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Preface

Modular forms play an essential role in Number Theory. Furthermore the
importance of modular forms has continued to grow in many areas of mathematics
including the infinite dimensional representation theory of Lie groups and finite
group theory. The aim of this book is to introduce some basic theory of modular
forms of one variable.

Originally this book was written in Japanese under the title “Automorphic
forms and Number Theory” by Koji Doi and myself and published by Kinokuniya,
Tokyo, in 1976. When the English translation was planned, the first named author
proposed that only the chapters written mainly by me be translated together with
some additional material and published under my sole authorship.

In Chapters 1 and 2, the general theory of Fuchsian groups, automorphic forms
and Hecke algebras is discussed. In Chapter 3, I summarize some basic results on
Dirichlet series which are necessary in the succeeding chapters. In Chapter 4, the
classical theories of modular groups and modular forms are studied. Here the
usefulness of Hecke operators as well as the remarkable relation between modular
forms and Dirichlet series obtained by Hecke and Weil have been emphasized.
Chapter 5 briefly reviews quaternion algebras and their unit groups, which are also
Fuchsian groups and which play a role similar to that of modular groups in their
application to number theory. Chapter 6 is devoted to the trace formulae of Hecke
operators by Eichler and Selberg. The formulae have been generalized by many
people including H. Shimizu, H. Hijikata and H. Saito. A formula computable by
them is also offered. In our Japanese edition, as an introduction to the automorphic
forms of several variables, Chapter 7 deals with Eisenstein series of Hilbert modular
groups and the application to values of zeta-functions (following Siegel). As a result
of important series of recent work by Shimura on Eisenstein series, 1 decided to
rewrite it to introduce some of his results on Eisenstein series restricting it to only
the case of one variable.

I should like to express'my deepest gratitude to Professor Goro Shimura, who
constructed the essential part of the arithmetic theory of automorphic functions, for
his valuable suggestions and encouragement.

The translation of Chapters 1 through 6 was prepared by my colleague
Professor Yoshitaka Maeda. He also corrected mistakes in the original text, and
gave me many appropriate suggestions. I express my deep and sincere thanks to him
for his collaboration. I also express my hearty thanks to Professor Haruzo Hida



VI Preface

whose lectures at Hokkaido University during 1983-84 were very helpful for the
preparation of the present volume, and to Professor Hiroshi Saito and Dr. Masaru
Ueda who kindly read the manuscript very carefully as a whole or in part and made
many valuable suggestions.

Sapporo, February 1989 Toshitsune Miyake
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Notation and Terminology

1. Wedenote by 7, Q, R and C, the ring of rational integers, the rational number
field, the real number field and the complex number field, respectively. For a
rational prime p, Z, and Q, denote the ring of p-adic integers and the field of p-adic
numbers, respectively. We also denote by R, , R_ and C!, the set of positive real
numbers, the set of negative real numbers and the set of complex numbers with
absolute value 1, respectively:

R, ={xeR | x>0},R_={xeR | x<0},C'={zeC | |z|=1}.
2. For a complex number z, we denote by Re(z) and Im(z), the real part and the
imaginary part of z, respectively. When z is a non-zero complex number, we denote
by arg(z) the argument of z, which we specify by —n < arg(z) £ n. For a real

number x, we denote by [ x] the largest integer not exceeding x. When x is a non-
zero real number, sgn(x) denotes + 1 or — 1 according as x > 0 or x < 0.

3. Foraring R with unity 1, we denote by R ™ the group of invertible elements in
R. Further we write

M, (R) = the set of square matrices of degree n over R,
GL,(R)={0ceM,(R) | det(w)eR™},
SL,(R)= {aeM,(R) | det(x)=1}.

4. We denote by 1l the disjoint union of sets. For a finite set A, | 4] denotes the

number of elements in 4. We also denote by # {..... }, the number of the
elements of the set given by { ...... I3

5. When ¢g,,..., g, are elements of a group G, {(g,,..., gny denotes the
subgroup of G generated by g,, . . ., g»,- When vy, ..., v, are vectors in a vector

space V over a field K, <{v, ..., v, denotes the subspace of V' generated by
vy,..., U, For mappings g:A — B and f: B — C, we denote by f° g the mapping
of A to C given by

(fog)@) = flg(a))  (acd).



Chapter 1. The Upper Half Plane and
Fuchsian Groups

We explain basic properties of the upper half plane H in §1.1 through §1.4. We
introduce Fuchsian groups in §1.5 which play an essential role throughout the
book. In § 1.6 through § 1.8, we study the quotient spaces of H by Fuchsian groups
and induce the structure of Riemann surfaces on them.

§1.1. The Group of Automorphisms of the Upper Half Plane

We denote by P the Riemann sphere C U {co} and define the action of an element
b
azlij d] of GL,(C) on P by

__az+b

(1.1.1) oz rtd

(zeP).
This mapping “z+ az” is complex analytic from P into itself. We put
(1.1.2) jl,z)=cz+d (zeC).

If ze C and j(a, z) # 0, then we have

z az+b . oz
(1.1.3) a[1]=|:cz+d]=](a,z)|:l].

This equality also holds when considering each constituent as a meromorphic

function. Calculating aff |:f:| (o, Be GL,(C)) in two ways, we see that

160,82 16.9 |*07 ] ~s08.5| 07|

From this equality, we obtain

(1.1.4) (@B)z=a(fz) (o, feGL,(C), ze P),
and

(1.1.5) j@p,2)=j(%,B2)j(B,2) (& BeGL,y(C), zeC).
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1.

By (1.1.4), the mapping “z+—a~'z” is the inverse mapping of “z—az”, and
therefore, “z+—az” is an automorphism of the Riemann sphere P. This auto-
morphism is called a linear fractional transformation. Putting f=oa"! in (1.1.5),
we see

(1.1.6) jl Y ) =j(a, 0" tz)" L.

Lemma 1.1.1. A linear fractional transformation maps circles and lines on C into
circles or lines on C.

Proof. We put for an element B=|:a Z] of GL,(C)
c

Cp={zeP||pz|=1}.

Since z belongs to C; » C if and only if jaz + bl =|cz+d], C;n Cis aline (ifa=c) or

a circle (the Appolonius circle). Conversely it is easily seen that circles and lines on

C can be expressed as Cg n C with some fe GL,(C). Let « be an element of GL,(C)

and denote by a(C;) the image of C, by a. Since a(Cy) = Cg,-1, #(Cg) n Cis againa

circle or a line on C. |
We define two domains H and K of C by

H={zeC| Im(z)>0}
and
K={zeCl|lz|<1}.

The domains H and K are called the upper half plane and the unit disk, respectively.

Lemma 1.1.2. The upper half plane H and the unit disk K are complex analytically
isomorphic.

1 i
Proof. Put p= [ 1 z] Then “z+> pz” is an automorphism of P, and satisfies

z—1
=—|<1 H).
|pz| ‘Z+i’ (zeH)

Since we see

>0  (weK),

1 _ 2
Im(p“w)=Im<i Wt )-1 I

—w4+1) [1—w}?

p gives an analytic isomorphism of H onto K. O

We are interested in functions on H which satisfy certain transformation
equations for automorphisms of H. (We say that they have automorphy.) We first
study automorphisms of H. We denote by Aut(H) and Aut(K) the groups of all

(complex analytic) automorphisms of H and K, respectively. If o = [a ‘I;:I € GL,(R),
¢



§1.1. The Group of Automorphisms of the Upper Half Plane 3

and zeH, then

_det(o) Im(z)
(1.1.7) Im(aZ) —W

In particular, if det(a) >0, then we have Im(az)> 0, and therefore, “z— az” induces
an automorphism of H. We put
GL; (R)= {ae GL,(R)| det(e)>0},

and denote by 1(«) (x € GL; (R)) the automorphism “z+ az” of H. Then it follows
from (1.1.4) that this mapping

1: GL} (R)a+— 1(x) e Aut(H)

is a group-homomorphism.

Now we put
so,@=1| 0 505 g g
2V —sin @ cosf || '

b
@01 GLIR) If for a=|? ® |cGL,®), 1(0) is the
0a cd

identity of H, then o belongs to R*, since cz2 +(d—a)z —b=0 for any ze H. Now
we have

We identify aeR* with I:

Theorem 1.1.3. (1) For any zeH, there exists an element o in SL,(R) satisfying
ol =2z.
(2) The homomorphism 1 induces an isomorphism

GL; (R)/R* ~ SL,(R)/{+ 1} ~ Aut(H).
(3) SO,(R) = {ae SL,(R)|ai = i}

and
R*-SO,(R)={aeGL; (R)|ai =1i}.

y x
01
ai =z; this proves (1). The first isomorphism of (2) is obvious. To see the second
isomorphism, we have only to verify the surjectivity. For this purpose, it is sufficient
to show that if an element s of Aut(H) satisfies y/(i) =i, then there exists an element
B in SO,(R) such that ¥ =1(f). In fact, for each element ¢ e Aut(H), we get an
element a € SL,(R) satisfying a~! ¢(i)=i by (1). Then taking 1(«~!)¢ in place of ¥,
we have ¢ =1(«f) for some fe SO, (R); this implies 1 is surjective. Now let y be an
element of Aut(H) such that y(i)=i. We put

p()=(—-i)/z+)  (zeH),

which is an isomorphism of H onto K. Since p(i)=0, n=pyp~' is an auto-
morphism of K such that #(0)=0. Applying Schwarz’s theorem to  and n ™!, we see
that

Proof. For any z=x+yieH, put a = ﬁ -t |: :| Then « belongs to SL,(R) and

1

lnw)=Iwl  (weK).
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A further application of Schwarz’s theorem shows that there exists 6(0 <8 <) such
that
nw)=e¥w  (wek).

Thus pulling back the function n by p~! to H, we see that

(cos §)z+sin 0
(—sin 0)z+cos 8

Y(@)=p 'np(z)= (zeH);-

cos @ sin 6

namely ¥ =1(ky) with k= I:—sin 0 cos 8

]eSOZ(R). This implies (2) and (3). O

Now let us consider Aut(K). Put

1 0 1 0
SU<1,1)={geSL2(C)|'g[O _1]g=[o _1]}

={g=|:1f li] u, veC, |u|2—|v|2=1}.
v U
Since

| —i
(1.1.8) pSL,(R)p~' =8SU(1,1), p=[1 z]
we see by Lemma 1.1.2 and Theorem 1.1.3(2)
(1.1.9) Aut(K)~SU(1, 1)/{+1}.

§1.2. Actions of Groups

In this section, we prepare general theory on topological spaces and transformation
groups to apply it to the upper half plane H.

Let G be a group and X a topological space (resp. a complex domain). We say
that G acts on X if there exists a mapping

GxX3a(g,x)r>gxeX
satisfying the following three conditions:

(i) for each element g of G, “X>ax+>gxeX” is a continuous (resp. complex
analytic) mapping;

(i) (gh)x=g(hx) for two elements g and h of G,

(iii) for the unit element 1 of G, 1x = x for any element x of X.

Since for any element g of G, “x+— g~ 1x” is the inverse mapping of “x+— gx”, we see
that if G acts on X, then

(') for each element g of G, “X>3x+—>gxeX” is a topological (resp. complex
analytic) automorphism of X.
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We assume hereafter that G acts on X. For an element x of X we put
G,={geCG|lgx=x},

and call it the stabilizer of x. It is obvious that for any element g of G,
(1.2.1) G,e=9G,g™ .

An element x of X is called a fixed point of ge G if
gx =x.

This is equivalent to saying g € G,.. Further for each element x of X, a subset of X
defined by

Gx={gx|geG}

is called the G-orbit of x. The set of all G-orbits in X is denoted by G\ X. Since either
Gx =Gy or Gx N Gy = & for any two elements x, y of X, X can be expressed as a
disjoint union of G-orbits:

X =]]Gx.

In particular, if X itself is a G-orbit, then we say that G acts transitively on X. This is
equivalent to saying that

(1.2.2)  for any two elements x, y of X, there exists an element g of G such that
gx=y.

Therefore, it follows from (1.2.1) that if G acts transitively on X, then all the
stabilizers are conjugate.

Now let us denote by n the canonical mapping of X onto the set of all G-orbits
G\X; in other words, 7 is a mapping which corresponds any element x of X to the
element Gx of G\ X:

Xaxn(x)=GxeG\X.

We induce the strongest topology on G\X under which the above projection 7 is
continuous. More precisely, it is given by defining that a subset U of G\ X is open if
and only if the inverse image n~1(U) of U by = is open in X. The topological space
G\X with this topology is called the quotient space of X by G. Since for an open
subset U of X, we have

T aU)=) gU  gU={gulueU},

geG

#(U) is again open in G\ X. Thus = is an open continuous mapping of X onto the
quotient space G\ X.
If a group G has a topological structure of a Hausdorff space, and the two
mappings
GxGa(g, h)—ghegG, Gsgrrg~leG

are continuous with respect to its topology, then G is called a topological group. Let
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G be a topological group and assume that G acts on X. Then we say that a
topological group G acts on a topological space X, if the additional condition (iv)
below is satisfied:

(@iv) G x X 2(g, x)—gxeX is continuous.

If a topological group G acts on a topological space X, then all the stabilizers are
closed subgroups of G. Conversely, let G be a topological group and K a closed
subgroup of G. Then K acts on G by right multiplication. We denote by G/K the
quotient space of G by K, and call it the space of the right cosets of G by K.

Theorem 1.2.1. Assume that a topological group G acts transitively on a topological
space X. If G is a locally compact group with a countable basis, and X is a locally
compact Hausdorff space, then for each element x € X, the space of the right cosets
G/G, is homeomorphic to X by the correspondence “gG,— gx”.

Proof. 1t is obvious that the correspondence is bijective. Thus it is sufficient to
show that it is bicontinuous. From the definition of the topology on G/G,, it is
equivalent to saying that “g+> gx” is an open continuous mapping of G to X. The
continuity is obvious by definition, and therefore it is sufficient to show that this
mapping is also open. Let us prove that for any open set U of G, Ux = {gx | ge U}
is also open in X. Let gx (ge U) be any point of Ux. Take a compact neighbor-
hood ¥ of the unit element of G so that ¥~! =V and g¥? < U. Since G has a
countable basis, there exist countably many elements g, (n=1, 2, . . .) satisfying
G=\J,219.V. Put W,=g,Vx, then X =), W,. Since W, is a compact set in
the Hausdorff space X, it is closed. Now suppose that no W, contains an open
subset. Since X is regular, we find inductively non-empty open subsets U, so that
the closures U, are compact and

Un—l_Wn—l Dljn (ngZ)

Then we see that U, > U, > U3 > ... Since (o U, # & and (2, U, has no
common point with any W, this contradicts the fact X =| );_, W,. Hence there
exists a set W, =g, Vx which contains an open subset of X. Since g,Vx is
homeomorphic to Vx, Vx also contains an open subset S. For an element h of V'
such that hxe S, we have

gxegh 1S c gV2x < Ux.
Therefore gx is an interior point of Ux. This proves that Ux is open. O

Now Theorem 1.1.3 implies that the topological group SL,(R) acts transitively
on the complex domain H and the stabilizer of i is SO,(R). Thus, applying the
above theorem to X =H and G = SL,(R), we obtain the following

Corollary 1.2.2. The space of the cosets SL,(R)/SO,(R) is homeomorphic to H by the
correspondence “aSO,(R)— ai”.
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§ 1.3. Classification of Linear Fractional Transformations

It follows from Theorem 1.1.3 that every automorphism of the upper half plane H is
induced by an element of GLJ (R). Let us now investigate transformations induced
by elements of GL; (R). We are going to classify elements of GL; (R).

A non-scalar element o of GLS (R) is called elliptic, parabolic or hyperbolic,
when it satisfies

tr(w)? < 4det(a), tr(x)® = 4det(x), or tr(x)> > 4det(),

respectively. This definition applies also to the automorphisms 1(«} of H induced by
o. We note that

the eigenvalues of o are tonjugate complex numbers, a multiple real number or two
distinct real numbers, respectively.

To see the geometrical meaning of the classification, we shall study the fixed points
of the elements of GL; (R) as automorphisms of the Riemann sphere P. Let

b .
o= j d] be a non-scalar element. First assume ¢ = 0. Then tr(x)? — 4det(x)

= (a — d)?. Thus « is parabolic if and only if @ = d, and in this case « has a unique
fixed point co. We also see that if a # d, then « is hyperbolic, and it has two fixed
points b/(d — a) and co. Now we assume ¢ # 0. Then the point o can not be a fixed
point of a. If a complex number z is a fixed point of o, then z satisfies the equation
cz?+(d—a)z—b=0. Since the discriminant of this equation is equal to
tr()? — 4det(x), the fixed points of « are conjugate complex numbers, a real
number, or two distinct real numbers if « is elliptic, parabolic or hyperbolic,
respectively. Thus we get the following

Theorem 1.3.1. A4 non-scalar element o of GL (R) is characterized by its fixed points
on P as follows:

(1) « is elliptic if and only if « has the fixed points zy and Z, with zoeH;

(2) a is parabolic if and only if o has a unique fixed point on R U {o0};
(3) « is hyperbolic if and only if a has two distinct fixed points on Ru {c0}.

For xe R u {0}, the stabilizer GL; (R), contains both parabolic elements and
hyperbolic elements. In order to distinguish these, we put for x,x'eRu {00}
(x # x7)

GL; (R)® = {ae GL; (R),|  is parabolic or scalar},

(1.3.1)
SL,(R)¥ = SL,(R) " GL; (R)¥;
GL; (R),,»=GL; (R), " GL; (R),,
(1.3.2)

SL,(R)s,x=SLy(R)n GL3 (R),, -
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Lemma 1.3.2. (1) GL; (R), = R*-S0,(R),

b
GL;(R>OO={[§ ]
b
GL;(RMZ{[S a]
0
GL;(R)@,0={[3 d]

(2) The groups GL; (R), (zeH), GL;(R)? (xeRu {w})and GL;(R), ,.

(x. x'eR U {00}, x # x') are conjugate to GL3 (R);, GL; (R)2 and GL3 (R),,. o,
respectively. Further this conjugation is given by an element of SL,(R).

a,deR*, beR, ad>0},

&

acR™, beR},

a,deR™, ad>6}.

Proof. (1): The first equality is nothing but Theorem 1.1.3(3), and the second and
the third are easily seen. (2): Since SL,(R) acts on H transitively, all stabilizers of
points of H are conjugate by elements of SL,(R). In particular, GL] (R), is
conjugate to GLJ (R); by an element of SL,(R). Furthermore, for any two distinct
elements x, x" of R U {00}, there exists an element ae SL, (R) such that «(x) =
a(x’) = 0. For such an «, we see

GL; (R)e v =a 'GL; (R)y 0%,  GL3(R)Y =o ' GL; (R)?a. U

To see the difference of the transformations of these types, we shall give some
illustrations below.

- cosBsm0
a= [ ](a>0) Od (afd>1) smecosa

2 e

ZH”' “(cose)z+sm6’

- =2
g @)z +cosd

the fixed omt o0
¢ P ) (the fixed points o, 0)

(the fixed point i)
Fig. 1.3.1

We now study the centralizers of elements of GL; (R) and the normalizers of
the above subgroups GL; (R),, GL; (R)" and GLj (R), .. We calculate cen-
tralizers and normalizers not only in GL3 (R) but also in GL,(R), since we need
them in Chapter 6. We note here the property that ae GL; (R) is elliptic, parabolic
or hyperbolic is invariant under the conjugation in GL,(R). For an element



§1.3. Classification of Linear Fractional Transformations 9

ae GLS (R), we denote by Z(a) the centralizer of «, or

(1.33) Z@)y={peGL,(R)|af = pa}.

Now we have

Lemma 1.3.3. For a non-scalar element a of GL3 (R), we have:
(1) If ee GL; (R),, then Z(a)=Z(#)~ GL} (R) = GL (R),:
(2 If e GL; (R}, then Z(a)=Z(@)~GL; (R)= GL; (R)¥;
(3) If aeGLS (R), ., then [Z(x): Z(x)~GLS (RY] =2 and
Z(@ ~ GL; (R) = GL; (R), -
Here zeH and x,x' e RuU {o0} (x # x').
Proof. Since Z(p~tap) =p ! Z(x)p for peSL,(R), we may assume by Lemma

: cosf sinf a b N
1.3.2(2) that o is r|: ino cos9:| (r>0,0<8 < 21, 0 # m), |:0 a] (a,beR™),
cosf sind
0 d —sinf cos6
element of Z(«). Since afi = fai = Bi, Pi is also a fixed point of a. Hence fi = +i. If
det(p) > 0, then Bi = i and this implies fe GL (R);. Assume that det(f8) < 0. Then
-1 0
(1.1.7) implies that fi= —i. Put ' = [ 0 1:|ﬂ. Then det(f’) > 0 and f'i=1i;
therefore, '€ GL; (R);. In particular, both f and ' are commutative with o, hence

O is [_(1) (1)] On the other hand, we have

-1 0 -1 0 _1_ cosf —sinf )
o 1|* o1 =T lsing cos 8 %

since a is not scalar. This is a contradiction; thus Z(a) = Z(2) n GLF (R). This
proves (1). The other cases can be shown by direct calculation. O

0
or|:a ](a,deR",ad>0,a;’=d). Firstletazr[ ],andﬁbcan

For any subgroup G of GL; (R), we denote by N(G) the normalizer of G in
GL,(R); namely

(1.3.4) N(G) = {¢e GL,(R)|aGa ' = G}.

Then we obtain

Lemma 1.34. Let G be GL; (R), (zeH), GL; (R} (xeR U {0}), or GL3 (R), ,-
(x, X eRu {0}, x # x'). Then [N(G):N(G) " GL; (R)] = 2 and further

(1) NG)nGL; (R)=G if G=GL;(R).,
(2) N(G)nGL;(R)=GL; [R), if G=GL; (R,
3) [NG)NGL;(R):G]=2  if G=GL; (R,
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Proof. Since N(p~'Gp) = p ' N(G)p for pe GLS (R), we may assume that z = i,

_(1) (1):|GN(G). Since [N(G):N(G)n GL} (R)]

-1
<[GL,(R):GLS (R)] =2, and |: 0 (1):|eN(G) by Lemma 1.3.2(1), we see

[N(G):N(G)nGLS (R)]=2.Let G = GL; (R),. If Be N(G) n GLJ (R), then i =i,
since Paf ! has a fixed point fi for any a e G. This implies B G, and therefore,
N(G)nGL; (R)= G. A similar argument is also applicable to G = GL; (R)®.
Next assume that G = GL; (R),, o, and let fe N(G) n GLJ (R). Then by a similar
argument as above, f induces a permutation of {o0,0}. Then we have

-1
[N(G)n GLS (R):G] < 2. Since we see easily that I:(l) 0j|eN(G) N GLS (R)

but [(1) —(1)]¢G, we have [N(G)n GLy (R):G] =2 for G=GL; (R)u,0- O

x = oo and x’'=0. Therefore

Lemma 1.3.5. (1) Any two distinct elliptic elements in GL3 (R), (zeH) are not
conjugate in GLF (R).

(2) If two distinct parabolic elements of GL3 (R) are conjugate by a matrix of
negative determinant, then they are not conjugate in GL3 (R).

Proof. (1): Let « and B be elliptic elements such that g = dad ! with e GL; (R).
Then 6z is also a fixed point of 8, and therefore, dz = z. This implies that
6eGLF (R),. Since o and & are commutative, we get « = f. (2): Let « and f be
distinct parabolic elements. Assume that = yoy ™' = dad "' with y, e GL,(R)
such that det(y) < 0 and det(6) > 0. Then 6~ !ye Z(«). Since det(6~!y) < 0, this
contradicts Lemma 1.3.3(2). O

§1.4. The Invariant Metric and Measure on H

In the upper half plane H, there exist a metric and a measure which are invariant
under the action of GLj (R). Such a metric is unique up to a constant multiplica-
tion and is called the Poincaré metric. For a differentiable function f(z) on H, we
define the differential df by

) 0
df = L) dx + a dy

0x oy
considering f as a function of x = Re(z) and y = Im(z). Further for xe GL (R), we
put

(fea)@)=floz), (df)ca=d(foa)
Then for z and z and for a€ GL; (R), we have
dz = dx + idy, dz = dx — idy,

(14.1) .

dzoo = <dgxzz)>dz, dzoa = <d§icxzz)> dz.
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Further we define the metric ds? and the measure dv on H by

2 2
(142) i)=Y g = s

We note that dx? + dy* =dz-dz, dx A dy =%dz A dZ and

d(«z)

(14.3) 0

= det(®)j(x, z) 2 (xe GL; (R), zeH).

Therefore ds? and dv are invariant under the action of GL; (R) by (1.4.1) and (1.1.7).

Let ¢ be an injective continuous mapping from the interval [0, 1] into H which
is C® except for finitely many points. Then the image C of ¢ is called a curve on H.
Then by definition its length is

} /(@x(e)/d0)* + (dy(r)/de)?
0

1
I©) = {ds(p(e) = 0

dt (o(t) = x(t) +iy(1)),
which depends only on C.

1
Since H is isomorphic to the unit disk K through p = [ 1

—i
,:I, we can define
i

the metric dsg and the measure dvg on K by

1

dsg =ds?>ep1, t

dvg =dvop™*.

By (1.1.8), they are invariant under the action of SU(1, 1). More explicitly, ds and
duvg can be expressed as

4 2 2
ds2(w) = (dx* + dy*®)

(1 —{w?)?’
4
dvg(w)= (—1—_‘%};—)—2 (w=x +iyeK).

We denote by /, (Cy) the length of a curve C, on K. Then for a curve C on H, we see
that

Ik(p(C)) = 1(C).

Among the curves joining two points z, and z,, the shortest one is called a geodesic.
We note that a curve C on H is a geodesic if and only if p(C) is a geodesic on K. The
existence and the uniqueness of a geodesic will be shown in the following

Lemma 1.4.1. (1) Any two points on H are jointed by a unique geodesic which is a
part of a circle orthogonal to the real axis or a line orthogonal to the real axis.

(2) Any two points on K are jointed by a unique geodesic which is a part of a
diameter of K or a part of a circle orthogonal to the unit circle.
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Proof. Since p is a conformal mapping, we have only to prove (2) by Lemma 1.1.1.
Let z,, z, K. Since SU(1, 1) acts transitively on K, we may assume that z, = 0.
Moreover, SU(1, 1) contains pSO,(R)p~! whose elements give rotations with
center 0; thus we may also assume that z, is a positive real number x,. Let C, be a
horizontal line segment between 0 and x,, and C be another curve joining 0 and x,.
Let C be parametrized by ¢ and put ¢(t) = x(t) + iy(t). Then

k(C)= 6[2(1 —1p@)?) ! /(dx(t)/dt)? + (dy(r)/de) dt
> {21 = x(ey2)"* | dc(e)de) de
0
> xjo 2(1 —x*) " tdx

=l (Co).
The equality holds only when C = C,. Therefore C, is a unique geodesic. O

For any two points z, and z, of H (resp. K), we call the length of the geodesic
joining z, and z, the distance of z, and z,, and denote it by d(z,, z,).

Corollary 1.4.2. (1) Let z, be a point of H (resp. K), and C the set consisting of all
points of H (resp. K) of the same distance from z,. Then C is a circle orthogonal to
every geodesic passing through z.

(2) Let z, and z, be two distinct points of H(resp. K), and C the set consisting
of all points of H (resp. K) which have the same distances from z, and z,. Then C is a
geodesic on H (resp. K).

Proof. 1t is sufficient to prove our assertions only for K. (1): Since SU(1, 1) acts
transitively on K, we may assume that z, = 0. The distance from 0 is invariant by
rotations with center 0. Therefore, in this case, C is a circle with center 0. (2):
Mapping the middle point of the geodesic joining z, and z, into 0 by an element of
SU(1, 1), we may assume that z, =iy, and z, = — iyy(0 < y, < 1). For d > 0, let
C, (v =1, 2) be the set consisting of the points which have the distance d from z,.
Then C, is a circle by (1). Since the metric on K is invariant by the transformation
(x, y)—(x, —y), C, and C, are symmetric with respect to the real axis. Therefore,
the intersection points of C; and C, lie on the real axis. Conversely, by a similar
argument as above, every point on the real axis has equal distance from z; and z,.

O

Let « be an elliptic element of SL, (R) which fixes z,, and p an isomorphism of H
onto K such that p(z,) = 0. Then we see
ig 0
pap t=p  p= [g e_w] (—m <8 <m)
Since az, = z,, it follows from (1.1.5) that

(1.4.4) J(B,0) =j(p, 20)j (2 20)i(p ™", 0) = j (&, zo).
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Thus we get
(1.4.5) arg(j(@, zo)) = arg(j(B, 0)) = — 0.
Since p is conformal,

(1.4.6)  the angle between a geodesic passing through z, and its image by o is 26.

Lemma 1.4.3. For any ae SL,(R), we have:

(1) (y"tdz)ea—y ' dz = —2id[log(j(x 2))1;
Q) (y"'dx)ea—y~!dx = 2d[arg(j(2 2))].

*

Proof. (1): Put a = [: :| By (1.1.7), (1.4.1) and (1.4.3),

(" ldz)ea—y tdz=(lj2)?j(e, 2) 2 — )y~ dz
- 2icj(a, z) " 1dz
— 2id[log(j(z, 2))].

(2): Taking the real parts of both sides of the equality (1), we get the second
one. U

Lemma 1.44. Let D be the interior of a triangle on Hu R U {c0} whose sides are
geodesics with angles 8,, 6, and 0. Then the area of D is given by

v(Dy=n—(0, + 0, + 05).

Proof. Let z,, z, and z; be the apices of D corresponding to 6,, 8, and 0,
respectively. First assume that all z; are in H. Let x;; be the intersection point of the
extension of the side z;z; and Ru {oo} (see Figure 1.4.1). We denote by oD the
positively oriented boundary of D. Since

d(y~tdx) =y 2dx A dy,
we see by the Stokes theorem that

[y 2dxdy= |y~ 'dx
D D

=<z§2+zf+zf>y‘1dx

Z1 22 Z3

X12 22 X32 z3 zy
= [+ +[+[f+]])ytadx
k31 X12 22 x32 23
For any real number x,, we put
z—Xo = re®.
Then on the circle |z — x,| = r, we have

(14.7) y ldx = —do.
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X31 X3 X2 X13
Fig. 1.4.1

Therefore each integral is finite. Let o € SL,(R) be an elliptic element which fixes z,
and maps x,, to x5, and j(a, x,,) > 0. Then by Lemma 1.4.3(2), (1.4.5) and (1.4.6),
we see that

Ny tax= |y rdxea— | 2d[arg(i(o 2)]

= [y ldx—[2arg(j(o 213

Zy

= j'ly*ldx+(n—01).

Zy

Similarly we obtain

zfy”dx-—— zfyfldx—()z,

Xt2 X32

ngy_ldxz zfy'ldx+(7r—03).

X32 X13

Therefore

X13

[y~ 2dxdy = | y~ldx +(n—0;)— 0, + (n—0,).
D

Let x, be the center of the arc x;,z,z;x,5 and put
Z—Xxy = (x—X)+ iy = re®.

Then by (1.4.7), we have

i y ldx=—[df=—n

Xt3 0
Consequently we obtain v(D) =n— (0, + 6, + 8,). Next we consider the case
where some vertices are on R U {oo}. Dividing the triangle into pieces, we may
assume that the only one vertex is on Ru {oo}. Moreover since SL,(R) acts
transitively on R U {co}, we may assume that it is the point co. Renumbering the
indices, we may take z; = co. Hence 6, = 0. Put x, = Re(z, + z3)/2, and let z,
(resp. z) be the intersection point of the line Re(z) = Re(z,) (resp. Re(z) = Re(z;))
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z4 25

D(r)

NN
AN

22

23

Fig. 142

and a circle with center x, of sufficiently long radius r (see Figure 1.4.2). We denote
by D(r) the square with vertices z,, z5, zs, z,. Then from the above result, we have

U(D) = 277:_(92 + 03 + LZ4+ LZs)‘

Since both /. z, and / z5 converge to n/2 and 6; = 0, we have

v(D) = lim v(D(r))

=n—(0,+06,)
=7[—(91+02+03). I___\

We call a measure u on a locally compact group G a Haar measure if the
following two conditions are satisfied:

(i) any compact subset of G is measurable;
(i) u is invariant under left translation by G.

It is known that there always exists a Haar measure and that it is uniquely
determined up to a constant factor. We say that G is unimodular if a Haar measure
of G is also invariant under right translation by G.

We shall give an explicit form of a Haar measure of SL,(R). Put

(1.4.8) 1Q=VG-{B T]emgm) ( = x +iye H).

Let aeSL,(R) and z = ai. Then h] 'ai = i; hence we have h, 1o = k, with

cosf sinf
1.4.9 ko =
(149) 0 [ —sinf) -cosf

]eSOAR}
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Namely, any ae SL,(R) can be expressed as
(1.4.10) o= h,k, (zeH, k,eS0,(R)).
Conversely, if « is written as (1.4.10), we see that

(14.11) z=oi, 0=—arg(j(a,i)).

Therefore both z and 8 are uniquely determined by a. Further put a = [a Z:'
c

Then we see easily that x, y, 8 are all C* functions of a, b, ¢, d, and conversely, a, b, c,
d are also C® functions of x, y, 6. Consequently, we obtain isomorphisms as
manifolds:

(1.4.12) SL,(R) ~H x SO,(R) ~H x C'.
We define a measure of SL,(R) by
(1.4.13) do = (2n) " 1y~ Zdxdydf.

For any o, € SL,(R), we have
(1'414) A = halzk0+¢’ ¢ = _arg(j(a19 Z))‘

Since y~?dx A dy is invariant under the action of SL,(R) and ¢ is independent of 8,
we see for o,z = x' + iy,

V72X Ady Ad(@+ @)=y 2dx ndy A (dO+dp)=y %dx A dy A dob.

This implies that do is a Haar measure of SL,(R). Further put o, = h, kg,
z; = x, + iy, and define z', 8’ by

ooy = h, kg, Z =x"+iy.
Then we see easily that

/

_ y{(1 —|z,|?)sinfcosh + x, cos 26}
B |cos® — z,sinf|?

/ Y¥1
Y7 Jeosf—zsinf]>”
0 = —arg(cosf — z,sinf) + 0, + 2nn
with ne Z. Therefore we have
VY 72dx' A dy AdO =y tdx Ady A db.

This implies that da is invariant under right translation of G. Thus we obtain

Theorem 1.4.5. SL,(R) is unimodular. Further if f(z) is a measurable function on H,
“ar> f(ai)” is also measurable on SL,(R) and

[f@dvz)= | ) f(ai)da.
H

SL,(R
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§ 1.5. Fuchsian Groups

Let I be a group acting on a topological space X. We say that a group I' acts
properly discontinuously on X if for any two points x, y of X, there exist neighbor-
hoods U of x and ¥ of y such that

#{yel'|yUnV # J} < .

If X is locally compact, this is equivalent to saying that for any compact subsets
A, Bof X,
# {yel'|yAnB # J} < o0.

A subgroup I' of a topological group G is called a discrete subgroup if I is
discrete with respect to the topology of G.

Theorem 1.5.1. If I' is a discrete subgroup of G, then I' is a closed subgroup without
accumulation points.

Proof. By definition there exists a neighborhood U of 1 satisfying U n I = {1}. Let
V'be any neighborhood of 1 such that ¥ 1 ¥ < U. Then for any two distinct points
a, f of I', we have Van VB = (. Let g be an element of the closure of I' and
aeV 'gnT. Then we see V " 'gn I = {a}, so that we get g = ae[. O

Theorem 1.5.2. Let G and X be as in Theorem 1.2.1, and I' a subgroup of G. If all
stabilizers of elements of G are compact, then the following statements are equivalent:

(1) I is discrete;
(2) I acts properly discontinuously on X.

Proof. (1) =(2): Let x be an element of X, and A4, B two compact subsets of X. Put
M ={geGlgxeA}, N ={geG|gxeB}.

Since G acts transitively on X, we see 4 = Mx. Take open subsets U, of G so
that M < (), U, and U, are compact. This is possible since G is locally compact.
Then 4 Uv U, x. Since U, x is open by Theorem 1.2.1 and A is compact, we can
choose finitely many U, so that 4 < | J,_, U,x. Hence M < ()’ _, U,G,. Since
U, G, is compact and M is closed, M is also compact. Similarly N is compact. Since
I is discrete and NM ™! is compact, {yeI'|yAnB# Z}=T'nNM™! is also
discrete and compact; therefore it is a finite set. (2) = (1): Let V be any neighbor-
hood of 1 in G such that ¥ is compact. For a point xe X, I' n V' is included in the
set {yeI'|yxe Vx} which is finite, since both {x} and Vx are compact in X. Hence
we can take V' so that 'n V = {1}. U

Theorem 1.5.2 and Theorem 1.1.3(2) imply the following

Corollary 1.5.3. Any discrete subgroup of SL,(R) acts properly discontinuously on
the upper half plane H. Conversely, any subgroup of Aut(H) which acts properly
discontinuously on H is obtained from a discrete subgroup of SL,(R).
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We call a discrete subgroup of SL,(R) a Fuchsian group. Hereafter we assume
that I is a Fuchsian group, and put
Z(INy=Tn{+1}.
If 1 is the homomorphism of SL,(R) onto Aut(H) as in §1.1, then Theorem 1.1.3
implies
(I ~T/Z(I).

When ze HU R U {0} is a fixed point of an elliptic, parabolic or hyperbolic
clement of I', we say that z is an elliptic point, a parabolic point or a hyperbolic point
of I', respectively. We also call a parabolic point of I' a cusp of I'. For ze H and
x, X' e Ru {c0}, we put

I,=I'nSL,R),, I,=TnSLy,R),, I,,.,=TnSL,R) ..
Theorem 1.5.4. (1) If zeH is an elliptic point of T, then T, is a finite cyclic group.
(2) If xeRu {0} is a cusp of T, then I, = SL,(R)% and
r./Z(l')~Z.

Moreover for 6 € SL,(R) such that ox = o0, we have

arxa“-{il}={¢[é ’l‘]m

(3) If I # Z(I') for x, x' e Ru {0} (x # x'), then
[ ./Z(I)~Z

mel} (h > 0).

Moreover there exists 6 € SL,(R) such that

_ u 0 |"
GFX.x’O- 1{i1}={i[0 uél]

Proof. (1): Since SL,(R) acts transitively on H, SL,(R), is conjugate to SL,(R),
= 80,(R) which is a compact abelian group isomorphic to C!. Therefore
I, = I nSL,(R), is finite. Since any finite subgroup of C* is cyclic, I, is cyclic.
(2): We may assume x = oo by taking 6I'c ™! in place of I'. Hence there exists an

meZ} (u>0).

11
element vy of the form [ 0 1:| (I # 0)in I, . Suppose that a € I',, is neither parabolic

. a b .
nor scalar. Then we can write a = I:O _ 1] with a # + 1. We may assume |a| < 1
a

by taking o~ ! in place of o, if necessary. We get

1 a?
atya " = [0 al :|el“

for any positive integer n. This contradicts that I' is discrete; therefore

s ([} o]

Since SL,(R)?/{ 4 1} is isomorphic to R as topological groups, we obtain (2). (3):
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It follows from Lemma 1.3.2 that there exists 0 € SL,(R) such that
-1 -1 a 0 x
ol 07" ©0SLy(R), 07" =SL(R)y,0 = 0 gt aeR™ .
v a

Since discrete subgroups of R™ /{+1} are cyclic, we obtain (3). O

For zeH, we put
e, =|I,/Z(I)]

and call it the order of z with respect to I'. Then z is an elliptic point of I' if and only
ife, > 1. Fora cusp x of I', we also put e, = oo and call it the order of a cusp x of I
By the above theorem, we see that

(1.5.1)  the order of an elliptic point is finite;
(1.5.2)  a cusp of I' cannot be a hyperbolic point of T.

Corollary 1.55. If I’ is a subgroup of a Fuchsian group T of finite index, then the set
of the cusps of I'' coincides with that of T.

Proof. Since a cusp of I'' is also that of I', it is sufficient to prove the converse. Let x
be a cusp of I'. Since

[[T'n[]S[I':T'] < o0,
we see from Theorem 1.5.4(2) that I, = I'' n I', # Z(I"). This shows that x is also a
cusp of I'". O

We are going to discuss the case —1¢ I for a while. Let x be a cusp of I' and ¢
an element of SL, (R) such that gx = co. Then it follows from Theorem 1.5.4(2) that
there exists h > 0 such that

me Z} .

1 hf"
arxa‘l-{i1}=‘{i[o J
h
_q . We say that a cusp x

—1
0

is regular or irregular, respectively. We will see that this definition is independent of
the choice of ¢ in the following

1 h
Since —1¢ 7T, ol .6~ ! contains either [ 0 1] or [

Lemma 1.5.6. Assume —1¢1.

(1) The regularity of a cusp x of I' is independent of the choice of a.
(2) The order of any elliptic point of I is odd.

Proof. Let 6, 6,eSL,(R) such that o,x = 0,x = 00. Since 7,0 !0 = 00, we

. b 1 A
can write o,0;! = g aE Then for yel, such that 01y0f1=|:0 1:|

re -1 h h
Sp. o -1/ we have
_ 1 a*h —1 a*h
0’2'))0-2 = O 1 I'eSp. O —1 .
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This proves (1). Now let z be an elliptic point of I'. Applying Theorem 1.5.4 for
I''=T-{+1}, we see that I/ = I',-{+1} is cyclic. Hence I/ contains a unique
element —1 of order 2 in SL,(R). Since —1¢TI, I, has no element of order 2.
Therefore the order of the cyclic group I, is odd. O

Example 1.5.1. Let aeSL,(R). The cyclic group {a)> generated by « is a discrete
subgroup of SL,(R) if « is either parabolic or hyperbolic. When « is elliptic, {a) is
discrete only if « is of finite order.

Example 1.5.2. Let R be a compact Riemann surface and assume that its genus
g > 1. Then the universal covering of R is isomorphic to H. We fix this iso-
morphism and consider the homotopy group 7, (R) of R as a subgroup of Aut(H).
Then the subgroup I' = 1~ (xn, (R)) of SL,(R) is a Fuchsian group. Moreover I’
contains neither elliptic elements nor parabolic elements. (We shall give the
definitions of the Riemann surfaces and their genera in §1.8.)

Example 1.5.3. Let
I'=5SL,(2)

ab
={I:c d]eSLz(R)

Since SL,(Z) = M,(Z) nSL,(R) and M,(Z) is discrete in M,(R), SL,(Z) is a
discrete subgroup of SL,(R), namely, a Fuchsian group. We call I or its subgroups
of finite index modular groups. We shall study these groups in detail in Chapter 4.

a, b, c, del}.

Example 1.5.4. Let B be an indefinite quaternion algebra over Q@ and R an order of
B. We may identify B®, R with M,(R), and then R is discrete in M, (R). Therefore
I' = RN SL,(R) is a Fuchsian group. Example 1.5.3 is a special case of this. (We
shall discuss quaternion algebras in Chapter 5.)

§1.6. Fundamental Domains

To study the quotient space I'\ H for a Fuchsian group I, it is useful if there exists a
connected domain of H which represents I'\H. Such a domain is called a
fundamental domain of I'.

Let I' be a Fuchsian group and F a connected domain of H. We call F a
fundamental domain of I' if F satisfies the following three conditions:

i) H=), _7F;
(ii) F = U with an open set U consisting of all the interior points of F;
(@) yUnU = & for any yel' — Z(I').

n={lo e}

r _<[ cos /3 sinn/3]
27 \| —sinn/3 cosn/3 >

Put, for example,
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Then we can take as fundamental domains of Iy and I, the domains F, and F,
shown by the figures below.

\

'

N\

/i

I\

(=}

Fig. 1.6.1

Now let us show that any Fuchsian group I has a fundamental domain. We fix
a point z, € H which is not an elliptic point of I'. For yeI' — Z(I'), we put

F, = {zeH|d(z, z,) < d(z, yz0)},
U, = {zeH|d(z, z,) < d(z, yz0)},
C, = {zeH|d(z, 2o) = d(z, yz,)}.
Here d( , ) indicates the distance on H defined in §1.4. We note that C, is a
geodesic by Corollary 1.4.2(2).
fIi‘emma 1.6.1. For any compact subset M of H, % {yeI' — Z(I')|M nC, # &} is
nite.

Proof. Put
M, ={zeH|d(z,zy) = 1}

for r > 0, where z,, is the point taken above. Assume that M, N C, # . Then we
have yz,e M,,, since

d(ZO, yZO) é d(205 Z) + d(Z, yzO) é 27‘

for ze M, n C,. Since M, is compact, the number of such a y is finite. This implies
the assertion since M is contained in M, for some r. O

We define the subsets F and U of H by

(1.6.1) F=()F,
yel
= {zeH|d(z, z,) £ d(z,yz,) for all yeI'},
(1.6.2) u= ) U,
yeI—Z(D)

{zeH|d(z, zo) < d(z,yz,) for all yeI' — Z(I')}.
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Let us show that F is a fundamental domain of I'. First we are going to show that F
satisfies condition (i) of the definition of the fundamental domain. Let z; be any
point of H. Since I' is a Fuchsian group, {yz,|y €'} has no accumulation point in
H. Hence there exists the minimum in {d(z,, yz,)}|ye '}, which we denote by
d(z,, 792,) with some yoel. Since d(z,, y02,) < d(z,, y2o) for any yeTI', we have

zy €7oF. Next let us show that U is open and F = U. Take an open neighborhood
V, for each point ze H so that V, is compact. Then

U= N UnW)
zeH yel' - Z(I')
We easily see thatif U,n V, # ¢, then U, NV, =V, or C,n V, # . Therefore it
follows from Lemma 1.6.1 that (), .z (U, " V,) is an intersection of finitely
many open subsets. Therefore it is an open set, so that U is open. By a similar
argument, we have that

F=1) N (F,nV,)

zeH yel' - Z(I')

= N W,nv)cU.
zeH yel - 2Z(I') .

Since obviously F > U, we get F = U. Lastly let us verify condition (iii). Let
yel — Z(I'). Suppose that U nyU # ¢ and z, € U nyU. Since z, € U, we see that

d(zl’ ZO) < d(Zl’ yZO) = d(y_lzls 20)-
On the other hand, since z; e yU, we see that
d(y 'zy,20) <d(y~'zy, 77 20) = d(zy, 2o):

This is a contradiction, and therefore we get U nyU = & for yeI' — Z(I').
Thus we have proved that F is a fundamental domain of I', which is the first
part of the following

Theorem 1.6.2. The subset F of H defined by (1.6.1) is a fundamental domain of I'.
Moreover, under the same notation as above, F has the following properties:

(1) any geodesic joining two points of F is contained in F;

(2) put L,= FnyF foryel' — Z(I'). Then L, < C,. If L, # &, then L, is only
one point or a geodesic;

(3) for any compact subset M of H, {yeI'| M nyF # (&} is finite.

Proof. (1): Since C, is a geodesic, it is obvious that any geodesic joining two points
of F, is contained in F,. Thus we get (1) since F = ﬂyFy. (2): Let ze L,. Then

d(z,29) £d(z,yz0) = d(y~ 'z, Zo) Sd(y~ 'z, ')’_lzo) =d(z, z,).

Thus ze C,. The latter half of (2) follows from (1). (3): We may assume that M is
connected. Since

#{yel'|MnyF# J} = %{yellyoMnyF # &}
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for any y,el’, we may assume M N F # & by taking y,M in place of M, if
necessary. Assume M N 6F # fordel’ — Z(I'),then M n C; # &. In fact, since
F= ﬂy F,,weseethat M N F; # ¢ and M N 6F ;-1 # J. By definition, we see that
F;=U;uCy, 6F;-1=98U;s;-1uC;, and H = Us U dUs-1 U C; (disjoint union). If
M < Us;uéUs-1, then M < U; or M < 8U;-1, because M is connected. This
contradicts the fact that M nF; # ¢J and M n6F;-: # 5. Then we obtain
M~ C; # 4. Therefore (3) follows from Lemma 1.6.1. O

For each yeI' — Z(I'), we put L, = FnyF. We call L, a side of F if L, is
neither a null set nor a point. The boundary of F consists of sides of F. For two
distinct sides L and L' of F, L n L' is either a null set or a point. When LN L' is a
point z, we call z a vertex of F in H and the angle between L and L’ the interior angle
of F at z. 1t follows from Theorem 1.6.2(1) that any interior angle of F is less than .
For two sides L, L’ of F, we say that L and L' are linked and write L ~ L' if either
L = L’ or there exist distinct sides L, L,, ..., L, of F such that

L=L,, L'=L, and L,nL,, #J (1=Zv<n).

For a side L of F, the connected component of the boundary containing L is a
union of all sides L’ which are linked to L. When a side L of F has no end, we call
the intersection points of the extension of L and Ru {o0} the vertices of F on
R U { oo} or the ends of L on R U { o0 }. Here the extension is taken by considering L
a part of a circle or a line orthogonal to the real axis. The following lemma will be
used in §1.9.

Lemma 1.63. Let F be a fundamental domain of I defined by (1.6.1). If a vertex x of F
on Ru {0} is an end of two distinct sides and x is fixed by a non-scalar element y of

T, then x is a cusp of T.
7
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Proof. By assumption, y is either parabolic or hyperbolic. Assume that y is
hyperbolic. We may assume by Lemma 1.3.2(2) that x = o0 and 7 has another fixed

. 0
point 0. Then we see y =|: :| (a,deR™,a # d) and we may assume that

a
0 d
a/d < 1 by taking y ~ ! in place of y, if necessary. Since sides of F are geodesics, two
sides which have the end oo are on the lines Re(z) = b,, Re(z) = b, with real

numbers by, b, (b; < b,). Put
M = {zeH|Im(z) 2 ¢, b, <Re(z)<h,}.

Then M < F if ¢ is sufficiently large. Take zeH on the imaginary axis and
a neighborhood U of z such that U is compact. Then there exist infinitely
many integers n such that Uny"Fo>Uny"M # @. This contradicts
Theorem 1.6.2(3). O

§1.7. Quotient Spaces I' \ H*

Suppose that a group G acts on a topological space X. We begin by giving
sufficient conditions under which the quotient space G\ X becomes a Hausdorff
space.

Lemma 1.7.1. Assume that for any two points x, y of X, there exist neighborhoods U
of x and V of y such that gU NV = & for all ge G satisfying gx # y. Then G\ X is a
Hausdorff space.

Proof. Let n be the canonical mapping of X onto G\ X. From the definition of the
quotient topology, n(U) and n( V) are neighborhoods of n(x) and =(y), respect-
ively. We see that t{(U)n (V) # & if and only if there exists ge G such that
gU NV # . By assumption, the latter is equivalent to saying that there exists
g € G such that gx = y, namely, n(x) = n(y). This implies that G\ X is 2 Hausdorff
space. ]

Lemma 1.7.2. If a group I acts properly discontinuously on a Hausdorff space X,
then I'\ X is also a Hausdorff space.

Proof. Let x, y be any two points of X. By assumption, there exist neighborhoods
U, of x and V, of y such that # {yel'|yUyn Vy # &} < co. Put

{VEFWUom VO # g} = {yls Yas -+ - Vm}'
Renumbering the indices, we may assume that
nx=y (I1Sk2D), px#y (I+15ksm).

We can take neighborhoods W, of y,x and V; of y for k > Isuch that W, n V, = .
Put

U=Usn [\ 7% 'Weo V=Von [ Ve

k=1+1 k=1+1
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Then U and ¥ are neighborhoods of x and y, respectively, and we see that

YUnV#Feye{y,....,n}lepx=y.
Therefore Lemma 1.7.1 implies that I' \ X is a Hausdorff space. O

In particular, the quotient space I'\ H of a Fuchsian group I' is a Hausdorff
space. If I' \ H is compact or has a suitable compactification, then we can apply the
theory of compact Riemann surfaces to study '\ H. We begin by adding cusps of
I' to H to compactify I' \ H.

Let P-be the set of all cusps of I' and put

(1.7.1) H*=Hf=HuP,.
When I has no cusps, P = & and H* = H. We put
(1.7.2) U ={zeH|Im(z) > I}, Uf=Uu{w}, >0

Now we define the topology on H* as follows:

(i) for zeH, we take as the fundamental neighborhood system at z in H* that
at z in H;
(ii) for xe P, we take as the fundamental neighborhood system at x the family
{a= U}l > 0}, where 0 e SL,(R) such that 6x = o0.

b
Then H* is also a Hausdorff space under this topology. In fact, put ¢ = [‘: d]
and x = — d/c. Then we see that
6~ U, = {zeH|Im(z)/|cz + d|* > I}

and this is the inside of a circle with the radius (2Ic?)~ ! tangent to the real axis at x.
For xe P, we call 6~ 1 U, a neighborhood of x in H. Since the action of I' on H
is a conformal mapping which maps circles or lines to those, I" also acts on the
topological space H*. Therefore the quotient space I' \ H* can be defined and we
may regard I" \ H naturally as a subspace of I' \ H*. When I has no cusps, we have
'\H*=T\H.

o' U

Fig. 1.7.1



26 1. The Upper Half Plane and Fuchsian Groups
Now let us show that I"\ H* is also a Hausdorff space.

Lemma 1.7.3. Assume that oo is a cusp of I' and put

ey ={a]} 1T |nez).

b
Let y = I:Z d:|el". If|ch| < 1, then yeTl,,.

Proof. Assume that |ch| < 1. We define inductively y,eI'- { + 1} by

1 h]
Yo =17, Tne1 = "n 0 1 Yn -

— a'l bn
"la df

We write

then we see that

Gyyy=1—a,ch),  byoy=alh
Covr = —c2h, dysy =1+ ay(c,h).
Hence we get that
cn=—c(chy"™',  la,|<lal+n  (n>0),

and
|an+1 - 11 = ]dn+1 - ll = Ianllcnhl é (|a| + n)|Ch12"'

1 h
Therefore y, converges to I: 0 1 ] Since I is discrete, there exists n such that

1 h
Vo = |: 0 1 :| This implies ¢ = 0. O

Lemma 1.7.4. Let x, x, be two cusps of I', and ¢, 6, elements of SL,(R) such that
0%, =0,X, = c0. Put

oot {+ 1}={i[(1) T]

Take two positive numbers |, and 1, satisfying 1,1, > |hy h,|. Then for yeTI,
o1 Uy ne WU, = i yx, # x,.

meZ} (i=12).

Proof. By taking o, I'o| ! and o,y6; ! in place of I" and ¢, we may assume x, = o
and o, =1 Assume that yU,no;'U,# Q. Put =0,y and write

6 1= |:Z Z] Since oU;, nU,, # J, we see that

L, <Im(6™ 1z)Im(z) = Im(z)*/lcz + A2 S ¢ 2,
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1 h
where zedU,, " U,,. Put y, = l:o ;};I’m-{i 1}. Then we see

’57’15_1=0'2V?1V_102_1502F‘72_1'{i1}-
a, b
Sy, 6 t=| Tt T,
'))l [Cl dl

|C1h2l = |c2h1h2| < c?lllz é 1.

Put

then ¢; = — c¢*h, and

Applying Lemma 1.7.3to 6,6, * and 67,6 ~ 1, we obtain ¢ = ¢, = 0. This implies

yoo =65 100 = 05 o0 = Xx,. O
In particular, we obtain by taking x; = x, the following

Corollary 1.7.5. Let x be a cusp of I', and o an element of SL,(R) such that

OX = w-Putaer—l'{i1}={i[(l) ’;:I mel}withh>O.Ifl>h,thenfor

verl,

yo tUine ‘U= if v¢rl,.
Lemma 1.7.6. Let x be a cusp of I', and 6 € SL,(R) such that 6x = . For any
compact subset M of H, there exists a positive number | such that

Mnye U =g
for any yerl.

Proof. Taking 6I'c™ ! and o M in place of I and M, we may assume that x = oo,

1 m
0t

wise yU, = {ze H|Im(z) < h?/1} by Lemma 1.7.3. Therefore it is sufficient to take

so that M < {zeH|h?/l <Im(z) < 1}.

c=1PutI,-{+1} ={-l_- ’mel}. If yerl,, then yU, = U,; other-

Lemma 1.7.7. '\ H* is a Hausdorff space.

Proof. We have only to verify the condition in Lemma 1.7.1 for G =T and
X = H*. In fact, Lemmas 1.7.2, 1.7.6 and 1.7.4 imply this in the cases (i) x, ye H,
(ii) xe H, ye Prand (iii) x, y € P, respectively. 0

We denote by n or m the natural mapping of H* onto I'\H*. We call
a = n(z)eI' \H* (ze H*) an elliptic point or a cusp if z is so. When a is neither an
elliptic point nor a cusp, we call a an ordinary point.

Theorem 1.7.8. If I' \ H* is compact, then the numbers of the elliptic points and the
cusps of I' \H* are finite.

Proof. Let a ==n(z) be any point of I'\H*. As was shown in the proof of
Lemma 1.7.7, we can take a neighborhood U of z so that forye I, yUn U # J if
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and only if yz = z. Then n(U) — {a} contains neither elliptic points nor cusps. Since
n(U)is open in I'\H* and I' \H* is compact, I'\ H* can be covered with finitely
many 7n(U). Thus I'\ H* has only finite elliptic points and cusps. O

We call I" a Fuchsian group of the first kind if I \ H* is compact. Such groups are
our main objects.

§1.8. The Structure of I' \ H* as a Riemann Surface

Complex manifolds of dimension 1 are called Riemann surfaces. We are going to
construct a structure of a Riemann surface on I' \H*.

We begin by recalling the definition of Riemann surfaces. Let R be a connected
topological space. A pair (V,, t,) of an open subset ¥, of R and a homeomorphism
t, of V, onto a connected complex domain is called a local chart. A collection
{(V,,t,)} is called a (complex) coordinate system of R if it satisfies the following
conditions:

Q) R=U.Vs
() if Vo,V # &, then tyt, ' is a holomorphic mapping of t,(V, n V;) onto
tg(Von V).

We call V, a coordinate neighborhood, and t, a local coordinate on V,. Take another
coordinate system {(V7,t3)} of M. We say that {(V,,¢t,)} and {(V},t})} are
equivalent if {(V,,t,)} U {(V}, tp)} is also a coordinate system of R. We call R a
Riemann surface if an equivalent class of coordinate systems of R is given.

Example 1.8.1. The Riemann sphere P = C U {0 } is a Riemann surface. In fact, let
Vi=C,t(z)=2zV, =P —{0},1,(z) = 1/z. Then {(V}, t;)|i = 1, 2} is a coordin-
ate system of P. Any connected domain of C is also a Riemann surface.

Let us now define a structure of a Riemann surface on the quotient space I \ H*
for a Fuchsian group I'. Let a = n(z,)e I’ \H* (z, e H*).

1° First assume that ais an ordinary point. From the proof of Lemma 1.7.2, we
can take a neighborhood U of z, so that U <« H and

(1.8.1) yUnU+# J<=yeZ(I).

Put V, = n(U ). Then V, is a neighborhood of a and U is homeomorphic to ¥, by =.
Let t, be the inverse mapping of m; namely,

ty: Vo> U and t,on(z)=z for zeU.

2° Next let a be an elliptic point. Take pe SL,(C) so that pz, = 0 and pH = K.
Put W, = {zeC||z|] <r}forr>0and U = p~ !(W,). Since z, s an elliptic point,
I,, is a finite cyclic group by Theorem 1.5.4(1), and so is pI, p~'. Thus by
Schwarz’s theorem, the action of an element of pI', p~ ' on K is a rotation around 0
of angle 2nn/e withneZ and e = | I,/ Z(TI")| (see also the proof of Theorem 1.1.3).

Hence U is stable under the action of I', . From the proof of Lemma 1.7.2, we can
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take r so small that
(1.8.2) yUnU # Jeyel,,.

Then =(U) is homeomorphic to I, \ U, which is homeomorphic to pI',,p~ '\ W,.
We define a function ¢ on W, by

p(w)=w*  (e=|I,/Z(I)]).
Since ¢ is invariant under rotation of angle 2n/e with center 0, it induces the
homeomorphism ¢, of pI', p~ ! \ W, onto W,.. Therefore the following diagram is
commutative and all horizontal arrows are homeomorphisms:

v—-" . w,

(U) = T \U ——— p Loy p™ '\ W, —— W,
&1

We put ¥, = n(U) and define the local coordinate ¢, by the homeomorphism of
onto W,. given in the above diagram; namely,

taon(z) = (pz)° (zeU).

3° Lastly take a cusp a. Let ¢ be an element of SL, (R) such that 6z, = 0. Put
U=0¢'U, U*=0" 1U¥, where U, and U¥ are as in (1.7.2). If | is sufficiently
large, then we see by Corollary 1.7.5 that

yUXNU* £ FJeyel,,.
Similar to 2°, ¥, is homeomorphic to I, \U* which is homeomorphic to
ol,o""\U}. Put oI, 6" {£1}= { + |:(1) ?]m meZ} with h >0, and
define the function y on U ¥ by

l//(2)={

2riz/h

e for ze U,

0 for z = co.

Then ¥ is an open continuous mapping by the definition of the topology of H*.
Since ¥ is invariant under o I, 6~ !, ¥ induces a mapping ¥, of s I', o~ *\ U § onto
W, with r = e~ 2"/h where W, is as in 2°. Since ¥, is injective and ¥ is open
and continuous, ¥, is the homeomorphism of ¢ I',,a~ '\ U } onto W,. Therefore if
we put V, = n(U *), we obtain the following commutative diagram:

Ut*———— U}

Vo=na(U*)—— [L\U* —— oo  \UFf—— W,

¥y
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We define ¢, as the homeomorphism of ¥, onto W, in the above diagram; namely,

b an(2) e?miozlh for ze U,
o] n Z =
@ 0 for z = z,.

We can easily verify that {(V,,t,)} given above is a coordinate system of I \ H*,
and defines on I' \H* a structure of a Riemann surface. We denote by R the
Riemann surface I'\H*. For a = n(z,)e R, we put

(1.8.3) e, = |I,,/Z(I')],

and call it the ramification index of a, which is independent of the choice of a
representative element z,. We note that e, = 1 implies a is an ordinary point and
that e, = co implies a is a cusp.

Theorem 1.8.1. If I'\H is compact, then I' has no cusps.

Proof. Assume that I' has a cusp x. Put a = n(x)e I’ \H*. Then from the above
consideration, we can take a neighborhood V, of a so that V,n(I'\H)
= V,—{a} ~ {zeC|0 < |z| < r} for some r > 0, where ¥, denotes the closure of
V, in F\H*. Since V,n('\H) is a closed subset of I'\H, it is compact; this
contradicts that {ze C|0 < |z| £ r} is not compact. Therefore I" has no cusps. [

If I' is a Fuchsian group of the first kind (this is the case we shall discuss in
Chapter 2 and onwards), ‘R is a compact Riemann surface. In the following, we
recall some results on compact Riemann surfaces which we need afterwards. See,
for example, [Lang] for proofs.

Let R be a compact Riemann surface and {(V,, t,)} a coordinate system of R.
Let ¢ be a function defined on V, and ae V,. We say that ¢ is holomorphic (resp.
meromorphic) at a if ¢ o, ! is holomorphic (resp. meromorphic) at t,(a). We also
say that ¢ has a pole or a zero at a if so does ¢ ot ! at t,(a). If ¢ is meromorphic at
a, then it has a Laurent expansion of the form

poty (z) = Zlan(z— @) (@ #0)
on a neighborhood of t,(a). We write

(1.8.4) va(@) =1,

and call it the order of ¢ at a. We note that these definitions are independent of the
choice of coordinates t,. We say that a function ¢ on R is holomorphic (resp.
meromorphic) if it is holomorphic (resp. meromorphic) at any point of ‘R. We denote
by K(R) the field consisting of all meromorphic functions on R. Since R is
compact, any holomorphic function on R must be constant by the maximum
principle and K(R) is an algebraic function field of one variable. We simply call
K(fR) the function field of R. For a non-constant function ¢ of K(R), the numbers of
zeros and poles are finite and we put

(1.8.5) no@)= Y va(®), no (@)= 3 |va(P)l

v$) >0 v.($) <0
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It is known that

(1.8.6) LK(R):C()] = no(¢) = ny,().

Let R, R’ be two compact Riemann surfaces and F a mapping of R’ into R.
Take coordinate systems {(V,, t,)} and {(V3, t3)} of R and R, respectively. We say
that F is complex analytic if t,oFoty ' is holomorphic on #(V; nF~1(V,))
providing F(V3)nV, # . In particular, meromorphic functions on R are no
other than complex analytic mappings of R into the Riemann sphere P. Let F be a
complex analytic mapping of R’ into . Assume that the image of F is not one
point. Then it is open. Since R’ is compact, it is also closed. Therefore we get
F(R') = R, since R is connected. Under this situation, we call (', F) or simply R’
the covering of R. Moreover we define, for be R,

en r = Vplt,° F)

providing F(b)e V,, and call it the ramification index of (R’, F) at b or simply the
ramification index of b. Since R’ is compact, the number of points b of R’ such that
ep r # 1 is finite. Let F~'(a) = {b,, ..., b;} for ae R, then the integer

1
n= Z ebi‘F
i1

is independent of the choice of a. We call n the degree of the covering (R', F). We see
¢oFe K(N) for ¢ € K(R). This correspondence “¢ +— ¢ o F” is an isomorphism of
K(R) into K(R'). Write K(R)oF = {¢° F|¢pe K(R)}; then it is known that
(1.8.7) [K(R):K(R)oF]=n.
The equality (1.8.6) is a special case of (1.8.7).

Lastly let x be the Euler—Poincaré characteristic of ‘. We define the genus g of

R by

1=2—2g.
Then g is a non-negative integer. If (R’, F') is a covering of ‘R and ¢’ is the genus of
R, then the following relation (the Hurwitz formula) holds:

(1.8.8) 29 —2=n2g—-2)+ mel (en,r— 1),

where n is the degree of the covering (R, F).

§ 1.9. Fuchsian Groups of the First Kind

Let I" be a Fuchsian group. For a while we do not assume that I is of the first kind.
We are going to define a measure on the quotient space I'\ H* induced from the
measure dv on H defined by (1.4.2). Let X be a locally compact space, and C.(X) the
space of the continuous functions on X with compact support. For any linear
functional M on C.(X) satisfying M(¢) = 0 if ¢ = 0, there exists a measure du on
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X such that
M(¢) = £¢du-

We are going to construct such a linear functional on C,(I"\ H*). In the following,
we use the same notations as in the previous section. Let ¢ € C.(I"\ H*). Using the
partition of unity, we may assume that the support of ¢ is contained in the
neighborhood V, (ae '\ H*).

1° Assume that a is either an ordinary point or an elliptic point. Let z, be a
point of H such that n(z,) = a, and U a neighborhood of z, such that n(U) = V.
Since ¢ o7 is a continuous function with compact support on H, we can define

1 dxd
M($) =, [en() ’y‘zy (< ),

where e, is the ramification index of a. This definition is obviously independent of
the choice of z,.
2° Let a be a cusp, xo€ R U {00} a point such that n(x,) = a, and ¢ an element
of SL,(R) such that 6x, = c0. Moreover let U* = ¢~ ! U¥ be a neighborhood of x,
such that n(U*) = V,. Put U; = {zeH||Im(z)| 2 |, 0 < Re(z) £ h}, then ¢on is
continuous on Uj;. We put
M) = | ¢on) .

o 'U;

dxdy . . . .
2) is finite, since ¢pon
y

To see that M(¢) is finite, we have only to prove [,-1y,

is bounded on ¢~ 'Uj. Since y~?dxdy is invariant under the action of SL,(R),
we have
dxdy dxdy
j z = j 2z
Uy ¥ v, Y

This is finite by Lemma 1.4.4. The value M(¢) is obviously independent of the
choice of x, and o.

We denote by dv the measure on I'\ H* attached to the linear functional M. Let
F be a fundamental domain of I', then by definition, we see

o(I'\H*) = o(I'\H) = o(F).

Moreover, if 4 is a measurable set of H, then n(4) is also measurable on I'\H and
we have the inequality
v(A) 2 v(n(4)).

Theorem 1.9.1. (Siegel) Let I" be a Fuchsian group. Then I is of the first kind if and
only if v(I'\H*) is finite.

Proof. The only-if part is obvious. Assume that v(I'\ H*) is finite. Let F be the
fundamental domain defined by (1.6.1). Take an interior point w of F. Let C be a
connected component of the boundary of F, and {L,}}_,, (—o0 S M <N < w0)
all the sides of F contained in C. We assume that L, and L, , , lie side by side. If C is
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a closed curve, then F is compact. Therefore I'\H* = I'\H = =n(F) is also compact
and I is of the first kind. Now assume that C is not a closed curve. Let z, and 2, ,, ,
be the vertices of L,. Let A, be the triangle (whose sides are geodesics) determined
by three vertices w, z,, 2, {, and let oy, B, v, be the interior angles at the vertices w,
Zy, Zx + 1, Yespectively. Put w, = y,_; + B, (M < k £ N), then w, is the interior angle
of F at z,. Since the area of A, is given by

v(Ay) = 7 — (o + B + 7i)
by Lemma 1.4.4, we see that

(19.9) i v(Ay) = k=;+1 (=) + (=P =) - k;nak (m # n),

kem 77:_am_‘ﬁm_‘ym (m=n)’

for integers m, n such that M < m < n < N.If N is finite, then zy, ;e R U {00} and
vy = 0; otherwise, since only finitely many L, intersect with a compact subset of H
by Theorem 1.6.2(3), there exists a subsequence {z,} of the sequence {z,} such that
lim,, , d(w, z;) = oo. Therefore, there exist infinitely many positive integers k such
that d(w, z,) < dW, z;, ,). Thus §, = y,, and therefore y, < n/2. In fact, the longer
the side is, the larger the opposite angle is. (This can be easily verified by mapping
the triangle into the unit disk with w to the origin.) Similarly, if M is finite, then
Bir = 0; otherwise, there exist infinitely many negative integers k such that
B < m/2. Therefore we get the inequalities

N

oy (N>M),

0]
1=

(1.9.2) S o) 2 4wt T W,
k=M

T — 0Oy (N=M)5

from (1.9.1). Since we have these inequalities for all connected components of the

Fig. 1.9.1
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boundary of F, we obtain, summing them over all components, the inequality
(1.9.3) v(F)+2n2) (n—w) + Z'x,

«

where o runs over all the interior angles of F in H, and 2’ is taken over all the
connected components of the boundary which themselves are sides (namely,
N = M). In particular,

(1.9.4)  the number of the components consisting of one side is finite,

and for any ¢ > 0, the number of the interior angles w such that 7 —w = ¢ is also
finite. In particular, taking ¢ = n/3, we get

(1.9.5)  the number of w such that @ < 2n/3 is finite.

Now let z be a vertex of F in H. Since # {yel'|y{z} nF # J} is finite by
Theorem 1.6.2(3), there are only finitely many vertices of F equivalent to z by I'. We

write themas z, = z,z, = v,z, . .., z, = 9,z (y, € I'). Let w, be the interior angle of
Fatz,(1 £vZl). Then

(1.9.6) wy + 4+ ;= 2nfe (e =|I',/Z(T)}).
In fact, we can take a neighborhood U, of z, so that

1.9.7) yUinU, # Jevyel,,

and

(1.9.8) (pelWU, nF# @} = {yelly{z} 0 F # &),

Put F,=U,ny,'F. If u#v, then yF,nF, is either empty or a part of the
boundary of F, for any yeI', — Z(I'). In particular, the interior angle of Ulv= . F,
at z, is equal to w, + - - - +w,. Moreover, let u be any point of U,. Since F is a
fundamental domain for I, there exists ye I such that yue F. Then yU, " F # (.
Therefore by (1.9.8), we can write y = y,7, with yo €T, . Since you = 7, ' yu, we get
you € F,. This proves that Uvepny(U'v=1Fv) = U,. Since the action of I on H is
conformal, we obtain equality (1.9.6).

Now a side of F is either an arc or a line orthogonal to the real axis by Theorem
1.6.2(2), so that 0 < w, < 7. Therefore, applying the equality (1.9.6) (considering the
cases e = 1, e = 2 or e > 2, separately), we see that there exists at least one @, such
that w, < 2n/3. Hence if F has infinitely many vertices in H, there exist infinitely
many interior angles w satisfying @ £ 2n/3; this contradicts (1.9.5). Therefore the
vertices of F in H are finite. Hence (1.9.4) implies that the number of the connected
components of the boundary of F is finite, and also that

(1.9.9) the number of the sides of F is finite.

Next we shall prove that the summation of «, taken over all the sides of F is equal
to 2x; in other words, F is completely covered by triangles A;. In fact, suppose that
it is not true. Then there exist two distinct geodesics passing through w such that
they have no ends and the domain between them is included in F. Therefore F has
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infinitely many triangles whose vertices are on R U {oo}. Since the areas of these
triangles are 7, we get v(F) = oo; which is a contradiction.

Since F is a polygon whose sides are geodesics, any vertex x of Fon Ru {c0 } is
the ends of two distinct sides of F. Let us show that xisa cusp of I'. Let L, be a side
of F which has x as its end. By definition, there exists y, € I' such that

L,=Fny,F.

Since y7'L; = y{'*Fn F,y; 'L, is also a side of F and y; ! x is also a vertex of F
on Ru{o}. Putx, = x and x, = y; ' x,. Let L, be the other side of F which has
x, as the end. Similarly as above, there exists y, €I such that L, = Fny,F, and
X3 = 7, 1 x, is also a vertex of F on R U {0 }. Repeating this process, we obtain the
sequences {x,} of the vertices of F on RuU {c0} and {y,} of the elements of I'
satisfying y; ! x, = x; 1. Since the vertices of F on Ru {00} are finite, there exist
integers m,n (m <n) such that x, = x,. Therefore, we get yx, = x,, with
y =7, ...y, Since x,, is a cusp of I' by Lemma 1.6.3, x is also a cusp of I'.

Let {x;, ..., Xx,} be the set of all vertices of F on Ru {co}. We shall show that
any cusp x of I' is equivalent to some x,. Let U¥ (1 £ v < t) be the neighborhood of
x, such that

U*=067'UF, o,x,= (0,6SL,(R)).

Since F — ( J,_, U¥ is bounded, it is compact. Assume that x is not equivalent to
any x,. Then, by Lemmas 1.7.6 and 1.7.4, we can take a neighborhood U* of x
satisfying

t
VU*0<F—UU’V">=®, W*aUr=g (1sv=y)
v=1

for any yeI'. In particular, yYU* n F = (& for any yeI'. This contradicts the fact
H= Uve rYF. Therefore any cusp of I' is equivalent to some x,. Consequently we
obtain

NH*=nr(Fu{xy,...,x})

1 t
= n(F— U Ut)u( U n(U;“)>.
v=1 v=1
Since F — U'v=1 U¥* and the closures of n(U¥)s in '\H* are compact, I'\H* is
compact. -
Corollary 1.9.2. Let I' be a Fuchsian group of the first kind. Any subgroup of I' of
finite index is also of the first kind.

Proof. LetT'; be a subgroup of I' of finite index, and put I' = [[7_, I' y,. Let Fbe a
fundamental domain of I' and =, : H — I'; \ H the canonical projection. Then, since
7, (Uv 9 F) =T \H, we see

v(Il'\H) £ i v(y,F)=mv(F) =mv('\H) < c0.
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Therefore I'; is of the first kind. D
The following corollary is proved in the proof of Theorem 1.9.1.

Corollary 1.9.3. If I' is a Fuchsian group of the first kind, and F is the fundamental

domain of T defined by (1.6.1), then any vertex of F on R U {00} is a cusp of I' and any
cusp of I is equivalent to a vertex of F on Ru {0 }.



Chapter 2. Automorphic Forms

In this chapter, we explain the general theory of automorphic forms. Hereafter
Fuchsian groups always denote Fuchsian groups of the first kind.

§2.1. Automorphic Forms

d
a holomorphic function on H without zero. We recall the basic properties of j(a, z),
since they are often used.
Let a, e GL} (R) and ze H. Then

Leta= [z b:| be an element of GL; (R). We put j(a, z) = cz+d as in (1.1.2). This is

21.1) Jj@B, 2y =j B2)j(B 2,  jl ' 2)=jlwa 27
2.1.2) d (az)/dz = det(a)/j (o, 2)%;
(2.1.3) Im(az) = det(x) Im(z)/| j (e, 2)|%.

Moreover, by (2.1.1), we see that
2.1.4) j(@,z) =const. j(B,2)<>af e GL; (R), .

Let k be an integer. For any function f(z) on H, we define the action of an
element « of GL; (R) by

(2.1.5) (fleo)(z) = det(@)¥/%j(a, 2) % f (az) (zeH).
By (2.1.1), we have
(2.1.6) fleap= (i) B (@ BeGLF (R)).

For scalar matrices, we see in particular,

0
2.1.7) £l [g a]=sgn(a)"f (a # 0).

