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Preface

The “Modern Engineering: Science and Education” (MESE) conference was ini-
tially organized by the Mechanical Engineering Department of Peter the Great St.
Petersburg Polytechnic University in June 2011 in St. Petersburg (Russia). It was
envisioned as a forum to bring together scientists, university professors, graduate
students, and mechanical engineers, presenting new science, technology, and
engineering ideas and achievements.

The idea of holding such a forum proved to be highly relevant. Moreover, both
location and timing of the conference were quite appealing. Late June is a won-
derful and romantic season in St. Petersburg—one of the most beautiful cities,
located on the Neva riverbanks, and surrounded by charming greenbelts. The
conference attracted many participants, working in various fields of engineering:
design, mechanics, materials, etc. The success of the conference inspired the
organizers to turn the conference into an annual event.

More than 130 papers were presented at the fifth conference MESE-2016. They
covered topics ranging from mechanics of machines, materials engineering, struc-
tural strength, and tribological behavior to transport technologies, machinery
quality, and innovations, in addition to dynamics of machines, walking mecha-
nisms, and computational methods. All presenters contributed greatly to the success
of the conference. However, for the purposes of this book only 19 papers, authored
by research groups representing various universities and institutes, were selected for
inclusion. I am particularly grateful to the authors for their contributions and all the
participating experts for their valuable advice. Furthermore, I thank the staff and
management of the university for their cooperation and support, and especially, all
members of the program committee and the organizing committee for their work in
preparing and organizing the conference.

Last but not least, I thank Springer for its professional assistance and particularly
Mr. Pierpaolo Riva who supported this publication.

Saint-Petersburg, Russia Alexander N. Evgrafov
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Bench Tests of Vibroacoustic Effects

Pavel A. Andrienko, Vladimir I. Karazin and Igor O. Khlebosolov

Abstract The paper touches upon issues of vibroacoustic tests of manufactured
and assembled units because the final assembly of units or equipment usually
enables limiting the range of effects and modeling the actual behavior of the
equipment under test. A characteristic property of the required test equipment is the
possibility to initiate combined vibroacoustic loads on various mechanical systems.
This imposes a number of requirements upon the designed equipment. The paper
gives a number of examples for calculating the design parameters of vibroacoustic
test benches.

Keywords Test equipment � Vibroacoustic test benches � Acoustic test benches �
Vibrorotary test benches � Electro-pneumatic generator

The process of simulating various systems’ behavior in liquid or gaseous media for
many years has been of interest among scientists and developers in various fields of
science and technology. The traditional method to simulate occurring loads, when
testing units, uses shock and vibrating tables [1, 2] which use various layouts of
impact simulation (mechanical, hydraulic, pneumatic, electric, etc.). A distinctive
feature of such tests is that each unit or piece of equipment is impacted separately.
This, in turn, leads to the “overtesting” effect because there has to be overlapping
impact ranges (duration, frequency, forcing, etc.), significantly exceeding actual
values of operational conditions of the equipment itself.

However, it is obvious that, in the case of moving some body in liquid or
gaseous media, the equipment’s frame or casing consumes power load (overload),
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and interior units and apparatus are subject to composite action. As a matter of fact,
this action is a combination of vibratory load and acoustic action.

In this case, not only are the aerodynamic properties of the equipment (or its
outer frame) of great interest, but also a number of other parameters. An important
group of such parameters of systems and equipment is the inertial properties. They
significantly influence the system’s behavior when it is moving, its stability and
controllability [3–6]. It is obvious that coordinates of the center of mass and inertia
components should be determined after the final assembly of the equipment unit in
the frame.

Besides, it should be noted that mathematical description (modeling) of such
processes, despite the development of modern computational technologies and
software, usually requires experimental verification, especially at the stage of final
adjustment and improving the technology of producing, installing, integrating, and
placing fixing and anchoring elements, etc.

There occurs the necessity of creating hybrid testing machines to test the pro-
duced and assembled units of the equipment before their launching into manu-
facture (in the case of stock-produced equipment) or their final acceptance (in the
case of one-off equipment), because the final assembling of units or the equipment
generally allows limiting the range of generated effects and modeling the actual
behavior of the equipment under test. The characteristic feature of such testing
equipment should become the opportunity to create combined vibroacoustic loads
upon the various mechanical systems.

The combined vibratory and acoustic actions are implemented in a test bench
[7], which has a reverberation chamber of about 3 m3 in volume and
electro-pneumatic sound generators. The table for placing the test object is com-
bined with the vibrator’s instrument table, which is installed in the lower part of the
test bench. The combination of mechanical and acoustic vibrations creates a specific
medium according to the chosen simulation action.

An alternative to such a way of load simulation is using electro-pneumatic
vibrators, which enable combining acoustic pressure upon the object with the
point-recurrent force action within the set range of frequencies [8].

The purpose of this paper is to analyze a number of parameters of made effects
and how they can affect the design of the testing equipment.

Let us note that vibroacoustic loads are created by one or several
electro-pneumatic vibrators. The operation principle of pneumatic vibrators is based
on creating air flows aimed at the test object.

The most important parameters are the parameters of the air medium that create
the impact: the correlation of pressures inside the pneumatic vibrator and of the
environment; air density; the ratio of specific heats; and acoustic speed. Besides, the
design parameters of the pneumatic vibrator and the test object should also be taken
into account: the diameter of the nozzle and nozzle throat; the distance between the
nozzle and the object; and the jet angle towards the object.

One of the important factors of the created action is the speed of the air stream,
coming out of the electro-pneumatic vibrator. The initial data for calculation is the
working air pressure within the pneumatic generator Pp, the air density q = 1.29

12 P.A. Andrienko et al.



kg/m3, the ratio of specific heats k = 1.4, and the acoustic speed of the air
vs = 322 m/s.

If the section of the outlet, from which the flow emerges, has a constant
diameter, then the flow speed is determined by the equation:

v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � k � Pp 1� Pout

Pp

� �k�1
k

� �
� Pout

Pp

� �1
k

k � 1ð Þ � q

vuuut
; ð1Þ

where Pout is the pressure at the nozzle outlet.
Allowing for the stated parameters enables determining the dependence of the

flow speed on the pressure difference inside and outside the electro-pneumatic
vibrator (it should be noted that, depending on the pressure difference, the flow
mode can be precritical and critical, at which the flow speed equals the speed of
sound):

According to the shape of the section through which the air flow emerges, the
flow speed can vary over a wide range of values. Figure 1 shows the dependencies
of the speed of the flow coming out of the nozzle with a round section and of the
flow coming through the de Laval nozzle. The nozzles, according to theory [9, 10],
ensure the maximum flow speed of the gas

The impact force of the air flow out of the nozzle is determined by the formula
[11]:

F ¼ 1:06� 4 � 10�4 � l
d0

� �
� q � v2 � S; ð2Þ

0

200

400

600

800

1 10
3×

P

v, m/s
b

a

p

Fig. 1 The view of the dependency of the gas-flow speed on working pressure: graph a—out of
the nozzle with the uniform round section; graph b—out of the de Laval nozzle
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where l is the distance between the nozzle and the test object, d0 is the diameter of
the nozzle, and S is the area of the nozzle’s cross-section.

The approximate view of dependency (2) for the flow out of the nozzle and the
de Laval nozzle is shown in Fig. 2.

It is obvious that the dependency of the flow-impact force on the distance
between the nozzle and the object under action will be linear.

To increase the impact force, several gas flows can be used, aimed at one point.
In this case, the flow will be directed at angle a towards the surface and dependency
(2) takes the form of:

F ¼ q � v2 � S � sin a; ð3Þ

An example of such a configuration is given in Fig. 3.
To create a transient load, the idea of creating intermittent air flows, directed at

the test object, seems interesting. Such flows are obtained when the compressed air
comes through spinning and immovable discs which have through-holes (the
scheme is similar to a large number of schemes of gas passing through turbines).

The level and frequency of the vibratory action are regulated by pressure in the
power-supply tube of pneumatic vibrators and the rotary speed of their electric
motors. The number of holes and their relative positions in the discs can be used to
regulate the pulse ratio (Fig. 4).

A wide range of generated frequencies imposes specific requirements upon the
test object’s suspension and restraint system, which should be untuned from natural
frequencies and the frequencies of the testing action. The design model of the
suspension is given in Fig. 5.

Pp

F

b

a

Fig. 2 The view of the dependency of the flow impact force on working pressure: graph а—out
of the nozzle; graph b—out of the de Laval nozzle
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The design dependencies of the dimensioned low-frequency suspension are
given below and enable determining the natural frequencies of the suspension. The
initial parameters are the test object’s mass, the length of wire ropes, and their
diameter and quantity.

The natural (cross, vertical) frequency of the object fcross is determined by the
formula of a physical pendulum:

fcross ¼ 1
2p

ffiffiffiffiffi
g
L1

r
; ð4Þ

Fig. 3 The load configuration with the use of several gas flows

0 2 4 6 8
q, rad

FFig. 4 An example of the
dependency of the transient
load F on the rotation angle
q of the electro-pneumatic
vibrator’s moving disc
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where g is gravitational acceleration and L1 is the length of the vertical suspension.
The natural long (along axes X, Y) frequency fal is determined by the expression:

fal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � Swr � cos b � n

L2 �Mwr

s
; ð5Þ

where E is the Young’s modulus of wire ropes’ materials, Swr is the area of the wire
ropes’ cross-section, b is the angle between a tension cable and a corresponding
axis, L2 is the length of the tension cable, and n is the number of tension cables.

The given dependencies (4) and (5) make possible determining the borders of
toughness and the natural frequencies of the suspension, depending on the material
and in various directions.

Based on the design dependencies given in the paper, it is possible to obtain the
values of the design parameters complex of vibroacoustic test benches, which will
enable creating load conditions within the required range and running valid tests of
units and the assembled equipment.

Fig. 5 The design model of the suspension: 1 test object; 2 electro-pneumatic generators;
3 vertical suspension; 4 tension cables

16 P.A. Andrienko et al.
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Stability of Walking Algorithms

Anastasia Borina and Valerii Tereshin

Abstract This paper presents the synthesis of a control system for a biped, walking
dynamic robot. Such control system should provide the stable walking [3]. In this
paper, stability is defined as limited deviations of speed and coordinates of the
center of gravity of the robot from its required values at the end of each step. The
control system has a feedback containing “the ideal mechanism” [16]. The equa-
tions of the ideal mechanism enable to define the time and place of putting down the
feet at the end of each step, on the basis of the general requirements of walking. An
ideal mechanism should be similar to the object of control [2, 7]. In this case, such
ideal mechanism is the turned spatial mathematical pendulum. To check the
described control system, as a physical model of the object of control employs a
solid body on two weightless feet [4, 10]. For stable walking, it is convenient to
develop algorithms that define the coordinates and speed of the center of gravity at
the end of a step. In this paper the limitation of a general member of the sequence of
coordinates and speed is investigated on the simple examples of walking [14],
and the operation of the control system of the mentioned physical model is
illustrated.

Keywords Biped walking � Walking robots � Dynamic walking � Control system

Introduction

The walking robot is an operational mechanism that can be used as the mechanical
device to replace humans or their legs [12] during operations that are the hazardous
to the health and lives of people. Most of the developments in this field of the
making and controlling walking robots involve stable and static systems, but their
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main shortcomings are heavy weight and low speed. For increasing their speed [15]
and maneuverability, it is necessary to raise their dynamic stability [6, 13]. It is
supposed that a biped device with small point feet can attain the greatest speed and
maneuverability.

Description of Control Algorithms

For defining control algorithms based on the ideal mechanism, let us use the
movement equations of the spatial turned pendulum [1] for the moment at the end
of a step:

xtp � xl ¼ 1
2 x0 � xl þ _x0

k

� �
wþ 1

2 x0 � xl � _x0
k

� �
w�1

ztp � zl ¼ 1
2 z0 � zl þ _z0

k

� �
wþ 1

2 z0 � zl � _z0
k

� �
w�1

_xtp ¼ k
2 x0 � xl þ _x0

k

� �
w� k

2 x0 � xl � _x0
k

� �
w�1

_ztp ¼ k
2 z0 � zl þ _z0

k

� �
w� k

2 z0 � zl � _z0
k

� �
w�1

8>>>>><
>>>>>:

ð1Þ

Index «∙» means a derivative over time. The system of four equations (1) con-
tains twelve parameters, eight of them are set: x0; z0; _x0; _z0—coordinates and speeds
of the center of gravity; w ¼ ektp, tp—time of the step’s ending (the rate of walking
is usually the characteristic of a walking robot, which is calculated from the robot’s
physical properties); k ¼ ffiffiffiffiffiffiffiffi

g=L
p

, L—height of the center of gravity, g—acceleration
of a free fall. Also it is necessary to set two parameters from the list of final
conditions: xtp; ztp; _xtp; _ztp. Some ways of setting are possible. The system (1) allows
to define two final conditions at the end of a step and the coordinates of a foot
xl and zl.

Let’s illustrate simple algorithms of walking by numerical sequences [5] and
study their properties. When the walking is synchronized along axes x and z,
Eq. (1) breaks down into two identical subsystems. Let the robot walk along axis z.

ztp � zl ¼ 1
2 z0 � zl þ _z0

k

� �
wþ 1

2 z0 � zl � _z0
k

� �
w�1

_ztp ¼ k
2 z0 � zl þ _z0

k

� �
w� k

2 z0 � zl � _z0
k

� �
w�1

(
ð2Þ

Add and subtract each parameter from both parts of Eq. (2):

�wztp þ z0 ¼ zl 1� wð Þ � w _ztp
k þ _z0

k

ztp � wz0 ¼ zl 1� wð Þ � _ztp
k þw _z0

k

8<
: ð3Þ
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Subtract the first equation of system (3) from the second one to get rid parameter zl:

ztp � z0
� � � 1þwð Þ ¼ w� 1ð Þ � _ztp

k
þ _z0

k

� �
ð4Þ

or

_zn þ _zn�1 ¼ k zn � zn�1ð Þ; ð5Þ

where

k ¼ k
wþ 1
w� 1

� 1; zn ¼ ztp; zn�1 ¼ z0:

Let’s designate

_zn þ _zn�1 ¼ an; zn � zn�1 ¼ bn ð6Þ

where

an ¼ k zn � zn�1ð Þ; bn ¼ _zn þ _zn�1ð Þ
k

These equations are convenient for the creation of iterative procedures [9].

• Let coordinates of the center of gravity of the device zn at the end of the steps be
set. From Eq. (6), the expression for sequence of speeds _zn during the same
moments of time as functions from _z0 and sequence of zn can be calculated:

_z1 ¼ a1 � _z0
_z2 ¼ a2 � _z1 ¼ a2 � a1 þ _z0
_z3 ¼ a3 � _z2 ¼ a3 � a2 þ a1 � _z0

_zn ¼ ð�1Þn _z0 þ
Xn
k¼1

�1ð Þkak
 ! ð7Þ

1. Let the length of a step be constant

zn � zn�1 ¼ const ð8Þ

then:

an ¼ k zn � zn�1ð Þ ¼ a: ð9Þ
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The expressions for the sum in Eq. (7):

Xn
k¼1

ð�1Þkak ¼ a �
Xn
k¼1

ð�1Þk ¼ a
ð�1Þn � 1

2
ð10Þ

Therefore

_zn ¼ ð�1Þn _z0 þð�1Þna ð�1Þn � 1
2

¼ ð�1Þn _z0 þ a
ð�1Þ2n

2
� ð�1Þna

2
¼ ð�1Þn _z0 � a

2

� �
þ a

2
ð11Þ

or

_zn ¼ ð�1Þn _z0 � k
2

zn � zn�1ð Þ
	 


þ k
2

zn � zn�1ð Þ: ð12Þ

So from Eq. (12), if subtractions zn � zn�1ð Þ are constant, speeds _zn at the end of
steps are periodic with an amplitude 2 _z0 � k

2 zn � zn�1ð Þ� �
and their average values

are k
2 zn � zn�1ð Þ.

2. Let:

zn � zn�1j j ¼ const; ð13Þ

Then from Eq. (6):

an ¼ ð�1Þna: ð14Þ

The expressions for the sum in Eq. (7) are:

Xn
k¼1

ð�1Þkak ¼ a �
Xn
k¼1

ð�1Þkð�1Þk ¼ a � n ð15Þ

Therefore:

_zn ¼ ð�1Þn _z0 þ anð Þ ð16Þ

or

_zn ¼ ð�1Þn _z0 þ k zn � zn�1ð Þn½ �: ð17Þ
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If the length of the step is zn � zn�1, then speed _zn increases the amplitude of
fluctuations with a growth of the number of a step at any small module of step
length zn � zn�1j j, and, when zn ¼ zn�1, speed _zn ¼ ð�1Þn _z0.
• Let the changing-of-the-center-of-gravity speed _zn be known at the end of each

step. The expression for the sequence of coordinates zn during the same
moments of time is:

z1 ¼ b1 þ z0
z2 ¼ b2 þ z1 ¼ b2 þ b1 þ z0
. . .

zn ¼ z0 þ
Xn
k¼1

bk

ð18Þ

3. Let:

_zn ¼ _z ¼ const; ð19Þ

then:

bn ¼ b ¼ const; zn ¼ z0 þ n � b; zn � zn�1 ¼ b ð20Þ

where

b ¼ _zn þ _zn�1

k
¼ 2

_z
k

4. Let:

_z0 ¼ _z; _z1 ¼ 0; _z2 ¼ �_z; _z3 ¼ 0; _z4 ¼ _z; _z5 ¼ 0; _z6 ¼ �_z etc: ð21Þ

then:

zn ¼ z0 þ _z
k
cos

pn
2

� �
: ð22Þ

In this case, the walking device makes oscillating motions about z0 with
amplitude _z

k.
The described algorithms are realized for the walking, in the direct and in the

lateral direction, in various combinations. Depending on the type of programmed
walking, it is possible to set the following four options of parameters
_xtp; _ztp
� �

; _xtp; ztp
� �

; xtp; _ztp
� �

and xtp; ztp
� �

.
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Trajectories of the center of gravity of the biped robot, calculated on the basis of
described physical model at the simplest control algorithms, are presented on
Fig. 1.

Fig. 1 Trajectories of the biped robot during various types of programmed walking
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The locations of the feet are noted as points. It is necessary to limit all param-
eters [8, 17] defined by the design of the robot and by the level of walking comfort.

Conclusion

This paper determines that the limitation of step length leads to a loss of stability
[11]. Algorithms with fixed speed or more difficult sequences with general
parameters are stable.
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Deleting Objects Algorithm
for the Optimization of Orthogonal
Packing Problems

Vladislav A. Chekanin and Alexander V. Chekanin

Abstract This paper considers the orthogonal packing problem that is a problem of
placing all given orthogonal objects into a minimal set of orthogonal containers in
the form of parallelepipeds of arbitrary dimension. It proposes an algorithm for
deleting objects with the aim of effectively managing free spaces in containers. This
algorithm provides a possibility of realization of heuristic methods, which are based
on excluding some placed objects from a container and consequently filling the
freed spaces within it more rationally.

Keywords Orthogonal packing problem � Bin packing problem � Recourse allo-
cation � Optimization

Introduction

The solution of a large number of resource-optimization problems can be reduced to
the solution of the orthogonal packing problem that is a classic problem of com-
binatorial optimization [19]. The orthogonal packing problem deals with the opti-
mal placement of given orthogonal objects into a minimal number of orthogonal
containers. The most commonly occurring orthogonal packing problems are bin
packing problems [10, 17]. These are actually involved in the solution of many
practical problems, including: container loading problems in transportation and
logistics systems; traffic planning problems in computing and network systems;
problems of rectangular cutting of materials; capital budgeting problem; calendar
planning problem; and many other important problems that deal with the allocation
and reallocation of resources in the form of orthogonal objects [1, 10, 13, 17–19].
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The number of dimensions of the most common problems of cutting and packing
is not more than three [1]. Problems with a dimension higher than three, aside from
only spatial dimensions, additionally often have non-spatial dimensions like time,
cost, and some others [11, 20].

All orthogonal packing problems are NP-complete in the strong sense [15].
Application of exact methods based on exhaustive search for NP-complete prob-
lems is ineffective (for the vast majority of practical problems, it is impossible with
limited resources of computer time). As a result, heuristic and metaheuristic opti-
mization algorithms are widespread for the orthogonal packing problems [2, 4, 11,
12, 14, 16]. The effectiveness of an optimization algorithm first of all is determined
by the depth of the search, which essentially depends on the amount of time
reserved for obtaining the optimal solution. To estimate the quality of a solution
coded in the form of a sequence of the objects to be placed, it is necessary to pack
all the objects into containers and calculate the density of the resulting placement
schemes. Since packing of objects is performed for each of interim solution (the
number of which be as much as tens of thousands or more), hence it is necessary to
use the efficient packing models and optimization methods, which provide the fast
placement of objects and a description of all areas filled by objects containers.

To describe positions of all objects in orthogonal containers of arbitrary
dimension, we use a previously developed model of potential containers [3, 7]. This
model describes free spaces of a filled container by a set of so-called potential
containers, which are orthogonal objects with the maximal dimensions that can be
placed into the container with no overlap with the objects already packed into it.
Quick access to potential containers is achieved though using of an effective
multi-level linked-data structure [5, 9]. This paper describes a deleting-objects
algorithm that is developed in relation to the model of potential containers. This
algorithm provides flexibility in managing objects through the possibility of
replacing them after their having been placed into a container. Usage of this
algorithm allows using methods of local replacements of objects with the aim to
increase the density of the resulting placement schemes.

Deleting Orthogonal Objects Algorithm

One of the effective methods applied for increasing the quality of a resulting
packing is its local improvement, which can be realized by deleting one or more
packed objects from a container with a consequently more rational filling of the
freed space by other objects. When an object is deleted from a container, it is
necessary to reorganize all potential containers around this object.

The superscript in the following formulas will be used to indicate the dimension.
Algorithm for deleting a D-dimensional orthogonal object i with the dimensions

w1
i ;w

2
i ; . . .;w

D
i

� �
from a container j with the dimensions W1

j ;W
2
j ; . . .;W

D
j

n o
contains the following steps.
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Step 1. Create a new empty D-dimensional orthogonal container j0 with the
dimensions equal to the dimensions of the original containers j, i.e. Wd

j0 ¼
Wd

j 8d 2 1; . . .;Df g.
Step 2. Place into the container j0 an object i0 with the dimensions wd

i0 ¼ wd
i 8d 2

1; . . .;Df g at a point with the coordinates equal to coordinates of the object
i placed into the container j: xdi0 ¼ xdi 8d 2 1; . . .;Df g.

Step 3. Create a list L0f g containing potential containers the position and dimen-
sions of which can be modified in container j after deleting the object
i. This list includes all potential containers k0 under the condition
xdk0 � xdi þwd

i 8d 2 1; . . .;Df g.
Step 4. Put into the container j0 at points xdk0 a set of objects with the dimensions

wd
k0 ¼ pdk0 8d 2 1; . . .;Df g, k0 2 L0f g, where pdk0 is a dimension of a

potential container k0 measured in the direction of the coordinate axis
d. When placing objects into the container j0, allow them to overlap each
other. Free orthogonal spaces remaining in the container j0 are described by
a set of potential containers placed in a list L00f g.

Step 5. Create a new empty D-dimensional orthogonal container j00 with the
dimensions equal to the dimensions of the original container j, i.e.
Wd

j00 ¼ Wd
j 8d 2 1; . . .;Df g.

Step 6. Put into the container j00 at points xdk00 a set of objects with the dimensions
wd
k00 ¼ pdk00 ; 8d 2 1; . . .;Df g, k00 2 L00f g. When placing objects into the

container j00, allow them to overlap each other. Free orthogonal spaces
remaining in the container j00 are described by a set of potential containers
placed in a list L000f g. This list of potential containers also describes a freed
space of the original container j formed in the area of the object i which is
to be deleted.

Step 7. Delete the object i from the container j.
Step 8. Change in the container j the list of its potential containers L0f g to the

obtained list of potential containers L000f g.
As an example, we consider a rectangular two-dimensional container with the

dimensions W1 ¼ W2 ¼ 100 as shown in Fig. 1. The parameters of the packed
objects and potential containers are given in Tables 1 and 2, respectively.

When deleting an object with the number i ¼ 2, it is necessary to reorganize
all potential containers from the list L0f g under the condition xdk0 � xdi þwd

i ;

k0 2 L0f g 8d 2 1; 2f g, i.e., potential containers with the numbers 2, 3 and 4 (see
Table 2).

The object 2, as well as objects with the dimensions wd
k0 ¼ pdk0 ; k

0 2 L0f g 8d 2
1; 2f g given in Table 3, are placed into a new container 1′. In this container is

formed a list of potential containers L00f g given in Table 4 and shown in Fig. 2.
All objects with the dimensions wd

k00 ¼ pdk00 ; k
00 2 L00f g (see Table 5) are placed

in a new container with number 1″ (see Fig. 3); as a result, there is formed a set of
potential containers L000f g given in Table 6.
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Fig. 1 Container 1 before deleting an object with number 2

Table 1 Packed objects (container 1)

No. Coordinate x1 Coordinate x2 Dimension w1 Dimension w2

1 0 0 30 30

2 0 30 70 50

3 0 80 40 10

4 30 0 60 20

5 70 30 10 50

Table 2 Potential containers (container 1)

No. Coordinate x1 Coordinate x2 Dimension p1 Dimension p2

1 0 90 100 10

2 30 20 40 10

3 40 80 60 20

4 70 70 30 30

5 80 20 20 80

6 90 0 10 100
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After deleting the object 2 from the container 1, it is necessary to replace all its
potential containers taken from the list L0f g to the potential containers from the list
L000f g (given in Table 6). All the potential containers describing the free spaces

remaining in the container 1 after deleting the object are given in Table 7 and
shown in Fig. 4.

Table 3 Packed objects (container 1′)

No. Coordinate x1 Coordinate x2 Dimension w1 Dimension w2

1 0 30 70 50

2 30 20 40 10

3 40 80 60 20

4 70 70 30 30

Table 4 Potential containers (container 1′)

No. Coordinate x1 Coordinate x2 Dimension p1 Dimension p2

1 0 0 30 30

2 0 0 100 20

3 70 0 30 70

4 0 80 40 20

1

1

2

4

2

3

4

3

x1

x2

Fig. 2 Container 1′
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Table 5 Packed objects (container 1″)

No. Coordinate x1 Coordinate x2 Dimension w1 Dimension w2

1 0 0 30 30

2 0 0 100 20

3 70 0 30 70

4 0 80 40 20

1

1

1, 2

4

3

4

5

3

2

x1

x2

Fig. 3 Container 1″

Table 6 Potential containers (container 1″)

No. Coordinate x1 Coordinate x2 Dimension p1 Dimension p2

1 0 30 70 50

2 0 70 100 10

3 30 20 40 60

4 40 20 30 80

5 40 70 60 30
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Conclusion

In this paper was considered the developed algorithm of deleting objects with the
subsequent creation of a set of potential containers describing all existing free
spaces around deleted objects. It is intended to use the algorithm for increasing the

Table 7 Potential containers after deleting the object (container 1)

No. Coordinate x1 Coordinate x2 Dimension p1 Dimension p2

1 0 30 70 50

2 0 70 100 10

3 0 90 100 10

4 30 20 40 60

5 40 20 30 80

6 40 70 60 30

7 80 20 20 80

8 90 0 10 100

1

2

3

4

3

7

8

x1

x2

1 4

5

6

2

Fig. 4 Container 1 after
deleting the object
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quality of resulting placement schemes for orthogonal packing problems of arbi-
trary dimension. The algorithm is included in the basic set of algorithms realized in
the developed application software, which is designed to optimize solutions of the
orthogonal packing problems [6, 8]. One of the promising areas of our future
research is related to the development and analysis of algorithms and methods of
local replacements of objects for increasing the density of resulting placement
schemes obtained with various heuristic and metaheuristic optimization algorithms.
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Computational Technique of Plotting
Campbell Diagrams for Turbine Blades

Vladimir V. Eliseev and Artem A. Moskalets

Abstract The technique of plotting the Campbell diagrams for turbine blades is
developed by means of mathematical modeling. Equations of blade oscillations in
the field of centrifugal forces are derived. The turbine blade is supposed to be a
naturally twisted rod. The numerical solution of the eigenvalue problem gives the
required dependencies of oscillation frequency on angular velocity. Calculations are
performed using the shooting method in Mathcad. The computational results for a
particular turbine blade are presented.

Keywords Turbine blade � Campbell diagram � Naturally twisted rods � ODE
system � Shooting method � Natural frequencies and modes � Mathcad

Problem

Blades on rotating turbines are influenced by steam or fluid jets generating periodic
excitation with rotational speed X. A blade as an oscillating system has a set of
natural frequencies xk (in theory, its number is infinite). In order to prevent reso-
nances, the inequality X 6¼ xk must be satisfied. However, this statement should be
clarified.

Firstly, the harmonics of frequencies 2X; 3X; . . . arise from the load Fourier
expansion. Secondly, the natural frequencies depend on angular velocity, because
the increase of centrifugal forces causes an increase in bending stiffness. Therefore,
this condition holds:

nX 6¼ xkðXÞ ð1Þ
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for all n; k having natural values. The Campbell diagram illustrates this inequality
graphically [1–3]. There are two families of functions of X: the left side of Eq. (1)
represents rays from the origin, the right side of (1) represents curves for xkð0Þ.
These values can be determined by means of modal analysis of a fixed blade
[4–10].

