changes from 3.0 to rf ;max 
 3:24

is simple to explain: when rf ¼ 3:0, the global nodes belonging to the two planar

surfaces of the fiber are the only ones that contribute to the interfacial thermal

resistance to heat flow in the longitudinal direction; on the other hand, when

rf ¼ rf ;max, the aforementioned global nodes now lie on the opposite faces of the

parallelepiped normal to the longitudinal direction, where periodic boundary con-

ditions are enforced, and the nodes no longer prohibit heat flow in the fiber in that

direction. Therefore, kNe;L exactly matches kRMe for rf ¼ rf ;max, even in the presence

of a finite interfacial thermal resistance at the lateral surface of the fiber.

4.2.3 Random Array of Misoriented Circular Cylinders

To highlight the flexibility of the present computational scheme, numerical results

are computed for the effective conductivity of a complex, random array of mis-

oriented circular cylinders. The intention here is not to compare the numerical

predictions with experimental measurements, but rather to show that the scheme

can indeed be applied to realistic microstructures. The geometry and the associated

finite element mesh for the random array considered here are shown in Fig. 6.

It is composed by a parallelepipedonal cell, containing in its interior eight

misoriented circular cylinders and two empty spheres. The spheres are
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representative of voids, or microcracks, in the composite matrix, which may be

induced during the manufacturing process due to a mismatch in the thermal

expansion coefficients of the composite constituents [8]. There are two types of

cylindrical fibers, denoted Fiber A and Fiber B, with aspect ratios equal to 8 and 5,

respectively. Typical characteristic dimensions for the parallelepiped, the fibers and

the spherical voids are shown in Table 6.

Table 7 Numerical results for the effective conductivities, kNe;11, k
N
e;22

and kNe;33, of the random array shown in Fig. 6 as functions of the Biot

number

k ¼ 100

Bi kNe;11 kNe;22 kNe;33
10�5 0.874 0.872 0.858

10�3 0.874 0.873 0.858

10�1 0.883 0.882 0.859

100 0.958 0.959 0.868

101 1.334 1.379 0.936

103 2.020 2.132 1.199

105 2.051 2.162 1.213

Fig. 6 Random array with misoriented fibers and voids: geometry and corresponding finite

element mesh, with 50,603 global mesh nodes and 27,685 quadratic tetrahedra

Table 6 Characteristic dimensions, in mm, for the random array shown in Fig. 6

Array element Amount Characteristic dimension (mm)

Length Height Thickness Diameter

Fiber A 2 800 – – 100

Fiber B 6 300 – – 60

Void 2 – – – 120

Parallelepiped 1 850 900 280 –

94 C.F. Matt and M.E. Cruz



The random array shown in Fig. 6 may be thought of as a model microstructure

for hybrid short-fiber composites, those with reinforcements of different types [8].

As pointed out in [8], hybrid short-fiber composites have become attractive materi-

als for electronic packaging applications, because, due to their higher thermal

conductivities, they may withstand very high heat fluxes while maintaining a low

temperature operating environment. The higher thermal conductivities of such

materials originate from the fact, that higher volume fractions can be obtained by

combining different reinforcements of different characteristic sizes [36].

In Table 7, the numerical predictions for the effective thermal conductivities,

kNe;11, k
N
e;22 and kNe;33, are shown as functions of the Biot number, for k ¼ 100. The

fiber volume fraction is c ¼ 0:082, and the void content is 0.8%. The values of c, rf ,
k, and void content used in the computations are representative of typical data

reported in the literature. The data in Table 7 indicate that the random array has a

transversely isotropic behavior in the y1–y2 plane, and that the effect of the Biot

number is more pronounced on the in-plane conductivities, kNe;11 and kNe;22, than on

the out-of-plane conductivity, kNe;33.
To sum up, the accuracy and flexibility of the computational scheme discussed in

detail in this chapter has been demonstrated by effecting truly three-dimensional

calculations of the effective thermal conductivity of composites with ordered and

random (periodic) microstructures, accounting for the presence of a thermal resis-

tance at the particle/fiber-matrix interface. The numerical predictions have been

validated against analytical results for ordered and random arrays of spheres, and

for the limiting cases when the ordered arrays of perfectly-aligned prolate ellipsoids

of revolution and circular cylinders are thermally equivalent, respectively, to the

simple cubic array of spheres and the square array of unidirectional fibers. The

results show that the magnitude of the interfacial thermal resistance significantly

affects the effective conductivity of composite materials. The computational

approach discussed here is flexible, applicable to complex, realistic three-dimen-

sional microstructural models, and it is also able to account for an interfacial

thermal resistance (uniform or not) and for the presence of voids inside the matrix.

Up to date, reliable comparisons between analytical, phenomenological and

numerical predictions with experimental measurements remain a non-trivial effort,

due to the difficulty in ascertaining the composite microstructure, and to the lack of

information regarding the magnitudes of various physical effects, such as the

interfacial thermal resistance and void content in real composites. Hence, in order

to improve the accuracy of numerical predictions, research efforts must be con-

certed in two important directions. First, more realistic geometric models for the

composite microstructure must be developed; these geometric models must be

flexible enough to include, for example, fibers with random orientations and distinct

aspect ratios. Second, experimental techniques or prediction methods must be

developed and/or improved, in order to obtain good estimates for the interfacial

thermal resistance. Computational approaches shall be a helpful tool in the future

for a better understanding of the thermal behavior of composite materials.

Heat Conduction in Two-Phase Composite Materials 95



Acknowledgement M.E. Cruz would like to thank the Brazilian Council for Development of

Science and Technology (CNPq) for Grants PQ-306592/2006-1 and APQ-471801/2004-6. The
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Heat Transfer in Graphitic Foams

Anthony G. Straatman

Abstract Porous graphitic foam possesses unique characteristics that make it an

interesting material for consideration in heat transfer applications. The present

chapter summarizes work that has been done over the past several years to charac-

terize graphitic foams that are permeable to fluid flow for eventual use in applica-

tions requiring convective heat transfer enhancement. The work covers:

engineering models describing the structure of the foam, models of effective

thermal conductivity, experimental work that quantifies enhancements in various

flow orientations, and computational work that has been undertaken to explore the

hydraulic and thermal behaviour of graphitic foam at both the pore-level and the

macroscopic level.

1 Introduction

Porous graphitic foam (hereinafter referred to as GF) is a spherical void phase

porous material that has unique thermo-physical and geometric characteristics [1]

making it suitable for widespread use in heat transfer applications in microelec-

tronics and power generation. The unique characteristics include:

1. A high effective thermal conductivity of between 40 and 180 W/m K [2, 3]. The

high effective conductivity is a result of the extremely high conductivity of the

graphitized carbon material (k = 800–1,900 W/m K). In comparison, similar

porosity aluminum foams have effective conductivities of approximately

2–26 W/m K, which result from solid-phase conductivities of 140–237 W/m K

(for aluminum alloys).

A.G. Straatman

Department ofMechanical andMaterials Engineering, TheUniversity ofWestern Ontario, N6A 5B9,

London, Canada

e-mail: astraatman@eng.uwo.ca
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2. An open, inter-connected void structure that permits fluid infiltration such that

substantial increases in surface area are available (5,000–50,000 m2/m3) for

enhanced convective heat exchange.

3. A low density (from 0.2 to 0.6 g/cm3, depending upon porosity), which makes

the material suitable for compact and lightweight applications. In comparison,

aluminum foam has a density of 0.3–0.8 g/cm3, depending upon porosity.

4. An increase in exposed or plan surface area and a rough open structure that

promotes increased mixing at the external fluid interface.

The combination of high solid-phase conductivity and moderate porosity

enables GF to entrain heat from adjacent surfaces and conduct it deep into the

solid structure of the foam to be swept away by fluid that infiltrates the structure.

The internal surface area serves to reduce the convective resistance thereby foster-

ing excellent energy exchange at the pore level. It is this combination of high

material conductivity, moderate porosity and high internal surface area that makes

GF attractive as a heat transfer material for both single and multiphase applications.

This chapter describes recent efforts to characterize graphitic foam as a material

for use in convective heat transfer applications. The chapter is organized such that

geometric characterization is considered first, followed by experimental work and

computational work. The final sections provide comparisons of graphitic foam to

other highly-porous metal foams under forced convection conditions and provide

concluding remarks for the chapter.

2 Geometric Characterization of Graphitic Foam

There are essentially two types of porous solids: those produced by packing or

sintering solid particles or cylinders together and those produced by casting or

foaming a material during solidification. In both cases, the final product consists of

interspersed regions of solid and fluid (or void). Depending on the final structure,

the void regions may be isolated from one another (trapped phase) or continuous, as

in the case of an interconnected pore structure. Graphitic foam fabricated using the

ORNL patented process [1] is a case of near-spherical interconnected pores, as

shown in Fig. 1. The figure illustrates the open, interconnected structure of the foam

and the near-homogeneous distribution of void size.

2.1 The Unit Cube Geometric Idealization

A geometric model of the foam structure is required to permit calculation of

geometric parameters, thereby enabling the exploration of flow and heat transfer,

and optimization of the foam structure for different applications. A geometric

model is required regardless of whether it is pore-level or volume-averaged flow
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and heat transfer that is sought, or whether it is a numerical or experimental tool

being used to study the foam. In any case, local calculation of the interface area and

estimates of the pore window size and ligament dimensions is necessary. Based on

the geometry characteristics of the GF under consideration [1–3], Yu et al. [4] used

the following assumptions to formulate a geometric model:

1. The entire foam is assumed to have a single and uniform void (pore) diameter.

2. The pores are considered to be spherical and centred inside unit-cubes.

3. The pores are regularly arranged in space, and each pore connects with six

adjacent pores on the six surfaces of the unit cube.

Figure 2a shows a three-dimensional CAD image of the unit-cube geometry

proposed by Yu et al. [4] for a spherical void phase material. Figure 2b shows a pore

block of unit-cubes with exposed pore surfaces that are cut at the center plane of the

cube at the sides, front and top of the pore block. Figure 3 compares the internal

geometry of the idealized geometry model with similar images of the GF obtained

from ORNL.

The images illustrate that the idealized geometry model successfully captures

the main features of the internal structure of the GF. Figure 4 shows the detailed

dimensions of the unit-cube model proposed by Yu et al. [4]. Here, D is the pore

(void phase) diameter; H = f(D,e) is the height of a unit-cube defined by the given

pore diameter and the porosity; h = (D – H)/2 is the spherical cap height of the

pore; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � H2

p
is the interconnected pore window diameter; and c = (H-d)/2

is the width of the corner strut at the centre plane of the unit cube (also called the

ligament width).

In this geometric model, the size of a unit-cube is not universally constant, rather

it is determined by setting the desired porosity and pore diameter. By the definition

Fig. 1 (a) Scanning electron micrograph of the carbon foam surface [1]; (b) scanning electron

micrograph of the carbon foam surface of a single pore
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of porosity (volume of void space/total volume), an expression relating the cube

height H, the porosity e and the pore diameter D was derived [4]:

H3 � 3pD2

4eþ pð ÞH þ 4pD3

3 4eþ pð Þ ¼ 0 (1)

The dimension of the unit-cubeH is thus obtained by solving (1) for given values

of e and D. Once the size of the unit-cube is established, the geometry is fixed and

the remaining geometric parameters can be evaluated. Since we are mainly inter-

ested in using the foam for convective enhancement, the GF must have an

interconnected pore structure, and thus we are only interested in the range of pore

window sizes: 0 < d < H (0.52 < e < 0.96). When d � 0, the unit-spheres are

isolated from one another and for d � H, c � 0 meaning that the ligaments con-

necting the solid phase are broken.

For a general application where fluid passes both across and through the porous

material, information on the geometry is required for the internal structure and for

the external interface between the porous material and the fluid. The internal

structure is described in [4] in terms of an area to volume ratio. The external

geometry is described in terms of the exposed surface area factor and the absolute

roughness of the exposed surface. The external geometry parameters are only

required for cases where fluid flows across the exposed surface, and the reader is

referred to the original paper [4] for their description.

The interior surface area to volume ratio b quantifies the internal surface area

available for convective heat transfer. For a solid unit-cube, e = 0, which represents

the lower limit. For porous graphitic foam made by the ORNL process [1], this

value can be as high as 5,000–50,000 m2/m3, depending upon the porosity and void

Fig. 2 CAD illustrations showing the unit-cube model developed in Yu et al. [4]: (a) a single unit-

cube with spherical void; (b) a pore block containing a number of interconnected pores
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diameter. The ratio b for the proposed unit-cube geometry is expressed as:

b ¼ Sint�wall=H
3, where Sint-wall is the void interior surface area in a single unit-

cube obtained from:

Sint�wall ¼ pD2 � 6ðpDhÞ ¼ pDð3H � 2DÞ (2)

giving the final expression:

b ¼ pD
H3

3H � 2Dð Þ (3)

Fig. 3 A comparison of the idealized geometry proposed by Yu et al. [4] (a and b) with the

structure of GF (c and d) obtained from ORNL [1]
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Figure 5 shows the variation of b for differentD over the range 0.52 < e < 0.96,

which corresponds to the limits described following (1). Here it is evident that b
decreases with increasing porosity and with increasing void diameter. For high

porosities, b decreases sharply due to the decrease in available solid material inside

the foam. For a convective heat transfer application, the optimal value for b is

evaluated by comparison of the thermal and hydrodynamic resistances. The higher

the value of b the higher the area available for internal heat exchange but this also

results in higher net viscous losses resulting in a higher fluid pressure drop.

2.2 An Effective Conductivity Model

A complete thermal model consists of two parts: (a) an effective thermal conduc-

tivity model, which is required to quantify the rate at which energy can be entrained

into the foam structure, and (b) a convective exchange model to quantify the rate at

which energy can be removed by the infiltrated fluid. A model for the effective

thermal conductivity of GF can be devised mathematically based on the unit cube

geometric model, while the model for convective exchange will be given in a

subsequent section related to experiments.

The effective or stagnant thermal conductivity of a porous material is a function

of the thermal conductivities of the solid and the fluid, the porosity and the structure

H

H
H

d

c h
H

D

Fig. 4 Detailed dimensions of the Unit Cube GeometryModel at a cross-section cut at the centre plane

of the unit cube. Used with permission from Yu et al. [4] and from the ASME Journal of Heat Transfer
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of the foam, and is another important parameter characterizing the porous material.

The equivalency technique has been applied by Yu et al. [4] to the solid phase

volume since the solid phase is the controlling factor for the effective thermal

conductivity of the GF material. The effective thermal conductivity derived by [4]

is based on the following assumptions:

1. The air inside the void structure of the foam is stagnant. Thus, no convective

exchange between the air and the solid takes place in the pore channel.

2. Radiation heat transfer in the inter-connected pore channel is negligible.

3. Local thermal equilibrium exists between the solid and fluid phases at the pore

level.

An equivalency process was then used to simplify the pore-level geometry

while preserving the volume ratio of solid/fluid (porosity), and the resulting square

bar size of a simple unit cell can be determined by solving the following cubic

equation [4]:

a3 � 3

4
a2 � 1� e

16
H3 ¼ 0 (4)

Figure 6 shows the details of the equivalency and electrical analogy processes

used by Yu et al. [4] to obtain the effective thermal conductivity of the graphitic

foam. The equivalent square bar structure is first divided into parallel and series

parts as shown in Fig. 6b. The parallel and series parts are then converted into the

simple forms shown in Fig. 6c by applying the equivalency method to the volume.

The top view of Fig. 7d shows the equivalent heat transfer circuit that represents the

parallel part, and the bottom view shows the equivalent heat transfer circuit that

represents the series segment. The simplified parallel part is presented as a pure
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Fig. 5 Internal surface area to volume ratio, b, plotted as a function of porosity for three different
spherical void (pore) diameters
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c d

a b

Fig. 6 (a) Square bar equivalent for thermal-electric analogy; (b) Equivalent parallel and series

parts; (c) Simplified parallel and series parts; (d) Equivalent heat transfer circuits. Used with

permission from Yu et al. [4] and from the ASME Journal of Heat Transfer
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parallel circuit consisting of the solid and void parts as shown in the top view of

Fig. 6d, and its effective thermal conductivity kep is calculated as:

kep ¼
1
t � 1
� �2 þ s
1
t � 1
� �2 þ 1

kf (5)

where kf is the thermal conductivity of the fluid and ks for the solid, t ¼ 2a=H is the

normalized thickness of the square bar, and s is the ratio of the thermal conductivity

of the solid phase to the fluid phase: s = ks/kf. The simplified series part is repre-

sented as a pure series circuit consisting of the solid and void parts as shown in the

bottom view of Fig. 6d, and its effective thermal conductivity kes is calculated as:

kes ¼ ks
1� tð Þsþ t

(6)

The effective thermal conductivity of a porous material is given by:

ke ¼ eekep þ 1� eeð Þkes (7)

where ee is the volume ratio of the parallel part to the sum of the series part and the

parallel part, and is determined by:

ee ¼ 1� 2tþ 2t2 (8)
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Fig. 7 Plot showing the effective thermal conductivity of GF as a function of porosity for

ks ¼ 1,300 W/m K
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When (5), (6) and (8) are substituted into (7), the final expression for the

effective thermal conductivity of the spherical void porous material is obtained:

ke ¼ 1� 2t� 2t2
� � 1

t � 1
� �2 þ s
1
t � 1
� �2 þ 1

 !
kf þ 2t 1� tð Þ

1� tð Þsþ t
ks (9)

Figure 7 shows the variation of ke with e as predicted by (9) (solid line). The

effective conductivity is seen to decrease with increasing porosity due to the

reduction of solid phase material with increasing e. Included in Fig. 7 is measured

data reported by Klett et al. [5]; the data was converted from density to porosity form

assuming a ligament density of 2.23 g/cm3 [5]. Figure 7 also compares predictions of

the model relation developed by Klett et al. [5]. It is clear from the figure that both

models are in good agreement with the measured data. Important to note is that in the

Yu et al. [4] model there are no parameters to adjust; the predicted result is obtained

using the geometry of the foam and the solid and fluid phase thermal conductivities

only. As such, the proposed model can be applied in engineering heat transfer

models and in computational fluid dynamics codes without special tuning.

It is important to note that the heat transfer is not dictated by the effective

conductivity alone. That is, for low porosity, the effective conductivity is high

whichmeans that heat is readily transferred into the porous material, but it is difficult

for fluid to penetrate the foam resulting in lower convection and an imbalance in the

conductive-convective resistances. For high porosity, the effective conductivity is

low meaning that conduction into the foam is low, but it is easy for fluid to penetrate

the foam so the convective resistance is lower. As such, the optimal porosity must be

obtained by considering the rate at which heat is transferred into the foam and the

rate at which heat can be removed by internal convection. Also note that this

optimum is not universal, rather it is very application dependent. An analogy can

be drawn here to fluid machinery, where optimal performance occurs at the design

point and performance drops off for higher and lower flows.

3 Experimental Studies

Several studies exist in the literature describing the characterization of foams that

could be considered for convective heat transfer enhancement. Antohe et al. [6],

Paek et al. [7] and Boomsma and Poulikakos [8] all report on the hydraulic losses of

as-cast and compressed aluminum foams and provide information quantifying the

permeability and form drag coefficients for foams of different porosity. In this

manner, pressure losses can be characterized using the classical Darcy-Forchheimer

law. Calmidi and Mahajan [9] studied forced convection of air in high porosity

aluminum foams using experiments combined with computational fluid dynamics.

In their experiments, large (196 mm � 63 mm � 45 mm-thick) aluminum foam

blocks of different porosity were mounted into a channel and heated from one side
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while air was forced through the foam. Since the effective conductivity of the

aluminum foam was relatively low (maximum 7.4 W/m K), the extended-surface

efficiency of the blocks was very low and convective heat transfer was only found

to occur in a thin layer of foam directly adjacent to the heated substrate. Boomsma

et al. [10] studied the effect of foam-compression on the flow and heat transfer

characteristics of aluminum foams. Compression of the foam essentially increases

the internal area to volume ratio of the foam and was done as an attempt to reduce

the internal convective resistance and thereby reduce the volume of foam required

to remove a given amount of energy. In this case, 40 mm � 40 mm � 2 mm-thick

blocks of foam were heated from one side while water was forced through the foam

structure. Compression of the foam was shown to increase the heat transfer effec-

tiveness by up to a factor of two, however with an associated increase in the

pressure drop.

Relatively little information is available in the open literature on the characteri-

zation of graphitic foams. Gallego and Klett [2] provided some of the first data on

the pressure drop and heat transfer for graphitic foam. Their study provided

estimates of the influence of configuration on the heat transfer and pressure drop,

but little detail was provided to assess the influence of porosity, pore diameter and

Flow. Yu et al. [4] proposed a sphere-centered unit-cube geometry model to

characterize the internal structure of a spherical void-phase porous material, as

described in the previous section. The model developed by Yu et al. [4] has been

utilized in several subsequent studies carried out to quantify the convective heat

transfer and pressure drop obtained in different flow configurations. The following

sections present recent experimental data obtained for graphitic foam in parallel,

impinging and forced flow arrangements.

3.1 Experiments in Parallel Flow

Experiments characterizing the heat transfer enhancement achieved by passing air

across a surface of graphitic foam were carried out by Straatman et al. [11]. The

study sought to establish the convective enhancement achieved by bonding layers

of graphitic foam to a heated aluminum substrate. All results of the study are

expressed as a ratio of the heat transfer for the foam surface with respect to the

heat transfer measured for the bare (impermeable) substrate, i.e.,

E ¼ Nufoam

Nu
¼ NuL; foam

NuL
(10)

Figure 8 shows results of enhancement as a function of foam thickness for foams

219 Top and 217 Top (see Table 1 for foam properties). The observations of heat

transfer with respect to foam thickness suggest two things: that the depth of

penetration of air into the foam is relatively small for parallel flow conditions,

and that on average, there is no decisive advantage for using more than 3 mm of
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foam. This means that the depth of penetration of air into the foam is as little as 3–5

pore-diameters (assuming that the first 1 mm of foam is filled with bonding

material). Though the penetration depth of air is certainly dependent upon the

pore diameter and porosity of the foam, it is difficult to resolve this influence due

the non-uniformity of pore diameter and the difficulty of machining the foam

thickness to within small fractions of a millimeter. Thus 3 mm serves as a first

approximation for the desired thickness of GF for parallel flow arrangements. It is

important to note that the depth of penetration of air into the foam is expected to be

a strong function of the incidence of the foam surface with respect to the air flow,

i.e. in the limit of an impinging airflow, the air would penetrate the foam surface

much more deeply leading to much higher enhancements in convective heat

transfer.

Concerning the dependence on ReL, the enhancements shown in Fig. 8 are seen

to be higher for low air speeds (about 1.28 on average) and lower for high air speeds

(about 1.10 on average), with an approximately monotonic variation. This trend
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Fig. 8 Results showing the effect of foam thickness and Reynolds numbers for graphitic foams of:

(a) 219-Top (89% porosity), and (b) 217-Top (78% porosity)

Table 1 Summary of properties for the carbon foam specimens tested in parallel, impinging and

forced convection experiments

Specimen Porosity (%) Average void

dia. (mm)

Highest frequency

void dia.

keff (W/m K)

219 Top 89 633 800 30

217 Top 78 341 350 68

221-1 85 410 400 98

219-1 90 560 450–500 50

219-2 88 400 350–450 65

219-3 86 350 350 72

219-3-3 88 400 350–450 61

218-3 88 400 400 61

POCOTM 82 500 510 120
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was explained in [11] in terms of the near-surface activity and the relative air flows

in and across the GF. In a parallel flow, the air is not forced or driven into the foam,

but rather the roughness of the foam surface produces disturbances of the sub-layer

resulting in the production of near-surface eddies. The turbulent eddies actively

penetrate the foam setting up weak pressure gradients near the foam surface,

thereby causing air to pass through the interconnected pore structure before return-

ing to the free stream. The air that passes through the foam is exposed to the large

internal surface area thereby enhancing the net convective heat transfer of the

specimen. At low air speeds, the momentum of the near-surface eddies is low,

but the relative amount of air passing through the foam is significant with respect to

the air flow across the exposed surface of the foam. At high air speeds, the near-

surface eddies are very energetic, but the amount of air passing through the foam is

small with respect to the external flow. As such, the enhancement of convective

heat transfer is higher at low air speeds and lower at high air speeds. It is likely that

at very high air speeds, the enhancement in heat transfer performance would be due

only to the increased roughness and exposed surface area. It is also clear from Fig. 8

that the GF properties have an effect on the convective enhancement achieved. In

this case, the more porous foam with the larger void diameter (219) provided

increases that were nearly 20% higher than the lower porosity and smaller void

diameter 221 foam. In this flow arrangement where the infiltration is passive, it is

not surprising that a higher advantage is obtained from the more permeable

specimen.

3.2 Experiments in Impinging Flow

As mentioned in the previous section, the effect of incidence angle on the air flow

across a foam surface is of interest. A study of direct impingement has been carried

out by Sultan et al. [12] to explore the heat transfer enhancement achieved by

bonding layers of GF to a heated aluminum substrate. While only direct (normal)

impingment was studied, enhancements were explored for both embedded and

protruding layers of graphitic foam. Figure 9 compares the heat transfer enhance-

ment obtained with the upper surface of the foam sample flush to the surface of the

mounting apparatus (flat), and for the whole foam layer protruding above the

plywood sheet (extended), both for unconfined impinging flow directed normal to

the foam surface. The figure shows that the enhancement achieved by the extended

foam layers is higher for all foam thicknesses, suggesting that the air infiltration into

the foam is higher when the edges of the foam are open and a path exists for

infiltrated air to pass freely out of the foam. The figure also shows that for the

extended foam layers the convective enhancement is higher for thicker layers of

foam indicating that the infiltration of air into the structure of the GF is substantial.

Enhancements of 30–40% over that of the bare aluminum substrate were measured

for extended GF layers of 2–6 mm, respectively. This is 4–12% higher than similar

enhancements achieved by setting the foam surface to be flush with the impingement
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surface. Figure 9 also shows that the convective enhancement for the flat cases are

essentially independent of foam thickness, suggesting that very little air infiltration

occurs when there is no escape route for the infiltrated air. In this case, the heat

transfer enhancement is simply due to the larger surface area available at the exposed

foam surface.

Figure 10 shows the influence of foam thickness and impingement air speed on

convective enhancement for two of the graphitic foam specimens shown in Table 1.

The plots indicate that enhancements of 30–70% are obtained over the range of air

speed considered by varying the thickness of the different foam specimens. In

terms of impingement air speed, the enhancement is higher at the highest velocity

than the lowest, but for a significant number of the cases shown in Fig. 10, the

lowest enhancement was observed at the intermediate air speed. Sultan et al. [12]

explained this effect on the basis that the net convective enhancement is due to

complementary influences resulting from the increased plan surface area of the

foam over the bare substrate, and the exposure to internal surface area for infil-

trated air.

While the plan surface area is constant for a given foam, the exposure to internal

area depends upon the flow condition. Flow through the foam is driven by the pressure

gradient set up by the (near) stagnation pressure at the surface and the pressure at the

edge of the specimen. Since the influence of the enhanced plan area with Re is

effectively linear (over the range of Re considered in [12]), the influence of flow

through the foammust be larger at the low air speed. That is, if the trend for the higher

air speeds is considered to be increasing linearly due to a continuous increase in the

stagnation pressure, then the enhancement at the lowest air speed is higher (for all but

1 condition) than would be predicted by extrapolating backwards from the higher air

speeds. This simply implies that the infiltration has a stronger influence on the net
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Fig. 9 Plot showing the impact of foam protrusion from the impingement surface on the convec-

tive heat transfer enhancement. See Table 1 for graphitic foam properties
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convective enhancement at lower flow speeds. A similar phenomenawas noted in [11]

for the parallel flow condition, where it was argued that the relative amounts of

parallel flow verses infiltrated flow affected the trend in the convective enhancement.

The difference in the impingement case is that increases in the air speed eventually

cause the enhancement to grow due to the higher and higher infiltration of air through

the foam. In terms of the foam thickness, the trend for all specimens is that the highest

convective enhancement occurs for the thickest foam layers, suggesting that air

infiltrates the GF deep beneath the exposed surface. It is also observed that the largest

increases occur between 2 and 6–8 mm; in most cases the difference between 8 and

10 mm of GF is relatively small, suggesting that the infiltration limit may be reached

for the air speeds considered. Thicker specimens were not tested due to the limitation

of the foam specimens available.
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Fig. 10 Plots showing the influence of foam thickness on convective enhancement. See Table 1

for graphitic foam properties
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3.3 Experiments in Forced Flow: The Porous Plug

Experiments on forced flow are reported by Straatman et al. [13], in which water

was passed through a channel blocked by a graphitic foam plug. Results for the

pressure drop as a function of clear channel velocity U are shown in Fig. 11 for GF

specimens described in Table 1. It is clear from Fig. 11 that the permeability and

thus the pressure drop is very different for the four specimens tested, with the 219-3

foam having the highest fluid pressure drop and POCOTM having the lowest. The

large differences in pressure drop between the foam specimens can only be

reconciled by considering the properties in Table 1. Consider, for example the

difference between the 219-3 and POCOTM foams. The porosity of the 219-3 is

higher, which might otherwise indicate a lower pressure drop, but the void diame-

ter of 219-3 is smaller and consequently the internal area is larger thereby increas-

ing the internal resistance to fluid flow. However, the 20% increase in internal

surface area does not alone account for the more-than twofold increase in pressure

drop. It was also clear from Scanning Electron Microscope (SEM) images (given in

[13]) that the cell windows in the 219-3 foam are, on average, considerably smaller

than those in the POCOTM foam, and thus there is a much higher hydraulic loss in

the 219-3 foam due to the sudden contraction/expansion of fluid through the pore

windows.

The Nusselt number measured in [13] is plotted in Fig. 12 as a function of the

Reynolds number, ReDe. The figure indicates that for most conditions the 219-3-3

and POCOTM foams have the highest internal heat transfer followed by 219-3 and

218-3. The differences between the specimens can be reconciled by considering

the different geometric parameters and effective conductivities summarized in

Table 1.
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4 Computational Studies of Graphitic Foam

Computations of the flow and heat transfer in porous media are of great interest due

to the advantage of being able to conduct parametric studies in a fast and efficient

manner in comparison to similar activity done experimentally. In this section, two

levels of computational study are presented: simulations of the pore-level fluid flow

and energy transfer in GF, and simulations conducted using a volume-averaging

approach. While the volume-averaging approach has seen much more widespread

use in the past, computations of this nature require closure models to approximate

the unresolved activity at the pore level, and such models can only be dervied by

experimentation and better-resolved solutions from the pore-level.

4.1 Computations at the Pore Level

Pore level computations are done by simply solving the Navier-Stokes equations

combined with the conservations of mass and energy on a domain that represents

the pore structure of the porous media in question. The conservation equations for

mass and momentum are given, respectively as:

rf r � uð Þ ¼ 0 (11)

rf
@u

@t
þr � uuð Þ

� �
¼ �rPþ mfr2uþ rf f (12)
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Fig. 12 Plot showing the Nusselt number as a function of Reynolds number based on De and Aeff

for the four GF specimens tested experimentally. Adapted from Straatman et al. [13]
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Under the additional assumption that the effects of viscous dissipation and heat

generation may be neglected, the heat transfer portion of the problem is governed

by the following form of the energy equation:

rf cp; f
@T

@t
þr � uTð Þ

� �
¼ kfr2T (13)

These equations were solved in the idealized spherical foam geometric model

furnished by Yu et al. [4] by Karimian and Straatman [14, 15]. Computations were

carried out for unidirectional flow [14] and for arbitrary flow direction [14] for a

small section of pores considered to be inside a generic section of an idealized GF

foam block, which is ideally composed of hundreds of identical cells in each

direction. It is reasonable to assume that the flow in a generic section inside the

foam is periodic in nature and thus, only a representative portion of the domain

required modeling. In the unidirectional case, the pore-windows were assumed to

be aligned with the inlet flow leading to a flow field that loosely mimicked that of

flow through a duct with geometric periodicity. To simulate the most generic multi-

directional, periodic flow [15], a domain consisting of a cluster of idealized cells

was (mathematically) constructed such that a spatially periodic flow could be

simulated for an incoming velocity of 45� in all principle directions with respect

to the pore-window planes. It was felt that 45� represents the average orientation of
the windows with respect to the incoming flow. The resulting domain was com-

prised of two consecutive, interconnected cells in each direction x, y and z, with
three pore windows as periodic sections in each direction. To complete the formu-

lation, the periodic boundary conditions of Karimian and Straatman [16] based on

the double-periodic cell geometry formulation of El Soukkary and Straatman [17]

were extended to three directions. Figure 13 shows an outline of the computational

domain for an idealized graphitic foam cell with porosity of e = 0.80. The flow and

temperature fields shown in Figs. 14 and 15 show the periodicity of the flow

and temperature fields predicted using the formulation described. Symmetric flow

and temperature fields can be clearly seen in Figs. 14 and 15 where streamlines are

illustrated, coloured by the temperature variation.

More quantitatively, the results of the simulations are formulated in terms of the

Reynolds number, ReH, the normalized pressure drop, H, and pore-level Nusselt

number, NuH, which are defined as:

ReH ¼ rVintH

m
;PH ¼ DP

H
� H2

emVint
;NuH ¼ hH

k

where Vint is the intrinsic velocity magnitude, H is the side length of the unit cube,

DP is the pressure drop across a single pore, e is the porosity of the foam, h is the

average convective heat transfer coefficient, and k is the fluid conductivity.

Two major regimes were defined for steady laminar flow in porous media: Darcy

or creeping flow, which is dominated by viscous forces, and inertial flow, in which
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Fig. 13 Computational domain and grid for simulations done at the pore-level (Karimian and

Straatman [15])

Fig. 14 Two-dimensional streamlines at a cross-section in the main-flow direction, the lines color

variation indicates the local temperature
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the effect of inertia forces start to dominate. The Darcy-Forchheimer law governs

the relation between pressure drop and velocity in terms of viscous and inertia

forces:

� dP

ds
¼ m

k
Vext þ Cfffiffiffi

k
p rV2

ext

Here, Vext is the extrinsic (clear channel) velocity, s is the axis parallel to flow

direction, k is the permeability and Cf is the inertia coefficient. To define the

form of dependency of these two parameters to the internal structure of graphitic

foams, an Ergun-like [8], semi-empirical relation was proposed by Karimian and

Straatman [15]:

� dP

dx

e3

1� e

� �
¼ Að1� eÞm

d2
mVext þ B

d
rV2

ext

where parameters m, A and B were determined using the data from a series of

numerical simulations across a wide range of Reynolds numbers in the stationary

laminar regime. Also d, a proper length scale, was determined as a function of

equivalent particle diameter (Yu et al. [4]).

XY

Z

Fig. 15 Three-dimensional rakes of streamlines starting from inlets of the first cell until the flow

exits the domain
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To model heat transfer in spherical void phase foams, a general form of Nusselt

number proposed by Kaviany [8] is used:

Nu ¼ Dþ EPrnRem

where D and E are functions of internal geometry. Note that the constant D is the

asymptote of the model in the stagnant condition where conduction is the only

means of heat transfer. D, E, n and m are once again determined by fitting the data

from the numerical simulations for a range of Reynolds numbers in the stationary

laminar regime.

Figures 16 and 17 show that the form of the models given in the above expres-

sions is correct. In both cases, the model shows an excellent agreement with the

experimental data over the range shown. However, there was still a considerable

difference between the simulations and the experimental results for the porous plug

(see Sect. 3.3), two coefficients were introduced by Karimian and Straatman [15] to

reconcile the difference and to enable the use of the model expressions in the

characterization of experimental data. The model was “calibrated” using an acces-

sibility factor and a blockage ratio. Introduction of these coefficients (see [15] for

details) resulted in a very good fit between the calibrated model and the experimen-

tal data for several different graphitic foams, as seen in Fig. 18.
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Fig. 16 Comparison of the normalized pressure drop as a function of Reynolds number. Symbols
represent experimental results while the lines correspond to themodel of Karimian and Straatman [15]
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4.2 Computations at the Volume-Averaged Level

Comparisons of the thermal and hydraulic performance of porous metals is most

efficiently done in a computational framework by solving the volume-averaged

form of the governing transport equations. While much more information on the

details of the flow and energy transfer is provided from the pore-level calculations

described in Sect. 4.1, the volume-averaged framework enables investigations of

much larger foam domains. Energy transfer in porous materials is typically studied

in the volume-averaged framework by invoking the assumption of local thermal

equilibrium between the solid and fluid phases, however for porous metals and

graphitic foams, this assumption is not valid because of the large difference

between the solid and fluid phase thermal conductivities. To this end, Calmidi

and Mahajan [9] used a thermal non-equilibrium model to carry out calculations of

forced convection in uncompressed aluminum foams. In their study, models for

interstitial convective exchange and thermal dispersion were proposed and then

used to simulate the heat transfer for several different specimens of aluminum

foam. Betchen et al. [18] developed a complete three-dimensional conjugate heat

transfer code for studying fluid/porous/solid domains, which also incorporates a

thermal non-equilibrium model inside the porous domain. The models for intersti-

tial exchange and thermal dispersion proposed by Calmidi and Mahajan [9] were

implemented in the code and simulations of uncompressed aluminum foam con-

firmed the validity of the code and the accuracy of the models.
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Fig. 17 Comparison of the heat transfer model with available experimental data. Symbols repre-
sent experimental results while the lines correspond to the model of Karimian and Straatman [15]
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The framework for the volume-averaged formulation generally considers the

laminar, incompressible flow of a single-phase fluid with constant thermophysical

properties. The volume-averaged continuity equation may be expressed in extrinsic

form as [18]:
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Fig. 18 Comparison of calibrated pressure (a) and heat transfer (b) models with experimental data
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rf r � uh ið Þ ¼ 0 (14)

Subject to appropriate length scale constraints, the volume averaged momentum

equations expressed in extrinsic form take the form [18]:

rf
@ uh i
@t

þ rf
e
r � uh i uh ið Þ ¼ � er Ph if þ mBr2 uh i � emf

K
uh i

� erf cEffiffiffiffi
K

p uh ij j uh i þ erf f
(15)

where the Darcy and Forchheimer terms are used to close the set of equations,

replacing the information characterizing the viscous and form drag interaction

between the fluid and solid constituents, which is lost in volume averaging the

velocity field. The second term on the right hand side of (15) represents the

macroscopic viscous effects, and is historically referred to as the Brinkman term.

Under the assumption of local thermal non-equilibrium, Tf
	 
f ¼ Tsh is ¼ Th i is

not assumed at a given point. This gives rise to extrinsic volume averaged energy

equations of the form [15]:

rf cp;f e
@ Tf
	 
f
@t

þr � uh i Tf
	 
f� �" #

¼ r � kfer Tf
	 
f� �

þ hsf Asf Tsh is � Tf
	 
f� �

(16)

1� eð Þrscs
@ Tsh is
@t

¼ r � kser Tsh isð Þ � hsf Asf Tsh is � Tf
	 
f� �

(17)

for the fluid and solid constituents, respectively. In (16), the fluid phase effective

thermal conductivity kfe may include a component accounting for the effects of

thermal dispersion, in addition to the stagnant portion of the conductivity which is

typically determined from a model of the pore geometry. Note also that the

effective thermal conductivities in a porous medium are often anisotropic, and

thus kfe and kse may in general be matrices, although in such a case we shall assume

that all off-diagonal elements of these matrices are zero. The second term on the

right hand side of (16) and (17) represent the heat transfer between the fluid and

solid constituents.

The heat exchange between the fluid and solid constituents is modeled using an

interstitial convective exchange model. It is worthy of note that interstitial

exchange is not equivalent to bulk convective heat transfer unless thermal disper-

sion is negligible. Thermal dispersion arises in the fluid energy equation as a result

of volume-averaging and accounts essentially for transport effects due to fluctua-

tions in the temperature field about the volume-averaged temperature. Thermal

dispersion is modeled as an enhancement to the molecular conductivity of the fluid

and can thereby contribute significantly to the bulk heat transfer within a porous

media. Thermal dispersion is typically modeled using the expression developed by
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Calmidi and Mahajan [9]. The interstitial convective exchange coefficient hi is
obtained locally from an expression of the form:

NuL ¼ hiL

kf
¼ CRemPrn; (18)

which can be calibrated using experimental results to give the correct overall heat

transfer for any type of porous media. In (18), L is simply the length scale used for

the definition of the Nusselt number. For simulations of aluminum foam, the

expression for internal surface area and the parameters C, m and n were obtained

from Calmidi and Mahajan [9]; the length scale used was the ligament diameter.

For simulations of graphitic foam, the internal surface area was obtained using

A = bV (Yu et al. [4]), where V is the volume of the cell, and the parameters C, m
and nwere obtained by calibration with the results for POCOTM foam (see Table 1).

In this case the length scale used was the equivalent particle diameter, De. Darcy

and Forchheimer coefficients for aluminum foam were obtained from Boomsma

et al. [10] and for GF from Straatman et al. [13, Table 2].

The calibrated model was used to explore differences between POCOTM foam

and the aluminum foams considered by Calmidi and Mahajan [9] and by Boomsma

et al. [10]. Figures 19 and 20 show the pressure drop and heat transfer as a function

of extrinsic velocity for POCOTM foam and for an uncompressed Aluminum

T-6201 foam with a porosity of 90% and effective conductivity 7.19 W/m K, as

reported in Calmidi and Mahajan. The plots are shown in terms of the extrinsic

velocity instead of ReDe to make the differences at a given flow condition more

clear; differences between the internal structures of GF and aluminum foam yield

very different ranges of values, which make direct comparisons difficult.
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Fig. 19 Plot of the pressure drop as a function of the extrinsic velocity for POCOTM foam and for

Al T6201 foam. Adapted from [13]

Heat Transfer in Graphitic Foams 125



The results shown in Figs. 19 and 20, are for the same heating condition (set using a

specified base and inlet temperature) over a range of bulk velocities. On the basis of

Fig. 19, it is clear that the aluminum foam has a considerably lower pressure drop

than GF over the entire range tested [13]. This is largely due to differences between

the porosities and internal structures of the aluminum foam and GF: the aluminum

foam has a high porosity and is comprised of thin fused strands and large open cell

windows, but relatively little internal surface area. The GF has a moderate porosity

and is comprised of spherical voids and small(er) cell windows, but with a lower

porosity and much larger internal surface area.

Figure 20 shows the heat transfer for 6 mm-thick and 12 mm-thick blocks of

POCOTM and Al T-6201 foams computed using the same bulk velocity and heating

conditions. At a 6 mm thickness, the Al T-6201 foam has a higher heat transfer

across the full range of conditions considered. However, when the thickness of the

Al T-6201 foam is doubled, no increases in heat transfer are realized at any flow

rate. In contrast, doubling the thickness of the POCOTM foam leads to increases in

heat transfer from 85% at low velocity to 50% at high velocity. These observations

can be explained by considering the balance between heat conduction into the foam

and the convective exchange between the foam and the fluid. The fact that doubling

the thickness results in no increases in heat transfer in the Al foams confirms that

heat is not entrained deeply into the foam and that the maximum possible heat

transfer for a given base surface area is achieved using a very thin layer of

aluminum foam (as described in Sect. 3 with respect to the Calmidi and Mahajan

[9] experiments). For POCOTM foam, the pore-level convective heat transfer

coefficient is considerably smaller than that for aluminum foam, but the lower

porosity and higher conductivity serve to conduct heat much more deeply into the
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Fig. 20 Plot of the heat transfer as a function of extrinsic velocity for POCOTM foam and for Al

T6201 foam. Adapted from [13]
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foam, thereby making use of much more interior surface area. At 6 mm thick,

POCOTM foam removes less heat than Al T-6201 foam, but at 12 mm, the heat

transfer has increased above that of aluminum foam, without yet reaching its

maximum possible heat dissipation.

Comparisons were also made in Straatman et al. [13] between the compressed

aluminum specimens considered by Boomsma et al. [10] by conducting simulations

of 40 � 40 � 2 mm-thick blocks of POCOTM foam and processing the predicted

pressure drops and Nusselt numbers as done in [10]. Comparisons were done in this

manner because no expressions for interstitial exchange exist to facilitate computa-

tional modeling of compressed aluminum foams. Figure 21 compares the pressure

drop of POCOTM with that of three different compressed aluminum foams: 92-02,

92-03 and 92-06, where the -0X indicates the compression ratio based on the

volume. Figure 21 makes it clear that compression decreases the permeability of

the foam, but the pressure drop is still significantly lower than that of POCOTM over

the same range of bulk velocities, again owing to the large hydraulic loss associated

with the contraction/expansion of fluid through the cell windows present in GF.

Figure 22 shows the Nusselt number based upon the heated area and the tempera-

ture difference between the heated base and the fluid inlet. The heat transfer for the

compressed aluminum samples is seen to approach that of POCOTM foam for high

compression ratios. It is expected that under compression, the local convective heat

transfer coefficient decreases, but this is off-set by the increase in available internal

surface area, thereby giving a lower net thermal resistance. On the basis of Figs. 21

and 22, it appears that the highly compressed aluminum offers an equivalent heat

transfer for a significantly lower pressure drop, but it is important to note that this will
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Fig. 21 Plot of the pressure drop as a function of extrinsic velocity for POCOTM foam compared to

three different compressed aluminum foams as reported in Boomsma et al. [10]
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only be the case for very thin layers of foam. As shown in the comparison with

uncompressed aluminum foams, if the thickness of the sampleswas doubled or tripled,

the POCOTM foamwould yield significantly higher heat transfer than any derivative of

compressed aluminum foam due to its high extended surface efficiency.

5 Summary

A brief survey of the most recent work on spherical void phase graphitic foams has

been presented. The chapter presents work related to geometric characterization of

the GF structure, experiments exploring convective heat transfer enhancements

obtained in parallel, impinging and forced flow arrangements, and recent computa-

tional work done at both the pore-level and using a volume-averaged framework.

It is evident from the body of work presented that while the graphitic foam

possesses a unique set of material and geometric properties, the foams tested and

described did not yield a universal benefit over commonly used aluminium foams,

mostly due to the pressure drop generated by passing a fluid through the GF

structure. Fortunately, the work described deals exclusively with some of the

original foams developed at ORNL, which have since been replaced by graphitic

foams that retain the spherical void phase while having a much more permeable

structure that is more amenable to fluid flow. Such foams are being tested and

characterized using the tools and models presented herein and will undoubtedly see

far-reaching application in industry.
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Heat Transfer in Polyolefin Foams

Marcelo Antunes, José Ignacio Velasco, Eusebio Solórzano,

and Miguel Ángel Rodrı́guez‐Pérez

Abstract This chapter is dedicated to the study of heat transfer in polyolefin-based

foams, particularly thermal conductivity, as a function of their structure and

chemical composition. A small review of the main experimental techniques used

to measure the thermal conductivity of these materials is also given, focusing on the

transient plane source method (TPS), as well as different theoretical models com-

monly used for estimating its value. Alongside cellular structure (cell size, anisot-

ropy, etc) and composition considerations, particular importance is given to the

analysis of the presence of micrometric and nanometric-sized fillers in the resulting

cellular composite thermal properties. This is a novel research field of particular

interest, thought to extend the application range of these lightweight materials by

tailoring their conductivity.

1 Introduction

It is well known that heat transfer is one the most important fields of research for

cellular polymers due to the wide number of applications and uses of these

materials as thermal insulators. Heat transfer in these materials strongly depends

on relative density, cellular characteristics such as cell size, cell density, cell

anisotropy, etc, and presence of additional phases and/or fillers (concentration,

orientation and dispersion of these additional phases) [1–3].
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A. Öchsner and G.E. Murch (eds.), Heat Transfer in Multi-Phase Materials,
Adv Struct Mater 2, DOI 10.1007/8611_2010_44,
# Springer-Verlag Berlin Heidelberg 2010, Published online: 26 January 2011

131



This chapter is focused on the study of heat transfer in polyolefin-based foams,

although most of the concepts and trends presented are applicable to most of the

polymeric cellular materials available in the market. It displays the main tendencies

of heat transfer, focusing on thermal conductivity, as a function of the structure and

chemical composition for different types of polyethylene and polypropylene foams

with densities ranging from 20 to 600 kg/m3. It also shows some strategies to

modify the thermal conductivity in terms of structure, compounding and production

techniques. A small review of the main experimental techniques to measure the

thermal conductivity of these materials is also given and different theoretical

models commonly used for determining the thermal conductivity of polymer

foams have been applied.

Part of the chapter is dedicated to the analysis of the presence of third phases

(micrometric and nanometric-sized fillers) in the resulting cellular composite ther-

mal properties. This is a novel research field of particular interest, thought to extend

the application range of lightweight materials by tailoring their conductivity, and

actually scarce information about the thermal behaviour of thermoplastic foams

with conductive fillers has been published [3–5].

1.1 The Concept of Cellular Solid

A cellular solid is a two-phase material in which a gas has been dispersed in a solid

continuous matrix. If the matrix is polymeric in nature, the material is known as

cellular polymer or polymer foam.

Among the most important parameters that modify the physical and transport

properties of these materials are the nature and morphology of the base material,

type of gas entrapped inside the cells, density, and the cellular architecture and

topology, such as cell connectivity (closed, open or partially interconnected cells),

cell size (f) and distribution of cell sizes, cell wall thickness (d) and respective

distribution, fraction of solid in the cell struts (fs) and cell geometry and shape [6].

Some of these basic parameters used to characterize the cellular structure are

related by the following expression:

f 1� fsð Þ r
rs

¼ Cd; (1)

where r/rs is the so-called relative density of the cellular material (r: density of

the foam and rs: density of the respective unfoamed solid matrix) and C is a

constant that depends on the cell’s shape and geometry. For instance, this constant

has a value of 3.46 for pentagonal dodecahedron [1] and 3.35 for tetrakaidecahedral

cells [7].

The concept of foam as a two-phase material is important to understand their

behaviour as that resulting from the combination of the properties of both phases

and their relative content. Due to this reason, the relative density, and analogously
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the expansion ratio, ER (ER = rs/r), is a crucial parameter when studying these

materials, being directly related to the relative volume fraction of both phases:

Vgas ¼ (rs � r)/(rs � rgas) � 1 � r/rs and Vsol ¼ (r � rgas)/(rs � rgas) � r/
rs. It is important to mention that these approximations are only valid for relative

densities over 5%.

1.2 Polyolefin Foams: Production Techniques

In order to fully understand how the thermal properties vary with the structure, it

is also necessary to explain the production methods of these materials. A small

introduction on the most common foaming processes and typical resulting cellular

structures is presented here. Polyolefins such as polypropylene (PP) or polyethyl-

ene (PE) are commercially foamed using one of the basic foaming processes

described in this section [8]. All results and microstructures shown here for the PP

foams come from lab-produced materials, whereas PE foams results were mainly

obtained from commercially available materials. As we will see, cellular structure

variations induced by the different processing techniques or by process parameter

modifications may slightly modify the thermal conduction behaviour of the whole

system.

– Foaming by direct extrusion, the foam is directly obtained by a sudden decom-

pression at the exit of an extrusion die, normally using a physical blowing agent

(PBA) such as CO2 or n-butane [9, 10] as seen in Fig. 1a. The physically foamed

extruded foams tend to show a rather anisotropic cellular structure with cells

elongated in the flow direction due to the stresses applied during the extrusion

process.

– Foaming by injection moulding, the polymer expansion is adjusted by

controlling chemical blowing agent (CBA) thermal decomposition or PBA

expansion inside a closed injection mould. A variation of the conventional

injection moulding is the microcellular injection moulding or Mucell1 tech-

nique. In this method, supercritical N2 or CO2 is introduced in the plasticizing

injection unit and mixed with the melted polymer before injecting in the mould

[11] (see Fig. 1b). Small cell sizes are typically obtained, although this foaming

technique is limited to rather high density materials (>300 kg/m3).

– Foaming by compression-moulding, the material is foamed by simultaneously

applying heat and pressure in order to decompose the CBA, nucleate the cells

and subsequently expand the material by sudden decompression, as depicted in

Fig. 1c. This process commonly uses exothermic CBAs such as azodicarbona-

mide (ADC) [12]. Generally speaking, foams produced using this technique

present small cell sizes and certain cell-size gradients, with smaller cells close to

the mould’s surface.

– Gas dissolution foaming, the material is foamed inside an autoclave by a high-

pressure gas dissolution process. This process, commercially developed by
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Zotefoams [13], uses N2 or CO2 as physical blowing agent dissolving the gas in

the polymer in a semi-solid state and afterwards allowing the material to expand

by heating at a temperature above the softening temperature of the polymer–gas

mixture. Although not available commercially, a second strategy, known as the

pressure-quench method (see Fig. 1d), considers a one-step gas dissolution

process. In this method, the material is nucleated and foamed by carefully

a

b

c

d
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Temperature and 
time
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time

Pressure Pressure 
release

VD
WD

Circular mould

polymer
agent (PBA)

Fig. 1 Schematics showing (a) direct extrusion, (b) injection moulding, (c) compression-mould-

ing and (d) CO2 dissolution pressure-quench foaming processes
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controlling the sudden pressure drop and pressure drop rate applied during gas

decompression [14]. This was the strategy used for preparing the PP lab-

produced foams analyzed in this chapter.

The main cellular characteristics (average cell size, f, and anisotropy ratio, AR)
of the polypropylene and polyethylene based foams analyzed in this chapter are

summarized in Fig. 2.

Regarding the characteristic cellular anisotropies exhibited in Fig. 2, it is impor-

tant to mention that lab scale-produced PP foams were particularly conditioned to this

kind of anisotropies (with special mention to the ones prepared by the pressure

quench method). Similar processes in other laboratories or industrial-scaled ones

based on similar techniques may not exhibit such anisotropic cellular structures.

Scanning electron micrographs showing typical cellular structures for the differ-

ent processing techniques are shown in Fig. 3 for the lab-produced PP-based foams

and in Fig. 4 for the PE-based commercial ones.

1.3 Composite Polyolefin Foams: Production Techniques

Polymeric cellular materials can also incorporate fillers, i.e., secondary solid

phases, commonly inorganic, with the intention of extending their applicability

window. We will focus our attention on the effects of the incorporation of these

fillers in the thermal conduction behaviour of the foams.
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Fig. 2 Cell size, f, and anisotropy ratio, AR (AR = fVD/fWD, VD: vertical direction of foaming;

WD: width direction) versus relative density for the analyzed foams
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Polyolefin composites were initially prepared by melt-compounding the differ-

ent fillers in a twin-screw extruder with a polypropylene-based matrix and a CBA

(azodicarbonamide). The resulting composites were subsequently foamed by com-

pression-moulding chemical foaming. Particularly, the influence of two different

highly conductive fillers was experimentally evaluated:

1. Incorporation of high amounts (50 and 70 wt.%) of a micrometric-sized filler,

magnesium hydroxide (Mg(OH)2) (Fig. 5), commonly used as flame retardant

[15, 16]. This kind of filler typically exhibits a particle size in the range of a few

micrometers (<10 mm). The maximum theoretical thermal conductivity is

assumed to be approximately 130 W m�1 K�1 [17], although this value depends

highly on the crystalline orientation.

VD WDVD
WD

VD WD

a

b

c

d

e

f

Fig. 3 SEM micrographs of the lab scale PP foams produced using different foaming processes:

(a) direct extrusion, (b) injection-moulding, (c, d) compression-moulding, and (e, f) pressure-

quench CO2 batch foaming

ba

Fig. 4 SEMmicrographs showing typical cellular structures of commercial PE foams prepared by

(a) compression-moulding and (b) N2 dissolution
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2. Incorporation of different amounts of carbon nanofibres (from 5 to 20 wt.%),

a theoretically highly thermally conductive filler (>2,000 W m�1 K�1) [18].

This fibrous-like nanometric filler was added with the objective of obtaining

PP-based cellular materials with improved thermal conductivities [19, 20].

The carbon nanofibres used here were sub-micron vapour grown carbon fibres

(s-VGCF) with a stacked-cup structure produced using a floating catalyst tech-

nique with a diameter of 20–80 nm, a fibre length higher than 30 mm and a

graphitization degree of 70%. These nanofibres were kindly supplied by Grupo
Antolı́n (Burgos, Spain). Figure 6 presents two different magnification transmis-

sion electron micrographs, as well as a schematic displaying the stacked-cup

structure of the carbon nanofibres.

A graph indicating the main cellular structure characteristics, cell size and

anisotropy, of these materials is shown in Fig. 7.

It can be observed that the materials filled with Mg(OH)2 showed an expansion

ratio between 2 and 3 and anisotropy ratios up to 3. The PP-CNF composite foams

were intentionally produced with a fixed density (ER � 3), although foams with

lower densities could have been produced.

0.5 μm

Fig. 5 SEM micrograph

showing the typical

hexagonal shape of Mg(OH)2
particles

500 nm

a b c

Fig. 6 (a, b) Transmission electron micrographs and (c) schematic showing the stacked-cup

structure of the sub-micron vapour grown carbon nanofibres
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Figure 8 shows some examples of the cellular structure of Mg(OH)2 foams.

Contrary to the foams filled with 70 wt.% Mg(OH)2 that show isometric-like cell

structures with small cell sizes (�180 mm), the foams with a 50 wt.% Mg(OH)2
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Fig. 7 Characteristic cell size, f, and anisotropy ratio, AR (AR = fVD/fWD, VD: vertical direction

of foaming; WD: width direction) versus relative density for the composite foams analyzed in this

chapter
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Fig. 8 SEM pictures of the 50 wt.%Mg(OH)2-PP foams: (a) 0.20 and (b) 0.23 relative density and

70 wt.% Mg(OH)2-PP foams: (c) 0.47 and (d) 0.55 of relative density
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present higher cell sizes (from 700 to almost 1,000 mm) and increasingly higher cell

anisotropies for lower relative densities.

Some examples of the typical cellular structures of PP-CNF foams are shown

in Fig. 9. The foamed nanocomposites were prepared with closed-cell structures

and typical expansion ratios of 3. Isometric-like cellular structures (AR � 1) with

increasingly smaller cell sizes with gradually increasing the concentration of carbon

nanofibres were obtained. For instance, the 5 wt.% CNF foam displayed an average

cell size slightly above 500 mm, its value decreasing to 400 and around 250 mm
respectively for the 10 and 20 wt.% CNF foams.

2 Experimental Methods to Determine Thermal Conductivity

The use of polymer foams is widespread in thousands of industrial applications and

there is a continuous interest in regulating their thermal properties, in most cases

with the objective of reducing the thermal conductivity. A wide variety of different

experimental techniques to measure this property have been developed for different

experimental conditions and materials [21, 22]. The process of measuring this

property is complicated by the fact that in several practical situations most of the

heat transfer mechanisms (conduction, convection and radiation) have to be con-

sidered. Thus, for each material it is necessary to identify the ideal measuring

procedure considering factors such as the expected conductivity, shape of the

material, available sample size, density, etc.

Generally speaking, in order to measure the thermal conductivity or a related

property by a steady state or a transient method, the experimental arrangement must

simulate a solution of the basic heat conduction equation:

1

k

@T

@t
¼ r2T þ A x; y; z; tð Þ

l
; (2)

where k and l are respectively the thermal diffusivity and conductivity, T is the

temperature, t is the time, and A (x,y,z,t) is the heat generated per volume and time.

VD
WD VD

WD

a b

Fig. 9 Characteristic SEM pictures of (a) 5 and (b) 20 wt.% carbon nanofibre-reinforced polypro-

pylene foams
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For longitudinal unidirectional heat flow, no radial losses and disregarding the

existence of a heat source into the solid, the analysis of the steady-state term leads

to a linear dependence between temperature and dimension in the heat flow

direction. The heat per area and time through a sample can be determined using

Fourier’s law:

Qa ¼ Gl
DT
d

; (3)

where Qa is the heat flow generated by the application of a temperature difference

between the two sides of the material (DT), separated over a distance d (the material

thickness), and G is a constant, determined by calibration for each given apparatus.

Figure 10 shows a schematic diagram of the typical plate-like steady state equip-

ment for determining the thermal conductivity.

The steady state techniques are the most commonly used methods, and there are

several standard methods (ISO and ASTM) based on this procedure [23, 24].

Nonetheless, in some cases not all the heat generated in the upper plate is conducted

to the lower one, thus being necessary to account for heat losses. Moreover, the heat

flow is not always normal to the heat surfaces and there is a small gap between both

heater surfaces and the surfaces of the sample. This gap contributes to the reduction

of the effective transferred heat (interfacial heat transfer resistance). On the other

hand, although this equipment is relatively fast in operation, there is still a need to

reduce such times, particularly for quality control applications.

Alternatively, transient methods based on the analysis of the transient term

solution of (2) which relates change in temperature with time, are used. Transient

hot wire, transient hot strip, transient plane source and laser flash methods are

probably the most important techniques based on measuring the sample’s thermal

behaviour under a transient heat flow regime. The laser flash method differs from

the others since it is a non contact method and determines the thermal diffusivity of

the sample instead of the thermal conductivity. Transient Plane Source (TPS) can

be considered as the evolution of both transient hot wire and transient hot strip (by

combining some aspects of the transient hot probe method, not mentioned before).

Cold Plate

Hot Plate

Sample

Thermocouple 1

Thermocouple 2Heat flow
meter

Fig. 10 Schematic diagram of typical standard equipment for determining the thermal

conductivity based on Fourier’s law
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Therefore we can consider the TPS method as the most representative of these

transient contact methods.

In the TPS method a round and plane heat source is used (see Fig. 11, left). It acts

as a transient plane source working simultaneously as a temperature sensor. This

element consists of an electrical conducting pattern of thin nickel foil in the form of

a double spiral inserted between two insulating plastic layers. The total thickness of

this sensor is only a few tens of micrometers. The TPS element is placed between

two samples with both sensor faces in contact with the two samples surfaces as

depicted in Fig. 11, left. Two samples of similar characteristics are required for this

purpose. During testing a constant electric power is supplied to the sensor and the

temperature increase is recorded. To relate the change in temperature with time, the

equation for the heat conduction assuming the conditions reported by Log et al. and

Gustavsson et al. is applied [25, 26]. Although less known, this method also enables

the possibility of detecting possible thermal anisotropies [27].

Finally, the laser flash system is based in a laser beam pulse (typically <1 ms)

focused on one of the faces of a relatively thin sample while the temperature

increase in the opposite parallel face is recorded by a contactless method (IR

pyrometer). From this temperature increase it is possible to determine the thermal

diffusivity of the sample. The schematic description of the measurement procedure

is shown in Fig. 11, right [28].

Transitory methods present several advantages compared to steady state ones.

For example, it is possible to simultaneously obtain values of the thermal conduc-

tivity, thermal diffusivity and specific heat. The range of measurement comprises

five orders of magnitude (0.01–400 W m�1 K�1). These methods are also faster,

can be used to determine the influence of material inhomogeneities and/or aniso-

tropic characteristics and offer the ability to measure in small samples compared to

the thick samples conventionally needed for the steady state methods.

On the other hand, it is important to remark that transient methods are not fully

standardized. Nevertheless, in the last years some standard procedures have been

approved for determining the thermal properties by the laser flash method [29, 30]

and several efforts are being developed to standardize the TPS method [31]. It is

t

Laser pulse

Sample

IR pyrometer
Sensor 

Sample 

Sample 

Fig. 11 Schematic diagrams for transient plane source (left) and laser flash (right) methods
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also interesting to comment that the thermal properties of non-conventional new

materials have been studied in the last years by using transient methods [32–40]. In

addition, several works have shown that these transient techniques give comparable

results to the steady state ones [41, 42].

3 Mechanisms and Models of Heat Transfer in Polymer Foams

Generally speaking, the heat transfer in any cellular material is the result of a

contribution of three different mechanisms, conduction, convection and radiation,

and therefore the overall thermal conductivity can be depicted as the result of four

additive terms:

lfoam ¼ lscnd þ lgcnd þ lrd þ lcnv; (4)

where lscnd and lgcndare respectively the thermal conductivities due to conduction

through the solid and gas phases and lrd and lcnv the radiation and convection

terms.

3.1 Convection

Convection due to gas movement inside the cells may be disregarded for cellular

structures with cell sizes of less than 4–5 mm [1]. Considering that almost all

polymer-based foams, independently of the final relative density, present cell sizes

that are clearly below these values, heat transfer due to the movement of the gas

molecules entrapped inside the cells (convection) can be considered minimal when

compared to conduction and radiation.

3.2 Conduction

Several theoretical models have been proposed to estimate the conduction term of

cellular polymers. Nonetheless, even the most recent ones, which take into account

for instance arbitrary cell orientations or anisotropy geometrical parameters, tend to

consider rather simple geometrical-shaped arrays representing the cellular structure

(cubic or polyhedral-like) [1, 41, 43–45]. On the other hand, foams exhibit in many

cases cell imperfections, gradients and inhomogeneities, far away from regular

geometries, especially in the case of low density foams. Nevertheless, the following

formula has been proven to give reasonable compliance for the prediction of the

thermal conduction term [1]:
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lfoam ¼ lgasVgas þ lsol
Vsol

3
fs

ffiffiffiffiffiffiffi
1

AR

r
þ 2 1� fsð Þ 1

AR

� �1
4

" #
; (5)

where fs is the fraction of solid in the cell struts and AR is the geometrical anisotropy

ratio, i.e., the quotient between the highest and smallest cell size in the direction of

the heat flux (Fig. 12).

In the particular case of isotropic-like cellular structures, (5) is reduced to the

following equation:

l ¼ lgasVgas þ 2

3
� fs

3

� �
lsolVsol (6)

According to some other authors the thermal conductivity of a cellular solid can

be modelled as:

l ¼ lgasVgas þ xlsolVsol; (7)

where x is the tortuosity, a parameter directly related to the foam’s inherent

irregularity. The concept of tortuosity goes beyond the conventional geometrical

tortuosity [46] and implicitly considers the effect of cellular structure (cell size, cell

density and cell wall thickness, fs). This last equation is particularly interesting in

the case of materials with an unknown fs parameter. On the other hand, in the

particular case of anisotropic structures it is possible to consider the effect of

anisotropic tortuosity in the different material directions, so under anisotropic

conditions we could also talk about equivalency between (5) and (7).

The influence of this mechanism can be modified by incorporating sec-

ond phase constituents with different thermal conductivities, thus varying the

expected conductivity, especially in the case of high density foams (higher

contribution of the solid phase). Such is the case of the fillers considered in

some of the next sections of this chapter. Particularly, the model used for these

composite foams will be based on the experimental thermal conductivity of the

solid composite (i.e., replacing l and V variables shown in previous equations by

those of the corresponding composites).

f2

f2

f2

f1

f1

Heat flux

AR =
Fig. 12 Schematic showing

cell anisotropy for a cubic cell

geometry and the definition

of AR
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3.3 Radiation

To estimate this mechanism, the model proposed by Williams and Aldao will be

adopted in this chapter. The reason is that this model has a high compliance with

experimental results as has been shown in previous investigations [47–49]. One

of its main advantages lies on the use of measured values for the cellular

structure characteristics and polymer matrix properties instead of non-intuitive

adjustable parameters. The model is based on a radiation term predicted as

follows:

lr ¼ 4sT3L

1þ L
f

� �
1
TN

� 1
� � ; (8)

where s is the Stefan–Boltzmann constant, T is the temperature, L is the material

thickness, f is the cell size and TN is the fraction of radiant energy sent forward by a

solid membrane of thickness Ls. This energy fraction is given by:

TN ¼ 1� rð Þ
1� rtð Þ

1� rð Þ � t
1þ rtð Þ þ 1� tð Þ

2

� �
; (9)

where r is the fraction of incident energy reflected by each gas–solid interface. This
quantity is related to the refractive index of the solid matrix (o):

r ¼ o� 1

oþ 1

� �2

(10)

The coefficient t is the fraction of energy transmitted through the solid mem-

brane of thickness Ls (cell wall thickness), which is given by:

t ¼ expð�aLsÞ; (11)

where a is the absorption coefficient of the solid matrix.