Let I" be a Fuchsian group and k an integer. A meromorphic function f(z) on H
is called an automorphic form of weight k with respect to I' or simply a
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T-automorphic form of weight k, if it satisfies

flv=f

for all elements ye[T.
We denote by Q,(I') the set of all automorphic forms of weight k with respect to
I'. Then Q,(I') is a vector space over C and

(2.1.8) if I' oI, then Q(I')c Q')
219 iffeQ,(I') and ae GL; (R), then f|,a e Q, (e~ Ta);
(2.1.10) if fe Q. I') and ge Q,(I'), then fge Q, . ,(I).
Furthermore by (2.1.7), we see that
(21.11)  ifkis odd and —1eT, then Q,(I')={0}.

Let Q(I') be the module generated by all Q, (I'); namely

= 3 )
Then we have

Lemma 2.1.1. The module Q(I') is a graded ring.

Proof. By (2.1.10), Q(I') is obviously a ring. Now it follows from (2.1.4) that for
elements a, f of I',

jl,2)=j(B2)=ap” el

Since we have v(I"'\H)< oo and the measure of I' ,\H is not finite, I'/I", is an
infinite set. Therefore there exists a set {7y,}s= _ ., of the elements of I" such that

J(yn9z) #1(?;;1’ Z) lf n#m.
Suppose

fi=0

=

with f, € Q,(I'). Then we see

N
(vm, 2 fil2) = ; e (Ym2) =

"MZ

for any y,,. Consider these equations for m (M < m < N) as a system of the linear
equations on f, (z) (M <k < N) with the coefficients j(y,,, z)*. Since

N
det(j (,}"m’ Z U ym! Z)M I_I (] (YM’ Z)_j(ym Z))’
which does not vanish on H, we get f, =0 for all k (M k< N). ]

Assume that I' has a cusp x. Let o be an element of SL,(R) such that ox = co.
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Then by Theorem 1.5.4(2), we have

(2.1.12) JFxo_1~{il}={i[(l) }1,:|m

meZ} (h>0).

Suppose that k is even. Since f|,0 'eQ (6l ') for feQ ('), we have
- 1h B
(fleo 1)|k [0 1:l=f|k‘7 !, namely,

(flo ™ Dz+hy=(flko™ ')z).
Therefore there exists a function g(w) on K— {0} such that
(2.1.13) (flke™H)@=g*™™  (zeH),

where K is the unit disk. Since fis meromorphic on H, g is so on K—{0}. We say
that an element f of Q,(I") is meromorphic, is holomorphic, or has a zero at x, if the
above function g is meromorphic, is holomorphic, or has a zero at 0, respectively.
When k is odd, we say that fis meromorphic, is holomorphic, or has a zero at x when
Sf? is meromorphic, is holomorphic or has a zero at x, respectively.

Lemma 2.1.2. The above definitions are independent of the choice of o.

Proof. We have only to prove our assertion for an even integer k. Let fe Q,(I'), and
x be a cusp of I'. We take o, h, g(w) as above. Let ¢,, hy, g, (w) be another triple.
a

Then we can write o7 ! =a'1[0
a

hy=h/a® and

b . .
4]’ since 6o ! oo = 00. We see easily that

2niab/h

gi(w)=d‘g(cw) (weK), c=e
This proves the assertion. O

We are going to consider Fourier expansions of automorphic forms at cusps.
Suppose that fe Q. (I') is meromorphic at a cusp x of I'. Take oeSL,(R) and
h>0 as above. First assume k is even, and let g be a meromorphic function on K
defined by (2.1.13). Denote the Laurent expansion of g at 0 by g(w) =Y = y a,w"
(ay # 0). Then we have the expansion of the form:

(2.1.14) (fleo™ M) = i a, e2neth
n=N

on {zeH|Im(z)>1} for a sufficiently large I. Next suppose that k is odd and
—1¢TI. From the above result, f?|,,6~! = (f|,¢ "~ !)? has such an expansion as in
(2.1.14). Since we see

(flio™H)(2) if x is a regular cusp,
—(flio " 1)z) otherwise,

(flka_l)(2+h)={
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we get the expansion

Y. a,e™™* (ay #0) if x is regular,

nzN

@L15)  (flo™H@ =< T

Y a,e™ ™ (ay #0) otherwise,
nzN
n:odd

on {ze H| Im(z)> I} for a sufficiently large |. We call (2.1.14) and (2.1.15) the Fourier
expansion of f(z) at a cusp x. The series in (2.1.14) and (2.1.15) are convergent
absolutely and uniformly on any compact subset of {ze H| Im(z)>1}, and so also
are on any compact subset of H if f(z) is holomorphic on H. Further we note that

f(z) is holomorphic (resp. has a zero) at x if and only if N=0 (resp. N >0).
For a Fuchsian group I', we put

A (IMy={feQ(I')| fis meromorphic at all cusps of I'};
4. (') ={feQ,(I') | fis holomorphic both on H and at all cusps of I'};
Z(IM)={fe Q)| fis holomorphic on H and has a zero at each cusp of I'}.

We call the elements of o/, (I"), 4, (I') and & (I") meromorphic automorphic forms,
integral forms and cusp forms, respectively. The spaces o7 (I"), 4, (I') and &, (") are
vector spaces over C, and we easily see the following;

21.16) Q') > A (I >%.(I) = L),
(2.1.17) if I has no cusp, then Q(I')=f (') and 4, ([) =S, (I');
(2.1.18) for any aeGL;(R), the mapping “fi fl,o” gives the following iso-
morphisms:
A (D)= st (@ ' Ta), G([) =G (0 ' Ta), L)L Ta),
(2.1.19) iffeo (') and f+# 0O, then l/fe sl _ ('),
(2.1.20) iffeo (') and ge L ('), then fge ;. (I');
2.1.21) iffe%, (') and ge %), then fge G, . (T);
2.122) iffe% (') and ge & ('), then fge L ().
We also put
ﬂ(l")=;%k(1"), ?(F)=;%(F), «V(F)=Zk:«9’k(T)-

Since Q(I') is a graded ring, we see that
(21.23) (), %) and ¥ (I') are graded rings.

Moreover, (2.1.19) and (2.1.20) imply that «/,(I") is a field. We call /(") the
automorphic function field with respect to I' and the elements of .o/ ,(I") automorphic
Sfunctions with respect to I'. Let f be an automorphic function with respect to I'.
Since (f|o7)(2) =f(yz), we can write

f@)=¢°nr()

with a meromorphic function ¢ on I' \H. Moreover, since f(z) is meromorphic at
each cusp of I, ¢ is a meromorphic function on the Riemann surface R,.
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Conversely, if ¢ is an element of the function field K(*R /) of R -, then the function
f(z) defined by f(z) = ¢ o n (z) (ze H) is obviously an element of o/ ,(I'). Thus we
obtain that

(2.1.24) K(R ) is isomorphic to o o(I") through the correspondence “¢ — ¢pox /.
Lemma 2.1.3. Let I be a Fuchsian group and I'' a subgroup of I of finite index. Then
we have:

(D) =Q)n A (), G =Q()NG ("), F)=Ql)NFW(I).
In particular, o/, (I') = A, ("), % (D) <9, ("), (') =« L, ().

Proof. We have only to prove the equalities for even weights. We will prove the
lemma only for cusp forms. Other cases can be proved similarly. If I" has no cusp,
the assertion is obvious; otherwise, it is sufficient to ascertain the conditions at
cusps. If x is a cusp of I', then it is also a cusp of I’ by Corollary 1.5.5. Take an
element ¢ of SL,(R) and h >0 satisfying (2.1.12),and put I =[I',- {1} :T%- { £ 1}].
By assumption, [ is finite and we get

meZ}

1"
r =1, — :

Let f be an element of &, ("), then we have the Fourier expansion of the form

(fleo™ V() = 221 a, 2 inh

X :
— z anelnmlz/lh,

which is the Fourier expansion of f at x as an element of Q,(I'). Hence by
Corollary 1.5.5, we obtain fe &, (I"’"). Conversely, suppose fe Q. (I')n & (I'""). Then
it has the Fourier expansion at x:

(fleo™ @)=

Since f belongs to Q,(I'), we have (f|,6” ) (z+h)=(f),6"!)(z). Hence a,=0
unless n is divisible by /, and we have

(ko™ )@= 3. ane?,

a, e21zinz/lh.

18

1

which is the Fourier expansion of fat x as an element of Q,(I'). This implies that f
belongs to & (I'). O

Theorem 2.1.4. Assume that fe Q,(I') is holomorphic on H. If there exists a positive
real number v such that
f(2=0(m(z)"")  (Im(2)—-0)

uniformly with respect to Re(z), then f belongs to 4,(I"). Moreover if we can take v so
that v<k, then f belongs to &, (I").
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Proof. We may assume that k is even. If I'\ H is compact, the assertion is obvious.
Suppose that I" has cusps, and let x be a cusp of I'. First suppose x is on R. Take
o€ SL,(R) so that ax = o0, and let h be a positive real number satisfying (2.1.12).
Then f|,6 ! has the expansion of the form:

Sho @)= Y aye?mnih

n= —aw

which is uniformly convergent on any compact subset of H. The coefficient a,, is
expressed as

zo +

h
(2.1.25) aﬂ:% j (fleo ™ 1) (z)e ™ 2minzik gz

for any fixed z,eH. Write ¢! =|:z Z], then ¢#0. Now Im(c™'z2)
=1Im(z)/|cz+d|*=0(1/Im(z)) (Im(z) — oo) uniformly on |Re(z)| < h/2. Then by

assumption, we have

(2.1.26) (flea™H@)=fle"'2)jle™ !, 2)7"
=0(Im(z)'*)  (Im(z)->o0),

uniformly on |Re(z)| £ h/2. Taking z, =iy —h/2 in (2.1.25), we get

la,) = O(y*"*e*™™)  (y— oo).

Thus if n <0, then a, =0. Moreover if v < k, then a, =0. In other words, f(z) is
holomorphic at x, and if v < k, then f(z) has a zero at x. Next suppose x = o0. Then
since I is of the first kind, we have I' # I' ,,. Thusforye I' — I' ,, a real point yoo is a
cusp of I equivalent to co. Therefore f(z) is holomorphic at all cusps of I', and if
v <k, then f(2) has a zero at any cusp. 0

Theorem 2.1.5. Let f(z) be an element of Q(I'). Then f(2)e & (I') if and only if
f(2)Im(z2)¥? is bounded on H.

Proof. We may assume that k is even. The if-part is obvious by Theorem 2.1.4.
Conversely, let f(z) be a cusp form and put g(z) = | f (z)| Im(z)*'. Since g(yz) = g(z)
for any yeI', we may regard g(z) as a continuous function on I'H. If "\H is
compact, then g(z) is bounded on I'\H, and therefore bounded on H. Assume that
I’ has cusps. Since I" has only finitely many inequivalent cusps, we have only to sce
that g(z) is bounded on a neighborhood of a cusp of I'. Let x, be a cusp of I', and ¢
an element of SL,(R) such that ox, = co. Take a positive real number h so that

1 hl™ .
Gfxoﬁ_"{i1}={i[0 1] meZ}, and let (fl,o™)(z)=>", a,e*™ " be
the Fourier expansion of f at x,. Then we see

g6 'z) = |(flo ™ ()| Im(2)*"

X :
2 ane2mnz/h
=1

Im@Z¥? >0  (Im(z) - oo).

n
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Thus g(z) is bounded on a neighborhood of x,. O

Corollary 2.1.6. Let f(z) be an element of ("), xo a cusp of I and o an element of
SL,(R) such that 6x, = 0. Let

(flkO'_ 1)(2) — 21 aneninz/h

be the Fourier expansion of f at x,. Then we have
a, = 0(n*'?),

Proof. Put g(z)=(fl,6~Y)(z), then g(z)e ¥ (cT'c!). By Theorem 2.1.5, there
exists a constant M > 0 such that |g(z)| £ M Im(z) "%2. Therefore we get

12 . .
|an| = E (j;g(X+yi)e"""‘("+”')/"dx
< My—k/2 enny/h.
In particular, taking y = 2/n, we obtain |a,| < Ln*? with L = Me?"*27%2, 0

We note that the estimate of the Fourier coefficients g, in Corollary 2.1.6 is not
best possible. In fact, when I' is a congruence modular group, it is proved that
a, = 0(n%* 2) (cf. Theorem 4.5.17).

It is convenient to generalize the notion of automorphic forms to automorphic
forms with a character. Let I' be a Fuchsian group, and y a character of I of finite
order. Put I, = Ker(x). Since it is a subgroup of I' of finite index, it is also a
Fuchsian group. We put

QUT, 1) = {feQuI )Ifly = x()f for any yeTl'},
tMk(ra X) = Qk(ra X) N Jz/k(l—‘x)’
gk(ra X) = Qk(r9 X) N gk(rl)3
Ll ) = QT 1) 0 F(T)).
In particular, if y =1, then Q, (I, x) = Qu(I'), & ([, y) = A ('), 4T, x) = %),

G (L, )= F (). We call the elements of Q, (I, x) automorphic forms of I' with y.
By definition, we easily see the following (2.1.27) through (2.1.31).

(2.1.27)  Suppose —1el. If y(—1)#(— 1), then Q (I, y) = {0}.
(2.1.28)  Let I'" be a subgroup of I',, of finite index. Then we have:
A (L, ) = QL ) L),
G, ) =4I, ) "G (I,
Ll 1) = QL ) n L)
(2.1.29)  Let I'" be a subgroup of I' of finite index. We also denote by y the
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restriction of y to I''. Then we have

() (U0 G, ) =Gl ), Ll ) = Ll ).
(2.1.30)  Iffest, (I, y) and ge o/ (T', ), then fge o, (I, yi).
(2.1.31)  Let o be an element of GLS (R). Put I'' = « ™ *T'a, and define the character

y of T' by y'(a”'ya)= x(y). Then we obtain the following isomorphisms by the
correspondence “f+—f|,a”:

()= (T 1), G0 =90 )), Ll ) =S, 1).

Let f(2), g(z)e %, (I, ). Assume that either f(z) or g(z) is a cusp form.
Then f(2)g(z)e L (T, x?), and therefore, |f(z)g(z)|Im(z)* is bounded on H by
Theorem 2.1.5. Furthermore if yeI', then

f(2)g(yz) Im(y2)* = £ (z) g(2) Im(2)*.

Hence L‘\H f(2)g(2) Im(z)*dv(z) is meaningful and finite. We put

(2.1.32) (g =ov'\H)™ ! | f(2)9(z) Im(z)dv(z),
MNH

and call it the Petersson inner product (though it is defined only when either f(z) or
g(2) is a cusp form). It induces an Hermitian inner product on (I, x).

Let I'; and I', be two Fuchsian groups, and y,, x, characters of I';, I'; of finite
order, respectively. Assume that there exists a Fuchsian group I'" contained in
Ker(y,) n Ker(y,). For f(z)e £ (', x1) and g(z)e %, (I";, x,), we can define the
Petersson inner product ( f, g) by considering f(z)e &, (I"'y and g(z) e %,(I"'). We see
easily that

(2.1.33) (f, 9) is independent of the choice of I''.

We put
N(M) = {ge%(D)|(f,9) =0 for all fe #(I)},
and

N[ x) ={ge% (I, I(f,9) =0 for all fe #,(I, 0}
Theorem 2.1.7. (1) 4, (I, x) = LI, x) ® N T, ).
(2) Let I'" = T, and y' be the restriction of y to I'. Then
ML x) = NI 1) Gl 3).

Proof. ([Shimura 12]) The first assertion is an easy exercise of Linear Algebra. Let
us prove (2). There exists a normal subgroup I'” of I' of finite index included in
Ker(y). We are going to show that A (I, x) = A ('"). Let g(z)e A (T, x). Since
g(z)e 9. (I'"), we can write

9@2) =g +/1(2),  9:1eN(T"), f1 (DL ().

Let yeI'. Then g|.y = x(y)g. Since &, (I'") is stable under y and (h,|y, h,) =
(hy, hyly~ 1) forany hy € ('), h, € %, (I'"), the space A, (I'"') is also stable under y.
Thus

gilye M), filive L")
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Then g,y =x(y)g, and f;l,y=x()f, by applying (1) for I'" and the trivial
character. This implies f; (z)e % ([’, x), and

(fi.f1)=(g—9../1)=(9./1)—(9:.f/1)=0.
Therefore f, (z) =0 and g(2) = g,(2) e A (I""). Since S (I'', ¥') = S ("), we have

(f,9)=0 for any f(z)e (I, ¥)).

This implies g(z)e A ("', 3’). Obviously the right-hand side is included in the left-
hand side. O

§2.2. Differentials on Compact Riemann Surfaces

Let R be a Riemann surface, and m any integer. The set {(¢,, V,,, t,)} consisting of
the triples (¢,, V,, t,) of a coordinate neighborhood ¥V, of R, a local coordinate ¢,
on ¥V, and a meromorphic function ¢, on ¥, is called the local expression of a
differential of degree m, if the following conditions are satisfied:

(i) {(V,,t,)} is a coordinate system of R;
(i) ¢,(a)dt,/dt,)"(a) = ¢,a for any aeV, N V,, provided V,nV, # &.

Two local expressions {(¢,, V,, t,)} and {(¢;, V,, t,)} of differentials of degree
m are called equivalent if {(¢,,V,,t,)} v {(¢,, V., t,)} also satisfies the above
conditions (i) and (i1). We call the equivalent classes differentials of R of degree m. In
particular, when m = 1, we simply call them the differentials of ‘R. We denote by
D™(R) the set of all the differentials of degree m. For simplicity, we identify the
differential of degree m with its local expression, and write

w = {(¢u’ Vu’ tu)}’

if there is no confusion.

Now let {(¥,, t,)} be a local coordinate system of R and take for ¢, the function
which identically vanishes on V. Then {(¢,, V,, t,)} is a differential of degree m for
any m. We denote it by 0. For a nonzero differential w={(¢,, V,.t,)}
of degree m, each ¢, is not identically O on V,, since R is connected. Thus we can
define the differential w ™! of degree —m by

(2.2.1) o~ ={¢, " Vi 1)}
For a differential w = {(¢,, V,, t,)} of degree m and a complex number ¢, we put
(222 cw = {(ch,, V,r t,)},

which is also a differential of degree m.
Next let @ and o’ be differentials of degree m. Refining their local coordinate
systems, if necessary, we can write as

o= {(d’u’ Vu’ tu)}’ ' = {(¢;u Vw tu)}

with a common local coordinate system {(V,,t,)}. Then using these local
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expressions, we define the sum o + @' by
(2.2.3) o+ ={(¢,+ ¢, V., t,)} (e D™(R)).

Moreover, for v = {(¢,, V,, t,)} e D"(R) and o' = {(¢,,, V., t,)} € D*(R), we define
the product ww’ by

(2.2.4) ww' = {(¢,¢,, V., 1,)} (e D™ (R)).

The definitions (2.2.1) through (2.2.4) are all independent of the choice of their local
expressions. It follows from (2.2.3) that D™(%R) is a vector space over C. Further-
more, D°(R) is a field by (2.2.1) through (2.2.4). Let v = {{¢,, V., t,)} be an element
of D°(R), and define the function ¢ on R by

(2.2.5) b(a) = p,(a) if ael,.

Since ¢, = ¢, on V, "V, this is well-defined and ¢ is a meromorphic function on
R. Conversely, let ¢ be an element of the function field K(R) of R, and define ¢, by
(2.2.5) for a local coordinate system {(V,, t,)}. Then {(¢,, V,, t,)} is an element of
D°(R). Through this correspondence, K(R) and D°(R) are isomorphic. Hereafter
we identify D°(R) with K(R) by this correspondence. Then D™(R) is regarded as a
vector space over K(R) through the product defined by (2.2.4). We put

D)= 3 D)
then D(%R) is a graded algebra over C and over K(%R).
Let ¢ be an element of K(R), and take a local coordinate system {(V,, t,)} of R.
We define a function ¢, on ¥, by

¢.(a) = (dp/dr,)@)  (ael)).

Then {(¢,, V,, t,)} is a differential of R, and we denote it by d¢. The definition is
obviously independent of the choice of a local coordinate system, and ¢ is a
constant if and only if d¢ =0.

Hereafter we assume that R is compact. Then D!(R) # {0}, and therefore,
D™(R) # {0} for any integer m, since (d¢)™ € D™(R). If w and o’ are two differentials
of D™(R) and w # 0, then we have o~ 'w’ e D°(R) (= K(R)); therefore we obtain
(2.2.6) dim g, D™(R) = 1.

We denote by Div(R) the free module generated by all points of R, or

Div(R) = {}, g c.alc,€Z and c,= Oexcept for finitely many points a},

and call it the divisor group of ‘R. We call the elements of Div(‘R) divisors of R. For a
divisor a =) , c,a of R, we define the degree of a by

deg(a) =Y c, (€ 2).
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We are going to define the divisors for functions and differentials of R. For an
element ¢ (#0) of K(R), we define the divisor of ¢ by

(22.7) divg) = ¥ va(@)a,

aeR
where v,(¢) is the order of ¢ at a defined by (1.8.4). Since v,(¢) = 0 except for finitely
many points a, div(¢) is well-defined and an element of Div(R). Moreover by virtue
of (1.8.5), we see

(2.2.8) deg(div(¢)) = 0.
If ¢, y e K(R)™, then we see
(2.2.9) div(¢y) = div(¢) + div(y).

Therefore, if we put
Div(R) = {div($)lpe K(R)*},

then it is a submodule of Div(R). We call Div,(R) the principal divisor group, and
the quotient group Div(R)/Div,(R) the divisor class group. The elements of
Div(R)/Div,(R) are called divisor classes.

Let o # 0 be a differential of degree m and w = {(¢,, V,, t,)}. We put

Va(®) = va(¢,)

for any point ae V. Since dt, /dt, is holomorphic and has no zeros on V,nV,,
v,(w) is independent of the choice of a local expression of w. Moreover, va(w) = 0
except for finitely many points a, since R is compact. Hence we can define the
divisor of @ by
div(w) = Y vi(w)a,
ae®R

which is an element of Div(R). If m =0, then it is nothing but the divisor of a
function defined above. If we D™(R), o’ e D"(R) and w # 0, ' # 0, then we get

(2.2.10) div(ww’) = div(w) + div(e’).
Therefore by (2.2.6), we see
(2.2.11) {div(w)|we D™(R)— {0} } is a divisor class.

Leta=) ,c,a be a divisor. When ¢, = 0 for all a, we say that a is positive and
write a = 0. We put, for a divisor a,

La)={¢peKR) ¢=0 or div(p)+a=0}.
It is known that L(a) is a finite dimensional vector space over C. By (2.2.8), we see
(2.212) L(0)=C;
(22.13) L(a)={0} if deg(a)<O.

We put
l(a) = dim¢ L(a).
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Then the following theorem is known (see [Lang]).
Theorem 2.2.1 (Riemann-Roch). Let R be a compact Riemann surface of genus g.
Fix a nonzero differential w of R. Then we have

l(a) = deg(a)—g + 1 +I(div(w)—a)

for any divisor a of R.
The following corollary is easily deduced from this.

Corollary 2.2.2. Let R be a compact Riemann surface of genus g.
(1) If w is a nonzero differential of R, then we have
deg(div(w)) = 2g -2, I(div(w)) = ¢.
(2) If w is a nonzero differential of ‘R of degree m, then we have
deg(div(w)) = 2m(g — 1).
(3) If a is a divisor of R such that deg(a) > 2g — 2, then we have
l(a) = deg(a)—g + 1.

Let w be a differential of degree m. We say that w is holomorphic, if either v =0
or div(w) = 0. We denote by DF(R) the space of the holomorphic differentials of
degree m. Since

L(div(w,)) = {¢eK(R)|¢ =0 or div(¢w,)=0}
for a nonzero differential w, of R, we get the isomorphism:

L(div(w,)) ~ {weD'(R)|lwo=0 or div(w)=0}

= D}(R).
Therefore by Corollary 2.2.2(1), we obtain
(2.2.14) dimeDi(R) = ¢.

§2.3. Automorphic Forms and Differentials

We are going to connect automorphic forms for a Fuchsian group I' and differ-
entials on the Riemann surface R .

First we assume that k = 2m, and define a mapping from 7, (") to D™ (R . Let
7 = 1 be the natural projection from H* onto R, and f an element of &, (I').
For a point a of R, take a point z, of H* such that n(z,) =a. Let U¥ be a
neighborhood of z, in H* satisfying the following conditions:

(23.1) yUENUX #Zifandonly ifyel, ;
(232) ifyerl,, thenyU¥ =U%.
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Let ¢, be a local coordinate on a neighborhood ¥V, = (U3 ) of a defined in §1.8.
1° Suppose z, is a point of H. We define a function g(z) on U¥ by

(2.33) 9(z) =f(2)(d(t,on(2))/dz)" ™  (zeU).
Since t,° n(yz) = t,on(z) for any ye I, , we see
(2.34) d(tyomeoy(2))/d(yz) = (d(yz)/dz)™ ' d(t,°n(z))/dz

=j(y, 2)*d(t,en(2))/dz  (velL,)
Thus we get g(yz) = g(z) for any y e I',,, and therefore, there exists a function ¢, on
V, satisfying
(2.3.5) ¢,om(z) =g(2) (zeU%).

Since f(z) is meromorphic, so is ¢,. Moreover, if a point b of R is not a cusp
and V,nV, # &, then

(2.3.6) da(c)(dty/dty)"(c) = ¢p(c)

forany ceV,n V.
2° Letz, beacusp. Put U,, = U} — {z,} and define a function g(z) on U,, by

(2.3.7) 9(z) = f(2)(d(t,om(2))/dz)""  (z€U,).

By a similar argument as in 1°, we see g(yz) = g(z) for ye I',,. Thus there exists a
function ¢, on V, — {a} satisfying

baom(z) =g(z) (zelU,).

Since f(z) is meromorphic on U,,, so is ¢, on ¥, — {a}. Take an element ¢ of
SL,(R) satisfying oz, = o0, and let h be a positive real number such that
0 1

, and put ¢ = (2ri/h)”"™ Then we see

onoa‘l-{il}z{i

2rnicz/h

meZ}. We define a local coordinate t, by

tom(z)=e

(2.3.8) ba°n(z) = ¢f (2)(d(02)/dz)” "(t3°n(2))" "
= ¢/ (2)j(0, 2)""(tzom(z)) "™
=c(flzmo™ "YNoz)(t,om(z)) ™"

on U,,. Since f is meromorphic at z,, so is ¢, at a. Moreover, if b is a point of R .,
and V,n V, # J, then we see easily that (2.3.6) also holds in this case.

Thus we have proved that {(¢,, V., t,)} is a differential of degree m of R,
which we denote by w, or w(f). Then we easily see that

wpy= w0, for fesod,, (I'), gest,,(I),
Wprg=wp+ o, for fgeod,,(I).

Conversely, let o = {(¢,, ¥,,t,)} be an element of D"(R ). We define a
function f(z) on H by

f(2) = ¢, (n(2))(d(t,°m(2))/dz)"  (zeHnn (V)
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Then f(z) is well-defined and an element of .«Z,,,(I"). Furthermore we see
® = wy.
Summing up all together, we obtain the following
Theorem 23.1. Put o (Ieyen = O 2m(I'). Then o (I')yen is isomorphic to

D(Rp) =Y ,.D™(Rp) as graded algebras over C by the correspondence “f > .
In particular, f,,(I') # {0}.

Let f be a nonzero element of «/,,,(I'). We use the same notations as in 1°, 2°.
Let a = n(z,) € R -with z, € H*. First suppose z, € H. Take an element p of SL,(C)
so that pH = K and pz, = 0. Then we can take a local coordinate ¢, on V, so that
t,on(z) = (pz)°(ze U}Y), where e is the ramification index at a. Using this local
coordinate t,, we can rewrite (2.3.3) as

¢,om(z) = f(2)(d(pz)/dz) " "(e(pz)™1)™"  (zeU%).

In other words, putting w = pz, we have

paomep H(w)=e " "f(p” lw)(d(p” 'w)/dw)rwT ™ (wep(UR)).
Comparing the orders in w on both sides, we get
(2.39) ord,(¢,°mop™ ') =ord, (f(p 'w)(d(p™ 'w)/dw)") —m(e — 1).

Since t,omep~ '(w) = w, we have

(2.3.10) ord, (¢,omop™ 1) = ev,(¢,) = ev,(w,).
On the other hand, we have
(2.3.11) ord, (f(p~ 'w)(d(p™ 'w)/dw)") = ord, _,,(f),

since d(pz)/dz has neither a zero nor a pole at z,. It is natural to define

W) = ord. ()

Then, from (2.3.9) through (2.3.11), we obtain
(2.3.12) Valwg) = vy (f) —m(1 —1/e).

In particular, the definition of v,( f) is independent of the choice of both z, and p.
We note that when m = 1, for a = n(z,) (zo€ H),

(2.3.13) w; is holomorphic at a
< v,(0,) 20
=v()20

<> f is holomorphic at z.
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Next assume that z, is a cusp of I'. Take a, h, t, as in 2° above. Since

an eZninaz/h (aN #: 0)

(flamo™ )oz) =

n

et

= 3 a2,
we get
Va(@s) =N —m
by (2.3.8). We put v,(f) = N, then we obtain
(2.3.14) Vvalwp) = v(f) — m.

In particular, v,(f) is independent of the choice of both z, and 6. When m = 1,
we see for a cusp a = n(zy),

(2.3.15) w, is holomorphic at a
=21
<>f has a zero at z,.
Consequently, by (2.3.13) and (2.3.15), we obtain the following
Theorem 2.3.2. The correspondence “f +— w,” induces the following isomorphism:
#5(I) = D§(Ry).

To define divisors of automorphic forms, we shall generalize the notion of the
divisors. For a compact Riemann surface R, we put

Div(R)q = Div(R) ®,Q

={ana

aeR

c,€Q@ and ¢, =0 except for finitely many points a }

We call the elements of Div(R)q divisors with rational coefficients.

Now let f be a nonzero element of 7,,(I"). We have v,(f) = v,(w,) for every
ordinary point a. Then the number of the points a e R ;- such that v, ( f) # 0is finite,
since elliptic points and cusps and points a such that v,(w,) # 0 are only finite.
Therefore, we can define

div(f) = Y vi(f)a

aeRy

as an element of Div(R )g. By (2.3.12), (2.3.14) and Corollary 2.2.2, we get the
following

Theorem 2.3.3. Let k be an even integer. For a nonzero element [ of <4 (I'),
we have

div(f) = div(w,) + gZ(l —1/e,)a,

deg(div()) = kg — 1) + 5 T.(1 - 1/e,),
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where e, is the ramification index of a and g is the genus of R. We understand
1/e,=0ifais a cusp.

Remark 2.3.1. Since 1 — 1/e, = 0 for ordinary points a, the summation in the
right-hand side is virtually a finite sum.

Remark 2.3.2. When m = 0, the divisor div(f) for a nonzero element f of o/, (I') is
nothing but the divisor of f as an element of K(R)*.

Remark 2.3.3. Let fe o/,,(I'). Then

wpom = f(2)(dz)"
as differentials of degree m of H. Keeping this in mind, if we define
(2.3.16) div(dz) = — Y (1 — 1/e,)a,

a

then we have
(2.3.17) div(w;) = div(f) + mdiv(dz).
Corollary 2.3.4. Let k be an even integer, and assume that I' has cusps. Denote by r
the number of inequivalent cusps of I', and by s the number of inequivalent elliptic

points. Let x be a cusp of I' and ¢ an element of SL,(R) such that 6x = o0. Let f(z),
g(z) be elements of 4,(I') and

o0
a, eZninz/h’ (hlko_— 1 )(Z) = ZO bn eZmnz/h
n=

18

(flie™)(z2) = .
be the Fourier expansions of f, h at x. If a, = b,, for everyn < k(g—1) + k(r+5s)/2,
then f(z) = h(z). Here g is the genus of R .

Proof. Put @ = w;_,. Suppose @ # 0. Then, by (2.3.14), v, (@)= k(g —1)
+ k(r + s — 1)/2 + 1. Since both f and k are holomorphic, Theorem 2.3.3 implies
that @ is holomorphic at all points except for cusps and elliptic points.
Furthermore, v,(w) = — k/2 for all elliptic points and cusps other than n(x) by
(2.3.12) and (2.3.14). Therefore deg(div(w))= k(g — 1) + 1; this contradicts
Corollary 2.2.2. Consequently, @ =0 and f= h. O

Next we consider the case when k is odd. Assume — 1 ¢ 1. Let f(z) be a nonzero
element of «7,(I"). Since f(z)* belongs to +/,,(I'), we may put

vo(f) =v,(f?)/2 (aeR ).
We define div(f) by
div(f) = ) v.(f)a

aeR,
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Theorem 2.3.5. Let k be an odd integer. Assume — 1¢1I. For a nonzero element f of
A, ('), we have:

1 k
5)) div(f)=§div(cofz) +§Z(l——1/ea)a,

deg(div(f)) = k(g — 1) + gZ(l — 1/e,);

1/2 mod Z, if a is an irregular cusp,
2) v,(f) = < aninteger/e, modZ, if a is an elliptic point,
0 mod Z, otherwise;

odd, ifais aregular cusp,
@) a(wy) = { i is a reqular cusp

even, otherwise.

Here e, denotes the ramification index at a. We understand 1/e, = 0 if a is a cusp.

Proof. The assertion (1) is easily seen by Theorem 2.3.3. Let us prove (2). When a is
a cusp, the assertion easily follows from (2.1.15). Suppose a is not a cusp and let z,
be a point of H such that n(z,) = a. Then

Va(f) =va(f?)/2 = ord,(f?)/2¢, = ord,(f)/ea,  (t =2 — z0).
This implies (2). By definition, we have
Val@p) = 2v,(f) — k(1 — 1/e,).

Thus, if a is not an elliptic point, the assertion follows from (2). Assume that a is an
elliptic point. Then e, is odd by Lemma 1.5.6(2). Put v,(w:)=u. Since
ue, + k(e, — 1) is even by (2), u must be also even. Therefore we get (3). O

§2.4. The Measure of I'\H*

In this section, we calculate the measure of I'\ H* using the genus g of I' \ H* and
ramification indices.

Lemma 2.4.1. Let m be the least common multiple of the orders of all elliptic points of
I'. Then there exists a nonzero element of o/ ,,,(I") which has neither zeros nor poles at
any cusp and any elliptic point of I'.

Proof. By definition, we have only to show that there exists a nonzero element f of
o5, (') such that v,(f) = 0 for all elliptic points and cusps a of R. Let k be a
nonzero element of o,,(I'). We note that div(k) belongs to Div(R) by the
definition of m and Theorem 2.3.3. Let {ay, . . ., a, } be the set of all elliptic points
and all cusps of R . Take an integer n satisfying

— deg(div(k))— 1+ n>2g — 2.
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Let b be a point of R ~-which is neither an elliptic point nor a cusp, and put
a = —div(k) + nb,
b, = —div(k) —a, +nb 12usn.
Then we see L(a) = L(b,) and, by Corollary 2.2.2(3),
dimL(a) —dimL(b,) =1,
so that there exists a nonzero element h(z) of o/,(I") (~ K(R ;) such that

heL(a)— ) L(b,).

=1
Put f= k/h; this is the desired one, since
vo,(h) = v, (k) (1S usr) O
Lemma 2.4.2. Let k be an even integer, xo a cusp of I', and f a nonzero element of

o (") which has neither a zero nor a pole at x,. Let C be a curve contained in a
neighborhood of x, satisfying the following conditions:

(i) n(C) is a circle around mn(xy) oriented counterclockwise;

(i) C corresponds one-to-one to n(C) except for the initial point and the terminal
point.

If C tends to x, with respect to the topology of H*, then we have
limfdlog f=1limfy~'dz=0.
C C

Proof. Put a = n(x,). Let U * be a neighborhood of x, such that V' = (U *)is a
neighborhood of a as in § 1.8. We may assume that C is contained in U * by taking it
sufficiently close to x,. Take an element o of SL,(R) so that 6x, = c0. Then we see

(24.1) idlogf= idlog(f(z)j(a, z)f) — kidlogj(a, z).

We may regard f(z)j(o, z)* = (fl,6~ !)(oz) as a function on ¥V (cf. (2.1.13)) which
has neither a zero nor a pole at a. Thus the first term of the right-hand side

Fig. 24.1
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converges to 0 as C goes to x,. To calculate the second term, put w = gz and

! = [a Z}.Then
c

fdlogj(a, z)
C

Il

— | dlogj(e™ ", w)

a(C)

wo + h

=— [ dlog(ew + d)

wo

cwy +d + ch
cwy +d

Il

— log

iar cwo +d + ch
e &

where w, and w, + h (h > 0) are the initial point and the terminal point of ¢(C),
respectively. We note that k is independent of the choice of C. Let C go to x,. Then
a(C) converges to co, and so does w,. Hence the second term of the right-hand side
of (2.4.1) converges to 0, so that

lim { dlogf= 0.
C

Similarly, since we have, by (2.1.2) and (2.1.3),

[y ‘tdz
C

< [ Im(w)” Hdwl,
o (C)

and ¢(C) tends to o as C — x,, we get

limfy 'dz=0. 0
C

Theorem 2.4.3. Let I' be a Fuchsian group and g the genus of the Riemann surface
R . Then we have

1

—o(I\H*)=29 -2+ Y (1—1/e,).

2n aeR,
Here e, denotes the ramification index of ae R, and we understand 1/e, =0 if a
is a cusp.

Proof. Take an integer m and a nonzero element f of o7, ,(I") as in Lemma 2.4.1.
Then f has neither a zero nor a pole at every elliptic point and every cusp of I'.
Since R, is a compact real manifold of dimension 2, there exist curves
L,(1 £ u<1)such that R — UL -1 L, is simply connected. We may assume that
no cusps lie on L,. Taking a point b on UL -1 L,, we connect elliptic points and
cusps with b in R — Uf‘ -1L,bycurves L (I + 1 =<v < t)which do not intersect
each other (see Figure 2.4.2). We can take L,(I + 1 < v < t) so that neither zeros
nor poles of f lie on it. Now there exists an open connected subset U in H which is
homeomorphic to R— { J, -, L,. In fact, take a point c on R— (), ., L,, and
let zy be a point of H such that n(zy) = ¢. Let M be the set of the curves C on H

which have the initial point z, and are mapped bijectively into R - — U;‘ -, L, by
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Fig. 2.4.2

Then the set U consisting of the terminal points of curves Ce M is the desired one.
Put F = U, then it is a fundamental domain of I'. Let x,, . . ., x, be the apices of F
which are cusps of I'. Let C,(1 < v < r) be a curve contained in a neighborhood of
x, whose image n(C,) by = is a circle around n(x,) oriented counterclockwise. Let
M be the compact set surrounded by the boundary of F and the curves
C,(1 £ v £r)(see Figure 2.4.3). By the definition of the measure of I'\ H*, we have

dx n d

o(P\HY) =o(F) = lm [Z22  z=x+iy).
C,ox, M y
1<vsr

By the Stokes theorem, we see
dx A dy dz (dz i i
= | —= —+—dlogf>—— dlog f,
Il‘; y? a?.wy a'L y m ma{l

where OM denotes the boundary of M oriented counterclockwise. Since
f(yz) = f(2)j(y, z)*" for ye T, we see

(dlog f)oy — dlog f=2m dlogj(y, z)-

x| =00

G

Vi

Fig. 24.3
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This combined with Lemma 1.4.3(1) implies that y~!dz+ (i/m)dlogf is invariant
under the action of I'. Therefore we can regard it a differential on I'\ H*. By
our construction of M, the boundary of M except for C,(1 < v < r) consists of the
pairs of the sides which are transformed by I' and have opposite orientations.

Consequently,
d .
f (—Z + idlogf>=0,
am—y,c,\NY M

j(%z+ridlogf> Z(£<~+ dlogf)

oM

so that

By Lemma 2.4.2, the right-hand side converges to 0 as C,’s go to x, for all x,.
Moreover, when C, is sufficiently close to x,, we may consider that both zeros and
poles of f are contained inside of M. Therefore we get

L { diog = deg(div()).
m sm m

This combined with Theorem 2.3.3 implies the assertion. O

§2.5. Dimensions of 4,(I') and &, (I')

We are going to calculate dimensions of 4, ('} and %, (I"} using the Riemann—
Roch theorem. We assume — 1¢ 1 if k is odd. For any real number x, [x] denotes
the largest integer < x. For an element a = ) ,c,a of Div(Ry)g, put

[a]= Z[ca]a‘

Let b,, ..., b, be all the cusps of R . When k is odd, we take b,, . . ., b, so that
b,,..., b,areregularandb,, , ..., b,areirregular. Let f, be a nonzero element
of o/, (I'). (The existence of such a form was proved in Theorem 2.3.1 for even k,
and will be proved for odd k in Theorem 2.6.8.) Then we have the following

Lemma 2.5.1. With the above notation, the following isomorphisms hold as vector
spaces over C. )

(1) G (I') = L([div(fo)])-

L([div(fo)— Zt: bv]> (k: even),

L([div(ﬁ,)—ibv—% 5 va (k: 0dd).

2) LI =
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Proof. Since

(I = {ffolfe (')},
wee see, by definition,
G(I) = {ffol fe o), f=0 or div(ffy)z 0}
~{fedo(I)|f=0 or div(f)+div(f,) Z 0}
~{peKRpPlp =0 or div(¢)+div(f,)=0}.

The last space is no other than L([div(f,)]), since div(¢) + div(f,) = 0 is equiv-
alent to saying that div(¢) + [div(fy)] = 0. This shows (1). Next suppose ff, is a
nonzero element of 4,(I"). Then

Hoe L) = (ffo)>0 (1 =v=)
When either k is even, or k is odd and 1 £ v £ u, we see
v, (ffo) > 0= vy (ffo) 2 1
<V, (f)+ v, (fo)—120.
When kis odd and u+1 £ v < ¢, we get

vo,(ffo) > 0= vy, (ff5) 2 1/2
< (f)+w (fo)—1/220.

Therefore a similar argument as above shows (2). O

We are going to calculate dimensions of the spaces in Lemma 2.5.1. Let
a;,..., a, be all elliptic points of R, and e, the ramification index of a,
(1 £u=<r).Put

d=2g—2+ ) (1—1/e,)+t
n=1
with genus g of R,. We note that for any nonzero element h(z) of 7 (I'),
deg(div(h)) = kd/2 and d = (2n) ' v(I"'\H*) > 0 by Theorem 2.4.3.
1° Suppose k < 0. Since
deg([div(fo)]) < deg(div(fy)) = kd/2 <0,

we get
dim %, (') = dim #,(I') = 0.

2° Let k=0. Then f, can be considered as an element of K(R)*, and
therefore

dim%,(I') = l(div(fo)) = 1,
and

. . d 1 ift=0,
dlmyo(l“)zl(d]v(fo)— Zlb“>={0 >
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3° Assume k = 3 and put
t
|:div(f0) -y bv:I (k: even),
1 t
b,— = > bv] (k: odd).

2 v=u+1

a—=

e

¥

[div(fo) -
By Theorem 2.3.3 and Theorem 2.3.5, we see

div(w Z I: —1/e,) ] Z Tb (k: even),

(k: odd),
and therefore,
5(2g 2)+Z; [E(l—l/e#):l-% %t (k: even),
deB® =1 : k=2 k-1
§2g 2)+ Z: [ 1/eu)]+T“+T(t—“)
(k: odd).

In particular,
-2

k ok k
degl@) 2 329 -2+ ¥, [5(1 - 1/3,,)] e

k
Since E(e” — 1) is integral,
k k—2
[5(1 - l/eu)] g —2—(1 - l/eu)’

so that
k—2 r
deg(a)—(2g—-2) 2 N {(29—2)+ Y (l—l/e,,)+t}
n=1

k—2
=——d
3 > 0.

Since deg(a) < deg([div(f)]), we get
deg([div(f,)1) > (29 — 2).
By Lemma 2.5.1 and Corollary 2.2.2(3), we obtain
dim%,(I') = deg[div(fy)]—¢g + 1,
dim¥ (I')=deg(a) — g + 1.

%div(w(foz))-}- 3 [ l/eu)}a + Z ubv+ 3 k%bv
u=1 v=u+1

59
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Since deg([div( f;)]) — deg(a) is equal to ¢ if k is even, or equal to u if k is odd, we
see

: . _jt (k:even),
dim%,(I'} — dim & (') = {u (k:0dd),
4° Let k = 2. Since #,(I') >~ D}(R ), we obtain by (2.2.14) that
dim %,(I') = g.

Since [div(f,)] = div(o(fy) + ¥ _, b,, we have by (2.2.12) and (2.2.13) that

! 0 0),
div@(fo) — [div(fp)]) = l(— % m) - {1 o

By Theorem 2.2.1, we get

—1 0),
dim %,(I') = I([div(f,)]) = {Z o Ei : 0;,

5° When k = 1, we have by Theorem 2.2.1

H([div(fo)D) — I(div(@(f3) — [div(fo)]) = deg([div(f)D) —g + 1.
Since by Theorem 2.3.5,

u 1 1
Ldiv(o(f3)) — [div(fy)]) = L([div(fo)_ ; b, — 3 ;ﬂ bv]) ~ (),
and
1 r
deg([div(fo)]) = deg(div(f,)) — ; (1—1/e,)—(t—u)/2
=g—1+u/2,
we obtain
dim % (I') — dim &, ('} = u/2.

We note that general calculation of dimensions of 4,(I") and & (I') is an open
problem.
Summing up all together, we obtain the following

Theorem 2.5.2. Let k be an even integer, g the genus of R, e4, . . . , e, the orders of
inequivalent elliptic points of I, and t the number of the inequivalent cusps of I'. Then

(k- Z[ l/e”)} <E—1> k> 2),

. g (k =2),
dimZ(I') = 1 (k=0,t=0),
0 (k=0,t>0),
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-~

dimF (') + ¢ (k = 4),

dim#,(N+t—1 (=g+t—-1) (k=21t>0),
dim%,(I') = < dimY,(I') (=g) (k=2,t=0),

1 (k =0),

0 (k < 0).

-

Theorem 2.5.3. Let k be an odd integer, and assume — 1 ¢ T'. Let g and {e,}}, _, be the
same as in Theorem 2.5.2. Further let u and v be the numbers of the inequivalent
regular and irregular cusps of T, respectively. Then

sim sy = | K DO ;[ u)]+¥“+k;lv k2 3)
0 (k <),

dim (') +u k2 3)

dim% () = { dim# (D) +u2  (k=1),

0 (k < 0).

§2.6. Poincaré Series and Eisenstein Series

We are going to construct automorphic forms called Poincaré series.

Theorem 2.6.1. Let z,, be a point of H and ¢ a positive real number such that the set

= {zeC||z—zo| < 36} is included in H. For any real numbers k and p > 1, there
exists a constant C satisfying

1/p
Izl = C(I If(Z)Im(Z)"”I”dv(Z)) (Iz; —z0l = 9)

for any continuous function f(z) on M which is holomorphic on the interior of M.

Proof. Let f(z) =) *_, a,(z —z,)" be the Taylor expansion of f(z) at z,. Since

2n

f f(z)dxdy = j

lz—z1=4d

o o)
Y a,r e drdd = nda,,

n=0

O ey O

we s€c

|fz)] £ (@%) ™" [ | f(2)|dxdy
M

S (ré*Cy)” j | f(2)Im(2)"'2 | dv(z)
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with C; = inf{Im(z)*/>~2|z¢€ M}. By Holder’s inequality, we get
1/p

1/q
26.1)  [f(zyl §(n52C1)“<§dU(Z)> (I If(Z)Im(Z)"”!"dv(Z))
M M

with g such that 1 <g =< o0 and l/p+1/q = 1. Thus, it is sufficient to put
C=@*Cy) ! (fy dv(2)'4. U

From the above theorem we easily get the following

Corollary 2.6.2. Let k, p be the same as in Theorem 2.6.1. For an open subset U of H
and a point z, of U, there exists a constant C such that

1/p
| f(zo)l = C(I |f(2) Im(z)“/2|"dv(z)>
U
Jfor any holomorphic function f(z) on U.
The following theorem will be used in Chapter 6.

Theorem 2.6.3. Let k, p be the same as in Theorem 2.6.1. Assume that f(z) is
holomorphic on H and |, | f(z)Im(z)**|? dv(z) < co. Then, for any real number a, b
such that 0 < a < b,

lim |f(z)| =0

Ix] = o0
uniformly with respect to y on the interval [a, b], where z = x + iy.
Proof. Take a real number § so that 0 < 26 < a, and put for a positive integer n
U,={zeH|a—26 £ Im(z) < b+ 29,
n—20 < Re(z) < n+1+26},
V,={zeHla<Im(z)<b, n<Re(z)<n+1}.
Let zye V,, then {zeC||z — z4| < 26} = U,,. Therefore by (2.6.1),

|f(zo)l < (m62C) T o(U,) < |1/ Im(Z)"’zl”dv(Z)>l/p
Un

with g such that 1 < g < o0, 1/p+ 1/g = 1, and a constant C,. Since the measure
v(U,) is independent of n, and

lim | |f(z)Im(z)*?|” do(z) = 0

n—=w0 [,

by assumption, we obtain

lim |f(zo)l =0 (2 = Xo +iyo)

|x0| 0

uniformly with respect to y, on [a, b]. O
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Corollary 2.6.4. Let k, p be the same as in Theorem 2.6.1, and U a subdomain of H.
For a holomorphic function f(z) on U, we put

1/p
Iflly = <f if(Z)Im(Z)"/ZI”dv(Z)> :

If a sequence { f,(2)} of holomorphic functions on U satisfies Cauchy’s condition with
respect to the norm || ||, then { f,(z)} converges to a holomorphic function on U
uniformly on any compact subset of U.

Proof. By Corollary 2.6.2, for any point z of U, a sequence {f,(z)} of complex
numbers i1s a Cauchy sequence. Then we can define f(z) = lim,_, , f,(z). For any
point z, of U, take 6 > 0 so that {zeC||z—z,| < 26} = U. By Theorem 2.6.1,
there exists a constant C such that

[fu(2) =Sl 2 Cl fa =Sl

for any z satisfying |z —z,| £9d. For any ¢> 0, take an integer N so that
I fu—fully <&2C if m, n> N. For z satisfying |z —z,| < J, take an integer
n(z)> N so that | f(z) — f,,)(2)] < &/2. Then we see

/(@) = fu @) 2 1S (D) = Loy DN + [ foiey =S < &

for any n > N and any z satisfying |z — z,| < 4. Thus f, converges to f uniformly on
|z —zo| £ 8. This implies { f,} converges to f uniformly on any compact subset of
U, and therefore, f is holomorphic on U. O

Lemma 2.6.5. Let { f,(2)} be a sequence of holomorphic functions on a domain D of C.
Let zg be a point of D. If f,(z) converges uniformly on any compact subset of D — {z, },
then so does it uniformly on any compact subset of D.

Proof. We have only to see that it converges uniformly on some neighborhood of
z4. Take a positive number r so small that {zeC| |z — z,| < r} = D. Then

! a(C
i S

2oy = L2

1n(2) ¢ (lz—zol < 1)

Since f,({) converges uniformly on |{ — z,| = r, f,(2) also converges uniformly on
{zeCl|z—z,| < 1/2}. )

Let I" be a Fuchsian group, y a character of I' of finite order, and k an integer.
We suppose y(—1)=(—1)*if —tel. Let A be a subgroup of I', and ¢(z) a
meromorphic function of H satisfying the following conditions:

()  @lid=x(4i¢ for any Le A;

(i)  the number of A-inequivalent poles of ¢(z) is finite,

(i) let zq,...,z, be all A-inequivalent poles of ¢(z), and x,,...,x, all
I'-inequivalent cusps of I, Then, for any neighborhoods U, of z, and V, of x,,

[ 9@ Im(z)? dv(z) < oo,
AR
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m r

where H'=H—- ) |JiU,— | U V.
u=1 ie A v=1yel
For such a function ¢(z), we define
(2.6.2) F(2)=F(z ¢ 64T = Y 1) (@) (zeH),
yeA\T

It is obvious by the definition of the series and condition (i) that if F(z)
is convergent, then it is independent of the choice of the representatives of A\T,
and

Fl,y=x(y)F foranyyel.

We call this series the Poincare series.

Theorem 2.6.6. Under the same notation and assumptions as above, we have:

(1) F(z) is convergent absolutely and uniformly on any compact subset of
H—{yz,|lyel', 1 £ u < m}, and F(z) belongs to (I, x);

(2) if ¢(2) has a pole at we H and is holomorphic at yw for all yeI' — {+1}- 4,
then F(z) has also a pole at w and its order is equal to that of ¢(z).

Proof. Let z, be any element of H— {yz,|yel’, 1 £ u < m}. Take U,, V, and a
neighborhood W of z, so that

(263) yWﬁUuZQ’ VWﬁ VVZQ (Ver,léllém,lévér),

(2.6.4) (yellyWnAW £ g} =1,,.
Then
(265 [ ¥ (el)@IImfdo@) = Y [ |$G2)|Im(yz)2 do(z)
WyeANr yeA\I W
= Y [ ¢ Im(2) dv(2).
ye A\NT yW

We see that yW < H' by (2.6.3), and for an element y, of I', (2.6.4) implies
[AN{ye | AyWny W # & for some AeA}| < |A\Ay, [, |

S\l
Therefore,

<Ll [ (6@ ImEM? do(z) < oo,

(yI
A\NH'

Applying Corollary 2.6.4 for p = 1, we see that F(z) is convergent uniformly on any
compact subset of W, and is holomorphic on W. This implies F(z) is holomorphic
on H—{yz,lyerl', 1 £ pu < m}. Next put 2z’ = y,z, with y, el and

I,={yel|¢(z) has a pole at yz'}.
Then y; ' I, < I, Ay; ' < I, and |A\T,/T,.| < m. Write

F(2) =2, x0) (91,0 + Z5 x0) (S1,7) (2),
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where 2, is the summation taken over the representatives y such that Ay < Iy,
and X, is the summation over the rest. Then we see by a similar argument as above
that X, is a finite sum, and by Lemma 2.6.5 X ,-part is holomorphic on y,U,.
Therefore F(z) is holomorphic on y, U; — {z’} and has at most a pole at z". Since
this also holds for z,,..., z,, F(z) is a meromorphic function on H. The
automorphy of F(z) has already been proved. Therefore the first assertion is
proved. Next assume that w =z, =z satisfies the condition of (2). Then

Iy=A-Z(I')and 2, x(7)(¢|,7) (2} = cp(z) with ¢ = | Z(I')|/| Z(A)|. Therelore F(z)
has a pole at w and the orders of poles of F and ¢ at w are equal. |

We are going to give some sufficient conditions for ¢(z) under which F(z2) is
holomorphic at a cusp. Let x be a cusp of I and ¢ an element of SL,(R) such that
ox = c0. We impose the following two additional conditions:

(iv) if x is not a cusp of A, then there exist positive numbers M, | and & such that
[($l,o™ @) S Mz[7'7F (Im(2) > 1);
(v) if x is a cusp of A, then there exist M, | (> 0) and ¢ (2 0) satisfying
(¢l e @I < Mz|™*  (Im(z) > 1).
Theorem 2.6.7. Assume that I', A, ¢(z) satisfy the foregoing conditions (i) through
(i1). Let xo be a cusp of I'. If conditions (iv) and (v) are satisfied for every cusp x which

is I'-equivalent to x, then F(z) is holomorphic at x,. Moreover, if we can take ¢ in (v)
positive for all x which are I'-equivalent to x,, then F(z) has a zero at x,.

Proof. First we note that conditions (iv) and (v) are independent of the choice of .
(M, I, ¢ depend of course on the choice of ¢.) Let {a«} be a complete set of
representatives of A\I'/ I . For each a, let { 8} be a complete set of representatives
of (@™ ' Aa "I\ T,. Then I' = Ua’ﬂAaﬂ. Put

¢.(2) = Y x(2B) (¢],2B)(2).
Then g

(2.6.6) F(z) = Z; 2@P) (@l aB)(z) = ¥ ¢,(2),
and

d)alk’y = X(y)d)a (yerxo)'

By condition (ii), there exists a neighborhood U of x, in H such that F(z) is
convergent uniformly on any compact subset of U. In other words, by taking
0o€SL,(R) so that ggx, = 0,

Flko-(;l = 2 ¢a|k00_1
a@

is convergent uniformly on any compact subset of the domain {ze H|Im(z) > b}
for some positive number b. Thus it is sufficient to show that ¢,|,04 " is holo-
morphic at co, and moreover, has a zero at co if ¢ > 0.
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1° Assume that ax, is not a cusp of A. Since ™' Ao ~ I, coincides with {1} or
{+ 1}, we have

dui00 ' = C- Y x(ap)($l,000 '0ofog ")

el
1

with C = 1 or 1/2, respectively. Applying condition (iv) for x = ax,, 6 = go0™ ', we
take M, I, ¢(> 0) so that

[(¢l,xoe @) £ Mz|7'72 (Im(2) > 1),

so that
(@00 @I S2M Y |z+mh| ' 75 (Im(z) > 1),

1 h|"
where h is a positive number such that ool 05 {+1} = {i [0 1:|

—-1-¢

mel}

Comparing the series on the right-hand side with the series 2m , we see it is
convergent uniformly on any compact subset of the domain Im(z) > I, so that
¢,,05 ! is holomorphic at co. Moreover if z tends to oo along the imaginary axis,
(¢l 05Y) (z) does to O; namely, ¢,|, 6, ! has a zero at oo,

2° Suppose ax, is a cusp of A. Then a~ ' Ao~ I, is a subgroup of I',, of finite
index, so that the summation z P is a finite sum and

Galio ! = ;M(wkaoa‘aoﬁaaw.

From condition (v) for x = ax,, 6 = oo~ !, there exist M, [, £ such that

(2.6.7) (pl2os V@IS Mlz|* <M (Im(z) > 1).

0 1 for some integer m, we see that ¢, |0

is holomorphic at oo. If £>0, then we see from (2.6.7) that ¢,|,6,* has a zero
at oo. t

1 mh
Noting that g,B0,"' = i|: "

We can prove the existence of nonzero automorphic forms using the Poincaré
series. Here we prove that if I'$ — 1, then </, (') # {0} for any odd integer k.
Theorem 2.6.8. If '3 —1, then o/ (') # {0} for any odd integer k.

Proof. Let z, be a nonelliptic point of H and put ¢(z)=(z-2z,)" 2. Since ¢(z)

satisfies conditions (i) through (v) for k=3 and A ={1}, the Poincaré series

F(A)= ¥ (8l

belongs to &/ 4(I'). Theorem 2.6.6(2) implies that F (z) does not vanish identically
since F (z) has a pole of order 2 at z,. Thus o/5(I") # {0}. Next let k be any odd
integer. Take the integer n so that k—2n=13, then we obtain

A () = ol y(I') o, (') # {0}. =
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When I' has cusps, Poincaré series yield one of basic methods to construct
automorphic forms of weight k= 3. Let y be a character of I of finite order. Let x be
a cusp of I', and ¢ an element of SL,(R) such that ox=00. We assume

(2.6.8) 1(Mjloye ™t 2k=1 foryerl,.

This condition is independent of the choice of o. If y is the trivial character, k is odd
and —1¢ 7, then (2.6.8) implies that x is a regular cusp. Let & be a positive number

1

For nonnegative integer m, we put
(269) ¢m(z) = (bm(z; X, 0—) =j(U, Z)*k elnimaz/h‘

It is easy to see that ¢,,(z) satisfies conditions (i) through (v) for I', y and A=T,.
Therefore Fi(z; ¢, 1, 'y, I') is meaningful. If we define the character y° of
I'c™ ! by

(2.6.10) Wloye =y,  (yel),

then

(2.6.11) F.(z; ¢y 1, Ty, T)=F,(z; ™™ 9 667!, al'c™ )|,0.

The following theorem is a direct application of Theorems 2.6.6 and 2.6.7.

Theorem 2.6.9. Suppose k=3. Under the same notation and assumptions as above,

we have
) If m=1, then F.(z; ¢ 1s I“x, ye S (I, x)-

(2) If m=0, then F(z)= F(z; ¢g, ¥ 'y, I')V€G (I, ). It has the Fourier
expansion at x of the form

20
(Flo D) =1+ ) a,e*™h
n=1
and vanishes at all cusps which are inequivalent to x.
We especially call Poincaré series Fi(z; ¢, 1, 'y, I') Eisenstein series.

Theorem 2.6.10. Suppose k=3. Let x be a cusp of I' satisfying (2.6.8), and put
9”@ = Fu(@ ¢m, x, T, T (m20),

For an element f(z) of & (I, y), let o be an element of SL,(R) such that 6x = o0, and

(flke™ N (2)=

n

an eZninz/h

ite

be the Fourier expansion at x. Then

— _ 0 (m=0),
r{Hf(Z) ( )(Z) Im(z ) dv(z) = {am(4nm)l“"hk(k—2)! (m=1).
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Proof. Taking ol'c™! in place of I', we may assume that x=00 and o =1. We see

(2.6.12) @l X 1, 27 ™™= Im(z)*dv(z)

" H vel AT
= 3 [ 1f@er ™y, 27 [Im(z) du(2)
vel AT T\H

= | |f(@@e*™ " Im(z) du(z)
r \H
o« h

= [ [ If@) ey 2 dxdy.

00

Since | f(z)y*?| is bounded on H, we have
(2.6.13) |f(z)|e 2mmityk=2 = O(y272)  (y—0).

Moreover, f(z)=0(e” ™™} (y— o) uniformly on x. Therefore the integral (2.6.13)
is convergent. Thus we can exchange the order of integration and summation, so
that

[ f2 "") (z) Im(z)*dv(z)

'H

= Y 2 [ fl@)e 2™ j(y, )" Im(z)* do(z)

vel AT MH

« h
j‘ j‘f(z)e—ZnimE/h yk—ldxdy
00

0
:Zan

n=1

h
e—Zn(m+n)y/hyk—2dy j’ e21|:1(n—m)x/h dx

Q=8

0 (m=0),
a, (dnm) "R Tk—1) (m=1).

Corollary 2.6.11. Assume k=3. If there exists a cusp x of I satisfying (2.6.8), then
{gi™(z)|m 2 1} generates S (I, ¥).

Proof. We may assume x = o0 and ¢ =1 by the same reason as above. Let .# be the
subspace of &, (I, x) generated by {g{™ (z)|m=1}, and #* the orthocomplement
of #. Take an element f@)=3." a,e* ™" of .#*, then by Theorem 2.6.10, we see
a,=0 for all n=1, so that f(z) = 0. Therefore we obtain S, =M. O

Assume k23 and let {x,, ..., x,} be a set of complete representatives of cusps
of I' satisfying (2.6.8). For each x; (1 £i<r), take g, SL,(R) so that ¢;x; = oo, and
put
(2.6.14) 9:(2) = F(z; ¢o, X, s, DeFGT, ¥).

Then we have
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Corollary 2.6.12. If k=3, then A (I, x) is generated by the Eisenstein series g;(z)
given by (2.6.14), or
N, ) =Lg:(Dsisr).

Proof. Let us denote by A (I, x) the right-hand side. By Theorem 2.6.10, we see
N (T y) € A (I, y). Now let f(z) be an element of 4,(I', y), and x a cusp of I
which does not satisfy (2.6.8). Then it is easy to see that f(z) vanishes at x. For each
i, let a be the constant term of the Fourier expansion of f|,6; !, or

(f'kai_l)(z):ag) +
Then f(z2) —Y.[_, a§ g;(2) is a cusp form by Theorem 2.6.9(2). Therefore 4, (I, y) is
generated by A7 (I, y) and & (I, ). This combined with Theorem 2.1.7(1) implies
the assertion. O

We shall generalize Corollary 2.6.12 to k=1 for modular groups in Chapter 7.

§2.7. Hecke Algebras

In this section, we explain the general theory of Hecke algebras. Though our
purpose is the application to Fuchsian groups and modular forms, the groups
considered in this section are abstract ones.

Let G be a group, and I, I'" two subgroups of G. We say that I' and I’ are
commensurable and write I'= I if

[:I'nl"}j<ow and [I':T'nI"]<oco0.
For a subgroup I of G, we put
1~":{geG|gFg_1 ~T}.
Lemma 2.7.1. (1)} The relation ~ is an equivalent relation.
(2) T is a subgroup of G.
B)YIf =TI, then I =T".

(4) Suppose I' ~ I''. Then for any element o of I, we have the following coset
decompositions:

roar' =[] ray,=[]é;ar",
i i
where {y;} (resp. {8;}) is a finite set of the representatives of (I' Mo 'Ta)\I"
(resp. T/(T nod” o™ 1))

Proof. (1): We have only to show the transitive law. Let Iy, I, Iy be subgroups of
Gsuchthat I'y~T,, 'y~ TI;. Then

[T :TinT,nl)=[: T nlJI0nly:Tinl,nT,]
S nlr,:r,nryl<oo.
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Similarly, we get [[';: nI,nI'35]<o0. Since I''NnI3o>I' nl,nT;, we
obtain [I'y: 'y n3]<ooand [I'3: 1y n 3] <oo,s0 that I'y ~ I'5. (2): Let g, h be
two elements of I'. Since

h*gq)rth gy ‘=h 'ThaT,

h~1g also belongs to r by (1). This shows that Tisa subgroup of G. (3): If g is an
element of I', we see

glg ta~glg 'aT T
Thus g belongs to r by (1); namely rer. Exchanging I" and I, we get rcr.
Therefore I' = I'". (4): We can express every left I'-coset contained in I'al” as 'y
with some yeI”. For two left I'-cosets 'y and I'ay’ contained in I'al”,
(2.7.1) Tay=Tay<=yy tel"'na 'Ta

Since o 'Ta~T~TI’, we have d=[I":T"na”'I'a]<oo. Therefore, taking a
complete set of the representatives {y;, ..., 74} of (I" na 'Ta)\I'", we get the
coset decomposition

d
Fal” =[] I'ay,
i=1
by (2.7.1). A similar argument is applicable to the second one. O

Let = be a set consisting of subgroups of G, and 4 a subsemigroup of G. We
assume that = and A satisfy the following conditions:

(i) any two elements of E are commensurable;
() I' > A > T for all subgroups I' in Z. .

Hereafter I', I'", I';, etc., indicate subgroups of G belonging to =.

Let K be a commutative ring with unity. For two elements I', I'” of =, we denote
by #g(I, I'"; A) the free K-module generated by double cosets I'al” with a€ 4;
namely

R(T, T 5 4) ={ Y a,l'al" |a,eK, and a,=0 except for finitely many a}.

acd
When I' = I'', we write simply
R, A) =R (I, T; A).

When K = Z, we also write
R, T A= R I, 175 4), R, Ay=R5(T, A).
Assume that 4 acts on a K-module M and write the action as
M x As(m, §)—m’e M;
namely, the following properties are satisfied:
(i) “m—m®” is a K-endomorphism of M;
(ii) m® = (m°)" for 8, ye 4;

(iti) m* =m for the unity 1 of A.
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We denote by M’ the submodule consisting of the I'-invariant elements of M;
namely,

MT={meM|m' =m forall yel}.
Let ['al” =] [, 'z, be a coset decomposition. We define the action of I'aI” on M T
by

m|Tol" =Y m*, meM?’.
We also define the action of an element ¢ =) a,Tal" of #(I', I"; A) on M" by

m|&=Y a,m|lal”), meM?.

Lemma 2.7.2. Let the notation be the same as above.
(1) m|I'oI” is independent of the choice of the representatives {a;}.
(2} The mapping “m—m|E” is a K-homomorphism of MT into M ™",

Proof. For two elements «;, o; of I'aI"" satisfying I'a; = 'a}, there exists an element
y of ' such that o =ya;. Thus m* =m" =m*. This proves (1). It is obvious
that “m—>m|¢” defines a K-homomorphism. Let us show m|ée M T, Since

Fal” =], I't, =[], 'ty for any element 9’ of I, we have
mFal"y =2m*' =Xm*=m|lal"
by (1). Hence m|'al” belongs to M 7. O

Let I'al', =], I'yo, and I', T3 = [ [, T, f; for two elements o, § of 4. We
define the multiplication of I';al’, and I',fI"5 by

(2.7.2) Faly T,pTy=Yc, 'yl
v

¢, = # {(i. j)I T oa:B;=Ty7},

where the summation is taken over all double cosets I';yI’; contained in A.
The right-hand side is a finite sum, since c,=0 except for finitely many
' yIy’s. We extend this multiplication linearly, and define the multiplication of
fzzaaarlafze%K(Fl,Fz; A) and n = z/; byl'y BIrye Bx(l5, I's; 4) by

(2.7.3) En=Y abp(I' ol T, T ).

@B

Lemma 2.7.3. The multiplication defined by (2.7.2) is independent of the choice of the
representatives o;, B, .

Proof. Let K[I';\4] be the free K-module generated by left I'-cosets I' ja (o€ A)
contained in 4, then K{I",\ 4] is a right A-module by the right multiplication. The
correspondence of I'yal, = [[,I'yo; to Y, I';o; induces an injective K-homo-
morphism of # (', I',; A) into K[I';\A]. Considering Zy(I',, I'y; A) as a
K-submodule of K[I',\4] by this mapping, we obtain

(2.7.4) Ry, Ty A)= K[ \A]".
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Let I''al', = ]|, I'ia;, and I', I3 =[], I', B; be cosets decompositions, then by
the definition of the action of # (I, F3, A) on K[I')\4]"2, we see

(2.7.5) YLl Bry=3 3 I'ap;

Since the right-hand side coincides with the right-hand side of (2.7.2) under our
identification, we see that

(2.7.6)  the action of R (5, [; A) on R, I'y; Ay= K[T' \A]" is no other
than the multiplication defined by (2.7.3).

Hence Lemma 2.7.2(1) implies the assertion. O
The argument in the proof of Lemma 2.7.3 implies also the following

Lemma 2.7.4. Under the notation and assumptions as above, we have:

(1) (ml&,)1E; =ml(&, &) for me M T, & e R(Ty, T'3; 4), and
$€R(I5, I's; 4);

(2) (182085 = &1(&283) for S, e Ry (I, Iy A), L€ R(I, T'y; 4), and
C3eR(Is, Ty; 4);

(3) Zx (I, A) is an algebra over K with unity T';

(4) If M is a right A-module, then M " is a right Rg(I', A)-module.

Proof. The first assertion is obvious by definition. The second assertion is obtained

by (1) and (2.7.6). The third and the fourth are easily verified from (2) and (1),
respectively. ]

We call #(I', A) (resp. Z(I, A)) the Hecke algebra (resp. the Hecke algebra over
K) of I' with respect to A.

Lemma 2.75. If A < A', then Ry(I', 4) is a subalgebra of Ry(I', A") under the
natural correspondence. In particular, R¢(I', A) is a subalgebra of R (I', I').

Proof. We have only to show that the multiplication of #(I", 4) coincides with
that of #y(I', 4'). For two elements I'al', I'fT" of #y(I', 4), denote the multipli-
cation of them as elements of Z,(I', A4’) by

ror-rpr=yc,Iryr.
Y

Since I'yI' c I'e'BI' < A if ¢, # 0, this coincides with the multiplication as ele-
ments of Z, (I, A). ([

Theorem 2.7.6. (1) For two subgroups I' and U of a group G, let A, D be semigroups
of G such that ' > A>T and U > D o U. Further we assume

(i) D=U4,
(ity UaU = Ual for any ae A,
(i) Ua ~ A4 = T'a for any ae A.
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Then the correspondence “I'al v+ UaU” induces an isomorphism of Ry (I, A} onto
R(U, D).

(2) When a K-module M is also a right D-module, the action of #,(I', A) on M T
corresponds to that of #,(U, D) on MV under the above isomorphism; namely,

m|UaU =m|T'al”
for me MV, ae 4.

Proof. Wenote that I' < U by (ii). Let @ be the mapping of Z (I, 4) into Z(U, D)
induced by the correspondence “I'al’ +— UalU ”. By (i), @ is surjective. Suppose
UalU = UBU for two elements a, f§ of 4. By (ii), there exist elements ue U, ye I’
such that By =ua Since fy=ua belongs to Uand=Ta by (i), we get
I'al’ = I'BI'. Therefore @ is also injective, since Z (U, D) is a free K-module with a
basis {UaU}. To see that @ is a ring-homomorphism, we have only to prove that
if Fal’ = [[;I'%; (xe4), then UaU =]];Un;. Let I'al’ =] [;I';. Condition (ii)
implies UaU = | J;Ua,;. If Un; = Ua;, then a;e Ug; " A = Ty, so that I'e; = Ta;.
Thus UaU = [ [; Ux;. This proves (2). O

For an element & =Y ,a,(Fal’) of (I, 4), we put

deg(¢) = Ya,| I\ T'al'|

and call it the degree of £. Here |I'\I'al'| indicates the number of left I'-cosets
contained in I'al". In view of (2.7.5) and (2.7.6), we see easily

(2.7.7) deg(En) = deg(l)deg(n) for & neZ(l, 4)

Lemma 2.7.7. Let a€l. If\I'\I'al'| = [F'al’ /T'|, then I'\I'al' and I'al"/I" have a
common set of representatives.

Proof. Let I'al =[[{-  Toa;=[[{= ;. Then I';;nB,I" # & for any i, j. In
fact, suppose I'a;np;I' = for some i, j. Since I'; = | )y ;B I, we have
IFal'= T';I' = | ), ;B T; this is a contradiction. In particular, I'e; n ;T # &,
so that taking an element 8,e I'o; n §; I, we get I'w; = I'd; and B;I" = 6;I". There-
fore we obtain

d d
FO(F=HF512 Uéir. D
i=1 i=1

Theorem 2.7.8. Assume that there exists a mapping 1 of 4 into itself satisfying

(af) = p'ot and (2') = a for o, fe A,
(11) F‘ r,
(i) '’ =Tal.

Then the following assertions hold.
(1) For any aed, '\I'al" and I'al'/T" has a common set of representatives.
(2) The Hecke algebra R (I', A) is commutative.
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Proof. Let I'uaI' =] [;I'; for aeA. Then I'al’ = I'a'l’ = (I'al’) = | [; o4 Thus
(1) follows from Lemma 2.7.7. Hence we may put I'al’ = [[;I'e; = [[;o; I, and

rpr=1J,rg,= 1,8 Let

[al TRr =Y e Iyl, TRr-Tal =Y ¢ Tyl

then
¢, = # (L )ITxp;=T7)
= # {0 ;T =Tyl /IPNTYT
= % {(, )Rl =Ty T}/ |ITNTy'T|
= # (L)) By =T7"}
=cl,
Therefore we obtain I'al - I'fI =T8I -Tal. O

§2.8. Hecke Operators on the Space of Automorphic Forms

In the previous section, we defined the Hecke algebra in the general framework.
Now we are going to let Hecke algebras act on the spaces of automorphic forms.

Let I" be a Fuchsian group, and y a character of I of finite order. Considering I’
as a subgroup of GL; (R), we put

['={geGL; (R)lglg™ ' ~T}.

Let 4 be a subsemigroup of [ such that I’ > 4 = I'. Assume that ¥ can be extended
to a character of 4, which we denote by the same symbol y, and that the following
condition is satisfied:

(28.1) ifaya ‘el (yel,aed), then y(aya™1')=yx(y).

Now let & be a set of all subgroups of I of finite index.
ForI'), I'neZ and aed, put I'al, = U‘lefl o,. Then for any element f(z) of
'Q/k(rl, X)’ we put

(28.2) (fIF al)(2) = det (@) ! Z 2000) (fl,)(@)
= det(ax i oy, 2) ¥ fla, 2).

Theorem 2.8.1. (1) The above definition is independent of the choice of the rep-

resentatives a,, and
ST ol el (I, x)
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Moreover if fe 4, (I'y, x) (resp. € L (I, x)), then f|I' al, €%, (5, y) (resp.€e &,
(25 1))

) Ifr,r,,Iryez and o, fe 4, then
(I oD )N BTy = f(T ol y T, BT 5).

(3) Under the above action, o, (I',x) is a right #(I', A)-module, and both
G (I',x) and L (I, x) are its RA(I", A)-submodules.

Proof. Put

o= S0, %= %0, L= U Al 0.
res rez rez

Since

A (L, ) (I, x) (I Ty, ),

forI'), I', € 2, o, is a vector space over C. Similarly, both 4, and &, are subspaces
of «Z,. We define the action of an element « of 4 on &/, by

f*=det(@> 7 g(@) (flew),  fe A,

Since by (2.8.1) f* belongs to &/, (I'y na~ ' T’ a, x) provided f does to ./, (I'y, ¥)
(r'yez), “fr—f*" is a linear mapping of &/, into itself. It is obvious that
(f*)! = f*# for any «, fe 4. Thus 4 acts on ./, and 4" = o/ ('}, y)forany I' e Z.
Furthermore if fe o, (I'y, x) and I'yal', = [ [, I o, (¢ € 4), then we have

f]r1“F2:Zfa"-

Hence by Lemma 2.7.2, the above definition is independent of the choice of the
representatives «,, and f|I", al", belongs &7, (I'5, x). A similar argument is also
applicable to the latter half of the first assertion. Assertions (2) and (3) are special
cases of Lemma 2.7.4(1) and (4), respectively. O

A linear mapping of &/ (I'y, y) into 7, (I',, x) induced by I'yal', (xeAd) is
called a Hecke operator.

