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To George Baker. He is a law unto himself.
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I N T R O D U C T I O N

NATURAL LAWS

What is a law of nature? Scientists and philosophers began asking
that question thousands of years ago. The answer has changed and
changed and changed again. It is not clear when people first began
to look for the fundamental principles that govern the physical
world, but we do know that the search for these principles is at
least as old as the written word. The people of Mesopotamia, one
of the earliest civilizations with a written language, seemed quite
comfortable with the idea that there were patterns that somehow
underlay the world around them. Furthermore they clearly
believed that with effort they could identify and describe those
patterns. They were remarkably successful.

Thousands of years after the Mesopotamians began writing
about their research into nature, the question of what constitutes
a law of nature remains only partially answered. Apart from the
answer, the meaning of the question itself has undergone regular
revisions over the intervening centuries. Although there is cur-
rently widespread agreement on several points, much is still open
for debate. The reason is simple. The question, What is a natural
law? remains something of a moving target. The more we learn
about science and mathematics, the deeper our appreciation for
the old question becomes, and the less satisfied we are with the old
answers. A little research at a library or on the Internet reveals a
long list of papers, some by eminent philosophers and scientists,
about the definition of laws of nature.

The discovery of new laws of nature is a pursuit that scientists in
all parts of the world enjoy, but scientists do not simply collect nat-
ural laws as a successful athlete might collect trophies. Trophies,
once earned, are just keepsakes. They collect dust. Natural laws,
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on the other hand, are important to science because natural laws are
used. They are used to generate new scientific discoveries and to
clarify old ones. Natural laws, mathematically expressed, form the
basis of a great deal of scientific research.

The discovery of a new natural law is as infrequent as it is impor-
tant. In fact most successful scientists never discover a single nat-
ural law. Instead they spend their working life researching how
particular phenomena in their chosen field—whether it be geol-
ogy, meteorology, or astronomy, to name just a few examples—can
be understood as consequences of a small number of very general
laws of nature. These laws enable them to develop a clearer under-
standing of the phenomena in which they have an interest and to
make predictions based on these very general principles.
Technology, too, depends on a clear understanding of the laws of
nature. Natural laws enable scientists and engineers to understand
and exploit physical processes more efficiently as they attempt to
manipulate information, mass, and energy.

Laws of nature are sometimes described as generalizations of our
experience. One commonly cited example of this idea is the law of
conservation of mass. The law of conservation of mass states that
mass is neither created nor destroyed during a chemical reaction.
This law is sometimes said to have been “proved” by repeated care-
ful measurements of masses before and after chemical reactions.
This is false. Because the law of conservation of mass applies to all
chemical reactions, not just to the ones that have been observed, it
cannot be proved by any specific set of experiments. No experiments
can rule out the existence of other experiments in which the law of
conservation of mass is violated. The assertion that mass is con-
served had to be based on more than what had been observed in a
lab. It was a deep insight into the nature of matter.

In this book we see that laws of nature are usually more than
generalizations of our ordinary experience, and, in fact, most gen-
eralizations, scientific or otherwise, are not laws of nature at all.
To understand some of the very specific ways that simple general-
izations differ from natural laws, we can look at physics, the first
field in which natural laws were successfully formulated. In physics
one property that natural laws have is that they are invariant.
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In physics a property of a system is called invariant in space if it
is true everywhere. In other words, if we perform the same exper-
iment under the same conditions we always observe the same
result. This is true whether we perform the experiment in Canada
or Cuba, Earth or Mars. The laws of nature, which are what we
use to predict the outcome of our experiment accurately, should
be independent of our position on Earth or, more generally, of our
position anywhere in the universe—from star to star or galaxy to
galaxy. A natural law is not just valid in our neighborhood. It is
valid everywhere.

Natural laws are also invariant with respect to time. The same
experiment performed under the same conditions should give the
same result whether we perform it today or tomorrow. And if we
read of an experiment performed long ago, we should be able to
duplicate the results of that experiment ourselves today. Time
changes; natural laws do not.

Every natural law has its limitations, however. Each natural law is
a description of the way nature behaves. Like any description, a nat-
ural law is necessarily an incomplete description. It is accurate when
applied to processes and phenomena provided those processes and
phenomena occur under carefully defined conditions, but there is
no one-size-fits-all natural law in any scientific field.

In this book we take special interest in the mathematical expres-
sion of the laws of nature. Because mathematics is a language of
great precision, understanding the meaning of a law once it has
been expressed mathematically is often much easier. Moreover,
some of the most important advances in mathematics have
occurred in response to attempts by scientists to express laws of
nature in a mathematical way. Likewise discoveries by mathemati-
cians have enabled scientists to understand better the mathematical
basis of laws of nature. Finally, by examining how mathematics and
science have evolved together, we can develop a fuller appreciation
for both. The history of natural laws is a story of how science (and
to a large extent, the modern world!) became what it is. It is a story
of imagination and insight, contemplation and discovery.
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1

1
nature as geometry

Five thousand years ago on a hot, flat, largely treeless expanse of
land, a land devoid of stone and other building materials, the peo-
ple whom we know as Sumerians began to build a civilization.
They irrigated land. They built cities. They built schools and
developed one of the first written languages in history, called
cuneiform. Because their land was difficult to defend against mili-
tary attack, and because the city-states in the area frequently
attacked one another, the political history of Sumer is complicated
and bloody. Despite the turmoil, however, their culture endured.
Over time Sumerian culture became the foundation for a larger
culture. Slowly the culture of the Sumerians was absorbed and
transformed into the culture of Mesopotamia.

Of special importance to us are the written records of the
Mesopotamians. The system of writing that the Sumerians began,
a system characterized by imprints on clay tablets, was slowly
changed and enriched by those who succeeded them. Long after
the people of Mesopotamia ceased speaking the Sumerian language
they continued to incorporate elements of the Sumerian written
language into their own written language. The last known
cuneiform texts—which concern astronomy—date from the first
century C.E. That is 3,000 years of cuneiform writing! Over the
next 2,000 years Mesopotamian civilization was largely forgotten.
Mesopotamian culture was eventually rediscovered in the 19th cen-
tury, when archaeological excavations unearthed and catalogued
hundreds of thousands of clay tablets. In time scholars translated
the tablets and found tables of numbers that were used in mathe-
matical computations, histories of military campaigns, letters from



students to parents, invento-
ries of goods, lists of laws, and
records of astronomical obser-
vations. It was an astonishing-
ly complete record of one of
history’s earliest and longest-
lasting civilizations.

The Ancient Sky
The Mesopotamians were avid
astronomers. They seem to
have watched the heavens
almost continuously for thou-
sands of years, carefully docu-
menting their observations 
in the form of astronomical
diaries, forming theories, and
making predictions. Through
Mesopotamian astronomy we
can see one of the earliest
attempts to develop a system of
“laws” for the purpose of
describing natural phenomena.

Mesopotamian astronomers concentrated on the problem of
predicting future astronomical phenomena. They were less
interested in why things occurred than they were in knowing
what was going to happen next. Making these astronomical pre-
dictions successfully required a high level of social organization.
For many years their method of learning about astronomy
emphasized examining the records of past astronomical observa-
tions for clues about future events. To do this they required good
educational institutions, a written language, skilled observers,
and careful record keepers. They required stable institutions that
could collect and preserve records over the course of many 
generations. Many cultural and educational barriers had to be
overcome before they could begin a systematic search for the
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laws of nature. To understand the kind of astronomical predic-
tions in which the Mesopotamians were interested (and in which
they excelled), knowing a little about how they understood the
sky is helpful.

The modern reader needs patience and imagination to appreci-
ate what it was those astronomers were observing, not just because
we are unfamiliar with Mesopotamian science, but also because we
are unfamiliar with the night sky. In the days before electric lights
the night skies shimmered with the light of a multitude of stars,
both bright and dim. Nebulae were visible to the naked eye. A
brilliant night sky was a familiar sight to people all over the plan-
et. Today most of us have rarely, if ever, seen a truly dark, clear sky.
We have never seen a nebula except as a picture in a book or an
image on the Web. We cannot. The light of most of these objects
is lost in the glare of streetlights and headlights, stoplights and
illuminated advertisements. We live in a different world. We live
under a different night sky.

But anyone in Earth’s Northern Hemisphere who spends a few
hours out of doors, on a clear night, away from bright lights, care-
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The bright streaks are star trails, the apparent paths of stars across the
night sky.  (Rob Crandall/The Image Works)



fully observing the stars, notices that some stars seem to move
across the sky in great arcs while one star seems to remain in place.
That one star is Polaris, the North Star. The farther in the sky a
star appears to be from Polaris, the larger an arc it makes. Stars
that appear close to Polaris travel in small circles, each centered on
Polaris. The larger arcs dip below the horizon, so over the course
of the evening, stars farther from Polaris may well disappear from
view. If, however, we could trace a large arc over the horizon and
all the way around the sky, we would find that these stars, too,
trace large circles centered on Polaris.

When we see stars move across the night sky in circular arcs, we
know that they only appear to move. We know that their apparent
motion is due to the revolution of the Earth about its axis. Because
the stars are many trillions of miles away from us, their actual
motions are too small for us to notice. But whether the Earth
rotates and the stars are fixed, or whether the stars orbit a fixed
Earth, the view from Earth is the same: We observe the stars
apparently orbiting steadily around the Earth in great circular
arcs. The Mesopotamians studied the motion of the stars under
the belief that the stars themselves moved. Of course they got it
wrong, but it was (and remains) an “obvious” explanation for what
any of us can observe nightly.

If one believes, as the Mesopotamians did, that the stars revolve
around Earth, then there are seven astronomical objects, visible to
the naked eye, that warrant special attention. These seven objects
are exceptional because they do not move across the sky in the
same way as the rest of the stars. Some of them even seem to
remain in place for days or weeks at a time and then reverse course
for a while. They also change speed on their journey across the
night sky. These exceptional objects are Mercury, Venus, Mars,
Jupiter, Saturn, the Moon, and the Sun. The Mesopotamians were
aware of all seven of these astronomical objects.

For a modern reader the inclusion of the Sun in the list may be
a little puzzling, but the Mesopotamians tracked the motion of
the Sun across the sky just as they tracked the motions of the
planets. This is because relative to the background stars, the Sun
appears to change position in the sky. The Mesopotamians, as we
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do, organized stars into constellations. They made careful obser-
vations of the position of each star in each constellation. They
observed that near sunset at a particular time of year a certain
constellation would be near the horizon as the Sun set. As a 
consequence the Sun would lie almost inside the constellation.
(The constellation near which the Sun set depended on the time
of year.) With each succeeding day the constellation in question
would be a little nearer the horizon at sunset. Each day it would
remain visible for an even briefer period of time before it, too,
sank below the horizon. Eventually the constellation that they
had been observing would not be visible at all. It would be lost 
in the glare of the Sun because it would be too near the Sun to 
be visible. At this point the Sun would be “in” the constellation.
The process would then repeat for a different constellation. In
this way they noted that the Sun moved from constellation to
constellation. The pattern was always the same. The set of 
constellations through which the Sun moved was the same from
year to year. We call the apparent path of the Sun across the sky
the ecliptic. The Mesopotamians, too, recognized the ecliptic as
the path that the Sun followed across the sky through this very
special set of constellations.
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Early Mesopotamian astronomers made similar observations
of the Moon and the planets. Each clear night they made a
record of the position of each object in the night sky. They knew
that all seven of the exceptional astronomical objects, the Sun,
Moon, Mercury, Venus, Mars, Jupiter, and Saturn, were always
to be seen—if they were visible at all—in a narrow band 
centered on the ecliptic. Of more immediate interest to
Mesopotamian astronomers were questions about the first
appearance of a planet in the night sky and where in the sky that
planet could be found six months or a year in the future.
Astronomical phenomena formed a very important part of
Mesopotamian culture.

Recording the Stars to Predict the Future
Why were these observations important? The Mesopotamians
believed that they would be able to predict earthly events if they
could predict the motions of the heavens. The idea that astro-
nomical phenomena and terrestrial phenomena were linked
provided much of the impetus for their astronomical work.
Some celestial predictions turned out to be much easier than
others. Predicting the motions of the stars is a relatively 
easy process, because they are very regular. To make accurate
predictions of stellar motions—to be able, for example, to 
predict the date on which a star will first become visible at the
horizon—one needs only an accurate calendar. Devising an
accurate calendar is, to be sure, hard work, but it is the only
hard problem involved. Almost as soon as the Mesopotamians
had devised a reasonably accurate calendar, they were able to
predict with reasonable precision the first appearance of any 
star of interest in the night sky from one year to the next. Their
calendar was not as accurate as ours, so their predictions about
the first appearance in the night sky of one star or another were
not—by our standards, at least—especially accurate. Still they
seemed satisfied with the results. The movements of the stars
are extremely regular, so small inaccuracies in the calendar led
to small inaccuracies in the predictions.
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Predicting the motions of the Sun, Moon, and planets was
more challenging, because the motions of these objects are far
less regular than the motions of the stars. It was with the goal of
predicting the future positions of these “exceptional” objects
that the Mesopotamians devoted considerable time, energy, and
creativity.

For early Mesopotamian astronomers the key to predicting the
future motions of the Moon, Sun, and planets was to be found in
the past. For many centuries these astronomers based their pre-
dictions on an analysis of carefully maintained records of previous
positions of these objects through the night sky. The amount of
work involved in making and maintaining these records over many
centuries was extraordinary, but for a very long time they had no
other option. A good example of how they accomplished this type
of astronomical analysis is their study of the planet Saturn.

Saturn orbits the Sun along an elliptical path, a path that resem-
bles a slightly flattened circle. By astronomical standards Saturn
is not very far from Earth, so its motion relative to the back-
ground stars is clearly visible. If we watch Saturn regularly we can
see it move from constellation to constellation, always remaining
in a band of sky called the zodiac. (Saturn’s path, as well as the
paths taken by all the other planets through the night sky, fall
within the zodiac.)

If we could observe Saturn’s motions from the Sun itself,
describing its path across the background stars would be a fairly
simple matter. Accurate predictions are complicated by the fact
that we are viewing Saturn from Earth, which is itself a moving
platform. Our planet moves rapidly around the Sun even as it
rotates on its own axis. What makes our observations even more
difficult to interpret is that we have no feeling of motion.
Although Earth travels hundreds of millions of miles through
space each year, we have no physical sense of this motion, and so
our observations of Saturn are not easy to understand.

To see the problem, imagine that you are in a car traveling par-
allel with a train. If the car is traveling faster than the train and if
you have no feeling of motion, the train can appear to be backing up.
If you are traveling a little more slowly than the train, the train will

Nature as Geometry  7



appear to be moving slowly forward, even though your car and the
train may both be moving rapidly forward. Add to this the com-
plication that Saturn and Earth both travel curved paths—and
Earth, having the inside track, moves much faster about the Sun
than Saturn—and you begin to see the difficulties faced by the
Mesopotamians.

Saturn’s apparent motions relative to the background stars can
be divided into three types. Generally Saturn moves eastward
along the zodiac, the same direction that the Sun moves. The
technical term for this is prograde motion. Sometimes, however,
Saturn’s apparent motion across the sky halts; from Earth Saturn
appears stationary. This period of motionlessness can last for a few
weeks. This is a called a station of Saturn. Finally, there are times
when Saturn reverses direction and appears to travel backwards
(westward) through the zodiac. This is called retrograde motion.
(Saturn, of course, never stops or changes direction. These
motions appear to occur because we are observing Saturn from a
moving platform.)

The Mesopotamians observed these motions and stations and
recorded them, but they were especially interested in where the
motions and stations occurred in relation to the stars. To the
Mesopotamians a planetary cycle was not complete until the plan-
et repeated the same sequence of motions and stations in the same parts
of the zodiac as it had previously. In other words a cycle ended when
Saturn went through the same sequence of stations, prograde
motions, and retrograde motions, and each part of the sequence
occurred against the same backdrop of stars that had been previ-
ously observed. In the case of Saturn these cycles are fairly long.
To complete one trip around the zodiac, Saturn requires about 29
years, but to complete one entire cycle of stations, prograde
motions, and retrograde motions (as the Mesopotamians under-
stood it), Saturn requires not 29 years but 59 years. It was neces-
sary, therefore, to observe Saturn for a few generations in order to
observe a single cycle. That is why the astronomical diaries main-
tained by the Mesopotamian astronomers were important: Many
Mesopotamian astronomers did not live long enough to observe
even one cycle of Saturn.
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What is true of Saturn is true of the other planets as well. The
Mesopotamians had scribes whose job it was to watch the heavens
nightly and to keep records of what they observed. These records
were then copied neatly, compiled, and analyzed for patterns. The
result was that they were able to identify cyclic behavior in all of
the planets’ motions. This enabled them to compile predictions of
earthly events based on the predicted behavior of the planets. For
example, they detected an 18-year cycle for the Moon (which was
important for predicting eclipses), an eight-year cycle for Venus,
and a 46-year cycle for Mercury. They detected two distinct cyclic
periods in the motions of Jupiter and Mars. Some contemporary
scholars believe these multiple cycles were related to the motions
of Jupiter relative to the stars and its motions relative to the plan-
ets themselves. Jupiter was found to follow 71- and 83-year cycles.
Mars was found to follow 47- and 79-year cycles.

The Mesopotamians combined these cycles to produce something
called a goal-year text. The goal-year text was a set of predictions of
astronomical phenomena for the coming year. Here is how they did
it: To predict the motions of Mercury, they consulted the records on
Mercury from 46 years earlier because they knew that Mercury has
a 46- year cycle. To predict the motions of Venus they consulted the
records on Venus from eight years previous because Venus has an
eight-year cycle. The Moon has an 18-year cycle so they consulted
records from 18 years earlier, and because Jupiter has 71- and 83-
year cycles they consulted the records on Jupiter from 71 and 83
years previous, and so on. They had discovered that past patterns of
astronomical events could be used to predict future astronomical
events. In this way they obtained reasonably good predictions of the
behavior of all heavenly bodies with an absolute minimum of math-
ematics or theoretical insight. For the Mesopotamians, predicting
the behavior of the heavens was a straightforward matter of obser-
vation, record keeping, and data analysis.

The Astronomical Calculations
One striking point about the astronomical diaries that the
Mesopotamians kept night after night and year after year is that
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there were a lot of cloudy nights. Perhaps this was one reason that
they eventually turned away from direct observation and toward
the computation of the positions of astronomical objects. Perhaps
they felt that if they could not see an object’s position, they could
at least compute it. Whatever the reason, the Mesopotamians
gradually developed more mathematical methods of describing
the motions of the Moon, Sun, and five known planets. Over time
they developed multiple mathematical systems for predicting the
positions of astronomical objects. These systems required the user
to know a small number of facts about the object of interest and be
able to solve certain algebraic equations. No longer did these early
astronomers require generations of record keepers because they
no longer depended so heavily on past observations. To under-
stand what they did and the difficulties that they overcame, we
examine their method of predicting the position of the Sun along
the ecliptic. First, however, let us review a few facts about solar
and planetary motions.

When we picture Earth revolving around the Sun, many of us
imagine our planet moving along a circular orbit. That is almost
correct, but Earth’s orbit is not circular. It is almost circular. Earth’s
orbital path is an ellipse, and because it is elliptic, part of its orbital
path lies closer to the Sun and part lies farther away. Changes in the
Earth-Sun distance are relatively small when compared to Earth’s
average distance to the Sun. Nevertheless these changes in the dis-
tance from Earth to the Sun have an effect on Earth’s orbital speed:
The closer Earth is to the Sun, the faster it goes. (This fact was not
discovered until the 17th century.) The difference between Earth’s
greatest and least distances from the Sun is small, so the velocity
changes are also small—but not so small that the Mesopotamians
were unable to detect them. What the Mesopotamians noticed is
that the apparent speed of the Sun across the sky is not constant.
Because we observe the universe from a moving platform, the
apparent speed of the Sun through the zodiac is a reflection of 
the speed of the Earth around the Sun. The faster Earth goes, the
faster the Sun seems to move against the background stars when
viewed from Earth. All the Mesopotamians needed to predict the
future position of the Sun was the present position of the Sun and
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an equation that described how the “Sun’s speed” changed as it
moved along the ecliptic. These observations gave rise to one of
the very earliest mathematical models in history.

To understand the Mesopotamian mathematical model of the
Sun’s motions and to get a little experience analyzing mathematical
models, suppose that the Sun moves along the ecliptic at constant
speed. The advantage of such a simple model is that it is easy to use.
The disadvantage is that it is not very accurate. (In mathematical
modeling there is usually a trade-off between accuracy and ease of
use. What we gain in one we lose in the other.) If we assume that
the Sun moves along the ecliptic at constant speed, there is a sub-
stantial difference between our computed position and the Sun’s
actual position at certain times during the year: Sometimes the Sun
is ahead of its computed position, sometimes behind it. Of course
if we found the correct constant speed then we could correctly pre-
dict that at the end of the year the Sun would be right back where
it started, but we knew that before we began. A constant-speed
model of the Sun’s motion is not very useful.

The Mesopotamians knew that one way to improve this simple,
not-very-accurate constant-velocity approach is to divide the
ecliptic into two zones, a fast
zone and a slow zone. They
still imagined that the Sun
traveled at a constant veloci-
ty in each zone, but the speed
they used depended on the
zone where the Sun was.
This approach decreases the
error between the Sun’s com-
puted position and the Sun’s
actual position. When the
Sun was in the fast zone, they
computed its future positions
by using the faster velocity.
When it was in the slow
zone, they computed its
future position by using the
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slower velocity. If, during the period of interest, the Sun crossed
from one zone into the other, they simply took into account the
time spent in each zone. Once the zones were correctly chosen,
and the speeds for each zone correctly determined, the error
between what was predicted and what was observed was substan-
tially reduced. This model, of course, is somewhat more compli-
cated than the constant-velocity model, but it is still simple
enough to use and its increase in accuracy justifies the extra work.

The Sun does not travel at one constant speed in each zone, of
course. Nor does its speed suddenly change at the boundaries
between the two zones. The Sun’s apparent speed changes gradu-
ally all along the ecliptic. In this sense the Mesopotamian model is
flawed, but it has the virtue of being useful. It enables the user to
make reasonably accurate predictions of the Sun’s future position.

12 MATHEMATICS AND THE LAWS OF NATURE

THE TABLETS

Some of the cuneiform astronomical tablets are just tables of data or
tables that show the results of computations of planetary phenomena.
The actual computations are generally not included. Some tables list the
times and locations of stationary points and the dates of first and last
appearances of each planet for some period. The Mesopotamians were
less concerned with the precise location of the planet on any particular
night than with, for example, the location and time of a stationary point
of the planet. These phenomena were studied almost separately from
the planet itself, and the results of these observations and computations
were listed in detail.

The precise methods they used to compute the tables are not so
clear. The Mesopotamians did make texts, now known as Procedure
Texts, that gave rules for duplicating their computations, but the
Procedure Texts are very terse and difficult to interpret because they
contain little detail. Ancient experts composed these tablets for other
ancient experts. Not only did they not expect others to see the astro-
nomical texts: The texts sometimes contain warnings to keep the infor-
mation on the tablets secret. Modern scholars have worked hard to
translate and interpret these ancient tablets. A great deal more work
remains to be done. These tablets represent one of the first attempts—



The two-zone model represents one of the simplest and earliest
attempts in history to employ a mathematical model to predict an
astronomical phenomenon, and it worked! Furthermore mathe-
matically speaking what can be done once can usually be done
again; later the Mesopotamians divided the ecliptic into several
zones, each with its own speed. This model further reduced the
difference between the actual position of the Sun and its comput-
ed position. The penalty associated with this approach is that the
computational work involved greatly increases. For this reason the
Mesopotamians never entirely abandoned the two-zone approach,
which, apparently, gave them acceptable accuracy without too
much work.

The Mesopotamians approach to astronomy was built around the
idea of prediction. They had little interest in developing a theory
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maybe the first attempt—in the history of humankind to use mathematics
in a systematic way to predict natural phenomena. Phenomena such as
planetary stations may seem arcane to us—nowadays many well-educat-
ed people have only a hazy idea that stations exist at all. But they were
important to the Mesopotamians. As an illustration of the way that the
Mesopotamians kept records and as an illustration of the difficulty that
scholars had in interpreting the tablets, we include a translation of a
tablet relating to Jupiter:

Jupiter on the fast arc. From disappearance to appearance,
add 29 days. From appearance to the (first) stationary point,
add 4 months 4 days. [From the (first)] stationary point to
opposition add 58 days. From opposition to the second sta-
tionary point add 2 months 4 days. From the second stationary
point to disappearance add 4 months 10 days.

(Neugebauer, Otto, ed. Astronomical Cuneiform Texts II. New York: Springer-
Verlag, 1983. Page 419. Used with permission.)

As you can see, it could not be more terse. As these tablets go, howev-
er, this one is not particularly hard to understand. Many astronomical
texts were more technical than this one. In Mesopotamian texts the com-
putations and numerical data were given in base 60.



about the geometry of the solar system, a topic that would preoc-
cupy the astronomers of ancient Greece as well as the astronomers
of more recent times. Because their astronomical considerations
were so different from our own, appreciating the significance of
what they accomplished can be difficult. The Mesopotamians
developed one of the first, perhaps the first, mathematical models
in the history of science; they were able to use this model to pre-
dict eclipses, both lunar and solar, with moderate accuracy, and
they learned to predict the motions of the Moon, Sun, and plan-
ets. All of these models are complicated by the fact that the
Mesopotamians did not look below the surface. They modeled
phenomena without any knowledge of the underlying causes of
what they observed. As a consequence each phenomenon that they
observed had to be analyzed separately. There is no small set of
unifying concepts in Mesopotamian astronomy that allowed them
to perceive all of the different phenomena they observed as some-
how “the same.” This absence of a theoretical framework made
their system extremely complicated. At the other end of the spec-
trum is the approach of the Greeks. The Greeks, being more
philosophically inclined, were always looking for the Big Idea, the
idea that would unify their observations, and it is toward ancient
Greece that we now turn our attention.
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While the Mesopotamians used arithmetic and a kind of proto
algebra to investigate nature, the Greeks used geometry. The
approach of the ancient Greeks investigating nature is, in many
ways, easier to appreciate than the Mesopotamian technique.
This is due, in part, to the comparative complexity of
Mesopotamian methods as well as the fact that modern readers
are less familiar with the goals of Mesopotamian astronomy
itself. We tend to be more familiar with Greek ideas. Remember
that Mesopotamian civilization was rediscovered relatively
recently. By contrast Greek ideas have been a core part of
Western education for many centuries. This does not imply that
the Greeks were right and the Mesopotamians were wrong or
backward. The two approaches were different in concept. The
Mesopotamian approach was oriented to prediction. The Greek
approach was often more concerned with explanation than pre-
diction. And it would be wrong to discount style: The Greek
approach impresses many readers as just plain flashier. See
whether you do not agree.

Ratios and the Measure of the Universe
Greek mathematics and philosophy, according to the ancient
Greeks, began with Thales of Miletus (ca. 640–ca. 546 B.C.E.). 
He was, according to his successors, the first of a long line of



philosopher-mathematicians. During the centuries following his
death his stature continued to grow among the Greeks. So much
was attributed to him by later generations of philosophers—much
of it without apparent justification—that knowing what his 
contribution actually was is difficult. Nevertheless in the stories
about Thales we can find at a very elementary level much of what
characterized later Greek mathematics and science. Consider the
following story:

Thales, who traveled quite a bit, went to Egypt, where he
learned Egyptian mathematics. As any tourist in Egypt does,
Thales visited the already ancient Great Pyramid at Giza. (The
Great Pyramid was well over 1,000 years old when Thales was
born.) He was curious about the height of the Great Pyramid
but could find no one who would (or perhaps could) tell him its
height, so he decided to find out for himself. Measuring the
height of the Great Pyramid directly is a tall order. The obvious
problem, of course, is that it is extremely tall, but a second,
more fundamental problem is its shape. By contrast if one wants
to measure the height of a tall cliff, one can simply lower a rope
to the base of the cliff and then measure the length of the 
rope required. This is impossible on a pyramid. If one lowers a
rope from the apex of the pyramid to its base, one finds only 
the length of a side of the pyramid. The sides, however, are
quite a bit longer than the pyramid is tall. In fact most of the
methods a modern reader might imagine would have been
mathematically difficult for Thales, or they would have been
very labor-intensive. Furthermore climbing the pyramid in
Thales’ time would have been much more difficult than it is
today because the pyramid was covered in a smooth stone
sheath. Thales’ solution is elegantly simple. He pushed a stick
vertically into the ground in a sunny area near the pyramid. He
measured the length of that part of the stick that was above the
ground, and then he waited. He knew that when the length 
of the shadow of the stick equaled the height of the stick, the
length of the shadow of the pyramid equaled the height of 
the pyramid. When the length of the stick’s shadow equaled the
stick’s height, all that remained to do was to measure the length
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of the pyramid’s shadow, which, since it was on the ground, was
much easier to measure than the pyramid itself. By the clever
use of ratios, Thales, and the many generations of Greek math-
ematicians who followed him, were able to make extraordinary
discoveries about the universe.

Aristarchus of Samos (ca. 310–ca. 230 B.C.E.) used ratios and
angles to investigate the relative distances of the Earth to the
Moon and the Earth to the Sun. Aristarchus knew that each phase
of the Moon is caused by the position of the Moon relative to the
Earth and Sun. He knew that the reason that part of the Moon is
not visible from Earth is that it is not illuminated by the Sun, and
that the bright part of the Moon is bright because it is illuminat-
ed by the Sun. These simple facts enabled Aristarchus to investi-
gate the distances from the Earth to the Moon and Earth to the
Sun. To understand his method (using modern terminology) we
begin by imagining three lines:
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The Great Pyramid of Giza. Thales’ approach to measuring its height is
still recounted thousands of years later.  (Library of Congress, Prints and
Photographs Division)



� One line connects the center of the Moon to the center
of Earth

� The second line connects the center of the Moon to the
center of the Sun

� The third line connects the center of the Sun to the cen-
ter of Earth

In this particular essay Aristarchus used the idea that both the
Moon and the Sun revolve around Earth. As they revolve around
Earth, the lines connecting the centers of the three bodies form a
triangle that continually changes shape. When the Moon is exactly
half-illuminated, the triangle formed by the three bodies has to be a
right triangle. (The Moon would be situated at the vertex of the
right angle.) Next he tried to measure the angle that had Earth as its
vertex (see the diagram). He estimated this angle at 87°. Because he
knew that (in modern terminology) the sum of the interior angles of
a triangle is always 180°, he concluded that the last angle, the angle
with vertex at the Sun, measured 3° (3° + 87° + 90° = 180°).

Now he knew the shape of the triangle formed when the Moon
was half illuminated, but this knowledge is not quite enough infor-
mation to find the absolute distances between the three bodies.
(One can know the shape of a triangle without knowing its size.)
Nevertheless Aristarchus had enough information to estimate the
ratios of their distances. He concluded that the Earth-Sun distance
is 18 to 20 times greater than the Earth-Moon distance. (This
ratio holds for the corresponding sides of any right triangle con-
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Aristarchus computed the distance from Earth to the Sun in multiples of
the Earth-Moon distance by studying the triangle with vertices at the
Moon, Earth, and Sun.



taining an 87° angle.) Today
we know that the Sun is actu-
ally about 370 times farther
from Earth than is the Moon,
but this does not indicate a
fault in Aristarchus’s thinking.
In fact his method is flawless.
His only mistake was in meas-
uring the angle whose vertex
was located at Earth. The
angle is not 87°—it is more
like 89° 50'.

In addition to finding 
a method to estimate the
ratios of the distances
between the Earth, Sun, and
Moon, Aristarchus used simi-
lar geometric methods to esti-
mate the ratios of the sizes of
the three bodies. Once again
his method is sound, but 
his measurements are not
especially accurate. Notice
that here, too, Aristarchus is
able to estimate only the 
relative sizes of the Earth, Moon, and Sun. He does not have
enough information to estimate their absolute sizes, but if he had
known the diameter of one of the three bodies, he could have used
this information to compute the diameters of the other two. He
was very close to solving the entire problem. Interestingly
Archimedes of Syracuse, one of the most successful mathemati-
cians of all time, gave credit to Aristarchus for advocating (in
another work) the idea that Earth orbits the Sun. Unfortunately
Aristarchus’s writings on this subject have been lost.

Eratosthenes of Cyrene (276–194 B.C.E.) found a way to meas-
ure the circumference of Earth. Eratosthenes was a mathemati-
cian and librarian at the great library at Alexandria, Egypt. His
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This diagram, published in 1572,
illustrates Aristarchus’s estimate of the
ratios of the sizes of the Sun, Earth,
and Moon.  (Library of Congress,
Prints and Photographs Division)



method of finding Earth’s circumference is a somewhat more
sophisticated version of Thales’s method for finding the height of
the Great Pyramid. To estimate the circumference of Earth,
Eratosthenes made two assumptions. First, he assumed that Earth
is a sphere. Second, he assumed that the rays of the Sun are 
parallel with each other. Along with these assumptions he made
use of a fact about a deep well that had been dug in the town of
Syene. Syene was located directly south of Alexandria.

Eratosthenes knew that on a certain day of the year at a certain
time of the day the Sun shone directly into the well at Syene. This
well was deep and it was dug straight into the Earth, so
Eratosthenes knew that on that day at that time one could draw a
line from the center of the Earth through the well right to the cen-
ter of the Sun. On the day (and at the time) that the Sun shone
directly into the well at Syene, Eratosthenes placed a stick in the
ground at Alexandria and measured the length of the shadow cast
by the stick. If the stick had been in Syene it would not have cast
any shadow at all, because it would have pointed directly at the Sun.
At Alexandria, however, the stick cast a very clear and definite shad-
ow. Eratosthenes’ reasoning, expressed in modern notation, is
described in the following. Refer, also, to the accompanying figure.

� Eratosthenes imagines extending the ray of light that
passes through the center of the well straight down to
the center of Earth. Call this line l1.

� He imagines extending the line determined by the stick
straight down to the center of Earth. Call this line l2.
Every line that is perpendicular to Earth’s surface points
at Earth’s center so l1 and l2 intersect at Earth’s center.

� There is a third line to take into account. This is the line
determined by the ray of sunlight that strikes the end of
the stick. Call this line l3. Because Eratosthenes assumed
that rays of light from the Sun are parallel, l1 and l3 are
parallel, and l2, the line determined by the stick, forms
two equal acute (less than 90°) angles, where it crosses l1

and l3.
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� Of course Eratosthenes could not see the angle formed
at Earth’s center, but he knew how to use the height of
the stick and the length of the shadow cast by the stick
to compute the angle formed at the tip of the stick by the
Sun’s ray, l3, and the stick itself, l2. This angle equals the
angle at Earth’s center.

� Because Earth is spherical, the ratio formed by the angle
at Earth’s center to 360° is equal to the ratio formed by
the distance from Alexandria to Syene to the distance all
the way around the planet.

Eratosthenes knew the distance from Syene to Alexandria. He
had measured the angle that the Sun’s rays made with the vertical
stick at Alexandria. This, in modern terminology, is the equation
that he used to find Earth’s circumference:

(Angle at Alexandria)/360 = (distance from Syene to 
Alexandria)/(circumference of Earth)
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Eratosthenes used ratios and simple measurements to successfully compute
the circumference of the Earth.



Because he knew everything except the circumference of Earth, he
was able to solve the equation and in so doing compute the circum-
ference of Earth. This method of computing the circumference of
our planet can yield good results and is a popular student project
even today. Eratosthenes’ own estimate of Earth’s circumference
was within about 20 percent of the modern value.

The geometrical methods used by Eratosthenes and Aristarchus
to investigate the universe were characteristic of Greek science.
These methods give very good results provided the assumptions
are correct and the measurements are accurate. Notice, too, that
there is no concept of energy, force, or mass in Eratosthenes’ or
Aristarchus’s method. This, too, is characteristic of most of Greek
science. The Greek philosopher Aristotle described what it is that
mathematicians study:

But, as the mathematician speculates from abstraction (for he
contemplates by abstracting all sensible natures, as, for instance,
gravity and levity, hardness and its contrary, and besides these,
heat and cold, and other sensible contrarieties), but alone leaves
quantity and the continuous, of which some pertain to one, oth-
ers to two, and others to three [dimensions].

(Aristotle. The Metaphysics of Aristotle, translated by Thomas
Taylor. London: Davis, Wilks, and Taylor, Chancery-Lane, 1801.)

In our time there are mathematical theories that incorporate the
concepts of “gravity” (weight), levity (lightness), hardness, and
“heat and cold” (temperature), and that sometimes extend to
more dimensions than three, but during the time of Aristotle, for
the most part mathematicians investigated only geometric phe-
nomena. Their methods, their conclusions, and their choice of
phenomena to study all reflect this emphasis on geometrical
thinking.

A Geometry of the Universe
One of the last and perhaps the most famous of all Greek
astronomers is Claudius Ptolemy. Although we do not know the

22 MATHEMATICS AND THE LAWS OF NATURE



dates of his birth and death, we do know that he was busy making
observations from C.E. 121 until C.E. 151. In addition to his work
in astronomy and mathematics, Ptolemy wrote books on geogra-
phy and optics that were well received in his time. Ptolemy’s main
work, which is about mathematics and astronomy, is called the
Almagest. It contains many theorems about trigonometry but is
best remembered because it describes a geometric model of the
visible universe. Ptolemy wanted to explain the motions of the
stars and the planets, the Moon, and the Sun, and to this end he
wrote much of the Almagest. The ideas expressed in this book did
not, for the most part, begin with Ptolemy, but it was in his book
that these ideas found their greatest expression. Ptolemy’s ideas on
the geometry of the universe influenced astronomers for well over
1,000 years. In addition to Greek astronomers, Ptolemy’s ideas
influenced generations of Islamic and European astronomers.

We can find much of the inspiration for Ptolemy’s ideas in the
work of Eudoxus of Cnidas (408–355 B.C.E.). Eudoxus was one of
the great mathematicians of his day. In order to explain the
motions of the stars and planets Eudoxus imagined that the heav-
ens are spherical—the standard name for this model is a celestial
sphere—and that a spherical Earth is located at the center of the
spherical heavens. Eudoxus imagined that the diameter of Earth is
very small compared to the diameter of the celestial sphere, and he
attributed the motions of the stars to the fact that the celestial
sphere rotates about Earth once each day. None of Eudoxus’s
works has survived; we know of him because he is quoted in the
works of many later Greek writers. The idea that the heavens are
spherical and that the motions of the heavens can be explained by
the rotation of one or more spheres is extremely important in
Greek thinking. If one accepts these ideas about the shape of the
universe, one can prove in a mathematical way various conse-
quences of this “heavenly geometry.” What Eudoxus’s model
could not do, however, was account for the observed motions of
the Sun, Moon, and planets across the sky.

