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Preface 

Modular forms play an essential role in Number Theory. Furthermore the 
importance of modular forms has continued to grow in many areas of mathematics 
including the infinite dimensional representation theory of Lie groups and finite 
group theory. The aim of this book is to introduce some basic theory of modular 
forms of one variable. 

Originally this book was written in Japanese under the title "Automorphic 
forms and Number Theory" by Koji Doi and myself and pubHshed by Kinokuniya, 
Tokyo, in 1976. When the English translation was planned, the first named author 
proposed that only the chapters written mainly by me be translated together with 
some additional material and pubHshed under my sole authorship. 

In Chapters 1 and 2, the general theory of Fuchsian groups, automorphic forms 
and Hecke algebras is discussed. In Chapter 3,1 summarize some basic results on 
Dirichlet series which are necessary in the succeeding chapters. In Chapter 4, the 
classical theories of modular groups and modular forms are studied. Here the 
usefulness of Hecke operators as well as the remarkable relation between modular 
forms and Dirichlet series obtained by Hecke and Weil have been emphasized. 
Chapter 5 briefly reviews quaternion algebras and their unit groups, which are also 
Fuchsian groups and which play a role similar to that of modular groups in their 
application to number theory. Chapter 6 is devoted to the trace formulae of Hecke 
operators by Eichler and Selberg. The formulae have been generalized by many 
people including H. Shimizu, H. Hijikata and H. Saito. A formula computable by 
them is also offered. In our Japanese edition, as an introduction to the automorphic 
forms of several variables. Chapter 7 deals with Eisenstein series of Hilbert modular 
groups and the appHcation to values of zeta-functions (following Siegel). As a result 
of important series of recent work by Shimura on Eisenstein series, I decided to 
rewrite it to introduce some of his results on Eisenstein series restricting it to only 
the case of one variable. 

I should like to express my deepest gratitude to Professor Goro Shimura, who 
constructed the essential part of the arithmetic theory of automorphic functions, for 
his valuable suggestions and encouragement. 

The translation of Chapters 1 through 6 was prepared by my colleague 
Professor Yoshitaka Maeda. He also corrected mistakes in the original text, and 
gave me many appropriate suggestions. I express my deep and sincere thanks to him 
for his collaboration. I also express my hearty thanks to Professor Haruzo Hida 
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whose lectures at Hokkaido University during 1983-84 were very helpful for the 
preparation of the present volume, and to Professor Hiroshi Saito and Dr. Masaru 
Ueda who kindly read the manuscript very carefully as a whole or in part and made 
many valuable suggestions. 

Sapporo, February 1989 Toshitsune Miyake 
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Notation and Terminology 

1. We denote by / , Q, U and C, the ring of rational integers, the rational number 
field, the real number field and the complex number field, respectively. For a 
rational prime p, Z^ and Qp denote the ring of p-adic integers and the field of p-adic 
numbers, respectively. We also denote by U + , !R_ and C \ the set of positive real 
numbers, the set of negative real numbers and the set of complex numbers with 
absolute value 1, respectively: 

R+ = {xelR I x > 0 } , [R_ = {xeR | x < 0 } , C^ = {zeC | |z| = 1}. 

2. For a complex number z, we denote by Re(z) and Im(z), the real part and the 
imaginary part of z, respectively. When z is a non-zero complex number, we denote 
by arg(z) the argument of z, which we specify by — TT < arg(z) ^ n. For a real 
number x, we denote by [x] the largest integer not exceeding x. When x is a non­
zero real number, sgn(x) denotes + 1 or — 1 according as x > 0 or x < 0. 

3. For a ring R with unity 1, we denote by R"" the group of invertible elements in 
R. Further we write 

M„{R) = the set of square matrices of degree n over R, 

GL„{R) = {oieM„(R) \ det(a)eR^}, 

SL„(R) = {aeM„{R) \ det(a) = 1}. 

4. We denote by II the disjoint union of sets. For a finite set A,\A\ denotes the 
number of elements in A. We also denote by # { }, the number of the 
elements of the set given by { }. 

5. When ^ i , . . . , g^ are elements of a group G, <^i, . . . , g^} denotes the 
subgroup of G generated by ^ i , . . . , ^^. When y^,. . . , f̂  are vectors in a vector 
space V over a field X, <i;i, . . . , t;^> denotes the subspace of V generated by 
Vi,. . . , v„. For mappings g.A^B and / : f i - • C, we denote byf°g the mapping 
of A to C given by 

if^g)ia)=f{g{a)) (aeA). 



Chapter 1. The Upper Half Plane and 
Fuchsian Groups 

We explain basic properties of the upper half plane H in § 1.1 through § 1.4. We 
introduce Fuchsian groups in §1.5 which play an essential role throughout the 
book. In § 1.6 through § 1.8, we study the quotient spaces of H by Fuchsian groups 
and induce the structure of Riemann surfaces on them. 

§1.1. The Group of Automorphisms of the Upper Half Plane 

We denote by P the Riemann sphere Cu {oo} and define the action of an element 

GL2(C) on P by -=[:a°' 
(1.1.1) az = ^ ^ ^ (zeP). 

cz-\-d 

This mapping "z i—• az" is complex analytic from P into itself. We put 

(1.1.2) j{(x,z) = cz + d (zeC). 

If z 6 C and ; (a, z) # 0, then we have 

This equality also holds when considering each constituent as a meromorphic 

function. Calculating aĵ  . («»j^e^^2(C)) in two ways, we see that 

; (a .^z)y(A.)[«<f>]=;(aAz)[<«f] , 

From this equality, we obtain 

(1-1.4) (a)?)z = a()Sz) (a, PeGL^^C), zeP), 

and 

(1.1.5) j{ap, z) =;•(«, MJiP, z) (a, jSeGi2(C), z6C). 
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By (1.1.4), the mapping "zi-^a"^z" is the inverse mapping of "zh-^az", and 
therefore, "zi—•az" is an automorphism of the Riemann sphere P. This auto­
morphism is called a linear fractional transformation. Putting P = OL~^ in (1.1.5), 
we see 

(1.1.6) 7 ( a - \ z ) = 7 ( a , a - i z ) - ^ 

Lemma 1.1.1. A linear fractional transformation maps circles and lines on C into 
circles or lines on C. 

=[::] Proof We put for an element P = \ of GL2(C) 

Cp = {zeP\\Pz\ = l}. 

Since z belongs to C^ n C if and only if \az + b\ = \cz H- dl C^ n C is a Hne (if a = c) or 
a circle (the Appolonius circle). Conversely it is easily seen that circles and lines on 
C can be expressed as C^ n C with some PEGL2(C). Let a be an element of GL2(C) 
and denote by a(C^) the image of Cp by a. Since a(C^) = C^^-»»^i^p) n C is again a 
circle or a line on C. D 

We define two domains H and K of C by 

H = {zGC|Im(z)>0} 
and 

K = {zeC | | z |< l} . 

The domains H and K are called the upper half plane and the unit disk, respectively. 

Lemma 1.1.2. The upper half plane H and the unit disk K are complex analytically 
isomorphic. 

Proof Put P = L . . Then "z !-• pz" is an automorphism of P, and satisfies 

^~' <1 (zeH). \pz\ = 

Since we see 
z + i 

lm(p-'w) = lm( i , ^ )= ,̂  ,. '2>Q (weK), 
. w+1 \ _ l - |w|2 

w + 1 / | l - w p 

p gives an analytic isomorphism of H onto K. D 

We are interested in functions on H which satisfy certain transformation 
equations for automorphisms of H. (We say that they have automorphy) We first 
study automorphisms of H. We denote by Aut(H) and Aut(K) the groups of all 

(complex analytic) automorphisms of H and K, respectively. If a = e GL2(U\ 
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and z e H, then 

/I 1 ax T / . ^et(a) Im(z) 
(1.1.7) i „ ( „ . ) = _ _ _ ^ . 

In particular, if det(a)>0, then we have lm(az)>0, and therefore, "zi—•az" induces 
an automorphism of H. We put 

GmU) = {(xeGL2{U)\ det(a)>0}, 

and denote by I{OL) (aeGL2 (IR)) the automorphism "zi-^az" of H. Then it follows 
from (1.1.4) that this mapping 

i: GLj(IR)9ai-)>i(a)eAut(H) 

is a group-homomorphism. 
Now we put 

(|_ —sm ^ COS0JI J 

We identify aeW" with ^ eGL^(IR). If for a = r eGL2([R), Ka) is the 

identity of H, then a belongs to R"", since cz^ + (d — a)z —b = 0 for any zeH. Now 
we have 

Theorem 1.1.3. (1) For any zeH, there exists an element a in SLjCIR) satisfying 
OLi = Z . 

(2) The homomorphism i induces an isomorphism 

GLU^)/^'' ^ SL2(U)/{± 1} ^ Aut(H). 

(3) S02(U) = {oceSL2iU)\(xi = i} 

and 
U" • S02{U) = {a G GL2'" (IR) I (xi = i}. 

Proof. For any z = x + yiell, put '-y'-[i: Then a belongs to SL2iU) and 

ai = z; this proves (1). The first isomorphism of (2) is obvious. To see the second 
isomorphism, we have only to verify the surjectivity. For this purpose, it is sufficient 
to show that if an element ij/ of Aut(H) satisfies \l/(i) = i, then there exists an element 
P in -S02(IR) such that ^ = i(p). In fact, for each element (/>eAut(H), we get an 
element aeSL2(U) satisfying OL~^ (j){i) = i by (1). Then taking i(a" )̂(/> in place of ^, 
we have (J) = I(OLP) for some j5eS02(IR); this implies i is surjective. Now let xj/ be an 
element of Aut(H) such that ^(i) = i. We put 

p(z) = (z-0/(2 + 0 (zeH), 

which is an isomorphism of H onto K. Since p(0 = 0, tj^pif/p'^ is an auto­
morphism of K such that ;/(0) = 0. Applying Schwarz's theorem to rj and ^ " S we see 
that 

|^(w)| = |w| (weK). 
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A further application of Schwarz's theorem shows that there exists 6(0S6<n) such 
that 

rj(w) = e^^^w (WEK). 

Thus puUing back the function rj by p~^ to H, we see that 

( — sin c7)z + cos u 

namely il/ = i(kQ) with fc^ = . _ _ eS02(IR). This implies (2) and (3). D 
|_—smt/ cos ^J 

Now let us consider Aut(K). Put 

Since 

(1.1.8) pSL2mp-' = SU(ll\ p = r[ " j l 

we see by Lemma 1.1.2 and Theorem 1.1.3(2) 

(1.1.9) Aut(K)-SC/(l,l)/{±l}. 

§1.2. Actions of Groups 

In this section, we prepare general theory on topological spaces and transformation 
groups to apply it to the upper half plane H. 

Let G be a group and X a topological space (resp. a complex domain). We say 
that G acts on X if there exists a mapping 

GxX3{gyX)\-^gxeX 

satisfying the following three conditions: 

(i) for each element g of G, '*X3x\-^gxeX'' is a continuous (resp. complex 
analytic) mapping; 

(ii) {gh)x = g(hx)for two elements g and h ofG; 
(iii) for the unit element 1 o/G, Ix = xfor any element X ofX. 

Since for any element g of G, ''xv-*g~ ^x" is the inverse mapping of "xi-^gx'\ we see 
that if G acts on X, then 

(i') for each element g of G, "Xaxi—•gfxeX" is a topological {resp. complex 
analytic) automorphism of X. 
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We assume hereafter that G acts on X. For an element x of Z we put 

G^ = {gGG\gx = x}, 

and call it the stabilizer ofx. It is obvious that for any element g of G, 

(1.2.1) G,, = gG,g-\ 

An element x of A' is called a fixed point ofgeGif 

gx — x. 

This is equivalent to saying geG^. Further for each element x of X, a subset of X 
defined by 

Gx = {gx\geG} 

is called the G-orbit ofx. The set of all G-orbits in X is denoted by G\X. Since either 
Gx = Gy or GxnGy = 0 for any two elements x, y of X, X can be expressed as a 
disjoint union of G-orbits: 

X = IjGx. 

In particular, HX itself is a G-orbit, then we say that G acts transitively on X. This is 
equivalent to saying that 

(1.2.2) for any two elements x, y of X, there exists an element g of G such that 
gx = y. 

Therefore, it follows from (1.2.1) that if G acts transitively on X, then all the 
stabilizers are conjugate. 

Now let us denote by n the canonical mapping of A" onto the set of all G-orbits 
G\X; in other words, TT is a mapping which corresponds any element x of X to the 
element Gx of G\X: 

X3x\-^n(x) = GxeG\X. 

We induce the strongest topology on G\X under which the above projection n is 
continuous. More precisely, it is given by defining that a subset U of G\X is open if 
and only if the inverse image TC" ^(C/) of [/ by TC is open in X. The topological space 
G\X with this topology is called the quotient space of X by G. Since for an open 
subset U of X, we have 

n-\n(U))=[j gU gU = {gu\ueU}, 
geG 

n{U) is again open in G\X. Thus n is an open continuous mapping of X onto the 
quotient space G\X. 

If a group G has a topological structure of a Hausdorif space, and the two 
mappings 

GxG3(g,h)h^gheG, GBg\-^g~^eG 

are continuous with respect to its topology, then G is called a topological group. Let 
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G be a topological group and assume that G acts on X. Then we say that a 
topological group G acts on a topological space AT, if the additional condition (iv) 
below is satisfied: 

(iv) Gx X3(g,x)\-^gxeX is continuous. 

If a topological group G acts on a topological space X, then all the stabilizers are 
closed subgroups of G. Conversely, let G be a topological group and K a closed 
subgroup of G. Then K acts on G by right multipHcation. We denote by G/K the 
quotient space of G by K, and call it the space of the right cosets of G by K. 

Theorem 1.2.1. Assume that a topological group G acts transitively on a topological 
space X. If G is a locally compact group with a countable basis, and X is a locally 
compact Hausdorff space, then for each element xeX, the space of the right cosets 
G/Gx is homeomorphic to X by the correspondence "gfG^ i—• gfjc". 

Proof It is obvious that the correspondence is bijective. Thus it is sufficient to 
show that it is bicontinuous. From the definition of the topology on G/G^, it is 
equivalent to saying that "gf J-> gx'' is an open continuous mapping of G to X. The 
continuity is obvious by definition, and therefore it is sufficient to show that this 
mapping is also open. Let us prove that for any open set U of G,Ux = {gx\geU} 
is also open in X. Let gx (gEU)bQ any point of Ux. Take a compact neighbor­
hood V of the unit element of G so that V~^ = V and gV^ d U. Since G has a 
countable basis, there exist countably many elements g„ (n=l, 2, . . .) satisfying 
G = [j^= 1 gn V. Put W„ = g„Vx, then X = 1J„"L i W„, Since W„ is a compact set in 
the Hausdorff space X, it is closed. Now suppose that no W„ contains an open 
subset. Since X is regular, we find inductively non-empty open subsets L/„ so that 
the closures U„ are compact and 

l / „ . i - P F „ _ i 3 ( 7 „ (n^2). 

Then we see that UI^DUJ^U^^ Since f]^=i U„^0 and f]^=i U„ has no 
common point with any IV„, this contradicts the fact X = [j^=i W„. Hence there 
exists a set W^ = g^Vx which contains an open subset of X. Since fif^Kx is 
homeomorphic to Vx, Vx also contains an open subset S. For an element h oi V 
such that hx e S, we have 

gxegh~^S c: gV^x c= Ux. 

Therefore gx is an interior point of Ux. This proves that Ux is open. D 

Now Theorem 1.L3 implies that the topological group SLjiU) acts transitively 
on the complex domain H and the stabilizer of i is SOjiM). Thus, applying the 
above theorem to X = H and G = SL2(IR), we obtain the following 

Corollary 1.2.2. The space of the cosets SL2(U)/S02W is homeomorphic to H by the 
correspondence ''ccSO2iU)\-^ ai". 
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§1.3. Classification of Linear Fractional Transformations 

It follows from Theorem 1.1.3 that every automorphism of the upper half plane H is 
induced by an element of GL J([R). Let us now investigate transformations induced 
by elements of GL2 (U). We are going to classify elements of GL2 (U). 

A non-scalar element a of GL2 (U) is called elliptic, parabolic or hyperbolic, 
when it satisfies 

tr(a)2 < 4det(a), tr(a)2 = 4det(a), or tT((xf > 4det(a), 

respectively. This definition appHes also to the automorphisms i(a) of H induced by 
a. We note that 

the eigenvalues of a are tonjugate complex numbers, a multiple real number or two 
distinct real numbers, respectively. 

To see the geometrical meaning of the classification, we shall study the fixed points 
of the elements of GL^(IR) as automorphisms of the Riemann sphere P. Let 

"=[::] be a non-scalar element. First assume c — 0. Then tr(a)^ — 4det(a) 

= {a — d)^. Thus a is parabolic if and only if a = ^, and in this case a has a unique 
fixed point 00. We also see that if a^d, then a is hyperbolic, and it has two fixed 
points b/(d — a) and 00. Now we assume c # 0. Then the point 00 can not be a fixed 
point of a. If a complex number z is a fixed point of a, then z satisfies the equation 
cz^ + (d — a)z — b = 0. Since the discriminant of this equation is equal to 
tr(a)^ — 4det(a), the fixed points of a are conjugate complex numbers, a real 
number, or two distinct real numbers if a is elliptic, parabolic or hyperbolic, 
respectively. Thus we get the following 

Theorem 1.3.1. A non-scalar element a ofGL2 {U) is characterized by its fixed points 
on P as follows: 

(1) oiis elliptic if and only if OL has the fixed points ZQ and ZQ with ZQEH; 

(2) a is parabolic if and only if a has a unique fixed point on IR u {00}; 
(3) a is hyperbolic if and only if a has two distinct fixed points on IR u {00}. 

For X 6 IR u {00}, the stabilizer GL2 (IR)̂  contains both parabolic elements and 
hyperbolic elements. In order to distinguish these, we put for x, x'elRu{oo} 
(x^x') 

(1.3.1) 

(1.3.2) 

GL (̂IR)Sf> = {aeGLj(IR)^| a is parabolic or scalar}, 

SL2(Uf^^ = SL2(IR) n GLt (R)Sf̂ ; 

GLt (R),,,, = GL^ (R), n GLt (U),,, 

SL2{U),,,, = SL2m n GLt (R),,,. 
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Lemma 1.3.2. (1) GmU)i = R" •502([R), 

GL,^(m^^) = | r J « e R \ beU 

GLnu)... = {[l i a, c/elR% ad>0 

(2) The groups GL^(U), (zeH), GL^(UYf^ (XEUKJ {oo}) and GL^(U),^,> 

{x,x'eUu{co},x^x') are conjugate to GL^([R),., GLj([Ry^> and GL^(U)^^o, 
respectively. Further this conjugation is given by an element ofSL2(U). 

Proof. (1): The first equality is nothing but Theorem 1.1.3(3), and the second and 
the third are easily seen. (2): Since SL2(U) acts on H transitively, all stabilizers of 
points of H are conjugate by elements of SL2(U). In particular, GmU), is 
conjugate to GL^{U)i by an element of 5L2(IR). Furthermore, for any two distinct 
elements x, x' of IR u {oo}, there exists an element ae5L2([R) such that a(x) = oo, 
a(x') = 0. For such an a, we see 

GLt = a-'GLt '00,0 a. GLt \(P) a-'GmuY^^(x. D 

To see the difference of the transformations of these types, we shall give some 
illustrations below. 

=[?:] (a>0) 

r - z + i a 
(the fixed point =<=) 

(the fixed points °°, 0) 

Fig. 1.3.1 

(cos g) 2-1-sin ^ 
" (-sin^)z-i-cos^ 

(the fixed point i) 

We now study the centralizers of elements of GL2 (̂IR) and the normalizers of 
the above subgroups GL^(U),, GmU)^^^ and GL2'"(R),,^. We calculate cen­
tralizers and normalizers not only in GL^(U) but also in GL2(IR), since we need 
them in Chapter 6. We note here the property that a e GL2̂  (U) is elliptic, paraboHc 
or hyperboHc is invariant under the conjugation in GL2(ff̂ )- For an element 
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aeGL^([R), we denote by Z(a) the centralizer of a, or 

(1.3.3) Z(oi) = {PeGL2iU)\ocp = M' 

Now we have 

Lemma 1.3.3. For a non-scalar element a o/GL^(IR), we have: 

(1) //aeGL2'"(IR)„ then Z(a) = Z(a)n GL^(IR) = GLj(IR),; 
(2) IfaeOmuYf, then Z(a) = Z{(x)nGL^ (U) = GLl(UYf; 
(3) If(xeGL^(U)^^,, then [Z(a): Z(oc)n GL^ (U)^ = 2 and 

Z{oc)nGmU) = GmU),,,,. 

Here z e H and X,X'GUU {OO} (X ^ x'). 

Proof. Since Z(p~^(xp) = p~^Z((x)p for pGSL2(U\ we may assume by Lemma 

L3.2(2) that a is r ^^^^ ^^^^^\{r > 0,0 < d <2n, 6 ^ nU ^ ^ (fl,6eIR"), 
|_ —sm0 COS0J L^ ^ J 

f a 0~|, , ^x , ^ ,x ^. , r cos^ s i n ^ l , ^, 
or ^ , (a, rf 6IR , flrf > 0, a 7̂  d). First let a = r . ^ ^ , and B be an 

|_0 f/J L —sin^ COS0J 
element of Z(a). Since ocpt = j?ai = PU Pl is also a fixed point of a. Hence fit = ± i. If 

det(j5) > 0, then ^i = i and this implies P e GL2 {U)i. Assume that det(j5) < 0. Then 

(1.1.7) implies that pi = -i. Put P' = ~ U. Then det(j5') > 0 and p'i = i; 

therefore, P' e GL^ ([R)f. In particular, both P and ^' are commutative with a, hence 
r - 1 0 1 

so is . On the other hand, we have 

f - l 0 1 f - l O l - i fcos^ - s i n ^ l 

L 0 i J l 0 i j =^Ls in^ c o s ^ J ^ " ' 

since a is not scalar. This is a contradiction; thus Z{cc) = Z{cc) n GL2 (U). This 

proves (1). The other cases can be shown by direct calculation. D 

For any subgroup G of GL2{U), we denote by N{G) the normalizer of G in 
GL2(IR); namely 

(1.3.4) N{G) = {oLeGL2(U)\aGoL-y=G}. 

Then we obtain 

Lemma 1.3.4. Let G he GL^([R), ( Z G H ) , GL (̂[R)Sf) (xeR u {00}), or GL2'"(IR), 
(x, x ' e R u { o o } , X T^x'). Then iN(G):N(G)r\GL^(U)'] = 2 and further 

(1) iV(G) n GL2̂  (R) = G 1/ G = GL2'- (U\, 
(2) Ar(G) n GL2'" (IR) = GL2'- (R), 1/ G = GL2̂  {U)^^\ 
(3) [iV(G) n GL2'- (R): G] = 2 1/ G = GL2'' (fS). x-
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Proof. Since N{p~^Gp) = p~^N(G)p for p e G L j (IR), we may assume that z = i, 

x = oo and x ' = 0. Therefore ~ UN(G). Since lNiG):N(G)nGL^(U)^ 

S IGL2(U): GL^ (IR)] = 2, and r - i 0 
L 0 1. 

eN(G) by Lemma 1.3.2(1), we see 

[N(G):iV(G) n GL^ (R)] = 2. Let G = GL2'"(lR)i. liPeN{G) n GL^ (IR), then j^i = U 
since j5aj5~^ has a fixed point ^/ for any OCGG. This implies j8eG, and therefore, 
N(G)nGL^ (U) = G. A similar argument is also applicable to G = GLJ([R)!^\ 
Next assume that G = GL2 (R)ao,o» and let PeN(G) n GL2 (K). Then by a similar 
argument as above, p induces a permutation of {00,0}. Then we have 

[N(G)n GL2'"(IR):G] ^ 2. Since we see easily that ~ UN(G) n GL^(U) 

but ^ ~ ^ U G , we have [iV(G)n GL2'"(R):G] = 2 for G = GL2'" Woo.o- • 

Lemma L3.5. (1) /4n}; two distinct elliptic elements in GL2 (RL (zeH) are not 
conjugate in GLj(IR). 

(2) If two distinct parabolic elements ofGLjW are conjugate by a matrix of 
negative determinant, then they are not conjugate in GL2iU). 

Proof (1): Let a and p be elhptic elements such that P = SocS'^ with ^eGLj(IR). 
Then Sz is also a fixed point of j5, and therefore, Sz = z. This implies that 
SeGL2(U)^. Since a and S are commutative, we get a = j5. (2): Let a and p be 
distinct paraboHc elements. Assume that P = yocy~^ = SocS~^ with y, SEGL2iU) 
such that det(y) < 0 and det(^) > 0. Then S~^yeZ(oi). Since det(<5"^y) < 0, this 
contradicts Lemma 1.3.3(2). D 

§1.4. The Invariant Metric and Measure on H 

In the upper half plane H, there exist a metric and a measure which are invariant 
under the action of GL2 (IR). Such a metric is unique up to a constant multipHca-
tion and is called the Poincare metric. For a differentiable function f(z) on H, we 
define the differential df by 

considering / as a function of x = Re(z) and y = Im(z). Further for a e GL J (IR), we 
put 

( /°a)(z)=/(az) , (df)ooi = d{foa). 

Then for z and z and for aeGL^([R), we have 

dz = dx -\- idy, dz = dx — idy, 
(1.4.1) 

' ' ^ ° " = ( ^ ) ' * ^ ' '^^"°"=(^)''^' 
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Further we define the metric ds^ and the measure dv on H by 

n A'^\ J 2/ X dx^ -\-dy^ dxdy 

(1.4.2) ds^(z)= -2 , dv(z) = - ^ . 

We note that dx^ + dy^ = dz • dz, dx A dy = jdz A dz and 

(1.4.3) ^ ^ = det(a);(a,z)"^ (<xeGLU^), ^eH). 

dz 
Therefore ds^ and dv are invariant under the action of GL^ (IR) by (1.4.1) and (1.1.7). 

Let (/> be an injective continuous mapping from the interval [0,1] into H which 
is C°° except for finitely many points. Then the image C of 0 is called a curve on H. 
Then by definition its length is 

0 0 yy^) 

which depends only on C. 

Since H is isomorphic to the unit disk K through P = . . L we can define 

the metric dsi and the measure dv^^ on K by 

dsi = ds^° p~^, dvfi = dv° p~^. 

By (1.1.8), they are invariant under the action of SL/(1,1). More explicitly, dsl and 
dvK can be expressed as 

-^ . 4{dx' + dy') 

Adxdy 

(î =>F)̂  
dv^(w) = — ^ (w = X + r> 6 K). 

We denote by / K ( Q ) the length of a curve Q on K. Then for a curve C on H, we see 
that 

/K(P(C)) = / (C ) . 

Among the curves joining two points Zj and Z2, the shortest one is called a geodesic. 
We note that a curve C on H is a geodesic if and only if p(C) is a geodesic on K. The 
existence and the uniqueness of a geodesic will be shown in the following 

Lemma 1.4.L (1) Any two points on H are jointed by a unique geodesic which is a 
part of a circle orthogonal to the real axis or a line orthogonal to the real axis. 

(2) Any two points on K are jointed by a unique geodesic which is a part of a 
diameter of K or a part of a circle orthogonal to the unit circle. 



12 1, The Upper Half Plane and Fuchsian Groups 

Proof. Since p is a conformal mapping, we have only to prove (2) by Lemma 1.1.1. 
Let Zi, Z2GK. Since SU{1, 1) acts transitively on K, we may assume that ẑ  = 0. 
Moreover, 517(1,1) contains pS02{U)p~'^ whose elements give rotations with 
center 0; thus we may also assume that Z2 is a positive real number XQ. Let CQ be a 
horizontal Hne segment between 0 and XQ, and C be another curve joining 0 and XQ. 
Let C be parametrized by 0 and put 0(0 = x{t) + iy{t). Then 

/K(C) = j2(l - mm-' J{dx{t)ldtf + {dy{t)ldtf dt 
0 

^\2{\-x{tf)-^\dx{t)ldt\dt 
0 

^ J 2(l-x^)-irfx 
0 

= 'K(CO). 

The equality holds only when C =^ CQ. Therefore CQ is a unique geodesic. D 

For any two points ẑ  and Z2 of H (resp. K), we call the length of the geodesic 
joining z^ and Z2 the distance of ẑ  and Z2, and denote it by <i(zi, Z2). 

Corollary 1.4.2. (1) Let ZQ be a point o /H {resp. K), and C the set consisting of all 
points o /H {resp. K) of the same distance from ZQ. Then C is a circle orthogonal to 
every geodesic passing through ZQ. 

(2) Let Zi and Z2 be two distinct points of H{resp. K), and C the set consisting 
of all points o/H {resp. K) which have the same distances from z^ and Z2. Then C is a 
geodesic on H {resp. K). 

Proof It is sufficient to prove our assertions only for K. (1): Since 51/(1, 1) acts 
transitively on K, we may assume that ZQ = 0. The distance from 0 is invariant by 
rotations with center 0. Therefore, in this case, C is a circle with center 0. (2): 
Mapping the middle point of the geodesic joining ẑ  and Z2 into 0 by an element of 
SU{\, 1), we may assume that ẑ  = iy^ and Z2 = — iyo{^ < yo < !)• f̂ r̂ d > 0, let 
Cy (v = 1,2) be the set consisting of the points which have the distance d from z .̂ 
Then C^ is a circle by (1). Since the metric on K is invariant by the transformation 
(x, >')i-^(x, —y\ Ci and C2 are symmetric with respect to the real axis. Therefore, 
the intersection points of C^ and C2 He on the real axis. Conversely, by a similar 
argument as above, every point on the real axis has equal distance from ẑ  and Z2. 

n 
Let a be an elliptic element of 5L2([R) which fixes ZQ, and p an isomorphism of H 

onto K such that P{ZQ) = 0. Then we see 

0 
id pap-' = P, p { — n<6<n). 

e 

Since CCZQ = ZQ, it follows from (1.1.5) that 

(1.4.4) ;(ft 0) =j{p, Zo)j{oi, zo)j{p-\0) =j{a, Zo). 
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Thus we get 

(1.4.5) arga(a, Zo)) = arg(;(ft 0)) =-6. 

Since p is conformal, 

(1.4.6) the angle between a geodesic passing through ZQ and its image by cc is 10. 

Lemma 1.4.3. For any a6SL2(IR), we have: 

(1) (y-' dz)oa-y-' dz= -lid[\og(j{ai,z))y, 
(2) (y-'dx)o(x-y-'dx = 2dl2ivg(j(a,z))-]. 

) :puta=[ ; ; ] Proof, (1): Put a = ^ . By (1.1.7), (1.4.1) and (1.4.3), 

{y-'dz)o^-y-Uz = (\j(a,z)\^j(oi,z)-^-\)y-'dz 

= —2icj(oL,z)~^dz 

= -2i^[log(7(a,z))]. 

(2): Taking the real parts of both sides of the equality (1), we get the second 
one. D 

Lemma 1.4.4. Let D be the interior of a triangle onHu[Ru{oo} whose sides are 
geodesies with angles 6^, 62 and 6^. Then the area ofD is given by 

v{D) = 71-{6,-^62-^6^). 

Proof Let Zj, Z2 and Z3 be the apices of D corresponding to O^, 62 and 0^, 
respectively. First assume that all ẑ  are in H. Let x^ be the intersection point of the 
extension of the side ZiZj and IRu {00} (see Figure 1.4.1). We denote by dD the 
positively oriented boundary of D. Since 

d(y~^ dx) = y~^dx A dy, 

we see by the Stokes theorem that 

j y~^dxdy = ^ y~^ dx 
D dD 

/ Z2 Z3 Z l \ 

\ZI Z2 23/ 

J + I + I + I + J r'<ix. 
Zl X i 2 Z2 Ji;32 Z3 / 

For any real number XQ, we put 

z — Xo = re^^. 

Then on the circle |z — Xol = r, we have 

(1.4.7) y-'dx = -de. 
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Therefore each integral is finite. Let a e SL2{U) be an elHptic element which fixes ẑ  
and maps Xi2 to X31 and7 (a, X12) > 0. Then by Lemma L4.3(2), (1.4.5) and (1.4.6), 
we see that 

^ y ^ dx = ^ y ^dx°(x— j 2i/[arg(7(a, z))] 
Zl Z l 

| ' ^ - ' < i x - [ 2 a r g ( y ( a , z ) ) ] J -

f y-'dx-\-(n-e,). 

Similarly we obtain 

: i2 X32 JC12 

Z3 

Therefore 

J);-2^x^>;= J y -^Jx + ( 7 r - 0 i ) - 0 2 + (7c-^3). 

Let XQ be the center of the arc x^iZ^z^x^^ ^"^ P^t 

z — Xo = (x — XQ) + iy — re^^. 

Then by (1.4.7), we have 

y y-'dx^-]de = -n. 
X\3 0 

Consequently we obtain i;(D) = TT — (^i + ^2 + ^3)- Next we consider the case 
where some vertices are on !Ru {00}. Dividing the triangle into pieces, we may 
assume that the only one vertex is on [Ru{oo}. Moreover since SL2iU) acts 
transitively on IR u {00}, we may assume that it is the point 00. Renumbering the 
indices, we may take ẑ  = 00. Hence ^̂  = 0. Put XQ = Re(z2 + Z3)/2, and let Z4 
(resp. Z5) be the intersection point of the line Re(z) = Re(z2) (resp. Re(z) = Re(z3)) 
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Fig. 1.4.2 

and a circle with center XQ of sufficiently long radius r (see Figure 1.4.2). We denote 
by D{r) the square with vertices 22,23,^5,^4. Then from the above result, we have 

V{D) = 271 - (^2 + ^3 + ^ ^ 4 + ^^5)-

Since both LZ4. and Lz^ converge to n/2 and ^i = 0, we have 

v{D) = lim v(D(r)) 

= 7r-(0i + ^2 + ^3). • 
We call a measure ^ on a locally compact group G a Haar measure if the 

following two conditions are satisfied: 

(i) any compact subset of G is measurable; 
(ii) fj, is invariant under left translation by G. 

It is known that there always exists a Haar measure and that it is uniquely 
determined up to a constant factor. We say that G is unimodular if a Haar measure 
of G is also invariant under right translation by G. 

We shall give an explicit form of a Haar measure of SL2{U). Put 

(1.4.8) • [0 ; ] eSL (z = x + iyeYi). 

Let ae5L2(IR) and z = <xi. Then h^ ^cci = i; hence we have h^ ^a = kg with 

(1.4.9) • • """'^ '^ [ cosO sinOl ^^ ,^, 
. eS02W. 

— smO cos^J 
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Namely, any cceSL2{U) can be expressed as 

(lAlO) oi = hX (zeH, koeS02{U)). 

Conversely, if a is written as (1.4.10), we see that 

(1.4.11) z = (xU 0 = -arg( ; (a ,O) . 

Therefore both z and 8 are uniquely determined by a. Further put a 
\_c dj 
y, a, b, c, Then we see easily that x, y, 0 are all C°° functions of a, 6, c, ̂ , and conversel 

d are also C* functions of x, >', 9. Consequently, we obtain isomorphisms as 

manifolds: 

(1.4.12) SL2(U) ^ H X SOjiU) - H x C^ 

We define a measure of SL2([R) by 

(1.4.13) da = (2n)-'y-^dxdyde. 

For any aj eSL2(IR), we have 

(1.4.14) aia = K,,ke+<t>^ <t> = -a rg( ; (a i ,z ) ) . 
Since y~^ dxA dy'is invariant under the action of SL2(IR) and </> is independent of ^, 
we see for ajZ = x' + iy\ 

y'-^dx' A dy' A d{e + (j)) = y'^dx A dy A (dS + dcj)) = y~^dx A dy A dO. 

This implies that da is a Haar measure of SL2iU). Further put (x^ = h^^kQ^, 
Zi = Xi + iy^ and define z', 6' by 

aai = /iz'/c '̂, z' = x' + iy. 

Then we see easily that 

, _ >;{(l- |zip)sin^cos0 + xicos20} 
|cos0 —ZjSin^P 

y = ZZi 

^ | cos0-z i s in^ |2 ' 

6' = — arg(cos^ —Zisin^) + ^i +2mt 

with neZ. Therefore we have 

y'-^dx' A dy A dS' = y-^dx A dy A dd. 

This implies that dec is invariant under right translation of G. Thus we obtain 

Theorem 1.4.5. 5L2(IR) is unimodular. Further if f{z) is a measurable function on H, 
"ai->/(ai)" is also measurable on SL2(U) and 

if{z)dv{z)= ] f(ai)da. 
H SL2im 
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§1.5. Fuchsian Groups 

Let r be a group acting on a topological space X. We say that a group F acts 
properly discontinuously on Â  if for any two points x, y of X, there exist neighbor­
hoods 1/ of X and V oi y such that 

*{yer\yVnV^0]<ao. 

If X is locally compact, this is equivalent to saying that for any compact subsets 
A, B of X, 

^{yer\yAnB¥^0}<oo. 

A subgroup r of a topological group G is called a discrete subgroup if F is 
discrete with respect to the topology of G. 

Theorem 1.5.1. IfF is a discrete subgroup ofG, then F is a closed subgroup without 
accumulation points. 

Proof. By definition there exists a neighborhood 1/ of 1 satisfying U nF = {1}. Let 
Fbe any neighborhood of 1 such that V~^V a U. Then for any two distinct points 
a, P of r , we have V(xnVP = 0. Let g be an element of the closure of F and 
oceV'^g nF. Then we see V'^gnF = {a}, so that we get ^ = a e T. D 

Theorem 1.5.2. Let G and X be as in Theorem L2.1, and F a subgroup of G. If all 
stabilizers of elements ofG are compact, then the following statements are equivalent: 

(1) F is discrete', 

(2) F acts properly discontinuously on X. 

Proof (1) => (2): Let x be an element of X, and A, B two compact subsets of X. Put 

M = {gEG\gxEA}, N = {geG\gxeB}. 
Since G acts transitively on X, we see A = Mx. Take open subsets U^ of G so 
that M cz IJy L̂v and U^ are compact. This is possible since G is locally compact. 
Then A (^[j^ U^x. Since U^x is open by Theorem L2.1 and A is compact, we can 
choose finitely many U^ so that A cz[Jl^^U^x. Hence M cz [j"^^U^G^. Since 
U^G^ is compact and M is closed, M is also compact. Similarly N is compact. Since 
F is discrete and NM~'^ is compact, {yEF\yAnB ^ 0] = Fr\NM~'^ is also 
discrete and compact; therefore it is a finite set. (2) =>(!): Let F b e any neighbor­
hood of 1 in G such that V is compact. For a point x G X, T n F is included in the 
set { y G r I yx 6 Vx] which is finite, since both {x} and Vx are compact in X. Hence 
we can take V so that FnV= {!}. D 

Theorem L5.2 and Theorem LL3(2) imply the following 

Corollary 1.5.3. Any discrete subgroup of SL2iU) acts properly discontinuously on 
the upper half plane H. Conversely, any subgroup of Aut (H) which acts properly 
discontinuously on H is obtained from a discrete subgroup ofSL2{Uy 
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We call a discrete subgroup of SL2(U) a Fuchsian group. Hereafter we assume 
that r is a Fuchsian group, and put 

z(r) = rn{ + i}. 
If I is the homomorphism of SLjiU) onto Aut(H) as in §1.1, then Theorem 1.1.3 
impHes 

i{r)^r/z{r). 
When z e H u R u j o o } is a fixed point of an elUptic, parabolic or hyperbolic 

element of T, we say that z is an elliptic point, SL parabolic point or a hyperbolic point 
of r , respectively. We also call a parabolic point of T a cusp of F, For z e H and 

X, x ' e R u {oo}, we put 

F, = Fn SL2(UX, / ; = r n SL^CR),, T,,,, = T n SL^CR),,,^. 

Theorem 1.5.4. (1) IfzeH is an elliptic point of F, then F^ is a finite cyclic group. 

(2) / / x 6 R u {oo} is a cusp ofF, then F^ a 812^/^ and 

FJZiF) ^ / . 

Moreover for o'eSL2(IR) such that ax = oo, we have 

(3) / / r , , , . # Z(r)for X, x ' e R u {oo} (x ^ x'), then 

r,../z{r) ~ 1. 
Moreover there exists aGSL2(U) such that 

GF^ ^.O ^ • ( + >}={4o «-Th'4 "̂̂ '̂ -
Proof (1): Since 5L2(IR) acts transitively on H, SLsCIR)̂  is conjugate to 5L2(IRX 
= SO2^ which is a compact abelian group isomorphic to C^ Therefore 
F^ = rnSL2(IR)z is finite. Since any finite subgroup of C^ is cycHc, F^ is cyclic. 
(2): We may assume x = oo by taking OFG~^ in place of F. Hence there exists an 

element y of the form \(l i^Qi)'mF^. Suppose that OLEF^'IS neither paraboHc 

nor scalar. Then we can write a = I _. with a ^±\. We may assume |«| < 1 
\J) a '] 

by taking a ^ in place of a, if necessary. We get 
f l a^nl 

for any positive integer n. This contradicts that F is discrete; therefore 

Since SL2(IR)̂ o?V{ ± 1} is isomorphic to U as topological groups, we obtain (2). (3): 
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It follows from Lemma 1.3.2 that there exists (7ESL2i^) such that 

'a 0 
(TF^ (7SL2{U):c,x'(^~^ =SL2( aei 0 a-\ 

Since discrete subgroups of R^'/l + l} are cyclic, we obtain (3). D 

For z€H, we put 

e^ = \rjzir)\ 
and call it the order of z with respect to F. Then z is an eUiptic point of T if and only 
iie^> 1. For a cusp x of T, we also put 6^= oo and call it the order of a cusp x of T. 
By the above theorem, we see that 

(1.5.1) the order of an elliptic point is finite; 
(1.5.2) a cusp of F cannot be a hyperbolic point of F. 

Corollary 1.5.5. IfF' is a subgroup of a Fuchsian group F of finite index, then the set 
of the cusps of F' coincides with that of F. 

Proof Since a cusp of T' is also that of T, it is sufficient to prove the converse. Let x 
be a cusp of F. Since 

lF,:F'nFJSlF:F':i<cx^, 

we see from Theorem 1.5.4(2) that FJ = F' n F^ ^ ^ir). This shows that x is also a 
cusp of F\ D 

We are going to discuss the case — 1 ^ T for a while. Let x be a cusp of F and a 
an element of 5L2(IR) such that ax = oo. Then it follows from Theorem 1.5.4(2) that 
there exists h> 0 such that 

<Tr,<7--{+i} = |±[J iJImezj. 

Since—l^r,(7r^(7~^ contains either i r^^ A . We say that a cusp X 

is regular or irregular, respectively. We will see that this definition is independent of 
the choice of a in the following 

Lemma L5.6. Assume —l^F. 

(1) The regularity of a cusp x of F is independent of the choice of a. 

(2) The order of any elliptic point of F is odd. 

Proof Let Ci, (72eSL2(IR) such that (T^X = G2X = ao. Since (T2crf ^00 = 00, we 

Then for ysF^ such that can write 02(^1 0 a" 

fresp. _ i )' we have 

_, r i a^hl I r - 1 a^h~\\ 

-i7-r^ = [J J] 
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This proves (1). Now let z be an elliptic point of F. Applying Theorem 1.5.4 for 
r ' = r { ± l } , we see that F^ = r^-{±l} is cyclic. Hence FJ contains a unique 
element - 1 of order 2 in SL2(U). Since - l ^ T , F^ has no element of order 2. 
Therefore the order of the cychc group F^ is odd. D 

Example 1.5.1. Let cceSL2{U). The cyclic group <a> generated by a is a discrete 
subgroup of SL2(IR) if a is either parabolic or hyperboHc. When a is elliptic, <a> is 
discrete only if a is of finite order. 

Example 1.5.2. Let 91 be a compact Riemann surface and assume that its genus 
g > 1. Then the universal covering of 9? is isomorphic to H. We fix this iso­
morphism and consider the homotopy group 7Ci(9?) of 9i as a subgroup of Aut(H). 
Then the subgroup F = i~^(;ri(9l)) of SLjCIR) is a Fuchsian group. Moreover F 
contains neither elliptic elements nor parabolic elements. (We shall give the 
definitions of the Riemann surfaces and their genera in §1.8.) 

Example L5.3. Let 
F = SL2(Z) 

-{[::] eSL^ a, b, c, deZ 

Since SLjiZ) = M2(I.)nSL2(U) and M2(Z) is discrete in MjCK), SLjCZ) is a 
discrete subgroup of SL2(IR), namely, a Fuchsian group. We call F or its subgroups 
of finite index modular groups. We shall study these groups in detail in Chapter 4. 

Example 1.5.4. Let B be an indefinite quaternion algebra over Q and R an order of 
B. We may identify B(S>QR with M2(IR), and then R is discrete in M2(IR). Therefore 
F =^ Rn SL2(U) is a Fuchsian group. Example 1.5.3 is a special case of this. (We 
shall discuss quaternion algebras in Chapter 5.) 

§1.6. Fundamental Domains 

To study the quotient space r \ H for a Fuchsian group T, it is useful if there exists a 
connected domain of H which represents F\H. Such a domain is called a 
fundamental domain of F. 

Let r be a Fuchsian group and F a connected domain of H. We call F a 
fundamental domain of F ii F satisfies the following three conditions: 

(ii) F = U with an open set U consisting of all the interior points of F; 
(iii) yUnU = 0foranyyeF-Z{F). 

Put, for example. 

r cos7r/3 sin7r/3~|\ 

|_—sin7c/3 cos7r /3 j / ' 
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Then we can take as fundamental domains of Tj and r2 the domains F^ and Fj 
shown by the figures below. 

Fig. 1.6.1 

Now let us show that any Fuchsian group F has a fundamental domain. We fix 
a point ZQEH which is not an elliptic point of F, For yeF — Z(F\ we put 

Fy = {z6H|rf(z, Zo) ^ d(z, yzo)}, 

L/, = {zeH|rf(z,Zo)<^(z,yzo)}, 

Cy = {zeH I d(z, ZQ) = rf(z, yzo)}. 

Here i/( , ) indicates the distance on H defined in §1.4. We note that Cy is a 
geodesic by Corollary 1.4.2(2). 

Lemma 1.6.1. For any compact subset MofK, ^{yeF — Z(F)\Mr\Cy^ 0} is 
finite. 

Proof. Put 
M , = {z6HM(z,Zo)^r} 

for r > 0, where ZQ is the point taken above. Assume that M^nCy^ 0. Then we 
have yzQ e M2,., since 

d(zo, JZQ) ^ (i(zo, z) + d(z, yzo) ^ 2r 

for zeM^nCy. Since M2r is compact, the number of such a 7 is finite. This implies 
the assertion since M is contained in M, for some r. D 

We define the subsets F and 1/ of H by 

(1.6.1) F=[]Fy 
yer 

= {zeHId{z, ZQ) S d{z, yzo) for all yeF}, 

(1.6.2) U= f] Uy 
yer-Z(r) 

= {zeHM(z,Zo) < d(z,yzo) for all yeF-Z{F)}. 
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Let us show that F is a fundamental domain of F. First we are going to show that F 
satisfies condition (i) of the definition of the fundamental domain. Let Zj be any 
point of H. Since F is a Fuchsian group, {yzQ |y eF} has no accumulation point in 
H. Hence there exists the minimum in {d(zi,yzQ)\yer}, which we denote by 
d{zi, yo^o) with some yo^T. Since d(zi, yo^o) ^ ^(^i» T^o) for any y eF , we have 
ZiEyoF. Next let us show that U is open and F = U. Take an open neighborhood 
V^ for each point z e H so that V^ is compact. Then 

zeH yer-Zin 

We easily see that if Uy^V,^ 0 , then U^nV^^ V^ or CynV,^ 0. Therefore it 
follows from Lemma 1.6.1 that f]yer-z{r)i^y^^ K) is an intersection of finitely 
many open subsets. Therefore it is an open set, so that U is open. By a similar 
argument, we have that 

zeH yer-Zin 

zeH yer-Z{r) . 

Since obviously F ^ U, we get F = U. Lastly let us verify condition (iii). Let 
yeF — Z(F). Suppose that UnyU ^ 0 and ZIGUnyU. Since Zje U, we see that 

^(zi, Zo) < f/(zi, yzo) = i/(y"^Zi, Zo). 

On the other hand, since Zj ey[/, we see that 

d(y~^Zi,Zo)<d(y-^Zi,y-^Zo) = d(zi,Zo). 

This is a contradiction, and therefore we get (/ n7(7 = 0 for y e F — Z(F). 
Thus we have proved that F is a fundamental domain of F, which is the first 

part of the following 

Theorem 1.6.2. The subset FofH defined by (1.6.1) is afiindamental domain of F. 
Moreover^ under the same notation as above, F has the following properties: 

(1) any geodesic joining two points of F is contained in F; 
(2) put Ly = Fn yFfor yeF - Z(r). Then LyCzCy. IfLy # 0 , then L, is only 

one point or a geodesic; 
(3) for any compact subset M 0/ H, {y e F | M n yF 7̂  0 } is finite. 

Proof. (1): Since Cy is a geodesic, it is obvious that any geodesic joining two points 
of Fy is contained in Fy. Thus we get (1) since F = f]yFy. (2): Let zeLy. Then 

d{z, Zo) ^ d(z, yzo) = diy~^z, ZQ) ^ d(y- ^z, y~^Zo) = d(z, ZQ). 

Thus zeCy. The latter half of (2) follows from (1). (3): We may assume that M is 
connected. Since 

# { y e F | M n y F # 0 } = ^ {yeFlyoM nyF ^ 0} 
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for any yoeF, we may assume Mr\F ^ 0 by taking JQM in place of M, if 
necessary. Assume M nSF i^ 0iox deF — Z(r), then M n Q # 0 . In fact, since 
F = Ply Fy, we see that M nF^^" 0 and M n ^F -̂1 9̂  0 . By definition, we see that 
Fs=Us^ Q , SFs-i = SUs-i u Q , and H = C/^u^l/^-i u Q (disjoint union). If 
M c= Ug^SU^-i, then M czJJ^ or Mci^l/^-i, because M is connected. This 
contradicts the fact that MnFs¥'0 and M nSF^-i ^ 0. Then we obtain 
M n Q 7̂  0 . Therefore (3) follows from Lemma 1.6.1. D 

For each yeF — Z(F\ we put Ly = FnyF. We call Ly a side of F if L̂  is 
neither a null set nor a point. The boundary of F consists of sides of F. For two 
distinct sides L and L' of F, Ln L' is either a null set or a point. When L n L' is a 
point z, we call z a i;ertex o/F m H and the angle between L and L the interior angle 
ofF at z. It follows from Theorem 1.6.2(1) that any interior angle of F is less than n. 
For two sides L, L' of F, we say that L and L' are linked and write L ^ L' if either 
L = L' or there exist distinct sides Lj , L2, . . . , L„ of F such that 

L = Li, L' = L„ and L , n L , + i 7 ^ 0 (1 ^ v < n). 

For a side L of F, the connected component of the boundary containing L is a 
union of all sides L which are linked to L. When a side L of F has no end, we call 
the intersection points of the extension of L and R u {00 } the vertices of F on 
IR u {00 } or the ends ofL on R u {00 }. Here the extension is taken by considering L 
a. part of a circle or a Hne orthogonal to the real axis. The following lemma will be 
used in §1.9. 

Lemma 1.63. Let F be a fundamental domain ofF defined by (1.6.1). If a vertex xofF 
on Uu {00} is an end of two distinct sides and x is fixed by a non-scalar element y of 
F, then x is a cusp of F. 
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Proof. By assumption, y is either parabolic or hyperbolic. Assume that y is 
hyperbolic. We may assume by Lemma 1.3.2(2) that x = oo and y has another fixed 

point 0. Then we see 7 = \ {a^deW.a ^ d) and we may assume that 

a/d < 1 by taking y" in place of 7, if necessary. Since sides of F are geodesies, two 
sides which have the end 00 are on the lines Re(z) = fej, Re(z) = 2̂ with real 
numbers ftj, 62 (̂ 1 < ^2)- Pî t 

M = {zeH|Im(z) ^ c, b^S Re(z) ^ ^2}-

Then M cz F if c is sufficiently large^ Take z e H on the imaginary axis and 
a neighborhood U of z such that U is compact. Then there exist infinitely 
many integers n such that U niy"F ^ U ny"M j^ 0. This contradicts 
Theorem 1.6.2(3). D 

§1.7. Quotient Spaces r \ H * 

Suppose that a group G acts on a topological space X. We begin by giving 
sufficient conditions under which the quotient space G\X becomes a Hausdorff 
space. 

Lemma 1.7.1. Assume that for any two points x, y ofX^ there exist neighborhoods U 
ofx and Vofy such that gJJnV — 0for allgeO satisfyinggx # y. Then G\X isa 
Hausdorff space. 

Proof Let n be the canonical mapping of X onto G\X. From the definition of the 
quotient topology, n{U) and n{ V) are neighborhoods of 7r(x) and n(y), respect­
ively. We see that n(U)mi(V) ^ 0 if and only if there exists geG such that 
gU nV ^ 0. By assumption, the latter is equivalent to saying that there exists 
geG such that gx = y, namely, n(x) = n{y). This implies that G\X is a Hausdorff 
space. D 

Lemma 1.7.2. / / a group F acts properly discontinuously on a Hausdorff space X, 
then r\X is also a Hausdorff space. 

Proof Let x, y be any two points of X. By assumption, there exist neighborhoods 
UQ of X and VQ of y such that # {y6F|y I/Q n F̂  7̂  0 } < 00. Put 

{yeF |7 l /on Ko # 0 } = {7i, 72, . . . , ?«}. 

Renumbering the indices, we may assume that 

y,x = >; ( 1 ^ / c ^ / ) , y^x:^y ( / + l ^ / c ^ m ) . 

We can take neighborhoods Wy_ of y^x and V^ oiyiovk>l such that W^r\V^ = 0. 
Put 

k=l+1 k=l+1 
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Then U and V are neighborhoods of x and y, respectively, and we see that 

yUnV^0<i>ye{y^,, . . ,yi}oyx = y. 

Therefore Lemma 1.7.1 implies that r \ X is a Hausdorff space. D 

In particular, the quotient space T \ H of a Fuchsian group T is a Hausdorff 
space. If r \ H is compact or has a suitable compactification, then we can apply the 
theory of compact Riemann surfaces to study r \ H . We begin by adding cusps of 
r to H to compactify r \ H . 

Let Pp be the set of all cusps of F and put 

(1.7.1) H * = H * = H u P ^ . 

When r has no cusps, Pr = 0 and H* = H. We put 

(1.7.2) I/, = {zGH|Im(z)>/} , Uf = Ui^{oo}, / > 0. 

Now we define the topology on H* as follows: 

(i) for z e H, we take as the fundamental neighborhood system at z in H* that 
at z in H; 

(ii) for xePp, we take as the fundamental neighborhood system at x the family 
{(7~^ Uf\l> 0}, where (TESL2iU) such that ax = oo. 

" [ : : ] Then H* is also a Hausdorff space under this topology. In fact, put 

and X = — d/c. Then we see that 

(7-'Ui = {zeH|Im(z)/|cz + d\^ > 1} 

and this is the inside of a circle with the radius (2/c^)" ^ tangent to the real axis at x. 
For xePp, we call a~^Ui a neighborhood of x in H. Since the action of T on H 
is a conformal mapping which maps circles or lines to those, F also acts on the 
topological space H*. Therefore the quotient space T \ H* can be defined and we 
may regard T \ H naturally as a subspace of T \ H*. When F has no cusps, we have 

r\H* = r\H. 

Fig. 1.7.1 
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Now let us show that T \ H* is also a Hausdorff space. 

Lemma 1.7.3. Assume that oo is a cusp of F and put 

Lety = \^ e r . If\ch\ < 1, then yeT^. 

Proof. Assume that \ch\ < 1. We define inductively y„er'{± 1} by 

yo = y, y« + i = >''» Q i V" 

We write 

'•=[:: y-
then we see that 

a„+i = 1 -a„(c„h\ b„^i = a^K 

?„ + i = -ciK d„ + i = l -\-a„{c„h). 

Hence we get that 
c„=-c{chr-\ |fl„|^|a| + n, ( n > 0 ) , 

and 
\a„^,- 1| = \d„^,- 1| = \a„\\c„h\ S i\a\ + n)\ch\K 

Therefore y„ converges to . Since F is discrete, there exists n such that 

y« ~ n 1 • ̂ ^̂ ^ implies c = 0. D 

Lemma L7.4. Let Xj, X2 be two cusps off, and (T^, (TJ elements ofSL2(U) such that 
(TiXi = (72^2 = 00. Put 

a,r,Mi-''{± '^A-[o iTh^^} ^'='^'^' 
Take two positive numbers /j and Ij satisfying /1/2 > I ^1^21- Then for yef, 

y(Ji^Ui^na2^Ui^ = 0 if yx^^X2. 

Proof By taking a^Fa^^ and a^ya^^'m place of T and a, we may assume Xj = 00 
and (Tj = 1. Assume that yC/ji n c ^ ^ C/ĵ  ^ 0 - P^t ^ = 0-27 and write 

^~ ^ = J • Since dUi. n C/,, ^ 0 , we see that 
Ic d] 

IJ2 < Im(^" ^z)Im(z) = \m{zfl\cz + ^1^ ^ c - ^ 
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where zeSUi^n Ui^. Put 7i = K. . |ei"oo * { ± 1 }• Then we see 

Sy^S'^ = (T2yyiy~^<^2^^(^2r(T2^-{± i } . 

Put 

''•-=[::::] 
then Cj = — c^/ii and 

\c,h2\ = \c^h,h2\<c^hl2S^-

Applying Lemma 1.7.3 to a2ra2^ and (5yi ̂  ~ S we obtain c = C]^ = 0 . This implies 
yoo = (T̂  <̂5oo = (T̂  0̂0 = X2. • 

In particular, we obtain by taking Xj = X2 the following 

Corollary 1.7.5. Let x be a cusp of T, and G an element of 5L2(IR) such that 

ax = co.Putar^a~^{±\} = \±\ \mez\withh>O.Ifl> hjhenfor 

yer, 
ya-'UinG-'U, = 0 if y^T,. 

Lemma 1.7.6. Let x be a cusp of F, and aeSL2(U) such that ax = ao. For any 
compact subset M of H, there exists a positive number I such that 

M nya~'^Ui = 0 
for any yeF. 

Proof Taking GFG'^ and aM in place of F and M, we may assume that x = 00, 

<T=1. Put r « , { ± l } = | ±1 I meZ i. If y e r ^ , then 7C/,= I/,; other­

wise y l/̂  cz {z e HI Im (z) < h^/l} by Lemma L7.3. Therefore it is sufficient to take / 
so that M c {zeH|/ iV' < Im(z) < /} . 

Lemma 1.7.7. r \ H * is a Hausdorff space. 

Proof We have only to verify the condition in Lemma 1.7.1 for G = F and 
X = H*. In fact, Lemmas 1.7.2, 1.7.6 and 1.7.4 imply this in the cases (i) x, y eH, 
(ii) XEH, yePrand (iii) x,yePp, respectively. D 

We denote by it or Tip the natural mapping of H* onto r \H* . We call 
a = 7r(z)er\H* (zeH*) an elliptic point or a cusp if z is so. When a is neither an 
eUiptic point nor a cusp, we call a an ordinary point. 

Theorem 1.7.8. IfF\¥l* is compact, then the numbers of the elliptic points and the 
cusps o / r \ H * are finite. 

Proof. Let a = n(z) be any point of r \ H * . As was shown in the proof of 
Lemma 1.7.7, we can take a neighborhood 17 of z so that for y e F, y U n U ^ 0 if 
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and only if yz = z. Then n{U) — {a} contains neither eUiptic points nor cusps. Since 
n{U) is open in r \ H * and r \ H * is compact, r \ H * can be covered with finitely 
many n(U). Thus r \ H * has only finite elliptic points and cusps. n 

We call r a Fuchsian group of the first kind if T \ H* is compact. Such groups are 
our main objects. 

§1.8. The Structure of r \ H * as a Riemann Surface 

Complex manifolds of dimension 1 are called Riemann surfaces. We are going to 
construct a structure of a Riemann surface on r \ H * . 

We begin by recalling the definition of Riemann surfaces. Let 9? be a connected 
topological space. A pair (V„,tJ of an open subset V^ of 91 and a homeomorphism 
tg, of Ka onto a connected complex domain is called a local chart. A collection 
{(K^ta)} is called a (complex) coordinate system of IR if it satisfies the following 
conditions: 

(i)«=U,K,; 
(ii) if Vg^nVp^ 0 , then tpt^^ ^ is a holomorphic mapping of t^iVg^n Vp) onto 

hiV.rsVp). 

We call Ka a coordinate neighborhood, and t̂  a local coordinate on K̂ . Take another 
coordinate system {(F^,r^)} of 9i. We say that {(V^,t^)} and {(V'^.t'^)} are 
equivalent if {(^a, ^a)} '-̂  {(^^» ^^)} is also a coordinate system of %. We call 9? a 
Riemann surface if an equivalent class of coordinate systems of 91 is given. 

Example 1.8.1. The Riemann sphere P = C u { o o } i s a Riemann surface. In fact, let 
Ki = C,ri(z) = z; V2 = P - { 0 } , r 2 ( ^ ) = l/z.ThQn{(Vi,ti)\i-= 1, 2} is a coordin­
ate system of P. Any connected domain of C is also a Riemann surface. 

Let us now define a structure of a Riemann surface on the quotient space T \ H * 
for a Fuchsian group F. Let a = 7r(zo)er \H* (ZOEH*) . 

1 ° First assume that a is an ordinary point. From the proof of Lemma 1.7.2, we 
can take a neighborhood U of ZQ SO that U ciH and 

(1.8.1) yUnU ¥^0oyeZ{F). 

Put VQ^ n(U). Then V^ is a neighborhood of a and U is homeomorphic to V^ by n. 
Let tg be the inverse mapping of n; namely, 

h'-^a~*^ ^^^ ta°7t(z) = Z for ZEU. 

2° Next let a be an eUiptic point. Take p e5L2(C) so that pz© = 0 and pH = K. 
Put Wr= {zeCI |z| < r} for r > 0 and U = p~^{ W^). Since ZQIS an elliptic point, 
r̂ Q is a finite cyclic group by Theorem 1.5.4(1), and so is pF^^p'^. Thus by 
Schwarz's theorem, the action of an element of pT^^^p" ^ on K is a rotation around 0 
of angle 2nn/e with n e Z and e = \F^JZ{F)\{see also the proof of Theorem 1.1.3). 
Hence U is stable under the action of F^^. From the proof of Lemma 1.7.2, we can 
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take r so small that 

(1.8.2) yUnU^0oyer,^. 

Then n(U) is homeomorphic to r^o\U, which is homeomorphic to pr^^p~^\ W^. 
We define a function 4) on W^ by 

(/>(w) = ŵ  (e = ir,,/z(r)|). 
Since cj) is invariant under rotation of angle 27r/e'with center 0, it induces the 
homeomorphism (j)^oipr^^p~^\Wr onto W^e. Therefore the following diagram is 
commutative and all horizontal arrows are homeomorphisms: 

71(17) 

We put Kg = 7r( 1/) and define the local coordinate t^ by the homeomorphism of Kg 
onto W^e given in the above diagram; namely, 

t^on(z) = (pzr (zeV). 

3° Lastly take a cusp a. Let o be an element of SL2 (IR) such that GZQ = 00. Put 
U = (T-^Ui,U* -=(7-^Uf, where Ui and Uf are as in (1.7.2). If / is sufficiently 
large, then we see by Corollary 1.7.5 that 

yU*nU*¥^0<>yer,^. 

Similar to 2°, VQ is homeomorphic to F^^XU* which is homeomorphic to 

(Tr,^(7-^\Uf. Put (Tr^o(T-i-{±l} = 1 ± meZ i with /i > 0, and 

define the function ij/ on Uf by 

^iz) = 
^Inizjh 

0 
for zeUi, 
for z = 00. 

Then </̂  is an open continuous mapping by the definition of the topology of H*. 
Since xj/ is invariant under o-rj^tr" ^ \j/ induces a mapping \jf^o{or^^o~^\Uf onto 
Ŵ  with r = e"^"^ \̂ where PT̂  is as in 2°. Since ipi is injective and i/̂  is open 
and continuous, ij/i is the homeomorphism of a F^^a' ^ \U f onto W^. Therefore if 
we put Kg = 7c( 1/ *), we obtain the following commutative diagram: 

Vs = niU*) 
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We define t^ as the homeomorphism of Kg onto W^ in the above diagram; namely, 

^ ^ ^ ' 0 for z = Zo-

We can easily verify that {(Kg, tg)} given above is a coordinate system of r \ H * , 
and defines on r \ H * a structure of a Riemann surface. We denote by 9?/-the 
Riemann surface r \ H * . For a = 7r(zo)e9i/^, we put 

(1.8.3) e, = \rjZ(r)l 

and call it the ramification index of a, which is independent of the choice of a 
representative element ZQ. We note that e^ = 1 imphes a is an ordinary point and 
that â = 00 implies a is a cusp. 

Theorem 1.8.1. If r\H is compact, then F has no cusps. 

Proof Assume that F has a cusp x. Put a = n(x)eF\il*. Then from the above 
consideration, we can take a neighborhood Kg of a so that VQn{F\H) 
= Fa — {a} ~ {zeC|0 < |z| ^ r} for some r > 0, where VQ denotes the closure of 
Fa in r \ H * . Since F a n ( r \ H ) is a closed subset of r \ H , it is compact; this 
contradicts that { z G C | 0 < | z | ^ r } i s not compact. Therefore F has no cusps. D 

If r is a Fuchsian group of the first kind (this is the case we shall discuss in 
Chapter 2 and onwards), 91/̂  is a compact Riemann surface. In the following, we 
recall some results on compact Riemann surfaces which we need afterwards. See, 
for example, [Lang] for proofs. 

Let 91 be a compact Riemann surface and {(K ,̂ t„)} a coordinate system of 9?. 
Let </) be a function defined on V^^ and a e F̂ ,. We say that </> is holomorphic (resp. 
meromorphic) at a if (I) ° t~ ^ is holomorphic (resp. meromorphic) at ^^(a). We also 
say that 0 has a pole or a zero at a if so does (/> o t~ ^ at ^^(a). If </> is meromorphic at 
a, then it has a Laurent expansion of the form 

00 

4>ot;y{z)=^a„(z-tMr (a,^0) 
n = l 

on a neighborhood of ^̂ (̂a). We write 

(1.8.4) Va(</>) = /, 

and call it the order ofcp at a. We note that these definitions are independent of the 
choice of coordinates r .̂ We say that a function </> on 9? is holomorphic (resp. 
meromorphic) if it is holomorphic (resp. meromorphic) at any point of 9?. We denote 
by X(9l) the field consisting of all meromorphic functions on 91. Since 9? is 
compact, any holomorphic function on 9? must be constant by the maximum 
principle and K(9?) is an algebraic function field of one variable. We simply call 
K(9^) the function field o/9^. For a non-constant function 0 of K(9l), the numbers of 
zeros and poles are finite and we put 

(1.8.5) no((/>)= S Va((/>), /i^((/>)= X |va(0)|. 
V (</>)> 0 V (</))< 0 
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It is known that 

(1.8.6) [K(9?):C((/>)] = no(0) = n^(0). 

Let % 91' be two compact Riemann surfaces and F a mapping of ^' into 9 .̂ 
Take coordinate systems {(F^, t^)} and {(K ,̂ t'^)} of 9? and 9?', respectively. We say 
that F is complex analytic if t^^F'^t'f^ is holomorphic on ^^(^^^^"^(^3^)) 
providing F(F^)n K„ 7̂  0 . In particular, meromorphic functions on 9? are no 
other than complex analytic mappings of 9? into the Riemann sphere P. Let F be a 
complex analytic mapping of 9?' into 91. Assume that the image of F is not one 
point. Then it is open. Since 9?' is compact, it is also closed. Therefore we get 
F(9i') = 9i, since 91 is connected. Under this situation, we call (91', F) or simply 9?' 
the covering of 9?. Moreover we define, for b e 9i', 

providing F[b)e V^, and call it the ramification index o/(9?', F) at b or simply the 
ramification index ofb. Since 9?' is compact, the number of points b of 9?' such that 
e^ F # 1 is finite. Let F~^{a) = {b^, . . . , b J for ae^, then the integer 

is independent of the choice of a. We call n the degree of the covering (9t', F). We see 
0 ° FG K(9i') for 0 GX(9l). This correspondence "0 1-̂  (/> Q F " is an isomorphism of 
iC(9{) into A:(91'). Write /C(9J)oF = { 0 O F | 0 G K ( « ) } ; then it is known that 

(1.8.7) [K(9i'):X(9?)oF] = n. 

The equality (1.8.6) is a special case of (1.8.7). 
Lastly let x be the Euler-Poincare characteristic of 9?. We define the genus g of 

9? by 
X = 2-2g. 

Then ^ is a non-negative integer. If (W, F) is a covering of 9t and ^' is the genus of 
9i', then the following relation (the Hurwitz formula) holds: 

(1.8.8) 2^' - 2 = n(2^ - 2) + ^ K F - 1), 

where n is the degree of the covering (9^', F). 

§ 1.9. Fuchsian Groups of the First Kind 

Let r be a Fuchsian group. For a while we do not assume that F is of the first kind. 
We are going to define a measure on the quotient space r \ H * induced from the 
measure dv on H defined by (1.4.2). Let X be a locally compact space, and Cc(X) the 
space of the continuous functions on X with compact support. For any linear 
functional M on C^X) satisfying M((/>) ^ 0 if (/> ^ 0, there exists a measure dfi on 
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X such that 

X 

We are going to construct such a linear functional on Cc(r\H*). In the following, 
we use the same notations as in the previous section. Let ^ e Cc(r\H*). Using the 
partition of unity, we may assume that the support of </> is contained in the 
neighborhood Ka(aer\H*). 

r Assume that a is either an ordinary point or an eUiptic point. Let ZQ be a 
point of H such that 7r(zo) = a, and U a neighborhood of ZQ such that %{U)= VQ. 
Since </> o TT is a continuous function with compact support on H, we can define 

M{<l>) = -i<t>^n(z)^ (<<»), 
^a u y 

where BQ is the ramification index of a. This definition is obviously independent of 
the choice of ZQ. 

2° Let a be a cusp, XoelRu{oo}a point such that 7r(xo) = a, and a an element 
of 5L2(IR) such that GXQ = oo. Moreover let U* = a~ ^ Uf be a neighborhood of XQ 
such that n{U*) = V^. Put I/; = {z6H||Im(z)| ^ /, 0 ^ Re(z) ^ /i}, then 4>on is 
continuous on l/J. We put 

M ( 0 ) = j ct>on(z)^. 
a-'u\ y 

dxdy 
To see that M(</)) is finite, we have only to prove ]a-^u',—2~ ^^ fii^ite, since </)0 7i 

is bounded on (7~'^U[. Since y'^dxdy is invariant under the action of SL2(U), 
we have 

J. dxdy J. dxdy 
J ~7i2~ = J 2 • 

a-'u', y u', y 
This is finite by Lemma 1.4.4. The value M(</)) is obviously independent of the 
choice of XQ and a. 

We denote by dv the measure on r \ H * attached to the linear functional M. Let 
F be a fundamental domain of T, then by definition, we see 

t;(r\H*) = v{r\H) = v{F). 

Moreover, if ^ is a measurable set of H, then 7r(^) is also measurable on r \ H and 
we have the inequality 

v{A) ^ v(n(A)). 

Theorem 1.9.1. (Siegel) Let F be a Fuchsian group. Then F is of the first kind if and 
only ifv{F\H*) is finite. 

Proof. The only-if part is obvious. Assume that t;(r\H*) is finite. Let F be the 
fundamental domain defined by (L6.1). Take an interior point w of F. Let C be a 
connected component of the boundary of F, and {Lf^}^=M{—oo ^ M ^ N -^ oo) 
all the sides of F contained in C. We assume that L̂  and L^^ i lie side by side. If C is 
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a closed curve, then F is compact. Therefore r \ H * = r \ H = 7r(F) is also compact 
and r is of the first kind. Now assume that C is not a closed curve. Let Zf^ and z^+i 
be the vertices of L̂ .̂ Let A^^ be the triangle (whose sides are geodesies) determined 
by three vertices w, z ,̂ 2;̂ +1, and let a,̂ , j^^ , y^ be the interior angles at the vertices w, 
Z|t, Zjt+1, respectively. Put cô  = y^. ̂  + j?jt (M < /c ^ AT), then co^^ is the interior angle 
of F Sit Zfc. Since the area of Af, is given by 

v{Ak) = n-{cCk-\-Pk + yk) 

by Lemma 1.4.4, we see that 

(1.9.1) S "(^i) 
k = m 

£ (n-cOk)-\-{n-P^-y„)- Y^ci^ (m # n), 
k=m+1 k=m 

T^-^m-Pm-ym (^ = «), 

for integers m, n such that M^m^n^N. UN is finite, then Zjv+ielRu{oo} and 
7JV = 0; otherwise, since only finitely many Lj^ intersect with a compact subset of H 
by Theorem 1.6.2(3), there exists a subsequence {zj of the sequence {ẑ } such that 
limj_oo d(w, Zi) = 00. Therefore, there exist infinitely many positive integers k such 
that d{w, Zfc) < d(w, z^+i). Thus ^̂  ^ ŷ * ^̂ ^̂  therefore ŷ  ^ 7r/2. In fact, the longer 
the side is, the larger the opposite angle is. (This can be easily verified by mapping 
the triangle into the unit disk with w to the origin.) Similarly, if M is finite, then 
PM = 0; otherwise, there exist infinitely many negative integers k such that 
Pk ^ n/2. Therefore we get the inequalities 

(1.9.2) 
N 

I 
k = M 

Z v(A,) ^ \ 
t (n-m,)- t a, (N > M), 

k = M+l k = M 

from (L9.1). Since we have these inequalities for all connected components of the 

Zk-l 

Zk+2 Zk+i 

Fig. 1.9. 



34 1. The Upper Half Plane and Fuchsian Groups 

boundary of F, we obtain, summing them over all components, the inequality 

(1.9.3) v{F) + 271 ^ X(^ - ^) + ^'^ ' 
CO 

where co runs over all the interior angles of F in H, and I' is taken over all the 
connected components of the boundary which themselves are sides (namely, 
N = M). In particular, 

(1.9.4) the number of the components consisting of one side is finite, 

and for any £ > 0, the number of the interior angles w such that n — o^eis also 
finite. In particular, taking e = n/3, we get 

(1.9.5) the number of a> such that co ^ 2n/3 is finite. 

Now let z be a vertex of F in H. Since # {yer\y{z} nF ^ 0} is finite by 
Theorem 1.6.2(3), there are only finitely many vertices of F equivalent to z by F. We 
write them as Zi = z,Z2 = 72̂ * • • • » î = Vî  (Vv ̂  ^) ' Let a>^ be the interior angle of 
F at ẑ  (1 ̂  V ^ /). Then 

(1.9.6) (Wi + • • • + c«, = Inle (e = |F,/Z(F)|). 

In fact, we can take a neighborhood L/̂  of Zj so that 

(1.9.7) yU,nU,^0oyeF,^, 

and 

(1.9.8) {yeFlyC/i n F # 0 } = {7eF|y{zi} n F ^ 0 } . 

Put F\, = U^r\y~^F. U fi^v, then yF^nF^^ is either empty or a part of the 
boundary of F^ for any yeF^^ — Z(F). In particular, the interior angle of[J[^^F^ 
at Zi is equal to cwi + • • • +co,. Moreover, let u be any point of C/i. Since F is a 
fundamental domain for F, there exists yeF such that yueF. Then yU^nF ^ 0, 
Therefore by (1.9.8), we can write y = ŷ ô with yQ eF^^. Since yoU = y~ ^yu, we get 
^oweFy. This proves that Uyer^ y(UUi^v) = ^ i - Since the action of F on H is 
conformal, we obtain equahty (1.9.6). 

Now a side of F is either an arc or a line orthogonal to the real axis by Theorem 
1.6.2(2), so that 0 <o)^ <n. Therefore, applying the equahty (1.9.6) (considering the 
cases e = l,e = 2 o r e > 2 , separately), we see that there exists at least one co„ such 
that cOy ^ 27r/3. Hence if F has infinitely many vertices in H, there exist infinitely 
many interior angles o satisfying co ^ 27r/3; this contradicts (1.9.5). Therefore the 
vertices of F in H are finite. Hence (1.9.4) implies that the number of the connected 
components of the boundary of F is finite, and also that 

(1.9.9) the number of the sides of F is finite. 

Next we shall prove that the summation of â  taken over all the sides of F is equal 
to ln\ in other words, F is completely covered by triangles Aj^. In fact, suppose that 
it is not true. Then there exist two distinct geodesies passing through w such that 
they have no ends and the domain between them is included in F. Therefore F has 
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infinitely many triangles whose vertices are on IR u {oo}. Since the areas of these 
triangles are TT, we get t;(F) = OO; which is a contradiction. 

Since F is a polygon whose sides are geodesies, any vertex x of F on IR u {oo} is 
the ends of two distinct sides of F. Let us show that x is a cusp of F. Let Lj be a side 
of F which has x as its end. By definition, there exists yi G F such that 

Li = F njiF. 

Since yi^L^ = 7;" ^ F n F, yj" ̂  L^ is also a side of F and yf ^ x is also a vertex of F 
on IR u {00}. Put Xi = X and X2 = yf ^^1 • Let L2 be the other side of F which has 
X2 as the end. Similarly as above, there exists y2^r such that L2 = Fny2F, and 
X3 = 2̂ ^ X2 is also a vertex of F on IR u {00}. Repeating this process, we obtain the 
sequences {x^} of the vertices of F on IRu {00} and {y^} of the elements of F 
satisfying yjT̂ f̂c = ^jt+i- Since the vertices of F on IR u {00} are finite, there exist 
integers m, n (m < n) such that x„ = x„. Therefore, we get yx^ = x„ with 
y = y~}] . . , y~^. Since x^ is a cusp of F by Lemma 1.6.3, x is also a cusp of F. 

Let {xi , . . . , x j be the set of all vertices of F on IR u {00}. We shall show that 
any cusp xofFis equivalent to some x^. Let U*(l ^v ^t) be the neighborhood of 
Xy such that 

U* = (T;I C/f, (T,x, = 00 ((7,eSL2(IR)). 

Since F —\J[^^U* is bounded, it is compact. Assume that x is not equivalent to 
any x^. Then, by Lemmas 1.7.6 and 1.7.4, we can take a neighborhood U* of x 
satisfying 

(^-M^0= y l / * n ( F - U C/J 1 = 0 , yU*nU* = 0 (l^v^t) 

for any yeF. In particular, y I/* n F = 0 for any y e F . This contradicts the fact 
H = \JyeryF' Therefore any cusp of F is equivalent to some x^. Consequently we 
obtain 

F \ H * = 7 r ( F u { x i , . . . , x J ) 

= 7i(^F-U^C/r)u(^U^7r(C/;)^ . 

Since F — \J[^^U* and the closures of n{U*ys in F \ H * are compact, F \ H * is 
compact. D 

Corollary 1.9.2. Let F be a Fuchsian group of the first kind. Any subgroup of F of 
finite index is also of the first kind. 

Proof Let Fj be a subgroup of F of finite index, and put F = \J^^ 1A Tv Let F be a 
fundamental domain of F and TTJ : H -• Fj \ H the canonical projection. Then, since 
^i(Uvyvi') = ^ i \ H , w e s e e 

m 

t;(Fi\H) ^ X ^(yyF) = ^^i^) = rnv(F\H) < 00. 
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Therefore F^ is of the first kind. D 

The following corollary is proved in the proof of Theorem 1.9.1. 

Corollary 1.9.3. Iff is a Fuchsian group of the first kind, and F is the fiindamental 
domain ojF defined by (1.6.1), then any vertex ofF on U KJ {oo} is a cusp ofF and any 
cusp of F is equivalent to a vertex o/F on IR u {oo}. 



Chapter 2. Automorphic Forms 

In this chapter, we explain the general theory of automorphic forms. Hereafter 
Fuchsian groups always denote Fuchsian groups of the first kind. 

§2.1. Automorphic Forms 

"[: > Let a = J P ^ ^^ element of GL2 (U). We put; (a, z) = cz + ̂  as in (1.1.2). This is 

a holomorphic function on H without zero. We recall the basic properties of j(a, z), 
since they are often used. 

Let a, PeOmU) and zeH. Then 

(2.1.1) 7(aft z) =7(a, MJiP, 4 7(a"S z) =j(a, oi-'z)-'; 

(2.1.2) rf(az)/Jz = det(a)//(a,z)2; 

(2.L3) Im(az) = det(a) Im(z)/|7(a, z)\\ 

Moreover, by (2.1.1), we see that 

(2.1.4) 7(a, z) = const.;()?, z)^(xr'^ GLUmoo • 

Let k be an integer. For any function /(z) on H, we define the action of an 
element a of GL2 (K) by 

(2.1.5) (Aa)(z) = det(a)'^/27(a,z)-V(a^) (zeU). 

By (2.1.1), we have 

(2.1.6) A«P = ifMkP (a,peGmU)). 

For scalar matrices, we see in particular, 

(2.1.7) / | , P ^1 = sgn(a)V (a # 0). 

Let r be a Fuchsian group and k an integer. A meromorphic function/(z) on H 
is called an automorphic form of weight k with respect to F or simply a 
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r-automorphic form of weight /c, if it satisfies 

f\ky=f 

for all elements yeP. 
We denote by QkiP) the set of all automorphic forms of weight k with respect to 

r. Then Qk(r) is a vector space over C and 

(2.1.8) ifr ID r\ then Q^iF) a Q^{r'); 

(2.1.9) iffeQkin and a6GLj(IR), then f\kOCGQk(oi~^roc); 

(2.1.10) iffeQ,(r) and geQ,(n thenfgeQ,^i(r). 

Furthermore by (2.1.7), we see that 

(2.1.11) ifk is odd and -1 eT, then Q j r ) = {0}. 

Let Q{r)bQ the module generated by all ^^(r) ; namely 

Q(r)= X Q,{r). 
k=-oo 

Then we have 

Lemma 2.1.1. The module Q(r) is a graded ring. 

Proof By (2.1.10), Q(r) is obviously a ring. Now it follows from (2.1.4) that for 
elements a, j5 of T, 

7(a ,z)=7(i5 ,z)oai5-^er^ . 

Since we have i ;(r \H)<oo and the measure of r ^ \ H is not finite, F/F^ is an 
infinite set. Therefore there exists a set {y„}^=-oo of the elements of F such that 

jiyn.z)^j{ym^z) if n^m. 
Suppose 

N 

k = M 

with fkeQk(F). Then we see 

k = M k = M 
E 7(y™,z)'A(z)= I /»(?„z) = o 

for any y^. Consider these equations for m (M ^ m ̂  N) as a system of the Hnear 
equations on f^iz) (M^k^N) with the coefficients7(7^, zf. Since 

dctij(y^,zf)=± n Jiym.z)'' n U(ym.z)-j(y„,z)l 
N 

n 
m = Af 

which does not vanish on H, we get /^ = 0 for all fe (M ^ fc ̂  N). D 

Assume that T has a cusp x. Let a be an element of SL2(U) such that crx = 00. 
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Then by Theorem 1.5.4(2), we have 

(2.1.12) ^ r , a - i - { ± l } = | ± r j j T l m e z j (h>0). 