3.4 Evaluation of the Weight of the Different Terms

This section considers the theoretical evaluation of the contribution of each heat

transfer mechanism for PE foams as a function of relative density. The particular

example uses real values, experimentally obtained for these materials. The follow-

ing equation and the values presented in Table 1 were considered for the predictions

of the overall thermal conductivity.
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l ¼ lgasVgas þ 2

3
� fs

3

� �
lsolVsol þ 4sT3

1þ L
f

� �
1
TN

� 1
� � (12)

A relation between cell size and cell wall thickness with density such as the one

shown in (1) was taken into account [1, 48, 50]. All the calculations were consid-

ered at room temperature by selecting those values for the properties of the solid

materials and air at this temperature. An increase of temperature would change the

predicted contributions for each heat transfer mechanism. This evaluation could

be done using the same equations proposed here by introducing the variation of the

properties of both gas and solid phases with temperature.

The predicted results are shown in Fig. 13. All three contributions play a

significant role for relative densities below 0.2, and the contribution of the radiation
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Fig. 13 Contribution of each heat transfer mechanism in the thermal conductivity for LDPE based

foams

Table 1 Properties of the

foam considered for

predicting the overall

thermal conductivity

Property Value

lgas 0.0263 (W m�1 K�1)

lsol 0.30 (LDPE) (W m�1 K�1)

Cell type Closed cell

Cell size, f 150–500 mm
Cell wall, Ls (mm) 1� fsð Þ � f � 3:5347rr
fs 0.2–0.4

Total material thickness 10 mm

Temperature 300 K

o 1.51

a 661 cm�1
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mechanism becomes significant below this density. For higher relative densities

only conduction (both gas and solid contributions) should be considered because

the expected contribution of radiation is below 5%.

Taking into account these results it is reasonable to consider different models for

relative densities below and above 0.2. For low densities, all the main mechanisms

(except convection) have to be considered and for higher densities only conduction

plays a significant role.

4 Methodologies Employed for Tailoring the Thermal

Conductivity

The need of new cellular plastics for novel very specific applications forced the

development of advanced materials with tailored properties adjusted for each

particular application. This section summarizes most of the possibilities in terms

of thermal conductivity modification. We will explain them, from the simplest to

the most advanced methods.

4.1 Modification of the Gas or Polymer Matrix

One of the easiest ways to control the final thermal properties comes through the

modification of the raw materials employed, i.e., solid and/or gaseous phase.

Figure 14 shows both the thermal conductivity of several polymers and different

gases used as blowing agent.

In this sense, the final density of the foam will determine the most effective

strategy in order to modify the thermal conductivity. Considering the results plotted
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in Fig. 13, it seems evident that it is strongly recommended to modify the gas

thermal conductivity for relative densities below 0.2. Even in the 0.2–0.4 range it

could also be effective to use a different gas as blowing agent in order to regulate

these properties, whereas conduction through the solid phase begins to be predomi-

nant for higher relative densities.

The gas modification is a well known topic in the production of ultralow density

XPS and rigid PU foams, since a significant part of the research dedicated to these

materials has been focused on reducing conduction through the gas phase. The

initial solution consisted in using high molecular weight gases with low thermal

conductivities, traditionally CFCs and HCFCs (Fig. 14, right). Nonetheless and due

to environmental restrictions, their use has been limited and the development of

new environmentally friendly gases with low Global Warming Potential (GWP) is

on the rise. On the other hand, two of the most used gases to produce polymer foams

are N2 and CO2, although their permeability in polymers cause a more rapid gas

escape from the cells when compared to CFC and HCFCs.

As mentioned, the other possibility lies in the modification of the solid polymer

matrix. Figure 15 evaluates the influence of the polymer on the solid phase

conduction through the second term of (6) and considering a particular model

with an fs variation similar to the one shown in Table 1 adapted for higher densities.

It is important to take into account that for relative densities over 0.2 this term is the

one with the highest influence on the global conductivity. It can be observed that for

relative densities above 0.6 the differences between polymers become important,

meaning that in this range it is really important to select a proper polymer in order to

regulate the thermal conductivity.
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Fig. 15 Effect of the polymer on the conduction term for high density polymer foams (relative

density > 0.2)
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The limitation of the use of low thermal conductivity blowing agents and the

small influence of solid matrix properties for low and ultralow density foams has

made it necessary to search for alternative solutions handling the remaining active

heat transfer mechanism: radiation. To this end, the thermal conductivity of low

density foams is commonly modified by additives that alter the optical properties

of the solid matrix (i.e., its refractive index and/or the absorption coefficient).

A strong effect of the absorption coefficient on the radiation term is to be expected.

Among others, carbon black is one of the most used additives. Figure 16 shows

experimental data [48] for low density polyethylene foams with similar cellular

structures and densities. The main difference between the two series is the presence

of 2% carbon black content in the so-called black foams, significantly reducing the

effective thermal conductivity.

Further examples of the importance of the solid matrix formulation can be found

in Sect. 4.4, where the effects of the incorporation of a secondary phase are

discussed in more detail.

4.2 Thickness Influence: Size Effects in the Macro-Scale

Contrary to the expected trend, it is possible to alter the effective thermal con-

ductivity by modifying the dimensions of the material used, particularly its thick-

ness, especially in the case of low density foams. Examples of this behaviour can be

found in Fig. 17.
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Fig. 16 Experimental data for low density polyethylene (white and black foams) with similar

cellular structures and densities [48]
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Both experimental and theoretical data (calculated using (12)) follow a sim-

ilar trend. The conductivity value rapidly increases with the thickness up to

10 mm and then stabilizes, reaching a nearly constant value. This interesting

phenomenon demonstrates again the strong influence of radiation in the thermal

conductivity, as radiation is the only mechanism depending on sample size

(see (8)).

4.3 Effect of Processing

4.3.1 Influence of the Processing Technique

From the different foaming preparation methods described in the introduction, it is

possible to identify suitable techniques for each relative density range (Fig. 2) and,

as is well known, the relative density is the main parameter influencing the overall

thermal conductivity. For the sake of illustration, we will analyze the thermal

conductivity results of the polypropylene-based cellular materials produced by

the four different lab techniques explained in Sect. 1.2.

Figure 18 displays the thermal conductivity as a function of relative density for

foams produced using different methods. There is clear change in the trend for

relative densities below 0.2, corresponding to the density threshold below which

conduction through the gas phase and radiation become significant. As can be

observed, different processing techniques give very similar thermal conductivities

in the high density range (relative density > 0.2).
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Fig. 17 Effect of foam thickness on the effective thermal conductivity for several low density

polyethylene foams. (1) – relative density ¼ 0.017 andf ¼ 313 mm; (2) – relative density ¼ 0.036

and f ¼ 424 mm
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Model fitting using (7) and (12) are plotted together with the normalized ther-

mal conductivity experimental values in Fig. 19. In the case of (7) (tortuosity, x,
dependent) two different constant values for tortuosity, x ¼ 1 and x ¼ 2/3, are

proposed. Please note that in the case of x ¼ 1 (7) is reduced to the simple parallel

model or mixtures rule [2]. In contrast to (7), (12) also considers the radiation

contribution.
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Fig. 19 Experimental normalized data and theoretical model fitting according to (7) and (12)
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A value of x ¼ 2/3 clearly underestimates the conductivity data, while a value of

1 fits with good accuracy the conductivity values for the foams in the relative

density range above 0.2, thus enabling the use of the mixtures rule to predict the

conductivity of high relative density foams.

Nevertheless, for relative densities below 0.2, (7) clearly underestimates the

conductivity data even for a tortuosity value of 1. This is due to the fact that

this equation does not consider the radiation term. On the other hand, (12)

exhibits a reasonable compliance with experimental data for the whole density

range although the prediction seems to be better in the case of low density

foams. This fact is based on theoretical model considerations, developed for

low density cellular plastics [1]. Although not presented here, other models

such as Russell’s or Maxwell’s would have offered a good compliance with the

experimental data [39].

4.3.2 Influence of the Process Parameters: Structure Modification

It is known that the thermal conductivity of low density polymer foams (relative

densities below 0.2) is influenced by their cellular structure [1, 2, 51–58]. The effect

of cell size, fraction of mass in the cell struts and anisotropy is explained in this

section.

Figure 20 shows the theoretical thermal conductivity evolution with relative

density for foams based on closed-cell low density polyethylene with the following

characteristics: fs ¼ 0.2, f ¼ 880 mm, and total thickness, L ¼ 10 mm. The calcu-

lations were performed based on (12) at room temperature. Contrary to the expected
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Fig. 20 Theoretical thermal conductivity versus relative density for closed-cell low density

polyethylene foams with constant cell size and fraction of mass in the cell struts
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trend, below a relative density of 0.05 the overall conductivity increases. This

behaviour can be explained due to the strong influence of radiation at very low

densities. This unexpected behaviour has to be taken into account in the case of real

thermal insulation applications, selecting the optimum conditions corresponding to

the minimum in the curve.

On the other hand, Fig. 21 shows the theoretical predictions of the influence of

the fraction of material in the cell struts (fs) and cell size compared to experimental

data for low density polyethylene foams with a relative density of 0.046. An

increase in cell size and fs increases the total conductivity, since both factors

contribute to an enhancement of the radiation term. Reducing the cell size keeping

density constant introduces a higher number of cell walls in the heat flow path and

walls are the main cause of scattering and absorption of the radiative heat flow. The

plotted predictions are in close agreement with the experimental data [38] (relative

density ¼ 0.046 and fs � 0.3), validating the above statements.

The influence of fs is more complicated to explain, since it plays a role in solid

conduction (6) and radiation (8), this last due to the dependence of Ls with fs
(Table 1). Reducing fs, i.e., increasing cell wall thickness and building a more

homogeneous distribution of the solid phase, reduces the radiative contribution and

increases the conduction contribution. Since in the low density range radiation has a

higher weight than conduction, the overall effect of fs manifests reducing conduc-

tivity when this value decreases.

Figure 22 (bottom) shows the experimental thermal conductivity data obtained

using the anisotropy mode of the TPS method versus relative density for the PP

foams produced by the CO2 dissolution pressure quench foaming process. While

foams with high relative densities are thermally isotropic, i.e., laxial � lradial, the
ones with low relative densities (<0.2) are clearly anisotropic (see Fig. 22, top).
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Fig. 21 Theoretical and experimental thermal conductivities versus cell size for low density

polyethylene foams with the same chemical composition and relative density
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The lower the density, the higher the difference between radial and axial experi-

mental thermal conductivities. Figure 22 (top) shows the experimental and theoret-

ical data, determined based on (5), for the ratio between the axial and radial thermal

conductivities. In this case, it can be appreciated that the mismatch among experi-

mental and theoretical values is higher for the foam with the lower density,

corresponding to the one with the higher cellular anisotropy ratio (AR ¼ 9, see

Fig. 23). This is due to the model used to predict these conductivities, which only
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accounts for conduction. As has previously been shown, for relative densities below

0.2, radiation plays a significant role in the heat transfer, and thus should be taken

into account.

4.4 Incorporation of Secondary Phases: Micrometric
and Nanometric-Sized Fillers

As stated previously, another strategy to modify the thermal conductivity of

polymeric cellular materials and extend their applicability window consists in the

incorporation of secondary solid phases, conventionally inorganic in nature.

4.4.1 Incorporation of High Amounts of a Micrometric-Sized Filler

(Mg(OH)2)

Mineral reinforcements are frequently incorporated into solid polymers. Depending

on the type and amount, these would allow adjusting properties such as mechanical

behaviour, flame retardancy or thermal and electrical conductivities. This is the

case of magnesium hydroxide (Mg(OH)2), a well know PP flame retardant mineral

filler.

This filler is typically added to solid polymers and only a few research works

dedicated to the use of similar metal hydroxides in foams with the main objective of

improving their flame retardancy can be found [59]. In order to understand its

influence on the thermal transport behaviour of foamed materials it is necessary to

initially evaluate the evolution of thermal conductivity with filler content in the

solid polymer. Experimental results are shown in Fig. 24. As can be seen, the
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Fig. 24 Evolution of the experimental thermal conductivity of solid PP-Mg(OH)2 composites as a

function of Mg(OH)2 concentration

154 M. Antunes et al.



evolution is not linear; this kind of non-linear behaviour is expected according to

percolation theory [60]. The values measured for each solid material will be later on

used to model the thermal conductivity of the foamed composites.

Figure 25 shows the experimental data for PP foams and PP-Mg(OH)2 as a

function of relative density. Using 50 and 70 wt.% of this filler it is possible to

increase to a significant extent the conductivity of these materials, especially when

adding the highest amount of filler. For instance, a three time increase is detected

for foams with relative densities of 0.5 when a 70 wt.% content is used. Equation (7)

has been used to predict the values, in this particular case substituting Vs and

ls by the respective values corresponding to the solid composites (Fig. 24). As

shown in Fig. 25, the optimum fitting value for tortuosity is again approximately 1,

in accordance with the results obtained for the unfilled foams (Fig. 19).

4.4.2 Incorporation of Carbon Nanofibres

Nanometric-sized fillers are coming more and more important as polymer fillers,

despite having started to be commercially used in polymers just a few years ago. On

the other hand, nanocomposite foams are relatively new compared to solid nano-

composites.

The influence of incorporating fibrous-like conductive nanofillers (carbon nano-

fibres, CNF) on the transport properties of solid PP is again evaluated prior to the

results for foamed composites (Fig. 26). As the amount of filler incorporated is

rather low compared to magnesium hydroxide (see previous section), the influence
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Fig. 25 Comparative experimental thermal conductivities for different composite foams filled

with Mg(OH)2 and fitting to (7)
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on the overall thermal conductivity of the composite is quite poor, which was not

expected considering the extremely high theoretical thermal conductivity assumed

for this kind of filler (>2,000 W m�1 K�1).

In this case, the trend observed for the thermal conductivity as a function of CNF

concentration is almost linear. A linear fitting of the data (mixtures rule) lead to a

very small value for the filler thermal conductivity (around 20 W m�1 K�1). These

discrepancies could be due to both a failure of the model and a probable real value

of the conductivity of these CNFs one or two orders of magnitude lower than that

expected theoretically. Actually, although theoretical predictions have shown that

the axial thermal conductivity of carbon nanotubes is between 2,000 and 6,000

W m�1 K�1 [18, 61–63], depending on the type of structure and wall disposition,

there are considerable discrepancies in the literature, with some authors reporting

values as low as 20 W m�1 K�1 [64]. In our case, the thermal conductivity of the

carbon nanofibres is thought to be less than that expected for CNTs due to their

inner less perfection and surface, commonly displaying defects due to graphitic

edge terminations [65]. Therefore, a conservative value of 20 W m�1 K�1, seems

to be proper for our analysis.

In Fig. 27 we have plotted the comparative behaviour of both unfilled and CNF

composite foams as a function of relative density. The addition of this type of

highly conductive nanofiller in percentages below 15 wt.% does not significantly

modify the thermal properties of the original polymeric foams.

It is not simple to support this kind of behaviour by only focusing on conven-

tional models (even assuming rather low thermal conductivity values); therefore,

additional effects have to be considered. The large difference between single

nanotube measurements and the ones done in the as-produced composites suggests
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that highly resistive thermal junctions between the nanotubes due to entanglements

and cluster formations dominate the thermal conduction in the composites, thus

reducing the expected thermal conductivity. Therefore, low values of thermal

conductivity of the nanofibres, possible mechanical damage of this filler during

melt-compounding, bad dispersion and interfacial bonding between filler and

matrix could be the main reasons behind the unexpected low thermal conductivity

for these composites. On the other hand, the electrical conductivity of these

materials increases with the carbon nanofibres content [19], suggesting that

mechanisms controlling these two properties are very different.

4.4.3 Comparative Analysis

The previous analysis has proven that the addition of highly conductive fillers does

not significantly improve the thermal conductivity. Fillers used are representative

of both micro and nanoscale and in both cases the observed enhancement is not high

compared to the thermal conductivity obtained for the unfilled reference materials.

Apart from the reasons exposed above for nanofibres (part of them also applicable

to magnesium hydroxide), we would like to mention the thermal resistance problem

associated with the physical contact between filler and polymer. As a first approach,

considering that the used fillers present a different thermal conductivity it was to be

expected solid composites with different thermal conductivities for the same filler

content or different trends for both types of materials. Nevertheless, as is shown in

Fig. 28, this is not the case, and the values of the thermal conductivity for all solid

composites follow the same trend. This seems to confirm that due to thermal

resistance the low thermally conductive matrix controls the overall thermal
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conductivity, and that the influence of fillers only starts to be relevant when high

amounts are added.

Composite foams exhibited a similar behaviour, although the comparison is not

so simple due to density variations between materials.

5 Conclusions

This chapter shows that the possibility of varying density, cellular structure, raw

materials employed (polymer matrix and gas), and even the incorporation of fillers,

creates an enormous combination of possibilities that enables to regulate the

thermal conductivity of polymer foams. The main aim was to offer a first approach

to understand the mechanisms controlling this property and the methods that can be

used to tailor it. With that in mind, the theoretical analysis carried out was based on

simple models to predict the different thermal conductivity trends, despite much

more advanced models can be found in the literature. The last part of this chapter

has been intentionally focused on new emerging types of composite and nanocom-

posite foams, which are nowadays in the cutting edge of the research in this field.
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Heat Transfer in Polymer Composites Filled

with Inorganic Hollow Micro-Spheres

J.Z. Liang

Abstract The advances in studies on the heat transfer in polymer composites filled

with inorganic hollow microsphere were reviewed, and the heat transfer process

and mechanisms in the polymer/inorganic hollow microsphere composites was

described in this chapter. On the basis of the law of minimal thermal resistance

and the equal law of the specific equivalent thermal conductivity, a theoretical

model of heat transfer in polymer/inorganic hollow micro-sphere composites was

established and the corresponding equation of effective thermal conductivity was

derived. The simulation of the heat transfer in the polymer/inorganic hollow

microsphere composites was made by means of a finite element method. The

measurement instrument and methodology of the effective thermal conductivity

of the polymer/inorganic hollow microsphere composites were introduced, and the

effective thermal conductivity (keff ) of polypropylene composites filled with hol-

low glass bead (HGB) was measured. It was found that the effective thermal

conductivity decreased linearly with an addition of the volume fraction (ff) of

the beads. The simulated keff of the PP/HGB composites decreases also as a linear

function with an increase of ff, and are roughly close to the experimental measured

data, the keff with a 3D model are higher than those with a 2D model, and the

difference between them increases with an increase of ff. Moreover, good agree-

ment was showed between the measurements from the PP/HGB composites within

the ff range from 0 to 20 % and the theoretical predictions by means of this

equation.
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1 Introduction

1.1 Outline

Heat transfer in polymer composites is a complicated process, especially for the

inorganic hollow micro-sphere filled polymer composite systems. In this chapter,

the heat transfer process and mechanisms in polymer composites filled with

inorganic hollow micro-spheres are analyzed and studied, measurement methods

of the thermal conductivity of the composite systems are described, and experi-

mental results are discussed. Moreover, the relevant theoretical models of the heat

transfer as well as mathematical models of the effective thermal conductivity for

these composites are established.

This chapter includes four sections: section one is an introduction; section two is

concerned with heat transfer theory in polymer/inorganic hollow microsphere

composites; section three is concerned with the measurement of the effective

thermal conductivity of polymer/inorganic hollow microsphere composites and

section four is concerned with the simulation of heat transfer in polymer/inorganic

hollow microsphere composites.

1.2 Background

Foamed or porous plastics are one of the polymers usually used as thermal insulation

and sound insulation materials. However, their application as engineering structural

materials is considerably limited due to their poor mechanical properties such as

tensile and flexural strength, impact fracture toughness as well as stiffness. The

research focus, therefore, is how to fabricate a kind of porous plastic that is light,

has a good mechanical strength and toughness, as well as good thermal and sound

insulation properties. Rigid hollow micro-spheres (e.g. hollow glass beads, hollow

ceramic beads, rigid hollowplastic beads, and so on) contain inertia gas and have some

advantages such as a low thermal conductivity coefficient, sound insulation and low

weight. In addition, owing to their smooth spherical surface, these micro-particles do

not generate important stress concentration in the interface between the fillers and the

matrix. As a result, a new type of filler material has been developed recently and has

been used in industries, especially in the polymer industry, shipbuilding industry and

construction industry. If they are used to fill and modify resins, then polymer/hollow

micro-sphere composites having thermal insulation, sound insulation, low weight and

good mechanical properties may be prepared [1]. Now, these kind of composites are

applied in building materials, space-flight and aviation industry and so on.

1.3 Research Progress

The effective thermal conductivity is an important characterization of heat transfer

properties of materials. However, there have been few studies on the measurement

164 J.Z. Liang



and characterization of the effective thermal conductivity for polymer/hollow

microsphere composites. In 2006, Liang and Li [2] investigated the influence

of the filler size and content on the thermal conductivity of hollow glass bead filled

polypropylene composites. The results showed that the thermal conductivity

decreased nonlinearly with increasing volume fraction of the hollow glass beads,

while it increased with reducing the particle diameter under the same test condi-

tions. More recently, Yung and a colleague [3] measured the thermal conductivity

of hollow glass microsphere-filled epoxy-matrix composites and also found that the

thermal conductivity of the composites decreased nonlinearly with increasing

volume fraction of the hollow glass microspheres.

As stated above, the heat transfer process and mechanisms in porous materi-

als and polymer composites are very complicated, especially for polymer/hol-

low microsphere composites. It is quite important, therefore, to present some

equations or expressions for predicting or estimating the effective thermal

conductivity during heat transfer process in polymer composites. For porous mate-

rials, several researchers [4, 5] have recently derived respectively effective thermal

conductivity equations based on the Maxwell expression, or have established a

more accurate formula for calculating the effective thermal conductivity of

porous materials [6]. Relatively, the models proposed respectively by Nielsen

[7] and Cheng-Vochon [8] may better estimate the effective thermal conductivity

of filled composite materials, while the Agari-Nagai equation can predict the

effective thermal conductivity of composites with high-loading [9]. Liang [10]

analyzed the thermal conductivity of a porous material with closed spherical

and cylindrical holes. Suvorov et al. [11] studied the thermal conductivity of

hollow emery filled composites. Recently, Hill and Supancic [12] proposed an

indirect method to determine this interfacial boundary resistance by preparing

large-scale “macromodel” simulations of the polymer-ceramic interface. They

also investigated the effects of similar size and shape of platelet-shaped particles

on the thermal conductivity of polymer/ceramic composite materials [13].

Yu et al. [14] measured the thermal conductivity of polystyrene-aluminum nitride

composites and found that the thermal conductivity of the composites was

higher for a polystyrene particle size of 2 mm than that for a particle size of

0.15 turn. The thermal conductivity of the composite was five times that of

pure polystyrene at about 20% volume fraction containing aluminum nitride

(AIN) for the composite containing 2 mm polystyrene particle size. Recently,

Liang and Li [15] studied the heat transfer in polymer composites filled with

inorganic hollow micro-spheres and proposed a theoretical model. On the basis of

this model, they presented an equation of the thermal conductivity for polymer/

hollow microsphere composites. More recently, Liang and Liu [16] researched

heat transfer in phenolic composites filled respectively with aluminium powder

and graphite powder and established a new theoretical model of heat transfer

in the particulate-filled polymer composite systems based on the law of

minimal thermal resistance and the equal law of the specific equivalent thermal

conductivity.
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1.4 Study Sense

In general, solid particulate-filled polymer composites are two or multiple-element

composite systems, while a polymer filled with rigid hollowmicro-spheres belongs to

the kind of multiple-phase composite systems, because these particles contain inertia

gas. Consequently, the heat transfer process and mechanisms in the polymer/rigid

hollow micro-sphere composites are more complicated than those in polymer/solid

particle composites. In the polymer industry, inorganic hollowmicro-spheres are used

as filler extensively more and more due to their low cost, good physical-chemical and

mechanical performances, as well as good processing properties. As a result, it is quite

meaningful for the development and for the engineering application of the heat

transfer theory in polymeric materials that one understands the heat transfer process

and mechanisms in the polymer/rigid hollow micro-sphere composites as well as

providing for a quantitative description of the thermal properties of these materials.

2 Heat Transfer Theory in Polymer/Inorganic Hollow

Micro-Spheres

2.1 Heat Transfer Mechanisms

In general, the thermal conductivity in thermal insulation materials is the synthetic

effect of heat conduction, convection and radiation. According to the second law of

thermodynamics, heat always transfers spontaneously from a high temperature

body to a low temperature one. Namely, heat transfer will conduct where there is

a difference in temperature. Generally, insulation materials only reduce the strength

of heat exchange, and have a property of blocking heat transfer. As stated above,

polymer/hollow micro-spheres composite is a kind of ternary composite, it includes

three phases, namely resin, gas and sphere shell. During heat transfer in polymer/

hollow micro-spheres composites, when the heat quantity is close to a hollow

micro-sphere, only a small part of the heat quantity will conduct by it, while a

greater part of the heat quantity will move around it due to its low conductivity, as

shown in Fig. 1. Because of the low thermal conductive coefficient of the hollow

micro-spheres and longer heat transfer route and complication in the filled systems,

the thermal conductivity of these composites will be reduced.

It can be seen from Fig. 1 that heat transport in inorganic hollow micro-sphere filled

polymer composites has three kinds of ways: (1) thermal conduction by solid; (2) heat

radiation on the surface between neighboring hollow particles; (3) the natural

thermal convection of gas in the hollow particles. After finishing the experiments,

Skochdopole [17] pointed out that the natural thermal convection of the gas in

a micro-bubble would not occur when the bubble diameter was less than 4 mm.

Because the diameter of the hollowmicro-spheres as fillers is usually less than 0.1mm,

the natural thermal convection of the gas in it may be neglected. Furthermore,
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a polymer composite works usually under lower temperature conditions where the

proportion of the thermal radiation in the total heat transfer is very small, hence

thermal radiation may also be neglected.

Generally, the heat transfer process in inorganic hollow micro-spheres filled

polymer composites is more complicated than that in other solid particulate-filled

polymer composite systems because the former is a type of material with three

phases, namely resin, gas and sphere shell.

2.2 Heat Transfer Analysis

As discussed above, the heat transport in inorganic hollow micro-sphere filled poly-

mer composites has three kinds of ways. Namely solid thermal conduction, heat

radiation on the surface between neighboring hollow particles, as well as the natural

thermal convection in the hollow particles. According to the experiments by Skochdo-

pole [17], the natural thermal convection of the gas in a micro-bubble would not occur

when the bubble diameter was less than 4 mm, thus the natural thermal convection of

the gas in it may be neglected. Furthermore, polymer composite works usually under

lower temperature conditions, the proportion of the thermal radiation in the total heat

is very small, the thermal radiation, therefore, may be not considered.

2.3 Basic Equations of Thermal Conduction in Composites

Now the basic equations of thermal conduction usually used in composites are

mainly two kinds of types: series model and parallel model. For a binary composite

system, two simple expressions can be written respectively,

Fig. 1 Diagram of heat transfer in polymer/hollow microsphere composites
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Series model:

ke ¼ 1� ff

� �
kc þ ff kd (1)

Parallel model:

1

ke
¼ 1� ff

kc
þ ff

kd
(2)

where ke is the thermal conductivity of composite, kc and kd are the thermal

conductivity of the matrix and the filler respectively, ff is the volume fraction of

the filler. In fact, one can use the series model or parallel model alone, or use both

the two models, according to practical circumstance.

2.4 Heat Transfer Element Analysis

According to the above discussion, the theoretical analysis of the heat transfer in

this section is based on the following suppositions: (1) the structure change of the

composites is periodicity, and the ratio of this periodicity to the whole composite

materials very small; (2) the temperature distribution along the direction of heat

flow is linear. Because a periodical element is very small to the total body, the

influence of this hypothesis on the total heat transfer is insignificant. Figure 2 shows

a physical model of the heat transfer process of a hollow micro-sphere filled

polymer composite. Now we select an element from the composite for analysis.

The element is a straight cube with side length of H, and there is a hollow micro-

sphere with internal radius of r and external radius of R in the element. The element

is divided into polymer phase, the micro-sphere shell phase and the gas phase.

The heat quantity Q transfers from the bottom to the top.

2.5 Mathematical Model

The element analysis of heat transfer in a polymer/hollow micro-sphere composite

is shown in Fig. 3. The temperature in the materials is lower than the softening

point temperature of the resins. The element is divided into two parts: part I and

part II. Part I represents the pure polymer, and the height is h1, namely h1 ¼ H � 2R.
Part II is the compound with the polymer and a hollow micro-sphere, and the height

is h2 (h2 ¼ 2R). According to the law of minimal resistance and the equal law of

the specific equivalent thermal conductivity [18], if constituting the heat resis-

tances of these two parts, one may get the heat resistance of the whole element.
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Consequently, the equivalent thermal conductivity of the whole element may be

determined.

Part I:

k1 ¼ kp (3)

H

H R

Q

x

y

r
gas

glass

polymer

Fig. 2 Physical model of heat transfer

H

H

Q

1

2

1

x

y

dy

Fig. 3 Element analysis of heat transfer
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Part II: Taking a thin piece with thickness of dy, according to Fourier’s theorem,

k2 is given by:

k2 ¼ ðQp þ Qg þ QaÞ=ðdT
dy

� SÞ

¼ kp
Sp
S
þ kg

Sg
S
þ ka

Sa
S

(4)

where, T is the temperature, S is the area of whole across-section. kp, kg and ka are
the thermal conductivity of polymer matrix phase, micro-sphere shell phase and gas

phase, respectively. Sp, Sg and Sa are respectively the cross section area of polymer,

micro-sphere shell and internal micro-sphere. Qp, Qg and Qa are the heat quantity

through the polymer matrix, micro-sphere shell and gas, respectively.

Because of the linear distribution of temperature, the average thermal

conductivity of each section may be first obtained as:

Part I:

k1
�
¼
Z
h1

k1dy
�
h1 ¼ kp (5)

Part II:

k
�

2
¼ 1

h2

Z
h2

kp
Sp
S
þ kg

Sg
S
þ ka

Sa
S

� �
dy

¼ 1

h2S
kpVp þ kgVg þ kaVa

� � (6)

where Vp, Vg and Va are the volume of the polymer matrix, micro-sphere shell and

gas, respectively.

According to the series theorem of heat resistance, the effective thermal

conductivity of the composite, keff is given by:

keff ¼ H

RS
¼ H

R1 þ R2ð ÞS
¼ H

h1
kpS

þ h2
2

kpVpþkgVgþkaVa

� �
S

(7)

where R is the total heat resistance of the element, R1 and R2 are respectively

the heat resistances of Part I and Part II. For the hollow micro-spheres, we have that:

Vgrg þ Vs � Vg

� �
ra ¼ Vsrs (8)
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where rg, ra and rs are the effective density of sphere shell, gas and micro-sphere

respectively, Vs is the total volume of the hollow micro-spheres. Thus, one can get

the expressions among the volume and density of each composition as well as the

volume fraction (ff) of the hollow micro-spheres. Finally, substituting these

expressions into Equation (8), we have that:

keff¼ 1

kp
1�6ff

p

� �1
3

þ2 kp
4p
3ff

 !1
3

0
@

2
4 (9)

þp
2ff

9p

� �1
3

kg
rs � ra
rg � ra

þ ka
rg � rs
rg � ra

 !
� kp

 ! !�1
3
5
�1

2.6 Theoretical Estimation

The composites investigated in this section were a polypropylene (PP) composite

system filled with two kinds of hollow glass beads (TK35 and TK70). These hollow

glass beads (HGB)were supplied byEco.&Chimie Co. Ltd. (Guangzhou, China), and

the mean diameters and effective density of TK35 were 35 mm and 680 kg/m3, the

mean diameters and effective density of TK70 were 70 mm and 210 kg/m3, respec-

tively. The density of the sphere shell was 2,210 kg/m3, and the thermal conductivity

was 0.179 W/m K. The gas in the beads was an inert gas, and the density and thermal

conductivity were 0.0899 kg/m3 and 0.0228 W/m K. The thermal conductivity and

density of the PP resin were 0.2 W/m K and 915 kg/m3 respectively.

Substituting respectively the stated above data of the two filled systems into

Equation (9), one may estimate the effective thermal conductivity keff of the

composites corresponding to different volume fraction of hollow glass beads, and

the results are shown in Fig. 4. With an addition of the HGB volume fraction, the

theoretical estimations of keff of PP/HGB composites decreases linearly, and the

values of keff for the PP/TK35 system are slightly higher than those for the PP/TK70

system under the same conditions.

3 Measurement of Effective Thermal Conductivity

3.1 Raw Materials

An injection grade of polypropylene (PP) with trade mark of CJS-700, supplied by

Guangzhou petrochemical Co. Ltd in China, was used as the matrix resin, the
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density and melt flow index (230�C, 2.16 kg) of the resin were 910 kg/m3 and

12 g/10 min, respectively.

Two kinds of hollow glass beads (HGB) supplied by Molüs Co. Ltd in Germany,

TK35 and TK70, with different size were used as the fillers in this section. The mean

diameters of the fillers were 35 and 70 mm, and the density was 680 and 210 kg/m3,

respectively. The surface of the particles was pretreated with silane coupling agent.

The particle size distribution of the fillers was measured by means of a laser size

instrument (Model LS-C(I) supplied by Omik Co. Ltd in Zhuhai, China.

3.2 Sample Preparation

After simple mixing, the PP resin and the HGB with different proportions were

compounded in a twin-screw extruder. The blending was conducted in a tempera-

ture range of 160–230�C and a screw speed of 25 r/min, and then the extrudate was

granulated to produce the composites. The volume fractions of the HGB were 0, 5,

10, 15 and 20%, respectively. The specimens for thermal conductivity measure-

ment were molded by using an injection molding machine in the temperature range

of 160–240�C after drying the composites. The geometry of these specimens

includes a diameter of 50 mm and a thickness of 6 mm.

3.3 Apparatus and Methodology

The thermal conductivity of the composites was measured by means of a protecting

heat plate method in this test, and the main apparatus was a protecting heat flow

type of thermal conductivity instrument (model NF-7) supplied by South China
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Fig. 4 Theoretical

estimations of keff for PP/
HGB composites
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University of Technology (see [2]). The environmental temperature for the test was

27�C. The specimens were plates with a length of 50 mm, a width of 50 mm and a

thickness of 6 mm. Four measuring points were set up equally on a plate, and the

average was reported for each specimen.

3.4 Results and Discussion

3.4.1 Experimental Results

Figure 5 shows the dependence of the effective thermal conductivity (keff ) of PP/
TK35 and PP/TK70 composite systems on the volume fraction (ff ). It can be seen

that the keff of the composites decreases with an increase of ff . When ff is less than

15%, the values of keff of PP/35 filled system are greater than those of PP/70 filled

system. This indicates that the heat insulation properties for the composite systems

with filled bigger diameter of hollow micro-spheres are good at lower inclusion

concentrations. This comes about because when the thickness to diameter ratio of

the hollow micro-spheres is fixed, the bigger the particle size, there is more gas in it

(density reduction) under constant range of particle diameter, resulting in a reduc-

tion of the effective thermal conductivity. When ff is more than 15%, the values of

keff of the PP/35 filled system are lower than those of the PP/70 filled system.

It might be that the number of the TK35 with small particle diameter increases

obviously at higher filler concentration, leading to improvement of the heat insulation

properties of the material.
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Fig. 5 Dependence of effective thermal conductivity on HGB volume fraction of composites

Heat Transfer in Polymer Composites Filled with Inorganic Hollow Micro-Spheres 173



3.4.2 Theoretical Prediction

The composites investigated in this section were also a polypropylene (PP) filled

with two kinds of hollow glass beads (TK35 and TK70). These hollow glass beads

(HGB) were supplied by Eco. & Chimie Co. Ltd. (Guangzhou, China). The mean

diameter and effective density were 35 mm and 680 kg/m3 for TK35, and 70 mm and

210 kg/m3 for TK70 respectively. The density of the sphere shell was 2,210 kg/m3,

and the thermal conductivity was 0.179 (W/mK). The gas in the beads was an inert

gas, and the density and thermal conductivity were 0.0899 kg/m3 and 0.0228W/mK,

respectively. The thermal conductivity and density of the PP resin were 0.2 W/m K

and 915 kg/m3, respectively.

Substituting this data for the two filled systems into Equation (9), onemay estimate

the effective thermal conductivity keff of the composites corresponding to different

volume fraction of hollow glass beads, and the results are shown in Figs. 6 and 7.With

an increase of the HGB volume fraction, the theoretical estimations of keff of PP/HGB
composites decrease linearly, and the values of keff for PP/TK35 system are slightly

higher than those for the PP/TK70 system under the same conditions.

3.5 Comparison Between Predictions and Measurements

Plotting respectively the measured data of the effective thermal conductivity from

the experimental of these two filled PP composite systems (as shown in Fig. 5) in

Figs. 6 and 7, one may verify preliminarily Equation (9). It can be seen that the

theoretical estimations of the effective thermal conductivity are good and consistent
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Fig. 6 Comparison between predictions and measured data of the effective thermal conductivity
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with the measured data, and keff decreases linearly with an increase of ff , except for

an individual data point. In the previous work, the authors [19] simulated the two

dimensional heat transfer process in these filled systems stated above by using the

finite element software ANSYS, and the results showed that the trend of the

simulations are similar to the theoretical predictions. This indicates that the mathe-

matical model (9) may describe better the relationship between the effective

thermal conductivity of inorganic hollow micro-spheres filled polymer composites

and material parameters when the concentration of the particles is low and the

dispersion of these inclusions in the resin matrix is uniform.

4 Simulation of Heat Transfer in Polymer/Inorganic

Hollow Microspheres

4.1 Basic Equation of Temperature Field

For a general 3D temperature field, if the quantity of heat required for raising the

temperature by a micro-element body and the quantity of heat generated by the heat

source in the micro-element body is at equilibrium, then the variables of tempera-

ture filed [T(x, y, z, t)] in a right angle coordinate system satisfy the following heat

equilibrium equation:

@2T

@x2
þ @2T

@y2
þ @2T

@z2
þ q

:

l
¼ 1

a

@T

@t
(10)

k e
ff 

(W
.m

–1
.K

–1
)

ff (%)
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Fig. 7 Comparison between predictions and measured data of the effective thermal conductivity

(PP/TK70 system)
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where q is the heat flow density, W/m2; a is the thermal diffusivity, W/m2�K; l is

the thermal conductivity, W/m�K; t is the heat conduction time, h. Three kinds of

heat conduction boundary conditions and initial conditions can be assigned as

follows [20]:

The first kind of boundary condition:

T G ¼ Twj
T G ¼ F x; y; tð Þj
	

(11)

where is the body boundary, the direction is reverse clock hands, T is the known

wall temperature, K, F (x, y, t) is the known temperature function (variation with

time and position).

The second kind of boundary condition:

�k @T
@n G ¼ q2j

�k @T
@n G ¼ g x; y; tð Þj

(
(12)

where g(x, y, t) is the heat flow density function.

The third kind of boundary condition:

� k
@T

@n
G ¼ a T � Tf

� �


Gj (13)

where a and Tf may be constants, and may also be the function varying with time

and position. If a and Tf are not constants, then the average values are usually

separately taken as constants in the numerical calculation.

Initial condition

T t¼0 ¼ T0j
T t¼0 ¼ f x; yð Þj
	

(14)

where T0 is the beginning temperature, K; ’ (x, y) is the temperature function.

4.2 Finite Element Analysis of Heat Transfer

4.2.1 Physical Model

The heat transfer process in a hollowmicro-sphere filled polymer composite may also

be investigated with a numerical simulation method based on the fundamental equa-

tions discussed above. Supposing that these hollow micro-spheres are distributed

uniformly in the polymer matrix, and considering their geometry symmetry, then

the 3D temperature field may be simplified as a 2D heat transfer problem. Figure 8
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shows the geometry of the physical real thermal model for a unit cell in the composite.

It can be seen that the polymer/hollow microsphere composite is a ternary or three-

phase composite system, namely, resin phase, micro-sphere wall phase and gas phase.

A quantity of heat is transferred into the polymer from outside to produce thermal

conduction. When the thermal current encounters the hollow sphere, a smaller part of

quantity of heat carries out thermal conduction, while a greater part of it goes around

the sphere due to the low conductivity of the sphere. In this case, the route of heat

transfer in the composite becomes longer and complicated, leading to a reduction of

the heat transfer properties of the composite. Therefore, the heat transfer process in a

polymer/ hollow micro-sphere composite carries out the following three major ways:

(1) thermal conduction through solid and gas; (2) thermal radiation between hollow

micro-sphere surfaces; (3) natural convection of gas in hollowmicro-sphere. Accord-

ing to the experimental studies, Skochdopole [16] pointed out that the natural convec-

tion of the gas in hollow sphere did not happened when the diameter of the hollow

sphere was less than 4 mm. Because the diameter of hollow micro-sphere is from

several micrometer to hundreds micrometer, the natural convection of gas may not be

considered. Furthermore, the thermal radiation is not considered owing to its

quite small proportion in total quantity of heat transfer under the high temperature

condition.

4.2.2 Physical Property Parameter

Polypropylene composites filled respectively with two type of hollow micro-sphere

(TK 35 and TK 70) were investigated in this section. These hollow micro-spheres

were supplied by MOLÜS company in Germany, it was a silicate, the density was

2,210 kg/m3 and the thermal conductivity was 0.179 (W/m�K). There was an inertia
gas in the micro-sphere, the density and thermal conductivity were 0.0899 kg/m3

Y
XZ

Fig. 8 An element model of

heat transfer (PP/TK35)
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and 0.0228 (W/m�K). The average diameter of TK35 was 35 mm, and the effective

density was 680 kg/m3; the average diameter and effective density of TK70 were

70 mm and 210 kg/m3, respectively. The thermal conductivity of the PP resin was

0.2 (W/m�K).

4.2.3 Finite Element Model

In this section, the commercial ANSYS software was used to reform the numerical

simulation of the heat transfer in the hollow glass bead filled PP composites. For this

type of thermal analysis, the element type for the thermal analysis was the 2D

element PLANE35 with six nodes. For a steady heat transfer problem, it is only

required to define the thermal conductivity for the PP/TK35 and the PP/TK70

composite systems. Apart from assigning above stated physical parameters, the

internal diameter and external diameter of the hollow glass bead was modeled

respectively. The unit edge length was calculated according to the volume fraction

(ff = 20%) of the bead, and then the length was assigned into the software

to generate the geometry model. The quantity of heat was transferred from the

bottom to the top. Bringing the first boundary conditions to the bottom, and temper-

ature is 30�C; bringing the second boundary conditions to the top, and environment

temperature is 25�C. The conductive heat transfer coefficient was 25 W/(m2�K), the
right and left boundaries were thermal insulation boundary conditions.

4.2.4 Element Mesh Division

The meshes were divided automatically by means of intelligence. The parameters

were three, and the element type was a triangle. The results of the mesh division are

shown in Fig. 9.

A 3D heat transfer model was established by using the similar method to better

represent the heat transfer process in this kind of composite. In this chapter, a 3D

model of the heat transfer in the unit cell of the PP/TK35 composite system was

made.

4.3 Results and Discussion

4.3.1 Temperature Field

After solving the system of equations by a solver, this heat transfer simulation was

done by means of a solver and then entered into a post-processor, the temperature

cloud charts were drawn, as shown in Fig. 10. The temperature cloud chart

illustrates imaginarily the temperature field in a unit cell. It can be seen in Fig. 10

that the temperature variation in the hollow glass bead is faster than outside of

the bead.
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To reflect the direction and size of the thermal current in a unit cell, a thermal

current vector chart in a unit cell was drawn (see Fig. 11). The direction of the

arrows represents the thermal current direction, the length of arrow represents the

strength of the thermal current. It can be seen in Fig. 11 that the quantity of heat is

divided as two parts when it encounters a bead: a smaller part of it flows into the

sphere, the other flows along the sphere wall.
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Fig. 9 Element mesh division

(PP/TK35)
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4.3.2 Radial Distribution of Temperature

Figures 12 and 13 display respectively the radial distribution of temperature for

the PP/TK35 and the PP/TK70 composite systems. It can be observed that the

temperature drops down slightly at both sides of the hollow glass bead, whereas the

temperature reduces quickly in the bead. This indicates that the heat resistance at

the inner of the micro-sphere is quite high. Namely, the hollow glass bead has

a good thermal insulation property. Comparatively, the radial distribution of

temperature of the PP/TK70 system is similar to the PP/TK35 system.

4.3.3 Effective Thermal Conductivity

As stated above, the effective thermal conductivity is an important parameter for

characterizing the thermal properties of materials. The total quantity of heat may

be obtained by applying the computer order “List Results > Reaction Solu”, and

then the difference in temperature is determined from the temperature cloud chart.

Finally, the effective thermal conductivity (keff) for each unit cell of the composite

materials could be calculated according to Fourier’s law. When the volume

fraction of the hollow glass beads in the composites is 5, 10, 15 and 20%

respectively, the relevant geometry models are set up, determining physical para-

meters and boundary conditions, dividing meshes and solving, and then

Fig. 11 Thermal current vector charts in an element (PP/TK35)
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calculating corresponding keff. The results are shown in Fig. 14. Figure 14 illus-

trates the relationship between keff and ff. It can be seen that keff decreases linearly
with an increase of ff. For the same value of ff, the value of keff for the PP/TK35
system is higher than that of the PP/TK70 system. This indicates that the thermal

insulation and heat preservation properties of the small size hollow micro-sphere

filled system is relatively good.

It can also be seen from Fig. 14 that the values of keff of the 3D model simulation

are higher than those of 2D model simulation for the PP/TK35 composite system,

and the difference between them increases with an increase of ff. This might be that

the 3Dmodel is relatively close to the practical heat transfer process in the polymer/

hollow micro-sphere composites.

4.4 Comparison Between Simulations and Measurements

In the previous work, Liang and Li [2] measured the thermal conductivity of hollow

glass-bead filled polypropylene composites by means of a protecting heat plate

method. Figure 15 shows the comparison between the finite element simulations

and the measured data of the thermal conductivity of PP/TK35 composite system.

It can be seen that the FEM simulations are roughly close to the experimental

measured data of keff. Relatively, the simulations with 3D model are closer to the

experimental measured data of keff than those with the 2D model. Figure 16 shows

the comparison between the finite element simulations and the measured data of the

thermal conductivity of PP/TK70 composite system. Similarly, the FEM simula-

tions are also roughly close to the experimental measured data of keff, and the

simulations with 3D model are relatively closer to the experimental measured data

of keff than those with the 2D model. This illustrates that the finite element
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simulation of the heat transfer in hollow glass bead filled PP composites is possible

by using the ANSYS software in this case.

5 Conclusions

A polymer/hollow micro-sphere composite is a three-phase system, and the heat

transfer process is carried out in general by the following three ways: (1) thermal

conduction through solid and gas; (2) thermal radiation between hollow micro-sphere
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surfaces; (3) natural convection of gas in hollow micro-sphere. However, the heat

transfer is made mainly by the first way. The quantity of heat is divided into two parts

when the thermal current encounters a bead: the smaller part of quantity of heat flows

into the sphere, the other flows along the spherewall. The temperature variation inside

the sphere is faster than that outside of the sphere.

A theoretical model of heat transfer in polymer/inorganic hollow micro-sphere

composites was established and the corresponding equation of effective thermal

conductivity was derived based on the law of minimal thermal resistance, the equal

law of the specific equivalent thermal conductivity, and previous work.

The heat insulation property of polymeric materials may be improved by filling

with inorganic hollow micro-spheres. Under the experimental conditions, the

effective thermal conductivity of hollow glass bead filled polypropylene compo-

sites decreased linearly with an addition of the volume fraction of the beads.

The simulated keff of PP/Tk35 and PP/TK70 composites decreases as a linear

function with an increase of the volume fraction of hollow glass beads, and it

reduces somewhat with an increase of the bead diameter. In addition, the simulated

values of keff with a 3D model are higher than those with a 2D model for PP/TK35

system, and the difference between them increases with an increase of ff.

Furthermore, the FEM simulations are roughly close to the experimental

measured data of keff, and the simulations with the 3D model are relatively closer

to the experimental measured data of keff than those with a 2D model. This indicates

that the simulation of the heat transfer in PP/HGB composites made by the finite

element software ANSYS is possible.

It was found that the theoretical estimations were roughly similar to the finite

element simulations of the effective thermal conductivity of hollow glass bead

filled polypropylene composites at lower concentration of the particles (ff � 20%).

With increase of ff, keff decreased linearly, and keff decreased slightly with increase
of the HGB diameter when ff was constant.

It is beneficial to improve the heat insulation property of the composite systems

if the content of the hollow glass beads is not high and the distribution of the beads

in the PP matrix is uniform. The results showed that the effective thermal conduc-

tivity of PP/HGB composites decreased with an increase of the HGB diameter when

the concentration of the hollow glass beads was not too high.
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Radiative Transfer in Two-Phase

Dispersed Materials

Jaona Randrianalisoa, Rémi Coquard, and Dominique Baillis

Abstract This chapter presents the treatment of radiative transfer in two-phase

dispersed media in the framework of radiative transfer theory. With this aim, two

modeling approaches, under the geometric optic hypothesis, are described and then

compared. The first one is the traditional treatment of dispersed media as continu-

ous and homogeneous systems, referred to here as the Homogeneous Phase

Approach (HPA). The radiation propagation is characterized by effective radiative

properties and modeled by the conventional Radiative Transfer Equation (RTE).

The second approach is based on a separate treatment of radiative transfer in the

continuous and dispersed phases, referred as the Multi-Phase Approach (MPA). In

this approach, each constituting phase has its own effective radiative properties and

temperatures. For each approach, the methods for predicting the radiative properties

are reviewed. The radiative transfers through typical two-phase dispersed media,

such as glass containing bubbles, packed bed of opaque spheres, and packed-bed of

semitransparent spheres, are analyzed. The results of transmittances and reflec-

tances from these predictive approaches are compared with available experimental

data or Monte Carlo (MC) simulation.

Through this contribution, it is shown that the HPA is satisfactory for analyzing

radiative transfer in two-phase dispersed media provided that the effective radiative

properties are correctly predicted. For practical purpose, it is recommended to use

first the well-known independent scattering theory when dispersed contents (or

scatterers) are largely spaced or when their volume fraction is small. An example of

these media is the glass containing bubbles studied herein. Then, the correlated
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scattering theory proposed by Brewster or Singh and Kaviany is the simplest model

when the continuous phase is non-absorbing and the dispersed phase is constituted

of opaque spheres. Finally, the ray-tracing (RT) based method can be used for

arbitrary dispersed materials fulfilling the geometric optic regime.

Concerning the MPA, it is generally a suitable approach, as exemplified with

glass containing bubbles and packed bed of opaque particles. It is however inaccu-

rate for a few cases for which the scattering pattern presents strong peaks (known as

rainbow peaks) due to the correlation between the rays incident on a scatterer and

those transmitted through it after undergoing several internal reflections. This

problem may occur only when (1) the continuum is less refracting than the

scatterers; (2) the scatterers are weakly absorbing; and (3) the scatterer boundaries

are specular and regular in shape. It is, for example, the case with a packed-bed of

semitransparent specularly reflecting spheres.

Nomenclature

a Particle radius, m

A Surface area, m�2

c Interparticle distance, m

C Particle cross section, m�2

C1, C2 Constants in (3)

d Particle diameter, m

dtr Transportation length of radiation inside a scatterer, m

dist Sum of extinction distances traveled by Nray radiation bundles, m

distbd,i Mean distance between successive interactions of a ray bundle

with the boundary of the substance i
dsi Direction vector of the ray bundle at the ith interaction point on

the continuum-particle interface

E(R,y), E0(R,y) Proportions of ray bundles emitting from the center of a spherical

medium of radius R and leaving it into a direction of angle y
f Fraction of ray bundles undergoing scattering or absorption

fv Dispersed phase volume fraction

I Radiation intensity, W m�2 sr�1

Ib Blackbody radiation intensity, W m�2 sr�1

K1, K2 Constants in (52)

l Characteristic length, m

L Sample thickness, m

li Mean-free-path corresponding to the event of type i or traveled
path of a ray from its emission to the point i, m

m(a) Number of particle per unit volume having size in the range a and
a + da, m�4

n Refraction index or real part of the complex refractive index

N Number
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Nt Total number of particle per volume unit in the sample, m�3

q Radiation flux, W m�2

Q Particle efficiency factor

R Radius of a spherical dispersed medium, in m, or hemispherical

reflectance

s, si Position vector, position vector at the ith interaction point,

respectively, m

s1
0 Position vector of the ray at the absorption point in the continuum

SR Scaling factor of non-point scattering

t Unit normal to surface area

T Temperature (in K) or hemispherical transmittance

V Volume, m3

W(Y) Number of ray bundles scattered in the angular interval Y and

Y + dY
x Particle size parameter

z Abscise of the radiation intensity along the sample thickness

direction, m

Greek Symbols

a Effective absorption coefficient, m�1

b Effective extinction coefficient, m�1

w Angle between the ray direction incoming on a particle and the outward

normal to the particle surface, rad

w0 Angle between the ray direction transmitted into a particle and the inward

normal to the particle surface, rad

d Kroneker delta function

D Direction vector

e Porosity or error function in (13)

f Scattering phase function of a single particle

F Effective scattering phase function of the dispersed medium

g Scaling factor of the non-point scattering in (6)

’ Azimuth angle, rad

k Absorption index or imaginary part of the complex refractive index

l, lmax Radiation wavelength in vacuum, dominant radiation wavelength,

respectively, m

m, m0 Cosine of angles y and y0, respectively
<m> Scattering anisotropy factor

� Ratio between the real refractive indexes of the dispersed and continuous

phases

P, P0 Cumulative probabilities of extinction or absorption

y Polar angle, transmittance or reflectance angle, rad

Y Scattering angle defined in (16), rad
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r, r0 Hemispherical and directional reflectivities, respectively

s Effective scattering coefficient, m�1

o Scattering albedo

O Solid angle, sr

Subscripts

a Refers to absorption

dir Refers to the number of discrete directions in the angular interval [0,p]
e Refers to extinction

equ Refers to the real refractive index of the equivalent homogeneous medium

h Refers to hemispherical transmittance or reflectance

i Refers to parameters characterizing the radiative transfer in the ith phase

inc Refers to incident radiation penetrating the sample

ind Refers to radiative properties under the independent scattering hypothesis

ji Refers to parameters characterizing the radiative transfer from the jth phase

to the ith phase

N Refers to the normal transmittance

pos Refers to the number of discrete positions.

ray Refers to the number of rays to be tracked in the Ray-tracing algorithm

s Refers to scattering

tr Refers to the radiative properties in the transport approximation defined in

(29)

l Refers to spectral or wavelength dependent quantities

0 Refers to the continuous substance surrounding the scatterers

1 Refers to the dispersed phase

32 Refers to the mean scatterer radius defined in (24)

1 Introduction

In this contribution, we consider the case of heterogeneous two-phase materials

constituted by one rigid, impermeable solid phase and one fluid (liquid or gaseous)

phase. The characteristic dimension of each phase, denoted herein by d, is assumed

much larger than the radiation wavelength, denoted herein by l. The radiative heat
transfer in such media is of major importance in many engineering processes and

systems. Some examples of these systems are porous burners [1, 2], solid oxide fuel

cells [3], thermochemical reactor [4], thermal insulation [5, 6]. While most text-

books such as [7, 8] are focused on the heat and mass transfer problem in two-phase

systems, few are devoted to the treatment of radiative transfer in two-phase media
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[9–11]. The current chapter aims to recall the existing approaches to solve radiative

transfer problems in two-phase dispersed media and to discuss their limits of

applicability. Particularly, it reports the recent advances concerning the treatment

of such problems. Finally, it shows the application of the discussed approaches to

some types of two-phase dispersed materials.

The exact solution of the radiative transfer in two-phase media should be

determined from first principles consisting in the resolution of the Maxwell equa-

tions for the electromagnetic field in the entire domain. However, such an approach

is only suitable for small systems, because of the limits imposed by modern

computers. The alternative method frequently encountered is to treat the radiative

problem in the framework of radiative transfer theory. It consists in the resolution of

the Radiative Transfer Equation (RTE). The RTE has been derived from the

equations of multiple scattering of waves [12–17] although it was originally estab-

lished from the energy balance of corpuscles in an elementary volume [18–22].

Recall that the RTE is suitable only if the system dimension, denoted herein by L, is
much larger than the radiation wavelength l so that the wave interferences occur in
a random way. Such a criterion is fulfilled because we deal with materials char-

acterized by d � l and L � d. There has been long experience on the modeling of

radiative transfer in dispersed media, i.e. a continuous medium containing a collec-

tion of particles (or scatterers). It constitutes the starting point of modeling of

radiative transfer in two-phase materials. In fact, two-phase materials can be viewed

as dispersed media. For packed (or fluidized) beds, the particles are the dispersed

phase while the fluid substance is the continuous phase. For low porosity closed cell

foams, bubbles or cavities are the dispersed phase while the substance surrounding

pores is the continuous phase. Therefore, the theories established for dispersed

media can be suitable. They are discussed in the following paragraphs.

The main parameters of the RTE are the propagation constants called “radiative

properties”. The applicability conditions of the RTE to dispersed media are now

established as can be found in the series of papers and textbooks byMischenko et al.

[17]. One of these criteria is the Far-field approximation (FFA), which imposes that

(1) the scatterers must be located far from each other; and (2) the distance between

the scatterers and the observation point must be much greater than the radiation

wavelength [23].

1. For dispersed media with low packing fraction of scatterers, the FFA is generally

fulfilled and the RTE is suitable. Moreover, the interferences between scattered

waves occur in a random way, and the dispersed phase can be viewed as point

scatterers. In other words, the radiation interaction with scatterers is a point

scattering. Therefore, the exact solution of the radiative transfer problem is

expected because the radiative properties can be also determined, for example

from the interaction of a plane electromagnetic wave with an isolated scatterer

known as “Independent scattering theory” [24–26].

2. For dispersed media with a high packing fraction, leading to closely spaced

scatterers, the radiative transfer problem becomes more complex. Generally

speaking, the RTE cannot be used due particularly to the failure of the FFA.
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Other approaches such as the full wave Monte Carlo [27] and the T-matrix [28]

or different techniques based on the multiple scattering of waves (such as

Foldy’s, [12] Twersky’s, [29] and Quasicrystalline approximations [30]) can

be adopted. These methods have been shown to be straightforward for scatterers

with size smaller than or comparable to the radiation wavelength. However, they

are not convenient when the scatterers are very large compared to the wave-

length due to excessive computation time and memory consumption. Since an

exact solution of the radiative transfer problem in such systems cannot be

obtained, at least in the near future, coarse approximations are necessary. The

most common assumption is to consider the dispersed medium as continuous

and homogeneous and to use the standard RTE with “effective radiative pro-

perties” [31–36] which differs from the radiative properties of dilute media

[24–26]. This approximate method is referred herein to as the “Homogeneous

Phase Approach” (HPA). In thermal engineering problems, the thermal equilib-

rium between the continuous and dispersed phases is often assumed through the

HPA. To deal with multi-temperature phases, additional terms should be intro-

duced in the RTE which render it more complex [37, 38].

For scatterers with size much larger than the radiation wavelength, each elemen-

tary volume contains only portions of scatterers but not collections of them. An

elementary volume can be therefore treated as a two-phase medium in which an

energy balance can be performed in each phase. In this point of view, another

modeling method detailed in this contribution is the “Multi-Phase Approach”

(MPA), which consists in assigning to each phase their own transport equation

(but coupled to each other) and their own effective radiative properties [39–41].

Through the MPA, each phase can thus have its own temperature. Note that such an

approach is rather new in radiative transfer treatment; however, it is a common

practice in multi-phase heat and mass transfer problems [7, 8].

For practical reasons, the approximate HPA and MPA appears the most useful

solution method of radiative transfer in two-phase media. In these approaches, the

knowledge of effective radiative properties is crucial. For convenience, they are

referred to just as radiative properties in the following. As discussed above, the

radiative properties of media constituted of sufficiently spaced scatterers can be

correctly obtained through the Independent scattering theory while those of densely

packed scatterers are quite complex due to “dependent scattering” phenomena.

They include:

l “Interference effects,” i.e. the radiation incoming on each scatterer (or particle)

undergoes an interference with the radiation scattered by neighboring particles
l “Multiple scattering effects,” i.e. in an elementary volume, the radiation scat-

tered by a particle is incident on another particle to be scattered again
l “Non-point scattering,” which is a purely geometric effect due especially to the

proximity of particles compared to their size
l And “radiation transportation,” which is also a geometric effect due to the

transportation of radiation beams across substantial distances (through the par-

ticles) compared to the interparticle distance
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To overcome such theoretical difficulties, the most straightforward models of

radiative properties, in the large scatterer limit, are based on the Geometric Optic

Approximations (GOA) by neglecting the interference of waves and the diffraction

patterns as detailed later. The radiation is then treated as a “straight-ray.”
In this framework, several prediction models of radiative properties are now

available depending on the radiative transfer approaches.

l In the HPA, correlated scattering theories consisting in scaling the independent

scattering results by scaling factors are suggested. Different scaling factors are

given, for instance, for spheres [35, 36, 42] and cylinders [43] randomly dis-

persed in a transparent continuous phase. Currently, predictions based on ray-

tracing techniques are developed. They have the advantage to be suitable for

media with complex shapes of scatterer and in the presence of transparent [44] or

semitransparent continuous phase [39, 41, 45, 46]. Other techniques of charac-

terization of radiative properties are based on inverse (or identification) method

requiring measurements of radiative quantities such as transmittance, reflec-

tance, and/or emittance [47, 48].
l In the MPA, the ray-tracing method [39] and the correlated scattering theory [40]

have been used.

This chapter is divided into two main parts. The first one details the theoretical

foundation of the homogeneous phase and multi-phase approaches of the radiative

transfer. The prediction of radiative properties involved in both approaches is

described. The second part concerns the application of both radiative transfer

approaches to two examples of two-phase materials such as glass matrix containing

bubbles, and packed beds.

2 Theoretical Basis

2.1 General Hypothesis

Let us denote by, c the interparticle (i.e. surface-to-surface) distance, and n1 and n0
the refraction indexes of scatterers and continuous substance, respectively. The

current HPA and MPA use the GOA of electromagnetic waves; thus, it neglects the

wave effects such as interferences and diffraction. Therefore, the radiation is treated

as a superposition of pencils of rays propagating according to a straight line. In

order for this assumption to be valid, we only focus our attention on the following

cases:

l The size of scatterers d is much greater than the wavelength (known as the limit

of large particles). The practical criteria is x = pd/l � 1 where x is called size

parameter. The phase change of radiation passing through the scatterer is large,

i.e. xjn1/n0 � 1j � 1 (known as the limit of hard particles). Therefore, the
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propagation of the radiation within the scatterer can be modeled using the

geometric optic laws of reflection and refraction.
l The interparticle distance c is much greater than the wavelength, i.e. c � l, and

the scatterers are randomly dispersed in space, therefore there are no interference

effects. Such a criterion is fulfilled when dealing with media of dispersed large

particles encountered in engineering problems.
l Only the half of the total scattering corresponding to the scattering due to

reflection and refraction is considered. The other half, i.e. scattering due to

diffraction, is neglected. In fact, the diffraction by large scatterers is expected

to be close to the incoming direction. Thus, the diffraction can be treated as

transmitted radiation.

In addition to the above assumptions, we also considered that:

l The thermal conductivity of scatterers are not too high so that the radiation

absorbed at one face of a scatterer is not emitted from the other face
l The scatterer size d is much smaller than the linear size of the system L. Then the

radiative properties can be averaged over a representative elementary volume

with a linear dimension l so that d � l � L
l The radiative properties are independent of the azimuth angle. Thus, radiative

transfer in presence of azimuthal symmetry is assumed

2.2 Homogeneous Phase Approach

2.2.1 Principle

Most studies dealing with radiation propagation in two-phase materials are based

on the so-called Homogeneous Phase Approach (HPA). This approach implies that

the radiative behaviour of a dispersed material can be matched faithfully by an

equivalent homogeneous semitransparent medium. Therefore, the radiation propa-

gation is described using a unique homogenized spectral radiation intensity Ilðs;DÞ
at the abscise s along the direction D, defined as the energy flux in the direction D
per units of projected area dA cosy, solid angle dO, and wavelength dl [20–22].

Ilðs;DÞ ¼ d3ql
dA: cos y:dO:dl

ð1)

with y the angle between intensity direction D and the normal to the surface area

t (Fig. 1).
The spectral radiant intensity field is governed by the Radiative Transfer Equa-

tion (RTE) which takes into account the emission, absorption and scattering of the

radiation by the two-phase material. The derivation of this equation can be found in
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standard textbooks [18, 20–22]. For a 1D radiation heat transfer in the presence of

azimuthal symmetry, this equation is:

m
@Ilðz; mÞ

@z
þ blIlðz; mÞ ¼ alIb;lðTÞ þ sl

2

Zp
0

Flðm0 ! mÞ � Ilðz; m0Þdm0 ð2)

where z is the abscise of Intensity I along the z-axis of Cartesian reference, m is

the cosine of angle between I and z-axis. Ib,l(T) is the spectral radiation intensity

emitted by a black body at temperature T and can be expressed as:

Ib;lðTÞ ¼
2n2equC1

l5ðeC2=lT � 1Þ ðinW=m2Þ ð3)

with nequ the refraction index of the equivalent homogeneous material, with

C1 = 0.59544 � 10+8 W mm4 m�2 and C2 = 1.4388 � 10þ4 mm K. In (3), l is

the vacuum wavelength.

The RTE brings into play four different properties defined for each wavelength

and which entirely describe the radiative behaviour of the material:

l The monochromatic extinction coefficient bl (in m�1) describing the ability of

radiation to interact with a material. This coefficient corresponds to the inverse

of the mean-free-path of photons in the material before extinction bl ¼ 1=le;l.
l The monochromatic absorption and scattering coefficients al (in m

�1) and sl(in
m�1) describing the ability of the material to absorb and scatter radiation,

respectively. Absorption and scattering are the two types of extinction, thus

we have: bl ¼ al þ sl.
l The scattering phase function Flðm0 ! mÞ describing the angular repartition of

the energy scattered by the medium from the directions with direction cosine m0

to the direction with direction cosine m. This scattering phase function simplifies

toFl(Y).Y being the angle between the incident and scattering directions, when

the assumption of azimuthal symmetry is valid.

However, it must not be forgotten that these properties are those of the equiva-

lent homogeneous semi-transparent material whose radiative behavior must closely

match that of the two-phase material.

s

t Il

dW
dA θ

j

Fig. 1 Definition of the

radiation intensity

Radiative Transfer in Two-Phase Dispersed Materials 195



In order to determine these characteristics, two different methodologies can be

envisaged as evoked in the introduction section:

l Predictive methods based on theoretical models allowing us to quantify directly

the interaction of the material with radiation from the knowledge of its internal

structure and of the optical properties of the constituents. These methods are

particularly suitable for the thermal optimisation of the materials.
l Experimental identification methods based on spectrometric measurements of

the transmittance, reflectance or emittance by the studied material.