It is so important to meet the condition of Eq. (1) that expensive
Campbell-machines are created [1] to find the right side of Eq. (1) experimentally.
The purpose of this effort is to find xkðXÞ by mathematical modeling.

One-, two- or three-dimensional models can be used for blade modeling. The
number of dimensions depends on the proportions of the blade. It is naturally
twisted and has variable section. It is naturally twisted and has variable section
[11, 12]. The problem can’t be solved by means of elementary considerations, so
the nonlinear rod theory is required [13]. Modern approaches to the estimation of a
blade’s modal parameters are represented in articles [5–7]. These approaches are
based on computer mathematics [14].

Equations of Rod Theory

These equations were derived by Kirchhoff and then generalized by Cosserat. In
modern formulation [13], these equations can be written as:

Q0 þ q ¼ q€r;M0 ¼ Q� s;

j ¼ A �M; s ¼ P � s0
ð2Þ

Here Q;M are the vectors of force and moment, respectively; ð. . .Þ0 and ð. . . _Þ
denote the derivatives with respect to material coordinate s and time t, respectively;
rðs; tÞ is the radius vector of rod’s particle; s0 ¼ r00; s ¼ r0 are the unit tangent
vectors of rod axis before and after deformation, respectively; j is the strain vector
of bending and torsion; A is the compliance tensor, P is the rotation tensor, q is the
mass per unit length, and q is the load distributed per unit length.

The nonlinear equations [see Eq. (2)] are required for large deformation prob-
lems. Also, they are the basis for solving the problem of the superposition of small
deformations upon finite ones. In this case, each quantity has a small increment
denoted by a wave: ~r ¼ u; ~P ¼ h� P; ~q; . . .

Here, u; h are the translation vector and the vector of small angular displacement,
respectively. The varying the system (2) yields the following system:

~Q
0 þ ~q ¼ q€u; ~M

0 ¼ ~Q� sþQ� ðh� sÞ;
h0 ¼ A � ð ~M� h�MÞ; u0 ¼ h� s

ð3Þ
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It is a linear system, but its coefficients are determined by the state condition
before the variation and must be precomputed as functions of s and t.

Blade in the Field of Centrifugal Forces

The blade is supposed to be a straight-line, naturally-twisted rod [12] stretched by
centrifugal forces. The rotating frame of reference is used to account for inertial forces
as in the effort [15]. The system of ordinary differential equations (ODE) in com-
ponents becomes, from Eq. (3) in the case of harmonic oscillations at frequency x:

Q0
x þ qx ¼ �x2qux;Q

0
y þ qy ¼ �x2quy;

M0
x ¼ �Qy þQhx;M

0
y ¼ Qx þQhy;

h0x ¼ AxxMx þAxyMy; h
0
y ¼ AxyMx þAyyMy;

u0x ¼ �hy; u
0
y ¼ hx

ð4Þ

Here, the wave (symbol of variation) is omitted. The Cartesian coordinates x; y; z
are used: axis z is directed along the rod axis, while axes x; y are in the sectional
plane (Fig. 1).

The bending compliances Axx;Ayy;Axy are evaluated using simple engineering
formulas. The tension force Q is determined by the formula:

QðzÞ ¼ X2
ZL

z

q R1 þ nð Þdn; ð5Þ

where L is the length of blade, and R1 is the radius of rotor. The formula Eq. (5) is
derived from the balance equation for longitudinal forces. For the blade made at a
Russian factory, the relationship Eq. (5) is shown in Fig. 2 ðX ¼ 3000 rev=min):

Fig. 1 System of coordinates
for the blade
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The stiffness and inertial characteristics can be variable along the blade. To
account for this, the characteristics of both end sections and a few intermediate
sections are computed, and then the functional relationships are determined by
interpolation.

Eight boundary conditions must be specified for the system of Eq. (4).
Translational and angular displacements are zero at rigid support z ¼ 0; transverse
forces and bending moments are zero at free end z ¼ L:

The problems can be solved only numerically. Note that the system of Eq. (4) is
eighth-order in the case of forced vibrations (qx; qy are nonzero).

The equation x0 ¼ 0 must be added to that system for the free vibration case (the
order of the system Eq. (4) increases by one). The additional boundary condition is
a constant value of any quantity at one of the ends. The normalizing constant should
be included at the last stage of analysis, as is accepted in the theory of vibrations
[11, 12]. When plotting the Campbell diagrams, the case of free vibrations must be
considered.

Computation in Mathcad

The system of Eq. (4) in matrix form is:

Y 0 ¼ Fðs; YÞ; Y ¼ Qx Qy Mx My hx hy ux uy x2
� �T ð6Þ

where the form of the column F is clear from Eq. (4).
The boundary value problem for system Eq. (6) is solved by means of Mathcad

using the built-in functions sbval–rkfixed [14]. Calculated values of the first five
natural frequencies are:

x1 ¼ 741;x2 ¼ 1; 59 � 103;x3 ¼ 3; 95 � 103;
x4 ¼ 7; 47 � 103;x5 ¼ 1; 28 � 104

The corresponding eigenmodes are shown in Fig. 3.

Fig. 2 Tension force
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As shown in Fig. 4, these graphs are quite similar to those for the case without
centrifugal force.

Fig. 3 Normalized eigenmodes
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However, the centrifugal forces influence the lower frequencies considerably:

Xcf � X
Xcf

� 100% ¼ 35:6 9:4 5:5 3:3 1:2ð Þ%;

where Xcf ;X are natural frequencies for the case that accounts for centrifugal forces
and for the case without it, respectively.

The algorithm described above is not the only way to solve the problem. Also,
the variational method based on the Lagrange equations [7] enables evaluation of
all natural frequencies and plotting the diagrams for the right-hand side of Eq. (1).
However the expression for potential energy is needed, and centrifugal force must
be taken into account in it, which goes beyond the scopes of the present paper.

Campbell Diagram

An important stage of turbine design is plotting the Campbell diagram that repre-
sents the dependence of vibration frequencies on rotor speed. This diagram enables
finding the potential resonance regions. Initially, these diagrams were plotted using
experimental data: turbine blades were tested in the so-called Campbell-machines.
The main part of this facility is the vacuum chamber which contains the observable
bladed disc. The blades are excited by steam or water jets; electromagnets may be
used also.

Nowadays, there is a possibility of plotting the Campbell diagrams using a
computational approach. In this effort, the foregoing theory and Mathcad [14] are
used. The diagram for the blade under consideration is shown in Fig. 5.

Fig. 4 Second eigenmode.
The solid line is the model
with centrifugal forces, and
the line with points is the
model without centrifugal
forces

42 V.V. Eliseev and A.A. Moskalets



Fig. 5 Campbell diagram for
first three natural frequencies

However, the curve of natural frequencies is represented as a band, because the
frequencies have a spread of values. The permissible difference between the
maximum and minimum values of natural frequency is regulated by specifications.
The resonance region is the area defined by points of intersection between the
frequency band and the lines of harmonics. The resonances can be avoided by
detuning. In the case of transient motion, the dangerous resonant regime must be
passed through as quickly as possible [7], although the turbine can sometimes
operate in the resonance mode due to damping.

It shouldbenoted that theCampbell diagram is intended for estimating the resonance
regimes graphically. However, the foregoing technique makes it possible to find all
these regimes simultaneously. Assuming in Eq. (4) x ¼ nX, the resonance speed
valuesX can be found. It appears that these diagrams become useless. However, since
the set of resonance speeds is quite dense, therefore the process of speed estimation by
the shooting method is laborious. Nevertheless, the Campbell diagrams are effective.
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Conclusion

The elementary computational technique of plotting the Campbell diagrams was
developed. The equations of small deformations upon the finite stress-strain state
were used as the theoretical basis. The shooting method was employed to solve the
boundary eigenvalue problem for ninth-order ODE systems with Mathcad.
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Computer Simulation of Mechanisms

Alexander N. Evgrafov and Gennady N. Petrov

Abstract This article presents 2D and 3D models of the mechanisms created with
the tools “Model Vision” and “AnyLogic”. For the purpose of this research,
mechanisms with the following computing features were selected: redundant links,
redundant inputs, and singular positions, as well as multidirectional mechanisms.

Keywords Computer simulation � Interactive models �Model vision � Anylogic �
Turbulence mixer � Stewart platform � Hooke’s joint � Automobile differential

Introduction

The development of computer technology increases the importance of simulation
experiments for various mechanical problems, including the calculations for
mechanisms and machines. At the initial stage of a simulation experiment, the
object under study is replaced by the mathematical model presented in the form of,
for instance, differential equations. Subsequently, a program is created that solves
those equations with appropriate numerical methods. Modern means of visualiza-
tion enable us to see results not only as numerical tables and charts, but also as
objects with varied degrees of detail. Creation of interactive animated models is of
particular interest to researchers [1, 2].

These days, there appears to be many works on computer simulation methods of
mechanical systems animation that use visual animation effects instead of special
software applications [3]. Mathematical toolboxes such as MATLAB [4, 5] and
Mathcad [6–9] are considered to be particularly suitable for addressing the prob-
lems of visualization of the calculation results. Similarly, the referenced work [10]
provides an interesting example of the use of GeoGebra software in the study of
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kinematic geometry of planar mechanisms, while other works [11, 12] describe
animation of the various mechanisms’ kinematic schemes.

This article presents the use of the tools “Model Vision” and “AnyLogic”, which
can significantly simplify the solution and the visualization of a mathematical
model. More details on these software applications are available at: www.xjtek.com.

Toolboxes enable:
To carry out a simulation experiments, based on the principles of object-oriented

programming. The model can be divided into various individual devices, which, in
turn, could be taken from an existing library or created by the user. Relationships
between the devices are established using a user-friendly graphical interface.

To solve the algebraic and differential equations. Language resembling the one
utilized by Mathcad tools is used to present differential-algebraic equations.

To create a behavior model for each device that describes the change of behavior
of dynamical systems.

Simulation environments are intuitive and easy to use. This article provides
descriptions of several mechanical systems models created using these toolboxes.

Each model utilized:
Built-in 2D animation tools, which enabled the creation of the “remote control”

which included a variety of indicators, buttons, sliders. This “remote control” was
used to discretely or continuously change certain parameters of the model during
the simulation.

3D-animation tools that which made possible the observation of the object’s
movement in space during the simulation experiment (“Model Vision”).

Timeline and phase diagrams:
This article reviews several models, created with the above-mentioned tools.

Computer Simulation in “Model Vision”

1. Turbulence mixer

Figure 1 demonstrates the operation of the closed six-link spatial mechanism.
The mechanism connects two parallel axes 1 and 5, whereas five mobile units are
interconnected by six rotational kinematic pairs.

Fig. 1 The operation of the
closed six-link spatial
mechanism
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The mechanism has a redundant (excess) link, due to the fact that the axis of the
kinematic pairs that are connecting the links are mutually perpendicular. Link 3 is
shaped as a hollow sealed cylinder. Liquids or granular materials that are placed
inside this cylinder become mixed during the complex spatial movement.

2. Stewart platform with redundant inputs

The mechanism, presented in Fig. 2, is designed for positioning of the platform
in space. Platform jacks (“legs”) are shaped as hydraulic cylinders, which are linked
to the platform and the platform base by spherical joints. It is sufficient to have six
inputs for the normal operation of the mechanism, so each time two hydraulic
cylinders are disconnected. Active (running) cylinders are marked with a light gray
colour, and inactive—with a dark gray. Referenced work [13] describes the force
calculation for closed-linkage mechanisms, while another work [14] focuses on the
selection of six active drives, which ensure optimal operation of the mechanism.
Calculation of the geometry and kinematics of closed mechanisms, as described
above, is presented in detail in works [15, 16].

3. Coupling (“Model Vision”)

The coupling transmits rotation between the two shafts with parallel axes.
Figure 3a shows a 2D-animation window, where we establish the following values:
angle of the axes crossing F = 0, the distance between the guides h = 1.5;
misalignment by axes dx = 1, dy = 1. Figure 3b presents the coupling design
concept, while Fig. 3c illustrates the kinematic scheme (the transition from one

Fig. 2 The mechanism designed for positioning of the platform in space
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scheme to another is performed by pressing the corresponding button in the 2D-
animation window).

Axes 1 and 3 are connected to the liner 2 by two mutually-perpendicular rec-
tilinear kinematic pairs and have the same angular velocity.

4. Hooke’s joint

Hooke’s joint is designed to transmit the rotation between shafts with crossed
axes. In the 2D-animation window (Fig. 3a), we establish the angle of the axes
crossing as F = 1, while dx = dy = h = 0. Figure 4 shows design concept (a) and
kinematic scheme (b) of the joint. In this case, the links 1 and 3 are connected to the
liner 2 by rotational kinematic pairs with axis intersecting at an angle of 90°.

5. Spatial mechanism

Figure 5a shows the 2D-animation panel that enables setting the desired length
of the links (OA, AB, BC, CD) and coordinates the joint-D connection to the pillar

(a) (b)

(c)

Fig. 3 Examples of 2-D animation window (a), coupling design scheme (b) and kinematics
scheme (c) in Model Vision
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(XD, YD, ZD) of the spatial five-link mechanism with a single degree of mobility
(Fig. 5b). Four mobile links compose a closed kinematic chain.

Joints O, A, C, D are cylindrical, while joint B is spherical. The 2D-animation
panel indicates the orientation with respect to the local coordinate systems (FX, FY)
for cylindrical kinematic pairs. This example demonstrates that even a slight change
in the size of the mechanism causes it to adopt so-called “special positions” when it
could not pivot.

6. Rear axle of the car (“Model Vision”)

Figure 6a shows the 2D animation panel. Figure 6b is the design concept of the
rear axle of the rear-drive car. By pressing the buttons “Body” and “Differential” on

(a) (b)

Fig. 4 Design concept (a) and kinematic scheme (b) of the Hooke’s joint

(a) (b)

Fig. 5 2-D animation panel (a) and the spatial five-link mechanism with a single degree of
mobility (b)
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(a) (b)

(c) 

Fig. 6 The 2D-animation panel (a), design concept of the rear axle of the rear-drive car (b), and
example of zooming into an image (c)
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the 2D-animation panel, it is possible to “remove” (make invisible) the axle body
and differential cover. By moving the corresponding sliders, it is possible to shift
the image in X, Y, Z coordinates, as well as to zoom in and out (Fig. 6c). Coefficient
KV (“Rotation”) shows the ratio of the left wheel’s speed to the average axle speed
(2 < KV < 2). By changing this ratio, the differential operation can be observed
when the left and the right wheels are rotating at different speeds. Slider “velocity”
makes it possible to increase or decrease the average speed of the motor.

7. Toothed gearing

Figure 7a shows the engagement of the gear wheel 1 with the wheel 2 and the
tool rack 3. The gearing module m1 is established to be 1 mm. The following
parameters and settings can be changed on the 2D animation panel (Fig. 7b):

x1n, x2n—nominal offset coefficients for cutting wheels (for backlash-free gearing);
dx1, dx2—additional offset coefficients for cutting wheels (those that do not affect
the center distance, and thus there is backlash in gearing);
X, Y, “Scale”—shifting the image in X, Y coordinates as well as zooming in and out;
“beta”—helix angle (for helical gearing);
S—tooth thickness;
dra1, dra2—additions to the corner radius.

By pressing the corresponding buttons, it is possible to make various radii of the
wheels, gearing lines, gearing-entry points, etc. visible. Figure 7a shows only the
gearing line and gearing-entry points. The 2D animation panel (Fig. 7b) shows the
following background information: the number of gear teeth, displacement factors,
radii of the circles (including pitch circles, base circles, top circles and root circles),

(a) (b)

Fig. 7 Engagement of the gear wheel 1 with the wheel 2 and the tool rack 3 (a) and many points
of background information are changeable on the panel (b)

1m = 25.4p, where p is the diametric pitch.
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minimum radii with in volute profiles, center distance, coefficient of overlap but-
ting, specific sliding coefficients, and the presence of interference and undercutting.
Correspondingly, it is possible to specify the desired number of teeth of the wheels
in the “Model Vision” environment (before creating the executive file).

Computer Simulation in “AnyLogic”

The AnyLogic toolbox by AnyLogic Company (former XJ Technologies) makes it
possible to create dynamic models that are compact and thus can be uploaded to the
Internet and used in an online mode. AnyLogic is a professional computer program
designed to model and visualize the behavior of various systems, including
mechanical ones. To significantly simplify creation of new models of plane lever
mechanisms for users, authors have created an object library. An object is a model
that describes any part of the mechanism: e.g., link or an Assur group. Objects
“link” or “Assur group” are similar, but not identical, to links and Assur groups
typical for the theory of mechanisms and machines. For instance, the library
includes six types of object “link”: pillar with the revolute pair or the rectilinear
sliding pair; and crank with the revolute pair or the rectilinear sliding pair, as well as
the connection link with the revolute pair or the rectilinear sliding pair. Two later
objects are designed for calculation of the coordinates of the aiming point or the
attachment point. The library utilizes double-link Assur groups. They differ not
only in the combination of revolute and rectilinear sliding pairs, but also in the link
number in the group (which is of a variable length). For instance, in the link group
R_PR (Pair RPR1), the first link has variable length, while in the link group RP_R
(Pair RPR2), the second link does. Thus, the library contains ten objects “Assur
group”. Another object—the motor—is designed to change the input position. With
these objects, the user can easily create a model of any Assur mechanism of the 2nd
class.

With the created model, the user can:
observe the mechanism in motion;
change all the parameters of the mechanism;
create graphs of functions xE(t) and yE(t) of the randomly selected aiming point E;
investigate the effect of the mechanism parameters on its performance; and
observe special (singular) positions.

It is also possible to zoom in and out and to change the rotation speed of the
crank, as well as to change the mechanism position in the animation window.

Figure 8 presents the program’s interface. It includes an animation window,
control panel, and graph-output windows. The animation window is intended to
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display an animation of the mechanism, geometric variable parameters, and position
of the aiming point E, as well as to signal if the mechanism falls into a “special”
position. Using the sliders on the bottom of the window, it is possible to change the
position of the fixed coordinate-system origin in the animation window.

The control panel contains operating and control elements to start and stop the
animation mechanism, to set and modify the parameters of the mechanism and to
position the aiming point, as well as to manage information output in the animation
window.

Graph-output windows display the graphs of functions xE(t) and yE(t), where
E is the defined aiming point. Pressing the switch “Scheme” results in the display of
the mechanism’s kinematic scheme with the symbols of changeable parameters,
instead of graphs. The following are the dynamical models, created with the
AnyLogic toolbox.

Fig. 8 Program interface of the AnyLogic toolbox
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8. Six-bar linkage

Two Assur groups are attached to the crank: RRR and RRP (Fig. 8). The second
Assur group is attached to the first link of the first group (connecting rod). The
aiming point E is located at the first link of the second group.

The resulting visualized model of the mechanism can be used for both research
and educational purposes (for example, to solve the trajectory problem).

It is worth mentioning that, in case the mechanism is unable to pivot, the
program does not “freeze” and crash, but automatically adjusts the size of one of the
links to achieve the condition of the crank existence; the adjusted part of the link
then is highlighted in red, and the line thickness is increased.

Figure 9a shows a model of the mechanism in a special position (connecting rod
is perpendicular to the crosshead’s line of motion). Figure 9b shows a model of the
mechanism, for which the solution of a system of equations for a group RRR does
not exist. To allow the mechanism to pivot, the link length is increased (adjustment
highlighted by a thickened line).

Several examples of ready-made mechanisms (ten four-link and 15 six-link) are
already contained in the AnyLogic library.

9. V-shaped internal combustion engine

The model demonstrates the four-stroke internal combustion engine (Fig. 10):
the movement of links, change in pressure in the cylinders, and opening and closing
of the valves. The model allows adjusting the size of links, angle V, and the
parameters of camshaft lobes.

(a) (b)

Fig. 9 Model of the mechanism in a special position (a) and a model of the mechanism for which
a solution of the equations does not exist (b)
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Conclusion

The packages described not only provide the solution of algebraic and differential
equations in real time, but also visualize the behavior of the mathematical model.
User-friendly interface enables quick creation of 2D and 3D images and necessary
graphics. Using a variety of libraries makes the creation of the same-type models
even easier.

The examples presented in this article can be found via the “Theory of mech-
anisms and machines” portal at: http://tmm.spbstu.ru/download.html.
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Energy-Flux Analysis of the Bending
Waves in an Infinite Cylindrical Shell
Filled with Acoustical Fluid

George V. Filippenko

Abstract This paper considers the problem of joint oscillations of an infinitely-thin
cylindrical shell entirely filled with an ideal acoustical fluid, including the free
vibrations of the system. The propagating waves and energy flux are analyzed in the
system shell-liquid. It also compares various mechanisms of energy transmission in
the shell and the input of the energy flux in the water.

Keywords Propagation of the waves � Cylindrical shell � Vibrations of the shells �
Local and integral energy fluxes

Statement of the Problem

Nowadays, cylindrical shells are widely used in the construction of various
pipelines, the supports of hydraulic engineering constructions, oil platforms,
wind-based electric powers, standing on a shelf, etc. Calculation of these compli-
cated systems demands major computing resources. Therefore, the consideration of
simpler model problems that have exact analytical solutions [1–21] is realized. With
these models, it is possible to analytically explore the main effects and also to use
them as test problems for computing packages.

Let us start by considering an infinite cylindrical shell filled with an ideal
compressible liquid, where the acoustic pressure P(x, y, z) is described by the
Helmholtz equation Eq. (1) in the cylindrical system of coordinates—where axis z
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coincides with axis of the cylinder (see Fig. 1a). All processes are supposed to be
harmonic with frequency x [7–12].

ðDþ k2ÞPðr; z;uÞ ¼ 0; k ¼ x=cw;

0� r�R; 0�u� 2p; �1\z\þ1:
ð1Þ

The factor e−ixt describes the time-dependence and is omitted. The liquid is supposed
to be ideal and compressible. The density is qw, and the velocity of sound is equal to cw.

Two relations take place at the shell–fluid boundary: kinematic (the adhesion
condition)

unðz;uÞ ¼ 1
qwx2

@Pðr; z;uÞ
@r

����
r¼R

ð2Þ

and dynamic (balance of forces acting on the shell)

qc2s
R2 Lwu ¼ ð0; 0; PÞt: ð3Þ

The following notations are also used: I is the unit matrix operator, andLw andL are
matrix differential operators [13]. All these operators are represented by the matrices
3 � 3. For example, L � [Lij], and i, j = 1, 2, 3 consists of elements (see [13])

L11 ¼ a1½m�f@z
2 þ @2

u�; L12 ¼ mþ @u
f@z ;

L13 ¼ @uð1þ 2a2½1� @2
u �f@z

2�Þ;
L22 ¼ m� @2

u þf@z
2; L23 ¼ mf@z ;

L33 ¼ a2ð2@2
u � 2þ 2mf@z

2 � ½@2
u þf@z

2�2Þ � 1;
L21 ¼ L12; L31 ¼ �L13; L32 ¼ �L23;

(a)  (b) 

Fig. 1 Physical model (a); dispersion curves (b)
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where f@z ¼ R@z; a1 ¼ 1þ 4a2; m� ¼ ð1� mÞ=2. Here the following geometrical
parameters of the shell are used: R is radius, h is thickness. The properties of the
cylinder material are characterized by E, m and qs—Joung’s module, Poisson
coefficient, and volumetric density accordingly. The surface density of eqðeq ¼ qSh)
of the cylindrical shell cs are introduced cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=ðð1� m2ÞqsÞ

p
.

The following dimensionless parameters are put in: a ¼ h
R

� �
=

ffiffiffiffiffi
12

p
(the relative

thickness of the cylindrical shell) and w = xR/cs (the dimensionless frequency).
The important roles in shell-fluid interaction are played by the dimensionless
velocity c = cs/cw and dimensionless density q = qs/qw. It can be noted that
operator Lw in Eq. (3) governing the motion of a thin-walled shell came from [14].
The dispersion analysis of a cylindrical shell of this kind was fulfilled in [15, 16].

The source of an acoustic field in a waveguide is the vibration of the cylinder
shell, caused by the incident wave propagating from the infinite part (z = −∞) of
the shell. The frequency of this incident harmonic wave is equal to x. All processes
in the system shell–liquid are supposed to be harmonic at this frequency.

Determination of the General Representation for Acoustic
and Vibrational Fields

Further, it is more convenient to involve the new vector (ut, uz, P)
t (4) using Eq. (2):

ut
uz
un

0
@

1
A ¼ M

ut
uz
P

0
@

1
A; M ¼

1 0 0
0 1 0
0 0 1

qwx2
@
@r
��
r¼R

0
@

1
A: ð4Þ

Then, Eq. (3) can be rewritten in the form:

S
ut
uz
P

0
@

1
A ¼

0
0
0

0
@

1
A � 0; S ¼ LMþN; N ¼ w2

~qx2

0 0 0
0 0 0
0 0 1

0
@

1
A: ð5Þ

The solution of Eq. (5) is searching in the form:

ut
uz
P

0
@

1
A ¼ Aei kz

1 sinmu
n cosmu

cJmðr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

p
Þ cosmu

0
@

1
A; ð6Þ

where |f|2 + |n|2 + |c|2 = 1. Here, the following notations are used: A, f, n, c are
arbitrary constants; Jm is the Bessel function with index m, and k is the
wavenumber which we are looking for. It can be noted that if k < k, then the Bessel
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function Jm is converted to Im function. After substituting Eq. (6) into Eq. (5), the
following algebraic system is obtained:

Ŝx ¼ 0; x ¼ ð1; n; cÞt: ð7Þ

Operator Ŝ is the Fourier image of operator S. The dispersion Eq. (8) is obtained
from the condition of existence of nontrivial solution of this system

det Ŝ ¼ 0: ð8Þ

We are looking for the real positive solutions of this equation. If the corre-
sponding set of wavenumbers is founded one can solve Eq. (7) and define the
previously unknown constants f, n, c. After defining the constants, the complete
solution of the problem, in terms of displacements of the shell u(u, z) and pressure
P(r, u, z) in the liquid, is determined.

As was mentioned above, all processes in the liquid and shell are supposed to be
harmonic with frequency x. It is convenient to average the energy streams on a
period of oscillations T = 2p/x. The integral energy stream ! in the liquid along
axes z through the cross-section of the cylinder can be written in the form:

C ¼ x
2

1
2qwx

Z2p
0

du
ZR
0

Im �P
@P
@z

� �
rdr: ð9Þ

The integral stream of the energy along axes z through the cross-section of the
cylinder shell looks like this:

P ¼ x
2

Z2p
0

Imðu4;Fu4ÞC4Rdu ¼ Pt þPz þPn þPp; ð10Þ

where u4 = (ut, uz, un, up)
t, up = −@zun is the vector of generalized displacements,

f4 � Fu4 = (ut, uz, un, up)
t is the vector of generalized forces, F is the matrix

differential operator 4 � 4 [13],

Pt ¼ pqc2s
x
2
Im ð2a2ð1� mÞ@u

~@zun � m� ða1~@zut þ ~@uuzÞÞ�ut
n o

;

Pz ¼ pqc2s
x
2
Im ð�m@uut � ~@zuz � munÞ�uz

n o
;

Pt ¼ pqc2s
x
2
Im a2�unððð2� mÞ@2

u � mþ @2
uÞ~@zun � 2@u

~@zutÞ
n o

;

Pp ¼ pqc2s
x
2
Im a2ðmð@2

u � 1Þuz � 2m@uut þ ~@2
uunÞð�~@z�unÞ

n o
:

ð11Þ
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Here letters t, z, n, and q marked tangential (rotating), longitudinal, normal and
momentum components of energy flux P and components of vector of generalized
displacements u4.

In the particular case of axisymmetric rotating movements of the cylindrical
shell, the integral energy flux in it looks like this:

P0 ¼ 2pqc2s
x
2

Aj j2 b � P0
t ; b ¼ w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 4a2Þð1� mÞ=2

p
: ð12Þ

Numerical Calculations

Equations (9)–(10) can be used to obtaining the normalized energy stream S in the
shell and its components S ¼ P=ðPþCÞ; St;z;n;p ¼ Pt;z;n;p=ðPþCÞ. The vectors
of generalized displacements u4 and forces f4 are also normalized:
u4 :¼ u4= u4

�� ��; f4 :¼ f4= f4
�� ��. In the figures, the curves corresponding to rotational

(t), longitudinal (z), bending (n), and moment (p) components of the energyfluxes
and generalized vectors are marked by digits 1–4. The following values of
parameters of the system are assumed for calculations m ¼ 0:3; cs=c ¼
3:6; qs=qw ¼ 7:8; h=R ¼ 0:05 that correspond to the interaction of water with a
shell made of steel.

In Fig. 1b, the dependence of dimensionless wavenumber K � k� xR=cw on
nondimensional frequency w is shown for the first five dispersion curves (these
curves are marked by digits 1–5). The multiple veering (quasi-intersection) of these
curves is well noted. It is caused by interaction of the two waveguides (liquid and
cylindrical shell). The dispersion curves corresponding to the “dry” shell
(dash-dotted lines) are marked by letters A, B, and C.