Suppose that k is even. Since flf^G'^eQ^icrra'^) for feQ,^(r), we have 

( A ^ " ' ) l J j j l = A ^ " S namely, 

(Aa-'){z + h) = (Aa-'){z). 

Therefore there exists a function g(w) on K —{0} such that 

(2.1.13) (f\,cT-')(z) = g(e'^'^i') (zeH), 

where K is the unit disk. Since/is meromorphic on H, g is so on K —{0}. We say 
that an element/of Qk(r) is meromorphic, is holomorphic, or has a zero at x, if the 
above function g is meromorphic, is holomorphic, or has a zero at 0, respectively. 
When k is odd, we say that/is meromorphic, is holomorphic, or has a zero at x when 
/ ^ is meromorphic, is holomorphic or has a zero at x, respectively. 

Lemma 2.1.2. The above definitions are independent of the choice of a. 

Proof We have only to prove our assertion for an even integer k. Let feQ^(r), and 
X be a cusp of F. We take o, h, g{w) as above. Let o-j, /ii, gfi(w) be another triple. 

Then we can write f̂̂  = ^ M ̂ ^ - i » since GG^^ OO = OO. We see easily that 

hi = h/a^ and 

g^{w) = a''g(cw) (weK), c = e^''''""\ 

This proves the assertion. D 

We are going to consider Fourier expansions of automorphic forms at cusps. 
Suppose that feQk(r) is meromorphic at a cusp x of T. Take GeSLjiU) and 
/i > 0 as above. First assume k is even, and let ^ be a meromorphic function on K 
defined by (2.1.13). Denote the Laurent expansion of gf at 0 by g{w) = YJ^=N ^n^" 
(a^ # 0). Then we have the expansion of the form: 

(2.1.14) (f\^cT-'){z)= X ay^' Ininz/h 

n = N 

on {zeH|Im(z)>/} for a sufficiently large /. Next suppose that k is odd and 
— 1 ^ r . From the above result,/^12k<T"^ = (/IfcO"" )̂̂  has such an expansion as in 
(2.1.14). Since we see 

(f\^-^\(.Mh\ I ( A ^ ' ' ) ( ^ ) i f x i s a r e 
(f\,G )(^ + ' ^ ) = { _ ( ^ | ^ , - i ) ( , ) otherwise. 

regular cusp, 
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we get the expansion 

X a^e""'""^ (as^O) if x is regular. 

(2.1.15) (f\,c7-'){z)= ^ 
n:even 

a„e"'"^/'' (a^ # 0) otherwise. 

î  n:odd 

on {z e HI lm(z) > 1} for a sufficiently large /. We call (2.1.14) and (2.1.15) the Fourier 
expansion of f{z) at a cusp x. The series in (2.1.14) and (2.1.15) are convergent 
absolutely and uniformly on any compact subset of {zeH| Im(z)>/}, and so also 
are on any compact subset of H if/(z) is holomorphic on H. Further we note that 

/(z) is holomorphic {resp. has a zero) at x if and only if N^O (resp. N>0). 

For a Fuchsian group T, we put 

^fc(^) = {/G^k(^)l/is meromorphic at all cusps of T}; 
^^{r)={fGQk(r) I / i s holomorphic both on H and at all cusps of T}; 
^fc(r) = {/e(2|t(r) |/is holomorphic on H and has a zero at each cusp of T}. 

We call the elements of ^fc(r), ^^(r) and ^k{r) meromorphic automorphic forms, 
integral forms and cusp forms, respectively. The spaces s/k{r), ^^(r) and ^kiH are 
vector spaces over C, and we easily see the following: 

(2.1.16) Qk(n ID ^ , ( r ) =3 ^,(r) ^ ^,(r); 
(2.1.17) ifr has no cusp, then Q^in^j^kin and ^kir^^^kiH; 
(2.1.18) for any aEGL^([R), the mapping "/i-^/lfca" gives the following iso­

morphisms: 

^,(r)^^,(a-'roL), ^ , ( r ) ^ ^ » ( a - ' r a ) , ^,(r)^^,(a-'ra); 

(2.1.19) iffej^.^n andf¥^ 0, then l / / 6 ^ _ , ( r ) ; 
(2.1.20) iffes^tin and ge^,ir), thenfge^t^m, 
(2.1.21) iffe%(r) and ge^,(n thenfge^,^,(r); 
(2.1.22) iffe%(n and ge^,{n, thenfge^,^,(r). 

We also put 

^(r)=^^^(r), nn=i%{n ^(r)=x^*(n. 
k k k 

Since Q(r) is a graded ring, we see that 

(2.1.23) ^ ( r ) , ^(r) and ^(r) are graded rings. 

Moreover, (2.1.19) and (2.1.20) imply that ^oiH is a field. We call J^oiH the 
automorphic function field with respect to F and the elements of J^Q(F) automorphic 
functions with respect to F. Let f be an automorphic function with respect to F. 
Since (/loy)(2)=/(y^)» we can write 

f{z) = (l)onr(z) 

with a meromorphic function </> on r \ H . Moreover, since/(z) is meromorphic at 
each cusp of F, (f) is a. meromorphic function on the Riemann surface 'tRp. 
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Conversely, if 0 is an element of the function field X(9l j-) of 91 j^ , then the function 
f{z) defined by/(z) = 0 o np(z) (zeH) is obviously an element of s^o(r): Thus we 
obtain that 

(2.1.24) K(^r) is isomorphic to ^o(r) through the correspondence "</> i—• </>o7r/'. 

Lemma 2.1.3. Let F bea Fuchsian group and F' a subgroup ofF of finite index. Then 
we have: 

^,(F) = Q,iF) n ^ , ( r ' ) , %(F) = Q,iF) n %{F'), ^,(F)= Q,{F) n ^,(F'). 

In particular, s/,(F) c: s/,(F'l <^,(F) ^ <^,iF'), ^,{F) ^ ^ , ( r ' ) . 

Proof. We have only to prove the equahties for even weights. We will prove the 
lemma only for cusp forms. Other cases can be proved similarly. If F has no cusp, 
the assertion is obvious; otherwise, it is sufficient to ascertain the conditions at 
cusps. If X is a cusp of T, then it is also a cusp of F' by Corollary 1.5.5. Take an 
element a of SL2(IR) and h>0 satisfying (2.1.12), and put / = [r^• {± 1}: r ;• { ± 1}]. 
By assumption, / is finite and we get 

,Tr>-{±l} = |±[J|''J|m6zJ. 

Let/be an element of ^n(r), then we have the Fourier expansion of the form 

I«. ^Ininlzjlh 

which is the Fourier expansion of / at x as an element of Qk(^'). Hence by 
Corollary 1.5.5, we obtain/e^uiT'). Conversely, suppose/e Qj,{F) n ^'^(r'). Then 
it has the Fourier expansion at x: 

(/|,(7-i)(z)= f a„e2--/'\ 

Since/ belongs to Qk(F\ we have (/lkO-~ )̂(z + /i) = (/|fc(T~ )̂(z). Hence a„ = 0 
unless n is divisible by /, and we have 

n = l 

which is the Fourier expansion of/at x as an element of Q^i^). This implies that/ 
belongs to ^i,(F). D 

Theorem 2.1.4. Assume thatfeQ^JX) is holomorphic on H. If there exists a positive 
real number v such that 

/(z) = 0(lm(z)-^) (Im(z)^O) 

uniformly with respect to Re(z), then f belongs to ̂ fc(r). Moreover if we can take v so 
that v</c, then f belongs to 6^k(F). 
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Proof. We may assume that k is even. If r \ H is compact, the assertion is obvious. 
Suppose that F has cusps, and let x be a cusp of F. First suppose x is on IR. Take 
(JGSL2(U) SO that ax = oo, and let /i be a positive real number satisfying (2.1.12). 
Then f\k(T~^ has the expansion of the form: 

00 

n= — 00 

which is uniformly convergent on any compact subset of H. The coefficient a„ is 
expressed as 

(2.1.25) ''n = l^^i' {Aa-'){z)e-'"'"^''dz 
" zo 

for any fixed ZOGH. Write cr~^= I, then c # 0. Now Im(<7~^z) 
Ic dJi 

= Im(z)/|cz + ^P = 0(l/Im(z)) (lm(z)-^ oo) uniformly on |Re(z)| ^ h/2. Then by 
assumption, we have 

(2.1.26) (f\,a-')(z)=f{a-'z)j(<j-\z)-' 

= 0(lm(z)^-*) (Im(z)^oo), 

uniformly on |Re(z)\Sh/2. Taking ZQ = iy-h/2 in (2.1.25), we get 

|aj = 0(/-*e2""^/'') (y^oo). 

Thus if n < 0, then a„ = 0. Moreover if v < /c, then QQ = 0. In other words, /(z) is 
holomorphic at x, and if v < /c, then/(z) has a zero at x. Next suppose x = oo. Then 
since T is of the first kind, we have F ̂ F^. Thus for 7 e T — T^, a real point 700 is a 
cusp of F equivalent to 00. Therefore/(z) is holomorphic at all cusps of T, and if 
V < /c, then /(z) has a zero at any cusp. D 

Theorem 2.1.5. Let f(z) be an element of Qf,(F). Then f(z)e6^kin if and only if 
f(z)lm(zf'^ is bounded on H. 

Proof We may assume that k is even. The if-part is obvious by Theorem 2.1.4. 
Conversely, let/(z) be a cusp form and put g(z) = |/(z)|Im(z)*^^. Since g{yz) = g{z) 
for any ysF, we may regard g(z) as a continuous function on F\H. If F\H is 
compact, then g{z) is bounded on r \ H , and therefore bounded on H. Assume that 
F has cusps. Since F has only finitely many inequivalent cusps, we have only to see 
that g(z) is bounded on a neighborhood of a cusp of T. Let XQ be a cusp of T, and a 
an element of SL2(U) such that ^XQ = 00. Take a positive real number h so that 

' ^ r ,„<T- '{±l} = { ± r j i T k ^ ^ j , and let {Ac-'m = l^:^, 0^""'" be 

the Fourier expansion o f /a t XQ. Then we see 

g{G-'z) = \(f\,a-'){z)\lm(zr' 

£ a„e^"'" /̂'' Im(z)*/^ -• 0 (Im(z) - 00). 
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Thus g(z) is bounded on a neighborhood of XQ. • 

Corollary 2.1.6. Letf(z) be an element of^ki^^)^ XQ a cusp off and a an element of 
SL2(U) such that CTXQ = oo. Let 

n= 1 

be the Fourier expansion offat XQ. Then we have 

a„ = Oin"'). 

Proof. Put g(z) = {f\k(T~^){zl then g(z)e^j,(ara~^). By Theorem 2.1.5, there 
exists a constant M > 0 such that \g(z)\ ^ MIm(z)~*/^. Therefore we get 

1 " " ! = ^ 
2ft 

jg(x + yi)e-'''"^''^y'^'^dx\ 
0 

< My'^'^e^"^''*. 

In particular, taking y = 2/n, we obtain \a„\ ^ Ln''^^ with L = Me^"/''2~*/^. D 

We note that the estimate of the Fourier coefficients a„ in Corollary 2.1.6 is not 
best possible. In fact, when T is a congruence modular group, it is proved that 
a„ = p(«(*-^)/2) (c.f. Theorem 4.5.17). 

It is convenient to generalize the notion of automorphic forms to automorphic 
forms with a character. Let T be a Fuchsian group, and x a character of F of finite 
order. Put F^ = Ker(x). Since it is a subgroup of F of finite index, it is also a 
Fuchsian group. We put 

Odr.x) = {feQ,ir,)\f\,y = xW/for any yeF}, 

%(F,x) = ^kir,x)r^%{F,l 

In particular, if x =1 , then Q,(F, x) = Ouin ^kir. x) = ^ . ( r ) , %(r, x) = %(n 
^k(r, X) = ^kiry We call the elements of f̂c(r, x) automorphic forms of F with x-

By definition, we easily see the following (2.1.27) through (2.1.31). 

(2.1.27) Suppose - 1 e r . / /x ( -1) # ( - l)^ then Q,(F, x) = {0}. 

(2.1.28) Let F' be a subgroup of F^^ of finite index. Then we have: 

^,(r,x) = r2,(r,x)n^,(r'), 

^,(r,x) = Ofc(r,x)n^,(n, 
^,(r,x) = D,(r,z)n5^,(r'). 

(2.1.29) Let F' be a subgroup of F of finite index. We also denote by x the 
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restriction of x to F'. Then we have 

^,(r, X) c: ^,(r\ x\ %{r, x) ^ %ir\ x\ ^^(n x) ^ ^kir\ xl 
(2.1.30) Iffe^.ir, x) and ge^i{r, i/zl thenfgGs/.^^ir, # ) . 

(2.1.31) Let a be an element ofGL2 (U). Put F' = cc~^F<x, and define the character 
X' of F' by x'(^~^yo(.) = x(y)- Then we obtain the following isomorphisms by the 
correspondence "/ •—•/I ̂  a ": 

j^,(F,x)^^kir\x'l ^,iF,x)^'^kir\x'l ^,{F.x)^^kir\x'y 
Let /(z), g(z)E^k{F,x)- Assume that either /(z) or g(z) is a cusp form. 

Then/(z)sf(z)ey'2fc(Az^), and therefore, |/(z)^(z)|Im(z)* is bounded on H by 
Theorem 2.1.5. Furthermore if yeT, then 

f{yz)g(yz) \m{yzf =f(z) g{z) lm{z)\ 

Hence jr\H/(^)^(^) ^^{zfdv{z) is meaningful and finite. We put 

(2.1.32) (/, g) = v(F\U)-' J /(z)^Im(z)*rft;(z), 
r\H 

and call it the Petersson inner product (though it is defined only when either/(z) or 
g(z) is a cusp form). It induces an Hermitian inner product on ^^(r , x)-

Let Fi and F2 be two Fuchsian groups, and XnXi characters of T j , r2 of finite 
order, respectively. Assume that there exists a Fuchsian group F' contained in 
Ker(xi)nKer(/2). For/(z)G5^fc(ri,/i) and ^(z)e^fc(r2, Z2X we can define the 
Petersson inner product (/, g) by considering/(z) G ^^i^') and g(z) e ^^(r ') . We see 
easily that 

(2.1.33) (/, g) is independent of the choice of F'. 

We put 
^,(F) = {ge^,(F)U ^) = 0 for a l l / e ^ , ( r ) } , 

and 

f̂c(A X) = {g^^kir. x)U^) = 0 for all/G^,(r, x)}-
Theorem 2.1.7. (1) ^ , ( r , x) = ^kir, x) 0 ^ . ( r , x)-

(2) Let F' d F, and x! be the restriction of x to F. Then 

^k(r,x) = ^kir\xlr^%{F,xy 
Proof ([Shimura 12]) The first assertion is an easy exercise of Linear Algebra. Let 
us prove (2). There exists a normal subgroup F" of F of finite index included in 
Ker(x). We are going to show that J^ki^, x) ^ -^fc(^"). Let giz)Gjr,^(F, x)- Since 
gf(z)e^jfc(r"), we can write 

giz) = g,{z) + / i (z), g,(z)e ^ , ( r " ) , / i (z) e ^ , ( r " ) . 

Let yeF. Then g\ky = xiy)d- Since ^fc(r") is stable under y and (/ijy, ^2) = 
(/ii, /1217 ~ ^) for any /ij e ^^( r" ) , /12 e ^^(r"), the space J^ki^") is also stable under y. 
Thus 
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Then gi\ky = x{y)Qi ^ind fi\ky = xiy)fi by applying (1) for T' and the trivial 
character. This implies/i(z)G^fc(r,x), and 

(/i J i ) = (9-giJi) = (gJi) - (91 Ji) = 0. 

Therefore/i (z) = 0 and g{z) = giiz)ejr^(r"). Since ^^Cr', /) ^ ^kiri, we have 

{f,g) = 0 f o r any / ( z ) e5^ , ( r , / ) . 

This implies g{z)eJ^kir\ xl- Obviously the right-hand side is included in the left-
hand side. D 

§ 2.2. Differentials on Compact Riemann Surfaces 

Let 91 be a Riemann surface, and m any integer. The set {(0^, K ,̂ t^)} consisting of 
the triples (0^, K ,̂ r^) of a coordinate neighborhood V^ of % a local coordinate r̂  
on V^ and a meromorphic function 0^ on V^ is called the local expression of a 
differential of degree m, if the following conditions are satisfied: 

(i) {(Vfi, tf,)} is a coordinate system of^; 
(ii) (t)^(a)(dtjdt,)"'{a) = 0,3 for any aG F^n F„ provided V^nV,^ 0 . 

Two local expressions {((p^, F^, r^)} and {(</)̂ , K ,̂ r'J} of differentials of degree 
m are called equivalent if {(</>̂ , F^, t^)} u {(0^, K ,̂ v̂)} also satisfies the above 
conditions (i) and (ii). We call the equivalent classes differentials of^ of degree m. In 
particular, when m = 1, we simply call them the differentials o/9l. We denote by 
D"*(^) the set of all the differentials of degree m. For simplicity, we identify the 
differential of degree m with its local expression, and write 

if there is no confusion. 
Now let {(F^, t^)} be a local coordinate system of % and take for </)̂  the function 

which identically vanishes on F^. Then {(0^, F^, r^)} is a differential of degree m for 
any m. We denote it by 0. For a nonzero differential co = {(</)̂ , F^, t^)} 
of degree m, each 4>^ is not identically 0 on F^, since 9̂  is connected. Thus we can 
define the differential co ~ ^ of degree — m by 

(2.2.1) oj-' = {(ct>;\V,,t,)}. 

For a differential co = {(</)̂ , F^, r^)} of degree m and a complex number c, we put 

(2.2.2) cco = {(c(/) ,̂ F^,t^)}, 

which is also a differential of degree m. 
Next let CO and co' be differentials of degree m. Refining their local coordinate 

systems, if necessary, we can write as 

^ = {(</>., ^ . ,g} , cD' = m.v,,t,)} 
with a common local coordinate system {(F^,r^)}. Then using these local 
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expressions, we define the sum co -I- co' by 

(2.2.3) co + co' = {((/),+ 0; , F„r , )} (6Z)'"(9?)). 

Moreover, for co = {(0^, F^, r^)} eD'C^?) and co' = {((/>;, F^, r^)} 6Z)"(9?), we define 
the product coco' by 

(2.2.4) cooo' = {((/),(/);, F,, t,)} iGD'"^"(m-

The definitions (2.2.1) through (2.2.4) are all independent of the choice of their local 
expressions. It follows from (2.2.3) that D'"(^) is a vector space over C. Further­
more, Z)̂ (9?) is a field by (2.2.1) through (2.2.4). Let co = {(0^, K ,̂ t^)} be an element 
of D^(^\ and define the function (̂  on 91 by 

(2.2.5) (/)(a) = 0Ja ) if a e K 

Since <̂ ^ = (j)^ on V^nV^, this is well-defined and (/> is a meromorphic function on 
9?. Conversely, let (/> be an element of the function field K{9i) of 91, and define (̂ ^ by 
(2.2.5) for a local coordinate system {(F^, t^)}. Then {((/)̂ , F^, r^)} is an element of 
D* (̂9l). Through this correspondence, iC(9?) and D^(9i) are isomorphic. Hereafter 
we identify D®(9̂ ) with X(9l) by this correspondence. Then D"'(9?) is regarded as a 
vector space over X(9i) through the product defined by (2.2.4). We put 

D(9?)= f 0^(91), 
m = — 00 

then D(9l) is a graded algebra over C and over X(9^). 
Let (j) be an element of X(9^), and take a local coordinate system {(K ,̂ t^)} of 91. 

We define a function (/)̂  on K̂  by 

ct>,(a) = (dc^/dt,){a) (aeV^). 

Then {(0^, K ,̂ t^)} is a differential of % and we denote it by d(l). The definition is 
obviously independent of the choice of a local coordinate system, and 0 is a 
constant if and only if ^0 = 0. 

Hereafter we assume that 9? is compact. Then D^(9?)^{0}, and therefore, 
D'"(9i) 7̂  {0} for any integer m, since (̂ (Z))"* eD"'(9?). If co and co' are two differentials 
of D'"(9{) and co 9̂  0, then we have co" ̂  co' e D^(9?) (= K(9t)); therefore we obtain 

(2.2.6) dimj,(9j)D'"(9?) = 1. 

We denote by Div(9?) the free module generated by all points of 9 ,̂ or 

Div(9^) = {Ĵ ggĝ  CgalCgeZ and 0^= 0except for finitely many points a}, 

and call it the divisor group of 9 .̂ We call the elements of Div(9?) divisors of 91. For a 
divisor a = ^ g ^a^ of 9?, we define the degree ofsi by 

cieg(a) = Xca (e / ) . 
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We are going to define the divisors for functions and differentials of 9?. For an 
element </> (T^O) of X(iR), we define the divisor of cj) by 

(2.2.7) div(0) = X Va(</>)a, 

where Va(</>) is the order of </> at a defined by (1.8.4). Since Va(0) = 0 except for finitely 
many points a, div((/)) is well-defined and an element of Div(9?). Moreover by virtue 
of (1.8.5), we see 

(2.2.8) deg(div((/>)) = 0. 

If 0, ^AeX(9l)^ then we see 

(2.2.9) div((/)(A) = cliv((/)) + div(i/^). 

Therefore, if we put 

Div,(9?) = {div((/))|</)eX(9l)^}, 

then it is a submodule of Div(9?). We call Div,(9{) the principal divisor group, and 
the quotient group Div(9?)/Div,(9?) the divisor class group. The elements of 
Div(lR)/Divj(9l) are called divisor classes. 

Let CO # 0 be a differential of degree m and co = {(0^, K ,̂ ^^)}. We put 

V a M = Va(</)^) 

for any point aeV^. Since dt^/dt^ is holomorphic and has no zeros on V^nV^, 
Va(co) is independent of the choice of a local expression of o. Moreover, Va(co) = 0 
except for finitely many points a, since 9? is compact. Hence we can define the 
divisor ofco by 

div(co)= X Va(co)a, 
ae5R 

which is an element of Div(9l). If m = 0, then it is nothing but the divisor of a 
function defined above. If ca e Z)'"(9i), co' e Z)"(9l) and G> # 0, co' # 0, then we get 

(2.2.10) di\((oo}') = div(co) + div(co'). 

Therefore by (2.2.6), we see 

(2.2.11) {diw(co)\coeD'"(m)-{0}} is a divisor class. 

Let a = ^ a Cga be a divisor. When Cg ^ 0 for all a, we say that a is positive and 
write a ^ 0. We put, for a divisor a, 

L(a) = {</)eX(iH)| (/) = 0 or div((/)) + a ^ O } . 

It is known that L(a) is a finite dimensional vector space over C. By (2.2.8), we see 

(2.2.12) L(0) = C; 

(2.2.13) L(a) = {0} if deg(a)<0. 

We put 
/(a) = dime L(a). 
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Then the following theorem is known (see [Lang]). 

Theorem 2.2.1 (Riemann-Roch). Let ^ be a compact Riemann surface of genus g. 
Fix a nonzero differential w of 91. Then we have 

/(a) = deg(a) - ^ + 1 + /(div(ft>) - a) 

for any divisor a of 9?. 

The following corollary is easily deduced from this. 

Corollary 2.2.2. Let ^ be a compact Riemann surface of genus g. 

(1) If CO is a nonzero differential o/9?, then we have 

deg(div(cy)) = 2 ^ - 2 , /(div(ca)) = g. 

(2) / / CO is a nonzero differential of 9? of degree m, then we have 

deg(div(co)) = 2m{g - 1). 

(3) / / a is a divisor o/9l such that deg(a) >2g — 2, then we have 

/(a) = deg(a)-sf + l. 
Let CO be a differential of degree m. We say that co is holomorphic, if either co = 0 

or div(co) ^ 0. We denote by Do(9?) the space of the holomorphic differentials of 
degree m. Since 

L(div(cyi)) = {</)eX(lR)|(/) = 0 or diy((f)co,)^0} 

for a nonzero differential cô  of 91, we get the isomorphism: 

L(div(coi))~ {o)eD^(m)\o) = 0 or div(co)^0} 

= />i(9?). 

Therefore by Corollary 2.2.2(1), we obtain 

(2.2.14) dimci)J(9l) = g. 

§2.3. Automorphic Forms and Differentials 

We are going to connect automorphic forms for a Fuchsian group F and differ­
entials on the Riemann surface 91 j^ . 

First we assume that k = 2m, and define a mapping from s/^(F) to D"'{^p). Let 
TT = TTĵ be the natural projection from H* onto 91^, and / an element of s/^iF). 
For a point a of 9? -̂, take a point ZQ of H* such that 7r(zo) = a. Let U*^be SL 
neighborhood of ZQ in H* satisfying the following conditions: 

(2.3.1) yUlnUl ^ 0 if and only ifyeF,^; 

(2.3.2) ifyeF^^^thenyUl^Ul. 
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Let tg be a local coordinate on a neighborhood VQ = n(U*^) of a defined in §1.8. 
r Suppose ZQ is a point of H. We define a function g(z) on C/J, by 

(2.3.3) g(z)=f{z){d(t,on{z))/dz)-'" (zeC/JJ. 

Since t^°n{yz) = t^°n(z) for any yeF^^, we see 

(2.3.4) d(t,onoy(z))/d(yz) = (d(yz)/dzy'd(t,on(z))/dz 

= j{y,zfd{t,on{z))/dz (yerj. 

Thus WQ gQt g(yz) = g(z) for any yeF^^, and therefore, there exists a function </)a on 
Kg satisfying 

(2.3.5) (/)3 0 7r(z) = ^(z) ( ze l / ?J . 

Since / ( z ) is meromorphic, so is (f)^. Moreover, if a point b of 91 j^is not a cusp 

and Fg n Kb 7̂  0 , then 

(2.3.6) ct>,{c){dtJdt^r{o) = cj>^(o) 

for any ceV^n V^. 
T Let ZQ be a cusp. Put U^^= U*^ — {ZQ} and define a function ^(z) on t/̂ o ^Y 

(2.3.7) ^(z)=/(z)(^(r307r(z))/^z)-- ( Z G I / , J . 

By a similar argument as in 1°, we see ^(yz) = ^(z) for yeF^^. Thus there exists a 
function (/)a on Kg — {a} satisfying 

</)a°7r(z) = ^(z) (zef/^J. 

Since / ( z ) is meromorphic on (7^ ,̂ so is (f)^ on Kg — {a}. Take an element c of 
SL2(U) satisfying CTZQ = oo, and let /i be a positive real number such that 

" m e / y. We define a local coordinate tg by -HI' 
tQ°n(z) = e^'''''''^, and put c = (Ini/hy". Then we see 

(2.3.8) (/>g o niz) = cf(z)(d(Gz)ldzr "'{t, o n(z))-"' 

= c/(z)7(a,z)2-(fg0 7r(z))-'" 

= c(f\2mCT-')iaz){t,on{z))--

on U^^. Since / is meromorphic at ZQ, so is (/>g at a. Moreover, if b is a point of ^p, 
and Kg n Fjj # 0 , then we see easily that (2.3.6) also holds in this case. 

Thus we have proved that {((/)g, Kg, tg)} is a differential of degree m of 91/-, 
which we denote by coŷ  or o){f). Then we easily see that 

(Oj-g = (Of(Og for fes^2m(r\ ges^2n(n. 

^ / + » = % + <̂ 5 for fges/2mir). 

Conversely, let co = {{(l)^,V^,t^)} be an element of D"*(9ij^). We define a 
function / ( z ) on H by 

/ ( z ) = (t>^(n(zmd{t^ o n(z))ldzr ( zeH n TT" ^( V^). 
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Then / (z ) is well-defined and an element of s/jmi^^)- Furthermore we see 

Summing up all together, we obtain the following 

Theorem 2.3.1. Put ^(r)even = Zm'^2m(^)- Then ^{r\^^^ is isomorphic to 
D{^r) = Yjm^"^i^r) 5̂ graded algebras over C by the correspondence "/i—•co/'. 
In particular, ^2m(T) "^ W-

Let / be a nonzero element of ja^2m(^)- We use the same notations as in 1°, T. 
Let a = 7r(zo)e9?y^with ZQEH* . First suppose ZOGH. Take an element p of 5L2(C) 
so that pH = K and pz^ — 0. Then we can take a local coordinate t^ on Kg so that 
t^°n(z) = (pzy(zeU*J, where e is the ramification index at a. Using this local 
coordinate t^, we can rewrite (2.3.3) as 

ct>,on(z)=f(z)(d(pz)/dz)-"^(e(pzy-')-"^ (zeC/JJ. 

In other words, putting w = pz, we have 

(l)^onop-^w) = e-'"f(p-'w)(d(p-'w)/dwrw-'"^'-'^ (wep{Ul)). 

Comparing the orders in w on both sides, we get 

(2.3.9) ord,(03O7rop- 1) = ordMiP~'^)id(p-'w)/dwr) - m(e - 1). 

Since tg ° TT o p " ^ (w) = w ,̂ we have 

(2.3.10) ord^(</)a°7ro/9" ^) = ev^icj)^) = ev^iOf). 

On the other hand, we have 

(2.3.11) ordU/(p-^w)(^(p- iw)/^w) '") = o rd ,_ , , ( / ) , 

since d{pz)/dz has neither a zero nor a pole at ZQ. It is natural to define 

V3(/) = ^ o r 4 _ , , ( / ) . 

Then, from (2.3.9) through (2.3.11), we obtain 

(2.3.12) V3(co )̂ = V 3 ( / ) - m ( l - l / ^ ) . 

In particular, the definition of V3(/) is independent of the choice of both ZQ and p. 
We note that when m = 1, for a = ;r(zo) (ZQEH), 

(2.3.13) (Of is holomorphic at a 

of is holomorphic at ZQ. 
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Next assume that ZQ is a cusp of F. Take c, /i, IQ as in 2° above. Since 

{f\2m(T-')(Gz)= f ay^'"^^" (a^#0) 

= f a„(f3o;t(z))", 

we get 

Va(0a) = ^ - ' W 

by (2.3.8). We put v^(f) = N, then we obtain 

(2.3.14) v,(cOf) = v,(f)-m. 

In particular, v^if) is independent of the choice of both ZQ and a. When m = 1, 
we see for a cusp a = 7r(zo), 

(2.3.15) coy is holomorphic at a 

< > V 3 ( / ) ^ l 

o / /las a zero at ZQ. 

Consequently, by (2.3.13) and (2.3.15), we obtain the following 

Theorem 2.3.2. The correspondence "/1—• ojf induces the following isomorphism: 

To define divisors of automorphic forms, we shall generalize the notion of the 
divisors. For a compact Riemann surface % we put 

Div(9{)Q = Div(9i)(x)2Q 

= < YJ â 3 ka ^ ̂  ^^^ <̂a = ̂  except for finitely many points a 
lae9? I 

We call the elements of Div(9?)Q divisors with rational coefficients. 
Now let / be a nonzero element of s/2m(^)- We have Va(/) = Va((Oŷ ) for every 

ordinary point a. Then the number of the points ae^p such that Va(/) T̂  0 is finite, 
since elhptic points and cusps and points a such that Va(co/) T̂  0 are only finite. 
Therefore, we can define 

d i v ( / ) = E V3(/)a 

as an element of Div(lR^)Q. By (2.3.12), (2.3.14) and Corollary 2.2.2, we get the 
following 

Theorem 2.3.3. Let k be an even integer. For a nonzero element f of s/^ir), 
we have 

div(/) = div(a)^) + ^ X ( l - 1 / ^ 3 ) 3 , 
^ a 

deg(div(/)) = kig - 1) + ^ 1 ( 1 - l/e,). 
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where e^ is the ramification index of a and g is the genus of^p. We understand 
i/eQ = 0 if a is a cusp. 

Remark 2.3.1. Since 1 — l/^g == ^ ^^^ ordinary points a, the summation in the 
right-hand side is virtually a finite sum. 

Remark 2.3.2. When m = 0, the divisor div(/) for a nonzero element / of ja/o(r) is 
nothing but the divisor of / as an element of KCtRpy. 

Remark 233. Let/GJ3/2m(^)-Then 

o)j-on=f(z){dzr 

as differentials of degree m of H. Keeping this in mind, if we define 

(2.3.16) d i v ( ^ z ) = - X ( l - l / ^ a ) a . 
a 

then we have 

(2.3.17) div(w^) = div(/) + mdiv(rfz). 

Corollary 2.3.4. Let k be an even integer, and assume that F has cusps. Denote by r 
the number of inequivalent cusps of T, and by s the number of inequivalent elliptic 
points. Let xbe a cusp off and a an element ofSLjiU) such that ax = oo. Let / (z) , 
g{z) be elements of%(r) and 

«=o «=o 

be the Fourier expansions off h at x. Ifa„ = /?„ for every n'^k(g — \) •\- k(r-\-s)/2, 
thenf(z) = h{z). Here g is the genus of^p. 

Proof Put w = co^_ft. Suppose co # 0. Then, by (2.3.14), v„(̂ )(a>) ^ k(g - 1) 
-\- k(r -\- s — 1 ) / 2 H - 1. Since both / and h are holomorphic. Theorem 2.3.3 implies 
that oj is holomorphic at all points except for cusps and elliptic points. 
Furthermore, v^{(o) ^ — /c/2 for all eUiptic points and cusps other than n{x) by 
(2.3.12) and (2.3.14). Therefore deg(div(co)) ^ /c(^ - 1) + 1; this contradicts 
Corollary 2.2.2. Consequently, co = 0 and f=h. D 

Next we consider the case when k is odd. Assume — 1 ^ T. Let / ( z ) be a nonzero 
element of s^k(^). Since /(z)^ belongs to s^2k{^\ we may put 

Va(/) = Va(/')/2 (ae^r\ 

We define div(/) by 

cl iv(/)= X V3(/)a. 
a € « r 
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Theorem 2.3.5. Let k be an odd integer. Assume — l^F. For a nonzero element f of 
S2^^{r\ we have: 

(1) div(/) = ^ d i v K a ) + ^ 1 ( 1 - 1 / ^ 3 ) 3 , 

deg(div(/)) = fe(g - 1) + ^ X ( l - l/^a); 
^ a 

(2) V3(/) = \ 

1/2 modZ, if a is an irregular cusp, 

an integer/e^ modZ, if a is an elliptic point, 

0 mod Z, otherwise; 

^ ^ f odd, if a is a regular cusp, 

even, otherwise. 

Here e^ denotes the ramification index at a. We understand l/eQ = Oifaisa cusp. 

Proof The assertion (1) is easily seen by Theorem 2.3.3. Let us prove (2). When a is 
a cusp, the assertion easily follows from (2.1.15). Suppose a is not a cusp and let ZQ 
be a point of H such that 7r(zo) = a. Then 

Va(/) = V3(/ ')/2 = ord,(/^)/2e3 = ord,(/)/e3, {t = z - Zo). 

This implies (2). By definition, we have 

V3(a,^.) = 2 v 3 ( / ) - f c ( l - l / e 3 ) . 

Thus, if a is not an eUiptic point, the assertion follows from (2). Assume that a is an 
elliptic point. Then ĝ is odd by Lemma 1.5.6(2). Put Va(coj2)=^w. Since 
ue^ + k{eQ — 1) is even by (2), u must be also even. Therefore we get (3). D 

§2.4. The Measure of r \ H * 

In this section, we calculate the measure of r \ H * using the genus ^ of r \ H * and 
ramification indices. 

Lemma 2.4.1. Let m be the least common multiple of the orders of all elliptic points of 
r. Then there exists a nonzero element ofs/2mir) ^hich has neither zeros nor poles at 
any cusp and any elliptic point of F. 

Proof. By definition, we have only to show that there exists a nonzero element / of 
s^2mir) such that v^if) = 0 for all elliptic points and cusps a of 9?/-. Let fe be a 
nonzero element of s^2mi^)- We note that div(fe) belongs to Div(9i^) by the 
definition of m and Theorem 2.3.3. Let { a i , . . . , a^} be the set of all elliptic points 
and all cusps of 91 j^ . Take an integer n satisfying 

- deg(div(/c)) -l-\-n>2g-2. 
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Let b be a point of 9? ĵ  which is neither an elliptic point nor a cusp, and put 

a = — div(/c) + nb, 

b^ = - div(^) -a^ + nb {l^n^ r). 

Then we see L(a) => L(b^) and, by Corollary 2.2.2(3), 

dimL(a) — dimL(b^) = 1, 

so that there exists a nonzero element h{z) of s/o{r) {^ K(^p)) such that 

/iGL(a)- 0 UK)-

Put f=k/h; this is the desired one, since 

Lemma 2.4.2. Let k be an even integer, XQ a cusp off, and f a nonzero element of 
j^k(r) which has neither a zero nor a pole at XQ. Let C be a curve contained in a 
neighborhood O/XQ satisfying the following conditions: 

(i) n{C) is a circle around 7r(xo) oriented counterclockwise; 

(ii) C corresponds one-to-one ton(C) except for the initial point and the terminal 
point. 

If C tends to XQ with respect to the topology of H*, then we have 

lim J ^log / = lim^y~ ^ dz = 0. 
c c 

Proof Put a = n(xo). Let C/* be a neighborhood of XQ such that V =n(U*) is a 
neighborhood of a as in § 1.8. We may assume that C is contained in 1/ * by taking it 
sufficiently close to XQ. Take an element a of SLjCIR) so that (TXQ = oo. Then we see 

(2.4.1) J ^ l o g / = J^log(/(z)7((T,z)*) - /cJ^log;((7,z). 
c c c 

We may regard f{z)j((T, zf = {f\k(T~^ )((7z) as a function on V(cf. (2.LI3)) which 
has neither a zero nor a pole at a. Thus the first term of the right-hand side 

n{Q 

Fig. 2.4.1 
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converges to 0 as C goes to Xo. To calculate the second term, put w = az and 

Then (J-' = 
a bl 
c d] 

jd\ogj(G,z)= - J d\ogj(a \w) 
C <T(C) 

WQ + h 

= — J ^log(cw + d) 
Wo 

- l o g 
CWQ -\- d -\- ch 

- ^arg 
CWQ -}- d + ch 

CWQ -I- d CWQ + d 

where WQ and WQ -^ h (h > 0) SLTQ the initial point and the terminal point of a(C), 
respectively. We note that h is independent of the choice of C. Let C go to XQ. Then 
G(C) converges to oo, and so does WQ. Hence the second term of the right-hand side 
of (2.4.1) converges to 0, so that 

l i m j ^ l o g / = 0 . 
c 

Similarly, since we have, by (2.1.2) and (2.1.3), 

h~'dz S J Im(w)-M^w|, 

and (T{C) tends to oo as C -• XQ, we get 

lim jy~ ^ dz = 0. D 

Theorem 2.4.3. Let F be a Fuchsian group and g the genus of the Riemann surface 
91 j .̂ Then we have 

J - , ( r \ H * ) = 2 ^ - 2 + X ( l - l / ^ a ) . 

Here e^ denotes the ramification index of ae^p, and we understand l/^g = 0 if a 
is a cusp. 

Proof Take an integer m and a nonzero element / of j/2m(^) as in Lemma 2.4.1. 
Then / has neither a zero nor a pole at every elHptic point and every cusp of F. 
Since 9?̂ - is a compact real manifold of dimension 2, there exist curves 
L^(l ^ /i ^ /) such that 9?̂ -— (JĴ  ^ ^ L^ is simply connected. We may assume that 
no cusps lie on L^. Taking a point b on (JĴ  = ^ L^, we connect elliptic points and 
cusps with b in 9? J-— (JĴ  = j L^ by curves L,,{1 -\- 1 ^v ^t) which do not intersect 
each other (see Figure 2.4.2). We can take L^(l -\- 1 ^v ^t) so that neither zeros 
nor poles of/ lie on it. Now there exists an open connected subset 1/ in H which is 
homeomorphic to 9?/-— (JĴ  = ̂  L^. In fact, take a point c on 9ly-— (JJ, = i L^, and 
let ZQ be a point of H such that 7r(zo) = c. Let M be the set of the curves C on H 
which have the initial point ZQ and are mapped bijectively into '*Rp— (JJ, = ^ L^ by TT. 
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Fig. 2.4.2 

Then the set U consisting of the terminal points of curves C e M is the desired one. 
Put F = U, then it is a fundamental domain of T. Let Xi,. . . , x̂  be the apices of F 
which are cusps of F. Let Ĉ  (1 ^ v ̂  r) be a curve contained in a neighborhood of 
Xy whose image n(Cy) by TI is a circle around nix^) oriented counterclockwise. Let 
M be the compact set surrounded by the boundary of F and the curves 
Cy(l ^ V ^ r) (see Figure 2.4.3). By the definition of the measure of r \H*, we have 

v(F\H*) = v(F) = lim J 
1 < v < r 

dx A dy 
(z = X -\- iy). 

By the Stokes theorem, we see 

r dx A dy . dz c I dz 
\ 2-^= I — = J — + 
M y m y ^M\y ^ 

f^^Ldlogf)-- i rflog/, 
\y rn J m/M 

where dM denotes the boundary of M oriented counterclockwise. Since 
f(yz) =f{z)j(y, z)^"" for yer, we see 

( f / log / )o7-^ log/= 2m d\ogj{y,z). 

Fig. 2.4.3 
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This combined with Lemma 1.4.3(1) implies that y~^ dz-{{i/m)d\ogf is invariant 
under the action of P. Therefore we can regard it a differential on T \ H*. By 
our construction of M, the boundary of M except for C^ (1 ^ v ^ r) consists of the 
pairs of the sides which are transformed by F and have opposite orientations. 
Consequently, 

J f̂  + i<i.og/Vo, 
so that 

y m 

I f + i.log/ = - Z J 
dM\y ^ J V = 1 Cv 

dz / _ 
— + -d\ogf 
y m ) • 

By Lemma 2.4.2, the right-hand side converges to 0 as C '̂s go to x^ for all x^. 
Moreover, when C^ is sufficiently close to x^, we may consider that both zeros and 
poles of / are contained inside of M. Therefore we get 

2n 

m 
J d l o g / = — d e g ( d i v ( / ) ) . 

dM ^ 

This combined with Theorem 2.3.3 implies the assertion. D 

§2.5. Dimensions o{%{r) and ^ J T ) 

We are going to calculate dimensions of ^^ ( r ) and ^k(r) using the Riemann-
Roch theorem. We assume — 1 ^ T if /c is odd. For any real number x, [x] denotes 
the largest integer ^ x. For an element a = Ĵ â â̂  of Div(9?/^)Q, put 

[a]=S[Ca]a. 
a 

Let bi , . . . , b, be all the cusps of ^p. When k is odd, we take b j , . . . , b̂  so that 
bi , . . . , by are regular and b„ + i , . . . , b, are irregular. Let ^ be a nonzero element 
of ^fc(r). (The existence of such a form was proved in Theorem 2.3.1 for even /c, 
and will be proved for odd k in Theorem 2.6.8.) Then we have the following 

Lemma 2.5.1. With the above notation, the following isomorphisms hold as vector 
spaces over C. 

( l )^ , ( r )^L([div( /o)]) . 

(2)^fc(r)^ 
'^'-iA) div(/c 

div(/o)- l b . - - X b 
v = l ^ \ = u-\- 1 

{k: even), 

(kiodd). 
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Proof. Since 

^.(n = {//oi/e^o(n}, 
wee see, by definition, 

%in = {ffo\f^^oin / = 0 or div(//o)^0} 

^ { / e ^ o ( n i / = 0 or div(/) + div( /o)^0} 

-{(/)eX(9?^)|(/) = 0 or div((/)) + d iv( /o)^0} . 

The last space is no other than L([div(/o)]), since div(0) + div(/o) ^ 0 is equiv­
alent to saying that div((/)) + [div(/o)] ^ 0. This shows (1). Next suppose ffo is a 
nonzero element of ^fc(r). Then 

ffo^^,{r)ov^Sffo) > 0 (1 ̂  V ^ 0. 
When either k is even, or k is odd and 1 ̂  v ̂  w, we see 

Vb.( / /o)>0<>Vb^(/ /o)^l 

When k is odd and w + 1 ^ v ̂  f, we get 

Vb.(/ /o)>0<>Vb///o)^l/2 

<>Vb^(/)-fVb^(/o)-1/2^0. 

Therefore a similar argument as above shows (2). D 

We are going to calculate dimensions of the spaces in Lemma 2.5.1. Let 
ai , . . . , â  be all elliptic points of 9?/ ,̂ and ê  the ramification index of â  
(1 ^ /x ̂  r). Put 

^ = 2^-2+ X ( l- l /e,) + r 

with genus g of 9?^-. We note that for any nonzero element h{z) oi s^^(r\ 
deg(div(;i)) = kdjl and d = {2n)-'v{r\U*) > 0 by Theorem 2.4.3. 

r Suppose /c < 0. Since 

cieg([div(/o)]) S deg(div(/o)) = kd/2 < 0, 

we get 
dim^fc(r) = dim5^fc(r) = 0. 

2° Let k = 0. Then /Q can be considered as an element of K(9^y-)'', and 
therefore 

d immer ) = /(div(/o))=l , 

and 

d imy 'o(n = / f d i v ( / o ) - t b , ) = ^̂  ' ^ ^ ^ ^ ' 
v = 1 0 i f r > l . 
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3° Assume /c g 3 and put 

Tdivao)- t ^ b . l (fcieven), 

[divC/o)- t b . - i t b^ (fc:odd). 

By Theorem 2.3.3 and Theorem 2.3.5, we see 

div(w(/o)) + ^t^ r ^ ( l - l / e , ) J a , + ^Z ^ b , (feieven), 

|ldiv(co(/o^))+ t r ^ ( l - l / e „ ) l a „ + i ^ b „ + t ^ b . 

(k: odd), 

and therefore, 

a = 

2) + t^ [^(1 - Ve,)l + ^ f (k: even), 

[^(23-2)+^t |^^(l_l/,jJ+^^„+^(,_„) 
deg(a) 

[^(2.-2).E,[^(l-l/^.)J+^-^ 
(/c: odd). 

In particular. 

deg(a) ^^(2g-2)+ t^ [^(1 - l/e,)1 
k-2 

Since -(e^ — 1) is integral. 

so that 

r^(l - l/e,)J ^ ^ ( 1 - 1/e,), 

deg(a)-(2^-2) ^ ^ | ( 2 ^ - 2 ) + t̂̂ Cl - l/e,) + Ĵ 

= —;r- ^ > 0. 
2 

Since deg(a) ^ deg([div(/o)]), we get 

deg([div(/o)])>(2^-2). 

By Lemma 2.5.1 and Corollary 2.2.2(3), we obtain 

dim^,(r) = deg[div(/o)]-^+l , 

d im^ , ( r )=deg(a ) -^+ l . 
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Since deg([div( jj))]) — deg(a) is equal to r if /c is even, or equal to w if /c is odd, we 
see 

dim^fc(r)-dimyfc(r) = 
t {k: even), 

u {k: odd). 

4° Let k = 2. Since ^2(^) - ^K^rl we obtain by (2.2.14) that 

d im^2(^) = -̂

Since [div(/o)] = div(a;(/o))+ Xt = i ^v' ^^ have by (2.2.12) and (2.2.13) that 

/(div(co(/o))-[div(/o)]) = / ( ^ - J ^ b , ) = | J j J ^^ J ' 

By Theorem 2.2.1, we get 

d i m ^ , ( r ) = ;([div(/< . , , = { : - 1 (t > 0), 
{t = 0). 

5° When k = 1, we have by Theorem 2.2.1 

/([div(/o)]) - /(div(a;(/o^)) - [div(/o)]) = deg([div(/o)]) - ^ + 1. 

Since by Theorem 2.3.5, 

([• Z.(div(co(/o^))-[div(/o)]) = Z , ( | d i v ( / o ) - S b , - - X b. 
v = l ^ v = u + 1 

^lin 

and 

deg([div(/o)]) = deg(div(/o))- J t {\ - \/e,)-{t-u)/2 

we obtain 
= ^ - 1 + M/2, 

dim ^ i ( r ) - dim ^,(r) = u/2. 

We note that general calculation of dimensions of ^ i ( r ) and ^ i ( r ) is an open 
problem. 

Summing up all together, we obtain the following 

Theorem 2.5.2. Let k be an even integer, g the genus of^p.e^, . . . .e^the orders of 
inequivalent elliptic points off, and t the number of the inequivalent cusps off. Then 

dim^fc(r)= ^ 

( / c - l ) ( ^ - l ) + 

9 
1 

0 

0 

i[^ '̂-H + l - - l ) t {k>2). 

(k = 2), 

{k = 0,t = 0), 

(k = 0,t> 0), 

(fc < 0), 
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dim%(r) 

dim 6^^{r)-\-t (k^4l 

dim9'2{r) + t - \ ( = g + t-\) (/c = 2, t > 0), 

d imy '2(n ( = 9) (k = 2,1 = 0), 

1 (k = 0), 

0 (k< 0). 

Theorem 2.5.3. Let k be an odd integer, and assume — 1 ^ T. Let g and {ef,}'j,= ibethe 
same as in Theorem 2.5.2. Further let u and v be the numbers of the inequivalent 
regular and irregular cusps of T, respectively. Then 

k-2 k-\ ,, ^ , , 
^ ^ w + —^ V {k^ 3), 

d i m ^ , ( r ) ; -̂  ' • ^ - • 
' 0 (k< 0), 

(/c-l)(^-l)+^t r^(l-l/e,)1 

dim^fc(r) = { d i m ^ i ( r ) + M/2 (/c = 1), 

0 {k< 0). 

§2.6. Poincare Series and Eisenstein Series 

We are going to construct automorphic forms called Poincare series. 

Theorem 2.6.1. Let ZQ be a point o/H and S a positive real number such that the set 
M = {z e CI I z — ZQ I S 3(5} /s included in H. For any real numbers k and p ^ 1, there 
exists a constant C satisfying 

| / (z i) | ^ c Q |/(z)Im(z)^/2|Mt;(z)Y'' (|z, -Zo | S S) 

for any continuous function f(z) on M which is holomorphic on the interior of M. 

Proof Let /(z) = YJ7=O ^n(^ — ^i)" be the Taylor expansion of /(z) at z^. Since 
In 5 00 

j f(z)dxdy= j J £ a„r"^'e'"'drde = nS^ao, 
\z-Zi\^S 0 0 « = 0 

we see 

\f{z,)\g(KS^)-' \\f(z)\dxdy 
M 

(nd^C.r' \\m\Mzf"'\dv(z) 
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with Ci = ini{lm{zf'^~^\zGM}. By Holder's inequality, we get 

(2.6.1) \f(z,)\ ^ inS'C,)-' Qrft;(z)Y'Y j |/(z)Im(zp|Mt;(z)y'' 

with q such that 1 < ^ ^ oo and l / p + 1/^ = 1. Thus, it is sufficient to put 

From the above theorem we easily get the following 

Corollary 2.6.2. Let /c, p be the same as in Theorem 2.6.1. For an open subset U o/H 
and a point ZQ of U, there exists a constant C such that 

|/(zo)| g cfj^lfiznmizr'l-dviz)]'" 

for any holomorphic function f(z) on U. 

The following theorem will be used in Chapter 6. 

Theorem 2.6.3. Let k, p be the same as in Theorem 2.6.1. Assume that f(z) is 
holomorphic on H and ^^ |/(z)Im(z)''^^|''^t;(z) < oo. Then, for any real number a, b 
such that 0 < a < b, 

lim |/(z)| = 0 
| x | - o o 

uniformly with respect to y on the interval [a, fe], where z = x-\- iy. 

Proof. Take a real number S so that 0 < 2^ < a, and put for a positive integer n 

U„ = {zeH\a-2SS Im(z) ^b-\-2S, 

n - 2 ^ ^ R e ( z ) ^ « + H - 2 ^ } , 

V„ = {zGU\a ^ Im(z) ^b, n^ Re(z) Sn-\-\}. 

Let ZQG K„, then {zeC| |z-Zol ^ 2^} c U„. Therefore by (2.6.1), 

\f(zo)\^(nS'C,)-'viU„y'^n \f(z)lm{zr'\^dv{z) 

with q such that 1 < g ^ oo, 1/p + \/q — 1, and a constant C^. Since the measure 
v(U„) is independent of n, and 

lim J \f(z)lm(zf^^\Pdv(z) = 0 

by assumption, we obtain 

lim |/(zo)| = 0 (zo = Xo + i>o) 
I X o I - • CO 

uniformly with respect to ^Q ^^ [̂ » ^ ] - D 
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Corollary 2.6.4. Let k, p be the same as in Theorem 2.6.1, and U a suhdomain ofW. 
For a holomorphic function f(z) on U, we put 

\\f\\, = ( \\f{z)lmizf"\'^dv{z)''^' 

If a sequence {/„(z)} of holomorphic functions on U satisfies Cauchfs condition with 
respect to the norm || • \\jj, then {/„(z)} converges to a holomorphic function on U 
uniformly on any compact subset of U. 

Proof By Corollary 2.6.2, for any point z of (7, a sequence {/„(z)} of complex 
numbers is a Cauchy sequence. Then we can define /(z) = \im„^^f„{z). For any 
point Zo of C/, take ^ > 0 so that {zeC| | z - Z o | ^ 2(5} c C/. By Theorem 2.6.1, 
there exists a constant C such that 

\fniz)-fm{z)\^C\\f-fJ\^ 

for any z satisfying \z — ZQ\ ^ S. For any s > 0, take an integer N so that 
II/n —/m II t /< e/2C if m, n>N. For z satisfying |z — Z Q J ^ ^ , take an integer 
n{z)> N so that |/(z) —/„(.)(z)| < e/2. Then we see 

|/(Z) -f„{z)\ S \f{z) -/„(.)(Z)| + !/„(,) -f„{z)\ < 8 

for any n > N and any z satisfying |z — ZQ j ^ ^. Thus/„ converges to / uniformly on 
jz — ZQI ^ (5. This implies {/„} converges to / uniformly on any compact subset of 
(7, and therefore, / is holomorphic on U. D 

Lemma 2.6.5. Let {/„(z)} be a sequence of holomorphic functions on a domain D ofC. 
Let ZQ be a point ofD. Iff„{z) converges uniformly on any compact subset ofD — {ZQ}, 
then so does it uniformly on any compact subset of D. 

Proof We have only to see that it converges uniformly on some neighborhood of 
ZQ. Take a positive number r so small that {zeCjjz — ZQJ < r} c: D. Then 

fniz) = ^ . J f^dC ( | z - Z o l < r ) . 

Since/„(0 converges uniformly on |C —ZQ! = ^/«(z) also converges uniformly on 
{ z e C | | z - Z o l < r / 2 } . D 

Let r be a Fuchsian group, x a character of F of finite order, and k an integer. 
We suppose z(— 1) = (— 1)'' if —\eF. Let A be a. subgroup of T, and (/)(z) a 
meromorphic function of H satisfying the following conditions: 

(i) (t>\k^ = Xi^)(pfor any XeA; 

(ii) the number of A-inequivalent poles of (l){z) is finite; 

(iii) let Zi, . . . ,z^ be all A-inequivalent poles of (/)(z), and Xj, . . . ,x^ all 
F-inequivalent cusps of F, Then, for any neighborhoods U^ of z^ and V^ ofx^, 

j |(/)(z)|Im(z)''/2^i;(z)< oc, 
A\H' 
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m r 

where H ' = H - U \j W,,- \j U I'^'v 

For such a function ^(z\ we define 

(2.6.2) F(z) = F^(z',4>.X.A,n= I z(?)((/>l,7)« izeW). 
yeA\r 

It is obvious by the definition of the series and condition (i) that if F(z) 
is convergent, then it is independent of the choice of the representatives of / l \ r , 
and 

F\ky = Xiy)F for any y e r . 

We call this series the Poincare series. 

Theorem 2.6.6. Under the same notation and assumptions as above, wie have: 

(1) F{z) is convergent absolutely and uniformly on any compact subset of 
H — {yz^lyer, 1 ̂  /i ^ m}, and F(z) belongs to Qk(F, x)\ 

(2) if (i){z) has a pole at weH and is holomorphic at yw for allyeF — {±\}' A, 
then F{z) has also a pole at w and its order is equal to that of (piz). 

Proof Let ZQ be any element of H — {yz^lyeF, 1 ̂  /iiSfn}. Take t/^, V^ and a 
neighborhood W of ZQ SO that 

(2.6.3) yWnU^ = 0, yWnV, = 0 (yeT, 1 ^ / i ^ m, 1 ̂  v ̂  r), 

(2.6.4) {yer\yWnW^0} = r,^. 

Then 

(2.6.5) j X M\ky)iz)\lm(zr'dv{z)= ^ j \(t>iyz)\lm{yzr'dv(z) 
W yeA\r y€A\r W 

= X j \cl>{z)\lm{zr'dv{z). 
yeA\r yW 

We see that yW^ <= H' by (2.6.3), and for an element y^ of T, (2.6.4) implies 

\A\{yer\XyWr^yiW^0 for some 2.eA}\ ^ \A\Ay,r,J 

Therefore, 

^ i n j J \(l>{z)\lmizr'dv(z)<cx). 
A\H' 

Applying Corollary 2.6.4 for p = 1, we see that F(z) is convergent uniformly on any 
compact subset of W, and is holomorphic on W. This implies F(z) is holomorphic 
on H — {yz^lyer, 1 ̂  fi^m}. Next put z' = y^z^ with y^eF and 

^0 = {y^^l^/^W has a pole at yz'}. 

Then y\^F^. a TQ, /lyr^ ^ TQ, and | / l \ ro/r^ | ̂  m. Write 

F(z) = Zi Mi<P\ky)i^)-^^2xiy)iKy)i'l 
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where I^ is the summation taken over the representatives y such that yly cz r©, 
and 12 is the summation over the rest. Then we see by a similar argument as above 
that 11 is a. finite sum, and by Lemma 2.6.5 I'2-part is holomorphic on yiC/i. 
Therefore F(z) is holomorphic on y^Uy — {z'} and has at most a pole at z'. Since 
this also holds for Z2, . . . , z^, F(z) is a meromorphic function on H. The 
automorphy of F{z) has already been proved. Therefore the first assertion is 
proved. Next assume that w = z^ = z' satisfies the condition of (2). Then 
ro = A'Z(r)and ^ixMWky) W = c^(^) with c = \Z(r)\/\Z(A)l Therefore F(z) 
has a pole at w and the orders of poles of F and (/> at w are equal. D 

We are going to give some sufficient conditions for </)(z) under which F{z) is 
holomorphic at a cusp. Let x be a cusp of F and a an element of SLjiU) such that 
Gx = CO. We impose the following two additional conditions: 

(iv) ifx is not a cusp of A, then there exist positive numbers M, / and s such that 

\(cl>\^c7-'){z)\SM\z\-'-^ (Im(z)>/); 

(v) if X is a cusp of A, then there exist M, / (> 0) and £ (^ 0) satisfying 

\((t>\,G-'nz)\^M\z\-^ (Im(z)>/). 

Theorem 2.6.7. Assume that T, A, (/)(z) satisfy the foregoing conditions (i) through 
(iii). Let XQ be a cusp ofF. If conditions (iv) and (v) are satisfied for every cusp x which 
is F-equivalent to XQ, then F(z) is holomorphic at XQ. Moreover, if we can take e in (v) 
positive for all x which are F-equivalent to XQ, then F{z) has a zero at XQ. 

Proof First we note that conditions (iv) and (v) are independent of the choice of a. 
(M, /, 8 depend of course on the choice of a.) Let {a} be a complete set of 
representatives of A\F/Fx^. For each a, let {j5} be a complete set of representatives 
of (a-i / l a n r , , ) \ r , , . Then T = U „ .^ocj?- Put 

Then 

(2.6.6) F(z) = XIx(a i^) (0 l ,a^)W = Z</>.(4 

and 
(PoclkJ = xiy)(l>a ( y e r ^ j . 

By condition (ii), there exists a neighborhood U of Xo in H such that F(z) is 
convergent uniformly on any compact subset of U. In other words, by taking 
(TQeSLjiU) so that ^0^0 = ^ ' 

a 

is convergent uniformly on any compact subset of the domain {zeH|Im(z) > b} 
for some positive number b. Thus it is sufficient to show that (palk^o^ is holo­
morphic at 00, and moreover, has a zero at 00 if 8 > 0. 
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r Assume that OCXQ is not a cusp of A. Since a" Ma n T̂ ^ coincides with {1} or 
{±1}, we have 

with C = 1 or 1/2, respectively. Applying condition (iv) for x = OLXQ, a = CFQCC'^, we 
take M, /, e (>0) so that 

|((/>|,a(7o-^)(z)|^M|z|-^- (Im(z)>/), 

so that 

|((/)J,(7o^)(z)|^2M X |z + m / i | - ^ - (Im(z)>/), 
meZ 

where /i is a positive number such that OQF^^GQ ^ • {± 1} 
1 /i"|' 

0 i j 0 ^ • ^ ' " ^ 

Comparing the series on the right-hand side with the series Im~^~^, we see it is 
convergent uniformly on any compact subset of the domain Im(z) > /, so that 
0aL^o ^ is holomorphic at oo. Moreover if z tends to oo along the imaginary axis, 
{(t>a\k^o^)i^) does to 0; namely, (/>alik̂ o ^ ̂ ^s a zero at oo. 

2° Suppose OLXQ is a cusp of A. Then a~ Ma n r,^ is a subgroup of F^^ of finite 
index, so that the summation ^ ^ is a finite sum and 

From condition (v) for x = axo, c = O-Q^ ^ there exist M, /, e such that 

(2.6.7) Ml.aco')iz)\ ^ M | z | - S M (Im(z) > /). 

Noting that (JOPCTQ 
1 m/i"| 

0 i j for some integer m, we see that </)a|fcCro 

is holomorphic at oo. If e>0, then we see from (2.6.7) that (̂ ÎfcCTo has a zero 
at 00. D 

We can prove the existence of nonzero automorphic forms using the Poincare 
series. Here we prove that if T^ — 1, then .^kiF) ^ {0} for any odd integer k. 

Theorem 2.6.8. IfT^-X, then s^ki^) i^ {0} for any odd integer k. 

Proof. Let ZQ be a nonelHptic point of H and put </)(z) = (z —ZQ)"^. Since (/)(z) 
satisfies conditions (i) through (v) for /c = 3 and yl = {l}, the Poincare series 

F{z)=Y^{(t>\Mz) 
yer 

belongs to ^^i^)- Theorem 2.6.6(2) implies that F(z) does not vanish identically 
since F{z) has a pole of order 2 at ZQ . Thus ^^(F) ^ {0}. Next let k be any odd 
integer. Take the integer n so that k — 2n = 3, then we obtain 

^,(r) = ^3(r)^2„(n7^{0}. • 
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When r has cusps, Poincare series yield one of basic methods to construct 
automorphic forms of weight k^3. Let / be a character of T of finite order. Let x be 
a cusp of r, and a an element of SLjClR) such that (7x = oo. We assume 

(2.6.8) xiy)Ji(^y(^-\zf=l foryer,. 

This condition is independent of the choice of G. If x is the trivial character, k is odd 
and — 1 ^ r , then (2.6.8) implies that x is a regular cusp. Let /i be a positive number 
such that 

o-r.(T-i-| + i {*[;:ii-
For nonnegative integer m, we put 

(2.6.9) (PJz) = ci)^(z- X, a) =j(a, z)-'e'^'"'^^'\ 

It is easy to see that 0^(z) satisfies conditions (i) through (v) for F, x and A=^r^. 
Therefore F^iz; (j)^, %, T^, F) is meaningful. If we define the character x"" of 
oFa~^ by 

(2.6.10) f(oyo-') = x{y\ {yeFl 
then 

(2.6.11) F,{z; (/>,, X. r.. n = Fdz; e^^'"^^'\ x\ cjF,a-\ GFG-')\^a. 

The following theorem is a direct application of Theorems 2.6.6 and 2.6.7. 

Theorem 2.6.9. Suppose /c ̂  3. Under the same notation and assumptions as above, 
we have: 

(1) / / m ^ 1, then F,{z; (j)^, x. /^., r ) e . ^ , ( r , xY 

(2) If m = 0, then F{z) = Fk{z; ^o, X. ^x, r)G^fe(r,x). It has the Fourier 
expansion at x of the form 

(f|,a-')(z)=l+ t ay""'^ 

and vanishes at all cusps which are inequivalent to x. 

We especially call Poincare series Ff^{z\ 00, x^ ̂ x^ ^) Eisenstein series. 

Theorem 2.6.10. Suppose k^3. Let x he a cusp of F satisfying (2.6.8), and put 

gf\z) = F^{,z; <t>„, x, P,, P) (m§0). 

For an elementf(z) of ^f^(F, x\ l^t a he an element ofSLjiU) such that ox= oo, and 

( / |^ (7- ' ) (z)=X ay-'i" 

be the Fourier expansion at x. Then 

0 (m = 0). 
i f{z)gr{z)\m{zfdv{z) 

r\H («m(47rm)̂  ^h\k-2)l (m^l) . 
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Proof. Taking oFo'^ in place of T, we may assume that x = oo and o=\. We see 

(2.6.12) j |/(z)| X \j(y.z)-'e''''"''^^^'\\m{zfdv(z) 
r\H yer,\r 

yer,\r r\H 

= j \f{z)e^''''""''\lm{zfdv{z) 

= j J \f(z)\e-^'""y^'y^-^dxdy. 
0 0 

Since | / ( z ) / / ^ | is bounded on H, we have 

(2.6.13) | / (z)k-2" '"^/ ' ' / " ' = 0 ( / /2 -2) ( .̂_,Q) 

Moreover,/(z) = 0(e~^''^^'') (j^-^oo) uniformly on x. Therefore the integral (2.6.13) 
is convergent. Thus we can exchange the order of integration and summation, so 
that 

J fiz)griz)lm{zrdviz) 
r \ H 

y€r,\r r \ H 

= ] ^f{z)e-^''''"'''y'-^dxdy 
0 0 

cx) 00 h 

M = l 0 0 

0 (m = 0), 

a^(47rm)^-''/z''r(/c-l) (m^l) . 
D 

Corollary 2.6.11. Assume /c^3. If there exists a cusp x of F satisfying (2.6.8), then 
{gjr\z)\m^\} generates.9',{r,xl 

Proof We may assume x = oo and o- = 1 by the same reason as above. Let J/ be the 
subspace of ^^ ( r , x) generated by {g]!"^ (z)| m ^ 1}, and J^-^ the orthocomplement 
of ^ . Take an element/(z) = Xr= i ^n^^"""^" of^\ then by Theorem 2.6.10, we see 
a„ = 0 for all n ̂  1, so that /(z) = 0. Therefore we obtain ^ ^ (F, x) = ̂ ' • 

Assume /c^3 and let {xj , . . . , x^} be a set of complete representatives of cusps 
of r satisfying (2.6.8). For each x,- (1 ^ / ^ r ) , take GiGSLjiU) so that (TfX, = oo, and 
put 

(2.6.14) g,{z) = F,iz; 00, X. T,,, F)G%(F, xl 

Then we have 
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Corollary 2.6.12. / / / c ^ 3 , then ^ ^ ( r , x) is generated by the Eisenstein series ^,(z) 
given by (2.6.14), or 

Proof. Let us denote by ^ i ( r , x) the right-hand side. By Theorem 2.6.10, we see 
^ k ( A x) •= -^ki^y x)- Now let/(z) be an element of ^fc(r, x\ and x a cusp of F 
which does not satisfy (2.6.8). Then it is easy to see that/(z) vanishes at x. For each 
/, let a}Ĵ  be the constant term of the Fourier expansion of/lfcO- '̂S or 

{f\,ar){z) = a^i^^ • • • • 
Then/(z) — ^J"^ ^ ajĵ ^^ (z) is a cusp form by Theorem 2.6.9(2). Therefore ^^(r, x) is 
generated by J^k(r, x) and ^fc(r, /). This combined with Theorem 2.1.7(1) implies 
the assertion. D 

We shall generalize Corollary 2.6.12 to /c^ 1 for modular groups in Chapter 7. 

§2.7. Hecke Algebras 

In this section, we explain the general theory of Hecke algebras. Though our 
purpose is the application to Fuchsian groups and modular forms, the groups 
considered in this section are abstract ones. 

Let G be a group, and T, f two subgroups of G. We say that F and F' are 
commensurable and write F^F' if 

\_F:FnF'^<oo and IF':F nF'^<oo. 

For a subgroup F of G, we put 

f={geG\gFg-'^F}. 

Lemma 2.7.1. (1) The relation % is an equivalent relation. 
(2) F is a subgroup of G. 
(3) IfF^F\thenf=f'. 
(4) Suppose F ^ F'. Then for any element a of T, we have the following coset 

decompositions: 

Tar = Llra7, = i J v r , 
'• j 

where {yj (resp. {Sj}) is a finite set of the representatives of (F' noL~^ F(x)\F' 
(resp. F/(FnoiF'(x-^)). 

Proof. (1): We have only to show the transitive law. Let Tj , Tj , F^ be subgroups of 
G such that F^^Fj. Fj^F^. Then 

lF,:F,nF2nF,:\ = lF,:F,nF2nr,nF2:F,nF2nF,:[ 

SL^,:F,nF2n^2•F2r^F,:i<co. 
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Similarly, we get [F j iTi n T j n r 3 ] < o o . Since r^nF^ ^ r^^nFj^r^, we 
obtain [r^:T^ n Tj] < oo and IF^: T^ n Tj] < oo, so that F^^ F^. (2): Let g, h be 
two elements of F. Since 

h~^ g also belongs to T by (1). This shows that T is a subgroup of G. (3): If g is an 
element of T, we see 

gF'g~^ ^gFg~^ ^ F ^ F'. 

Thus g belongs to F' by (1); namely F a F'. Exchanging F and F\ we get F' a F. 
Therefore F = F'. (4): We can express every left T-coset contained in TaT' as Tay 
with some yeT'. For two left T-cosets Fay and F'ocy' contained in F(xF\ 

(2.7.1) Fay = Focy'<>y'y-'eF'na-'F(x. 

Since a ~ ^ Ta r ' , we have ^ = [ r ' : T' n a Ta] < oo. Therefore, taking a 
complete set of the representatives {y ,̂ . . . , y^} of (F' n(x~^Fo()\F', we get the 
coset decomposition 

FaF' = U ray, 
i = 1 

by (2.7.1). A similar argument is applicable to the second one. D 

Let S be a set consisting of subgroups of G, and A a subsemigroup of G. We 
assume that E and A satisfy the following conditions: 

(i) any two elements of S are commensurable; 
(ii) F ^ A :D F for all subgroups F m E. . 

Hereafter T, F\ T,, etc., indicate subgroups of G belonging to E. 
Let K be a commutative ring with unity. For two elements T, F' of E, we denote 

by ^ ^ ( r , F' \ A) the free K-module generated by double cosets FOLF' with cue A; 
namely 

^if(r, r ' ; J) = < ^ a^FixF' \a^eK, and «„ = 0 except for finitely many a>. 
Ue4 J 

When r = r ' , we write simply 

mAF,A) = ^^{F,F;A). 

When K = Z, we also write 

.^(r, r ; zi) = .^z(r, r ; zi), ,^(r, zi) = .^z(A ^). 
Assume that zl acts on a X-module M and write the action as 

M X zl 9 (m, (5) I—• m'̂  e M; 

namely, the following properties are satisfied: 

(i) "mi—j-m "̂ is a K-endomorphism of M; 

(ii) m̂ ^ = (m^)Vo''<5, yezi; 

(iii) m^=mfor the unity \ of A. 
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We denote by M^the submodule consisting of the T-invariant elements of M; 
namely, 

M^= {me M \m^'= m for all yef}. 

Let rocF' = ] J . r<Xi be a coset decomposition. We define the action of Faf on M^ 
by 

m | r a r ' = ^m^' , meM^. 

We also define the action of an element ^ = Y^^a^ra.r' of .^^^(r, T'; J ) on M^by 

Lemma 2.7.2. Let the notation he the same as above. 
(1) m\rar' is independent of the choice of the representatives {a,}. 
(2) The mapping "mi— •̂mlc" is a K-homomorphism of M^into M^. 

Proof For two elements a,, a- of FoeF' satisfying Ta, = Taj, there exists an element 
y of r such that a,' = ya,. Thus m'''= m^'''= m"'. This proves (1). It is obvious 
that "mi—)>m|(̂ " defines a X-homomorphism. Let us show ml^eM^'. Since 
FocF' = ] J . FoLi = \J. Fcn^y' for any element y' of F\ we have 

(m\Fa.F'Y = Im''^'^' = I" m"' = m | FocF' 

by (1). Hence m\F(xF' belongs to M ^ . D 

Lei F^OLF2 = III F^oCi, and F2 PF^, = Uj Fj Pj for two elements a, j? of J. We 
define the multiplication of FiCcF2 and F2PF3 by 

(2.7.2) F,ocF2'F2Pr, = ^c,F,yF 3 ' 

where the summation is taken over all double cosets F^yF^ contained in A. 
The right-hand side is a finite sum, since ĉ  = 0 except for finitely many 
F^yF^s. We extend this multiplication linearly, and define the multiplication of 
i = l^a,r,aF2EPA^iF,^F2;A)sindri = Ypbf,F2PF,eP^^{F2,F,;A)by 

(2.7.3) irj=Y^a,hp{F,aF2-F2PF,). 

Lemma 2.7.3. The multiplication defined by (2.7.2) is independent of the choice of the 
representatives OL^, PJ, y. 

Proof Let KlFi\A'\ be the free K-module generated by left T^-cosets F^OL {cceA) 
contained in A, then KlFi\A^ is a right J-module by the right multiplication. The 
correspondence of r i a r 2 = [ J ^ i a , to Y^i^i'^i induces an injective K-homo­
morphism of Mf^{F^,F2\ A) into K[F^\A~\. Considering .^^l^n ^2'^ ^) ^s a 
K-submodule of K\^F^\A'] by this mapping, we obtain 

(2.7.4) .«^(r„r,;zi) = K[r,\/i]''^ 
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Let r ^aT j = LJ, ^ i ^ , , and r2pr^ = ]J^. Tj j5j be cosets decompositions, then by 
the definition of the action of i^x(^2' ^35 ^) on /C[ri \zi] ^^ we see 

(2.7.5) lr,a,\r2Pr, = Y,Y.ri^iPj. 
i I J 

Since the right-hand side coincides with the right-hand side of (2.7.2) under our 
identification, we see that 

(2.7.6) the action of^j^iFj. r^\ A) on ^ ^ ( ^ i . ^2; ^) = ^ [ ^ i \ ^ ] ^ ' is no other 
than the multiplication defined by (2.7.3). 

Hence Lemma 2.7.2(1) impHes the assertion. D 

The argument in the proof of Lemma 2.7.3 impHes also the following 

Lemma 2.7.4. Under the notation and assumptions as above, we have: 

(1) {m\i,)\i2 = m\{i,i2)for meM''\ i,e0^^(r,, T^; A\ and 

(2) (i,42)i3 = ii{i2i3)for i,eM^{r,, r^; A\ ^^^^^^{r^.r.-Ai and 
i,E,^^{r,,r^;A); 

(3) .^^(r, A) is an algebra over K with unity F; 
(4) If M is a right A-module, then M^ is a right ^ ^ ( r , A)-module. 

Proof. The first assertion is obvious by definition. The second assertion is obtained 
by (1) and (2.7.6). The third and the fourth are easily verified from (2) and (1), 
respectively. D 

We call ,^(r, A) (resp. . ^K(^ ' ^)) the Heche algebra (resp. the Heche algebra over 
K) of r with respect to A. 

Lemma 2.7.5. If A ^ A', then ^/^(r. A) is a subalgebra of iMj^{r, A') under the 
natural correspondence. In particular, .^^(r. A) is a subalgebra of iMf^(r, T). 

Proof. We have only to show that the multiplication of ^^i^. A) coincides with 
that of ^ x ( r . A'). For two elements T a r , P^T of .^j^(r. A), denote the multipli­
cation of them as elements of .^j^(r. A') by 

P(^rr^r^Y.^y^y^-
y 

Since PyP cz PoLPpP ezl if Cy # 0, this coincides with the multipHcation as ele­
ments of ,^^(r, J). D 

Theorem 2.7.6. (1) For two subgroups F and Uofa group G, let A, D be semigroups 
of G such that F ^ A ^ F and U :=i D :D U. Further we assume 

(i) D = UA, 
(ii) UOLU = UOLF for any <xeA, 

(iii) Van A = POL for any oce A. 
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Then the correspondence ' T a T i—• l/a(7" induces an isomorphism of Mf^(r, A) onto 

(2) When a K-module M is also a right D-module, the action of Mj^(r, A) on M^ 
corresponds to that of Mf^(LI, D) on M^ under the above isomorphism; namely, 

m|C/a(7 = m\rocr 
for meM^, cue A. 

Proof We note that T c [/ by (ii). Let ^ be the mapping of ^^ (F , zl) into ^j^{lJ, D) 
induced by the correspondence 'TaF \-^U(xU'\ By (i), 0 is surjective. Suppose 
U(xU = UPU for two elements a, j8 of A. By (ii), there exist elements ueU, yef 
such that py = ua. Since Py = ua belongs to C/a n zl = Ta by (iii), we get 
TaT = rf^r. Therefore ^ is also injective, since ^^i^^ ^) is a free K-module with a 
basis {(7aL/}. To see that <̂  is a ring-homomorphism, we have only to prove that 
if r a r = U . r a . (aeJ) , then C/a(7 = ]J,(7a,. Let r a r = [J , ra . . Condition (ii) 
implies U(x.U = l j , l /a, . If t/a, = UcCj, then oLjEUcCi n A = FOLI, SO that Ta, = FCLJ. 

Thus (7aC/ = ]J, L/a,.. This proves (2). D 

For an element ^ = ^^fl„(rar) of ,^(r, A\ we put 

deg(i) = X « « I A r a r | 
a 

and call it the degree of ^. Here | r \ r a r | indicates the number of left T-cosets 
contained in FOLF. In view of (2.7.5) and (2.7.6), we see easily 

(2.7.7) deg((̂ /̂) = deg({)deg(^/) for i^rje^F^A). 

Lemma 2.7.7. Let aef. If \F\FoiF\ = \F(xF/Fl then F\F(xF and FOLF IF have a 
common set of representatives. 

Proof Let Ta r = ] J f . i Ta,-= WUi^i^- Then Fa^np^F ^ 0 for any i, j . In 
fact, suppose FOLI n ^JF = 0 for some i, j . Since Ta,- a [jk^jPk A we have 
Tar = r a , r = [jk^^jPh^y this is a contradiction. In particular. Fainp^F ^ 0 , 
so that taking an element SieFainp^F, we get Ta, = T^, and p^F = d^F. There­
fore we obtain 

F(xF= \\Fdi= \\diF. D 

Theorem 2.7.8. Assume that there exists a mapping i of A into itself satisfying 

(i) (apy = p^a' and (a')' = ocfor (x,peA, 
(ii) F' = r, 

(iii) Far = FocF. 

Then the following assertions hold. 
(1) For any oceA, F\FixF and F(xF/F has a common set of representatives. 
(2) The Hecke algebra .^^(r. A) is commutative. 
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Proof. Let r a r = ]J^ra, for oieA. Then TaF = T a T = (Far ) '= JJ^alT. Thus 
(1) follows from Lemma 2.7.7. Hence we may put Focr — ]J,raf = y , a , r , and 

ry.rrpr = Xc, ryr, rprrar = Y^c^ryr, 

then 

= ^{{ij)\roi,pjr = ryr}/\r\ryr\ 
= j^{{ij)\rpWjr = ryr}/\r\ryr\ 
= ^{(ij)\rp)oi\ = ry'} 

Therefore we obtain TaF • rpr = FpF • rocF. D 

§2.8. Hecke Operators on the Space of Automorphic Forms 

In the previous section, we defined the Hecke algebra in the general framework. 
Now we are going to let Hecke algebras act on the spaces of automorphic forms. 

Let r be a Fuchsian group, and x a character of T of finite order. Considering F 
as a subgroup of GL2 (R), we put 

f={gEGLnm\9rg~'^r}. 

Let zl be a subsemigroup of F such that F ^ A ^ F. Assume that x can be extended 
to a character of A, which we denote by the same symbol x^ and that the following 
condition is satisfied: 

(2.8.1) if(xy<x~^GF(yeF,cceA\ then x('^y'^~^) = xij)-

Now let S be a set of all subgroups of F of finite index. 
For Ti, F2eS and aezl, put F^ccF2= L[v = i A'^v Then for any element/(z) of 
^fc(A.zX weput 

(2.8.2) {f\F,aF2){z) = dctiaf'-' X Zî v) (/l.ocj(z) 
v = l 

d 

1 
v = l 

= det(a)''-' X z(av);(av,z)-''/(avZ) 

Theorem 2.8.1. (1) The above definition is independent of the choice of the rep­
resentatives a ,̂ and 

f\r,ar,esa,(r„i). 
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Moreover iffe'»,(r„x) {resp. e.9',(r„x)), then fir.ar^e^Ar^^X) (resp.e.r, 
{r2,x))-

(2) If r,, r2, Ties and a, PeA, then 

(f\r,ar2}\r2pr,=f\(r,ar2-r2l3r,). 

(3) Under the above action, ^^ki^^X) ^^ ^ right ,^{r, A)-module, and both 
^fc(r, x) cind e9̂ fc(r, i) are its ^(F, A)-submodules. 

Proof. Put 

r'eE reE F'eE 

Since 

.^k(rux) ̂  s^A^i. 1) ^ '^kir, n r̂ , x\ 
for r^, FjEE, .9/^ is a vector space over C. Similarly, both ^^ and .9"^ are subspaces 
of j^k- Wc define the action of an element a of zl on j ^ ^ t>y 

r = d e t ( a f 2 - ^ ; ^ ( / | , a ) , / e ^ , . 

Since by (2.8.1)/'' belongs to ^k(^i n a ' ^ r ^ a , / ) provided/ does to s^^ki^i^x) 
( F I G S ) , "/!—•/"" is a linear mapping of s^^. ii^to itself. It is obvious that 
(f'f =f'^ for any a, i?ezl. Thus A acts on j / ^ and s/p = ^ ^ ( ^ 1 , ;f) for any r^eS. 
Furthermore i f /e ^ki^i^ X) ^^^ ^\^^2 = Wv^i^v (a^^X then we have 

V 

Hence by Lemma 2.7.2, the above definition is independent of the choice of the 
representatives â ,, a n d / | r i a r 2 belongs s^^ki^i^X)- ^ similar argument is also 
appHcable to the latter half of the first assertion. Assertions (2) and (3) are special 
cases of Lemma 2.7.4(1) and (4), respectively. D 

A linear mapping of s^ki^\^X) iî ^o ^^ki^i^X) induced by r^ar2 {(xeA) is 
called a Hecke operator. 

