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PREFACE

In the first edition of this book, I attempted to present a concise and
unified introduction to elastic plate theory. Wherever possible, the
approach was to give a clear physical picture of plate behaviour. The
presentation was thus geared more towards engineers than towards
mathematicians, particularly to structural engineers in aeronautical, civil
and mechanical engineering and to structural research workers. These
comments apply equally to this second edition. The main difference here
is that I have included thermal stress effects, the behaviour of multi-layered
composite plates and much additional material on plates in the large-
deflexion regime. The objective throughout is to derive 'continuum' or
analytical solutions rather than solutions based on numerical techniques
such as finite elements which give little direct information on the
significance of the structural design parameters; indeed, such solutions
can become simply number-crunching exercises that mask the true physical
behaviour.

E.H. Mansfield



PRINCIPAL NOTATION

a, b typical plate dimensions
a,b,d defined by (1.96)
A,B,D defined by (1.93)
D flexural rigidity Et3/{12(1 - v2)}
E, G Young modulus and shear modulus
E defined by (1.89)
k foundation modulus
Lx, L2, L3 differential operators defined after (1.98)
Mx,My,Mxy) , , . , . .
M M M ( ^ e n ^ m S anc* twisting moments per unit length
M" " ' (Mx,My,Mxy)T

Ma total moment about a generator
n normal to boundary
Nx,Ny,Nxy direct and shear forces per unit length in plane of plate
N (Nx9Ny,Nxy)T

P point load

transverse shear forces per unit length

q transverse loading per unit area
^n^mn coefficients in Fourier expansions for q
r, 9, z cylindrical coordinates, r, 6 in plane of plate
s distance along boundary
t plate thickness
t time, or tangent to boundary
T temperature, torque
17 strain energy
M, v9 w displacements in x, y, z directions
wl9wp particular integrals
w2, wc complementary functions
x, y, z Cartesian coordinates, x, y in plane of plate
a coefficient of thermal expansion, angle between generator

and x-axis



Principal notation xi

£joe)>>£xy direct and shear strains in plane z = const.
ST,KT thermal strain and curvature, see (1.56) and (1.57)
€ (£x,£y,Sxy)T

rj distance along a generator
KX, Ky, Kxy curvatures, — (d2w/dx2\ etc.
K (Kx,Ky92Kxy)
v Poisson ratio
II potential energy
Q transverse edge support stiffness, or rjr^
ax>ay>?xy direct and shear stresses in plane z = const.

cp complex potential function, or - dw/dr
Q> force function
X rotational edge support stiffness, or complex potential

function
\jj angle between tangent to boundary and x-axis

dx2 ' dy2

2fd2g 2 82f d2g | d2fd2g
dx2 dy2 dxdy dxdy dy2 dx2

+ gW2f)}
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SMALL-DEFLEXION
THEORY





1
Derivation of the basic equations

All structures are three-dimensional, and the exact analysis of stresses in
them presents formidable difficulties. However, such precision is seldom
needed, nor indeed justified, for the magnitude and distribution of the
applied loading and the strength and stiffness of the structural material are
not known accurately. For this reason it is adequate to analyse certain
structures as if they are one- or two-dimensional. Thus the engineer's
theory of beams is one-dimensional: the distribution of direct and shearing
stresses across any section is assumed to depend only on the moment and
shear at that section. By the same token, a plate, which is characterized
by the fact that its thickness is small compared with its other linear
dimensions, may be analysed in a two-dimensional manner. The simplest
and most widely used plate theory is the classical small-deflexion theory
which we will now consider.

The classical small-deflexion theory of plates, developed by Lagrange
(1811), is based on the following assumptions:

(i) points which lie on a normal to the mid-plane of the undeflected
plate lie on a normal to the mid-plane of the deflected plate;

(ii) the stresses normal to the mid-plane of the plate, arising from the
applied loading, are negligible in comparison with the stresses in
the plane of the plate;

(iii) the slope of the deflected plate in any direction is small so that its
square may be neglected in comparison with unity;

(iv) the mid-plane of the plate is a 'neutral plane', that is, any mid-plane
stresses arising from the deflexion of the plate into a non-
developable surface may be ignored.

These assumptions have their counterparts in the engineer's theory of
beams; assumption (i), for example, corresponds to the dual assumptions
in beam theory that 'plane sections remain plane' and 'deflexions due to
shear may be neglected'.

Possible sources of error arising from these assumptions are discussed
later.
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1.1 Stress-strain relations
Let us consider now the state of stress in a plate with an arbitrary small
deflexion w(x, y) (see Fig. 1.1). The mid-plane is a neutral plane and
accordingly we shall focus attention on the state of strain, and hence the
state of stress, in a plane at a distance z from the mid-plane. The slopes
of the mid-plane are (dw/dx) and (dw/dy) so that the displacements u and
v in the x, y-plane at a distance z from the mid-plane are given by

dw "
u= — z-

dw
v= —z-

The strains in this x, y-plane are therefore given by

du
£ = dx

= — z
d2w
'dxT'

dv

d2w

du dv
xy ~ dy dx

= -2z-

(1.2)

dxdy' t

Now by virtue of assumption (ii) of, a state of plane stress exists



Stress-strain relations

in the x,y-plane so that the strains eX9ey,exy are related to the stresses
ox,cy,xxy by the relations

1 ,

\ 2(1 + v)

(1.3)

Equations (1.2) and (1.3) may be combined to give

Ez fd2w d2ws

Ez d2w d2w
Jy2~ + VJxT

Ez d2w

(1.4)

These stresses vary linearly through the thickness of the plate and are
equivalent to moments per unit length acting on an element of the plate,
as shown in Fig. 1.2. Thus,

-f

j-it

Z(TYdz

d2w
8x2 ' By2/

z(jydz

d2w d2w

M, zxxydz
J-it

(1.5)

d2w
dxdy'

where the flexural rigidity D of the plate is defined by

Et3

D = 12(1 - v 2 ) '
(1.6)
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Fig. 1.2

Note, too, that because of the equality of complementary shears xxy and
Tyx it follows that

(1.7)

In what follows, no distinction is drawn between the complementary
twisting moments, and the symbol Mxy is used to denote them both.

1,1.1 Curvatures of the deflected plate
The curvatures of the plate in planes parallel to the x, z- and y, z-planes
are — (d2w/dx2) and — (d2w/dy2), and these will sometimes by represented
by the symbols KX and Ky. Strictly speaking, the curvature KX9 for example,
is given by

d2w

dw 2^)3 /2 = (1.8)

but in virtue of assumption (iii) the denominator may be taken equal to
unity. The minus sign has been introduced so that an increase in Mx

causes an increase in KX. The term — (d2w/dxdy) is the twisting curvature
and is represented by the symbol Kxy.

It can be seen from (1.5) that the curvature at a point may be expressed
simply in terms of the moments per unit length. Thus we find

= (Mx-vMy)/{(l-v2)D},
= (My-vMx)/{(l-v2)D}, (1.9)

1.1.2 Deflexion of plate with constant curvatures
It can be readily verified by differentiation that the deflected form of a



Rotation of axes of reference
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Fig. 1.3

plate under constant values of the curvatures KX, Ky, Kxy is given by

— w = \KXX2 + Kxyxy + jKyy2, (1-10)

to which may be added a rigid body displacement of the form (Ax + By + C).

1.2 Rotation of axes of reference
If the deflected form of (1.10) is referred to a new system of Cartesian axes
OX, OY obtained by rotating the axes Ox, Oy through an angle 9, as in
Fig. 1.3, so that

x = Xcos9-Ysin9)
y = Xsin9+ Ycos0,J

it is seen that

- w = %KX(X cos 9 - Y sin 9)2 + Kxy(X cos 9 - Y sin 9)
-(X sin 9 + Ycos 9) + $Ky(X sin 0 + Ycos 0)2

= \(KX COS2 0 + 2KX>, sin 9 cos 0 + Ky sin20)X2

+ { K - KX) sin 0cos 9 + fc^cos20 - sin29)}XY
(Kxsm29-2Kxysm9cos9 + Ky<:os29)Y2

(1.11)

KYY2. (1.12)

Equating coefficients of X2, Y2 and XY makes it possible to express
KX, KY, KXY in terms of KX, Ky, Kxy:

KX = KX cos2 9 + 2xxy sin 9 cos 9 + jcy sin2 9
Ky = KX sin2^ — 2KX>, sin 9 cos 0 + Ky cos2 9

KXY = (K. — jcx) sin 0 cos 9 + /c (cos20 — sin2fl).
(1.13)

1.2.1 Invariant relationships
Two invariant relationships between the curvatures may be obtained from
(1.13) by eliminating 9. For example, by adding the first two of (1.13) and
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dividing by 2 we find that for any value of 0

\(KX + KY) = ̂ KX + Ky). (1.14)
This expression is referred to as the average curvature.

Similarly, it can be shown that

y =, + / vz^y . (U5)

This sum is later shown to be the square of the maximum twisting
curvature. Furthermore, (1.14) and (1.15) may be combined to give

KXKY - K2
XY = KxKy - K2

xy. (1.16)

This expression is referred to as the Gaussian curvature.

1.2.2 Principal axes of reference
It is frequently convenient to choose the angle 0 in such a way that the
twisting curvature KXY vanishes. Now the twisting curvature, given by
(1.13), may be written in the form

KXY = ^(Ky —  KX) sin 20 + Kxy cos 26

i
sin 2(6 -P) (1.17)

where

j8 = ^ t a n " 1 ( — ^ - ) , (1.18)

\KX Ky )

and KXY therefore vanishes when

6 = p or |TT + JS. (1.19)
When the axes are chosen to satisfy (1.19) they are called principal axes.
Now, corresponding to (1.17), we may write

—K V I  1/2

cos 2(6 -i

(1.20)

which shows that KX and KY assume maximum and minimum values when
(1.19) is satisfied.

Maximum twisting curvature. The maximum value of the twisting
curvature, given by (1.17), occurs when

sin2(0-j8)= ± 1 ,



Equilibrium

that is,

or 3n/4 + P (1.21)

which shows that the twisting curvature is a maximum on planes bisecting
the principal planes of curvature, and on such planes

KX
==KY = ^(KX + Ky). (1.22)

1.2.3 Resolution of moments Mx, MY, MXY

The moments Mx, My , MXY may be expressed in terms of Mx, My, Mxy

either directly by considering the equilibrium of an element of the plate, or
indirectly by virtue of (1.5) and (1.13). Thus we find

Mx = Mx cos2 9 + 2Mxy sin 6 cos 6 + My sin2 6
MY = Mx sin2 6 - 2Mxy sin 9 cos 6 + My cos2 6 > (1.23)

MXY = {My - Mx) sin 6 cos 6 + Mxy(cos2 6 - sin2 J

These equations have the same form as those of (1.13) for the curvatures.
Furthermore, from (1.5)

and equations (1.14)—(1.22) are therefore valid when the symbol K is
replaced throughout by M. Thus we find,

maximum twisting moment = < M

principal moments = \{MX + My) ± \ M2
xy + I

(1.24)

1.3 Equilibrium
A typical element of the plate bounded by the lines x, x + <5x, y9 y + dy
may be subjected to a distributed normal loading of intensity q, positive
if acting in the direction of positive w. The resultant normal force qdxdy
on the plate elements is reacted by normal shears acting over the sides of
the element. The magnitude per unit length of the shears acting on a side
normal to the x-axis is denoted by Qx, that on a side normal to the y-axis
by Qy (see Fig. 1.4). Resolving normal to the plate gives

-r-^ dxdy + —-̂  dxdy + qdxdy = 0,
ox dy
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Fig. 1.4

whence

(1.25)

Similarly, by taking moments about the y- and x-axes of all forces acting
on the element, we obtain

Qx = dx dy

dMv 5Mri

dx

(1.26)

An equation of equilibrium may now be expressed in terms of derivatives
of the moments and the applied loading by eliminating Qx, Qy from (1.25)
and (1.26), giving

(1.27)
dx2 dxdy dy2

1.4 Differential equation for the deflexion
The differential equation for the deflexion of the plate is obtained by
substituting the moment-curvature relationships of (1.5) in the equilibrium
equation (1.27). If the flexural rigidity D is a function of x,y we obtain

d2w
dx2)D\^ T T + V1TT )t + 2(1 - v)dx2 dy2j)

d2w

dxdy { dxdy)

(1.28a)
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which may be written in the following invariant form,

V2(DV2w) - (1 - v)O4(Z), w) = q9 (1.28b)
where

and the "die-operator" is defined by

0 2{D, w) = i{(V2D)(V2w) + V2(Z>V2w + wV2D)}

Dw) + DV4w + wV40}
82D d2w _ (?D d2w d2D 82W

~d2~d2~ ~

1.4.1 Plate with constant rigidity

When D is a constant, (1.28) simplifies to

V4w = - | (1.29)

and the shears per unit length, Qx and Qy, may be expressed in the form

(1.30)

dy

Reduction to two harmonic equations
It was shown in Section 1.2.3 that (Mx + My) was invariant with respect
to the orientation of axes, and equal to the sum of the principal moments.
Another representation of this invariance is obtained from (1.5), which
yields

Mx + My = - (1 4- v)DV2w.

Thus, if we write, say,

equation (1.29) can be expressed as two simultaneous harmonic equations,
namely,

This representation was introduced by Marcus (1932). It is particularly
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useful in the case of simply supported plates of polygonal shape because
the term M then vanishes along the boundary and thus allows the two
equations in (1.31) to be integrated in succession. By employing a
variational technique discussed in Chapter 6, Morley (1963) has used these
equations to find solutions for plates whose boundaries are clamped.

1.5 Effect of forces in the plane of the plate
The differential equation (1.28) governing the deflexion of the plate is
based on the tacit assumption that the mid-plane of the plate is free from
stress, so that there is no resultant force in the plane of the plate. Resultant
forces in the plane of the plate are referred to as middle-surface forces.
They can arise directly owing to the application of middle-surface forces
at the boundary or indirectly due to variations in temperature as discussed
in Section 1.6. Middle-surface forces may also arise owing to straining of
the mid-plane of the plate when it deflects into a non-developable surface,
but this is a large-deflexion effect which is considered in Part II; in the
small-deflexion regime considered here, such straining is of secondary
importance as it varies, roughly speaking, as the square of the deflexion.

Consider now the effect of middle-surface forces per unit length, Nx,Ny,
Nxy, as shown in Fig. 1.5. The distribution of these forces throughout the
plate depends upon (i) their values along the boundary, (ii) the preservation
of equilibrium in the plane of the plate, and (iii) compatibility of strains
in the mid-plane of the plate. In many practical cases the plate thickness
is constant and the forces are distributed along the boundary in such a
way that NX9 Ny9 Nxy maintain values that can be written down by
inspection. But this is not always so, and we summarize below the equations
needed to determine the distribution of these forces in the general case.

Equilibrium of an element dxdy in the plane of the plate yields the
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conditions

^ ™ = 0
dx dy

dy dx

(1.32)

By the introduction of a force function these two conditions may be reduced
to one, namely, that the forces per unit length may be derived from a
single function O by double differentiation:

Nv =
dy2'

y dx2 (1.33)

52O

If straining of the mid-plane of the plate due to deflexion of the plate
is ignored, the strains in the mid-plane are related to the forces per unit
length as follows:

du dv

(1.34)

Now the left-hand sides of (1.34) satisfy the following differential
identity

dxdy\dy d

which is referred to as the condition of compatibility. Expressed in terms
of the right-hand sides of (1.34), this condition becomes

d2 fNx-vNy\ d2

]+ - 2 ( l + v )

(1.36)

which may be combined with (1.33) and rearranged in the following
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invariant form:

V2( - V20> j - (1 + v)04f-,O j = 0 (1.37)

where the operator 0 4( , ) is the same as that used in the derivation of
(1.29). When t is constant, (1.37) reduces to

V4O = 0. (1.38)

Let us assume now that the forces per unit length, Nx, Ny, Nxy, are known
(or that the function O is known) and consider the equilibrium of an
element Sxdy normal to the original plane of the plate. The component
of force in the z-direction acting on the face whose coordinate is x is

XT ^ W C A T ^ .

— Nx — oy — Nxy — oy

and the component acting on the face at x + Sx is therefore

d

There are similar components, with the symbols x and y interchanged,
acting on the other faces. The resultant force in the z-direction acting on
the element dxSy is thus given by

)SxSy

A comparison with the result of Section 1.3 shows that the effect of
middle-surface forces on the deflexion is equivalent to an additional
pressure q\

d2w d2w d2w
^ N 2 N N (140)

d2® d2w d2®d2w

= 04(O,w), (1.40a)

by virtue of (1.33).
Equations (1.29) and (1.40a) may be combined to give the differential

equation for the deflexion of a plate of varying thickness, including effects
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of middle-surface forces:

V2(DV2w) - (1 - v)04(Z), w) = q + 0 4($, w) (1.41)

where the force function O satisfies (1.37).
Fortunately, we are generally concerned with plates of constant thick-

ness subject to a known distribution of middle-surface forces, for which
(1.30) and (1.40) yield

1.5.1 Plate on an elastic foundation
If a plate rests on an elastic foundation such that the restoring pressure
is everywhere proportional to the deflexion, the resultant pressure acting
on the plate assumes the form

4res = 9 -kw, (1.43)

where k is the foundation modulus.
The differential equation for the deflexion of the plate is obtained from

the preceding analysis by substituting qres for q. In particular, for the plate
of constant thickness under the action of middle-surface forces, we obtain

^ ^ ^ . (1.44)

1.5.2 Vibration of a plate
When a plate is loaded statically, the elastic reaction of the plate is
everywhere equal and opposite to the applied loading q. If there is no
external applied loading but the plate is vibrating, the elastic reaction
acting on each element of the plate (measured in the direction of negative
w) produces an acceleration of each element of the plate in the same
direction. The magnitude of the elastic reaction is thus equal to
—  m(x, y)d2 w/dt2, where m(x, y) is the mass per unit area of the plate. The
differential equation for the deflexion of the plate may now be obtained
from the preceding analysis by substituting —  md2w/dt2 for q. In particular,
for a plate of constant thickness on an elastic foundation and under the
action of middle-surface forces, we obtain

d2w d2w d2w | M d2w
W~^x~dxT^2Nxy~dxTy + Ny dy2 (L45)

in which w = w(x, y, t).
In many problems associated with vibrations of plates we are concerned

with the vibration in one particular mode characterized by each element
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of the plate executing simple harmonic motion in phase with all other
elements. Thus we may write

w(x, y, t) = w(x, y) sin {fi(r -to)}9 (1.46)

where Q is the circular frequency.
Substitution of (1.46) in (1.45) and division throughout by sin{Q(t—t0)}

then yields the equation

D V * W + (fc - m Q > = Nx-^ + 2 J V , , — + AT,^ - . (1.47)

The fact that k and mQ2 occur only in the combination (k — mQ2) implies
that any mode for a plate for which k is zero, say Wx(x,y) and Q l5 will
also be appropriate to a similar plate on an elastic foundation, but the
frequency Q2> say> *s increased according to the relation

Q2 = (Q2 + fc/m)1/2. (1.48)

1.6 Thermal stress effects
In general, when a plate is heated by conduction, radiation or convection
the temperatures in the plate vary slowly in comparison with the natural
periods of vibration of the plate. For this reason the plate may be analysed
in a quasi-static manner. Further, unless there are abrupt changes in the
distribution of the surface temperature - as, for example, near a spot-
weld - the basic assumption of plate theory may be retained, namely, that
points which lie on a normal to the mid-plane of the undeflected plate lie
on a normal to the mid-plane of the deflected plate. Consider therefore a
plate whose temperature T(x, y9 z), measured from some convenient datum
such as room temperature, varies in an arbitrary but sufficiently smooth
manner in the plane of the plate and through the thickness. We first focus
attention on a typical element Sxdy and we determine the forces and
moments per unit length required to prevent any planar displacement or
rotation at the boundaries of the element. In the x,y-plane passing
through the point z in the plate element, the planar stresses satisfy the
equations

du/dx = <xT(x, y, z) + (GX - vay)/E = 0,

and similarly

where a is the coefficient of thermal expansion which may vary with the
temperature. It follows that
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The above relations are also valid if v and E vary with temperature, but
in what follows we confine attention to materials in which v can be assumed
to be constant; a temperature-dependent Young modulus is denoted by ET.

At this point we note that with a varying value of the Young modulus
the neutral surface does not necessarily pass through the mid-thickness
(z = 0) but passes through z = z*, where

z* = I zETdz I ETdz. (1.51)

Likewise, the plate stiffness per unit length in the plane of the neutral
surface, Et, if E is constant, is given by

ST, say, = £Tdz,
J-it

(1.52)

and the flexural rigidity is given by

DT9 say, = - - L - f (z-z*)2£ rdz. (1.53)

Referring back to (1.50), we can now integrate the stresses GX, oy through
the thickness of the plate to yield the following resultant forces in the
plane of the neutral surface and moments per unit length about the neutral
surface:

Nx = Ny= ETaT(x, y9 z) dz, (1.54)

and

Mx = My= ~YZ^ \ (z-z*)EToiT(x,y,z)dz. (1.55)

The above equations refer to an element whose boundaries are restrained
against any rotation or planar displacement. If the boundaries are free
from such restraint, so that there are no force or moment resultants per
unit length, equal and opposite values of NX,MX and so on must be
superimposed on the above stress system. It follows that for an uncon-
strained element satisfying the basic assumption of plate theory the direct
strains in the neutral surface are given by

X V T ? jr)

ETocT(x,y,z)dz ETdz, (1.56)
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and the curvatures are given by

K* = K* = K r , say,

= ( 2 -
J-it

z*)ETaT(x,y,z)dz z*)2ETdz. (1.57)

The thermal strain sT and curvature KT thus specify the overall effect of
any variation of temperature through the thickness.

When the variation of T(x9y9z) and ET is such that the neutral surface
(z = z*) varies over the plate, the effect is similar to a plate with an initial
deflexion wo(x, y\ where

wo(x,y) = z*{x9y). (1.58)

The behaviour of such plates in the presence of resultant planar forces
requires large-deflexion theory (see Part II). However, when the range of
temperature is such that ET can be assumed to be constant, that is, ET = E,
the neutral surface is at the mid-thickness, and small-deflexion theory is
valid.

1.6.1 Young modulus independent of temperature
For such plates, z* = 0 and (1.56), (1.57) simplify to

1 f̂ r

8T = - aT(x,j;,z)dz,
1 J-it
12 f*r

KT = - J zaT(x,y,z)dz.

(1.59)

General strain and curvature relations
When there are middle-surface forces the middle-surface strains are
given by

du
fa'

8v
Ty= £T + (Ny-vNx)/Et, (1.60)

Referring now to (1.35), we see that the condition of compatibility can be
expressed in the following invariant form:

(1.61)



General boundary conditions 19

Fig. 1.6

Similarly, the moment-curvature relations, see (1.9), are now

Kx = KT + (Mx-vMy)/{(l-v2)D}A
Ky = KT + (My - vMx)/{(l - v2)Z)}, > (1.62)

Kxy = MJ{(l-v)D}, J

and it follows that the equilibrium equation, including effects of middle-
surface forces, can be expressed in the form

V2(DV2w) - (1 - v)O4(D, w) + (1 + V)V2(DKT) = q + 04(<D, w).

(1.63)

For plates of constant thickness, (1.61) and (1.63) reduce to

V4O + EtV2sT = 0, (1.64)
and

4 V)DV2KT = q + 04(0>, w). (1.65)

Note, finally, that for plates of constant thickness small-deflexion theory
is also valid when the Young modulus varies with temperature but the
temperature does not vary in the plane of the plate, that is, T= T(z). For
such plates, sT and KT are constants for a given variation of T(z) but, more
important, so too are z*, ST and DT.

1.7 General boundary conditions
The partial differential equation governing the deflexion of a plate is of
the fourth order. It follows that along the boundary of the plate two
conditions (and only two) are required if w is to be uniquely determined.

Typical boundary conditions for a plate of arbitrary shape and variable
rigidity are expressed here in terms of the deflexion w and its derivatives.
Boundary conditions involving the twisting moments per unit length
require special attention. Temperature effects are discussed in Section 1.7.6.

Let n, t be measured along the outward normal and tangent to the edge
at a typical point P, as shown in Fig. 1.6, and let s be measured along
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the boundary. If the boundary is straight, the coordinates t, s coincide,
but if the boundary is curved, they do not coincide and it is convenient
to express certain derivatives of w in terms of n9 s rather than n91. The
relations which are required are the following geometrical identities

(1.66)

in which d\j//ds is the curvature of the boundary.

1.7.1 Clamped edge
Along the boundary, the deflexion and slope normal to the boundary are
zero, so that

w = 0, (1.67)
and

dw
dt

d2w
dt2

d2w
dndt

dw
~ ds

d2w
— |~ds2 '

_ d2w
dnds

#
ds

#
ds

dw
dn

dw
ds

dn
(1.68)

1.7.2 Simply supported edge
Along the boundary, the deflexion and the moment per unit length, MM,
are zero, so that

w = 0 (1.69)

and, from (1.5),

d2w 82w

which may be rewritten, using (1.66) and (1.69), in the form

d2w dcp dw
+V 0

dn ds

If the boundary is straight, (1.70) reduces to

d2w
dn: = 0.

(1.70)

(1.71)

1.7.3 Edge elastically supported against rotation
One of the conditions at an edge may be such that a rotation dw/dn of
the plate is resisted by a moment x(dw/dn), say, owing to the surrounding
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B

Fig. 1.8

structure. Such a condition is intermediate between clamped and simply
supported, and is given by

dil/\dw d2w
- = 0. (1.72)

1.7.4 Free edge
For a real plate, we require the vanishing at the boundary of Mn, Mns and
Qn, that is, one condition more than is mathematically feasible for the
classical theory of plates. To overcome this apparent difficulty, we must
refer again to assumption (i) which states, in effect, that the plate is rigid
in shear. Consider now the action of a vanishingly narrow strip along the
boundary. Such a strip is rigid in shear, though perfectly flexible in bending,
and resists without deformation the shear loading shown in Fig. 1.7.

The horizontal components of the shear loading in Fig. 1.7 are statically
equivalent to a constant value of Mns along the boundary; the action of
this vanishingly narrow strip can therefore be regarded as converting such
a 'horizontal' loading into equal and opposite vertical forces, equal in
magnitude to MMS, acting at the ends of the strip, as shown in Fig. 1.8.
There is no need to limit the argument to a constant value of Mns; if the
boundary twisting moment increases by an amount (dMns/ds)ds over a
distance ds, the action of the vanishingly narrow strip is to convert this
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into vertical forces which are equivalent to shears Q'n per unit length
where

Thus we have shown that within the framework of the classical theory
of plates no distinction can be drawn between an edge twisting moment
Mns which varies, say, from M$s to Mjfs, and a system of edge shears
given by (1.73) together with vertical forces at A and B equal in magnitude
to M^s and Mjfs, acting in the directions shown in Fig. 1.8.

The conditions for a free edge are now

Mn = 0 (1.74)
and

Qn + Q'n = Qn -i ™ = 0 (1.75)

which is now a joint requirement embodying the shears and rate of change
of twisting moment.

This joint requirement was first derived by Kirchhoff (1850) from
variational considerations, and the underlying physical explanation was
given by Kelvin and Tait (1883). Expressed in terms of the deflexion, (1.74)
becomes

5 W - - (1.76)

while (1.75) becomes

d ( d2w d\b dw

dw

( , 7 7 )

which reduces to

d „ ,
3 T " ' vA r ' 3_\ 3 - 3~ a_ a- / v U . / o j

when D is constant. Further, if the boundary is straight, (1.78) reduces to

d3w d3w(2w° (i79)
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(a)
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i

(b)

Fig. 1.9

Error involved at a free boundary. An estimate can be made of the error
involved in the use of the joint requirement (1.75)-and hence in
assumption (i) of the classical theory of plates - by a comparison with an
exact three-dimensional solution of a plate problem. Such a solution is
provided by the torsion of a long strip of rectangular section. Away from
the edges there is agreement with classical plate theory, but in the
neighbourhood of the edges the true shear flow is as shown in Fig. 1.9a
which may be compared with that of classical plate theory shown in
Fig. 1.9b. It is seen that the region of disagreement is limited to a distance
of about 1.5r from the edges. For a more elaborate theory of plates, which
takes account of the shear distortion of the plate, the reader is referred
to the work of Reissner (1947).

Plate thickness tapering to zero. If the plate thickness tapers to zero so
that in the neighbourhood of a boundary

t~con + O(w2),

where co is the (small) taper angle, the rigidity varies as

Eco3n3

Z ) ~ 1 2 ( l - v 2 ) + O ( ' l ) -

It follows that at the boundary

dD dD
ds dn

(1.80)

(1.81)

(1.82)

and hence (1.76) and (1.77) are satisfied by any smoothly varying deflexion
function.
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1.7.5 Edge elastically supported against deflexion
If an edge, otherwise unloaded, is elastically supported against deflexion
in such a manner that the surrounding structure provides a restoring force
per unit length equal to QW, say, we have

together with the following joint requirement

Qn + 8-^ + Qw = 0. (1.83)
OS

Equation (1.83) can be expressed in terms of w and its derivatives in
the same way as in Section 1.7.4. In particular, if D is constant and the
edge is straight, we find

1.7.6 Temperature gradient through the thickness
If there is a temperature gradient through the thickness, the boundary
conditions which involve moments and shears are modified because of
the presence of the term KT in the moment-curvature relations (1.62). For
example, the vanishing of the moment Mn at a simply supported boundary
requires

d2w d\l/ dw^+VI^-{1+V^=°- (L85)

1.8 Anisotropic plates
Anisotropic materials such as wood have been used as load-bearing
members for thousands of years. More recently, high-strength fibres of
glass or carbon, for example, have been used in a bonding matrix to make
structural components with particular design characteristics. In the
following we consider the small-deflexion behaviour of anisotropic plates,
particularly multi-layered plates, drawing heavily on the work of
Lekhnitsky (1941), E. Reissner and Stavsky (1961) and Stavsky (1961). We
note first that the concept of a neutral surface has, in general, no part to
play in the analysis of multi-layered plates because of coupling between
moments and planar strains.

1.8.1 Coupled stress-strain and moment-curvature relations
Consider an element of a multi-layered plate bounded by surfaces at
z= ±%t and subjected to constant moments and middle-surface forces.
The planar strains at any point in the plate are conveniently expressed
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in terms of the mid-surface strains

£° = (so
x,eo

y,e°xy)T
9 (1.86)

where the affix 0 refers to the plane z = 0, and the curvatures

where the factor 2, introduced to compensate for our use of the 'engineering'
definition of shear strain, enables us to express the strains in a plane at
a distance z from the mid-surface in the following simple form, see (1.2),

(1.88)

Now the most general form of plane stress anisotropy is such that

(1.89)

where E is a symmetrical 3 x 3 elastic moduli matrix of the form

E = (£y), U = 1,2,6, (1.90)

where the Etj vary from layer to layer so that E is a function of z.
The stresses a may be integrated through the thickness of the plate to

yield the following resultant middle-surface forces N and moments M per
unit length, where

-r.
adz (1.91)

and
= (Mx,My,Mxy)T

z<rdz (1.92)

At this point it is convenient to introduce the following matrices of 'elastic
areas', 'elastic moments of area' and 'elastic second moments of area':

A =

-i Edz,
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zEdz (1.93)

= I z2Edz.

Equations (1.91)—(1.93) may now be written concisely as

[MHB HI]
which it is often convenient to express in the following partly inverted form:

(1.95)

where the affix T denotes the transposition and

= (6 y )=-A- 1 B,

Note that a and d are symmetrical matrices whereas b is not.

(1.96)

1.8.2 Equilibrium and compatibility
The normal equilibrium of an element of plate is given by (1.27), where,
to account for forces in the plane of the plate, q is replaced by (q + q'\
where qf is given by (1.40a). Equilibrium in the plane of the plate requires
that (1.32) be satisfied and this is achieved by introducing the force function
O in (1.33). The condition of compatibility requires that (1.35) be
satisfied.