The elastic wall of the shell is the intermediate case between absolutely rigid and
absolutely soft bounds of the liquid waveguide. According to the variation of the
system parameters, it becomes more rigid or softer. In Fig. 1b, the dispersion curves
corresponding to absolutely rigid and absolutely soft boundary conditions are
marked by dashed and dotted lines, respectively. These lines are reciprocated due to
the features of the Bessel function’s zeroes in the dispersion Eq. (8). The dispersion
curves of the elastic system follow (with frequency increasing) to dashed or dotted
lines after passing the points of veering. Partly these curves follow the lines of the
“dry” shell. The character of the waves on different part of the dispersion curves can
be obtained by the analyzing the energy-flux components. According to Eq. (11),
the integral fluxes (curves 5) and its components St, Sz, Sn, and Sp (curves 1–4) are
represented on Fig. 2b, 3 and 4 as functions of dimensionless frequency w.

Various energy-flux components are dominated in different parts of dispersion
curves. For example, the behavior of the wave from the first dispersion branch
Fig. 2a differs from the others significantly. It is very apparent that the wave-energy
flux from the first dispersion branch is significant in a wider span of frequencies,
and the banding component of the energy flux is dominant in it. The rotation
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and longitudinal components of the energy flux are dominant in other waves
(Figs. 2b and 3b).

The veering of the dispersion curves corresponds well with the changing of the
specific weight of various components of the energy fluxes (Figs. 2 and 3). Figure 3
for the wave from the fifth dispersion curve well illustrates this effect. The rota-
tional, longitudinal, and bending character of the wave is consequently changed
after passing the points of veering (Fig. 1b). Some components of the energy flux
can be negative in a small span of frequencies (for example, “z” component for the
first branch and “t” component for the second and third branches).

(a)  (b) 

Fig. 2 Energy flux components in the shell for the wave from the first dispersion branch (a); from
second dispersion branch (b)

(a)  (b) 

Fig. 3 Energy-flux components in the shell for the wave from the third dispersion branch (a);
from the fifth dispersion branch (b)
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The dependence of integral energy fluxes on w for various branches (1–5) is
shown in Fig. 4a. The maximums of integral energy fluxes are moving to the higher
frequencies, and the role of the bending component is increased when the number
of branches increase.

The normalized integral-energy flux and the absolute values of generalized
vectors components for the wave from the first branch are represented on Fig. 4 as
functions of dimensionless frequency w. Displacements and forces do not “feel” the
points of veering well and show erratic behavior.

Conclusions

The considered exploration of wave processes shows that energy-flux analysis
provides additional opportunities for detailed analysis of shell-liquid interaction.
The components of displacement vectors (the usual method) and forces can show
the erratic behavior. The energy flux is more informative, because it takes into
account not only the displacement and force vectors, but also the shift of phase
between them.
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Principle of Compatibility of Heterogeneous
Additives in Triboactive Metalworking
Fluids for Edge Cutting of Metals

Vladimir A. Godlevskiy, Vladimir V. Markov
and Nadezhda V. Usoltseva

Abstract The problem of the combined usage of surface and chemically-active
additives within metalworking fluids (MWF) for edge-cutting processing has been
studied. The test results of MWFs containing surface-active additives with
oxygen-containing reactive components have been demonstrated. The hypothesis of
the special structure of boundary lubrication layers formed by two triboactive
components of different chemical nature has been defined.

Keywords Edge cutting � Metalworking fluids � Additives � Surfactants �
Peroxide

Introduction

Highly-active MWFs are usually used in the case of cutting metals and compounds
of low processability. This activity is stimulated by introducing reactive additives
containing sulfur, phosphorus, and halogens. Due to ecological reasons, these
materials are not advisable to use. And here we need to solve a problem of devising
a safer method of processing.

It was suggested using a surfactant’s solution supplemented by a reactive oxy-
genated compound—highly-dispersed inorganic peroxide—as a way to solve this
problem [1]. The possibility of using hydrogen peroxide as a MWF has already
been mentioned before, but the fact that this compound quickly decomposed in
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water solutions made this method unreliable [2]. In this respect, changing hydrogen
peroxide to more thermodynamically-stable metal peroxides gives a new chance for
creating a stable technological composition, separating the active component
directly in the contact zone. However, an additional problem occurs here: how to
provide colloid stability of the solid peroxide powder in liquid media. This task
could be solved by selecting a certain surfactant serving not only as a lubricant
agent but also as a stabilizer of suspension.

Testing of WMF-model compositions containing additives selected according to
the above principle enabled reanalysis of the interaction process of the two types of
components (surface-active and reactive) during the boundary-layer formation in
the contact zone of cutting.

Short Preview

There has been a long scientific discussion over the mechanism of outer-media
influence during metal processing with cutting. The special features of penetration
kinetics of the lubrication material into the contact zone have been in the center of
these discussions. Also, a lot of attention has been given to the role of physical and
chemical processes in boundary-layer formation. Outer-media penetration into the
cutting zone has received a very transparent explanation within the framework of
micro-capillary model [3–5], which is based on considering consequential phases
correlating with certain processes of interaction between the media and solid sur-
faces. It is quite logical to surmise that, due to the high temperature in the contact
zone of the tool with the processed material, the lubrication layer is formed mainly
as a result of chemo-sorption of the additives’ active components and the products
of destruction of the lubrication material’s organic components [6].

Up to now, a number of the experimental facts within these views has not been
clearly understood. For example, why do the colloid surfactant’s solutions possess
the lubrication effect when cutting and nonpolar organic components (e.g., benzol)
turn out to be ineffective [5]? Why do surfactants having different extensional
molecular structures, but almost the same composition of elements, so strongly vary
with regards to tribological activity? Even within the surfactant’s homological
array, one can see significant differences in the lubrication activity and, at the same
time, it is clear that, when the radical chain is lengthened, the additive efficiency
grows [7] (the so called Traube effect).

The fact that surfactant start having an antifriction effect when cutting even in
small concentrations (less than hundredth of percent) confirms that the lubrication
efficiency of these additives is first of all connected to the surface processes. We
have justly pointed out the fact that the concentration curve of the surface-active
additive efficiency is very similar to the isotherm curve of the surface-tensions of
the same additive [8].

The joint activity of surfactants and reactive components is still left unclear. One
of the suggestions was that reactive particles introduced into the MWF and
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contained in the additives of high-pressure (HP additives), such as oxygen, sulfur,
and chloride, due to the smallness and higher mobility of particles, must compar-
atively more quickly reach the surface and form the hemosorption layer earlier than
the physically-adsorpted film made of amphiphiles is formed.

However, in the case of WMF composed of active molecules of both types, the
action of surface-active additive would be insignificant, while the experiments show
that, within the composition, these additives act synergistically in the cutting. In the
meantime, it has been discovered that, in common friction processes, the presence of
oxygen significantly lowers the effects of adsorptional plastification and dispersal [9].

Hypothesis of a Lubrication Layer’s Combined Structure

Now we have data that the organic mesogenes, forming developed and ordered
(epitropic) supramolecular structures (for example, entities of heterocyclic type) on
the surface, are quite efficient as additives for metalworking [10–12] though it is
unlikely that the structural order of large molecules on the surface could play a
significant role under such high temperatures.

It is a well-known fact that compositions of two surfactants with different
molecular structures (for example, ionic with non-ionic surfactants) have a much
better tribological efficiency than each of these components used separately [13,
14]. In our view, nothing can explain this fact except the specifics of the surface
supramolecular structure of the boundary layer.

The multitude of the above-listed facts confirms that, during the process of
lubrication-layer formation in cutting, macromolecular components, such as colloid
surfactants, preserve to some extent their molecular specifics, and do not disinte-
grate in spite of high-contact temperatures (400–1100 °C), which, in the majority of
real technological activities of mechanical processing, exceeds the thermo-
deconstruction temperature of the given compounds. Hence, it would be logical
to try to find the factors which allow organic agents to preserve their lubrication
ability under the high-temperature cutting conditions. In order to make the
described situation clear, we have come up with the following working hypothesis:

• Abnormal thermostability of colloid surfactants and other mesogenic amphi-
philes macromolecules appear as a result of their joint activity with reactive
media components (e.g., air oxygen and HP-additives).

• As a result of the process similar to the hypothetic process of “tribopolymer-
ization” [15] “the third body”, “secondary structure” is formed on the surface of
the microcapillary cavity between the tool and chips which represents a lubri-
cation film of the complex composition the basis of which is formed by
amphiphile molecules.
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• The role of the reactive component in forming such a film is as follows: (a) it
chemically connects the part of active surface centers; (b) it forms chemical
“bridges” connecting radical chains of amphiphile and forming solid and ther-
mostable supramolecular structure.

In Fig. 1, the hypothetical structure of the boundary lubrication composed of
different types of particles is shown. One can see that, in the case of the joint usage
of adsorption and reactive components within a MWF, a more extensionally
developed and evidently more solid structure of the layer is formed on the surface
(Fig. 1c). A process of vulcanization of elastomers can serve as a very close
analogy to our hypothetical process.

A reasonable objection to the described process could be the assertion that it is
difficult for this type of complex structure to be formed in high temperatures when
the entropy of the molecular structure is increased and tends to become disordered.
However, we must take into account the fact that the temperature role in such a
process is ambivalent.

Fig. 1 Schematic image of
the structure of the
boundary-lubrication layer
formed on the surfaces of
chips and tools at cutting in
MWF containing:
a surface-active additive;
b reactive additive;
c additives of the both types;

—diphilic
molecule of surfactant;

—particle of reactive
component; —
physisorptional bond;

—hemosorptional
bond
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Along with the disorder tendency, the temperature growth accelerates the ther-
modynamically possible processes and diffusion gets quicker—and these factors
provide for more rapid lubrication-layer formation and its faster structural ordering
long before it is rigidly fixed by chemical bonds. Besides, we can’t but underline
the fact that the process of such a “composite”-layer formation is irreversible,
because bonding between its elements is a chemical process and to disorder such a
layer means to fully destroy it.

As we have already noted, the idea of a composite, “polymerized” lubrication
layer is well matched by the multiple experiments which we would like to confirm
with our empirical data.

Experimental

We have performed experiments involving semi-rough turning of stainless steel
12X18H10T with cutters possessing a cutting part made of carbides of VK8 and
T5К10 brands. The turning was made with the following modes of cutting: cutting
speed v = 3.2 m/c, feed s = 0.13 mm/rot, cutting depth t = 0.5 mm. WMF were
fed into the cutting zone as a free-falling stream at an expense of 500 ml/min. The
geometry of the cutters had the following parameters: c = 9°; a = 9°; u = 90°;
u1 = 9°; k = 0°.

The experiments were conducted at a turning machine supplied with devices for
simultaneous registration of several parameters of processing. Three orthogonal
components of the cutting force [EMF of the natural thermocouple and dimensional
wear and tear of the tool in radial direction (coordinate y)] were measured. The
influence of the additive of a non-ionic, surface-active additive to water under the
name of Syntamid-5 (S-5) over the above parameters is shown in Fig. 2.

The diagram show that, over the significant cutting path during processing of
solid and viscous material, a small amount of surface-active additive significantly
lowers the dimensional wear of the tool.

From the diagram (Fig. 2), one can conclude that increasing the surfactant’s
concentration above some minimum value (apparently necessary for formation of
continuous adsorptional layer) meaning does not provide for efficiency growth. It
confirms the surface-adsorption nature of this additive activity. A small amount of
peroxide added to the surfactant’s solution leads to the immediate lowering of the
tool-wear intensity (irrespectively of surfactant concentration). Very similar results
have been achieved with using the solid fine peroxides MgO2, CaO2 and ZnO.

From Fig. 2, it follows that the addition of a small amount of an additive of
surfactant, as well as peroxide additives, results in a substantial reduction of tool
wear. And, with the joint application of surfactant and solid-peroxide suspension,
the synergic effect is observed, i.e., joint application of additives reduces deterio-
ration more strongly, rather than application of each additive separately. Such an
effect is called synergism. The reason, in our opinion, resides in features of a
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“hybrid” structure of a boundary layer as shown on Fig. 1. To confirm our sug-
gestions, it is necessary to conduct specialized experiments for the instrumental
investigation of the layer structure formed after cutting.

Conclusion

Thus, the above-listed experimental data on using simultaneously surface- and
chemical-active additives within a WMF are in compliance with the proposed
working hypothesis based on the proposal of a special “hybrid” structure of the
boundary-lubrication layer, similar to the structure of tribo-polymeric films.

Acknowledgements The work was supported by the Ministry of Education and Science of the
Russian Federation (projects # 9.700.2014 and # 4.106.2014K).

Fig. 2 The results of experiments on turning of stainless steel 12H18N10T by a carbide tool of
VK-8 in water solution of nonionic surfactant Syntamide 5 (S-5) with the addition of pulverized
non-organic solid peroxides
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Some Ways of Stable Counterbalancing
in Respect to Moving Masses
on Centrifuges

Vladimir I. Karazin, Denis P. Kozlikin, Alexander A. Sukhanov,
Valery A. Tereshin and Igor O. Khlebosolov

Abstract The paper looks into methods of balancing centrifugal forces of inertia in
vibro-rotational stands. It tackles the problem related to defining the generalized
condition for stable operation of the balancing unit, which is built on the principle
of a compound lever.

Keywords Vibro-rotational testing stand � Vibrations � Stability �
Counterbalancing of inertia forces � Vibrafuge � Combined accelerations �
Dynamic balance

Quite a number of papers are dedicated to the issues of simulation of the combined
influences in a field of linear acceleration [1–11]. The authors emphasize the
specific importance of this research area, since, no doubt, it is economically feasible
to use laboratory equipment for testing items at various stages of its development.

Broadband vibration on the basis of constant and variable linear accelerations
[12, 13] is simulated on vibro-rotational balancing stands, which are hard to create
since non-standard solutions are to be used and the scopes of research are large.

Such balancing stands are specific to operate because of reciprocal transportation
of the table with a test item. Moreover, the centrifugal force is variable, since it
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depends on the radius of mass position and is continuously preventing the system
from returning towards radius shortening.

Further on, there is a brief review of well-known design solutions aimed at
counterbalancing of inertia forces exerted on relatively mobile elements of the stand,
which carry out controllable radial back-and-forth motions during tests [14–17].

In Fig. 1 the rotor of centrifuge 1 is rigidly connected to the body of vibration
stand 2. Test item 3 is positioned on the table of vibration stand 4. The centrifugal
force F, which occurs as the centrifuge rotates at the angle velocity X, tends to
prevent the back-and-forth motion Dx of the relatively mobile system 3 and 4. The
inertia force is compensated by balancing mass 5 connected by link 6 to table 4.
Such a counterbalancing scheme can be used with small values of Dx, realized
within the elastic strength of link 6. In other cases, the lost stability of the system is
obvious, which occurs due to the lack of restoring forces [14, 16].

Figure 2 shows a scheme where linear compression springs 7 are used to
compensate the inertia force F. The former ones are established between shaker
table 4 and stop 8, which is an element of platform 2. The restoring force, pro-
portional to displacement Dx according to the stiffness of the spring, ensures the
required balance during back-and-forth motion. However, the efficiency of such a
scheme is limited by the range of linear accelerations of the centrifuge [16].

If the upper limit of the test range of linear accelerations simulated on the
centrifuges increases, there is a bigger displacement of stop of Dx, which, in turn,
imposes design features in the context of the implemented compression springs and
the stop on the plant. For example, to compensate for the centrifugal force of inertia
of 60,000 H, ten coil springs are needed, and the stop must be displaced by 1.5 m.

Both schemes presented in Figs. 1 and 2 are united in the following solution in
Fig. 3. Springs 7 are transferred into the left part of platform 1 and form a restoring
force on balancing mass 5. In such a combination, springs 7 are loaded to a lesser
extent and their practical implementation becomes possible.

Fig. 1 The rotor of
centrifuge 1 is rigidly
connected to the body of
vibration stand 2
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When springs are used for a restoring force, it ensures the stability of the
system’s operation, but this solution has a specific feature. The fact is when the
rotation velocity of the centrifuge X changes, the initial interacting force of springs
7 and balancing mass 5 must be changed too. Such adjustment may be provided
with a radial displacement of stop 8, which is rigidly linked to platform 1.

One more scheme that makes stable balancing of the mobile systems of the
vibro-rotational stand possible is presented in Fig. 4. Instead of coil mechanical
springs, elastic properties of compressed air may be used [15]. The necessary inertia
force F is created by delivering air under design pressure in enclosed volume 7.
Balancing mass 5 performs the role of a piston component, whereas the enclosed
volume carries out the functions of a cylinder.

Fig. 2 Scheme where linear
compression springs 7 are
used to compensate the inertia
force F

Fig. 3 Schemes presented in
Figs. 1 and 2 are united in
solution
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In Figs. 5 and 6 two design schemes are presented. They show unloading of
inertia forces on the rotor of the centrifuge with the use of pneumatic cushions 7
[15]. They have been widely used in the production industry and are good for
tackling our problem due to a number of characteristics. First, they have a low
proper frequency, which is why vibrations can be simulated without distortion.
Second, the carrying capacity is high and deformation can be considerable in the
working direction, but virtually absent in other directions. Third, positions and
carrying capacity can be fairly easily adjusted. Forth, there are no connections
which have to be sealed, like those, for example, as in the scheme in Fig. 4.

The schemes in Figs. 5 and 6 vary in terms of the position of pneumatic
cushions. In the first case, it is located on the periphery of the rotor and serves as a

Fig. 4 One more scheme that
makes stable balancing of the
mobile systems of the
vibro-rotational stand
possible. Instead of coil
mechanical springs, elastic
properties of compressed air
may be used

Fig. 5 The first of two
design schemes that show
unloading of inertia forces on
the rotor of the centrifuge
with the use of pneumatic
cushions 7
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buffer for the inertia forces to be counterbalanced. In the second scheme, link 6 is
used, which connects the table of vibrator 4 and the bottom of cushion 8.

The drawback of these schemes is the need to supply air under controlled
pressure.

In Fig. 7 there is a design scheme of centrifugal forces counterbalancing where a
lever mechanism is used [16, 17]. Unloading mass 5 is stiffly connected with the
apex C of the rigid triangle OAC, in the corners of which there are swivel joints of a

Fig. 6 The second of two
design schemes that show
unloading of inertia forces on
the rotor of the centrifuge
with the use of pneumatic
cushions 7

Fig. 7 Design scheme of centrifugal forces counterbalancing where a lever mechanism is used
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slider-crank mechanism OAB. Masses 3 and 4 are its slide plate. Their sliding
mobility is ensured by suspension—the guide of table 4 and vibration stand 2. In
this case, the rotor of the centrifuge is an immovable element of this mechanism.

Further, it is investigated how stably this scheme functions in the field of linear
acceleration so as to prove that it can be used in a real structural design.
A computational model is presented in Fig. 8.

In order to explain the motion, let us use the second kind of the Lagrange
equation, where the right part equals zero, since the generalized driving force Q ¼ 0
and the resisting force QC ¼ 0:

d
dt

@T
@ _q

� �
� @T

@q
¼ 0: ð1Þ

where T is the kinetic energy of the mechanism, q is a generalized coordinate, and _q
is generalized velocity.

The kinetic energy of the mechanism T is combined kinetic energies of each
element Ti, where i ¼ 1. . .N. N is the number of mobile elements. According to
König’s theorem:

Ti ¼ mi

2
v2Ci þ

JCi
2
X2

i ; ð2Þ

where mi is the mass of the element i, vCi is the absolute linear velocity of the center
of gravity of the ith element, JCi is the product of inertia of the element i in relation
to its center of gravity, and Xi is the absolute angular velocity of the ith element.

According to the theorem on composition of velocities, the absolute linear
velocity can be represented as:

~vCi ¼~vrCi þ~X�~rCi; ð3Þ

Fig. 8 Computation model
to learn how stably the
scheme functions in the field
of linear acceleration
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while the absolute angular velocity can be shown according to the rule of
composition of rotations:

~xi ¼ _~ui þ~X;

where ~X is the angular velocity of rotation of the centrifuge platform, ~vrCi is the
linear velocity of the center of gravity of the i-th element in relation to the platform,
~X�~rCi is the transport velocity of the center of gravity of the i-th element,~rCi is the
distance from the rotation axis of the platform to the center of gravity of the i-th
element, and _~ui is the angular velocity of the ith element in relation to the platform.

If the vector (Eq. 3) is presented in a form of projections on the axis of the
rotating system of coordinates OXYZ, connected to the platform and inserted into
Eq. (2), we obtain:

Ti ¼ mi

2
ð _XCi � X � YCiÞ2 þð _YCi þX � XCiÞ2
h i

þ JCi
2

_ui þXð Þ2;

the axis OZ is the axis of rotation of the centrifuge frame while the motion plane of
the elements of the mechanism is parallel to the plane OXY. XCi and YCi are
coordinates of the center of mass of the ith element, and _XCi and _YCi are projections
of the relative velocities of the center of mass of the ith element on the same axes.

Then we convert this expression:

Ti ¼ mi

2
_X
2
Ci � 2 � X � YCi � _XCi þX2 � Y2

Ci þ _Y
2
Ci þ 2 � X � XCi � _YCi þX2 � X2

Ci

h i
þ JCi

2
_u2
i þ 2 � X � _ui þX2� �

:

We move to the analogues of velocities:

Ti ¼ mi

2
� ½X0 2

Ci � _q2 � 2 � X � YCi � X0
Ci � _qþX2 � Y2

Ci þY0 2
Ci � _q2

þ 2 � X � XCi � Y0
Ci _qþX2 � X2

Ci� þ
JCi
2

u0 2
i � _q2 þ 2 � X � u0

i � _qþX2� �
:

Then we combine the summands with the same powers _q:

Ti ¼ mi � X 0 2
Ci þ Y 0 2

Ci

� �þ � u0 2
i

� � � 1
2
_q2

þ mi XCi � Y 0
Ci � YCi � X 0

Ci

� �þ JCi � u0
i

� � � X � _qþ mi � X2
Ci þ Y2

Ci

� �þ JCi
� � � 1

2
� X2:

ð4Þ
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And put down the kinetic energy of the whole mechanism:

T ¼ 1
2
� JPPðqÞ � _q2 þAðqÞ � X � _qþ 1

2
� JZðqÞ � X2; ð5Þ

where:

JPPðqÞ ¼
XN
i¼1

mi � X 0 2
Ci þ Y 0 2

Ci

� �þ JCi � u0 2
i

� �
;

AðqÞ ¼
XN
i¼1

mi XCi � Y 0
Ci � YCi � X 0

Ci

� �þ JCi � u0
i

� �
; JZðqÞ ¼

XN
i¼1

mi � X2
Ci þ Y2

Ci

� �þ JCi
� �

:

We insert Eq. (5) in Eq. (1):

@T
@ _q

¼ JPPðqÞ � _qþAðqÞ � X;
d
dt
@T
@ _q

¼ JPPðqÞ � €qþ J 0PPðqÞ � _q2 þA0ðqÞ � _q � X;
@T
@q

¼ 1
2
� J 0PPðqÞ � _q2 þA0ðqÞ � X � _qþ 1

2
� J 0ZðqÞ � X2

Finally, the equation of the mechanism motion in a centrifugal field (Eq. 1) can
be written as:

JPPðqÞ � €qþ 1
2
� J 0PPðqÞ � _q2 �

1
2
� J 0ZðqÞ � X2 ¼ 0: ð6Þ

In comparison to the classical equation of a mechanism moving on immovable
foundation with a zero right part, in this case, a third summand has appeared. It has
a negative sign and defines the value of counter-balance moment.

Let us look into the problem of stability of small oscillations in the neighborhood
of the coordinate q0. Let us assume that;

q ¼ q0 þw; ð7Þ

where w—the amount of deviation from the equilibrium position q0,

_q ¼ _w;

€q ¼ €w:
ð8Þ
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Let us insert Eqs. (7) and (8) into Eq. (6):

JPPðq0 þwÞ � €wþ 1
2
� J 0PPðq0 þwÞ � _w2 � 1

2
� J 0Zðq0 þwÞ � X2 ¼ 0: ð9Þ

Let us expand the amounts as a power series:

JPPðq0 þwÞ ¼ JPPðq0Þþ J 0PPðq0Þ � w;
J 0PPðq0 þwÞ ¼ J 0PPðq0Þþ J 00PPðq0Þ � w;
J 0Zðq0 þwÞ ¼ J 0Zðq0Þþ J 00Zðq0Þ � w:

And insert them into Eq. (9):

JPPðq0Þ � €wþ J 0PPðq0Þ � w � €wþ 1
2
� J 0PPðq0Þ � _w2 þ 1

2
� J 00PPðq0Þ � w � _w2

� 1
2
� J 0Zðq0Þ � X2 � 1

2
� J 00Zðq0Þ � w � X2 ¼ 0:

Let us ignore in this expression the non-linear summands in relation to w and its
derivatives. So we get linear equations of motion:

JPPðq0Þ � €w� 1
2
� J 0Zðq0Þþ J 00Zðq0Þ � w
� �

X2 ¼ 0: ð10Þ

This equation will be solved by a method of successive approximations. In a
zero approximation:

w ¼ 0; €w ¼ 0;

then:

J 0Zðq0Þ ¼ 0: ð11Þ

From this equation, it is possible to find the coordinate q0, which defines the
equilibrium position of the mechanism in a centrifugal field. The equilibrium
position will be at the points of the extremum of function JZðq0Þ: Given Eq. (11),
the equation of small oscillations in relation to the equilibrium position will take the
form:

€w� J 00Zðq0Þ
2 � JPPðq0Þ � X

2 � w ¼ 0: ð12Þ

The multiplier at w in Eq. (12) represents the frequency of free oscillations of the
system [18]:
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k ¼ X �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� J 00Zðq0Þ
2 � JPPðq0Þ

s
: ð13Þ

The frequency will be real-valued and non-zero, in case

J 00Zðq0Þ\0; ð14Þ

since, according to Eq. (5), JPPðq0Þ is always a positive value. Equation (14) is the
condition for stability of the equilibrium position q0 of the lever mechanism in a
centrifugal field. This condition shows that motion of the mechanism is possible in
case the function JZðqÞ in the position q0 will have a maximum.

The value JZðqÞ represents, according to Eq. (5), the product of inertia of the
mechanism in relation to the axis of motion of the centrifuge (Steiner’s theorem). It
is remarkable that the obtained condition of stability is applicable for any scheme of
a lever mechanism as it is written in a general form. It is possible to choose the
parameters of the mechanism that affect stable operation of the system.

For the scheme in Fig. 8, the expression JZðqÞ according to Eq. (5) will look as:

JZðqÞ ¼ m1 � X2
S1ðqÞþ Y2

S1ðqÞ
� �þ J1 þm2 � X2

S2ðqÞþ Y2
S2ðqÞ

� �þ J2

þm3 � X2
S3ðqÞþ Y2

S3

� �
:

ð15Þ

where m1, m2, m3 are the masses of the crank, piston rod and sliding plate corre-
spondingly (the total mass of the test item and mobile table of the vibration stand is
considered in m3), J1, J2 are products of inertia of the first and second elements,
since they perform rotation motions, XS1ðqÞ, YS1ðqÞ, XS2ðqÞ, YS2ðqÞ, XS3ðqÞ, YS3 are
coordinates of the centers of masses of the first, second and third elements corre-
spondingly in relation to the system of coordinates Oxyz.

In order to define the coordinates of the centers of masses, equations of geo-
metrical analysis must be worked out for the mechanism under consideration. These
equations will be written as:

XO þOA � cosðqÞ ¼ XBðqÞþAB � cos u2ðqÞð Þ
YO þOA � sinðqÞ ¼ YB þAB � sin u2ðqÞð Þ

	

The system is written in relation of two group coordinates XBðqÞ, u2ðqÞ.
A solution to this system should be searched in relation to these unknown
quantities:

sin u2ðqÞð Þ ¼ YO þOA� sinðqÞ�YB
AB ;

cos u2ðqÞð Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin u2ðqÞð Þ2

q
;

XBðqÞ ¼ XO þOA � cosðqÞ � AB � cos u2ðqÞð Þ:
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Since the group coordinates are known, the expressions for the coordinates of
the centers of masses can be easily written. For this, let us assume that the mass of
the second element is much smaller than that of the first and the third elements
(m2 ¼ 0). Hence:

XS1ðqÞ ¼ L � cosðqþ aÞþXO;

YS1ðqÞ ¼ L � sinðqþ aÞþ YO;

XS3ðqÞ ¼ XBðqÞ;
YS3ðqÞ ¼ YB:

The values J1 and J2 do not affect the definition of the extremums of the function
JZðqÞ, as they are constant. Let us assume that

Let us work out the geometrical parameters of the mechanism:

OA ¼ 200MM; AB ¼ 4800MM; YB ¼ 200MM; YO ¼ �200MM;

XO ¼ �2300MM; a ¼ 45�:

Let us decide that L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 � OA2

p
, since we consider that DOAC is right-angled

and isosceles.
According to this initial data, dependence JZðqÞ can be built according to

Eq. (15), and its extremums can be defined in the variation interval of the coor-
dinate q from 0° to 360°.

As it can be seen from Fig. 9, the maximum of the function JZðqÞ is achieved at
q � 90�. This position will be an equilibrium position, and it will be stable by virtue
of the reasoning above.