In the third century B.C.E. Apollonius of Perga (ca. 262–ca. 190
B.C.E.), one of the most prominent of all Greek mathematicians,
proposed a new model, a major refinement of Eudoxus’s ideas.
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Apollonius’s goal was to provide a model that accounted for retro-
grade planetary motion. (See the discussion of retrograde motion
in the section on Mesopotamian astronomy in chapter 1.)
Apollonius imagined a planet—Jupiter, for example—moving in a
small circle, while the center of the small circle moved in a large
circle centered on Earth. (Notice that Apollonius used circles
rather than spheres.) When the planet’s motion along the small
circle is in the same general direction as the small circle’s motion
along the large circle, the planet, when viewed from Earth, appears
to move forward (see the accompanying diagram). When the plan-
et’s motion along the small circle is in the direction opposite that
of the small circle’s motion along the large circle, and if the rela-
tive speeds of motion along the two circles are in the “right” ratio,
the planet’s motion, when viewed from Earth, appears backward
or retrograde.

This is a complicated model and in Ptolemy’s hands it became
even more complicated. Most ancient Greek astronomers pre-

24 MATHEMATICS AND THE LAWS OF NATURE

Earth

Mars

P

Apollonius’s model for the motion of Mars. Apollonius attempted to account
for the retrograde motion of planets by imagining one circular motion
imposed on another.



ferred to imagine that all the planets move along circular paths at
constant speed. There was no “scientific” reason for this belief. It
was a philosophical preference, but it was a preference that per-
sisted in one form or another throughout the history of Greek
astronomy. As more data on the actual motion of the Sun, Moon,
and planets were acquired, however, Apollonius’s complicated
model proved to be not complicated enough to account for the
observed motions of the planets.

Another important influence on Ptolemy was Hipparchus (ca.
190–ca. 120 B.C.E.). Hipparchus contributed a number of impor-
tant observations and computations to Greek astronomy, among
them the observation that the seasons are of different lengths.
(The seasons are defined astronomically. For example, the begin-
ning of spring and the beginning of autumn occur when the Sun
is so positioned that a straight line connecting the center of Earth
with the center of the Sun passes through the equator. This hap-
pens twice a year, at the vernal equinox and the autumnal equi-
nox.) Hipparchus recognized that because the seasons have
different lengths, the speed of the Sun along the ecliptic—the
ecliptic is the name of the apparent path traveled by the Sun across
the sky—cannot be constant. As we have already mentioned, the
Mesopotamians had already made the observation that the Sun’s
apparent speed is not constant. Apparently Hipparchus’s discovery
was made independently of the Mesopotamians’. In any case the
Greek solution to the complicated motions of the heavens was not
to abandon the idea of a celestial sphere but to imagine an even
more complicated structure.

All of these ideas and difficulties culminated in the Almagest and
in a short separate book, Planetary Hypotheses. In the Almagest
Ptolemy takes great pains to make his system accurate in the sense
that it explains the motions actually observed. He also works to
make his system orderly and logically coherent. He prefers to
think of the small circles of Apollonius as the equators of small
spheres. By arranging multiple spheres one inside the other and
allowing them to revolve at different rates and on different axes,
and by placing Earth in the right place inside all of this spherical
motion, Ptolemy produces a mechanical model that reproduces

Mathematics and Science in Ancient Greece  25



(more or less) the complicated series of motions of the Sun, Moon,
planets, and stars that the Greeks had now measured and docu-
mented. The agreement was not perfect, but it was better than
that of earlier Greek models.

Ptolemy’s mechanical model of the universe is clever and enter-
taining geometry. He accounts for the motions of the universe
with a complicated and invisible system of interlocking spheres
that rotate within and without and about one another as gears do
in a particularly complicated clock. There is no physics in the
Almagest—at least not in a modern sense. It does not explore the
concepts of mass or force or energy; rather it explains facts about
stellar and planetary motions that were already established. Insofar
as records about past events are useful for predicting future events,
Ptolemy’s model is useful for predicting future motions. It cannot
be used to uncover new phenomena or new celestial objects.

Nevertheless, the effect of the Almagest on Western thought was
profound. The ideas expressed in Ptolemy’s books were accepted for
about 14 centuries; one could argue that the Almagest is one of the
most influential books ever written. We might wonder how anyone
could have accepted these ideas. To be fair, there are elements that
can be found in the Almagest itself that contributed to its longevity
as a “scientific” document. As previously mentioned, for example,
by the time Ptolemy had finished tinkering with the motions of all
of his spheres, his system did account for the movements of the
stars, Moon, Sun, and planets with reasonable accuracy.

Another reason was that many later generations of philosophers
held the Greeks in such high regard that they were reluctant to
criticize the conclusions of the major Greek thinkers, Ptolemy
included. (This reluctance to criticize major Greek thinkers was a
reluctance that the ancient Greeks themselves did not share.)
Many European philosophers went even further: They believed
that the Greeks had already learned most of what could be
learned. They believed that later generations were obliged to
acquaint themselves with the work of “the ancients” and to refine
the ancient teachings where that was possible. They did not
believe that one should make major revisions of Greek thought.
This attitude was a serious barrier to progress for a very long time.
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A ROTATING EARTH

Ptolemy was aware that there were others who argued that the sky does
not rotate. They believed that the best explanation for the motion of the
stars is a rotating Earth. From our perspective it seems obvious that it is
the Earth and not the sky that rotates, but Ptolemy presents some fairly
persuasive arguments for the impossibility of a rotating Earth. Before we
dismiss the work of Ptolemy we should ask ourselves how many of his
arguments against a rotating Earth we can refute from our vantage point
almost 2,000 years into Ptolemy’s future. Here, taken from Ptolemy’s
own writings, are some of the reasons that he believes that the Earth
cannot rotate. (As you read this excerpt, keep in mind that someone
standing on Earth’s equator is traveling around Earth’s axis of rotation at
about 1,000 miles per hour (1,600 kph).

as far as appearances of the stars are concerned, nothing
would perhaps keep things from being in accordance with this
simpler conjecture [that the Earth revolves on its axis], but in
light of what happens around us in the air such a notion would
seem altogether absurd . . . they [those who support the idea
of a rotating Earth] would have to admit that the earth’s turning
is the swiftest of absolutely all the movements about it because
of its making so great a revolution in a short time, so that all
those things that were not at rest on the earth would seem to
have a movement contrary to it, and never would a cloud be
seen to move toward the east nor anything else that flew or
was thrown into the air. For the earth would always outstrip
them in its eastward motion, so that all other bodies would
seem to be left behind and to move towards the west.

For if they should say that the air is also carried around with
the earth in the same direction and at the same speed, none
the less the bodies contained in it would always seem to be
outstripped by the movement of both. Or if they should be 
carried around as if one with the air, . . . these bodies would
always remain in the same relative position and there would be
no movement or change either in the case of flying bodies or
projectiles. And yet we shall clearly see all such things taking
place as if their slowness or swiftness did not follow at all from
the earth’s movement.

(Ptolemy. Almagest. Translated by Catesby Taliafero. Great Books of the
Western World. Chicago: Encyclopaedia Britannica, 1952. 



As late as the 17th century Galileo was, on peril of death, fighting
for the right to investigate and refute the ancient teachings. This
closed-mindedness, of course, was unrelated to Ptolemy. Ptolemy
was simply trying to describe the universe as it appeared to him.

Archimedes: Fusing Physics with Mathematics
In our story Archimedes of Syracuse (ca. 287–212 B.C.E.) occupies
a special place. He considered himself a mathematician—in fact,
he wanted his tombstone to illustrate his favorite geometrical 
theorem—and he certainly has an important role in that long tra-
dition of outstanding Greek mathematicians. But his discoveries
extend beyond mathematics. He studied force and density, aspects
of what we would now call physics, and he found ways to use his
discoveries to solve important practical problems. Significantly he
did more than study physics: He used rigorous mathematical
methods to obtain solutions to physics problems. In fact he deduced
additional physical properties from a small number of initial phys-
ical assumptions in the same way that a mathematician proves
additional properties of a mathematical system by using logic and
a small number of axioms and definitions. This union of mathe-
matics and physics became a hallmark of the work of Simon
Stevin, Galileo Galilei, and other scientists of the Renaissance; it
is one of the most lasting contributions of Renaissance scientists to
contemporary science. But the Renaissance did not begin until
about 1,600 years after Archimedes’ death, so it is no exaggeration
to say that for more than 16 centuries Archimedes’ work set the
standard for excellence in research in the physical sciences.

A mathematical approach to the study of physics is important
because today natural laws are generally formulated mathemati-
cally. It is often possible to deduce previously undiscovered prop-
erties of physical systems by studying the mathematical
consequences of the laws themselves as well as the mathematical
consequences of previous discoveries. Many scientists who lecture
on topics ranging from rocket science to population genetics begin
their seminars by outlining the governing equations: These are the
mathematical statements that describe the basic properties of the
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This page of Archimedes’ work, written in Greek and showing inscribed
and circumscribed figures, was published in 1544.  (Library of Congress,
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systems that they study. This mathematical approach is now fun-
damental to our understanding of what science is, and in the
ancient world Archimedes’ work is the best example of this
approach. Two cases that illustrate Archimedes’ ability to express
physical problems in mathematical language are his works on
buoyancy and levers. A third discovery by Archimedes, an estimate
of the number π, is important to our story because of the method
of his discovery and not the facts that he uncovered.

Archimedes wrote two volumes on the phenomenon of buoyan-
cy, On Floating Bodies, I and II. This work is largely written as a
sequence of statements about objects in fluids. Each statement is
accompanied by mathematical proof of its correctness. Archimedes’
most famous discovery about fluids is now known as Archimedes’
principle of buoyancy. The goal of the buoyancy principle is to
describe a force, the force that we call the buoyancy force. The
buoyancy force is directed upward. It opposes the weight of an
object, which is a downward-directed force. All objects near Earth’s
surface have weight; only objects that are wholly or partially
immersed in a fluid are subject to the buoyancy force. Ships, for
example, whether made of wood as in Archimedes’ time or steel as
in our own time, are kept afloat by the buoyancy force.

But the buoyancy force does more than float boats. When an object
does not float—for example, when it sinks beneath the surface—it 
is still subject to the buoyancy force; in this case the buoyancy force
is simply not strong enough to prevent the object from sinking. It is,
however, strong enough to support part of the weight of the object.
In fact if we weigh the object underwater, our scale will show that
the object’s underwater weight is less than its weight on dry land.
The difference between the two weights is (approximately) the
strength of the buoyancy force on that object. In some general 
way this is known to everyone who works near the water. Salvage
operators—and there have been salvage operators for as long as
there have been ships—know from experience that it is easier to lift
an object that is underwater than it is to lift that same object after it
breaks the water’s surface. Archimedes, however, knew more.
Archimedes discovered that the strength of the buoyancy force
equals the weight of the mass of water displaced by the object.
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In On Floating Bodies Archimedes breaks the buoyancy force into
two cases. In one case he discusses what happens when the solid is
denser than the surrounding fluid. He describes this situation by
saying the solid is “heavier than a fluid.” In the other case he dis-
cusses what happens when the solid is less dense than the sur-
rounding fluid. He describes this situation by saying the solid is
“lighter than a fluid.” Here is the buoyancy principle expressed in
Archimedes’ own words:

� A solid heavier than a fluid will, if placed in it, descend to the
bottom of the fluid, and the solid will, when weighed in the
fluid, be lighter than its true weight by the weight of the fluid
displaced.

� Any solid lighter than a fluid will, if placed in the fluid, be so
far immersed that the weight of the solid will be equal to the
weight of the fluid displaced.

(Archimedes. On Floating Bodies, I and II. Translated by Sir Thomas
L. Heath. Great Books of the Western World, Vol. 11. Chicago:
Encyclopaedia Britannica, 1952.)

Archimedes’ principle establishes a link between a geometric
property and a force. If we know the volume of an object—that is,
the geometric property—then we can predict the upward force a
fluid exerts on the object when the object is completely immersed:
The upward force equals the weight of a body of fluid whose vol-
ume equals the volume of the object itself.

Archimedes expended a great deal of effort investigating how these
ideas applied to specific geometric forms; he was fascinated with both
the physics and the geometry involved. But it is the general principle
and the way it links forces and geometry that are important to us.

Today we have a much broader understanding of the word fluid
than Archimedes did. Scientists now use the word fluid to refer to
both liquids and gases—in fact, anything that flows is now classi-
fied as a fluid—and we now know that Archimedes’ principle
applies to any fluid. Archimedes is often described as the founder
of the science of fluids, and there is to this day no introductory text
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on the science of fluids that does not begin with some version of
Archimedes’ principle of buoyancy. His work marks the beginning
of one of the oldest, most useful, and most mathematically chal-
lenging branches of science, the science of fluids, a subject about
which we have much to say later.

The Law of the Lever
In addition to the principle of buoyancy, Archimedes established
what is now called the law of the lever. Archimedes was not the
first person to use a lever, of course. People all over the planet had
been using levers long before the birth of Archimedes, and they
must have known the general principle of the lever. It is simple
enough: The farther from the fulcrum one pushes, the greater the
force one exerts. In fact even the mathematical expression of this
idea was known before Archimedes. The philosopher Aristotle
wrote about levers before Archimedes, and Aristotle’s writings
indicate that he understood the general mathematical principles
involved. Despite all of this Archimedes is still often described as
the discoverer of the law of the lever, and that is correct, too.
Sometimes in the history of an idea what one knows is less impor-
tant than how one knows it. Archimedes’ work on levers is a beau-
tiful example of this. He demonstrates how one can use rigorous
mathematics to investigate nature.

The law of the lever can be found in Archimedes’ two-volume
treatise On the Equilibrium of Planes, a remarkable scientific work.
In On the Equilibrium of Planes Archimedes adopts the method
found in the most famous mathematics book from antiquity, the
Elements by Euclid of Alexandria. That is, he begins his book by
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listing the postulates, the statements that he later uses to deduce his
conclusions. The seven postulates describe the fundamental prop-
erties of bodies in equilibrium. This, for example, is how
Archimedes states his first postulate:

Equal weights at equal distances [from the fulcrum] are in 
equilibrium, and equal weights at unequal distances are not 
in equilibrium but incline towards the weight which is at the
greater distance.

(Archimedes. On the Equilibrium of Planes or The Centers of
Gravity of Planes, Book I. Translated by Sir Thomas Heath. Great
Books of the Western World. Vol. 11. Chicago: Encyclopaedia
Britannica, 1952.)

This and the remaining six postulates describe the mathematical
system that Archimedes plans to investigate. After listing the pos-
tulates, he immediately begins to state and prove ideas that are the
logical consequences of the postulates. Each statement is accom-
panied by a proof that demonstrates how the statement is related
to the postulates. These statements and proofs correspond to the
theorems and proofs in Euclid’s Elements. In Archimedes’s hands
levers are transformed into a purely mathematical problem.

Notice that in Archimedes’ first postulate, which is quoted in the
previous paragraph, the idea of symmetry is very important. “Equal
weights at equal distances” is a very symmetric arrangement. He
uses the idea of symmetry to connect the idea of weight, which is a
force, and distance, which is a geometric property. Each postulate
describes some aspect of the relation between weights and distances.
Mathematically speaking, once Archimedes has listed his postulates,
all that is left is to deduce some of the consequences of these ideas.
His approach is a compelling one: If you accept his assumptions
(postulates), then you must also accept his conclusions.

As Archimedes develops his ideas, he shows that it is possible to
disturb the symmetry of an arrangement of weights in different
ways and still maintain a balance, or equilibrium. In a step-by-step
manner he derives the basic (mathematical) properties of the
lever. It is a remarkable intellectual achievement and a beautiful
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example of what we now call mathematical physics: The postu-
lates describe the connection between a natural phenomenon and
his mathematical model, and the theorems describe the logical
connections that exist between the postulates. On the Equilibrium
of Planes is a stunning example of the way mathematics can be
used to model natural phenomena.

Archimedes’ Measurement of a Circle
The last of Archimedes’ contributions that we consider here con-
cerns his estimate of the number π. The symbol π is the Greek let-
ter pi (pronounced “pie”). It represents a number whose approximate
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THE SIEGE OF SYRACUSE

During his long life Archimedes made an enormous impression on friend
and foe alike through his work with levers and other simple machines.
During peacetime Archimedes had demonstrated his understanding of
simple machines by moving a ship along a beach. The ship was a three-
masted merchant ship that had been pulled up on the beach by a large
group of men. Archimedes had the ship loaded with cargo and men and
attached one of his devices to the boat; then with the help of his device
he pulled the ship along the beach by himself.

Later when Archimedes was elderly, the Romans attacked the Greek
city-state of Syracuse. Archimedes worked hard to defend his nation
against the invaders. Syracuse was located by the sea and could be
attacked by both land and water. Archimedes used his discoveries
about simple machines such as levers and pulleys to devise new types
of weapons to defend Syracuse against the Roman army and navy.
These weapons included new types of catapults to prevent the Romans
from attacking by land and new types of cranes to prevent the Roman
ships from attacking the sea wall of Syracuse. These weapons were very
effective. Under the direction of the general Marcellus the Romans even-
tually ceased to attack and, instead, surrounded the city and waited.
This siege continued for two years. Eventually, however, the people of
Syracuse were defeated by the Romans, and Archimedes was killed by
a Roman soldier not long after the city was occupied. This is part of an



value is 3.1415. (The number π is very important because it is crit-
ical in many branches of mathematics.)

Archimedes’ approach to estimating the size of π is an applica-
tion of an idea called the method of exhaustion. Eudoxus of Cnidas
is credited with discovering the idea. Archimedes’ approach to
employing the method of exhaustion, however, is original. To
understand Archimedes’ idea knowing a little about π is helpful.

The number π can be represented as a ratio. If we divide the
circumference of a circle by its diameter, the result is π. This is
true for every circle: If we multiply the diameter by π we get the
circumference. Over the centuries mathematicians have discov-
ered many peculiar properties of the number π, but all of these
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account of the siege written by the Roman historian Plutarch (ca. C.E.
46–ca. C.E. 120):

When, therefore, the Romans assaulted them by sea and land,
the Syracusans were stricken dumb with terror; they thought
that nothing could withstand so furious an onset by such
forces. But Archimedes began to ply his engines, and shot
against the land forces of the assailants all sorts of missiles and
immense masses of stones, which came down with incredible
din and speed; nothing whatever could ward off their weight,
but they knocked down in heaps those who stood in their way,
and threw their ranks into confusion. At the same time huge
beams were suddenly projected over the ships from the walls,
which sank some of them with great weights plunging down
from on high; others were seized by the prow by iron claws, or
beaks like the beaks of cranes, drawn straight up into the air,
and then plunged stern foremost into the depths, or were
turned round and round by means of enginery within the city,
and dashed upon the steep cliffs that jutted out beneath the
wall of the city, with great destruction of the fighting men on
board, . . . so that Marcellus, in perplexity, ordered his ships to
sail back as fast as they could, and his land forces to retire.

(Plutarch. Plutarch’s Lives. Translated by Bernadotte Perrin. New York:
Macmillan, 1917)



properties were unknown to Archimedes. His question was more
elementary. He wanted to know exactly how big π is. This simple
question has no obvious connection to the laws of nature, but
Archimedes’ approach to answering this “simple” question can be
employed to solve many important scientific problems.

Because π is defined as the ratio of the circumference of a circle
to its diameter, finding π can be reduced to finding the circumfer-
ence of a circle whose diameter is equal to 1. (When the diameter
of a circle is 1, the circumference of a circle divided by the diam-
eter is still the circumference.)

Archimedes does not try to find π directly; that is too hard.
Instead, he tried to approximate π and, as any good mathematician
would, attempted to find the size of the error in his approximation.
To do this he locates two numbers, one slightly larger than π and
the other slightly smaller than π. Archimedes’ paper describing
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how he approximates π, Measurement of a Circle, is one of the most
famous papers in the history of mathematics.

Archimedes chooses a roundabout method because he has no
way of directly measuring the length of a circular arc. Instead he
approximates the circle with polygons. Polygons are plane figures
with straight sides, and as a circle does, they enclose a region of
the plane. Unlike the perimeter of a circle the perimeter of a
polygon is relatively easy to calculate. Archimedes finds the cir-
cumference of the polygons rather than the circumference of the
circle. In fact he makes his work even easier by using regular
polygons. The sides of a regular polygon are all of equal length,
so all he has to do to find the circumference of a regular polygon
is find the length of one of its sides and then multiply that length
by the number of sides. The more closely the shape of the poly-
gon approximates a circular shape, the more closely its circum-
ference approximates the circumference of the circle. To find the
size of his error in approximating the circumference, he deliber-
ately uses one polygon whose circumference is too small and one
whose circumference is too large.

We can demonstrate Archimedes’ method with equilateral trian-
gles. (Equilateral triangles are the simplest of regular polygons.)
The triangle that lies entirely inside the circle is called an
inscribed triangle. It is the largest equilateral triangle that can fit
inside the circle. Notice that its circumference is smaller than that
of the circle. The triangle that lies outside the circle is called a cir-
cumscribed triangle. It is the smallest equilateral triangle that can
enclose the circle, and its circumference is larger than that of the
circle. If we let a lowercase c represent the smaller circumference
and a capital C represent the larger circumference, then we can
summarize Archimedes’ result with the following symbols:

c < π < C

Triangles are, however, poor approximations to circles. To do
better we could use hexagons (see the figure). The circumference
of the inscribed hexagon is smaller than that of the circle and
larger than that of an inscribed triangle. The circumference of
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the circumscribed hexagon is larger than that of the circle but
smaller than that of a circumscribed triangle. Archimedes uses
regular polygons with 96 sides. He concludes that

3 10/71 < π < 3 10/70

That is a pretty good estimate, but there were other estimates in
other ancient cultures as good or better. What is important for our
story is not the result but the method. Archimedes finds a way to
develop an approximation that has two very important properties:
(1) The method can always be extended indefinitely to obtain ever
more accurate approximations (in this case that means using reg-
ular polygons with more sides) and (2) a rigorous bound for the
error is always produced, so that we not only know that we have a
“good” approximation, but also know how good an approximation
it is. Later in this volume we will see how Archimedes’ method was
modified and extended by other scientists to study a variety of
physical phenomena. In fact this method contains the beginnings
of the field of mathematics that we now call calculus.

Much of Greek science was simply applied geometry.
Philosophically the Greeks were inclined to search for unifying
ideas, but as a matter of practice, they concentrated on describing
the size and shape of things without much regard to underlying
principles such as force and mass. With respect to their geometric
investigations, however, they were very successful. This was a cul-
ture with an extremely simple technology, whose mathematicians
computed, among other things, the circumference of Earth and the
relative distances of the Earth to the Moon and the Earth to the
Sun. Impressive as Greek science is, Archimedes stands in a class by
himself. Alone among Greek scientists he successfully seeks to
identify underlying causes. His investigations into the relationships
between geometry and forces, as exemplified by his works on buoy-
ancy and levers, were not surpassed for more than 1,000 years.

Finally, it should be noted that our assessment of Archimedes’
importance is a modern one. It was not shared by the many gener-
ations of Persian, Arabic, and European scholars who studied,
debated, and absorbed the works of the ancient Greeks during the

38 MATHEMATICS AND THE LAWS OF NATURE



first 16 or 17 centuries following Archimedes’ death. They studied
Archimedes’ work, of course, but other Greek scientists and math-
ematicians were more thoroughly studied and quoted than
Archimedes. The works of Ptolemy, for example, now recognized
as simply incorrect, and the work of Euclid of Alexandria (fl. 300
B.C.E.), now acknowledged as much more elementary than that of
Archimedes, exerted a far greater influence on the history of sci-
ence and mathematics than anything that Archimedes wrote. One
reason is that Archimedes’ writing style is generally harder to read
than the writings of many of his contemporaries. It is terser; he
generally provides less in the way of supporting work. Archimedes
requires more from the reader even when he is solving a simple
problem. But it is more than a matter of style. The problems that
he solves are generally harder than those of most of his contempo-
raries. Archimedes solved problems that were commensurate with
his exceptional abilities. But one last reason that Archimedes had
less influence on the history of science and mathematics than many
of his contemporaries is simply the result of bad luck. His writings
were simply less available. The most astonishing example of this
concerns his book The Method. Archimedes had an unusual and
productive way of looking at problems. He was aware of this, and
he wanted to communicate this method of investigating mathe-
matics and nature to his contemporaries in the hope that they
would benefit. The result was a book called The Method. It is in The
Method that Archimedes describes the very concrete, physical way
that he investigated problems. He wrote this book so that others
might benefit from his experience and discover new facts and ideas
themselves. In The Method, the interested reader can learn a little
more of how one of history’s greatest thinkers thought.
Unfortunately, The Method was lost early on. It was rediscovered
early in the 20th century in a library in what is now Istanbul,
Turkey, far too late to influence the course of mathematical or sci-
entific investigation.
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3
a period of transition

The mathematically oriented sciences of antiquity developed large-
ly without reference to the fundamental concepts of mass, force,
and energy. We have seen that this was true of the Mesopotamians
and the Greeks (except Archimedes), and the situation was the
same in other early mathematically advanced cultures. The Indians,
the Chinese, and the Arabs also had strong traditions in astronomy,
for example, but they were also interested in geometrical measure-
ments and predictions. The geometrical aspects of astronomy fas-
cinated them, but they showed little interest in uncovering the
causes of the motions that they so carefully documented. In many
ways and for a very long time science was applied geometry. In
Europe during the late Middle Ages a period of transition of sev-
eral hundred years began as mathematicians and scientists aban-
doned the old ideas in the search for deeper insights into the
physical world.

Progress was slow. It took time to identify a reasonable rela-
tionship between theory and experiment. The fondness that the
Greeks showed for theory over experiment also thoroughly per-
vaded European thinking throughout the Middle Ages. Scholars
spent a great deal of time debating the ideas of “the ancients.”
This, in fact, was their principal focus. They spent much less
time examining nature as it existed around them. On the author-
ity of their ancient Greek predecessors they felt justified dis-
missing what experimental evidence did exist whenever it
conflicted with their own preconceived notions of what was true
and what was false. Nor was this the only barrier to progress.
The ideas of conservation of mass, momentum, and energy



evolved slowly, because they depended on a deeper and very dif-
ferent understanding of nature than did the geometric ideas that
had for so long prevailed. Finally, the mathematics necessary to
express what we now regard as the basic laws of nature had, for
the most part, not been developed. Without the necessary math-
ematics there was simply too much speculation. Without mathe-
matics there was not a mutually agreed upon, unambiguous
language available in which they could express their ideas.
Without mathematics it was much harder to separate useful ideas
from useless ones.

Nicholas Oresme
In the 14th century ideas about mathematics and the physical 
sciences began to change. Nowhere is this better illustrated than
in the work of Nicholas
Oresme (ca. 1325–82), a
French mathematician, econ-
omist, and clergyman. As a
young man Oresme studied
theology in Paris. He spent
his adult life serving in the
Roman Catholic Church. His
life of service required him to
move from place to place.
Many of the moves he made
involved accepting positions
of increased authority. In
addition to fulfilling his reli-
gious responsibilities, Oresme
exerted a lot of secular
authority, due, in part, to a
well-placed friend. As a young
man Oresme had developed a
friendship with the heir to the
throne of France, the future
King Charles V.
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Oresme was remarkably forward-thinking. He argued against
astrology and even provided a clever mathematical reason that
astrology is not dependable. It is a tenet of astrology that the
motions of the heavens are cyclic. Oresme argued that the alleged-
ly cyclic relationships studied by the astrologers are not cyclic at
all. Cyclic relationships can be represented by rational numbers,
that is, the quotient of two whole numbers. Oresme argued that
the motions of the heavens are, instead, incommensurable with
one another—another way of saying that they are more accurate-
ly represented by using irrational numbers. If one accepted his
premise, then truly cyclic motions could not occur.

Oresme’s most famous contribution is a graphical analysis of
motion under constant acceleration or deceleration. Today his
approach, which involves graphing a function, is familiar to stu-
dents the world over, but Oresme appears to have been the first
person to put together all the necessary concepts. He begins with
two perpendicular lines that he calls the latitude and the longitude.
These are what we now call the x-axis and the y-axis. The points
along the latitude, or x-axis, represent successive instants of time.
Points along the longitude, or y-axis, represent different velocities:
the greater the longitude, the greater the velocity. To see how this
works, suppose that an object moves for a period at constant veloc-
ity. Because the velocity is constant, the motion can be represent-
ed by a line parallel to the latitude, or x-axis. The length of the line
represents the amount of time the object is in motion. If we imag-
ine this horizontal line as the upper edge of a rectangle—the lower
edge is the corresponding part of the latitude—then the distance
the object travels is just the area of the rectangle. Another way of
expressing the same idea is that the distance traveled is the area
beneath the velocity line.

Now suppose that the velocity of the object steadily decreases
until the object comes to a stop. This situation can be represented
by a diagonal line that terminates on the latitude, or x-axis. The
steeper the line, the faster the object stops. We can think of this
diagonal line as the hypotenuse of a right triangle (see the accom-
panying diagram). Now suppose that we draw a line parallel to the
latitude that also passes through the midpoint of the hypotenuse of
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the triangle. We can use this
line to form a rectangle with
the same base as the triangle
and with the same area as the
triangle. Oresme reasoned
that the distance traveled by
the object under constant
deceleration equals the area
below the diagonal line. The
area below the diagonal line is
also equal to the area below
the horizontal line, but the
area below the horizontal line
is the average of the initial and
final velocities. His conclusion? When an object moves under con-
stant deceleration, the distance traveled equals the average of the
initial and final velocities multiplied by the amount of time spent in
transit. (The case of constant acceleration can be taken into
account by reversing the direction of the sloping line so that it
points upward to the right instead of downward.) It is a clever
interpretation of his graph, although geometrically all that he has
done is find the area beneath the diagonal line.

The importance of Oresme’s representation of motion lies, in
part, in the fact that it is a representation of motion. It is a graph-
ical representation of velocity as a function of time, and Oresme’s
new mathematical idea—the graphing of a function—solves an
important physics problem. Even today if we relabel the latitude
as the x-axis and the longitude as the y-axis, we have a very useful
example of graphical analysis. To see the value of Oresme’s insight,
try to imagine the solution without the graph; it is a much harder
problem. This highly creative and useful approach to problem
solving predates similar, albeit more advanced work by Galileo by
about two centuries.

Oresme’s other important innovation is his treatment of infinite
series. This idea was new to Western thought. The Greeks were
aware of the existence of infinite sets, of course. Euclid, for exam-
ple, in his work Elements proved that the set of prime numbers
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contains infinitely many elements, but in general the Greeks
avoided infinite sets. Infinite sets have a number of properties that
do not conform to our intuition. The Greeks largely avoided the
logical and conceptual difficulties presented by infinite sets by
avoiding them whenever possible. Their aversion, and that of oth-
ers, to infinite sets was widespread enough and determined
enough that there is even a name for it: horror infiniti. The aver-
sion to things infinite, however, was not shared by the scholars of
the late Middle Ages, who enjoyed working with infinite sets and
infinite processes.

During the late Middle Ages mathematicians became interested
in the idea of summing infinite series of numbers. The idea that it
might be possible to sum infinitely many non-0 numbers and even
obtain an ordinary (finite) number as a result can be a little sur-
prising when first encountered. The surprise lies in the descrip-
tion of the act, not the “infinite sum” itself. Even in grade school
we learn that numbers can be expressed as infinite sums. Consider,
for example, the number 1/3 expressed as a decimal. The decimal
representation of 1/3 is 0.33

—
, of course, where the line above the

3s simply indicates that it continues to repeat indefinitely. Another
way of writing this same number is

1/3 = 3/10 + 3/102 + 3/103 + . . .

Whenever we write 1/3 in this way, we use an infinite set of 
positive numbers that, when added together, sum to the number
1/3. Mathematicians prefer to say that this “infinite sum” 
converges to 1/3.

Of course not every infinite set of positive numbers converges to
an ordinary (finite) number. For example, if we add the number
1/2 to itself over and over again, we can make the sum larger than
any preassigned positive number. It is tempting to say that the sum
is infinite, but mathematicians have, through hard experience,
learned to use the word infinite with great care. Instead they say
that the sum 1/2 + 1/2 + 1/2 + . . . diverges. The fact that the sum
of infinitely many 1/2s diverges is more or less obvious, but there
are sums that consist of infinitely many positive numbers for
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which it is not at all obvious that the sum either converges or
diverges. These are the sums in which Oresme was interested.
These kinds of sums have frequently proved useful in the study of
natural phenomena.

Oresme studied one particular series that today is called the har-
monic series. The harmonic series consists of all the numbers in
the following sequence:

1/2, 1/3, 1/4, 1/5, . . .

There are infinitely many terms in the harmonic sequence—one
term for each positive whole number—and each term in the series
is smaller than the one preceding it. Oresme wanted to know
whether, as these terms are added together, the sum converges or
diverges. It is not possible to answer the question by just “adding
them up to see what happens.” The first million terms of this
series, for example, add up to a number that is less than 15.
Nevertheless, Oresme showed that the harmonic series diverges:
That is, if we choose any number—say, for purposes of illustra-
tion, we choose the number 1,000—and we add together enough
of the terms in the harmonic series, the sum exceeds 1,000.
Oresme’s demonstration is simply a clever way of grouping the
terms in the series as he adds them.

Oresme groups the terms as follows:

1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + . . .

where each successive set of parentheses holds twice as many
terms as the pair of parentheses preceding it. Next Oresme rea-
sons that the sum inside each pair of parentheses is at least as large
as 1/2. For example, the sum inside the first set of parentheses is
slightly larger than 1/4 + 1/4, which, of course, is just another way
of writing 1/2. The sum inside the second set of parentheses is at
least as large as 1/8 + 1/8 + 1/8 + 1/8, because each of the four
terms inside this set of parentheses is greater than or equal to 1/8.
Therefore the sum inside the second set of parentheses also
exceeds 1/2.
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In fact the sum of the terms inside each successive set of paren-
theses is always at least as large as 1/2. Moreover, because there are
infinitely many terms in the harmonic series, Oresme’s method
can be continued indefinitely. This shows that the sum of the har-
monic series is at least as large as 1/2 + 1/2 + 1/2 + . . ., and as we
have already noted, this sum diverges. In other words if we add
together enough terms of the series, the sum is larger than any
number that we choose. This concludes Oresme’s proof.

Oresme did not try to apply his discoveries to scientific prob-
lems. He seemed more interested in the series themselves than in
any possible uses that they might have. The introduction of infi-
nite series and other “infinite processes” would, however, have a
profound impact on the development of Western science and
technology.

Nicolaus Copernicus
One of the most prominent of all scientific figures during this time
of transition is the Polish astronomer, doctor, and lawyer Nicolaus
Copernicus (1473–1543). Copernicus lived at a time when most
Europeans believed that Earth is situated at the center of the uni-
verse and that the Sun, planets, and stars revolve around it.
Copernicus disagreed. Today his name is synonymous with the
idea that Earth and all the other planets in the solar system revolve
about the Sun. He was, as we soon see, a cautious man, but his
writings had revolutionary effects on the science and philosophy
of Europe and, eventually, the world at large. His major work, De
Revolutionibus Orbium Coelestium (On the revolutions of the celes-
tial spheres), formed the basis of what is now known as the
Copernican revolution.

Copernicus was born into a wealthy family. His uncle, L/ ukasz
Watzenrode, was a bishop in the Catholic Church. Watzenrode
took an interest in his nephew and helped him obtain both an
excellent education and, after he finished his formal education, a
secure job within the church. As a young man Copernicus trav-
eled widely in search of the best possible education. He attended
the University at Kraków, a prestigious Polish university, for four
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This illustration from Copernicus’s De Revolutionibus Orbium
Coelestium, published in 1543, shows seven planets moving in perfectly
circular orbits about the Sun.  (Library of Congress, Prints and Photo-
graphs Division)



years. He did not graduate. Instead he left for Italy, where he con-
tinued his studies. While attending the University of Bologna, he
stayed at the home of a university mathematics professor,
Domenico Maria de Navara, and it was there that Copernicus
developed a deep interest in mathematics and astronomy.
Furthermore it was with his host that he made his first astronom-
ical observation. Together Copernicus and de Navara observed
the occultation of the star Aldebaran by the Moon. (To say that
Aldebaran was occulted by the Moon means that the Moon passed
between Aldebaran and the observer, so that for a time Aldebaran
was obscured by the Moon.) Copernicus’s observation of
Aldebaran’s occultation is important not only because it was
Copernicus’s first observation, but also because for an astronomer
he made relatively few observations over the course of his life. In
fact throughout his life he published only 27 of his observations,
although he made others. Although Copernicus was clearly aware
of the need for more frequent and more accurate observations, he
did not spend much time systematically observing the heavens
himself.

In addition to his time at Bolgna Copernicus studied at the
Italian universities of Padua and Ferrara. While he was in Italy he
studied medicine and canon law, which is the law of the Catholic
Church. At Ferrara he received a doctorate in canon law. When he
returned to Poland in 1503, he was—from the point of view of
early 16th-century Europe—an expert in every field of academic
importance: astronomy, mathematics, medicine, and theology.

Copernicus wrote several books and published a few of them.
He wrote two books about astronomy, but he showed little enthu-
siasm for making those particular ideas public. His first book on
astronomy is De Hypothesibus Motuum Coelestium a Se Constitutes
Commentariolus (A commentary on the theories of the motions of
heavenly objects from their arrangements). It is usually called the
Commentariolus. This short text contains Copernicus’s core idea:
The Sun is fixed and the planets move in circular orbits about the
Sun. Copernicus attributes night and day to the revolution of
Earth about its axis, and he attributes the yearly astronomical cycle
to the motion of Earth about the Sun. These were important
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ideas, but they did not receive a wide audience because Copernicus
never published this book. He was content to show the manuscript
to a small circle of friends. The first time the book was published
was in the 19th century, more than 300 years after it was written.

Copernicus continued to refine his ideas about astronomy and
began to buttress them with mathematical arguments. His major
work, De Revolutionibus Orbium Coelestium (On the revolutions of
the celestial spheres), was completed sometime around 1530, but
he did not even try to publish this work until many years later. (The
book was finally published in 1543, and it is an oft-repeated story
that Copernicus received his own copy on the last day of his life.)

It is in De Revolutionibus Orbium Coelestium that Copernicus
advances his central theory, a theory that is sometimes more com-
plex than is generally recognized. Copernicus claims that the Sun
is stationary and that the planets orbit a point near the Sun. He
orders the planets correctly. Mercury is closest to the Sun, fol-
lowed by Venus, Earth, Mars, Jupiter, and Saturn. This sequence
stands in contrast to the prevailing idea of the time, namely, that
Earth is at the center of the solar system: Mercury is the planet
closest to Earth, followed by Venus, the Sun, Mars, Jupiter, and
Saturn. (In both the Copernican and the ancient systems the
Moon orbits Earth.)