Remark 2.8.1. Since the action of F^ ccFj on ^^ki^i^x) depends on k and x, we 
should distinguish an element of ^{F^, F2;A) from the Hecke operator. We use, 
however, the same symbol for simplicity, since the action of F^ cc F2 is determined 
uniquely. 

Remark 2.8.2. When x is the identity character, we can take as A any semigroup 
satisfying f^A^F.ln particular, .^(r, f ) acts on j^kiH. ^kiH. and .^^ (F). 

Let ( , ) be the Petersson inner product. Then we have 
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Theorem 2.8.2. For oc e GL2 (tR), we put a' = clet(a)a~ .̂ 

(1) Assume rI ^ Fj. ThenforoLEF]^( = F2), 

{f\k^.9) = {f.g\k^'\ f{z)e,9',{F,\ g(z)e^,(F,). 

(2) For OLE f, 

(f\FaF,g) = (f,g\Foi'F\ f{z)e.9^,(F\ g{z)e^,(F). 

Proof. (1): Put r = a ^ ^ r ^ a n r2 . Since/|fcaG.9^fc(a~^ r^a) , we see 

( / | ,a ,^) = . ( r \ H ) - ^ J dtt{ocf'j(a,zr'f{az)^)lm{zfdv{z) 
r\H 

= v{F\Uy' j dQi{oif^''f{z)g{oi-'z)j{(x,(X-'z)-nm{oi-'zfdv{z). 
a r a - ' \ H 

Since a~^z = a'z, J{OL, a~^z) =j{a, oc'z) = dct{OL)J{(X\ z)~\ Im(a"^ z) = Im(a'z) 
= det(a')|7(a', z)\-^ Im(z), det(a) = det(a'), and v{F\H) = v{(xF(x-'\Ul we get 

( A a , ^ ) = v{ocFoi-'\Uy' j /(z) dei{oi'f^j{a\zy' g{oi'z)lm{zfdv{z) 

(2): Noting that - 1 e T if and only if - 1 G a " ^ Ta, we see 

[F:Fnoi-'roi^ = v{iFnoi-'roc)\H)/viF\U) 

= v{{aF(x-^nF)\U)/v{F\U) 

= lF:Fnocroc-'^. 

Thus Lemma 2.7.1(4) implies \F\F(xF\ = \FoiF/Fl so that both F\F(xF 
and F(xF/F has a common set of representatives by Lemma 2.7.7. We may put 
FoiF = ]Jy Ta^ = JJ^a^r for some {a ,̂}, then we have F(x~^F= W^Foc'^ and 
Fa' F = JJ^Ta'^. Therefore we obtain 

( / | r a r , ^ )=de t ( a f^ -»X( / l f c«v ,^ ) 
V 

= det(a)"^-'X(/,(/ka'.) 
V 

= (f,g\roi'r). a 

Corollary 2.8.3. Let x and \j/ be two characters of F of finite order. If x ¥" il^, then 
(fg) = Qforfe.9',{r,x)andge%{r,n 

Proof. Let y be an element of F such that xiy) 7̂  '/'()')• Then 

x(y) (f g) = ( / U , g) = ( / 3l*y"') = •/'(rX/ ,</)• 

This implies (/;3) = 0. D 
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Corollary 2.8.4. IffeJ^^in, then f\rareA\{r) for any aef. 

Proof. This is obvious from Theorem 2.8.2(2). • 

We now explain the geometrical meaning of Hecke operators. We assume 
elementary knowledge of algebraic geometry. Let 9? be a compact Riemann 
surface. Then 9̂  is isomorphic to a nonsingular algebraic curve as complex 
manifolds. We define a subgroup of the divisor group of ^ by 

Divo(9?) = {aeDiv(9?)|deg(a) = 0}, 

then from (2.2.8), we have Div,(iR) a Divo(9?). The quotient group 

J = Divo(9?)/Div,(9?) 

has a natural structure of a complex manifold which is an abeHan variety. We call 
the abelian variety J the jacobian variety o/9?. We denote by DQ{J) the space of 
holomorphic differentials on J, then 

D'om^D'oiJ). 

Let now T be a Fuchsian group of the first kind. For a e T, the mapping 

H*9ZK^(z,az)eH* x H* 

induces an imbedding of 9^̂ ^̂ ^3 -̂1 into *iH x̂ '^p. We denote by r ( r a r ) the image 
of Rf^^f^-i in "IRY-X 9?^. Then TiFar) is an algebraic correspondence of *iĤ  
into itself. Put Farrpr = Y,dC3rSr for oc, pef, then 

T(roir) T(rpr) = Y^c^ Tirsr) 
3 

as algebraic correspondences. Moreover let n: V{*-^^j- be the canonical 
mapping, and Fotr = U^Fcc^. Then 

(2.8.3) T{FocF){n{z))=Y.n{oi^z). 
V 

We call T(F(xF) a modular correspondence. By (2.8.3), T(FccF) induces an endo-
morphism x(FaF) of the jacobian variety Jj-of ^p. The following diagram is 
commutative: 

'^lin — ^ ^ ^s^jiF) 

u u 

u u 

In particular, take a congruence modular group for F. Then both ''Jip and J p 
are defined over Q or over a cyclotomic field. In the investigation of ^3^^ and J^, in 
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particular in the arithmetical investigation, for example, of Hasse zeta functions or 
field extensions generated by section points of J^, etc., the modular cor­
respondences TirccF) and the Hecke operators TaF play important roles. See 
[Shimura 2, 3, 4, 6], etc., for these theories. We shall study the Hecke algebra of 
modular groups in Chapter 4 and calculate the traces of Hecke operators on the 
spaces of cusp forms in Chapter 6. They are of course important in themselves. 
However, apphcations of them to number theory are always in our mind. 



Chapter 3. L-Functions 

In this chapter, we summarize basic facts of number theory and Dirichlet series 
for the succeeding chapters. Most of the important theorems are stated without 
proof. Readers who have number theoretical backgrounds can skip this chapter. 

§3.1. Dirichlet Characters 

Let N be a positive integer, and jf a character of (Z/NZ)"". For any integer /i, we put 

XinmodN) if {n, N) = 1, 
0 if (n, Â ) ^ 1, 

then / is a mapping of Z into C satisfying 

(i) ximn) = xi^)xin); 
(ii) x(m) = x(n) ifm = n mod Â ; 

(iii) %(n) ̂  0 if and only if(n, N) = \. 

The characters x of (Z/NZ)"" and the mappings ;f of Z into C satisfying conditions 
(i) through (iii) correspond bijectively through (3.1.1). We call such a mapping x of Z 
into C a Dirichlet character mod N, or simply a character mod N. We call N the 
modulus of ;f. We call the Dirichlet character corresponding to the trivial character 
of (Z/NZ)"" the trivial character mod N. Further we denote by Xo the trivial 
character mod 1 and call it the principal character. 

For a Dirichlet character x iriod N, we define the complex conjugate x by 

(3.1.2) m-m («ez), 
which is also a character mod N. For a multiple M of N, we put 

Xin) if ( n , M ) = l , 
'^^ ^ ' 0 if ( n , M ) ^ 1. 

Then x' is a character modM. We call it the character modM induced from x-
For a character x mod N, let M^ be the set of positive integers m satisfying the 

following condition: 

(3.1.3) if{n, N) = 1 and n = 1 modm, then xi^) = 1-
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Since N belongs to M^, M^ is not empty. For any two elements m^, m2 of M^, the 
greatest common divisor of mj and m2 also belongs to M^. Therefore the smallest 
integer m^ contained in M^ is a divisor of all elements of M^. We call m^ the 
conductor ofx- When N = m^,;(is called a primitive character mod N. If an integer n 
is prime to m ,̂ then we can take an integer n' so that {n', N)= \ and n' = n mod m .̂ 
We put 

{0 if (n, m^) ^ 1, 

then x^ is a primitive character modm^. We call x^ the primitive character 
associated with x and x is induced from x^-

For two Dirichlet characters x "lod N and \j/ mod M, we put 

{xmn) = x{n)^l;(n) (neZ), 

then ;f (/̂  is a character mod L for the least common multiple LoiN and M. Let now 
;f be a character modN, and N = WPP^ ^^^ decomposition as the product of 
primes. Fix a prime factor p. For an integer n prime to p, take a positive integer m so 
that 

_ f/t modp^ 
^ " j 1 mod N/p^ 

We put 

' X(yn\ if (rt,p)= 1, 
0, if (n,p)^\. 

lp{n) = 

Then it is independent of the choice of m, and Xp is a character mod p^. Furthermore 
we have 

(3.1.4) xin)=UXpin) (neZ). 
p\N 

For a primitive Dirichlet character x with conductor m, we define the Gauss sum 
ofx by 

m- 1 

(3.1.5) fF(/)= X zWe"""""-
a = 0 

The following lemma is fundamental. 

Lemma 3.LL Let x be a primitive Dirichlet character modm. 
m- 1 

(1) X Xia)e^'''''^^"' = x{b)lV{x) for any integer b. 
a = 0 

(2) W(x)W{x)^xi-m-

(3) mx) = xi-'^)mx)-
(4) |H/(z)P = m. 

Proo/ (1): First assume that b is prime to m. Since ;f(a) = xicib)xibX we see 
m - 1 m - 1 

X /(ale^"'"""" = zW Z x(a/))e^'""'"" = ;((/,) PF(x). 
a = 0 a = 0 
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Next suppose (b, m) / 1, and put n = m/(b, m). Define a subgroup H of (Z/mZ)"" by 

H = {de(TlmTY\ d= 1 modw}, 

and let (Z/m/)' ' = ] J c ^ ^ be a coset decomposition. Since x is primitive, the 
restriction of / on / / is not trivial. In addition, bd = b mod m for any deH. Thus 
we see 

a c deH 

c d e H 

(2): By (1), we see 

m- 1 

b = 0 
m—1 m — 1 

= y y ytf2\^2niab/m^2nib/m 

b=0a=0 

m — 1 TO— 1 

= Z xia) Z ê "'" '̂'''̂ /̂'". 
a=0 b=0 

Since Z^^ o ê '"'*̂ '' "̂  ^̂ /'" is equal to m if a + 1 = 0 mod m, and to 0 otherwise, we get 
^(x) ^(x) = x(— l)'w- Since x(— 1) = ± U we see 

m - l 

mx) = Z Z(a)e-^'"'""" = x{--i)mx) = Xi-'iWix), 
a = 0 

SO that 

W{x)W{x) = W(x)W{x)x(-'^) = m. 

Thus (3) and (4) are proved. D 

Lemma 3.1.2. Let x, ^ be primitive Dirichlet characters, and m^, m^ their conductors. 
//(m^, m^)= 1, then 

mx^) = X{m^)^(m^)lV(x)W(il/). 

Proof. Put m = m^ and n = m^i,. By the assumption, for any integer a, there exist 
integers b, c such that 

a = bn-{- cm. 

The integers b, c are uniquely determined modulo m and n, respectively, and when a 
runs over all the representatives of Z/mnZ, so does the pair (b, c) over the 
representatives of Z/mZ x Z/nZ. Therefore we see 

mx^) = '""t\x^)ia)e''''"'""' 
a = 0 

m-l Z xibn)e^''''""' Z ^{cm)e^'''"' 
b = 0 / \ c = 0 

= xH)^(m,)w(x)fv(,l^). a 
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Lemma 3.1.3. (1) Let xbe a Dirichlet character mod m. Then for any integers / (> 0) 
and q, we have 

^ W i ; x{a)e""-'"" {r = q/l) if l\q. 
a = 0 

(2) Let xbe a primitive Dirichlet character mod m, and x' the Dirichlet character 
mod/m induced from x- Then for an integer q, we have 

Im- 1 

X X'(a)e''""'""" = mx) Z cumxWcmci/c), 
« - 0 0<c\{l,q) 

where fx is the Mobius function. 

Proof We see that 
Im- 1 m - 1 / - 1 

a = 0 d = 0 b = 0 

0 if /i(7, 

d = 0 

This impHes (1). Furthermore if x is primitive, then we see by Lemma 3.LI that 

(3.1.6) S X(a) 

Now we see 

Im - I im - 1 

Z z'We^"'-""" = Z Z /J(rf) Z(a)e'"'"""" 
« = 0 « = 0 \ 0 < d | ( a , / ) / 

mc— 1 

= Z /'('')X('/) Z X(n)e'""'""', 
0<d\l n = 0 

where l^cd, a = nd. Applying (3.L6) to the last sum, we obtain (2). D 

Let p be an odd prime number. For integers n, we put 

1 i/ p\n and x^ = n modp is solvable in Z, 

(3.1.7) ( ~ I = ^ ~ 1 if pin and x^ = n modp is unsolvable in 

0 if p\n. 

We call I - 1 the quadratic residue symbol, or the Legendre symbol. The mapping 

"n I—• I - I" is a Dirichlet character mod p. We generalize the quadratic residue 

symbol and define I - I for integers a and b ({a, b) ^ (0,0)). When b is an odd prime 
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number, we define ( 7 I by (3.1.7). Next if 6 is 2, ± 1, or 0, we put 

!

1 if a = \ mod 8, 

- 1 if a = 5 mod8, 

0 otherwise, 

(3.1.8) 
a_\_{ 1 if a^d 
=T; 1-1 if a<0, 

a \ | 1 if a=U 
0) \0 if a^\. 

In general, let ft be a nonzero integer. Express b as the product of ± 1 and prime 
numbers 

b = EWP ( e = ± l , p: prime), 

and put 

We call [ - J the Kronecker symbol. The following theorem on quadratic fields is 

well known (see, for example, [Borevich-Shafarevich]). 

Theorem 3.1.4. Let F = Q(^m) be a quadratic field with a square-free integer m. 
For any prime number p, we have: 

(1) if \ ~] = U then p splits in F; 

(2) (/̂  I — I = — U then p remains prime in F; 

(3) (/̂  I ~ I = 0̂  th^n P ramifies in F. 

Now let F = Q(^/m) be a quadratic field as in Theorem 3.1.4, and d the 
discriminant of F (for the definition of the discriminant, see §3.3). Then we have 

J m if m = 1 mod 4, 
[4m if m ^ 1 mod 4, 

so that ( — ) = (— I for odd p. We note that when d is the discriminant of some 

quadratic field, ( - ) coincides with the classical one. The following properties 

are well known. 
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(3.1.10) For any integer d{^0\ the mapping "ni—• j - I" is a Dirichlet character, 

and ifd is the discriminant of a quadratic field, then "n i-* I - I" is a primitive Dirichlet 

character of conductor \d\. 

(3.1.11) If p is a prime number, —\, or —2, then we put 

I p if p = 1 mod 4, 

— p if p = —\ mod4 and p ^ —\, 

p* = { -4 if p= - 1 , 

8 if p = 2, 

8 if P=-2. 

Then an integer d is the discriminant of a quadratic field if and only ifd is a product of 
distinct p*'s. In this case, if d = Up*, then 

/ p * \ [a\ 
(3.1.12) If p is an odd prime, then — = - ifor any integer a. 

V « / \PJ 
The last property is called the Gaussian reciprocity law. 

§3.2. The Riemann Zeta-Function 

For a sequence {a„}^= ^ of complex numbers, we put 

(t>is)= f a„n-' (seC), 
n= 1 

and call it a Dirichlet series. In particular, when a„ = 1 for all n ^ 1, we write 

n= 1 

and call it the Riemann zeta-function. Since for any s>0, 

f \n-'\S^-\-]x-^'^'^dx<<x) 
n = l 1 

provided Re(s) ^ 1 + a, ((s) is convergent absolutely and uniformly on Re (5) ̂  1 + e. 
Hence C(s) is holomorphic on Re(s)> 1. Let us show that C(s) has the infinite 
product expansion 

as) = Ui^-p-T\ 
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where p runs over all prime numbers. In fact, let s be a positive number. Then for 
any positive integer m, we see 

Ids)- n i^-p~r'\s I n-^'^^> 

on R e ( s ) ^ l + e . Since the right-hand side converges to 0 when m-^ oo, 
np<m(^ ~P^y^ converges to C(s) on Re(s) ^ 1 + £. Since a is arbitrary, the infinite 
product expansion holds on Re(s)> 1. More generally, if a Dirichlet series (/)(s) is 
convergent on a complex domain and has an infinite product expansion of the 
form 

cl>is) = U4>pisl 
p 

with a meromorphic function </)p(s) of p~*, we say that (pis) has an Euler product. 

Lemma 3.2.1. Assume that both Xl*=i ^ n " * <̂ "̂  Z«°= i ^n^~^ ^^^ absolutely con­
vergent at s = (To(> 0). / / Y,^= 1 cin^~^ = X*= 1 ^n^'^ on Re(s) ^ OQ, then a„ = b„ 
for all n. 

Proof. It is sufficient to show that if Y,T= i ^n^^ = 0, then a„ = 0 for all n. Since 
Zn°=i^n"^ is absolutely convergent at S = (TQ, it converges absolutely and uni­
formly on Re(s) ^ OQ. Let m be the smallest integer such that a^^O. Since we have 
(n/m)"*' < n'*^^^ for n>m^ and o- > 0, we see 

\aJS f \a„\(n/m)-^ 
n = m H- 1 

g X l«J(n/m)-' '+ £ |a„|n-°'^ (<7S<TO). 

Take a sufficiently large N so that 

and take a > 2(TO SO that 

m2 N 

Y^ |a„|(n/m)-'+ ^ lajn""'^ g |a„|/3. 

Then |fl^| ^ f | a^ | ; this is a contradiction. D 

Let now K be any commutative ring, and K the ring of all formal power series 
over K with variables Up for all prime numbers p, or 

K = Kl\_Up I p: prime numbers]]. 

We call elements of K formal Dirichlet series. For the prime factor decomposition 
« = Op P''write 
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Then any element of K can be expressed as 

00 

(/>(S)= X « « " " ' 
n = 1 

with a sequence {«„} of/C. Let </)p(s) be an element in K [[Wp]] for each p. Assume 

</)p(s) = 1 + (a formal power series in Up of degree ^ 1) 

for almost all p. Then the product np^p(^) ^̂  meaningful in K. When a formal 
Dirichlet series (/)(s) can be written as the product 

<P{s) = l\<t>pis) (c/>p(s)eK[[Kj]) 
p 

in /C, we say that (pis) has a formal Euler product. Formal Dirichlet series and 
formal Euler products are useful to state relations among numbers a„. 

In general, Dirichlet series appearing in number theory can be analytically 
continued to the whole complex plane and satisfy functional equations. We study 
these for the Riemann zeta-function. For s eC such that Re(5) > 0, we put 

00 

r{s)= je-'t'-'dt. 
0 

When Re(s) ^ e, 1 > 8 > 0, we see 

e-'t'-' = 
0(e-^'-'^') (r-^oo), 

0{t'-') ( r - 0 ) . 

Then r{s) is convergent absolutely and uniformly on Re(s) ^ e. Hence r(s) is a 
holomorphic function on Re(s) > 0. By definition, r{s + 1) = sr{s) on Re(s) > 0. 
Therefore by putting 

r{s) = s-'r{s-\- 1) (Re(s)> - 1 ) , 

r{s) becomes a meromorphic function defined on Re(s) > — 1. Repeating this 
procedure, r ( s ) is continued to a meromorphic function on the whole s-plane. We 
call r{s) the F-function. For complex numbers z( 7̂  0) and 5, we put 

(3.2.1) z' = ^^oogl-l + 'arg(z)) (-n< arg(z) ^ TT). 

The following properties of r ( s ) are well known (for the proofs, see, for example, 
[Ahlfors]): 

(3.2.2) r ( s + l ) = sr(5), r{n) = (n-\)\ {n^\)\ 

(3.2.3) r{s) is entire except for simple poles s = — n [n = 0,\, . . .) with residue 
(— \)"/n\, and has no zeros; 

(3.2.4) r{s)r{\ - s) = 7r/sin(7r5), r ( l / 2 ) = Jn; 
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(3.2.5) for a, s eC such that Re(fl) > 0, Re(s) > 0, 

]e-'"t'-^dt = a-'r{s); 
0 

(3.2.6) (Legendre's relation) 2^'" ^ r{s)r(s + i ) = ^r(2s); 

(3.2.7) (Stirling's formula) r{s) = y/2ns'-'^'^e~'-'^^'\ where fi{s) is a function 
such that 

fi(s)-*0 (Isl^oo) 

uniformly on Re{s) '^ (TQ > 0; 

(3.2.8) (Stirling's estimate) r(s) - ^^T''-^/^e""'^'/^ (s = (T + it, |T| -• oo), 

uniformly on any vertical strip v^ ^ c ̂  V2; 

(3.2.9) (Euler-Gauss) r(s) = lim ^^'^ , (0 < se R). 

Theorem 3.2.2. (1) Put 

A(s) = 71-^''r{s/2K(s). 

Then A(s) -\ 1- can be holomorphically continued to the whole s-plane, and 
s I — s 

we have the functional equation 

A(s) = A(l -s). 

(2) C(s) 7- is entire. 

s — I 

Proof By definition, we see, on Re(s) > 1, 

(3.2.10) A(2s)= f (nn'^yje-'t'-'dt 
n= 1 0 

00 00 

= Z ie-''""*t'-'dt 
n= I 0 0 0 / 0 0 \ 

= 1 ( 1 e-''""']t'-'dt. 

Here we can exchange the order of integration and summation since 
Zr= 1 ^"""''\t'~^\is integrable. Since for f(x) = e""^'^ Zr= - oo/(^ + ") is uni­
formly convergent, the Poisson summation formula implies 

00 1 00 

n = - 00 y / t n= - CO 
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Put (o{t) = Y^^ _ ̂  e-^"'\ then (o(t) = ^ co(l/r), so that 

0 

12^ '^ ^ ' ' 25 1 - 2 5 

Since co(r) — 1 = 0(e" "̂  (f -• oo), the last integral is convergent uniformly on any 
compact subset of the s-plane. Therefore it is an entire function of s. Defining 
y4(25) for any 5 by the last integral, we obtain the analytic continuation of yl(5). In 

particular, A{s) -\- - -\- is holomorphic on the whole 5-plane. Moreover the 
5 1 — 5 

last integral is invariant under the transformation "5i-^l/2 —5". Therefore 
we obtain the functional equation. The second assertion follows from (1) and 
(3.2.3). D 

More generally, for a function f(t)oxi IR+ = { x e l R | x > 0 } , put 

(3.2.11) X{s)=^\f(t)t'-^dt. 
0 

If this integral is convergent on some domain, we call X(s) the Mellin transform 
of fit). By (3.2.10), yl(25) is the Mellin transform of i{co{t) - 1). Let now t = e^ 
and put 5 = (T + it, then we can rewrite 

A((7 + iT)= J /(e*)e^''-'">*^x, 
— 00 

that is, X{a -\- iz) is nothing but the Fourier transform of /(e*)^''* for a fixed 
a. Therefore the Mellin transform of f{t) is meaningful for a such that 
F(x) =f(e^)e*'^ is a Schwarz function; in other words, F(x) is a C°°-function and 
satisfies for any positive integers m and n. 

(3.2.12) sup 
„d'"F(x) 

x" < 00. 
dx' 

Conversely, f(t) can be obtained by the Mellin inverse transform 

(3.2.13) f{t) = ^, J k{s)t-^ds 
^7tl Re(s) = <T 

by the general theory pf the Fourier transform. Now take e~* for f(t). Since 
/(e*)^''* is a Schwarz function for a > 0, we have 

(3.2.14) ^"' = T^ I r(5)r*^5 ((7>0). 
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Also by taking i{(o(t) - 1) for f(tl by (3.2.10), we have 

(3.2.15) l ( c a ( 0 - 1 ) = / T J A{2s)t-^ds (a > 1). 

Hence i(ca(r) — 1) corresponds to A(2s) by the Mellin transform. 
We now define the theta function 6{z) by 

(3.2.16) e(z)= X ê .'"'̂  (zeH). 
« = — 00 

Since the right-hand side of (3.2.16) is convergent uniformly on any compact subset 

of H, 6(z) is a holomorphic function on H. By the equality (o(t) = —= (o(l/t) and 

the holomorphy of 6{z), we have the transformation formula 

(3.2.17) e(- l/4z) = {2z/i)^''^e{z). 

As was shown above, this transformation formula is equivalent to the functional 
equation of the Riemann zeta-function. Hecke generalized this equivalence to the 
equivalence between functional equations of Dirichlet series and automorphy of 
functions on H, which is one of the main topics in Chapter 4. 

We conclude this section by calculating the values of C(s) at positive even 
integers, which we need later. Put 

te' 
F(t) 

and let 

(3.2.18) F(t)= f ^ r 

be its Taylor expansion. The coefficient 5„ is called the m-th Bernoulli number. It is 
obvious that 

B„eQ, 5o = l. 

Since F{-t) = F(t) - t, we see 

B, = 111, 

B„ = 0 if m(>i) is odd. 

Now we see easily 

(3.2.19) zcot(z) = iz -r, = iz + 

Comparing this with the well known partial fraction expansion 

(3.2.20) cot(z) = -+ t 2 '^\ 2. 
z „ = 1 z^ — n^TC 
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and putting t = — 2iz, we have 

t . * t^ 
'^'^='^2^\l.?Ti2^ <''̂ "̂'̂ '' "̂ '̂-

Since 

t^ + (2nny 
we have 

00 / f \2m 

f cx) 00 f2m 

f ( 0 = l + x + 2 X I (-1)"" ' 2m-2 „= 1 m=i (2nn) 

The right-hand side is absolutely convergent, and therefore, we can exchange the 
order of summation. Thus we see 

Comparing this with (3.2.18), we know the values of f (2m). This combined with the 
functional equation implies 

a 2 m ) = , : , , : . B2„, (m^O), 

Theorem 3.2.3. For an integer m, we have 

- {2ni)^"' 

2(2m)! 

and 
ai-2m)=-B2j2m ( m ^ l ) . 

We give the values of the first eight BernouUi numbers B„ for even m (see 
[Washington]): 

^^ = 6 ^ ^ = " 3 0 ^^ = 42 ^«=="30 ^^« = 66 

691 7 _ 3617 
^ ^ ^ " " 2 7 3 0 ^^^"6 ^''~~^10' 

§ 3.3. Hecke L-Functions 

In this section, we recall some results from number fields and Hecke L-functions 
which are necessary later. Let F be a number field of degree g, and T̂  , . . . , T̂  all the 
isomorphisms of F into C, and put F^ = F^% a^ = a^- for any aeF. The isomorphism 
Ty is called real or imaginary, if F^ cz [R or not, respectively. Hereafter we assume 
that 

(i) if V ̂  Ti, then T̂  is real, 
(ii) if ri + 1 ^ V, then T̂  is imaginary, and ay = d^^r2 for ^^P (''i + 1 

^ v ^ r i + rj). 
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Here ^ = rj + 2r2. We say that F is totally real if r i = g, and that F is totally 
imaginary if r̂  = 0. Let r^ c F be the ring of integers of F, / the group of fractional 
ideals of F, and P the subgroup of / consisting of all principal ideals. Then the 
quotient group I/P is of finite order and is called the ideal class group of F. We 
denote the order of I/P by h{F) and call it the class number ofF . For a non-zero 
integral ideal m of r^, we put 

/(m) = { a e / | ( a , m ) = l}, 

P(m) = {(a)eP\ a = l mod^'m}, 

where mod"" indicates the multiphcative congruence. Let (̂  be a character of /(m) 
into C^ We call ^ a Hecke character modm if 

(3.3.1) i({a))=U^ iaJMpM^^ for (a)eP(m), 
v = l 

with real numbers u^, v^{l^v^ri-\-r2) such that 

(ii) I r, = 0. 
V = 1 

For a Hecke character ^ mod m, put 
M = {n: integral ideal of F | (3.3.1) holds for (a)eP(n)n/(m)}. 

We call the greatest common ideal m^ of elements of M the conductor of ^. When 
m = m^, i is called primitive. For any Hecke character ^ mod m, there uniquely 
exists a primitive Hecke character ^^ modm^ satisfying 

(3.3.2) (̂ «(n) = <J(n) if ne/(m). 

Furthermore when u^ and v^ satisfy the additional conditions 

(iii) ŵ  = 0 (ri + l ^ v ^ r i + r 2 ) , 

(iv) v, = 0 ( l ^ v ^ r i + r 2 ) , 
a Hecke character ^ is called a class character. We can extend a Hecke character ^ 
to a mapping of / into C by defining ^(a) = 0 if a^/(m). 

Now we define the Hecke L-function for ^ by 
(3.3.3) L(s,^) = Y,aa)N(a)-^ (seC), 

a 

where a runs over all non-zero integral ideals of r^, and N(a) = Npia) is the 
(absolute) norm of a, namely, AT̂  (a) = | XF/CL\. Using the convergence of the Riemann 
zeta-function, we see easily that L(s, i) is convergent absolutely and uniformly on 
the set Re (5)^ 1 + e, for any e > 0, and has the Euler product 

(3.3.4) L(s,0 = W-iip)N(vyT\ 
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where p runs over all prime ideals of r^. In particular, when ^ is the trivial character 
{o, we write 

(3.3.5) CF{s) = L(s,io) = lN{a)-^ = Yli^-N{p)-T\ 
a p 

and call it the Dedekind zeta-function of F. When F = Q, it is nothing but the 
Riemann zeta-function. 

Hecke obtained the functional equation for any Hecke L-function by gen­
eralizing the proof for the Riemann zeta-function described in the previous section 
([Hecke]). Before we state the functional equation, let us define the Gauss sum of a 
Hecke character. We denote by tr = tr^ the trace mapping of F into Q, and put 

T)~^ = {aeF\tr(ab)eZ for all bexp}. 

Then X)" Ms a fractional ideal of F and the inverse D = X) (F) of T) ~ Ms an integral 
ideal. We call T)(F) the different of F. For a basis {aj, . . . , â } of r^ over Z, we put 

4 = det[tr(a,aJ] (eZ), 

and call it the discriminant of F. 
Now let f be a primitive Hecke character of conductor m with M ,̂ t̂ .̂ We put, 

for aeF (a^O), 

(3.3.6) (̂ (̂a) = 'n ' («v/l«vlM«vh, 
v = l 

(3.3.7) if{a)=H(a))i^(a)-K 

lfa = b mod m, then if (a) = if{b). Let c be an integral ideal of F such that T)mc is 
principal and (m, c)= 1. Take an element b of Xp so that T)mc = (b), and define the 
Gauss sum W{i) of ^ by 

(3.3.8) W{^) = % ^ I^^(a)e^""«'>, 

where a runs over a complete set of representatives for c/mc. The value W{i) is 
independent of the choice of c, b and a set of representatives. By a similar argument 
as in Lemma 3.LI, we have: 

(3.3.9) \W(i)\' = N(m); 

(3.3.10) let i, rj be two primitive Hecke characters of conductor m and n, respect­
ively, //(m, n)= 1, then 

(3.3.11) Wm = i(n)rj{m) W(OW{rj). 

For a Hecke character { mod m, we put 

Ua)=m (ae/), 

then I is also a Hecke character modm. To state the functional equation for a 
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Hecke L-function L(s, ^), we put 

(3.3.12) A(,A)=y p^), j ^ j y -^ jZ.(..?), 

where 

1 (v^ri) , 
"" 2 (ri + l ^v ) . 

Now the functional equation for a Hecke L-function is as follows. 

Theorem 3.3.1. Let ^ be a primitive Hecke character of conductor m. 

(1) A(s, i) is analytically continued to a meromorphic function on the whole 
s-plane, and satisfies the functional equation 

A(l-s,i)=m)A{s,i), 
where 

T(i) = 2'T"W(0/N{mYi\ 
ri -l-r2 ri +r2 

v = l v = l 

(2) Ifi is the trivial character, then A(s, i) is holomorphic except for simple poles 
at s = 0 and s = 1; otherwise A(s, ^) is entire. The function A(s, ̂ ) is bounded on any 
set of the form 

{seC|fl^Re(s)^fe, |Im(s)|'^c} {a<b, oO) . 

(3) L(s, i) is entire if^ is not trivial. Ifi is trivial, then it is holomorphic except for 
a simple pole at s=l with residue 

T'^'^K'^Rh(F) 

where w is the number of roots of unity contained in F, and R the regulator off. 

Now we consider particularly the case when F = Q. Let x be a Dirichlet 
character modm. For a fractional ideal a = (a)(b)~^ (a, beZ, a,b > 0), we put 

Then x is a Hecke character and a class character. Any Hecke character of Q is 
obtained from a Dirichlet character in this way. We identify them. For a Dirichlet 
character x mod N, the Hecke L-function of x 

(3.3.13) L(s,x)= Z X(n)n-' = W-Xip)p-T' 
n= 1 p 

is called the Dirichlet L-function of x- We also write the L-function as Ljv(s, x) in 
place of L(s, xX when we wish to emphasize the modulus N of/. If x̂  is the primitive 
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character associated with / , then 

(3.3.14) L^(s, x)=U (l-x'(p)p-')-L(s. x'l 
P\N 

We restate the functional equation of Theorem 3.3.1 for Dirichlet L-functions. This 
is necessary in Chapter 4. For a Dirichlet character x, we let 

(3.3.15) S^ 0 i f z ( - l ) - l , 
1 iix(-l)=-L 

Corollary 3.3.2. Let x^^ ci primitive Dirichlet character of conductor m, and S = S^. 
Put 

/l(5,z) = ( 7 r / m ) - / 2 r ( ' ^ ' ) L ( s , x ) . 

Then A(s, x) ^s meromorphic on the whole s-plane and is bounded on any set of the 
form 

{seC |a^Re(s )^^ , |Im(5)|^c} (a<b,0<c). 

Moreover, A(s, x) satisfies the functional equation 

A(l-s,x) = ^^A{s,B 
i\ m 

If X is not the trivial character, A(s, x) is entire. 

We can restate Theorem 3.1.4 by using Dirichlet L-functions and Dedekind 
zeta-functions as follows. 

Theorem 3.3.3. Let F = Q(^/d) be a quadratic field with discriminant d, and Xd = \ ~] 

the Kronecker symbol. Then we have 

Us) = as)L(s,xA 

In the previous section, we calculated the values of the Riemann zeta-function 
at positive even integers using Bernoulli numbers. Leopoldt generalized it 
to Dirichlet L-functions. Let / be a primitive Dirichlet character of conductor m. 
We put 

a= 1 t: 1 

and let 

m= i^t" "o ni 

be the Taylor expansion. We call the coefficient B„^ the n-th generalized Bernoulli 
number associated with x- It is obvious that 

B„^,eQ{x) = Q(x{a)\aeZ). 

When X is the principal character, B„^ is nothing but the Bernoulli number B„. 
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Theorem 3.3.4. Let x be a primitive Dirichlet character of conductor m and S = S^. 
Let k be a positive integer. 

(1) If k = d modi, then 

L{K x) = {-^y'''-'"'^{2n/mf^, 

and 

L{\-Kx)=-B,Jk. 

(2) Ifk^S mod 2, then L(l - A;, x) = 0 except for m = \ and x = 1. 

For the proof and further results, see [Iwasawa], or [Washington]. 



Chapter 4. Modular Groups and Modular Forms 

In this chapter, we explain the general theory of modular forms. In §4.1, we discuss 
the full modular group 5L2(Z) and modular forms with respect to SLjCZ), as an 
introduction to the succeeding sections. We define and study congruence modular 
groups in §4.2. In §4.3, we explain the relation between modular forms and 
Dirichlet series obtained by Hecke and Weil. As an application of §4.3, we prove the 
transformation equation of rj(z) in §4.4. We explain Hecke's theory of Hecke 
operators in §4.5 and define primitive forms in §4.6. In §4.7 and §4.8, we construct 
Eisenstein series and some cusp forms from Dirichlet series of number fields. In 
§4.9, we explain theta functions which are also useful for constructing modular 
forms. 

§4.1. SL2{Z) 

We call SLjiZ) and its subgroups of finite index modular groups. We call SLjC^) the 
full modular group. In this section, we restrict ourselves to SLjiT) and give concrete 
examples of automorphic forms to provide a transparent prospect for the suc­
ceeding sections. In this section, we assume F = SL2(T), 

Theorem 4.1.1. SL2(Z) is generated by two elements \ and \. 

Proof. Put T= I ' ^ ^ i n ' ^^^ ^̂ ^ ^ ^^ ^̂ ^ subgroup of 5L^ 

ppose A ^ SL2Q 

• " - • = [ : : ] 

foo = min| |fc| |P M e S L 2 ( Z ) - ^ | , 

then hQ ^ 0. Take an element ŷ  = M^ ? \oi SLjCZ) — A, and an integer n so 

generated by T and co. Suppose A i^ SL2(Z). Since 

coT~ ĉo"̂  = | ~ ' I and co^=—1, 

all elements of the form , U>f 5L2(Z) are contained in A. Therefore if we put 
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that \aQ — UBQ] < BQ. Since 

97 

-1 n [-^0 ao-nbol 

we get JQCO ^T"eA by the assumption on BQ. Hence JOEA; this is a 
contradiction. D 

Theorem 4.1.2. (1) The set 

F = {zeH| \z\ ^ 1 and |Re(z)| ^ 1/2} 

is a fundamental domain of F. (See Figure 4.1.1.) 
(2) We have v(F\li) — njl^. In particular, F is a Fuchsian group of the first kind. 

Proof (1): Let z be any point of H, and put L = {cz -\- d\c, deZ}. Since L is a 
lattice in C, any non-empty subset of L contains an element which has the minimal 
absolute value. In particular, there exists the minimal value among in the set 
{\j{y^ ^)ll7^^}- Since Im(7z) = Im(z)/|;(y, z)|^, there exists a point ZQ of H which is 
equivalent to z by an element of F and satisfies that 

(4.1.1) Im(zo) ^ Im(7Zo) fo ra l lyeT. 

Put T = K. . L then T'"Z = z + m for any integer m. Replacing ZQ with T'^ZQ, if 

necessary, we may assume | Re(zo)| S 111. Take y ^ as y in (4.1.1), then 

Im(zo) ^ I m ( - 1/zo) = Im(zo)/|zol^ 

so that \ZQ\ ^ 1. This implies ZQEF. Therefore H = {jy^ryP- Next put 

U = {zeH| \z\ > 1 and |Re(z)| < 1/2}. 

Fig. 4.1. 



98 4. Modular Groups and Modular Forms 

Then U = F. We are going to verify yU n U = 0 for y ^ ±1. Let y = \ , be 
Ic d_\ 

an element of F such that yU nU ^ 0, and take an element zeU so that yzeU. 
We may assume Im(yz) ^ Im(z) by taking 7"Mn place of y, if necessary. Then 
(4.1.2) \c\lm(z)S\cz + d\^ 1. 

Since z belongs to 17, we have Im(z) > y/3/2. Thus we get |c| ^ 1 noting that c is 
an integer. Suppose \c\ = 1. Then |z ± fi| ^ 1 by (4.1.2). On the other hand, we have 
\z ±d\> 1 for any integer d, since zeU. This is a contradiction; thus c = 0, 

y = ± L and yz = z + fe. For an integer b, both z and z + ft belong to U if 

and only if ft = 0. This imphes y = ± . Consequently, F is a fundamental 

domain of F. (2): Since v{F\H) = v{FX we get v(F\H) = n/3 by Lemma L4.4. 

D 

Theorem 4.1.3. (1) Any elliptic point ofF is equivalent toi = ^ — iorC = e"^'^- The 
point i is an elliptic point of order 2 and 

[I :]• < : -;]} 
The point C is an elliptic point of order 3 and 

.={4;:],.[; -;], 4::;]}. 
(2) The set Ppofthe cusps of F is Q u {00}, and all cusps of F are equivalent. 
(3) The genus of ^pis equal to 0. 

Proof (1): It is obvious that interior points of a fundamental domain are ordinary 
points. Thus any elliptic point must be equivalent to a boundary point of the 
fundamental domain F defined in Theorem 4.1.2. Since F contains 

=[i I] """̂  "=[? i} 
the boundary points off, other than the three points r, f, and f ( = ê "'̂ )̂, are also 
ordinary points. Observing that the interior angle of F at i is TT, we see the order of i 
is at most 2. Since oi = i, and a>^ = — 1, the point i is indeed an elliptic point of 
order 2. Since xC = C and the interior angles of F at C and C are both 7r/3, the order 
of C is at most 3. Now we note 

=[: - ; } <•»•'=[: : : ] • 
Since TOJ fixes C, C is an elliptic point of order 3, and f' is equivalent to C- (2): It is 
obvious that the point 00 is a cusp of F. Let x (^ 00) be a cusp of F. Since x is a 
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double root of a quadratic equation with rational coefficients, x is a rational 
number. Conversely, let x be a rational number, and x = a/c its reduced fractional 

expression. Then we can take integers b, d so that ad — hc — 1. Put y [::i 
then yer and y oo = x. Therefore x is T-equivalent to oo. This proves (2). (3): Let g 
be the genus of ^p. By Theorem 2.4.3, Theorem 4.1.2(2) and above (1) and (2), we 
have 

l/6 = 2 ^ - 2 + ( l - l / 2 ) + ( l - l / 3 ) + l , 

so that ^ = 0. D 

We can calculate the dimensions of ^fc(r) and ^fc(r) using Theorem 2.5.2 and 
Theorem 4.1.3. 

0 ifk^l, 

[/c/12]-l 1//c = 2 mod 12, /c> 2, 

[/c/12] i / /c#2modl2 . 

Corollary 4.1.4. For an even integer k^2, we have 

Ain.<^<r^-^W12:\ ifk^lmodn, 
dim *»(1 ) - j |-^/i2] + 1 ifk^2 mod 12. 

Here [x] denotes the largest integer ^ x. 

We are going to construct elements of ^kiH- For an even integer /c ^ 4, we put 

(4.1.3) E,iz)= f (mz-^n)-' (ZGH). 
m,n= — 00 

(m,n)#(0,0) 

We will prove below that Ej^(z) is convergent absolutely and uniformly on any 
compact subset of H, and is an automorphic form of weight k with respect to F. 

[: :h'-Lemma 4.L5. The correspondence \ ^ \^-^(c,d) gives a bijection between 

F^\F and the set 
{(c,rf)eZxZ|(c,^)=l}/{±l}. 

Proof. The surjectivity is obvious, while the injectivity is proved by (2.1.4). D 

Using the Poincare series in §2.6, we put for an even integer /c ^ 4, 

(4.1.4) G,(z) = F,(z;(t>o,Xo,r^.F), 

where (/)o = 1 and Xo is the trivial character of F. Then by Lemma 4.1.5, 

(4.1.5) G,(z) = ^ X {mz + n)-\ zeH, 
•̂  m,neZ 

{m,n)= 1 
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and 

(4.1.6) E,{z) = 2C(fc)G,(z), 

where C(5) is the Riemann zeta-function. 

Lemma 4.1.6. Let k be an even integer ̂  4. 
(1) Ef^{z) is convergent absolutely and uniformly on any compact subset o/H, and 

belongs to ^jt(r). 
(2) £fc(z) has the following Fourier expansion at oo: 

£,(z) = 2C(/c) + 2 - ^ ^ X cT,.An)e'^'"^ 

where 

0<d\n 

Proof Though the first assertion follows from (4.1.4) and the convergence of the 
Poincare series, we here give a direct proof. Let z be any point of H, and put 
L = {cz-\-d\c,dGZ}. For a positive integer n, let M„ be the boundary of the 
parallelogram with the vertices ±nz±n, and r(z) be the distance from the origin 0 
to the set Ml. Then r(z) is a continuous function of z. Since \Ln M„\ = 8n, we see 

(4.1.7) X |mz + n | - '=X; J N " ' g 8f(fc-l)r(z)-», 
m , n = — 0 0 n = l (oeLnM. 
(m,n)/(0,0) 

SO that £fc(z) is convergent absolutely and uniformly on any compact subset of H. 

Lety = [^ J]er,then 

(4.1.8) m{yz) -\-n = {{am + cn)z + (bm + dn)}icz + d)'^. 

When the pair (m,n) runs over all Z x Z —{(0,0)}, so does the pair {am-\-cn, 
bm + dn). This proves the automorphy of E,,(z). Next let us show (2) and the 
holomorphy of E^iz) at oo. Now we can rewrite (3.2.20) into 

(4.1.9) 7rcot(7rz) = z-^ + £ {(z + n)"^+(z-n)-^}. 
n = l 

/ i - 2 f ; e2«'«M. 

Moreover, by (3.2.19) we have 

(4.1.10) TicotfTTz) = ni\ 

Differentiating (4.1.9) and (4.1.10) k—1 times, we get 

(4.1.11) (-l)*(/c - 1)! jz"* + f ((z + n)-* + (z-n)-*)i 

(2nif X "''"'^ Ininz 
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00 

Since ^ (z + n)"*^ is absolutely convergent, we can exchange the order of 
n = — 00 

summation on the left-hand side and rewrite it as 

(4.1.12) ( - \ f { k - 1)! f (z + n)-'^ = (2nif f n'̂ -̂ ê r̂mz 
n = — 00 « = 1 

Therefore we obtain 

£»(z) = 2 X « - ' + 2 I Z (mz + n) 
= 1 n = — 00 

(AC— l j ! ; „ = i „ = i 

This proves (2). D 

It follows from Corollary 4.1.4 and (4.1.6) that 

(4.1.13) jr^(r) = C£fe(z) (feieven, ^4) . 

Furthermore, for the study of ^^(r) , it is useful to define 

(4.1.14) A(z)=12-HG^izf-G,{zn 

(4.1.15) J{z) = GAzf/A(z). 

It is obvious that J (z )e^ i2(^) and J (z)e^o(^) - We note that in relation to 
elliptic functions and elliptic curves, it is more useful to consider the functions 

(4.1.16) g2(z) = eOE^izX g,(z) = 140E,(z). 

Then 

(4.1.17) {2n)''A{z) = g^izf - 21g,{z)\ 

(4.1.18) i2ny'J(z)=n'g2iz)VA(z). 

Theorem 4.1.7. (1) A(z) belongs to Se^^iH- Let A(z) = ^^=1 t^e^"'"^ he the Fourier 
expansion, then T„eZ and T^ = 1. 

(2) A(z) has no zeros on H. 
(3) J^oi^) = C(J) and J{z) has the following Fourier expansion at oo: 

J(z) = e-2"'^ + f c„e2"'"^ C„GZ. 
n = 0 

Proof. (1): We have only to study the Fourier expansion of zl(z) at oo. For even 
integers /c ̂  2, 

-{2nif 

by Theorem 3.2.3. Since B^= —1/30 and B^ = 1/42, we have 

(4.1.19) G^(z) = 1 + 240^2"'"+ • , 

(4.1.20) G^{z) = 1 - 504e2«'z+ • • • . 
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Therefore, putting A(z) = Xl^=oT„e^""'^ we get 

123TO = 1 - 1 = 0 , 

12^11 = 3-240+ 2-504= 1728 = 12^ 

Thus Ae6^i2in and TJ = 1. We postpone the proofs of the integrahty of T„ and (2) 
until Theorem 4.4.2. (3): The Fourier expansion of J (z) at oo follows from (1) and 
(4.1.20). By (2), J{z) has, as a function on 91 j - , a pole of order 1 at the cusp. Since 
KCtRr) is isomorphic to ^o(^) t>y the canonical correspondence, we obtain 
[^o(/^): C(J)] = n^(J) = 1 by (1.8.6). D 

Theorem 4.1.8. Let k'^ A he an even integer. Then ^k(r) has a basis 

{G4(z)'"G6(z)"|4m -\-6n = K m, n ^ 0}. 

Proof. It is obvious that if 4m + 6n = /c, and m, n ^ 0, then G4(z)'"G6(z)"e^fe(r). 
An easy calculation shows 

(4.1.21) #{(m,n)|4m + 6n = /c, m, n ^ 0} 

_ r[/c/12] i//c = 2modl2, 
" j [ / c / 1 2 ] + l i / f c^2mod l2 , 

= dim^fc(r). 

Thus we have only to prove that G4(z)"'G6(z)'' (4m + 6n = /c, m, w ^ 0) are Hnearly 
independent. Suppose they are not so, and let 

(4.1.22) X c„,„GJGJ = 0 (c,,„eC) 
4m + 6n = k 

be a non-trivial linear relation. We define a polynomial of two variables X, Y by 

(4.1.23) F ( X , F ) = X c , , „ X ' " r . 
4m + 6n = k 

By assumption, F(G4, G^) = 0. Take two complex numbers 7̂4, b^ so that 
F(/74, feg) 7̂  0 and b^ — bl^ 0. Since for any complex number a,J(z) — a has a zero 
by (1.8.6), there exists a point ZQ of H such that 

(4.1.24) -̂ (̂ 0) = ^ . 

Now we are going to show the existence of a complex number c satisfying 

c^b^ = G4(zo), c^be = G6(zo). 

First assume 64 = 0. Then b^ ^ 0, hence we can take a complex number c so that 
c^b^ = G6(zo). On the other hand, G4(zo) = 0 by (4.1.24) and A{zo) ¥^ 0. This 
implies c^b^ = G4(zo). Next suppose ^4 # 0. Take a complex number c so that 
ĉ fe4 = G4(zo). Then we get c^b^ = ±G6(zo) by (4.1.24). Replacing c with - c , if 
necessary, we obtain c^b^ = G6(zo). Now, since A(ZQ) = 12~^c^(tJ - feg) # 0, we 
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get c 7̂  0, so that 

this is a contradiction. D 

We conclude this section with a remark on £fc(z). We have 

(4.1.25) cE,(z) = - g + J ^ a,_ 1 (n)e'^'"\ c = (k- \)\/2(2nif. 

Using the Fourier coefficients of (4.1.25), we put 

(4.1.26) L,{s)= f ^,_i(M)n-. 
11 = 1 

Then we see easily that it is a product of two Riemann zeta-functions 

(4.1.27) L,(s) = asK{s-k+l\ 

and therefore, L^is) is convergent on Re(s) > /c, and has an Euler product 

p 

The analytical continuity and the functional equation of ((s) induce those of L^is). 

§4.2. Congruence Modular Groups 

For a positive integer N, we define subgroups FoiNX F^iN) and F{N) of 5L2(Z) by 

ro(Ar) = ] ^ eSL2(/) |c = 0modiV 

ri(iV) = | | ^ MeSL2(Z)|c = 0, a = d =lmodN 

r(N):=\\^ \eSL2(Z)\b = c = 0, a = d= ImodN 

We note 

and 
SL2{Z) = Fo(l) = F,il) = F(n 

SL2{Z)^Fo{N):=>F,iN)zDF(N). 

Further if MIN, then 

FO{M)ZDFO(NI F,{M)Z,F,(NX F(M)^F(N). 

These subgroups are modular groups since IF(1):F{N)^ < oo, which will be 
proved below. We call F(N) a principal congruence modular group, and FQ(N) and 
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ri(iV) modular groups of Heche type. We call N the level ofToiNX r^iN), and r(N). 
A modular group containing a principal congruence modular group is called a 

congruence modular group. For an element y = \ , eM2(Z), we define an 
Ic d] 

element Xf^iy) or y mod AT of M2(^1 NT) by 

A (̂7) = 7mod -[^ :-l 
where a = a mod AT, h = bmodN, c = cmodN, d = dmodN. Then >ijv induces a 
homomorphism of SLjil) into SLjCZ/N/). We note that for integers m, w, 

(4.2.1) if(m,n,N)= 1, t/ien f/iere exis^ integers m\ n' such that 

m' = mmodiV, n' = nmodN and (m\ n') = 1. 

This can be easily shown, for example, by the Dirichlet theorem on arithmetic 

progression. 

Theorem 4.2.1. Let Xf^ he the homomorphism of SL2{T.) into SL2(Z/NZ) defined 
above. 

(1) Â  is surjective. 
(2) Ker(Ajv) = r(N); in particular, r(N) is a normal subgroup of r{l). 

Proof. (2) is obvious. Let us show (1). Let | _ j | be an element of SL2(Z/NZ), 

and take integers a^, b^, c^, d^ so that 
C 2> 

[:;:;]--[:-'] 
Then a^d^ — biCi = l mod N, so that (cj, i/j, N) = 1. By (4.2.1), we may assume 
(ci,di)= 1. Let n be an integer such that 

a^di —b^Ci = 1 + nN. 

Since (ci, f/J = 1, we can take integers fl2» ̂ 2 so that a2^i — 2̂<̂ i = — "• Putting 

a = ai -\- a2N, b = b^-\-b2N, 

c' = Ci, d = di. 

we see [: :]=-.«-[: :]-«=[: a 
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Corollary 4.2.2. The mapping ^ \i-^dmodNe(Z/NZ)'^ induces an iso-

morphism 

ro(N)/r,{N)^{z/NZ)\ 
r* *i r* b'l 

Proof. For two elements y = \ , and ?' = L^ ^' p^^ ̂ o(^)» we see that 

^^'"L* cb'-\-dd'J 
and 

cb'-\-dd' = dd'mod N. 

Therefore the mapping is a homomorphism. The latter part is straightforward from 
Theorem 4.2.1. D 

We note that we can take a complete set of representatives of ro(N)/ri(N) 
consisting of the elements y of the form 

y mod -[::] 
Now let N = YlpP^ t)e the expression as a product of prime numbers. Then Z/NZ 
is isomorphic to ]~Jp(Z//7^Z) by the correspondence "a •—•[^^(^ ^ ^ ^ P^y-> ^^ ^^^^ 

MA^/NZ)^1\^2{^/P'^) 
p 

through the correspondence: 

[: 'Mi: 2]"-) 
It is obvious that if | E S L 2 ( Z ) , then ^ mod/)^G5L2(Z/p^Z). Con­

versely, suppose modp^ESL2(Z/p^Z) for all prime factors p of N. Then 

ad — bc = 1 mod p^, so that ad — bc= 1 mod N. Therefore we get the following 

Lemma 4.2.3. Let N be a positive integer, and N = YlpP^ ^^^ expression as a 
product of prime numbers. Then 

SL2(Z/NZ) - Y\SL2(Z/p'Z). 
p 

Theorem 4.2.4. For a positive integer iV, we have: 

(1) \GL2(Z/NZ)\ = (t>(N)\SL2(Z/NZ)\; 

(2) \SL2(Z/NZ)\ = N'Y\(l-\/p'). 
P\N 

Here <j) is the Euler function. 
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Proof. The first assertion is obvious. We have only to verify (2) for a prime power 
N — p^ by Lemma 4.2.3. First suppose e=\. Then Z/pZ is a field, so that 
|GL2(Z/pZ)| is equal to the number of all ordered basis of the two dimensional 
vector space Z/pZ 0 Z/pZ over Z/pZ. Then it is given by p(p — l)(p^ — 1), thus, 
(1) implies 

\SL^(ZlpZ)\ = p(p^ - 1) = p^(l - 1/p^). 

Next assume e> \. Let 

/l':SL2(Z/p^Z)-SL2(Z/pZ) 

be the canonical homomorphism. Then X' is surjective by Theorem 4.2.1(1) and 

Ker(/l') = : :]'-.«^'H[: a-[; :]"«^4 
For any elements h, c, d of ZIp^Z such that 6 = c = 0 mod p, d = I mod p, 
there exists a unique element a of Z/p^Z such that ad — hc=\. Therefore 
|Ker(A')|= p̂ <"-̂ >, and 

|SL2(Z/p^Z) |=p3^(l- l /p2) . D 

For a modular group T, we write 

f=z(r)c:Aut(H), 

where i is the homomorphism of SLjiT) onto Aut(H) defined in §1.1. Then 
r c^ r/Z{r). We also write, for the stabilizers T̂  (zeH u IR u {oo}), 

f, = i(rj (^rjz(r)). 

Theorem 4.2.5. For an integer N^2,we have: 

(1) [f(l):f(iV)] = 

K n i ) : r W ] = i N 3 n ( l - l / p ' ) (iV>2), 
P\N 

[r(l):r(2)] = 6 (iV = 2). 

(2) [f(l):fo(iV)]= [r(l):ro(iV)] = iV n ( l + l/p)-

i[ro(iV):A(N)] = (/>(iV)/2 (iV>2), 
(3) [ro(iV):A(iV)] ^^^^(,)^^^p)3^, ( ^ ^ , ) 

Here (j) is the Euler function. 

Proof Since r(2)9 - 1 and r(N)i - 1 for N > 2, we see 

LMiJMJv; j | [ -^( i j .^(2)] (JV = 2). 
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Thus we obtain (1) by Theorem 4.2.1 and Theorem 4.2.4. Since Ker(Ajv) 
= r(N) c TiCAT), we see that 

[r(l):ro(iV)] = lSLAZ/NZ):X^(ro(Nm 

and 
[ro(iV):A(iV)] = [A^(ro(iV)):A^(A(iV))]. 

Furthermore 

eSL2(Z/NZ)\ae(l/NZy,beZ/NZy 
Va b 1 

\_0 fl-ij 

and 

^ N ( A ( ^ ^ ) ) = ^ | ' ] \eSL2{Z/NZ)\beZ/NZ 

Therefore \?.j^(ro{N))\ = NcpiN) and |A;v(^i W ) l = ^ . Noting that - leToCN), 
- 1 e Ti (2) and - 1 ^ Tj (iV) for AT > 2, we obtain (2) and (3). D 

Lemma 4.2.6. Iff is a modular group, then any elliptic element off is of order 2 or 3. 

Proof. Though the assertion is obvious from Theorem 4.1.3, we give here an 
algebraic proof. We may assume T a — 1 by taking T • { ± 1} in place of F. Let 

Va bl 
y = \ , be an eUiptic element of T, and z a point of H such that yz = z. By 

Ic d_\ 
definition, we see |a + ^| < 2, so that the characteristic polynomial of y is X^ + 1 or 
X^ ±X -^ 1. Hence j " ^ = 1 or 7^ = 1. Since the stabilizer F^ is cyclic by Theorem 
1.5.4, and T^a — 1, F^ is a cyclic group of order 2 or 3. D 

We are going to study eUiptic points and cusps of modular groups. For a 
modular group T, we denote by V2(F) (resp. v^iF)) the number ofinequivalent elliptic 
points of F of order 2 (resp. 3), and by v^(F) the number ofinequivalent cusps ofF. 
Let Pph^ the set of the cusps of F. By Corollary 1.5.5 and Theorem 4.1.3, we see 

^ r = ^ r ( i ) = Q^{oo} . 

Since all points of Q u {00} are r(l)-equivalent, 

(4.2.2) the correspondence " r ( l ) 9a 1—•aooeP/ induces a bijection of F\F{\)/ 
F{\)^ onto F\Pr. 

In particular, 

(4.2.3) \F\Pr\ = \F\F(l)/F(\U. 

Next we assume — 1 ^ T. To distinguish regular and irregular cusps of T, we put 

(4.2.4) r ( l ) : = <̂ l . \\nel[^r(l) ^={[; :]l"' 
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and define a mapping 

»;:r\r(i)/r(i): —> r\r(i)/r(i)„ 
(4.2.5) UJ U) 

rar( i ) : I—> rar(i)„. 

Since [ r ( l )„ : r ( l )* ] = 2, the number of the inverse image by rj of each element of 
r \ r ( l ) / r ( l ) „ is l or 2. Let 7 be an element of r(l), then we see that 

(4.2.6) k-i(ryr(i)„)| = i<>rvr(i)„ = ryr(i) : 

o(y-iry)r(i):3r(i)„ 

•-[-; -;] oy~^ry3\ withh>0 

0 7 0 0 is an irregular cusp. 

Now we shall calculate V2(r) and v^{r) for T = TQCN), TiCN) and r(Ar). 

Theorem 4.2.7. For N ^ 2, we have: 

) i/' 4|iV, 

V2(^o(N)) 

RO^IT))'^^^"' 

v3(ro(N))= ^ 

R(-(T)) 

if 9\N, 

if 9tAr, 

v„(ro(N))= X <l>Hd,N/d)) 
0<d\N 

P\N L/ = 0 J \ P / 

Here (j) is the Euler function; ( —) denotes the quadratic residue symbol (see §3.1). 

Proof. Put V, = Vi(ro(N)) for i = 2, 3 and oo. First we calculate V3. Let ZQ be an 
elliptic point of TQCAT) of order-3. Since — 1 ero(N), rQ(N)^^ is a cyclic group of 
order 6. By Lemma 1.3.5(1), there exist exactly two elements of ro(N)zo of order 6, 
which are not conjugate. Therefore, 

^3 = i # {ro(N)-conjugacy classes of the elements of order 6 in FoiN)}. 

On the other hand, n 1 t>elongs to the normalizer of FQ{N% and the 



§4.2. Congruence Modular Groups 109 

conjugate of an elliptic element of ToCiV) by is also an elliptic element of 

the same order. Put 

••«{-; :i 
then by Lemma 1.3.5(1), 

V3 = # { r j (iV)-conjugacy classes of the elements of order 6 in FoiN)}. 

Put C = ^"'̂ ^, and let a be an element of TQCN) of order 6. Put 

={rah 
We define the action of Z[C] on L by 

ic 

Then L is a left Z[C]-module. Since aeToCiV), the subgroup 

La = \\ ,̂ , Wa^beZ 

„.«[:]=.[:].M[;]. 

•""{Ulh 
of L is stable under the action of Z[f ] . Since Z[f ] is a principal ideal domain, L is 
isomorphic to a direct sum of copies of Z[C]. Therefore comparing the ranks of L 
and Z [ ( ] over Z, we see that L is isomorphic to Z[f] as Z[C]-modules. We denote 
this isomorphism by p, and put 

Since LQ is a Z[Q-submodule of L, /„ is an ideal of Z[C]. Since any Z[C]-
automorphism of Z[f] is obtained by the multiplication of a unit of Z[f] , /„ is 
independent of the choice of p. Moreover 

(4.2.7) ZlCVIa^L/LoC^Z/NZ. 

Let P be an element of ro(N) conjugate to a by an element of FQ (N). Since LQ is 
stable under the left multiplication of any element of FQ(N\ we get Ia = Ip-
Conversely, if / is an ideal of Z[C] satisfying 

(4.2.8) Z [ C ] / / ^ Z / N Z , 

then there exists a basis {wj, Wj} of Z [ Q over Z such that 

(4.2.9) {wi, iVw2} is a basis of I over Z. 

Let a e M2 (Z) be the representation matrix for C with respect to the basis {Wi, Wj}, 
namely 

(4.2.10) (Cwi,Cw2) = (wi,W2)a. 

Since the minimal polynomial of C over Q is X^ — X -\- 1, we see det(a) = 1. 
Furthermore since / is an ideal of Z[C] and {wj, NW2} is a basis of /, we see 
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aeToCiV). Next take another basis {wj, W2} of Z[C] satisfying condition (4.2.9), 
and let a' be an element of ToCAT) determined by a basis {vv'i, Wj} as above. Let y be 
the element of Mj (/) such that 

(w'i,w'2) = (wi,W2)y. 

Then by the choice of {w ,̂ W2} and {w'l, W2}, we see 

and a' = 7~^ay. Consequently, the set of TQ^(Ar)-conjugacy classes of elements of 
FoiN) of order 6 corresponds bijectively to the set of the ideals / of Z [Q satisfying 
(4.2.8). Thus 

V3 = # {ideals / of Z[G such that Z[C]/ / ^ Z/ATZ}. 

By Theorem 3.1.4, 

'^0 if 9|iV, 

U{'<T)) ' •>*" 

A similar calculation is also applicable to Vj. 
We shall calculate v^. Let M^ be the set of all elements of order N in 

Z/iVZ X Z/NZ. We note that for (m, n)eZxZ 

(m, n)eMf^o{m, n, N) = 1, 

where m = m mod AT, and n = n mod N. By (4.2.1), we see that 

(4.2.11) the mapping of r(i) into Mff defined by "7 = , !—>•(«, c)" is surjective. 

We define an equivalence relation on M^ by 

(a, c) ^ (a', c ' )o(a ' , c') = ± (ma + nc, m"^ c) 

(me(Z/ iVZ)\neZ/ iVZ) . 

Then the mapping in (4.2.11) induces a bijection: 

ro(iV)\r(i)/r(i)^^M^/^. 

Then M̂ ^ = Y[p ̂ p^ ^^^ the equivalence relations on M^ and Mpe are compatible 
with the product decomposition. In particular, |Mjv/ ~ I = H P I ^ P « / ^ l» ^^^ there­
fore, we have only to calculate v^ when N = p^. Any element (a, c) of M^^ is 
equivalent to an element of the form (*, p^) (0 ^ / ^ e), a n d / i s uniquely deter­
mined. I f / > 0, then ae(Z/p'Zy, and 

(a, J^) - (a', y)od = d' mod p"»i"(/'^-/). 

I f / = 0 , then all elements of {(a, T)|aeZ/p^Z} are equivalent to each other. 
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Therefore we obtain 

Next we study elliptic points and cusps of r^iN) and r(N). 

Lemma 4.2.8. Let F be a Fuchsian group, and F' a normal subgroup of F of finite 
index. For a cusp x ofF, the number of F'-inequivalent cusps which are F-equivalent 
to X is equal to 

if-.r'mf.-f'.']-
Proof Since F' is a normal_ subgroup oj" f, F' F^'is di subgroup of f and the 
number is given by \F'\FIF^\ = \FIF''F^\. Since 

lF'.F'-] = lF'.F''F,-]iF''F,'.F'^ 

= if:rf,-]lF,:r,^, 
we obtain the result. 

Theorem 4.2.9. (1) Tj (iV) (AT ^ 4) has no elliptic elements. 

1 

D 

(2) v^(F,(N)) 
Y^ (f)(d)(t)(N/d) {all cusps are regular) (N ^ 5), 

(N = 4). 

(We note that F^ (AT) = Fo(N) if iV = 2, 3.) 

2 0<d|iV 

3 (2 regular cusps and 1 irregular cusp) 

Proof (1): Let y = 
: > 

an eUiptic element of F^iN). By definition, 

\a-\- d\ <2 and a-\- d = 2 mod N. So there is no such element if N ^ 4. 
(2): Let M^ be the set of all elements of order N of Z /NZ x Z/NZ. Define two 

equivalence relations ^ and L on M̂ y by 

(a, c) ^ (d\ c')o(d\ c')= ± (a + nc, c) 

(a, c) ^ (d\ c')o(d\ c') = (fl H- fie, c) 

Then we have the commutative diagram: 

r i ( i V ) \ r ( i ) / r ( i ) : ^ M ^ / 

{neZ/NZ), 

(neZ/NZ). 

F,(N)\F(\)IF(\), MJ 

Here the horizontal mappings are the bijections induced by the correspondence 

" r ( l )9 !-• (a mod iV,c mod iV)GM^", and the vertical mappings rj and ^ 
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are the natural mappings. First suppose AT ^ 5. Then f is a two fold covering and 

| M ^ / ^ | = i | M ^ / ^ | . 

Then all cusps of ri(iV) are regular by (4.2.6). By an argument similar to the case of 
To (AT), the calculation of \Mj^/ -̂  | reduces to the case N — if. Let cetjifL, and/ 
be the largest integer such that 0 ^ / ^ e, and c = 0 mod p^. Then 

(fl, c) ^ (a', c) o a = a' mod p^. 

Thus, for a fixed c, the number of inequivalent (a, c) is </>(p̂ ). Consequently, 
we obtain 

Next let AT = 4. Then the set {(± 1,0), (0, ± 1), (1,2)} is a complete set 
of representatives of MJ'r^ . Since (1,0) ~ (— 1,0) and (0,1) '^ (0, — 1), we get 
|M4/^ | = 3, and first two classes are regular and the rest is irregular by 
(4.2.6). D 

Theorem 4.2.10. (1) r{N) {N ^ 2) has no elliptic elements. 
r 

V n ( i - i / p ' ) (iv^3), 

3 (N = 2). 
(2) v^(r{N)) = 

When N ^ 3, all cusps are regular. 

(3) We can take as a complete set of representatives of inequivalent cusps the set 

{m/neQu {oo}|(m, n) = 1, (mmodN, nmodN)eMf^/{ ±1}}, 

where Mjy is the set of elements of order N in Z/NZ x Z/NZ. 
Proof. (1): Since r{N) is a normal subgroup of r(l), any r(l)-conjugate of an 
element of r{N) belongs to r{N). By Theorem 4.1.3, any elliptic element of r(l) is 
conjugate to 

4: -;]• 4; -:]• 4: ::]• 
and none of them belongs to r{N) if N ^ 2. Therefore, r(N) (N ^ 2) has no elhptic 
elements. (2): By Lemma 4.2.8, 

Voo(r(N)) = [f(l):f(N)]/[f(l)^:f(iV)^]. 

Therefore, the assertion is straightforward from Theorem 4.2.5 and the definition of 
regular cusps. (3): Connecting the mappings in (4.2.2) and in (4.2.11), we easily 
obtain a bijection: 

r(N)\Pr,s) ^ r(N)\r(i)/r(i)^ ^ M^/{ ± i}. 
Thus we obtain (3). D 

Now the genus of ^pfov a. modular group F is given by the following 
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Theorem 4.2.11. Let F he a modular group, and g the genus of^p. Then 

where V2 = v^Cr), V3 = v^(n Voo = v^n and ft = [ f ( l ) : f ] . 

Proof. Since 111^= Hf-^j, there exists a natural mapping 

F: ̂ r= r\n*r >^rii) = ̂ (l)\H'^(l). 

We put H* = H* = H'^(l), and 9? = ^^1)- Let TT̂ : H * - 91^, and TT: H* - 91 be 
the natural mappings. For any point b of 91/̂ , take a point z e H* so that np{z) = b. 
Let C/ * be a neighborhood of z in H* given in §1.8. Since F°nr= n, the following 
diagram is commutative: 

(4.2.12) . , / \ f 

U? •71(17?) 
n 

Hence {9? -̂, F} is a covering of 9? of degree ft. Let ê  = b̂,F ̂  the ramification 
index of the covering at b, and put F(b) = a. Let 82,83 and â o be the elliptic points 
of order 2 and 3, and the cusp on % respectively. I fa#a2,a3 ,aoo, then b is an 
ordinary point, so that n and n^ are homeomorphisms on I/*, and e^= 1. Suppose 
a = 82, then ê  = 1 or 2. We see 

b̂ = loF induces a homeomorphism of UpiU*) on to n(U*) 

oz is an elliptic point of F. 

Put 
r=#{b69{^|F(b) = a2}, 

then // = V2 + 2(̂  —V2). Therefore 

(4.2.13) 2 : 2 K - l ) = / ^ - ^ = ( / ^ -V2)A 

where E2 is the summation over the points b such that F(b) = 82- A similar 
argument implies 

(4.2.14) X,{e^-l) = 2{fi-v,)/3, 

where E3 is the summation over the points b such that F(b) = 83. Next assume 
F(b) = 800. Then b is a cusp on 91 j^, and 

v^=#{be9?^|F(b)=^8„}. 

Denote by 2,^ the summation over the cusps b such that F(b) = a^. Then 
2oô b = /̂ ' so that 

(4.2.15) E « ( ^ b - l ) = /^-Voo.. 

Consequently, the formula of the genus follows from (4.2.13), (4.2.14), (4.2.15) and 
the Hurwitz formula (1.8.8). D 
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§4.3. Modular Forms and Dirichlet Series 

Automorphic functions and automorphic forms for modular groups are called 
modular functions and modular forms, respectively. They are closely connected with 
number theory. 

Let r be a congruence modular group. By definition, there exists a positive 
integer N such that T =3 r(iV), so that 

<^,(r)cz%(r(N)). 

Therefore the investigation of ^^(r) is reduced to that of ^fc(^(^))- Furthermore, 
we see 

= l\^ ^\eSL2(Z)\c = 0modN\ a = ^ = l m o d i v | 

Hence, if f(z)e<^k(r{N)), then 

f(Nz) = N-'/'(^f\J^ ^Vj(z)e%ir,{N')y 

We note that if/(z) = Xr=o n̂̂ "̂'"̂ ^̂  is the Fourier expansion at oo, then 

2ninz f(Nz) = X c^e 

Therefore the Fourier coefficients of f(Nz) essentially coincide with those of/(z). 
Consequently, the study of modular forms with respect to congruence modular groups 
is reduced to that of%{r^(N)). 

Let X be a Dirichlet character mod AT. We define a character x of ToCN) by 

(4.3.2) X(y) = x{d\ r = h ^lero(iV). 

Lemma 4.3.1. For a positive integer N, we have 

X 

X 

^*(A(N)) = ©>-»(ro(iV)a), 
X 

where x ^uns over all Dirichlet characters mod N. 
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Proof. Since r^iN) is a normal subgroup of ToCiV ), ToCN) acts on %(ri(N)) by 
"f h-+/|ĵ y", (yGToCN)). This action induces a representation of rQ(N)/ri(N) on 
^k(A(^))- Since ro(N)/ri(N) ^(Z/NZy, all irreducible representations of 
rQ(N)/ri{N) are induced by Dirichlet characters modiV as above. Therefore we 
obtain the lemma by decomposing the above representation into irreducible 
representations. A similar argument is appHcable to other cases. D 

By the above lemma, we shall consider exclusively %{rQ(N), xX ^kiroi^X x) 
and ^fc(ro(Ar), / ) . Hereafter we simply write 

^k(N,x) = ^k{roiN%xX 

^AN,x) = ^kiro{N\xl 
^kiN.x) = ^kiro{Nlxl 

Let M be a multiple of N. We also express the character mod M induced by a 
Dirichlet character x mod N by the same symbol x- Then 

%{N,x)^%iM,xl ^ , ( iV,z)c :^ , (M,x) , 

and by Theorem 2.1.7(2), 

For a modular form f(z) = ^^= Q a„e^''^'''e%{N, x\ we put 

(4.3.3) /,(z) = f a„e2"^-, 
n = 0 

where a„ is the complex conjugate of a„. 
We put, for a positive integer AT, 

co^ = cw(A^) [N O | 

Lemma 4.3.2. Let x be a Dirichlet character mod Af. 

(1) Ifx(-l) ^ ( - If, (''en «i (N,z) = {0}. 
(2) The correspondence "/•-•/In a>j»" induces the isomorphisms: 

(3) lff(z)e%(N, X) (resp. &',(N, x), JV,(N, x)), then 

f,(z)=f(-z) 
and it belongs to 1$t(N, x) {resp. S^^(N, x), J^^N, x))-

Proof. The first assertion is obvious from (2.1.27). (2): For f{z)e%(N, x), we put 

g =f\k(ON- P'"' 5* = cjv d r ^»^^^ ' * * ''^^^ 
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d 
(4.3.4) coj^ycoN = 

Therefore 

and 

:]• -bN 
co',= -N. 

glkJ = xMg = x(y)9' 

This impHes the automorphy condition. The'rest of (2) follows from (2.1.31) and 

Theorem 2.8.2. (3): The first part is obvious. For an element y = | j \eSL2(Z), 

we put 

r ''=L-c d\-
Then 

(4.3.5) /pLy = (/L7')p, yeSL^iZl 

by the first part. In particular, ifyerQ(N), then fp l^y = x(y)fp- The conditions at 
cusps are also verified by (4.3.5). Now for f{z)e\(r^(N)) and g(z)e9'k(r^(N)\ 
we see easily 

(4.3.6) (f,.g) = {f.9,). 

This implies that if/(z)e^fc(N, /), then j;(z)6^fc(Ar, / ) . D 

Any element f(z) o{%(N,x) has a Fourier expansion of the form 

/(z) = f ay^'"\ 
n = 0 

Nevertheless a holomorphic function /(z) on H with a Fourier expansion is not 
necessarily a modular form. If/(z) is an Eisenstein series with respect to r ( 1), then 
the Dirichlet series defined in (4.1.26) by using the Fourier coefficients is a product 
of two Riemann zeta-functions. We analogously define a Dirichlet series </)(s) using 
the Fourier coefficients of /(z) by 

00 

</>(«)= Z « « " " ' • 
n = 1 

If/(z) is a cusp form of weight /c, then we have a„ = 0(n*^^) by Corollary 2.1.6. 
Hence (/)(s) is convergent absolutely and uniformly on any compact subset of 
Re(s) > k/2 + 1. In the rest of this section, we shall show an outstanding equival­
ence obtained by Hecke and Weil between the automorphy of /(z) and certain 
functional equations satisfied by </>(s) and its 'twisted' Dirichlet series by Dirichlet 
characters. 

Let f{z) be a holomorphic function on H satisfying the following conditions: 

(4.3.7) /(z) has a Fourier expansion 

/(z) = Z a„e Ininz 
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which converges absolutely and uniformly on any compact subset of H. Further there 
exists V > 0 such that 

/(z) = 0( lm(zr ' ) . •••tffiI{z)-»0) 
uniformly on Re(z). 

Then by a similar argument as in Corollary 2.1.6, we have 

(4.3.8) a„ = 0{n^). 

Conversely we obtain 

Lemma 4.3.3. For a sequence {a„}^=Q of complex numbers, put 

f(z)= f a„e2«- (zeH). 
M = 0 

lfa„ = 0{n^) With some v > 0, then the right-hand side i^ convergent absolutely and 
uniformly on any compact subset o/H, and f{z) is holomorphic on H. Moreover, 

/(z) = 0(lm(z)-^-^) (Im(z)^O), 

/(z) -ao = 0(e- 2«̂™<̂>) (Im(z) -^ oo) 

uniformly on Re(z). 

Proof By (3.2.9), we have for v > 0, 

Hence there exists L > 0 such that 
( - : - ) = 

l imn7( - l ) ' ' = r ( v + l ) . 

( - ; - ' ) 
for all n ̂  0. Put z = x + iy, then 

(4.3.9) f \a„\\e''"^ g if f (- Iff ~ ' ~ ' )e-''A 
n=0 \n=0 \ n J J 

= L ( l - e - 2 " ^ ) - ^ - ^ 

This impHes that /(z) is convergent absolutely and uniformly on any compact 
subset of H. Since (1 — e"^"^) = 0(> )̂ asy-^0, we see |/(z)| = 0(y"''~^). More­
over (4.3.9) implies that /(z) is bounded when y -• oo. Put 

g{z)= X «« + i^ Itiinz 

n = 0 

Since g{z) also satisfies the assumption, it is bounded on a neighborhood of oo. 
Therefore we obtain 

f{z)-ao = e^''''g(z) = Oie-^^y) (y-^oo). D 
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By the above lemma, all holomorphic functions f(z) on H satisfying (4.3.7) 
correspond bijectively to all sequences {a„}^=Q of complex numbers such that 
an = 0{n^) with V > 0. 

As a preliminary to Hecke's theorem, we shall prove the following 

Lemma 4.3.4. (Phragmen-Lindelof) For two real numbers Vj, V2 (vi < V2), put 

F = {seC|vi ^ R e ( s ) ^ V2}. 

Let (j) be a holomorphic function on a domain containing F satisfying 

\(j>(s)\ = 0{e\^\') ( I T I ^ O O ) , s = (j + ix, 

uniformly on F with d > Q. For a real number b, if 

|(/>(s)| = 0 ( | T | ^ ) ( |T| - • 00) on Re(s) = Vj and Re(s) = V2, ' 

then 
10(5)1 = 0(111") ( | T | - O O ) uniformly on F. 

Proof By assumption, there exists L > 0 such that \(j>(s)\-^ Le\'^\\ First we con­
sider the case when 6 = 0. Then there exists M > 0 such that |(/)(s)| ^ M on the 
lines Re(s) = Vi and Re(s) = V2. Let m be a positive integer such that m = 2 mod 4. 
Put 5 = (7 + ix. Since Re(s'") = Re((o- + ii)'") is a polynomial of a and T, and the 
highest term of T is — T"*, we have 

(4.3.10) Re(s'")= -T ' " + 0 ( | T r - ^ ) ( | T | - O O ) , 

uniformly on F, so that Re(s'") has an upper bound on F. Taking m and N so that 
m> 6 and Re(s'") ^ N, we have, for any 8 > 0, 

\(t>(s)e''"'\ ^ Me'^ on Re(s) = Vj and Re(s) = V2, 

and 
|0(5)^"'"| = 0(^1^'^-^^'" + ̂ '^''"") -> 0, (|r| -> 00) 

uniformly on F. By the maximum principle, we see 

\(j)(s)e''"'\^Me'^, (seF). 

Letting e tend to 0, we obtain |</)(5)| ^ M, namely, 0(s) = 0 ( | T | ^ ) . Next assume 
fe # 0. We define a holomorphic function 1/̂ (5) by 

^(5) = ( s - V i + l)'' = e'""«<^-^^-'̂ >, 

where log takes the principal value. Since 

Re( log(s-Vi + l)) = l o g | s - V i 4- 1|, 
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we have uniformly on F 

\il/(s)\ = \s-v,-^lf^\r\' ( I T H O ) ) . 

Put 01 (s) = (l)(s)/il/(s). Then </)i(s) satisfies the same assumptions as (j) with ft = 0, 
so that by the above result, </)i(s) is bounded on F. Therefore we obtain 

\(l>(s)\ = o{\x\')(\T\-^^y n 

As we already mentioned in §3.2, Hecke generalized the proof of Theorem 3.2.2 
and proved that a transformation of a function / ( z ) is equivalent to a functional 
equation of the corresponding Dirichlet series. For a holomorphic function 

f(z) = f ay-' 
« = 0 

on H satisfying (4.3.7), we put 

(4.3.11) L{s;f)= f a„n-\ 
« = 1 

Since a„ = 0(n''\ L(s;f) converges absolutely and uniformly on any compact 
subset of Re(s) > 1 + V, so that it is holomorphic on Re(s) > 1 + v. We call L(s;f) 
the Dirichlet series associated with f. For N > 0, we put 

(4.3.12) A^(s;f) = {2n/^)-^r(s)L{s;f). 

Theorem 4.3.5. (Hecke) Let / ( z ) = Xr= o «n^^""" «"^ ^(^) = Zr=o^«^^"'"' be 
holomorphic functions on H satisfyirtg (4.3.7). For positive numbers k and N, the 
following conditions (A) and (B) are equivalent. 

(A) g{z) = (-i^z)-'f{-l/Nz). 
(B) Both Aj^{s;f) and Apf(s; g)can he analytically continued to the whole s-plane, 

satisfy the functional equation 

^Nis'J) = Aff(k-s;g), 
and 

s k — s 

is holomorphic on the whole s-plane and bounded on any vertical strip. 