In terms of the deflexion w and force function <D, (1.95) and the equation
of normal equilibrium can be expressed in the form

Lxw + L30> = q +0 4 (O, w),

and the condition of compatibility in the form

where

(1.97)

(1.98)

= {b2i92b26 -b6l9b11+ b22 - 2b66,2b16 - b629b12}A,
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and A is a column vector of differential operators

d4 d4 d4 d4 d4

Ix4'dx3dy'dx2dy2'dxdy3'~ify4

1.8.3 Zero coupling between N and M
This important class of anisotropy occurs if the operator L3, and hence
B, is zero, as in a composite plate with a symmetrical lay-up of fibres,
that is, one in which

. (1.99)

For such plates the small-deflexion equations assume the form

L1w=(?+O4(0,w), (1.100)
and

L2O = 0. (1.101)

Furthermore, if no middle-surface forces are applied to the boundary, <X>
is zero throughout the plate and (1.100) assumes the simple form

Lxw = q. (1.102)

Also, because of the vanishing of B the coefficients dtj in L1 are given
simply by

Orthotropic plates. In many practical applications the plate has ortho-
tropic properties aligned to the x,y-axes, so that

Equation (1.100) then assumes the simple form

where (1.103)

and (1.101) becomes

+ a 6 6 ) ^ 4 ? T + « i i ^ = 0. (1.104)

1.8.4 Plate with antisymmetrical fibre lay-up
If the lay-up of fibres in a plate is such that for positive values of z the
fibre orientation is + 0Z, say, while for negative values of z it is — 6Z9 we
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can write

[E]+ z =
En
El2

E12

E22

sig(z)£16 sig(z)£26

sig(z)£26

E««
(1.105)

where sig (z) is + 1 if z > 0 and — 1 if z < 0.
The resulting equations exhibit a coupling between N and M, but they

are markedly simpler than those for the general case because the following
terms vanish:

A = A = B = B = B = B = D = D = 0 (1 106)

It follows from (1.96) that

and the L-operators are given by

(1.107)

unsymmetrical cross-plies
Another class of plates which yield relatively simple equations is one in
which for positive z the fibres are aligned with the x-axis while for negative
z the fibres are aligned with the y-axis. More generally, such plates consist
of pairs of similar orthotropic layers equally disposed about the mid-plane,
but with their major principal axes at 0° and 90°, respectively (Whitney
and Leissa, 1969). For such plates

' 2 6 • = D,. = 0.

and

and hence

B22=—

= a26 = b16 = b26 = b61 = b62 = b66 = d16 = d26 = 0,

(1.108)

(1.109)

and
bi2= - b

2l.
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1.8.6 General equations in terms of displacements
When there are clamped boundaries to a multi-layered anisotropic
plate with coupling between moments and planar strains, there can be
advantages in expressing the governing equations in terms of the deflexion
w and the displacements u, v in the plane of the middle surface. Following
Whitney and Leissa (1969), we first express N,M in terms of these
displacements via (1.94) and the relations

[ du dv du dv~F
dx' dy9 dy dx J

K = — _ d2wT
dxdyj 'J

(1.110)

Equilibrium in the plane of the plate, see (1.32), now leads to the following
equations in terms of the displacements:

d2u d2u d2u d2v
11 d2"*2 1 6 t o ^ + 6 6 5 / + Al6Ix2~ + { 12+ 66

d2v d3w d3w
~7i a J-Di dy

dh
dxdy

v " " bb'dxdy2 2t>dy3 '

d2u d2u d2u d2v
A,r, _ ?^+(-4i2 + ^ 6 6 ) T ~ 5 \~ A26 ^r~} + Afi'dx2

+ 2A26
d2v

dxdy

d3w

dxdy

d^__

d3w

66

d3w

(1.111)

d3w

(1.112)

The equation of normal equilibrium is best derived from (1.27) and (1.40),
rather than (1.97), that is, from

82MX „
<bc2 '*•

Thus, we find

11 dx4

dxdy

d2w
dxdy

- 4D
^ ^ 1 6

' i d M y \ a \ }

i ^(n i
ex 3)i

54w
66 5x25y2

(1.

1 i ? 2 6 axa3; 3
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34w _ d3u „ d3u _ _ x d3u

d3u d3v 83v
B ( B + W )

where
du A dv

2w ( du A dv A Idu dv
dx

(1.115)

Note that, for initially unstressed plates subjected only to a normal loading,
the term 04(G>, w) varies as the square of the deflexion and should therefore
be omitted in linear small-deflexion theory.

1.8.7 Thermal stress effects
If T = T(x, y9 z) is the temperature at any point in a multi-layered plate, we
modify (1.89) to read

where I (1.116)

and at are the respective coefficients of thermal expansion in a layer at
distance z from the mid-thickness. It follows that (1.94) now becomes

(1.117)

where

rdz,

(1.118)

MT= zEsTdz.
J-it )
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Likewise, (1.95) becomes

, »  "I r a
M r J l-bT

Equations (1.117) and (1.119) enable us to express the governing differential
equations in terms of w,<X> as in Section 1.8.2, or in terms of the
displacements u, v, w, as in Section 1.8.6. Thus, writing

N r = lNXtT9 Ny,T9 Nxy,T]T and M r = [MXfr, M,, r , M x y , r ] T ,

we find that in terms of w, <X> the equation of normal equilibrium becomes

Lx w + L3O + ^a(Af Xir + 6i i^*.r + b21NytT + b61Nxy,T)

d2

+ ^lf(My,r + *i2^x,r + ^22^y,r + b62NxyiT)

d2

+ 2 xy>r + b16NXfT + b26Ny,T + b66Nxy,T)

= ^ + 04(O,w), (1.120)

and the condition of compatibility is

L2O - L3 w + ^ ( a i i N x , T + 022^,7 + a26NxytT)

dxdy XfT + a26iV,,r + a66Nxy,r) = 0. (1.121)

1.8.8 Boundary conditions
When there is coupling between moments and planar strains, the specifi-
cation of the boundary conditions becomes more complex because
attention must now be given to the boundary displacements, or lack of
displacements, in the plane of the plate. Thus, if at an edge where w is
zero a further condition is such that a rotation dw/dn of the plate is resisted
by a moment xdw/dn due to the surrounding structure, we have

Mn = X
8£. (1.122)

Likewise, if a planar displacement un normal to the boundary is resisted
by a force per unit length xnun, we have

Nn = XnUn, (1.123)
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and similarly if a planar displacement ut tangential to the boundary is
resisted by a force per unit length %tut, we have

Nt = Xtut. (1.124)

Note that unless xn
 a n d Itare z e r o > t n e boundary conditions necessarily

involve the planar displacements and, in the analysis of such cases, it
would be appropriate to work in terms of the displacements. This means
that in the boundary equations Mn,Nn and Nt would be given by (1.94).
Likewise, if xn

 a n d It a r e z e r o > t n e analysis would be more appropriate in
terms of w and O, in which case Mn would be given by (1.95). Finally, we
note that if %, xn

 a n d It a r e infinite, the boundary conditions are

w = — = 0,
8n I (1.125)

which can be described as fully clamped. The analysis for such a case is
given in Section 3.10.
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Rectangular plates

In this chapter attention is given to methods of solution of the small-deflexion
equations for rectangular plates of constant thickness. Timoshenko and
Woinowsky-Krieger (1959) have presented a large number of detailed
solutions to particular problems of this class and it is not the intention
here to duplicate this work, although some overlapping is unavoidable,
but rather to present the different methods of solution available.

2.1 Plates with all edges simply supported -
double Fourier series solution

Consider first the rectangular plate of sides a,b shown in Fig. 2.1 under
the action of a distributed loading of the form

» « . mnx . nny
tf(*>J>)= L L tfm»sm sin—-, (2.1)

m = l n = l a D

where qmn are constants and m, n are integers. Such a series can, of course,
represent any distribution of applied loading.

In using a Fourier series representation for the deflexion, care must be
exercised to ensure that no unjustifiable differentiations of the series are
carried out. This difficulty was overcome by Hopkins (1945) by representing
d8w/dx4'dy4 as a double Fourier series,

d8w " « (mn\ 3(nn\3 . mnx . nnyL £ M ) ) sinsm ^
in which the factor (mn/a)3(nn/b)3 is introduced merely for convenience.

Expression (2.2) may legitimately be integrated, term by term, any
number of times, so that we may write

00 00

w = X Z AmnXmYn,
m = 1 n = 1

where
9 , ,. a . mnx

bmx + cmxz + dmx5 sin ,
mn a

(2.3)
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o i •* b . nnyYn = en + fny + gny2 + hny3 s in -Ann b

The four unknown constants appropriate to each integer m and n are
sufficient to satisfy the eight boundary conditions. If the edges are simply
supported, these conditions are given by (1.52) and (1.54):

- = 0

= 0
O,b

(2.4)

Substitution of (2.3) in (2.4) then yields the simple result

(2.5)

Thus if the edges are simply supported the deflexion can be represented by
the double Fourier series

= Z Z wm»si
m = l n = l

-sin (2.6)

which can legitimately be differentiated, term by term, up to four times
with respect to x and y. Having established this result we may substitute
(2.1) and (2.6) in (1.30) and equate coefficients of like terms to give

(2.7)

This solution was first given by Navier (1820).
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Special Cases. If the loading is uniform and equal to q0, the term qmn is
given by

where m and n are odd integers.
If the loading varies linearly and is given by

If there is a concentrated load P at the point x = a\ y = b\

4P . mTca' . nnb'
{2A0)

2.1.1 Orthotropic plate
A similar analysis is possible for an orthotropic plate when substitution
of (2.1) and (2.6) into (1.103) yields

2.1.2 Effect of middle-surface forces on the deflexion
The effect of middle-surface forces per unit length, Nx and Ny9 can be
determined by substituting (2.6) in (1.42) and equating coefficients of like
terms to give

(2.12)2 \ 2
 2fm2Nx) +7i 2 ^1 " b2) " V a b

By the same token, we find for an orthotropic plate

... - °mn
2n2 n4 \ 2(m2

 Ar n2
 x7

(2.13)

An inspection of the denominators of the above expressions and a
comparison with (2.7) or (2.11) shows that the effect of middle-surface
tensions is to reduce each deflexion component wmn by a factor rmn, say,
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where, for the isotropic plate for example,

When both Nx and Ny are compressive, that is, negative, it follows from
(2.14) that all the deflexion components are increased. When Nx9 say, is
compressive and Ny is tensile, the deflexion components qmn are increased
or reduced, according to the sign of (m2Nx/a2 + n2Ny/b2). Thus whenever
there is a middle-surface compression some, or all, of the ratios rmn exceed
unity. Suppose now that by choosing various integers m, n we find that
the greatest of the ratios rmn is rmV, say. By increasing the magnitude of
the middle-surface forces, the ratio rmV will increase (and do so at a greater
rate than all other ratios) until it becomes infinite. The deflected shape is
then dominated by the term

. m'nx . n'ny
wm v sm sin —— (2.15)

a b

because wwV is theoretically infinite. In practice, of course, such deflexions
cannot exist and, further, they violate the assumptions inherent in
small-deflexion theory. However, the results can be interpreted in a practical
manner and without violating these assumptions by stating that a finite
deflexion proportional to sm(m'nx/a)sin(n'ny/b) is possible without the
application of normal loads. This phenomenon is called buckling and is
discussed in greater detail and from a different standpoint in Section 6.2.1.
For a much fuller discussion the reader is referred to monographs by
Timoshenko (1936), Cox (1962) and Thompson (1973).

2.1.3 Effect of an elastic foundation
The effect on the deflexions of an elastic foundation can readily be
determined by substituting (2.6) in (1.44). Equating coefficients of like
terms, as in the preceding analysis, gives

(2.16)2V Jm2Nx n2N

The onset of buckling may again be found, as in the previous section,
by equating to zero the denominator in (2.16) and determining the smallest
values of Nx9 Ny for various integral values of m, n. When k is zero, it can
be shown that buckling occurs in a mode sin (m'nx I a) sin (n'ny/b) in which
either m' or n' is unity. But if k is sufficiently large this may not be so, for
the wavelength of the buckles then depends primarily on k and D rather
than on a or b. This can be demonstrated most conveniently for the
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Simply
supported
edges

uniformly compressed square plate. Thus, writing Nx = Ny= — N, and
writing \i = a2/{n2(m2 + n2)}, we find from (2.16) that

N = kfi + D/fi. (2.17)

If m or n is a sufficiently large integer we may legitimately regard \i as
a continuous, rather than discontinuous, variable; the least value of N
may then be found by differentiating (2.17) to give

(2.18)

which occurs when

Equation (2.18) is substantially correct if (m2 + n2) ^ 32, say, that is, if

A similar analysis when Nx= — N and Ny= — 1/V (where X ^ 1) shows
that (2.18) is also applicable. Finally, note that because the wavelength in
the direction of Nx is small and virtually independent of the size of the
plate, (2.18) is substantially correct for a variety of boundary conditions
and shapes if we interpret Nx as the greater of the principal compressive
forces/unit length in the plate.

2.2 Plates with two opposite edges simply supported -
single Fourier series solution

The use of a single Fourier series solution for plates (Fig. 2.2) with two
opposite edges (x = 0,a) simply supported was suggested by Levy (1899).
The deflexion is expressed in the form

w= f Y^sin—, (2.19)
m = l Cl
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where Y'm is a function of y only and is chosen to satisfy the boundary
conditions along y = ± \b together with the equation DV4w = q, or more
generally (1.44).

The form (2.19) for the deflexion is particularly useful when the
distributed loading is a function of x only, and it is then convenient to
write, following Nadai (1925),

oo fflTLX
w = Wl(x)+ I rmsin , (2.20)

m = l d

where wx satisfies the boundary conditions at x = 0, a and is a particular
integral of the equation DV4w = q. Indeed, the deflexion w1 is that of a
simply supported 'beam' under the loading q(x) and is determined below
in the general case in which

£ . mnx
= $(*)= L 4m sin ,say,

m=i a

where

dx.
o a

(2.21)

The 'beam' deflexion wx is now obtained by integrating the equation

(2.22)
=i a

subject to the boundary conditions

L - a (l23)
The solution of (2.22) and (2.23) is simply

DTC4
 m=i m* a

As for the functions 7m, they are now chosen to satisfy the boundary
conditions at y = ± \b together with the equation

which, on differentiation and division throughout by sin (mrcx/a), gives

d4v / \ 2 J2 v
I I YflTC \ Q. X

dy4 \ a ) dy2
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Equation (2.25) may be integrated to give

A . , mny n ,
Ym = Am sinh — ^ + B m coshmny

a

+ — - C m smh — - + D m cosh —^-  .
a \ a a )

(2.26)

The four constants Am9Bm9Cm9Dm are to be determined from the
conditions along y = ±%b. If the boundary conditions there are the same,
the deflexion will be symmetrical in y9 and Am = Dm = 0. Further, if the
edges y = ±\b are clamped and we write mnb/2a = am,

1
m=l

An00 i d CI \ 7H7ZX
= I T T ^ T + Bmcosh am + ccmCm sinh am sin

m = l \Lf7L YYl J d

= 0

in virtue of (2.20) and (2.24).
Similarly

=l 0

Equations (2.27) and (2.28) are satisfied by taking

B - a 4 g m ( l + a m c o t h a m )
m Z>7r4m4(cosh am + am cosech am)'

(2.27)

(2.28)

(2.29)

m D7i4m4(cosh am + am cosech am)

A similar analysis for simply supported edges gives

Bm=-- 2DnArmAr cosh an

2D7C4m4cosham'

(2.30)

The coefficients Bm and Cm decrease very rapidly as m increases - owing
in part to the term m4 in the denominators of (2.29) and (2.30) - and a
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satisfactory answer for the deflexion can be obtained by taking only a few
terms in the series.

As for the coefficients qm, it is worth noting that for a uniform loading, q0,

for a linearly varying loading, q = qxxja,

and if the loading is a line load' along x = /, of intensity L per unit length,

2L . mnl
= — sin .

a a
2.2.1 Loading and rigidity varying abruptly
If the loading and/or rigidity is of a discontinuous form given by

> in the range 0 < y < c,

D = D"
in the range c < y < b9

(2.31)

it is possible to apply the method of the previous section separately in
each range. There will then be eight sets of coefficients Ar

m,Bf
m,...,D^to be

determined from the edge conditions at y = 0, b together with the four
conditions of continuity at y = c. If we write w' and w" for the deflexion
in each range, the conditions at y = c are

W = w",

dw' dW
Sy dy '

dy'

dx2 ) - ~ \dy2

d2w"

'dx2dy 'dx2dy

(2.32)

where the last equation of (2.32) represents the joint requirement of
continuity of shear and twisting moment discussed in Section 1.6.5.

2.2.2 Generalizations of Levy's method
The success of the method of Section 2.2 depends on the fact that when
q = q{x) it is easy to obtain a particular integral of the equation (1.30)
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which satisfies the conditions of simple support along the edges x = 0, a.
There are further load distribution forms for which this is possible, and
two such are considered below. No examples are given because once the
form of wx is determined the method of solution is identical with that of
Section 2.2.

Load distribution of the form q = (y/b)q(x). If the load distribution is of
the form

y » . mnx
4 = 1% 4m s i n — , (2.33)

it may be verified that the deflexion given by

(2.34)
m^im4 a

satisfies the equation DV4wx = q, together with the conditions of simple
support along the edges x = 0, a.

Load distribution of the form q = epny/aq(x). If the load distribution is of
the form

q = et*,,. g q m S in— , (2.35)
m = l Cl

where /} is a constant and the factor n/a has been introduced for
convenience, it may be verified that the deflexion given by

satisfies the equation DV4wx = q, together with the conditions of simple
support along the edges x = 0, a.

2.2.3 Effect of middle-surface forces
In a rectangular plate with two opposite edges simply supported the effect
of middle-surface forces per unit length, Nx and Ny, may be determined
by the method of Section 2.2.

The deflexion is again represented by the form

mnx
£ yrasin , (2.37)

m=i a

but wx is now obtained by integrating the equation

where qm is given by (2.21).
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The solution of (2.38) subject to conditions of simple support along
x = 0, a, is given by

. mnx
qmsm

Wi = (2.39)

The functions 7m now satisfy the differential equation

dy2

where

mn\2 N
a

y_

ID'

7in\2 Nx

~a) +~D

(2.40)

The integration of (2.40) assumes one of five forms, depending on the
sign and relative magnitudes of cpx and (p2.

Thus, if <p2 is negative,
Ym = Am sinh ctmy + Bm cosh ccmy

where

If 0 < (̂ 2 < <pf and 9X is positive, then

Ym = Am sinh ccmy + Bm cosh ccmy
+ Cmsmh

where

(2.41)

(2.42)

If 0 < <p2 < ^i and (jPi is negative, then

Ym = Am sin ocmy + Bw cos ccmy
+ Cmsmpmy + Dmcosl]Tny

where (2.43)
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Similarly, if <p2 > <Pi> then

Ym = (Am sinh otmy + Bm cosh ocmy) sin fimy
+ (Cm sinh amy + Dm cosh amy) cos pmy,

where

A. =

(2.44)

Finally, if (p2 = (ph then

m̂ = (Am sinh (p\y + Bm cosh <p* y)
sinh cp\y + Dm cosh <pf (2.45)

2.2.4 Orthotropic plate
Similar analyses are possible for an orthotropic plate subjected to a
distributed loading which is a function of x only; middle-surface forces
Nx9 Ny may also be present. For such a plate, (2.20) and (2.21) retain their
validity while, from (1.104), equations (2.38) and (2.39) retain their validity
with D replaced by D n . Likewise the functions Ym now satisfy the
differential equation

d/ ^~dp-T^-»-
where <px and q>2 are redefined as

D22

,-) \{T
Nr

(2.46)

The 7m are thus again given by (2.41)-(2.45).

Further load distributions
In parallel with Section 2.2.2, we find that for the load distribution of
(2.33) the function wi is given by (2.34), with D replaced by D n . Likewise
for the load distribution of (2.35), we find

qmsin(mnx/a)
± m 4 -

(2.47)

2.3 Plates with two opposite edges clamped
The comparative ease with which the deflexion may be determined in
plates with an opposite pair of edges simply supported can be attributed
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to the fact that elementary components of the deflexion exist, each of
which - for loadings of the form q = q(x) - satisfies these boundary condi-
tions and the governing differential equation. Morley (1963) derived
corresponding components for the deflexion when an opposite pair of
edges is clamped. These are more complex than the simple sin term in
(2.19) and the satisfaction of the other boundary conditions is achieved
by a variational procedure (see, for example, Morley 1963, 1964). The
method is demonstrated below for the case of a uniformly loaded
rectangular plate with all edges clamped.

2.3.1 Plate with all edges clamped
Following Morley (1963), we consider the plate dimensions to be 2a x 2ft
with the origin at the centre. Under a uniform loading q0, equation (1.29)
may now be integrated to give

where the first term is a particular integral that satisfies the boundary
conditions along y = + ft. It follows that the complementary function wc

must satisfy

wc = 0, dwjdy = 0 at y = ± ft, (2.49)
and

w=^b ~2 ) q°9 dwc/dx = 0 Btx=±a. (2.50)

We now express wc in the form

wc = 2Xw r(x,j/), (2.51)
r

where

wr(x, y) = — (y sin Xry cos Xrb — b sin Xrb cos Xry) cosh Xrx.

(2.52)

Each of the functions wr(x,y) thus satisfies V4wr = 0 and vanishes along
y — ± b; see (2.49). Further, by choosing the (complex) constants Xr to be
the roots of the transcendental equation

2Arb +sin 2 ^ = 0, (2.53)

the remaining boundary condition along y = ± ft is satisfied. The (complex)
coefficients Ar in (2.51) are chosen to satisfy the boundary conditions (2.50)
by use of the principle of least work which, for plates with all edges
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clamped, requires that

V2wV2dw dx dy = 0, (2.54)

which, from (2.48), may be expressed as

V2wcV2<5wcdxd>;
J -b J -a

dy. (2.55)

Note that because the method of analysis is based on energy principles,
it would have been equally appropriate to present this solution in Chapter
6, where such methods are discussed in greater detail. As for the satisfaction
of (2.55), we first note that

V2 w = —- YJ ArXr cos Xrb cos Xry cosh Xrx (2.56)
JJ r

and, for convenience, use the convention

A_r = Ar; w_r(x, y) = wr(x, y); etc., (2.57)

where the bar denotes that the conjugate complex value is to be taken.
Thus, w and V2w are real quantities when the summations are taken over
the positive and negative values of r. As for the term r = 0, it may be
shown that to satisfy the boundary conditions (2.49) it is necessary that

We now introduce the notation

V(wr9 ws) = V(ws, wr)=\ I V2wrV2ws dx dy, (2.58)
J-bJ-a

Substitution of (2.56) into (2.58), (2.59) yields

V(wr,ws) = l6*!b
 {/^2)2tf cos2Xsb-X]cos2Xrb)

x (ks sinh Xsa cosh Xra — Xr sinh Xra cosh Xsa) (2.60)

except when r = s and then

wr) = 0; (2.61)
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it should be noted furthermore that

V{wr,ws)=V(wr,ws) (2.62)

and that F(wr,wr)#0, the actual value being obtained by substituting
Xs = I r in (2.60). Finally, we have

(2.63)V(wr, w)=- ~ ^ - {3(1 + cos2 Xrb) - b2X2 } sinh Xra.
3D A

In a practical calculation, the infinite series (2.51) is terminated after the
first few terms, say, when -n^r^n. Equations (2.51) to (2.63) then provide
the following n complex simultaneous equations for the determination of
the n complex coefficients Ar,

V(wuwn)
V{w2,wn)

AJ
A,

0 V(wuw2) ... V(wuwn

V(w2,w1) 0 ••• V{w 2>wn A2

(2.64)

Deflexion components for odd functions of y
In the example just given, the deflexion was an even function of y because
the loading was uniform. For more general load distributions it may be
necessary to include odd components in the expansion (2.51) for wc. Such
components are given by

wr(x, y) = —(y cos X ry sin krb - b cos lrb sin Xry) sinh Xrx, (2.65)

and the boundary conditions (2.49) are satisfied by choosing the complex
constants Xr to be the roots of the transcendental equation

2/lrfr-sin2/lrb = 0. (2.66)

An example using odd and even functions is given in Section 3.7.

2.4 General loading on plates with all edges clamped
When the load distribution cannot be expressed in the form q = q(x), the
solution for the plate with all edges clamped may be determined by a
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cCc cCc
yf
Fig. 2.3

method due to Timoshenko (1938). This method combines the solution
for a simply supported plate with that for a plate subjected to moments
distributed along the edges. These moments are chosen to satisfy the
clamped edge condition or, more generally, conditions of elastic support
against rotation.

2 A.I Simply supported plate with moments applied to one edge
We first determine the deflexion of a rectangular plate due to an arbitrary
distribution of moments along the edge y = b, the other edges being simply
supported (Fig. 2.3). By combining this solution with others obtained by
interchanging a and b, and changing the reference axes, it is possible to
obtain the deflexion of the plate with an arbitrary distribution of moments
around the edges.

As in Section 2.2, we search for a solution in the form

2̂, . mnx f . , mny , mny
w= > sin <Mmsinh hljmcosh

m=i a I a a

(2.67)

where the constants Am, Bm, Cm, Dm are to be obtained from the condition
of simple support along the edge y = 0, while along the edge y = b

d2w
vy

mnx
(2.68)

,say.

Substituting (2.67) in (2.68) and equating coefficients of sin mnx/a gives

= b2£mcoshj6m
m 2Df}msmh2 (}J
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-b2En

where
mnb

The slopes at the edges are now given by

~dw~] b «, / j3mcoshj?m-s inhj3 n

dy

dw

2D,

b

b

/?msinh2/?m

A.-smhft.coshft,

£msin mnx
a

mnx
a

mny

•sinhj?m- cosh

n2V
a2+m2

and similarly,

b
m3

a2 m2

(2.69)

(2.70)

Similar formulas may now be written down giving the edge slopes due
to an arbitrary distribution of moments applied to each of the other edges.
The coefficients Em, and so on, are then determined from the condition
of zero edge slope. First, however, the edge slopes of the loaded, simply
supported plate are required. When the loading is perfectly general these
may be found from the analysis of Section 2.1 in which the deflexion was
expressed in the form

1
»2\2

. mnx . nny
sin sin

b '
(2.71)

where qmn is defined by (2.1).
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Differentiating (2.71) gives

f S w l 1 » « ngmw
— - = : =• ) ) -p = =-r-

. m7rx
sin ,

(-l)nnqmn . mnx
--sin
2 a

(2.72)

and there are analogous expressions for [<3w/3:x]x=0, [dw/dx']x=a.

References
Cox, H. L. The buckling of plates and shells. Pergamon, 1962.
Hopkins, H. G. The solution of small displacement, stability or vibration problems

concerning a flat rectangular panel when the edges are either clamped or
simply supported. Aero. Res. Council R. and M. No. 2234. H.M.S.O. (June 1945).

Levy, M. Compt. rend., 129, pp. 535-9 (1899).
Morley, L. S. D. Simple series solution for the bending of a clamped rectangular

plate under uniform normal load. Quart. J. Mech. Appl. Math., 16, pp. 109-14
(1963).

Bending of clamped rectilinear plates. Quart. J. Mech. Appl. Math., 16,
pp. 293-317 (1964).

Nadai, A. Elastische Flatten. Berlin, 1925.
Thompson, J. M. T. General theory of elastic stability. Wiley-Interscience, 1973.
Timoshenko, S. Theory of elastic stability. 1st ed. McGraw-Hill, 1936.

. Proceedings of the Fifth International Congress in Applied Mechanics,
Cambridge, Mass., 1938.

Timoshenko, S. P., and Woinowsky-Krieger, S. Theory of plates and shells. 2nd ed.
Chaps. 5,6,7. McGraw-Hill, 1959.



Plates of various shapes

In this chapter we consider plates of constant thickness whose boundaries
are circular or sector-shaped, elliptical, triangular or parallelogram-
shaped. Attention is largely confined to the case of isotropy.

3.1 Circular plates
In discussing circular, annular or sector-shaped plates it is advantageous
to use polar coordinates as shown in Fig. 3.1. The governing differential
equations for the deflexion w and the middle-surface force function <X> are
most conveniently derived from those forms, for example (1.64) and (1.65),
that are expressed in terms of the invariant operators V2 and 0 4. We make
use of the known relation

which enables us, via the definition of 0 4 after (1.28), to write

<32w\ d (\ 3<D\ d (\ dw
dr \r dO)dr\r d6

r dr r2 d02 ) dr2

From Section 1.1 the moments per unit length, M r, Me, Mrd acting on
an element are related to the curvatures by the equations

d2w d2w

d2w d2w

d2w

(3.3)
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Qe Qr

Fig. 3.1

where n and t are measured along the normal and the tangent to the sides of
the element. Equation (3.3) may be written in polar coordinates using the
known relations

82 d2

,2 - a.2>dn2 ~ dr

d2 d / I d
(

Thus,

Mr =
, „ .. . 1 dw 1 d2w

r dr r2 d62

I dw 1 d2w d2w
r dr r2 dd2 dr2

(3.4)

(3.5)
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Similarly, we find from (1.31)
d 2

dr
(3.6)

In the same way, the middle-surface forces per unit length, JVr, N9, Nrg,
may be derived from the force function <t by the relations

dr2' (3.7)

If there are no middle-surface forces, (3.2) becomes DV4w = q, and it is
now convenient to search for a solution in the form w = i
vvx is a particular integral and w2 satisfies the equation

V4w2 = 0.

We can find the general solution of (3.8) by taking

^, mn8 *
m = 1 Of m = 1

where

(3.8)

(3.9)

where a is a constant and the i?'s are functions of r satisfying the equation

j-2 + -i--rr^P\(^ + -^rL-t^R] = 0- (31°)
dr2 r dr a2r2 J\ dr2 r dr a V /

The general solution of (3.10) is given by

Rm = AmQ™<* + BmQ-m«* + CmQ2 (3.11)

where Q = r/rl and rt is a convenient arbitrary constant. There is a similar
expression for R'm. When m is zero, (3.11) assumes the form

DoS
2lne

and if mnji = 1, we find

(3.12)

(3.13)

The angle a has been introduced to facilitate the analysis of plates in
the form of a sector subtending an angle a. In the analysis of circular or
semi-circular plates we take a = n.
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3.1.1 Plates with rotational symmetry
Such cases were first discussed by Poisson (1829), and a variety of particular
solutions are given by Timoshenko and Woinowsky-Krieger (1959). If
there is rotational symmetry, the deflexion is independent of 6 and the
governing differential equation may be cast in the form

1 d f d fl d

This form lends itself to repeated integration for determining wx. Thus,

For example, if q is constant we obtain

The constants Ao, J50, Co, Do of (3.12) are now to be determined from
the boundary conditions. The radial moments, shears and slopes due to
w1 may be determined in the general case from (3.5), (3.6) and (3.15). Those
due to w2 are determined from (3.5), (3.6) and (3.12):

4DD°

(3.17)
Notice that the constant Ao does not appear in (3.17) because it

represents a rigid body movement. Further, if the plate is a complete circle,
rather than an annulus, the radial slope at the centre is zero, so that Bo = 0.
The term D0g2 ln@ in w2 is the only term that gives rise to a shear (<2r)2,
and by integrating this shear around a circumference we can express the
constant Do in terms of a total vertical force, P 2 , carried by the plate at
every radius:

2 ^

If the plate is a complete circle the constant Do is, therefore, zero unless
there is a concentrated load P2 acting at the centre.
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Fig. 3.2

Simply supported plate under uniform load. As a first example, the simply
supported plate under uniform load may be considered. The deflexion is
given by w = wx + vv2 where vvx is given by (3.16) and vv2 by (3.12) with
Bo and Do zero. The radial moment Mr is thus given by

. , (3 + v)«rf  2 2(1+ v)C0D
M , = ~ e

2 ^ . (3.19)

The radius rx has still to be chosen and the obvious choice is to equate
it to the radius of the plate, so making Q = 1 at the periphery. The constant
Co is now determined from the condition of zero Mr at Q = 1 whence

(3.20)

The deflexion at the edge may be made zero by taking

Circular plate with ring loading. As a second example, we consider a plate
of radius r1 carrying a total load 2nr0L distributed as a line load of intensity
L at a radius r0, as shown in Fig. 3.2.

Despite the discontinuous character of the applied loading, the deflexion
vvx may still be determined directly from (3.15). However, it is necessary
to discriminate between the ranges 0 < Q < Q0 and QO<Q<1. This will be
done by using the symbols ]̂ ° and ]*Q. Referring to (3.15), we may
then write

Jo Jo ri Jeo

so that

eo
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whence

do} do

and finally

Qo
(3.22)

L
The complete solution may now be obtained in the usual way by

superimposing a deflexion vv2, chosen to satisfy the boundary conditions.