2.2.2 Prediction of the Equivalent Properties

Independent Scattering

The method of prediction of radiative properties which is the most widely employed

for two-phase materials considers that it can be regarded as a dispersion of particles

in an homogeneous purely absorbing or transparent matrix. The particles shapes

and sizes must be chosen so as to reproduce faithfully the structural morphology of

the two-phase material. If the distance between these particles is sufficient, they can

be considered as point scatterers, which scatter radiation independently. Therefore,

the key-point is to know how the incident radiation interacts with each of them.

Their interaction with radiation is described by the extinction, absorption and

scattering cross-sections (denoted by Ce, Ca and Cs, respectively) and the individual

scattering phase function (denoted by fl). The radiative properties of the dispersed

material are then computed by simply adding the contributions of all the particles

comprised in a unit-volume of material with the absorption coefficient a0,l of the
homogeneous matrix [49]:

al ¼ a0;l þ
XNt
i¼1

Ci
a;l

sl ¼
XNt
i¼1

Ci
s;l

bl ¼ al þ sl ¼ a0;l þ
XNt
i¼1

Ci
e;l

FlðYÞ ¼
PNt
i¼1

Ci
s;lflðYÞ
sl

ð4)

In (4), Nt denotes the total number of particles per unit volume. The individual

radiative characteristics of the particle (Ca;l; Cs;l and Ce;l ¼ Ca;l þ Cs;l) and the

individual scattering phase function (fl) are obtained by analyzing their interaction

with a plane incident wave. When considering the general hypothesis of Sect. 2.2.1,
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this interaction can be treated using the Geometric Optic (GO) laws. The particles

are generally considered as randomly oriented. This method has been applied by a

large number of researchers to a wide variety of two phase materials.

Fluidized or packed beds are generally represented as arrangements of spheres

with constant size in a transparent fluid phase. The individual cross sections and

scattering phase functions of these spheres can be calculated analytically when the

GOA is valid. The independent scattering assumption is generally assumed to

predict the radiative properties of high porosity media like fluidized beds of

magnetite (Fe3O4) particles [50], beds of metallic particles [51] or water spray

curtains [52]. In this latter, the fluid phase was considered as absorbing.

Finally, independent scattering hypothesis is also widely used to model radiative

properties of glass foams which have been studied by numerous researchers, from a

thermal point of view, since they cover the molten glass surface in glass melting

furnaces. Viskanta and Fedorov [53] modeled these foams as arrangements of

spherical bubbles of transparent gas in a liquid glass matrix with void fractions

close to 0.7. The absorption coefficient is computed by summing the contributions

of glass and bubble absorption; this results in an absorption proportional to the solid

volume fraction while the scattering properties only take into account the contribu-

tion of the gas bubbles (no scattering by the glass matrix). The computation takes

into account the size distribution of bubbles. The radiative characteristics of gas

bubbles were derived by analyzing the radiative heat transfer through a semitrans-

parent (absorbing and scattering) foam blanket for bubbles large compared to the

wavelength of radiation (x � 1) in the limiting case of anomalous diffraction.

Beyond the Independent Scattering Limit

In numerous dispersed media with relatively low porosities, the previous assump-

tion of independent scattering between each particle cannot be considered valid.

Actually, a major challenge for two-phase materials is to determine whether the

independent scattering hypothesis is valid or if dependent scattering effects have to

be accounted for. The limits of applicability of the theory of independent scattering

have been experimentally investigated by several authors, including Hottel et al.

[54], Ishimaru and Kuga [55], and Brewster and Tien [56]. Yamada et al. [32],

Brewster and Tien [56], and more recently Ivezic and Menguc [57] proposed a

single criterion based on the value of the dimensionless number c/l.Their results
indicated that no far-field effect occurs as long as c/l > 0.3 or 0.5. Other criterions

have been proposed. For example, Singh and Kaviany [58] examined dependent

scattering in packed beds of large-size particles (x � 1, i.e. GO domain) by

carrying out Monte Carlo simulations. The Monte Carlo simulations for different

porosities are compared with available experimental results and with the results of

independent scattering hypothesis. The independent theory is shown to fail for

porosities as high as 0.935 and even when the c/l criterion is satisfied. For this kind
of materials, the near-field effect (multiple scattering) was assumed as responsible

for the dependent scattering. The failure is more drastic for transmission through
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beds of opaque spheres than for transparent and semi-transparent spheres. Coquard

et al. conducted a similar study on beds of opaque spherical particles [44] and

fibrous materials made of large cylinders [43] and stated that multiple scattering

and shadowing effect only affect the particles’ cross sections and become a signifi-

cant (error >10%) as soon as the porosity becomes lower than 94% and 90%

respectively.

To evaluate the radiative properties when dependent scattering occur, a common

approach is to use analytical correlations correcting the characteristics stemming

from the independent scattering hypothesis. For example, Kaviany and Singh [36,

58] proposed a correlation for the dependent characteristics of beds of opaque

spheres by simply scaling the optical thickness obtained from independent scatter-

ing (i.e. b ¼ bindSr) while leaving the albedo and the phase function unchanged.

The scaling factor Sr depends only on the porosity and is almost independent of the

emissivity:

Sr ¼ 1þ 1:84� ð1� eÞ � 3:15� ð1� eÞ2 þ 7:2� ð1� eÞ3 for e > 0:3 ð5)

Kamiuto [35] also proposed an heuristic correlated-scattering theory for packed

of relatively large spheres that scales the extinction coefficient and the albedo while

the absorption coefficient and scattering phase function are left unchanged:

b ¼ g� bind ando ¼ 1� 1� oind

g

g ¼ 1þ 3=2� ð1� eÞ � 3=4� ð1� eÞ2 for e < 0:921

ð6)

More recently, Brewster [42] shows through a mean-beam-length concept that

the main dependent scattering mechanism of radiation in packed beds of large

opaque sphere is the non-vanishing volume scattering (called also non-point scat-

tering as opposed to point scattering in the Independent scattering theory) rather

than multiple scattering stated by previous researchers. A simple scaling factor

correcting the extinction coefficient from Independent scattering is obtained for this

kind of particles:

Sr ¼ 1=e ð7)

Ray-Tracing (RT) Techniques

Recently, due to the rapid improvement of the performances of standard computers,

there is a growing interest in ray-tracing methods. They consist in tracking the

histories of a great number of radiation bundles (or ray packets) propagating

through the two-phase medium under investigation. During the travel of bundles,

absorption, reflections or refractions can occur and their histories are stored. They

are then used to deduce the radiative properties using statistic and probability laws

[39, 43–46, 59, 60]. The interaction of rays with the solid or fluid phases is dictated
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by the GOA, i.e. they are only applicable to materials for which the size of

scatterers is much greater than the wavelength. They can be used in conjunction

with X-ray tomography analysis. In this case, they permit theoretically to take into

account the real morphology of the materials analyzed and thus, to avoid the

simplifications generally made by the other methods. Zeghondy et al. [39, 59]

were the first to apply a radiative properties computation directly to the representa-

tion of the porous structure obtained from X-ray tomography. They applied

the Radiative Distribution Function Identification (RDFI) originally proposed by

Tancrez and Taine [45] to a tomographic representation of open-cell mullite foams.

They validated their approach by comparing measured experimental reflectance to

that predicted for a homogenized semitransparent material whose anisotropic

radiative properties have been obtained by the RDFI. Just about the same time,

Petrasch et al. [60] applied another Monte Carlo ray tracing procedure to reticulate

porous ceramics to calculate the extinction coefficients and scattering phase func-

tions based on the newly developed probabilistic distribution functions of the

extinction path-length and of the directional cosine of incident radiation. The

authors take into account purely diffuse or perfectly specular surfaces.

In the RDFI method [39, 45], the extinction and absorption coefficients are

retrieved by minimizing the following system of equations:

XNpos

0

Pe ðliÞ �P0
eðb; liÞ½ � 2

,XNpos

0

Pe ðliÞ 2 ð8)

XNpos

0

Pa ðliÞ �P0
aða; b; liÞ½ � 2

,XNpos

0

Pa ðliÞ 2 ð9)

where Pe and Pa are respectively Cumulative probabilities of extinction and

absorption of ray bundles after traveling a distance li from their emission locations.

They are constructed using ray histories from the RT on the two-phase medium.

P0
ext = 1 � exp(�bli) and P0

abs = a[1 � exp(�bli)]/b are respectively the theo-

retical cumulative probability of extinction and absorption at the distance li in
which the unknown parameters are a and b. Npos refers to the number of positions

at which the cumulative probabilities are evaluated.

In the Coquard and Baillis’ method, the extinction coefficient b is retrieved from

the probability of rays to travel a large distance R (i.e. R � d) without being extinct
[43, 44]:

expð�bRÞ ¼ PðRÞ ð10)

P(R) is determined through the RT technique on the two-phase medium and

corresponds, in practice, to the fraction of rays, which can travel a distance R
without either being absorbed or scattered. The scattering phase function is calcu-

lated from the knowledge of the number of scattering events occurring in each

scattering angle. In fact, if W(Y) denotes the fraction of rays scattered in the angle
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interval Y and Y + dY measured from the incoming of rays, the scattering phase

function can be given by:

FðYÞ ¼ WðYÞ
1
4p

R 4p
0

WðYÞdO
ð11)

The integration in (11) is performed over 4p steradians (i.e. over all directions)

with dO = sinYdYd’ as the unit solid angle. ’ refers to the azimuthal angle defined

in the interval 0 to 2p. This scattering phase function is also normalized as follows:

1

4p

Z 4p

0

FðYÞdO ¼ 1 ð12)

The scattering albedoo is determined byminimizing the following error function:

e ðoÞ ¼
XNdir

i¼1

E ðR; yiÞ � E0 ðR; b;o;F; yiÞ½ � 2
,XNdir

i¼1

E ðR; yiÞ½ � 2 ð13)

where E is the proportion of rays leaving the sphere (of the two-phase medium) of

radius R in a direction of angle yi measured from the incoming of rays. E0 refers to
the same quantity as E but obtained from the RT on an equivalent continuous

homogeneous spherical medium of parameters b [from (10)],F [from (11)], and the

unknown o. Ndir is the number of directions considered in the angular interval [0,p].
Recently, Randrianalisoa and Baillis suggest another algorithm so that the

absorption and scattering coefficients are retrieved from analysis of absorption

and scattering mean-free-paths while the scattering phase function is obtained

from (11) [41, 46]. If fa and fs denote respectively the fraction of rays undergoing

absorption and scattering events after tracking Nray rays on the dispersed medium so

that fa þ fs ¼ 1, and dist designates the sum of absorption and scattering paths

travelled by Nray bundles, the absorption and scattering coefficients can be given by:

a ¼ fa
Nray

dist
and s ¼ fs

Nray

dist
ð14)

Or, in terms of extinction coefficient and scattering albedo,

b ¼ ðfs þ faÞNray

dist
ando ¼ fs

fs þ fa
ð15)

2.2.3 Identification of the Equivalent Properties from Spectrometric

Measurements

Contrary to the predictive models, these methods do not permit the optimisation of

the materials, but they have the advantage of providing properties that are closely
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related to the real material without any assumptions concerning its structure or the

optical properties of the constituents. Moreover, most of the two-phase materials

can be characterized using a similar identification protocol. They are based on

spectrometric measurements on samples of the material studied. The principle is to

minimize the differences between these spectral values and the results obtained

from numerical resolution of the RTE in a homogeneous semi-transparent material

with varying radiative properties. The minimum number of measurements required

is equal to the number of parameters used to model the radiative behaviour of the

material studied. An extensive review of the different methodologies commonly

used for the identification of the radiative properties has been conducted by Baillis

and Sacadura [61]. They analyzed strategies based on collimated or diffuse

incident beam shape and directional or hemispherical detection systems and paid

some attention to the development of RTE solution models with increasing num-

bers of parameters to identify. The authors showed that the success of the identifi-

cation depends on the chosen physical model, on the experimental data set

(number of measurement points and angular direction choice) and on the detector

noise level.

For a closed cell glass foam with 4% of void fraction, Randrianalisoa et al. [48]

characterized radiative properties such as the extinction coefficient, scattering

albedo, and three parameters of an approximate phase function using measurements

of bidirectional transmittances and reflectances in the spectral region 1.7–4 mm. For

the same material, Dombrovsky et al. [62] determined the transport extinction

coefficient and scattering albedo from combination of Mie theory and hemispheri-

cal reflectance measurement. Comparison of identification results with predicting

models shows that the Independent scattering approximation is suitable for analyz-

ing radiative transfer in this low porosity closed cell porous medium.

Finally, the radiative properties of fluidized and packed beds have been inves-

tigated experimentally by Jones et al. [47] who measured the spectral and direc-

tional emission of non-isothermal packed bed of monodispersed, opaque, large

spherical particles (1 mm diameter, porosity of 0.37) using a radiometric technique.

In a more recent work, Baillis and Sacadura [63] measured the directional spectral

emissivity of an isothermal medium made of a dispersion of large oxidised bronze

(opaque) spherical particles. Comparison with predictive models tends to show that

correlated scattering theory, particularly based on the Singh and Kaviany’s correla-

tion (5), is suitable and necessary.

2.3 Multi Phase Approach

Another way for treating the radiative transfer problems in dispersed materials is

the so-called Multi-Phase Approach (MPA). However, although, it is widely used

for the resolution of heat conduction or flow transfer in multi-phase materials, it is

rather new in the field of radiative transfer. In the literature, Gusarov [40] and
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Randrianalisoa and Baillis [41] have applied the MPA to investigate radiative

transfer in dispersed media of opaque and semitransparent particles in transparent

or absorbing fluid substance.

2.3.1 The Multiphase Radiative Transfer Equation

Let us consider a thin slab of a two phase medium constituted of a continuous phase

and a dispersed phase (modeled by spherical particles for simplicity) illustrated by

Fig. 2a. As before, c is the nearest distance between the particles and d is the typical
size of particles. The characteristic sizes c and d are assumed much greater than the

dominant wavelength l so that the geometric optic treatment of the radiation is

applicable. The main idea behind the Multiphase approach is (1) to assume that

each phase (continuous or dispersed) is a homogeneous and continuous medium;

and (2) the radiative transfer in each phase is modeled by a local transport equation,

coupled to each other. The solutions of these transport equations can enable to

retrieve the radiation intensity and temperature fields in each phase. The Fig. 2b

schematizes the treatment of the radiation transfer in the two-phase medium

according to the MPA. It can be noted that with this model, the thermal equilibrium

between the continuous and dispersed phases is not imposed.

The different mechanisms of radiation extinctions in the continuous and dis-

persed substance are schematized by Fig. 3a, b, respectively. When the radiation

intensity Ii propagates in the substance i (i = continuous or dispersed), it may be

Fig. 2 (a) Schematization of a thin slab of a heterogeneous medium. (b) Modeling of a thin slab of

heterogeneous medium according to the MPA
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absorbed (see left figure) or scattered (see center and right figures) by an interface

between the phases. During scattering, if the interface between the phases is totally

reflecting, the intensity Ii is entirely reflected back to the phase i (see center figure),
else an amount of it is transmitted to the neighboring phase (see right figure).

Assuming that the scatterers are randomly dispersed in the continuous substance,

the extinction of the radiation in the substance i (continuous or dispersed) can be

characterized by an absorption coefficient ai, a scattering coefficient si, and phase

functionFi. Moreover, the energy reinforcement from the neighboring phase can be

also characterized by a scattering coefficient sji and a phase function Fji. Such

radiation transfer mechanisms are similar to that in the conventional radiative

theory except for the possibility of energy exchange between phases. Therefore,

the transport equation in each phase can be derived in a similar manner as for the

usual RTE by taking into account the additional energy exchange between phases.

To do this, let us denotes by Ii(z,m) the radiation intensity propagating in the

phase i at a linear position z and in the direction of cosines m with respect to the z
axis (see Fig. 2a). Ii(z + dz,m) refers to the intensity of this radiation after traveling

an elementary volume of linear thickness dz. During the travel of dz:

l An energy amount of �aiIidz is absorbed
l An energy amount aiIb,idz is spontaneously emitted where Ib,i is the blackbody

intensity defined similarly as in (3) but now Ti and ni (instead of T and nequ) are
respectively the temperature and real refractive index of the phase i

l An energy amount of �siIidz is scattered

Fig. 3 (a) Radiation extinction in the matrix substance at the abscise z. Absorption (left);
scattering by reflection (center); and scattering by transmission (right). (b) Radiation extinction

in the particle substance at the abscise z. Absorption (left); scattering by reflection (center); and
scattering by transmission (right)
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Moreover, the intensity in the direction of cosine m is increased by

l An amount of

si
4p

Z
4p

Ii ðz; m0ÞFiðYÞ dO0

because of in-scattering from all directions from the phase i,

l And by an amount of

sji
4p

Z
4p

Ij ðz; m0ÞFjiðYÞ dm0

because of in-scattering from all directions from the neighboring phase j. As before,
Y is the angle between the incident and the scattered radiation directions. For plane

parallel slab geometries as shown in Fig. 2a, the angle Y is connected to the

incidence direction (characterized by a cosine m0 and an azimuthal angle ’0) and
the scattering direction (characterized by a cosine of direction m and an azimuthal

angle ’) by

Y ¼ m0mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m0

p ffiffiffiffiffiffiffiffiffiffiffi
1� m

p
cosð’� ’0Þ ð16)

The balance of radiation energy in volume element of linear thickness dz enables
to establish the transport equation in each phase called here as the Multiphase

Radiative Transfer Equation (MRTE). In the case of 1D geometry and with

azimuthal symmetry, the MRTE in the steady state regime

l In the continuous substance, indexed hereafter by 0, is

m
@I0ðz; mÞ

@z
¼ �ða0 þ s0ÞI0ðz; mÞ þ a0I0;bðz;T0Þ

þ s0
2

Z1

�1

I0 ðz; m0ÞF0ðYÞ dm0 þ I10ðz; mÞ; ð17)

l In the dispersed substance, indexed hereafter by 1, is

m
@I1ðz; mÞ

@z
¼ �ða1 þ s1ÞI1ðz; mÞ þ a1I1;bðz; T1Þ

þ s1
2

Z1

�1

I1 ðz; m0ÞF1ðYÞ dm0 þ I01ðz; mÞ: ð18)
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with

Ijiðz; mÞ ¼ sji
2

Z1

�1

Ij ðz; m0ÞFjiðYÞ dm0 for i ¼ 0; j ¼ 1 and i ¼ 1; j ¼ 0 ð19)

Note that these equations have a similar form as the usual RTE except for the

presence of the exchange terms I10 and I01.

2.3.2 Determination of Radiative Properties

The determination of radiative properties for the MPA is quite new. In the literature,

the radiative properties of packed bed of spheres for the MPA have been obtained

from theoretical analysis of radiation intensity propagation through a thin layer of

the two-phase medium [40]. For more complex geometries, the RT approach has

been suggested. For example, Tancrez and Taine [45] and later Zhegondy et al. [39]

used the RDFI method to calculate the radiative properties of cellular ceramics

from X-ray tomography image analysis.

When the microstructure of the two-phase medium and their optical properties

are known, the radiative properties involved in (17)–(19) can be determined by

analyzing the propagations of radiation in the continuous and dispersed phases,

respectively. When the radiation of intensity Ii travels a distance dz in the substance
i bounded by the substance j, it is attenuated,

l Due to absorption according to the Beer’s law: Ii(z + dz,m) = Ii(z,m)exp(�4plki/
l) in which l = dz/m is the traveled path and ki is the absorption index (i.e. the

imaginary part of the complex refractive index) of the substance i. It can be

acknowledged that the absorption coefficient is just that of the constitutive

substance because such phase is continuous and homogeneous. Hence,

ai ¼ 4pki
l

for i ¼ 0 and 1 ð20)

l Due to scattering at interfaces between the current and neighboring phases. If

distbd,i designates the mean distance between the boundaries of the substance i
and ri is the interface hemispherical reflectivity, the mean-free-path (mfp) in-

between of scattering, ls,i, is the ratio distbd,i to ri so that when the boundaries are
totally transparent (i.e. ri = 0), ls,i = 1 and when they are totally reflecting (i.e.

ri = 1), ls,i = distbd,i. Now, remembering that the scattering coefficient is the

inverse of the scattering mfp, the scattering coefficient for the radiation propa-

gation in the substance i due to boundary reflections can be given by

si ¼ 1

distbd;i
ri for i ¼ 0 and 1 ð21)
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The scattering coefficient for a radiation in the substance i transmitted to the

substance j due to refraction can be derived in a similar manner as the scattering

coefficients due to reflections in the substance i except that the hemispherical

interface transmittivity 1�ri is involved instead of the reflectivity ri:

sij ¼ 1

distbd;i
ð1� riÞ for i ¼ 0; j ¼ 1 and i ¼ 1; j ¼ 0 ð22)

To evaluate the scattering phase functions, we can proceed by analyzing the

scattering (reflection and refraction) of an intensity distributed over a thin pencil of

rays of solid angle dO by a large scatterer, and then applying the conventional

definition of the scattering phase function [20–22]:

FðYÞ ¼ IðYÞ
1
4p

R4p
0

IðYÞdO
ð23)

where I(Y) refers to the intensity scattered in the angle Y measured from the

incoming intensity. Such analysis enables to obtain closed forms of scattering

phase functions for regular scatterers such as spheres as given later; however, it

becomes complex when the scatterer shape is irregular. Another practical approach

enabling to determine the scattering phase function of arbitrary large scatterers is

the ray-tracing method through the definition (11). For example, the scattering

phase function due to reflections, i.e. Fi, is obtained from the fraction of rays

initially in the substance i and reflected back to it (into the angular interval Y and

Y þ dY measured from the incoming directions) by the interface between the

substances i and j. The scattering phase function due to transmissions, i.e. Fij, is

determined from the fraction of rays originating from the substance i and transmit-

ted to the substance j into the angular intervalY andY þ dY, again measured from

the incoming directions.

3 Applications to Dispersed Materials

3.1 Low Porosity Closed Cell Foams (Glass Foams)

This medium is taken here to illustrate the behaviour of two phase materials where

the dispersed phase is constituted of air gas while the continuous phase is con-

stituted of solid matrix. In this case, the particle refraction index is generally less

than the host medium refraction index (i.e. n1 < n0).
Glasses containing gas bubbles are encountered in practice in the glass furnaces

where gas bubbles are created in the glass melt due to chemical reactions between
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the melt and gas combustion [53, 64]. The radiative transfer is the main energy

transfer mode in this high temperature process. The understanding of the radiative

transfer in such material is then of primary importance because it enables (1) to

quantify the energy to be delivered by the combustion room thus reducing the

energy consumption, and (2) to control the melt temperature thus improving the

quality of products. The study of the radiative transfer in such medium has attracted

much attention [48, 53, 62, 64, 65]. In this contribution, the radiative transfer

through a sample of fused quartz containing bubbles is reported.

3.1.1 Microstructure and Optical Properties

The porous fused quartz sample was cut from a large piece of quartz collected

during the shutdown of an industrial furnace in which the fused quartz is electrically

heated in an inert atmosphere of helium and hydrogen. The sample surfaces were

polished so that they are plane, parallel and the roughness of the quartz surface are

sufficiently small compared to the dominant radiation wavelengths of interest

(lmax � 2 mm at 1,500 K). The sample void fraction is of 4 � 0.5% obtained

from density measurements. The sample thickness is 9.9 mm and the cross section

is 5 � 5 cm so that the width-to-thickness ratio is large enough to ensure one-

dimensional radiative transfer. Figure 4 shows a photograph of a typical sample. As

can be noted, the bubbles are mainly spherical in shape and they have a size

distribution. A scanning electron micrograph analysis shows that the roughness of

bubble surfaces is also very small compared to the dominant wavelength. Figure 5

depicts the corresponding normalized size distribution determined from an image

Fig. 4 Photograph of fused

quartz containing bubbles
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analysis of the total number of bubbles. The corresponding bubble average radius

defined in (24) below is about 0.64 mm.

a32 ¼

R1
0

a3mðaÞda
R1
0

a2mðaÞda
ð24)

where m(a) (in m�4) corresponds to the number of bubbles per unit volume having

size between a and a + da so that the total bubble number per unit volume is

Nt ¼ R1
0

mðaÞda (in m�3).

Optical properties of fused quartz (n0 and k0), required in the radiative properties
calculations, have been extensively studied for different spectral regions as dis-

cussed in [48, 62]. Concerning the refraction index n0, the three-term Sellmeier

equation proposed by Malitson [66] [(25) below] is the most commonly accepted

expression in the literature for the spectral range from 0.21 to 6.7 mm at ambient

temperature.

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 0:696 l2

l2 � 0:0682
þ 0:407l2

l 2 � 0:1142
þ 0:897l2

l2 � 9:8912

s
ð25)

The spectral value of k0 was recovered from the normal spectral transmittance data

(performed on fused quartz sample without bubble), denoted by TN, according to:

k0 ¼ � 1

4p L=l
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r0ð Þ4 þ 4TN

2r02
q

� 1� r0ð Þ2
2TNr02

8<
:

9=
; ð26)
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where L is the sample thickness and r0 is the Fresnel (directional) reflectivity at the
air–glass interface for normally incident radiation [20–22]:

r0 ¼ 1� n0ð Þ2
1þ n0ð Þ2 ð27)

Figures 6 and 7 depict the optical properties of fused quartz retrieved from

relations (25) and (26). The data of k0 from literature [67–69] are also plotted.

3.1.2 Computation of Radiative Properties for HPA

In the literature, the effective radiative properties of glass foams were determined

from the Independent scattering theory in which bubble efficiency factors and

scattering phase function are either from Mie [70] or Diffraction anomalous theory
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[53]. Identification methods based on measurements of bidirectional [48] or hemi-

spherical transmittances and/or reflectances [71] were also used.

In order to investigate the competition between the MPA and HPA, radiative

properties predictions using the GOA are suggested. Since the bubble volume

fraction is small, we adopt Independent scattering theory.

Remembering that for an optically large scatterer (x � 1), the single particle

propertiesCs,Ca, andf become independent of size [24, 26] and using the definitions

of the bubble average radius a32 and bubble volume fraction fv ¼ ð4=3Þp R1
0

a3mðaÞda,
it can be shown that the Independent scattering model (4) reduces to [49, 62, 72]:

al ¼ a0;l þ 0:75 fvQa=a32

sl ¼ 0:75 fvQs=a32

FlðYÞ ¼ flðYÞ
ð28)

with a0;l ¼ 4pk0;l=l. Qs ¼ Cs/pa
2 and Qa ¼ Cabs/pa

2 are respectively the scatter-

ing and absorption efficiencies of bubble of radius a ¼ a32. Note that in the

presence of an absorbing host medium (a0 > 0), Qa is negative for non-absorbing

particles such as bubbles [73]. In the GO regime (x ¼ 2pa32=l >> 1 here) and

weakly absorbing host medium (xk0 < 1), Qa ¼ �8xk0;l=3 gives a good approxi-

mation [49, 62]. In addition, for non-absorbing scatterers and without a diffraction

contribution Qs ¼ 1 [20–22]. Therefore, the absorption coefficient is just

a0 (1 � fv) while the scattering coefficient is 0.75fv/a32. The scattering phase

function at a typical wavelength l ¼ 1.7 mm predicted by the GO theory [26] is

reported in Fig. 8 versus the scattering angle. It tends to show that the scattering by

an optically large bubble is essentially forward (i.e. 0 	 Y < p/2).
In order to compare the above radiative properties with the experimental data from

the identification method, which include the wave nature of radiation such as diffrac-

tion, we analyze the evolution of transport properties such as the transport extinction,

denoted by btr, and the transport scattering albedo, denoted byotr, defined by [49, 71]:

btr ¼ aþ s ½1� < m >� andotr ¼ s
btr

½1� < m >� ð29)
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where <m> is the scattering anisotropy factor given by [20–22]:

< m >¼ 1

2

Zp
0

FðYÞ sinYdY ð30)

Figures 9 and 10 depict respectively the transport extinction coefficient and

scattering albedo according to the radiation wavelength of current porous fused

quartz. Lines are results from the prediction model while symbols are experimental

results after introducing original data from reference [48] in (29) and (30). The

abrupt increase of extinction coefficient and decrease of scattering albedo around

2.7 mm is due to absorption of hydroxyl contents in the fused quartz matrix. Above

3.5 mm, glasses have generally high absorption. This results in an increase of the

extinction and a decrease of the scattering albedo. As can be noted, the predicted

transport radiative properties match well the experimental data proving the ade-

quacy of the Independent scattering theory under the GOA in the current case.
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3.1.3 Computation of Radiative Properties for MPA

The radiative properties of each phase constituting the two-phase materials are

determined using (20)–(23). The absorption coefficient of the glass matrix a0 is

simply given by (20) in which values of k0 are reported in Fig. 7. The absorption

coefficient of bubble contents is taken to be zero as consistent with the HPA.

The scattering coefficients require the knowledge of average paths between

successive radiation interactions with boundaries distbd,i in the substance i. For
spherical and uniform scatterer size, the average paths in-between scattering of

radiation distbd,i (for i ¼ 0 and 1) can be retrieved using the famous Mean-beam-

length approach [42, 74]:

distbd;0 ¼ 4V0

A0

¼ a

0:75

1� fv
fv

and distbd;1 ¼ 4V1

A1

¼ a

0:75
ð31)

where V0 and A0 refer respectively to the volume and surface of the continuous

phase while V1 ¼ 4p a3=3 and A1 ¼ 4p a2 are respectively the volume and surface

of a sphere of radius a. Note that the Mean-beam-approach has been previously

applied to predict the extinction coefficient of packed bed of opaque spheres and the

result is exactly that given by the left equation in (31). The result for the radiation

propagation inside bubbles is rather new but it has been confirmed by (1) theoretical

analysis of radiation intensity crossing a thin layer of similarly dispersed medium

[40] and (2) the Ray-tracing method carried out inside a sphere [41, 46]. Now, using

the definitions (21) and (22), we obtain the scattering coefficients for the MPA:

s0 ¼ 0:75

a

fv
1� fv

r0; s01 ¼ 0:75

a

fv
1� fv

ð1� r0Þ;

s1 ¼ 0:75

a
r1; and s10 ¼ 0:75

a
ð1� r1Þ

ð32)

with fv the bubble volume fraction (or porosity) and a ¼ a32 ¼ 0:64 mm the

average bubble radius calculated from the particle size distribution (Fig. 5). We

can acknowledge that the quantity 1/(1 � fv) in (32) corresponds to the Brewster’s

non-point scattering scaling factor SR in (7). r0 and r1 are respectively the hemi-

spherical reflectivities at the glass/bubble and bubble/glass interfaces defined as

follows:

ri ¼ 2

Z1

0

r0i cos w d cos w for i ¼ 0 and 1 ð33)

In (33), ri0 is the Fresnel reflectivity and depends on wavelength through the

optical refractive indexes and on the angle between the incoming radiation and the

outward normal to the interaction surface, denoted here by w [20–22].
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For current fixed porosity and bubble size, the scattering coefficients follow the

evolution of r0, 1 � r0, r1, or 1 � r1 with wavelength as in Fig. 11. For bubbles of
radius a, the scattering phase functions can be obtained analytically. Let denote by

Ii(Y) the intensity of solid angle dO reflected to the substance i into the angle Y
from the incoming direction (see Fig. 12). For a specularly reflecting sphere, this

scattered intensity can be expressed per incident intensity unit as:

IiðYÞ ¼ r0iðwÞ ð34)

where w is related to the scattering angle Y by the specular reflection law 2w ¼ p
� Y. Integrating (34) over all scattering directions and using (33) gives:

Z4p
0

IiðYÞdO ¼ 8p
Zp=2
0

r0iðwÞ sin w cos w dw ¼ 4pri ð35)

In (35), the following relationship dO ¼ sin2wd(2w)d’ was used. Now, the

scattering phase functions in the substance i due to reflections is retrieved using

the conventional definition (23):

FiðYÞ ¼ r0iðwÞ
ri

for i ¼ 0 and 1 ð36)
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The derivation of scattering phase functions due to transmissions from one phase

to other requires the analysis of refracted rays at interfaces using the reflection and

refraction laws. The energy flux transmitted through an element area dA ¼ a2sinw
dw d’ to the phase j per incident intensity unit is [26]:

½1� r0� cos w dA ð37)

The intensity transmitted at a large distance l (far from dA) in a solid angle sinY
dY d’ [21, 26]:

IjðYÞ ¼ a2
½1� r0� cos w sin w dw

l2sinYdY
ð38)

with w ¼ Y þ w0 and w0 the corresponding refraction angle. Integration of (38) over
all scattering angles gives:

Z4p
0

IjðYÞdO ¼ 2p
a2

l2

Zp=2
0

½1� r0i� cos w sin wdw ¼ p
a2

l2
½1� ri� ð39)

Again using the definition (23), we obtain the scattering phase function due to

refractions:

FijðYÞ ¼ 4
1� r0i
1� ri

cos w sin w dw
sinY dY

for i ¼ 0; j ¼ 1 and i ¼ 1 and j ¼ 0 ð40)

In Fig. 13 is depicted the evolution of these scattering phase functions of porous

fused quartz at the wavelength l ¼ 1.7 mm for which n1/n0 � 1/1.44. It can be

observed that for spherical bubbles, the scattering phase functions due to transmis-

sions are identical, i.e.F10 ¼ F01. The scattering phase function due to reflection in

the glass matrix F0 reaches a constant maximum value at scattering angles Y < p
� 2 arcsin(n1/n0) ¼ 92.3
 for n0/n1 ¼ 1.44 due to total internal reflection. The

same phenomenon is responsible for zero values of F10 ¼ F01 at Y > p/2 � arc-

sin(n1/n0) ¼ 46.01
 for n0/n1 ¼ 1.44.

3.1.4 Validity of Both Approaches

The radiative transfer in low porosity closed cell foams is illustrated here. The

results of hemispherical transmittance and reflectance are used to study the compe-

tition between both prediction approaches in such material. The configuration is 1D

sample exposed to a collimated radiation in one side. The experimental data
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corresponding to the above porous fused quartz sample are obtained from a Fourier

transform infrared (FTIR) spectrometer, which uses unpolarized radiation and

disregards the sample emission thanks to the radiation modulation and the phase

sensitive detection. The hemispherical reflectance and transmittance are respec-

tively defined by [20]:

Rh ¼
2p

R0
�1

Ið0; mÞmdm
qinc

ð41)

and

Th ¼
2p

R1
0

IðL; mÞmdm
qinc

ð42)

The denominator qinc ¼ IincDOinc designates the incoming collimated radiation

flux of intensity Iinc and a divergence solid angle DOinc. It enters the sample

perpendicularly to its surface at the abscise z ¼ 0. The numerators correspond

respectively to the radiation flux leaving the sample from the entering and opposite

faces. In the prediction approaches, I(z,m) corresponds to the intensity (solution of

the transport equations without a self-emission contribution) leaving the sample at

the abscise z with a direction of cosine m measured from the normal to the sample

surface. The values of m > 0 and m < 0 concern respectively the transmittance and

reflectance.

To solve the transport equations in both approaches, the famous Discrete Ordi-

nate Method (DOM) is adopted. It consists of subdividing (1) the angular domain

into discretized angles following a quadrature (e.g. a Gauss quadrature [21, 22] of
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12 orders is sufficient); and (2) the space into control volumes. This method is well-

described in the radiation transfer textbooks [18, 20–22] and not detailed here. Note

that in the MPA, the intensity I(z,m) includes the radiation from both continuous and

dispersed phases. Its expression as a function of I0(z,m) and I1(z,m) depends on the

treatment of boundary conditions. For instance, we assume that the sample surfaces

are optically smooth, which neglects the presence of bubble slices (which occupy

4–8% of the entire sample surface). In this case, only the continuous phase is

considered present at the face exposed to the external radiation source. The

boundary conditions of the MRTE are:

l For the continuous phase [48]

I0ð0; mÞ ¼ dm;1ð1� r0ÞIinc n1
n0

� �2

þ r0I0ð0;�mÞ for 0 < m 	 1 ð43)

I0ðL; mÞ ¼ r0I0ðL;�mÞ for � 1 	 m < 0 ð44)

l For the dispersed phase

I1ð0; mÞ ¼ r0I1ð0;�mÞ for 0 < m 	 1 ð45)

I1ðL; mÞ ¼ r0I1ðL;�mÞ for � 1 	 m < 0 ð46)

where r0 is the Fresnel reflectivity of sample boundaries. It depends on the angle

between the current incident intensity and the inward normal to the boundary. dm;m0
is the Kroneker delta function, which is equal to 1 if m ¼ m0 and 0 elsewhere.

According to (43), the continuous phase receives all transmitted radiation from the

external source. Only after scattering, an amount of this radiation is transferred to

the dispersed phase via (19). It is clear that the intensity that leaves a sample

boundary is just the intensity leaving the continuous phase since we assume that

no bubble cuts boundaries [48].

Ið0; mÞ ¼ d�1;mr0Iinc þ n0
n1

� �2

ð1� r0ÞI0ð0; mÞ for � 1 	 m < 0 ð47)

IðL; mÞ ¼ ð1� r0ÞI0ðL; mÞ for 0 < m 	 1 ð48)

In the HPA, I(z,m) in (41)–(42) are the solutions of the usual RTE, calculated at

each of the boundaries. The corresponding boundary conditions follow the (43),

(44), (47) and (48) in which the intensities I0 are substituted by the intensities in the
single homogeneous and continuous medium.

In Figs. 14 and 15, the transmittance and reflectance computed from the HPA

and MPA are compared with the experimental data of the porous fused quartz
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sample. It can be observed that the predictions from both approaches are globally

close to each other. In the near infrared region (l < 3.5 mm), the transmittance

(resp. reflectance) result from HPA is slightly lower (resp. higher) than the trans-

mittance (resp. reflectance) result from MPA. It may be attributed to the dependent

scattering effects neglected in the HPA (with which the Independent scattering

theory is adopted here) while they are accounted for in the MPA. Moreover, in

the spectral region where fused quartz becomes significantly absorbing (i.e. l >
3.5 mm), the predictions are overlapped. In this case, the evolution of transmittances

and reflectances is mainly governed by the absorption of fused quartz because the

scattering albedo approaches zero. The calculated transmittances and reflectances

agree with the experimental data since they fall within the experimental uncertainty

envelope. As a conclusion, the HPA (using Independent scattering theory) and

MPA appear both suitable to model the radiative transfer in low porosity (fv � 1)

closed cell foams under the GO regime, especially concerning the hemispherical

transmittance and reflectance.
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3.2 Packed Beds

Usually, packed or fluidized beds are used as fuel particles in combustors or

reacting particles in chemical reactors. In both applications, heat transfer within

the particle bed becomes the limiting controlling mechanism. Moreover, the radia-

tive transfer is generally the dominant heat transfer mode within the beds due to

high temperature involved; therefore, it should be evaluated with accuracy to

optimize the system efficiency. Depending on the application, the beds may be

constituted of opaque particles, semitransparent particles, or a combination of these

types of particles [75].

The radiative problem in such media has been widely studied. Currently, various

prediction approaches are suggested. Most of them use the HPA in which the

radiative properties are either derived from the Independent scattering theory

[50–52], the correlated scattering theories [35, 36, 42], or the Ray-tracing techni-

ques [41, 44, 46]. Each of these methods has its own weaknesses and advantages.

For example, the Independent scattering theory, although practical, is restricted to

very low volume fraction of scatterers. The correlated scattering approaches

improve the prediction from the Independent scattering model. The current knowl-

edge concerns however beds of spherical scatterers in non-absorbing substance.

The Ray-tracing methods are suitable for beds of arbitrary geometry but restricted

by the GOA. Moreover, they are more time consuming than the preceding predict-

ing models.

In this section, the radiative transfer in typical packed bed media, and more

precisely through samples of opaque or semitransparent particles, is analyzed in the

framework of the HPA and MPA. Moreover, the prediction models of radiative

properties in the HPA, presented above, are compared. In this aim, we limit our

attention to transparent surrounding substances (i.e. a0 ¼ 0). Analysis of radiative

properties of packed bed in presence of a semitransparent host medium can be

found elsewhere [41, 46].

3.2.1 Bed Microstructure and Optical Properties

As for porous fused quartz, the internal structure of packed (or fluidized) beds is

relatively simple. They are generally represented as arrangements of spherical

particles with constant or dispersed size in a fluid substance. The distance between

two neighboring particles controls the porosity of the medium.

For simplicity, radiative transfer through packed beds of uniform particle size d
and wavelength fulfilling the criterion x ¼ pd/l ¼ 100 � 1 is analyzed. The

sample thicknesses and the packing fractions are in the range 2 	 L/d 	 16 and

0 < fv < 0.45, respectively. For beds of opaque particles, the optical properties can

be represented by the particle reflectivities r0, r00, r1, and r10, the refraction index

of the surrounding substance n0, and the particle absorption index k1. For beds of
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semitransparent particles, the optical properties are represented by the refraction

indexes of two substances, n1 and n0, and the particle absorption index k1. The
Tables 1 and 2 summarize the properties of packed bed media analyzed hereafter.

To be consistent with analysis reported in literature, we restrict our study to the case

of specular reflecting particles. The directional reflectivities of opaque particles

(r01 ¼ r1 and r00 ¼ r0) are assumed angle independent. Moreover, we assume that

the external and internal reflectivities are identical (r1 ¼ r0).

3.2.2 Computation of Radiative Properties for HPA

Bed of Opaque Particles

The Independent scattering theory (28) can be considered as the zeroth order

approximation. In this model, the unknowns are the scattering Qs and absorption

efficiencies Qa and the single scattering phase function f. In the limit of optically

large particles and without a diffraction contribution, when a radiation beam

interacts with the particle, it is either reflected at the continuum-particle interface

or totally absorbed in the particle. As a consequence, the efficiency factors are just

Qs ¼ r0 and Qa ¼ 1� r0. Since a32 ¼ a for monodispersed size, the extinction

coefficient and scattering albedo are given by:

b ¼ 0:75fv
a

ando ¼ r0 ð49)

The scattering phase function is mainly governed by the angular distribution of

the reflected radiation [20–22]. In the case of specular reflection with the reflectivity

independent of the angle, the scattering phase function is isotropic, i.e.

fðYÞ ¼ r00ðYÞ
r0

¼ 1 ð50)

Table 1 Properties of opaque

particle so that x = 100

r0, r1 0.6 0.9

n0 1

k1 0.05

a1a 10

Table 2 Properties of

semitransparent particle so

that x = 100

n0 1

n1 1.5

k1 0 0.00025 0.001 0.0025

a1a 0 0.05 0.2 0.5

Qa 0 0.083 0.287 0.552

Qs 1 0.917 0.713 0.448
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Remark: for diffuse reflecting particles, the extinction coefficient and scattering

albedo are unchanged while scattering phase function is anisotropic and follows the

well-known formula: [20–22]:

fðYÞ ¼ 3

8p
ðsinY�Y cosYÞ ð51)

The correlated scattering theories scale the Independent scattering theory by

introducing the dependent scattering corrections. For large opaque particles, the

dependent scattering phenomena reduce to the non-point scattering and can be

handled by multiplying the above extinction coefficient and/or scattering albedo in

(49) by scaling factors while the scattering phase function is unchanged. The

resulting radiative properties are summarized below according to the authors:

Singh and Kaviany [36]: b ¼ 0:75fv=a� Sr and o ¼ r0 with Sr given by (5)

Brewster [56]: b ¼ 0:75fv=a� Sr and o ¼ r0 with Sr given by (7)

Kamiuto [35]:b ¼ 0:75fv=a� g and o ¼ 1� ð1� r0Þ=g with g given by (6)

The RT method applied to opaque particle beds in the HPA was first developed

by Coquard and Baillis [44]. Later, a simpler algorithm has been suggested by

Randrianalisoa and Baillis [41, 46] and this last is adopted in this chapter. The RT

method is performed on a packed bed medium reconstructed from X-ray tomogra-

phy image analysis [76] or approached by an arrangement of particles [44]. In the

last case, the particle shapes, sizes and arrangement must be chosen so as to

reproduce faithfully the structural morphology of the real medium. Usually, a 3D

random arrangement of spheres is sufficient to model packed beds of spherical

particles. In practice, the particle arrangement is generated within a finite cubic box

of dimensions much greater than the particle size. For instance, a ratio of box size to

particle diameter of 10 is sufficient. In Fig. 16 we illustrate a typical packed bed

Fig. 16 Typical 3D bed of

spherical particles
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where the gray spheres represent the particles whereas the black font represents the

surrounding substance. This particle arrangement is generated using the algorithm

detailed in reference [44].

Recall that the aim of the RT algorithm is for analyzing the histories of a great

number (Nray) of radiation bundles propagating inside this medium and then to

calculate the total extinction distance (dist), the fraction of bundles undergoing

scattering (fs), and the angular fraction of scattered bundles W(Y). As previously

described, the radiative properties are determined from these quantities through the

formula (11), (14), and (15). Hereafter, the main steps in the RT method are

summarized. For clarity purpose, the RT algorithm is illustrated in 2-D on

Fig. 17. More details can be found in reference [46].

For a given radiation bundle, the RT process consists in:

(S1) – Select, in a random way, the initial location of the bundle on a particle

surface (e.g. the point s0 in Fig. 17) and the initial direction, oriented toward the

surrounding medium as it has been scattered (e.g. the vector ds0 in Fig. 17). The

particle, from which the bundle path starts, is randomly chosen among the existing

particles.

(S2) – Track the bundle path through the sample until it undergoes extinction.

The type of the extinction event (i.e. scattering or absorption) is chosen by consid-

ering the most probable one through classical Monte Carlo tests [20–22]. The

bundle may be absorbed in a particle (e.g. at the position s1 in Fig. 17). Therefore,

the absorption distance is given by the path traveled between the initial position s0
and the absorption location s1. For opaque particles, the scattering event is consid-

ered when the ray is reflected at a particle surface (e.g. at the position s1 in Fig. 17).

ds0

ds3

ds2

ds1

s2

s1’

s1
s3

s0

Q

Q

Q

Fig. 17 Illustration of the Ray-tracing algorithm on a 2D dispersed medium [41, 46]
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In this case, the scattering distance is just the distance from the initial position s0 to
the location at which the ray interacts with the external particle surface, i.e. s1. The
extinction distance (either the scattering or absorption distance) is stored. When a

scattering event occurs, the angle Y between the incoming ray (i.e. ds0) and the

direction of the ray after scattering (i.e. ds1 in Fig. 17) is also stored. The track of the
path of the bundle is stopped after the extinction event.

The steps (S1) and (S2) are carried out for Nray different bundles. Through this

algorithm, dist is the sum of extinction distances traveled by the Nray bundles; fs is
the ratio of the number of scattering events to the total number of extinction events,

which is Nray; therefore fa ¼ 1 � fs corresponds to the fraction absorption events.

W(Y) is the ratio between rays scattered into the angular interval Y and Y + dY
from the incoming direction and the total scattered rays, which is fs � Nray. dY is

the elementary angle.

Figure 18 summarizes the dimensionless extinction coefficient, b � a, as a

function of the packing fraction calculated from the above prediction models. As

we can note, the RT method, the correlated theories of Singh and Kaviany and that

of Brewster are in close agreement. This means that these models capture appro-

priately the non-point scattering phenomenon. On the other hand, the Independent

scattering theory, which does not take into account the non-point scattering phe-

nomenon, and the Kamiuto correlated theory fails when the particle concentration is

greater than 0.1 and 0.3, respectively. Remember that the Kamiuto theory is based

on comparisons of the extinction and scattering coefficients from the Independent

scattering theory and those from the multiple scattering of waves under the Keller’s

approximation (i.e. by considering only the first and second scattering terms in the

multiple scattering diagrams) [77]. The failure of the Kamiuto theory can be

explained by the fact that, at large packing fractions (fv > 0.3), high orders of

scattering terms (third and higher) are significant but are not accounted for by the

Kamiuto scaling factor g. The scattering albedo from Kamiuto theory normalized

by the scattering albedo from Independent scattering is reported in Fig. 19 for

r0 ¼ 0:9 and 0:6. We observe that the lower the particle reflectivity and the higher
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the packing fraction are, the greater the deviation of the Kamiuto theory. However,

both theories converge at low packing fractions.

Bed of Semitransparent Particles

The radiative properties of semitransparent particle beds are first studied through

the Independent scattering theory. The extinction coefficient is identical to that of

opaque particle (i.e. b ¼ 0:75fv=a) and the scattering albedo is equal to Qs. The

scattering and absorption efficiencies Qs and Qa are summarized in Table 2 for each

particle optical properties. As expected, the higher the particle absorption index is,

the greater the absorption efficiency and the smaller the scattering efficiency. The

corresponding scattering phase functions are plotted in Fig. 20. The scattering

phase function presents rainbow peaks in various scattering angles in the backward

angular region. They correspond to rays scattered after undergoing internal reflec-

tions inside particles. When the particle becomes more absorbing, internal trans-

versals are attenuated by absorption and the magnitude of rainbow peaks decreases.
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The suitability of the Kamiuto correlated theory is also studied. The model

is given by (6) in which the scattering albedo from Independent theory to scale

is Qs (Table 2). The scattering phase function is that from Independent theory

(Fig. 20).

In beds of semitransparent or transparent particles, the dependent scattering

phenomena include the non-point scattering and the radiation transportation.

Remember that this latter is due to the transportation of radiation beams across

substantial distances (through the particles) compared to the interparticle distance

[10, 36]. Few methods enable to account for both non-point scattering and radiation

transportation. The first one is the Dependence included discrete ordinate method

(DIDOM) or the Singh and Kaviany correlated theory for semitransparent particles

[10, 36]. It differs from the usual RTE (in the HPA) by the in-scattering term

containing the scattering phase function. In fact, to account for the radiation

transportation effect, the DIDOM employs an unusual scattering phase function,

which depends not only on the scattering angle but also on the exit point of the

scattering and the number of internal reflections. The non-point scattering has been

taken into account by scaling the extinction coefficient from Independent scattering

as in the bed of opaque particles.

The second method is the RT described in the above section. However, in the

presence of semitransparent particles, the algorithm is slightly different, especially

in the step (S2), since scattering does not occur uniquely at the external particle

surface as was the case for opaque particles. In fact, the ray bundles can be scattered

by crossing the particle after one or multiple internal transversals. In the step (S2) of

the above algorithm, the scattering event is considered when the ray is reflected at a

particle surface (e.g. at the position s1 in Fig. 17) or when it crosses a particle (e.g. at
the position s2 or s3 in Fig. 17 by representing only the two first interior transver-

sals). Generally, the surface reflection and the two or three first internal reflections

contain most of the scattered energy. When the ray is reflected at the particle surface

(e.g. at s1) or exits from the same side as it first enters the particle (e.g. at s3), the
scattering distance is just the distance from the initial position s0 to the location at

which the ray interacts with the external particle surface, i.e. s1. Now, when the ray
crosses the particle from one side (e.g. at s1) to the opposite side (e.g. at s2), the
scattering distance is given by the distance s1�s0 plus a transportation distance,

denoted by dtr. For specularly spherical particles, it was shown that dtr only depends
on the particle size d and on the ratio of the refraction indexes of the particles and

the host medium, defined by � ¼ n1/n0, according to (52) [41, 46]. According to

these considerations, dtr is about 0:72 d with n1/n0 ¼ 1.5.

dtr=d ¼ 1:02� exp � K1

� �K2

� �h i
for 0.5 	 � < 1 and 1 < � 	 8

1 elsewhere

�
ð52)

with K1 ¼ 3.20 and K2 ¼ 1.47 for 0.5 	 � < 1 and K1 ¼ 2.89 and K2 ¼ 0.72 while

for 1 < � 	 8. Note that the result of the (52) reaches a minimal value when the

contrast of refraction indexes is small (i.e. � tends to 1); it increases as long as �
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moves away from 1; and finally, it converges to the asymptotic value about 1 for

� > 8 and � < 0.5. In fact, when � > 8 or � < 0.5, the rays striking a particle far

from its center undergo a surface reflection because the local reflectivity approaches

1. Only the incident rays approximately normal to the particle surface have a signifi-

cant probability to be refracted inside the particle; they travel at a distance about d
before exiting this particle. For � approaching 1, the reflectivity approaches zero, thus
almost all the rays interacting with the particle cross it without being reflected. In

addition, the ray directions are not much altered. As a result, the calculated average

distance traveled by these rays inside the particle tends to approach the theoretical

value of the mean distance of scattering inside a particle, 2d/3.
The evolution of the dimensionless extinction coefficient (b multiplied by the

particle radius for convenience) according to the particle volume fraction is shown

in Fig. 21 for an absorption index k1 ¼ 0.001. At small packing fractions at which

the dependent scattering effects are insignificant, we observe that both predictions

converge to 0.75 � fv. At high packing fractions: (1) the DIDOM gives extinction

coefficients identical to that of opaque particles but much greater than the extinction

coefficients from other predictions. Note that the DIDOM extinction coefficient has

not the same significance as that predicted from other models. In fact, it takes into

account only the non-point scattering effects while the RT extinction coefficient,

for example, includes both non-point scattering and the ray transportation effects.

(2) The RT results are slightly greater than the Independent scattering predictions.

This means that the non-point scattering effect prevails but also that it is weaker

for semitransparent particles than for opaque particles due to the ray transporta-

tion effect. In fact, this latter tends to increase the extinction mean-free-path and

consequently, it gives opposite effects to the non-point scattering. The failure

of the Independent scattering model is more noticeable at high packing fraction.

The deviation between the Independent scattering and the current RT method

is insignificant as soon as fv < 0.20. In this case, the non-point scattering and ray

transportation effects are either insignificant or cancelled out. (3) At moderate

and high particle volume fractions, the extinction coefficient from the Kamiuto
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correlated theory is greater than that from the RT. Note that this extinction coeffi-

cient does not include the ray transportation correction. Finally, both prediction

methods give identical scattering albedo, o � 0.71, which equals the scattering

efficiency reported in Table 2. The scattering phase function from the RT method is

identical to that of Independent scattering depicted in Fig. 20.

3.2.3 Computation of Radiative Properties for MPA

The formulae (32), (36) and (40) established in the above section are applicable to

dispersed media constituted of spherical scatterers. In the following, they are

applied to calculate the radiative properties of beds of opaque and semitransparent

particles with parameters summarized in Tables 1 and 2.

For opaque particles with uniform reflectivities r00 ¼ r0 ¼ r01 ¼ r1 (=0.6 or 0.9)
and uniform size of radius a: (1) the scattering coefficients in the continuous phase,
due to radiation reflections s0 and transmissions s01, vary proportionately to

0:75=a� fv= ð1� fvÞ. It can be shown that the evolution of this factor versus

packing fraction is identical to the scaled extinction coefficients of opaque particles

in the HPA depicted in Fig. 18. The scattering coefficients in the dispersed phase are

constant: s1 ¼ 0:75r1=a and s10 ¼ 0:75ð1� r1Þ=a. (2) The scattering phase func-

tions due to reflections are isotropic: F0 ¼ F1 ¼ 1 (Fig. 22). For highly reflecting

particles, the refraction index ratio n1/n0 is generally much greater than 1. In this

case, the refraction angle w0 is small, and the incidence w and scattering anglesY are

quasi-identical. Therefore, the scattering phase functions due to transmissions vary

approximately as F10 ¼ F01 � 4 cosY for 0 	 Y < p/2 and are null elsewhere as

plotted in Fig. 22. Moreover, the comparison of the scattering phase functions

F01 ¼ F10 of porous fused quartz (in Fig. 13) and that of bed of semitransparent

particles tends to show that the higher the ratio n1/n0, the larger the angular interval
over which the scattering occurs (F01 ¼ F10 > 0).

For semitransparent particle beds, the scattering coefficients are similar to that of

opaque particles but with the following reflectivities r0 � 0:091 and r1 � 0:596 for
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n1/n0 ¼ 1.5. In addition, the scattering phase functions are similar to that of porous

fused quartz (Fig. 13) except that F0 and F1 are interchanged because n1/n0 ¼ 1.5

here (instead of 1/1.44). The scattering phase function F1 due to reflections within

the particle reaches a constant maximum value at scattering angles Y < p � 2

arcsin(n0/n1) ¼ 96.4
 while the scattering phase function due to transmissions

F10 ¼ F01 decreases to zero at Y > p/2 � arcsin(n0/n1) ¼ 48.2
.

3.2.4 Validity of Both Approaches

Bed of Opaque Particles

The hemispherical transmittances through samples of specularly opaque particle

beds are analyzed using the HPA and MPA. Consistent with data reported in

literature, the configuration adopted is a plane parallel slab of packed bed exposed

on one side to diffuse incident radiation. In both prediction approaches, we assumed

that no particle crosses the sample surfaces; therefore, the boundary conditions

(43)–(48) can be applied but with r0 ¼ 0 when n0 ¼ 1. In the HPA, the results

based on radiative properties predicted by the correlated theories of Singh and

Kaviany, and Kamiuto, and the Ray-tracing method are reported. The results for

MPA are taken from reference [40]. In each case, the reference data are from the

well-known direct MC simulation, similar to that described elsewhere [78, 79]. In

Figs. 23 and 24, the transmittances versus the reduced sample thickness L/d are

shown for particle reflectivities of 0.6 and 0.9 and a particle volume fraction of

0.278. When the slab thickness increases, the medium optical thickness increases

and, as a result, the transmittances decreases. We can note that in all cases, the

results of HPA based on the RT method and on the Singh and Kaviany correlated

theory are close to the MC simulation whereas the results based on the Kamiuto

correlated theory overestimate the MC solution noticeably. The significant devia-

tion of the Kamiuto results may be attributed to the overestimation of the albedo
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(see Fig. 22). Concerning the MPA, it predicts satisfactorily the MC solutions. This

can be explained as follows. For opaque particles, the RTE in the dispersed phase

(i.e. within particles) of the MPA (18) becomes useless since the radiation intensity in

this substance approximates zero due to the infinite absorptivity of opaque particles

(a1a ¼ 10 > 1). The MPA reduces therefore to a single RTE with radiative proper-

ties identical to that from Brewster correlated theory. In other words, the MPA

tends to reduce to the HPA in the case of dispersed media with opaque scatterers.

Bed of Semitransparent Particles

To illustrate the competition between the HPA and MPA for analyzing the radiative

transfer calculation in beds of non-opaque particles, the hemispherical transmit-

tances through samples of specularly reflecting particles with refraction index

n1 ¼ 1.5 and concentration fv ¼ 0.278 in transparent host medium are shown in

Figs. 25 and 26 as a function of the reduced sample thickness L/d. The results for
transparent particles (k1 ¼ 0 or a1a ¼ 0), weakly absorbing particles with

k1 ¼ 0.00025 (or a1a ¼ 0.05), and highly absorbing particles with k1 ¼ 0.001

(or a1a ¼ 0.2) and k1 ¼ 0.0025 (or a1a < 0.5) are depicted. The data from direct

MC simulation are still considered as reference. The results of the HPA calculation

based on the Independent scattering theory, the DIDOM, the Kamiuto correlated

theory, and the RT methods are shown. The MPA results are still taken from

reference [40]. As in the case of opaque particles, the transmittances decrease

when the slab thickness increases. Once again, we can note that generally, the

results from the DIDOM and RT method are in close agreement with the MC data.

This also shows that these two prediction methods are the most suitable for

analyzing the radiative transfer in semitransparent medium embedding densely
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packed semitransparent particles. According to the considered simulation para-

meters (in particular fv ¼ 0.278 and � ¼ 1.5), the Independent scattering theory

model is suitable as soon as particles are slightly absorbing (a1a < 0.05 here).

These results tend to confirm previous experimental observations which pointed out

(through analyzes of transmittances and reflectances of latex or glass particles in

transparent water or air) that the dependent scattering effects are negligible even for

fv ¼ 0.7 when dealing with optically large weakly absorbing or transparent parti-

cles. [32, 56] However, our analysis also points out that the Independent scattering

theory breakdowns when particles are more absorbing (a1a � 0.2 for example). In

fact, given that the ray transportation effects become less significant, it overesti-

mates the transmittance due to the lack of the non-point scattering correction. The

Kamiuto model underestimates the transmittance for non-absorbing particles and

overestimates the transmittance for absorbing particles. The failure of the Kamiuto
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model for absorbing particles can be explained in a similar manner as for opaque

particles. However, when the particles are transparent, the transmittance from the

Kamiuto theory is under-evaluated probably due to the overestimation of the

extinction coefficient (see Fig. 21). The MPA underestimates the transmittances.

The deviation is more pronounced for weakly absorbing particles (e.g. a1a < 0.2

here) than for strongly absorbing particles (e.g. a1a ¼ 0.5). The models of scatter-

ing phase functions in the MPA are probably the main sources of inaccuracy

because they do not reproduce correctly the scattering pattern of spherical semi-

transparent particles. In fact, we showed that the scattering pattern of semitranspar-

ent particles presents rainbow peaks corresponding to the rays scattered after

undergoing internal reflections inside particles. Therefore, there exists a strong

correlation between the rays incident on the particle and those transmitted through

the particle. This correlation between incident and scattered rays is captured in HPA

prediction models because they use or predict rigorously the scattering phase

function of a single particle. However, this is disregarded in the MPA, which splits

the scattering pattern into four uncorrelated scattering phase functions [namely F0,

F1, F01, and F10]. For refractive index ratios n1/n0 > 1 and transparent or slightly

absorbing particles (a1a < 0.2 here), the order of magnitude of these rainbow peaks

is significant. Neglecting them leads to an underestimation of the scattering albedo

o [40] and, as a consequence, to an underestimation of the transmittances. Since the

rainbow peaks are absent for refraction index ratios n1/n0 < 1 (see Fig. 8) and much

attenuated for absorbing particles (see Fig. 20 for k1 ¼ 0.0025), this explains why

the MPA is better in these cases.

4 Conclusions

In the present study, we have shown the ability of the conventional Homogeneous

Phase Approach (HPA) and the recently developed Multi-Phase Approach (MPA)

to model the radiative transfer in two-phase dispersed media. For each approach,

the simplest and realistic radiative properties models are identified. The competi-

tion between the HPA and MPA for predicting the radiative transfer through glass

containing bubbles, packed beds of semitransparent or opaque spheres is high-

lighted through their comparison with experimental data or Monte Carlo simulation

of hemispherical transmittance and reflectance. The following conclusions can be

drawn.

Although exact solutions of radiative transfer in dispersed media constituted of

closely spaced scatterers are not expected theoretically through the radiative trans-

fer theory, prior investigations and the current one (including both experimental and

numerical analysis) have shown its suitability by using the notion of effective

radiative properties which differ from radiative properties of dilute media.

The traditional HPA is suitable for a wide range of two-phase materials provided

that their effective radiative properties are accurately known and that the thermal

equilibrium can be assumed. The simple and well-known independent scattering
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theory gives accurate prediction as long as the dispersed phase volume fraction is

small or the scatterers are far from each other. Otherwise, more advanced models

such as the correlated scattering theory or ray-tracing methods, enabling to approx-

imate the complex dependent scattering phenomena, should be used. For dispersed

media constituted of spherical opaque scatterers in non-absorbing environment, the

Brewster or Singh and Kaviany correlated model are the most useful, otherwise the

ray-tracing methods are an alternative solution. The practical one is the Randria-

nalisoa and Baillis’ algorithm based on mean-free-path analysis.

In the MPA, the effective radiative properties can be predicted analytically for

spherical scatterers; while the recourse to ray-tracing technique is indispensable for

complex scatterer shape. The MPA is generally suitable for two-phase dispersed

media as shown by the analysis on packed beds of opaque particles and glass

embedding bubbles. It can however be inaccurate for the case of continuum less

refracting than scatterers, and weakly absorbing scatterers with regular and specu-

larly reflecting boundaries. In fact, these scatterers present rainbow peaks influen-

cing the radiative transfer but not modeled by the current MPA. An example of

these media is packed beds of semitransparent and specularly reflecting spheres.

The MPA needs some improvements to be well competitive. Further analysis

should be conducted on the modeling of radiative properties, notably to specify

how to take into account, in the scattering phase functions, the correlations between

radiations incident on the scatterer and those scattered.
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76. Haussener, S., Lipiński, W., Petrasch, J., Wyss, P., Steinfeld, A.: Tomographic characteriza-

tion of a semitransparent-particle packed bed and determination of its thermal radiative

properties. J. Heat Transf. 131, 072701 (2009)

77. Keller, J.B.: Stochastic equation and wave propagation in random media. Proc. Symp. Appl.

Math. 13, 145–170 (1964)

78. Yang, Y.S., Howell, J.R., Klein, D.E.: Radiative heat transfer through a randomly packed bed

of spheres by the Monte Carlo method. J. Heat Transf. 105, 325–332 (1983)

79. Rousseau, B., De Sousa Meneses, D., Echegut, P., Di Michiel, M., Thovert, J.F.: Prediction

of the thermal radiative properties of an X-ray m-tomographied porous silica glass. Appl. Opt.

46, 4266–4276 (2007)

234 J. Randrianalisoa et al.



Predictions of Effective Thermal Conductivity

of Complex Materials

Ramvir Singh

Abstract In this review, a comprehensive and systematic effort is made to incor-

porate the most significant and popular models for calculation of the effective

thermal conductivity of complex materials and discuss their limitations. A brief

review of the numerical techniques for prediction of the effective thermal conduc-

tivity of multi-phase materials is presented and discussed. The real structures and

geometries around us are so vast and vivid, that one cannot use a single model to

estimate effective thermal conductivity of complex materials in the whole range

due to their inherent limitations.

1 Introduction

The approach of thermo-mechanical properties of conventional materials to their

optimum value does not allow the fulfillment of the needs of new age requirements.

Therefore, there is an urgent need to develop a new class of materials to fulfill

requirements of the present millennium. Hence, we need tailored materials made up

of a combination of two or more materials with controlled volume fractions. Such

materials are treated as composite materials for analysis purposes. Accurate predic-

tion of effective thermo-mechanical properties of these materials still remains a

challenging task for engineers and scientists working in the field of materials

science.

Multi-phase materials are made up of more than one phases which are rarely

distributed uniformly, and each component has its own properties and proportion,

and thus contributes towards the effective system. Once mixed together, the

components of different types will more or less interact with each other and the
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properties at the interfacial region will exhibit a transition from one component to

the other. Such effects usually turn even more complicated when the components

are at different phase states, such as in a semi-frozen soil system. Multi-phase

materials are increasingly used in various fields, but analysis and investigation

efforts are severely lagging behind. The challenges in studying complex multi-

phase materials come mainly from the inherent variety and randomness of their

internal microstructures, and the coupling between the components of different

phases. For systems with three or more phases, the microstructures or the phase

distribution can become much more complicated. Even in a two-component alloy,

if there are pores or small fractures inside, they should be treated as three-phase

materials for analysis purposes. Yet other often-encountered multi-phase structure

is that of unsaturated porous soils.

The basic parameters needed to be studied in the context of the heat transfer

through complex materials are (1) thermal conductivity, (2) thermal diffusivity and

(3) volumetric specific heat. These parameters are interrelated to each other.

Complete thermophysical behaviour of a material can be obtained by knowledge

of any two of the above parameters.

The thermal conductivity of a material is defined by Fourier’s equation [1],

Q ¼ �lA
dy
dx

� �
(1)

where Q is the rate of heat flow, dy=dxð Þ is the temperature gradient, Q and dy=dxð Þ
both are normal to the area A of the specimen.

For multi-phase materials the effective value of the thermophysical parameter

lies in between that of the constituent phases and is denoted by adding a suffix ‘e’

throughout the chapter. The effective value of a parameter is found to depend upon

following geometrical factors,

1. Thermal conductivities of the constituents

2. Fractional volumes of the constituents

3. Size and morphology of the constituent particles

4. Structure of the material

5. Inter phase interactions of the constituents

Beside these physical conditions e.g. pressure and temperature also affect the

effective property of these complex materials.