Proof (A)=>(B): Since there exists v > 0 such that a„ = 0(n'') and b„ = O(n'), 

n = 1 

and 

f J | f l j r e - 2 ^ " ^ / ^ r ^ r f r ( a > v + l ) 
n = 1 0 
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are convergent. Therefore we see, for Re(s) > v -f 1, 

AAs;f)= t a„(2nn/^)-^]e-U^-'dt 
n= 1 0 

n= 1 0 

= ]t^{fiit/^)-ao)t-'dt 
0 

n 00 00 

= __» + ^ t-^f(il^t)t-'dt + \ f(f(itl^)- ao)t-'dt. 
^ 1 1 

Since g(z) = (— i.Jl^z)~^f( — l/Nz), we obtain 

(4.3.13) A^{s'J)= -^-^-^]t'-^{g(it/^)-bo)t-'dt 
S K S -^ 

+ ]f{f(it/^)-ao)t-'dt 
1 

on Re(5) > Max{fe, v + 1}. By Lemma 4.3.3, when t tends to oo, we have 

f{it)-ao = Oie-''"), 

g{it)-bo = 0(e-'"), 
so that 

J('(/(it/v^)-ao)r'A 

and 

Jt'-»(3(,t/VJv)-b„)r'dt 
1 

are convergent absolutely and uniformly on any vertical strip. Therefore they are 
holomorphic on the whole s-plane. If we define Af^{s; f) for any s e C by (4.3.13), it is 
a meromorphic function on the whole s-plane, and 

is an entire function and bounded on any vertical strip. Similarly Af^{s; g) is also 
analytically continued to the whole s-plane, and satisfies 

(4.3.14) AAk-s;g) = - ^ - - ^ + ] t'-^{giit/^)-bo)t-'dt 
S K — S J 

+ ]fmtlsf^)-ao)t-'dt. 
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Comparing (4.3.13) and (4.3.14), we obtain vl^(s;/) = Af^{k-s; g), (B)=>(A): By 
(3.2.14), we have 

fiiy) = ^ . l a „ j {2nny)-^r(s)ds +«« 
Zni „ = 1 Re (s) = a 

for any a > 0. If a > v + 1, then L(s;f) = ^^=1 ^n"~* is uniformly convergent 
and bounded on Re(s) = a, so that by Stirling's estitnate (3.2.8), Aj^(s;f) = 
{2n/y/N)~^ r(s)L(s;f) is absolutely integrable. Therefore we can exchange the 
order of summation and integration, and 

f(iy) = ^ I (^y)-'A^(s;f)ds + a^. 
^'^^ Re(s) = a 

Since L(s;f) is bounded on Re(s) = a, we see, for any // > 0, 

(4.3.15) \AAs'J)\ = 0(|Im(5)r^) (|Im(5)| ^ ^ ) 

on Re(s) = a by Stirling's estimate. Next take P so that k — p > v-{-l. A similar 
argument implies that for any /x > 0, 

\AAs;f)\ = \A^ik-s;g)\ = 0(\lm(s)\-'^) (|Im(s)| ^ ex,) 

on Re(s) = p. By assumption, 

is bounded on the domain P ̂  Re(s) ^ a. Hence for any /z > 0, we see by 
Lemma 4.3.4, 

(4.3.16) (4.3.15) holds uniformly on the domain P ̂  Re(s) ^ a. 

Furthermore we assume that a > /c and p <0. Since (y/Ny) M^(s;/) has simple 
poles at s = 0 and s = k with the residues —GQ and (^/Nyy^bo, respectively, we 
can change the integral paths from Re(s) = a to Re(s) = p using (4.3.16) and obtain 

f(iy) = ^ . J (^yr'A^{s;f)ds + {^y)-%. 

By the functional equation, 

fiiy) = ^ . I (ViVy)-M^(/c - s; g)ds + {^y)-'h^ 

^^^ Re(s) = /J 

^^^ Re(s) = fc-/> 

Since /(z) and ^(z) are holomorphic on H, we obtain 

/ (Z) = ( V N Z / 0 - * 9 ( - 1 / N Z ) , 
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or 
g(z) = {-i^z)-'f(-l/Nz). 

As a special case, we let k = 1/2, N = 4 and 

f(z) = g(z) = \9{z)=\-^ f e'^^"\ 

Then (A) is nothing but the theta transformation formula (3.2.17), so that the 
functional equation of the Riemann zeta-function in §3.2 is the special case of the 
part (A) => (B) of the above theorem. 

For latter use, we restate the above theorem. 

Theorem 4.3.6. Let k and N be positive integers. For two holomorphic functions 
/(^) = ln = o ««^ ' "" «"^ yi^)= ln = o ^n^'""' on H Satisfying (4.3.7), the following 
conditions are equivalent: 

(A) g(z) = (^z)-'fi-l/Nz) ( = (/|,co^)(z)). 
(B) Both Aff(s;f) and Aff(s; g) can he analytically continued to the whole s-plane, 

satisfy the functional equation 

Aj^(s'J) = i^Af^(k-s;gl 
and the function 

s k — s 

is holomorphic on the whole s-plane and bounded on any vertical strip. 

Since any element f{z) of ^ki^, x) satisfies (4.3.7), we obtain the following 

Corollary 4.3.7. For any element f(z) of ^j^{N,x\ ^ jvte/) ^̂  holomorphic on the 
whole s-plane and satisfies the functional equation 

^N(S'J) = i'^Affik-s-Jlj^Wff). 

We note that the functional equation in Corollary 4.3.7 is also satisfied for any 
element oi^k(N, •/) (see §4.7). It is unknown for an arbitrary Fuchsian group whether 
a non-cusp form /(z) satisfies (4.3.7) or not. For modular groups, we will construct 
elements of the space of Eisenstein series jV^i^, x) using Dirichlet L-functions in 
§4.7. Therefore we can prove the functional equation for any element of ^ (̂iV, x)-

Since r( l ) is generated by two elements and n ' ̂ ^ ^^^ easily 

characterize an element f(z) of '^^(^(1)) by the functional equation of L(s;/) and 
obtain 

Theorem 4.3.8. Let k be an even integer ^ 2. Assume a holomorphic function 
f{z) on H satisfies (4.3.7). Then f(z) belongs to %ir(l)) if and only if 
A(s;f) = (2ny^r(s)L{s;f) can be analytically continued to the whole s-plane, 

A(s;f)-\- — + 
s k — s 
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is holomorphic on H and bounded on any vertical strip, and satisfies the fiinctional 
equation: 

A(s'J) = {-\fl^A(k-s'J). 

Moreover if aQ — 0, thenf(z) is a cusp form. 

The situation for %{N, x) is much more compUcated, since FoiN) has many 
generators. For a holomorphic function f{z) satisfying (4.3.7) and a Dirichlet 
character ip, we put 

(4.3.17) f^(z) = i: ,l/(n)ay""^ 
« = 0 

and 

(4.3.18) L(s;fil,)= f ^{n)a„n-^. 
n = 1 

This is an analogue of the Dirichlet L-function to the Riemann zeta-function. It is 
obvious that f^{z) also satisfies (4.3.7) by (4.3.8) and Lemma 4.3.3. Let m = m^ be 
the conductor of ij/, and put 

(4.3.19) A^is;f ij/) = {2n/m^)-^r(s)L(s;f xjj). 

By definition, 

(4 3 20) ^(^' U) = ^te /' 'AX 

Lemma 4.3.9. Let f(z) and g(z) he two holomorphic functions on H satisfying (4.3.7), 
and \j/ a primitive Dirichlet character of'conductor m (>1). Then the following 
conditions (A^) and (B^) are equivalent. 

(^^) f^\MNm^) = C^Qf-

(B^)Af^(s;f ij/) can be holomorphically continued to the whole s-plane, bounded on 
any vertical strip, and satisfies the functional equation: 

Aj^(s;f il/) = i^C^Af^(k - s; g, ij/) 
for a constant C^. 

Proof. Apply Theorem 4.3.6 for /^, C^gf, and Nm^ in place of /, g, and AT, 
respectively. Then we obtain the theorem by (4.3.20). D 

We put 

«(«)= I \ (aeW). 

Lemma 4.3.10. (1) Let f be a holomorphic function on H satisfying (4.3.7), and \jf a 
primitive Dirichlet character of conductor m. Then for an integer /c > 0, we have 

u=wm-' t m(f\,<uim)\ 
where W(^) is the Gauss sum ofij/. 
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(2) Let f(z) be an element of %(N, x\ ^x ^^^ conductor of x, ijj a primitive 
Dirichlet character of conductor m ,̂ and M the least common multiple ofN, mj, and 
m^m^. Then f^ belongs to %(M, x^^)- Moreover iffis a cusp form, so isf^. 

Proof (1): Since for an integer M, we have 

(/|,a(M/m))(z)= X ay^'^^'^'e 
n = 0 

Ininz 

we see by Lemma 3.1.1(1) 

(4.3.21) X f(«)(/La(u/m))(z)= X Z fMe^""""" a, 
M=l fl = 0 \u=l J 

Jlninz 

(2): Assume fG%(N, x) and put m = m^. Since 

a(w/m)-^ro(N)a(M/m) ^ r(Nm^l 

f\j,0L{u/m) belongs to %{r{Nm^)). By (1) we seef^e%(r(Nm^)). Therefore we have 

only to prove that f^\j = (#^)(y)/^ for all yeToiM). Let y = I ^ ^ e / ' o W 

and put 
y' — (x{u/m)yoc{d^u/m)~^, 

then 7'ero(M) c= ro(iV). Writing 7' = , j j , we have =[: ::]• 
d' = d — cd^uM/m = d mod m̂ ,. „ -u-.dh 

so that 
/|,a(«/m)y = x(d)f\Md^u/m). 

Hence by (4.3.21), we obtain 

fAy = x(dmd')f^-
A similar argument is applicable to cusp forms. D 

Theorem 4.3.11. Let f(z) be an element of %(N, xX and ij/ a primitive Dirichlet 
character of conductor-m. If(m,N)= 1, then 

f^coiNm^)^ C^g^, 

where ^ =/|fcCa^ and 

C^ = Q,^ = x(mm-N)W(i^)/W{4;) 

= X(m)il/(N)W(i^)Vm. 

Proof For an integer u prime to m, take integers n, v so that nm — Nuv = 1. Then 

(4.3.22) (x(u/m)o)(Nm^) = mco{N)\ ^ ~^Hv/m). 
|_ — MiV W J 
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Since g = f\^(Off belongs to ^jk(N, x) by Lemma 4.3.2, (4.3.22) implies 

f\M^/m)(o(Nm^) = xim)g\Mv/mX 
so that 

= Xim) X \l/(-Nv)g\kOc(v/m) 
v=l 

v=l 

= Xim)^{-N)Wiilf)gf. D 

By this theorem and Lemma 4.3.9, we obtain the following 

Theorem 4.3.12. Let f(z) he an element of ^jt(iV, x)> c^nd ^ a primitive Dirichlet 
character of conductor m. If (m, N) = 1, then Af^(s\ /, ^) can he holomorphically 
continued to the whole s-plane, is hounded on any vertical strip, and satisfies the 
functional equation: 

where C^ is the constant in Theorem 4.3.11. 

To prove the converse of this theorem is the purpose of the rest of this section. 
For two integers m, v such that {m,vN) = 1, take integers n, u so that mn — uvN = 1, 
and put 

'^^[-ul l] yi^^^)=^\ .r l^roiN). 

Though y(m, v) is not uniquely determined, wmodm is uniquely determined, and 

(4.3.23) <xiu/m)o}(Nm^) = m • o){N)y{m, v)(xiv/m). 

We now extend the action of GL2{U) on functions on H hnearly to the group 
algebra CCGLj (R)]. For a function f{z) on H, we put 

(4.3.24) f\J = T.^J\,oi for p = Y,a,oieClGmU)l 
a a 

In the following two lemmas, k and N are positive integers, % is a Dirichlet 
character modiV satisfying x(— 1) = (— !)*» and f(z) and g(z) are holomorphic 
functions on H satisfying (4.3.7) and condition (A) of Theorem 4.3.6. 

Lemma 4.3.13. Let m he an odd prime numher or 4 prime to N. Iffiz) and g(z) satisfy 
condition (A^) in Lemma 43.9 for all primitive Dirichlet characters ij/ mod m with the 
constant 

C^ = x(m)il>{-N)Wm/lV{n 
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then 

glkixi^)-y(^^ u))oc(u/m) = g\k(x(m)-y(m, v))(x{v/m) 

for any integers u and v prime to m. 

Proof. By the assumption {A^) and Lemma 4.3.10, we see 
m _ m 

(4.3.25) X mf\Mulm)m(Nm'-) = z(M)"/'(-.iV) ^ ^(u)3La(u/m). 
M = l U = l 

For each integer u prime to m, take an integer v so that — uvN = 1 mod m. Then we 
have by (4.3.23) 

(4.3.26) f\k(x(u/m)o)(Nm^) = g\ky{m, v)(x(v/m). 

Since the left-hand side is independent of the choice of a representative of u mod m, 
so is the right-hand side of the choice of y(m, v). Using (4.3.26), we rewrite (4.3.25) 
into 

(4.3.27) T.^{v)g\Mm)-y(m, v)Mv/m) = 0. 
V 

Here v runs over a complete set of representatives of Z/mZ. We note that (4.3.27) is 
independent of the choice of representatives of Z/mZ. Let v^, Vj be two integers 
prime to m. Multiply both sides of (4.3.27) by ^(vi) — \j/(v2) and take the sum­
mations with respect to all nontrivial Dirichlet characters i/̂ modm. Noting that 
•AĈ i) ~ ^(^i) = 0 if i/̂  is trivial, we obtain 

l̂fc(z(w) - 7(m, v^))(x{vjm) = gUx(m) - 7(m, V2))cc(v2lm). D 

Lemma 4.3.14. Let m and n be odd prime numbers or 4. Assume both m and n are 
prime to N. Iff(z) and g{z) satisfy condition (A^) in Lemma 4.3.9 with the constant 
C^ = l(m^)^(—N)W(\l/)IW(\l/) for any primitive Dirichlet character ij/ whose 
conductor m^ = m or n, then 

g\ky = xiy)9 

for all yefQiN) of the form y 
l-uN n] 

.Jmvl 
[uN nj Proof Put y = \ . Since we can take y and y' for y(m, v) and y{m, — v) in 

Lemma 4.3.13, respectively, we have 

glkixim) - y')oc{- v/m) = g\k(x{m) - y)oc{v/mX 

so that 

(4.3.28) g\Mm) - YM-2v/m) = g\Mm) - y). 

We can also take 7'~ ̂  = ,̂ and y " ̂  = ,̂ for 7(n, v) and y(w, - v\ 
\_ — uN m_\ \_uN m_\ 

and obtain-
(4.3.29) g\kixin)-y-') = g\Mn)-y-'M-2v/n). 
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Since ;f(n);f(m) = 1, we see 

x(n)-y'~^ = -xin)(x{^)-y')y'~\ 
(4.3.30) 

(z(«)-y ^M-2v/n)= -x(n){xim)-y)y ^Gc{-2v/n) 

as elements of C[GL^([R)]. Rewriting (4.3.29) by using (4.3.30), we have 

(4.3.31) 9\Mm)-Y) = g\Mm)-y)y-'oi(-2v/n)y\ 

so that from (4.3.28) 

(4.3.32) g\^^^(rn)-y)(l-y-'oi(-2v/n)Yoc(-2v/m)) = 0. 

Put 
h = g\kix(m) -y) = x(m)g -g\ky-

The function h(z) is holomorphic on H and satisfies 
(4.3.33) h\,p = K 

^ = , - a ( - 2 . / n ) / a ( - 2 . M ) = [^^;/^ 4 / ; ' ^ ] 

Since |tr()5)| = \4/mn — 2| < 2, and |tr(^)| 7̂  0,1 by the assumption on m and n, p is 
elliptic and any eigenvalue of p is not a root of unity. In fact, since the entries of p 
are all rational numbers, the eigenvalues of P belong to a quadratic field. Hence if 
an eigenvalue of jS is a root of unity, then it must be + 1, ± i, + e"'/̂  or ± ê '̂̂ ,̂ so 
that tr(j?) = 0, ± 1, or +2, which is a contradiction. Let now ZQ be a point of H 
fixed by p. Put 

p = (zo-z-o)-T[ "HeGL2(C), 

P(w) = {h\kp-')M = j(p-\ wr'h(p-'w) (weK). 

Then p(w) is holomorphic on K. Since we can write ppp~^ ~\ a r - i ^^^^ C^C, 

we see by (4.3.33) 

(4.3.34) p(C'w) = C-V(w). 

Let p(w) = X"°=o^«^" t>e the Taylor expansion at w = 0, then we get 

for all n. Since C is an eigenvalue of P which is not a root of unity, we obtain fl„ = 0 
for all n. Therefore h(z) = 0, so that g\ky = X(^)Q = x(y)9' D 

Now we are ready to state the main theorem in this section. For two coprime 
positive integers a and h, we put 

(4.3.35) A(a,h) = {a + nh\neZ}. 
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Let M be a set of odd prime numbers or 4 satisfying the following two conditions: 

(i) any element of M is prime to N; 
(ii) N\nA(a,b)^ 0 for any A{a, b). 

There exists such a set M. We can take as M, for example, the set of all odd prime 
numbers prime to N by Dirichlet's theorem on arithmetic progression. 

Theorem 4.3.15. (Weil) Let k and N be two positive integers, and % ^ Dirichlet 
character modN such that x(— 1) = (— 1)̂  For two sequences {a„}^=Q and {b„}^=Q 
of complex numbers such that a„ = O(n )̂, b„ = Oin") (v > 0), put 

n = 0 
m = I a„e' 

« = o 
and 

g(z)= t^e'^'"' (zeH). 
«=o 

Then f{z) e %{N, xX 9(z) ̂  %(^^ x) ̂ ^d g =f\^cOff, if the following two conditions are 
satisfied: 

(1) Aj^(s; f) and /l]v(s; g) satisfy condition {B) in Theorem 4.3.6; 
(2) for any primitive Dirichlet character \j/ whose conductor m^ belongs to M, 

yljv(s; /, ^) and Af^(s\ g, ij/) satisfy condition (B^) in Lemma 4.3.9 with the constant 

C^ = C^,^ = xH)^{-N)W(il^)/W{ii;). 

Moreover, ifL{s;f) is absolutely convergent at s = k — 6 for ^ > 0, thenf(z) and g(z) 
are cusp forms. 

Proof We shall prove that g\i,y = x{y)g for 7 = ^^ . eToCN). If c = 0, then 
\_cN a J 

a = ii = ± 1, so that gfl̂ y = x(d)g = x(y)g since %(— 1) = (— If. Next assume 
c ^0. Since (a, cN) = (d, cN) = i, there exist integers s, t such that a + rciVe M, 
and d + scN e M by condition (ii). Put 

m = a-\- tcN, n = d-\-scN, 

u = —c, V = —{b-\-sm + stuN + nt), 
then 

r a bivi -tir m -viri -si 
\_cN d\~[o ijL-MiV «J[o I j 

Hence Lemma 4.3.14 implies 

dlkJ = x(n)g = x(d)9 = xiy)g-
Now g(z) = Oiy'"'^) by Lemma 4.3.3, so that g{z)e%(N, x) by Theorem 2.1.4. 
Since/= ( - lfg\,,o)ff by (1), we get/(z)e^fc(Ar, x) by Lemma 4.3.2(2). This implies 
the first half of the assertion. Next assume that L{s;f) is absolutely convergent at 
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s = k-S with ^ > 0. Put 

c„= t \^J (n^ll 
then 

c < "'"'(_^EJ«J'»"'"') 

so that c„ = 0(n''"'). By Lemma 4.3.3, Xr=oC„e"^''"'' is convergent and 
Z"=oC„e-^'"^ = 0(j'-»*''-') (y^O). Since |a.| = c,-c„^„ we see 

\f{z)-a„\^(l-e-''y)(yc„e-''A, 
\n=l 

SO that/(z) = 0(y ''•^^). Therefore/(z) is a cusp form by Theorem 2.1.4, and so is 
9iz). • 

We note that when AT is not a prime number, /(z) and g{z) are not necessarily 
cusp forms even if a© = ^o = 0-

§4.4. A{z) and f/(z) 

In this section, we give the proof of Theorem 4.1.7(2) which asserts that A{z) has no 
zeros on H. First we define the function ri(z) on H by 

^(Z) = e«'^/12 ^ ( l - e ^ " ' " ^ ) . 

Since J] *= ^ ê "'"̂  converges absolutely and uniformly on any compact subset of H, 
so does the above infinite product. We call ri(z) the Dedekind rj-function. 

Theorem 4.4.1. The function ri(z) satisfies the transformation formula 

rji-\/z)Hz/iY''rj(z), 

Proof We follow Weil's proof ([Weil 4]) which reduces a transformation formula 
for a holomorphic function on H to a functional equation of the corresponding 
Dirichlet series. Since rj{z) has no zeros on H, the assertion is equivalent to saying 
that 

(4.4.1) log^(-l/z)=logfy(z)+ilog(z/0. 

By definition, we have 

\ogrj(z) = niz/12- f m-^e^""'"""'. 
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Put 

f{z)= f m-'e^'''""'' = niz/\2-\ogrj(zl 
m,n= I 

then/(z) satisfies (4.3.7) and 

L(s'j)=as)C{s+iy 
As in the previous section, put 

A{s;f) = (2n)-^r(s)Lis;f) 
and 

A{s) = n-^''r(s/2)i:{sl 
Since 

A{s;f)=iAis)Ais-^l), 

Theorem 3.2.2 imphes that A(s;f) can be analytically continued to the whole 
s-plane and satisfies the functional equation 

A{s;f) = A(-s'J). 
Moreover f ( — 1) = —1/12, and 

is entire and bounded on any vertical strip. We note here that 

yl(s)4--+ ^ 
S 1—5 

is bounded on any vertical strip by a similar argument as in the proof of 
Theorem 4.3.5. Now 

m)=^ j y-'A{s;f)ds, 

and we can change the integral paths from Re(5) = 2 to Re(5) =—2. By the 
holomorphy of (4.4.2), y~^A{s;f) has poles only at s= l , 0, —1 with the residues 
7r/12y, ilog>', —Try/12, respectively. Hence 

m) = ̂  J y-'Ais;f)ds + n/12y+\\ogy-ny/n 

=^. I fA{-s;f)ds + nn2y+\logy-ny/l2 

= / ( - l A » + 7r/12>'+-log>'-7r3;/12, 

by the functional equation for yl(s;/). Therefore (4.4.1) holds on the imaginary axis. 
Since both sides are holomorphic on H, (4.4.1) is satisfied everywhere on H. D 
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Now we consider rj^'^iz). Since 

(4.4.3) ^2 (̂z) = ê "'̂  0 ( 1 - ^^"''")^^ 
n = l 

we have 
(4.4.4) rj'\z-hl) = rj'\zl rj'\-l/z) = z''rj'^(z). 

As r( l) is generated by and and rj^'^^iz) vanishes at oo by (4.4.3), 

fj'\z)e^,2irWy 

Since dim 5^12(̂ (1)) = 1» we see ^̂ "̂ (z) = czl (z) with a constant c. Comparing the first 
Fourier coefficients of ^̂ "̂ (z) and zl(z), we get c= 1, hence 

A(z) = rj'^{z). 

Thus we obtain the following 

Theorem 4.4.2. The function A (z) has no zeros on H and has the infinite product 
expansion 

A(z) = e^'''' f[ (l-e^'^'^'f^ 
n=l 

which converges absolutely and uniformly on any compact subset o/H. 

Theorem 4.4.2 also implies the integrality of the Fourier coefficients T„ of A (z). 
The explicit forms of A (z) and ri(z) are quite useful to calculate modular forms. We 
can construct cusp forms of small level by using A{z) and rj(z). For example, we 
have ([Shimura], pp. 49-50): 

1° If N is 2, 3, 5, or 11, and k = 24/(N+1), then 6^kiroiN)) is one-dimensional 
and is generated by 

(A {z)A (Nz))^'^^^^^ = (r]iz)rj(Nz))\ 

T If N is 2, 3, 4, 6 or 12, and /c= 12/AT, then ^fc(r(iV)) is also one-dimensional 
and is generated by 

(J(z))^/^ = f/2'^(z). 

§4.5. Hecke Algebras of Modular Groups 

Hecke operators play important roles in the study of modular forms. In this 
section, we explain, following Shimura, the relation between Fourier coefficients of 
modular forms and Hecke operators first obtained by Hecke. We begin by studying 
the structure of the Hecke algebras of modular groups. For a Fuchsian group T, we 
put 

f={QeGLim\gTQ-^^T\ 
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Lemma 4.5.1. For any modular group F, we have 

Proof. Since FwF{l), we have only to prove the lemma for F = F{i) by 
Lemma 2.7.1(3). Let aeIR'' GL^CQ). Take ceW" so that j5 = caeM2(Z). Then 
oi~^F(l)(x=^p-^F(l)p. Put m=det(j5), then m)5"̂  eMjC/). For any yer(m), we see 

imr')yP^{mr')P ( = \^ ^ 1 ) mod m, 

so that P~^yPeM2iZX and P~^F{m)P c= F. Therefore we have 

6cF(x-^nF = pFp-^nF^Fim). 

"[: a---Since [r:r(m)]<oo, a belongs to T. Conversely, assume a= eT. By 

Corollary 1.5.5, the cusps aoo = a/c and aO = b/d of(xF(x~^ are also cusps of T. Since 
r «'a~ ^r'a, the points 'aoo = a/b and 'aO = c/d are also cusps of F. As any cusp of F 
is an element of Q u {oo}, the ratios of a, b, c, d are all rational numbers, and 
therefore a G R ^ • GL^ (O). D 

We define the subsemigroups AQ(N) and ^ J W of GL2 (Q) by 

(4.5.1) ^ o W = | ^ ^ \eM2{I.)\c = 0modN,{a,N)=l ad-bc>oi, 

and 

(4.5.2) JJ(N) = | r MeM2(Z) c = OmodAr,(^,iV)=l,arf-ftc>oi. 

We see easily that 

(fa bl \c = OmodN,{ad-bc,N)=U] 

We are going to study Hecke algebras ^(Fo{N\ AQ{N)) and ^{FQ(N\ Al(N)). We 
simply write 

(4.5.4) ^(iV) = ^(ro(iV),zlo(Ar)), 

(4.5.5) ^*(iV) = ^(ro(iV),zlS(iV)). 

Lemma 4.5.2. For any CL£AQ(N) {resp. zlJ(N)), there exist positive integers I and m 
such that /|m, (/, iV)= 1 and 

'o(N)aro(JV)=r„(JV)P l\ro(N) 

{0 n (resp. r„(JV)aro(N)=ro(JV)| „ , |ro(N)). 

77ie paJr (/, m) is uniquely determined by a. 



§4.5. Hecke Algebras of Modular Groups 

Proof. Put 

L = 
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M,rGz| , Lo = | | ^ ^ " j | u , t ; G z | . 

Then M2(/) acts on L by left multiplication and CCLQ a LQ. Put n = det(a), then 

[L: aLo] = [L: aL] [aL: aLo] = nAT. 

By the fundamental theorem of abehan groups, there exists a basis {wi, W2} of L 
such that 

(xLQ = Z{aw^)@Z{bw2) 

with positive integers a and b {ab = nN, a\b). Since OCLQ C/Z tL for any divisor t(> 1) 
of AT, we see that (a, Ar)= 1 and N\b. Then Zw^ © Z(Nw2) is a unique submodule of 
L of index iV containing OCLQ, and therefore, 

Lo = Zwi©Z(Nw2). 

Moreover if we put l = a and m = b/N, then Z(/wi)© Z(mw2) is a unique sub-
module of L of index n containing OLLQ. Therefore we get 

aL = Z(/wi)©Z(mw2). 

We define two elements 7i, 72 of M2(Z) by 

(wi,W2) = M ^ LL Ihu N 0 P 1 N = ('^i''"^2)72. 

= det(7 

{0 : ] ' 

Then 

yi-

We may assume det(7i) = det(72)=l by taking —W2 in place of W2, if necessary. 

Since Wj GLQ and al ^ UaLo, we see Ti, y2^^o(^)- Therefore we obtain 

ro(iV)aro(N)=ro(iV) KoW. 

L / a L - Z / / Z © Z / m Z , 

Since 

(4.5.6) 

the pair (/, m) is uniquely determined by the fundamental theorem of abehan 
groups. A similar argument is also appUcable to /dg(iV). D 

We note by (4.5.6), 

(4.5.7) ifl\m and {lm,N)=l then UN)^^ m l ^ ' ^ ^ ^ ^ ^ ^ ^ ^ f 0 ^ l^^^^^ ' 

Theorem 4.5.3. (1) Both Hecke algebras M{N) and ^*{N) are commutative. 
(2) For any element ro{N)(xro{N) of M{N)KJ^*{N\ both ro{N)\roiN)oiro{N) 

and rQ{N)(xrQ{N)/rQ(N) have a common set of representatives. 
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Proof. For an element a= ezloW (resp. ^oWX we put 

(iV) (resp. zl?(iV)). 

Then the correspondence "ai-*a'" satisfies the three conditions of Theorem 2.7.8. 
In fact, conditions (i) and (ii) are obvious by definition, and (iii) is proved by 
Lemma 4.5.2 and (i). Therefore ^(N) and ^*(N) are commutative. D 

Now let X be a Dirichlet character mod N. We put 

(4.5.8) Z(«) = Z(^ for aJ" %AoiN). 

Then x is an extension of the character of ToCiV) defined by (4.3.2) to AQ(N). TO let 
Hecke algebra ^(N) act on %iN, /), we have to verify that x satisfies (2.8.1), or 

if oiyoL-'eroiN) (yeToiNl ae^oW) then x(a7a"') = X(7). 

In fact, by Lemma 4.5.2, we may assume oc = \ (/|m, (/, Ar) = l). Put 

U 3'̂ " (AT), and y' = ocyoc ^ If 7' e ro(iV), then bl = 0 mod m and 

Y 
_ r a bl/ml 

IcNm/l d J' 

so that x(y) — xiy')' Therefore by Theorem 2.8.1, ^(N) acts on %{N,x)- More 
precisely, if 

ro(N)aro(N) = Uro(iV)a, 
V 

is an element of ^(N), then 

(4.5.9) /I ro(iV)aro(iV) = det (a)*/^"'^/(a,)/|,a, (/e ^,(N, /)). 
V 

Next we extend the character x of rQ(N) to ^o(^) by 

(4.5.10) X*io^) = Xid) (oi=\'' %At{N) 

Similarly as above, this extension also satisfies (2.8.1), and 3t*{N} also acts on 
%(N, X); namely, if ro(N)«ro(N)e^*(N) and 

ro(Af)aro(Ar)=Uro(N)a„ 
V 

then 

(4.5.11) /|ro(N)aro(iV) = det(a)*/2-^Xx*(av)/Lav ife^iN^x))-
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We note that when ro(N)oLro(N) is contained in ^(N)n^*(Nl the action of 
ro(iV)aro(iV) as an element of ^(AT) does not necessarily coincide with the action as 
an element of ^*(iV). The difference will be clarified in Theorem 4.5.4. We only note 
here that 

(4.5.12) Ao(N)^AUN) by "a h^ w^ ^ aco^", 

and 

(4.5.13) x*icoN'oico^) = m (aeJo(^)) . 

We define the elements T(n) and T{1 m) of ^(N) by 

(4.5.14) 
Til m) = ro(iV)P 1\UN) (/|m, (/, iV)= 1), 

T(n)= X ro(iV)aro(iV), 
det («) = « 

where the summation is taken over all double cosets ro(N)aro(N) in ^(N) with 
det(a) = n. Similarly we put 

•.,..[: :]r„ r*(m,/) = ro(N)| „ ,\ro(N) (l\m,(l,N)=l), 

(4.5.15) 

r*(n)= X r„(N)ar„(Ar), 
det(a) = /i 

where the summation is taken over all double cosets ro{N)arQ{N) in ^*{N) with 
det(a) = n. When we emphasize the level iV, we write 

^r(n),^r(/,m),^r*(n), and ^r*(m,/), 

respectively. Now Lemma 4.5.2 implies 

T(n)= X niml 
Im — n 

(4.5.16) 

T*(n)= X r*(m,/), 
lm = n 

and, in particular, for a prime number p we have 

(4.5.17) T{p)=T(h p\ T*(p)=T*(p, 1). 

Moreover, if (n, iV)= 1, then 

r(n,n)=ro(iV)[j ^jro(iV)=ro(iV)^J ^ ] , 
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SO that 

T(n, n)T(l m)=T{nl nm), 

(4.5.18) 
r*(n, n)T*{m, l)=T*(nm, nl). 

Theorem 4.5.4. (1) For any element f(z) of%(N, xX ^^ have 

/ | r* (m,0 = z(/m)(/|r(/,m)) ,/ (/m,JV)=l, 

/ | r*(n) = z(n)(/|7'(n)) ,/ (n,N)=l. 

(2) T{1, m) and T*{m, I) (resp. T(n) and T*(n)) are the mutual adjoint operators 
with respect to the Petersson inner product on £^ki^, x)-

(3) y'ii(JV, x) has a basis consisting of common eigenfunctions of all T(n) and 
T{l,m)((n,N)=l,ilm,N)=l). 

Proof (1): Assume (Im, N) = 1. Put 

and 
X*(a) = x(det(a))x(a) 

for any element a of ^o(^) '^ ^o (^)- Hence we see 

By (4.5.7), we have 

r 

/ |r*(m,/) = (/m)*/2-^Xx*(«v)(Aav) 

= Z(M(/m)'^/2-iXx(av)(/l.av) 
V 

= X(lm)(f\T(hm)), 

Moreover, by (4.5.16) we get that/ | T*(n) = x(n)(f\ T(n)) if (n, N) = 1. (2): For an 

element a = , of GL2 (UX we put 
Ic ^J 

, r d -bl 
a' = det(a)a"^ = l-c aj 

The correspondence "an-^a"' is an anti-isomorphism of ^o(^) onto ^o(^)- By 
Theorem 4.5.3(2), we can take a complete set of representatives {â } so that 

(4.5.19) ro{N)\^ ^lro(iV) = IJro(iV)a, = IJa,ro(iV). 
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ro{N)\^ 5̂ 1n(̂ ) = LlnWa;. 

Let T* be the adjoint operator of T(l m) with respect to the Petersson inner 

product. Since xM = Z*(a'v)> we see by Theorem 2.8.2(1) 

(4.5.20) /I T* = (Imf^"' ^ z K ) {f\M 

V 

= /|r*(m,/). 

Therefore T(l,m) and T*{mJ) are adjoint to each other. By (4.5.16), so are T(n) and 
T*(n). (3): By (1) and (2), if (/m, N) = 1, then T(n) and T(l m) are normal operators 
on 6^^(N,x)' Since ^{N) is commutative, they are simultaneously dia-
gonalizable. D 

As was shown in Lemma 4.3.2, ^f,{N,x) is isomorphic to ^^(N,x) by the 
correspondence "/i-^/lfcCo^". 

Theorem 4.5.5. The following diagram is commutative: 

^AN,x) ^'"""^''•^"•"'" . %(N,x) 

(ON 

%(N,x) ^'<""-P-^<»'-") , ^^iN,x). 

Proof. We have only to prove the theorem for T(l, m). Put F 

= LIvro(N)a.. Then 
»<^(i I] '" (N) 

I^o(N)^Q J'lr„(Af) = Uro(N)(mi;'a,co^ 

so that for an element/(z) of ^ii(N, x), we see by (4.5.13) that 

f\,ms' T{1, m)m^ = (Imf'^-'^xM(/L«^'"v^^) 

V 

=/ir*(m,/). n 
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Lemma 4.5.6. Let p be a prime number, and e a non-negative integer. 
(1) As a complete set of representatives of 

ro(N)\ro(iV)|̂ J y^»<^'' 

we may take the following set: 

1 o ^ / ^ ^ , 0 ^ m < p ^ (m,p^,/7^-0=l| ifpJ(N, 
p" ^ m 

ifplN. 

(2) deg(r Ho l'}" (N)) = P' + P' ifpJfN, 

P' ifp\N. 

Proof. First we are going to prove that for any element ^ = „ J of 

{N\ there exists an element y of TQCN) such that •o(N)[J ^.]ro, 

yP 
Vf-f ml 

- [o p^\ 
(0 ^ m < p-^). 

In fact, since det(j5) = p^, (a, cN) is a power of p. Suppose p | N. Since (a, AT) = 1, we 
have (a,cN)= 1, so that there exists an element y^ of ro(iV) such that 

' [-cN a J" 

Then y HI 'A-with some n. Let 

n = lp'-\-m (0 ^ m < p^) 

with integers / and m, and put 

72 

Then 

Next assume (p, N) = 1. Put a' = «/(«, cN) and c' = c/(a, cN). Since (a, AT) = 1, c' is 
integral and (a\ c'N)= 1. Thus there exists an element y^ in ro(N) of the form 

Then 
^ [-c'iV a'J' 
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with integers/and n. Similarly as above, we can take an element yj of ToCiV) so that 

r ^~/ ~i 
72?!;? = I J p J (Ogm<pO. 

Consequently we get 

(4.5.21) •.<«{i I h (iV) 

Next we are going to prove that the right-hand sides of (4.5.21) are disjoint 
unions. Suppose 

HC :'h''<';] FniN) I : . I n ro(iV) 

Then there exists an element y of ToCN) such that 

(4.5.22) y 

^0. 

Next assume (p, AT) = 1. Put 

na sides 

An easy calculation shows that y is of the form I I which implies/= g and 

m = n. This proves the disjointness of the right-hana sides. First assume p\N. Since 

we get 

By Lemma 4.5.2, there exist two integers a,b (0 ^ a ^b, a + b = e) such that 

Put 

and 

Since any element of ro(N) induces an automorphism of L, we have 

L/(xL ^ L/PL - Z/p^Z® Z/p^Z. 
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Therefore, 

ro(N)aro(iV) = ro(iV)̂ J p^ j^W 

if and only H (xLc^ pL. This is equivalent to saying that {p^, p^ ^, m) = 1. This 
concludes the proof of (1). The second assertion follows from (1). D 

Lemma 4.5.7. Let p be a prime number, and e a positive integer. Then we have: 

(1) T(p)T(hpn = T(hp^^') + 

(p+l)T(p,p) ifpJ^N and e=l 

pT(p,p)T(lp'-') ifpXN and e>l 

0 ifp\N. 

mT(n^T(ne^ . T(r'') ^ PT{p. p)T(p^-') if P)(N. 
(2)T(p)T(p)^i^^^^,,^ (fpliV. 

Proof. Let T= ro(N)(xro{N) be a constituent of T(p) 7(1, p^). By the definition of 
the multiplication, we can write 

(x = <x,(X2 (oi,eT(pl 0i2eT(l,p')). 
Put 

-{HI"--4-L 

Since [L: aL] = p^ ̂  ^ and 

L/(xL => ai L/(xL :ii L/ct2 L ^ 

r coincides with 7(1, p^""^) or T{p,p^). Hence 

r(p)r(i,p^) = , _ , _ , ,^, 
aT{hp^^') + bT(p,f) ifpJ^N, 

a'nip^^') ifp\N, 

with integers a, b and a'. By Lemma 4.5.6(1) and the definition of the multiplicatuon, 
we get a = a' = 1. Comparing the degrees of both sides using Lemma 4.5.6(2) and 
(2.7.7), we obtain 

[ P ife>\. 

This proves (1). When p\N, we see T(p^) = 7(1, p% so that (2) is nothing but the 
first assertion. Now assume that (p, AT) = 1. We prove the assertion by induction on 
e. First let e = 1. Since T{p) = 7(1, p), we see by (1) that 

7 (p )7 (p )=7( l ,p2 ) + ( p + l ) 7 ( p , p ) 

= 7(p2) + p7(p,p). 
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Next assume e ̂  2 and the assertion is true for all positive integers less than e. 
Applying (4.5.16) and (4.5.18) to T{p% we see 

np)T(p')=np){n\,p') + np,p)T{p'-^)} 
=T(i,p'^')+pT{p,p)ni,p'-') + np,p)np)T(p'-') 

= nup'^') + pT(p,p)T(ip''') 

+ T(p,p){T(p'-') + pT(p,p)T{p'-')} 

= T{ip'*')+T{p,p)nip'-') 

+pnp,p){ni,p'-')+T{p,p)T(p'-')} 

= T(p''') + pT{p,p)T{p'-'). 

Here we understand r(p^) = 0 if e < 0. This is what we wanted to show. D 

Lemma 4,5.8. (1) //(/m, I'm') = 1, then 

T(lm)T{l',m') = T(li',mm'). 

(2) //(m,n) = 1, then T(m)Tin) = T(mn). 

Proof. (1): Let 7 = ro(Ar)aro(iV) be any constituent of T(lm)T(l',m'\ then we 
can write a = a^aj with â  6 T(l, m), 0L2 6 T{1'\ m'). Put 

"11 -n\ 
.^^Jl J 

then 

LlaL^L^ZIlZ@TlmT, 

OL^LjaL - LI0L2L ^ Z/rZ e Z/m'Z. 

Since (/m, /'m') = 1, we get 

L/aL^Z// / 'ZeZ/mm'Z, 
namely r = T(ll', mm'). Therefore T(U m)T(l', m') = aT(U', mm') with some integer 
a. We are going to prove a = \. Let 

and 

We may assume 

Vll' 0 1 
^ = L0 rnm'\ 

^^^ {̂0 ]̂̂ o(iV)=LJ^oWa„ 



142 4. Modular Groups and Modular Forms 

Now we assume ro(iV)a = ro(iV)a^j5v» ^^^ l^t a = yâ ĵ v with yeFQiN). Put 

M = {lu,v^\u,veZ} 

and define the submodule MQ of M by 

MO = {[NM,I;] |M, i?eZ}. 

We let M2(/) act on M by the right multipHcation of matrices. Then 

{Mp, + Mp,)/Mp, - MpJiMP.nMM-

Since the left-hand side is a subgroup of M/MP^, the order is a divisor of 
det(jSi) = /'m'. On the other hand, the right-hand side is the quotient group of 
MP^/M(x; hence the order is a divisor of det(a)/det(j5v) = /m. Since (/m, I'm') = 1, 
we get Mpi — Mp^. Therefore there exists an element yieGLjiZ) such that 
yiPi=Pv. Since det(^i) = det(j5y), we get y^eSLjil-). A similar argument 
for MQ in place of M implies MQP^ = MQP^, SO that MoVi = Mo, namely 
7iero(N) . Since j?̂  is a representative of left ro(N)-cosets, we get yi = 1 and 
Py = Pi. Similarly we obtain â  = a j . Consequently a — 1. The second assertion 
easily follows from (1). D 

Theorem 4.5.9. The Hecke algebra 0t (N) is the polynomial ring over Z generated by 
T(p\ T{p, p) with all prime numbers p prime to N, and T(q) with prime numbers q 
dividing N; namely, 

^(N) = ZlT(plT(p,p\Tiq) \ pJ^N,q\Nl 

Proof. By Theorem 4.5.3, Lemma 4.5.7 and Lemma 4.5.8, ^(N) is commutative 
and any element of ^(AT) can be expressed as a polynomial with rational integral 
coefficients in r(p), T(p,p) and T{q). Moreover it can be easily verified by 
Lemma 4.5.7 and Lemma 4.5.8 that T(p\ T(p, p) and T{q) are algebraically 
independent over Q. D 

Take two positive integers /, m so that l\m and (/, AT) = 1. Let m/l = YlpP^ ^^ 
the prime decomposition. By Lemma 4.5.8, we see 

(4.5.23) Tam)= T(ll)T(hm/l)= T(lJ)l\T(lpn. 
p 

where p is taken over prime divisors of m/l, so that we obtain 

(4.5.24) T(lm) = Uro{N)l''^ J l (ad = lm,0 ^b < dAa,b,d) = l), 

(4.5.25) r (n) = [ J r o ( i V ) h M {ad = n,0 ^ b < d^a, N) = 1), 

by Lemma 4.5.6. Therefore we can express the action of T(l m) and T{n) on 
^ki^^ X) explicitly. In particular, for/(z)e^fc(iV, %), 

(4.5.26) (f\T(nmz) = n'-' ^ Y X(a)d-'f((az + b)/dl 
0<d\nb = O 
ad = n 
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and 

(4.5.27) {f\TilJ))iz) = l'-'xil)f{z) if (/,iV) = l. 

We note that if (a, iV) # 1, then x(a) = 0. For a positive integer n, we write n|iV* if 
all prime factors of n divide N. We get the following relations between Hecke 
operators of modular groups of different levels. 

Theorem 4.5.10. Let M be a multiple of N, and n a positive integer. If n\N'^ or 
(n, M) = 1, then the following diagram is commutative: 

^T(n) {resp.'^T*{n)) 

Here x is a Dirichlet character mod N and the vertical arrows indicate the natural 
emheddings. 

Now we are going to study relations between the Hecke algebras of modular 
groups of different levels as a preparation for the next section. Let x be a Dirichlet 
character mod AT, and M a multiple of AT. If ae Jo(^X then 

ro(M)aro(iV)c^o(iV). 

Therefore an element of ^(TQCM), ToCAT); ^ o W ) induces a linear mapping of 
%(M, x) into %(N, x) by Lemma 2.7.2(2). We shall use the following lemma in 
§4.6. 

Lemma 4.5.n. For a positive integer N and a prime number p, we have 

U ro(piV)|^J ^Jy, '/PlJV. 
n(PN) [; >-' 

1 

[ 
v = 0 

p 

Uo^"^^^{i l y ifpJfN. 
u p j 

Here 7, (0 g v < p) is an element of F^iN) such that 

^ ' " [ i ; ] modp, 
and yp(p)(N) is an element of rQ(N) such that 

f r o -a~\ 
mod p, with an integer a prime to p. 

mod AT. 
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Proof. Put 

(4.5.28) r 

(N)\b = Omodp } . 

By Lemma 2.7.1(4), we have only to get representatives of r'\ro(iV). First suppose 
(p, N) = 1. Since 

ro(iV)=Dr=Dr(piV), 

r'\ro(iV) corresponds bijectively to Apjv(r')\Ap^(ro(iV)) where Xpff is the homo-
morphism of SL2(Z) onto SL2(Z/pNZ) defined in §4.2. Through the isomorphism 

SL2{Z/pNZ) - SL2(Z/pZ) X SL2{Z/NZ), 

Ap^(r') corresponds to X/F') x A^(r'), and so does >^^(ro(iV)) to Ap(ro(iV)) 
X >l̂ (ro(Ar)). Consequently r ' \ro(N) corresponds bijectively to 

A,(r')\A,(ro(N)) X A^(r')\^^(ro(iV)). 
It can be easily verified that 

Xsin = A^(r„(jv)), 

so that r'\ro{N) corresponds to -l,(r')\A,(ro(JV)). Since 

A,(r„(AO) = SL,{Z/pZ), 

ur •>-{[::] eSL2{Z/pZ) b = Omodp }• 
we get 

A,(r„(N)) = u A,(r)a, 
v = 0 

where â  are the elements of Xp(rQ(N)) defined by 

a„ = -̂  

La-' oj 

( O ^ v g p - 1 ) , 

(v = p), 

and V = V mod p, a is an element of (Z/pZy. Since /Ip(yv) = â , we obtain 

v = 0 

Next assume that p\N. Then a direct calculation proves 

v = 0 
D 
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Hecke operators of modular groups have an important property that their 
eigenvalues coincide with Fourier coefficients of modular forms at oo. It can be shown 
from this fact that if a modular form f(z) is a common eigenfunction of Hecke 
operators, then the associated Dirichlet series L(s;f) has an Euler product. Before 
we explain this fact precisely, we state a general lemma. 

Lemma 4.5.12. Let K be a commutative ring with unity. Assume that two sequences 
{t(n)}^= 1 ^nd {d{n)}^= i of elements of K satisfy'the two conditions: 

(i) r(l) = rf(l)=l; 
(ii) d{mn) = d(m)d(n) for any positive integers m and n. 

Then the following three conditions are equivalent. 
(1) //(m, n) = 1, then t(mn) = t(m)t(n), and 

t{p)t{pn = tif^') + pd{p)t(f-') 

for all prime numbers p and all positive integers e. 
(2) The formal Dirichlet series Yj^= i (̂w)n~* has the formal Euler product 

X f ( « ) « - ' = n ( 1 - '(p)p~'+pd(p)p~ ' ' ) " ' • 
M = 1 p 

(3) For any positive integers m and n, 

t(m)t(n) = X ldil)t{mn/l^). 
0<l\(m,n) 

Proof (1)=>(2): By the first condition of (1), we can write formally 

(4.5.29) ^ f(n)n- = n ^ t(p')p-"l 
n = l p \e=0 J 

Since 

(1 - t{p)p-^ + Vd{p)p-^')ij,^ t{f)V-''\ = 1 

by the second condition of (1), we obtain (2). 
(2) => (3): It is obvious that if (m, n) = 1, then t{mn) = t{m)t{n\ Let m = W^p^ 

and n — HpP^ t)e the expressions as powers of prime numbers. Then 

X ld{\)t{mnll^) = n f Z V'd{f)t{p^ ̂  ̂  - ^ )̂). 
0 < l | ( m , n) V Vogfif g m i n { e , / } / 

Therefore we have only to prove (3) when m and n are powers of a prime p. By the 
assumption of (2), we have 

(4.5.30) X tip^)v-'' = {^-t{p)p-'^pd{,p)p-^T'' 
e = 0 

Let r'(p) and d'{p) be two variables over Q, and 

i^:Zlt'ip),d'ip):i-^K 
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the ring homomorphism defined by 

(4.5.31) iA(l) = l, il^(t'(p)) = t{pX and il/(d^(p)) = d(p). 

We define the elements t'(p^) and J'(p^) of Z[r'(p), d'(p)^ by 

(4.5.32) d^if) = d'ipY 

and the formal power series 

(4.5.33) f t'(p^)p-- = (1 - f(p)p-^ + pt/'(p)p-2^)- 1. 
e = 0 

Then by (4.5.30) through (4.5.33), we have 

(4.5.34) il^{t'{pn) = t{pn and il/id^p^) = d(p% 

Let u and t; be two variables over Q, and 

(/):Z[r'(p),J'(p)]^Q[M,r] 

be the ring homomorphism defined by 

(l)(t'{p)) = u-\-v and (l)(d'(p)) = - Mt?. 
P 

Since w + t; and wr/p are algebraically independent over Q, (p is injective. Consider­
ing Z[r'(p), ^'(p)] as a subring of Q[M, r] , we have 

1 - t'(p)p-' + P^'(p)p- ̂ ^ = (1 - up-^)il - vp-^). 

Therefore by (4.5.33), we have 

(4.5.35) t'ip') = (u'^' - v'^')J(u - v) 

i + j = e 

Assume e ^f. Then we see 

= X M^i;^(M^-^^-2^-'i-t;^ + / - 2 ^ + i ) / ( M - t ; ) 
3 = 0 

= i fd'{f)nf^^-^^). 
g = 0 

Applying i/̂  to both sides, we see by (4.5.34) 

g = 0 

and we have proved (3) for m = p^ and n = p-^. 
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(3) => (1): This is obvious since (1) is a special case of (3). D 

Applying the lemma for 

t(n) = T(n\ 
and 

'T(n,n) if(n,N)=l 

^ ( " ^ = ' 0 i f ( . , i V ) ^ l , 

we obtain by Lemma 4.5.7(2) and Lemma 4.5.8(2) the following 

Theorem 4.5.13. (1) 

Tim)Tin)= ^ lT(ll)T{mnm 
0 < / | ( m , n ) 
( / , N ) = 1 

(2) The formal Dirichlet series Y,^= iT(n)n~^ has the formal Euler product 

f T(n)n-^= Y\ i^ - np)p-' + T(p,p)p'-'T' X Ui^ -np)p-T'-
n=l pJi'N P\N 

Now we study the relation between Fourier coefficients of modular forms f(z) 
and those of (/I r(n))(z). 

Lemma 4.5.14. Let f(z) be an element ^/^^(Ar, x\ cind 

/ ( z ) = t cin)e'""\ 
« = 0 

00 

( / | r ( m ) ) ( z ) = X Hn)e'""' 
n = 0 

be the Fourier expansions. Then 

Hn)= Z x{d)d''-'c(mn/d^). 
0 <d\{m,n) 

Proof We note that 

f({az-^b)/d)= f c(n)e2"'" '̂'̂ -'*>/'̂ . 
n = 0 

Then by (4.5.26) and the equality 

ft4-o [ 0 if^^n, 
we get 

(4.5.36) b{n)= ^ x(a)a''-'cidn/a). 
0 <a\(m,n) 

Since ad = m, we have c(dn/a) = c(mn/a^), so that we obtain the result. D 



148 4. Modular Groups and Modular Forms 

Lemma 4.5.15. Letf(z) = 5]̂ = o c(n)e^""'̂  be an element of%{N, x\ ^nd M a set of 
prime numbers p satisfying 

f\np) = t(p)f (t(p)eC). 
Then we have: 

(1) / / all prime factors of a positive integer m belong to M, then f(z) is an 
eigenfunction of T{m). Moreover put 

f\T(m) = t(m)f (t(m)eC), 
then 

c(m) = t(m)c(l). 

(2) Lis;f)= n i^-tip)p-'-^x(p)p'-'-'T' X Tc(n)n-\ 
peM " 

where the summation ^ ' is taken over all positive integers prime to all elements ofM. 

Proof The first half of (1) is obvious. Let n be a positive integer prime to m. 
Comparing the n-th Fourier coefficients of/ |r(m) and t{m)f we obtain 

(4.5.37) t(m)c(n) = c{mn) 

by Lemma 4.5.14. In particular, taking n = 1, we obtain the latter half of (1). By 
(4.5.37), we get formally 

(4.5.38) L(s;f) = ( ^"t(m)m-^) x ( ^'c(n)n-\ 

where the summation J]' is taken over 1 and the positive integers whose prime 
factors are all contained in M, and Y,' is taken over the positive integers prime to all 
primes in M. By Theorem 4.5.13(1), 

tin)t{m)= X x{l)l'-'t(mn/l') 
0<l\{m,n) 
{l,N)=l 

for two integers m, n contained in ^", so that we get at least formally 

(4.5.39) Y^U(m)m-^= f ] (^ - t{p)p-'+ x{p)p'-''-'T' 
m peM 

by a similar argument as in Lemma 4.5.12. Furthermore if 

(4.5.40) c(n) = 0(n") 

for some a, then (4.5.39) holds on Re(5) > a + 1. In fact, if f{z) is a cusp form, then 
(4.5.40) was proved in Corollary 2.1.6 with a = k/2. If f(z) is not a cusp form, then 
we shall see (4.5.40) in §4.7. D 

By Theorem 4.5.4, the Hecke operators T{n) ((n, N) = i) are simultaneously 
diagonalizable on ^k{N, / ) . If an element f{z)eS^ki^y X) is a common eigenfunc­
tion of Hecke operators T(n) ((n, N) = 1), WQ can write by the above lemma 

L{s;f)= n i^-t(p)p-' + xip)p'-'-'T'x I ' c (n)n-^ 
pJfN n 
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where the summation ^ ' is taken over 1 and the positive integers whose prime 
factors are all divisors of N. Moreover if/(z) is a common eigenfunction of all 
Hecke operators r(n), we can take as M the set of all prime numbers. In this case, 
we get the following 

Theorem 4.5.16. Let f(z) = X„°'= o c(n)e^'''"' be a nonzero element of%(N, x)- The 
following conditions are equivalent: 

(1) f(z) is a common eigenfunction of all Hecke operators T(n); 
(2)cil)^0and 

L(s;f) = c ( l ) n ( l - t(p)p-' + x(p)p'-'-'r\ 
p 

where p runs over all prime numbers. 
Moreover if f(z) satisfies the above conditions, then 

f\T(n) = t{n)f t(n) = cin)/c(l) 
for all n^l. 

Proof (1)=>(2): Let f\T(n) = t(n)f By Lemma 4.5.15, we have c(n) = t(n)c(l) 
for n ̂  1. Then if c(l) = 0, then /(z) = c(0). Since /c ^ 1, we get /(z) = 0; which 
contradicts the assumption. Therefore c(i)^0. The latter half follows from 
Lemma 4.5.15(2). (2) => (1): Put t(n) = c{n)/c(l) for positive integers n. Then we see 

f t(n)n-^ = Yli^-t(p)p-^-^Xip)p'-'-'T'-
« = 1 p 

By Lemma 4.5.12, 

t{m)t(n) = X d'-' x{d)t(mn/d% 
0 < d | ( m , « ) 

Multiplying both sides by c(l), we get 

t(m)c(n)= X d'-'xid)c(mn/d'). 
0 < d | ( m , n ) 

The right-hand side is equal to the n-th Fourier coefficient of/ | r(m) by 
Lemma 4.5.14. Let b{0) be the constant term of the Fourier expansion of/|r(m), 
then 

(f\T(m)){z)-t(m)f{z) = b{0)-c(0). 

Since/I r(m) - t(m)f is an element of f̂c(N, x) and /c ^ 1, we get ^(0) = c(0). Thus 

f\T{m) = tim)f D 

Let us consider the case when N = 1 and /c = 12. Since dim ̂ 12(^(1)) = 1» ^(2) 
is a common eigenfunction of all Hecke operators T{n). Hence, if we let 

A(z)= X T„e 
n = l 

litinz 
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be the Fourier expansion, then we obtain 

A\T(n)=:x„A 
and 

p 

since TJ = 1. Ramanujan co'njectured by calculating the Fourier coefficients of A(z) 
that L(s; A (z)) has the Euler product as above, and further 

which is the famous Ramanujan conjecture. Petersson generalized it as follows. 

Theorem 4.5.17. (The Ramanujan-Petersson conjecture) Let 

f(z) = f fl(n)e2--
n = 1 

be an element of Sfj.iN, x). If(n, N) = 1, then 

a(n) = 0(n^'-'^"'). 

We do not prove this theorem in this book. We only remark here that 
Theorem 4.5.17 is equivalent to saying that 

(4.5.41) if a prime number p does not divide N, then the absolute values of roots of 
the equation 

X'-t{p)X-hX(p)p'''=0 

are p^'^'^^'^, where t{p) is an eigenvalue of T(p) on ^^(N, x)-

It is easy to see Theorem 4.5.17 from (4.5.41). Conversely, let u and v be 
solutions of the equation 

X'-t{p)X-^X{p)p'-'=0, 
then 

t{p') = (u'^'-v'^')/(u-vl \uv\ = p^-K 

Therefore Theorem 4.5.17 implies \u\ = \v\ = p^*"^ /̂2. 
The generalized Ramanujan conjecture for k — 2 was proved by [Eichler 2], 

[Shimura 2] and [Igusa]. They solved it as follows. If T is a principal congruence 
modular group, then ^p can be considered as an algebraic curve defined over Q. By 
the congruence relation of Eichler-Shimura, it can be proved that the Hasse zeta-
function of the algebraic curve ^p is essentially the product of L(s;f) (fe9'^{r)). 
This reduces the Ramanujan conjecture to the Weil conjecture for congruence zeta-
functions of algebraic curves defined over finite fields, which have been proved by 
Weil. Furthermore, this relation between Hasse zeta-functions and L(s;f) implies 
that the Hasse zeta-function of ^p satisfies a certain functional equation. If /c>2, 
then the conjecture is reduced to the Weil conjecture for congruence zeta-functions 
of higher dimensional algebraic varieties, which was proved by [Dehgne 2]. In the 
case when k = 1, [Dehgne-Serre] solved the problem by proving that the Dirichlet 
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series is nothing but the Artin L-function with respect to a representation of degree 
2 of the Galois group of a certain extension over Q. 

Now as we explained in the beginning of §4.3, the investigation of modular 
forms is reduced to that of ^^(N, x)- However, sometimes it is necessary to consider 
^ki^iiN)) and the Hecke operators acting on it. We shall study the Hecke algebra 
of r^iN) and the relation with the Hecke algebra for TQCN). Put 

A,(N) {[::] eM2(Z) a = 1, c = OmodAr, ad — boO 

which is a subsemigroup of GL2(Q) containing FiiN). 

Theorem 4.5.18. (1) ̂ (ri(N),Ai(N)) is isomorphic to m{ro(Nl Ao(N)) through the 
correspondence: 

r , (N)ar , (N)h^ro(iV)aro(N) (oceAdN)). 

(2) The correspondence defined m (1) is commutative with the natural embedding 
of^f^{N, x) into '^kiFi (N)); namely, for any element a of A ̂  (N\ the following diagram 
is commutative: 

Proof. We apply Theorem 2.7.6, taking Tj(AT), zli(N), FoiN) and 4oW for r,A,U 
and D, respectively. We shall verify the three conditions there. Since conditions 
(i) and (iii) are satisfied obviously, we have only to prove the second condition, 
that is, 

(4.5.42) ro(JV)aro(N) = ro(JV)ari(JV) (aezli(JV)). 

^ = [0 I] First we prove (4.5.42) is satisfied for any element a = I . Put n = /m, 
[0 m j 

then as was mentioned after Corollary 4.2.2, we can* choose a complete set of 
representatives of ro{N)/ri(N) consisting of the elements y such that 

[o:] 7 = 1^ I mod nN. 

Then a ~ ^ a e SL2 (Z) and 

Vu 01 
modiV, «"^""[o!] 

so that ocyeyaFiiN). Therefore we get 

ro(N)aro(N) = r„(N)ar i (N) . 
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We note that K is not necessarily contained in AJN). Next let a be any 
[ 0 mj 

element of Ai(N). Since aeAQ(N), there exist integers / and m such that 

ro(iV)aro(iV) = ro(iV)P N ^ o W 

by Lemma 4.5.2. Therefore 

ro(iV)ari(iV) cz ro(iv)aro(iV) 

and this implies 

Therefore we obtain 

roiN)aro(N) = ro{N)(xr,(Ny n 

Next let r be a modular group such that 

roiN)^r^r,(Ni 
and put 

A = A,iN)-rczAoiN). 

From the proof of Theorem 4.5.18, we see easily 

mr,A)^mroiN\Ao(N)) 

and this isomorphism commutes with the natural embedding of ^fc(r) into 
^kiri(N)). Hereafter we identify ^{r^(N\ A^{N)\ ^ ( r , A) and ^{ro(N\ Ao{N)X 
and write 

^(iv) = mrANX A,(N)) = ̂ (r, J) = mro(Nl AoiN)). 
We quote from [Shimura]: Theorem 3.48 and Theorem 3.52 the following 
important 

Theorem 4.5.19. Let F be a modular group such that 

Assume fe ̂  2. 
(1) The Heche algebra ^(N) is representable on S^^iH ^y matrices with rational 

integral entries. 
(2) There exists a basis of6^k(r) consisting of elements whose Fourier coefficients 

at 00 are all rational integers. 
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Since by (4.3.1), 

the investigation of the Hecke algebra of r(N) is reduced to that of a modular 
group r of above type. 

§4.6. Primitive Forms 

We assume k>0 throughout this section. For a positive integer /, we put 

(4.6.1) 5, = V ^lecmu). 

Then for a function f(z) on H, 

(4.6.2) filz) = l-'''{f\,5,)(z). 

Lemma 4.6.1. lff{z)e^f^{N, %), then for any positive integer /, 

f(lz) = l-''i\f\,5,)(z)e%(lN,x). 

Moreover, iff(z) is a cusp form, so isf(lz). 

Proof Let f(z)e<^j,(N,x) (resp. ^^(iV,^)), and put g^f^di- For any 

y = \ L J k ^o(^^X we have 

Therefore 

= i{d)(f\A) 

= z(y)̂ -

By Lemma 2.1.3, we see/(/z)G^fe(/Ar, x) (resp. ^fc(/N, x)). • 

The Hecke operators T(n) ((n, iV) = 1) on ^jk(N, /) are simultaneously dia-
gonalizable. Furthermore, if/(z) is a common eigenfunction of all Hecke operators 
r(n), then the associated Dirichlet series L(s;f) has an Euler product. We naturally 
ask the question whether all Hecke operators T(n) on S^ki^, x) are simultaneously 
diagonalizable. In the case when iV = 1, it is obviously true. Hecke proved that it is 
true for the following cases: 

1 ° ^fc(ro(N)) when N is prime, k<12ork= 14; 
2° f̂c(Ar, x) when / is a primitive Dirichlet character of conductor N. 
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On the other hand, [Shimura, Remark 3.59] implies that S^ki^.x) does not 
necessarily have a basis consisting of eigenfunctions of all Hecke operators T(n). 
This phenomenon arises from the fact that 

(4.6.3) iff(z)E^,(N,Xl then f(z)J{lz)e^,(lN,x\ 

In the above cases 1° and 2°, ̂ fc(iV, x) contains no cusp forms of smaller level. Thus 
we may expect that if we exclude cusp forms of lower levels, then all Hecke 
operators T(n) are simultaneously diagonalizable on the complementary subspace. 
This is in fact true. We explain this result and some applications following 
[Atkin-Lehner] [Miyake], [Asai] and [Naganuma]. We start from the relation 
between Hecke operators and the embeddings. 

Lemma 4.6.2. For a positive integer I, we put S 

following diagram is commutative: 

%(.N,x) ^ 

%{IN,X) -

,=[;:}.., /Ar)= 1, then the 

^k(N,x) 

Tin) > %ilN,x) 

Proof. Let/(z) be an element of f̂c(iV, /) , and put g =/|fc^/. If (n, IN) = 1, then 

f\Tin,n) = x{n)n'-'f 

g\T(n,n) = xin)n^~''g' 
and 

Therefore we have only to prove the assertion for a prime number p prime to IN. By 
Lemma 4.5.6, we may take the set 

{[o :}[o :]|»-<4 ̂  
as a complete set of representatives of rQ{lN)\ro{lN)\ \rQ(lN). Then 

Since / and p are coprime, the set 

{['o •:]{i :]|»-<4 
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is a complete set of representatives of ro(N)\ro(N) _ KoC^X so that 

= {f\Tip))\,S,. D 

The following lemma used by Hecke in the cases T and 2° plays the funda­
mental role also in the general cases. 

Lemma 4.6.3. (Hecke) Letf(z) be an element of^f,{N, x)- If there exists an element 

i(N) satisfying the following conditions, thenf(z) = 0. '-[: :]°^--' 
(i) det(a) > 1, (det(a), N) = 1, (a, b, c, d) = 1; 

(ii) f\,oie%{Nay 

Proof By Lemma 4.5.2, there exist two elements ^i , 72 of ro(N) such that 

r i ay2= Q ^ il\m, m , />0) . 

By (i), (/, m) = 1, so that / = 1 and m> 1. Since 

we get 

Let y be an element of ro(N) such that ocyoc'^ ^FoiN). Since 

det(a)a-^ = r _ ^ "Mezlo(iV), 

we see that det(a)a7a"^ ezlo(^)- Thus we can take elements 73, y4^erQ{N) so that 

(4.6.4) ciet(a)73aya"^74 = ^ ^ (u\v, u,v>0) 

by Lemma 4.5.2. We see uv = det(a)^ by taking the determinants of both sides. If 
u = v, then ocyoc ~ ^ = 7^ ̂ 74 ^ e ^o(^)? which contradicts the assumption on y. There­
fore h — v/u>i. Acting (4.6.4) on/(z), we get 

cf(z) =f(z/h) (c = h'^'h{y3)xiy)xiy4) ^ o). 
Let/(z) = YJ^^O «(")^^"'"^ be the Fourier expansion. Then 

a(n) = C-^a{n/h) = C-'a(n/h') 

for any positive integer t. Therefore we get a(n) = 0 if n > 0 . Since /c>0, we obtain 
f{z) = 0. D 

Theorem 4.6.4. Let I be a positive integer. If a holomorphic function f(z) on H 
satisfies the two conditions: 

( i ) / ( z + l ) = / ( z ) , (ii)/(/z)e^,(iV,;f), 
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then 

(1) iflm^\N,thenf{z)G%{Nllx)'. 
(2) iflm^)(N,thenf(z) = Q. 

Here m^ is the conductor of x- Furthermore iff(lz) is a cusp form, then so isf(z). 

Proof We may assume that / is a prime number. First let us show/(z)e^fc(iV, x)-
Put^(z)=/ ( /z )and 

'̂ = { U y-̂ oW|b.Omod/}. 

Take an element y = \ ^ I of T'. Since 
\_cN d _\ 

we see 

or 

f\Mr'ySi = xid)f\,s,. 

This implies/I ̂ y = x(d)f Let F" be the group generated by F' and . Since 

[ r " : r ] ^ / 
and 

4i:] we see that F" = FQ{N) or TQCAT) is generated by over F'. Therefore by (i), 

f(z) belongs to %(N, x)- Next suppose / is prime to N. Then f(z) = 0 by taking 
oc = Si in Lemma 4.6.3. Now we assume l\N. For any element 

^'"[cAT Jero(N),wesee 

and in particular, 

Therefore, if we put 

^^'[cN/l 

' = [i 

^^'[N/I ij 

m"|r 1 C 
i}\_N/l 1 ][: 

= X(d)f, 

;]• 
then/I^7 = / Let n be any integer such that 

niV//+l ^Omod/ . 
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Then we can take an integer m so that 

(4.6.5) nil + mN/l) -\-m = n-\- m{nN/l + 1) = 0 mod /. 

Then 

and hence 
Ay = Xi^+nN/l)f. 

Therefore if/(z) ^ 0, then xi^ + nN/l) = 1 for any integer n satisfying (nN/l + 1, /) 
= 1. This impHes that x is defined mod AT//, and N is divisible by Im^. This impHes 

(2). Assume lm^\N. Since ro(N//) is generated by over ro(N), we get 

f{z)G%{N/l, x)' The last assertion is obvious. D 

Lemma 4.6.5. Let f{z) = Yj^=o^n^^'''"^ be an element of%{N, x)- For a positive 
integer L, we put 

Then g{z)e^k{M, x) ^^th 

6f(z)= Z a^'-^ 
in,L)=l 

M = NIIP UP'-
p\L p\L 
p\N pJ^N 

Furthermore iff(z) is a cusp form, so is g{z). 

Proof. We have only to prove the assertion when L is a prime number p. Put 
N' = N or N' = pN according as p| AT or not. Since pi AT', we have 

(4.6.6) ^o(N')\l l\ro{N')=Ur,{N')\l ""] 
L^ Pj m=o {_yj p J 

by Lemma 4.5.6. Since ^^(iV, x) ^ %(N\ x\ we ge t / | '''T{p)e^j,iN\ xl By (4.6.6), 
we see 

(/I ^•r(p))(z) = p-' t'^n ' Z e'-'"^^*-"''" 
M=0 m = 0 

^2ninz 

n = 0 

SO that 
00 

{f\'''T(pMpz)= X a„,e"''"''\ 
n = 0 

which belongs to %{N'p, x) by Lemma 4.6.1. Therefore we obtain 

g{z) =f{z)-{f\ '^'T{p)){pz)e^,{N'p, x\ 

The last assertion is obvious. D 
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Lemma 4.6.6. Let x be a Dirichlet character mod iV, / a positive integer, and p a 
prime number prime to I. Put M = IN. Then the following diagrams are commutative: 

roipN) 
(1) %(pN.x) 

[I p]'«^^^ 
'^kiN.x) 

il 'M^ ro(pM)\ \ro(.M) 
%(pM,x) ^-^ > %(M,x) 

Here the vertical arrows indicate the natural embeddings. 

(2) '^,(PN,X) 

%(PM,X) 

UpN)\. |r„(jv) 

''o(pM)r lr„(M) 

%(N, X) 

%(M, X) 

Similar results as above hold for cusp forms. 

Proof. (1): By assumption, pliV if and only if p\M. Therefore the assertion is 
obvious from Lemma 4.5.11. (2): Let/(z) be an element of %{pN,x\ and put 
^ =/U(5,. We put 

and 

^ ^ I p-\ ifplM 
[ p otherwise, 

y v = i Q J J ( O g v g p - i ) . 

\i d = p, then take an element y,, of FQ^M) as in Lemma 4.5.11. Then 

(4.6.7) r„(pM)|^J ^Jro(M)= Uro(pM)|^J °Jy„ 

SO that 

(4.6.8) p--. |r„(pM)[J ^]ro(M)= E^,U[; 0]y. 

Since 

( O ^ v ^ p - 1 ) , 
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and 

^lyp^i 

1 [: 
modp, 

modiV, 
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provided pJfN,wG see 

by Lemma 4.5.11. Therefore it follows from (4.6.8) that 

^|ro(pM)|^J ^]ro(M) = (^/|ro(pJV)|̂ J P ] ^ ^ ^ ^ ^ Si. D 

Ininz Lemma 4.6.7. Let l(>\)he a positive square-free integer, andf{z) = ^^=0 ^«^ 
an element of%{N, x)- V^n = ^fa^ ^'' ^ prime to /, then we can express 

p\l 

where p runs over all prime factors of I. Furthermore ifl\N, then we can take gp(z) 
from %{Nl, x)- V f(^) is a cusp form, all gp(z) can be taken as cusp forms. 

Proof We prove the assertion by induction on the number of the prime factors 
of /. First suppose / is prime. Then g{z) = f{z/l) satisfies the conditions of 
Theorem 4.6.4, so that g(z)e%(N/l, x) or /(^) = 9(z) = 0 according as lm^\N or 
not. Consequently g(z) e %(Nl, x) and 

fiz) = gilzy 

Next assume that / is a composite number and the assertion is true for any proper 
divisor of /. Let p be a prime factor of / and /' = l/p. Put 

h(z)= Y. »ne"'"'. 
( > l . p ) = l 

Then h{z)€%{,Np^, %) by Lemma 4.6.5. Put 

f(z)-h(z)= f b„e^''". 
n = 0 

Then if (n, p) = 1, then h„ = 0. Put 

gp{z)=f{z/p)-h(z/p), 

then gp(z)e^j^{Np, x) by the induction assumption, and 

(4.6.9) f{z) = gp(pz) + h(z). 

Moreover h(z) satisfies the assumption of the lemma with Np^ and /' in place of AT 
and /, respectively. Therefore we can find gq{z)e%{Np^r^,x) (= %iNl^,x)) for 
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each prime factor ^ of /' satisfying 

Hz) = Z gM^y 
q\l' 

This combined with (4.6.9) imphes the first half of the assertion. It is obvious from 
the above proof and Lemma 4.6.5 that if /|iV, then we can take gp(z) from f̂c(N/, x). 
It is also obvious that we can take gp{z) from cusp forms when f{z) is a cusp 
form. D 

The following theorem is a generalization of Theorem 4.6.4. 

Theorem 4.6.8. Let I be a positive integer, andf(z) = ^^=0 ««̂ "̂'"̂  ^^ element of 
%(N, x)' Let m^ he the conductor of x- Assume a„ = Ofor all n prime to I. 

(1) If{lN/m,) = l,thenf(z) = 0. 
(2) //(/, N/m^) 7̂  1, then there exist fp{z)e^j^(Nlp, x)for all prime factors p of 

(/, N/m^) such that 

p\il,N/m,) 

Iff(z) is a cusp form, then we can take fp(z) from cusp forms. 

Proof We may assume that / is square-free. We prove the assertion by induction 
on the number of the factors of/. When / is a prime number, the assertion is nothing 
but Theorem 4.6.4 for/(z//). Next assume that the assertion is true for any proper 
divisor of /. Let p be a prime factor of /, and put /' = I/p. We put 

(4.6.10) h(z)= X ay'"\ 
( n , / ' ) ^ l 

(4.6.11) g(z)=f(z)-h(z)= X a„e 
{n,l')=l 

Ininz 

We see h{z) and g(z) belong to %(Nl'^, i) by Lemma 4.6.5. If (n,p) = 1, then the n-th 
Fourier coefficient of g(z) vanishes. First assume pm^J( N, then pm^^XNl'^ and 
therefore g(z) = 0 by Theorem 4.6.4, namely, 

f(z) = h(z)= X a„e2--. 

This implies that f(z) satisfies the assumption for /' in place of /, and hence, the 
assertion is true by the induction assumption. Next assume pm^ \ N and put 

gpiz) = g{z/p). 

Then gp(z)e%{Nr^/p,x) by Theorem4.6.4. Put d = p-l if p^\N, or d = p ii 
p^)(N. Take elements yA^^^^d) ofToiNr^/p) so that 

roiNn[, 3^o(ivrVP)=Uro(N/'̂ )[; J] 
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(see Lemma 4.5.11). Then we see 

d 

v = 0 

Thus we obtain 

(4.6.12) g(z) = g,(pz) 

= p{d + l)-'(g\ro(NnV^ ^1ro(M'Vp))(pz). 

/,(z) = p(<i+1)-' (/|r„(N)P ^lro(N/p)\z). 
Put 

Then /p(z)6^t(N/p, x), and by Lemma 4.6.6(1), 

(4.6.13) M2) = pid+ir'({f\ro(Nn\l ^lr„(M'Vp))(4 

Let us show that /(r) —fp(pz) satisfies the assumption of the theorem for /'. It is 
obvious that /(z) -fj,(pz)e%(N, %)• We see 

(4.6.14) /(z) -f,(pz) =f(z) -f,(pz) - g(z) + g,(pz) 

= (f(z)-g(z)) 

- p ( d + 1)-' ( ( / -g ) | r„ (M'^) [ J °]ro(M'Vp))(pz) 

= h{,z)-p(d+\)-'U\UNV^)\\ ^1ro(iV/'Vp))(pz). 

Since the w-th Fourier coefficient of h(z) vanishes if n is prime to /', we can express 

h{z)=Y.hM^) (K{z)e%(Nl'\i)) 
q\l' 

by Lemma 4.6.7. Moreover for any prime factor q of /', we have 

'•iroCN/'^)^ ^\(Nl'^lp) = h\r^(NV\)\^ ^jr„(Nr'q/p) 
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by Lemma 4.6.6(1). This combined with Lemma 4.6.6(2) implies 

h\ro(Nn\ • - \ro{Nl''/p)\z) 

where ^A = K, . • In particular, the n-ih Fourier coefficient of 

/i|ro(N/'^) ro(iV/'Vp) )(z) vanishes provided (n,/') = 1. Consequently the 

w-th Fourier coefficients of/(z) —/^(pz) vanishes by (4.6.14). Therefore, by the 
induction assumption, we obtain that 

/(z)-/,(pz) = Y.fM') (Uz)e%(N/q, x)X 

where q runs over all prime factors of /'. This completes the proof of (2). If/(z) is a 
cusp form, then the modular forms which appear in the proof can be taken as cusp 
forms. D 

Hereafter we consider only cusp forms. We denote by ^^ (^» z) the subspace of 
^ki^^ x) generated by the set 

[j[j {f{lz)\f{z)eS^,{M,x)}. 
M I 

Here M runs over all positive integers such that m^|M, M | AT, and M ^ N;l runs 
over all positive divisors of N/M (including both 1 and N/M); m^ is the conductor 
of X' In other words, ^liN,-/) is the subspace of ^^^(N, x) generated by cusp 
forms essentially of lower levels. Furthermore, we denote by ^fe(N, i) the ortho-
complement of ^l(N,x) in 9'f^{N,x) with respect to the Petersson inner pro­
duct. Namely, ^l(N, x) = ^liN, x)^- We also write ^?(ro(Ar)) = y? (N, x) and 
^k{ro{N)) = ^l(N,x) with the trivial character x mod AT. By definition, the 
following lemma is obvious. 

Lemma 4.6.9. (1) If x is a primitive Dirichlet character of conductor N, then 
^k(^^ X) — ^ki^y X)' 

(2) Ifm^\M,M\N andM^ N, then ^^(M, x) ^ ^1{N, x)-
(3) ^k(A ,̂ x) is generated by the set 

[j[j {f{lz)\nz)e9'°(M,x)}-
M I 

Here M runs over all positive integers such that m^\M and M\N; I runs over all 
positive divisors of N/M {including both 1 and N/M). 
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Lemma 4.6.10. ^{(N, x) and 5^?(N, x) are stable under Hecke operators T(n) 
((n,iV)=l). 

Proof. Let/(z)e5^i(iV, x)- By definition, we can write 

V 

Put g,(z) =/v(/vZ)- Since (n, l^N) = 1, we see 

(/ |r(«))(z) = X(3vir(/.))(z) 
V 

= Z(/vinn))(W 
V 

by Theorem 4.5.10 and Lemma 4.6.2. Thus if\T(n))(z)e^l(N,x\ namely, 
6^1 (N, x) is stable under T{n). By Theorem 4.5.4, the adjoint operator of the Hecke 
operator T(n) on 5̂ fc(A/̂ , x) is x{n)T(n\ and therefore, ^'^{N, x) is also stable under 
T(n). U 

It follows from the above lemma that subspaces ^^(^^ X) and ^\(N, x) of 
5̂ fc(Ar, x) have a basis consisting of common eigenfunctions of all Hecke operators 
r(n)((n, iV)=l) . 

Lemma 4.6.11. Let f(z) = ^^=1 «n̂ "̂'"' ^̂  an element of 6^^{N, xl V f(z) is a 
common eigenfunction of Hecke operators T(n)for all n prime to some integer L, then 
a i ^ O . 

Proof Assume â  = 0. Then by Lemma 4.5.15(1), we see a„ = 0 for all n prime to L. 
Therefore f(z)e^\(N, x) t>y Theorem 4.6.8, which is a contradiction. D 

Theorem 4.6.12. Let f{z) and g(z) be elements of ^^(N, x) and ^ki^, x\ respect­
ively. Iff{z) and g{z) are common eigenfunctions ofT{n) with the same eigenvalue for 
each n prime to some integer L, then g{z) is a constant multiple off(z). 

Proof. Let /(^) = Xr= i n̂̂ "̂"*̂  ^^ ^^^ Fourier expansion. Since ai # 0 by 
Lemma 4.6.11, we may assume a^ = \. Furthermore we may assume N\L. Put 

g(z) = g^'\z) + g^'\z) {g<'\z)e^,'(N, x\ g''\z)e^i(N, rf). 

By Lemma 4.6.10, both g^^\z) and g^^\z) are common eigenfunctions of T(n) with 
the same eigenvalue a„ for each n prime to L. Assume g^^\z) ^ 0, and put 

9«»(z) = t by-'. 
n = 1 

By Lemma 4.6.11, we have b^ ^ 0. Let us show g^^\z) = b^fiz). 

We put 

(4.6.15) g^^\z)-bj(z)= f c „e2 - - . 
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Since bia„ = b„ for all n prime to L by Lemma 4.5.15(1), we get c„ = 0 for all n such 
that (n, L) = 1. Applying Theorem 4.6.8, we see g^^\z)-hj(z)e^i {N, xl and 

g^'Hz) = bJ(z). 

Next we shall prove that g^^\z) = 0. First suppose N — m^, where m̂  is the 
conductor of %. Then ^l(N, /) = 0. In particular, ^̂ Ĥ̂ ) = 0. Next assume N ^m^. 
We separate the proof into two steps. 

(i) If ̂ ^̂ ^ (z) 7̂  0, then there exist a proper divisor M of AT satisfying m |̂M, and a 
non-zero element h{z) of .$̂ fc(M, x) such that /i| r(n) = a„^ for all n prime to L, In 
fact, by definition, we may write 

(4.6,16) g^'Hz) = Y^KiKzl (/I,(Z)G5^«(M„ xl KM,\N. M, # iV). 
V 

Since M^ divides AT, Lemma 4.6.10 implies that ^^(My, x) has a basis consisting of 
eigenfunctions of T{n) for all n prime to L, so we may assume that all h^(z) are 
common eigenfunctions of T(n) for all n prime to L. Lemma 4.6.2 implies that 
h^(hz) are also common eigenfunctions of T(n) for all n prime to L. Since 
eigenfunctions with distinct eigenvalues are Hnearly independent, the summation 
on all h^{ly;Z) whose eigenvalues for T(n) are different from a„ must vanish. 
Therefore, by removing such functions we may assume that all /iy(z) appearing 
on the right-hand side of (4.6.16) satisfy 

K\T(n) = a„K {(n.L)=\y 

Therefore we may take any h^(z) and M^ as h{z) and M, respectively. 
(ii) Let h(z) = c\ ê "'̂  + • • • be the element of 5^?(M, x) obtained in (i). Since 

h\T{n) = a^h for all n prime to L, we see c\ ^0 by Lemma 4.6.11. Put 

h{z)-c[f{z)= f dy^'"^. 
« = 1 

Then by Lemma 4.5.15(1) d„ = 0 if (n, L)= 1, and by Theorem 4.6.8 

h(z)-c\f{z)e^l{N,xy 

Therefore 

/(z) = -c[-\h(z) - c[f(z)) + c[-'h(z) e ^\N, X); 

this contradicts the fact that/(z) is a nonzero element of ^^(N, x)- Consequently 
we obtain g^^\z) = 0, and therefore, 

g(z) = g^^\z) = bj(z). D 

We call an element f(z)e9'^(N, x) a primitive form of conductor N if the 
following conditions are satisfied: 

(i) /(z) is a common eigenfunction of all T(nX ((w, iV)= 1); 
(ii) letf(z)= YJ^=I «n̂ "̂'"̂  be the Fourier expansion, then a^ = 1. 