Effect of middle-surface forces. If there is all-around tension or compres-
sion such that Nr = Ne = N, the governing differential equation is obtained
from (3.2) by taking

which yields
'd2 1 d \ / 3 2 w ldw N

(3.23)

(3.24)

The complementary solution of (3.24) is expressed in terms of Bessel
functions, depending on the sign of N. Thus, if N is positive (i.e. tensile)

w2 = Ao + Bo In Q + C0I0(PQ) + D0K0(PQ), )

where
(3.25)

and I09K0 are Bessel functions of zero order with purely imaginary
argument. If N is negative (i.e. compressive),

w2 = Ao + Bo In Q

where
(3.26)

and J o , Yo are Bessel functions of zero order. For further information on
Bessel functions see, for example, Whittaker and Watson (1940).
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\ t /

Fig. 3.3

N

Fig. 3.4

If the plate is a complete circle, rather than an annulus, the central
deflexion is finite and it is necessary for Bo and Do above to be zero.

As an example, the uniformly loaded plate under tension is considered
(Fig. 3.3). A particular integral of (3.24) is then given by wx = — qr2/4N,
so that we may take

(3.27)

which vanishes at r = rt. The constant Co is to be determined from the
further boundary condition at rt. Thus if the plate is clamped

(3.28)

and if it is simply supported

2(1+ v)
(3.29)

3.1.2 Circular and annular plates under linearly varying load
These problems were first considered by Fliigge (1929), and numerous
further examples are given by Timoshenko and Woinowsky-Krieger (1959).

The load distribution shown in Fig. 3.4 is given by

(3.30)

(3.31)

for which a particular integral of (3.2) is

w, =

All problems of similarly loaded circular and annular plates whose
boundary conditions are independent of 0 may be solved by combining
(3.31) with the complementary solution (3.13). Thus we may write

w = -
f (3.32)
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Fig. 3.5

and the constants Al9B1,Cl9D1 are to be determined from the boundary
conditions in the usual manner. For a circular plate the deflexion and
slope are finite at the origin, so that B1=D1=0. Note that the boundary
condition appropriate to a free edge as given by (1.58) becomes, in polar
coordinates,

(3.33)

Problems in which the loading takes the form of a moment applied to
a central rigid disk (Fig. 3.5) may also be solved in a similar way by taking

w = B1/Q ^lng} cos9. (3.34)

Effect of middle-surface forces. When there is uniform all-around tension
(or compression), so that <5> = ̂ Nr2, equation (3.2) becomes

D D
(3.35)

for a plate under a linearly varying load.
The general solution of (3.35), which gives rise to a deflexion proportional

to cos 6, depends on the sign of N. If N is positive (i.e. tensile),

where

(3.36)

and IUKX are Bessel functions of order unity with purely imaginary
argument. Similarly, if N is negative (i.e. compressive),

w = -
qor\ cos0
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Fig. 3.6

where

I-N
D

(3.37)

and J l 5 yx are Bessel functions of order unity.
If the plate is a complete circle the central deflexion is finite and it is

necessary for Bx and Dt to be zero.

3.2 Uniformly loaded sector plate
We consider a uniformly loaded plate in the form of a sector subtending
an angle a and bounded by the lines r = ro,r1. The plate is assumed to
be simply supported along the straight edges (Fig. 3.6).

The uniformly distributed load q0 may be expressed in the form

4̂ f0 * 1 . mn6
q = £ -sin , (3.38)

and a particular integral for the deflexion wx which satisfies the conditions
of simple support along the edges 9 = 0, a is given by

1 mn9
n=t3,5 m(16 - m2n2/(x2)(4 - m V / a 2 ) sm-

(3.39)

If either of the factors (16 —m 2n2/a2) or (4 —  m2n2/a2) vanish for a
particular value of m (for example, if a = ^n and m = 1), it is necessary to
search for an alternative term proportional to Q4' In Q. Such a term is given
by

A 4Q Q
1

l2m(S-m2n2/x2)
mnO

sin- (3.39a)

The complete solution is obtained by combining (3.39) with the
sine-terms in (3.9). For example, if a = |TT, we may write

w = —
24TTZ)

D1Q-2)sin40
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m(m2 - l)(4m2 -

x sin 4m0, (3.40)

where the coefficients Am,Bm,Cm,Dm are chosen to satisfy the boundary
conditions along Q = Q0, 1.

A similar analysis is possible whenever the applied load can be expressed
in the form

. m%9
sin .

m = l
(3.41)

3.3 Sector and wedge-shaped plates with general boundary conditions
The previous analysis is applicable only to plates simply supported along
the straight edges. When these boundary conditions are other than simply
supported, it is necessary to derive an alternative representation of the
'general', solution of Section 3.1. This is accomplished by noting that the
solution of Section 3.1 is not restricted to integral values for m. A valid
solution is also obtained by letting m assume complex values. In particular,
if

mn— = 1 ± iu,a

we derive the following expression for w2:

where

(3.42)

'OT Z ©ucos(Mlng)+ Z ©Lsin(MIng) |,

0 O = a0 cos 6 + b0 sin 6 + co6 cos 9 + do9 sin 6,
&u = au cosh u6 cos 6 + bu cosh uO sin 6

+ cu sinh u9 cos 9 + du sinh u9 sin d,
®'u = a'u cosh u9 cos 9 + b'u cosh u9 sin 0

+ ĉ  sinh u9 cos 0 + d'u sinh w0 sin 0.

If the deflexion is zero at Q = Q0, 1 it is preferable to take

(3.43)

u =
vn

In g 0 '
(3.44)

where v assumes positive integral values. The deflexion vv2 may then be
written

w-, = i ,,sm In g0
(3.45)
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Further, if w2 is symmetrical about the line 0 = 0 and zero along 6 = ± |
say, the function &v is given by

cosh
nvO

JCOS0 sinh

\

cosh I nvcc cos^a sinhl nva sin^a
(3.46)

By combining solutions of this form with those obtained in the previous
sections, it is possible to satisfy general boundary conditions. The method
is analogous to that outlined in Section 2.3 for the clamped rectangular
plate. The uniformly loaded clamped sector was first solved by Carrier
(1944), while more exact solutions, based on variational methods, were
derived by Morley (1963) (see Section 6.6.1).

3.4 Clamped elliptical plate
Simple solutions exist for the clamped elliptical plate under a uniform
distribution of load and under a linearly varying load. It was shown by
Bryan that if

(3.47)

the deflexion is given by

w = -
qxx/a

where
= a/b.

(3.48)

3.4.1 Effect of anisotropy
In what follows we concentrate on the class of anisotropy discussed in
Section 1.8.3. Then, for the case of uniform load q0, we find that (1.101) is
satisfied by a deflexion that differs only in magnitude from that for the
isotropic plate:

where

2C2(D12 + 2D66)

(3.49)

A linearly varying load, however, results in a deflexion that differs in both
form and magnitude from that of (3.48). Thus if
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Fig. 3.7

it may be shown that

w = - •-?-£)'
where

and

(3.50)

3.5 Simply supported equilateral triangular plate
The deflexion of a simply supported equilateral triangular plate under a
uniform loading q0 has (Fig. 3.7) been shown by Woinowsky-Krieger
(1933) to be given by

(3.51)

3.6 Simply supported isosceles right-angled triangular plate
As shown by Nadai (1925), the deflexion of a simply supported plate in
the form of an isosceles right-angled triangle may be obtained by using
the method of Section 2.1. The analysis is applied to a square plate as
shown in Fig. 3.8, the loading on the triangular plate being augmented
by a loading which is a 'negative mirror image' about the common
diagonal. Thus if there is a concentrated load P at the point (£, n) in the
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triangular plate, we augment this with a load —  P at the mirror-image
point (a —  rj,a —  £). It now follows from Section 2.1 that the deflexion is
given by (2.6), with a = b, where

4Pa2 1 / . mn£ . nnrj . mnrj .
w =— A = ^ sin s i n — - - ( - l ) m + " s i n sin

mn *D ( 2 + 2)2V a a ' a
A = ^ s i n s i n ( l ) s i n s i n

n*D (m2 + n2)2V a a ' a a )
..-(3.52)

If there is a uniform loading q0 on the triangular plate, we put P = qod£drj
and integrate (3.52) over the area of the triangle to obtain

. mnx . nny
nsin sin

1=1,3,5,... n = 2,4,6,..J

. mnx nny
msin sin

a U 0.53)
m=2%e,... „« i&s.... n(m2 - n2)(m2 + n2)2J

This method can also be applied when the triangular plate is under
uniform all-round tension or compression.

3.7 Clamped parallelogram plate
Morley (1963) presented a single-series solution for a clamped isotropic
parallelogram plate under uniform normal loading q0. Each term of the
series satisfies the biharmonic equation and the boundary conditions on
one pair of opposite edges, in a manner similar to that considered in
Section 2.2. The remaining boundary conditions are satisfied by invoking
a variational principle of minimum energy introduced by Diaz and
Greenberg (1948). It would therefore have been equally appropriate to
present this solution in Chapter 6. However, the series expansion chosen
for the deflexion is similar to a Fourier expansion in that it can represent
an arbitrary function and it converges on the exact solution in a manner
similar to that discussed in Section 2.2.

An oblique Cartesian coordinate system xOy is chosen with the clamped
edges of the plate situated at x = + a, y = ± b; a rectangular coordinate
system xOy is superimposed with a common origin and with Ox and Ox
coincident (see Fig. 3.9).
The distance V is given by

b' = bsina (3.54)

and, from (1.67), (1.68), the clamped boundary conditions can be expressed
in the form

w = dw/dx = 0 at x = ± a (3.55)
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b'

-*~x,x
b'

J
Fig. 3.9

and
w = dw/dy = 0 at y = + b.

We now search for a solution of (1.30) in the form

(3.56)

(3.57)

(3.58)

which satisfies the boundary conditions (3.56). The wr(x,y) are chosen as
a sequence of biharmonic functions in which for odd r we put

where w0 is the particular solution

(b'2-y2)2

wr(x, y) = —y (y sin X ry —  b' tan Xrb' cos Xry) cosh Xrx (3.59)

so that when the constants kr are calculated as the (complex) roots of the
transcendental equation

sin 21rb' = 0, (3.60)

then each function wr(x, y) satisfies the boundary conditions given in (3.56).
Similarly, for even r we put

wr(x, y) = —y(y cos X ry —  V cot Xrb' sin Xry) sin Xrx,
UAr

where the Xr are now the roots of the transcendental equation

2XrV~ si

(3.61)

0, (3.62)

so that the boundary conditions given in (3.56) are again satisfied. Note
that the above sequences are infinite and satisfy the condition of polar
symmetry

= wr(-x, -y). (3.63)
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At this stage we introduce the convention that

X.r = Xr; w.r(x,y) = wr(x,y); etc. (3.64)

where the bar denotes that the conjugate complex value is to be taken.
Thus, w is a real quantity when the summation in (3.57) is taken over the
positive and negative values of r. It is also convenient to introduce the
complex variable z where

Furthermore, we later require expressions for the Laplacian of w0 and wr,
namely

,3.66,

and, when r is odd,

V2 wr = —-  cos Xry cosh Xrx

= ^ (cosh Xrz + cosh Xrz)> (3.67)

while when r is even,

V2 wr = — - ^ sin X ry sinh Xrx

= i—(cosh X rz - cosh Xrz\ (3.68)

The variational principle
The physical basis of the variational principle introduced by Diaz and
Greenberg (1948) stems from the fact that in a plate with certain 'natural'
boundary conditions - for example, simply supported or clamped-no
work is done on or by the boundary supports. The work done by the
applied loads is thus equal to the strain energy stored in the plate. This
strain energy is a minimum when all the boundaries are clamped. Thus
from Section 6.1.1 and, in particular, equation (6.62), the remaining
boundary condition (3.55) can be satisfied and the coefficients Ar determined
by minimizing the double integral

IT
J-bJ-c

{V2w{x,y)}2dxdy. (3.69)
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We now introduce the following notation

65

V(wr9 ws) = V(ws, wr) = W2wrV2ws dx dy,

F ( w r , w 0 ) = - V2wrV2w0dxdy,
J-bJ-a )

(3.70)

where in virtue of the simplicity of (3.66)-(3.68) the integrals are very easily
evaluated. They are

V(wr9 ws) = | | {I{Xrz, Xsz) A.Z, Xsz

(3.71)

when both r and 5 are odd;

(3.72)
when both r and s are even;

V, ws) =

(3.73)

when r is odd and s is even. The quantities l{Xrz,Xsz) and /(2rz,2sz) are
given by

I(krz,Asz)= cosh Xrz cosh i szdxdy

f cosh(Arz + Xsz)

cosh(Arz-Asz)
r ~" Xs)\Are — Ase )jz = a-bei<l

except when r = s and then

and

0.75)

r r
/(/lrz,/lsz)= cosh Arz cosh l szdxdy

J-fcJ-a
[~ cosh(/lrz-
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except when r = s and then

Xr b' cosh Ar(z + z)
2r sin a 4A2 cos a (3.77)

The remaining relationships can be obtained with the help of the
identities

(3.78)

Finally,

F(wr, w0) = ^ - s in 2 a{/(Arz) + I{Xrz)} (3.79)

when r is odd and

V{wr, w0) = i | | s i n 2 a{I{Xrz) - I(Xrz)} (3.80)

when r is even, where

p f« (b 2-3v2)
I(Xrz)= ^cosh/lrzdxdy

6

4sinh/lra

1 +yA2
e

2 i^s inh(Ar^) j (3.81)

and

(3.82)

In a practical calculation, the infinite series of (3.57) is terminated after
the first few terms, say, when —n^r^n. The minimization of (3.69) then
provides the following n complex simultaneous equations for the deter-
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mination of the n complex coefficients Ar9

V(w1,w1) V(wi,w2) ^ ( w i 9 w n )
V(w2,w1) V(w2,w2) V(w2,wn)

V(wuw1) V(wl9w2) V(wuwnj
V(w2,w1) V(w2,w2) V(w2iwn)

V(w2, w)

V(wn,w)

(3.83)

Numerical results
The following table giving the displacement wmax at the centre of various
uniformly loaded clamped parallelogram plates is extracted from Morley
(1963). The results for a = 75° demonstrate the rapid convergence of the
series expansion (3.57).

2

a
degrees

Number n of
terms in series

a/b=l a/b= 1.25
c c

a/b= 1.5 a/b = 2.0
c c

75
75
75
75
60
45

2
4
6
8
4
4

1.872
1.803
1.793
1.792

1.070
1.059
1.057

0.734

0.613
0.612
0.612

0.411
0.197

0.221
0.222
0.222

0.145
0.0652

3.8 Singular behaviour at corners
The efficacy of the above solution for the clamped parallelogram plate
stems, in part, from the absence of any singular behaviour in the bending
moments at the corners. However, Williams (1951) showed that such
singularities may occur for other homogeneous boundary conditions and,
as shown in the solution for the simply supported rhombic plate in
Section 3.9, particular attention must then be paid to this feature. Consider,
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therefore, conditions near a corner where the boundaries meet at an angle
a. It may be verified that the complementary function for the deflexion
includes terms of the form

w = rA+1 {C1 sin (k + 1)0 + C2 cos (k + 1)0
+ C3 sin (k - 1)0 + C4 cos (k - 1)0}, (3.84)

where k9 Cl9 C2, C3 and C4 are constants to be determined from the
boundary conditions along the radial edges at 6 = 0 and 0 = oc. For
example, if both edges are simply supported, we derive the following four
simultaneous equations for the constants C1 to C4:

0 1
sin(A+l)a cos(2+l)a

0 0
0 0

0 1
sin (A— l)a cos (A— l)a

0 1
sin(A-l)a cos(2- l )a

= 0.

(3.85)

Non-trivial solutions of these equations occur when the determinant
vanishes, that is, when k is a root of the transcendental equation

sin (k + l)a sin (k — l)a = 0. (3.86)

It may now be shown that the smallest value of k, consistent with finite
values of dw/dr as r -• 0, is given by

(3.87)

Other homogeneous boundary conditions can be treated in a similar
manner and the table below (in which s.s. stands for simply supported)
gives the corresponding transcendental equation for k. Some of these
equations yield complex values of k and the character of the moments at
the vertex is then determined by that value of k having the smallest real
part, Re k min.

Case Boundary condition
number 6 = 0 0 = a Transcendental equation for k

(i)
(ii)
(iii)
(iv)
(v)
(vi)

s.s. s.s.
clamped free
s.s. free
clamped s.s.
free free
clamped clamped sin2 Xa = X2 sin2 a

(3 + v)(l - v) sin2 Xa = 4 - (1 - v)2X2 sin2 a
(3 + v) sin 2Xa = — (1 — v)X sin 2a
sin 2Aa = X sin 2a
(3 + v)2 sin2 Xa = (1 - v)2X2 sin2 a
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Case

69

40 60 80 100 120 140 160 180
Vertex angle a, degrees

Fig. 3.10 [Extracted from Williams (1951) with the kind permission of
the publisher, The American Society of Mechanical Engineers.]

The corresponding variations of Re X min with vertex angle a are shown
in Fig. 3.10, assuming v = 0.3.

If the vertex angle a ^ 90° it is seen that Re X ^ 1 for all the boundary
conditions considered and hence there is no singularity in the moments.
Singularities may occur, however, for higher values of a; in particular, if
both edges are simply supported singularities may occur whenever the
vertex angle is obtuse.

3.9 Simply supported rhombic plate
The following solution for the simply supported rhombic plate under a
uniformly distributed load q0 was given by Morley (1962). Because of
symmetry in the planform and loading, attention is focused on half the
plate; further, because singular behaviour is to be expected at the obtuse
vertices, we introduce a polar coordinate system as shown in Fig. 3.11
and we consider the deflexion in the region OAB. Because of the need to
express conditions of continuity along the diagonal AB, we also introduce
the rectangular Cartesian system as shown.
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Fig. 3.11

Boundary conditions
Along the sides OA and OB the boundary conditions for simple support are

w = d2w/d02 = 0, (3.88)

while along the diagonal AB there is continuity of slope and zero shear
resultant, whence

= d3w/dx3 = 0, (3.89)

and we note that in polar coordinates

d . d sin 0 d
— = COS 0 -rz.
dx dr r d9

We now search for a solution of the biharmonic equation in the form

w = wo + w1, (3.90)

where wx is a complementary function and w0 is the particular solution

w0
_q0r4f 4 cos 20 I co s40 \
~~64D\ ~~3cos2a + 3 c o s 4 a /64D\ (3-91)

which satisfies the boundary conditions of (3.88) along the edges 0 = ± a.
Note that when a = 3TT/8, equation (3.91) is not valid because of the
vanishing of a cosine term in the denominator and an alternative expression
must then be used (see Morley 1963).

The boundary conditions along the radial edges 0 = + a to be satisfied
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by the function w1 are therefore

w1=52w1 /302 = O, (3.92)

while from (3.89)-(3.91) we find that

16D|_V cos 2a

1
3\cos4a cos 2a y J*=acosa

and

Following the analysis of Section 3.8, and with a slight change of notation,
we search for a solution in the form

V 1 goacosa/ 1_\
to3J—«-- 2D V1 cos2a|

^ cos(lm + 1)0, (3.95)

where the summation is taken over the positive integral values of m and
the Xm are chosen so that

(3.96)

thus satisfying the boundary conditions (3.92). The coefficients am and bm

are to be chosen to satisfy the boundary conditions (3.93), (3.94) and we
note that it is the term in ax which governs the singular behaviour in the
moments as r->0. When (3.95) is substituted into (3.94), we obtain the
following equation which does not contain any of the coefficients am,

£ (Am + 2)(Am + l)bmrx™ cos 4

ID \ cos 2a

It follows that this equation alone suffices to determine the coefficients
bm. However, (3.97) cannot be solved exactly and we must resort to an
approximation whereby the first few coefficients bl9 b2,...,bM are deter-
mined by the method of least squares, that is,

^asina

J —asina
^ 1 * - a (3.98,
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This leads to the following system of M linear simultaneous equations

4 u &i + ^ 1 2 ^ + A13b3 + • •• + A1MbM = A1

A21b1 + A22b2 + ^ 2 3 b 3 + ••• + A2MbM = 4 2

A31bx + A32b2 + ^ 3 3 b 3 + ... + A3MbM = A3

AMibi +AM2b2

where the coefficients Amn are given by

Amn

(3.99)

^•asina

J — a sin a
(3.100)

and the Am by

1 —̂
2 \cos 2a

It remains now to determine the values of the coefficients, a1,a2,...,aM

from the condition obtained by substituting (3.95) into (3.93), that is,

V
cos 2a /

^ Z
^ l

(3.102)

This equation is again satisfied approximately by the method of least
squares which requires

fasina Vdwl2

S\ — dy = 0
J — a sin a |_ _|x = a cos a

(3.103)

and this leads to another system of M linear simultaneous equations
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(3.104)

A11a1 -

The A'mn and A,

\-A'12a2-
\-A'22a2-\
VA'i2a2l

+ A'M2a2

M2 3a3 + - +
\-A'33a3 + '~ +

+ A'M3a3+-~

n are given by

A' —

= A'3

(3.105)

where the Amn are given by (3.100), and

Pasina

J —asin a

where

I f / 1 \ , 1 / 1 1 \ ,
y = — 1 —- r3cos0 + - — r* cos 30

16|_\ cos 2a J 3\cos4a cos 2a /
M

+ XI ^m{(^m "I" 2)coSvim# + cos(2m + 2)0}rA m + 2 .
m = l

(3.106)

Numerical results
Morley has derived numerical results for several values of the angle a,
while the particular value a = 75° has been examined in detail as it
represents a large degree of skewness. For this case, the moments Mr and
M0 along the half diagonal OC have been calculated for two levels of
approximation, namely by taking M = 3 and 8, and the results shown in
Fig. 3.12 indicate a very satisfactory degree of convergence. In particular,
the term al9 which governs the singular behaviour, changes by only 1.7
per cent between these two values of M. For M = 8, the absolute accuracy
may be gauged from the fact that the maximum error in the boundary
conditions (3.93) or (3.94) is less than 0.15 per cent.

3.10 Multi-layered plate with coupling between
moments and planar strains

We conclude with a solution for a uniformly loaded clamped elliptical
multi-layered plate with general coupling between moments and planar
strains. This relatively simple solution is of value in estimating the effect
of such coupling in more complicated cases. It is convenient to work in
terms of displacements (see Section 1.8.6), so that the boundary conditions
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0.02

-0.02

Fig. 3.12 Bending moments Mr and Me along the half diagonal OC for
a = 75° (Poisson ratio v = 0.3).

are given simply by

u = v = 0,
and (3.107)

dw
—
dn

We now search for a solution that satisfies (3.107) in the form:

x2 y2

x2 y2

where wo,l1,fi1,X2,fi2 a r e constants to be determined, and

/ x2 y2

(3.108)

(3.109)
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Substitution of (3.108), (3.109) in (1.111) and (1.112) yields two equations
in which each term varies linearly with x or y. For these equations to be
satisfied it is necessary that the coefficients of the terms that vary with x
or y vanish and this gives rise to the following four equations that enable
us to express the constants A^fa in terms of £ ( = a/b) and the elastic
properties of the plate:

3A16 + C A:
r2( A -i- A

3A66 + (2A2

2C2A26

ie, A

,A66

12 + ^66

+ 3C2^26

2^26

+ X2A22

Hi

A2

w2

Finally, substitution of (3.108), (3.109) into (1.114) gives

Wn =o - K ,

(3.110)

(3.111)

where

K = 8{3Z>X1 + 2£2(D12 + 2D66)
+ 2a2[3{A1B11 +
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Plates whose boundaries are
amenable to conformal
transformation

Since about 1910 the Russian school of elasticians has developed powerful
and elegant methods of analysis of the biharmonic equation. Prominent
in this field is Muskhelishvili (1933), who gave particular attention to the
boundary value problems of plane stress. The analogous boundary value
problems for plates have also been considered by such authors as Lourie
(1928), Lekhnitzky (1938), Vekua (1942) and Fridman (1952). Parallel with
this has been work in English by authors including Stevenson (1942),
Green and Zerna (1954), and Jones (1957). An essential ingredient in this
method of analysis is the use of complex coordinates, and with this in
view we consider first some definitions and notations.

(i) Let a be a complex number equal to (a + i/?) where a and fi are
real; the conjugate complex number (a —  //?) is then denoted by
a. We shall here be using complex coordinates (z, z) where

z = x + n
z = x-ty.

(ii) Let f(z) be a complex polynomial function of z given by

/(z) = XaBz" = Z(ocn + ^ )z » .
n n

The following notation is then employed:

J(z) = ̂ " / = E K - ^ "
n n

Thus, if

f(z) = f1(x,y) + if2(x,y),
where fx, f2 are real functions, it follows that

m = fi(x9y)-if2(x9y).
We will also have occasion to use the symbols M for 'real part of and !T
for 'imaginary part of. Finally, a prime will be used to denote differenti-
ation of a function of a single complex variable.
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4.1 Governing differential equation in complex coordinates
In virtue of (4.1) we have

dx \dxjydz \dxjydz
d d
dz dz

and similarly,

— -i(—- —
dy \dz dz

so that

d__U d _ . d
dz~2\dx~%J9

dz 2\dx dy

(4.2)

and therefore

V2 =
dx2 ' dy

- = 4
dzdz

(4.3)

The governing differential equation (1.29) for plates of constant rigidity
now assumes the form

d4w
dz2dz2 16D

and in discussing the solution of (4.4) it is convenient to write

wc

(4.4)

(4.5)

where wp is a particular integral satisfying (4.4) and wc is the complementary
function satisfying the equation

dz2dz2̂  = 0. (4.6)

4.1.1 Particular integrals
A particular integral of (4.4) is readily found by repeated integration:

wp = — - \\\\q dzdz dzdz. (4.7)

This form is particularly useful whenever q can be expressed as a
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polynomial in x, y for it may then also be expressed as a polynomial in
z,z in virtue of (4.1). The lower limits of integration in (4.7) are arbitrary,
but it is assumed that they are chosen to ensure that wp is real; in many
practical cases, lower limits of zero will suffice. Thus when q = q0, a
constant, we may take

If the load is concentrated at a point, a particular integral is more
conveniently found from the results of Section 3.1.1. Thus, if there is a
concentrated downward load P acting at the origin, we find from (3.9),
(3.12) and (3.18) that

P
16nD

zz In (zz). (4.9)

If the load P acts at the point (z09z0) a particular integral is therefore
given by

-zo)(z-zo)ln{(z-zo)(z-zo)}. (4.10)

4.1.2 Form of the complementary function
Equation (4.6) may be integrated immediately to give

wc = zcp{z) + zcpo{z) + x{z) + Xo(z).

where (p,(po>X>Xo a r e arbitrary analytic functions; but this expression
is too general because wc is necessarily real, and accordingly we must
take

wc = zq>(z) + zq>{z) + X(z) + j£(z). (4.11)

The arbitrary functions cp and x a r e referred to as the complex potentials.
Now it may be verified that w0 is unaltered if we replace

cp(z) by (p(z) + A + iB + iCz
and

X(z) by x(z)~(A

where A, B, C, D are arbitrary real constants, and it follows that the complex
potentials cp and x cannot be uniquely defined unless some restrictions
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are imposed upon them. Here, uniqueness of the functions cp and x *s

achieved by adopting the convention that

(4.12)
and

4.1.3 Boundary conditions in terms of complex coordinates z,z
The functions (p and x are to be determined from the boundary conditions
which must first be expressed in terms of the complex coordinates z, z. In
what follows, attention will be devoted to the clamped and simply
supported cases.

Clamped boundary condition. The clamped boundary condition is given
by (1.67) and (1.68). Apart from an unspecified rigid body displacement,
the vanishing of w is equivalent to the vanishing of dw/ds, and accordingly
(1.67) and (1.68) may be combined to yield the following single equation:

-{d) +{dy
dw dw

= 4 — —- in virtue of (4.2). (4.13)
oz oz

Now dw/dz and dw/dz are conjugate complex quantities and the
vanishing of one implies the vanishing of the other, so no generality
is lost by writing (4.13) in the following simple and convenient form

| = 0. ,4.4,

Simply supported boundary condition. The simply supported boundary
condition is given by (1.69) and (1.70), and the latter may be rearranged
using the identities (1.66), to give

d2w d2w 2 d\// dw
dn2 dt1 ds dn

=o. (415)

Equation (4.15) must now be expressed in terms of the complex coordinates,
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and to achieve this it is noted that along the boundary (see Fig. 1.6)

dw dw . dw
dz dx dy

= (sin if/ — i cos \jj) ——
on

(4.16)

Also, along the boundary,

dz dx dv , . .
— = h i — = cos w + i sin w = el<p

ds ds ds

so that

dz

and

Thus

and

dz
dz

= e~2i(p.

ds 2 dz\dz\dz))ds 2 dz\dzy

(4.17)

(4.18)

Equation (4.15) may now be written in terms of the complex coordinates
by using (4.3), (4.16) and (4.18):

d2w
(4.19)

Boundary equations for the complex potentials <p,x- The complex poten-
tials <p, x are to be determined from the equations formed by substitution
of (4.5) and (4.11) into the appropriate boundary conditions. Thus, for the
clamped plate, substitution into (4.14) yields the following equation:

(4.20)

Similarly, the vanishing of w along the boundary yields the equation

zq>(z) + zcp(z) + z(z) + x(z) =-wp (4.21)
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and the simply supported condition (4.19) assumes the form

4{<p'(z) + cp'(z)} + (1 - v) | A ( ^ J{p(z) + zcp\z) + f(z)}

¥.7.4 Boundary conditions in terms of new complex coordinates f,f
Equations (4.20), (4.21) and (4.22), are, of course, only valid on the boundary
where x,y and hence z,z are known; but the form of these complex
coordinates on the boundary does not readily lend itself to further analysis.
The next step is therefore to introduce new coordinates £, rj by means of
a suitable conformal mapping function such that the region occupied by
the plate in the x9 y-plane becomes the region enclosed by the circle of
unit radius in the £, ^y-plane. Such a transformation is always possible, and
it brings with it the advantage that as a point in the x, y-plane traces out
the boundary of the plate the new coordinates £, r\ trace out the unit circle;
the unit circle is given by the parametric equation

n = sin 0,

so that on the boundary the complex coordinates z, z transform into (, I
where

C = £ + irj = em = <r, say,

and f (4.23)
£ = £ — irj = e~l% = 1/a.

The boundary equations may therefore be expressed in terms of a single
complex coordinate a, and this fact facilitates their solution. Thus, if the
mapping function is formally represented by the relation

(4.24)

and similarly
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In addition,

dz co'(

and similarly,

(4.25)

It is also convenient to represent /(z) by *F(z), so that

Furthermore, along the boundary

= f{co(a)9 CO(1/G)} = F(o\ a known function of cr, (4.26)
and

-wp= -wp(z,z)

Also

= H(o\ a known function of o.

d / d z \ _ d /ddj(<r) da da \ _ d / d>'(ff)
dz \dz / dz\ da da)(cr) daJ AZ\G2CO'(G)

(A .
(4.2 / j

dz ~ ^

= L((j), a known function of G,

so that, referring to (4.22), we may therefore write

( d / d}r

(4.28)

— 4——3 — (1 — v)< —I — 1 }-r^- = S(G\ a known function of G.
ozoz [dz\dz/J dz

(4.29)

The boundary equations. Substitution of (4.23)-(4.29) into the boundary
equations (4.20), (4.21) and (4.22) yields, respectively,

where
(<7) + J(ff)- ^(1/(7) + * ! (1/(7) = F((T)

CO(ff)

_
a known function of <r,

(4.30)
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and

Finally, on dividing throughout by L{a\ (4.22) reduces to

(4.31)

These three equations are the boundary equations for determining the
complex potentials q>1 and Xu f° r a clamped plate we require them to
satisfy (4.30) and (4.31), while for a simply supported plate we require
them to satisfy (4.31) and (4.32).

4.1.5 Form of the mapping function and complex potentials <pl9Xi
In what follows it is assumed that the mapping function can be expressed
as a polynomial with, in general, complex coefficients cn:

©(0=

so that

n=l

(4.33)

There is no need to include a coefficient c0 in (4.33) because this simply
corresponds to a change of origin in the x, y-plane; by the same token no
generality is lost in assuming that the coefficient c1 is real, for this may
always be achieved by a suitable rotation about the origin in the x, y-plane.
With these restrictions on the form of the mapping function, it may be
verified that the restrictions imposed in (4.12) on cp and x to ensure their
uniqueness, correspond to the following restrictions on <pl and Xi-

and
(4.34)

The functions cpx and Xi are analytic and single-valued within and on
the unit circle, and we may therefore write

<Pi(Q= n> w h e r e ai i s real,
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00

Zi(0= Z bn?> w h e r e bo is real,

and (4.35)

The coefficients an,bn (which are, in general, complex) are to be
determined from the appropriate boundary conditions; the function x¥1

and the coefficients en are introduced only for convenience and will not
be determined.