Fig. 9 The maximum of the
function JZðqÞ is achieved at
q � 90�
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It can be easily shown that, in case the initial geometrical or mass values change,
the value of coordinate q will change too. For example, let us assume that the
vibration moving mass has increased by 10 kg with all the other parameters
remaining the same:

The new position of balance is achieved at q0 � 74�. In this case, the sliding
plate will vibrate in relation to the new position. In order to return to the position of
vibration assumed as the initial one (for example, at q0 � 90�), as shown in [16],
either the mass m1 must be corrected, or the position of the bearing part O must be
changed.

The obtained result of the research study makes possible choosing the relieving
apparatus built according to the scheme of lever mechanisms. Since the condition of
stability is expressed in the form of analytical dependence, it can be easily analyzed
to identify the parameters which affect the operation of the apparatus itself.
According to Eq. (13), it is sufficient to evaluate just the frequency of free oscil-
lations occurring in the system and judge about the resonance zones.
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Self-oscillations of Machines
and Mechanisms

Mikhail J. Platovskikh and Mikhail M. Vetyukov

Abstract Initiation of self-oscillations causes movement in a number of machines
and mechanisms. The anchor mechanism in a mechanical clock, a combustion
engine, or any bow-string musical instrument are examples of mechanisms and
machines whose cornerstone is the phenomenon of self-oscillation. On the other
hand, the self-oscillations in brake mechanisms, friction couplings, and sleeve-type
bearings often lead to negative consequences. The character of self-oscillations is
diverse, but in any case they are excited without participation of an external peri-
odic energy source. In the offered paper, the path of development of the theory of
self-oscillatory processes is traced by researching the development of such
“self-oscillatory” mechanisms. The special part is assigned to original research on
frictional self-oscillations in one-mass and two-mass systems caused by nonlinear
frictional force. The authors’ research results on friction auto-oscillations are
reported in the article, both in classic a unidimensional model and in a two-mass
model with relative slipping of bodies.

Keywords Anchor mechanism � Froud’s pendulum � Frictional self-oscillations
(FSO) � Friction behavior � Relaxation oscillations � Phenomenon shimmy �
Crystal franklin’s harmonica

Introduction

As in most of the mechanical systems with inelastic resistance, stable oscillating
processes are possible only in the presence of external periodic excitation.
However, in some systems, stationary fluctuations are possible without periodic
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influences from the outside. Such systems are called self-oscillatory. As in any
actual oscillating process in which there is a dissipation of energy, any
self-oscillatory system has to possess an energy source. This source compensates
for power losses, without possessing oscillating properties. It is possible to tell that
the self-oscillatory system represents one which, excited by a non-periodic power
source, creates a batch process. Self-excitation of oscillations often occurs as a
result of the unstable position of equilibrium of the system. Any perturbation of this
state does not disappear with time, and, on the contrary, builds-up oscillations in the
system. Contrary to forced oscillations, the auto-oscillations frequency and
amplitude are defined not by the nature of external disturbance, but by properties of
the system. The term “self-oscillations” (SO) was for the first time used by A.
Andronov at the IV congress of Russian physicists in 1928. Then in 1929, in short
communications of the French Academy of Sciences was published a study “The
limit cycles of the Poincare and the theory of self-oscillations”. In it, concrete
examples of self-oscillations are given: self-oscillations of a violin string, fluctua-
tion of stars known as Cepheids, Froud’s pendulum, a valve oscillator, and periodic
reactions in chemistry [1–4].

Existence on the phase plane (x, _x) of one or several limit cycles is characteristic
of self-oscillatory systems with one degree of freedom (Fig. 1). The closed isolated
phase trajectory is known as the limit cycle. The term “isolated” means that, in its
sufficiently small (ring-shaped) neighborhood, there are no other closed phase
trajectories. This distinguishes the limit cycles from the closed phase trajectories
corresponding to periodic oscillations of a conservative nonlinear oscillator. The
limit cycle is steady if all trajectories approach it at t ! ∞. It will be unstable if the
next trajectories move away from it at t ! ∞. Eventually, the phase trajectory
aspires to some attracting set called an attractor. Movement of representative point
on attractor corresponds to steady-state self-oscillations in system. Such oscillations
depend only on parameters of system, not on initial conditions. There may be some
attractors, each of which has area in a phase plane. Emanating from this area, phase
trajectories aspire to this attractor.

An important attribute of self-oscillations is the independence of their amplitude
over a wide range beginning with the initial conditions. Amplitude of

Fig. 1 The limit cycle of
self-oscillations (soft
excitation)
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self-oscillations is defined by properties of the system, but not an initial deviation or
impulse, such as at the free oscillations. There are various areas of initial conditions.
To the initial conditions belonging to each of these areas, there will correspond the
same amplitude. In some self-oscillatory systems, existence of several stable pro-
cesses with various amplitudes are possible, to each of which there corresponds the
particular area of initial conditions. If, for example, one inflects the pendulum of a
clock too strongly, the friction losses will be more than the energy inflow from the
stem of the watch. Amplitude will thus decrease. On the contrary, if one reduces the
initial amplitude, the excess of the energy received by a pendulum from a running
wheel will lead to an increase of amplitude. Automatically, such oscillations of
amplitude, at which the expenditure and receipt of energy are balanced, will be
established.

Self-oscillations can be in a form proximal to harmonic (quasi-harmonic SO
(Fig. 2a)) and can significantly differ from them (relaxational SO (stick-slip)
(Fig. 2b)). There are also chaotic self-oscillations, which are random, though they
are made under the influence of nonrandom energy sources. The vibration spectrum
of chaotic self-oscillations is the continuum. A mathematical image of
quasi-harmonic self-oscillations in a phase space is the n-dimensional torus, and
stochastic—the strange attractor, i.e., the attracting set having extremely complex
internal structure in which everything (or nearly all) trajectories are unstable.

Self-oscillations of Clock Drives

Possibly the most striking example of a mechanical self-oscillatory system is the
clock mechanism. The first mention of a mechanical clock is contained in the
Byzantine anthology of the 6th century [1–7]. In the modern age, the mechanical
clock began in Europe only at the end of the 13th century. In 1288, the tower clock
was installed in Westminster abbey in London. In 1354, a clock with a calendar,

Fig. 2 Dependency graphs
of the coordinate (full curves)
and velocity (dotted curves)
for quasi-harmonic (a) and
relaxational (b) SO
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chimes, and moving figures was placed in the Strasburg cathedral. In Russia, the
first tower clock was crafted in the Moscow Kremlin by the monk Lazar Serbin. It
was a weight-driven clock having a planetary mechanism and was also equipped
with an alarm. The design of clocks underwent qualitative changes after the pro-
posal by Galileo Galilei to apply a pendulum to it. Galilei’s clocks used the
isochronia of oscillations of a pendulum which had been discovered to be intrinsic
in them. According to this discovery, the oscillation period of a pendulum does not
depend on the pendulum mass.

T ¼ 2p

ffiffiffi
‘

g

s
:

However the patent for clocks was obtained by another scientist Christian
Huygens. He claimed that he knew nothing about the project of Galilei. The clocks
of Galilei, as an external source, used the potential energy of the falling poise,
which was transformed to the kinetic energy of the rotating cog-wheels.
‘Dissipating the vibratory energy arising the Galilei clocks was accomplished
through a twist-type trigger in the original design—for a prototype of the modern
anchor mechanism of Graham see Fig. 3. The cog-wheel 1 receives angular
momentum from the poised or spring drive. Anchor 2, rigidly bound to a pendulum,
swings on an axis and incorporates pallets 3 and 4. Because of the shape of the
pallets, energy is transferred to pendulum two times for one each swing when it
passes the equilibrium of a static position. Being shaken together with a pendulum,
pallets alternately engage with a running wheel, subordinating its rotation to the
period of oscillations of a pendulum. The tooth of a wheel under the action of a
twisting moment pushes an anchor and also a pendulum. At this time, the second
pallet falls and the next gear tooth of the wheel stops. At each oscillation, the wheel
manages to turn by one tooth. Because of such a trigger mechanism, the pendulum
receives periodic pushes that do not allow it to stop. In the modern wrist watch, the
energy feed regulator in system uses the balance weight instead of a pendulum. It
represents the large ring connected with a balance spring.

The foundation of the self-oscillatory approach in the theory of clocks was laid
down in Andronov’s monograph (Witt, Khaykin) [2]. Thus, the clock mechanism

Fig. 3 Anchor mechanism
Graham
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was considered as system with one degree of freedom. Consideration of a clock
mechanism as a system with two degree of freedoms was initiated in Butenin’s
works [5–7].

Metal-Cutting’s Tool Self-oscillations

Under certain conditions, the process of cutting metal loses stability. Loss of stability
is characterized by initiation of extraneous vibrations. Oscillations of the tool related
to the stock material (or, on the contrary, stock material related to the tool) cause an
alternation of thickness of the cut-down layer and of the forces of cutting and the size
and characteristic of the loads of the machine (loading can increase by a factor of 10
and more). With vibrations, the quality of the processed surface worsens. Depending
on the working conditions, excited oscillations of a detail and the tool may be
low-frequency (50–300 Hz) or high-frequency (800–3000 Hz), existing at the same
time or independently from each other. As a rule, the detail has low-frequency
oscillations, and–the tool has high-frequency. Low-frequency oscillations create a
rough undulation of the processed surface, and high-frequency oscillations create
ripplets (Fig. 4).

The absolute importance of frictional self-oscillations is seen in machine tool
building wherein two major criteria of functional quality of operation of tools are
apparent: the movements’ steadiness and the accuracy of the adjusting movements.
The roughness of supplied blanks is noted in machines of almost all types: miller,
grinder, and lathe [8]. In most cases, it is inadmissible, especially in the modern,
numerically-controlled machine tool. The idea of the self-oscillatory nature of
vibration when cutting was introduced for the first time by N. Drozdov who dis-
proved the interpretation of this oscillation as forced. He showed that observed
vibrations cannot be explained by resonance owing to coincidence of frequency of
shear of the shaving elements to natural frequencies of the system–the tool and the
base metal. One of the first origins of self-excited cutting vibration is based on the
assumption of the incident dependence of force of cutting on speed.

Fig. 4 The self-oscillations
arising when processing stock
metal preparation are caused
by occurrence of a corrugated
surface
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Mathematically, this theory is similar to the description of frictional self-oscillations
of the sprung body which is moving on the rough tape with constant speed. At some
level of the negative dissipation (existence of a dropping section on a cutting
curve), equilibrium becomes unstable, and there is a self-excitation of oscillation. It
was established (Kudinov [9]) that the dynamics system has a saddle, i.e., the
in-process part in the research on self-oscillations has to have at least two degrees of
freedom. From the analysis of the bound self-oscillations, the conclusion was based
on the action of the correct orientation of axes of a rigidity of system for receiving
steady oscillating motion when cutting. The mechanical energy in shaving cutting
will be transformed to heat energy which leads to heating in the cutting zone (to
1000 °C). During research on self-oscillations involved in the cutting of metal, a
substantial connection between mechanical and thermal processes was revealed.
The decreasing nature of dependence of the cutting force on temperature transforms
the system of cutter-preparation into a system with negative dissipation (a
self-oscillatory system).

Self-excited Frictional Oscillations

Among vibration sources in cars and mechanisms, the frictional self-oscillations
(FSO) assumes a special role. They are one of the most widespread types of
mechanical self-oscillations and are related to the instability in the process of a
sliding friction at rather low sliding speeds. Such speeds become very common in
the modern technique, especially for processes of fine positioning, and also start-up
and braking of clusters of various devices. Besides the apparently negative con-
sequences of this phenomenon, sometimes its occurs and can be very useful.
Playing the bow on musical instruments can be the most striking example.
However, in the majority of the machinery and appliances, the role of FSO can
change from very undesirable to catastrophic. Frictional self-oscillations arise in
such devices, e.g., brakes and mechanisms of frictional coupling, which are
widespread in cars and on tractors [10–12].

Frictional self-oscillations often appear as the reason for the increased
vibroactivity of the driveshaft of the power equipment in ships. In this case,
oscillation onset can be explained by the instability of the process of a sliding
friction under the conditions of deficiency of water greasing. This phenomenon,
known as “fog horn” is described, in particular, in Den-Gartog’s works [13]. In the
vibration spectrum of such oscillations, usually there are no components with the
frequencies depending on the rotation frequency. The frequency of vibration is
close to one of natural frequencies fc of the system, corresponding to the preferred
development of oscillations of an element’s subject frictional influence. The
increased vibration levels with the characteristic discrete components, i.e., the
multiple of some fixed frequency, were observed in one ship with stern-tube
bearings from two caprolon boxes [14] (Fig. 5). Increase of air noise and vibration
at turns of a shaft at 75–80 rpm was noted. The narrow-band analysis of vibration
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of a stern-tube showed that this noise is caused by the existence of discrete com-
ponents at frequencies of 127, 254 and 380 Hz. Another characteristic of FSO is a
rather sudden disappearance (or a substantial decrease in levels of vibration) upon
the shaft’s achieving some boundary speed of rotation.

The research on FSO are conducted, first of all, into the tribological aspect
including study of tribotechnical characteristics of frictional contact and develop-
ment of new antifriction materials. Secondly, the dynamic systems containing
frictional elements are investigated. Thus, the problem of the definition of various
self-oscillations modes, clarifications of the question about their stability depending
on the general parameters of a system, and the characteristics of frictional contact in
particular are cast.

The history of research on the dynamics of frictional systems dynamics amounts
already to more than a half century. During this time, the most noted results are
from N. Butenin, M. Ishlinsky, N. Kaydanovsky, M. Kolovsky, Le Xuan Anh, R.
Nagayev, Ya. Panovko, V. Petrov, A. Tondl, S. Khaykin, et al.. Rigid solid on a
moving rubber tape—one of the first mechanical FSO-models—was offered by
Balthazar van der Pol in 1930, in material on the theory of self-oscillations of
radio-electronic systems [2, 10, 15]. He connected the emergence of
self-oscillations with the nonlinearity caused by dry friction. Relaxation of FSO are
characterized by the existence in the process of body oscillations of intervals during
which there is no movement relative to the tape. They are, for the first time,
rigorously mathematically described by N. Kaydanovsky and S. Khaykin [9–14].
These authors showed that all frictional systems, in which self-oscillations are
possible, have to possess nonlinearity of a particular type. In some areas, the
characteristic of a sliding friction (dependence of a friction coefficient on the rel-
ative sliding speed) has to be sloping. An important feature of FSO—the existence
of critical speed of sliding above which self-oscillations are impossible, is then
found. This value of speed corresponds to the transition from a dropping section of
the characteristic of a sliding friction to an increasing one. Thus, if the change in
frictional force is not enough, its role is reduced only to self-excitation of

Fig. 5 Vibration spectrum of
the propeller-shaft bearing
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self-oscillations. In systems, thus there are quasi-harmonic oscillations with a fre-
quency close to a natural frequency of system and an amplitude depending on tape
speed.

This point of view about the dropping characteristic is the reason that FSO is not
unique. Many authors see the reason of FSO (appearing) as a difference between
static friction force and sliding frictional force [10, 16].

According to the theory put forward in 1944 by A. Ishlinsky and I. Kragelsky,
the frictional force increases with the duration of the fixed contact [17]. That’s
exactly why, in an experiment, the first jump in amplitude exceeds the subsequent.
On the basis on this theory, subsequently in works [9–14], the FSO models in
which the stochastic modes are found were constructed. However, Le Xuan Anh,
analyzing the experiments, came to a conclusion about the independence of
breakaway force from the duration of the non-sliding contact [18, 19]. This force, in
his opinion, is defined by the speed of tangential loading, decreasing with an
increase of this speed [15]. V. Kudinov, in the conditions of semi-fluid lubrication
on frictional contact, connects the onset of FSO with dependence of a frictional
force on contact deformation in the direction normal to a contact surface.

Besides those mentioned, there are a number of FSO models related to to the
rheological and thermodynamic processes on frictional contact [10]. Each of the
listed models has a restricted range of application. However, the most common in
research is the speculation that the reason is the nonlinear dependence of
self-oscillations of a friction coefficient (with a dropping section) on the relative
speed. Thus the characteristic of a sliding friction can be described in various ways,
i.e., in the form of the jumping, exponential, piecewise line, or cubic, dependences.

The dynamics of frictional systems are described by means of nonlinear differ-
ential equations. Their solving is the tricky problem, in many cases undecidable by
analytical methods.

Let’s review the research on FSO in one-mass system based on the example of a
traditional model by considering a spring-fastened solid body on the tape moving
with constant speed (Fig. 6a). Between a body and a tape, the force exerts a dry
non-Coulomb friction (a dry and viscid friction in a combination) [20]. This
problem is absolutely identical to the problem about moving through a resilient
element of a solid body on an imperfect plane (Fig. 6b). The friction behavior is
plotted in the form of a cubic parabola [16] (Fig. 6c). The equation of motion of the
considered system at _x 6¼ 0 can be written in form of:

m€xþ c x� Vtð Þ ¼ �Pf _xð Þ;

where x—the absolute coordinate of a body, P-pressure force on contact, and
dependence of a sliding friction on speed is accepted in the form of (Fig. 6c):

f _xð Þ ¼ f �sign _x� f1 _xþ f3 _x
3; _x 6¼ 0; �f �\f _xð Þ\f �; _x ¼ 0;

f�ð = min f _xð Þ when _x > 0). It is supposed that the size of the friction coef-
ficient changes slightly when a driving, small parameter is introduced:
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e ¼ f � � f�ð Þ=2f �. Another constitutive parameter when studying FSO is
r ¼ V=V�.

Research on these equations enables learning the following main results about
the nature of oscillations of system.

1. On the rising branch of the friction behavior at r > 1, the equilibrium position is
stable and self-oscillations in system are impossible.

2. In the narrow range the translational velocity of body 0.89 < r < 1 in the
system, there are quasi-harmonic non-stop self-oscillations.

3. At 0 < r < 0.89 in the system, the following modes can be realized:

(a) oscillations with stagnation zones, namely, relaxational oscillations;
(b) oscillations with the instantaneous change of sign of the speed;
(c) oscillations of the mixed type.

For the research on FSO in a two-mass system of bodies, see Fig. 7 for, the
model in which bodies are directly tied by forces of a dry non-Coulomb friction is
offered [21]. Thus one of bodies (top) is stretched through a resilient element over
lower body and is elastically fixed horizontally. Such a scheme can serve as a model

Fig. 6 One-mass model of
frictional self-oscillatory
system (a, b); cubic friction
behavior (c)
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for actual friction units, e.g., coupling devices, friction clutch couplings, slider
bearings, and braking mechanisms. The equations of motion are

m1€xþ c1 x� Vtð Þ ¼ �f uð ÞP; m2€yþ c2y ¼ f uð ÞP:

Here x, y, m1, m2, c1, c2 are the coordinates, masses, and rigidities corresponding
to a top and bottom body, and f is friction behavior depending on their relative
speed u ¼ _x� _y. In the problem, only continuous oscillations of bodies are con-
sidered u[ 0ð Þ. Function f, as shown, is approximated by cubic dependence. The
averaging method is applied to the analysis. Two various cases, i.e., the main
resonance and non-resonance, are considered. The relative coordinate of u = n − η
and variable w = (1 − v)n − (1 − v)η, where v = (m2 − m1)/(m2 + m1) and n, η
are dimensionless coordinates of bodies. The average equations for a resonance
case at a first approximation look like this:

a0 ¼ e
2
z

6z
1� v2

1� r2 � a2

4

� �
a� b sin h

� �
;

b0 ¼ e
2
z 1� v2
� �

a sin h;

h0 ¼ e
2
z 1� v2
� � a

b
cos h� b

a
cos h� 2v

� �
:

Here a and b are the vibration amplitudes for variables u, and w, and h is the
difference in phase. This system of equations has four stabile stationary points. One
solution of the problem correspond to oscillations only of the top body (with the
body lower at first approximation fixed). The oscillations amplitudes on the n, η
variables thus will be An = a*, Aη = 0. Another solution of the problem involves
oscillations of the lower body: An = 0, Aη = a*. Here the variable of a� ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
is the dimensionless amplitude of quasi-harmonic self-oscillations in a

one-mass system. It is clear that stationary oscillations are possible also only on the
dropping section of the friction behavior, when r < 1.

By means of a numerical integration of the average equations, the domains of
attraction of the two modes of oscillations are constructed. From the analysis of
areas, it is evident that, if the mass of bodies are sufficiently close, the static friction
is also not small; the lower body oscillate, in the converse case—of top-body
oscillation. In the non-resonance case, similar results are obtained.

Fig. 7 Two-mass model of
frictional self-oscillatory
system
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Thus, in a system of two bodies, connected by forces of a dry non-Coulomb
friction both in resonance and in non-resonance cases, the effect of dynamic
self-oscillation suppression is possible. At that, the translating body is fixed in a first
approximation, and another body oscillates. This effect is caused by the small
increment of the frictional force operating between the bodies at oscillation.

Also, we investigated FSO spring-fastened body (material point) on the plane
moving bodily with a speed of V (Fig. 8) [20]. The point from the plane is affected
by a force of a dry non-Coulomb friction:

�F ¼ �f uð Þ �u
u
;

where �u ¼ _x� V cos að Þ�iþ _y� V sin að Þ�j—vector of the relative speed of a point;
u ¼ �uj j. The characteristic of a sliding friction is accepted as cubic (Fig. 6c).
Equations of motion of a point can be written down in the following form:

m€xþ c1x ¼ �f uð Þ _x� V cos a
u

;

m€yþ c2y ¼ �f uð Þ _y� V sin a
u

:

Research on these equations on a method of averaging makes possible to draw
the following conclusions (Fig. 9).

1. The one-dimensional regimes of self-oscillations are realized not only when the
direction of speed is close to the direction of the corresponding axis of a rigidity,
but also when the vector of speed is significantly rejected from this axis. And
this deviation can be larger than the force of static friction.

2. The two-dimensional regime is possible at rather small values of a static friction
force.

One of the most striking examples of frictional mechanisms in which the
self-oscillatory motion regimes of driving are realized is Froud’s pendulum [1–3]
(Fig. 10). The pendulum is rigidly bound to the friction-bearing bushing which made

Fig. 8 Model of point
self-oscillations on the plane
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to rotate with constant speed on a shaft. The bearing is captured by sliding friction and
the pendulum deviates. Between the bearing and the rotating shaft, there is a friction
moment depending on the relative speed of rotation of the bearing relative to the shaft.

Fig. 9 FSO on the plane. Phase trajectories at various values of the angle between the direction of
speed and one of flexural axis (x) are shown

Fig. 10 Froud’s pendulum
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Existence of the dropping section on the friction behavior is the reason of
self-oscillations. Depending on the size of external damping, the parameters of the
friction behavior and axis rotation velocity of the drive with various forms of motion
of a pendulum are possible: quiescent state, oscillations, or uniform rotation. At small
rotational velocities of axes, the oscillations of a pendulum are not damping. The
pendulum starts making fluctuations in a range that does not decrease over time.
Moreover, if the pendulum was forcibly stopped and then was activated, it begins
oscillating under the influence of the rotation. As a result, the pendulum adopts a
former mode of motion with the same peak-to-peak value. At a rather high value of
static friction force, there is no jump-over on self-oscillations, and the pendulum
rotates together with shaft as though rigidly fixed on it.

In brake assemblies the negative sliding friction leads to intensive FSO of a
brake shoe (Fig. 11a) too. This oscillations involves an increase of braking torque
(Fig. 11b).

Fig. 11 The calculated scheme (a) and dependency graphs (b) of the braking moment from time
at various ratios of a coefficient of sliding friction and coefficient of friction in rest
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Braking the disk’s rotational motion by action of frictional force on the side of
spring-mounted brake shoe is considered in practice [22]. It is shown that
self-oscillations of a brake shoe, depending on initial velocity of a disk and a ratio of
friction coefficients at rest and on the run, can be not only quasi-harmonic (unceasing),
but also relaxational. Relaxation oscillations in this case are characterized by the
existence of stages of cooperative motion of a disk and shoe, when their relative
velocity becomes zero. Quasi-harmonic self-oscillations lead to an increase of the
average braking torque in modulus (Fig. 11b). Relaxational self-oscillations act on
the average braking torque if only the force of static friction does not exceed triple the
value of a force of sliding friction. However, it should be noted that FSO brake
assemblies promote wear of the connecting surfaces of a disk and a shoe, owing to the
increase during oscillations of their relative movements [23].

Phenomenon of Shimmy

One more phenomenon of the self-oscillations connected to the nonlinear nature of
powers of friction is shimmy [1]. Shimmy represents the phenomenon of intensive
coupled angular and transverse vibrations of the wheels of the transportation
vehicle. Most dramatically, this problem arises for the forward landing gear of an
aircraft when moving with rather high speed on the ground. The name comes from
the name of a dance popular at the beginning of the 20th century. In this dance, the
signature movement is a fast wiggle by the shoulders from the right to the left. The
oscillation frequency depends on parameters of the support of the landing gear and
can have the range 5–25 Hz. At shimmy, wheels make the angular oscillations
concerning an axis, a perpendicular plane of the earth matched up with oscillations
of the same frequency in the transverse direction. This phenomenon arises under the
influence of the transversal frictional force operating from the ground on the tire of
the rolling wheel during its oscillations. The phenomenon of shimmy is very
dangerous because it can lead to destruction of a landing gear and, as a result, to
structural failure of the entire airplane. Shimmy essentially depends on elastic
deformations of the pneumatic tire [2]. It is possible to consider the main defor-
mations as two: a lateral displacement of a wheel of Dz and an angle of torsion of a
wheel concerning the area of contact of Dh. Both of these deformations impart to a
wheel a tendency to move on a curve (Fig. 12). The problem of shimmy was solved
by the academician Keldysh [1, 2, 24]. In his work, he proposed not only the
theoretical description of the problem of shimmy (it derived a differential equation
for the phenomenon), but also offered the concrete engineering recommendations
enabling to eliminate the shimmy phenomenon. Moving the wheel axis forward,
relative to the landing-gear leg, was a radical measure to fight against shimmy
(Fig. 13). The emergent deformations of twisting play a positive role, and the
oscillations become damping effects. Later research on shimmy enabled the
explanation of this phenomenon, proceeding from the theory of a two-component
friction: interaction of sliding friction and pivoting friction [25]. From these
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Fig. 12 The initiation
phenomenon of shimmy

Fig. 13 Engineering solution
for elimination of shimmy
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perspectives, it is possible to explain shimmy for rigid wheels. According to this
theory, to fight against shimmy it is necessary to increase the rotating rigidity of the
support and to reduce sliding friction. If the frequency of torsional vibrations is less,
or is equal to, the frequency of flexural oscillations, shimmy is impossible.

Conclusion

In the report, self-oscillations in various machines and mechanisms are considered:
clock mechanism, feed mechanism of the metal-cutting machine, bearings of ship
shafts, landing gear, and musical instruments. The principle at work of some of
them is based on the phenomenon of self-oscillations. For durability and operability
of the majority of machines, self-oscillation do not assume substantial significance.
In some instances, on the contrary, their role is catastrophic (e.g., a flutter, shimmy
of wheels). Research on frictional self-oscillations are given for one- and two-mass
systems. In two-mass model, the effect to reduce oscillations is studied, when one of
masses commits oscillations with considerable stationary amplitude and the other is
quite motionless at first approximation. The attraction areas of such conditions for a
non-resonance case are built with the help of the averaging method; this example is
interesting for applications. The influence of a brake block FSO on an average,
retarding torque is studied for the arresting arrangement. It is shown that such
oscillations result in an increase of the moment.
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Analysis of Machine Tool Installation
on the Base

Yuri А. Semenov and Nadezhda S. Semenova

Abstract Vibrations that emerge when parts are being processed on a machine tool
may result in the malfunction and premature wear of the given tool. A wide range of
vibration sources and the effects they cause requires various means of vibration
protection to be used. For this purpose, machine tools are installed directly on the
shop floor with, various foundations and anti-vibration mountings. This article deals
with the efficiency of these vibration-isolation devices.

Keywords Machine tool � Means of vibration protection � Anti-vibration
mounting � Foundation

Introduction

Vibrations that emerge when parts are being processed on a machine tool may result
in the malfunction and premature wear of the said tool, as well as deterioration of
the quality of the processed parts, which makes such vibrations undesirable.
However, in some cases, vibrations are used for chip control, reduction of friction,
and conditions for the movement of the tool’s operating elements or cutting
conditions.

Machine tool vibrations can be forced or, parametric, or they can be
self-vibrations. Forced vibrations emerge during cutting due to periodic external
actions or periodic variation of the cut layer of metal. Forced vibrations appear most
prominently during the milling of workpieces. In this case, a coercive force emerges
due to the periodic penetration and withdrawal of the milling cutter teeth.

Unbalanced workpieces or rotating groups of a machine tool (couplings, chucks,
etc.), as well as reciprocating masses (supports, etc.), cause temporary coercive
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forces to emerge. As these forces are transmitted further to the base, they cause the
machine tool and the building that houses it to vibrate. Therefore, the reason for
machine-tool vibration may lie in its vibration-active groups and the vibrations of
other machinery.

Parametric vibrations appear during the variation of the bending stiffness of the
machine tool spindle and during its extension.