We also call ^k(^^ x) the space of primitive forms of level N with character x-
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Theorem 4.6.13. (1) Primitive forms are common eigenfunctions of ^(N)KJ ^*{N). 
(2) y^CN, y) has a basis consisting of primitive forms. 

Proof (1): Let / (z) be a primitive form in y|?(iV, /), and f\T{n) = aJ for n 
prime to N. Let T and T* be elements of ^{N) and ^*(JV), respectively. Since 
^(N) is commutative, T is commutative with T{n). Furthermore since 
f\T(n)=^X{n)f\T*{n) and T* is commutative with T*{n), T* is also commu­
tative with T(n). Therefore/I r and/1 r * are also common eigenfunctions of T(n) 
with the same eigenvalue a„. Therefore Theorem 4.6.12 implies that b o t h / | 7 and 
f\T* are constant multiples of/(z), or 

f\T=cf f\T* = c'f 
(2): Since S/'^iN, x) has a basis consisting of common eigenfunctions of all 
T(n) ((n, N) = 1) by Theorem 4.5.4(3) and Lemma 4.6.10, (2) follows from (1) and 
Lemma 4.6.11. D 

Corollary 4.6.14. Assume that there exists a common eigenfunctionf{z)e6^k{^, x) 
of T(n) with eigenvalues a„ for all n prime to N. Then there exist a divisor M of 
N satisfying m^\M and a primitive form g(z)€^^(M, x) such that 

g\T{n) = a„'g 

for all n prime to N. Moreover iff(z)t^l{N, xX then M ^ N. 

Proof If f{z)e^l{N,x\ then the assertion is obvious Since u 1 # 0 by 
Lemma 4.6.11. Suppose f{z)iS^l(N,x)- Then by (i) in the proof of Theorem 
4.6.12, we have a divisor M of N and an element g{z) of ^^{M,x) such that 
g\T(n) = a„g for all n prime to N. By Lemma 4.6.11, we can take a primitive 
form as g(z). This proves the first half of the assertion. The latter part follows 
from Theorem 4.6.12. • 

Let /(z) = Xr=i«/.^^"'"'' t>e a primitive form of ^?(iV,x). Then by 
Lemma 4.5.15(1), 

f\T{n) = aJ for all n. 

Moreover since/(z) is an eigenfunction of r*(«), and T*(n) is the adjoint operator 
of T(n) with respect to the Petersson inner product by Theorem 4.5.4(2), we get 

f\T*(n) = dJ, 

Furthermore Theorem 4.5.4(1) impHes that 

(4.6.17) a, = man if {n.N)=\. 

Moreover we see by Theorem 4.5.5 

(4^18) {f\k(^fi)\T{n)=d„(f\k(^N\ 

( / L c o ^ ) m « ) = «„(/kcoJ, 

for all positive integers n. 
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Theorem 4.6.15. (1) By the action ofcOf^, ^ki^^ X) ^^d S^l(N, y) are isomorphic to 
^|?(Ar, X) and ^1{N, x\ respectively. 

(2) If f(z) is a primitive form of ^t(N, /), then fp(z) is a primitive form of 
5^«(iV, X) and 

f\kCON = cfp(z) (ceC). 

Proof (1): First let us prove that cô  maps ^i(N, x) into ^{{N, x). We have only 
to show that if 

f(z)==(h \M(z) ih{z)E^,(M, x\ M ^ N, IM\N), 

then f\k(Oj^e^l{N, x)- Put /' = N/IM. Since 

we see 

= (h \kCOM) \k^l' ' 

Since h\kO)j^^6^k(M, xl we get f\,a)j,e 6^UN, x)- Next assume/(z)e 5̂ ]?(iV, /). 
^^Q sec 

if\kCON.h) = (fi-lfh\,oy^) = 0 

for all h{z)e^liN, x) by Theorem 2.8.2. Therefore /|fc(w^e<^?(N, xl Since 
^kiN.x) is isomorphic to ^k(iV, x) by ca ,̂ we obtain 6^l(N, x) - ^k(^. x) and 
^l (iV, x) ^ f̂c (iV, / ) , respectively. (2): Since/lfeCo^ is an element of 6^t(N, x) and it 
is a common eigenfunction of ̂ (AT), it is a constant multiple of a primitive form. On 
the other hand,/|fcCa^ is also a constant multiple of/p(z) by (4.6.18), and a^ = 1. 
Therefore/p(z) is a primitive form. D 

Let/(z) = Y,n = 1 a„e^""'"' be a primitive form of ^]?(iV, xl By Theorem 4.5.16, 
we have the Euler product 

p 

= n i^-ci,p-'+xiP)p'-'-'r' X n ii-a,p-T'-
We mentioned in Theorem 4.5.17 without proof that ifpJ^N, then |ap|̂ 2p^*~^)/̂ . 
We are going to give a similar estimate of â  for a prime factor p of AT. Let p be any 
prime factor of iV, Np the p-component of AT, and Xp the Dirichlet character mod Np 
defined by (3.1.4). Moreover for a prime factor q of AT, we put 

X',= U Xp-

Let y^ and y'^ be two elements of SLjiT) such that 

(4.6.19) y, ^ [:-;] 
[;:] 

modAT ,̂ 

mod{NIN,)\ 
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and 

(4.6.20) 
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We put 

(4.6.21) 

Then 

and 

Since 

and 

we see 

and 

y<i = 

mod AT; 

mod(NIN,f. 

'.-r=4:-:]. ,;=4T':] 

n,^ 

W oj 

r 0 - n 
[NIN, OJ 

modN|, 

mod(A /̂Af,)̂  

moiNl. 

mod(N/N,f. 

L(iV/N,)c d J ^ ' ' ' I modWN,)^ 

-;[;. 3*-' • 
r a {N/N,)bl 
lN,c d J 
r d -N , c1 
1-{N/N,)b a J 

modN, 

modN/N^, 

r\MN)% ' = ro(N), ri'roWr,'-' = r^iN), 

x(iqVnq^) = {XqX,){yl xWqyri'q ^) = {xM(y\ (ye^oW)-
Therefore we get the isomorphisms 



168 4. Modular Groups and Modular Forms 

by the correspondences "/t-^/lk^/^", "/•—*'/Ik^i", respectively. By a similar argu­
ment as in the proof of Theorem 4.5.5, we obtain the following commutative 
diagrams: 

(4.6.22) if (n, iV,) = 1, then 

^k(N, X) 

(4.6.23) if(n,N/N^)=l,then 

^ . (N, X) 

Un)T{n) 

Tin) 

^kiN. X) 

x'M)nn) 

Tin) 

^k(N, X) 

In particular, if an element/(z) o{^f,{N, x) is a common eigenfunction of T(n) for all 
n prime to N, so are/|k^y^ and/Ik?;^. Since for a prime divisor / of N 

1 (/ = «), 5,^W = cyj/f'"^,. wi thceZ, 7sro(N), / ' = 
' il^q), 

a similar argument as in the proof of Theorem 4.6.15 combined with these proves 
the first assertion of the following 

Theorem 4.6.16. Under the same notation and assumptions as above, we have: 

(1) By r]q, we have the isomorphisms: 

y^N. X) ^ ^UN, X',U ^liN, X) ^ ^liN. x:,U 

(2) By r]q, we have the isomorphisms: 

(3) fkll = X,{-l)X^(N,)f, fM,' = z ; ( - 1)Z,(N/JV,)/ 

f\kr!qn'q = X'q(N,)f\i,a}fi, 

forf{z)e^,{N,x). 

Put 

and 

(4) Letfiz) = ^ " ^ J a„e^'""' be a primitive form of^^(N, x)-

(/U,)(z) = cZ by"" (fe, = l), 
n=l 

9q(z)= X Ke Ininz 
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Then g^iz) is a primitive form of^^iN, XqXq) and 

^ ^ f X<i{P)ap if p¥^q, 

for any prime number p 

Proof (2): Tt 
yero(Ar)and 
Proof (2): This can be proved similarly to (1). (3): We put y = fjgilqf^N^^ then 

Therefore we see 

Similarly, putting 

7= . 
r 11 modiv,, 
|_U IJ 

flk^q^q =f\kyO)N = XqiNq)f\kCON. 

-'•{o"-;]"' 
we see SeFQiN) and 

3 = 

and therefore. 

= x.(-i)z;w/ 
A similar argument is applicable to rj'q^, (4): By (4.6.22), if (w, q) = 1, then 

(4.6.24) {f\,r,^) I T{n) = Xq(n)if\ T{n))\,ri, 

= Xqi^)an(f\kr}q)-

Similarly, if (n, N/N^) = 1, then 

(4.6.25) (/|,fy;)| T(n) = 7q(n)a„{fM,). 

Since f\,,r}q belongs to ^fc(iV, XqXq) t>y C^Xflk^q is a constant multiple of a primitive 
form, so that gq(z) is a primitive form. Taking a prime number p as n in (4.6.24), we 
get 

bp = Xq{p)ap, (P # q)' 
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It follows from (3) that 

Since flkOjf^e^ki^, X\ we see by (4.6.23) that 

iA%)\T(q) = cif\,co^rj',)\T{q) 

= cXqiqH{f\kO)Nri'^\ 

= Xq(q)aqif\kVq)' 

Therefore we obtain 

Theorem 4.6.17. Letf(z) = Xr= i ««^^"'"^ be a primitive form of^i(N, x\ and m the 
conductor ofx- For a prime factor q ofN, we denote by N^ and m^ the q-components of 
N and m, respectively. 

(1) IfN^ = m,,then\a^\ = q^'-'^/\ 
(2) IfN^ = q and m, = 1, then a^ = Xqiq)q''~^-
(3) Otherwise, namely, ifq^\Nq and N^ ^ m ,̂ then a^ = 0. 

Proof (1): Let ŷ  and rj^ be the elements of 0^2(0) defined by (4.6.19) and (4.6.21), 
respectively. Let a be an integer prime to N^. Taking an integer b so that 

a 6 4 - l = 0 m o d % , a = bmodN/Nq, 
we put 

y [o Njio NJ ' 
Then yeSL2(Z) and 

0 - J '"°'*̂ '" ] 
mod N/N,, 

so that yeFoiN) and xij) = Xq{— b). Therefore 

f\\l ;Jy,=x,(-fc)/i{j y . 
Consequently, taking the summation Y,' over a complete set of representatives of 
(Z/iV^Z)^ wesee 

,4.6.26, »:»-(s7i.[; ;J)|.,. 
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Nil'-' Z,(- 1) J^ fe' Z,(«)ê '"'"""''V„e Ininz 

= iV','^-'W'(z,)z,(-l)E Z,(n)a„e 2rtinz 

n = l 

with the Gauss sum IV(Xg). We note that Xq is a primitive Dirichlet character of 
conductor N^. On the other hand, Lemma 4.5.6 imphes that 

(4.6.27) Nj'^-'(S7k[o lJj=f\T{q')-q"'-Hf\nq'-'))l^^ ^] 

where N = q^. Next put 

- [ i :]'.(42 :])"• 
Since SeFoiN) and 

'"1 0 

(5 = \/q 01 
0 qj 

mod Ng, 
0 

'« 01 
modN/N, 

we obtain 

(4.6.28) N f - ( r / i { ; ; J ) [ , , 

Let fir(z) = J^^iby"" be a primitive form of yt(N, x^Z,) such that 

f\k% = eg, (c ^ 0). 

Comparing the first and q-th Fourier coefficients of the right-hand sides of (4.6.26) 
and (4.6.28), respectively, we get 

(4.6.29) N'J'-'W{x,)x,{-l) = ca'„ 

and 

(4.6.30) c « b , - x ; ( q ) 9 ' " ' < " ' ) = 0-

Since 6, = x'q{<l)^i, by Theorem 4.6.16(4), we obtain 

Furthermore it follows from (4.6.29) that 

(4.6.31) c = <^- ' f r (z , ) z , ( - l )K-
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(2): Since N^—q, we have, by Lemma 4.5.6 and Lemma 4.5.11, 

n w R l̂/̂ o(A /̂̂ ) = /^oWrj Jlro(iV)uro(iV)^, (disjoint union). 

Moreover the assumption m̂  = 1 implies that x^ is a trivial character. Therefore, 
putting 

9=f\ro(N)Y^ ^\o(Nlq\ 

we have g(z) e ^ki^/q, x'q) and 

g=f\nq)-^q"'-%(q)f\,ri,. 

Since T(n) ({n, N) = 1) is commutative with T{qX and also with rj^ by (4.6.22), g{z) is 
a common eigenfunction of T(n) for all n prime to AT with the same eigenvalue as 
f{z). Since S^^iN/q, xi) is contained in S^ki^, x\ Theorem 4.6.12 implies that 

giz) = af(z) (aeC). 

Since/(z) is a primitive form of conductor N and ^(z) belongs to ^^(iV/^, xi), we 
get g{z) = 0, namely, 

(4.6.32) aj{z)=-q'''-%(q)f\,rj^, 

or 

(4.6.33) / ! * ' ; ,= -a ,^ (g )g ' -* '^ / 

Acting >;, on both sides, we obtain by Theorem 4.6.16(3), 

(4.6.34) a,̂  = z;(9)9»-^. 

(3): By assumption, q divides N/q, so that 

ro(N)[J °lr„(Jv/q) = ro(N)P ^lro(N) 

by Lemma 4.5.6 and Lemma 4.5.11. A similar argument as in the proof of (2) 
combined with this imphes 

f\T(q)=f\ro(N)[^^ ^]ro{N/q) = 0. 

This proves (3). • 

We restate (4.6.31) and (4.6.33) as 

Corollary 4.6.18. Under the notation and assumptions in Theorem 4.6.16 and 
Theorem 4.6.17, we have: 

(\) If N^ =^ m^, then 

fin, = eg,, c^N-'l^W(x,)x,{-\)d\, {N,=q% 

with a primitive form gJz) of6^^{N, XaL)-
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(2) If N^ = q and m̂  = 1, then 

flk^q =cf, c= -q^-^^\, 
and 

% =Xq(Q)ag-

We are going to prove that two primitive forms are equal if almost all a^ are 
equal. More precisely, 

Theorem 4.6.19. Let f(z) = ^^=1 ^n^^""" ^^ « primitive form of ^?(iV, x\ and 
g(z) = ^^^ J hne^""'"^ an element of ^fc(M, X). If g{z) is a common eigenfunction of 
M(M) u ^*(M), 6i = 1, and a„ = b„for all n prime to some integer L, then N = M 
and f{z) = g(z). 

Proof We may assume that L is a common multiple of N and M. If p is a prime 
number prime to L, then we see 

Z(P)P*~' =al-ap2 

= HP)P'-' 

by Lemma 4.5.7(2), so that x(p) = Hp)- Therefore x(n) = X(n) for all integers n 
prime to L. Let us prove M\N. By Corollary 4.3.7, we have 

.4 ^ 3^. ^iv(^; / ) ^ Aj^(k-s;f\k(o^) 

^M(S;^) AMik-s;g\kCOM)' 

Since L(s; f) and L{s\ g) have Euler products by Theorem 4.5.16, we see 

Ms\f) , rr;, fV7,sn ^ - ^P~'-^ HP)P'~'~'' (4.6.36) ^ ^ = i ^ / ^ r n r ^ - M Z(P)P' 
,fc - 1 - 2s 

on Re(s) > / c /2+1 . Since the right-hand side is a meromorphic function on 
the whole s-plane, (4.6.36) holds on the whole 5-plane. On the other hand, 
g\T(n) = b„g, and g{z) is a common eigenfunction of T*{n) by assumption. Since 
T*{n) is the adjoint operator of r(n), we see g\T*{n) = b„g, and 

i9\k(^M)\T(n) = b„(g\k(OM) 

by Theorem 4.5.5. Therefore Theorem 4.5.16 implies that L{s; g\kCOM) also has an 
Euler product. This combined with Theorem 4.6.15(2) implies 

with a constant c. Thus by (4.6.35), we get 

=c( fNi HAfu'-Mi^i^Mi^::!:!. 
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We denote by Mp and Np the p-components of M and AT, respectively. Then we see, 
for any prime factor p of L, 

with a constant c^ by Lemma 3.2.1. Let u and v be the degrees of 

^-app-'-hx{p)p'-'~'' 
and 

l-6pp-^H-2(p)p' '-i-2^ 

as polynomials of p~^ respectively. Then 0 ^u,v ^2. We are going to discuss 
each case separately. From now on we put 

X = p~* 
and 

M,/Np = p\ 

r If M = i;, then Mp = Np by (4.6.38). 
2° Suppose M = 1 and t; = 0. We can rewrite (4.6.38) into 

Cp{\ -QpX) = x^{l - dpp~^x~^). Up ^ 0, 

so that \ap\^ = p*; which contradicts Theorem 4.6.17. If w = 0 and v = 1, then we 
see Np = pMp. 

3° Suppose u = 2 and t; = 0. Then (4.6.38) can be rewritten into 

(4.6.39) Cp{\-apX + x{p)p'-'x^) = x^l-app-'x''+ x{p)P~'~'x-^), 

Comparing the degrees of both sides, we get e = 2 and 

CpXiP)p'''^ = h Cp = xiP)P~^~\ 

so that lz(p)P = P^; which is a contradiction. If M = 0 and v = 2, then we see easily 
e = - 2 , so that Np = p^Mp. 

4° Suppose M = 2 and v = 1. We rewrite (4.6.38) into 

. . ^ . m ^ l-apX-\-xip)p'~'x^ _ l - V ' ^ x - ^ + x(rt/7-^-^x-" 

^ 1-fepX 1 - V ^ 

Put r = x~^ Then the absolute values of the roots of 

t'-apt-^x{p)p'-'=0 

are p^^~^^/^ by (4.5.41) and the absolute values of the roots of 

X(p)p-'-'t'-app-h+l=x{p)p-'-'{t'-appt + Xip)p'^') = 0 

are p<*+D/̂ . Therefore this case cannot happen. If M = 1 and v = 2, then we also see 
that iVp=>Mp. 

Consequently, in any case we obtain that M| AT, and / is induced by X. Therefore 
Theorem 4.6.12 implies that f(z) = g{z), and so AT = M. D 

This theorem combined with Corollary 4.6.14 implies 
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Corollary 4.6.20. Let f{z) be a nonzero element of ^^(N, /). Iff\ T(n) = a„ffor all 
integers nprime to N, then there uniquely exist a divisor M ofN with my^\M and 
a primitive form g(z) of^^(M, x) such that g\T{n) = UnQ for all n prime to N. 
Moreover ^, . . n\\ IH^\\T\ 

f{z)eig{lz) I /M|iV>. 

Corollary 4.6.21. Let f{z) = Xr=i a^e^""^' be a non-zero element of6e^(N, x). Then 
f(z) is a constant multiple of a primitive form of 9'^(N, x) if and only if f(z) is a 
common eigenfunction of M(N) and ^*(N). 

By Theorem 4.5.5 and 4.5.16, we see 

Corollary 4.6.22. Let f(z) = Y.^= ^ a„e^'''"' be an element of Sf^iN, x) ^ith a^ = 1, 
and put 00 

(/i,co^)(z) = c £ v''"•"^ (fci = 1). 
Thenf(z) is a primitive form o/yjj (iV, x) if and only ifL(s;f) and L{s;f\kO)ff) have the 

following Euler products: 

ite/) = n(i-«pp"^+z(p)p'"'"'rs 
p 

L{s;f\kCOr,) = cYl(l-b,p-^-^Xip)p'-'-'r'-

§4.7. Dirichlet L-Functions and Modular Forms 

In §4.3, we proved that integral forms are characterized by functional equations of 
the associated Dirichlet series. It is natural to ask what such Dirichlet series are. We 
showed in §4.1 that the Dirichlet series associated with Eisenstein series with 
respect to SL2(Z) are nothing but the products of two Riemann zeta-functions. In 
this section, we are going to generalize this and prove that elements of J^^. {N, x) 
correspond to the products of two Dirichlet L-functions. This was proved by Hecke 
by constructing modular forms expHcitly using Eisenstein series. Here we start 
from Dirichlet series and construct modular forms as an application of Weil's 
theorem. We shall discuss on Eisenstein series again in Chapter 7. 

Now let Xi and Xi t>e Dirichlet characters mod Mj and mod Mj, respectively. 
Put 

(/)(s) = L{s,Xi)L{s - fe + 1, xi)^ 

for a positive integer k. Then 

p 

00 
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on Re(s) > k. Here 

(4.7.1) a„= I xAn/d)x2{d)d'-K 
0 <d\n 

We shall prove that (/)(s) is a Dirichlet series associated with a modular form under 
suitable conditions on Xi and X2' Put 

Z = ZlZ2 
and 

M - M 1 M 2 . 

Assume that x(— 1) = ( — 1)* and 

(4.7.2) Xi ^^d Xi satisfy one of the following conditions: 
(i) ifk = 2, and both Xi and Xi '̂'̂  trivial, then M^ — 1 and M2 is a prime number; 
(ii) otherwise, Xi ond Xi ^^^ primitive characters. 

First suppose that there exists an element/(z) of ^fc(M, x) such that L{s;f) = ^(s), 
and we study the constant term of/(z) by the functional equation of L(s;/). We put 
as in (4.3.12), 

A^(s;f) = {2n/^Mrr{s)L{s;f). 

Case (ii): Let ^, be 0 or 1 such that ; ,̂(—1) = (—1)*̂ % and A{s,x) be as in 
Corollary 3.3.2. Then 

(4.7.3) A(s, Xi)A{s - /c+1, Xi) = l^iM^lnr-^^^l^^l(s)-' Aj^(s-J\ 

fi(s) = 

otherwise. 

Therefore A^isif) is holomorphic on the whole 5-plane except for s = 0 and s = k, 
and has poles of orders at most 1 at s = 0 and s = /c. More precisely, A^isif) is 
holomorphic at s = 0, if either 

(a) k ^ 1 and Xi is a non-trivial character, 
or 

(b) k = 1 and both Xi and Xi are non-trivial. 

In other cases, A]^{s;f) has the residue — ao at s = 0, where 

(4.7.4) ao = L(l-Kx)/2. 

Case (i): Let 
A(s) = n-^''r{s/2)as) 
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with the Riemann zeta-function f (s) as in Theorem 3.2.2. We have 

A(s)A(s - 1) = 4n{s - 1)-'(1 - M'-')-' M-"^ AM(s;f). 

Hence A^is;/) is holomorphic on the whole s-plane except for s = 0 and 5 = 2, and 
has simple poles at s = 0 and s = 2. The residue at s = 0 is given by —UQ, where 

(4.7.5) a o = - ( l - M K ( - l ) / 2 . 

Thus we have determined the expected constant term UQ of/(Z). 

Theorem 4.7.1. Let Xi (^^d ii ^^ Dirichlet characters modMi and modM2, 
respectively, satisfying (4.7.2). Put M = M1M2 and x = XiXi- Then for a positive 
integer k such that ;f( — 1) = (—1)*, there exists an element f(z) of%{M, x) such that 

L(s;f) = L{s,Xi)L(s-k+1x2)' 

Moreover if we write f(z) = X^^o n̂̂ "̂"*̂ » then 

0, ifk^l, and Xi Is non-trivial 

or if both X\ ^^d Xi ctr^ non-trivial, 

- 1 an= < 

and 

(1 — M), ifk = 2, and both X\ cind Xi or^ trivial, 

-Bfcy/2/c, otherwise. 

0 < d | n 

Proof Let a„ (n ^ 0) be as in the theorem. Then 
00 

L(s,Xi)L{s-k-\-l,X2)= Z ««" ' ' • 
« = i 

We put 

(4.7.6) f{z)=f,(z;x,,X2)= la„e 2ninz 

n = 0 

By Lemma 4.3.3, f{z) satisfies (4.3.7). Using Weil's theorem (Theorem 4.3.15) we 
shall prove that/(z) is an element of ^^(M, x)- Let il/ be any primitive Dirichlet 
character whose conductor m is prime to M, and L(s;f, xj/) the Dirichlet series 
defined by (4.3.18). Then 

(4.7.7) L{s;f ^) = L(s, x,i^)L(s - /c + 1, Xâ A)-

First we consider case (ii) of (4.7.2). Putting S'i = S^.^ (i = 1, 2) (cf. (3.3.15) and 
Corollary 3.3.2), we see that 

(4.7.8) A(s, x,il^)A{s - fe + 1, X2«A) = 2 ^ \ — ^ \ fi(s)-'A^is;f xji). 
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Where 

(4.7.9) 

/i(s) = 

Otherwise. 

g{z)==Cf(z;x2.Xi)^ 

(4.7.11) C = ( - l )^ •• ^"^^^^""^(Mi/M^)^^"'^^^^ 

We put 

(4.7.10) 

where 

,, ^(Xi)^te) 

The functional equations of A{s, Xi^) and yl(s, X2'A) combined with (4.7.8) imply 
the functional equation 

(4.7.12) V1M(S;/, (A) = i'C^^Mik - s; g, H 

where 

PF(>A)̂ X(m)iA(M) , . ^ ^ W 
w = = x( 'w) iA(-M)—^. 

Therefore/(z)e^fc(M, x) by Theorem 4.3.15. Next we consider case (i). Then 

(4.7.13) A{s,il/)A(s-lil/) 

where 

(4.7.14) Ks)= i 
1 if ^ ( _ i ) = _ i ^ 

^ if i A ( - l ) = l . 

By the functional equation of A(s, ij/), we obtain the functional equation 

(4.7.15) ^ ^ ( 5 ; / ^) = - C^A^(2 - s; - / , i/T). 

Thus/(z)e^2(M,z). D 

Hereafter we fix a positive integer k, and let^(z: Xi^Xi) be the modular form 
f(z) defined by (4.7.6). By Theorem 4.5.16, we note that 

(4.7.16) fkiziXi^Xi) is ^ common eigenfunction of^T{n)for all n'^ 1. 
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For a Dirichlet character % ^^o^ ^ satisfying /( — 1) = (— If, we put 

(4.7.17) ,̂(iV,X) = <fk(lz;XuX2) I IM,M2\N, XiXi = X, and Xi and X2 satisfy 
(4.7.2)>. 

We note that ^ (̂iV, x) is stable by T(n) ((w, AT) = 1) and generated by common 
eigenfunctions of T{n) ((n, N) = 1) by (4.7.16). 

Theorem 4.7.2. ^,(iV, x) = /̂̂ (iV, z). 

Proo/ First we show that ^̂ (Ar, x) c= ^^(Ar, x). Let g{z)GS'k(N, x) be a common 
eigenfunction of all T{n) ((n, N) = 1) with eigenvalue t„. Since 

^k{N,x)-^kiN.x)@^kiN,x\ 
we can write 

9 = 01+92. (9ie6^,(N,xl 92^J^kiN.X))' 

By Corollary 2.8.4 and Theorem 4.5.18, ̂ ^(Ar, x) and ./̂ (̂Ar, x) are stable by T(n). 
Therefore g^ \ T(n)e6^k{N, x\ and hence, 

g^\T(n) = t,g,. 

Now there exists/(z) = ̂ (^J Zi»Z2) which has the same eigenvalues of T(n) as those 
for g(z) for all n prime to AT. On the other hand, by Corollary 4.6.14, there exist a 
divisor AT' of N and a primitive form h(z) of6^,^{N\ x) such that gi(z\ h{z) and g{z) 
have the same eigenvalues for T(n) ((n, AT) = 1). Therefore L(s;f) and L(s; h) has the 
same Euler factors for all prime numbers prime to AT. First assume that Xi is trivial. 
Then 

ris)Lis,Xi)L(s-k-\-lX2) 

has a simple pole at s = /c. Since h{z) is a cusp form, r(s)L{s; h) is an entire function. 
Put 

00 

L{s;h)^ X «««"'' 
n = 1 

then 

r{s)L(s, Xi)L(s - /c + 1, Z2) T-r 1 - «pP"' + Z(P)P fc-l-2s = n r(s)L(s;h) i^'si^-Xi{p)p-')i^-X2iP)p'-'-r 

and it has a pole at s = /c. This is impossible from the form of the right-hand side. 
Next suppose that X2 is not trivial. Then by taking the twisted modular form g^^ in 
place of g, a similar argument is applicable. Consequently we obtain ^j = 0 or 
gEjVf,{N, x\ To prove that Sj,(N, x) = -^ki.^^ x\ we shall calculate the dimension 
of^,(iV,z). 

1° The case when either /c > 2 or /c = 2 and x is non-trivial. Let us show that 
f^(lz\ Xi> Z2)'s are linearly independent. Let 

Z c(lXi.X2)fkilz\XuX2) = ^. (c(/,Xi,Z2)eC). 

Here / runs over all positive integers such that IM\N, and X\ and X2 run over all 
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Dirichlet characters such that X\li = X- Put 
00 

L(s, Xi)L(s -k-\-hx2)= Z a„{xuX2)n~"^ 
« = i 

Then a„(xi,X2) is the eigenvalue of T(n) fovfk(lz; Xi^Xi) provided n is prime to N. 
Moreover if «„(Zi, Z2) = ^n(^i^ ^2) for all n prime to N, then Xi = «Ai and X2 = ^2-
Therefore, for any fixed pair ( / i , X2\ we see 

(4.7.18) Ic(/,Zi,Z2)/fefeZi,Z2) = 0. 

Since the first Fourier coefficient of^(z; %i, ;(2) is equal to 1, we get c(/, Zi» X2) = ^ 
for all /. This proves the hnear independence of^(/z; Xi, X2)- ^^ particular, 

dim f̂e(N, x) = #{(/, Zi, Z2)|/MiM2|Ar, Xi, Z2 are primitive and ;fi;f2 = x}-

The set of the right-hand side corresponds bijectively to the set of pairs (Xi, ^2) of 
(not necessarily primitive) Dirichlet characters 

{{x'uX2)\x\X2 = X. M\M'2 = N}, 

where x'l is defined modM;. The correspondence is given by 

(lXuX2)^{x'uX2l 

where 

X'l — the Dirichlet character defined mod IM^ induced by Xi^ 

X'2= the. Dirichlet character defined mod N/IM^ induced by X2' 

Thus we obtain 

dim^,{N,x)= ^{(XuX2)\XiX2 = X, M.M^^N). 

2° The case when k = 2 and x is the trivial character. Then N > 1. By a similar 
argument as in l°,^(/z; Zi, Z2) are linearly independent, and 

dim^2(A^,z)= #{(Xi,Z2) I %iX2 = Z, M^M2 = N, and if X2 = X^ then 
M 2 ^ 1 } . 

3° The case when k=\A{^^ (AT, x) ¥^ {0}, then AT g 3 .and / ( - 1 ) = - 1 . Since 
/fcfe Xu X2) =fk{z\ lAi, »A2) if and only if {xu X2} = {^u ^2}^ we obtain 

dim^i(A^, X) = H {iXuX2)\XiX2 = X. M.M^ = AT} 

by a similar argument as in 1 °. 
Now we put 

(4.7.19) S,{r,(N)) = ®S,{N,x\ 

where x runs over all Dirichlet characters mod N satisfying / ( — 1) = ( — 1)*. Then 
by Theorem 2.1.7, 

^fc(A(iV))c:A(ri(N)). 
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From r , T and 3°, we see 

-J^(f>(M)(l>iN/M), if k^3, N^3, Nj^4, 
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dim^,(ri(iV)) = 

M\N 

~ Z! <t>{M)<t>{N/M) - 1, if A: = 2, Â  ^ 3, AT # 4, 
M\N 

-Y,<t>{M)(t>{N/M), if /: = 1, Â  ^ 3, iV 7̂  4, 

3 if AT = 4, ife(even) ^ 4, 
2 if AT = 4, A;(odd) ̂  3 or /: = 2; 

Â  = 2, fc(even) ̂  4, 
1 if Â  = 4, ifc = l; Â  = 2, /: = 2; 

Â  = l, yfc(even)̂ 4, 
0 otherwise 

where 0 is the Euler function. Therefore by Theorem 2.1.7(1), Theorem 4.2.9 and 
Theorem 2.5.2, dim S^(r^ (N)) = dim jr^(r^ (N)). This implies ^^iri (N)) 
= jr^ir, (iV)), and therefore, ^ (̂iV, /) = ^^(iV, / ) . D 

Using expHcit Fourier expansions (4.7.1), we obtain the following estimate of 
Fourier coefficients of any element of ^^(N, x)-

Theorem 4.7.3. Letf(z) = i;r=o ««̂ "̂'"̂  ̂ ^ «« element ofS^(N, x). Then 

0(n'-'l if / c>2 , 

0(n'-'^% if / c = l , 2 , 
for any e > 0. 

Proof For an integer n, we put 

(4.7.20) 

If /c - 1 ^ 2, then 
0 < d | w 

SO that 

If /c = 2, then 

so that 

(T,_i(n) = n*-i X rfi-*<n*-H(/c-l), 
0 < d | « 

G^(n) = n Z ^ ^ < " Z ' ^<w(l + logw), 
0 < d | f i ' = 1 

GM-0(n'n 
for any £ > 0. Suppose /c = 1. Since (To(n) is equal to the number of all the positive 
divisors of n, we have 
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for e > 0. Since 
aslogl ^ I'" S P''" 

for any positive integer a, we see 

(4.7.22) ^ g i + A g i + ' ge'"">^2 
p"^ p"^ £log2 

If p ^ 2^^ then ^' ^ 2, so that 

(4.7.23) ^ < ^ < 1. 
V ^ p«^ - 2̂ ^ ~ 

By (4.7.22) or (4.7.23) according as Pj < 2̂ ^̂  or not, we see 

^ ^ n ^'/^'°^'^exp(2i/7elog2), 

SO that 
Go(n) = 0{n^). 

These results combined with (4.7.1) prove the assertion. D 

Let us consider the special case when N = 1 and Xi = Z2 = Zo (the principal 
character). Assume /c ^ 4. From the remark mentioned at the end of §4.1, we see 

Aiz; Xo. Xo) = cE,{z) (c = (k- l)\/2(2nin 

where £^(2) is the Eisenstein series defined by (4.1.3). Even if iV > 1, it is known that 
if /c ̂  3, then fki^lXi^Xi) can be expressed as a linear combination of series 
similarly defined as Ek(z). In the case when /c = 1 or 2, a modification is necessary. 
Eisenstein series will be explained in §7.1 and §7.2 again. 

§4.8. L-Functions of Quadratic Fields and Cusp Forms 

In the previous section, we showed that ^^(N, x) is generated by modular forms 
associated with products of two Dirichlet L-functions. It is natural to ask what 
kind of Dirichlet series are associated with cusp forms. If an L-function of a number 
field corresponds to a cusp form, then the field must be a quadratic field from the 
forms of the Euler products. Let X be a quadratic field, and ^ a Hecke character of 
K with My, v^ defined by (3.3.1). Assume that L{s — {k— l)/2, ^) corresponds to some 
cusp form. Then we see 

(i) K is imaginary, 
or 

(ii) K is real, and i;̂  = 0 (v = 1, 2), M = MJ + M2 = 1, 

by comparing T-factors which appear in the functional equations in Theorem 3.3.1 
and Corollary 4.3.7. Here we use the same notation as in §3.3. Under the above 
situation, Hecke proved that L(s — (k— l)/2, i) corresponds to a cusp form by 
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using theta functions which we shall discuss in the next section. We are, however, 
going to prove this again by Weil's theorem. 

Let K = Q(y/d) be a quadratic field with discriminant d, p a. prime number 
with (p, d) = 1, and ij/ a primitive Dirichlet character of conductor p. We denote by 
r and / the ring of integers and the group of fractional ideals of X, respectively. We 
define the Hecke character il/° N^by 

(4.8.1) {i^oN^)(a) = ik(NM) (ael), 

where Ng; is the norm mapping of/ into Q"". We note j/^ ° iV̂^ is a primitive character 
of conductor px. 

Lemma 4.8.1. Let Xd = (~) ^^ ^^^ Kronecker symbol. 

\iJ\d\ ifd<0. 

(2) If(d,p)=lthen W(il/oN^) = xAp)^(\d\)Wiil/)\ 

Proof. We use the notation in Theorem 3.3.1. Since 

i:As) = as)L(saa\ 
we get 

T(X,) = 1 

by comparing the functional equations of both sides. Since ;ifd(— 1) = 1 or — 1 if K 
is real or imaginary, respectively, this imphes (1). Since 

L{s, lA ° Â x) = ^s, ^)L{s, il/Xdl 
we obtain 

This combined with Lemma 3.1.2 and (1) implies (2). D 

Theorem 4.8.2. Let K = 0 ( ^ 5 ) be an imaginary quadratic field with discriminant d, 
and ^ a Hecke character mod n such that 

iiia)) = (a/\a\r ( a ^ l m o d n ) 

with a non-negative integer u. We put 

f[z) =f(z; ^) = X ^(a)iV^(a)"'̂ e2"«'̂ <°>^ 
a 

where a runs over all integral ideals of K. Then f(z) e ̂ „ +1 (AT, x) cind further 

/(r)e^„^i(JV,x), 

unless w = 0 and ^ is induced from a Dirichlet character through AT̂ . Here 
N = \d\Nfr(n), and x is a Dirichlet character defined by 

X (m) = Xrf(m)?((m))sgn(m)" (M e Z). 

Moreover if ^ is primitive, then f(z) is a primitive form. 
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Proof. Let p be a prime ideal. If '̂ is the character mod pn induced by i. Then 

Therefore we have only to prove the theorem for a primitive character i. By 
definition, L(s;f) = L(s - u/2, i). Let i/̂  be a primitive Dirichlet character of prime 
conductor p. Suppose (p, N) = 1. Then since L(s;/, ij/) = L(s - M/2, (̂i/̂  o Nj^)), we 
see from Theorem 3.3.1 and Lemma 4.8.1 that 

where 

A^(s'J, il/) = (p^N/2nYr(s)L(s - M/2, ^^ o N^)) 

-(PVN/2n)'i -^^^-^, 

xA{l-\-u/2-s,^(iiJoNf,)) 

x(p)^(iV)^W^^^^)^(_^)^W 

Therefore Theorem 4.3.15 implies that f{z)e%^-^{N, x\ and f(z) is a cusp form if 
M > 0, since L{s;f) is convergent for Re(s) > (M + 2)/2. Since L{s;f) has obviously 
the Euler product of the form in Theorem 4.5.16,/(z) is a common eigenfunction of 
all T{n). Assume that M = 0 and f(z) is not a cusp form. Since f{z) is a common 
eigenfunction of Hecke operators, 

L(s;f) = Lis,Xi)Lis,X2) 

with Dirichlet characters Xi^Xi t>y the proof of Theorem 4.7.2. But this can happen 
only when ^ is induced from a Dirichlet character. The last part of the assertion is 
obvious from Corollary 4.6.22. D 

For a real quadratic field K, a similar argument is apphcable and we obtain 

Theorem 4.8.3. Let K = Q{y/d) be a real quadratic field with discriminant d, and i a 
Hecke character mod n such that 

i{{a)) = a/\a\ = sgn(a) ( a = l m o d n ) , 
or 

^(a)) = a'l\a'\ = sgn{a') (a = 1 modn), 

where a' is the conjugate of a over Q. We put 

fiz)=fiz;i)=l^iia)e'-^^'^^-K 
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where a runs over all integral ideals of K. Then 

where N = dNg^{n), and % is a Dirichlet character defined by 

x{m) = xAmKm) (meZ). 

Furthermore if ^ is primitive, then f{z) is a primitive form. 

Hereafter we assume that readers are familiar with Artin L-functions. Let us 
consider a special case when ^ in Theorem 4.8.2 and Theorem 4.8.3 is a class 
character. Then K is a real quadratic field or K is an imaginary quadratic field and 
^({a)) = 1 provided a= \ modn. Let J be the subgroup of / defined by 

J = {ae/ |{(a)=l}. 

Let M be the abelian extension of K corresponding to J, and L the minimal Galois 
extension of Q containing M. Then 

G(L/K)/G(L/M) - G(M/K) - /(n)/J, 

where G(L/K) indicates the Galois group of an extension L/K, and 

/(n) = {a8/|(a,n) = l}. 

Therefore ^ induces a character ^ of G(L/K). Let p be a representation of G(L/Q) 
induced by <J. Then we have 

L (s, p) = L(s, 0, 

so that L(s, (J) is an Artin L-function over Q. In other words, such an Artin L-
function L(s, p) corresponds to a cusp form of weight L Therefore we may expect 
that there exists a correspondence between cusp forms of weight 1 and Artin L-
functions associated with irreducible representations of degree 2 of Galois groups 
over Q. Indeed, [Deligne-Serre] proved that cusp forms of weight 1 always 
correspond to such Artin L-functions. Conversely, it can be shown similarly to the 
above theorems that certain Artin L-functions satisfy functional equations of the 
type required in Weil's theorem. Therefore the above conjecture is equivalent to 
the Artin conjecture for such Artin L-functions. 

§4.9. Theta Functions 

In §2.6, §4.7 and §4.8, we constructed modular forms by using Poincare series or 
Dirichlet series. In this section, we give another way of constructing modular forms 
which is a generalization of the theta function defined by (3.2.16). The advantage of 
theta functions is that we can explicitly calculate Fourier coefficients of modular 
forms. Furthermore, theta functions play essential roles in the theory of quadratic 
forms. Throughout this section, we put 

e(z) = e Iniz 
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Let /I be a symmetric matrix of size r over Z. Assume that A is positive definite, 
namely, all the eigenvalues of A are positive. We put 

A [x] = ^xAx 

for a column vector x of size r, and put formally 

f(z)= X e(Alm2z) (zeU). 

Hereafter we consider all elements of C , U\ Z** etc., as column vectors. For a non-
negative integer n, We put 

a{n,A)= #{m6Z' ' |^[m] = n). 
Then 

f(z) = f a{n, A)e^^'^\ 
n = 0 

We shall show that /(z) is convergent and is an integral form provided r is even. 
This gives an effective method of constructing integral forms. By this fact, we obtain 
an estimate of a{n. A) from that of Fourier coefficients of modular forms. The aim 
of this section is to prove that /(z), defined as above, is a modular form. We begin 
by defining theta functions from quadratic forms and studying the transformation 
formulae. The discussion below follows [Shimura 7]. 

We now define the differential operator A^ by 

^A= t b,jd'/dx,dxj, A-' = lb,jl 

Let P{x) be a homogeneous polynomial of degree v with complex coefficients in 
variables x^,. . . , x^. We call P(x) a spherical fiinction of degree v with respect to A if 

A^Pix) = 0. 

It is known that any spherical function of degree v is given by 

[ a constant (v = 0), 

P{x)=rqAx (qeC) (v = 1), 

( a linear combination of (^qAxY {qeC, X[^] = 0) (v > 1). 

We take an element /i e Z*" and a positive integer N satisfying 

(4.9.1) NA-^GM,(Z); 

(4.9.2) AheNr. 

For the above A, N, h, and a spherical function P(x) of degree v with respect to A, 
we put for z e H 

(4.9.3) e{z;KAN,P)= ^ ^W^f^Sr^) 
m = hmodN \ ^^ / 

meZ' 

= f,^a(n,h,A,N,P)e(:^z] 
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where 

a(n, K A, iV, P) = z 
A [m] = n 

m = h mod N 
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P(m). 

Since A is positive definite, there exist positive numbers c^ and Cj satisfying 

(4.9.4) c^'xx^A [x] S C2 'xx, /or all x e 1R̂  

Furthermore by Schwarz's inequahty, there exists.C3 > 0 such that 

(4.9.5) \P(x)\ S c^Cxxy/\ for all xeW. 

Therefore 

^ \P(m)\ = Oin^'-^'^^''). 
A [m] = n 

m = h mod N 

Hence by Lemma 4.3.3, 6(z; /i. A, AT, P) is convergent absolutely and uniformly on 
any compact subset of H and is holomorphic on H. We call it a theta function. We 
put 

D = det(^), /c = r/2 + v. 

Lemma 4.9.L (The transformation formula) 

e{- l/z; k A, N, P) = {-iyu-^^^i-izf ^ e{HAh/N^)Oiz; /, A, N, P). 
Al = 0 mod N 

Proof This is a generalization of (3.2.17), and is also proved by using the Poisson 
summation formula. For xeW and zeH, we put 

(4.9.6) 0(2, x) = Y. A ^—- ^ 

and 

We denote by/(«) the Fourier transform of/(x). Then 

and by (4.9.4), we can apply the Poisson summation formula and obtain 

(4.9.7) e{z, x)= Y. /(m)e('mx) 

We have only to prove the assertion for P(x) = (^qAxyiqeC). Let 
q = \qi, ..... Qr) and define the differential operator L by 

^ = Z ^i^/^^i' 
i=l 
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Acting U on both sides of (4.9.7), we see 

'A [m + x] 
(4.9.8) X P(m + x)ei 

2 

(_j-)v/)-i/2(^//)-r/2-v ^ {;qmye(-A-^lmyiz + 'mx) 

= i-iYD-''\z/iy'' X P{A-'m)e{-A-^[rn\/2z + 'mx). 
meZ' 

This is justified by the uniform convergence of 6(z; h. A, N, P) on any compact 
subset of H. Note that if v > 1, then 

L^Alx^='qAq = 0. 

Put X = N~^h, and take — 1/z in place of z. Then the left-hand side is nothing but 
N-^Oi-i/z; K A N, P). Put n = NA'^m. Then meT \i and only if «eZ'' and 
An = 0 mod N. Thus we see 

e(-\lz-KA,N,P) 

= ( - iyD-''\-izf X Pin)e((A lny2N^)z + 'nAh/N"^). 
An = 0 mod N 

neZ' 

Since e(nAh/N^) is determined by the class of n mod AT, we see 

= {-iyD-"\-izf X eClAh/N'') ^ P(w)e((^M/2iV^)z) 
/!/ = 0 mod N n = l mod N 

/eZ'/iVZ^ 

= (_/)v/)-i/2(_^-2)fc Y e{'lAh/N^)e(z;lA,N,P). D 
^/ = OmodiV 

/eZVNZ' 

Hereafter we fix P{x) and write simply 9(z; h. A, N) in place of 6{z; h, A, N, P). 
The following equaHties are obvious by definition: 

(4.9.9) e(z;KA,N)= ^ e(cz; g, cA, cN) 
g = h modiV 
geZ'/cNZ'' 

for any positive integer c; 

(4.9.10) d(z + 2; k A, N) = e(Alh']/N^)e(z; K A, N); 

(4.9.11) e(z; -h,A,N) = (- iye(z; K A, N). 

Now let ^ = , \eSL2(Z). Suppose that c > 0 and a = d = 0 mod2. Since 

cSz = a — (cz + d) ^ we obtain by applying (4.9.9), (4.9.10) and Lemma 4.9.1 

e(dz; K A, N) 

= (-iyD-''^c-''^-i{cz-hd)y X 4>{k l)e(cz; /, cA, cN\ 
Al^O mod N 

ler/cNZ' 
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where 

0(k /) = Z e(M[^] + TlAg + dAlQ)/2cN^). 
g = hmodN 
geZ'/cNZ' 

Since we can express it as 

<P(K I) = e(-b(dAlU + 2nAh)/2N^)0{h + dl, 0), 

it is determined by the class of / mod N. Therefore it follows from (4.9.9) that 

e{Sz; h, A, N) 

= ( - iyo-'^^'c-'-'H- i{cz + d)f X ^(^' 0^(2; h ̂  N). 
Al = 0 mod N 

ler/Nr 
Replacing z with — 1/z, and applying Lemma 4.9.1, we see that 

e('-^; h,A,N 
\dz — c 

= D-'c-^H-sgnidjiYidz-cf X nn, h)e(z; n, A, iV), 
An = 0 mod N 

neTINT 

where 

Al = OmodN 
leTjNT 

Here we understand sgn(f/) = 1 when rf = 0. In addition, assume that 
c/ = 0 mod 2N, Then since 

(4.9.12) ^(/i, /) = e ( - bnAh/N^)4>(k 0), 

we obtain 

(4.9.13) 'P(n, h) = 0(/i, 0) X ^C(« -bh)Al/N^) 
Al = OmodN 

_{0{kO)D if n = bhmodN, 
\ 0 otherwise. 

Therefore we see 

(4.9.14) o(^^; KA,N) 

= c-"^(-sgnid)iy(dz-cf0(K 0)e(z; bh. A, N). 

Rewriting (4.'̂ . 14), we obtain that 

(4.9.15) ify = [l'^]ieSLAZ)) is a nu,tri. satisfying 

/? = 0mod2, c = 0mod2N, and d<0, 
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then 

e{yz; K A, N) = M(y)icz + dfd(z; ah, A, N\ 

where 

(4.9.16) M(y) = M|-"^(-sgn(c)0 ' £ e ( -M[g] /2M|N^) . 
g = h modN 
geZ'IdNT 

Lemma 4.9.2. The notation being as above, we have 

M{y) = e(abAlh']/2N^) 

where 

mh--
_ f l i f ^= lmod4 , 

** I i otherwise. 

Proof. Suppose c = 0. Then a — d — — 1, so that the assertion is obvious. Next 
assume c 7̂  0. We shall reduce the lemma to the case when —d'\s2i prime number. 
Assume that the assertion is true when —d'\s2i prime number. Take an integer n so 

that p = —d — Icn is a prime number, and put a(2/i) = . Since 

/^ X r^ b-\-2an~\ 

we see 

M(ya(2n)) = M{y)e(a^nA[h'\IN^) 

by (4.9.9) and (4.9.15). Since the assertion is true for yoi{2n) by assumption, we get 

M(y) = e(abAlh']l2N^)i^-\ ( ^ j ^ 

The character (— | is defined mod 4N, since D is a divisor of N\ Therefore we 

have 

since d ^ —p mod 2c and c is divisible by 2N. Consequently the assertion is true 
for y. Now we shall prove the assertion when p = —d is a prime number. For 
geZ'' satisfying g = h mod N, we take ueZ" so that g = adh + Nu. Note that 
a^ = 1 mod N. Then the set of the classes of g mod pN corresponds to the set of the 
classes of u mod p, so that 

(4.9.17) M{y) = {-sgn(c)iye(abAlh-]/2N^)p-'-'^ X e(-bAlu^/2p). 
ueZ'/pZ' 
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Since (p, 2D) = 1, there exists an element SeM^(Z) such that (det(S), p) = 1 and 
^SAS mod p is diagonal. Let fj, . . . , /̂ - be the diagonal components of^SAS and put 
b' = — b/2. Since it is easily verified by Lemma 3.LI that 

k"-"H'HQ) 
for a prime number p (p ^ 2, (p, a) = 1), it follows from Lemma 4.8.1(1) that 

p-'" X e{b'Alum = p-'"tl(teib'tJVp) 
ueZ'/pZ' i = l \ J = 1 

' P 

Since 2fe'c — ap = 1, we have 

'b 

P 

By taking 8pe-p = i into account 

:)=(7)=--(^> 

- . (T^ )= - - -<~ ) ' ( ^ ) 
-(sg„w,T.r(J)'0 

This completes the proof. D 

Theorem 4.9.3. Assume that A, h and N satisfy (4.9.1) and (4.9.2). Let P(x) fee a 

spherical function of degree v wit/i respect to A. Then for an element y = \ i \^f 

SL2(Z) satisfying 

b = 0mod2, c = 0mod2iV, 
we have 

e{yz; K A, iV, P) 

= e(abAm/2N')(^^) (^)^ricz + dfe(z; ah, A, N, F), 

w/iere /c = r/2 + v, awf/ 

1 i/ ^ = lmod4, 
'̂  ' / if d = 3 mod 4. 

Proo/ If ^ < 0, then the assertion follows from (4.9.15) and Lemma 4.9.2. If d > 0, 
then we may consider — y in place of y. D 
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If we impose some additional conditions on A, Theorem 4.9.3 can be refined as 
follows: 

1° Assume that all the diagonal cprnponents of A qr^even, then 

e(z + 1; h, A, N) = eiA[Ji]/2N^)e(z;h, A, N). 

Note that A [m] is even for any m e Z^ Therefore by using this equality in place of 
(4.9.10), 

the transformation formula of Theorem 4.9.3 holds for any element y of rQ(2N). 
2° Suppose that all the diagonal components of A and NA ~ ^ are even. Then 

(4.9.12) holds for any d such that d = 0 mod AT, so that 
the transformation formula of Theorem 4.9.3 holds for any element y of FQ^N). 

We consider the special cases when r is even or r = 1. 

Corollary 4.9.4. The notation being as in Theorem 4.9.3, if r is even, then 

e{2z;hA,N,P)e%{r,{4N)) 

with k = r/2 -\- v. Furthermore, ifv^l, then 0(2z* h, A,N, P) is a cusp form. 

Proof. The automorphy is straightforward from Theorem 4.9.3. Therefore we have 
only to verify the conditions at cusps. First consider the case when all the diagonal 
components of A are even. Let R be the space generated by 

{9(z;KA,N,P)\heZ'-/NZ'-}. 

Lemma 4.9.1 and the above remark 1° imply that R is stable under and 

ro - n 
[i oj' 

and therefore, under SL2(Z). Since any element of R is holomorphic 

(resp. has a zero if v ^ 1) at oo, and all cusps of r(N) are 5L2(Z)-equivalent to oo, 
any element of R is holomorphic (resp. has zeros if v ^ 1) at all cusps. The general 
case is reduced to the above case by (4.9.9) with c = 2. D 

Corollary 4.9.5. The notation being as in Corollary 4.9.4, let 

and put 

0(z;A,P)= S P(m)e(^z]. 

Then 
(l)e(2z;A,P)e%{4N,x); 
(2) If all the diagonal components of A are even, then 6(z; A, P)e%(2N, /); 
(3) / / all the diagonal components of A and NA~^ are even, then 

e{z;A,P)E%iN,x)and 

(^z)-'ei- l/Nz; A, P) = ^ i ^ ' H - l M z ; A*, P*), 
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where 
A* = NA-\ P*(x) = P{A-^x). 

Ifv^ 1, then 9{z; A, P) k a cusp form. 

Proof. All the assertions follow from Theorem 4.9.3, the remarks mentioned after 
that, and Corollary 4.9.4 by taking /i = 0, except for the transformation formula in 
(3) which is obvious from (4.9.8). D 

As an application of theta functions to quadratic forms, we state the following 

Corollary 4.9.6. Assume that r is even. Then there exists a positive definite symmetric 
matrix A in M^iZ) satisfying the following conditions if and only ifr = 0 mod 8. 

(i) det(^) = 1; 
(ii) all the diagonal components of A and A ^ are even. 

Proof We use the same notation as in Corollary 4.9.5. First let us prove the only-if 
part. For P{x) = 1, we put 

and 

Since 

eiz; A) = e{z; A, P) 

e(z;A-') = e{z;A-\P). 

e(z;A) = eiz;A-'\ 

and e{z; A)e%(r(l)) by Corollary 4.9.5(3), we get 

z-'e(-\/z;A) = e(z;A\ 

so that comparing this with the transformation formula in Corollary 4.9.5(3), we 
obtain f̂^ = 1, namely, r = 0 mod 8. Conversely, if r = 8, then 

2 1 
1 2 1 

1 4 3 
3 4 

5 

5 
20 
3 

3 
12 1 
1 4 

1 

(eMsiZ)) 

satisfies (i) and (ii) (Minkowski). Therefore r = 0 mod 8 is the sufficient 
condition. D 

If r is odd, then theta functions are not modular forms in the usual sense. We 
here state the explicit transformation formula only for the case when r = \. 
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Corollary 4.9.7. Let ^ he a primitive Dirichlet character of conductor N, and v = 0, 
or 1 such that \l/{- 1) = ( - \)\ Put 

e^{z)= X ^(m)mV v„2nim^z 

and 

\d J 

fory = \ , ero(4). Then 

(1) e^iyz) = tl^{d)(^\j(,y, zr^'e^iz) 

foranyy = \ ^\ero(4N^); 

(2) {2Nz/ir^-"'e^{- l/4N'z) = ( - iyN-'^'W{il,)e^(z). 

Proof. We get 

0^(z)= I il/(h)ei2Nz;KN,N,P) 
heZ/NZ 

with F(x) = x" by taking r = 1, A = AT, so that the first assertion follows from 
Theorem 4.9.3. The second one is easily verified by (4.9.7). D 

Taking the principal character as i// in Corollary 4.9.7, and writing 

0{z) = 0M 
we have 

e{yz) = J{y,z)e(z) (7ero(4)). 
In particular, 

(4.9.18) J(yS, z) = J(y, Sz)J(S, z] (7, SGro(4)). 

Let r be a Fuchsian group of the first kind, and J(y, z) a holomorphic function on 
H without zeros for yeP. If J(y, z) satisfies (4.9.18), then we call J(y, z) an 
automorphic factor of P. For an automorphic factor of P, we can define similarly 
automorphic forms as in the case j(y, z). Corollary 4.9.7 shows that 6^{z) is an 

automorphic form with respect to the automorphic factor il/{d)l—r- IJ(7, z)̂ ""̂ .̂ 

Such automorphic forms are called modular forms of half-integral weight, and are as 
important as modular forms of integral weight. They are closely connected with 
modular forms of integral weight. See [Shimura 7], [Shintani] and [Waldspurger]. 
Furthermore we can obtain again the functional equations of Dirichlet L-functions 
mentioned in §3.3 from Corollary 4.9.7 and Theorem 4.3.5. Theorem 4.8.2 can be 
also proved from Theorem 4.9.3. 



Chapter 5. Unit Groups of Quaternion Algebras 

In the previous chapter, we studied modular groups and modular forms. The unit 
groups r of orders of indefinite quaternion algebras defined over Q are also 
Fuchsian groups and they are generalizations of modular groups. Automorphic 
forms for such groups F also play important roles in the algebraic geometrical 
theory of numbers. In this chapter, we recall fundamental properties of quaternion 
algebras, and study the structure of Hecke algebras of F. We quote some 
basic results on algebras and number theory from [Weil]. We follow [Eichler], 
[Shimizu 4] in §5.2, and [Shimura 3], [Shimizu 3] in §5.3, respectively. For a 
general reference, we mention also [Vigneras]. 

§5.1. Algebras over Q and Adelization 

We call a ring B with unity an algebra of dimension n over afield F, if the following 
three conditions are satisfied: 

1° F a B, and the unity of F coincides with the unity of B; 
T any element of F commutes all elements of B\ 
3° B is a vector space over F of dimension n. 

Let B be an algebra over F. We denote by dim^ B the dimension of B over F. 
We put 

Z{B) = {PEB\(xp = ^a for any aeB} , 

and call it the center of B. When F = Z(B), we call B a central algebra over F. For 
two algebras A, B over F, a ring homomorphism / : A-^ B is called an 
F-homomorphism (resp. F-isomorphism), if / is also a homomorphism (resp. iso­
morphism) as vector spaces over F. We denote by E(B) the set of all endo-
morphisms of B as a vector space over F. It is also an algebra over F. For an 
element a of B, we denote by /9(a) the homomorphism "Baj^i—•ajSefi". The 
mapping p of B into E{B) is an injective F-homomorphism. We call p the left 
regular representation of B. If p(a) is an automorphism of B, then there exists an 
element PeB such that p(a)()5) = aj5 = 1. Then p(j?) = p(a)"S and therefore, 
p(oi)p{P) = p{P)p{a)= 1. Since p is injective, we see that aj? = j?a = 1, or a is 
invertible. Conversely, if cceB'', then p(a) is obviously an automorphism of B. 
Therefore, for an element a of B, 

(5.1.1) a belongs to B"" if and only ifp (a) is an automorphism ofB as a vector space. 
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For each prime number p, we denote by Qp and Zp the field of p-adic numbers 
and the ring of p-adic integers, respectively. For a non-zero element a of Q ,̂ we put 

ordp(a) = max{meZ|aep'"Zp}, 
and 

\ci\p^P~" {e = OTdpia)). 

We also put |0|p = 0. Moreover we put 

and for any element a^ of Q^, we denote by lâ o l̂ ^ the absolute value of a^ in the 
usual sense. Hereafter we call Qp and Q^ local fields, and denote by i; a prime 
number p or oo. We shall study algebras over local fields Q^. Let B be an 
n-dimensional algebra over Q„. Since B is isomorphic to the product Q" of Q^ as 
vector spaces over Q ,̂ we can induce a topology on B under which B is homeo-
morphic to Q". This topology is independent of the isomorphism. Since Q^ is 
locally compact, so is B. Furthermore, since all the coordinates of the sum, the 
subtraction and the product of two elements a, p are polynomial functions of 
coordinates of a and j5, they are continuous with respect to the topology of B, and B 
is a topological ring. Since 

B^ ={aE5|det(p(a))7^0} 

by (5.1.1), JB "" is open in 5, and therefore, it is a locally compact topological group 
with respect to the topology induced from B. 

Let F = Q (resp. Qp), r = Z (resp. Z )̂, and B an algebra over F. A subset RoiB 
is called an order of B, if the following two conditions are satisfied: 

(i) R is a subring containing the unity of B; 
(ii) R is finitely generated over r, and contains a basis of B over F. 

By definition, orders of B are commensurable as submodules of B. An order of B is 
called maximal if it is maximal with respect to inclusion. 

Lemma 5.1.1. (1) Let B be an algebra over Q^, and R an order of B. Then R is 
compact and R^ is a compact subgroup of B^. 

(2) Let B be an algebra over Q, and R an order of B. We put 

Bp = B(E)QQp, 

and let Rp the closure of R in Bp for each prime number p. Then Rp is an order 
ofBp. 

Proof (1): Since R is finitely generated over Z^ and is a submodule of the vector 
space 5, there exist a j , . . ., a„6/? such that 

R = Zp<x,® • • •eZpa„ 

by the elementary divisor theory, where n = dim^ B. Therefore R is homeo-
morphic to ZJ and is compact. By a similar argument as in (5.1.1) we obtain 

/?^={aeR|det(p(a))eZ;}, 
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where p is the left regular representation of B, so that R"" is open and closed in R. 
Therefore R"" is compact. (2): A similar argument as above implies that there exists 
a basis of B such that 

R = Zoii® " -eZa^, 
so that 

Rp = Z^ai e • • • e Zpa„. 

Therefore Rp is finitely generated over Z .̂ It is obvious that Rp contains the unity of 
Bp and a basis oi Bp. D 

We denote by Q^ the adele ring ofQ. In other words, it is a locally compact 
topological ring defined by the following conditions: 

(i) as a set, 

QA = {(civ)^Yl'^vlcip^^p for almost all prime numbers p}; 
V 

(ii) the topology is defined by considering the subset U x Yip^p O/QA open in 
Q^, and the induced topology on U x YIP^P coincides with the product topology. 
Let Q^ be the set of all invertible elements of Q^. For a = (a„)eQ^, we put 

WA = YlMv 
V 

This is meaningful since \ap\p = 1 for almost all prime numbers p by (i). We consider 
Q as a subset of Q^ through the correspondence "Q9Xh-^(x„)GQ^" with x^ = x 
for all V. Then 

and 
\X\A = 1 (xeQ^). 

Let a = (ay)eQ^. For each prime number p, put Cp = ordp(ap). Then 

apZp = p'''Zp. 

Since ê  = 0 for almost all p,m= Y[P P^^ ^^ meaningful and is a rational number. 
We define the fractional ideal of Q by 

id(a) = mZ, 

and call it the ideal associated with a. 
For an algebra B over Q of dimension n, we put 

(5.1.2) BA = B(S)QQA-

Since BA is isomorphic to the product Q^ as a Q^-module through the coordinates 
with respect to a basis of B, we can induce the topology on BA under which BA is 
homeomorphic to the product space Q^. This topology is uniquely determined and 
BA is a topological ring. Since Q^ is locally compact, so is 5^. Since Q^ is a subset 
of the product Hv^y* we can consider BA as a subset of the product Ylv^v through 
the natural embedding, where B^, = B®QQ„. Let R be an order of B, and Rp 
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the closure of R in Bp for each prime number p. Then we have 

(5.1.3) B^ = {(cc^)eY[Bv\(XpeRp for almost all prime numbers p}, 
V 

and the induced topology of B^ on the subset B^ x YlpRp coincides with the 
product topology. We call B^ the adelization of B. Next let B^ be the set of all 
invertible elements of B^, and induce on B^ the weakest topology under which the 
natural injection: B^ -^ B^ is continuous. Then B^ is a topological group. We call 
B^ the adelization of B"". As a. set, 

(5.1.4) B^ = {(a^)e]~Jfi„'' \oCpeRp for almost all prime numbers p}, 
V 

and the induced topology on the open subgroup B,^ x H P ^ P ofBJJ coincides with 
the product topology. When B = Q, B^ is nothing but Q^, which is called the 
idele group ofQ. 

§ 5.2. Quaternion Algebras 

Let B be an algebra over a field F. We call B simple if B is simple as a ring, namely, if 
B has no two-sided ideals except for {0} and B itself We call B a division algebra if 
any nonzero element of B is invertible. For an invertible element P of B, the 
correspondence: 

B3(x\-^Pap-^^B 

is an automorphism of B. Such an automorphism is called an inner automorphism 
ofB. 

Theorem 5.2.1. Let B be a central simple algebra over a field F, and Cj , Cj two 
simple subalgebras of B over F. Then any F-isomorphism of C^ onto C2 can be 
extended to an inner automorphism of B. In particular, any automorphism of B is 
derived from an inner automorphism of B. 

Proof Since left ideals of B are vector spaces over F, the descending chain 
condition holds on left ideals. Let M be a minimal left ideal of B. Then M is a simple 
B-module. Since B is simple, the action of B on M is faithful. Put 

D = End5(M), 

the ring of all endomorphisms of M as a B-module. Then D is a central simple 
algebra over F, and 

Endp(M) = B 

([Weil, IX, Prop. 2]). Now l e t / b e an F-isomorphism of Cj onto C2. Since the 
actions of C^ and D on M are mutually commutative, M can be considered as a left 
Ci ®p-D-module. We denote by Mj the Cj 0^D-module M. Similarly, M can also 
be considered as a left C2 (x)̂  £)-module, so that we can consider M as a left 
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Ci ®f D-module through the isomorphism / of Cj onto C2. We denote this 
Ci ®pD-modu\e M by M2. Let K be the center of C^. Then K is a field, and 

C,®PD = C,(S)K{K(S)FDI 

so that Ci ®f Z) is simple ([Weil, IX, Prop. 3-Cor. 1, Cor. 4]). Therefore both 
Ml and M2 are isomorphic to direct sums of copies of a unique simple 
Ci ®f D-module ([Weil, IX, Prop. 1]). By comparing the dimensions of Mj and M2 
over F, we see that Mj is isomorphic to Mj as C^ (x)^D-modules. We denote by (/> 
this isomorphism. Then, first 0 is an F-automorphism of M and is compatible with 
the action of D, so that (/) is an element of Endj){M). Since Endj){M) = B, there 
exists an element P of B"" such that 

(j){m) = Pm (meM). 

Next for any yeC^ and any ij/eD, we see 

</)((y (8) <A)m) = {y(S)il/)(p{m) {me Ml 

namely, 

î yiAM = yil/iPm)=f{y)^{M =f(y)mm). 

Taking the identity mapping as J/̂ , we have Pym = f[y)pm for any meM. Since the 

action of 5 on M is faithful, we get Py = f{y)p, namely, 

for any y 6 C^. Therefore the inner automorphism g of B defined by g{(x) = j9aj5 is 
an extension of / over B. This proves the first half of the assertion; the latter half is 
obvious. D 

A central simple algebra B of dimension 4 over a field F is called a quaternion 
algebra over F. Furthermore, if B is a division algebra, we call B a division 
quaternion algebra. 

Let B be a quaternion algebra over a field F. By Wedderburn's theorem ([Weil, 
IX, Th. 1 and Prop. 3-Cor. 1]), we see 

(5.2.1) B is not a division quaternion algebra if and only if B is isomorphic to 
M^iF). 

If F is algebraically closed, then M2(F) is a unique quaternion algebra over F 
up to isomorphisms ([Weil, IX, Prop. 3-Cor. 2]). 

Let K be any extension over F. Then B0pK is a. quaternion algebra over K 
([Weil, IX, Prop. 3-Cor. 1]). We say that B is ramified or splits over K if 5 ®f K is a 
division quaternion algebra or is isomorphic to M2(K), respectively. When B splits 
over K, we call K a splitting field ofB. The first assertion of the following lemma can 
be seen in [Weil, IX, Th. 3-Cor. 3]. 

Lemma 5.2.2. Let B be a quaternion algebra over a field F. 
(1) A separable extension K of degree 2 over F is a splitting field ofB if and only if 

B contains a subfield isomorphic to K. 
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(2) If two elements a, j5 ofB"" have the same minimal polynomials, then cc and P are 
B"" -conjugate. 

(3) / / an element a of B is not contained in F, then the set of the elements of B 
commutative with a coincides with F[a]. 

Proof (2): Let/(Jf)6F[X] be the minimal polynomial of both a and p. Then 

FM^Flxy{f{X))^FlPl 

First suppose/(A^) is irreducible. Then both F[a] and F[j5] are fields, so that 
the above isomorphism can be extended to an inner automorphism of B by 
Theorem 5.2.1. Therefore a and P are 5""-conjugate. Next assume that f{X) is 
reducible. Then F[a] ^ F[Jr]/(/(X)), and it is not a field, so that B ~ M2(F) by 
(5.2.1). We may assume B = M2(F). Since a and p have the same minimal 
polynomials, their Jordan's normal forms are the same, say y. Since eigenvalues of a 
and P belong to F, a and p are conjugate to y by elements of GLjiF). Since B"" 
= GL2(F\ d and P are 5"^-conjugate. (3): If F[a] is not a field, then B ~ M2{F\ 
Therefore by (2) we may assume that a is a Jordan's normal form. By a direct 
calculation, we obtain the result. Assume that F[a] is a field, and let P be an 
element of B commutative with a. Since F[a, j?] is an-algebra over F[a], we see 
dim^ F[a, J?] = 2 or 4. Since B is not commutative, F[a, j9] = F[a]. D 

Let B bea quaternion algebra over a field F, and F the algebraic closure of_F. 
Since 5 (g)p-F is a quaternion algebra over the algebraically closed field F, B (g)̂  F is 
isomorphic to M2 (F). For an element P of 5, we put 

iV (̂i5) = det(A tx^{P) = tAP\ 

where ̂ et(^) and tr(j5) are the determinant and the trace of p as an element of 
B®pF ^ M2(F), respectively. When B = M2{Fl NgiP) and tr̂ Cĵ ) are nothing but 
the determinant and the trace of j? as a matrix. We can prove that both NgiP) and 
tTeiP) belong to F ([Weil, IX, Prop. 6]). We call Ngip) and trgip) the (reduced) 
norm and the (reduced) trace of P, respectively. If F is an infinite field, then NB(P) 
is a polynomial function of the coordinates of P with respect to a fixed basis of B 
over F. 

When F = Q, iVg and tr^ induce mappings from B^ = B®QQ^ into Q^ for any y 
(= p or 00), which are nothing but N^̂  and tr^^, respectively. We denote Ng^ and 
tr̂ ^ simply by Ng and tr^, respectively, for simplicity. Moreover Ng and tr^ induce 
the continuous mappings of B^ into Q^, which we also denote by Ng and tr^, 
respectively. 

For an element p of B, we put 

f(X; P) = X'- tTs(P)X + NAP) (e F[X]), 

and call it the principal polynomial of p. By definition, 

f(P;P) = o, 

and a piF, then/(X; j?) is the minimal polynomial of P over F. If f(X; P) is 
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irreducible, then F[j5] is a quadratic extension over F, and the restrictions of tr^ 
and ATfi on F[j5] coincide with the trace and the norm of the field F^P'] over F. 

The proof of the following lemma on quaternion algebras over Qp can be seen 
in [Weil, XI, Th. 6, Prop. 5 and X, Th. 1, Prop. 6]. 

Lemma 5.2.3. (1) Let B be a division quaternion algebra over Qp. Put 

R = {PEB\Ns(P)eZp,tTs{P)eZp}, 

Then R is a unique maximal order ofB. Any left or right ideal ofR is always a two-
sided ideal. R has a unique maximal ideal m = Rn = nR {n e R). Moreover n^R = pR. 
(We call n a prime element of B.) 

(2) The ring M2(1p) is a maximal order of M2{Qp\ and any maximal order of 
MjCQp) is conjugate to M2(Zp). 

(3) Let Bbea quaternion algebra over Q^, and R a maximal order ofB. Then any 
left or right ideal of R is principal. Moreover, 

NB{B) = QP. 

and 

The following lemma is based on [Weil, XI, Prop. 4, Th. 1 and IV, Th. 4]. 

Lemma 5.2.4. Let B be a quaternion algebra over Q. 
(1) Let R be an order ofB. Then there exists a maximal order ofB containing R, 

and R is maximal if and only ifRp is maximal in Bpfor all prime numbers p, where Rp 
is the closure of R m fi^ = B ® Q Q^. 

(2) For almost all prime numbers p, Bp is isomorphic to M2(Qp), and Rp is 
maximal. 

(3) Suppose that for each prime number p, an order R'p ofBp is given. IfR'p = Rp 
for almost all prime numbers p with some ojder R ofB, then there exists an order S of 
B such that Rp = Spfor all prime numbers p. 

(4) IfR is an order ofB, then R = {B^x Y\pRp)nB. 
(5) Put 

B^}^^{PeB:i\\NBmA = lh 

If B is a division quaternion algebra, then B^\B^}^ is compact. 

Let B be a quaternion algebra over Q. We call B indefinite or definite according 
as B(g)QlR is isomorphic to MjCR) or is a division quaternion algebra. We are 
going to prove the approximation theorem. We begin with some lemmas. 

Lemma 5.2.5. Let B be a quaternion algebra over Q. Assume that a quadratic 
polynomial 

f{X)=-X^-{-aX-^beQlX^ 
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has no multiple roots. Then the following four statements are equivalent: 

(1) f(X) is the principal polynomial of some element of B; 
(2) B splits over the splitting field off(X) over Q; 
(3) B^ splits over the splitting field off(X) over Q^^for all v; 
(4) f(X) is the principal polynomial of some element of B^ for all v. 

Proof (1)=>(2): Let / (X) =f{X; P) for some peB. First suppose/(X) is irreduc­
ible over Q. Then O [ j5] is a quadratic extension of Q included in B, so that B spHts 
over Q[j?] by Lemma 5.2.2(1). Next assume tha t / (X) is reducible over Q. Since 
f(X) is a principal polynomial, we see B ~ MjiQ) from the proof of Lemma 5.2.2. 
This proves (2). (2) => (1): This is easily verified by Lemma 5.2.2(1). (2)o(3): This is 
nothing but the Hasse principle ([Weil, XI, Th. 2]). (3)o(4): This can be similarly 
proved as ( l )o(2) . D 

Lemma 5.2.6. Let Bbe a quaternion algebra over Qp, Ra maximal order ofB, and h 
a positive integer. Ifb e / ^ satisfies b = 1 mod p^Zp, then there exists an element P of 
R satisfying the following three conditions: 

(i) N,(P) = b; 
(ii) p= Imodp^R; 

(iii) f{X; P) is irreducible over Qp. 

Proof. Any quadratic extension K of Qp is a splitting field of B by [Weil], XII, 
Th. 2-Cor. 2, so that we may assume that K is included in B. Take an unramified 
quadratic extension as K, and let r be the maximal order of K. If i?' is a maximal 
order of B including r, then R' is conjugate to R, so that we may assume xczR. If an 
element P of B does notbelongtoQp,then its minimal polynomial coincides with its 
principal polynomial, so that we have only to prove the existence of an element in 
r —Z satisfying (i) and (ii). We simply denote by N the Norm mapping NJ^/Q^. By 
induction we construct a sequence {a„}*=i of elements of r satisfying 

(1) a, = 1, (2) oc„ ^ a„_i modp^<"-^>r, (3) N(a„) ^bmodp'"Zp. 

Assuming we have constructed {aj, . . . , a„}, we shall show the existence of a„ + j . 
Since K is unramified over Qp, we have 

trx/QpW = Zp, 

so that there exists an element y of r satisfying 

trK/Qp(7)= 1-
Put 

a„^i = a„(l +C7) (c = (b-N(oc„))/N(a„)). 

Since a„Gr"" by (1) and (2), we see 

c = Omodp*"Zp. 
Then 

a„ + i = a„modp'"'r. 
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and 

iV(a„^i) = iV(a„)iV(l+cy) 

^iV(aJ(l+c) 

= b mod/(" + >̂Zp. 
Therefore a„ + i is a desired one. Since {a„} is a Cauchy sequence by (2), it is 
convergent. So put 

a = lim a„. 

Then a satisfies (i) and (ii). If a ̂  Z^, then j5 = a is what we want. Assume aeZp. Let 
{coi, CO2} be a basis of r over Z^, and (7 the generator of Gsi\{K/Qp). Put 

i/̂  = lH-p ' ' (n iC0i+W2<^2) (^^i* " a ^ Z p ) . 

If we can take n^ and 2̂ so that 

then p = (x(il/''/il/) is what we seek. Since N{^''l^)= 1, ^°l^sZp if and only if 
•Â '/'A = ± 1- Since {ft)i, 0)2} is a basis of X over Q^, we can find n^ and «2 so that 

This completes the proof. D 

An element j5 of a quaternion algebra B over a field F is called regular iff{X; p) 
has no multiple roots. 

Lemma 5.2.7. Let B be a quaternion algebra over Q^, R an order of B, and h a 
positive integer. For an element P of B satisfying NB(P)= 1, there exists a regular 
element a of B such that 

(i) iVfiCa) = 1, (ii) oi = P modp^R. 

Proof If P is regular, then the assertion is trivial. Assume p is not regular. First 
suppose B = M2(Qp). Then there exists an element y oi B"" such that 

•-[;:]• 
Taking a positive integer / so that 

pV" 'M2(Z„)yc / i? , 
we put 

«=±^"{'7' (i-p')-> 
Then a satisfies (i) and (ii). Next assume that B is a division quaternion algebra. 
Then j5 = ± 1, so that the assertion follows from Lemma 5.2.6. D 
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Now let JB be a quaternion algebra over Q. We denote by Q^ the product of two 
copies of Q. For an element p of B, we put 

(5.2.2) 4>(P) = (trB(PlN,(P))EQ\ 

The mapping (/) induces continuous mappings of B^ into Q^, and also of B^ into 
Q^, which are denoted by the same symbol <̂ , for simpHcity. 

Lemma 5.2.8. Let p be a regular element of Bp. Then we have: 

(1) any element sufficiently close to P is also regular; 
(2) 0 is an open mapping on a neighborhood of p. Namely, if V is an open 

neighborhood of p, then (/)(K) contains an open neighborhood of (f)(P). 

Proof (1): For an element (a, Z?) G Q ,̂ we put 

g(X\a,b) = X^ + aX + b. 

The set of elements (a, b) such that g{X\a,b) = 0 has multiple roots is obviously 
closed. Therefore the continuity of 0 implies (1). (2): First suppose that/CX; j?) 
= X'^ + aX + b is irreducible. Take an element (a^,b^)EQl which is close to (a, b). 
It follows by [Weil, XI, Lemma 1] that if (fli, b^) is sufficiently close to (a, b\ then 
g(X;a^yb^) is also irreducible, and g{X\a^,b^) = 0 has a root a belonging 
to Qp\_P'] and also to V. Therefore 0(F) includes an open neighborhood of 
(t>{p) = (a, b). Next assume that f{X\ P) is reducible and put 

f{X;P) = {X-u)(X-v) {u^veQp). 

Since M 7̂  t; by assumption, 5^ has a zero divisor, so that we may assume 
Bp — M2(Qp). A similar argument as in [Weil, XI, Lemma 1] implies that if (aj, b^) 
is sufficiently close to (a, b), then g{X;ai,bi) = 0 has two roots MJ, t?i in Op, which 
are close to M, V, respectively. In particular, Ui^v^. Therefore, taking yeBp so that 

and putting 

we get ae K and f(X; a) = g{X; a^, b^). This proves (2). D 

Theorem 5.2.9. Let B be an indefinite quaternion algebra over Q,Ra maximal order 
ofB, and N a positive integer. Assume that for each prime factor p ofN, an element Pp 
ofBp satisfying Ng(pp) = 1 is given. Then there exists an element p ofB satisfying the 
following three conditions: 

(i) NM = 1; 
(ii) p = P,modNR, ifp\N; 

(iii) peR, ifpJfN. 
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Proof. By Lemma 5.2.7, we may assume that 

(5.2.3) Pp is regular for each p. 

Let /c be a positive integer satisfying 

for all prime factors p of N, and {aj, . . . , e j a complete set of representatives of 
(K/iV*R)\ Note that 

iR/NRr^Y\{Rp/N'Rp)\ 
p\N 

since Z is dense in Ylp^p- We see that 

(5.2.4) (B^ X n Rp ) \ B A / ^ ' is a finite set. 
p 

In fact, if B is a division quaternion algebra, then it follows from Lemma 5.2.4(5), 
Otherwise it can be verified directly. Let {^^^\ . . ., i^^^} he 3, complete set of 
representatives of (B^ xY\pRp)\B^/B"". As is easily seen, we can take all 
^U) ^ (^(i)) so that i\/^ = 1 for all prime factors p of N. 

Now let L be a positive integer such that for all prime numbers p prime to L, 

(5.2.5) Bp^M^iQp), 8,eR;(iSi^r\ ^^J^ER; [l^j ^s). 

Moreover take a positive integer h so that 

(5.2.6) L'ii'Jhr'r'Rpil/hr'^Rp 

for all i andy and all prime factors p of L. For each prime number p which divides L 
but is prime to iV, we can take an element Pp of Bp by Lemma 5.2.6 so that 

(5.2.7) NB(PP) = 1, Pp is regular, and Pp = 1 mod L^Rp. 

Hence a regular element Pp of Bp has been given for each prime factor p of LN. 
By Lemma 5.2.8(1), we can take a neighborhood Up of pp so that 

and all elements of Up 

(5.2.8) 

and put 

Up^pp-\-L'N'Rp 

are regular. Take (a. 

-Mi%, 
l)siQ^ so that 

{p\LN), 

g(X) = X^ -aX-^\. 

By assumption, g(X) is a principal polynomial of an element of Bp for all p. 
Furthermore since B is indefinite, g(X) is also a principal polynomial of an element 
of B^ (= M2(IR)). Therefore by Lemma 5.2.5, there exists an element a in 5 such 
thsit g(X)=f(X;oc). 