Remark 2.8.1. Since the action of I', al', on &/, (I';, x) depends on k and y, we
should distinguish an element of #(I';, I',; A) from the Hecke operator. We use,
however, the same symbol for simplicity, since the action of I'; a I, is determined
uniquely.

Remark 2.8.2. When y is the identity character, we can take as 4 any semigroup
satisfying 5457 1In particular, Z (I, F) acts on 7, (I), 4,('), and &, (I').

Let ( , ) be the Petersson inner product. Then we have
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Theorem 2.8.2. For e GL; (R), we put o' = det(a)a*.
(1) Assume I') =~ I',. Then for aefl( = I~"2),
(flea, @) = (L glo’), f2)e S (Iy), g(z)e %, (I,).
(2) For ael,
(fITal,g)=(fglTdT), fzyeF (), glz2)e%. (I').
Proof. (1) Put F'=a 'I'yanT,. Since fl,ae %, (a1 ' o), we see

(fla, g)=o(T\H)™" | det(@}?j(x, 2)7* f(x2) g(2) Im(2)* dv(z)
r\H

=o(F\H)™' [ det@*f(2)gla™ " z)j(a, 0" ' 2) *Im(a™ ' 2)* du(z2).

ala”'"\H

1 1

Since a 'z=0o'z, jla,a”'z)=jla, ' z)=det(®)j(, 2z}, Im(x 'z)=1Im(x'z)
=det(«'}|j (', 2){ % Im(z), det(a) = det(2'), and v(F'\H) = v(alz” '\ H), we get

(fliasg) = v@la" \H)" ' | f(z) det(« )2 j(«, 2) 7% g(a' z) Im(2)* dv(z)
al’a " "\H

= (figlo)
(2): Noting that —1eT if and only if —lea™ ! I"x, we see
(FTna 'Ta]l=v((Tno ' Ta)\H)/v(Ir'\H)
= o((@l e A M)\H)/o(I'\ H)
=[I':"I'nala"1].

Thus Lemma 2.7.1(4) implies |I'\I'al'|=|I'al’/I'|, so that both I'\I'al'
and I'al'/T" has a common set of representatives by Lemma 2.7.7. We may put
el =], e, =]],aI for some {a,}, then we have I'a™'I'= ][], I'x; ' and
o' I' =], I'e,. Therefore we obtain

(STl g) = det@)!? " (flx, 9)

= det(@)>71 ) (f gliat)

=(figlla'T). O
Corollary 2.8.3. Let y and \ be two characters of I of finite order. If y # s, then
(f,9) =0 for fe S (T, x) and ge G (I', ).
Proof. Let y be an element of I" such that y(y) # ¥ (y). Then

A L= ler =gy D) =¥ g)
This implies ( £, g) = 0. []
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Corollary 2.8.4. If fe A (T'), then f|[al € 4 (I') for any ael.

Proof. This is obvious from Theorem 2.8.2(2). O
We now explain the geometrical meaning of Hecke operators. We assume

elementary knowledge of algebraic geometry. Let R be a compact Riemann

surface. Then R is isomorphic to a nonsingular algebraic curve as complex
manifolds. We define a subgroup of the divisor group of ‘R by

Divy(R) = {aeDiv(R)|deg (a) =0},
then from (2.2.8), we have Div,(R) = Div,(R). The quotient group
J = Divy4(R)/Div, (R)

has a natural structure of a complex manifold which is an abelian variety. We call
the abelian variety J the jacobian variety of ‘R. We denote by D}(J) the space of
holomorphic differentials on J, then

D§(R) ~ D5 (J).
Let now I" be a Fuchsian group of the first kind. For a € T, the mapping
H*sz+(z, az)e H* x H*

induces an imbedding of R -, - into R - x R . We denote by T(I'aI') the image
of Ry r.-1 in Rpx Ry, Then T(I"al") is an algebraic correspondence of R
into itself. Put FocF Fﬁl‘ Y scsTOT for a, BeT, then

T(Fal) T(FBT) = an (I'8T)

as algebraic correspondences. Moreover let n: H* - R be the canonical
mapping, and I'al’ = [ [, I'x,. Then

(2.8.3) T(Tal)(n(2)) = Y. m(a, 2).
We call T(I'al’) a modular correspondence. By (2.8.3), T(I'al") induces an endo-

morphism t(I'al") of the jacobian variety J of M. The following diagram is
commutative:

g,y 2L e,
iR 0
DL (R)) DL (R,)
0 I
ral)

(Jr) —_— Do(-’r)

In particular, take a congruence modular group for I'. Then both R, and J,
are defined over Q or over a cyclotomic field. In the investigation of ‘R~ and J -, in
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particular in the arithmetical investigation, for example, of Hasse zeta functions or
field extensions generated by section points of J, etc, the modular cor-
respondences T(I'al’) and the Hecke operators I'al’ play important roles. See
[Shimura 2, 3, 4, 6], etc., for these theories. We shall study the Hecke algebra of
modular groups in Chapter 4 and calculate the traces of Hecke operators on the
spaces of cusp forms in Chapter 6. They are of course important in themselves.
However, applications of them to number theory are always in our mind.



Chapter 3. L-Functions

In this chapter, we summarize basic facts of number theory and Dirichlet series
for the succeeding chapters. Most of the important theorems are stated without
proof. Readers who have number theoretical backgrounds can skip this chapter.

§3.1. Dirichlet Characters

Let N be a positive integer, and 7 a character of (Z/NZ) ™. For any integer n, we put

_ FnmodN) if (n,N)=1,
=10 i N) 1,

then y is a mapping of Z into C satisfying

(3.1.1)

(i) x(mn) = y(m)y(n);
(i) y(m) = x(n) if m = n mod N;
(ii1) y(n) # 0 if and only if (n, N) = 1.

The characters j of (Z/NZ)™ and the mappings y of Z into C satisfying conditions
(i) through (iii) correspond bijectively through (3.1.1). We call such a mapping y of Z
into C a Dirichlet character mod N, or simply a character mod N. We call N the
modulus of y. We call the Dirichlet character corresponding to the trivial character
of (Z/NZ)* the trivial character mod N. Further we denote by y, the trivial
character mod 1 and call it the principal character.

For a Dirichlet character y mod N, we define the complex conjugate j by

(3.12) i) =ym  (neZ)

which is also a character mod N. For a multiple M of N, we put
oy Ja if (n, M) =1,
X(")_{o it (n, M) # 1.

Then y' is a character mod M. We call it the character mod M induced from y.
For a character y mod N, let M, be the set of positive integers m satisfying the
following condition:

(3.1.3) ifn,Ny=1 and n=1modm, then yx(n)=1.
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Since N belongs to M,, M, is not empty. For any two elements m,, m, of M, the
greatest common divisor of m,; and m, also belongs to M,. Therefore the smallest
integer m, contained in M, is a divisor of all elements of M,. We call m, the
conductor of y. When N =m,, y is called a primitive character mod N. If an integer n
is prime to m,, then we can take an integer n’ so that (n’, N)=1 and ' =n mod m,.
We put
) — {x(n’) it (nmy) =1,
0 if (n,m,)#1,
then x° is a primitive character modm,. We call x° the primitive character

associated with y and y is induced from y°.
For two Dirichlet characters y mod N and ¢ mod M, we put

)n) = x(my(n)  (ne),

then yi is a character mod L for the least common multiple L of N and M. Let now
x be a character mod N, and N =[], p° the decomposition as the product of
primes. Fix a prime factor p. For an integer n prime to p, take a positive integer m so
that

n  mod p°,

m =

1 mod N/p°.

We put

(n) = x(m), if (n,p) =1,
LW=N0, i (mp) £ 1.

Then it is independent of the choice of m, and y,, is a character mod p®. Furthermore
we have

(3.14) 72(n) = H 1,m  (nel).
For a primitive Dirichiet character y with conductor m, we define the Gauss sum
of y by
(3.1.5) W) = mg; ylaye?miam,
The following lemma is fundamental.
Lemma 3.1.1. Let y be a primitive Dirichlet character mod m.
(1) m‘_Z; y(@e2mim — 5(bYW () for any integer b.

@) WOW(x) = x(=1m.

() W(x) = x(=DHW(p).
@) [W(0I* =m.

Proof. (1): First assume that b is prime to m. Since y(a) = y(ab)y(b), we see

m-—1 m-—1

Y. xla)e? ™ = j(b) 3. xlab)e ™ = y(b) W(y).

a=0 a=0
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Next suppose (b, m) # 1, and put n = m/(b, m). Define a subgroup H of (Z/mZ)™ by
H={de(Z/mZ)*| d=1modn},

and let (Z/mZ)* =[].Hc be a coset decomposition. Since y is primitive, the
restriction of y on H is not trivial. In addition, bd = b mod m for any de H. Thus
we see

; X(a)eZniab/m — Z“dezH X(dc)eZnibcd/m

= Y 2™ 3 x(d)=0.
(2): By (1), we see

WHWD = Y, W@ibe

m—1m—1

z z X(a)eZRiab/meZw:ib/m

b=0a=0

m—1 m—1 2mib 1/
— X(a) e nib(a + )m.
aZO bZO

Since Y =g e*™@* Uim is equal to m if a + 1 = 0 mod m, and to 0 otherwise, we get
W) W(x) = x(—1)m. Since y(—1)= + 1, we see

_— m—1
Win = ‘_;0 Ha)e™2mam = y(~ )W () = x(= )W (}),

so that L
WiW) = Wiwx(—1) =m.
Thus (3) and (4) are proved. |

Lemma 3.1.2. Let x, Y be primitive Dirichlet characters, and m,, my their conductors.
If m,, my) =1, then

W(xw) = x(my(m ) W) W).

Proof. Put m=m, and n=m,. By the assumption, for any integer a, there exist
integers b, ¢ such that
a=bn+cm.

The integers b, ¢ are uniquely determined modulo m and n, respectively, and when a
runs over all the representatives of Z/mnZ, so does the pair (b, c) over the
representatives of Z/mZ x Z/nZ. Therefore we see

mn—1

W)= Y () (@e* ™

a=0

= (mil )C(bn)e”'"”"')(il1 l//(Cm)ez"“/">

= x(my)Y (m) W() WQ). .
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Lemma 3.1.3. (1) Let y be a Dirichlet character mod m. Then for any integers [ (> 0)
and q, we have

0 if 1¥q,

Y daer =gl if g

im—1

Z X(a)eZniaq/lm —
a=0

(2) Let y be a primitive Dirichlet character mod m, and y' the Dirichlet character
mod Im induced from y. Then for an integer g, we have

Im—1
ZO X (@em et = Wiy Y cull/e)x(le) i(g/c),
a= 0<cld,q
where p is the Mobius function.
Proof. We see that
Im—1 m-—1 -1
Z X(a)elnia/lm — Z X(d)eb!idq/lm Z elnibq/l (a — bm+d)
a=0 d=0 b=0
0 if 14q,
= m—1
I'S g(d)eim if l|q.
d=0

This implies (1). Furthermore if y is primitive, then we see by Lemma 3.1.1 that
! ; 0 if g,

(3.1.6) x(a)emiea/im — { _ :
2o W@zan i lla

Now we see

Im—1 im—1
;0 X’(a)eZﬂ:iaq/lm= z ( Z 'u(d)>x(a)e27tiaq/lm

a=0 \o<d|(al)
mc—1
= L wdd) T xmee,

0<d

where | = cd, a = nd. Applying (3.1.6) to the last sum, we obtain (2). |

Let p be an odd prime number. For integers n, we put

1 if pin and x* =nmodp is solvable in 7,
(3.1.7) <H> ={—1 if pin and x*=nmodp is unsolvable in Z,
0 if pin

We call (Z) the quadratic residue symbol, or the Legendre symbol. The mapping

13 £33

ne— » is a Dirichlet character mod p. We generalize the quadratic residue

symbol and define (%) for integers aand b ((a, b) # (0, 0)). When b is an odd prime
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number, we define (g-) by (3.1.7). Next if b is 2, +1, or 0, we put

1 if a=1mods,
(g)z —1 if a=5mod8,

0 otherwise,

a\_{ 1 if azo
(3.1.8) (_1>—{_1 if a<0,

In general, let b be a nonzero integer. Express b as the product of +1 and prime
numbers
b=¢llp (e=+1, p:prime),

and put

a a a
319 —]={- -
319 <b> (8 ) 1:[ <p>
We call g the Kronecker symbol. The following theorem on quadratic fields is

well known (see, for example, [ Borevich-Shafarevich]).

Theorem 3.14. Let F = @(ﬁ ) be a quadratic field with a square-free integer m.
For any prime number p, we have:

(i <_r§> = 1, then p splits in F,
L fm
2) if <;> = — 1, then p remains prime in F;

3)if <r:> = 0, then p ramifies in F.

Now let F = @(ﬁ) be a quadratic field as in Theorem 3.1.4, and d the
discriminant of F (for the definition of the discriminant, see §3.3). Then we have
_)om if m=1mod4,
" l4m if m# 1 mod4,

so that (ﬂ> = (f) for odd p. We note that when d is the discriminant of some
P p

quadratic field, % coincides with the classical one. The following properties

are well known.
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d
(3.1.10)  For any integer d(+# 0), the mapping “n+—><—>” is a Dirichlet character,
n

d .

and if d is the discriminant of a quadratic field, then “n— <—>” is a primitive Dirichlet
n

character of conductor |d|.

(3.1.11) If p is a prime number, — 1, or —2, then we put

( p if p= 1 mod4,
—p if p=—1mod4 and p+# —1,
pr=9q —4 i p=-1
8 if p=2,
-8 if p=-2

Then an integer d is the discriminant of a quadratic field if and only if d is a product of
distinct p*’s. In this case, if d = Il1p*, then

(9)-o(z) oo

*k
(3.1.12)  If p is an odd prime, then (lL) = <g>for any integer a.
a p

The last property is called the Gaussian reciprocity law.

§3.2. The Riemann Zeta-Function

For a sequence {a,};-, of complex numbers, we put

$6)= Y an~  (seC),

1

and call it a Dirichlet series. In particular, when q, = 1 for ali n = 1, we write

8

and call it the Riemann zeta-function. Since for any ¢ > 0,

provided Re(s) = 1 +¢,( (s) is convergent absolutely and uniformly on Re(s) = 1 +&.
Hence {(s) is holomorphic on Re(s)> 1. Let us show that {(s} has the infinite
product expansion

o0

14+ [x **9dx < 0
1

II/\

=[[0-p~
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where p runs over all prime numbers. In fact, let ¢ be a positive number. Then for
any positive integer m, we see

&)= [T A=p™) 1= ) n 07

p<m nzm

on Re(s)=1+e¢ Since the right-hand side converges to 0 when m— oo,
[, <m(1—p~°)" " converges to {(s) on Re(s) = 1 + &. Since ¢ is arbitrary, the infinite
product expansion holds on Re(s) > 1. More generally, if a Dirichlet series ¢(s) is
convergent on a complex domain and has an infinite product expansion of the
form

o(s) = [[#,(5),
14
with a meromorphic function ¢ ,(s) of p~*, we say that ¢(s) has an Euler product.

Lemma 3.2.1. Assume that both Y ,°, a,n™* and Y " b,n™* are absolutely con-
vergent at s=04(>0). If Yo _ a,n"*=Y,"_, b,n"° on Re(s) 2 gy, then a,=b,
for all n.

Proof. 1t is sufficient to show that if Y °_; a,n™*=0, then 4, =0 for all n. Since
Y o= ia,n”* is absolutely convergent at s =o,, it converges absolutely and uni-
formly on Re(s) = g,. Let m be the smallest integer such that a,, # 0. Since we have
(n/m)~° <n~2 for n>m? and o > 0, we see

0

laml < 3, 1|61,.l('1/"l)“r

n=m

m2 0
< Y lal/mc+ 3 laln? (@Zzay).
n=m+1 n=m2+1

Take a sufficiently large N so that

0

Y laln o <la,l/3,

n=N+1
and take ¢ > 20, so that

m2

N
Y lal/m)y™+ ¥ lalnT <layl/3.

n=m+1 n=m2+1

Then |a,,| < %|a,,]; this is a contradiction. O
Let now K be any commutative ring, and K the ring of all formal power series
over K with variables u,, for all prime numbers p, or
K= K([[u, | p: prime numbers]].

We call elements of K formal Dirichlet series. For the prime factor decomposition
n=[],p% write

n~*=]us, 17%=1.
P
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Then any element of K can be expressed as
d(s)= ) amn*
n=1

with a sequence {a,} of K. Let ¢,(s) be an element in K [[u,]] for each p. Assume
¢,(5) = 1 + (a formal power series in u, of degree = 1)

for almost all p. Then the product [], ¢,(s) is meaningful in K. When a formal
Dirichlet series ¢(s) can be written as the product

() =118,  ($,(s)eK[[u,]1])

in K, we say that ¢(s) has a formal Euler product. Formal Dirichlet series and
formal Euler products are useful to state relations among numbers a,.

In general, Dirichlet series appearing in number theory can be analytically
continued to the whole complex plane and satisfy functional equations. We study
these for the Riemann zeta-function. For se C such that Re(s) > 0, we put

I'(s)= j)e_’ts_ldt.

0
When Re(s) =z ¢, 1 > ¢ >0, we see

e 5Tl — O(e™ 79 (t—> ),
oY (t - 0).

Then I'(s) is convergent absolutely and uniformly on Re(s) = e. Hence I'(s) is a
holomorphic function on Re(s) > 0. By definition, I'(s + 1) = sI'(s) on Re(s) > 0.
Therefore by putting

[Gs)=s"'I'(s+1)  (Re(s)> —1),

I'(s) becomes a meromorphic function defined on Re(s) > — 1. Repeating this
procedure, I'(s) is continued to a meromorphic function on the whole s-plane. We
call I'(s) the I'-function. For complex numbers z( # 0) and s, we put

(3.2.1) 75 = gstloglz| +iarg(2)) (— 7 <arg(z) £ n).

The following properties of I'(s) are well known (for the proofs, see, for example,
[Ahlfors]):

(3.22) I'(s+1)=sI(s), I'(n)=(n—-1)! (nz1);

(3.2.3)  I'(s) is entire except for simple poles s = —n (n=0,1,...) with residue
(= 1)*/n!, and has no zeros;

(324) I(s)I'(1 —s)=mn/sin(ns),  ['(1/2) = /m;
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(3.2.5)  for a,seC such that Re(a) > 0, Re(s) > 0,

e "’ vdt = a *I'(s);

O ey 8

(3.2.6) (Legendre’s relation) 2 ' I'(s)I'(s + 1) = ﬁF(Zs);

(3.2.7)  (Stirling’s formula) I'(s) = /2ns*~ /2e™ 5+ #9) where u(s) is a function
such that
u(s)=0  (Is| - o)

uniformly on Re(s) = g4 > 0;

(3.2.8) (Stirling’s estimate) I'(s) ~ \/2n1° " Y2e ™12 (s=0+it, |1|—> 0),

uniformly on any vertical strip vi{ < 0 £ v,;

' S
(29)  (Buler-Gauss) I(s) = lim 1)""_"_ G O<seR).

Theorem 3.2.2, (1) Put
A(s) =~ %2(s/2){(s).

1 1
Then A(s)-+-; + i

can be holomorphically continued to the whole s-plane, and

we have the functional equation

A(s) = A1 —s).

@ {(s) -

is entire.
s—1

Proof. By definition, we see, on Re(s) > 1,

(3.2.10) AQ2s)= 3 (m?) " [e e~ tdt
X |

V]
= T( i e""’zt)t‘_ldt.
0 \n=1

Here we can exchange the order of integration and summation since
S e ™|~ 1 is integrable. Since for f(x)=e ", Y _ _ f(x + n) is uni-
formly convergent, the Poisson summation formula implies
i e—nnzt — i i e—ﬂ:nzlt
n= — o ,\/; = — w '
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. 1
Putw(t)=Y" e~ ™ then w(t) = — w(1/t), so that

T NE

8

AQ2s) = [Ho@)—D)es~ 1t

O'—.H © ey

%(%w(l/t)- >ts—1dt+ ?%(w(t)— e~ tde

1 1
tl27s 4t t)— Dt~ tdt — — — .
( + ) w(t) — 1)t™ " dt PR —

»-At_.,8
N =

Since w(t) — 1 = O(e™ ™) (t — o0), the last integral is convergent uniformly on any
compact subset of the s-plane. Therefore it is an entire function of s. Defining
A(2s) for any s by the last integral, we obtain the analytic continuation of A(s). In

) 1 1 .
particular, A(s) + 3 + T is holomorphic on the whole s-plane. Moreover the

last integral is invariant under the transformation “s— 1/2 — s”. Therefore
we obtain the functional equation. The second assertion follows from (1) and
(3.2.3). O

More generally, for a function f(t) on R, = {xeR|x > 0}, put
3.2.11) As)= | f()r .
0

If this integral is convergent on some domain, we call A(s) the Mellin transform
of f(t). By (3.2.10), A(2s) is the Mellin transform of 1(w(z) — 1). Let now ¢ = &%,
and put s = ¢ + i, then we can rewrite

Ao +it)= | f(eF)e xdx,

that is, A(¢ + ir) is nothing but the Fourier transform of f(e*)e”™ for a fixed
o. Therefore the Mellin transform of f(¢t) is meaningful for ¢ such that
F(x) =f(e*)e’* is a Schwarz function; in other words, F(x) is a C *-function and
satisfies for any positive integers m and n,

d"F(x)
3.2.12 "
( ) s1ip x T < o0
Conversely, f(t) can be obtained by the Mellin inverse transform
1
(3.2.13) fy=z= | As)t *ds
275 Re(s) =¢o

by the general theory of the Fourier transform. Now take e~* for f(t). Since
f(e*)e’* is a Schwarz function for ¢ > 0, we have
1

32.14 R p— -s
( ) e i Re(s_g . I'(s)t™ds (o> 0)
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Also by taking 1(w(t) — 1) for f(t), by (3.2.10), we have

1 1
2. = -1)=— A(2s)t™°d 1).
6215 Glem-D=3o [ AQ)ds (0> 1)
Hence {(w(t) — 1) corresponds to A(2s) by the Mellin transform.
We now define the theta function 0(z) by

(3.2.16) 6(z)= Y e (zeH).

Since the right-hand side of (3.2.16) is convergent uniformly on any compact subset

1
of H, 8(z) is a holomorphic function on H. By the equality w(t) = 7 w(1/t) and
t

the holomorphy of 6(z), we have the transformation formula
(3.2.17) 0(— 1/4z) = (2z/i)/? 0(z).

As was shown above, this transformation formula is equivalent to the functional
equation of the Riemann zeta-function. Hecke generalized this equivalence to the
equivalence between functional equations of Dirichlet series and automorphy of
functions on H, which is one of the main topics in Chapter 4.

We conclude this section by calculating the values of {(s) at positive even
integers, which we need later. Put

and let

(3.2.18) F(t) = i %;'—:m

be its Taylor expansion. The coefficient B,, is called the m-th Bernoulli number. It is
obvious that

B,eQ, B,=1.

Since F(—t) = F(t) — t, we see

B, =1/2,

B,=0 if m(>1)isodd.
Now we see easily

iz —iz sy 2z
(3.2.19) zoot(z) = iz ST C i 4 2%

et _ ez 1— e—2iz'
Comparing this with the well known partial fraction expansion

(3.2.20) cot(z)=§+ Y 2

2122 — n?n?’
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and putting t = — 2iz, we have
t & 2
Fit)y=1+4+-+2 g i .
(t) + 5 + nzl 7T Oy (t # 2nmi, neZ)
Since
t2 0 t 2m
- _ 1 m—1{ " s
t? + (2nn)? mzl (=1 <2nn >
we have
Fio=1+542% § (copr S0
a 2 n=1m=1 (Znn)Zm'

The right-hand side is absolutely convergent, and therefore, we can exchange the
order of summation. Thus we see

2{(2m) gam
(2175)2’" :

Comparing this with (3.2.18), we know the values of {(2m). This combined with the
functional equation implies

Fiy=1+2+ 3 (=1
2 m=1

Theorem 3.2.3. For an integer m, we have

 — Qnipn
{(2m) = 20m)1 B, (m=0),
and
{(1 =2m)= —By,/2m  (m=1).

We give the values of the first eight Bernoulli numbers B,, for even m (see
[Washington]):

1 1 1 1 5
B = — B = —-_—— = — _—— _—
S 30 Bs 4zB8 30 Bio 66
691 7 3617
B16=

12=—ﬁ3'0 14=8

§ 3.3. Hecke L-Functions

In this section, we recall some resuits from number fields and Hecke L-functions
which are necessary later. Let F be a number field of degree g, and 7,, . . . , 7, all the
isomorphisms of F into C, and put F, = F*, a, = a* for any a € F. The isomorphism
1, is called real or imaginary, if F, < R or not, respectively. Hereafter we assume
that

(i) if v=r,, then 7, is real,
(@) if r,+1=<v, then 7, is imaginary, and a,=4a,,,, for aeF (r;+1
SvEri+ry)
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Here g = r, +2r,. We say that F is totally real if r,-= g, and that F is totally
imaginary if r; =0. Let t; < F be the ring of integers of F, I the group of fractional
ideals of F, and P the subgroup of I consisting of all principal ideals. Then the
quotient group I/P is of finite order and is called the ideal class group of F. We
denote the order of I/P by h( F) and call it the class number of F . For a non-zero
integral ideal m of t;, we put

Im)={ael| (a, m)=1},
Pm)={(a)eP|a=1mod m},

where mod ™ indicates the multiplicative congruence. Let ¢ be a character of I(m)
into C1. We call ¢ a Hecke character mod m if

ryt+ra .
(33.1) ¢((a)= H1 ta,/la,|y*la,[™ for (a)eP(m),
with real numbers u,, v,(1<v<r, +r,) such that
1 <
(l) uve {O’ } (V = rl)s
Z (rl + 1 é v)a
ri+ra
i ) v,=0
v=1
For a Hecke character £ mod m, put
M = {n: integral ideal of F | (3.3.1) holds for (a)e P (n) n I(m)}.

We call the greatest common ideal m, of elements of M the conductor of . When
m=my,, ¢ is called primitive. For any Hecke character £ mod m, there uniquely
exists a primitive Hecke character ¢° mod m, satisfying

(3.3.2) EOMm)=¢m) if nel(m).
Furthermore when u, and v, satisfy the additional conditions
(i) u,=0 (ri+1=<v=r +r,),
(ivy v,=0 (1=v=sr+r,),

a Hecke character ¢ is called a class character. We can extend a Hecke character ¢
to a mapping of I into C by defining &(a) = 0 if a¢ I(m).
Now we define the Hecke L-function for ¢ by

(3.3.3) L(s, &)=Y l(@)N(a)™* (s€0),

where a runs over all non-zero integral ideals of rp, and N(a)= Ng(a) is the
(absolute) norm of a, namely, Nz(a)=|1g/a|. Using the convergence of the Riemann
zeta-function, we see easily that L(s, £) is convergent absolutely and uniformly on
the set Re(s)=1 + ¢, for any ¢ > 0, and has the Euler product

(3.3.4) L(s, O)=][0=¢@IN(®))7,
p
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where p runs over all prime ideals of rf. In particular, when £ is the trivial character
&, We write

(33.5) (p(8) = L(s, &)=Y N (@ =[[(1-N(»)™)~",
a )

and call it the Dedekind zeta-function of F. When F=Q, it is nothing but the
Riemann zeta-function.

Hecke obtained the functional equation for any Hecke L-function by gen-
eralizing the proof for the Riemann zeta-function described in the previous section
([Hecke]). Before we state the functional equation, let us define the Gauss sum of a
Hecke character. We denote by tr=tr the trace mapping of F into @, and put

D !={aeF|tr(ab)eZ forall berg}.

Then D1 is a fractional ideal of F and the inverse D=D(F) of D! is an integral
ideal. We call D (F) the different of F. For a basis {«,, . . ., o, } of rp over Z, we put
dp = det[tr(a,a,)] (e2),

and call it the discriminant of F.
Now let ¢ be a primitive Hecke character of conductor m with u,, v,. We put,
for aeF (a #0),

(336) e ="T[" @/ lalyla, v
(337) &4(@)= (@)@

If a=b mod m, then ¢, (a)=£,(b). Let ¢ be an integral ideal of F such that Dmc is
principal and (m, ¢)=1. Take an element b of r; so that Dntc =(b), and define the
Gauss sum W(&) of £ by

600 (b) 2xmitr(a/b)
é(c) ; gf(a)e ’

where a runs over a complete set of representatives for ¢/mec. The value W(¢) is
independent of the choice of ¢, b and a set of representatives. By a similar argument
as in Lemma 3.1.1, we have:

(3.3.9) | W()|? = N(m);

(3.3.8) w(e) =

(3.3.10)  let &, n be two primitive Hecke characters of conductor m and n, respect-
ively. If (m, n)=1, then

(3.3.11) W(cn) = <mn (m) W W(n).

For a Hecke character £ mod m, we put

l@=¢@  (ael),

then € is also a Hecke character mod m. To state the functional equation for a
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Hecke L-function L(s, &), we put

2r1|dF|N(m)>s/2 ritr r (nvs + |uv| +iv,

(33.12)  A(s, 6)=< 2y 2

)L(S, £),

v=1

where

U RN
T2 (ry+1Z).

Now the functional equation for a Hecke L-function is as follows.

Theorem 3.3.1. Let & be a primitive Hecke character of conductor m.

(1) A(s, &) is analytically continued to a meromorphic function on the whole
s-plane, and satisfies the functional equation

A(I—S, é)= T(é)A(s’ E)’
where
T()=2"i""W()/N(m)'>,
. rlirz u, v= nin o,

v=1 v=1

(2) If & is the trivial character, then A(s, £) is holomorphic except for simple poles
at s = 0 and s = 1; otherwise A(s, £) is entire. The function A(s, &) is bounded on any
set of the form

{seCla<Re(s)<b, [Im(s)[=2c} (a<b, c>0).

(3) L(s, &) is entire if £ is not trivial. If £ is trivial, then it is holomorphic except for
a simple pole at s=1 with residue

¥ r2 gt Rh(F)
w/ldel
where w is the number of roots of unity contained in F, and R the regulator of F.

Now we consider particularly the case when F=@Q. Let y be a Dirichlet
character modm. For a fractional ideal a = (a)(b) "' (a, b€ Z, a, b > 0), we put

2(a) = x(a) x(b).

Then % is a Hecke character and a class character. Any Hecke character of Q is
obtained from a Dirichlet character in this way. We identify them. For a Dirichlet
character y mod N, the Hecke L-function of y

(3.3.13) L(s, x)= Zl xmn~*=T[0—x(p)p~)~*

is called the Dirichlet L-function of y. We also write the L-function as Ly(s, ) in
place of L(s, y), when we wish to emphasize the modulus N of y. If x° is the primitive
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character associated with y, then

(3.3.14 Ly(s, 0 =[] A—=x°(@)p™*)- L(s, 2°).

pIN

We restate the functional equation of Theorem 3.3.1 for Dirichlet L-functions. This
is necessary in Chapter 4. For a Dirichlet character y, we let

0 ifg(=D=1,
(3.3.15) 5x—{1 if y(=1)=—1.

Corollary 3.3.2. Let y be a primitive Dirichlet character of conductor m, and =49,
Put

A(s, )= (m/m)™*" r(#)us, 2

Then A(s, y) is meromorphic on the whole s-plane and is bounded on any set of the
form

{seCla<Re(s)<b, |Im(s)|=c} (a<b, 0<c).

Moreover, A(s, x) satisfies the functional equation
24 -
Al =s, 1) = ——7= A(s, X)-
i

If x is not the trivial character, A(s, x) is entire.

We can restate Theorem 3.1.4 by using Dirichlet L-functions and Dedekind
zeta-functions as follows.

Theorem 3.3.3. Let F= @(\/c_i ) be a quadratic field with discriminant d, and y,= <ﬂ>
the Kronecker symbol. Then we have

Cp(s) = L) LS, 2a)-

In the previous section, we calculated the values of the Riemann zeta-function
at positive even integers using Bernoulli numbers. Leopoldt generalized it
to Dirichlet L-functions. Let x be a primitive Dirichlet character of conductor m.
We put

m o x(a)ee”
F ()= =
() a; R
and let
® B
F (t)= nx g
X() nZ:O n!

be the Taylor expansion. We call the coefficient B, , the n-th generalized Bernoulli
number associated with x. It is obvious that

B, ,eQ(0)=Q(x(a) |aeZ).

When y is the principal character, B, , is nothing but the Bernoulli number B,.
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Theorem 3.3.4. Let y be a primitive Dirichlet character of conductor m and 6 =35,
Let k be a positive integer.

(1) If k=0 mod?2, then

Bz

24
Lk, ) =(=1"'**7972 —~2§f) (2n/m)t —£E,

and
L(1—k, )= —B, ,/k.

(2) Ifk#d6 mod2, then L(1 —k, x) =0 except form =1 and x = 1.

For the proof and further results, see [Iwasawa]l, or [Washington].



Chapter 4. Modular Groups and Modular Forms

In this chapter, we explain the general theory of modular forms. In §4.1, we discuss
the full modular group SL,(Z) and modular forms with respect to SL,(Z), as an
introduction to the succeeding sections. We define and study congruence modular
groups in §4.2. In §4.3, we explain the relation between modular forms and
Dirichlet series obtained by Hecke and Weil. As an application of §4.3, we prove the
transformation equation of #(z) in §4.4. We explain Hecke’s theory of Hecke
operators in §4.5 and define primitive forms in §4.6. In §4.7 and §4.8, we construct
Eisenstein series and some cusp forms from Dirichlet series of number fields. In
§4.9, we explain theta functions which are also useful for constructing modular
forms.

§4.1. SL,(Z)

Wecall SL,(Z) and its subgroups of finite index modular groups. We call SL,(Z) the
Sull modular group. In this section, we restrict ourselves to SL,(Z) and give concrete
examples of automorphic forms to provide a transparent prospect for the suc-
ceeding sections. In this section, we assume I' = SL,(Z).

11 0 —1
Theorem 4.1.1. SL,(Z) is generated by two elements [ 0 1 :I and [ ) 0].

11 0 -1
Proof. Put 1= [0 1:', w= |:1 O:I, and let A be the subgroup of SL,(Z)

generated by 7 and w. Suppose A # SL,(Z). Since

1 0
wr_lw_‘=[] 1] and o?= —1,

0
all elements of the form [z d] of SL,(Z) are contained in A. Therefore if we put

b = min{|b|H:Z Z]eSLZ(Z)—A},

then b, # 0. Take an element y, = I:jo Z°:| of SL,(Z)— A, and an integer n so
0 0o
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that |a, — nbg| < by. Since

—by ag—nb
—1._.n __ 0 0 0
yow v= [ “‘do CO - ndo],

we get yow 't"eA by the assumption on b, Hence y,e; this is a
contradiction. O
Theorem 4.1.2. (1) The set

F={zeH| [z|21 and [Re(z)| <1/2}

is a fundamental domain of I'. (See Figure 4.1.1.)
(2) We have v(I'\H) = =/3. In particular, I is a Fuchsian group of the first kind.

Proof. (1): Let z be any point of H, and put L = {cz+d|c, deZ}. Since L is a
lattice in C, any non-empty subset of L contains an element which has the minimal
absolute value. In particular, there exists the minimal value among in the set
{liy, 2)llye I'}. Since Im(yz) = Im(z)/|j(y, z)|? there exists a point z, of H which is
equivalent to z by an element of I' and satisfies that

“4.1.1) Im(zy) = Im(yz,) forall yerl.
11
Put 1 = |: 0 1:|, then 1™z = z + m for any integer m. Replacing z, with t™z, if
0 -1
necessary, we may assume |Re(z,)] < 1/2. Take |: { O:I as y in (4.1.1), then

Im(zo) 2 Im(—1/zo) = Im(z,)/Izo %,
so that |z,| 2 1. This implies z, € F. Therefore H = { J,. - yF. Next put
U={zeH| [z|>1 and |Re(z)| <1/2}.

A\

NN
AN

c =¢" i’3

N|—|remcrcrrnew-

|
—
|
Nj—
(=]

Fig. 4.1.1
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~ b
Then U = F. We are going to verify yUn U = Jfory # +1. Lety = [(CI d:lbe

an element of I' such that yU n U # &, and take an element ze U so that yze U.
We may assume Im(yz) 2 Im(z) by taking y~! in place of y, if necessary. Then

4.1.2) lc|llm(z) S lez+d| = 1.

Since z belongs to U, we have Im(z) > \/5 /2. Thus we get |¢| < | noting that ¢ is
an integer. Suppose |c| = 1. Then |z + d| < 1 by (4.1.2). On the other hand, we have
|z +d| > 1 for any integer d, since ze U. This is a contradiction; thus ¢ =0,

1
y=+ [0 ll’], and yz = z + b. For an integer b, both z and z + b belong to U if

1
and only if b = 0. This implies y = + |: . Consequently, F is a fundamental

0 1
domain of I'. (2): Since v(I'\H) = v(F), we get v(I'\H) = n/3 by Lemma 1.4.4.

|

Theorem 4.1.3. (1) Any elliptic point of I is equivalent toi = ./ —1 or { = e™3. The
point i is an elliptic point of order 2 and

efel 0] [0 1)

The point { is an elliptic point of order 3 and

Y I N I A e |

(2) The set Prof the cusps of I' is Q U {0}, and all cusps of I' are equivalent.
(3) The genus of R -is equal to 0.

Proof. (1) It is obvious that interior points of a fundamental domain are ordinary
points. Thus any elliptic point must be equivalent to a boundary point of the
fundamental domain F defined in Theorem 4.1.2. Since I" contains

(01 g w0

“lo 1] ™ T of
the boundary points of F, other than the three points i, {, and (' (=e*"/3), are also
ordinary points. Observing that the interior angle of F at i is =, we see the order of i
is at most 2. Since wi = i, and w? = — 1, the point i is indeed an elliptic point of

order 2. Since t{’ = { and the interior angles of F at { and {’ are both 7/3, the order
of { is at most 3. Now we note

rw=[i _é], (‘L'w)2=[(1) :i:l, and (tw)® = —1.

Since T fixes {, { is an elliptic point of order 3, and {’ is equivalent to {. (2): It is
obvious that the point co is a cusp of I'. Let x (# o) be a cusp of I'. Since x is a
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double root of a quadratic equation with rational coefficients, x is a rational
number. Conversely, let x be a rational number, and x = a/c its reduced fractional
b

d 3
then ye I and y oo = x. Therefore x is I'-equivalent to co. This proves (2). (3): Letg
be the genus of R . By Theorem 2.4.3, Theorem 4.1.2(2) and above (1) and (2), we
have

expression. Then we can take integers b, d so that ad —bc = 1. Put y =

1/6=29g—2+(1-1/2)+(1—-1/3)+1,
so that g = 0. O

We can calculate the dimensions of 4, (I} and &, (I") using Theorem 2.5.2 and
Theorem 4.1.3.

Corollary 4.1.4. For an even integer k = 2, we have

0 if k=2,

dm#(M) = { [K12]1—1 ifk=2mod12, k>2,
[k/12]  if k#2mod12,

. (121 fk=2mod12,

dim &, (I') = {[k/lZ] +1 if k#2mod12.

Here [x] denotes the largest integer < Xx.

We are going to construct elements of 4,(I"). For an even integer k = 4, we put

a0

4.1.3) Ez)= Y (mz+n)* (zeH).

mn= —c

(m,n) # (0,0)
We will prove below that E,(z) is convergent absolutely and uniformly on any
compact subset of H, and is an automorphic form of weight k with respect to I.

% b ”
Lemma 4.1.5. The correspondence |:a d:|}——>(c, d) gives a bijection between
¢

' \T and the set
e )eZ x Zi(e,d) = 1}/{+1}.

Proof. The surjectivity is obvious, while the injectivity is proved by (2.1.4). O

Using the Poincaré series in §2.6, we put for an even integer k = 4,
(4.1.4) Gi(2) = Fy(z; b0, X0 T T),
where ¢, = 1 and y,, is the trivial character of I". Then by Lemma 4.1.5,
1
(4.1.5) G.(z) = 2 > (mz+n)7k zeH,

mneZ
mmn)=1
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and
4.1.6) Ey(z) = 2{(k)Gy(2),

where {(s) is the Riemann zeta-function.

Lemma 4.1.6. Let k be an even integer = 4.

(1) E,(z) is convergent absolutely and uniformly on any compact subset of H, and
belongs to 4, (I').

(2) E.(z) has the following Fourier expansion at oo:

Qi =

Z ak— l(n)ezﬂnz’

Efe) =20 +2 574 3

where

or_1(n) = 0<z«;| d<t.

Proof. Though the first assertion follows from (4.1.4) and the convergence of the
Poincaré series, we here give a direct proof. Let z be any point of H, and put
L ={cz+d|c,deZ}. For a positive integer n, let M, be the boundary of the
parallelogram with the vertices + nz + n, and r(z) be the distance from the origin 0
to the set M, . Then r(z) is a continuous function of z. Since | L n M,| = 8n, we see

4.1.7) f |mz+n|—"=f Y o™ < 8l(k—r(z)7k,

mn = - n=1lwelnM,
(m,n) # (0,0)
so that E,(z) is convergent absolutely and uniformly on any compact subset of H.

Lety = [a b]el‘, then
c d

(4.1.8) m(yz)+n = {(am+ cn)z + (bm + dn)}(cz + d) ™.

When the pair (m, n) runs over all Z x Z—{(0,0)}, so does the pair (am + cn,
bm + dn). This proves the automorphy of E,(z). Next let us show (2) and the
holomorphy of E,(z) at co. Now we can rewrite (3.2.20) into

4.1.9) meot(nz)=z"'+ Y {(z+m) '+(z—n)"'}
n=1
Moreover, by (3.2.19) we have
(4.1.10) ncot(nz) = ni(l -23 ez’“"").
n=0
Differentiating (4.1.9) and (4.1.10) k — 1 times, we get

4.1.11) (— 1k — 1)! {z"‘ + i (+n) " +( —n)_")}

= (27ti)k i nk— leZninz‘
n=1
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o0
Since Y (z+4n)7* is absolutely convergent, we can exchange the order of
n=-—w

summation on the left-hand side and rewrite it as

4.1.12) (— ¥k — 1) i (z+n)*=(2mi) i nk 1 g2minz,
Therefore we obtain

E(z)=2 i} nk+2 il i (mz+n)~*k

22mif & 2 .
= 20(k) + (k(— 1))! m;“:l k= 1g2mimnz
This proves (2). I
It follows from Corollary 4.1.4 and (4.1.6) that

(4.1.13) N ([} = C-E(2) (k:even, =4).
Furthermore, for the study of 4,(I'), it is useful to define
4.1.14) A4(z) = 1273(G,(2)® — G¢(2)?),
4.1.15) J(z) = G,(z)3/4(z).

It is obvious that A(z)e%,,(I') and J(z)e o/ (I"). We note that in relation to
elliptic functions and elliptic curves, it is more useful to consider the functions

(4.1.16) g:(z) = 60E,(z), gs(z) = 140E¢(z).
Then

(4.1.17) @m)'2 Az) = g,(2)° — 27g5(2)%,
(4.1.18) m)'2J(z) = 123g,(2)3/4(2).

Theorem 4.1.7. (1) A(z) belongs to &, ,(T'). Let A(z) = Y % 1,e*™" be the Fourier
expansion, then 1,€Z and 1, = 1.

(2) A(z) has no zeros on H.

(3) A o(I') = C(J) and J(z) has the following Fourier expansion at co:

o0
J(Z)= e-—2mz+ Z cnebunz’ CnEZ.
n=0

Proof. (1): We have only to study the Fourier expansion of 4(z) at co. For even
integers k = 2,

—(2mi)
(k)= —— B
by Theorem 3.2.3. Since B, = —1/30 and B, = 1/42, we have
4.1.19) Ga(z) =1 4 240825 4 - - |

(4.1.20) Ge(z) = 1 — 504e* 7 4 - - -
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Therefore, putting 4(z) = Y ;2 1,62™", we get

1227, =1—-1=0,

1237, = 3-240 + 2-504 = 1728 = 123,
Thus 4e€ % ,(I') and 1, = 1. We postpone the proofs of the integrality of 7, and (2)
until Theorem 4.4.2. (3): The Fourier expansion of J(z) at co follows from (1) and
(4.1.20). By (2), J(z) has, as a function on R, a pole of order 1 at the cusp. Since

K(Rp) is isomorphic to /(") by the canonical correspondence, we obtain
[Ao(T):C(J)] =ny,(J)=1Dby (18.6). O

Theorem 4.1.8. Let k = 4 be an even integer. Then %,(I') has a basis
{G4(2)"Gg(z)"|4m +6n =k, m,n=0}.

Proof. 1t is obvious that if 4m + 6n = k, and m, n = 0, then G,(z)"G4(z) €% ().
An easy calculation shows

(4.1.21) #{(mn)dm+6n=%k mn20}
_ f[k/12] if k =2mod 12,
| [k/12]1+1 ifk # 2mod 12,
= dim%,(I').

Thus we have only to prove that G,(z)"G¢(z)" (4m + 6n = k, m, n = 0) are linearly
independent. Suppose they are not so, and let

(4.1.22) Y CmnGiGE=0  (Cu.€C)

4m+6n=k

be a non-trivial linear relation. We define a polynomial of two variables X, Y by

(4.1.23) FX,Y)= Y cn.X"1"

4m+6n=k

By assumption, F(G,,Gg)=0. Take two complex numbers b,, b, so that
F(by, bg) # 0and b3 — bZ # 0. Since for any complex number a, J(z) — a has a zero
by (1.8.6), there exists a point z, of H such that

123b3
(4.1.24) J(zo) = b—“

-2
Now we are going to show the existence of a complex number ¢ satisfying
c?by = Gylzo)s c*bg = Gg(zo).

First assume b, = 0. Then by # 0, hence we can take a complex number ¢ so that
c*bg = Gg(zo). On the other hand, G,(z,) = 0 by (4.1.24) and 4(z,) # 0. This
implies ¢?b, = G,(z,). Next suppose b, # 0. Take a complex number ¢ so that
¢?b, = G,(z,). Then we get c3bg = + Gg(z,) by (4.1.24). Replacing ¢ with —c, if
necessary, we obtain ¢*bg = Gg(z,). Now, since A(zy) = 127 3¢5(b3 — bZ) # 0, we
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get ¢ # 0, so that
F(G4(20), Ge(20)) = c** F(by, bs) # O;

this is a contradiction. O
We conclude this section with a remark on E,(z). We have

(4.125)  CcE(z)= — %+ f Ouoy ()X ¢ = (k — 1)1/2(2mi)~.
n=1

Using the Fourier coefficients of (4.1.25), we put
(4.1.26) Li(s) = 2—:1 Op—1 ()",

Then we see easily that it is a product of two Riemann zeta-functions
4.1.27) L,(s)y=C(s){(s—k+1),

and therefore, L,(s) is convergent on Re(s) > k, and has an Euler product

Ls)=[[[A—p™)d —p*7 1771

The analytical continuity and the functional equation of {(s) induce those of L,(s).

§4.2. Congruence Modular Groups

For a positive integer N, we define subgroups I',(N), I (N)and I'(N) of SL,(Z) by

FO(N)={ ‘C' Z eSLZ(Z)|c50modN},
a b]
FI(N)={ ; |esL@)e=0, azdznnodN},
2 b
r(zv):{ ; |esL@ib=c=o, aEdEImOdN}.
We note
SLy(Z)=To(1)=T(1)=T(1),
and

SLy(Z) > I'o(N) > I'{(N) > T'(N).
Further if M|N, then
I'o(M) 2 Tg(N), I''(M)>T4(N), I'(M)>I(N)

These subgroups are modular groups since [I'(1):I'(N)] < oo, which will be
proved below. We call I'(N) a principal congruence modular group, and I' ,(N) and
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I's (N} modular groups of Hecke type. We call N the level of T'o(N), I',(N), and I'(N).
A modular group containing a principal congruence modular group is called a

b
:|eM2(Z), we define an

a
congruence modular group. For an element vy =|: d
c

b

d_ ’

where @ = amod N, b = bmod N, ¢ = ¢cmod N, d = dmod N. Then Ay induces a
homomorphism of SL,(Z) into SL,(Z/NZ). We note that for integers m, n,

clement Ay(y) or y mod N of M,(Z/NZ) by

o ™

Ay(y) =ymod N = [

4.2.1) if (m,n, N) =1, then there exist integers m’, n' such that
m =mmodN, n=nmodN and (m,n')=1.

This can be easily shown, for example, by the Dirichlet theorem on arithmetic
progression.

Theorem 4.2.1. Let Ay be the homomorphism of SL,(Z) into SL,(Z/NZ) defined
above.

(1) Ay is surjective.

(2) Ker(dy) = I'(N); in particular, I'(N) is a normal subgroup of I'(1).

Q

Proof. (2) is obvious. Let us show (1). Let [

o

b
d_] be an element of SL,(Z/NZ),
and take integers a,, b, ¢,, d; so that

4 by mod N =
¢y dy .

Then a;d, —b,c, = 1 mod N, so that (c,,d,, N) = 1. By (4.2.1), we may assume
(cy,d,) = 1. Let n be an integer such that

RN
ISR |

a,d, —b;c;=1+nN.
Since (c,, d,) = 1, we can take integers a,, b, so that a,d, — b,c, = — n. Putting

a=a1+a2N, b=b1+b2N,

c=c¢;, d=d,,

a b a b
we see [c d]eSLz(Z), and |:c d] mod N =|:

o &

) o

I__J
O
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’”

(13 b
Corollary 4.2.2. The mapping [a d:|o—>dmodN €(Z/NZ)™ induces an iso-
¢

morphism
IL(N)/T\(Ny~(Z/NZ)™.

d * d

%k *
= [* cb’ +dd’]’

¢ch' +dd = dd modN.

* % *x B
Proof. For two elements y = l:c ], and y' = |: :I of I',(N), we see that

and

Therefore the mapping is a homomorphism. The latter part is straightforward from
Theorem 4.2.1. , O

We note that we can take a complete set of representatives of I'y(N)/I';(N)
consisting of the elements y of the form

*
ymodN:[O 2:|

Now let N =[], p° be the expression as a product of prime numbers. Then Z/NZ
is isomorphic to [[,(Z/p®Z) by the correspondence “a — [ ],(a mod p°)”, so that

M,(Z/NZ) ~[[M,(Z/p°Z)

through the correspondence:

2]l o)

b
It is obvious that if [a d]eSLZ(Z), then [: Z:lmod p°eSL,(Z/p°Z). Con-

b
versely, suppose [Z mod p°e SL,(Z/p*Z) for all prime factors p of N. Then
c

[Re)

ad — bc = 1 mod p®, so that ad — bc = 1 mod N. Therefore we get the following

Lemma 4.23. Let N be a positive integer, and N = [ ], p° the expression as a
product of prime numbers. Then

SL,(Z/NZ) = [[SL,(Z/p°2).

Theorem 4.2.4. For a positive integer N, we have:
(1) |GL,(Z/NZ)| = ¢(N)ISL,(Z/NZ)|;

(2) ISL,(Z/NZ)| = N? l'_[(l ~1/p%).
PIN

Here ¢ is the Euler function.
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Proof. The first assertion is obvious. We have only to verify (2) for a prime power
N =p° by Lemma 4.2.3. First suppose e=1. Then Z/pZ is a field, so that
|GL,(Z/pZ)| is equal to the number of all ordered basis of the two dimensional
vector space Z/pZ @ Z/pZ over Z/pZ. Then it is given by p(p — 1) (p? — 1), thus,
(1) implies

ISL,(Z/pZ)| = p(p* — 1) = p*(1 — 1/p?).
Next assume e > 1. Let

A:SL,(Z/p*Z)— SL,(Z/pZ)

be the canonical homomorphism. Then A’ is surjective by Theorem 4.2.1(1) and

(2 2]=[s O]moar)

For any elements b,c,d of Z/p°Z such that b=c¢=0mod p, d =1mod p,
there exists a unique element a of Z/p°Z such that ad — bc = 1. Therefore
Ker(4)| = p*¢~ 1), and

ISLo(Z/p*Z)| = p>*(1 — 1/p?). L]

Ker(4) = {[j z]e SLy(Z/p*Z)

For a modular group I', we write
I =yI') < Aut(H),

where 1 is the homomorphism of SL,(Z) onto Aut(H) defined in §1.1. Then
I ~ I'/Z(I'). We also write, for the stabilizers I', ze HUR U {o0}),

I,=uI,) (=TI./Z{I)).

Theorem 4.2.5. For an integer N = 2, we have:

o F[r(1):r(N)]1=3N° I|—1[v(1 —1/p*) (N>2),
M LPOLET= 1 tray.reg=6 (N=2).

) [F):To(N)]=[T(1):To(N)]1= N [10+17p)
SILO(N):T (N)] = $(N)/2 (N > 2),
[To(2:T(2)]=1 (N=2).
Here ¢ is the Euler function.

Proof. Since I'(2)s — 1 and I'(N)% — 1 for N > 2, we see

$[r(1):r(N)] (N>2),
[F(1):r@71 (N =2).

(3) [Fo(N): I (N)]= {

[F(1):['(N)] = {
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Thus we obtain (1) by Theorem 4.2.1 and Theorem 4.2.4. Since Ker(4y)
=TI'(N) c I';(N), we see that

LF(1):To(N)] =[SLy(Z/NZ):A5(I'h(N))]

and
[To(N): Ty (N)] = [An(To(N)): Ax (T (N))].
Furthermore
An(Tp(N)) = {[8 Z_l]eSLZ(Z/NZ)lae(Z/NZ)X, beZ/NZ},
and

an»:{[(l) ll)]eSLz(Z/NZNbeZ/NZ}.

Therefore [Ay(I'o(N))| = N¢d(N) and |24([(N))| = N. Noting that —1eTIy(N),
—lerl (2)and —1¢TI,(N)for N > 2, we obtain (2) and (3). O

Lemma 4.2.6. If I is a modular group, then any elliptic element of I is of order 2 or 3.

Proof. Though the assertion is obvious from Theorem 4.1.3, we give here an
algebraic proof. We may assume I's —1 by taking I'-{+ 1} in place of I'. Let

b
y = I:j d] be an elliptic element of I', and z a point of H such that yz = z. By

definition, we see |a + d| < 2, so that the characteristic polynomial of y is X2 + 1 or
X?+ X + 1. Hence y* =1 or y° = 1. Since the stabilizer I, is cyclic by Theorem
1.54, and I',3 — 1, I', is a cyclic group of order 2 or 3. O

We are going to study elliptic points and cusps of modular groups. For a
modular group I', we denote by v, (I') (resp. v5(I")) the number of inequivalent elliptic
points of I' of order 2 (resp. 3), and by v (I') the number of inequivalent cusps of I
Let P,-be the set of the cusps of I'. By Corollary 1.5.5 and Theorem 4.1.3, we see

Pr=Pr;,=0Qu{w}.

Since all points of Q U {0} are I'(1)-equivalent,

(4.2.2)  the correspondence “I'(1)3a +— ac0 € P induces a bijection of '\I'(1)/
ra), onto '\ Pr.

In particular,
(4.2.3) WA\Pr| =|T\T'(1)/T(1),].

Next we assume —1¢7I. To distinguish regular and irregular cusps of I', we put

4.2.4) ray: = {[(1) '1’]

neZ}cF(l)m,
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and define a mapping
n:I\I 1)/ (1)g — I'\T()/T (1),
4.2.5) W W
rar()} +—— rar),.

Since [I'(1),: ' (1)} ] = 2, the number of the inverse image by 5 of each element of
r\rqy/rj, is 1 or 2. Let y be an element of I'(1), then we see that

(4.2.6) ln~ ' (IyF (1))l = 1= TyL(1), = [yl (1)
(7' ry)r(); > r(),
_ —1 hi .
<y 1Fya[ 0 _1:|w1thh>0

<>y00 is an irregular cusp.

Now we shall calculate v, (I'} and v,(I') for I' = I'y(N), I'; (N) and I'(N).

Theorem 4.2.7. For N = 2, we have:

0 if 4N,
v (Io(N)) = N (1 +<—,,1)> i 44N,

0 i 9N,
v (Fo(N)) = H<1+<_73)> if 9IN,
v, (Fo(N)) = 0<ZM #((d, N/d))

Here ¢ is the Euler function; (—) denotes the quadratic residue symbol (see §3.1).

Proof. Put v, =v;(I'y(N)) for i = 2,3 and co. First we calculate v,. Let z, be an
elliptic point of I'y(N) of order-3. Since —1eI4(N), I'¢(N),, is a cyclic group of
order 6. By Lemma 1.3.5(1), there exist exactly two elements of I',(N),, of order 6,
which are not conjugate. Therefore,

vy =4 # {I'o(N)-conjugacy classes of the elements of order 6 in IH(N)}.

-1 0 .
On the other hand, [ 0 1:| belongs to the normalizer of I'y(N), and the
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-1
conjugate of an elliptic element of I',(N) by I:

0
0 1 ] is also an elliptic element of

the same order. Put

-1 0
T§(N)=To(N)u FO(N)[ 0 1],
then by Lemma 1.3.5(1),
vy = # {I'§ (N)-conjugacy classes of the elements of order 6 in I,(N)}.

Put { = ¢™/3, and let « be an element of I'y(N) of order 6. Put

e 3]

We define the action of Z[{] on L by

@+ bé)m - a[ﬂ ¥ ba[l:].

Then L is a left Z[{]-module. Since x e I'4(N), the subgroup

oL

of L is stable under the action of Z[{]. Since Z[{] is a principal ideal domain, L is
isomorphic to a direct sum of copies of Z[{]. Therefore comparing the ranks of L
and Z[{] over Z, we see that L is isomorphic to Z[{] as Z[{]-modules. We denote
this isomorphism by p, and put

a,beZ} (= Z%).

a,beZ}

Ia = p_l(LO)'

Since L, is a Z[{]-submodule of L, I, is an ideal of Z[{]. Since any Z[{]-
automorphism of Z[{] is obtained by the multiplication of a unit of Z[{], I, is
independent of the choice of p. Moreover

@.2.7) Z[{/I,~L/Ly~Z/NZ.

Let B be an element of I'y(N) conjugate to o by an element of I'F (N). Since L, is
stable under the left multiplication of any element of I'g (N), we get I, =I,.
Conversely, if I is an ideal of Z[{] satisfying

(4.2.8) Z[0/1~2/NZ,
then there exists a basis {w;, w,} of Z[{] over Z such that
4.2.9) {w,, Nw,} is a basis of I over Z.

Let a € M, (Z) be the representation matrix for { with respect to the basis {w,, w, },
namely

(4.2.10) (Ewy, Lwy) = (wy, wy)a.

Since the minimal polynomial of { over Q is X2 — X + 1, we see det(x) = 1.
Furthermore since I is an ideal of Z[({] and {w,, Nw,} is a basis of I, we see
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aely(N). Next take another basis {w', w,} of Z[{] satisfying condition (4.2.9),
and let o be an element of I',(N) determined by a basis {w}, w} } as above. Let y be
the element of M, (Z) such that

Wi, wa) =(wy, wy)y.
Then by the choice of {w;,w,} and {w’, w}}, we see
yel's(N),

and o' = y~ 'ay. Consequently, the set of I'T (N)-conjugacy classes of elements of
I'y(N) of order 6 corresponds bijectively to the set of the ideals I of Z[{] satisfying
(4.2.8). Thus

vy = # {ideals I of Z[{] such that Z[{]/I~Z/NZ}.
By Theorem 3.1.4,

0 it 9N,
- n<1+<:—3)> if 9fN.
pIN 14

A similar calculation is also applicable to v,.
We shall calculate v,. Let M, be the set of all elements of order N in
Z/NZ x Z/NZ. We note that for (m,njeZ x 7

(m,neMy<@m,n N)=1,

where m = m mod N, and 7= nmod N. By (4.2.1), we see that
b
(4.2.11)  the mapping of I'(1) into My defined by “y = |:g d:|H(ﬁ, ¢)’ is surjective.

We define an equivalence relation on My by
(ac)~@,c)=@,c)= +(ma+nc,m c)
(me(Z/NZ)*,neZ/NZ).
Then the mapping in (4.2.11) induces a bijection:
Fo(NNT(D)/T (1), &> My/ ~.

Then My, =[], M,. and the equivalence relations on My and M. are compatible
with the product decomposition. In particular, |[My/~| = HPI M,./ ~|, and there-
fore, we have only to calculate v,, when N = p°. Any element (G, ¢) of M,. is

equivalent to an element of the form (*, p’) (0 £ f £ ¢), and f is uniquely deter-
mined. If f > 0, then de(Z/p°Z)™, and

@ p’)~@,p’)ea=a modp™intSre= 1),

If f=0, then all elements of {(d, 1)|aeZ/p°Z} are equivalent to each other.
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Therefore we obtain

lMpe/~| Z mm(f,e—f)). O

Next we study elliptic points and cusps of I'; (N) and I'(N).

Lemma 4.2.8. Let I' be a Fuchsian group, and I'' a normal subgroup of I of finite
index. For a cusp x of I, the number of I''-inequivalent cusps which are I'-equivalent
to x is equal to L

[I:T"]/[T T

Proof. Since I' is a normal subgroup of I, T'-T, is a subgroup of I' and the
number is given by |[I"\I'/I,| =|I'/T"-T|. Since

[F:=[T:T T [ T.:I"]
=[I:I""T][T:T5],

we obtain the result. |

Theorem 4.2.9. (1) I'; (N) (N = 4) has no elliptic elements.
Z ¢(d)P(N/d) (all cusps are regular) (N = 5),

1
2) v (N))=14 20
3 @2 regular cusps and 1 irregular cusp) (N=4).

(We note that I', (N) = I',(N) if N =2,3))

b
Proof. (1); Let y=|ij d] be an elliptic element of I';(N). By definition,

la+d| <2 and a+d=2mod N. So there is no such element if N = 4.
(2): Let M, be the set of all elements of order N of Z/NZ x Z/N Z. Define two
equivalence relations ~ and L on My by

(@,¢) ~(@,0)=(@,c’)= +(@+nc,7c) (reZ/NZ),
@cys (@,¢)=(@,c')y=(a+nec) (ReZ/NZ).
Then we have the commutative diagram:

ry(N\T(1)/T()g— My/ ~

n[ {é
F(NNT()/T(1)y—> My/ ~

Here the horizontal mappings are the bijections induced by the correspondence

“F(l)a[a Z:|r—>(a mod N,cmod N)eM,”, and the vertical mappings n and ¢
c
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are the natural mappings. First suppose N = 5. Then £ is a two fold covering and
IMy/~|=3IMy/ 4|

Then all cusps of I', (N) are regular by (4.2.6). By an argument similar to the case of
I'y(N), the calculation of | M/ 4 | reduces to the case N = p®. Let e Z/p°Z, and f
be the largest integer such that 0 £ f< e, and ¢ = Omod p”. Then

@ ¢) ~ (@, c)a=amodp'.

Thus, for a fixed ¢, the number of inequivalent (a, ¢) is ¢(p’). Consequently,
we obtain

My /=Y (° ) ().
£=0

Next let N=4. Then the set {(+1,0), (0, +1), (1,2)} is a complete set
of representatives of M,/~ . Since (1,0) ~(—1,0) and (0, 1) ~ (0, — 1), we get
IM,/~1=3, and first two classes are regular and the rest is irregular by
4.2.6). O

Theorem 4.2.10. (1) I'(N) (N = 2) has no elliptic elements.

1
SNATT (= 1/p%) (N 23),
2 vo('(N)=< 2 ﬂv( /p?) (N 23)

3 (N=2).
When N 23, all cusps are regular.
(3) We can take as a complete set of representatives of inequivalent cusps the set
{m/neQu{w}|(mn)=1, (mmod N,nmod N)eMy/{+1}},
where My, is the set of elements of order N in Z/NZ x Z/NZ.

Proof. (1) Since I'(N) is a normal subgroup of I'(1), any I'(1)-conjugate of an
element of I'(N) belongs to I'(N). By Theorem 4.1.3, any elliptic element of I'(1) is

conjugate to

+ 0 -1 + 1 -1 + 0 —1

-t o) Tt o) —[1 —1])
and none of them belongs to I'(N) if N 2 2. Therefore, I'(N) (N = 2) has no elliptic
elements. (2): By Lemma 4.2.8,

Voo (T (N)) = [ (D):T(N)]/IE (D : T (N 1.

Therefore, the assertion is straightforward from Theorem 4.2.5 and the definition of
regular cusps. (3): Connecting the mappings in (4.2.2) and in (4.2.11), we easily
obtain a bijection:

F(N)\Prp,—> T(N\T(1)/T (1) > My/{ £ 1}.
Thus we obtain (3). O

Now the genus of R for a modular group I is given by the following
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Theorem 4.2.11. Let I be a modular group, and g the genus of ‘R. Then

where v, = v, ('), v3 = v3(T'), v = vo ('), and p = [[(1): T].
Proof. Since H} = H},,, there exists a natural mapping
F: R =T\H}¥— R, =T'(1)\H¥,,.

We put H* = H¥ = H};,, and R = R;,. Let . H* > R, and n: H* > R be
the natural mappings. For any point b of R -, take a point ze H* so that 7 (z) = b.
Let U * be a neighborhood of z in H* given in §1.8. Since F o n = 7, the following
diagram is commutative:

nr(U¥)
@.2.12) ar \ F
Ur n(U¥)

4

Hence {R, F} is a covering of R of degree u. Let e, = ¢,  be the ramification
index of the covering at b, and put F(b) = a. Let a,, a; and a_, be the elliptic points
of order 2 and 3, and the cusp on R, respectively. If a # a,, a;, a,,, then b is an
ordinary point, so that = and 7 - are homeomorphisms on U¥, and e, = 1. Suppose
a=a,, thene, =1 or 2. We sce

e, = 1< F induces a homeomorphism of n-(U%*) on to n(U¥)
<>z is an elliptic point of I'.

Put
t=#{beR|F(b)=a,},

then u=v, + 2(t—v,). Therefore
(42.13) Zylep— ) =p—t=(n—v)/2,

where X, is the summation over the points b such that F(b) =a,. A similar
argument implies

(4.2.14) Zy(epy — 1) =2(n —v3)/3,

where Z, is the summation over the points b such that F(b) = a;. Next assume
F(b) =a,. Then b is a cusp on R, and

v, = #{beR, |F(b)=a,}.

Denote by X, the summation over the cusps b such that F(b)=a,. Then
Z, e, = H, so that

(4.2.15) Toley—1)=p— vy,

Consequently, the formula of the genus follows from (4.2.13), (4.2.14), (4.2.15) and
the Hurwitz formula (1.8.8). U
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§4.3. Modular Forms and Dirichlet Series

Automorphic functions and automorphic forms for modular groups are called
modular functions and modular forms, respectively. They are closely connected with
number theory.

Let I' be a congruence modular group. By definition, there exists a positive
integer N such that I' > I'(N), so that

%(I') = 4(I(N)).

Therefore the investigation of 4, (') is reduced to that of %, (I"(N)). Furthermore,
we see

07! 0
4.3.1) [év 1] r(N)[éV 1]

a b
= {[c d]eSLz(Z)

> I (N?).
Hence, if f(z)e%,(I'(N)), then

¢ =0mod N2, aEdEImOdN}

s =] o U] J@resarovn.

We note that if f(z) = > _, a,e* /¥ is the Fourier expansion at co, then
f(Nz) =Y a,e*™™=
n=0

Therefore the Fourier coefficients of f(Nz) essentially coincide with those of f(z).
Consequently, the study of modular forms with respect to congruence modular groups
is reduced to that of 9,(I',(N)).

Let y be a Dirichlet character mod N. We define a character y of I';(N) by

b
#32) 1() = 2(d), y=[j d}ero(m.

Lemma 4.3.1. For a positive integer N, we have

4.(I'1/(N)) = @gk(FO(N)s x),
F(L{(N)) = @ Fiu(To(N), 1)

NT((N) = @D A(To(N), 1),

where y runs over all Dirichlet characters mod N.
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Proof. Since I'; (N) is a normal subgroup of I'y(N ), I'y(N) acts on 4,(I';(N)) by
“S>f v, (yeH(N)). This action induces a representation of I'y(N)/I';(N) on
4. (' (N)). Since I'y(N)/T';(N)~(Z/NZ)*, all irreducible representations of
I'y(N)/I';(N) are induced by Dirichlet characters mod N as above. Therefore we
obtain the lemma by decomposing the above representation into irreducible
representations. A similar argument is applicable to other cases. O

By the above lemma, we shall consider exclusively %, (I'o(N), x), Sx(Lo(N), 1)
and A (I,(N), x). Hereafter we simply write

% (N, 1) = %.(I'o(N), 1),
Z(N, 1) = L (Io(N), 1),
NN, x) = N (To(N), 1)

Let M be a multiple of N. We also express the character mod M induced by a
Dirichlet character y mod N by the same symbol x. Then

gk(N9 X) < gk(Ma X)’ eyk(l\,’ X) < eyk(M: X)s

and by Theorem 2.1.7(2),
NNy x) = N(M, ).

For a modular form f(z) = Y _, a,e*"" €%, (N, x), we put

(4.3.3) 5(z) =

118

6,, e2nmz,
0

where a, is the complex conjugate of a,.
We put, for a positive integer N,

0 -
wN=w(N)=|:N (1)]

Lemma 4.3.2. Let y be a Dirichlet character mod N.

(1) If x(— 1) # (— 1), then G,(N, x) = {0}.
(2) The correspondence “fi— f |, wy” induces the isomorphisms:

(N, 1) ~ %N, }),
Ze(N, x) ~ F(N, 7)),
(N, ) = Hi(N, 7).

() If f(2)€% (N, x) (resp. Si(N, x), Ni(N, 1)), then

5(2)=f(=2)
and it belongs to 4, (N, i) (resp. (N, i), /(N, 7).
Proof. The first assertion is obvious from (2.1.27). (2): For f(z)e%,(N, x), we put

a b
g =floy. Fory = I:cN d]EFO(N), we have
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d -
4.3.4) amyw§1=[;_bN Z], w} = — N.

Therefore
oyIo(N)oy ' = [H(N),
and
glky = x(a)g = %(7)g.
This implies the automorphy condition. The rest of (2) follows from (2.1.31) and

b
Theorem 2.8.2. (3): The first part is obvious. For an element y = [ : p ]e SL,(Z),
we put
L a —b
[ d]|
Then

(4.3.5) Sy =U1y)p  v€SLy(Z),

by the first part. In particular, if ye I'o(N), then f, |,y = %(7)f,- The conditions at
cusps are also verified by (4.3.5). Now for f(z)e %, (I';(N)) and g(z)e &, (I';(N)),
we see easily

(4.3.6) (- 9)=(£9,).
This implies that if f(z)e A, (N, x), then f,(z)e ¥, (N, 7). O

Any element f(z) of %, (N, x) has a Fourier expansion of the form

3]

f(Z) — Z aneZninz‘
Nevertheless a holomorphic function f(z) on H with a Fourier expansion is not
necessarily a modular form. If f(z) is an Eisenstein series with respect to I'(1), then
the Dirichlet series defined in (4.1.26) by using the Fourier coefficients is a product
of two Riemann zeta-functions. We analogously define a Dirichlet series ¢(s) using
the Fourier coefficients of f(z) by

o(s) = 21 a,n">.

If f(z) is a cusp form of weight k, then we have q, = O(n*/2) by Corollary 2.1.6.
Hence ¢(s) is convergent absolutely and uniformly on any compact subset of
Re(s) > k/2 + 1. In the rest of this section, we shall show an outstanding equival-
ence obtained by Hecke and Weil between the automorphy of f(z) and certain
functional equations satisfied by ¢(s) and its ‘twisted’ Dirichlet series by Dirichlet
characters.

Let f(z) be a holomorphic function on H satisfying the following conditions:

(4.3.7y  f(z) has a Fourier expansion

@)= 3 aer,
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which converges absolutely and uniformly on any compact subset of H. Further there
exists v > 0 such that

f(z)=0(Im(z)"*) (i (z) = 0)
uniformly on Re(z).

Then by a similar argument as in Corollary 2.1.6, we have
4.3.8) a, = 0(n").

Conversely we obtain

Lemma 4.3.3. For a sequence {a,} _, of complex numbers, put

a,e?™  (zeH).
[o]

1p1s

f(z) =
If a, = O(n") with some v > 0, then the right-hand side is convergent absolutely and
uniformly on any compact subset of H, and f(z) is holomorphic on H. Moreover,
f(z)=0(m(z)™*"")  (Im(z)-0),
f(2) = ag = 0(e” >*"®) (Im(z) - c0)
uniformly on Re(z).

Proof. By (3.2.9), we have for v > 0,
—v—1
lim n”/(—l)"( Vn ):F(v+ 1).

Hence there exists L > 0 such that

la..léL(—l)"(_vn_l)

for all n = 0. Put z = x + iy, then

@ . i —v—1
(439) S gl <L Y (—1p( T e
n=0 n=0 n
=L(1—e 2™)* "1,

This implies that f(z) is convergent absolutely and uniformly on any compact
subset of H. Since (1 — e 2™) = 0(y)as y » 0, we see | f(z)| = O(y~*~!). More-
over (4.3.9) implies that f(z) is bounded when y - co. Put

2xinz

9(2)= 3 apuse

Since g(z) also satisfies the assumption, it is bounded on a neighborhood of oo.
Therefore we obtain

f(z) —ap=€2g(z) = 0(e™*™) (y— o). O
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By the above lemma, all holomorphic functions f(z) on H satisfying (4.3.7)
correspond bijectively to all sequences {a,} -, of complex numbers such that
a, = O(n") with.v > 0.

As a preliminary to Hecke’s theorem, we shall prove the following

Lemma 4.3.4. (Phragmen—Lindelof) For two real numbers v,, v, (v < v,), put
F={seClv; <Re(s) <v,}.
Let ¢ be a holomorphic function on a domain containing F satisfying
[(s)| = O0(el)  (lt] > ), s=0+ig
uniformly on F with é > 0. For a real number b, if

|¢(s)l = O(l7]")  (It] > ) on Re(s)=v; and Re(s) = v,, -

then
|p(s) =0(z’)  (Jt]| = o) uniformly on F.

Proof. By assumption, there exists L > 0 such that |¢(s)| < Lel®’. First we con-
sider the case when b = 0. Then there exists M > 0 such that |¢(s)| £ M on the
lines Re(s) = v; and Re(s) = v,. Let m be a positive integer such that m = 2 mod 4.
Put s = ¢ + it. Since Re(s™) = Re((o + it)™) is a polynomial of ¢ and 7, and the
highest term of 7 is — 7™, we have

(4.3.10) Re(s")= —1t"+O0(lt|"™ ")  (lt] > ),

uniformly on F, so that Re(s™) has an upper bound on F. Taking m and N so that
m > 0 and Re(s™) £ N, we have, for any ¢ > 0,

[p(s)e”™| < Me®™™ on Re(s) =v; and Re(s)=v,,

and 1
lp(s)e"| = O’ —="+KI"y 5 0, (7] »> o0)

uniformly on F. By the maximum principle, we see
[¢(s)e*™| < Me*™N,  (seF).

Letting ¢ tend to 0, we obtain |¢(s)| £ M, namely, ¢(s) = O(|7|°). Next assume
b # 0. We define a holomorphic function ¥ (s) by

l//(s) — (S -y, + l)b — eblog(s—v1+1)’

where log takes the principal value. Since

Re(log(s — v, + 1)) =log|s — v, + 1],
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we have uniformly on F
W) =Is—vi+ 1P~ (] > o0).

Put ¢, (s) = ¢(s)/¥(s). Then ¢, (s) satisfies the same assumptions as ¢ with b = 0,
so that by the above result, ¢;(s) is bounded on F. Therefore we obtain
|¢(s)l = O(Iz”) (|2} - o0). .

As we already mentioned in §3.2, Hecke generalized the proof of Theorem 3.2.2
and proved that a transformation of a function f(z) is equivalent to a functional
equation of the corresponding Dirichlet series. For a holomorphic function

f(Z) — Z a"eZEinz
n=0
on H satisfying (4.3.7), we put

4.3.11) Lsf)= 3 an*

=1

Since a, = O(n"), L(s;f) converges absolutely and uniformly on any compact
subset of Re(s) > 1 + v, so that it is holomorphic on Re(s) > 1 + v. We call L(s; f)
the Dirichlet series associated with f. For N > 0, we put

(4.3.12) Ay(s:f) = 2/ /N)"*I'(s)L(s; ).