At this level of detail Copernicus’s theory sounds almost mod-
ern, but it is not. In several critical ways Copernicus still clings to
the geometric ideas that one finds in Ptolemy’s Almagest. First, as
Ptolemy did, Copernicus believes that all planets move at uniform
speeds along circular paths. He also knew that if Earth travels at a
uniform speed along a circular path centered on the Sun, then the
Sun appears to move through the sky at a constant rate. Recall that
even the Mesopotamians, thousands of years before the birth of
Copernicus, had established that the Sun’s apparent speed across
the sky varies. To account for this nonuniform motion of the Sun,
Copernicus places the center of Earth’s orbit at a point that is near
the Sun, but not at the center of the Sun.

Second, Copernicus, as Ptolemy did, believes in celestial
spheres. He believes, for example, that the stars are fixed on a
huge, stationary outermost celestial sphere. The difference is that
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Ptolemy’s outer sphere rotates; Copernicus’s theory predicts a sta-
tionary outer sphere. The idea that the stars are fixed to an outer
sphere is an important characteristic of Copernican astronomy. If
Earth does rotate about the Sun, then changes in Earth’s location
should cause the relative positions of the stars to vary when viewed
from Earth. (Hold your thumb up at arm’s length from your nose
and alternately open and close each eye. Your thumb will appear
to shift position. The reason is that you are looking at it from two
distinct perspectives. The same is true of our view of the stars. As
Earth moves, we view the stars from different positions in space so
the stars should appear to shift position just as your thumb does
and for exactly the same reason.) Neither Copernicus nor anyone
else could detect this effect. Copernicus reasons that the effect
exists but that the universe is much larger than had previously
been assumed. If the stars are sufficiently far away the effect is too
small to be detected. So one logical consequence of Copernicus’s
model of the solar system is a huge universe.

The third difference between Copernican thought and modern
ideas about astronomy is that Copernicus does not really have any
convincing theoretical ideas to counter Ptolemy’s arguments
against a rotating Earth (see the sidebar in the section A Rotating
Earth in chapter 2 to read an excerpt from Ptolemy’s arguments
against a rotating Earth.) Of course Copernicus has to try to
respond to Ptolemy’s ideas. Ptolemy’s model of the universe dom-
inated European ideas about astronomy during Copernicus’s time,
and anyone interested enough and educated enough to read
Copernicus’s treatise would surely have been familiar with
Ptolemy’s Almagest.

Unfortunately Copernicus’s attempts to counter Ptolemy’s ideas
are not based on any physical insight. Whereas Ptolemy writes that
objects on the surface of a huge, rapidly rotating sphere would fly
off, Copernicus responds by speculating about “natural” circular
motion and asserting that objects in natural circular motion do not
require forces to maintain their motion. Copernicus’s ideas, like
Ptolemy’s, are still geometric. He has only the haziest concept of
what a force is. Not surprisingly Copernicus’s revolutionary ideas
did not convince many people when the book was first published.
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Copernicus was not the first person to suggest the idea that the
Sun lies at the center of the solar system and that Earth orbits the
Sun. Aristarchus of Samos had considered the same idea almost
two millennia earlier. Nor was Copernicus the first to propose that
day and night are caused by Earth’s revolving on its own axis. The
ancient Hindu astronomer and mathematician Aryabhata (C.E.
476–550) also wrote that the Earth rotates on its axis. Copernicus
was the first European of the Renaissance to propose a heliocen-
tric, or Sun-centered, model of the universe. (A more accurate
term is heliostatic, since Copernicus believed that the Sun does not
move and that the center of the planetary orbits is a point near but
not interior to the Sun.) What makes Copernicus important is that
his ideas are the ones that finally displaced older competing
hypotheses.

Despite the fact that he has several fundamental properties of
the solar system right, Copernicus is not a scientist in the modern
sense. Much of Copernicus’s great work is based on philosophical
and aesthetic preferences rather than scientific reasoning. In the
absence of data there was no reason to prefer uniform circular
motion to any other type of motion, but there were data. Even in
Copernicus’s time there were some data about the motion of the
planets, and the available data did not support the idea of uniform
circular motion. His attempts to reconcile the existing data with
his aesthetic preferences for a particular geometric worldview
account for much of the complexity of Copernicus’s work. In spite
of their weaknesses Copernicus’s ideas were soon circulated wide-
ly. His book provided insight and inspiration to many scientists
and philosophers, among them Galileo Galilei and Johannes
Kepler. De Revolutionibus Orbium Coelestium was the beginning of
a reevaluation of humanity’s place in the universe.

Johannes Kepler
Nicolaus Copernicus took many years of effort to arrive at his
heliostatic model of the solar system, whereas the young German
astronomer, mathematician, and physicist Johannes Kepler
(1571–1630) began his studies with Copernicus’s model of the
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solar system. Kepler was born into a poor family. Fortunately he
was also a quick study and a hard worker. He attracted the atten-
tion of the local ruling class, and they provided him with the
money necessary to attend school. In 1587 Kepler enrolled at the
University of Tübingen, where he studied astronomy, but Kepler
had originally planned to become a minister. His first interest
was theology.

By the time Kepler entered university, Copernicus had been
dead 44 years. The Copernican revolution had had a slow start.
Most astronomers still believed that the Sun orbits Earth.
Fortunately for Kepler his astronomy professor, Michael Mästlin,
was one of that minority of astronomers who believed that the
main elements of Copernicus’s theory were correct. Mästlin com-
municated these ideas to Kepler, and Kepler began to think about
a problem that would occupy him for the rest of his life.

Kepler did not immediately recognize the important role astron-
omy would play in his life. For the next few years he continued to
train for the ministry, but his mathematical talents were well
known, and when the position of mathematics instructor became
available at a high school in Graz, Austria, the faculty at Tübingen
recommended him for the post. He left without completing his
advanced studies in theology. He never did become a minister.

Kepler’s first attempt at understanding the geometry of the solar
system was, in a philosophical way, reminiscent of that of the
ancient Greeks. To understand his idea we need to remember that
the only planets known at the time were Mercury, Venus, Earth,
Mars, Jupiter, and Saturn. We also need to know that he was at this
time a true Copernican in the sense that he, as Copernicus did,
believed that the planets are attached to rotating spheres. Finally,
we also need to know something about Platonic solids.

We are all familiar with regular polygons. There are infinitely
many, differently shaped, regular polygons. Every regular polygon
is a plane figure characterized by the fact that all its sides are of
equal length and all the interior angles are of equal measure.
Equilateral triangles, squares, and (regular) pentagons and hexa-
gons are all examples of common regular polygons. More general-
ly in two dimensions there is a regular polygon with any number of
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sides. In three dimensions the situation is different. In three dimen-
sions the analog of a regular polygon is a three-dimensional solid
called a Platonic solid. A Platonic solid is a three-dimensional fig-
ure with flat faces and straight edges. Each face of a Platonic solid
is the same size and shape as every other face. Each edge is the same
length as every other edge, and the angles at which the faces of a
particular Platonic solid are joined are also identical. Platonic solids
are as regular in three dimensions as regular polygons are “regular”
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in two. There are only five Platonic solids: the tetrahedron, cube,
octahedron, dodecahedron, and icosahedron. Kepler believed that
the Platonic solids could be used to describe the shape of the solar
system.

As far as Kepler knew, there are only six planets. He knew a lit-
tle about the ratios of the distances between the planetary spheres,
and he had an idea that the distances between the spheres, to
which he believed the planets are attached, might somehow be
related to the five Platonic solids. His goal, then, was to explain
the distances between the planets in terms of the Platonic solids.
He did this by nesting the Platonic solids inside the planetary
spheres. Because the Platonic solids are regular, there is exactly
one largest sphere that can fit inside each solid (provided, of
course, that we imagine each solid as having a hollow interior) and
one smallest sphere that can contain that solid. For example the
smallest sphere that can contain a cube touches each of the eight
corners of the cube. This arrangement is described by saying that
the cube is circumscribed by the sphere. The largest sphere that
can fit inside the cube—called the inscribed sphere—touches the
center of each of the interior walls of the cube. What Kepler dis-
covered is that if he alternately nested spheres and Platonic solids,
one inside the other—and he nested them in the right order—then
the ratios of the distances of the spheres from the center of his
model were a “pretty good” fit for the ratios of the distances of the
planets from the Sun! It is an extraordinary fact that Kepler’s
scheme does, indeed, yield a reasonably good fit. Given the uncer-
tainties about planetary distances that existed at the time, it must
have appeared to him that he had discovered a fundamental law of
nature.

Kepler’s discovery is fortuitous. His “reasoning” about Platonic
solids is pure Pythagorean mysticism. Though Kepler is best
remembered for his later discoveries about the true nature of
planetary motion, he was always very fond of these mystical geo-
metric descriptions and incorporated them in all of his major
works. Throughout his life Kepler firmly straddled the boundary
between the world of the ancients and the fast-evolving world of
what we now call modern science.
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Kepler’s ideas about the role
of Platonic solids in the geom-
etry of the solar system
attracted the attention of the
Danish astronomer Tycho
Brahe (1546–1601). Brahe had
an observatory—perhaps the
best observatory in the world
at the time—and assistants.
He and his staff made an
extraordinary number of
measurements of the positions
of all known planets plus
hundreds of stars. They were
creative in designing and
building new instruments to
aid them in their measure-
ments. Brahe amassed a large
number of highly accurate
naked-eye measurements.
(The telescope had not yet been invented.) Kepler soon found a posi-
tion on Brahe’s staff, and later when Brahe died, Kepler took Brahe’s
measurements with him. He spent years analyzing the data therein
while trying to develop a model of planetary motion that would
account for these observations. The resulting model of planetary
motion, called Kepler’s three laws of planetary motion, asserts that

1. Each planet moves in an elliptical orbit with the Sun at
one focus.

2. The line that joins a planet to the Sun sweeps out equal
areas in equal times.

3. The square of the length of each planet’s year, T 2, when
T is measured in Earth years, equals the cube of the
average distance of that planet to the Sun, D3, where D
is measured in multiples of Earth’s distance from the
Sun. In symbols, D3 = T 2.
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Kepler’s later model of the solar system
conserved areas. The Sun is at the apex
of each “slice,” and the ellipse marks
the orbital path of the planet:
a. Areas A, B, and C are equal.
b. The times the planet takes to move
along arcs A, B, and C are the same.
c. Therefore the planet moves faster
when it is closer to the Sun than when
it is farther away.



D, DISTANCE FROM SUN T, ORBITAL PERIOD D3/T2

(In multiples of (In multiples of (Distance cubed
Earth -Sun distance) Earth years) / time squared)

Mercury 0.386 0.241 0.990
Venus 0.72 0.615 0.987
Earth 1 1 1
Mars 1.52 1.88 0.994
Jupiter 5.2 11.86 1
Saturn 9.54 29.46 1
Uranus 19.18 84.01 1
Neptune 30.06 164.79 1
Pluto 39.43 248 0.997

Kepler’s laws are qualitatively different from previous astro-
nomical discoveries. Ptolemy and Copernicus, for example, both
searched for explanations for previously observed planetary phe-
nomena. Neither of their theories was predictive in the sense that
they could accommodate new discoveries. Had Ptolemy discov-
ered a new planet he would have had to begin again—imagining
one sphere revolving about another and another until he found
the right combination to describe the motion of the new planet
with acceptable accuracy. Similarly Copernicus’s theory had no
real predictive capability. But Kepler’s laws do generalize: They
were used successfully more than 150 years after Kepler’s death to
learn about the average distance from the Sun to the newly dis-
covered planet Uranus. Scientists measured Uranus’s orbital peri-
od and then computed its distance with the help of Kepler’s third
law. So Kepler’s laws applied to a planet that Kepler never even
knew existed! It should be noted, however, that Kepler’s laws con-
tain no concept of mass, energy, or momentum. He theory is still
a purely geometric one.

To appreciate Kepler’s first law, knowing some of the geometry
of ellipses and the relationship of an ellipse to a circle is helpful.
Recall that an ellipse is formed by choosing a length and two
points. The points are called the foci of the ellipse. A third point,
P, is on the ellipse if the sum of the distances from P to the foci
equals the given length. The ellipse is exactly the set of points that 
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PLATONIC SOLIDS

The Greeks discovered all five
of the Platonic solids: the tetra-
hedron, cube, octahedron,
dodecahedron, and icosahe-
dron. Each face of a Platonic
solid is a regular polygon of
some type, and each face is
identical to every other face
(see the diagram). Moreover,
for any particular Platonic solid,
the angle at which two faces
meet is the same for any pair of
sides. It has long been known
that there are exactly five such
solids that meet these restric-
tions. The Greeks attached 
a lot of significance to these
five geometrical forms. They
believed that the Platonic
solids represent the basic ele-
ments of which the world is
made. The Greek philosopher
Plato (ca. 427 B.C.E.–ca. 347
B.C.E.) believed that the cube
represented Earth, the icosa-
hedron represented water, 
the tetrahedron fire, and the 
octahedron air. For Plato 
geometric shapes were firmly
intertwined with his concept of
chemistry. Plato’s ideas per-
sisted right into the European
Enlightenment of the 17th and
18th centuries. (In fact even
Isaac Newton, the great 17th-
century British physicist and 

Dodecahedron

Icosahedron

Octohedron

Tetrahedron

Cube

The five Platonic solids (above right) (continues)



meet this criterion. The distance between the foci also helps to
determine the shape of the ellipse: If the length does not change,
then the closer the foci are to one another, the more closely the
ellipse approximates a circle. If the foci are pushed together until
they coincide, the ellipse is a circle. This means that a circle is a
very specific type of ellipse. In this sense Kepler’s model is a gen-
eralization of the Copernican model.

Kepler did not readily embrace the idea of elliptical planetary
orbits. In fact it was years before Kepler abandoned the idea of cir-
cular orbits, but there was no way that he could reconcile circular
planetary orbits with the data that he inherited from Brahe. He even-
tually concluded that the data were best explained by the hypothesis
that planets move along elliptical paths and that the center of the Sun
always occupies one focus of each ellipse. This is Kepler’s first law.

The second law describes how the planets follow their elliptical
paths. Earlier in his life when Kepler still subscribed to the idea that
planets moved along circular paths at constant velocities, he
believed that they moved equal distances along their orbits in equal
times. Another way of expressing this old-fashioned idea is that a
line connecting a planet with the Sun sweeps out, or covers, equal
areas of the enclosed circle in equal times—one-quarter of the
inside of the circle, for example, is swept out in one-quarter of that
planet’s year. For a planet moving at constant speed along a circular
path, one statement—the planet moves at constant speed—implies
the other—equal areas are swept out in equal times. The situation is
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PLATONIC SOLIDS
(continued)

mathematician, took the existence of the four “elements” quite seriously.)
Plato was less sure of the role of the dodecahedron, but later Greek
philosophers took it to represent the “aether,” the material that suppos-
edly fills the heavens. (The idea of aether was not abandoned until the
early years of the 20th century.) These mystical speculations about the
properties of geometric forms and their relationship to the physical
world have persisted in one form or another for most of the last few 
thousand years.



only a little more complicated for elliptical orbits. Brahe’s data
showed that the speed of each planet changes as it moves along its
elliptical path, so it cannot be true that a planet moves equal dis-
tances in equal times. What Kepler discovered, however, is that the
speed of each planet changes in such a way that it still sweeps out
equal areas in equal times. Distances are not conserved, but (swept
out) areas continue to be conserved under Kepler’s model. Again
Kepler’s model is a generalization of Copernicus’s model.

Finally, Kepler’s third law is a statement about the relationship
between each planet-to-Sun distance and the length of that planet’s
year. The ratio Kepler discovered is most easily expressed if we
measure each planet’s year as a multiple of an Earth year and if we
measure each planet-to-Sun distance as a multiple of the Earth-to-
Sun distance. Kepler asserts that the square of the length of a plan-
et’s year equals the cube of its distance from the Sun, where we
measure both quantities as described in the preceding sentence.
The third law is very useful, because it says that if we know how
long a planet takes to orbit the Sun, then we can compute the distance
of that planet to the Sun. It is relatively easy to compute the length
of a planet’s year. We simply measure how fast it changes its posi-
tion relative to the background stars. This enables us to determine
how many degrees it is moving per Earth-day, and from this we can
compute how many Earth-days are required for it to move 360°.
These techniques enabled astronomers to determine relative dis-
tances of planets in the solar system (see the accompanying chart).

Kepler’s laws are not exact, as the accompanying chart indicates;
nor is there any additional information in his theory that would
allow us to improve upon these results. The discrepancies result
from small irregularities in each planet’s orbit. These irregularities
cannot be predicted from Kepler’s theory of planetary motion. They
are the result of gravitational interactions between the planets.
Nevertheless, the chart shows that despite all that Kepler did not
know, his description of planetary motion is remarkably accurate.

Leonardo da Vinci and the Equation of Continuity
The Italian artist, scientist, and inventor Leonardo da Vinci
(1452–1519) is one of the great icons of Western culture. All sorts
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of accomplishments are regularly attributed to him. He has been
described as a great painter, sculptor, inventor, architect, musician,
meteorologist, athlete, physicist, anatomist, and engineer, and a
master of many other fields as well. Never mind that we have fewer
than two dozen paintings that can be attributed to him or that there
is some disagreement among scholars about whether some of those
paintings are his work at all. He left detailed drawings of an enor-
mous monument, but no monument. He left numerous illustra-
tions of buildings and inventions but little in the way of actual
architecture and few actual devices. What we do have are his note-
books. The notebooks are long, carefully illustrated journals.

Leonardo began to record his ideas in journal form as a young
man. It was a practice that he followed for the rest of his life. The
notebooks detail his ideas about a wide variety of fields. It is in the
notebooks that we find what could have been his contributions to
the development of art, engineering, science, and many other
fields. The notebooks were preserved but not published until long
after his death. His ideas were not widely circulated during his
lifetime, and they had little effect on his contemporaries or on the
subsequent history of science. Nevertheless, in one of his note-
books we find what is perhaps the first instance of a conservation
law, and because so much of the physical sciences is expressed in
terms of conservation laws, it is well worth our time to study
Leonardo’s thinking on this matter.

Leonardo was born in Anchiano near the city of Vinci. We do
not know much about Leonardo’s early life. He apparently
demonstrated his artistic talent at a young age, and sometime
around the age of 15 he was apprenticed to a prominent
Florentine artist named Andrea Verrocchio (1435–88).
(Apprenticeship was the usual way that the artists of Leonardo’s
time and place were educated.) Verrocchio had a large studio and
he received many important commissions for paintings and
sculptures. In addition to Leonardo, Verrocchio taught
Perugino, who would later become master to the great painter
Raphael. Verrocchio also worked closely with Sandro Botticelli,
one of the major painters of the time, and Domenico
Ghirlandajo, who would later become master to Michelangelo.
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Leonardo apparently enjoyed the busy and creative environment
of Verrocchio’s studio. In 1472 Leonardo was admitted to the
Guild of Saint Luke as a painter. Although it was common for
artists to open their own studios once they were admitted to a
guild, Leonardo remained at Verrocchio’s studio for five addi-
tional years before striking out on his own.

As an independent artist Leonardo won many important com-
missions, only some of which he completed. He moved several
times—he eventually died in France—and he became well known
as both an artist and a highly original inventor and scientist.
Leonardo’s adult life was marked by the intense study of many dif-
ferent branches of knowledge. Unlike many of his predecessors,
Leonardo looked for underlying principles. He searched for cer-
tainty, and he believed that no knowledge that was not founded on
mathematics could be certain.

Leonardo was fascinated with fluids—gases as well as liquids—
and he recognized the importance of mathematics as a language in
which to express his ideas about fluids. Leonardo was not an espe-
cially adept mathematician, but his emphasis on mathematics was
for the time very forward-thinking. He clearly had a mathematical
bent. He enjoyed thinking about problems that today we general-
ly express mathematically. He wrote about how to control the flow
of rivers. He designed numerous flying machines. He studied the
motion of waves. Leonardo’s writings were not idle speculation,
nor were they simply fantasy. He had real insight into the field that
we now call fluid dynamics. Even so, many of the problems of
most interest to him were just too hard for him to solve. The
mathematics of the day was simply not advanced enough to
express the ideas that he had in mind; nor did Leonardo contribute
much in the way of new mathematics himself.

Leonardo’s contribution to science that is of most interest to us
is sometimes called the velocity-area law. Sometimes his discovery
is called the equation of continuity, although there are other, much
more general versions of the equation of continuity in use today.
Whatever we call it, Leonardo’s insight is a nice example of the
transition from geometrical to physical thinking that was going on
in Renaissance Europe at this time.
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The velocity-area law states that the velocity of water at any
location along a channel where water is flowing at a steady rate is
inversely proportional to the cross-sectional area of the channel. In
symbols it is often expressed as Av = V, where A is the cross-
sectional area of the channel at the location of interest, v is the
velocity of the water at that same location, and V is called the vol-
umetric flow rate. The symbol V represents the volume of water
flowing past any point on the channel per unit of time. Leonardo
has reduced the problem of water flowing down a channel to an
algebraic equation. There are three variables in one equation, so if
we can measure any two of the variables, we can compute the third.
For example, if we can find V at any point along the channel, and
we can measure the cross-sectional area, A, of the channel at some
point of interest, then we can compute the velocity of the water at
that point by dividing both sides by A: v = V/A. This is physics
reduced to mathematics, and in that respect it is very modern.

To appreciate Leonardo’s idea better, we need to understand his
two basic assumptions. Leonardo’s first assumption is that the flow
of the water along the channel is time-independent, or, to express
the idea in different but equivalent language: The flow is steady-
state. This means that the volume of water flowing past a particu-
lar location in the channel does not change with time. In particular
there are no places along the channel where water is “backing up.”

62 MATHEMATICS AND THE LAWS OF NATURE

Leonardo's conservation law
A1v1 = A2v2

A1

A2

v1 v2v2

Diagram illustrating Leonardo’s conservation of volume law. We write as
an equation: A1v1 = A2v2.



In Leonardo’s model it is always true that at every instant of time
the volumetric flow into one section of the channel equals the vol-
umetric flow out of any other section.

Second, Leonardo assumes that water is incompressible. This
means that no matter how we squeeze or push on a particular mass
of water, its volume—if not its shape—remains unchanged.
Leonardo’s model is, of course, an idealization. It is not strictly
true that water is incompressible. It is always possible to expand or
compress a volume of water, but in many practical situations the
resulting change in volume of a mass of water is small. For the
types of applications that Leonardo had in mind, only small inac-
curacies are introduced by imagining that water is incompressible.
The advantage of deliberately incorporating this inaccuracy into
his mathematical model is that if one assumes that water is incom-
pressible, the resulting equation is much easier to solve, and the
solutions are still reasonably accurate.

The big difference between Leonardo’s ideas and a modern for-
mulation of the same problem is that Leonardo emphasizes the
geometric property of volume as opposed to the physical proper-
ty of mass. Scientists and engineers today consider mass more fun-
damental than volume. Consequently they usually express
Leonardo’s relationship in terms of the rate of mass flow rather
than volume flow. Remember, however, that one of Leonardo’s
assumptions is that water is incompressible. Under these condi-
tions the mass is proportional to the volume, so what is true of the
volume is equally true of the mass. For Leonardo the two formu-
lations are equivalent. This is part of the beauty and utility of
Leonardo’s discovery.

Leonardo was the first to formulate a simple conservation equa-
tion and to exploit the equation to understand the flow better.
What is important for our story is that Leonardo located a prop-
erty, volumetric flow, that is invariant from one point along the
channel to another. In his model volume is conserved provided his
assumptions about the nature of the flow are satisfied. The search
for conserved properties would soon occupy many of the best sci-
entific minds. The concept of conserved quantities continues to
occupy the attention of scientists and engineers in our own time.
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Conceptually the work of the scientists in this chapter forms a
bridge between the older, geometric ideas of the Greeks and the
more modern, physical ideas of scientists such as Galileo and
Simon Stevin, who were soon to follow. The scientists described
were willing to look at nature in new ways, but they did not rec-
ognize the importance of force, mass, and energy. As did the
Greeks, they still thought of geometry as the central organizing
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PROVING LEONARDO’S EQUATION OF CONTINUITY

It may not be obvious how the final equation Av = V came about; it may
even seem to be a lucky guess. But Leonardo’s equation of continuity
can be proved with only a little effort. Suppose that we measure a vol-
ume of fluid moving down a channel. We can call this amount of fluid M.
For example, if we turn on a hose, M would represent the volume of
water that had flowed out of the hose during the time interval of interest.
We can represent the amount of time required for M to pass a particu-
lar point on the channel by the letter t. To return to the hose example, if
M represented a bucketful of water, t would represent the amount of
time required to fill the bucket. The volumetric rate of flow, V, is defined
as M/t. The volume of water as it flows along the channel (or hose) 
has a certain shape. The volume, M, of the water in the channel equals
the cross-sectional area of the channel multiplied by the length of the
cylinder of fluid whose volume is M

M = AL

where A is the cross-sectional area of the channel and L is the length of
the cylinder. If we divide both sides of this equation by t we get

M/t = AL/t

Finally, we need to notice that M/t is V, the volumetric rate of flow, and
L/t is the velocity at which the water flows past the point of interest. Our
conclusion is that

V = Av

We make use of Leonardo’s equation of continuity whenever we force
water to shoot forcefully out of the end of a hose by constricting the
hose’s opening.
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principle of nature. Their ideas would soon be pushed aside some-
what by the new science, which relied on “conservation laws” to
explore nature. Interestingly geometry would again come to the
fore in the early 20th century when Emmy Noether established
that conservation laws imply certain geometric symmetries, and
vice versa. For the time being, however, the work of these scien-
tists represented the end of an era that stretched back to ancient
Greece.
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4
new sciences

One characteristic that all of the scientists and mathematicians
whose work has been examined so far have in common is that they
were primarily interested in developing geometric descriptions of
nature. Leonardo’s conservation law is a conservation of volume
law. Johannes Kepler’s third law of planetary motion is essentially
a conservation of area law. Both Kepler and Leonardo speculated
about the concept of force, but neither developed a useful concept
of force. Even Archimedes, whose buoyancy law successfully
describes the nature of the buoyancy force, may have been suc-
cessful because he was able to relate the buoyancy force to the vol-
ume occupied by the submerged object. In any case Archimedes
did not continue beyond his treatment of the buoyancy force to
develop a more general concept of force. (In his treatment of the
lever force is a consequence of the symmetry of the geometric
configuration of the lever.)

Conditions began to change rapidly even during Kepler’s life-
time with the work of the Flemish mathematician, scientist, engi-
neer, and inventor Simon Stevin (1548–1620) and the Italian
mathematician, scientist, and inventor Galileo Galilei (1564–1642).
The ideas and discoveries of these two individuals profoundly
influenced many aspects of life in Europe, and today their influ-
ence can be felt around the world. It was not just their discoveries
that mattered. It was also their approach. Over the succeeding
centuries Galileo and Stevin’s concept of what science is has
proved at least as important as their discoveries. Both Galileo and
Stevin combined rigorous mathematics with carefully designed
and executed experiments to reveal new aspects of nature and,
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A page from Stevin’s De la Spartostatique, published in 1634, demon-
strating his understanding of forces (Library of Congress, Prints and
Photographs division)



sometimes, new aspects of mathematics as well. This careful 
combination of experimental science and rigorous mathematical
modeling characterizes today’s physical sciences as well as many
aspects of the life sciences.

It was a central tenet of the work of Galileo and Stevin that
experimental demonstrations should be reproducible. If one
doubted their conclusions one could always check the experi-
ments for oneself. Reproducibility served to diminish the
importance of authority. No matter how important, powerful,
or revered someone might be; no matter how highly regarded
the scientific ideas of an individual might be, all scientific ideas 
were open to scrutiny and experimental testing by anyone with
sufficient knowledge, equipment, and technique to devise and
perform the necessary experiments. Just as important: If exper-
imental results conflicted with theory, it was the theory, rather
than the experimental evidence, that had to be modified or
rejected. This principle applied to all scientific theories pro-
posed by anyone. Galileo and Stevin were two of the great rev-
olutionaries of their time. Galileo, who lived in an authoritarian
society, faced severe persecution for his revolutionary views.
Stevin, who lived in a far more tolerant society, was richly
rewarded for his.

Simon Stevin
Simon Stevin, also known as Stevinus, was born in Bruges,
Belgium, a city to which he felt very close all of his life and where
he is still fondly remembered today. Stevin was a member of a
poor family and began his adult life as a bookkeeper. He also
worked as a clerk. Both jobs required him to be handy with fig-
ures, and his experiences must have influenced his later ideas on
the importance of the decimalization of the number system. Stevin
eventually left Bruges to settle in Leiden in what is now the
Netherlands. At the age of 35 he enrolled as a student at the
University of Leiden, where he began a lifelong friendship with
Prince Maurice of Nassau. He eventually became tutor, engineer,
and adviser to the prince.
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Maurice of Nassau was an
important military leader in
the war of independence that
Holland fought against Spain,
called the Eighty Years’ War.
Much of the warfare of this
time consisted of siege warfare,
and Stevin had a particular
genius for designing fortifica-
tions and for using water as a
weapon. Stevin developed the
tactic of flooding selected areas
of Holland to drive off the
Spanish. As a military engineer
Stevin played an important role in many Dutch victories, and he was
richly rewarded for his services, but Stevin was more than simply a
military engineer. As many good Dutch engineers have been
throughout the history of the Netherlands, he was interested in the
construction of dykes and sluices and in the harnessing of wind to do
work. He was a creative inventor and designer in this regard. He is
generally credited with discovering the law of the inclined plane. All
of this was important, of course, but in his own time Stevin was best
known to the general public as the designer of a large, sail-powered
wagon that carried Maurice of Nassau and several friends up and
down the beach at the unheard-of speed of 20 mph (32 kph).

Today Stevin is best remembered for his discoveries in mathe-
matics and in the science of statics, that branch of physics that
deals with the forces that exist in bodies that are in a state of rest.
For Stevin making progress in science often required making
simultaneous progress in mathematics. In his study of statics
Stevin formulated a rigorous description of how forces combine.
Unlike Leonardo, who thought long and hard about what forces
are, Stevin was concerned with how forces interact. This empha-
sis is much closer to a modern viewpoint. In the same way that
the concepts of point, line, and plane are fundamental to
Euclidean geometry, forces are fundamental to Stevin’s concept
of physics.
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Stevin's method for combining forces

Stevin invented an arithmetic law
of forces that enabled him to compute
the effect of two forces acting at a
point.



Stevin’s best-known discovery is usually described as the paral-
lelogram of forces. Although Stevin actually used a triangle rather
than a parallelogram to express his idea, the two formulations of
his discovery are completely equivalent. To motivate his idea
Stevin imagined a long chain with the property that the two ends
are joined to form one large loop. Now suppose that a chain is
hanging motionless from a triangular support oriented so that the
bottom side of the triangle is parallel to the ground. At this point
the forces acting on the chain are in equilibrium. The proof of this
statement is that the chain hangs motionless off the support. If it
were not in equilibrium, it would be in motion.

If now the chain is simultaneously cut at the two lower vertices
of the triangle, the bottom part of the chain falls away and the
upper part remains motionless. The top part of the chain remains
in equilibrium. The pulling force exerted by the segment of chain
on the right leg of the triangle against the section of chain on the
left leg of the triangle exactly balances the pulling force exerted by
the segment of chain on the left. As Stevin knew, there is nothing
special about a chain. For him it was just a conceptual aid. If we
replace the chain segments by any two other objects connected by
a string—and we choose the new objects so that the ratio of their
weights equals the ratio of the weights of the chain segments rest-
ing on the legs of the triangle—the system remains in equilibrium.
Stevin’s model reveals how forces with different strengths and
directions—here represented by the weights of chain segments
lying on differently inclined surfaces—combine.

Stevin’s force diagram gave rise to the idea of representing forces
by arrows or vectors. The direction of each arrow or vector indicates
the direction of the force. The strength of the force is proportion-
al to the length of the arrow. Implicit in this description is the idea
that a force is completely characterized by its direction and its
strength. In this approach combining two forces is a simple matter
of placing them “head to tail.” The sum of the two vectors is the
single force vector with tail at the tail of the initial vector and head
at the head of the final vector in the diagram. The value of Stevin’s
discovery is that it gives rise to a simple and accurate method of rep-
resenting, and arithmetically manipulating, forces. Stevin invented
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an arithmetic in which the objects acted upon are not numbers but
vectors. His graphical representation of forces also allowed a rela-
tively simple geometric interpretation of a complex system of
forces. His innovation greatly facilitated the study of statics.

Stevin’s second contribution to the study of statics was in the area
of hydrostatics, the study of fluids at rest. Part of the value of
Stevin’s discoveries in the field of hydrostatics arises out of insights
he gained into the physics of fluids, but there is more to this work
than science. Part of the value of his work lies in the mathematical
methods he invented to learn about fluids. We give one especially
important example of the type of result that he achieved in this area.

Imagine a body of water at rest and held in place by a vertical
wall. The wall can be a dam, a dyke, or one side of a rectangular
container. Stevin wanted to know how much force the water exert-
ed on the wall. The difficulty arises from the fact that the pressure
the water exerts against the wall is not constant along the wall.
The pressure, which is the force per unit area that is exerted by the
water at each point along the wall, depends on how far below 
the surface that point is located. The farther below the surface the
point is located, the greater the pressure the water exerts at that
position. If we double the depth, we double the pressure. Stevin
knew all of this before he began. What he did not know was the
total force exerted by the water on the wall. This was the quantity
he wanted to compute.

To understand Stevin’s insight suppose that we already know (or
have measured) the pressure that the water exerts at the bottom of
our wall. We call that pressure P, the maximal pressure exerted by
the water against the wall. If we multiply the area of the wall,
which we call A, by the pressure at the base of the wall, we get an
overestimate of the force exerted by the water. We can write our
overestimate as P × A. If we multiply the area of the wall by the
pressure exerted by the water at the surface of the water—at the sur-
face the water exerts 0 pressure—then our estimate of the total
force exerted by the water on the wall is 0. This is clearly an
underestimate. Neither estimate is very accurate, of course, but
the idea of making simple over- and underestimates is almost
enough to solve the problem.
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In symbols, our results, so far, look like this: PA ≥ F ≥ 0, where
we let the letter F represent the total force. Notice that we have
“trapped” F in the interval between 0 and PA. In mathematics,
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STEVIN AND MUSIC

An interesting and less well-
known contribution of Simon
Stevin to Western culture is
related to music as well as
mathematics. More than 2,000
years before Stevin’s birth a
group of Greek philosopher-
mathematicians under the
leadership of Pythagoras of
Samos discovered a simple
relationship between conso-
nant or harmonious sounds
and the ratios of the lengths of
a string. The device they used
to explore these ratios is called
a monochord, which is a little
like a one-string steel guitar.
Between the two ends of the
string they placed a movable
bridge. The bridge divided the
string into two independently
vibrating segments. They
would then simultaneously
pluck the string on both sides of the bridge and listen to the resulting har-
monies. The Pythagoreans discovered that if the string is stopped exact-
ly in the middle so that the lengths of the string on each side of the bridge
are in the ratio 1:1, then the sound produced when both parts of the
string are plucked is harmonious. This is called the unison. They further
discovered that if the string is stopped so that the lengths of the two
sides are in the ratio 1:2, a new harmonious sound is produced. We call
this interval an octave. If the string is divided into lengths with the ratio
2:3 the result is what we call a perfect fifth. Finally, they discovered that

Stevin advocated the adoption of the
system of musical tuning that today
characterizes virtually all of Western
music.  (Library of Congress, Prints
and Photographs Division)



however, what can be done once can usually be done twice, and
that is our next goal. Now imagine that we draw a line along the
wall exactly halfway between the surface of the water and the base
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if the string is divided into lengths that are in the ratio 3:4, the result is
what we call a perfect fourth. These connections between ratios and har-
monies greatly influenced musicians for centuries.

The “perfect” fourths and fifths of the Pythagoreans, however, are not
exactly the perfect fourths and fifths that we hear in Western music
today. If we construct a scale using the Pythagorean intervals, we get a
scale that is similar but not identical to the one we hear when we play a
piano. Some of the frequency intervals in a scale obtained from the tun-
ing system of the Pythagoreans are larger—and some are smaller—than
the scales to which we have become accustomed. The frequency dif-
ferences are, however, small enough so that on a simple melody most of
us would probably not even be aware that they exist. The situation
changes dramatically, however, as the harmonic and melodic compo-
nents of the music become more complex. The more harmonically com-
plex the music is, the more jarring the differences between the
Pythagorean tuning and our own contemporary system of tuning
become.

In Stevin’s time composers were moving beyond simple melodies.
They were exploring increasingly complex melodies and harmonies.
They were designing musical instruments such as the harpsichord, a
precursor to the piano, that require more sophisticated tuning. The tra-
ditional scales that were consequences of the natural overtone sys-
tem—the Pythagorean-inspired tunings—often sounded unpleasant and
distinctly out of tune on these instruments. Stevin proposed abandon-
ing the natural overtone system of the Pythagoreans. He wanted to
divide each octave into 12 equal (chromatic) steps. These are the 12
notes that the chromatic scale of Western music comprises. This
change in musical intonation made it possible for composers to modu-
late from one key to the next in their compositions without sounding out
of tune during the performance. The new system of tuning made
Western music, as we know it today, possible. Stevin was a very influ-
ential proponent of equitempered tuning. Another proponent of equi-
tempered tuning was Vincenzo Galilei, a prominent musician and com-
poser in his own time. Today Vincenzo is remembered principally as the
father of Galileo Galilei.



of the wall. We now repeat the procedure we just performed on
each half of the wall. The results are an upper and a lower estimate
for each half. If we add the halves together we get an upper and
lower estimate for F, the total force exerted on the wall by the
water. The procedure takes more work, but our new upper and
lower estimates are closer together than the previous ones. In
symbols this is the result of our second, more accurate estimate:
0.75 PA ≥ F ≥ 0.25 PA. Notice that this time we have trapped F, the
total force, in an interval that is half the size of that obtained in our
first calculation. As a consequence we now know more about F
than we did before.

We can continue to improve our results by dividing the wall into
thinner and thinner sections. If we divide the wall, as Stevin did,
into 1,000 equal horizontal strips, and compute an upper and a
lower estimate for each strip, and then add them together, the
result is 0.5005 PA ≥ F ≥ 0.4995 PA. Notice how close the upper
and lower estimates are now. The more finely he divides the wall,
the closer the upper estimate is to the lower estimate, or to put it
another way: The more finely he divides the wall, the smaller the
interval containing F becomes. The only number that belongs to
all such intervals is 0.5 PA. Stevin recognized this and concluded
that the force exerted by the water on the wall is 0.5 PA. He was
correct, but notice that no matter how finely the wall is divided,
neither the lower estimate nor the upper estimate equals 0.5 PA.
Instead Stevin’s method simply “squeezes” any other possible
answer out of consideration. This is a beautiful example of an
algorithm that utilizes infinite processes to solve a problem in
physics.

If Stevin’s technique seems familiar, that may be because his
method is essentially the same one employed by Archimedes to
find upper and lower estimates for the number π. This technique
is an early form of calculus called infinitesimal analysis. Stevin, as
Archimedes was, was a master at infinitesimal analysis. What dis-
tinguishes Stevin’s work from that of Archimedes is that
Archimedes restricted himself to geometric methods. In this cal-
culation Stevin used arithmetic methods in his calculations. In
fact Stevin was the first mathematician to make the switch from a
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geometric to an arithmetic approach to infinitesimal analysis.
This was an important innovation because the switch from geom-
etry to arithmetic made these computations considerably easier.