For each prime factor p of LN, there exists a^ e Up such that 

giX)=fiX;ap). 
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Since a^eBp and aeB"", there exists an element yp of Bp such that 

by Lemma 5.2.2. 
Let p be a prime number prime to LN. Since a e Z^, a is contained in a maximal 

order of Bp. Hence there exists an element jp of Bp such that 

ypay;^eRp, 

since all maximal orders of Bp are conjugate to each other. We may assume 

for almost all p, since a is contained in Rp for almost all p. We put 

y = (yv) 

with the yp defined above and 

700 = 1-

Then 7 s BJJ, so that we can write 

P 

with some ^^^\ By the choice of {ej , there exists ê  such that 

(5.2.9) rjpsr ̂  e 1+ N^Rp for all prime factors p of iV. 

We put 

and shall prove that P satisfies the three conditions in the theorem, 
(i): Obviously NgiP) = 1. 

(ii): Suppose p\N. Since ^^/^ = 1, we have ŷ  = rjpS, so that 

P = irips;-')-Hyp(^y;'){ripsr') 
= ii1psr^)-^(xpirjpsr^). 

Therefore 
P-Pp = {riper')-'oCp(fjp8r')-Pp 

= 0 mod NRp 

by (5.2.9) and the choice of oCp and k. 
(iii): First assume p|L and pJi'N. Then 

i5 = (e,<5)a(8,^)-^ 

= e.O-H^/;'ap^p)^y^^r'. 
Since (XpEUp and rjpERp , we see 

oip = Pp= 1 mod L'Rp 
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and 
^p ^^p^p= 1 mod L'^Rp. 

Since 
8,(i^jrHL'R,K'Jhr'czRp, 

we obtain PeRp. Next suppose pXLN. Then 

and ypCcy'^GRp by assumption. Since rjpERp by definition, and 8„ ^^J'^eRp by 
(5.2.6), we see that 

Therefore PeRp. This completes the proof. D 

Theorem 5.2.10. (Approximation Theorem) Let B be an indefinite quaternion 
algebra over Q, R a maximal order of B, n an integer, and N a positive integer. 
Assume that for each prime factor p of AT, an element Pp of Rp satisfies 

n/NsiPp)=imodNZp. 

Then there exists an element P of B satisfying 

(i) Nj,(P) = n, 
(ii) PeR, 

(iii) p = pp mod NRp for all prime factors p of N. 

Proof Since B is indefinite, there exists an element a of 5"" such that ^^(a) = w by 
[Weil, XI, Prop. 3]. Let L be the product of all prime numbers p such that a^Rp. 
For each prime factor p of LN, we take an element dp ofBp as follows. First suppose 
p\N. We can take an element ŷ  of Rp satisfying 7^—1 = 0 modiVR^ and Ng{yp) 
= n/NeiPp) by Lemma 5.2.6. Put 

Sp = oc-'ypPp ip\N). 

Note that NgiSp) = 1. Next assume p \ L and pjf N, We can take an element y^ of Rp 
satisfying Ngiyp) = nby Lemma 5.2.3(3). Put 

^ = oc-'yp (p|L,p^iV). 

Note that NgiSp) = 1. Take a power M of LN so that 

(5.2.10) ccMRpCi NRp for any prime factor p of LN. 

We note that NRp = RpifpJ^N. Applying Theorem 5.2.9 by taking M and dp for N 
and Pp, respectively, we get an element ^ of B so that 

(1) Nj,(S) = 1, 
(2) ifp\M, then S = dp mod MRp, 
(3) ifpJ(M, thenSeRp. 

We put 

P = oiS, 
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and are going to prove that p is what we want. It is obvious that N^(P) = n. If p|N, 
then we see 

P-Pp = oiS-p^ = oiS^-P^ = iy^-l)p^ = OmodNRp 

by (2) and (5.2.10). This impHes especially PeRp.Up\L and pj(N, then by (2) and 
(5.2.10), 

P-yp = ct3-yp = ocSp -yp = 0 modRp. 

Since ypERp, p belongs to Rp. Next suppose pJfLN. Then (xeRp and SeRp, so 
that PeRp. Therefore peRhy Lemma 5.2.4(4). D 

Theorem 5.2.11. Let B be an indefinite quaternion algebra over Q. If an order R ofB 
satisfies that 

N,(R;) = I; 

for all prime numbers p, then 

B^ =B^(GLi(U)xl\RpA. 

Proof Let j? = (j5 )̂ be any element of B^ . We shall show that P belongs to the set 
of the right-hand side. We may assume that Pp e Rp for all prime numbers p by 
multiplying an integer, if necessary. Since 

NsiP) = nu (neZ,u = MeUl x Y\z;\ 

we can write 

For each prime number p, there exists an element yp of Rp satisfying Ngiyp) = Up 
by assumption. Put 

Lo u^j 

and y = {yJeB^. Then yeGL^(U) x UpRp and Ngiy) = u. Therefore we may 
assume NgiP) = nhy taking Py~^ in place of ft if necessary. Let RQ be a maximal 
order of B including R. For any prime number p such that pptRp or RQP i^ Rp, 
take a positive integer / so that 

P^p-p^R^p^pRp. 

Put N = W^ p^ with the above p and / Applying Theorem 5.2.10 for N, n and Pp, 
we obtain an element a of RQ satisfying 

N5(a) = n, oi = PpmodNRop if p\N. 

We have only to prove a"^j5eGLJ(R) x 11^/?/. It is obvious a"^)5^eGL2^(IR). If 
pJCN, then neZp by definition, and we see oc'^PeRp . Next assume p\N. Since 
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a-j5pep-^Rop, wesee 

so that P;^(xeRp. This impHes oc'^^eGmU) ^UpRp . Since a 6 B ^ we see 

PeGLUmxUpRp' D 

We note that maximal orders and orders of Eichler type (for definition, see §5.3) 
of B satisfy the assumption of Theorem 5.2.11 by Lemma 5.2.3(3). 

Theorem 5.2.12. Let B be an indefinite quaternion algebra over Q. All maximal 
orders of B are conjugate. 

Proof. Let R and S be two maximal orders of B. For each prime number p, there 
exists an element Pp of Bp such that 

by Lemma 5.2.3(1), (2) and Lemma 5.2.4(1). Put P = (j5J with the above Pp and 

P^ = 1. Since PeB^.yNt can write P = OLU with OLEB'' and usG^iU) x flpRp 

by Theorem 5.2.11, so that 

Sp = ocRpa-'=^{(xRoc-% 

Therefore we obtain S = ccR(x~^ by Lemma 5.2.4(4). n 

Let B be an indefinite quaternion algebra over Q. We fix an isomorphism of 
B(X)QIR onto M2([R), and consider B as a subalgebra of M2(IR) through this 
isomorphism. Then the norm NgiP) of an element p oi B is nothing but the 
determinant of j? as a matrix, by definition. Let R be an order of B. We put 

(5.2.11) r^ = {PER\NM = 1} ^ GL^(UX 

and call it the unit group of norm 1 ofR. We are going to prove that T^ is a Fuchsian 
group of the first kind. 

Theorem 5.2.13. Let B be an indefinite quaternion algebra over Q, and R an order of 
B. Then FR is a Fuchsian group of the first kind. Moreover, ifB is a division quaternion 
algebra, then T^XH is compact. 

Proof First suppose B is a division quaternion algebra. Since H ^ SL2(U)/S02m) 
as topological spaces by Corollary 1.2.2, and S02(IR) is compact, the compactness 
of r ^ \ H is equivalent to that of FR\SL2iU). Since 

B^2'n(GL2{u) X n^; )= sL2 im X n/^;, 

SL2{U) X YlpRp is open in B^^K Put 

W=Bll^-B^'(sL2(mxU^p)-
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Since W is a union of right SL2(M) x f^^/^p-cosets, it is an open subset of B^^K 
Therefore B''\Wis open in B"" \B^}\ Since Wis left B"" -invariant, the complement 
of B^'XWis B'^XB'' '{SL2{U) xYlpRp). Then it is a closed subset of a compact 
set B"" \B^^\ so that it is compact. Since 

5^ n (sL2m X n ^ ; J\(sL2(m x n ^ ; ) = ^̂  x^̂  Y^L^W X n^, 

B-n(sL2{mxl\RA = rj, 

by Lemma 5.2.4(4), r^\(SL2(lR) x np^p"") î  compact. Therefore r«\SL2(IR) is 
compact since rjj\SL2(IR) is the image of rjj\(5L2(IR) x H P ^ P " ) ^y ^^^ natural 
mapping. Next assume that B is not a division algebra. We may assume that 
B = M2(0) by (5.2.1). Let î o be a maximal order of B including R. Since RQ is 
conjugate to M2(Z) by Theorem 5.2.12, i?o has an element of norm — 1, so that RQ 
is conjugate to M2(/) by an element of positive norm. Therefore we may assume 

r«, = 5L2(Z). 

Since R and RQ are commensurable as modules, there exists a positive integer N 
such that 

hence 
1 + AT/̂ o ^ ^ 

and 
5L2(Z) :3 r« 13 r(N). 

This implies that SL2{I-) and T̂ j are commensurable, and T^ is a Fuchsian group of 
the first kind. D 

§ 5.3. Hecke Algebras of Unit Groups of Quaternion Algebras 

In the previous section, we proved that any unit group T ĵ of norm 1 of an order R 
of an indefinite quaternion algebra B over Q is a Fuchsian group of the first kind. 
In this section, we study Hecke algebras of Tjj. 

Lemma 5.3.1. For a non-negative integer e, we put 

«-{[;;] eM2(ZJ a, b, c, de Z. 

Then Rp is an order of M2(Qp). Moreover if e^ 1, then we can write 

R, = <>nR«^> 
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with two maximal orders R^p^ and R^^^ o/M2(Qp). The pair (R^p^\ Rf^) is uniquely 
determined by Rp. 

Proof. It is obvious that Rp is an order and 

Let us study maximal orders including Rp. Any maximal order of MjCQp) is given 
by p-'M2(Zp)P (pEGL2(Qp)) by Lemma 5.2.3(2). Since 

M2(Qp) = Qp'M2{Zp\ 

we may assume j?GM2(Zp)n GL2(Qp). Furthermore for any yeGLiCZ^) 
{=M2iZpyi we have 

{yp)-'M2{Zp)yP = r'M2(Zp)P, 

so that the set of all maximal orders of M2(Qp) is given by 

{r'M2{Zp)P\peGL2(Zp)\{GL2{Qp)nM2(lp))}. 

Now we can take the set of matrices of the following two types as a complete set of 
representatives of GL2(Zp)\(GL2(Qp) n M2(Zp)): 

where / and g are non-negative integers, and u runs over the representatives of 
Zp/p^Zp. Since 

^^fa b~\ Va — cup'^ au — cu^p~^ + bp^ — du~\ 

L^ ^J L ^P~^ d-\-cup-f J 

for j? = "/ ( / = 1)' we see easily that ^ U î  " ^ Mj (Zp)p. Therefore any 

maximal order including Rp is given by 

In particular, a pair {R^p^\ R^p^) of maximal orders such that i?J,̂ ^ n R^p^ = Rp is 
uniquely given by 

(M,(Z,), [f ?]"V,(Z,)[J^ J]). D 

Let B be an indefinite quaternion algebra over Q. We denote by de the square of 
the product of all prime numbers p such that Bp is a division quaternion algebra, 
and call it the discriminant ofB. We understand ds= 1 if B = M2(Q). Let iV be a 
positive integer prime to d^. We say that an order RoiBis ofEichler type of level N, 
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or simply of level N, if the following two conditions are satisfied: 

(i) ifpJfN, then Rp is a maximal order of Bp\ 
(ii) let N = Hp^ be the prime decomposition. Ifp\N, then Rp is conjugate to an 

order 

a bl 

fc d\ 
eMAZp) a, b,c, deZp 

Let B be an indefinite quaternion algebra over Q of discriminant dg, and R an 
order of level N. For each prime number p prime to dg, we fix an isomorphism of Bp 
onto M2{Qp) under which 

(5.3.1) R ^ 
i\p ^ 

MAI,) 
a fcl 

We define the subgroup (7^ of B^ by 

(5.3.2) lJj, = GLt{ 

a, b,c,dG Z 

UR; 

(pJfNds), 

ip\N). 

Let S be a maximal order of B including R. Then 

by Theorem 5.2.11, and 

^J,= t 7 « n B ^ rs=UsnB' 
Therefore 

and 
(UsnB^)Ui, = Us 

irs/r«i = ii/snB7c/«nBx I = ii/s/t/«i = n 1 ;̂//?; 
p\N 

A similar (and easier) argument as in Theorem 4.2.5(2) implies 

\S;/R;\ = P^I + I/P). 

Thus we obtain the following lemma which is a generalization of Theorem 4.2.5(2). 

Lemma 5.3.2. Let B be an indefinite quaternion algebra over Q, and R an order of 
level N. If S is a maximal order of B including R, then 

[rs:r«] = Nn(i + i/p). 
p\N 

We define the subsemigroup DuOf B^ by 

(5.3.3) D„ = (GLi 
xY\D,)nB^, 
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where 

213 

(P^N), 

{I" "c J l e « J « 6 2 ; . « ' i - P ' ' t c ^ o | (p|N). 
(5.3.4) D, = \ 

Moreover put 

(5.3.5) 

Then the following lemma can be proved by a similar argument as in Lemma 4.5.2 
for pJCdg, and directly by Lemma 5.2.3(1) for pldg-

Lemma 5.3.3. The notation being as above, we have 

Aj, = RnD^. 

D, 

U KKR. 

(pIN), 

(PMB), 

where %p(p\ds) is a prime element of Bp, and 

Lemma 5.3.4. (1) g^R^ g; ' ^ R ; for g^eB;; 
(2) gU^g-'^Uj^forgeB:^; 
(3) ar^a"^ ^ r^for (xeB''. 

Proof (1): Since Rp and gpRp gp ^ are open compact subgroups of Bp , we see 
gpR; g- ^^R;. (2): Let g = (g,)eB'^. Then 

gpR;g-p'=R; 

for almost all prime numbers p, and 

g^GLtmg-J = GLn^)-
This combined with (1) implies (2). (3): Since 

(2) implies that 

| ( a r ^ a - M r ^ ) \ r ^ | ^ | (a( /^a-M C/;,)\C/^| < (̂  
and 

Kar^a" 1 n rji)\ar^a- ^ | ^ KaC/̂ ja" ^ n [/«)\aUjja- M < oo. 

This proves (3). D 
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The above lemma enable us to define the Hecke algebras ^(r^ , zl̂ j), 
^(i7ji, Djj), and ^(/?p , Dp). Now let / be a Dirichlet character modiV. Since 

P\N 

X induces a character of (Zp/NZpY which we denote by Xp. For an element 
^ = (^JofZ)ji, we put 

(5.3.6) m^mM.i (.. = [:; X]). 
Since 

we also denote the restriction of / on zljj or Fg^ by the same symbol %. Then % 
satisfies (2.8.1), and therefore, the Hecke algebra ^(r^, Ag) acts on ^ki^R, x)- ^^ 
particular, if 5 = M2(Q) and 

R = | p MeM2(Z) c = Omodivl 

then 
rg = r^(N\ Ag^A^(N\ and ^^(r^,/) = ^,(iV,x). 

Next we denote by (8)p^(Rp , Dp) the tensor product o{M(Rp ,Dp) taken over 
all prime numbers p. The relation between the Hecke algebra of T^ and local Hecke 
algebras is given by the following 

Theorem 5.3.5. (I) By the correspondence 'TgaFgh^ UgOcUg', 

M(rg,Ag):^g^(Ug,Dg) 

(2) By the correspondence ''U^gUg^0R;gpR; " {g = (g,)), 
p 

p 

Proof. (1): Since F^ and Ag are embedded in Bj[ by the canonical injection of R 
into B^, we have only to verify conditions (i), (ii), (iii) of Theorem 2.7.6(1). Let S be a 
maximal order of B including R. First we verify condition (i) or D^ = VRA^. Let 
fif = (̂ i;) t>e an element of D^, and n a positive integer such that 

n/NB(g)eZp for each prime number p. 

There exists an element hpOf Rp such that 

Ns(hp) = n/Ngigp); 

which is shown by Lemma 5.2.3(3) if pldg, and directly if pJi'dg. Put h^ = i and 
h = (h„). Then heUR.lfpisa prime factor of niV, then we take a positive integer / 
so that 

(5.3.7) P^SpihpgpY'^pRp. 
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Put M = YipP^' ^y applying Theorem 5.2.10 for M, w, hpQp, there exists an element 
PofS such that NB(^) = n and 

(5.3.8) P^h^gptnodMSp if p\M. 

If p IM, then by (5.3.7) and (5.3.8), 

PihpQpy '-1=(P- Kgp){hpgp)-'epRp, 

so that P(hpgp)- ^eRp. In particular, j5 6 D .̂ If p ̂  M, then Sp = Rp, gpSRp , and 
PeSp, so that PeRp and h^^pY ^ e^p • Therefore fieRhy Lemma 5.2.4(4), so 
that PEAR and P{hg)~^eUR. Thus DR = f/n^n. 

Next let us prove (ii), or UR(XUR= Uj^oLFg^ for any ae Ĵ f. It is sufficient to prove 
that aheUg^oLFn for any h = (h„)eUj^. For each prime number p prime to dg, there 
exist Sp^SpERp such that 

by Lemma 5.3.3. We put 

(5.3.9) w, 

1 ( t^=oo) . 

and w = (Wy). Then we 1/̂  and ae C/̂ aw. For a prime factor p of ^^(a) or a prime 
number p satisfying Sp=^ Rp, we take a positive integer / so that 

(5.3.10) pHciSp(Wphp)-^a-^) c pRp, and pf Sp C Rp. 

We put M = Tlp^ and apply Theorem 5.2.10 for M, 1, vv̂ /ip. Then there exists an 
element y in 5 such that Ngiy) = 1 and 

(5.3.11) y = WphpmodMSp if p\M. 

Since WphpERp and y — WphpEMSp c: R ,̂ 7 belongs to R, and therefore, to Tjj. 
Now we define ZEB^ by 

ay = zoiwh. 

If p)( M, then obviously Zp e Rp. Otherwise we see by (5.3.10) and (5.3.11) 

Zp- 1 =(x{y(Wphp)-^ - l ) a - i 

= (x{y - y^php){Wphpy^oc- ^EpRp. 

Therefore ZEUR and 

ccwh = z" ^ccyEURaFj^. 
This implies 

ochEllRixwh c UROLFR, 
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and (ii) is proved. The third condition that l/^anzlji = T â for any aeJ^ is 
obviously satisfied. 
(2): This is obvious by the definition of adelization. D 

Theorem 5.3.6. For any prime number p, M{Rp,Dp)is commutative. Furthermore 

(1) ifp)(Nds.then 

and for any positive integers e and /, 

{e>\), 

(2) ifp\N, then 

^(R;,Z),) = Z[R;[J ^]K;]. 

and for any positive integer e, 

(3) (/pM«, then 

and for any positive integer e, 

R;KIR;=R;PR;, 

(R; K,R;)(R; < R ; ) = R; TT^ ' R; . 
Here 7tp 1*5 a prime element of Bp. 

Proof The assertions for each p prime to dg can be proved similarly to Theorem 
4.5.3(1) and Lemma 4.5.7, respectively. (Since Z- is a local ring, these cases are easier 
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than the previous ones.) Suppose pldg. Any element of ̂ {Rp , Dp) can be written as 
a hnear combination of Rp nlRp (0 ^ eeZ) by Lemma 5.3.3. Since 

R;KR; =R,K, 
we get 

{R;npR;)(R;n;R;) = R;ni^'R; 

by definition. In particular, ^(Rp , Dp) is commutative. Since 
p ' ^p 

>P R;nl = R;i>. 
we get 

R;niR; =R;PR;. D 

For a positive integer n, we define the element T(n) of ^{FR, AR) by 

(5.3.12) T{n)= X rj^ar^, 
Nsia) = n 

where the summation is taken over all double cosets FROLFR with Ngioi) = n. 
Moreover for a positive integer n prime to iV, we put 

(5.3.13) T(n,n) = FRnFR. 

We consider ^(Rp ,Dp) as a. subring of (S)p^iRp ^ Dp) by the natural injection. 
Then by the isomorphism of ^{Fj^, Aj^) onto (S)p^iRp ,,Dp) in Theorem 5.3.5, 
we have the following conditions: 

1° iffJi^Ndg, then T{p^) and T(p,p) correspond to 

and 

respectively; 

T ifp\N, then T(p^) corresponds to R ; \ iWp \ 

3° (f PMB, then T(p^) corresponds to Rp n\,Rp . 

Consequently we obtain the following 

Corollary 5.3.7. ^ ( T ^ , J^) is commutative, and 

mrR.A^) = ZlT(pl T(p,p\ T(q)\pJ^Nds,q\Nds:i 

Moreover we have: 

(1) if(n,m) = 1, then T(n)T(m) = r(nm); 

(2) n p ) r ( p ) = | j , ^ p . , , ^ (pl^^^j_ 
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Similarly to the case of modular groups, we define a formal Dirichlet series with 
coefficients in ^{rj^,Aj^)by 

(5.3.14) D(s)= f Tin)n-^. 
n= 1 

Then Corollary 5.3.7 is equivalent to the formal Euler product: 

(5.3.15) D(s)= n {l-T{p)p-^ + pT{p,p)p-'T' 

X n ( i - r (p )p -^) - i . 
p\Nds 

Now let a be an element of B"", If B̂  is isomorphic to M2(Qy), then 

det(a)a~^ = NBioL)oc~ ^ 

under the natural embedding of B into 5 ,̂ so that det(a)a" Ms independent of the 
choice of v. Therefore by a similar argument as in Theorem 4.5.4, we obtain 

Theorem 5.3.8. (1) If(n, N) — 1, then the Heche operators T{n) and x(n)T(n) on 
^ki^R^X) ^^^ adjoint operators with respect to the Petersson inner product. 

(2) ^k(^R,x) has a basis consisting of common eigenfunctions of T{n) 
((n,iV)=l). 
Here x is a Dirichlet character mod N. 



Chapter 6. Traces of Hecke Operators 

The Fourier coefficients of Eisenstein series are quite simple, since they are derived 
from Dirichlet L-functions. To the contrary, the Fourier coefficients of cusp forms, 
or equivalently the eigen values of Hecke operators are quite mysterious and play 
important roles in applications of modular forms to number theory (for example, 
see [Shimura 4] and [Shimura 6]). To obtain eigen values of Hecke operators T(n) 
operating on S^^i^, x\ we have only to calculate the traces tr(r(m)) of T(m) on 
5̂ fc(iV, x) for finitely many m's (see the end of this chapter). 

In this chapter, we calculate them by the method of Selberg. We refer 
[Godement] for §6.1 through §6.3, [Shimizu 2] for §6.4, and [Hijikata] for §6.5 
through §6.8. 

§6.1. Spaces of Functions on H 

Let /c be a non-negative number. Let p be either a real number such that 1 ̂  p or 
00. We call such p an exponent. For a complex valued function/(z) on H, we put 

U\f{z)lm(zfi^\^dv(z)[ ( l ^ /7<a ) ) , 

ess. sup |/(z) Im {zf^^ \ {p = oo). 
zeH 

Here || / 1 | oo = 'w implies that the set {z e H | |/(z)| Im {zf^ > m} has measure 0 and 
the set {zeH| |/(z)|Im(z)*/^ > m —8} has non-zero measure for any positive 
number s. We denote by LJ(H) the space of all measurable functions / on H 
satisfying |1/ | | p < oo. In particular, Lg(H) is the L^-space of functions on H in the 
usual sense. Hence it is a Banach space. Since LJ(H) is isomorphic to Lg(H) as 
normed spaces by the map y(z) i->/(z)Im(z)''^^", LJ(H) is also a Banach space for 
any k. We call two exponents p and q are conjugate, if they satisfy that 

P q 

Here we understand l/p = 0 if p = oo. If p and q are conjugate exponents, we put 
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for/eLJ(H)and^eLl(H), 

(6.1.1) (/, ^)H = J / ( z ) ^ lm{zfdv{z). 
H 

By this pairing, an element g of LJ(H) can be identified with an element of the dual 
space of LJ(H), or the space of all continuous Hnear functional of LJ(H). Further if 
p 7̂  00, Ll(H) is considered as the dual space of LJ(H) by this identification. 
Further L^(H) is a Hilbert space with the inner product given by (6.1.1). We also 
denote by //f (H) the subspace consisting of holomorphic functions in Z/J(H). 

Theorem 6.1.1. The space HJ(H) is a closed subspace o/LJ(H). 

Proof. Let f{z) be the limit of a sequence {/„(z)} in HJ(H). Applying 
Corollary 2.6.4, we see that f(z) is also holomorphic. D 

Let H be a Hilbert space consisting of complex valued functions on a set X. We 
denote by (/, g) (fgeH) the inner product of H. We call a function K{x, y) on 
X X X a. kernel function of H if it satisfies the following two conditions: 

(6.1.2) as a function ofx, K(x, y) belongs to H for each fixed y; 

(6.1.3) for any element f{x) of H, 

f(y) = {f{xlK(x,y)) (yeX), 

where the right-hand side is the inner product as functions ofx. 
If K(x, y) is a kernel function, then we see easily 

(6.1.4) K(x,y) = K(y,x). 

Kernel functions do not necessarily exist. However, if it exists, it is uniquely 
determined. Furthermore, if H is finite dimensional, then it has the kernel function 
given by 

K{x,y)= tfAx)fJj), ix,yeX% 
v = 1 

where {/j,. . . ,/d} is an orthonormal basis of H. 
Now we shall show the existence of the kernel function of H^ (H) and calculate 

the expHcit form. By Corollary 2.6.2, there exists a constant C depending only on 
z 6 H and k such that 

| / (z ) |^C| | / | |2 ifeHKH)). 

Therefore, for each fixed ZQEH, the map "/i—•/(ZQ)" is a continuous linear 
functional of H 1(H), Since Hl{H) is a Hilbert space, there exists a unique element 
^̂ 0 6/f^(H) satisfying 

/ ( 2 O ) = ( / ^ 2 O ) H -

Put Xfc(zi, Z2) = 2̂2(̂ 1) ̂ ^̂  Zi, Z2eH. Then it is the kernel function of Hl(H) and 

/(z) = J K,(z, Z2)fiz2)lm{z2fdv(z2) for any/e/f2(H). 
H 
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Let a be an element of SL2(^y For any feHl{ll), the function f{oLz)j(oi,z)~^ 
belongs to H^(H). Since the measure dv{z) of H is invariant under the action of 
SL2(Ul we see for any/eiff (H) 

JXfc(azi,az2)7(a,Zi) ''j{oc,Z2) ^f(z2)lm(z2fdv(z2) 

= ;(a,zi) * JiCfc(azi,Z2)/(a ^Z2);(a,a ^Z2)*Im(z2)*t/r(z2) 
H 

= ; ( a , Z i ) - ' / ( z i ) ; ( « , Z i ) ' ' = / ( z i ) -

By the uniqueness of the kernel function, we have 

(6.1.5) K^iazi, aẑ ) = K»(zi, Z2);(a, z.fjia, z^)' (a6SL2(R)), 

and 

(6.1.6) Kt(az„z,);(a,Zi)-* = A:»(z.,a-'z2);(a-',Z2)-'' (aeSL,(R)). 

ing[J J](fc In particular, taking (fe e IR) as a, we see 

(6.1.7) X,(zi + 6, Z2 + fe) = X,(zi, Z2) (beU). 

We put 
M = {(zi, Z2)eC^ I Zi eH, zi - Z2 eH}, 

and 

/l(Zi,Z2) = Kfc(Zi,Zi-Z2) ((Zi,Z2)eM). 

Then /i(zi, Z2) is a holomorphic function on M. Since /i(zi + b, Z2) = /i(zi, Z2) for 
any foeIR, /i(zi, Z2) is independent of ẑ . For zeH, take z^eH so that {Z]^,z)eM 
and put 

Pf,{z) = h{z^, z) = Kf,{zi,zi - z). 

Then P^iz) is a holomorphic function on H and 

KkizuZ2)=^Pk{zi-Z2) (zi,Z2eH). 

Take \^ _A (aelR^) for a in (6.1.5), then we have Pk(a^z) = a'^'^Pkiz). In 

particular, 

Pkiiy) = y"'n(0 (3̂  > 0). 

Since P^iz) is holomorphic on H, we see that 

Pt(z) = c,(z/2i)-' 

with a constant ĉ . Thus we obtain the following 
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Theorem 6.1.2. The Hilbert space ^^(H) has the kernel function 

with a constant c^. 

Corollary 6.L3. H|(H) c= H^CH). 

Proof. Let f{z) be an element in i4^(H). For any point Z Q ^ H , we see that 

l/(^o)l' = | ( / ( Z ) , K , ( Z , Z O ) ) H P ^ ll/lli- l|X.(z,Zo)||i 

= | | / | | iX , (zo ,Zo)=c , Im(zo)-Ml / l l l 

This implies |/(zo)Im(zo)*^^| ^ ^Jc^ WfWi for any ZQEH, and therefore/belongs 
t oH^(H) . D 

Let us calculate the constant ĉ  in Theorem 6.12. We denote by R+ and (R_ the 
set of all positive real numbers and the set of negative real numbers, respectively. 
For an element /(z) in //^(H) and a point 3;6 IR+, we put 

fy(x)^f{x + iy) (xeU). 

Since || / 1 | i = JH | / ( X + iy)\^y^~^ dxdy is finite, there exists a subset Sf of measure 
zero in IR+ such that/yGL^(IR) iiy^Sf. Denote by^(M) the Fourier transform oify 
for yiSf, or ^(M) = l.i.m.„^Qo J"_„^(x)e"^"*"''i/x, where l.i.m. implies the limit 
in L^{U). 

Theorem 6.L4. (1) For a function f{z)eHl{H% there exists a function f(u) on U 
satisfying 

and f(u) vanishes almost everywhere onU-. 

(2) Ifk^hthenHl(Yi) = {Q}. 

Proof. For any positive integer n, we put 

/ ^ ^ ( M ) = J / ( x + i»e-2"'"^^-''»Jx = e2""^ ] fy{x)e-^'''"''dx. 
— n —n 

Since^(w) = Li.m.^ „(M)e"^""^ for y^Sy, there exists a subset Ty of U of measure zero 
such that lim„^oo/y „(M) exists if M^ T .̂ Let y^ and ^2 t>e two positive numbers such 
that ^1 ,^2^^ / ^^^ yi <y2' Take M€ IR so that M^ 7̂ ^ u Ty^. Since/eHfe(H), we see 
by Corollary 2.6.3. that lim,^, ̂ .^ \f{x + iy)e-2«i«(*+t3')| = Q uniformly on the inter­
val [3̂ 1 > ^ i ] - Since /(z)e"^"*"^ is holomorphic on H, we have 

{ n + iyi n + iy2 —n + iy2 - n + iyi 'J 

I + J + J + J /̂(z)e-2"'"^^z = 0. 
Therefore lim„^^/y^,„(M) = l i m „ _ ^ ^ „l(w). This implies lim„^^^„(M) is 
independent of y. If we put/(M) = lim„_ ^ ^ „(«) then it satisfies the equation in (1). 
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Now we see that 

(6.1.8) ^>\\f\\l = ]y'-'dy ] \f,(x)\Ux = ] y'-'dy J I/MI^^-^-MM 
0 ~ 00 0 ""00 

- 00 0 

The integral with respect to y is finite if and only if /c > ^ and M > 0. Then, if /c > 1, 
f(u) vanishes almost everywhere on [R_. If /c ^ 1, f(u) should vanish almost 
everywhere on R, and therefore f(z) = 0. This completes the proof. D 

For /(z)eiffc(H), we call the function f(u) on U the Fourier transform of/ 
Hereafter we assume /c> 1. We put 

G,(u) = j I y'~'^~^"'dy = {nu)'-'r{k-l) (u > 0), 

We denote by H^ the space of complex valued measurable functions (/)(M) on U 
satisfying the following two conditions: 

(6.1.9) </)(w) = 0 almost everywhere on U_; 

(6.1.10) J \(l)(u)\^G,,i4u)du < 00. 
- 00 

The space H^ is a Hilbert space with the inner product 

<(/), (p} = j (t>iu)(p(u)G,(4u)du (^,q>eHi). 
0 

By (6.1.8), we obtain 

(6.1.11) | | / | | 2= J \f(u)\'G,(4u)du = ifjy ifeHiiU)). 
— 00 

Therefore, if feH^iH), then/eH^. Conversely, let 0 be an element of H^. For 
zeH and a positive integer n, we put 

(6.1.12) (^(z)= J (/>(M)e2"'""dM, (̂ „(z)= J (l)(u)e^'''"'du. 

We shall prove that the map "/(z) ̂ -^f(uf' gives an isomorphism of /f|t̂ (H) onto 
Hj .̂ We need the following general 

Lemma 6.1.5. Let (X, dx) be a measure space and D a domain in C. Letf{z, x) he a 
function on D x X holomorphic in z for each fixed x. Assume that for any circle C 
contained in D,f(z, x) is integrahle onC x X. Then the function F (z) = J;^/(z, x) dx is 
holomorphic on D. 
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Proof. Let z be a point of D, and C a circle around z. Then 

Therefore 

1 ./(C, x) 
/(Z,X) = —TJ-T^ C 

Thus F{z) is holomorphic on D. D 

Theorem 6.1.6. The correspondence 'J(z)\-^f(uy' gives an isomorphism of H^iH) 
onto Hi. 

Proof. We have only to show that the map "(/) i—• 0" is an isomorphism of Hi into 
/ffc (H) and it is the inverse of *y(z) !—•/(«)". Let </)„(z) be the function given by 
(6.1.12). By Lemma 6.1.5, it is holomorphic on H. Let us prove that {0„(z)} 
converges to </)(z) uniformly on any compact subset of H. By definition, we obtain 

I + 1 )\<l>(u)e'"-^du= I mu)e'"-'\du. 
— CO n / n 

By Schwarz's inequality, 
foo ) 1/2 (-00 -)^I2 

S I J murG,(4u)du[ • I J \G,i4uy"'e'^n'du^ 

The first term is independent of z, and converges to 0 if n tends to oo. The second 
term is bounded on any compact subset of H. In fact, 

/c-1 
j \Gk{4u)-^'^e^'''"'\^du S J Gfc*(4M)"'e"̂ ""̂ M̂ = 4ny^ 

which is bounded on any compact subset of H. This implies the uniform con­
vergence of {<̂ „(z)} on any compact subset of H, and therefore (/>(z) is holomorphic. 
Moreover we obtain 

H\\l=imz)\Hm(zfdviz)=]y'-'dy J mx-^iy)\'dx. 
H 0 - 0 0 

Since </)(x + iy) is the Fourier inverse transform of 0(M)e~ '̂"'̂  considering it as a 
function of x for each fixed y, the Plancherel theorem implies 

= ]y'-'dy I \cl>(ure-^^"ydu = ] \cl>(u)\'G,(4u)du = ((l>,cl>}. 
0 - 0 0 0 

This implies "0 H-̂  (/>" is an isomorphism of H^ into HKH). It is easy to see that 
these two isomorphisms are inverse to each other. D 

Corollary 6.1.7. Hl(l{) ^ {0} if and only ifk>\. 

Proof It is obvious that if/c > 1 then Hi ^ {0}. Then by Theorem 6.1.6, we obtain 
the result. D 
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Now we are ready to calculate the constant ĉ  in Theorem 6.1.2. We denote by 
Kfc(M, z) the Fourier transform of K^iz^^z) considering it as a function of Zj for a 
fixed z. Then for any 4){u)eHl, we see that 

<(^(M), K,{U, Z)> = (<^(zi), K,(zi, Z))H = <̂ (z) = J (l>iu)e'^'"^du. 
0 

On the other hand, we have 

< ct>(ul K,(M, z)> = J </>(«)X,(M, z) G,(4t/) JM. 
0 

Therefore we obtain 

Xfc(M,z) = Gfc(4M)-1 e-2"'""" ((M,Z)GUX H) . 

Take the inverse transform of Kf^(u, z) as a function of M, and we get 

0 

namely, Cfe(z/20"* = J^ Gk(4uy^e^'''"^du. Putting z = 2i, we obtain 

c, = ,(/c-l)/47r. 

Thus we obtain the following 

Theorem 6.1.8. Ifk> 1, then the kernel function of H^{H) is given by 

K * ( Z l , Z 2 ) = ^ ( ^ ^ ^ l (Zl,Z,6H). 

§6.2. The Projection of L/fCH) onto Hjf(H) 

Using the kernel function /Cj(zi, Zj) of Hj(H), we define the integral operator K on 
LAH) by 

(6.2.1) (X/)(z) = J Kt(z, Z2)/(z,)Im(z3)'<i(;(z,), / e L « H ) . 
H 

The purpose of this section is to prove that the integral operator K is a projection 
of Ljf(K) onto its subspace H^{ll) for all /? (1 ^ p ^ 00). Hereafter we assume k> 2. 
For this purpose, we had better to consider function spaces Ljf(K) and Hjf(K) 
consisting of functions on K. We denote by dv^(w) the measure of K defined in §1.4 
given by 

dv^iw) = 4(1 - \w\^)~^dxdy (w = x + iy). 

For a complex valued measurable function f(w) on K, we put 

\ i / p 

J i/(w)(i - M^r^i^dv^iw)] (1 ^ p < o)), 
ess. sup |/(w)(l - |w|2)*/2| (p = 00). 

weK 
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We denote by Ljf(K) the space consisting of measurable functions / satisfying 
ll/llp < 00. We also denote by //jf(K) the subspace of L^{K) consisting of holo-
morphic elements. Then mK) is a Banach space and if jf(K) is a closed subspace of 
Ljf(K). Let p and q be conjugate exponents. For functions fe Ll(K) and g e LjJ(K), 
we put 

K 

Theorem 6.2.1. (1) The Banach space L|f(H) {resp. HUH)) is isomorphic to 
Ljf(K) (resp. H^(K)) by the map "/(z)h^/(w) = (\-w)-^f{p-^w) (weKf, where 

[: 1]̂  
(2) Any holomorphic function bounded on K belongs to //jf(K) for all 

p (1 ^ p ^ (X)). 
(3) For a fixed Z2eH, the function K^{zi,Z2) belongs to i/jf(H) for all p 

(1 ^ p ^ 00). 

Proof The first and second assertions can be easily proved. Let/(w) be the function 
in Hjf(K) corresponding to the function Kf^izi^Zj) in H[{H) as a function of Zj. 
Then 

/(w) = (l-pz,r'K,(z,,Z2) = ' ^ [ — 0 i'l = P~'^)> 

and it is bounded. By (2), we obtain (3). D 

Theorem 6.2.2. The integral operator K is a projection ofLKH) onto H£{H)for any 
p(\^p^co). 

Proof. By Theorem 6.2.1 (3), the integral in (6.2.1) is finite. Now we define a function 
Kf{(x) on SL2(U) by 

(6.2.2) X,*(a) = ICfc(ai, i); (a, 0"* (ae5L, 

Then for a, )SeSL2(lR), we see that 

(6.2.3) X,(ai, pi)j(0L, i)-'j{p, i) -' = Knr'oi) 

and 

(6.2.4) X,*(a-^) = X*(^. 

For a measurable function cp on 5L2(IR) with respect to the Haar measure da 
defined by (1.4.13), we put 

( j \(pioi)\'doX ( l < p < a ) ) , 

ess. sup|(/)(a)| (p = oo). 
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For a function /(z) in L|f(H), we put 

/*(a)=/(aO;(a,0-' (aeSL^W). 

Then Theorem 1.4.5 imphes ||/||p = ||/*||p. In particular, we have 

\\K,{zJ)\\,= \\Kno^n, 

for all /? (1 < p < 00). For a function /eLjf(H), we put 

g{z) = J K,{z, Z2)fiz2)lm(z2fdv(z2) (zeH). 
H 

Then we see by (6.2.3), 

g*(oc)= J Knr'oi)f*{P)dp. 
SL 2iU) 

Since SLjC"̂ ) is unimodular, we have by [Weil 5, pp. 54-55], 
II ̂ * II p ^ II î .* Ill-II n i p and therefore 

||^||,^||K,(z,Olli-||/llp. 

This implies that K is a continuous Hnear mapping of Ljf(H) into itself. Next we are 
going to prove that the image of K is included in H|f(H). Let H„ (n = 1, 2,. . . .) be 
compact subsets of H satisfying H„ c= H„+i and IJ^H„ = H. We put 

(K«/)(z)= i K,(z,Z2)f(z2)lm{z,fdv{z,) (/6L«H)). 
H, 

Then X'"*/ is a holomorphic function by Lemma 6.1.5 and 

lim (X<">/)(z) = (Kf)(z). 

Let M be a compact subset of H. Then by Theorem 6.1.8, there exist a point ZQEM 

and a constant C such that 

\K,iz,,Z2)\ ^ C|iC,(zo,Z2)| (zieM,Z2 6H). 

Hence for zeM, 

|(X/)(z)^(X(«>/)(z)|gC J |K,(zo,Z2)/(z2)|Im(z2)*dt;(z2). 
H-H„ 

Therefore {K^"^f)(z) converges to {Kf){z) uniformly on any compact subsets of H 
and Kf is holomorphic on H. 

In the end, we shall prove that if/eHjf(H), then Kf=f. We define a function 
Kfc(wi, W2) on K X K by 

K,(wi, W2) = K,{p-'w,,p-'w2){l - wi)-*(l - 1.2)-̂  (-[: -;]) 
Then Kfc(wi, W2) isjhe kernel function of H^iK) by the isomorphism given in 
Theorem 6.2.1. For/eLf(K), we also put 

(Kf)M = j X,(W, W2)f(W2)i\-\W2ndVKiW2y 
K 
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Put g„(w) = w" for n^O. Since ^„e/ffc (K), we have Kg„ = g„. Then for a function/ 
in HJ(K), we have 

Therefore (Kf—f, ^„)K = 0 for all integer n(>0). Denote the Taylor expansion 
of K7- / a t w = 0 by ( Kf-f){w) = X"=o ««vv". Then 

0 

This implies a„ = 0 for all n >0 and Kf = f. By the isomorphism in Theorem 6.2.1(1), 
we obtain Kf=f for all fe HJ(H). D 

§6.3. Function Spaces Consisting of Automorphic Forms 

Let r be a Fuchsian group of the first kind, x ^ character of F of finite order and 
fc(> 2) an integer. We assume /(— 1) = (— 1)* if/" contains — 1. For any measurable 
function/(z) on H satisfying 

(6.3.1) if\,y) (z) = xW/(4 for any yer , 

we put 

i / p 

I J \fiz)lm{zr''\^dviz)\ (l<p<^). 
lr\H J 

ess. sup I f(z)Im(z)*^^ I (p = oo). 
zeH 

Since |/(z)Im(z)'^/^| is invariant under the action of T, ||/||r,p is well defined. For 
each p(l<p<oo), we denote by LJ(r, x) the set of measurable functions on H 
satisfying (6.3.1) and ||/||/;p<oo, and by Hf(r, x) the subspace of LJ(r, x) 
consisting of holomorphic ones. Then mr, x) is a Banach space and H^(r, x) is a 
closed subspace. The space L^iF, x) is a Hilbert space with the inner product 

(f.g)r= j f(z)^)lm{zfdv(z) (f,geLl{F,x)\ 
r\H 

Since the volume of T \H is finite, L^(F, x) ^ ^(r, x) and H^(r, x) ^ H^if, x) for 
all p(l <p< oo). Moreover by Theorem 2.1.5, Hj^iT, x) = ^ki^, x) and the restric­
tion of the inner product of L̂  (r, x) to H^(F, x) coincides with the Petersson inner 
product up to a constant multiple. 

Theorem 6.3.1. Hi(F, x)=H^{F, xY 

Proof. The assertion is obvious when r \ H is compact. Assume that F has a cusp 
XQ. Let/ be an element in Hi(F, x)- To prove feH^{F, x\ we may assume x is 
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trivial by taking a subgroup of F of finite index on which x is trivial. Take an 
element a of SL2(U) such that coo = XQ, and put 

<T-'r,„<7-{±i} = | + [J i l h ^ ^ } '̂'̂ ^̂ -
Denote the Fourier expansion of/ljir by 

(/l»'T)(z)= i a„e""'*-
W = — 00 

Let />0. Then we see by Corollary 1.7.5, 

00 > j \f(z)\Hm{zfdviz) 
r\H 

^\ ii \f(<yz)Ji(T,z)-'\'lmizfdv{z) 
^ 0<Re(z)<2fi 

/<Im(z)<oo 
1 00 2/ i 00 

^ Z 0 m, n = - 00 

for any integer n. Since /c>2, we have a„ = 0 if n^O. Thus we proved 

For any element/(z) in Z.fc(H), we put 

(6.3.2) /^(z)= |Z(r)|-i X %W/(y^);(7,̂ r' (zeuy 

We also put 

i633)K[{z„Z2) = \Z(r)\-' X zW^.(y^i, ^2)7(7, ^i)'* (^i,^2eH). 

Theorem 6.3.2. (1) The right hand side of {6.3.2) is absolutely convergent almost 
everywhere on H and f^{z)eLl(r, x)' 

(2) Iff{z)eHlill\ thenf^(z)GHl(r, /). In particular, K[{z, z^) belongs to 
Hi (r, x) as a function of z for each fixed Zj • 

(3) The right-hand side o/(6.3.3) is uniformly convergent on any compact subset of 
HxH. 

Proof. We see 
\Z(r)\ \ \nz)\\m(zfiHv{z) 

r\H 

^ J Zl/(yz)7(y,z)-Mlm(zFt/t;(z) 
r\H yer 

= |Z(r)| J|/(z)|Im(zf2t/t;(z)<oo. 
H 
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Therefore the right-hand side of (6.3.2) is absolutely convergent almost everywhere 
on H. Since it is obvious that/^(z) satisfies (6.3.1),/^belongs to Ll(r, /). The 
second assertion is derived from this and Theorem 2.6.6(1). Take ^^(zi, Z2) as/(z) 
in (1), and we see by (6.1.6) 

J X \K,(yz,, Z2)\ l7(y, z,)\-nm{z,r'dv{z,) 
r \H y^^ 

= |Z(r)| i\K,(z„z,)\lm(z^r'dv(z,) 
H 

= \Z{r)\lm{z2)-"' J |K,(zi, i)\lm(z,rUviz,). 
H 

Therefore we obtain (3) by Corollary 2.6.4. D 

Theorem 6.3.3. The function K[{z^, Z2) is the kernel function of Hl(r, -/). 

Proof We note that Hl(r, x) = H^(r, x)- Let/be a function in H^(r, x)- Take 
a fundamental domain F of F. Since/(z)Im(z)*^^ is bounded, we see by (6.1.6), 

X J \K,{yz,,z,)Jiy,z,)-'f(z2)\lm(z2fdv{z2) 

^C X i\K,(y-'z2. z,)Jiy-\ Z2y'\lm{z2f"dv{z2) 
yer F 

= C|Z(r)| l\K,(z„ z,)\lm(z2)''"dv(z,) 
H 

with a constant C. Therefore we obtain 

j Kf(z„ z,)f{z,)lm{z2Uv{z2) 
r\H 

^\Z{F)\-' X I K,{z,,Z2)fiz2)lmiz2fdv(z2) 

= I Kfe(Zi, Z2)/(Z2)Im(Z2)*i/t;(Z2) 
H 

because/eH^(r, x) ̂  ^^(H). To prove that Kfiz^, Z2) belongs to H^{F, x) as a 
function of Zj, we have only to show that K[(z^, Z2) belongs to H^ (H) as a function 
of Zj. It is well known that L^ifX) is the dual space of Lfc(H). A sequence {/„} in 
Ljf'(H) is called weakly* convergent if {(/„, S')H} is convergent for any ^GL^ (H). It 
can be proved that if a sequence {/„} is weakly* convergent, then there exists/in 
Lfc*(H) such that the sequence {(/„, ^)H} converges to (/, g)yi for any g ([Yoshida, V, 
Theorem 9]) and the function/is uniquely determined as a measurable function on 
H. Therefore we have only to prove that Y^y^r zW f̂cCT î̂  2̂)7(7» ^i)'^ is 
weakly* convergent for a fixed Z2, namely that for a fixed Z2eH and ^eLfc(H), 
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ZverJH ^W ^kiy^u Z2)Jiy^ ^i) *^(^i) Im(zif dv{z^) is convergent. Since 

J Xfc(yzi, Z2)Jiy, Zi) ^giz^) Imiz^fdviz^) 
H 

= J K,(r^Z2, z,)j{y-\ Z2r'g{z,)lmiz,fdv{z,) 
H 

= ( X ^ ) ( y - l z2 ) ; ( r - ^Z2 ) - ^ 

and Y^y^p x(y~^)(Kg)(y~^z2)j(y~\z2)~^ is absolutely convergent by Theorem 
6.3.2, we obtain the result. D 

§ 6.4. Traces of Hecke Operators (Calculation of Integrals) 

Before calculating the traces of Hecke operators, we express the dimension of the 
space of automorphic forms in terms of integral to illustrate our calculation. 

Theorem 6.4.1. dim^fc(r, x) = J K[{z, z)lm(zf dviz\ 

Proof. Let {/)(z)}J= i be an orthonormal basis of ^it(A X) with respect to the inner 
product (,)j^. Then we have 

K[{ZuZ2)= T,fj(z,)fjiZ2)-

Therefore 

dim^, (r ,x )= t ifpfj)r= j K[(z,z)lm{zfdv{z). D 
i = i r \H 

Now let zl be a subsemigroup of GL^ (R) contained in F (see §2.8). We assume x 
can be extended to a homomorphism of zl to C satisfying (2.8.1). As we showed in 
§2.7 and §2.8, we can let the Hecke algebra ^ ( r . A) act on ^^^(r, x)- Let T be a 
subset of A. We assume T is a union of finitely many double T-cosets and write 
T = ]J7= 1 rPiF. We identify T with the element Y7= i rpiF of ^ ( r , A) and let it 
operate on ^^(r , x)- More precisely, the operation of T on fe^k(r, x) is given by 

(6.4.1) f\T= t d e t ( a , ) * / 2 - i ^ A a , . (T= J J T a A 

For example, take T = ro(iV), A = Ao{N) and T= {aezlo(iV)|det(a) = n}. Then T 
corresponds to T(n) of ^(iV) = ^{rQ{N% AQ{N)). Our purpose in this section is to 
calculate the trace of the operator T on ^^^(r, x)-

For an element a in T, we put 

(6.4.2) K(z; a) = d e t ( a ) ' ^ - ^ ^ X,(az, z)7(a, z)-'^Im(z)* (zeH). 
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Theorem 6.4.2. Put t r ( r ) = trace (rj,$ f̂c(/:,ĵ )). Then 

tT(T)=\Z(r)\-' J X K(z;a)dv(zy 
r\H aer 

Proo/ Let {fi(z)}1= i be an orthonormal basis of ̂ ^^(r, x) and T = ]J^= i Ta .̂ Then 
we see that 

tr(r)= t Ui\TJi)r 

= Z I Z det(a,)'^-ix(a.)//(ai^);(ai,^)-V.WIm(z)'^rft;(z) 
'=1 r \H i = i 

J X ciet(a,.)'"' zCa.) K[{oijZ, z)j{oi,, z)-nm(zfdv{z) 
r \H J = i 

= | Z ( r ) r i j X det(a)'^-^z(a)X,(az,z);(a,z)-Mm(z)*rft;(z). D 
r \H «eT 

Now we are going to calculate the integral in the Theorem 6.4.2. The integrand 
is uniformly convergent on any compact subset of H by Theorem 6.3.2(3). There­
fore we can exchange the order of summation and integration if F \H is compact. 
In the case where F has cusps, we divide the integral into an integral on a compact 
subset and integrals on neighborhoods of cusps. For a cusp x of T, we put 
T^ = {ae T\ ax = x}. For a neighborhood U^ of x in H stable under T ,̂ we have 

(6.4.3) J X /c(z; a) dv(z) 

= J X K(z\ci)dv(z)-\- J Y. K(ssci)dv{z\ 

Let us consider the first term of the right-hand side. For a = , L we write c and 

d as Ca and d«, respectively. We note that if peF^ocF^, then Iĉ l = |c^|. 

Lemma 6.4.3. Assume oo is a cusp of F. Then for any /(>0), 

X det(a)'|cj-'^ 
<^€r^\{T-Tjir^ 

is convergent. 

Proof Let {a} be a set of complete representatives of F^\(T—T^)/F^ and T 
= ]Jj= 1 FoCj. Then we see 

Xdet(a)'|7(a,z)|-*^ X ciet(a)'|;(a, z)!"* 
{«} ocer^\T 

= t dct(oijy\j{aj,z)\-' Z \Ji%oijz)n. 

For a compact subset M of H, we put m = # {y e T | yM n M 7̂  0 }. Further, there 
exists, by Lemma 1.7.6, a positive number u satisfying that 7M c= {z e H | Im(z) < M} 
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for any yeF. Since 

I I \j{y. z)\-nm{zf'^dv(z)^m] J f""-^dxdy<ao, 
M yer^\r 0 0 

X?er„\r 17 (7» )̂ I * is convergent almost everywhere on M. Since M is arbitrary, the 
set of points z at which Yj{u} det (a)' 17 (a, z)| "* is convergent is dense in H. Let /i be a 

positive number such that roo{±l} = <±L. meZ>, and take the set {a} 

so that \dj < \hCg,\. Take a point z so that ^.{a} d t̂ (a) \j (a, z)|~* is convergent and 
\z\ ^ /i, then we obtain 

Xdet(ay|cJ-'^<|2z|'^ X ^et(«)'!;(«, ^)r '<00. D 
{«} {«} 

Lemma 6.4.4. For any two real numbers h{h>0) and I (l> 1/2), there exists a positive 
number C such that 

f {(a-^nh)^-hb^}-'<Cm~^'^' + \b\-''') 
n = - 00 

for any real numbers a and b. 

Proof. We see easily that 

n = - 00 n — 00 

Dividing the integral into the sum of jjj '̂ and J|° |̂, we obtain the estimate. D 

Theorem 6.4.5. Let x and U^ be the same as above. Then 

Proof Put 

J X K(Z; (x)dv{z) = X j K{z;(x)dv(z). 

z) = Siz;r,x)= X I'̂ fea)!-
«eT-Tx 

We have only to prove that S(z) is convergent on U^ and integrable on 
r^\C/^. Since S{z; T, x) = S((TZ; GFO'^, 00) for asSLjiU) satisfying ax = 00, 
we may assume x = 00. Let /i be a positive number such that r^'{±\} 

={±[J tJr̂ }̂-'̂ '̂ "̂ 
S(z) = \Z(r)\ Y. det(a)*-'|;(a,z)r'Ini(z)' 

OL&r^\{T-T^) 

X Y. \Kt,(<xz + nkz)\. 
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Now by Lemma 6.4.4, 

fl = — 00 ^ ^ f l = — 00 

^Ci{Im(az-z) -*- ' i + Im(az-z)-*} 

with a constant Cj . Since Im(az —z) = Im(az)H-Im(z)^Im(z), we see by 
Lemma 6.4.4, 

(6.4.4) S(z)^Ci(Im(z) + l) ^ det(a)*-M7(a, ^ ) r ' 
aer<,\(r-r,) 

^Ci ( Im(z)+l ) X detCa)* -̂̂  f |c,(z + «/i) + 4 r ' ^ 

^C2lm(z)-'^(Im(z)+ 1)2 X dct((xf-' \cj-' 
uer^\{T-TJ/r^ 

with a constant Cj . By Lemma 6.4.3, S(z) is convergent and bounded on U^. Since 
r^\U^ has finite volume, S(z) is integrable on r^\U^ and we can exchange the 
order of integration on the left-hand side of the equahty in the theorem. D 

Next let us investigate the second term on the right-hand side of (6.4.3). 

Lemma 6.4.6. Ifx is a cusp of F, then | r^ \ r ;c |<oo. 

Proof. If a and P are elements of T^ such that ocP'^eF, then (xP~^x = x, and 
therefore ap-^eT^. This implies | r ^ \ r ^ | ^ | r \ r | < o o . D 

Theorem 6.4.7. Let xbe a cusp off, and o an element ofSL2(U) such that o-x = oo. 
Then 

J X f^i^'. oc)dv(z) 

= lim X j K(z;a)lm(z)-^|7((7, z)|2^^r(z). 

Proof We may assume x = oo and c = 1 as usual. Since Im(z)~* is convergent to 1 
monotonously increasingly when s( > 0) tends to 0, we see 

j X K{Z; (x) dv{z) = lim j YJ 'C(Z; a)Im(z)"*^i?(z). 

We shall show that the order of integration and summation on the right-hand side 
is exchangable. Put 

S(z,5)= X |/c(z;a)|Im(z)-^ (5>0). 

We have only to see that 5(z, s) is integrable on r^\U^, Similarly to (6.4.4), 
we have 

S(z,5)^Ci(Im(z)^-^ + Im(z)-^) ^ dcm'-'\j((x, z)\-' 
aer„\r„ 
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with a constant Cj . Since (Im(z)^~* + Im(z)~*)| j(a, z)|"* is integrable on r^\U^ 
and r^\T^ is a finite set, 5(z, s) is also integrable on r^\U^. D 

Let Pp be the set of all cusps of F. Take neighborhoods U^ of cusps x so that 
they satisfy 

(6.4.5) Uy^ = yUAy^n and U^nU,- = 0 ifx7«^x'. 

Also take elements o-^eSL2(IR) so that a^x = oo and Imiay^yz) = Im((TjfZ) iyeF). 
We put 

Z ( r ) = r n R " , r 2 = y (T^-Z(T)) and T' = T-T\ 
xePr 

For a 6 r^, we put 

K(Z;OC) ( Z ^ 

(6.4.6) K:(Z; a, S) = -l 
U t/.\ 

I K(z;a)Im(z)-|;(<T„z)p' ( z e (J l / , \ 

Then by Theorems 6.4.2, 6.4.5 and 6.4.7, we obtain 

(6.4.7) | Z ( r ) | t r ( r ) = X j K(z;o^)dviz) 

+ lim J J K(Z; a, s)^f(z). 

Before calculating the right-hand side, we introduce notations on conjugacy 
classes. Let G be a group, and H a subgroup of G. We say two elements g^ and gj of 
G are H-conjugate and write giuGi^ if there exists an element h in H such that 
02 = h~^ g^h. For an element ^ of G, we put 

C H ( ^ ) = Cn,G(g) = {g'eG\g'Hg}-

The H-conjugacy gives an equivalence relation in any subset of G. For a subset M 
of G stable under inner automorphisms of G by elements of H, we denote by M//H 
the set of all /f-conjugacy classes in M, or M//H = M/g. 

Let us return to the present situation. Since yr^y" ^ = Ty^ for any yeP, both T^ 
and T^ are unions of F-conjugacy classes. For any CCET^WQ put 

r(ot)={yEr\ ccy = ya}. 

Then we can rewrite (6.4.7) and obtain 

Theorem 6.4.8. 

| Z ( r ) | t r ( r ) = X j K:(Z; a)^t;(z) 
oteT^f/r r(a)\H 

+ hm ^ j K:(Z; a, s)f/t;(z). 
*"*'̂ ^ oceT^//r r(a)\H 

Proo/ Let F be a fundamental domain of F. Then by the choice of a^, we see 
for 7 e r , 

j K:(Z; y"^a)')^!;(z) = j K:(Z; a)^t?(z). 
F yF 
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Therefore for each fixed (xeT^yV/Q obtain 

X J /c(z; p)dv (z) = X J Kiz; y " ' oiy)dv (z) 

= J K(Z; QL)dv(z). 
r(a)\H 

A similar argument is also appHcable to the terms for (xeT^. D 

The next step is the calculation of the integrals in Theorem 6.4.8 depending on 
the type of a. 

r . The case where a e Z ( r ) . Put a = Mj . Since r (a) = T, we see 

J K{z;oi)dviz) = ^^dQti(xf-'x{oi)a-'' J dviz) 
r(a)\H ^'^ r\H 

= ^W) sgn(a)* det(af/2 -1 t;(r\H). 

2°. The case where a is elliptic. Let ZQEH be the fixed point of a, and put 

P — 1 -° ' which maps H onto K. We see p(xp~^ = (̂ y, CeC) and 
LI - ^ o j L^ f j 

7 (a, z) = C(z —Zo)/(az —Zo). Put w = pz, w' = pz and write w = re'^ w' = r ^ e*̂ . 
Since the anharmonic ratio is invariant under the action of linear fractional 
transformations, we have 

Z — Z(X.Z — Zn W — W' 

OLz — z Z — ZQ rjC ^w — w' 
and therefore 

Since ^r^ (w) = 4r (1 — r^)" ̂  Jr^0, we obtain 

J /c(z; a)iit;(z) 
r(a)\H 

= ^ d e t ( a ) ' ^ - i ^ C " * j 4r(l-r2)*-2(l-^;j-ir2)-'^^rrf^ 

( / c - l )de t (a )^ -^^r^ f n ^^-2n r - i ^-^^ 

[r(a):Z(r)]f/-C 

3°. The case where a is hyperbolic and all fixed points of a are not cusps of F. 
Let Xi, X2G[RU {OO} be two distinct fixed points of a. Take (7eSL2{U) so that 
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(TXi = 00 and 0X2 = 0. Then 

We see r(a) = T^ ,̂̂ , by Lemma 1.3.3(3). If r(a) ^ Z(r\ then by Theorem 1.5.4(3), 

Gr((x)G-^'{±\}=ar,^^,^G-^'{±\} = \ ± 

with ueW such that |M|>1. Put w = oz = re . Similarly to 2°, we obtain 

J K{Z\ (x)dv(z) 
r(a)\H 

471 

k-\ 
~4^ 

- d e t ( a r - x ( « ) C - M - j ( ^ ^ - , ^ , . _ ^ _ . ) - ^ (r(a) = Z(r)), 

Assume r(a) = Z(r). Since the integral jr(a)\H '̂ (̂̂ J a)i/i;(z) is convergent, the 
integral j ^ r"^fir should be convergent, which is a contradiction. Therefore 
r(a) 7̂  Z(r). Now we can express the integrand as 

depending on ;;C~^<1 or ^C~^>1» respectively. Since the series is uniformly 

convergent, we have JJ t y-\ te ^^WJi dO = 0 by termwise integration. Therefore 

J K(Z; (x)dv(z) = 0. 
r(a)\H 

4°. The case where a is hyperbolic and at least one fixed point of a is a cusp of T. 
In this case, we have r(a) = Z(r) by Lemma 1.3.3(3) and Theorem 1.5.4(2), and 
therefore r(a) \H = H. Let x^ and Xj be the fixed points of a. Suppose only one 
fixed point, say X2, is a cusp of F. Let (7, rj and C be as in 3°, and U = U^^ a, 
neighborhood of Xj such that 

(Tl/ = {zeH| |z-ifl|<a} (a>0). 

Then similarly to 3°, we see 

J K(Z; OL, s)dv{z) 
r(a)\(H-t/) 

=—det(a)^ X̂(aK ^j ( ,^- . , .a_,- . j ^ e ±,T^ 
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which is not finite. Therefore, both x^ and X2 should be cusps of F. Let U^ be a 
neighborhood of Xv(v = 1, 2), and put H' = H —(C/i u 1/2)- Divide the integral as 

j K{Z; oi, s)dv(z) 
r(a)\H 

= J K(Z; a, s)dv(z)-\- j K{Z; a, s)dv(z)-\- J K{Z; a, s)dv(z). 
H' 1̂ 1 U2 

Let cr, f/ and C be the same as in 3°. We may assume \rj\ < \Q by exchanging x̂  and 
X2, if necessary. Put 

(Tl/i = {zeH|Im(z)>ri}, (TI/2 = {ZGH| |z-ir2l<r2} 

with positive numbers 2r2 < ri. Then 

j K:(Z; a, s)̂ t?(z) 

Similarly we have ^u2^(^'-> ^^ s)dv(z) = 0. Next we see that 

J K(Z; OL, s)dv(z) 

H' 

= —A—det(af ^%(a)C M ^_. .. 37̂  ^-777 f — 
471 ^' ' i V/C ^e'^-e ' V sm^^ 2r2sin0 r 

Integrating it by parts, we have 

_ i /--fc jr / pie_p-ie \k-i ^ie, -id 

Expanding the integrand as the uniformly convergent series in e^^^ with the 
constant term — 1, we obtain 

jK(z;a,s)dv(z) = -dot(a)'-'m^i^^= - ^ p L y r sgn(Cf, 

and therefore 

r(a)\H I** 1̂ 

5°. The case where a is parabolic. Let x be the fixed point of a, and (T an element 
of SL2iU) such that GX = 00. Put 

• = K J ] aa(T-^= ; I (C,2G(R). 
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Suppose that x is not a cusp of F. Then r(a) = Z{r) by Lemma 1.3.3(2), and 

J K(Z; <x)dv{z) 
r(a)\H 

/ z-z V 
Since I z—7737 =y*(y —i>lC 72) *()̂  = Im(z)), this integral is not finite. 

\Z — Z + AL, J 
Therefore x must be a cusp of F and r(a) = T .̂ Denote by T^ the set of parabolic 
elements of T, and put 71=7^^ T^ for each cusp x of T. Since r , = r(a) for a e r | , 
any two elements are not T-conjugate. Therefore we can take the set (Jxerxp^^x ^s 
a complete set of representatives of T^l/F. Since r\Pj^ is a finite set, we see 

^^^ Z J '̂ f̂e <̂» s)^i^(z) 
s-^+0a6rP//rr(a)\H 

= Z lin^ Z I K;(Z; a, s)f/i;(z). 

Weput (Tr^<T"^{±l} = < ± meZ > (/i>0) for each xePj^as usual, and 

/i(a) = AC " ̂  for a e TjP. Then we see 

J K(Z\ a, s)dv(z) 
r(a)\H 

471 

Now 

-det (a) ' - 'x (a) r ' | ( ^ - ^ Y l m ( 2 ) - d y ( z ) . 

j ( — ! ~ ! , J Ini(z)-'<it)(z) 

}ixf/-2-(j;-,7.(a)/2)-'dj' 
0 0 

= ih{2ilh{oi)f^^ l(itY-^-'(it^\)-Ht 
0 

= /i(2///i(a))^-'̂  J M*(l -uf -^ - 'du (it = (1 -u)/u) 
c 

= /i(2i//i(a))*-'^ j M*(l -M)'^-2-*dM 

c 
1 

J 
0 

;i(2i7;i(a))*-' ^r(s+i)F{k - s - i)/r(/c). 
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Here C is the upper (or lower) half of the circle with center 1/2 and radius 1/2. Thus 
we obtain 

1̂ ^ Z i ^i^'y ô> s)dv{z) 

= lim ^^2^^'h'r{s-\-l)r(k-s-l)/rik) 

= lim - ^ X zWsgn(C)Met(a)*/2-^(i/i//i(a))^^^ 

Put m(a) = /i(a)//i and sgn(a) = sgn(C), which are independent of the choice of G. 
Then we obtain 

lim Yu J '^fe ^^ s)dv(z) 
s^+0a6rv/rr(a)\H 

= lim ; ^ X x(a)sgn(a)*det(a)*/2-i(j/m(a))^-'^ 
s-*+0 ^'^(xeTP//r 

Summing up the calculations in 1° through 5°, we obtain a formula for tr(r). To 
state it, we put 

Z(r) = Tn R ^ r" = {a e r | a is elliptic}, 

T^ = {aer|a is hyperboHc, and all fixed points of a are cusps of T}, 
r*' = {aer|a is hyperbolic, and no fixed point of a is a cusp of T} 

and 
r'' = {ae r|a is parabolic, and the fixed point of a is a cusp of T}. 

Then 
T = Z{r) u T̂  u r'' u r*' u r̂ ' (disjoint union). 

We note that if r\U is compact, then 7^ = 7^ = 0 and T=Z(r)^r^T^'. 
Further for an element aeGL2 (R), we use the following notations. 

(6.4.8) We denote the eigen values of oc by rj^^ and Ca- V ^ ^^ elliptic, then take 
(7eSL2(U) so that 

aOLG 
J r COS0 sin^n 

|_ —sin0 cos^J' 
and specify rjg, and Ca by 

(6.4.9) For a non-elliptic a, we put sgn(a) = sgn(C«). 

(6.4.10) Ifoc is parabolic, then rjg^ = Ca' Denote the fixed point ofoc by x, and take 
aeSL2(U) so that (TX = oo. Let A be a discrete subgroup ofSL2(U)^. Then 

aaa -KJ} --.*..={4;-]H 
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with C = Ca ̂ ^d h>0. We put 

m(a, A) = A//iC, 'w(a) = m(a, r(a)). 

We note m(a, A) and m(a) are independent of the choice of G. NOW using these 
notations, we can write the trace of T as follows. 

Theorem 6.4.9. 
tr(r) = ro + r, + r, + p̂, 

where 

«̂ = ^ ~ ^ m r ? S :^sgn(a)'det(a)*'^-S 

a€7^//rin°')l'/.-C 

t,= lim ^ X ;^sgn(a)Met(af/^-H^ym(a))^^^ 

The terms r̂  and tp are simpHfied if T and / satisfy the following condition: 

(6.4.11) there exists an element g in GLjCIR) such that det(g) = — 1 and satisfies 

gocg~^€T and xigccg'^) = i{ci) forallcceT. 

In the most cases we apply the formula, (6.4.11) is satisfied. In fact, if T = ro(iV), 
A = ^o(^) aî d X is the character defined by (4.3.2), it is satisfied by taking 

^ = ["J ?]• More generally, let R be an order of level N of an indefinite 

quaternion algebra, F = FR and A=Ag^. Take a maximal order i?o including R 
and apply the approximation theorem (Theorem 5.2.10) to î o ^nd N with n = — 1 

andjS r - 1 0 
^ L 0 1 

for all prime factors p of N. Take P in Theorem 5.2.10 as g, then 

(6.4.11) is satisfied for the character x defined by (5.3.6). 

Theorem 6.4.10. If T and x satisfy the condition (6.4.11), then 

2„,^//^|r(a)| fy„-C« ' 

^p = - ^"^ J^VTFVi I z(S)sgn(a)*det(a)*/2-Mm(a)ri-. 
s - ^ + o 4 | Z ( i jl agj-P///̂  

Proo/ Let g be an element satisfying (6.4.11). For each OLET, we put cc' = gocg~^. 
Then a' is of the same type as a, and if a is either elHptic or parabolic, then a and a' 
are not T-conjugate by Lemma 1.3.5. First suppose oceT^. Take c, ŷ„ and C« as 
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in (6.4.8). Put <T' = « r ^" ' ^''®" 

, , ,_, r cos(-0) sin(-e)"| ^ . ^ 

- « - ' = l - s i n ( - 0 ) c o s ( - 4 '''^^' ' " ' '̂• = ' ' -

Therefore we have 

rj'.-' ^ n\-' nl-'-^\-' 

Pairing a and a' in the summation ^aerv/r* we obtain the formula for t^. Next 

assume cueT^. Let x, <7 and h be the same as in (6.4.10). Put ô ' = o-̂ ~ ^ 

and x' = ^x. Then x' is the fixed point of a', and 

This implies m(a') = — m(a). Pairing a and a', we have 

5-+o47r|Z(r) | 

X Z x(a)sgn(a)Met(af2-i|^(Q^)|-i-s 

Since we can take the set (JxerxPr ^^ ^̂  ̂  complete set of representatives of T^l/F, 

X S Z ;d^sgn(a)*det(a)"^-' 

xsr\Pr!ieTlir^ 
X Z ' Z(r)sgn(y)'|m(a) + m(7)|-i-'. 

Here Z ' implies that we omit the term m(a) + niy)=0. Let y,, 6 r , be a generator of 
r , -{±l}/{ + l}.Then 

E'z(v)sgn(y)'|m(a) + /n(y)r'-^ 

= \Z{n\ E ' x(>^"sgn(yonm(a) + n r l - ^ 
n=—oo 

and it has a pole of order at most 1 at s = 0 by Theorem 3.2.2. Further we see that 

- ( i ' " ' ' + ( - i V ' ) = - s + fl2S^ + a3s3+ 
71 

Therefore we obtain the formula for t„. D 
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For the further calculation, we arrange each term. For CLET^KJT^KJ T^, we put 

fc(a) = ^g„°„).min{ICJ,l-,jr' 
IC-'/J 

(aer ) . 

and 

/(«) = 

Corollary 6.4.11. We have 

and 

-sgn(a)*det(a)*/2-i {OLET^ 

l/(2|r(a)|) ( a e n , 

l/|Z(r)| (a e n 

mZ(r)V\m(0L)r') {oLETn. 

te=- 1 xm(oi)m\ 
0Ler//r 

(xeT^lir 

tp= - lim X Z(a)fc(a)/(a). 

If r\H is compact, then t^ = tp = 0. 

§6.5. Traces of Hecke Operators (Algebraic Calculation) 

In the rest of the chapter, we apply the general formula of traces of Hecke operators 
in §6.4 to Fuchsian groups obtained as unit groups of norm 1 of indefinite 
quaternion algebras. We use the notation in §5.3 for quaternion algebras. 

Let B be an indefinite quaternion algebra over Q with discriminant dg, R Sin 
order of B of level N, and 

rj, = {yeR^\Ns{y)=l}. 

Let r = Lir^iarjj be a (disjoint) union of finitely many double T ĵ-cosets included in 
AR. We identify T with the element SruaTu in ^(r^, A^). Moreover we put 

T^=Uj,TU^. 

It is a disjoint union of finitely many double UR-COSQIS by Theorem 5.3.5. We 
identify T̂  with the element ZC/jj a l/^ of ̂ (l/^j, Djj). Note that T corresponds to T^ 
through the isomorphism of ^(r^, zĵ ) onto M(Uj^,Dj^). Let ;f be a Dirichlet 
character mod N. Then x can be considered as a character of T̂  by (5.3.6). The 
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purpose of the remaining sections of this chapter is to obtain a computable form of 
trace formulae of Hecke operators T= T{n) defined by (5.3.12) operating on 
^ki^Ri x)' Hereafter we also denote Fj^ and U^ simply by F and 17, respectively. 

For the convenience of the reader, we recall the notation in the case of modular 
groups. In this case, B = M2(Q) and 

UR = GL^(U)XY[R; ^B 

c = OmodAf/ }• 
A » 

where 
fffl hi 

eM2(/ , ) 

Therefore Tjj = L/̂ j n 5"" = FoiN), Moreover 

D„ = 

c = OmodNZ, 

D^ = (GLUU) X llD,)nGL2iQA 

ip\N) 

As for Hecke operators, we see 

r(n) = {a6ZloW|det(a) = n}, 

where 

T{n)^ = U^T{n)U^ - {GmU) xl[\T(n),\nGL2{QA 

r(n) ={a^EDJdet(aJenZ;} . 

Now we return to the initial situation in this section. We are going to calculate 
rV/r , T^//F and T^/fF, For an element a of B^ ni^ not contained in Q, we put 

C(a) = CBx(a) = {^a^-i |^eB^}. 

Lemma 6.5.1. (1) Assume OLET^^T^KJTP. Then 

an imaginary quadratic field K, if cue T^, 

Q [ a ] ^ < Q x Q , if (xeT\ 

Q[£] (8̂  = 0), if oceT^, 

(2) Let S be T\ T" or T^. Then for aeS^we have 

SnC(oL)=TnC(oi). 
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Proof. (1): Leif(X) (eQ\_XJ) be the principal polynomial of a. Then 

Q[a]^Q[Z] / ( / (X)) . 

By definition, f(X) = 0 has two imaginary roots, two distinct real roots, or a 
multiple real root if a is elliptic, hyperbolic, or parabolic, respectively. This implies 
(1). (2): Since the type of any conjugate of a is the same as a, the assertion is true for 
5 = r^ or TP. Suppose S = ^^ If T* 7̂  0 , then B = MjCQ), and therefore 
Pr = Q u {00}, and any element of B '̂  = GLjCQ) maps Pf onto itself. Therefore if a 
is contained in T*, all fixed points of conjugates of a by elements of B"" are also 
cusps of r . This impHes the assertion for S = T*. D 

Since 
k((x) = k(S(xS-^) for any SeB\ 

the above lemma impHes that if 5 = ^^ T" or T^ then 

^6.5.1) X xm{oi)m= X fc(a) s xmim 
oceSf/r aeSZ/B** /56(rnC(a))//r 

For any element ^ of 5"", (Q[a] n <5" 7̂?̂  is an order of Q [a]. For each order r of 
Q [a], we put 

Ci(x,x) = {SoLS-^\3eB\ Qloc']nS-^RS = x}. 

Since Ql(x]nS~^RSis determined by j5 = ^a^ " ^ and is independent of the choice 
of S by Lemma 5.2.2(3), we see 

(6.5.2) C(a) = L[C(a,r), 
r 

where r runs over all orders of Q[a]. Suppose OLET^KJT^. Let r be an order of 
Q[a], and p = S(xd~^ (SGE"") an element of C(a,r)nr. Then p is elliptic or 
parabolic, and Ngiej^O for any eeQ[j5]. This combined with Lemma 5.2.2(3) 
implies 

r(P) = {yEr\yP = Py} 

We put 

' l /2 | r^ | (a e n , 
(6.5.3) /(r) = { 1/2 (a e n 

l/2|m(a,r")|^-'^ (oceT^). 

Then we see 
l{p) = /(r) for any î e C(a, r), 

since |Z(r)| = 2. Assume TnC(oc,x) ¥" 0 and let P = Sixd~^ be an element of 
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rnC(a , r ) . Then PeSxS~\ and therefore, aer. This impHes that if TnC((x,x) 
# 0 , then r 3 Z[a]. Therefore we can rewrite (6.5.1) into 

(6.5.4) X mmm 
(xeS//r 

= Z m I /(r) I z(«. 
<xeS//B'' Z[a]cr /36(rnC(a,r))//r 

We are going to locaHze the calculation of each term. 
Let K be an algebra over Q of dimension 2. We denote by Ni^{x) and trĵ (x) the 
determinant and the trace of the regular representation of x, respectively. When K 
is a subalgebra of a quaternion algebra B over Q, ^^(x) and trĵ (x) coincide with the 
reduced norm and the reduced trace of x in B. When K is a quadratic field, Nfr and 
trĵ  are usual ones. We note that N^ and trĵ  can be extended to the mappings of K^ 
into Q^ in the usual manner. For an order r of K, we put 

r^ = r(8)zZ^, 

rj;+ = {(ajGr^^|det(a«,)>0}, 
where 

Moreover we put 
h{x) = \K:i/(xi^'K^)l 

and call it the class number of r. 
Now we return to the calculation of (6.5.4) and put 

CAoc) = Cs:^{oi) = {hoih-'\heB:i}, 

CAoi.x) = {h(xh-'\heB:i,Q^loc-]nh-'R^h = x^}. 
Obviously 

C(a)c:C^(a), C(a, r) c= Q(a, r). 

Lemma 6.5.2. Let a be an element of T^KJT**KJ T^, and 6 the natural mapping of 
C(oc)//r into Q(a)//(/. Then 

(1) 0 is surjective. 
(2) Ifg is an element ofC^OL, x) with an order x of Q[a], then 

\e-HCvig))\ = Hxi 
where 

Cu{g) = {ugu-'\uEU}. 

Proof Let g = hoih~^ (heB^) be an element of C^(a). Since h = uP with ueU and 
peB"" by Theorem 5.2.11, we see that 

This impHes (1). For an element { of 5"", we see that 
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Moreover for two elements <̂, rjeB'', 

CAioir')=CAwri-')of^Qloir=rrjQloir. 
Since 

we see 
\0-HCv(9))\==\r\(UhQAoir nB^)/Qlocr\ 

= \r\(UPQAoirr^B^)/Qlocr\ 

= \r\(UQAPocr'rnBn/QlPar'ri 

Now we are going to prove that if £ is a commutative subgroup of B^, then 

(6.5.5) | r \ ( l /£nB^) / (£n5^) | = |£:/(£nL/)-(£n5^)|. 

In fact, Theorem 5.2.11 implies that for any element t of £, there exists an element u 
of U such that 

uteUEnB''. 

Let fi, 2̂ be two elements of £, and MJ, M2 two elements of U. Assume that u^ti, 
U2t2eUEnB''. Noting that T = C / n 5 \ we see that 

ru,t,(EnB'') = ru2t2iEnB'')otit2^e(EnU)-(EnB''). 

This implies (6.5.5). Since 

QALM'^T r^B'' =QiM~'V. 

we can apply (6.5.5) for E = QAIP<^P~^^ "", and see 

\0-HCv(9))\ = \QALM-'rmAlM-':inuyQiM-'r\ 
= |O^MV(O^Mnj?-^L/)?)-Q[a]^|.. 

Now assume that ^GC^(a, r) with an order r of Q[a]. Then 

QAMnp-'up^x^^, 
since 

p 

Therefore 
l^-HCt;(^))l = | O ^ M V r ; + - Q M ^ | = /i(r). • 

Since T^ is a union of finitely many double l/-cosets, 6 transforms 
(Tn C(a, r))//r onto (T^n C^(a, r))//l/, and therefore, by Lemma 6.5.2, (6.5.4) is 
rewritten into 

(6.5.6) X z(«)Ma)'(a) 
(xeS//r 

j ; fe(a) X '(»)''(») Z Z(3)-
aeS//Bx Z M c t g€(r^nC^(a,t))//l/ 
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Now let V be either a prime number or oo. We put 

^v — ^v TR^ , 

C (̂a) = C^. (a) = {xax" ^ IX 6 5 ; }. 

For a prime number p, let r̂  be the closure of r in B^, and put 

Cp(a,r) = {xax-M^eB;,Qp[a]nx-^/?pX = rp}, 

C^(a,r)=C^(a). 
Moreover we write 

R:, = GLim 
Then 

V 

and 
(r,nQ(a,r))//C/ = n{(7;nC,(a,r))///?:;}, 

V 

where the product is taken over all prime numbers and 00. Therefore we obtain 

(6.5.7) Z M=Y\{ Z iJg^) 

Here if i? is a prime number prime to iV or 00, then we understand Xvidv)= 1-

§ 6.6. Local Conjugacy Classes 

In this section, we calculate each factor in the right-hand side of (6.5.7). First let 
t; = 00. Since 

C^(a,r) = C«,(a) and T^ = R^ = GmR\ 
we see 

(Too n Cooioi, x))l/R^ = {xax-' \ x e GL2(M)}//GL+(R). 

Since GL^(IR)\GL2(IR)/Z(a) corresponds bijectively to the set in the right-hand 
side, Lemma 1.3.3 implies that 

(6.6.1) | ( r^nC^(a , r ) ) / / i ? i l= |^ ^^^^^^ 

Next suppose v = p, a prime number. We note that any algebra L over Qp of 
dimension 2 is isomorphic to one of the following: 

r a quadratic field Kp over Q^; 
2° Hp = QpXQp; 
3° Ep^QplBlB' = 0. 