Theorem 4.3.5. (Hecke) Let f(z) = Y v oa,e*™ and g(z) =Y. ob,e* ™ be
holomorphic functions on H satisfying (4.3.7). For positive numbers k and N, the
Jollowing conditions (A) and (B) are equivalent.

(A) 9(2) = (= iy/N2)"*f(— 1/Nz).
(B) Both Ay(s; f) and Ax(s; g) can be analytically continued to the whole s-plane,
satisfy the functional equation

Ay(s;f) = Ay(k — 53 9),
and

ao
Ay(s:f) + =2
N(s9f)+s+k_s

is holomorphic on the whole s-plane and bounded on any vertical strip.
Proof. (A) = (B): Since there exists v > 0 such that a, = O(»n*) and b, = O(n"),

S lade N (> 0)
n=1

and

o)
jla,,lt”e‘z’""/ﬁt_ldt (e>v+1)
0
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are convergent. Therefore we see, for Re(s) > v + 1,
Ay(s;f) = Z a,,(27tn/\/17)‘s_[ e 't Nt

a,t'e” 27mt/\/N t~ldt

- -2y T e f (/N Ve + [ e(f(it//N) — ao)t™ .
Since g(z) = (— iﬁz)-k f(— 1/Nz), we obtain

43.13)  Ay(sf) = — 2 — b°s + [ =5 (gtit//N) — bo)t~Ldt
- 1

+ [ (f(it)/N) —ag)t™ 1 dt
1
on Re(s) > Max{k, v + 1}. By Lemma 4.3.3, when ¢ tends to oo, we have

f(it) = ag = O(e™ ™),
g(it) — by = 0(e™?™),
so that
!ts(f(it/\/ﬁ)— ap)t™ L dt

and

T 5(g(it//N) — bo)e™ " dt
1

are convergent absolutely and uniformly on any vertical strip. Therefore they are
holomorphic on the whole s-plane. If we define Ay (s; f) for any se C by (4.3.13),it is

a meromorphic function on the whole s-plane, and
do bo

Ay(s; — 4+ —

NS )+ s T i s

is an entire function and bounded on any vertical strip. Similarly A(s; g) is also
analytically continued to the whole s-plane, and satisfies

ay by

43.14) Ayk—s;g9) = =

T 5= (g(it//N) — bo)t~" dt
1

+ TxS(f(it/ﬁ)—ao)t-ldt.
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Comparing (4.3.13) and (4.3.14), we obtain Ay(s; f) = Ay(k —s; g). (B)=(A): By
(3.2.14), we have

1 & _
fliyy= =l Z [ @mrny)~*I(s)ds +a,
= Re(s) =a
for any o > 0. If @ > v+ 1, then L(s;f) =) ", a,n™® is uniformly convergent

and bounded on Re(s) = a, so that by Stirling’s estimate (3.2.8), Ay(s; f) =

(27:/\/N )" I'(s)L(s; f) is absolutely integrable. Therefore we can exchange the
order of summation and integration, and

100 =50 | (MDAt s+ ao
Since L(s; f) is bounded on Re(s) = «, we see, for any u > 0,
(4.3.15) [An(s; ) = O({Im(s)| ™) ({Im(s)| — o0)
on Re(s) = a by Stirling’s estimate. Next take f so that k— f > v+ 1. A similar
argument implies that for any g > 0,

[An(s; Nl = |4y(k —s5;9)1 = O(|Im(s)| ™*)  (|Im(s)[ — o)

on Re(s) = f. By assumption,
bo

A .
N(s9 k—

is bounded on the domain f < Re(s) < «. Hence for any u.> 0, we see by
Lemma 4.3.4,

(4.3.16)  (4.3.15) holds uniformly on the domain ff < Re(s) < a.

Furthermore we assume that « > k and § < 0. Since (\/ﬁ y) *Ap(s; f) has simple

poles at s = 0 and s = k with the residues —a, and (ﬁ ¥}~ *b,, respectively, we
can change the integral paths from Re(s) = « to Re(s) = f using (4.3.16) and obtain

f@) == [ (/N *Ay(sf)ds+(/Ny) *bo.

27 gei)=p

By the functional equation,

1
el (/Ny) Ak —s; g)ds + (/Ny) b,

! Re(s)=¢

fay) =

1

=— [ (JNyy ™ Ay(s; g)ds +(/Ny) b,

27” Re(s)=k—8

= (/Ny)"*g(~1/iNy).

Since f(z) and g(z) are holomorphic on H, we obtain

f(z) = (/Nz/i)y"*g(—1/Nz),
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or
9(z) = (=i\/Nz)"*f (= 1/N2).
As a special case, we let k = 1/2, N = 4 and

1 1 © L
fio)= g(z) = 5 G(Z) 5 Z p2minz.

Then (A) is nothing but the theta transformation formula (3.2.17), so that the
functional equation of the Riemann zeta-function in §3.2 is the special case of the
part (A) = (B) of the above theorem.

For latter use, we restate the above theorem.

Theorem 4.3.6. Let k and N be positive integers. For two holomorphic functions
f@) =37, a.e™ and g(z)= Y 7_, b,e*™ on H satisfying (4.3.7), the following
conditions are equivalent:

(A) 9(2) = (/N2 f(—1/N2) (= ([],0x)@)).
(B) Both Ay(s; f) and Ax(s; g) can be analytically continued to the whole s-plane,
satisfy the functional equation

Ax(s; 1) = *Ay(k —s; g),

i*bgy
k—s

and the function

(sf)+—+

is holomorphic on the whole s-plane and bounded on any vertical strip.

Since any element f(z) of #(N, y) satisfies (4.3.7), we obtain the following

Corollary 4.3.7. For any element f(z) of (N, x), Ax(s; f) is holomorphic on the
whole s-plane and satisfies the functional equation

Ay(s; f) = ikAN(k _s§f|kw1v)-

We note that the functional equation in Corollary 4.3.7 is also satisfied for any
element of %, (N, ) (see §4.7). It is unknown for an arbitrary Fuchsian group whether
a non-cusp form f(z) satisfies (4.3.7) or not. For modular groups, we will construct
elements of the space of Eisenstein series A(N, x) using Dirichlet L-functions in
§4.7. Therefore we can prove the functional equation for any element of 4, (N, ).
0 -1
1 0
characterize an element f(z) of 4,(I'(1)) by the functional equation of L(s; f) and
obtain

1 1
Since I'(1) is generated by two elements [ 0 l:l and l: :', we can easily

Theorem 4.3.8. Let k be an even integer =2. Assume a holomorphic function
f(z) on H satisfies (4.3.7). Then f(z) belongs to %(I'(1)) if and only if
Als; fY = 2r) ST (s)L(s; f) can be analytically continued to the whole s-plane,

(—1)?a
N

A )+ 2 +
s k—
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is holomorphic on H and bounded on any vertical strip, and satisfies the functional
equation:

Als; ) = (=12 Ak —s; f).
Moreover if a, = 0, then f(2) is a cusp form.

The situation for %,(N, y) is much more complicated, since I',(N) has many
generators. For a holomorphic function f(z) satisfying (4.3.7) and a Dirichlet
character ¥, we put

(43.17) H@ = 3 plae,
and
(4.3.18) Lis f0) = 21 bn)an~

This is an analogue of the Dirichlet L-function to the Riemann zeta-function. It is
obvious that f,(z) also satisfies (4.3.7) by (4.3.8) and Lemma 4.3.3. Let m = m,, be
the conductor of , and put

(4.3.19) Ax(s: £ ¥) = @ujm/N) T ()L(s; £, ¥).
By definition,
(4.3.20) L(s; fy) = L(s; ),

Anm2(5; 1y) = An (s £, ¥).

Lemma 4.3.9. Let f(z) and g(z) be two holomorphic functions on H satisfying (4.3.7),
and y a primitive Dirichlet character of 'conductor m (>1). Then the following
conditions (A, ) and (B,) are equivalent.

(A.p) fw|kw(Nm2) = ngw_-

(By) An(s; f, ¥) can be holomorphically continued to the whole s-plane, bounded on
any vertical strip, and satisfies the functional equation:

An(s; L) = ikC.pAN(k —549 1/7)
Jfor a constant C,.

Proof. Apply Theorem 4.3.6 for f,, C, gy, and Nm? in place of f, g, and N,
respectively. Then we obtain the theorem by (4.3.20). ]

a(a)=|:(1) ‘1’] (@cR).

Lemma 4.3.10. (1) Let f be a holomorphic function on H satisfying (4.3.7), and  a
primitive Dirichlet character of conductor m. Then for an integer k > 0, we have

We put

fo= W) 3 B0 xtum)

where W () is the Gauss sum of .
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(2) Let f(z) be an element of %,(N, y), m, the conductor of x, ¥ a primitive
Dirichlet character of conductor m,,, and M the least common multiple of N, m}, and
mym,. Then f, belongs to 4,(M, y*). Moreover if fis a cusp form, so is Ty

Proof. (1): Since for an integer u, we have

(flyalem)@) = Y a,emmimezeom,

n=0

we see by Lemma 3.1.1(1)
(4321) 2 (f‘ka(u/m))(z Z ( Z ‘//(u)eZﬂm“/m> Zninz

= W) f,(2).
(2): Assume fe % (N, x) and put m = m,,. Since
a(u/m)” ' Ty (N)a(u/m) > I (Nm?),

flo(u/m) belongs to %,(I'(Nm?)). By (1) we see f,, € %,(I'(Nm?)). Therefore we have

b
only to prove that f,|,y = (x¥*)(y) f, for all ye I, (M). Let y = [C;’I d]eFO(M)

and put
¥ = a(u/m)ya(d®u/m)~?,

¢ d
d=d—cd*uM/m=d modm,,

then y" e I,(M) = I';(N). Writing y' = [a :|, we have

so that
flea(u/myy = x(d)f |, o(d>u/m).
Hence by (4.3.21), we obtain
Suly = 2@y ) f,.

A similar argument is applicable to cusp forms. O

Theorem 4.3.11. Let f(z) be an element of %,(N, x), and ¥ a primitive Dirichlet
character of conductor-m. If (m, N) =1, then

Sulyo(Nm?) = Cy gy,
where g = f|, wy and
Cy = Cy,y = MY (=NYW )/ W(¥)
= 2 mY(N)W(§)* /m.
Proof. For an integer u prime to m, take integers n, v so that nm — Nuv = 1. Then

m

4.3.22) a(u/myo(Nm?) = m- w(N) I:_ N

"”]a(v/m).
n
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Since g = f|,wy belongs to %,(N, 7) by Lemma 4.3.2, (4.3.22) implies

flay/m)o(Nm?) = y(m)gl.a(v/m),
so that

WS hotim?) = 3. 5 latumom?)
= 1(m) 3. (= Nolgly(o/m

= tmY(~N) 3, ¥©)glialo/m)
= 1(my(—NYWW)gy O
By this theorem and Lemma 4.3.9, we obtain the following

Theorem 4.3.12. Let f(z) be an element of &, (N, y), and ¥ a primitive Dirichlet
character of conductor m. If (m, N) = 1, then Ay(s; f, W) can be holomorphically
continued to the whole s-plane, is bounded on any vertical strip, and satisfies the
Junctional equation:
ANGs; £, ) = #Cy Anlk = 5; fleoow, ¥),
where C, is the constant in Theorem 4.3.11.
To prove the converse of this theorem is the purpose of the rest of this section.

For two integers m, v such that (m, vN) = 1, take integers n, u so that mn — uvN = 1,
and put

y(m, v) = [_uz _Z]EI’O(N).

Though y(m, v) is not uniquely determined, ¥ mod m is yniquely determined, and
(4.3.23) a(u/m)o(Nm?2) = m- w(N)y(m, v)a(v/m).

We now extend the action of GL; (R) on functions on H linearly to the group
algebra C[GL; (R)]. For a function f(z) on H, we put

4.3.29) fiB=Yaflia for p=Y a,aeC[GL;(R)].

In the following two lemmas, k and N are positive integers, y is a Dirichlet
character mod N satisfying y(— 1) = (— 1)%, and f(z) and g(z) are holomorphic
functions on H satisfying (4.3.7) and condition (A) of Theorem 4.3.6.

Lemma 4.3.13. Let m be an odd prime number or 4 prime to N. If f (z) and g(z) satisfy
condition (A,) in Lemma 4.3.9 for all primitive Dirichlet characters Yy mod m with the
constant

C, = x(my(— NYW )/ W (),
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then
gl(x(m) — y(m, w)a(u/m) = gl (x(m) — y(m, v))a(v/m)

for any integers u and v prime to m.

Proof. By the assumption (4,) and Lemma 4.3.10, we see

@325 3PS halmo(Nmd) = 10my(—N) 3. wwgltu/m)

For each integer u prime to m, take an integer v so that — uvN = 1 mod m. Then we
have by (4.3.23)

4326) Fluau/m)es(Nm?) = glyy(m, v)a(efm).

Since the left-hand side is independent of the choice of a representative of umod m,
so 1s the right-hand side of the choice of y(m, v). Using (4.3.26), we rewrite (4.3.25)
into

(4.3.27) 2 Y ()gli(x(m) — y(m, v))a(v/m) = 0.

Here v runs over a complete set of representatives of Z/mZ. We note that (4.3.27) is
independent of the choice of representatives of Z/mZ. Let vy, v, be two integers
prime to m. Multiply both sides of (4.3.27) by ¥(v,) — ¥(v,) and take the sum-

mations with respect to all nontrivial Dirichlet characters y mod m. Noting that
Y(v,) —¥(vy) = 0if y is trivial, we obtain

glx(m) — y(m, v,))alv, /m) = glu(x(m) — y(m, v;))o(vy/m). O

Lemma 4.3.14. Let m and n be odd prime numbers or 4. Assume both m and n are
prime to N. If f(z) and g(z) satisfy condition (A,) in Lemma 4.3.9 with the constant
Cy = x(m)Y(—= NYW W)/ W) for any primitive Dirichlet character  whose
conductor my, = m or n, then

gy = (g

m —v
for all y& [o(N) of the form 7 = [—uN ]

Proof. Put y' = I:uz Z:| Since we can take y and y’ for y(m, v) and y(m, — v) in
Lemma 4.3.13, respectively, we have
gl (x(m) — yYo(— v/m) = gl (x(m) — y)a(v/m),
so that
(4.3.28) glu(x(m) — ) (—2v/m) = gli(x(m) — ).

r=1 _ no—v -1 nov -
We can also take y' ™' = [_ uN m:l and y l:“ N m:l for y(n, v) and y(n, —v),
and obtairr

(4.3.29) gle(xm =y~ = gllx(m) — 7~ Ha(—2v/n).
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Since y(n)y(m) = 1, we see

r—1 r—1
5

1=y = —x(m)(x(m)—7)y
() =y~ (= 20/ny = — x(m)(x(m) — )y~ ' — 2v/n)
as elements of C[GL; (R)]. Rewriting (4.3.29) by using (4.3.30), we have

(4.3.30)

(4.3.31) gl(x(m) —y) = gli(x(m) — y)y~ ta(—2v/n)y,
so that from (4.3.28)

(4.3.32) gl (e(m) — y)(1 —y~ L a(— 20/n)y’ a(— 2v/m)) = 0.
Put

h = gl (x(m) — 7) = x(m)g — gli».
The function h(z) is holomorphic on H and satisfies
(4.3.33) hl. B =h,

1 - 2v/m]

ﬁ=v“a(—20/n)v’a(—2v/m)=[2uN/n 43

Since [tr(f)| = |4/mn — 2| < 2, and |tr(B)| # O, 1 by the assumption on m and n, § is
elliptic and any eigenvalue of f is not a root of unity. In fact, since the entries of
are all rational numbers, the eigenvalues of § belong to a quadratic field. Hence if
an eigenvalue of f is a root of unity, then it must be + 1, +i, + €™/3 or + 2™3, s0
that tr(f) =0, + 1, or 4 2, which is a contradiction. Let now z, be a point of H
fixed by f. Put

p=1(z0— Eo)—l[i —€0:|€GL2((C),
—Z,
pw) = (hlp™HW) = j(p~ ", w*h(p~'w)  (weK).

0
: _1] with {eC,

Then p(w) is holomorphic on K. Since we can write pfp ™' = [ 0 ¢

we see by (4.3.33)

(4.3.34) p(L?w) = {"*p(w).

Let p(w) = 3 -, a,w" be the Taylor expansion at w = 0, then we get
(e, = {a,

for all n. Since { is an eigenvalue of § which is not a root of unity, we obtain a, = 0
for all n. Therefore h(z) = 0, so that g|,y = x(m)g = 7(7)g. O
Now we are ready to state the main theorem in this section. For two coprime

positive integers a and b, we put

(4.3.35) A(a, b) = {a+nb|neZ}.
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Let M be a set of odd prime numbers or 4 satisfying the following two conditions:

(i) any element of M is prime to N,
(ii) M n A(a, b) # & for any A(a, b).

There exists such a set M. We can take as M, for example, the set of all odd prime
numbers prime to N by Dirichlet’s theorem on arithmetic progression.

Theorem 4.3.15. (Weil) Let k and N be two positive integers, and y a Dirichlet
character mod N such that y(— 1) = (— 1)*. For two sequences {a,}>-, and {b,}*.,
of complex numbers such that a, = O(n*), b, = O(n*) (v > 0), put
f(Z) - Z aneZninz
n=0
and
gz)= Y b,e*™™  (zeH).
n=0
Then f(z)e 4.(N, x), 9(2)€%.(N, 7) and g = f |, wy, if the following two conditions are
satisfied:

(1) Ax(s; f) and Ay(s; g) satisfy condition (B) in Theorem 4.3.6;
(2) for any primitive Dirichlet character y whose conductor my, belongs to M,
An(s; f, ) and Ay(s; g, ¥) satisfy condition (B,) in Lemma 4.3.9 with the constant

Cy = Cn,y = 2m )Y (—NYW W)/ W)
Moreover, if L(s; f) is absolutely convergent at s = k — 6 for 6 > 0, then f(z) and g(z)
are cusp forms.
’ b
Proof. We shall prove that g|.y = j(y)g for y = [c?\l d]el’ o(N). If ¢ =0, then

a=d= +1, so that g|,y = 7(d)g = ¥(y)g since y(— 1) = (— 1)*. Next assume
¢ # 0. Since (a, cN) = (d, ¢cN) = 1, there exist integers s, ¢t such that a+ tcNe M,
and d + scN € M by condition (ii). Put

m=a+tcN, n= d+scN,
u= —c, v = —(b+ sm+ stuN + nt),

[eva]=[o 71w 2 Jlo 73

Hence Lemma 4.3.14 implies

then

ghy = I(mg = 7(d)g = 1()g.

Now g(z) = O(y ¥~ ') by Lemma 4.3.3, so that g(z)e %, (N, 7) by Theorem 2.1.4.
Since f = (— 1)%gl,wy by (1), we get f(z)e % (N, x) by Lemma 4.3.2(2). This implies
the first half of the assertion. Next assume that L(s; f) is absolutely convergent at
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s = k—0 with § > 0. Put
CO = 0,

= Y lanl (2 1)

then

[+ 8]
¢ < ( $ |a,,.1m-"+6),

so that ¢,=0(n*"%. By Lemma 433, ) ,c,e ®™ is convergent and
o 2™ = 0(y ¥+ 1) (y - 0). Since |a,| = c,—c,-,, We see

@) —aol < (1 - e-zw)( 5 Ce)

so that f(z) = O(y~**?). Therefore f(z) is a cusp form by Theorem 2.1.4, and so is
g(z). O

We note that when N is not a prime number, f(z) and g(z) are not necessarily
cusp forms even if a; = by = 0.

§4.4. A(z) and 5(z)

In this section, we give the proof of Theorem 4.1.7(2) which asserts that A(z) has no
zeros on H. First we define the function #(z) on H by

}7(2)= eniz/lz H (1 _e2ninz)‘
n=1

Since ), , e*™" converges absolutely and uniformly on any compact subset of H,
so does the above infinite product. We call n(z) the Dedekind n-function.

Theorem 4.4.1. The function 1(z) satisfies the transformation formula

n(—1/2)=(z/i)' *n(2).

Proof. We follow Weil’s proof ([Weil 4]) which reduces a transformation formula
for a holomorphic function on H to a functional equation of the corresponding
Dirichlet series. Since n(z) has no zeros on H, the assertion is equivalent to saying
that

4.4.1) logn(—1/z)=logn(z)+1log(z/i).
By definition, we have

m- 1e2mmnz.
1

logn(z)=miz/12—

m,

18
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Put
f@= Y m e =qiz/12—logn(z),

mn=1

then f(z) satisfies (4.3.7) and
L(s; f)={(s)C(s+ 1).
As in the previous section, put
A(s; f)=@2mn)"*T'(s)L(s; /)

A(s)y=7m"52I'(s/2){(s).

and

Since
A(s; f)=3A(s)A(s + 1),

Theorem 3.2.2 implies that A(s;f) can be analytically continued to the whole
s-plane and satisfies the functional equation

Als; [)=A(=s,f).
Moreover {(—1) = —1/12, and

m n 1
442 Als; f)— . —
442 S~ 6-1 12640 T 257
is entire and bounded on any vertical strip. We note here that
1 1
A +—+—
s 1—s

is bounded on any vertical strip by a similar argument as in the proof of
Theorem 4.3.5. Now

fi)=an [y AlsS)ds,

2mi Re (5)=2

and we can change the integral paths from Re(s)=2 to Re(s)= —2. By the
holomorphy of (4.4.2), y~*A(s; f) has poles only at s=1, 0, — 1 with the residues
n/12y, Llogy, —my/12, respectively. Hence

1 1
f==— | y*Als;f)ds+n/12y+logy—my/12
2mi Re(s)=—2 2

! 1
25;;1'11 (I)=2ySA(“S;f)ds+n/12y+§10gy_ny/12

1
=f(—1/iy)+n/12y+§10gy—7zy/12,

by the functional equation for A(s; f). Therefore (4.4.1) holds on the imaginary axis.
Since both sides are holomorphic on H, (4.4.1) is satisfied everywhere on H. [
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Now we consider #24(z). Since

(443) ,124(2) = 2%z H (1 _eZninz)24,
n=1
we have
(4.4.4) n?*z+)=n"*@), n**(=1/2)=z2"n**(2).

0 -1
1 0

’724(2) e S 1(I (1))

Since dim & ,(I' (1)) = 1, we see n%*(z) = c4(z) with a constant ¢. Comparing the first
Fourier coefficients of #%24(z) and 4(z), we get c=1, hence

A(2)=n**(2).

11
As I'(1) is generated by [ 0 1:| and [ ] and n%*(z) vanishes at oo by (4.4.3),

Thus we obtain the following

Theorem 4.4.2. The function A(z) has no zeros on H and has the infinite product
expansion

A(Z) =eZm‘z n (1 _elninz)24’
n=1

which converges absolutely and uniformly on any compact subset of H.

Theorem 4.4.2 also implies the integrality of the Fourier coefficients t, of A(z).
The explicit forms of 4(z) and #(z) are quite useful to calculate modular forms. We
can construct cusp forms of small level by using A(z) and #n(z). For example, we
have ([Shimura], pp. 49-50):

1° If Nis 2, 3,5 or 11, and k=24/(N + 1), then &, (I';,(N)) is one-dimensional
and is generated by

(A@AN2) ' V= (n(z)n(N2))".

2° If Nis2,3,4,6 or 12, and k=12/N, then &, (I'(N)) is also one-dimensional
and is generated by

(4@ =n*").

§4.5. Hecke Algebras of Modular Groups

Hecke operators play important roles in the study of modular forms. In this
section, we explain, following Shimura, the relation between Fourier coefficients of
modular forms and Hecke operators first obtained by Hecke. We begin by studying
the structure of the Hecke algebras of modular groups. For a Fuchsian group I', we
put 5

I'={geGL;(R)|glg™'~T).
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Lemma 4.5.1. For any modular group I, we have
I'=R*-GL}(Q).

Proof. Since I'~I'(1), we have only to prove the lemma for I'=T(1) by
Lemma 2.7.1(3). Let ae R*-GLF(Q). Take ceR* so that $=caeM,(Z). Then
a”r(Ma=p"1r(1)B. Put m=det(B), then mp~' € M,(Z). For any ye I'(m), we sec

(mB~1)B=(mB~")B (=['g fﬂ) modm,

so that B~ lyBe M,(Z), and B~ 'I'(m)B = I'. Therefore we have
alra 'NIr=Brp=*nr > I'(m).

- b1 -
Since [I':I'(m)]1< oo, o belongs to I Conversely, assume a=[z d]eF . By

Corollary 1.5.5, the cusps aoo =a/c and «0=>5/d of aI'a ™ ! are also cusps of I'. Since
I'~'a~ T, the points 'aco = a/b and ‘a0 =c/d are also cusps of I'. As any cusp of I'
is an element of Q U {0}, the ratios of a, b, ¢, d are all rational numbers, and
therefore aeR™ - GLS (Q). O

We define the subsemigroups 4,(N) and A%(N) of GL; (Q) by

b
@5.1) Ay N)= {[‘c’ d] e M,(2)

c=0modN, (g, N)=1, ad—bc>0},

and

a b

4.5.2) A;';(N)={[C d:|eM2(Z) cEOmodN,(d,N)=1,ad—bc>0}.

We see easily that

b ¢=0mod N, (ad—bc, N)=1,
d ad—bec >0 ’

We are going to study Hecke algebras Z(I'o(N), 4,(N)) and Z(I'o(N), 4E(N)). We
simply write

4.54) R(N)=R(I'o(N), 4¢(N)),
(4.5.5) R*(N)=R('o(N), 45(N)).

4.5.3) AO(N)nAg(N)={[‘c’ }EMZ(Z)

Lemma 4.5.2. For any ae 4o(N) (resp. A%(N)), there exist positive integers | and m
such that lim, (I, N)=1 and

0
FO(N)“FO(N)=FO(N)[(I) m]ro(N)

0

(resp. Fo(N)“Fo(N)=Fo(N)|:rg ,

]FO(N)).

The pair (I, m) is uniquely determined by o.
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b= {[“Jurezh zo={] Jvez)

Then M,(Z) acts on L by left multiplication and aL, = L,. Put n=det(«), then
[L:aLy]=[L:al]fal:aly}=nN.

Proof. Put

By the fundamental theorem of abelian groups, there exists a basis {w,, w,} of L
such that
aLo=2Z(aw,) ® Z(bw,)

with positive integers a and b (ab=nN, a|b). Since aL, ¢ tL for any divisor (> 1)
of N, we see that (a, N)=1 and N|b. Then Zw, @ Z(Nw,) is a unique submodule of
L of index N containing aL,, and therefore,

Lo = Zwl @ Z(NWZ).

Moreover if we put I=a and m=>b/N, then Z(lw,)® Z(mw,) is a unique sub-
module of L of index n containing aL,. Therefore we get

aL=2Z(lw,) ® Z(mw,).
We define two elements y,, v, of M,(Z) by

BN T 1
I 0
0‘=V1[0 m])’z-

We may assume det(y,)=det(y,)=1 by taking —w, in place of w,, if necessary.

Then

. 1 .
Since w, € L, and a[ 0:| ealLgy, we see y,, 7, € [o(N). Therefore we obtain

[ 0
Fo(N)“Fo(N)=Fo(N)|:O m:lro(N)-
Since
4.5.6) LiaL~7/17 ® Z/mZ,
the pair (I, m) is uniquely determined by the fundamental theorem of abelian
groups. A similar argument is also applicable to 4%(N). O
We note by (4.5.6),
0

@5.7)  ifl|m and (Im, N)=1, then I‘O(N)[(l) ]rO(N)zro(N)['g (l):IFO(N).

m

Theorem 4.5.3. (1) Both Hecke algebras #(N) and #*(N) are commutative.
(2) For any element I'o(N)al'o(N) of #(N) U #*(N), both I'o(N\T'o(N)al'o(N)
and I'o(N)aI'o(N)/I'o(N) have a common set of representatives.
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b
Proof. For an element oc=|: N

*
N d:IEAO(N) (resp. 4%(N)), we put

d

Then the correspondence “a+— o” satisfies the three conditions of Theorem 2.7.8.
In fact, conditions (i) and (ii) are obvious by definition, and (iii} is proved by
Lemma 4.5.2 and (i). Therefore 2(N) and #*(N) are commutative. |

oc‘=|:b; C]eAO(N) (resp. AX(N)).

Now let y be a Dirichiet character mod N. We put

4.5.8) 1(@)=7(@) for a=[‘c’ Z:|eA0(N).

Then y is an extension of the character of I'y(N) defined by (4.3.2) to 4,(N). To let
Hecke algebra #(N) act on (N, y), we have to verify that y satisfies (2.8.1), or

if aya"lely(N) (yelo(N), aedo(N)) then yxlaya™')=yx(y).

l
In fact, by Lemma 4.52, we may assume oc=|:0

b
v=[c;l\f d:|eI"O(N), and y =aya~ !, If y' € I'y(N), then b/=0 mod m and

[ a bim
r= cNm/l d |

so that y(y)=yx(y’). Therefore by Theorem 2.8.1, Z(N) acts on %,(N, ). More
precisely, if

0] (Ilm, (I, N)=1). Put
m

FO(N)“FO(N)=]_IF0(N)“v
is an element of #(N), then

@.59)  fITo(N)alo(N)=det @*> 1Y y(a,) flioty  (fE%(N, 1)).

Next we extend the character y of I'4(N) to 4%(N) by

(4.5.10) 1*(0)=7(d) <a=[‘c’ Z]mg(m).

Similarly as above, this extension also satisfies (2.8.1), and #*(N) also acts on
%N, x); namely, if I';(N)al,(N)e%£*(N) and

FO(N)aFO(N)=UFO(N)av’
then

@45.11)  fIT(NyaTo(N)=det(@"* "} x*@)f ke, (fEGUN, 1))
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We note that when I'g(N)al'o(N) is contained in #(N) #*(N), the action of
I'o(N)aI'o(N) as an element of (N) does not necessarily coincide with the action as
an element of #*(N). The difference will be clarified in Theorem 4.5.4. We only note
here that

oy ' To(N)oy=To(N),

4.5.12) Ao(N)~A¥(N) by “arswylamy”,

and

(4.5.13) oy laoy)=x(@) (@€ d(N)).
We define the elements T'(n) and T'(, m) of Z(N) by

I 0

Td, m)=Fo(N)[0 m

]FO(N) (l{m, (I, N)=1),
(4.5.14)

T(m)= Y To(N)al'o(N),

det{a)=n

where the summation is taken over all double cosets I'o(N)al'o(N) in #(N) with
det(«) =n. Similarly we put

T*(m, z>=r0<m['g (l’]ro(m (Im, (1, N)=1),

(4.5.15)
T*n)= Y To(N)alo(N),

det(a)=n

where the summation is taken over all double cosets I'g(N)aI'o(N) in Z*(N) with
det(x)=n. When we emphasize the ievel N, we write

NT(n), "T(l, m), "T*(n), and “T*(m,1),
respectively. Now Lemma 4.5.2 implies
Tn)= ) T(,m),

(4.5.16)
T*m= Y T*m),
im=n
and, in particular, for a prime number p we have

(4.5.17) T(p)=T(,p)., T*(p)=T*(p, .

Moreover, if (n, N)=1, then

0 0
T(n n)=ro(N)[g n]ro(N)=ro(N)[g ]
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so that
T(n, )T, m)=T(nl, nm),

(4.5.18)
T*(n, n)T*(m, )= T*(nm, nl).

Theorem 4.5.4. (1) For any element f(z) of 4.(N, x), we have

S1T*m, D=3(Im)(f1T(,m)) if (Im,N)=1,
fIT*)=x@(1T)  if (nN)=L

(2) T(l, m)and T*(m, 1) (resp. T(n) and T*(n)) are the mutual adjoint operators
with respect to the Petersson inner product on & (N, ).

(3) SN, x) has a basis consisting of common eigenfunctions of all T(n) and
T, m) ((n, N)=1, (Im, N)=1).

Proof. (1): Assume (Im, N) = 1. Put

I 0

Fo(N)[O m

]Fo(N)=HFo(N)av-

By (4.5.7), we have

I 0
ro| o o | ro=rol g 7 o

and
x* (o) = x(det(w) (o)

for any element a of 4,(N)n A¥(N). Hence we see

SIT*(m, 1) = (Im)2 71 y* (@) (fley)

= Z(m)(Im)> =1 3 (o) (fleat,)

=y Um) (1T, m)).
Moreover, by (4.5.16) we get that f| T*(n) = j(n)(f|T(n)) if (n, N) = 1. (2): For an
element o = [: b of GLS (R), we put

d
a’=det(a)a'1=[ d _b].

-C a

’ 9

The correspondence “a+> o ” is an anti-isomorphism of 4,(N) onto 4¥(N). By
Theorem 4.5.3(2), we can take a complete set of representatives {a,} so that

(4.5.19) I“O(N)I:f) ?n]ro(zv) =[Fo(N)a, = [Jo To(N).
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Then
m 0O

ro(m[o ,

}FO(N) = UFO(N)“;-

v

Let T* be the adjoint operator of 7(l, m) with respect to the Petersson inner

product. Since y(a,) = x*(«,), we see by Theorem 2.8.2(1)
(4.5.20) AT* =m0y y(e,) (i)

= (Im)271 Y y* (@) (fles)

=f1T*(m, ).

Therefore T'(I, m) and T*(m,[) are adjoint to each other. By (4.5.16), so are T(n) and
T*(n). (3): By (1) and (2), if (Im, N) = 1, then T(n) and T (I, m) are normal operators
on %,(N,y). Since #£(N) is commutative, they are simultaneously dia-
gonalizable. O

As was shown in Lemma 4.3.2, 4,(N, ) is isomorphic to %,(N, ) by the
correspondence “f — f, wy”.

Theorem 4.5.5. The following diagram is commutative:

4, (N, 0 T(n) (resp. T(l, m))

gk(N, 7) T*(n) (resp. T*(m, 1))

> G(N, 1)

> gk(N> X_)

Proof. We have only to prove the theorem for T'(l, m). Put I'o(N )l}) ?n] I'y(N)
= |, To(N)a,. Then

m 0

ro(N)[o ,

:|F0(N) = I_IFO(N)((DI;1 o, Wy),
so that for an element f(z) of 4, (N, 7), we see by (4.5.13) that
fleoy ! TU,moy = (Im)271 % y(@,) (flioy ' a, o)

=(Im)2 71 Yy *(wx ' o, 0n) (fleoy ' a,0y)

=f1T*(m,1). O
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Lemma 4.5.6. Let p be a prime number, and e a non-negative integer.
(1) As a complete set of representatives of

10
ro(N)\ro(N)[O pe]ro(w),

we may take the following set:

prlom
[0 pf]
{[(1) ::le:| 0§m<pe} if pIN.

1 0 ¢
@ deg(ro(N)[O pe]ro(N>)= {I’;“’

0<f<e 0=<m<p/, (m,pf,pe‘f)=1} ifp¥ N,

1 ifpkN,
if pIN.

. . b
Proof. First we are going to prove that for any element B=|:ZN d:l of
1

FO(N)[O

0
Pe:l IH(N), there exists an element y of I';(N) such that

N R ECEE R

In fact, since det(f) = p®, (a, cN) is a power of p. Suppose p| N. Since (a, N) = 1, we
have (a,cN) = 1, so that there exists an element y, of I'j(N) such that

* *
= |:—cN a]'

1
Then y,f = l: Ze] with some n. Let

0
n=Ip°+m (0=m<p)

with integers ! and m, and put

1 1
?2=|:0 1:I€F0(N)-

1 m
V2V1ﬂ=[0 pe:l'

Next assume (p, N) = 1. Put @’ = a/(a, cN) and ¢' = ¢/(a, cN). Since (@, N) =1, ¢ is
integral and (@', ¢ N) = 1. Thus there exists an element y, in I'4(N) of the form

* *
'ylz[_c/N al]'

e—f
14 n
Y1B= [0 pf:|

Then

Then
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with integers fand n. Similarly as above, we can take an element y, of I'y(N) so that
Pl om
V2V1ﬂ=|:0 pf] 0 =<m<p)

Consequently we get
pr- 1 1 m

I'o(N if p|N
mgo 0( )[0 pe] 1 p| 3

e pi—-1 e—f
JUNY, ro(N)[g :,] if pAN.

m=0Q

10
4.5.21) FO(N)[ 0 pe]FO(N) c

Next we are going to prove that the right-hand sides of (4.5.21) are disjoint

unions. Suppose
pe~f m pe—g n
I’O(N)[0 pf]mFO(N)[O pg:|¢®.

Then there exists an element y of I'y(N) such that

e—f e—g
p m]| [p n
wso [rm)-[r )

1 *
An easy calculation shows that y is of the form [ 0 1] which implies f=g and

m = n. This proves the disjointness of the right-hana sides. First assume p|N. Since

0
[f) ;"]{(1, p][é 'I"]ero(N)[(l) ge]ro(m,

1 0 pe1 1
FO(N)[O pe]ro(N)= il ro(N)[o ;”]

Next assume (p, N) = 1. Put
o= Pl m
=0 it

By Lemma 4.5.2, there exist two integers a,b (0 < a < b, a + b = e) such that

we get

a

To(N)aTo(N) = ro(m[g

=[5 7]
= e}

Since any element of I';(N) induces an automorphism of L, we have

LioL ~L/BL~Z/p"Z®Z/p°Z.

0
pb:II’O(N).
Put

and
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Therefore,

1 0
Fo(N)“Fo(N):Fo(N)[O pe:|ro(N)

if and only if L& pL. This is equivalent to saying that (p/, p°~/, m)= 1. This
concludes the proof of (1). The second assertion follows from (1). |

Lemma 4.5.7. Let p be a prime number, and e a positive integer. Then we have:

(p+1)T(p,p) fpAN and e=1,
(1) T(pTL,p)=TA,p** Y+ X pT(p,p) T, p*™") ifpkN and e>1,
0 if pIN.

T(p°*')+ pT(p, D) T(p*™ ") if PN,

(2 T(p)T(p*) = {T(peﬂ) if pIN.

Proof. Let T =T o(N)aI'o(N) be a constituent of T(p) T(1, p°). By the definition of

the multiplication, we can write

x =00 (aIET(p)s aZET(L pe))'

L-——'{[u:l u,veZ}
v
Since [L:aL] = p°*! and

Lial oo, Ljal ~ Ljay L ~7/p°Z,

Put

T coincides with T(1, p°*1) or T(p, p?). Hence

aT(1,p**')+bT(p,p?) ifpAN,

T 70,7 = {0 e pIN,

with integers a, b and a’. By Lemma 4.5.6(1) and the definition of the multiplication,
we get a = a’ = 1. Comparing the degrees of both sides using Lemma 4.5.6(2) and
(2.7.7), we obtain

b= p+1 ife=1,
- p ife>1.

This proves (1). When p|N, we see T(p®) = T(1, p®), so that (2) is nothing but the
first assertion. Now assume that (p, N) = 1. We prove the assertion by induction on
e. First let e = 1. Since T'(p) = T(1, p), we see by (1) that

T(p)T(p)=T(1,p*)+ (p+ )T (p, p)
=T(p*)+ pT(p,p)
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Next assume e = 2 and the assertion is true for all positive integers less than e.
Applying (4.5.16) and (4.5.18) to T'(p°), we see
T(PT(p*)=T(p) {T(L, p°) + T(p, p) T(p*™2)}
=T(1L,p" )+ pT(p, P T(L, p* ") + T(p, ) T(P) T(p°?)
=T, p*™ )+ pT(p, p) T(L, p*™ 1)
+ T(p, AT (™) + pT(p, )T (p* ™)}
=T, p" )+ T(p,p) T, p* 1)
+pT(p, T, p*™ 1)+ T(p, P T(P*™%)}
=T(P*"")+pT(p,p)T(p*" ).
Here we understand T'(p®) = 0 if e < 0. This is what we wanted to show. O

Lemma 4,5.8. (1) If (Im,I'm’) =1, then
TA,mT{¥, m)= T, mm').
(2) If (m,n) =1, then T(m)T(n) = T(mn).

Proof. (1): Let T=TIy(N)al'o(N) be any constituent of T'(I, m) T(I', m’), then we
can write o = a0, with o, € T(l, m), a, € T(I', m'). Put

)

Ljg,L~2Z/1Z&® Z/mZ,
o, LjaL ~Lia, L~Z/I Z ®Z/mZ.

then

Since (Im, I m') = 1, we get
LiaL~Z/WZ®Z/mm' Z,

namely 7= T(II', mm’). Therefore T(l, m) T(I', m'} = aT(Il', mm’) with some integer
a. We are going to prove a = 1. Let

L[ o
10 mm |

1
ro| o o | o= 1170,

and

[
ro)| g o |Fo =11ro8.

1 0 I 0
“E o | Bl:Om"

We may assume
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Now we assume I'o(N)x = I'y(N)a, B,, and let « = ya, B, with ye I'y(N). Put
M = {[u,v]lu,veZ}
and define the submodule M, of M by
M, ={[Nu,v]lu,veZ}.
We let M,(Z) act on M by the right multiplication of matrices. Then
(MB, + MB,)/MB, ~ MB,/(MB, n MB,).

Since the left-hand side is a subgroup of M/Mp,, the order is a divisor of
det(B,) = I'm’. On the other hand, the right-hand side is the quotient group of
MB,/Mua; hence the order is a divisor of det(a)/det(B,) = Im. Since (Im, I'm’) = 1,
we get M, = MB,. Therefore there exists an element y, € GL,(Z) such that
y1 81 = B,. Since det(f,)=det(f,), we get y,€SL,(Z). A similar argument
for My in place of M implies M, = M,pf,, so that Myy, = M,, namely
v, €T (N). Since B, is a representative of left I'y(N)-cosets, we get y, =1 and
B, = B,. Similarly we obtain a, = a,. Consequently a = 1. The second assertion
casily follows from (1). |

Theorem 4.5.9. The Hecke algebra #(N) is the polynomial ring over Z generated by
T(p), T(p, p) with all prime numbers p prime to N, and T(q) with prime numbers q
dividing N; namely,

R(N)=Z[T(p), T(p,p), T(q) | p¥N,q|N].

Proof. By Theorem 4.5.3, Lemma 4.5.7 and Lemma 4.5.8, #2(N) is commutative
and any element of Z(N) can be expressed as a polynomial with rational integral
coefficients in T'(p), T(p, p) and T(q). Moreover it can be easily verified by
Lemma 4.5.7 and Lemma 4.5.8 that T(p), T(p,p) and T(q) are algebraically
independent over Q. O

Take two positive integers [, m so that [[m and (I, N) = 1. Let m/l = pre be
the prime decomposition. By Lemma 4.5.8, we see

(4.5.23) T(Lm)=TUNHT(,m/ly=T{LH[]TQ,p%),
14
where p is taken over prime divisors of m/l, so that we obtain

(4.5.24) T(l,m)=]_[F0(N)[a b} (ad=Im,0<b<d(abd)=1),

0 d

a b

4.5.25) T(n)= ]_[I‘O(N)[O d] (ad=n0=b<d,(a,N)=1),
by Lemma 4.5.6. Therefore we can express the action of T(l, m) and T(n) on
4. (N, x) explicitly. In particular, for f(z)e %, (N, x),
d—1
(4.5.26) (fITm)(z)=r"1 Y bZO x(a)d™* f((az + b)/d),
O<dlnb=
ad=n
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and

(4.5.27) (ITALD)z)=1"2x(Df(2) if (LN)=1.

We note that if (a, N) # 1, then x(a) = 0. For a positive integer n, we write n|N® if
all prime factors of n divide N. We get the following relations between Hecke
operators of modular groups of different levels.

Theorem 4.5.10. Let M be a multiple of N, and n a positive integer. If n|N*® or
(n, M) = 1, then the following diagram is commutative:

MT(n) (resp. "T*(n))
G(N,y) ————— (N, %)

l J

MT(n) (resp. ¥T*(n))
%M, ) ———— G(M, )

Here y is a Dirichlet character mod N and the vertical arrows indicate the natural
embeddings.

Now we are going to study relations between the Hecke algebras of modular
groups of different levels as a preparation for the next section. Let y be a Dirichlet
character mod N, and M a multiple of N. If ae 4,(N), then

T'o(M)aly(N) = 44(N).

Therefore an element of #(I'y(M), [',(N); 4,(N})) induces a linear mapping of
9. (M, x) into 9,(N, y) by Lemma 2.7.2(2). We shall use the following lemma in
§4.6.

Lemma 4.5.11. For a positive integer N and a prime number p, we have
p—1 10 )
v=0 P

1 0
ro(PN)[O p:|FO(N) =

P 10 .
vLIOF"(”N)[o p]vv if pX N.

Here y, (0 £ v < p) is an element of I'y(N) such that

1 v
vv=[0 1] mod p,

and y,(p A4 N) is an element of I'y(N) such that

0 —a . . .
R 0 mod p, with an integer a prime to p,

= 10
[0 1] mod N.
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Proof. Put

1 o] 1 0
(4.5.28) F'=F0(N)m[0 p] I’O(pN)|:0 p:|

={|:a b]eFO(N)‘bEOmodp }
¢ d

By Lemma 2.7.1(4), we have only to get representatives of I''\ I',(N). First suppose
(p, N) = 1. Since

I'y(N)y > I'" o I'(pN),

I'"\I'y(N) corresponds bijectively to A,5(I'')\ A,5(I'o(N)) where 4,y is the homo-
morphism of SL,(Z) onto SL,(Z/pNZ) defined in §4.2. Through the isomorphism

SL,(Z/pNZ) ~ SL,(Z/pZ) x SL,(Z/NZ),

Apn(I'") corresponds to A,(I'") x Ay(I''), and so does &y (I'1(N)) to A,(I'((N))
x An(I'(N)). Consequently I''\ I',(N) corresponds bijectively to

Ap(TN\ (Lo (N)) x An(T")\ Ay(Io(N)).
It can be easily verified that
An(I"") = An([o(N)),
so that I'"\ I'y(N) corresponds to 4,(I'")\4,(I',(N)). Since
4p(lo(N)) = SL,(Z/pZ),

L,(I") = {[‘; Z:IGSLZ(Z/pZ)\b = Omodp},
we get

A (To) = [T 4 (M),

where «, are the elements of A,(I,(N)) defined by

[0 1] ©svsr-n,

0 —a
I:d— 1 0:| (v= P),
and v = vmod p, a is an element of (Z/pZ)*. Since 4,(y,) = «,, we obtain
p
L) = 1] ',

Next assume that p|N. Then a direct calculation proves

rp—1
Lo = 1] I O
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Hecke operators of modular groups have an important property that their
eigenvalues coincide with Fourier coefficients of modular forms at co. It can be shown
from this fact that if a modular form f(z) is a common eigenfunction of Hecke
operators, then the associated Dirichlet series L(s; f) has an Euler product. Before
we explain this fact precisely, we state a general lemma.

Lemma 4.5.12. Let K be a commutative ring with unity. Assume that two sequences
{t(n)}- | and {d(n)}>-, of elements of K satisfy"the two conditions:

@ o(1) = d(1) = 1;

(ii) d(mn) = d(m)d(n) for any positive integers m and n.
Then the following three conditions are equivalent.

(1) If (m, n) = 1, then t(mn) = t(m)t(n), and

t(p)t(p®) = t(p** ') + pd(p)t(p®~ 1)

Jor all prime numbers p and all positive integers e.
(2) The formal Dirichlet series Y . ; t(n)n™* has the formal Euler product

n=1

il tmn=* =TT (1 — «(p)p™* + pd(p)p~2)" .

n=

(3) For any positive integers m and n,

tmyt)= Y ld(D)t(mn/1?).

0 <I|(m,n)

Proof. (1)=(2): By the first condition of (1), we can write formally

(4.5.29) S tmn =] (
n=1 p e

Since

t(p®)p~ )
0

118

(1~ t(p)p™ + pd(p)p~ 28)( % t(pe)p—“) =1

by the second condition of (1), we obtain (2).
(2) = (3): It is obvious that if (m, n) = 1, then t(mn) = t(m)t(n). Let m = I—L,pe
and n = [[,p’ be the expressions as powers of prime numbers. Then

> ld(l)t(mn/l’)=H< Y pgd(pg)t(pe+f—2ﬂ)).
0 <1|(m,n) P \0=<g<minfef}

Therefore we have only to prove (3) when m and n are powers of a prime p. By the
assumption of (2), we have

(4.5.30) 20 t(p)p~* = (1 —t(p)p™* + pd(p)p™ *)~".

Let t’(p) and d’(p) be two variables over Q, and
y:Z[t'(p),d'(p)]—> K
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the ring homomorphism defined by

(4.5.31) y(M) =1, Y('(p) =t(p), and yY(d'(p)) =d(p).
We define the elements t'(p®) and d'(p?) of Z[t'(p), d'(p)] by

(4.5.32) d'(p?) = d'(p)f

and the formal power series

4533) T e = (=) pd (p)p7 )
Then by (4.5.30) through (4.5.33), we have

(4.5.34) Y(t'(p?)) =t(p?) and Y (d'(p%)) = d(p°).

Let u and v be two variables over Q, and

¢: Z[¢'(p), d'(p)] - QLu,v]
be the ring homomorphism defined by

1
o(f'(p))=u+v and ¢(d'(p)) = P
Since u + v and uv/p are algebraically independent over Q, ¢ is injective. Consider-
ing Z[t'(p),d'(p)] as a subring of Q[u, v], we have

1—t'(p)p™° +pd(p)p~ > = (1 —up™*)(1 — vp™*).
Therefore by (4.5.33), we have

(4.5.35) t(p?) =@t — v Y/ (u—0)
= Z_ s,

Assume e < f. Then we see

v(p)t'(p7) = ( ) uivj)'(uf“ — o/ )/ (u—v)

itj=e

e e
=<ufJr1 Yout Tty u’v”’)/(u—v)

ji=0 ji=0

Ougvy(ue+f—2g+l _ve+f—2y+1)/(u_v)

i
gl

g9
= 3 PP (),
g=0
Applying ¥ to both sides, we sce by (4.5.34)
p)t(p’) Z d(p?)e(p** 729,

and we have proved (3) for m = p® and n = p’.
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(3) = (1): This is obvious since (1) is a special case of (3). O

Applying the lemma for
K = #(N),

t(n) = T(n),
and
(T ifmN)=1,
d(")‘{ 0  if(nN)#1,

we obtain by Lemma 4.5.7(2) and Lemma 4.5.8(2) the following

Theorem 4.5.13. (1)
Tm)T(n)= Y T, )T (mn/l?).
0 < I|(m, n}
(LN)=1

(2) The formal Dirichlet series Y., T(n)n™* has the formal Euler product

n=1

i T(n)n™° = l;[N(l —T(p)p~*+ T(p,p)p' ~*)" ' x ll_l (1-TEp .
n=1 p PIN

Now we study the relation between Fourier coefficients of modular forms f(z)
and those of (f|T(n))(z).

Lemma 4.5.14. Let f(z) be an element of 4,(N, x), and

(IT(m)z) = 3. blm)e™
be the Fourier expansions. Then

b(n)= Y  x(d)d* " 'c(mn/d?).

0<d|(m,n)
Proof. We note that

f((az + b)/d) — i c(n)e21rin(az+b)/d_

Then by (4.5.26) and the equality

a1 d ifdn
2ninb/d _
o {o if d yn,
we get
(4.5.36) b(n)= Y  x(a)a* ‘c(dn/a).

0 <al(m,n)

Since ad = m, we have c(dn/a) = c(mn/a?), so that we obtain the result. O
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Lemma 4.5.15. Let f(z) =Y »- o c(n)e*™" be an element of 4, (N, x), and M a set of
prime numbers p satisfying

NT(p)=tp)f (t(p)eC).
Then we have:
(1) If all prime factors of a positive integer m belong to M, then f(z) is an
eigenfunction of T (m). Moreover put

fIT(m)y=1t(m)f  (t(m)eC),
c(m) = t(m)c(1).

then

@ Lis;NH=T1 A —tp)p™* + x(p)p* ' 7%) "' x Y c(n)n™",

peM n

where the summation Y.’ is taken over all positive integers prime to all elements of M.

Proof. The first half of (1) is obvious. Let n be a positive integer prime to m.
Comparing the n-th Fourier coefficients of f|T(m) and t(m) f, we obtain

4.5.37) t(m)c(n) = c(mn)

by Lemma 4.5.14. In particular, taking n = 1, we obtain the latter half of (1). By
(4.5.37), we get formally

(4.5.38) L(s;f) =< Y t(m)m_s> x ( Z’c(n)n's>,

m n

where the summation ) " is taken over 1 and the positive integers whose prime
factors are all contained in M, and ) ' is taken over the positive integers prime to all
primes in M. By Theorem 4.5.13(1),

tn)t(m)= Y x(DIF " 't(mn/1?)
el

for two integers m, n contained in ) ", so that we get at least formally

(4.5.39) X e(mym=* = [T (1= t(p)p™* + x(p)p* =1 727!
pe

m

by a similar argument as in Lemma 4.5.12. Furthermore if
(4.5.40) c(n) = O(n%)

for some a, then (4.5.39) holds on Re(s) > a + 1. In fact, if f(z)is a cusp form, then
(4.5.40) was proved in Corollary 2.1.6 with & = k/2. If f(z) is not a cusp form, then
we shall see (4.5.40) in §4.7. O

By Theorem 4.5.4, the Hecke operators T'(n) ((n, N) = 1) are simultaneously
diagonalizable on %, (N, %). If an element f(z)e &%, (N, x) is a common eigenfunc-
tion of Hecke operators 7'(n) ((n, N) = 1), we can write by the above lemma

L(s;f) = I}N(l — PP+ (PP )T x Y e(mn”,
p
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where the summation )’ is taken over 1 and the positive integers whose prime
factors are all divisors of N. Moreover if f(z) is a common eigenfunction of all
Hecke operators T(n), we can take as M the set of all prime numbers. In this case,
we get the following

Theorem 4.5.16. Let f(z) = Y *_, c(n)e*™" be a nonzero element of %,(N, x). The
following conditions are equivalent:

(1) f(z) is a common eigenfunction of all Hecke operators T(n);

(2) c(1) #0 and

L(s;f) = eI = tp)p™* + x(p)p* "1 7271,

where p runs over all prime numbers.
Moreover if f(z) satisfies the above conditions, then

fIT(n) =t(n)f,  t(n)=c(n)/c(1)

foralln = 1.

Proof. (1)=(2): Let f|T(n)=t(n)f. By Lemma 4.5.15, we have c(n)=t(n)c(1)
for n=1. Then if ¢(1)=0, then f(z) =c(0). Since k=1, we get f(z) =0; which
contradicts the assumption. Therefore c(1)#0. The latter half follows from
Lemma 4.5.15(2). (2) = (1): Put t(n) = c(n)/c(1) for positive integers n. Then we see

P8

n

1 tmn~ =[[A—=tp)p*+x(p)p* 172"\

By Lemma 4.5.12, ;
tmitn)= Y d7y(d)t(mn/d?).

0 < d[(m, n)

Multiplying both sides by c(1), we get

tmye(n)= Y,  d* " 'y(d)c(mn/d?).

0 <d|(m,n)

The right-hand side is equal to the n-th Fourier coefficient of f|7T(m) by
Lemma 4.5.14. Let b(0) be the constant term of the Fourier expansion of f| T(m),
then

(f1T(m)(2) — t(m) £ (z) = b(0) — c(0).
Since f | T(m) — t(m) f is an element of %, (N, ) and k = 1, we get b(0) = ¢(0). Thus

S1T(m) = tim) f. O

Let us consider the case when N =1 and k = 12. Since dim &,,(I'(1)) = 1, 4(2)
is a common eigenfunction of all Hecke operators T'(n). Hence, if we let

A(Z) —_ i TneZninz
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be the Fourier expansion, then we obtain

41T =r1,4
and
L(s; A@) =[] (A —1,p s+ p** )71
p

since 7, = 1. Ramanujan conjectured by calculating the Fourier coefficients of 4(z)
that L(s; 4(z)) has the Euler product as above, and further

|7,l < 2p'112,

which is the famous Ramanujan conjecture. Petersson generalized it as follows.

Theorem 4.5.17. (The Ramanujan—Petersson conjecture) Let

a0

f@)= 3 atmex

be an element of %, (N, x). If (n, N)=1, then
a(n) = O(n*~ 112,

We do not prove this theorem in this book. We only remark here that
Theorem 4.5.17 is equivalent to saying that

(4.5.41)  if a prime number p does not divide N, then the absolute values of roots of
the equation
X2 —t(p)X +yx(p)p*~ ' =0

&=1/2 ywhere t(p) is an eigenvalue of T(p) on (N, x).

are p

It is easy to see Theorem 4.5.17 from (4.5.41). Conversely, let u and v be
solutions of the equation

X?—t(p)X +x(p)p* ' =0,
then
t(p) =@ —v* Y (u—v), |uv|=p* .

Therefore Theorem 4.5.17 implies |u| = |v| = p%*~ /2,

The generalized Ramanujan conjecture for k=2 was proved by [Eichler 2],
[Shimura 2] and [Igusa]. They solved it as follows. If I' is a principal congruence
modular group, then R can be considered as an algebraic curve defined over Q. By
the congruence relation of Eichler-Shimura, it can be proved that the Hasse zeta-
function of the algebraic curve R is essentially the product of L{s; f) (fe #(I')).
This reduces the Ramanujan conjecture to the Weil conjecture for congruence zeta-
functions of algebraic curves defined over finite fields, which have been proved by
Weil. Furthermore, this relation between Hasse zeta-functions and L(s; f) implies
that the Hasse zeta-function of R satisfies a certain functional equation. If k > 2,
then the conjecture is reduced to the Weil conjecture for congruence zeta-functions
of higher dimensional algebraic varieties, which was proved by [Deligne 2]. In the
case when k = 1, [Deligne-Serre] solved the problem by proving that the Dirichlet
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series is nothing but the Artin L-function with respect to a representation of degree
2 of the Galois group of a certain extension over Q.

Now as we explained in the beginning of §4.3, the investigation of modular
forms is reduced to that of 4, (N, x). However, sometimes it is necessary to consider
%,(I',(N)) and the Hecke operators acting on it. We shall study the Hecke algebra
of I'; (N) and the relation with the Hecke algebra for I'y(N). Put

s ={[¢ § |em@

which is a subsemigroup of GL,(Q) containing I';(N).

a=1, ¢=0modN, ad—bc>0},

Theorem 4.5.18. (1) Z(I",(N), A,(N)) is isomorphic to Z(I"y(N), Ay(N)) through the
correspondence:

I'(N)aI' {(N)—=T5(N)al'o(N) (xed;(N)).

(2) The correspondence defined in (1) is commutative with the natural embedding
of 9.(N, x) into 4, (', (N)); namely, for any element o of A,(N), the following diagram
is commutative:

Io(NYalo(N
G(N,y) —oBL® gy )
I(N)al (N
G, (N) —o@2L®) g (i (NY).

Proof. We apply Theorem 2.7.6, taking I'; (N), 4,(N), I'y(N)and 4y(N)for I, 4, U
and D, respectively. We shall verify the three conditions there. Since conditions
(i) and (iii) are satisfied obviously, we have only to prove the second condition,
that is,

4.5.42) To(N)alo(N) = [o(N)al;(N) (a€4,(N)).

I o
First we prove (4.5.42) is satisfied for any element « = [O :| Put n=Im,
m

then as was mentioned after Corollary 4.2.2, we can-choose a complete set of
representatives of I'o(N)/I'{(N) consisting of the elements y such that

y = [u 0:| mod nN.
0 v

0
a "y = l:g v] mod N,

so that ayeyal’;(N). Therefore we get
Io(N)al'o(N) = I'o(N)aI'y(N).

Then o~ 1yaeSL,(Z) and
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l
We note that I: 0

element of 4,(N). Since o€ 4,(N), there exist integers / and m such that

is not necessarily contained in A4,(N). Next let a be any

1o
To(N)alo(N) = ro(N)[O m}ro(N)

by Lemma 4.5.2. Therefore
Io(N)aI' ((N) = I'o(N)alo(N)

0
m

0
m

=ro(N)[(§ | ]ro(N)

-l

and this implies

!l 0
I'y(N)aI'y(N) = Fo(N)|:0 m:|F1(N)'
Therefore we obtain
I'o(N)aI'o(N) = I'y(N)aI'{(N). O

Next let I' be a modular group such that
I'o(N)> I' = I'i(N),
and put
A= A;(N)' T < 4,(N).
From the proof of Theorem 4.5.18, we see easily
R(I, 4) ~ R(I'o(N), 44(N))

and this isomorphism commutes with the natural embedding of %,(I') into
%, (', (N)). Hereafter we identify Z(I",(N), 4,(N)), Z(I", 4) and &#(I'3(N), 4,(N)),
and write

R(N) = R(I'\(N), 4,(N)) = (I, 4) = R(I'o(N), 45(N)).

We quote from [Shimura]: Theorem 348 and Theorem 3.52 the following
important

Theorem 4.5.19. Let I' be a modular group such that
I'o(N)= T o I't(N).

Assume k= 2.

(1) The Hecke algebra #(N) is representable on &, (I") by matrices with rational
integral entries.

(2) There exists a basis of &, (I') consisting of elements whose Fourier coefficients
at oo are all rational integers.
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Since by (4.3.1),

0] 0
L NI IO B B

the investigation of the Hecke algebra of I'(N) is reduced to that of a modular
group I’ of above type.

§4.6. Primitive Forms

We assume k > 0 throughout this section. For a positive integer I, we put

(4.6.1) 8 = [(I) ﬂeGL;(R).

Then for a function f(z) on H,

(4.6.2) fUl2) = 17*2(f18)(2).

Lemma 4.6.1. If f(z)e %, (N, ), then for any positive integer |,
fUz2) =172 (f16)(2) e 4, (IN, ).
Moreover, if f(z) is a cusp form, so is f(lz).
Proof. Let f(2)e%,(N,y (resp. S (N,y), and put g=f|. 4, For any
a b
y= [clN d:leFO(lN), we have

4 _| a bl
oyd; ' = [cN d]eFO(N).
Therefore
gy = (f|k51751—1)|k51
= x(d)(f1d)
= x(y)g.
By Lemma 2.1.3, we see f(Iz)e 4, (IN, ) (resp. Z(IN, x)). O

The Hecke operators T(n) ((n, N)=1) on (N, x) are simultaneously dia-
gonalizable. Furthermore, if f(z) is a common eigenfunction of all Hecke operators
T(n), then the associated Dirichlet series L(s; /) has an Euler product. We naturally
ask the question whether all Hecke operators T(n) on &, (N, x) are simultaneously
diagonalizable. In the case when N = 1, it is obviously true. Hecke proved that it is
true for the following cases:

1° F(I'y(N)) when N is prime, k < 12 or k= 14;
2° % (N, x) when y is a primitive Dirichlet character of conductor N.
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On the other hand, [Shimura, Remark 3.59] implies that &, (N, x) does not
necessarily have a basis consisting of eigenfunctions of all Hecke operators T'(n).
This phenomenon arises from the fact that

4.6.3) if f(2)e LN, y), then f(2),f(lz)e (N, x).

In the above cases 1° and 2°, &, (N, y) contains no cusp forms of smaller level. Thus
we may expect that if we exclude cusp forms of lower levels, then all Hecke
operators T(n) are simultaneously diagonalizable on the complementary subspace.
This is in fact true. We explain this result and some applications following
[Atkin-Lehner] [Miyake], [Asai] and [Naganuma]. We start from the relation
between Hecke operators and the embeddings.

1 0
Lemma 4.6.2. For a positive integer I, we put 6, = I: 0 1]. If (n,IN)=1, then the

Jollowing diagram is commutative:

T
4N,y —2 , 4N,y
& 4
T
(N, 1) ) (N, 7)

Proof. Let f(z) be an element of %, (N, ), and put g =f|,6,. If (n, IN) =1, then

fIT(n, n) = y(myn*~2f,
and

g|T(n,n) = y(mn*"2g

Therefore we have only to prove the assertion for a prime number p prime to IN. By
Lemma 4.5.6, we may take the set

1 m p O
0 p||0 1
. 10
as a complete set of representatives of I'o(IN)\I'(IN) 0 p I'y(IN). Then

p—1
(f|k6,)|T(p)=p"/2-1{m;0f|ké,[; :]+X(P)fik51[g ﬂ}

SV [ TRV EO A

Since ! and p are coprime, the set

15 osm<}

0§m<p}
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0
p

= (fIT(p)Ixd;- O

. . 1
is a complete set of representatives of I'o(N)\Io(N )|: 0 ]I‘ o(N), so that

The following lemma used by Hecke in the cases 1° and 2° plays the funda-
mental role also in the general cases.

Lemma 4.6.3. (Hecke) Let f(z) be an element of 4,(N, x). If there exists an element
b
o= |:Z d:| of Ay(N) satisfying the following conditions, then f(z) = 0.

(i) det(e)>1, (det(@), N)=1,(a, b, c, d)=1;
(1) fleoxe %N, x).

Proof. By Lemma 4.5.2, there exist two elements y,, ¥, of I',(N) such that

1 0
P10y = ] (Ilm, m, 1>0).
|0 m

By (i), (I, m) =1, so that =1 and m > 1. Since
10 1 1][1 o}¢ 1 1/m
[o m:I [0 1] [0 m:l ‘[0 1]¢F°(N)’
alo(N)a~1 & Iy(N).

Let y be an element of I'y(N) such that aya™' ¢ I'o(N). Since
d -b

—C a

we get

det(a)o ™! =|: ]EAO(N),

we see that det (a)aya ™! € 4,(N). Thus we can take elements y;, 7, € ['o(N) so that
-1 u 0
(4.6.4) det(a)ysaya™ "y, = 0 v (ulv, u,v>0)

by Lemma 4.5.2. We see uv = det(x)? by taking the determinants of both sides. If
u=v,thenaya ™! =y; 'y; ! e I'H(N); which contradicts the assumption on y. There-
fore h=v/u> 1. Acting (4.6.4) on f(z), we get

Cf@) =1l (C=hm"33)x0x(s) # 0).
Let f(z) = ).°_, a(n)e*™™ be the Fourier expansion. Then
a(n) = C~ta(n/h) = C 'a(n/h")

for any positive integer t. Therefore we get a(n) =0 if n > 0. Since k > 0, we obtain
f(zny=0. 0

Theorem 4.6.4. Let | be a positive integer. If a holomorphic function f(z) on H
satisfies the two conditions:

O fz+) =S, (i) f(l)e%(N, )
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then

(1) if Im,|N, then f(z2)e 4 (N/1, x);
() iflm k¥ N, then f(z) = 0.

Here m, is the conductor of y. Furthermore if f (Iz) is a cusp form, then so is f(2).

Proof. We may assume that | is a prime number. First let us show f(z)e %, (N, x).
Put g(z) = f(Iz) and

r a b —
Ir= {LN d:leFO(N)'b =0modl}.

bl
Take an element y = [ ¢

N d:| of I''. Since

1 | a b
0, yél_':clN dJero(N),
we see
gl 190, = z(d)g,
or

f|k5151_1?51 = x(d) f ;6.

N 11
This implies f|,y = x(d)f. Let I'” be the group generated by I'’ and |: 0 1]. Since

[r.r'jzl
and
) (IN),
[Fo(N)-F]—{lJrl (¥ N),

0
f(2) belongs to %, (N, y). Next suppose ! is prime to N. Then f(z) = 0 by taking
oa=9, in Lemma 463. Now we assume I[|[N. For any element

a b
Y= |:cN d:|eF0(N), we see

. 11 .
we see that I'” = I'j(N) or I,(N) is generated by [ 1] over I'’. Therefore by (i),

cN/l d

1 0
flk|:N/l 1:|=f-

then f|,y = f. Let n be any integer such that
nN/l+ 1% O0modl

flk[ a b’] — L8167t = 2@,

and in particular,

Therefore, if we put
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Then we can take an integer m so that
(4.6.5) nl+mN/D+m=n+mnuN/l+1)=0modl

Then
- 1+mN/l {n(l + mN/l)+ m}/
oy 1y, =

N AN/ + 1 ]EF"(N)’

and hence
Sy =x(L+nN/l)f.

Therefore if f(z) # 0, then (1 + nN/I) = 1 for any integer n satisfying (nN/l + 1, 1)
= 1. This implies that y is defined mod N/I, and N is divisible by Im,. This implies

1 0
(2). Assume Im,|N. Since I,(N/l) is generated by I:N P I:I over [L,(N), we get
f(z)e%.(N/!, x). The last assertion is obvious. O

Lemma 4.6.5. Let f(z) = Y72, a,*™ be an element of 4N, ). For a positive
integer L, we put

Zninz'
Then g(z)e %, (M, y) with

M=N][p [] P~
plL  pIL
pIN  ptN

Furthermore if f(2) is a cusp form, so is g(z).

Proof. We have only to prove the assertion when L is a prime number p. Put
= N or N’ = pN according as p|N or not. Since p|N’, we have

10 Pt 1
(4.6.6) FO(N’)[O p]Fo(N')= IJOFO(N’)[O r;]

by Lemma 4.5.6. Since %, (N, x) = %.(N', y), we get |V T(p)e %, (N', ). By (4.6.6),
we see

(SINT(P)(E) =

”MB

i 2rin(z+m)/p

i Zmnz
so that )

2rinpz
anpe s

(1Y T(P)(pz) =

i

n

which belongs to %,(N'p, ) by Lemma 4.6.1. Therefore we obtain
9(2) =f(@) = (f1VT(p)(p2) €% (N'D, 1).

The last assertion is obvious. OJ
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Lemma 4.6.6. Let y be a Dirichlet character mod N, [ a positive integer, and p a
prime number prime to l. Put M = IN. Then the following diagrams are commutative:

10
Fo(pN)[ ]FO(N)
0 p

(1) %(pN, ) %.(N, 0
j ro(PM)I:(l) 0:| ro(M) J
%,(pM, y) P %M, x)

Here the vertical arrows indicate the natural embeddings.

1 0
Fo(pN)[O :|FO(N)
@) %(pN,7) 2

Jél 10 l&,
Fo(PM)[O :|r0(M)

%.(PM, 1) L %M, )

gk(N’ X)

Similar results as above hold for cusp forms.

Proof. (1): By assumption, p|N if and only if p|M. Therefore the assertion is
obvious from Lemma 4.5.11. (2): Let f(z) be an element of %,(pN, ), and put

g = f19,- We put
PR A 1 if p|M
“lp otherwise,
and
01
If d = p, then take an element y, of I;,(M) as in Lemma 4.5.11. Then

vv=[1 v] Osvsp—1).

1 0 d 1 0
(4.6.7) Fo(pM)[O p}ro(M)=vL[01’0(pM)[0 p]vv,
so that

10
(4.6.8) pl»k/2g|p0(pM)|:0 p:IFO (M) = Z g|k[ 2:|)’v

Since
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0 —al
() 0 mod p,

[1 0] mod N,
01

and

5lyp(sl_ ! =

provided p ¥ N, we see

1 0] d 1 0] 1
LN o, @)= LI TN ) |@n6)
by Lemma 4.5.11. Therefore it follows from (4.6.8) that
[1 0] 1 0]
gl Io(pM) FO(M)=<f|Fo(PN) FO(N)) 0. O
[0 p| [0 p | k

2ninz

Lemma 4.6.7. Let | (> 1) be a positive square-free integer, and f(z) =Y., a,e
an element of 4,(N, x). If a, = 0 for all n prime to I, then we can express

fl2)= }IZ 9,(p2)  (9,(2) €% (NI, x)),
pll

where p runs over all prime factors of l. Furthermore if l|N, then we can take g,(z)
Sfrom G(NL, y). If f(2) is a cusp form, all g,(z) can be taken as cusp forms.

Proof. We prove the assertion by induction on the number of the prime factors
of I. First suppose [ is prime. Then g(z) = f(z/l) satisfies the conditions of
Theorem 4.6.4, so that g(z)e %, (N/l, ) or f(z) = g(z) = 0 according as Im,|N or
not. Consequently g(z)e %,(NI, x) and

f(2) = g(z).

Next assume that [ is a composite number and the assertion is true for any proper
divisor of I. Let p be a prime factor of / and I’ = [/p. Put

h(zy= Y a,e*™ ™.
(n,p)=1

Then h(z)e %, (Np?, y) by Lemma 4.6.5. Put

f@=h@) =3 bye?™.

n=0

Then if (n, p) = 1, then b, = 0. Put

9,(2) = f(z/p) — h(z/p),
then g,(z)€ %,(Np, y) by the induction assumption, and
(4.6.9) f(z) = g,(pz) + h(2).

Moreover h(z) satisfies the assumption of the lemma with Np? and !’ in place of N
and I, respectively. Therefore we can find g,(z) e 4. (Np*l'%, ) (= %.(NI% x)) for
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each prime factor g of I’ satisfying

h(z) =}, g,(q2).

qll’

This combined with (4.6.9) implies the first half of the assertion. It is obvious from
the above proof and Lemma 4.6.5 that if /| N, then we can take g,(z) from %, (N1, y).
It is also obvious that we can take g,(z) from cusp forms when f(z) is a cusp
form. O

The following theorem is a generalization of Theorem 4.6.4.

Theorem 4.6.8. Let | be a positive integer, and f(z) = Y=, a,e*™ an element of
%N, x). Let m, be the conductor of y. Assume a, = 0 for all n prime to l.

(1) If (I, N/m,) = 1, then f(z) = 0.

(2) If (I, N/m,) # 1, then there exist f,(z)€ %.(N/p, ) for all prime factors p of
(I, N/m,} such that

f@= % flp2)

pi(l, N/m,)
If f(2) is a cusp form, then we can take f,(z) from cusp forms.

Proof. We may assume that [ is square-free. We prove the assertion by induction
on the number of the factors of I. When [ is a prime number, the assertion is nothing
but Theorem 4.6.4 for f(z/]). Next assume that the assertion is true for any proper
divisor of I. Let p be a prime factor of I, and put I’ = [/p. We put

(4610) h(Z) = Z aneZninz’
@m1)+1
(4.61 1) g(z) =f(z) _ h(Z) — Z aneZRinz.

(nl')=1

We see h(z) and g(z) belong to %, (N1'?, y) by Lemma 4.6.5. If (n, p) = 1, then the n-th
Fourier coefficient of g(z) vanishes. First assume pm, t N, then pm, t NI'* and
therefore g(z) = 0 by Theorem 4.6.4, namely,

f@=hzy= Y a,e*™"

(n,1")y#1

This implies that f(z) satisfies the assumption for I’ in place of I, and hence, the
assertion is true by the induction assumption. Next assume pm,|N and put
95(2) = 9(z/p).

Then g,(z)e%/(NI'*/p, ) by Theorem 4.6.4. Put d =p—1 if p?|N, or d=p if
p? ¥ N. Take elements y, (0 < v < d) of I',(NI'?/p) so that

1 0 d 10
ro(Nl'Z)[O p]ro(Nl'Z/p)= goro(Nl'Z)[o p]vv
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(see Lemma 4.5.11). Then we see

gIFO(Nlrz)|:1 0:|I‘0(Nl’2/p)=Pk/2_1 zd: mglk[l 0:|?v
0 p v=0 0 p

d
=p7" X 200 gl

=(d+p g,
Thus we obtain

(4.6.12) 9(z) = g,(pz)

1 0
=pld+ 1)'1<9|F0(Nl’2)[0 p]ro(Nl’Z/P)>(pZ)-

Put
0

f@) = pd+ 17! (f|ro(N)[(1) )

]FO(N/p)>(Z)'
Then f,(z)€ %.(N/p, x), and by Lemma 4.6.6(1),
(4.6.13) L@ =pd+17! ((leO(Nl’Z)‘[(l) 2:| FO(NI'Z/P))(Z)-

Let us show that f(z) — f,(pz) satisfies the assumption of the theorem for I'. It is
obvious that f(z) — f,(pz) e %.(N, x). We see

(4.6.14)  f(2) —1,(p2) = f(2) = f(P2) — 9(2) + g, (p2)
=(f(2—9(@)

~pa+ ) (- om0

p]Fo(Nl'z/P)>(p2)

_ .1 0 ,
=h(z)—pld+1) 1<h|Fo(Nl 2)[0 p:lfo(Nl 2/p)>(pZ)-
Since the n-th Fourier coeflicient of h(z) vanishes if n is prime to I’, we can express

h(z)= ) hy(gz)  (hy(2)€G(NI", 1))

qlV

by Lemma 4.6.7. Moreover for any prime factor g of I, we have

0
e e R R A TR
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by Lemma 4.6.6(1). This combined with Lemma 4.6.6(2) implies
1 0
(hlfo(Nl’z)[O p]Fo(Nl’z/p))(Z)

= (( Z q—k/th|k541)
q|ll

1
=2 (hqlro(Nl’3)[0 O]Fo(Nl’3/P)>(qZ),
q|l’ 14

1
Fo(Nl’sq)[

. Z]FO(NI'3q/p)>(z)

where 6

0 .
Ll In particular, the n-th Fourier coefficient of

_|4

4 0
1

(hiI‘O(Nl’Z)[O 2} I,(NI'?/p) )(z) vanishes provided (n, I') = 1. Consequently the

n-th Fourier coefficients of f(z) —f,(pz) vanishes by (4.6.14). Therefore, by the
induction assumption, we obtain that

f@—fp2) =Y f,(a2)  (f(2)e%(N/q. 1)),

where g runs over all prime factors of I’. This completes the proof of (2). If f(z) is a
cusp form, then the modular forms which appear in the proof can be taken as cusp
forms. \ O

Hereafter we consider only cusp forms. We denote by %, (N, y) the subspace of
S(N, x) generated by the set

U U L/)1f @ e S, 1)}

Here M runs over all positive integers such that m,|M, M|N, and M # N; | runs
over all positive divisors of N/M (including both 1 and N/M); m, is the conductor
of x. In other words, &} (N, x) is the subspace of ¥, (N, y) generated by cusp
forms essentially of lower levels. Furthermore, we denote by &2(N, y) the ortho-
complement of FL(N,y) in F(N, y) with respect to the Petersson inner pro-
duct. Namely, (N, ) = L (N, x)*. We also write £ 2(I,(N)) = L2(N, y) and
FUITH(N)) = LN, y) with the trivial character ¥y mod N. By definition, the
following lemma is obvious.