Self-vibrations are observed in machine tools during the movement of heavy
units on slideways and during metal cutting. Such vibrations emerge due to
non-linear friction forces and variable cutting forces with “incident” features.

The wide variety of vibration sources and the effects they cause require different
means of vibration protection to be used. For this purpose, machine tools are
installed directly on the shop floor, with various foundations (Fig. 1) and
anti-vibration mountings (Fig. 2) [1–4].

Small (up to 10 tons) machine tools with rigid and semi-rigid machine frames
(‘=h� 7� 8, where l is the sectional length and h is the sectional height of a
machine frame) are installed on the shop floor.

Fig. 1 Example of a machine
tool installed directly on a
shop floor

Fig. 2 Examples of
anti-vibration mountings for
shop tools
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Medium-sized machine tools with rigid machine frames ð‘=h\4� 5Þ that have
no unbalanced forces and can be slanted without compromising operational comfort
or workpiece processing quality are installed on anti-vibration mountings [3, 5, 6].

Machine tools with non-rigid machine frames ð‘=h[ 8Þ and heavy machine
tools that generate significant unbalanced forces are installed on foundations [6, 7].

Heavy machine tools that do not generate significant unbalanced forces are
installed on special vibration-isolated foundations that use springs as elastic
elements.

In some cases when horizontal excitation forces are prevalent in a machine tool,
special vibration-isolation schemes are applied: machine tools are fixed to sup-
porting structures with cables or pinned-pinned beams. Let us consider several ways
of machine-tool installation [7–11].

Installation on Anti-vibration Mountings

Figure 3 shows a schematic representation of such an installation. As a first
approximation, let us regard a machine tool with a base as perfectly rigid bodies.
Let us assume that the machine tool has a mechanism that sets mass µ (e.g., a
support) in motion. Generation of this motion is associated with the effect of force
P that occurs in the mechanism. The model under consideration disregards the
forces exerted upon the base by any independent sources (e.g., an adjacent machine
tool).

Equations of motion for the system under consideration are:

m€yþ b_yþ cy ¼ P; ð1Þ

l €yþ €uð Þ ¼ �P; ð2Þ

where m is mass of the machine tool’s stationary parts; yðtÞ is a motion law of
machine tool body; uðtÞ is a given law of mass µ motion in relation to the machine
tool body; c, b are stiffness and anti-vibration mounting damping coefficient.

Fig. 3 Schematic
representation of such an
installation with anti-vibration
mounting
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The force acting on the base

R ¼ cyþ b_y: ð3Þ

In operational form, we have:

mp2 þ bpþ c
� �

y ¼ P; l p2y ¼ �P� l€uðtÞ; R ¼ ðbpþ cÞy;

where p is an operator which differentiates with respect to time.
Solving these operator equations, we find:

R ¼ �wRðpÞl€uðtÞ; P ¼ �wPðpÞl€uðtÞ; ð4Þ

where transfer functions that tie together forces R and P characterizing the external
vibration activity of a machine tool with a given law of motion uðtÞ are:

wRðpÞ ¼ bpþ c
ðmþ lÞp2 þ bpþ c

; wPðpÞ ¼ mp2 þ bpþ c
ðmþ lÞp2 þ bpþ c

: ð5Þ

Providing that the machine tool’s attachment to the base is rigid, we have:

R0 ¼ P0 ¼ �l €uðtÞ: ð6Þ

Obviously, transfer functions KRðpÞ ¼ R=R0; KPðpÞ ¼ P=P0, match wRðpÞ and
wPðpÞ respectively. Assuming that law of motion uðtÞ is harmonic, coefficients
KRðjxÞj j and KPðjxÞj j can serve as a measure of efficiency on frequency x. Figure 4
shows approximate diagrams KRðjxÞj j and KPðjxÞj j. Values x, for which
KRðjxÞj j\1 and KPðjxÞj j\1, determine the efficiency regions. The diagrams show
that anti-vibration mountings can reduce forces R and P only in a high-frequency
region. Force P decreases insignificantly as it depends on the proportion
m=ðmþ lÞ.

Fig. 4 Approximate diagrams |KR(jx)| and |KP(jx)|
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The efficiency region for PðtÞ is derived from the condition c� mx2
�� ��\

c� ðmþ lÞx2
�� ��. Vibration isolation is efficient if x[x� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c=ðmþ 0:5lÞp

. The

efficiency region for RðtÞ is as follow: x[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c=ðmþ lÞp

.
Let us further assume that the base (ground) on which a machine tool is installed

is elastic. Figure 5 shows a schematic representation corresponding to this case.
Here, c0 and b0 are stiffness and elastic base damping coefficient. Let us set

cred ¼ cc0= cþ c0ð Þ; bred ¼ bb0= bþ b0ð Þ and substitute c for cred and b for bred in
the expressions obtained for the previous case. This way, we shall find

R ¼ � bredpþ cred
ðmþ lÞp2 þ bredpþ cred

l €lðtÞ; P ¼ � mp2 þ bredpþ cred
ðmþ lÞp2 þ bredpþ cred

l €lðtÞ:

Providing that the machine tool’s attachment to the elastic base is rigid
cred ¼ c0; bred ¼ b0ð Þ, we have:

R0 ¼ � b0pþ c0
ðmþ lÞp2 þ b0pþ c0

l €lðtÞ; P0 ¼ � mp2 þ b0pþ c0
ðmþ lÞp2 þ b0pþ c0

l €lðtÞ:

Hence, in this case:

KRðpÞ ¼ R
R0 ¼

bredpþ credð Þ ðmþ lÞp2 þ b0pþ c0½ �
b0pþ c0ð Þ ðmþ lÞp2 þ bredpþ cred½ � ; ð7Þ

KPðpÞ ¼ P
P0 ¼

mp2 þ bredpþ credð Þ ðmþ lÞp2 þ b0pþ c0½ �
ðmþ lÞp2 þ b0pþ c0½ � ðmþ lÞp2 þ bredpþ cred½ � : ð8Þ

Figure 6 shows a dependency graph for KRðjxÞj j and KPðjxÞj j in this installation
scheme.

In this case, the efficiency region includes a medium frequency zone betweenffiffiffiffiffiffiffiffiffiffiffiffiffi
cred=m

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0=ðmþ lÞp

. Efficiency growth obviously requires an increase in

Fig. 5 Schematic
representation of a machine
tool on an elastic base

Analysis of Machine Tool Installation on the Base 109



proportion c0=cred ¼ 1þ c0=c, i.e. vibration isolator stiffness must be lower than the
base stiffness c\c0ð Þ.

For certain types of machine tools, such installation on the base is indeed pos-
sible and viable. However, for a large group of machine tools, such an installation
method brings about negative effects. Notably, a machine tool becomes more
slanted, more susceptible to static effects that may be caused, among other things,
by the displacement of discrete masses, etc.

Machine-Tool Installation on the Foundation

Machine tools are installed on individual and strip foundations equipped with
rubber mats and springs. Let us consider a scheme of machine-tool installation on a
standard individual foundation positioned on the elastic base (Fig. 7).

Fig. 6 Dependency graph for |KR(jx)| and |KP(jx)| in the case of an elastic base

Fig. 7 Scheme of
machine-tool installation on a
standard individual
foundation positioned on an
elastic base
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Let us present the equations of motion for such a system in the operational form:

mþmfð Þp2 þ b0pþ c0½ �y ¼ P;
l p2y ¼ �P� l €l;
R ¼ b0pþ c0ð Þy;

9=
; ð9Þ

where mf is the foundation mass.
From Eq. (9), we shall derive the force transmitted to the base,

R ¼ � b0pþ c0
mþ lþmfð Þp2 þ b0pþ c0

l€lðtÞ: ð10Þ

With mf ¼ 0, i.e., with a machine tool installed directly on the elastic base, we
shall have:

R0 ¼ � b0pþ c0
ðmþ lÞp2 þ b0pþ c0

l €lðtÞ: ð11Þ

The transfer function

KðpÞ ¼ R
R0 ¼

ðmþ lÞp2 þ b0pþ c0
ðmþ lþmfÞp2 þ b0pþ c0

ð12Þ

that ties together the effort transmitted to the base and the effort with mf ¼ 0
characterizes base efficiency as a means of vibration isolation. In the case of har-
monic action of frequency x, the coefficient

KRðjxÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0 � ðmþ lÞx2½ �2 þ b20x
2

½c0 � mþ lþmfð Þx2�2 þ b20x
2

s
ð13Þ

is a measure of base efficiency: the lower KRðjxÞj j is, the more efficient the base
shall be. Figure 8 shows an approximate KRðjxÞj j dependency graph.

The isolation range, determined by the condition KRðjxÞj j\1; is derived from
the proportion:

x[x� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c0
mþ lþ 0:5mf

r
: ð14Þ

The higher mf is, the lower x� shall be, i.e., the frequency at which the foun-
dation starts providing vibration isolation.

With x\x�, the coefficient KRðjxÞj j[ 1. With x2
�� ¼ c0=ðmþ lþmfÞ, it

reaches its approximate maximum value of:
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KRðjxÞj jmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
f
c0

mþ lþmfð Þb20
þ 1

s
� mf

b0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0

mþ lþmf

r
: ð15Þ

Thus, with the rise of mf ; KRðjxÞj jmax increases as well. Therefore, frequency
x�� should be located outside the external action spectrum.

With x2 � c0=ðmþ lÞ, the coefficient KRðjxÞj j is almost independent from x
and tends to ðmþ lÞ= mþ lþmfð Þ with the increase of x. In order to reduce the
force transmission by N, the following condition should be met:

mþ lþmf

mþ l
[N: ð16Þ

From Eq. (15), let us derive:

mf [ 2ðmþ lÞ x���
x

� �2
�1

� 	
; ð17Þ

where x2
��� ¼ c0=ðmþ lÞ. Thus, complete detuning of the system from the external

actions requires the mass of the foundation to be 2 x���=xð Þ2�1
h i

times higher than

the mass of the machine tool.
The lower limit of the efficiency range can be reduced without increasing the

mass of the foundation by installing springs or rubber mats between the foundation
and the base. In some cases, a machine tool is installed on the foundation using

Fig. 8 An approximate |
KR(jx)| dependency graph
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isolators. Figure 9 shows such an installation scheme. The system has two degrees
of freedom; let us choose displacement y and yf as generalized coordinates. Then
the equations for the system motion shall look as follows:

lð€yþ €uÞ ¼ �P;
m€yþ b _y� _yfð Þþ c y� yfð Þ ¼ P;

mf€yf þ b _yf � _yð Þþ c yf � yð Þ ¼ �R;
b0 _yf þ c0yf ¼ R:

9>>=
>>; ð18Þ

Solving Eqs. (19) in an operational form, we find:

R ¼ � ðbpþ cÞ b0pþ c0ð Þ
mfp2 þðbþ b0Þpþ cþ c0½ � ðmþ lÞp2 þ bpþ c½ � � ðbpþ cÞ2 l €u: ð19Þ

Replacing isolators with a rigid machine tool mounting on the foundation, we
have:

Fig. 9 Scheme for a machine
tool installed on the
foundation using isolators

Fig. 10 |KR(jx)| and
m + µ 	 mf dependency
graph
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R0 ¼ � b0pþ c0ð Þ
mþ lþmfð Þp2 þ b0pþ c0½ � l €l: ð20Þ

In this case, the efficiency operator is:

KRðpÞ ¼ ðbpþ cÞ mþ lþmfð Þp2 þ b0pþ c0½ �
mfp2 þ bþ b0ð Þpþ cþ c0½ � ðmþ lÞp2 þ bpþ c½ � � ðbpþ cÞ2 :

Figure 10 shows KRðjxÞj j and mþ l 	 mf dependency graph. It can be seen
that the external vibration activity decreases in the medium frequency range.
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About the Nature of Dissipative Processes
in Cutting Treatments of Titanium Vanes

Margarita A. Skotnikova and Nikolay A. Krylov

Abstract This article reports on a systematic study of temperature-speed features
of structural and phase transformations in machined blades of titanium billets,
performed with the assistance of optical metallography techniques, electron
microprobe analysis, and electron microscopy. The work resulted from evaluation
of the mean effective thermal anisotropy stresses on the boundary of two hcp
crystals with the corresponding angles between the hexagonal axes (HA), as well as
between HA and the interface with changes in temperature by one degree.

Keywords Steam turbines � Titanium alloy � Structural and phase transformation �
Electron microscopy

Introduction

The difficult problem of the cutting treatment of metal blanks, for example, from
titanium alloys, because of the reduction in the tools’ resistance to wear is currently
rather well known. There is a hypothesis about presence here connection with
change degree of localization plastic deformation in metal blank at cutting for-
mation. The knowledge of conformities and phenomena accompanying process of
cutting treatment, will allow to find ways increase of treatment quality, accuracy of
details, decrease of cutting capacity. As follows from the earlier carried out works
[1–4], in the investigated alloys structures of the hot-deformed (initial) state are
formed nonequilibrium b(a)- and a(b)-solid solutions, which being in an elastic—
intense condition, enriched with vacancies, a-, b-stabilizing elements, and inclined
to decomposition.

The purpose of the given work consist in development of representations about
temperature-time features of formation and decomposition enriched solid solutions,
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with the account is elastic—intense the states created in the volume of deformed
metal blank during its technological treatment by cutting, in an establishment of
nature of deformation localization and in development ways of increase of the tool
wearproofity at the expense of choice of an optimum regime of the deformation
speed and temperature.

The materials for investigation were OT4, PT3V, VT23 alloys. Their treatment
was carried out without lubricant to a hard-facing alloy cutting tool T15К6 with
speed of feed S = 0.26 mm/revolutions and depth of cutting t = 3 mm, in the range
of cutting speeds 2–250 m/mines. The geometrical parameters of a cutter made
corners: u = 45°; u1 = 15°; a = 6°; c = 12°.

Formation of Elastic—Intense State in Material
at Cutting Treatment

At technological treatment by cutting, at presence of gradients of stresses and
temperatures on the blanks section: a crystallographic anisotropy of thermal
expansion coefficients; phase transformations with change of the phases specific
volume, there can be significant internal stresses, forming in processable blank the
state is elastic—intense.

Formation Thermal Stresses

It is known, that the titan has the specific features: by which, first of all, its high
chemical activity, polymorphism and high sensitivity low-temperature a—modifi-
cation to concentrators of stresses, concerns, that, probably, is caused by an ani-
sotropy of its HCP—lattice and, hence, anisotropy of elastic and diffusive
properties, and also, low heat conduction of titan.

It is known, that the internal stresses in metals caused by the temperature gradient,
are proportional to the ratio of the thermal expansion coefficient to the heat con-
duction. As it is visible from submitted Table 1 for Ti, Hf, Zr (with HCP—lattice)
these ratios appear on the order above, than in copper (with FCC) or molybdenum
(with BCC—lattice).

Table 1 Comparison of meanings of the ratio of thermal expansion coefficient to heat conduction
for metals

Metal W Mo Cu Al Ni Fe Mg Zr Hf Ti

The ratio of a coefficient of thermal
expansion to a heat conduction, �10−6

(cal/cm2 s)−1

11 14 17 45 63 67 74 83 106 182
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In zone of the cuttings formation in processable titanium blanks under thermal
and mechanical influences the elastic—intense state is formed. There is significant
temperature and strain inhomogeneity resulting in occurrence mechanical and
thermal macro and micro of stresses, especially, on the grains borders from HCP—
lattice having anisotropy of thermal expansion coefficients. At heats change these
stresses in the state to surpass a crystallographic yield stress.

Formation Thermal Anisotropy Stresses

In development of works N.N. Davidenkov’s and V.A. Likhachev’s, the theoretical
estimation of the thermal anisotropy stresses (r/DT), arising on border two next
a—grains from HCP—lattice was made, depending on the corner crystallographic
orientation (w) of their hexagonal close-packed axes (H.A). And corner of their
orientation (b) of rather general of the unit border, at change of the temperature on
1° [5]. Account of an average working stress of the thermal anisotropy according to
the formula (1) made under the specially developed program on the computer,
provided that the hexagonal close-packed axes of both grains, and as a normal to
the unit border lay in one plane,

r=DT ¼ ajj � a?
� �

cos2 b� cos2ðbþwÞ� �
=S11 sin4 bþ sin4ðbþwÞ� �þ S33 cos4 b

�
þ cos4ðb þwÞ�þ 2S13 þS44ð Þ cos2 b sin2 bþ cos2ðbþwÞ � sin2ðbþwÞ� �

ð1Þ

where, ajj—coefficient of linear expansion along an axis “c”; a⊥—coefficient of
linear expansion along an axis “a”; Sik—coefficients of elasticity.

The coefficients of linear expansion a—titan along axes “c” and “a” at room
temperature are equal: ajj = 9.5 � 10−6 grad−1; a⊥ = 5.6 � 10−6 grad−1 [6]. The
meanings of elasticity coefficients were accepted on the basis of the literary data [7]:
S11 = 0.958 � 10−5; S33 = 0.698 � 10−5; S13 = −0.189 � 10−5; S44 = 2.14 �
10−5 MPa. The received dependencies of thermal anisotropy stresses, r/DT at
meanings of corners b and w from 0 up to 180 grad., are given in Fig. 1a, b.

As have shown results of account, for titan by most favourable, causing stresses
of compression (r/DT = 0 to −1.44 MPa/grad) were basic borders of grains with
90—grad orientations, or close to them, of a H.A. (b = 90 ± 45 grad.). By most
dangerous, causing stresses of a stretching (r/DT = +0.7–1.8 MPa/grad.), were
prismatic borders a—grains with hexagonal close-packed axes approximately
parallel to general border of the unit (b � 0 ± 45 grad.) and which on the data
Kolachev [8], should work as drains of vacancies, that is why, according to our
concept, along such prismatic borders should be formed nonequilibrium a(b)-solid
solutions by enriched vacancies and b-stabilizers.

During cutting treatment of blank, in zone of interaction with driven the cutting
tool, is observed the structural and crystallographic textured of processable material
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and formation of prismatic orientation of borders having preferable orientation in
planes of shift. On such grains borders from HCP—lattice, as a result of heats
change, can arise appreciable thermal stresses, which, probably, result in metal to

Fig. 1 Thermal anisotropy stresses on border of two HCP crystals with the appropriate corners
between their hexagonal close-packed axes (H.A.) (a), and also between a H.A. and border of the
unit (b), at change of a temperature on 1°
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change structure, redistribution of alloying elements, impurity atoms and vacancies,
further, to localization temperatures, plastic deformation, and also to decrease of
wearproofity of tool [9].

Chip Microstructure

At cutting metal blanks, in zone of contact interaction of processable detail and
cutter there is a complex manyfactor process of interaction of deformation, friction,
adhesion and destruction, the ratio of which values is influenced by physical—
mechanical and chemical properties of contacting materials, geometry of cutting,
lubricant, speed and temperature of deformation. On Fig. 2 are represented a pro-
cessable detail, cutter and formed element chip.

Study of geometrical parameters, the evolutions of formed chip structure on
macro-, micro- and submicro-levels carried out in longitudinal and cross its sections
with the help of optical metallography, transmission and scanning electronic
microscopy with attraction of microdiffraction analysis and computer. Samples
(foil) for a transmission electronic microscopy cut out by tubular electrode by
diameter 3 mm in longitudinal section of chip.

In Fig. 3a, b the photos of structure of alloy BT23 are submitted before (Fig. 3a)
and after (Fig. 3b) cutting treatment. Is shown, that at cutting treatment, beginning
already from speed 2 m/min, the non-uniform plastic deformation, its strong
localization in periodic narrow volumes of metal on the mechanism of formation of
superfine dislocation cellular structures, Fig. 3b took place. Conditions for strong
localization in volumes of metal of temperature and plastic deformation here are
created. The free surface of a chip is formed on the complex mechanism with
attributes of destruction in conditions of superplasticity, Fig. 4a, b.

In process of cutter movement, at the same time with frictional heat, in segment
of material, formed before it, there is an accumulation of crystal structure defects
and their evolution, down to formation a ultimate structure resulting in localization
of plastic deformation and in destruction. The size of a segment depends from
temperature—kinetic conditions of cutting and from relaxation ability (structural
and concentration) processable material. Increase of speed of cutting over ultimate,
the causing backlog of frictional heat-generating from heat-absorbing (increase of

Fig. 2 The circuit of
formation of an element chip
at metal blank by cutting
treatment
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dissipation of energy at the expense of structural and phase transformations), results
in localization of heat in narrow periodic volumes of metal, where there is for-
mation ultimate structure, redistribution of alloying elements, impurity atoms,
vacancies and localization there of plastic deformation to simultaneous shift and
displacement of segments.

In process of cutter movement, at the same time with frictional heat, in segment
of material, formed before it, there is an accumulation of crystal structure defects
and their evolution, down to formation the ultimate structure resulting in plastic
deformation localization and in destruction. The size of the segment depends from
temperature—kinetic conditions of cutting and from relaxation ability (structural

(a) (b)

Fig. 3 Structure of chip from alloy VT-23 before (a) and after (b) cutting treatment with speed
120 m/min

(a) (b)

Fig. 4 Characteristic photos of a surface chip from an alloy BT-23 after cutting treatment with
speed 230 m/min. �200 (a); �400 (b)
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and concentration) processable material. Increase of the cutting speed over ultimate,
the causing backlog of frictional heat-generating from heat-absorbing (increase
dissipation of energy at the expense of structural and phase transformations), results
in localization of heat in narrow periodic volumes of metal, where there is for-
mation ultimate structure, redistribution of alloying elements, impurity atoms,
vacancies and localization there of plastic deformation to simultaneous shift and
displacement of segments.

At a cuttings formation in titanium alloys having a high frictional heat, the low
heat conduction and significant relaxation ability (structural and concentration),
creates conditions for dissipative modification of structure and chemical composi-
tion of periodic narrow layers of material. It results in so-called frictional accom-
modations (period of a wear-in material. In a contact zone the wearproof secondary
structure essentially lowering wear of processable detail, but raising wear of cutting
edge of tool is formed.

Conclusion

During thermomechanical treatment, for example, cutting treatment, the accumu-
lation of external energy by system of basis atoms and alloying elements causes
their displacement from the equilibrium positions (units of crystal lattice), that
creates in a superficial layer of processable detail complex elastic—intense state, at
all structural levels. The dislocated atoms formed at it, and vacancies are carriers of
superfluous energy and promote increase of phases solubility limit. Thus, it is
possible to believe, that in contact zone the nonequilibrium solid solutions enriched
by superfluous alloying elements and vacancies are formed which, being in is
elastic—intense state, appear inclined to decomposition. For the self-organizing,
transition to relative balance, the system realizes various ways of dissipation of
superfluous energy: besides transformation of mechanical energy in thermal (the
increases of temperature in contact zone), proceed two polystage relaxation pro-
cesses—structural and concentration [10]. The structural relaxation is shown as
structural transformations on the mechanism of formation of narrow zones of
secondary dislocation substructures. The increase of regularity and frequency of
dislocation congestion’s distribution promotes similar distribution in a cutting edge
zone of true stresses at the expense of redistribution them lengthways of rather
advanced subborders. The concentration relaxation is shown as phase transforma-
tions on the mechanism of decomposition of nonequilibrium solid solution and
redistribution (mass transfer) in secondary structures of superfluous alloying ele-
ments, impurity atoms, vacancies and oxygen from external environment. It is
possible to believe, that in a contact zone the secondary structures alloying by
oxygen [11], raising a wearproofity of a processable material are formed.

The cuttings formation includes two basic moments. At the first stage at com-
pression there is a crumplety of a processable detail as a result of uniform plastic
deformation, increase of actual contact area and, hence, reduction of true stresses in
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a zone of cutting. In too time, in a cutting edge zone there are frictional forces,
which grow simultaneously with growth of actual contact area. Thus, the plenty of
heat is located in contact zone between cutting tool and detail. At the second stage
at compression there is formation a ultimate structure, mass transfer and localization
of plastic deformation in high plastic narrow zones, to simultaneous shift and
displacement of segment. In this moment the actual contact area decreases, and in
zone of cutting the true stresses are increased. The cyclic change of resulting
stresses results in fatigue phenomena in zone of chip formation. Besides a defor-
mational -mechanical wear in cutter material and processable detail in addition
arises fatigue wear, that is the reason of decrease of wearproofity of the tool at the
certain high speeds of machining of materials with a low heat conduction.

Thus, the analysis of the received results allows to conclude, that during cutting
treatment of metal blanks, in them the nonequilibrium solid solutions are formed
which for the self-organizing, transition to relative balance, realize various ways of
dissipation of superfluous energy. The cuttings formation can be considered as
process of go-ahead redistribution of the stress concentrator along edges of pro-
cessable detail and necessities of its periodic relaxation by means of local structural
and phase transformations in a crystal, which as a whole remains structural—stable.
The period of deformation localization (size of chip segment) depends from tem-
perature—kinetic conditions of cutting and from relaxation ability (structural and
concentration) processable material. For effective increase of a wearproofity of the
tool, it is necessary to create conditions for power balance between a brought up
thermal energy and its dissipation at the expense of structural and phase transfor-
mations in processable material.
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The Model of the Elastic–Plastic
Deformation of a Structural Member

Sergei A. Sokolov

Abstract The model of the elastic–plastic deformation of a structural member
containing the stress concentrator is proposed. The model enables visualization of
the deformation process under irregular, cyclic loading and considering the insta-
bility of cyclic material properties. The model can be implemented in Mathcad. The
model is designed for the analysis of the operational loading of structures and
components in predicting their strength and resistance to low-cycle fatigue.

Keywords Stress concentrator � Elastic–plastic deformation � Cyclic loading

The fatigue damage and fracture in metal structures and machine elements generally
occur in the stress concentrators. To predict these damages, it is necessary to know the
distribution of stresses in these areas and how they change in the course of operational
loading [1–6]. The stress field in objects of arbitrarily complex shape, with monotonic
loading including consideration of the elastic–plastic material properties, can be
calculated by the finite element method. However, the modeling of the material
elastic–plastic deformation in the stress concentrator under cyclic loading presents
certain difficulties for using both analytical and numerical methods. Particular diffi-
culties arise if one needs to consider the cyclic instability of the material mechanical
properties [4.13]. The change parameters of the material mechanical properties under
cyclic loadings are investigated on sampleswithout concentrators according to known
methods, but using these parameters to structural member with stress concentrators
necessary to introduce a number of assumptions, which are applicable only in ele-
mentary cases of loading and deformation [1, 2, 7–11].

In order to solve the above-mentioned problem, this paper proposes the elastic–
plastic deformation model of the structural element or component under the con-
ditions of a non-homogeneous state of stress. The model provides a simplified
picture of the material stress–strain state at the stress concentrator, but makes
possible visual tracking of the deformation in the case of irregular loading and
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unstable material cyclic properties. The initial data used in this model are the
following:

– the material yield strength value rT in the stress concentration zone and the
equation of the material elastic–plastic deformation curve;

– the parameters of material cyclical instability, if it exists;
– the elastic analysis results of the stress structural member state, which gives the

value of the theoretical stress concentration factor ar and the stiffer modulus of
stiffness stress state at the stress concentrator g ¼ rI=re [12], (rI is the first
major stress, re is the equivalent stress according to the Mises theory).

The model assumptions are:

(a) the plastic zone in the stress concentration zone covers not more than 10–20%
of the section area of the structural element. In addition, in the cross sections
remote at some distance from the stress concentration zone. The element stress
state is independent of plastic processes in the stress concentrator.

(b) the deformation curve of steel, when subjected to cyclic loading, is described
by the generalized Masing principle [2].

For the stress-strain state simulation of the structural member part with a stress
concentrator, we use a frame structure consisting of two rods (Fig. 1). The rod 1 of
length L1 with the cross sectional area A1 is the material model in that cross-section
part, which is not affected by stress concentration. It remains in an elastic state when
subjected to all loadings. The rod 2 of length L2 with the cross-sectional area A2

simulates the material deformation in the elastic–plastic zone. The upper ends of
rod connect and move together. Let us set:

u ¼ A2

A1 þA2
:

The deformation diagram of rod 1 material is described by Hooke’s law:

e1 ¼ r1

E
: ð1Þ

The elastic–plastic properties of the rod 2 material are described by the
power-law of the relative strain/stress dependence, which in a zero-half-cycle, is as
follows [2, 8, 9]:

Fig. 1 The bar model of
elastic–plastic structure
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e2 ¼
r2
E if r2 �grT;

a
2

r2
E þ grT

E
r2

agrT

� �1
m

� �
if r2 [grT;

8<
: ð2Þ

and at the following loading half cycles is so:

e2 ¼ a
2

r2

E
þ grT

E
ðr2 � r2cÞð�1Þk

agrT

 !1
m

2
4

3
5: ð3Þ

where r1 и r2 are the stress of the rods 1 and 2 respectively; E is Young’s
modulus; r2c is the value of the previous stress extremum r2; m is a
strain-hardening coefficient in the elastic–plastic zone; a is the scaling parameter in
accordance with the assumption of “b” in the zero-half-cycle for k ¼ 0 which
is given as a ¼ 1 and further on when the following k ¼ 1; 2; 3; . . . a ¼ 2.
The strain-hardening exponent can be determined experimentally or calculated as
suggested in [4.13].