4.16 Deflexion and moments in terms of complex coordinates f, f
Once the complex potentials <p1(Q and XiiQ a r e known, the deflexion is
given by

w = w(f)-<M0 + co(0^ 1 (0 + Zi(0 + Zi(0 + wp. (4.36)

The moments per unit length, Mx,My,Mxy, are given by (1.5), and
accordingly we require expressions for the curvatures d2w/dx2,d2w/dy2,
d2w/dxdy in terms of the complex coordinates (, £". The particular integral
wp presents no difficulty for it can be readily expressed in term of x, y.
Confining attention therefore to the term wc we note from (4.2) that

d2wc (d

= 20t{2(p\z) + z<p"(z) + f(z)}, from (4.11)

and similarly

d2wc = 2tX{2<p'(z) -z<p"{z)-f{z)},

and
d2wc

dxdy

(4.37)

Equation (4.37) can be expressed in terms of £, £ in virtue of the relations

cp"(z) = -

and
(4.38)
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4.2 General solution for a clamped plate

4.2.1 Determination of complex potential q>1 (£)
Here it will be shown how the complex potential q>1 may be determined
in series form from (4.30). Once this complex potential is known, a separate
analysis, based on (4.31), is preferable for the determination of the complex
potential Xi • First, however, the functions F(a) and J(a) must be expressed
in powers of a:

F(CJ)= £ 4,<r",say, (4.39)
« = — oo

and

°

= t9n<y"+ig-k<y~k,^y, (4.40)
« = 1 fc = 0

where the coefficients gn are obtained by straightforward long division.
The coefficients #_fe are not required in the subsequent analysis and so
need not be determined. Note that for the practically important case of
uniform loading the highest power of a occurring in F(a) is (2N — 1), and
this is also the highest power of £ occurring in q>i{Q.

Substitution of (4.35), (4.39) and (4.40) in (4.30) now gives

JV oo

X gna"+ I 9-^
n = l fc = 0

+ fenff-"= f Ana". (4.41)
n = 0 n= — oo

By equating coefficients of the positive powers of a we obtain the following
relations:

(4.42)
= AN (n = N),

2d2gN = AN_ 1 (n = N-

• 2a2g2 + ••• + Nangn = Ax (n= 1).

Equation (4.42) is sufficient to determine the coefficients an and hence
the function cp^Q. If the coefficients gn and An are real, the coefficients an

will also be real. If any of the coefficients gn or An are complex it will be
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necessary to write each coefficient an (apart from ax) in the form (aM + ifin)
and to equate separately the real and imaginary parts in (4.42).

4.2.2 Determination of complex potential
A similar analysis, based on (4.31), may now be employed to determine
the complex potential XiiQ- First, however, the function H(a) is expressed
in powers of a:

00

H{a)= £ 5n<7",say, (4.43)
n = — oo

and it is convenient to introduce the notation

aHo"

= £ Kn<7w,say. (4.44)
n=-(2V-l)

Substitution of (4.35), (4.43) and (4.44) in (4.31) now gives

= X Bn<f- X Kn<f- X Kka~k (4.45)
n=-oo n=-(N-l) k=-(N-l)

and by equating coefficients of the positive powers of a in (4.45) we obtain
the following relations for determining the coefficients bn,

(4.46)

> = BH-Kn

Both complex potentials are now known and the problem is solved, for
the deflexion at any point may be determined from (4.36), and the moments
from Section 4.1.6. Note that for the case of uniform loading the highest
power of £ occurring in xAO is (2N — 2).

4.2.3 Bending moments along the boundary
In the majority of practical cases the maximum bending moments in the
plate occur along the clamped boundary where, as Stevenson noted, the
moment Mn assumes a particularly simple form. Thus, on a clamped
boundary,



General solution for a simply supported plate 87

Jd2w dil/dw\] . . r / x

d2w dw
= — D V w, because — -̂ and -r— vanish on a clamped boundary,

<9s2 dn

;)} - £V2 wp, in virtue of (4.3) and (4.11),

-DV2wp. (4.47)

4.3 General solution for a simply supported plate
The complex potential cp^Q is to be determined from (4.32) by equating
coefficients of the positive powers of c, but the form of this equation
precludes the possibility of obtaining a simple general solution such as
was presented for the clamped plate. However, in Section 4.3.1 the steps
in the analysis will be briefly outlined for the practically important case
of uniform loading. It is to be noted that once the complex potential (p1(Q
is known, the determination of #i(0 from (4.31) is precisely the same as
that given in Section 4.2.2.

4.3.1 Uniformly loaded plate
It may be verified by substitution of (4.33) into (4.28) that l/L(a) may be
expressed in the form

1 £

and for the uniformly loaded plate, in which wp is given by (4.8), we have,
therefore,

Ufr) 32D w v

2N-1 oo

= E sn<,n + X s.ka-\ say, (4.48)
n - 1 k=0

where, as will be seen later, the coefficients s_fc are not required for the
subsequent analysis.

Similarly we may write
4 2N-2

L{o)co\o) ' ^ m^o
and

(4.49)

(4.50)

where the coefficients w_fc,i;_fc need not be evaluated.
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Substitution of (4.35), (4.48), (4.49) and (4.50) in (4.32) now yields the
following equation in which, for simplicity, terms which do not contribute
to positive powers of o are omitted:

2iV-2 \ oo / N \ oo

"1*+ I u-m°-m I na^-' + l X vno* PT no,*'*-1*
m = 0 Jn=l \/i=l Jn=l

^ \n=l /n=l

2N-1

= I s,a- + - . (4.51)
n = l

By equating coefficients of the positive powers of a we obtain the following
relations:

an = 0 (n
- l)a2N-t + (1 - v)a2JV-i = 52^. ! (72 = 2N- 1),

{n = 2N-2\

u1NaN + u0(N + l)aN+1+---+U-(N-2)(2N-l)a2N-1+(l-v)aN

+ {vNax + (1 - vj^fl!} = sN (n = N), (4.52)

These relations suffice to determine the coefficients an and hence the
function

4.4 Square plate with rounded corners
As an illustrative example, consider the uniformly loaded and clamped
plate shown in Fig. 4.1 whose boundary is given by the parametric equation

x = Jf a(cos & —  YE cos 53),
y = | |a(sin 3 —  -^ sin 50).

The appropriate mapping function is one of a family treated by Stevenson
(1943), namely

and is obtained from this by taking
(4.53)

Now a particular integral is given by (4.8), so that along the boundary



Square plate with rounded corners 89

0

Fig. 4.1
(a)

32D

(b)

1 X
G G5

where

32D'

(4.54)

and the coefficients An are accordingly given by the equation

g Anan = T{k2a9 + (2/1 + P)G5 + (1 + 2A2)a + XG
n = — oo

Similarly, the coefficients #„ are given by (4.40):

(4.55)

so that

g5 = X, 04 = 03 = 02 = ^

Equation (4.42) now gives

a9 = TX\
and

(4.56)

13),
a! + ^ ( 1 - 5A2) + 5a5 A = T(l + 2A2),
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whence

ax = T\
- 8A3 - 5/i
2(1-5/i2)

2 ( 1 - 5 * )

(4.57)

The coefficients an for values of n ̂  1,5,9 are zero, and the complex
potential q>i(Q is therefore known.

To determine the complex potential Xi (0 we first evaluate the coefficients
Bn (for n > 0) from (4.43),

i AX2

a a5

whence

By the same token, the coefficients KM from (4.44) are given by

(4.58)

K0=\TL\

1-5/12

l - 5 / l 2 - 1 5 / l 4 - 5 / l 6

(4.59)

1-5A2

The coefficients bn are now given immediately from (4.46), (4.58) and (4.59):

' 1 - 9 A 2 - 1 U 4 - 5 A 6 X

(4.60)bA= -TLX(l+X2), bi=-

The coefficients bn for values of n # 0,4,8 are zero, and the complex
potential j£i(0 is given by (4.35) and (4.60). The deflexion at the origin is
given by

6AD 1-51 2

, for the plate specified by (4.53).
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The moments per unit length at the origin are given by Section 4.1.6,
whence

1 6 ( 1 -

From Section 4.2.3, the edge moment per unit length at A9 where a = 1,
is given by

W(a1 + 5a5 + 9a9) q0a2

[ n)A L(1 + 5A) 16

and the edge moment per unit length at B, where a = ein/4
9 is given by

_ 8P(a1-5fl5 + 9a9)
{Mn)B~ L ( l 5 / l )

4.4.7 Various square plates with rounded corners
The numerical value of the parameter k in (4.53) was chosen so that the
curvature of the boundary vanished at the point A, and this automatically
fixed the curvature at the point B. By introducing a further term in the
mapping function, as shown in (4.61), it is possible to construct a family
of such 'rounded squares' with differing curvatures at the 'corner points':

(4.6.)

4.5 Anisotropic plates
Anisotropic plates with zero coupling between N and M, as discussed in
Section 1.8.3, also admit solutions in terms of functions of complex
variables (Lekhnitsky 1968). Thus, referring to (1.101) and (1.102), we search
for complementary functions of the form wc(x 4- fiy) where wc is an arbitrary
analytic function and fi is a constant. Substitution into (1.101), with q zero,
yields the following characteristic equation:

D1± + 4D16fi + 2(D12 + 2D66)^2 + 4D26fi3 + D 2 2 / / = 0. (4.62)

Lekhnitsky has shown that for all elastic materials, (4.62) has only complex
or purely imaginary roots; these roots are denoted by Hi,p.i,n2

 anc* ^2
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where a bar denotes the conjugate and

where a, /?, y9 d are real.
It is also convenient to introduce complex variables

(4.63)

and z2 = x + ju2<y, (4.64)

so that

1(z1) + w2(z2)}, (4.65)

or, in the special case of equal complex roots //,

1(z1) + £ ^ ( 2 ! ) } . (4.66)
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Plates with variable rigidity

Plates with variable rigidity seldom lend themselves to exact analysis and
recourse must then be had to an approximate treatment. However, there
are a number of cases that do admit of exact analysis (exact, within the
framework of small-deflexion plate theory), and such cases are considered
here. It must be emphasized throughout that the mid-surface of the plate
is assumed plane.

The cases considered in Sections 5.1 and 5.2 admit of an exact analysis
in virtue of the simplicity of the applied loading. Those considered in
Sections 5.3-5.6 are characterized by the simplicity of the variation of the
rigidity.

5.1 Flexure and torsion of a strip of variable rigidity
We consider first the pure flexure and torsion of a strip whose rigidity
D(y) varies, in an arbitrary manner, across the width. The case of flexure
due to shear is then considered.

5.1.1 Pure flexure
It may be verified by substitution that the deflected form

w = - i / c ( x 2 - v y 2 ) (5.1)

satisfies (1.28) provided that q is zero and that D does not vary with x.
This deflected form gives rise to moments per unit width which may be
determined from (1.5):

Mx = KD'{y)
where

D'{y) = E{t{y)Yl\2

and

Further, substitution of (5.2) in (1.26) gives

(5.2)
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so that the only forces acting on the plate are moments Mx per unit width,
and their resultant may be equated to the applied moment M. Thus, if
the strip is bounded by the lines y = 0, b,

- PM= Mxdy
J

= K\ D'(y)dy. (5.3)
Jo

The ratio M/K is referred to as the flexural rigidity of the strip.

5.1.2 Pure torsion
It may likewise be shown that the deflected form

w = —  Txy (5.4)

satisfies (1.28) provided that q is zero and that D does not vary with x.
Substitution of (5.4) into (1.5) then gives

and

while the shears are determined from (1.26):

3M™
dy

T d
l+v~dyj (5.6)

In discussing the applied loading which gives rise to the above
distribution of Mxy and Qx it is convenient to regard D\y) as vanishing
at the boundaries y = 0, b. This can be done with no loss of generality, for
if the rigidity is non-zero at the true boundaries we can achieve our aim
by redefining the boundaries by the lines y = —  d, b + S, where d is a
vanishingly small positive length. With this proviso in mind we find that

LMxy-]y=Oib = 0 (5.7)

so that, since My and Qy are zero, these edges are free. Further, the total
shear force acting over the section is given by
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[bQxdy=["
Jo Jo

= 0 (5.8)

by virtue of (5.7).
The resultant of the forces acting over the section is therefore a torque

T whose magnitude is given by

f = [ Mxydy- [
Jo Jo

Jo

which, on integrating by parts and using (5.7),

= 2? Mxydy
Jo

=rhiD'my m

by virtue of (5.5).
It is to be noticed that the torque due to the vertical shears Qx is the

same as that due to 'horizontal' shears which comprise the twisting moment
Mxy. This equality of torsional components is indeed true for a cylinder
of any cross-section.

The ratio T/T is referred to as the torsional rigidity of the strip, and a
comparison of (5.3) and (5.9) shows that

torsional rigidity of strip 2
flexural rigidity of strip 1 + v '

5.1.3 Flexure due to shear
Consider now the deflected form

w=-Ux3-3vx(y-y0)2}, (5.11)
o

where c and y0 are constants. This deflexion is such that (dw/dy)y=yo,
vanishes for all values of x. Furthermore, this deflexion satisfies (1.28)
provided that q is zero and that D does not vary with x. The moments
throughout the strip are obtained by substituting (5.11) into (1.5), which
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gives

Mx = cx(l-v2)D
My = 0 \ (5.12)

Mxy=-cv(l-v)(y-y0)D,

and it should be noted that

and

if we regard D(y) as vanishing at the edges.
The shears per unit length are given by (1.26) and (5.12), whence

Qx = c(l-v2)D-cV(l-v)~{(y-y0)D}

and

e,=o.
The total shear force Q acting over any cross-section is therefore

constant, and given by

e =
rdj;, (5.14)

and this equation may be regarded as determining the constant c in terms
of the applied shear force.

Similarly, the total torque f acting about the line y = y0, say, is the
same for all cross-sections, and is given by

f = f*Mxydy- (h{y-y0)Qxdy
Jo Jo

cv
• (y-yo)D'dy

The resultant Q and T of forces acting at the end of the strip, at x = 0,
is therefore determined. It follows from Saint Venant's principle that any
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applied distribution of Mxy and Qx which has the same resultant Q and
T will deflect the strip into a form which differs from (5.11) only in the
immediate neighbourhood of the loaded face. The resultant Q and T
corresponds to a shear force Q alone acting at y = y, say, where

whence, from (5.14) and (5.15),

7dy

If y0 is at the centroid of the cross-section, the point at y is referred to
as the flexural centre of the cross-section. Equation (5.16) was first derived
by Duncan (1932) who treated the strip as a narrow prism rather than as
a plate.

5.2 Torsion and flexure of strip with chordwise temperature
variation

A chordwise temperature variation in a long strip results in a constant
pattern of longitudinal stresses away from the ends, and more complex
stress fields near the ends. If at least one end is free, the longitudinal
stresses are self-equilibrating but, nevertheless, they affect the torsional
and flexural rigidities. First we show how to determine the longitudinal
stresses in a strip of variable thickness t(y) with a chordwise temperature
variation T(y\ noting that account can also be taken of symmetrical
variations of temperature through the thickness if T(y) is defined as the
average temperature, as per Section 1.6.1.

If the strip is prevented from extending longitudinally, the longitudinal
stresses are given simply by

j (5.17)

where a is the coefficient of thermal expansion.
In general, these stresses have a resultant longitudinal force and moment,

but if the strip is free the stresses ax away from the ends are of the form

GX= —  EaT(y) + cx + c2y, (5.18)

where c1?c2 are such that

V*dy= t(y)oxdy = 0,
Jo I
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and

yNxdy= yt(y)axdy = O.
Jo Jo

(5.19)

In what follows, we assume that the distribution of longitudinal forces
per unit length, Nx, is known and we determine the effect these have on
the torsional and flexural rigidities. In the latter case, we confine our
attention to middle-surface forces Nx that are self-equilibrating and
therefore satisfy (5.19). For the case of torsion, however, the analysis is
applicable to any chordwise distribution of Nx and therefore, for example,
to the torsion of a strip under tension.

5.2.1 Torsion of strip with longitudinal stresses
It may be shown that (1.63), with KT and q zero and D = D(y\ is satisfied by

w = - Kxyxy + Oc, (5.20)

where Kxy is the twisting curvature or twist per unit length and Cx is a
rigid body rotation whose introduction is required if the forces Nx are not
self-equilibrating; alternatively, the x-axis can be chosen to coincide with
the resultant of the longitudinal forces Nx.

In determining the torque f that is applied to the strip it will be seen
that in addition to the components due to Mxy and Qx, as in Section 5.1.2,
there is also a component due to the middle-surface forces per unit length
Nx because in the twisted state these have components normal to the
original plane of the strip. Thus we find

- Cb Cb Cb dw
T=\ Mxydy-\ yQxdy-\ yNx — dy. (5.21)

Jo Jo Jo ox

But there is no resultant out-of-plane component of the forces Nx and hence

^d^O, (5.22)
whence, from (5.20),

C = KxyIJI0, say,
where

} (5.23)
/„ = fNxdy.

Jo

Integration of the third integral in (5.21) now gives

fNx^-dy = Kxy(I2-Il/I0), (5.24)
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and hence the torsional rigidity is given by

T/Kxy = 2(1-v) [bD{y)dy + I2-Il/I0. (5.25)
J

Note that if the x-axis is chosen to lie along the line of the resultant of
the forces Nx, the constant C and the integral Ix are zero. Thus for a strip
of constant thickness subjected to a tensile load P, we find

torsional rigidity (1 + v)Pb ,_ _
1 + ^ 3 • ( 5 - 2 6 )(torsional rigidity)P=0 2Et3

5.2.2 Flexure of strip with self equilibrating longitudinal stresses
The deflexion of a strip with longitudinal curvature KX is of the form

which may be substituted into (1.63) to yield the following differential
equation for w(y),

62 \D(^--VKX)\=-KXNX. (5.28)
dy2{~\dy

Boundary conditions
The edges of the strip are free and hence from (1.76) and (1.77)

= 0, (5.29)
L V a ^ / Ay = o,b

and

= 0. (5.30)

Determination ofw(y)
Equation (5.28) may now be integrated once to give

where the limits of integration are chosen to satisfy (5.30). Similarly, a
second integration yields

which satisfies the boundary condition (5.29). Equation (5.32) may be
further integrated to determine w(y) but, as shown below, the moment



100 Plates with variable rigidity

applied to the strip may be determined without recourse to such
integration.

The total moment acting on the strip M is the sum of that due to flexure
about the mid-surface of the strip Ml9 say, plus that due to middle-surface
forces M2 , say. Thus

Mx = I Dl KX- V ^ W from (5.27)

^(l-v^^J^dy + v^ry^J^^dyd^^d^ (5.33)
from (5.32).

The expression for M2 lends itself to repeated integration by parts. Thus

=M2 = wNx dy

( 5 J 4 )

It can be shown that the first two terms above vanish because of the
equilibrium conditions (5.19), while in the third term (5.32) enables us to
express d2w/dy2 in terms of known functions. Hence we obtain

- = ( l - v 2 ) Ddy + 2v\ $>dy-\ —dy ,
*x Jo Jo Jo D

where

Jo Jo

(5.35)

and it is to be noted that this definition of Q> identifies it as the force
function or, to be more precise, that version of the force function whose
linear terms are chosen to make Q> vanish at y = 0, b.

5.3 Rectangular plate with exponential variation of rigidity
Following Conway (1958) we consider the rigidity to vary according to
the equation

D = DoeXny/a (5.36)

where X is a constant and the factor n/a has been introduced for
convenience (Fig. 5.1). It is to be noted that such a variation in rigidity
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Fig. 5.1

corresponds to a thickness variation given by

If the thickness varies from t0 to tb the coefficient X is, therefore, given by

tn

Substitution of (5.36) in (1.28) yields the equation

4 2Xnf 83w 83w\ X2n2/d2w d2w\_ q

(5.37)

Any/a

(5.38)

In considering solutions of (5.38) attention is confined to plates simply
supported along the edges x = 0, a and subjected to a distributed loading
of the form

mnx (5.39)

where /? is an arbitrary constant.
Following the analysis of Sections 2.2 and 2.2.2 we search for a solution

of (5.38) and (5.39) in the form

w = <
mnx (5.40)

where the first term is a particular integral of (5.38) and the summation
of terms the complementary integral. All terms in (5.40) are to satisfy the
conditions of simple support along x = 0, a. Substitution of the first term
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in (5.40) in (5.38) and division throughout by the term e
ifi~X)nyla gives

1 "
= 75- I «»sm mnx

which may be integrated to give

w1(x) =
=i (m2

. mnx
: sin .

(5.41)

(5.42)

The differential equation for Ym, obtained from (5.38) and (5.40), reduces to

dy dy dy

the solution of which may be written in the form

Z-i m>i '

dy

(5.43)

(5.44)

where the rmi are the roots of the equation

ri + 2Xrl + (X2 - 2m2)r2
m - 2Xm2rm + m2(m2 - vl2) = 0. (5.45)

The constants Ami are to be determined from the boundary conditions
along y = 0,b. For example, the vanishing of w along these edges gives
rise to the equations

(5.46)

Similarly, the vanishing of dw/dy along y = 0,b gives rise to the equations

L^ m>i w,i i

y r A .erm,i^b/a = Q

(5.47)

and the vanishing of d2w/dy2 along y = 0,b gives rise to the equations
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.L
prm,inb/a _

(5.48)

5.3.1 Simply supported plate under uniform load
As an example, we consider a uniformly loaded and simply sup-
ported rectangular plate with exponentially varying rigidity. For such a
plate

and
(5.49)

and the requisite boundary equations (5.46) and (5.48) reduce to

nm3(m2-vi2) M

3/ 2 12\
nnrym — VA )

n\ 4

nm3(m2 —

(5.50)

The solution of (5.50) is best obtained numerically.

5.4 Rectangular plate with linear variation of rigidity
This case was discussed by Gran Olsson (1934). The rigidity is considered
to vary according to the equation

D = Woy/b. (5.51)

If the rigidity increases from Do to Dx over the width b of the plate, the
coefficient X is given by I = (D1 — Do)/Do and the origin is chosen (Fig. 5.2)
so that the plate is bounded by the lines y = y0, y0 + fo, where

yo = bDo/(D1-Do).

Substitution of (5.51) in (1.28) yields the equation

) = q. (5.52)



104 Plates with variable rigidity

Oc

Fig. 5.2

Attention is now confined to a load distribution of the form

<l = -r<l(x) = -r Z 4m sin
b b m=i a

for which a particular integral of (5.52) is

a y—i c / m

1 D0n4
m=im4

We now search for a solution of (5.52) in the form

. mnx
Ym sin ,

m = l Cl

where the functions Ym satisfy the differential equation

•rM-o.dy2 a2 n2 m

(5.53)

(5.54)

(5.55)

(5.56)

The general solution of (5.56) may be expressed in terms of the exponential
integral defined by

C" e" C" e~u

i(«)= — du, Ei(-«)= —du .
J-oo « J-oo «

Introducing ( = Tiy/a, we then have

- e""*5 Ei(2mC)}
emCEi( - 2mQ}+ Cmem^ + Dme~mi.

(5.57)

The constants Am,Bm,Cm,Dm may now be determined from the
boundary conditions along the edges y = yo,yo + b.
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Fig. 5.3

5.5 Circular plates
The governing differential equation in polar coordinates for plates with
variable rigidity may be obtained by substituting (3.1) and (3.2) into (1.28b)
to yield

V 2(Z)V 2w)-(l-v)

( d fldD\ d / I 8w
'~8r\r~dd)Hr\r~dd

d2
w

w
dr2

I 3D
~r~dJ

82D
' do2 = q.

(5.58)

When there is rotational symmetry in D,q and in the boundary
conditions, it is possible to obtain a wide range of solutions to (5.58).
Without such symmetry, known solutions are restricted to variations of
D proportional to rk (see Mansfield 1962). Solutions for fe = 1,2,3 are
given below for a plate in the form of a sector bounded by the lines 6 = 0, a
and r = ro,r1.

5.5.7 Sector plate with rigidity varying as r (see Fig. 5.3)
If the rigidity varies as

equation (5.58) becomes

(5.59)

L) ̂
(5.60)

In searching for a solution of (5.60), we take w = wt + w2, where wx is
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a particular integral and w2 satisfies the homogeneous equation

(5.61)

The general solution of (5.61) appropriate to a plate in the form of a sector
subtending an angle a and simply supported along the edges 9 = 0, a is
given by

• nn0

n = l

where Q = r/r1,

and the m{ are the roots of the equation

(m2 - n27i2/(x2){(m - I)2 - rc27r2/a2} - m(m - 1)(1 - v) = 0.

When the applied loading can be expressed in the form

. nnO
n=l l

(5.62)

(5.63)

it can be shown by substitution into (5.60) that the function wx is given by

where

= {(X + 3)2 - n2 7i2/a2} {{X + 2)2 - n2 7i2/a2/a2

(5.64)

Expression (5.64) above satisfies the boundary conditions for a plate simply
supported along the sides 6 = 0,a. The coefficients Anl,An2,An3,AnA can
now be determined from the boundary conditions along r = ro,r1.

5.5.2 Sector plate with rigidity varying as r2

This case was also discussed by Gran Olsson (1939). If the rigidity varies as

(5.65)

(5.66)

D = D1

equation (5.58) assumes the simple form

V2 {r2 V2 w - 2(1 - v)w} = qr2JD1.
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In searching for a solution of (5.66), we again take w = w1-\- w2, where wx

is a particular integral and w2 satisfies the homogeneous equation
V2{r2 V2w2 - 2(1 - v)w2} = 0. (5.67)

The general solution of (5.67) appropriate to a plate simply supported
along the edges 9 = 0, a is given by

n=l

where Q = r/r1, and

n<rn 7 r / a + cnQ
mK/a

and
m2 = {n2+ 2(1-v)oc2/n2}.

(5.68)

If the applied loading can be expressed in the form of (5.63), it can be
shown that the function wx which satisfies the conditions of simple support
along the edges 9 = 0, a is given by

r i

where
K = 2)2 - n2n2/oc2}{(l + 2)2 - 2(1 - v) - n2;r2/a2}.

> (5.69)

5.5.3 Sector plate with rigidity varying as r3

This case is of particular interest as it corresponds to the thickness varying
directly as r. If

equation (5.58) assumes the form

dr2 ' dr r d92

(5.70)

,171)

Following a similar analysis to that of Sections 5.5.1 and 5.5.2, we may
express the solution of (5.71) in the form

. nnO

where

= r/rl9
(5.72)
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and the mt are roots of the equation

m4 + 2m3 - m2(2 - 3v + 2n2n2/a2)

+ (5 - 6v)n2K2/a2 + n4n4/oc4 = 0.

Further, if the applied loading is of the form (5.63), we find

r t X+l

where

Kn = (X + I)4 + 2(2 + I)3 - (X + 1)2(2 - 3v + 2n27c2/a2) ( 5 J 3 )

5.6 Circular plates with rotational symmetry
When there is rotational symmetry in D, q and in the boundary conditions,
the deflexion is likewise independent of 6 and (5.58) becomes

(1 - v) d / dZ)

where
dw

(p= -—-.
or

(5.74)

Equation (5.74) may be multiplied by r and integrated once to give

d /dp (A dD/d<p <p\ r\
dd d d

where
(5.75)

Variations of D for which it is possible to obtain closed form solutions
of (5.75) have been summarized by Conway (1953) and are listed below.
In most cases only the complementary solution of (5.75) is given, for the
particular integral may then be obtained by the method of variation of
parameters, as discussed, for example, in Jeffreys and Jeffreys (1950).

5.6.1 Rigidity varying as Qk

The complementary solution of (5.75) satisfies the equation

(5.76)
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Fig. 5.4

whose solution is

where (5.77)

5.6.2 Rigidity varying as (1 —
If we write

the complementary solution satisfies the equation

(5.78)

whose general solution can be expressed in terms of hypergeometric
functions. A case of particular interest occurs when k = 1, n = 3 which
corresponds to a plate with linearly varying thickness (Fig. 5.4). With these
values for k and n and taking v = 1/3, it is possible to integrate (5.78) to give

+fi \2 '
(5.79)

The particular integral cp' has been determined by Conway (1951) for a
uniform loading q. With the notation shown in Fig. 5.4,

qr\
12D,

15Q2 -6Q-6) Q2
2(2Q2

6Q(\-Q)2
Q(I-Q)2

(5.80)

The constants A, B may now be determined from the boundary conditions.
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5.6.3 Rigidity varying as e~Q

The complementary solution of (5.75) satisfies the equation

= 0 (5.81)

whose solution may be expressed in closed form when 1/v = 1, 3, 5,... and
k = 2v. Taking v = ^, k = §, for example, yields

1 2/3
<p = - {A(2 - Q2/3)QQ + B(2 + Q2/3)}. (5.82)

Q
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6
Approximate methods

There are many problems concerning the small-deflexion bending of plates
for which a rigorous solution is impracticable, and recourse must then be
had to approximate methods of analysis. Broadly speaking, such methods
fall into three categories: first, those that start from the governing
differential equation whose approximate solution is obtained by numerical
integration; second, those based on a finite element analysis (see, for
example, Zienciewicz 1977); and third, continuum solutions that are based
on the principle of minimum potential energy, or on allied energy
principles. In this chapter we consider methods in this third category, and
as a preliminary measure we determine the strain energy of a deformed
plate.

6.1 The strain energy of an isotropic plate
The strain energy of a deformed isotropic plate may be regarded as the
sum of that due to bending and that due to stretching of the middle
surface. That due to bending will now be determined.

6.1.1 The strain energy of bending
The strain energy of bending per unit area of a deformed place, U'b, is
expressed most simply in terms of the principal moments M1, M2 and the
principal curvatures KUK2. Thus,

2VK1K2 + K%)\

in virtue of (1.9).
The total strain energy of bending, Ub is obtained by integrating U'b

over the entire plate. It is possible to include the effect of a variable rigidity
by keeping D under the integral sign. Thus

, , _<Kf + 2VK IK2 + K2
2)dxdy. (6.2)

Now there are certain advantages in expressing (6.2) in each of two
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alternative forms. The first form is obtained by writing

(6.2a)

where each term in the braces is necessarily positive. The first term
represents the strain energy due to each element of the plate undergoing
a spherical curvature equal to its average curvature; the second term
represents the strain energy due to each element undergoing its maximum
twisting curvature. Expression (6.2a) can be used to obtain upper and
lower bounds for the effect of the Poisson ratio on the total strain energy
of bending of a deformed plate - a problem of some interest in the field
of buckling and vibrations.

If two similar plates with equal values of E, t but differing values of v
undergo the same deformation, their bending strain energies Ubl9Ub2

satisfy the following inequality:

( 6 '3 )

in which it is tacitly assumed that vx > v2.
The second form for (6.2) is given by

Ub = Uf D ( (* i + K2? ~ 2(1 - v)KlK2}^^y (6.2b)

which can be readily expressed in terms of the second derivatives
of w in virtue of (1.14) and (1.16):

= \ I (6.4)

Simple expression for Ub ifD is constant or linearly varying. It was shown
in Sections 1.4.1 and 5.4 that if D is constant or linearly varying, the
governing differential equation of the deflexion is independent of v. For
such plates v can only affect the deflexion, and hence Ub, through its
influence on the boundary conditions; if these conditions are purely
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kinematic or are otherwise independent of v, we can then deduce that

04{w, w)dxdy = O (6.5)

so that

D(V2w)2dxdy. (6.6)

From the results of Section 1.7 it will be seen that for curved boundaries
(6.6) is valid only when they are clamped, but if the boundaries are straight,
(6.6) is valid whether they are clamped, simply supported or elastically
restrained against rotation.