The study of heat transfer in complex materials has inspired a large number of

workers to derive theoretical expressions for evaluating effective thermo-physical

properties. Further, due to the advancement of computing technology in recent times,

there has been a rapid development of powerful numerical methods to evaluate

effective parameters of such materials. Among all the thermo-physical properties,

the thermal conductivity is mostly studied due to its significance and wide applica-

tions in heat transfer problems. So this chapter is devoted to the prediction of

effective thermal conductivity (ETC) of multi-phase complex materials.
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2 Complex Materials

Complex materials are multi-phase systems in which nearly all the phases are

distributed randomly. As such, the behaviour of these materials are dictated by

each and every component of the different phases, i.e. its overall macroscopic

property is not equal to that of any single constituent, rather it is a collective one

contributed by all components forming the system. Therefore, the effective prop-

erty is actually the equivalent property. Inclusion of other components into a basic

material can be beneficial, acting as reinforcement or supplements to improve the

performance of the material and by combining them we can obtain a tailored

behaviour as a final result. Alloys, cellular structures, and fiber reinforced polymer

composites are just such examples. In the present era of emerging new technologi-

cal materials most of them are complex multi-phase materials in terms of both

physics and structures, thus increasing the urgency for more robust theoretical and

computational tools.

3 Mathematical Modeling

Mathematical modeling of multi-phase materials for prediction of thermo-physical

coefficients are still preferred because of low cost, easy and quick to use, and

reasonable accuracy for certain specific cases, especially when the microstructure

can be simplified. In the present chapter, more emphasis has been given to the

significant and popular models and the author also reviews some recent progresses

in numerical modeling of effective thermal properties for multi-phase materials.

3.1 Models for Two-Phase Materials

In this section, theoretical models for calculation of the thermal conductivity of two

phase materials are discussed. In the following discussion, a comprehensive and

systematic effort is made to incorporate most of the popular models and discuss

their limitations.

The earliest model in this direction was given by Maxwell [2] for the prediction

of the effective thermal conductivity by assuming random size spheres dispersed

into a continuous medium. The effective thermal conductivity for such a system can

be represented as

le ¼ lc
2lc þ ld�2fd lc�ldð Þ½ �
2lc þ ld þ fd lc � ldð Þ½ � (2)
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where lc is the thermal conductivity of the continuous phase, ld is the thermal

conductivity of dispersed phase and fd is the volume fraction of the dispersed

phase respectively.

Fricke [3] and Burger [4] independently modified the Maxwell’s equation for

particles having ellipsoidal shape. The expression obtained by Fricke and Burger is

le ¼ lcfc þ ld 1� fcð ÞF
fc þ 1� fcð ÞF (3)

where F ¼ 1
3

P3
i¼1

1þ ld
lc

� �
� 1

� �
gi

� ��1

and
P3
i¼1

gi ¼ 1

They assumed that particles were noninteracting. F is the ratio of the average

temperature gradients in the two phases and gi are the semi principal axes of the

ellipsoid.

De Vries [5] in his derivation of the effective thermal conductivity used

g1 ¼ g2 ¼ 1=8 and g3 ¼ 3=4. This implies that the two minor axes of ellipsoid

are the same and the major axis is three times that of the minor axis.

Bruggeman [6] used Maxwell’s model for cylindrical particles. He obtained an

expression for the effective thermal conductivity in the following form:

le ¼
lc 1� 1� ld

lc

� �
2
3
fdd

� �
1þ d� 1ð Þfd½ � (4)

Here fd is the fractional volume of inclusions and d is determined from lc and ld.
The value of d is 3lc

2lcþld
for spherical particles, 5lcþld

3 lcþldð Þ for cylindrical particles,
and lcþ2ld

3 ldð Þ for plates and scales.

Lord Rayleigh [7] assumed that particles are spherical in shape and they are

arranged in a cubical array. The expression for the effective thermal conductivity

given by Rayleigh was:

le ¼
lc 1� 2f:k � 1:65 fð Þ10=3Ak
h i
1þ f:k � 1:65 fð Þ10=3Ak
h i (5)

Here k ¼ lc�ldð Þ
2lcþldð Þ and A ¼ 3lc�3ldð Þ

4lcþ3ldð Þ
Rayleigh’s model was so rigid and artificial that it could not predict the le of

mixtures in practical cases.

Wiener [8] developed a model based on the resistors concept. This concept was a

turning point in theoretical models for the effective thermal conductivity. Wiener

considered the system to be made of alternate layers of solid and fluid in the form of

slabs. These slabs can be arranged in different configurations with respect to the

direction of heat flux (Fig. 1).
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Parallel configuration: In this configuration the plane of equivalent slabs is

parallel to the direction of heat flow i.e. the two phases are thermally parallel to

the heat flux. The effective thermal conductivity for parallel configuration ljj can be
expressed as the weighted arithmetic mean of the conductivities of the solid and

fluid phases and is written as

ljj ¼ flf þ 1� fð Þls
� 	

(6)

The parallel configuration offers minimum insulation resulting in a maximum

value of the effective thermal conductivity.

Perpendicular configuration: When the direction of heat flow is perpendicular to

the plane of slabs, then it offers maximum insulation and the value of the effective

thermal conductivity is a minimum. In this configuration, the constituent phases are

thermally in series with the direction of heat flow. Effective thermal conductivity in

this case is represented as l? and is given by the weighted harmonic mean of the

conductivities of the constituent phases.

l? ¼ f
lf

þ 1� fð Þ
ls

� ��1

(7)

The above equations for the effective thermal conductivity are the limiting

formulae for all possible conductivities of phases for a given value of the porosity f.
Later, Woodside and Messmer [9] analyzed these relations more critically and

concluded that for both the distributions (parallel and perpendicular configura-

tions), one should have

dle
dls

� �
ls¼lf

¼ 1� fð Þ (8)

Hence (8) should be satisfied by different relations for the effective thermal

conductivity applicable to different kinds of distributions.

Fluid Phase

Fluid Phase

Solid Phase
Solid Phase

Direction of Heat Flow

Fig. 1 Model of dispersed resistors giving extreme conductivity values (lII and l?)
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In a dispersed system, the conductivity of the aggregate depends on the relative

magnitude of the conductivity of the continuous and dispersed phases. This infor-

mation is important, particularly when there is a substantial difference between the

conductivities of the two phases. Both the schemes [8] of phase distribution assume

either ideal contact (in the case of ljj) or no contact of phases at all (as in the case

of l?) and as such these schemes do not reflect the true state of phase distribution in

a natural system.

In this series, Bernshtein [10] gave the following relation assuming the material

is in the form of plates placed in a chessboard-like order:

l ¼ lf
4 1� fð Þ
1þ lf

ls

þ 2 f� 1ð Þ
" #

f � 0:5

and

l ¼ lf
4 1� fð Þ
1þ lf

ls

þ ls
lf

1� 2fð Þ
" #

f � 0:5 (9)

These schemes gave a considerable improvement over Wiener’s model, yet are

quite far from the realistic structure of granular materials.

Lichtenecker [11] has given an empirical relation to express the behavior of a

two-phase system that has been named the “Logarithmic law of mixing”. The

expression for the effective thermal conductivity as per this law can be written as

log leð Þ ¼ ff log lf

 �þ fs log lsð Þ (10)

where the respective conductivities and corresponding volume fractions are repre-

sented by subscripts s and f. The effective thermal conductivity of a mixture should

be found between upper and lower limiting values for distinctly dispersion type of

systems. This equation can also be written in a different form as:

le ¼ lf

 �ff : lsð Þfs (11)

For a mixture of n components its general form will be

log le ¼
Xn
i¼1

fi log lið Þ (12)

Equation (11) is intended only for particles having two-directional randomiza-

tion and oriented in the third direction. Bruggeman [6] has extended Lichtenecker’s

relation by randomizing the phases in three dimensions.

Russel [12] developed a model for predicting the effective thermal conductivity

by assuming that the cubes of one phase are arranged in a cubic array into other
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phase (Fig. 2). If the dispersed cubes are solid and the continuous phase is fluid,

then

le ¼
lf fsð Þ23 þ lf

ls

� 
1� fs

2
3

� �� �

fsð Þ23 � fs þ lf
ls

� 
1þ fs � fs

2
3

� �� � (13)

In the opposite case, when the dispersed phase is fluid and the solid phase is

continuous one, then (13) is modified to

le ¼
ls ff

� 2
3 þ ls

lf

� 
1� ff

2
3

� �" #

ff

2
3 � ff þ ls

lf

� 
1� ff � ff

2
3

� �� � (14)

For porous materials, Ribaud [13] later proposed an equation by assuming that

the pores are joined in a cubical manner resulting into an expression for le as

le ¼ ls fsð Þ23 þ lf ff

� 1
3

(15)

A natural system, however, is not as simple as predicted by these formulae, for

there are always contacts among the particles. Ignoring this important fact restricts

the applicability of these relations to natural systems.

Powers [14] has made a survey of methods for calculating the thermal conduc-

tivity of aggregates of almost any type. He has shown that when there is an increase

in porosity of the dispersed phase to nearly 50%, the dispersed phase can no longer

Air

a b

Air

Solid

Solid

Fig. 2 Russel’s model for the effective thermal conductivity of porous media: (a) Cubes of air

with solid substance in between (b) Cubes of solid separated by air spaces
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be regarded as discontinuous phase but it behaves as a continuous phase. In several

cases having concentrations between 25 and 75%, both phases can be a dispersed

phase. Such systems are termed as mixtures. Powers concluded (for mixtures) that

the particles are no longer distributed systematically, but may be elongated in one

or more directions and oriented randomly.

Bogomolov [15] developed a similar kind of expression by taking into account

that solid spheres are packed into a tetrahedral packing. The resultant expression so

obtained has been extensively used for determination of the effective thermal

conductivity:

le ¼ 3plf ln
0:43þ 0:31f
f� 0:26

� �
(16)

Assad [16] gave an expression for effective thermal conductivity of sandstone

rocks. His relation was an empirical one.

le ¼ ls
lf
ls

� �Bf
(17)

where B is a constant and is related to the characteristics of sandstone.

More developments in the expressions of heat conduction took place with the

new models and formulations resulting in new kinds of application.

Kunni and Smith [17] took a practical approach and proposed a relation for

effective thermal conductivity of loose granular materials as

le ¼ lf
fþ b 1� fð Þ
eþ 2lf =3ls


 �
" #

(18)

where b is an adjustable parameter ranging between 0.9 and 1and

e ¼ e2 þ f� 0:259

0:217

� �
e1 � e2ð Þ (19)

Here e1 and e2 are dependent on values of f for loose and compact packing.

When f < 0.259 then e ¼ e2 and when f > 0.476 then e ¼ e1.
Woodside and Messmer [9] proposed three modes of heat conduction using the

resistor approach. They assumed that there is solid to solid conduction, fluid to fluid

conduction and solid to fluid conduction and vice-versa. Their expression for the

effective thermal conductivity is

le ¼ a
lslf

ls 1� gð Þ þ lf g

� �
þ bls þ dlf (20)
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where aþ bþ g ¼ 1 and agþ b ¼ 1� fð Þ. a; b; g are parameters for cube forma-

tion and d is reciprocal of formation factor F which is equal to f� 0:03.
The estimation of the effective thermal conductivity using a curve-fitting tech-

nique has been presented by Sugawara et al. [18, 19]. The expression given by them

for the measurement of effective thermal conductivity of soil, rocks and other

granular materials is:

le ¼ 1� Að Þls þ Alf
� 	

(21)

where

A ¼ 2n

2n � 1ð Þ 1� 1þ fð Þ�n½ �

and n represents an empirical number.

Chaudhary and Bhandari [20] extended the Lichtnecker model by considering the

series and parallel resistors concept for a two-phase system. The random distribution

of series and parallel resistors is represented by an empirical factor n, which denotes
the probability of orientation of parallel resistors in the direction of heat flow.

The resultant expression for the effective thermal conductivity is given by:

le ¼ ljj

 �n l?ð Þ1�n

(22)

where

ljj ¼ flf þ 1� fð Þls
� 	

l? ¼ f
lf

þ 1� fð Þ
ls

� ��1

and

n ¼ k 1� logfð Þ
log f 1� fð Þ ls

lf

� h i

here k is an empirical constant.

In this vein Cheng and Vachon [21] proposed a model for randomly distributed

particles in a continuous phase. Their model is represented by the equation for the

effective thermal conductivity as:

1

le
¼ 2

ZB2
0

dx

lc þ B ld � lcð Þ � Cx2 ld � lcð Þ
� �

þ 1� B

lc
(23)

where B ¼ 3f
2

h i1
2
, C ¼ 4 2f

3

h i1
2
and f ¼ fd

Here x is the dimension of dispersed phase along the x axis.
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This expression was found to be suitable for values of f � 0:667.
Later on, a bound technique with lower and upper bound came due to the lack

of a general expression for determination of the effective thermal conductivity. The

technique estimates the closest optimum value of effective thermal conductivity.

A general set of bounds were given by Hashin and Strikman [22] incorporating a

variational principle for particles having cylindrical geometry as:

lf þ fs

1

ls�lfð Þ þ
ff

3lf

� � hlehls þ ff

1

lf�lsð Þ þ
fs

3ls

� � (24)

Prager [23] presented a solution for the bounds for particles having cylindrical

geometry using effective thermal conductivity values of some other materials

whose conductivity ratios are the same but the constituent phases may be different.

A set of bounds have been derived by Schulgasser [24] for fibrous reinforced

materials applying symmetry considerations. His bounds are expressed as

lslf lII �
f 1�fð Þ

2
lf � ls

 �2n o

f 1�fð Þ
2

lII þ ls � lf

 �

I1

2
4

3
5
�1

hlehlslf lII �
f 1�fð Þ

2
ls � lf

 �2n o

f 1�fð Þ
2

lII þ lf � ls

 �

I2

2
4

3
5

(25)

where I1 and I2 are geometry dependent factors. These can be evaluated considering

statistically three dimensional isotropic medium.

Using statistical properties of materials and generalized functions, Hori [25]

developed a model for effective constants of a heterogeneous medium. Under

specific conditions his theory yielded bounds obtained by Weiner [8] as well as

by Hashin and Strikman [22].

Kumar and Chaudhary [26] developed a model by presenting an empirical bound

for the effective thermal conductivity based on random distribution of series and

parallel resistors.

Their expression for ETC with lower and upper bound is written as

lþ ff 1� ff

� 
lf lseo 2ff�1ð Þn o1

2

" #
< le

< l� ff 1� ff

� 
lf lseo 2ff�1ð Þn o1

2

" #

(26)

where

l ¼ ls 1� ff

� 
eoff þ lfff e

�o 1�ffð Þ
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and

o ¼ lf
ls

� 1

� �
for lf < ls

o ¼ 1� ls
lf

� �
for lf > ls

This model was further modified by Pande et al. [27]. The proposed model of

Pande is written mathematically in terms of bounds as

1

eb � 1ð Þ lf � lsð Þebf þ lseb�lf
� 	

> le

>
1

ea � 1ð Þ lf � lsð Þeaf þ lsea�lf
� 	

(27)

where a ¼ lf�ls

lslfð Þ1=2
� �

and b ¼ lf 2�ls2

lf
2þls

2

h i
Zimmerman [28] modified the Fricke [3] relation for fluid saturated rocks having

different types of pores. For very small porosity, Fricke [3] showed that the

effective thermal conductivity is given as:

le
ls

¼ 1� bfð Þ (28)

where

b ¼ 1� r

3

4

2þ r � 1ð ÞM þ 1

1þ r � 1ð Þ 1�Mð Þ
� �

Here r ¼ lf/ls and M is a factor that depends on the aspect ratio of the pore.

Zimmerman [28] gave a more interesting and useful analytical expressions for b for

three limiting cases as:

For thin cracks b ! 1�rð Þ 1þ2rð Þ
3r

For spherical pores b ! 3 1�rð Þ
2þr

And for needle like pores b ! 1�rð Þ 5þrð Þ
3 1þrð Þ

Torquato and Rintoul [29] developed rigorous bounds for the effective thermal

conductivity of dispersions that are given in terms of the phase contrast between the

inclusion and matrix, the interface strength, volume fraction, and higher order

morphological information, including morphological information. Their bounds

give very accurate predictions of effective thermal conductivity for dispersions of

metallic particles in epoxy matrices. Their upper and lower bounds are:

le
lf

� DUðCÞ ¼ 1þ aþ 3C� 1ð Þfs �
EU

FU
(29)
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where

EðUÞ ¼ fs ff C 5� 5a� 6Cð Þ � a� 1ð Þ2
h i

� 3C
n o2

and

FðUÞ ¼ 6Cþ a� 1þ 2Cð Þ2 þ 3ff þ a� 1ð Þ 2xsff þ f2
f

� h i

þ Cfs a� 1þ 2Cð Þ2 � 16

9
þ 3fs 1þ f2ð Þ

� �
þ 3C ff a� 1þ 2Cð Þ þ 1

h i2

le
lf

� DLðCÞ ¼ 1þ 1

a
� 1

� �
fs �

EL

FL

� ��1

(30)

where

EL ¼ fs 2ff a� 1þ 2Cð Þ a� 1ð Þ þ 6C
h i2

and

FL ¼ 6a2 3Cþ 6C2 þ fs a� 1ð Þ2 � 4C2
h in o

þ a� a2

 �

� 4 ff a� C� 1ð Þ � 3Cfs

h i2 þ 2xsff a� 1þ 2Cð Þ2
� �

The parameters C, a and x are defined in Torquato and Rintoul [29].

Pande et al. [30] also gave an expression for the prediction of effective thermal

conductivity of a granular system by considering regular geometry of dispersed

phase.

le ¼ lf 1þ 3:7396
ls � lf
ls þ 2lf

� �
f2=3

� �
(31)

This represents the interaction between gas and solid particles up to sixth order

for two-phase systems. The higher orders are negligible due to their very small

contribution. According to the ratios of thermal conductivities of the constituents,

the above relation is represented as:

le ¼ lf 1þ 3:844 fð Þ23
� �

for ls >> lf

le ¼ lf 1� 1:154 fð Þ23
� �

for ls << lf

le ¼ lf 1þ 2:307
ls � lf
ls þ 2lf

� �
fð Þ23

� �
for ls ¼ lf
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Pande and Chaudhary [31] further modified these equations for effective contin-

uous medium as:

le ¼ 0:6132 lf ls

 �1

2 1� 1:154 cf

� 2
3

( )
for cf ¼ ff � 0:5

�� �� (32)

and

le ¼ 0:6132 lf ls

 �1

2 1þ 3:844 csð Þ23
� �

for cs ¼ fs � 0:5j j

Here fs and ff are the volume fractions of solid and fluid phases.

Hadley [32] in his contribution for the determination of effective thermal

conductivity gave a model by taking into account the average of temperature field

over different phases. The expression so obtained for effective thermal conductivity

is written as

le ¼
lf 1� fð ÞFþ ls

lf
1� 1� fð ÞFf g

h i
1� 1� fð Þ 1� Fð Þf g þ ls

lf
1� fð Þ 1� Fð Þ

h i (33)

The value of F lies between 0 and 1.

The expression (33) for effective thermal conductivity is modified for packed

metal powders as:

le
lf

¼ 1� bð Þ
1� fð ÞF0 þ ls

lf
1� 1� fð ÞF0f g

h i
1� 1� fð Þ 1� F0ð Þf g þ ls

lf
1� fð Þ 1� F0ð Þ

h i

þ a
2 ls

lf

� 2

fþ ls
lf

� 
3� 2fð Þ

� �

3� fð Þ ls
lf

� 
þ f

h i (34)

F0 is a parameter like F above and b represents the degree of consolidation.

Verma et al. [33] concluded that the parameter F could be expressed as

F ¼ exp �c
lf
ls

� �1=3
" #

(35)

Here c is the sphericity of the particles. The value of F given by Verma et al. is

0.82 for granular systems and 0.75 for emulsion like systems. They have also

applied a resistor model to obtain the expression for effective thermal conductivity

of two-phase systems with spherical inclusions.

le ¼
lf 2:598f1=3 ls � lf


 �þ 3:224f�1=3lf
n oh i

1� 1:2407f1=3
� 

2:5985f1=3 ls � lf

 �þ 3:224f�1=3lf

n o
þ lf

h i (36)
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where f is the volume fraction of the solid phase.

Later, Misra et al. [34] improved this relation by replacing f by the porosity

correction term Fp and provided a relation for le as

le ¼
lf 2:598Fp

1=3 ls � lf

 �þ 3:224Fp

�1=3lf
� �� 	

1� 1:2407Fp
1=3


 �
2:5985Fp

1=3 ls � lf

 �þ 3:224Fp

�1=3lf
� �þ lf

� 	 (37)

where Fp ¼ exp �C2 1� fð Þ2=3
h i

The value of constant C2 can be further expressed as

C2 ¼ 2:736e�0:004 ls=lfð Þ

Based on a lumped-parameter method, Hsu et al. [35] developed algebraic

expressions for the stagnant thermal conductivity of two and three dimensional

periodic media. Geometries considered were arrays of touching and non-touching

in line square and circular cylinders. Their expression for stagnant thermal

conductivity for two dimensional arrays of square cylinders having a square

cross section a� a and a width of c as shown in Fig. 3a is given as:

le
lf

¼ gagc
l

þ ga 1� gcð Þ
1þ l� 1ð Þga

þ 1� gað Þ
1þ l� 1ð Þgagc

(38a)

For in-line cubes the expression for thermal conductivity (Fig. 3b) is

le
lf

¼ 1� g2a � 2gcga þ 2gcg
2
a


 �þ g2ag
2
c

l
þ g2a � g2ag

2
c


 �
1� ga þ ga=bð Þ

þ 2 gcga � gcg
2
a


 �
1� gagc þ gagc=bð Þ (38b)

where ga ¼ a=l, gc ¼ c=a and b is the ratio of solid to fluid thermal conductivity

respectively. A comparison of the results based on equation (38b) with existing

experimental data shows that they are in excellent agreement with the experimental

data if the contact resistance parameter gc ¼ 0:13 is chosen at a porosity of 0.36.

However, no comparison with experimental data at different porosities was given.

In fact, the two parameters, ga and gc are related to the porosity through a nonlinear
equation. It appears that the two parameters, ga and gc are a function of porosity, but
no functional dependence was reported by them.
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Singh et al. [36] presented a geometrical model for estimation of the effective

thermal conductivity by using the resistors approach of two-phase systems with

spherical inclusions. Their expressions for spherical and cubic particles are:

le ¼
lf lf þ 0:8060F2=3 ls � lf


 �� �� 	
lf þ F2=3 0:8060 ls � lf


 �
1� 1:2407F1=3ð Þ� �� 	 (39)

le ¼
lf lf þ F2=3 ls � lf


 �� �� 	
lf þ F2=3 ls � lf


 �
1� F1=3ð Þ� �� 	 (40)

where F, the porosity correction, is written as

F ¼ 1� exp �0:92fs
2 ln ls=lf


 �� �� 	
Boomsma and Poulikakos [37] have developed a model for the effective thermal

conductivity of saturated porous metal foams based on three-dimensional geometry

for unit cell termed the tetrakaidecahedron (Fig. 4). The foam structure was

a

a b

c 1

1/2

a/2

c/2

(a–c)/2

(1–a)/2

Heat Flow
Direction

1/2

c
a 1

a/2

c/2

Fig. 3 (a) An array of touching square cylinders (above) and its unit cell (below). (b) In-line
touching cubes (above) and their unit cell (below)
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represented with cylindrical ligaments attached to cubical nodes at their centers.

The resultant expression for effective thermal conductivity so obtained is

le ¼
ffiffiffi
2

p

2 RA þ RB þ RC þ RD½ � (41)

where RA ¼ 4F

2e2 þ pF 1� eð Þf gl1 þ 4� 2e2 � pF 1� eð Þf gl2½ �

RB ¼ e� 2Fð Þ2
e� 2Fð Þe2l1 þ 2e� 4F� e� 2Fð Þe2f gl2½ �

RC ¼
ffiffiffi
2

p � 2e

 �2

2pF2 1� 2
ffiffiffiffiffi
2e

p
 �
l1

� �þ 2
ffiffiffi
2

p � 2e� pF2 1� 2
ffiffiffiffiffi
2e

p
 �� �
l2

� 	

RD ¼ 2e

e2l1 þ 4� e2ð Þl2½ �

F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
2� 5=8ð Þe3 ffiffiffi

2
p � 2 1� fð Þ� �

3� 4e
ffiffiffi
2

p � e

 �

p

s

and e ¼ 0:339 respectively.

Calmidi and Mahajan [38] developed a model for high porosity fibrous metal

foams based on the structure of a metal foam matrix. They assumed that the

Fig. 4 The tetrakaidecahedron geometry with cylindrical ligaments and cubic nodes. The unit cell

is shown on the right as a solid block located in a single tetrakaidecahedron cell
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structure of a metal foam consisted of dodecahedron like cells with 12–14 hexago-

nal faces (Fig. 5). The lumping of material at the point of intersection of the fibers

was taken into account as square. The expression for effective thermal conductivity

is written as

le ¼ 2ffiffiffi
3

p
� �

r b
L


 �
lf þ 1þ b

L


 � ls�lfð Þ
3

þ 1� rð Þ b
L


 �
lf þ 2

3
b
L


 �ðls� lf Þ
þ

ffiffi
3

p
2
� b

L

lf þ 4r
3
ffiffi
3

p b
L


 �ðls� lf Þ

8<
:

9=
;

2
4

3
5
�1

(42)

where
b

L
¼

�r þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2ffiffi

3
p 1� fð Þ 2� r 1þ 4ffiffi

3
p

� n or
2
3

2� r 1þ 4ffiffi
3

p
� n o

Here r is defined as the area ratio.

An analytical model was given by Bhattacharya, Calmidi and Mahajan [39] for

highly porous metal foams. With the hexagonal geometry and two-dimensional

array of hexagonal cells, the expression for le is

le ¼ 2ffiffiffi
3

p
� � t

L


 �
l2 þ l1�l2ð Þ

3

þ
ffiffi
3

p
2
� t

L

l2

( )" #�1

(43)

where t
L ¼

� ffiffiffi
3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 1� f1ð Þ ffiffiffi

3
p � 5

 �q

1þ 1ffiffi
3

p � 8
3

and le ¼ F f1l1 þ 1� f1ð Þl2f g þ ð1�FÞ
f1

l1
þ ð1� f1Þ

l2

� �
where F ¼ 0.35

Unit Cell
Intersection

Fiber

Fig. 5 Hexagonal structure of metal foam matrix
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Lu and Chen [40] presented a theoretical approach by considering a system

made of hexagonal honeycombs (Fig. 6). The conductivities of a hexagonal honey-

comb are in general anisotropic and can be represented by a second order tensor.

The resulting conductivities expressed in the (x, y, z) directions are

lx ¼ rls
Cos2y
1þ h=lð Þ (44)

ly ¼ rls
h=lþ Siny
1þ h=l

� �2

lz ¼ rls

where r ¼ 1þ h=lð Þt=l
Cosy h=lþ Sinyð Þ

Recently, a generalized model was derived by Feng et al. [41] for the effective

thermal conductivity of porous media based on the fact that statistical self-similar-

ity exists in porous media. The proposed model assumes that porous media consist

of two portions: randomly distributed non-touching particles and self-similarly

distributed particles contacting each other with resistance. The latter are simulated

by Sierpinski carpets with side length L ¼ 13 and cutout size C ¼ 3, 5, 7 and 9,

respectively, depending upon the porosity concerned. Recursive formulae are pre-

sented and expressed as a function of porosity, ratio of areas, ratio of component

thermal conductivities and contact resistance. There is no empirical constant and

every parameter has a clear physical meaning. The model predictions are compared

with the existing experimental data, and good agreement is found in a wide range of

porosity of 0.14–0.80, and this verifies the validity of the proposed model. Their

Fig. 6 Unit cell of a hexagonal honeycomb (a) with uniform thickness cell walls and (b) with non

uniform thickness cell walls
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expression for the dimensionless effective thermal conductivity of porous media for

randomly and self-similarly distributed non-touching particles is

lþe ¼ le
lf

¼ Ant

A
lþe;nt þ 1� Ant

A

� �
lþe;sc

¼ Ant

A
1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p� 
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p
1þ 1=b� 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� f
p

" #
þ 1� Ant

A

� �
lþðnÞ
e;sc (45)

Here A is the total area of a representative cross section and Ant is an equivalent

area of a cross section having the same porosity as the non-touching particles, with

0 � Ant=A � 1.

For non-touching particles, Hsu et al. [35] gave the following expression as:

lþe;ntlf ¼ le;nt ¼ lf 1�
ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p� 
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1� f

p .
1þ 1=b� 1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi

1� f
p� �

For an n-stage carpet (Fig. 7), the dimensionless effective thermal conductivity

lþðnÞ
e;sc is given by lþ n�1ð Þ

e;sc
1�Cn=Ln

tþ bn�1ð Þþ1
þ Cn

Cn bn�1ð ÞþLn

� �1

, where bn ¼ bo=lþ n�1ð Þ
e;sc and

the superscript n ¼ 1, 2, . . .. This equation represents a recursive algorithm for the

thermal conductivity of self-similar porous media.

Singh et al. [42] developed an empirical relation or quick estimation of effective

thermal conductivity of highly porous systems. The matrix is supposed to be made

up of layers oriented parallel and perpendicular to the direction of heat flow.

Fig. 7 The thermal conductivity model and the thermal–electrical analogy for a one-stage carpet

with L ¼ 13 and C ¼ 5 (a) The thermal conductivity model for a one-stage carpet and (b) The

network of the thermal–electrical analogy for the one-stage carpet
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In order to incorporate varying individual geometries and non linear flow of heat

flux lines generated by the difference in thermal conductivity of the constituent

phases, a correlation term has been introduced. Their expression is:

le ¼ lFII � l 1�Fð Þ
? F � 0; 0 � F � 1 (46)

where lII ¼ flf þ 1� fð Þls and l? ¼ lslf
1�fð Þlfþfls

are upper and lower bounds on

the effective thermal conductivity respectively and F is given by:

F ¼ C 0:3031þ 0:0623 ln f
ls
lf

� �� �

where C is a numerical constant and depends on the nature of the material.

Jagjiwanram et al. [43] generalized Singh and colleagues model assuming

inclined slabs with the heat flux lines and derived a relation as:

le ¼ fls þ 1� fð Þlf

 �2

Cos2yþ l2sl
2
f Sin

2y

flf þ 1� fð Þls

 �2

" #1=2

(47)

where Sin2y ¼ C1f
1=2 ln ls=lf


 �þ C2 and constants C1 and C2 are different for

each type of material.

Singh and Sharma [44] developed a model for predicting the effective thermal

conductivity of particle filled polymer composites assuming spherical inclusions

arranged in a three dimensional cylindrical array (Fig. 8). A Green’s function

technique has been applied to determine the value of effective thermal conductivity.

Recently, Singh et al. [45] extended Hadley’s model to predict effective thermal

conductivity of cellular and polymer composites considering random flow of heat

flux lines. The parameter F introduced was obtained using the laws of statistical

mechanics. Relations given by them are given below:

le ¼
lc 1� fð ÞFþ ld

lc
1� 1� fð ÞF½ �

� 
1� 1� fð Þ 1� Fð Þ þ ld

lc
1� fð Þ 1� Fð Þ (48)

where F is given by the expressions for packed metal composites, polymer compo-

sites and for foam-like materials respectively:

F ¼ e
� lc

ld

� 1
3

F ¼ e
� lc

ld

� 1
3

1þ lc
ld

fc

� �1
3

" #

F ¼ e
� lc

ld

� 2
3

1þ lc
ld

� �
:
2
3fc

� �

254 R. Singh



3.2 Models for Multi-Phase Materials

A large number of theoretical models were developed for prediction of effective

properties of multi-phase materials. Roughly, these models can be classified into

three major categories:

l Models based on empirical equations
l Models based on mixing of phases
l Analytical solutions from physical laws

The most straightforward theoretical models for the calculation of effective

thermal conductivity in heterogeneous multi-phase materials are the parallel and

series models, which are formulated as

le ¼
Xn
i¼1

fili (49)

and

le ¼ 1Pn
i¼1

fi

li

(50)
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Fig. 8 Dispersion around source and sensor in an X–Y plane
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respectively. Note that
P

fi ¼ 1. Since the calculation in the present work does not

take into account the heat transfer modes other than heat conduction, (49) and (50)

define the lower and upper bounds also referred as the Wiener bounds of the

effective thermal conductivity in heterogeneous multi-phase materials.

The Krischer [46] formulated a model which is, essentially, a weighted harmonic

combination of the series and parallel models, as

le ¼ 1

Z
Pn
i¼1

fi

li
þ 1� Zð Þ=Pn

i¼1

fili
(51)

where, the weighting parameter (Z) is often called as the “distribution factor”.

When Z ¼ 0, the Krischer’s model is reduced to the parallel model, and when

Z ¼ 1, it is reduced to the series model. Hence, by adjusting Z between 0 and 1, the

predicted effective thermal conductivity may take any value bounded by theWiener

bounds [8]. The Krischer’s [46] model finds its greatest use in food engineering.

Carson et al. [47] using renowned effective medium theory, developed following

formulation for the effective thermal conductivity of multi-phase media as

Xn
i¼1

fi

li � le
li þ 2le

¼ 0 (52)

The derivation of (52) is based on the exact solution of the Laplace’s heat

transfer equation applied to a single sphere of thermal conductivity l1 being

embedded in a larger continuous medium of conductivity l2, which is subjected

to a steady temperature gradient in one Cartesian-coordinate direction. The only

assumption made in the derivation procedure is that the distribution of the embed-

ded components is completely random such that the resultant temperature gradient

within the material is uniform, which is rather idealized.

Various empirical equations have been proposed to connect the effective prop-

erty to the volume fractions of the multiple phase components, by means of fitting

the experimental data [48–59]. One such empirical equation developed by Cosenza

et al. [51] valid over the solids thermal conductivity (ls) ranging from 2 to

5 W m�1 K�1, porosity (f) from 0.4 to 0.6, and the volumetric water content (y)
from 0.1 to 0.4 is given as

le ¼ 0:8908� 1:0959fð Þls þ 1:2236� 0:3485fð Þy (53)

Such equations have proved to be useful in targeted cases only.

Based on the two-phase fundamental models, two schemes have been imple-

mented for the multiphase case. The first is to extend the two-phase basic models

directly to multiphase cases. For example, the Parallel and Series equations were

adopted to develop a simple linear relationship between the thermal conductivity

and the degree of saturation, which provided a satisfactory correlation for the data
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measured as well as those reported recently for sandy and clay loams [60]. For

three-phase media, Woodside and Messmer [9] proposed the ‘quadratic parallel’

model for the effective conductivity. Their expression is given as

le ¼
X

l1=2i fi

� 2

(54)

where li with i ¼ {1, 2, 3} is the conductivity of each phase and fi the

corresponding volume fraction. This model appears to be applicable when i > 3.

Various weighted average models have also been proposed for such multiphase

mixtures [61].

Maxwell’s model has been extended by Brailsford and Major [62] for a wide

range of dispersions. In this model, the constituent phases are mixed in a definite

proportion for a two-phase system. This mixture is then embedded in a random

mixture of the same two phases having conductivity equal to the average value of

the conductivity of two phase system. Thus the effective thermal conductivity of

such a three-phase system can be determined as

le ¼
lcfc þ ld1fd1

3lc
2lcþld1

� 
þ ld2fd2

3lc
2lcþld1

� h i
fc þ fd1

3lc
2lcþld1

� 
þ fd2

3lc
2lcþld1

� h i (55)

where subscript c and d represent continuous and dispersed phases, respectively.

Chaudhary and Bhandari [63] extended Woodside and Messmer’s model [9] for

three-phase systems using the resistor approach. Their expression was given as:

le ¼ lII
nl? 1�nð Þ (56)

where n was obtained by the best fit technique using experimental values of

calcareous sand stone [18]. When the three-phases are thermally in parallel or in

series with the direction of heat flow the parallel and series effective thermal

conductivity of the material are given as:

lII ¼ clw þ f� cð Þla þ 1� fð Þls

l? ¼ c
lw

þ f� c
la

þ 1� f
ls

� ��1

This model was further extended by Singh et al. [64] by calculating n empiri-

cally.

The second route is to treat two of the multiple phases as one single phase with

their own effective properties and then to mix this effective phase with another new

phase, i.e. dividing a multiphase material into combination of several two-phase

systems. The Maxwell models are the most suitable for developing such mixture
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models in general, and the Maxwell–De Loor model in particular is widely used, for

it requires no geometrical parameters [65, 66]. Dobson et al. [67] rewrote this model

for a four-phase system in to:

le ¼ 3l1 þ 2 f2 � f3ð Þ l2 � l1ð Þ þ 2f3 l3�l1ð Þ þ 2 f4 � f2ð Þ l4 � l1ð Þ½ �
3þ 2 f2 � f3ð Þ l1=l2 � 1ð Þ þ f3 l1=l3 � 1ð Þ þ f4 � f2ð Þ l1=l4 � 1ð Þ½ �

(57)

As the Maxwell models are based on the assumption that the dispersed phases

are independently distributed in the continuous phase with negligible interactions

with each other, these types of models fail to work properly if there exists any

strong phase interactions inside the materials, unless some empirical parameters are

introduced to account for those influences [67].

Verma et al. [68] has extended Hadley’s model for three-phase materials by

putting

f1hrT1i1 þ f2hrT2i2 ¼ f1 þ f2ð ÞhrTiii

and

l1f1hrT1i1 þ l2f2hrT2i2 ¼ li f1 þ f2ð ÞhrTiii

in basic equations of two-phase materials, we obtain

rhTi ¼ f1 þ f2ð ÞhrTiii þ f3hrT3i3 (58)

lerhTi ¼ li f1 þ f2ð ÞhrTiii þ l3f3hrT3i3 (59)

Equations (58) and (59) show that a three-phase problem has been reduced to a

two-phase problem, one phase being the intermediate phase having an average

temperature gradient hrTiii and the second phase being the remainder with an

average temperature gradient hrT3i3. If we compare (58) and (59) with the

equations for two-phase materials, we see that the volume fraction and thermal

conductivity of the intermediate phase should be given by

fi ¼ f1 þ f2

and

li ¼ l1f1

f1 þ f2

The usefulness of this method depends upon the proper pairing of different

phases. No selection rules for the pairing of different phases have been given by

Hadley, but they suggest the following guidelines for composing the phases.
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l When the amount of dispersed phase is small, the continuous phase should be

treated as independent and the rest should be combined to form an intermediate

phase.
l If the fractional volumes of phases are comparable, the intermediate phase

should be formed in such a manner as to reduce the ratio of thermal conductiv-

ities of intermediate and independent phases.
l To define the intermediate thermal conductivity, the constituent of the pair

playing a greater role in conduction should be considered. This has to be decided

judiciously by considering the concentration and thermal conductivity of the

constituents within the pair itself. It can be judged by comparing the products of

their concentration and respective thermal conductivity. Thus the intermediate

thermal conductivity can also be defined by

li ¼ l2f2

f1 þ f2

Beniwal et al. [69] extended the work of Pande et al. for statistically homoge-

neous and regular multi-phase systems. The solution of Poisson’s equation was

used for effective neighboring interactions and modified field which thereafter

yields the effective thermal conductivity of multi-phase systems as

le ¼ lc 1þ 3:844fc
�1

3
ld1 � lc
ld1 þ 2lc

� �
fd1 þ

ld2 � lc
ld2 þ 2lc

� �
fd2

� �� �
(60)

when there is a very dilute dispersion of both the phases, the interactions may not

spread over a large distance. Therefore, expression (59) has the form

le ¼ lc 1þ 3:489fc
�1

3
ld1 � lc
ld1 þ 2lc

� �
fd1

þ ld2 � lc
ld2 þ 2lc

� �
fd2

� �� �
(61)

Singh et al. [70] have developed a model for moist soil like materials. In the case

of soil there are two possibilities. (1) The soil is dry or fully saturated, i.e. the

system is a two-phase system or (2) the system is moist, i.e. the system is a three-

phase system made of solid, liquid and gas phases. Let us express cma as the volume

fraction of moisture in the pore space. In the case when the dispersion of the water

in the air is small, i.e. 0 < cma
2=3 < 0:4, the thermal conductivity of moist air (cma)

within the pore space is expressed by

lma ¼ la 1þ 1:3884
lw � la
lw þ 2la

cma
2=3

� �
(62)

When cma
2=3 lies between 0.4 and 1.0, the lma of moist soil air becomes

lma ¼ lw 1þ 1:3884
lw � la
lw þ 2la

1� cma
2=3

� � �
(63)
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where la and lw are the thermal conductivity of air and water respectively

If cm be the volume fraction of moisture and ca the volume fraction of air in the

sample, then cma, the volume fraction of moisture in the pore space will be

cma ¼
cm

ca

where cm ¼ m=Mð Þca. Here m and M represent the varying moisture content and

moisture content at saturation by weight per cent respectively and ca is the volume

fraction of air. Then the effective thermal conductivity of moist soil is expressed,

using (63), and putting xs ¼ cs � 0:5, as

le ¼ lECM 1þ 1:3884
lw � lECM
lw þ 2lECM

xs
2=3

� �
(64)

le ¼ lECM 1þ 1:3884
lw � lECM
lw þ 2lECM

xsa
2=3

� �
(65)

where xsa ¼ 0:5� cs. Here cs; xs and xsa denote the volume fraction of the solid

phase, solid phase dispersion and air phase dispersion in the soil respectively. The

effective thermal conductivity of the effective continuous medium is defined by

Singh et al. [71] as

lECM ¼ P lslmað Þ1=2

where P is the coefficient which depends on the order of phase interaction.

Moosavi and Sarkomaa [72] presented a theoretical expression for estimating

effective thermal conductivity of three-phase composite materials by incorporating

circular cylindrical geometry. Their expression is written as

le ¼ 1� 2f1
l1l2 � x1x2ð Þ= l2 � x2ð Þ �

2f2
l1l2 � x1x2ð Þ= l1 � x1ð Þ (66)

where li ¼ 1

gi
þ c1fi � c2gifi

4 � c3g2�di2 fif
3
2�di2

xi ¼ c4fi � c5 gif
4
i þ g2�di2 fif

3
2�di2

� 

gi ¼
1� ki
1þ ki

where li is the thermal conductivity of the ith phase, fi is the volume fraction of the

ith phase and ci (i ¼ 1–5) are constants.

Recently, Gori and Corasaniti [73] built up a cubic cell model for the thermal

conductivity of three-phase porous media. Water absorbed was considered to

either cover the solid particles or form liquid-bridges between different particles.

Analytical models were thus derived. Unfortunately, the critical water content for
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liquid-bridge formation was unknown and had to be determined empirically, hence

causing gross errors in predictions. In a three-phase olivine system, the water

distribution is different according to the amount of water content. If the water

content W is lower than Wa ¼ 0.083, which is an empirical value proposed in [74]

the water is adsorbed around the solid particle and no water bridges are established

among the adjacent particles (Fig. 9b). In this case the expression for the effective

thermal conductivity given by them is

1

lT
¼ b� 1� d=3

blc
þ bd

3 lc b2 � 1

 �þ lw

� 	
þ b

ls þ 2=3dlw þ lc b2 � 1� 2=3d

 � (67)

where

d ¼ W

1� f
¼ 6

lwa
ls

If W > Wa, Fig. 9c, d, the amount of water accumulated among the solid

particles is the funicular one, Vwf =Vs. In order to simplify the model, Vwf =Vs is

assumed linearly proportional to the real porosity of the porous medium between

0.183, for f ¼ 0.4764, and 0.226, for f ¼ 0.2595. The resulting expression is

Vwf

Vs
¼ Vwf

Vv
b3 � 1

 � ¼ 0:183þ 0:226� 0:183

0:4764� 0:2595
0:4764� fð Þ

� �
b3 � 1

 �

where the variables are given as

g ¼ lw
ls
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vw

Vs
� Vwf

Vs
þ 1

3

r

gf ¼
lwf
ls

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vwf =Vs

3 b� gð Þ

s

In the configuration of Fig. 9c, where gf < 1; lT is given by

1

lT
¼ b2 � bg

lc b2 � g2f
� 

þ lwg2f
þ bg� b

lc b2 � g2

 �þ lwg2

þ b� bgf
lc b2 � g2

 �þ lw g2 � 1ð Þ þ ls

(68)

þ bgf
ls � lw g2 � 1þ 2bgf � 2ggf


 �þ A
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where A ¼ lc b2 � g2 þ 2bgf þ 2ggf

 �

For g > 1, Fig. 9d, lT has the following expression

1

lT
¼ b2 � bg

lc b2 � g2f
� 

þ lwg2f
þ bg� bgf
lc b2 � g2

 �þ lwg2

þ bgf � b

lc b2 � g2 � 2bgf þ 2ggf

 �þ lw g2 þ 2bgf � 2ggf


 � (69)

þ b

ls þ lw g2 � 1þ 2bgf � 2ggf

 �þ lc b2 � g2 � 2bgf þ 2ggf


 �

solid solid

solidsolid

air

airair

lwa

lwf

lwf

lw

lwlt

ls

lt

water

water

water

fluid

a

c d

b

Fig. 9 (a) Unit cell (b) Water adsorbed around the solid particle (c) Cubic cell model with water

around the solid particle, according to absorption and capillarity among the adjacent particles

(d) Water adsorbed around the solid particle and disposed among adjacent particles
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Ma et al. [75, 76] have developed approximate fractal geometry models, for the

effective thermal conductivity of saturated/unsaturated porous media based on the

thermal–electrical analogy technique (Fig. 10) and on statistical self-similarity of

porous media. The proposed thermal conductivity models were expressed as a

function of porosity, ratio of areas, ratio of component thermal conductivities,

Fig. 10 The thermal conductivity model and the thermal–electrical analogy for a 0-stage and one-

stage carpet in three phases (a) the thermal conductivity model for 0-stage carpet (b) the network

of the thermal–electrical analogy for 0-stage carpet, and (c) the thermal conductivity model for

one-stage carpet
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and saturation. A quite simple recursive algorithm for the effective thermal con-

ductivity for three-phase porous medium is thus presented as:

lþe ¼ le
lg

¼ Ant

A
lþe;nt þ 1� Ant

A

� �
lþe;sc

¼ le
lg

¼ Ant

A
lþe;nt þ 1� Ant

A

� �
lþðnÞ
e;sc ; n ¼ 1; 2; 3; ::: (70)

Here A is the total area of a representative cross section and Ant is an equivalent

area of a cross section having the same porosity as the nontouching particles, with

0 < Ant/A < 1. The dimensionless thermal conductivity for the nontouching parti-

cle portion lþe;nt ¼ le;nt=lg and for n-stage carpet, the dimensionless effective

thermal conductivity lþðnÞ
e;sc is given respectively as:

lþe;nt ¼
lt

RtAtlg

¼ B� 1� F=2

B
þ F

2 B� 1ð Þ þ bwg
h iþ 1

bsg þ Fbwg=2þ B� 1� F=2ð Þ

8<
:

9=
;

�1

lþðnÞ
e;sc ¼ lþ n�1ð Þ

e;sc

2=3� rþ

½tþbnwg þ 1� tþð Þ� þ
rþ

1=3þ rþð Þbnwg þ 2=3� rþð Þ

þ 1=2� tþ

2=3� rþ þ bðnÞwgr
þ þ bðnÞsg =3

þ tþ

2bðnÞwg=3þ bðnÞsg =3

8>>><
>>>:

9>>>=
>>>;

�1

(71)

where

At ¼ lt � 1; bwg ¼ lw=lg; bsg ¼ ls=lg; b
n
wg ¼ b0wg=l

þ n�1ð Þ
e;sc ; and bnsg ¼ b0sg=l

þ n�1ð Þ
e;sc

respectively. Equation (71) represents the recursive algorithm for thermal conduc-

tivity of self-similarly unsaturated or three-phase porous media [76].

Gerstner et al. [77] proposed a Lumped parameter model for effective thermal

conductivity of three-phase paper coatings. In the lumped parameter model by Hsu

et al. [35], a unit cell is used which represents the simplified structure of the porous

medium. The solid phases of the unit cells are finitely connected by a contact plate

and surrounded by the fluid phase. They adapted the model of Hsu et al. [35] model

(Fig. 3) using a square cylindrical solid phase (ls1), representing the pigment, and

introduce a second solid phase (ls2) for the connecting plates, representing the

binder, the fluid phase being air when representing a dry coating or a chosen liquid/

mix of liquids when considering either a wet coating or one that has absorbed ink

vehicle, for example. The width of the binder bridge is c and can be related to the

pigment size a as the contact parameter g ¼ ca�1. The unit cell can be split into
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three parallel layers (Fig. 11 I–III), consisting of the relative combinations of solid

phases and each solid phase with the fluid phase, respectively. Their expression for

the overall effective thermal conductivity of the unit cell is:

le
lf

¼ ga
l� mð Þaþ m

þ 1� g
l� 1ð Þaþ 1

þ 1� a

m� 1ð Þgaþ 1
(72)

where le is the effective thermal conductivity of the unit cell, lf the thermal

conductivity of the fluid phase, l ¼ lf=ls1 the conductivity ratio of the fluid

phase to the pigment phase, and m ¼ lf =ls2 the conductivity ratio of the fluid

phase to the binder phase.

3.3 Numerical Methods

Rapid development of computational techniques in the past decades and the limited

power of the existing theoretical models in dealing with the complex materials have

tremendously enhanced numerical capabilities in modeling the thermo-physical

behaviors of multi-phase materials.

A complete numerical determination of the effective properties of a multi-phase

material has to include two major steps:

l To reproduce properly the multi-scale microstructures using computer algo-

rithms, and then
l To solve the relevant partial differential equations for effective thermal conduc-

tivity of a multi-phase material with acceptable efficiency and accuracy

As the rapid development of the microscopy techniques, several methods have

been proposed to reconstruct the microstructures of multi-phase materials using

computers [78–83]. However, none of them can deal well with the interactions

between the grains, thus unsuitable for energy transfer problems that are extremely

c

I.

II.

III.

1/2
a/2

c
/2

(a
-c

)/
2

(1
-a

)/
2

a

Fig. 11 Modified three-phase unit cell based on the lumped parameter model [35] and its

decomposition into serial and parallel layers (I–III) of thermal resistors
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sensitive to contacts. As the microscopy instruments and the observation techno-

logies are also well developed now, the image mapping has become a highly

powerful tool for approaching the real structures in more geometric details such

as the element shapes, orientations and connections, on the materials properties

[84, 85]. Better reconstruction processes have been used to generate two-phase [86,

87] and multi-phase [88, 89] random structures of porous materials based on the

digital micro-tomographic information and statistical correlation functions. More

about these reconstruction methods based on image mapping can be found in some

excellent review papers [90, 91] and books [92, 93]. For fibrous porous materials,

Pan et al. [94, 95] have done a series of analyses to theoretically characterize the

microstructure using statistical density distribution function approaches.

Moreover, for multi-phase materials, their microstructures can be influenced by

the phase interactions. When such interactions are non-negligible, approaches have

to be developed to reflect the influences during structure generation. Losic et al.

[88] proposed a reconstruction process with given phase probabilities and an overall

correlation function to form lamellar clay films on solid surfaces and dispersed clay

dots on solid structures. Mohanty [96] adopted a Monte Carlo annealing algorithm

to generate unsaturated porous media by using the law of lowest interfacial energy,

but it failed to differentiate various liquid–solid interactions.

Wang et al. [97–99] have done excellent work in this direction. A three-dimen-

sional mesoscopic method was developed and discussed by them for predicting the

effective thermal conductivity of multiphase random porous media. The energy

transport equations were solved using the Lattice Boltzmann method [100–102] for

multi-phase conjugate heat transfer through a porous structure whose morphology

was characterized by a random generation-growth algorithm. This method was

designed to reproduce structural assembles of elements with random sizes, loca-

tions and orientations, and connections, each of which grows from randomly

distributed seeds and the growth is guided by a few given probabilistic growth

rates. They suggested that for different types of microstructures (granular, fibrous or

netlike), the algorithms will be different but still bear the same principles. The

temperature and the heat flux were calculated according to [103] as:

T ¼
X
a

ga

q ¼
X
a

eaga
tg � 0:5

tg

� �

here ga is the equilibrium distribution in each direction, ea the discrete lattice

velocity and tg the dimensionless relaxation time for each phase.

After solving the temperature field their expression for effective thermal con-

ductivity is given as

le ¼ L:
R
q:dA

DT
R
dA

(73)
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where q is the steady heat flux through the media cross section area dA between the

temperature difference DT with a distance L. All of these parameters can be

theoretically determined, and there were no empirical factors existed in this model.

4 Limitations of the Theoretical Models and Discussion

We have briefly reviewed several existing models available in the literature for

predicting effective thermal conductivity of complex materials. A number of

different structures were considered. The real structures and geometries of materi-

als around us are so vast and vivid, that one cannot use a single model to explain the

thermal behaviour of various systems due to their inherent limitations. In real

systems, the kind of structure we face does not match with the geometries discussed

in various models. Therefore, results of these models vary with the experimental

values. Particularly, when the ratio of thermal conductivities of solid to fluid phase

was large. The limitations in the existing models, and thus challenges in developing

new ones, are summarized below:

Almost all the models discussed here are based on simplified physics and are

developed either using the concept of modified flux or considering the phases made

up of different resistors with certain over-idealized assumptions. Therefore, they

are incapable of dealing with the issue of phase interactions in real structures. This

may make the models easy and quick to use, but the simplifications also restrict the

applicability to simple structures and unable to tackle directly the effects of

morphological changes in the microstructure on the material properties. Any efforts

in combining the models for more complex structures will lead to escalating

complexity in the model. Most modifications to improve the accuracy of the models

will in turn narrow their applicability. In recently developed models, the empirical

parameters have been introduced with no valid physical significance, whose values

have to be determined case by case based on experimental data, thus their applica-

bility is limited and become powerless for wider applications. Even for the rela-

tively successful theoretical models, one can only calculate the properties of

existing materials, rather than make predictions for new class of materials. There-

fore, there are not of much value in optimizations or design for novel materials The

resistor concept embodies linear flow of heat where Ohm’s law is followed, while

the flux concept is based on material field from external or internal sources and thus

the flux density and its path depends upon the conductivity of the material through

which the heat flow is maintained. These models do not describe the behavior of an

actual system. The resistor model is an exact solution for a two-phase system

arranged in the form of slabs while the flux model is an exact solution whose

micro geometry and phase distribution is completely prescribed like spheres in

cubic array with lattice type structures. In general, the materials around us do not

belong to either category as their phase distribution and grain arrangement is

completely undefined. Therefore, the models developed using these concepts can-

not be directly applied to natural two phase materials. However, at the same time,
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the resistor model yields the maximum and minimum limits on the effective

thermal conductivity. Similarly, the flux model gives an insight as to how the flux

modification takes place in a periodic structure like beads which are statistically

homogeneous but locally heterogeneous. The difference between real and assumed

situations increases rapidly as the ratio of component conductivity increases or

decreases from a moderate value. This led to a new idea i.e. randomization of phase

distribution. The resulting expression for the effective thermal conductivity

depends upon the method of randomization applied.

The idea of random phase distribution using the flux concept resulted inMaxwell’s

relation [2], Fricke’s relation [3], the Bruggeman theory [6] of variable dispersion

and Brailsford and Major’s relation [62]. The relation established by Maxwell is

suitable for dilute dispersion and moderate conductivity ratios. The results of

Maxwell’s [2] formula are satisfactory for f ¼ 0.5. The concept of randomization

used in resistor models with averaging techniques is better reflected in models of

Woodside andMessmer [9], Chaudhary and Bhandari [20], Cheng and Vachon [21],

and Kumar and Chaudhary [26].

The model developed by Lichtnecker [11] does not incorporate structure and

mode of packing of a system. It is suitable at very low and very high dispersions.

When the ratio of thermal conductivities of solid and fluid phase is more than 20,

the value predicted for the effective thermal conductivity is overestimated. The

expression of Rayleigh [7] is restricted to cellular materials and emulsions. Fricke

[3] and Burger’s [4] relation gives a good result for packed systems of quartz sand,

glass beads in different fluids only. The expression of Kunni and Smith [17]

provides a lower value of the effective thermal conductivity for lower ratio of

thermal conductivities of solid and fluid phase. Sugawara and Yoshizawa [18]

provided an empirical relation for effective thermal conductivity, which yields

correct values of le for soils. They used n ¼ 6.5 in their equation (21).

The bound technique is really useful in estimating the closest optimum value of

the effective thermal conductivity of two-phase systems. The Hashin-Strikman

bound [22] is a most general bound which predicts the effective thermal conductiv-

ity with the least possible knowledge about the two phase system. The Hashin-

Strikman bound is of wider use in the range 0.1 < ld/lc < 10. Moreover, when the

ratio (ld/lc) becomes too large or too low, the Hashin-Strikman bound becomes

broader and turns out to be unrealistic. The Kumar and Chaudhary bound [26] is

equally well in the region 0.1 < ld/lc < 10 but at the same time it is narrower than

the Hashin-Strikman bound when ld/lc < 10�2 in the case of sands and soils.

The expressions developed on the basis of an averaging technique seem to be

more relevant than the models, which are the outcome of rigorous mathematics. As

an example, the results of Hadley’s model [32] are better than Lichtnecker [11],

Brailsford [62] and Pande [27]. Pande’s model is better when the fluid phase is air in

a two-phase system. The model developed by Boomsma and Poulikakos [37] is

based on the idealized three-dimensional basic cell geometry of foam, the tetra-

kaidecahedron. This geometric shape results from filling a given space with cells of

equal size yielding minimal surface energy. The foam structure was represented

with cylindrical ligaments, which attach to cubic nodes at their centers. It was found

268 R. Singh



that the model estimated the effective thermal conductivity very well for these

experimental configurations. This three dimensional model fits the experimental

data very well for the parameter range experienced in metal foams. Calmidi and

Mahajan [38], Bhattacharya [39] in their models considered that the structure

consists of a two dimensional array of hexagonal cells where the fibers form the

sides of the hexagons and a circular blob of the metal at the intersection of the

fibers. Their analysis reflected that the effective thermal conductivity depends

strongly on the porosity and the ratio of the cross sections of the fiber and intersec-

tion. The Ma et al. models [75, 76] have only two parameters, Ant=A and tþ in which

every parameter has a clear physical meaning whereas other models contain several

empirical constants without physical interpretation. This model is analytically

related to several variables, such as f, b, tþ and Ant=A, whereas other numerical

solutions cannot provide such an analytical relationship. The recursive algorithm

for the thermal conductivity obtained using this model was also quite simple. The

advantage of this model over the others is, thus, quite evident.

Now, due to rapid developments in computational techniques to reconstruct the

microstructures of multi-phase complex materials, the effect of microstructure on

thermo-mechanical properties of the material can be calculated more precisely.

Therefore, numerical methods are more accurate and robust approaches in predic-

tion and design of new class of materials to fulfill requirements of the present

millennium. As a result, these techniques are becoming increasingly popular and

more widely used in the materials science and engineering. In the present review,

we presented only a glimpse of the technique developed for the prediction of the

effective thermal conductivity of multi-phase complex materials and a lot of work

remains to be done in this direction.
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Lattice Monte Carlo Analysis of Thermal

Diffusion in Multi-Phase Materials

T. Fiedler, I.V. Belova, A. Öchsner, and G.E. Murch

Abstract This Chapter addresses the numerical simulation of thermal diffusion in

multi-phase materials. A Lattice Monte Carlo method is used in the analysis of two-

and three-dimensional calculation models. The composites considered are assem-

bled by two or three phases, each exhibiting different thermal conductivities. First,

a random distribution of phases is considered and the dependence of the effective

thermal conductivity on the phase composition is investigated. The second part of

this analysis uses a random-growth algorithm that simulates the influence of surface

energy on the formation of composite materials. The effective thermal conductivity

of these structures is investigated and compared to random structures. The final part

of the Chapter addresses percolation analyses. It is shown that the simulation of

surface energy distinctly affects the percolation behavior and therefore the thermal

properties of composite materials.

1 Introduction

The thermal properties of multi-phase materials (cf. Fig. 1) are of great importance

in modern science. Next to common examples such as fiber-reinforced composites

or thermal insulators, examples stretch from the characterization of frozen food

[2, 3] to advanced phase change composites used for thermal energy storage [4, 5].

The thermal properties of multi-phase materials are of great importance in

modern science. Next to common examples such as binary metallic mixtures or
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thermal insulators, examples stretch from the characterization of frozen food [2, 3]

to advanced phase change composites used for thermal energy storage [4, 5]. Due to

the importance of this subject, conductivity properties of multi-phase materials

have been the subject of intensive research. It should be highlighted here that

although the current Chapter strictly addresses thermal properties, the mathematical

models for electric conduction and mass diffusion are equivalent and with some

caution can be used interchangeably. Landauer [6] addressed the electrical resis-

tance of binary metallic mixtures using the effective medium theory. He investi-

gated two-phase random mixtures similar to some of the models addressed in

the current study. The comparison of his mathematical results with experimental

data showed good agreement. Ben-Amoz [7] addressed the effective thermal

properties of two-phase solids. He introduced improved Voigt and Reuss estimates

as bounds for the effective thermal conductivities and diffusivities. Glatzmaier and

Ramirez [8] conducted experimental measurements using the transient hot wire

method. They suggested a mathematical volume averaging model in order to

predict the effective thermal conductivity. Good agreement between their mathe-

matical model and experimental measurements was observed for a glass beads

packed bed, oil shale and coal. Rio et al. [9] introduced an approximate formula for

the effective electrical conductivity of two-dimensional two-phase materials based

on Keller’s reciprocity theorem and observed good agreement with experimental

data. Samantray et al. [10] addressed the effective thermal conductivity of two-

phase materials. They suggested different models depending on the conductivity

ratio of matrix and dispersed phase. Maxwell approaches were found to be accurate

for phase fractions F < 0.1 and F > 0.9 where one phase is isolated and does not

form an interconnected long range network. For the remaining phase fractions,

three correlations for different conductivity ratios were introduced. Good agree-

ment with extensive experimental data was found. Karthikeyan and Reddy [11]

focused on composites with phase fractions between 0.1 and 0.9. They conducted a

unit cell approach for conductivity ratios r ¼ lmin/lmax > 0.05. Wang et al. [12]

used random generation-growth methods to mimic real multi-phase structures.

Using these models, they subsequently conducted Lattice Boltzmann analyses to

Fig. 1 Multi-phase materials: (a) cellular material, (b) fiber-reinforced composite [1]
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solve the energy transport equations and obtain effective thermal properties. Good

agreement with experimental data was found for copper-solder and water-sand

composites. Their work was continued in [13] where also metallic foam materials

and fibrous structures were analyzed.

The current work uses a modified Lattice Monte Carlo method towards thermal

analysis of multi-phase materials. The Lattice Monte Carlo method for thermal

analysis is elucidated in Sect. 2 of this Chapter. In Sect. 3, the effective thermal con-

ductivities of materials with randomly dispersed species are obtained with high

accuracy and compared to existing analytical relations. Furthermore, a random

growth algorithm is introduced in order to simulate the effect of surface energy

on thermal properties. Section 4 briefly addresses the effective thermal conductivity

of three-phase systems. In Sect. 5, percolation analysis on the previously considered

structures is performed and a close connection between percolation behavior and

thermal properties is found.

2 Lattice Monte Carlo Method

The Lattice Monte Carlo method has proven to be an elegant approach to address a

wide range of thermal or mass diffusion problems [14]. Previous publications

dealing with thermal properties of materials have focused on the effective thermal

conductivity of hollow sphere structures [15, 16], random shaped cellular alumin-

ium [17], non-linear thermal material properties in composite structures [18] and

transient heat transfer in phase change materials [19].

In the Lattice Monte Carlo (LMC) method, thermal diffusion is simulated by

random walks of ‘virtual’ particles that represent very small – but finite – energy

quantities. The random walks are directed by jump probabilities pj which are in fact
scaled thermal diffusivities D. In the case of a successful jump attempt, energy is

transferred from a lattice node to a neighbor and the local temperatures T in the

volumes represented by the nodes are changed. The arrangement of lattice nodes

can be chosen arbitrarily and for reasons of simplicity a simple cubic arrangement

with a constant jump length s is typically selected for this analysis.

A flow diagram of the Lattice Monte Carlo algorithm is shown in Fig. 2. At the

beginning of a simulation, the initial conditions are implemented, i.e. a large

population of ‘virtual particles’ is randomly distributed in the lattice model. Subse-

quently, in two random steps a particle is selected and its jump direction deter-

mined. Based on the thermal diffusivities of the origin and the destination nodes, a

jump probability pj is calculated. This value is then compared to a uniformly

distributed random number 0 � w < 1. If the jump probability is larger than

the random number, the ‘virtual’ particle coordinates are updated. The calculation

time t is directly incremented before the next particle is chosen. The accuracy of

Lattice Monte Carlo analysis is governed by the number NP of ‘virtual’ energy

particles. The error can be estimated by e � �1=
ffiffiffiffiffiffi
NP

p
. As an example, a population

of 106 particles results in an error of approximately � 0.1%. However, the
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calculation time increases with the number of particles Np and therefore a balance

between accuracy and computational load needs to be found. In addition, a suffi-

cient long calculation time t must be simulated in order to ensure numerical

convergence of the results. This can be guaranteed by a simple convergence

analysis of the target value, i.e. the effective thermal conductivity.

At the end of a LMC random walk simulation, the particle displacements R are

known for a large number Np of particles. In order to determine the effective

thermal diffusivity Deff of a d-dimensional structure, the average mean square

displacement R2
� �

is calculated and inserted into the Einstein equation:

Deff ¼
R2
� �
2 � d � t : (1)

The effective thermal conductivity leff is then obtained using the formula:

leff ¼ Deff

ravg � Ceff

; (2)

where ravg is the average density and Ceff the effective specific heat of the multi-

phase material. The solution of thermal steady-state problems such as the current

analysis is independent of the material parameters r and C and accordingly, these

can be chosen arbitrarily for each phase i. For simplicity, ri ¼ Ci ¼ 1 is selected

and according to (2) the effective thermal conductivity is then identical to the

effective diffusivity leff ¼ Deff.

3 Two-Phase Systems

In this Section, systems assembled by two species A and B with corresponding

thermal conductivities lA > lB are considered. Several conductivity ratios

r ¼ lB/lA < 1 are addressed and calculation models are generated for a range of

Fig. 2 Flow diagram for Lattice Monte Carlo analysis
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volume fractions FB ¼ 1 � FA. Thereby, random distributions and modified dis-

tributions mimicking the effect of surface energy can be distinguished. A set of ten

structures is generated for each configuration in order to monitor a possible

scattering of results and ensure statistically representative results. If not mentioned

differently, the displayed results are averaged values.

3.1 Random Distribution

First, random distributions are considered where two phases are dispersed in a

simple cubic lattice model. During the model generation, no interaction occurs

between members of the same or opposite species. Random distributions are

generated according to the following procedure: initially, all lattice sites are

assigned to species A (FA ¼ 1, FB ¼ 1 � FA ¼ 0). A lattice site of A is randomly

selected and assigned to species B. In the next step, the volume fraction FB is

updated. This procedure is repeated until the target volume fraction of species B is

reached. Three examples of random distributions for the phase fractions FB ¼ 0.3,

0.5, 0.7 are shown in Fig. 3. In the Figure, black pixels correspond to phase A and

white pixels to phase B.