In addition to making his mathematical innovations Stevin con-
ducted a number of important experiments. One of his experiments
links three important figures in the history of mathematics, Stevin,
Galileo, and Oresme, with the Greek philosopher Aristotle.
During Stevin’s time it was a commonly held opinion that heavier
bodies fall faster than lighter ones. This belief stemmed from the
writings of Aristotle two millennia earlier. Aristotle believed that if
one body is twice as heavy as a second body, then the heavier body
falls at twice the speed of the lighter one. Over the intervening cen-
turies this opinion, as many of Aristotle’s opinions had, became an
article of faith among well-educated Europeans. In this case, how-
ever, Aristotle had gotten it wrong. Stevin investigated the situation
by simultaneously releasing two weights, one 10 times heavier than
the other, and noting that they landed simultaneously (or nearly so)
each time the experiment was repeated.

Most people are familiar with the story of Galileo’s dropping two
different sized cannonballs off the Leaning Tower of Pisa and notic-
ing that they struck the ground simultaneously, but there is little evi-
dence that Galileo ever performed this experiment. Cannonballs
and the Leaning Tower make for great theater, of course, but even
if Galileo had proven Aristotle wrong in this dramatic experiment,
he would have been too late to claim priority. Stevin’s experiment
was performed almost two decades before Galileo began a system-
atic study of the physics governing falling bodies. Galileo, however,
discovered how objects in free fall move: They accelerate at a con-
stant rate. This discovery was the result of Galileo’s own painstak-
ing experiments. The mathematical description of how objects move
under constant acceleration was, however, pioneered by Oresme
two centuries before Stevin began his experiments.

Galileo Galilei
The Italian inventor, mathematician, and physicist Galileo Galilei
(1564–1642) was another central figure in the establishment of the
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new sciences. Like Stevin,
Galileo was introduced to
mathematics fairly late in life.
He received his early educa-
tion at a monastery near
Florence. Later he enrolled in
the University of Pisa to study
medicine. It was while he was
a student at the University of
Pisa that he overheard a
geometry lesson. Until that
time he had no exposure to
mathematics. Though Galileo
began his study of mathemat-
ics at the university, he even-
tually left because he did not
have enough money for the
fees. By the time of his depar-
ture, however, he was busy
studying mathematics and

physics. Soon he was teaching mathematics and publishing his dis-
coveries in science. Like Stevin’s, Galileo’s work is characterized
by rigorous mathematics and creatively designed and carefully
conducted experiments.

Galileo is best known for the observations of the planets and
stars that he made with the newly invented telescope and for the
resulting persecution that he suffered at the hands of the Catholic
Church. Galileo had apparently been sympathetic to Copernicus’s
ideas about the geometry of the solar system from the outset, but
with his telescope he lifted the discussion out of the realm of the-
ory and provided new and dramatic observations to support these
ideas. His observations are carefully documented and analyzed in
his letters and publications. Kepler was one of the people with
whom Galileo corresponded. It is interesting that despite his con-
tact with Kepler, Galileo, who in most respects was a revolution-
ary thinker, never did abandon the idea that the planets move in
circular, rather than elliptical, orbits.
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Galileo Galilei helped to establish 
science as we understand the term
today.  (Library of Congress, Prints
and Photographs Division)



Galileo’s work in science had great immediate impact, not only
because some of his discoveries were dramatic, but also because he
sought the attention. Unlike most of his contemporaries, who still
followed the practice of publishing in Latin, Galileo published in
Italian. He sought to attract the attention of the general public and
to engage the public in the scientific controversies of the day.
Furthermore, Galileo knew how to write. All of his scientific
works were written with flair. He was not reluctant to respond to
criticism or to criticize those with whom he disagreed. Sometimes
he used reason, but he was not above using humor and sarcasm as
well. His two major works, Dialogue Concerning the Two Chief World
Systems—Ptolemaic and Copernican and Dialogue Concerning Two
New Sciences (also known as Two World Systems and Two New
Sciences, respectively), are important as literature and as science.
They served to attract attention to the new ideas and to popular-
ize them as well. Unlike many scientific treatises, Galileo’s works
generally sold well.

Galileo’s book Two New Sciences is perhaps even more important
than his writings about astronomy. In was through Two New
Sciences that Galileo helped to invent and then popularize what has
become “modern” science. Galileo wrote Two New Sciences late in
life. He was already under house arrest for the views that he
expressed in Two World Systems. (Galileo spent the last eight years
of his life under house arrest.) As an additional condition of his
punishment, he was ordered to cease writing about science during
his incarceration. He wrote anyway. In addition to his isolation his
writing difficulties were compounded by failing eyesight, which
was perhaps the result of his telescopic observations of the Sun.
When he completed the manuscript, he had it smuggled out and
published in Leiden in 1638. This, too, was a dangerous action to
take, given his relationship with the church. He died four years
after the publication of Two New Sciences.

Two New Sciences is, like Two World Systems, written in the form
of conversations among three characters. The conversations take
place over the course of four days. Each day a different subject is
discussed. There is also an appendix that contains some addition-
al theorems on the centers of gravity of solids. Of special interest
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to us are the conversations that take place on the third and fourth
days.

On the third day the characters discuss “naturally accelerated
motion,” or the motion of bodies undergoing constant accelera-
tion. First, they discuss various experiments meant to illuminate
certain aspects of naturally accelerated motion. The experimental
results disprove various ideas about the motion of falling bodies
that were then popular. They also serve to lead the reader to the
ideas that Galileo thought true. After the experiments are dis-
cussed and the framework of the topic established, the main char-
acter of the story recites a long series of mathematical theorems
and proofs regarding the nature of uniformly accelerated motion.
These proofs rely heavily on classical Euclidean geometry. They
demonstrate that each new result is a logical consequence of the
previous ones, so if one accepts the previous ideas one must also
accept these new, more sophisticated deductions as well. This col-
lection of theorems and proofs shows just how proficient Galileo
was at this type of mathematical reasoning. The combination of
experimental results and mathematical analysis is exactly what dis-
tinguishes the “new sciences” from what preceded them.

In the section “Fourth Day” the characters consider projectile
motion. Galileo is especially interested in explaining his ideas
about the motion of a projectile that is thrown or fired on a tra-
jectory that is initially horizontal. It is in this chapter that Galileo
makes some of his most creative observations.

The structure of the chapter is essentially the same as that of the
preceding chapter, except that this chapter begins with some geo-
metric preliminaries. The characters begin by quoting the works
of the great Greek geometers Apollonius and Euclid. Knowledge
of Euclid’s book Elements is clearly a prerequisite for the ensuing
discussion. One of the characters even insists that “all real mathe-
maticians assume on the part of the reader perfect familiarity with
at least the Elements of Euclid.”

After the lead character recalls for the reader some basic facts
about Euclidean geometry, the three characters again discuss var-
ious experiments. These experiments are intended to elucidate
the nature of projectile motion. In this section Galileo shows how

78 MATHEMATICS AND THE LAWS OF NATURE



creative a scientist he is by
demonstrating how one can
imagine the flight of a projec-
tile as the combination of two
motions. Each motion exists
independently of the other.
The first motion is a horizon-
tal motion that continues at
constant velocity. The second
motion is a vertical motion
that consists of a “naturally
accelerated” motion, the sub-
ject of Galileo’s previous chap-
ter. Galileo’s great insight is
that projectile motion can be
mathematically decomposed
into a simple, uniform hori-
zontal motion and the same
type of vertical motion experi-
enced by a body in free fall.
This type of analysis, which 
is original with Galileo, is
important because it is very
useful. Galileo follows this
analysis with a series of 
theorems and proofs about 
the properties of projectile
motion. In particular Galileo shows that in the absence of air resist-
ance projectiles follow a parabolic path. (This is why he began with
a discussion of Apollonius, the geometer in antiquity who made the
greatest progress in understanding the properties of parabolas.)

Another important characteristic of Galileo’s treatment of
motion is that he clearly conceives of a force as something that
changes a motion. This, too, is modern. He is less concerned with
what a force is than with what it does, and over the course of the
chapters “Third Day” and “Fourth Day,” he describes what will
later be known as Newton’s first and second laws of motion.
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Galileo expressed his ideas about the
motion of a projectile with a graph
similar to this one. Suppose the projec-
tile is fired at a horizontal trajectory
from a cliff. The equally spaced verti-
cal lines represent the x-coordinate of
the projectile at equally spaced time
intervals. The unequally spaced hori-
zontal lines represent the y-coordinate
of the projectile at equally spaced time
intervals. The lines are unequal
because the projectile is accelerating
downward as a result of the force of
gravity.



Even today Galileo’s discoveries are covered in any introduc-
tory physics course. Both his discoveries and his approach
opened a new era in science. Two New Sciences was for its day a
complete treatment of the problem of motion—not because
Galileo solved all of the problems associated with motion, but
because he solved most of the important problems that were
solvable at the time. Galileo developed the conceptual frame-
work necessary to investigate motion, but there were many prob-
lems that were out of his reach simply because he did not know
sufficient math. Most problems associated with motion require
quite a bit of mathematics for their solution. Most of the math-
ematics necessary to tackle these problems did not yet exist. In
fact, a revolution in mathematics would have to occur before
more complicated problems could be solved.

Fermat, Descartes, and Wallis
In the years following Galileo’s death rapid strides were made in
mechanics, the branch of physics concerned with forces, but
progress in science sometimes depends on progress in mathemat-
ics. The problems with which these early scientists were con-
cerned were often mathematically intractable given the state of
mathematics at the time. Fortunately many of the best scientists of
the time were also the best mathematicians, and rapid progress in
science was accompanied by rapid progress in mathematics.
During this period there were several important cases of inde-
pendent discoveries of the same mathematical idea, and often a
discovery in one field of mathematics contributed to the develop-
ment of what (today) we would consider a separate branch of
mathematics. Mathematics was assembling itself into a new and
more powerful way of thinking than anything that had preceded it.

To appreciate the nature of some of the mathematical discov-
eries made during the latter half of the 17th century and the way
they furthered humanity’s understanding of the laws of nature,
we need to keep in mind the type of mathematics that then
existed. The mathematics of the Greeks and their Arabic and
early Renaissance successors was fundamentally different from
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the mathematics that any high school student knows today.
These early mathematicians, for example, had a very restricted
knowledge of curves. The Greeks themselves were aware of only
about a dozen curves, including the circle, the ellipse, the
hyperbola, the parabola, and certain spirals. They had studied
this small collection of curves to learn about their mathematical
properties, but neither they nor their successors had found
many uses for them. Nor had they developed general techniques
for analyzing the curves that they did know. Probably they felt
no need to develop more concepts because there were so few
curves to analyze.

Conditions began to change during the Renaissance. Kepler dis-
covered a use for the ellipse: Planetary orbits are elliptical. Galileo
discovered a use for the parabola: In the absence of air resistance,
a projectile follows a parabolic path. These were some of the very
first uses of parabolas and ellipses discovered. Just as important
many new curves were discovered during this time as well. Two of
the most mathematically creative individuals of the time were the
French philosopher, mathematician, and scientist René Descartes
(1596–1650) and the French lawyer and mathematician Pierre de
Fermat (1601–65).

Descartes and Fermat were both educated as lawyers.
Descartes never worked as a lawyer. Fermat did legal work for
his entire professional life. Fermat lived an ordered and genteel
life in France. Descartes wandered about Europe for years.
Fermat is best remembered for his mathematical contributions.
Descartes, who was a creative mathematician and scientist, is
today best remembered as a philosopher. Each found ways to
relate algebraic equations to geometric curves. Each discovered
that a single equation containing exactly two unknowns describes
a curve, and each recognized the importance of this discovery.
Once the connection between an equation and a curve was estab-
lished, it was easy to generate numerous curves. As a result of the
discovery of Descartes and Fermat, suddenly there were infinite-
ly many different types of curves to study. The mathematical
landscape had become far richer and new tools were required to
analyze these curves.
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Coordinate geometry was, in many ways, the key. Coordinate
geometry allows the user to graph an equation. Throughout most
of the history of mathematics, algebra and geometry had been 
separate disciplines. Coordinate geometry connected the two 
subjects. Insights into one branch of mathematics could be applied
to problems in the other, and progress was greatly accelerated.
The difficult geometric investigations favored by the Greeks had
raised the level of rigor but had also in the end slowed progress.
Algebra was replacing the awkward geometric analysis because it
was often simpler to express the same idea using algebraic symbols
than geometric diagrams. Using algebra was easier and more 
suggestive than using geometry. Algebra provided a language in
which scientific and mathematical ideas could be more easily
expressed. This capacity accelerated progress.

Descartes and Fermat studied more than curves; they began to
study tangents to curves. (If we are given a curve and a point on a
curve, the line tangent to the curve is the best straight-line
approximation to the curve at the point.) The study of tangents
was extremely important in the history of mathematics because
knowing the slope of the line tangent to a curve at each point of
a curve yields very specific information about the curve itself.
(The slope of the tangent line is called the derivative.) For exam-
ple, if we have an equation that describes the position of an object
as a function of time, then the derivative, or slope of the tangent

line, is the velocity at which
the object is moving.

The computation of deriva-
tives generally involves infini-
tesimal analysis, and Fermat,
in particular, made a lot of
progress in this area. It was he
who developed the concept of
a derivative. Another way of
thinking about what a deriva-
tive means is that the deriva-
tive is a function that relates
the rate of change of one vari-
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able as a function of another. Velocity, for example, is the rate of
change of position with respect to time. Or to express this idea in
another way: The derivative of the position of an object with
respect to time is the velocity. Geometrically the derivative of a
function at a point is just the slope of the tangent at that point.
The discovery of the derivative and its meaning would have pro-
found effects on the history of mathematics and science.

Fermat’s research took him in still another direction. He was
also interested in developing methods for computing the area
beneath a curve. This idea also has important physical applica-
tions, and the techniques involved, as are those used for finding
derivatives, depend on infinitesimal analysis. For example, if we
have an equation that describes the velocity of an object as a func-
tion of time, then the area beneath the curve is the distance the
object travels during the period of interest. Recall that this was
Oresme’s discovery, but Oresme knew only enough mathematics
to examine the case of constant acceleration, which mathematical-
ly reduces to finding the area below a sloping line. Fermat went
much further in his investigations and began to develop formulas
for finding the area below a variety of curves. This concept and its
associated techniques are called integration. The two concepts,
differentiation and integration, make up the two halves of the sub-
ject that we now call calculus. Finding areas beneath curves
involves the same sorts of infinite processes used by Archimedes
and Stevin. The difference now is that the analysis is on a much
higher level.

The third mathematician who contributed to this especially fer-
tile time in mathematics history was the British mathematician
John Wallis (1616–1703). Wallis developed an interest in mathe-
matics after he was ordained a minister. There was civil war in
England at the time. Both sides were engaged in the making and
breaking of secret codes. It was during this time of war that the
Reverend Wallis discovered he had a flair for cryptography. His
skill at cryptography apparently sparked his interest in mathemat-
ics. Eventually Wallis moved to London and devoted his consid-
erable intellect to the study of mathematics, a study that would
occupy him for the rest of his life.
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Wallis was an influential and prolific mathematician. He 
made three contributions that would prove to be particularly
important to the development of laws of nature. First, Wallis
contributed to the development of infinitesimal analysis. Many
of his best discoveries in this regard are contained in his book
Arithmetica Infinitorum (The arithmetic of infinitesimals). In this
book he uses infinite processes to solve a great variety of prob-
lems. For example, one of his most famous discoveries is that the
number 2/π

equals the infinite product 1 × 3 × 3 × 5 × 5 × 7 × …. A more 
2 × 2 × 4 × 4 × 6 × 6 × …

modern way of saying the same thing is that the series of numbers 

1, 1 × 3, 1 × 3 × 3 converges to the number 2/π. Second, in
2 2 × 2 2 × 2 × 4

addition to his work with infinite products, Wallis, as Fermat did,
also enjoyed solving problems in integration, such as finding the
area beneath a curve, another application of infinitesimal analysis.
His discoveries in this regard were important in themselves and
inspired many mathematicians to improve and extend his results.
Isaac Newton was one of the mathematicians inspired by Wallis’s
Arithmetica Infinitorum.

Finally, Wallis also made an important contribution to mechan-
ics. His principal observation involved what scientists call momen-
tum. Wallis examined the problem of colliding bodies and
proposed the idea that momentum is conserved. To understand
exactly what the words momentum and conserved means, it is help-
ful to know that some scientists in Wallis’s time used the words
momentum and motion interchangeably. We briefly adopt this
archaic practice as we try to develop an appreciation of Wallis’s
insights. (Today scientists always make a distinction between
motion and momentum.)

From the Renaissance onward scientists became increasingly
quantitative in their outlook. They were no longer satisfied with
qualitative questions and answers; they wanted numbers. So it
was natural to begin to ask questions like, Which has more
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motion, a large ship traveling at few miles per hour or a bullet
fired from the barrel of a gun? Of course the bullet has a much
higher velocity, but in order to set a ship in motion a great 
deal more mass has to be moved. The answer to this and similar
questions involving the relationships among mass, velocity, and
motion lies in the definition of momentum, a definition that is
familiar to all scientists today. Both the concepts of mass and of
velocity come into play in the definition of momentum. The key,
as Wallis well knew, is to define an object’s momentum as the
product of the object’s mass and its velocity. The reason that the
definition is so important is that momentum is an extremely
important physical quantity.

Momentum is important because, as Wallis observed, it is a con-
served quantity. To understand the meaning of the observation,
suppose that we have two bodies that are in every way isolated
from their surroundings. These two bodies form a system. To say
that the system is isolated means that no outside forces act on the
bodies, and that the two bodies exert no forces on the outside
world; in this special case the only forces that act on the bodies
are the forces that the bodies exert on each other. Though there
are only two bodies in this simple illustration, there are three
momenta to consider: the momentum of each individual body
and the momentum of “the system,” which consists of the sum of
the momenta of the two bodies. This is called the total momen-
tum. The momentum of the individual bodies can change. They
may, for example, collide with each other. The collisions can con-
sist of glancing blows or head-on crashes. The geometry of the
collision has no effect on our considerations. Wallis’s observation
was that in the absence of outside forces the total momentum of the
system does not change. In particular if as a result of a collision the
momentum of one ball increases, the momentum of the second
ball changes in such a way that the sum of the two momenta is the
same as it was before the collision. When some property of an iso-
lated system cannot change over time, then we say that that prop-
erty is conserved. In this case if the momentum of the system is
known at any point in time, then, as long as the system remains
isolated from its surroundings, the momentum of the system

New Sciences  85



remains at that value for all
time.

What has been said about 
a system of two bodies can 
also be said about an isolated
system of many bodies.
Suppose, for example, that
we isolate many trillions of
air molecules from their sur-
roundings. This system is
more complicated, but the
molecules can still exert 
collision forces only on one
another. Some of the colli-
sions speed up individual
molecules, some slow indi-
vidual molecules down, and
occasionally a collision occurs
that causes one or more 
molecules to stop briefly. All
of this happens in such a way
that the total momentum of
all the molecules remains
constant.

Despite how modern much of the work of Wallis and the others
sounds, the situation was actually somewhat more complicated.
Descartes’s ideas about the universe were very influential during this
period. Everyone discussed in this chapter would have been familiar
with them, and yet they are not in any way scientific. Descartes
believed that the universe is filled with great vortices that carry the
heavenly bodies along as they spin around each other (see the pic-
ture). His view would not fall out of fashion until Newton’s ideas
became known.

If we think of the science of motion as a puzzle, the scientists and
mathematicians described in the chapter each solved a section of a
very important puzzle. Galileo discovered a great deal about the
science of motion, but his mathematics was not powerful enough
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to solve the problem. Descartes and Fermat discovered much of
the mathematics necessary to express Galileo’s insights in a way
that would open them up to mathematical analysis. Wallis, who
saw that momentum is conserved, had an important insight into
nature. No one, however, had put all of these ideas and techniques
together and used them to develop a sophisticated mathematical
description, but that would happen soon enough.
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5
mathematics and the

law of conservation of
momentum

It has often been said that the British physicist and mathematician
Isaac Newton (1643–1727) was born the same day that Galileo
died. It is a very poetic thought—the great Galileo’s making way
for the great Newton on the same day—but England and Italy were
using different calendars at the time. When the same calendar is
applied to both localities the remarkable coincidence disappears.

Galileo and Newton were two of the most prominent and best-
known scientists of their respective generations. Their discoveries
changed ideas about science and our place in the universe, but as
individuals they had little in common:

� Galileo grew up with a freethinking, outspoken, creative
father. Newton grew up without a father; his father died
before he was born.

� Galileo published his ideas in Italian in an engaging 
literary style. Newton published his ideas in Latin, the
language of the universities.

� Galileo did not shy away from controversy. In The
Assayer Galileo mocks and satirizes his critics because
they respond to his scientific discoveries by quoting
Aristotle instead of attempting to verify the outcomes of
his experiments and observations. Newton shunned
controversy. While still a student at college Newton



made many remarkable discoveries. But when he first
published some of his ideas and they drew criticism, he
retreated from the public eye for years.

� There were times when Newton had to be convinced by
friends to publish his discoveries. Galileo, on the other
hand, could not be prevented from publishing. Even
under threat of imprisonment and worse, Galileo was
irrepressible.

� Galileo remained actively involved in science until 
the end of his life. Newton largely ended his involve-
ment with science and mathematics by the time he was 
middle-aged.

� Galileo was a social person who had a strong lifelong
relationship with his daughter Virginia. Newton was a
solitary, private person who spent much of his time
researching alchemy.

Newton spent his earliest
years with his mother, but
when she remarried, he went
to live with his grandmother.
Later when his stepfather
died, Newton returned to 
live with his mother. He 
was a quiet boy with a very 
active imagination. There are
a number of stories about
Newton’s inventing various
clever devices. In one in par-
ticular he frightens the people
of the village where he lives by
attaching a small lantern to a
kite and using the kite to raise
the lantern high over the 
village one evening.
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As a young man Newton enrolled in Trinity College at the
University of Cambridge. Newton’s first interest was chemistry,
but he soon began to read the most advanced mathematics and sci-
ence books of his time. He began with a copy of Euclid’s Elements.
He read the works of the great French mathematician Viète. He
read Kepler’s writings on optics, as well as the works of Fermat and
of Christian Huygens, the Dutch physicist and mathematician,
and he was especially influenced by Wallis’s book Arithmetica
Infinitorum. He also read and was influenced by the writings of
Galileo. During the next few years (1664–69) he made many of the
discoveries for which he is remembered today.

One of Newton’s earliest discoveries was the calculus. Calculus
was the start of a new and important branch of mathematics called
analysis. Mathematically calculus is usually divided into two sepa-
rate branches. Both branches employ infinitesimal analysis. One
branch of calculus focuses on derivatives, which relate the rate of
change of the dependent variable to the independent variable.
This branch of calculus, called the differential calculus, centers on
two main questions: What are the mathematical techniques
required to compute derivatives? How can derivatives be used to
solve problems? The second part of calculus is called integral cal-
culus. Initially integral calculus involved finding the area beneath
a curve, sometimes called the integral of the curve, but the field
soon grew to encompass a much larger class of problems. As dif-
ferential calculus does, integral calculus centers on two questions:
What are the mathematical techniques required to compute inte-
grals? How can integrals be used to solve problems?

Even before Newton invented calculus, mathematicians had
been busy answering these questions. Newton was not the first to
compute integrals, nor was he the first to compute derivatives.
Fermat was very adept at computing derivatives and knew how to
compute a small number of integrals. He used these ideas and
their associated techniques in his research. Similarly Wallis had
learned to compute certain classes of integrals, so a great deal of
the work involved in inventing calculus had already been done.
Moreover, Newton, who was familiar with the work of Fermat and
Wallis, could do all the problems that Fermat and Wallis had
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already solved, and he quickly learned to do more, but calculus
involves more than these ideas and techniques.

Newton’s great insight into calculus is that differentiation and
integration are essentially inverse operations in the same way that
addition and subtraction are inverse operations: Subtraction
“undoes” the work of addition (and vice versa). Multiplication and
division are also inverse to each other: Multiplication undoes the
work of division (and vice versa). The relation between integration
and differentiation is only slightly more complicated. Newton dis-
covered that differentiation undoes the work of integration and
that integration almost undoes the work of differentiation. To
recover a function from its derivative we need to know a little
more than its integral, but the additional difficulties involved are
not great.

It is a simple matter to express Newton’s observation that, math-
ematically speaking, differentiation and integration are two sides
of the same coin symbolically. Suppose p(x), which we just write as
p, represents some function, and ṗ is the derivative of p with
respect to x. Recall that ṗ tells us how p changes as x changes.
Symbolically Newton discovered that if we know p, we can com-
pute ṗ. The function ṗ is called the derivative of p. Similarly if we
know ṗ, we can (almost) compute p, where p is the integral of ṗ. Of
course this simple notation belies the fact that difficult mathemat-
ics is often involved, but in principle the idea is easy.
Differentiation undoes the work of integration and integration
largely undoes the work of differentiation. This idea, which is
called the fundamental theorem of calculus, was one of Newton’s
great discoveries.

One reason that Newton’s discovery is so important is that it
allows mathematicians to begin to solve equations when the deriv-
ative of a function is known but the function itself is unknown.
The branch of mathematics concerned with identifying a function
from information about its derivatives is called differential equa-
tions. In a differential equation, we are given information about
the derivatives of a function, and our goal is to learn as much as
possible about the function itself. The study of differential equa-
tions began as a part of calculus. Differential equations are
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extremely important in the history of mathematics and science,
because the laws of nature are generally expressed in terms of dif-
ferential equations. Differential equations are the means by which
scientists describe and understand the world.

Newton’s discovery of the fundamental theorem of calculus
could have changed everything. He must have understood its
importance, but his discovery had little immediate effect on his
contemporaries because he did not publish it. The first person to
discover calculus, including the relationship between a function
and its derivatives, and to publish his ideas was Gottfried Wilhelm
Leibniz (1646–1716).

Leibniz, who was born in Leipzig, was a prodigy. He entered
university at Leipzig at age 15 and by age 17 earned a bachelor’s
degree. On his way to the doctorate he studied most of the sub-
jects that the people of his time thought that a well-educated per-
son requires: theology, law, philosophy, and mathematics. Leibniz
was ready for a doctorate at age 20, and when the university
declined to award it to him—they thought he was too young—he
left to find a university more to his liking. He was soon awarded a
doctorate of law at the University of Altdorf.

Today Leibniz is best remembered as a mathematician, but in
his own time his interests and his activities were as broad as his
education. There seemed few ideas that were beyond either his
capacity or his interest. He invented a mechanical calculator. He
contributed to the development of logic and algebra. He discov-
ered the base 2 number system, which is very important in com-
puters. He wrote about philosophy and religion and language,
but he was not an academic in the usual sense. After he received
his doctorate, Leibniz worked as a diplomat. He traveled widely.
He maintained an active correspondence with the best mathe-
maticians on the European continent, and in 1684 he began to
publish his ideas on calculus. Though there is only one calcu-
lus—and so there is a lot of overlap in the ideas and concepts of
Newton and Leibniz—there is little doubt that Leibniz was the
better expositor. Leibniz enjoyed using language, verbal and
written, and in his exposition of calculus he introduces a number
of carefully thought-out, highly suggestive symbols. The sym-
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bols are chosen to reveal the concepts behind the ideas of calcu-
lus, and in large measure they work as he intended. Students
have used Leibniz’s mathematical notation as an aid in learning
the calculus ever since. No one has ever claimed that Newton’s
notation could be used in the same way. Today all calculus texts
employ Leibniz’s notation.

The Laws of Motion
Newton’s contributions to understanding the laws of nature, how-
ever, extended well beyond the invention of calculus, a mathemat-
ical language in which scientific ideas are readily expressed.
Newton advanced several branches of science. The contribution
of most interest to us is his mathematical study of motion.
Newton’s exposition of motion is classical in the sense that he
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begins his presentation with a list of axioms and definitions. The
emphasis on this axiomatic approach dates to the days of ancient
Greece. It is the way Euclid began his work Elements. Axioms are
the fundamental properties of the subject; they define the subject.
They are, in a sense, the “rules of the game.” From a logical point
of view axioms are the ultimate reason that all subsequent deduc-
tions are true: The deductions are true because they are logical
consequences of the axioms. Newton’s axioms are called the laws
of motion. Newton derives the properties of moving bodies as log-
ical consequences of his axioms. As a consequence in every physi-
cal situation in which Newton’s laws of motion are valid, so are all
his conclusions, because his conclusions are mathematically
derived from his laws of motion.

Recognizing the importance of his laws of motion, Newton lists
them at the beginning of his work Philosophiae Naturalis Principia
Mathematica, which is usually called Principia. He then begins
deducing consequences of these laws in the form of mathematical
theorems. Here are Newton’s three laws in his own words:

1. Every body continues in its state of rest, or in uniform
motion in a right line, unless it is compelled to change that
state by forces impressed upon it.

2. The change of motion is proportional to the motive force
impressed; and is made in the direction of the right line in
which that force is impressed.

3. To every action there is always opposed an equal reaction; or,
the mutual actions of two bodies upon each other are always
directed to contrary parts.

(Newton, Isaac. Mathematical Principles of Natural Philosophy.
Translated by Andrew Motte, revised by Florian Cajori. Great Books
of the Western World. Vol. 16. Chicago: Encyclopaedia Britannica,
1952.)

The first law states that in the absence of forces a body can be in
one of two states. Either it is at rest (and remains at rest), or it
moves at a constant velocity along a straight line (and continues to
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move in this way indefinitely). Newton refers to moving at con-
stant speed along a straight line as “uniform motion in a right
line.” If an object is not moving at constant velocity along a right
line—perhaps its velocity changes or its direction changes—then
we can be sure that a force is acting on that body. More important
and perhaps less obvious, in the first law Newton asserts that only
forces change motions. Consequently motions and forces are very
tightly linked.

Newton’s second law is simply a description of the ways forces
affect motions. Here Newton makes use of the vector property of
a force, a property first described with precision by Simon Stevin.
Every force has two properties, a strength and a direction. That is
the reason for the semicolon in the second law. The part before
the semicolon describes how the strength of the force affects the
motion: If we double the force, we double the magnitude of 
the change. The second part of the second law—the part after the
semicolon—relates the direction of the force to the direction of
the change in motion: The change in direction of motion occurs
on the line along which the force is applied.

The third law is bound up with the idea of conservation of
momentum. Forces, according to Newton, occur in pairs. When
one body exerts a force on a second body, the second body exerts
a force on the first body. Newton also tells us how these two forces
are related: They are equal in magnitude and opposite in direc-
tion. As a consequence when we add the two forces together they
“cancel” each other, or add up to 0. Therefore in an isolated sys-
tem, where the only forces exerted on two bodies are the forces
that the bodies exert on each other, the total force on the system
is 0, because the two equal and opposite forces cancel each other
out. Given that only forces can change motions—that is the con-
tent of first law—and that the total force on the system is 0, the
momentum of the system cannot change. This is evidently Wallis’s
insight, too, but Newton’s third law is in a form that is more
amenable to mathematical analysis. (Of course these qualities are
not exclusive to two bodies in motion. What has been said for two
bodies in motion also holds true for a larger, more complicated
system of bodies.)
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It was the mathematical expression of Newton’s three laws
that made a profound and permanent change in science and
technology. Expressing the laws of motion mathematically
involves calculus. Mathematically we can say that the time rate of
change in momentum equals the sum of the forces. In other words if
we know the forces acting on a body, we also know the deriva-
tive of the momentum. If we know the derivative of the momen-
tum then we can integrate it to find the momentum itself. With
the help of Newton’s three laws and calculus it is possible to
compute not just the current momentum of the body but the
momentum of the body in the future and in the past as well.
Newton’s work enabled scientists to predict the motion of
objects by using very general principles. With additional work it
is even possible to use Newton’s laws and calculus to compute
the position of the body both in the past and in the future. That
is why applying calculus to the laws of motion made such a huge
difference in the history of science. After Newton’s work estab-
lished these principles, computing the momentum and the posi-
tion of an object once the forces acting on the object were
established was possible.

The mathematical expression of Newton’s idea is deceptively
simple. Traditionally the momentum of a body is often represent-
ed with the letter p, and p is a function of time. If we use Newton’s
calculus notation, then the rate of change of p with respect to time
is denoted by ṗ. Symbolically Newton’s laws assert that ṗ equals 
the sum of the forces acting on the body. Let F1, F2, F3, . . ., + F n,
represent a complete list of all the forces acting on a body and let
p represent the body’s momentum. Newton’s laws of motion are
summed up in the equation ṗ = F1 + F2 + F3 + . . . + F n, but we can
make the equation even simpler. We can use Stevin’s discovery
about how to combine all of the forces that appear on the right
side of the equation. If we let the letter F represent the sum of all
the forces, then Newton’s laws of motion can be expressed in the
extremely simple-looking equation ṗ = F. The point is that if we
can measure F and we know p for even one instant of time, then we
can compute p for all time. During Newton’s life this discovery had
its greatest expression when F represented the force of gravity.
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Newton also discovered the so-called law of gravity. The law of
gravity is a statement about the nature of the force of gravity. It
describes how the strength and direction of the force of gravity
exerted by two bodies on each other change as the distance
between the bodies changes. In our notation Newton discovered a
formula for the force F that appears in the equation ṗ = F. Notice
that if he knows F, where F now represents the force of gravity,
then he knows ṗ, the derivative of the momentum. Next, using cal-
culus, Newton was able to compute the momentum and then use
this information to compute the path that each planet takes as it
orbits the Sun. What he discovered is that his computed paths
were in close agreement with those that Kepler had worked out by
analyzing Tycho Brahe’s data. This is a powerful indicator that
Newton had gotten it right.

The equation ṗ = F has uses in addition to predicting the orbital
paths of planets. It describes an extremely strong limitation on the
motion of any body. The restriction is that the derivative of the
momentum of the body must equal the sum of the forces acting on
it. Any other possibility is not “physical”—another way of saying
that it just cannot happen. Scientists have used Newton’s laws ever
since in the description of the motions of everything from rockets
to oceans.

It may seem that this relationship solves the problem of how
bodies move, and in theory it almost does. The last difficulty aris-
es when we try to compute the momentum from the equation ṗ =
F. To complete the computation we need one more bit of infor-
mation. To see the problem, imagine that we are in a car moving
down a highway at constant velocity. It is easy to predict our loca-
tion at the end of an hour provided we know our location at the
beginning of the hour. A problem arises, however, when we do not
know our initial location with precision. In this case we cannot
predict our final location with certainty, although we can still pre-
dict how far we will have traveled over the course of the hour. This
is the difficulty alluded to earlier in the chapter when we men-
tioned that the relationship between integration and differentia-
tion is almost analogous to the relationship between addition and
subtraction or multiplication and division. To compute a function
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from its derivative we need one extra bit of information. In our
example the other bit corresponds to knowing our initial position.
More generally to solve the equation ṗ = F completely, that is, to
find the momentum of the object for every point in time, we need
to know the momentum of the object at any one point in time. If
we know this, then we can compute the momentum of the object
for all time. Practically speaking this last bit of information, the bit
needed to find the momentum function from Newton’s equation
of motion, is usually obtained by making a measurement.
Measurements generally involve some uncertainty, and as a conse-
quence there is always some uncertainty about the computed
momentum as well. As a general rule, however, the problem is not
great in the sense that if a small error is made in the measurement,
the answer we compute contains only a small error as well.

The effect of Newton’s work cannot be overestimated. Conserva-
tion of momentum is the first major conservation law of classical
physics. Newton’s discoveries make many important phenomena
in physics predictable. In other words if we are given a body and
the forces acting on the body, then it is possible to calculate a
unique solution, and that solution must describe the motion of the body.
Newton’s laws and calculus make it possible to treat motion as a
series of causes and effects: The cause of the change in motion is
the applied force. The effect is the new (computed) motion. This is
an extraordinary insight into the workings of nature.

The Discovery of Neptune
Newton’s analysis of planetary motion was in good agreement
with that of Kepler, and this agreement was taken as evidence that
Newton’s mathematical model is a good reflection of reality. What
scientists of the time did not know is that there are small but meas-
urable differences between the motion of the planets as predicted
by Newton’s and Kepler’s models and the measurements of the
actual positions of the planets. The difficulty arises because
Newton’s model does not—and Kepler’s model cannot—take into
account the gravitational interactions that occur between the plan-
ets themselves.
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The gravitational field of the Sun is so much stronger than that
of any planet that every planet moves almost as if the only force
affecting its motion is that of the Sun. That is why when Newton
computed the motion of each planet under the gravitational pull
of the Sun, the results he obtained were very close to the phe-
nomena that had been observed. As increasingly accurate meas-
urements accumulated, however, scientists sought a model that
would account for the small differences between what they
observed and what they calculated. These small differences, called
perturbations, are due to the gravitational interactions that occur
between the planets themselves. Developing a model to account
for these small planet-to-planet interactions was a major goal 
of those who worked after Newton, and the first to succeed was 
the French mathematician and scientist Pierre-Simon Laplace
(1749–1827).

Laplace was one of the major scientific and mathematical figures
of his time. His ideas influenced the development of the theory of
probability for much of the 19th century, for example, and his
accomplishments in astronomy had a profound effect on those
who followed him. Laplace’s best-known achievement in astrono-
my involved developing a sophisticated mathematical model of
planetary motion, a model so powerful that he was able to com-
pute the perturbations in the orbit of one planet that are due to its
gravitational interaction with other planets. This is a difficult
mathematical problem because the effect of one planet on the
orbit of its neighbors depends on the relative positions of the plan-
ets, and, of course, their relative positions are continually chang-
ing. Laplace’s work did more than provide a basis for accurate
calculations, however.

At this time there was also discussion among astronomers about
whether the solar system is stable; that is, they wanted to know
whether the cumulative effect of all of these planet-to-planet
interactions would not eventually disrupt the solar system.
Because the effect of one planet on another is to change both its
speed and its direction, it seemed at least possible that over time
the planets would be pulled out of their orbits and the solar sys-
tem would collapse into chaos. Laplace was able to show that this
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could not occur. The solar system will maintain its present config-
uration into the indefinite future. The solar system is stable. This,
too, was an important scientific accomplishment. It was so impor-
tant and so impressive that at first it seemed that Laplace had
solved the last big problem in predicting planetary motions, but a
new and even more difficult problem was already on the horizon.

In 1781 the German-born British astronomer and musician
William Herschel (1738–1822) discovered the planet Uranus.
Herschel was not the first person to observe Uranus. As a naked-
eye object Uranus is very dim when viewed from Earth. It is right
at the limit of what can be seen with the naked eye, so even a small
telescope reveals its presence, but Herschel was the first to notice
its exceptional appearance. Further observation proved that it was
a planet.