Referring back to the earlier discussion on the effect of the Poisson
ratio on the strain energy of bending, it will be seen that while (6.3) is
generally true for plates with equal values of E, t, there are many instances
in which the influence of v on Ub may be precisely defined. Thus, whenever
(6.6) is valid,

fcl 1 - v l2 ' (6.7)

Ny9 Nxy are present, the initial strain
6.1.2 Strain energy due to middle-surface forces
When middle-surface forces N.
energy due to these middle-surface forces, £/o>0, will change when the
plate deflects. To determine this change in strain energy it is convenient
to denote by w, v, w the displacements relative to the plate subjected to
middle-surface forces alone. It can be shown from geometrical considera-
tions that the changes in the middle-surface strains are now given by

du \fdw\2

Jx~/
dv UdwY

du dv dw dw
xy==~d + fa*~d~lty'

Now we are assuming that the deflexions are sufficiently small for the
middle-surface forces to remain sensibly constant, so that the change in
strain energy <5£/o is given by

+ NM, + ) dx Ay
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1 f ff { dw\2 [ dw\2 dw dw)+ - Nj\M — I + AU— I +2Nxy >dxdj

(6.9)

by virtue of (6.8).
The first term in (6.9) may be equated with the work done by the middle-

surface forces acting around the boundary, W®. The potential energy of
the middle-surface forces IT^ is thus given - apart from the constant term

>dxdy
J J I \ox/ '\°y J ' ox oy )

1

1J ox oy )

rs | { Z * \ " 5 ^ / " "V V " ' ' / J '^•*/v ' " V V /

in virtue of (1.33) and the definition of the operator 0 4 .
The potential energy of the distributed loading q(x, y) is given by

n ^ = - Lrwdxdj; (6.11)
J J

and the potential energy of externally applied moments and shears is given
by

n e = | ( e n w - M n ^ - M n s ^ ) d S , (6.12)

where n is the outward normal to the boundary and s is directed along
the boundary.

Similarly, it may be shown that if the edges of the plate are elastically
restrained against rotation, the strain energy Ue stored in the surrounding
structure is given by

(6.13)

and if the boundary of the plate is elastically restrained against deflexion

1
' ds, (6.13a)

where x a n d Q a r e defined in Section 1.7.
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The total potential energy II is the sum

n = ub + uo + n, + ue + ue. (6.14)

6.2 Strain energy in multi-layered anisotropic plate
In the general case in which there is coupling between moments and planar
strains, the total strain energy per unit area U' due to bending and
middle-surface forces may be obtained by integrating the strain energy
density through the thickness. Thus from Section 1.8,

a1sdz,

. <7T(£° + ZK)dz,
I —-kt

= miE° + MTK). (6.15)

Equation (6.15) could have been written down directly; the element of
coupling appears when we express N and M in terms of middle-surface
strains and plate curvatures, for example. Thus, combining (6.15) with
(1.94) yields

I/' = J(* °'TAf ° + 2KTB€ ° + KTBK). (6.16)

Similarly, if we express U' in terms of N and K we find, after some
simplification,

t^KNU^N + ĵ dir), (6.17)

where d, defined by (1.96), embodies the element of coupling.

6.2.1 Zero coupling between N and M
When B is zero, there is no coupling between moments and planar strains,
and the strain energy per unit area is given simply by

U'=U*+Ub,
( 6 1 8 )

From (6.15) the strain energy due to the middle-surface forces may also
be expressed in the form

E°dxdy, (6.19)

which is the same as that for the isotropic plate, and it follows that the
analysis of Section 6.1.2 is also valid for the uncoupled anisotropic plate.
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From (6.18) and (1.94) the strain energy of bending is given by

V • /

'd2w\2 d2w d2w

d2w ( d2w d2w d2w \

6.3 Principle of minimum total potential energy - Ritz method
The principle of minimum total potential energy may now be applied to
obtain an approximate solution to plate problems. In this application it
is sometimes known as the Ritz method. A form for the deflexion is chosen
which satisfies the boundary conditions and which contains a number of
disposable parameters. Thus, we may take a linear combination of the form

w=tiBnwn(x,y) (6.21)

or, more generally,

w= I t BmnWmn(x,y) (6.22)
m=1n=1

where the parameters Bmn are determined from the MN equations

— = 0. (6.23)

When the series of functions wmn in (6.22) is sufficiently general to represent
all possible displacement patterns, the solution will tend to the correct
one as M, N increase. Thus, for the clamped rectangular plate with constant
rigidity Ritz (1911) chose the doubly infinite set

wmn = Fm(x)FH{y)9

where the functions F are the modes of a clamped beam. Pickett (1939)
chose the doubly infinite set

Wmn = (a2 - 4x2)2(b2 - 4y2)2xmy\ (6.24)

where the origin is at the centre of the plate, and he has shown how the
corresponding parameters Bmn may be determined for an arbitrary load
distribution. These expressions are not the only ones that may be used
for the investigation of a clamped rectangular plate and the following are



The Ritz method

also suitable

nx ny . mnx . nny
-sin —sin —

117

(6.25)

or

where
X I X

a \a

Mi.
b\b

, ^m
X I X

- l m ~ 2
az\a

X

2az\a sin
mn a

1 . nny
nn b

(6.26)

The functions Xm and Yn in (6.26) are known as Iguchi functions (1938),
and they have been generalized by Hopkins (1945, p. 51) to cover the case
when opposite edges are clamped and simply supported. The appropriate
functions Xm9 Yn are then obtained from (2.3) by suitable choice of the
coefficients am,bm, and so on. Thus, if the edge at x = 0 is clamped and
the edge at x = a is simply supported:

x
Ya

1
1 . mnx

sin ,
mn a

(6.27)

while if the edge at x = 0 is simply supported and that at x = a is clamped:

(
2a\a2

mnx
mn

(6.28)

and there are analogous expressions for Yn. When opposite edges are
simply supported, the sine terms alone are sufficient to satisfy the boundary
conditions and it is generally possible to obtain a solution by 'exact'
methods. If the edges at x = 0, a are elastically restrained against rotation,
so that the boundary condition is given by (1.72), the functions Xm are
given by

mnx

where

cm= -L 6+ A8{2+ (-1)"}

_2{X0 + Xa(-\)m)
(6.29)
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and
4 = flXo/A K = axJ

There is an analogous expression for Yn with x/a replaced by y/b, and so
on.

Finally, we note that for plates whose entire boundaries are clamped,
further methods of analysis are available, as discussed in Sections 6.6
and 6.7. Examples have already been presented in Sections 2.3.1 and
3.7.

6.3.1 Application of the energy method in buckling problems
The magnitude of middle-surface forces necessary to cause buckling may
also be estimated by considerations of energy. During buckling the work
done by the middle-surface forces Wo is equal to the increase in strain
energy of the plate (U + SUO) plus that in the surrounding structure Ue.
Thus, from (6.4), (6.9) and (6.10) we find

, dwdw

D{(V2w)2 - (1 - v)O4(w> w)} dxdy + Ue. (6.30)

If the boundaries are simply supported, clamped or free, no strain energy
is stored by the surrounding structure and Ue = 0.

In using (6.30) to determine the magnitude of the middle-surface forces
necessary to cause buckling, it is convenient to write

Nx=-yN'x9 Ny=-yN'y, Nxy=-yN'xy

so that positive values of y,N'xiN'y correspond to compressive middle-
surface forces. Further, by varying y the middle-surface forces are varied
in proportion to their magnitudes. The onset of buckling is to be
determined from the condition that y is a minimum; that is, we must
minimize the expression

J D{{W2w)2 - (1 - v)0 4(w, w)} dxdy + 2Ue

y— (6 3

Buckling of plate with variable rigidity. As an example in the use of (6.31)
the buckling of a simply supported square plate under uniform compressive
forces Nx is considered. The rigidity of the plate varies linearly from Do
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at x = 0 to D1 at x = a. The deflected form is represented by the single series

. ny ® . mnx
w = sin— V cmsin . (6.32)

a m = i a
In the choice of a single sinusoidal variation with y we are guided initially
by experience which can be confirmed by noting that a deflexion of the
form f(x) sin (ny/a) can be made to satisfy the governing differential
equation. Thus, expression (6.32) tends to the correct buckled form as m
tends to infinity. The choice of sinusoidal terms ensures that the boundary
conditions are satisfied.

Substitution of (6.32) in (6.31) and integration yields

a . ~ ^fDi) S i(l+™2)24 + 2(D1-Do)/
7 1 2 Y» 2 2

m = l

where
1 00 00

Y V V1 (\ _i_ 2wi i 2\

7T2
 m = i r=i m

(m + r)2 (m - r)2

The condition that (6.33) is to be minimized with respect to the
coefficients cm results in an infinite system of simultaneous linear equations,

- ^Nxm2cm = i(D0 + D j a + m2)2cw

_±m _ n , £ m r ( l + m 2 ) ( l + r 2 ) { l - ( - i r + ' } c r
n2(V± v0)^ (m2_r2}2 • (6.34)

If only one term in the series is taken, we find, not surprisingly,

-Nx = 2n{D°a2
+Dl),

but if two terms are taken,

a2Nr \/ a2Nx 25
O

_6400/D0-D1 (6.35)
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which may be solved to give

6.4 The Galerkin method
In the Galerkin method (see, for example, Duncan 1937) the deflexion is
again represented by (6.22) and the functions wmn(x, y) are chosen to satisfy
the boundary conditions, but the parameters j5mn are determined from the
following system of equations, thus obviating the necessity to determine
the potential energy:

E>, w) - q}wmn dx dy = 0,

(6.37)

If the rigidity of the plate varies (6.37) is replaced by the equation
•%

{V2(DV2w) - (1 - v) 04(D, w) - 0 4 ($ , w) - q}wmn dx dy = 0.

(6.38)

As a possible application of these equations, the deflexion of a
rectangular plate whose boundaries are elastically restrained against
rotation might be considered, using the functions Xm, Yn of the previous
section. As a simpler example the effect of shearing forces Nxy on the
deflexion of a simply supported square plate will be considered here.

6.4.1 Effect of shearing forces Nxy on plate deflexion
Substituting (2.1) and (2.6) in (6.37) yields the equation

>7i4 , ~ „<, ) . rnx . sny
-^rBrs(r2 + s2)2 - qrs > sin sin
a ) a a

2n2 rnx sny~] . mnx . nny . .
=- NxvBrsrs cos cos sin sin dx dv = 0

a2 xy rs a a ] a a y

(6.39)

which may be integrated to give

Dn*

YJBrsL(m,r)L(n,s) = 0,
l

where

(6.40)
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Ny

0/ / / / / / /

Urn, r) = 0, if m + r is an even number;

m 2 - r 2 , if m + r is an odd number.

Equations (6.40) are sufficient for determining the coefficients Bmn9 and
hence the deflexion, for any distribution of normal loading and for any
given value of Nxy. The onset of buckling may likewise be determined
from (6.40) by taking qmn = 0 and equating to zero the determinant of the
coefficients Bmn.

6.5 A variational method
The following method was developed independently by Kantorovich
(1933), Schurch (1950) and Reissner and Stein (1951). The assumption is
made that the deflexion may be expressed in the form

or, more generally, . (6 41)

where the wn(x) are defined functions of x and the fn(y) are to be determined
by variational methods from the condition that IT is a minimum. The
method is especially useful when one term alone can be expected to give
a reasonable answer. For example, such a case would be the uniformly
loaded, clamped, rectangular plate under tensile forces Ny.

6.5.1 Clamped rectangular plate under forces Ny (Fig. 6.1)
If the plate were an infinite strip of width a the deflexion would be given
simply by
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(6.42)

and a reasonable answer can be expected if it is assumed that the deflexion
of the rectangle is of the form

24Z) x2(a-x)2f(y). (6.43)

Substitution of (6.43) in (6.14) givesn-n>
Jo Jo (.

dw
$D(V2w)2 + 1JVJ — - qw } dx dy

dy

q2a5 fb

Fdy,

where

(6.44)

The condition that II, and hence §b
0Fdy, is a minimum is a result of

the calculus of variations and, for the general case in which

f—,

is given by Euler's equation:

dF d / dF N

(6.45)

in which the partial derivatives of F are obtained by formally regarding
F as a function of independent variables / , /1? . . . ,where f1=df/dx,
f2 = d 2 / /dx 2 , and so on.

Substitution of (6.44) in (6.45) yields the equation

21
(6.46)

which may be integrated by standard methods.
If N in (6.41) is taken equal to 2, the expression for F is a function of

two independent functions / and g, say, and in addition to (6.45) there is
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y\

Fig. 6.2

the further equation

d2 fdF
dy\dgj dy2\dg2

and so on for increased values of N.

(6.47)

6.5.2 Application of variational method to cantilever plates
Reissner and Stein (1951) applied the variational method to problems of
deflexion, vibration and stability of cantilever plates of variable rigidity
(Fig. 6.2). The deflexion is assumed to be of the form

= w(x) + yO(x) (6.48)

together with additional terms proportional to higher powers of y, if
desired. Here, attention is confined to the determination of the deflexion
under a varying pressure q(x,y). Substitution of (6.48) in (6.4) and (6.11)
then yields

d2w d291
dx2 + 2a

dx2 + 2(1 - v)flx

2 dx2 dx2

dx
dx

Jo
(6.49)
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where
CC2(X)

xDdyan=\ f-1

Jci(x)

Pn= y^dy.
Jci(x) J

(6.50)

When the variational condition is imposed that II is a minimum, there
results the following simultaneous differential equations for w and 9:

d2w d26
dx2

d2 ( d2w d26 A6

(6.51)

(6.52)

It can likewise be shown that if the cantilever is clamped at the edge
x = 0 and free along the rest of the boundary, the boundary conditions are

and
dx dx j x = o

w = —— = (6.53)

d2w

2w

d2w

d2(

d / d2w
—I a2-r-ydx \ dxz

d2e d6
= 0 .

(6.54)

The approximate solution of a cantilever plate problem is now reduced
to the solution of (6.51) and (6.52) subject to the boundary conditions
(6.53) and (6.54). When the plate (Fig. 6.3) is symmetrical about the x-axis
the coefficient a2 vanishes and the differential equations for w and 9
become uncoupled:

and
dx2

d^_
dx2

(6.55)
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Fig. 6.3

which may be integrated once to give

d { W 2 ( 1 - ^ = p2dx, (6.56)

where the integral is the torque at the section x.
Equation (6.55) can be identified with the flexural equation of a beam

of variable rigidity; equation (6.56) cannot be so readily identified because
it inherently includes the effect of constraint against axial warping in
torsion - an effect overlooked by elementary torsion theory.

Reissner and Stein have shown that closed form solutions of (6.56) may
be readily obtained when the rigidity D and the chord c vary according
to the laws

ax
D0[l-T)K(y/c)

ax
T= c o [ l -

(6.57)

where Do is the rigidity at the origin and K(y/c) is a symmetrical function
of y/c. Solutions for constant chord and exponential rigidity variation of
the form D = Doe~ax/l are also possible.

Linearly varying chord and thickness. As an example, consider the canti-
lever plate with linearly varying chord and thickness, and lenticular
parabolic section, for which

1 -

ax
(6.58)
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Substitution of (6.58) in (6.50) and (6.56) and writing

5 = 1 - ocx/l

dd

yields the equation

d f ,A(p\ 72(1 - v)/2<f o> 315/4

(6.59)

which has a complementary function of the type

Particular integrals may likewise be obtained when p2 varies as £r, or
when a concentrated torque is applied at the tip.

6.6 Variational methods for clamped plates
It was shown in Section 1.4.1 that for plates of constant rigidity the
governing biharmonic equation can be expressed as two simultaneous
harmonic equations, namely

V2M = -q (6.60)
and

V2w = - M/D. (6.61)

The first of these harmonic equations was used by Wegner (1942) in
conjunction with a variational procedure for determining the moment
term M in plates whose boundaries are clamped, while Morley (1963,1966)
generalized the variational procedure to plates whose boundaries satisfy
more general conditions, and he also derived a further variational
procedure for determining the deflexion w once M is known.

Among the states of displacement w which satisfy (6.60) and (6.61), the
actual state is determined by a variational equation of least work which
minimizes the work done by infinitesimal changes of the bending moments
and normal shearing forces that act at the boundary. This work can be
equated to the change in the strain energy to yield the variational
equation

y<5 I |{(V2w)2-(l-v)04(vv,w)}dxd>; = 0. (6.62)

Further, for the clamped plate of constant rigidity, whose strain energy
is given by (6.6), equations (6.61) and (6.62) can be combined to yield the
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variational equation

ub = i I I M2 d* dy = min> (6-63)

where M satisfies (6.60).
Now if Mo is a particular integral of (6.60), the general solution can

be expressed in the form

M = M0 + MC9 (6.64)

where Mc satisfies the harmonic equation

V2MC = 0. (6.65)

The function Mc9 and hence M, is to be determined from the condition

(M 0 + Mc)2 dx dy = min. (6.66)

Note that because of the clamped boundary conditions the moment Mn

normal to the boundary, where the peak stresses often occur, is given
simply by

Mn = (1 + v)M. (6.67)

Elsewhere, the values of individual moments Mx and the like require the
further integration of (6.61) which can be expressed formally as

w = wo + wc, (6.68)

where w0 is a particular integral and wc satisfies the harmonic equation

V2wc = 0. (6.69)

Morley (1963) showed that wc could also be determined from (6.62) and
(6.68) which yield the variational equation

4(w,<5w) dxdy = 0. (6.70)

6.6.1 The uniformly loaded clamped sector
As a simple example in the application of this method, we outline below
the solution for the clamped sectorial plate bounded by the lines 0 = ± a
and unit radius. Because the deflexion is symmetrical about the line 6 = 0,
we write

M=-~ + q0tA
mrm~1cos(m-l)e, (6.71)

4



128 Approximate methods

where the first term is a particular integral of (6.60) and the summation
satisfies (6.65). Now, in polar coordinates, equation (6.66) is

MdMrdrd0 = O, (6.72)
J0 J-<x

and this gives rise to the following integrals and associated notation,

-u - ( T
JO J -a

un
n + n-1 cos(m-l)0cos(n-l)0drd0

m+n\ m—n

for m, n = 1,2,3... and

1 [ sin (m — n)cc sin (m + n — 2)a
m + n — 2

(6.73)

' » o = 7 | I rm + 2cos(m-l)9drde
)0 J -<x

sin(m — l)a
12(m + 3)(m - 1 (6.74)

for m = 1,2,3,...; the special values for L/mm, U10 can be derived by the
usual limiting processes. When (6.71) is substituted into (6.72) we obtain
the following infinite system of ordinary simultaneous equations,
symmetrical about the leading diagonal, for the determination of the
coefficients Am

t/31

[/12 l/13

U 2 2 l / 2 3 A2
v10

(6.75)

where the system is limited in practice by truncating the infinite series.
Turning attention now to the deflexion w, we express (6.68) in the form

(6.76)

(6.77)

where the coefficients Am have already been determined. The coefficients
Bm in (6.76) are now determined from the variational equation (6.70) which

where the particular integral, which satisfies (6.61), is taken as
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is written in polar coordinates as

Q*(w,8w)rdrd6 = 0,
Jo J-a

129

(6.78)

where
2dw

d2w

d fldw\ d fld5w

(6.79)

We now introduce the following notation

Vmn=Vnm=\ I $*{rm+1

Jo J-a
4m(m + l)n(n + 1) . ,

sin(m-n)a(m + n)(m —  n)

for m,n= 1,2,3,... and

(6.80)

Qo Jo J -o
04{rm+ x cos (m + 1)0, wo}r dr dO

m
4(m + 3)

sin (m + l)a —  m(m + 1)

sin(m —  n + 2)a (6.81)

for m = 1,2,3,..., where the special values can be derived by the usual
limiting processes. Substitution of (6.76) into (6.78) now yields the
following infinite system of ordinary simultaneous equations for the
determination of the coefficients Bm,

v12
v22
v32

v13
v23
v33

v20
v30

(6.82)
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LARGE-DEFLEXION
THEORY





7
General equations and some
exact solutions

The four basic assumptions of small-deflexion theory are summarized in
Section 1.1. The first three of these assumptions are retained in large-
deflexion theory, but account is now taken of the middle-surface stresses
arising from the straining of the middle surface. Such straining occurs, for
instance, whenever the plate deflects into a non-developable surface or
when the boundary conditions offer restraint against movement, in the
plane of the plate. The governing equations for isotropic plates are derived
in Section 7.1 and some exact solutions of these equations are given in
Sections 7.2-7.7. The governing equations for anisotropic plates are given
in Section 7.8.

7.1 Governing differential equations for isotropic plates
The equation of equilibrium for a plate with variable thickness and rigidity
was derived in Section 1.5 in terms of the rigidity D, deflexion w, and the
middle-surface force function <X>:

V2(DV2w) - (1 - v)04(A w) + (1 + V)V2(DKT) = q + 04(O, w),
(7.1)

where the term involving KT refers to the effect of a temperature gradient
through the thickness, as discussed in Section 1.6.1.

The force function <D is not now regarded as independent of the deflexion,
and the differential equation satisfied by 0) may be deduced from the stress
strain relations below, which are analogous to (1.34),

du 1(dw

(7.2)

du dv dw dw
dy dx dx dy

In the above, c°, e° and s^.y are the strains in the mid-surface of the



134 General equations and some exact solutions

plate, and the term sT accounts for the effect of a temperature variation
in the plane of the plate. The displacements w, v may be eliminated from
the strain relations of (7.2) by virtue of the condition of compatibility
(1.35) to yield

d2

dy2 x dx2 y dxdy xy

where use is made of the identity

(7.3)

Equation (7.3) may be expressed in terms of <X> by means of (7.2) and (1.33)
to give

= 0. (7.4)

7.1.1 Plate with initial irregularities
Consider a plate initially free from stress but whose mid-surface is given
by the equation

z = wo(x,y).

For such a plate the moment-curvature relations are as given in (1.62)
with w replaced by (w — w0), whence

d2 12
( - w0) = - -^3 (Mx - vMv) - KT; etc. (7.5)

where w is the final shape of the deflected surface referred to the x,
y-plane.

Similarly, the mid-surface strains are given by

du. Udw
x dx 2\8x 2\dx

~2\dy)'

0 du dv dw dw dw0 dw0
xy dy dx dx dy dx dy

so that the condition of compatibility may be expressed in the form
^2o0 32 e0 a2g0

(7.6)

- + • dxlŷ- i { 0 4 ( -0> o ,w o ) } = 0.

It follows that the governing differential equations, corresponding to (7.1)
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and (7.4) when w0 is zero, are given by

V2{£V2(w - w0)} - (1 - v)O4(A w - w0) + (1 + v)V2(D?cr)
= 4+04(d>,w) (7.8)

and

V2( - V2<D j - (1 + v ) O 4 ( - ,

+ i£{<>>,vv)-04(wo ,wo)} = 0. (7.9)

The solution of a plate problem within the framework of large-deflexion
theory reduces to the solution of (7.1) and (7.4) or (7.8) and (7.9), subject
to the appropriate boundary conditions. For an unheated and initially
flat plate of constant thickness, (7.1) and (7.3) reduce to the equations first
derived by von Karman (1910):

), (7.10)

V 4O= -i£tO4(w,w). (7.11)

The large-deflexion equations can seldom be solved exactly, but there
are notable exceptions including cases where D, t, q and the middle-surface
forces are independent of one of the coordinates thus making the problem
one-dimensional, or cases of particular and fortuitous variations of D, t
and the applied loading. Some such problems will shortly be considered
for they throw light on the behaviour in more complex cases. First,
however, we derive non-dimensional versions of (7.10), (7.11) and (7.8),
(7.9) because these enable us to relate a known large-deflexion solution
for a given plate under a given pattern of loads, to a plate with geometrically
similar planform and loading pattern. We also derive an expression for
the strain energy of a plate in the large-deflexion regime because this is
of value in determining whether states are stable or unstable.

7.1.2 Dimensional analysis
We start by introducing non-dimensional coordinates £, n such that

where Lisa typical planar dimension, such as the width or length. We also
write

r=W+W' eta (7-12)

so that we have

Y 4 ' j (713)
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The following non-dimensional terms for the loading, deflexion and force
function are now introduced:

I* — _

Dt '

w
w* = (7.14)

0*=—,

and these lead to a non-dimensional form of the von Karman
equations:

V4w* = q* + 04(O*, w*), (7.15)

y4d>* = - 6(1 - v2)£4(w*, w*). (7.16)

Note that it is possible to redefine the terms in (7.14) to remove the (1 — v2)
factor in (7.16), but only at the expense of greater complexity in the
definition of g*, and so on; furthermore, the advantages to be gained from
this are largely illusory because, in general, v also occurs directly or
indirectly through the boundary conditions. Thus, strictly speaking, given
solutions of the large-deflexion plate equations can be generalized only
to plates with the same value of the Poisson ratio.

Displacement equations
In normally loaded plates with rigid boundaries the in-plane boundary
conditions are given by the vanishing of the displacements u, v rather than
a specification of the middle-surface forces. In such cases there may be
advantages in expressing the large-deflexion equations in terms of the
displacements u,v,w. This may be achieved by the elimination of NX9

Ny,Nxy from (7.2), (1.32) and (7.10) to give, for the unheated and initially
flat plate of constant thickness:

d2w (du dv 1/dwV
dxz (dx dy 2\dx

d2w (dv du ifdw

d2w Idu dv dw 5wN.
~V)^xdy\dy + Ix:']~~dx"dy^ ( ' )
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and
d Ydu dvl
d_Ydu_ dv_ U(dw\2

d~\fc+~d~ + 2\\te) +
\dy~

(7.18)

These may also be expressed in non-dimensional form by the further
introduction of

(u*,v*) = -I(u,v)

to give

and

A<
u* dv* .,*\2

d2w* {dv*
- + v-dn2 \dn " di 2\drj

d2w*/du* dv* dw* dw*\

d\du* dv* \Wdw*\2

-w) ]\

.,* \2

+

(7.19)

(7.20)

(7.21)

Any solution of (7.15), (7.16) or (7.20), (7.21) thus applies to a range of
plates with the same Poisson ratio and geometrically similar planform
and pattern of loading provided the boundary conditions are comparable.
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In this connection we note that the clamped, simply supported and free
boundary conditions are comparable because they are homogeneous in
x,y so that, for example, (1.67), (1.68), (1.70), (1.76) and (1.78) transform
into similar equations with w replaced by w* and n,s replaced by their
non-dimensional counterparts w,s, where

(n,s) = {n9s)/L.

By the same token, if there are no planar forces applied at a boundary

Nn = 0 and JVns = O,

and hence the non-dimensional boundary conditions are again comparable
because they are given by

d2®* <920>*
= 0 and 0^ ^ 0 and ^ = 0.

dr dndt
Similarly, if there are no planar displacements u,v at a boundary, the
non-dimensional boundary conditions are again comparable because

u* = 0 and i;* = 0.

When the boundary conditions are not homogeneous in x,y9 solutions
may again be applied to other plates subject to the satisfaction of further
comparability conditions. For example, at an edge elastically restrained
against rotation the boundary condition (1.55) is comparable for plates
identified by suffixes 1, 2 if

D, D2 '

The above results are not only significant from a theoretical viewpoint,
but they are of value in the presentation and condensation of experimental
results relating to plates with different thicknesses, overall sizes or elastic
moduli. An example is given in Section 9.3.9, which relates to a plate
subjected to concentrated loads P. Such loads are limiting cases of
distributed loads acting over a small area, and the corresponding
non-dimensional term is given by

PI2

i>* = ^ - (7.22)

By the same token, the application of a moment M o r a torque T to a
plate or long strip gives rise to the following non-dimensional terms

(M*,T*) = ±(M9T). (7.23)
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Non-dimensional forms of (7.8), (7.9)
For plates with varying thickness and initial irregularities and/or subjected
to temperature variations, we introduce the following non-dimensional
terms in which to,Do are reference values of t,D,

= t/t0, D* = D/D0,

nT4- T2 (7.24)

Equations (7.8), (7.9) can now be expressed in the following non-dimen-
sional form

V2 {D*y2(w* - w*)} - (1 - v) <>4(D*, w* - w*)
+ ( 1 + V ) V 2 ( D * K ? ) = 4*+0 4 ( (P* ,VV*) (7.25)

and

? + 04(w*,w*)-^4(wg,w*)}=0. (7.26)

7.1.3 Strain energy
The strain energy per unit area of plate, U', say, is most readily expressed
as the sum of that due to bending stresses, U'b, say, and that due to
mid-surface stresses, U&, say. The total strain energy U is then given by

U= \\U'dA

(7.27)

Consider first the strain energy due to the moments per unit length in
an isotropic plate that may have initial curvatures. In terms of the principal
moments Ml9M2 at any point the strain energy of bending per unit area
of deformed plate is given by

U'b = UM1SK1 + M2dK2), (7.28)

where, for example, 5KX is the change in the curvature in the direction of
the moment Mx; if the plate were initially flat this expression reduces to that
in (6.1). Because of the moment-curvature relationships of (1.9) we can
write U'b solely in terms of the principal moments or curvature changes,
that is,

u'h = ID {(Ml + Ml)1" 2(1 + v)MlM^ (7-29)
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or
U'b = ^D{(SK1 + SK2)2 - 2(1 - V)SK1 SK2}. (7.30)

For the initially flat plate it follows from Section 1.2.1 that (7.30) can be
expressed in the form

d O ^0 \ 0 C "\O *\O / '•sO \ 0

W 0 W\ \d WO W ( 0 W V
—-H _2(l-v)<
dx2 dy2 J [dx2 dy2 \dxdy J

(7.31)
and the invariant nature of this expression becomes apparent if we express it
in the form

t/; = iD{(V 2 w) 2 - ( l -v)0 4 (w,w)}. (7.32)

For the plate with initial curvature, the curvature changes are determined
by (w — w0) and hence

^ = i D [ { V 2 ( w - w 0 ) } 2 - ( l - v ) 0 4 ( w - w 0 , w - w 0 ) ] . (7.33)

The strain energy per unit area due to the middle-surface forces is
likewise expressed simply in terms of the principal forces per unit length
N1,N2. Thus, corresponding to (7.29) we have

U* = 4 ^ 1 + ^ - 2(! + v)^!AT2}, (7.34)

and we note that the suffixes 1,2 above do not necessarily imply a
coincidence between the directions of the principal moments and forces
per unit length. If we introduce the force function O - see (1.33) - it follows
from an analogous argument to that of Section 1.2 that

and I (7.35)

Thus U& can be expressed in terms of <£ and arbitrary axes in the form

*~2Etl{dx2+dy2) 2(+)\dx28y2 \8x8y
(7.36)

and the invariant nature of this expression becomes apparent if we express
it in the form

C/* = ^ r{(V 2 «5 ) 2 - ( l + v)04(O,O)}. (7.37)
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Finally we note that U'o may be expressed in terms of the displacements
u,v,w via (7.36) and (7.2) or (7.6).

7.2 Cylindrical deflexion of long strip
The simplest class of one-dimensional problem that admits of solution in
the large-deflexion regime is the long strip subjected to a load distribution
that does not vary along its length (Fig. 7.1). Such a strip may be treated
as a beam. If the edge supports of the strip are free to move in the plane
of the plate, there are no middle-surface forces and the small-deflexion
solution remains valid. But if the edge supports are rigid, or elastically
restrained against movement in the plane of the plate, there is some
stretching of the middle surface which gives rise to middle-surface forces
Nx. The differential equation for such a strip of constant thickness may
be obtained from (7.10):

d4w d2
w mnx (7.38)

in which Nx is, at present, unknown.
A particular solution of this equation has already been determined in

Section 2.2.3 and the general solution of (7.38) may thus be written in the
form

qmsm- mnx

w =

A . , 2nx % 2rjx
+ A3 sinh h A4 cosh ,

a a
(7.39)
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where

n AD

and the coefficients A1,A2,A3,A43,vQtobQ determined from the boundary
conditions. When the form of q(x) is elementary, for example, uniform or
linearly varying, it may be possible to express the particular integral in a
simple closed form, but, as will be seen later, there may still be advantages
in using the Fourier expansion.

7.2.1 Determination ofNx

Having obtained a formal expression for w in terms of the applied loading
and the unknown Nx it is now possible to determine the stretching of the
middle surface and thence Nx. First, the degree of elastic restraint of the
edges against movement in the plane of the plate must be specified. In
many instances, this restraint is provided by regularly spaced stiffeners
running across the width of the strip. If the section area of each stiffener
is F and their pitch is b, say, a plate tension of Nx per unit length causes
a compressive stress in each stiffener equal to bNx/F. This compressive
stress results in the edges of the plate approaching each other by an
amount equal to Nx/K9 where the edge stiffness K is given by

FF
K=^-. (7.40)

ab
Now from the first equation of (7.2)

Nx CaduAUd

Et

where /? depends on the longitudinal stiffness of the supporting structure
and 1 — v2 ^ jS ^ 1, the limits corresponding to the extreme conditions in
which v = 0 and Ny = 0.

Equations (7.39) and (7.41) are sufficient to determine Nx and thence
the deflexion.

Simply supported edges. When the edges are simply supported, the
coefficients AuA2,A3,A4r in (7.39) are zero, and (7.39) and (7.41) yield the
following equation for determing Nx:

K Et
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which may be expressed in terms of y\:

(7.43)

Equation (7.43) can be solved by trial and error. The series is very rapidly
convergent and a good estimate for Nx may be obtained by considering
only the first term.