3.1.1 Two-Dimensional Analysis

System Size

The first series of calculations addresses the impact of the system size on the results

of the numerical analysis. At the corners (two dimensions) or surfaces (three

dimensions) of the calculation models, periodic boundary conditions are prescribed,

i.e. the geometry is repeated. Small models that are repeated several times develop

characteristic patterns and are unsuitable for representing random multi-phase

Fig. 3 Random distributions: (a) FB ¼ 0.3, (b) FB ¼ 0.5, (c) FB ¼ 0.7
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structures. An increase of the system size diminishes the influence of the periodic

boundary conditions. Accordingly, preliminary investigations aim towards the

determination of minimum system sizes to represent random distributions in the

subsequent analysis.

Figure 4a shows the effective thermal conductivity of a two-phase system

(r ¼ 0.1) plotted versus the phase fraction FB. The results obtained for the largest

system (10,0002 lattice sites) are drawn as a full line. Significant scattering of the

results is only found for the smallest (102 lattice sites) of the considered models.

Fig. 4 Study of the effect of the system size: (a) Effective thermal conductivities plotted versus the

area fraction FB, (b) Standard deviation of the effective thermal conductivity
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This observation can be quantified by comparing the standard deviation d (calcu-

lated for n ¼ 10 independent observations) of the effective thermal conductivity

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
ðleff;n � leffÞ2

n� 1

vuut
: (3)

The variable leff is the average effective thermal conductivity for a given system

size and phase fraction. The results are shown in Fig. 4b. It can clearly be seen that

the standard deviation of the effective thermal conductivity d decreases with

increasing system size. The standard deviation also shows a dependency on the

area fraction and maximum scattering is observed for FB ¼ 0.2. Comparing the

results of the two largest systems (1,0002 and 10,0002 nodes) no systematic change

in the standard deviation can be observed. Accordingly, calculation models with

1,0002 lattice nodes are chosen as the standard for the following two-dimensional

analysis. A similar study was performed on three-dimensional models and 1003

nodes was identified as a suitable system size.

Conductivity Ratio

In the following, the effective thermal conductivity of random two-phase systems is

analysed in two dimensions. Four different conductivity ratios r ¼ 0.1, 0.01, 0.001

and 0 are considered. Figure 5 shows the evolution of the effective thermal

conductivity over the phase fraction FB. The conductivity is given in terms of lA
and accordingly for FB ¼ 0 (FA ¼ 1) the value 1 is obtained. An increase of the
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Fig. 5 Effective thermal conductivity of random two-phase systems (2D)
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phase fraction FB results in a decrease of leff due to the lower thermal conductivity

lB of phase B. The gradient of the curves is initially constant and its absolute

value increases with the conductivity ratio r. The site percolation threshold for

two-dimensional simple cubic structures (FB ¼ 1 � 0.59274621 [20]) marks the

transition to low effective thermal conductivities. Beyond this phase fraction,

the conducting phase A fails to form interconnected long-range networks. Further

increase of the phase fraction FB shows fast convergence towards the effective

thermal conductivity of species B: lB ¼ r lA.

3.1.2 Three-Dimensional Analysis

Results of the three-dimensional analysis of randomly dispersed two-phase systems

are shown in Fig. 6. A non-linear dependence of the effective thermal conductivity

on the phase fraction FB can be observed. Analogous to the two-dimensional

analysis, the four conductivity ratios r ¼ 0.1, 0.01, 0.001 and 0 are considered.

The results for the minimum ratio r ¼ 0 can be used to confirm the site percolation

threshold of three-dimensional simple cubic structures: the best value has been

estimated in the literature as 0.3116004 [21]. The effective thermal conductivity of

two-phase materials becomes zero since the conducting phase A fails to form

interconnected long-range networks.

For three-dimensional random structures, analytical models for the calculation

of the effective thermal conductivity have been suggested in the literature. Figures 7

and 8 show a comparison of the LMC results with these analytical approaches for

the conductivity rations r ¼ 0.1 and 0.001. The effective thermal conductivity can
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be estimated using the effective medium theory (EMT) model [22] by the solution

of the equation:

1� FBð Þ lA � leff
lA þ 2leff

þ FB

lB � leff
lB þ 2leff

¼ 0: (4)

Fig. 7 Comparison between numerical simulation (LMC) and analytical models results for three-

dimensional random distributions (r ¼ 0.1)

Fig. 8 Comparison between numerical simulation (LMC) and analytical models results for three-

dimensional random distributions (r ¼ 0.001)
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Comparison with the LMC results reveals that the EMT model predicts system-

atically higher values, in particular for r ¼ 0.001. A Maxwell approach for the

range 0 � FB � 0.1 [10] can be expressed as:

leff ¼ 1þ 2bFB

1� bFB

lA (5)

and the phase-inverse Maxwell model for 0.9 � FB � 1 as:

leff ¼ ð1þ 2bÞð1� bþ 2bFBÞ
ð1� bÞð1þ 2b� bFBÞ lA (6)

with b ¼ (a � 1)/(a þ 2) and a ¼ ldis/lcon. The subscripts ‘dis’ and ‘con’ are

abbreviations for the continuous and dispersed phase respectively. Reasonable

agreement with the LMC results is found within these intervals. The reciprocity

model based on the reciprocity theorem [9] is given by:

leff ¼ 1þ ffiffiffi
a

p � 1ð ÞFB

1þ
ffiffi
1
a

q
� 1

� �
FB

0
B@

1
CAlA: (7)

Because of the close similarity of the current problem to the correlation effect

problem during the random walks of tracer atoms on the corresponding crystal

lattice, we suggest the following expression for the leff:

leff ¼ ðFAlAfA þ FBlBfBÞ=f0; (8)

where fA and fB are the tracer correlation factors that can be calculated using the

almost exact Moleko, Allnatt and Allnatt (MAA) diffusion kinetics theory [23]

fA ¼ HA

2lA þ HA
; fB ¼ HB

2lB þ HB
; (9)

Hi ¼ liM0

ðlj þ filvÞH þ 2lilj fi
ð fili þ lÞH þ 2lil fi

;

Hi ¼ liM0

ðlj þ filvÞH þ 2lilj fi
ð fili þ lÞH þ 2lil fi

; (10)

where the function H is defined as a positive solution to the equation:

H2 þ 2lH ¼ M0ðlvH þ 2liljÞ; (11)

284 T. Fiedler et al.



where l ¼ FB lA þ FA lB and lv ¼ FA lA þ FB lB, M0 ¼ 2f0/(1 � f0), and for

the simple cubic lattice the geometric correlation factor f0 ¼ 0.654.... It can be

shown that H/M0, with H defined as a positive solution to (11) and with f0 ¼ 2/3 is

identical to leff given by the EMT (4).

In Figs. 7 and 8 a comparison between the LMC calculations and the analytical

models is shown. Figure 7 shows results for the moderate value of r ¼ 0.1, whereas

Fig. 8 shows results for the small value of r ¼ 0.001. It can be seen that for

moderate r the EMT expression gives the best agreement and for small values of

r the MAA model works the best. Overall, results shown in Figs. 7 and 8 indicate a

very good qualitative agreement between the LMC data and the model derived

from the MAA theory.

3.2 Modified Distribution

The creation of modified distributions is in principle similar to the procedure used

for random distributions. However, a generation probability p is introduced as a

function of the free surface area AS. The general idea is to capture the generic

structure of two-phase materials where a high surface energy causes ‘clustering’ of

the growing phase. Figure 9 shows an example of normalized surface areas in a two-

dimensional lattice. The matrix (initial phase) is represented by white squares and

the growing phase with a high surface energy by black squares. Cursive numbers

indicate that the surface area is altered due to periodic boundary conditions. Let us

4 4 2 3 4 3 4

4 2 2 3 3

3 0 3 3 4

3 2 1 3 3

2 3 4 3 2

2 2 3 3 2

4 2 3 3 4
Fig. 9 Normalized surface

areas AS/s
2 in a two-

dimensional lattice
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consider a lattice site where all neighbors belong to the starting phase (i.e. are white

squares). Thus, the surface area AS exhibits its maximum value Amax which is 4 s2

(two-dimensional) or 6 s2 (three-dimensional), respectively. The symbol s is the

distance between two adjoining lattice nodes (which are located in the centre of a

square or cube). The generation probability p(Amax) assigned to the maximum

surface area is called the initialization probability pinit.
In the compass of the present study, a linear probability function p(AS) is

proposed. Considering the boundary conditions p(0) ¼ 1 and p(Amax) ¼ pinit the
following relation is obtained:

pðASÞ ¼ pinit � 1

Amax

� AS þ 1: (12)

Analogous to the algorithm used to generate random distributions (cf. Sect. 3.1),

each lattice site is originally assigned to the matrix phase. A lattice site is then

randomly chosen and the generation probability p(AS) is calculated in dependence

on its surface energy. The result is compared to a uniformly distributed random

number 0 � w < 1. If the random number w is smaller than the function value of p,
the lattice site is assigned to the second phase. Otherwise, the site is rejected for the

current attempt and a new lattice site is randomly chosen. The procedure is repeated

until the target phase fraction is reached.

Figure 10 shows several examples of modified structures for different initializa-

tion properties pinit. A low value of pinit causes ‘clustering’ of the second species,

since the phase is more likely to grow in the vicinity of seeds where the free surface

area is reduced. In the limiting case, pinit ¼ 0 a starting seed must be provided prior

to the model generation and only one approximately circular (two-dimensional) or

spherical (three-dimensional) cluster is formed. Deviations from this shape are

caused by the finite system size used in the numerical analysis. An increase of

pinit results in a more homogenous dispersion of the growing phase. The second

limiting case pinit ¼ 1 corresponds to the random distributions considered in the

previous Sect. 3.1. In the subsequent analysis, two cases with different thermal

properties can be distinguished. First, a thermally insulating phase with a large

surface energy grows inside a conducting matrix. In the inverse problem, the

conducting phase has a large surface energy and grows inside a thermally low

conducting matrix. For all analyses within this Section, a constant conductivity

ratio r ¼ lB/lA ¼ 0.01 is presumed.

3.2.1 Two-Dimensional Analysis

First, two-dimensional geometries with an insulating (lB) phase growing inside a

thermally conducting (lA) matrix are considered. The results are shown in Fig. 11.

In addition to the simulation of surface energy (pinit < 1), the results of Sect. 3.1.1

for random distributions (pinit ¼ 1) are added for comparison. It can be observed

that the random structures exhibit the smallest thermal conductivities among the
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considered geometries. A decrease of the initialization probability causes an

increase of the effective thermal conductivity. A likely explanation is that the

clustering of the thermal insulator B promotes the formation of long range networks

of the conducting phase A. It will be shown in Sect. 5 that the percolation threshold

is in fact affected by the initialization probability pinit. The minimum value pinit ¼ 0

is considered as a special case: as indicated in Fig. 10, the insulating phase B (black

pixels) forms a single approximately circular cluster inside the conducting matrix A

(white pixels). In this case, the percolation threshold of phase B can be calculated

by dividing the area of the circular inclusion (diameter d) by the area of the square

formed by tangents of the circle: Fperc,B ¼ p (d/2)2/d2 ¼ p/4. In a two-dimensional

structure, only one percolating network can exist at any time. In other words, the

conducting phase A cannot form any long-range networks beyond this threshold

and as a consequence the effective thermal conductivity drops towards the lower

values of the other structures. In addition to the LMC data, finite element results of

two-dimensional models with spherical inclusions are added as square markers in

Fig. 10 Surface energy models (FA ¼ FB ¼ 0.5, resolution 1,0002 lattice nodes): (a) pinit ¼ 0.1,

(b) pinit ¼ 0.01, (c) pinit ¼ 0.001, (d) pinit ¼ 0
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Fig. 11. More information on this finite element approach can be found elsewhere

[24]. An excellent agreement with the LMC results (pinit ¼ 0) is obtained.

The second set of models addresses the inverse problem where a thermally high

conducting phase (lA) grows within an insulating matrix (lB). The effective

thermal conductivities are shown in Fig. 12. It is interesting to compare the results

of the initialization probabilities pinit ¼ 0.1, 0.01, 0.001 to random structures

(pinit ¼ 1): for phase fractions FB > 0.31 a small increase of the effective thermal

conductivity can be observed. A likely explanation is that the surface energy causes

clustering of the conducting phase which supports the formation of short-range

networks. Interestingly, these structures exhibit slightly lower thermal conductiv-

ities than random structures for FB < 0.31. This phase fraction corresponds to the

percolation threshold of the conducting phase in random distributions. However, it

can also be noted that the impact of the parameter pinit (> 0) on the effective thermal

conductivity is small and may be disregarded in most cases.

An interesting behavior is found for the limiting case pinit ¼ 0. The conducting

phase A is unable to form an interconnected long range network beyond FB > 1

� p/4, i.e. the circular clusters do not touch and the structures exhibit very low

thermal conductivities. After percolation (i.e. FB < 1 � p/4), the thermal conduc-

tivity increases to the level of the other structures. Due to its importance for thermal

conduction in composites, percolation will be considered separately in Sect. 5.

Analogous to Fig. 11, finite element results (simulating geometries for pinit ¼ 0) are

indicated by square markers and a good agreement with the corresponding Lattice

Monte Carlo results is found.

Fig. 11 Effective thermal conductivity and surface energy (2D): thermal insulator growing inside

conducting matrix
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3.2.2 Three-Dimensional Analysis

In this Subsection, three-dimensional analyses of the influence of surface energy

on the effective thermal conductivity are performed. Analogous to the two-

dimensional case, first a thermal insulator growing inside a conducting matrix is

considered. The results are shown in Fig. 13. The random structure (pinit ¼ 1)

Fig. 13 Effective thermal conductivity and surface energy (3D): thermal insulator growing inside

conducting matrix

Fig. 12 Effective thermal conductivity and surface energy (2D): thermal conductor growing

inside an insulating matrix
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exhibits the lowest conductivities at all phase fractions FB. A decrease of the

initialization probability causes clustering of the thermal insulator and as already

observed in the two-dimensional structures promotes the formation of conducting

long-range networks. As a consequence, the effective thermal conductivity

increases. In the limiting case pinit ¼ 0, the insulator forms spherical clusters inside

the conducting matrix. At the phase fraction FB ¼ p/6, the insulating phase B starts

to percolate. Unlike the two-dimensional case no significant change in the effective

thermal conductivity is observed. The explanation is that in three dimensions two

percolating networks can coexist. An example for such a geometry is given in

Fig. 13. Assuming a perfectly spherical growth of phase B, phase A percolates for

all phase fractions FB < 0.965.

In Fig. 14, the inverse case (a thermal conductor growing inside an insulating

matrix) is considered. As a reference, the effective thermal conductivities of

random distributions are plotted as a dashed line. For phase fractions FB < 0.4,

no strong dependence on the parameter pinit is found. In the range 0.4 < FB < 0.8,

an increase of the effective thermal conductivity with decreasing values of pinit (>0)

can be observed. Similar to the two-dimensional structures, the two phases segre-

gate due to the simulation of surface energy. As a result, the formation of conduct-

ing short-range networks is promoted resulting in a slightly increased conductivity.

A different behavior is observed for the limiting case pinit ¼ 0. At low phase

fractions of the conductor FA ¼ 1 � FB, clustering of phase A inhibits the con-

nection of the conducting phase, i.e. neighboring spheres do not touch. Accord-

ingly, the effective thermal conductivity is low in comparison to the other

geometries. However, approaching the critical phase fraction 1 � p/6, the (approx-
imately) spherical clusters start to connect and the conductivity increases rapidly.

Fig. 14 Effective thermal conductivity and surface energy (3D): thermal conductor growing

inside an insulating matrix
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4 Three-Phase Systems

Due to the increased complexity of three-phase systems, only random distributions

(cf. Sect. 3.1) are investigated. Three species with volume fractions FA, FB and FC

and corresponding thermal conductivities lA, lB and lC are considered. The

thermal conductivities lA > 0, lB ¼ 0.5 lA and lC ¼ 0.01 lB are constant through-
out the analysis. As in the previous Sections, values of the effective thermal

conductivities are expressed as ratios of lB.

4.1 Two-Dimensional Three-Phase Systems

First, two-dimensional models are considered. The results of the analysis are

shown in the ternary plot Fig. 15a. Phase compositions of identical effective

thermal conductivities (i.e. leff ¼ 0.1 lA) are connected by lines. The circular

markers in the graph correspond to results of the Lattice Monte Carlo calculations.

It can be observed that all ‘iso-conductivity’ lines are in fact straight lines.

Composites with a high fraction FC exhibit low thermal conductivities due to the

low value of lC. As required, the iso-line leff ¼ 0.5 lA intersects with 100% FB.

High effective thermal conductivities, i.e. leff > 0.9 lA can only be observed for

very high phase fractions FA.

4.2 Three-Dimensional Three-Phase Systems

Next, three-dimensional three-phase systems are considered. The results are shown

in the ternary plot Fig. 15b. Similar to Fig. 15a, phase compositions with identical

effective thermal conductivities can be connected by straight lines. The comparison

with the results of the two-dimensional analysis (cf. Fig. 15a) reveals distinctly

higher effective thermal conductivities. A likely explanation is the formation of

long-range networks (percolation) of the conducting phases (A and B) at relatively

low phase fractions in comparison to the two-dimensional case. The percolation

behavior of two-dimensional and three-dimensional structures is considered in the

next Sect. 5 of this Chapter.

5 Percolation

The results of Sect. 3.2 indicate that the simulation of surface energy (pinit < 1)

during the model generation distinctly changes the thermal properties of such struc-

tures. For identical phase compositions, different effective thermal conductivities are
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Fig. 15 Effective thermal conductivity of ternary systems: (a) two-dimensional, (b) three-dimen-

sional
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obtained. A likely explanation is a change of the percolation of the conducting phase

threshold due to the surface energy. Let us consider a composite beyond this

percolation threshold: no conducting long-range networks can be formed and the

effective thermal conductivity exhibits low values in comparison to a percolating

structure. This Section addresses percolation thresholds for random and modified

two-phase structures. First, the algorithm used for the analysis is introduced. Second,

the order of percolation and the influence of the system size are discussed. After-

wards, random distributions are considered and results are compared to values readily

available in literature. In the final part of this Section, the dependence of the

percolation threshold on the initialization probability pinit is investigated.

5.1 Percolation Algorithm

Figure 16 shows the algorithm used for percolation analysis on a simple two-

dimensional lattice for one direction – the procedure for the orthogonal direction

(s) is identical. The investigated phase, in the following referred to as species A, is

represented by black boxes; all remaining phases are white boxes. In the first step,

nodes of phase A inside the starting plane, i.e. x ¼ 1, are identified (marked as light

grey boxed in Fig. 16a. The selected nodes act as seeds for the following analysis.

A seed is chosen and neighboring nodes of the same species A are marked as

additional seeds (cf. Fig. 16b). It should be mentioned here that for the identification

of neighbors, periodic boundary conditions are considered. In the next step, the

x

a b

c d

Fig. 16 Percolation algorithm on a two-dimensional lattice: investigated phase (black), other
phases (white), active seeds (light gray), inactive seeds (dark gray)
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previously used seed is erased, i.e. assigned to a different phase, so that it is not

reused and thereby decreases the efficiency of the algorithm. Subsequently, a new

seed is activated. In principal, any seed could be selected. However, in order to

improve efficiency, the seed with the maximum distance to the starting plane is

chosen. As before, neighboring nodes of phase A are registered as additional seeds

and the old seed is erased (cf. Fig. 16c). This procedure is repeated until (1) the

opposite plane is reached (percolation, cf. Fig. 16d) or (2) no more seeds are

available (no percolation).

A range of different phase fractions is considered and for each fraction at least

100 different models are investigated. The amount of percolating structures divided

by the total number of models is then used to calculate the percolation probability at

the particular phase fraction. The obtained percolation probabilities are then plotted

versus the phase fractions (for an example cf. Fig. 17).

5.2 Order of Percolation

In the case of finite systems a percolation order can be introduced. For simple cubic

grid models, it is useful to distinguish three different orders (directions) of percola-

tion. For first order, percolation is observed in at least one out of the three

orthogonal x, y and z directions. Second and third order means percolation in two

or three directions, respectively. In the context of thermal properties, first or second

order percolation introduce anisotropic behavior. In Fig. 17, two different system

sizes, namely 1003 and 4003 nodes are shown. Let us first consider the smaller

Fig. 17 Percolation order for system sizes 1003 and 4003
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system. Percolation of the first order is already observed for relatively small phase

fractions. The percolation probability exhibits values greater than zero for

FA > 0.302. Second order percolation starts at FA > 0.306 and third order perco-

lation only at FA > 0.308. The results for the larger system (4003 nodes) indicate

that the nth order (n ¼ 1, 2, 3) percolation probabilities converge for increasing

system size. In the case of an infinite system, the concept of percolation order

becomes irrelevant and a singular percolation threshold of 0.3116004 [21] (dotted

line) is obtained. As a consequence, only third order percolation on sufficiently

large systems is considered in the following analysis.

5.3 System Size

The previous Subsection already indicates that the system size has a strong impact

on the percolation behavior of finite systems. Therefore, the (third order) percola-

tion behavior of models containing 1003, 2003, 4003 and 8003 nodes is now

addressed. It can be observed that the percolation band, i.e. the range of phase

fractions where the percolation probability is larger than 0 and smaller than 1,

distinctly decreases with increasing system size. Convergence towards a step

function at the reference solution (infinite system size) is observed. It is interesting

to note that the solution of different system sizes intersects in close proximity to this

reference solution. This behavior will be utilized in subsequent analysis: the

percolation behavior of systems with the sizes 4003 and 8003 will be calculated

and the phase fraction at the intersection of the probability curves will be assigned

to the percolation threshold of the particular structure.

In principle, the results shown in Fig. 18 can also be interpreted as a ‘size effect’.

Smaller structures exhibit a lower percolation probability (e.g. of a thermal con-

ductor) at a particular phase fraction which will affect their thermal properties (e.g.

decrease the effective conductivity).

5.4 Random Distributions

First, the percolation threshold of random distributions in simple cubic arrange-

ments is considered. Figure 18 can be utilized to obtain the percolation threshold of

three-dimensional structures. The probability curves for the system sizes 4003 and

8003 pixels intersect at FA ¼ 0.3116(4). The comparison with the reference solu-

tion given in literature with 0.3116004 [21] shows excellent agreement. The

analysis is repeated for the two-dimensional case. Figure 19 shows the percolation

probabilities for the system sizes 8002, 1,6002, 3,2002 and 6,4002. Intersection of

the curves assigned to the largest system sizes is observed atFA ¼ 0.5927(1) which

corresponds to a deviation of less than 0.006% to the reference solution [20].
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The comparison of the two- and three-dimensional percolation thresholds

reveals that three-dimensional structures percolate at lower phase fractions. This

explains that three-dimensional structures exhibit higher thermal conductivities for

similar phase compositions (for example cf. Fig. 15). Percolation of the conducting

phase and therefore the formation of conducting long-range networks is achieved

‘earlier’ (i.e. at a lower phase fraction) than in two-dimensional structures resulting

in higher effective conductivities.

Fig. 18 Percolation behavior of random structures for different system sizes (3D)

Fig. 19 Percolation behavior of random structures for different system sizes (2D)
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5.5 Modified Distributions

In the following, the percolation behavior of modified distributions that simulate the

influence of surface energy during the model generation is investigated.

5.5.1 Two-Dimensional Structures

First, the two-dimensional case is considered. In modified structures, a new phase

(subscript ‘N’) with a high surface energy grows inside the matrix (subscript ‘M’).

The model generation is elucidated in Sect. 3.2 of this Chapter and controlled by the

initialization probability pinit. Figure 10 shows the influence of the parameter on the

geometry of the two-phase composites. Let us first consider the limiting cases:

random structures (pinit ¼ 1) were already addressed in the previous Sect. 5.4. The

case pinit ¼ 0 corresponds to a single circular cluster of the growing phase. Any

deviation from the circular shape (cf. Fig. 10) is due to a limited model size of the

calculation models. Accordingly, the percolation threshold of infinite structures can

be calculated according to FPerc ¼ ACircle/ASquare ¼ pr2/(2r)2 ¼ p/4, which is the

highest value among the considered composites (cf. Table 1). The percolation

behavior of the structures with pinit ¼ 0.1, 0.01 and 0.001 is obtained using the

algorithm explained in Sect. 5.1. A decrease of the percolation threshold with

decreasing initialization probabilities (pinit > 0) is observed. It is interesting to

study the connection between percolation threshold and thermal properties: Fig. 12

shows results for a conducting phase growing inside a thermal insulating matrix. In

the case of pinit ¼ 0, a distinct decrease in the effective thermal conductivity is

observed. Only after reaching the (high) percolation threshold of the conducting

phase FPerc,A ¼ p/4, the effective thermal conductivity increases towards the values

of the random structures that percolate at a much lower fractions FA ¼ 0.3116.

Therefore, it is a likely conclusion that the decrease in thermal conductivity for

pinit ¼ 0 is caused by the high percolation threshold of the conducting phase.

The simulation of the surface energy of the growing phase also affects the

percolation behaviour of the (remaining) matrix. Low values of pinit trigger strong
clustering of the growing phase and cause the conservation of long range networks

inside the matrix. This interdependence of clustering and percolation behaviour was

already observed by Kikuchi [25]. This can be observed in Table 2 where the

percolation threshold of the matrix continuously decreases with decreasing values

of pinit. The percolation threshold of the limiting case pinit ¼ 0 (circular clusters) is

Table 1 Percolation

behaviour of the growing

phase for different

initialization probabilities

pinit (2D)

pinit FN

0 p/4 ¼ 0.785

0.001 0.5579

0.01 0.53273

0.1 0.54722

1 0.59271
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calculated according to FPerc ¼ (ASquare � ACircle)/ASquare ¼ 1 � p/4, all other

values are obtained numerically. Again, it is of interest to study the interdependence

of percolation behavior of the conducting phase and thermal properties. Figure 11

shows the effective thermal conductivities of structures where a thermal insulator

grows inside a thermally conducting matrix. Comparison with Table 2 reveals that

the effective thermal conductivity increases for low percolation thresholds of the

conducting matrix, i.e. the maximum thermal conductivities are found for the

minimum percolation threshold (pinit ¼ 0, FPerc ¼ 0.215).

5.5.2 Three-Dimensional Structures

Next, the three-dimensional case is considered. Table 3 shows the percolation

behavior of the growing phase in modified structures. The largest percolation

threshold is found for pinit ¼ 0 where spherical clusters form inside the matrix

phase. Assuming a perfectly spherical growth, geometrical analysis yields

FPerc ¼ VSphere/VCube ¼ 4/3pr3/(2r)3 ¼ p/6. For initialization probabilities larger

than 0, a decrease of the percolation threshold in comparison to random structures is

found. This behavior is very similar to the two-dimensional case (cf. Table 1).

However, in three dimensions, distinctly lower percolation thresholds are obtained.

The comparison of Fig. 14 and Table 3 reveals an increase of the effective thermal

conductivity with decreasing values of the corresponding percolation threshold.

This confirms the connection observed earlier for the two-dimensional case.

The percolation behaviour of the matrix phase is shown in Table 4. Analogous to

the two-dimensional case (Table 2), the percolation threshold decreases with

decreasing values of the initialization probability pinit. The smallest value is

found for pinit ¼ 0, where the growing phase forms spherical clusters inside the

matrix phase. Assuming a perfect spherical growth (even after neighbouring clus-

ters touch) geometrical analysis reveals a percolation threshold of 0.035. Again,

comparison with the two-dimensional equivalent (cf. Table 2) reveals distinctly

Table 2 Percolation

behaviour of the matrix phase

for different initialization

probabilities pinit (2D)

pinit FM

0 1 � p/4 ¼ 0.215

0.001 0.4655

0.01 0.51700

0.1 0.55285

1 0.59271

Table 3 Percolation

behaviour of the growing

phase for different

initialization probabilities

pinit (3D)

pinit FN

0 p/6 ¼ 0.524

0.001 0.1506

0.01 0.17930

0.1 0.24289

1 0.3116004 [21]
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lower percolation thresholds in three dimensions. The comparative analysis of

Table 4 and Fig. 13 shows an increase of the effective thermal conductivity for

decreasing percolation thresholds of the conducting matrix.

6 Conclusions

In this Chapter numerical simulations of thermal diffusion in multi-phase materials

were performed. A Lattice Monte Carlo (LMC) method was used towards the

analysis of two- and three-dimensional model structures. The considered compo-

sites are assembled by two or three phases, each exhibiting different thermal

conductivities. First, a random distribution of phases was considered and the

dependence of the effective thermal conductivity on the phase composition was

investigated. The comparison between LMC results and analytical solutions

showed good agreement, in particular for a model derived from the Moleko, Allnatt

and Allnatt diffusion kinetics theory. The second part of this Chapter focused on a

random-growth algorithm simulating the influence of surface energy on the forma-

tion of composite materials. The effective thermal conductivity of these structures

was determined and distinct deviations from random structures (i.e. structures

generated without the simulation of surface energy) were observed. In the final

part of this Chapter, percolation analyses were performed on random and modified

structures. A systematic connection between thermal properties and percolation

behavior was found for two- and three-dimensional structures. A low percolation

threshold of the conducting phase causes an increase in thermal conductivity and

vice versa. The physical explanation is the existence of interconnected long-range

networks that distinctly increase the thermal energy transfer. Three-dimensional

structures exhibit lower percolation thresholds than of two-dimensional ones.

Accordingly, they have higher effective thermal conductivities for similar phase

compositions.
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16. Fiedler, T., Öchsner, A., Belova, I.V., Murch, G.E.: Recent advances in the prediction of the

thermal properties of syntactic metallic hollow sphere structures. Adv. Eng. Mater. 10,

269–273 (2008)
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Optimization of a Unit Periodic Cell

in Lattice Block Materials Aimed

at Thermo-Mechanical Applications

Pablo A. Muñoz-Rojas, Thiago A. Carniel, Emilio C.N. Silva and

Andreas Öchsner

Abstract Lattice block materials (LBMs) are periodic cellular materials, made of

truss-like unit cells, which usually present a significant enhancement in mechan-

ical performance when compared to their parent material. This improvement is

generally measured by their low weight to strength ratio but several other desirable

properties can also be considered, including high capacity for kinetic energy

absorption, enhanced vibrational and damping characteristics, acoustic noise

attenuation, shear strength, fracture strength, and directional heat conduction or

insulation. Using optimization techniques, it is possible to tailor LBMs for specific

multifunctional needs, combining good performance in different, and sometimes

competing, properties. This work presents a particular approach for a systematic

design of unit periodic cells of LBMs aiming at enhanced simultaneous stiffness

and heat transfer homogenized properties. The homogenization is developed using

an asymptotic expansion in two scales, the unit cells are modeled using linear pin-

jointed truss finite elements and the optimization algorithm employed is Sequential

Linear Programming (SLP). Nodal coordinates and cross sectional areas might be

adopted as design variables simultaneously and the necessary sensitivities are

obtained analytically. Illustrative 2D and 3D examples are included.
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1 Introduction

Modern technological challenges increasingly demand new materials optimized

for specific needs which oftentimes require competing properties. In this sense,

for instance, a material can be required to be light and to show a high stiffness/

conductivity ratio at the same time, or to support shear while being able to absorb

impact energy efficiently. This kind of multifunctionality is best performed by

porous or composite materials, which use the different properties of their

constituents for an enhanced response to different types of simultaneous external

loads [1].

Materials that present multifunctional response are observed in nature; for

example, both complex and simple forms of life, like human bone and diatoms,

exhibit cellular patterns which make them optimally suited for their tasks [2].

Examples of man-manufactured materials which try to exploit intelligently cellular

structures for engineering applications are displayed in Fig. 1. Figure 1a shows the

material used in a ceramic filter made of silicon carbide, alumina and zirconia.

This application requires not only mechanical strength to withstand high tem-

perature flow, but also to yield low pressure loss, erosion resistance, and chemical

and thermal stability to avoid reaction with the molten metal being filtered. On the

other hand, Figure 1b presents an open cell material, made up of truss-like unit

cells which are distributed spatially in a periodic pattern. Materials formed by this

kind of arrangement have been known as lattice block materials (LBMs), lattice-

truss structures, lattice-block structures and cellular lattices.

LBMs are light and present good mechanical properties, particularly high

stiffness and resistance to failure. Their greatest potential of use is foreseen in

multifunctional applications ranging from automotive and aerospace components

to biomedical, civil, sportive and domestic industry [3–6]. It is worth remarking

that the development of high-precision manufacturing processes, such as rapid

prototyping (e.g., Selective Laser Sintering, Digital Light Processing and Micro-

stereolithography [7, 8]) has motivated growing industrial interest in truss

microstructures aiming at high-performance applications. Practical high level

engineering applications include sandwich beams and plates [9–11], photonic and

phononic devices [12–14] and military equipment such as ship doors [15] and

missiles [16]. At the same time, research on LBMs has gained attention from the

scientific community, focusing on aspects such as their analysis at macro and

microscopic levels [2, 17–21], further manufacturing possibilities [22–25], and

their optimized design [6, 26–28].

Studies on well suited topologies for LBMs have a classical reference in the

work of Gibson and Ashby [3]. More recently, Luxner et al. [17] have studied

effective properties, elastoplastic behavior and localization phenomenon in LBMs

resulting from different unit cell topologies, such as those shown in Fig. 2.

Manufacturing methods of LBMs are at present an active research field.

Different technologies have been devised and continue to be proposed, so that an

apparently complicated layout or topology of a particular unit cell should not be
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disregarded for production, although certainly an aspect of concern. As a conse-

quence of these new manufacturing methods, efforts have been placed in the study

of the structural behavior of LBMs resulting from particular fabrication procedures

[31–33]. On the other hand, the possibility to manufacture a wide range of unit cell

configurations opens the way for the application of optimization techniques to

determine ideal layouts and topologies for LBMs withstanding multifunctional

requirements. The optimization of a LBM can be defined as the determination of

the best geometrical configuration of its unit cell, in order to maximize or mini-

mize a given functional, or multifunctional, criterion. Techniques such as inverse

analysis can be adopted for this purpose, although oftentimes the problem does not

present solution unicity. In general, the functional criterion to be extremized

corresponds to a macroscopic, average, or homogenized property. Homogenization

for periodic microstructures is a well established theory, and classical references

include Sanchez-Palencia [34] and Hassani and Hinton [35].

Hyun and Torquato [36] used standard topology optimization based on the

Simple Isotropic Material with Penalization (SIMP) approach to obtain easily

manufacturable two dimensional isotropic optimal cellular solids for effective bulk

and shear moduli over the entire density range. Although their formulation was

based in 2D elasticity, their results led to the conclusion that at intermediate

densities, the optimal structures are given by Kagomé lattices. The authors suggest

the possibilities of multifunctional applications of Kagomé structures based on

Fig. 2 Unit cells of periodic materials studied by [30] a Simple cubic (SC), b Translated simple

cubic (TSC), c Body centered cubic (BCC), d Reinforced body centered cubic RBCC), e Gibson

Ashby (GA)

Fig. 1 Open cell structures. a ceramic foam filter used to remove impurities from liquid metals

in casting [29], b Lattice Block Material made up of an aluminum alloy [26]
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their superior strength to elastic buckling when compared to triangular-like cell

structures.

Sigmund [37] pioneered the use of homogenization methods to obtain and

optimize macroscopic constitutive properties dealing directly with truss-like

microstructures, i.e., employing truss and frame finite elements. His work intended

to design materials with prescribed constitutive tensors. He adopted the usual

topology optimization approach for trusses, in which a ground structure of bars

with fixed coordinates is taken as the initial design, and only the cross sectional

areas are allowed to change. In Sigmund [38] truss-like and frame-like cells are

compared to optimize macroscopic constitutive properties. No apparent difference

was observed in the topology of the optimized cells. Hence, it was assumed that

truss elements can be used for the optimizing procedure with great computational

advantage, especially in 3D cases, where the number of degrees of freedom per

element in frames is twice that of the truss case. Further, Deshpande et al. [39]

showed that stretching-dominated cellular solids are more weight efficient for

structural applications than bending-dominated ones. In this regard, Evans et al.

[40] and Suralvo et al. [24] mention that the absence of bending allows the

stiffness and strength to vary linearly with relative density of the cell. In

stretching-dominated structures the resultant strength-to-weight and stiffness-to-

weight ratios are improved and the relative density can be reduced to as low as

2–3% [24]. Therefore, preliminary use of pin-jointed trusses in optimization is

justified, although qualitative results obtained should be verified using cells formed

by frame elements.

Yan et al. [26] presented an approach which optimized a LBM unit cell, having

only nodal coordinates as design variables. They developed the formulation for 3D

and 2D elasticity but presented results only for plane stress. The example shown

concerned the maximization of the homogenized elastic tensor component asso-

ciated to shear, that is, E1212. The expressions for analytical sensitivities were

detailed. More recently, Lippermann et al. [27] made an original contribution

optimizing unit cells made of Euler–Bernoulli beam elements with respect to a

resistance criterion at the microscale, which is known as stress localization. In this

case there was no need for homogenized properties. They particularized the cross

sections to be rectangular with one of the dimensions equal to unity. Thus, they

adopted as design variables both the free dimension defining the cross section and

nodal coordinates. 2D applications were presented showing the presence of local

minima. Starting from different initial designs, the results converged systemati-

cally to one of the three configurations: squares with two diagonals, equilateral

triangles and Kagomé grids, all of which being stretching-dominated structures.

A different application for LBMs was exploited by Prasad and Diaz [41], who

devised the design of 2D bistable compliant periodic structures using nonlinear

beam elements. The key idea in this case was to make use of the snap-through

behavior of the slender beam elements in the unit cell. This concept had been

presented before by Ohsaki and Nishiwaki [42], although restricted to the shape or

layout design of regular compliant mechanisms, rather than to the design of a

periodic material with bistable properties.
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Dede and Hulbert [43, 44] introduced an original technique to optimize periodic

lattice structures in order to obtain enhanced vibro-acoustic characteristics. The

authors employed topology optimization aiming to design frame-made unit cells

acting as compliant mechanisms to be integrated in large scale structures rendering

improved dynamic response. To solve this problem, due to the existence of many

local minima, the authors adopted a genetic algorithm. The possibility to obtain

multifunctional properties exploiting lattice structures made of non-metallic

materials, such as polymers, is highlighted in their work.

Gonella et al. [13] introduced a novel idea to design multifunctional LBMs

combining ultralight characteristics, superior mechanical wave filtering properties

and energy harvesting capabilities. The key issue is to introduce piezoelectric

cantilevers in the unit lattice cells, so that, in addition to a bandgap desired

behavior, the structure allows the conversion of localized kinetic energy into

electrical energy. Foreseen applications include self-powered microelectrome-

chanical systems (MEMS).

The present Chapter has its focus in the layout optimization of LBMs for

enhanced response to simultaneous thermal and mechanical loading. Linear pin-

jointed 3D bar elements are employed. Design variables include both, size (cross

sectional areas) and shape (nodal coordinates) parameters simultaneously, thus

reducing the number of bars needed in a ground structure. As explained above, one

of the few research works to adopt this approach was presented by Lippermann

et al. [27] but in a different context. All the sensitivities are developed analytically

and the optimization is performed using Sequential Linear Programming (SLP).

The formulation developed comprehends 3D and 2D structures. Examples of both

cases are included.

The outline of the Chapter is as follows: Sect. 2 reviews briefly the concept of

homogenization of materials with periodic microstructure using an asymptotic

expansion; Sects. 3 and 4 particularize the application of this theory to obtain

macroscopic thermal and mechanical properties of a continuous body based on a

truss-like 3D unit cell; Sect. 5 shows the procedure adopted for applying periodic

boundary conditions; Sect. 6 discusses the use of area and coordinate design

variables at the same time; Sect. 7 defines the optimization problems, including

the proposed multifunctional objective functions; Sect. 8 describes briefly the ana-

lytical sensitivity analysis approach adopted; Sect. 9 shows 2D and 3D numerical

results; and Sect. 10 synthesizes the most important aspects of the work.

2 Homogenization of Materials with Periodic Microstructure

Among the wide range of existing materials, a particular group which exhibits

regular and periodic structure can be identified. This means that any physical,

mechanical or thermal property must obey the relation

F xþ NYð Þ ¼ F xð Þ (1)
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where F is the property, x ¼ [x1, x2, x3]
T is the position vector of a given point,

N is a 3 3 diagonal matrix of arbitrary integer numbers

N ¼
n1 0 0

0 n2 0

0 0 n3

2
4

3
5 (2)

and Y ¼ [Y1, Y2, Y3]
T is a constant vector which determines the period of the

structure, i.e., the dimension of the base cell. The period is usually very small

when compared to the dimension of the global domain. Hence, the average

physical, mechanical and thermal properties suffer rapid oscillations in the

neighborhood of a given point x, as shown in Fig. 3.

Figure 3 displays the same function in two scales: (a) a global, or macroscopic

one, where the coordinates are given by x; and a local, or microscopic one, where

the coordinates are given by y. Both scales are related by Eq. 3 through the

parameter e, which is typically very small.

y ¼ x

e
(3)

The macroscopic behavior can be obtained from the microscopic one using

homogenization theory based on an asymptotic expansion in two (or more) scales.

3 Homogenization of Mechanical Properties

In this Section the basic homogenization equations for mechanical properties will

be reviewed in the special perspective of a truss-like unit cell. The notation will

follow Fonseca [45]. A similar, though more concise development can be found in

Yan et al. [26].

Considering that the displacement field is expanded in two scales, one has

u x; yð Þ ¼ u0 xð Þ þ eu1 x; yð Þ (4)

Fig. 3 Behavior of property F(x): a global, macroscopic or average behavior and b local or

microscopic behavior
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where u1 is periodic in the dimension Y of the cell and the lower indexes “0” and

“1” refer to the macro and microscale contributions, respectively.

If F ¼ F(x, y) is a function where y depends implicitly of x, it follows that

dF
dx

¼ @F
@x

þ @F
@y

dy

dx
(5)

and replacing Eq. 3 into Eq. 5 one gets

dF
dx

¼ @F
@x

þ 1

e
@F
@y

(6)

The stress–strain and strain–displacement relations are given respectively by

sij ¼ Eijklekl (7)

ekl ¼ 1

2

@uk
@xl

þ @ul
@xk

� �
(8)

for which a more convenient notation is adopted, as given in Eqs. 9 and 10.

s ¼ E � e (9)

@x ¼ 1

2

@ �ð Þk
@xl

þ @ �ð Þl
@xk

� �
(10)

The principle of virtual work is given byZ
O

s � dedO�
Z
O

b � dudO�
Z
G

t � dudG ¼ 0 8du 2 VO (11)

where b is the body force, t is the surface force acting on G (boundaries of the

domain O), u is the displacement suffered by the structure and VO is the set of

kinematically admissible displacements. It is assumed that there are no tractions

acting on the internal borders of the base cell.

Using the same expansion applied in Eq. 4, it follows that e and de can be

written as

e ¼ @xu0 þ e@xu1 þ @yu1 (12)

de ¼ @xdu0 þ e@xdu1 þ @ydu1 (13)

which, considering e → 0, reduce to

e ¼ @xu0 þ @yu1 (14)

de ¼ @xdu0 þ @ydu1 (15)
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Replacing Eqs. 9, 14 and 15 in the first term of Eq. 11, this part can be rewritten

as Z
O

@xu0 þ @yu1
� � � E � @xdu0 þ @ydu1

� �
dO (16)

which, considering the existence of periodic cells in the domain, becomesZ
O

1

Yj j
Z
Y

@xu0 þ @yu1
� � � E � @xdu0 þ @ydu1

� �
dYdO (17)

where Y is the cell period and |Y| is the total volume of the cell. In Eq. 17, the

equality Z
O

F x; yð ÞdO ¼ 1

Yj j
Z
O

Z
Y

F x; yð ÞdYdO (18)

was used.

Since du is arbitrary, one can choose du1 ¼ 0 and du0 6¼ 0, particularizing

Eq. 17 to

Z
O

1

Yj j@xdu0
Z
Y

E � @xu0 þ @yu1
� �

dYdO (19)

which corresponds to the macroscopic term in Eq. 17.

On the other hand, choosing δu0 ¼ 0 and du1 6¼ 0 in Eq. 17, it yields

Z
O

1

Yj j
Z
Y

@ydu1 � E � @xu0 þ @yu1
� �

dYdO 8du1 periodic in Y (20)

which corresponds to the microscopic term in Eq. 17.

In order to account for the external loading in the macroscopic part of the

principle of virtual work contained in Eq. 11, it is considered that body forces obey

the relation Z
O

b � dudO ¼
Z
O

bh i � du0dO (21)

where 〈·〉 is the average of (·) in the cell, that is,

�h i ¼ 1

Yj j
Z
Y

�ð ÞdY (22)
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At the same time, by hypothesis, no surface loads are assumed at the micro-

scopic scale, resulting in Z
G

t � dudG ¼
Z
G

t � du0dG (23)

Thus, the macroscopic equation can be expressed asZ
O

1

Yj j@xdu0
Z
Y

E � @xu0 þ @yu1
� �

dYdO�
Z
O

bh i � du0dO�
Z
G

t � du0dG ¼ 0

(24)

while the microscopic equation is given byZ
O

1

Yj j
Z
Y

@ydu1 � E � @xu0 þ @yu1
� �

dYdO ¼ 0 (25)

At this point, it is possible to adopt the convenient separation of variables

u1p ¼ �wklp x; yð Þ@xukl0 xð Þ (26)

which, introduced in Eq. 14, provides

e ¼ @xu0 þ @yu1 ¼ @xu0 � @yw @xu0 (27)

where w are the characteristic displacements of the unit cell, to be determined in a

later stage.

Replacing Eq. 27 into Eq. 25, results inZ
O

1

Yj j@xu0 �
Z
Y

@ydu1 � E � I � @yw
� �

dYdO ¼ 0 (28)

and the satisfaction of Eq. 28 implies thatZ
Y

@ydu1 � E � @ywdY ¼
Z
Y

@ydu1 � E � IdY (29)

where I is the 4th order identity tensor.

It is possible to find a family of functions w (according to an additive constant)

which satisfy Eq. 29. However, since the equations developed require only the

derivatives of w, given by @yw, the value of the constant is indifferent. Therefore, by
virtue of Eq. 27, the macroscopic equation given by Eq. 24 can be solved to yield

Z
O

@xdu0 � EH � @xu0dO�
Z
O

bh i � du0dO�
Z
G

t � du0dG ¼ 0 (30)
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where

EH ¼ 1

Yj j
Z
Y

E � I � @yw
� �

dY (31)

is the homogenized constitutive tensor which, following Hassani et al. [35, 46],

can be rewritten in indicial notation as

EH
ijkl xð Þ ¼ 1

Yj j
Z
Y

Eijkl � Eijpq

@wklp
@yq

 !
dY (32)

or in a compact form

DH xð Þ ¼ 1

Yj j
Z
Y

D� D e 1ð Þ � � � e NLCð Þ� �� �
dY (33)

that is,

DH
ij xð Þ ¼ 1

Yj j
Z
Y

Dij � Dike
ðjÞ
k

� 	
dY (34)

where Dij is the constitutive tensor organized in compact matrix notation, e(b) is the
strain field (organized in vector form) resulting from the kl “load case” of Eq. 29

(see Eqs. 32 and 36), and NLC stands for the number of columns of D.
The compact and full notations are related by the following replacements:

s1 ¼ s11; s2 ¼ s22; s3 ¼ s33; s4 ¼ s12; s5 ¼ s23; s6 ¼ s31
e1 ¼ e11; e2 ¼ e22; e3 ¼ e33;

e4 ¼ 2e12 ¼ g12; e5 ¼ 2e23 ¼ g23; e6 ¼ 2e31 ¼ g31

(35)

and

D að Þ bð Þ ¼ E ijð Þ klð Þ (36)

where the correspondence between Greek and Latin subscripts is given in Table 1.

It is important to notice that the resulting micro and macroscopic problems are

uncoupled and their solution can be summarized as follows:

1. Find x solving Eq. 29 and determine @yx;
2. Calculate the homogenized tensor using Eq. 31;

3. Build the macroscopic equation given by Eq. 30.

Table 1 Correspondence of indexes in tensorial and compact notations

ij or kl 11 22 33 12 23 31

a or b 1 2 3 4 5 6
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3.1 Numerical Determination of x

In order to find x, Eq. 29 may be solved numerically using the Finite Element

Method, as first proposed by Guedes and Kikuchi [47]. The present particular

approach considers truss-like unit cells, so that the discretization employs 3D

linear bar elements. Following the usual procedure yields the system of equations

below, also described by Yan et al. [26],

Kw ¼ P (37)

where

K ¼
X
e

Z
Oe

BTDBdYe (38)

and

P ¼
X
e

Z
Oe

BTDdYe (39)

B is the strain–displacement matrix and D is the constitutive matrix of the bar

element referred to its global reference system of coordinates. K is the homoge-

nized global stiffness matrix and P is a matrix containing global load cases

resulting from the homogenization development. Each column of matrix P is a

force vector related to an imposed unit strain given in a particular direction over

the unit cell, as can be seen by inspection of Eq. 29.

The solution of Eq. 37 requires the application of periodic boundary conditions

on the boundaries of the cell, which can be accomplished numerically by different

means. The particular approach adopted in the present work will be discussed in

Sect. 5.

3.2 Determination of the Mechanical Matrix B

Matrix B contains the derivatives of the interpolation functions that describe the

global displacement field in the finite elements adopted. For the 3D bar elements

employed, the isoparametric approach approximates both displacements and

geometry using the same linear interpolation functions, parameterized by x in the

range −1 � x � 1, as shown in Fig. 4.

The local displacement and geometry approximations are thus given by

u xð Þ ¼ 1

2
1� xð Þu1 þ 1

2
1þ xð Þu2 (40)
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x xð Þ ¼ 1

2
1� xð Þx1 þ 1

2
1þ xð Þx2 (41)

and the global counterparts are given by

U xð Þ ¼ 1

2
1� xð ÞU1 þ 1

2
1þ xð ÞU2 (42)

X xð Þ ¼ 1

2
1� xð ÞX1 þ 1

2
1þ xð ÞX2 (43)

V xð Þ ¼ 1

2
1� xð ÞV1 þ 1

2
1þ xð ÞV2 (44)

Y xð Þ ¼ 1

2
1� xð ÞY1 þ 1

2
1þ xð ÞY2 (45)

W xð Þ ¼ 1

2
1� xð ÞW1 þ 1

2
1þ xð ÞW2 (46)

Z xð Þ ¼ 1

2
1� xð ÞZ1 þ 1

2
1þ xð ÞZ2 (47)

where U(x) describes the displacement field in the global direction X, while U1 and

U2 are the nodal displacements in this direction. Analogous descriptions are

applied to the displacements V(x) and W(x), associated to the directions Y and Z,
respectively. The same approach is applied to geometry parameterization. The

interpolation functions used are identified as

N1 xð Þ ¼ 1

2
1� xð Þ and N2 xð Þ ¼ 1

2
1þ xð Þ (48)

Fig. 4 Truss element show-

ing its local parameterized

reference system
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The Jacobian of the local coordinate transformation is given by

J ¼ dx xð Þ
dx

¼ � 1

2
x1 þ 1

2
x2 ¼ 1

2
x2 � x1ð Þ ¼ L

2
(49)

where L is the element length.

The relation between local and global coordinates in the bar elements is given

by

x ¼ Xl1 þ Ym1 þ Zn1 (50)

where l1, m1 and l1 are the direction cosines of the angles a, b and g between the

local x axis and the global X, Y and Z axes, as shown in Fig. 5.

From the definition of the strain tensor (organized in a column vector), and

replacing the analytical displacements by the interpolated fields, one has

e ¼

ex
ey
ez
gxy
gyz
gzx

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

@U=@X
@V=@Y
@W=@Z

@U=@Y þ @V=@X
@V=@Z þ @W=@Y
@W=@X þ @U=@Z

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ BU (51)

where

B ¼

@N1ðxÞ
@X 0 0

@N2ðxÞ
@X 0 0

0
@N1ðxÞ
@Y 0 0

@N2ðxÞ
@Y 0

0 0
@N1ðxÞ
@Z 0 0

@N2ðxÞ
@Z

@N1ðxÞ
@Y

@N1ðxÞ
@X 0

@N2ðxÞ
@Y

@N2ðxÞ
@X 0

0
@N1ðxÞ
@Z

@N1ðxÞ
@Y 0

@N2ðxÞ
@Z

@N2ðxÞ
@Y

@N1ðxÞ
@Z 0

@N1ðxÞ
@X

@N2ðxÞ
@Z 0

@N2ðxÞ
@X

2
666666666664

3
777777777775

(52)

Fig. 5 Local and global

coordinates of an arbitrary

bar element
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and U ¼ U1 V1 W1 U2 V2 W2½ �T are the element nodal global

displacements.

By using Eqs. 48–50 and the chain rule of differentiation, the components of

the matrix displayed in Eq. 52 can be found as follows

@Ni xð Þ
@X

¼ @Ni xð Þ
@x

@x
@x

@x

@X
if i ¼ 1 ! �l1

L
; if i ¼ 2 ! l1

L
(53)

@Ni xð Þ
@Y

¼ @Ni xð Þ
@x

@x
@x

@x

@Y
if i ¼ 1 ! �m1

L
; if i ¼ 2 ! m1

L
(54)

@Ni xð Þ
@Z

¼ @Ni xð Þ
@x

@x
@x

@x

@Z
if i ¼ 1 ! �n1

L
; if i ¼ 2 ! n1

L
(55)

3.3 Determination of Matrix D

The one-dimensional elastic constitutive relation for a bar element in the local

reference system can be written as

s ¼ D0e (56)

or

sx
sy
sz
sxy
syz
szx

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

E 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666666664

3
7777777775

ex
ey
ez
gxy
gyz
gzx

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(57)

where D´ is the constitutive matrix of the bar element in its local reference system,

as displayed in Fig. 5. Note that the same boldface notation σ is used for the stress

tensor when organized in tensor or vector form. However, Eqs. 38 and 39 need the

constitutive matrix to be referred to the global reference system. Since D´ is a 4th
order tensor, it is rotated as

D ¼ TT
3DD

0T3D (58)

where T3D is the transformation matrix given by
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T3D ¼

l21 m2
1 n21 l1m1 m1n1 n1l1

l22 m2
2 n22 l2m2 m2n2 n2l2

l23 m2
3 n23 l2m2 m3n3 n3l3

2l1l2 2m1m2 2n1n2 l1m2 þ l2m1 m1n2 þ m2n1 n1l2 þ n2l1

2l2l3 2m2m3 2n2n3 l2m3 þ l3m2 m2n3 þ m3n2 n2l3 þ n3l2

2l3l1 2m3m1 2n3n1 l3m1 þ l1m3 m3n1 þ m1n3 n3l1 þ n1l3

2
666666664

3
777777775
(59)

in which li, mi and ni with i 2 {1, 2, 3} are the direction cosines between the local

x, y and z axes and the global X, Y and Z axes, respectively.

4 Homogenization of Thermal Properties

This Section shows the development of homogenization equations for heat transfer

following the main guidelines described in Sect. 2. This time, as a deliberate

equivalent option, an energetic approach is used instead of the principle of virtual

work [48] adopted in Sect. 3. Once more, the homogenization equations are fol-

lowed by their numerical counterparts via the finite element method particularized

to truss-like unit cells.

The starting point is the definition of the thermal conductivity Kt as a periodic

property in the domain

Kt x; yð Þ ¼ Kt x; yþ Yð Þ and y ¼ x=e; e > 0 (60)

The temperature field is expanded asymptotically in two scales, yielding

T ¼ T x; yð Þ ¼ T0 xð Þ þ eT1 x; yð Þ (61)

where T1 is periodic in the dimension Y of the cell.

The temperature gradient is given by

rxT ¼ rxT0 xð Þ þ erxT1 x; yð Þ þ ryT1 x; yð Þ (62)

where rx and ry are defined by

rxð Þi �ð Þ ¼
@ �ð Þ
@xi

and ry

� �
i
�ð Þ ¼ @ �ð Þ

@yi
(63)

so that an energy functional for the average thermal conductivity can be written as

G Tð Þ ¼ � 1

2

Z
O

rxT½ �TKtrxTdOþ
Z
G

qTdG (64)
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where q is the heat flux on the surface, which is assumed to be independent of the

scale e, and O and G are the domain and the boundary of the macroscopic

structure, respectively.

Substituting Eqs. 60–62 in Eq. 64,

G Tð Þ ¼ � 1

2

Z
O

rxT0 xð Þ þ ryT1 x; yð Þ� �T
Kt x; yð Þ rxT0 xð Þ þ ryT1 x; yð Þ� �

dO

� e
Z
O

rxT1 x; yð Þ½ �TKt x; yð Þ rxT0 xð Þ þ ryT1 x; yð Þ� �
dO

� e2

2

Z
O

rxT1 x; yð Þ½ �TKt x; yð Þ rxT1 x; yð Þ½ �dO

þ
Z
G

qT0 xð ÞdGþ e
Z
G

qT1 x; yð ÞdG

(65)

Differentiating G(T) and passing to the limit e → 0,

lim
e!0

dG Teð Þf g ¼ �
Z
O

rxdT0 xð Þ þ rydT1 x; yð Þ� �T
Kt x; yð Þ rxT0 xð Þ þ ryT1 x; yð Þ� �

dOþ
Z
G

qdT0 xð ÞdG

(66)

where T1 and dT1 are periodic in the dimension Y of the cell. Thus, in order to

satisfy Eq. 54, and using the relation given by Eq. 18, it follows that

�
Z
O

1

Yj j
Z
Y

rxT0 xð ÞþryT1 x;yð Þ� �T
Kt x;yð Þ rxdT0 xð Þ½ �dYdOþ

Z
G

qdT0 xð ÞdG¼ 0

(67)

for every admissible dT0(x), and

�
Z
O

1

Yj j
Z
Y

rxT0 xð Þ þ ryT1 x; yð Þ� �T
Kt x; yð Þ rxdT1 x; yð Þ½ �dYdO ¼ 0 (68)

for every admissible dT1(x, y), periodic in the dimension Y of the cell.

Equations 67 and 68 stand for macro and microscopic terms, respectively.
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Assuming a convenient separation of variables for T1(x, y), one obtains

T1 x; yð Þ ¼ �R mð Þ x; yð Þ@T0
@xm

) ryT1 x; yð Þ ¼ �ryR x; yð ÞrxT0 xð Þ (69)

where R(x, y) are the characteristic temperatures of the unit cell.

Replacing Eq. 69 into the microscopic Eq. 68,

�
Z
O

1

Yj j
Z
Y

rxT0 xð Þ � ryR x; yð ÞrxT0 xð Þ� �T
Kt x; yð Þ rxdT1 x; yð Þ½ �dYdO ¼ 0

8dT1periodic in Y ð70Þ

which is satisfied if R(x, y) is the solution of

1

Yj j
Z
Y

I �ryR x; yð Þ� �T
Kt x; yð Þ rydT1 x; yð Þ� �

dY ¼ 0 (71)

On the other hand, substituting Eq. 69 into the macroscopic Eq. 67, one has

�
Z
O

1

Yj j
Z
Y

rxT0 xð Þ � ryR x; yð ÞrxT0 xð Þ� �T
Kt x; yð Þ rxdT0 xð Þ½ �dYdO

þ
Z
G

qdT0 xð ÞdG ¼ 0

(72)

which induces that, in analogy with Eqs. 30 and 31, the homogenized thermal

conductivity tensor is defined by

KtH ¼ 1

Yj j
Z
Y

Kt x; yð Þ I �ryR x; yð Þ� �
dY (73)

or in indicial notation,

KtHij ¼
1

Yj j
Z
Y

Ktij � Ktip
@Rj

@yp

� �
dY (74)

4.1 Numerical Determination of R

The determination of R follows a development completely analogous to the one

presented in Sects. 3.1–3.3 for x. Hence, in order to find R, Eq. 71 must be solved.

Again, the finite element method is employed to discretize a truss-like unit cell

using linear 3D bar elements. The procedure leads to the following linear system,

similar to the one described by Eq. 37,
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CR ¼ Q (75)

where

C ¼
X
e

Z
Oe

BTKtBdYe (76)

and

Q ¼
X
e

Z
Oe

BTKtdYe (77)

B is the matrix containing the derivatives of the interpolation functions and Kt
is the thermal conductivity matrix of the bar element in its global reference system,

C is the homogenized global thermal conductivity matrix and Q is a matrix con-

taining load cases resulting from the homogenization development. Each column

of matrix Q is related to an imposed unit thermal gradient vector given in a

particular direction over the unit cell, as can be seen inspecting Eq. 71.

The solution of Eq. 75 requires the application of periodic boundary conditions,

which will be discussed in Sect. 5.

4.2 Determination of the Thermal Matrix B

The three-dimensional Fourier Law for heat conduction is

� q Xð Þ ¼ Kt
dT Xð Þ
dX

(78)

so that in the global domain of the unit cell it can be written as

�
qX
qY
qZ

8<
:

9=
; ¼

kt11 kt12 kt13
kt21 kt22 kt23
kt31 kt32 kt33

2
4

3
5

dT
dX

dT
dY

dT
dZ

8>><
>>:

9>>=
>>; (79)

Using the linear interpolation functions given by Eq. 48 to approximate the

temperature field, which is invariant for a change of frame, one gets

dT
dX

dT
dY

dT
dZ

8>><
>>:

9>>=
>>; ¼

@N1 xð Þ
@X

@N2 xð Þ
@X

@N1 xð Þ
@Y

@N2 xð Þ
@Y

@N1 xð Þ
@Z

@N2 xð Þ
@Z

2
664

3
775 T1

T2


 �
(80)
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where T1 and T2 are the nodal temperatures and the thermal matrix B is given by

B ¼

@N1 xð Þ
@X

@N2 xð Þ
@X

@N1 xð Þ
@Y

@N2 xð Þ
@Y

@N1 xð Þ
@Z

@N2 xð Þ
@Z

2
664

3
775 (81)

with its terms given by Eqs. 53–55.

4.3 Determination of Matrix Kt

Equation 78 particularized for an element bar with reference to its local system of

coordinates is given by

�
qx
qy
qz

8<
:

9=
; ¼

k 0 0

0 0 0

0 0 0

2
4

3
5

dT
dx

dT
dy

dT
dz

8>><
>>:

9>>=
>>; (82)

where

Kt0 ¼
k 0 0

0 0 0

0 0 0

2
4

3
5 (83)

and Kt´ is the thermal conductivity matrix with reference to the bar’s local system

of coordinates. Equations 76 and 77 need Kt´ to be rotated to the global reference

system. This is done through Eq. 84

Kt ¼ TT
2DKt

0T2D (84)

where T2D is the transformation matrix for a 2nd order tensor, given by

T2D ¼
l1 m1 n1
l2 m2 n2
l3 m3 n3

2
4

3
5 (85)

in which li, mi and ni with i 2 {1, 2, 3} are the direction cosines between the local

x, y and z axes and the global X, Y and Z axes, respectively.

5 Periodic Boundary Conditions

The linear systems resulting from the mechanical and thermal problems defined by

Eqs. 37 and 75 must respect the periodicity condition over the whole domain,
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which introduces a kinematic constraint on the unit cell. The imposed constraint

enforces that displacement or temperature fields must display equal values on

opposite borders of the cell, as depicted in Fig. 6.

After discretization of the base cell, several methods can be used to ensure the

aforementioned constraint, including Lagrange multipliers, penalization [49] and

condensation or reduction. This work employs the method of condensation as

described by Yang et al. [50]. Initially, any prescribed displacement or temperature

value is applied to one of the cell vertices (at least one must be constrained). The

application of equality constraints between the proper degrees of freedom is

accomplished by the use of a transformation matrix Ttrans relating all the degrees of

freedom (x or R), represented generically by u, to the unconstrained ones (~w or ~R),
represented generically by ~u.

In Fig. 7 it is assumed that there are 2p nodes on the upper and lower faces, 2q

nodes on the other two sides. The multi-point constrains for the unit cell can be

expressed by

ui ¼ uiþp i ¼ 1; 2; . . . ; pð Þ (86)

on the upper and lower sides, and

uj ¼ ujþq j ¼ 1; 2; . . . ; qð Þ (87)

on the right and left sides.

This relation can be written as

u ¼ Ttransu
~ (88)

Fig. 6 Periodic boundary

conditions on the base cell

Fig. 7 Application of peri-

odic boundary conditions on

degrees of freedom of oppo-

site sides in the base cell
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For instance, in a system containing “n” degrees of freedom and the single

constraint uJ ¼ uI, the transformation matrix will have dimension “n x (n − 1)”

and will look like Eq. 89.

Ttrans ¼

1 2 � I � J � n� 1

� � � � � � � �
1 0 � 0 � 0 � 0 j 1

0 1 � 0 � 0 � 0 j 2

�� �� � �� � �� � �� j �
0 0 � 1 � 0 � 0 j I

�� �� � �� � �� � �� j �
0 0 � 1 � 0 � 0 j J

�� �� � �� � �� � �� j �
0 0 � 0 � 0 � 1 j n

2
666666666666666664

3
777777777777777775

(89)

Thus, the global systems to be solved (Eqs. 37 and 75) become

~K~u ¼ ~P (90)

where, for the mechanical problem,

~K ¼ TT
transKTtrans (91)

~P ¼ TT
transP (92)

and after solving Eq. 90 for ~u, the value of u is recovered by means of Eq. 88. The

thermal problem is treated by analogy with Eqs. 91 and 92, through condensation

of C and Q.
The 2D asymmetric problem shown in Fig. 8 is taken from Yang et al. [50].

It consists of a 3 2 units cell containing an asymmetric hole in which the

dimensions are given by “a”. Figures 9 and 10 display the characteristic dis-

placements and temperatures x and R resulting from the respective 2D load

cases. Each column of matrix P in Eqs. 37 and 39 corresponds to a load vector

resulting from a particular imposed unit strain field. Similarly, each column of

matrix Q in Eqs. 75 and 77 corresponds to a load vector resulting from a

particular imposed unit thermal gradient field. The scale ratio in the figures

is 1:4.

Fig. 8 Geometry and

dimensions of an asymmetric

cell adopted to show the

application of periodic

boundary conditions
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6 Design Variables: Why Areas and Coordinates Together?

The most common approach for dealing with trusses in structural optimization

(usually topology optimization) uses densely populated ground structures [51, 52],

and allows only cross sectional areas to be modified. Hence, a large amount of bars

are needed to obtain realistic results. On the other hand, presumably, a combi-

nation of nodal coordinates and cross sectional areas would require much less

design variables to lead to an acceptable optimized structure.

In order to show the point, consider the square design displayed in Fig. 11, in

which the left edge has symmetry conditions. The structure is simply supported

and subject to a single prescribed force. 42 bars with the same cross section and

material are employed in the model. The objective is to minimize the weight while

respecting the allowable stresses in every bar.

It is intuitive that starting from overestimated cross sectional areas and using

only nodal coordinates as design variables, only a very limited improvement on

weight can be attained. This case is characterized by Fig. 12a. On the other hand,

if only areas are adopted as design variables, the weight decrease is dramatic,

Fig. 10 Characteristic temperatures a unit dT/dX, b unit dT/dY

Fig. 9 Characteristic displacements a initial mesh, b unit εx, c unit εy, d unit γxy
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although the geometry becomes complex, as in Fig. 12b. It can be seen in

Figs. 12c–e that the introduction of coordinates provides a further enhancement

in weight while rendering much simpler geometrical configurations.

Classical research works point out convergence difficulties when a combination

of areas and coordinates is adopted as design variables, stress constraints are

imposed, and SLP is adopted for weight optimization. Nevertheless, this problem

has been successfully solved by Vanderplaats [53] and, in the different application

considered in this Chapter no stress constraints are imposed. Hence, the joint

adoption of areas and coordinates as design variables was shown to be effective.