At all deformation stages of the frame structure, both in elastic and elastic–
plastic deformation, the balance condition and compatibility of strains are valid.
They are written in the differential form as:

drnðA1 þA2Þ ¼ dr1A1 þ dr2A2: ð4Þ

dD ¼ de1L1 ¼ de2L2: ð5Þ

where rn is the net nominal stress of the structural member cross section with a
stress concentrator; D is the movement of coupled rod ends (Fig. 1). Equation (5)
disregards changes in the rod lengths L1 and L2 under the deformation, since, using
the validity assumptions, “a” of this factor influence will be negligible.

In the zero-half-cycle for r2 �grT, both rods are elastically deformed and the
equality has to hold only for:

dr2 ¼ ardrn: ð6Þ

From Eq. (6), using Eq. (5) and Hooke’s law, we can find the ratio of the rods’
length, which we take as a model parameter, i.e.:

L1
L2

¼ arð1� uÞ
1� aru

: ð7Þ

Thus, the entire system under the elastic deformation is described as follows:
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dr1 ¼ 1�ar u
1�u drn; de1 ¼ dr1

E ;

dr2 ¼ ardrn; de2 ¼ dr2
E :

ð8Þ

To find the like dependencies under conditions of the deformation of the elastic–
plastic system, i.e., for r2 [grT, from Eq. (4), the stress increments in the rods
are expressed in terms of load increment drn as:

dr1 ¼ drn

1� uþu dr2
dr1

and dr2 ¼ drn

uþ 1� uð Þ dr1
dr2

From Eqs. (5) and (7) we find:

de1
de2

¼ 1� aru
arð1� uÞ : ð9Þ

Differentiating Eq. (3) and plugging in Eq. (9), we obtain

dr1

dr2
¼ 1� aru

arð1� uÞUe;

where

Ue ¼ a
2

1þ 1
am

ðr2 � r2cÞð�1Þk
agrT

 !1
m�1

2
4

3
5: ð10Þ

Thus, the stress and strain increments under the elastic–plastic deformation of
model are calculated as:

dr1 ¼ ð1�aruÞUe

arð1�uÞ dr2; de1 ¼ dr1
E ;

dr2 ¼ ar
aruþ 1�aruð ÞUe

drn; de2 ¼ Ue
dr2
E :

ð11Þ

The parameter value u is set by comparison with the results of finite element
analysis of the stress-strain state of components with concentrators and accepted
u = 0.15.

The presented simulation algorithm of the material elastic–plastic deformation in
the stress concentrator is realized without difficulty, for instance, in Mathcad. The
program block-scheme is shown in Fig. 2.

In this scheme, block 7 defines the extremum transition point of the loading
process. The scheme may be supplemented by the accounting algorithm of the
material cyclical instability parameters in block 8. The engineering unrelieved
stresses in the concentrator may be introduced as initial data, such as r2 ¼ r2r and
r1 ¼ �r2ru=ð1� uÞ:
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The adequacy testing of the proposed algorithm was performed by comparison
with the results of finite element calculations. The two bands with a circular opening
and an edge neckline are used as two stress concentrators (models 1 and 2). With

Fig. 2 The block-scheme of the calculation algorithm for the process of elastic-plastic
deformation of the material in the concentrator
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allowance for the symmetry, the properties of the finite-element models reflect only
a quarter of these objects with the assignment of appropriate boundary conditions
on the trimming line. The third stress concentrator is the thin-slab structure frag-
ment (model 3, Fig. 3b). The finite element model is fixed along the outline A and
loaded by transverse force F, which is applied to the flange face. The highest stress
concentration occurs in zone B. The plate elements (plate) were used in all models.
The models have the following parameters:

model 1: ar = 2.3; g = 1.0; rn = 200 MПa;
model 2: ar = 3.9; g = 1.0; rn = 162 MПa;
model 3: ar = 3.8; g = 1.1; rn = 176 MПa.

The theoretical stress concentration factors for all models are calculated as
ar ¼ rI=rn. Since the plate elements’ bending occurred in model 3, accordingly,
all stresses for this model are calculated as an average of the two element sides. The
model material has the deformation diagram by Eqs. (2) and (3). The yield strength
rT = 300 MPa, and strain-hardening exponent m = 0.21. All the models are sub-
jected to one cycle, which consists of loading and unloading (zero-to-compression
cycle).

The calculation results of the material deformation process in the stress con-
centrator for the three models are presented as graphs in coordinates rx � ex. That
is, the normal stress and the linear deformation act in the direction that coincides
with the direction of the first major stress under a concentrator tension (Fig. 4). As
shown, the proposed algorithm exhibits satisfactory agreement with the results of
finite element analysis. In particular, both calculation variants give similar values of
unrelieved stress in a concentrator, resulting from local plastic deformation.

Fig. 3 Finite element model of the thin-web structure fragment (a) and the neckling (b)
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The properties of cyclically weakening or strain-hardening material can be
handles in the calculation algorithm. As in the example, the deformation/straining
curves are calculated for the sample without a stress concentrator ar = 1 and
u = 0.99 for rn [rT (Fig. 5a) and with a stress concentrator ar = 2.5 and
u = 0.15 for rn\rT (Fig. 5b) of the strain-hardening material, for which the value
m is increasing from cycle to cycle as mk ¼ 1:1k m0 (where k is the half-cycle
number, m0 is the zero half-cycle index value). As seen, the sample without a stress
concentrator, when subjected to soft loading, causes the hysteresis loop to narrow at
constant strain. The loop also narrows in the concentrator, but hereby the strain is
growing. The calculation results for the same samples, but from the softening
material with mk ¼ 0:9k m0, are shown in Fig. 5c–d. In this case, the hysteresis loop
in/on the sample without a stress concentrator expands significantly and, in the
concentrator, the loop’s width varies very little.

Thus, the proposed model of material elastic–plastic deformation in the con-
centrator enables analysis of the kinetics of the deformation process under an
arbitrary process of cyclic loading, set by function rnðtÞ and considering the
instability of material cyclical properties. This instrument needs for predicting

Fig. 5 Deformation curves for samples from hardening (a–b) and unhardening material (c–d)

Fig. 4 The graphs of material deformation in the concentrator calculating by FEM (–♦–) and by
the presented algorithm (–)
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low-cycle fatigue and the strength of heavily-loaded structural members and
elements.

References

1. Kogaev VP, Makhutov NA, Gusenkov AP (1985) Calculations of strength and durability of
machine parts: reference book. Mashinostroenie, Moscow, 224 p

2. Troshchenko VT (1971) Fatigue and inelasticity of metals. Naukova Dumka, Kiev, 268 p
3. Agrawal R, Uddanwadiker R, Padole P (2014) Low cycle fatigue life prediction. Int J Emer

Eng Res Technol 2(4):5–15
4. Borrego LP, Abreu LM, Costa JM (2003) Analysis of low cycle fatigue in AlMgSi aluminium

alloys. Anales de mecánica de la fractura. 20:179–184
5. Daunys M, Norkuvienė D (2007) Investigation of stress and strain state in concentration zones

under low cycle loading. MECHANIKA N2(64):5–11
6. Klysz S (2005) Load sequence influence on low cycle fatigue life. Techn Sci 8:193–209
7. Bondar’ VS, Burchakov SV, Danshin VV (2010) Mathematical modeling of the processes of

plasticity and materials destruction under non-stationary and non-symmetric cyclic loading.
Izvestija Tulskogo gosudarstvennogo universiteta (Izvestija TulGU). Nat Sci (1):64–74

8. Moskvitin VV (1981) Cyclic loadings for elements of structures. Nauka, Moscow, 344 p
9. Fomichev PA, Zvyagintsev VV (2000) Forecasting the durability of bodies with cuts based on

local stress strain states. Report 1. Defining stresses and deformation in a cut during
elastic-plastic deformation. Durability Issues, vol 3, pp 37–45

10. Khazhinsky GM (2011) Models of metals deformation and destruction. Naychny Mir,
Moscow, 321 p

11. Anand L, Parks DM (2002) Defect–free fatigue. Massachusetts Institute of Technology.
Department of Mechanical Engineering. Cambridge, Massachusetts 02139. 2002 Mechanics
and Materials II SPRING 2004. Supplementary notes

12. Kopel’man LA (1978) Resistance of welded assemblies to brittle fracture. Mashinostroenie
(Leningrad Department), Leningrad, 232 p

132 S.A. Sokolov



Parametric Vibrations Excitation
in Cyclic Mechanisms

Iosif I. Vulfson

Abstract With regard to the problems of the dynamics of machines and mecha-
nisms, the dynamic stability conditions are derived for the joint account of para-
metric and forced vibrations and the impact of nonlinear elastic and dissipative
characteristics. It also proposes a new modification of the method of conditional
oscillator by which it is possible to analytically study the oscillating systems with
rheonomic and nonlinear constraints. For typical vibrational regimes, computer
simulation results are presented.

Keywords Vibrations � Mechanisms � Method of conditional oscillator �
Nonlinear elastic and dissipative characteristics � Dynamic stability � Parametric
resonance

Introduction

The actuators of many technological machines make periodic program movement,
which are carried out by so-called cyclic mechanisms (linkages, cams, steppers,
etc.). The kinematic characteristics of cyclic mechanisms are not only a source of
perturbation, but also form a nonlinear and time-dependent dynamic constraints,
which can lead to increase the vibroactivity and even to dynamic instability of
vibration systems [1–3]. The relationship between coordinates of the cyclic
mechanisms at the “entrance” and “outlet” is described by a nonlinear position
function y ¼ PðuÞ. For an ideal mechanism, in which there are no gaps and all
links are made completely rigid, u ¼ u� ¼ xt where x ¼ const is the angular
velocity of the input link. Let u ¼ u� þ q; here q corresponds to the absolute
coordinate with the absence of vibrations (absolute dynamic errors). After lin-
earization of the position function in the neighborhood of the programmed motion,
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we have P u� þ qð Þ � P u�ð ÞþP0 u�ð Þq, where P0 ¼ dP=du is the first geomet-
rical transfer function (velocity analog). Thus, almost without compromising for
accuracy, the nonlinear constraint is transformed into a non-stationary one.

The implemented frequency range of parametric resonance is usually far enough
away from the most dangerous main parametric resonance; the higher-order reso-
nances are suppressed even at low dissipation. However, in modern technological
machines and automatic lines, there are cases when the programmed motion con-
tains high-frequency components. Furthermore, during a kinematic cycle may occur
connection and disconnection of some mechanisms or change the mass of moving
objects. Then the inertial and elastic characteristics may contain not only low
frequency, but also high-frequency, components. In such cases, we are faced with
the problem of suppression of parametric resonance with a polyharmonic nature of
parametric excitation. Practical methods for identifying areas of dynamic instability
are usually based either on various modifications of the method of a small
parameter and other asymptotic methods, or on numerical methods [4–7].

The procedure for solving such problems is far from elementary, especially if we
consider not only a simplified reference model with one degree of freedom and
single-frequency parametric excitation, but the real oscillatory system of modern
machines and mechanisms, in which the dynamic model and parametric excitation
have a complex structure. The problem is even more complicated when nonlinear
characteristics should be taken into account. As the basis, the following factors
should be considered:

• The variability of inertial and elastic characteristics, which in zones of para-
metric resonance can disrupt the dynamic stability conditions;

• The presence of fast and slow components of the position functions and forces
that, by taking into account the nonlinear dissipative forces, affect the thresholds
of parameter’s depth pulsation;

• Interaction of forced and parametric oscillations;
• Interrelationships of rheonomic and nonlinear constraints.

In the article, the problem is solved on the basis of a new modification of the
method of conditional oscillator [1, 3, 8] that, in this class of problems, enables one
to avoid a number of problems arising when using the traditional methods.

Conditions of Dynamic Stability

Dynamic models depicting oscillatory systems with cyclic mechanisms are very
diverse [1–3], so here we restrict the analysis to the following differential equation
of the general form that enables one to describe the problem just mentioned:
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J1 1þ lP02
�

� �
€qþR q; _qð Þþ 2lJ1P0

�P
00
�x _qþ c1 1þ fP02

�
� �

KðqÞ
¼ MðtÞP0

� � lJ1P
0
�P

00
�x

2:
ð1Þ

Here aðu�Þ ¼ J1 1þ lP02
�

� �
; c u�; qð Þ ¼ c1 1þ fP02

�
� �

KðqÞ are reduced moments
of inertia and rigidity coefficient, KðqÞ is a nonlinear function; l ¼ J2=
J1; f ¼ c2=c1, where Ji; ci are the moments of inertia and stiffness coefficients of the
input and output units; R q; _qð Þ is the positional dissipative force corresponding to the
scattering coefficient w (see below); M u�ð Þ is an external torque applied to the
output member; P0

� ¼ P0 u�ð Þ;P00
� ¼ P00 u�ð Þ; ðÞ0 ¼ d=du�.

Temporarily in Eq. (1), we exclude from consideration the nonlinear terms.
Then, the corresponding homogeneous differential equation can be represented in
the form:

aðtÞ€qþ bðtÞ _qþ cðtÞq ¼ 0: ð2Þ

Based on the method for a conditional oscillator, the solution of Eq. (2) is [1–3, 8]:

q ¼ A0 exp �d0½
Z t

0

XðuÞdu�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að0ÞXð0Þ
aðtÞXðtÞ

s
sin

Z t

0

XðuÞduþ a

2
4

3
5: ð3Þ

Here, d0 ¼ w=ð4pÞ is a dissipative factor; w is the scattering coefficient; A0; a are
determined by the initial conditions.

The function and the variable “natural” frequency pðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðtÞ=aðtÞp

in Eq. (3)
are related by the following equation:

€z� 0:5_z2 þ 2X2
�e

2z ¼ 2p2ðtÞ; ð4Þ

where z ¼ ln X=X�ð Þ; X� is an arbitrary parameter with frequency dimension,
playing the role of a normalizing factor.

The differential equation (Eq. 4) corresponds to a fictitious oscillating system
with “hard” nonlinear characteristics, which is called the conditional oscillator. The
role of the driving force here plays the function that is proportional to the square of
the “natural” frequency. It is enough to have a particular solution of this equation to
convert Eq. (3) into the calculation dependence describing the oscillatory process.
With a slow change of the parameters, p ¼ p0 � X. Then the solution of Eq. (4)
coincides with a WKB approximation of the first order [9]. Let, P0 ¼ P0

0 þP0
v,

where the terms correspond to slow and fast movements. For definiteness, we will
take P0ðuÞ ¼ h sinuþ e sinðmuþ cÞ½ �, where the first term corresponds to the
“slow”, and the second to the “fast” harmonic with the frequency m and depth of
pulsation e. (Here and below an asterisk by u� is omitted.). Now, instead of a fixed
constant the function X�, we should use the function p0ðtÞ that corresponds to the
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slowly varying component of the “natural” frequency pðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðtÞ=aðtÞp

. On the
basis of Eqs. (3) and (4), we determine the change of the oscillation amplitude:

AðuÞ ¼ A0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að0Þ=aðuÞ

p
exp �d

Zu
0

p0ðuÞdu� 0:5 zðuÞ � zð0Þ½ �
2
4

3
5; ð5Þ

Typically, sufficient accuracy for engineering applications is achieved through
linearization of Eq. (4) by changing from the exponential term to the first two terms
of the Taylor series [3, 4]:

€zþ 4p20ðtÞz ¼ 2 p2ðtÞ � p20ðtÞ
� �

: ð6Þ

Now, a slow varying function is retained as a parameter on the left-hand side of
the equation. The resonance of a linearized conditional oscillator corresponds to the
main parametric resonance that arises in the vicinity of the “floating” frequency 2p0.
The particular solution of Eq. (6) has the form of a modified Duhamel’s integral:

z ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
p0ðuÞ

p Zu
0

pðuÞ2 � p0ðuÞ2
h i

ffiffiffiffiffiffiffiffiffiffiffi
p0ðuÞ

p sin 2
Zu
u

p0ðsÞds
2
4

3
5du: ð7Þ

When performing engineering calculations, we can also use the numerical
solution of the nonlinear equation (Eq. 4).

Note that the analytical approach is necessary to a greater extent in this case for
the qualitative evaluation and by the optimization of parameters at dynamic syn-
thesis. On the basis of Eq. (7) at the joint account of the fast and slow changes of
parameters, we get—with some margin—a laconic condition of dynamic stability in
the area of the main parametric resonance:

0[ 0� ¼ �0:5Dz=p�; ð8Þ

where, Dz ¼ zð2pÞ � zð0Þ; p� ¼ ð2pÞ�1 R 2p
0 p0ðuÞ du; 0 ¼ 0:5w is the logarithmic

decrement.
As is evident from Eq. (5), the condition Eq. (8) excludes growth of the ampli-

tude when t ! 1, but that opportunity can be retained inside of the kinematic cycle
due to the variability of the inertia parameter a ¼ aðuÞ. Because aðuÞ ¼ að2pÞ, the
work of this component for the period of rotation of the input link is equal to zero,
which is inherent for gyroscopic forces. However, within a cycle, there may be a
zone when dA=du[ 0, which often results in the essential dynamic errors in the
program’s motion [10, 11]. The condition dA=du\0 can be written as:

0[ 0� ¼ pp�1
0 a0=aþ z0ð Þj j ¼ pp�1

0 a0=aþ p0=p� p00=p0
�� ��: ð9Þ
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Note that the inequality Eq. (9) coincides with the results obtained on the basis
of the direct Lyapunov method, which establishes a sufficient condition for dynamic
stability [1–3]. A very effective way to eliminate the possibility of excitation of
parametric resonance is to introduce quasi-stationary conditions [10, 11]. With the
implementation of these conditions, in spite of the variability of the parameters of
the system, the “natural” frequency in the first approximation remains constant, and
there is no energy growth during the period of the kinematic cycle. According to
Eq. (1), when l ¼ f, the conditions of quasi-stationarity are satisfied. Then, on the
basis of Eq. (7), z � 0, and should meet the condition Eq. (8), which excludes the
excitation of the main parametric resonance. In Fig. 1, graphs p u�ð Þ; p0 u�ð Þ for a
number of typical cases are shown with h ¼ 1; e ¼ 0:2; m ¼ 7.

Nonlinear Dissipative Forces

The nonlinear positional dissipative force can be represented as R q; _qð Þ ¼
� Rj ju _qj j � vj jð Þsign _q, where v is the velocity that is associated with the additional
movement (“aliens” harmonics, transportation motion, etc.); u is the unit function
u ¼ 1ð if _qj j[ vj j and u ¼ 0 if _qj j\ vj j). According to the conditions in Eqs. (8)
and (9), the dissipative forces were taken into account on the basis of the given
value w (or 0, d). However, these values need to be corrected, because at the same
time the effective values of the dissipative characteristics depend on forced oscil-
lations and can be significantly reduced: w� ¼ rðkÞw. The correction factor defined
by the relationship r ¼ kð0:4þ 0:5kÞ= 1þ 0:5k2

� �
, where k ¼ max _q=max v

[1–3, 12].
The physical meaning of the correction is associated with the fact that we usually

have limited initial information from the experimental data in the form of some
integral dissipative characteristics, such as scattering coefficient w or logarithmic
decrement 0, which are obtained by the harmonic vibrations for some standard

Fig. 1 Change of “natural”
frequency: 1—µ = 0.25;
f = 0; 2—µ = 0; f = 0.25;
3—µ = f = 0.25
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models. Thus, “harmonic linearization” of dissipative forces is carried out by
experimental techniques. In this case, the obtained information on the dissipative
properties of the system reflects them only to the extent that harmonically linearized
dissipative force corresponds to the actual resistance. Naturally, with
multi-frequency oscillations, this correspondence is violated, and, in some cases,
significantly so. For small values of k, the function rðkÞ is close to linear, i.e.,
proportional to the amplitude. This, in particular, is used for vibration linearization
of dry friction.

Figure 2 shows graphs obtained by computer simulation of Eq. (1) with a
threshold value corresponding to the boundary of a dynamic instability for the two
cases: without correction dissipative parameters (Fig. 2a) and with correction that
excited due forced vibrations (Fig. 2b). As follows from the analysis of the graphs,
to perform dynamic stability conditions the original value of the dissipative
parameter d ¼ 0=ð2pÞ grows by a factor of three. Furthermore, this increases the
intensity of the parametric excitation.

Interaction of Forced and Parametric Oscillations

In the case of the coincidence of the harmonic frequency of the driving force with
the frequency of the main parametric resonance, the amplitude is inversely pro-
portional to function 0� 0� cos 2Dcj j, where Dc is the phase shift between the
forced and the parametric excitation [1–3]. Thus, the resonant amplitude corre-
sponds to some vibration system with altered levels of dissipation (Fig. 3).

We investigate three resonance modes for a given value of logarithmic
decrement 0 ¼ 0:39. The regime 1 corresponds to forced vibrations, in which
the dynamic factor (dimensionless amplitude-frequency characteristic)
j ¼ p=0 ¼ 8:05. In regimes 2 and 3, in addition to the forced excitation, parametric

Fig. 2 The analysis of dissipative parameter’s correction: a without correction dissipative
parameters, and b with correction
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excitation takes place with the depth of pulsations e ¼ 0:2 and Dc ¼ p=2; 0 (curves
2 and 3). According to Eq. (9), 0� ¼ 0:31; then, for the regime 2, we have
0pe3 ¼ 0max ¼ 0:7, and for regime 3—0pe3 ¼ 0min ¼ 0:08\0�. Of course, if
0pe3\0�, the issue of the maximum amplitude is meaningless, since in this case the
system is dynamically unstable. When 0�\0\20�, the phase shift Dc significantly
impacts the growth rate of the resonance amplitude (Fig. 4). The chart qðuÞ clearly
shows that a relatively large effective value 0max (curve 1) is implemented at the
initial stage of the forced resonance mode, which is then transformed to the
exponential increase of amplitude that is typical for parametric resonance. When
0min (curve 2), the phase of forced excitation is virtually invisible.

Now, we shall perform the correction of the results obtained with the joint
accounting of forced and parametric excitation and also of high-frequency effects on
the resonant vibrations. When taking into account the received corrected dissipative

Fig. 3 The impact of the phase shift on the resonant mode: 1—regime 1; 2—regime 2; 3—regime 3

Fig. 4 Impact on the resonance at 0* < 0 < 20*: 1—Dc = p/2; 2—Dc = 0
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parameters, it can be shown that, by the most unfavorable ratio of the resonance
phase, the maximum amplitude in this case is defined as A� ¼ vA. Here A is the
amplitude in the absence of the high-frequency excitation; v is the coefficient of the
increasing resonance amplitude, which is defined as:

v ¼ 0:5 1þ sLþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ sLÞ2 þ 4sð1� LÞ

q� 	
=ð1� LÞ;

where L ¼ 2pe=0; s ¼ r�1ðkÞ � 1:
The parameters L reflects the influence of parametric excitation on the driving

force, and the parameter s is the influence of the high-frequency component. If
L ! 1, the conditions of dynamic stability are violated, so v ! 1, and it is not
dependent on s.

Interrelation of Rheonomic and Nonlinear Constraints

Next, take into account the non-linearity of elastic characteristic. Equation (1) may
be written as:

1þ lP02
0

� �
€qþ f q; _qð Þþ k2 1þ fP02

0

� �
KðqÞ ¼ wðtÞ � lx2P0

�P
00
� ; ð10Þ

where f ðq; _qÞ ¼ Rðq; _qÞ=J1;wðtÞ ¼ M� cosðXtÞP0
�=J1; k ¼ ffiffiffiffiffiffiffiffiffiffiffi

c1=J1
p

;M�;X are the
amplitude and frequency of moment applied to the output link.

This vibration system is subject to the biharmonic excitation X � x. In
Eq. (10), the gyroscopic force is lowered, because the corresponding work of this
component during the period 2p=x is zero. Suppose P0

0 ¼ h sinu;P00
0 ¼ h cos u,

and a nonlinear restoring force corresponds to the coupling with a cubic elastic
characteristic. Then, KðqÞ ¼ q 1þ bq2ð Þ and the “normal” frequency after the
harmonic linearization is:

pðu;AÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fP02

0

� �
1þ 0; 75bA2ð Þð = 1þ lP02

0

� �q
: ð11Þ

For the analytical solution, the method of a conditional oscillator was used in
combination with the harmonic linearization method. In Fig. 5a is shown the sig-
nificant change of a conditional oscillator’s phase portraits taking into account the
nonlinear elastic characteristic. That leads to an increase of the pulsation of “nat-
ural” frequency p (Fig. 5b), and consequently, to a change in the threshold con-
ditions of parametric excitation. In this case, the amplitude of the forced oscillations
significantly increases even if the dynamic stability conditions are implemented
(Fig. 5c). It should also be noted that, by low dissipation, the transient process up to
the attainment of a steady process results in the loss of stability and is drawn into a
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zone with increased values of the amplitudes A (Fig. 6). A similar pattern is
observed at the phase shift between the forced and parametric excitations.

For a clearer identification of the dynamic effects associated with the amplitude
modulation of the driving force, we assume in Eq. (1) that l ¼ f, which corre-
sponds to the quasi-stationary condition (see above). Then the time-dependent
constraint in an explicit form is absent and, at first glance, parametric effects do not
expect. But, the graphs in Fig. 7 show that regimes close to the parametric exci-
tation with the nonlinear elastic characteristics lead to the local violations of
dynamic stability, which alternates with break-downs of vibrations, creating an
intense beat regime.

In connection with the investigated issue, great interest is shown in the dynamic
effect that was discovered by M.Z. Kolovskiy. This effect consists of the fact that,
under certain conditions, a low-frequency beat’s resonance occurs, which arises
from the amplitude modulation of high-frequency vibrations [13]. Applications in
machines dynamics of this effect are partially considered in [14]. It can be shown
that the nonlinear component of the restoring force is described by the dependence:

KðqÞ ¼ 1þ 1:5b h x2=X2� �
sin2 uþ bq2

� �
q:

The beats result in the pulsation of the natural frequency pðAÞ, which in turn,
creates a situation that is close to the parametric excitation.

Fig. 5 The effect of nonlinearities: 1—b = 0; 2—b = −0.25

Fig. 6 To analyze the effect
of tightening: 1—d = 0.036;
2—d = 0.07
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Conclusion

In this article, we have further developed methods for the solution of a number of
nonlinear dynamics problems of mechanisms and machines. In particular, we have
examined proposed and investigated ways to reduce vibrational activity by sup-
pressing some dynamic effects arising from the joint influence of parametric and
forced vibrations for both slow and fast movements.
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Theoretical and Practical Conditions
of Bennett Mechanism Workability

Munir Gumerovich Yarullin and Fanil Fargatovich Khabibullin

Abstract The paper investigates the theoretical and practical conditions of
Bennett mechanism workability. The technology of specific links’ design is
developed, which enable that the mechanism’s cranks do not interfere with other
components. The design features of “zero” and “nonzero” links are investigated.
The paper analyzes the full-reverse rotation ability of the studied devices based on
the Bennett parallelogram and the anti-parallelogram modifications. Practical con-
ditions for full-reverse rotation of this mechanism are formulated.

Keywords Bennett mechanism � Full rotation conditions � “Zero” link �
“Non-zero” link

Introduction

Currently, design features of the Bennett’s linkage [1–10] attract great interest.
A series of attempts, which can be named “bennettiana”, to explore the phe-
nomenon and to explain mechanism operability has become apparent.

The mechanism comprises four links (see Fig. 1a) connected in series with four
rotary pairs. The mechanism is considered “paradoxical” because of the fact that the
mechanism’s freedom is equal to minus two, so that the construction should be
supposedly fixed so:

W ¼ 6 � m� 1ð Þ � 5p1 ¼ 6 4� 1ð Þ � 5 � 4 ¼ �2: ð1Þ
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However, the Bennett’s linkage is movable, and its freedom is determined by
additional conditions that are imposed on the mechanism.

First, let’s consider simple and a reliably scrollable, spatial, four-link mecha-
nism, with ball joints and equal-length opposite links (Fig. 1b). The degree of
freedom of the mechanism can be determined by the formula of Somov–Malyshev:

W ¼ 6 n� 1ð Þ � 5p1 � 4p2 � 3p3 � 4p2 � 1p5; ð2Þ

where n is the number of links,
W is the degrees of freedom,
p5; p4; p3; p2; p1 are the kinematic number of 1–5 classes.

W ¼ 6 4� 1ð Þ � 5 � 0� 4 � 0� 3 � 4� 2 � 0� 1 � 0 ¼ 6: ð3Þ

This means that the mechanism has five local mobilities:

1) links EA, AD, and DL can rotate around lines EA, AD, and DL
respectively (three mobilities)

2) links EA and AD together can rotate around ED line (fourth mobility)

3) links AD and DL together can rotate around AL line (fifth mobility).

In addition the mechanism acquires the general mobility when rotating EA link.
But, such kind of mechanism can not be used in practice.