When the boundary conditions are other than those of simple support,
the coefficients At in (7.39) are non-zero and a similar analysis for
determining Nx in terms of an arbitrary loading q(x) is possible but
impracticable. It is preferable to treat each load distribution on its own
merits.

Uniform load (Fig. 7.2). If the origin is taken midway between the edges
of the strip, and if the boundary conditions at each edge are the same, so
that only even powers of x are required, the general solution of (7.38) may
be written as

w = Wn2
2rjx~\

(7.44)

where n is defined in (7.39).
The coefficient B is determined from the relation between the edge

moment and slope. If the edges are elastically restrained against rotation
so that the boundary conditions are given by (1.72), it is found that

B = l+U

where (7.45)

and the limiting cases of simple support and clamping may be obtained
from (7.45) by taking 1 = 0, oo, respectively.



144 General equations and some exact solutions

The coefficient A is determined from the vanishing of w at the edges,
so that

= \ — B cosh rj. (7.46)

The value of Nx may now be found from (7.41), (7.44) and (7.45). It is,
in fact, more convenient to regard n as the unknown. Thus we find after
integration and rearrangement

+ B2rj2 (cosh n sinh rj — (7.47)

When the plate is simply supported, the right-hand side of (7.47)
reduces to

1 5 5tanhf/ tanh2*/

7.3 Uniformly loaded circular plate
The large-deflexion behaviour of a uniformly loaded circular plate will
now be discussed from the standpoint of the von Karman equations. This
treatment differs only in detail from that of Way (1934). Because of
rotational symmetry, the deflexion w and force function <X> are independent
of 9. In expressing (7.10) and (7.11) in polar coordinates, it is convenient
to introduce the following non-dimensional parameters augmenting those
of (7.14),

, dw*

r =
do*
dp '

9 = r/R>

where R is the radius of the plate.
Substitution of (7.48) in (7.10) and (7.11) gives

(7.48)

and

dg
I \X I VJ-

(7.49)
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and these equations may be integrated once to give

V"7 7
and (7.50)

The constants of integration are zero because of the vanishing of i//, T
and j3

oq*Qdg at the centre.
Equations (7.50) may be solved in series form by assuming

<P =

r= f Brf".
(7.51)

If (7.51) is subs t i tu ted in (7.50) a n d the coefficients of like powers of Q
equated, it is found that

n>Z

" n2 - 1 ^

(7.52)

Equation (7.52) makes it possible to determine the coefficients An9Bn in
terms of q*,Ax and B1. The coefficients A1 and Bx are chosen (possibly
by trial and error) to satisfy the boundary conditions. These boundary
conditions can be expressed in terms of T and \j/ as follows:

If there is no edge restraint to movement in the plane of the plate,

if there is no edge displacement in the plane of the plate,

if the edges of the plate are clamped,

and if the edges of the plate are simply supported,

(7.53)

(7.54)

(7.55)

(7.56)
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A similar analysis is possible whenever the applied loading can be
represented by a polynomial in Q.

Discussion
The uniformly loaded strip is characterized by the fact that middle-surface
forces arise solely from the in-plane stiffness of the supporting structure.
Without such support, the middle-surface forces would remain zero,
because the deflected form would be a developable or inextensional surface.
In the uniformly loaded circular plate, middle-surface forces arise even if
there is no in-plane stiffness of the supporting structure because the plate
cannot, for kinematic reasons, deform into a developable surface.

We now consider cases in which the boundary conditions are such that
a developable surface is kinematically possible. It will be shown that in
the small-deflexion regime the plate deforms, in general, into a non-
developable surface but, as the loading is increased into the large-deflexion
regime, the action of the induced middle-surface forces is to change the
deflected shape into one that can be approximated by a developable
surface.

7.4 Pure bending of strip with shallow double curvature
In this section we first derive the governing differential equation for the
chordwise distortion of a strip whose thickness t, and hence rigidity D,
may vary across the width a. More detailed solutions are then presented
for strips whose thickness is constant or varies in a lenticular manner.

The coordinates x, y are measured longitudinally and across the chord,
y being zero at the centre line. The initial (constant) curvatures are KX?O,
Kyt0 so that in the stress-free state the normal deflexion of the strip is
given by

When the strip is subjected to a moment M, say, the longitudinal
curvature becomes KX, say, and the deflexion is of the form

w = — \KXX2 + w(y), say. (7.58)

The mid-surface forces per unit length are such that Ny and Nxy are zero
and it is therefore simpler to work directly in terms of Nx rather than the
force function O. Thus if Nx and the above expressions for w0 and w are
substituted into (7.8) and (7.9) we find after some simplification

d^"^o-v( ic J C - i c X i o)J j= -KXNX9 (7.59)

which is simply the 'beam' equation
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d2Mv

and
Nx d2w — Q

147

(7.60)

(7.61)

Equation (7.61) may be integrated, for a given value of KX, to give

Nx = EtKxw + ±EtKXt0Kyt0(y2 + Ay + B), (7.62)

where A,B are constants to be determined from the conditions of
longitudinal equilibrium, namely,

i: Nx dy = 0 and yNxdy = 0. (7.63)

Substitution of (7.62) into (7.59) now yields the governing differential
equation for w(y). The boundary conditions appropriate to this differential
equation express the fact that the longitudinal edges are free, whence from
(1.74), (1.75) and (7.5),

d2w
D' d ^ " + Ky'° ~

and
K Ky'° \y=±±a

d2w
= 0.

(7.64)

At this point we note that it is sufficient to determine A, B from (7.63)
and only the second term in (7.62), that is,

D
(7.65)

This simplification is possible because integration of (7.59) shows that the
vanishing of

twdy and ytwdy

is assured by the boundary conditions (7.64).

7.4.1 The strip of constant thickness
For the strip of constant thickness it follows from (7.65) that

,4 = 0, B=-a2/12,
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and hence the differential equation for w may be expressed in the form

1 d4w (7.66)

where

EtKl

(7.67)

The solution of (7.66) which satisfies the boundary conditions (7.64) is
given by

—  w = Q{y2 —  a2/12) + cx cosh ky cos ky + c2 sinh ky sin ky,
where

cx=R
cos 4> sinh (j> —  cosh </> sin 0 \
cosh 0 sinh 0 + cos 0 sin 0 /

cos </> sinh 0 + cosh 0 sin A
2 ^cosh 0 sinh 0 + cos 0 sin

2k2

(7.68)

The total moment applied to the strip contains components due to
moments per unit length Mx and middle-surface forces per unit length Nx:

M Mxdy+Mxdy+ Nxwdy. (7.69)

Alternatively, we can determine M from the strain energy V per unit
length, using the relation

M =
dV

(7.70)

First, however, it is convenient to introduce the following non-dimensional
expressions for the current and initial curvatures

—  pKx9 Kx0 —  pKx0, KyQ —  pKy0,
where

P At

(7.71)
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Thus we find from Section 7.1.3 after some tedious manipulation

where
(7.72)

V <* ) l[l 1 /cosh 2 ^ 2 - c o s
* l ( K x ' ~** | K ^ s i n h 2 ^ 2 + sin

Equations (7.70) or (7.69) now give

Et4

M ~ 3a{3(l-v2)}1 / 2

x [*» -  *,.o
where

O U = TT 1 + r r

5 /cosh 2/c^2-cos 2?ci/2\l

~ x S m Kx + s m 2 l c * ' - • (7.73)

The above analysis assumes that there is no torsional component in the
deflected shape but, depending on the magnitude of Kyt0, this may occur
during snap-through buckling (for further details, see Mansfield 1973).

A boundary-layer phenomenon
In the expression for w, see (7.68), we note that as KX increases, so too
does k, and it follows that for large values of KX the hyperbolic terms in
w mean that near the free edges w is an oscillating but rapidly decaying
function of distance from the free edges. To investigate this boundary layer
in greater detail we now consider the pure bending of an initially flat strip
for which, from (7.67) and (7.68),

6 = 0 and R=-vt{12(l-v2)}112.
If we now introduce

Y = ±a-\y\, (7.74)

it follows that near a free edge

as y (7.75)
00,
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and to fix ideas as to the magnitude of w we note that for v = i ,

Corresponding to this boundary-layer deflexion, (7.62) shows that

Nx = EtKxw, (7.76)

and hence from (7.60)

d2My „ 2
~d/ = EtK^

-+2vDKxk2e-kY(coskY- sinfcY), (7.77)

by virtue of (7.67), (7.75).
A preliminary integration of (7.77) yields

and hence

My ^vDKx{l-Q~kY (cos kY+sinkY)}. (7.78)

The boundary layer thus introduces large but localized values of Nx
which cause a rapid build-up in the moment My from zero at the edges
to VDKX away from the edges. The moment VDKX corresponds to bending
with zero transverse curvature Ky9 that is, bending into a developable
surface. The term 1/k provides a measure of the width of the boundary
layer YBL, and hence

YBL*Q.n(±\m. (7.79)

A similar boundary layer occurs in the large-deflexion regime near any
free edge where the thickness t is non-zero.

7.4.2 The strip of lenticular section
It might be thought that the large-deflexion analysis of an initially curved
strip of lenticular section would be more complex than that of the strip
of constant thickness, but this is not so. The reason for this relative
simplicity stems from the fact that the rigidity tapers smoothly to zero at
the boundaries, and this has the effect of ironing out the boundary layers
which would otherwise occur.

Consider therefore a strip whose thickness, and hence rigidity, varies as
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follows

= to{l-(2y/a)2},
(7.80)

When (7.80) is substituted into (7.59), (7.62), (7.64) and (7.65) it may be
verified that

A = 0,
B=-a2/20, (7.81)

where Ky depends on K X 0 , K^ 0 and KX, but is independent of y so that
the curvature does not vary across the chord - a feature which is peculiar
to the lenticular section. Before proceeding further, however, it is conve-
nient to reintroduce and redefine the following non-dimensional terms:

piq{5(l-v>)r\

In terms of these non-dimensional expressions we now find

(7.82)

y,0 ~~ v(Kx~ ^x,

V= 1

- 2(1 - v)(*,-«»,,>)(*,-*,.<>)

(7.83)

Note that a check on (7.83) is afforded by the fact that

dVld&y = 0.

The non-dimensional bending moment is now given by

(7.84)

x / KV const.

by virtue of (7.84), and hence
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where
— \KX

 Kx,O)\VKx ~~ Ky,Oh

(7.85)

The above analysis again assumes that there is no torsional component
in the deflexion but, depending on the magnitude of ky0, this may occur
during snap-through buckling when the direction of the applied moment
is such that destabilizing compressive middle-surface forces occur near the
edges. Thus the writer showed (1973) that buckling into a torsional mode
can occur whenever

and that such buckling occurs when

-4 (1 - v + *Xi0«,,0 )yi\ (7.87)

Similarly, when the direction of the applied moment is such that there
are tensile middle-surface forces near the edges, flexural snap-through
buckling occurs if

dM/ditx = 0, (7.88)

and it follows from (7.85) that flexural snap-through buckling can occur
whenever

# > _ n + V)K
Ky0 < — ( 2 + v)/Cx>0 — ̂ v ± "T" »7VA T" ^ x , 0 J

Finally, we note that for large values of kx, (7.83) shows that

(7.90)
as #,-+00, '

so that the strip approximates to a developable surface in which

M~Kx/(l-v2% (7.91)

regardless of the magnitude of the initial curvatures.

7.5 Flexure and torsion of flat strip of lenticular section
When a long strip is subjected to a combination of pure bending and
torsion, the analysis is more complex and, to simplify the discussion, we
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Fig. 7.3

confine attention to the initially flat strip of lenticular section [see (7.80)
and Fig. 7.3]. Under the action of a moment M and a torque T, the
deflexion of the strip is of the form

w = —  \KXX2 — 6xy + (7.92)

where 9 is the twist per unit length and the other terms are as defined in
Section 7.4.

Substitution of (7.92) in (7.8) and (7.9) gives

(7.93)

and

(7.94)

Equation (7.94) may be integrated for given values of KX,6 to give

)}, (7.95)

where the constants of integration A,B are to be determined from the
conditions of longitudinal equilibrium whence, from (7.65),

= 0, B = - a 2 / 2 0 . (7.96)

Substitution into (7.93) now yields the following differential equation
for w:

3? D ~ a2 /20)}- (7>97)
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The four boundary conditions appropriate to (7.97) express the fact that
the longitudinal edges are free, whence

and (7.98)

It may now be verified that the solution of (7.97) that satisfies (7.98) is
of the form

w = - i K y ( y 2 - a 2 / 2 0 ) , (7.99)

where Ky depends on the values of KX and 0, but is independent of y, as
in Section 7.4.2. At this point, however, it is convenient to reintroduce
the non-dimensional terms Kx,Ky,M, V of (7.82) and augment them with

4t0V 5

N = (7.100)

where G is the shear modulus.
In terms of these parameters, we now find

ity=- ^X9

S2 (§2

(7.101)

and finally,

~ dv_

and

(7.102)
Equations (7.102) are the large-deflexion counterparts of the small-
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deflexion relations between bending moment and curvature, and between
torque and twist per unit length, which may be expressed in terms of M,
fc, f and 0 as follows:

M = KX and f = 0 .

It is seen that the large-deflexion relations (7.102) are not only non-linear
but are also coupled, and in the following discussion we first consider the
behaviour of the strip under pure moment or pure torque.

7.5.1 Strip under pure moment
The condition that f is zero and M non-zero implies that 9 is zero.
Equations (7.101) and (7.102) then yield

N=,
vitl

M =

(7.103)

These relations show that for large values of kx

and

N-

M-

1 - v 2 '
(7.104)

so that the strip tends to a developable surface, and the middle-surface
forces approach constant values.

7.5.2 Strip under pure torque
The condition that M is zero and f non-zero implies that either

in which case

(7.105)
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or
l + ( l - v ) ( ^ - 0 2 ) = O,

in which case

N =

T=

1
l - v '

26
l - v '

(7.106)

It is possible to determine which of these states is the correct one from a
comparison of their strain energies. Thus we find that (7.105) is appropriate
for values of 11 \ up to a critical value t* where

f* = 2(l-v)-3 / 2 and 0* = (l-v)"1/2 , (7.107)

and (7.106) is appropriate for values of f greater than f*, as shown in
Fig. 7.4.

As the torque increases through the critical value of t*, the strip buckles
into one of two possible, and equally probable, modes characterized by
(7.106). This instability is due to the fact that as the strip is twisted, the
middle-surface forces play an increasing part in resisting the torque, and
eventually the strip buckles and deforms into a surface which approximates
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to a developable surface, thus halting the increase in the middle-surface
strains and concomitant forces.

When t is large compared with t*9 the lateral and longitudinal
curvatures are given by

which shows that the deflected shape tends to a developable surface whose
generators lie at ± 45° to the longitudinal axis of the strip.

Bending moment and torque increasing infixed ratio. If M and T increase
in proportion such that M = cT, say, it follows from (7.82), (7.100) that

M T
1 + v

and the relationship between f and 0, for example, is found by eliminating
KX from (7.102) to give

6*= {(t/e)-i}{2-(i-v)t/ey
(l + v)[4c2{l-( l-v)f/0} + {2-( l -v) f /0} 2 ] - l • '

The variation of Kx,icy with f (or M) now follows immediately from
(7.102) and (7.101); in particular, it can be shown that for large values of
the applied moments the ratios f/6, T/KX, t/Ay tend to constant values
given by

§ l - v

t 2 O(f"2)

1

(7.109)

It can be seen from these asymptotic expressions that

which shows that the surface tends to a developable one. The angle that
the generators of this developable surface make with the x-axis is given by

(7.110,

Chapter 8 shows that this result is in agreement with inextensional theory,
a simplified large-deflexion theory based on the assumption of an
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inextensible middle surface for which the only possible mode of deform-
ation is a developable surface.

7.6 Elliptical plate with temperature gradient through the thickness
We continue our presentation of exact solutions of the large-deflexion
plate equations with the analysis of an unsupported and initially flat
elliptical plate whose thickness varies parabolically across a diameter,
vanishing along the boundary according to the equation

( 7 - m )

where t0 is the thickness at the centre and a, b are the major and minor
semi-axes of the plate. The rigidity D is thus given by

x2 y2^3

where
Et %

12(1-v2)-

(7.112)

The temperature distribution is such that the temperature gradient
dT/dz through the thickness is constant, as is the temperature of the
mid-plane of the plate. This temperature distribution would cause a
uniform 'spherical' curvature change KT in each unrestrained element of
the plate such that

KT = a(dT/dz), (7.113)

where a is the coefficient of thermal expansion. The symbol KT thus provides
a convenient measure of the magnitude of the temperature gradient.

At this stage it is convenient to anticipate some of the later results by
drawing attention to two peculiar features of the heated plate. The first
feature is that the deflexion is of the form

w = - ±(KXX2 + 2Kxyxy + Kyy\ (7.114)

where KX, Kxy9 Ky depend upon KT but are independent of x, y. The deflexion
of the plate is thus completely determined by the curvatures KX, Kxy, Ky or,
of course, two principal curvatures and their associated angle Q.

The second feature is that although the magnitude of the middle-surface
forces depends upon KT, their distribution does not. The middle-surface
forces are derived from a force function O that varies in the same manner
as does the rigidity D. Furthermore, the rigidity D has the same dimensions
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(force x length) as the force function, and it is therefore convenient to write

<D = j?Z>, (7.115)

where /? is non-dimensional.
The analysis and presentation of results is also simplified by the intro-

duction of non-dimensional curvature symbols, and these are identified
by a circumflex:

\KT> Kx> Ky> Kxyf — ^{KT, KX, Ky, Kxyj,

W h e r e

a b / l ~ v 2

" 7 4̂ + 2v + 5(a2/b2 + b2/a2)

(7.116)

Boundary conditions
We have already anticipated the forms that w and Q> assume, and we now
show that these satisfy the boundary conditions. There are no forces or
moments applied to the edge of the plate, so that along the boundary

(7.117)

Now the variation of D, and hence <£, is such that along the boundary

dD d®
D = —= <& = -—= 0,

on on
and accordingly the boundary conditions are satisfied. It remains to show
how the disposable parameters in the expressions for w and <D, namely
KX, Kxy, Ky and /?, may be chosen to satisfy the governing partial differential
equations. In this sense the method of solution is an inverse one.

7.6.1 Satisfaction of the governing differential equations
The satisfaction of (7.1) and (7.4) by expression (7.114) and (7.115) is
facilitated by the following general identity

(x2 + );2)}, (7.118)

and the following equalities peculiar to this particular problem:

V2( -V2<D ) = -JL£{2 + 5[ 7T + — IN a constant,

and (7.119)

-,<D I = -24pDo/toa2b2, a constant.
- /

Thus, referring first to (7.4), with sT zero, we find that each term is a
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constant and the equation can be expressed non-dimensionally as

P + iZxKy-K2
xy = 0. (7.120)

Similarly, (7.1), with q zero, may be expressed in the form

+ Bxy + %Cy2) = 0,
where

A s * \ A / f\ \ A A

(7.121)

and the satisfaction of (7.121) is assured by the vanishing of A, B and C.
The resulting three equations, together with (7.120), constitute four
equations for determining &x, icy, Kxy and /?. In particular, the vanishing
of B implies that either

* „ = <>, (7.122)
or

J S = _ ( l _ v ) j (7.123)

and we first consider (7.122) because this includes the solution for small
values of KT.

Equations (7.120) and (7.121) now yield

1 + V " (7.124)

where j? is the real root of the cubic

jj(l + v - P)2 + (1 + V)2K2
T = 0. (7.125)

For small values of icT the plate thus deforms into a spherical surface and
we note the following simple variation of /? with it,

which shows that the middle-surface stresses increase as the square of the
plate curvature. By the same token, it can be shown that the bending
stresses increase as the cube of the plate curvature.

It may be shown from energy considerations that the above solution
is valid until /? reaches the critical value given by (7.123), at which point
(7.125) shows that

HT = K£, say,
= 2(l-v)1 / 2 /( l + v). (7.126)
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For values of \KT\ greater than icf, equations (7.121) and (7.123) show
that the vanishing of A and C is assured if

(l + v)/cT-(#x + / y = 0, (7.127)

while B is zero whatever the value of itxy. Thus if we express £x, &y9 icxy

in terms of principal curvatures &l9ft2 and their associated angle ft, say,
we see that (7.120) may be written simply as

and (7.127) becomes (7.128)

while the arbitrary nature of itxy means that ft is arbitrary. Equations
(7.128) yield

*!, say, = i ( l + v) {KT + (K2 - tf*2)1'2}, 1
}J

and it is seen that for large values of |*cT| one principal curvature tends
to (1 + V)KT while the other tends to zero so that the plate approximates
to a developable surface.

7.7 Elliptical plate subjected to certain normal loadings
A comparison of terms in (7.1) shows that the above solution for the
deflexion w and force function O also applies to an unheated plate in which
the term KT now specifies the magnitude of a normal load distribution q
given formally by

q= -KT(1+V)V2D. (7.130)

Now

ab
where

(7.131)
Thus if the (unheated) plate is subjected to a (self-equilibrating) load
distribution of the form

q = q0F(x9y% (7.132)

the deflexion of the plate is given by the solution in Section 7.6 in which
the symbol &T is replaced by qoka2b2/{6Do(l + v){a2 + b2)}.
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More generally, it follows from Section 7.6.1 that the solution of (7.1),
for the plate defined by (7.111), is given by expressions (7.114), (7.115)
whenever the loading can be expressed as a linear combination ofd2D/dx2,
d2D/dxdy and 82D/dy2. Thus if

5x2 y2
xy

lab

5 /
(7.133)

each of whose components is self-equilibrating, it may be shown that (7.1)
may be expressed in the form

+ B'xy + \C'y2) = 0,
where

and

= ( l - v (7.134)

and the other terms are as defined in Section 7.6. Equation (7.4) can again
be expressed non-dimensionally as (7.120) and it follows that the complete
solution is given by (7.120) and the vanishing of A', B', C in (7.134). Hence

8(1 - v

(1 - v + v - /

(7.135)

where /? is a root of the quintic
j8(l - v + j8)2(l 4- v - P)2 + {£$! + £~1(p- v)q3}

x {f ~143 + ^(i^~ V)Q.I} ~ &£(! + v — jS)2^2 — Q- (7.136)
Similar closed-form solutions are possible when the plate has constant
initial curvatures.

7.8 Governing differential equations for anisotropic plates
The governing small-deflexion equations (1.97) and (1.98) for the general
multi-layered anisotropic plate were derived in Section 1.8. The equation
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of normal equilibrium (1.97) maintains its validity in the large-deflexion
regime and is repeated below for convenience:

= <| + 04(O,w). (7.137)

In the large-deflexion regime, the condition of compatibility is given by
(7.3) and this results in the following modification to the corresponding
small-deflexion equation (1.98):

L2<D - L3 w + |04(w, w) = 0. (7.138)

Some simplification of the L-operators in these equations is possible for
the cases discussed in Sections 1.8.3, 1.8.4 and 1.8.5.

7.8.1 Zero coupling between N and M
For this important class of plates B is zero and the operator L3 vanishes
so that the large-deflexion equations become

L1w = ^ + 04((I>,w), (7.139)

and

w>w) = 0. (7.140)

These equations may be expressed in terms of the displacements, as in
Section 7.1.2, by the elimination of Nx, Ny9 Nxy from (7.137) and (1.32)
using the relations

where s° is defined in terms of displacements by (7.2).

7.8.2 Uniformly loaded long strip
We now consider the large-deflexion analysis of the uniformly loaded
infinitely long strip with general multi-layered (coupled) anisotropy. The
notation is as shown in Fig. 7.2. This problem is essentially one-
dimensional, as in Section 7.2, because the strain pattern does not vary
along the length of the strip; this means that dv/dy is constant throughout
the plate and u,dv/dx, w, M and N are independent of y. Indeed,
substitution of N = N(x) into the equations of planar equilibrium (1.32),
shows that Nx and Nxy9 but not necessarily Ny9 are also constant through-
out the plate. By the same token, the equation of normal equilibrium (1.113)
is simply

d2Mx d2w ^ ,- * A*\
- ^ + ^ + , , = 0. (7.141)
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Now N, M are given by (1.94) where

and
dM 1/dwV

(7.142)

Hence, in particular,

and

dv

dv
6dy"

dv

dv d2w
; ~z ft 11 ~~; =r,

6dx

dv

d2w
1 6 d ^

d2w

(7.143)

(7.144)

Now because Nx, Nxy and dv/dy are constants, albeit unknown at this stage,
it is convenient to regard (7.143) as determining sx and dv/dx in terms of
these constants and d2w/dx2. Thus we find

(^u^66 - A2
6)£°x = A66NX - A16Nxy + {Al6A26 -A12A66)dv/dy

+ (A66Bn-A16Bl6)d2w/dx2 (7.145)
and

{AlxA66-A\6)dvldx
= A11Nxy-A16Nx + (A12A16-A11A26)dv/dy

+ (A11B16-A16B11)d2w/dx2. (7.146)

Substitution of these equations into (7.144) and (7.141) shows that the
equation of normal equilibrium can be expressed as

X
d4w

— + «o = 0

where (7.147)

Thus far the analysis is quite general in that the boundary conditions
have yet to be introduced. To demonstrate the subsequent analysis we now
consider the simple case of fully clamped boundaries, for which

[u, v, w, (7.148)
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Fully clamped boundaries
It may readily be shown that the solution of (7.147), which yields zero values
of w and dw/dx at x = ± \a, is given by

w = -

where (7.149)

4A '

As for the vanishing of v at the boundaries, we note that integration of
(7.146) across the width of the strip, yields the relation

A11Nxy = A16Nx. (7.150)

Finally, the magnitude of Nx is determined by the vanishing of u at the
boundaries. Thus, substitution of (7.150) into (7.145) and integration across
the width of the strip yields

t [^J (7.151)
As in Section 7.2, it is more convenient to regard rj as the unknown, rather
than Nx9 so that substitution of (7.149) into (7.151) yields

2 5 6 2 3 l ( l + ^ 2 ^ t h ^ 2 t h 2 ) (7.152)

and the problem is formally solved.

Other boundary conditions
If the strip forms part of an infinitely wide and uniformly loaded plate
supported on a grid of equally spaced y-wise stiffeners that are themselves
supported on a grid of x-wise stiffeners, the middle-surface forces in the
plate are equilibrated by equal and opposite forces in the supporting
structure. The in-plane boundary conditions are now

AT kx C-a du A ANx + ~\ — dx = 0,

(7.153)^a dv
JVvdx + /cy—= 0,

- \a dy
; + ^ ^ d x = 0,r^xv I

a J-ia
where kx, ky, kxy are measures of the direct and shear stiffnesses of the
supporting structure. Because of symmetry each strip is effectively clamped
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at its edges so that w is again given by (7.149), but Nx is now determined by
(7.153).
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8
Approximate methods in
large-deflexion analysis

Here we discuss some approximate methods of analysis of the large-
deflexion behaviour of plates of constant thickness, focusing attention first
on the case of isotropy. The loading considered is either a uniformly
distributed normal load, or a compressive or shear load in the plane of
the plate in excess of that necessary to cause buckling.

In Sections 8.1 and 8.2 we start from the displacement equations (7.17)
and (7.18) whose approximate solution we obtain by a perturbation
technique. In Section 8.3 we see how approximate solutions may be
obtained from the principle of minimum potential energy. The anisotropic
plate is discussed in Section 8.4.

8.1 Perturbation method for normally loaded plates
In this method, a solution of (7.17) and (7.18) is sought in the form of
expansions in ascending powers of a convenient deflexion A; in a plate
with two-fold symmetry it would be convenient to let A be the central
deflexion. It is then assumed that the quantities q0, w, u, v can be expressed
in the form

w = w\(x,y)A + w3(x,y)A* + - \ ( 8 ' 1 }

u = u2(x9 y)A2 + n4(x, y) A4 + • • •  j

where q0 is the intensity of loading at the point (x0, yo)9 say, whose deflexion
is A, the ocn are constants, and wn,un,vn are functions of x9y to be
determined. Only odd powers of A are required in (8.1) because a change
in sign of q produces a change in sign of w; by the same token only even
powers of A occur in (8.2) because a'change in sign of q, and hence of A,
does not affect the displacements w, v. Further, in virtue of the definition
of A it is also necessary that

c» 3>o)  = w5(x0, y0) = • • •  = 0. j
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Also, each of the functions wM, um vn must satisfy the boundary conditions.
Substitution of (8.1) and (8.2) into (7.17) and equating terms of order A

results in the small-deflexion equation

DW4w-q = 0 (8.4)

whose solution, assumed known, can be expressed in the form

(8.5)

Next, substitution of (8.1) and (8.2) into (7.18) and equating terms of order
A2 yields the following linear equations for determining u2,v2:

dx2 V 2 / ty V 2 )dxdy
dw1d2w1 / I —v\5w 132w1

+ + )dx \ )

v\d2u2

J

=

V 2 ) 8dy2 V 2 ) 8 x \ 2 Jdxdy

dw1d2w1 / I —  v\dw1d2w1 (\ + v\dwt d2wl
+ + ) + ) = '

(8.6)

Substitution of (8.1) and (8.2) in (7.17) and equating terms of order A3 now
yields the followng linear equation for determining w3:

2 dv2

t (dv2 du2

By the same token, substitution of (8.1) and (8.2) into (7.18) and equating
terms of order A4 yields two linear equations for determining u4,t;4 and
the cycle of operations may be repeated. For plates whose boundary
supports resist movement in the plane of the plate, the first two terms in
the series for w suffice to determine the deflexion well into the large-
deflexion regime. The reason for such agreement stems from the fact that
for such plates, as is shown in Section 9.1, the deflexion increases
asymptotically as q1/3 for large values of q, and this is in accord with an
equation of the form q = ax A + a3A3.
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8.1.1 Uniformly loaded clamped elliptical plate
The perturbation method was employed by Chien (1947) in discussing the
uniformly loaded clamped circular plate. Here, as an illustrative example,
we outline the treatment by Nash and Cooley (1959) of the uniformly
loaded clamped elliptical plate. The small-deflexion solution for such a
plate is given by (3.48) and therefore

x2

and (8.8)

Substitution of (8.8) into (8.6) yields two simultaneous linear equations
for determining u2,v2 which must satisfy the following boundary condition

x2 v2

u2 = v2 = 0 a long-2+^2 = 1. (8.9)

A suitable form for the displacements which satisfies (8.9) is given by

V 2 , , 2 S

(8.10)

and the coefficients Au...,A69 Bl9...,B6 are determined by substituting
(8.10) into (8.6) and equating powers of x and y. At this stage it is preferable
to introduce the numerical value of a/b. Next, substitution of (8.8) and (8.10)
into (8.7) yields an equation for determining w3. The solution of this
equation may be sought in the form

(8.11)

which satisfies (8.5) together with the boundary conditions

3w3 ^ x
^ 0 l

2 y2

6 dx dy

The coefficients a3 and C1 ? . . . ,C5 are determined by equating like
powers of x and y.
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8.2 Perturbation method in post-buckling problems
Stein (1959) has shown that a technique, similar to that discussed in Section
8.1, may be used to investigate the post-buckling behaviour of plates, and
he has applied the method to simply supported rectangular plates subjected
to various combinations of compressive forces in the plane of the plate.
In this technique it is necessary to expand the displacements u, v, w about
the point of buckling in powers of a suitable parameter. Stein points out
that there is some freedom in the choice of this parameter, and for the
uniaxial compression problem chooses the parameter 3 = {(P — Pcr)/Pcr}1/2.
This form is suitable, as it is known that immediately after buckling the
deflexion increases in proportion to 6. Here, however, we follow the
notation of Section 8.1 and expand the displacements in powers of the
deflexion A at a chosen point (xo,yo), and write

(8.12)
v = vo{x,y) + v2(x,y)A2 + J

Only odd powers of w and even powers of w, v are required, because a
change in the sign of w does not affect the displacements in the plane of the
plate. The terms uo,vo are the displacements in the plane of the plate at
the onset of buckling. As in Section 8.1 the functions wn must satisfy (8.3)
and the term wn,un,vn must each satisfy the boundary conditions.

Substitution of (8.12) into (7.18) and equating terms independent of A
yields the following relations for determining the form, but not the
magnitudes, of uo,vo

(8.13)

These are simply the equations of plane stress expressed in terms of
displacements.

Next, substitution of (8.12) into (7.17) and equating terms of order A
yields the small-deflexion equation

+V
dvo\ d^j/dvp duo\
dy) dy2\dy dx)12 ' ~ dx2 \ dx

(8.14)

whose solution determines the magnitude of uo,vo and the function w t.
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Substitution of (8.12) into (7.18) and equating terms of order A2 now
yields equation (8.6), from which the functions u2, v2 are to be determined -
apart from an arbitrary term.