In fact, if X is a generator of L over Q^, and/(X) is the defining polynomial of x, 
then 

L^QplXV(f{X)). 
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We get the above three cases 1°, 2° or 3° according as the equation/(X) = 0 has no 
roots in Q^, has two distinct roots in Qp, or has a multiple root in Q^, respectively. 
When Lis Kp, Hp or Ep, we put 

(6.6.2) 

the ring of all integral elements of Kp (L = Kp), 
^ p X Z , {L = HpX 

Iple] (L = Ep). 

If L is Kp or Hp, then o^ is the maximal order of L. Further we obtain 

Lemma 6.6.1. Let L he Kp, Hp or Ep. Then any order of L is 

^p-^fOp, 

where e is an integer. Moreover e^OifLis Kp or Hp. 

Proof. Let r^ be an order of L. Since Z^ is a principal ideal domain, we can write 

with an element ueXp. Since 

Xp^Zp^ZpU 

Qptp = QpOp = L, 

there exists an integer e such that 

ueZp + p^Op and u^Zp + p'^^o^ 

If L is Kp or Hp, then we see easily that e^O. D 

Now let p be a prime number prime to dg. Then Bp = M2(Qp) and 

(6.6.3) - { [ : I] €M,(Z, ) c = 0 mod ' •} 
with a non-negative integer v. Moreover let N(Kp) be the normalizer of Rp, or 

(6.6.4) N(R,)= {geGL2(Q,)\gR,g-' = R,}. 

Lemma 6.6.2. We have 

' Q ; R ; if V=0, 

N(RJ=-{ Q;«;^[pv J ]Q;« ; «/ v>o. 

Proof First suppose v = 0. Then Rp = M2(Zp). For an element a of GL2(Qp), there 
exist Ui,U2eGL2(Zp) such that 

WiaM2= Q / (eJeZ) 

by elementary divisor theory. Therefore (xRp(x~^ = Rp if and only if e =/(namely 
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OLEQp Rp ). Next assume v > 0. Since there is a unique pair (R^p\ Rf^) of maximal 
orders of M2(Qp) such that 

by Lemma 5.3.1, any element o{N(Rp) induces a permutation of {R^p\ Rf^}- Since 
we can take 

for (R'^K R^p^) in our case, we see 

[N(R , ) :Q;R; ] = l o r 2 . 

' • [ : • ; ] " On the other hand, ^ is an element of N(Rp) but does not belong to Qp Rp , 

so that 

N{RP)^Q;R;. 

This impHes the assertion. D 

Let a be a non-scalar element of Rp such that det(a) ^ 0, and 

UX) = X^-tX + n (t.neZp) 

be the principal polynomial of a. Let r̂  be an order of Op [a] including Tp[ix\. 
We put 

[rp:Zp[a]]=p^ (p ^ 0), 

then Lemma 6.6.1 implies that r̂  is uniquely determined by p. Put 

(6.6.5) (2(a, Xp) = {^eZpUM) ^ 0 modp^-^^^ t-U^O modp^}. 

Furthermore, for an element { e Q(OL, Xp\ we put 

(6.6.6) ^^=[-P4,) uy. 
Since/,(fif^) = 0, wesee 

^ ^ e C » = {xax-MxGGL2(Qp)}. 

Lemma 6.6.3. Let Rp he an order o/M2(Zp) defined by (6.6.3), a a non-scalar element 
of Rp, and Xp an order o/Op[a] such that 

t p ^ Z p M and [rp:Zp[a]]=p^ (p^O). 

For an element g of Cp((x\ the following four statements are equivalent. 

(1) geCp(ci,Xp). 
(2) geZp-^ p'Rp, and g^Zp-^ p^^' Rp. 
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[:a (3) Ifg = \ ^ ^ L then 

b = a-d = Omodp^, c = 0 mod p^ •" \ 

and any one of the following three conditions is satisfied: 

(i) b^Omodp^^'; 
(ii) c^Omodp^^'^'; 

(iii) a-d^Omodp^^K 

(4) There exists an element {e^(a, r̂ ) such that g is N{Rp)-conjugate to g^. 

Proof ( l )o(2): Put g = hoch-^ with heGL2(Qp). Then 

geCpioi, Xp)<>Qplg;\ nRp = hXph~^ 

oZplg:\ = Zp-¥Qplg-]np'Rp 

by Lemma 6.6.1. This implies the equivalence of (1) and (2). (2)o(3): This follows 
from the definition of Rp. (4)=>(2): Suppose that g is Ar(i?p'')-conjugate to g^ 
with an element ieQ(ix,Xp). Since g^ always satisfies (3), it does (2), so that 

V n ^^ V A ^̂ ^̂  satisfies (2). This combined with Lemma 6.6.2 implies 

that g satisfies (2). (3) => (4): Suppose that g satisfies (3). First assume condition (i), 
and put 

b = p^b^ (b^eZ;). 

Since g is conjugate to a, we seeX(S') = 0. In particular, 

t = a-\-d, n = ad — bc, 
so that 

/ , (a)=-Z)c = 0modp^•^2^ 
and 

r - 2 a = 0modp^. 

Thus aeQ{<x, Xp). Moreover we see 

ugu ^ = g. ("[: :.]-'•) 
Next suppose that g satisfies condition (ii). Since v ^ U' ^ satisfies 

[_P OJ LP OJ 
condition (i), it is 1?^-conjugate to g^ with some <^ei2(a, r^). Lastly assume 
condition (iii). We may suppose that 

b = Omodp^-'\ c = Omodp^-'"-'^ 
Then 

_i [a-\-c —a-\-d-\-b — c 
ugu --[': c-^d 
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withM= ^ G/^;,and 

-a + d-\-b-c^Omodpf''^K 

This implies that ugu~^ satisfies (i) and it is Rp""-conjugate to g^. D 

If V ^ 1, we put 

(6.6.7) w=|^^, l\eNiR,). 

Then for iEQioL,Xp\ 

(6.6.8) wg^w =[^v+p ^ J ' 

and both g^ and wgf̂ w"̂  belong to Cp(a, r^). Lemma 6.6.3 implies 

(6.6.9) C>,r , ) / /K, - | { ^ ^ , , , ^ , - . | ^ , Q ( „ , , ^ ) } / / ; , ; , ( ,^1) . 

Lemma 6.6.4. Assume v ̂  1. TTien ̂  = eCp(a, r^) is Rp-conjugate to some 

g^ (^€0(a, rp)) if and only if 

fe^Omodp^-"^ or a-rf # Omodp^-'^ 

Proo/ The if-part was already proved in the proof of the (3) => (4) of Lemma 6.6.3. 
Now assume that 

h = a-d = Omodp''^\ 
and 

ugu-'=g^ r c' ^. Mp^^^^(<^'^p)) 

Since c = Omodp""^^ by Lemma 6.6.3, we see 

g^ = ugu~^ 

^ r* {-a'b'ia -d)^ a'H}l(a'd' - b'c')^^^.^p 

Since 

-a'h'{a -d)-\- a'^h = 0 modp^-'S 

this contradicts the definition of ^ .̂ D 

Lemma 6.6.5. Let ^, r\ he two elements ofQ((x, Xp). 
(I) g^ and g^ are Rp-conjugate if and only if 
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(2) Suppose V ^ 1. Then g^ and vv̂ ^w"̂  are Rp-conjugate if and only if ^ and rj 
satisfy the following two conditions: 

(i) t^-4n^0modp^^^' or fMi^Omodp'^^''^\ 
(ii) ^ = t-rjuiodp^^P. 

Proof (1): First suppose ^ = ri modp^"^ .̂ Then 

and 
ug^u ^ = g^. 

Conversely assume g^ = ug^u ^ with ueRp . Since 

g^-i = Omodp'', 
we see 

p-^(g^-i)^Rp, 
so that 

p-'{g,-i) = up-^(g^-i)u-'eRp. 

Since u is congruent modp" to an upper triangular matrix, we get 

p-^(^-^) = Omodp\ 

Thus rj = i modp"'^^. (2): By definition, we have 

»..»--[;.-.: -""'̂ -̂'''j.c,,...,.. 
By Lemma 6.6.4 and an argument similar to (1), g^ and wg^w~ ^ are Rp -conjugate if 
and only if they satisfy 

(i') fM # Omodp -̂'̂ p-Hi or 2?/ - t # Omodp^-'S 
(ii) i = t-rimodp'^^. 

Since 
t == rj-\-{t — rj) and ri{t —rj) = n modp^'^^^, 

we see 
t^-4n = i2rj-tfmodp''^^^. 

Therefore (i') is equivalent to (i). D 

Now we assume ^(a, r̂ ) # 0 and let i be an element of Q((x, r̂ ). Then 

r^-4n = (r-2(^)2 modp^-'^p 

Therefore we obtain 

(6.6.10) r2 -4n = 0modp2p 

by the definition of Q{a, Xp). Conversely suppose that a satisfies (6.6.10). If {eZ^ 
satisfies 

/„({)^Omodp^^^ 
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then 
r - 2 ^ = 0 mod p^. 

Therefore 

,^^,,, ^ , , f {^GZ, | / , (^)^0modp^ + 2^}, I / r 2 - 4 n ^ 0 m o d p 2 ^ 
(6.6.11) Q(<x,Xp)= < . 

I 0 , otherwise. 

Further we put 

(6.6.12) (2'(a,r^) = 

_ r {<JeZp|X((^) = 0modp^-'2^-'^}, i / f ^ - 4 n = Omodp^^-'i andv^h 

1 0 , otherwise. 

Then we have the following 

Theorem 6.6.6. Assume v ^ 1. Let OL he a non-scalar element of Rp, and fo,{X) 
= X^ — tX -\-n the principal polynomial of a. For any order XpOf Qloc] including 
Zp[a] such that 

[rp:Z,[a]] = p ^ 

we can take as a complete set of representatives of Cp{oL, Xp)//Rp the set 

where Q/p^'^^ (resp. Q'/p^'^^) is a complete set of representatives of Q{a, r^) 
moA p'^-^Piresp. r2'(a, tp)mod/7^+^). 

Theorem 6.6.7. IfRp = M^{lLp\ then |C^(a, r^)//K; | = 1. 

Froof. Since any order r^ of Qp[a] is a Z^-free module, we can write 

tp = ^ p [ « with j?eQp[a]. 
Put 

P = a-\-b(x {a,beQp). 

Then Cp((x,Xp)//Rp corresponds bijectively to Cp(P,Xp)//Rp through the corre­
spondence "^ !-• a + bg'\ Since 

[ r p : Z , [ « ] = l, 
we see that 

p = 0, and ^(ftrp) = Zp. 

Therefore by Lemma 6.6.5(1), we obtain 

ic,(a, X,)//R; I = |c,(A X,)//R; \ = i. n 

Next we consider the case when p divides dg. Then Bp is a division algebra, and 

K^ = {ae5^|iV5^(a),trB,(a)6Z^} 

is a unique maximal order of Bp by Lemma 5.2.3(1). Therefore, for any non-scalar 
element a of B^ , we see 

Cp(a) nRp^ 0 if and only if a e Rp. 
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Let a be a non-scalar element of Rp. Since Qp[a] nRp is a. unique maximal order of 
QpM» we see 

Xp is the maximal order of Qp[a], 
otherwise. 

(6.6.13) |CJa,rJ//fi; | fl, if 
[0, ot 

Since any two-sided ideal of R is given by nlRpinlRp = pRp, n ̂  0), and 

Bp= [jn;"R, 
n = 0 

we get 

(6 6 14) B = I'^p^^^^P' ^^P ramifies in Q^M, 
' \Qplor\Rp^npQpl(x]Rp, otherwise. 

Since p ramifies in Bp by assumption, p does not spHt in Qp[a]. Taking this into 
account, we obtain the following 

Theorem 6.6.8. Let Bp be a division quaternion algebra, Rp the maximal order ofBp, 
and a a non-scalar element ofRp, For an order Xp o/Qp[a], we have 

C>,rJ//R;= ̂  

0, ifXp is not maximal, 

{a}, ifXp is maximal and p ramifies 

in Qp[a], 

{a, UpOLUp^}, ifXp is maximal and p remains 

prime in Qp[a]. 

Now using (6.6.1), Theorem 6.6.7 and Theorem 6.6.8, we calculate the right-
hand side of (6.5.7) and obtain 

(6.6.15) Z x(9) = vYl\ I Zp(«)+ Z Xpit-i) 
ge{T^nCAo^,x))//U 

(6.6.16) 

Here N is the level of R;t = tr(a); Q = 0(a, r̂ ), Q' = Q'((x, Xp); and 

0 if a € r ,̂ Xp ^ max for some /7|JB, 

2̂ +" if a € ^^ Xp = max for all p\dB, 
1 if Of € r \ 
2 if a e T ,̂ 

where the integer M for a e T^ is given by 

(6.6.17) u — #{prime numbers unramifled in Q[a]}. 
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§6.7. Class Numbers of Orders of Q[a] 

In this section, we calculate the class number h{x) of an order r of Q[a] . 

Lemma 6.7.1. Let p be a prime number. 

(1) Let K = Q(.^) be a quadratic field with discriminant d, XQ the maximal order 
ofK, and x an order ofK. Put 

and 
Xp = X®jI.p. 

If 

then 

[r„Vt;] = P ^ ( l - ( ^ ) p - ' ) 

where (—) is the Legendre symbol. 
(2) Let 

XQ=ZpXZp, 

and X be an order of Hp. If 

[ro:r] = p̂  (e > 0\ 
then 

[ro^r'<]=p»( l -p- ' ) . 
(3) Ut 

£p = Q , M («' = 0), 

and Xi^Xzbe two orders of Ep. Ifx^ ^ X2 and 

[ri:r2]=p^ (e>0) , 
then 

[ r r : r n = P'. 

Proof We begin by proving (2). By Lemma 6.6.1, we have 

x = Zp-\- P^XQ = {(a, b)eXo\a = b modp^}. 
Since 

to" = z ; X z ; , 
we see 

xs/x^^(z/p^zr 
by the correspondence "(a, b) i-> a/b'\ Therefore we get 

Next let us prove (3). We can write 

ri = Z. + p-̂ Z_8 and X2 = Zp +p'^-^ZpS 
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with some integer/by Lemma 6.6.1. Thus 

r r = Z ; + p ^ Z ^ £ and x^ =Z; -h p'^-^Z^e, 
so that 

through the correspondence "a + p^bsh-*b/a'\ Therefore we get 

[tr:tn=P'. 
Lastly we are going to prove (1). Put 

If p splits in K, then 

so that this case is reduced to (2). Assume that p remains prime or ramifies in K. 
The Kp is a quadratic field over Q ,̂ and 

by Lemma 6.6.1. Then the sequence 

1 ^ Z;/(1 + p^Zp) -. ro ,̂/(l + p^xop) - toVr; - . 1 

is exact, 

|roV(l+P^WI = |(ro>^ro,)^| 

{p^ (̂l — p^^) (p: remains prime), 
p^ (̂l —p~^) (p: ramifies) 

and 
i z ; / ( i + p^Zp)\ = i(z,/p^z,)^ I = p%i-p-'\ 

so that we get (1). D 

Class numbers are given by the following 

Theorem 6.7.2. (1) Let K = Q{^) be an imaginary quadratic field with discriminant 
d, XQ the maximal order of K. If x is an order of K and 

[ro:r] = n, 
then 

Hx) = ''•"!?.('-(?>"•) 
[ro^:t^] 

where hj^ = /i(to) is the class number of K. 
(2) Let H = Q X Q, and x an order ofH. If 

[Z X Z:r] = n, 
then 

h(x)=nY\(l-p-'). 
p\n 
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(3) Let E = Q[£] (e^ = 0). Ifx is an order of E, then 

h(x)=L 

Proof. (1): By definition, we see that x^+ =x^ and 

= V l r o V r ; i - | ( K ' ' n r o ^ ^ ) / ( K ^ o r ; ) r ' . 

Since K is imaginary, we see 

X^nro '^ = ro' and K " n r ; = r \ 

This combined with Lemma 6.7.1(1) implies (1). (2): Put 

ro = / X Z. 
Similarly as above, we have 

h(x) = \H:i/H^xSA^\'\xSAjxl.\'\{H''nx^^^)/{H^nx^^)\-K 

Lemma 6.6.1 implies 

r = {(a, b)exQ\a = b modn}, 
so that 

H^nro^^ = / / ' ^ n r ; = { ( l , l ) , ( - l , - 1 ) } . 

Moreover, since 

Q; = Q ^ z; , 

we see 

Therefore we get 
p\n 

by Lemma 6.7.1(2). (3): We see 

r = {a + tbe\a,beZ} 

with some tGQ"" by Lemma 6.6.1. Since 

£ J ; = Q ; ( I + Q^£), 

£^ = (Q^(H-Qe), 
and 

r ; = Z ; ( l + t Z ^ 8 ) , 
we see that x^+=x2 and 

/i(r) = | £ ; / £ ^ r ; i 

= 1(1 + Q^6)/(l + Q8)(l + tZ^s)\ 

= I Q A / ( Q + ZA)I = 1. D 
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Remark 6.7.1. As for the class number hfr, see [Borevich-Shafarevich]. When K is 
an imaginary quadratic field, we easily see 

{± ' i , ± \ / 5 t | if K = Q ( y ^ ) and r is maximal, 

{ ± 1 , ±e" ' /^ ±e2"'/3} if K = Q ( y ^ ) and r is maximal, 

{± 1} otherwise. 

§6.8. An Explicit Formula for t r(r(n)) 

Finally in this section, we present an explicit form of tr( T(n)). First we calculate the 
terms for elliptic a's. 

Lemma 6.8.1. Let K = Q(^/5) be a quadratic field with discriminant d, and XQ the 
ring of integers ofK. For an element (xofxQ(oLtZ),letX^ — tX-\-n be the minimal 
polynomial of a. Ifm is the positive integer given by 

t^ -4n = m^d, 
then 

[ ro :Z [a ] ] = m. 

Proof It is easily seen that XQ = Z-\-ZS with S = (d -{- y/d)/2. Put oc = I-\-mS 
(/, meZ), then r^ - 4n = m^d. Since Z [ a ] = Z[m^], we get [to: Z [ a ] ] = m. D 

Notation being as above, we suppose that K is imaginary. For any positive 
integer/, there uniquely exists an order r of K such that [roir] = / ; in fact, 
r = Z + / r o . We put 

h(pd) = h{x\ w(/2^) = | r^ | . 

Then Theorem 6.7.2 implies 

Hpd) h(d) 
w(pd) w(d) ^PX-©'-') 

Let a be an element of T^. Then Q [a ] is isomorphic to an imaginary quadratic 
field Q(>/5) with discriminant d. Let f^(X) = X^ — tX-{-nhQXhQ minimal poly­
nomial of a. We define m ( > 0) by r̂  — 4n = m^d. Then by Lemma 6.8.1 combined 
with (6.5.3) and (6.6.15), we obtain 

(6.8.1) X l{x)h(x) X x{g) 
Z [ a ] c : r ge{T^nCA<x.,x))IIV 

=2" z S ^ n i I z,(«)+ z x,(t-o 
0 < / | m ' ^ U (^) p\N \^eQlp''^'' S^eQ'lp"-^" 
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where r runs over all orders of Q[a] including Z[a], and p = ordp(m//) 
(=max{MeZ| p^\{mlf)}). 

Now take T{n) for T. Then Lemma 5.2.5, (6.5.6) and (6.8.1) imply 

(6.8.2) Y. xMkMlia) 
aeTinr//r 

^fc - 1 /-fc - 1 

0<f\m^U ^) p\N l^eQ/p^^" ^ea'/p^-"" J 
if,dB) = i 

Here ^, f are the roots of X^ — tX -\- n = 0; for each t, m ( > 0) is given by 
t^ — 4n = m^d with the discriminant d of the quadratic field Q(C); p = ordp(m//); 
for p, t a n d / and Q and (2' are given by 

(6.8.3) Q = Q{tJ,p) = {ieZ^\i^ - ti ^ n ^Omod{mlffNT^], 

and 

(6.8.4) Q' = Q'(tJ,p) 

={ {i€T,\^^ -t^ + n^O modpim/ffNZ^}, ifdf^ 0 modp, 

0 , otherwise. 

Let us proceed to the case T^. The following lemma is easily proved. 

Lemma 6.8.2. Let H = Q x Q,XQ = Z x Z.OCEXQ - Z, and let X^ -tX -\-nbe the 
minimal polynomial of a. Then 

t^ - 4n = m^ (m > 0), 

and 
[ r o : Z [ a ] ] = m. 

Let a be an element of T^. Then Q[a] :^ Q x Q. Similarly to the elHptic case, 
Lemma 6.8.2 and Theorem 6.7.2(2) imply 

(6.8.5) X li^)h{r) I X(g) 
Z[a]cr ge{T^nCAo^,x))//U 

= i z </>(/) n I I x.(^)+ I xAt-o 
^0<f\m p\N A^eQ/p'^" ^eQ'lp'^" 

where </> is the Euler function. 

file://-/-nbe
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Take r(n) for r,thenweobtain by Leinma5.2.5, (6.5.4), (6.5.6), and(6.8.5) that 

(6.8.6) X xMHoi)m 
oiennflir 

^ teZ \^ ~ U 

0 < / | m p|iV Uefl/p^-^" ^eQ'lp"^" ) 

Here /̂, C are the two roots of X^ — tX -^n = ^\ t^ — 4n = m^ (m > 0); 
p = ordp(m//); for p, t and /, ^ and Q' are given by (6.8.3) and (6.8.4) with d = 1. 

Now let a be an element of T^, rj a unique eigenvalue of a, and put e = OL — rj. 
Then 6̂  = 0, and Q[a] = Q[e]. Since fy is a rational integer, we have 
Z[a] = Z[e]. Therefore any order of Q[a] including Z[a] is given by 

r(/) = Z + j z e - ( /=1 ,2 , . . . ) . 

An easy calculation shows 
|m(a,r(/)^)| = //|f7|. 

Thus by Theorem 6.7.2(3), (6.5.3) and (6.6.15), We get 

(6.8.7) X IMHx) X xig) 
Z [ a ] e r ge(r,nQ(a,r))//C/ 

1 
^liM/iy^' E xig) 

p\N 

Here X(^) = ^^ — ^^ + w is the principal polynomial of a; ?; is a unique root of 
/«(jr) = 0;and 

(6.8.8) Q = Q(rj,p,p) = {ieZ,\i ^ rjmodp^<^^'^''^^^Z,}, 

(6.8.9) Q' = Q'(ri,p,p)=={ieZ,\i^rjmodp^^'^^^^^'Z^}. 

Take T(n) for T. If n is not square, then T(nY = 0. Let n = ri^ (rjeZ), and 
m̂  = YlpP^ ^^ the conductor of x- Then e ^ v, so that 

(6.8.10) 
y (^)=i^' ifp|n,orp^n and [(v + l)/2] + p < e, 

^ e 4 - ^ ' 1 Zp(̂ )P -̂̂ ^^^^^^^ ,̂ otherwise. 
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and 

(6.8.11) 
fO, if p\n or pj^n and [v/2] + p + 1 < e, 

l e i ; , - ^' " 1 X.Mf-''"'-'^ otherwise. 
wg^w'^ €T(n)P 

Therefore by (6.5.6) and (6.8.7), we see that 

(6.8.12) X xMk(oc)l(oc) 
(xeT{nYlir 

= 2 ^ ( 5 + 1 ) I \r}\^^Hgn(rifx{n)n"'-' 

X n ( n" " f̂ " "̂  1)/^^ - M(s + 1) _|_ pv - [v/2] - 1 - n'(s + 1) \ 

where 
/z = m a x { 0 , e - [ ( v + l ) /2 ] } , /x'= max{0,e - [v/2] - 1}. 

Hence we obtain 

(6.8.13) lim YJ X(a)^(a)'(a) 

= 2 Z sgn(f/)*x(^)w^*"'^/^n(P'"^^'"''^^'^"'' + P'"^'^^^"'"^')-
^ t}^ = n p\N 

The calculation of tr(7(n)) is completed if we know the volume of T \H, which 
is given by the following 

Theorem 6.8.3. Let B be an indefinite quaternion algebra over Q with discriminant 
dg, and R an order of B of level N. Then 

t̂ (/̂ i.\H) = ^ i v n ( i + p - ^ ) n ( p - i ) -
^ P\N P M B 

Proof If R is maximal, then it is known that 

(6.8.14) v(r^\H) = ^ ^ l \ ( p - l l C(2) = n'/6. 

(For the proof see [Shimizu 3]). We note that if dB= 1, namely 5 = M2(Q), then 
(6.8.14) is nothing but Theorem 4.1.2(2). The result for arbitrary order follows from 
(6.8.14) and Lemma 5.3.2. D 

We write down an exphcit form of tr(r(n)). 

Theorem 6.8.4. Let B be an indefinite quaternion algebra over Q with discriminant 
ds, R an order of B of level N = f lpPMC^,^) = 1), r^ = {^eK^ {Nsiy) = 1}, 
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1 a Dirichlet character mod AT, m^ = YlpP^ ^^^ conductor of x, and T(n) the Heche 
operator defined by (5.3.12). Then 

t r(r(n)) = t r ( r (n ) | y ; ( r^ ,Z) ) 

:(y«) k - \ 
12 

n'i^-'NY\(\+p-')Y\{p-\) 
p\N PMB 

-Y,a(t)Y^b(tJ)c(tJ). 
t f 

Each term is as follows. 

1° We understand x(V") = 0 i/n is not square. 
2° t runs over all integers such that t^ — 4n are negative or square. For such a t, 

let C, ̂  be two roots of X^ — tX -\- n = 0, and put 

d = 

the discriminant ofQ{^t^-4n), ift^-4n<0, 

1 if t^ — An is a positive square, 

0 ift^-4n = 0. 

Then we put 

fc - 1 ^ k - 1 

imindcrM^/r^} 
a(t)=i \C-rj\ 

X{t/2)sgnitfn^''-'^/^ 

0, 

where 

u=#\ 

ifd z^{),\andl-\i^\for any prime 

factor p ofdB, 

sgn(0*, ifd=l, d^=h 

ifd = 0, ds=l 

otherwise (dg^l and either d = 0 or 1), 

prime numbers p\ plds, ©=-l 
3° / runs over all positive divisors of m, where m is a positive integer given by 

r̂  — 4/1 = ni^d ifd ¥= 0; otherwise m = 1. For such an f 

bit, f) = 

h{d) 

w(.d) pi^ / n ( l - ( ^ ) P " ' ) . ifd < 0, (/. ds) = 1, 

0 ifd<0, ( / , d B ) ^ l . 

0 ( / ) , ifd = 1. 

1, ifd = 0, 
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where h(d) is the class number ofQ(y/d\ and w(d) the number of units in Q{^/d), 
namely 

' 4, ifd=-4, 

w(d) = < 6, ifd=—3, 

2, otherwise. 

and (j) is the Euler function. 
4° For each prime factor p of AT, and each positive divisor f of m, we put 

Q = Q{tJ,p) = {^eZ,|(j2 -t^-^n^ Omod{m/f)'NZ^}, 

Q' = Q'(t,fp) 

( {(JeZ^|(^2 -ti-\-n = Omodp(m/ffNZ^}, ifdf= Omodp, 

I 0 , otherwise. 
Then 

c{tj) = < 

1, ifN=l 

n l I xAi)+ I Xp{t-i)\ ifd^o,N>i 

where 

] - [ ( p V - [ ( v + i ) / 2 ] - , . _ ^ ^ v - [ v / 2 ] - i - M ' ) ^ ifd=.0,N>l 

p = ordp(m//), 

M = m a x { 0 , e - [ ( v + l ) /2]} , 

/i' = m a x { 0 , e - [v/2] - 1}, 

and Xp is the character of (Zp/NTpY induced from %- ^e note that ip(a) = 0 if 
(a, N) ^ I for aeZp (even ifxp is trivial). 

Remark 6.8.1. Though we have assumed /c ^ 3, a similar consideration using 
certain limit process is appHcable to the case when k = 2 (see [Ishikawa]), but it 
needs the knowledge of infinite dimensional representation theory of SL2{U). 
Another method by Eichler enables us to calculate traces for the case when fc = 2 
([Eichler 4], [Saito]). In any case, we can also calculate tr(r(n)) for the case when 
k = 2. We state the results without proof. 

Ifx is not trivial, then the above formula holds. Otherwise, tr( r(n)) is given by the 
above formula with the additional term 

S(N,n)= ^ 

where n = I~[pP'. 

j + i 

p\n y 

UP'U 
p\n p\n 
p\N PXN 

. 1 + 1 

( N = l ) , 
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Remark 6.8.2. When B = M2(Q), we have FR = ToCAT), and T{n) is the Hecke 
operator defined by (4.5.4). 

Theorem 6.8.4 is still somewhat complicated to calculate in a general case. In 
many cases, we can still simplify it. As an example, we write down here, without 
proof, a computable formula for the special case when T = ToCÂ ) with N = pq" 
{p,q: odd prime numbers, v ̂  0) and (n,N)= 1. Furthermore we assume that x is 
induced by a Dirichlet character modp and satisfies x{— 1) = (— 1 )*• Then 

tr{T(n)\^,(Na)) 

(V = 0) , 

-xiy/nW'-'^^- X < 

- Z ix(t) + xin/t))t'-'xi 
t\n -

0<t <y/n 

q^-'iq+l) ( v > 0 ) , 

1 (v = 0), 

^v/2_^^v/2-i (y:even>0), 

Iq^'-^^l^ (viodd), 

1 (v = 0), 

^[v/2]_^^[(v-l) /2] ( 0 < V ^ 2 T ) , 

2q' (2T < V), 

- I a,(t)Y^b(tJ)c^{tJ)xW ]\l\ 
teZ f [Cg(tJ) ( V > 0 ) , 

t^ -4n<0 

U(pq\nl i 
j o , c 

ifk = 2, and x is trivial, 
otherwise. 

We explain each term, T = ord^(n/^ — t). For each integer t satisfying t^ — 4n< 0, 
a^it) is given by 

%(0 = 
k - 1 _ ^k- 1 

C-ri 

where C and r] are the roots of X^ - tX + n = 0. For example, 

^ 2 ( 0 = 1 , a^{t) = t, a^(t) = t^-n, a^it) = t(t^ - In), 

a^(t) = 1"^ - 3nt^ H- n^ . . . , 

a,2(t) = r'̂  - 9nt^ + 2Snh^ - 35nh'' + ISn'^t^ - n^ etc. 

The summation Z / is taken over all positive divisors / of m, where m is the positive 
integer given by 

t^ -4n = m^d 

with the discriminant d of Q(^t^ — 4n); Cp(tJ) is the p-component of c{tj\ or 
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more explicitly, 
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CpitJ) = -{ ifpu(^]=-h 0, 

X(a), ifp)(f.p\d, 

2x(oi\ ifp\f. 

where a and P are the roots oi X^ — tX -\- n = 0 mod p. We note that if p I m and 

- 1 = 1, then X^ — tX-\-n = Omodp has two roots in Z/pZ andif p|(im,then 
Pj 

X^ — tx-\-n = Omodp has a multiple root. Lastly cAt.f) is given by the following 
table with /i = oxdq(df^). 

r (t f\ -
^q\^U ) 

n = o 

2 

0 

0 < H<v 

2(^^/2 ^ ^ ^ / 2 - l ) 

0 

H = v 

q"'-'iq + 2) 

q^^ 

fl> V 

qO + ^CV"] 

^[i] + qCV"] 

'(:)=• 

'0" 

We conclude this section by giving a method to calculate eigenvalues of 
Hecke operators. Let Tbe a linear transformation of an r-dimensional vector space 
over C and AJ, . . . , â  the eigenvalues of T. Put 

n iX-a,) = X''-b,X''-'+ ••• H-(-irfe,. 
v = 1 

Since 6̂  is the fi-ih symmetric function of a i , . . . , â  and 

tr(r^) = a?+ • • • + < , 

we have only to calculate tr(r^) (1 ^ /i ^ r) in order to get b^. Now apply the 
above argument to the case when F = ^^^(iV,/) and T= T{n). Thus the calcu­
lation of the eigenvalues of the Hecke operator T(n) is. reduced to those of 
tr(r(nf). Since T(nY is a linear combination of Tim) {m\n'') by Lemma 4.5.7(2) 
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and Lemma 4.5.8(2), we have only to calculate tr(r(m)). In particular, for a prime 
number n = p, we easily obtain, for example, 

b, = tr(r(p)), 

fe, = {fc?-tr(r(p^)) + Z(p)p'-'r}/2, 

3̂ = {tr(r(p^)) + 2x(p)p'"h -bl + b,b,}/Xetc. 



Chapter 7. Eisenstein Series 

We defined Eisenstein series as a special case of Poincare series in §2.6 for weight 
/c ^ 3. On the other hand, we also constructed the space of Eisenstein series by 
modular forms corresponding to products of two Dirichlet L-functions in §4.7. In 
this chapter, we further investigate Eisenstein series. Though the general arguments 
in §7.2 are applicable to any weight /c, we explain in §7.1 the case of weight k^3 
separately, since that case is easy to handle because of the convergence of the series. 
In §7.2, we generalize the notion of Eisenstein series and define Eisenstein series 
with a complex parameter s. We calculate the Fourier expansions of these 
Eisenstein series and obtain the analytic continuation on parameter s following 
[Shimura 9, 12]. 

§7.1. Eisenstein Series of Weight /c ̂  3 

For modular groups, there are two types of Eisenstein series, though they essen­
tially coincide. One is a series of which the summation is over cosets of a group, and 
the other is a series of which the summation is taken over elements of a lattice. The 
former is a special case of Poincare series and was discussed in general in §2.6 for 
weight /c ^ 3. As an example of the latter, we mention the Eisenstein series E^(z) for 
SL2(Z) in §4.1. Their relation is seen, for example, in (4.1.4). The former series 
appear in various applications of Eisenstein series, and the latter ones are easier 
for calculating Fourier expansions and are closely connected with Dirichlet 
L-functions. We shall begin with a generalization of E^iz). 

Let X and i/̂  be Dirichlet characters mod L and mod M, respectively. For any 
positive integer /c ^ 3, we put 

(7.1.1) E,(z;x.ik)= t' Ximmn)imz + ny' (zeH). 
m, n= — 00 

Here Y,' is the summation over all pairs of integers (m, n) except (0,0). We showed 
in the proof of Lemma 4.1.5 that there is a real valued continuous function r{z) 
satisfying 

(7.1.2) f |mz + n r ' ' ^ 8 a a - l ) r ( z ) - ' ^ ((7>2). 
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Therefore the right-hand side of (7.1.1) is convergent absolutely and uniformly on 
any compact subset of H. In particular, Ef^(z; x^ ̂ ) is a holomorphic function on H. 
We put 

{ [ : : ] • (7.1.3) ro(L,M) = <\ 6SL2(/)|^ = 0modM, c = OmodL 

Then ro(L, M) is a modular group. 

=[::]-.' Lemma 7.1.1. Fory = \ e FoiL, M), 

Ekiz; 1. ^\y = xid)ii/id)Ek{z; i, ijj). 

Proof. We put for integers m, n, 

m' = am-\- en, n' = bm-\- dn, 
then 

(7.1.4) m(yz) -\-n = (cz-\-d)~ ^ {m'z + n') 

and 
Z(m') = z(a)z(m), W) = Wmn). 

Therefore we see 

(7.1.5) x{m)^{n){m{yz) + n)-\cz + d)-'' 

= X{dmd)lirn')W){m'z^nr'. 

When (m, n) runs over all pairs of integers except (0,0), so does {m\ n'). Then we 
obtain the lemma by taking the summation of both sides of (7.1.5) on (m, n) and 
(m', n'). D 

Applying Lemma 7.1.1 to 7= — 1, we obtain 

(7.1.6) , / ; ^ ( _ i ) ^ ( _ l ) ^ ( _ l ) ^ , then E,{z; x,i^) = 0. 

Hereafter we assume 

(7.1.7) ;^(_1)^(_1) = (_1)^ 

We easily see the following 

Lemma 7.1.2. £,(z; z, ^A)l.p Q ] = Xi-1)£.(^; ^. xl 

We are going to calculate Fourier expansions of Ej^(z; x^^)- Since the 
right-hand side of (7.1.1) is absolutely convergent, we can exchange the order of 
summation. Thus 

(7.1.8) £,(z;z,.A) = C + 2 X Z(m) I nn){mz + n)-\ 

C 

m= \ n= — 00 

0 (Z # Zo). 
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where Xo is the principal character and L^is, if/) is the Dirichlet L-function. We 
rewrite (4.1.12) into 

(7.1.9) E (z+ «)-* = i ^ - ^ I «'-̂ ê "'". 
« = - o o [K— i)\ n=l 

Let m^ be the conductor of \j/, and \j/^ the primitive character associated with \j/. 
Put l = M/m^, then by Lemma 3.1.3, 

(7.1.10) f (A(n)(mz + n)-'^ 
n = — 00 

w-k^'v^^ , , , ^ /mz + a ^"'^ 

(-2nifW{il/'') 

M'ik-1)\ 

where W (̂i/<̂ ) is the Gauss sum of ij/^, and 

(7.1.11) b(n)= X dKWrWdmn/d) 
0<d\(l,n) 

with the Mobius function /i. Substituting (7.1.10) into (7.1.8), we obtain 

Theorem 7.1.3. Assume /c ^ 3. Let x ^nd \j/ he Dirichlet characters mod L and 
modM, respectively, satisfying x( — 1)<A(~1) = (~1)*- Let m^ he the conductor ofxj/, 
and \j/^ the primitive character associated with i//. Then 

E,{z;x.ik) = C + A f a(n)e^--/^ 

where 
A = 2(-2nifW(il/'^)/M^(k-l)l 

1 0 
i»iv .'A) (x'-the principal character), 

(otherwise), 

«(«)= z z(«/c)c'-' I dti(iid)rm)r{.cid). 
0<c\n 0<d|(/,c) 

/fere l^M/m^ and fi is the Mohius function. In particular, Ef,{z; x,^) is holomorphic 
at 00. 

We observe that if ^ is primitive, then 

(7.1.12) a{n)= ^ xin/c)iii{c)c'-K 
0<c\n 
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For a fixed fe ̂  3, let/(z; x, ij/) be the modular form defined in Theorem 4.7.1. 
Then for primitive characters x and ij/, we have 

(7.1.13) E,(Mz; x.«A) = Afiz; x,H A = 2(-2Kif W(il/)/M'ik-1)!. 

Now we are going to prove that £^(2; x, ^) is also holomorphic at all cusps, and 
therefore it is an integral modular form. Let AT be a positive integer. For two 
integers jU, v such that 0 ^ ,̂ v < N, we put 

(7.1.14) £,(z;/i,v;iV)= Y (mz+ «)"*. 

Here ^' implies as usual that we omit m = n = 0 from the summation when /x = v = 0. 

Let y= , eSL2(Z)- If w and n are integers satisfying m = /imodiV and 
{c d] 

n = V mod AT, then by (7.1.4) we have 
(7.1.15) m(7z) + « = (cz + d)-^(m'z + n') 

and 

(7.1.16) 

m' = am-i-cn = a^-\- cv mod N, 

n' = bm + dn = b^-\- dv mod N. 
Therefore 

(7.1.17) E,iz; n,v; N)\,y = E,(z; /i',v'; N) (yeSL2(Z)), 

where /x', v' are integers (0 ^ ju', v' < iV) given by 

(7.1.18) (/i',v') = (/i,v)y mod AT. 

In particular, if y e r(N\ then 

£fc(z; //,v; Ar)!̂ ^ = E^{z; ^,v; N). 

We also note that for a positive integer /, 

(7.1.19) E,{z; //i, Iv; IN) = / -%(z; fi, v; AT). 

Now we put 

(7.1.20) <^i'\r(N)) = <£,(z; /i,v; N)|0 ̂  /x,v < N>, 

(7.1.21) <^i'\r(N)) = (E,(^z;x.A 

where X,«AJ"»^ iii (7.1.21) are such that 

X» ^^u,v ), 

(7.1.22) X '̂'̂  ̂  '̂'̂  Dirichlet characters mod L and mod M/or divisors L and M 
of N, respectively; 

(7.1.23) u and v are positive integers satisfying uL\N and vM\N. 

By (7.1.17) and (7.1.18), 

(7.1.24) (^i^\riN)) is stable under the action ofSLjiZ). 
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Lemma 7.1.4. ^i'\riN)) = (Tf >(r(Ar)). 

Proof. Let x, <A» " and v be as in (7.L22) and (7.L23). Then 

(7.L25) EJ-Z; X, A = v' f' x(m)iAW(mMz + m)"* 

u\n,v\v 

= t̂* Z xMu)il/(v/v)Ek(z; /I, v; iV). 
0 ^ /i, V < N 

u |^ , t ; | V 

This impHes that ^i^\r{N)) ^ ^i^\r(N)). Let /z, v be integers such that 0 ^ )U, 
V < N. Put M = (/i,iV) and v = (v,N). Further put ^' = fi/u, v' = v/v, L = N/u, and 
M = iV/t;. Then 

(7.L26) E,(z; /i, v; N) = Y ('""^ + «^)"' 
m = fi' mod L 
n = v' mod M 

= {< (̂L)< (̂M)}-i f Xz(/^')"A(v')z(m)^(«)(muz+ «<;)-' 

where Y,x, ^ i^ipli^s the summation over all characters x mod L and ij/ mod M. This 
implies that ^i^\r(N)) cz S^^\r{N)). D 

Lemma 7.L5. ^li>(r(Ar)) c: ^„(r(N)). 

Proof. By Theorem 7.1.3 and Lemma 7.1.4, all elements of (^i^\r{N)) are holo-
morphic at co. Let g{z) be an element of <^[^^(r{N)). For any yeSLjC/), gl^y is 
holomorphic at oo, since 1̂̂ 7 belongs to S[^\r(N)) by (7.1.24). Therefore g(z) is 
holomorphic at any cusp of r(N). D 

In particular, E^iz; /, i/<) is an integral form for any Dirichlet characters x and ij/. 
We are going to prove that (^[^\r{N)) coincides with the space of Eisenstein series 
jV^(r(N)) defined in §2.1. To prove this, we define Eisenstein series of Poincare 
type. Let x be a Dirichlet character mod N. We put 

^1ll^ F* i ^ J ^ Xid)icz + d)-' i f x ( - l ) = ( - l ) ^ 
(7.1.27) Elff(z;x) = {yer^\r 

0 ifx(-l)^(-l)*, 

r* *1 
where T = ro(iV) and y = \ . \. This is nothing but the Poincare series at oo 

Ic d_\ 
defined in §2.6. More precisely, if x(—1)=(— 1)*, then 
(7.1.28) £? »(z;x) = F,(z; <i>o,X,r^J) 
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with the constant function 0o(2)= 1. Therefore Ef^j^(z\ y) belongs to jV'ui^, %) t>y 
Corollary 2.6.12. To express the summation of the right-hand side of (7.1.27) more 
expHcitly, we need the following 

:[* *^^(c,d)U Lemma 7.1.6. The correspondence: \\-^{c,d) induces the following bijections: 

(1) ro{N)^\ro{N) ^ {(c,^)|c ^ 0modN, (c ,d)=ld>0}; 

{(cj)\c = 0 mod N, d=lmodN, (c,d)=i} 

(N ^ 3), 

I {(c,d)\c = 0modN, d= 1 modN, (c,d)= Ud>0} 

[ (N = l,2). 

Proof. It is easy to see that the mapping is well-defined and surjective in both cases. 

Let us prove the injectivity. Let y = \ \ and y' = \ j \^^ ^^^ elements of 

ToCN) (resp. r(N)) having the second row (c, d) in common. Then by a direct 
calculation, we see 

yy • = C : } 
which belongs to FoiN)^ (resp. r(N)^). This implies the injectivity. D 

This lemma implies that when ;f(— 1) = (— 1)*, 

ElsU;x)= I x(d){cz + d)-\ 
c = 0 mod TV 

{c,d)=\,d>0 

and therefore, for any Dirichlet character x niod N, we obtain 

(7.1.29) El^(z;x) = \ Z xid)(cz + dy\ 
•̂  c = 0 mod N 

ic,d)=\ 

Thus 

(7.1.30) E,(Nz; Xoa) = 2L (̂/c, x)El ^(z; x) 

for the principal character Xo> and 

(7.1.31) E,(z; 0,1; iV) = ^ | ; L ^ ( / C , X ) £ , % ( Z ; X) 

by (7.1.26), where x runs over all characters mod AT. Since £^,^(z;x) belongs to 
J^kir{N)) by Theorem 2.1.7(2), we see 

(7.1.32) E,{z;OA;N)e^,ir(N)). 
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Theorem 7.1.7. Ifk^3, then 

Proof. We see by (7.1.17) and (7.1.19) that ^[^^ {r(N)) is generated by 

{£,(z;0, 1;L)|,7 | L|iV, yeSL^i 
Since 

£,(z;.0, 1; L ) e ^ , ( r ( L ) ) c: ^,(r(iV)), 

we see Sj,^^ {r(N)) cz jr^{r(N)). Let us prove ^fc(r(iV)) c= ̂ ^i)(r(N)). First by 
Lemma 7.1.6(2) and (7,1.29), we see 

(7.1.33) F,{z; cj>^, Xo. r{N)^, r(iV)) =C ^ (̂ ^ + ^ ) " ' 
modN 

) = i 

2C 

0(iV) , 
where 

' 1 (N^3) , 
^ "2 (N = l,2), 

and X runs over all Dirichlet characters mod N. Since Ej^^ ^ (z; ;f) belongs to 
^i^\r(N)) by (7.1.30) and Lemma 7.1.4, so does Fj,(z; (j)^, Xo> (̂A )̂ao, r{N)). Since 
^ J E ^ H ^ W ) is stable under SLjiZ), we see 

F,iz;^o.Xo,r(N)^,r(N))\,ye^l'\r(N)) for yeSL2(Z). 

By (2.6.11) and Corollary 2.6.12, we obtain J^k(r(N)) cz ̂ j^^\r(N)). D 

§ 7.2. Analytic Continuation of Eisenstein Series 

When k is smaller than 3, the right-hand side of (7.1.1) is not convergent. Therefore 
we need some modification to discuss the case when k ^2. Though the main object 
is the case when /c ̂  2, we note that the arguments and the results here cover any 
integral weight k. 

Now for any integer k and a complex number s, we put 

(7.2.1) £,(2, s; X, JA) = T x(m)il^(n){mz + n)-'\mz + n\-^^ 
m,n= - 00 

The right-hand side is uniformly and absolutely convergent for s on k-\- 2Re(s) 
^ 2 + e (e>0). Therefore it is holomorphic on /c 4- 2Re(s)>2. We call £^(2, s; x, ^) 
an Eisenstein series with parameter s. Similarly to Lemma 7.1.1, we obtain that 

(7.2.2) E,{yz, s; x, lA) = x{d)if(d)(cz + df\cz + d\^'E,(z, s; x. Â) 

[ : : ] - (L, M). 
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As was mentioned above, if fe ̂  2, then the right-hand side of (7.2.1) is not defined 
for s — 0. But if £fc(z, s\x^^) is continued analytically to s = 0 and holomorphic at 
s = 0, then we will obtain a modular form even for weight /c = 1 and 2. The purpose 
of this section is the investigation of the analytic continuation of E^fe s; x,^) and 
its property as a function of z and s. Since we easily see that 

if x(-l)H-^)^i-^)\ then JS.Cz, s; z, lA) = 0, 
we assume 

(7.2.3) ;^(_l)^(_l) = (_l)fc 

throughout this section. We also see 

(7.2.4) E,(z,s;x,il/) = xi-m-k{-^.k-\-s;x,ik) if /c + 2Re(s)>2. 

When k + 2Re(s) > 2, we can exchange the order of summation of the right-
hand side of (7.2.1) and see 

(7.2.5) £,(z,5;x,iA) = C(s) + 2 f z(m) f i^{n)(mz + ny'\mz-^n\-'\ 
m = 1 n= — ao 

where 

0 (ZT^ZOX 

For complex numbers a and p, we put 

(7.2.7) S(z;a,^)= f (z + n)-'(z + n)-i> (zeH). 
W = — 00 

The right-hand side is absolutely convergent for a, j? with Re(a + j?) > 1, and 

(7.2.8) f il/(n)imz-\-n)-''\mz-\-n\-^' 
n= - 00 

ffiM - 1 / 2 fl 

Further we put 

(7.2.9) 4>(r,a,p;x) = {x + iyr''ix-iy)-f (xeU, y>0, a, peC). 

If we write z = x + iy (eH), then 

(7.2.10) S(z;a,/?)= f <t>(y, a, p; x + n). 
n = — 00 

We wish to apply the Poisson summation formula to the right-hand side. 
When Re(a + j?)> 1, </)(>;; a, ft x) belongs to L^ (R) as a function of x. Therefore 
there exists the Fourier transform of </), which we denote by <̂ (>'; a, ft t). In other 
words, 

(7.2.11) ay; a, ft t) = J </>(>'; «, ft x)^-^""- t/x (y > O, Re(a + )5)> 1). 
IR 
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This is a holomorphic function of a and P on the domain 

{(a, j?)GCxC|Re(a + j5)>l}, 

since the right-hand side is uniformly convergent on any compact subset of the 
domain. Now the Poisson summation formula implies 

(7.2.12) f (l>(y;oi,P;x-hn)= f ^^--(^(y; a, ft n). 
n= - 00 n = - o o 

To justify this formula, it is sufficient to verify the following two conditions: 

00 

(7.2.13) YJ \^(y*'> oc, P; x + n)\ is uniformly convergent for x; 
n = — 00 

00 

(7.2.14) X l^(>'' <̂ ' ft ") I ^^ convergent. 
fl = — 00 

When Re(a + ft > 1, (7.2.13) is obvious and (7.2.14) will be shown in Theorem 7.2.8 
below. Keeping it in mind, we are going to investigate the function ^. We put 

(7.2.15) H' = {z6C|Re(z)>0} 

and call it the right half plane. If Zj, Z2 eH' , then 

(z,Z2r = zlzl (aeC) 

by definition (see (3.2.1)). We define the confluent hypergeometric function 
G{Z; OC, P) by 

(7.2.16) (T(Z; a, ft = J e-'"(u-\-If-^ u^''du (z, j^eH', aeC) 
0 

and put 

(7.2.17) r](y; oc, P;t) = ] e-'"(u-^tY-'{u-ty-'du 
\t\ 

(y>0,teU,oi, PeC). 

We see easily the following properties: 

(7.2.18) ifriiy; a, ft t) is convergent, then so is rj{y; ft a; —t) and 

r](y;cc, P; t) == r](y; P, ot; -t); 

(7.2.19) ifa>0 and r](ay; a, ft t) is convergent, then so is rj{y; a, ft at) and 

rjiay; a, ft t) = fl^-"-^ ri(y; a, ft at). 

As for the convergence of the functions rj and <T, we obtain the following 

Lemma 7.2.1. (1) Ift > 0, then rj(y; a, ft t) is uniformly convergent on any compact 
subset ofCxH'asa function of a and p. 

(2) The function G(Z\ OL, ft is uniformly convergent on any compact subset of 
H x C x H . 
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(3) //(>;, a, P)eU+ x C x H', then 

Proof. First we prove (2). Let The an arbitrary compact subset of H' x C x H'. Put 

p = min{Re(z) I (z, a, i8)er}, 

^ = min{Re(iS)|(z,a,i?)er}. 

Let p' be a number satisfying 0<p' <p, then there exist constants Cj and C2 
satisfying 

\e''"(u+ I f u ' " ' = 
K («+i) I ^o(« ' - ' ) (u^+0), 

for any point (z, a, j8)Er. This impHes J^ |e~̂ "(M + l)*~̂ M ~̂M^w is uniformly 
convergent on T. The first assertion is similarly proved. Let us show (3). If 
{y, a, P)eU+ x C x H', then 

rj(y;(x,P; 1)= ] e-y"{u +lY-'{u-l)P-'du 
1 

0 

This impHes (3). D 

Lemma 7.2.2. //Re(a) > 0, Re(j5) > 1 (r ^ 0) or Re(a) > 1, Re(j?) > 0 (r < 0), then 

i{y; a, ft t) = iP-'{2n)r{oi)-'r{P)-'rj{2y; oi, ft nt). 

Proof, We note that ^(y; a, ft t) is holomorphic for a, j5 with Re(a + j?) > 1. Now 
we see 

i(y;oi,P;t)= J e-^^^^'^x + iyy^^ix-iyy^ dx 
— 00 

- 00 

Since y±ixe H', we see easily 

(i{y±ix)y'' = r%y±ixy\ 
Therefore 

(7.2.20) ^(y;oL,P;t) = i^-' J ^-2""^(};-ix)-"(}; + ix)-^f/x. 
— 00 

Assume that Re (a) > 0 and Re(j?) > 1. We put s = oi, a = y±ix in (3.2.5), then 

(7.2.21) (y±ix)-« = r(a)-i J e-<̂ ±'̂ >"M«-̂ ^M. 
0 
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Substituting this into (7.2.20), we see 

(7.2.22) ^(^;a,ftr) 

- oo 0 

(Re(a) > 0, Re(j?) > 1). 

Since the right-hand side is absolutely convergent, we can exchange the order of 
integration and obtain 

(7.2.23) =i^-T(a)-^] e-^'n'-^du J e'''^"-^'''\y-\-ix)-^dx. 
0 - 00 

If we put f(x) = (y-\- ix)~^, then/(x)eL^(lR). Let/be the Fourier transform off. 
Then 

(7.2.24) J e'^^"-'^*^f{x)dx = f(~^^)-

To calculate /, we put 

('•'•'') ^(")=io (u^O). 

Since Re(j5) > 1, we have g(u) e O (R). If we denote by g the Fourier transform of ̂ , 
then we see by (7.2.21) 

f(x) = r{P)-'g(xlln). 

Taking the Fourier transform of both sides, we see 

(7.2.26) f(u) = lKrm-'g(-2Tiu\ 

By (7.2.24), (7.2.25), and (7.2.26), we obtain 

(7.2.27) J e'^'^^-^'^'^y^ixy^dx 
— 00 

_ r27tr(j?)-ie-^^"-2"'>(M-27rO^-i (M>27rr), 
~ [ 0 (M ^ Int). 

Now we assume t ^ 0. Then by (7.2.23) and (7.2.27), we see for Re(a) > 0, Re(jS) > 1, 

(7.2.28) ^(y, a, ft t) 

= i^-«-27rr(a)-^r(i5)-^ J e-23'("-«OM«-i(M_27rf)^-i^u 
u> 2nt 

= i^-^'-inriay^ripy^ j e-^y"(u-{-nty-Hu-nt)^-'du 
nt 

= if-'-2nr(a)-'r(p)-'ri(2r, a, p; nt). 

We note that if t > 0 then i(y,ix, P; t) is continued to a holomorphic function of a 
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and i5 on C X H' by (7.2.28) and Lemma 7.2.1(1). If t < 0, then 

(7.2.29) ay; oi. ft t) = (-ly-^^y; ft a; |r|) 

as long as Re(a + j5) > 1 by definition. Therefore if we define ^y; a, ft t) for 
(a, j5)6H' X C by (7.2.29), it is a meromorphic function and 

(7.2.30) Uy; a, ft t) = (-\y-'i^-^'2nr(oc)-'r(P)-'rj{2y; ft a; |7rr|) 

= i^-''2nr(oi)-'r(P)-'ri(2y; a, ft Tir). 

Therefore the case when r < 0 is also proved. D 

When r = 0, (̂  is explicitly calculated in the following 

Lemma 7.2.3. The function ^y; cc, ft 0) is continued analytically to a meromorphic 
function on C x C and satisfies 

ay;a,P;0) = i^-^'2nr{o^)-'r{p)-'r(oi-^p-i)(2yy-'-p, 
Proof When Re (a + j5) > 1, we see 

rj(y;a,P;0)= ] e-^^u^^^P-^du 
0 

= r(a + p-l)y l - a - / J 

Since the right-hand side is a meromorphic function on C x C, we obtain the 
analytic continuation of the function by Lemma 7.2.2. D 

We shall calculate ^(y; a, ft t) for t ^ 0. The calculation of ^(y; a, ft t) is reduced 
to that of t](y; a, ft 1) by Lemma 7.2.2, (7.2.18) and (7.2.19). Furthermore by 
Lemma 7.2.1(3), we have only to consider o-(z; a, P). Now we put 

(7.2.31) co(z; a, P) = r(p)-'2^(7(2; a, p) ((z, a, p)eU' x C x H'). 

By Lemma 7.2.1(2), a)(z; a, p) is a holomorphic function on H' x C x H'. 

Theorem 7.2.4. The function co(z; oc, P) is continued analytically to a holomorphic 
function on H' x C x C and satisfies: 

(1) a ) ( z ; l - f t l - a ) = a;(z;a,i9); 

(2) a;(z;a,i5) = ( - l ) W ^ ( e - ^ z - ^ c o ( z ; a - n , i 5 ) ) {neN). 

Proof For a, )?eH' and Z6IR+ , we see 

(7.2.32) r(P)G{z\ \-P,OL) = ] e-'T(p){u+\)-^u^-^du. 
0 

Since 

r{P)(u^\)-^ = ] e-'^^^'^^^v^-^dv, 
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we have 

(7.2.33) r(p)(7{z; l-j?, a) = J e-'"u°'-'du ] e-''^"-'^^v^-Uv. 
0 0 

The integral is absolutely convergent, so that we can exchange the order of 
integration, and therefore, 

0 0 

0 

= r(a)z^-«(7(z;l-a,i5). 

Since r(p)(7{z;l—p,(x) and r{c()z^~"(7{z;l—<x,p) are holomorphic on 
H' X H' X H', they coincide with each other there. 
Thus we obtain 

(7.2.34) (o{z; 1 - ft 1 - a) = co{z; a, P) 

(zeH',Re(a)< 1, Re(j?) > 0). 

Define (o(z; a, P) for a e C with Re(a) < 1 and j? e C by the left-hand side of (7.2.34). 
Then it is a holomorphic function on H' x {a|Re(a) < 1} x C, which coincides 
with the original (o(z; OL, P) when Re(^) > 0. Now when (z, a, j5)eH' x H' x H', the 
integral of the right-hand side of (7.2.16) is uniformly convergent with respect to z 
on any compact subset of H'. Therefore we obtain 

(7.2.35) ^(e-'(Tiz; a, P)) = (-\fe-'G(z- oc + n,P) 

((z,a,i5)eH' X H' x H'), 

so that the continued function ca(z; a, P) also satisfies 

(7.2.36) ^ (e-^z-Pco(z; a, P)) = {- Ife-'z-Pcoiz; a + n, i?) 

((z, a, P)eW X {oi\ Re(a) < 1} x C). 

For any (z, a, j?)eH' x C x C, take a positive integer n so that Re(a) < n + 1 and 
define co(z; a, P) by 

(7.2.37) co(z; a, P) = ( - l)"e^z^ ^ (^-^z-^ca(z; a - n, ^ 

then CO is a holomorphic function on H' x C x C. D 

Now we have 
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Theorem 7.2.5. (1) For each y > 0, as a function ofoc and j5, ^(y; a, p; t) is analyti­
cally continued to a meromorphic function on C x C which is expressed as 

(i^-%2nYr{oc)-\2y)-^t'-'e-^''y'o)i4nyt; a, p) {t > 0), 

i{y;oi.P;t) = | i^-'{2nr^^r(oi)-'rm-'rioi-^p-i)i4nyY-^-p (r = 0), 
[j^-"(27cfr(j5)-^(2y)-«|rK-^^-2">'l'lft)(4;r};|r|;fta) (r < 0). 

(2) As a function of a and j5, ^{y; a, j5; t) is holomorphic onC x Cfor t ^0, and 
r(a + j5 - 1)" ̂  i(y; a, P; 0) is holomorphic on C x C. 

Proof The expression of ^(y; cc, P;t) in (1) is straightforward from Lemma 7,2.1, 
Lemma 7.2.2, Lemma 7.2.3, (7.2.18), (7.2.19) and (7.2.31) on a certain subdomain. 
Since the right-hand side is meromorphic on C x C in each case, we obtain the 
analytic continuation. The second assertion is obvious from this expression and 
Lemma 7.2.4. D 

Lemma 7.2.6. For (z, a) e H' x C, we have 

co(z;a,0) = l. 

Proof If Re(a) > 0, then Lemma 7.2.4 and (7.2.31) imply that 

a>{z; 1 — a, 0) = ci>(z; 1, a) 

= r(a)-^zM^;i,a) 

0 

= 1. 

Since (o(z; a, 0) is holomorphic on a, we get the assertion. D 

Theorem 7.2.7. For any compact subset TofC x C, there exist positive numbers A 
and B satisfying 

\oj(y;oi,P)\SA(l-¥y-") ({y,oc,P)EU^ x T). 

Proof First we prove the assertion when Tis contained in C x H'. Take a positive 
integer n so that Re(a) ^ n + 1 for any (a, p)eT. Let (a, p) be any point in T. Since 
RQ(P) > 0, we see by (7.2.16) and (7.2.31) that 

\(o{y;oi,P)\ S \r(p)\-'y^'^^^]e-y"(u+l)"u'^'^^^-'du 
0 

Since r(fe + Re(^)) and | r (^) | " ' are continuous functions of )?, there exists a 
positive constant Ai satisfying 

k = 0 
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Therefore putting A = A^n and B = n, we obtain the assertion. Next we have 
to remove the assumption on T. If j5 e H', then taking integration by parts of the 
right-hand side of (7.2.16), we have 

(7.2.38) c7{y;a,p-^l) = y-'{oi-l)Giy;oi-hP+l)-^y-'PcT(y;oi,P). 

Muhiplying y^'^^FiP-\-1)~^ to both sides, we obtain 

(7.2.39) co(y; a, p) = co{y; oi, ^ + l)-\-{l-oi)y-'co(y; a-I p-^ l), 

((a, i9)6 C x H ' ) . 

Since both sides of (7.2.39) are holomorphic functions of a and j?, (7.2.39) holds on 
C X C. Using (7.2.39) repeatedly, we obtain 

- « = ! . ( : ) 
(7.2.40) co(y; a, P)= Y.(j^] >'"'(! - a ) ( 2 - a) • • • (/c- a)co(y; oc-Kp + m). 

For any compact subset T of C x C, we take a positive integer m so that 

{(a,j? + m)|(a, i?)er}c=C x H'. 

Then we see easily the existence of the desired constants A and B from the result 
when T is contained in C x H'. D 

Now we can justify the Poisson summation formula and prove (7.2.12). 

Theorem 7.2.8. Let S(z; a, P) be the function defined in (7.2.7). Then it is analyti­
cally continued to a meromorphic function on C x C with respect to (a, p), and is 
expressed as 

(7.2.41) S(z;oc,p) = ay;oi,P;0)+ f ^2«--(^();; a, ft m) {z = x + iyeU). 
m = — 00 

The 
^immx^^y.^ a, P; m) is convergent uniformly and absolutely on any 

compact subset o/H x C x C. Further r ( a + P — l)~^S{z; a, P) is an entire function 
of IX and p. 
Proof Let T be a compact subset of H x C x C. By Theorem 7.2.5, there exist 
positive constants Cj , /? and q such that 

(7.2.42) \iiy; a, P; m)\ ^ C^m^e-^'''''"\w{^nym\ a, P)\ 

for any point (z, oc, p)eT and any positive integer m. We also see by Theorem 7.2.7 
the existence of a positive constant C2 satisfying 

\co(4nym; (x, p)\ < C2 

for any (z, cc, P)eT and any positive integer m. Therefore we have 

(7.2.43) f |e2"''"^(^(>;;a,ftm)|^CiC2 £ m^e'^^^'". 
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Since the right-hand side is clearly convergent, the left-hand side is uniformly 
convergent on T. We can also similarly prove that Yum=-ao [^^"'"""^(y; a, jS;'w)! 
is uniformly convergent on T. Hence (7.2.14) is verified for a and ^ with 
Re(a + jS) > 1. Therefore the Poisson summation formula is appHcable, and (7.2.10) 
and (7.2.12) imply that (7.2.41) holds for a and ^ with Re(a + j?)> 1. Since 
Zm= 1 ^^"'""'^(}^; a, P\ m) and ^ ^ i _ oo e^"'"''<?(>'; a, P\ m) are holomorphic on a and 
^, and f (y; a, j?; 0) is meromorphic, the right-hand side of (7.2.41) is a meromorphic 
function on C x C and its poles coincide with those of ^{y\ a, j9; 0). Therefore if we 
define S(z; a, ^) on H x C x C by the right-hand side of (7.2.41), we obtain the 
assertion by Theorem 7.2.5(2). D 

Now by (7.2.5), (7.2.8) and Theorem 7.2.8, we obtain 

(7.2.44) E,(z,s-x.^) 

00 mAf—1 / 7 CL 

= C(s)+2M-*-^^ X x M m - ' - ^ ^ X ^(a)s{- + —--k + s,s 

00 mM — 1 00 

= C ( 5 ) + 2 M - ' ^ - 2 ^ X ^ W ' ^ " ' ' " ^ ' Z ' A W Z ^2;ri«(mx + a)/mM 
m = l a = 0 n= — 00 

X(J( -^;/c + s,s;n 

for s with /c + 2Re(s) > 2, where C(s) is the function given by (7.2.6). If we put 
o = Re(s), then 

m 
k-2a 

m = l 

^A{ Y. m 

mM— 1 00 

z z 
a = 0 n = - I 

-Jk-2<T+1 

^ I -^; fc + s, s ;" 

m = l )(KM'''^''''^)h^j/'^''""') 
with some positive constants A, B, p and q. Therefore the right-hand side is 
absolutely convergent if /c + 2Re(s) > 2. Therefore we can exchange the order of 
summation of the right-hand side of (7.2.44) and obtain 

(7.2.45) E,(z,s;x,il^) 

C(s) + 2M-*-2^ f a(n,s;z,jA)^'"""^' ' i( '^;/c + s , s ; A 

where 

a(n,s;x,iA)= Z XH 
mM 

m 
k-2s 

a = 0 

Now by Lemma 3.1.3(1), we have 

(7.2.46) 
m M - l 

a = 0 

M - 1 

a = 0 

0 a mjfn. 
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Let i/̂ ° be the primitive character associated with i/̂  of conductor m^ = M/l 
Lemma 3A3(2) and (7.2.46) imply that for n > 0, 

(7.2.47) a(«,5;x,iA) 
M - l 

InianlmM 
0<m|n a = 0 

= n " --••jF(./<») X z("/c)c'"'^-' I dnm)rm)r(cid\ _ ^ - f c - 2 s + l 

0<c|n 0<d|(I,c) 

where fx is the Mobius function. We also see for —n< 0 

(7.2.48) a(-«,5;;c,iA) = n- ' ' -2*- 'V(- l )^( 'A^) Z /(w/^)^''''^'"^ 
0 < c | « 

X X dn(lld)r(lld)r(cld). 
0<d\(l,c) 

Lastly (7.2.46) impHes that 

(7.2.49) a(0,s;/,iA) = 
<j)(M) Y, Xi^)^ ^ ^'^^ (xj/: the trivial 

m = l character modM), 
\ 0 {othermse\ 

where (̂  is the Euler function. Substituting {12A1\ (7.2.48), (7.2.49) into (7.2.45), we 
obtain the following 

Theorem 7.2.9. Let x and \j/ he Dirichlet characters mod L and mod M, respectively, 
satisfying x(~^)^{~^) = (~^Y- Then for any integer /c, the Eisenstein series 
E^iz, s; x^ ^) Is analytically continued to a meromorphic function on the whole s-plane 
and has the Fourier expansion 

£fc(z, s; X, JA) = C(s) + D(s)y^ k-2s 

n=l 

where 

-¥A(s)y-' £ a„is)n-'e^'''""'^a)(4nyn/M;k-\-s,s) 
n = l 

00 _ 

+ B(s)y-''-' X a„(s)n-*-*e-2"'"""/^co(47ryn/M;s,/c + s), 

(X ^ Xol 
l2L„(2s + 

fi^r' n (i-p-')r(s)-ir(s + fc)-i 

'"' '^' • k,^) (x = Xo), 

D{s) = 

p\M 

-(̂ )̂̂ m«-'-..̂ . 
(ij/: the trivial character modM), 

(otherwise), 
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A(s) = 2'''-U-''W(il/'')(n/Mf^''ris-^k)-\ 

B(s) = 2'-H-^il/(-\)W(il/''){n/Myr{sy\ 

anis)= Z x(n/c)c'^''-' Z d^i(l/d)rm)r(c/d). 
0<c\n 0<d\(l,c) 

Here ij/^ is the primitive character associated with xj/ of conductor m^ = M/l; fiis the 
Mobius function; 0}(z; a, P) is the holomorphic function on H' x C x C defined by 
(7.2.31). Moreover two series on the right-hand side are convergent uniformly and 
absolutely with respect to s on any compact subset of C. 

Proof. First let us calculate each term. Assume that n = 0 and ^ is the trivial 
character mod M. Then by (7.2.49), Theorem 7.2.5, and (3.2.6), 

2M -*-2^a(0, s; / , ij/my/M; s + k,s; 0) 

= 2 3 - * - 2 * ^ ^ r ' ^ 7 r r ( s ) - ^ r ( 5 + /c)-ir(2s + / c - l ) L J 2 s + / c - l , x) / - '^-2* 
M 

= 27^1-' n (i-p-')r(s)-'r(s + fc)-' 
P\M 

r{^^^y[^y,i2s^k-lx)y---
The terms for n 7«̂  0 are calculated similarly by (7.2.47), (7.2.48), and Theorem 7.2.5. 
We shall prove the convergence of the series. Let K be any compact subset of C. 
Then by Theorem 7.2.7, there exist positive constants A and B satisfying 

\co(4nny/M; k-\-s, s)\ ^ A{1 + y-^) 

for any positive integer n and any seK. We also see easily the existence of the 
constant u satisfying \a„(s)\ ^ n" for any seK. Then the two series are convergent 
uniformly and absolutely on X, and therefore, they are entire functions of s. D 

Corollary 7.2.10. (1) Ifij/ is non-trivial, then E^{z, s;x,^) is an entire function ofs. 
(2) Assume xj/ is trivial. If /c ^ 1, then Ej^(z, s; x, ^) is holomorphic for 

Re(s) > (1 -/c)/2. When fe = 1, £i(z, s; x, ^) is holomorphic for Re(s) > - 1/2. 
(3) If both X and \j/ are trivial, then EQ(Z, s;Xi^)is holomorphic for Re (5) > 1 and 

has a simple pole at s — 1 with residue — 0 ( 1 — 1 0 ( 1 — I-
yp\L\ pJp\M\ pj 

Proof. The first assertion is straightforward from Theorem 7.2.9, Corollary 3.3.2 
and (3.3.5). If /c> 0, then we easily see that both C{s) and D{s) are holomorphic for 
Re(s) > (1 — k)/2 by Theorem 3.2.2(2). If/c = 1 and ij/ is trivial, then x is non-trivial. 
Then C(s) = 0 and D(s) is holomorphic for Re(s) > - 1 / 2 by Corollary 3.3.2. Next 
assume that k = 0, and x and ij/ are trivial. Then it is easy to see that C{s) and 
D{s) are holomorphic for Re(s) > 1. The residue at s = 1 is also obtained by 
by Theorem 3.2.2(2). D 
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Corollary 7.2.11. Put 

i)E,,(z, s; X, JA) (/C < 0). 
Then £fc(s) is an entire function except for the case where /c = 0 and / , i/̂  are trivial. 
Moreover when /c = 0 an^ x^ ^ ^^^ trivial, 

(1) if either / or i/̂  is not principal, then Ef^(s) is holomorphic on the whole s-plane 
except for a simple pole at s = 1; 

(2) if both X and \j/ are principal, then E^{s) is holomorphic on the whole s-plane 
except for simple poles at s = 0 and s = 1. 
Proof We shall prove our assertions only for /c ̂  0, since the argument for /c < 0 is 
quite similar. First of all, we see that both 

ris-\-k)A(s) = 2'^H-''W(il/'')(n/Mf^'' 
and 

r(s + k)B(s) = 2'-'^rV(-1) Wiil/''){n/Mys(s + 1). • • (s + î  - 1) 

are entire functions. Now we shall study the behavior of r(s -\- k)(C(s) 
+ D(s)y^-fc-2s) pjj.g^ consider r(s + /c)C(s). li x ^ Xo^ then C(s) = 0. Otherwise, 
we see 

2r(s + k) 
r{s + k)C(s) = lu^Ln^' ^«^^ + ^ + ^ ) /2 )^M(25 + K lA), 

r((2s + /c + o)/2) 
where S = S^. Since iA(— 1) = (— If, we see that k-\-S = 0 mod2, and therefore 
r{s + k)r{(2s + /c + (5)/2)" ^ is entire. If î  is non-trivial, then r{s + k)C{s) is entire 
since r((2s + /c + ^)/2)Ljv/(2s + /c, i//) is entire by Corollary 3.3.2. Assume that ij/ is 
the trivial character mod M. If /c > 0, then r{s + /c)C(s) is holomorphic except for a 
simple pole at s = (1 — k)/2 with residue 

r((\+k)/2)Yli^-p-')-
p\M 

If /c = 0, then r (s H- /c)C(s) is holomorphic except for simple poles at s = 0 and 
s = 1/2 and the residue at s = 1/2 is 

r( i /2)n( i -p-M. 
P\M 

Next we consider r(s + k)D{s). If î  is non-trivial, then D(s) = 0. If i/̂  is the 
trivial character mod M, then 

r (s + /c)D(s)}; l-k-2s 

= 2 ^ ; ^ , - ' n (1 - P - ' ) / ' ' - ^ r ' r ( ? i ± ^ y ( ^ ^ ) L , ( 2 5 + fc - 1,z) 
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fe-l 

rl^-]L,{2s + k-l,x) (k-odd). 
r(s) V 2 

k 
^ ' ' + 2 / /2s + ; t - l 

r{—^ |L^(2s + fe-l,z) (/c:even). 

This implies that if x is non-trivial, then r{s + k)D(s)y^~''~^^ is entire by 
Corollary 3.3.2. Assume that x is trivial and L ^ 1. Then k is even and 
r((2s + fc—l)/2)C(2s-l-k-1) is holomorphic except for simple poles at 
s = (1 — k)/2 and s = 1 — k/2. Then we see 

^ ' ' ^ 2 ) , / 2 s + fc-l\ , , , , , 
r r Li(2s + fc-l,z) 

r(5) V 2 

= s(s + i)...(s + ̂ - i ) r ( ^ ? ^ ± ^ ) c ( 2 s + k - i )n ( i -p ' - ' - ' ^ ) 

and it is entire if /c > 0, or it is holomorphic except for a simple pole at s = 1 if 
k = 0. Assume x = Xo'^^^>^^ then r(s -\- k)D(s)y^ ~^~^^ is holomorphic except for 
a simple pole at s = (1 — k)/2 with residue 

2^i-ir'ni-k)/2)-'r{i/2) n (i-p-')m 
p\M 

= -r((i + k)/2)Yiii-p-') 
p\M 

by (3.2.4). If /c = 0, then r(5 + /c)D(s)y^~''~^* is holomorphic except for simple 
poles at s = 1/2 and s = 1, and the residue at s = 1/2 is 

p\M 

This completes the proof. D 

If /c ^ 3, then we see that 

and the Fourier expansion in Theorem 7.2.9 with s = 0 is nothing but that of 
£fc(z; X, ̂ ) obtained in Theorem 7.1.3 by Lemma 7.2.6. 

Now let us consider the cases when k = 1, 2. Since ^^(z, s;x^^) is holomorphic 
at 5 = 0 by Corollary 7.2.10, we put 

(7.2.50) E,iz;x,i^) = E,{z,0;x.n 

and 

(7.2.51) E2{z) = £2(2; Xo.Xo) 

with the principal character Xo-
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Theorem 7.2.12. Ifx and xj/ are Dirichlet characters mod L and mod M, respectively, 
satisfying x^(—^)= U then 

£2(2; X, lA) = C + Dy- ^ + ^ £ a„e2"'" /̂* .̂ 
n = l 

0 (z ̂  ;(o). 
Here 

r - ^ n ( l - P " ' ) n ( l - P " ' ) (h'k-trivial), 
D = •{ p|M P i t 

L 0 (otfcerivwe), 

a„= Z X{n/c)c X dnm)Vm)¥{cld), 
0<c\n 0<d|(I,c) 

where ij/^, /, ̂  are as in Theorem 7.2.9. 

Theorem 7.2.13. Ifx and \j/ are Dirichlet characters mod L and mod M, respectively, 
satisfying x^(—\)= — 1, r/ien 

Here 

£i(z; X, (A) = C + D + A X a„e^"'"'/^. 
« = i 

0 (Z # Zo). 
^ -21^(1,11^) {x = Xo\ 

D = 

0 (i/*: non-trivial), 

-Ini n (1 -p- ' )LJO,z) (lA: f'wa'), 
p|M 

«„= I x(«/c) Z dti{l/d)rWd)^(c/d), 
0<c\n 0<d|(/ ,c) 

where \j/^, /, n are as in Theorem 7.2.9. 

Corollary 7.2.14. Assume k> 0. Then E^(z\ %, \\i)isa holomorphic function ofz on H 
except for the case when k = 2 and both % cmd ij/ are trivial. Further £2(2) — pE2(pz) 
is holomorphic on Hfor any prime number p. 

Proof We have only to verify the assertion when /c = 1 and k = 2. Let a„ be as in 
Theorem 7.2.12(if fe = 2) or in Theorem 7.2.13 (if k =̂  1). Then a„ = 0(n^), Thus 
Sr=i^«^^"""'^^ ^̂  convergent uniformly on {zeH|Im(z) > c} with any positive 
constant c. Therefore it is holomorphic on H. Since the coefficient of y~^ in 
^2(^) — P^2(P^) vanishes, we see the second assertion. D 
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Let iV be a positive integer. For integers fi, v such that 0 ^ /i, v < N, we put 

(7.2.52) EfcCz, s;/x, v; AT) = Y {mz-]-n)-^\mz-\-n\ 2s 

If^/^modN 

Here ^ ' impHes that we omit m = n = 0 from the summation when /i = v = 0. We 
also put 

(7.2.53) ii'\r{N)) = <E,(z, 5; fi, v; N)\0 ^ û, v < iV>, 

(7.2.54) ^['\r{N)) = (E, ("z,5;x,^) L^,u,v 

where x, Â̂  "» ^̂ ^̂  ^ ^^ (7.2.54) are those satisfying (7.1.22) and (7.1.23). For any 
element g(z, s) of i[^\r(N)) and i[^Hr(N)X we put 

(7.2.55) {9\u,sy)(z) = g(yz.s)j(y, z)-'\j(y, z)\-'^ yeSL^^iZ). 

We see that 

(7.2.56) 41^ (r(N)) is stable under the action of 5^2(1). 

Now we have 

Theorem 7.2.15. (l)ii'\r(N)) = ii^\r{N)). 
(2) Let g{z, s)ei^[^\r{N)). Ifg{z, s) is holomorphic on a compact subset T of the 

s-plane, then there exists a constant c such that 

Sf(z,s)=-0(/) (z = x + iy\ {y^co) 

uniformly on xeU and seT. 

Proof The first assertion is proved by a similar argument to that in Lemma 7.1.4. 
The latter is proved by Theorem 7.2.7, Theorem 7.2.9, (7.2.56) and (1). D 

By the above theorem, if /c > 0, then E^(z, s; fi,v;N) is holomorphic at 5 = 0. 
For /c> 0, we put 

(7.2.57) E,{z; //, v; N) = E^(z, 0; fi, v; N\ 

and 

(7.2.58) ^i''(r(N)) = <£,(z; /x, v; iV) 10 ̂  /x, v < iV>, 

(7.2.59) 4^>(r(iV)) = ( £ j -:.("z;x,^) X,^.u,v ), 

where / , i/̂ , M, and v are as in (7.2.54). If /c > 2, then these definitions coincide with 
those in §7.1. 

Theorem 1.2.16. Let k be a positive integer. Then 
(i)4i'(r(N)) = f̂>(r(N)). 
(2) / / / ( z ) e^^" {r(N)) is holomorphic, then it belongs to «?t(r(Ar)). In particular 
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Si'\r(N))^^,(F(N))ifk^2. 
(3) E2{Nz, 0; X. iA)e^2(^W) tf^ is not trivial. Moreover if g(z)eS^i\r(N)\ 

then there exists a constant c such that g{z) — cE2{z)e^2ir(N)). 

Proof. When /c> 2, we have already proved the assertions in §7.1. The first 
assertion for general k is straightforward from Theorem 7.2.15(1). We also see 
easily that S'l^\r(N)) is stable under the action of SLjCZ). Let/(z) be an element of 
(^l^\r(N)). If/(z) is holomorphic on H, then it is also holomorphic at oo by (1) and 
Theorem 7.2.9. Let x be a cusp of r{N) and take yeSLjil.) so that yoo = x. Since 
/l^y belongs to ^^^\r(N)), it is also holomorphic at oo. This implies that/(z) is 
holomorphic at x and (2) is proved. The first part of (3) is obvious. Now let g{z) be 
an element of ^i^\r(N)). Then by (1) and Theorem 7.2.12, we see 

g(z) — CQ H — - + a power series of ^̂ nir/iv 

Then there exists a constant c such that g(z) — cE2iz) is holomorphic on H and 
is also holomorphic at oo. Let x be a cusp of r(N) and take yeSLjCZ) so that 
yoo = X. Then since (̂  —0^2)LT belongs to <f̂ 2^ (̂r(N)), 

c' 
(g — 0^2) 127 = Co + — + a power series of ê jriz/N 

Since (g — cE2)127 is holomorphic on H, we see c\ = 0. This implies that g — CE2 is 
also holomorphic at x. D 

For a Dirichlet character x mod AT, we define 

r lx{d)j{y.z)-'\j(y,z)\-'^ (;((_1) = (_1)^ / = [* j ] ) 
(7.2.60) El,(z,s;x)=\ y^^ 

L 0 (z(- i )^(- i ) ' ) , 

where R is a. complete set of representatives for ro(N)J\ro(N). We also put 

(7.2.61) £,%(z,s) = £,%(z,5;x) 

with the trivial character x mod N. Then we see, similarly to (7.1.30), 

(7.2.62) E.iNz, s; Xo. x) = 2L^(k +2s, X)EIN{Z. S;xl 

If/c > 0, then Ef^f^(z, s; x) is holomorphic at s = 0 by Corollary 7.2.10. Therefore we 
may define EIJ^(Z; X) and EIJ^(Z) by 

(7.2.63) El^(z;x) = El^(z,0;xl 

(7.2.64) £,%(z) = £,%(z,0). 

By Theorem 7.2.16(2) and (3), £fc%(z, x) belongs to %(r(N)) except for fc = 2 and x 
is trivial. 
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Theorem 7.2.17. £O,N(^» ^) has a simple pole at s = 1 and 

r'(fNn(i.p-')f 

Proof. The assertion is easily obtained by calculating the residue using 
Corollary 7.2.10(3) combined with Theorem 4.1.2(2) and Theorem 4.2.5(2). But we 
shall here give a rather direct proof of the first equahty, which also reproves 
Theorem 4.1.2(2). We put 

(7.2.65) M{z,s) = X e-»™<^^>|;(r,z)|-2»-^ 
yeR 

where Ris a. complete set of representatives for rQ{N)^\rQ(N). Since 

l-y^e-y^l for >; > 0, 

M{z,s) is absolutely convergent if Re(s) > 0. Further if s is a positive number, then 
(7.2.66) El^(z, s + 1) - £* ^(z, 5 + 2)>; ^ M(z,-5) ^ El^(z, s + 1). 