7 Definition of the Optimization Problems

The study developed in this work considered 4 different optimization problems,

i.e., 4 different objective functions. They correspond to maximize or minimize

given components of the homogenized mechanical or thermal constitutive tensors,

or their combinations to account for multifunctional responses. The design vari-

ables adopted can be any combination of cross sectional areas and nodal coor-

dinates. Hence, the optimization problems can be defined as

Optimization problem 1: For given i, j, k, l, maximize the corresponding

component of the mechanical homogenized constitutive tensor Eijkl
H.

Optimization problem 2: For given i, j, maximize or minimize the corre-

sponding component of the thermal homogenized constitutive tensor Kij
H.

Optimization problem 3: For given i, j, k, l, m, n, maximize the ratio of the

corresponding components of the mechanical and thermal homogenized consti-

tutive tensors, Eijkl
H (x)/Ktmn

H (x).

Optimization problem 4: For given i, j, k, l, m, n, maximize the product of the

corresponding components of the mechanical and thermal homogenized consti-

tutive tensors, Eijkl
H (x) · Ktmn

H (x).

In the optimization problems 1–4 the following constraints are applied:

fL � V0 � V � fU � V0 (93)

Ai
min � Ai � Ai

max m ¼ 1; . . . ; nap (94)

Fig. 11 Initial configuration

for the weight minimization

problem
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Fig. 12 Effect of using different combinations of areas and nodal coordinates as design variables

in a weight minimization problem. a only X and Y nodal coordinates, b only areas, c areas and X
nodal coordinates, d areas and Y nodal coordinates, e areas and X and Y nodal coordinates
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Xi
min � Xi � Xi

max m ¼ 1; . . . ; ncopx (95)

Yi
min � Yi � Yi

max m ¼ 1; . . . ; ncopy (96)

Zi
min � Zi � Zi

max m ¼ 1; . . . ; ncopz (97)

where nap, ncopx, ncopy and ncopz are the number of design variables associated

to areas, and X, Y and Z coordinates, respectively. fL and fU are lower and upper

bounding factors on volume. In all the examples discussed in Sect. 9, these factors

were chosen in order to preserve a constant volume.

In this work, the optimization task is performed using SLP as previously done

by Pedersen [54] and others for truss layout optimization. In this method the

objective function and the constraints are linearized with respect to the current

design point, defining an associated linear programming sub-problem. The opti-

mum point for this sub-problem is adopted as the new current design project and

the updated objective function and constraints are linearized again, now with

respect to this point. The procedure continues iteratively until convergence. Hence

a non-linear optimization problem is replaced by a sequence of linear program-

ming problems. As a termination criterion, it can be established that the relative

difference between two iterations should be less than a prescribed tolerance, for

both the objective function and the design variables.

7.1 Linearization of the Objective Function and Volume
Constraint

In order to apply SLP it is necessary to linearize the expressions for the homog-

enized mechanical and thermal coefficients. This is accomplished by performing a

Taylor series expansion truncated in first order terms. As shown in Eqs. 98–100,

the gradients with respect to the design variables are needed and their analytical

determination will be detailed in Sect. 8.

EH
ijkl ¼ EH

ijkl0 þ
Xnap
m¼1

@EH
ijkl

@Am

�����
0

DAm þ
Xncopx
m¼1

@EH
ijkl

@Xm

�����
0

DXm þ
Xncopy
m¼1

@EH
ijkl

@Ym

�����
0

DYm

þ
Xncopz
m¼1

@EH
ijkl

@Zm

�����
0

DZm (98)

KtHij ¼ KtHij0 þ
Xnap
m¼1

@KtHij
@Am

�����
0

DAm þ
Xncopx
m¼1

@KtHij
@Xm

�����
0

DXm þ
Xncopy
m¼1

@KtHij
@Ym

�����
0

DYm

þ
Xncopz
m¼1

@KtHij
@Zm

�����
0

DZm (99)
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V¼V0þ
Xnap
m¼1

@V

@Am

�����
0

DAmþ
Xncopx
m¼1

@V

@Xm

�����
0

DXmþ
Xncopy
m¼1

@V

@Ym

�����
0

DYmþ
Xncopz
m¼1

@V

@Zm

�����
0

DZm (100)

where

DAm ¼ Am � Am
0 (101)

DXm ¼ Xm � Xm
0 (102)

DYm ¼ Ym � Ym
0 (103)

DZm ¼ Zm � Zm
0 (104)

In Eqs. 98–104 the lower index zero stands for values in the current design

point.

7.2 Move Limits

The adequate and stable behavior of SLP demands introduction of move limits on

the design variables [54, 55]. The move limits update scheme is external to the

mathematical programming algorithm and affects strongly the process conver-

gence and efficiency. The problems presented herein showed instabilities (con-

vergence difficulties) with respect to different update strategies for move limits,

especially regarding area design variables. Hence, initial move limits were made

very small for all the design variables, and a different treatment was given for their

update strategy, according to the design variable nature. Area move limits were

kept constant, while coordinate move limits were updated in a very conservative

fashion, with different update factors for each example presented. This strategy

hindered efficiency on behalf of effectivity, as will become clear in the numerical

examples presented in Sect. 9. It is worth remarking that Sigmund [37] mentions

similar difficulties and recommends the use of small move limits to ensure final

convergence. For the purpose of this work, efficiency was not a major concern and

other optimization algorithms would probably result in faster convergence. This

kind of study is left for future development.

8 Sensitivity Analysis

Sensitivity analysis deals with the determination of gradients. The focus in the

present case are the derivatives resulting from the linearizations present in

Eqs. 98–100. The gradients are found by means of analytical differentiation and
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validated via central finite differences. The main guidelines for the operational

work involved is sketched below, but full development is not included in this text

due to space limitations. All the detailed steps for the task can be found in Carniel

et al. 2009 [56].

8.1 Gradients Related to the Mechanical Problem

8.1.1 Computation of
@EH

ijkl

@Am

Particularization of Eq. 33 to a cell discretized using bar elements, yields

DHðxÞ ¼ 1

Yj j
Xnel
n¼1

D� D eð1Þ . . . eðNLCÞ
� �� �n

AnLn (105)

DHðxÞ ¼ 1

Yj j
Xnel
n¼1

D� DB wð1Þ . . . wðNLCÞ
� �� �n

AnLn (106)

DH
ij ðxÞ ¼

1

Yj j
Xnel
n¼1

Dij � DikBklw
ðjÞ
l

� 	n
AnLn (107)

and by differentiating analytically with respect to the m-th design area,

@DH
ij

@Am
¼ 1

Yj j
Xnel
n¼1

Dn
ijL

ndnm �
Xnel
n¼1

Dn
ikB

n
klw

jð Þn
l Lndnm �

Xnel
n¼1

AnLnDn
ikB

n
kl

@w jð Þn
l

@Am

" #
(108)

where dnm is the Kronecker delta,

dnm ¼ 1 if n ¼ m
0 if n 6¼ m



(109)

Table 1 provides the correspondence between
@DH

ab

@Am
and

@EH
ijkl

@Am

8.1.2 Computation of
@w
@Am

In order to obtain the characteristic displacements gradient, Eq. 37 is differentiated

with respect to the design areas, resulting in

@w
@Am

¼ K�1 @P

@Am
� @K

@Am
w

� �
(110)

which is obtained easily with the aid of Eqs. 38 and 39.
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8.1.3 Computation of
@EH

ijkl

@Xm
;
@EH

ijkl

@Ym
, and

@EH
ijkl

@Zm

The development of expressions for sensitivities with respect to nodal coordinates

is sketched in this section only for X components. The extension to Y and Z
coordinates is straightforward by analogy. The development is done using compact

notation and Table 1 provides the correspondence between D and E.
After some manipulation, the expression for @DH/@Xm yields

@DH
ij

@Xm
¼ 1

Yj j
Xnel
n¼1

@Dn
ij

@Xm
AnLn þ

Xnel
n¼1

Dn
ijA

n @L
n

@Xm
�
Xnel
n¼1

AnLn
@Dn

ik

@Xm
Bn
klw

jð Þn
l

"

�
Xnel
n¼1

AnDn
ik

@ LnBn
kl

� �
@Xm

w jð Þn
l �

Xnel
n¼1

AnLnDn
ikB

n
kl

@w jð Þn
l

@Xm

#
(111)

Notice that the complete determination of the desired sensitivity requires

the evaluation of @Dn/@Xm, @L
n/@Xm, @(L

nBn)/@Xm and @xn/@Xm. The sensitivities

@Dn/@Xm and @(LnBn)/@Xm can be obtained by differentiation of Eq. 58 and Eq. 52,

respectively. On the other hand, the sensitivity @xn/@Xm can be obtained by

analogy with the procedure presented in Sect. 8.1.1.1. The sensitivity ∂Ln/@Xm can

be evaluated with the aid of the expression

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
2 � Xn

1

� �2þ Yn
2 � Yn

1

� �2þ Zn
2 � Zn

1

� �2q
(112)

where Xi
n, Yi

n and Zi
n are the global coordinates of the i-th local node belonging to

the n-th element.

8.2 Gradients Related to the Thermal Problem

8.2.1 Computation of
@KtHij
@Am

Particularization of Eq. 74 to a cell discretized using bar elements, yields

KtHðxÞ ¼ 1

Yj j
Xnel
n¼1

Kt � Kt B Rð1Þ . . . RðNLCÞ� �� �n
AnLn (113)

KtHij xð Þ ¼ 1

Yj j
Xnel
n¼1

Ktij � KtikBklR
jð Þ

l

� 	n
AnLn (114)

where NLC in Eq. 113 stands for the number of load cases. Differentiating ana-

lytically with respect to the m-th design area, results
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@KtHij
@Am

¼ 1

Yj j
Xnel
n¼1

KtnijL
ndnm �

Xnel
n¼1

KtnikB
n
klR

ðjÞn
l Lndnm �

Xnel
n¼1

AnLnKtnikB
n
kl

@R
jð Þn

l

@Am

" #

(115)

where dnm is the Kronecker delta, defined by Eq. 109.

8.2.2 Computation of @R
@Am

Starting from Eq. 75, that is., CR ¼ Q, the determination of the characteristic

temperatures gradient is obtained by analogy with the equations presented in Sect.

8.1.2.

8.2.3 Computation of
@KtHij
@Xm

;
@KtH

ij

@Ym
and

@KtHij
@Zm

As in Sect. 8.1.2, only the development of expressions for sensitivities with respect

to nodal X coordinates is sketched in this Section. The extension to Y and Z
coordinates is straightforward by analogy.

After some manipulation, the expression for @KtH/@Xm yields

@KtHij
@Xm

¼ 1

Yj j
Xnel
n¼1

@Ktnij
@Xm

AnLn þ
Xnel
n¼1

KtnijA
n @L

n

@Xm
�
Xnel
n¼1

AnLn
@Ktnik
@Xm

Bn
klR

jð Þn
l �

"

�
Xnel
n¼1

AnKtnik
@ LnBn

kl

� �
@Xm

R
jð Þn

l �
Xnel
n¼1

AnLnKtnikB
n
kl

@R
jð Þn

l

@Xm

# (116)

Notice that the complete determination of the desired sensitivity requires the

evaluation of @Ktn/@Xm, @L
n/@Xm, @(L

nBn)/@Xm and @Rn/@Xm. The partial deriva-

tives @Ktn/@Xm and @(LnBn)/@Xm can be obtained by differentiation of Eqs. 84 and

81, respectively. On the other hand, the sensitivity @Rn/@Xm can be obtained by

analogy with the procedure presented in Sect. 8.1.1.1. The sensitivity @Ln/@Xm can

be evaluated with the aid of Eq. 112.

8.3 Gradients of the Volume Constraint

Having in mind that the total volume occupied by the bars in the cell is given by

V ¼
Xnel
n¼1

AnLn; (117)
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the derivatives with respect to the m-th area or coordinate are easily identified as

@V

@Am
¼
Xnel
n¼1

@An

@Am
Ln ¼

Xnel
n¼1

dnmLn ¼ Lm (118)

and

@V

@Xm
¼
Xnel
n¼1

An
@Ln
@Xm

; (119)

@V

@Ym
¼
Xnel
n¼1

An
@Ln
@Ym

; (120)

@V

@Zm
¼
Xnel
n¼1

An
@Ln
@Zm

(121)

where @Ln/@Xm, @L
n/@Ym and @Ln/@Zm can be evaluated with the aid of Eq. 112.

9 Numerical Applications

Numerical results obtained using the formulation proposed are presented in this

Section. Although these results can be considered preliminary, one differential

with respect to previous developments reported in the literature is the inclusion of

a 3D example. All the four objective functions proposed were tested and some of

the results allowed qualitative validation by visual inspection or comparison to

previously published work. The initial cells are formed by truss elements in which

Young’s modulus, thermal conductivity and cross sectional areas are given by

E ¼ 210 [GPa], k ¼ 50 [W/m˚C] and A ¼ 10−5 [m2], respectively. During the

optimization process, lower bounds on areas and element lengths are prescribed to

be equal to 10−7 [m2] and 10−4 [m], respectively. In all the examples, the total

volume of the unit cell is constrained to remain unchanged. The cells have equal

dimension sides: in 2D cases each side equals 0.1 [m] and in 3D cases they equal

0.075 [m], resulting in relative densities of 49 and 33.5% respectively.

9.1 2D Examples

The initial 2D unit cell chosen for optimization is displayed in Fig. 13. In order to

apply the method described, one component from the mechanical and one
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component from thermal homogenized tensors were selected to be considered in

the objective functions. These were the shear (E1212
H ) component and the thermal

conductivity component in direction X (KtH11).
In the cell external vertical (right and left) edges, only the Y coordinates are

chosen as design variables. Accordingly, in the cell external horizontal (upper and

lower) edges, only the X coordinates are adopted as design variables. Opposite

nodes in these edges are constrained to move equally (same displacements) and the

four vertices are prescribed to keep unchanged.

Normalized diagrams showing the effect of rotations on E1111
H and Kt11

H are

displayed in all the examples. The reference for normalization is the largest value

of the tensorial component in a 360o rotation. These diagrams help to interpret the

optimization results obtained. For the initial cell, they are displayed in Fig. 14. It is

apparent that the largest normal and shear stiffness of the periodic structure

material are oriented at 0o and 45 o degrees with respect to the horizontal (X) axis,
respectively. The heat conduction behavior is isotropic.

The homogenized mechanical and thermal constitutive tensors for this initial cell

are given, respectively, by

Fig. 13 Initial cell and

corresponding periodic material

Fig. 14 Rotated tensorial components aE1111
H , bE1212

H and cKt11
H normalized with respect to

E1111
H ¼ 0.1150 [GPa], E1212

H ¼ 0.04397 [GPa] and Kt11
H ¼ 0.03897 [W/m˚C]
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where the values of the components E1212
H and Kt11

H are indicated.

For comparative purpose in the optimization cases to be studied, it is interesting

to quantify the values of the four objective functions proposed for this initial cell:

– Objective function 1: E1212
H ¼ 0.02405[GPa];

– Objective function 2: Kt11
H ¼ 0.03897 [W/m˚C];

– Objective function 3: E1212
H /Kt11

H ¼ 0.617 [GPa m ˚C/W]

– Objective function 4: E1212
H · Kt11

H ¼ 0.937 [MPa W/m˚C]

9.1.1 Maximization of Shear Stiffness (E1212
H

)

In this case the shear component of the homogenized mechanical tensor E1212
H was

maximized keeping the overall volume of the cell unchanged (fU ¼ 1). All the

element cross sectional areas and the coordinates X and Y of the internal nodes

were adopted as design variables. Figure 15 depicts the optimized unit cell and the

periodic material obtained. The cell is formed by a square rotated 45˚ with respect

to the horizontal axis, and linked to the cell vertices by thin bars. This linking

resulted due to the combination of the initial cell adopted (Fig. 13) and the fact

that the homogeneous prescribed displacements (which avoid rigid motion) were

applied to the nodes at the vertices.

The obtained homogenized mechanical tensor is given by

where the shear component E1212
H is indicated. Hence, the objective function 1

equals E1212
H ¼ 0.09060 [GPa], which is 3.76 times higher than the initial value.

The negative components in the homogenized tensor are caused small asym-

metries in the unit cell, as will be discussed later. Two orthogonal planes of

symmetry yield orthotropy and allow the negative components to be eliminated.

Fig. 15 Optimized cell and

corresponding periodic

material
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Figure 16 shows the normalized diagrams for the rotated E1111
H and E1212

H com-

ponents in the interpreted orthotropic cell.

Figure 17 presents the evolution of the objective function through the optimiza-

tion process. The large amount of iterations is due to a very small value pre-

scribed for move limits, as discussed in Sect. 6. Since the same qualitative

convergence behavior is repeated in all the forthcoming examples, and due to

conciseness requirements, the evolution of the objective function is presented only

here and in the last example, for a 3D problem.

9.1.2 Maximization of Heat Conduction in Direction X (Kt11
H)

In this example, the homogenized thermal conductivity tensor component asso-

ciated to conduction in direction X (Kt11
H ) is optimized for constant cell volume. All

the cross sectional areas and the X and Y coordinates of the internal nodes in the cell

are adopted as design variables. The optimal cell found is displayed in Fig. 18

Fig. 16 Diagrams of the

rotated values of a E1111
H and

b E1212
H normalized with

respect to E1111
H ¼ 0.1806

[GPa] and E1212
H ¼ 0.0906

[GPa]

Fig. 17 Convergence of the

non-dimensional objective

function
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as well as the corresponding periodic material. In this example, the ratio between

the thicker and thinner cross sections is approximately 25.3, however thin bars

should have vanished. Hence, the importance of results interpretation should not

be underestimated.

The homogenized thermal tensor is given by

where the value of the objective function 2 is recognized as Kt11
H ¼ 0.0845

[W/m˚C], which is 2.16 times higher than the initial value.

Figure 19 displays the normalized diagram for the rotated Kt11
H component.

Analyzing Fig. 18, it can be noticed that the initially internal bars were dis-

placed to meet the upper and lower edges of the cell. At the same time, their cross

sectional areas became larger, which is clearly in accordance with maximization of

heat transfer in direction X. Figure 19 displays that, as a consequence, a negligible

conductivity results in the vertical direction (aligned with the Y axis), thus favoring

insulation.

9.1.3 Maximization of the Ratio Between Shear Stiffness and Thermal

Conductivity in Direction X (E1212
H

/Kt11
H
)

This example aims to maximize the ratio between the shear E1212
H and Kt11

H thermal

conductivity components, keeping a constant cell volume. Therefore, the

Fig. 18 Optimized cell and

corresponding periodic

material

Fig. 19 Rotated tensorial

component Kt11
H normalized

with respect to Kt11
H ¼ 0.0845

[W/m˚C]
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procedure tends to maximize the mechanical component and minimize the thermal

one. This problem is more complex than the previous ones since the two different

properties considered may compete for the determination of the optimal cell. Only

cross sectional areas are adopted as design variables and the optimized cell is

displayed in Fig. 20.

The homogenized mechanical and thermal tensors are, respectively

In this case, the objective function 3 adopts the value E1212
H /Kt11

H ¼ 2.015

[GPa·m·oC/W]. Comparing to the values of the initial cell, the objective function

is 3.26 times higher, while the ratios E1212
H /E1212_initial

H ¼ 2.46 and K11_initial
H /

K11
H ¼ 1.33. Therefore, there is a considerable gain both, in the ratio and in each

individual component.

Rotations of the mechanical and thermal homogenized tensors provide the

normalized plotted values for E1111
H and E11

H in Fig. 21, which evince an orthotropic

behavior.

Fig. 20 Optimized cell for

maximization of the ratio

between the mechanical and

thermal homogenized tenso-

rial components shown, and

corresponding periodic

structure

Fig. 21 Rotated tensorial components a E1111
H , b E1212

H and c Kt11
H normalized with respect to

E1111
H ¼ 0.1266 [GPa], E1212

H ¼ 0.0591 [GPa] and Kt11
H ¼ 0.04083 [W/m˚C]
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9.1.4 Maximization of the Product Between Shear Stiffness and Thermal

Conductivity in Direction X (E1212
H

· Kt11
H
)

This example deals with the maximization of the product between the shear

E1212
H and the Kt11

H thermal conductivity components, keeping a constant cell

volume. This way, both mechanical and thermal components will compete in order

to obtain the optimal cell. For the solution of this problem, all the cross sectional

areas and the X and Y coordinates of the internal nodes in the cell are adopted as

design variables. Figure 22 shows the optimized cell and the corresponding

periodic material.

The homogenized mechanical and thermal tensors are, respectively

and in this example, the final value of objective function 4 is given by

E1212
H · Kt11

H ¼ 3.751 [MPa W/m˚C], which is 4 times higher than the initial value.

Furthermore, the ratios E1212
H /E1212_initial

H ¼ 3.51 and K11
H /K11_initial

H ¼ 1.13, show-

ing gain for the product and for each component independently.

Figure 23 shows the normalized diagrams for rotated E1111
H , E1212

H and Kt11
H .

The same problem was solved, this time adopting only cross sectional areas as

design variables. The optimal cell found is displayed in Fig. 24 together with the

corresponding periodic material.

The homogenized mechanical and thermal tensors are, respectively

Fig. 22 Optimized cell for

maximization of the ratio

between the mechanical and

thermal homogenized tenso-

rial components shown, and

corresponding periodic

structure
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and the objective function 4 is given by E1212
H · Kt11

H ¼ 4.347 [MPa W/m˚C], which

is 4.64 times higher than the initial value. The ratios E1212
H /E1212_initial

H ¼ 3.93 and

K11
H/K11_initial

H ¼ 1.16. Note that this case, which employs less design variables than

the former, led to a better result. This could possibly be attributed to the move limits

adopted or to non unicity of the solution.

Rotations of the mechanical and thermal homogenized tensors provide the

normalized plotted values for E1111
H , E1212

H and Kt11
H in Fig. 25 which evince an

orthotropic behavior.

9.2 3D Example

9.2.1 Maximization of the Product Between Shear Stiffness and Thermal

Conductivity in Direction X (E1212
H · Kt11

H)

A 3D example is presented, which aims to maximize the product between the

homogenized constitutive component related to shear (E1212
H ) and heat conduction

in X (Kt11
H) direction, keeping a constant cell volume. The initial 3D unit cell

Fig. 23 Rotated tensorial components a E1111
H , b E1212

H and c Kt11
H normalized with respect to

E1111
H ¼ 0.1694 [GPa], E1212

H ¼ 0.08451 [GPa] and Kt11
H ¼ 0.04439 [W/m˚C]

Fig. 24 Optimized cell for

maximization of the ratio

between the mechanical and

thermal homogenized tenso-

rial components shown, and

corresponding periodic

structure
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chosen for optimization is displayed in Fig. 26. All the cross sectional areas were

adopted as design variables, and their initial value was set to A ¼ 2 10−5 [m2].

The mechanical and thermal homogenized tensors of the initial cell are iden-

tified, respectively, as

From the tensors above, the initial value of the objective function 4 provides

EH
1212 � KtH11 ¼ 14:647 GPa �W=moC½ �:

Fig. 25 Rotated tensorial components a E1111
H , b E1212

H and cKt11
H normalized with respect to

E1111
H ¼ 0.189 [GPa], E1212

H ¼ 0.09447 [GPa] and Kt11
H ¼ 0.04602 [W/m˚C]

Fig. 26 a Initial 3D cell. b

View of planes XoY, XoZ and

YoZ
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The homogenized mechanical and thermal homogenized tensors for the opti-

mized material are, respectively

The final value of the objective function 4 is given by EH
1212 � KtH11 ¼ 48:71

[GPa W/m˚C], a value 3.32 times higher than for the initial cell. In addition, the

ratios EH
1212

�
EH
1212 initial ¼ 2:16 and KH

11

�
KH
11 initial ¼ 1:54:

The optimized cell obtained is depicted in Fig. 27 and the normalized graphs in

Figs. 28, 29 and 30 display the material properties behavior through rotations of

the homogenized mechanical and thermal constitutive tensors. The components

analyzed are E1111
H , E2222

H , E1212
H , Kt11

H and Kt22
H , and the rotations are displayed in

polar coordinates with respect to planes XoY ([1 0 0] and [0 1 0]), XoZ ([1 0 0] and

[0 0 1]) and YoZ ([0 1 0] and [0 0 1]).

It should be noted that slight asymmetries in the cell render anisotropic terms in

the homogenized tensors. Since no variable linking was imposed in the optimi-

zation process, minor asymmetries are expected even if the proper result is to be

perfectly symmetric. Hence, an interpretation of the optimized cell result becomes

necessary. In the homogenized optimum tensors obtained, many terms should be

zero, including the negative ones. This would lead to orthotropic and isotropic

Fig. 27 Optimized 3D cell
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Fig. 28 Rotated E1111
H (normalization value). a Plane XoY (23.32026 [GPa]), b Plane XoZ

(23.32073 [GPa]). Rotated E2222
H (normalization value). c Plane YoZ (11.6715 [GPa])

Fig. 29 Rotated E1212
H (normalization value). a Plane XoY (5.8380 [GPa]), b Plane XoZ (5.8380

[GPa]). Rotated E2323
H (normalization value). c Plane YoZ (5.788 [GPa])

Fig. 30 Rotated Kt11
H (normalization value). a Plane XoY (8.343 [W/m˚C]), b Plane XoZ

(8.343 [W/m˚C]). Rotated Kt22
H (normalization value). c Plane YoZ isotropic—thick line (4.203

[W/m˚C]) and Plane YoZ anisotropic—dashed line (4.2592 [W/m˚C])
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tensors for the mechanical and thermal cases, respectively. Among all the Figs. 28,

29 and 30, only Fig. 30c reveals graphically a subtle effect of the numerical litter

that causes anisotropy of the thermal tensor.

Hence, if it is known beforehand that for the application desired, the optimized

material should be orthotropic, corresponding geometric symmetry conditions (in

two orthogonal planes) and variable linking should be imposed in the unit cell.

This would avoid spurious terms in the homogenized constitutive tensor.

Figure 31 shows the objective function evolution through the optimization

process. Notice that approximately 2500 iterations are necessary for convergence.

However, it should be remarked that the convergence criterion applied (in all the

cases studied) considers oscillations in the objective function and also in the design

variables.

Figure 32 displays the periodic structure formed by the optimized cell. Notice

that horizontal bars favoring heat transfer appeared in the X direction, and no

analogous bars showed up aligned to Y or Z directions. Thus, the structure is

effectively tailored for the multifunctional task to which it was designed.

10 Concluding Remarks

The Chapter initially describes the homogenization theory applied to periodic

materials made of truss-like unit cells. These materials, frequently referred to as

Lattice Block Materials (LBMs), have been the focus of recent research especially

for high performance engineering applications. A finite element code was

implemented for the determination of their homogenized mechanical and thermal

properties in either 2D or 3D situations.

In the sequence, a layout optimization procedure was proposed for obtaining

tailored LBMs for multifunctional thermal and mechanical requirements. The main

Fig. 31 Convergence of the

non-dimensional objective

function

Optimization of a Unit Periodic Cell in Lattice Block Materials Aimed 341



particularities of the proposed approach are (i) the simultaneous use of size and

shape design variables, thus reducing the size usually required for a ground struc-

ture; (ii) the definition of a multifunctional objective function; (iii) the development

of analytical sensitivities with respect to the two types of design variables considered

and (iv) the presentation of 3D results.

SLP was employed as the optimization algorithm. Although limitations were

encountered with respect to stability for automatic schemes of move limits update,

the method rendered good results provided very small move limits were adopted

(constant for area variables). However, a more elaborate mathematical program-

ming method is recommended for achieving better efficiency.

Promising preliminary results were obtained and the code implementation gives

generality for further investigations. One interesting issue to be evaluated in the

future is the effect of flexural and torsional stiffness in the material response, since

the use of bar elements does not account for this aspect.
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Computational Model of Porous Media Using

True 3-D Images

Khairul Alam, Mihnea S. Anghelescu, and Adrian Bradu

Abstract Thermally conductive foams are being developed for many engineering

applications; and there is a need to develop analytical models to predict the thermal

properties of such porous media. Most of the current models are based on volume

averaging techniques, and often assume simple, ideal shapes for the pore geometry.

The method described in this chapter focuses on modeling the thermal and flow

properties of foams on the basis of its true microstructure. The approach is to take a

three dimensional solid model of a real foam, obtained by imaging techniques, and

use it as the basis for the numerical solution of the transport phenomena. This is a

micro-model, in which the thermal phenomena are modeled at the pore level of the

foam. The model is computationally intensive, as can be expected; but it does not

require semi-empirical or experimentally derived constants such as permeability

to derive a solution. By incorporating the effect of the true pore geometry on the

thermal transport and fluid flow in the foam, this model is able to determine the

thermal conductivity, permeability, friction factor and heat transfer coefficients.

Graphitic carbon and silicon carbide foams are used in this study, but the approach

that is described is quite general and can be applied to other porous media; it may

also be applied to composites that contain phases with distinct boundaries at the

micro-level.

1 Introduction

Foams are porous materials which are attractive for many engineering applica-

tions because their properties can be customized by varying the manufacturing

process. Polymeric foams and metal foams are quite common in many engineering
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applications. Recent developments in foams have generated a new class of ther-

mally conductive foams which have potential applications in thermal management

and heat exchangers. For example, there are a variety of graphitic foams that can be

produced in a range of densities by varying the porosity. The thermal conductivity

of the foam can be also altered by changing the intrinsic conductivity of the solid

phase through variations in heat treatment. By controlling these two dominant

parameters, it is possible to produce foams of desired thermal conductivity over a

wide range of values. Another example of conductive foam for thermal applications

is the silicon carbide foam, which can be used at higher temperatures. The porosity

of the silicon carbide foam and the intrinsic conductivity of the silicon carbide can

also be varied to produce a desired bulk thermal property.

Conductive foams can greatly enhance heat transfer to a coolant flowing through

the foam pores. In traditional heat sinks, a heat spreader with finned structures has

been used to improve convective heat flux. Foams are similar to finned surfaces,

but can support much higher heat flux because of the higher surface area. With the

emergence of thermally conductive non-metallic foams, the design of thermal

management strategies will require the development of new models that incorpo-

rate the unique characteristics of these new foams. It is important to note that these

foams can be very different from the traditional metal foams that have been used in

heat sinks. For example, the microstructure of the graphitic carbon foam varies due

to the manufacturing process and heat treatments. This can lead to very different

thermal transport and flow behavior within the foams. The pressure drop for flow

through foam is a critical parameter for heat transfer applications; and it depends on

the complex geometry of the foam at the pore level. The nature of the fluid flow

and the thermal properties of the foam will determine the heat transfer effectiveness

of the system. However, a highly random geometry at pore level makes it very

difficult to analyze the properties and the behavior of this material by simple

empirical formula. Because of the complex geometry, the transport properties of

the foam are dependent on the three-dimensional geometry. It is difficult to

replicate the thermal transport behavior by using a two-dimensional model, espe-

cially when a fluid flow in the foam is to be analyzed.

In this chapter, the approach focuses on modeling the thermal and flow proper-

ties of foams on the basis of its true microstructure, without using an averaging

process or a simple pore geometry. The approach is to take a three dimensional

solid model, obtained by imaging techniques, based on an accurate representation

of the real geometry of carbon foam at the pore level. This is a micro-model, in

which the thermal phenomena are modeled at the pore level of the foam. The solid

model developed from the imaging process is then meshed and a numerical solution

is obtained to predict the thermal behavior of the foam. The model is computation-

ally intensive, as can be expected; but it forms a theoretical basis for the determi-

nation of the thermal conductivity, diffusivity, fluid friction and convective heat

transfer coefficients. Such a model incorporates the effect of the pore geometry

on the thermal transport and the fluid flow. As a result, the pore level model

can provide the surface area of the foam (per unit volume) and the theoretical

value of the permeability; in contrast, the traditional models require permeability as

348 K. Alam et al.



a parameter for the solution, determined either experimentally, or by semi-empiri-

cal methods.

Graphitic carbon foams and silicon carbide foams are used in this study, but the

approach that is described is quite general and can be applied to other porous media;

it can also be applied to composites that contain phases with distinct boundaries

at the micro-level. Special attention will be given to the modeling of the carbon

foam because of its complex microstructure that presents unique challenges to solid

modeling, and numerical solution. The silicon carbide foam has a simpler micro-

structure, and the 3-Dmodel for silicon carbide was developed to evaluate the success

of this approach. It is important to note that a unique aspect of this approach is the

development of the accurate solid model representation of 3D carbon foam micro-

structure, which can be used to investigate the bulk thermal, mechanical or other

properties of porous media and to study the fluid flow and heat transfer phenomena

through the porous media without the use of experimental or empirical parameters.

2 Silicon Carbide and Carbon Foams

The thermal conductivity of metals makes them a good candidate for enhancing

heat transfer; while, non-metallic foams, such as polymeric foams tend to be

insulators. Open cell conductive foams can be used as extended surfaces to improve

the heat flux in a flow system and such foams will be the focus of this chapter. Open

cell silicon carbide (SiC) foams have been used in high temperature systems.

Recent developments include SiC coated foams that are made by chemical vapor

deposition on a carbon foam skeleton [1]. The coating is thick enough that the foam

properties are virtually as if the carbon skeleton was absent, and the deposition

parameters can be controlled to improve the thermal properties of the foam.

Figure 1a shows an SEM picture of a silicon carbide foam. The pores of this
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Fig. 1 (a) Silicon carbide foam

(Source: [1]) and (b) SEM picture of graphitic carbon foam

(Source: AFRL, Dayton, OH, USA)
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foam are bigger than the pores of the carbon foam next to it; however, it should be

noted that carbon foam comes in many different pore sizes.

Carbon foams are very versatile in that they can work as insulators as well as

excellent conductors, and the cell structure can be open or closed. For example,

reticulated vitreous carbon foam (RVC), which is produced by pyrolyzing a poly-

mer, is an insulator. On the other hand, carbon foams made from mesophase pitches

will have low thermal conductivity after carbonization, but can be graphitized by

heat treatment to produce a highly conductive graphitic foam. The graphitic foams

are also distinct from the RVC foams and metal foams in their microstructure.

In RVC and metal foams, the pores are contained within ligaments that are similar

to struts [2] and the size of the pore is similar to the size of the openings that

interconnect the pores.

The graphitic carbon foam in Fig. 1b was made at the Air Force Research

Laboratory (AFRL, Dayton, OH, USA). It can be seen that the microstructure of

the two foams are very different. Graphitic foams tend to have bubble-shaped pores,

and the pore wall structure is similar to stretched membranes, with thicker cross

section at the junctions between the cells. The pore window in the wall membrane is

typically smaller than the pore size. Another level of complexity is added when the

anisotropy of the graphitic microstructure is considered. This is due to the higher

degree of alignment of the graphene planes in the walls (ligaments) of the pores;

while the junctions (nodes) have a disrupted, less graphitic structure. As a result, the

thermal conductivity is anisotropic and inhomogeneous at the pore level of gra-

phitic foams. Even at the bulk level, there is often a significant difference in the

thermal conductivity between the vertical and the horizontal directions of the

processing chamber where the foam is produced [3].

The microstructure of the carbon foam can be tailored by changing the precursor,

the foaming process and the heat treatment conditions [4]. In addition, the low

density and low coefficient of thermal expansion (CTE) of carbon foams make them

suitable for utilization in many engineering applications. However, the wide range

of microstructures of the carbon foam makes it a complex media that is harder to

model and analyze. The following paragraphs describe the processing steps that

produce the unique characteristics of the graphitic carbon foam.

The first carbon foams were developed by W. Ford in the 1960s as reticulated

vitreous carbon foams by carbonizing thermosetting polymer foams [5]. In the

1990s, scientists at Air Force Research Laboratory (AFRL, Dayton, OH) developed

graphitic carbon foams by heating a mesophase pitch precursor to the melting point

while being pressurized in an inert atmosphere; this is then followed by “blowing”,

a process of releasing the gas pressure [6, 7]. The blowing process produces pores

from bubbles which grow to form either a closed cell or an open cell structure; in

the latter case the walls between the cells have openings that can allow a flow

through the structure (Fig. 1). After the foaming process, the carbon foam is usually

stabilized at approximately 170�C and a heat treatment consisting of carbonization

at 1,000�C and graphitization at 2,700�C is applied [7]. Thermal conductivity

of graphitic carbon foams generally range between 1 and 250 W/m�C depending

on the microstructure, porosity and process parameters. From the SEM picture of
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a graphitic carbon foam produced at AFRL in Fig. 1, it can be seen that the pores of

this foam are spherical or elliptical with diameter ranging between 100 and 350 mm.

Current producers of carbon foams in USA includes Graftech International

(Parma, OH), Koppers (Pittsburg, PA), Poco Graphite (Decatur, TX), and Touchstone

Research Laboratories (Triadelphia, WV). Graphitic foam development at the Oak

Ridge National Laboratory has been described in several publications [5]. A method

to manufacture carbon foams from precursors such as coal, petroleum pitch, coal tar

pitch has been reported by researchers at West Virginia University [8]. Potential

utilizations of non-graphitic carbon foams include structural applications such as

tooling for composite materials manufacturing [9], stiffener inserts and core materials

for composite sandwich structures. Non-graphitic carbon foams are also attractive

as thermal protection materials, as they can be produced with very low thermal

conductivity [10].

3 Model of Foams: The Macro-Model

Studies on the analysis of foams have generally employed two approaches to

analyze porous media. The first is the classical macro-approach, in which the effect

of the pores on the foam properties are averaged over a representative volume, or

unit cell. A further simplification in the macro approach that is often adopted is to

assume thermal equilibrium between the foam and the fluid in the pores which

makes it easier to develop analytical solutions. The second approach, developed

more recently, uses an idealized foam model in which the pore microstructure is

built up by defining ligaments of simple geometry, which are then joined together,

or selecting pores of specific shape, distributed uniformly throughout a volume;

this may be termed the idealized micro-approach. These two approaches will be

discussed is the following sections.

3.1 Macro-Model for Thermal Conductivity

The classical approach to modeling porous media is based on averaging the effect

of randomly distributed pores, typically spherical in shape. An averaging method

was used by Bauer [11] to determine the bulk (or effective) thermal conductivity of

foams. The most important parameter for the conductivity is the porosity (void

content) of a porous material, defined as [12]:

’ %ð Þ ¼ Vf

V
� 100 ¼ Vf

Vf þ Vs
� 100 (1)

where Vf is the volume of the pores and Vs is the volume of the solid phase.
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Experimental determination of porosity is generally done by measuring the bulk

density and then using the following relation:

’ %ð Þ ¼ 1� rb
rs

� �
� 100 (2)

where rb is the bulk (or effective) density and rs is the solid phase density.

The surface area per unit volume of a porous material is defined as:

asf ¼ Asf

V
¼ Asf

Vf þ Vs
(3)

where Asf is the total pore surface area. It should be mentioned that experimental

determination of surface area per unit volume of a porous material can be quite

difficult. However, the 3-D model that will be described in a later section can be

used to determine this value quite readily.

The traditional model for the bulk thermal conductivity of a foam as a function

of the density was presented by Bauer [11] and also by Gibson and Ashby [2]:

keff ¼ kb
ks

¼ rb
rs

� �q

(4)

In the above equation, kb is the effective thermal conductivity, ks is the intrinsic
solid phase thermal conductivity (also called the ligament conductivity), and keff is
the non-dimensional ratio of the two values. The exponent q is usually between 1

and 2; this exponent represents the effect of the microstructure on the path of heat

flow. A preferred representation is to use the exponent 1/n as shown below [3]:

keff ¼ kb
ks

¼ rb
rs

� �1
n

¼ 1� ’

100

� �1
n

(5)

In this form, the bulk thermal conductivity kb is higher as n increases; with the

maximum possible value of kb at n ¼ 1. Therefore n represents the effectiveness of

the pore geometry at different relative densities for heat flow through the foam and it

can be called the “pore conduction shape factor” [13]. The value of n is generally

significantly less than unity for most foams, and the lower limit is typically about 0.5.

When the porosity is very low, the value of n has been theoretically shown to be
2/3 (i.e., 0.667) for spherical pores [14]. A study by Bauer [11] suggested a value of

n ¼ 0.77 for liquid foams with porosity in the range of 60–95%. According to

Ashby et al. [15], the exponent (1/n) is generally between 1.8 and 1.65 for metal

foams, so that:

1� ’

100

� � 1
0:556

< keff < 1� ’

100

� � 1
0:606

(6)
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On the basis of experimental results of graphitic carbon foams, Klett et al. [16]

modified (2) by adding a multiplier b ¼ 0.734 to account for pore shape, and used

the pore conduction shape factor n ¼ 0.701:

keff ¼ kb
ks

¼ b
rb
rs

� �1
n

¼ 0:734 1� ’

100

� � 1
0:701

(7)

It should be noted that the above equation is a volume-averaged result, in which

the inhomogeneous graphene alignment is assumed to be isotropic at the bulk level.

As discussed earlier, the graphitic foams may not be isotropic even at the bulk level;

therefore, (2) must be used with an appropriate modifier to account for bulk

anisotropy.

3.2 Volume-Averaged Model

The classical macro-approach of volume averaging has been used extensively when

the thermal transport takes place in the solid and fluid phases. Under this approach,

the quantities associated with the thermal transport and fluid flow phenomena are

averaged over a representative elementary volume consisting of both the interstitial

fluid and porous material [17]. For highly conductive foams, the two energy

equation approach must be used (one for each phase) and the temperatures should

be averaged separately for solid phase and fluid phase [18]. However, a thermal

equilibrium assumption is often made in order to obtain analytical solutions. This

approach has been described by Nield and Bejan [19] and Kaviany [20] and has

been used in several studies for modeling fluid flow and convection through foams.

This averaging approach reduces the complexity of the general problem, but

information about the transport phenomena at pore level and the influence on the

overall transport phenomena are lost [17, 18, 46]. Such models typically need

experimental values or semi-empirical parameters to compensate for the loss of

information. In the case of fluid flow, the parameters are the permeability and the

inertial coefficient of the porous media. The results are often presented as non-

dimensional numbers such as friction factor, Reynolds number and Nusselt number

which are based on the geometric parameters of the foam.

3.3 Volume-Averaged Fluid Flow Model

The steady state mass and momentum conservation equations for incompressible

flow through porous media are [21]:

r � uh i ¼ 0 (8)
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r
’2

u � ruh i ¼ �r ph if þ m
’
r2u� m

K
uh i � r cfffiffiffiffi

K
p uh ij j uh i (9)

where hi is the volume average symbol, u is the fluid velocity vector, p is the fluid

pressure, r is the fluid density, m is the fluid viscosity, ’ is the porous media

porosity, K is the porous media permeability and cf is the porous media inertial

coefficient. The mass and momentum conservation equations can be solved numer-

ically for pressure and velocity fields provided that ’, K and cf are known.
It should be mentioned that in comparison to Navier-Stokes equations, the

momentum conservation equation for flow through porous media contains two

extra terms, which are the last two terms on the right hand side of (9). They account

for additional pressure loss due to the presence of the porous media. Since this

equation is not amenable to analytical solution, it is often simplified to the case of a

steady state, fully developed flow, without the effect of boundary walls. This leads

to the Darcy-Forchheimer equation, which is the one dimensional momentum con-

servation equation for flow through porous media. It gives the following expression

for the pressure drop:

Dp
Dx

¼ m
K
uD þ r cfffiffiffiffi

K
p u2D (10)

where the Darcy velocity (uniform filter velocity) in the porous media is given by:

uD ¼ _m

rAch
(10a)

and Dx is the length of the porous region in the direction of the flow, _m is the mass

flow rate and Ach is the cross sectional area of the channel before it is filled with

porous material.

The fluid flow regime in pipes and channels with constant flow area is established

as either laminar or turbulent using the Reynolds number based on the equivalent

hydraulic diameter as the length scale of the flow. In porous channels it is difficult to

define an equivalent hydraulic diameter because the geometry is complex and the

flow area is continuously changing. The square root of the permeability
ffiffiffiffi
K

p� �
can be

used as the length scale of flow through porous media, and has been incorporated in

the definition of the “modified” Reynolds number [22–24]:

ReK ¼ ruD
ffiffiffiffi
K

p

m
(11)

The fluid flow in porous media is in the “Darcy regime” when the velocities are

small enough so that the inertial effects are insignificant and the quadratic term in

the Darcy-Forchheimer equation is negligible. At high velocities, the quadratic term

in the Darcy-Forchheimer equation cannot be neglected and the flow regime is

“non-Darcy”.
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Equation (10) has been used to determine K and cf from experimental measure-

ments of pressure drop and uniform filter velocity for a large variety of porous

materials: aluminum, nickel and carbon foams [21], compressed aluminum foam

[25] and carbon foam [26]. Experimental testing on aluminum foams showed that

permeability of a porous material is a strong function of porosity and pore size and

inertial coefficient is influenced by the solid phase shape and pore structure [23].

In an attempt to unify the pressure loss characteristics for various porous media,

a dimensionless friction coefficient has been used [22, 23]

f ¼
Dp
Dx

ffiffiffiffi
K

p

ru2D
(12)

Equation (12) was used to determine f from experimental measurements of

pressure drop and the Darcy velocity for aluminum foams [23] and Foametal [27].

Beavers and Sparrow [22] combined together (10)–(12) and obtained the

following relation for friction coefficient:

f ¼ cf þ 1

ReK
(13)

Equation (10) describes the flow behavior of porous media and is widely used by

researchers. It must be noticed that in the Darcy flow regime, the quadratic term in

(10) can be neglected, so that the friction coefficient becomes equal to the inverse of

the Reynolds number. The inertial coefficient and the permeability have been

determined experimentally for aluminum foams by Paek et al. [23], and the results

are described by the following equation:

f ¼ 0:105þ 1

ReK
(14)

For a high porosity foam (Foametal), the experimental results by Vafai and Tien

[27] produced the following relationship:

f ¼ 0:057þ 1

ReK
(15)

The analysis of heat transfer due to flow through the foam is quite complex, and

results from the volume-averaged equations and experiments are usually correlated

in terms of the Nusselt number, Reynolds number and the Prandtl number [28].

Many forced convection studies for simple flows use the general Nusselt number

correlation of the form:

Nu ¼ CPem (16)

where C is a constant, Pe is the Peclet number (product of the Reynolds and Prandtl

numbers) and m is an exponent. In general, the solution for convection heat transfer
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requires the determination of the permeability (typically experimentally or semi-

empirically) which determines the fluid flow. In addition, an effective conductivity

and a representative length dimension have to be determined or estimated so that

the Reynolds number and the Prandtl number can be defined. The complex nature of

thermo-fluid transport in conductive foam has led to the development of numerical

models that are based on pores of ideal shape. This is discussed in the following

section.

4 Idealized Pore-Level Model

The development of pore-level micro-models for analyzing porous media is

relatively recent, and has been made possible by the combination of advances in

computational fluid dynamics (CFD), and enhancement in computer capabilities.

Due to its complexity and randomness in the pore shape, dimensions and distribution

in the solid matrix, the accurate representation of 3-D microstructure of foams as a

solid model is computationally intensive. Therefore, studies have been carried out in

which foam microstructure is often approximated by idealized geometry. Metal

foams used for heat exchanger, (such as Duocel1 produced by ERG Aerospace)

have an open reticulated structure. It is generally reasonable to model reticulated

structures as a set of ligaments with a geometric relationship [18]. Silicon carbide

foam can also be modeled as a set of ligaments. Carbon foam, however, presents a

special challenge because of the complex microstructure; and many different models

have been proposed that are based on simple pore geometries.

Some of the carbon foam geometries that have been proposed for an idealized

pore model are shown in Fig. 2, along with the SEM picture of a graphitic carbon

foam. Sihn and Roy [29] approximated the carbon foam with a unit cell which is

obtained by subtracting four identical spheres from a regular tetrahedron (Fig. 2a).

The porosity of the unit cell is a function of the sphere diameter. Druma et al.

[13, 30] proposed a body centered cubic (BCC) type structure for the unit cell of

carbon foam, as shown in Fig. 2b. They also used ellipses (horizontal and vertical)

to create the pores (Fig. 2c, d). Yu et al. [31] used a pore at the center of a cubic cell

to form the model. A tetrakaidecahedral unit cell for carbon foam was used by

Li et al. [32].

Using these idealized pore models, it is possible to determine the surface area

and the thermal conductivity analytically [31, 48], or by numerical analysis.

The advantage of using a numerical micro-model that simulates the process at

the pore level is that it can predict the experimental or semi-empirical parameter

such as the “density exponent” (5). Druma et al. [13] showed that the plot for (5) for

n ¼ 0.67 matches the numerical solution only at very low porosities (below 10%);

this is to be expected since this exponent was derived for low porosities. In general,

a constant value of this exponent is not appropriate for a full range of porosity.
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A plot of the numerical value of the exponent n has been presented by Druma [6] by

writing (5) in the following form:

n ¼ ln 1� ’
100

� �
ln keff

(17)

Fig. 2 Ideal pore models used to approximate carbon foam microstructure: (a) tetrahedron

(Source: [29]), (b) BCC type cube (Source: [13]), (c) and (d) BCC type ellipse, vertical and horizontal

(Source: [30]), (e) SEM picture of graphitic carbon foam (Source: Graftech International)
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The plot is reproduced in Fig. 3. It is obvious that for this case of a porous media

with uniformly distributed 100 mm pores, the density exponent n is not constant, but
varies between 0.65 and 0.88. A constant (average) density exponent can only be

used for a limited porosity range. The maximum value is obtained before the pores

become interconnected, since interconnected pores result in pockets of material

that are not in good contact, and therefore not very effective in heat transfer. The

exponent is not strongly affected by the size of the pores. However, the shape of the

pores (e.g., spherical vs. elliptical) and the arrangement of the pores (face centered

vs. body entered) will affect the density exponent. These conclusions demonstrate

the usefulness of the numerical, pore level model.

A natural extension of the numerical analysis of a pore level model would be the

study of the fluid flow and heat transfer in a porous media. Yu et al. [31], and

Krishnan et al. [33] have developed numerical solutions for fluid flow and convec-

tion heat transfer using idealized pore level models. Yu et al. [31] used a cubic cell

geometry to determine the interior surface area, and developed analytical expres-

sions for the effective thermal conductivity and convective heat transfer. Karimian

and Straatman[34, 35] followed up this study by numerically solving the fluid flow

and heat transfer for the same body centered cubic cell geometry. Krishnan et al.

[33] and Anghelescu [36] used the numerical model to determine the permeability,

and friction factor due to fluid flow.

Anghelescu et al. [12] extended the pore level modeling approach to true three-

dimensional structures of carbon foams. It is important to recognize that develop-

ment of a solid three-dimensional image involves several steps before the numerical

simulation can be undertaken. This is addressed in the following section.
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5 Development of the True 3-D Image

The development of the 3-D microstructure of two different foams will be discussed

in this section. The first is a silicon carbide foam made at Ultramet Inc. (Pacoima,

CA, USA), and the second is a graphitic carbon foam manufactured at the Air Force

Research Laboratory (AFRL, Dayton, OH, USA). The silicon carbide foam, as

shown in Fig. 1 has a simpler microstructure. The carbon foam microstructure is

more complex. Two different imaging processes have been used for the two foams.

One approach [37] is to combine a light microscopy system with a highly accurate

serial sectioning of the sample. A 90% porous graphitic carbon foam (similar to that

shown in Fig. 1) which was produced at the Air Force Research Laboratory (AFRL,

WPAFB, Dayton, Ohio) was first infiltrated with a polymer (epoxy) under vacuum.

The 3 mm diameter sample was then analyzed by a novel instrument (Robo-

Met.3D) which uses a diamond lapping film to polish the sample at about 3.5 mm
per slice. The sample is imaged by bright field light microscopy after each slicing

operation.

A secondmethod is to do scanning byX-ray tomography to produce the images of

the slices; this was the procedure used with the silicon carbide foam. This method

has also been used on aluminum foams by Fiedler et al. [38], and by Hugo et al. [39].

The slices are separated by at least one voxel size of the specific instrument; this is

the limit of the image resolution for this technology. The images produced either by

Robo-Met.3D or by X-ray tomography, are then processed in a number of steps

to provide the solid model. At the beginning, the image files of the slices are subject

to a segmentation operation, which consists of defining the boundaries between the

solid (the foam) and background in each slice, and is done manually and/or auto-

matically. This can be done by customized or commercial software, such as the

medical imaging software Amira [40]. Amira can also be used for the next step,

which is the triangulation step. This step defines the entire surface of the foam by

using a large set of triangles. After this step, the results are saved as STL files.

At this stage of the surface reconstruction, the point cloud iswrapped in a polygonal

surfacemade of triangles and there are some choices for the softwarewhich can define

the surface by fitting appropriate surfaces through the points defined by the triangula-

tion. In the Geomagic Studio software, the regions of high curvature are identified and

marked with curvature lines. The triangulated surface is divided into a number

of areas, each of them bounded by curvature lines. Each of these areas is then divided

into a number of patches. A patch is a convex quadrilateral which is manipulated in

order to obtain acceptable warpage, skewness and aspect ratio. A geometric grid is

generated for each quadrilateral patch and a Non-Uniform Rational B-Spline

(NURBS) mathematical representation is calculated for each patch, using the grid

as control points. The result is a file containing a closed surface, made of patches, that

resembles the geometry of the foammicrostructure. The NURBS patches are stitched

together and the solid 3D carbon foam model is generated.

After NURBS fitting, the resulting surface can be saved as an IGES, STEP or

other file format and transferred to the solid modeling software. This is the preferred

Computational Model of Porous Media Using True 3-D Images 359



mode if the foam and the fluid in the pores are to be meshed for fluid flow through

the pores. Using Boolean operations such as “subtract” and “unite”, the solid model

of the foam and fluid can be combined using a software, such as SolidEdge. For

example, in order to produce the solid model of the foam and the fluid in Fig. 4,

a Boolean operation was carried out to subtract the shape of the foam from a

parallelepiped representing the fluid. The foam is subsequently fitted into this

empty space and aligned to the sides to produce the assembly consisting of carbon

foam saturated with fluid.

The solid models were then used to generate the mesh using the software product

HyperMesh. Another way to generate the solid mesh is to use the NURBS only

(without constructing the solid model). The NURBS are loaded in HyperMesh

where a volumetric mesh procedure is applied to the surface. The solid meshes

for the two foams are shown in Fig. 5. The silicon carbide foam model has the

dimensions of 1.50 � 1.44 � 1.40; the graphitic carbon foam dimensions are

1.50 � 1.48 � 1.54 (dimensions in mm).

The computational model with the mesh for the porous channel and the foam is

discussed later in the development of the fluid flow model. The combination of the

foam structure and the fluid makes the numerical model significantly bigger. As the

number of elements and nodes increase far above one million, the issue of compu-

tational capabilities becomes important. One of the limiting factors of the modeling

effort is the computational effort required to set up and run a model that reflects

accurate details at the pore level of the microstructure. In order to have a model that

Flow direction

Carbon foamInterstitial fluid

Fig. 4 3D solid model of porous carbon foam and fluid [36]

360 K. Alam et al.



is representative of the bulk material, the model should be large enough to have the

same properties (density, thermal and mechanical properties, etc.) as the bulk

material. It is important to note that the bulk properties of the foam depend on the

pore geometry as well as the intrinsic (solid phase) properties of the foam liga-

ments. But the properties of the ligaments can vary from point to point, and are very

difficult to measure. To keep the computational effort reasonable, the small volume

of the model in this study was selected on the basis of similarity to the bulk porosity,

which can be measured by the bulk density. The typical model size is in the order of

cubic millimeters. This can present some difficulty in the simulation of fluid flow

and heat transfer, which is discussed later.

A high performance computer (or super-computer) is generally needed for solid

modeling of the foam. The number of elements in the model is typically one million

or more, especially when the fluid flow is included. The numerical solution must be

checked to make sure that it is mesh-independent, which also increases the compu-

tational requirements. With the continuous improvement in the capabilities of

computational systems, it is expected that larger volume models would be handled

more easily in future work and this would result in greater confidence in the results

of the numerical model.

6 Thermal Conductivity Modeling with True 3-D Image

After the solid model is produced, it is quite straight forward for the solid modeling

software to determine the porosity and the surface area per unit volume of the porous

media. As mentioned earlier, the silicon carbide foam model has the dimensions of

Fig. 5 Meshed solid models of 3D foam microstructure (a) Silicon carbide foam from Ultramet,

83% porous, with 6,611 m2/m3 of surface area (b) Graphitic carbon foam from AFRL, 90%

porous, with 4,340 m2/m3 of surface area
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1.50 � 1.44 � 1.40 and the graphitic carbon foam dimensions are 1.50 � 1.48 �
1.54 (dimensions in mm). The two meshed models shown in Fig. 5 were determined

to have surface areas of 6,611 m2/m3 (SiC Foam, 83% porosity), and 4,340 m2/m3

for the graphitic carbon foam (90% porosity). The porosity of the real foam images

were compared with the bulk density results and found to be within 1–2% of the

measured value. This was taken to be an indication of the similarity of the 3-D

image sample to the bulk material. The next step is to set up an appropriate model to

determine thermal conduction, fluid flow and convective heat transfer.

To determine the thermal conductivity of the bulk (carbon) foam, the foam

microstructure is subjected to a temperature gradient by sandwiching it between

two solid plates, and the system is then analyzed by the finite element method.

The temperature gradient is established by defining perfect thermal contact

between the foam and the two solid plates which are maintained at two different

temperatures. The temperature field in the system (carbon foam microstructure

and plates) is governed by the steady state conduction heat transfer equation

given by:

@

@xi
k
@T

@xi

� �
¼ 0 i ¼ 1; 2; 3 ðindex notationÞ (18)

where T is the temperature and k is the thermal conductivity of the domain

analyzed.

The following assumptions have been made in the analysis:

l The foam properties are constant
l The fluid in the pores has negligible effect on the bulk conductivity
l Convection and radiation are neglected.

The problem definition is completed by defining the boundary conditions as

follows:

l A uniform heat flux is applied on the top surface of the upper plate
l A uniform temperature is specified on the bottom surface of lower plate
l Temperature and heat flux are continuous at the interface of the plate and carbon

foam microstructure
l No heat transfer takes place at all on the other surfaces

The carbon foam model was analyzed with 519,397 elements. To evaluate mesh

independence, the model was solved again with 1,357,568 elements; and it was

determined that the two thermal conductivity results varied by less than 0.1%. For

additional details of the carbon foam simulation, the reader is referred to the article

by Anghelescu et al. [12] or the dissertation by Anghelescu [36]. The SiC foam in

Fig. 5 was analyzed in the same manner. The model of the SiC foam contains

1,015,839 quadratic tetrahedral elements, which corresponds to 1,588,867 nodes.

The plates, due to their simple geometry, have only 3,600 brick elements, with

5,766 nodes.
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From the solution of the temperature field in the foam, the thermal conductivity

is calculated by applying Fourier’s law:

qx ¼ �kb
dT

dx
¼ kb

DT
Dx

(19)

where qx is the heat flux applied on the top surface of the upper plate, DT is the

temperature difference between the two solid plates and Dx is the thickness of the
carbon foam in the heat flux direction.

The intrinsic conductivity of the solid phase in the foam may not be known

accurately, or can be very difficult to measure. Therefore, the non-dimensional bulk

thermal conductivity is determined in the solution; this is defined as:

keff ¼ kb
ks

(20)

Three separate analyses are carried out in the x- y- and z-directions of the 3D

solid model of foams to account for randomness in pore shape, dimensions and

distribution. Figure 6a, b show the temperature distributions in two foam micro-

structures when the heat flux is applied on the top plate. Because of the boundary

conditions applied, the heat transfer is predominantly one dimensional, in the heat

flux direction. The heat flux distributions are shown in Fig. 7a, b. The heat flux has

higher values in the thin ligaments of the two foams; these areas tend to be bottle

necks in the thermal transport.

The thermal analysis results are summarized in Table 1 along with analytical and

experimental results from other studies. It can be seen that the numerical models

based on real foam geometry have much lower thermal conductivity keff as com-

pared to the analytical or numerical values (based on idealized pores). In compari-

son to the values obtained from the pore level model, the value predicted by Bauer

Fig. 6 Temperature distribution in SiC (a) and carbon foam (b)
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[11] is about 60–80% higher. On the other hand, the conductivity values obtained

by FEM analysis on the true geometry of carbon foam microstructure show good

agreement with the experimental results in Klett et al. [16].

From Table 1, it can be seen that both foams demonstrate a higher value of keff in
the “y” direction compared to the other two directions. In particular, the “y”

direction for the two foams has significantly higher conductivity (about 20%)

Fig. 7 Heat flux distribution in SiC (a) and carbon foam (b)

Table 1 Thermal conductivity results from different foam models

- Source Type of analysis
keff

(% of solid phase)
n

83
%

 S
iC

 f
oa

m Bauer 
(1993)

Analytical
(spherical pores)

9.89 0.77

Present 
analysis

FEM on true foam
geometry

x 5.55
6.30

(average)

0.61

y 7.39 0.68
z 5.95 0.63

90
%

 c
ar

bo
n 

fo
am

Bauer 
(1993)

Analytical
(spherical pores)

4.86 0.77

Druma et 
al. (2004)

FEM on 
ideal 

geome-
try

spherical 
pores

6.25 0.84

ellipsoidal 
pores –

horizontal
2.20 0.61

ellipsoidal 
pores –
vertical

9.20 0.98

Klett et 
al. (2004)

Experimental 2.62 0.64

Anghe-
lescu et 

al. (2009)

FEM on true foam 
geometry

x 2.78
2.72

(average)

0.65
y 2.93 0.66
z 2.44 0.62
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than the other two directions. These differences show that this particular solid

model of carbon foam microstructure is not geometrically isotropic. This may be

due to bulk geometric anisotropy, or unique sample characteristics. Graphitic

carbon foams are known to exhibit higher bulk conductivity [3] in the vertical

direction of the reactor; which can be due to geometric anisotropy and/or due to

directional anisotropy of graphene alignment within the solid phase. The numerical

results can only reflect the geometrical anisotropy in the 3-D image; therefore

it is difficult to resolve this issue of anisotropy without examining images of

multiple samples.

On the basis of the results shown in Table 1, it can be concluded that the

accuracy of semi-empirical models depends on the adjustable parameter (such as

the “density exponent”, n); while ideal geometries (which do not have an adjustable

parameter) may significantly over-predict the bulk thermal conductivity due to the

geometric regularity of the model. The lower value of the non-dimensional con-

ductivity in the true geometry is probably due to the higher tortuosity of the heat

flux vectors caused by the randomness in pore shape, dimensions and distribution.

Fiedler et al. [38] obtained similar results in their study of thermal conductivity

of aluminum foams. They analyzed the thermal conductivity of the foam by

applying a lattice Monte Carlo method to a true foam image obtained by X-ray

tomography. Their results showed that analytical or semi-empirical formulas can

significantly over predict the experimental measurements as well as the numerical

values obtained by the Monte Carlo simulation. On the other hand, the experimental

and numerical simulation results were in good agreement.

Therefore, the numerical model of the true 3-D image can be expected to provide

an accurate value of the thermal conductivity ratio keff. This is a useful quantity for

heat transfer analysis since it relates the bulk conductivity value to the average solid

phase conductivity (also known as the ligament conductivity). Once keff is calcu-
lated, the value of the average ligament conductivity can be calculated from known

(measured) bulk conductivity; and (5) can be used to determine the relative density

exponent (n). This exponent is a measure of the effectiveness of the pore geometry

in thermal transport.

7 Fluid Flow and Heat Transfer in Real 3-D Foam

The interconnected pore structure of porous materials can be used as channels for

fluid flow which offers a significant increase in surface area available for convective

heat transfer. Highly porous aluminum foams have been investigated as possible

solutions for thermal management of electronics [41, 42]. Hugo et al. [39] used a

true 3-D image of an aluminum foam for a heat exchanger application. They used

the iMorph software for developing the image output from X-ray tomography and

carried out heat transfer and fluid flow calculations using StarCCM+ software. The

aluminum foam used by Hugo et al. [39] is an ERG foam, with pore diameters of

4.5 mm (20 PPI) and a porosity of 92%; the larger pore size and the simpler
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microstructure can reduce the computational effort for constructing a solid model

for numerical solution.

The small pore size and the complex microstructure make carbon foam model-

ing a challenging task. However, because of its light weight and very high thermal

conductivity, graphitic carbon foam is an attractive candidate for heat sinks and

heat exchanger core. Silicon carbide foam has potential for high temperature heat

exchanger applications. This section addresses some of the issues in developing the

model for a porous media heat exchange system consisting of a channel filled with

an open cell porous material and saturated with a coolant flowing through the pores.

The analysis of fluid flow at the pore level of a real 3-D image of porous channel

has the advantage of using basic fluid flow and heat transfer equations; additional

terms (such as permeability, inertial coefficient) are not needed. Therefore, the

model can be implemented with the governing equations of a Newtonian fluid by

using one of several computational fluid dynamics (CFD) software products. The

numerical simulations used in the following studies were obtained by the finite

volume method as implemented in the FLUENT software [43]. It is important

to note that the solid model of carbon foam used in the following simulations

represents a very short flow length; and this may not represent the flow properties of

the bulk foam. Even if periodic boundary conditions [33, 34] are used, the issue of a

representative volume should be addressed because the true 3-D image has irregu-

lar, randomly distributed pores. It was discussed earlier that the volume of the

model has the same porosity as the bulk; but the geometrical features of a small

solid model may not be representative and may not provide accurate permeability

and inertial coefficients. Therefore, in the following fluid flow analysis, a longer

SiC solid model is used. The flow equations are solved for both foams by using

symmetric boundary conditions on the four sides so that the effect of channel walls

is avoided. The convective heat transfer study in a later section is carried out with

flow through a carbon foam with emphasis on the effect of the foam ligament

conductivity on the convective heat transfer.

The velocity and pressure fields of an incompressible, steady state, Newtonian

fluid flow in laminar regime are governed by the mass conservation equation

@ui
@xi

¼ 0 i ¼ 1; 2; 3 ðindex notationÞ (21)

and the Navier-Stokes equations for momentum conservation, given (in index

notation) by

ruj
@ui
@xj

¼ � @p

@xi
þ m

@

@xj

@ui
@xj

� �
i; j ¼ 1; 2; 3 (22)

where ui are the fluid velocities, p is the fluid pressure, m is the fluid viscosity and r
is the fluid density. The fluid flow is assumed viscous and the body forces on the

fluid are neglected. Due to the complexity of the geometry, a large number of finite
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volume elements have to be used. Therefore, to reduce computational effort, the

properties of the fluid are assumed constant with temperature.

The solid model assembly of porous channel (carbon foam microstructure and

interstitial fluid) is discretized using unstructured tetrahedral mesh in commercial

software HyperMesh [44] as shown in Fig. 8. The mesh created is imported into

computational fluid dynamics (CFD) software FLUENT for fluid flow and heat

transfer calculations. The unstructured tetrahedral mesh is first converted to polyhe-

dral mesh in order to improve the mesh quality (eliminate bad elements) and reduce

the computational time. In the polyhedral mesh 367,462 elements are generated

for the solid phase and 1,148,766 elements for the fluid. The second order upwind

scheme is used for discretizing the momentum and fluid energy conservation

equations. The SIMPLE algorithm is used for pressure-velocity coupling.

Mesh independence of the finite volume solution was established by solving the

problem using a different mesh density: 355,088 elements for solid and 756,387 for

fluid. The difference between the two discretizations in terms of permeability and

inertial coefficient of carbon foam microstructure is 1.6%, and 1.1%, respectively.