Uranus was the first planet to be discovered in recorded history,
and its discovery caused quite a sensation. Astronomers immedi-
ately began to measure its motion across the night sky, because
once they knew how long Uranus took to orbit the Sun they could,
with the help of Kepler’s laws of planetary motion, compute its
approximate distance from the Sun. They discovered that, by the
standards of the time, Uranus is almost unimaginably far away (2.9
billion km or 1.8 billion miles).

Having established its approximate distance, astronomers next
attempted to compute its future positions in the night sky. This
can be done by using Newton’s laws of motion, calculus, and the
law of gravity. Thanks to Newton’s work on gravity and Laplace’s
extension of Newton’s work, these astronomers knew the forces
acting on Uranus that were due to the Sun, Saturn, and Jupiter.
They could compute the effect of these forces on the motion of
Uranus. They were surprised, therefore, when the orbital motion
that they measured was not the same one that they computed.

There was more than one explanation for Uranus’s unpre-
dictable motion, and each explanation had its adherents. One
explanation was that the measurements were inaccurate, but as
more and more measurements accumulated, this hypothesis fell
out of favor. Another explanation for the discrepancy between the
observed motion and the predicted motion was that Newton’s laws
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of motion might not be valid at such a great distance from Earth.
Newton’s laws had been thought to be invariant with respect to
position; that is another way of saying that the change of a given
body in response to a given set of forces should not depend on
where the body is located. There was, of course, no way for any-
one to be certain that Newton’s laws remained valid so far from
Earth, but aside from Uranus’s anomalous motion, there was no
reason to suspect that the laws also did not hold in the vicinity of
Uranus. Whatever the cause the difference between their comput-
ed predictions of Uranus’s position in the night sky and their
measurements were too big to ignore. Could it be that Newton,
Laplace, and others had overlooked something?

A third explanation, which was based on the assumption that
Newton was correct, was proposed: Recall that Newton’s equation
of motion is a mathematical statement that the change of momen-
tum of a body equals the sum of the forces acting on the body. In
other words, in order to compute Uranus’s momentum as well as
its position, one needed to know all the forces acting on Uranus.
If there was an unknown force acting on Uranus, this might
account for the difference between its observed and its predicted
positions.

The British mathematician and astronomer John Couch Adams
(1819–92) and the French mathematician and astronomer Urbain-
Jean-Joseph Le Verrier (1811–77) independently concluded that
there is another force affecting Uranus’s motion through space.
They believed that this additional force was the gravitational
attraction of still another undiscovered planet. Adams was the first
to draw this conclusion, and he began to try to compute the posi-
tion of the unseen planet. A few years later Le Verrier began to try
the same thing. Trying to compute the position of an unseen
object from the gravitational effects that it exerts on another body
is a very difficult mathematics problem to solve. In fact many peo-
ple who believed in the possibility of an undiscovered planet never
tried to compute the position of the unknown planet. The com-
putational difficulties seemed insurmountable.

Adams worked on the problem off and on for five years; Le
Verrier worked on it for two years. Until recently historians had
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always believed that they finished at about the same time and with
essentially the same answer. What is certain is that it was Le
Verrier’s calculations that were experimentally verified. Le Verrier
found an observatory that would scan the sky for a new planet at
the location that he predicted. The observatory took less than an
hour to find Neptune. It was located within 1° of Le Verrier’s
computed position. (In 1999 long-lost historical documents
uncovered in Chile indicated that Adams had not progressed as far
in the computation of Neptune’s position as was previously
believed. His computations were far less accurate than Le
Verrier’s, and he was far less certain about Neptune’s position. In
retrospect it was really only Le Verrier who discovered Neptune.)

The discovery of Neptune was hailed as one of the great scien-
tific triumphs of the 19th century. Galileo, Newton, Laplace, and
others had developed a new way of understanding nature. With
the help of new mathematical and scientific insights scientists were
no longer simply looking for patterns; they were predicting them.
Given a cause, scientists had learned to predict an effect. Given an
effect, Le Verrier had discovered the cause. The principle of the
conservation of momentum, measurements of Uranus’s motion,
and a great deal of mathematics enabled Le Verrier to show that it
was possible to discover a new world without ever looking through
a telescope.
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6
mathematics 

and the law of 
conservation of mass

Another important early conservation law concerns not motion,
but matter. The law of conservation of mass was first established
by the French chemist and government official Antoine-Laurent
Lavoisier (1743–94). Lavoisier lived in turbulent times. As were
those of many French mathematicians and scientists whose stories
are detailed in other volumes of this series, Lavoisier’s life and
work were influenced by political turbulence in his native country.
For Lavoisier the results were tragic.

Lavoisier was born into comfortable surroundings. His mother
died when he was young and he was raised by his father and grand-
mother. As a youth he showed an early interest in and aptitude for
science. His father, a well-placed government official, ensured that
his son received an excellent education. Lavoisier studied a wide
variety of subjects at Collège Mazarin—languages, mathematics,
chemistry, astronomy, literature, and philosophy were some of the
fields in which he received instruction—and while in college dis-
tinguished himself in several areas. For example he won awards for
rhetoric and for his translations of Greek to French. He studied
law at the Sorbonne and received a license to practice law, but
from the beginning clearly his main interest was science.

After receiving his license to practice law, Lavoisier began his
study of science. He wrote a paper on how to light a large town, a
paper that won him an award from the Academy of Sciences. He
wrote about aurorae, thunder, chemical analysis, and geology. His



methods are marked by carefully designed, carefully conducted
experiments that yielded quantitative rather than just qualitative
results. His papers show how meticulously he made measurements
at each step of an experiment and how aware he was of any possi-
ble sources of error in his work. In many ways his papers have a
modern feel to them.

Lavoisier’s approach was new for the time and his work helped
initiate what is sometimes called the chemical revolution. He was
especially interested in the problem of combustion, and he inves-
tigated the role of air in combustion. (To appreciate the difficulties
involved keep in mind that in Lavoisier’s time there was no real
understanding of the chemical composition of air or of the process
of combustion. Today we know that air is mostly nitrogen and that
it is only the approximately 20 percent of air that is oxygen that
sustains a combustion reaction. We also know that oxygen is not
“consumed” in combustion but rather combined with other ele-
ments, usually carbon or hydrogen, to form new compounds.
Lavoisier had to work out the general outlines of this process for
himself.)
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Scientific equipment from the laboratory of Antoine-Laurent Lavoisier
(Library of Congress, Prints and Photographs Division)



Lavoisier distinguished between chemical elements and com-
pounds. Elements, he said, are substances that cannot be broken
down. He began to classify substances as compounds or elements.
His discoveries led to a new way of perceiving nature. His insight-
ful experiments, his personal prestige, and his numerous well-
written accounts of his results were important in spreading the
new ideas. Within Lavoisier’s lifetime many scientists accepted his
concepts and rejected the idea, which dated back to ancient
Greece, that there are four elements: earth, air, fire, and water.

As Lavoisier rose to prominence he became actively involved in
governmental affairs: collection of taxes, finance, agriculture, edu-
cation, and other areas. Some of these activities benefited the gen-
eral public. Some, such as tax collection, benefited the monarchy
and aroused public wrath. He helped to establish savings banks
and insurance societies, and he helped to promote public hygiene.
In the end, however, Lavoisier’s contemporaries recalled only his
association with the tax collection agency.

With the French Revolution, power seemed to have been trans-
ferred from the monarchy and toward more democratic institu-
tions. Lavoisier initially supported the French Revolution, but his
association with the tax collection agency made him a target of
political reprisals among the more radical revolutionaries. By 1793
the ideals of the revolution had been subverted and the so-called
Reign of Terror had begun. By 1794 Lavoisier and other officials
associated with the collection of taxes were rounded up, subjected
to a brief mass trial, and executed. Lavoisier was among 28 former
tax officials who were killed on May 8, 1794.

After his tragic death Lavoisier’s ideas continued to spread
among scientists. In fact his stature as a scientist seemed to grow.
Especially important was Lavoisier’s view that the common meas-
ure of matter is weight. (Recall that Leonardo’s version of a con-
servation law used volume as a measure of the amount of matter
flowing past a point.) Because liquid water is nearly incompress-
ible, whether water is measured by volume or by mass is fairly
unimportant, but the situation is different for gases. Gases may
expand or contract a lot, depending on changes in the gas tem-
perature and pressure. Consequently Lavoisier needed a better
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measure of the amount of matter in a sample than its volume. At
Earth’s surface weight is a more fundamental measure. This con-
cept, too, is almost modern. Today scientists use mass as a meas-
ure of the quantity of matter in a body, but at Earth’s surface mass
and weight are proportional. This means that at Earth’s surface
there is a simple relationship between mass and weight. As a con-
sequence if we can measure the weight we can compute the mass.

Throughout his career as a scientist Lavoisier performed numer-
ous experiments in which he measured the weight of the reactants,
which are the materials present before the reaction, and the prod-
ucts, which are the materials produced by the reaction. As his
experimental techniques improved he was able to show that the dif-
ference in weight between the products and the reactants was
always small. The question that he had to decide was whether the
difference in weight between the products and reactants that he
seemed to detect almost every time he performed an experiment
was due to small inaccuracies in measurement or to the creation or
destruction of matter. When we are taught science, we begin with
the assumption that matter is neither created nor destroyed in
chemical reactions; Lavoisier, by contrast, had to establish this fact.

Lavoisier developed a model in which chemical reactions involve
the modification of matter but not its destruction or creation,
where we take weight to be the measure of matter. He was right,
of course, and his insight led to a new conservation law. One way
of formulating his idea is to say that in a system isolated from its
surroundings the mass of the system is constant. If we use
Newton’s notation, we can write a mathematical formulation of
the preceding sentence, ṁ = 0, where m represents the amount of
mass in the system and the dot represents the rate of change with
respect to time. More generally when the system is not isolated
from its surroundings, we say that the change in the mass of the
system is the difference between the mass that moves into the sys-
tem and the mass that moves out, or ṁ = min – mout.

This equation represents a very powerful constraint on the way
the mass of the system can change. It says that to keep track of the
change of mass inside the system we need only make measure-
ments along the boundary, because only there can mass enter or
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leave the system. Furthermore any function that we claim
describes the amount of mass in the system must have the proper-
ty that the derivative of the function—that is, the rate of change of
our mass function per unit of time—must satisfy this differential
equation. Finally, in the same way that we can solve a differential
equation for the momentum of a system, we can solve the differ-
ential equation for the mass of the system.

Physical systems that can be described by these types of differ-
ential equations are deterministic. In particular if we know the
forces acting on the system and the mass flow into and out of the
system (and if we know the state of the system at one instant of
time), we can compute the mass and momentum of the system for
some later time. The effect of these two conservation laws on the
development of science and technology was profound.

Leonhard Euler and the Science of Fluid Dynamics
One of the first people to use the laws of conservation of mass and
conservation of momentum simultaneously in the study of a single
phenomenon was the Swiss mathematician Leonhard Euler
(1707–83). He was the first mathematician to produce a set of dif-
ferential equations that describe the motion of a particular type of
fluid. Euler was probably the most prolific mathematician of all
time, and there were very few areas of mathematics that existed
during his life to which he did not contribute.

As a young man Euler attended the University of Basel, where
he studied theology as well as medicine, languages, mathematics,
physics, and astronomy. His primary interest, however, was always
mathematics. Euler is said to have been able to compose mathe-
matics papers in his head in the same way that it is said that Mozart
could compose music: prolifically and without hesitation. During
the last 17 years of his life Euler was blind, but during this period
his mathematical output only increased.

With respect to the science of fluids Euler proposed a set of
differential equations that describe the motion of a particular
type of fluid. He was the first to do this. The set he chose 
consists of specialized versions of the conservation of mass and
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conservation of momentum
equations—versions that he
created to describe a particu-
lar type of fluid. The assump-
tions on which the equations
are based are comparable to
axioms. In this sense Euler
did for fluid dynamics what
Euclid did for geometry and
what Newton did for the
motion of rigid bodies. If one
accepts Euler’s assumptions—
expressed as they are in a 
system of equations—then
one must also accept the 
conclusions derived from 
the equations, and the con-
clusions derived from the
equations are the solutions to
the equations. Euler’s great
innovation was to demon-
strate that it was possible to
turn the science of fluids into

a deductive discipline. By creating these equations, Euler
demonstrated the feasibility of studying fluids mathematically.

Euler’s equations are still used today, but they do not describe
the way every fluid moves in response to forces. No one set of
equations can do that, because every set of equations incorporates
certain facts and/or opinions about the physical properties of the
fluid under consideration. Euler’s equations have been successful-
ly used to model the motion of various fluids—liquids as well as
gases—provided the physical properties of the fluids satisfy certain
very narrow technical criteria. Most fluids do not meet Euler’s 
criteria, however. When the criteria are not satisfied, one can in
theory still solve the equations, but the solutions have no physical
meaning. This is where science—as well as mathematics—comes
into play. The researcher must strike a balance between a set of
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The motion of the atmosphere is
extremely complex and results in
beautiful and unexpected patterns.
The motion of air is one of the most
important phenomena modeled by
fluid dynamics equations.  (Courtesy
of National Oceanic and Atmospheric
Administration/Department of
Commerce)
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THE MATHEMATICS OF COMBUSTION

Our society is founded on combustion technology. Almost all transporta-
tion vehicles in use today rely on the internal combustion engine. In terms
of transportation we cannot do without it. Although there is a greater mix
of technologies in the area of electrical power generation—some power is
produced by nuclear and hydroelectric power plants as well as very small
amounts of “alternative” power sources—combustion technology is a vital,
and for now, an irreplaceable part of our power generation system. In cold
climates combustion of gas, oil, wood, or coal prevents many people from
freezing during the winter. Combustion technology is everywhere.

In addition to making our way of life possible, combustion reactions
are a major source of pollution. The chemical characteristics of the
atmosphere as well as those of many freshwater lakes and rivers are
being slowly altered by the by-products of the combustion reactions that
our houses, cars, planes, ships, factories, and power plants release into 

Test firing of the Saturn rocket engine, an especially dramatic form
of combustion  (Courtesy of National Aeronautics and Space
Administration)

(continues)



equations that accurately reflect the physical properties of the
fluid and a set of equations that are still simple enough to solve.
Usually what the researcher gains in one area is lost in the other.
Striking a balance requires experience and insight.

In practice, the principal difficulty with Euler’s approach is that
the resulting equations are usually always very difficult to solve.
The existence of intractable problems is characteristic of the field
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THE MATHEMATICS OF COMBUSTION
(continued)

the air. Both the benefits and the drawbacks of combustion reactions
have led to enormous amounts of research into the mechanical and
chemical characteristics of combustion.

The processes that occur in real combustion reactions are exceed-
ingly complex. One commonly studied reaction occurs when the fuel
and air are premixed to form a highly combustible mixture. As part of the
mixture burns, the surrounding medium is heated by the burning and
becomes more buoyant than the mixture above it. It begins to rise
(Archimedes’ buoyancy principle). The rising gases acquire momentum
(Newton’s laws of motion). As the fuel-air mixture passes through the
flame front, the chemical composition of the mixture is changed and heat
is released. The chemical composition of the reacting chemicals must
change in such a way that mass is conserved (conservation of mass).
The large rapid changes in the temperature of the reactants that are typ-
ical of most combustion reactions cause the resulting motions of the
gases to become turbulent and chaotic. There are many interesting and
surprising phenomena that occur inside a fire or explosion.

Mathematical models for such complicated phenomena frequently
give rise to very complicated sets of equations. There are separate equa-
tions for mass, momentum, and energy as well as equations that
describe the precise chemical reactions, and these equations are gen-
erally coupled. This means that it is not possible to solve them one at a
time, because the solution of one equation depends on the solution of
other equations. As a consequence all of the equations must be solved
simultaneously. Even the fastest computers do not readily produce
accurate solutions to these equations. Combustion modeling remains a
very active area of scientific research.



of fluid dynamics. They arise because under the action of a force a
fluid deforms continuously. When one region of the fluid begins to
flow, that motion is transmitted to other parts of the fluid, and soon
the entire mass begins to swirl around. This coupling of the motion
in one part of a fluid with motions in other parts causes complex,
beautiful, and often surprising patterns of flow.

The development of computers has been a great help in under-
standing some of the properties of the solutions of equations of
fluid dynamics, but computational solutions leave many problems
unresolved as well. For example, the fact that the computer can
find a solution is no guarantee that another solution does not exist
for the same situation. It may be that one set of equations has mul-
tiple solutions for the same “input.” The existence of multiple
solutions is critical, because if other, different solutions exist for
the same set of conditions, then predicting the behavior of the
fluid becomes much more difficult. This is one reason that there
are still many mathematicians who devote their time to studying
very basic, noncomputational questions about the nature of the
equations that arise in the study of fluids. Euler founded the sci-
ence of mathematical fluid dynamics, but his main contribution
lies in the statement of the problem rather than in any solutions
that he found.
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7
mathematics and the

laws of thermodynamics

Thermodynamics is that branch of science that deals with the
relationships that exist between heat and work. In a practical
sense thermodynamics is concerned with our ability to turn heat
energy into electrical energy, as is done at oil, coal, gas, and
nuclear power plants. It is also concerned with the problem of
turning heat energy into the energy of motion, as in cars, ships,
and planes. But thermodynamics also has a theoretical side.
Theoretically thermodynamics is concerned with energy, work,
and the concept of irreversibility. (A process is irreversible if it
cannot be undone; combustion, for example, is an irreversible
process.) More than most branches of science thermodynamics is
also a subject that has inspired a great deal of philosophical spec-
ulation. It touches on important questions about why physical
systems evolve in some ways but not others. It is one of the 
conceptually richest areas of classical physics.

The history of thermodynamics traces its roots to experiments
performed by the Italian physicist and mathematician Galileo
Galilei. Galileo is often given credit for being the first to devise a
thermometer. In the study of heat a thermometer is a valuable
tool. It enables the user to measure changes in temperature and
to compare the temperature of various objects and materials by
“taking” their temperatures. Galileo’s invention was an important
innovation because two objects at the same temperature often 
feel as if they are at different temperatures. For example, if we
touch a slab of wood and a slab of iron, both of which are at room



temperature, the iron feels cooler. Thermometers provide an
objective way of comparing temperatures, but they do not offer
much insight into what temperature is.

The study of thermodynamics began in earnest with the work of
the French-born British inventor and scientist Denis Papin
(1647–1712). Papin was well connected; he had already worked
with the Dutch physicist, mathematician, and inventor Christian
Huygens and the British physicist Robert Boyle before he began
to think about steam. Papin invented what he called a “digester,”
which is what we would call a pressure cooker. The goal is to turn
water to steam in a sealed container. The result is that pressure in
the container quickly increases. The boiling temperature of the
water also rapidly increases. Pressure cookers are useful devices
for cooking food provided the containers do not explode. Papin’s
solution to the problem of exploding containers was to design a
safety valve. When the pressure increased enough, it raised the
valve and released some of the pressure. It was Papin’s insight that
the pressure that the steam exerted on the safety valve might also
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The first steam engine designed and built in the United States, 1801
(Library of Congress, Prints and Photographs Division)



drive a piston. As the piston rose it could be made to raise a weight
or do other useful work.

Papin’s idea of driving a piston with steam was soon incorporat-
ed into a practical steam-driven pump by the British inventor
Thomas Savery (ca. 1650–1715). Savery received the first patent
for a steam-driven pump, which was used to remove water from
mines. Savery’s design was crude but it was soon improved. Savery
formed a partnership with another British inventor, Thomas
Newcomen (1663–1729). The new engine that resulted from the
partnership, designed by Newcomen, was a substantial improve-
ment, but it was still very wasteful of energy.

Fortunately one of Newcomen’s engines broke and was taken to
a little-known repairman named James Watt (1736–1819). While
repairing the Newcomen engine, Watt saw a way that the effi-
ciency of the engine could be substantially improved. In 1769
James Watt applied for his first steam engine patent. It was the
first of many patents that Watt received for improving the steam
engine. By the time he had finished his work on the steam engine,
Watt’s engines were installed in mines and factories throughout
Britain, and Watt had become a wealthy and celebrated man. The
British Industrial Revolution was now in full swing, and it was
powered by the Watt steam engine. The race to understand the
relationship between heat and work had begun.

Steam engines are heat engines. Anyone wishing to understand
the physical principles on which a steam engine is based must also
understand heat. James Watt’s friend and financial backer the
British chemist, physician, and physicist Joseph Black (1728–99)
was one of the first to make a serious attempt to understand the
nature of heat.

Black had received a very broad education at Glasgow
University, where he studied medicine and science, and at the
University of Edinburgh, where he studied medicine. Black later
taught chemistry, anatomy, and medicine at the University of
Glasgow. He was also a practicing physician, but today he is
remembered for his work in chemistry and physics. In chemistry
he showed that the colorless, odorless gas carbon dioxide is a gas
different from ordinary air; these experiments preceded those of
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Lavoisier. In physics Black undertook one of the first serious stud-
ies of the nature of heat. His experiments with heat and his theo-
ry of heat are his most important contributions to the history of
the science of thermodynamics.

Black noticed several important properties of heat. He noticed
that the addition of heat to a body sometimes raises the tempera-
ture of the body, but sometimes heat can be added to a body with-
out raising its temperature. For example, if heat is added to a
container of cool water, the water responds with an increase in
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temperature. If, however, the water is already boiling, increasing
the rate at which heat is added simply causes the water to boil
faster; the temperature of the water does not change. Similarly
adding heat to a block of ice causes the temperature of the ice to
increase until it is at the temperature at which ice melts (32°F or
0°C). If additional heat is transferred while the ice is at the melt-
ing point, the ice melts, but its temperature does not increase until
all the ice has turned to water.

The change of any substance from vapor to liquid, or liquid to
vapor, or the change of any substance from liquid to solid, or solid
to liquid, is a phase change. (Matter generally exists in one of three
phases: vapor, liquid, or solid.) Black’s experiments showed that
when a material undergoes a phase change, the temperature
remains constant until the phase change is complete. Black
responded to these observations by defining heat in terms of what
it does rather than what it is. He called heat that causes a change
in temperature sensible heat. He called heat that causes a change of
phase latent heat.

Black also noticed variations in what we now call the specific
heat of bodies. To understand the idea, imagine that we transfer
the same amount of heat to two liquids of identical mass. We may,
for example, use water and ethyl alcohol. Though the amount of
heat transferred to each body is the same, the resulting change in
temperature is different: The temperature of the alcohol increas-
es more than the temperature of the water. Furthermore not only
does the change in temperature vary with the material; so does the
amount of expansion or contraction as heat moves into or out of
the material. For Black and his contemporaries the complex inter-
actions that they observed between heat and matter were a barri-
er to understanding the nature of heat.

After he had developed a significant body of experimental
results, Black created what he called the caloric theory to explain
what he had observed. Caloric, he hypothesized, is a fluid that can
flow from one body to another. When a warm body is placed in
contact with a cool body, caloric flows out of the warm body into
the cool one. The temperature of the warm body diminishes as the
temperature of the cool body increases. Furthermore as caloric
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flows from one body to the other, the volume of the warm body
diminishes and the volume of the cool body increases. Having
hypothesized the existence of caloric, he was able to deduce vari-
ous properties that it must have in order to make his theory con-
sistent. The most important of these properties was that caloric is
conserved; that is, Black’s idea was that caloric, as well as momen-
tum and mass, cannot be created or destroyed. Black had proposed
a new conservation law.

In retrospect seeing why Black believed caloric was conserved is
easy: Experiments had enabled him to determine how much of an
increase in caloric (heat) is needed to raise the temperature of a
particular body a given number of degrees. He was also able to
measure how much of a decrease in caloric is necessary to lower
the temperature of that same body a given number of degrees.
When he placed two bodies in contact with each other, he could
compute the amount of caloric that flowed out of one body into
the other by taking the temperature of only one of the bodies.
This enabled him to compute the temperature change in the sec-
ond body: A decrease in caloric in the first body is reflected in an
increase in caloric in the second body. These findings led Black to
conclude that caloric is being neither created nor destroyed; it is
simply being transferred from one body to another.

Black’s conservation of caloric law was very influential. Many of
the best scientists of the day accepted it, but from the start there
were some dissenters as well. An early voice of dissent was that of
the American-born physicist, inventor, and administrator Benjamin
Thompson (1753–1814), also known as Count Rumford. Thompson
was a British loyalist during the American Revolutionary War. He
served as a British spy for part of the war and later served as a British
officer in New York. At the conclusion of the war he wisely moved
to Britain.

Thompson had a highly inventive mind. He lived for a time in
England and later moved to Bavaria. While there he invented the
drip coffeepot and a type of kitchen range. He improved the
design of fireplaces and chimneys. As an administrator in Bavaria
he introduced a number of social reforms and helped James Watt’s
steam engine to gain wide use. Most important for the history of
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science, as director of the Bavarian arsenal Thompson supervised
the boring of cannons. The boring of cannons is slow, hot work.
As the drill cuts into the metal, it produces many small metal
chips. The temperatures of the bit and the cannon soar. Water is
poured onto the bit to prevent both the bit and the cannon from
overheating, but the water must be continually replenished
because it boils off.

According to the caloric theory the enormous amount of heat
that is generated by the process is due to the chips that are pro-
duced during drilling. The small chips cannot hold as much heat
as the large cylinder from which they are cut. As a consequence
caloric flows out of the chips into the water and causes it to boil.
The boiling water is simply a consequence of the conservation of
caloric. What Thompson noticed, however, is that after a drill
bit is run for a while it becomes so dull that it no longer cuts into
the metal. As a consequence no metal chips are produced. But
still the water that is poured onto the dull bit boils: The bit is
hot, the cannon metal is hot, and the water is hot. Thompson
concluded that the friction of the dull bit on the cannon was 
creating caloric. This showed (according to Thompson) that
caloric is not being conserved. Thompson even computed that
the work done on the cannon is approximately proportional to
the caloric produced, a strong indicator that the theory of caloric
is faulty. Most scientists ignored Thompson’s findings, however.
The caloric theory of heat dominated scientific thinking for 
several decades after Thompson’s work, but it slowly lost ground
as more and more counterexamples accumulated to show that
the theory has no basis in reality.

Sadi Carnot
One person who did accept Black’s theory of caloric was the
French engineer Sadi Carnot (1796–1832). Carnot’s father, the
writer, politician, and military leader Lazare Carnot, was involved
in the political turmoil that plagued France throughout Sadi’s life.
Lazare spent time in exile when the French Revolution turned
sour and political executions became the norm. He returned to
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France with the rise of Napoléon and served Napoléon both as
minister of war and as minister of the interior. When Napoléon
was finally defeated in 1815, Lazare again went into exile. In addi-
tion to participating in political and military activities, Lazare was
a noted writer on mathematics and mechanics.

As his father was, Sadi Carnot was caught up in the chaos that
gripped his native country. As a youth he benefited from the edu-
cation he received from his father, who taught him mathematics
and science. Later he attended the École Polytechnique, one of
the leading scientific institutions of the day. Sadi Carnot did not
have much opportunity to apply what he learned, however,
because much of his brief adult life was spent in the military.
Carnot’s time in military service was marked by numerous disputes
about assignments, promotions, and seniority. It was not until
1819, when he retired from active duty and went into reserve sta-
tus, that he began to think about science.

Carnot’s experience led him to believe that part of the reason
Britain had defeated France under Napoléon was that Britain’s
technology, which was based on the steam engine, was much more
advanced than French technology. He remarked that the steam
engine had become as important to Britain’s self-defense as its
navy. Furthermore British technology, which was based on the
work of a handful of self-taught engineers and inventors, especial-
ly James Watt, had surged ahead. This technological edge grated
on Carnot, and he began to study and write about steam engines
himself. His approach, however, was different from that of his
contemporaries. Most engineers of the time concentrated on
measurements and design details. Carnot began a search for gen-
eral principles. He was especially interested in the relationship
between heat and work. (In science work means exerting a force
over a distance. A useful example of work is raising a weight, and
in what follows we have several opportunities to interpret work as
the raising of a weight.)

Carnot is remembered for a single slim book that he published,
Reflexions sur la puissance motrice du feu (Reflections on the motive
power of fire), which examines how heat can be used to produce
motion: This is the meaning of the term motive power. In this
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highly original book Carnot
developed a new way of look-
ing at the world. By Carnot’s
time scientists had long been
aware of the ways that forces
affect motions. This is the
content of Newton’s three
laws of motion, and Newton,
Laplace, and others had
worked to understand the
implications of these laws. But
nothing in this theory takes
into account the role of heat.
Carnot recognized that heat,
too, is a motive force. Unequal
heating of the atmosphere
causes the winds. The source
of rain and snow is water that
is evaporated off the surface of
the oceans. The water vapor
then condenses and falls to the 
surface as precipitation. Heat
is what causes the evaporation.

Without heat there can be no weather. He also recognized that
eruptions of volcanoes are, in the end, thermal (heat-driven)
processes. Without heat life would be impossible. Carnot begins
his book with a list of phenomena that are heat-driven. He demon-
strates that the study of heat is a field unto itself.

Carnot accepted Black’s ideas about caloric, a sort of heating
fluid that always flows from warmer regions to cooler ones. To
understand how Carnot incorporated these ideas into his own the-
ory of heat engines, it is helpful to think about water turbines:
Water always flows from higher elevations to lower ones.
Engineers build dams to raise the water level on the upstream side
of the dam. They then use pipes to direct the flowing water past
turbines. The flowing water causes the turbines to spin, and the
spinning motion of the turbines is then harnessed to do work. As
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the moving water pushes against the turbine, the water slows, but
it does not stop. It flows past the turbine, down a pipe, and back
into the river. No less water exits the pipe that directs it away from
the turbine than enters the pipe that directs it toward the turbine.
The water does its work, but the mass of the water is conserved.

The turbines that convert the motion of the water into work
vary in their efficiency. For a given amount of water, moving at a
given speed, some turbines “capture” more of the water’s energy
than others. To appreciate how we might measure the efficiency of
a turbine, we can imagine installing a shunt on the downstream
side of the turbine so that all the water that flows past the turbine
is shunted into a pool. Now imagine using the turbine to drive a
water pump. We can use the water pump to pump the water in the
pool back upstream, where it can flow through the turbine again.
If we could use this system to pump all of the water that flowed out
of the turbine back upstream, we would have created a perpetual
motion machine: (1) The water drives the turbine. (2) The turbine
drives the pump. (3) The pump recirculates the water. Such a sys-
tem could continue forever without any additional input from the
outside. This does not happen—it cannot happen—in practice,
but we can picture a turbine’s efficiency as the degree to which it
can approach this situation.

Carnot visualized caloric much as we have just described water.
He saw a steam engine as working in much the same way as the
water turbine we have just described. The high temperature of the
boiler of a steam engine corresponds to the upstream side of 
the dam. The low temperature of the environment corresponds to
the downstream side of the dam. Just as the water flows down-
stream, Carnot imagines the caloric flowing from the hotter ther-
mal reservoir to the cooler thermal reservoir. (The expression
thermal reservoir, or simply reservoir, has since become part of the
standard vocabulary in the science of thermodynamics.) As the
heat flows from the hot reservoir to the cold reservoir, the steam
engine enables the user to convert some of the energy of the flow-
ing caloric into useful work, but just as the water turbine does not
convert all of the water’s energy of motion into work, the steam
engine does not convert all of the moving caloric into work. Some
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of the caloric flows right past the steam engine into the cooler
reservoir. The question then is, How much work can be extracted
from the caloric as it flows from the high temperature reservoir to
the low?

To answer this question, Carnot imagined a special type of heat
engine that is today called a Carnot engine. It is not possible
actually to build a Carnot engine, although some engines that
have been built in the lab function almost as a Carnot engine
does. The fact, however, that a Carnot engine exists only in the
imagination of engineers and scientists does not make it any less
useful. The Carnot engine is an extremely important concept in
understanding heat energy.

To appreciate the usefulness of a Carnot engine, some knowledge
of its theoretical properties is helpful. A Carnot engine operates
between a high-temperature reservoir and a low-temperature reser-
voir. It is generally described as a single cylinder that is closed off by
a piston. Enclosed within the cylinder is a gas, the working fluid. Heat
is transferred to and from the gas in the cylinder via a sequence of
carefully controlled steps. At each step the piston is either raised or
lowered. At the completion of the cycle the Carnot engine has 
produced some work—how much work depends on the temperature
difference between the two reservoirs and the size of the engine—
and the temperature and volume of the working fluid inside the
cylinder have been precisely restored to what they had been before
the cycle began. This restoration is an important characteristic of the
engine: The Carnot engine is a cyclic engine. It repeats the same
procedure with the same results over and over again.

Carnot mathematically demonstrated that his theoretical engine
had a number of remarkable properties. First, Carnot’s imaginary
engine is remarkably efficient. The efficiency of a heat engine is
defined as the ratio of the work done to the total amount of heat
(caloric) absorbed. The larger the percentage of the absorbed heat
that is converted into work, the more efficient the engine is.
Carnot’s engine is the most efficient of all (cyclic) heat engines. If
it could be built it would be not only more efficient than any cyclic
heat engine that has been built, but at least as efficient as any cyclic
heat engine that can be built.
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Second, Carnot discovered that the efficiency of the Carnot
engine depended only on the difference in temperature between
the high- and low-temperature reservoirs. In other words any
Carnot engine operating between the same two reservoirs would
have the same efficiency. It does not matter whether the working
fluid in the engine is steam or some other gas. Any Carnot engine
operating between the same two heat reservoirs performs as every
other Carnot engine does. Because all Carnot engines operating
between the same two heat reservoirs are equally efficient, and
because even the best-made engines are still slightly less efficient
than a Carnot engine, Carnot engines have become a sort of yard-
stick against which the efficiency of all designs of heat engines can
be compared.

Carnot’s insights into heat engines are remarkable because they
reveal strict and permanent limitations on the efficiency of all heat
engines. In retrospect Carnot’s accomplishments are even more
astonishing because he based his work on the caloric theory of
Black. Today we know that Black’s caloric theory of heat is seri-
ously flawed, but Carnot’s conclusions have stood the test of time.

Carnot’s book was well received, but he did not publish anything
further. This is not to say that he stopped thinking about heat
engines. His later unpublished papers have been preserved, and
from these papers it is clear that he continued to grapple with the
problems involved. Soon after completing his masterpiece, Carnot
made a disconcerting discovery: The caloric theory is wrong.
Carnot had based his book on the caloric theory and later con-
cluded that the caloric theory of heat was flawed. Instead Carnot
began to perceive heat as “motive power”; that is, heat (caloric)
can be converted to motive power and motive power converted to
heat. The exchange is exact: The amount of heat lost equals the
amount of motive power gained, and vice versa. This is a deep
insight into nature, and Carnot took this to be an axiom, a law of
nature. With these insights Carnot had essentially discovered what
would later be known as the first law of thermodynamics, one of
the most important of all natural laws.

Carnot’s later ideas about the relationship between heat and
work were not widely circulated. He made no immediate attempt

Mathematics and the Laws of Thermodynamics  123



124 MATHEMATICS AND THE LAWS OF NATURE

CALCULATING THE EFFICIENCY OF
A CARNOT ENGINE

The Carnot engine is the most
efficient heat engine that can
operate between a given high-
temperature reservoir and a
given low-temperature reser-
voir. In other words once the
temperature of both reservoirs
is determined, no cyclic
engine operating between
these two reservoirs can con-
vert a higher percentage of
heat into work than the Carnot
engine. The concept of effi-
ciency is very important
because heat generally costs
money. Whether we obtain
our heat from the burning of
fossil fuels or the splitting of
the atom—and these two
sources are responsible for
almost all of the heat generat-
ed at power plants—we must
pay for every unit of heat pro-
duced. Unfortunately much of
the heat is wasted in the
sense that it cannot be con-

verted into work. Instead, the “wasted” heat flows right through whatev-
er heat engine is in use and out into the environment. Although some of
that heat could be converted into work if a more efficient heat engine
were employed, some of the waste is unpreventable. The Carnot engine
tells us how much additional energy can be converted into work with a
better designed and maintained engine and how much heat cannot be
converted into work. So how efficient is a Carnot engine?

The algebraic formula relating efficiency to the temperatures of the
reservoirs is simple. Let the letter E represent the efficiency of 
the engine. An efficiency rating of 100 percent means that all of the
heat is converted into work. (An efficiency rating of 100 percent is not

Efficiency

Temperature
T=TL

Graph demonstrating how the effi-
ciency of a Carnot engine increases as
the temperature difference between
the upper and lower reservoirs increas-
es. The temperature of the lower
reservoir is usually taken to be that of
the environment, a temperature over
which engineers have little control.
Consequently the independent vari-
able is Th, the operating temperature
of the engine.
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possible.) An efficiency rating of 0 percent means that none of the heat
is converted into work. To make use of this formula the temperatures of
the two thermal reservoirs must be measured in degrees Kelvin, a tem-
perature scale that is commonly used in the sciences. (The temperature
273.16K [Kelvin]) corresponds to 0°C and an increase of 1°C corre-
sponds to an increase of 1K.) The letters TH and TL represent, respec-
tively, the temperatures of the high- and low-temperature reservoirs
measured in degrees Kelvin. The formula for the efficiency of the Carnot
engine is E = (1 – TL/TH) × 100. Notice that the greater the difference
between TH and TL, the smaller the fraction TL/TH becomes. The small-
er TL/TH is, the higher the efficiency of the Carnot engine. Notice, too,
that since TL/TH is never 0, the engine cannot operate at 100 percent
efficiency.

This formula also shows that engines that operate between two
temperature reservoirs that are at almost the same temperature are
not at all efficient. For example, heat engines have been designed to
produce electrical power by operating between the warm, upper lay-
ers of tropical ocean water and the cool waters that flow along the
ocean floor. This is called Ocean Thermal Energy Conversion (OTEC)
technology. There have been demonstration plants tested in Hawaii in
1979, a different design was tested in Hawaii from 1993 until 1998,
and a third OTEC plant was tested on the island-state of Nauru in
1982. The upper ocean temperature in these areas hovers around
300K (80°F or 27°C) and the temperature of the water near the
ocean floor measures about 277K (39°F or 4°C). A Carnot engine
operating between these two reservoirs would be 8 percent efficient;
that is, if it absorbed 100 units of heat from the upper layer of ocean,
it could convert 8 percent of that heat to work, and no heat engine
can do better. Full-scale, practical plants, however, would probably
operate at an efficiency of about 4 percent. In order to obtain useful
amounts of work from engines with such low efficiencies, they have
to be operated on an enormous scale.

The simple efficiency equation for a Carnot engine also explains the
attraction of heat engines that operate at very high temperatures.
Engineers are generally unable to do anything about the temperature
of the lower heat reservoir. The lower heat reservoir is generally the
environment, and nothing can be done about the temperature of 
the environment. To obtain a more efficient engine—one that wastes
less heat and produces more work from the same amount of thermal
energy—the only alternative is to raise the temperature of the higher-
temperature reservoir.



to publish them. Perhaps he delayed so that he could ponder how
his rejection of the caloric theory affected the conclusions of his
already-published book. Whatever the reason, he delayed too long.
Carnot died at the young age of 36, a victim of cholera.