Therefore 

lim sM(z, s) = ReSs= i £̂ O,JV(̂ » S) 

= c/y 

by Corollary 7.2.10(3) and (7.2.62). Now we have 

(c-(fNn(...-.y') 

(7.2.67) 

By (7.2.60), we see 

r(s) = ]je-yy'-'dxdy 
0 0 

= J e-yy'^Uv(z) 
ro(NUH 

= J M{z,s)y'''^dv(z). 
ro{N)\H 

£ S , N ( Z , S + 1 ) = 1 + X l7(y,z)l 2s-2 

yen 

Therefore by Theorem 7.2.9 and (7.2.62), 

(7.2.68) 5 X \j(y,z)\~^'~^y''^' ^C (>;-• 00, C: constant) 
y€R 

and sE'^^j^iz, s + l));*"^^ is bounded on neighborhoods of cusps of FQIN) inequi-
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valent to oo, uniformly on s (0 ^ s ^ e). Since 

-2s-2 
yeR 

we see that the integral 

ro(N)\H 

is uniformly convergent by (7.2.68). Therefore 

1 = lim sr(s) 

= lim j sM(z,s)y'^^dv{z) 

= J ( lim sM(z,s)y'^ A dv{z) 

= cv(roiN)\H). 

This implies the first equality. The second equahty follows from this with a direct 
calculation of c by Corollary 7.2.10(3) and (7.2.62). D 

Theorem 7.2.18. For a positive integer N, we have: 

(1) ^'i\r{N))n<^2iriN))^ jr,ir{N)). 
(2)^</>(r(iV)) = ^,(r(iV)). 

Proof. Let/(z) be an element of ^̂ (̂Ar, /). Then by a similar argument to that in 
Theorem 2.6.10, we have 

(7.2.69) J mEl^{z,s;x)y'^''-'dxdy = 0, 
ro(iV)\H 

if Re(s) is sufficiently large. By Corollary 7.2.15(2), the integral is uniformly 
convergent on any compact subset of s-plane on which Eli^(z, 5; /) is holomorphic. 
Therefore we see 

(7.2.70) J f^)ElAz;x)y'-'dxdy = 0. 
ro(N)\H 

If fe = 1 or /c = 2 and x is not trivial, then this implies £f,jv(z; x)e^fc(N, x), and 
therefore £f,^(z; x)^^kir(N)) by Theorem 2.1.7. Assume /c = 2. We shall prove 

(7.2.71) J f{^)El^(z)y'dv(z)=:0, f(z)e6^2ir{N)). 
r{N)\H 

We may assume AT ^ 6 (since dim^^C^C^)) = 0 if AT ^ 5). We put 

(7.2.72) F2(z,s)= Y.{cz-\-d)-^\cz + d\-^\ 
yeR' 

where R' is a complete set of representatives for r{N)^\r(N) and y [c d\-
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Then by a similar calculation to that in (7.1.33), we see 

(7.2.73) F2iz. s) = ^ I ; £ 1 N ( Z , 5; x\ 

where x runs over all characters mod N. Thus Fjiz, s) is holomorphic at 5 = 0. We 
also put 

(7.2.74) F2(z) = F2(z,0). 

Then by a similar argument to that in Theorem 2.6.10, we have 

(7.2.75) j f{i)F2(z,s)y''dxdy = 0, f(z)G^2(r{N)), 
r{N)\H 

and therefore, 

(7.2.76) j mFAz)y'dv{z) = 0, / ( z ) e^2 ( r (^ ) ) . 
r(iV)\H 

Since FJ.NC^) is a Hnear combination of F2(z) and Ff.ivC Ĵ x) (X- non-trivial) by 
(7.2.73), we proved (7.2.71). Combining all together, we obtain 

(7.2.77) j f{z)El^{z;x)y'dv(z) = 0, f(z)e^,(r(N)l 
r(iV)\H 

for any character x modN and any positive integer k. Since (7.1.17), (7.1.19), and 
(7.1.31) also hold for /̂  = 1 and 2, 

{Elsiz;x)\ky I yeSL2\ 
generates (^i^\r (AT)), so that 

<r^i>(r(iV)) n ^2inN)) cz jr2{r(N)l ^{'\r{N)) c= ^.(FiN)). 

The converse can be obtained by Theorem 4.7.2 and the following lemma. D 

Lemma 7.2.19. Let x ^nd ijf he primitive Dirichlet characters mod L and mod M, 
respectively, satisfying x'AC—l) = (—!)*• Let fj^(z\x^^) be the modular form 
f(z; X, ^) of weight k defined in §4.7. 

(1) If either x or \j/ is not trivial, then 

E.iMz; X, Ik) = ( - 8 J : ^ wm/M')Mz; x, <A)-

(2) For any prime number p, 

£2(2) - vE2{pz) = -87r%(z; Xo, X'\ 

where Xo ^^ the principal character and x! the trivial character mod p. 

(3) E,{Mz; X, «A) = (-4niW(i^)/M)A{z; x. n 

Proof We see easily the equalities by comparing the Fourier coefficients by 
Theorem 7.2.12 and Theorem 7.2.13. D 



Numerical Tables 

As some applications of trace formulae in Chapter 6, we present here some tables. 
Table A is on the dimensions of modular forms, Table B gives eigenvalues 
and characteristic polynomials of Hecke operators operating on 5^2(^0 (^)X and 

Table C is on the coefficients of primitive forms in 6^2\^A — 

Table A was prepared by Y. Maeda, and Table B and Table C by H. Wada and 
N. Iwasaki. 

Table A 

This Hsts the dimensions of the following spaces: 

(i) dim5^fc(ro(N)). 
Weights k,2Sk^50; 
Levels N, 1 ^ N ^ 50, 

50 < AT < 100: prime numbers. 

(ii) dim5^«(ro(iV)). 
Weights and levels are as in (i). 

(iii) d im^ , ( ^ , 

Weights /c, 2 k /c ^ 50; 
Levels q, 3 ^ q < 100; prime numbers. 



296 Numerical Tables 

Dimension of ̂ ^(ro{N)) 

r ^ 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

1 

0 
0 
0 
0 
0 
1 
0 
1 
1 
1 
1 
2 
1 
2 
2 
2 
2 
3 
2 
3 
3 
3 
3 
4 
3 

2 

0 
0 
0 
1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 
11 
11 

3 

0 
0 
1 
1 
2 
3 
3 
4 
5 
5 
6 
7 
7 
8 
9 
9 
10 
11 
11 
12 
13 
13 
14 
15 
15 

4 

0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

5 

0 
1 
1 
3 
3 
5 
5 
7 
7 
9 
9 
11 
11 
13 
13 
15 
15 
17 
17 
19 
19 
21 
21 
23 
23 

6 

0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 

7 

0 
1 
3 
3 
5 
7 
7 
9 
11 
11 
13 
15 
15 
17 
19 
19 
21 
23 
23 
25 
27 
27 
29 
31 
31 

8 

0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 

9 

0 
1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 

10 

0 
3 
5 
9 
11 
15 
17 
21 
23 
27 
29 
33 
35 
39 
41 
45 
47 
51 
53 
57 
59 
63 
65 
69 
71 

11 

1 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 

12 

0 
3 
7 
11 
15 
19 
23 
27 
31 
35 
39 
43 
47 
51 
55 
59 
63 
67 
71 
75 
79 
83 
87 
91 
95 

13 

0 
3 
5 
7 
9 
13 
13 
17 
19 
21 
23 
27 
27 
31 
33 
35 
37 
41 
41 
45 
47 
49 
51 
55 
55 

14 

1 
4 
8 
12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
76 
80 
84 
88 
92 
96 

15 

1 
4 
8 
12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
76 
80 
84 
88 
92 
96 

Dimension of^^iroiN)) 

r ^ 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

1 

0 
0 
0 
0 
0 
1 
0 
1 
1 
1 
1 
2 
1 
2 
2 
2 
2 
3 
2 
3 
3 
3 
3 
4 
3 

2 

0 
0 
0 
1 
1 
0 
2 
1 
1 
2 
2 
1 
3 
2 
2 
3 
3 
2 
4 
3 
3 
4 
4 
3 
5 

3 

0 
0 
1 
1 
2 
1 
3 
2. 
3 
3 
4 
3 
5 
4 
5 
5 
6 
5 
7 
6 
7 
7 
8 
7 
9 

4 

0 
0 
1 
0 
1 
1 
1 
1 
2 
1 
2 
2 
2 
2 
3 
2 
3 
3 
3 
3 
4 
3 
4 
4 
4 

5 

0 
1 
1 
3 
3 
3 
5 
5 
5 
7 
7 
7 
9 
9 
9 
11 
11 
11 
13 
13 
13 
15 
15 
15 
17 

6 

0 
1 
1 
1 
1 
3 
1 
3 
3 
3 
3 
5 
3 
5 
5 
5 
5 
7 
5 
7 
7 
7 
7 
9 
7 

7 

0 
1 
3 
3 
5 
5 
7 
7 
9 
9 
11 
11 
13 
13 
15 
15 
17 
17 
19 
19 
21 
21 
23 
23 
25 

8 

0 
1 
1 
2 
2 
3 
3 
4 
4 
5 
5 
6 
6 
7 
7 
8 
8 
9 
9 
10 
10 
11 
11 
12 
12 

9 

0 
1 
1 
3 
3 
4 
5 
6 
6 
8 
8 
9 
10 
11 
11 
13 
13 
14 
15 
16 
16 
18 
18 
19 
20 

10 

0 
1 
3 
1 
3 
5 
3 
5 
7 
5 
7 
9 
7 
9 
11 
9 
11 
13 
11 
13 
15 
13 
15 
17 
15 

11 

1 
2 
4 
6 
8 
8 
12 
12 
14 
16 
18 
18 
22 
22 
24 
26 
2« 
28 
32 
32 
34 
36 
38 
38 
42 

12 

0 
1 
0 
2 
1 
2 
2 
3 
2 
4 
3 
4 
4 
5 
4 
6 
5 
6 
6 
7 
6 
8 
7 
8 
8 

13 

0 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 

14 

1 
2 
2 
4 
4 
6 
6 
8 
8 
10 
10 
12 
12 
14 
14 
16 
16 
18 
18 
20 
20 
22 
22 
24 
24 

15 

~ 
2 
4 
4 
6 
8 
8 
10 
12 
12 
14 
16 
16 
18 
20 
20 
22 
24 
24 
26 
28 
28 
30 
32 
32 
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Dimension o( ^^{ro{N)) 

7^ 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

16 

0 
3 
7 
11 
15 
19 
23 
27 
31 
35 
39 
43 
47 
51 
55 
59 
63 
67 
71 
75 
79 
83 
87 
91 
95 

17 

1 
4 
6 
10 
12 
16 
18 
22 
24 
28 
30 
34 
36 
40 
42 
46 
48 
52 
54 
58 
60 
64 
66 
70 
72 

18 

0 
5 
11 
17 
23 
29 
35 
41 
47 
53 
59 
65 
71 
77 
83 
89 
95 
101 
107 
113 
119 
125 
131 
137 
143 

19 

1 
4 
8 
10 
14 
18 
20 
24 
28 
30 
34 
38 
40 
44 
48 
50 
54 
58 
60 
64 
68 
70 
74 
78 
80 

20 

1 
6 
12 
18 
24 
30 
36 
42 
48 
54 
60 
66 
72 
78 
84 
90 
96 
102 
108 
114 
120 
126 
132 
138 
144 

21 

T 
6 
12 
16 
22 
28 
32 
38 
44 
48 
54 
60 
64 
70 
76 
80 
86 
92 
96 
102 
108 
112 
118 
124 
128 

22 

2 
7 
13 
19 
25 
31 
37 
43 
49 
55 
61 
67 
73 
79 
85 
91 
97 
103 
109 
115 
121 
127 
133 
139 
145 

23 

2 
5 
9 
13 
17 
21 
25 
29 
33 
37 
41 
45 
49 
53 
57 
61 
65 
69 
73 
77 
81 
85 
89 
93 
97 

24 

1 
8 
16 
24 
32 
40 
48 
56 
64 
72 
80 
88 
96 
104 
112 
120 
128 
136 
144 
152 
160 
168 
176 
184 
192 

25 

0 
5 
9 
15 
19 
25 
29 
35 
39 
45 
49 
55 
59 
65 
69 
75 
79 
85 
89 
95 
99 
105 
109 
115 
119 

26 

2 
9 
15 
23 
29 
37 
43 
51 
57 
65 
71 
79 
85 
93 
99 
107 
113 
121 
127 
135 
141 
149 
155 
163 
169 

27 

T 
6 
12 
18 
24 
30 
36 
42 
48 
54 
60 
66 
72 
78 
84 
90 
96 
102 
108 
114 
120 
126 
132 
138 
144 

28 

2 
9 
17 
25 
33 
41 
49 
57 
65 
73 
81 
89 
97 
105 
113 
121 
129 
137 
145 
153 
161 
169 
177 
185 
193 

29 

2 
7 
11 
17 
21 
27 
31 
37 
41 
47 
51 
57 
61 
67 
71 
77 
81 
87 
91 
97 
101 
107 
111 
117 
121 

30 

3 
14 
26 
38 
50 
62 
74 
86 
98 
110 
122 
134 
146 
158 
170 
182 
194 
206 
218 
230 
242 
254 
266 
278 
290 

Dimension of 6^^ (roiN)) 

s 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

16 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

17 

1 
4 
6 
10 
12 
14 
18 
20 
22 
26 
28 
30 
34 
36 
38 
42 
44 
46 
50 
52 
54 
58 
60 
62 
66 

18 

0 
1 
3 
2 
4 
5 
5 
6 
8 
7 
9 
10 
10 
11 
13 
12 
14 
15 
15 
16 
18 
17 
19 
20 
20 

19 

1 
4 
8 
10 
14 
16 
20 
22 
26 
28 
32 
34 
38 
40 
44 
46 
50 
52 
56 
58 
62 
64 
68 
70 
74 

20 

T" 
1 
1 
3 
3 
3 
5 
5 
5 
7 
7 
7 
9 
9 
9 
11 
11 
11 
13 
13 
13 
15 
15 
15 
17 

21 

P 
4 
4 
8 
8 
12 
12 
16 
16 
20 
20 
24 
24 
28 
28 
32 
32 
36 
36 
40 
40 
44 
44 
48 
48 

22 

0 
3 
5 
5 
7 
11 
9 
13 
15 
15 
17 
21 
19 
23 
25 
25 
27 
31 
29 
33 
35 
35 
37 
41 
39 

23 

2 
5 
9 
13 
17 
19 
25 
27 
31 
35 
39 
41 
47 
49 
53 
57 
61 
63 
69 
71 
75 
79 
83 
85 
91 

24 

1 
1 
3 
3 
5 
5 
7 
7 
9 
9 
11 
11 
13 
13 
15 
15 
17 
17 
19 
19 
21 
21 
23 
23 
25 

25 

0 
3 
7 
9 
13 
16 
19 
22 
26 
28 
32 
35 
38 
41 
45 
47 
51 
54 
57 
60 
64 
66 
70 
73 
76 

26 

2 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 

27 

1 
4 
7 
9 
12 
15 
17 
20 
23 
25 
28 
31 
33 
36 
39 
41 
44 
47 
49 
52 
55 
57 
60 
63 
65 

28 

0 
2 
2 
4 
4 
6 
6 
8 
8 
10 
10 
12 
12 
14 
14 
16 
16 
18 
18 
20 
20 
22 
22 
24 
24 

29 

2 
7 
11 
17 
21 
25 
31 
35 
39 
45 
49 
53 
59 
63 
67 
73 
77 
81 
87 
91 
95 
101 
105 
109 
115 

30 

1 
2 
2 
6 
6 
6 
10 
10 
10 
14 
14 
14 
18 
18 
18 
22 
22 
22 
26 
26 
26 
30 
30 
30 
34 
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Dimension of ^^{ro{N)) 

ZK 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

31 

2 
7 
13 
17 
23 
29 
33 
39 
45 
49 
55 
61 
65 
71 
77 
81 
87 
93 
97 
103 
109 
113 
119 
125 
129 

32 

T 
8 
16 
24 
32 
40 
48 
56 
64 
72 
80 
88 
96 
104 
112 
120 
128 
136 
144 
152 
160 
168 
176 
184 
192 

33 

3 
10 
18 
26 
34 
42 
50 
58 
66 
74 
82 
90 
98 
106 
114 
122 
130 
138 
146 
154 
162 
170 
178 
186 
194 

34 

3 
12 
20 
30 
38 
48 
56 
66 
74 
84 
92 
102 
110 
120 
128 
138 
146 
156 
164 
174 
182 
192 
200 
210 
218 

35 

3 
10 
18 
26 
34 
42 
50 
58 
66 
74 
82 
90 
98 
106 
114 
122 
130 
138 
146 
154 
162 
170 
178 
186 
194 

36 

1 
12 
24 
36 
48 
60 
72 
84 
96 
108 
120 
132 
144 
156 
168 
180 
192 
204 
216 
228 
240 
252 
264 
276 
288 

37 

2 
9 
15 
21 
27 
35 
39 
47 
53 
59 
65 
73 
77 
85 
91 
97 
103 
111 
115 
123 
129 
135 
141 
149 
153 

38 

4 
13 
23 
33 
43 
53 
63 
73 
83 
93 
103 
113 
123 
133 
143 
153 
163 
173 
183 
193 
203 
213 
223 
233 
243 

39 

3 
12 
22 
30 
40 
50 
58 
68 
78 
86 
96 
106 
114 
124 
134 
142 
152 
162 
170 
180 
190 
198 
208 
218 
226 

40 

3 
14 
26 
38 
50 
62 
74 
86 
98 
110 
122 
134 
146 
158 
170 
182 
194 
206 
218 
230 
242 
254 
266 
278 
290 

41 

3 
10 
16 
24 
30 
38 
44 
52 
58 
66 
72 
80 
86 
94 
100 
108 
114 
122 
128 
136 
142 
150 
156 
164 
170 

42 

5 
20 
36 
52 
68 
84 
100 
116 
132 
148 
164 
180 
196 
212 
228 
244 
260 
276 
292 
308 
324 
340 
356 
372 
388 

43 

3 
10 
18 
24 
32 
40 
46 
54 
62 
68 
76 
84 
90 
98 
106 
112 
120 
128 
134 
142 
150 
156 
164 
172 
178 

44 

4 
15 
27 
39 
51 
63 
75 
87 
99 
111 
123 
135 
147 
159 
171 
183 
195 
207 
219 
231 
243 
255 
267 
279 
291 

45 

3 
14 
26 
38 
50 
62 
74 
86 
98 
110 
122 
134 
146 
158 
170 
182 
194 
206 
218 
230 
242 
254 
266 
278 
290 

Dimension of^^{ro{N)) 

> ^ 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

31 

2 
7 
13 
17 
23 
27 
33 
37 
43 
47 
53 
57 
63 
67 
73 
77 
83 
87 
93 
97 
103 
107 
113 
117 
123 

32 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 

33 

1 
6 
8 
12 
14 
20 
20 
26 
28 
32 
34 
40 
40 
46 
48 
52 
54 
60 
60 
66 
68 
72 
74 
80 
80 

34 

1 
4 
8 
8 
12 
16 
16 
20 
24 
24 
28 
32 
32 
36 
40 
40 
44 
48 
48 
52 
56 
56 
60 
64 
64 

35 

3 
6 
10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
50 
54 
58 
62 
66 
70 
74 
78 
82 
86 
90 
94 
98 

36 

1 
1 
2 
3 
4 
4 
6 
6 
7 
8 
9 
9 
11 
11 
12 
13 
14 
14 
16 
16 
17 
18 
19 
19 
21 

37 

2 
9 
15 
21 
27 
33 
39 
45 
51 
57 
63 
69 
75 
81 
87 
93 
99 
105 
111 
117 
123 
129 
135 
141 
147 

38 

2 
5 
7 
11 
13 
17 
19 
23 
25 
29 
31 
35 
37 
41 
43 
47 
49 
53 
55 
59 
61 
65 
67 
71 
73 

39 

3 
6 
10 
14 
18 
22 
26 
30 
34 
38 
42 
46 
50 
54 
58 
62 
66 
70 
74 
78 
82 
86 
90 
94 
98 

40 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 

41 

3 
10 
16 
24 
30 
36 
44 
50 
56 
64 
70 
76 
84 
90 
96 
104 
110 
116 
124 
130 
136 
144 
150 
156 
164 

42 

1 
2 
6 
6 
10 
10 
14 
14 
18 
18 
22 
22 
26 
26 
30 
30 
34 
34 
38 
38 
42 
42 
46 
46 
50 

43 

3 
10 
18 
24 
32 
38 
46 
52 
60 
66 
74 
80 
88 
94 
102 
108 
116 
122 
130 
136 
144 
150 
158 
164 
172 

44 

1 
3 
3 
7 
7 
9 
11 
13 
13 
17 
17 
19 
21 
23 
23 
27 
27 
29 
31 
33 
33 
37 
37 
39 
41 

45 

1 
5 
9 
11 
15 
19 
21 
25 
29 
31 
35 
39 
41 
45 
49 
51 
55 
59 
61 
65 
69 
71 
75 
79 
81 



Table A 299 

Dimension of ^ki^oiN)) 

^K 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

46 

5 
16 
28 
40 
52 
64 
76 
88 
100 
112 
124 
136 
148 
160 
172 
184 
196 
208 
220 
232 
244 
256 
268 
280 
292 

47 

4 
11 
19 
27 
35 
43 
51 
59 
67 
75 
83 
91 
99 
107 
115 
123 
131 
139 
147 
155 
163 
171 
179 
187 
195 

48 

3 
18 
34 
50 
66 
82 
98 
114 
130 
146 
162 
178 
194 
210 
226 
242 
258 
274 
290 
306 
322 
338 
354 
370 
386 

49 

1 
10 
20 
28 
38 
48 
56 
66 
76 
84 
94 
104 
112 
122 
132 
140 
150 
160 
168 
178 
188 
196 
206 
216 
224 

50 

2 
17 
31 
47 
61 
77 
91 
107 
121 
137 
151 
167 
181 
197 
211 
227 
241 
257 
271 
287 
301 
317 
331 
347 
361 

53 

4 
13 
21 
31 
39 
49 
57 
67 
75 
85 
93 
103 
111 
121 
129 
139 
147 
157 
165 
175 
183 
193 
201 
211 
219 

59 

5 
14 
24 
34 
44 
54 
64 
74 
84 
94 
104 
114 
124 
134 
144 
154 
164 
174 
184 
194 
204 
214 
224 
234 
244 

61 

4 
15 
25 
35 
45 
57 
65 
77 
87 
97 
107 
119 
127 
139 
149 
159 
169 
181 
189 
201 
211 
221 
231 
243 
251 

67 

5 
16 
28 
38 
50 
62 
72 
84 
96 
106 
118 
130 
140 
152 
164 
174 
186 
198 
208 
220 
232 
242 
254 
266 
276 

71 

6 
17 
29 
41 
53 
65 
77 
89 
101 
113 
125 
137 
149 
161 
173 
185 
197 
209 
221 
233 
245 
257 
269 
281 
293 

73 

5 
18 
30 
42 
54 
68 
78 
92 
104 
116 
128 
142 
152 
166 
178 
190 
202 
216 
226 
240 
252 
264 
276 
290 
300 

79 

6 
19 
33 
45 
59 
73 
85 
99 
113 
125 
139 
153 
165 
179 
193 
205 
219 
233 
245 
259 
273 
285 
299 
313 
325 

83 

7 
20 
34 
48 
62 
76 
90 
104 
118 
132 
146 
160 
174 
188 
202 
216 
230 
244 
258 
272 
286 
300 
314 
328 
342 

89 

7 
22 
36 
52 
66 
82 
96 
112 
126 
142 
156 
172 
186 
202 
216 
232 
246 
262 
276 
292 
306 
322 
336 
352 
366 

97 

7 
24 
40 
56 
72 
90 
104 
122 
138 
154 
170 
188 
202 
220 
236 
252 
268 
286 
300 
318 
334 
350 
366 
384 
398 

Dimension of yfc°(ro(iV)) 

2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

46 

1 
6 
10 
12 
16 
22 
22 
28 
32 
34 
38 
44 
44 
50 
54 
56 
60 
66 
66 
72 
76 
78 
82 
88 
88 

47 

4 
11 
19 
27 
35 
41 
51 
57 
65 
73 
81 
87 
97 
103 
111 
119 
127 
133 
143 
149 
157 
165 
173 
179 
189 

48 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 

49 

1 
8 
14 
22 
28 
35 
42 
49 
55 
63 
69 
76 
83 
90 
96 
104 
110 
117 
124 
131 
137 
145 
151 
158 
165 

50 

2 
5 
7 
12 
14 
17 
21 
24 
26 
31 
33 
36 
40 
43 
45 
50 
52 
55 
59 
62 
64 
69 
71 
74 
78 

53 

4 
13 
21 
31 
39 
47 
57 
65 
73 
83 
91 
99 
109 
117 
125 
135 
143 
151 
161 
169 
177 
187 
195 
203 
213 

59 

5 
14 
24 
34 
44 
52 
64 
72 
82 
92 
102 
110 
122 
130 
140 
150 
160 
168 
180 
188 
198 
208 
218 
226 
238 

61 

4 
15 
25 
35 
45 
55 
65 
75 
85 
95 
105 
115 
125 
135 
145 
155 
165 
175 
185 
195 
205 
215 
225 
235 
245 

67 

5 
16 
28 
38 
50 
60 
72 
82 
94 
104 
116 
126 
138 
148 
160 
170 
182 
192 
204 
214 
226 
236 
248 
258 
270 

71 

6 
17 
29 
41 
53 
63 
77 
87 
99 
111 
123 
133 
147 
157 
169 
181 
193 
203 
217 
227 
239 
251 
263 
273 
287 

73 

5 
18 
30 
42 
54 
66 
78 
90 
102 
114 
126 
138 
150 
162 
174 
186 
198 
210 
222 
234 
246 
258 
270 
282 
294 

79 

6 
19 
33 
45 
59 
71 
85 
97 
111 
123 
137 
149 
163 
175 
189 
201 
215 
227 
241 
253 
267 
279 
293 
305 
319 

83 

7 
20 
34 
48 
62 
74 
90 
102 
116 
130 
144 
156 
172 
184 
198 
212 
226 
238 
254 
266 
280 
294 
308 
320 
336 

89 

7 
22 
36 
52 
66 
80 
96 
110 
124 
140 
154 
168 
184 
198 
212 
228 
242 
256 
272 
286 
300 
316 
330 
344 
360 

97 

7 
24 
40 
56 
72 
88 
104 
120 
136 
152 
168 
184 
200 
216 
232 
248 
264 
280 
296 
312 
328 
344 
360 
376 
392 



300 Numerical Tables 

Dimension of ^fc(<?, (^)) 

fe"M^ 
2 
4 
6 
8 
10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 

5 

0 
0 
2 
2 
4 
4 
6 
6 
8 
8 
10 
10 
12 
12 
14 
14 
16 
16 
18 
18 
20 
20 
22 
22 
24 

13 

0 
2 
6 
6 
10 
12 
14 
16 
20 
20 
24 
26 
28 
30 
34 
34 
38 
40 
42 
44 
48 
48 
52 
54 
56 

17 

0 
4 
6 
10 
12 
16 
18 
22 
24 
28 
30 
34 
36 
40 
42 
46 
48 
52 
54 
58 
60 
64 
66 
70 
72 

29 

2 
6 
12 
16 
22 
26 
32 
36 
42 
46 
52 
56 
62 
66 
72 
76 
82 
86 
92 
96 
102 
106 
112 
116 
122 

37 

2 
8 
16 
20 
28 
34 
40 
46 
54 
58 
66 
72 
78 
84 
92 
96 
104 
110 
116 
122 
130 
134 
142 
148 
154 

41 

2 
10 
16 
24 
30 
38 
44 
52 
58 
66 
72 
80 
86 
94 
100 
108 
114 
122 
128 
136 
142 
150 
156 
164 
170 

53 

4 
12 
22 
30 
40 
48 
58 
66 
76 
84 
94 
102 
112 
120 
130 
138 
148 
156 
166 
174 
184 
192 
202 
210 
220 

61 

4 
14 
26 
34 
46 
56 
66 
76 
88 
96 
108 
118 
128 
138 
150 
158 
170 
180 
190 
200 
212 
220 
232 
242 
252 

73 

4 
18 
30 
42 
54 
68 
78 
92 
104 
116 
128 
142 
152 
166 
178 
190 
202 
216 
226 
240 
252 
264 
276 
290 
300 

89 

6 
22 
36 
52 
66 
82 
96 
112 
126 
142 
156 
172 
186 
202 
216 
232 
246 
262 
276 
292 
306 
322 
336 
352 
366 

97 

6 
24 
40 
56 
72 
90 
104 
122 
138 
154 
170 
188 
202 
220 
236 
252 
268 
286 
300 
318 
334 
350 
366 
384 
398 

Dimension of ^k(<?, {<?)) 

i ^ ^ 

3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 
49 

3 

0 
0 
1 
2 
2 
3 
4 
4 
5 
6 
6 
7 
8 
8 
9 
10 
10 
11 
12 
12 
13 
14 
14 
15 

7 

1 
1 
3 
5 
5 
7 
9 
9 
11 
13 
13 
15 
17 
17 
19 
21 
21 
23 
25 
25 
27 
29 
29 
31 

11 

1 
3 
5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 
39 
41 
43 
45 
47 

19 

3 
5 
9 
13 
15 
19 
23 
25 
29 
33 
35 
39 
43 
45 
49 
53 
55 
59 
63 
65 
69 
73 
75 
79 

23 

3 
7 
11 
15 
19 
23 
27 
31 
35 
39 
43 
47 
51 
55 
59 
63 
67 
71 
75 
79 
83 
87 
91 
95 

31 

5 
9 
15 
21 
25 
31 
37 
41 
47 
53 
57 
63 
69 
73 
79 
85 
89 
95 
101 
105 
111 
117 
121 
127 

43 

7 
13 
21 
29 
35 
43 
51 
57 
65 
73 
79 
87 
95 
101 
109 
117 
123 
131 
139 
145 
153 
161 
167 
175 

47 

7 
15 
23 
31 
39 
47 
55 
63 
71 
79 
87 
95 
103 
111 
119 
127 
135 
143 
151 
159 
167 
175 
183 
191 

59 

9 
19 
29 
39 
49 
59 
69 
79 
89 
99 
109 
119 
129 
139 
149 
159 
169 
179 
189 
199 
209 
219 
229 
239 

67 

11 
21 
33 
45 
55 
67 
79 
89 
101 
113 
123 
135 
147 
157 
169 
181 
191 
203 
215 
225 
237 
249 
259 
271 

71 

11 
23 
35 
47 
59 
71 
83 
95 
107 
119 
131 
143 
155 
167 
179 
191 
203 
215 
227 
239 
251 
263 
275 
287 

79 

13 
25 
39 
53 
65 
79 
93 
105 
119 
133 
145 
159 
173 
185 
199 
213 
225 
239 
253 
265 
279 
293 
305 
319 

83 

13 
27 
41 
55 
69 
83 
97 
111 
125 
139 
153 
167 
181 
195 
209 
223 
237 
251 
265 
279 
293 
307 
321 
335 



Table B 301 

Table B 

For iV = 11, 17 and 19, eigenvalues â  of T{p) on 5^2(^o(^)) for prime numbers p 
are given. 

For N = 23, 29, 41, 47, 61, 67 and 71, the coefficients of the characteristic 
polynomials F(X) of T{p) on ^2(^o(^)) ^re given. When F{X) is reducible over Q, 
the coefficients of each irreducible factor are presented. They are separated by "/". 
For example, when N = 41 and p = 2, 

1, - 1 , - 5 , 5 , - 1 
should be read as 

X'^-X^-SX^ + SX-l, 

and when iV = 61 and p = 2, 
1 1 / 1 - 1 - 3 1 

should be read as 
iX-\-\){X^-X^-3X-\-l). 

We note the order of decomposition is not consistent for p\ 
The polynomial/* in the decomposition for AT = 61, 67 is the part correspond­

ing to the cusp forms invariant by cojy. 
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Table B 305 

N = 23 dim 5̂ 2 (^o(23)) = 2 

p 

2 ] 

3 ] 
5 ] 
7 ] 
11 1 
13 ] 
17 1 
19 1 
23 ] 
29 ] 
31 ] 
37 ] 
41 ] 
43 ] 
47 ] 
53 ] 
59 ] 
61 ] 
67 ] 
71 ] 
73 1 
79 ] 
83 1 
89 ] 
97 1 
101 ] 
103 ] 
107 ] 
109 ] 
113 ] 
127 ] 
131 ] 
137 ] 
139 1 
149 ] 
151 1 
157 ] 
163 1 
167 ] 
173 ] 
179 ] 
181 ] 
191 ] 
193 1 
197 1 
199 ] 
211 ] 
223 ] 
227 1 
229 1 
233 ] 
239 ] 
241 ] 
251 ] 
257 1 
263 1 

1 
[ 0 

2 
-2 
6 

I -3/ 1 
[ - 6 

I 2/ 1 
I -1/ 1 
I 3/ 1 
I 0 
[ - 2 
[ - 2 
[ 0/ 1 
[ 0 
[ 8 

-4 
-4 
10 

-20 
-22 

[ 4 
22 
12 

-22 
[ 0 
I -14 

0 
0/ 1 

-22 
28 

-24 
8 
8 

[ -12 
[ -4 

-4 
16 

-12 
-28 
12 
-2 
30 
-2 
-6 
38 
20 
-4/ 1 
2 
12/ 1 
22 

-32 
6 

-18 
6 

1 12 

-1 
-5 
-4 
-4 
4 

-3 
4 
2 

-1 
3 

-45 
-4 
-19 

0 
-5 
-4 
-16 
-76 
-20 
95 
101 
-76 
116 
16 
76 

-20 
-76 
-180 

0 
116 
151 
99 

-304 
-29 
-284 
-1 

-176 
59 
16 
116 
-9 

-244 
100 
-79 
-11 
316 
-80 
-4 

-124 
12 
101 
251 

-396 
36 

-11 
-44 

\P 

269 ] 
271 ] 
277 ] 
281 ] 
283 ] 
293 ] 
307 ] 
311 ] 
313 ] 
317 ] 
331 ] 
337 ] 
347 ] 
349 ] 
353 ] 
359 ] 
367 ] 
373 1 
379 ] 
383 1 
389 ] 
397 ] 
401 ] 
409 ] 
419 ] 
421 ] 
431 ] 
433 ] 
439 ] 
443 ] 
449 ] 
457 ] 
461 1 
463 ] 
467 ] 
479 ] 
487 ] 
491 ] 
499 ] 
503 ] 
509 ] 
521 ] 
523 ] 
541 
547 
557 ] 
563 
569 
571 
577 
587 
593 
599 
601 
607 
613 

[ - 2 
[ -8/ 1 
[ -22 
[ 22 
[ -42 
I 12 
[ -28 
I - 4 
I - 4 
[ - 2 4 
I 8 
[ -20 
[ -16 
[ -22 
[ 26 
[ 4 
[ -14 
I - 2 
1 - 4 
I -32 
I -60 
[ 22 
I 6 
I 2 
I 36 
I 34 
I 44 
I -58 
I 24 
[ -36 
I 12 
[ - 3 0 
I -6 
I 20/ 1 
[ 4 4 
I -14 
I 16 
I -48 
I -52 
I 36 
I -6 
I -36 
I -42 
I 42 
I -8 
I -12 
I 48 
I 22 
I 42 
I -10 
I 36 
I -12 
I -32 
[ -58 
I -44 
I 2 

-79 
-8 
101 
116 
396 
16 
176 

-121 
-496 
-36 
-229 
-80 
-256 
-59 
-331 
-316 
-76 
-44 
-496 
176 
880 
-59 
-116 
-499 
144 
244 
464 
716 
99 

-81 
-44 
-180 
-11 
20 
404 

-556 
19 
331 
631 
244 

-971 
144 
36 
261 

-1109 
-144 
496 
-4 
396 

-295 
279 
-44 
-64 
521 
464 
-44 

P 

617 1 
619 1 
631 1 
641 1 
643 1 
647 1 
653 1 
659 1 
661 1 
673 1 
677 1 
683 1 
691 1 
701 1 
709 1 
719 ] 
727 ] 
733 ] 
739 ] 
743 1 
751 1 
757 ] 
761 ] 
769 ] 
773 ] 
787 ] 
797 ] 
809 ] 
811 ] 
821 ] 
823 ] 
827 ] 
829 ] 
839 ] 
853 ] 
857 ] 
859 
863 
877 
881 
883 
887 
907 
911 
919 
929 
937 
941 
947 
953 
967 
971 
977 
983 
991 
997 

24 
-12 
20 

-28 
10 
0 
14 

-10 
28 
-3/ 1 

-18/ 1 
-4 
-32 
30 
26 
24 
42 
58 

-76 
-42 
44 
46 

-30 
6 

[ 20 
[ -76 
[ 24 
I -60 
I 80 
I 60 
I 12 
I -12 
I 0 
I 42 
I 48 
I 6 
I 20 
I -24 
I 64 
I -66 
1 -4/ 1 

1 12 
1 0 
I 0 
I -42 
1 66 
I -46 
I 18 
1 44 
1 -32 
1 12 
I -24 
1 78 
1 72 
1 -24/ 1 
1 20 

124 
-144 
-400 
-784 
-580 
-45 
-931 
-220 
116 
-3 
-18 
-601 
176 
100 

-676 
64 
396 
836 
1319 
36 

-16 
-76 
-755 
-396 

80 
1264 
-356 
580 
1355 
820 

-1089 
16 

-1620 
36 
396 
-11 
55 

-981 
1004 
964 
-4 

-809 
-1620 
-980 

36 
1009 
404 
164 
359 
236 

-1089 
124 
1276 
1276 
-24 
-620 
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TV = 29 dim ^2(^o(29)) = 2 

p 

2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 
101 
103 
107 
109 
113 
127 
131 
137 
139 
149 
151 
157 
163 
167 ] 
173 ] 
179 ] 
181 ] 
191 
193 
197 
199 ] 
211 
223 
227 
229 
233 
239 
241 
251 
257 
263 

1 2 
1 - 2 

1 1/ 
1 0 
I - 2 
1 2 
1 4 
1 -6/ 
1 4 
I -1/ 
1 -6 
I 4/ 
1 -8 
1 -10 
I - 2 
I -2 
I -4 
I 4 
I 0 
I 12 
I -4/ 
1 2 
[ -4 
1 8 
[ 8 
I 16 
I 4 
I 24 
1 -14 
1 4 
I 20 
[ -20 
I -12/ 
1 -14/ 
I 10 
1 0 
I 0 
[ -22 
I 12 
I -36 
1 -4 
I 6 
I -28 
I 16 

I -2/ 
I -16 
I 2 
1 12 
1 -12 
I 24 
I -14 
I 28 
I 14 
1 -26 
I 42 
I -14 

-1 
-1 

1 1 
-8 
-1 
-7 
-4 

1 -6 
-28 

1 -1 
-41 

1 4 
-56 
23 

-17 
-71 
-28 
-4 
-32 
28 

1 -4 
-1 
-28 
-56 
-56 
32 
-4 
136 
17 

-124 
68 

-28 
1 -12 
1 -14 

17 
-200 
-72 
71 
28 
292 
-68 
-119 

68 
56 

1 -2 
-8 

-337 
28 

-164 
72 

-79 
164 
-79 
119 
433 
31 

P 

269 ] 
271 ] 
277 ] 
281 ] 
283 ] 
293 ] 
307 ] 
311 
313 
317 ] 
331 
337 ] 
347 
349 
353 
359 
367 
373 
379 
383 ] 
389 ] 
397 
401 
409 
419 
421 
431 
433 1 
439 1 
443 ] 
449 1 
457 
461 1 
463 ] 
467 ] 
479 1 
487 1 
491 1 
499 1 
503 ] 
509 
521 ] 
523 ] 
541 ] 
547 ] 
557 1 
563 ] 
569 ] 
571 ] 
577 ] 
587 
593 
599 ] 
601 ] 
607 ] 
613 

I -12 
I - 2 
I 12 
1 -30 
[ -12 
1 -4 
[ 14 
I -28 
I -14 
I 12 
I 2 
I - 4 
I 12 
I -18 
1 -20 
I -22 
I -18/ 
I 30 
I -20 
I 24 
I -40 
I -50 

26 
I 4 

36 
-12 

I -28 
-16 
12 
60 
36 

I -36 
I -14/ 

26/ 
I 6 
I 6 
[ 40 

34 
-4 

1 -26 
I 38 

30 
-32 

I 32 
I -32 
I 12 
I 10 
[ 68 
I 16 
I 20 
1 - 4 
I 22 
I 34 
I 40 
I -10 
I 9/ 

-612 
-241 
-92 
-63 

4 
-28 
-49 
68 
41 

-612 
-1 

-388 
-36 
-119 
-188 

71 
1 -18 

97 
-188 

72 
112 
593 
137 

-284 
252 

-932 
164 

-448 
4 

868 
36 
36 

1 -14 
1 26 
-1241 
-89 
328 
271 

-284 
7 

289 
25 
128 
224 

-136 
-92 

7 
1124 
-448 
-292 
-28 
49 

-433 
392 

-137 
1 9 

P 

617 1 
619 ] 
631 1 
641 ] 
643 ] 
647 ] 
653 ] 
659 ] 
661 ] 
673 ] 
677 ] 
683 ] 
691 ] 
701 ] 
709 ] 
719 ] 
727 ] 
733 ] 
739 ] 
743 1 
751 ] 
757 ] 
761 1 
769 ] 
773 
787 ] 
797 ] 
809 
811 
821 
823 
827 
829 
839 
853 
857 
859 
863 
877 
881 
883 
887 
907 
911 
919 
929 
937 
941 
947 
953 
967 
971 
977 
983 
991 
997 

-24 
-70 
68 
4 

-48 
-68 
32 

[ -26 
-44 

[ - 2 
I 22/ 
I -8 
I -48/ 
I 18 
I -30 
1 12 
1 20 
I -8 
I 6 
I -36 
1 -28 
I -68 
1 -12 
1 36 
I 56 
1 12 
I 4 
I -16 
I -16 
1 -14 
I 52 
[ -46 
1 20 
I 30 
[ 12 
I 18 
I -14 
I 28 
[ 46 
I -14/ 

1 8 
I -54 
I 12 
I 62 
I 12 
I -60 
I -12 
I 34 
1 -42 
I 26 
I 62 
1 20 
1 -78 
1 -10 
1 20 
1 0 

16 
1223 
1148 
-388 
504 
1124 
56 
167 
356 

-511 
1 22 

-272 
1 -48 

-887 
25 

-164 
-28 

-2032 
-41 
292 
68 

1084 
-1532 
-644 
712 

-2276 
-2884 
-736 

56 
-23 
-124 
431 

-292 
175 

-252 
73 

-113 
-772 
329 

1 -14 
-1784 

631 
-764 
719 

-164 
772 

-476 
-1279 

103 
-343 
943 
68 

1513 
-697 

92 
-800 



Table B 307 

yv = 4i dim ^2irom)) = 3 

p 

2 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 
101 
103 
107 ] 
109 
113 
127 
131 
U7 
139 
149 
151 
157 ] 
163 ] 
167 ] 
173 ] 
179 ] 
181 ] 
191 1 
193 1 
197 ] 
199 ] 
211 ] 
223 ] 
227 ] 
229 ] 
233 ] 
239 ] 
241 ] 
251 ] 
257 ] 

1 1 
I 0 
1 2 
I -6 
I -2 
I 2 
I 2/ 1 
I - 4 
I - 4 
I 6 
I -16 
I 6 
I -1/1 
I • 4 
I 0 
I -6 
I 8 
I -2 
I 2 
I -20 
I 2 
I -32 
1 0 
1 6 
I -6 
1 -18 
1 4 
I 16 
I 6 
I -6 
I -16 
I 20 
1 -18 
I 12 
1 -10 
I -28 
I 14 
I 16 
I 14 
I 30 
1 -2 

34 
[ -14 

26 
1 -50 
I -46 
I -10 
I 8 
I -8 
I 6 
1 -26 
[ - 1 6 
I -6 
I 28 
I -10 

-5 
-4 
-4 
8 

-20 
-12 

2/ 
-16 
-32 
-4 
64 

-36 
-1/1 
-8 

-120 
-4 
-16 
-52 
-20 
84 

-180 
328 
-64 
-148 
-52 
-12 
-256 

0 
-124 
-148 

48 
80 

-148 
-352 
-212 
196 

-172 
32 
28 
236 

-296 
140 

-412 
188 
780 
612 

-160 
-64 
-28 
-268 
-116 
-48 
-388 
208 

-276 

-1 
2 

-4 
-2 
50 
-8 

1 2 
-10 
-32 
-40 
-32 
-108 

-1 
-16 
-502 

8 
-160 
184 
-50 
134 
244 

-1090 
-128 
-920 
248 
488 

-1424 
-256 
-760 
-116 
-32 
-208 
2344 

-3680 
1720 
-338 
-2392 
-128 
-122 
232 

-610 
-2264 
3562 
248 

-3592 
-2510 
1382 
-256 
214 

-1240 
4616 
430 
2792 
464 

-344 

P 

263 
269 
271 
277 
281 
283 
293 
307 
311 
313 
317 
331 
337 
347 
349 
353 
359 
367 
373 
379 ] 
383 ] 
389 ] 
397 
401 
409 1 
419 ] 
421 ] 
431 ] 
433 
439 ] 
443 ] 
449 ] 
457 ] 
461 ] 
463 ] 
467 ] 
479 ] 
487 ] 
491 ] 
499 ] 
503 ] 
509 ] 
521 ] 
523 ] 
541 ] 
547 ] 
557 ] 
563 1 
569 ] 
571 ] 
577 1 
587 ] 
593 ] 
599 ] 
601 ] 

I -20 
I -10 
I 4 
I 2 
I -38 
I 4 
I -42 
I 40 
I -10 
I 34 
I 42 
I -6 
I 38 
I -12 
I 50 
I 22 
I 24 
I 16 
I 54 
I -48 
I 22 
I -2 
I -22 
I 6 
I -6 
[ 4 
[ - 2 2 
I 12 
I -30 
I -50 
1 -80 
I -22 
I -10 
I 38 

4 
I 56 
1 2 
[ -8 
I 8 
I -48 
I 40 
[ 50 
[ 42 
[ -20 
[ -30 
[ 68 
[ 50 
[ -58 
[ - 2 
i 6 
[ 46 
I 18 
[ 38 
I 40 
I -26 

-740 
-228 
-16 
-332 
428 

-448 
140 
480 

-360 
76 
452 

-576 
164 

-144 
828 

-172 
-256 
-216 
716 
656 
-32 
-596 

68 
-700 
-436 
-1224 
-100 
-424 
-1044 
-268 
2048 
76 

-116 
300 

-516 
1024 
-192 
-1552 
-352 
764 
176 
532 
188 

-720 
-436 
1168 
684 
732 
-44 

-1212 
364 
104 

-564 
-432 
-116 

12506 
-200 
-32 
2116 

-1352 
-1376 
5528 
1808 

-1718 
-712 
344 

4658 
-3676 
1678 
4540 

-4388 
-6400 
-1648 
2248 

-2720 
-1798 
3560 
152 

-5132 
-2740 

80 
2600 

-4688 
29592 
25750 

-16976 
520 
1096 
100 
1286 
6112 
670 
2416 

-3616 
-4030 
-3098 
-200 
-712 
5696 
14044 
3622 
2536 

-1934 
20 

-9838 
-2008 

194 
-9176 
-160 
1928 



308 Numerical Tables 

iV = 47 dim5^2(/;)(47)) = 4 

p 

2 ] 

3 ] 
5 ] 
7 ] 
11 ] 
13 ] 
17 ] 
19 ] 
23 ] 
29 ] 
31 ] 
37 ] 
41 ] 
43 ] 
47 ] 
53 ] 
59 ] 
61 ] 
67 ] 
71 ] 
73 ] 
79 ] 
83 ] 
89 ] 
97 ] 
101 ] 
103 ] 
107 ] 
109 ] 
113 ] 
127 ] 
131 ] 
137 ] 
139 ] 
149 ] 
151 ] 
157 ] 
163 ] 
167 ] 
173 ] 
179 ] 
181 ] 
191 ] 
193 ] 
197 ] 
199 ] 
211 ] 
223 ] 
227 ] 
229 ] 
233 ] 
239 ] 
241 ] 
251 ] 
257 ] 

I -1 
I 0 
I 2 
I - 4 
I 6 
I - 8 
I - 6 
I 0 
I 6 
I 10 
I 8 
I -10 
I - 6 
I - 2 

I . - 1 / 
I 6 
I - 4 
I 6 
I -10 
I 12 
I -22 
L -20 
I -20 
I 6 
[ -30 
I 22 
[ 20 
I -12 
I 6 
I 4 
I -22 
I -28 
I -36 
[ 28 
I 6 
[ 0 

I 2 
I - 6 
I - 6 
I 42 
L -28 
[ 36 
[ -20 
[ -48 
[ 12 
[ 2 
[ - 2 
[ 2 
[ 14 
[ -10 
[ - 2 
[ - 8 
[ -18 
[ 4 
[ 24 

-5 
-7 
-16 
-7 
-4 
0 

-21 
-16 
-20 
20 
0 
15 
-8 
-80 
1-1/ 
-101 
-115 
-73 
-120 
-19 
60 
77 
80 

-161 
179 
35 
77 

-84 
-276 
-216 
-76 
173 
376 

-136 
-189 
-224 
-25 
-56 
-60 
503 
0 

408 
-48 
732 

-336 
-300 
-652 
-824 
-248 
-768 
-192 
-475 
-165 
-667 
-264 

5 
4 

-16 
44 

-56 
56 
74 
-8 
-40 
-8 
-56 
34 
32 

-112 
1 - 1 / 
-314 
704 
10 
752 

-320 
1368 
240 
192 
206 
1634 

-1398 
-240 
848 

-1064 
-1656 
4088 
-144 

-1256 
-7992 
-1030 

8 
-78 
304 
152 
1234 
3184 
1304 
320 

-4208 
-2224 
-2952 
4344 
-928 
-2896 
8272 

-1216 
472 
3382 
1888 

-3080 

_1 
1 
48 

-43 
-48 
48 
141 
16 

-16 
-16 
48 
9 

-16 
432 

1 -1 
2429 
-519 
337 

3184 
657 

-7664 
-47 
-256 
4841 

-14307 
-5903 
-47 
1488 
5776 

-3024 
-20688 
-199 
368 

-41488 
721 

12368 
-59 
-304 
912 

-371 
752 

-1328 
768 
7984 
7984 

-7472 
17872 
39056 
8912 
2576 

-2128 
8741 

-11723 
21441 
6576 

P 

263 
269 
271 
277 
281 

. 283 
293 
307 
311 
313 
317 
331 
337 
347 
349 
353 
359 
367 
373 
379 
383 
389 
397 
401 
409 
419 
4̂ 1 
431 
433 
439 
443 
449 
457 
461 
463 
467 
479 
487 
491 
499 
503 
509 
521 
523 
541 
547 
557 
563 
569 
571 
577 
587 
593 
599 
601 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

16 
-32 
44 
14 

-26 
52 
-6 
-48 
26 
6 

-20 
56 

-90 
16 

-18 
30 
0 
4 

-24 
24 

-16 
42 
74 
42 
0 
8 

-2 
12 

-18 
-20 

6 
26 

-62 
-56 
-22 
-24 
0 

-20 
12 

-36 
40 
16 

-58 
-20 
26 
26 
-6 
-16 
20 

-32 
26 

-84 
-14 
40 
-6 

-467 
168 
101 

-357 
-56 
757 

-592 
689 

-400 
-248 
-592 
977 
3003 
-803 
-524 
-441 
-312 
-304 
-616 
141 

-171 
344 

2027 
67 

-544 
-868 
-112 
-1099 
-32 
-576 
-744 
-296 
899 
288 

-1412 
-712 
-559 
-224 
-375 
376 
-64 

-184 
415 

-624 
-853 
-604 
-1408 
-216 
-16 
321 
140 

2160 
-500 
-152 
-365 

-3376 
2432 

-16720 
-6350 
2704 
760 
2000 

-2212 
-10656 
-1792 
10216 
4524 

-44026 
-10336 

4232 
-16902 
-2776 

64 
18536 
-104 
1984 
-656 
24398 

-11594 
-4160 
-4240 

112 
-21728 

1216 
17024 
-5536 
-11536 

1158 
24896 
25048 
4064 
1348 
640 

-2012 
-328 

-10248 
-3072 
13186 
3136 

-28918 
-15880 
-13024 

5016 
-856 
-932 
-88 

-16832 
4040 

-10784 
-2414 

56349 
-17328 
-182799 
-22639 

8144 
-30439 
72208 
-9839 

-47248 
3824 

21936 
-12911 
239373 
103341 
49616 

-80919 
-6704 
5888 

-103184 
-1523 
10629 
-752 

109001 
-73039 

9472 
104816 
2832 

-56807 
-2128 

-108288 
10512 

-70864 
-35303 
-320256 

7824 
59152 
18217 
-256 
21973 
-8752 
-29872 
-5552 
10089 
256 

-204739 
-43984 
-13584 
-22544 

1008 
-719 

-1296 
40192 
-7536 
27728 
-3259 



Table B 309 

AT = 61 

P 

Y 
3 
5 
7 
11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 
101 
103 
107 
109 
113 
127 
131 
137 
139 
149 
151 
157 
163 
167 
173 
179 
181 
191 
193 
197 
199 
211 
223 
227 
229 
233 
239 
241 
251 
257 

d 

Fix) =f* 

~1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 
1 

1/ 1 
2/ 1 

3/ 1 
-1/ ] 

5/ 1 
-1/ 1 
-4/ 1 
4/ ] 
9/ ] 
6/ 1 
0/ ] 

-8/ ] 
-5/ ] 

8/ ] 
-4/ 1 
-6/ 1 
-9/ 1 

1/ ] 
7/ 1 
8/ 1 
11/ 1 

-3/ 1 
-4/ 1 
4/ 1 
14/ 1 

0/ 1 
-4/ 1 
2/ 1 
17/ 1 
-1/ 1 
-6/ 1 
16/ 1 
-9/ 1 
11/ 1 

-19/ 1 
-11/ 1 

4/ 1 
-18/ 1 
12/ 1 

-10/ 1 
18/ 1 
-8/ 1 

-3/ 1 
8/ 1 

3/ 1 
-6/ 1 
-4/ 1 

-23/ 1 
-21/ 1 
-9/ 1 
14/ 1 
-2/ 1 

3/ 1 
12/ 1 
22/ 1 

ini5̂ 2(ro(61)) = 4 

ix)f{x) 

[ - 1 
[ - 2 
I 1 
[ 3 
[ - 1 3 

9 
[ 2 
[ 0 
[ -5 
[ - 4 

2 
6 

[ - 3 
[ 14 

4 
2 

-29 

-1/ 
-9 
-14 

1 
-13 

8 
4 

-10 
10 

-12 
-26 
-13 

9 
18 
-8 
-3 
3 

-9 
-3 
10 

-10 
32 
10 

-42 
20 

-31 
20 
29 
50 

-22 
11 

-11 
9 
40 
38 
-7 
-38 
-2 

-3 
-4 
-9 
-1 
53 
11 
-8 
-48 

5 
-4 
-76 
-36 
-61 
56 

-88 
-12 
231 

1 -1/ 
-85 
-12 
-45 
-51 
-64 
-56 
-116 

0 
0 
92 
3 

-133 
68 

-24 
-253 
-1 
11 

-277 
-300 
-284 
148 
-4 
476 
-80 
139 
80 
203 
812 
-52 
-183 
-483 
-133 
440 
404 

-345 
296 
-36 

1 
4 

-13 
-1 
-67 
-37 

4 
-20 

1 
20 
116 

-108 
191 
68 
16 
-8 

-325 
1 -1 

559 
92 

-25 
625 

-256 
80 

1096 
-148 
108 
1096 
145 

-1061 
52 
92 
859 
-5 
5 

2033 
-3412 
-668 
-1604 

-8 
-760 
-1088 
-167 
-64 
323 

4280 
764 

-1343 
5891 
-25 
796 
1220 
1675 
-548 
184 

P 

26r 
269 

1 271 
277 
281 
283 
293 
307 
311 
313 
317 
331 
337 
347 
349 
353 
359 
367 
373 
379 
383 
389 
397 
401 
409 
419 
421 
431 
433 
439 
443 
449 
457 
461 
463 
467 
479 
487 
491 
499 
503 
509 
521 
523 
541 
547 
557 
563 
569 
571 
577 
587 
593 
599 
601 

F{x)=f*{x)f{x) 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

^ 

16/ 
18/ 

--14/ 
-10/ 

0/ 
-6/ 

-18/ 
19/ 
15/ 
6/ 
30/ 
17/ 
2/ 

-8/ 
24/ ] 

-19/ 
-12/ 
-14/ 
10/ 
14/ ] 
-5/ ] 
14/ ] 
-8/ ] 

-16/ ] 
-30/ ] 
-4/ ] 
-8/ ] 
-6/ ] 
8/ ] 

0/ ] 
-12/ ] 
35/ ] 
20/ -
18/ ] 
4/ ] 

-11 ] 
-14/ ] 
12/ ] 
28/ ] 

-13/ ] 
-10/ 1 
-28/ 1 
20/ ] 
9/ ] 

-28/ 1 
29/ ] 
28/ 1 
10/ ] 
15/ ] 

-38/ ] 
-10/ 1 
-32/ ] 

6/ ] 

35/ 1 
43/ ] 

I 28 
I 10 
I 2 
I - 4 
I -28 
I -34 
I 2 
I - 7 
1 -15 
I 30 
I -58 
t 13 
I -26 
I -32 
I -14 

I 15 
I -14 
I 38 
I -24 
I -18 
I 37 
I 34 
I -6 
I 28 
I 2 
I -50 
I - 2 
I - 2 
I 44 
I 44 
I 4 
I 29 

-90 
I -6 
I -36 
[ 21 
I -22 
I -20 
I -8 
I -45 
I 22 
[ 58 
[ 58 
I 19 
I 8 
[ 31 
[ 40 
L 22 
[ 1 
[ 46 
[ -8 
[ 22 
[ -12 
L -45 
[ -15 

20 
-268 
-496 
-256 
176 
232 

-668 
-291 
-43 
188 
1068 
35 

-748 
264 

-116 
-1009 
-564 
428 

-532 
-696 
297 
324 

-580 
208 

-196 
-92 
-8 

-388' 
584 
464 

-256 
191 

2672 
-756 
-48 
35 

-76 
-176 
-164 
-225 
-48 
1076 
140 

-483 
-928 
169 
320 

-212 
-33 
252 

-512 
-268 

0 
-225 
-205 

-2732 
-1160 
-2404 

92 
272 
-68 
856 
919 
823 

-536 
-6344 

25 
17896 
-556 
-380 

-18043 
8780 
1352 
7108 
12580 
131 
920 
6652 
464 
680 

21380 
-4 

-1304 
2096 
860 

-1424 
335 

-26108 
2808 
3904 
-691 
-40 
-4 

-388 
16875 
-604 
6340 

-23300 
-871 
8576 
137 

-512 
-4588 
-85 
344 
5996 

-1916 
108 

16875 
587 



310 Numerical Tables 

N = 61 

P 

2 
3 
5 
7 

11 
13 
17 
19 
23 
29 
31 
37 
41 
43 
47 
53 
59 
61 
67 
71 
73 
79 
83 
89 
97 

101 
103 
107 ] 
109 ] 
113 
127 ] 
131 ] 
137 ] 
139 ] 
149 ] 
151 ] 
157 ] 
163 ] 
167 ] 
173 ] 
179 ] 
181 ] 
191 ] 
193 ] 
197 ] 
199 ] 
211 ] 
223 ] 
227 ] 
229 ] 
233 ] 
239 ] 
241 1 
251 ] 
257 ] 

d i m ^ ( r o ( 6 7 ) ) = t 

F{x)=f*{x)Mx)Mx) 

I 3 
I 3 
I 3/ 1 
I 1 
I 0 
1 7 
I 6 
1 - 1 
I - 6 
I 6 
[ 1/ 1 
I 1 
I 3 
I - 3 
I 15 
I 9/ 1 
I - 6 / 1 
I 7 
I 1/ 1 
I 12 
I 4/ 1 
I 7 
I 15 
I 0 
I - 2 
I 9 
I 5 
I - 2 4 
I 3 
I - 3 3 
I 5 
I 3 / 1 
I 12 
I 3/ 1 
I - 9 
I 1/ 1 
I - 1 3 
I 7 
I - 1 2 -
[ 39 
I 18 
[ 7 
[ 6 
[ - 2 7 
I 18 
[ 13 -
[ 11 
[ - 1 8 
[ 3 -
[ 31 
[ - 1 2 
[ 27 
[ - 4 5 
[ - 1 8 
[ 18 

1/ 
1/ ] 
3/ 

- 1 1 / 
- 5 / 

1/ ] 
4/ 

- 1 1 / 
- 1 1 / 
- 1 1 / ] 

1/ ] 
- 1 1 / ] 

1/ ] 
- 9 / 
55/ ] 

9/ 
- 6 / 

- 8 9 / ] 

1/ 1 
31/ ] 

4/ ] 
- 8 9 / ] 

- 5 / ] 
- 5 / ] 

- 1 7 9 / ] 
- 1 1 / ] 
- 9 5 / ] 

99/ ] 
- 9 / ] 
271/ ] 
- 5 / ] 

3 / ] 
- 9 / ] 

3/ ] 
- 1 9 1 / ] 

1/ ] 
- 5 9 / ] 

1/ 1 
- 2 8 4 / ] 

349/ ] 
76/ ] 

- 8 9 / ] 
- 1 1 / ] 

171/ ] 
61/ ] 

- 2 3 9 / ] 
19/ ] 
36/ 1 

- 3 5 9 / J 
229/ ] 

16/ ] 
151/ 1 
495/ ] 

76/ 1 
- 2 3 9 / ] 

I - 2 / 
I 2/ ] 
I - 2 / ] 
I 2/ ] 
I 4/ ] 
I - 2 / ] 
I - 3 / ] 
I - 7 / ] 
I - 9 / ] 
I 5/ ] 
I 10/ ] 

I 1/ ] 
I 0/ ] 
I 2/ ] 

I 1/ ] 
I - 1 0 / ] 
I - 9 / ] 
I 2/ ] 

I - 1 / 
I 0/ ] 
I 7/ ] 
I 8/ ] 
I - 4 / ] 
I - 7 / ] 
I 0/ ] 
[ - 2 / ] 
[ 16/ ] 
I 7/ ] 
I - 2 / ] 
I 12/ ] 
L - 7 / ] 
[ 12/ ] 
[ - 1 2 / ] 
[ - 2 2 / ] 
I - 2 1 / ] 
[ - 3 / ] 
[ - 9 / ] 
[ - 1 9 / ] 
[ - 2 4 / ] 
[ - 1 1 / ] 
[ 12/ ] 
L - 7 / ] 
L 6/ ] 
[ 23/ ] 
[ 2/ ] 
[ - 7 / ] 
[ 12/ ] 
[ - 1 1 / ] 
[ - 3 / ] 
[ - 4 / 1 
[ - 1 0 / ] 
I 20/ ] 
[ 19/ ] 
[ 2 / ] 

i 1/ ] 

I 1 
I - 1 
I - 4 
I - 1 
I - 1 / 1 
I 1 
I - 6 
I 11 
I 2 
I - 1 0 
I 0 
I - 3 
I - 5 
I 9 
I 7 
I 0 
I 6/ 1 
I 9 
I - 1 / 1 
I 0 
I - 8 / 1 
i 11 
I - 1 3 
i 16 
i 0 
I - 1 9 
I - 3 
i - 1 6 
I - 9 
I - 1 1 
I 21 
L - 6 
[ 26 
[ - 2 4 
i 3 
I - 6 
L - 1 3 
L - 1 3 
[ - 1 4 / 1 
i - 1 7 
i -6 
i 11 
[ 32 
L 1 
i - 3 6 
L - 3 9 
i - 1 
[ -2 
i - 2 1 
I 7 
[ 20 
L - 1 5 
[ - 1 7 
I 14 
I 2 

— 1 
- 1 
- 1 
- 1 
- 1 
- 1 

4 
29 

- 1 9 
5 

- 4 5 
1 

- 2 5 
- 1 1 

11 
- 4 5 

6 
9 

- 1 
- 2 4 5 

- 8 
- 3 1 

31 
19 

- 4 5 
59 

1 
19 

- 1 1 
- 7 1 

79 
- 1 1 
149 
139 

- 5 9 
- 7 1 

- 2 3 9 
41 

- 1 4 
61 

- 3 6 
19 

211 
- 1 
319 
349 

- 6 1 
- 4 0 4 
- 1 7 1 
- 2 6 9 

- 8 0 
- 1 5 5 

11 
- 1 9 6 

- 7 9 



Table B 311 

N = 71 dim5^2(^o(71)) = 6 

p F{x)=Mx)Mx) 

2 ] 

3 ] 
5 ] 
7 ] 
11 ] 
13 ] 
17 ] 
19 ] 
23 ] 
29 ] 
31 ] 
37 ] 
41 ] 
43 ] 
47 1 
53 ] 
59 ] 
61 ] 
67 ] 
71 ] 
73 1 
79 ] 
83 ] 
89 ] 
97 ] 
101 ] 
103 1 
107 1 
109 1 
113 ] 
127 ] 
131 1 
137 ] 
139 ] 
149 1 
151 ] 
157 ] 
163 1 
167 
173 
179 
181 
191 
193 ] 
197 
199 
211 
223 
227 
229 
233 
239 
241 
251 
257 

I 0 
I 1 
I 3 
I - 2 
I 2 
I -4/ 1 
I - 2 
I -11 
i 4/ 1 
I 5 

-4/ 1 
I -9 
I -14 
I 17 
I 10 
I 0 

22 
I -8 

12 
1 - 1 / 1 

I -3 
I -7 

-23 
I -13 
I - 4 
I 3 

9 
12 

I -19 
I 0 

26 
I 13 
I 22 

-26 
10 
27 

1 7 
-10 

1 -55 
1 6 

3 
I -38 
1 23 
1 2 

0 
1 25 
1 -14 
1 -5 
I - 4 
1 -23 
I 21 
I 46 
I -62 
I -7 
I 12 

-5 
-8 
-2 
-16 
-16 

-4/ 
-16 
36 

4/ 
-2 

-4/ 
-26 
48 
72 
0 

-20 
144 
-76 
-32 

-1/ 
-2 

-136 
172 
-82 
-36 
-62 
-48 
-32 
-14 
-260 

60 
-12 
-48 
192 

-132 
196 
-30 
-72 
984 

-288 
-356 
376 
-80 
-528 
-80 
128 
-68 
-312 
-428 
-114 
-242 
616 
1248 
-192 
-380 

3/ 
-3/ 
-7/ 
24/ 

-24/ 

1 -4/ 
24/ 

-35/ 

1 4/ 
-25/ 

1 -4/ 
37/ 
-8/ 
81/ 

-72/ 
-24/ 
280/ 
536/ 
-64/ 

1 -1/ 

7/ 
525/ 

-419/ 
45/ 
152/ 
129/ 

-191/ 
-64/ 
735/ 

-1544/ 
-1576/ 
-371/ 
-1256/ 
-360/ 
280/ 
367/ 
25/ 
504/ 

-5679/ 
-648/ 
-945/ 
-888/ 
-925/ 
-4824/ 
-192/ 
185/ 
504/ 

2479/ 
2168/ 
1935/ 

-1777/ 
1960/ 

-8136/ 
1629/ 
-200/ 

1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

1 
1 

1 
1 

1 
1 
1 
1 
1 

1 
-1 
-5 
-2 
0 
6 
2 

-1 

-8 
-11 

6 
15 
2 

-13 
-4 
18 
4 

-16 
12 

-1/1 
-27 

3 
19 
-1 
-22 
-9 
7 

-28 
1 
8 

-10 
-9 
-8 
-8 
4 

-47 
23 
42 
-9 
22 
1 
6 

-15 
-12 
20 

-37 
38 
5 
0 

-11 
-7 
-4 
-36 
-37 
38 

-4 
-4 
-2 
-16 
-20 
-8 
-32 
-20 
-12 
14 
-8 
70 

-68 
48 

-28 
28 

-36 
16 
28 

-1/1 
202 
-44 
96 

-22 
144 
22 

-152 
192 
-26 
-12 
-64 
-236 
-112 
-68 
-84 
732 
-14 
508 
-20 
92 

-124 
-200 
-260 
-132 

92 
436 
296 

-740 
-596 
-518 
-346 
-348 
276 
324 
348 

-3 
3 
25 
24 
24 

-56 
-24 
-25 
72 
71 

-56 
97 
56 

-45 
40 

-456 
-152 
320 
-40 

-1 
-461 

15 
63 

-27 
-280 
-15 
-53 
-64 
15 

-72 
-8 

2287 
320 
-56 
-392 
-3779 
-691 
1816 
175 

-216 
477 

-1176 
-743 
1304 
120 

-1657 
648 

-8911 
-3896 
-821 
-1061 

200 
-200 
315 
360 
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Table C 

This table gives the Fourier coefficients Qp (2 ^ p ^ 761: prime numbers) of a 

primitive form in .5̂ 2 ( ^A — 1 I for iV = 29 and 37. Since the dimension of each 

space is 2, 

I f i = l n = l J 

is a basis of ^ 2 ( ^» I T7 I )• 

p 

2 

7 

17 

29 

41 

53 

67 

79 

97 

107 

127 

139 

157 

173 

(s) 
— 

+ 

— 

-

+ 

+ 

-

-

+ 

-

+ 

-

+ 

«P 

y^ 
2 

-27"^ 
-3 + 2^"^ 

-2V^ 
-9 

8 

-3V^ 
6^-5 

18 

0 

-10 

-67"^ 
-6 

P 

3 

11 

19 

31 

43 

59 

71 

83 

101 

109 

131 

149 

163 

179 

© 
— 

-

-

— 

-

+ 

+ 

+ 

-

+ 

-

+ 

-

+ 

«P 

-V^ 
y-5 
0 

3^"^ 

- 3 ^ ^ 

6 

0 

-6 

-sy^ 
5 

V ^ 
15 

-V^ 
0 

P 

5 

13 

23 

37 

47 

61 

73 

89 

103 

113 

137 

151 

167 

181 

[Q 
+ 

+ 

+ 

— 

-

-

-

-

+ 

-

-

+ 

+ 

+ 

«P 

-3 

-1 

6 

0 

v ^ 
6V-5 
0 

- 2 ^ ^ 

-4 

V^ 
V-5 
-10 

-12 

5 
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Sf; 
( « ( . ) ) 

V 

191 

199 

227 

239 

257 

271 

283 

311 

331 

349 

367 

383 

401 

421 

439 

457 

467 

491 

509 

541 

563 

577 

599 

613 

631 

647 

661 

683 

709 

733 

751 

ii 
— 

+ 

+ 

+ 

+ 

-

+ 

-

-

+ 

-

+ 

+ 

-

+ 

+ 

-

-

+ 

-

-

-

-

+ 

+ 

+ 

+ 

+ 

+ 

-

— 

flp 

V^ 
14 

12 

6 

-3 

-V^ 
14 

V ^ 
15V-5 

-1 

- 1 2 ^ ^ 

6 

15 

6 ^ ^ 

-34 

2 

y ^ 
-llV-5 
15 

0 

- 5 ^ " ^ 

-isy"̂  
137"^ 
-31 

32 

-18 

-10 

-36 

35 

1 2 ^ ^ 

iV"^ 1 

p 

193 

211 

229 

241 

263 

277 

293 

313 

337 

353 

373 

389 

409 

431 

443 

461 

479 

499 

521 

547 

569 

587 

601 

617 

641 

653 

673 

691 

719 

739 

757 

ii 
— 

-

-

+ 

-

+ 

-

+ 

-

+ 

+ 

-

-

+ 

-

-

-

+ 

+ 

+ 

-

+ 

-

-

-

-

+ 

+ 

+ 

-

-

«p 

- 6 ^ " ^ 

3 V ^ 
-6^-5 

-25 

-57"^ 
2 

V"̂  
29 

-67"^ 
-6 

-31 

- 8 ^ ^ 

1 2 ^ ^ 

18 

-sy^ 

V^ 
- 5 ^ ^ 

-10 

-27 

38 

- 8 ^ " ^ 

-42 

6V^ 
-20V^ 

loy^ 
2 2 ^ ^ 

11 

20 

36 

-9Vr^ 
-18^-5 

P 

197 

223 

233 

251 

269 

281 

307 

317 

347 

359 

379 

397 

419 

433 

449 

463 

487 

503 

523 

557 

571 

593 

607 

619 

643 

659 

677 

701 

727 

743 

761 

(il 
+ 

+ 

+ 

-

-

+ 

-

-

+ 

-

-

+ 

+ 

-

-

+ 

+ 

-

+ 

+ 

+ 

+ 

-

-

+ 

-

-

+ 

-

-

+ 

«p 

-18 

-16 

-9 

V^ 
-27"^ 
3 

V^ 
loV-5 
-12 

s/^ 

0 

-7 

24 

0 

167^ 
26 

2 

V^ 
-4 

18 

32 

9 

3v/"^ 

15>/-5 

26 

-nV"^ 
-8V^ 
-45 

-\1sh'^ 
v^ 
-30 



314 Numerical Tables 

^ • . (-4)) 
V 

2 
7 
17 
29 
41 
53 
67 
79 
97 
107 
127 
139 
157 
173 
191 
199 
227 
239 
257 
271 
283 
311 
331 
349 
367 
383 
401 
421 
439 
457 
467 
491 
509 
541 
563 
577 
599 
613 
631 
647 
661 
683 
709 
733 
751 

( ^ ) 

— 
+ 
-
-
+ 
+ 
+ 
-
-
+ 
+ 
+ 
+ 
+ 
-
-
-
-
-
+ 
-
-
-
+ 
+ 
-
-
-
-
-
-
+ 
+ 
-
-
-
+ 
+ 
-
-
-
-
-
+ 
+ 

«P 

2i 
3 
2i 
-4i 
-3 
9 
-12 
6i 
12i 
-12 
-7 
0 
3 
-21 
20i 
-24i 
-Si 
16i 
-8i 
-3 
24i 
lOi 
0 
30 
8 
-16i 
-lOi 
30i 
-24i 
-18i 
-28i 
12 
15 
0 
-26i 
42i 
45 
29 
-30i 
2i 
30i 
-46i 
6i 
-31 
27 

P 

3 
11 
19 
31 
43 
59 
71 
83 
101 
109 
131 
149 
163 
179 
193 
211 
229 
241 
263 
277 
293 
313 
337 
353 
373 
389 
409 
431 
443 
461 
479 
499 
521 
547 
569 
587 
601 
617 
641 
653 
673 
691 
719 
739 
757 

( ^ 

+ 
+ 
-
-
-
-
+ 
+ 
+ 
-
-
+ 
-
-
-
+ 
+ 
-
+ 
-
+ 
-
+ 
-
+ 
-
-
-
+ 
-
-
-
+ 
-
-
-
+ 
+ 
+ 
-
+ 
+ 
+ 
+ 
— 

«P 

~\ 
-3 
6i 
0 
-6i 
-4i 
-3 
9 
-3 
6i 
-lOi 
15 
-6i 
16i 
-6i 
-13 
-5 
0 
9 
12i 
-6 
-6i 
13 
14i 
-21 
16i 
-24i 
lOi 
-21 
lOi 
-4i 
36i 
-3 
12i 
-44i 
22i 
-18 
3 
-33 
44i 
-21 
12 
15 
25 
12i 

P 

5 
13 
23 
37 
47 
61 
73 
89 
103 
113 
137 
151 
167 
181 
197 
223 
233 
251 
269 
281 
307 
317 
347 
359 
379 
397 
419 
433 
449 
463 
487 
503 
523 
557 
571 
593 
607 
619 
643 
659 
677 
701 
727 
743 
761 

(S[ 
— 
-
-

+ 
-
+ 
-
-
-
+ 
+ 
-
+ 
+ 
+ 
+ 
-
+ 
-
+ 
+ 
-
+ 
+ 
+ 
+ 
+ 
-
-
-
-
-
-
+ 
+ 
-
+ 
-
+ 
+ 
-
-
+ 
+ 

flp 

-2i 
-6i 
4i 
- l + 6 i 
3 
0 
9 
-14i 
-6i 
4i 
18 
-8 
2i 
-3 
3 
19 
-6 
lOi 
-30 
-20i 
-7 
18 
32i 
-15 
15 
33 
15 
9 
26i 
-36i 
-18i 
14i 
-6i 
-28i 
-33 
-21 
-18i 
-35 
24i 
-45 
3 
20i 
-18i 
39 
-33 
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§1.1 

p 
H 

K 

Aut(H) 

Aut(K) 

j{cc,z) 

the Riemann sphere (= IR u {oo}) 

the upper half plane (= {z e C | Im (z) > 0}) 

the unit disk ( = { z 6 C | |z| < 1}) 

the group of automorphisms of H 

the group of automorphisms of K 

{az + b)/{cz + d) [::]) 
CZ + ' ("[::]) 

Page 

1 

2 

2 

2 

2 

1(1.1.1) 

1 (1.1.2) 

GL^ (IR) 

SO 2m 

5C/(1, 1) 

= {aGCL2(IR) 1 det(a)>0} 

-{ 

={ 

cos 0 sin 0 ~| 1 1 
0^0 <2n} 

_—sin0 cosOj 1 J 

,.sz.,,c, v-Q _;] .=[; 0 

§1.2 

Gx 

G\X 

G/K 

the stabilizer of x {^ {geG \ gx = x}) 

= {gx I geG} 

the quotient space of A' by G 

the space of the right cosets of G by K 

§1.3 

Gmuyf 
sL^iuyf 
GL+([R),,,-

SL2([R),,,, 

Z(a) 

NiG) 

§1.4 

(/oa)(z) 

= {aeGL2 (!R)x 1 « is parabolic or scalar} 
= SL2{U)nGmU)i^^ 

= GLl{U)^nGmm.' 
= SL2{U)nGmU)^^^. 

the centralizer of a ( = {^6GL2(1R) | ocp = j9a}) 

the normalizer of G (= {a e GL2 (K) | aGa "' = G}) 

= /(az) 

7(1.3.1) 

7(1.3.1) 

7 (1.3.2) 

7 (1.3.2) 

9(1.3.3) 

9 (1.3.4) 
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K 

ke 
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= {dx' + dy')/y' {z 

= 4{dx^ + dy^)/{l-\w\^)'' (w 

= dxdyly-^ (z 

= Adxdyl{\-\w\^Y (w 

Haar measure of SL2 (R) (= {In)' 

= Jt/y(z) (DczH) 
D 

the distance in H 

= y>'"'K ^J (Z-X + I>GH) 

r cos 9 sin 6 

L —sin0 cos0_ 
{OGU) 

= X + t> e H) 

= x + iyeK) 

= x + iyeH) 
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10 

10 
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10(1.4.1) 

11 (1.4.2) 

11 

11 (1.4.2) 

11 

16(1.4.13) 

13 

12 

15 (1.4.8) 

15 (1.4.9) 

§1.5 

z{r) 

r , 

= r n { ± i } 
= rnSL2(IR), ( z e H u R u j o o } ) 

= rnSL2(II^L,x' ( X , X ' G R U { O O } ) 

the order of z( = | T, /Z(r ) | (z e H), =00 (z: a cusp)) 

§1.6 

= {zeH I rf(z,Zo)^^(z,yzo)} 

= { Z G H I rf(z,zo)<i(z,yzo)} 

= { Z G H I rf(z,Zo) = d(z,yZo)} 

§1.7 

H*,H* 

r \H 
r\H* 
71, 7 1 ^ 
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^i'WN)) 

§7.2 

£fc(z, s; ;f, i/̂ ) 

E^(z, s; n, v; N) 

£*/v(2,s;z) = ^ 

£*^(2,5) 

£*(2; X, «A) 

£2(^) 

£,(z; /., v; N) 

Elsi^;x) 
ElA^) 
ii'\r(N)) 

ii'\r{N)) 

4^>(r(N)) 

K'\r{N)) 

= (E,{z;n,v;N) | O^/i, v<iV> 

= ( £ . ( " . . ^ ) ) 

0 0 

m,n= — 00 

= Z' imz + n)~''\mz + n\~^' 

' " " ' ' m o d AT 

^ X(rf)(cz + J)-'' |cz + ̂ |-2^ LJ"" 

y6ro(NL\ro(N) V Lc 

0 

= E^^f^{z, s; x) ix- the trivial character mod N) 

= E,{z,0;x,il^) 

= E2{z;xo,Xo) 
= E,(z,0;n,v;N) 

= E*^(z,0;x) 
= £.%(z,0) 

= <£fc(2,s;/i,v;N) | 0^n,v<N} 

=(£.(;.„.,)) 

= (E^{z;n,v;N) | 0^/x,v<N> 

=("'(^^-^)) 

271 (7.1.20) 

271 (7.1.21) 

274(7.2.1) 

289 (7.2.52) 

(x ( - i )= ( - i f ) 

(otherwise) 290 (7.2.60) 

290 (7.2.61) 
287 (7.2.50) 
287 (7.2.51) 
289 (7.2.57) 
290 (7.2.63) 
290 (7.2.64) 
289 (7.2.53) 

289 (7.2.54) 

289 (7.2.58) 

289 (7.2.59) 
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5(z;a,i9) = X (z + n)-(z+ «)-'' 

</)(>;; a, P; x) ={x + iy) '"{x- iy)' ̂  

00 

a{z\ <x, P) 

r\{y\ a, )S; x) 

co(z; a, i?) 

A{s) 

Bis) 

C{s) 

= ^ e-"'{u+\Y-'u^-'du 
0 

0 0 

= rm-'z^a{z;oLj) 

= 2'^ + U-''lV{il/''){n/My^T{s + k)-' 

= 2^ " T V ( - l)^^(«A°)(7r/M)^r(s)-' 

_ f 0 {x = Xo) 

~\2L^{2s + k,ilj) (x#Zo) 

.ist of Symbc 

Page 

275 (7.2.7) 

275 (7.2.9) 

275(7.2.11) 

276 (7.2.16) 

276 (7.2.17) 

279 (7.2.31) 

285 

285 

275 (7.2.6) 

D{s) 

a„(s) 

2i-'^n Y\(^-p~')ris)-'r{s + k)-'r 
p\M ( ^ ) 

xr ir) Li^{2s + k-\,x) (lA: trivial) 

0 (otherwise) 

0<c\n 0<d\{l,c) 

284 

285 
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