Lemma 4.6.9. (1) If y is a primitive Dirichlet character of conductor N, then
(2) If m,|M, M|N and M # N, then &, (M, y) = S}(N, x).
(3) (N, x) is generated by the set

UU (/0110 es2M, 1)

Here M runs over all positive integers such that m,|M and M|N; | runs over all
positive divisors of N/M (including both 1 and N/M).
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Lemma 4.6.10. ¥i(N, y) and F?(N, y) are stable under Hecke operators T(n)
((n,N)=1).

Proof. Let f(z)e #L(N, x). By definition, we can write
f@=X102 (L@DeLM,,x), L M,JIN,M,#N)
Put g,(z) =f,(l,2). Since (n, [, N) = 1, we see

(1T () = X (9. T(n)(2)

=Y (LIT@)(,2)

by Theorem 4.5.10 and Lemma 4.6.2. Thus (f|T(n)(z)e #L(N,y), namely,
FL(N, x) is stable under T'(n). By Theorem 4.5.4, the adjoint operator of the Hecke
operator T(n) on &, (N, x} is x(n) T(n), and therefore, #¢ (N, x) is also stable under
T (n). O

It follows from the above lemma that subspaces #2(N, x) and Fi(N, x) of
(N, y) have a basis consisting of common eigenfunctions of all Hecke operators

T(n) ((n, N) = 1).

Lemma 4.6.11. Let f(z) =", a,e*™ be an element of SN, y). If f(2) is a
common eigenfunction of Hecke operators T(n) for all n prime to some integer L, then
a; #0.

Proof. Assume a, = 0. Then by Lemma 4.5.15(1), we see a,, = 0 for all n prime to L.
Therefore f(z)e #;(N, ) by Theorem 4.6.8, which is a contradiction. ]

Theorem 4.6.12. Let f(z) and g(z) be elements of # (N, x) and F (N, ), respect-
ively. If f (2) and g(z) are common eigenfunctions of T (n) with the same eigenvalue for
each n prime to some integer L, then g(z) is a constant multiple of f(z).

Proof. Let f(z)=).7 | a,e*™™ be the Fourier expansion. Since a, #0 by
Lemma 4.6.11, we may assume a, = 1. Furthermore we may assume N|L. Put

g(2) = gV +9P) GO eF2N, 1), gV (2)e SN, 1))

By Lemma 4.6.10, both g‘®(z) and g‘V(z) are common eigenfunctions of T'(n) with
the same eigenvalue q, for each n prime to L. Assume g®(z) 0, and put

b e2ninz

¢) =

n

By Lemma 4.6.11, we have b; # 0. Let us show g‘?(z) = b, f(2).
We put

(4.6.15) 4O —b, f(2)= i g2rinz

18

1
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Since b,a, = b, for all n prime to L by Lemma 4.5.15(1), we get ¢, = 0 for all n such
that (n, L) = 1. Applying Theorem 4.6.8, we see ¢'® (z)—b, f(z)e ¥} (N, ), and

g () =b,f(2).

Next we shall prove that g*(z)=0. First suppose N =m,, where m, is the
conductor of y. Then ¥} (N, x)=0. In particular, g'"(z) = 0. Next assume N #m,.
We separate the proof into two steps.

(i) If gV (2) # 0, then there exist a proper divisor M of N satisfying m,|M, and a
non-zero element k(z) of #2(M, ) such that k| T(n) = a,h for all n prime to L. In
fact, by definition, we may write

4616  gV@=Yh (2, (h@eLIM,, ), ,M,|N, M, #N).

Since M, divides N, Lemma 4.6.10 implies that &2(M,, y) has a basis consisting of
eigenfunctions of 7'(n) for all n prime to L, so we may assume that all h,(z) are
common eigenfunctions of T'(n) for all n prime to L. Lemma 4.6.2 implies that
h,(l,z) are also common eigenfunctions of 7'(n) for all n prime to L. Since
eigenfunctions with distinct eigenvalues are linearly independent, the summation
on all h,(l,z) whose eigenvalues for T'(n) are different from g, must vanish.
Therefore, by removing such functions we may assume that all h,(z) appearing
on the right-hand side of (4.6.16) satisfy
h,| T(n) =a,h,  ((n, L)=1).

Therefore we may take any h,(z) and M, as h(z) and M, respectively.
(i) Let h(z)=c} e*™= + - - - be the element of &7 (M, ) obtained in (i). Since
h|T(n) = a,h for all n prime to L, we see ¢; # 0 by Lemma 4.6.11. Put

M) =i f@)= Y, de?.
n=1
Then by Lemma 4.5.15(1) d,=0 if (n, L)=1, and by Theorem 4.6.8
h(z)—c f(2)e i (N, ¥).
Therefore
f@ =7 @) = | fF@) + e h(@) € KW, x);

this contradicts the fact that f(z) is a nonzero element of #2(N, x). Consequently
we obtain g'V(z) = 0, and therefore,

9@ =g =b,f(2). .
We call an element f(z)e S2(N, y) a primitive form of conductor N if the
following conditions are satisfied:

(1) f(2) is a common eigenfunction of all T(n), ((n, N)=1);
(i) let f(z2)=Y."_, a,e*™™* be the Fourier expansion, then a, = 1.

We also call #2(N, y) the space of primitive forms of level N with character y.
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Theorem 4.6.13. (1) Primitive forms are common eigenfunctions of Z(N)w Z*(N).
(2) LN, x) has a basis consisting of primitive forms.

Proof. (1): Let f(z) be a primitive form in S2(N, x), and f|T(n)=a,f for n
prime to N. Let T and T* be elements of 2(N) and #*(N), respectively. Since
A(N) is commutative, 7 is commutative with 7(n). Furthermore since
fITm)=xn)f|T*(n) and T* is commutative with T*(n), T* is also commu-
tative with T'(n). Therefore f|T and f|T* are also common eigenfunctions of T'(n)
with the same eigenvalue a,. Therefore Theorem 4.6.12 implies that both f|7" and
f1T* are constant multiples of f(z), or

fT=¢f, fIT*=c'f.
(2): Since FQ(N, yx) has a basis consisting of common eigenfunctions of all

T(n) ({n, N)=1)by Theorem 4.5.4(3) and Lemma 4.6.10, (2) follows from (1) and
Lemma 4.6.11. U

Corollary 4.6.14. Assume that there exists a common eigenfunction f(z)e (N, x)
of T(n) with eigenvalues a, for all n prime to N. Then there exist a divisor M of
N satisfying m,|M and a primitive form g(z)e & (M, x) such that

glT(n)=a.g

for all n prime to N. Moreover if f (z)¢ S2(N, x), then M # N.

Proof. Il f(z2)e#2(N,y), then the assertion is obvious since a; #0 by
Lemma 4.6.11. Suppose f(z)¢ #2(N, y). Then by (i) in the proof of Theorem
4.6.12, we have a divisor M of N and an element g(z) of &2(M, x) such that
g|T(n) = a,g for all n prime to N. By Lemma 4.6.11, we can take a primitive
form as g(z). This proves the first half of the assertion. The latter part follows
from Theorem 4.6.12. O

Let f(z)=Y._,a,e*™™ be a primitive form of %9(N,y). Then by
Lemma 4.5.15(1),
fITm)=a,f foralln

Moreover since f(z) is an eigenfunction of T*(n), and T*(n) is the adjoint operator
of T'(n) with respect to the Petersson inner product by Theorem 4.5.4(2), we get

fIT*n)=a,f.
Furthermore Theorem 4.5.4(1) implies that
4.6.17) a,=jma, if (n, N)=1.

Moreover we see by Theorem 4.5.5
(4618) (flkwN)| T(n)= dn(flk wN),
(flen I T*(m) = a,(flxwx),

for all positive integers n.
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Theorem 4.6.15. (1) By the action of wy, ¥ (N, y) and FL(N, x) are isomorphic to
SN, 1) and FLL(N, i), respectively.
(2) If f(2) is a primitive form of SN, y), then f,(2) is a primitive form of
SN, ) and
flhoy=cf,(z)  (ceC)

Proof. (1): First let us prove that wy maps #L(N, x) into #L(N, x). We have only
to show that if

f@=Mhid)2) (h(Z)e LM, x), M # N, IM|N),
then f|,wye FL(N, 7). Put I' = N/IM. Since

8,050 = 1wy,
W¢E Sce
Slyoy =h 'k(élwzvéfl)‘sl'

= (h |y @p) 16y -

Since h | @ € L (M, 7), we get floyePL(N, x). Next assume f(z)e LN, x).
We sce
(flkon, ) =(f, (=1D)*hloy) =0

for all h(z)e#L(N, ¥) by Theorem 2.8.2. Therefore f|.wye F2(N, ). Since
(N, y) is isomorphic to F(N, ) by wy, we obtain F(N, y) ~ F2(N, x) and
FL(N, x) =~ LL(N, j), respectively. (2): Since f|, wy is an element of F2(N, ¥) and it
is a common eigenfunction of Z(N), it is a constant multiple of a primitive form. On
the other hand, f|,wy is also a constant multiple of f,(z) by (4.6.18), and a; = 1.
Therefore f,(z) is a primitive form. ]

Let f(z) = Y.*_ , a,e*™" be a primitive form of ¥ (N, y). By Theorem 4.5.16,
we have the Euler product

L(s; /)= H(l a,p~s+x(p)p* 1)t

=[] A—a,p™+4(Pp* 1 72) " x H (1—a,p™)~".

PN
We mentioned in Theorem 4.5.17 without proof that if p ¥ N, then |a,| <2p*~ D=2,
We are going to give a similar estimate of a, for a prime factor p of N. Let p be any
prime factor of N, N, the p-component of N, and x, the Dirichlet character mod N,
defined by (3.1.4). Moreover for a prime factor g of N, we put

=11 1
r¥q

Let y, and y, be two elements of SL,(Z) such that

0 —1 )
[1 0] mod N7,

1 0 >
|:0 1:| mod (N/N, ),

(4.6.19) s
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and
1 0 )
|:0 1] mod N,
(4.6.20) Yo =< o _1
- 2
I:l O:I mod (N/N,)*.
We put )
' N, 0 . [N/N, ©
(4.6.21) '7q='7¢(;N)=')’q_0q 1], nq:yq[o 1 1].
Then
0 —1 )
|:Nq 0:| mod N7,
=N, o
q 2
|:0 1] mod (N/N,)?,
and
N/N, 0 )
, |: 0 1:| mod N,
Ny =
0 -1 5
[N/Nq 0] mod (N/N,)*.
Since
[ d _(N/N”)c:l mod NZ,
n[a b:|’1_1= —N,b a
NeN d|™ a N.b
[(N/N)c 3] mod (N/NG’
q
and
a (N/N,)b
Ja b, |:ch d mod N,
Tl on T = d —N,¢
[—(N/N)b a"] mod N/NZ,
q
we see
Mo lo(N)ng ' =To(N),  naIo(NYn; ™' = To(N),
and

s D= 00E)0  xmn Y= )@, Gelo(N)).

Therefore we get the isomorphisms

SN, ) = F(N, 147 SN, 1) = LN, e,
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by the correspondences “fi—f|.n,”, “f+=fln,”, respectively. By a similar argu-
ment as in the proof of Theorem 4.5.5, we obtain the following commutative
diagrams:
(4.6.22)  if (n,N,) =1, then
LT
FN, ) ——— LN Y

Lk

yk(N’ X;X_q) yk(Na X;X_q)s
(4.623)  if (n, N/N,)=1, then
XM T(m)
SN, ) ——— SN, )
1 o l Yo
= T(n) =
yk(N’ Xqu) yk(Na Xq Xq)

In particular, if an element f (z) of &, (N, x) is a common eigenfunction of T'(n) for all
n prime to N, so are f|,5, and f|,7,. Since for a prime divisor [ of N
L (I=g),
I (1+#9),

a similar argument as in the proof of Theorem 4.6.15 combined with these proves
the first assertion of the following

o = cynV/0s, with ceZ, yelL(N), I'= {

Theorem 4.6.16. Under the same notation and assumptions as above, we have:
(1) By n,, we have the isomorphisms:
FRN, )= LN, 257g), LN, )= L (N, 147,)-
(2) By n,, we have the isomorphisms:.
FUN, )= SN, tadah LA, 0= SN, Kody).
@) flinZ = x (=D NS Flin? = 24— DI (N/NS,
Sngny = 24N leow,
Jor f(z2)e F4(N, x).

(4) Let f(z)= Y "_, a,e*™™ be a primitive form of S(N, y).
Put

(Thn)e)=c 3 be™ (b,=1)
and "

2minz
b, ™=,
1

g,(2) =

n

18
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Then g,(z) is a primitive form of #Y(N, x,%,) and

{ Pa, if p#gq
xp)a, if p=gq,

p

for any prime number p.

Proof. (2): This can be proved similarly to (1). (3): We put y = n,n,wy ", then

yelo(N) and
1 0
[0 1] mod N,

N, O
[0 1/Nq] mod N/N,.

~2
1]

Therefore we see

Flitaty = flvoy = 1N f oy

N, 0 ]!
5:'1‘?[04N:| ’
q

Similarly, putting

we see o€ [H(N) and

N, O
[0 I/Nq] mod N/N,.

and therefore,

flun? =f|ka[1‘é‘f M
P ACEVACAT:
A similar argument is applicable to n;?. (4): By (4.6.22), if (n, g) =1, then
(4.6.24) (k1) 1T (n) = g, (S T(m)]en,
= Zamay(fleng).
Similarly, if (n, N/N,) = 1, then
(46.25) (Shn) T() = xg (man(£ )

Since f |1, belongs to #Y(N, x,%,) by (1), f 1, is a constant multiple of a primitive
form, so that g,(z) is a primitive form. Taking a prime number p as n in (4.6.24), we
get

b, =1,pa, (p#q:
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It follows from (3) that

Fling = c(fleonny) (e = x(= Dy (N)2,(N/N,)).
Since f |,y € L (N, ¥), we see by (4.6.23) that
(flng)| T(q) = c(flewnng) T(q)
= cxg(@D((f lkon) I T(g))|i11g
= cxg(@ag(flkwonmy),
= %(@a,(f1in,)-
Therefore we obtain
b, = x4(q)d,- a
Theorem 4.6.17. Let f(z) =Y. ° | a,e*™™ be a primitive form of ¥} (N, ), and m the
conductor of y. For a prime factor q of N, we denote by N, and m, the g-components of
N and m, respectively.
(1) If N, = m,, then |a,| = q*~ V72,
(2) If N, = q and m, = 1, then a} = y,(q)q" >
(3) Otherwise, namely, if ¢*|N, and N, # m,, then a, = 0.
Proof. (1): Let y, and 5, be the elements of GL,(Q) defined by (4.6.19) and (4.6.21),
respectively. Let a be an integer prime to N,. Taking an integer b so that

ab+1=0modN,, a = bmod N/N,,

|1 a 1 b !
"Zlo N "o N, ] -

*
[g ——b} mod N,

Y=
1o
[0 1] mod N/N,,

we put

Then ye SL,(Z) and

so that yeI'y(N) and x(y) = x,(— b). Therefore

1 1 b
flk[o N ]vq = tal= b)fik[o ¢ ]

Consequently, taking the summation ) ' over a complete set of representatives of
(Z/N,Z)*, we see

(4.6.26) N¥2-1 <z' f|k[ (1) ?v ])

q

1
- N’;’Z‘l(za’xq(—a)flk[o N ])

Mq
k

N, 0
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)
- Nl‘;/z -1 Xq(_ 1) Z <Z ’ Xa (a)eZmna/Nq>aneZ1nnz
n=1 a

= N:;/Z_l W(Xq)Xq(— 1) Zl X—q(n)anebu'nz

with the Gauss sum W(y,). We note that y, is a primitive Dirichlet character of
conductor N,. On the other hand, Lemma 4.5.6 implies that
a

1 1
(4.6.27) N’;/z"l(Z'f!k[O N :|> =f|T(qe)—q"’z_l(flT(qe‘l))lk[O (q)]

q

e -1 e— 10
—af— a2 ag 1f|k[0 q],
5= 1 0 g O\
“lo ¢ |™M\"o 1]) -
1 0
[0 1} mod N,

/g O
[O q:| mod N/N,,

where N, = ¢°. Next put

Since d e I'y(N) and
6=

we obtain

(4.6.28) NH2-1 <Z' f]k[(l) ?v D

q
e 4 gt~ q 0
- szt a (] 1))

Let g(z) = .2, b,e*™ be a primitive form of ¥, (N, y,%,) such that

Slng=cg, (€ #0)

Comparing the first and g-th Fourier coefficients of the right-hand sides of (4.6.26)
and (4.6.28), respectively, we get

Mq

k

(4.6.29) NI W (g )t (— 1) = cas,
and
(4.6.30) clagh, — xy(@)g* " 'a;™Y) = 0.

Since b, = x,(q)a, by Theorem 4.6.16(4), we obtain
|aq l2 — qk— 1.
Furthermore it follows from (4.6.29) that

(4.6.31) c= N2 W) ag(— V/ag.
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(2): Since N, =g, we have, by Lemma 4.5.6 and Lemma 4.5.11,
0
q

Moreover the assumption m, = 1 implies that y, is a trivial character. Therefore,
putting

FO(N)[(I) g]FO(N/q) = FO(N)[(I) ]FO(N)UFO(N)nq (disjoint union).

1 0

g =f|ro(N)[0 .

]Fo(N/q),

we have g(z)e ¥, (N/q, x;) and

g=f1T(q) +q"* 5@ f ling-

Since T'(n) ((n, N) = 1)is commutative with T'(q), and also with #, by (4.6.22), g(z) is
a common eigenfunction of 7'(n) for all n prime to N with the same eigenvalue as
f(2). Since &, (N/q, x,) is contained in %, (N, y), Theorem 4.6.12 implies that

g(@)=af(z)  (aeC).

Since f(z) is a primitive form of conductor N and g(z) belongs to ¥, (N/q, x;), we
get g(z) = 0, namely,

»

(4.6.32) a,f (@)= —q"* "1 f lnys
or

(4633) flng = —a,2(a)g" 1.
Acting 5, on both sides, we obtain by Theorem 4.6.16(3),
(4.6.34) a2 = x,(9)q" "2

(3): By assumption, g divides N/q, so that

10 10
ro(N)[O q]ro(N/q)= ro(N)[O q]ro(N)

by Lemma 4.5.6 and Lemma 4.5.11. A similar argument as in the proof of (2)
combined with this implies
1 0

fIT(¢1)=f|Fo(N)[0 q

This proves (3). O

:|F0(N/‘1) =0.

We restate (4.6.31) and (4.6.33) as

Corollary 4.6.18. Under the notation and assumptions in Theorem 4.6.16 and
Theorem 4.6.17, we have:

(1) If N, = m,, then
flkrlq = ng, c= ]Vq_k/2 W(Xq)Xq(_ l)d;’ (Nq = qe),
with a primitive form g,(z) of (N, x37,)-
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(2 If N,=q and m, =1, then

fling=¢f,  c¢=—q'""a,
and
d, = xq(9)a,-
We are going to prove that two primitive forms are equal if almost all a, are
equal. More precisely,

Theorem 4.6.19. Let f(z) = 7, a,e*™™ be a primitive form of (N, ), and
g(z) =37, b,e*™ an element of S (M, ). If g(z) is a common eigenfunction of
R(M) L @*(M), b, = 1, and a, = b, for all n prime to some integer L, then N =M
and f(z) = g(2).

Proof. We may assume that L is a common multiple of N and M. If p is a prime
number prime to L, then we see

x(p)p =ai—ap
=b2—b,
= AMp)p* !

by Lemma 4.5.7(2), so that y(p) = A(p). Therefore y(n) = A(n) for all integers n
prime to L. Let us prove M|N. By Corollary 4.3.7, we have

AnGs f) _ Antk—s; flewn)
Ap(s; gy Apylk —s; glioy)
Since L(s; f) and L(s; g) have Euler products by Theorem 4.5.16, we see
Anls; f) _ bp™*+ A(p)p* T
(4.6.36) N VM) B =55
Auls; g) (VN Hl—a,,p +x(p)pt 2

on Re(s) > k/2+ 1. Since the right-hand side is a meromorphic function on
the whole s-plane, (4.6.36) holds on the whole s-plane. On the other hand,
g!T(n) = b,g, and g(z) is a common eigenfunction of T *( ) by assumption. Since
T *(n) is the adjoint operator of T'(n), we see g|T*(n) = b,g, and

(4.6.35)

(Gl@r)| T (1) = by(g i)

by Theorem 4.5.5. Therefore Theorem 4.5.16 implies that L(s; gl,w;,) also has an
Euler product. This combined with Theorem 4.6.15(2) implies

Ayk—s; fleoy) —b,p" 4 Appp* !
4.6.37 Al N/ /MY T]
@630 s gl ~ VM S e
with a constant ¢. Thus by (4.6.35), we get

bpp—s+/1(p) k—1—2s

k—1—2s

(N/MY ﬂ l—a,p™+ x(p)
s k+l 2s—k—1
\/~/\/—' (p)p 2s—k—1°

ml - 5 “+7(p)p
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We denote by M, and N, the p-components of M and N, respectively. Then we see,
for any prime factor p of L,

1 _bpp~s + l(p)pk—1—2s _. 1— b_pps—k + I(p)sz—k—l
l_app—-s+x(p)pk—1—2s Pl_dpps—k+x—(p)p25—k—1

with a constant ¢, by Lemma 3.2.1. Let u and v be the degrees of

(4.6.38)  (N,/M,)

l—a,p™*+x(p)p* "%
and
1 _ bpp-s + A(p)pk_lvh

as polynomials of p~* respectively. Then 0 < u, v < 2. We are going to discuss
each case separately. From now on we put

S

x=p °
and

M,/N, = p°.
1° If u = v, then M, = N, by (4.6.38).
2° Suppose u = 1 and v = 0. We can rewrite (4.6.38) into
c,(1 —a,x) =x*(1—a,p 1), a, #0,
so that |a,|* = p*; which contradicts Theorem 4.6.17. If u = 0 and v = 1, then we

see N, = pM,,.
3° Suppose u = 2 and v = 0. Then (4.6.38) can be rewritten into

(4.6.39) c,(1 —apx + x(p)p* 'x?) = x°(1 —d,p *x~ '+ 7(p)p~* 'x72).

Comparing the degrees of both sides, we get e = 2 and
P =1, ¢, =i(pp T,
so that | (p)|?> = p?; which is a contradiction. If u = 0 and v = 2, then we see easily
e = —2,s0 that N, = p* M,
4° Suppose u = 2 and v = 1. We rewrite (4.6.38) into

1-—- k= 1y2 1—ap * 4 7(p)p -k 1lx 2
(@640) ¢ 1T X TADPTIE 1= apT T+ AT
1—-b,x 1—b,p~*

Put ¢t = x~!. Then the absolute values of the roots of
t*—a,t+x(p)p*~1 =0
are p%~ 12 by (4.5.41) and the absolute values of the roots of
Ipp M —ap+ 1= q(p)p T T —a,pt + 2(PP* ) =0

are p%* /2 Therefore this case cannot happen. If u = 1 and v = 2, then we also see

that N, ="pM,,.
Consequently, in any case we obtain that M|N, and y is induced by A. Therefore
Theorem 4.6.12 implies that f(z) = g(z), and so N = M. ([

This theorem combined with Corollary 4.6.14 implies
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Corollary 4.6.20. Let f(z) be a nonzero element of (N, x). If fIT(n) = a,f for all
integers n prime to N, then there uniquely exist a divisor M of N with m,|M and
a primitive form g(z) of 5°(M, x) such that g|T (n) = ag for all n prime to N.

Moreover fz)edg(lz) | IM|ND.

Corollary 4.6.21. Let f(z) =Y, a,e*™™ be a non-zero element of ¥, (N, y). Then
f(z) is a constant multiple of a primitive form of S (N, x) if and only if f(z) is a
common eigenfunction of Z(N) and Z*(N).

By Theorem 4.5.5 and 4.5.16, we see

Corollary 4.6.22. Let f(z) = >~ a,e*™ be an element of #,(N, x) with a, =1,
and put w ‘
(flewy)(2) = ¢ Zl b,e®™,  (by =1).

Then f(z) is a primitive form of #Y(N, x) if and only if L(s; ) and L(s; f |,wy) have the
following Euler products:

L(s; f) = H(l—app‘s+x(p)p" B I

L(s; flioy) = c[[(1 = b,p™* + q(p)p* 1 7271

§4.7. Dirichlet L-Functions and Modular Forms

In §4.3, we proved that integral forms are characterized by functional equations of
the associated Dirichlet series. It is natural to ask what such Dirichlet series are. We
showed in §4.1 that the Dirichlet series associated with Eisenstein series with
respect to SL,(Z) are nothing but the products of two Riemann zeta-functions. In
this section, we are going to generalize this and prove that elements of A", (N, x)
correspond to the products of two Dirichlet L-functions. This was proved by Hecke
by constructing modular forms explicitly using Eisenstein series. Here we start
from Dirichlet series and construct modular forms as an application of Weil’s
theorem. We shall discuss on Eisenstein series again in Chapter 7.

Now let y, and x, be Dirichlet characters mod M, and mod M,, respectively.
Put

(],’)(S) = L(S’ XI)L(S —k + la XZ)’

for a positive integer k. Then

= [1LA = %1 (P)p )1 — x2(p)p* "1 p ™)1}

o0
= Y aqn*
n=1
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on Re(s) > k. Here

(4.7.1) ay= 3, x:(n/d)y(d)d*".

0 <din

We shall prove that ¢(s) is a Dirichlet series associated with a modular form under
suitable conditions on y; and x,. Put

X=X1X2
and

M=MM,.
Assume that y(—1)=(—1)* and
4.7.2)  x, and x, satisfy one of the following conditions:

(i) if k =2, and both y, and x, are trivial, then M, = 1 and M, is a prime number;
(ii) otherwise, y, and y, are primitive characters.

First suppose that there exists an element f(z) of %, (M, x) such that L(s; f) = ¢(s),
and we study the constant term of f (z) by the functional equation of L(s; /). We put
as in (4.3.12),

Au(s;f) = Qnr// M) T (s)L(s; f).
Case (ii): Let 8; be 0 or 1 such that y;(—1)=(—1)%, and A(s, ) be as in
Corollary 3.3.2. Then

@73) A ) Al — k+1, x2) = 2/T (Mo /1) T2 u(s) ™! Ay (55 ),

—k+1+6 s—k+1+6 s .
<s . 2)( 5 2+1>---<5—1> if k>20,=1,

u(s) = <s—k+21+(52><s——k+21+52+1>‘”(s;1> it ok>1,6,=0,

1 otherwise.

Therefore A,,(s; f) is holomorphic on the whole s-plane except for s =0 and s = k,
and has poles of orders at most 1 at s =0 and s = k. More precisely, A,,(s; f) is
holomorphic at s = 0, if either

(a) k # 1 and y, is a non-trivial character,
or
(b) k=1 and both y, and y, are non-trivial.
In other cases, A (s; ) has the residue —a, at s = 0, where

(4.7.4) ag = L(1 —k, 3)/2.

Case (i): Let
A(s)=n"2 I (s/2){(s)
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with the Riemann zeta-function {(s) as in Theorem 3.2.2. We have
A A — 1) =4n(s — 1) 1A =ML M 2 A, (5; /).

Hence A4, (s; f) is holomorphic on the whole s-plane except for s = 0 and s = 2, and
has simple poles at s = 0 and s = 2. The residue at s =0 is given by — a,, where

4.7.5) ap=—(1-M){(-1)/2.

Thus we have determined the expected constant term a, of f(z).

Theorem 4.7.1. Let y, and y, be Dirichlet characters mod M, and mod M,,
respectively, satisfying (4.7.2). Put M = M, M, and y = x,x,. Then for a positive
integer k such that y(—1) = (— 1), there exists an element f (z) of 4,(M, ) such that

L(S,f) = L(S, XI)L(S —k + 1’ XZ)
Moreover if we write f(z) = Y *_, a,e*™™, then

"0, if k # 1, and x, is non-trivial
or if both y, and y, are non-trivial,

-1
ﬁ(l — M), ifk=2, and both x, and y, are trivial,

— B,/ 2k, otherwise,

and

a,= Y nu@/dpdd ™t ©nz1)

0<d|n

Proof. Let a, (n = 0) be as in the theorem. Then

L(S, XI)L(s_k + 19 X2)= z ann_s'
n=1
We put

4.7.6) @) = £ 11 X2) = io 4, 2.

By Lemma 4.3.3, f(z) satisfies (4.3.7). Using Weil’s theorem (Theorem 4.3.15) we
shall prove that f(z) is an element of %4, (M, x). Let { be any primitive Dirichlet
character whose conductor m is prime to M, and L(s;f, ) the Dirichlet series
defined by (4.3.18). Then

477 L(s;f,¥)=L(s, ;1Y) L(s —k + 1, 1, ).
First we consider case (ii) of (4.7.2). Putting 6;=4,,, (i=1, 2) (cf. (3.3.15) and
Corollary 3.3.2), we see that

@78)  A(s 1) A —k + 1, 1,00) = 2ﬁ("‘M2

T

(1-k)/2
) 1)~ Ay (s £ ),
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where
(4.7.9)
s—k+ 149 s—k+1+0 s _ ,
( g 2>< s 2+1>...<_2._1> if k>2 08, =1,
M=y (kA e smkalvon ) (52 h) gy s =0,
2 2 2
1 otherwise.
We put
(4.7.10) 9(2) = Cf(z %2> 11);
where
124 Wi
(47.11) C = (-1 P W) g sz,

N

The functional equations of A(s, x;¥) and A(s, x,¥) combined with (4.7.8) imply
the functional equation

4.7.12) Al f¥) = i*Cy Ay k — 5.9, ¥),
where
W 2
c, = W xrflm)!/z(M) (= M) %;

Therefore f(z) € %, (M, x) by Theorem 4.3.15. Next we consider case (i). Then
4.7.13)  A(s, Y)A(s— 1, ¢)
=2/n(m/m)" 2 u(s) " (L = Y (MM =) M2 Ay (s £, ¥,
where
1 if Y(—1)=—1,

(4.7.14) uis) = s—;l =1,

By the functional equation of A(s, y), we obtain the functional equation

(4.7.15) AL Y) = —Cy Ay — 5 —f,¥).
Thus f(z)e %, (M, ). O

Hereafter we fix a positive integer k, and let f,(z: ¥, x,) be the modular form
f(z) defined by (4.7.6). By Theorem 4.5.16, we note that

(4.7.16)  fi(z; x1, X2} is a common eigenfunction of MT(n) for all n = 1.
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For a Dirichlet character y mod N satisfying y(—1) = (—1)¥, we put

(47.17) &N, 1) = {flz 615 x2) | IM{M,|N, X122 = %, and x, and g, satisfy
(4.7.2)>.

We note that & (N, y) is stable by T'(n) ((n, N) = 1) and generated by common
eigenfunctions of T(n) ((n, N) = 1) by (4.7.16).

Theorem 4.7.2. &,(N, x) = A (N, x).

Proof. First we show that &,(N, y) = A(N, x). Let g(z)e &.(N, x) be a common
eigenfunction of all T(n) ((n, N) = 1) with eigenvalue t,. Since

G(N, x) = LN, ) @ A (N, ),
we can write

9=91+92  (g:1€L(N, 1), 9.6 4N, 7))

By Corollary 2.8.4 and Theorem 4.5.18, %, (N, x) and A (N, x) are stable by T'(n).
Therefore g,|T(n) e &, (N, x), and hence,

g1 | T(n) = tngl'

Now there exists f (z) = fi(z; x1, %) which has the same eigenvalues of 7'(n) as those
for g(z) for all n prime to N. On the other hand, by Corollary 4.6.14, there exist a
divisor N’ of N and a primitive form h(z) of #,(N’, x) such that g,(2), h(z) and g(2)
have the same eigenvalues for 7'(n) ((n, N) = 1). Therefore L(s; f) and L(s; h) has the
same Euler factors for all prime numbers prime to N. First assume that y, is trivial.
Then

F(S)L(s, x)L(s —k + 1, %2)

has a simple pole at s = k. Since A(z) is a cusp form, I" (s} L(s; h) is an entire function.
Put

Lish)= Y an™,
then "
T(s)L(s, x1) L(s —k+ 1, 1) _ 1—a,p~* + x(p)p*~ 172
FOLsh) oin U= (PP ™)L = 12 (P)P )

and it has a pole at s = k. This is impossible from the form of the right-hand side.
Next suppose that y, is not trivial. Then by taking the twisted modular form gy, in
place of g, a similar argument is applicable. Consequently we obtain g, =0 or
ge N (N, x). To prove that &,(N, x) = A, (N, x), we shall calculate the dimension
of &(N, x).

1° The case when either k > 2 or k =2 and y is non-trivial. Let us show that
Jfelz; x4, x2)’s are linearly independent. Let

z C(la XlsXZ)ﬁc(lZ; X15 XZ)ZO’ (C(ls X1s XZ)EC)

Lxi.x2

Here I runs over all positive integers such that IM|[N, and y; and y, run over all
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Dirichlet characters such that y, x, = x. Put

L(S, XI)L(S —k + 17 XZ) =

n

a,(x1, X2)n~

i

Then a,(y,, x,) is the eigenvalue of T'(n) for £(Iz; x,, x,) provided n is prime to N.
Moreover if a,(x;, x») = a,(¥, ¥, ) for all n prime to N, then y, =¥, and x, = .
Therefore, for any fixed pair (x4, ), we see

(4.7.18) Zc(l, X1 X2) 4z 215 12) = 0.

Since the first Fourier coefficient of f,(z; x,, x,) is equal to 1, we get ¢(, x1, x2) =0
for all I. This proves the linear independence of f,(Iz; x;, x,). In particular,

dim &(N, x) = #{(la X1> X2)IM M, |N, xy, x, are primitive and x; x, = X}-

The set of the right-hand side corresponds bijectively to the set of pairs (x}, x%) of
(not necessarily primitive) Dirichlet characters

{0 )i =1 MiMy=N},
where y; is defined mod M. The correspondence is given by

G x2)= (s %2,

where
the Dirichlet character defined mod IM, induced by y,,

Xi=
x5 = the. Dirichlet character defined mod N/IM, induced by y,.
Thus we obtain
dim & (N, x) = #{(x1> )NH1x2=% M M,=N}.

2° The case when k = 2 and y is the trivial character. Then N > 1. By a similar
argument as in 1°, fi(Iz; x,, x,) are linearly independent, and

dim &5 (N, 1) = #{(x1> x2) | Z1x2=% M M,=N, and if y,=y, then
M, #1}.

3° The case when k = 1. If 4, (N, x) # {0}, then N > 3.and y(—1) = — 1. Since
5 X1 12) = Az Y1, ¥) if and only if {, x,} = {1, ¥,}, we obtain

dimgl(NsX)z%#{(XI’XZ)IXIXZ=X5 MM, = N}

by a similar argument as in 1°.
Now we put

(4.7.19) & (I (N)) = @ &N, 1),

X

where y runs over all Dirichlet characters mod N satisfying y(—1) = (—1)*. Then
by Theorem 2.1.7,

&(I'1(N)) = N (I (N)).
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From 1°, 2° and 3°, we see

%;Ll;vq&(M)d)(N/M), if k23, N23, N#4,
%A%I:vqﬁ(M)(p(N/M)—l, if k=2, N23, N#4,

_ lZ¢(M)¢(N/M), if k=1, N23, N#4,
dim &,(F(N)) = { 4w

3 if N =4, k(even) =4,

2 if N=4, k(odd) =3 0rk=2;
N =2, k(even) = 4,

1 if N=4, k=1, N=2,k=2
N =1, k(even) = 4,

0 otherwise

where ¢ is the Euler function. Therefore by Theorem 2.1.7(1), Theorem 4.2.9 and
Theorem 2.5.2, dim &,(I'[(N)) = dim A (I';(N)). This implies &,(I';(N))
= N (I';(N)), and therefore, &,(N, y) = A (N, ). O

Using explicit Fourier expansions (4.7.1), we obtain the following estimate of
Fourier coefficients of any element of &, (N, x).

Theorem 4.7.3. Let f(z)= ) ~_ a,e*™ be an element of &(N, x). Then

_fomh,  if k>2
lomtt), if k=1,2,

n

for any £ > 0.

Proof. For an integer n, we put
(4.7.20) Op—1(m)y= Y a .

0<din

Ifk—12=2, then
o (m)y=n*"1 Y d' TR <tk —1),

0 <d|n
so that
O—1(m) = O(m* ™).
If k =2, then
oim=n Y d'<n I"" <n(l+logn),
0<dn =1
so that

a1(n)=O0(n'**)

for any ¢ > 0. Suppose k = 1. Since g4(n) is equal to the number of all the positive
divisors of n, we have

(4.7.21) Uy (“if 1), (n = Hp?")

n pi
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for ¢ > 0. Since
aclog? < 2% < p*

for any positive integer a, we see

1

(47.22) i+ Ly < elios?,

pae pae 810g2
If p =2 2, then p* = 2, so that

1 1
(47.23) arl i<
P 2
By (4.7.22) or (4.7.23) according as p; < 27 or not, we see
%) [ etos? < exp(217/elog2),

n py < 211

so that
0o(n) = O(n).

These results combined with (4.7.1) prove the assertion. O

Let us consider the special case when N =1 and y, = y, = x, (the principal
character). Assume k = 4. From the remark mentioned at the end of §4.1, we see

Jz5 %0, %0) = cEx(2) (e = (k—1)!/2(2mi)"),

where E,(z) is the Eisenstein series defined by (4.1.3). Even if N > 1, it is known that
if k=3, then f.(z; x,,x,) can be expressed as a linear combination of series
similarly defined as E,(z). In the case when k = 1 or 2, a modification is necessary.
Eisenstein series will be explained in §7.1 and §7.2 again.

§4.8. L-Functions of Quadratic Fields and Cusp Forms

In the previous section, we showed that A7, (N, y) is generated by modular forms
associated with products of two Dirichlet L-functions. It is natural to ask what
kind of Dirichlet series are associated with cusp forms. If an L-function of a number
field corresponds to a cusp form, then the field must be a quadratic field from the
forms of the Euler products. Let K be a quadratic field, and & a Hecke character of
K with u,, v, defined by (3.3.1). Assume that L(s — (k — 1)/2, &) corresponds to some
cusp form. Then we see

(i) K is imaginary,
or
@) Kisreal, and v, =0(v=1,2, u=u,+u, =1,

by comparing I'-factors which appear in the functional equations in Theorem 3.3.1
and Corollary 4.3.7. Here we use the same notation as in §3.3. Under the above
situation, Hecke proved that L(s — (k — 1)/2, &) corresponds to a cusp form by
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using theta functions which we shall discuss in the next section. We are, however,
going to prove this again by Weil’s theorem.

Let K = @(\/E) be a quadratic field with discriminant d, p a prime number
with (p, d) = 1, and y a primitive Dirichlet character of conductor p. We denote by
r and I the ring of integers and the group of fractional ideals of K, respectively. We
define the Hecke character i ° Ng by

(4.8.1) (Yo Ng)(@) = Y(Ng(a))  (a€l),

where Ny is the norm mapping of I into @ *. We note i © Ny is a primitive character
of conductor pr.

Lemma 4.8.1. Let x;, = (d> be the Kronecker symbol.

(1) W(z) = {ﬁm A
(2) If (d, p) = 1, then W (> Ng) = ra(p)Y(|1d]) W(¥)*.
Proof. We use the notation in Theorem 3.3.1. Since
ke (8) = CS)L (s, xa),

we get
T(zs)=1

by comparing the functional equations of both sides. Since y,(—1)=1or —1if K
is real or imaginary, respectively, this implies (1). Since

L(s, ¥ > Ng) = L(s, Y)L(s, Y xa),

T(YoNg)=TW)T(Yxa)-
This combined with Lemma 3.1.2 and (1) implies (2). |

we obtain

Theorem 4.8.2. Let K = @(ﬁ) be an imaginary quadratic field with discriminant d,
and & a Hecke character mod n such that

&((@) = (a/lal)*  (a=1modn)
with a non-negative integer u. We put

@ =10 = T &@Ng(a)2eo,

where a runs over all integral ideals of K. Then f(z)e%,, (N, x) and further
f(z)eyu+l(N’ X)a

unless u=0 and & is induced from a Dirichlet character through Ng. Here
N = |d|Ng(n), and y is a Dirichlet character defined by

x(m) = xa(m)§((m)sgn(m)” (M € 7).

Moreover if & is primitive, then f(z) is a primitive form.
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Proof. Let p be a prime ideal. If ¢’ is the character mod pn induced by ¢. Then
f(z,8) = f(z,8) — EENPY* f (N (P)z; §).

Therefore we have only to prove the theorem for a primitive character £. By
definition, L(s; f) = L(s — u/2, £). Let y be a primitive Dirichlet character of prime
conductor p. Suppose (p, N} = 1. Then since L(s; f, ¥) = L(s — u/2, &( o Ng)), we
see from Theorem 3.3.1 and Lemma 4.8.1 that

An(s; /) = (p/N/2nY T (s) L(s — /2, & ° Ny))

= (p/N/2ny"2 A(s — u/2, (Y > Ng))

NYW (&Y W (Y)?
= (p</N/2my"2i 5((p))xa(pl))l1/;(x(i)m(é) ()

x A(1 +u/2 —s, E(Y ° N ))
= 1, AN(1 +u—s; g, ¥),

where

2
c, = KOWWWE ) WO,

g(z) = j2u"1 I'V(fl)/2 zé O)N (a)u/z 2mNK(a)z

Therefore Theorem 4.3.15 implies that f(z)e%,, (N, x), and f(z) is a cusp form if
u > 0, since L(s; f) is convergent for Re(s) > (u + 2)/2. Since L{s; ') has obviously
the Euler product of the form in Theorem 4.5.16, f(z) is a common eigenfunction of
all T'(n). Assume that u = 0 and f(z) is not a cusp form. Since f(z) is a common
eigenfunction of Hecke operators,

L(s; f) = L(s, x1) L(s, x2)

with Dirichlet characters x;, x, by the proof of Theorem 4.7.2. But this can happen
only when ¢ is induced from a Dirichlet character. The last part of the assertion is
obvious from Corollary 4.6.22. |

For a real quadratic field K, a similar argument is applicable and we obtain
Theorem 4.8.3. Let K = Q( \/3 ) be areal quadratic field with discriminant d, and & a

Hecke character mod n such that

(@) =a/lal = sgn(@)  (a=1modn),
or
(@) =d/ld| =sgn(@) (a=1modn),

where a' is the conjugate of a over Q. We put

@ =1 8=} {a)e? Ve,
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where a runs over all integral ideals of K. Then

f(@eS (N, x)
where N = dNg(n), and y is a Dirichlet character defined by

x(m) =y (m)é((m)  (me2).
Furthermore if & is primitive, then f(z) is a primitive form.

Hereafter we assume that readers are familiar with Artin L-functions. Let us
consider a special case when ¢ in Theorem 4.8.2 and Theorem 4.8.3 is a class
character. Then K is a real quadratic field or K is an imaginary quadratic field and
&((a)) = 1 provided a = 1 modn. Let J be the subgroup of I defined by

J={ael|é(a)=1}.

Let M be the abelian extension of K corresponding to J, and L the minimal Galois
extension of @ containing M. Then

G(L/K)/G(L/M) ~ G(M/K) ~ I(n)/J,
where G(L/K) indicates the Galois group of an extension L/K, and
Im) = {ael|(a, n)=1}.

Therefore £ induces a character 5 of G(L/K). Let p be a representation of G(L/Q)
induced by £. Then we have

L{(s, p) = L(s, %),

so that L(s, &) is an Artin L-function over Q. In other words, such an Artin L-
function L(s, p) corresponds to a cusp form of weight 1. Therefore we may expect
that there exists a correspondence between cusp forms of weight 1 and Artin L-
functions associated with irreducible representations of degree 2 of Galois groups
over Q. Indeed, [Deligne—Serre] proved that cusp forms of weight 1 always
correspond to such Artin L-functions. Conversely, it can be shown similarly to the
above theorems that certain Artin L-functions satisfy functional equations of the
type required in Weil’s theorem. Therefore the above conjecture is equivalent to
the Artin conjecture for such Artin L-functions.

§4.9. Theta Functions

In §2.6, §4.7 and §4.8, we constructed modular forms by using Poincaré series or
Dirichlet series. In this section, we give another way of constructing modular forms
which is a generalization of the theta function defined by (3.2.16). The advantage of
theta functions is that we can explicitly calculate Fourier coefficients of modular
forms. Furthermore, theta functions play essential roles in the theory of quadratic
forms. Throughout this section, we put

e(z) = e* =,
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Let A be a symmetric matrix of size ¥ over Z. Assume that A is positive definite,
namely, all the eigenvalues of 4 are positive. We put

A[x] ='xAx

for a column vector x of size r, and put formally

f2)= Y e(A[m]z)  (zeH).
meZ"
Hereafter we consider all elements of C", R", Z" etc., as column vectors. For a non-
negative integer n, we put

a(n, A) = #{meZ | A[m] = n}.
Then

1) = io a(n, A)e? .

We shall show that f(z) is convergent and is an integral form provided r is even.
This gives an effective method of constructing integral forms. By this fact, we obtain
an estimate of a(n, A) from that of Fourier coefficients of modular forms. The aim
of this section is to prove that f(z), defined as above, is a modular form. We begin
by defining theta functions from quadratic forms and studying the transformation
formulae. The discussion below follows [Shimura 7].

We now define the differential operator 4, by

4, = Z bijaz/axiaxj’ A_1=[bii]'

i,j=1

Let P(x) be a homogeneous polynomial of degree v with complex coefficients in

variables x,, . . ., x,. We call P(x) a spherical function of degree v with respect to A if
4,P(x)=0.
It is known that any spherical function of degree v is given by
a constant (v=0),
P(x)=( 'qAx (qeC") (v=1),

a linear combination of (‘gAx)* (gqeC’, A[q]=0) (v>1).
We take an element he Z" and a positive integer N satisfying
4.9.1) NA 'eM,(2),
4.9.2) AheNZ'.

For the above A, N, h, and a spherical function P(x) of degree v with respect to A,
we put for ze H
A[m] )

4.9.3) 8(z; h, A,N,P)= Y P(m)e( ~z
m=hmodN 2N

ezZ"

x n
= .,Zo a(n, h, A, N, P)e <W z>
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where

a(n,h, A,N,Py= 5  P(m).

Alm]=n
m=hmodN

Since A is positive definite, there exist positive numbers ¢, and ¢, satisfying
4.9.9 ¢y'xx £ A[x] £ ¢,'xx, for all xeR".
Furthermore by Schwarz’s inequality, there exists.cy > 0 such that
4.9.5) [P(x)| < c3(xx)"'?,  forall xeR".
Therefore
S P(m)] = 0@t V),

Alm]=n
m=hmod N

Hence by Lemma 4.3.3, 8(z; h, A, N, P) is convergent absolutely and uniformly on
any compact subset of H and is holomorphic on H. We call it a theta function. We
put

D =det(A4), k=r/2+v.

Lemma 4.9.1. (The transformation formula)

0(—1/z; h, A, N, Py = (—i'D~V*(—iz}* >  e('lAh/N*)0(z; 1, A, N, P).
Al=0mod N
leZ'/NT"
Proof. This is a generalization of (3.2.17), and is also proved by using the Poisson
summation formula. For xe R" and ze H, we put

(4.9.6) bz x) =Y e<51—[’"—2+-’ﬂ z>,
melZ’
and
f(x) = e<A gx] z>.

We denote by f(u) the Fourier transform of f(x). Then
J) =D~ (zfi)""%e(— A7 [u]/22),
and by (4.9.4), we can apply the Poisson summation formula and obtain

(4.9.7) 0z, x)= Y f(m)e(mx)

meZ’
=D"12(z/i)™"* Y e(—A'[m]/2z + 'mx).
meZ"

We have only to prove the assertion for P(x)=('qAx)'(qeC"). Let
qg="%4,,....,q,) and define the differential operator L by

L= l_; 4:0/6x,.
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Acting L’ on both sides of (4.9.7), we see

A[m+ x] z)

498 ¥ P(m+x)e< 5

meZ"

= (=D Y2(z/iy 27 Y (gm)e(— A [m]/2z + 'mx)

mel’
=(—=i'D " Yz/i)y™* 3 P(A™'m)e(— A [m]/2z + 'mx).
meZ’
This is justified by the uniform convergence of 6(z; h, A, N, P) on any compact
subset of H. Note that if v > 1, then
L2A[x] ='qAq = 0.
Put x = N ~ 14, and take — 1/z in place of z. Then the left-hand side is nothing but

N 7*8(—1/z; h, A, N, P). Put n = NA™'m. Then me Z" if and only if ne Z" and
An = O0mod N. Thus we sece

0(—1/z; h, 4, N, P)

=(—i)D Y (=izf Y P(n)e((A[n)/2N?)z + ‘nAh/N?).
An=0mod N
neZ"

Since e('nAh/N?) is determined by the class of nmod N, we see

=(=iD"Y¥(—izf Y  e(lAR/N®) Y  P(ne((A[n]/2N?)z)

Al=0mod N n=I!mod N
leZ'/NZ"
=(—i'D" V¥ —iz} Y  e(lAh/N)O(z;1, A, N, P). 0
Al=0modN
leZ'INZ"

Hereafter we fix P(x) and write simply 6(z; h, A, N) in place of 8(z; h, A, N, P).
The following equalities are obvious by definition:

(4.9.9) 0z h A, NY= Y 6(cz g, cd, cN)
g=hmodN
geZ" [cNZ"

for any positive integer c;
(4.9.10) O(z+2 h, A, N) = e(A[h]/NH0(z; h, A, N);
(4.9.11) 0(z; —h, A, N)=(—1)8(z; h, A, N).

Now let § = |:Z Z] €SL,(Z). Suppose that ¢ > 0 and a = d = 0 mod 2. Since
¢z = a—(cz +d)~ 1, we obtain by applying (4.9.9), (4.9.10) and Lemma 4.9.1
0(6z; h, A, N)
=(=i'D" V2T (—i(cz+d) Y ®(h, 1)O(cz; 1, cA, cN),

Al =0mod N
leZ'/cNZ'
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where

D, )= Y e((@aA[g]+2'1Ag+dA[I])/2¢N?).
=hmodN
ggeZ'/cNZ’

Since we can express it as
@(h, 1) = e(— b(dA[I] + 2'IAh)/2N?)®(h + dI, 0),
it is determined by the class of Imod N. Therefore it follows from (4.9.9) that
0(dz; h, A, N)

= (=D Y (—i(cz+d)t Y @k 1)O(z L, A, N).
Al=0mod N
leZ'/NZ"

Replacing z with — 1/z, and applying Lemma 4.9.1, we see that

bz —a
0 ; h, AN
<dz—c )

=D (=sgn(d)iy(dz—c) Y, ¥(n h)b(z n, 4, N),
An=0mod N
neZ'/NZ’

where

Y= Y  e(nAl/NH®(h,I).
' Al=0modN
leZ’/NZ"

Here we understand sgn(d) =1 when d=0. In addition, assume that
d = 0mod 2N. Then since

4.9.12) &, 1) = e(— b'IAR/N?)D(h, 0),
we obtain
(4.9.13) Y, h)=®((h, 00 Y  e((n—bhAl/N?)
Al=0modN
leZ’/NT"

__{@(h,0)D if n=bhmodN,

N 0 otherwise.
Therefore we see
4.9.14) 9<bz_“; h, A, N>

dz—c

= ¢ "?(—sgn(d)i) (dz — c)*@(h, 0)8(z; bh, A, N).

Rewriting (4...14), we obtain that

b
4.9.15) ify= |:Z d:| (€ SL,(2)) is a matrix satisfying

b=0mod2, ¢=0mod2N, and d<0,
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then
0(yz; h, A, N) = M(y)(cz + d)0(z; ah, A, N),
where
(4.9.16) M(y) = |d|""*(—sgn(c)iy ), e(—bA[g)/2|dIN?).
=hmodN
ggel'/dNZ'

Lemma 4.9.2. The notation being as above, we have

M() = e(abA[K]/2N?) (3) (2—c>s

d
where
{1 if d=1mod4,
€a =19 . .
i otherwise.
Proof. Suppose ¢ =0. Then a =d = — 1, so that the assertion is obvious. Next

assume ¢ # 0. We shall reduce the lemma to the case when — d is a prime number.
Assume that the assertion is true when — d is a prime number. Take an integer n so

1 2
that p = —d — 2c¢n is a prime number, and put «(2n) = [ 0 In]. Since

y(2n) = |:a b+2an]’
¢ —-p

we see
M(ya(2n)) = M(y)e(a®nA[h]/N?)
by (4.9.9) and (4.9.15). Since the assertion is true for ya(2n) by assumption, we get

M(y) = e(abA[h]/2N?) (L> (2_0)’8:;.
—Db/\—PD

The character (B> is defined mod 4N, since D is a divisor of N'. Therefore we

E)-C) (2)-(6) = e

since d = — p mod 2¢ and c is divisible by 2N. Consequently the assertion is true
for y. Now we shall prove the assertion when p = —d is a prime number. For
geZ" satisfying g = hmod N, we take ueZ” so that g = adh+ Nu. Note that
ad = 1 mod N. Then the set of the classes of gmod pN corresponds to the set of the
classes of umod p, so that

have

(49.17)  M(y) = (—sgn(c)iye(abA[h}2N*p~"* 3 e(—bA[ul/2p).
ueZ’[pZ’
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Since (p, 2D) = 1, there exists an element Se M,(Z) such that (det(S), p) = 1 and
‘SAS mod pis diagonal. Let ¢, . . ., . be the diagonal components of 'SAS and put
b = — b/2. Since it is easily verified by Lemma 3.1.1 that

S = () ()

for a prime number p (p # 2, (p,a) = 1), it follows from Lemma 4.8.1(1) that

P Y e(bALulp) = p=" _ljl(_zfle(b'r,-ﬁ/p)>

ueZ'[pZ’
e <b"t1 . t,)
p
— of b”'D
- ( - )
Since 2b'c — ap = 1, we have

0)-)-me(2)

By taking ¢,6_, = i into account,

&) (b”D) (sgn(c)i) a_p< 2 > ( b )
p p p
= (sgn(c)i)’a,{’(jc)r( )

This completes the proof. O

Theorem 4.9.3. Assume that A, h and N satisfy (4.9.1) and (4.9.2). Let P(x) be a
b
spherical function of degree v with respect to A. Then for an element y = [a :l of

cd
SL,(Z) satisfying
b=0mod2, c¢=0mod2N,
we have

0(yz; h, A, N, P)

d 2
= e(abA [h]/2N2)< et(4 )> <dc> 67" (cz + d)0(z; ah, A, N, P),
where k =r/2 + v, and
{1 if d=1mod4,
7Y if d=3mod4.

Proof. If d < 0, then the assertion follows from (4.9.15) and Lemma 4.9.2. If d > 0,
then we may consider — 7 in place of y. (I
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If we impose some additional conditions on 4, Theorem 4.9.3 can be refined as
follows: o
1° Assume that all the diagonal components of A are. even, then

0z + 1; b, A, N) = e(A[h)2N)0(z; h, A, N).

Note that A[m] is even for any me Z". Therefore by using this equality in place of
(4.9.10),
the transformation formula of Theorem 4.9.3 holds for any element y of ['((2N).
2° Suppose that all the diagonal components of A and NA™! are even. Then
(4.9.12) holds for any d such that d = Omod N, so that
the transformation formula of Theorem 4.9.3 holds for any element y of I'y(N).
We consider the special cases when 7 is even or r = 1.

Corollary 4.94. The notation being as in Theorem 4.9.3, if r is even, then
0(2z; h, A, N, P)e %,(I'|(4N))
with k = r/2 + v. Furthermore, if v 2 1, then 8(2z;h, A, N, P) is a cusp form.

Proof. The automorphy is straightforward from Theorem 4.9.3. Therefore we have
only to verify the conditions at cusps. First consider the case when all the diagonal
components of 4 are even. Let R be the space generated by

{6(z; h, A, N, P)|lheZ'/NZ"}.

11
Lemma 4.9.1 and the above remark 1° imply that R is stable under [ 0 1] and

1 0
(resp. has a zero if v = 1) at oo, and all cusps of I'(N) are SL,(Z)-equivalent to oo,
any element of R is holomorphic (resp. has zeros if v = 1) at all cusps. The general
case is reduced to the above case by (4.9.9) with ¢ = 2. |

0 -1
[ :|, and therefore, under SL,(Z). Since any element of R is holomorphic

Corollary 4.9.5. The notation being as in Corollary 4.9.4, let
_ <(— 1y72 det(A))

>

and put
0(z; A, P) = Y, P(m)e<

meZ’

Alm] |
2 .
Then
(1) 6Q2z; A, P)e %, (4N, x);
(2) If all the diagonal components of A are even, then 0(z; A, P)e %, (2N, y);

(3) If all the diagonal components of A and NA™' are even, then
0(z; A, P)e%.(N, y) and

(/N2)™0(~ 1/Nz; 4, P) = % i"12(~ D46(z; 4%, P*),
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where
A* = NA™!, P*(x)=P(A 'x).

If v = 1, then 8(z; A, P) is a cusp form.

Proof. All the assertions follow from Theorem 4.9.3, the remarks mentioned after
that, and Corollary 4.9.4 by taking h = 0, except for the transformation formula in
(3) which is obvious from (4.9.8). O

As an application of theta functions to quadratic forms, we state the following

Corollary 4.9.6. Assume that r is even. Then there exists a positive definite symmetric
matrix A in M (Z) satisfying the following conditions if and only if r = 0 mod 8.
(i) det(4) = 1;
(il) all the diagonal components of A and A~ are even.

Proof. We use the same notation as in Corollary 4.9.5. First let us prove the only-if
part. For P(x) = 1, we put

0(z; A) = 6(z; A, P)
and
0(z; A~ HY=0(z; A", P).
Since
0(z; A) = 0(z; A7),

and 6(z; A)e %, (I'(1)) by Corollary 4.9.5(3), we get
z k(= 1/z; A) = 0(z; A),

so that comparing this with the transformation formula in Corollary 4.9.5(3), we
obtain i2 = 1, namely, r = 0 mod 8. Conversely, if = 8, then

21
121 0
143
S (€ My(2))
3121
0 141
12

satisfies (i) and (i) (Minkowski). Therefore r =0 mod 8 is the sufficient
condition. i

If r is odd, then theta functions are not modular forms in the usual sense. We
here state the explicit transformation formula only for the case when r = 1.
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Corollary 4.9.7. Let \y be a primitive Dirichlet character of conductor N, and v = 0,
or 1 such that y(— 1) =(—1)". Put

0,,,(2) — -‘i I//(m)mveZﬂ:imzz,

m= — o0

and

J, 2) = G)a; Lz + d)?

fory=[a b}efo(4). Then
c d

—1\
(1) 0,72) = w(d)(7> I, 27710,
b
for any y = |:a }GFO(4N2);
c d
2) (2Nz/i)™"~'20,(—1/4N?z) = (— i)’ N "2 W ()0, (z).
Proof. We get
0,z)= 3 Y(hOQ2Nz h, N, N, P)
heZJNZ
with P(x) = x* by taking r = 1, A = N, so that the first assertion follows from
Theorem 4.9.3. The second one is easily verified by (4.9.7). |

Taking the principal character as y in Corollary 4.9.7, and writing

6(z) = 0,(2),
we have

0(y2) = J(3, 2)0(z)  (velo(4)).
In particular,

(4.9.18) J(é, z) = J(v, 62)J (4, z) (y, 0ely(4)).

Let I" be a Fuchsian group of the first kind, and J(7, z) a holomorphic function on
H without zeros for yelI'. If J(y, z) satisfies (4.9.18), then we call J(y, z) an
automorphic factor of I'. For an automorphic factor of I', we can define similarly
automorphic forms as in the case j(y, z). Corollary 4.9.7 shows that 6,(z) is an

. . . -1
automorphic form with respect to the automorphic factor y(d) rh J(y, 2>+,

Such automorphic forms are called modular forms of half-integral weight, and are as
important as modular forms of integral weight. They are closely connected with
modular forms of integral weight. See [ Shimura 7], [Shintani] and [Waldspurger].
Furthermore we can obtain again the functional equations of Dirichlet L-functions
mentioned in §3.3 from Corollary 4.9.7 and Theorem 4.3.5. Theorem 4.8.2 can be
also proved from Theorem 4.9.3.



Chapter 5. Unit Groups of Quaternion Algebras

In the previous chapter, we studied modular groups and modular forms. The unit
groups I' of orders of indefinite quaternion algebras defined over @ are also
Fuchsian groups and they are generalizations of modular groups. Automorphic
forms for such groups I' also play important roles in the algebraic geometrical
theory of numbers. In this chapter, we recall fundamental properties of quaternion
algebras, and study the structure of Hecke algebras of I We quote some
basic results on algebras and number theory from [Weil]. We follow [Eichler],
[Shimizu 4] in §5.2, and [Shimura 3], [Shimizu 3] in §5.3, respectively. For a
general reference, we mention also [Vignéras].

§5.1. Algebras over Q and Adelization

We call a ring B with unity an algebra of dimension n over a field F, if the following
three conditions are satisfied:

1° F = B, and the unity of F coincides with the unity of B,

2° any element of F commutes all elements of B,

3° B is a vector space over F of dimension n.

Let B be an algebra over F. We denote by dim; B the dimension of B over F.
We put

Z(B)={peB|af = Pa for any oeB},

and call it the center of B. When F = Z(B), we call B a central algebra over F. For
two algebras A, B over F, a ring homomorphism f: 4 — B is called an
F-homomorphism (resp. F-isomorphism), if f is also a homomorphism (resp. iso-
morphism) as vector spaces over F. We denote by E(B) the set of all endo-
morphisms of B as a vector space over F. It is also an algebra over F. For an
element a of B, we denote by p(x) the homomorphism “Bafr>affe B”. The
mapping p of B into E(B) is an injective F-homomorphism. We call p the left
regular representation of B. If p(a) is an automorphism of B, then there exists an
element feB such that p(a)(8)=af =1. Then p(B)= p(x)~!, and therefore,
p()p(B)=p(B)p(x)= 1. Since p is injective, we see that aff = fa =1, or « is
invertible. Conversely, if ae B™, then p(a) is obviously an automorphism of B.
Therefore, for an element o of B,

(5.1.1)  abelongsto B™ if and only if p(a) is an automorphism of B as a vector space.
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For each prime number p, we denote by Q, and Z, the field of p-adic numbers
and the ring of p-adic integers, respectively. For a non-zero element a of Q,, we put

ord,(a) = max{meZ|acp™Z,},
and
lal,=p™° (e =ord,(a))

We also put |0], = 0. Moreover we put
@oo =R,

and for any element a,, of @, we denote by |a |, the absolute value of a, in the
usual sense. Hereafter we call Q, and Q,, local fields, and denote by v a prime
number p or co. We shall study algebras over local fields @,. Let B be an
n-dimensional algebra over @Q,. Since B is isomorphic to the product Q% of Q, as
vector spaces over O, we can induce a topology on B under which B is homeo-
morphic to Q). This topology is independent of the isomorphism. Since Q, is
locally compact, so is B. Furthermore, since all the coordinates of the sum, the
subtraction and the product of two elements «, § are polynomial functions of
coordinates of « and B, they are continuous with respect to the topology of B, and B
is a topological ring. Since

B* = {aeB|det(p(x)) # 0}
by (5.1.1), B™ is open in B, and therefore, it is a locally compact topological group
with respect to the topology induced from B.

Let F = Q(resp. Q,), r = Z (resp. Z,,), and B an algebra over F. A subset R of B
is called an order of B, if the following two conditions are satisfied:-

(i) R is a subring containing the unity of B;

(1) R is finitely generated over t, and contains a basis of B over F.
By definition, orders of B are commensurable as submodules of B. An order of B is
called maximal if it is maximal with respect to inclusion.

Lemma 5.1.1. (1) Let B be an algebra over Q,, and R an order of B. Then R is
compact and R™ is a compact subgroup of B™.
(2) Let B be an algebra over Q), and R an order of B. We put

B,=B®yQ,

and let R, the closure of R in B, for each prime number p. Then R, is an order
of B,.

Proof. (1): Since R is finitely generated over Z, and is a submodule of the vector
space B, there exist a4, . . ., a,€R such that

R=Z,0,® - ®Z,0,

by the elementary divisor theory, where n —dlmQ B. Therefore R is homeo-
morphic to Z, and is compact. By a similar argument as in (5.1.1) we obtain

R* = {xeR|det(p(@)€Z; },
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where p is the left regular representation of B, so that R™ is open and closed in R.
Therefore R is compact. (2): A similar argument as above implies that there exists
a basis of B such that

R=70,® - - ®Za,,
so that
R,=2,0,® - ®Z,a,
Therefore R, is finitely generated over Z,. It is obvious that R, contains the unity of
B, and a basis of B,. O

We denote by Q4 the adele ring of Q. In other words, it is a locally compact
topological ring defined by the following conditions:
(i) as a set,

Q,={(a,)e]]Q,la,eZ, for almost all prime numbers p};

(ii ) the topology is defined by considering the subset R x [],Z, of Q4 open in
Q,, and the induced topology on R x [],Z, coincides with the product topology.
Let Q) be the set of all invertible elements of Q4. For a =(a,)e Q] , we put

|a|A = l_['avlv'
v

This is meaningful since |a,|, = 1 for almost all prime numbers p by (i). We consider
Q as a subset of Q, through the correspondence “Q 3 x+— (x,)e Q,” with x, = x
for all v. Then
Q* <Qy,
and
Ix[,=1 (xe@™).

Let a = (a,)€Q . For each prime number p, put e, = ord,(a,). Then
a,Z,=p*7Z,.

Since e, = 0 for almost all p, m = [ ], p°» is meaningful and.is a rational number.
We define the fractional ideal of Q by

id(a) = mz,

and call it the ideal associated with a.
For an algebra B over Q of dimension n, we put

(5.1.2) B,=B®qQ,.

Since B, is isomorphic to the product Q% as a (2 ,-module through the coordinates
with respect to a basis of B, we can induce the topology on B, under which B, is
homeomorphic to the product space Q7. This topology is uniquely determined and
B, is a topological ring. Since Q , is locally compact, so is B,. Since 0, is a subset
of the product [ [,Q,, we can consider B, as a subset of the product [ [, B, through
the natural embedding, where B, = B® @W,. Let R be an order of B, and R,
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the closure of R in B, for each prime number p. Then we have

(5.1.3)  B,={(x)e[]B,la,eR, for almost all prime numbers p},

and the induced topology of B, on the subset B, x [],R, coincides with the
product topology. We call B, the adelization of B. Next let B be the set of all
invertible elements of B, and induce on B the weakest topology under which the
natural injection: B; — B, is continuous. Then B} is a topological group. We call
B the adelization of B™. As a set,

(514) Bj ={(x,)e[][B.)|a,eR, for almost all prime numbers p},

and the induced topology on the open subgroup B x [], R, of B} coincides with
the product topology. When B = @Q, B is nothing but Q7 , which is called the
idele group of Q.

§5.2. Quaternion Algebras

Let B be an algebra over a field F. We call B simple if B is simple as a ring, namely, if
B has no two-sided ideals except for {0} and B itself. We call B a division algebra if
any nonzero element of B is invertible. For an invertible element § of B, the
correspondence:

Bsars>Bap~leB

is an automorphism of B. Such an automorphism is called an inner automorphism
of B.

Theorem 5.2.1. Let B be a central simple algebra over a field F, and C, , C, two
simple subalgebras of B over F. Then any F-isomorphism of C, onto C, can be
extended to an inner automorphism of B. In particular, any automorphism of B is
derived from an inner automorphism of B.

Proof. Since left ideals of B are vector spaces over F, the descending chain
condition holds on left ideals. Let M be a minimal left ideal of B. Then M is a simple
B-module. Since B is simple, the action of B on M is faithful. Put

D = Endgz(M),

the ring of all endomorphisms of M as a B-module. Then D is a central simple
algebra over F, and
End,(M)=B

([Weil, IX, Prop. 2]). Now let f be an F-isomorphism of C, onto C,. Since the
actions of C; and D on M are mutually commutative, M can be considered as a left
C, ® pD-module. We denote by M, the C; ® pD-module M. Similarly, M can also
be considered as a left C, ® D-module, so that we can consider M as a left
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C, ® pD-module through the isomorphism f of C; onto C,. We denote this
C, ®D-module M by M,. Let K be the center of C,. Then K is a field, and

C1 ®FD = C1 ®K(K ®FD)’

so that C; ®;D is simple ([Weil, IX, Prop. 3-Cor. 1, Cor. 4]). Therefore both
M, and M, are isomorphic to direct sums of copies of a unique simple
C; ®pD-module ([ Weil, IX, Prop. 1]). By comparing the dimensions of M, and M,
over F, we see that M, is isomorphic to M, as C; ® ; D-modules. We denote by ¢
this isomorphism. Then, first ¢ is an F-automorphism of M and is compatible with
the action of D, so that ¢ is an element of End,(M). Since End;,(M) = B, there
exists an element § of B™ such that

$(m)=pm  (meM)
Next for any ye C, and any y € D, we see

Sy ®Y)m) = (y @Y )p(m)  (meM),

namely,

By (m) = yip(Bm) = f )Y (Bm) = f(7) B (m).

Taking the identity mapping as s, we have Sym = f(y)}fm for any me M. Since the
action of B on M is faithful, we get fy = f(y)f5, namely,

f=p8"

for any y e C,. Therefore the inner automorphism g of B defined by g(a) = Baf ! is
an extension of f over B. This proves the first half of the assertion; the latter half is
obvious. O

A central simple algebra B of dimension 4 over a field F is called a quaternion
algebra over F. Furthermore, if B is a division algebra, we call B a division
quaternion algebra.

Let B be a quaternion algebra over a field F. By Wedderburn’s theorem ([ Weil,
IX, Th. 1 and Prop. 3-Cor. 1]), we see

(5.2.1) B is not a division quaternion algebra if and only if B is isomorphic to
M, (F).

If F is algebraically closed, then M,(F) is a unique quaternion algebra over F
up to isomorphisms ([ Weil, IX, Prop. 3—Cor. 2]).

Let K be any extension over F. Then B® K is a quaternion algebra over K
([Weil, IX, Prop. 3—Cor. 1]). We say that B is ramified or splits over Kif B® K is a
division quaternion algebra or is isomorphic to M, (K), respectively. When B splits
over K, we call K a splitting field of B. The first assertion of the following lemma can
be seen in [ Weil, IX, Th. 3-Cor. 3].

Lemma 5.2.2. Let B be a quaternion algebra over a field F.
(1) A separable extension K of degree 2 over F is a splitting field of B if and only if
B contains a subfield isomorphic to K.
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(2) Iftwo elements o, B of B™ have the same minimal polynomials, then o and f are
B -conjugate.

(3) If an element a of B is not contained in F, then the set of the elements of B
commutative with a coincides with F[a].

Proof. (2): Let f(X)e F[X] be the minimal polynomial of both « and §. Then

Fla] ~ F[X]/(f(X)) ~ F[B].

First suppose f(X) is irreducible. Then both F[a] and F[8] are fields, so that
the above isomorphism can be extended to an inner automorphism of B by
Theorem 5.2.1. Therefore « and f are B*-conjugate. Next assume that f(X) is
reducible. Then Fla] ~ F[X]/(f(X)), and it is not a field, so that B ~ M, (F) by
(5.2.1). We may assume B = M,(F). Since o and f have the same minimal
polynomials, their Jordan’s normal forms are the same, say y. Since eigenvalues of o
and f belong to F, « and f§ are conjugate to y by elements of GL,(F). Since B
= GL,(F), « and B are B*-conjugate. (3): If F[o] is not a field, then B ~ M,(F).
Therefore by (2) we may assume that « is a Jordan’s normal form. By a direct
calculation, we obtain the result. Assume that F[a] is a field, and let 8 be an
element of B commutative with a. Since F[a, f] is an.algebra over F[a], we see
dim, F[a, B] =2 or 4. Since B is not commutative, F[a, ] = F[a]. O

Let B be a quaternion algebra over a field F, and F the algebraic closure of F.
Since B ® F is a quaternion algebra over the algebraically closed field F, B ®¢ F is
isomorphic to M, (F). For an element §§ of B, we put

Ng(B) =det(f),  trg(h) = tr(p),

where det(f) and tr(f) are the determinant and the trace of § as an element of
B ® F ~ M,(F), respectively. When B = M, (F), Np(B) and trz(f) are nothing but
the determinant and the trace of § as a matrix. We can prove that both Ng(f) and
trg(f) belong to F ([Weil, IX, Prop. 6]). We call Ng(f) and trg(f) the (reduced)
norm and the (reduced) trace of p, respectively. If F is an infinite field, then Ng(p)
is a polynomial function of the coordinates of B with respect to a fixed basis of B
over F.

When F = Q, Np and trg induce mappings from B, = B®g Q, into Q, for any v
(= p or ), which are nothing but Ny and trp , respectively. We denote Ny and
trg, simply by Ny and trg, respectively, for simplicity. Moreover Ny and trg induce
the continuous mappings of B, into Q,, which we also denote by Ny and trp,
respectively.

For an element f§ of B, we put

fX ) =X?—trg(B)X + Ng(B) (e FLX]),
and call it the principal polynomial of f. By definition,
f(B B =0,
and if B¢ F, then f(X; f) is the minimal polynomial of 8 over F. If f(X; p) is
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irreducible, then F[ ] is a quadratic extension over F, and the restrictions of trg
and Ny on F[f8] coincide with the trace and the norm of the field F[ ] over F.

The proof of the following lemma on quaternion algebras over QQ, can be seen
in [ Weil, X1, Th. 6, Prop. 5 and X, Th. 1, Prop. 6].

Lemma 5.2.3. (1) Let B be a division quaternion algebra over Q,. Put
R ={feB|Ny(B)eZ,, trg(B)eZ,}.

Then R is a unique maximal order of B. Any left or right ideal of R is always a two-
sided ideal. R has a unique maximal ideal m = Rn = iR (n e R). Moreover >R = pR.
(We call © a prime element of B.)

(2) The ring M,(Z,) is a maximal order of M,(Q,), and any maximal order of
M,(Q,) is conjugate to M,(Z,).

(3) Let B be a quaternion algebra over Q,, and R a maximal order of B. Then any
left or right ideal of R is principal. Moreover,

NB(B) = @p’
Ny(R)=7Z,,
and
Np(R*)=Z%.

The following lemma is based on [ Weil, XI, Prop. 4, Th. 1 and IV, Th. 4].

Lemma 5.2.4. Let B be a quaternion algebra over Q.

(1) Let R be an order of B. Then there exists a maximal order of B containing R,
and R is maximal if and only if R, is maximal in B, for all prime numbers p, where R,
is the closure of R in B,=B®, Q,,.

(2) For almost all prime numbers p, B, is isomorphic to M,(Q,), and R, is
maximal. '

(3) Suppose that for each prime number p, an order R}, of B, is given. If R, =R,
for almost all prime numbers p with some order R of B, then there exists an order S of
B such that R, =S, for all prime numbers p.

(4) If R is an order of B, then R=(B,, x [[,R,)nB.

(5) Put

BY = {BeBi|INg(B)la =1},
If B is a division quaternion algebra, then B*\BY is compact.

Let B be a quaternion algebra over Q. We call B indefinite or definite according
as B®g R is isomorphic to M,(R) or is a division quaternion algebra. We are
going to prove the approximation theorem. We begin with some lemmas.