James Prescott Joule
Experiments that indicated that caloric is not a conserved proper-
ty continued to accumulate, but no set of experiments was defini-
tive until the work of the British physicist James Prescott Joule
(1818–89). Joule was independently wealthy. He did not need to
study anything, but he decided to devote his life to science. He
studied electricity, heat, and the relationship between heat and
work. One of his first discoveries was that a current flowing in a
wire produces heat. Most of his contemporaries still subscribed to
the caloric theory and, consequently, believed that heat (caloric)

cannot be produced because it
is conserved—that is (accord-
ing to the caloric theory), an
increase in heat in one loca-
tion must be accompanied by
a decrease of heat in another
location. In Joule’s case this
meant that an increase in tem-
perature in one part of his cir-
cuit should be accompanied
by a decrease in temperature
somewhere else. Joule showed
that this is not the case.

Joule performed a series 
of experiments to try to iden-
tify the relationship between
heat and work. In an early
experiment he placed an elec-
trical resistor in a bath of
water. (Today we might say
that a resistor is a device that
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Joule to investigate the relationship
between work and heat



converts electrical energy into heat energy.) He placed wires at
each end of the resistor and connected these wires to a small gen-
erator. The generator was connected to weights. As the weights
descended under the force of gravity, the generator turned and
caused electricity to flow through the resistor. Heat, or what was
then called caloric, was created at the resistor. The heat flowed out
of the resistor and into the cooler water. The temperature of the
water increased, and this increase in temperature was measured by
a thermometer that had been immersed in the water.

How did this allow Joule to compare work and heat? Weight is
force. Joule knew how heavy his weights were. The distance the
weights descended was easy to measure. Work is defined as force
times distance. So Joule could compute how much work had been
done on the system. The increase in temperature of the water was
likewise easy to measure; the change in the water’s temperature
enabled Joule to compute how much heat had flowed into the
water from the resistor. It was a simple equation: On one side of
the equation was the work performed; on the other side was the
heat that had been added to the water. Joule had found a relation-
ship between work and heat.

The main problem with which Joule was concerned was the
identification of the “mechanical equivalent of heat.” Essentially
he wanted to know how much heat has to be expended to produce
one unit of work, and vice versa. In Joule’s view caloric (heat) is not
a conserved quantity. Instead heat is one form of energy, and dif-
ferent forms of energy can be converted one to another. Each
form of energy can be converted into work, and the process can be
reversed: Work can be converted into heat as well. But this kind of
thinking is not precise enough to form a legitimate theory. If work
and heat can be converted one into another, then it should be pos-
sible to determine how many units of work equal one unit of heat
and how many units of heat equal one unit of work.

His first goal was to prove that work and heat are, in a sense, 
two sides of the same coin. He continued to devise and perform
carefully crafted and executed experiments. Each experiment
approached the same problem—the identification of the mechan-
ical equivalent of heat—from a somewhat different perspective.
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Perhaps his best-known experiment involved placing a paddle into
a container of water. The paddle was driven by falling weights. As
the weights descended, the paddle spun around in the water. In
this experiment just as in the one described previously, gravity
does the work by pulling the weights down. This work is trans-
mitted to the water by the spinning paddle. The result is measured
by a thermometer. The increase in temperature of the water
enabled Joule to compute how much heat has gone into the water.
What Joule discovered was that as the paddle spun in the water, the
temperature of the water increased slightly. Joule was essentially
creating “caloric” by stirring water. The heat was the result of fric-
tion between the paddle and the water, between the water and the
walls of the container, and inside the water itself as one region of
water flowed past another. The resulting friction raised the tem-
perature of the entire system. Joule had created heat, and he had
done so in a way that enabled him to state how much work had
been performed in the creation of the heat.

Joule’s experiments disproved the caloric theory. By performing
variants of the same experiment he was able to show in a rough
way that the amount of heat produced for a given amount of work
is independent of the way the work is performed. It was a fairly
convincing set of experiments, although from a practical point of
view, there was still substantial doubt about the exact value of the
mechanical equivalent of heat. The reason is that Joule’s experi-
ments are difficult to run. Small amounts of heat escape through
the walls of the container, and there are frictional losses in the
experimental apparatus itself. Consequently the results Joule
obtained from his various experiments were only roughly similar.
His experiments led many scientists to question the caloric theo-
ry of heat, but there was still much uncertainty about what the
truth was.

The First Law of Thermodynamics
The work of Joule and Carnot was the foundation on which the sci-
ence of thermodynamics was built. The first person to recognize
how Joule’s and Carnot’s ideas about work and heat could be incor-
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porated into a coherent theory
was the German physicist and
mathematician Rudolf Clausius
(1822–88). Clausius was the
first to state what is now
known as the first law of 
thermodynamics.

As a child Rudolf Clausius
attended a small school at
which his father was principal.
As he became older he was
drawn equally to history and
mathematics. He eventually
chose to study mathematics
and physics. His approach to
physics was always a very
mathematical one. He was a
student at the University of
Berlin and Halle University,
where he received a Ph.D. His
dissertation was about the
color of the sky: He sought a scientific explanation for why the sky
is blue during the day and red and orange around sunrise and sun-
set. Clausius described the phenomenon in terms of the reflection
and refraction of sunlight. His explanation was not quite correct:
The sky’s colors are actually caused by the scattering of light. The
correct explanation for the sky’s color was later proposed by 
the British mathematician and physicist William Thomson
(1824–1907), also known as Lord Kelvin, who along with Clausius
developed the fundamental ideas that lie at the heart of the science
of heat, work, and energy.

Clausius was not one for ease. He worked for the advancement
of science throughout his life, occasionally moving from one uni-
versity to another in search of the best place to do his research. But
scientific research was not his only passion. As well as a mathe-
matician and scientist, Clausius was a staunch German nationalist.
When the Franco-Prussian War began in 1870, Clausius was
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already well into middle age. He was too old for the rigors of
fighting, but he volunteered to serve in the ambulance corps along
with some of his students. While helping to carry the wounded off
the field during battle, he was severely wounded in the leg. The
wound bothered him for the remainder of his life. At the conclu-
sion of his military service in 1871, Clausius returned to academia,
where he was as determined to complete his academic service as he
had been to complete his war service. It is said that even toward
the end of his life—even from his deathbed—he was still engaged
in his work as a teacher.

When Clausius was a student, the field of thermodynamics was
still dominated by the ideas of Joseph Black. In the mid-1700s
Black had classified heat by its effects on matter rather than on a
deeper analysis of its nature. This type of analysis probably
advanced understanding when Black proposed it, but by the 1840s
it had become a hindrance.

Part of the difficulty that Clausius faced in identifying what we
now call the first law of thermodynamics was understanding the
role of latent heat. When a heat engine completes a cycle, three
quantities can be measured: (1) the work performed by the
engine, (2) the amount of heat transferred from the higher-
temperature reservoir to the engine, and (3) the amount of heat
transferred from the engine to the lower-temperature reservoir.
When the engine is running, some heat is always transferred to
the lower-temperature reservoir. The problem is that the amount
of heat transferred to the lower-temperature reservoir seems
smaller than the amount of heat that has been drawn from the
high-temperature reservoir. Clausius’s contemporaries debated
about what had happened to the “missing” heat. Had the missing
heat been converted into work, as Joule had asserted, or had it
become latent and so not detectable as a change in temperature?
Some scientists of the time, reluctant to abandon the idea of con-
servation of caloric, used the idea of latent heat to prop up the old
caloric model.

Clausius, however, rejected the theory of conservation of heat.
Missing heat had been detected in the operation of every heat
engine, but there was no reason to suppose that it had “gone
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latent.” Clausius found ample proof in Joule’s experiments that the
missing heat had been converted into work. Incorporating the
ideas of his predecessors into a single unified concept, Clausius
asserts that it is not heat that is being conserved in a given system
but rather energy. According to Clausius heat does not just flow
through engines in the way water flows through turbines; heat is
converted by engines during the process of doing work. In a closed
system (a system cut off from its surroundings) the energy of the
system cannot change. If the system does interact with its sur-
roundings, then the energy of the system fluctuates as heat is
transmitted across the boundary and work is done.

Work and heat are related through the energy of the system. In
the absence of work the energy of a system—for the moment, imag-
ine the system as a cylinder of gas sealed with a piston—can be
changed only by the transmission of heat across the system bound-
ary. This was the type of phenomenon that had originally caught the
attention of early scientists. This is also why recognizing their mis-
take was difficult for them: In the absence of work no heat is con-
verted, so the caloric theory appears valid. Alternatively the energy
of the system can be changed by work. If the system performs work
on its environment—for example, the system may raise a weight—
then the energy of the system decreases by an amount equal to the
amount of work performed. This conversion into work had been
incorrectly interpreted as heat’s becoming latent. Furthermore both
processes—the transmission of heat and the production of work—
can occur simultaneously. In this case the change in energy of the
system is equal to the sum of the work done and the heat transmit-
ted. Clausius asserted that the change in energy of a system can be
completely accounted for by the sum of the heat flow into or out of
the system and the work performed. This result, called the first law
of thermodynamics, is often stated like this:

(Change in energy of a system) = 
– (work done by the system) + (heat flow across the boundary)

(The negative sign preceding the work term indicates that when
the system performs work, the energy decreases. If heat flows out
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of the system, we give it a minus sign; if heat flows into the system,
the sign is reversed.) Here is how Clausius expressed the first law:

The energy of the universe is constant.

Clausius’s statement of the first law of thermodynamics strikes
many people as more philosophical than mathematical. Our state-
ment of the first law in terms of “the change in energy of the sys-
tem” is meant to convey more of the mathematical flavor involved.
Often the first law of thermodynamics is described in the language
of cylinders and pistons. Clausius’s description, however, does the
most justice to the importance of the first law, because it conveys
some sense of the scope of the discovery. The discovery of energy
and its relationship to heat and work is one of the great milestones
in the history of science. It is a cornerstone of modern scientific
thought.

The first law is more than an important principle. The state-
ment that the rate of change of energy equals the rate of heating
and working of the system allows the mathematically inclined 
scientist to express his or her ideas in terms of very specific math-
ematical equations. Like the conservation of momentum and con-
servation of mass, the first law of thermodynamics can be written
in terms of a differential equation. Scientists can tailor these types
of equations to the particular situations in which they are interest-
ed. A solution to this type of differential equation is a function that
represents the energy of the system.

Clausius established a firm link between mathematics and sci-
ence, but was he right? How do we know that the first law of ther-
modynamics is valid everywhere and in all situations? This is, after
all, what Clausius was hoping to convey with his extremely broad
statement about energy and the universe. The answer to the ques-
tion about the universal validity of the first law is surprisingly 
simple (and to some people not altogether satisfying): We “know”
that the first law is true because no one has ever observed a situa-
tion in which the first law is false. No one, for example, has ever
seen energy consumed or created. Of course only a few hundred
years ago many scientists spent their working life studying physics
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without ever observing the consumption or the creation of heat
(caloric), whereas today these kinds of observations pose no prob-
lem at all to the curious high school student. Will we one day be
able to point to exceptions to the first law of thermodynamics?
The best that can be said about the validity of the first law is that
since it was first formulated by Clausius, no scientist has ever erred
in assuming its validity.

Despite the importance of his discovery and despite his recogni-
tion of its importance to science, Clausius also recognized that the
first law is, in a sense, deficient. The first law is true, he knew, but
it is not true enough. In his study of heat Clausius had realized that
there is another law of nature, now known as the second law of
thermodynamics, that further constrains the types of processes
that can occur.

The Second Law of Thermodynamics
The second law of thermodynamics is the result of the work of
Rudolf Clausius and William Thomson, also known as Lord
Kelvin. Clausius was the first to state it. He noticed that the first
law was, in a sense, incomplete, because it does not make a strong
enough distinction between possible processes and impossible ones.
Clausius is right: Every system changes in such a way that the first
law of thermodynamics remains valid. The problem is that there
are many processes that never occur that nevertheless would con-
form to the first law of thermodynamics if they did occur.

To illustrate the problem, imagine using a block of ice as a
heater. We usually imagine ice as being without heat, but this is
never the case. Although a great deal of heat must be removed
from a large body of water to freeze it into a solid block of ice,
there is still a great deal of heat left in the body even after it has
frozen solid. This statement is easily proved. If we place a con-
tainer of liquid nitrogen on a block of ice, the liquid nitrogen
boils. (The boiling point of nitrogen at atmospheric pressure is
about –321°F (–196°C).) The heat that boils the nitrogen is the
heat that has flowed out of the ice. As the nitrogen boils, the block
of ice gets even colder, indicating that there has been heat in the
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block all along. If we can easi-
ly boil liquid nitrogen by plac-
ing it on a block of (water) ice,
why cannot we also boil liquid
water in the same way? It is
easy enough to imagine how
this might occur: We place a
container of water on a block
of ice. The heat from the
block of ice flows into the
container of water, causing
the liquid water to begin to
boil. Of course this never hap-
pens, but could it happen?
There is nothing in the first
law of thermodynamics to
rule out this possibility.

Clausius thought about
Carnot’s engine in a slightly
more technical vein. Carnot
imagined his engine forming 
a conduit for heat as the 
heat flows from the higher-
temperature thermal reservoir

to the lower-temperature one. Heat, Carnot imagined, flows from
hot to cold in just the same way that water flows from higher ele-
vations to lower ones. This analogy between the flow of heat and
the flow of water is at the heart of the caloric theory, but Clausius
had rejected the caloric theory. Unfortunately there is nothing in
his new theory to substitute for the idea that heat, as water does,
always seeks its own level. So theoretically the possibility exists
that an engine, placed between a higher-temperature and a lower-
temperature thermal reservoir, can run on heat that flows from the
lower-temperature reservoir “up” to the higher-temperature
reservoir. Of course, no one has ever seen this occur, but there 
is nothing in the first law to rule it out, either. In the case of 
the heat engine’s running on “backward”-flowing heat, the first
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The Corliss steam engine of 1876.
Engineers discovered that no matter
how they designed their heat engines,
not all of the heat produced could be
converted into work.  (Science
Museum, London/Topham-HIP/
The Image Works)



law is satisfied provided that the decrease in energy of the lower-
temperature reservoir equals the sum of the work performed 
by the engine plus the amount of heat rejected to the higher-
temperature reservoir. The theory of heat is still incomplete.

To complete his theory Clausius asserted the existence of a sec-
ond law of thermodynamics. The second law was to become a
major theme of Clausius’s life. He wrote a number of papers about
it, carefully stating and restating it, weighing one interpretation of
the second law against another. Part of the reason that he spent so
much time writing about the second law is that he was asserting
something that is quite new in the history of science. The second
law is fundamentally different from previous natural laws. It is
negative. It states the impossibility of certain processes. By con-
trast the conservation laws are all positive. They state that some
property is conserved. The mathematical form of the second law
is also different from the form of all previous laws of nature.
Unlike conservation laws, which are written as equalities, the
mathematical statement of the second law of thermodynamics is
an inequality. The scientific, mathematical, and philosophical
implications of the second law continue to draw the attention of
thoughtful people to this day.

Clausius’s first attempt to grapple with this newfound physical
principle rested on the observation that when two objects of differ-
ent temperatures are placed in contact with each other, heat always
flows from the warmer body to the cooler one. The warmer body
always cools, and the cooler body always warms. The reverse never
happens. It is never the case that when two bodies at different tem-
peratures are placed in contact with each other, heat flows from the
cooler body into the warmer body. If this impossible transforma-
tion could happen, then the warm body would become warmer and
the cool body would become cooler still. Those observations seem
almost too obvious to bother mentioning, but Clausius carried
them a step further. He claimed that it is not possible to devise 
a cyclic machine or system of cyclic machines whose only effect 
is to transfer heat from a low-temperature reservoir to a high-
temperature reservoir. (A refrigerator, of course, transfers heat
from the freezer to the warmer air in the kitchen, but in doing so
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it also produces a lot of additional heat of its own. The refrigerator
does not violate the second law of thermodynamics.) The second
law of thermodynamics has been phrased and rephrased a great
deal since Clausius’s time. Here is one version of what is usually
called Clausius’s statement of the second law of thermodynamics:

It is impossible to construct a cyclic engine whose only effect is
the transfer of heat from a body at a lower temperature to one at
a higher temperature.

It is, admittedly, a very peculiar natural law. First, it is, as we
have already pointed out, a negative statement. Negative state-
ments cannot be proved experimentally: There is no experiment
that can rule out the existence of another experiment that does not
conform to the second law. Nevertheless, no experiment that vio-
lates the second law has ever been devised. In fact as we soon see,
any experiment that did violate the second law would have very
peculiar implications for the universe. Second, though the second
law is held up as a universal law of nature, it is often stated in terms
of the impossibility of designing a certain type of refrigerator. (It
is, after all, the function of a refrigerator to transfer heat from a
body at low temperature, such as frozen foods, to one at higher
temperature, the air in the kitchen.) There is nothing else in sci-
ence to compare with the second law of thermodynamics.

In addition to ruling out the possibility of certain types of phys-
ical transformations of heat and work, the second law of thermo-
dynamics has profound philosophical implications. A good
example of this type of implication is the concept of heat death. An
exposition of the idea can be found in the work of the other
founder of thermodynamics, William Thomson (Lord Kelvin).

William Thomson was born in Belfast, Ireland. His mother died
when he was six. His father, a mathematician, taught William and
his older brother, James. Their father must have been a good
teacher, because James enrolled in the University of Glasgow at
age 11 and William enrolled at age 10. William Thomson pub-
lished his first mathematics papers when he was still a teenager.
He wrote about a mathematical method for describing the flow 
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of heat through solids, a method that had been recently pioneered
by the French mathematician Jean-Baptiste-Joseph Fourier
(1768–1830). Later Thomson enrolled in Cambridge University,
and it was from Cambridge that he graduated.

During his years at Glasgow and Cambridge Thomson had
proved himself an able mathematician, but he wanted to learn
more about the experimental side of science. After graduation he
moved to Paris, where he worked with the French physicist and
chemist Henri-Victor Regnault (1810–78). Regnault was a tireless
experimentalist. He tested and measured the physical properties of
various gases and liquids. Thomson’s stay at Regnault’s laboratory
resulted in a paper, published in 1849, “Account of Carnot’s
Theory of the Motive Power of Heat; with Numerical Results
derived from Regnault’s Experiments on Steam.” Thomson even-
tually joined the faculty at the University of Glasgow, where he
remained the rest of his working life.

Scientists today best remember Thomson—or Kelvin—for his
contributions to the theory of thermodynamics and his work in
electricity and magnetism. (The temperature scale most common-
ly used in science, the Kelvin scale, is named after him.) During his
own life, however, Kelvin was at least as famous for his work on
telegraph cables. By the middle of the 19th century, many
European cities were linked by the telegraph. The telegraph had
also become an important part of life in North America as well.
People began to consider the possibility of linking North America
to Europe via a 3,000-mile (4,800-km) undersea cable. Kelvin
understood the physics of sending an electrical signal through a
long cable. He was hired as a consultant on the project, but his
ideas were not incorporated into the first attempt to lay the cable.
The attempt failed and Kelvin’s ideas were used during later suc-
cessful attempts. His contributions made Britain a world leader in
electronic communications.

Kelvin was a more conservative scientist than Clausius. He had
recognized for some time that there were problems in the theory
of heat, but knowing that something is wrong is not the same as
knowing what is right. Kelvin recognized that Joule’s experi-
ments indicated that heat is not conserved, and he knew that the
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development of the science of thermodynamics depended on the
identification of a conserved property, but at the time he could
think of no alternative to the conservation of caloric. Kelvin did
not entirely abandon the theory of the conservation of caloric
until he read Clausius’s paper.

Kelvin formulated his own version of the second law of thermo-
dynamics, and today both versions are taught side by side. Although
they look different, one can prove that Clausius’s version is true if
and only if Kelvin’s version of the second law is true, so they are
completely equivalent. What makes Kelvin’s version worth consid-
ering is that he began from a different point of view. In his article
“Account of Carnot’s Theory of the Motive Power of Heat,” Kelvin
imagined two bodies, a warm one and a cool one, and a heat engine
placed between the two bodies. The engine can harness the flow of
heat to do work. Alternatively he supposed that the two bodies are
simply placed in contact with each other with no engine between
them. Heat then flows directly from the warm body to the cool
one. In the absence of phase changes the warm body cools and the

temperature of the cool body
increases. But what, Kelvin
asked, happens to the work
that could have been produced
by the heat engine?

Kelvin’s answer is that the
work is lost. It cannot be recov-
ered. When heat dissipates—
when it flows between two
thermal reservoirs and evens
out their temperatures—the
work that could have been pro-
duced by those two reservoirs
is lost forever. What Kelvin
recognized is that heat dissipa-
tion is inevitable. It often
occurs slowly, but it goes on
continuously. In his book
Carnot emphasized the motive
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When the engine is not present, the
work that might have been accom-
plished by the heat that flowed from
the higher- to the lower-temperature
reservoir is irrevocably lost.



Mathematics and the Laws of Thermodynamics  139

ENTROPY

Clausius’s first paper on thermodynamics was just the beginning. He was
interested in formulating a mathematical statement of the second law, and
to this end he defined the concept of entropy. Entropy is a mathematical
function with a physical interpretation. It conveys information about the
amount of energy that can be transferred between thermodynamic systems
in the form of work. It is through the concept of entropy that Clausius was
able to express his ideas about thermodynamics in mathematical language.

For a particular system the value of the entropy function can range
from 0 to a maximal value. The value of the entropy for a particular sys-
tem at any point in time depends on the physical characteristics of that
system—temperature, for example, is an important factor. The smaller the
value of the entropy, the more of the system’s energy can be converted
to work. A large value for the entropy means that very little of the sys-
tem’s energy can be transformed into work.

What is often of interest to scientists, however, is not so much the
entropy of the system as the change of entropy. Imagine a system consist-
ing of a cyclic heat engine operating between a high-temperature thermal
reservoir and a low-temperature thermal reservoir. Practically speaking, no
system can be completely isolated from its surroundings, so we can expect
some heat to flow between our system and the environment. Suppose that
we compute the change of entropy of the environment caused by this trans-
fer of heat. We can, of course, also compute the change of entropy that
resulted from the operation of our not-quite-isolated system. Finally, we add
the two entropy changes to get the change in the total entropy. When we
do this we get a very famous inequality, which we can write like this:

(Change in total entropy) = (change in entropy of environment) 
+ (change in system entropy) ≥ 0

This inequality, however, actually applies to all processes. In other words
no matter what we do, no matter what processes we consider, the total
entropy never decreases. Because entropy is a measure of the energy
that can be converted into work—the greater the entropy, the less energy
we can convert to work—this statement is a mathematical version of
Kelvin’s ruminations about lost work. In most natural processes the
change in the total entropy is positive. As a consequence the longer the
universe “runs on,” the less energy is available to do work. Clausius also
formulated his version of the second law so that it does not depend on
the concept of a refrigerator. Here is a commonly quoted version of his
more philosophical statement of the second law:

The entropy of the universe tends toward its maximal value.



power of heat. Heat drives all the processes on which life
depends, but heat flows only when there are temperature differ-
ences. These temperature differences are slowly, continually, and
inexorably disappearing. As the temperature differences disap-
pear, so does the motive power of heat. Everything that depends
on the transmission of heat begins to slow and eventually every-
thing stops. This occurs not because energy disappears; energy
cannot disappear. It is conserved. Instead energy becomes
unavailable to do work. This peculiar state of affairs, in which all
thermal processes cease, is heat death. It is the final state of the
universe. The subject of heat death has inspired many interesting
philosophical papers.

Kelvin’s ruminations on the loss of the availability of energy are
reflected in what is usually called Kelvin’s version of the second law:

It is impossible to construct a cyclic machine whose only effect
is to perform work using heat extracted from a single reservoir
that is the same temperature throughout.

Like Clausius’s version of the second law, Kelvin’s version is a neg-
ative statement. It, too, states a basic law of nature in terms of the
impossibility of constructing a certain type of machine. Kelvin
used a heat engine in his formulation; Clausius used a refrigerator.

Notice that if Kelvin’s formulation of the second law were false,
then we could attach a cyclic heat engine to a single thermal reser-
voir—the surface of the Earth, for example—and run it as long as
we wanted. The engine would have no other effect than that of
cooling Earth’s surface as it converted heat into work. Given the
amount of thermal energy in the Earth, this would be, for all prac-
tical purposes, a perpetual motion machine. This kind of machine
has never been constructed. The failure to build this type of device
is one of the principal arguments supporting the truth of the sec-
ond law of thermodynamics.

Energy is one of the most important concepts in science, and
its importance has only increased in the years since Clausius
published his discoveries. It is now a fundamental concept in
understanding the inner workings of galaxies and the inner
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workings of atoms. It is as important in the philosophy of 
science as it is in the design of refrigerators. It is, perhaps, the
only physical principle to find such wide applicability. The dis-
coveries of Clausius and Kelvin are among the most important
in the history of science.

Mathematics and the Laws of Thermodynamics  141

Typical higher and lower temperatures and 
efficiencies for steam electric power plants

TEMPERATURE, °C EFFICIENCY, %
High Low Carnot Actual

Large fossil-fuel plant 380 40 52 40
Boiling-water reactor 285 40 44 34
Pressurized-water reactor 315 40 47 34
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8
modern ideas about
conservation laws

Ancient science was, for the most part, applied geometry.
Mesopotamian and Greek insights into nature were almost exclu-
sively geometric. The Mesopotamians sought to characterize the
motions of the planets and the Sun across the sky without appar-
ent concern for the underlying causes. The Greeks sought to
determine the ratio of the distances between Earth and the Moon
and Earth and the Sun. They sought to compute the circumfer-
ence of Earth. They described the motions of the planets as the
motions of spheres within spheres. Even Archimedes’s description
of the lever was essentially geometric in approach, depending as it
did on the idea of symmetry.

Beginning in the Renaissance the ancient geometric under-
standing of nature was displaced by what appeared to be more fun-
damental insights. Geometry was not entirely abandoned, of
course. Geometric reasoning has always been important in the
physical sciences, but as scientists developed new ways of under-
standing nature, the importance of geometry to science dimin-
ished. New mathematics developed in conjunction with the new
sciences. Some of the new mathematics was geometric, but some
was not. Combined with the new scientific concepts, the new math
greatly facilitated the search for a description of nature that is pre-
dictive. Scientists learned how to predict the position of previously
undiscovered planets. They learned to predict the motion of pro-
jectiles and the amount of work that could be produced by a par-
ticular design of engine—even before the engine was constructed.



These were great successes, and they were followed by still other
successes.

Central to scientific progress was the concept of the conservation
law. Conservation laws became so important to science and 
mathematics that mathematicians began to develop a mathematical
theory of conservation laws. The study of conservation laws led
them back to geometry. This modern understanding of conserva-
tion laws is the result of the work of the German mathematician
Emmy Noether (1882–1935).

Emmy Noether grew up in Erlangen, Germany, home to the
University of Erlangen, an institution that boasted a number of dis-
tinguished mathematicians. Her father was a capable mathemati-
cian and was himself a member of the mathematics faculty at
Erlangen. Emmy, however, did not immediately gravitate to math-
ematics. She showed facility with languages, and her original plan
was to teach foreign languages in secondary schools. She even
received her certification in English and French, but she never
taught languages. Instead she turned her attention to mathematics.
First, she studied mathematics
at Erlangen. She also studied
at Göttingen University and
eventually earned a Ph.D. in
mathematics at Erlangen.

Pursuing an advanced edu-
cation in the mathematical
sciences was a difficult career
path for a woman in Germany
at the time. Women were,
with permission of the
instructor, allowed to take
individual courses. As a gener-
al rule, however, women were
barred from completing the
examinations necessary to
become a full member of the
faculty of a university. At
Erlangen Noether sometimes
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Emmy Noether, founder of the modern
theory of conservation laws  (Courtesy
of the Bryn Mawr College Library)



taught a class for her father, but she did so without pay. Her math-
ematical talents, however, were eventually recognized by two of
the most distinguished of all German mathematicians, David
Hilbert and Felix Klein, both of whom were then at Göttingen.
Noether moved to Göttingen 1915.

Initially Noether taught courses under Hilbert’s name. Though
both Klein and Hilbert advocated that the university offer her a
position on the faculty, this request was denied. Other faculty
members objected to the hiring of women. It took time to over-
come some of the discrimination that she faced, and during this
time she taught classes without pay. As word of her discoveries
spread, however, mathematicians from outside Göttingen began
to show up in her classes. In 1919 she was offered a position on
the faculty.

Noether was Jewish, and in 1933, when the Nazis gained power
in Germany, she, like other Jewish faculty members, lost her job.
By this time, however, her contributions to mathematics had made
her known to mathematicians throughout the world. Within a few
months of her dismissal she left Germany for the United States.
The remainder of her working life was spent at Bryn Mawr
College, Bryn Mawr, Pennsylvania, and the Princeton Institute for
Advanced Study, Princeton, New Jersey. Noether died within a
few years of moving to the United States of complications that 
followed surgery.

Noether’s main interest was algebra. Abstract algebra is the
study of mathematical structure, and she had a particularly
insightful approach to the subject. She is often described as one
of the most creative algebraicists of the 20th century. By contrast
her work in the study of conservation laws was just a brief inter-
lude. She might not have become interested in the topic at all
had not her chief sponsor at Göttingen, David Hilbert, asked her
for help.

During Noether’s stay at Göttingen several of the most promi-
nent mathematicians at the university—and at the time Göttingen
was home to some of the best mathematicians in the world—were
hard at work studying the mathematical basis of Albert Einstein’s
newly published general theory of relativity. Ideas were changing
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quickly, and the mathematicians at Göttingen were in the thick of
it. David Hilbert, for example, had published equations similar to
those of Einstein within a few months of the date of Einstein’s own
papers.

Mathematically the problem with the equations that describe
relativity theory is that they are very complex. Initially the goal
was simply to try to understand what the equations imply about
the physical structure of the universe. There were questions, for
example, about the relationships between Einstein’s theory and the
theories of classical physics. In particular a number of mathemati-
cians had questions about the role of conservation of energy in
Einstein’s model. Hilbert asked Noether for her help on this issue,
and Noether, though her interests were in pure mathematics and
not physics, agreed to examine the issue. She quickly identified a
profound connection between conservation laws and geometry.
Her ideas on this matter have had a permanent influence on math-
ematicians’ and physicists’ understanding of what a conservation
law is.

Noether’s discovery is that each conservation law is a statement
about symmetry. In geometry symmetry is an important organ-
izing principle. A visual image is symmetric about a line, for
example, if we can draw a line through the image so that what
lies on one side of the line is the mirror image of what lies on the
other side of the line. This is an idea with which most of us are
familiar. A frontal image of the human body, for example, is
symmetric about the line that passes vertically through the cen-
ter of the face. Mathematicians have generalized this idea in a
number of ways. In mathematics there is symmetry with respect
to a point, a line, and a plane, as well as other types of mathe-
matical symmetry.

Noether discovered that each conservation law corresponds to
a particular type of symmetry. In other words given a conserva-
tion law we can find a symmetry associated with it. Alternatively
every symmetry of a certain type corresponds to a conservation
law. This means that if we begin from the point of view of geom-
etry—if we choose a particular symmetry from a set of symme-
tries—then it is, in theory, possible to determine a conservation
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law corresponding to this symmetry. Geometry and conservation
laws turn out to be two sides of the same coin, and geometry was
once again at the forefront of humanity’s attempts to understand
nature.

The details of Noether’s discovery require quite a bit of mathe-
matics, but if we apply her ideas to the conservation of energy we
can get a feeling for the insight behind her discovery. To do this it
is helpful to think of time as a kind of line. We can imagine mov-
ing (translating) ourselves either forward or backward along the
line. In order for the law of conservation of energy to be valid
there must exist a translational symmetry with respect to time. This
means that regardless of how we might imagine moving back and
forth through time, the amount of energy in an isolated system
must remain constant.

To see why this must be so, imagine a heat engine operating
between two bodies of different temperatures. As we run the heat
engine, the temperatures of the two bodies become more and
more alike. The closer the two temperatures become one to
another, the less work our engine produces per unit of heat. In
theory it is always possible to run our engine backward and use it
as a heat pump so that it restores the two thermal reservoirs to
their original state. If time is translationally symmetric (or what is
the same thing: if the first law of thermodynamics is true), then the
best we can expect from this procedure is to “break even.” The
work we performed on our engine in restoring the thermal reser-
voirs equals the work obtained by running our engine in the first
place. Or, to put it more succinctly: “work in” equals “work out.”
But if, instead, translational symmetry fails, we can do better than
this—better in the sense that we can run an engine at a “profit.” In
this case we simply choose a time to restore the thermal reservoirs
when restoring the reservoirs requires less work than we have
already obtained in work from the engine. If this were possible
then at the end of the cycle our machine would have produced
more work than it consumed in heat. Such machines are impossi-
ble to build: They violate the first law of thermodynamics.
Translational symmetry with respect to time is valid only if ener-
gy is conserved, and energy is conserved only if translational sym-
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metry holds with respect to time. Noether showed that the geo-
metric property of symmetry is a central organizing principle of
nature.

Olga Oleinik
Roughly a century after Clausius first proposed the second law of
thermodynamics, scientists and engineers were still wondering
what to do with it. To be sure the second law is an important
insight into how nature works. The second law enables scientists
to compute the maximal efficiency of a heat engine or declare the
ultimate fate of the universe (heat death). It is less useful, how-
ever, for predicting the actual efficiency of an engine, and some
scientists complained that it revealed little about what would
happen between now and the final thermal collapse of the uni-
verse. The second law of thermodynamics is a negative assertion,
and knowing what cannot happen is just not as useful as calcu-
lating what must happen.

A principal difference between
the mathematical expression of
the second law and the mathe-
matical expression of the con-
servation laws described earlier
is that whereas conservation
laws are equalities, the second
law of thermodynamics is an
inequality. Mathematically this
means that conservation laws
can be written as differential
equations. They relate the rate
of change of a property, such as
momentum, mass, or energy, to
one or more measurable quan-
tities, such as force, mass flow
across the boundary, or work
and heat flow. For a scientist
differential equations are useful
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Olga Oleinik successfully applied
new mathematics and an abstrac-
tion of the idea of entropy to the
mathematical study of discontinuous
processes such as shock waves.
(Courtesy of Gregory A. Chechkin)



because they serve as a bridge between what the scientist can
measure and what the scientist can, in principle, calculate. A 
differential equation is a method of identifying one particular
function among many: If the differential equation is properly
posed, then it can have only one solution, the function of inter-
est. When the second law is expressed mathematically, however,
we get a differential inequality. The inequality states that the total
entropy cannot decrease over time. This is not enough informa-
tion to enable scientists and mathematicians to identify the
entropy function. Entropy is interesting to think about, but the
information that the second law provides is more qualitative than
quantitative. One prominent 20th-century mathematician and
scientist who devoted much of his life to the study of thermody-
namics, Clifford Truesdell, complained that whereas the claims
of thermodynamics are often “grandiose,” its applications are
often “trivial.”

Professor Truesdell enjoyed the overly dramatic statement, but
if one did believe that the applications of thermodynamics were
trivial at the beginning of the 20th century, one would probably
agree with Truesdell’s assessment, which was made near the mid-
point of the century. The second law of thermodynamics, despite
numerous attempts to reformulate it in the search for interesting
applications, was still largely a qualitative statement. Meanwhile
other areas of mathematics and physics were surging ahead.

In physics scientists had become very interested in discontin-
uous processes. A discontinuous process is one in which the
physical properties of the material change in a way that can be
reasonably modeled as “instantaneous.” A common example of
a discontinuous process is a shock wave. For example, the shock
wave that is generated by a plane flying faster than sound caus-
es an almost instantaneous jump in pressure and temperature as
the shock wave moves through the air. The importance of
understanding the effect of shock waves on the structure and
handling of the plane and on the environment below became
increasingly important as engineers sought ever-greater control
over these powerful machines. Scientists learned to generate
shock waves in wind tunnels and other devices to measure how
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the properties of the gas change as it passes from one side of the
shock to the other.

Mathematically shock waves represent a new type of problem. In
the 19th century scientists had developed mathematical models for
phenomena that change gradually. The curves that represent
changes in a physical system—for example, the temperature and
pressure of a smoothly flowing gas—describe smooth contours.
There are no corners or “clifflike” jumps in the graphs of these
functions. Mathematically the smoothness of the curve is impor-
tant, because when a curve varies smoothly all of the techniques of
calculus can be brought to bear in the analysis of the curve and
whatever it represents. By contrast the graphs of shock waves have
sharp corners and jumps. Under these circumstances many of the
techniques that are central to calculus cannot be used. Although
calculus can be applied to the region on each side of the shock
wave, it often does not work when applied to the shock itself. Of
course the area near the shock wave is just the area that scientists
and engineers most wanted to model.
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Hypersonic flow. The shock wave is visible as lines trailing off the tip of the
arrow-shaped object.  (Courtesy of the Archives, California Institute of
Technology)



The solution to the failure of the old ideas and techniques was
to expand both the idea of a function and the techniques neces-
sary to manipulate functions. This had to be done with care, how-
ever. Calculus had proven itself to be very useful, and no one was
willing to abandon it. The key was to develop a new branch of
mathematics that would extend rather than replace calculus. In
this way calculus could be subsumed into a larger, more versatile
structure.

Much of this new mathematics was first developed in the 1930s
by a large group of highly creative mathematicians living in the
former Soviet Union. The Soviet government was very generous
in its support of the mathematical sciences. In many other areas of
Soviet life political repression was more the rule than the excep-
tion, but in mathematics there was a great deal of intellectual free-
dom. Consequently a career in mathematics was a very attractive
option for many intellectually curious Soviets, and many ambi-
tious Soviet citizens availed themselves of the opportunity to excel
mathematically. Mathematical research was carried out in most of
the major cities and some smaller cities as well.

It was in these research centers—especially at those in Moscow
and Leningrad (St. Petersburg)—that the concepts and techniques
of a new and very expressive mathematical language were devel-
oped. When these new techniques were applied to the traditional
functions, they yielded the traditional results. This was important
because the traditional results were accurate when they existed.
The new ideas and techniques, however, could be applied to a
much larger class of functions, functions that could not be 
analyzed by using the techniques of the old calculus. The hope was
that the new mathematics would be up to the task of analyzing the
problems arising in the new physics.

It was in this environment that the Soviet mathematician Olga
Oleinik (1925–2001) began her research into discontinuous func-
tions—functions whose graphs exhibit breaks or jumps. Oleinik
was a creative and unusually prolific mathematician. Born in Kiev,
she received a Ph.D. from Moscow State University, one of the
most important Soviet institutions of higher learning. Her thesis
adviser, a man of whom she always spoke highly, was Ivan G.
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Petrovsky (1901–73), an expert in the field of differential equa-
tions. His influence is apparent in much of Oleinik’s work. After
graduation Oleinik joined the faculty at Moscow State University
and eventually became head of the department of differential
equations. She wrote well over 300 research papers in mathemat-
ics as well as a number of books. In one of her best-known jour-
nal articles, “Discontinuous Solutions to Non-Linear Differential
Equations,” Oleinik investigated the mathematical properties of a
class of conservation laws. We call these equations conservation
laws because of their form, not because they are associated with
any particular physical phenomena. To be sure, it is possible to
associate some of the equations in the set of equations that
Oleinik studied with specific physical phenomena, but this was
not her goal. She was searching for general patterns, not specific
solutions.