Similarly, equating terms of order A3 yields the following equation:

du0v
12V W3 dx2 \dx 4~V dy) dy2 \ dy + dx

dx2 {dx ' dy ' 2\dxJ 2 \8y

^ f + +V)dxdy\dy + dx + dx dy

from which w3 is determined together with the previously arbitrary terms
in i ^ , ^ . The cycle of such operations may be repeated to obtain ever
increasing accuracy. At this stage, however, it is more useful to demonstrate
the method in detail for a simple example.

8.2.1 Post-buckling behaviour of compressed square plate
To demonstrate the method, we now consider the post-buckling behaviour
of a square plate simply supported along the edges and subjected to a
load causing one pair of opposite edges to approach each other by a fixed
amount while the distance between the other pair of edges remains
constant. We further stipulate that all edges are constrained to remain
straight, and that there is zero edge shear stress in the plane of the plate.
If the plate is bounded by the lines x = 0, a and y = 0, a the boundary
conditions are then given by

du dv d2w
dy dx dx2

du d2w
-— = v = w = —— = 0, along y = 0, a.
dx dy

(8.16)

The centre of the plate {ja,^a) is defined as the point (xo,yo) at which
the deflexion is A. Attention is also confined to plates exhibiting a single
buckle, although for high values of the compression two or more buckles
occur in the direction of the compression. There is, however, no difficulty
in extending the analysis to include more buckles nor in considering the
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general case of a rectangular plate. It must be admitted, however, that the
particular boundary conditions considered here are specially chosen to
yield simple results.

The solution of (8.13) which satisfies (8.16) may be written down by
inspection:

vo = 0 (8.17)

but it is to be noted that the constant k0 is at present unknown. This is
because the terms uo,vo apply only to conditions at the onset of buckling
which have yet to be determined. Substitution of (8.17) into (8.14) now
yields the small-deflexion equation:

£1,
12 dx2

d2wx (8.18)

whose solution (apart from the trivial case with wx zero) determines k0

and is given by

. nx . ny }
= sin — sin —

a a
(8.19)

Thus far the analysis is identical with small-deflexion theory and the
magnitude of the central deflexion A is still arbitrary. Substituting (8.19)
into (8.6) and simplifying yields

dx + 2 ) dy +
v\d2v2

dxdy

l/TrVf, „ 2ny] • 2nx n

- - - <l-v-2cos^>sm = 0
4\a } a \ a

l-v\82v
dx: L + dxdy

l /7r\3f „ 2nx] . 2ny n~7 - il-v-2cos Urn—= 0

(8.20)

whose solution is given by

u2 =
2ny\ . 2nx

. ^ — v —cos sin
16aV a ) a

(8.21)
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n / 2nx\ . 2ny
v2 = —77- 1  — v  —cos—  * —

where the constant k2 is at present unknown.
Substitution of (8.17), (8.19) and (8.21) in (8.15) yields the following linear

differential equation whose solution determines k2 and vv3:

t^ n2t2 fd2w3

I 2 V W3 + 3(l )12
1 ,+ . \ r o •'v

ny

7i4(l —  v 2 ) / . nx . 3ny . 3nx 7ry\
+ — - — j —  sm — sin — - + sin sin — . (8.22)

16a \ a a a a )

It is to be noted that the term sin nx/a sin ny/a is a complementary
solution of (8.22), but it also occurs on the right-hand side of (8.22). This
may be shown to lead to a mathematical impasse and we can infer that
the coefficient of sin nx/a sin ny/a in (8.22) must be zero. Thus

fc2=^(3-v). (8.23)
a

It may also be verified that the solution of (8.22) which satisfies (8.5)
and the boundary conditions (8.16) is now given by

^ •  nx - ny A . nx . 37cy „ . 37DC . ny \
w3 = (A + 5)sin — sin  h A sin — sin  h Bsm sin —

a a a a a a
where

3(1 - v)(l + v)2

B =

16(24+ 25v-9v 2 ) t 2 '

3(1 - v)(l + v)2

16(16 + 25v-v 2 ) t 2 '
(8.24)

The cycle of operations for determining w4, t;4 and w5 proceeds on lines
similar to those used to determine u2,v2 and w3, and is not given here.
The solution obtained so far is accurate in w to terms of order A3 and
accurate in w, v to terms of order A2. Thus it is possible, for example, to
relate the amount by which the loaded edges approach each other, bu, say,
to the magnitude of the central deflexion A:

3u -Sucr = ak2 A2 +O(A4)

= 7 r 2 ( 3 - ^
8a
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However, what is of more practical importance is the relationship between
(Su — Sucr) and (P - Pcr) where P is the total applied compressive load.
This is found readily from (7.2), which gives

P = —
Et

1-v 2 | 0 \dx
du dv
d dy 2\dx

dw\2
dy (8.26)

so that, from (8.12), (8.17) and (8.19) we find

p p
l-v2 dx

Equations (8.25) and (8.27) may be combined to give

P — P
3u — 5ucr

2Et •+O(A2). (8.28)

Now (P — Pcr)/(8u — 8ucr) is the direct stiffness of the plate immediately
after the onset of buckling and may be compared with the value Et/{1 - v2)
prior to buckling. Thus for the particular example considered here:

stiffness of plate immediately after buckling 2(1 — v)
stiffness of plate prior to buckling 3 - v

(8.29)

The stiffness after buckling of all flat plates decreases slightly as P/Pcr

increases. However, as indicated in Fig. 8.1, if the wavelength of the buckles
does not change, the reduction is small in the range 1 < P/Pcr < 2 and a
good estimate can be expected from an analysis which relates the load P
to the deflexion A with an error of O(A6). If the wavelength of the buckles



An energy method 175

changes, there may be a marked drop in the 'tangent' stiffness, but this
too may be analysed by the perturbation method.

8.3 An energy method
The principle of minimum potential energy may also be used in the large
deflexion analysis of plates. The strain energy of bending is given by (6.4)
and the strain energy due to stretching of the middle surface is

2(1
—^ \\t{ex + s2 + 2vrsxsy + ±(1 - v)e2

xy} dx Ay

where sx,sy,exy are given by (7.2).
The total potential energy may therefore be expressed in terms of the

displacements w, v, w as follows:

n = i I |D{(V2w)2-(l-v)O4(w,w)}dxd);

2 } 2 ( d u d v l d v

I fe^+2"^
-dudv

(8.30)

where Tle and Ue are as defined by (6.12), (6.13).
The energy method was used by Cox (1933) in discussing the post-

buckling behaviour of a rectangular strip under end load. The importance
of this analysis lay in the choice of the deflexion w. For example, when
the edges were simply supported, it was assumed that the deflexion, which
is symmetrical about the centre line y = \b, is given by

in

in

the

the

w =

range

w =

range

w0

0s

w0

sin

iy-

sin

b<

nnx
a

nnx
a

y<

C1TI
Mil

ocb
b, where a depends on the applied

(8..31a)

loading, and

(8.31b)
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In the immediate post-buckling phase, the coefficient a is unity, but as
the loading increases the deflected mode changes so that over the central
region of the plate the mode is a developable surface. If allowance had
not been made to include such a developable zone, the resulting analysis
would have predicted an overall stiffness under a high loading in excess
of the true value. This is because the strain energy due to the middle-surface
forces would have been overestimated.

In practice, the deflected form does not contain an exactly developable
zone, nor, of course, does it contain a discontinuity in d2w/dy2 as does
(8.31) at the line y = \ab. Nevertheless, (8.31) is probably the best available
representation if the limit of disposable parameters (wo,n,a) is three. To
overcome the objection of the discontinuous character of d2w/dy2 Koiter
(1943) suggested the form

. nnxfly 1 . 27ry\
w = w0 sin —- + - s m —— ,

a \ccb n ab )

valid in the range 0 ^ y ^ \vb, but the resulting improvement in accuracy
was negligible.

8.3.1 Post-buckling behaviour of long strip under compression and shear
The post-buckling behaviour of a long simply supported strip under
combined shear and longitudinal and lateral compression or tension has
been investigated by Koiter (1944), Van der Neut and Floor (1948), and
Floor and Burgerhout (1951). The presence of shear necessitates a slight
modification to (8.31) and the deflected form (Fig. 8.2) is represented by

. n(x — my) . ny
w = w0 sin sin—-

L ab

in the range 0 ^ y ^ |afe, and

n(x — my)
w = w0 sin

(8.32)

in the range
Here L is the longitudinal half-wave length and the parameter m

determines the orientation of the nodal lines. In practice the nodal lines
are not straight, except in the absence of shear, but they become
progressively straighter as the loading is increased; furthermore (8.32) does
not satisfy the edge conditions of simple support, except when m is zero.
As a consequence, the greatest errors arising from the use of (8.32) occur
at the onset and shortly after buckling when the loading is predominantly
shear. A comparison with the known exact solution for buckling under
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0

111

Fig. 8.2

pure shear, due to Southwell and Skan (1924), then shows that the
maximum error does not exceed 6 per cent. In many instances, however,
we are concerned with the post-buckling behaviour of a continuous plate
simply supported at a series of lines (y = 0, b, 2b, etc.). This condition should
strictly be described as one of continuity, and it is a more constrained
condition than that of simple support. It follows that for continuous plates,
(8.32) is in error at most by about 3 per cent.

In addition to choosing a suitable form for the deflexion, it is necessary
to prescribe forms for the displacements w, v. The following forms were
derived by Koiter and were chosen to minimize the elastic energy and to
satisfy the condition that the edges of the strip remain straight:

In the range 0 ^ y ^ \ab,

mil2

sm-

2ny

2n(x —  my)

4L2 8L2 afo

2ny\ . 2n(x —  my)

2 . 2ny 2n(x-
m——  cos —

ocb L16afc

sin
2ny
^b~'

(8.33a)
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In the range \ab <y^%b,

. ._ nw2.2n(x-my)mn2aw2
0^

4L2

8L sin-
2n(x — my)

8L2

(8.33b)

In equations (8.33a), (8.33b) the terms ex and s2 are the overall
compressive strains in the longitudinal (x-) and lateral (y-) directions of
the plate, and y is the overall shear strain of the plate.

Substitution of (8.32), (8.33a) and (8.33b) in (8.30) for the average strain
energy U per unit area of plate yields the relation:

2EU/t = a\- + 2(1 + V)T2

- v 2 )

n2E2F2t2

where

F =
n2w2

AL2 '

(8.34)

and (J1,(72 are the average tensile stresses in the longitudinal and lateral
directions of the plate and are given by

(8.35)(<T2 - vffJ/E = -
2(1 + V)T/E = y - 2(1 -

The parameters vv0, L, m, a or, alternatively, F, if, m, a are to be determined
from the conditions

dU _dU _dU _dU _
W~~dH~~dm~~da~

in which it is to be assumed that sl9e2,y are given constants.

(8.36)
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8.4 Anisotropic plates
The perturbation method of analysis may also be used for anisotropic
plates. We first express the governing equations in terms of the displacements
w, v, w. In this connection we note from (7.2) that the strains in the middle
surface are given by

, — + - — I , — + — + , (8.37)

and hence, for the general multi-layered anisotropic plate, (1.94) and (8.37)
enable us to express N, M in terms of w, v9 w. This, in turn, enables us to
express the equilibrium conditions, namely (1.32) and (1.113), in terms of
M, v, w.

For the general multi-layered plate the presence of the matrix B in (1.94)
adds to the complexity of the perturbation method because both odd and
even powers of A are needed in the expansions for u and v.

8.4.1 Zero coupling between N and M
For this important class of plates, B is zero and hence the middle-surface
forces are given simply by

N = Af°, (8.38)

where E° is given by (8.37). The equations of equilibrium in the plane of
the plate may therefore be expressed in terms of the displacements as
follows:

3 w \ 2 l (dv lfdw
dx J J 12\dy 2\dy

dv dw d

du

(dv l /3w\ 2 | (du dv dw dw
26\dy 2\dy J J 66\dy dx dx dy

(8.39)
Likewise, the equation of normal equilibrium is given by



180 Approximate methods in large-deflexion analysis

d2w\ (du lfdw\2 (dv \(dw

(du dv dwdw\~\ d2w f (du lfdw\2

dv lfdw\2} (du dv

du lfdw\2) (dv Ifdw

(du dv
+ A*>Xd-y + d-x

where
d4w ^, ^ d4w

Normally loaded plates
Substitution of (8.1) and (8.2) in (8.40) and equating terms of order A results
in the small-deflexion equation (1.102) whose solution can be expressed
in the form (8.5). Next, substitution of (8.1) and (8.2) into (8.39) and
equating terms of order A2 yields the following linear equations for
determining u2,v2:

{^ kSVj \d2v2 dw, d2wx
ll\dx2 + dx dx2 ] 26\dy2 + dy dy2

( d2u2 dw, 52Wi
[dxdy dy dxdy) [dxdy dx dxdy)

{d2v2 dwxd2wx\ (d2u2 dw.d^
^ + + ̂  +^T + ̂ T i r e + ̂ 66^^^ + ^ ^ i

dx2 dy dx2 J [ dy2 dx dy2

(8.41)

jd2u2 dw1d2w1\ jd2v2 dw^^t

d2u2 dw, d2wi )
[dxdy dx dxdy)

dy dx J (dy dx dyz J
(8.42)
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Similarly, substitution of (8.1) and (8.2) into (8.40) and equating terms of
order A3 now yields the following linear equation for determining w3:

^ j . I / ' ^ i V l j . j [gM2 , 8v2 , dw1dw1\~]
dx+2\8yj J + i6\dy + 8x + dx By JJ

+ 2

dx dy

(8.43)

The cycle of operations may, of course, be repeated.

8.4.2 Strain energy in multi-layered plate
Energy methods may also be used in the large-deflexion analysis of
multi-layered anisotropic plates. In this connection we note that the
analyses of Sections 1.8.1 and 6.2 maintain their validity in the large-
deflexion regime because they are based simply on the relations between
M, N, s° and K. Large-deflexion effects are introduced when we express £°
in terms of the displacements u, v, w. Of the three expressions for the total
strain energy per unit area U' given in Section 6.2, equation (6.16) is the
most appropriate because it is expressed solely in terms of the plate
properties and the strains and curvatures. Thus, collecting the relevant
equations we have

U = i(f°'T A£° + 2*:TB£0 + KTT>K). (8.44)
where

0[du l/dw\2 dv l / d w \ 2 du dv dw dwT

and

d2w d2w _ d2w

Note that the third term in (8.44) is given by (6.20) and the second term
vanishes when there is zero coupling between N and M.
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Asymptotic large-deflexion
theories for very thin plates

The exact large-deflexion analysis of plates generally presents considerable
difficulties, but there are three classes of plate problems for which simplified
theories are available for describing their behaviour under relatively high
loading. These 'asymptotic' theories are membrane theory, tension field
theory (sometimes called wrinkled membrane theory) and inextensional
theory. All are described below. For a plate of perfectly elastic material,
the error involved in using these theories tends to zero as the loading is
increased or as the thickness is reduced. In any practical material, however,
there is a limit to the elastic strain that may be developed, and this in
turn limits the range of validity of these asymptotic theories to plates
which are very thin. For steel and aluminium alloys, a typical limit to the
elastic strain is 0.004, and this restricts the range of validity of the
asymptotic theories as follows. For membrane theory and tension field
theory the thickness must be less than about 0.001 of a typical planar
dimension, while for inextensional theory the thickness must be less than
about 0.01 of a typical planar dimension.

9.1 Membrane theory (considered by Foppl 1907)
When a thin plate is continuously supported along the boundaries in such
a manner that restraint is afforded against movement in the plane of the
plate, the load tends to be resisted to an increasing extent by middle-surface
forces. If the plate is sufficiently thin and the loads sufficiently high, the
plate acts as a membrane whose flexural rigidity may be assumed to be
zero. For the practically important case of the plate (membrane) of constant
thickness without any temperature effects, the governing differential
equations (7.1) and (7.3) then become

It must be admitted that the solution of these equations still presents
formidable difficulties, but certain problems which are mathematically
one-dimensional admit of simple solutions, and these are now considered.
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N

Fig. 9.1

9.1.1 Cylindrical deflexion of long membrane strip
Consider a long strip, of width a and constant thickness t, subjected to a
load distribution that does not vary along its length. The edge supports
are assumed to be either rigid or elastically restrained against movement
in the plane of the membrane, as in Section 7.2. If, for example, the strip
supports a central line load P per unit length (Fig. 9.1) it may readily be
shown that, using membrane theory, the central deflexion w0 and the
middle-surface force per unit length Nx are given by

and

N =
x

y /3
(9.2)

where /? and K are as defined in Section 7.2.1.
Similarly, for a uniform load q0 it may be shown that

/3

-1/3
(9.3)

results that could also have been deduced from the analysis of Section 7.2
by letting */-»oo.

9.1.2 Annular membrane under axial load
Consider an initially unstressed annular membrane whose outer boundary
at r2 is fixed and whose inner boundary at rx is attached to a floating
rigid boss to which an axial load P is applied. The deflexion of the
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membrane is accordingly independent of 9 and (9.1) may be written as

d$dw\_
dr~^r~)~ '

d T d fl d dwVl A

We search for a solution in the form

w(r) = k(r«2-r«l

which satisfies the condition that w(r2) = 0, and

where /c, c, a, ft are constants.
Substitution into (9.4a) yields

and
(xlickra+p~2 = constant,

cj?2(j5 - 2)rp~2 + \Etk2a2r2a-2 = constant.

(9.4a)

(9.4b)

(9.4c)

(9.4d)

(9.4e)

It follows from a consideration of the indices in (9.4d) and (9.4e) that

a - 2 / 3 , 0 = 4/3. (9.4f)

These values of a, j8 mean that (9.4d) is automatically satisfied while (9.4e)
also requires that

(9.4g)

d2O
"dr2"'

Now, the stress resultants in the radial and circumferential directions are

(9.4h)

and hence equilibrium of the load P yields

l d O
~r~dr*

16TC ,
- 9 - *

in virtue of equations (9.4b), (9.4c) and (9.4f).
It follows from (9.4g) and (9.4i) that

j
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It is also necessary to consider the radial displacements u at the inner
and outer boundaries. In this connection we note that

i* = rea, (9.4k)

and the circumferential strain is given by

ee = ±t(Ne-vNr% (9.41)

where v is the Poisson ratio.
It follows from equations (9.4c), (9.4f), (9.4h), (9.4k) and (9.41) that

4cri/3
U = ~3Ef^~V)> (9'4m)

and the vanishing of u at the boundaries is seen to be fortuitously satisfied
if v = ^, which is typical of many elastic materials.

The solution to this problem was first given by Schwerin (1929), while
the corresponding case with pre-tension was considered by Jahsman, Field
and Holmes (1962).

9.1.3 Power law variation with load
The examples given in Sections 9.1.1 and 9.1.2 show that the deflexion at
any point varies as (the loading)1/3, and the middle-surface forces vary as
(the loading)2/3. These power law variations are a general property of
initially unstressed membranes, as may be proved as follows.

Suppose that a particular solution of (9.1) is given by

q = <?(*> y\ ® = *(*, y\ w = w(x, y\

then it may be verified by substitution that another solution of (9.1) is
given by

qf = Xq(x,yl 0' = A2/3*(x,y), W = lllMx,y),

where X is here a non-dimensional load parameter. This argument is
restricted to initially unstressed membranes for which 0 = 0 when q = 0.

9.1.4 Membranes with pre-tension
When the boundary supports impart middle-surface tensions throughout
a membrane, as in a drum, a normal loading is resisted primarily by these
tensions and the contribution of the flexural rigidity may be ignored. Thus
under small deflexions the governing equations are adequately given by
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In particular, if the middle-surface forces are constant throughout the
membrane we have:

d2w d2w d2w
+ w + w , ^ r . a (9.6)

As a simple example, consider the fundamental mode of vibration of a
rectangular membrane with sides a,b subjected to tensile forces Nx,Ny.
The governing equation is (9.6) with q replaced by —md 2w/dt2, where m
is the mass per unit area of the membrane. The fundamental mode is of
the form

. nx . ny . ^
w = w0 sin—sin  —-  sin lit,

a b

where Q is the circular frequency. Hence we find

9.1.5 Existence of other asymptotic states
Membrane theory may also be used to infer the existence of other
asymptotic states for membranes that are loaded only in their plane. Thus
if q is zero, the first equation of (9.1) becomes

04(O,w) = 0, (9.7)

and this equation has three distinct forms of solution. Two of these, which
we now consider, are mathematically trivial.

First, it is obvious that one form of solution is given by

for which the second equation of (9.1) yields

V40> = 0.

These are simply the equations of plane stress. The fact that the membrane
remains flat, however, implies that neither of the principal stresses
throughout the membrane can be compressive.

Similarly, the second form of solution of (9.7) is given by

This means that there are no middle-surface stresses in the membrane,
and this form of solution describes the state of a membrane subjected to
'compressive strains'.

The third, non-trivial, form of solution of (9.7) expresses the fact that



188 Asymptotic large-deflexion theories for very thin plates

Fig. 9.2

at any point in the membrane one of the principal middle-surface stresses
is zero, and the out-of-plane curvature in the direction of the other (tensile)
principal stress is zero. This means that the only stresses in the membrane
are tensile stresses carried along straight lines, or tension rays, stretching
across the membrane from boundary to boundary. The membrane is
envisaged as being finely wrinkled along normals to these tension rays.
These features describe what is known as a tension field. The equations
of membrane theory, however, do not lend themselves to the detailed
solution of such problems. For this we require tension field theory
(sometimes called wrinkled membrane theory) which is considered in
Section 9.2. First, however, we note that it is possible for two, or even
three, of the asymptotic membrane states to occur simultaneously. A simple
case exhibiting all three states is the square plate supported by edge
members to which moments are applied, as shown in Fig. 9.2, where the
different membrane states are indicated by self-explanatory shading.

9.2 Tension field theory
Tension field theory describes the highly buckled (wrinkled) state of
membranes or very thin plates whose boundaries are subjected to certain
planar displacements well in excess of those necessary to initiate buckling.
The theory was conceived by Wagner (1929) whose primary concern was
to explain the behaviour of thin metal webs in beams and spars carrying
a shear load well in excess of the initial buckling value. Such webs offer
little resistance to the compressive strain component of the shear, and the
spar flanges must be held apart by struts to prevent collapse. In the simple
case of rigid spar flanges and rigid perpendicular struts, the stress field in
the web in the highly buckled state is primarily that of tension at 45°. As
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the shear load increases, so does the magnitude of this tensile stress field
and, just as a taut string resists a kinking action, so too does this tensile
stress field resist the out-of-plane displacements engendered by the
buckling action of the compressive stresses; these opposing actions result
in a decreasing wavelength along the compressive buckles which form at
right angles to the tension field. Strictly speaking, such problems are non-
linear and their exact analysis presents formidable difficulties. However,
for large values of the ratio (applied shear strain)/(shear strain at initial
buckling) the flexural stresses and the planar compressive (post-buckling)
stresses are negligible compared with the tensile stresses. In tension field
theory the simplifying assumption is made that these relatively negligible
stresses are zero, which is physically equivalent to the assumption of zero
flexural membrane stiffness: the membrane is envisaged as being finely
wrinkled at right angles to the lines of tension. In general these tension
rays are not necessarily parallel and the boundary conditions need not be
those of pure shear, as in the previous example, but shear must play a
dominant role in the boundary deformation because of the requirement
that the principal strains at any point are of opposite sign.

In his original paper Wagner presented a method for determining the
distribution of tension rays in the general case, but this was based on
lengthy geometrical considerations. Reissner (1938) achieved a simpler
analysis based on straightforward calculus, while the concept of a variable
Poisson ratio, with particular reference to the partly wrinkled membrane,
was introduced by Stein and Hedgepeth (1961). In the specific problems
which these writers solve the tension rays exhibit a repetitive pattern.

These authors and the writer were unaware that important advances
in tension field theory had been made in Japan. Kondo (1938) had
independently derived a method of analysis similar to that of Reissner and
had also presented the first exact solutions to problems involving a
non-repetitive pattern of rays. Iai (1943) had shown how the distribution
of the tension rays could be determined by focusing attention solely on
the displacement component along the tension rays; the method is based
on a principle of maximum strain energy under given boundary displace-
ments. This, and subsequent Japanese work on curved tension fields, is
well documented in a review paper (in English) by Kondo, Iai, Moriguti
and Murasaki (1955).

The writer's association with tension field theory began accidentally and
unknowingly with the development of the inextensional theory (1955)
for describing the large-deflexion bending behaviour of certain plates.
The association with tension field theory became apparent only in 1968
with the realization that inextensional theory and tension field theory
are analogous and have dual properties similar to those exhibited by
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small-deflexion plate theory and plane stress theory. Indeed, detailed
inextensional solutions by Mansfield and Kleeman (1955b) for tip loaded
triangular cantilever plates, including contour lines of maximum principal
stress, are directly applicable to dual tension field problems. In the context
of earlier work on tension fields the writer's (dual) analysis links the
principle of maximum strain energy to a coordinate system related to the
membrane geometry via a coordinate system related to the (unknown)
distribution of tension rays. It thus combines in a concise but distinct form
features first introduced by Iai, Kondo and Reissner.

9.2.1 Analysis
We consider an initially flat membrane of arbitrary shape and variable
stiffness. The membrane is loaded only at its boundaries which are
subjected to given planar displacements or, if a boundary is straight, either
the displacements are given or the edge is free. The boundary conditions
generate a tension field over the entire membrane, an assumption which,
for topological reasons, restricts the number of free edges that can be
considered to two or less.

The lines of principal stress necessarily form an orthogonal curvilinear
network and it is convenient to consider the equilibrium of an infinitesimal
curvilinear rectangle bounded by such lines. Equilibrium in the direction
of the zero principal stress gives

ta,x = 0, (9.8)

where an is the non-zero (tensile) principal stress and x is the curvature
of this principal stress trajectory. Accordingly, x is zero and the trajectories
of the tensile principal stresses are straight lines, hereafter referred to as
tension rays (see Fig. 9.3).

Equilibrium in the direction of a tension ray demands continuity of the
tensile load carried between adjacent rays, and hence along any ray

r\ton = constant, (9.9)

where rj is the distance from the point of intersection of adjacent rays. Of
course, if the tension rays are parallel, (9.9) reduces to

t<jn = constant. (9.10)

9.2.2 The principle of maximum strain energy
The fundamental problem of tension field theory lies in determining the
orientation of the tension rays. In this connection we note again that there
are no direct and shear stresses across adjacent rays; accordingly, the strain
energy of the membrane is solely due to tensile stresses directed along the
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Fig. 9.3

locus of points H

rays; furthermore, it would be unaffected by the introduction of cuts in
the membrane along these rays. However, if the strained membrane were
to be cut along closely spaced straight lines which do not coincide with
the tension rays, two features are apparent. First, the resultant strain
energy would be solely due to tensile stresses directed along these lines
and, second, this strain energy would be less than in the uncut membrane
because, with no transfer of energy from the boundaries, successive cuts
could only release energy. It follows that the true distribution of tension
rays maximizes this 'tensile' strain energy, and it is this principle which
forms the basis of the following variational analysis. Fig. 9.4 shows a
membrane with a reference axis Ox; a typical tension ray cuts the x-axis
at a point X and at an angle a, so that we can write in a formal manner

(9.11)
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The determination of the function a{X) is the central problem in tension
field theory.

The lines LK, LK' are arbitrary adjacent cuts which intersect the x-axis
at angles a and (a + 3a) and meet at the point H. A typical point in the
membrane is specified by coordinates a, rj, where n is the distance along
the a-line from the point H which is itself a function of a and X.

The elemental slice KLLK' undergoes radial tension such that

nEten = ca, a constant, (9.12)

where ê  is the direct strain along the line LK. The constant ca is determined
by equating the line-integral of the strain ê  to the known change in length
of LK, denoted by Aa:

i: = Aa, (9.13)

whence,

^ • (9.14)

The strain energy of the membrane will now be determined, and in doing
so it is convenient to integrate first over an elemental slice bounded by
adjacent cuts. Thus

Ets^ridrj da

= ^\FdX (9.15)

where

J ^ (9.16,
f ' A '

and a prime denotes differentiation with respect to X. Now from
geometrical considerations the value of n at the x-axis is given by

^ (9-17)

(the sign depending on whether H is above or below the x-axis) and it
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follows that F is a known function of X, a, a' and the boundary conditions.
The function cc(X) is to be determined from the condition that the strain

energy U is a maximum. It follows from the calculus of variations that

a"FaV + a'-Fflw' + FXa, — Fa = 0 (9-18)

in which Fa, for example, stands for dF/da where F is formally regarded
as a function of independent variables X,a,a'. Equation (9.18) is a
non-linear differential equation of the second order, and, with the boundary
conditions, it determines the function a(X). The outline solution of (9.18)
for a number of examples is given later, but first we draw attention to a
simple but important class of problems, namely those in which F does
not contain X explicitly; the equation may then be integrated once to give

F - a'Fa. = constant. (9.19)

Also we note that for the practically important case in which Et is constant

Yt = ̂ ^ - (9-20)

Uniform strain field
If the displacements along the complete boundary are consistent with a
uniform strain field, the tension rays are parallel and coincide with the
direction of the positive principal strain; this direction may be determined
by maximizing AJ(rj2 - rjx).

9.2.3 Validity of solutions
Ideally, any theoretical solution should be checked to see that the
requirements for a tension field have not been violated. Thus it should be
shown that throughout the membrane

A a >0 (9.21)
and

ea + v £ ^ 0 , (9.22)

where sa is the strain along a normal to a tension ray. A check on (9.21)
is relatively straightforward but a thorough check on (9.22) is not only
time-consuming but also frustrating because if the inequality is not
satisfied - an indication that the membrane is not completely wrinkled - it
is, nevertheless, virtually impossible to obtain a more meaningful solution.
Indeed, the approximate nature of tension field theory itself does not justify
too scrupulous an attention to detail. For these reasons we suggest that
a check on the inequality (9.22) be confined to the boundaries where
violations, if any, are likely to occur, and where ea assumes the following
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simple form:

ea = ss cosec2 k — &n cot2 k,

where ss is the strain along the boundary and k is the angle that the tension
ray makes with a tangent to the boundary. Thus at the boundary the
inequality assumes the form

£s cosec2 k + e^v - cot2 k) ^ 0. (9.23)

For example, if es is zero the inequality requires that

cot2 k ^ v,
that is,

k ^ 63i°

or ifv = i.

9.2.4 Shearing of semi-infinite membrane strip
Consider the semi-infinite parallel strip of width a, whose opposite edges
undergo a constant shear displacement U09 as shown in Fig. 9.5. We will
obtain the solution for the case of a free edge at a0 = \n, but it should be
realized that this necessarily contains the solution for a o o < a o < \n\ indeed,
it also contains the solution for a0 > \%, for the additional triangular region
beyond a0 = \n is unstressed. (Strictly speaking, there are limitations on
the value of a0, as discussed above, but from a practical standpoint this
restriction is not of much significance.)

With the notation of Fig. 9.5, it is seen that a' is negative so that the
locus of points H lies below the x-axis and accordingly rj1>f]2. Thus

Aa = Uo cos a,

sin a I

so that

for n
 a W a

 2 v (9.25)
ln(l — aa cosec^a)

[Note that a pre-knowledge of the sign of a' is not essential to the analysis.
Thus if a' had been assumed positive, the only alteration in the expression
for F is an overall sign change, and this itself does not affect the form of
(9.25).]

At this stage it is convenient to introduce

fi = rjl/rj2 = l — a(x>
fcosec2a, (i.e., fi^ 1) (9.26)
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Fig. 9.5

in terms of which (9.25) and (9.19) become

sin2 2a = < (9.27)

The constant of integration is determined from the condition that as x -• oo
the tension rays become parallel and ju-> 1, while a->^n, the value which
maximizes AJ(rj1 —  rj2). Hence C = 1 and the relation between a' and a is
readily determined numerically from (9.26) and (9.27); the a, X relation is
obtained by integration.

The stresses are given by (9.12) and (9.14). As x -> oo it may be shown that

and it is convenient to introduce

(9.28)

(9.29)

which is now a non-dimensional measure of the stress and the equivalent
of a stress concentration factor. The peak values of <7, denoted by <j*9

occur along the x-axis (rj = r\2\ where it may be shown that they satisfy
the relation

sin 2a =
2a* In a*
( 7 * 2 - l '

(9.30)

Contours of constant a and tension ray lines at 5° intervals are shown in
Fig. 9.6 together with a shaded region which indicates the unstressed
triangular zone which occurs when a0 > \%. Solutions for strips of finite
length are obtained by taking different values of the constant C. In practice,
of course, the opposite edges of the strip tend to be pulled together by the
action of the membrane stresses, and the condition that V = 0 is only
possible if these edges are held apart in a rigid manner; when they are
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Fig. 9.6 Tension ray lines and stresses in semi-infinite membrane strip
under shear (<x0 > TT/4).