Lemma 5.2.5. Let B be a quaternion algebra over Q. Assume that a quadratic
polynomial

f(X)=X*+aX+beQ[X]
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has no multiple roots. Then the following four statements are equivalent:

(1) f(X) is the principal polynomial of some element of B;

(2) B splits over the splitting field of f(X) over Q;

(3) B, splits over the splitting field of f(X) over Q, for all v,

(4) f(X) is the principal polynomial of some element of B, for all v.

Proof. (1)=(2): Let f(X) = f(X; B) for some f e B. First suppose f(X) is irreduc-
ible over Q. Then Q[ 5] is a quadratic extension of Q included in B, so that B splits
over Q[B] by Lemma 5.2.2(1). Next assume that f(X) is reducible over Q. Since
f(X) is a principal polynomial, we see B~ M,(Q) from the proof of Lemma 5.2.2.
This proves (2). (2) = (1): This is easily verified by Lemma 5.2.2(1). (2) <> (3): This is
nothing but the Hasse principle ([ Weil, XI, Th. 2]). (3) <> (4): This can be similarly
proved as (1)<(2). 7

Lemma 5.2.6. Let B be a quaternion algebra over Q,, R a maximal order of B, and h
a positive integer. If be Z,, satisfies b = 1 mod p"Z,,, then there exists an element B of
R satisfying the following three conditions:

(i) Np(B)=b;
(ii) p=1modp"R,;
(iii) £(X; B) is irreducible over Q,,.

Proof. Any quadratic extension K of Q, is a splitting field of B by [Weil], XII,
Th. 2-Cor. 2, so that we may assume that K is included in B. Take an unramified
quadratic extension as K, and let r be the maximal order of K. If R" is a maximal
order of B including r, then R’ is conjugate to R, so that we may assume r = R. If an
element f of B does notbelongto @,, then its minimal polynomial coincides with its
principal polynomial, so that we have only to prove the existence of an element in
t — Z satisfying (i) and (ii). We simply denote by N the Norm mapping N q,. By
induction we construct a sequence {a, }:-, of elements of r satisfying

(1) «, =1, Q) &, = a,_, mod p""~ Vr, (3) N(a,) = b mod p"Z,,.

Assuming we have constructed {a;, . . ., a,}, we shall show the existence of a, ;.
Since K is unramified over Q,, we have

trg/q, @) =12,
so that there exists an element y of r satisfying

i, y) =1
Put

i1 =0 (1+cy)  (c=(b—N(x,))/N(x,)).
Since a,er™ by (1) and (2), we see
¢=0modp"Z,.
Then
Opt1 =0y mod phnr’
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and
N(aty+1) = N{a,)N(1 +cy)
= N(x,)(1 +0)
=b mod p""* V7 ,.
Therefore «, ., is a desired one. Since {a,} is a Cauchy sequence by (2), it is
convergent. So put

a = lim «,.

n— o

Then « satisfies (i) and (ii). If a ¢ Z,,, then f = a is what we want. Assume ae Z,,. Let
{w,, w,} be a basis of r over Z,, and ¢ the generator of Gal(K/Q,). Put

Y= 14+p"(n 0, +ny0,) (ny, nyeZ,).
If we can take n; and n, so that
Yo ¢z,

then f=a(y?/Y) is what we seek. Since N(y°/y)=1, ¥°/yeZ, if and only if
Y°/Y = 1. Since {w,, w,} is a basis of K over Q,, we can find n; and n, so that

Yo # .
This completes the proof. O

An element g of a quaternion algebra B over a field F is called regular if f(X; )
has no multiple roots.

Lemma 5.2.7. Let B be a quaternion algebra over Q,, R an order of B, and h a

positive integer. For an element B of B satisfying Ng(B) =1, there exists a regular
element o of B such that

(i) Ng(a) =1, (ii) « = p mod p"R.

Proof. If B is regular, then the assertion is trivial. Assume f is not regular. First
suppose B = M,(Q,). Then there exists an element y of B such that

1 b
-1_
By —i[o 1], beQ,.

Taking a positive integer ! so that

'y 'My(Z,)y C PR,

1—p b
=+y! .
T [0 (1_,,:)—1]”

Then « satisfies (i) and (ii). Next assume that B is a division quaternion algebra.
Then B = +1, so that the assertion follows from Lemma 5.2.6. O

we put
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Now let B be a quaternion algebra over Q. We denote by Q2 the product of two
copies of Q. For an element f of B, we put

(522) ®(B) = (trp(B), Ny(B))eQ?.

The mapping ¢ induces continuous mappings of B, into @2, and also of B, into
@2, which are denoted by the same symbol ¢, for simplicity.

Lemma 5.2.8. Let f be a regular element of B,. Then we have:

(1) any element sufficiently close to B is also regular,
(2) ¢ is an open mapping on a neighborhood of . Namely, if V is an open
neighborhood of B, then ¢(V') contains an open neighborhood of ¢(B).

Proof. (1): For an element (a, b) € Q%, we put
g(X;a,b)=X?+aX +b.

The set of elements (g, b) such that g(X; a, b) =0 has multiple roots is obviously
closed. Therefore the continuity of ¢ implies (1). (2): First suppose that f(X; )
= X?+aX + b is irreducible. Take an element (a,, b, )€ Q2 which is close to (g, b).
It follows by [Weil, XI, Lemma 1] that if (a,, b,) is sufficiently close to (a, b), then
g(X;a,,b,) is also- irreducible, and g(X;a,,b;)=0 has a root a belonging
to Q,[B] and also to V. Therefore ¢(V) includes an open neighborhood of
¢(B) = (a, b). Next assume that f(X; f5) is reducible and put

JXB) =X —-u)(X—v) (uveQ),)
Since u#v by assumption, B, has a zero divisor, so that we may assume
B, = M,(Q,). A similar argument as in [Weil, XI, Lemma 1] implies that if (a,, b,)

is sufficiently close to (a, b), then g(X; a,, b;) = 0 has two roots u,, v; in Q,, which
are close to u, v, respectively. In particular, u; # v,. Therefore, taking ye B, so that

0
Yy 1By = [1(; Ujl’

and putting

we get ae V and f(X; a) = g(X; a,, b,). This proves (2). O

Theorem 5.2.9. Let B be an indefinite quaternion algebra over @, R a maximal order
of B, and N a positive integer. Assume that for each prime factor p of N, an element 3,
of B, satisfying Ny(B,) = 1 is given. Then there exists an element f8 of B satisfying the
following three conditions:

(@) Np(p)=1;
(i) =B, mod NR, ifp|N;
(iii) BeR, ifpIN.



§5.2. Quaternion Algebras 205

Proof. By Lemma 5.2.7, we may assume that
(52.3) B, is regular for each p.
Let k be a positive integer satisfying
N*"18 €eR,
for all prime factors p of N, and {¢, . . ., &} a complete set of representatives of

(R/N*R)*. Note that

(R/NR)* ~ [] (R,/N*R,)",

PIN
since Z is dense in ]—[pr. We see that

(524) (Bx xR, )\B}/B* is a finite set.
p

In fact, if B is a division quaternion algebra, then it follows from Lemma 5.2.4(5).
Otherwise it can be verified directly. Let {¢W, ..., ¥} be a complete set of
representatives of (B x ]_[pR,f)\B 4/B*. As is easily seen, we can take all
&V = (£Y) so that £ =1 for all prime factors p of N.

Now let L be a positive integer such that for all prime numbers p prime to L,

(525) B,~M,@Q,), &eR,; (1=i<r), YeR; (15j<L9)

Moreover take a positive integer h so that

(5.2.6) L'EPe ) IR EV e = R,

for all i and j and all prime factors p of L. For each prime number p which divides L
but is prime to N, we can take an element §, of B, by Lemma 5.2.6 so that
(5.2.7) Ng(B,) =1, B,isregular, and B,=1modL"R,.

Hence a regular element f8, of B, has been given for each prime factor p of LN.
By Lemma 5.2.8(1), we can take a neighborhood U, of g, so that

U, < B,+ L"N*R,
and all elements of U, are regular. Take (a, 1)e Q@ so that

¢(U,)  (pILN),

(5.2.8) (a, 1)5{ Z,xZ, (pXLN),

and put
gX)=X*—-aX +1.

By assumption, g(X) is a principal polynomial of an element of B, for all p.
Furthermore since B is indefinite, g(X) is also a principal polynomial of an element
of B (= M,(R)). Therefore by Lemma 5.2.5, there exists an element o in B such
that g(X) =f(X; a).

For each prime factor p of LN, there exists a, € U, such that

g(X) =f(X; a,).
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Since a,€ B, and ae B”, there exists an element y, of B, such that

a1
%=V U

by Lemma 5.2.2.
Let p be a prime number prime to LN. Since a€ Z,, « is contained in a maximal
order of B,. Hence there exists an element y, of B, such that

7,07, " €R,,

since all maximal orders of B, are conjugate to each other. We may assume

Yp=1

for almost all p, since « is contained in R, for almost all p. We put
7= ()

with the y, defined above and
Yoo = L.

Then ye B}, so that we can write
y=n¢P6  (n=(n,)eBy x[[R,,0eB™)
p

with some ¢V, By the choice of {¢;}, there exists ¢; such that
(5.2.9 n,e;i "€+ N*R, for all prime factors p of N.

We put
B = (e:0)a(e;0) ™"

and shall prove that f satisfies the three conditions in the theorem.
(i): Obviously Ng(f) = 1.
(ii): Suppose p|N. Since £’ = 1, we have y, =1,6, so that

B=(mpe )" pay, Dlmper )
= (mpei ')ty (mpe ).
Therefore
B— Bp = (ﬂpﬁi_ ) ! ap(r]pgi— 1) - )Bp
=0 mod NR,

by (5.2.9) and the choice of a, and k.
(iii): First assume p|L and p /' N. Then

B = (:6)a(e;0)™"
= &(EP) My, topn,) e
Since «,e€ U, and n,e R, we see
a,=f,=1modL"R,
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and
n, 'a,n, =1mod L*R,.
Since
g(EP) " HL'R,)E e < R

P

we obtain fe R,. Next suppose pf LN. Then
B = (e:6y, Yvpav, Nedy, )7
and y,ay, ' €R, by assumption. Since ,€ R, by definition, and ¢, £’e R, by
(5.2.6), we see that
Ei(s)’;l = Ei(ﬂpéﬁ,j’)‘leR:-
Therefore fe R,. This completes the proof. O

Theorem 5.2.10. (Approximation Theorem) Let B be an indefinite quaternion
algebra over Q, R a maximal order of B, n an integer, and N a positive integer.
Assume that for each prime factor p of N, an element f, of R, satisfies

n/Ng(B,) = 1 modNZ,.
Then there exists an element B of B satisfying
(i) Np(B) =n,

(i) BeR,
(iii) B = B, mod NR,, for all prime factors p of N.

Proof. Since B is indefinite, there exists an element « of B* such that Ny(x) =n by
[Weil, XI, Prop. 3]. Let L be the product of all prime numbers p such that a ¢ R,
For each prime factor p of LN, we take an element J,, of B, as follows. First suppose
pIN. We can take an element y, of R, satisfying y,—1 = 0 mod NR,, and Ng(y,)
=n/Npg(f,) by Lemma 5.2.6. Put

»=a"'y,8, (pIN).

Note that Ng(6,) = 1. Next assume p|L and p ¥ N. We can take an element y, of R,
satisfying Ng(y,) = n by Lemma 5.2.3(3). Put

o, =o'y, (pIL,p¥N)
Note that Ng(d,) = 1. Take a power M of LN so that
(5.2.10) aMR, = NR, for any prime factor p of LN.

We note that NR, = R, if p /' N. Applying Theorem 5.2.9 by taking M and 6, for N
and f,, respectively, we get an element J of B so that

(1) Np(6) =1,

(2) if pIM, then é = 6, mod MR,

(3) f p¥ M, then 6eR,,.

We put
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and are going to prove that f is what we want. It is obvious that Ng(B) = n. If p|N,
then we see

B—p=0b—p,=ad,—B,=(y,— 1), =0mod NR,

by (2) and (5.2.10). This implies especially fe R,. If p| L and p ¥ N, then by (2) and
(5.2.10),

B—vy,=ab—y,=ad,—7,=0modR,.
Since y,€ R, B belongs to R,. Next suppose pf LN. Then aeR, and §eR,, so
that e R,. Therefore fe R by Lemma 5.2.4(4). O

Theorem 5.2.11. Let B be an indefinite quaternion algebra over Q. If an order R of B
satisfies that
Na(R}) = Z;

for all prime numbers p, then
B} = B* -(GL;(R) X HR;).
p

Proof. Let B = (f,) be any element of B . We shall show that f belongs to the set
of the right-hand side. We may assume that §,€ R, for all prime numbers p by
multiplying an integer, if necessary. Since

QF =0~ -<R3j x HZ;),
p
we can write

Ng(B) = nu (neZ,u=(u,,)eRi xﬂZ,j‘).

For each prime number p, there exists an element y, of R, satisfying Ng(y,) = u,

by assumption. Put
|1 0
’Voo - 0 uw

and y = (y,)e B . Then ye GLS (R) x HPR; and Ng(y) = u. Therefore we may
assume Ngz(B) = n by taking py ! in place of §, if necessary. Let R, be a maximal
order of B including R. For any prime number p such that §,¢ R or Ry, # R,
take a positive integer f so that
pfﬁz;lROp < pRp
Put N =[], p/ with the above p and f. Applying Theorem 5.2.10 for N, n and ,,
we obtain an element a of R, satisfying
Ng(a) = n, o= f,mod NR,, if p|N.

We have only to prove o™ 'fe GL; (R) x IT R, It is obvious « ™' 8, € GL; (R). If
pX N, then neZ,) by definition, and we see a~'fe R,". Next assume p|N. Since
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a— B,ep’ Ry, we see

B, 'a—1ep, 'p’ Ry, = PR,
so that B, 'ae R, This implies a™'fe GL; (R) x [[, R, . Since xe B, we see
BeGLy(R) x [, Ry 1

We note that maximal orders and orders of Eichler type (for definition, see §5.3)
of B satisfy the assumption of Theorem 5.2.11 by Lemma 5.2.3(3).

Theorem 5.2.12. Let B be an indefinite quaternion algebra over Q. All maximal
orders of B are conjugate.

Proof. Let R and S be two maximal orders of B. For each prime number p, there
exists an element f, of B, such that

S, = B R, B, !
by Lemma 5.2.3(1), (2) and Lemma 5.2.4(1). Put f = (f,) with the above f, and

B., = 1. Since fe B}, we can write B = ou with ae B* and ue GLS (R) x ]—IPR;
by Theorem 5.2.11, so that

S, =aR,a”! = (@Ra™1),.
Therefore we obtain § = aRa~! by Lemma 5.2.4(4). O
Let B be an indefinite quaternion algebra over Q. We fix an isomorphism of
B®gR onto M,(R), and consider B as a subalgebra of M,(R) through this

isomorphism. Then the norm Ng(f) of an element B of B is nothing but the
determinant of § as a matrix, by definition. Let R be an order of B. We put

(5.2.11) Iy = {BeR|Ng(p) =1} = GL; (R),
and call it the unit group of norm 1 of R. We are going to prove that I'y is a Fuchsian

group of the first kind.

Theorem 5.2.13. Let B be an indefinite quaternion algebra over Q, and R an order of
B. Then I'y is a Fuchsian group of the first kind. Moreover, if B is a division quaternion
algebra, then I';\H is compact.

Proof. First suppose B is a division quaternion algebra. Since H ~ SL,(R)/S0,(R)
as topological spaces by Corollary 1.2.2, and SO,(R) is compact, the compactness
of I';\ H is equivalent to that of Ix\SL,(R). Since

BY A (GLZ(R) x HR,j‘) = SL,(R) x [[RZ,
P p

SL,(R) x [], R, is open in BY’. Put

W = B{)— B* -<SL2(R) x [TR; >
p
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Since W is a union of right SL,(R) x [], R, -cosets, it is an open subset of B{".
Therefore B*\ Wis openin B\ B, Since W is left B *-invariant, the complement
of B*\ Wis B*\B™ (SL,(R) x ]_[pRpx ). Then it is a closed subset of a compact
set B\ B'D, so that it is compact. Since

B* n (SLZ(R) x TIR; )\(SLZ(R) x TIR; ) = B*\B~ -(SLZ(R) x [IR; >

and
B> m(SLZ(R) X ]_[Rl,x):FR
p

by Lemma 5.2.4(4), I\(SL,(R) x [] ,Rp) is compact. Therefore Ix\SL,(R) is
compact since I'x\SL,(R) is the image of I'x\(SL,(R) x ]—[pRpx) by the natural
mapping. Next assume that B is not a division algebra. We may assume that
B = M,(Q) by (5.2.1). Let R, be a maximal order of B including R. Since R, is
conjugate to M,(Z) by Theorem 5.2.12, R, has an element of norm — 1, so that R,
is conjugate to M,(Z) by an element of positive norm. Therefore we may assume

Iy, = SLy(Z).

Since R and R, are commensurable as modules, there exists a positive integer N
such that

NR, < R,
hence
1+NRy, =R
and
SL,(Z)> I'y o I'(N).

This implies that SL,(Z) and I'y are commensurable, and I'y is a Fuchsian group of
the first kind. ]

§5.3. Hecke Algebras of Unit Groups of Quaternion Algebras

In the previous section, we proved that any unit group I'g of norm 1 of an order R
of an indefinite quaternion algebra B over Q is a Fuchsian group of the first kind.
In this section, we study Hecke algebras of I'.

Lemma 5.3.1. For a non-negative integer e, we put

a b
RP= {l:pec d:|EM2(Zp)

Then R, is an order of M,(Q,). Moreover if e = 1, then we can write

—_ R 2
R,=R,’nR,

a, b, c deZp}.
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with two maximal orders R\ and R® of M,(Q,). The pair (R{", R{?) is uniquely
determined by R,.

Proof. 1t is obvious that R, is an order and

e 0 -1 4 0
Rp=M2(Zp)m|:lz) 1] Mz(z,,)[’:) 1].

Let us study maximal orders including R,. Any maximal order of M,(Q,) is given
by B7'M,(Z,) (BeGL,(Q,)) by Lemma 5.2.3(2). Since

MZ(@p) = 0;'Dp. MZ(Zp)b

we may assume BeM,(Z,)n GL,(Q,). Furthermore for any yeGL,(Z,)
(=M,(Z,)"), we have

(v8) ' M,(Z,)vB = B~ M,(Z,)B,
so that the set of all maximal orders of M,(Q),) is given by
{BM,(Z,)B1Be GLA(Z,)\ (GL,(Q,) N M,(Z,))}-

Now we can take the set of matrices of the following two types as a complete set of
representatives of GL,(Z,)\(GL,(Q,) " M,(Z,)):

1 u pf 0
g9 g
S

where f and g are non-negative integers, and u runs over the representatives of
Z,/p’Z,. Since

g1 a b §= a—cup™/ au—cu’p~/ +bp/ —du
c d cp™’ d+cup™’

1 u . 0
for p = [0 pf] (f 2 1), we see easily that [

1 _
0 0] ¢ B~' M, (Z,)p. Therefore any

maximal order including R, is given by

p/ 0]¢ p/ 0] _ a bp’
[o 1] MZ(Z")[O 1] et 4
In particular, a pair (R(", R{?) of maximal orders such that R\ A R{P = R, is
uniquely given by ‘

(s |5 V] wa|d ) 0

Let B be an indefinite quaternion algebra over Q. We denote by dj the square of
the product of all prime numbers p such that B, is a division quaternion algebra,
and call it the discriminant of B. We understand dg =1 if B= M,(Q). Let N be a
positive integer prime to dg. We say that an order R of B is of Eichler type of level N,

a,b,c, deZp} O=f=e).
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or simply of level N, if the following two conditions are satisfied:

(i) if p¥ N, then R, is a maximal order of B,;
(i) let N = Ilp® be the prime decomposition. If p|N, then R, is conjugate to an

order
a b
7. s

Let B be an indefinite quaternion algebra over @Q of discriminant dg, and R an
order of level N. For each prime number p prime to dp, we fix an isomorphism of B,
onto M,(Q,) under which

a, b,c,deZp}.

MZ(Zp) (p ¥ Ndp),

(53.1) R, ~ b
{[pfc d:leMz(Zp) a,b,c,deZ,} (IN).

We define the subgroup Uy of B by
(5.3.2) Ug=GL3 (R) x [[R;.
p

Let S be a maximal order of B including R. Then
By =B"-Ug=B" U
by Theorem 5.2.11, and

I'x=UgnB", I's=UgnB™.
Therefore
(UsnB™)-Ug = Ug
and

|[Is/Trl =|UsnB"/Ugn B | = |Us/Ug| =[] IS; /R .

PIN

A similar (and easier) argument as in Theorem 4.2.5(2) implies
IS, /Ry 1=p°(1 + 1/p).

Thus we obtain the following lemma which is a generalization of Theorem 4.2.5(2).

Lemma 5.3.2. Let B be an indefinite quaternion algebra over Q, and R an order of
level N. If S is a maximal order of B including R, then

[Is:Tx]= NI;IN(I + 1/p).

We define the subsemigroup Dy of B} by

(5.3.3) DR=<GL2+(R)x1'[D,,)nB;,
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where

(534) D, = a b
{[p% d]ER”

Moreover put

(5.3.5) Ag = R Dg.

aeZ,, ad — p°bc #O} (p|N).

Then the following lemma can be proved by a similar argument as in Lemma 4.5.2
for p t dg, and directly by Lemma 5.2.3(1) for pldp.

Lemma 5.3.3. The notation being as above, we have

r pl 0
0<i<m 14
1 0
D, = 1 R, R} (pIN),
p 0m 4 [0 pm:l r p
R, m R, (pldp),
“ 0sm

where n,(p|dg) is a prime element of B,, and

X _m X . X .m __ .m x
RynyR,; =R, 7y =7n,;R,.

Lemma 5.34. (1) g,R, g, ' ® R for g,€B,;
(2) gUrg™ ' = Ug for geB ;
(3) alga™ ' = I'y for aeB ™.

Proof. (1): Since R, and g,R g, * are open compact subgroups of B, we see
g,R, g9, ' ® R, . (2): Let g=(g,)e B . Then

9,R; 9, =R;
for almost all prime numbers p, and
9o GL3 (R)g,,' = GL3 (R).
This combined with (1) implies (2). (3): Since
I'y=UzgnB~",
(2) implies that

l(alga™ ' NTe)\Tg| < [(aUga™ ' " Ug)\Ug| < o
and
[(alga~ *nTp\alge™ | < |(aUga™ ' n Ug\aUga ™| < 0.

This proves (3). 0
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The above lemma enable us to define the Hecke algebras #(I'g, 4z),
R(Ug, Dg), and Z(R,, D,). Now let x be a Dirichlet character mod N. Since

(Z/NZ)” ~ IITN(Z,,/NZ,,)X,

x induces a character of (Z,/NZ,)* which we denote by x,. For an element
g =(g,) of Dg, we put

b
(536) 1(9) = I] 7alay) <g, - [‘C‘ o ])

pPIN 4 P
Since
I'r € Ag < Dy,

we also denote the restriction of y on Ai or I'y by the same symbol y. Then y
satisfies (2.8.1), and therefore, the Hecke algebra #(I'g, Ag) acts on 4, (I, x). In
particular, if B = M, (Q) and

R={[: Z:|€M2(Z)

I'r =To(N), dgr=40(N), and % (I, x) = %(N, ).

Next we denote by ® ,#Z(R,’, D,) the tensor product of Z(R ', D,) taken over
all prime numbers p. The relation between the Hecke algebra of I'; and local Hecke
algebras is given by the following

¢c=0modN },
then

Theorem 5.3.5. (1) By the correspondence “I'ralgi— UgaUg”,
R(I'g, 4g) ~ R(Ug, Dg)

(2) By the correspondence “UggUgr—® R, g,R;” (g9 =(g,)),
P

R(Ug, Dg) ~ @ Z#(R,,D,).
p

Proof. (1): Since I'y and A, are embedded in B by the canonical injection of R
into B, we have only to verify conditions (i), (i), (iii) of Theorem 2.7.6(1). Let Sbe a
maximal order of B including R. First we verify condition (i) or Dy = Ug4g. Let
g = (g,) be an element of Dg, and n a positive integer such that

n/Ng(g)eZ, for each prime number p.
There exists an element h, of R, such that
NB(hp) = "/Nn(gp)Q

which is shown by Lemma 5.2.3(3) if p|dg, and directly if p ¥ dg. Put h, =1 and
h = (h,). Then he Ug. If p is a prime factor of nN, then we take a positive integer f
so that

(5.3.7) p’S,(h,g,)" " < PR,.
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Put M = [, p’. By applying Theorem 5.2.10 for M, n, h,,g,, there exists an element
B of S such that Nz(f) =n and

(5.3.8) p=h,g,mod MS, if p|M.
If p| M, then by (5.3.7) and (5.3.8),
B(hpgp)_ 1 1= (ﬁ - hpgp)(hpgp)_ ! EPRp,

so that f(h,g,)” '€R, . In particular, feD,. If p ¥ M, then S, = R,, g, € R, and
BeS, ,sothat fe R, and B(h,g,)” '€ R, . Therefore fc R by Lemma 5.2.4(4), so
that Be Ag and B(hg)~ e Ug. Thus Dy = Uy 4.

Next let us prove (ii), or Uga Ug = Ugzalg for any a € 4. It is sufficient to prove
that ahe Ugal'g for any h = (h,) € Ug. For each prime number p prime to dg, there
exist 6,,¢,€ R, such that

Lo
5,,aep=[’(’) pm} O<I<m)

by Lemma 5.3.3. We put

Ng(h, ') 0O
BP|: B(OP ) 1:|£p_1 (Uzp’p*dB),

(5.3.9) w, = _
hp ! (U=P,p|d3),

1 (v = ),
and w = (w,). Then we Uy and a € Ugaw. For a prime factor p of Ny(a) or a prime
number p satisfying S, # R,, we take a positive integer f so that
(5.3.10) pf@S,(w,h,)ta™!) C pR,, and p’S, CR,.

We put M = I1p/ and apply Theorem 5.2.10 for M, 1, w,h,. Then there exists an
element 7 in S such that Ng(y) =1 and

(5.3.11) y=w,h,mod MS, if p|M.

Since w,h,eR, and y — w,h,e MS, < R, y belongs to R, and therefore, to I'.
Now we define ze B by

ay = zawh.
If p { M, then obviously z, € R;. Otherwise we see by (5.3.10) and (5.3.11)
z,— 1l =a(y(w,h,) ' = 1)a"?
=a(y — wyh,)(w,h,) " 'a” 'epR,.
Therefore ze Uy and

awh =z~ 'aye Ugaly.
This implies
ahe Ugawh < Ugaly,
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and (ii) is proved. The third condition that Ugan dg.= I'ya for any aedy is
obviously satisfied.
(2): This is obvious by the definition of adelization. O

Theorem 5.3.6. For any prime number p, Z(R ), D,) is commutative. Furthermore
(1) if p¥ Ndg, then

x X 1 0 X X p 0 X
wes a2 w3 2pionis O}

and for any positive integers e and f,
(Lo o]0 (=i o o))
~&:| g o R
(p+1)(R;[g g]R;> (e=1),
(el (s ) o
(8 5 Jme ) (e [§ ) )=mel o 0 ]

(2) if p|N, then
X X 1 0 X
Q?(RP,DP)=Z[R,, |:0 p}R” :|,

and for any positive integer e,

J1 0.\ o<1 07, 1 0 7.,
(#:lo o )aelo gl )-milo o]

(3) if pldg, then
#(R,,D,)=2Z[R; ®n, R, ],
and for any positive integer e,
Ry mR; =R, PRy,
(R m, RN Ry neR)=R,; n; 'R
Here m, is a prime element of B,,.

Proof. The assertions for each p prime to dgz can be proved similarly to Theorem
4.5.3(1) and Lemma 4.5.7, respectively. (Since Z,, is a local ring, these cases are easier
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than the previous ones.) Suppose p|dy. Any element of Z(R,, D,) can be written as
a linear combination of R, n,R, (0 < ee Z) by Lemma 5.3.3. Since
R,y nyR,) =R, n5,
we get
(Rym, Ry )Ry ny R, ) = Ry mp " IRy
by definition. In particular, £(R, , D,) is commutative. Since
R;m2=R)p,

we get

R;nlR; =R, pR,. O

For a positive integer n, we define the element 7'(n) of #(I'g, Ag) by

(5.3.12) T(n)= Y Tgaly,
N,,(a)Az n

where the summation is taken over all double cosets I'gal'y with Ng(a) =n.
Moreover for a positive integer n prime to N, we put

(5.3.13) T(n,n)=Ignlyg.

We consider (R, , D,) as a subring of ® ,Z(R,, D,) by the natural injection.
Then by the isomorphism of #(I'g, 4g) onto ® ,%Z(R, , D,) in Theorem 5.3.5,
we have the following conditions:

1° if p ¥ Ndy, then T(p') and T(p, p) correspond to

«| P 0|,
z RP|:0 pf]Rp’

f=1
esf

IIA +
A I

e
0
and

R, PR,,
respectively;

, 1 0
2° if p|N, then T(p') corresponds to R; [0 pl:IR;;
3° if pldg, then T(p') corresponds to R) nL R ).

Consequently we obtain the following

Corollary 5.3.7. #(Ig, Ag) is commutative, and
R(I'g, 4r) = ZLT(p), T(p, ), T(q)|p ¥ Ndg, q|Ndp]
Moreover we have:
(1) if (n,m) = 1, then T(n)T(m) = T(nm);

T(p°*Y)+ pT(p,p)T(p*™ ") (p4 Ndg),

Q) T(p)T(p°) = { T(p*+) (p|Ndy).
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Similarly to the case of modular groups, we define a formal Dirichlet series with
coefficients in Z (g, 4g) by

(5.3.19) D(s)= Y T(mn~*
n=1
Then Corollary 5.3.7 is equivalent to the formal Euler product:
(5.3.15) D(s)= [] A—T(p)p™*+pT(p,p)p” *)""
pY Ndg

x T1 (1= TP~

pINdg
Now let a be an element of B ™. If B, is isomorphic to M,(Q,), then

det(a)a™ ! = Ng(a)a™!

under the natural embedding of B into B,, so that det(a)x~ ' is independent of the
choice of v. Therefore by a similar argument as in Theorem 4.5.4, we obtain

Theorem 5.3.8. (1) If (n, N) = 1, then the Hecke operators T(n) and ¥(n)T(n) on
S (g, x) are adjoint operators with respect to the Petersson inner product.

(@) F(I'g,x) has a basis consisting of common -eigenfunctions of T(n)
((n,N)=1).
Here y is a Dirichlet character mod N.



Chapter 6. Traces of Hecke Operators

The Fourier coefficients of Eisenstein series are quite simple, since they are derived
from Dirichlet L-functions. To the contrary, the Fourier coefficients of cusp forms,
or equivalently the eigen values of Hecke operators are quite mysterious and play
important roles in applications of modular forms to number theory (for example,
see [Shimura 4] and [Shimura 6]). To obtain eigen values of Hecke operators T'(n)
operating on (N, x), we have only to calculate the traces tr (7 (m)) of T(m) on
(N, x) for finitely many m’s (see the end of this chapter).

In this chapter, we calculate them by the method of Selberg. We refer
[Godement] for §6.1 through §6.3, [Shimizu 2] for §6.4, and [Hijikata] for §6.5
through §6.8.

§6.1. Spaces of Functions on H

Let k be a non-negative number. Let p be either a real number such that 1 < p or
0. We call such p an exponent. For a complex valued function f(z) on H, we put

H

1/p
{I If(Z)Im(Z)"”I"dv(Z)} (1=p<w),
I, =

ess. sup | f(z) Im (2)*/2| (p = o).
zeH

Here || f || , = m implies that the set {ze H||f(z)| Im (z)*/> > m} has measure 0 and
the set {zeH||f(z)|Im(z)> > m —¢} has non-zero measure for any positive
number &. We denote by LZ(H) the space of all measurable functions f on H
satisfying [ /|| , < co. In particular, L (H) is the LP-space of functions on H in the
usual sense. Hence it is a Banach space. Since LY(H) is isomorphic to L§(H) as
normed spaces by the map “f'(z) — f(z) Im (z)¥2”, L2(H) is also a Banach space for
any k. We call two exponents p and q are conjugate, if they satisfy that

Lelon
P 4q

Here we understand 1/p = 0 if p = o0. If p and g are conjugate exponents, we put
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for fe L?(H) and ge L{(H),
(6.1.1) (f 9= ;j; f(2)g(z) Im (2)*dv(2).

By this pairing, an element g of L (H) can be identified with an element of the dual
space of LE(H), or the space of all continuous linear functionals of L (H). Further if
p # oo, Li(H) is considered as the dual space of LZ(H) by this identification.
Further L2(H) is a Hilbert space with the inner product given by (6.1.1). We also
denote by HZ(H) the subspace consisting of holomorphic functions in L{(H).

Theorem 6.1.1. The space HY(H) is a closed subspace of Li(H).

Proof. Let f(z) be the limit of a sequence {f,(z)} in H{(H). Applying
Corollary 2.6.4, we see that f(z) is also holomorphic. O

Let H be a Hilbert space consisting of complex valued functions on a set X. We
denote by (f, g) (f, g€ H) the inner product of H. We call a function K(x, y) on
X x X a kernel function of H if it satisfies the following two conditions:

(6.1.2)  as a function of x, K(x, y) belongs to H for each fixed y;
(6.1.3)  for any element f(x) of H,
=), Kx,y)) (yeX),

where the right-hand side is the inner product as functions of x.
If K(x, y) is a kernel function, then we see easily

(6.1.4) K(x,y) = K(y, x).

Kernel functions do not necessarily exist. However, if it exists, it is uniquely
determined. Furthermore, if H is finite dimensional, then it has the kernel function
given by

K@) = Y AOAD),  (xyeX)

where {f, ..., f;} is an orthonormal basis of H.

Now we shall show the existence of the kernel function of HZ(H) and calculate
the explicit form. By Corollary 2.6.2, there exists a constant C depending only on
zeH and k such that

If@I<Cifl,  (feH(H).

Therefore, for each fixed z,eH, the map “f+—f(z,)” is a continuous linear
functional of HZ(H). Since HZ(H) is a Hilbert space, there exists a unique element
d., € Hi (H) satisfying

f@zo) = (£, gz
Put K, (z,, z,) = ¢,,(z,) for z,, z, e H. Then it is the kernel function of HZ(H) and

f@= J. Kz, Zz)f(zz)lm(zz)kdv(zz) for any fe Hi (H).
H
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Let o be an element of SL,(R). For any fe HZ(H), the function f(xz)j(a, z) ¥
belongs to H2Z(H). Since the measure dv(z) of H is invariant under the action of
SL,(R), we see for any fe HZ(H)

i‘;Kk(azl’ azy)j (e, 21)_kj (2, z5) _kf(zz)Im(Zz)k dv(z,)

=j(a, 21)_" _[ Kilozy, 2,) fla ™ z,) j (o, a—lzz)"lm(zz)"dv(zz)
H

=j(21) 7 fz)j (@ 2)* = flzy)
By the uniqueness of the kernel function, we have
(6.1.5) Koz, az;) = K21, 22)J(% 20)%) (@, 25)* (xeSL,(R)),
and

(6.1.6) Ky(ozy,25)j (@ 20) ™ = Kilzy, a7 'z5)j@™ 1, 2) ™ (@€ SL,(R)).
. . 1 b
In particular, taking 0 1 (beR) as a, we see

(6.1.7) Ki(zy +b,2,+b) = Ki(zy,2,)  (beR).

We put
M ={(z,,2,)eC?|z,eH,z; —z, eH},

and

h(zy, z;) = Ky(z4,2, — 25) ((z1,2,)eM).

Then h{z,, z,) is a holomorphic function on M. Since h(z, + b, z,) = h(z,, z,) for
any beR, h(z,, z,) is independent of z,. For zeH, take z, eH so that (z,, z)e M
and put

Py(2) = h(z,, 2) = Ki(zy, 2, — 2).

Then P (z) is a holomorphic function on H and

Ki(z1,2;) = Pulzy — Z,) (z4,z,€H).

0
particular,

0
Take |:a a"1:| (aeR*) for o in (6.1.5), then we have P,(a®z) = a~*P,(2). In

Pdiyy=y™*P()  (y>0).
Since Py(z) is holomorphic on H, we see that
P(z) = ci(z/2i) 7"

with a constant ¢,. Thus we obtain the following
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Theorem 6.1.2. The Hilbert space H:(H) has the kernel function
K (zy, 25) = iz, — 2,)/2i)7*

with a constant c,.

Corollary 6.1.3. H(H) c Hy (H).
Proof. Let f(z) be an element in HZ2(H). For any point z, € H, we see that

[fzo)I? = [(f(2) Kilz: zo))u)® S 11 £ 113 I Kilz, 20) 13
= “f“% Ky (20, 2z0) = Cklm(Zo)_k ||f”§

This implies | f(zo)Im(zo)¥?| < \/a | £, for any z,e H, and therefore f belongs
to H® (H). O

Let us calculate the constant ¢, in Theorem 6.1.2. We denote by R, and R_ the
set of all positive real numbers and the set of negative real numbers, respectively.
For an element f(z) in H (H) and a point yeR,, we put

LX) =f(x+1iy) (xeR).
Since || f 13 = [y |f(x +iy)|*y*~ *dxdy is finite, there exists a subset S, of measure
zero in R, such that f,e L*(R) if y¢ S ;. Denote by fy(u) the Fourier transform of f,

for y¢S,, or f(u)—llm,,_,wj"_ f(x)e”#*dx, where lim. implies the limit
in L*(R).

Theorem 6.1.4. (1) For a function f(z)e H2(H), there exists a function f (u) on R
satisfying ~ ~
L) =fwe 2™ (y¢S;),

and f (1) vanishes almost everywhere on R _.
(2) If k £ 1, then H}(H) = {0}.

Proof. For any positive integer n, we put
f’;,n(u) = 5 f(x + iy)e—Zuiu(x+iy) dx = e21my j f"v(x)e—-Zniux dx.
£ 3

Since )i(u) = lim, j;,,(u)e_z’"‘y for y ¢S, there exists a subset T, of R of measure zero
such that lim,,, , f, ,(u) exists if u¢ T,,. Let y, and y, be two positive numbers such
thaty,,y,¢S,and y, <y, TakeueRsothatu¢ T, u T,,. Since fe H} (H), we see
by Corollary 2.6.3. that lim,, .o, | f(x + iy)e ™ *™*&*#| = 0 uniformly on the inter-
val [y,, y, 1 Since f(z)e”2>*** is holomorphic on H, we have

n+iyq n+iya —n+iys —n+iy; .
{ fF + 7+ 7 + 19 }f(z)e“z’""z dz =0.
—n+iyy n+iy; n+iys ~n+iy,

Therefore lim, -, ,, f,, o(4) = 1lim, o f,, ,(u). This implies lim,., £ ) is
independent of y. If we put f(u) = lim, _, . f, ,(u) then it satisfies the equation in (1).
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Now we see that

6.18) o> 1fI3 =]y 2dy [ 15@Fdv= ] 2dy | (Fwe = du
0 -® 0 —©

= | 1J@Pdu | y*2e o dy.
0

—

The integral with respect to y is finite if and only if k > 1 and u > 0. Then, if k > 1,
f(u) vanishes almost everywhere on R_. If k £ 1, f(u) should vanish almost
everywhere on R, and therefore f(z) = 0. This completes the proof. |

For f(z)e H2(H), we call the function f (u) on R the Fourier transform of f.
Hereafter we assume k > 1. We put

Gy(u) = Zykﬂze_"”dy=(”")“"F(k—1) (> 0),

0 (u £0).

We denote by H 2 the space of complex valued measurable functions ¢(u) on R
satisfying the following two conditions:

(6.1.9)  ¢(u) = 0 almost everywhere on R_;

0

(6.1.10) [ 1¢W))*G,(du)du < oo.

— 0

The space HZ is a Hilbert space with the inner product

(hro) = jj: bW G,@wdu (¢, peH).

By (6.1.8), we obtain

6L1) 113 = | fwI’G@wdu=<ff>  (feHXH)).
Therefore, if fe HA(H), then fe H2. Conversely, let ¢ be an element of HZ. For
zeH and a positive integer n, we put

6.1.12) d(z) = | owye*™™ du, $,(2)= [ pwe*™ ™ du.
We shall prove that the map “f(z) — f (u)” gives an isomorphism of HZ(H) onto
H?. We need the following general

Lemma 6.1.5. Let (X, dx) be a measure space and D a domain in C. Let f(z, x) be a
function on D x X holomorphic in z for each fixed x. Assume that for any circle C
contained in D, f (z, x) is integrable on C x X. Then the function F (z) = [ f(z, x)dx is
holomorphic on D.
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Proof. Let z be a point of D, and C a circle around z. Then

_ S x)
fex) =g (el
Therefore
1
FO =[G xdx=g0 | U <C_ D it = - o FQ
Thus F(z) is holomorphic on D. 0

Theorem 6.1.6. The correspondence “f(z)— f (u)” gives an isomorphism of HZ(H)
onto Hk

Proof. We have only to show that the map “¢ — ¢” is an isomorphism of Hk into
HXH) and it is the inverse of “f(z) — f (u)”. Let ¢,,(z) be the function given by
(6.1.12). By Lemma 6.1.5, it is holomorphic on H. Let us prove that {¢,,(z)}
converges to d)(z) uniformly on any compact subset of H. By definition, we obtain

16— $a(a)] < ( I T)w(u)ez"f"ﬂ du = | 1p(w)e™|du.
By Schwarz’s inequality,
< { T 1612 Gy (4u) du}m- { T 1G, (4w~ 112¢2m072 du}

The first term is independent of z, and converges to 0 if n tends to co. The second
term is bounded on any compact subset of H. In fact,

1/2

k—1
4my*’

j’ |Gk(4u)—1/2e2niuz|2 du é j‘ Gk-(4u)—1 e—4m4ydu —

which is bounded on any compact subset of H. This implies the uniform con-
vergence of {¢,,(z)} on any compact subset of H, and therefore ¢(z) is holomorphic.
Moreover we obtain

1613 = [ 16 Im@Fdo = | »*2dy | 16+ in)ldx

Since q§(x + iy) is the Fourier inverse transform of ¢(u)e 2™ considering it as a
function of x for each fixed y, the Plancherel theorem implies

Il
(=1 Y]

Py T 18I e ™ du = T 18I Gyldu)du = <, 6.

This implies “¢ > 4;” is an isomorphism of Hk into H3(H). It is easy to see that
these two isomorphisms are inverse to each other. |

Corollary 6.1.7. H2(H) # {0} if and only if k > 1.

Proof. 1t is obvious that if k > 1 then H? # {0}. Then by Theorem 6.1.6, we obtain
the result. O
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_ Now we are ready to calculate the constant ¢, in Theorem 6.1.2. We denote by
K, (u, z) the Fourier transform of K,(z,, z) considering it as a function of z, for a
fixed z. Then for any ¢(u)e HZ, we see that

(P, Ky, 2)> = ($(21), Kifz1, Dy = () = | p(we ™ du.
4]

On the other hand, we have

(o), Ky, 2)) = | d@) K, (1, 2) Gy(du) du.

(4]

Therefore we obtain

Ki(u,z) = G,(du)"te 2" ((y, z)e R x H).
Take the inverse transform of I&k(u, z) as a function of u, and we get

Ki(z4,25) = | G, (du)~Le?mz1=22) gy
0

namely, ¢,(z/2i)™* = [5" G,(4u)™ ! €**** du. Putting z = 2i, we obtain
¢, = (k—1)/4n.

Thus we obtain the following

Theorem 6.1.8. If k > 1, then the kernel function of H2(H) is given by

k—1/(z,—2z,\*
Kk(z1’zz)=w< 121' 2) (21, 2z,€H).

§6.2. The Projection of LP(H) onto HP(H)

Using the kernel function K,(z,, z,) of H*(H), we define the integral operator K on
L{(H) by

(6.2.1) (Kf)(2) = }};Kk(z, 2,)f(z2)Im(z,) dv(z;),  fe L{H).

The purpose of this section is to prove that the integral operator K is a projection
of L{(K) onto its subspace HP(H) for all p (1 £ p £ o). Hereafter we assume k > 2.
For this purpose, we had better to consider function spaces Lf(K) and H}(K)
consisting of functions on K. We denote by dvg (w) the measure of K defined in §1.4
given by

dvg (w) = 4(1 —|w|?)" 2 dxdy (w = x +iy).

For a complex valued measurable function f(w) on K, we put

i/p
<II(1f(W)(1 —IWIZ)"”I”dvx(W)> (1 £p<o0)

”f“p =
ess. sup | f(w) (1 —|w|?)?| (p = o0).

wekK
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We denote by LP(K) the space consisting of measurable functions f satisfying
I fll, < co. We also denote by HP(K) the subspace of L(K) consisting of holo-
morphic elements. Then LE(K) is a Banach space and HZ(K) is a closed subspace of
LP(K). Let p and g be conjugate exponents. For functions fe LP(K) and g e LK),
we put

(f, Dk = [ fw)g(w) (1 — |w|2) dog (w).
K

Theorem 6.2.1. (1) The Banach space L{(H) (resp. H{(H)) is isomorphic to

LP(K) (resp. HF(K)) by the map “f(z) —f(w) = (1 —w)~*f(p~'w) (weK)”, where
1 —i

1 il

(2) Any holomorphic function bounded on K belongs to HE(K) for all
p(l £p= o)

(3) For a fixed z,eH, the function K,(z,,z,) belongs to HP(H) for all p
(1 £p= o)

p=

Proof. The first and second assertions can be easily proved. Let f(w) be the function
in HY(K) corresponding to the function K,(z,, z,) in HP(H) as a function of z,.
Then

Fw)=(1—pz,) *Ki(21, 2,) =

k—1/z,4i \ _
4 ( ! = ) (lep lw)a
T 21—22

and it is bounded. By (2), we obtain (3). O

Theorem 6.2.2. The integral operator K is a projection of LY(H) onto HE(H) for any
p(l=p< )

Proof. By Theorem 6.2.1(3), the integral in (6.2.1) is finite. Now we define a function
K¥(a) on SL,(R) by

(62.2) K¥@) = Ko, i) j (@ i)™ (xeSLy(R)).

Then for a, fe SL,(R), we see that

(6.2.3) K (o, Bi)j (o, )7 j (B, 0) ¥ = K}(B™'a)
and
(6.2.4) K¥@™ ) = K¥@).

For a measurable function ¢ on SL,(R) with respect to the Haar measure do
defined by (1.4.13), we put

1/p
{ [ |<p(a)|"da} (1< p <o),
loll, = { tst®

ess. sup | @(«)| (p = ).
aeSL,(R)
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For a function f(z) in Lf(H), we put
f¥@) =f@)j@ )"  (2eSL,(R)).
Then Theorem 1.4.5 implies || f||, = | f*,. In particular, we have
I Klz, Dl , = | KE (@),
for all p (1 < p < w0). For a function fe Lf(H), we put
9(2) = [ Ki(z,22) f(22) Im(2,)*dv(z;)  (zeH).

H
Then we see by (6.2.3),

g*@= | K¥B'o)f*(B)dp.

SLA(R)
Since SL,(R) is unimodular, we have by [Weil 5 pp. 54-55],
lg* I, SIK&I -1 f* |, and therefore
lgll, < 1Kz, Dl 1 1F 1,

This implies that K is a continuous linear mapping of Lf(H) into itself. Next we are
going to prove that the image of K is included in HP(H). Let H,(n =1, 2,....) be
compact subsets of H satisfying H, = H, ., and ( ], H, = H. We put

(K f)2) = }i Ki(z, 25) f(z;)Im(z;) dv(z;)  (fe LE(H)).

Then K™f is a holomorphic function by Lemma 6.1.5 and

lim (K®f)(z) = (Kf)(2).

n— o

Let M be a compact subset of H. Then by Theorem 6.1.8, there exist a point z,e M
and a constant C such that

[Ki(z1, 22)| £ ClKi(z9, 25)I (z1eM, z,eH).
Hence for ze M,
KN @)= (KPN@ISC | |Kil(zo, 22) f(z2)Im(z2 ) do(z,).
H-H,
Therefore (K™ f)(z) converges to (Kf)(z) uniformly on any compact subsets of H
and Kfis holomorphic on H.

_ In the end, we shall prove that if fe Hf(H), then Kf = f. We define a function
K, (w;,w,) on K xK by

~ - 1 —i
Ki(wy, wy) = Kk(P_lwl,P—lwz)(l_W1)_k(1 —wy) 7k <P = I:l z:l)

Then Izk(wl, w,) is_the kernel function of HZ(K) by the isomorphism given in
Theorem 6.2.1. For fe L{(K), we also put

(K)W) = | Ky(w, wy) fw,) (1 —w,)?) dog (w,).
K
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Put §,(w) = w" for n=0. Since §, e HZ(K), we have IZg,l = g,. Then for a function f
in HZ(K), we have
(Kf, g =, K= (. Gux-

Therefore (IZ f—f, g.)x =0 for all integer n(>0). Denote the Taylor expansion
of Kf—fatw=0by (Kf—f)(w)=Y._, a,w" Then

~— o~ 1

(Kf—1, o)k = 8na, [ r*" " (1—r?)"2dr.
0

This implies a, = 0foralln>0and IZf = f By the isomorphism in Theorem 6.2.1(1),
we obtain Kf= ffor all fe HL(H). a

§6.3. Function Spaces Consisting of Automorphic Forms

Let I' be a Fuchsian group of the first kind, y a character of I' of finite order and
k(> 2) an integer. We assume y(— 1) =(—1)* if ' contains — 1. For any measurable
function f(z) on H satisfying

63.1) (1) @=x@)f(@,  for any yer,
we put
1/p
{I |f(z)1m(z)"/21"dv(z)} (1<p< o),
1 fle, =4 brim

k/2|

ess. sup | f(z)Im(z) (p = ).

zeH

-~

Since | f(z)Im(z)*/?| is invariant under the action of I', | f|| ., is well defined. For
each p(1 <p< o), we denote by LI(I', y) the set of measurable functions on H
satisfying (6.3.1) and | f| r,<c, and by H{(I', x) the subspace of LI(I', y)
consisting of holomorphic ones. Then LE(T, x) is a Banach space and H (I, y) is a
closed subspace. The space L2(I", ) is a Hilbert space with the inner product

(far= | f@9@Im@fdv(z)  (f, ge L¥(T, y)).
r\H
Since the volume of I' \H is finite, L (I, ) < L{(I, x) and HX (I, y) < HY(T, x) for
all p(1 <p < ). Moreover by Theorem 2.1.5, H?(T, y) = &, (I', ) and the restric-
tion of the inner product of L2(T, ) to H* (T, y) coincides with the Petersson inner
product up to a constant multiple.

Theorem 6.3.1. HX(I', y)= H*(T, y).

Proof. The assertion is obvious when I' \ H is compact. Assume that I has a cusp
Xo. Let f be an element in HZ(T', ). To prove fe H®(T, y), we may assume y is
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trivial by taking a subgroup of I' of finite index on which y is trivial. Take an
element ¢ of SL,(R) such that 6 o0 = x4, and put

it ={o[! 1T

Denote the Fourier expansion of f|,o by

mel} (h>0).

(Fho)@)= 3 e,

n=—aw

Let />0. Then we see by Corollary 1.7.5,
> [ |f(2)*Im(z)dv(2)

1 » -—
z5 (I 1fe2i 2™ Im(z)doz)
0<Re(z)<2h
I<Im(z)< ©
© 2k oo

j‘ j‘ Z amdne—ny(m+n)/h em’x(m—n)/h yk—2 dxdy
1

m,n= — o

1

T2

2 hla,[* | e g2 dy,
i

for any integer n. Since k>2, we have a,=0 if n<0. Thus we proved
feL L, )=Hg (T, ) a

For any element f(z) in L} (H), we put
(6:32) ff@=12m)1™" L a0 f62j6, 27 (zeH).

We also put
(6.3.3) K{(Zi, z,) = |Z(I')|” ! Z X(V)Kk(yzn 23)j(, z,)” * (21, z,€H).

yel’

Theorem 6.3.2. (1) The right hand side of (6.3.2) is absolutely convergent almost
everywhere on H and fT(z)e L} (T, x).

(2) If f(z)e HL(H), then fT(z)e H} (T, y). In particular, K[ (z, z,) belongs to
HXT, x) as a function of z for each fixed z,.

(3) The right-hand side of (6.3.3) is uniformly convergent on any compact subset of
Hx H.

Proof. We see
1Z(D) | 1f7@)|Im(2) dv(2)

r\H
< § Y1 G20k, 2 Im(2)do(z)
F\H vel

=1Z(D)| [ 1f@)IIm(2)*dp(z) < oco.
H
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Therefore the right-hand side of (6.3.2) is absolutely convergent almost everywhere
on H. Since it is obvious that f’(z) satisfies (6.3.1), T belongs to L}(I', ). The
second assertion is derived from this and Theorem 2.6.6(1). Take K,(z,, z,) as f(z)
in (1), and we see by (6.1.6)

I 2 IKzes 2211 (s 20)) 7 Im(z,)Y2 do(zy)
r\H vel

= |Z(T')| f | Kilzy, 22)|Im(zl)k/2dv(zl)
H

=|Z(I)|Im(z;) ™% [|Ki(zy, )l Im(z)¥*do(z, ).
H
Therefore we obtain (3) by Corollary 2.6.4. O

Theorem 6.3.3. The function K\(z,, z,) is the kernel function of HZ (T, ¥).

Proof. We note that HZ(I', y) = H®(T, y). Let f be a function in HP(I', ). Take
a fundamental domain F of I'. Since f(z)Im(z)? is bounded, we see by (6.1.6),

Y | 1KuOzy, 22)j (s 21) 74 (22) [Im(z, ) do(z,)
7l I\H

<CY (1K 250 2)j (7Y 22)7*Tm(z,)"2do(z,)

yell F

= ClZ(I')| | |Ky(zz, 2,)|Im(z;)"*dv(z,)
H

with a constant C. Therefore we obtain

I Kz, 25) f(z,)Im(z, ) dv(z,)

r\H
=|Z(D)|I7Y Y | Kilzy, 2) f(25)Im(z, ) do(z,)
vel” y"F
= I Ky(z4, z5) f(z;)Im(z,) dv(z,)
H
=f(zl),

because fe HZ(I', x) = H®(H). To prove that K[(z,, z,) belongs to H®(T, ) as a
function of z,,, we have only to show that Kf(z,, z,) belongs to HZ (H) as a function
of z,. It is well known that L;°(H) is the dual space of L;(H). A sequence {f,} in
L (H) is called weakly* convergent if {(f,, g)u} is convergent for any ge L} (H). It
can be proved that if a sequence { f,} is weakly* convergent, then there exists f'in
L.” (H) such that the sequence {(f,, g)y } converges to ( f; g)y for any g ([Yoshida, V,
Theorem 97) and the function fis uniquely determined as a measurable function on

H. Therefore we have only to prove that Y., x(WKi(yzy, z3)j(y, z,) 7% is
weakly* convergent for a fixed z,, namely that for a fixed z,€H and ge L} (H),
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Yoer S 10 Kz, 22)J (0, 2,) "% g(z;) Im(z,)* dv(z,) is convergent. Since

j Ky (yzy1, 23) j (7, 21) " *g(z,) Im(z, f'dv(z,)
H

= j Koy 'z, 2)j7 zz)"kg(zl)lm(zl)"du(zl)
H

=KaO 'z)j0 N z)7,

and 3" - x (v "G (¥ 2)j(y ™!, z,)7F is absolutely convergent by Theorem
6.3.2, we obtain the result. O

§6.4. Traces of Hecke Operators (Calculation of Integrals)

Before calculating the traces of Hecke operators, we express the dimension of the
space of automorphic forms in terms of integral to illustrate our calculation.

Theorem 6.4.1. dim % (I', x) = | K{(z, z)Im(z)" dv(z).
r\H

Proof. Let { f;(2)}}- be an orthonormal basis of #,(I", x) with respect to the inner
product (,),. Then we have

K{(Zu z;) = glf](zl)m

Therefore

dim (T, 1) = Z (o f)r= | K& 2)Im(zfdo(z). 0
i=1 r'\H

Now let 4 be a subsemigroup of GL; (R) contained in r (sec §2.8). We assume y
can be extended to a homomorphism of 4 to C satisfying (2.8.1). As we showed in
§2.7 and §2.8, we can let the Hecke algebra #(I", 4) act on S (I, ). Let T be a
subset of 4. We assume T is a union of finitely many double I'-cosets and write
T =][]7=, I'B.T. We identify T with the element Y-, I'B,I" of A(I', 4) and let it
operate on &, (I, y). More precisely, the operation of 7 on fe &, (I, y) is given by

(6.4.1) fIT = -iﬁ det(aj)k/z—1 E(—cx;flk“j <T= .]:[1 I“ozj>.

For example, take I' = I'y(N), 4 = 4,(N) and T = {a€ A4(N)|det(a) =n}. Then T
corresponds to T(n) of Z(N) = R(I"y (N), 4,(N)). Our purpose in this section is to
calculate the trace of the operator T on (I, ).

For an element « in 7, we put

(6.4.2) x(z; @) = det(@f ! x(0) Ky (az, 2)j (2, 2) *Im(z)*  (zeH).
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Theorem 6.4.2. Put tr(T) = trace(T |7, (I'y Y))- Then

tr(N)=1Z(IN)™' | Y k(z @)do(2).

r\H a€T

Proof. Let { f(z) }i-, be an orthonormal basis of &, (I, y) and T = [ [ ¢_, I'a;. Then
we see that

(@) = ¥, AT

=Y [ Y det(x)* ! x(e) file;2) ] (), 2)” () Im(z)dv(z)

1=1 r\HJ=1

= | idet(a,.)k*lﬁj)x{(a,.z, z)j(@;, 2) % Im(2)*do(z)
T\HJ=1

=1ZM)™ § Y det(@) " x(@) Kilaz, 2) (@ 2)™* Im(2)do(2). O
r\H a€T

Now we are going to calculate the integral in the Theorem 6.4.2. The integrand
is uniformly convergent on any compact subset of H by Theorem 6.3.2(3). There-
fore we can exchange the order of summation and integration if I' \H is compact.
In the case where I' has cusps, we divide the integral into an integral on a compact
subset and integrals on neighborhoods of cusps. For a cusp x of I', we put
T,={ae T|ox = x}. For a neighborhood U, of x in H stable under I',, we have

(6.4.3) | Y k(z a)do(z)

rau, o€t
= [ Y xmodv@+ [ Y k(& a)du(2).
I \U, aeT—Tx r\U, *€Tx

Let us consider the first term of the right-hand side. For o = [z Z:l, we write ¢ and
d as ¢, and d,, respectively. We note that if fe ' oI, then |c,| = |cgl.
Lemma 6.4.3. Assume oo is a cusp of I'. Then for any 1(>0),

Y det (a)' le,| 7"

el \(T—T,)/T
is convergent.

Proof. Let {a} be a set of complete representatives of I' ,\(T—T,)/T, and T
=[] I'x;. Then we sce

Y det@)|j(o, 2|7 ), det(@)']jle 2)| 7

{a} ael N\T

d
=,; det(x))' [j (a5 217% Y 1j(n oy2)7"

i yET AT

For a compact subset M of H, we put m = #{yel'| yM n M # (& }. Further, there
exists, by Lemma 1.7.6, a positive number u satisfying that yM < {zeH|Im(z) < u}
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for any yeI'. Since

u h
2 162 ImEf 2 duz)<m| | y¥27?dxdy < oo,
M yel NI 00 o

Y er.rli(y,z)|~*is convergent almost everywhere on M. Since M is arbitrary, the
set of points z at which ), det ()| j («, z)| ~* is convergent is dense in H. Let h be a
1 mh
0 1
so that |d,| <|hc,|. Take a point z so that ) ,, det (2)'] j (&, z)| * is convergent and
|z| = h, then we obtain

positive number such that I' - {+1} = { + lme Z , and take the set {o}

Y det (@) e | 7F < [2z[F Y. det(a) ] j(a, 2)| ¥ < c0. O
{a} {a}

Lemma 6.4.4. For any two real numbers h (h>0) and | (1> 1/2), there exists a positive
number C such that

Z {(a+nh)2+bZ}—l<C(|b|—21+1 +|b|—21)

for any real numbers a and b.

Proof. We see easily that

© 1 =
Y {latmhpP 4077 < [ (@ 4b?) e+ (b7

n= -

Dividing the integral into the sum of "' and fjs1> We obtain the estimate. O

Theorem 6.4.5. Let x and U, be the same as above. Then
} Y k(zo)dvm= Y, | x(z ) dv(2).
r\U, aeT—Tx aeT—Tx [ \U,
Proof. Put
=8z Tx)= Y |kl

aeT— Ty

We have only to prove that S(z) is convergent on U, and integrable on
' \U,. Since S(z; T, x) = S(oz; 6l'c™!, ) for 6eSL,(R) satisfying ox = co,
we may assume x = co. Let h be a positive number such that I',-{+1}

1 mh
={+_—I:0 I:I meZ}.Then

S(z) = |1Z(I')| )y det(a)* ! | j(2, 2)| ¥ Im(2)*
ael NT—T,)

x Y |Ki(az+nh, z)|.

n=—w
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Now by Lemma 6.4.4,

5 |Kk(az+nh,z)|=k4_—nl2" T ((Re(ez—3)+nhy? + Im(oz — 7)) "2

<C, {Im(az—2)"** ' + Im(az —2) 7%}

with a constant C,. Since Im(xz—2)=Im(xz)+Im(z)=Im(z), we see by
Lemma 6.4.4,

644) S(@<C,(Im)+1) Y det(@* ' jl 2)| 7K
ael \(T—Tg)

<C,(Im(z)+1) Y det(@)f~' Y |clz+nh)+d,|™"
el NT =T )T n=—co
<C,Im(z) *(Im(z) + 1)* Y det (@~ tc,| 7"

2€l NT—=T)/T e

with a constant C,. By Lemma 6.4.3, S(z) is convergent and bounded on U, . Since
', \U, has finite volume, S(z) is integrable on I' ,\U,, and we can exchange the
order of integration on the left-hand side of the equality in the theorem. |

Next let us investigate the second term on the right-hand side of (6.4.3).

Lemma 6.4.6. If x is a cusp of I', then | \T,}< 0.

Proof. If o and f are elements of T, such that af~ ‘eI, then af ! x=x, and
therefore af~'eI,. This implies | I\ T, |<|F\T| < o0. O

Theorem 6.4.7. Let x be a cusp of I', and ¢ an element of SL,(R) such that 6x = 0.
Then

[ Y «zadu(z)

rAU, aeTx
=lim ) [ «(zoIm(z) | je, 2)|*do(z).
5240 aeTy rA\U,

Proof. We may assume x = o0 and ¢ = 1 as usual. Since Im(z)~*is convergent to 1
monotonously increasingly when s(>0) tends to 0, we see

[ Y kmaydo(@)= lim | Y «(z )Im(z)"*do(2).

o \U, aeT, s=+0 r\U, aeT,
We shall show that the order of integration and summation on the right-hand side
is exchangable. Put
S(z,s)= Y Ix(z o)Im(z)™*  (s>0).
o0e Ty
We have only to see that S(z, s) is integrable on I' \U, . Similarly to (6.4.4),
we have

Sz, )SC(Im(2)' *+Im(z)~°) )  det(@) '|j(x 2)|7*
ael \ T,
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with a constant C,. Since (Im(z)! ~*+Im(z) ™*)|j (e, z)| ¥ is integrable on I',,\ U,
and I' \T, is a finite set, S(z, s) is also integrable on I' \U,, . O

Let P-be the set of all cusps of I'. Take neighborhoods U, of cusps x so that
they satisfy

(6.4.5) U,=yU,(yel') and U,nU, =g ifx#x"

Also take elements ¢,eSL,(R) so that ¢, x = oo and Im(c,,yz) = Im(o,2) (yeTI).
We put
Z(T)y=TnR*, T?= |J (T,—Z(T)) and T'=T-T>
xeP
For ae T?, we put

K(z; @) (zeé U Ux),

(6.4.6) K(z; o, §) = axZx
k(z; a)Im(z)~%|j(o,, 2)|* <ze U Ux>-

ax=x

Then by Theorems 6.4.2, 6.4.5 and 6.4.7, we obtain
64.7) [Z(D)|tr(T) = Z j K(z; a)dv(z)

aeT! rH

+ lim Y | «(za s)do(z).
s> +0 aeT? T'\H
Before calculating the right-hand side, we introduce notations on conjugacy
classes. Let G be a group, and H a subgroup of G. We say two elements g, and g, of
G are H-conjugate and write g, ;g,, if there exists an element h in H such that
g, = h™ g, h For an element g of G, we put

Cul9)=Cuc9)={g'eGlg 79}

The H-conjugacy gives an equivalence relation in any subset of G. For a subset M
of G stable under inner automorphisms of G by elements of H, we denote by M //H
the set of all H-conjugacy classes in M, or M//H=M/j.

Let us return to the present situation. Since y T,y ~* = T, for any ye I', both T"
and T? are unions of I'-conjugacy classes. For any ae T, we put

I(a)={yel|ay=ya}.

Then we can rewrite (6.4.7) and obtain

Theorem 6.4.8.
|1Z(N)|tr(T)y = Y, | x(z wdv(z)
aeT'//T T()\H
+ lim Y { Kk(z a, s)dv(z).
s=+0 4eT2 /I I'@\H
Proof. Let F be a fundamental domain of I'. Then by the choice of o,, we see
for yer,
| k(z 7 tay)do(z) = | x(z; a)dv(z).
F

vF
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Therefore for each fixed ae T'!, we obtain

Y [k Pdv= Y  [K(zy lapd(z)

per', pra F yel@\I F
= | Kz a)do(z)
re\H
A similar argument is also applicable to the terms for xe T2 O

The next step is the calculation of the integrals in Theorem 6.4.8 depending on
the type of a.

0
1°. The case where ae Z(I'). Put o = [g a]' Since I'(¢) = T, we see

[ x@ a)du(z):ﬂdet(a)k—lmcrk [ dv(z)
r@\H 4n r\H

= 511@ sgn(a)k det (@)~ o(I'\ H).
4

2°. The case where « is elliptic. Let z,e H be the fixed point of «, and put
1 - . 0
p =[ Z_°:|, which maps H onto K. We see pap~ ! = l:g C] (n, {€C) and

1 -z
jlo, 2) = {(z—24)/(2z—Z,). Put w = pz, w = pz and write w = re, w = r~ 1"
Since the anharmonic ratio is invariant under the action of linear fractional

transformations, we have

Z—Z az—2z, w—w'

- - - -1 s
wz—2z z—zy, nl T tw—w
and therefore

k-1 1 —— of 1= )
K(z; o) = A det () | x(@) ¢ <m§ .
Since dvg (w) = 4r(1—r?)~2drd6, we obtain

[ x(z @)dv(z)

F@\H

=Edet(a)"‘lfﬁ)c—k § 4r(—ry 20—yl r?)"*drdo
4n pr@p " \K

k—1)det(@) 1 y(@) (7% L
S ez JU=r Aot i dr

__ @ 7
(r(:Z(r)]n-¢

3°. The case where « is hyperbolic and all fixed points of « are not cusps of I'.

Let x,, x,e Ry {0} be two distinct fixed points of a. Take o€ SL,(R) so that

k—1
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6x, = o and gx, =0. Then

0
ooca'1=|:g C] (n, (eR,n#).

Wesee I'(0) = I',, ,, by Lemma 1.3.3(3). If I'(«) # Z(I'), then by Theorem 1.5.4(3),

mel}

with ueR™ such that [u|> 1. Put w=06z = re’. Similarly to 2°, we obtain

@ttt o (21 = {2 g 0|

[ ®(z w)dv(z)
r@\H

-

k— —e i Nk 40
—-det(a)" L) ( e’ —e _w> g @ =2ZI),

© d T
T e
=<
k— uld P 19 - if k de
v——det(a)" Lx@C* - g ( —¢ e‘“’) 520 (I'() # Z(I')).

L

Assume I'(x) = Z(I'). Since the integral jr(a)\H K(z; o)dv(z) is convergent, the
integral [;° r~'dr should be convergent, which is a contradiction. Therefore
I'(x) # Z(I'). Now we can express the integrand as

(€ —e )2 _ i .l or i a.e—2in0
("C—lelo_e—w)k = n = n 2

depending on n{~'<1 or n{~'>1, respectively. Since the series is uniformly

(eio_e—w)k—z

{ x(z w)dv(z) =0.
r'(o\H

4°. The case where « is hyperbolic and at least one fixed point of « is a cusp of I'.
In this case, we have I'(«) = Z(I') by Lemma 1.3.3(3) and Theorem 1.5.4(2), and
therefore I'(e) \H = H. Let x, and x, be the fixed points of a. Suppose only one
fixed point, say x,, is a cusp of I'. Let o, # and { be as in 3°, and U=U,, a
neighborhood of x, such that

oU={zeH]| |z—ia|<a} (a>0).

convergent, we have j df = 0 by termwise integration. Therefore

Then similarly to 3°, we see

] k(z; o, s)dv(z)
Ie\H-U)

—l(—det(cx)" Y@ "j(

el —e >" e = dr
—i6

—e™® ] 5in%0 yudine 1
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which is not finite. Therefore, both x; and x, should be cusps of I'. Let U, be a
neighborhood of x,(v = 1, 2), and put H' = H— (U, u U,). Divide the integral as

[ ®(z a s)dv(z)
r)\H

= | k(z o, )dv(2)+ | x(z; a, s)dv(z)+ | k(z; a, 5)dv(z).
H Uy Uz
Let 0, # and { be the same as in 3°. We may assume |y| <|{| by exchanging x, and
X,, if necessary. Put
oU, = {zeH|Im(2)>r,}, oU,={zeH]| |z—ir,|<r,}
with positive numbers 2r, < r;. Then

| k(z; o, s)dv(z)

Uy

—1 N 1 = i0__ ,—if k
T o ( ¢ ¢ _i,,> iad
4z

srso \nl e —e sin2§

Similarly we have j v, K(z; @, s)dv(z) = 0. Next we see that

| k(z a, s)dv(z)

H
k—1 —xf ef—eT® \k d§ risino gp
— det(c)t 1 —k ' ' ar
an (4] (d) X(a)c g <,1C_1e,9_e_,g> Sin20 2raving T
B 2(k—1) o n (eie_e—i())k*2

det(af ™t x(@) 7§

0 mbg(ei"_e—w)da

Integrating it by parts, we have
C—k f eio_e—iﬂ k—1 ei0+e—i9
11 J\nl teP—e @ gl o0

Expanding the integrand as the uniformly convergent series in e?* with the
constant term — 1, we obtain

do.

= _—ldet(a)k-lm
T

{* — 7!

[ k(zr e, 5)dv(z) = — det(@)*! ¥(@) —— = —x(® sgn ({),
" n{~' -1 In—{
and therefore
o k-1
[ Kl s)do(z) = — x(a)ﬂ%h—"Lsgn OF
r@\H —7|

5°. The case where o is parabolic. Let x be the fixed point of «, and ¢ an element
of SL,(R) such that ox = co. Put

oag ! = |:(C) 2} (&, AeR).
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Suppose that x is not a cusp of I'. Then I'(x) = Z(I') by Lemma 1.3.3(2), and

K(z; 0)dv(2)
rEe)\H

k

~ ! et (1 2% L>kdv(z)
4rn a\z—z+ A0t )

= k
Since (ﬁ:}_—%—;) = y*(y—ii{ " 1/2) *(y=Im(z2)), this integral is not finite.

Therefore x must be a cusp of I' and I'(x) = I',. Denote by 77 the set of parabolic
elements of 7, and put 7% = T? n T, for each cusp x of I'. Since I', = I'(«) for a € TZ,
any two elements are not I'-conjugate. Therefore we can take the set U xer\p, 1% as
a complete set of representatives of T?//I. Since I'\P-is a finite set, we see

lim ) | Kz a s)dv(z)

s~ +0aeT?//I'T(a\H

= Y lim ) { x(z o s)dv(z).

xel\P;5$~ +0 0eT? [(a)\H

1 mh
WeputaF,a"l-{i1}={i[0 n; ]
h(x) = A{ ! for e T2. Then we see

me Z} (h > 0) for each xePas usual, and

{ ®(z o s)dv(z)
r@\H

k—1 T ek z—2Z k s
in det (a)k 2(x)¢ drxaj:l\ﬂ (m) Im(z) "*dv(z).

Now

z—z s
arxaj-‘\H (z —z+ h(a)) Im(z)™*dv(z)

= {ax [y 2y —ih(@)/2)"*dy
0

Ot 8

= hQifh(@)P | 02+ 1)~ d
0
= hQifh(@P ! [ — w2 (it =(1—u)/u)
(o

= hQRi/h(w))**? i w(1—uf"275du

= h(2i/h(@)** ' T (s + )Tk —s—1)/T' (k).
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Here C is the upper (or lower) half of the circle with center 1/2 and radius 1/2. Thus
we obtain

lim Y | «x(zas)do()

2 +04e7? Ma)\H

— tim XLt pe s )P s— )T )
s +0 47!

¥ Y y(@)det(@)* 1L H(ih/h(@)

asT?
= lim iz y(o)sgn () det (@2~ (ih/h(x))* .
s=2+0 znaeT,‘:

Put m(a) = h(x)/h and sgn(x) = sgn({), which are independent of the choice of o.
Then we obtain

im Y | «(za s9du(z)
5= +04e7?//T I'e)\H
.1 —
= lim — Y x(x)sgn(a)*det(@}~(i/m(a))* **.

s +0 zntxeT"//F

Summing up the calculations in 1° through 5°, we obtain a formula for tr(7T). To
state it, we put

Z(T)=TnR", T° = {ae T|a is elliptic},
T*" = {aeT|a is hyperbolic, and all fixed points of « are cusps of I'},
T" = {0eT|a is hyperbolic, and no fixed point of « is a cusp of I'}

and
TP ={ae T|a is parabolic, and the fixed point of « is a cusp of I'}.
Then
T=Z(NuTuoT'rOTYUT?  (disjoint union).

We note that if I'\H is compact, then T"=T?=¢f and T=Z(INuT°UT".
Further for an element xe GLJ (R), we use the following notations.

(6.4.8) We denote the eigen values of o by n, and {,. If o is elliptic, then take

oeSL,(R) so that
4 |: cosf sin 0]
cog t=r ,

—sinf cos#
and specify n, and {, by
n.=re’,  (,=re’".
(6.49) For a non-elliptic a, we put sgn(x) = sgn({,).
(6.4.10)  If a is parabolic, then n, = {,. Denote the fixed point of o by x, and take
oeSL,(R) so that ox = oo. Let A be a discrete subgroup of SL,(R),. Then

aaa_1=|:(c) é], aAa‘l'{i1}={i|:1) m:’] meZ}
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with { ={, and h>0. We put
m(a, A) = A/h{, m(or) = m(a, I' ().

We note m(a, A) and m(a) are independent of the choice of . Now using these
notations, we can write the trace of T as follows.

Theorem 6.4.9.
t(T) =to+1t,+1t,+1,,

where
k—1v(I'\H) _—

to = a)sgn () det ()21,
S VATR] ae;r)X( )sgn («)* det(a)

@ it

t, = — s
aeTe//T IF(oc)l r’a_Ca

- _ S kmin“CaI’ |'h|}k_1
Za) &, O T

- 1 () k ki2—1¢; 1+s
Jlim 221 Z(D) aETZW (o) sgn(a)*det ()"~ (i/m(x))" .

The terms ¢, and ¢, are simplified if T and y satisfy the following condition:
(6.4.11)  there exists an element g in GL,(R) such that det(g) = —1 and satisfies
geg teT and y(gag™') = x(x) forall xeT.

In the most cases we apply the formula, (6.4.11) is satisfied. In fact, if I' = I'(N),
A= A44,(N) and yx is the character defined by (4.3.2), it is satisfied by taking

9= [_(1) (1):| More generally, let R be an order of level N of an indefinite

quaternion algebra, I' =TIy and 4 = Az. Take a maximal order R, including R
and apply the approximation theorem (Theorem 5.2.10) to R, and N withn = —1

-1 0
and 8, = [ 0 1 for all prime factors p of N. Take § in Theorem 5.2.10 as g, then

(6.4.11) is satisfied for the character y defined by (5.3.6).

Theorem 6.4.10. If T and y satisfy the condition (6.4.11), then

1 k=1 _ rk—1
te —_ Z X(a) r’a Ca ,
zaeT‘//I’ IF@l  n.—L,

s [
t,=— lim ———— x(o) sgn(a)*det ()2~ Lm(a)] ~1 5.
g s~ +04|Z(I)] aETZ"//I”
Proof. Let g be an element satisfying (6.4.11). For each ae T, we put &' =gag .
Then o’ is of the same type as «, and if « is either elliptic or parabolic, then « and a
are not I'-conjugate by Lemma 1.3.5. First suppose o€ T%. Take o, 5, and {, as
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01
in (6.4.8). Put ¢’ = [1 O]Gg_ ! Then

L, "1=r[ cos(—86) sin(—0)

g'a'c ~sin(—0) Cos(_g)]a Ne =0, and {, =n,.