The results presented in this chapter are obtained using the finer mesh.

The fluid flow equations (21) and (22) are for laminar flow regime because the

Reynolds number calculated based on the equivalent hydraulic diameter of the flow

channel is smaller than critical Reynolds number Recr ¼ 2,320 for the entire range

of velocities used in simulations. In order to account for the possibility of

Fig. 8 Computational model for carbon foam in the flow channel
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turbulence due to the tortuous geometry, the simulations were also run by including

turbulence in the flow model. The fluid flow turbulence was modeled using

the Reynolds-Averaged Navier-Stokes (RANS) method. The turbulent viscosity

and turbulence kinetic energy were modeled by employing the k-e method as

implemented in the commercial code FLUENT [43]. The difference between the

laminar and turbulent flow simulation results in terms of permeability and inertial

coefficient of carbon foam microstructure is 0.7% and 5.3%, respectively.

Fluid flow simulations for inlet (Darcy) velocities ranging between 0.01 and

1.5 m/s are run in order to determine the pressure drop as the flow moves across the

solid model. Fluid (air) thermo-physical properties at 20�C are used in the simula-

tions. Figure 9 shows the fluid flow pathlines in the carbon foam with velocity

magnitudes shown in color; this simulation is for a Darcy fluid velocity of 0.5 m/s.

The fluid flows along the positive x-axis to the right of the figure. The presence of

the carbon foam in the channel reduces the cross-sectional area available for fluid

flow and increases the fluid velocity. It can be noticed that the maximum fluid

velocity in the porous channel is about 3.6 times higher than free stream velocity.

This, in turn increases the pressure drop and the heat transfer. The tortuosity of the

fluid flow pathlines around the foam ligaments can be observed in the simulations.

For the silicon carbide foam, the meshing process was also done in HyperMesh.

Two models were created, with different element densities in order to check

the mesh independence of the solution. The solid model for the SiC foam has the

following dimensions: 2.9 mm length, 1.44 mmwidth and 1.40 mm height. The flow

Flow direction

Fig. 9 Fluid flow pathlines (in the porous channel of carbon foam) colored by velocity magnitude

for a Darcy velocity of 0.5 m/s [6]
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length in the fluid flow simulation model is approximately double the length of what

was used in the thermal conductivity model. This longer model was used so that the

flow is not significantly affected by end effects, such as penetration depth. The first

model has the fluid domain discretized into 9,319,575 tetrahedral elements, while

the second one has 14,012,640 elements. This model is bigger than what was used

for analysis of thermal conductivity. Cross sectional views of the two models are

shown in Fig. 10a, b.

After the models were loaded into FLUENT, the domain was converted into a

polyhedral mesh to give a better mesh quality and improve the memory utilization.

After the polyhedral conversion, the first SiC foam model was reduced to 1,179,862

polyhedral cells and the second one was reduced to 2,150,609 cells. The problem

was then solved by the FLUENT code, and the fluid flow pathlines in the SiC foam

are shown in Fig. 11. It can be seen that the pathlines are qualitatively more tortuous

than higher porosity carbon foam.

The simulation results of pressure drop per unit length across the two different

foams as a function of the Darcy velocity are shown in Fig. 12; along with the

quadratic curves fitted through the data points. By comparing the plots in Fig. 12

with the Darcy-Forchheimer equation (10), the values of permeability and the

inertial coefficient for the SiC foam can be determined. The permeability for

the SiC foam was determined to be 2.1 � 10�9 m2 and the inertial coefficient

was calculated to be 0.14.

The value of permeability, and the heat transfer results obtained from the 3-D

image were determined to be very similar to the values obtained by experimental

measurements of the bulk SiC foam [45], which provides additional validation of

the numerical model. Even though the foam model is only 2.9 mm long, the

penetration depth is of the order of the square root of the permeability (
ffiffiffiffi
K

p
),

which is much smaller than the flow length. Therefore, the flow model from a

small 3-D image can be used to predict the bulk flow behavior in a porous media.

Fig. 10 Cross-sectional view through the HyperMesh models (a) 9,319,575 elements and

(b) 14,012,640 elements
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Fig. 11 Fluid flow pathlines through the SiC foam for a Darcy velocity of 1.5 m/s

Fig. 12 Pressure drop in the two foams as a function of Darcy velocity
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It is also important to note that the permeability was obtained from the 3-D image

model without any adjustable parameters.

Figure 12 shows an unexpected result – the fluid pressure drop in the carbon foam is

less than the pressure drop in the SiC foam. In general, carbon foam structure tends

to be more tortuous then this silicon carbide foam. Therefore, the pressure drop in the

carbon foam could have been expected to be higher than in the silicon carbide foam.

However, in this case, the carbon foam has only 10% solid vs. 17% for the SiC foam.

At very low densities, the pore structure and the resulting fluid flow can be signifi-

cantly different from higher density foams of the same material. Figure 13 is a plot of

the friction coefficient calculated from (12), versus the modified Reynolds number

(11), for the SiC foam. This curve for the SiC foam is based on the permeability and

inertial coefficient calculated from Fig. 12. It can be seen that the flow is in the Darcy

regime for these simulations. For the purpose of comparison, the experimental correla-

tions from Paek et al. [23] (14) and Vafai and Tien [27] (15) are also plotted. The plots

are quite comparable over the range of the modified Reynolds number values.

7.1 Heat Transfer Calculation

Heat transfer calculations in a highly conductive porous medium are complex

because of non-equilibrium thermal conditions. Therefore the equations are often

Fig. 13 Friction coefficient for flow in the SiC foam as a function of the modified Reynolds number

Computational Model of Porous Media Using True 3-D Images 371



simplified and combined with experimental results to develop Nusselt number

correlations of the type shown in (16). Krishnan et al. [33] assumed a constant

heat flux condition on the foam surfaces in an idealized pore model (referred to as a

“direct simulation”) and derived the heat transfer coefficient.

For heat transfer simulation with the true 3-D images, the results shown here

were derived with the carbon foam [36]. A constant temperature heat source is

applied on the upper surface of the channel that is in contact with the carbon foam

and the interstitial fluid. The surfaces belonging to channel inlet and outlet are not

heated. Heat is transferred by convection from the channel upper wall to the fluid

in contact, and also by conduction through the solid phase of the foam. The heat

flux through the solid is then convected from the pore walls to the fluid. The

system is analyzed considering steady state fluid flow and heat transfer by

numerical simulation of convection in the 3-D image model. Fluid velocity and

pressure distributions, as well as temperature distribution in carbon foam and fluid

at pore level are obtained from numerical simulation by commercial software

FLUENT [43]. The mathematical model used for heat transfer calculations, as

implemented in FLUENT is summarized here. This approach is similar to what

was adopted in a preliminary study on carbon foam by Anghelescu and Alam [46]

and by Alam [47] for a study of convection in SiC foam.

The steady state fluid temperature distribution in laminar flow regime is gov-

erned by the energy conservation equation

rcp
@

@xi
uiTf
� � ¼ @

@xj
kf
@Tf
@xj

� �
i ¼ 1; 2; 3 ðindex notationÞ (23)

where kf is the fluid thermal conductivity.

The steady state temperature distribution in the carbon foam is governed by the

conduction equation

@

@xj
ks
@Ts
@xj

� �
¼ 0 i ¼ 1; 2; 3 ðindex notationÞ (24)

where ks is the thermal conductivity of the solid phase.

The following boundary conditions are applied for heat transfer analysis:

l Constant temperature on the upper surface of the porous channel (carbon foam

and fluid)
l Constant fluid temperature at the inlet of the channel
l Symmetry on the sides and lower surface of the channel
l Temperature and heat flux are continuous at the solid–fluid interface

A wall boundary condition is used on the top surface of the porous channel in

order to represent the constant temperature heat source. The two energy equa-

tions solved together yield the temperature distributions in carbon foam and fluid

as a function of space coordinates x, y and z. The fluid flow computational model
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Flow direction

Flow direction

a

b

Fig. 14 Fluid temperature distribution in (a) clear channel (no foam) and in (b) porous channel

with carbon foam for a Darcy velocity of 0.5 m/s
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provides the velocity distributions necessary for solving fluid energy conserva-

tion equation. The thermo-physical properties of the fluid (air) are assumed

constant with temperature during the convection heat transfer analysis so that

the fluid flow governing equations and the energy conservation equations can be

decoupled and solved independently. For additional details, readers are referred

to Anghelescu [36].

Simulations are carried out by varying the solid phase (ligament) thermal

conductivity in the carbon foam to study its influence on the effective heat transfer

coefficient in the porous channel. Figure 14a shows the temperature distribution in

the fluid in a channel without any foam, and Fig. 14b shows the temperature

distribution in the porous channel (containing carbon foam of solid phase thermal

conductivity of 50 W/m�C) for an inlet fluid velocity of 0.5 m/s.

7.2 Effect of Foam Ligament Conductivity

As can be expected, the fluid average temperature at the channel outlet is signifi-

cantly higher for the porous channel in comparison with the clear channel. The plots

in Fig. 15 are drawn to compare the average heat transfer per unit area, which can be

represented by the “effective heat transfer coefficient” based on the heater area. The

heat transfer is plotted as a function of Darcy flow velocity and the solid phase

(ligament) thermal conductivity of the foam. Three different values for thermal

conductivity of the solid phase in carbon foam are used in simulations, which are

10, 50 and 100 W/m�C. The results, as shown in Fig. 15, demonstrate the influence

of the thermal conductivity of the foam ligaments on the effective heat transfer

coefficient. A simulation of convection heat transfer in clear channel (no foam)

was also performed in order to provide a baseline that would show the enhancement

in the effective heat transfer coefficient due to the presence of carbon foam in the

channel.

The results show that, for an air velocity of 1 m/s, the thin layer of foam can

increase the heat transfer by a factor of three even if the foam ligaments have a

conductivity of only 10 W/mK. The reason is that the ligaments are working as

highly efficient fins [26]. The heat transfer in the porous channel is enhanced by the

higher velocity due to restrictions in flow area and the thermal conductivity of

the foam ligaments; but in this case the primary cause for the enhancement is the

extended surface area available for convection. Beyond a thermal conductivity

value of 100 W/mK, there is very little change in the heat transfer because the

foam ligaments are almost isothermal across the small height of the thin channel. It

should be noted that graphitic foam ligaments can have thermal conductivity

exceeding 500 W/mK. If the flow channel height is extended further, using such

high thermal conductivity foam would be highly effective in enhancing the

heat transfer.
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8 Summary

The analysis of porous media has been addressed through new techniques for

obtaining true three-dimensional images of true foam geometry at the pore level.

This allows the development of pore level models that can be modeled without the

use of experimental or semi-empirical parameters such as permeability, friction

coefficient, and heat transfer coefficient. Instead, the pore level solid model can be

used to determine these parameters by applying the fundamental transport equa-

tions for a simple channel flow. The SiC model studied in this chapter has been

used successfully by the authors to predict the fluid flow, permeability and heat

transfer for a heat sink application. It can be concluded that a pore level model

using true 3-D images has the potential to determine the thermal conductivity,

fluid flow behavior within the foam and the convection due to fluid flow without

using experimental results or semi-empirical parameters. Therefore, this tech-

nique provides a tool for prediction and design of transport processes in porous

media. This is particularly useful for complex microstructures, such as graphitic

carbon foam, for which the accuracy of classical volume averaged equations is not

well established. Current work on this modeling effort is focused on the design

and development of heat sinks and heat exchangers based on flow through high

conductivity foams.
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Thermal Instabilities in a Fluid Saturated

Porous Medium

A. Barletta

Abstract This chapter contains a review of the thermoconvective instabilities that

may occur in a fluid saturated porous medium. Reference is made to a horizontal

porous layer. The macroscopic description of the fluid flow in a porous medium is

outlined. Then, the mass, momentum and energy balance equations for porous

media are described and discussed. As a first basic example of convective instabili-

ties, the classical Darcy-Bénard problem is studied in order to highlight the main

characteristics of the linear stability analysis. Extensions of the Darcy-Bénard

problem based on the Forchheimer model and on the Brinkman model of momen-

tum flow are analysed. Moreover, the effects of either a horizontal or a vertical

throughflow in the layer are discussed. The contribution of the effect of viscous

dissipation is investigated as a possible cause of convective instabilities.

1 Introduction

Fluid flow in porous media is of paramount importance both for geophysical

applications such as filtration of water, hydrocarbons and gases in the soil and for

engineering. For instance, one may point out the interest of porous media with

reference to the hydrology of aquifers, underground repositories used for seques-

tering nuclear waste, heat pipes, underground spreading of chemical waste, drain-

age and irrigation in agriculture, thermal insulation engineering, enhanced recovery

of petroleum reservoirs, grain storage, water flow in geothermal reservoirs. Several

treatises on the fluid dynamics in porous media have been published. A complete

and updated review of the present knowledge in this field, oriented to convection

flows, is the textbook by Nield and Bejan [24].
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The onset of convective instabilities induced by temperature gradients is a well

known phenomenon both for clear fluids and for fluid saturated porous media. A

classical reference case is the Rayleigh-Bénard problem of a horizontal fluid layer

heated from below [7, 8, 19]. Comprehensive discussions of the Rayleigh-Bénard

modes of instability and the study of the critical conditions for the onset of

convection cells can be found, for instance, in Normand and Pomeau [25], as

well as in the textbooks by Drazin and Reid [12] and by Gebhart et al. [13]. In a

simplified formulation of the Rayleigh-Bénard problem, one assumes an infinitely

wide horizontal fluid layer with thickness L, bounded by two isothermal planes (see

Fig. 1). The fluid is at rest in the undisturbed basic state. The lower boundary plane

is kept isothermal at a temperature Th, while the upper boundary plane is kept

isothermal at a temperature Tc < Th. As is well known, convective cells may appear

when the difference Th � Tc becomes greater than a threshold value. In fact, the

analysis of the Rayleigh-Bénard problem reveals that the onset of convective rolls

occurs when the Rayleigh number,

Ra ¼ gb Th � Tcð ÞL3
na

; (1)

exceeds the critical value Racr ¼ 1707:76 (see, for instance, [13]). Here, g is the

modulus of the gravitational acceleration ~g, while b, n and a are respectively the

coefficient of isobaric thermal expansion, the kinematic viscosity and the thermal

diffusivity of the fluid. The critical value of the Rayleigh number is obtained by a

linear stability analysis. This means that a small disturbance of the basic rest state is

assumed having the form of a plane wave oriented in any horizontal direction. Since

the disturbance has a small amplitude, one keeps only the linear terms in the

governing balance equations, while the higher order terms are neglected [12].

In the fluid dynamics of saturated porous media, an issue analogous to the

Rayleigh-Bénard problem of clear fluids is the Darcy-Bénard problem, well

known also as the Horton-Rogers-Lapwood problem. The former denomination

refers to the pioneer of the theory of fluid flow in porous media, Henry Philibert

Gaspard Darcy (1803–1858), and to the pioneer of the experiments on convection

cells in a fluid layer, Henri Bénard (1874–1939). The latter denomination refers to

the forerunners of the investigations on the linear stability analysis of a horizontal

fluid saturated porous layer heated from below [14, 18]. In its classical formulation,

the Darcy-Bénard problem shares the same geometry, basic state and thermal

Th

Tc < Th

L

g
Fig. 1 A sketch of the

Rayleigh-Bénard problem
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boundary conditions as the Rayleigh-Bénard problem. The only difference is in the

momentum balance being expressed by Darcy’s law of porous media instead of

the Navier-Stokes equation of clear fluids. The Darcy-Bénard problem is just the

simplest of a wide class of convective instability problems in porous media. For

previous reviews of the literature on this subject we refer to Nield and Bejan [24],

Rees [27] and Tyvand [34]. A remarkable feature of the original Darcy-Bénard

problem is that it admits an exact solution. In fact, a fluid saturated porous layer

with thickness L has a linearly stable rest state as long as the Darcy-Rayleigh

number,

R ¼ gb Th � Tcð ÞLK
n~a

; (2)

does not exceed the critical value 4p2. Here, K is a property of the porous medium

called permeability, while ~a is the average thermal diffusivity of the fluid saturated

porous medium.

2 Models of Flow in a Fluid Saturated Porous Medium

In this section, the basic elements for the macroscopic description of fluid flow in a

saturated porous medium are discussed. Then, the mathematical models for the

expression of the local mass, momentum and energy balance equations are

described.

The oldest, the simplest and the most widely employed model of fluid flow in

porous media is named after Darcy (see Fig. 2), a French scientist with a strong

professional interest in hydraulics. During his life, he was a civil engineer in the city

of Dijon in France. He designed and built a pressurized water distribution system in

Dijon. A few years before his death, he conducted the experiments that allowed him

to formulate what today is well known as Darcy’s law. His publication The Public
Fountains of the City of Dijon contains an appendix written in 1856 entitled

Fig. 2 Henry Philibert

Gaspard Darcy (1803–1858)

[Portrait by F. Perrodin,

Bibliothèque Municipale de

Dijon]
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Determination of the Laws of Water Flow Through Sand where his law is formu-

lated [11]. A historical survey of Darcy’s scientific works and discoveries is given

in the paper by Brown [9].

Before formulating Darcy’s law, let us review the main features of the macro-

scopic description of fluid flow in porous media. A porous medium is a solid

material with void inner structures saturated by a fluid, liquid or gas. One can

think to sand, pebbles or to a metallic foam. One can imagine that the void spaces

within the solid are entirely filled by the moving fluid (see Fig. 3).

2.1 Porosity, Volume Averages and the Seepage Velocity

A basic quantity for the description of a porous medium is the ratio between the

volume occupied by the fluid (voids) and the total volume including voids and solid.

Referring to Fig. 4, one can consider a representative volume V, small on a

macroscopic scale even if large on the scale of the single grain, pebble or micro-

channel that may be present inside the porous medium. If Vf is the void part of V,
then let us call porosity, ’, the ratio

’ ¼ Vf

V
: (3)

The porosity is a dimensionless quantity strictly smaller than unity, whose

value can range from � 0:88� 0:93 of fiberglass to � 0:12� 0:34 of bricks.

Sand, the material originally considered in Darcy’s experiments, has a porosity

’ � 0:37� 0:50.
The study of convection in porous media is based on the assumption that a fluid

saturated porous medium can be described as a continuum. This means that, in the

representative volume V of the system, the number of pores is very high. Therefore,

one can define a local fluid velocity field as an average value of the local fluid

velocity ~u �. There are two possible average values of ~u � usually introduced: the

intrinsic velocity, namely

Fig. 3 Flow in a porous

medium
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~U ¼ 1

Vf

Z
Vf

~u �dV; (4)

and the seepage velocity (also known as Darcy velocity), namely

~u ¼ 1

V

Z
V

~u � dV: (5)

The intrinsic velocity is defined as an average performed in the void part Vf of

the representative volume V. Since ~u � ¼ 0 in the part of V not included in Vf , the

two integrals on the right hand sides of (4) and (5) are equal. Then, one can establish

a very simple relationship between ~U and ~u,

~u ¼ ’ ~U: (6)

This equation is well known as the Dupuit-Forchheimer relationship.
The local value of the seepage velocity~u depends on the shape and the size of the

pores as well as on the causes that determine the fluid motion. The relationship

between the local value of ~u and the forces acting on the fluid could be deduced by

an appropriate local average over the representative volume of the Navier-Stokes

momentum balance. However, due to the complexity of the system, in most cases this

relationship is postulated through a constitutive equation validated experimentally.

2.2 Mass Balance

By employing a local volume-averaging procedure, the local mass balance equation

of a fluid saturated porous medium can be expressed as

’
@r
@t

þ ~r � r~uð Þ ¼ 0; (7)

V

Fig. 4 Representative

volume
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where r is the fluid mass density and t is the time. Let us note that the local mass

balance equation for a fluid saturated porous medium formally coincides with that

of a clear fluid when the flow is stationary, @r=@t ¼ 0. Incidentally, the termino-

logy clear fluids is used when dealing with fluid saturated porous media, to denote

the limiting case when the solid matrix is absent and the fluid occupies all the

available space.

2.3 Darcy’s Law

The simplest constitutive equation expressing the local seepage velocity is Darcy’s
law ( � 1856), namely

m
K

~u ¼ � ~rpþ~f ; (8)

where K is a property of the system called permeability, m is the dynamic viscosity

of the fluid, p is the fluid pressure and ~f is the external body force per unit volume

applied to the fluid (in the simplest case, the gravitational body force r~g ).
The ratio behind the assumption given by (8) relies on the observation that a

porous medium can be thought of as a network of microscopic ducts where the fluid

flows. In the absence of external body forces, the pressure gradient along a duct is

proportional to the average fluid velocity in the duct itself, if the flow is laminar. On

the other hand, if the flow is highly turbulent (hydraulic regime), the pressure gradient

along a duct is proportional to the square of the average fluid velocity in the duct

itself. Darcy’s law refers to the case of laminar flow within the pores, so that the

permeabilityK is considered as a property of the medium depending on the number of

pores per unit area present in a cross-section transverse to the fluid flow, on the shape

of the pores and on their size. The units of permeability are m2. Values range from

� 4:8� 10�15 � 2:2� 10�13m2 of a brick to � 1:1� 10�9m2 of a cigarette.

EXAMPLE – Let us consider a porous medium such that the pores form an

ordered array of parallel infinitely-long circular ducts each with a diameter D
(see Fig. 5). Let z be the axis parallel to the ducts and let the number of ducts

per unit area in a transverse section of the medium be n.
Then, by comparison with the relationship between average velocity u�m

and pressure drop Dp in this kind of ducts, it is easily verified that

K ¼ npD4=128. In fact, it is well known that the average velocity u�m of

fully developed laminar flow in a circular duct (Poiseuille flow) is given by

u�m ¼ � D2

32m
dp

dz
:

(continued)
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2.4 Form-Drag Effects: Darcy-Forchheimer’s Model

If the hypothesis of laminar fully developed flow in the pores cannot be applied, then

proportionality between acting forces and resulting fluid velocity must be released in

favour of a gradual transition towards an hydraulic regime where acting forces are

proportional to the square of the fluid velocity in each pore. An extended form of

(8) has been proposed which accounts for this effect, i.e. Darcy-Forchheimer’s model
( � 1901),

m
K

1þ cf
ffiffiffiffi
K

p

n
j~uj

� �
~u ¼ � ~rpþ~f ; (9)

In (9), n ¼ m=r is the kinematic viscosity, j~uj is the modulus of ~u, r is the fluid

mass density and cf is a property of the porous medium called form-drag coefficient.
It is easily verified that cf is dimensionless. Some authors sustained that the form-

drag coefficient cf is a universal constant, cf ffi 0:55, but later it has been shown that
cf depends on the porous material and one can have, in the case of metal foams,

cf ffi 0:1 [24].

Obviously, Darcy-Forchheimer’s model includes Darcy’s law as a special case,

i.e. in the limit cf ! 0. On the other hand, whenever cf j~uj
ffiffiffiffi
K

p
=n 	 1, the transition

to an hydraulic regime for the fluid flow inside the pores occurs. A widely accepted

criterion to establish when Darcy’s law must be abandoned in favour of Darcy-

Forchheimer’s model is constructed with the permeability-based Reynolds number,

Fig. 5 Drawing of the

ordered array of parallel ducts

One may notice that u�m ¼ U, i.e. u�m coincides with the intrinsic velocity

U. Moreover, the porosity is given by ’ ¼ npD2=4. Then, on account of the

Dupuit-Forchheimer relationship, the Darcy velocity u is given by

u ¼ npD2

4
u�m ¼ � npD4

128m
dp

dz
:

As a consequence of (8), one obtains the expression of K.
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ReK ¼ j~uj ffiffiffiffi
K

p

n
: (10)

Darcy’s law gradually loses its validity when ReK � 102 or greater. A clever

way to apply the criterion is to take j~uj as the maximum value in the domain.

2.5 Brinkman’s Model

A common feature of Darcy’s law and of Forchheimer’s extension of this law is that

they refer to a tight packed solid with a fluid flowing in very small pores. Indeed,

this is a circumstance very far from a free flowing fluid. When one applies the curl

operator to the left hand sides of (8) and (9), in order to encompass the dependence

on the pressure field, one is lead to first order differential equations for the seepage

velocity. More precisely, from (8) one obtains

~r� m
K
~u�~f

� �
¼ 0; (11)

while from (9) one has

~r� m
K

1þ cf
ffiffiffiffi
K

p

n
j~uj

� �
~u�~f

� �
¼ 0: (12)

Being first order, one can complete either (11) or (12) with just one velocity

boundary condition on each boundary surface. This boundary condition can be, for

instance, impermeability (~u �~n ¼ 0, where ~n is the unit vector normal to the

surface). However, one cannot allow also a no-slip condition on the same surface,

as the problem would be over-conditioned. This feature is similar to that arising in

perfect clear fluids (Euler’s equation). The impossibility to prescribe no-slip con-

ditions at the boundary walls creates a sharp distinction between the Navier-Stokes

fluid model and the models of fluid saturated porous media based either on Darcy’s

law or on Forchheimer’s extension of this law.

In some cases a continuous transition from the momentum balance equation of a

clear fluid (Navier-Stokes equation) to Darcy’s law is considered as realistic. In this

direction it has been proposed the so-called Brinkman’s model ( � 1948) for fluid

flow in a porous medium. This model allows one to prescribe no-slip wall condi-

tions as for a Navier-Stokes clear fluid. According to Brinkman’s model (8) must be

replaced by

m
K

~u� ~mr2~u ¼ � ~rpþ~f ; (13)

the quantity ~m is called effective viscosity: it depends on the fluid viscosity m and

on the porosity of the medium where the fluid flows. A commonly employed
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correlation for the effective viscosity is Einstein’s formula for dilute suspensions of
uncharged spherical colloidal particles, namely

~m ¼ m 1þ 2:5ð1� ’Þ½ 
: (14)

If the porosity is equal to 1, one has a clear fluid and (14) implies that ~m ¼ m. If
’ ¼ 1, (13) reduces to the Navier-Stokes equation without the inertial contribution

(negligible acceleration), provided that the limit of infinite permeability is also

taken (K ! 1). On the other hand, in the limit of a very small permeability

(K ! 0), the first term on the left hand side of (13), m~u=K, becomes much larger

than the second term, ~mr2~u. Therefore, in the limit K ! 0, Brinkman’s model

reduces to Darcy’s law, (8). It must be pointed out that the limit K ! 0 yields a

singular behavior next to the impermeable boundaries where the no-slip conditions

cannot be adjusted anymore.

2.6 The Energy Balance

A local volume-averaging procedure for the fluid and solid phases, similar to that

used for the local mass balance (7), yields the local energy balance equation

rc s
@T

@t
þ~u �~rT

� �
¼ ~kr2T þ qg þ F; (15)

valid under the assumption of constant thermal conductivities of the solid and of the

fluid phases. In (15), c is the heat capacity per unit mass and s is the heat capacity
ratio defined as

s ¼ ’rcþ ð1� ’Þrs cs
rc

; (16)

while ~k is the effective thermal conductivity of the fluid saturated porous medium

defined as

~k ¼ ’k þ ð1� ’Þks: (17)

The effective thermal diffusivity is then defined as ~a ¼ ~k=ðrcÞ. In (16) and (17),
the properties r, c and k refer to the fluid, while rs, cs and ks refer to the solid

matrix.

The term qg in (15) is the power that may be generated per unit volume in the

porous medium by, for instance, Joule heating or chemical reactions. The last term

on the right hand side of (15), F, is the power per unit volume generated by viscous

dissipation.
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The expression of F depends on the momentum balance model employed. As

pointed out in Nield [22], the term F can be evaluated according to the general rule

F ¼ ~Fd �~u; (18)

where

~Fd ¼ � ~rpþ~f (19)

is the drag force. The drag force has an expression that depends on the model

adopted:

Darcy’s law ! ~Fd ¼ m
K

~u (20)

Darcy-Forchheimer’s model ! ~Fd ¼ m
K

1þ cf
ffiffiffiffi
K

p

n
j~uj

� �
~u (21)

Brinkman’s model ! ~Fd ¼ m
K

~u� ~mr2~u (22)

Nield’s rule expressed by (18) has been the subject of a debate especially with

reference to its application in the case of Brinkman’s model. Let us refer for

simplicity to the case of incompressible flow, ~r �~u ¼ 0. One would expect that,

in the limiting case of an infinite permeability K ! 1, the expression of F implied

by (18) and (22) is consistent with the expression of the viscous dissipation term for

a Navier-Stokes clear fluid, namely

F ¼ 2 mD ij D ij; where D ij ¼ 1

2

@ui
@xj

þ @uj
@xi

� �
(23)

is the ði; jÞ component of the strain tensor and the summation over repeated indices

is assumed. On the contrary, in the limit K ! 1 and ’ ! 1, (18) and (22) yield

F ¼ �m~u � r2~u; (24)

where ~m ¼ m in the limiting case of a clear fluid as it is implied by (14). The

difference between the expressions of F given in (23) and (24) is apparent as (23)

yields an expression containing only first order derivatives of the velocity compo-

nents, while the right hand side of (24) contains second order derivatives of the

velocity components. Moreover, whileF given by (23) can be only positive or zero,

there can be flows such that the right hand side of (24) is negative.

Recently, Al-Hadhrami et al. [1] proposed a different expression of F in the case

of Brinkman’s model, namely

F ¼ m
K

~u �~uþ 2 ~mD ij D ij: (25)
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The advantage in the expression of F given by (25) is that F cannot be negative

and that the limiting cases of Darcy’s law (K ! 0) and of Navier-Stokes clear fluid

(K ! 1, ’ ! 1) are correctly recovered. On the other hand, it has been noted that

(25) is “an ad hoc formula” generated by the sum of two dissipation terms: one valid

in a regime of a very small permeability (Darcy) and the other in a domain of an

extremely large permeability (Navier-Stokes) [22].

3 The Darcy-Bénard Problem

As it has been pointed out in Sect. 1, the Darcy-Bénard problem is the study of the

conditions for the onset of convective instabilities in a plane porous layer with

isothermal impermeable boundaries heated from below. As is well known, convec-

tive instabilities are caused by the buoyancy force acting on the fluid. The conceptual

scheme for describing buoyant flows is the Oberbeck-Boussinesq approximation

[2, 13]. This scheme consists in neglecting the temperature changes of all the fluid

properties except for the fluid density. The change of the latter property is considered

only with respect to the gravitational body force term~f ¼ r~g, where it is assumed to

be a linear function of the temperature,

r ¼ r0 1� b T � T0ð Þ½ 
: (26)

The reference density r0 corresponds to the reference temperature T0.

3.1 A Horizontal Porous Layer Heated from Below

In analogy with the Rayleigh-Bénard problem, let us consider a horizontal fluid

saturated porous layer having thickness L, bounded by two impermeable planes.

The lower boundary plane is maintained at temperature Th, while the upper

boundary plane has a uniform temperature Tc < Th. By assuming the validity of

the Oberbeck-Boussinesq approximation, as well as of Darcy’s law, the following

local balance equations hold:

~r �~u ¼ 0; (27)

m
K

~u ¼ � ~rPþ rbg T � Tcð Þ~ey; (28)

rc s
@T

@t
þ~u � ~rT

� �
¼ ~kr2T þ m

K
~u �~u; (29)
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where~ey is the unit vector along the y-axis. The reference temperature T0 has been
chosen as the temperature of the cold boundary, Tc, and the corresponding reference
density has been denoted as r for simplicity’s sake. In (28), P is the difference

between the pressure p and the hydrostatic pressure �rgy, while ~ey is the unit

vector in the y-direction (see Fig. 6). Let us denote as u; v;wð Þ the Cartesian

components of the vector ~u. Then, the boundary conditions are

y ¼ 0 : v ¼ 0; T ¼ Th; (30)

y ¼ L : v ¼ 0; T ¼ Tc: (31)

Equations (27)–(31) can be written in a dimensionless form on defining the

following transformation

x; y; zð Þ 1
L
! x; y; zð Þ; t

~a
sL2

! t; ~u
L

~a
! ~u;

T � Tc
Th � Tc

! T; P
K

~am
! P:

(32)

Moreover, let us introduce the Darcy-Rayleigh number, (2), and the Darcy-

Brinkman number,

Br ¼ n~a
Kc Th � Tcð Þ : (33)

Then, (27)–(31) are rewritten as

~r �~u ¼ 0; (34)

~u ¼ � ~rPþ RT~ey; (35)

@T

@t
þ~u � ~rT ¼ r2T þ Br~u �~u; (36)

g

x

y

0

L T=Tc<Th

T=Th

Fig. 6 The Darcy-Bénard

problem
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y ¼ 0 : v ¼ 0; T ¼ 1; (37)

y ¼ 1 : v ¼ 0; T ¼ 0: (38)

In order to carry out the stability analysis of the basic state, let us determine the

stationary solution of the governing equations (34)–(38) under the assumption of a

rest state, ~u ¼ 0,

~uB ¼ 0; TB ¼ 1� y; PB ¼ Ry 1� y

2

� �
; (39)

where the subscript B stands for “basic solution”. One may notice that the field P
appears in (34)–(38) only through its gradient. Hence, this field can be determined

only up to an arbitrary additive constant. In (39), this constant is fixed so that

PB ¼ 0 at y ¼ 0.

3.2 A Bénard-Like Problem in a Porous Medium

Starting from the basic solution (39), one can define small perturbations of the

velocity, temperature and pressure fields,

~u ¼ ~uB þ e ~U; T ¼ TB þ e y; P ¼ PB þ eP ; (40)

where e is an arbitrarily small perturbation parameter and ~U ¼ ðU;V;WÞ.
On substituting (39) and (40) into (34)–(38) and neglecting terms of order e2, one

obtains

~r � ~U ¼ 0; (41)

~U ¼ �~rP þ R y~ey; (42)

@y
@t

� V ¼ r2y; (43)

y ¼ 0; 1 : V ¼ 0; y ¼ 0: (44)

Equations (41)–(44) reveal an interesting result. The basic solution and the linear

disturbances of this solution are not influenced by the effect of viscous dissipation. In

fact, the Darcy-Brinkman number Br does not appear either in (39) or in (41)–(44).

Obviously, a role of viscous dissipation may arise when a nonlinear disturbance

analysis is carried out, i.e. when terms of order e2 are taken into account.
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3.3 Onset of Convective Instabilities

The solution of (41)–(44) is sought in the form of standing plane waves oriented along

an arbitrary direction orthogonal to the y-axis. The basic solution aswell as the physics
and geometry of the system examined are invariant under rotations around the y-axis.
This means that the effect of a wave disturbance oriented along a direction orthogonal

to the y-axis is independent of the particular direction selected. Therefore, without any
loss of generality, one may choose a plane wave disturbance oriented along the

x-direction. This choice implies that the analysis of the disturbances has the form of

a 2D problem referred to the ðx; yÞ-plane. On writing (41)–(44) in a 2D form one has

@U

@x
þ @V

@y
¼ 0; (45)

U ¼ � @P
@x

; (46)

V ¼ � @P
@y

þ R y; (47)

@y
@t

� V ¼ @2y
@x2

þ @2y
@y2

; (48)

y ¼ 0; 1 : V ¼ 0; y ¼ 0: (49)

One can easily encompass the dependence on P in (46) and (47) by differentiat-

ing (46) with respect to y, differentiating (47) with respect to x and then subtracting
the second resulting equation from the first one,

@U

@y
� @V

@x
¼ �R

@y
@x

; (50)

Let us now introduce a dimensionless streamfunction Cðx; y; tÞ, such that

U ¼ @C
@y

; V ¼ � @C
@x

: (51)

Then, (45) is identically satisfied, while (50) and (48) yield respectively,

@2C
@x2

þ @2C
@y2

¼ �R
@y
@x

; (52)

@y
@t

þ @C
@x

¼ @2y
@x2

þ @2y
@y2

: (53)
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The boundary conditions (49) can be rewritten as

y ¼ 0; 1 :
@C
@x

¼ 0; y ¼ 0: (54)

Let us seek a solution in the form of a standing wave oriented along the x-axis,
namely

C ¼ f ðyÞel tsinðaxÞ; y ¼ hðyÞel tcosðaxÞ: (55)

In (55), a is the dimensionless wave number, while l is an exponential coeffi-

cient. If l > 0, the amplitude of the wave increases exponentially in time, thus

implying an unstable behaviour of the system. If l < 0, the wave undergoes an

exponential damping in time, thus implying a stable behaviour of the system.

Finally, the case l ¼ 0 represents the demarcation between stability and instability.

Disturbances such that l ¼ 0 are called neutrally stable ormarginally stable as they
correspond to a threshold condition for instability.

By substituting (55) into (52)–(54), one transforms a partial differential prob-

lem in an ordinary differential problem in the unknown functions f ðyÞ and hðyÞ,
namely

f 00ðyÞ � a2f ðyÞ � aRhðyÞ ¼ 0; (56)

h00ðyÞ � a2 þ l
	 


hðyÞ � af ðyÞ ¼ 0; (57)

y ¼ 0; 1 : f ¼ 0; h ¼ 0; (58)

where the primes denote differentiation with respect to y. The ordinary differential

problem defined by (56)–(58) is homogeneous. This means that whatever are the

prescribed values of the parameters ða; l;RÞ, (56)–(58) always admit the trivial

solution f ¼ h ¼ 0. However, for any prescribed pair ða; lÞ, (56)–(58) may also

admit nontrivial solutions for special values of R. These special values of R are

called eigenvalues. Since one is interested in the nontrivial solutions of (56)–(58),

the problem to be solved is an eigenvalue problem.
In order to fulfil the boundary conditions (58), f ðyÞ and hðyÞ can be expressed as

f ðyÞ ¼
X1
n¼1

FnsinðnpyÞ; hðyÞ ¼
X1
n¼1

HnsinðnpyÞ: (59)

The coefficients Fn and Hn are such that (56) and (57) are satisfied, namely

X1
n¼1

ða2 þ n2p2ÞFn þ aRHn

� �
sinðnpyÞ ¼ 0; (60)

Thermal Instabilities in a Fluid Saturated Porous Medium 395



X1
n¼1

ða2 þ lþ n2p2ÞHn þ aFn

� �
sinðnpyÞ ¼ 0: (61)

Due to the orthogonality relationship between sine functions,

Z 1

0

sinðmpyÞ sinðnpyÞdy ¼
0; m 6¼ n

1

2
; m ¼ n;

8<
: (62)

Equations (60) and (61) are fulfilled if and only if all the coefficients of the series

vanish. Then, one obtains the algebraic equations

a2 þ n2p2
	 


Fn þ aRHn ¼ 0; (63)

a2 þ lþ n2p2
	 


Hn þ aFn ¼ 0: (64)

From (64), one has

Hn ¼ � a

ða2 þ lþ n2p2Þ Fn: (65)

Then, by substituting (65) in (63) and simplifying Fn, one obtains an expression

of the eigenvalue R,

R ¼ ða2 þ n2p2Þða2 þ lþ n2p2Þ
a2

; n ¼ 1; 2; 3; . . . : (66)

Let us note that simplifying Fn means that Fn is not vanishing, i.e. that we are

seeking a solution ð f ; hÞ that is not identically zero.

There are different kinds of instabilities: one for each value of n. The lower one
being that for n ¼ 1. Unstable roll disturbances (l > 0) are such that

R >
ða2 þ p2Þ2

a2
: (67)

One can easily see that the right hand side of the inequality (67) is the eigenvalue

R corresponding to neutral stability (l ¼ 0) for n ¼ 1. As a consequence, in the

parametric plane ða;RÞ, unstable states correspond to the region above the lower

(n ¼ 1) neutral stability curve

R ¼ ða2 þ p2Þ2
a2

; (68)
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while stable states lie below this curve. One can easily recognize these features in

Fig. 7. This figure reveals that the stability of the rest state depends on the wave

number a of the roll disturbance. No instability can arise when

R < Rcr ¼ 4p2 ffi 39:4784; (69)

where Rcr ¼ 4p2 is determined as the minimum of function RðaÞ defined by (68), i.
e. the minimum of the lower (n ¼ 1) neutral stability curve. It is easily verified that

the minimum R ¼ Rcr occurs for

a ¼ acr ¼ p: (70)

The physical significance of the integer n, labeling the different neutral stability

curves represented in Fig. 7, relies in the different kind of instabilities that can be

activated at increasing values of the Darcy-Rayleigh number R. The lower neutral
stability curve, n ¼ 1, defines the first kind of instability to be onset, namely the

single row of adjacent convective cells shown in Fig. 8. The second neutral stability

curve, n ¼ 2, defines a more complicated kind of instability, namely two vertical

superposed rows of adjacent convective cells as shown in Fig. 9. One can imagine

that, for higher n, new kind of instabilities are activated consisting of an increasing

number of vertically superposed rows of adjacent convective cells. As it is easily

inferred from (66) by setting l ¼ 0, the minimum of each neutral stability curve

corresponds to

a ¼ np; R ¼ 4n2p2: (71)

It has been recalled that the critical value of the Rayleigh number equation (1)

for the onset of convective cells in Rayleigh-Bénard convection is 1707:76. If one

a

R

1n

2n

3n

4n

5n

24 39.4784R Rcr

STABILITY

INSTABILITY

Fig. 7 Stable (gray region) and unstable (white region) states in the parametric plane ða;RÞ
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compares this result with (69), the first glance conclusion is that it is easier to have

convective instabilities in a Darcy porous medium than in a clear fluid. However,

this is false as the Rayleigh number Ra is proportional to L3, while the Darcy-

Rayleigh number R is proportional to KL. Since the permeability K is usually very

small, it is more common for a clear fluid to have Ra > 1707:76, than for a fluid

saturated porous medium to have R > 4p2.

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

x

y

Fig. 8 Streamlines C ¼ constant (solid lines) and isotherms y ¼ constant (dashed lines) for

l ¼ 0, a ¼ acr ¼ p and R ¼ Rcr ¼ 4p2
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Fig. 9 Streamlines C ¼ constant (solid lines) and isotherms y ¼ constant (dashed lines) for

l ¼ 0, a ¼ np and R ¼ 4n2p2 (with n ¼ 2)

398 A. Barletta



The classical Darcy-Bénard problem has been recently revisited by Nield and

Barletta [23]. In this study, the pressure work has been taken into account in the local

energy balance and its effects on the onset conditions for convective instability have

been assessed. It has been shown that the pressure work contribution has a stabiliz-

ing effect leading to a critical value of R higher than 4p2.

4 Extensions of the Darcy-Bénard Problem, Beyond

Darcy’s Law

The discussion of the Darcy-Bénard problem carried out in Sect. 3 is based on the

assumption that the local momentum balance equation for the fluid saturated porous

medium is correctly expressed by Darcy’s law. However, we know that this law

may need to be replaced by either the Darcy-Forchheimer model, when the form-

drag effects are important, or by the Brinkman model, when the permeability of the

porous medium is very large. In this section, the possible changes induced in the

analysis of the Darcy-Bénard problem by the use of the Darcy-Forchheimer model

and by the use of the Brinkman model are investigated. The absence of any role

played by the effect of viscous dissipation in this analysis, proved in Sect. 3 with

reference to Darcy’s law, holds also for non-Darcy models of momentum transfer.

Thus, without any loss of generality, the forthcoming analysis is performed by

dropping the viscous dissipation term in the energy balance from the beginning.

4.1 Form-Drag Effects

Let us assume that the Darcy-Bénard problem is defined by (27)–(31) with (28)

replaced by

m
K

1þ cf
ffiffiffiffi
K

p

n
j~uj

� �
~u ¼ � ~rPþ rbg T � Tcð Þ~ey; (72)

where (9) has been used. Thus, the dimensionless equations (34)–(38) still hold

with (35) replaced by

~u 1þ L j~ujð Þ ¼ � ~rPþ RT~ey; (73)

where the dimensionless parameter L is defined as

L ¼ cf ~a
ffiffiffiffi
K

p

nL
: (74)
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One can easily verify that the basic rest state is still described by (39). Then, on

introducing the small perturbations of the basic state defined by (40), substituting

(39) and (40) into (34), (73), (36)–(38) and finally neglecting terms of order e2, one
obtains again (41)–(44). This means that the disturbance equations in the linear

theory are not affected by the form-drag term. In other words, the stability analysis

carried out in Sect. 3 still holds even if the Forchheimer correction of Darcy’s law is

taken into account. Obviously, the reason of that is the linearisation of the govern-

ing equations. Then, the linear stability theory of the Darcy-Bénard problem is not

affected by the form-drag effect inasmuch as it is not affected by the effect of

viscous dissipation.

4.2 Brinkman’s Model Approach to the Onset Conditions

If one uses Brinkman’s model, (13), instead of Darcy’s law, then (27)–(31) still

hold with (28) replaced by

m
K

~u� ~mr2~u ¼ � ~rPþ rbg T � Tcð Þ~ey: (75)

In a dimensionless form, (34)–(38) still hold with (35) replaced by

~u� Dam r2~u ¼ � ~rPþ RT~ey; (76)

where Dam is the modified Darcy number, well-known also as Brinkman coef-
ficient [24],

Dam ¼ ~m
m

Da ¼ ~m
m

K

L2
; (77)

and Da ¼ K=L2 is the Darcy number. One must recognize that the boundary

conditions, (38), now include also the no-slip condition u ¼ w ¼ 0. Again, the

basic rest state is described by (39). Then, on introducing the small perturbations

of the basic state defined by (40), substituting (39) and (40) into (34), (76),

(36)–(38) and finally neglecting terms of order e2, one obtains

~r � ~U ¼ 0; (78)

~U � Dam r2~U ¼ �~rP þ R y~ey; (79)

@y
@t

� V ¼ r2y; (80)

y ¼ 0; 1 : U ¼ V ¼ W ¼ 0; y ¼ 0: (81)
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One can eliminate the dependence on P by taking the curl of both sides of (79),

namely

~r� ~U � Dam r2 ~r� ~U
� �

¼ �R
@y
@z

~ex þ R
@y
@x

~ez; (82)

where~ex and~ez are the unit vectors along the x- and the z-axes. Let us now assume,

as in the analysis of Sect. 3, that the disturbances are 2D and lie in the ðx; yÞ-plane.
Then, only the z-component of ~r� ~U is nonzero and the dimensionless stream-

function Cðx; y; tÞ defined by (51) is such that

~r� ~U
� �

�~ez ¼ �r2C: (83)

Then, (78) is identically satisfied, while (82), (80), (81) yield respectively

r2C� Dam r2 r2C
	 
 ¼ �R

@y
@x

; (84)

@y
@t

þ @C
@x

¼ r2y; (85)

y ¼ 0; 1 :
@C
@x

¼ @C
@y

¼ 0; y ¼ 0: (86)

Then, by assuming plane wave disturbances given by (55), (56)–(58) are now

replaced by

Dam f 0000ðyÞ � 2Dama
2 þ 1

	 

f 00ðyÞ þ a2 Dama

2 þ 1
	 


f ðyÞ þ aRhðyÞ ¼ 0; (87)

h00ðyÞ � a2 þ l
	 


hðyÞ � af ðyÞ ¼ 0; (88)

y ¼ 0; 1 : f ¼ f 0 ¼ 0; h ¼ 0: (89)

Unlike (56), (87) is a fourth-order differential equation. The eigenvalue problem,

(87)–(89), can be solved numerically. The procedure is as follows. One prescribes the

input values of ða; l;DamÞ, guesses the eigenvalue R and solves (87) and (88) by, for

instance, a Runge-Kutta method under the initial conditions

y ¼ 0 : f ¼ f 0 ¼ 0; f 00 ¼ A; f 000 ¼ B; h ¼ 0; h0 ¼ 1: (90)

In (90), A and B are guessed constant values and the additional condition h0 ¼ 1

is perfectly legitimate in order to fix the scale of the eigenfunctions ð f ; hÞ, other-
wise undetermined. The guessed values ðR;A;BÞ are finally determined through a

shooting method by employing the three constraint conditions

y ¼ 1 : f ¼ f 0 ¼ 0; h ¼ 0: (91)
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With l ¼ 0, this numerical procedure allows one to develop a function RðaÞ
describing the lowest neutral stability curve. As it has been pointed out in Sect. 3,

the lowest neutral stability curve is one where the minimum corresponds to the

critical conditions for the onset of the first instability mode. More precisely, the

critical values ðacr;RcrÞ are determined numerically by seeking the minimum of

RðaÞ. On account of (87)–(89), both function RðaÞ and the critical values ðacr;RcrÞ
depend parametrically on the modified Darcy number, Dam.

This study of linear stability was carried out by Walker and Homsy [35] and,

more recently, by Rees [28].

The special feature of Brinkman’s model is that it represents a bridge from

Darcy’s law to the Navier-Stokes model of a clear fluid. These limiting cases are

recovered as Dam ! 0 (Darcy) and Dam ! 1 (clear fluid). With reference to the

critical conditions for the onset of convective instabilities, it is well known that a

Darcy porous medium has a critical Darcy-Rayleigh number, R, equal to 4p2, while
a clear fluid has a critical Rayleigh number, Ra, equal to 1707:67. One may easily

verify that

lim
Dam!1

R

Dam
¼ Ra: (92)

Therefore, one expects that Rcr=Dam, evaluated from (87)–(89), tends to

1707:67 when Dam ! 1. This asymptotic behaviour is confirmed by Figs. 10

and 11. These figures display the plot of either Rcr=Dam or Rcr versus Dam
compared with the two asymptotes: that for Darcy’s law behaviour (dashed

line, Rcr ¼ 4p2) and that for a clear fluid (dashed line, Rcr ¼ 1707:67Dam).

10–4 0.001 0.01 0.1 1 10

2000

3000

1500

7000

Dam

Rcr
Dam

24
Dam

1707.67

Fig. 10 Critical values of R=Dam versus Dam for the Brinkman model formulation of the Darcy-

Bénard problem (solid line). The asymptotic cases of Darcy’s law (Rcr ¼ 4p2) and of Navier-

Stokes clear fluid (Rcr=Dam ¼ 1707:67) are given as dashed lines
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Figure 12 shows the plot of acr versus Dam. This figure highlights the two

asymptotic behaviours: the limit Dam ! 0 corresponding to Darcy’s law (dashed

line, acr ¼ p); the limit Dam ! 1 of a clear fluid (dashed line, acr ¼ 3:116). An
interesting feature is the existence of a maximum of the critical wave number,

acr ¼ 3:239, for Dam ¼ 4:895 � 10�3.
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Fig. 11 Critical values of R versus Dam for the Brinkman model formulation of the Darcy-Bénard

problem (solid line). The asymptotic cases of Darcy’s law (Rcr ¼ 4p2) and of Navier-Stokes clear
fluid (Rcr ¼ 1707:67Dam) are given as dashed lines
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Fig. 12 Critical values of a versus Dam for the Brinkman model formulation of the Darcy-Bénard

problem (solid line). The asymptotic cases of Darcy’s law (acr ¼ p) and of Navier-Stokes clear

fluid (acr ¼ 3:116) are given as dashed lines
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Very useful asymptotic expansions of ðacr;RcrÞ have been obtained by Rees [28]
in a range of extremely small values of Dam,

acr � p 1þ
ffiffiffiffiffiffiffiffiffi
Dam

p� �
; (93)

Rcr � 4p2 1þ 2
ffiffiffiffiffiffiffiffiffi
Dam

p
þ 28:1337Dam

� �
: (94)

5 Horizontal and Vertical Throughflow

An important variant of the Darcy-Bénard problem arises when a horizontal (Prats

problem [26]) or a vertical basic throughflow is assumed instead of the rest state. In

the following, it will be shown that the presence of a basic flow modifies the critical

conditions for the onset of convective roll instabilities only in the case of a vertical

throughflow. The analysis presented in this section is based on Darcy’s law, as well

as on the assumption of a negligible effect of viscous dissipation.

5.1 Prats Problem

Let us consider the same horizontal fluid layer considered in the study of the Darcy-

Bénard problem carried out in Sect. 3. The governing equations and the boundary

conditions are again (27)–(31), where we assume as negligible the contribution of

viscous dissipation, m~u �~u=K, in the local energy balance, (29). Then, in a dimen-

sionless form, these equations are written as

~r �~u ¼ 0; (95)

~u ¼ � ~rPþ RT~ey; (96)

@T

@t
þ~u � ~rT ¼ r2T; (97)

y ¼ 0 : v ¼ 0; T ¼ 1; (98)

y ¼ 1 : v ¼ 0; T ¼ 0; (99)

where the definitions, (32), have been used. A stationary solution of the governing

equations (95)–(99) exists under the assumption of a horizontal uniform through-

flow in the x-direction, ~u ¼ Pe~ex,

~uB ¼ Pe~ex; TB ¼ 1� y; PB ¼ �Pexþ Ry 1� y

2

� �
: (100)
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Here, Pe is the Péclet number, namely the ratio between the dimensional

throughflow velocity in the x-direction and the quantity ~a=L.
One can switch from the rest reference frame to a comoving reference frame

defined by

~~x ¼~x� Pe t~ex; ~t ¼ t; ~~u ¼ ~u� Pe ~ex;

~P ¼ Pþ Pe x; ~T ¼ T:
(101)

Here, ~x is the position vector and the tilded quantities are those defined in the

comoving frame. Under the transformation defined by (101), the governing equa-

tions (95)–(99) are left invariant, while the basic solution (100) is transformed into

the basic solution of the Darcy-Bénard problem, (39). This means that the linear

stability analysis of the Prats problem yields exactly the same results obtained for

the Darcy-Bénard problem. In other words, the critical conditions for the onset of

convective roll instabilities are still given by

acr ¼ p; Rcr ¼ 4p2: (102)

Moreover, the linear stability analysis is independent of the particular direction in

the horizontal ðx; zÞ-plane for the propagation of the disturbance plane waves. In fact,
in the comoving reference frame, one has an invariance of the governing equations

and of the basic solution under arbitrary rotations around the vertical y-axis.

5.2 Effects of a Vertical Throughflow

If the effect of a horizontal uniform throughflow as described in the Prats problem

does not lead to novel features with respect to the Darcy-Bénard problem, the effect

of a vertical throughflow is a less trivial phenomenon. Classical studies on this

subject where carried out by Sutton [32] and Nield [21]. Quite recently, this subject

has been revisited by Barletta et al. [5].

The governing equations for this problem are just the same as for the Darcy-

Bénard problem and for the Prats problem and, therefore, are given again in a

dimensionless form by (95)–(97). On the contrary, the velocity boundary conditions

are changed with respect to (98) and (99) as the horizontal boundaries are no more

impermeable but subject to a uniform throughflow, namely

y ¼ 0 : v ¼ Pe; T ¼ 1; (103)

y ¼ 1 : v ¼ Pe; T ¼ 0: (104)

The steady-state basic solution is more complicated than in the Prats problem

and is expressed as
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~uB ¼ Pe ~ey; TB ¼ ePe � ePe y

ePe � 1
; PB ¼ RePe

ePe � 1
� Pe

� �
y� RePey

Pe ePe � 1ð Þ : (105)

The linear disturbance equations for small perturbations defined by means of

(40) are now written as

~r � ~U ¼ 0; (106)

~U ¼ �~rP þ R y~ey; (107)

@y
@t

� PeVFðyÞ þ Pe
@y
@y

¼ r2y; (108)

y ¼ 0; 1 : V ¼ 0; y ¼ 0; (109)

where FðyÞ is a function defined as

FðyÞ ¼ ePe y

ePe � 1
; (110)

As for the Darcy-Bénard problem, it is not restrictive seeking two-dimensional

solutions of the disturbance equations in the ðx; yÞ-plane. In fact, the system is

invariant under rotations around the y-axis, so that every horizontal direction is

equivalent. Then, one may set W ¼ 0 and the components U and V of the distur-

bance velocity can be expressed through the streamfunction C defined by (51).

Again we assume plane standing wave disturbances defined by (55). If one is

interested in the neutral stability condition, l ¼ 0, (56)–(58) are now replaced by

f 00ðyÞ � a2f ðyÞ � aRhðyÞ ¼ 0; (111)

h00ðyÞ � Peh0ðyÞ � a2hðyÞ � aPeFðyÞ f ðyÞ ¼ 0; (112)

y ¼ 0; 1 : f ¼ 0; h ¼ 0: (113)

Then, (111)–(113) can be solved numerically as an eigenvalue problem by the

procedure described in Sect. 4.2. Important features of the numerical solution are that

the critical value of the wave number, acr, and the critical value of the Darcy-Rayleigh
number,Rcr, depend on the absolute value ofPe, but not on the sign ofPe [5, 32]. This
means that the direction of the vertical throughflow, upward or downward, does not

influence the onset of the convective instabilities. A table of ðacr;RcrÞ versus Pe is

reported in Table 1. This table reveals that the effect of the vertical throughflow,

whatever be its direction, is stabilizing. In fact, Rcr is an increasing function of jPej.
The critical conditions for the onset of instabilities obtained for the Darcy-Bénard

problem are recovered when the limit Pe ! 0 is approached.
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6 Viscous Dissipation

The effect of the viscous dissipation can be important in the analysis of the onset of

convective instabilities. Therefore, its correct modelization with respect to the local

energy balance in the framework of the Oberbeck-Boussinesq approximation of

buoyant flows is a significant point. This subject is often underestimated or mis-

understood by several authors. A recent analysis of this topic [2] is here outlined

first with reference to a clear fluid and then extended to the case of a fluid saturated

porous medium.

6.1 The Oberbeck-Boussinesq Approximation and
the Local Energy Balance

Let us consider a clear fluid, one whose momentum balance is given by the Navier-

Stokes equation. The nature of the Oberbeck-Boussinesq approximation has been

already recalled at the beginning of Sect. 3. The assumption is that the fluid

properties are considered as constants with the only exception of the density,

whose change is taken into account only in the gravitational body force term of

the momentum balance. The linear equation of state (26) implies that the density is

evaluated at constant pressure and that the temperature changes are very small.

Thus, the mass and momentum balance equations are given by

~r �~u ¼ 0; (114)

@~u

@t
þ~u � ~r~u ¼ � 1

r0
~rP� T � T0ð Þb~gþ nr2~u: (115)

Equations (114) and (115) must be completed with the energy balance in order to

achieve the closure of the problem. In the literature, there is a manifold answer to

Table 1 Vertical throughflow: critical conditions for the onset of

convective instabilities [5]

Pe acr Rcr

0 p 4p2

10�3 3.14159 39.4784

10�1 3.14196 39.4924

1 3.17868 40.8751

2 3.29218 45.0776

5 4.19616 73.4146

8 6.09212 114.833

10 7.59035 143.518

15 11.3830 215.283
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the question of the proper formulation of the local energy balance. In fact, one may

have Chandrasekhar’s [10] and White’s [36] formulation

r0 cv
@T

@t
þ~u � ~r T

� �
¼ kr2T þ qg þ 2 mD ij D ij; (116)

where cv is the specific heat at constant volume and D ij is the strain tensor, (23).

The source term in (116), 2 mD ij D ij, is the thermal power generated by the

viscous dissipation.

One may have the enthalpy formulation [20, 33]

r0 cp
@T

@t
þ~u � ~r T

� �
¼ kr2T þ qg þ 2 mD ij D ij þ b T

@p

@t
þ~u � ~r p

� �
; (117)

where cp is the specific heat at constant pressure and the last term on the right hand

side is an additional source term: the pressure work acting on the fluid element.

Finally, one may have Landau-Lifshitz’s [17], Bejan’s [6] and Kundu-Cohen’s

[16] formulation

r0 cp
@T

@t
þ~u � ~r T

� �
¼ kr2T þ qg þ 2 mD ij D ij: (118)

Equations (116), (117) and (118) are different answers to the same question:

which is the correct formulation of the local energy balance with respect to the

Oberbeck-Boussinesq approximation? An analysis of the different procedures

usually followed in the literature in order to answer this question and the common

logical pitfalls in these deductions have been recently discussed by Barletta [2]. In

this recent paper, a thermodynamic reasoning is presented in order to prove that the

correct formulation of the local energy balance with respect to the Oberbeck-

Boussinesq approximation is

r0 c
@T

@t
þ~u � ~r T

� �
¼ kr2T þ qg þ 2 mD ij D ij: (119)

In (119), the heat capacity per unit mass c does not coincide in general either

with cv or with cp, but it is defined as

c ¼ cp � pb
r0

: (120)

The heat capacity per unit mass c coincides with the specific heat at constant

volume, cv, for a perfect gas and it is definitely well approximated by the specific

heat at constant pressure, cp, for a liquid [2].
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6.2 From the Clear Fluid to the Fluid Saturated
Porous Medium

The analysis presented in Sect. 6.1 is easily extended to a fluid saturated porous

medium [2]. In cases of local thermal equilibrium between the solid phase and the

fluid phase, the correct formulation of the local energy balance with respect to the

Oberbeck-Boussinesq approximation is

r0 c s
@T

@t
þ~u � ~rT

� �
¼ ~kr2T þ qg þ F; (121)

where c is again given by (120).

7 Dissipation-Induced Instabilities

An important feature of the Darcy-Bénard problem and of its variants investigated

in the preceding sections is that the convective instabilities are a consequence of the

thermal boundary conditions prescribed. In fact, the thermal boundary conditions

assigned are such that a vertical temperature gradient is present in the system.

When, this gradient is sufficiently intense, the basic solution becomes unstable.

There is another important cause of possibly unstable temperature gradients in the

basic flow: the effect of viscous dissipation. The viscous dissipation, being a

mechanism of internal heat generation due to the fluid friction, may contribute to

the instability of the flow in porous media or possibly may be the sole cause of this

instability.

7.1 Viscous Dissipation as the Sole Cause of Convective
Instabilities

In the analysis of the Darcy-Bénard problem presented in Sect. 3, it has been

pointed out that the viscous dissipation does not affect the linear stability analysis.

The reason is that the basic solution assumed for the Darcy-Bénard problem is such

that the velocity field is zero. This feature implies that the effect of viscous

dissipation becomes of order e2 and can thus be neglected with respect to the linear

terms of order e. Obviously, this argument cannot be invoked if a basic throughflow

occurs in the fluid layer. In fact, a basic throughflow may result in a contribution of

order e in the local energy balance due to the effect of viscous dissipation.

Conditions may exist such that no temperature gradient is impressed in the

system through the external environment. This circumstance may occur when the
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external environment is kept at a uniform temperature, or if one or more system

boundaries are thermally insulated, i.e. adiabatic. This is not the case of the Darcy-

Bénard problem and of its variants discussed in the preceding sections. In fact, the

temperature difference between the horizontal boundary planes means exactly an

externally induced thermal forcing on the system. On the other hand, no external

thermal forcing is present if the boundary planes are kept at the same temperature,

or if one or both planes are kept adiabatic. In the absence of thermal forcing caused

by the boundary conditions, the viscous dissipation may possibly become the sole

cause of thermal gradients within the fluid. As a consequence, viscous dissipation

alone may be the cause of convective instabilities. This simple physical fact has

been recognized in the papers by Joseph [15], Sukanek et al. [31] and Subrahma-

niam et al. [30] with reference to clear fluid flows. Recently, several studies of the

dissipation-induced instabilities in fluid saturated porous media have been carried

out [3–5, 29]. In the following sections, the dissipation-induced instabilities are

discussed for the cases of horizontal and vertical basic throughflow in a plane

porous layer.

7.2 Plane Layer with Horizontal Throughflow

Let us consider an horizontal fluid saturated porous layer with infinite width and

thickness L. Let us assume that the boundary planes are impermeable: the bottom

boundary is adiabatic, while the top boundary is isothermal with temperature Tc
(see Fig. 13). The validity of Darcy’s law and of the Oberbeck-Boussinesq approx-

imation is assumed.

The governing equations are given by (27)–(29), while the velocity and temper-

ature boundary conditions are expressed as

y ¼ 0 : v ¼ 0 ¼ @T

@y
; y ¼ L : v ¼ 0; T ¼ Tc: (122)

g

x

y

0

L T =TC

¶T/¶y = 0

Fig. 13 Boundary conditions

considered in the analysis

of dissipation-induced

instabilities in a porous layer

with horizontal basic

throughflow [4]
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Equations (27)–(29) and (122) can be written in a dimensionless form by the

following transformation:

x; y; zð Þ 1
L
! x; y; zð Þ; t

~a
sL2

! t; ~u
L

~a
! ~u; T � Tcð ÞKc

n~a
! T: (123)

Then, one obtains the dimensionless equations

~r �~u ¼ 0; (124)

~r�~u ¼ Ge ~r� T~ey
	 


; (125)

@T

@t
þ~u � ~rT ¼ r2T þ~u �~u; (126)

y ¼ 0 : v ¼ 0;
@T

@y
¼ 0; y ¼ 1 : v ¼ 0; T ¼ 0; (127)

where

Ge ¼ gbL
c

(128)

is the Gebhart number. The thermal boundary conditions are such that no thermal

forcing is applied on the system from the external environment. This circumstance

is evident since no characteristic temperature difference arises from the thermal

boundary conditions.

The basic solution of (124)–(127), which is analysed for stability, is given by

uB ¼ Pe; vB ¼ 0; wB ¼ 0; TB ¼ Pe2

2
ð1� y2Þ: (129)

A vertical temperature gradient appears in the basic state caused only by

the frictional heating. This effect produces a bottom boundary temperature,

TBð0Þ ¼ Pe2=2, higher than the top boundary temperature, TBð1Þ ¼ 0. Hence, the

basic state is possibly unstable to convective rolls for a sufficiently intense viscous

dissipation. One expects that instabilities arise when the Péclet number becomes

sufficiently high, so that the bottom to top boundary temperature difference, Pe2=2,
exceeds the threshold value for convection rolls to take place. This critical value of

the Péclet number is a function of the dimensionless parameter Ge and has been

determined through a linear stability analysis by Barletta et al. [4].

The analysis has been carried out by assuming two-dimensional disturbances in

the form of plane waves travelling in any arbitrary direction in the horizontal ðx; zÞ-
plane. Let us note that, in the present problem, the possible horizontal directions are
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not equivalent, as in the Darcy Bénard problem. In fact, a preferred direction is

defined by the basic flow direction, namely the x-axis. Thence, one defines a general
oblique roll disturbance as a plane wave propagating in a direction lying in the

ðx; zÞ-plane and inclined with respect to the x-axis of an arbitrary angle w. When

w ¼ 0, namely when the plane waves propagate along the x-direction, one speaks of
transverse rolls. When w ¼ p=2, namely when the plane waves propagate along the

z-direction, one speaks of longitudinal rolls.
Barletta et al. [4] proved that the basic solution (129) is more unstable to

transverse rolls than to any other kind of oblique rolls. The critical values

ðacr;PecrÞ for the onset of transverse rolls are given approximately by

acr ¼ 2:4483; Pecr ¼ 7:8655ffiffiffiffiffiffi
Ge

p : (130)

Equation (130) holds if Ge is sufficiently small. This is not an unphysical

restriction since, for most convection problems involving liquids, Ge can hardly

be greater than 10�6, unless L ffi 1m or higher. For values of Ge approximately

greater than 10�3, (130) yields an overestimate of both acr and Pecr.

7.3 Plane Layer with Vertical Throughflow

The vertical throughflow system defined in the studies by Sutton [32] and Nield [21]

have been recently extended to the case of non negligible effects of viscous

dissipation [5].

The system examined is exactly the same as that described in Sect. 5.2. The only

difference is that the local energy balance equation includes the viscous dissipation

term, m~u �~u=K. This difference implies that the basic solution is more complicated

than (105). In particular, by employing the dimensionless formulation defined

through (32), the basic velocity and temperature fields are expressed as

~uB ¼ Pe~ey; TBðyÞ ¼ ePe � ePe y

ePe � 1
þ GePe

R
y� ePey � 1

ePe � 1

� �
: (131)

The effect of viscous dissipation breaks the symmetry between upward through-

flow, Pe > 0, and downward throughflow, Pe < 0. For downward throughflow,

there are two competing effects: the forced convection due to the throughflow, and

the viscous dissipation. The former effect causes the cooling of the system due to

the fluid input from the upper environment at temperature Tc. The latter effect

causes an internal heating of the layer. The competition may yield a perfect balance

between these effects when GePe ¼ �R. In this case, (131) yields the basic linear

temperature profile (39), as in the Darcy-Bénard problem.