We shall verify the theoretical conditions for existence of two cranks. Let the
links occupy the position in space where diagonals DE and LA are of the same
length DE ¼ LA ¼ L0ð Þ (Fig. 1b). We get the triangular pyramid LDAE with
opposite edges identical in length, equal to l1; l2, and ribs L0. The surface area of the
pyramid consists of triangles with sides l1 and l2, and edges L0. Let’s assume that
the area of each of the triangles is equal to K. We drop a perpendicular from the
peak A to the EL edge. The length of the perpendicular h00 ¼ 2K=l2. If we designate
the angle of inclination of this perpendicular to the plane LAE through a2, then the
height, dropped from the top A onto this plane, may be calculated as:

Fig. 1 Structural diagram of
a Bennett’s linkage
b four-links with ball joints
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H ¼ h00 sin a2 ¼ 1
l2
� 2K sin a2; ð4Þ

Similarly, let’s take h0 as the length of the perpendicular, dropped from the same
point onto the LD edge

h0 ¼ 2K=l1

Hence, in this case, denoting the angle of inclination of the perpendicular h0 to
the plane LAE through a1, we obtain the similar formula:

H ¼ h0 sin a1 ¼ 1
l1
� 2K sin a1: ð5Þ

From the expressions in Eqs. (4) and (5), we obtain the dependence of length
and rotation angles of the rod from the crank:

l1= sin a1 ¼ l2= sin a2: ð6Þ

Wereplace the three-degree-of-freedom spherical hinges for one-degree-of-freedom
rotatory hinges. At that, the axis of the rotational kinematic pairs we describe strictly as
follows:

– the axis e-e is parallel to AC;
– the axis a-a is parallel to OC;
– the axis d-d is parallel to AB;
– the axis l-l is parallel to BO.

The obtained mechanism is the Bennett linkage, the degree of freedom of which
in accordance with Eq. (1) is equal to minus two.

Despite the negative value of the degree of freedom of the mechanism, under
certain conditions this mechanism can be rotated [11]. The theoretical conditions of
Bennett linkage rotation are:

(1) The opposing links of the mechanism are the same:

(a) the length of the shortest distances of opposing units are equal, i.e., l1 ¼ l3
are the lengths of the shortest distances between hinges of driving and
driven cranks and l2 ¼ l4 are the lengths of the shortest distances between
axes of hinges of the connecting rod and the frame;

(b) the geometrical axes of hinges of opposing links are deployed relative to
each other at equal angles, i.e., a1 ¼ a3 are the angles of crossings of
hinges of the driving and driven cranks, a2 ¼ a4 are the angles of crossing
axes of hinges of the connecting rod and the frame.
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(2) The edges of the shortest distances of the neighboring links coincide.
(3) The following condition is satisfied:

l1
l2
¼ � sin a1

sin a2
: ð7Þ

Mobility of the Bennett linkage has been theoretically proven on animated
models [12, 13]. But there is a sufficiently small quantity of practically constructed
devices and machines based on this linkage. The devices created by the scientists of
the Kazan School of Mechanics [14–16] are the exception. The reason for this is
that the Bennett linkage has two cranks, and the full-motion freedom of these
cranks is provided only in the manufacture of the mechanism links in a special way.
The key point of this method is that, in order to provide the full-motion ability of
the mechanism, some of its links must be “non-zero”. Existing models of the
Bennett linkage, constructed by other researchers and made without the “non-zero”
links, do not possess the full-motion ability of their cranks: the mechanism are
superimposed on one another and prevent the full-turn motion (Fig. 4b).

This article is devoted to the research conducted on the creation of full-space
specimens of the devices based on Bennett linkage through development of
“non-zero” links to ensure its full-turn motion.

The Design Features of “Zero” and “Non-zero” Links
of the Bennett Mechanism

(1) Let’s consider the method of obtaining the construction of a “zero” connecting
rod and frame.

The structural parameters of the connecting rod and the frame of the Bennett
linkage are:

l2 ¼ l4—the shortest distance between the hinges’ axes (Fig. 2).
a2 ¼ a4—angles of crossing of axes of links hinges (Fig. 2).

Figure 2a shows the model of “zero” connecting rod in three projections. Here,
the shortest distance between the axes of the hinges of this link coincides with the
symmetry axis of the connecting rod. AD line AD is the shortest distance between
the link and its symmetry axis.

This link has two important structural parameters: the first—the specified center
distance, the second—the angle of crossing of the axes. Fig. ‘2b’ shows the
“non-zero” link derived on the basis of the “zero” link, by the method of biasing the
hinges centers of the “zero” connecting rod to the distance of A00

0A
00 and D0

0D
0,

respectively. Thus, the obtained “non-zero” link has no geometric symmetry axis,
and the shortest distance between the axes of the hinges of the connecting rod is
outside the body. Dimensions of sections A00

0A
00 ¼ h00, D0

0D
0 ¼ h0 are determined
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freely by a constructor to provide rotation of the mechanism depending on
dimensions of the other links to avoid imposition of mechanism construction links.

Figure 2b in three projections shows the relationship between “zero” and
“non-zero” links. The figure shows that the shortest distance and the angle of the
axes of hinges are absolutely the same, although the actual bodies of the links are
different.

Fig. 2 Link of the Bennett mechanism: a “zero” connecting rod, b relationship between “zero”
and “non-zero” links
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The crossing angle between the axes of hinges of the connecting rod will be
considered positive if the alignment of the axis of the hinge, remotest from the
observer along the shortest distance, is executed contra-clockwise. The link
opposite to the connecting rod is taken as the frame of the Bennett mechanism.
Generally, the frame is the “non-zero” link. For ease of design and to simplify the
manufacturing process, the angle of crossing of axes of hinges of the connecting rod
and frame are usually taken to be 90°.

(2) Let’s consider the method of obtaining the construction of the “non-zero”
cranks. Structural parameters of driving and driven cranks are similar:

l1 ¼ l3—the shortest distance between the hinge axes (Fig. 3).
a1 ¼ a—angles of crossing of hinge centers of these links (Fig. 3).

Fig. 3 Link of the Bennett mechanism: a the “zero” crank, b the “non-zero” link in relationship
with the “zero” crank
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In these three projections (Fig. 3a), the “zero” crank is illustrated. Figure 3b
shows the “non-zero” crank in relation to the “zero” crank in axonometric per-
spective: heads of hinges of the “non-zero” crank are offset for the distance h1 and
h2, respectively. Thus, in the resulting “non-zero” crank, the shortest distance
between the axes of hinges l1 ¼ l3 is outside the body.

Examples of the Existing Devices Based on the Bennett
Mechanism with “Zero” and “Non-zero” Links

The photo of the current model with “zero” driving and driven cranks is shown
(Fig. 4a). The connecting rod and the frame are “non-zero” l2 ¼ l4; a2 ¼ a4 ¼ 90�ð Þ.

The photo of the device for washing the equipment on the basis of the Bennett
mechanism is represented at Fig. 5a [15, 16]. Driving and driven links are
“non-zero”; the connecting rod, used as the container for inertia washing, is “zero”.
The mechanism frame is the “non-zero” link with the structural parameters of the
connecting rod.

Figure 5b is a photo of the existing model [14, 17, 18] of the
two-degree-of-freedom disintegrator, developed on the basis of the patent of the
RF № 2581487. The drive mechanisms of this parallelogram (upper drive) and
the anti-parallelogram (lower drive) of the Bennett linkage.

Here, in connection with the need to provide full-turn rotation of the drives, all
links are made “non-zero”. Such a design of the Bennett linkage enables providing
real full-turn motion without overlaps and jamming [https://www.youtube.com/
watch?v=vTu0r9o81KY].

Fig. 4 Photos of the Bennett mechanism model: 1 driving crank; 2 connecting rod; 3 driven
crank; 4 frame; a mechanism with “non-zero” links, b mechanism with “zero” links (A.N. Ermak)
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Conclusion

(1) Theoretical conditions of full-turn motion of the Bennett mechanism are the
following:

– opposing links of the Bennett linkage are identical: l1 ¼ l3; l2 ¼ l4;
a1 ¼ a3; a2 ¼ a4;

– the ends of the shortest distances of neighboring links coincide;
– the proportion is realized:

l1
l2
¼ � sin a1

sin a2
:

(2) The practical condition of the full-turn motion of the Bennett linkage is the fact
that at least two links should be “non-zero”, for example:

(a) two cranks (driving and driven) are designed as “non-zero”; the connecting
rod and the frame shall be “zero” (Fig. 4a);

(b) the connecting rod is “zero”; the two cranks and frame are “non-zero”
(Fig. 5a);

(c) all four of the mechanism links (two cranks, connecting rod, and the frame
are “non-zero” (Fig. 5b).

Fig. 5 Devices based on the Bennett linkage, 1 driving crank; 2 connecting rod; 3 driven crank;
4 frame; a device for inertial washing of the products, b uneven crushing disintegrator
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Dislocation-Phonon Mechanism
and Interpolation Dependence
of Fatigue-Damaged Structural Steel

Vladimir A. Zhukov

Abstract Based on the model of phonons superposition, the correlations between
the amplitude of the stress, the equivalent plastic deformation, and the number of
cycle fatigue damage are developed. This method possesses the ability to evaluate
of various technological options.

Keywords Phonons superposition � Fatigue damage � Equivalent cyclic plastic
deformation � Dislocation

Introduction

Testing of materials and metal design elements under cyclic stresses requires sig-
nificant time and financial costs. Usually, we need to weed out the worst of the
possible variants of technological processes and engineering designs using a min-
imum of experimental data and the accepted criteria. In that case, it is necessary to
provide sufficient adequacy of the employed interpolation dependences, which is
due primarily to the presence of the single mechanism of deformation and
destruction for the compared materials.

According to [1, 2], four areas of metal fatigue may be selected in the range from
1 to 1010 cycles of changing the stress: quasi-static plastic deformation (I),
elastic-plastic deformation (II), micro-plasticity (III), and nano-plasticity (IV). In
the transition region from the micro-plasticity (about 5 � 104 cycles of stress
change) to elastic-plastic deformation, the generation of submicroscopic damage of
steel is associated with the stress concentration in the top of the dislocations group,
which are detained by different micro-structural obstacles [3]. It is established that,
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in the transition area from micro-plasticity (of the order of several million cycles of
stress change) to nano-plasticity, fatigue cracks are formed in consequence of
interstices coalescence, which disperse initially at random in the volume of the
deformed metal.

In the analysis of damage of metals during cyclic deformation, as a rule, the
intermittent nature of the dislocations’ movement is not taken into account.
However, each jump of the dislocation induces fluctuations at the atomic level.
Distribution and interaction of these oscillations are regarded as the process of
superposition of quasi-particles phonons. Phonons are Bose particles, and, in
contrast to electrons and other Fermi particles, there are no restrictions as to the total
number of phonons and the number of phonons in the same quantum condition. The
local energy of the superposition of phonons can reach the magnitude under which
the stability of the crystal is lost [4].

The energy fluctuations of the phonons of the thermal motion may be the cause
of the breaks in the atomic lattice; this idea is used in the thermo-fluctuation damage
theory of materials [5, 6]. However, the thermo-fluctuation theory does not consider
the possibility of the occurrence of phonons in the process of deformation of the
material. The idea of ruptured interatomic bonds, due to phonons superposition
during plastic deformation metals, is offered in this paper [7]. We assume that the
cyclic movement of dislocations reproduces many times the conditions of the
formation and superposition of the phonon arising due to a dislocation jump at
variable stresses, the amplitude of which is much less than the yield tension of the
metal. Using the idea of the possibility of damage to the metals due to the super-
position of the phonons, we estimate the value of the cyclical plastic deformation
under which the phonons superposition assumes the primary cause underlying the
mechanism of fracture.

Theoretical and Experimental Results

The possibility of superposition of phonons depends upon the deformation condi-
tions and the structure of the metal. Due to anharmonizm of state defect-free crystal,
the maximum length of the free path of phonons Kanh depends on the physical
properties of the metal and the temperature [8]. For iron at room temperature, Kanh

is equal about 600a, where a is the average interatomic distance. The crystal lattice
defects (dislocations, boundaries of blocks and crystals, pores, etc.) contribute to
the scattering of phonons and reduce the length of free length K by contrast Kanh.

The energy emitted by the jump of the dislocation by one interatomic distance b in
the direction of the shift is sb2 into a 1-cm-long linear dislocation, where s is shear
stress. The maximum value of the energy fluctuation, in consequence of the phonon’s
superposition by the jump of a linear dislocation, is equal, as wells to sb2K. The
energy of vacancy formation is about half of the sublimation energy Esbl. From the
equality of the phonons superposition energy and the vacancy formation energy

156 V.A. Zhukov



sb2K ¼ 0:5Esbl, we estimate theminimumvalue of shear stress for vacancy formation
by the dislocation jump. The minimum value K is equal to the distance between the
dislocations; the value K ¼ Kanh ¼ 600b corresponds to a dislocation density of
about 109 cm−2, which is typical for normalized low-carbon steels. According to the
minimum value of shear stress for vacancy formation by the dislocation jump, svac
equals 25 MPa for the materials under Esbl � 6:8� 10�19 j=atom.

We note that sK ¼ 0:5Esbl=ðb2KÞ is the invariant quantity for any metal. It
means that, subject to s[ 0:5Esbl=ðb2KÞ, the spontaneous changes of the metal
structure are possible in the direction of K decreasing. On the contrary, subject to
s\0:5Esbl=ðb2KÞ, the value K increases. Such processes of self-organization
structures are called self-similar. In the first case, the density of structural defects,
including dislocations, increases, and there is a cyclic hardening of metal. In the
second case, there is a cyclic softening.

Phonons superposition is sufficient for the formation of submicroscopic cracks
by a jump of arrested obstacles dislocations. The tension in the top clusters of
n dislocations is equal to ns. The total phonons’ energy may achieve values of
nsb2K under displacement of the general dislocation at the distance b. On the basis
of the equality of phonons energy under the jump of only one arrested obstacle
dislocation and the energy formation of two free surfaces, we write the condition for
the formation of submicroscopic crack in the form nsb2K ¼¼ 2EsS, where Es is the
surface energy of the metal and S—the surface of submicrocrack. Taking values
K ¼ 600b, n ¼ 10 and Es � 2j=m2 in the case of mild steel, we obtain the value of
the surface of a submicrocrack S � 40b2 at s ¼ 100MPa. Thus, the submicrocrack
formation is possible on the condition that the dislocation density of the slip surface
is much higher than the dislocation density in the source structure of low-carbon
normalized steel. As reported in an article [9], the critical value of the dislocation
density at the emergence of submicroscopic fatigue cracks is equal to the order of
1010 cm�2. In order of magnitude, the obtained us assessment is consistent with that
value.

The increase of the dislocation density is possible if, under the action of stresses,
the dislocation overcome the obstacles that impeded their slide (intersections with
other dislocations, crystals of hardening phases). For assessing the value of plastic
deformation magnitude epl, under which there is a single slip of dislocations without
departing from their obstacles, we used the simplest model: the distribution of
dislocations and their pinning is equable throughout the volume of the material, and
the shear stress is the same for all dislocations.

Assume that the increase of shear resistance is provided mainly by the presence
of fine particles of secondary phases enjoyed the high shear resistance. In this case,
under stresses less than the tension yield, the maximum displacement of the dis-
locations in the direction of shear stress s does not exceed 0:5kp (Fig. 1a).
Correspondingly, the maximum of shear strain equals c ¼ pb=ð8kpÞ. The increase
of shear yield by the presence of solid particles equals sp ¼ Gb=kp, where G is the
shear modulus. Thus, c ¼ psp= 8Gð Þ; and epl ¼ psp= 16Gð Þ � 0:196 sp=G. For
structural middle-strength steel ðsp ¼ 250MPaÞ, the value of the magnitude of
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plastic deformation is estimated epl ¼ 50� 10�5; for mild steel, it is order
epl ¼ 15� 10�5. According to the above estimates, the local density of dislocations
must be an order of magnitude greater for the emergence submicrocrack in mild
steel. This is possible due to the passage of dislocations between particles of a
strengthening phase and accumulation of dislocations near the obstacles hindering
them from slipping.

Assume that shear resistance occurs mainly due to the high density of disloca-
tions distributed uniformly over the volume of the metal. We denote the distance
between the points of dislocations intersection per the symbol kd (Fig. 1b). Before
dislocation release from the pins at the points of intersection, there is the ratio
sR ¼ Gb=R, where R is the radius of the dislocation curvature. The highest increase
of shear yield by the dislocations’ density equal sd � 0:5Gb=kd . The separation of
the dislocation will occur at R ¼ 2kd and epl � 0:043 sd=G; for mild steel, the
plastic deformation equal epl � 3� 10�5. After the release from the pinning, the
dislocation is free to move over a distance kd; in this case, the value of plastic
deformation is epl ¼ sd=G, or about 70 � 10−5 for mild steel.

Note that the cyclic plastic deformation, without the separation of the disloca-
tions from the pinning field, is substantially less than after the separation. Possibly,
the presence of a “physical” fatigue limit for carbon structural steels and the
multiple increase of cyclic life are caused by this difference.

In the evaluation of the plastic deformation, which corresponds to the formation
of “gaps” of atomic bonds with the formation of vacancies and submicrocrack, the
structure heterogeneity of the material was not taken into account. However, as
shown by the rating values epl, there is reason to believe that, in the field of cyclic
plastic deformation under the stresses’ less technical yield point, the leading
mechanism of damage at the atomic level is the superposition of phonons that are
aroused by the jump of dislocations.

p

p

(a) (b) 

d

d

R 

Fig. 1 Scheme of the microplastic deformation structure for the metal: a strengthened by means
of the fine particles of secondary phases experiencing the high shear resistance; b strengthened by
means of the high density of dislocations
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Assuming that the maximum degree of damage of metals in high-cycle region of
fatigue is achieved by summing all of the damage that is generated by each cycle of
deformation, we write the ratio as:

X

N

sb2Kanhe
p
pl ¼ C; or s epplN ¼ Cs; ð1Þ

where
P

N means the summation of atomic damages of the definite microscopic
volume during N deformation cycles;

sb2Kanh is the maximum energy of the phonons superposition;
epl is the amplitude cyclic plastic deformation;
p and Cs are constants;
b2Kanh is the activation volume according to thermo-fluctuation theory.

It is not possible to experimentally determine the values s and epl individual
micro-volumes in each cycle. When changing the parameters of the process dam-
age, the sample or the material of construction must use “averaged” values s and epl
in accordance with the engineering approach. As has found at constant stress
amplitude after some the number of deformation cycles, the amplitude of plastic
deformation remains practically constant or the rate of change plastic deformation is
minimal during the greater part of the total number of cycles to complete the
fracture of the specimen. According to the Prigogine–Glansdorff theorem [10], that
phenomena is evidence of self-organization under these conditions, providing the
minimal entropy production inside the object. In our case, it is possible that it
corresponds to a minimum speed of damage accumulation in the material.

As the estimated value epl (Eq. 1), we accept the average (and conditionally
assumed to be permanent during this testing) amplitude of the cyclic plastic
deformation, which is equivalent to the variable amplitude of cyclic plastic defor-
mation in relation to the actual damage of the material under the intended stress s
for the same number of cycles. The question of what we constitute as the ultimate
degree of damage of metals under varying stresses enjoys paramount importance, as
this determines, ultimately, the margin of safety in machines. In some engineering
industries (power equipment, equipment of nuclear power plants [11], lifting
equipment, and transport), it is considered to be the limiting state in which the
length of the emerged defect is 0.5–2.0 mm. On the one hand, such defects can be
detected by the equipment control; on the other hand, they do not cause rapid
growth of the fatigue crack and, then more, the brittle fracture of middle-strength
steel. In determining the number of cycles N corresponding to the limit extent of the
damage, we accepted the number of cycles at which the length of the visually
observable defect on the surface of the tested specimen (without any special
preparation of the surface) was in the range 1.0–2.0 mm.

The value of the equivalent cyclic plastic deformation epl was determined in the
following procedure.
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1. According to the test results of flat specimens under constant amplitude cycle
symmetric extension-compression, the parameters of the following dependence
were determined:

rmN ¼ Cr; ð2Þ

r is the stress amplitude; m and Cr are constant values.
2. According to the test results of flat specimens with a circular hole under constant

amplitude cycle symmetric tension-compression, the parameters of the follow-
ing dependence were determined:

rn
cN ¼ Cc; ð3Þ

rc is the conditional stress amplitude for the net-section of the specimen with
concentrator; and n and Cc—constant values.

3. According to Eq. (1), there is correspondence between the intended value s (or
r under the tension-compression of the flat specimen) and the specific value epl
for the any value N. To estimate the value epl, it was decided that under small
deformations the summary elastic-plastic deformation at the base of the con-
centrator is equal to arec by first approximation, where ar is the theoretical
stress concentration factor; ec is the middle value of the elastic deformation for
the net-section of the specimen: and ec ¼ rc=E. The value of elastic deforma-
tion at the base of the concentrator was taken to be equal to e ¼ Krec, where Kr

is the effective stress concentration factor, and Kr ¼ r=rc ¼ e=ec for the
intended number of cycles N. Consequently, the estimation of the plastic
deformation amplitude at the base of the concentrator was calculated by means
of epl � ðar � KrÞec.
In the base of the concentrator for flat specimens, the stress state is almost linear.

According to Eq. (1) for the specimen without the concentrator, the plastic defor-
mation amplitude was taken to be epl � epl:c � ðar � KrÞec at the same value of
the number of cycles N. Table 1 presents the testing results of flat specimens of
sheets at the thickness of 12 mm and the width of 50–60 mm without the con-
centrator or with the hole at diameter of 18 mm from steel Cт.3 and 09C2T
(ar ¼ 2:33) and the calculated values epl.

4. The exponent p is determined by the ratio derived from Eqs. (1) and (2) by
replacing in Eq. (1) s ¼ 0:5r:

eppl=r
m�1 ¼ CR;

or lgepl ¼ ðm� 1Þ lgrþ lgCR:
ð4Þ
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The exponent equal p = 3.37 for steel Cт.3 and p = 2.96 for steel 09C2T.
From the equality eppl ¼ CR rm�1, it follows that the relations Eqs. (1) and (2) are

identical under epl ¼ CR rr and pr ¼ m� 1.
For example, the value p for middle-strength steels was estimated by using the

results presented in [12]. Specimens at the diameter 4–24 mm were tested by the
circular bend with a record of a bending deflection diagram. Qualitatively the
bending deflection in the diagram deflection is similar to the width diagram of the
hysteresis loop, but this significantly simplifies the fixing of the moment of
microcrack occurrence at a length from 20 to 50 lm. As an indirect evaluation of
epl; we have taken the value of the bending deflection increment Df from the testing
start to the microcrack’s detection moment. Figure 2a illustrates the relationships
between Df and the ratio of the testing stress amplitude to the fatigue limit defined
on the basis of 5� 106 cycles; and Fig. 2b presents the dependence between the
testing stress amplitude and the number of cycles until the microcrack occurrence
moment for specimens with a 8-mm diameter.

The value of the exponent r ¼ 6:03 for steel 10X18H10T, r ¼ 6:45 for steel
40X (secondary sorbite) and r ¼ 5:66 for steel 40X (air-hardening) (Fig. 2a).
Accordingly, the value of m is 19.13; 19.47 and 17.45 (Fig. 2b). From the relation
pr ¼ m� 1, values of p are 3.01, 2.86, and 2.91 that are comparable to the values
of p for steels Cт.3 and 09C2T obtained by other means and with greater material
costs.

In the analysis of fatigue strength of welded joints, it is desirable to separately
assess the effect of technology and design. As a rule, the fatigue crack forms near
the boundary of HAZ during welding. In addition to the concentrator, there are
residual stresses here. Therefore, the experimental value of concentration factor Kr

and the calculated value ar�exp � Kr þ ePL=ec should depend on the level of the
cycle’s stresses in the presence of residual stresses.

Table 1 The test results and
the calculated values epl

N, mln. Steel Cт3, m = 8.30

r,
MPa

e,
�105

rc,
MPa

ec
�105

Kr epl,
�105

0.1 226.6 113.3 176.6 88.3 1.28 92.4

0.5 185.4 92.7 132.4 66.2 1.40 61.6

1.0 171.7 85.8 117.7 58.8 1.46 51.2

2.0 157.9 79 104 52 1.52 42.2

N, mln. Cтaль 09C2T, m = 6.10

r,
MPa

e,
�105

rc,
MPa

ec,
�105

Kr epl,
�105

0.1 270.9 135.4 194.2 97.1 1.40 90.8

0.5 208.1 104 137.3 68.6 1.52 55.8

1.0 185.7 92.8 119.8 59.9 1.55 49.7

2.0 165.8 82.9 104 52 1.60 38.3
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To estimate the conditional values of the stress concentration factors (Table 2),
we used the test results obtained by the staff of The Laboratory Lifting-Transport
Machinery of the St.-Petersburg Polytechnic University under contracts with
industry. As expected, then the more the amplitude stress and, therefore, the more
the cyclical plastic deformation of the material in the zone of the weld; therefore;
there is less influence of residual stresses on the resistance to fatigue damage and
less the estimated value ar�exp (series I, III, VI). Partial removal of residual stresses
and reduction of stress concentration at the back weld lead to less change of the
value ar�exp (series II, IV). With an almost complete removal of residual stresses at
the high-temperature tempering, the value ar�exp of a welded joint does not depend
on the amplitude of the cycle stress (series V), and this value can be considered
as ar.

Reducing the cost of testing elements in order to select the most efficient for
resistance to fatigue damage is achieved by the fact that we can estimate the values
of epl:c at various stresses and use them to influence the studied factors without
experimental determination of residual stresses. Considering some uncertainty in
the estimated values of equivalent plastic strain at the base of the concentration, this
approach can used for comparative evaluation and initial selection of design options
and technology.

500 
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200 

, MPa 

5 103               5 104               5 105

Number of cycles Ratio / -1

f, m
150 

120 

 90 

 60 

 30
1       1,05   1,10  1,15   1,20 

(a) (b) 

Fig. 2 Dependence of the increment of deflection of the sample Df from r=r�1 a and number of
cycles before the moment of detection of microcracks b: square steel 10X18H10T; filled circle
steel 40X (secondary sorbite); circle steel 40X (air-hardening)
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Conclusions

1. On the basis of the assumption of the superposition of phonons that occurs
during the gliding of the dislocations in the plastic deformation in metals, a
generalized dependence between of the number of cycles until damage metals,
the stresses and cyclic plastic deformation for the region of limited fatigue
endurance under symmetric cycle extension–compression is introduced.

2. The value of the amplitude of the equivalent cyclic plastic deformation that
corresponds to the formation of vacancies and submicrocracks by the phonons
superposition during the gliding of the dislocations is determined theoretically.

3. The methods of estimation of the equivalent cyclic plastic deformation on basis
of the results of comparative tests for the flat specimens without the notch and
with the notch are proposed.

4. The possibility of relative evaluation of various structure options on the basis of
the proposed approach is evident.

Table 2 Values ar�exp for the welded elements of structures

Series, material, specimen N,
10−6

rc,
MPa

ec,
105

jr ¼¼ r=rc ar�exp

I. Steel Cт.3
The T-joint without cutting edges for welding, with
incomplete penetration of weld root

0.1 117.9 59 1.92 3.49

0.5 71.6 35.8 2.59 4.31

1.0 60.8 30.4 2.82 4.50

2.0 49 24.5 3.22 4.94

II. Steel Cт.3
The T-joint with cutting edges for welding and with
back weld

0.1 145.2 72.6 1.56 2.81

0.5 107.9 54 1.72 2.75

1.0 94.2 47.1 1.82 2.88

2.0 84.4 42.2 1.87 2.78

III. Steel 09C2T
The specimen with two longitudinal reinforcement
plates on opposite surfaces

0.1 160 80 1.69 2.82

0.5 78.5 39.3 2.65 4.07

1.0 60 30 3.1 4.76

2.0 45.1 22.5 3.68 5.38

IV. Steel 09C2T
The specimen with two longitudinal reinforcement
plates on opposite surfaces and with machining of the
weld

0.1 179.5 89.8 1.51 2.52

0.5 117.7 58.9 1.77 2.72

1.0 98.1 49 1.89 2.90

2.0 82.4 41.2 2.01 2.94

V. Steel 09C2T
The specimen with two longitudinal reinforcement
plates on opposite surfaces and at the high
temperature tempering

0.1 176.6 88.3 1.53 2.56

0.5 127.5 63.8 1.63 2.50

1.0 112.8 56.4 1.65 2.53

2.0 98 49 1.66 2.44

VI. Steel 09C2T
The sample with two transverse reinforcement plates
on opposite surfaces with cutting edges for welding

0.1 184.4 92.2 1.47 2.45

0.5 118.7 59.4 1.75 2.69

1.0 95.2 47.6 1.95 2.99
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Calculation of Shells of Revolution
with Arbitrary Meridian Oscillations

Tatiana V. Zinovieva

Abstract The system of equations and its numerical solution for free and forced
oscillations of shells of revolution with an arbitrary meridian is obtained. A variant
of the classical theory of shells developed on the basis of Lagrangian mechanics is
used. The natural frequencies and amplitudes of oscillations of shells with various
meridians are defined by the finite difference method.

Keywords Elastic shells � Linear shell theory � Forced oscillations � Natural
frequencies � Finite difference method

Introduction

The calculation of oscillations of thin-walled structures is an actual task of modern
engineering; many technological objects undergoing dynamical load are
shell-of-revolution shaped, e.g., parts of steam generators or power unit turbines,
aircraft fuselages, pipelines, tanks, etc. Of interest here is a determination of the
oscillation amplitudes for such shells under the influence of stated forces, as well as
finding out their natural frequencies.

As a rule, the full system of equations for shells is obtained from equations
contained in third-dimensional theory of elasticity; for that, certain simplifying
assumptions are added; it leads to the creation of various shell theories [1–9].
However, the use of the direct approach to shells as deformable surfaces and the use
of modern analytical technologies provide the possibility to develop an exact
theory.