Fig. 9.7 Quadrilateral membrane.

held apart elastically some contraction occurs. Such problems have been
discussed elsewhere (Mansfield 1968).

9.2.5 A quadrilateral membrane
Here we consider an arbitrary quadrilateral membrane ABCD with one
pair (AD, BC) of opposite edges free and the other pair subjected to a
relative rotation Q about their point of intersection 0, as shown in Fig. 9.7.
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The problem demonstrates the integration of (9.18) rather than the simpler
(9.19). At the same time, it exhibits the simplifying feature that any solution
necessarily generates further solutions by a linear scaling of dimensions.
Mathematically, this manifests itself in the fact that (9.19) can be expressed
as a first-order differential equation in Xa! which readily lends itself to
numerical integration.

With the notation of Fig. 9.7,

Aa = QX sin a,

while from geometrical considerations

(9.31)

sin ar j 1 = -

Thus, from (9.20),

F

(9.32)

sin2 a
EtO.2

where
In//

Xv! sin x
sin a sin (a + x)

(9.33)

Substitution of (9.33) into (9.18) yields an equation of the second order in
X and a which can, however, be expressed as one of the first order in Xa'
and a or, more conveniently, in ju and a:

where

da

P /

sm a sin (a
p sin (2a + x) H

2JU(JU— l)ln^

/i + l)ln/i — 2(p

/iln/x^2-!

i— 1)'

-2/zln/x)

(9.34)

This can be integrated numerically, assuming various starting values for
Ma=a0- O n c e t m s primary integration has been completed, the formal
solution for X and a is straightforward. Thus, from the definition of \i in
(9.33),

sin/1 dX _
X da (fi— 1) sin a sin (a +
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Fig. 9.8 Tension rays in quadrilateral membrane, \iA = 50.

which may be integrated to give

SmX } (9.35)

The form of the solution depends markedly on whether or not n passes
through the value of unity, that is, on whether or not the point H passes
from one side of the quadrilateral to the opposite side. In the former case
care must be exercised as fx-+l where it is preferable to replace the
numerical integration by an analytical integration based on an expansion
of the functions p, q about the point \x = 1. The two forms of the solution
are typified by Figs. 9.8,9.9 which show the distribution of tension rays
in quadrilateral membranes specified by

AOD=^n( = x\
ADC = |TC, SO that a0 = \%.

The position of the corner points B, C are such that

AB/OA = 1.60,|
ptA = 50

and
AB/OA = 0.68,]

\ m Fig. 9.9.= 60 J
The magnitudes of AB/OA were chosen arbitrarily. However, because any
tension ray line can be regarded as a free edge, the solutions presented
apply to an infinity of quadrilaterals with different ratios AB/OA and
different angles ADC such as A'B'CD'. It will be seen that all these
solutions are embodied in the solution for two semi-infinite parallel strips
with skew edges. The strips are such that the lines OAB are part free and
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Fig. 9.9 Tension rays in quadrilateral membrane, \iA = 60.

part clamped while the lines ODC are entirely clamped; in Fig. 9.8,
however, the line OAB is infinitely long and the line ODC is finite while
the opposite occurs in Fig. 9.9.

Finally, we draw attention to the fact that in the quadrilaterals ABCD
peaks of stress occur at points A9 C in Fig. 9.8 and at points A,B in
Fig. 9.9. At point A, for example,

EQ(fiA - 1) sin aA sin (ocA +
(9.36)

If this is expressed as a multiple of the stress in a vanishingly narrow
parallel strip of membrane along the line AD, the resultant 'stress
concentration factor' is given by

= 12.5 for the quadrilateral in Fig. 9.8,
= 14.4 for the quadrilateral in Fig. 9.9.

(9.37)

These high values are to be expected in view of the convergent bunching
of the tension rays near point A.

9.2.6 Torsion of slit annular membrane
Throughout the present analysis the angle a is measured from a fixed
direction, namely the x-axis, and this feature enables us to use the area
relation

8 A = rj8adrj

in the derivation of (9.15). But the ordinate X is not an essential ingredient
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B

Fig. 9.10

in the analysis and some other reference system may be preferable. To
demonstrate this we now consider a membrane bounded by concentric
circles and a radial cut, the circular boundaries undergoing a relative
rotation about their common centre. We adopt the notation of Fig. 9.10
in which a typical tension ray is specified by the angle j8 and by the angular
position 0 of its intersection with the inner circular boundary. It follows that

a = 9 + ft
and (9.15), (9.20) may be written as

where
u = -

F =

(9.38)

and a prime denotes differentiation with respect to 9. Now from geometrical
considerations

r,d =

and

where

AB = rx {{k2 - sin2 j3)1/2 - cos

= r2/rv

(9.39)

(9.40)
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Thus
rj2/rj1=fi, say,

u ' \ (9-41)
where

Also,
A^Q^sin jS (9.42)

and hence from (9.16)
—I? = —( l+/?)s in /?
Eta2r\ ln{l+(l+jSV(i?)}

This expression for F does not contain 0 explicitly and (9.18) can therefore
be integrated once to give

F - P'Fp, = CEtQ2rl say, (9.44)
whence

(9.45)

By letting C assume various values we obtain from (9.45) and (9.41) a
relation between /? and /?' which may be integrated to yield the /?, 9 relation.
Before considering a specific example, however, it is expedient to obtain
the solution for the uncut annular membrane. In this case, /?' = 0 and j6
is determined from the condition

whence

which is in agreement with the solution obtained by Reissner (1938). The
resulting 'steady-state' value of j6, /?*, say, given by (9.46), may be used to
obtain an adequate approximation to C in (9.45). This is because it is
known that away from the immediate vicinity of a cut the angle j?
approaches the steady-state value /?*. Furthermore, if a cut along 0 = 0,
say, is regarded as a cut at 6 = 0 and another at 9 = In, it follows from
Saint Venant's principle that a deviation in the angle of the cut at 9 = 0,
say, has virtually no effect on the pattern of rays near 9 = In, and vice
versa. The value of the constant C appropriate to the pattern of rays on
either side of the cut is thus adequately given by (9.45) with /? = /?* and
/?' zero, whence

2 s i n 2 / ? * V / 2

) s i n 2 / ?*- ( 9-47)
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Fig. 9.11 Tension rays in cut annular membrane.

Strictly speaking, this gives the solution for a semi-infinite annular
membrane which is unbounded as 0-> ± oo.

For k = 2, the pattern of rays in a (finite) annulus with a radial cut is
shown in Fig. 9.11. This confirms the fact that away from the immediate
neighbourhood of the cut the ray orientation angle /? rapidly approaches
the steady-state value appropriate to an uncut membrane. Furthermore,
because any tension ray can be regarded as a cut, the solution effectively
embodies the solution for an annular membrane with a single cut, or
bounded by widely separated cuts, at any angle between zero and the
steady-state value. Finally, attention is drawn to the fact that as 6
approaches 2TC, adjacent rays pass through a configuration in which they
are parallel, leading to a constant value of the tensile stress along the ray;
beyond this critical configuration the peak stresses occur at the outer
boundary.

9.2.7 Parallel tension field in a spar web
As we have already noted, tension fields in the webs of I-beams were first
considered by Wagner and in this context they are frequently referred to
as Wagner tension fields. In many cases the generators are parallel - or
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C
Fig. 9.12

may be assumed to be so - and the only problem is then to determine
their orientation, which depends on the loading and the in-plane stiffness
of the boundary supports.

Fig. 9.12 represents part of an I-beam under shear. The members AB,
OC are the spars and AO, BC are vertical struts.

The angle a of the tension rays is now determined in terms of given
constant strains ex and sy in the edge members and a constant shear strain
sxy in the panel.

If the strains ex9ey9exy are related to new axes OX, OY parallel to and
at right angles to the tension rays, we obtain

sx = i e x ( l + cos 2a) + %ey(l — cos 2a) + ^sxy sin 2a, 1

gy = ^£x(l — cos 2a) + ^sy(l + cos 2a) — %sxy sin 2a, r
8XY = (8y ~ 8x) S^n ^ a + exy C 0 S ^a> J

(9.48)

and the angle a is to be determined from the condition that these are
principal strains, so that

tan 2a = (9.49)

The stress ox along the tension rays is now given by substituting this
value of a into (9.48) to give

ox = Esx

(9.50)

Equilibrium conditions
If the section area of each of the members AB, OC in Fig. 9.12 is F1 while
that in AO, BC is F2, we find on resolving in the x- and ^-directions:

2F1 Esx + btax cos2 a = 0,
2F2Esv + ataY sin2 a = 0.

(9.51)
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Similarly, if S is the applied shear per unit length

S = tox sin a cos a. (9.52)

The solution of (9.49)-(9.52) is facilitated by noting from (9.50) that

exy = 2{(8x-8x)(sx-sy)}1/\ (9.53)

These equations may now be combined to yield the following equation
for determining a

(9.54)where n, =
bt cos2 a

2F1 '

at sin2 a

9.3 Inextensional theory (considered by Mansfield 1955)
A thin plate which is free to deflect along its entire periphery, or which
is clamped along one straight boundary and free elsewhere, tends to resist
an applied normal loading by its flexural rigidity alone. This is because
the boundary conditions preclude the possibility of the formation of
significant middle-surface forces. The simplifying assumption may now be
made that the middle-surface strains are zero, and because of this the
theory is referred to as inextensional theory. The basic assumption of
inextensional theory is thus physically equivalent to the introduction of
constraints into the plate, and it follows that all stiffnesses calculated on
inextensional theory will be overestimates.

Now it is a well-known geometrical fact that an initially flat inextensible
surface can deform only into a developable surface such that through every
point it is possible to draw one straight line which lies entirely in the
deflected surface. These lines are the generators of the deflected surface
and the fundamental problem of inextensional theory lies in their
determination. In some instances the positioning of the generators can be
deduced immediately. For example, the generators lie along the radii in
a shallow cone formed from an originally flat plate bounded by radii and
concentric circles (Fig. 9.13); furthermore, all the generators here meet at
a point, and the radius of curvature along a line normal to a generator
is directly proportional to the distance from this point.

We shall later make use of this property of conical bending in discussing
general inextensible deformation of plates. This is because each elemental
slice of plate bounded by adjacent (non-parallel) generators undergoes
conical bending, although the 'radius' and 'curvature' of each elemental
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Fig. 9.13

conical slice vary continuously over the plate. The locus of points of
intersection of adjacent generators is termed the edge of regression.

9.3.1 The principle of maximum strain energy
The fundamental problem of inextensional theory lies in determining the
orientation of the generators. In this connection, we note that at any point
in the plate the principle curvatures lie along and at right angles to the
generators. The curvature along the generator is necessarily zero, and it
follows that the strain energy is solely due to bending about the generators.
Furthermore, the strain energy would be unaffected by the introduction
of (hypothetical) closely spaced, rigid, weightless rods along the generators.
However, if an inextensible plate, subjected to given loads, had such rods
attached in a different alignment, two features are apparent. First, the
resultant strain energy would be solely due to bending about these new
generators and, second, this strain energy would be less than the true
value. It follows that the correct distribution of the generators may be
determined by maximizing the strain energy associated with an arbitrary
distribution of generators, an erroneous distribution being tantamount to
the introduction of constraints.

9.3.2 Determination of generators
Consider a thin cantilever plate of variable rigidity under an arbitrary
normal loading, such as depicted in Fig. 9.14.

The plate deforms into a developable surface whose generators are
identified by an equation of the form

a = (x(X) (9.55)

where a is the orientation of a generator that cuts the x-axis at a point
X. Let two typical adjacent generators making angles a and (a + da) with
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Fig. 9.14

the x-axis intersect on the edge of regression at the point Ha. The elemental
slice KLLK' bounded by these generators undergoes conical bending with
the cone apex at Ha. Now let n be directed normal to a generator and in
the plane of the plate. The curvature Kn is the non-zero principle curvature
at a point on a generator and hence

Kn = cjrj, say, (9.56)

where ca, to be determined later from considerations of equilibrium, is a
function of the generator angle a, and rj is the distance along the a-generator
from the point Ha. The moment per unit length about a generator is thus
given by

Mn = D(a, rj)cjrj, (9.57)

where D is the rigidity and the coordinates a, r\ define a point in the plate.
In this connection, we note that the value of rj at the x-axis, rjx say, is
given by

= ±-sin a (9.58)
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where a prime denotes differentiation with respect to X, and the sign
depends on whether Ha is below or above the x-axis.

Equilibrium
An equilibrium condition is now formed by taking moments about a
generator, for then there is no contribution from the unknown middle-
surface forces. The moment over an elemental distance Srj is Mndrj, and
the total moment about the a-generator, Jt^ say, is therefore given by

f=
Jr

2 Mndn (9.59)
» 7 l

where nl9rj2 are the values of n at the plate boundary.
For a given function cc(X) the moment Jta may be expressed in terms

of the loads applied to the plate, and hence (9.57), (9.59) yield the following
expression for ca:

-dn

Strain energy
In determining the strain energy in the plate it is convenient to integrate
first over an elemental sector bounded by generators, and then to integrate
with respect to a. Thus

nKnrjdrjd(x9

by virtue of (9.56)-(9.60),= - \Jtacada9

= - IF dX (say) where F = ,. ~ 7 " \ — . (9.61)

From (9.58) and other geometrical considerations, the function F above
is expressible in terms of X, a, a' and the applied loading and plate rigidity.

Determination of oc(X)
The function a(X) is to be determined from the condition that the strain
energy U is a maximum. It follows from the calculus of variations that

a"F a V + a'FM, + F X a , - F a = 0 (9.62)

in which Fx, for example, stands for dF/da, where F is formally regarded
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as a function of independent variables X,a,a'. Equation (9.62) is a
non-linear differential equation of the second order and, with the boundary
conditions, it determines the function a{X). Some simplification of this
equation is possible if the function F does not contain X explicitly; for
this important class of problems the equation may be integrated once to
give

F - oc'Fa, = constant. (9.63)

The solution of (9.62) and (9.63) for a number of examples is given shortly,
but first we derive a more physical interpretation of the term ca which is
then used to derive an expression for the plate deflexion.

The term ca

The form of the second expression for U in (9.61) suggests the following
interpretation of the term ca. We first introduce Qa the rotation of the
plate about the a-generator, so that

0 . = - ^ . (9.64)

Now

and

so that

Kn =

<5« =

Kn =

d2w

r,3a,

n da '

(9.65)

(9.66)

(9.67)

and a comparison with (9.56) thus shows that

Ca = ~dof* (9*68)

Finally, we note that the energy stored in the plate is necessarily equal to
the work done by the applied loads and hence

adQa , (9.69)

which can, of course, be cast into the form of (9.61).



Inextensional theory 209

Fig. 9.15

The plate deflexion
Consider a point P at aP, rjP, and let pa be the perpendicular from P to
an a-generator. The relative rotation <5Qa between adjacent generators at
a, (a + da) is given by

da
= cjcc. (9.70)

The deflexion of the point P due to this elemental rotation is therefore
given by

SwP= -pacadcc. (9.71)

The deflexion of the point P relative to a boundary generator aB, say,
where the plate is clamped is thus given by

"f
Jx

a'pacadX, where XP = X(aP%... (9.72)

Note that if the loading consists of a single load if, say, at the point P
(positive if in the direction of positive w)

(9.73)

(9.74)

and (9.61) and (9.72) yield

2(7
wP = — , as expected.

9.3.3 Swept plate of uniform thickness
Consider a long strip clamped at one end at an angle a0, and subjected
to a pure moment J( at the far end, as shown in Fig. 9.15. If the x-axis
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is located along one edge of the strip of width b we have

sin a

and
rj2 = rj1 +bcoseca,

so that (9.61) yields

(9.75)

F =

where (9.76)

The function F does not contain X explicitly, and hence (9.62) may be
integrated once to yield (9.63), and this can be expressed in the form

(9.77)

The constant C is to be determined from the condition that as X->oo,
//-»0, and a-»^7i, whence

= b2. (9.78)

Equations (9.77), (9.78) yield the relation between a and \i which may be
further integrated by numerical or graphical means to give the a, X relation
in the form

Note that as a consequence of the integral form of (9.79), the (a,X)
relationship for a given value of a0 necessarily embodies the solution for
all greater values of a0. This feature, which is typical of all inextensional
solutions, stems from the fact that clamping along any generator does not
alter the pattern of generators elsewhere.

Once the (a, X) relationship has been determined, the generators of the
deflected plate are known and the bending moments and associated stresses
may be found from (9.56), (9.58) and (9.60). The bending stresses associated
with Mn vary linearly through the plate thickness, reaching a value on the
surface given by

G = 6Mn/t2 (9.80)
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and this is a principal stress. The other principal stress, in the direction
of the generators, is of magnitude va because the generators remain straight
and so prevent any anticlastic curvature. The maximum value of o occurs
at the junction of the 'trailing edge' and the clamped edge, where a = a0

and rj = rj1, and it can be shown that this peak stress is related to the
angle a0 by the equation

where ( is a stress concentration factor defined by
(9.81)

obt2

The closed-form nature of the above equation stems from the fact that
the stresses, for a given value of a, depend on the value of rj - and hence
a' - rather than X. They may thus be derived directly from (9.77) rather
than (9.79).

9.3.4 Swept plate of variable rigidity
The case in which the rigidity of the strip varies across the chord may
also be readily solved. Consider, for example, a rigidity that varies
parabolically across the chord according to the relation

(9.82)

Such a variation may be expressed in terms of r\ by virtue of the equation

^= n~y (9.83)

and the denominator in the expression for F is now-given by

C^D 2D0 2 2

Jm n ini-ni)2

Equations (9.61), (9.75), (9.63) and (9.84) suffice to determine an equation
connecting a, a', which in turn may be integrated to obtain the (cc,X)
relation.

9.3.5 Swept plate under arbitrary moment
A similar analysis is applicable to a swept plate of variable rigidity subjected
to a moment about an axis making an angle /? with the x-axis. The only
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difference in the expression for F lies in the term Ji^ which is now given by

a). (9.85)

As x tends to infinity, the generators become sensibly parallel, but their
orientation can scarcely be written down by inspection, as in the case for
which j8 = \n. This 'steady state' orientation of parallel generators will
now be considered.

9.3.6 Steady-state deformation of long strip under
arbitrary moment (Fig. 9.16)

When the generators are parallel the analysis of Section 9.3.2 is not
immediately applicable because rj and ca become infinite. We may, however,
write

Mn
= K, a constant. (9.86)D(rj)

Now from (9.59), (9.85) and (9.86)

bcoseca
Mndrjf, where rf is measured from the x-axis,

o

= /ccoseca Ddy. (9.87)
Jo

so that K is known in terms of the applied loading.
The strain energy of the strip is now given by

i ci cb

U = -\ \ K2Ddxdy
zJo Jo

2 o Ddy
o

and the maximum value of U occurs when

a = i7r + i/?, (9.89)
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Fig. 9.17

a result which is independent of the chordwise variation of rigidity.
Equation (9.89) is also in agreement with the known asymptotic behaviour
of the strip of lenticular section considered in Section 7.4.1.

9.3.7 Triangular cantilever plate under tip load
The plate with a typical generator is shown in Fig. 9.17. From geometrical
considerations it follows that

sin a

(9.90)

and if <£ is the tip load

(9.91)

For a plate of constant thickness we therefore have

F =

where

rj1 sin a sin (a + </>)'

(9.92)

The function F thus depends on X,a and a', and (9.62) does not admit
of an immediate integration. However, F is homogeneous in X, and hence
(9.62) is homogeneous and can therefore be expressed as a first-order
differential equation in a and \i (say); in physical terms homogeneity means
that the pattern of generators is independent of the size of the plate. Thus,
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after some manipulation, it is found that
1 A T

sin a sin (a + 6) — H sin (2a + 6) + Q sin 6 = 0,
da /x

where

* (9.93)

/"j _ _

and we note that as ^-»0, the functions J and g tend to finite values,
namely 6 and 2, respectively.

The integration of (9.93) may be done numerically using a step-by-step
process involving the boundary conditions at the tip, discussed shortly.
Once this primary integration is completed, the further integration to give
the X, a relation is straightforward because, from (9.92),

(9.94)
X da /x sin a sin (a + (/>)

which may be integrated to give

/iSinasin(a
(9.95)

where C is chosen so that a = a& at X = b, its value at the clamped
boundary.

The tip boundary condition
The generator angle a0 at the tip depends only on the tip angle </>; it is
independent of the orientation of the root fixing. This feature is a
specialization of Saint Venant's principle, and it is related to the fact that
clamping of a plate at a point is, in effect, indistinguishable from other
methods of support. Thus it is not possible to impose an arbitrary generator
angle at the tip, and this is reflected in the form of (9.93) which, as \i -• 0,
yields an infinite value for d/x/da except when a0 assumes its 'natural'
value given by

a o =i (7 r -0 ) . (9.96)

Thus the generator at the tip is normal to the bisector of the tip angle.

9.3.8 Triangular cantilever plate under uniformly distributed load
For this case nx and rj2 are again given by (9.90), while for a unit load/unit
area
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Fig. 9.18

so that

F =

X3 sin (j) sin2 a
6 sin (a + (/>)

X6a'sin2</>sin2a

(9.97)

(9.98)

Thus F is again homogeneous in X and, corresponding to (9.93), we
now find

sin a sin (a + 0) -^- + —  sin (2a + 0) + 3Q sin 0 = 0, (9.99)
da \i

and the subsequent integration follows a similar path to that in
Section 9.3.7.

9.3.9 Parallelogram plate loaded at the corners
In Section 9.3.7 it was shown that the generators near the loaded tip of
a triangular plate are normal to the bisector of the tip angle. Thus, near
the corners A, C of the plate shown in Fig. 9.18,

a = i(7c-^). (9.100)

Further, from Section 9.3.6 the orientation of the generators in a long
strip under arbitrary moment is given by (9.89). Now for the corner-loaded
parallelogram plate, the loading - away from the vicinity of the acute
corners A, C - is equivalent to a moment Pb about a normal to the sides
AB, CD. Thus, referring to Fig. 9.18 we have

J8 = ± T C - ^ , (9.101)

and hence, from (9.89),

; * " " ^ (9.102)

which is the same as that near the corners A and C. We therefore deduce
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that the orientation of the generators is constant over the whole of the
parallelogram plate. However, instead of focusing attention on the acute
corners A, C we could equally have chosen the obtuse corners B, D. This
yields an alternative solution with a constant orientation of generators at
right angles to that given by (9.100) and (9.102). Both the resulting plate
deflexions are stable, but in the former case the strain energy exceeds that
in the latter by the factor cot4 |^. The former configuration will thus be
preferred unless some external agency forces the plate into the other
configuration. Examples demonstrating these two modes are given in
Section 9.4.2 where they are shown to be intimately related to tension
field modes in a parallelogram membrane. For the corner-loaded square
or rectangular plate, either mode is equally likely. If we follow the
deformation of a square plate, say, as the corner loads + P increase, an
exact large-deflexion solution would predict a gradual change in the
small-deflexion shape as P increases, resulting in a stiffening of the plate
as middle-surface forces are introduced. During this phase the anti-
symmetric nature of the small-deflexion mode is maintained, in that the
deflexion along one diagonal is equal in magnitude but opposite in sign
to that along the other diagonal. However, at a critical value P*9 say, a
bifurcation occurs. As P increases beyond P*9 the mode shape gradually
changes so that the deflexion along one diagonal increases while the other
decreases, thus approaching the inextensional mode shape. Experimental
results relating the load P to the corner deflexion difference w, where

w = i (wA + w c - wB - wD),
are shown in Fig. 9.19 for three different square plates in which t/a = 0.004,
0.007 and 0.011, respectively. In accordance with the non-dimensional
terms introduced in Section 7.1.2, the ordinate is Pa2/Dt and the abscissa
is w/t, and it is seen that this presentation condenses the experimental
results to a common curve. Unfortunately, there is no known exact
large-deflexion solution for comparison, but it is clear that

«20Dt U'

and that when P> P* the stiffness of the plate is given quite accurately
by inextensional theory, although the deflexion w exceeds the inextensional
value by an approximately constant amount, namely 3.2t. Of course, the
corner-loaded square plate is an extreme case in that it maximizes the
difference between small-deflexion theory and inextensional theory. In this
respect it is similar to the torsion of the strip of lenticular parabolic section
considered in Section 7.4.1. There, however, the torque-twist relation is
given exactly by inextensional theory when the torque exceeds the
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Fig. 9.19

bifurcational value. For most cantilever plates the difference between
inextensional theory and small-deflexion theory is much less, while for the
strip under pure moment-such as considered in Section 7.4.1-the
stiffness according to inextensional theory exceeds that according to
small-deflexion theory by the relatively insignificant factor (1 — v2)"1.

9.3.10 Approximate inextensional solutions
An approximate solution can be obtained by assuming a suitable relation
between X and a which contains one or more arbitrary parameters which
are to be determined from the condition that the strain energy is to be a
maximum. For example, in the triangular cantilever plates considered
previously, the solution for any given root angle ab is embodied in the
solution for

aB, say = n — (j), at X = B,

which corresponds to the limiting case in which the root fixing is parallel
to the leading edge. The limiting distance B could, of course, be determined
from the previous analysis, but even without foreknowledge of the value
of B we know that for small values of X, a^>^(n — (j)) and as X^>B,
(x-+(n — (j>). Furthermore, as X approaches B the angle a varies very
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B

Fig. 9.20

rapidly. Thus a realistic but approximate solution could be obtained by
assuming that

B-X
,say,

where B and n are to be determined from the equations

SU _dU
~dB~~dn~~ '

(9.103)

(9.104)

93.11 Dead regions
In the analysis so far it has been implicitly assumed that the generators
cover the entire surface of the plate and, indeed, this is generally the case.
However, there are circumstances in which, according to inextensional
theory, a clearly defined region of the plate simply undergoes a rigid body
movement. Such regions are called dead regions', they are typified by the
triangle ABC in Fig. 9.20 which shows the pattern of generators over a
rectangular cantilever plate carrying equal concentrated loads at the far
corners. In this example the three sides of the triangle AB, BC, CA form
the bounding generators of three distinct generator fields; the only develop-
able surface for the triangular region ABC is therefore the plane in which
these bounding generators lie. Inside the region ABC there are thus no
bending stresses, and the moment about a bounding generator, which is
carried by bending stresses on the far side of the bounding generator,
must necessarily be carried on the near side by middle-surface stresses.
Furthermore, a section across the plate on the near side of a bounding
generator is undistorted except in the immediate vicinity of the corner
points A, B, C and it follows that the middle-surface stresses are infinite
at these corner points.

In practice, the position is not so severe, because a certain amount of
stretching of the middle surface, and consequent bending, takes place in
the dead regions, thus ironing out the theoretical peaks of stress; but
inextensional solutions which include dead regions will overestimate the
stiffness of the plate unless allowance is made for their flexibility.
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9.4 The analogy between tension field theory and
inextensional theory

An examination of the analyses for tension field theory and inextensional
theory shows that various terms are analogous, as shown in the following
table:

Tension field theory Inextensional theory

Et

U
F
(a,*)

l/D

Mn

U
F

(a,*)

The pattern of tension rays/generators in membranes and plates of the
same shape will thus be identical, provided the boundary conditions are
also analogous. In this connection we note that in tension field theory a
free edge coincides with a tension ray, whereas in inextensional theory a
supported edge coincides with a generator. Other analogous boundary
conditions stem from the Aa, M^ analogy, and they are summarized in the
following table.

First we note that because Aa depends only on the displacements at the
boundary a corollary to this is that the analogy is restricted to cases in

Tension field theory Inextensional theory

Free edge
Supported edge
In a membrane with opposing
supported boundaries
undergoing a relative rigid-body
displacement u, parallel to the x-
axis, and v, parallel to the y-axis:

u,v.
Membranes in which at a
boundary corner the adjacent
supported edges undergo a
relative rotation a> in the plane
of the membrane:

(JO.

Supported edge
Free edge
In a plate with opposing free
boundaries, carrying a torque T
about the x-axis and a moment
M about the y-axis:

T,M.
Plates in which a boundary
corner with adjacent free edges
carries a concentrated load P
normal to the plane of the plate:

P.
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inextensional theory in which the loads and moments are applied at the
boundary.

Some care must be exercised in interpreting this analogy. First, a given
inextensional solution does not necessarily imply an analogous tension
field solution unless it can be verified that the inequalities (9.21), (9.22)
are satisfied. Second, we note that in inextensional theory the a,X relation
is unaffected by a reversal of the applied loads, whereas in tension field theory
a reversal of the boundary displacements will cause a tension field (if at all)
with quite different characteristics. This naturally raises the question in
inextensional theory as to the analogy of this further tension field. The
answer is simply that both analogous systems of generators correspond
to local stable states. In general, of course, these states contain different
strain energies and there will be a preference for the state which contains
the greater energy. A simple case in which there is no preference is that
of the corner-loaded square plate with free edges; a deflexion pattern with
generators parallel to either diagonal is equally probable, while the two
tension field analogies correspond to the positive and negative shear
distortion of a square membrane. We will shortly consider some other
specific cases of the analogy, but first we note that for the practically
impof tant case in which the thickness t of the membrane/plate is constant,
the analogy between ê  and Mn means that the corresponding stresses ov

and on vary in a similar way over the membrane/plate. In particular,
distributions of non-dimensional stress concentration factors are equally
applicable to the membrane or plate.

9A.I Examples of the analogy
It may be verified that the shearing of a semi-infinite membrane strip,
considered in Section 9.2.4, is the analogue of the swept plate subjected
to a torque at the far end. Further, the pattern of tension rays and stress
concentration factors shown in Fig. 9.6 is equally applicable to the pattern
of generators and stresses in the analogous plate. In fact, Fig. 9.6 embodies
the solution for both stable inextensional states. Thus, if the sweep-back
angle is 15°, say, the preferred inextensional solution is represented by
that part of Fig. 9.6 to the right of the ray at a = 75°. The other stable
state is represented by the whole of Fig. 9.6, in which the shaded triangle
to the left of the ray at a = 90° is a dead region.

By the same token, the triangular cantilever plate under tip load is
analogous to a triangular membrane bounded by a free edge and two
supported edges that undergo a relative rotation about their common
vertex. Likewise, the torsion of the slit annular membrane, considered in
Section 9.2.6, is analogous to an axially loaded flat annular spring. Finally,
the corner-loaded parallelogram plate, considered in Section 9.3.9, is
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/Pivot-point Parallel to theoretical rays

Stiff corner-pivoted frame

Parallel to theoretical rays

Fig. 9.21 Tension rays in parallelogram membrane.

analogous to a parallelogram membrane whose sides undergo rigid-body
rotations about the corners. Because of the simplicity of the theoretical
solutions, this particular analogy has been tested to provide a dual
experimental check on both theories.

9.4.2 Experimental results for the parallelogram membrane I plate
Experiments to verify the above theoretical results, and hence the analogy,
have been made on a parallelogram membrane and plate of identical
shape. The sides of each measured 25.4 cm by 14.5 cm with \j/ = 75°. The
membrane was of aluminized polyester 0.0015 cm thick and the plate was
of silver-plated spring steel 0.02 cm thick; both had good light-reflecting
surfaces. The edges of the membrane were clamped to a stiff brass frame
with pivots at the corners of the membrane; the membrane dimensions
cited exclude the dimension necessary for edge clamping. Distortion of
the membrane was effected by screwing together a pair of opposite corners.
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o XX ®
Parallel to theoretical generators

&$£#&*%

o
Parallel to theoretical generators

Fig. 9.22 Deflexion of corner-loaded parallelogram plate.

Fig. 9.21a and b shows the wrinkles corresponding to a contraction of
the shorter and longer diagonals, respectively. These show good agreement
with theory.

The corner-loaded plate was supported in a vertical plane and positioned
so that the theoretical generators would remain vertical after load. The
plate was then photographed through a (slightly) curved white screen on
which was painted a chessboard pattern of black circles, a central circle
being cut out to provide an aperture for the camera. According to
inextensional theory, the plate deforms into a purely cylindrical form so
that the reflection in the plate surface of the patterned screen should
consist of a regular array of ellipses whose major axes coincide with the
generators. Fig. 9.22a and b show good agreement with theory over most
of the plate but with an expected deviation towards the edges due to the
'boundary layer' effect discussed in Section 7.4.1.
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