Therefore we have

ne ! N ne ' o =0

He — Ca Ny — Ca’ He ™ Ca
Pairing o and &' in the summation ZaETe//[‘, we obtain the formula for ¢,. Next

-1 0
assume o€ T?. Let x, ¢ and h be the same as in (6.4.10). Put ¢’ =[ 0 1:|o'g_1

meZ}

and x’ = gx. Then x’ is the fixed point of o', and

- { —2 , L 1 mh
o 1=[0 c]’ 0Ty ‘-{i1}={i[0 ml]

This implies m(a') = — m(«). Pairing « and o', we have

1
t = 1 i1 +s _Nl+s
p= tim iz T

x Y () sgn () det (a2~ ym(o)| "1 .
aeT?//T
Since we can take the set Uxe r\pr T? as a complete set of representatives of 7%//T,
1
t = 1 1+s _nlts
o= m mzay ¢ T

x Y ) x)sgn(@*det (af>!

xel'\PraeT?/I,

x Y x()sgn()im(@) +my)| "t
yel,

Here )" implies that we omit the term m(a) + m(y)=0. Let y, € I', be a generator of
I~ {£1}/{£1}. Then

3 x () sgn()im(@) + m(y)| "1
}/GF;

oo
= 1Z| 22" x(o)"sgnlyo)™Im(a) +n| ™17,
n=—00
and it has a pole of order at most 1 at s =0 by Theorem 3.2.2. Further we see that

1
;(i1”+(—i)”s)= —s+ays®+azsd+ ... ..

Therefore we obtain the formula for t,. O
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For the further calculation, we arrange each term. For ae T° L T* U T?, we put

[ _gk : (@eT),
k(o) = < sgn(at)"min Ul Inal}* ™ (aeT™),
ICa - r’al
%sgn(az)"det(oc)"/z‘1 (xeTP),
and i
1/QIT (@))) (xeT*),
) =< U/|Z(I)| (xeTh),

Y(IZO)- Im@P*?) (e T?).

Corollary 6.4.11. We have

te=— 2 x@k@)),
weT*)/T

th=— 2 x(@k@)(),
aeT//T

and

t,=— lim Y y@k@@.

s—>+0 aeT?//l’
If T\H is compact, then t, =t,=0.

§6.5. Traces of Hecke Operators (Algebraic Calculation)

In the rest of the chapter, we apply the general formula of traces of Hecke operators
in §6.4 to Fuchsian groups obtained as unit groups of norm 1 of indefinite
quaternion algebras. We use the notation in §5.3 for quaternion algebras.

Let B be an indefinite quaternion algebra over Q with discriminant dg, R an
order of B of level N, and

I'g={yeR*|Ng(y)=1}.

Let T = [1I'gaIg be a (disjoint) union of finitely many double I'g-cosets included in
Ag. We identify T with the element Z I'gal'g in Z(I'g, 4z). Moreover we put

TA = URTUR-

It is a disjoint union of finitely many double Ug-cosets by Theorem 5.3.5. We
identify T, with the element X Uga Uy of #(Ug, D). Note that T corresponds to T,
through the isomorphism of #(I'g, 4z) onto Z(Ug, Dg). Let y be a Dirichlet
character mod N. Then y can be considered as a character of I'y by (5.3.6). The
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purpose of the remaining sections of this chapter is to obtain a computable form of
trace formulae of Hecke operators 7= T'(n) defined by (5.3.12) operating on
F, (g, x). Hereafter we also denote I'y and Uy simply by I' and U, respectively.

For the convenience of the reader, we recall the notation in the case of modular
groups. In this case, B= M,(Q) and

a b
R={|:c d:leMz(Z)

Ugx = GL; ®) x []R} < B},
p

a b
R, = {[c d]eMz(Zp)

Therefore I'r = Ugn B* = I4(N). Moreover

c=0 modNZ},

where

c= OmodNZ,,}.

M,(Z,) nGL,(Q,) (p¥N)

Dp= a b
e aJex

Dp

ad — be # (), an;} (pIN)

< GL; (R) x 1‘[D,,> NGL,(Q,),

4g = Dg R = 4,(N),
R(Ig, 4g) = R(I'H(N), 4¢(N)) = R(N).
As for Hecke operators, we see

T(n) = {xe 4o(N)|det(@) = n},

T(n), = UgT(mUg = (GLQ+ (R) x n T(n)p> NGL,(Q,),
where ?
T(n), = {a,€D,|det(a,)enz; }.

Now we return to the initial situation in this section. We are going to calculate
T¢//T, T*//T and T?//T. For an element « of B* N R not contained in Q, we put

C(a) = Cyx (o) = {5x6~'|5€B*}.

Lemma 6.5.1. (1) Assume ae T°U T"U T?. Then

an imaginary quadratic field K, if «eT¥¢,
Qa]~¢ o xQ, if aeT™
QLe] (2=0), if aeTP.
(2) Let S be T°, T" or TP. Then for oS, we have
SnC(a) = TnC(x).
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Proof. (1): Let f(X) (¢ Q[ X]) be the principal polynomial of . Then
Qo] ~ QLX]/(f(X)).

By definition, f(X)=0 has two imaginary roots, two distinct real roots, or a
multiple real root if « is elliptic, hyperbolic, or parabolic, respectively. This implies
(1). (2): Since the type of any conjugate of « is the same as a, the assertion is true for
S=7T° or TP Suppose S=T" If T"# &, then B = M,(Q), and therefore
Pr=Qu {0}, and any element of B* = GL,(Q) maps P onto itself. Therefore if «
is contained in 7%, all fixed points of conjugates of a by elements of B* are also
cusps of I'. This implies the assertion for § = T*. O

Since
k() = k(6a6!) for any e B*,
the above lemma implies that if S = T¢, T* or T7, then
6.5.1) Y x@k@l@= Y k@ Y  x(B)PB).
aeS/IT xeS//B* Be(TAC@))T

For any element § of B*, @Q[¢]nd~ 'R4 is an order of @ [«]. For each order r of
Q[a«], we put

C(a,t)={d6ad"'|16eB*, Q[a]nd 'Ré=r}.

Since @[] N6~ ' RJ is determined by = dad ! and is independent of the choice
of 6 by Lemma 5.2.2(3), we see

(6.5.2) Cl@) =[] Cla ),

where r runs over all orders of Q[a]. Suppose ae 7°u T?. Let ¢ be an order of
Q[«], and B=6ad"! (6eB*) an element of C(x,t)n 7. Then B is elliptic or
parabolic, and Ng(¢) = 0 for any ¢e @[ f]. This combined with Lemma 5.2.2(3)
implies

r(By={vellyB =By}

= Q[f]nR"
=6(Q[a]né 1R* )6
=0Jr oL
We put
1/2)e™| (e T*),
(6.5.3) xy=<¢1/2 (xeTh),
12im(e, t )1 %S (xeTP)
Then we see

I(B)=1r) forany peC(a,r),
since |Z(I')| =2. Assume TrnC(x,t)# & and let §=35xd ! be an element of
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TAC(x, t). Then Bedrd !, and therefore, acr. This implies that if T~ C(a, 1)
# J, then v > Z[a]. Therefore we can rewrite (6.5.1) into

(6.5.4) Y 1(@k@)i@

oeS//T
= ) k@ Y Il > x(B).
aeS//B* Z{a] <x Be(TnCla, x)//T
We are going to localize the calculation of each term.

Let K be an algebra over Q of dimension 2. We denote by Ng(x) and trg(x) the
determinant and the trace of the regular representation of x, respectively. When K
is a subalgebra of a quaternion algebra B over Q, Ng(x) and trg(x) coincide with the
reduced norm and the reduced trace of x in B. When K is a quadratic field, N and
trg are usual ones. We note that Ny and trg can be extended to the mappings of K,
into Q4 in the usual manner. For an order r of K, we put

R,=R®z2,
t,=1Qz72Z,,

r;+ = {(av)er:t< Idet(aoo) > 0},
where
Z,=Rx]]z,.
P
Moreover we put
h(r) = |K7 /(g K7,

and call it the class number of r.
Now we return to the calculation of (6.5.4) and put

Cu(@) = Cpx(@) = {hah™'|he B} },

Cu(o¥) = {hah™*|heB}, Q Ja]lnh 'R h=1,}.
Obviously
C(a) < CA (a)’ C(d, r) < CA (a’ I).

Lemma 6.5.2. Let o be an element of T°u T* U T®, and 0 the natural mapping of
C()//T into C,(a)//U. Then

(1) 6 is surjective.

(2) If g is an element of C4(a, x) with an order t of Q[a], then

1071 (Cy(g) = (),

Cy(g) = {ugu'|ueU}.

Proof. Let g =-hah™! (he B} ) be an element of C,(x). Since h = uf with ue U and
peB™ by Theorem 5.2.11, we see that

Cy(g) = Cy(Baf™).
This implies (1). For an element & of B*, we see that
Cy(lal ™) = Cylg)<> e UhQ [a]* nB™.

where
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Moreover for two elements & neB™,
Cr(éa&™1)=Crnan™ ')« 1'¢Q[a]™ = I'nQa]".
Since
BQ[a]f™! = Qu[Bap™],
1071 (Cu(@)] = IM\(UhQ,[«]* n B*)/Q[o]"|
=|[P\(UBQ [«]™ N B™)/Q[a]™|
= II\(UQ4[faB™']* A B*)/Q[BaB™ 1.
Now we are going to prove that if E is a commutative subgroup of B, then
(6.5.5) IFT\(UENB*)/(EnB*)|=|E/(EnU)-(EnB™)|.

In fact, Theorem 5.2.11 implies that for any element ¢ of E, there exists an element u
of U such that

wE Se€

uteUENB™.

Let ¢y, ¢, be two elements of E, and u,, u, two elements of U. Assume that u,¢,,
u,t,e UEn B”. Noting that I'= U n B, we see that

, Tu t,(EnB*)=Tuyt,(EnB*)est,t; ' e(EAU)-(EnB*).
This implies (6.5.5). Since
Qu[pap™'1" nB* =Q[Pap™'1",
we can apply (6.5.5) for E= Q[ Baf ™11, and see

107 (Cu(@)] = 1Q[Bap™ 1" /(Qu[Baf™ 1N V) Q[Bap™ 17|
=1Q,[a]" (@[] "B UB)- QL] ™.

Now assume that ge C, (a, r) with an order r of Q[«]. Then

Qaln B UB=14,,
since
U=GL}(R) x HR;
I 4

Therefore
167 1(Cy(@)] = |Q [0]* /rs+ - QL[] *| = h(x). O

Since T, is a union of finitely many double U-cosets, 0 transforms
(T C(a, 1))/ T onto (TN C4{a, 1))/ U, and therefore, by Lemma 6.5.2, (6.5.4) is
rewritten into

656 Y x@k@I)

aeS/] I

=Y k@ ¥ Ihy) Y 2.

aeS /B % Z[x]<t ge(T,NCylo) /U
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Now let v be either a prime number or co. We put
T,=R TR},
C,(@= Cyr(0) = {xax"'|xeB,}.
For a prime number p, let t, be the closure of r in B,, and put
C,(a1)={xax"!|xeB,, Q,[a]nx 'R, x =1,},

C.a,1)=C,(x)
Moreover we write
RX =GLS (R).
Then
U= HR:,
and
(T4 Cyla, )/ U =TT, " Cpla, 1) //R },

where the product is taken over all prime numbers and 0. Therefore we obtain

(6.5.7) ) M=H< Y m)

ge(T,n C 1))/ U v \g (TN Cola1)//RT

Here if v is a prime number prime to N or oo, then we understand y,(g,) = 1.

§6.6. Local Conjugacy Classes

In this section, we calculate each factor in the right-hand side of (6.5.7). First let
v = c0. Since

C,(e,t)=Cy(®) and T,=R}=GL;(R),
we see
(Too N Coo(et, 1)) //RE, = {xax™" | x € GL,(R)}//GL; (R).

Since GL; (R)\ GL,(R)/Z{(2) corresponds bijectively to the set in the right-hand
side, Lemma 1.3.3 implies that
2 ifaeT°UT?,
U, R x =
(656.1) (T 1 Co @ D)/ R {1 FacT
Next suppose v = p, a prime number. We note that any algebra L over Q,, of
dimension 2 is isomorphic to one of the following:

1° a quadratic field K, over Q,;
2 H,=0Q, x Q,;
3 E,=Q,[e], 2 =0.

In fact, if x is a generator of L over @, and f(X) is the defining polynomial of x,
then

L~Q,[X]/(f(X))
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We get the above three cases 1°, 2° or 3° according as the equation f(X) = 0 has no
roots in Q,, has two distinct roots in @, or has a multiple root in Q,, respectively.
When L is K, H, or E,, we put

the ring of all integral elements of K, (L =K,),
(6.6.2) 0, = Z,x17, (L =H,),
Z,[¢] (L = E,).

If L is K, or H,, then o, is the maximal order of L. Further we obtain

Lemma 6.6.1. Let L be K,, H, or E,. Then any order of L is
Z,+ p°op,
where e is an integer. Moreover e 2 0 if L is K, or H,.
Proof. Let t, be an order of L. Since Z, is a principal ideal domain, we can write
1,=2,+Z,u
with an element uer,. Since
Q,r,=Q,0,=1L,
there exists an integer e such that
ueZ,+p°, and u¢Z,+p°*lo,.
If Lis K, or H,, then we see easily that e = 0. ]

Now let p be a prime number prime to dg. Then B, = M,(Q,) and

b
(6.6.3) R, = {[‘c’ d]eMz(Zp) ¢ =0 mod pv}
with a non-negative integer v. Moreover let N(R,) be the normalizer of R, or
(6.6.4) N(R,)={geGL,(Q,)IgR,g™ " =R,}.

Lemma 6.6.2. We have

Q; R} if v=0,

N(RR,)) = 0 1
(R7) @;R;u[pv OJQJR; if v>0.

Proof. First suppose v =0.Then R, = M,(Z,). For an element & of GL,(Q,), there
exist uy, u, € GL,(Z,) such that

e 0
ulau2=|:g pf:| (e,feZ)

1

by elementary divisor theory. Therefore aR,a™' = R, if and only if e = f (namely
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xeQ, R,). Next assume v > 0. Since there is a unique pair (R{", R{?’) of maximal
orders of M,(Q,) such that

_ R (2)
R,=R,’nR;

by Lemma 5.3.1, any element of N(R,) induces a permutation of {R{", R%¥’}. Since

we can take
v 0 -1 v O
<M2<Z,,), [(’; 1] M2<z,,>[g 1])

for (RV, R?) in our case, we see

[N(R,):Q, R ]=1or2

0 1
On the other hand, [p” 0] is an element of N(R,) but does not belong to Q,° R,
so that
N, #Q,R).

This implies the assertion. O

Let o be a non-scalar element of R, such that det(«) # 0, and
(X)=X?—tX+n (t,neZ,)

be the principal polynomial of «. Let r, be an order of Q,[«] including Z,[«].
We put

[v,:Z,[x]]=p" (p20),
then Lemma 6.6.1 implies that r, is uniquely determined by p. Put
(6.6.5) Q(o, t,) = {¢€Z,| f(¢) = 0modp** 2, t — 2¢ = O mod p”}.

Furthermore, for an element e Q(a, t,), we put

(068 o [—p‘iﬁ.(é) - JER”'

Since f,(g:) = 0, we see

g€ Cya) = {xax~'|xe GL,(Q,)}.

Lemma 6.6.3. Let R, be an order of M ,(Z,) defined by (6.6.3), « a non-scalar element
of R,, and t, an order of Q,[«] such that

t,2>Z,[a] and [r,:Z,[a]]=p" (p=0)

For an element g of C,(x), the following four statements are equivalent.

(1) geCpyla, t,).
(2) geZ,+ p°R,, and g¢Z,+ p**' R,
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(3) If g = [Z Z:|, then

b=a—d=0modp*, c=0mod p**°,
and any one of the following three conditions is satisfied:
(i) b # 0 modp*?;
(ii) ¢ # 0mod p?*¥*1;
(iii) a —d #0 mod p**'.
(4) There exists an element e Q(x, t,) such that g is N(R,)-conjugate to g,.
Proof. (1)<>(2): Put g = hah™"! with he GL,(Q,). Then
geCy(a,t,)=>Q,[gl "R, =ht,h~!
<[Q,[g]1nR,:Z,[g]] =p*
<Z,0gl=2,+Q,lg]lnp°R,
by Lemma 6.6.1. This implies the equivalence of (1) and (2). (2) <> (3): This follows

from the definition of R,. (4)=(2): Suppose that g is N(R,)-conjugate to g,
with an element {eQ(a, v,). Since g, always satisfies (3), it does (2), so that
0 1 0 1!
|:p" 0] ge [p” 0] also satisfies (2). This combined with Lemma 6.6.2 implies
that g satisfies (2). (3) = (4): Suppose that g satisfies (3). First assume condition (i),
and put
b=p*b, (byeZ)).

Since g is conjugate to a, we see f,(g) = 0. In particular,

t=a+d, n=ad-— bc,
so that
fi(l@= —bc=0modp**?,
and
t —2a = O mod p*.

Thus ae Q(a, r,). Moreover we see

ugu =g, <u=[(1) 21]6R;>.

P 0 1 o 1]t .
Next suppose that g satisfies condition (ii). Since |:p” 0j| g|: y 0:| satisfies
p
condition (i), it is R, -conjugate to g, with some feQ(a,1,). Lastly assume
condition (iii)). We may suppose that
b=0modp?*!, c¢=0modp?*V*?,
Then
wau=! = a+c¢c —a+d+b—c
o= —c+d
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) 11 .
with u = |:0 1:|ER,, , and
—a+d+b—c#0modpt!.
This implies that ugu ™! satisfies (i) and it is R, -conjugate to g;. a

If v= 1, we put
[0 1
(6.6.7) w= | 0:' eN(R,).

Then for e Q(a, 1t,),

IR R S A(97) Jake
(6.6.8) wygew ! = | s : ,
and both g, and wg,w™! belong to C,(a, r,). Lemma 6.6.3 implies

{9:1¢eQ(e, 1)} /RS, (v=0),

669)  Ct)/R; ={{gg,wgéw—weema,r,,)}//R;, vz ).

b
Lemma 6.6.4. Assume v = 1. Then g = [z d:| eC,(a, t,) is R, -conjugate to some
g ((€Q(e,)) if and only if

b#0modp?*! or a-—d#0modp’*!.

Proof. The if-part was already proved in the proof of the (3) = (4) of Lemma 6.6.3.
Now assume that

b=a—d=0modp”*!,

’ b’
ugu™" = g <u=[:' d’]eR”x’éEQ(a’r”))

Since ¢ = 0 modp**? by Lemma 6.6.3, we see

and

1

ge = ugu-
* g N _ 12 A YN
El:* {—aba d)+il b}/(ad bc)]modp”".
Since
—daba—d)+a?*b=0modp”*?,
this contradicts the definition of g,. |

Lemma 6.6.5. Let £, n be two elements of Q(a, t,).
(1) g, and g, are R -conjugate if and only if

v+p

E=nmodp
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(2) Suppose v 2 1. Then g, and wg,w™ " are R -conjugate if and only if & and n
satisfy the following two conditions:

(i) t2—4n$0mod€2“’+1 or f(m)#0modp**2,+1,
(i) ¢E=t—nmodp***.

Proof. (1): First suppose ¢ = 7 mod p***. Then

1 0l ..
=[p“"(é—n) 1}“"

ug:u~ ' =g,.

Conversely assume g, = ug,u~ ' with ue R . Since

and

g:— ¢ = 0mod p?,
W€ S€C
P ?(g:—&)ER,,
so that
pP(g,— &) =upP(g;—E)u'eR,.

Since u is congruent mod p® to an upper triangular matrix, we get
p~*(n—¢)=0modp’.
Thus # = ¢ mod p***. (2): By definition, we have

wgyw ! = [t —1 —p'””'”ﬂ(n)]ecp(a’ L),

pv +p
By Lemma 6.6.4 and an argument similar to (1), g, and wg,w™ ! are R -conjugate if
and only if they satisfy

(i) £(m) #F0modp**2°*t or 2y —t # Omod p?* 1,
(i) E=t—nmodp’*’.

Since
t=n+(@—n) and n(t—n)=nmodp**?,
we see
t?—dn=(2n—1t)> mod p**2°.
Therefore (i') is equivalent to (i). O

Now we assume Q(a, r,) # & and let £ be an element of Q(, r,). Then

t2 —4n = (t — 2¢)*> mod p**2*,
Therefore we obtain

(6.6.10) t> —4n = 0 mod p?*

by the definition of Q(a, r,). Conversely suppose that « satisfies (6.6.10). If £eZ,
satisfies

£ () =0modp**2*,
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then
t—2&=0modp”.
Therefore

66.11) Qar,)= { (6€2,14(6) = 0modp ), ¢ —dn = Omodp*,
z, otherwise.
Further we put
(6.6.12) Q'(a,1,)=
{eZ,| () =0modp* "2, "1}, if t* —4n=0modp***! and v 2 1,
) { , otherwise.

Then we have the following

Theorem 6.6.6. Assume v = 1. Let a be a non-scalar element of R,, and f(X)
= X% —tX + n the principal polynomial of a. For any order r,of Q[o] including
Z,[a] such that

[tp:Z,[2]] = p*,
we can take as a complete set of representatives of C,(a,t,)//R, the set
(0 1§ € 2/p""YU (wgew™ | £ € 2'/p"*),
where $2/p"t* (resp. $2'/p'**) is a complete set of representatives of 2(«, t,)
mod p¥** (resp. £2'(x, tp) mod p¥**).
Theorem 6.6.7. If R, = M,(Z,), then |C,(a,t,)//R; | = 1.
Proof.  Since any order r, of Q,[«] is a Z,-free module, we can write

r,=7,[f] with BeQ,[a].
Put
B=a+ba (a,beQ,).

Then C,(a,t,)// R, corresponds bijectively to C,(f,r,)// R, through the corre-
spondence “g+ a + bg”. Since

(r,:Z,[11=1,
p=0, and Q(B,r,)=12,.
Therefore by Lemma 6.6.5(1), we obtain
1Cole, 1) /R 1 =GB, v, ) [/ R | = 1. a

we see that

Next we consider the case when p divides dg. Then B, is a division algebra, and
R,={aeB,|Ng (2), trg (W)€ Z,}

is a unique maximal order of B, by Lemma 5.2.3(1). Therefore, for any non-scalar
clement a of B, we see

C(nR,# ifand onlyif aeR,.
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Let « be a non-scalar element of R,,. Since Q,[a] N R, is a unique maximal order of

Q,[«], we see
« _ J L, ift, is the maximal order of Q,[«],
66.13)  1G o 5)//By | = {0, otherwise.

Since any two-sided ideal of R, is given by n}R,(nZ R, = pR,, n 2 0), and

Bp = ngo n;"RP,
we get
(6.6.14) B, - Q,[«]R,, if p ra@iﬁes in Q,[«],
Q,[«]R, unm,Q,[2]R,, otherwise.

Since p ramifies in B, by assumption, p does not split in Q,[«]. Taking this into
account, we obtain the following

Theorem 6.6.8. Let B, be a division quaternion algebra, R, the maximal order of B,
and o a non-scalar element of R,. For an order x, of Q,[a], we have

-~

o, if t, is not maximal,
{a}, if t, is maximal and p ramifies
Cp(a’ rp)//R; = < in Qp[a],

{o, myan, '}, ift, is maximal and p remains

prime in Q,[«].

Y

Now using (6.6.1), Theorem 6.6.7 and Theorem 6.6.8, we calculate the right-
hand side of (6.5.7) and obtain

(6.6.15) > @=v[l] Y &+ Y k-9
ge(Tyn Cyulo, ))JU pIN ) eQ/p**e le/p*e )
g.€T, wg.w €T,

Here N is the level of R; t = tr(a); Q = Q(o, r,), ' = Q'(e, x,); and

0 ifa € T®, ¢, # max for some p|ds,
(6.6.16) 21+ if g € T¢, v, = max for all p|ds,
.6. v =
1 ifaeTh

2 ife eT?,
where the integer u for ae T° is given by

(6.6.17) u = #{ prime numbers unramified in Q[a]}.
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§6.7. Class Numbers of Orders of Q[«]

In this section, we calculate the class number A(r) of an order r of Q[a].

Lemma 6.7.1. Let p be a prime number.

(1) LetK = Q(\/E ) be a quadratic field with discriminant d, xo the maximal order
of K, and t an order of K. Put

rop = ro ®Z Zp

and
r,=1®z7Z,.
If
[rOp:rp] = pe (e > O)’
then

d
[topir, 1= p"'(l - (—)p“>,
P

where (—) is the Legendre symbol.
(2) Let
H,= @p x @p’
ro=2,%xZ,
and x be an order of H,. If

[ro:x]=p° (e>0),
[rg:x*1=pA—p~")
E,=Q,[e] (2=0),
and x,, t, be two orders of E,. If v, > t, and

[ri:r;]=p° (e>0),

then

(3) Let

then
[rfx3]=p"
Proof. We begin by proving (2). By Lemma 6.6.1, we have

r=17,+p°ty = {(a, b)ery|la = bmodp°}.
Since
=2, xZ),
we see
rg /t* ~(Z/p°Z)”
by the correspondence “(a, b)— a/b”. Therefore we get
[rg:t*1=p(1—p").
Next let us prove (3). We can write

t,=2,+p'Z,c and r,=7,+p* 7,¢
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with some integer f by Lemma 6.6.1. Thus

=2y +p’Z,e and 1y =Z); +p** Z,¢,
so that
t /S ~7,/p°7,

through the correspondence “a + p/ be+— b/a”. Therefore we get
(rf:r ] =p"
Lastly we are going to prove (1). Put

K,=K®q Qp'
If p splits in K, then
K,~Q,xQ,

so that this case is reduced to (2). Assume that p remains prime or ramifies in K.
The K, is a quadratic field over Q,, and

t,=2Z,+ptq,
by Lemma 6.6.1. Then the sequence
127, /(1+p°Z,)—r5,/(1 + pry,) > 15,/t, — 1
is exact,
[t65/ (1 4 P*¥o,)l = [(top/ P Top) ™ |

_ fp**(1—p~?) (p: remains prime),
a {p"e(l —p~ ') (p: ramifies)
and
1Z, /(L +p°Z,) = (Z,/p°Z,) | = p*(L = p7),
so that we get (1). |

Class numbers are given by the following
Theorem 6.7.2. (1) Let K = @(\/E) be an imaginary quadratic field with discriminant
d, vy the maximal order of K. If t is an order of K and

[to:x] =n,

el (1-G)r)
h(r) = oln ~ — P ,
[rg:r™]
where hg = h(x,) is the class number of K.
(2) Let H=Q x Q, and v an order of H. If

[Z x Z:x] =n,

then

then

ht)=n[](1—p7").

pln
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(3) Let E=Q[e] (¢2 =0). If x is an order of E, then
ht) = 1.

Proof. (1): By definition, we see that rj, =t; and

hr) = |Kg /K v | = |Ki /K™ xgal |K* 154/ K™ 1]

= hxltga/ti | (K™ nrg) (K™ nrp) ™
Since K is imaginary, we see
K*nrjy=1y and K nr]=r".

This combined with Lemma 6.7.1(1) implies (1). (2): Put

ro,=2Z x Z.
Similarly as above, we have

h(r) =|H 3 /H"tgq4 | t0as /i I(H N gy )/ (H e g )7t
Lemma 6.6.1 implies

r = {(a, b)ery|la = b modn},
so that

H nrg,=H nry ={(1,1),(—-1, =1)}.

Moreover, since
Q;=0"z;,
we see
X X x
Hy=H 1t544.
Therefore we get

h(®)=[rga+:ti:1=n]](A~p7")

pin

by Lemma 6.7.1(2). (3): We see
vr={a+thela, beZ}
with some te @ by Lemma 6.6.1. Since
EZ=0Q4(1+Que),

E*=Q"(1 + Qe),
and

vty =21 +1tZ,¢),
we see that rj, =r; and

h(x) = [E4/E™ 4]
= (1 4+ Q,8)/(1 + Qe)(1 + (Z 4¢)|
=1Q4/Q+Zy =1 O
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Remark 6.7.1. As for the class number hy, see [ Borevich-Shafarevich]. When K is
an imaginary quadratic field, we easily see

{4k # AT} if K=0Q(/—1)and r is maximal,
=9 {41, +e"3, £} if K=Q(,/—3)and r is maximal,
- {+1} otherwise.

§6.8. An Explicit Formula for tr(7T(n))

Finally in this section, we present an explicit form of tr(T'(n)). First we calculate the
terms for elliptic o’s.

Lemma 6.8.1. Let K = @(\/g) be a quadratic field with discriminant d, and t, the
ring of integers of K. For an element o of to(0¢Z), let X* — tX + n be the minimal
polynomial of a. If m is the positive integer given by

t?2 — 4n = m?d,
then

[to: Z[a]] =m.

Proof. Tt is easily seen that vy = Z + 76 with 6 =(d + \/3)/2. Put a =1+ md
(I, meZ), then t2 — 4n = m?d. Since Z[a] = Z[mé], we get [vo: Z[a]]=m. O

Notation being as above, we suppose that K is imaginary. For any positive
integer f, there uniquely exists an order r of K such that [ry:r] =f; in fact,
r=2+ fr,. We put

h(f2d)=h(x),  w(f*d)=]r"|.
Then Theorem 6.7.2 implies

-2
worra) ~way TGP

Let « be an element of 7¢. Then Q[ o] is isomorphic to an imaginary quadratic
field @(\/z-i) with discriminant d. Let f,(X) = X2 — tX + n be the minimal poly-
nomial of a. We define m (> 0) by t? — 4n = m?d. Then by Lemma 6.8.1 combined
with (6.5.3) and (6.6.15), we obtain

(6.8.1) Y l(x)h(x) Y x(9)

Z{alcr ge(TynCyla, r))//U

oy MWDl oy Lo+ Y w-0
0<f|mw(f2d) pIN | EeQ/p**? ? Se@/ptr ’
g:€T, wgew €T,
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where v runs over all orders of Q[a«] including Z[«], and p = ord,(m/f)
(= max{pueZ| p"|(m/f)}).

Now take T'(n) for T. Then Lemma 5.2.5, (6.5.6) and (6.8.1) imply

(6.8.2) Y x(@)k(a)l(a)

aeT(n)/I

_ Z’ 2unk—1_é‘k—1
n—2¢

tel
2 —dn=m2d <0

h(f*d
> de) I1 { Yo+ Y - 5)}.
(?‘;J)q;nlw(f ) pix ceQ/prr? EeQ'/prte

Here 5, { are the roots of X2 —tX + n=0; for each ¢, m (> 0) is given by
t* — 4n = m*d with the discriminant d of the quadratic field Q({); p = ord,(m/f);
for p, t and £, and Q and Q' are given by

(683)  Q2=Q(tfip)={¢eZ,|&* — 1L+ n=0mod(m/f)*NZ,},
and
(684 Q' =Q'(1fp)

3 {{fezl,léz —t&+n=0modp(m/f)*NZ,}, ifdf=0modp,
B , otherwise.

Let us proceed to the case T". The following lemma is easily proved.

Lemma 682. Let H=Q x Q,ry =7 x Z, ety — Z, and let X? — tX + n be the
minimal polynomial of a. Then

t2 —4n = m? (m > 0),
and
[to: Z[a]]) =m.

Let « be an element of T*. Then Q[«] ~ Q x Q. Similarly to the elliptic case,
Lemma 6.8.2 and Theorem 6.7.2(2) imply

(6.8.5) Y l(x)h(y) )y x(9)

Z[a]lcx ge(Tyn Cyla, t))/U
1
=3 o(N]] YO+ Y -9
0<flm pIN | seQ/p'*? leQ'jprre
g:e7, wgw leT,

where ¢ is the Euler function.
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Take T (n) for T, then we obtain by Lemma 5.2.5, (6.5.4), (6.5.6), and (6.8.5) that

(6.8.6) Y (o) k(o)l(x)

aeT(n)t)/I
1 min{|n), |{]}*7! "
=3 —————sgn(n)
2 tezz ln— <l

t2—dn=m>#£0
x 3 oWNII { Y O+ Y Xp(t—é)}-

0<flm pIN LieQ/p*s LeQ'/p*e
Here 5, { are the two roots of X2 —tX+n=0; t2—4n=m? (m> Q)
p = ord,(m/f); for p, t and f, Q and Q' are given by (6.8.3) and (6.8.4) with d = 1.

Now let « be an element of T7, # a unique eigenvalue of o, and put e = o — 7.

Then ¢2=0, and Q[a] = Q[e]. Since # is a rational integer, we have
Z[a] = Z[¢&]. Therefore any order of Q@[] including Z[«] is given by

. |
(=2 +5Ze  (I=12...).

An easy calculation shows

tm(a, x(1)*)] = 1/In].
Thus by Theorem 6.7.2(3), (6.5.3) and (6.6.15), we get
(6.8.7) Y l(r)h(r) v 1(g)

Z{a]ct ge(TynCy(a, ))//U

1 & S
=3 L Omarst ¥ )

ge(TynCyla, 1))//U

— |r”s+1 1‘] (1 _p—(s+1))—1

PN
e p—
xTT| X p77C+90 Y 2,8+ Y  x4(t=9)
pIN| p=0 §eQfprre ¢ef'fp"* s
g:€T, wgsw leT,

Here f,(X) = X2 — tX + n s the principal polynomial of «; # is a unique root of
£(X)=0; and

(6.8.8) Q=Q(n,p,p)={¢leZ,|=nmodpl”* V2*e7 3
(6.8.9) Q' =Q(n,p,p)={(€Z,|E =nmod p/21* e+ 17 1.

Take T'(n) for T. If n is not square, then T(n)’ = ¥. Let n = 4% (neZ), and
m, = [],p° be the conductor of y. Then e < v, so that

(6.8.10)

)

ge/pte
ace T(n),

0, if pln,orpkn and [(v+1)/2]+p<e,
1(8) = .
otherwise,

xp(n)p? ~LO+ D2
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and
(6.8.11)

2

§eq/pr
wgew™ e T(n)?

0, ifplnorpyn and [v/2]+p+1<e,
Xp(t_é)= v—v2]-1 .
xp(Mp otherwise.

Therefore by (6.5.6) and (6.8.7), we see that

(6.8.12) Y () k(a)l(x)

aeT(n)?// I

—C(S+1) 2 Inl Tsgn(n)x(mnt>
n=n
X 1_[ (pv—[(v+1)/2]—u(s+1) +pv—[v/2]—1—u’(s+ 1))’
pIN
where
u=max{0,e—[(v+1)/2]}, ,u’=max{0,e—[v/2]——1}.

Hence we obtain

(6.8.13) im Y x(a)k(e)l(a)

s=>0 qeT(n)?)l

- Z sgn(n) y(nyn® = D2 T (p* ~Ho+ /2 =u 4 pr=(v2-t-uy,
" =n PIN

The calculation of tr(7T'(n)) is completed if we know the volume of I' \ H, which
is given by the following

Theorem 6.8.3. Let B be an indefinite quaternion algebra over Q with discriminant
dg, and R an order of B of level N. Then

o([\H) = SN TT (1 +p )T (p - D).

pIN plds
Proof. If R is maximal, then it is known that
2{(2)
(6.8.14) v(I'g\H) = C( [T ) {(2) = =?/6.

pldg
(For the proof see [Shimizu 37]). We note that if dy = 1, namely B = M,(Q), then

(6.8.14) is nothing but Theorem 4.1.2(2). The result for arbitrary order follows from
(6.8.14) and Lemma 5.3.2. O

We write down an explicit form of tr(T'(n)).

Theorem 6.8.4. Let B be an indefinite quaternion algebra over Q with discriminant
dg, R an order of B of level N =[],p"((dg, N) = 1), I'y = {yeR™|Ny(y) = 1},
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x a Dirichlet character modN, m, = HP p¢ the conductor of y, and T(n) the Hecke
operator defined by (5.3.12). Then

tr(T(n)) = tr(T(n)| £ (I'k; 1))

k—1
=1(/m) =N+ p )T - 1)

pPIN pldy
—Za(t Zb(tf (&1).

Each term is as follows.

1° We understand x(\/;) = 0 if n is not square.
2° t runs over all integers such that t*> — 4n are negative or square. For such a t,
let {, n be two roots of X?> —tX + n =0, and put

the discriminant of Q(./t* — 4n), ift? —4dn <0,

d= 1 if t> — 4n is a positive square,
0 ift? —4n=0.
Then we put
( Ck— 1 k=1 d .
57, ifd #0, 1 and (—) £ 1 for any prime
1 factor p of ds,
1 3 k—1 k—1
g R e, ird =1, dy =1,
a(t) =< IC —n
1
Zx(t/2)sgn(t)"n“‘_ D2, ifd=0,dz=1,
0, otherwise (dg# 1 and either d=0 or 1),

where

u=*# {prime numbers p| pldg, (£> = _1},
p

3° f runs over all positive divisors of m, where m is a positive integer given by
t2 — 4n = m*d if d # 0; otherwise m = 1. For such an f,

h() —1) ; 0, (f,dz) =1

w(d)fﬂ< (p) s !fd< s (f9 B) s

b(l,f): 0 lfd<0a (f,dB)¢1,
o), ifd =1,

1: l:f‘d =0’
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where h(d) is the class number of @(\/3 ), and w(d) the number of units in @(\/3 ),
namely
4, ifd=—4,

wd) =< 6 ifd=—23

2, otherwise,

and ¢ is the Euler function.
4° For each prime factor p of N, and each positive divisor f of m, we put

Q=0Q(tf,p)={¢€Z,|E* —t& + n=0mod(m/f?NZ,},
Q=Q(fp)
{{5ezp|§2 —t&+n=0modp(m/f)?NZ,}, ifdf=0modp,

<, otherwise.
Then
1, if N=1,
c(tf) = - Hv{f Q; xp(§)+é QZ/ xp(t—é)}, ifd#0,N>1,
’ P eQ/pte eqQ’/p'te

[1(p" "o+ D2imp g provi21=1-w) ifd=0,N>1,

pIN
where p = ord,(m/f),

u=max{0,e — [(v + 1)/2]},
¢ =max{0,e—[v/2] — 1},

and y, is the character of (Z,/NZ,)" induced from y. We note that y,(a) =0 if
(a, N) # 1 for aeZ, (even if x,, is trivial).

Remark 6.8.1. Though we have assumed k = 3, a similar consideration using
certain limit process is applicable to the case when k = 2 (see [Ishikawa]), but it
needs the knowledge of infinite dimensional representation theory of SL,(R).
Another method by Eichler enables us to calculate traces for the case when k = 2
([Eichler 4], [Saito]). In any case, we can also calculate tr( 7 (n)) for the case when
k = 2. We state the results without proof.

If y is not trivial, then the above formula holds. Otherwise, tr(T(n)) is given by the
above formula with the additional term

I+1

Hl_*i_ (N =1),

pin I—p
I+1

1—
17 [ —— (N>1),
pin pm 1—p

pIN pkN

6(N,n) =

where n =[], p".
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Remark 6.8.2. When B = M,(Q), we have I'y = I';(N), and T'(n) is the Hecke
operator defined by (4.5.4).

Theorem 6.8.4 is still somewhat complicated to calculate in a general case. In
many cases, we can still simplify it. As an example, we write down here, without
proof, a computable formula for the special case when I = I'j(N) with N = pg’
(p, q: odd prime numbers, v = 0) and (n, N) = 1. Furthermore we assume that y is
induced by a Dirichlet character modp and satisfies y(— 1) = (— 1)*. Then

tr(T(n)| #i(N, 1))

k—1 1 v =20),
= X W= (p 4 1) x {q o

(g+1) (v>0),
1 (v=20),

- x(\/;)n“‘_ DIZ x & g"2 4+ g¥2" 1 (v:even > 0),
2q0 b2 (v: 0dd),

1 (v=0),
— Y )+ x(n/e)E T xS gl 4 gt DT (0 < v £ 21),

tin -~

O<t<y/n 24° (2t <),

- Z ak(t)z b(t,f)c,(t,f) x {1 (v=0),

teZ ! Cq(tsf) (V > O)’
t2—4n<0
8(pq*,n), ifk=2, and yis trivial,
+ .
0, otherwise.

We explain each term. © = ord,(n/t —t). For each integer ¢ satisfying t> —4n < 0,
a,(t) is given by

Ck_l_r]k_l
{—n 7

where { and # are the roots of X> — tX + n = 0. For example,

a(t) =

a(t) =1, ay(t)=t, a,(t)=1t*>—n, as(t)=t(t?— 2n),
ag(t)=t*—3mt2 +n% ...,
a;,(t) = t1° — 9nt® + 281215 — 35n3t* 4 15n*t2 — nd, ete.
The summation ), is taken over all positive divisors f of m, where m is the positive
integer given by
t2 — 4n = m3d

with the discriminant d of Q(./t*> — 4n); c,(t,f) is the p-component of ¢(¢, f), or
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more explicitly,

$(3) + 2(B), Vp*ﬂ<§> L

d
cp(t,f): P, 0, lfP*ﬁ(;) -1,

x(a), ifpkfipld,
2x(), ifplf,

-

where a and B are the roots of X? — tX + n = 0 modp. We note that if p { m and

d .
<;> =1, then X2—tX +n = 0modp has two roots in Z/pZ and if p|dm, then
X?—tx+n = 0mod p has a multiple root. Lastly ¢,(¢, /) is given by the following

table with p = ord,(df ?).

u=0 O<pu<v u=v u>v
v v=1 . d
2 2+ g7 | 27N g +2) gl + 40571 if{ - )=1
q
c(t.f)
. v v d
0 0 q[i] q[E]+q[T] if{f — J#1
q

We conclude this section by giving a method to calculate eigenvalues of
Hecke operators. Let 7 be a linear transformation of an r-dimensional vector space
over C and qa, .. ., a, the eigenvalues of T. Put

[ (X—a)=X —b,X"" 4 +(=1Yb,
v=1

Since b, is the u-th symmetric function of a,, ..., @, and
tr(T*)=a% + -+ + at,

we have only to calculate tr(7T#) (1 £ u < r) in order to get b,. Now apply the
above argument to the case when V = % (N, x) and T = T(n). Thus the calcu-
lation of the eigenvalues of the Hecke operator T'(n) is, reduced to those of
tr(T'(n)*). Since T(n)* is a linear combination of T(m) (m|n*) by Lemma 4.5.7(2)
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and Lemma 4.5.8(2), we have only to calculate tr(7'(m)). In particular, for a prime
number n = p, we easily obtain, for example,

by = tr(T(p)),
by = {b1 — tr(T(p*)) + x(p)P* " 'r}/2,
by = {tr(T(p*)) + 2x(p)p*~ ' b, — b} + by b, }/3, etc.



Chapter 7. Eisenstein Series

We defined Eisenstein series as a special case of Poincaré series in §2.6 for weight
k = 3. On the other hand, we also constructed the space of Eisenstein series by
modular forms corresponding to products of two Dirichiet L-functions in §4.7. In
this chapter, we further investigate Eisenstein series. Though the general arguments
in §7.2 are applicable to any weight k, we explain in §7.1 the case of weight k> 3
separately, since that case is easy to handle because of the convergence of the series.
In §7.2, we generalize the notion of Fisenstein series and define Eisenstein series
with a complex parameter s. We calculate the Fourier expansions of these
Eisenstein series and obtain the analytic continuation on parameter s following
[Shimura 9, 12].

§7.1. Eisenstein Series of Weight k = 3

For modular groups, there are two types of Eisenstein series, though they essen-
tially coincide. One is a series of which the summation is over cosets of a group, and
the other is a series of which the summation is taken over elements of a lattice. The
former is a special case of Poincaré series and was discussed in general in §2.6 for
weight k = 3. As an example of the latter, we mention the Eisenstein series E,(z) for
SL,(Z) in §4.1. Their relation is seen, for example, in (4.1.4). The former series
appear in various applications of Fisenstein series, and the latter ones are easier
for calculating Fourier expansions and are closely connected with Dirichlet
L-functions. We shall begin with a generalization of E,(2).

Let y and ¢ be Dirichlet characters mod L and mod M, respectively. For any
positive integer k = 3, we put

(7.L.1) EGrd= 3 rmymm+n ™ (eH)

Here )" is the summation over all pairs of integers (m, n) except (0, 0). We showed
in the proof of Lemma 4.1.5 that there is a real valued continuous function r(z)
satisfying

(7.1.2) S mtn TS80-Drd) T (0>2)

—
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Therefore the right-hand side of (7.1.1) is convergent absolutely and uniformly on
any compact subset of H. In particular, E,(z; ¥, {) is a holomorphic function on H.
We put

(7.1.3) 15u;wn={[j SJESLAZHbEOnmdNLCEOHmdL}

Then I'y(L, M) is a modular group.

b
Lemma 7.1.1. For y=|:(cl ]EFO(L, M),

d
Ez 2 W)y = x@W(d)E(z 1, ).

Proof. We put for integers m, n,

m =am+cn, n' =bm+dn,
then
(7.1.4) m{yz)+n=(cz+d) ' (mz+n)
and

x(m) = y(a)y(m), Y(n') =y (d)y(n).

Therefore we see
(7.1.5) xMym)(myz)+n) *(cz+d)7*
= x(@d)y(d)y(m ) () (m'z + )k,

When (m, n) runs over all pairs of integers except (0, 0), so does (m', n’). Then we
obtain the lemma by taking the summation of both sides of (7.1.5) on (m, n) and

(m', n'). 0
Applying Lemma 7.1.1 to y= — 1, we obtain

(7.1.6) if x(—=DyY(—1) # (—1), then E(z y,¥)=0.

Hereafter we assume

(7.1.7) A(=Dy(=1)=(=1f

We easily see the following

0 -1
Lemma 7.1.2. E,(z; ¥, l/l)|k[ ] = y(—DE(z; ¥, x).

1 0

We are going to calculate Fourier expansions of E.(z; x¥). Since the
right-hand side of (7.1.1) is absolutely convergent, we can exchange the order of
summation. Thus

(7.18) Bz ) = C+2 3 a(m) 3 wln)mz+m "

n=-—w

={0 (x # xo);
2Ly (k¥)  (x = Xo),
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where y, is the principal character and Ly(s, ) is the Dirichlet L-function. We
rewrite (4.1.12) into

0 2 Nk o )
(7.19) 3 ((k 7;’))! § g

Let m,, be the conductor of ¥, and ¢° the primitive character associated with .
Put I=M/m,, then by Lemma 3.1.3,

(7.1.10) S ym)mz+n)*

M-1 © wk
-nE v § ()
a=0 B=—o
_ (—27ti)k M1 k-1 ,2mi(mz+amM
—ma=o ba)nZIn ¢
(—2miyt &

= i (2 w(me““‘"’“) bt grinao

1

=(—27Ti)k W(‘l’o) i pk =1 g2mimnziM
Mk—1) &

where W(°) is the Gauss sum of §°, and
(7.L.11) boy=_ 3 du(l/dyp°(ifdyy° (n/d)
0 <d|(l, n)

with the Mobius function u. Substituting (7.1.10) into (7.1.8), we obtain

Theorem 7.1.3. Assume k=3. Let y and  be Dirichlet characters mod L and
mod M, respectively, satisfying y(— 1)y(—1) = (—1)*. Let m,, be the conductor of ¥,
and ° the primitive character associated with \y. Then

Ek(z; X’ '/I) = C + A Z a(n)eZRinz/M’
n=1
where
A = 2(=2mi) WY ) M*(k— 1)},
2Ly (k,¥) (x:the principal character),
C= !
0 (otherwise),

amy= Y /™t Y du/d)yy°(d)y O (c/d).

0<c|n 0<df(l, ¢)
Here 1=M/m, and p is the Mobius function. In particular, E,(z; ¥, V) is holomorphic
at co.

We observe that if ¥ is primitive, then

(7.1.12) amy =Y xm/c(c)c L

0<c|n
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For a fixed k = 3, let f(z; x,¥) be the modular form defined in Theorem 4.7.1.

Then for primitive characters y and y, we have

(7.1.13)  E,Mz; 5, ¥) = Af (z 1.¥), A =2(—2ri} W)/M*(k—1)..

Now we are going to prove that E,(z; , y) is also holomorphic at all cusps, and
therefore it is an integral modular form. Let N be a positive integer. For two
integers u,v such that 0 <, v < N, we put

(7.1.14) Efzuv;, N = Y (mz+n)*
nefmod N

Here )’ implies as usual that we omit m=n=0 from the summation when u=v=0.
Let y= l:: 2:| €SL,(Z). If m and n are integers satisfying m=pumod N and
n=vmod N, then by (7.1.4) we have

(7.1.15) m(yz)+n = (cz+d) ' (m'z +n)

and
m =am+cn=au+cv modN,

(7.1.16)

n=bm+dn=bu+dv modN.
Therefore
(7.1.17) Ey(z; pv; N)ky = E(z; ',V N) - (yeSLy(2)),
where y, v' are integers (0 < u/, v' < N) given by
(7.1.18) (W,v)=(u,v)y modN.

In particular, if ye I'(N), then
E(z; wv; N)ley = Ei(z; 4, v; N).

We also note that for a positive integer /,

(7.1.19) E,(z; lu,lv; IN) = I"*E,(z; u,v; N).
Now we put

(7.1.20) WV (F(N)) = CEy(z uv; N)IO S pv <N,

(7.1.21) EP(T(N)) = <Ek(§z; x,lﬁ)‘x, v, u,v>,

where y, ¥, u,v in (7.1.21) are such that

(7.1.22)  x and s are Dirichlet characters mod L and mod M for divisors L and M
of N, respectively,

(7.1.23)  u and v are positive integers satisfying uL|N and vM|N.
By (7.1.17) and (7.1.18),
(7.1.24) &NV (I'(N)) is stable under the action of SL,(2).
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Lemma 7.14. &V(I'(N)) = &P (I(N)).
Proof. Let y, ¥, u and v be as in (7.1.22) and (7.1.23). Then

(7.1.25) Ek(%z; % ¢> ok S ) (n)muz + o)

m,n= —o

=v* Yyt 3 (mz+m)7
0<uv<N = fmod N
ulp, v|v

=v¢ ) Nx(u/u)l//(V/v)Ek(z; 1, v; N).

=p,v<
ulu,o|v

This implies that & (I'(N)) o &3 (I'(N)). Let u, v be integers such that 0 < g,
v< N. Put u =(u,N) and v=(v,N). Further put y'=pu/u, v'=v/v, L=N/u, and
M=N/v. Then

(7.1.26) Elz v, N)= Y (muz+nv)™*
m=yu' modL
n=v mod M
={p(L)p(M)}~* Z,'_ Z./, T ) x () (n) (muz + nv) ™

= {¢p(L)p(M)} " "v7" Zw (V) E, <;2; X ://>,

where ), , implies the summation over all characters y mod L and y mod M. This
implies that & (C(N)) = &P (T(N)). O

Lemma 7.15. &{(I'(N)) < 4,(I'(N)).

Proof. By Theorem 7.1.3 and Lemma 7.1.4, all elements of &{’(I'(N)) are holo-
morphic at co. Let g(z) be an element of & (I'(N)). For any yeSL,(Z), g,y is
holomorphic at co, since g|,y belongs to & (I'(N)) by (7.1.24). Therefore g(z) is
holomorphic at any cusp of I'(N). O

In particular, E,(z; x, {) is an integral form for any Dirichlet characters y and .
We are going to prove that &Y (I'(N)) coincides with the space of Eisenstein series
N (I'(N)) defined in §2.1. To prove this, we define Eisenstein series of Poincaré
type. Let y be a Dirichlet character mod N. We put

N
(7.1.27) E,::N(z;x)=[yerzw\rﬂd)(“”d) if 2 (— )=(—1),
0 if 2(—1) # (— 1%,

where I' = I'o(N) and y=|:c p
defined in §2.6. More precisely, if y(—1)=(— 1), then
(7'1'28) EI?,N(Z;X)=Fk(Z’ ¢09Z5roo’r)

]. This is nothing but the Poincaré series at oo
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with the constant function ¢,(z)=1. Therefore E¥ y(z; x) belongs to A (N, x) by
Corollary 2.6.12. To express the summation of the right-hand side of (7.1.27) more
explicitly, we need the following

*

d
(1) I'o(N)\To(N) ~ {(c,d)lc =0modN, (c,d) = 1,d > 0};
{(c,d)lc=0modN, d=1modN, (c,d)=1}
(N 2 3),
{(c,d)Jc=0modN, d=1modN, (c,d)=1,d>0}
(N=1,2).

*
Lemma 7.1.6. The correspondence: [ ]r—»(c, d) induces the following bijections:
¢

() F(N)o\T'(N) =

Proof. tis easy to see that the mapping is well-defined and surjective in both cases.
b "
Let us prove the injectivity. Let y=[i d:l and y' = |:Z i :| be two elements of

I'o(N) (resp. I'(N)) having the second row (¢, d) in common. Then by a direct
calculation, we see

which belongs to I'o(N),, (resp. I'(N),,). This implies the injectivity. O

This lemma implies that when y(—1) = (— 1)%,

E¢nzo= Yy  xdcz+d)™,
c¢c=0mod N
(. d)y=1,d>0

and therefore, for any Dirichlet character y mod N, we obtain

1
(7.1.29) Ef vz == Y xd(cz+d)™~

2 c=0mod N

(c,d)=1
Thus
(7.1.30) Ey(Nz; xo,2) = 2Ly(k, ) EE 8 (25 2)
for the principal character y,, and
2
(7.1.31) E(z0,1; Ny=—=>Y Ly(k, Y)E¥ x(z;
k ¢(N)§: wk D EE v (2 1)

by (7.1.26), where y runs over all characters mod N. Since E} y(z; ) belongs to
N (L(N)) by Theorem 2.1.7(2), we see

(7.1.32) E.(z 0, 1; NYe #/,(T(N)).
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Theorem 7.1.7. If k = 3, then
N[ (N)) = & (C(N)).
Proof. We see by (7.1.17) and (7.1.19) that & (I'(N)) is generated by

{Ei(z0,1; L),y | LIN, yeSL,(Z)}.
Since
E(z 0, 1; LYe /(' (L)) = A (T'(N)),

we see &V (I(N)) =« A (I'(N)). Let us prove A (I'(N)) = & (C(N)). First by
Lemma 7.1.6(2) and (7.1.29), we see

(7133) Fk(Z; d)O’ Xo> F(N)otw F(N)) z (CZ + d)_k
Cf mod N
-1
2C
= o) 2 FinE 0
where

1 (N23),
C‘{z (N=1,2),

and y runs over all Dirichlet characters mod N. Since E} y(z; ) belongs to
&M(I(N)) by (7.1.30) and Lemma 7.1.4, so does F,(z; ¢, 1o, I (N),,, I'(N)). Since
&M(T(N)) is stable under SL,(Z), we see

Fi(z; ¢0s Xos T(N), T(N) iy € 8P (D(N)) for  yeSL,(2).

By (2.6.11) and Corollary 2.6.12, we obtain A (I'(N)) = &V (T (N)). O

§7.2. Analytic Continuation of Eisenstein Series

When k is smaller than 3, the right-hand side of (7.1.1) is not convergent. Therefore
we need some modification to discuss the case when k < 2. Though the main object
is the case when k < 2, we note that the arguments and the resuits here cover any
integral weight k.

Now for any integer k and a complex number s, we put

(7.2.1) E(z, s 1, ¥) = i' r(m(n)(mz+n)"*\mz+n|" %,

The right-hand side is uniformly and absolutely convergent for s on k + 2Re(s)
= 2+ ¢ (¢>0). Therefore it is holomorphic on k + 2Re(s)>2. We call E,(z, s; ¥, ¥/)
an Eisenstein series with parameter s. Similarly to Lemma 7.1.1, we obtain that

(7.2.2) Ec(yz, 5, 1 ¥) = () (d)(cz + d)f|cz + dI® Ei(z, 55 1, ¥)

y = [“ b}eFO(L, M).
¢ d
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As was mentioned above, if k < 2, then the right-hand side of (7.2.1) is not defined
for s = 0. But if E, (z, s; x, ¥) is continued analytically to s = 0 and holomorphic at
s = 0, then we will obtain a modular form even for weight k = 1 and 2. The purpose
of this section is the investigation of the analytic continuation of E,(z, s; x, ) and
its property as a function of z and s. Since we easily see that

if x(=DyY(=1)# (=1, then E(z s x ¢¥)=0,
we assume
(7.2.3) 2=DY(=1) = (=1
throughout this section. We also see
(724) Elz, s; 5 ¥)=x(—DE_ (—2z, k+s; 1, ) if k+2Re(s)>2.

When k + 2Re(s) > 2, we can exchange the order of summation of the right-
hand side of (7.2.1) and see

(12.5) Bz 6 ¥)=CO+2 Y, xm) Y Y)(mz+m~mz+n|~%,
m=1 n=—w
where

_{o (x # Xo)
(7.2.6) Cl9) = { 2Ly (k+2s, %) (X = Xo)-

For complex numbers « and 8, we put

(7.2.7) SGea )= 3 Erm*E+m?  (zeH).

=~

The right-hand side is absolutely convergent for «, f with Re{a + ) > 1, and

(7.2.8) _i y(m(mz+n)~*mz+n|"2

— by 0+ "Y n//(a)S(i+i; kts, s>.
a=0 M mM
Further we put
(7.29) é(y; o, B x) = (x+iy) *(x —iy)~# (xeR, y>0,a geC).
If we write z = x + iy (€ H), then
(7.2.10) SGap= Y Py bix+n)

We wish to apply the Poisson summation formula to the right-hand side.
When Re(a+ B)>1, ¢(y; o, B; x) belongs to L* (R) as a function of x. Therefore
there exists the Fourier transform of ¢, which we denote by &(y; a, B; t). In other
words,

21 ¢y B )= § d(ys o, B x)e 2™ dx  (y >0, Re(@+p)> 1)
R
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This is a holomorphic function of « and f on the domain
{(2, p)eC x C|Re(x + f) > 1},

since the right-hand side is uniformly convergent on any compact subset of the
domain. Now the Poisson summation formula implies

(7.2.12) 2 o fixtn= Y iy Bin).

To justify this formula, it is sufficient to verify the following two conditions:
(7.2.13) Y. 1¢(y; @, B; x+n)| is uniformly convergent for x;

(7.2.14) Y |&y; o, B;n)| is convergent.

When Re(x + f) > 1, (7.2.13) is obvious and (7.2.14) will be shown in Theorem 7.2.8
below. Keeping it in mind, we are going to investigate the function £. We put

(7.2.15) H’' = {zeC|Re(z) >0}
and call it the right half plane. If z,, z, e H’, then
(z,2,) = 25 2% (xeC)
by definition (see (3.2.1)). We define the confluent hypergeometric function
a(z; o, B) by
(7.2.16) a(z; o, )= I e ™u+ 1" 1uf du (z, BeH’, a€C)

and put
(7.217) MO o By = | e M (ut 0 u— )P~ du
" (y>0,teR, a, feC).
We see easily the following properties:
(7.2.18) if n(y; a, B; t) is convergent, then so is n(y; f, a; —t) and
n(y; o B 1) = n(y; B, o; —t);

(7.2.19) if a>0 and n(ay; o, B; t) is convergent, then so is n(y; a, B; at) and

nay; o, B t) = a*~* P y(y; o, B; at).
As for the convergence of the functions # and 4, we obtain the following
Lemma 7.2.1. (1) Ift > 0, then y(y; a, B; t) is uniformly convergent on any compact

subset of C x H' as a function of « and f.

(2) The function o(z; o, B) is uniformly convergent on any compact subset of
H xCxH'
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3) If (y, o, B)e R, x C x H', then
n(y; o, B; 1) = e 22" "1 a(2y; o, B).
Proof. First we prove (2). Let T be an arbitrary compact subset of H' x C x H'. Put
p = min{ Re(2)|(z, o, B)e T},
g = min{Re()|(z, &, B)eT}.
Let p’ be a number satisfying 0 < p’ < p, then there exist constants C, and C,
satisfying
O(e™"") (u—>o0),

e PRt = { 0w t) (u—+0)

for any point (z, o, f)eT. This implies [ |e™*(u+1)*"*uf~'|du is uniformly
convergent on 7. The first assertion is similarly proved. Let us show (3). If

(y, a, B)eR, x C x H’, then

MO % B )= § e+ 1P w— 1)~ du
1

e YET (L2 L yf gy

Il
Oty 8

e Y2° 8 1g(2y; a, B).
This implies (3). O

Lemma 7.2.2. If Re(z) > 0, Re(f) > 1 (t = 0) or Re() > 1, Re(f) > O (¢ < 0), then
Sy, B t) =P 722u) T ()™ T (B) ™ n(2y; o, B, mt).
Proof. We note that £(y; «, B; t) is holomorphic for a, § with Re(x+ ) > 1. Now
we see
Eyon B t)= [ e ™™ (x+iy) *(x —iy) Pdx

_ j e—2m’tx(i(y_ix))—“(—i(y‘{"ix))_ﬂdx'

—
Since y + ixe H', we see easily

((yxix)*=i"*(yxix)™*
Therefore

(7.2.20) Eys o Bty =iP7% | e™ 2 (y—ix)”*(y +ix) P dx.
Assume that Re(x) > 0 and Re(B) > 1. We put s = «, a = y +ix in (3.2.5), then

(7221) (yi ix)“’ — I"(“)_l J' e—(yiix)uua—ldu.
0
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Substituting this into (7.2.20), we see
(7.222) E(ys o, B t)

[+ 0] oo}
=i# 2T | e 2™ (y+ix) Fdx [ e 7™y du
2 5

(Re(@) > 0, Re() > 1).

Since the right-hand side is absolutely convergent, we can exchange the order of
integration and obtain

(7.2.23) =i T e ™u tdu | ™72 (y+ix) Pdx.
0 )

If we put f(x) = (y +ix) %, then f(x)e L' (R). Let f be the Fourier transform of f.
Then

(7.2.24) _Of o= 2m) £ 4y — f(Z";“)

To calculate f: we put

(7.2.25)

e M™ufl (u>0),
9W =1, (u < 0).

Since Re(f) > 1, we have g(u) € L' (R). If we denote by § the Fourier transform of g,
then we see by (7.2.21)

f(x)=T(B)"" §{x/2m).
Taking the Fourier transform of both sides, we see
(7.2.26) f) =2nL(B)~* g(—2mu).
By (7.2.24), (7.2.25), and (7.2.26), we obtain

(7.2.27) [ eisum2m () 4 i) P dx

_f2nr(B) e T (u—2mt)? Tt (u>2mp),
0 (u < 2mt).
Now we assume ¢t 2 0. Then by (7.2.23) and (7.2.27), we see for Re(x) > 0, Re(8) > 1,

(7228) &y B5 1)

=i#7 = 2x ()~ 'I(B)"" | e 2 ™y Y (u—2nt)P~ ' du

u>2mnt
=if" 2l () ' (B)™ [ e u+mnt)y "(u—nt)? du
nt

=if~=2n (@)~ 1 T(B) ' nQ2y; o, B; 7t).

We note that if t >0 then £(y; o, fB;t) is continued to a holomorphic function of «
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and f on C x H' by (7.2.28) and Lemma 7.2.1(1). If ¢t <0, then

(7.2.29) Eysa, B t) = (=P &(y; B, o [t)

as long as Re(x+ f)>1 by definition. Therefore if we define &(y; «, B; t) for
(o, e H' x C by (7.2.29), it is a meromorphic function and

(7230) &y B 1) = (=122 20l (@)~ ' T(B)” " n(2y; B, o |mt])
=72l ()™ T(B)" " n2y; o, B mr).
Therefore the case when ¢t < 0 is also proved. U
When t =0, £ is explicitly calculated in the following
Lemma 7.2.3. The function &(y; a, B; 0) is continued analytically to a meromorphic
Sunction on C x C and satisfies
Ey, 0 B 0) =i %20l (@) ' T(B) ' Ta+ f—1D(2y)' 77
Proof. When Re(x+ f)> 1, we see

n(y; o B;0)= | e™ w2 du
0

=T(a+p—-1y 7~

Since the right-hand side is a meromorphic function on C x C, we obtain the
analytic continuation of the function by Lemma 7.2.2. O

We shall calculate &(y; o, B; t) for t # 0. The calculation of &(y; a, f; t) is reduced
to that of n(y; «, f; 1) by Lemma 7.2.2, (7.2.18) and (7.2.19). Furthermore by
Lemma 7.2.1(3), we have only to consider o(z; o, f). Now we put

(7231  w(z o B =TB) z%a(za,B) ((z, o f)eH x C x H).
By Lemma 7.2.1(2), w(z; «, ) is a holomorphic function on H' x C x H'.

Theorem 7.2.4. The function w(z; o, B) is continued analytically to a holomorphic
function on H' x C x C and satisfies:

(1) 05 1B, 1 —a) = oz a B
@ 05 h = (~17e? o @0 an f) (eN)

Proof. For a, feH' and ze R, , we see
(7.2.32) F(Byo(z 1—B,0)= [ e L (Bu+1)"Pu*"'du
0

Since
FByu+1~"=[e @ Vol ldn,
0
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we have
(7.2.33) Ir'(Po(z1—B, )= j‘ e~y du j‘ e~ v@t ) -1 40

0 0

The integral is absolutely convergent, so that we can exchange the order of
integration, and therefore,

O 8

s
e—vvﬂ—l dl) j‘ e—u(z+v)uu—1 du
0

=T@) e ®z+v) *vfF 1dv

Oy 8

=I'z*%6(z; 1 —a, B).

Since I'(B)o(z;1—B,«) and I'(x)z? *o(z;1—0a,B) are holomorphic on
H’' x H' x H’, they coincide with each other there.
Thus we obtain

(7.2.34) o(z; 1 —p,1—-a) = w(z; )

(zeH', Re(a) < 1, Re(B) > 0).
Define w(z; o, f) for o€ C with Re(x) < 1 and feC by the left-hand side of (7.2.34).
Then it is a holomorphic function on H' x {«|Re(x) < 1} x C, which coincides
with the original w(z; &, f) when Re(f) > 0. Now when (z, o, f)e H' x H’' x H’, the

integral of the right-hand side of (7.2.16) is uniformly convergent with respect to z
on any compact subset of H'. Therefore we obtain

n

oz"

(7.2.35) (e oz, B)=(—1)ye *0o(z;+n, B)
((z,, f)eH' x H' x H'),
so that the continued function w(z; a, ) also satisfies

n

oz"

(7.2.36) ez fw(z; o, B)) = (—1)e *z Pw(z; o+, )

((z, 2, )eH' x {a|Re(a) < 1} x C).

For any (z, o, f)e H' x C x C, take a positive integer n so that Re(«) < n+ 1 and
define w(z; a, f) by

(7.2.37) w(z; a, B) = (—1)e?zf % (e 2z %w(z; a—n, B)),

then w is a holomorphic function on H' x C x C. O

Now we have
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Theorem 7.2.5. (1) For each y > 0, as a function of o and B, £(y; a, B; t) is analyti-
cally continued to a meromorphic function on C x C which is expressed as
#2n)y M(a)” 1 Q2y) " #1*~ te™ 2™ w(4nyt; o, B) (t>0),
E(ys o, B5t) = ( P QuP P L@ ' T(F) T+ f—D@ny) 7% (¢=0)
PE2rP LB 2y) %[t e 2 o @dryltl; B,a) (¢ < 0).

(2) As a function of a and B, E(y; a, B; t) is holomorphic on C x C for t # 0, and
T+ B—1)"1¢(y; a, B;0) is holomorphic on C x C.

Proof. The expression of &(y; a, B; t) in (1) is straightforward from Lemma 7.2.1,
Lemma 7.2.2, Lemma 7.2.3, (7.2.18), (7.2.19) and (7.2.31) on a certain subdomain.
Since the right-hand side is meromorphic on C x C in each case, we obtain the
analytic continuation. The second assertion is obvious from this expression and
Lemma 7.2.4. U
Lemma 7.2.6. For (z,x)eH’ x C, we have
o(z; o, 0) = 1.
Proof. If Re(a) > 0, then Lemma 7.2.4 and (7.2.31) imply that
of(z; 1 —a, 0) = w(z; 1, o)

=T () 2%z 1, %)
=T '2* [ e ™ du
(4]
=1
Since w(z; a, 0) is holomorphic on «, we get the assertion. O

Theorem 7.2.7. For any compact subset T of C x C, there exist positive numbers A
and B satisfying

lo(y; 0 I < A0+y7")  (y, 0 PR, x T).

Proof. First we prove the assertion when T'is contained in C x H'. Take a positive
integer n so that Re(x) < n + 1 for any (o, f)e T. Let («, B) be any point in 7. Since
Re(f) > 0, we see by (7.2.16) and (7.2.31) that

lo(y; a, B)l S {T(B) 1P [ e ™+ 1)"ut® ™ du
0

=L ()" Z (Z)r(m Re(f)y -

k=0

Since I'(k+ Re(B)) and |I'(B)| ™! are continuous functions of f, there exists a
positive constant A, satisfying

Ui IS4 T yES A +y) (@ HET),
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Therefore putting A = A;n and B = n, we obtain the assertion. Next we have
to remove the assumption on T. If fe H', then taking integration by parts of the
right-hand side of (7.2.16), we have

(7238)  o(yo B+ 1) =y 'e—Doly;a—1, f+1)+y ' Bo(y; 2 B).
Multiplying y#*1I'(8+ 1)~ ! to both sides, we obtain
(1239 o3 h) = o6+ )+ -y oy a—1, f+1)

(o, e C x H').

Since both sides of (7.2.39) are holomorphic functions of « and f, (7.2.39) holds on
C x C. Using (7.2.39) repeatedly, we obtain

(7.240) ow(y; o, p) = kio (2) y*l—a)2—a) - - - (k—)w(y; x—k, B+ m).

For any compact subset T of C x C, we take a positive integer m so that

{(, B+m}|(e, )eT} =« C x H".
Then we see easily the existence of the desired constants A and B from the result
when T is contained in C x H'. O

Now we can justify the Poisson summation formula and prove (7.2.12).

Theorem 7.2.8. Let S(z; a, B) be the function defined in (7.2.7). Then it is analyti-
cally continued to a meromorphic function on C x C with respect to (o, f), and is
expressed as

(7.241)  S(zof=LC(yia B0+ Y (o fim) (z=x+iyeH)
TS
The series Zm— - eXMMXE(y o B m) is convergent uniformly and absolutely on any

compact subset of H x C x C. Further I'(a + B — 1)~ 18(z; a, B) is an entire function
of o and B.

Proof. Let T be a compact subset of H x C x C. By Theorem 7.2.5, there exist
positive constants C,, p and q such that

(7.2.42) 1&(y; 0, B;m)| < CymPe™ 2™ | w(dmym; a, )|

for any point (z, a, f)e T and any positive integer m. We also see by Theorem 7.2.7
the existence of a positive constant C, satisfying
lw(4mym; o, B)| < C,

for any (z, «, f)e T and any positive integer m. Therefore we have

(7.2.43) Y e E(ys o, fim) < CCy Y, mPe” 2,
m=1 m=1
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Since the right-hand side is clearly convergent, the left-hand side is uniformly
convergent on 7. We can also similarly prove that ¥ 1 __ |e?™™*¢(y; a, B; m)|
is uniformly convergent on 7. Hence (7.2.14) is verified for « and f with
Re(x + B) > 1. Therefore the Poisson summation formula is applicable, and (7.2.10)
and (7.2.12) imply that (7.2.41) holds for « and f with Re(a+ ) > 1. Since
S e E(yso, f;myand Y1 e2"™*E(y; o, B; m) are holomorphic on « and
B, and &(y; «, B; 0) is meromorphic, the right-hand side of (7.2.41) is a meromorphic
function on C x C and its poles coincide with those of £(y; a, B; 0). Therefore if we
define S(z; , f) on H x C x C by the right-hand side of (7.2.41), we obtain the
assertion by Theorem 7.2.5(2). O

Now by (7.2.5), (7.2.8) and Theorem 7.2.8, we obtain
(72.44) Ei(z, s 1. ¥)

00

=C(s) +2M T+~ % Z x(m)m MZ lﬁ(a)S< mj\4;k+s,S>
Z

—k—2s

= C(s) +2M "+

(m)m ) Z e2m‘n(mx+a)/mM

n=—o

xf(— k+s,s; n)

for s with k + 2Re(s) > 2, where C(s) is the function given by (7.2.6). If we put

o = Re(s), then
< sk+s,s; n)

<A (mzl m_k—26+1> (}é (%, k+s,s; 0>’ + Bn; nPe—ann>

with some positive constants 4, B, p and g. Therefore the right-hand side is
absolutely convergent if k + 2Re(s) > 2. Therefore we can exchange the order of
summation of the right-hand side of (7.2.44) and obtain

?IM8 |

1

mM—1 0

mil m k-2 Z Z

a=0 n=-w©

(7.2.45) E(z, s, 1, ¥)

=CE)+2M7*7% % aln,s; ¥, )™ IME <% k+s,s; n>,

n= —aa

where
X mM-1 )
(X(n’ S5 X l//) = Z x(m)m_k‘zs Z W(a)eana/mM.
m=1 a=0

Now by Lemma 3.1.3(1), we have

M-1
G246 "5y 2 | K, V@ i min,

a=0

fmytn.
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Let y° be the primitive character associated with ¢ of conductor m, = M/l
Lemma 3.1.3(2) and (7.2.46) imply that for n > 0,

(7.247)  aln,s; x5 )

M-1
= Z x(m)m—k—2s+1 Z l//(a)eZnian/mM
a=0

O0<min
=n R BEE0) T xBTS dp(fdy (Y)Y (c/d),
0<c|n 0 <d|(,c)
where u is the M&bius function. We also see for —n < 0,

(7.2.48) a(—n, 50, )=n" "B Y (=) WEO) Y x/o)trE!

<c|n
x Y du/dyOl/dgC (c/d).
0<d|(,c)

Lastly (7.2.46) implies that

o (M) Z x(mym=*=25% 1 (s the trivial
character mod M),
0 (otherwise),

where ¢ is the Euler function. Substituting (7.2.47), (7.2.48), (7.2.49) into (7.2.45), we
obtain the following

(7.2.49) «(0,s; 3, W) =

Theorem 7.2.9. Let y and  be Dirichlet characters mod L and mod M, respectively,
satisfying y(— Dy (—1) = (—1F. Then for any integer k, the Eisenstein series
E(z, s; x, ¥) is analytically continued to a meromorphic function on the whole s-plane
and has the Fourier expansion

Ei(z 55 1, %) = C(s) + D(s)y! T+~ 2

y—s Z ,,(s)n s Zmnz/M(,o(47Cyn/M; k+ S, S)

k- i ()~ ke~ WM gy (Ayn/ M s, k + 5),
where
““= {2LM(2s +k¥) gc . );0;
2w T (= ) PO T 40
D(s) = ><F<2s+2k—1>F<2s;k)LL(2s+k—1,x)

(: the trivial character mod M),

0 (otherwise),
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A(s) = 2" 1T WO (/MY R (s + k)7,
B(s) = 2! 5T (=)W () (/M) ()™,
a9 = T am)c = Y du/dy ld (c/d)

<cjn 0<di(,c)

Here ° is the primitive character associated with y of conductor my, = M /I; p is the
Mébius function; w(z; o, B) is the holomorphic function on H' x C x C defined by
(7.2.31). Moreover two series on the right-hand side are convergent uniformly and
absolutely with respect to s on any compact subset of C.

Proof. First let us calculate each term. Assume that n =0 and y is the trivial
character mod M. Then by (7.2.49), Theorem 7.2.5, and (3.2.6),

2M 7K 25a(0, 55 x, Y)E(Y/M; s + k, 55 0)

=23k —"5534) iTal(s) ' T(s+ k) T@s+k—1LyQ2s+k—1, gyt 7+ 2

=2/ * [] A =p HYI(s) ' T(s+k)~!

plM

><F<2S+;_1>F(2s;k>LL(2s+k—l,x)yl"‘_zs.