The given paper is based on a variant of classical theory of shells as surfaces
with material normals (particles like needles); it is developed both on the basis of
Lagrange mechanics and the virtual work principle [10–13]; the use of this theory in
different applications has been described in articles [14–16].
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The system of equations and its numerical solution for forced and free oscilla-
tions of shells of revolution with an arbitrary meridian is developed. The presented
data generalize the results of the study [17], where calculations of the statics for
shells of revolution under the influence of axis-symmetrical loads have been
described.

Equations of Thin Shell Theory

The shell is considered as a material surface, whose particles have five degrees of
freedom: three translations and two rotations. The movement is determined by the
vector of small displacements u and the vector of small rotation h in the tangent
plane. For convenience’s sake, we introduce here the vector of change of normal
toward the shell: u � h� n ¼ _n (the dot denotes a small increment during the
deformation). The expression of the work of external distributed moment is used to
introduce the generalized force corresponding to u: m � h ¼ m� � u;m� � m� n:

The degree of surface deformation can be determined by the tensors

e ¼ ruð ÞS?; j ¼ � ruð Þ? þ b � ruT; b � �rnð Þ: ð1Þ

From this point on ð. . .Þ? denotes the tensor constituent in the tangent plane;

icons ð. . .ÞS; ð. . .ÞT denote symmetrization and transposition. According to
Kirchhoff’s kinematic hypothesis, the rotation is connected with the displacement

u ¼ �ru � n: ð2Þ

The virtual work principle makes it possible to create the whole system of
equations, where the characteristics of internal forces inside the shell are introduced
as Lagrange multipliers: s and l are symmetrical tensors of stresses and moments,
Q is a shearing force vector; they all lay in the tangent plane. The variational
formulation serves as a basis for derivation of the balance equations for forces and
moments:

r � sþ l � bþQnð Þþ q ¼ 0; r � lð Þ? þQ ¼ m�; ð3Þ

and boundary conditions on a contour in general form:

P0 � m � TþQnð Þþ @l A � lnð Þ� � � du� A � mn � @mdu ¼ 0; A � M0 � nþ m � l;
ð4Þ

where q and m� are an external distributed force and the moment on the surface, P0

and M0 are those on the contour. In total, we have five equilibrium equations in
components and four scalar conditions on the shell contour.
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The force and the moment are applied (from the side of m) to the section of
internal contour with the length of dl and the normal of m

dF ¼ m � TþQnð Þdl; dM ¼ m � l� nð Þdl; T � sþ l � bð Þ:

For the isotropic material, the elasticity ratios are represented as follows:

s ¼ C1eaþC2e; l ¼ D1jaþD2j; a � rr; e � tr eð Þ; j � tr jð Þ;
C1 ¼ Ehv=ð1� v2Þ; C2 ¼ Eh=ð1þ vÞ; D1 ¼ C1h

2=12; D2 ¼ C2h
2=12:

ð5Þ

Ratios C1 � D2 are taken as those applied in Kirchhoff plate; E is the elasticity
module of the material used for the shell, h is its thickness, m is Poisson ratio. There
are no elasticity ratios for shearing force vector Q in classical theory; instead, we
have a relation Eq. (2).

The System of Equations for Shells of Revolution

Let’s consider the shell with the surface formed by rotation of the meridian about an
axis x [10]. The meridian is set through the dependence of cylindrical coordinates
on an arc coordinate x ¼ xðsÞ; q ¼ qðsÞ, and its placement on the surface is
determined by the angle h (see Fig. 1).

The radius vector of surface points is given by the equality

r h; sð Þ ¼ x sð Þiþ q sð Þeq hð Þ; eq ¼ j cos hð Þþ k sin hð Þ;

Fig. 1 Revolution surface
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where i, j, k are the axial-oriented unitary vectors of Cartesian system, x, y, z,
respectively.

The unitary vector for the line tangent to a parallel is
eh ¼ �j sin hð Þþ k cos hð Þ ¼ e0q. For unit vectors of the line tangent and the normal
to the meridian; we have:

t ¼ @r=@s ¼ x0 sð Þiþ q0 sð Þeq hð Þ; x0 ¼ cosw; q0 ¼ sinw;

@t=@s ¼ xn; x � w0 sð Þ; n � �i sinwþ eq cosw;

here x is a curvature of the meridian, q�1 is that for the parallel.
The shell displacement vector has three components: u ¼ u0e0 þ uttþ unn.

Equations (1) and (2) are used to determine the vector for the change of normal and
deformation tensors:

eh ¼ q�1 @huh þ uq
� �

; uq � ut sinwþ un cosw; et ¼ @sut � xun;

eht ¼ eth ¼ 1
2

q�1 @hut � uh sinwð Þþ @suh
� �

;

uh ¼ q�1 uh cosw� @hunð Þ;ut ¼ �xut � @sun;

jh ¼ �q�1 @huh þut sinwð Þ � q�2 cosw @huh þ uq
� �

;

jt ¼ x @sut � xunð Þ � @sut; jht ¼ �q�1 @hut � uh sinwþ @suh coswð Þ;
jth ¼ xq�1 @hut � uh sinwð Þ � @suh:

ð6Þ

We have these relationships for the forces and moments from Eq. (5):

lh ¼ D1 þD2ð Þjh þD1jt; lt ¼ D1 þD2ð Þjt þD1jh;

lht ¼ D2jht; lth ¼ D2jth;

Th ¼ C1 þC2ð Þeh þC1et � q�1lh cosw; Tt ¼ C1 þC2ð Þet þC1eh þxlt;

Tht ¼ C2eht þxlht; Tth ¼ C2eht � q�1lth cosw:

ð7Þ

The system in components is enclosed with balance equations (3):

q�1 @hTh þ Tht þ Tthð Þ sinw½ � þ @sTth þ q�1Qh coswþ qh � b€uh ¼ 0;

q�1 Tt � Thð Þ sinwþ @hTht½ � þ @sTt � xQt þ qt � b€ut ¼ 0;

� q�1Th coswþxTt þ q�1 @hQh þQt sinwð Þþ @sQt þ qn � b€un ¼ 0;

q�1 @hlh þ lht þ lthð Þ sinw½ � þ @slth þQh ¼ m�
h ;

q�1 lt � lhð Þ sinwþ @hlht½ � þ @slt þQt ¼ m�
t :

ð8Þ

where b is the mass of the shell per unit area.
Four scalar conditions on a shell contour follow from (4). In the case of rigid

fixing: uh ¼ ut ¼ un ¼ 0, ch � @sun ¼ 0. On a free contour with the normal of
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m ¼ t, the stretching force Tt ¼ P0
t , bending moment lt ¼ M0

h , and two combina-
tions connecting a torque with force components are set up as:

Fh � Tth � q�1 coswlth ¼ P0
h þ q�1 coswM0

t ;

Fn � Qt � q�1@hlth ¼ P0
n þ q�1@hM

0
t :

Forced and Free Oscillations

Equations (6)–(8) can be reduced to a system

@sY h; s; tð Þ ¼ f Yð Þ; Y ¼ uh; ut; un; ch;Fh; Tt;Fn; ltð ÞT ð9Þ

for the column of unknown values set at the shell edges.
Let’s consider forced oscillations under the applied periodical load

qh
m�

h

� �
¼ �qh sð Þ

�m�
h sð Þ

� �
sin nh sinXt;

qt
qn
m�

t

0
@

1
A ¼

�qt sð Þ
�qn sð Þ
�m�
t sð Þ

0
@

1
A cos nh sinXt;

where n is an integer and X is the loading frequency. We search for the solution for
this system equation (9) in analogical form, uh;Fh proportional to sin nh and
unknown ut; un; ch; Tt;Fn; lt to cos nh.

For amplitudes we’ll obtain a system

�u0h ¼ q�1 sinw�uh þ C2

C2 þ 4D2q�2 cos2 w
�G;

�G � 2
C2

�Fh þ q�1n�ut þ 4D2

C2
q�2 cosw �nx�ut þ q�1n sinw�un � n�ch

� �
;

�u0t ¼ �et þx�un;�et ¼ 1
C1 þC2

�Tt � C1�eh � x�ltð Þ;
�eh ¼ q�1 n�uh þ sinw�ut þ cosw�unð Þ;
�u0n ¼ �ch;�ch0 ¼ �x0�ut � x2�un � 2x�et þ �jt; �jt ¼ 1

D1 þD2
�lt � D1�jhð Þ;

�jh ¼ �q�1 n�uh þ sinw�utð Þ � q�2 cosw n�uh þ sinw�ut þ cosw�unð Þ;
�uh ¼ q�1 cosw�uh þ n�unð Þ; �ut ¼ �x�ut � �ch:
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The remaining four equations follow from balance equations (8):

�F0
h ¼ q�2 cosw �n�lh þ �lht þ �lthð Þ sinw½ ��

� q�1 �n�Th þ �Tht þ �Fh � x�lthð Þ sinw½ � � �qh � q�1 cosw�m�
h � bX2�uh;

�T 0
t ¼ x �Fn þ q�1n�lth

� �� q�1 �Tt � �Thð Þ sinwþ n�Tht½ � � �qt � bX2�ut;

�F0
n ¼ q�2 sinwn �lht þ �lthð Þþ q�1 cosw�Th � x�Tt � q�1 sinw�Fn�

� q�2n2�lh � �qn � q�1n�m�
h � bX2�un;

�l0t ¼ �q�1 �lt � �lhð Þ sinwþ n �lht þ �lthð Þ½ � � �Fn þ �m�
t : ð10Þ

Their coefficients are determined in a similar way, with the use of Eqs. (6–7),
which are not shown here due to their complexity.

Note that at n ¼ 0 from Eq. (10), we’ll obtain a system for the amplitudes of
axis-symmetrical oscillations, while at X ¼ 0 we’ll get equations for shell statics.

The ODE system (Eq. 10) is supplemented by four boundary conditions for each
edge of the shell, or by eight periodicity conditions for the closed shell. This
boundary problem is solved through the method of finite difference on the s 2 0; L½ �
interval. Differential equations are approximated by difference ones with a constant
step of d ¼ L=N; �uh. . .�lt continuous argument s functions are replaced by
�uhð Þi. . . �ltð Þi ði ¼ 0; . . .;NÞ grid functions. This numeric scheme enables calculation
of approximate function values in nodes. Functions are then restored by
interpolation.

During system approximation by Eq. (10), the implicit symmetrical one-step
difference scheme is used with second-order accuracy [18]:

�Y 0 sð Þ ¼ �f �Yð Þ )
�Yiþ 1 � �Yi

d
¼

�fi þ�fiþ 1

2
; i ¼ 0; . . .;N; ð11Þ

and, for that, one additional node with i ¼ N þ 1 number is introduced, and the
solution is continued from the 0;L½ � definition range for one more d interval on the
right of the boundary. Therefore, 8Nþ 16 values become unknown.

Finite difference equations (11) are the system of 8 Nþ 1ð Þ algebraic equations
which is supplemented by the difference analogues of eight boundary conditions in
nodes numbered i ¼ 0;N. In total, we have 8Nþ 16 equations for the same number
of unknown values, and the problem can be solved through standard algorithms.
When it is solved, the values of unknown functions at the additional node are
discarded and not used during interpolation. The presented scheme was imple-
mented with the software program Mathematica [19].

In the case of free oscillations of a shell of revolution in Eq. (10) system, all
external loads are set as equal to zero (q ¼ 0 and m� ¼ 0), while the frequency X is
unknown and should be determined. Boundary conditions are homogeneous. Using
the finite difference method and the formula (11), we’ll come to the homogeneous
system of linear algebraic equations for amplitudes:
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B Xð Þ! ¼ 0; ! ¼ �uhf gi; . . . �ltf gi
� �T

; ði ¼ 0; . . .;N þ 1Þ: ð12Þ

Since values X at which the system (12) has non-trivial solution are natural
frequencies of the shell, it’ll be possible only upon the condition:

DetB Xð Þ ¼ 0: ð13Þ

Roots of Eq. (13) can be found, e.g., through secant method [20].

Numerical Results

The presented algorithm can be used for the analysis of the statics and oscillations
of shells of revolution with an arbitrary meridian. Such calculations can be illus-
trated by giving several examples.

Let’s consider the problem of static deflection of the shell due to its own weight;
the gravity force is directed perpendicular to rotation axis. In this case, the dis-
tributed load is q ¼ �bgj, where g is the acceleration of gravity; we have in
components for amplitudes �qh ¼ bg; �qt ¼ �bg sinw; �qn ¼ �bg cosw ðn ¼ 1Þ:

For circular cylindrical shell with the radius of R and the length of l, we assume
that w � 0, the meridian is set by equalities: xðsÞ ¼ s, qðsÞ ¼ R.

Calculations have been performed for the shell radius of R ¼ 1 m, the length of
l ¼ 20 m, and the thickness of h ¼ 0:01 m with both edges rigidly fixed. The shell
is made of steel with the elasticity module of E ¼ 210 GPa, Poisson ratio of
m ¼ 0:28, and a volumetric density of 7800 kg/m3.

Figure 2a shows the displacement of the shell meridian along the y axis. The
deformed shell shape is shown in Fig. 2b; when plotting it, all displacements have
been scaled.

Fig. 2 Displacement under gravity (a) 1 cylindrical shell, 2 beam; deformed shape of a cylindrical
shell (b)
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It is easy to calculate the displacement of a thin-wall cylinder under gravity,
using beam-based model. The boundary problem

uIVy þ b1g ¼ 0; uy 0ð Þ ¼ uy lð Þ ¼ 0; u0y 0ð Þ ¼ u0y lð Þ ¼ 0

has its solution

uy sð Þ ¼ � b1g
24EI

s4 � 2ls3 þ l2s2
� �

;

where b1 is the mass of the beam per unit length and EI is its bending stiffness. The
result is shown at Fig. 2a, and the displacement difference in comparison with that
modeled by the shell is 23%. With the increase of relative shell length, this dif-
ference is reduced, for instance, it is 7% for l ¼ 40 m.

For a cone shell with the length of l, we set the normal inclination w � const and
the meridian through equalities xðsÞ ¼ x0 þ s cosw, qðsÞ ¼ y0 þ s sinw; coordi-
nates x0; y0 determine the position of the initial point of the meridian.

To the shell with parameters w ¼ 20�; x0 ¼ 0 m, y0 ¼ 0:1 m, l ¼ 1 m, thickness
of h ¼ 0:01 m with one edge rigidly fixed, the force of qn ¼ 1 MPa,
qh ¼ 0:01 MPa was applied; the edge was under the distributed force of
P0
t ¼ 2 MN/m and the bending moment of M0

h ¼ 0:1 MN; the material used is steel
with the properties described above. Figure 3 represents the calculated displace-
ments and deformed shape at n ¼ 3 and X ¼ 100 rad/s; Fig. 4 shows the forces and
bending moment at the inside of the shell contour.

For shells with such a complicated form, it is desirable to set the meridian as an
array of x and q coordinates. Then, having the interpolation function built, one can
calculate the arc coordinate for each pair, using the formula:

Fig. 3 Cone shape displacements (a) 1 circular displacement �uh, 2 axial one �ut, 3 normal one �un;
deformed shape of the cone shell (b)
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s xð Þ ¼
Zx

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðq0xÞ2

q
dx;

and then make x sð Þ and q sð Þ interpolations.
These functions should be smooth, as the remaining coefficients of system

Eq. (10) are restored upon them:

cosw ¼ x0s; sinw ¼ q0s; x ¼ q00s x0x
� ��1

:

An example of such calculations is shown below; Fig. 5a demonstrates wavelike
shell before its deformation, while Fig. 5b shows it under an applied distributed
axial load of n ¼ 4; one shell edge is rigidly fixed; the other is under axial and
normal components of the applied force.

Fig. 4 Forces in cone shell a 1 �Fh, 2 �Tt, 3 �Fn; bending moment �lt (b)

Fig. 5 Wavelike shell before (a) and after its deformation (b)
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In technical applications, corrugated shells are widely used, and this makes it
necessary to determine their stressed state under the load applied and their natural
frequencies.

The meridian of the corrugated shell is easy to set up as:

q xð Þ ¼ R0 þ r sinXx; X, 2pm=xL; ð11Þ

where R0 and r are forming radii, m is the number of waves along the length of the
shell, and xL is its length.

Calculations are performed for a steel corrugated shell with the radii of
R0 ¼ 0:05 m and r ¼ 0:01 m, the length of xL ¼ 0:55 m, the thickness of
h ¼ 0:001 m and the number of waves m ¼ 5:5. The shell edges are rigidly fixed.

Table 1 Natural frequencies

Frequency (Hz) n ¼ 0 n ¼ 1 n ¼ 2

f1 2441 938 2567

f2 2555 2211 2870

Fig. 6 Corrugated shell before (a) and after its deformation (b)

Fig. 7 Forces in corrugated shell a 1 �Fh, 2 �Tt, 3 �Fn; bending moment �lt (b)
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Natural frequencies found for the shell are presented in Table 1. The first two
frequencies correspond to beam-like forms (n ¼ 1), while the third and fourth ones
correspond to axis-symmetrical longitudinal-torsional ones (n ¼ 0).

The deformation of this corrugated shell under the normal pressure of
�qn h; sð Þ ¼ s2 cos 2h MPa that vary over time with 2800 Hz frequency is considered.

Figures 6 and 7 show the shell shapes before and after deformation and the
amplitude of the internal force factors.

Conclusions

The use of a modern variant of classical theory of shells and computer mathematics
enable calculating the forced and free oscillations of shells of revolution with the
arbitrary meridian. The obtained equations and developed calculation algorithm can
be used as a basis for the analysis of shells dynamics with arbitrary loads applied.
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Wheelsets and Railways. Determining
Contact-Points Coordinates

Kirill V. Eliseev

Abstract Systems that contain instrumented wheelsets and algorithms for
strain-measurement evaluations are used to obtain contact between wheels and
railway parameters while the car is moving. So a method for the evaluation of
contact point coordinates was developed. Some results of it’s application are
presented here.

Keywords Structural mechanics � Strain measurement � Inverse problem �
Simulation � Contact forces � Contact coordinates � Pseudo inversed matrix �
Railway technology

Introduction

Wheelset is an important part of car suspension system: it determines the movement
along the railway and transfer of loads between the car and railway.

An experimental evaluation of contact-point coordinates, together with contact
forces, enables analysis of the quality of equipment and the condition of the rail-
way. Results can be used for the development of new equipment.

Variants of Relative Positions of Wheels and Rails
for Nominal Dimensions

The parameters of wheel–rail contact depend on the nominal dimensions of the
wheels used and the rail profiles, see Figs. 1 and 2.

According to GOST 10791-2011 [1], see Fig. 1, the roll surface corresponds to
the rail head profile. Starting from the flange, the roll surface is conical, with an
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inclination of 1:20 that corresponds to the rail canting. The conical surface retains a
middle wheelset position relative to the railway axis, preventing deviations when
moving along straight railway.

If one wheel with a smaller diameter rotates, while the other of the same pair
with a larger diameter rotates, the former will move ahead, and a twisting move-
ment will occur. If one wheel contact point lies on circle with smaller diameter
while other of the same pair on circle with larger diameter, the former will move
ahead, and twisting movement will occur. When the wheelset is not in the middle
position relative to rails, it tends to take it again.

During movement, the wheels and the railway can achieve different relative
positions, see Fig. 3.

Fig. 1 Roll surface GOST 10791-2011

Fig. 2 Wheelset dimensions and railway width

Fig. 3 Relative positions of wheel and rail variants
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Single area and double area contact can occur. By area, we mean the relatively
small simply connected zone where contact interaction exists.

There exists a considerable number of studies devoted to the investigation of the
geometric contact, i.e., section curves without deformations of corresponding parts
[2, 3].

General Information About the System of Measurement

The measurement system consists of a wheelset with installed strains gauges, a radio
telemetering complex with a limited number of measuring channels (64), a calibration
stand [4], an algorithm of contact forces and coordinates evaluation [5–7]. Contact
forces and coordinates are determined based on the measured strains.

The following results are for a fixed, not rotating, wheelset. Cubic spline
interpolation of strains is used in case of rotating wheelset, but procedure is not
considered here.

Model of Wheel Set on Rails

A wheelset numerical model with wheel–rail interaction must be created to develop
an evaluation algorithm. A finite-element model was created in Ansys [8] that
includes wheelset and rail fragments, Fig. 4.

Forces Fx1, Fz1 and torqueMx1 are acting between a car and a bearing near wheel
1, and similar forces at the wheel 2 bearing. Column of loads F ¼ F1; . . .;Fm½ �T
with six components can be introduced. Movements along the railway are disabled
at the bearings.

Fig. 4 Wheelset model, loads, and scheme of boundary conditions
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Contact interaction between wheels and rails with friction leads to reaction
forces Rx1, Ry1, Rz1 at the wheel 1 and Rx2, Ry2, Rz2, at the wheel 2 that form column

R ¼ R1; . . .;Rp
� �T

with six components.

Column e ¼ e1; . . .; en½ �T with n ¼ 64 consists of strains that can be obtained
during analysis post-processing. These results correspond to measured strains.
Gauges positions were developed in [5].

The procedure for the reconstruction of forces is as follows. At first, base loading
with base vertical forces F0 at the bearings is performed for a predefined relative
configuration of wheels and rails. The results of this analysis are base strains e0 and
reaction forces R0 columns.

Then, one performs a series of numerical experiments when one of the force
components is changed by small increments DFi. Considering that the relationship
between strain and the force increments is linear, we can write the relationship as:

De ¼ ADF ð1Þ

Here, the number of equations (64) is higher than the number of applied forces
(6), and the system of equations usually does not have an exact solution. So
“pseudo solution” DF is used to minimize the Euclid norm of error ADF � Dek k
[9].

The second system of linear equations connects small increments of reaction
forces and applied forces:

DR ¼ BDF ð2Þ

Reaction forces ~R during the experiment can be evaluated based on measured
strains ~e by:

~R ¼ R0 þDR ¼ R0 þB ATA
� ��1

AT ~e� e0ð Þ: ð3Þ

Numerical experiments prove the accuracy of this procedure. For predefined
configurations, forces were determined with low errors.

We assume a linear relationship between forces and strains. A numerical
experiment with increasing vertical forces was conducted, and strains and reaction
forces changed nonlinearly.

At first sight, the analysis appears to be nonlinear due to the contact interaction.
One can recall the most well-known contact problem, i.e., Hertz contact between
two bodies analysis [10]. The relationship between bodies approach h and contact
force F is F� h3=2. But one can also recall that the analysis can contain both linear
and nonlinear relationships between various parameters simultaneously. Here we
are interested in the relationship between contact forces and the strains far from
contact area, and this relationship must be linear for elastic material.
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Analysis of the results has shown that, while the force is increasing, the contact
area moves, see Figs. 5 and 6. It is happening due to contact changes, as the wheels
and rails bend.

The stated algorithm has shown its efficiency in general, but with some
limitations:

• it is difficult to take contact coordinates into account;
• results depend on model configuration, friction, and railway parameters;
• the solution is not unique due to friction.
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Model with Concentrated Loads

The second model of a wheelset was developed to introduce a modified algorithm.
We assume that the contact area is relatively small. For every contact area, three
forces that act at one point, instead of normal contact and tangential pressures, are
introduced.

The following boundary conditions at the bearings are used, see Fig. 7:

• springs in direction along the rail and for rotation about the vertical axis at
bearings; stiffness corresponds to the intermediate plate between bogie and
wheelset

• zero displacements uxi ¼ 0, uzi ¼ 0 and rotations hxi ¼ 0.

Here we can apply different concentrated forces acting between the rails and
wheels, and we do not have to work with forces and torques between the wheelset
and bogie.

A number of experiments were conducted where one force component or contact
point coordinate was changed. We can obtain a system of linear algebraic equations
that connect strains and forces e ¼ AR.

Here, R is an extended column of vectors that consists of contact forces com-

ponents and contact points coordinates xi, R ¼ Rx1;Ry1;Rz1;Rx2;Ry2;Rz2; x1; x2
� �T .

Similar to the first model, we have to use pseudo solution to restore forces by
measured strains

R ¼ Ce; where C ¼ ATA
� ��1

AT : ð4Þ

Both matrices consist of two independent parts that connect forces and strains for
one wheel, so no cross terms exist. Thus any wheel can be analyzed independently.
The influence of the contact-point coordinate on measured strains and matrices
A and C coefficients was analyzed. Forces were kept constant. It appeared that
strains were changing almost linearly, with small deviations from linear depen-
dency when the contact point was close to the flange.

Analysis of matrix A for one wheel showed that there are two groups of columns
in the matrix. The elements of columns 1–3 (corresponding to forces) change almost
linearly, while the change in the elements of column 1 are very small. Elements of

Fig. 7 Wheelset model, no
contact with rails
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column 4 (corresponding to contact coordinate) are changing considerably in a
nonlinear manner when the contact is close to the flange, see Figs. 8 and 9.

Algorithm of Contact Forces and Coordinates Determining

The algorithm of contact forces and coordinates determining is as follows.
We have a set of matricesC that were evaluated for various base variants of contact

positions (up to 14 variants were used).Matrices from numerical experiments with the
finite element model or measured by means of calibration stand [4] can be used. A set
of 32 measured strains on one wheel at selected positions is available.
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In the first modification of the algorithm, contact forces and position are restored
for all variants of C matrices, and the obtained contact coordinates are analyzed. We
choose variants with coordinates that is close to the variant’s base value.

Table 1 presents example of such a procedure. Forces are applied at points with
coordinates ±814.5 mm. The evaluated contact coordinates for base points 6 and
12 are close to the base contact point coordinates and close to applied. Generally
speaking, the results here for base points 1 and 12 are also close to applied.

In the second modification of the algorithm, only forces using reduced matrices
C are evaluated. For all base variants, a norm of deviation AkRk � ek k is evaluated
for every wheel, and the interpolating cubic spline [7] is analyzed, see Fig. 10.

Table 1 Results of forces and coordinates restoration

Contact point
variant

Exact
values

Result
using
residual

1 6 12 17

Base contact
coordinates (mm)

x1 842.8 825.5 803.2 784.4

x2 −842.8 −825.5 −803.2 −784.4

Contact forces
1.0e+005 (N)

Rx1 0.0000 0.0000 −0.0005 0.0000 0.0000 0.0001

Ry1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rz1 1.4500 1.4499 1.4538 1.4505 1.4501 1.4494

Rx2 0.0000 0.0000 0.0004 0.0000 0.0000 0.0001

Ry2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Rz2 1.3500 1.3499 1.3533 1.3505 1.3501 1.3494

Evaluated contact
coordinates (mm)

Wh1 814.5 814.6 812.3 813.7 815.4 816.8

Wh2 −814.5 −814.5 −814.3 −814.5 −814.5 −814.5

AkRk � ek k 1.6e−08 1.9e−06 2.4e−07 1.3e−07 8.6e−07
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The position of points with minimum residual values is an estimation of the
contact-point coordinate. Then we can make interpolation splines [11] for all
C matrix coefficients and obtain this matrix for the contact-point coordinate. After
all, this new matrix is used to determine contact forces. Results of this procedure are
presented in Table 1, in column 4 for the previous example.

Method Verification. Case of Single-Area Contact

The algorithms were checked by means of a series of numerical experiments. The
first model of the wheelset on rails was used. One of the rails is moved along the
X-axis to get different contact-point positions. The model contact point is deter-
mined using the condition for torque relative to that point: My ¼ 0.

For relatively small rail movements, the contact remains a single-area contact.
Both algorithm variants generate close results, with small errors of the contact
coordinate, being less than 2 mm.

Method Verification. Case of Double-Area Contact

When one of the rails is moved 10 mm away from the railway center, the corre-
sponding contact interaction is a double-area contact. The typical nodal force dis-
tribution is presented in Fig. 11. In this example, there are two contact areas with
contact points of 754 mm (on flange) and 785 mm. The second method modifi-
cation gives good agreement for the total contact forces and a value of 782 mm for
the contact position.

Analysis of tests results has shown that, in the case of double area contact, the
algorithm generates equivalent parameters of some single-area contact, i.e., good
agreement for total values of contact forces and coordinates of an equivalent contact
point.

Let’s look at a beam model analogy. The plane-beam configuration with two
beams corresponds to the wheel section near the connection between the disk and
rim, see Fig. 12.

Contact forces are acting at contact positions 1 and 2. Longitudinal strains are
measured in the inclined beam cross section, and they depend on the stretching
force and bending torque in the cross section.

To replace contact points 1 and 2 by one equivalent point (*), force and torque in
the cross section must retain their values. Also, the arbitrariness of the measuring
section produces the following formulae for the coordinates of equivalent point
bases on coordinates of real points 1 and 2 and applied forces:
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x� ¼ R1
yx1 þR2

yx2
R1
y þR2

y
ð5Þ

The above formulae for previous example gives value for equivalent contact point
coordinate782.7mm, comparewithvalue782mmobtained in the numerical procedure.

Conclusion

The algorithm of the estimation of contact points between wheel and rail coordi-
nates is presented. Numerical tests have shown that, in the case of single-area
contact, the error is less than 2 mm. In the case of double-area contact, the results
are coordinates of equivalent contact points for single-area contact.
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