In her famous paper Oleinik studied the motion of a shock
wave, but she immediately encountered a problem. The old cal-
culus could not be used to study shock waves. Shock waves are
discontinuous—their graphs have “clifflike” jumps. With tradi-
tional methods the equations that describe the shock have no
solution. Under the new, generalized calculus, however, these
same equations have too many solutions. In fact there are some-
times infinitely many solutions to a single equation. From a sci-
entific point of view this is very undesirable. The goal of this
type of mathematical analysis is to predict as precisely as possi-
ble what happens when we know the equation and the initial
conditions of the system that we want to study. To say that,
mathematically speaking, almost anything may happen to this
system is to say very little that is useful, because in an experiment
there are only room and time for one outcome to occur. Oleinik
sought a criterion that would enable her to choose from the infi-
nitely many solutions that could occur that one solution that
would occur.

Oleinik’s paper is famous in mathematical circles because she
found a way to do just that. Her great insight was to identify what
is now known as an entropy condition. This is a mathematical
abstraction of the idea of entropy. She showed that though there

Modern Ideas About Conservation Laws  151



152 MATHEMATICS AND THE LAWS OF NATURE

might be infinitely many functions that could serve as valid solu-
tions to the type of conservation law that she studied, there was
only one function that satisfied both the conservation law and her
entropy condition. This discovery is an important breakthrough
in mathematical physics because it restores the concept that to
each properly posed differential equation there corresponds
exactly one solution. It is essentially the mathematical version of
the idea of cause and effect. It has also been the most important
attempt to date to use a mathematical formulation of the entropy
concept in an essential way.
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9
natural laws and 

randomness

Since the Renaissance mathematicians have been concerned with
the laws of cause and effect. That is, they have sought to employ
the mathematical expression of these laws so that for any particular
phenomenon there exists a one-to-one relationship between each
cause and each effect. Their goal has been to solve the following
simple-sounding problem: Given a unique cause, predict the
unique effect. Many phenomena are well suited to this type of
mathematical analysis, but there are also situations in which this
approach fails. When this happens scientists have learned to
rephrase the problem in the language of probability. One modern
version of this idea can be described as follows: Given a unique
cause, predict the most probable effect. A more general version of
the problem is: Given the most probable cause, predict the most
probable effect. These types of probabilistic problems are now a
fundamental part of science, but this is a fairly recent development.

Mathematicians and scientists have long sought to incorporate
ideas from the theory of probability in science. Until the second
half of the 19th century, however, most attempts to use probabili-
ty theory in science involved quantifying the ignorance of the
investigator. Often implicit in the work of these early scientists
was the belief that the more they knew, the less they would need
the theory of probability. Philosophically they believed that if one
knew enough, one would not need probability at all. They viewed
probability as a stopgap measure—a theory of errors, the goal of
which was to locate the most probable “true” value given a set of



somewhat inaccurate measurements. As errors were eliminated,
these scholars believed, the need for probability theory would
decrease accordingly. This concept of probability theory stems
from the fact that these scientists believed that there was nothing
essentially random in what they studied. In fact many of the best
scientists, such as the French mathematician and physicist Pierre
Simon Laplace, explicitly rejected the existence of anything truly
random in nature.

One of the first scientists to develop a scientific theory that uses
randomness in an essential way was the Austrian monk, botanist,
and geneticist Gregor Mendel (1822–84). He began to investigate
the genetics of heredity in the 1850s and 1860s. The results of his
painstaking research are summarized in what are now known as
Mendel’s laws of heredity. Mendel published an essentially com-
plete, and in many ways an essentially correct, theory of heredity
in 1866. The journal in which he published his ideas could be
found in many of the major libraries of Europe, but his work
attracted virtually no attention at all until 1900, when his results
were rediscovered by another generation of researchers. This is a
reflection of how far ahead of his time Mendel, in fact, was. His
ideas were too far removed from the scientific orthodoxy of his
day to draw any converts at all. It was not for lack of trying.
Mendel corresponded, for example, with a distinguished botanist,
Karl Wilhelm von Nägeli, but von Nägeli, like others in the field,
completely missed the significance of Mendel’s discoveries.

Mendel had an unusual background for someone who is now
recognized as a brilliant researcher. He received two years 
of education in the sciences at the Philosophical Institute of
Olmütz, located in what is now the Czech Republic in the city 
of Olomouc. (During Mendel’s life Olomouc was part of the
Austro-Hungarian Empire.) After he left the Philosophical
Institute Mendel entered a monastery. He later became a priest
and subsequently enrolled at the University of Vienna for an
additional two years; there he studied mathematics and science.
His aptitude in science was not immediately apparent. When
Mendel attempted to become licensed as a teacher, he failed the
test, scoring particularly poorly in the natural sciences.
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Undeterred, he began his self-
directed experiments in hered-
ity in 1854.

To appreciate better the 
magnitude of Mendel’s insight
into genetics, knowing some-
thing about the scientific theory
of inheritance that prevailed
throughout his lifetime is use-
ful. Sometimes called blended
inheritance or inheritance by
blood, this theory is meant to
account for the fact that 
sometimes the characteristics of
the offspring are intermediate
between those of the two par-
ents. The name of the theory
stems from the idea that an
individual’s traits are carried in
the blood, and that the traits of
the offspring are the result of the blended blood of the parents. By
analogy, if we use red dye to color water in one glass and yellow
dye to color water in a second glass, we obtain orange water if we
mix the water in the two glasses together. Orange is the color that
is intermediate between the two “parent” colors.

Casual inspection shows that this theory is false. There are
many traits that do not blend. One of the parents may have a par-
ticular trait—blue eyes, for example—that is not apparent in any
of the offspring. More telling, a trait may appear in the offspring
even though neither parent exhibits it. There is another, logical
reason for rejecting the idea of blended inheritance. If the traits
of the offspring were, in fact, midway between those of the par-
ents, then some of the uniqueness of each parent generation
would be lost and no new unique traits would be gained since the
new traits were “blended” from the old. As a consequence each
generation would exhibit less variability than the preceding 
one. After a few generations all individuals would be identical.
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Gregor Mendel. Randomness is an
integral part of his theory of hered-
ity.  (Topham/The Image Works)



(To return to the colored-water analogy, if we had a shelf full of
glasses, each containing a different color of water, and the differ-
ent color waters were mixed together two at a time, it would not
be long before the water in all the glasses was precisely the same
color.) But variability persists. The existence of easy-to-recognize
individuals in most species of plants and animals proves that indi-
vidual traits are maintained from generation to generation.
Blending inheritance cannot be correct. Recognizing that some-
thing is incorrect, however, offers little insight into what is true.

Mendel was living at a monastery when he began to search 
for the truth about inheritance. He studied how several easy-to-
identify traits in pea plants were inherited, but his discoveries went
well beyond these plants. Implicit in his approach is the belief that
the mechanisms that control heredity in pea plants control hered-
ity in other organisms as well.

Mendel’s approach was exhaustive; it must have been personal-
ly exhausting as well. His goal was a quantitative one. He want-
ed to count the traits exhibited by thousands of individuals over
multiple generations in the hope of finding a pattern that would
reveal the mechanism of heredity. There are several practical
advantages to the use of pea plants. First, a garden full of such
plants can easily yield a large number of individuals for study.
Second, pea plants are usually self-pollinating, so all the genes of
the offspring are generally inherited from the one parent. This
makes it easier to deduce what genes the parent does or does not
have by examining the appearance of the offspring. No variabil-
ity in some trait of the offspring is a good indication that the par-
ent has only one version of a particular gene. (This situation is
often described by saying the parent is purebred—which is just
another way of saying that the parent has little genetic variation.)
Conversely knowledge of the parent’s genetic makeup often
makes deducing the genetic makeup of the offspring simple.
Third, most of the cross-pollination that did occur in his garden
setting could be attributed directly to Mendel’s own efforts
rather than the randomizing action of insects. Finally, pea plants
exhibit easy-to-observe variation in a number of distinct traits.
For Mendel the pea plant was ideal.
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Mendel tracked a number of traits from generation to genera-
tion. Among these traits were flower color (purple vs. white), plant
height (tall vs. short), and seed shape (round vs. wrinkled). His
method was to cross two purebred individuals and observe how a
trait, or combination of traits, would be expressed in succeeding
generations. For example, when Mendel crossed a purebred plant
that could only produce white flowers with a purebred plant that
could only produce purple flowers, he noticed that the first gener-
ation exhibited only purple flowers. Similarly when he crossed a
purebred tall plant with a purebred short plant, the first genera-
tion after the cross was composed of all tall individuals. This is
almost an argument for the theory of blended inheritance, because
it appears that the variation between plants had been reduced
through the act of pollination.

Mendel described the situation by saying that purple was domi-
nant to white and that white was recessive to purple. Similarly he
said that tall was dominant to short and short was recessive to tall.
The interesting event occurred during the next generation: When
Mendel allowed the tall, purple hybrids to self-pollinate, some
individuals in the next generation had purple flowers and others
had white. Some were tall and some were short. This clearly dis-
proved the theory that the traits had blended, and to Mendel it
showed that heredity had a particulate nature—that is, there were
individual bits that acted together to produce a trait. Combine the
bits in a different way and the visible traits of the plant changed
accordingly. In particular the bits were not destroyed in the act of
creating a new individual. They were preserved from one genera-
tion to the next. Today we call these bits of information genes.

Not satisfied with a qualitative explanation for the mechanism of
heredity, Mendel found a quantitative explanation. He hypothe-
sized that each trait that he studied was governed by two genes.
Each parent contributed one of the genes. The dominant gene for
each trait determined how the trait was expressed. An individual
that inherited a dominant gene from each parent displayed the
dominant trait, but so did any individual that received one domi-
nant gene and one recessive gene. Again the trait that appeared in
the individual was determined solely by the dominant gene. If, on
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the other hand, no dominant gene was present—if the individual
had two copies of a recessive gene—then the recessive trait was
expressed.

This theory accounts for the absence of white flowers in the first
generation after a purebred plant with purple flowers is crossed
with a purebred one with white flowers. Each of the offspring has
one gene for purple flowers and one gene for white flowers.
Because purple is dominant to white, the result is all purple flow-
ers. The same can be said for the absence of short plants in the
first generation following the cross. Each member of the first gen-
eration of offspring carries one gene for tall plant height and one
gene for short plant height. Significantly each member of this gen-
eration of pea plants carries two sources of future variation that
cannot be directly observed: one gene for white flowers and one
gene for short plant height.

There is considerable variation in the second generation of flow-
ers after the cross. In fact this generation shows more variability in
appearance than either of the two preceding generations. There are
tall plants with purple flowers and tall plants with white flowers.
There are short plants with purple flowers and short plants 
with white flowers. Moreover, because pea plants are usually self-
pollinating, the source of this variation can only be found in the
genetic makeup of the individuals in the first generation after the
initial cross. (This is called the first filial generation, or F1 genera-
tion.) When Mendel counted, he found that almost exactly three-
quarters of the plants in the second generation after the cross—this
is usually called the F2 generation—had purple flowers and one-
quarter had white flowers. Similarly almost exactly three-quarters of
the plants in the F2 generation were tall and one-quarter were short.

This type of situation is easy to duplicate by flipping two coins.
Imagine flipping a penny and a quarter. If either comes up heads
we keep both. If both come up tails we lose both. What are the
possibilities? They can both come up heads, and that is the first
way to win. The penny can come up heads and the quarter can
come up tails. That is the second way to win. The quarter can
come up heads and the penny can come up tails. That is the third
way to win. Finally, they can both come up tails and we lose. If we
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play this game a large number of times, we can expect to win
three-quarters of the time. We can expect to lose one-quarter of
the time. These are the ratios Mendel observed.

Mendel also discovered an interesting pattern related to the way
flower color and plant height were associated. He noticed that
about nine-sixteenths of all the plants in the F2 generation were
tall and purple, about three-sixteenths were tall and white, about
three-sixteenths were short and purple, and about one-sixteenth
were short and white.

This situation can also be duplicated by using coin flips. Suppose
that we play two games simultaneously. One game is the 
quarter–penny game described. The second game is played with a
nickel and a dime, but according to the same rules as the
quarter–penny game. The result is that we win all the coins about
nine-sixteenths of the time. We win the quarter and penny and lose
the nickel and dime about three-sixteenths of the time. We lose the
quarter and penny and win the nickel and dime three-sixteenths of
the time, and finally, we lose all four coins one-sixteenth of the time.

Mendel concluded that the gene that the offspring inherited
for flower color had no effect on which plant height gene was
passed along. Nor did the plant height gene affect the inheri-
tance of the gene for flower color. The genes for flower color
and plant height were segregating along the same rules that 
governed our coin flipping game.

Mendel was right. There was much that he did not know, of
course. He did not know about deoxyribonucleic acid (DNA). Nor
did he know about chromosomes, which are large structures along
which the genes are organized. But for the traits that he analyzed
his conclusions were correct. In some general way he understood
the cause of the variation—what we now call genes—and he under-
stood the effect—the traits that he observed in the appearance of
the plants. His conclusions were, however, unlike those of the sci-
entists who preceded him. Unlike Newton, Lavoisier, and Clausius,
all of whom could predict an individual effect for each individual
cause, Mendel often could not predict the appearance of individual
offspring on the basis of knowledge of the genetic background of
the parent. If there were many offspring he could, with reasonable
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accuracy, predict the frequency with which a particular trait would
appear, but that was the extent of it. The act of inheritance—the
precise collection of alleles that are passed from parent to offspring
during the act of reproduction—is a random phenomenon. Mendel
had uncovered not just the laws of heredity, but also a law of nature
that could be expressed only in the language of probability.
Mendel’s laws of inheritance depended on chance.

Today scientists know considerably more about heredity than
Mendel could have dreamed. They know the chemical structure of
the DNA molecule. For several types of organisms they know how
the individual genes are organized on the chromosomes. They
sometimes understand how the chemical information carried by
the DNA molecule is expressed in the individual organism, and
they understand the mechanism by which the genes are sorted and
passed from one generation to the next. None of this, however, has
enabled them to eliminate the role of chance. Given a field of pea
plants with known characteristics, the appearance of the next gen-
eration of offspring can still only be described via the language of
probability. Chance is an integral part of the laws of heredity.

Population Genetics
In the hundred or so years since Mendel’s work was rediscovered and
genetics became an important area of scientific research, the field has
divided into two distinct branches. One branch of genetics, called
molecular genetics, is in the field of chemistry. In this discipline sci-
entists are concerned with the precise chemical makeup of genes,
their physical location on the chromosomes, and their biochemical
function. This is an important way of understanding genetics, and at
present it is the approach most often described in the popular press.
The other approach to genetics is called population genetics.

Population genetics is, in spirit, closer to the approach first
adopted by Mendel himself. As its name implies, population genet-
ics is the study of how genes and combinations of genes are dis-
tributed in a population. It is also the study of how and why gene
frequencies change over the course of time. The physical charac-
teristics of a group of organisms are determined in large measure
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by the genetic makeup of the group, that is, the types of genes pres-
ent, their frequency, and the ways they are grouped together in
individuals. The genetic makeup of the group determines its
response to its environment, and its response to its environment
determines the genetic makeup of future generations. Changes in
gene frequencies occur between generations, not within them.

Individual organisms can be important in the study of popula-
tion genetics, but always in a very restricted way. Individuals can-
not change their genes. Almost always the genes an individual
organism is born with are the genes with which that organism dies.
Furthermore most mutations, or spontaneous genetic changes,
that do occur over the course of an individual’s life are not passed
on to the next generation, because most mutations do not occur in
the reproductive cells. The individual’s genetic contribution to the
next generation is generally made from the set of genes with which
that individual was born. What is of interest to population geneti-
cists is the “fitness” of each individual organism to transmit those
genes. In fact, from the point of view of population genetics,
reproductive fitness determines the importance of the individual.
Each individual organism is modeled as the mechanism through
which genes interact with the environment.

Because molecular genetics and population genetics are so dif-
ferent in concept, it should be no surprise that the tools used to
investigate them are often different as well. There are exceptions,
of course, but molecular genetics is generally studied in the lab. By
contrast questions in population genetics are often better
expressed in the language of mathematics. Population geneticists
often seek to model mathematically how each species changes in
the context of its ever-changing environment.

The first important law of population genetics was published in
1908, less than a decade after Mendel’s work was rediscovered. It
is called the Hardy-Weinberg law, and it was discovered by the
British mathematician Godfrey Harold Hardy (1877–1947) and
the German physician Wilhelm Weinberg (1862–1937). Hardy
and Weinberg independently discovered the theorem that bears
their names. This theorem is fundamental to the subject of popu-
lation genetics, but it seems to have been less important to one of
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its discoverers. Hardy downplayed the importance of the result.
His objections were, at bottom, probably based on aesthetics. 
G. H. Hardy was a self-described “pure” mathematician; one of
his best-known books is A Course in Pure Mathematics. He liked to
describe his work as having no value outside the field of mathe-
matics, but the Hardy-Weinberg law is an exception to this rule.
Later more of his discoveries would find important applications
outside mathematics, a fact that would surely have left him cha-
grined. Weinberg’s feelings about his discovery are not known.

The Hardy-Weinberg law is, to be sure, a counterintuitive
kind of result. It is a sort of conservation law. It states that under
certain conditions gene frequencies are conserved from one 
generation to the next. Unlike the conservation laws of classical
physics, however, the conditions that guarantee that gene fre-
quencies are conserved are never satisfied.

In the years immediately following the rediscovery of Mendelian
genetics, there was a great deal of excitement about how the new
ideas could be used to describe genetic change. It is apparent from
looking at everything from fossils to the breeding records of live-
stock that the characteristics that define a species of organisms can
and do change over time. Sometimes the changes are small and
sometimes the changes are very large. Mendel’s ideas about the
particulate nature of inheritance suggest the possibility of quanti-
fying changes in heredity as changes in the statistical distribution
of genes. In theory, at least, the slow accumulation of changes in
gene frequencies could, over the course of many generations, turn
wild ponies into large Belgian draft horses or into small Shetland
ponies. Populations of fish might change into populations of
amphibians. This is not what Hardy and Weinberg showed, how-
ever. Their instinct was, instead, to examine the conditions under
which change could not occur.

Hardy and Weinberg imagined a population of organisms, all of
which belong to the same species, that satisfies the following con-
ditions: (1) The population must be very large. (2) Reproduction
occurs in a random fashion. (3) There is no migration into or out
of the population in question. (4) There are no differential survival
rates. (5) The number of offspring produced does not vary from
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individual to individual or between reproducing pairs of individu-
als. (6) The genes do not mutate; that is, they do not change spon-
taneously from one form to another. Under these conditions
Hardy and Weinberg mathematically proved that gene frequen-
cies are stable: That is, the frequencies themselves are conserved
from one generation to the next. Any population that satisfies the
Hardy-Weinberg conditions is said to be in equilibrium.

To understand the importance of this first and fundamental law of
population genetics, it is important to understand the meaning of
the assumptions on which the conclusion is based. The assumption
that the population is very large means that random fluctuations
play no role in the transmission of genes. To understand why, con-
sider the coin-flipping problem again. It is common knowledge that
the odds of flipping a head are 50/50; when we flip a coin a head is
as likely to result from the flip as a tail. It does not follow, however,
that if a coin is flipped several times we see as many heads as tails.
In fact, if we flip the coin an odd number of times, we are guaran-
teed to see a difference in the number of heads versus the number
of tails. Less obvious is that if we flip the coin many times it is high-
ly unlikely that we will ever see exactly as many heads as tails, even
when the coin is flipped an even number of times. What happens
instead is that the quotient formed by the total number of heads
divided by the total number of flips approaches the number 1/2 as
the number of flips becomes very large. This much is “guaranteed.”
In a small set of flips, however, even this quotient is unsteady. For
example if we flip a coin three times, there is a 25 percent chance
that the three flips will be either all heads or all tails.

Mathematically the genetics problem is exactly the same as the
coin-flipping problem. Suppose one parent has two different
forms of the same gene—different forms of the same gene are alle-
les. We call the alleles carried by our imaginary parent a and A.
Suppose that this parent has three offspring. There is a 25 percent
chance that all the offspring will inherit the a allele from that par-
ent or that they will all inherit the A allele. In the first case the A
allele is lost in the sense that it is not passed on to the next gener-
ation. In the second case the a allele is lost. In a large population
these random fluctuations balance out, but in a small population
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there is a good chance that small random fluctuations can lead to
measurable and permanent changes in gene frequency throughout
the entire population only because of the “luck of the draw.”

The second assumption of the Hardy-Weinberg law is that
reproduction occurs randomly in the sense that no isolated 
subpopulations occur within the larger population. A small 
“subcommunity” of organisms that for several generations repro-
duces in isolation from the main body of organisms, for example,
begins to show statistical changes in gene frequency that are due
to the random fluctuations described in the preceding paragraph.

Third, migration into or out of the population can be expected to
change the genetic makeup of the population. A flow of individuals
out of the main population leads to the loss of specific genes and
possibly a change in the statistical distribution of the genes. A flow
of individuals into the main population can also disrupt the statis-
tical makeup of the gene pool. It may even cause new genes to be
introduced into the population we are considering.
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Fourth, “There are no differential survival rates or reproduction
rates” means that no allele of any gene can be more advantageous
to the survival of any individual than any other allele. If an indi-
vidual does not survive to reproductive age, then that individual
cannot be expected to reproduce.

Fifth, every individual that reproduces must produce as many
offspring as any other individual. For example, if one plant pro-
duces only a few seeds and another plant of the same species pro-
duces hundreds or even thousands of seeds, then the genes of the
second plant will probably be overrepresented in the next genera-
tion compared with the genes of the first plant, and this, of course,
is a change in the gene frequencies present from one generation to
the next.

Finally, Hardy and Weinberg assert that in order for gene 
frequencies to remain unchanged from one generation to the
next, mutations cannot occur. Mutations are spontaneous, ran-
dom changes in a gene. If we imagine a gene as a single very long
word, a mutation would be the addition, deletion, or substitution
of one or more letters within the word. A mutation can improve
the function of the gene, but because they occur randomly, most
mutations either are harmful or have no effect on gene function.

There does not exist a single population anywhere on Earth that
satisfies all of these restrictions. There are some populations that
are large enough so that random fluctuations in gene frequencies
play no role, but, for example, mutations and differential repro-
duction rates are present in virtually every population. As a conse-
quence the conditions for the validity of the Hardy-Weinberg
equations are never satisfied in practice. It may seem, then, that
the Hardy-Weinberg law is useless, but this is not the case.

Variations in gene frequencies over time can be measured.
Sometimes they can be measured with great precision. For example,
some scientists take tissue samples from numerous individuals and
then analyze the DNA in each sample. Sometimes this is not possi-
ble and cruder measures, such as changes in the appearance of fos-
sils, are studied. Each type of measurement can tell us something
about the speed with which gene frequencies are changing. As soon
as scientists obtain information on the types of change that are
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occurring as well as their speed, it becomes possible, in theory, to
associate the observed changes with one or more of the conditions
in the Hardy-Weinberg hypothesis. The list is important, because
Weinberg and Hardy proved that if the conditions on the list 
are satisfied then gene frequencies are stable; it follows that if the
frequencies are not stable then not all the conditions are satisfied.

The Hardy-Weinberg law also points out the existence of anoth-
er type of genetic phenomenon: Some genes are not adaptive.
They can in fact injure the carrier. Organisms born with these
genes may exhibit developmental problems. Sometimes they even
show a higher rate of mortality. Because these genes can injure the
carrier, it is reasonable to expect their frequency over time to
decline. The carrier is, after all, less likely to transmit these genes
to the next generation. This is true now, but it was also true 1,000
generations ago, a fact that raises questions: Why haven’t these
genes already been eliminated from the species in which they
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Though it is difficult to estimate accurately the amount of genetic change
that has occurred over time from a study of the fossil record, the set of all
fossils constitutes some of the strongest evidence that large changes have
occurred.  (Science Museum, London/Topham-HIP/The Image Works)



occur? How did they reach their present frequency? There is usu-
ally no clear answer to either of these questions, but the Hardy-
Weinberg law can offer some broad hints.

In a large population if the only effect of the gene is deleterious,
and if the gene has always been deleterious, then it should be
either absent or extremely rare. Because this is not always the case,
it is necessary to look more closely at the situation. The classic
example of a gene with more than one effect is the gene responsi-
ble for the disease sickle-cell anemia.

Sickle-cell anemia is a disease of the red blood cells. It is painful,
difficult to treat, and currently incurable, and it lasts as long as the
person with the disease lives. It is a genetic disease caused by a sin-
gle gene. The gene responsible for sickle-cell anemia has two
forms, or alleles, a “normal” form and the form responsible for the
disease. We let the letter A represent the normal form of the gene.
The letter a represents the allele responsible for the sickle cell.

Sickle-cell anemia arose in human populations exposed to high
rates of malaria. Individuals who possess two copies of the normal
gene are especially susceptible to malaria. Malaria is a deadly dis-
ease and people with two normal genes are especially susceptible
to its effects. Individuals with two copies of the sickle-cell gene
have the disorder sickle-cell anemia, which is also a serious health
problem. The interesting case occurs when an individual has one
normal gene and one sickle-cell gene. In this case the individual is
especially resistant to the effects of malaria. When the gene for
sickle-cell anemia is rare in the population, it is a tremendous
advantage not just to the individual who carries one copy of the
gene but to the offspring of that individual as well. The fact that a
gene is rare means that the individual with just one sickle-cell gene
probably reproduces with an individual with two normal genes. As
a consequence they can expect that on average 50 percent of their
children will have one copy of the sickle-cell gene and one normal
gene; on average 50 percent of their children will be resistant to
the disease malaria. Under the circumstances we should expect to
see the frequency of the gene for sickle-cell anemia increase in the
population because those with two normal genes are less likely to
reproduce successfully.
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The complication arises as the gene becomes more and more
frequent in the population. In this case it becomes increasingly
likely that two individuals, each with one copy of the normal gene
and one copy of the sickle-cell gene, will reproduce. Under these
circumstances, 50 percent of their children are, on average, still
resistant to malaria, but on average 25 percent of their children
have sickle-cell anemia, and sickle-cell anemia, like malaria, is a
significant cause of death.

The gene for sickle cell is especially common in areas of Africa
where malaria rates are high. Many people in North America,
South America, and the Caribbean can trace their ancestry to
these areas of Africa. They still sometimes carry the gene for sick-
le cell, but now there is no advantage in carrying the gene; they
live in an environment where malaria never occurs.

If scientists had not uncovered the role of the gene in the envi-
ronment in Africa where it arose, the presence of the gene would
be impossible to explain. In Canada, for example, where there has
never been any malaria, the gene is clearly disadvantageous. There
the gene is present for historical reasons. In recent times many
Africans have immigrated to Canada, and historically there were
many slaves who escaped their mistreatment in the United States
by escaping to Canada, where slavery was illegal. Sickle-cell ane-
mia is one example of a genetic disease that can be explained only
through science and history. There are other diseases whose pres-
ence can be explained similarly. Scientists cannot, however,
account for all genetic diseases by using a sickle-cell model. This
may be because there are other factors at work or because the his-
torical reasons that might account for the presence of the disease
have yet to be uncovered. The Hardy-Weinberg law does not offer
us any guidance about the specifics, but it does offer us a way of
framing our questions about population genetics.

The Limits of Predictability
A great deal of mathematical modeling has been done to try to
quantify how changes in gene frequencies are related to each of
the conditions on which the Hardy-Weinberg law is based.

Natural Laws and Randomness  169



Although the Hardy-Weinberg conditions seem straightfor-
ward, they are not. They can be violated in various ways that are
not especially obvious. For example, scientists have sought to
answer the question, How large a population is so large that the
gene frequencies are not affected by random fluctuations?
Although this question seems as if it should have a single num-
ber for an answer, it does not. For example, 500 individuals may,
under some circumstances, be sufficient to even out random
fluctuations for five generations, but that same population
under the same circumstances is probably not large enough to
ensure stability over 500 generations. Over the course of 500
generations there are many more opportunities for unlikely
events to occur.

One more example of a situation in which a hypothesis of the
Hardy-Weinberg law is violated: Mutations are random changes
in genes, and so far we have described them as if they occur at a
uniform rate. Sometimes this is just what happens. (Mutation rates
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Meteorology is concerned with large-scale motions of the atmosphere. The
mathematical models derived from the study of weather are often expressed
in the language of probability theory.  (Courtesy of National Oceanic and
Atmospheric Administration/Department of Commerce)



can be measured by the number of spontaneous changes occurring
in the DNA of an organism per unit of time.) Scientists have dis-
covered, however, that certain species of organisms have genes
that affect the mutation rate itself. This means that individual
organisms can carry a “mutation gene” that significantly acceler-
ates the rate at which changes occur in the organism’s DNA.
Predicting the effect or even the existence of such genes can be
very difficult indeed.

For many years population geneticists had to content them-
selves with studying extremely simple model problems. “Real-
life” problems involving actual populations were far too difficult
to understand. More complicated problems were often mathe-
matically intractable, but even when this was not the case, the
measurements on which the solutions depended were too difficult
to make accurately. As a consequence the connection between
theory and practice was weak.

Change is gradual. It depends on several factors. One factor
that made progress possible was better information about genet-
ics and the mechanisms involved in heredity. As scientists
acquired more information, they were better able to predict
mutation rates and the way that individual genes function as part
of the complement of genes that make up the individual and the
species. The second factor that affected progress was computer
technology. Computers enabled scientists and mathematicians to
solve mathematical problems that had previously proved too dif-
ficult. Scientists also developed technology that enables them to
sample the DNA of the species of interest directly. This gives
them better information about current gene frequencies and it
also makes it possible to measure changes in gene frequency
more accurately. All of this was important, but it is a measure of
the difficulty of the problems involved that in many ways
progress has remained incremental. Today scientists are some-
times able to make reasonably accurate short-term predictions
about changes in the genetic variability of a population of organ-
isms. However, because of the enormous uncertainties involved,
the accuracy of these predictions quickly decays as the period
under consideration increases.
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With all of these qualifications about the difficulty of applying
the laws of population genetics, it may seem that the physical 
sciences have made far more progress in their ability to predict
nature than have population geneticists. The situation is, howev-
er, somewhat more complicated. To be sure, there are many sit-
uations in which physical scientists have now become
accustomed to making many highly accurate predictions about
the state of some physical system far in the future. No one, for
example, is especially surprised when a space vehicle is launched
toward some distant planet and arrives just as it was predicted to
arrive months or even years before launch. In fact, we tend to be
surprised when this does not happen. There is, as we have
already pointed out, no theory or technique in the field of pop-
ulation genetics that enables scientists to make the same sorts of
extraordinary predictions.

A major difference between population genetics and classical
physics is related to the role of chance. Newton, Lavoisier, and
Clausius were able to develop very satisfying theories—theories
that can be used to make accurate predictions about future
events—without any appeal to ideas of chance and randomness.
Mendel, by contrast, was unable to form even an elementary
theory of heredity without incorporating ideas of randomness in
his theory. It would be incorrect to assume, however, that the
laws of probability have not also found a home in the physical
sciences.

There seem to be inherent limits on predictability even in the
physical sciences. Today there are aspects of the physical sci-
ences that cannot be expressed without concepts taken from the
field of probability. Sometimes probability is required because
the phenomenon to be studied seems to be fundamentally 
random. This is the case with turbulent fluids. Fluids that are
turbulent—rushing water and rushing air are two examples—
currently defy precise prediction, and some scientists believe
that they always will. It is certainly true that the best that can
now be done is to predict “most probable” values. One can, for
example, predict the most probable range of velocities that
would appear at some point at some time in a turbulent 
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fluid moving under a given set of conditions. Accuracy in this
sense means predicting a narrow range of velocities with a high
probability. Sometimes scientists have been successful in this
regard; often they have not.

The study of random phenomena is one of a number of disci-
plines in which physical scientists use probability theory in an
essential way. Another situation arises when scientists cannot 
accurately measure the state of the system in which they have an
interest. They may feel confident that they have the right 
equations—equations that allow them to predict an effect provid-
ed that they know a cause—but the equations themselves are never
enough. To solve a differential equation fully—recall that the laws
of nature are generally expressed in terms of differential equa-
tions—one must have more than the equation.

Scientists also need information about the state of the system.
Sometimes this information is unavailable. It is sometimes the case
that scientists are unsure about the precise state of the system at
any time and that they have no method for eliminating this uncer-
tainty. Scientists have, for example, developed a wide variety of
predictions about motions occurring deep within the Earth.
(These predictions are generally made with the help of the equa-
tions of continuity, the law of conservation of momentum, and the
law of conservation of energy.) The problem is that their predic-
tions depend on certain assumptions about what is actually occur-
ring deep inside Earth right now; no one has access to this
information. Sometimes the devices necessary to make the meas-
urements have yet to be constructed. Sometimes it is not clear
even in theory how one might construct such a device. These
uncertainties are reflected in the existence of several competing
theories about the dynamics of the processes that occur deep with-
in our planet.

Uncertainty in any science has never proved a barrier to the
development of new theories or the making of new predictions. It
is reflected, instead, in a general lack of confidence in the validity
of apparently correct predictions. If a prediction turns out to be
reasonably accurate—and no theory in population genetics or in
the theory of turbulent fluids, for example, has proved to be more
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GENETIC COUNSELING

There are a host of deadly genes present in the human gene pool. These
genes are generally recessive. (Genes that are deadly and dominant
always eliminate the carrier. If this occurs before the carrier is able to
reproduce, then that gene is not transferred to the next generation and
is lost forever.) Furthermore, most of the really harmful genes exist at very
low frequencies, because at higher frequencies the carriers are more
likely to encounter one another and produce offspring that are not viable.
Nonviable offspring again eliminate the genes that they carry. Since
there is generally no “penalty” for simply being the carrier of any reces-
sive gene, deadly or not, these genes simply persist in the general pop-
ulation in accordance with the Hardy-Weinberg law. Many of us, for
example, carry some recessive genes that would be very harmful or fatal
if expressed.

It does occasionally happen that a couple has reason to believe that
one or both of them are carriers for some specific harmful genetic trait.

Ultrasound scan of a fetus at seven weeks. As knowledge increases,
we will be faced with situations and decisions unimagined even a
generation ago.  (Maya Barnes/The Image Works)



than “reasonably accurate”—there is still the question of whether
the agreement is the result of a coincidence or whether the pre-
diction displays real insight. The answer to this type of question is
usually not clear. When scientists are interested in studying 
“random” phenomena, either they are forced to discuss the most
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The clue can be family history: Perhaps a relative has exhibited this trait,
or the couple already has a child who exhibits the trait. Another indicator
might be the couple’s ethnic background. There are some populations
who, because of long periods of social or geographic isolation, have
accumulated particular genetic diseases at unusually high frequencies.

Genetic counselors are individuals with an education in genetics, espe-
cially population genetics, as well as counseling, probability, and statis-
tics. It is their job to help couples thinking about having children evaluate
the risk in doing so. They approach their task with the latest statistical
information about gene frequencies in the “general” population as well as
information about gene frequencies among specific subgroups. They
must be conversant with the medical characteristics of a host of genetic
diseases. From this information they can estimate the probability that a
particular couple will produce a child with the trait of interest.

What is to be done with this information? Risk, in the end, is in the eye
of the beholder. Although it is possible to evaluate risk, the meaning of
the risk—and in particular the determination of whether or not to risk hav-
ing a child with a particular trait—is always a matter for the couple to
decide. Although certain tests can determine whether an individual is a
carrier of a particular gene, there is no test that can tell an individual
what is the “right” course of action for him or her. This is where the
genetic counselor’s counseling skills are required.

The job of genetic counselor is becoming increasingly important as
information about human genetics increases. As knowledge proliferates,
couples are faced with increasingly complicated decisions about what,
if anything, they should do to control the genetic makeup of the children
they may have in the future. The complications arise because with
increasingly sophisticated technology, it is not only possible to know
more about the child before it is born; it is also possible to do more to
the child before it is born. Operations can now be performed on the
fetus, and the potential for genetic manipulation is on the horizon. As the
number of options increases, so does the complexity of the decisions
with which couples will be faced.
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likely “effect” of a given “cause,” or they abandon the notion of
cause and effect entirely and instead search for correlations
between one data set and another. Rather than being mutually
exclusive, the philosophy of cause and effect that is so characteris-
tic of classical physics and the probabilistic analysis that is charac-
teristic of population genetics are now just two alternative,
complementary ways of perceiving the same phenomenon.



C H R O N O L O G Y

ca. 3000 B.C.E.
Hieroglyphic numerals are in use in Egypt.

ca. 2500 B.C.E.
Construction of the Great Pyramid of Khufu takes place.

ca. 2400 B.C.E.
An almost complete system of positional notation is in use in
Mesopotamia.

ca. 1800 B.C.E.
The Code of Hammurabi is promulgated.

ca. 1650 B.C.E.
The Egyptian scribe Ahmes copies what is now known as the Ahmes
(or Rhind) papyrus from an earlier version of the same document.

ca. 1200 B.C.E.
The Trojan War is fought.

ca. 740 B.C.E.
Homer composes the Odyssey and the Iliad, his epic poems about
the Trojan War.

ca. 585 B.C.E.
Thales of Miletus carries out his research into geometry, marking
the beginning of mathematics as a deductive science.

ca. 540 B.C.E.
Pythagoras of Samos establishes the Pythagorean school of 
philosophy.

ca. 500 B.C.E.
Rod numerals are in use in China.
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ca. 420 B.C.E.
Zeno of Elea proposes his philosophical paradoxes.

ca. 399 B.C.E.
Socrates dies.

ca. 360 B.C.E.
Eudoxus, author of the method of exhaustion, carries out his
research into mathematics.

ca. 350 B.C.E.
The Greek mathematician Menaechmus writes an important work
on conic sections.

ca. 347 B.C.E.
Plato dies.

332 B.C.E.
Alexandria, Egypt, center of Greek mathematics, is established.

ca. 300 B.C.E.
Euclid of Alexandria writes Elements, one of the most influential
mathematics books of all time.

ca. 260 B.C.E.
Aristarchus of Samos discovers a method for computing the ratio of
the Earth-Moon distance to the Earth-Sun distance.

ca. 230 B.C.E.
Eratosthenes of Cyrene computes the circumference of Earth.

Apollonius of Perga writes Conics.

Archimedes of Syracuse writes The Method, Equilibrium of Planes,
and other works.