The terms for n # 0 are calculated similarly by (7.2.47), (7.2.48), and Theorem 7.2.5.
We shall prove the convergence of the series. Let K be any compact subset of C.
Then by Theorem 7.2.7, there exist positive constants A and B satisfying

lo(@nny/M; k +s5,5)] < A(1 +y~7)

for any positive integer n and any se K. We also see easily the existence of the
constant u satisfying |a,(s)| < n* for any se K. Then the two series are convergent
uniformly and absolutely on K, and therefore, they are entire functions of 5. [

Corollary 7.2.10. (1) If  is non-trivial, then E,(z, s; x, {) is an entire function of s.
(2) Assume ¢ is trivial. If k=1, then E.(z, s; x, ¥) is holomorphic for
Re(s) > (1 —k)/2. When k =1, E|(z, s; %, ¥) is holomorphic for Re(s) > — 1/2.
(3) If both y and y are trivial, then Ey(z, s; x, ¥) is holomorphic for Re(s) > 1 and

1 1
has a simple pole at s = 1 with residue id 11 (1 —E> I (1 —;)

YL pIM

Proof. The first assertion is straightforward from Theorem 7.2.9, Corollary 3.3.2
and (3.3.5). If kK > 0, then we easily see that both C(s) and D(s) are holomorphic for
Re(s) > (1 — k)/2 by Theorem 3.2.2(2). If k = 1 and / is trivial, then y is non-trivial.
Then C(s) = 0 and D(s) is holomorphic for Re(s) > —1/2 by Corollary 3.3.2. Next
assume that k = 0, and y and ¥ are trivial. Then it is easy to see that C(s) and
D(s) are holomorphic for Re(s) > 1. The residue at s =1 is also obtained by
by Theorem 3.2.2(2). |
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Corollary 7.2.11. Put

) = {F(S+ K)Ei(z,s; 1, 4) (k2 0),

’ T (S)E(z, 55 %, ) (k <0).
Then E,(s) is an entire function except for the case where k=0 and y, \ are trivial.
Moreover when k=0 and y, Y are trivial,

(1) if either y or \ is not principal, then E,(s) is holomorphic on the whole s-plane
except for a simple pole at s = 1;

(2} if both y and yr are principal, then E,(s) is holomorphic on the whole s-plane
except for simple poles at s =0 and s = 1.
Proof. We shall prove our assertions only for k = 0, since the argument for k < O is
quite similar. First of all, we see that both

s+ k)A(s) =22 W) (/M) *F
and

[(s+Kk)B(s) = 25 5y (= YW EO) (m/MYs(s +1) - - s+ k—1)

are entire functions. Now we shall study the behavior of I'(s+ k)(C(s)
+ D(s)y* “¥72*). First consider I'(s + k)C(s). If x # x4, then C(s) = 0. Otherwise,
we see

Is+KCE = 2L+ k)

Tt kro [@s+k+2Lus+ky),

where d = 9. Since Y(—1) = (—1)*, we see that k+6 =0 mod 2, and therefore
T(s+ kT ((2s+k+6)/2)" ! is entire. If s is non-trivial, then I'(s 4+ k) C(s) is entire
since I'((2s + k + 0)/2) Lp(2s + k, ¥) is entire by Corollary 3.3.2. Assume that ¢ is
the trivial character mod M. If k > 0, then I'(s + k) C(s) is holomorphic except for a
simple pole at s = (1 — k)/2 with residue

r(+k/2)[Ja—=pH.

pIM

If k=0, then I'(s + k)C(s) is holomorphic except for simple poles at s = 0 and
s = 1/2 and the residue at s = 1/2 is

ra/rra-prh.

riM
Next we consider I'(s + k)D(s). If ¢ is non-trivial, then D(s) = 0. If s is the
trivial character mod M, then
T'(s+k)D(s)y! %2

=2./zi ] —p—l)yl-k‘“r(s)"lr<2s +,f_ 1>F<252+ k)LL(Zs +k—1,7)
pIM

— 2\/;1.71( l—[ (1 _p—l)yl—k—Zs

pIM
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fF<s+k;1>
2 2s+k ]
e F< 3 )LL(2s+k—l,x) (k: odd),
Nty
S+ —
2 2s+k—1 )
L) F( 5 )LL(25+k—1,x) (k: even).

This implies that if y is non-trivial, then I'(s+k)D(s)y' ~*~?" is entire by
Corollary 3.3.2. Assume that y is trivial and L # 1. Then k is even and
F'(2s+k—1)/2){(2s+k—1) is holomorphic except for simple poles at
s=(1—k)/2 and s = 1 — k/2. Then we see

k
F<s+>
2 2s+k—1
') F( > )LL(2s+k—1,x)

=s(s+1).. .(s +§— 1)F<M>C(2s+k—l)ﬂ(l _pthsy

2 pIL

and it is entire if k > 0, or it is holomorphic except for a simple pole at s =1 if
k = 0. Assume y = yo. If k > 0, then I'(s + k) D(s) y! %~ 2% is holomorphic except for
a simple pole at s =(1 — k)/2 with residue

2/m(—= 2L (1 —k)y2) "' T (1/2) IIL(I -p 10
=-T(1+ky2[JA-p™"

pIM

by (3.2.4). If k = 0, then I'(s + k)D(s) y! %~ 2% is holomorphic except for simple
poles at s = 1/2 and s = 1, and the residue at s = 1/2 is

—J/x [Ta-p

This completes the proof. O

If k = 3, then we see that

E(z,0; 1 ¥) = Ex(z 1, %)
and the Fourier expansion in Theorem 7.2.9 with s=0 is nothing but that of
E,(z; y, ) obtained in Theorem 7.1.3 by Lemma 7.2.6.
Now let us consider the cases when k = 1, 2. Since E,(z, s; %, ¥) is holomorphic
at s = 0 by Corollary 7.2.10, we put

(7.2.50) E(z; 5, ¥) = Ei(2, 05 1, ¥)s
and
(7.2.51) E,(z) = E(2; X0, Xo)

with the principal character y,.
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Theorem 7.2.12. If y and y are Dirichlet characters mod L and mod M, respectively,
satisfying yy(—1) = 1, then
E,z %) =C+Dy ' +4Y a,e /M,
n=1
Here

_ { 0 (¢ # xo)»
2Ly (2,¥) (X = Xo)

pIM p|L
0 (otherwise),

A= —8u Wy °)/M?,
a,= Y xjce Y dudy(/d)yO(c/d),

0<cln 0<d|(,c)

- { —a[l]A=p ™ H][[A=p") (1 y: trivial),

where °, I, u are as in Theorem 7.2.9.

Theorem 7.2.13. If y and y are Dirichlet characters mod L and mod M, respectively,
satisfying yy(—1) = —1, then

E\z;x¥)=C+D+ AY a,e*™M
n=1

Here
o { N I)
2Ly(LY) (1 = o),
0 (y: non-trivial),
D=3 omi[Ja-pYL0,5) : trivial),
piM

A= —4riwy°)/M,

a= T xwe) 3 duld U/de c/d),

0<cln

where Y%, I, u are as in Theorem 7.2.9.

Corollary 7.2.14. Assume k > 0. Then E,(z; 3, ) is a holomorphic function of z on H
except for the case when k = 2 and both y and yr are trivial. Further E,(z) — pE,(pz)
is holomorphic on H for any prime number p.

Proof. We have only to verify the assertion when k = 1 and k = 2. Let g, be as in
Theorem 7.2.12(if k = 2) or in Theorem 7.2.13 (if k = 1). Then a, = O(n*). Thus

=, a,e*™™ M i convergent uniformly on {zeH|Im(z) > ¢} with any positive
constant c. Therefore it is holomorphic on H. Since the coefficient of y~' in
E,(z) — pE,(pz) vanishes, we see the second assertion. ]
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Let N be a positive integer. For integers u, v such that 0 < u, v < N, we put
(7.2.52) Ez s NYy= >'  (mz+n)" ¥ mz+n|~2.
m=lmod N

Here )" implies that we omit m = n = 0 from the summation when y = v = 0. We
also put

(7.2.53) ED(I(N)) = (Ey(z, 55 1 v; N)IO = v < N,

x,!//,u,v>,

where x, ¥, u, and_v in (7.2.54) are those satisfying (7.1.22) and (7.1.23). For any
element g(z, s) of &1 (I'(N)) and & (I'(N)), we put

(7.2.54) ED (I (N)) = <Ek <§z 51 z//)

(7.2.55) Gl s7)(2) = g(2,8)j (1, 2) *lj (3, 2)I 72, yeSLy(2).
We see that
(7.2.56) EW(T(N)) is stable under the action of SL,(Z).

Now we have

Theorem 7.2.15. (1) & (I'(N)) = EX(I'(N)).
(2) Let g(z, s5)e &P (L (N)). If g(z, s) is holomorphic on a compact subset T of the
s-plane, then there exists a constant ¢ such that

g(z,s) =0(y) (z=x+iy), (y—©)
uniformly on xeR and seT.
Proof. The first assertion is proved by a similar argument to that in Lemma 7.1.4.

The latter is proved by Theorem 7.2.7, Theorem 7.2.9, (7.2.56) and (1). O

By the above theorem, if k > 0, then E,(z, s; u, v; N) is holomorphic at s = 0.
For k > 0, we put

(7.2.57) E (z; u, v; N) = Ei(z,0; 1, v; N),

and

(7.2.58) ENT(N) = (Ex(z; 6, v; )OS g, v < N,
(7.2.59) EP((N) = <Ek (%z; % !//> %Y u, v>,

where x, ¥, u, and v are as in (7.2.54). If k > 2, then these definitions coincide with
those in §7.1.

Theorem 7.2.16. Let k be a positive integer. Then
(1) &X(M(N) = EX(T(N)).
(2) If f(2)e&V (I'(N)) is holomorphic, then it belongs to 9,(I'(N)). In particular
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EOT(N)) = G (F(N)) if k # 2.
(3) E,(Nz, 0; x, ¥)e%,(L'(N)) if ¢ is not trivial. Moreover if g(z)e & (F'(N)),
then there exists a constant ¢ such that g(z}— cE,(z) e 4,(I'(N)).

Proof. When k > 2, we have already proved the assertions in §7.1. The first
assertion for general k is straightforward from Theorem 7.2.15(1). We also see
easily that £V (I"(N)) is stable under the action of SL,(Z). Let f(z) be an element of
EWV(T(N)). If £ (z) is holomorphic on H, then it is also holomorphic at co by (1) and
Theorem 7.2.9. Let x be a cusp of I'(N) and take ye SL,(Z) so that yoo = x. Since
fliy belongs to &3 (I'(N)), it is also holomorphic at co. This implies that f(z) is
holomorphic at x and (2) is proved. The first part of (3} is obvious. Now let g(z) be
an element of &5V (I'(N)). Then by (1) and Theorem 7.2.12, we see

C . i
g(z) = co + = + a power series of e2™#/¥
y

Then there exists a constant ¢ such that g(z) — cE,(z) is holomorphic on H and
is also holomorphic at co. Let x be a cusp of I'(N) and take ye SL,(Z) so that
yoo = x. Then since (g — cE,)|,7y belongs to &2 (I'(N)),

’

C . .
(g —cE,)l;y = ¢y + — + a power series of 2™V,
y

Since (g — cE,)|,7 is holomorphic on H, we see ¢; = 0. This implies that g — cE, is
also holomorphic at x. |

For a Dirichlet character y mod N, we define

d . , —k|; , — 25 ( (__1) — (—l)k, — % % )
(1260) Ef (s, 5: ) = { YEZRX( )i, 2)74j, 2)| X y=[%3
0 (x(=1) # (= 1)),

where R is a complete set of representatives for I'o(N)\ I'o(N). We also put
(7.2.61) Efn(z,s) = Ef y(z,8; %)

with the trivial character y mod N. Then we see, similarly to (7.1.30),
(72.62) E(Nz,s; X0, x) = 2Ly(k +25, ) E¥ 5(2, 55 2)-

If k > 0, then E¥ y(z, s; x) is holomorphic at s = 0 by Corollary 7.2.10. Therefore we
may define Ef y(z; x) and Ef y(z) by

(7.2.63) E¥ y(z; 1) = Ef 5(z,0; 1),
(7.2.64) E# y(2) = E¥ 5(2,0).

By Theorem 7.2.16(2) and (3), E¥ y(z, x) belongs to 4, (I'(N)) except for k = 2 and x
is trivial.
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Theorem 7.2.17. E¥ y(z, s) has a simple pole at s = 1 and

Res,—; E§ x(z,5) = y ™ 'o(Fo(N\H) ™

_ y-IGNH a1 +p'1)>-

pIN

Proof. The assertion is easily obtained by calculating the residue using
Corollary 7.2.10(3) combined with Theorem 4.1.2(2) and Theorem 4.2.5(2). But we
shall here give a rather direct proof of the first equality, which also reproves
Theorem 4.1.2(2). We put
(7.2.65) M(z,5) =) e ™09 j(y,z)| 22

yeR
where R is a complete set of representatives for I'q(N),\o(N). Since

l—-yZe™Z1l for y>0,

M(z, s) is absolutely convergent if Re(s) > 0. Further if s is a positive number, then
(7.2.66) E§ n(z, s + 1) — E§ y(z, s+ 2)y £ M(z,5) £ E§ y(2,5+1).
Therefore

lim sM(z,s)= Res,.{ E¥ x(z,s5)

s=>+0
- <c=<§N1I'£(1+p—l)>‘ )

by Corollary 7.2.10(3) and (7.2.62). Now we have

(7.2.67) [(s)= [ [e~?y*dxdy
(4]

O ey

= [ e’y ldu(z)
I'y(N)\H

= | Mz s)y*" dv(z).
To(N)\H

By (7.2.60), we see

E§nzs+ ) =1+ 3 [j(y,z)|7>2
yeR

y# 1

Therefore by Theorem 7.2.9 and (7.2.62),

(7.2.68) s Y 1jly,z)| 772y 1< C  (y— oo, C: constant)
yeR
y#1

and sE¥ y(z, s+ 1)y**! is bounded on neighborhoods of cusps of I'o(N) inequi-
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valent to oo, uniformly on s (0 < s £ ¢). Since

M(zs)=e7+ 3 &9 jy, 2)| 7272,
yER

y#1
we see that the integral

[ sM(z,s)y** dv(z)
To(N)\H

is uniformly convergent by (7.2.68). Therefore

1 =limsI'(s)

=0

=lim | sM(zs)y " du(z)
s20 ry(N)\H

= <Iim sM{z, s)y”l) dv(z)
I'y(N\H

s—0
= co(Io(N)\H).

This implies the first equality. The second equality follows from this with a direct
calculation of ¢ by Corollary 7.2.10(3) and (7.2.62). O

Theorem 7.2.18. For a positive integer N, we have:

(1) 52T (N) NG, (I(N)) = A5(T'(N)).
@) P I (N) = N1 (T'(N)).

Proof. Let f(z) be an element of (N, ). Then by a similar argument to that in
Theorem 2.6.10, we have

(7.2.69) [ f@) Efyz sy > ?dxdy =0,

To(N)\H
if Re(s) is sufficiently large. By Corollary 7.2.15(2), the integral is uniformly
convergent on any compact subset of s-plane on which Ejf y (z, s; x) is holomorphic.
Therefore we see

(7.2.70) [ f@)EEn(z; x)y* 2dxdy = 0.
To(N)\H

If k=1 or k=2 and  is not trivial, then this implies E¥ y(z; x)€ 4 (N, x), and
therefore E¥ y(z; x)€ A %(I(N)) by Theorem 2.1.7. Assume k = 2. We shall prove

(72.71) [ f@)E3x@)y2do(z)=0,  f(z)e Lo (I (N)).
T'(N\H

We may assume N = 6 (since dim &%,(I'(N)) = 0 if N £ 5). We put
(1.2.72) Fyz,s)= Y (cz+d) 2lez+d|™%,

v eR’

* *
where R’ is a complete set of representatives for I'(N) \I'(N) and y = [c d]'
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Then by a similar calculation to that in (7.1.33), we see

(7.2.73) Fy(z,8) = —=Y E% x(z, 8 1)

¢(N)

where y runs over all characters mod N. Thus F,(z, s) is holomorphic at s = 0. We
also put

(7.2.74) F,(z) = F,(z,0).
Then by a similar argument to that in Theorem 2.6.10, we have

(7.2.75) § f(2) Fylz, s)y=dxdy =0,  f(z)e L (T(N)),
F(N)\H

and therefore,

(7.2.76) [ f@F()y*do(z) =0,  f(z)e S, (I (N)).
F(N)\H

Since E% y(z) is a linear combination of F,(z) and E% y(z; x) (x: non-trivial) by
(7.2.73), we proved (7.2.71). Combining all together, we obtain

(7.2.77) [ @ EEyzx)yidu(z) =0,  fz)eF(T(N)),
F(N)\H

for any character y mod N and any positive integer k. Since (7.1.17), (7.1.19), and
(7.1.31) also hold for k = 1 and 2,

{E¥n(z 01y | 7eSLy(2)}
generates &V(I" (N)), so that
EP (I (N)NG(T(N) = #o(T(N),  EPVT(N)) = A#(T(N)).
The converse can be obtained by Theorem 4.7.2 and the following lemma. O
Lemma 7.2.19. Let y and  be primitive Dirichlet characters mod L and mod M,
respectively, satisfying yy(—1)=(—1)* Let fi(z; x,¥) be the modular form

[z x, W) of weight k defined in §4.7.
(1) If either y or \ is not trivial, then

E;(Mz; 7, ) = (=82 W)/ M) f3(z; 1, ).
(2) For any prime number p,
E,(z) = pE;(pz) = —8n%f,(% %0, '),
where y, is the principal character and y' the trivial character mod p.
G3) E (Mz; 1, ) = (—4miW W)/ M) f,(z; 1, ).

Proof. We see easily the equalities by comparing the Fourier coefficients by
Theorem 7.2.12 and Theorem 7.2.13. d



Numerical Tables

As some applications of trace formulae in Chapter 6, we present here some tables.
Table A is on the dimensions of modular forms, Table B gives eigenvalues
and characteristic polynomials of Hecke operators operating on %,(I', (N)), and

Table C is on the coefficients of primitive forms in %, (N , <ﬁ>>

Table A was prepared by Y. Maeda, and Tabie B and Table C by H. Wada and
N. Iwasaki.

Table A

This lists the dimensions of the following spaces:
(i) dim &, (I'4(N)).
Weights k, 2 < k < 50;
Levels N, 1 < N £ 50,
50< N <100: prime numbers.
(ii) dim F2(I4(N)).
Weights and levels are as in (i).

(iii) dim %, (q, <—> )
q

Weights k, 2 < k < 50,
Levels g, 3 < g < 100; prime numbers.
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Dimension of &, (I',(N))

k N i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
4 0 0 0 0 1 1 1 1 1 3 2 3 3 4 4
6 0 0 1 1 1 3 3 3 3 5 4 7 5 8 8
8 0 1 1 2 3 5 3 5 5 9 6 11 7 12 12

10 0 1 2 3 3 7 5 7 7 1 8§ 15 9 16 16

12 1 2 3 4 5 9 7 9 9 15 10 19 13 20 20

14 0 2 3 5 5 1 7 11 11 17 12 23 13 24 24

16 1 3 4 6 7 13 9 13 13 21 14 27 17 28 28

18 1 3 5 7 7 15 11 15 15 23 16 31 19 32 32

20 1 4 5 8 9 17 11 17 17 27 18 35 21 36 36

22 1 4 6 9 9 19 13 19 19 29 20 39 23 40 40

24 2 5 7 10 11 21 15 21 21 33 22 43 27 4 44

26 1 5 7 1 11 23 15 23 23 35 24 47 27 48 48

28 2 6 8§ 12 13 25 17 25 25 39 26 51 31 52 52

30 2 6 9 13 13 27 19 27 27 41 28 55 33 56 56

32 2 7 9 14 15 29 19 29 29 45 30 59 35 60 60

34 2 7 10 15 15 3t 21 31 31 47 32 63 37 64 64

36 3 8§ 11 16 17 33 23 33 33 51 34 67 41 68 68

38 2 § 11 17 17 35 23 35 35 53 36 71 41 72 72

40 3 9 12 18 19 37 25 37 37 57 38 15 45 76 76

42 3 9 13 19 19 39 27 39 39 59 40 79 47 80 80

44 3 10 13 20 21 41 27 41 41 63 42 8 49 84 84

46 3 10 14 21 21 43 29 43 43 65 4 87 51 88 88

48 4 11 15 22 23 45 31 45 45 69 46 91 55 92 92

50 3 11 15 23 23 47 31 47 47 71 48 95 55 96 96

Dimension of &2 (I"y(N))

X N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1
4 0 0 0 0 1 1 1 1 1 1 2 1 3 2 2
6 0 0 1 1 1 1 3 1 1 3 4 0 5 2 4
8 0 1 1 0 3 1 3 2 3 1 6 2 7 4 4

10 0 1 2 1 3 1 5 2 3 3 8 1 9 4 6

12 1 0 1 1 3 3 5 3 4 5 8 2 1 6 8

14 0 2 3 1 5 1 7 3 5 3 12 2 13 6 8

16 1 1 2 1 5 3 7 4 6 5 12 3 15 8 10

18 1 1 3 2 5 3 9 4 6 7 14 2 17 8 12

20 1 2 3 1 7 3 9 5 8 5 16 4 19 10 12

22 1 2 4 2 7 311 5 8 7 18 3 21 10 14

24 2 1 3 2 7 5 11 6 9 9 18 4 23 12 16

26 1 3 5 2 9 313 6 10 7 22 4 25 12 16

28 2 2 4 2 9 5 13 7 1 9 22 5 27 14 18

30 2 2 5 3 9 5 15 7 11 11 24 4 29 14 2

32 2 3 5 2 1 5 15 8§ 13 9 26 6 31 16 20

34 2 3 6 3 1 5 17 8 13 11 28 5 33 16 22

36 3 2 5 3 u 7 17 9 14 13 28 6 35 18 24

38 2 4 7 3 133 5 19 9 15 11 32 6 37 18 24

40 3 3 6 3 13 7 19 10 16 13 32 7 39 20 26

42 3 3 7 4 13 7 21 10 16 15 34 6 4 20 28

44 3 4 7 3 15 7 21 11 18 13 36 8 43 22 28

46 3 4 8 4 15 7 23 11 18 15 38 7 45 22 30

48 4 3 7 4 15 9 23 12 19 17 38 8 47 24 32

50 3 5 9 4 17 7 25 12 20 15 42 § 49 24 32
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k Nl 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 0 1 0 1 1 1 2 2 1 0 2 1 2 2 3
4 3 4 5 4 6 6 7 5 8 5 9 6 9 7 14
6 7 6 11 g§ 12 12 13 9 16 9 15 12 17 11 26
8 11 10 17 10 18 16 19 13 24 15 23 18 25 17 38

10 15 12 23 14 24 22 25 17 32 19 29 24 33 21 S0

12 19 16 29 18 30 28 31 21 40 25 37 30 41 27 62

14 23 18 3% 20 36 32 37 25 48 20 43 36 49 31 74

16 27 22 41 24 42 38 43 29 56 35 51 42 57 37 86

18 31 24 47 28 48 44 49 33 64 39 57 48 65 41 98

20 35 28 53 30 54 48 55 37 72 45 65 54 73 47 110

22 39 30 59 34 60 54 61 41 80 49 71 60 81 5t 122

24 43 34 65 38 66 60 67 45 88 55 79 66 89 57 134

26 47 36 71 40 72 64 73 49 9% 59 85 72 97 61 146

28 51 40 77 4 78 70 79 53 104 65 93 78 105 67 158

30 55 42 83 48 84 76 8 57 112 69 99 84 113 71 170

32 59 46 8 50 90 8 91 61 120 75 107 90 121 77 182

34 63 48 95 54 9 8 97 65 128 79 113 96 129 81 194

36 67 52 101 58 102 92 103 69 136 85 121 102 137 87 206

38 71 54 107 60 108 96 109 73 144 89 127 108 145 91 218

40 75 58 113 64 114 102 115 77 152 95 135 114 153 97 230

42 79 60 119 68 120 108 121 81 160 99 141 120 161 101 242

44 83 64 125 70 126 112 127 85 168 105 149 126 169 107 254

46 87 66 131 74 132 118 133 89 176 109 155 132 177 111 266

48 91 70 137 78 138 124 139 93 184 115 163 138 185 117 278

50 95 72 143 80 144 128 145 97 192 119 169 144 193 121 290

Dimension of ¥ (I'o(N))

k Niwe 17 18 19 20 21 22 23 24 25 26 27 28 29 30
2 0 1 0 1 1 1 0 2 1 0 2 1 0 2 1
4 1 4 1 4 1 4 3 S 1 3 3 4 2 7 2
6 2 6 3 8 1 4 5 9 3 7 5 7 2 1m 2
8 3 10 2 10 3 8 S 13 3 9 7 9 4 17 6

10 4 12 4 14 3 8 7 17 S 13 9 12 4 21 6

12 5 14 5 16 3 12 11 19 5 16 11 15 6 25 6

14 6 18 5 20 S 12 9 25 7 19 13 17 6 31 10

16 7 20 6 22 5 16 13 27 7 22 15 20 8 35 10

18 8§ 22 8 26 5 16 15 31 9 26 17 23 8 39 10

20 9 26 7 28 7 20 15 35 9 28 19 25 10 45 14

22 10 28 9 32 7 20 17 39 11 32 21 28 10 49 14

24 11 30 10 34 7 24 21 41 11 35 23 31 12 53 14

26 12 34 10 38 9 24 19 47 13 38 25 33 12 59 18

28 13 36 1t 40 9 28 23 49 13 41 27 36 14 63 18

30 14 38 13 44 9 28 25 53 15 45 29 39 14 67 18

32 15 42 12 46 11 32 25 57 15 47 31 41 16 73 22

34 16 4 14 50 11 32 27 6l 17 S1 33 4 16 77 22

36 17 46 15 52 11 36 31 63 17 54 35 47 18 81 22

38 18 50 15 56 13 36 29 69 19 57 37 49 18 87 26

40 19 52 16 58 13 40 33 7 19 60 39 52 20 91 26

42 20 54 18 62 13 40 35 75 21 64 41 55 20 95 26

44 21 58 17 64 15 4 35 79 21 66 43 57T 22 101 30

46 22 60 19 68 15 4 37 8 23 70 45 60 22 105 30

48 23 62 20 70 15 48 41 85 23 73 47 63 24 109 30

50 24 66 20 74 17 48 39 91 25 76 49 65 24 115 34
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Dimension of &, (I'4(N))

Numerical Tables

k N 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
2 2 1 3 3 3 1 2 4 3 3 3 5 3 4 3
4 7 8 10 12 10 12 9 13 12 14 10 20 10 15 14
6 13 16 18 20 18 24 15 23 22 26 16 36 18 27 26
8 17 24 26 30 26 36 21 33 30 38 24 52 24 39 38

10 23 32 34 38 34 48 27 43 40 S50 30 68 32 51 50

12 29 40 42 48 42 60 35 53 50 62 38 8 40 63 62

14 33 48 50 56 50 72 39 63 58 74 4 100 46 75 74

16 39 56 58 66 58 84 47 73 68 8 52 116 54 87 86

18 45 64 66 T4 66 96 53 83 78 98 58 132 62 99 98

20 49 72 74 8 74 108 59 93 86 110 66 148 68 111 110

22 55 8 82 92 82 120 65 103 96 122 72 164 76 123 122

24 61 8 90 102 90 132 73 113 106 134 80 180 84 135 134

26 65 96 98 110 98 144 77 123 114 146 86 196 90 147 146

28 71 104 106 120 106 156 85 133 124 158 94 212 98 159 158

30 77 112 114 128 114 168 91 143 134 170 100 228 106 171 170

32 81 120 122 138 122 180 97 153 142 182 108 244 112 183 182

34 87 128 130 146 130 192 103 163 152 194 114 260 120 195 194

36 93 136 138 156 138 204 111 173 162 206 122 276 128 207 206

38 97 144 146 164 146 216 115 183 170 218 128 292 134 219 218

40 103 152 154 174 154 228 123 193 180 230 136 308 142 231 230

42 109 160 162 182 162 240 129 203 190 242 142 324 150 243 242

44 113 168 170 192 170 252 135 213 198 254 150 340 156 255 254

46 119 176 178 200 178 264 141 223 208 266 156 356 164 267 266

48 125 184 186 210 186 276 149 233 218 278 164 372 172 279 278

50 129 192 194 218 194 288 153 243 226 290 170 388 178 291 290

Dimension of &2 (I,(N))

k N 3t 32 33 34 35 36 37 38 39 40 41 42 43 44 45
2 2 1 1 1 3 1 2 2 3 1 3 1 3 1 1
4 7 3 6 4 6 1 9 5 6 3 10 2 10 3 5
6 13 5 8 8 10 2 15 7 10 5 16 6 18 3 9
8 17 7 12 8 14 3 21 11 14 7 24 6 24 7 11

10 23 9 14 12 18 4 27 13 18 9 30 10 32 7 15

12 27 11 20 16 22 4 33 17 22 11 36 10 38 9 19

14 33 13 2 16 26 6 39 19 26 13 4 14 46 11 21

16 37 15 26 20 30 6 45 23 30 15 50 14 52 13 25

18 43 17 28 24 34 7 51 25 34 17 56 18 60 13 29

20 47 19 32 24 38 8 57 29 38 19 64 18 66 17 31

22 53 21 34 28 42 9 63 31 42 21 70 22 74 17 35

24 57 23 40 32 46 9 69 35 46 23 76 22 80 19 39

26 63 25 40 32 50 11 75 37 50 25 84 26 88 21 41

28 67 27 46 36 54 11 81 41 54 27 90 26 94 23 45

30 73 29 48 40 S8 12 87 43 58 29 96 30 102 23 49

32 77 31 52 40 62 13 93 47 62 31 104 30 108 27 51

34 83 33 54 44 66 14 99 49 66 33 110 34 116 27 55

36 87 35 60 48 70 14 105 53 70 35 116 34 122 29 59

38 93 37 60 48 74 16 111 55 74 37 124 38 130 3t 61

40 97 39 66 52 78 16 117 59 78 39 130 38 136 33 65

42 103 41 68 56 82 17 123 61 82 41 136 42 144 33 69

44 107 43 72 56 86 18 129 65 8 43 144 42 150 37 T

46 113 45 74 60 90 19 135 67 90 45 150 46 158 37 75

48 117 47 80 64 94 19 141 7 94 47 156 46 164 39 79

50 123 49 80 64 98 21 147 73 98 49 164 50 172 41 81
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Dimension of %, (I"o(N))

k N 46 47 48 49 S50 53 59 61 67 71 73 79 83 8% 97
2 5 4 3 1 2 4 5 4 5 6 5 6 7 7 7
4 16 11 18 10 17 13 14 15 16 17 18 19 20 22 24
6 28 19 34 20 31 2t 24 25 28 29 30 33 34 36 40
8 40 27 50 28 47 31 34 35 38 41 42 45 48 52 56

10 52 35 66 38 61 39 44 45 S50 53 54 59 62 66 72

12 64 43 82 48 77 49 54 57 62 65 68 73 76 82 90

14 76 51 98 56 91 57 64 65 72 77 78 85 90 96 104

16 8 59 114 66 107 67 74 77 84 89 92 99 104 112 122

18 100 67 130 76 121 75 84 87 9 101 104 113 118 126 138

20 112 75 146 84 137 85 94 97 106 113 116 125 132 142 154

22 124 83 162 94 151 93 104 107 118 125 128 139 146 156 170

24 136 91 178 104 167 103 114 119 130 137 142 153 160 172 188

26 148 99 194 112 181 111 124 127 140 149 152 165 174 186 202

28 160 107 210 122 197 121 134 139 152 161 166 179 188 202 220

30 172 115 226 132 211 129 144 149 164 173 178 193 202 216 236

32 184 123 242 140 227 139 154 159 174 185 190 205 216 232 252

34 196 131 258 150 241 147 164 169 186 197 202 219 230 246 268

36 208 139 274 160 257 157 174 181 198 209 216 233 244 262 286

38 220 147 290 168 271 165 184 189 208 221 226 245 258 276 300

40 232 155 306 178 287 175 194 201 220 233 240 259 272 292 318

42 244 163 322 188 301 183 204 211 232 245 252 273 286 306 334

44 256 171 338 196 317 193 214 221 242 257 264 285 300 322 350

46 268 179 354 206 331 201 224 231 254 269 276 299 314 336 366

48 280 187 370 216 347 211 234 243 266 281 290 313 328 352 384

50 292 195 386 224 361 219 244 251 276 293 300 325 342 366 398

k N 46 47 48 49 50 53 59 61 67 T4 73 79 8 8 97
2 1 4 1 1 2 4 5 4 5 6 5 6 7 7 7
4 6 11 3 8 5 13 14 15 16 17 18 19 20 22 24
6 10 19 5 14 7 21 24 25 28 29 30 33 34 36 40
8 12 27 7 22 12 31 34 35 38 41 42 45 48 52 56

10 16 35 9 28 14 39 4 45 50 53 54 59 62 66 72

12 22 41 1 35 17 47 52 55 60 63 66 71 74 80 88

14 22 51 13 42 21 57 64 65 72 77 78 8 90 96 104

16 28 57 15 49 24 65 72 75 82 87 90 97 102 110 120

18 32 65 17 55 26 73 8 8 9 99 102 111 116 124 136

20 34 73 19 63 31 83 92 95 104 111 114 123 130 140 152

22 38 81 21 69 33 91 102 105 116 123 126 137 144 154 168

24 4 87 23 76 36 99 110 115 126 133 1383 149 156 168 184

26 4 97 25 83 40 109 122 125 138 147 150 163 172 184 200

28 50 103 27 90 43 117 130 135 148 157 162 175 184 198 216

30 54 111 29 9 45 125 140 145 160 169 174 189 198 212 232

32 56 119 31 104 50 135 150 155 170 181 186 201 212 228 248

34 60 127 33 110 52 143 160 165 182 193 198 215 226 242 264

36 66 133 35 117 55 151 168 175 192 203 210 227 238 256 280

38 66 143 37 124 59 161 180 185 204 217 222 241 254 272 296

40 72 149 39 131 62 169 188 195 214 227 234 253 266 286 312

42 76 157 41 137 64 177 198 205 226 239 246 267 280 300 328

44 78 165 43 145 69 187 208 215 236 251 258 279 294 316 344

46 82 173 45 151 71 195 218 225 248 263 270 293 308 330 360

48 88 179 47 158 74 203 226 235 258 273 282 305 320 344 376

50 88 189 49 165 78 213 238 245 270 287 294 319 336 360 392
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Dimension of %, (q, ()

Numerical Tables

k 5 13 17 29 37 41 53 61 73 89 97
2 0 0 0 2 2 2 4 4 4 6 6
4 0 2 4 6 8 10 12 14 18 22 24
6 2 6 6 12 16 16 22 26 30 36 40
8 2 6 10 16 20 24 30 34 42 52 56

10 4 10 12 22 28 30 40 46 54 66 72

12 4 12 16 26 34 38 48 56 68 82 90

14 6 14 18 32 40 44 58 66 78 96 104

16 6 16 22 36 46 52 66 76 92 112 122

18 8 20 24 42 54 58 76 88 104 126 138

20 8 20 28 46 58 66 84 96 116 142 154

22 10 24 30 52 66 72 94 108 128 156 170

24 10 26 34 56 72 80 102 118 142 172 188

26 12 28 36 62 78 86 112 128 152 186 202

28 12 30 40 66 84 94 120 138 166 202 220

30 14 34 42 72 92 100 130 150 178 216 236

32 14 34 46 76 96 108 138 158 190 232 252

34 16 38 48 82 104 114 148 170 202 246 268

36 16 40 52 86 110 122 156 180 216 262 286

38 18 42 54 92 116 128 166 190 226 276 300

40 18 44 58 96 122 136 174 200 240 292 318

42 20 48 60 102 130 142 184 212 252 306 334

44 20 48 64 106 134 150 192 220 264 322 350

46 22 52 66 112 142 156 202 232 276 336 366

48 22 54 70 116 148 164 210 242 290 352 384

50 24 56 72 122 154 170 220 252 300 366 398

Dimension of %, (g, (q))

k 3 7 11 19 23 31 43 47 59 67 71 79 83
3 0 1 1 3 3 5 7 7 9 11 11 13 13
5 0 1 3 5 7 9 13 15 19 21 23 25 27
7 1 3 5 9 11 15 21 23 29 33 35 39 41
9 2 5 7 13 15 21 29 31 39 45 47 53 55

11 2 5 9 15 19 25 35 39 49 55 59 65 69

13 3 7 11 19 23 31 43 47 59 67 7t 79 83

15 4 9 13 23 27 37 51 55 69 79 83 93 97

17 4 9 15 25 31 41 57 63 79 89 95 105 111

19 5 11 17 29 35 47 65 71 89 101 107 119 125

21 6 13 19 33 39 53 73 79 99 113 119 133 139

23 6 13 21 35 43 57 79 87 109 123 131 145 153

25 7 15 23 39 47 63 87 95 119 135 143 159 167

27 8 17 25 43 51 69 95 103 129 147 155 173 181

29 8 17 27 45 55 73 101 111 139 157 167 185 195

31 9 19 29 49 59 79 109 119 149 169 179 199 209

33 10 21 31 53 63 8 117 127 159 181 191 213 223

35 10 21 33 55 67 89 123 135 169 191 203 225 237

37 11 23 35 59 7 95 131 143 179 203 215 239 251

39 12 25 37 63 75 101 139 151 189 215 227 253 265

41 12 25 39 65 79 105 145 159 199 225 239 265 279

43 13 27 41 69 83 111 153 167 209 237 25t 279 293

45 14 29 43 73 87 117 161 175 219 249 263 293 307

47 14 29 45 75 91 121 167 183 229 259 275 - 305 321

49 15 31 47 79 95 127 175 191 239 271 287 319 335
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Table B

For N = 11, 17 and 19, eigenvalues a, of T(p) on &,(I'y(N)) for prime numbers p
are given.

For N =23, 29, 41, 47, 61, 67 and 71, the coefficients of the characteristic
polynomials F (X) of T(p) on &,(I'(N)) are given. When F(X) is reducible over Q,
the coeflicients of each irreducible factor are presented. They are separated by “/”.
For example, when N =47 and p = 2,

1, -1, —5,5, -1
should be read as
X4—X3_-5X*4+5X—1,

and when N =61 and p = 2,
11/ 1 -1 -31
should be read as
(X+D)(X3-X2-3X+1)

We note the order of decomposition is not consistent for p’s.
The polynomial f* in the decomposition for N = 61, 67 is the part correspond-
ing to the cusp forms invariant by wy.



N=11 dim &, (Io(11)) = 1
p a | P a | p a4 | P a, P a, p a, P a, p a,
2 —2{ 79 —10|191 17311 12 | 439 40 | 577 33| 709 —25 | 857 8
3 —1| 8 —61193 41313 1| 443 —11 | 587 28 | 719 15 | 859 —15
5 1] 8 15197 —2|317 13 | 449 35 | 593 4 | 127 3| 863 24
7 —2| 97 —7]19 0| 331 7| 457 =12 | 599 40 | 733 —36 | 877 —12
11 1101 20211 121337 —22 | 461 12 | 601 2| 739 50 | 881 —43
13 41103 —16|223 19| 347 28 | 463 —11 | 607 —22 | 743 4 | 883 4
17 —2 107 18227 18| 349 30 | 467 —27 | 613  —16 | 751 —23 | 887 —22
19 0109 10229 15|353 —21 | 479 20 | 617 18 | 757 —22 [ 907 -—12
22 —1(113 90233 24|39 —20 | 487 23 | 619 —25 | 761 12 | 91t 12
29 0 | 127 81239 —30|367 —17 | 491 -8 | 631 7| 769 20 | 919 10
31 70131 —18|241 —8([373 —26 | 499 20 | 641 33| 773 —6| 929 —30
37 30137 —7|251 —23(379 —5 |53 —26| 643 29 | 787 —32 | 937 8
41 -8 {139 10]257 —2(383 —1| 509 15 | 647 —7 | 797 53 | 941 42
43 —6 (149 —10|263 14389 —15| 521 -3 | 653 —41 | 809 0| 947 —27
47 8 | 151 20269 10397 -2 523 —16 | 659 10 | 811  —38 | 953 34
53  —6 1157 —7|211 -28|401 2|54 -8 | 661 37 | 821 2] 967 -32
59 51163 412717 2409 —30 | 547 8 | 673 14 | 823 39 | 971 47
61 12 {167 —12 | 28t —18 | 419 20557 -2 | 677 —42 | 87 —52977 27
67 -7 1173 —6| 283 4| 421 22 | 563 4| 683 —16 | 829 25 | 983 39
7 =3 (179 —15|293 24 |431 —18 | 369 0| 69t 17 | 839 —5[91 -8
73 4 | 181 7| 307 8433 —11 |51 —281! 70 2| 853 14 | 997 38

0¢

S9[qE ], [BdLISWNN



N=17 dim &, (Ie(17) = 1
p e |p a | p a |p a, P a, P a, P a, P a,
2 —1 | 79 12191 —16 311 28 | 439 —20 | 577 —14 | 709 —34 | 857 10
3 0| 8 —4]193 20313 —22 | 443 28 | 587 4 | 119 4 | 859 52
5 —2| 8 10197 —18 317 —10 | 449 34 | 593 18 | 727 40 | 863 16
7 4| 97 21199 —20 | 331 4 457  —6 |59 —24|733 —50 | 877 6
11 0101 —10 | 211 8337 —14|461 —2 | 601 10 | 739 28 | 881 —46
13 —2 (103 8 (223 24 |347 32 | 463 32 | 607 20 | 743 12 883 —12
17 1107 8227 —24 (349 —18 | 467 12 | 613  —26 | 751 20 | 887 12
19  —4 |109 6 | 229 6353 —30 | 479 36 | 617  —6 | 757 22 | 907 32
23 4113 —14]233 —6|359 0 | 487 20 | 619 —48 | 761 22 | 911  —4
29 6 | 127 8239 —16 |367 28 | 491 20 | 631 16 | 769 —14 | 919 2
31 41131 16 |241 18 | 373 6|49 —40 | 641 —30 | 773 -26 | 929 —30
37 —20137 6251 12[379 -8 | 503 —12 | 643 32 | 787 —32 | 937 10
41 —6|139 -8 (257 18 383 —24 | 509 —2 | 647 8| 797 —50 | 941 6
43 41149 —10|263 —16 | 389 6 | 521 26 | 653 6 | 809 26 | 947 32
47 0151 —16|269 22 |397 6 | 523 —36 | 659 4 | 811 40 | 953 —22
53 6157 —2(2711 —16 [401 —14 | 541 6 | 661 38 | 821 —18 | 967 0
59 —12 (163 24 (277 14 | 409 2 | 547 —32 | 673 2| 823 20 | 971 -12
61 —10 | 167 —4 281 —6 |419 8 | 557 30 | 677 30 | 827 —48 | 977 18
67 41173 22[283 —16 |421 2|53 -4 | 683 —40 | 829 —34 | 983 12
7 —4 (179 12293 6 | 431 12 | 569 -—38 | 691  —8 | 839 20 {991 —12
73 —6 181 —2 (307 —12 433 20511 -32 |71 —18| 853 14 | 997 46

d °1qel

£0¢



N=19 dim &, (Iy(19) = 1
4 a, p a, P a, r a, p a, P a, p a, p a,
2 0] 79 8 | 191 3(311  —3 |43 —10 | 577 11 | 709 26 | 857 18
3 -2 8 120193 —4|313 10 |43 -3 | 587 45 | 719 15 | 859 —49
5 30 8 12|197 181317 6 | 449 0593 —42| 727 —19 | 863 18
7 —1]| 97 8199 11331 —28 |457 —37 (599 —36|733 -2 |87 -2
1 3 | 101 6211 14337 32 | 461 9 | 60t 26 | 739 11| 881 —27
13 —4 (103 14223 —10] 347 21 | 463  —31 | 607 32| 743 —24 | 883 47
17 -3 [107 —18 227 12| 349 17 | 467 —27 | 613 29 | 751 32 | 887 18
19 11109 —16 | 229 51353 —6 |49 —12 | 617 9 | 757 =25 | 907 8
23 0| 113 6233 —21 359 15 | 487 2 | 619 44 | 761 33911 —6
29 6 | 127 20239 15| 367 8 | 491 12 | 631 11 | 769 23 | 919 20
31 —4 131 —15|241 —10|373 -4 | 499 5| 641 073 —61929 -18
37 2137 3|25t 21379 —34|503° 12 |643 —13| 787 -4 937 7
4 —6|139 —13|257 0| 383 12 | 509 0 | 647 27| 797 —12 | 941 —18
43 —1 149 21| 263 9 | 389 15 | 521 0653 —39 |89 —9 |97 —36
47 -3 151 —10{269 24 |397 -7 | 523 38 | 659 —30 | 811 —16 | 953 —48
53 12 [157 14 {271 —16 | 40t 12 | 541 —25 | 661 32 | 821 33 | 967 —40
59 -6 163 20277 —19 409 —4 | 547 —28 | 673 —10 | 823 —49 | 971 60
61 —1]167 —18 | 281 6419 —12 | 557 21 | 677 —42 | 827 12 | 977 24
67 —4 173 —18 | 283 —13 |42t 8 | 563 6 | 683 36 | 829 —16 | 983 36
7 6179 —18 293 —12 |43t —24 | 569 —24 | 691 17 | 839 18 | 991 34
73 -7 181 20307 20433 2|51 -4 701 6 | 853 26 | 997 17

0t

S9|qe L [BOLSWNN



Table B 305
N=23 dim &, (I'5(23)) =2
14 p p
2 1 1 -1 269 1 -2 -79 617 1 24 124
301 0 -5 271 1 -8/ 1 —8 619 1 ~12 —144
S 1 2 -4 277 1 =22 10t 631 1 20 —400
7 1 =2 -4 281 1 22 116 641 1 28 —784
1t 6 4 283 1 42 396 643 1 10 — 580
3 1t =3/ 1 -3 293 1 12 16 647 1 0 —45
17 1 —6 4 307 1 —28 176 653 1 14 —931
19 1 2/ 1 2 3t 1 —4 —121 659 1 —10 —220
23 1 -1/ 1 -1 313 1 —4 —-496 661 1 28 116
29 1 3/ 1 3 317 1 =24 -36 673 1 -3/ 1 -3
31 1 0 —45 31 1 8 —229 677 1 -—18/ 1 —18
37 1 =2 -4 337 1 =20 —80 683 1 —4 —601
41 1 =2 -19 347 1 —16 —256 691 1t -32 176
43 1 0/ 1 0 349 1 =22 —59 701 1 30 100
47 1 0 -5 353 1 26 —331 709 1 26 —676
53 1 8 —4 359 1 4 —316 719 1 24 64
5% 1 -4 —16 367 1 —14 -76 727 1 42 396
61 1 -4 -76 373 1 -2 —44 733 1 58 836
67 1 10 -20 379 1 —4 —496 739 1 —-76 1319
71 1 =20 95 383 1 32 176 743 1 —42 36
73 1 =22 101 389 1 —60 880 751 1 44 —-16
79 1 4 —-76 397 1 22 —-59 757 1 46 —76
83 1 22 116 401 1 6 —116 761 1 =30 —1755
89 1 12 16 409 1 2 —499 769 1 6 —396
97 1 =22 76 419 1 36 144 773 1 20 80
101 1 0 -20 421 1 34 244 787 1 76 1264
103 1t -—14 -76 431 1 44 464 797 1 24 —356
107 1 0 — 180 433 1 58 716 809 1 —60 580
109 1 0/ 1 0 439 1 24 99 811 1 80 1355
113 1 =22 116 443 1 —-36 —81 821 1 60 820
127 1 28 151 449 1 12 —44 823 1 12 —1089
131 1 -24 99 457 1 =30 —180 827 1 -—-12 16
137 1 8 -304 461 1 -6 —11 829 1 0 - 1620
139 1 8 -29 463 1 20/ 1 20 839 1 42 36
1499 1t -—12 —284 467 1 44 404 853 1 48 396
151 1t —4 —1 479 1 -—-14 —556 857 1 6 —11
157 1t —4 —176 487 1 16 19 859 1 20 55
163 1 16 59 491 | 48 331 863 1 -—24 —981
167 1 —12 16 499 1 -52 631 877 1 64 1004
173 1 -28 116 503 1 36 244 881 1 —66 964
179 1 12 -9 509 1 -6 —971 883 1 —4/ 1 —4
181 1 =2 —244 521 1 =36 144 887 1 12 — 809
91 1 30 100 523 1 —42 36 907 1 0 —1620
193 1 =2 -79 541 1 42 261 911 1 0 —980
197 1 -6 —11 547 1 -8 —1109 919 1 -—42 36
199 1 38 316 557 1 —12 —144 929 1 66 1009
211 1 20 —80 563 1 48 496 937 1 —46 404
223 1 —4/ 1 —4 569 1 22 —4 941 1 18 164
27 1 2 —124 571 1 42 396 947 1 44 359
229 1 12/ 1t 12 577 1 —10 —295 953 1 —32 236
233 1 22 101 587 1 36 279 967 1 12 — 1089
239 1 -32 251 593 1 —12 —44 971 1 -24 124
241 1 6 —396 599 1 -—32 —64 977 1 78 1276
251 1 —18 36 601 1 —58 521 983 1 72 1276
257 1 6 —11 607 1 —44 464 991 1 =24/ 1 —24
263 1 12 —44 613 1 2 —44 997 1 20 —620




Numerical Tables

N=29 dim #,(I,(29)) = 2

p p p

201 2 -1 | 29 1 -—12 —612 617 1 —24 16
301 =2 -1 | 21 1 —2 241 619 1 —70 1223
501 1 1] 2717 1 12 —92 631 1 68 1148
7 1 0 -8 | 281 1 -30 —63 641 1 4 -388
n 1 -2 -1 | 283 1 -12 4 643 1 —48 504
131 2 -7 1293 1 —4 -28 647 1 —68 1124
17 1 4 —4 ] 307 1 14 —49 653 1 2 56
9 1 -6 1 -6 | 311 1 —28 68 659 1 —26 167
23 1 4 -28 | 313 1 —14 41 661 1  —44 356
29 1 -1/ 1 -1 | 317 1 12 —612 673 1 -
31 -6 —41 | 331 1 2 —1 677 1 21 2
37 1 4 1 4 | 337 1 —4 388 683 1 -8 -
4 1 -8  —56 | 347 1 12 -36 691 1  —48 1 —48
43 1 -10 2 | 349 1 —18 119 701 1 18 —887
4 1 -2 —17 | 33 1 —20 —188 709 1 —30 25
53 1 -2  —71 | 3%9 1 -2 71 719 1 12 —164
9 1 —4  —28 | 367 1 —~18 1 —18 727 1 20 —28
61 1 4 -4 | 3713 1 30 97 733 1 -8 —2032
67 1 0 —32 |39 1 -20 —188 739 1 6 —41
71 112 28 | 383 1 24 72 743 1 —36 292
7301 —4/ 1 —4 | 389 1 —40 112 751 1 —28 68
79 1 2 -1 | 397 1 =50 593 757 1 —68 1084
8 1 -4  —28 | 401 1 26 137 761 1 —12  —1532
89 1 8  —56 | 409 1 4 284 769 1 36 —644
97 1 8  —56 | 419 1 36 252 773 1 56 712
101 1 16 2 | 421 1 -12 932 787 1 12 —2276
103 1 4 —4 | 431 1 28 164 797 1 4 2884
107 1 24 136 | 433 1 —16  —448 809 1 —16  —736
109 1 —14 17 | 439 1 12 4 811 1 —16 56
13 1 4 124 | 443 1 60 868 821 1 —14 -23
127 1 20 68 | 449 1 36 36 823 1 52 —124
131 1 -20 —28 | 457 1  —36 36 827 1 —46 431
137 1 ~12 1 —12 | 461 1 —14/ 1 —14 829 1 20 —292
139 1 —14/ 1 —14 | 463 1 26/ 1 26 839 1 30 175
149 1 10 17 | 467 1 6 —1241 853 1 2 -2
151 1 0 —200 | 479 1 6 —89 857 1 18 73
157 1 0 —72 | 487 1 40 328 89 1 —14  —113
163 1 -2 71| 491 1 34 271 863 1 28 -2
167 1 12 28 | 499 1 —4 284 877 1 46 329
173 1 =36 292 | 503 1 —26 7 881 1 —14/ 1 —14
179 1 —4 68 | 509 1 38 289 883 1 8 —1784
181 1 6 119 | s21 1 30 25 887 1 —54 631
191 1 —28 68 | 523 1 —-32 128 907 1 12 —764
193 1 16 56 | 541 1 32 224 911 1 62 719
197 1 =2/ 1 -2 | 547 1 —32 —136 919 1 12 164
199 1 -—16 -8 | 557 1 12 -9 929 1 —60 77
201 1 2 =337 | 563 1 10 7 937 1 —12  —476
23 1 12 28 | 569 1 68 1124 941 1 34 —12719
27T 1 12 —164 | 571 1 16 —448 947 1 —42 103
29 1 24 72 | 577 1 20 —292 953 1 26 —343
23 1 —14  —79 | 587 1 —4 —28 967 1 62 943
229 1 28 164 | 593 1 2 49 971 1 20 68
241 1 14 —79 | 599 1 34 —433 977 1 78 1513
251 1 —26 119 | 601 1 40 392 983 1 —10  —697
257 1 42 433 | 607 1 —10  —137 991 1 20 92
23 1 —14 31 | 613 1 9 1 9 997 1 0 —800
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N=41 dim &5 (I,(41)) =3

p p
2 1 1 -5 —1 263 1 —-20 —740 12506
3 1 0 —4 2 269 1 —10 —228 —200
5 1 2 —4 —4 2N 1 4 —16 —-32
7 1 —6 8 -2 277 1 2 —332 2116
11 1 -2 —-20 50 281 1 —38 428 —1352
13 1 2 —12 -8 283 1 4 —448  —1376
17 1 2/ 1 2/ 1 2 293 1 —42 140 5528
19 1 —4 —16 -10 307 1 40 480 1808
23 1 —4 —32 -32 3 1 —10 -360 —1718
29 1 6 —4 —40 313 1 34 76 —-712
31 1 —16 64 —-32 3171 42 452 344
37 1 6 —36 —108 331 1 —6 —576 4658
41 1 —1/1 —1/1 -1 337 1 38 164 —3676
43 1 "4 —8 —16 347 1 —12 —144 1678
47 1 0 —120 —502 349 1 50 828 4540
53 1 —6 -4 8 353 1 22 —172 —4388
59 1 8 —16 —160 359 1 24 —256  —6400
61 1 -2 —52 184 367 1 16 —216 —1648
67 1 2 -20 —50 373 1 54 716 2248
71 1 -20 84 134 319 1 —48 656  —2720
73 1 2 —180 244 383 1 22 -32  —1798
79 1 —-32 328 —1090 389 1 -2 —596 3560
83 1 0 —64 —128 397 1 —22 68 152
89 1 6 —148 —920 401 I 6 —700 —5132
97 1 —6 —~52 248 409 1 —6 —436 —-2740
101 1 —18 —12 488 419 1 4 —1224 80
103 1 4 —256 —1424 421 1 —-22 —100 2600
107 1 16 0 —256 431 1 12 —424  —4688
109 1 6 —124 —-760 433 1 -30 —1044 29592
113 1 -6 —148 —116 439 1 —50 —268 25750
127 1 —16 48 —-32 443 1 —80 2048 —16976
131 1 20 80 —208 449 1 —22 76 520
137 1 —18 —148 2344 457 1 —-10 —116 1096
139 1 12 —352 3680 461 1 38 300 100
149 1 —10 —212 1720 463 1 4 —516 1286
151 1 —28 196 —338 467 1 56 1024 6112
157 1 14 —-172  -2392 479 1 2 —192 670
163 1 16 32 —128 487 1 -8 —1552 2416
167 1 14 28 —122 491 1 8 —352 3616
173 1 30 236 232 499 1 —48 764  —4030
179 1 -2 —296 —610 503 1 40 176  —3098
181 1 34 140  —2264 509 1 50 532 —200
191 1 —14 —412 3562 521 1 42 188 -712
193 1 26 188 248 523 1 -20 —720 5696
197 1 —-50 780  —3592 541 1 —-30 —436 14044
199 1 —46 612  —2510 547 1 68 1168 3622
211 1 —10 —160 1382 557 1 50 684 2536
223 1 8 —64 —256 563 1 —58 732 —1934
227 i -8 —28 214 569 1 -2 —44 20
229 1 6 —268 —1240 571 1 6 —1212  —9838
233 1 —26 —116 4616 57171 46 364  —2008
239 1 —16 —48 430 587 1 18 104 194
241 1 —6 —388 2792 593 1 38 —564 -9176
251 1 28 208 464 599 1 40 —432 —160
257 1 —10 —276 —344 601 1 —26 —116 1928
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Numerical Tables

N =47 dim &,(I,(47)) = 4
P p
2 1 -1 -5 5 —1 263 1 16 —467 —3376 56349
3 1 0 -7 4 1 269 1 —32 168 2432 —17328
5 1 2 —16 —16 48 2711 1 4 101 —16720 — 182799
7 1 -4 -7 44 —43 277 1 14 357 —6350 —22639
1 1 6 —4 —56 —48 281 1 —26 —56 2704 8144
13 1 -8 0 56 48 283 1 52 757 760 —30439
17 1 -6 21 74 141 293 1 -6 —592 2000 72208
19 1 0 -16 -8 16 307 1 —48 689 —2212 —9839
23 1 6 —-20 —40 —16 311 1 26 —400 — 10656 —47248
29 1 10 20 -8 —16 313 1 6 —248 —1792 3824
31 1 8 0 —56 48 317 1 —-20 —592 10216 21936
37 1 —10 15 34 9 331 1 56 977 4524 —12911
41 1 —6 -8 32 —16 337 1 —90 3003 —44026 239373
43 1 -2 -8 —112 432 347 1 16 —803 — 10336 103341
47 1 -1 1-1/ 1 -1/ 1 -1 349 1 —18 —524 4232 49616
53 1 6 —101 —314 2429 353 1 30 —441 — 16902 —80919
59 1 -4 115 704 —519 359 1 0 =312 —2776 —6704
61 1 6 73 10 337 367 1 4 304 64 5888
67 1 —10 —120 752 3184 373 1 —-24 —616 18536 —103184
71 1 12 -19 —320 657 3719 1 24 141 —104 —1523
73 1 —22 60 1368  —7664 383 1 —-16 —171 1984 10629
79 1 —-20 77 240 —47 389 1 42 344 —656 —752
83 1 -20 80 192 —256 397 1 74 2027 24398 109001
8 1 6 —161 206 4841 401 1 42 67 —11594 —73039
97 1 —30 179 1634 —14307 409 1 0 —54 —4160 9472
101 1 22 35 —1398 —5903 419 1 8 —868 —4240 104816
103 1 20 7 —240 —47 421 1 -2 112 112 2832
107 1 -12 -84 848 1488 431 1 12 —1099 —21728 — 56807
109 1 6 —276 —1064 5776 433 1 -18 =32 1216 —2128
113 1 4 -216 —1656 —3024 439 1 —20 576 17024 — 108288
127 1 -22 76 4088 —20688 43 1 6 —744 —5536 10512
131 1 —28 173 —144 —199 449 1 26 —296 —11536 —70864
137 1 —36 376 —1256 368 457 1 —62 899 1158 —35303
139 1 28 —136 —7992 —41488 461 1 —56 288 24896 — 320256
149 1 6 —189 —1030 721 463 1 —22 —1412 25048 7824
151 1 0 -224 8 12368 467 1 -24 712 4064 59152
157 1 2 =25 —78 —59 479 1 0 -559 1348 18217
163 1 -6 =56 304 —-304 487 1 —20 224 640 —256
167 1 -6 —60 152 912 491 1 12 =375 —2012 21973
173 1 42 503 1234 37 499 1 -36 376 —328 —8752
179 1 —28 0 3184 752 503 1 40 —64 —10248 —29872
181 1 36 408 1304 —1328 509 1 16 —184 —3072 —5552
191 1 -20 48 320 768 521 1 —58 415 13186 10089
193 1 —48 732 —4208 7984 523 1 —20 —624 3136 256
197 1 12 -336 —2224 7984 541 1 26 —853 —28918 —204739
199 1 2 —300 2952 7472 547 1 26 —604 — 15880 —43984
211 1 -2 —652 4344 17872 557 1 —6 —1408 —13024 —13584
223 1 2 -—-824 —928 39056 563 1 —16 216 5016 —22544
227 1 14 —248 2896 8912 569 1 20 16 —856 1008
229 1 —10 —768 8272 2576 571 1 —-32 321 —932 —719
233 1 -2 —-192 -1216 2128 577 1 26 140 —88 —1296
239 1 -8 —475 472 8741 587 1 -84 2160 —16832 40192
241 1 —18 —165 3382 —11723 593 1 —14  —-500 4040 —7536
251 1 4 —667 1888 21441 599 1 40 —152 —10784 27728
257 1 24 —264 —3080 6576 601 1 -6 —365 —2414 —3259




Table B 309
N =6l dim %, (I (61)) = 4
p Flx)= *x)f(x) p F(x) =f*(x)f(x)
21 1 -1 -3 1 263 1 16/ 1 28 20 -—2732
31 271 -2 —4 4 269 1 18/ 1 10 —268 —1160
51 31 1 -9 -13 271 1 —14/ 1 2 —496 —2404
71 —1 1 3 -1 —1 277 1 —10/ 1 -4  —256 92
mi1 s 1 —13 53 —67 281 1 0/ 1 —28 176 272
31 -1/ 1 9 1 -37 283 1 -6/ 1 -34 232 —68
17 1 —4 1 2 —38 4 203 1 —18/ 1 2 —668 856
91 41 0 —48 -20 307 1 19/ 1 -7 =291 919
221 9/ 1 =5 5 1 3101 15/ 1 —15 —43 823
291 6 1 -4 —4 20 33 1 6 1 30 188 —536
311 0t 2 —76 116 317 1 30/ 1 —38 1068 —6344
371 -8 1 6 —36  —108 3311 17/ 1 13 35 25
4 1 -5 1 -3 —61 191 337 1 2/ 1 —26 —748 1789
43 1 8 1 14 56 68 47 1 -8 1 -32 264 —556
47 1 —4 1 4 —88 16 349 1 24/ 1 —14  —116 —380
531 —6/ 1 2 —12 -8 353 1 —19/ 1 15 —1009 —18043
59 1 -9/ 1 —-29 231 —325 359 1 —12/ 1 —14 —564 8780
61 1 1/t -1 1 -1 1 -1 367 1 —14/ 1 38 428 1352
671 7/ 1 -9 —85 559 373 1 10/ 1 —24 —532 7108
711 8 1 —14 —12 92 379 1 14/ 1 —18  —696 12580
731 11/ 1 1 —45 ~25 83 1 -5 1 37 297 131
79 1 -3 1 -13 —51 625 389 1 14/ 1 34 324 920
83 1 -4 1 8 —64  —256 397 1 -8 1 —6  —580 6652
89 1 4 1 4 —56 80 401 1 —16/ 1 28 208 464
97 1 14/ 1 —10 —116 1096 409 1 —-30/ 1 2 —19 680
011 0o 1 10 0 —148 419 1 -4/ 1 —50 —92 21380
103 1 —4/ 1 —12 0 108 421 1 -8 1 =2 —38 —4
07 1 2/ 1 -2 92 109 431 1 -6/ 1 -2  —388 —1304
109 1 17/ 1 —13 3 145 433 1 8 1 44 584 2096
13 1 -1/ 1 9 —133 —106l 439 1 0/ 1 44 464 860
1271 -6 1 18 68 52 443 1 —12/ 1 4 —256 —1424
1311 16/ 1 -8 —24 92 449 1 35 1 29 191 335
137 1 -9/ 1 -3 —253 859 457 1 20/ — -90 2672 —26108
1391 117 1 3 —1 -5 461 1 18/ 1 -6 —756 2808
149 1 —19/ 1 -9 11 5 463 1 4/ 1 -36 —48 3904
151 1 —11) 1 -3  —277 2033 467 1 —11 1 21 35 —691
157 1 4/ 1 10 —300 —3412 479 1 —14/ 1 -22 —176 —40
163 1 —18/ 1 —10 —284  —668 487 1 12/ 1 -20 —176 —4
167 1 12/ 1 32 148 —1604 491 1 28/ 1 -8 —164  —388
173 1 —10/ 1 10 —4 —38 499 1 —13/ 1 —45 -225 16875
179 1 18/ 1 -42 476 —1760 503 1 —10/ 1 22 —48  —604
181 1 -8 1 20 —80 —1088 509 1 —28/ 1 58 1076 6340
191 1 -3/ 1 -31 139 —167 520 1 20/ 1 58 140 —23300
193 1 8 1 20 80  —64 523 1 9/ 1 19 —483  —871
197 1 3 1 29 203 323 541 1 —28/ 1 8 —928 8576
199 1 —6/ 1 50 812 4280 547 1 29/ 1 31 169 137
21 1 -4/ 1 -2 -52 764 557 1 28/ 1 40 320 512
23 1 -23/ 1 11 —183 —1343 563 1 10/ 1 22 —212 —4588
27 1 -21/ 1 ~11  —483 5891 569 1 15/ 1 1 -33 -85
29 1 -9/ 1 9 —133 —25 571 1 —38/ 1 46 252 344
23 1 14/ 1 40 440 796 577 1 —10/ 1 -8 512 5996
229 1 -2/ 1 38 404 1220 587 1 —32/ 1 22 —268 —1916
241 1 3 1 -7 —345 1675 593 1 6 1 —12 0 108
251 1 12/ 1 —38 296  —548 599 1 35/ 1 —45  —225 16875
257 1 22/ 1 =2 -36 184 601 1 43 1 —15  —205 587
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N =67 dim F((67)) = 5
p F(x) = f*(x) f1(x) f2(x)
2 1 3 1/ 1 -2/ 1 1 —1
3001 3 1/ 1 2t -1 -1
501 31 31 -2/ 1 —4 —1
7001 1 =11/ 1 2t —1 —1
1 1 0 -5 1 4 1 -1/ 1 -1
131 7 1/ 1 -2/ 1 1 —1
17 1 6 4 1 -3/ 1 —6 4
19 1 -1 -1y 1 -7/ 1 1 29
23 1 -6 —11/ 1 -9/ 1 2 —-19
29 1 6 11/ 1 5/ 1 —10 5
31 1 /1 11 10/ 1 0 —45
371 1 -1yt 1/ 1 -3 1
41 1 3 1/ 1 0/ 1 -5 -25
43 1 -3 -9/ 1 21 9 -1
47 1 15 55/ 1 1/ 1 7 1
531 9 1 9/ 1 10/ 1 0 ~45
59 1 -6/ 1 —6/ 1 -9/ 1 6 1 6
61 1 7 -89/ 1 21 9 9
67 1 iyt oyt -1/ 1 “1/ 1 —1
71 t 12 31/ 1 0 1 0 —245
731 4 1 4 1 71 -8/ 1 -8
79 1 7 -89/ 1 8/ 1 1 -31
83 1 15 -5 1 —4/ 1 —13 31
89 1 0 -5 1 -7 1 16 19
97 1 -2 179/ 1 0/ 1 0 —45
101 1 9 -1 1 -2/ 1 -19 59
103 1 5 —95 1 16/ 1 -3 1
107 1 —24 99/ 1 7/ 1 -16 19
109 1 3 -9/ 1 -2/ 1 -9 —11
13 1 -33 271/ 1 12/ 1 -1 -7
127 1 5 -5/ 1 -7/ 1 21 79
131 1 31 31 12/ 1 ~6 —11
137 1 12 -9/ 1 —12/ 1 26 149
139 1 31 31 -2 1 —24 139
149 1 -9 —191/ 1 =21/ 1 3 ~59
151 1 111 -3/ 1 -6 -7
157 1 —13 =59/ 1 -9/ 1 —-13 —-239
163 1 7 iy 1 —19/ 1 -13 41
167 1 —12 —284/ 1 =24/ 1 —14/ 1 —14
173 1 39 349/ 1 —11/ 1 -7 61
179 1 18 76/ 1 12/ 1 —6 —36
181 1 7 -89/ 1 -7/ 1 1 19
191 1 6 —11 1 6 1 32 211
193 1 —27 171/ 1 23/ 1 1 -1
197 1 18 61/ 1 2 1 ~36 319
199 1 13 -239/ 1 -7 1 -39 349
211 t 1 19/ 1 12/ 1 ~1 —61
23 1 —18 36/ 1 —11/ 1 -2 —404
27 1 3 -359/ 1 -3 1 -21 —17
29 1 31 229/ 1 -4/ 1 7 —269
233 1 —12 16/ 1 —10/ 1 20 —80
239 1 27 151/ 1 20/ 1 ~15 —155
241 1 —45 495/ 1 19/ 1 -17 1
251 1 —18 76/ 1 2 1 14 —196
257 1 18 —239/ 1 1/ 1 2 ~79




Table B

N=1T1 dim &, (I'4(71)) = 6
p F(x) = f1(x)f>(x)

2 1 0 -5 31 1 —4 -3
3 1 1 —8 -3/ 1 -1 —4 3
5 1 3 -2 -7/ 1 -5 -2 25
7 1 -2 —16 24/ 1 -2 —16 24
11 1 2 -16 —24/ 1 0 —20 24
13 1 —4/ 1 —4/ -4/ 1 6 —8 —56
17 1 -2 —16 24/ 1 2 —-32 —24
19 1 —11 36 —-35/ 1 —1 —20 —25
23 1 4/ 1 4/ 1 4/ 1 -8 —12 72
29 1 5 -2 =25/ 1 —11 14 71
31 1 —4/ 1 —4/ -4/ 1 6 -8 —56
37 1 -9 —26 37/ 1 15 70 97
41 1 —14 48 -8 1 2 —68 56
43 1 17 72 81/ 1 —13 48 —45
47 1 10 0 =72/ 1 —4 —28 40
53 1 0 —-20 24/ 1 18 28 —456
59 1 22 144 280/ 1 4 —36 —152
61 1 —8 —76 536/ 1 —16 16 320
67 1 12 -32 —64/ 1 12 28 —40
71 1 -1/ 1 -1/ 1 -1/ 1 —1/1 -1/1 —1
73 1 -3 -2 7/ 1 =27 202 —461
79 1 -7 —136 525/ 1 3 —44 15
83 1 -23 172 —419/ 1 19 96 63
89 1 —13 —82 45/ 1 -1 —22 —27
97 1 —4 -36 152/ 1 —22 144 —280
101 1 3 —62 129/ 1 -9 22 —15
103 1 9 —48 —191/ 1 7 —152 —53
107 1 12 —-32 —64/ 1 —28 192 —64
109 1 —19 —14 735/ 1 1 —26 15
113 1 0 —260 ~1544/ 1 8 —12 —-72
127 1 26 60 —1576/ 1 -10 —64 -8
131 1 13 —12 371/ 1t -9 —236 2287
137 1 22 —48 —1256/ 1 —8 —112 320
139 1 —-26 192 —-360/ 1 -8 —68 —56
149 1 10 —132 280/ 1 4 —84 —392
151 1 27 196 367/ 1 —47 732 =3779
157 1 7 -30 25/ 1 23 —14 —691
163 1 —10 -72 504/ 1 42 508 1816
167 1 —55 984 —5679/ 1 -9 -20 175
173 1 6 —288 —648/ 1 22 92 —216
179 1 3 —356 —-945/ 1 1 —124 477
181 1 —38 376 —888/ 1 6 —200 —1176
191 1 23 —80 —925/ 1 —15 —260 —743
193 1 2 —528 —4824/ 1 —12 —132 1304
197 1 0 —80 —192/ 1 20 92 120
199 1 25 128 185/ 1 —-37 436  —1657
211 1 —14 —68 504/ 1 38 296 648
223 1 ) —-312 2479/ 1 5 —740 -—8911
227 1 —4 —428 2168/ 1 0 —596 —3896
229 1 —-23 —114 1935/ 1 —11 —518 —821
233 1 21 —242 —-1777/ 1 -7 —346 —1061
239 1 46 616 1960/ 1 —4 —348 200
241 1 —62 1248 —-8136/ 1 —36 276 —200
251 1 -7 —192 1629/ 1 -37 324 315
257 1 12 —380 —200/ 1 38 348 360
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Table C

This table gives the Fourier coefficients a, (2 < p < 761: prime numbers) of a

primitive form in 9’2<N , (ﬁ)) for N =29 and 37. Since the dimension of each

a-”eZninz }
1

space is 2,

np18

{f(z) - § e g =

sumatsr(n ).
“(())

P P P

B C I A G I N O
2 - /-5 3 - -J-5 5+ -3
7+ 2 1 - s B+ -1
17 - —2/=5 |19 - 0 B+ 6
29 —3+2/-5|31 - 3/=s 37 -0

a4 - —2/-5 |4 - -3 /-5 |41 - /s
3+ -9 9 o+ 6 61 -  6/-5
67 + 8 71+ 0 B -0
9 - -3/-5 |83+ -6 89 - —2/-5
97— 6/-5 01 - —8,/—5 103  + —4
07+ 18 09 + 5 m - a/-s
27 - 0 Bl - a/-s 137 - a/-s
139+ —10 49+ 15 51+ —10
157 - —6,/—5 (163 - -9/=s5 |167 + -12
1 o+ =6 7%  + 0 181+ 5



Table C

#(=(5))

p p P
PG e B e ).
91— 4/-s 193 — —6/—5 [197  + —18
19+ 14 ar - 3/ P2 S —16
27 4+ 12 29 - —6/—-5 |23 + -9
239+ 6 241 4 —25 31— 1/-5
257+ -3 263 — -5/-5 |20 - —2/-5
m - —9/=5 217+ 2 81 o+ 3
83 4+ 14 93— 4/-s |07 - 9 /-5
M - 4/-s 3+ 29 7 - 10,/—5
B - 15/-5 |37 - —6/—5 |37+ -12
M9+ ~1 383+ -6 39— /-5
67— —12/-5 |33+ —31 39—~ 0
83+ 6 89— -8/-5 |397 4+ -7
01+ 15 409 - 12/-5 |49+ 4
Qr - e/-5 |4+ 18 433 0
439+ —34 M3 - —8,/—5 |a49 16,/—5
457+ 2 1 — 4 /-5 |43 o+ 26
467  — 5 419 - ~5/-5 |47 4+ 2
a1 — —11/=5 (499  + -10 3~ 1/-5
59+ 15 20+ 27 523+ —4
s - 0 47+ 38 557+ 18
563 — —5/-5 |569 - -8/-5 |sm o+ 3
577 - —18/—5 |87+ —a 93+ 9
599 B/-5 feo1 -  6/—5 |e7 -  3/=s
613+ -31 617 — -20/-5 {619 —  15/=5
631+ R 641 - 10/-5 |63 + 26
647 + —18 63 -  2/-5 |69 - -17/-5
661  + ~10 673+ 1 677 — -8,/-5
683+ ~36 91  + 20 700+ ~45
709+ 35 M9 4 36 71 - —12/-5
733 — 12/-5 |19 - —9/-5 |13 -  a/-s
751 — 12 /-5 {157 —  —18/-5 {761  + -30
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() (%) (5)
P 37 % P 37 i P 37 %

2 - 2i 3 + -1 5 - -2

7 + 3 11 + -3 13 - —6i
17 - 2 19 - 6i 23 - 4

29 - —4 31 - 0 37 —1+46i
41 + -3 43 - —6i 47 + 3

53 + 9 59 - —4i 61 - 0

67 + —12 7 + -3 73 + 9

79 - 6i 83 + 9 89 - —14i
97 - 12i 101 + -3 103 - —6i
107 + ~12 109 - 6i 113 - 4i
127 + -7 131 - —10i 137 + 18
139 + 0 149 + 15 151 + 8
157 + 3 163 - —6i 167 - 2i
173 + —21 179 - 16i 181 + -3
191 - 20i 193 - ~6i 197 + 3
199 - —~24i 211 + ~13 223 + 19
227 - —8i 229 + -5 233 + —6
239 - 16i 241 - 0 251 - 10i
257 - —8i 263 + 9 269 + —30
271 + -3 277 - 12i 281 - — 20
283 - 24i 293 + -6 307 + -7
311 - 10i 313 — —6i 317 + 18
331 - 0 337 + 13 347 - 32i
349 + 30 353 - 14i 359 + —15
367 + 8 373 + 21 379 + 15
383 - —16i 389 - 16i 397 + 33
401 - —10i 409 - —24i 419 + 15
421 - 30i 431 - 10i 433 + 9
439 - —24i 443 + —21 449 - 26i
457 - —18i 461 - 10i 463 - —36i
467 - —28i 479 - —4i 487 - 18
491 + 12 499 - 36i 503 - 14i
509 + 15 521 + -3 523 - —6i
541 — 0 547 - 12i 557 - — 28
563 - —26i 569 - —44i 571 + —33
577 - 42i 587 - 22i 593 + —21
599 + 45 601 + —18 607 - —18i
613 + 29 617 + 3 619 + —35
631 - —30i 641 + -33 643 - 24i
647 - 2i 653 - 44i 659 + —45
661 - 30i 673 + 21 677 + 3
683 - —46i 691 + 12 701 - 20i
709 - 6i 719 + 15 727 - —18i
733 + 31 739 + 25 743 + 39
751 + 27 757 - 12i 761 + 33
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