When the viscous dissipation is taken into account, the sign of Pe affects the

critical conditions for the onset of convective instabilities. Increasing values of Ge,

412 A. Barletta



namely a more and more intense viscous dissipation, imply a stabilizing effect in

the case of downward throughflow and a destabilizing effect in the case of upward

throughflow. The destabilizing effect for Pe > 0 may be so intense that the critical

value of the Darcy-Rayleigh number for the onset of convective rolls, Rcr , becomes

zero. This phenomenon however may take place only when Ge > 4:67910. Values
of Ge in this range are definitely unrealistic in practical cases. Then, in the case of

vertical throughflow, the effect of viscous dissipation is unlikely to be the sole cause

of convective instabilities. This conclusion, drawn by Barletta et al. [5], marks a

sharp difference with respect to the case of horizontal throughflow.

8 Concluding Remarks

In this review, some remarkable topics within the wide literature on the convective

instabilities of fluid saturated porous media have been outlined. The amount of

published papers and book chapters on this subject is really large, so that this review

is definitely far from being exhaustive. The aim has been the general description of

the basic phenomena behind the thermoconvective roll instabilities in a porous

medium. With this in mind, a detailed analysis of the Darcy-Bénard problem and

of its most important extensions has been carried out. We mentioned the use of non-

Darcy models of momentum transfer and the possible presence of a horizontal or

vertical throughflow. An important recent topic is the analysis of the effect of viscous

dissipation with respect to the onset conditions of the convective instability. This

effect arises when the basic state is a throughflow state. The role played by viscous

dissipation in the onset of the instability may be a mere interplay with the effect of the

basic thermal gradients induced by the boundary conditions. In some cases, the

viscous dissipation may be the sole cause of the instability. The continuing explora-

tion of this possibility is an interesting opportunity for future research.
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New Bio-Inspired Multiphase Thermal

Functional Fluid

José L. Lage

Abstract Efforts in harvesting the potential benefits of mimicking the gas

exchange in alveolar capillary for channel heat transfer processes has led to a

new bio-inspired multiphase thermal functional fluid (MTFF). This MTFF is

originally conceived as encapsulated phase-change material particles, with diame-

ter comparable to the channel size, flowing with the cooling liquid. The two main

benefits of this new MTFF are not only the phase-change effect of the particles in

the heat transfer process, but also the specific geometry of the particle and channel

leading to the sweeping of the boundary layer in the channel. This last effect is

believed to be responsible for the very high efficiency of the gas exchange taking

place in the alveolar capillaries. Preliminary numerical simulation results seem to

confirm the benefit of both effects. A groundbreaking experimental apparatus,

designed as a pumpless flow loop, uses vortical effects created by a magnetic stirrer

to set the liquid and particles of the MTFF in motion, overcoming the settling and

clogging difficulties so characteristic of a multiphase fluid flow. Experimental tests,

with octadecane paraffin (EPCM) particles or with acrylonitrile butadiene styrene

(ABS) plastic particles (with no latent heat capacity), both flowing in water, have

been performed and the results compared to results obtained with clear (of par-

ticulates) water flow. All tests indicate the advantages of using the MTFF in

comparison to clear water, even at relatively low particle concentrations. Moreover,

the tests seem to confirm the same behavior found in capillary blood flow, namely

the detrimental effect of increasing the particle concentration beyond an optimum

concentration, either leading to a reduction in the boundary layer sweeping effect or

to an increased competition among particles for the heat transfer. This effort high-

lights the importance of learning from efficient biological systems.
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1 Introduction

The quest for increasing the amount of heat transfer in channel flow has been driven

by many engineering applications. Electronics, in particular, have dominated the

interest of thermal engineers in the past few years with great challenges. The

tremendous increase in the power-flux dissipated by electronics, from about

1.0 W/cm2 by the logic chips manufactured in the mid 1980s to about 100 W/cm2

by the microprocessors produced in the 2000s [1], led to the increase in the working

temperature of the devices. To understand how significant this electronics power-

flux strength is, consider the now projected power-flux dissipation in the near future

of over 1,000 W/cm2 and realize this value goes beyond typical values of power-

flux found in nuclear reactors (about 100 W/cm2) and in rocket nozzles (slightly

below 1,000 W/cm2). The increased temperature caused by the increase in power-

flux affect negatively the reliability of the electronics. Hence, the cooling problem

is essentially a reliability problem. An additional challenge posed by the cooling of

electronics is the very small area in which the power-flux is dissipated, requiring

small cooling devices with very small channels.

The same main challenging characteristics found in electronics, i.e. to have more

heat transferred through a limited real-estate, have been confronted by thermal

engineers in many other engineering areas for years. In trying to mitigate these

challenges, thermal engineers have focused on creating new, more efficient fluid

flow heat exchangers by applying new passive and active design techniques [2].

Passive techniques involve mainly channel shape modification, such as changing

the channel curvature, roughing the channel surface, introducing flow disruption

elements in the channel, and including constrictions and expansions along the

channel. Active techniques, which tend to be more elaborated and costly, include

flow pulsation and/or vibration, usually induced by piezoelectric or electric actua-

tors placed along the walls of the channel. The objective of all these techniques has

been to create enough mixing in the flow to break the thermal boundary layer that

otherwise forms along the channel wall and hinders the heat transfer process. By

doing so, the amount of heat transferred between the channel wall and the fluid

flowing in it would then increase.

An important additional passive technique for channel heat transfer augmenta-

tion is the use of additives in the fluid flow. A dominant sub-group in this realm is

the use of phase-change particles (the dispersed phase) to flow together with the

flowing fluid (the continuous phase) forming a multiphase heat transfer agent called

latent functionally thermal fluid (LFTF). Compared with the conventional single

phase fluid with no particles, the LFTF provides high energy storage density and

small temperature variation during the heat transfer process. The use of LFTFs was

shown to yield 1.5–4 times more efficient heat transfer than single phase flow under

ideal conditions [3], making this alternative very attractive for several application

[3–18].

Recent advances in the production of encapsulated phase change materials,

especially micrometer and nanometer scale particles [19–26], have broadened the
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possible engineering applications and revived interest in LFTFs [27–33]. A very

particular characteristic of the recent LFTF thrust is the use of a very large number

of small (microscale or nanoscale) particles mixed with the fluid, in a slurry form.

The LFTF slurry is advantageous for the particles being very small and, as such,

flowing easily with the fluid, facilitating the pumping and minimizing the clogging

of the solid particles. Nevertheless, the slurry presents a few disadvantages of its

own, including the inefficiency of having particles flowing far away from the

channel heat exchange surface (the thermally active particles tend to be restricted

to a region adjacent to the heated channel surface), the high pump-power required

to circulate the slurry, and the settling of the particles in the recirculation or dead

zones formed along the flow loop.

Notwithstanding, the recent interest in LFTF slurry flows brings back interest to

the more general particulate flow, a class of multiphase flow in which particles (not

necessarily of phase change material) flow with a fluid. This flow class is not

restricted to channel heat exchangers, but found very often in many engineering

processes, such as in chemical reactions (fluidized beds), spray-painting, coating (of

solid particles), combustion (fuel-injection), and packaging (of cereals, grains), and

in several natural processes as well, for instance in rain fall, river flow (particle

sedimentation, erosion), and blood flow (red and white cells flowing with plasma).

The last process, i.e. the biological process of blood flow, is of great interest

here, more particularly the alveolar capillary blood flow. The gas exchange process

between the alveolar region of the lungs (filled with air) and the blood (containing

liquid plasma and red blood cells, RBCs) flowing through an alveolar capillary is

one of the most efficient mass transfer processes known. A distinctive characteristic

of the alveolar capillary blood flow is the similarity between the diameter of the

RBCs and the size of the capillaries (measured as the distance between top and

bottom capillary membranes). This particulate multiphase flow is quite different

from that obtained with an LFTF slurry: the number of particles (RBCs) in the

alveolar capillary flow is much smaller and their size much bigger than in LFTF

slurry flows. Nevertheless, the strong analogy between heat and mass transfer, and

the particular role played by the RBCs in alveolar gas exchange warranted further

examination of this biological mass transfer process.

2 Alveolar Capillary: The Biological Gas Exchanger

Respiration is perhaps one of the most important functions of the human body.

Moreover, the gas exchange process in the human lungs is one of the most efficient

exchange processes known to humans.

In studying the respiration process in humans, it is essential to identify the gas

transport path inside the lungs. This path can be divided into two, namely a gas-path

and a liquid-path. The gas-path begins at the nose and mouth, from where the gas

flows through the trachea, to then follow through about 23 bifurcations, Fig. 1. The

first bifurcation (z ¼ 1) is from the trachea to the primary bronchial tubes, which
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take the air to each of the two lungs. The gas-path then bifurcates further, taking the

gas to the secondary bronchi, to the bronchioles, and eventually to the terminal

bronchioles, at bifurcation generation z ¼ 16.

The terminal bronchioles mark an important transition location inside the gas-

path of the lungs. Because the gas-path of the lungs is a dead-end path, and because

of the increased flow area provided by the bifurcations (the available flow area

increases as 2z/3 after each bifurcation, where z is the bifurcation generation number

past the trachea, where z ¼ 0), the gas speed progressively decreases as it flows into

the lungs. Hence, the convection that drives the gas into the lungs through the

mouth/nose eventually subsides, becoming negligible at around z ¼ 16, the termi-

nal bronchioles. From there, with the transport being diffusion dominated, the gas

still has to go past the respiratory bronchioles, through bifurcations 17–19, to

eventually reach the respiratory zone, or the alveolar region located in bifurcations

20 through 23.

It is in the alveolar region that the path changes from a gas-path to a liquid-path.

Figure 2a shows a cast of the air-path of the human lungs. Subsequent shots, shown

clockwise, details the gas-path as the gas goes deep into the lungs all the way to the

alveolar region, Fig. 2d. Once in the alveolus, the gas has nowhere else to go (dead-

end gas-path) but to enter the capillary bed.

At this stage, the alveolar gas transport process evolves from diffusion in the gas

region of the alveolus to dissolution of the gas into the alveolar membrane. After

dissolving into the membrane, the gas then flows by diffusion through the intersti-

tial fluid and the capillary membrane, to eventually reach the liquid-path provided

by the blood.

The alveolar membrane, the interstitial fluid and the capillary membrane form a

barrier separating the gas-path from the liquid-path of the lung. From the capillary

membrane the gas transport process switches again to convection, but this time the

Trachea:

Primary Bronchial Tubes:
divide air to each lung

Secondary Bronchi:
divide air to each lung lobe

Bronchioles:
diameter less than 1.0 mm

Terminal Bronchioles:

Respiratory Bronchioles:

Respiratory Zone:
alveolar region
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GenerationFig. 1 Lung gas-path: a

sequence of 23 bifurcation

generations, from the trachea

all the away to the alveolar

region. Notice the terminal
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end of the conductive zone, or
the convection dominated

zone. Beyond the terminal

bronchioles, the gas transport

switches to diffusion

dominated
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convection takes place in the liquid-path provided by the plasma of the blood.

Notice that some gases, such as carbon-dioxide, convects away from the alveolar

capillary mainly dissolved in the blood plasma. Other gases, such as oxygen and

carbon-monoxide, go beyond the plasma, also permeating through the red blood

cell membrane into the red blood cell to eventually attach to the hemoglobin. Once

in the blood, the gas is then transported out of the alveolus to other parts of the body

by convection.

Observe the alveolar respiration process is driven essentially by two potentials,

namely the gas concentration in the gas region of the alveolus and the gas concen-

tration inside the blood, either in the plasma or in the red blood cells. Studies of the

three-dimensional, unsteady gas diffusion process in the lungs without concern to

the blood flow effect, [34–39], have demonstrated the importance of the red cells

location vis-à-vis the lung diffusing capacity, which is a measure of the overall lung

diffusivity. Perhaps one of the most significant results from these efforts is the

observation of the shielding effect caused by red blood cells located near the gas

source. These cells effectively shield from the gas other cells placed further away

from the gas source, making them less effective participants in the overall gas

transport process. This same effect might explain why the cells passing through an

alveolar capillary do so in a single string fashion – to avoid shielding!

More detail studies of alveolar gas exchange, focusing in the alveolar capillary,

were performed recently, [40–42]. These studies were conducted considering the

transport of carbon-monoxide, which is the gas choice formeasuring the lung diffusing

Fig. 2 Scaling of human respiratory system from entire lungs (a), to acinus (b), to alveolar region

(c), to alveolar capillary (d). The drawn detail in (d) highlights the parallel-plate nature of the

capillary, as opposed to a circular pipe; the dashed line shows a red blood cell. (c) and (d) are lung
micrographs provided by Prof. E. Weibel

New Bio-Inspired Multiphase Thermal Functional Fluid 419



capacity in the laboratory. The same interference between closely spaced red blood

cells, leading to the shielding effect, has been identified in the alveolar capillary in

the case of pure diffusion – no blood flow, Fig. 3.

The results in Fig. 3, for diffusion of carbon monoxide in an alveolar capillary

(only half-capillary is presented for simplicity), show the distribution of the iso-

concentration lines from the alveolar membrane, where the gas concentration is

unity, to the RBCs, where the gas concentration is zero (observe the RBCs are

considered an infinite sink for CO). Observe further the resistance to gas transport is

much smaller in the gas region than in the capillary wall or in the blood plasma,

making the gas concentration uniform and equal to unity there. The top display,

Fig. 3a, shows the concentration distribution for the case of a single RBC in the

capillary. Observe how the isolines progress almost radially from the RBCs toward

the alveolar gas region in this case, wrapping the RBC completely with ellipses.

When more RBCs are placed inside the same capillary, as seen in Fig. 3b with three

RBCs for instance, the isolines get flattened in the region in between two RBCs,

with a few isolines not wrapping completely around each RBC anymore. This

aspect is more pronounced in Fig. 3c, where the amplified view shows two of the

eight RBCs placed in the same capillary. The close proximity of the RBCs make

alveolar
membrane

capillary
membrane

alveolar gas region

alveolar gas region

alveolar gas region

capillary wall

alveolar capillary
RBC

a

b

c

RBC

RBCRBC

RBC RBC

Fig. 3 Numerical simulation results of carbon monoxide diffusion in alveolar capillary, showing

the isoconcentration lines in the capillary wall (alveolar membrane, interstitial fluid and capillary

membrane) and in the plasma, for one (a), three (b), and eight (c) red blood cells in the capillary.

Observe (c) has been amplified for better viewing. Only the top half of each capillary is shown
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them compete for the gas being transferred from the alveolar membrane, that is why

the isolines tend to flatten out in between the RBCs.

Figure 4 shows the result of the RBCs competition effect, obtained by [40] and

[43], in quantitative fashion in terms of the long diffusing capacity DL [in mm3/

(s Torr)] versus the number of RBCs in the capillary, NRBC. The curves are distinct

for being affected by the value of the specific rate of CO uptake by a single RBC,

yCO, in mm
3/(s TorrRBC), as a result of the competition between CO and O2 used in

the simulations. Observe in Fig. 5 the inclusion of results for the case yCO ! 1.
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Fig. 4 Pure diffusion (no blood flow) results, from [40] and [41], of lung diffusing capacity DL

versus the number of circular red blood cells inside the capillary NRBC. [yCO is the specific rate of

CO uptake by a single RBC, as a result of the competition between CO and O2, at different

alveolus oxygen tension levels in mm3/(s TorrRBC) and DL in mm3/(s Torr)]
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This limiting case, in which oxygen does not compete with CO, is included to show

the consistent trend of the results as yCO increases to a limit value.

More importantly in Fig. 4, observe how the increase in DL with the number of

RBCs in the capillary is not linear, as one might expect. Rather, the DL value tends

to flatten out when NRBC grows beyond six red cells in the capillary – a result of the

competing effect of the red cells for the diffusing gas.

Now, when the blood flow effect is taken into consideration, the results are quite

different [41], as shown in Fig. 5. The effect on the lung diffusing capacity in terms

of the percentage relative difference e between the DLd for the pure diffusion case

(no blood flow, U ¼ 0, with yCO ! 1) and the DLc for the convection case (with

blood flow), namely

e ¼ DLd � DLc

DLd

����
����� 100 (1)

for several percent hematocrit Ht values, point out that the blood convection effect

on DL increases with the blood velocity U, as expected. However, the flow velocity

effect decreases with an increase in the hematocrit. Notice the percent blood

hematocrit, Ht, defined as the percentage volume occupied by the RBCs in the

capillary, (VRBCNRBC), divided by the total capillary volume, Vcapillary, is directly

related to the number of RBCs in the capillary NRBC as: Ht ¼ 100(VRBCNRBC)/

Vcapillary ¼ (4.8NRBC)%. Observe that three blood velocities are considered, namely

U ¼ 1, 5, and 10 mm/s.

The results of Fig. 5 are quite remarkable as they seem to indicate the com-

peting effect of the red blood cells placed close to each other is also present when

the blood is flowing, that is, when convection effects are present in the alveolar

capillary.

Figure 6, [41], shows for the case of a single circular RBC in the capillary, three

sets of isolines from top to bottom, namely for: (a) U ¼ 1 mm/s, (b) U ¼ 5 mm/s,

and (c) U ¼ 10 mm/s. Each set shows at the top the isoconcentration lines (same

CO partial pressure) and at the bottom the corresponding streamlines, in the

membrane and plasma regions.

The streamlines of Fig. 6 are plotted from the point-of-view of an observer

traveling with the RBCs. Observable for all speeds are characteristic circulating

cells inside the capillary, before and after the RBC, within the plasma region. For

the case of U ¼ 1 mm/s the blood convection seems to have little effect on the

transport of CO to the RBC: observe the symmetry of the isoconcentration lines

with respect to a vertical line passing through the RBC center. However, the dis-

tortion on the symmetry of the isoconcentration lines when U increases, Fig. 6b and

6c, is evident. Only the plasma flow could be responsible for this distortion. Evident

in Fig. 6c is a squeeze of the isoconcentration lines (i.e., the lines become more

closely spaced) along the anterior (left) face of the RBC, indicating an enhanced

transport of CO, and a slight expansion of the lines (i.e., the lines become spaced far

apart) along the posterior (right) face of the RBC.
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Figure 7, [41], depicts results for when eleven RBCs, NRBC ¼ 11 or

Ht ¼ 52.8%, are placed side by side in the capillary channel, and set to move

with speed U ¼ 10 mm/s. The figure shows the resulting isoconcentration lines,

Fig. 7a, streamlines, Fig. 7b, and velocity vectors, Fig. 7c. In this case, with a large

number of red blood cells in the capillary, the flow circulation in the plasma region

is subdued in comparison to the results shown in Fig. 6, by the proximity of the red

cells. Consequently, there is little distortion in the isoconcentration lines due to the

convection effect, with the effect being restricted to the small region available for

plasma flow in between the red cells. Finally, observe the small gap between the red

cells and the capillary membrane allow for some plasma to flow through (see the

velocity vector plot, Fig. 7c).

Fig. 6 Convection results for a single RBC in the capillary, for: (a) U ¼ 1 mm/s, (b) U ¼ 5 mm/s,

and (c) U ¼ 10 mm/s [41]. Each set shows at the top the isoconcentration lines (same CO partial

pressure) and at the bottom the corresponding streamlines, in the membrane and plasma regions.

U is the speed of the RBC in the capillary
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Another aspect considered in studying convection in the alveolar capillary is the

effect of the RBC shape. By simulating the more common parachute shape of

RBCs, as depicted in Fig. 8, results were obtained by [43] showing the shape effect

as compared to spherical RBCs, Fig. 9.

Fig. 7 Numerical simulation results, [41], for the blood convection, with 11 uniformly distributed

RBCs inside the capillary channel, moving with speed U ¼ 10 mm/s: (a) isoconcentration lines,

(b) streamlines, (c) velocity vector distribution

Fig. 8 Alveolar capillary showing three parachute shaped red cells under gas diffusion only

(U ¼ 0). Shown also are isoconcentration lines, [43], for Ht ¼ 52.8%
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The shape effect on the diffusion process is expected because the red cells are

participants in the diffusion process (recall the red cell has the low potential for

CO diffusion), and by changing their shape the gas exchange surface area changes

as well. In the case of the parachute shape RBCs the surface area is slightly larger

than the surface area for the circular RBC case. Not so evident is the blood flow

effect. Notice how the convection effect gets more pronounced as the number of

red cells is small in the capillary. When the NRBC increases too much, not enough

space is available in between consecutive red cells for a strong convection effect

to develop.

The three-dimensional effect of a flowing parachute-shaped red cell is seen in

Fig. 10, from [44], with the top capillary surface and only half the capillary (and red

cell) being shown. The sweeping effect of the flowing RBC is remarkable, as is the

effect of the trailing edge (extra mixing) also seen in the figure.

Perhaps the most remarkable aspect of the alveolar capillary blood flow is not

the diffusion aspect, or the convection effect of blood flow. Rather, the most

striking detail is the fact that the capillary allows for a single train of red blood

cells to flow through it. That is, the capillary does not accommodate layers of

red cells flowing parallel to each other between the top and bottom capillary

membranes.

From an engineering designer point-of-view, considering the red cells as the

transporters of the gas (in the cases of oxygen and carbon monoxide gases, for

instance) the larger the number of red cells inside the capillary, the higher should

the efficiency of the process be. For some reason, however, alveolar capillaries are

designed to function with a single train of red cells passing through it, Fig. 8. This is
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Fig. 9 Numerical simulation results, [41, 43], in terms of lung diffusing capacity per unit of red

cell in the capillary, DL-RBC, versus the total number of red cell in the capillary, NRBC, for diffusion

(U ¼ 0) and blood convection (U > 0), with parachute and circular shaped RBCs
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one of the key factors believed to be responsible for the high gas transfer efficiency

of the lungs [42].

True that the alveolar capillaries do not allow for larger white cells (leukocytes),

for instance, entering the alveolar capillary when providing a snug fit to the red cells

(notice the most common leukocytes, called neutrophils, have diameter about twice

the 6–9 mm diameter of RBCs). However, if the capillaries were large enough to

allow larger cells to flow through, then the number of red cells would increase as

well, and not all cells would be near the capillary membrane. Keep in mind that in

liquid flow through a straight pipe, solid particles with diameter less than the pipe

diameter would tend to flow along the center of the pipe, a region with the least flow

resistance. Then, if several red cells were to fill the capillary, most cells would flow

along the center of the capillary, far from the capillary membrane where the gas

exchange takes place.

Moreover, if the capillaries were large enough to allow several layers of red cells

flowing parallel to each other, the cell in the center of the capillary would be

shielded from the capillary membrane by the red cells flowing near the membrane.

The resulting gas exchange process, on a per RBC basis, would be less efficient.

In conclusion, the tendency to flow along the center of the capillary and the

shielding effect are two important reasons for not allowing more than one single

train of red cells to flow through the capillary. Another aspect can be considered as

well: the sweeping effect the red cells have along the capillary membrane as they

flow snugly through the capillary.

Specifically, it is conceivable that a solid particle with diameter comparable to

the channel dimension would act like a broom sweeping along the channel surface,

mixing (“breaking”) the boundary layer, reducing the transport resistance, and

enhancing the convection process. This aspect is considered in more detail in the

next section.

Fig. 10 Sample numerical simulation results of a single parachute-shaped red-blood cell flowing

through a capillary. Only the top half of the capillary is shown for simplicity. The lines are

isoconcentration lines [44]
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3 Mimicking an Alveolar Capillary: The SweepHeat Exchanger

In studying the gas exchange in the alveolar capillary, [41–43] showed the effects of

blood flow in the gas exchange. In particular, every time an RBC flows through a

capillary, the particle sweeps the capillary wall breaking the boundary layer formed

along it, as shown in Fig. 11, from [44].

The figure shows the flowing of a single RBC with blood plasma through a

capillary conceived as a parallel-plate channel. Only the top half of the channel is

shown for simplicity. The plasma and the RBC enter the capillary with zero

concentration of the transferring gas (zero partial pressure PCO), in this case

carbon-monoxide, CO, coming from the capillary surface (labeled as tissue in the

figure). The tissue separates the gas region of the alveolus from the liquid region in

the capillary, and it has a uniform gas concentration, equivalent to PCO ¼ 1 Torr at

the top surface (the alveolar membrane).

The lines in Fig. 11, in the capillary and tissue regions, show isoconcentration

lines. Three regions are of importance. The first is the region to the left of the

flowing RBC, around the inlet region of the capillary. There the isolines develop by

the flowing effect of the plasma alone, and indicate the growth of the mass transfer

boundary layer along the capillary. The second region is downstream, to the right of

the RBC, where the furthest away isoline extends itself towards the outlet of the

capillary. Finally, the third region is the region around the RBC, where the isolines

are squeezed against the capillary membrane and the tissue. This squeezing effect

characterizes the sweeping of the boundary layer by the flowing RBC. This effect is

easy to understand if we consider first the flow of plasma alone (with no RBC) in the

capillary.

In a parallel-plate channel, the plasma flow would eventually develop either into

a parabolic velocity profile, in the case of laminar flow, or into a more flatten

profile, in the case of turbulent flow. It is worth pointing out here that laminar flow

predominates within the small dimensions encountered in alveolar capillary. Not-

withstanding, the flow induces the convection mass transfer process from the

Tissue7.5 μm 1 μm 7.5 μmL = 50 μm

Top Boundary

Outlet
Symmetry

line

(PCO = 1 Torr)

PRBC = 0 Torr
PCO = 0 Torr

4 μm

Inlet

URBC

Fig. 11 Numerically obtained isoconcentration CO lines inside an alveolar capillary modeled as a

parallel-plate channel (only the top-half of the channel is shown), with a single red blood cell

(RBC) flowing through it. The channel top boundary (alveolar membrane) has uniform CO

concentration while the flowing fluid – plasma and RBC particle – enters the channel with zero

CO concentration [44]
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capillary membrane, with a mass transfer boundary layer developing downstream

the channel. Eventually the mass transfer process reaches a steady-state, and from

this point on the mass transfer distribution is set with a high transfer rate along the

inlet section of the capillary, where the mass boundary layer still develops, and a

lower transfer rate from where the boundary layer converges at the center of the

channel.

Although resulting from a natural and unavoidable process caused by the mass

diffusion and convection in the fluid, the boundary layer demarcates a region within

the flow of high mass transfer resistance because the potential driving the mass

transfer process, which at the entrance of the channel is zero, is now a value closer

to the alveolar membrane potential. Hence, the effective potential difference

driving the mass transfer decreases as the fluid flows downstream the capillary,

hindering the mass transfer process. Ideally, one would like for the fluid potential to

remain zero throughout the entire capillary, but this is impossible as the fluid

absorbs some gas. However, the concentration gradient across the boundary layer

is contrary to an efficient mass transfer process.

Now, when a solid particle, such as an RBC, enters the capillary with a certain

speed, it forces an accommodation of the fluid velocity profile because the entire

solid particle travels with the same speed. That is, the portion of the particle

traveling near the stationary boundaries of the channel, where the fluid originally

has low speed, will induce an acceleration of the fluid in this region, while

decelerating the fluid in a region near the center of the channel, where the fluid

originally flows faster. The net effect is the flattening of the fluid velocity profile,

similar to the profile transitioning from laminar to turbulent as the fluid speed

increases. This aspect, by itself, would already benefit the heat or mass transfer

convection process, similar to the benefit achieved by turbulent flow. However, the

solid imposes an additional effect: the mixing of the fluid nearby, inducing

the breaking of the mass transfer boundary layer. Keep in mind the acceleration

of the fluid by the solid particle does not carry the same pump-power penalty the

transition from laminar to turbulent carries because the particle sweeps the channel

surface only intermittently, when it pass along it. The pressure-drop penalty of

turbulent flow, on the other hand, is continuous in time as the flow is always

turbulent along the channel (unless, of course, the flow is made intermittent).

The resulting effect of the particle sweeping the channel surface is better

appreciated by considering the graph in Fig. 12, from [44], showing the lung

diffusing capacity DL [in mm3/(s Torr)] versus time t (in seconds), for a capillary

having a single RBC flowing with plasma at different speeds U.

Observe the effect of U on the different shapes the curves have. When the speed

is low, U ¼ 1 mm/s, the convection process increases when the RBC enters the

channel, reaches a plateau as the RBC travels inside the capillary, then it decreases

as the RBC leaves the channel. The plateau period is not so long when the RBC

speed increases to 5 and 10 mm/s. That is because the RBC flows too fast through

the capillary for the process to reach a pseudo steady-state and form a long plateau

as in the case of U ¼ 1 mm/s. Notice also the cyclic nature of the curves reflecting

the entering and exiting of red cells in the capillary. The DL difference between
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peaks and valleys represent the RBC flowing effect – if only plasma flows in the

capillary, the resulting DL would be yet lower than the lowest value in the valley of

each curve (the simulations are set for the capillary to always have one RBC in it, so

the plasma-only convection configuration never sets in completely).

Another interesting similar result is shown in Fig. 13, from [44]. In this case, the

results are for the same RBC speed, U ¼ 1 mm/s, but for different numbers of

U = 10 mm/s

5 mm/s

1 mm/sDL

t

2.0

1.5

1.0

0.5

0.0
0.0 0.05 0.1 0.15 0.2 0.25

Fig. 12 Effect of a single flowing RBC in and out of an alveolar capillary, in terms of lung

diffusing capacity DL and time, for three distinct RBC speeds U. Notice a new RBC only enters the

capillary when the one in the channel leaves it; hence, one, and only one RBC is in the capillary at

any given time [44]
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Fig. 13 Effect of increasing the number of RBCs flowing through a capillary, with fixed speed

U ¼ 1 mm/s [44]
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RBCs flowing with plasma, shown in terms of percent hematocrit Ht (note: Ht

¼ 8.49NRBC). As can be seen by the reducing amplitude of the curves, the flow

effect is less pronounced when the number of RBCs flowing inside the capillary is

large. This observation confirms some of the previous results: too large a number of

RBCs inside the capillary leads to direct competition among them for the gas

transfer, reducing the overall efficiency of the process. Moreover, when too many

RBCs are present, the distortion in the plasma velocity profile will be less because

of the small spacing between consecutive RBCs, which tend to dump the convec-

tion effect of the RBCs.

From all these studies of gas exchange in an alveolar capillary, a few important

observations emerge: (1) the similarity between the dimension of the capillary and of

the flowing particle (RBC) seems paramount to an efficient gas transport process for

it avoids the shielding effect and it induces a higher flow speed near the surfaces of

the channel and the sweeping of the mass/heat boundary layer; (2) the RBC is a

participative component of the convection transport, playing the role of an infinite

sink for the transporting gas (CO in the studies reviewed here); (3) in the context of

(1) and (2), the plasma and the RBCs would form amultiphase functional fluid for the
mass transfer process in the capillary; (4) a large number of RBCs flowing in the

capillary, equivalent to a high hematocrit, is detrimental to the efficiency of the gas

transfer process as the RBCs tend to compete with each other for the gas and the

accelerating convection effect becomes less evident in this case as well; (5) increas-

ing the speed of the RBCs tend to increase the gas transfer efficiency, with this effect

being less dramatic when large numbers of RBCs flow through the capillary.

These observations, together with the strong analogy between mass transfer and

heat transfer, can form the backbone of an audacious effort, namely that of building

a cold plate similar to an alveolar capillary, [45–48], to be cooled by a new, bio-

inspired multiphase thermal functional fluid, such as the blood. Because of the gas-

absorbing, infinite-sink role played by the red blood cells in the mass transfer

process in the alveolar capillary (in the case of carbon monoxide), a good equiva-

lent particle candidate was determined to be spherical encapsulated phase-change

material. The phase-change material would make the particles behave similarly to

the red cells in the equivalent heat transfer configuration. During heat transfer, the

particles temperature would reach the melting point, during which the temperature

tends to remain constant (although in practice the temperature during melting varies

within a small range), as if the particles were an infinite sink for heat. True that

when all the phase-change material melts, the particles lose the infinite sink

characteristic; nevertheless, the phase-change material encapsulated particle

seems to be the best alternative in mimicking the red blood cells. Observe that

even in the carbon monoxide capillary gas exchange, the red cells would eventually

saturate with the gas if left through the capillary long enough.

Preliminary modeling and numerical simulations were performed by [45], con-

sidering a square cross section channel mimicking an alveolar capillary, heated

uniformly from the top and bottom surfaces, and filled with liquid water flowing

with encapsulated phase-change particles, such as the one depicted in Fig. 14. It is

interesting that a configuration similar to the one shown in Fig. 14 was considered
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recently, [49–51], for the flow of ice and water through a circular pipe in a train like

fashion.

The diameter of the spherical particles was chosen as to allow only one particle

to occupy the cross section of the channel. That is, particles could flow in a train line

configuration (one after the other, Fig. 14) but not side-by-side. The inlet tempera-

ture of the liquid and of the particles was assumed uniform and slightly below the

melting point of the phase-change material inside the particles.

The simulations were performed in a frame of reference attached to the particles,

with the channel surfaces moving with a constant speed. This choice of frame of

reference allowed for the simulations to be performed with a fixed, unstructured

grid. Had a frame of reference been attached to the surfaces of the channel instead,

the simulation of the moving particles would require a moving mesh, which would

make the numerical requirements for the simulations much tougher. Although the

choice of reference frame helped alleviate the numerical requirements, it also

limited the simulations to the case of an infinitely long channel. Nevertheless, the

simulations were very intense, with very fine grid (see Fig. 15) and time-step

necessary for capturing the phenomena.

Fig. 15 Sample grid used for numerical simulations [45]

q”

q”

Fig. 14 Sketch of top and bottom uniformly heated square-cross section channel cooled by a bio-

inspired multi-phase thermal functional fluid. The circles inside the channel are the encapsulated
phase-change material particles flowing with the liquid. The front and back surfaces of the channel

are assumed adiabatic
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Recall the particles are filled with phase-change material, and the simulations

accounted for the melting process inside them. In this regard, the material chosen

for the particles was octadecane, which has a melting range of 298–308 K. Hence,

the simulations were very realistic when it comes to the melting effect.

The number of particles used in the simulations varied, with N ¼ 3, 6, 11 and 23,

or equivalently in terms of volume-fraction (hematocrit equivalent) as f ¼ 3.6%,

7.3%, 13.3% and 27.9%, respectively. As the number of particles changes in the

channel, so does the flow field around the particles, Fig. 16.

Observe in the top picture, the flow field when N ¼ 3 shows circulation to the

right of the particles, but not to the left. This is because the distance between

consecutive particles is relatively large with a low number of particles in the

Fig. 16 Flow velocity distribution within the channel with particles, for particle speed equal to

0.03 m/s. The top picture is for N ¼ 3 (f ¼ 3.6 %), and the bottom is for N ¼ 11 (f ¼ 13.3 %).

Only one particle is shown for detailing the flow field [45]
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channel. However, when the number of particles is large, they get closer together

and the circulation becomes evident upstream and downstream of the particles (see

bottom picture, for N ¼ 11). This same behavior was observed in the case of the

RBCs.

The time-varying surface-average heat transfer coefficient h is affected by the

number of particles in the channel, as indicated in Fig. 17. When the particles

increase, from N ¼ 3 to 11, to 23, the heat transfer coefficient first increases (from 3

to 11), but then decreases (from 11 to 23). This aspect is quite interesting because it

seems to confirm for the heat transfer process with phase-change particles the same

phenomenon observed with the mass transfer process in a capillary: if the number

of particles in the channel is too large, the process eventually becomes less efficient.

This efficiency decrease, shown in Fig. 17 in terms of h, can be due to the

competition between the particles for the heat coming from the channel surfaces,

and by the change in the flow velocity profile caused by the particles getting closer

to each other when N increases (see Fig. 16).

The results obtained through the numerical simulations provided support for

another preliminary effort, that of building a cold plate for experimental testing.

4 Preliminary Bio-Inspired MTFF Performance

The design and construction of an experimental apparatus for testing the perfor-

mance of the bio-inspired multi-phase thermal functional fluid, [48], faced tremen-

dous challenges. A first design was proposed, shown in Fig. 18, as a closed loop, in
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Fig. 17 Effect of particle concentration in the surface-averaged heat transfer coefficient h [45]
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which the liquid water would flow with the particles through the heated channel,

being collected at the exit reservoir. From there, the particles would be separated

from the liquid, which would then circulate through a circulating bath (chiller) to be

brought back to the required temperature. The required particles would be housed in

a separate reservoir, and from there flow down through auxiliary channels

connected to the main flow channel leading to the heated channel. This preliminary

design did not work mainly because the particles would clog the restriction from the

particle reservoir to the auxiliary channels, and stop flowing through it.

An alternative design was tested, Fig. 19, this time with the particles reservoir

placed underneath the heated channel, and having straighteners to reduce the

clogging problem. This design did not work either, and for the same reason:

particles tend to clog near the entrance of the auxiliary channels. It became clear

that the flow of the particles was key for the success of any design.

After further observation of the previous designs, it became apparent that the

clogging problem would only be resolved if the particles were dispersed in the liquid

prior to entering a restriction. An additional problem to be tackled was the need for

having the particles circulating with the liquid, and not removed from the flow loop as

the initial designs were set up. An ingenious final pumpless design was proposed for

eliminating both problems, Fig. 20 [46].

The flow apparatus shown in Fig. 20, [46], has a heated channel (the testing

section), heated electrically from the bottom and insulated at the top and sides, with

several thermocouples distributed uniformly along the bottom surface for tempera-

ture monitoring. From the heated channel, the multiphase thermal functional fluid

(MTFF) exits to a reservoir (exit reservoir) having a suction pipe placed flush with

the liquid level inside the reservoir. This pipe transfers the fluid back to the inlet

reservoir, through a heat exchanger to recondition the fluid and the flowing particles

back to their original state.
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Fig. 18 Flow apparatus for testing new bio-inspired multiphase thermal functional fluid [48]
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Once in the inlet reservoir, the particles are stirred by a rotating magnet set in

motion by a magnetically coupled stirrer. Notice that the stirring of the MTFF

accomplishes several tasks. It not only disperses the particles very uniformly in the
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Fig. 19 Alternative flow apparatus for testing new bio-inspired multiphase thermal functional

fluid [48]
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Fig. 20 Final, pumpless flow apparatus for testing new bio-inspired multiphase thermal func-

tional fluid [46]
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liquid while in the inlet reservoir, avoiding the clogging effect, but the vortex

induced by the stirring creates also a suction effect pulling the MTFF from the

tube linked to the exit reservoir. This last aspect sets the MTFF in motion through

the heated channel, circulating in the flow loop without the need for a mechanical

pump. The dispensing of a mechanical pump has another positive effect: without

mechanical contact with any moving parts, the particles do not suffer an accelerated

degrading effect (a course metal grid is placed around the rotating stirrer in the inlet

reservoir to make sure the particles do not get in contact with it).

Moreover, the speed with which the fluid flows through the channel is easily

controlled by selecting the speed of the stirrer as well. Finally, the excellent

dispersion of the particles achieved inside the inlet channel yields an almost

uniform feeding of the particles to the heated channel. A very simple metallic

grid gate was included at the inlet of the channel, the positioning of which allows

for more or less particles to flow through it, for the same flow speed. Hence,

different particle concentration inside the channel is possible, all with the same

flow speed. (Although the apparatus does not allow for the precise control of the

number of particles entering the channel, this can be accomplished with a simple

electronic gate that can be installed at the entrance of the channel.) A picture of the

final apparatus is shown in Fig. 21 [48].

Observe the channel is built as a parallel-plate channel, with the vertical distance

between the plates being slightly larger than the diameter of the particles. Therefore,

only a single layer of particles flows through the channel, in a snug fit, as shown

in Fig. 22. An important parameter affecting the performance of the heat transfer

process is the concentration of particles inside the channel. This concentration,

equivalent to the hematocrit or the volume-fraction of the particles inside the channel,

Fig. 21 Final apparatus showing the inlet reservoir (left), testing channel (center) and outlet

reservoir (right), with liquid water and microencapsulated phase-change particles, as the bio-

inspired multiphase thermal functional fluid, flowing by the exclusive action of the magnetic stirrer

placed underneath the inlet reservoir (left) [48]
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is determined by counting the number of particles inside the channel at any instant

in time. Tests have shown this number to be fairly constant (except by the exit

and entrance effects) once a flow speed and a position for the inlet gate are chosen.

The experimental results, [46], were obtained in terms of the surface averaged

temperature along the heated section of the channel, shown in Fig. 23, for several

particle concentration and a fixed flow speed. Observe the flow concentration is

relatively low, varying from 1.15% to 4.2%, a result of using a parallel-plate

channel. Also noteworthy is the inclusion of results for zero particle concentration,

i.e., for flow of clear (of particles) fluid.

Aside from the fact the average surface temperature increases with the increase

in the heat flux at the channel surface, as expected, the effect of increasing the

particle concentration in the channel is of great interest. Observe the highest

channel surface temperatures are obtained for zero concentration (clear water),

indicating the worst performance of all tests is when no particles are used. The

introduction of particles always lowers the surface temperature, as compared to

clear fluid, indicating the benefit of using the bio-inspired MTFF.

What would not be expected perhaps is the effect of increasing the particle

concentration: as the particle concentration increases the temperature decreases, but

from 1.9% to 2.7% concentration the surface temperature increases, instead of

decreasing as one would expect. That is, the benefit of continuously increasing

the number of particles flowing with the liquid inside the heated channel seems to

have a limit in achieving high heat transfer efficiency. There seems to exist an

optimum particle concentration, beyond which the addition of more particles has a

lesser and somewhat detrimental effect to the heat transfer process (see how the

curves for particle concentration greater than 1.9% are closer together). Even more

Fig. 22 Flow visualization: top view of testing heated channel. The top channel surface being

made of Plexiglas allows for the visualization of the particles (octadecane paraffin, C18H38,

microencapsulated in a thin melamine shell), flowing with water, and the calculation of the particle

density inside the channel [46]
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surprising is that the beneficial effect of adding more particles seems to return as the

particle concentration increases again from 2.7 to 3.45 and finally to 4.2%.

Using what was learned in the alveolar capillary, it is conjectured the presence of

two effects play a role in the behavior of the curves in Fig. 23. One effect is the

reduction in the effectiveness of the extramixing induced by the particles in the channel

when the number of particles increases too much. The other effect is the melting

power of the particles: for the same heat flux, a small number of particles could melt

completely before exiting the heated channel, whereas a large number of particles

might not. This phenomenon would explain the decrease in surface temperature

when the particle concentration increases from 2.7 to 3.45 and 4.2%: the large

number of particles flowing in the channel allows for more heat to be absorbed as

latent heat, decreasing the average surface temperature.

In trying to elucidate further the complex interplay between the phase-change

effect and the flow mixing effect, further tests were made with solid particles made

of plastic, without phase change capabilities within the temperatures achieved in

the testing section [47]. Results shown in Fig. 24, for particle concentration equal to

3%, seem enlightening.

First, the results with plastic particles seem to parallel the results with clear

water, but with a higher average heat transfer coefficient. This behavior seems to

indicate the sweeping effect of the particles in the flow field (observe the thermal

conductivity of the plastic is less than that of the water, so the plastic particles would
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Fig. 23 Surface averaged temperature results versus surface heat flux, for flow speed equal to

0.35 cm/s and several particle concentrations
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tend to hinder the heat transfer process). Second, the heat transfer coefficient of the

microencapsulated phase-change particles, although higher than that for the plastic

particles, does not parallel the heat transfer behavior for clear water. In fact, when the

phase-change particles are used, an initial increase in speed leads to a decrease in the

heat transfer coefficient, likely because of the smaller latent heat effect as the particles

spend less time in the channel. However, as the speed increases further, even though

the particles spend less time in the channel the heat transfer coefficient between the

liquid and the particles would increase as well (because of the more mixing at higher

speed), getting the phase-change effect by the particles to predominate again. Notice

the heat transfer coefficient increases, in respect to the value obtained with clear

water, by about 20% for the configuration shown in Fig. 24, with about 9% increase

estimated to be due to the mixing effect by the particles alone.

5 Summary and Conclusion

A new bio-inspired multiphase thermal functional fluid (MTFF) is proposed for

heat transfer in line with the main characteristics found in the alveolar capillaries,

namely liquid and particles, with the particles having dimensions similar to the

dimensions of the channel through which the exchange takes place.
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Fig. 24 Surface averaged heat transfer coefficient versus flow speed, for 14 kW/m2 heat flux,

clear water, or 3% concentration plastic or paraffin (phase-change) particles [47]
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Preliminary numerical simulations and experimental tests with microencapsu-

lated phase-change material particles flowing with water seem to confirm the

suitability of the new MTFF as heat transfer fluid combining the boundary layer

sweeping effect and the phase-change effect yielding substantially higher transfer

efficiency with minimum pump-power penalty.

Finally, the scalability of the MTFF and the flow system opens up the opportu-

nity for resolving a few of the issues pertaining to the use of nanofluids (or slurries),

as to obtain yet much more efficient results.
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Simulation of Turbulent Combustion in Porous

Materials with One- and Two-Energy Equation

Models

Marcelo J.S. de Lemos

Abstract The objective of this chapter is to present one- and two-dimensional

numerical simulations of combustion of an air/methane mixture in porous materials

using a mathematical model that explicitly considers the intra-pore levels of

turbulent kinetic energy. Transport equations are written in their time-and-volume-

averaged form and a volume-based statistical turbulence model is applied to

simulate turbulence generation due to the porous matrix. Four different thermo-

mechanical models are compared, namely Laminar, Laminar with Radiation Trans-

port, Turbulent, Turbulent with Radiation Transport. Combustion is modeled via a

unique simple closure. Preliminary testing results indicate that a substantially

different temperature distribution is obtained depending on the model used. In

addition, for high excess air peak gas temperature are reduced and the flame front

moves towards the exit of the burner. Also, increasing the inlet flow rate for

stoichiometric mixture pushes the flame out of the porous material.

Nomenclature

Latin Characters

A Pre-exponential factor

cF Forchheimer coefficient

cp Specific heat

D ¼ ruþ ruð ÞT
h i

=2 Deformation rate tensor

Ddiff Macroscopic diffusion tensor

Ddisp Dispersion tensor
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e-mail: delemos@ita.br
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Ddisp;t Dispersion tensor due to turbulence

Deff Effective mass transport tensor

f2 Damping function

fm Damping function

K Permeability

kf Fluid thermal conductivity

ks Solid thermal conductivity

Keff Effective Conductivity tensor

m‘ Mass fraction of species ‘
Pr Prandtl number

Sfu Rate of fuel consumption

T Temperature

u Microscopic velocity

uD Darcy or superficial velocity (volume average of u)

Greek Characters

a Thermal diffusivity

br Extinction coefficient

DV Representative elementary volume

DVf Fluid volume inside DV
DH Heat of combustion

m Dynamic viscosity

n Kinematic viscosity

r Density of air/fuel mixture

f f ¼ DVf
�
DV, Porosity

C Excess air-to-fuel ratio

Special Characters

’ General variable

h’ii Intrinsic average

h’iv Volume average
i’ Spatial deviation

f Time average
i’ Spatial deviation

j’j Absolute value (Abs)

f Vector general variable

ðÞs;f Solid/fluid

ð Þeff Effective value, f’f þ 1� fð Þ’s

ðÞf Macroscopic value

444 M.J.S. de Lemos



1 Introduction

Flow with chemical reaction in inert porous media has been extensively investi-

gated due to the many engineering applications and demand for developing high-

efficiency power production devices. The growing use of efficient radiant burners

can be encountered in the power and process industries and, as such, proper

mathematical models of flow, heat and mass transfer in porous media under

combustion can benefit the development of such engineering equipment.

Accordingly, the advantages of having a combustion process inside an inert

porous matrix are today well documented in the literature [1–8], including recent

reviews on combustion of gases [9] and liquids [10] in such burners. Hsu et al. [11]

points out some of its benefits including higher burning speed and volumetric

energy release rates, higher combustion stability and the ability to burn gases of a

low energy content. Driven by this motivation, the effects on porous ceramics

inserts have been investigated in Peard et al. [12], among others.

Turbulence modeling of combustion within inert porous media has been con-

ducted by Lim and Matthews [13] on the basis of an extension of the standard k-e
model of Jones and Launder [14]. Work on direct simulation of turbulence in

premixed flames, for the case when the porous dimension is of the order of the

flame thickness, has also been reported in Sahraoui and Kaviany [15].

Further, non-reactive turbulence flow in porous media has been the subject of

several studies [16–18], including many applications such as flow though porous

baffles [19], channels with porous inserts [20] and buoyant flows [21]. In such line

of work, intra-pore turbulence is accounted for in all transport equations, but only

non-reactive flow has been previously investigated in [16–21].

Motivated by the foregoing, this chapter extends previous work on turbulence

modeling in porous media to include simulation of reactive flows. Computations are

carried out for inert porous material considering one- and two-dimensional turbu-

lent flows with one- and two-energy equation closures. Four different thermo-

mechanical models are here compared, namely Laminar Flow, Laminar Flow

with Radiation Transport, Turbulent Flow and Turbulent Flow with Radiation

Transport. As such, this contribution compares the effects of radiation and turbu-

lence in smoothing temperature distributions within porous burners.

2 Macroscopic Mathematical Model

As mentioned, the thermo-mechanical model here employed is based on the

“double-decomposition” concept [16, 17], which has been also described in detail

in a book [18]. In that work, transport equations are volume averaged according to
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the Volume Averaging Theorem [22–24] in addition of using time decomposition

of flow variables followed by standard time-averaging procedure for treating

turbulence. As the entire equation set is already fully available in the open litera-

ture, these equations will be reproduced here and details about their derivations

can be obtained in the aforementioned references. Essentially, in all the above-

mentioned work the flow variables are decomposed in a volumemean and a deviation

(classical porous media analysis) in addition to being also decomposed in a time-

mean and a fluctuation (classical turbulent flow treatment).

These final equations in their steady-state form are:

2.1 Continuity Equation

r:r �uD ¼ 0 (1)

where, �uD is the average surface velocity (also known as seepage, superficial, filter

or Darcy velocity) and r is the fluid density. Equation (1) represents the macro-

scopic continuity equation for the gas.

2.2 Momentum Equation

r � r
�uD �uD
f

� �
¼ �r fh�pii

� �
þ mr2�uD þr � �rfhu0u0ii

� �
þ frg

� mf
K

�uD þ cFfr j�uDj�uDffiffiffiffi
K

p
� 	

(2)

where the last two terms in (2), represent the Darcy and Forchheimer contributions.

The symbol K is the porous medium permeability, cF ¼ 0:55 is the form drag

coefficient, hpii is the intrinsic (fluid phase averaged) pressure of the fluid, m
represents the fluid viscosity and f is the porosity of the porous medium.

Turbulence is handled via a macroscopic k � e model given by:

r � r �uDhkii
� �

¼ r � mþ mtf
sk

� �
r fhkii
� �� 	

� rhu0u0ii : r�uD þ ckr
f hkii j�uDjffiffiffiffi

K
p � rfheii

(3)
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r � r �uDheii
� �

¼ r � mþ mt’
se

� �
r fheii
� �� 	

þ c1 �rhu0u0ii : r�uD

� � heii
hkii

þ c2 ckr
f heii j�uDjffiffiffiffi

K
p � c2rf

heii2

hkii (4)

where

� rfhu0u0ii ¼ mtf2hDiv �
2

3
frhkiiI (5)

and

mtf ¼ rcm
hkii2

heii (6)

Details on the derivation of the above equations can be found in [18].

2.3 Macroscopic Energy Models

There are two possibilities to handle energy transport across porous burners. In the

simplified model, we assume the so-called “Local Thermal Equilibrium Model –

LTE”, in which the average solid temperature is seen to be numerically equal to the

mean gas temperature. When the solid and the gas temperate differ by a consider-

able amount, the “Local Non-thermal Equilibrium Model – LNTE” applies and

distinct energy balances become mandatory for each phase. Transport equations for

both models follow below.

2.3.1 One Energy Equation Model (LTE)

Although the Local Thermal Equilibrium hypothesis (LTE) is known to be inap-

propriate to handle large temperature differences between the solid matrix and the

burning gas, this simple mathematical framework may provide insight for investi-

gating the role of the mechanisms of turbulence and radiation, ultimately contribut-

ing to the developments of more advanced and sophisticated simulation tools. As an

example, one energy equation models have been applied for analyzing combustion

in porous media by Mohamad et al. [8] and de Neef et al. [25].
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The governing equation for energy transport is:

@ð½r cpf fþ rs cps ð1� fÞ�hTiiÞ
@t

þr � ðr cpf � �uDhTi
iÞ ¼

r � Keff � rhTii g þ fDH Sfu

n (7)

where, hTii is the averaged temperature for both the solid and the liquid, Keff ,

given by:

Keff ¼ f kf þ ð1� fÞ ½ks
zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{conduction

þ 16sðhTiiÞ3
3br

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{radiation

�

8>>>><
>>>>:

9>>>>=
>>>>;

I

þ Ktor|ffl{zffl}
tortuosity

þ Kdisp|ffl{zffl}
dispersion

þKt þKdisp;t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
turbulence

(8)

is the effective conductivity tensor, DH is the heat of combustion [J/kg], br is the
extinction coefficient [1/m], s is the Stephan-Boltzmann constant, Sfu is the rate of
fuel consumption [kg/m3s] to be commented below and I is the unit tensor. In (8) all

mechanisms contributing to heat transfer within the medium, together with turbu-

lence and radiation, are included in order to compare their effect on temperature

distribution.

A steady state form of (7) reads:

r � r cp
�

f
�uDhTiiÞ ¼ r � Keff � rhTii

n o
þ fDH Sfu (9)

where all additional mechanisms of transfer, as mentioned, are included in Keff .

2.3.2 Two Energy Equation Model (NLTE)

In cases where average temperatures in distinct phases are substantially different,

macroscopic energy equations are obtained for both fluid and solid phases by also

applying time- and volume- average operators to the instantaneous local equations

[26]. As in the flow case, volume integration is performed over a Representative

Elementary Volume (REV). After including the heat released due to the combustion

reaction, one gets for both phases:
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Gas:

r � ðrf cpf uDhTf iiÞ ¼ r � Keff; f � rhTf ii
n o

þ hiai hTsii � hTf ii
� �

þ fDH Sfu; (10)

Solid:

0 ¼ r � Keff;s � rhTsii
n o

� hiai hTsii � hTf ii
� �

; (11)

where, ai ¼ Ai=DV is the interfacial area per unit volume, hi is the film coefficient

for interfacial transport, Keff ;f and Keff ;s are the effective conductivity tensors for

fluid and solid, respectively, given by:

Keff; f ¼ f kf
zffl}|ffl{conduction

8<
:

9=
; Iþ Kf ;s|{z}

local conduction

þ Kdisp|ffl{zffl}
dispersion

þKt þKdisp;t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
turbulence

(12)

Keff;s ¼ ð1� fÞ ½ks
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{conduction

þ 16sðhTiiÞ3
3br

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{radiation

�

8>>>><
>>>>:

9>>>>=
>>>>;

Iþ Ks; f|ffl{zffl}
local conduction

(13)

In (12) and (13) all mechanisms contributing to heat transfer within the medium,

together with turbulence and radiation, are here also included in order to compare

their effect on temperature distribution. Further, such distinct contributions of

various mechanisms are the outcome of the application of gradient type diffusion

models, in the form (see [26] for details).

Turbulent heat flux:

� r cp
� �

f
f hu0iihT0

f ii
� �

¼ Kt � rh �Tf ii : (14)

Thermal dispersion:

� r cp
� �

f
f hi�uiTf ii

� �
¼ Kdisp � rh �Tf ii: (15)

Turbulent thermal dispersion:

� r cp
� �

f
f hiu0 iT0

f ii
� �

¼ Kdisp;t � rh �Tf ii: (16)

Local conduction:
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r � 1

DV

Z
Ai

ni kf Tf dA

2
64

3
75 ¼ Kf ;s � rh �Tsii

�r � 1

DV

Z
Ai

ni ksTs dA

2
64

3
75 ¼ Ks;f � rh �Tf ii

(17)

The sum of the two terms in (17) gives rise to the tortuosity tensor appearing in

(8). For the sake of simplicity, theses terms are here neglected. In (10) and (11) the

heat transferred between the two phases was modeled by means of a film coefficient

hi. A numerical correlation for the interfacial convective heat transfer coefficient

was proposed by Kuwahara et al. [27] for laminar flow as:

hiD

kf
¼ 1þ 4ð1� fÞ

f

� �
þ 1

2
ð1� fÞ1=2ReDPr

1=3

valid for 0:2 < f < 0:9 (18)

For turbulent flow, the following expression was proposed in Saito and de

Lemos [26]:

hiD

kf
¼ 0:08

ReD
f

� �0:8

Pr1=3; for 1:0x104 <
ReD
f

< 2:0x107 valid for

0:2 < f < 0:9;

(19)

2.4 Mass Transport

Transport equation for the fuel reads:

r � ðr �uDh �mfuiiÞ¼r � rDeff � rðfh �mfuiiÞ�’ Sfu (20)

where h �mfuii is the mass fraction for the fuel. The effective mass transport tensor,

Deff , is defined as:

Deff ¼ Ddisp|ffl{zffl}
dispersion

þ Ddiff

zffl}|ffl{diffusion

þDt þ Ddisp;t|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
turbulence

¼ Ddisp þ 1

r
m’
Sc‘

þ mt’
Sc‘;t

� �
I

¼ Ddisp þ 1

r
m’;ef
Sc‘;ef

� �
I (21)
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where Sc‘ and Sc‘;t are the laminar and turbulent Schmidt numbers for species ‘,
respectively, and “ef” denotes an effective value.

2.5 Simple Chemistry

In this work, for simplicity, the chemical exothermic reaction is assumed to be

instantaneous and to occur in a single step, kinetic-controlled, which, for combus-

tion of a mixture air/methane, is given by the chemical reaction [8]:

CH4 þ 2ð1þCÞðO2 þ 3:76N2Þ ! CO2 þ 2H2Oþ 2CO2 þ 7:52ð1þCÞN2

(22)

For N-heptane, a similar equation reads [28]:

C7H16 þ 11ð1þCÞðO2 þ 3:76N2Þ ! 7CO2 þ 8H2Oþ 11CO2

þ 41:36ð1þCÞN2

(23)

and for Octane, one has:

C8H18 þ 12:5ð1þCÞðO2 þ 3:76N2Þ ! 8CO2 þ 9H2Oþ 12:5CO2

þ 47ð1þCÞN2

(24)

where C is the excess air in the reactant stream at the inlet of the porous foam. For

the stoichiometric ratio, C ¼ 0. In all of these equations, the reaction is then

assumed to be kinetically controlled and occurring infinitely fast. A general expres-

sion for them can be derived as:

CnH2m þ ðnþ m
2
Þð1þCÞðO2 þ 3:76N2Þ ! nCO2 þ mH2O

þðnþ m
2
ÞCO2 þ ðnþ m

2
Þ3:76ð1þCÞN2

(25)

where the coefficients “n” and “m” can be found in Table 1. Equation (25) is here

assumed to hold for the particular examples given in the table.

The rate of fuel consumption over the total volume (gas plus solid) was deter-

mined by a one step Arrhenius reaction [29] given by:

Sfu ¼ r2A h �mfuiih �moxii exp½�E=R h �Tii� (26)

Table 1 Coefficients in the

general combustion equation

(25)

Gas n m (n + m/2) (n + m/2) � 3.76

Methane 1 2 2 7.52

N-heptane 7 8 11 41.36

Octane 8 9 12.5 47
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where h �mfuii and h �moxii are the volume-time averaged mass fractions for the fuel

and oxidant, respectively, A is the pre-exponential factor [1 � 1010 m3/(kg s)] and

E is the activation energy [1.4 � 108 J/kmol], where all values used are the ones

commonly used in the literature for combustion of methane. The heat generation

rate is calculated as:

_Q ¼ DH Sfu (27)

where Sfu is computed by (26).

Density r in the above equations is determined from the perfect gas equation for

a mixture of perfect gases:

r ¼ Po

RTf
P‘
1

m‘

M‘

(28)

where Po is the absolute pressure, R is the universal gas constant [8.134 J/(mol K)]

and M‘ is the molecular weight of species ‘.

3 Results and Discussion

For two-dimensional cases using the LTE model, the set of equations above, in

Sects 2.2 and 2.3.1, were solved for a two dimensional combustor whereas for the

NLTE model, detailed in Sect. 2.3.2, one-dimensional flow was considered.

For one-dimensional cases and the NLTE model, simulations assumed given

temperatures (solid and gas) and fuel mass fraction at inlet, x ¼ 0. At exit,

x ¼ 12 cm, a zero diffusion condition @ð Þ=@x ¼ 0 for all variables was consid-

ered. For the solid temperature, a balance between the energy conducted to the

exit of the burner and the radiation leaving the porous material to the environment

was applied. Further, an initial length of 2 cm was considered to be made of a

material that prevents flash back of the flame, which is commonly referred to in

the literature as “flame trap” [30]. Ignition, is existing, was then calculated for

x > 2 cm.

In both 1D and 2D cases, the finite–volume technique was employed to dis-

cretize the transport equations. The resulting algebraic equation set was relaxed

using the well-known segregated method SIMPLE. Further, the flame front position

was the sole outcome of the solution process and no artificial numerical set-up was

implemented for holding the flame at some particular location.

As mentioned, two sets of results are reported below, namely those obtained with

the LTE hypotheses, for 2D flows in a burner, and additional computations using

the NLTE approach, for simple 1D calculation.
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3.1 Two-Dimensinal Flow: LTE Model

For the first set of results, the problem considered consists in having a porous media

confined in a channel, through which a mixture of fuel and air enters from the left,

as shown in Fig. 1. The fuel/air mixture is injected through an inlet clearance of size

less than the burner height, so that flow expansion occurs past the chamber

entrance.

Figure 2a shows the effect of inlet velocityUin on the flame front, whose location

is here assumed to be related with the heat release rate computed by (26). Figure 2b

repeats same simulation of Fig. 2a, using now a higher air-to-fuel ratio, C = 0.8.

Combustion of a lean mixture reveals that the flame front is more sensitive to the

incoming mass flow rate and that the flame front is pushed towards the exit, leading

eventually to the opening of the combustion front for higher velocities. As such,

unburned gas leaves the chamber for higher mass flow rates.

Finally, Fig. 2c presents the effect of air-to-fuel ratio while keeping the total

mass flow rate constant through the combustor. As the mixture becomes leaner, the

flame front is pushed towards the right, and the effect seen above, the opening of the

combustion front, is observed. Consequently, unburned fuel leaves the chamber.

This effect is more pronounced as C increases, a result which is coherent when

comparing Fig. 2a, b.

3.2 One-Dimensinal Flow: NLTE Model

For one-dimensional flow using the Non-Thermal Equilibrium model NLTE, the

computational grid was generated with a concentration of points close to the

Insulated walls

Air + Fuel
mixture 

Porous Burner
H=0.05

L=0.1 m 

Fig. 1 Two-dimensional combustor model, LTE model
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beginning of the combustion section (x ¼ 2 cm), where steep temperature and

species gradients were expected to appear. Two grids were employed with 120

and 240 nodes in the x direction, respectively. Figure 3 shows temperature profiles

calculated with both mentioned grids and indicates that no detectable differences

exists between the two sets of results. For this reason, all simulations in this work

make use of the 120 node stretched grid.

a

b

c

Turbulence and Radiation Models
Y=0.0, f=0.8

1.75

1.50

2.00

2.50

2.25

2.80

uin = 0.5 m/s

uin = 1.25 m/s

0.75m/s

1.25m/s
1.0m/s

Y = 0.0
0.2

0.4

0.6
0.8

Turbulence and Radiation Models
uin =1.25m/s, f=0.8

Turbulence and Radiation Models
Y=0.8, f=0.8

Fig. 2 Flame front location for turbulence and radiation models, f ¼ 0.8: (a) effect of inlet

velocity,C ¼ 0.0, (b) effect of inlet velocity, C ¼ 0.8, (c) effect of excess airC, Uin ¼ 1.25 m/s
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Figure 4a shows the effect of excess air C on the gas temperature, Tf , and solid

temperature, Tp. Temperature levels for the stoichiometric case and for C ¼ 0:8
gave numerical values close to those from [31]. Likewise, mass fraction behavior of

species CH4, CO2 (Fig. 4b) and H2O, O2 (Fig. 4c) follow closely those reported by

[31], for the one-equation simple combustion model here presented. Excess air

reduces the final mass fraction of CO2 and water and raises the amount of oxygen

not participating in the combustion reaction. These results are the outcome of the

single step reaction (22) that links the consumption and production rates of indivi-

dual constituents of the mixture.

Figure 5 shows the dependence of temperature levels on inlet velocities Uin. As

axial flow is increased, one can note a slight reduction of peak values of tempera-

tures, follow by the movement of the flame towards the exit of the burner. Although

the movement of the flame front is in accordance with simulations by [32], here a

reduction on the maximum values of temperatures was calculated, which is in

disagreement with findings in the literature [32] where the temperature rises as

the inlet mass flow rate is increased. One possible explanation for this contrary

behavior is that there are a number of distinct parameters and assumptions in both

calculations sets, here and in [32], spanning from mathematical to numerical

modeling hypotheses, which might affect the final results.

Four different thermo-mechanical models are now compared, namely Laminar,

Laminar with Radiation Transport, Turbulent, Turbulent with Radiation Transport.
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Fig. 3 Grid independence studies for one-dimensional cases, NLTE model
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Radiation model is included by considering the radiation transport term in the Tp –
equation (13). Turbulence modeling is handled by resolving the k � e model

equations (3) and (4) in addition to solving for the macroscopic turbulent eddy

viscosity mt’ , equation (6). In all cases, combustion is simulated via a unique simple

closure, which is presented by equations (22) and (26).

Numerical simulations obtained with different models are presented in Fig. 6

for two values of Uin. Figure 6a shows that for a low value of Uin, the flame (solid

lines) stabilizes close to the beginning of the burning section (x ¼ 2 cm), inde-

pendently of the mathematical model applied. Solid temperature are influenced by

radiation transport, which tends to smooth out temperature differences within the

solid matrix, enhancing, as such, the regenerative advantage of porous burners

(dashed lines). Regeneration is achieved by preheating the gas prior to the

combustion zone. In fact, the use of a turbulence model in conjunction with

radiation transport gives the higher temperature peak of the gas temperature at

the flame position. Increasing the inlet mass flow rate (Fig. 6b), the flame is

pushed towards the burners exit, regardless of the model used. Here also radiation

transport substantially affects the solid temperature distribution, but definitive

conclusions on the appropriateness of each model can only be reached after

careful comparison with experimental measurements. This shall be the subject

of future research efforts.
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Fig. 5 Effect of inlet gas velocity on temperature fields
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4 Concluding Remarks

This chapter presented two- and one-dimensional simulations for a mixture of air

and methane burning in a porous material. Both LTE and NLTE models were

applied. Four different thermo-mechanical models were compared along with a

unique simple closure for combustion. Results indicate that a substantially different

temperature distribution pattern is obtained depending on the model used. For high

excess air or gas velocity, the flame front moves towards the exit of the burner.

Results herein motivates further research work on the subject of reactive turbulent

flow in porous burners and should be seen as a preliminary step towards reliable

simulation of real porous combustors.
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