206 B.C.E.
The Han dynasty is established; Chinese mathematics flourishes.

ca. C.E. 150
Ptolemy of Alexandria writes Almagest, the most influential
astronomy text of antiquity.
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ca. C.E. 250
Diophantus of Alexandria writes Arithmetica, an important step for-
ward for algebra.

ca. 320
Pappus of Alexandria writes his Collection, one of the last influential
Greek mathematical treatises.

415
The death of the Alexandrian philosopher and mathematician
Hypatia marks the end of the Greek mathematical tradition.

ca. 476
The astronomer and mathematician Aryabhata is born; Indian
mathematics flourishes.

ca. 630
The Hindu mathematician and astronomer Brahmagupta writes
Brahma-sphuta-siddhānta, which contains a description of place-
value notation.

641
The Library of Alexandria is burned.

ca. 775
Scholars in Baghdad begin to translate Hindu and Greek works into
Arabic.

ca. 830
Mohammed ibn-Mūsā al-Khwārizmı̄ writes Hisāb al-jabr wa’l
muqābala, a new approach to algebra.

833
Al-Ma’mūn, founder of the House of Wisdom in Baghdad (now
Iraq), dies.

ca. 840
The Jainist mathematician Mahavira writes Ganita Sara Samgraha,
an important mathematical textbook.

1071
William the Conqueror quells the last of the English rebellions.
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1086
An intensive survey of the wealth of England is carried out and
summarized in the tables and lists of the Domesday Book.

1123
Omar Khayyám, author of Al-jabr w’al muqābala and the Rubáiyát,
the last great classical Islamic mathematician, dies.

ca. 1144
Bhaskara II writes the Lilavati and the Vija-Ganita, two of the last
great works in the classical Indian mathematical tradition.

ca. 1202
Leonardo of Pisa (Fibonacci), author of Liber Abaci, arrives in
Europe from Africa, where his father worked.

1360
Nicholas Oresme, a French mathematician and Roman Catholic
bishop, represents distance as the area beneath a velocity line.

1471
The German artist Albrecht Dürer is born.

1482
Leonardo da Vinci begins to record his diaries.

ca. 1541
Niccolò Fontana, an Italian mathematician, also known as
Tartaglia, discovers a general method for factoring third-degree
algebraic equations.

1543
Copernicus publishes De Revolutionibus, marking the start of the
Copernican revolution.

1545
Girolamo Cardano, an Italian mathematician and physician, pub-
lishes Ars Magna, marking the beginning of modern algebra. Later
he publishes Liber de Ludo Aleae, the first book on probability.

ca. 1554
Sir Walter Raleigh, an explorer, adventurer, and amateur mathe-
matician and patron of mathematician Thomas Harriot, is born.
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1579
François Viète, a French mathematician, publishes Canon Mathe-
maticus, marking the beginning of modern algebraic notation.

1585
The Dutch mathematician and engineer Simon Stevin publishes
“La disme.”

1609
Johannes Kepler, the author of Kepler’s laws of planetary motion,
publishes Astronomia Nova.

Galileo Galilei begins his astronomical observations.

1621
The English mathematician and astronomer Thomas Harriot dies.
His only work, Artis Analyticae Praxis, is published in 1631.

ca. 1630
The French lawyer and mathematician Pierre de Fermat begins a
lifetime of mathematical research. He is the first person to claim to
have proved “Fermat’s last theorem.”

1636
Gérard (or Girard) Desargues, a French mathematician and 
engineer, publishes Traité de la section perspective, which marks the
beginning of projective geometry.

1637
René Descartes, a French philosopher and mathematician, publishes
Discours de la méthode, permanently changing both algebra and
geometry.

1638
Galileo Galilei publishes Dialogues Concerning Two New Sciences
while under arrest.

1640
Blaise Pascal, a French philosopher, scientist, and mathematician,
publishes Essai sur les coniques, an extension of the work of
Desargues.
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1642
Blaise Pascal manufactures an early mechanical calculator, the
Pascaline.

1648
The Thirty Years’ War, a series of conflicts that involves much of
Europe, ends.

1649
Oliver Cromwell takes control of the English government after a
civil war.

1654
Pierre de Fermat and Blaise Pascal exchange a series of letters about
probability, thereby inspiring many mathematicians to study the
field.

1655
John Wallis, an English mathematician and clergyman, publishes
Arithmetica Infinitorum, an important work that presages calculus.

1657
Christian Huygens, a Dutch mathematician, astronomer, and
physicist, publishes De Ratiociniis in Ludo Aleae, a highly influential
text in probability theory.

1662
John Graunt, an English businessman and a pioneer in statistics,
publishes his research on the London Bills of Mortality.

1673
Gottfried Leibniz, a German philosopher and mathematician, con-
structs a mechanical calculator that can perform addition, subtrac-
tion, multiplication, division, and extraction of roots.

1683
Seki Köwa, a Japanese mathematician, discovers the theory of
determinants.

1684
Gottfried Leibniz publishes the first paper on calculus, Nova
Methodus pro Maximis et Minimis.
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1687
Isaac Newton, a British mathematician and physicist, publishes
Philosophiae Naturalis Principia Mathematica, beginning a new era in
science.

1693
Edmund Halley, a British mathematician and astronomer,
undertakes a statistical study of the mortality rate in Breslau,
Germany.

1698
Thomas Savery, an English engineer and inventor, patents the first
steam engine.

1705
Jacob Bernoulli, a Swiss mathematician, dies. His major work on
probability, Ars Conjectandi, is published in 1713.

1712
The first Newcomen steam engine is installed.

1718
Abraham de Moivre, a French mathematician, publishes The
Doctrine of Chances, the most advanced text of the time on the the-
ory of probability.

1743
The Anglo-Irish Anglican bishop and philosopher George Berkeley
publishes The Analyst, an attack on the new mathematics pioneered
by Isaac Newton and Gottfried Leibniz.

The French mathematician and philosopher Jean Le Rond
d’Alembert begins work on the Encyclopédie, one of the great works
of the Enlightenment.

1748
Leonhard Euler, a Swiss mathematician, publishes his Introductio.

1749
The French mathematician and scientist George-Louis Leclerc
Buffon publishes the first volume of Histoire naturelle.
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1750
Gabriel Cramer, a Swiss mathematician, publishes Cramer’s rule, a
procedure for solving systems of linear equations.

1760
Daniel Bernoulli, a Swiss mathematician and scientist, publishes his
probabilistic analysis of the risks and benefits of variolation against
smallpox.

Thomas Bayes, an English theologian and mathematician, dies. His
“Essay Towards Solving a Problem in the Doctrine of Chances” is
published two years later.

1761
The English scientist Joseph Black proposes the idea of latent
heat.

1762
Catherine II (Catherine the Great) is proclaimed empress of Russia.

1769
James Watt obtains his first steam engine patent.

1775
American colonists and British troops fight battles at Lexington and
Concord, Massachusetts.

1778
Voltaire (François-Marie Arouet), a French writer and philosopher,
dies.

1781
William Herschel, a German-born British musician and astronomer,
discovers Uranus.

1789
Unrest in France culminates in the French Revolution.

1793
The Reign of Terror, a period of brutal, state-sanctioned repres-
sion, begins in France.
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1794
The French mathematician Adrien-Marie Legendre (or Le Gendre)
publishes his Éléments de géométrie, a text that influences mathemat-
ics education for decades.

Antoine-Laurent Lavoisier, a French scientist and the discoverer of
the law of conservation of matter, is executed by the French gov-
ernment.

1798
Benjamin Thompson (Count Rumford), a British physicist, pro-
poses the equivalence of heat and work.

1799
Napoléon Bonaparte seizes control of the French government.

Caspar Wessel, a Norwegian mathematician and surveyor, publish-
es the first geometric representation of the complex numbers.

1801
Carl Friedrich Gauss, a German mathematician, publishes
Disquisitiones Arithmeticae.

1805
Adrien-Marie Le Gendre, a French mathematician, publishes
“Nouvelles méthodes pour la détermination des orbites des
comètes,” which includes the first description of the method of
least squares.

1806
Jean-Robert Argand, a French bookkeeper, accountant, and math-
ematician, develops the Argand diagram to represent complex
numbers.

1812
Pierre-Simon Laplace, a French mathematician, publishes Théorie
analytique des probabilite’s, the most influential 19th-century work on
the theory of probability.

1815
Napoléon suffers final defeat at the battle of Waterloo.
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Jean-Victor Poncelet, a French mathematician and the “father of
projective geometry,” publishes Traité des propriétés projectives 
des figures.

1824
The French engineer Sadi Carnot publishes Réflexions, wherein he
describes the Carnot engine.

Niels Henrik Abel, a Norwegian mathematician, publishes his
proof of the impossibility of algebraically solving a general fifth-
degree equation.

1826
Nikolay Ivanovich Lobachevsky, a Russian mathematician and the
“Copernicus of geometry,” announces his theory of non-Euclidean
geometry.

1828
Robert Brown, a Scottish botanist, publishes the first description of
Brownian motion in “A Brief Account of Microscopical
Observations.”

1830
Charles Babbage, a British mathematician and inventor, begins
work on his analytical engine, the first attempt at a modern 
computer.

1832
János Bolyai, a Hungarian mathematician, publishes Absolute Science
of Space.

The French mathematician Évariste Galois is killed in a duel.

1843
James Prescott Joule publishes his measurement of the mechanical
equivalent of heat.

1846
The planet Neptune is discovered by the French mathematician
Urbain-Jean-Joseph Le Verrier from a mathematical analysis of the
orbit of Uranus.
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1847
Georg Christian von Staudt publishes Geometrie der Lage, which
shows that projective geometry can be expressed without any con-
cept of length.

1848
Bernhard Bolzano, a Czech mathematician and theologian, dies. His
study of infinite sets, Paradoxien des Unendlichen, is published in 1851.

1850
Rudolph Clausius, a German mathematician and physicist, publish-
es his first paper on the theory of heat.

1851
William Thomson (Lord Kelvin), a British scientist, publishes “On
the Dynamical Theory of Heat.”

1854
George Boole, a British mathematician, publishes Laws of Thought.
The mathematics contained therein makes possible the later design
of computer logic circuits.

The German mathematician Bernhard Riemann gives the historic
lecture “On the Hypotheses That Form the Foundations of
Geometry.” The ideas therein later play an integral part in the
theory of relativity.

1855
John Snow, a British physician, publishes “On the Mode of
Communication of Cholera,” the first successful epidemiological
study of a disease.

1859
James Clerk Maxwell, a British physicist, proposes a probabilistic
model for the distribution of molecular velocities in a gas.

Charles Darwin, a British biologist, publishes On the Origin of
Species by Means of Natural Selection.

1861
The American Civil War begins.
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1866
The Austrian biologist and monk Gregor Mendel publishes 
his ideas on the theory of heredity in “Versuche über
Pflanzenhybriden.”

1867
The Canadian Articles of Confederation unify the British colonies
of North America.

1871
Otto von Bismarck is appointed first chancellor of the German
Empire.

1872
The German mathematician Felix Klein announces his Erlanger
Programme, an attempt to categorize all geometries with the use of
group theory.

William Thomson (Lord Kelvin) develops an early analog computer
to predict tides.

Richard Dedekind, a German mathematician, rigorously establish-
es the connection between real numbers and the real number line.

1874
Georg Cantor, a German mathematician, publishes “Über eine
Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen,” a pio-
neering paper that shows that not all infinite sets are the same size.

1890
The Hollerith tabulator, an important innovation in calculating
machines, is installed at the United States Census for use in the
1890 census.

1899
The German mathematician David Hilbert publishes the definitive
axiomatic treatment of Euclidean geometry.

1900
David Hilbert announces his list of mathematics problems for the
20th century.
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The Russian mathematician Andrey Andreyevich Markov begins
his research into the theory of probability.

1901
Henri-Léon Lebesgue, a French mathematician, develops his the-
ory of integration.

1905
Ernst Zermelo, a German mathematician, undertakes the task of
axiomatizing set theory.

Albert Einstein, a German-born American physicist, begins to pub-
lish his discoveries in physics.

1906
Marian Smoluchowski, a Polish scientist, publishes his insights into
Brownian motion.

1908
The Hardy-Weinberg law, containing ideas fundamental to popu-
lation genetics, is published.

1910
Bertrand Russell, a British logician and philosopher, and Alfred
North Whitehead, a British mathematician and philosopher, 
publish Principia Mathematica, an important work on the founda-
tions of mathematics.

1914
World War I begins.

1917
Vladimir Ilyich Lenin leads a revolution that results in the found-
ing of the Union of Soviet Socialist Republics.

1918
World War I ends.

The German mathematician Emmy Noether presents her ideas on
the roles of symmetries in physics.
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1929
Andrey Nikolayevich Kolmogorov, a Russian mathematician,
publishes General Theory of Measure and Probability Theory, estab-
lishing the theory of probability on a firm axiomatic basis for the
first time.

1930
Ronald Aylmer Fisher, a British geneticist and statistician, publish-
es Genetical Theory of Natural Selection, an important early attempt
to express the theory of natural selection in mathematics.

1931
Kurt Gödel, an Austrian-born American mathematician, publishes
his incompleteness proof.

The Differential Analyzer, an important development in analog
computers, is developed at Massachusetts Institute of Technology.

1933
Karl Pearson, a British innovator in statistics, retires from
University College, London.

1935
George Horace Gallup, a U.S. statistician, founds the American
Institute of Public Opinion.

1937
The British mathematician Alan Turing publishes his insights on
the limits of computability.

1939
World War II begins.

William Edwards Deming joins the United States Census Bureau.

1945
World War II ends.

1946
The Electronic Numerical Integrator and Calculator (ENIAC)
computer begins operation at the University of Pennsylvania.
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1948
While working at Bell Telephone Labs in the United States, Claude
Shannon publishes “A Mathematical Theory of Communication,”
marking the beginning of the Information Age.

1951
The Universal Automatic Computer (UNIVAC I) is installed at
U.S. Bureau of the Census.

1954
FORmula TRANslator (Fortran), one of the first high-level com-
puter languages, is introduced.

1956
The American Walter Shewhart, an innovator in the field of quali-
ty control, retires from Bell Telephone Laboratories.

1957
Olga Oleinik publishes “Discontinuous Solutions to Nonlinear
Differential Equations,” a milestone in mathematical physics.

1964
IBM Corporation introduces the IBM System/360 computer for
government agencies and large businesses.

1965
Andrey Nikolayevich Kolmogorov establishes the branch of 
mathematics now known as Kolmogorov complexity.

1966
A Programming Language (APL) computer language is imple-
mented on the IBM System/360 computer.

1972
Amid much fanfare the French mathematician and philosopher
René Thom establishes a new field of mathematics called catas-
trophe theory.

1973
The C computer language, developed at Bell Laboratories, is
essentially completed.
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1975
The French geophysicist Jean Morlet helps develop a new kind of
analysis based on what he calls wavelets.

1977
Digital Equipment Corporation introduces the VAX computer.

1981
IBM Corporation introduces the IBM personal computer (PC).

1989
The Belgian mathematician Ingrid Daubechies develops what has
become the mathematical foundation for today’s wavelet research.

1991
The Union of Soviet Socialist Republics dissolves into 15 separate
nations.

1995
The British mathematician Andrew Wiles publishes the first proof
of Fermat’s last theorem.

Cray Research introduces the CRAY E-1200, a machine that sus-
tains a rate of one terraflop (1 trillion calculations per second) on
real-world applications.

JAVA computer language is introduced commercially by Sun
Microsystems.

1997
René Thom declares the mathematical field of catastrophe theory
“dead.”

2002
Experimental Mathematics celebrates its 10th anniversary. It is a 
refereed journal dedicated to the experimental aspects of mathe-
matical research.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena create a brief,
elegant algorithm to test whether a number is prime, thereby solv-
ing an important centuries-old problem.
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2003
Grigory Perelman produces what may be the first complete proof
of the Poincaré conjecture, a statement on the most fundamental
properties of three-dimensional shapes.
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G L O S S A R Y

axiom a statement accepted as true that serves as a basis for deduc-
tive reasoning

calculus the branch of mathematics that is based on the ideas and
techniques of differentiation and integration. The techniques of cal-
culus have enabled researchers to solve many new problems in math-
ematics and physics

caloric a hypothetical form of matter (now known not to exist) that
was thought to be responsible for heat

Carnot engine a theoretical heat engine that establishes a bound
on the efficiency of all heat engines operating between any two ther-
mal reservoirs at given temperatures

celestial sphere an imaginary sphere—with Earth at or near its
center—against which the stars seem to be projected

classical physics the branch of physics composed of logical con-
sequences of the laws of conservation of momentum, mass, 
and energy as they were first proposed in the 17th, 18th, and 19th 
centuries

conservation of energy the physical principle that the total ener-
gy of any isolated system remains constant

conservation law the statement that a physical property, such as
energy, is preserved over the course of a transformation or process
provided that the system in which the transformation occurs is isolat-
ed from its surroundings

conservation of mass the physical principle that in an isolated 
system (in the absence of nuclear reactions) the mass of the system
remains constant
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conservation of momentum the physical principle that the total
momentum of an isolated system remains constant

convergent series an infinite series of numbers with the property
that the sum of the first n terms of the series approaches a unique
number as the value of n tends toward infinity

continuity equation the mathematical statement that in an isolat-
ed system a fluid’s mass is a conserved property

derivative the limit of a ratio formed by the difference in the
dependent variable to the difference in the independent variable as
the difference in the independent variable tends toward 0

differential equation an equation containing the derivatives of an
unknown function. The solution of a differential equation is the
function or functions whose derivatives satisfy the equation and any
subsidiary conditions

differentiation the act of computing a derivative

DNA (deoxyribonucleic acid) the molecule of heredity; the mecha-
nism that encodes all of the information required to enable a cell to
develop into an individual organism

ecliptic the circle formed by the intersection of the celestial sphere
and the plane containing the Earth’s orbital path

efficiency in thermodynamics the work performed by a cyclic heat
engine per cycle divided by the amount of heat absorbed per cycle
expressed as a percentage; the closer this quotient is to 100 percent,
the more efficient the engine

ellipse a closed curve obtained by the intersection of a right circu-
lar cone and a plane

entropy a measure of the amount of energy in a physical system
that is unavailable to do work

first law of thermodynamics the assertion that energy is a con-
served property
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fluid dynamics the branch of physics that deals with the properties
of liquids and gases in motion

gene the basic unit of biological inheritance. A single gene controls
the production or expression of a single protein

Hardy-Weinberg law a fundamental principle of population genet-
ics that states sufficient conditions for the stability of gene frequen-
cies from one generation to the next. There are six conditions: (1)
The population must be very large; (2) reproduction occurs random-
ly; (3) there is no migration into or out of the population; (4) there
are no differential survival rates; (5) the number of offspring pro-
duced does not vary between individuals or between reproducing
pairs of individuals; (6) the genes do not mutate

heat energy that is transferred from one body to another as a result
of a temperature difference between the two bodies

heliostatic model the model of the solar system that states that the
Sun is motionless and that the planets orbit a point that is not neces-
sarily the center of the Sun

infinitesimal analysis the branch of mathematics from which 
calculus developed. It involves the manipulation of quantities that are
“infinitesimal,” or incalculably small

integration the ideas and techniques belonging to calculus that are
used in computing the lengths of curves, the size of areas, and the vol-
umes of solids

invariant unchanged by a particular set of mathematical or physical
transformations

Kepler’s laws of planetary motion three statements formulated
by Johannes Kepler that describe the motion of planets about the Sun

latent heat heat that, when transferred from one body to another,
results in a change of phase rather than a change of temperature

law of gravity the description of how the gravitational force exert-
ed between two bodies depends upon the distance between them and
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their masses. The law of gravity states that the strength of the gravi-
tational force exerted between two bodies is proportional to the prod-
uct of the masses of the bodies and inversely proportional to the
square of the distance between them

laws of heredity the basic principles that describe how traits are
passed from one generation to the next as well as how those traits are
expressed. These laws were first formulated by Gregor Mendel. In
modern terminology Mendel asserted that (1) heredity is particulate,
that is, there exists a basic unit of inheritance—now called a gene; (2)
each organism inherits one copy of each gene from each parent; and
(3) genes on different chromosomes are inherited independently of
one another. Mendel went on to describe the ways different forms of
the same gene were expressed in an individual

laws of motion three statements, first formulated in their
entirety by Isaac Newton, that describe the ways forces affect
motions: (1) A body maintains its state of rest or of uniform
motion unless acted upon by an external force; (2) the change in
momentum of a body is proportional to the strength of the force
acting on it and is made in the direction in which the force is
impressed; (3) forces occur in pairs; when body A exerts a force on
body B, body B exerts a force that is equal in magnitude and oppo-
site in direction on body A

mechanical equivalent of heat the statement that a given amount
of work is always equivalent to a particular amount of heat energy,
specifically: 4.18 Joules of mechanical energy equals 1 calorie of heat
energy

momentum the physical property of a body that equals the mass of
the body times its velocity

mutation random change in the genetic makeup of an organism

parabola the curve formed by the intersection of a right circular
cone and a plane when the plane is parallel to a line that generates the
cone

phase the physical state of matter. Matter generally occurs in one
of three phases: liquid, solid, or gas
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Platonic solids the set of five regular solids consisting of the
tetrahedron, the octahedron, the cube, the dodecahedron, and the
icosahedron

population genetics the branch of genetics that seeks to quantify
the amount of genetic variability present in a population of organisms
as well as the causes of that variability and its rate of change in
response to environmental factors

postulate see AXIOM

protein a complex chain of amino acids joined together

reservoir, thermal a source of heat with the following two proper-
ties: (1) It is at the same temperature throughout; (2) the heat source
holds so much heat that its temperature remains very nearly constant
when it is used in the operation of a heat engine

retrograde motion the apparent west-to-east motion of the planets
as viewed from Earth

second law of thermodynamics the assertion, fundamental to
science, that a process whose only end result is to transfer heat 
from a body at lower temperature to one at a higher temperature is
impossible

sensible heat heat that results in a change in temperature rather
than a change in phase

statics the branch of physics that deals with bodies under the
action of forces that are in equilibrium

station in astronomy a location in the sky where the apparent
motion of a planet across the background stars seems to cease

symmetry a particular type of invariance expressed in physical and
geometrical phenomena. Objects and phenomena exhibit symmetry
with respect to a transformation, such as reflection about a line or
plane, when that transformation leaves the spatial configuration of
the object or phenomenon unchanged. Symmetry can also be defined
for the equations that describe objects or phenomena
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tangent the best straight-line approximation to a smoothly varying
curve at a given point

thermodynamics the branch of physics that deals with the con-
vertability of heat into work and vice versa

zodiac a band of sky centered on the ecliptic that contains the
apparent path of every planet except Pluto when viewed from Earth
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F U R T H E R R E A D I N G

MODERN WORKS

Boyer, Carl B., and Uta C. Merzbach. A History of Mathematics.
New York: John Wiley & Sons, 1991. Boyer was one of the 
preeminent mathematics historians of the 20th century. This work
contains much interesting biographical information. The mathemat-
ical information assumes a fairly strong background of the reader.

Bruno, Leonard C. Math and Mathematicians: The History of
Mathematics Discoveries around the World, 2 vols. Detroit, Mich.:
U·X·L, 1999. Despite its name there is little mathematics in this
two-volume set. What you will find is a very large number of brief
biographies of many individuals who were important in the history
of mathematics.

Courant, Richard, and Herbert Robbins. What Is Mathematics? An
Elementary Approach to Ideas and Mathematics. New York: Oxford
University Press, 1941. A classic and exhaustive answer to the ques-
tion posed in the title. Courant was an important and influential
20th-century mathematician.

Davis, Phillip J. The Lore of Large Numbers. New York: Random
House, 1961. An excellent overview of numbers, how they are writ-
ten, and how they are used in science.

Dewdney, Alexander K. 200% of Nothing: An Eye-Opening Tour
through the Twists and Turns of Math Abuse and Innumeracy. New
York: John Wiley & Sons, 1993. A critical look at how mathemati-
cal reasoning has been abused to distort truth.

Eastaway, Robert, and Jeremy Wyndham. Why Do Buses Come in
Threes? The Hidden Mathematics of Everyday Life. New York: John
Wiley & Sons, 1998. Nineteen lighthearted essays on the mathe-
matics underlying everything from luck to scheduling problems.
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Eves, Howard. An Introduction to the History of Mathematics. New
York: Holt, Rinehart & Winston, 1953. This well-written history of
mathematics places special emphasis on early mathematics. It is
unusual because the history is accompanied by numerous mathe-
matical problems. (The solutions are in the back of the book.)

Freudenthal, Hans. Mathematics Observed. New York: McGraw-Hill,
1967. A collection of seven survey articles about math topics from
computability to geometry to physics (some more technical than
others).

Gardner, M. The Ambidextrous Universe: Mirror Asymmetry and Time-
Reversed Worlds. New York: Scribner’s, 1979. A readable look at
geometric transformations and their physical meaning.

———. The Colossal Book of Mathematics. New York: Norton, 2001.
Martin Gardner had a gift for seeing things mathematically. This
“colossal” book contains sections on geometry, algebra, probability,
logic, and more.

Guillen, Michael. Bridges to Infinity: The Human Side of Mathematics. Los
Angeles: Jeremy P. Tarcher, 1983. This book consists of an engaging
nontechnical set of essays on mathematical topics, including non-
Euclidean geometry, transfinite numbers, and catastrophe theory.

Heath, Thomas L. A History of Greek Mathematics. New York: Dover
Publications, 1981. First published early in the 20th century and
reprinted numerous times, this book is still one of the main refer-
ences on the subject.

Kline, Morris. Mathematics and the Physical World. New York: Thomas
Y. Crowell, 1959. The history of mathematics as it relates to the
history of science and vice versa.

———. Mathematics for the Nonmathematician. New York: Dover
Publications, 1985. An articulate, not very technical overview of
many important mathematical ideas.

———. Mathematics in Western Culture. New York: Oxford University
Press, 1953. An excellent overview of the development of Western
mathematics in its cultural context, this book is aimed at an audi-
ence with a firm grasp of high school–level mathematics.
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Mlodinow, Leonard. Euclid’s Window: The Story of Geometry from
Parallel Lines to Hyperspace. New York: The Free Press, 2001. An
interesting narrative about the interplay between geometry and our
views of the universe from Thales to the present.

North, John. The Norton History of Astronomy and Cosmology. New York:
Norton, 1995. The early sections of this book contain an overview of
the geometrical astronomy of the Mesopotamians and Greeks.

Packel, Edward W. The Mathematics of Games and Gambling.
Washington, D.C.: Mathematical Association of America, 1981. A
well-written introduction to probability theory and random phe-
nomena expressed in the language of games.

Pappas, Theoni. The Joy of Mathematics. San Carlos, Calif.: World
Wide/Tetra, 1986. Aimed at a younger audience, this work searches
for interesting applications of mathematics in the world around us.

Pierce, John R. An Introduction to Information Theory: Symbols, Signals
and Noise. New York: Dover Publications, 1961. Despite the sound
of the title, this is not a textbook. Pierce, formerly of Bell
Laboratories, describes (among other topics) how entropy in physics
is related to the concept of uncertainty in information theory.

Rucker, Rudy V. B. The Fourth Dimension: Toward a Geometry of Higher
Reality. Boston: Houghton Mifflin, 1984. A clever examination of
ideas associated with geometry and perception.

Sawyer, Walter W. What Is Calculus About? New York: Random
House, 1961. A highly readable description of a sometimes intimi-
dating, historically important subject. Absolutely no calculus back-
ground required.

Schiffer, M., and Leon Bowden. The Role of Mathematics in Science.
Washington, D.C.: Mathematical Association of America, 1984.
The first few chapters of this book, ostensibly written for high
school students, will be accessible to many students; the last few
chapters will find a much narrower audience.

Spangenburg, Ray, and Diane K. Moser. Modern Science: 1896–1945.
New York: Facts On File, 2004. Background on scientific ideas that
motivated much of the mathematics of the 20th century.
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Spangenburg, Ray, and Diane K. Moser. The Age of Synthesis:
1800–1895. New York: Facts On File, 2004. Background on scientif-
ic ideas that motivated much of the mathematics of the 19th century.

Stewart, Ian. From Here to Infinity. New York: Oxford University
Press, 1996. A well-written, very readable overview of several
important contemporary ideas in geometry, algebra, computability,
chaos, and mathematics in nature.

———. Life’s Other Secret: The New Mathematics of the Living World.
New York: John Wiley, 1998. As mathematics broadens its scope
from the physical sciences to the biological sciences, new mathemat-
ical ideas will be developed. This book describes some of those ideas.

Swetz, Frank J., editor. From Five Fingers to Infinity: A Journey through
the History of Mathematics. Chicago: Open Court, 1994. This is a
fascinating, though not especially focused look at the history of
mathematics. Highly recommended.

Tabak, John. The History of Mathematics: Geometry. New York: Facts
On File, 2004. More information about the relationships that exist
between geometry and our perception of the world around us.

———. A Look at Neptune. New York: Franklin Watts, 2003.
Primarily for younger readers, this book also contains a demon-
stration of the way the mass of Neptune can be calculated from
observations of the motion of its moon, Triton.

———. History of Mathematics. Probability and Statistics. New York:
Facts On File, 2004. More information about the relationships that
exist between the idea of randomness and the natural world.

Yaglom, Isaac M. Geometric Transformations, translated by Allen
Shields. New York: Random House, 1962. Aimed at high school
students, this is a very sophisticated treatment of “simple” geome-
try and an excellent introduction to higher mathematics. It is also
an excellent introduction to the concept of invariance.

Yoler, Yusuf A. Perception of Natural Events by Human Observers.
Bellevue, Wash.: Unipress, 1993. Sections one and three of this
book give a nice overview of the geometry that is a consequence of
the theory of relativity.
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ORIGINAL SOURCES

Reading the discoverer’s own description can sometimes deepen
our appreciation of an important mathematical discovery. Often
this is not possible, because the description is too technical.
Fortunately there are exceptions. Sometimes the discovery is
accessible because the idea does not require a lot of technical
background to appreciate it; sometimes the discoverer writes a
nontechnical account of the technical idea that she or he has dis-
covered. Here are some classic papers:

Archimedes. The Method Treating of Mechanical Problems.
Translated by Sir Thomas Heath. Great Books of the Western
World. Vol. 11. Chicago: Encyclopaedia Britannica, 1952.
Archimedes’ own account of his method for discovering 
mathematical truth.

Archimedes. On the Equilibrium of Planes, or The Centres of Gravity of
Planes I and II. Translated by Sir Thomas L. Heath. Great Books of the
Western World. Vol. 11. Chicago: Encyclopaedia Britannica, 1952.
This is a beautiful example of applying mathematical methods to the
study of physics by one of the great mathematicians in history.

Copernicus, Nicolaus. On the Revolutions of the Heavenly Spheres.
Translated by Charles Glenn Wallis. Great Books of the Western
World. Vol. 16. Chicago: Encyclopaedia Britannica, 1952. This
book changed the world. It is filled with tables, diagrams, explana-
tions, and a surprising amount of mysticism.

Galilei, Galileo. Dialogues Concerning Two New Sciences. Translated by
Henry Crew and Alfonso de Salvio. New York: Dover Publications,
1954. An interesting literary work as well as a pioneering physics
text. Many regard the publication of this text as the beginning of
the modern scientific tradition.

———. Discoveries and Opinions of Galileo. Translated by Stillman
Drake. New York: Doubleday Anchor Books, 1957. A collection of
short and influential works by Galileo. In the article “The Assayer”
you can read Galileo’s arguments for the adoption of the scientific
method and against reliance on ancient authorities. His ideas have
since become an integral part of our culture.
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Hardy, Godfrey H. A Mathematician’s Apology. Cambridge, England:
Cambridge University Press, 1940. Hardy was an excellent 
mathematician and a good writer. In this oft-quoted and very 
brief book Hardy seeks to explain and sometimes justify his life as
a mathematician.

Kepler, Johannes. Epitome of Copernican Astronomy IV and V.
Translated by Charles Glenn Wallis. Great Books of the Western
World. Vol. 16. Chicago: Encyclopaedia Britannica, 1952. Written
in the form of a long series of questions and answers, Kepler’s
Epitome helped create a new era in astronomy.

———. The Harmonies of the World V. Translated by Charles Glenn
Wallis. Great Books of the Western World. Vol. 16. Chicago:
Encyclopaedia Britannica, 1952. Platonic solids, music, and mysti-
cism are all employed in the study of astronomy. This early work by
Kepler straddles the boundary between the old and new ways of
thinking about science.

Mendel, Gregor. “Mathematics of Heredity.” In The World of
Mathematics. Vol. 2, edited by James R. Newman. New York:
Dover Publications, 1956. Here, in Mendel’s own words, is a
description of how he discovered the laws of heredity. This
account is a remarkable example of imagination and scientific
determination.

Newton, Isaac. Mathematical Principles of Natural Philosophy.
Translated by Andrew Motte, revised by Florian Cajori. Great Books
of the Western World. Vol. 34. Chicago: Encyclopaedia Britannica,
1952. Some of this book is written for experts, but some is quite
accessible. See especially the section “Axioms or Laws of Motion”
for a classic example of how to apply mathematical methods to the
study of physical science.

Ptolemy. The Almagest. Translated by R. Catesby Taliaferro. Great
Books of the Western World. Vol. 16. Chicago: Encyclopaedia
Britannica, 1952. Filled with diagrams, tables, and explanations,
this is one of the most important astronomical texts in history and
an important example of ancient science.

Stevin, Simon. Principal Works. Edited by Ernes Crane et al.; translated
by C. Dikshoorn. 5 vols. Amsterdam: C. V. Swets and Zeitlinger,
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1955–66. Every history of mathematics devotes space to Simon
Stevin, but unlike those of Galileo and Kepler, Stevin’s writings are
difficult to find. This very readable translation is available in some
larger libraries.

Weyl, Hermann. “Symmetry.” In The World of Mathematics. Vol. 1,
edited by James R. Newman. New York: Dover Publications, 1956.
An extended meditation on a geometric idea that has become a 
central organizing principle in contemporary physics by a pioneer
in the subject.

INTERNET RESOURCES

Athena Earth and Space Science for K–12. Available on-line. URL:
http://inspire.ospi.wednet.edu:8001/. Updated May 13, 1999.
Funded by NASA’s Public Use of Remote Sensing Data, this site
contains many interesting applications of mathematics to the study
of natural phenomena.

Beretta, Marco, Andrea Scotti, Daniele Nuzzo, Pietro Corsi, Raphaël
Bange. The Project, Panopticon Lavoisier. Available on-line. URL:
http://moro. imss. f i . i t/ lavois ier/entrance/projbox.html.
Downloaded June 3, 2003. A beautifully crafted website devoted
entirely to Lavoisier and his accomplishments.

The Eisenhower National Clearinghouse for Mathematics and
Science Education. Available on-line. URL: http://www.enc.org/.
Downloaded June 2, 2003. As its name implies, this site is a clear-
inghouse for a comprehensive set of links to interesting sites in
math and science.

Electronic Bookshelf. Available on-line. URL: http://hilbert.
dartmouth.edu/~matc/eBookshelf/art/index.html. Updated May
21, 2002. This site is maintained by Dartmouth College. It is both
visually beautiful and informative, and it has links to many creative
presentations on computer science, the history of mathematics, 
and mathematics. It also treats a number of other topics from a
mathematical perspective.

Eric Weisstein’s World of Mathematics. Available on-line. URL:
http://mathworld.wolfram.com/. Updated April 10, 2002. This site
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has brief overviews of a great many topics in mathematics. The
level of presentation varies substantially from topic to topic.

Faber, Vance, Bonnie Yantis, Mike Hawrylycz, Nancy Casey, Mike
Fellows, Mike Barnett, Gretchen Wissner. This is MEGA
Mathematics! Available on-line. URL: http://www.c3.lanl.gov/
mega-math. Downloaded June 2, 2003. Maintained by the Los
Alamos National Laboratories, one of the premier scientific estab-
lishments in the world, this site has a number of unusual offerings.
It is well worth a visit.

Fife, Earl, and Larry Husch. Math Archives. “History of Mathematics.”
Available on-line. URL: http://archives.math.utk.edu/topics/history.
html. Updated January 2002. Information on mathematics, mathe-
maticians, and mathematical organizations.

Gangolli, Ramesh. Asian Contributions to Mathematics. Available on-
line. URL: http://www.pps.k12.or.us/depts-c/mc-me/be-as-ma.pdf.
Downloaded June 2, 2003. As its name implies, this well-written
on-line book focuses on the history of mathematics in Asia and its
influence on the world history of mathematics. It also includes
information on the work of Asian Americans, a welcome contribu-
tion to the field.

The Math Forum @ Drexel. The Math Forum Student Center.
Available on-line. URL: http://mathforum.org/students/.
Updated June 2, 2003. Probably the best website for information
about the mathematics that students encounter in their school-
related studies. You will find interesting and challenging problems
and solutions for students in grades K–12 as well as a fair amount
of college-level information.

Melville, Duncan J. Mesopotamian Mathematics. Available on-line.
URL: http://it.stlawu.edu/ca.dmelvill/mesomath/. Updated March
17, 2003. This creative site is devoted to many aspects of
Mesopotamian mathematics. It also has a link to a “cuneiform cal-
culator,” which can be fun to use.

O’Connor, John L., and Edmund F. Robertson. The MacTutor
History of Mathematics Archive. Available on-line. URL:
http://www–gap.dcs.st-and.ac.uk/~history/index.html. Updated
May 2003. This is a valuable resource for anyone interested in
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learning more about the history of mathematics. It contains 
an extraordinary collection of biographies of mathematicians in 
different cultures and times. In addition it provides information
about the historical development of certain key mathematical ideas.

PERIODICALS, THROUGH THE MAIL AND ON-LINE

+Plus

URL: http://pass.maths.org.uk
A site with numerous interesting articles about all aspects of high
school math. They send an email every few weeks to their sub-
scribers to keep them informed about new articles at the site.

Function

Business Manager
Department of Mathematics and Statistics
Monash University
Victoria 3800
Australia
function@maths.monash.edu.au
Published five times per year, this refereed journal is aimed at
older high school students.

The Math Goodies Newsletter

http://www.mathgoodies.com/newsletter/
A popular, free e-newsletter that is sent out twice per month.

Parabola: A Mathematics Magazine for Secondary Students

Australian Mathematics Trust
University of Canberra
ACT 2601
Australia
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Published twice a year by the Australian Mathematics Trust 
in association with the University of New South Wales, Parabola
is a source of short high-quality articles on many aspects of
mathematics. Some back issues are also available free on-line.
See URL: http://www.maths.unsw.edu.au/Parabola/index.html.

Pi in the Sky

http://www.pims.math.ca/pi/
Part of the Pacific Institute for the Mathematical Sciences, this
high school mathematics magazine is available over the Internet.

Scientific American

415 Madison Avenue
New York, NY 10017
A serious and widely read monthly magazine, Scientific American
regularly carries high-quality articles on mathematics and mathe-
matically intensive branches of science. This is the one “popular”
source of high-quality mathematical information that you will find
at a newsstand.
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